# A Borel maximal eventually different family 

Haim Horowitz and Saharon Shelah


#### Abstract

We construct a Borel maximal eventually different family. ${ }^{1}$


## Introduction

Maximal almost disjoint families and their relatives have been studied by set theorists for decades. As the construction of such families is typically being done using the axiom of choice, questions about their definability naturally arise. The definability of mad families was investigated by Mathias who proved the following:

Theorem [Ma]: There are no analytic mad families.
The possibility of the non-existence of mad families was investigated by the authors in [HwSh:1090] where the following was proved (earlier such results were proven by Mathias and Toernquist using Mahlo and inaccessible cardinals, respectively):
Theorem [HwSh:1090]: $Z F+D C+$ "There are no mad families" is equiconsistent with $Z F C$.

In this paper we shall study maximal eventually different families in $\omega^{\omega}$. Recall that $f, g \in \omega^{\omega}$ are eventually different if $f(n) \neq g(n)$ for large enough $n$. A family $\mathcal{F} \subseteq \omega^{\omega}$ is a maximal eventually family if the members of $\mathcal{F}$ are pairwise eventually different, and $\mathcal{F}$ is maximal with respect to this property. Our main goal is to construct in $Z F$ a Borel maximal eventually different family, thus answering a question asked by several set theorists (see for example [ Br$],[\mathrm{KSZ}]$ and $[\mathrm{To}]$ ) and showing that the analog for the above theorems is not true for maximal eventually different families. While in the current paper we do not attempt to find the minimum possible Borel complexity of a MED family, we intend to prove in future work that there exist closed MED families.

In a subsequent paper we shall also prove a similar result for maximal cofinitary groups and investigate some connections with Borel combinatorics and large cardinals.

## The proof

Theorem $1(Z F)$ : There exists a Borel MED family.
Observe that the notion of a Borel MED family can be defined for $A^{B}$ whenever $|A|=\aleph_{0}=|B|$, and it's enough to prove that for some $A$ and $B$ of cardinality $\aleph_{0}$, there is a Borel MED family in $A^{B}$ (with the natural Polish topology).

Definition and claim 2: a. Let $T_{*}=2^{<\omega}$.
b. $\mathcal{F}_{*}=\left\{f: f\right.$ is a function from $2^{<\omega}$ to $\left.H\left(\aleph_{0}\right)\right\}$.
c. For $n<\omega$ let $\mathcal{F}_{n}^{*}=\left\{f \upharpoonright 2^{<n}: f \in \mathcal{F}_{*}\right\}$.
d. For $f, g \in \mathcal{F}_{*}$ let $e q(f, g)=\{\rho: f(\rho)=g(\rho)\}$ and $\operatorname{dif}(f, g)=2^{<\omega} \backslash e q(f, g)$.
e. Let $E D F=\left\{\mathcal{F} \subseteq \mathcal{F}_{*}:(\forall f \neq g \in \mathcal{F})\left(|e q(f, g)|<\aleph_{0}\right)\right\}$.
f. Let $M E D F=\{\mathcal{F} \in E D F: \mathcal{F}$ is maximal $\}$.
g. Let $\mathbf{B}: \mathcal{F}_{*} \rightarrow 2^{\omega}$ be an injective continuous function.

[^0]h. Let $F_{1}: \mathcal{F}_{*} \rightarrow \mathcal{F}_{*}$ be defined as $F_{1}(f)(\rho)=f \upharpoonright 2^{<l g(\rho)}$.
i. Let $G_{0}=\left\{F_{1}(f): f \in \mathcal{F}_{*}\right\}$.
j. Let $G_{1}$ be the set of $g \in \mathcal{F}_{*}$ such that for some $f \in \mathcal{F}_{*}$, $\operatorname{dif}\left(g, F_{1}(f)\right)$ is infinite and satisfies:

1. $(\forall n)\left(\left|\left\{\rho: \mathbf{B}(f) \upharpoonright n \not \equiv \rho \wedge \rho \in \operatorname{dif}\left(g, F_{1}(f)\right)\right\}\right|<\aleph_{0}\right)$.
2. For every $\rho \in 2^{<\omega}$, if $\rho \leq \mathbf{B}(f)$ then there exists at most one $\nu$ such that $\rho \leq \nu \in \operatorname{dif}\left(g, F_{1}(f)\right)$ and $\nu \cap \mathbf{B}(f)=\rho$.
k. For $g \in G_{1}$, let $f_{g}$ be the unique $f$ as in clause $(\mathrm{j})$. We shall prove that $f_{g}$ is indeed unique, and can be Borel-computed from $f$.
3. For $g \in G_{1}$ and $f_{g}$ as above, let $w_{g}=\operatorname{dif}\left(g, F_{1}\left(f_{g}\right)\right)$.
m . Let $G_{2}$ be the set of $g \in G_{1}$ satisfying (1) and (2) where:
4. $g \upharpoonright w_{g}=f_{g} \upharpoonright w_{g}$.
5. $\left(\forall \rho \in w_{g}\right)\left(g(\rho) \notin \mathcal{F}_{l g(\rho)}^{*}\right)$ or $\left(\forall \rho \neq \nu \in w_{g}\right)\left(g(\rho) \in \mathcal{F}_{l g(\rho)}^{*} \wedge g(\rho) \nsubseteq g(\nu)\right)$.

Proof (of clause (k)): Given $g \in G_{1}$, let $X_{1}(g)=\left\{\rho \in T_{*}: g(\rho) \in \mathcal{F}_{l g(\rho)}^{*}\right\}$. Let $X_{2}(g)=\left\{\rho \in T_{*}:\left(\forall \nu_{1}, \nu_{2}\right)\left(\rho \leq \nu_{1} \leq \nu_{2} \rightarrow \nu_{1}, \nu_{2} \in X_{1}(g) \wedge g\left(\nu_{1}\right) \subseteq g\left(\nu_{2}\right)\right)\right\}$, $X_{3}(g)=\left\{\rho \in T_{*}:\left|\left\{\nu: \rho \leq \nu \in T_{*}, \nu \notin X_{2}(g)\right\}\right|<\aleph_{0}\right\}$ and $X_{4}(g)=\left\{\rho \in X_{3}(g):\right.$ there are no incompatible $\nu_{1}$ and $\nu_{2}$ such that $\rho \leq \nu_{1}, \nu_{2} \in T_{*}$ and $\nu_{l} \notin X_{2}(g)$ $(l=1,2)\}$. As $g \in G_{1}$, there is $f$ as in clause (j).
We shall now prove that if $\rho \not \leq \mathbf{B}(f)$ then $\rho \in X_{3}(g)$ and moreover, $\rho \in X_{4}(g)$ : By the definition of $G_{1}, \Lambda_{n}:=\left\{\nu \in T_{*}: \mathbf{B}(f) \upharpoonright n \not \approx \nu, g(\nu) \neq F_{1}(f)(\nu)\right\}$ is finite for every $n<\omega$. Now let $\rho \in T_{*}$ such that $\rho \not \leq \mathbf{B}(f)$ and choose a minimal $n$ such that $\mathbf{B}(f) \upharpoonright n \not \approx \rho$. For every $\rho \leq \nu \in T_{*}$, if $\nu \notin \Lambda_{n}$ then $g(\nu)=F_{1}(f)(\nu)$, therefore, $\rho \leq \nu_{1} \leq \nu_{2} \in T_{*} \wedge \nu_{1}, \nu_{2} \notin \Lambda_{n} \rightarrow g\left(\nu_{1}\right)=F_{1}(f)\left(\nu_{1}\right) \subseteq F_{1}(f)\left(\nu_{2}\right)=g\left(\nu_{2}\right)$. It follows that $\rho \in X_{3}(g)$, moreover, by $2(\mathrm{j})(2), \rho \in X_{4}(g)$ : There is at most one $\nu$ such that $\rho \leq \nu$ and $\nu \in \operatorname{dif}\left(g, F_{1}(f)\right)$. For every $\rho \leq \nu^{\prime}$ which is not $\leq \nu, g\left(\nu^{\prime}\right)=f \upharpoonright 2^{<l g\left(\nu^{\prime}\right)}$, hence $\nu^{\prime} \in X_{2}(g)$. It follows that $\rho \in X_{4}(g)$.
Therefore, for every $n,\left|\left\{\rho \in T_{*}: \lg (\rho)=n, \rho \notin X_{4}(g)\right\}\right| \leq 1$. Note that $X_{i}(g)$ ( $i=1,2,3,4$ ) can be simply computed.
Note that by $2(\mathrm{j})(2)$, for every $\rho \in 2^{<\omega}$ there exists $\rho^{\prime} \in e q\left(g, F_{1}(f)\right)$ above it, hence, if $\rho \in X_{2}(g)$ then $\rho \in e q\left(g, F_{1}(f)\right)$. Now suppose that $\nu_{1} \neq \nu_{2} \in 2^{n} \cap \operatorname{dif}\left(g, F_{1}(f)\right)$. If $\nu_{1} \cap \nu_{2} \not \leq \mathbf{B}(f)$, then $\nu_{1} \cap \nu_{2} \in X_{4}(g)$, contradicting the fact that $\nu_{1}, \nu_{2} \notin X_{2}(g)$ are incomparable. If $\nu_{1} \cap \mathbf{B}(f)=\nu_{2} \cap \mathbf{B}(f)=\nu_{1} \cap \nu_{2}$, then we get a contradction to $2(\mathrm{j})(2)$. The only possibility left is that $\nu_{1} \cap \nu_{2} \leq \mathbf{B}(f)$ but $\nu_{1} \cap \mathbf{B}(f) \neq \nu(2) \cap \mathbf{B}(f)$, so wlog $\nu_{1} \cap \mathbf{B}(f)<\nu_{2} \cap \mathbf{B}(f)$. Therefore, there are at most $n$ elements $\nu \in 2^{n}$ such that $\nu \in \operatorname{dif}\left(g, F_{1}(f)\right)$. As $2^{n-1}>n$ for $3 \leq n$, we have established the following:
$(*)$ If $3 \leq n$, then for most $\nu \in 2^{n}, g(\nu)=f \upharpoonright 2^{<n}$.
It follows that if $g \in G_{1}$ then $f_{g}$ is uniquely determined, and there exists a Borel function $\mathbf{B}^{\prime}: \mathcal{F}_{*} \rightarrow \mathcal{F}_{*}$ such that $g \in G_{1} \rightarrow \mathbf{B}^{\prime}(g)=f_{g}$.
Claim 3: 1. If $g_{1}, g_{2} \in G_{2}$ and $f_{g_{1}} \neq f_{g_{2}}$, then:
a. $e q\left(g_{1}, g_{2}\right)$ is finite.
b. $w_{g_{1}} \cap w_{g_{2}}$ is finite.
c. $e q\left(g_{2}, F_{1}\left(f_{g_{1}}\right)\right)$ is finite.
2. If $g_{1} \in G_{2}, f_{0} \in \mathcal{F}_{*}$ and $f_{g_{1}} \neq f_{0}$, then $e q\left(g_{1}, F_{1}\left(f_{0}\right)\right)$ is finite.

Proof: 1. As $\mathbf{B}$ is injective, $\mathbf{B}\left(f_{g_{1}}\right) \neq \mathbf{B}\left(f_{g_{2}}\right)$, therefore $\rho:=\mathbf{B}\left(f_{g_{1}}\right) \cap \mathbf{B}\left(f_{g_{2}}\right) \in 2^{<\omega}$ and WLOG $\hat{\rho}(l) \leq \mathbf{B}\left(f_{g_{l}}\right)$. By the definition of $G_{1},\left\{\nu \in w_{g_{l}}: \hat{\rho}(l) \not \leq \nu\right\}$ is
finite for $l=1,2$, therefore $w_{f_{g_{1}}} \cap w_{f_{g_{2}}}$ is finite, which proves clause (b). Now let $n_{*}$ be such that $f_{g_{1}} \upharpoonright 2^{<n_{*}} \neq f_{g_{2}} \upharpoonright 2^{<n_{*}}$. If $\nu \in 2^{<\omega} \backslash w_{g_{1}} \backslash w_{g_{2}} \backslash 2^{\leq n_{*}}$, then $g_{l}(\nu)=F_{1}\left(f_{g_{l}}\right)(\nu)(l=1,2)$ by the definition of $w_{g_{l}}$. By the choice of $n_{*}$ and the definition of $F_{1}, F_{1}\left(f_{g_{1}}\right)(\nu) \neq F_{2}\left(f_{g_{2}}\right)(\nu)$, so $g_{1}(\nu) \neq g_{2}(\nu)$. Note that $\left|\left\{\nu \in w_{g_{2}}: g_{2}(\nu)=F_{1}\left(f_{g_{1}}\right)(\nu)\right\}\right| \leq 1$ : By the definition of $G_{2}$, either $g_{2}(\nu) \notin \mathcal{F}_{l g(\nu)}^{*}$ for every $\nu \in w_{g_{2}}$ (in this case, the above set is empty by the definition of $F_{1}$ ) or $\left\{g_{2}(\nu): \nu \in w_{g_{2}}\right\}$ are pairwise incomparable with respect to inclusion, and then as $\left\{F_{1}\left(f_{g_{1}}\right)(\nu): \nu \in w_{g_{2}}\right\}$ form a chain, the above set has cardinality $\leq 1$. Suppose now that $\nu \in w_{g_{2}} \backslash w_{g_{1}}$, then $g_{1}(\nu)=F_{1}\left(f_{g_{1}}\right)(\nu)$, and by the above claim, there is at most one $\nu \in w_{g_{2}} \backslash w_{g_{1}}$ such that $g_{1}(\nu)=g_{2}(\nu)$. Similarly, there is at most one $\nu \in w_{g_{1}} \backslash w_{g_{2}}$ such that $g_{1}(\nu)=g_{2}(\nu)$. Therefore, $e q\left(g_{1}, g_{2}\right)$ is finite, which proves clause (a). Clause (c) follows from (2).
2. By the definition of $G_{2}$, either $g_{1}(\nu) \notin \mathcal{F}_{l g(\nu)}^{*}$ for every $\nu \in w_{g_{1}}$ (and therefore $w_{g_{1}} \cap e q\left(g_{1}, F_{1}\left(f_{0}\right)\right)=\emptyset$ ), or $\left\{g_{1}(\nu): \nu \in w_{g_{1}}\right\}$ are pairwise incomparable (and then $\left.\left|w_{g_{1}} \cap e q\left(g_{1}, F_{1}\left(f_{0}\right)\right)\right| \leq 1\right)$. If $\nu \notin w_{g_{1}}$ is long enough, then $g_{1}(\nu)=F_{1}\left(f_{g_{1}}\right)(\nu)=$ $f_{g_{1}} \upharpoonright 2^{<l g(\nu)} \neq f_{0} \upharpoonright 2^{<l g(\nu)}=F_{1}\left(f_{0}\right)(\nu)$. Together we get the desired conclusion.
Definition 4: Let $H_{3}=\left\{f \in \mathcal{F}_{*}\right.$ : there is $g \in G_{2}$ such that $\left.f_{g}=f\right\}$.
Definition 5: Given a formula $\psi(x)$, we say that the truth value $T V(\psi(f))(f \in$ $\mathcal{F}_{*}$ ) is Borel-computable if there exists a Borel function $F: \mathcal{F}_{*} \rightarrow\{0,1\}$ such that $T V(\psi(f))=$ true iff $F(f)=1$.
The theorem will follow from the following claim together with claim 8:
Claim 6: There is a Borel function $F_{3}^{*}$ such that $\operatorname{Dom}\left(F_{3}^{*}\right)=\mathcal{F}_{*}, f \in H_{3} \Longleftrightarrow$ $F_{3}^{*}(f) \in G_{2}$ and $f_{F_{3}^{*}(f)}=f$ when $f \in H_{3}$. As a consequence, $H_{3}$ is Borel.
Definition 7: Let $G_{4}:=\left\{F_{3}^{*}(f): f \in H_{3}\right\} \cup\left\{F_{1}(f): f \in \mathcal{F}_{*} \backslash H_{3}\right\}$.
Claim 8: a. $G_{4}$ is Borel and $G_{4} \subseteq G_{0} \cup G_{2}$ (and $G_{2} \subseteq G_{1}$ ).
b. $G_{4} \in E D F$.
c. $G_{4} \in M E D F$.

Proof of claim 8: a. The second part of the claim is obvious. As for the first part, first observe that $f \in G_{4}$ iff $T V_{1}(f)=$ true or $T V_{2}(f)=$ true where:

1. $T V_{1}(f)=$ true iff $f \in G_{0}$ and $F_{1}^{-1}(f) \notin H_{3}$ (where $G_{0}$ was defined in 2(i)).
2. $T V_{2}(f)=$ true iff $\mathbf{B}^{\prime}(f) \in H_{3}$ and $f=F_{3}^{*}\left(\mathbf{B}^{\prime}(f)\right.$ ) (where $\mathbf{B}^{\prime}$ is the Borel function from claim $2(\mathrm{k})$, which is defined in the end of the proof of the claim).

Next observe that $T V_{1}(f)$ is Borel-computable: It's easy to see that $G_{0}$ is closed and $F_{1}^{-1}$ is continuous on $G_{0}$. As $H_{3}$ is Borel, we're done.
$T V_{2}(f)$ is Borel-computable as well, as $H_{3}$ and all of the functions involved are Borel. It follows that $G_{4}$ is Borel.
b. Suppose that $g_{1} \neq g_{2} \in G_{4}$ as witnessed by $f_{g_{1}}=f_{1}$ and $f_{g_{2}}=f_{2}$. Clearly, $f_{1}=f_{2}$ is impossible, as then, if $f_{1} \in H_{3}$ then $f_{2} \in H_{3}$, hence $g_{1}=F_{3}^{*}\left(f_{1}\right)=$ $F_{3}^{*}\left(f_{2}\right)=g_{2}$, and similarly, if $f_{1}, f_{2} \notin H_{3}$, then $g_{1}=F_{1}\left(f_{1}\right)=F_{1}\left(f_{2}\right)=g_{2}$. Therefore, $f_{1} \neq f_{2}$. If $f_{1}, f_{2} \in H_{3}$ then $g_{1}, g_{2} \in G_{2}$ and by claim $3(1), e q\left(g_{1}, g_{2}\right)$ is finite. If $f_{1}, f_{2} \notin H_{3}$, then $g_{1}=F_{1}\left(f_{1}\right), g_{2}=F_{1}\left(f_{2}\right)$, and by the definition of $F_{1}$, $e q\left(g_{1}, g_{2}\right)$ is finite. If $f_{1} \in H_{3}$ and $f_{2} \notin H_{3}$ or vice versa, then $e q\left(g_{1}, g_{2}\right)$ is finite by 3(2).
c. Let $f \in \mathcal{F}_{*}$, we shall find $g \in G_{4}$ such that $e q(f, g)$ is infinite. Denote $\mathbf{B}(f)$ (from $2(\mathrm{~g})$ ) by $\eta_{f}$. If $f \in H_{3}$ then $g=F_{3}^{*}(f) \in G_{4}$ is well-defined. By the definition
of $G_{2}$ and $F_{3}^{*}, g \upharpoonright w_{g}=f \upharpoonright w_{g}$. By the definition of $G_{2}, w_{g}$ is infinite. Therefore, we may assume that $f \notin H_{3}$.
Case I: For every $n$ there is $\nu$ such that $\eta_{f} \upharpoonright n \leq \nu \in 2^{<\omega}$ and $f(\nu) \notin \mathcal{F}_{l g(\nu)}^{*}$. In this case, choose the $<_{*}$-least witness $\nu_{n}$ for every $n$. There is an infinite set $A \subseteq \omega$ such that $\left(\lg \left(\nu_{n} \cap \eta_{f}\right): n \in A\right)$ is strictly increasing. Let $g=\left(f \upharpoonright\left\{\nu_{n}: n \in\right.\right.$ $A\}) \cup\left(F_{1}(f) \upharpoonright\left(2^{<\omega} \backslash A\right)\right)$, it's straightforward to verify that $g \in G_{2}$ (by the first possibility in definition $2(\mathrm{~m})(2))$ and $f=f_{g}$, which is a conradiction.
Case II: Case I fails, but there are $A \in[\omega]^{\omega}$ and $\bar{\nu}=\left(\nu_{n}: n \in A\right)$ such that $\eta_{f} \upharpoonright n \leq \nu_{n}, l g\left(\nu_{n} \cap \eta_{f}\right)=n$ and $\left(f\left(\nu_{n}\right): n \in A\right)$ are pairwise incomparable. In this case, we shall derive a contradiction as in the previous case (using the second possibility in definition $2(\mathrm{~m})(2)$ ). Note that if $n$ exemplifies the failure of case I, then as $\left(f\left(\nu_{m}\right): n \leq m \in A\right)$ are pairwise incomparable, there is at most one $n \leq m \in A$ such that $f\left(\nu_{m}\right)=F_{1}(f)\left(\nu_{m}\right)$. If $n \leq n_{*}$ and $f\left(\nu_{m}\right) \neq F_{1}(f)\left(\nu_{m}\right)$ for every $n_{*} \leq m \in A$, then we define $g$ as in the previous case, with $\left\{\nu_{m}: n_{*} \leq m \in A\right\}$ here instead of $\left\{\nu_{n}: n \in A\right\}$ there, and we get a contradiction similarly.
Case III: $\neg$ Case I $\wedge \neg$ Case II. We shall prove the following statement:
$(*)$ There are $n_{*}, k^{*}$ and $f_{0}, \ldots, f_{k_{*}} \in \mathcal{F}_{*}$ such that $\eta_{f} \upharpoonright n_{*} \leq \nu \rightarrow f(\nu) \in\left\{f_{0} \upharpoonright\right.$ $\left.2^{<l g(\nu)}, \ldots, f_{k_{*}-1} \upharpoonright 2^{<l g(\nu)}\right\}$.
In order to prove $(*)$, assume that it fails and we shall derive a contradiction to the assumptions of case III.
Let $n_{1}$ witness the failure of case I , we choose by induction on $k$ a triple ( $\overline{\eta_{k}}, A_{k}, f_{k}$ ) such that:
a. $\overline{\eta_{k}}=\left(\eta_{k, n}: n_{1} \leq n \in A_{k}\right)$.
b. $\eta_{f} \upharpoonright n \leq \eta_{k, n}$ but $\eta_{f} \upharpoonright(n+1) \not \leq \eta_{k, n}$.
c. $f\left(\eta_{k, n}\right) \notin\left\{f_{l} \upharpoonright 2^{<l g\left(\eta_{k, n}\right)}: l<k\right\}$.
d. $A_{k} \subseteq \omega$ is infinite and $\left(f\left(\eta_{k, n}\right): n_{1} \leq n \in A_{k}\right)$ is $\subseteq$-increasing.
e. $f_{k} \in \mathcal{F}_{*}$ and $f_{k}=\underset{n_{1} \leq n}{\cup} f\left(\eta_{k, n}\right)$.

Why can we carry the induction? At stage $k$, let $A_{k}^{1}=\left\{n: n_{1} \leq n\right.$ and there is $\eta_{k, n}$ satisfying (b) $\left.+(\mathrm{c})\right\}$. If $A_{k}^{1}$ is finite, then letting $n_{*}=\max \left(A_{k}^{1}\right)+1$, $\left(n_{*}, k-1, f_{0}, \ldots, f_{k-1}\right)$ are as required in the above statement $(*)$, contradicting thee assumption that $(*)$ fails. If $A_{k}^{1}$ is infinite, we can choose for every $n \in A_{k}^{1}$ an $\eta_{k, n}$ satisfying (b)+(c) (for example, by taking the $<_{*}$-minimal such sequence), by Ramsey's theorem there is an infinite $A_{k} \subseteq A_{k}^{1}$ such that $\left(f\left(\eta_{k, n}\right): n \in A_{k}\right)$ is either $\subseteq$-increasing, $\subseteq$-decreasing or pairwise incomparable (note that we don't need any form of the axiom of choice here, as we can carry the argument in a model of the form $L[X]$ ). If the elements of $\left\{f\left(\eta_{k, n}\right): k \in A_{n}\right\}$ are pairwise incomparable, let $w=\left\{\eta_{k, n}: n \in A_{k}\right\}$ and $g=(f \upharpoonright w) \cup\left(F_{1}(f) \upharpoonright\left(2^{<\omega} \backslash w\right)\right)$. It's straightforward to verify that $g \in G_{2}$ and $f_{g}=f$ (note that by the pairwise incomparability of the $f\left(\eta_{k, n}\right) \mathrm{s}$, there is at most one $\eta_{k, n}$ for which $\left.f\left(\eta_{k, n}\right)=F_{1}(f)\left(\eta_{k, n}\right)\right)$. Therefore, $f \in H_{3}$, contradicting our assumption. By the choice of $n_{1}$, the sequence $\left(f\left(\eta_{k, n}\right): n \in A_{k}\right)$ can't be $\subseteq$-decreasing, therefore, it's $\subseteq$-increasing. Let $f_{k}=\cup\left\{f\left(\eta_{k, n}\right): n \in A_{k}\right\}$, then $f_{k} \in \mathcal{F}_{*}$ and $n \in A_{k} \rightarrow f\left(\eta_{k, n}\right)=F_{1}\left(f_{k}\right)\left(\eta_{k, n}\right)$, so we've carried the induction.

We shall now get a contradiction by showing that the assumptions of case II hold: Note that $k_{1} \neq k_{2} \rightarrow f_{k_{1}} \neq f_{k_{2}}$ (by clauses (c) and (e)). Let $B_{0}=\omega$, choose $l_{0}$ such that $f_{0} \upharpoonright 2^{\leq l_{0}} \neq f_{1} \upharpoonright 2^{\leq l_{0}}$. Therefore, there are $h_{0} \in\{0,1\}$ and an infinite set $B_{1} \subseteq \omega \backslash\{0,1\}$ such that $\underset{k \in B_{1}}{\wedge} f_{k} \upharpoonright 2^{\leq l_{0}} \neq f_{h_{0}} \upharpoonright 2^{\leq l_{0}}$. Now choose $i_{1,0} \neq i_{1,1} \in B_{1}$
and $l_{1}$ such that $f_{i_{1,0}} \upharpoonright 2^{\leq l_{1}} \neq f_{i_{1,1}} \upharpoonright 2^{\leq l_{1}}$. As before, there are $h_{1} \in\{0,1\}$ and an infinite set $B_{2} \subseteq B_{1} \backslash\left(i_{1,0}+i_{1,1}\right)$ such that $\underset{k \in B_{2}}{\wedge} f_{k} \upharpoonright 2^{\leq l_{1}} \neq f_{i_{1, h_{1}}} \upharpoonright 2^{\leq l_{1}}$. We continue as above and obtain the sets $B=\left\{h_{0}<i_{1, h_{1}}<i_{2, h_{2}}<\ldots\right\},\left(B_{n}: n<\omega\right)$, $\left(\left(i_{m, 0}, i_{m, 1}\right): m<\omega\right)$ and $\left(l_{m}: m<\omega\right)$. For every $k \in B$, if $k=i_{m, h_{m}}$, choose $n_{k} \in A_{k}$ such that $\max \left\{l_{m}, n_{k-1}\right\}<n_{k}$ and let $\nu_{n_{k}}=\eta_{k, n_{k}}$ and $A=\left\{n_{k}: k \in\right.$ $B\}$. It's now easy to verify that $A$ and $\left(\nu_{n_{k}}: k \in B\right)$ satisfy the assumptions of case II, but we shall elaborate: We shall prove that $f\left(\nu_{k_{1}}\right)=f\left(\eta_{k_{1}, n_{k_{1}}}\right)=$ $f_{k_{1}} \upharpoonright 2^{\leq l g\left(\eta_{k_{1}, n_{k_{1}}}\right)}$ and $f\left(\nu_{k_{2}}\right)=f\left(\eta_{k_{2}, n_{k_{2}}}\right)=f_{k_{2}} \upharpoonright 2^{\leq l g\left(\eta_{k_{2}, n_{k_{2}}}\right)}$ are incomparable for $k_{1} \neq k_{2} \in B$. Suppose that $k_{1}=i_{m, h_{m}}$ and $k_{2}=i_{j, h_{j}}$ and wlog $m<j$, then $f_{k_{1}} \upharpoonright 2^{\leq l_{m}} \neq f_{k_{2}} \upharpoonright 2^{\leq l_{m}}$, therefore $f_{k_{1}} \upharpoonright 2^{\leq l g\left(\eta_{k_{1}, n_{k_{1}}}\right)} \neq f_{k_{2}} \upharpoonright 2^{\leq l g\left(\eta_{k_{1}, n_{k_{1}}}\right)}$ and $f_{k_{1}} \upharpoonright 2^{\leq l g\left(\eta_{k_{2}, n_{k_{2}}}\right)} \neq f_{k_{2}} \upharpoonright 2^{\leq l g\left(\eta_{k_{2}, n_{k_{2}}}\right)}$, and therefore $f\left(\nu_{k_{1}}\right)$ and $f\left(\nu_{k_{2}}\right)$ are incomparable. This completes the proof of $(*)$.

Now let $n_{*}, k_{*}, f_{0}, \ldots, f_{k_{*}-1}$ be as in (*), then for every $n \geq n_{1}$, there is $l_{n}<k_{*}$ such that the set $Y_{n}=\left\{\rho \in 2^{<\omega}: \eta_{f} \upharpoonright n \leq \rho, \eta_{f}(n) \neq \rho(n)\right.$ and $\left.f(\rho)=F_{1}\left(f_{l_{n}}\right)(\rho)\right\}$ is infinite. Choose $l_{*}<k_{*}$ such that $B=\left\{n: n_{1} \leq n, l_{n}=l_{*}\right\}$ is infinite.

Subcase I: $f_{l_{*}} \notin H_{3}$. If $n \in B$ and $\rho \in Y_{n}$, then $f(\rho)=F_{1}\left(f_{l_{n}}\right)(\rho)=F_{1}\left(f_{l_{*}}\right)(\rho)$, therefore, eq(f, $\left.F_{1}\left(f_{l_{*}}\right)\right)$ is infinite. As $f_{l_{*}} \notin H_{3}, F_{1}\left(f_{l_{*}}\right) \in G_{4}$ (by the definition of $\left.G_{4}\right)$. Therefore, we've found $g \in G_{4}$ such that $e q(f, g)$ is infinite and we're done.
Subcase II: $f_{l_{*}} \in H_{3}$. For each $n \in B, Y_{n}$ is infinite, therefore we can find $\rho_{n} \in$ $Y_{n} \backslash w_{F_{3}^{*}\left(f_{l_{*}}\right)}$ (by the definition of $G_{2},\left\{\rho \in w_{F_{3}^{*}\left(f_{l_{*}}\right)}: \rho \cap \eta_{f}=\eta_{f} \upharpoonright n\right\}$ is finite, and as $Y_{n} \subseteq\left\{\rho \in 2^{<\omega}: \rho \cap \eta_{f}=\eta_{f} \upharpoonright n\right\}$ is infinite, there is $\rho_{n}$ as required).

As $f_{l_{*}} \in H_{3}, f_{l_{*}}=f_{g}$ for some $g \in G_{2}$, and $F_{3}^{*}\left(f_{l_{*}}\right)=g$, hence $F_{3}^{*}\left(f_{l_{*}}\right)\left(\rho_{n}\right)=$ $g\left(\rho_{n}\right)=F_{1}\left(f_{l_{*}}\right)\left(\rho_{n}\right)=f\left(\rho_{n}\right)$ (the equalities follow from the definitions of $F_{1}, F_{3}^{*}$ and $Y_{n}$, and the assumption that $\left.\rho_{n} \notin w_{F_{3}^{*}\left(f_{l_{*}}\right)}\right)$. Therefore, $e q\left(F_{3}^{*}\left(f_{l_{*}}\right), f\right)$ is infinite, and by the definition of $G_{4}, F_{3}^{*}\left(f_{l_{*}}\right) \in G_{4}$ so we're done.
Proof of claim 6: For $f \in \mathcal{F}_{*}$, let $\eta_{f}=\mathbf{B}(f)$ and let $T V_{*}(f)$ be the truth value of the statement:
$(*)$ For every $n<\omega$ there exists $\nu \in 2^{<\omega}$ such that $\eta_{f} \upharpoonright n \leq \nu$ and $f(\nu) \notin \mathcal{F}_{l g(\nu)}^{*}$.
Note that $T V_{*}(f)$ is Borel-computable and so are the truth values $T V_{2, k, i}(f)$ and $T V_{3, j}(f)$ (to be defined later), therefore, it suffices to define $F_{3}^{*}$ separately for each combination of truth values.

Case I: $T V_{*}(f)=$ true. In this case, we shall prove that $f \in H_{3}$ and define $F_{3}^{*}(f)$ :
Let $A_{f}$ be the set of $n$ for which there is $\nu \in 2^{<\omega}$ such that $\nu \cap \eta_{f}=\eta_{f} \upharpoonright n$ and $f(\nu) \notin \mathcal{F}_{l g(\nu)}^{*}$. By the assumption, $A_{f}$ is infinite.
For each $n \in A_{f}$, let $\nu_{f, n}$ be a sequence for which $(*)$ is true, such that:

1. $\lg \left(\nu_{f, n}\right)$ is minimal.
2. $\nu_{f, n}$ is $<_{*}$-minimal among the sequence satisfying (1) (where $<_{*}$ is the lexicographic ordering).
Let $w_{f}=\left\{\nu_{f, n}: n \in A_{f}\right\}$ and let $F_{3}^{*}(f)=f \upharpoonright w_{f} \cup F_{1}(f) \upharpoonright\left(2^{<\omega} \backslash w_{f}\right)$. It's straightforward to verify that $F_{3}^{*}(f) \in G_{2}$ and that $f_{F_{3}^{*}(f)}=f$, therefore $f \in H_{3}$.
Case II: $T V_{*}(f)=$ false. We can compute $m(f)=\min \left\{m\right.$ : If $\eta_{f} \upharpoonright m \leq \nu \in 2^{<\omega}$ then $\left.f(\nu) \in \mathcal{F}_{l g(\nu)}^{*}\right\}$. Let $T V_{2, k, i}(f)$ be the truth value of the following statement:
$(*)_{2, k, i}$ There exist $k$ and $f_{0}, \ldots, f_{k-1} \in \mathcal{F}_{*}$ such that for every $\nu \in 2^{<\omega}, \eta_{f} \upharpoonright i \leq$ $\nu \rightarrow f(\nu) \in\left\{F_{1}\left(f_{l}\right)(\nu): l<k\right\}$.

By compactness, $(*)_{2, k, i}$ holds iff for every finite $u \subseteq\left\{\nu: \eta_{f} \upharpoonright i \leq \nu \in 2^{<\omega}\right\}$ there exist $f_{0}, \ldots, f_{k-1}$ as above with domain $2^{<l g(u)+1}$ where $\lg (u)=\max \{\lg (\nu): \nu \in u\}$. Therefore, $T V_{2, k, i}(f)$ is Borel-computable. Note that there is no essential use of the axiom of choice in the compactness argument, as we can argue in an appropriate $L[X]$.

Note that if $T V_{2, k, i}(f)=$ true for some $k$ and $i$, then $f \notin H_{3}$ : Let $f_{0}, \ldots, f_{k-1}$ be as in $(*)_{2, k, i}$ and suppose towards contradiction that there exists $g \in G_{2}$ such that $f=f_{g}$. Let $\left(\nu_{n}: n \in A\right)$ list $w_{g}$, then one of the two possiblities in $2(\mathrm{~m})(2)$ holds. As $T V_{*}(f)=$ false, the first possibility of $2(\mathrm{~m})(2)$ fails. Suppose that the second possibility holds. By $2(\mathrm{j})(1)$, for every $n \in A \backslash i$ there is $m(n) \in A \backslash i$ such that $\mathbf{B}(f) \upharpoonright n \leq \nu_{m(n)}$. As $T V_{2, k, i}(f)=$ true, for every such $n \in A \backslash i$, there exists $l<k$ such that $f\left(\nu_{m(n)}\right)=F_{1}\left(f_{l}\right)\left(\nu_{m(n)}\right)$. Therefore, for some $l_{*}<k$, the set $B:=\left\{n \in A \backslash i: f\left(\nu_{m(n)}\right)=F_{1}\left(f_{l_{*}}\right)\left(\nu_{m(n)}\right)\right\}$ is infinite. It follows that the elements of $\left(f\left(\nu_{m(n)}\right): n \in B\right)=\left(g\left(\nu_{m(n)}\right): n \in B\right)$ are pairwise comparable, contradicting the second possibility of $2(\mathrm{~m})(2)$. It follows that $f \notin H_{3}$. If $T V_{2, k, i}(f)=$ true for some $k, i$, we let $F_{3}^{*}(f)=f_{0}$ where $f_{0}(\nu)$ is defined as the constant function 0 whose domain is $2^{<l g(\nu)}$. It's easy to see that $f_{0} \notin G_{2}$.

From now on, we assume that $T V_{*}(f)=$ false and $\underset{k, i}{\wedge} T V_{2, k, i}(f)=$ false. As in the proof of claim 8 (c) (case III), we shall choose by induction $A_{k}, h_{k}$ and $\overline{\eta_{k}}=\left(\eta_{k, n}: n_{1} \leq n \in A_{k}\right)$ (where $n_{1}=m(f)$ is witnessing the failure of the statement of case I in the proof of $8(\mathrm{c})$, and $h_{k}$ here stand for $f_{k}$ there) such that:
a. $A_{k} \subseteq \omega$ is infinite.
b. $\eta_{f} \upharpoonright n \leq \eta_{k, n}$ and $\eta_{f} \upharpoonright(n+1) \not \leq \eta_{k, n}$.
c. $\left(f\left(\eta_{k, n}\right): n_{1} \leq n \in A_{k}\right)$ is $\subseteq$-increasing.
d. $h_{k}=\underset{n \in A_{k}}{\cup} f\left(\eta_{k, n}\right) \in \mathcal{F}_{*}$.
e. $f\left(\eta_{k, n}\right) \notin\left\{F_{1}\left(h_{l}\right)\left(\eta_{k, n}\right): l<k\right\}$.

Moreover, the objects will be computed in a Borel way, The only non-trivial point is the application of Ramsey's theorem in the construction of $A_{k}$ from $A_{k}^{1}$ (i.e. why can we Borel-compute an infinite homogeneous set?): Given a function $R:[\omega]^{2} \rightarrow$ $\{0,1\}$, we shall Borel-compute an infinite homogeneous set (we shall write $R(m, k)$ for $R(\{m, k\})$ where $m<k)$. Define $\rho_{n} \in 2^{n}$ by induction on $n$ such that:
a. $\rho_{n} \leq \rho_{n+1}$.
b. For infinitely many $k<\omega, R(m, k)=\rho_{n+1}(n)$ for every $m<n+1$. Let $A_{n}$ be the set of these $k$ 's.
c. $A_{n+1} \subseteq A_{n}$.
d. $\rho_{n+1}(n)=0$ if possible (i.e. if the above requirements are satisfied).

The sequence ( $\rho_{n}: n<\omega$ ) can be Borel-computed. Now choose $n_{i} \in \omega$ by induction such that:
a. $n_{i}<n_{i+1}$.
b. $n_{i}$ is the minimal $k \in A_{n_{i-1}}$ such that $\wedge_{j<i}^{\wedge} n_{j}<k$ and $R\left(n_{j}, k\right)=\rho_{n_{j}+1}\left(n_{j}\right)$ (this is possible by the choice of the $\rho_{n} \mathrm{~S}$ ).
So ( $\left.n_{i}: i<\omega\right)$ is Borel-computable as well. If $i_{1}<i_{2}<i_{3}$ then $R\left(n_{i_{1}}, n_{i_{2}}\right)=$ $\rho_{n_{i_{1}+1}}\left(n_{i_{1}}\right)=R\left(n_{i_{1}}, n_{i_{3}}\right)$. Let $i(*) \in\{0,1\}$ be the minimal such that $\left\{i: R\left(n_{i}, n_{i+1}\right)=\right.$ $i(*)\}$ is infinite (this is Borel-computable as well). Finally, the set $\left\{n_{i}: R\left(n_{i}, n_{i+1}\right)=\right.$
$i(*)\}$ is a Borel-computable infinite homogeneous set. This completes the argument on the induction.
Let $T V_{3, j}(f)$ be the truth value of the following statement (which is Borel-computable):
$(*)_{3, j}$ The set $\left\{h_{k} \upharpoonright 2^{<j}: k<\omega\right\}$ is infinite.
Case I: $\underset{j<\omega}{\vee} T V_{3, j}(f)=$ true. In this case we can Borel compute $F_{3}^{*}(f)$ witnessing that $f \in H_{3}$. Let $j_{f}$ be the minimal $j$ such that $T V_{3, j}(f)=$ true (this is Borelcomputable) and let $B=\left\{k: j_{f}<k, h_{k} \upharpoonright 2^{<j_{f}} \notin\left\{h_{l} \upharpoonright 2^{<j_{f}}: l<k\right\}\right\}$, this set is infinite by our assumption. We choose $n_{k} \in A_{k} \backslash j_{f}$ by induction on $k \in B$ such that $k<k^{\prime} \rightarrow n_{k}<n_{k^{\prime}}$. Let $w_{f}=\left\{\eta_{k, n_{k}}: k \in B\right\}$ and let $F_{3}^{*}(f)=f \upharpoonright w_{f} \cup\left(F_{1}(f) \upharpoonright\right.$ $2^{<\omega} \backslash w_{f}$ ). It's easy to check that $F_{3}^{*}(f) \in G_{2}$ is witnessed by $f$ (hence $f \in H_{3}$ ): If there are $k \neq k^{\prime} \in B$ such that $F_{3}^{*}(f)\left(\eta_{k, n_{k}}\right)=F_{1}(f)\left(\eta_{k, n_{k}}\right)$ and $F_{3}^{*}(f)\left(\eta_{k^{\prime}, n_{k^{\prime}}}\right)=$ $F_{1}(f)\left(\eta_{k^{\prime}, n_{k^{\prime}}}\right)$, then $f\left(\eta_{k, n_{k}}\right)=h_{k} \upharpoonright 2^{<l g\left(\eta_{k, n_{k}}\right)}$ and $f\left(\eta_{k^{\prime}, n_{k^{\prime}}}\right)=h_{k^{\prime}} \upharpoonright 2^{<l g\left(\eta_{k^{\prime}, n_{k^{\prime}}}\right)}$ are comparable, contradicting the definition of $B$. It's easy to check that the other requirements in the definition of $G_{2}$ are satisfied as well.
Case II: $\wedge_{j<\omega} T V_{3, j}(f)=$ false. We can Borel-compute a set $B \in[\omega]^{\omega}$ such that $\left(h_{j}: k \in B\right)$ converges to some $h^{*} \in \mathcal{F}_{*}$ : Let $B_{0}=B_{1}=\omega$. As $T V_{3,2}(f)=$ false, there exists $k(2)>2$ such that for infinitely many $k, h_{k(2)} \upharpoonright 2^{<2}=h_{k} \upharpoonright 2^{<2}$. Choose $k(2)$ to be the minimal number with the above property and let $B_{2}=\{k \in$ $B_{1}: k>k(2)$ and $\left.h_{k(2)} \upharpoonright 2^{<2}=h_{k} \upharpoonright 2^{<2}\right\}$. As $T V_{3,3}(f)=$ false, there is a minimal $k(3) \in B_{2}$ such that $h_{k(3)} \upharpoonright 2^{<3}=h_{k} \upharpoonright 2^{<3}$ for infinitely many $k \in B_{2}$, let $B_{3}=\left\{k \in B_{2}: k>k(3)\right.$ and $\left.h_{k(3)} \upharpoonright 2^{<3}=h_{k} \upharpoonright 2^{<3}\right\}$. We now continue the construction by induction, and obtain the set $B=\{k(2)<k(3)<k(4)<\ldots\}$. Now let $h^{*}=\underset{n<\omega}{\cup} h_{k(n)} \upharpoonright 2^{<n}$, it's easy to see that $B$ and $h^{*}$ are as required. Note that as $l \neq k \rightarrow h_{l} \neq h_{k}$ (by the definition of the $h_{k} \mathrm{~s}$ ), there is at most one $k$ such that $h_{k}=h^{*}$.
We can Borel-compute ( $k_{i}, n_{i}, m_{i}$ ) by induction on $i$ such that:

1. $k_{i} \in B$ is increasing with $i$.
2. $m(f) \leq n_{i} \in A_{k_{i}}$ is increasing with $i$.
3. $m_{i}=\lg \left(\eta_{k_{i}, n_{i}}\right)$.
4. $f\left(\eta_{k_{i}, n_{i}}\right) \nsubseteq h^{*}$.
5. If $j<i$ then $f\left(\eta_{k_{i}, n_{i}}\right) \upharpoonright 2^{<m_{j}} \subseteq h^{*}$.

The induction step: Suppose that we've carried the induction up to $i$ and let $j=i-1$. Let $m_{i(*)}=\max \left\{m_{l}: l<i\right\}$. As $\lim _{n \in B} h_{n}=h^{*}$, for every $n \in B$ large enough (say, $n_{*} \leq n$ for some $n_{*}$ ) we have $h_{n} \upharpoonright 2^{<m_{i(*)}} \subseteq h^{*}$. Let $k_{i} \in B$ be the first such $n$ above $k_{j}$ such that, in addition, $h_{k_{i}} \neq h^{*}$ (recall that there is at most one $n$ for which $\left.h_{n}=h^{*}\right)$. Recall that $h_{k_{i}}=\underset{m(f) \leq n \in A_{k_{i}}}{\cup} f\left(\eta_{k_{i}, n}\right)$, and for $n_{1}=m(f) \leq n \in A_{k_{i}}$ large enough, $h_{k_{i}} \upharpoonright 2^{<n} \nsubseteq h^{*}$ (otherwise, $h_{k_{i}}=h^{*}$, which is a contradiction).
Let $n_{i} \in A_{k_{i}} \backslash n_{1}$ be the first such $n$ above $n_{j}$, and let $m_{i}=l g\left(\eta_{k_{i}, n_{i}}\right)$, so we have carried the induction successfully. Now let $w_{f}=\left\{\eta_{k_{i}, n_{i}}: i<\omega\right\}$ and let $F_{3}^{*}(f)=f \upharpoonright w_{f} \cup\left(F_{1}(f) \upharpoonright 2^{<\omega} \backslash w_{f}\right)$. It's easy to check that $F_{3}^{*}(f) \in G_{2}$ as witnessed by $f$, which belongs to $H_{3}$.

## References

[Br] Joerg Brendle, Some problems concerning mad families, note, 2013.
[KSZ] Bart Kastermans, Juris Steprans and Yi Zhang, Analytic and co-analytic families of almost disjoint functions, J. Symbolic Logic 73 (2008), 1158-1172.
[Ma] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), no. 1, 59-111. MR 0491197.
[HwSh:1090] Haim Horowitz and Saharon Shelah, Can you take Toernquist's inaccessible away?, arXiv:1605.02419.
[To] Asger Toernquist, Definability and almost disjoint families, arXiv:1503.07577.
(Haim Horowitz) Einstein Institute of Mathematics
Edmond J. Safra campus,
The Hebrew University of Jerusalem.
Givat Ram, Jerusalem, 91904, Israel.
E-mail address: haim.horowitz@mail.huji.ac.il
(Saharon Shelah) Einstein Institute of Mathematics
Edmond J. Safra campus,
The Hebrew University of Jerusalem.
Givat Ram, Jerusalem, 91904, Israel.
Department of Mathematics
Hill Center - Busch Campus,
Rutgers, The State University of New Jersey
110 Frelinghuysen road, Piscataway, NJ 08854-8019 USA
E-mail address: shelah@math.huji.ac.il


[^0]:    ${ }^{1}$ Date: May 12, 2016.
    2000 Mathematics Subject Classification: 03E15, 03E25.
    Keywords: Borel, MED families, MAD families.
    Publication 1089 of the second author.

