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STRONG PARTITION RELATIONS BELOW THE POWER SET:
CONSISTENCY; WAS SIERPINSKI RIGHT? II.

SAHARON SHELAH

ABSTRACT. We continue here [She88] (see the introduction there) but we do
not relay on it. The motivation was a conjecture of Galvin stating that 2 > wa
+ w2 — [wl];‘(n) is consistent for a suitable h : w — w. In section 5 we disprove
this and give similar negative results. In section 3 we prove the consistency
of the conjecture replacing we by 2%, which is quite large, starting with an
Erdés cardinal. In section 1 we present iteration lemmas which needs when
we replace w by a larger A and in section 4 we generalize a theorem of Halpern
and Lauchli replacing w by a larger A.

§ 0. PRELIMINARIES
Let <} be a well ordering of H(x), where
H(x) = {x : the transitive closure of z has cardinality < x}

agreeing with the usual well-ordering of the ordinals. P (and @, R) will denote
forcing notions, i.e. partial orders with a minimal element @ = @ p.

A forcing notion P is A-closed if every increasing sequence of members of P of
length less than A has an upper bound.

If P € H(x), then for a sequence p = (p; : i < ) of members of P let

Q = qp = sup {g B i< g} has an upper bound inP}

and define &p, the canonical upper bound of p, as follows:

(
(b) the <}-first upper bound of p if (a) can’t be applied, but there is such,
(c) po if (a) and (b) fail and v > 0,
Let po&p1 be the canonical upper bound of {p; : £ < 2).
Take [a]® = {bC a: |b| = k} and [a]<* = | [a]’.
<k
For sets of ordinals, A and B, define Hg)% as the maximal order preserving
bijection between initial segments of A and B, i.e, it is the function with domain
{a € A:otp(anA) < otp(B)}, and Hg%(a) =piffa € A, B € Bandotp(anA) =
otp(8 N B).
Definition 0.1. A =% () holds provided whenever F' is a function from [A]<*

to u, C C X is a club then there is A C C of order type a such that for any
wy, W € [A]<w, |w1| = |w2| = F(wl) = F(UIQ)

a) the least upper bound of {p; : i < a} in P if there exists such an element,
¢

Definition 0.2. A\ — [a]} , if for every function F' from [A]" to & there is A C A
of order type a such that {F(w) : w € [A]™} has power < 6.
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Definition 0.3. A forcing notion P satisfies the Knaster condition (has property
K) if for any {p; : ¢ < wi} C P there is an uncountable A C w; such that the
conditions p; and p; are compatible whenever 4, j € A.

§ 1. INTRODUCTION
Concerning 1.1-1.3 see Shelah [She78], Shelah and Stanley [SS82], [SS86].

Definition 1.1. A forcing notion () satisfies 7, where ¢ is a limit ordinal < p, if
player I has a winning strategy in the following game:
Playing: the play finishes after &€ moves.
in the o' move:
Player I — if a # 0 he chooses (q? : ¢ < pT) such that ¢¢ € Q and

(V8 < a)(V¢ < ut) pl < ¢
and he chooses a regressive function f, : u* — pt (i.e. fo(i) < 1+474).
Ifa=0let ¢¢ =g, foa =2.
Player II — he chooses (pg‘ : ¢ < p™T) such that a¢ <p¢ €Q.
The outcome: Player I wins provided whenever p < ¢ < & < u™, cf(¢) = cf(£) = p and
No<ef5(C) = f5(§) the set {p¢ : @ <e}U{pg : @ < e} has an upper bound
in Q.
Definition 1.2. We call (P;, Q; :i < i(x), j < i(x)) a *;,-iteration provided that:

(a) it is a (< p)-support iteration (u is a regular cardinal)
(b) if iy <idg <ii(x), cf(i1) # p then Py, /P;, satisfies *7,.

Lemma 1.3. If Q = (P, Q; : i <i(%), j <i(x)) is a (< p)-support iteration, (a)
or (b) or (c) below hold, then it is a x -iteration.

(a) i(x) is limit and Q | j(*) is a %5 -iteration for every j(x) < i(x).

(b) i(¥) = j(x) + 1, Q | j(x) is a —1terat1on and QJ( ») satisfies 5, in Vit

(c) i(x) = j(x) + 1, cfj(x) = Q | j(*) is a xj-iteration and for every
successor i < j(x), P/ P; s atmﬁes x5,

Proof. Left to the reader (after reading [Sh80] or [ShSt154al).

Theorem 1.4. Suppose u = p<H < x < X\, and X is a strongly inaccessible k3-
Mahlo cardinal, where k3 is a suitable natural number (see 3.6(2) of [Sh289]), and
assume V = L for the simplicity. Then for some forcing notion P:

(a) P is u-complete, satisfies the u*-c.c., has cardinality X, and VF |= 721 =
A7

(b) Ikp X = [uT]3 and even X — [ut]?2 5 for k < p.

(c) if p=Rg then IF “MA, "

(d) if u > Vg then: lkp “for every forcing notion Q of cardinality < x, u-
complete satisfying x;,, and for any dense sets D; C Q fori <ig < A, there
is a directed G C Q, NG N D; # &”.

As the proof is very similar to [She88|, (particularly after reading section 3) we
do not give details. We shall define below just the systems needed to complete the
proof. More general ones are implicit in [Sh289].

Convention 1.5. We fix a one to one function Cd = Cdy ,, from *> X onto A.
Remark 1.6. Below we could have otp(B,) = u™ + 1 with little change.
Definition 1.7. Let p < x < & < A\, A= AH x = xH, u = p<H.
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1) We call x a (A, k, X, p)-precandidate if = (aZ : u € I;) where for some set
B, (unique, in fact):
i) I, ={s:sC B,, || <2},
) B, is a subset of  of order type ut,
ii) a? is a subset of A of cardinality < x closed under Cd,
)
)
)

a; N By =u,
v) ap Nay € ainq,,
(vi) if u, v € I, |u] = |v| then aF and af have the same order type (and
(0)4 T T
80 Hgx 4= maps aj; onto ay),
(vii) if wg,vp € I for £ = 1,2, |us| = [, |ug| = |va, |ug Uug| = |ua U
val, HOP [4x 4o Lge maps ug onto vp for £ = 1,2 then HOF . and
up = Cug s Eyy Py, uy g

HC%”P ay
2) We say Zis a (A, &, x, 1)-candidate if it has the form (M7 : u € I,) where
() (1) (IMZ]:wel)isa (K, X, pu)-precandidate
(with B, defined as |J I, )
(ii) L, is a vocabulary with (< y)-many (< p)-ary place predicates
and function symbols,
(iii) each M? is an L -model,
(iv) for u, v € I, |u] = |v|, MZ | (|]MZ] N |M?Z]) is a model, and in
fact an elementary submodel of M7, M7 and M7, .
(8) forwu, v € I, |u| = |v|, the function HICJ)V?I\,IM,””I is an isomorphism from
M7 onto M7 . Y
3) The set A is a (A, k, x, 1)-system if
(A) each x € A is a (A, K, x, p)-candidate,
(B) guessing: if L is as in (2)(«)(ii), M* is an L-model with universe A
then for some z € A, s € B, = MY < M*.

are compatible.

Definition 1.8. 1) We call the system 2 disjoint when:

(x) if x # y are from A and otp(|M%|) < otp(|M%]|) then for some By C By,
By € B, we have
a) |Bi|+ |Ba| < p*
b) the sets

(M2 = s € [Bo\ B} and [ J{IMY] - s € [B, \ B2] =%}

have intersection C M.
2) We call the system 2 almost disjoint when:

(xx) if 2, y € A, otp(|M%]) < otp(|MY]|) then for some By C B,, By C B, we
have:
2) Bl + 1Bl < i
b) if s € [B, \ B1]=2, t € [B, \ B2]=? then |MZ| N |M{| C |M%|.

§ 2. INTRODUCING THE PARTITION ON TREES

Definition 2.1. Let
1) Per(#>2) be the set of T such that

)

b) (vneT)(Va<tygm)nlaeT,

(c) if n € TN2, a < B < uthen for some v € T NF2, n<v,

d) if n € T then for some v we have n v, v (0) e T, v"(1) € T
)
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2) Pery(#22) =
1 1
{T € Per(*72) ta < p, v1, 12 € 2NT = {/\ v () €T /\ ve " (l) € T} }
=0 £=0
3) Per,(#~2) =

12
{T € Per("”2) : a < i, vy # vy from *2N T, then \/ \/ U " (£) ¢ T}
{=0 m=1

4) For T € Per(*>2) let limT = {n € *2: Va < p)n | a € T}.

5) For T' € Pery(*~2) let clpyp : T — #>2 be the unique one-to-one function
from sp(T") = {n € T : n°(0),n"(1) € T} onto *>2, which preserves < and
lexicographic order.

6) Let SP(T) = {£g(n) : n € sp(T)}, where

$p(1,) = minfi : 7(3) # v(5) Vi = Lg(n) Vi = Lg(v)}
Definition 2.2. 1) For cardinals p, 0 and n < w and T' € Per(#~2) let
Col(T) = {d : d is a function from |J [*2]" N T to o}. We will write

a<p
d(l/o, ey Vn—l) for d({l/(), ey Vn—l})-

2) Let <} denote a well ordering of 2 (in this section it is arbitrary). We call
d € Col}(T) end-homogeneous for (<}, : a < p) provided that: if a < j
are from SP(T), {v,...,vn—1} C P2NT, (y | a : £ < n) are pairwise
distinct and A [y <} vy <= vy [ @ <}, vm | @] then

Lm

d(uo,.. JUn—1) =d(vo [ a,...,vp—1 | @).

3) Let EhColy(T') = {d € Col,(T) : d is end-homogeneous }
(for some << T < ).
4) For vy, ..., Un—1,M0,- - ,Nn—1 from #>2, we say U = (vp,...,Vp_1) and 7 =
(Mo - - -, Tn—1) are strongly similar for (<} : a < p) if:
(i) Lg(ve) = Lg(ne)
(ii) sp(ve, vm) = sp(11e, ) (= 1 N 7m)
(iii) if €1, 02,03,04 < n and o = sp(vy,, Ve,) then
Vig fa <Z Ve, fOé = N, fOé <Zv Ney f@ and l/ga(Oé) = nes(a)

5) For v¢,...,v2 4, v8,...,v% | from #>2 we say v® = (vg,...,v2 ;) and

pP = (v, ..., v5_,) are similar if the truth values of (i)—(iii) below do not

depend on t € {a,b} for any £(1),£(2),£(3),£(4) < n:
(i) EQ(VE(U) < 59(”5(2))
(i) sP(V1y» Vo)) < SP(Viay» Viay)
(iii) for a = sp(u}f(l), 1/5(2)), the truth value of the following does not depend
on ¢
u§(3) Fa <} u§(4) I o and 1/5(3)(04) =0.

6) We say d € Col}(T) is almost homogeneous [homogeneous] on 73 C T (for
(<k o< ) if for every a € SP(Th), v, 77 € [*2]™ N Ty which are strongly
similar [similar] we have d(7) = d(7).

7) We say (<} : o < p) is nice to T € Per(*>2), provided that: if o < 3

are from SP(T), (o, B) NSP(T) = @, m # m2 € P2NT, [171 Fa <l n |
aorm [ a=mnla nma) <na)] then m <5 2.

Definition 2.3. 1) Pr.p.(u,n,0) means: for every d € Coll(#~2) for some T €
Per(#~2), d is end homogeneous on T
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2) Prapt(p, n, o) means for every d € Col?(#~2) for some T € Per(#~2), d is almost
homogeneous on T'.

3) Prpi(p,n,0) means for every d € Col(#>2) for some T' € Per(#>2), d is homo-
geneous on 7.

4) For z € {eht, aht, ht}, Pri(u,n,o) is defined like Pry(u,n,o) but we demand
T € Per;(#>2).

5) If above we replace eht, aht, ht by ehtn, ahtn, hin, respectively, this means <<;fY :
a < u) is fixed a priori.

6) Replacing n by “< k7, 0 by & = (0p : £ < k) for k < Ry, means that (d, :
n < k) are given, d,, € Col(#>2) and the conclusion holds for all d,, with n < &
simultaneously. Replacing “o” by “< ¢” means that the assertion holds for every
o1 <o.

Definition 2.4. 1) Prop(p,n,0(1),0(2)) means: for every d € Coly ) (#~2), for
some T € Per(#>2) and (<, : a < ) for every 7 € J{[*2]" NT : a € SP(T)},

{d(D) VNS U {[*2]"NTy : a € SP((T1)}, 7] and v are strongly similar for (<, : a < ,u>}

has cardinality < o(2).
2) Prpe(p,m,0(1),0(2)) is defined similarly with “similar” instead of
“strongly similar”.
3) Pr, (u, <k, (o} U <K), (of: < FL)), Prf(u,n,0(1),0(2)), Prl(u, < Rg, 5", 52)
are defined in the same way.
There are many obvious implications.

Fact 2.5. 1) For every T € Per(#~2) there is a 71 C T, T € Per, (*~2).

2) In defining Prf (u, n, o) we can demand T C Ty for any Ty € Per;(*>2), similarly
for Prl(u, < k,0).

3) The obvious monotonicity holds.

Claim 2.6. 1) Suppose p is regular, o > Yo and Prght(,u, n,< o). Then Priht(,u, n, <
o) holds.
2) If u is weakly compact and Prght(,u,n, < 0), o<, then Prit(u, n,< o) holds.
3) If p is Ramsey and Prght(u, <Ny, < 0), 0 < u, then Prﬁt(u, <N, < 0).
4) If p = w, in the “nice” version, the orders <<;‘; o< u> disappear.

Proof. We induct on n; for n + 1 and given d,,+1 : [J{[*2]"" : @ < u} — o and
<M = (<t o < ), we apply Prght(,u,n, < o). We get T.
Let f =clpp : T — #22 be as in 2.1(5). Define <* = (<" : a < p) and d, as
follows:
(A) for a < pand no,m € 2, clpp(ve) = ne, Lg(ve) = B then
no <" m = vy <"y
(B) for @« < pand ng <2 ... <2 np_1, clpp(ve) = ne, Lg(ve) = B and for
k <mn, p<2wehave v, () < pre € sp(Tpt1) N 72, If v minimal then
dn({no, - .. Mn-11}) codes the set of the following objects t:
e For some v > « there are py ¢ € sp(Th+1) N 72 such that v, (¢) < pre
for k < n, £ < 2 and t codes all the information on the sequence
(pe: k <m, € <2) (ie. the order <2+1 and instances of dp,41). O

The following theorem is a quite strong positive result for n = w. Halpern Lauchli
proved 2.7(1), Laver proved 2.7(2) (and hence (3)), Pincus pointed out that Halpern
Lauchli’s proof can be modified to get 2.7(2), and then Przht(w, n,< o) and (by it)
Prﬁt(w,n, < o) are easy. [No idea why this is all in italics/
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Theorem 2.7. 1) If d € Col}(¥>2), 0 < N, then there are Tp,...,Th—1 €
Perp(“>2) and kg < k1 < ... < k¢ < ... and s < o such that for every { < w, if
po € To, pr €Ty ooyt €Ty, N\ lg(vm) = ke, then d(vg, ... vn—1) = s.

m<n
2) We can demand in 1) that
SP(Ty) = {ko, k1, ...}

3) Pritn(w,n,a) for o < Ny.
4) Pr{btn (w, < Vo, (o} :n <w), (02 :n < w)) if ol <Rg and (62 : n < w) diverge
to infinity.

Definition 2.8. Let d be a function with domain D [A]", A be a set of ordinals, F'
be a one-to-one function from A to )2, <* be a well ordering of *2 for a < (%)
such that F(a) <! F(f) <= a < 8, and o be a cardinal.
1) We say d is (F,0)-canonical on A if for any oy < -+ < ap € A,

Hd(ﬂl, o Ba) t (F(B1),..., F(B,)) similar to <F(a1),...,F(an)>H <o

2) We define “almost (F,o)-canonical” similarly using strongly similar instead of
“similar”.

§ 3. CONSISTENCY OF A STRONG PARTITION BELOW THE CONTINUUM;
IRRELEVANT

This section is dedicated to the proof of

Theorem 3.1. Suppose A is the first Erdds cardinal, i.e. the first such that A —
(w1)5¥. Then, if A is a Cohen subset of X, in V[A] for some Ry —c.c. forcing notion
P of cardinality \, IFp “MAy, (Knaster) + 28 = \” and:

1.)IFp X = [X]5 )7 for suitable h : w — w (explicitly defined below).

2.) In VT for any colorings d,, of A where d,, is n-place, and for any divergent
(on 1 < w) (see below), there is a W C A, |W| =8y and a function F : W — 2
such that dy, is (F,o0p)-canonical on W for each n. (See definition 2.8 above.)

Remark 3.2. h(n) is n! times the number of u € [¥2]"™ satisfying (if n1, 72,73, 74 € u
are distinct then sp(n1,7n2), sp(ns, n4) are distinct) up to strong similarity for any
nice <<f; ra< w>.

2) A sequence {0, : n < w) is divergent if Vm : Ik :Vn >k : 0, > m.

Notation 3.3. For a sequence a = {(«a;, e} : i < a), we call b C « closed if
(i)ieb=a;Ch
(i) if i < a, €f =1 and sup(bNi) = ¢ then ¢ € b.

Definition 3.4. Let & be the family of Q = (P;, Qj,aj,e; 1 j < a, i < a) such that

(a) a; C 1, ‘az| < Nl;

(b) a; is closed for (aj, € : j < i), ef € {0,1}, and [e] = 1 = cfi = Ny]

(¢) P; is a forcing notion, Q; is a Pj-name of a forcing notion of power ®; with
minimal element @ or @; and for simplicity the underlying set of Q; is C [wy]<R°
(we do not lose by this). )

(d) Ps= {p : p is a function whose domain is a finite subset of 5 and for ¢ € dom(p),
IFp, “f(3) € Qi”} with the order p < ¢ if and only if for i € dom(p), ¢ [ i IFp, “p(i) <
q(i)”.

(e) for j < i, Q; is a Pj-name involving only antichains contained in {p € P; :
dom(p) € a;}.

Forpe P, j <1, j ¢ domp we let p(j) = @. Noteforpe P;, j <i,p|j€P;
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Definition 3.5. For Q € & as above (so a = £g(Q)):
1) for any b C 8 < « closed for (a;, e} : i < ) we define P2 [by simultaneous
induction on f]:

P" = {p € Pg :domp C b, and for i € domp, p(i) is a canonical name}

i.e., for any x, {p € P : plkp, “p(i) = 2" or p IFp, “p(i) # 2" } is a predense subset
of P;.

2) For Q) as above, a = £g(Q), take Q | 8 = (Pi,Qj,a5:1 < B, j<f)for f<a
and the order is the order in P, (if 8 > «, Q8= Q)

3) “b closed for Q) means “b closed for (a;, e} : i < £gQ)”.

Fact 3.6. 1) if Q € Athen Q | B € A

2) Suppose b C ¢ C 3 < £g(f), b and c are closed for Q € £.
(i) If pe P™ then p [ b € P™.
(ii) i p,ge P and p < qgthenp [b<q | ec.
(iii) P Ps. 3) £gQ is closed for Q.

4) if Q € &, a = £gQ then P" is a dense subset of P,.

5) If b is closed for Q, p,q € PEC;Q, p < qin Pyo and i € domp then q [ a; IFp,
“p(i) < q(i)” hence IFpen “p(i) <q, q(i)”.

Definition 3.7. Suppose W = (W, <) is a finite partial order and Q € K.
1) INw(Q) is the set of b-s satisfying (a)—(v) below:
(a) b= (b, : w € W) is an indexed set of Q-closed subsets of £g(Q),
(5) w ': “wp < wy” = bw1 - bw27
(7) € € by, Ny, w1 < w, wy < w then (Fu e W)C € b, Au < wyp Au < ws.
We assume b codes (W, <).
2) For b € INw (Q), let

Q] = {(pw :w e W) : py, € ™, [W |= w1 < wa = Puy | buy, = Py}

with ordering Q[b] k= p* < p? iff A, ey Pl < P2
3) Let &' be the family of Q € & such that for every 8 < £g(Q) and (Q | 8)-closed
b, P3 and Pg/P¢" satisfy the Knaster condition.

Fact 3.8. Suppose Q € /', (W,<) is a finite partial order, b € INy (Q) and
p € Q. -
1) Ifwe W, p, <q€ P then there is 7 € Q[b], ¢ < 7, p < 7, in fact

o () if v € Dom p,, \ Dom ¢

pu(y) & q(v) if v € b, NDom ¢ and for some v € W, v < u,

ru(7) = v <wand vy € b,

Pu () if v € b, N'dom ¢ but the previous case fails

2) Suppose (Wi, <) is a submodel of (Wa, <), both finite partial orders, b’

INw,(Q), b}, = b2 for w € W1.

(o) If ¢ € Q[b?] then (g, : w € Wy) € Q[bY].

(B) If p € Q[b'] then there is § € Q[b?], § | W1 = P, in fact gy, (7) is pu(7) if u € W1,
v € by, u < w, provided that

() if wy,we € Wi, w € Wa, w1 < w, wy < w and ¢ € by, N by, then for some
v e Wy, ( €by, v<wy,v< ws.

(this guarantees that if there are several u’s as above we shall get the same value).
3) If Q € R! then Q[b] satisfies the Knaster condition. If @ is the minimal ele-
ment of W (i.e. u € W = W = @ < u) then Q[b]/P™ also satisfies the Knaster

condition and so ©Q[b], when we identify p € P" with (p: w € W).
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Proof. 1) It is easy to check that each 7,(7) is in ™. So, in order to prove r € Q[bl,
we assume W = u; < ug and has to prove that ru,; [ by, =7y, Let € by, .

First case: ¢ € Dom(p,, ) U Domg.

So ¢ € Dom(r,,) (by the definition of r,,) and ¢ & Domp,, (as p € Q[b]) hence
¢ ¢ (Dompy,,) U (Domg) hence ¢ ¢ Dom(r,,) by the choice of r,,, so we have
finished.

Second case: ¢ € Domp,, \ Domg.

As p € Q[b] we have py, () = pu,((), and by their definition, 7y, (¢) = pu, (),
Tug (C) = Pu, (C)

Third case: ¢ € Domg and (Jv € W) (¢ € by Av < ug Av < w). By the
definition of r,, (¢), we have 7y, (() = pu, (()&g((), also the same v witnesses
Tus (€) = Dus (Q)&q((), (as (€ by ANv<us Av<w=(E€b, ANv <uz Av <w) and
of course pu, (C) = pu, (¢) (as p € Q[b)).

Fourth case: ¢ € Domg and ~(Fv € W) (( € by Av < ug Av < w).

By the definition of r, (¢) we have 7, (¢) = py, (¢). It is enough to prove that
Fus(€) = Puy (€) a5 we know that py, () = puy () (because p € Q[B], w1 < uz). It
not, then for some vy € W, ¢ € b,, Avg < ug Avg < w. But b € INw (Q), hence (see
Def. 3.7(1) condition () applied with ¢, w1, we, w there standing for ¢, vg, u1, us
here) we know that for some v € W, { € vAv <wvgAv < up. As (W, <) is a partial
order, v < vg and vy < w, we can conclude v < w. So v contradicts our being in
the fourth case. So we have finished the fourth case.

Hence we have finished proving 7 € Q[b]. We also have to prove ¢ < r,,, but for
¢ € Domg we have ¢ € b,, (as ¢ € PS" is on assumption) and () = ¢(¢) because
rw(C) is defined by the second case of the definition as (Jv € W) (¢ € by Av <
wAv < w), ie v=uw.

Lastly we have to prove that p < 7 (in Q[b]). So let w € W, ¢ € Domp,, and we
have to prove 7y | ¢ IFp, “pu(C) <p. 74(C)”- A 1ul(€) is pu(C) o1 pu(C)a(C) this is
obvious.

2) Immediate.

3) We prove this by induction on |W].

For |W| = 0 this is totally trivial.

For |W| = 1,2 this is assumed.

For [W| > 2 fix p* € Q[b] for i < w;. Choose a maximal element v € W and let
c=J{bw : W E w < v}. Clearly c is closed for Q.

We know that P, P /P¢™ are Knaster by the induction hypothesis. We also
know that pi | ¢ € P for i < wy, hence for some r € P",

rik“A= {z < wi :pf) [c€E Gpétn} is uncountable”
hence
I “there is an uncountable A! C A such that [i,j € At = p!, p! are compatible in PZ;?UI‘/GPSH] 7,

Fix a P®-name A! for such an Al

Let A = {i <wy :3q € P™, ql-ic A'}. Necessarily |As| = Ry, and for i € A?
there is ¢' € P, ¢' Ik i € AL, and w.l.o.g. pi | ¢ < ¢'. Note that p{&q' € P™.

For i € A? let, ¥ be defined using 3.8(1) (with p’, pi&q’). Let Wiy = W\
{w}, V' = (by : w € Wy).

By the induction hypothesis applied to Wy, b, # | Wi, for i € A? there
is an uncountable A* C A2 and for i < j in A3, there is 7/ € Q[I'], 7 |
Wy < 73, and # | W, < 7. Now define ré’j € P as follows: its domain is
U{domrii : W = w < v}, rid | (domri/) = rif whenever W = w < v. Why is
this a definition? As if W = w; < v Aws < v, ( € by, A € by, then for some
u €W, u<w Au < wy and ¢ € u. It is easy to check that ré’j € P, Now
rid - pen “pgv, piv are compatible in P;" /P,
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So there is 7 € Py"such that rid <, piv <r, pgv < r. As in part (1) of 3.8 we
can combine r and 77 to a common upper bound of 5*, p’ in Q[b]. O

Claim 3.9. 3.9.1fe = 0,1 and § is a limit ordinal, and P;, Qi, a, €] (i < 0) are such
that for each o < §, Q™ = (Pi,Qj,aj,¢ef i < a, j<a) belongs to RE, then for a
unique Ps, Q = (Pi,Qj,aj,€f 1 <8, j <3) belongs to 8

Proof. We define Ps by (d) of Definition 3.4. The least easy problem is to verify
the Knaster conditions (for @ € &'). The proof is like the preservation of the c.c.c.
under iteration for limit stages. O

Convention 3.9A. By 3.9 we shall not distinguish strictly between (P;, Qj,aj, €5 :
i <90, j <6) and (P}, Qi, v, ef 11 <3).

Claim 3.10. If Q € &', a = £g(Q), a C «a is closed for Q, |a| < ¥y, Q1 is a Py"-
name of a forcing notion satisfying (in VF=) the Knaster condition, its underlying
set is a subset of [w1]<N0 then there is a unique Q' € &, lg(Q1) = a+1, QL = Q,
Qla=0Q.

Proof. Left to the reader. O

Proof. 3.1 A Stage: We force by 82, = {Q € &' : {g(Q) < \,Q € H()\)} ordered

by being an initial segment (which is equivalent to forcing a Cohen subset of A).
The generic object is essentially Q* € £}, ¢g(Q*) = ), and then we force by
P\ = lim Q*. Clearly Ri » is a A-complete forcing notion of cardinality A, and Py
satisfies the c.c.c. Clearly it suffices to prove part (2) of 3.1.

Suppose d,, is a name of a function from [A]" to k, for n < w, g, < w, (o, :n <
w) diverges (i.e. Ym 3k Vn > k 0, > m) and for some Q° € KL ,.

Q° Il—ﬁ1<A “there is p € Py [p IFp, (dn:n<w)isa

counterexample to (2) of 3.17].

In V we can define (Q : { <), Q¢ € L, ( < &= Q¢ = Q° | £g(Q°), in QT
627(@4) =1, Q“*! forces (in RL,) a value to p and the Py-names d,, | ¢, on, ky, for
n < w, i.e. the values here are still Py\-names. Let Q* be the limit of the Q%-s. So
Q* € &Y, Lg(Q*) = \, Q* = (P}, QF,aj,e; 11 < A\ j <A), and the P{-names dp,
On, kn are defined such that in VI3, d,,, o, ky contradict (2) (as any PJ-name of a

bounded subset of A is a Pg‘g(Qg)—name for some £ < X). B Stage: Let x = xTand

<} be a well-ordering of H(x). Now we can apply A — (w1)5¥ to get &, B, N, (for
s € [B]<M) and hy; (for s,t € [B]<®°, |s| = |t|) such that:
a) B C A\, otp(B) = wy, sup B =4,
b) Ns < (H(x), €7<;)a Q* € N5, (d,on, kn i n <w) € Ny,
C) Ny N Ny = Nyry,
d) NyAB=s,
e) if s=tNa,t € [B]<M then NyN A\ is an initial segment of Ny,
f) hs, is an isomorphism from N; onto N, (when defined)
-1

g) ht78 - hs,t
h) po € Ng, po lkp, “dn,0n,kn : n <) is a counterexample”,
i) w1 C Ny, |Ng| =Xy and if v € N, cfy > Ny then cf(sup(y N Ny)) = wy.

Let @ = Q* | 0, P = P} and P, = P (for Q), where a is closed for Q. Note:
P{NNg = PyNN; = Fyypann, NNs = P;NN;. Note alsoy € ANN,; = a§ C ANN;.

C Stage: It suffices to show that we can define )5 in Vs which forces a subset W
of B of cardinality ¥; and F : W — “2 which exemplify the desired conclusion in
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(2), and prove that Qs satisfies the Ry-c.c.c. (in V% (and has cardinality X;)) and
moreover (see Definitions 3.4 and 3.7(3)) we also define a; = Userpyexo Ns €5 =1,
Q' = Q" (P},Qs,as,es5) and prove Q' € K.
We let d(u) = djy,|(u).

Let F : w; — “2 be one-to-one such that [V € “>2][3%«a < w;][n < F(a)]. (This
will not be the needed F, just notation).

For s,t € [B]<®, we say s =% t if |s| = |t| and V€ € s, V¢ € t[€ = hy(¢) =
F() In=F(C) I n]. Let

Iy =I,(F)={s € [B]<: (W £ £ €s), [F(C) [ n# F(&) [ n]}.
We define R, as follows: a sequence (ps : s € I,) € R,, if and only if
(i) for s € I,, ps € Py N N,
(ii) for some ¢; we have p; IF “d(s) = ¢5”,
(iii) for s,t € I, s =%t = hy 1 (pr) = ps,
(iv) for s,t € I, ps [ Nent = pt [ Nsne-
R, is defined similarly omitting (ii).

For z = (ps : s € I,) let n(z) = n, p¥ = ps, and (if defined) ¢? = ¢,. Note
that we could replace x € R, by a finite subsequence. Let R = {J, ., Rn, R~ =
Un<w Bn- We define an order on R~ : x < y if and only if n(z) < n(y), and
[s € Iy ANt € Lyyy As Ct=pl <pfl.

D Stage: Note the following facts:
D(«) Subfact: If z € R,;, t € I,, and pf < p' € P§ N Ny, then there is y such that
x<y€ER,, pf =p"

Proof. We let for s € I,
pd =& {hyy o, (0 T Niy) 51 C s,y St 1 = 1} &opl

(This notation means that p? is a function whose domain is the union of the
domains of the conditions mentioned, and for each coordinate we take the canonical
upper bound, see preliminaries.) Why is p¥ well defined? Suppose 8 € N; N A (for
B € A\ N, clearly p¥(8) = @B), sg © s, tg Ct, s5g = tg for £ = 1,2 and

B € Dom [hsm,Z (p* 1 Nt,z)}, and it suffices to show that p%(3), hs, +, (p* | Ne,)(B),

h,, +,(p* | Ni,)(B) are pairwise comparable. Let u = [ {v € [B<M . B¢ Nv},
necessarily u C s1 N s9, and let uy = h! (w). As sg,te,t € Iy, s¢ =% tp and

Se,te
ug C ty C t, necessarily u; = us. Thus v = h;1(8) = h! (8) and so the last two

conditions are equal. v seste
Now pi(B) = pi(B) = huo(i(¥) < hae, (07 1 Ne)(v)) = (hsm(p:tv r
N.)) (B).

We leave to the reader checking the other requirements. 0

D(3) Subfact: If z € R,;, ¢t € I then |J{p? : s € I,,, s C t} (as union of functions)
exists and belongs to Py N N;.

Proof. See (iv) in the definition of R, . O

D(y) Subfact: If z <y, z € R,,y € R, theny € R,.

Proof. Check it. O

D(0) Subfact: If z € R, n < m, then thereis y € R, z < y.



Paper Sh:288, version 2022-07-04. See https://shelah.logic.at/papers/288/ for possible updates.

STRONG PARTITION RELATIONS BELOW THE POWER SET: CONSISTENCY; WAS SIERPINSKI RIGHT? 11

Proof. By subfact D(8) we can find 2! = (p} : t € I,,,) € inR;, with < x!. Using
repeatedly subfact D(a) we can increase ! (finitely many tlmeb) togety € R . O

D(e) Subfact: Ifﬂc ER,,s,tel,, s=ht,pl <ri€P{NN pf <ry€ P{NNg,

(V¢ € t) [F(Q)(n) # (F(het(Q))(n)] (or just p? [ s1 = hy(pf, | t1) where
t1={§et: FY )( ) = (F ( €)))(n)}, s1 = {hs4(§) : £ € t1}), then there is
y € Ryy1, © <y such that r; = py and 75 = pY.

Proof. Left to the reader. O
E Stage: !

We define: T} C 2¥>9 by induction on £ as follows:
15 ={(), (1)}

Ty ={v:veTyor 28 < tg(v) <281 v 2F € Ty and

28 <i< 2" Av() =1 =i=2"+ () v(i)2™)]}
m<2k

We define
Tr Emb(k,n) = {h . h a is function from T} into "=2 such that
for v,p € T} :
n=v & hn) = h(v)
[n<v & h(n) <h(v)]
[Lg(n) = Lg(v ):>€g(h(n)::f (h(v)]
[v=n"(i) = (h(w))|
[bg(n) = *2 = 9(h(n)) = n]}.

T(k,n) ={Rang h : h € Tr Emb(k,n)},

n) = U T(k,n),
k
=Tk n).
k

For T € T(k,*) let n(T) be the unique n such that T € T(k,n) and let

Br ={a € B: F(a) | n(T) is a maximal member of T},

fsT:{thT:netAuet/\n;«éu:\»nFn(T)#vrn(T)}

Or :{<pszs€fsT>:psGPONS,[sCt/\{s,t}CfsT:>pS:pt [Ns]}.

Let further
Oy ZU{@T :T € T(k,*)}

@:U@k.

For p € ©, n; = n(p), T; are deﬁned naturally.
For p,qg € ©, p < q iff n; < n; and for every s € fsr, we have ps < ¢s. F

Stage: Let g : w — w, g € N;, g grows fast enough relative (on i n < w). We

IWe will have T C ¥>2 gotten by 2.7(2) and then want to get a subtree with as few as possible
colors, we can find one isomorphic to ¥~ 2, and there restrict ourselves to U, T}r.
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define a game Gm. A play of the game lasts after w moves, in the n*® move player I
chooses p" € ©,, and a function h,, satisfying the restrictions below and then player
IT chooses G, € Oy, such that p, < g, (so T, = Tj3,). Player I loses the play if
sometimes he has no legal move; if he never loses, he wins. The restrictions player
I has to satisfy are:

a) for m <n, G < Pn, py forces a value to g [ (n +1),

b) hy, is a function from [Br, 1590 to w,

) if m <n= hy,h, are compatlble

) If m <n, £ <g(m), s € [Br, ] then p? I d(s) = hy(s),

e) Let s1,$2 € Domh,,. Then h,(s1) = h,(s2) whenever sy, sy are similar over n
which means:

0 (F(H22,©) ) 101 = (FQ) Tl for G o

(
(
(c
(d
(

iy 597, preservs the etions (P(@), #16) <P Pic) and Fc)( P, F()) =
i (in the interesting case (3 # (1, (o implies i = 0).
G Stage/Claim: Player I has a winning strategy in this game.

Proof. As the game is closed, it is determined, so we assume player 1T has a winning
strategy , and eventually we shall get a contradiction. We define by induction on
n, " and ®" such that

( 7“” c er n < ’F”+1,

(b) ®" is a finite set of initial segments of plays of the game,

(¢) in each member of ®” player IT uses his winning strategy,

(d) if y belongs to ®" then it has the form (p¥¢, h¥* g%¢ : £ < m(y)); let h, = h¥"v
and Ty, = Tqu i (y); also T, CnZ 2, g¥* <1 for s € fst,-

(e) @, C ®,,41, D, is closed under taking the initial segments and the empty se-
quence (which too is an initial segment of a play) belongs to ®@.

(f) For any y € ®,, and T\, h either for some z € 1, n, =ny+1,y =2 [ (ny+1),
T, =T and h, = h or player I has no legal (n, + 1)*® move p", h" (after y was
played) such that Tpn =T, h™ = h, and p} = r] for s € fsp (or always < or always
>).

There is no problem to carry the definition. Now (72 : n < w) define a
function d*: if m,...,n €™ 2 are distinct then d*((nl,...,nk>) = c iff for
every (equivalently some) (; < -+ < ( from B, ny < F(¢;) and TIEC17'~~;Ck} I+
“di({G, -, G}) = .

Now apply 2.7(2) to this coloring, get T* C“~ 2 as there. Now player I could
have chosen initial segments of this 7% (in the n'" move in ®,,) and we get easily a
contradiction. O

H Stage: We fix a winning strategy for player I (whose existence is guaranteed by
stage G).
We define a forcing notion Q*. We have (r,y, f) € Q* iff

(i) rePex

(i) y = (p*, h*, @ : £ < m(y)) is an initial segment of a play of Gm in which player
I uses his winning strategy

(iii) f is a finite function from B to {0,1} such that f~*({1}) € fsr, (where T}, =
Tymw )

Ys m(y)
(iv) r=a;" 1y
The Order is the natural one.

I Stage: If J C P is dense open then {(r,y, f) € Q* : 7 € J} is dense in Q*.
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Proof. By 3.8(1) (by the appropriate renaming). O

J Stage: We define Qs in V% as {(r,y, f) € Q" : r € Gp, }, the order is as in Q*.
The main point left is to prove the Knaster condition for the partial ordered set
Q* = Q" (Ps5,Qs,as,e;) demanded in the definition of &'. This will follow by 3.8(3)
(after you choose meaning and renamings) as done in stages K,L below.
K Stage: So let i < ¢, cf(i) # Ny, and we shall prove that P(;jrl/Pi satisfies
the Knaster condition. Let p, € Pj,; for @ < wy, and we should find p € P,
p IFp, “there is an unbounded A C {a : po | @ € Gp,} such that for any o, € A,
Pa,pp are compatible in P§, , /Gp,”.
Without loss of generality:
(a) pa € Pyt
(b) for some (i, : @ < wy) increasing continuous with limit § we have: ig > i,
cfi, 7é Nl, Pa r5 S Pia+17 Pa rla S Pig-
Let pg = pa F @0, ptll = Pa f o= Po f ia+1a pa(é) = (raayaafa)v so without loss
of generality
(C) la+17 Ta [ia € Py, m(ya) =m",
(d) Domfa CigU [za,zaH)
(e) fa o is constant (remember otp(B) = wy,
(f) if Domfo = {j§,...Ji. 1} then ko =k, [j§ < ia & £ < k], Npope Jf = 3¢,
FG) = G, FGR) Tmlya) = FGY) T mlys).
The main problem is the compatibility of the g¥«™(¥=) Now by the definition
O, (in stage E) and 3.8(3) this holds. O

L Stage: If ¢ C 6 + 1 is closed for Q*, then Py /P satisfies the Knaster
condition.

If c is bounded in §, choose a successor i € (supc,d) for Q | i € K;. We know
that P;/PS" satisfies the Knaster condition and by stage K, P§,_,/P; also satisfies
the Knaster condition; as it is preserved by composition we have finished the stage.

So assume ¢ is unbounded in & and it is easy too. So as seen in stage J, we have
finished the proof of 3.1.

Theorem 3.11. If A > 3, P is the forcing notion of adding A\ Cohen reals then

(x)1 in VP ifn < wd: [NS" = 0, 0 < X, then for some c.c.c. forcing
notion Q) we have IFg ‘“there are an uncountable A C A and an one-to-one
F: A — “2 such that d is F-canonical on A” (see notation in §2).

(%)2 if in V, A > 1 —wsp (K)x, (see [Sh289]) and in VI, d: [u]s" = 0, 0 < Ny
then in VE for some c.c.c. forcing notion Q we havel-g ‘there are A € [u]*
and one-to-one F': A —* 2 such that d is F-canonical on A” (see §2, ).

($)3 if in V, X > p —wsp (R1)§, and in VP d:[us" — o, 0 <Ng then in VF
for every a < wy and F : a =% 2 for some A C pu of order type o and
F':A—92 F'(B) = F(otp(ANB)), d is F'-canonical on A.

()4 in VT, 2% — (a,n)® for every a < wy, n < w. Really, assuming V =
GCH, we have R,1 — (a,n) see [Sh289].

Proof. Similar to the proof of 3.1. Superficially we need more indiscernibility then
we get, but getting (M, : u € [B]=") we ignore d({«, 8}) when there is no u with
{a, B} € M,,. O

Theorem 3.12. If X\ is strongly inaccessible w-Mahlo, 1 < X, then for some c.c.c.
forcing notion P of cardinality X\, VF satisfies
(a) MA,
(b) 2% =X\ =2" for k < A
(¢) A= N7y forn <w, 0 <R, h(n) is as in 3.1.
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Proof. Again, like 3.1. O

§ 4. PARTITION THEOREM FOR TREES ON LARGE CARDINALS

Lemma 4.1. Suppose pp > o + Xy and
(%), for every p-complete forcing notion P, in V¥, u is measurable.
Then

(1) forn < w, Prght(,u,n,a).
(2) Preht(,u7< R, 0), if there is A > u, A — (u+)2<w.
(8) In both cases we can have the Prehm version, and even choose the (<
a < p) in any of the following ways.
(a) We are given (<%: a < p), and we let for n,v €*2NT, a € SP(T)
(T is the subtree we consider):
o 1 <! v if and only if clpT'(n)‘<% ClpT('V) where f = otp(a N
SP(T)) and clpp(n) = (n(j) : j € Lg(n), j € SP(T)).
(b) We are given (<%: a < p), we let that for v,n €*2NT, a € SP(T):
n <t vifand only if n [ (B + 1) <%+1 v | (B+1) where g =
sup(anNSP(T)).

a -

Remark 4.2. 1) (x), holds for a supercompact after Laver treatment. On hyper-
measurable see Gitik Shelah [GS89)].

2) We can in (%), restrict ourselves to the forcing notion P actually used. For it
by Gitik [M. Gitik, Measurability preserved by s-complete forcing notion] much
smaller large cardinals suffice.

3) The proof of 4.1 is a generalization of a proof of Harrington to Halpern Lauchli
theorem from 1978.

Conclusion 4.3. In 4.1 we can get Prit(,u,n,a) (even with (3)).

Proof. 4.3 We do the parallel to 4.1(1). By (x),, ¢ is weakly compact hence by
2.6(2) it is enough to prove Prght(,u,n, o). This follows from 4.1(1) by 2.6(1). O

Proof. 4.11),2). Let k <w, 0(n) <, dn € Coly,,)(#~2) for n < k.

Choose A such that A — (u1)52% (there is such a A by assumption for (2) and by
k < w for (1)). Let @ be the forcing notion (2, <), and P = Py be {f : dom(f)
is a subset of A of cardinality < p, f(i) € Q} ordered naturally. For ¢ ¢ dom(f),
take f(i) = (). Let 1; be the P-name for J{f(i) : f € Gp}. Let D be a P-name
of a normal ultrafilter over y. For each n < w, d € Colg(n)( >2), j < o(n) and
u={ag,...,an_1}, where ag < -+ < ap_1 < A, let AJ( ) be the Py-name of the
set

Ail(u) = {z < i (Na, [ 1€ <n) are pairwise distinct, j = d(na, [ 7, M0, [z)}

So A%(u) is a Py-name of a subset of y, and for j(1) < j(2) < o(n) we have
IFp, <450 () 0 412 (u) = 2, and U; o)
IFp “® is y-complete uniform ultrafilter on ”, in V¥ there is exactly one j < o(n)
with A% (u) € D. Let jq(u) be the P-name of this j.

Let I;(u) C P be a maximal antichain of P, each member of I(u) forces a value
to ja(u). Let Wy(u) = U{dom(p) : p € I4(u)} and W (u) = J{W4, (u) : n < K}. So
Wa(u) is a subset of X of cardinaltiy < p as well as W (u) (as P satisfies the u*-c.c.
and p € P = |dom(p)| < p).

As X — (pt )57 , d, € Coly}, (#>2) there is a subset Z of A of cardinality ™+
and set W (u) for each u € [Z]<“ such that:

(i) W+(U1) n W+(U2) = W+(u1 n UQ),

Al (u) is a co-bounded subset of i”. As
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(ii) W(u) C W (u) if u € [Z]<",

(iii) if |u1| = |uz] < k and uy,ug C Z then W (uq) and W (uz) have the same
order type — and note that H[uj,us] = H%ﬁ(ul)’wﬂw) naturally induces
amap from P | u; = {p € P:dom(p) C Wt (us)} to Plus={peP:
dom(p) € W+ (uz)}.

(iv) if ug,ug € [Z]<", |u1| = |ug| then H[u,us] maps I, (u1) onto Iy, (uz) and

qIF < (u) = 57 < Hlur,ug)(q) - 5 (uz) = 77

V) if up Cug € [Z]<5, us C ug € [Z]<5, Jug| = |ua|, HOP  maps u; onto us
) ) s g uy p
then Huy,us] C Hlug, ugl.

Let v(7) be the i*" member of Z.

Let s(m) be the set of the first m members of Z and

R, = {p € P :dom(p) C W (s(n))\ U W+(t)}.
tCs(n)

We define by induction on a < p a function F, and p, € R, for u € Uﬁ<a[52]<”
where we let @5 be the empty subset of [?2] and we behave as if [3 # v = @5 # @]
and we also define ((5) < p, such that:

(i) Fy is a function from *~2 into #~2, extending Fj for 8 < a,
ii) F, maps 72 to ¢®)2 for some ¢(B) < p and By < B2 < a = ((B1) < ¢(B2),
ii) n<v €*> 2 implies F,(n) < Fo(v),
) forn €2, B+1 < aand £ <2 we have F,(n) (¢) < F,(n°{£)),
) Pu € Ry whenever u € [P2]™, m < k, B < a and for u(1) € [Z]™ let
Puu(y = His(lu]), u(1)](pu)-
(vi) n €72, B < a, then py, (min Z) = F,(n).
(vii) if B < a, u € [?2]", n < Kk, h : u — s(n) one-to-one onto (not necessarily
order preserving) then for some c(u, h) < o(n):

U Pt,n'(t) H_P,\ “dn(y’y(ﬂ)v oo 7{]7(1171)) = C(’LL7 h)”7

tCu
(Note: as p, € Rj,| the domains of the conditions in this union are pairwise
disjoint.)

(viii) If n,u, 8, h are as in (vii), u = {vo,...,Un_1}, Ve <Ipe € 72, 8 < v < « then
dn(Fa(po),-- - Fa(pn-1)) = c(u, h) where h is the unique function from u
onto s(n) such that [h(ve) < h(vm) = pe <X pm)-

(ix) f B <~v<a v, ..,vp1 €72, n < k,and vy | B,...,Vn_1 | B are
pairwise distinct then:

P{vol Brecevnl BY S P{vo,ecvn—1}-

For « limit: no problem. For a + 1, o limit: we try to define F, () for n €* 2 such

that Ug_, F+1(n [ 8) I Fu(n) and (viii) holds. Let ¢ = Uz, ((8), and for n € 2,
Fom) = Upco Fa(n I B) and for u € [*2]<", p) = U{PY, 1pueuy 0 B < o, [ul =
{v 1 B:veu}|}. Clearly p € Ry,

Then let h :* 2 — Z be one-to-one, such that n <} v < h(n) < h(v) and let
p=U{D) .y s w(1) € [Z]5%, we [*2]<7, |u(l)] = |ul, B (u) = u(1)}.

For any generic G C Py to which p belongs, 8 < « and ordinals ig < -+ < i1
from Z such that (h=1(iy) | B: ¢ < n) are pairwise distinct we have that

B{iz:f<n},ﬁ = {6 < Mo dn(nm ré.v e iy { E) = C(U,h*)}7
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belongs to D[G], where u = {h™1(iy) | B: ¢ <n} and h* : u — s(|u|) is defined by
h*(h=Y(ig) | B) = H{Oif;kn},s(n)(if)' Really every large enough 8 < p can serve so
we omit it. As D[G] is p-complete uniform ultrafilter on u, we can find € € (¢, %)
such that € B, for every u € [*2]", n < k. Welet for v €* 2, F,,(v) = np»[G] T &,
and we let p, = p except when u = {v}, then:

oy [0 1490
Faui(v) i =(0)
For o+ 1, o is a successor: First for n € “7'2 define F(n"(¢€)) = F.(n) (). Next
we let {(u;, hy) i@ < i*}, list all pairs (u, h), u € [*2]S™, h: u — s(|u|), one-to-one
onto. Now, we define by induction on i < ¢*, pf (u € [*2]<") such that:
(a) pZ € R|u\7
(b) pl, increases with 4,
(c) for i+ 1, (vii) holds for (u;, h;),
(d) if vy, €* 2 for m <n, n <K, (U, [ (¢ — 1) : m < n) are pairwise distinct,
then P{vmt (a—1) :m<n} < p?l,m:m<n}7
(e) f v € *2, v(aw — 1) = ¢ then p({)y}(O) =F,(v | (a—1))"().
There is no problem to carry the induction.
Now F,11 | “2is to be defined as in the second case, starting with 1 — pf'{*n}(n).
For o = 0, 1: Left to the reader.
So we have finished the induction hence the proof of 4.1(1), (2).
3) Left to the reader ( the only influence is the choice of h in stage of the induction).
O

§ 5. SOMEWHAT COMPLEMENTARY NEGATIVE PARTITION RELATION IN ZFC

The negative results here suffice to show that the value we have for 280 in §3 is
reasonable. In particular the Galvin conjecture is wrong and that for every n < w
for some m < w, W, /A [N .

See Erdos Hajnal Mdté Rado [EHMRS84] for

Fact 5.1. Tf 2<F < X < 24y [u]? then X\ 4 [(2<#)F]n+L,
This shows that if e.g. in 1.4 we want to increase the exponents, to 3 (and still
= p<t") e.g. u cannot be successor (when o < Rg) (by [She88], 3.5(2)).

Definition 5.2. Prp,(\, p,5), where & = (o, : n < w), means that there are func-
tions F,, : [\]™ — o, such that for every W € [AJ* for some n, F)/([W]") = o(n).
The negation of this property is denoted by
NPrpp(A p, ).

If ,, = o we write o instead of (0, : n < w).

Remark 5.3. 1) Note that A — [p]s% means: if F : [A\|<¥ — o then for some
AeNH F'([A]<¥) £ 0. Sofor A\ > pu >0 =N, A A [p]sY, (use F : F(a) = |a|)
and Pry, (A, i, 0) is stronger than A /4 [u|5¢.

2) We do not write down the monotonicity properties of Pr,, — they are obvious.

Claim 5.4. 5.81) We can (in 5.2) w.l.o.g. use Fy, p, : [N — oy, for n,m < w and
obvious monotonicity properties holds, and X > p > n.

2) Suppose NPry,(\, i, k) and £ # k]2 or even k 4 [k]5¥. Then the following
case of Chang conjecture holds:
(*) for every model M with universe A and countable vocabulary, there is an ele-
mentary submodel N of M of cardinality p,

INNEK| <k
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3) If NP’I"np()\, Nl, No) then ()\, Nl) — (le No)
Proof. Easy. O

Theorem 5.5. Suppose Prpp(Xo, i, No), p reqular > Rg and Ay > Ao, and no p’ €
(Ao, A1) is p/-Mahlo. Then Pry, (A, i, No).

Proof. Let x = Jg(A1)T, let {F),, : m < w} list the definable n-place functions
in the model (H(x), €, <}), with Xo, s, A1 as parameters, let F, . (ao,...,n1)
(for ap,...,am—1 < A1) be Y (o, ..., an_1) if it is an ordinal < A; and zero
otherwise. Let Fy, y (o, ..., an—1) (for ag,...,an_1 < A1) be F,?’m(ozo7 ey Q1)
if it is an ordinal < w and zero otherwise. We shall show that F,, ,,(n,m < w)
exemplify Pry, (A1, 1, Ro) (see 5.3(1)).
So suppose W' € [A\1]" is a counterexample to Pr(A1, i1, Rg) i.e. fornon,m, FY/  ([W]") =

w. Let W* be the closure of W under F, . (n,m < w). Let N be the Skolem Hull
of Win (H(x), € <}), so clearly NN Ay = W*. Note W* C Ay, [W*| = p. Also as
cf(p) > Vo if A CW*, |A| = p then for some n,m < w and u; € [W]" (for i < u),
Fpoo(ui) € Aand [i < j < p= F,) (u)# F),.(u)]. It is easy to check that
also W' = {F, . (u;) : i < p} is a counterexample to Pr(Ai,u,0). In particular,
for n,m < w, Wy m = {F, ,,(u) : w € [W]"} is a counterexample if it has power .
W.lo.g. W is a counterexample with minimal § = sup(W) = U{a+1: a € W}.
The above discussion shows that [W* Na| < p for @ < §. Obviously cfd = u™.
Let {(a; : i < p) be a strictly increasing sequence of members of W*, converging to
6, such that for limit ¢ we have a; = min(W* — |J;_;(e; +1). Let N =, Ns,
N; < N, |N;| < p, N; increasing continuous and w.l.o.g. N;Né = N Na;. a Fact:
0 is > Ag.

Proof. Otherwise we then get an easy contradiction to Pr(\, ,u,a)) as choosing

the Fp) ,, we allowed o as a parameter. 8 Fact: If F is a unary function definable

in N, F(«) is a club of « for every limit ordinal a(< A1) then for some club C of
1 we have

(Vj € C\{minC})(3iy < j)(Vi € (i1,5))[i € C = a; € F(qa;)].

Proof. For some club Cy of y we have j € Cy = (Nj, {a; 1i < j},W) =< (N, {a; :
i < p},W). Welet C = Cjj = acc(C) (= set of accumulation points of Cj).

We check C is as required; suppose j is a counterexample. So j = sup(j N C)
(otherwise choose i; = max(j N C)). So we can define, by induction on n, iy, such
that:

(a) iy < in+1 <jJ
(b) a1, & Flay)
(¢) (i, i, ,,)NF(a;) #@.

Why (C§)? = “F(;) is unbounded below «;” hence N |= “F(c;) is unbounded
below «;”, but in N, {a; : i € Cp, i < j} is unbounded below «;.

Clearly for some n,m,a; € W, ,, (see above). Now we can repeat the proof of
[She88, 3.3(2)] (see mainly the end) using only members of W, ,,.

Note: here we use the number of colors being Ng. 87 Fact: Wolog the C in Fact 8
is p.

Proof: Renaming. v Fact: § is a limit cardinal.

Proof: Suppose not. Now § cannot be a successor cardinal (as cfd = p < Ay < 9)
hence for every large enough i, |o;| =[], so || € W* C N and |§|T € W*.

So W* N |4| has cardinality < p hence order-type some v* < p. Choose i* < p
limit such that [j < i* = j +~+* < i*]. There is a definable function F of (H(x), €



Paper Sh:288, version 2022-07-04. See https://shelah.logic.at/papers/288/ for possible updates.

18 S. SHELAH

, <) such that for every limit ordinal a, F'(@) is a club of a, 0 € F(a), if [a] < a,
F(a)N|a| =g, otp(F(a)) = cfa.

So in N there is a closed unbounded subset Cy; = F'(a;) of o of order type
< cfa; < |§], hence C’aj N N has order type < ~*, hence for i* chosen above
unboundedly many i < i*, a; & Cy,.. We can finish by fact S7. § Fact: For each
i < W, o is a cardinal.

Proof: If |a;| < i then |a;| € N;, but then |a;|T € N; contradicting to Fact v, by
which |a;|T < 4, as we have assumed N; Nd = N Na;. g Fact: For a club of i < p,
«; is a regular cardinal.

(Proof: if S = {i : «; singular} is stationary, then the function «; — cf(e;) is
regressive on S. By Fodor lemma, for some o* < §, {i < p : cfa; < o*} is
stationary. As |N N a*| < u for some 5%, {i < p : cfa; = B*} is stationary. Let
F1 () be a club of « of order type cf(«a), and by fact 8 we get a contradiction as
in fact v. ¢ Fact: For a club of i < p, «; is Mahlo.

Proof: Use F} ,,(a) = a club of o which, if « is a successor cardinal or inaccessible
not Mahlo, then it contains no inaccessible, and continue as in fact . £ Fact: For

a club of i < p, a; is a;-Mahlo.

Proof: Let Fi,,)(e) = sup{¢ : « is (-Mahlo}. If the set {i < p : «a; is not
a;-Mahlo} is stationary then as before for some v € N, {i : Fy y(0)(cui) = 7} is
stationary and let Fy ,,(1)(c) — a club of a such that if a is not (v 4-1)-Mahlo then
the club has no y-Mahlo member. Finish as in the proof of fact 6. O

Remark 5.6. We can continue and say more.

Lemma 5.7. 1) Suppose X > u > 6 are reqular cardinals, n > 2 and
(i) for every regular cardinal k, if \ > k > 0 then k / [6]5(“{)
(it) for some a(x) < u for every regular k € (a(x),\), kK £ [a(*)]Z(Q).

Then
(a) X4 [Tt where o0 = min{o(1),0(2)},
(b) there are functions do : [N"*1 — o(2), di : [\]* — o(1) such that for every
W e \#, di (W) = a(1) or d5([W]"*!) = o(2).

2) Suppose X\ > (> 0 are regular cardinals, and
(i) for every regular k € [0,\), Kk /4 [9]:(“{),
(ir) sup{r < A: K regular} 7> [u]} )

Then
(a) X+ [u]2" where o = min{o(1),0(2)}
(b) there are functions di : [N\* — o(1), da : [N?*" — o(2) such that for every
W e N, di (W) = o(1) or d; ((W]*" = o(2).
The proof is similar to that of [She88] 3.3,3.2.

Proof. 1) We choose for each i, 0 < i < \;, C; such that: if i is a successor ordinal,
C; = {i —1,0}; if 4 is a limit ordinal, C; is a club of i of order type cfi, 0 € C;,
[cfi < i = cfi <min(C; — {0})] and C; \ acc(C;) contains only successor ordinals.

Now for v < 8, @ > 0 we define by induction on ¢, v, (3, a), v, (8, @), and then
K(B, ), (B, a).

(A) 79 (B,0) = B, 7 (B,@) = 0.

(B) ifv, (B, a) is defined and > a and « is not an accumulation point of Cﬁ(ﬁ,a)
then we let v, (3, a) be the maximal member of Cﬁ(ﬁ,a) which is < «
and 72;1(5,04) is the minimal member of Cyj(ﬁ,a) which is > a (by the
choice of Cﬁ(@a) and the demands on 7, (3, @) they are well defined).

So
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(B1) (a) v, (B,a) < a <~/ (B,a), and if the equality holds then 'yetrl(ﬂ,a) is
not defined.
(b) 751(8.a) <~ (8, a) when both are defined.
(C) Let k = k(B, a) be the maximal number k such that ;7 (8, ) is defined (it
is well defined as (v, (8, ) : £ < w) is strictly decreasing). So
(C1) 'y,:r(ﬁ’a)(ﬁ,a) = o or 'y,j(ﬁ’a) > a, 'y,:r(ﬁ@) is a limit ordinal and « is an
accumulation point of Cﬁ(ﬁ )(B,a .

(D) For m < k(B, a) let us define

em (B, a) = max{y, (B,a) +1: £ < m}.
Note
(D1) (a) em(B,a) < a (if defined),
(b) if « is limit then &,,(53, @) < « (if defined),
(c) if en(B, @) <& < « then for every £ < m we have

7;(ﬁ7a):75 (5’6)7 7;(ﬁ7a):7[(67€)7 55(16704):55(5a§)'
(explanation for (c): if £, (8, &) < « this is easy (check the definition)
and if €,,,(3, @) = «, necessarily £ = « and it is trivial).
(d) if £ < m then g,(8, ) < g, (8, @)
For a regular k € (a(x),A) let gt : [5]<Y — 0(2) exemplify & # (0] (1) and for
every regular cardinal x € [0, ) let g2 : [k]" — o(2) exemplify x /4 [a(x o) Let
us define the colourings:
Let ag > a1 > ... > a,. Remember n > 2.
Let n = n(ag, a1, as) be the maximal natural number such that:
(i) en(ap,a1) < ap is well defined,
(ii) for £ < n, v, (oo, 01) =, (a0, 2).
We define da(ag, a1, - .., ) as g2(B1, - - -, Bn) Where

k =cf (7+

n(ag,a1,02) (Ozo, al)) ’

Be =otp [az NnC egon, a2>(a°’“1)}
Next we define d;(ag, a1, a9) .
Let i(x) = sup [C’ +(ag.an) (1 Cot my%)} where n = n(ag,a1,a2), E be the

equivalence relation on C_+(, )\ i(*) defined by
’ylE’)/Q = V’}/ S C’YI(OC()’QZ)[,‘h <y 72 < ’Y]
If the set w = {7 € Clitapay =7V > i(x), v = miny/E} is finite, we

Yn
, By = otp(7 N

let di(a, 1, a2) be gt ({By : v € w}) where k = ‘Cﬁ(ao,al)
C’Y?f@éoﬂﬂ) ’

We have defined d;, da required in condition (b) ( though have not yet proved
that they work) We still have to define d (exemplifying A /4 [u]} ). Let n > 3, for
ag > aq > ... > ap, we let d(ag, ..., ay) be di(ap, a1, @) if w defined during the
definition has odd number of members and dy(ap, . .., o) otherwise.

Now suppose Y is a subset of A of order type u, and let 6 =supY. Let M be a
model with universe A and with relations Y and {(z,7) : i € C;}. Let (N; 14 < p)
be an increasing continuous sequence of elementary submodels of M of cardinality
< p such that «(i) = a; = min(Y \ N;) belongs to N;41, sup(N Na;) = sup(NNJ).
Let N = U N;. Let 5(1) =0; = Sup(Niﬂozi), so0<9; < [o79 and let n = n; be the

i<p
first natural number such that §; an accumulation point of O = Cyf{(ai,é(i))’ let
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€ = en() (@i, 0;). Note that v, (as,d;) = 7,7 (@i, €;) hence it belongs to N. Case I:
For some (limit) i < p, cf(i) > 0 and (Vv < i)[y+a(x) < i] such that for arbitrarily
large j < i, C* N N; is bounded in N; N d = N; N §;.
This is just like the last part in the proof of [She88], 3.3 using g. and d; for
k= cf (v (as, 67).
Case II: Not case I.

Let Sp = {i < p: (Va < i)[y+a(*) < i, cf(i) = 0}. So for every i € Sy for some
J(i) <, (V9) [j € (j(i),i) = C*N N; is unbounded in 5]-]. But as C* N §; is a club

of &, clearly (V) [j € (ji),i) = §; € c}

We can also demand j(i) > ep(a(i),s¢i)) (@(7),0(7)).

As Sy is stationary, (by not case I) for some stationary S; C Sy and n(x), j(x)
we have (Vi € S1) [j(i) — j(¥) An(a(i), ;) = n(*)].

Choose i(x) € Sy, i(x) = sup(i(x) N S1), such that the order type of Sy N i(x)
is i(x) > a(x). Now if iy < 43 € Sy Mi(x) then n(a;y, i, a5,) = n(x). Now
Lisy = {otp(ozi NC™):ieSn z(*)} are pairwise distinct and are ordinals <

k = |C**)|, and the set has order type a(x). Now apply the definitions of dy and
g% on Li(+). 2) The proof is like the proof of part (1) but for ag > ay > --- we let

da(g, - saan—1) = g2(Bo, - - -, Bn) Where
ﬁé = Otp(c’ﬁ(ﬁzz,ﬂzeﬂ)(ﬁﬂ"8%""1) m’BM'H)

and in case II note that the analysis gives p possible 3¢’s so that we can apply the
definition of g2. O

Definition 5.8. Let A /g [p]y mean: if d : [A]" — 6, and («; : 7 < p) is strictly
increasingly continuous and for ¢ < j < p, v; j € [, ai41) then

0= {d(w) : for some j < pu, w € [{%‘,j ) <j}]n}~

Lemma 5.9. 1) Xy /4 [Nl]goﬂ forn>1.
2) Nn 7L>stg [Nl];i:_l fOT’ n Z 1.

Proof. 1) For n = 2 this is a theorem of Todorcevi¢ [[Tod87]], and if it holds for
n > 2 by 5.5(1) we get that it holds for n+1 (with n, A, p, 0, a(x), o(1), 0(2) there
corresponding to n + 1, N, 11, Ry, Vg, Rg, Vg, Vg here).

2) Similar. O
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