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Abstract

Starting from a model with a Laver-indestructible supercompact cardinal κ, we
construct a model of ZF +DCκ where there are no κ-mad families.1

Introduction
The study of the definability and possible non-existence of mad families has a long
tradition, originating with the paper [Ma] of Mathias where it was proven that
mad families can’t be analytic and that there are no mad families in the Solovay
model constructed from a Mahlo cardinal. It was later shown by Toernquist that an
inaccessible cardinal suffices for the consistency of this statement ([To]), and it was
then shown by the authors that the non-existence of mad families (in ZF + DC)
is actually equiconsistent with ZFC ([HwSh:1090]).
The current paper can be seen as a continuation of the line of investigation of
[HwSh:1090], as well as of [HwSh:1145], where the definability of κ-mad families
was considered. Recall the following definition:
Definition 1: Let κ be an infinite regular cardinal. A family A ⊆ [κ]κ is κ-almost
disjoint if |A ∩ B| < κ for every A 6= B ∈ A. A will be called κ-maximal almost
disjoint (κ-mad) if A is κ-almost disjoint and can’t be extended to a larger κ-almost
disjoint family.
Assuming the existence of a Laver-indestructible supercompact cardinal κ, we con-
structed in [HwSh:1145] a generic extension where κ remained supercompact and
there are no Σ1

1(κ) − κ−mad families, thus obtaining a higher analog of Mathias’
result.
Our current main goal is to obtain a higher analog of the main result of [HwSh:1090],
i.e. for an uncountable cardinal θ > ℵ0, we would like to construct a model of
ZF +DCθ where there are no θ-mad families. As opposed to [HwSh:1090], we only
achieve this goal assuming the existence of a supercompact cardinal. The main
result of the paper is the following:
Theorem 2: a. Suppose that ℵ0 < cf(θ) = θ < cf(κ) = κ ≤ λ = λ<κ and θ is a
Laver indestructible supercompact cardinal, then there is a model of ZF +DC<κ+
”there exist no θ-mad families”.
b. If we start from a universe V , then the final model V1 will have the same cardinals
and same H(θ) as V .
We shall force with a partial order P where the conditions themselves are forcing
notions (this is somewhat similar to [Sh:218], [HwSh:1093] and [HwSh:1113], as
well as to the recent work of Viale in [Vi], where a similar approach is applied to
the study of generic absoluteness). Forcing with P will generically introduce the
forcing notion Q that will give us the desired results. More specifically, we shall fix a
Laver-indestructible supercompact cardinal θ. The conditions in P will be elements
from a suitable H(λ+) that are (< θ)-support iterations along wellfounded partial
orders of (< θ)-directed closed forcing notions satisfying a strong version of θ+-cc.
Given q1,q2 ∈ P, we will have q1 ≤P q2 when the iteration given by q1 is an
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“initial segment” (in an adequate sense) of the iteration given by q2. Forcing with
P will introduce a generic iteration qG given by the union of q ∈ P that belong
to the generic set. In the further generic extension given by qG, we shall consider
V1 = HOD(P(θ)<κ ∪ V ) (for an adequate fixed κ). We shall then prove that there
are no θ-mad families in V1. In order to prove this fact, we shall consider towards
contradiction a condition (q0, p0

∼
) that forces a counterexample A, where q0 will be

“sufficiently closed”. The filter that’s dual to the ideal generated by A will then be
extended to a θ-complete ultrafilter (using the Laver-indestructibility of θ), and we
shall obtain a contradiction with the help of an amalgamation argument over q0
using a higher analog of Mathias forcing relative to this ultrafilter.
The rest of the paper will be devoted to the proof of Theorem 2.

Proof of the main result
Definition 3: A. Let K be the class of q that consist of the following objects with
the following properties:
a. U = Uq a well-founded partial order whose elements are ordinals. We let
U+ = U ∪ {∞} where ∞ is a new element above all elements from U , and for
α ∈ U+, we let U<α = {β ∈ U : β <U α}.
b. An iteration (Pq,α,Qq,β

∼
: α ∈ U+, β ∈ U) = (Pα,Qβ

∼
: α ∈ U+, β ∈ U). We shall

often denote the iteration itself by q.
c. q is a (< θ)-support iteration, and in addition:
(α) Each Qβ

∼
is a Pβ-name of a forcing notion whose set of elements is an object

Xβ from V .
(β) Given α ∈ U+, p ∈ Pα iff p is a function with domain dom(p) ∈ [U<α]<θ such
that p(β) is a canonical Pβ-name for every β ∈ dom(p).
(γ) ≤Pα is defined as usual.
(δ) If w ⊆ U is downward closed (i.e. α <U β ∈ w → α ∈ w) and Pq,w = Pw =
P∞ � w = {p ∈ P∞ : dom(p) ⊆ w}, then Pw l P∞.
d. In V Pβ , Qβ

∼
satisfies ∗εθ for a fixed limit ε < θ, namely, if {pα : α < θ+} ⊆ Qβ

∼
,

then there is some club E ⊆ θ+ and a pressing down function f : E → θ+ such that
if δ1, δ2 ∈ E, cf(δ1) = cf(δ2) and f(δ1) = f(δ2), then pδ1 and pδ2 have a common
least upper bound.
e. For β ∈ U , the following holds in V Pβ : If I is a directed partial order of
cardinality < θ and (ps : s ∈ I) ∈ QIβ is ≤Qβ -increasing, then {ps : s ∈ I} has a
≤Qβ -least upper bound.
B. Let ≤K be the following partial order on K:
q1 ≤K q2 iff the following conditions hold:
a. Uq1 ⊆ Uq2 as partial orders.
b. If Uq2 |= α < β and β ∈ Uq1 , then α ∈ Uq1 .
c. If w ⊆ Uq1 is downward closed, then Pq1,w = Pq2,w.
d. If α ∈ Uq1 , then Qq1,α

∼
= Qq2,α

∼
(this is well-defined recalling clause (b)).

C. Let Kwf be the class of U as in (A)(a), and let ≤wf be the partial order on Kwf

defined as in clauses (B)(a) and (B)(b).
We shall now observe some easy basic properties of the objects defined above:
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Observation 4: a. If (Uα : α < δ) is ≤wf -increasing, then ∪
α<δ

Uα is a ≤wf -least
upper bound for (Uα : α < δ).
b. ≤K is a partial order on K.
c. If q2 ∈ K and U1 ⊆ Uq2 is downward closed, then there is a unique q1 ∈ K such
that q1 ≤K q2 and Uq1 = U1.
d. If (qα : α < δ) is ≤K-increasing, then there is a unique qδ ∈ K such that
α < δ → qα ≤K qδ and Uqδ = ∪

α<δ
Uqα .

e. If U0, U1, U2 ∈ Kwf , U0 = U1 ∩ U2 and U0 ≤wf Ul (l = 1, 2), then there is
a unique U ∈ Kwf such that ∧

l=1,2
Ul ≤wf U , α ∈ U iff α ∈ U1 ∨ α ∈ U2 and

≤U=≤U1 ∪ ≤U2 . We denote this U by U1 +U0 U2.
f. If q0,q1,q2 ∈ K, q0 ≤K ql (l = 1, 2) and Uq0 = Uq1 ∩Uq2 , then there is a unique
q ∈ K such that ∧

l=1,2
ql ≤K q and Uq = Uq1 +Uq0

Uq2 . We shall denote this q by
q1 +q0 q2.
g. If α ∈ U+

q , then Pq,α is a (< θ)-complete forcing satisfying ∗εθ (hence θ+-cc).
h. Suppose that q ∈ K and Q

∼
is a Pq,∞-name of a forcing notion whose universe

is from V , such that the conditioncs of definitions 3(d) and 3(e) are satisfied, then
there is q′ ∈ K such that q ≤K q′, Uq′ = Uq ∪ {γ}, Uq′ |= α < γ for every α ∈ Uq
and Qq′,γ

∼
= Q
∼
. �

Definition 5: The forcing notion P will be defined as follows:
a. The conditions of P are the elements q of K ∩H(λ+) such that Uq ⊆ λ+, and
for every β ∈ Uq, Qβ

∼
is a name for a forcing whose underlying set of conditions is

some Xβ ⊆ λ+.
b. Given q1,q2 ∈ P, P |= ”q1 ≤ q2” iff q1 ≤K q2.
c. Given a generic set G ⊆ P, we let qG = ∪{q : q ∈ G}.
Claim 6: a. P is (< κ)-strategically complete. Moreover, it’s (< λ+)-complete
and (< θ)-directed closed.
b. 
P ”qG

∼
∈ K”, hence 
P ”PqG

∼
,∞ is (< θ)-directed closed and θ+-cc”.

c. If δ < λ+, cf(δ) > θ and (qα : α < δ) is ≤P-increasing, then q := ∪
α<δ

qα belongs

to P and Pq = ∪
α<δ

Pqα . By θ+-c.c., a
∼
is a canonical Pq-name of a member of [θ]θ

iff a
∼
is a canonical Pqα -name of a member of [θ]θ for some α < δ.

Proof: The claim follows directly from the definitions. The fact that 
P ”qG
∼
∈ K”

follows from the general fact that if I is a directed set, {qt : t ∈ I} ⊆ K and
s ≤I t→ qs ≤K qt, then ∪{qt : t ∈ I} is well-defined and belongs to K. This also
shows that P is (< θ)-directed closed. �
We shall now define our desired model:
Definition 7: a. In V P, let Q = PqG

∼
,∞.

b. Let V2 = V
P?Q
∼.

c. Let V1 be HOD(P(θ)<κ ∪ V ) inside V2.
Claim 8: a. V1 |= ZF +DC<κ.
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b. (Ord<κ)V1 = (Ord<κ)V2 , hence P(θ)V1 = P(θ)V2 .

Proof: We shall prove the first part of clause (b), the rest should be clear. Clearly,
(Ord<κ)V1 ⊆ (Ord<κ)V2 . Now let η ∈ (Ordγ)V2 for some γ < κ, then η = η

∼
[G]

for some name η
∼
of a member of Ordγ , where G ⊆ P ? Q

∼
is generic. G = G1 ? G2

where G1 ⊆ P is generic and G2 ⊆ Q
∼

[G1] is generic. Working in V [G1], η
∼
/G1 is

a Q
∼

[G1]-name. As Q
∼

[G1] is θ+-cc, for every β < γ there is a maximal antichain
{pβ,i : i < θ} ⊆ Q

∼
[G1] of conditions that force a value to η

∼
/G1(β). Let {ζβ,i : i < θ}

be the set corresponding values forced by the above conditions. Let Γ = {pβ,i
∼
, ζβ,i
∼

:

β < γ, i < θ} be the corresponding P-names for the above objects (so we can
regard them as P-names for ordinals). As there are < κ such names and P is (< κ)-
strategically complete, there is a dense set of q ∈ P that force values to all elements
of Γ. Therefore, there is some q ∈ P ∩ G1 that forces values to all elements of Γ
(and the values forced are necessarily {pβ,i, ζβ,i : β < γ, i < θ}). It follows that
{pβ,i, ζβ,i : β < γ, i < θ} ∈ V . In V2, there is a function f : γ → θ such that for
every β < γ, η(β) = ζβ,f(β). As f ∈ P(θ)<κ and {pβ,i, ζβ,i : β < γ, i < θ} ∈ V , it
follows that η ∈ V1. �

Main Claim 9: There are no θ-mad families in V1.

The rest of the paper will be devoted to the proof of Claim 9.

Suppose towards contradiction that there is a θ-mad family in V1, so there is some
(q0, p0

∼
) ∈ P?Q

∼
forcing this statement about A

∼
where A

∼
is a canonical P?Q

∼
-name of

a θ-mad family definable using η
∼
, and η

∼
is a canonical P?Q

∼
-name of a parameter (so

η
∼

= ((aε
∼

: ε < ε(∗)
∼

), x
∼

), where 
 ”ε(∗)
∼

< κ”, each aε
∼

is a P?Q
∼
-name of a subset of θ

and 
 ”x
∼
∈ V ”). Let G0 ⊆ P be generic over V such that q0 ∈ G0. In V [G0], η

∼
is a

PqG0 ,∞-name, and by increasing q0, we may assume wlog that p0 := p0
∼

[G0] ∈ Pq0 ,

x = x
∼

[G0] ∈ V , ε(∗) = ε(∗)
∼

[G0] ∈ κ and that each aε
∼

(ε < ε(∗)) is a canonical

Pq0 -name of a subset of θ. Given q ∈ P above q0, let Aq be the set of canonical
Pq-names a

∼
such that (q, p0

∼
) 
P×Q

∼

”a
∼
∈ A
∼

”, so q0 ≤ q1 ≤ q2 → Aq1 ⊆ Aq2 . Note

that if q0 ≤ q1, Pq1,∞ |= ”p0 ≤ p1” and (q1, p1) 
 ”b
∼
∈ [θ]θ”, then for some (q2, a∼

)
we have q1 ≤P q2, a∼ ∈ Aq2 and (q2, p0) 
 ”b

∼
∩ a
∼
∈ [θ]θ”. By extending any given

q1 ∈ P above q0 in this way sufficiently many times to add witnesses for madness,
and recalling Claim 6(c), we establish that the set {q1 : q0 ≤P q1 and 
Pq1

”Aq1

is θ-mad”} is dense in P above q0.

Now, in V2, let I = {A ⊆ θ : A is contained in a union of < θ members of A}, then I
is a θ-complete ideal and θ /∈ I. Let F be the dual filter of I, then F is θ-complete,
and as θ is supercompact in V2 (recalling that θ is Laver indestructible and that
P ?Q
∼

is (< θ)-directed closed), there is a P ?Q
∼
-name D

∼
such that (q0, p0) 
P?Q

∼

”D
∼

is a θ-complete ultrafilter on θ that extends F , and hence is disjoint to A
∼

”. By
Claim 6 and a previous observation, we may assume wlog that q0 
P ”Aq0 is θ-mad
and Dq0

∼
:= D
∼
∩ P(θ)V Pq0,∞ is a Pq0,∞-name of an ultrafilter on θ”.

Given an ultrafilter U on θ, the forcing QU is defined as follows: the conditions of
QU have the form (u,A) where u ∈ [θ]<θ and A ∈ U . the order is defined naturally,
i.e. (u1, A1) ≤ (u2, A2) iff u1 ⊆ u2, u2 \ u1 ⊆ A1 and A2 ⊆ A1.
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We may assume wlog that Pq0,∞ forces 2θ = λ, hence there is a canonical Pq0,∞-
name f

∼
of a bijection from QD

∼q0

onto λ. Let Q′
∼

be a name for the forcing such that


Pq0
”f
∼
is an isomorphism from QD

∼q0

onto Q′
∼

”. Let B
∼

= BD
∼q0
∼

be the QD
∼q0

-name

∪{u : (u,A) ∈ GQD
∼q0

}, so 
Pq0,∞?QD
∼q0

”B
∼
∈ [θ]θ is θ-almost disjoint to Aq0”. Let

B
∼
′ be the canonical Pq0,∞ ?QD

∼q0

-name for the image of B
∼

under f
∼
.

Now observe that there is q′ ∈ P such that q0 ≤P q′, Uq′ = Uq0 ∪ {γ}, α <Uq′ γ

for every α ∈ Uq0 and Qq′,γ
∼

= Q′
∼
. As before, there is q′′ ∈ P above q′ such that

p0 
Pq′′,∞ ”Aq′′ is θ-mad”. Therefore, there is some canonical Pq′′ -name A
∼
∈ Aq′′

such that p0 
Pq′′,∞ ”A
∼
∩ B
∼
′ ∈ [θ]θ, so A

∼
has intersection of size θ with every

member of D
∼q0

and A
∼
/∈ Aq0”.

Now let (q1, B1
∼
, A1
∼

) = (q′′, B′
∼
, A
∼

) and let (q2, B2
∼
, A2
∼

) be an isomorphic copy of
(q1, B1

∼
, A
∼1

) over q0 such that Uq1 ∩ Uq2 = Uq0 and q2 ∈ P.

Claim 10: Let q0, (q1, B1
∼
, A1
∼

) and (q2, B2
∼
, A2
∼

) be as above (so q0 ≤K ql (l = 1, 2),
Uq1 ∩ Uq2 = Uq0 and ∧

l=1,2

Pql,∞

”Al
∼
∈ A
∼
\ Aq0”) and let G ⊆ Pq0,∞ be generic

over V , then 
Pq1,∞/G×Pq2,∞/G
”A2
∼
\A1
∼
, A1
∼
\A2
∼
∈ [θ]θ”.

Proof: We shall prove the claim for A2 \ A1, the other case is similar. Suppose
towards contradiction that (p1, p2) forces that A2

∼
\ A1
∼
⊆ γ < θ. For l ∈ {1, 2},

let Bl = {ε < θ : pl 1Pql ,∞/G ”ε /∈ Al
∼

”} ∈ V [G]. By the assumption of the claim,

Bl ∈ [θ]θ. By the θ-madness of A0
∼

[G] in V [G], there is some Y ∈ A0
∼

[G] such that
|Y ∩ B2| = θ. As p1 
Pq1,∞/G

”|A1
∼
∩ Y | < θ”, there are q1 and β1 < θ such that

p1 ≤ q1 ∈ Pq1,∞/G and q1 
Pq1,∞/G
”A1
∼
∩ Y ⊆ β1”. Let β2 ∈ Y ∩ B2 such that

max{γ, β1} < β2 (recalling that |Y ∩ B2| = θ). By the definition of B2, there is
q2 ∈ Pq2,∞/G above p2 that forces ”β2 ∈ A2

∼
”. Therefore, (p1, p2) ≤ (q1, q2) ∈

Pq1,∞/G×Pq2,∞/G and (q1, q2) 
Pq1,∞/G×Pq2,∞/G
”β2 ∈ A2

∼
\A1
∼

”, a contradiction.

It follows that 
Pq1,∞/G×Pq2,∞/G
”A2
∼
\A1
∼
∈ [θ]θ”. �

Claim 11: Under the assumptions of Claim 10 (recalling that 
Pql,∞
”Al
∼
∩B 6= ∅

for every B ∈ Dq0
∼

” (l = 1, 2)), we have 
Pq1,∞/G×Pq2,∞/G
”A1
∼
∩A2
∼
∈ [θ]θ”.

Proof: Assume towards contradiction that (p1, p2) ∈ Pq1,∞/G × Pq2,∞/G forces
that A1

∼
∩A2
∼
⊆ γ for some γ < θ. It’s forced by (p1, p2) that Al

∼
⊆ Bl (l = 1, 2) where

Bl is as in the proof of the previous claim, hence it’s forced by (p1, p2) that each Bl
intersects each member of Dq0

∼
. As B1, B2 ∈ V [G], it follows that B1, B2 ∈ Dq0

∼
[G].

Therefore, there is some β ∈ (B1∩B2)\γ, hence there is ql ∈ Pql,∞/G above pl that
forces ”β ∈ Al

∼
” (l = 1, 2). It follows that (p1, p2) ≤ (q1, q2) ∈ Pq1,∞/G× Pq2,∞/G

and (q1, q2) 
Pq1,∞/G×Pq2,∞/G
”β ∈ A1

∼
∩ A2
∼

”, contradicting the choice of γ and

(p1, p2). It follows that 
Pq1,∞/G×Pq2,∞/G
”A1
∼
∩A2
∼
∈ [θ]θ”. �
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Now given q0, (q1, B1
∼
, A1
∼

) and (q2, B2
∼
, A2
∼

) as above, let q3 = q1 +q0 q2. Then
q3 ∈ P, q1,q2 ≤K q3, and by claims 10 and 11, we get a contradiction. This
completes the proof of Main Claim 9 and hence of Theorem 2. �

We conclude with the following natural question:
Question: What’s the consistency strength of ZF + DCθ + ”there are no θ-mad
families” for some θ > ℵ0?
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