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Abstract. We continue here [She88] (see the introduction there) but we do
not relay on it. The motivation was a conjecture of Galvin stating that 2ω ≥ ω2

+ ω2 → [ω1]n
h(n)

is consistent for a suitable h : ω → ω. In section 5 we disprove

this and give similar negative results. In section 3 we prove the consistency

of the conjecture replacing ω2 by 2ω , which is quite large, starting with an

Erdős cardinal. In section 1 we present iteration lemmas which needs when
we replace ω by a larger λ and in section 4 we generalize a theorem of Halpern

and Lauchli replacing ω by a larger λ.

§ 0. Preliminaries

Let <∗χ be a well ordering of H(χ), where

H(χ) = {x : the transitive closure of x has cardinality < χ}

agreeing with the usual well-ordering of the ordinals. P (and Q, R) will denote
forcing notions, i.e. partial orders with a minimal element ∅ = ∅P .

A forcing notion P is λ-closed if every increasing sequence of members of P of
length less than λ has an upper bound.

If P ∈ H(χ), then for a sequence p̄ = 〈pi : i < γ〉 of members of P let

α
˜

= α
˜
p̄ = sup

{
j
˜

: {βj : j < j
˜
} has an upper bound inP

}
and define &p̄, the canonical upper bound of p̄, as follows:

(a) the least upper bound of {pi : i < α
˜
} in P if there exists such an element,

(b) the <∗χ-first upper bound of p̄ if (a) can’t be applied, but there is such,
(c) p0 if (a) and (b) fail and γ > 0,
(d) ∅P if γ = 0.

Let p0&p1 be the canonical upper bound of 〈p` : ` < 2〉.
Take [a]κ = {b ⊆ a : |b| = κ} and [a]<κ =

⋃
θ<κ

[a]θ.

For sets of ordinals, A and B, define HOP
A,B as the maximal order preserving

bijection between initial segments of A and B, i.e, it is the function with domain
{α ∈ A : otp(α∩A) < otp(B)}, and HOP

A,B(α) = β iff α ∈ A, β ∈ B and otp(α∩A) =

otp(β ∩B).

Definition 0.1. λ→+ (α)<ωµ holds provided whenever F is a function from [λ]<ω

to µ, C ⊆ λ is a club then there is A ⊆ C of order type α such that for any
w1, w2 ∈ [A]<ω, |w1| = |w2| ⇒ F (w1) = F (w2).

Definition 0.2. λ → [α]nκ,θ if for every function F from [λ]n to κ there is A ⊆ λ

of order type α such that {F (w) : w ∈ [A]n} has power ≤ θ.
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2 S. SHELAH

Definition 0.3. A forcing notion P satisfies the Knaster condition (has property
K) if for any {pi : i < ω1} ⊂ P there is an uncountable A ⊂ ω1 such that the
conditions pi and pj are compatible whenever i, j ∈ A.

§ 1. Introduction

Concerning 1.1–1.3 see Shelah [She78], Shelah and Stanley [SS82], [SS86].

Definition 1.1. A forcing notion Q satisfies ∗εµ where ε is a limit ordinal < µ, if
player I has a winning strategy in the following game:

Playing: the play finishes after ε moves.

in the αth move:
Player I – if α 6= 0 he chooses 〈qαζ : ζ < µ+〉 such that qαζ ∈ Q and

(∀β < α)(∀ζ < µ+) pβζ ≤ q
α
ζ

and he chooses a regressive function fα : µ+ → µ+ (i.e. fα(i) < 1 + i).
If α = 0 let qαζ = ∅Q, fα = ∅.

Player II – he chooses 〈pαζ : ζ < µ+〉 such that qαζ ≤ pαζ ∈ Q.

The outcome: Player I wins provided whenever µ < ζ < ξ < µ+, cf(ζ) = cf(ξ) = µ and
∧β<εfβ(ζ) = fβ(ξ) the set {pαζ : α < ε} ∪ {pαξ : α < ε} has an upper bound
in Q.

Definition 1.2. We call
〈
Pi, Qj : i ≤ i(∗), j < i(∗)

〉
a ∗εµ-iteration provided that:

(a) it is a (< µ)-support iteration (µ is a regular cardinal)
(b) if i1 < i2 ≤ i(∗), cf(i1) 6= µ then Pi2/Pi1 satisfies ∗εµ.

Lemma 1.3. If Q̄ = 〈Pi, Qj : i ≤ i(∗), j < i(∗)〉 is a (< µ)-support iteration, (a)
or (b) or (c) below hold, then it is a ∗εµ-iteration.

(a) i(∗) is limit and Q̄ � j(∗) is a ∗εµ-iteration for every j(∗) < i(∗).
(b) i(∗) = j(∗) + 1, Q̄ � j(∗) is a ∗εµ-iteration and Qj(∗) satisfies ∗εµ in V Pj(∗) .

(c) i(∗) = j(∗) + 1, cfj(∗) = µ+, Q̄ � j(∗) is a ∗εµ-iteration and for every
successor i < j(∗), Pi(∗)/Pi satisfies ∗εµ.

Proof. Left to the reader (after reading [Sh80] or [ShSt154a]).

Theorem 1.4. Suppose µ = µ<µ < χ < λ, and λ is a strongly inaccessible k2
2-

Mahlo cardinal, where k2
2 is a suitable natural number (see 3.6(2) of [Sh289]), and

assume V = L for the simplicity. Then for some forcing notion P :

(a) P is µ-complete, satisfies the µ+-c.c., has cardinality λ, and V P |= ”2µ =
λ”.

(b) P λ→ [µ+]23 and even λ→ [µ+]2κ,2 for κ < µ.
(c) if µ = ℵ0 then  “MAχ”.
(d) if µ > ℵ0 then: P “for every forcing notion Q of cardinality ≤ χ, µ-

complete satisfying ∗εµ, and for any dense sets Di ⊆ Q for i < i0 < λ, there
is a directed G ⊆ Q, ∧iG ∩Di 6= ∅”.

As the proof is very similar to [She88], (particularly after reading section 3) we
do not give details. We shall define below just the systems needed to complete the
proof. More general ones are implicit in [Sh289].

Convention 1.5. We fix a one to one function Cd = Cdλ,µ from µ>λ onto λ.

Remark 1.6. Below we could have otp(Bx) = µ+ + 1 with little change.

Definition 1.7. Let µ < χ < κ ≤ λ, λ = λ<µ, χ = χ<µ, µ = µ<µ.

Paper Sh:288, version 2022-07-04. See https://shelah.logic.at/papers/288/ for possible updates.



STRONG PARTITION RELATIONS BELOW THE POWER SET: CONSISTENCY; WAS SIERPINSKI RIGHT? II.3

1) We call x a (λ, κ, χ, µ)-precandidate if x = 〈axu : u ∈ Ix〉 where for some set
Bx (unique, in fact):

(i) Ix = {s : s ⊆ Bx, |x| ≤ 2},
(ii) Bx is a subset of κ of order type µ+,

(iii) axu is a subset of λ of cardinality ≤ χ closed under Cd,
(iv) axu ∩Bx = u,
(v) axu ∩ axv ⊆ axu∩v,
(vi) if u, v ∈ Ix, |u| = |v| then axu and axv have the same order type (and

so HOP
axu,a

x
v

maps axu onto axv),

(vii) if u`, v` ∈ Ix for ` = 1, 2, |u1| = |v1|, |u2| = |v2|, |u1 ∪ u2| = |v1 ∪
v2|, HOP

axu1
∪axu2

,axv1
∪axv2

maps u` onto v` for ` = 1, 2 then HOP
axu1

,axv1
and

HOP
axu2

,axv2
are compatible.

2) We say x is a (λ, κ, χ, µ)-candidate if it has the form 〈Mx
u : u ∈ Ix〉 where

(α) (i) 〈|Mx
u | : u ∈ Ix〉 is a (λ, κ, χ, µ)-precandidate

(with Bx defined as
⋃
Ix )

(ii) Lx is a vocabulary with (≤ χ)-many (< µ)-ary place predicates
and function symbols,

(iii) each Mx
u is an Lx-model,

(iv) for u, v ∈ Ix, |u| = |v|, Mx
u � (|Mx

u | ∩ |Mx
v |) is a model, and in

fact an elementary submodel of Mx
v , Mx

u and Mx
u∩v.

(β) for u, v ∈ Ix, |u| = |v|, the function HOP
|Mx

u |,|Mx
v |

is an isomorphism from

Mx
u onto Mx

v .
3) The set A is a (λ, κ, χ, µ)-system if

(A) each x ∈ A is a (λ, κ, χ, µ)-candidate,
(B) guessing: if L is as in (2)(α)(ii), M∗ is an L-model with universe λ

then for some x ∈ A, s ∈ Bx ⇒Mx
s ≺M∗.

Definition 1.8. 1) We call the system A disjoint when:

(∗) if x 6= y are from A and otp(|Mx
∅|) ≤ otp(|My

∅|) then for some B1 ⊆ Bx,
B2 ⊆ By we have

a) |B1|+ |B2| < µ+

b) the sets⋃
{|Mx

s | : s ∈ [Bx \B1]≤2} and
⋃
{|My

s | : s ∈ [By \B2]≤2}

have intersection ⊆My
∅.

2) We call the system A almost disjoint when:

(∗∗) if x, y ∈ A, otp(|Mx
∅|) ≤ otp(|My

∅|) then for some B1 ⊆ Bx, B2 ⊆ By we
have:

a) |B1|+ |B2| < µ+,
b) if s ∈ [Bx \B1]≤2, t ∈ [By \B2]≤2 then |Mx

s | ∩ |Mx
t | ⊆ |M

y
∅|.

§ 2. Introducing the partition on trees

Definition 2.1. Let

1) Per(µ>2) be the set of T such that
(a) T ⊆ µ>2, 〈〉 ∈ T ,
(b) (∀η ∈ T ) (∀α < `g(η)) η � α ∈ T ,
(c) if η ∈ T ∩ α2, α < β < µ then for some ν ∈ T ∩ β2, η C ν,
(d) if η ∈ T then for some ν we have η C ν, νˆ〈0〉 ∈ T , νˆ〈1〉 ∈ T
(e) if η ∈ δ2, δ < µ is a limit ordinal and {η � α : α < δ} ⊆ T then η ∈ T .
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4 S. SHELAH

2) Perf (µ>2) ={
T ∈ Per(µ>2) : α < µ, ν1, ν2 ∈ α2 ∩ T ⇒

[ 1∧
`=0

ν1ˆ〈`〉 ∈ T ⇐⇒
1∧
`=0

ν2ˆ〈`〉 ∈ T
]}
.

3) Peru(µ>2) ={
T ∈ Per(µ>2) : α < µ, ν1 6= ν2 from α2 ∩ T, then

1∨
`=0

2∨
m=1

νmˆ〈`〉 /∈ T
}

4) For T ∈ Per(µ>2) let limT =
{
η ∈ µ2 : (∀α < µ) η � α ∈ T

}
.

5) For T ∈ Perf (µ>2) let clpT : T → µ>2 be the unique one-to-one function
from sp(T ) = {η ∈ T : ηˆ〈0〉, ηˆ〈1〉 ∈ T} onto µ>2, which preserves C and
lexicographic order.

6) Let SP(T ) = {`g(η) : η ∈ sp(T )}, where

sp(η, ν) = min{i : η(i) 6= ν(i) ∨ i = `g(η) ∨ i = `g(ν)}

Definition 2.2. 1) For cardinals µ, σ and n < ω and T ∈ Per(µ>2) let

Colnσ(T ) =
{
d : d is a function from

⋃
α<µ

[α2]n ∩ T to σ
}

. We will write

d(ν0, . . . , νn−1) for d
(
{ν0, . . . , νn−1}

)
.

2) Let <∗α denote a well ordering of α2 (in this section it is arbitrary). We call
d ∈ Colnσ(T ) end-homogeneous for

〈
<∗α : α < µ

〉
provided that: if α < β

are from SP(T ), {ν0, . . . , νn−1} ⊆ β2 ∩ T , 〈ν` � α : ` < n〉 are pairwise
distinct and

∧
`,m

[ν` <
∗
β νm ⇐⇒ ν` � α <∗α νm � α] then

d(ν0, . . . , νn−1) = d(ν0 � α, . . . , νn−1 � α).

3) Let EhColnσ(T ) =
{
d ∈ Colnσ(T ) : d is end-homogeneous

}
(for some 〈<∗α : α < µ〉).

4) For ν0, . . . , νn−1, η0, . . . , ηn−1 from µ>2, we say ν̄ = 〈ν0, . . . , νn−1〉 and η̄ =
〈ηo, . . . , ηn−1〉 are strongly similar for

〈
<∗α : α < µ

〉
if:

(i) `g(ν`) = `g(η`)
(ii) sp(ν`, νm) = sp(η`, ηm) (= η` ∩ ηm)
(iii) if `1, `2, `3, `4 < n and α = sp(ν`1 , ν`2) then

ν`3 � α <
∗
α ν`4 � α⇐⇒ η`3 � α <

∗
α η`4 � α and ν`3(α) = η`3(α)

5) For νa0 , . . . , ν
a
n−1, νb0, . . . , ν

b
n−1 from µ>2 we say ν̄a = 〈νa0 , . . . , νan−1〉 and

ν̄b = 〈νb0, . . . , νbn−1〉 are similar if the truth values of (i)–(iii) below do not
depend on t ∈ {a, b} for any `(1), `(2), `(3), `(4) < n:
(i) `g(νt`(1)) < `g(νt`(2))

(ii) sp(νt`(1), ν
t
`(2)) < sp(νt`(3), ν

t
`(4))

(iii) for α = sp(νt`(1), ν
t
`(2)), the truth value of the following does not depend

on `:

νt`(3) � α <
∗
α ν

t
`(4) � α and νt`(3)(α) = 0.

6) We say d ∈ Colnσ(T ) is almost homogeneous [homogeneous] on T1 ⊆ T (for〈
<∗α : α < µ

〉
) if for every α ∈ SP(T1), ν̄, η̄ ∈ [α2]n ∩ T1 which are strongly

similar [similar] we have d(ν̄) = d(η̄).
7) We say

〈
<∗α : α < µ

〉
is nice to T ∈ Per(µ>2), provided that: if α < β

are from SP(T ), (α, β) ∩ SP(T ) = ∅, η1 6= η2 ∈ β2 ∩ T ,
[
η1 � α <∗α η2 �

α or η1 � α = η2 � α, η1(α) < η2(α)
]

then η1 <
∗
β η2.

Definition 2.3. 1) Preht(µ, n, σ) means: for every d ∈ Colnσ(µ>2) for some T ∈
Per(µ>2), d is end homogeneous on T .
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2) Praht(µ, n, σ) means for every d ∈ Colnσ(µ>2) for some T ∈ Per(µ>2), d is almost
homogeneous on T .

3) Prht(µ, n, σ) means for every d ∈ Colnσ(µ>2) for some T ∈ Per(µ>2), d is homo-
geneous on T .

4) For x ∈ {eht, aht, ht}, Prfx(µ, n, σ) is defined like Prx(µ, n, σ) but we demand
T ∈ Perf (µ>2).

5) If above we replace eht, aht, ht by ehtn, ahtn, htn, respectively, this means
〈
<∗α :

α < µ
〉

is fixed a priori.
6) Replacing n by “< κ”, σ by σ̄ = 〈σ` : ` < κ〉 for κ ≤ ℵ0, means that 〈dn :
n < κ〉 are given, dn ∈ Colnσ(µ>2) and the conclusion holds for all dn with n < κ
simultaneously. Replacing “σ” by “< σ” means that the assertion holds for every
σ1 < σ.

Definition 2.4. 1) Praht(µ, n, σ(1), σ(2)) means: for every d ∈ Colnσ(1)(
µ>2), for

some T ∈ Per(µ>2) and
〈
<∗α : α < µ

〉
for every η̄ ∈

⋃{
[α2]n ∩ T : α ∈ SP(T )

}
,{

d(ν̄) : ν̄ ∈
⋃{

[α2]n∩T1 : α ∈ SP((T1)
}
, η̄ and ν̄ are strongly similar for

〈
<∗α : α < µ

〉}
has cardinality < σ(2).

2) Prht(µ, n, σ(1), σ(2)) is defined similarly with “similar” instead of
“strongly similar”.

3) Prx

(
µ,< κ, 〈σ1

` : ` < κ〉, 〈σ2
` : ` < κ〉

)
, Prfx(µ, n, σ(1), σ(2)), Prfx(µ,< ℵ0, σ̄

1, σ̄2)

are defined in the same way.
There are many obvious implications.

Fact 2.5. 1) For every T ∈ Per(µ>2) there is a T1 ⊆ T , T1 ∈ Peru(µ>2).

2) In defining Prfx(µ, n, σ) we can demand T ⊆ T0 for any T0 ∈ Perf (µ>2), similarly

for Prfx(µ,< κ, σ).
3) The obvious monotonicity holds.

Claim 2.6. 1) Suppose µ is regular, σ ≥ ℵ0 and Prfeht(µ, n,< σ). Then Prfaht(µ, n,<
σ) holds.

2) If µ is weakly compact and Prfaht(µ, n,< σ), σ < µ, then Prfht(µ, n,< σ) holds.

3) If µ is Ramsey and Prfaht(µ,< ℵ0, < σ), σ < µ, then Prfht(µ,< ℵ0, < σ).

4) If µ = ω, in the “nice” version, the orders
〈
<∗α : α < µ

〉
disappear.

Proof. We induct on n; for n + 1 and given dn+1 :
⋃
{[α2]n+1 : α < µ} → σ and

<̄n+1 = 〈<n+1
α : α < µ〉, we apply Prfeht(µ, n,< σ). We get T .

Let f = clpT : T → µ>2 be as in 2.1(5). Define <̄∗ = 〈<∗nα : α < µ〉 and dn as
follows:

(A) for α < µ and η0, η1 ∈ α2, clpT (ν`) = η`, `g(ν`) = β then

η0 <
n
α η1 ⇐⇒ ν0 <

n+1
α ν1

(B) for α < µ and η0 <nα . . . <nα ηn−1, clpT (ν`) = η`, `g(ν`) = β and for
k < n, ρ < 2 we have νkˆ〈`〉 C ρk,` ∈ sp(Tn+1) ∩ γ2. If γ minimal then
dn({η0, . . . ηn−1}) codes the set of the following objects t:
• For some γ > α there are ρk,` ∈ sp(Tn+1) ∩ γ2 such that νkˆ〈`〉E ρk,`

for k < n, ` < 2 and t codes all the information on the sequence
〈ρk,` : k < n, ` < 2〉 (i.e. the order <n+1

γ and instances of dn+1). �

The following theorem is a quite strong positive result for µ = ω. Halpern Lauchli
proved 2.7(1), Laver proved 2.7(2) (and hence (3)), Pincus pointed out that Halpern

Lauchli’s proof can be modified to get 2.7(2), and then Prfeht(ω, n,< σ) and (by it)

Prfht(ω, n,< σ) are easy. [No idea why this is all in italics]
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6 S. SHELAH

Theorem 2.7. 1) If d ∈ Colnσ(ω>2), σ < ℵ0, then there are T0, . . . , Tn−1 ∈
Perf (ω>2) and k0 < k1 < . . . < k` < . . . and s < σ such that for every ` < ω, if
µ0 ∈ T0, µ1 ∈ T1, . . . , νn−1 ∈ Tn−1,

∧
m<n

`g(νm) = k`, then d(ν0, . . . , νn−1) = s.

2) We can demand in 1) that

SP(T`) = {k0, k1, . . .}

3) Prfhtn(ω, n, σ) for σ < ℵ0.

4) Prfhtn
(
ω,< ℵ0, 〈σ1

n : n < ω〉, 〈σ2
n : n < ω〉

)
if σ1

n < ℵ0 and 〈σ2
n : n < ω〉 diverge

to infinity.

Definition 2.8. Let d be a function with domain ⊇ [A]n, A be a set of ordinals, F
be a one-to-one function from A to α(∗)2, <∗α be a well ordering of α2 for α ≤ α(∗)
such that F (α) <∗α F (β)⇐⇒ α < β, and σ be a cardinal.

1) We say d is (F, σ)-canonical on A if for any α1 < · · · < αn ∈ A,∣∣∣{d(β1, . . . , βn) :
〈
F (β1), . . . , F (βn)

〉
similar to

〈
F (α1), . . . , F (αn)

〉}∣∣∣ ≤ σ
2) We define “almost (F, σ)-canonical” similarly using strongly similar instead of
“similar”.

§ 3. Consistency of a strong partition below the continuum;
Irrelevant

This section is dedicated to the proof of

Theorem 3.1. Suppose λ is the first Erdős cardinal, i.e. the first such that λ →
(ω1)<ω2 . Then, if A is a Cohen subset of λ, in V [A] for some ℵ1–c.c. forcing notion
P of cardinality λ, P “MAℵ1

(Knaster) + 2ℵ0 = λ” and:
1.) P “λ→ [ℵ1]nh(n)” for suitable h : ω 7→ ω (explicitly defined below).

2.) In V P , for any colorings dn of λ where dn is n-place, and for any divergent
〈σn : n < ω〉 (see below), there is a W ⊆ λ, |W | = ℵ1 and a function F : W → ω2
such that dn is (F, σn)-canonical on W for each n. (See definition 2.8 above.)

Remark 3.2. h(n) is n! times the number of u ∈ [ω2]n satisfying (if η1, η2, η3, η4 ∈ u
are distinct then sp(η1, η2), sp(η3, η4) are distinct) up to strong similarity for any
nice

〈
<∗α : α < ω

〉
.

2) A sequence 〈σn : n < ω〉 is divergent if ∀m : ∃k : ∀n ≥ k : σn ≥ m.

Notation 3.3. For a sequence a = 〈αi, e∗i : i < α〉, we call b ⊆ α closed if
(i) i ∈ b⇒ ai ⊆ b
(ii) if i < α, e∗i = 1 and sup(b ∩ i) = i then i ∈ b.

Definition 3.4. Let K be the family of Q̄ = 〈Pi, Q
˜
j , aj , e

∗
j : j < α, i ≤ α〉 such that

(a) ai ⊆ i, |ai| ≤ ℵ1,
(b) ai is closed for 〈aj , e∗j : j < i〉, e∗i ∈ {0, 1}, and [e∗i = 1⇒ cfi = ℵ1]
(c) Pi is a forcing notion, Q

˜
j is a Pj-name of a forcing notion of power ℵ1 with

minimal element ∅ or ∅j and for simplicity the underlying set of Q
˜
j is ⊆ [ω1]<ℵ0

(we do not lose by this).
(d) Pβ =

{
p : p is a function whose domain is a finite subset of β and for i ∈ dom(p),

Pi“f(i) ∈ Q
˜
i”
}

with the order p ≤ q if and only if for i ∈ dom(p), q � i Pi“p(i) ≤
q(i)”.

(e) for j < i, Q
˜
j is a Pj-name involving only antichains contained in {p ∈ Pj :

dom(p) ⊆ aj}.
For p ∈ Pi, j < i, j 6∈ domp we let p(j) = ∅. Note for p ∈ Pi, j ≤ i, p � j ∈ Pj
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Definition 3.5. For Q̄ ∈ K as above (so α = `g(Q̄)):
1) for any b ⊆ β ≤ α closed for 〈ai, e∗i : i < β〉 we define P cn

b [by simultaneous
induction on β]:

P cn
b = {p ∈ Pβ : domp ⊆ b, and for i ∈ domp, p(i) is a canonical name}

i.e., for any x, {p ∈ P cn
ai : p Pi“p(i) = x” or p Pi“p(i) 6= x” } is a predense subset

of Pi.
2) For Q̄ as above, α = `g(Q̄), take Q̄ � β = 〈Pi, Q

˜
j , aj : i ≤ β, j < β〉 for β ≤ α

and the order is the order in Pα (if β ≥ α, Q̄ � β = Q̄).
3) “b closed for Q̄ means “b closed for 〈ai, e∗i : i < `gQ̄〉”.

Fact 3.6. 1) if Q̄ ∈ K then Q̄ � β ∈ K.
2) Suppose b ⊆ c ⊆ β ≤ `g(θ̄), b and c are closed for Q̄ ∈ K.

(i) If p ∈ P cn
c then p � b ∈ P cn

b .
(ii) If p, q ∈ P cn

c and p ≤ q then p � b ≤ q � c.
(iii) P cn

c 〈◦Pβ . 3) `gQ̄ is closed for Q̄.
4) if Q̄ ∈ K, α = `gQ̄ then P cn

α is a dense subset of Pα.
5) If b is closed for Q̄, p, q ∈ P cn

`gQ̄
, p ≤ q in P`gQ̄ and i ∈ domp then q � ai Pi

“p(i) ≤ q(i)” hence P cn
ai

“p(i) ≤Qi q(i)”.

Definition 3.7. Suppose W = (W,≤) is a finite partial order and Q̄ ∈ K.
1) INW (Q̄) is the set of b̄-s satisfying (α)–(γ) below:

(α) b̄ = 〈bw : w ∈W 〉 is an indexed set of Q̄-closed subsets of `g(Q̄),
(β) W |= “w1 ≤ w2” ⇒ bw1 ⊆ bw2 ,
(γ) ζ ∈ bw1 ∩ bw2 , w1 ≤ w, w2 ≤ w then (∃u ∈W )ζ ∈ bu ∧ u ≤ w1 ∧ u ≤ w2.
We assume b̄ codes (W,≤).
2) For b̄ ∈ INW (Q̄), let

Q̄[b̄] =
{
〈pw : w ∈W 〉 : pw ∈ P cn

bw , [W |= w1 ≤ w2 ⇒ pw2
� bw1

= pw1
]
}

with ordering Q̄[b̄] |= p̄1 ≤ p̄2 iff
∧
w∈W p1

w ≤ p2
w.

3) Let K1 be the family of Q̄ ∈ K such that for every β ≤ `g(Q̄) and (Q̄ � β)-closed
b, Pβ and Pβ/P

cn
b satisfy the Knaster condition.

Fact 3.8. Suppose Q̄ ∈ K1, (W,≤) is a finite partial order, b̄ ∈ INW (Q̄) and
p̄ ∈ Q̄[b̄].
1) If w ∈W , pw ≤ q ∈ P cn

bw
then there is r̄ ∈ Q̄[b̄], q ≤ rw, p̄ ≤ r̄, in fact

ru(γ) =


pu(γ) if γ ∈ Dom pu \Dom q

pu(γ) & q(γ) if γ ∈ bu ∩Dom q and for some v ∈W, v ≤ u,
v ≤ w and γ ∈ bv

pu(γ) if γ ∈ bu ∩ dom q but the previous case fails

2) Suppose (W1,≤) is a submodel of (W2,≤), both finite partial orders, b̄l ∈
INWl

(Q̄), b̄1w = b̄2w for w ∈W1.
(α) If q̄ ∈ Q̄[b̄2] then 〈qw : w ∈W1〉 ∈ Q̄[b̄1].
(β) If p̄ ∈ Q̄[b̄1] then there is q̄ ∈ Q̄[b̄2], q̄ �W1 = p̄, in fact qw(γ) is pu(γ) if u ∈W1,
γ ∈ bu, u ≤ w, provided that
(∗∗) if w1, w2 ∈ W1, w ∈ W2, w1 ≤ w, w2 ≤ w and ζ ∈ bw1 ∩ bw2 then for some
v ∈W1, ζ ∈ bv, v ≤ w1, v ≤ w2.
(this guarantees that if there are several u’s as above we shall get the same value).
3) If Q̄ ∈ K1 then Q̄[b̄] satisfies the Knaster condition. If ∅ is the minimal ele-
ment of W (i.e. u ∈ W ⇒ W |= ∅ ≤ u) then Q̄[b̄]/P cn

b∅
also satisfies the Knaster

condition and so 〈◦Q̄[b̄], when we identify p ∈ P cn
b with 〈p : w ∈W 〉.
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8 S. SHELAH

Proof. 1) It is easy to check that each ru(γ) is in P cn
bu

. So, in order to prove r̄ ∈ Q̄[b̄],
we assume W |= u1 ≤ u2 and has to prove that ru2

� bu1
= ru1

. Let ζ ∈ bu1
.

First case: ζ 6∈ Dom(pu1
) ∪Domq.

So ζ 6∈ Dom(ru1) (by the definition of ru1) and ζ 6∈ Dompu2 (as p̄ ∈ Q̄[b̄]) hence
ζ 6∈ (Dompu2) ∪ (Domq) hence ζ 6∈ Dom(ru2) by the choice of ru2 , so we have
finished.

Second case: ζ ∈ Dompu1
\Domq.

As p̄ ∈ Q̄[b̄] we have pu1
(ζ) = pu2

(ζ), and by their definition, ru1
(ζ) = pu1

(ζ),
ru2

(ζ) = pu2
(ζ).

Third case: ζ ∈ Domq and (∃v ∈ W ) (ζ ∈ bv ∧ v ≤ u1 ∧ v ≤ w). By the
definition of ru1(ζ), we have ru1(ζ) = pu1(ζ)&q(ζ), also the same v witnesses
ru2

(ζ) = pu2
(ζ)&q(ζ), (as ζ ∈ bv ∧ v ≤ u1 ∧ v ≤ w ⇒ ζ ∈ bv ∧ v ≤ u2 ∧ v ≤ w) and

of course pu1
(ζ) = pu2

(ζ) (as p̄ ∈ Q̄[b̄]).
Fourth case: ζ ∈ Domq and ¬(∃v ∈W ) (ζ ∈ bv ∧ v ≤ u1 ∧ v ≤ w).
By the definition of ru1

(ζ) we have ru1
(ζ) = pu1

(ζ). It is enough to prove that
ru2(ζ) = pu2(ζ) as we know that pu1(ζ) = pu2(ζ) (because p̄ ∈ Q̄[b̄], u1 ≤ u2). If
not, then for some v0 ∈W , ζ ∈ bv0 ∧v0 ≤ u2∧v0 ≤ w. But b̄ ∈ INW (Q̄), hence (see
Def. 3.7(1) condition (γ) applied with ζ, w1, w2, w there standing for ζ, v0, u1, u2

here) we know that for some v ∈W , ζ ∈ v∧ v ≤ v0 ∧ v ≤ u1. As (W,≤) is a partial
order, v ≤ v0 and v0 ≤ w, we can conclude v ≤ w. So v contradicts our being in
the fourth case. So we have finished the fourth case.

Hence we have finished proving r̄ ∈ Q̄[b̄]. We also have to prove q ≤ rw, but for
ζ ∈ Domq we have ζ ∈ bw (as q ∈ P cn

w is on assumption) and rw(ζ) = q(ζ) because
rw(ζ) is defined by the second case of the definition as (∃v ∈ W ) (ζ ∈ bw ∧ v ≤
w ∧ v ≤ w), i.e. v = w.

Lastly we have to prove that p̄ ≤ r̄ (in Q̄[b̄]). So let u ∈ W , ζ ∈ Dompu and we
have to prove ru � ζ Pζ“pu(ζ) ≤Pζ ru(ζ)”. As ru(ζ) is pu(ζ) or pu(ζ)&q(ζ) this is
obvious.

2) Immediate.
3) We prove this by induction on |W |.
For |W | = 0 this is totally trivial.
For |W | = 1, 2 this is assumed.
For |W | > 2 fix p̄i ∈ Q̄[b̄] for i < ω1. Choose a maximal element v ∈ W and let
c =

⋃
{bw : W |= w < v}. Clearly c is closed for Q̄.

We know that P cn
c , P cn

bv
/P cn

c are Knaster by the induction hypothesis. We also

know that piv � c ∈ P cn
c for i < ω1, hence for some r ∈ P cn

c ,

r  “A
˜

=
{
i < ω1 : piv � c ∈ G

˜
P cn
c

}
is uncountable”

hence

 “there is an uncountable A1 ⊆ A
˜

such that
[
i, j ∈ A1 ⇒ piv, p

j
v are compatible in P cn

bv /G˜
P cn
c

]
”.

Fix a P cn
c -name A

˜
1 for such an A1.

Let A2 =
{
i < ω1 : ∃q ∈ P cn

c , q  i ∈ A
˜

1
}

. Necessarily |A2| = ℵ1, and for i ∈ A2

there is qi ∈ P cn
c , qi  i ∈ A1, and w.l.o.g. piv � c ≤ qi. Note that piv&q

i ∈ P cn
c .

For i ∈ A2 let, r̄i be defined using 3.8(1) (with p̄i, piv&q
i). Let W1 = W \

{v}, b̄′ = 〈bw : w ∈W1〉.
By the induction hypothesis applied to W1, b̄′, r̄i � W1, for i ∈ A2 there

is an uncountable A3 ⊆ A2 and for i < j in A3, there is r̄i,j ∈ Q̄[b̄′], r̄i �
W1 ≤ r̄i,j , and r̄j � W1 ≤ r̄i,j . Now define ri,jc ∈ P cn

c as follows: its domain is⋃{
domri,jw : W |= w < v

}
, ri,jc � (domri,jw ) = ri,jw whenever W |= w < v. Why is

this a definition? As if W |= w1 ≤ v ∧ w2 ≤ v, ζ ∈ bw1 ∧ ζ ∈ bw2 then for some
u ∈ W , u ≤ w1 ∧ u ≤ w2 and ζ ∈ u. It is easy to check that ri,jc ∈ P cn

c . Now

ri,jc P cn
c

“pibv , p
j
bv

are compatible in P cn
bv
/P cn

c ”.
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So there is r ∈ P cn
bv

such that ri,jc ≤ r, pibv ≤ r, pjbv ≤ r. As in part (1) of 3.8 we

can combine r and r̄i,j to a common upper bound of p̄i, p̄j in Q̄[b̄]. �

Claim 3.9. 3.9.If e = 0, 1 and δ is a limit ordinal, and Pi, Q
˜
i, αi, e

∗
i (i < δ) are such

that for each α < δ, Q̄α = 〈Pi, Q
˜
j , αj , e

∗
j : i ≤ α, j < α〉 belongs to K`, then for a

unique Pδ, Q̄ = 〈Pi, Q
˜
j , αj , e

∗
j : i ≤ δ, j < δ〉 belongs to K`.

Proof. We define Pδ by (d) of Definition 3.4. The least easy problem is to verify
the Knaster conditions (for Q̄ ∈ K1). The proof is like the preservation of the c.c.c.
under iteration for limit stages. �

Convention 3.9A. By 3.9 we shall not distinguish strictly between 〈Pi, Q
˜
j , αj , e

∗
j :

i ≤ δ, j < δ〉 and 〈Pi, Q
˜
i, αi, e

∗
i : i < δ〉.

Claim 3.10. If Q̄ ∈ K`, α = `g(Q̄), a ⊂ α is closed for Q̄, |a| ≤ ℵ1, Q
˜

1 is a P cn
a -

name of a forcing notion satisfying (in V Pα) the Knaster condition, its underlying
set is a subset of [ω1]<ℵ0 then there is a unique Q̄1 ∈ K`, `g(Q̄1) = α+ 1, Q1

α = Q
˜

,

Q̄ � α = Q̄.

Proof. Left to the reader. �

Proof. 3.1 A Stage: We force by K1
<λ =

{
Q̄ ∈ K1 : `g(Q̄) < λ, Q̄ ∈ H(λ)

}
ordered

by being an initial segment (which is equivalent to forcing a Cohen subset of λ).
The generic object is essentially Q̄∗ ∈ K1

λ, `g(Q̄∗) = λ, and then we force by
Pλ = lim Q̄∗. Clearly K`<λ is a λ-complete forcing notion of cardinality λ, and Pλ
satisfies the c.c.c. Clearly it suffices to prove part (2) of 3.1.

Suppose d
˜
n is a name of a function from [λ]n to k

˜
n for n < ω, σ

˜
n < ω, 〈σn : n <

ω〉 diverges (i.e. ∀m ∃k ∀n ≥ k σn ≥ m) and for some Q̄0 ∈ K1
<λ.

Q̄0 K1
<λ

“there is p ∈ P
˜
λ

[
p Pλ 〈d

˜
n : n < ω〉 is a

counterexample to (2) of 3.1”
]
.

In V we can define 〈Q̄ζ : ζ < λ〉, Q̄ζ ∈ K1
<λ, ζ < ξ ⇒ Q̄ζ = Q̄ξ � `g(Q̄ζ), in Q̄ζ+1,

e∗
`g(Q̄ζ)

= 1, Q̄ζ+1 forces (in K1
<λ) a value to p and the P

˜
λ-names d

˜
n � ζ, σ

˜
n, k

˜
n for

n < ω, i.e. the values here are still Pλ-names. Let Q̄∗ be the limit of the Q̄ξ-s. So
Q̄∗ ∈ K1, `g(Q̄∗) = λ, Q̄∗ = 〈P ∗i , Q

˜

∗
j , α
∗
j , e
∗
j : i ≤ λ, j < λ〉, and the P ∗λ -names d

˜
n,

σ
˜
n, k

˜
n are defined such that in V P

∗
λ , d

˜
n, σ

˜
n, k

˜
n contradict (2) (as any P ∗λ -name of a

bounded subset of λ is a P ∗
`g(Q̄ξ)

-name for some ξ < λ). B Stage: Let χ = κ+and

<∗χ be a well-ordering of H(χ). Now we can apply λ→ (ω1)<ω2 to get δ,B,Ns (for

s ∈ [B]<ℵ0) and hs,t (for s, t ∈ [B]<ℵ0 , |s| = |t|) such that:
(a) B ⊆ λ, otp(B) = ω1, supB = δ,
(b) Ns ≺ (H(χ),∈, <∗χ), Q̄∗ ∈ Ns, 〈d

˜
,σ
˜
n, k

˜
n : n < ω〉 ∈ Ns,

(c) Ns ∩Nt = Ns∩t,
(d) Ns ∩B = s,
(e) if s = t ∩ α, t ∈ [B]<ℵ0 then Ns ∩ λ is an initial segment of Nt,
(f) hs,t is an isomorphism from Nt onto Ns (when defined)

(g) ht,s = h−1
s,t

(h) p0 ∈ Ns, p0 Pλ “〈d
˜
n, σ

˜
n, k

˜
n : n <〉 is a counterexample”,

(i) ω1 ⊆ Ns, |Ns| = ℵ1 and if γ ∈ Ns, cfγ > ℵ1 then cf(sup(γ ∩Ns)) = ω1.
Let Q̄ = Q̄∗ � δ, P = P ∗δ and Pa = P cn

a (for Q̄), where a is closed for Q̄. Note:
P ∗λ∩Ns = P ∗δ ∩Ns = Psupλ∩Ns∩Ns = Ps∩Ns. Note also γ ∈ λ∩Ns ⇒ a∗γ ⊆ λ∩Ns.

C Stage: It suffices to show that we can define Q
˜
δ in V Pδ which forces a subset W

of B of cardinality ℵ1 and F
˜

: W → ω2 which exemplify the desired conclusion in
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(2), and prove that Q
˜
δ satisfies the ℵ1-c.c.c. (in V Pδ (and has cardinality ℵ1)) and

moreover (see Definitions 3.4 and 3.7(3)) we also define aδ =
⋃
s∈[B]<ℵ0 Ns, eδ = 1,

Q̄′ = Q̄ˆ〈P ∗δ , Q
˜
δ, aδ, eδ〉 and prove Q̄′ ∈ K1.

We let d
˜

(u) = d
˜
|u|(u).

Let F : ω1 → ω2 be one-to-one such that [∀η ∈ ω>2][∃ℵ1α < ω1][ηCF (α)]. (This
will not be the needed F

˜
, just notation).

For s, t ∈ [B]<ℵ0 , we say s ≡nF t if |s| = |t| and ∀ξ ∈ s, ∀ζ ∈ t[ξ = hs,t(ζ) ⇒
F (ξ) � n = F (ζ) � n]. Let

In = In(F ) =
{
s ∈ [B]<ℵ0 : (∀ζ 6= ξ ∈ s), [F (ζ) � n 6= F (ξ) � n]

}
.

We define Rn as follows: a sequence 〈ps : s ∈ In〉 ∈ Rn if and only if

(i) for s ∈ In, ps ∈ P ∗λ ∩Ns,
(ii) for some cs we have ps  “d

˜
(s) = cs”,

(iii) for s, t ∈ In, s ≡nF t⇒ hs,t(pt) = ps,
(iv) for s, t ∈ In, ps � Ns∩t = pt � Ns∩t.

R−n is defined similarly omitting (ii).
For x = 〈ps : s ∈ In〉 let n(x) = n, pxs = ps, and (if defined) cxs = cs. Note

that we could replace x ∈ Rn by a finite subsequence. Let R =
⋃
n<ω Rn, R− =⋃

n<ω R
−
n . We define an order on R− : x ≤ y if and only if n(x) ≤ n(y), and

[s ∈ In(x) ∧ t ∈ In(y) ∧ s ⊆ t⇒ pxs ≤ p
y
t ].

D Stage: Note the following facts:
D(α) Subfact: If x ∈ R−n , t ∈ In and pxt ≤ p1 ∈ P ∗δ ∩Nt, then there is y such that
x ≤ y ∈ R−n , pyt = p1.

Proof. We let for s ∈ In
pys = &

{
hs1,t1(p1 � Nt1) : s1 ⊆ s, t1 ⊆ t, s1 ≡nF t1

}
&pxs .

(This notation means that pys is a function whose domain is the union of the
domains of the conditions mentioned, and for each coordinate we take the canonical
upper bound, see preliminaries.) Why is pys well defined? Suppose β ∈ Ns ∩ λ (for
β ∈ λ \ Ns, clearly pys(β) = ∅β), s` ⊆ s, t` ⊆ t, s` ≡nF t` for ` = 1, 2 and

β ∈ Dom

[
hs`,t`(p

1 � Nt`)

]
, and it suffices to show that pxs (β), hs1,t1(p1 � Nt1)(β),

hs2,t2(p1 � Nt2)(β) are pairwise comparable. Let u =
⋂{

v ∈ [B]<ℵ0 : β ∈ Nv
}

,

necessarily u ⊆ s1 ∩ s2, and let u` = h−1
s`,t`

(u). As s`, t`, t ∈ In, s` ≡nF t` and

u` ⊆ t` ⊆ t, necessarily u1 = u2. Thus γ = h−1
u,v(β) = h−1

s`,t`
(β) and so the last two

conditions are equal.

Now pxs (β) = pxu(β) = hu,v(p
x
s (γ)) ≤ hs`,t`

(
(pxt � Nt`)(γ)

)
=
(
hs`,t`(p

x
t �

Nt`)
)

(β).

We leave to the reader checking the other requirements. �

D(β) Subfact: If x ∈ R−n , t ∈ I then
⋃{

pxs : s ∈ In, s ⊆ t
}

(as union of functions)
exists and belongs to P ∗λ ∩Nt.

Proof. See (iv) in the definition of R−n . �

D(γ) Subfact: If x ≤ y, x ∈ Rn, y ∈ R−n , then y ∈ Rn.

Proof. Check it. �

D(δ) Subfact: If x ∈ R−n , n < m, then there is y ∈ Rm, x ≤ y.
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Proof. By subfact D(β) we can find x1 = 〈p1
t : t ∈ Im〉 ∈ inR−m with x ≤ x1. Using

repeatedly subfact D(α) we can increase x1 (finitely many times) to get y ∈ Rm. �

D(ε) Subfact: If x ∈ R−n , s, t ∈ In, s ≡nF t, pxs ≤ r1 ∈ P ∗λ ∩Ns, pxt ≤ r2 ∈ P ∗λ ∩Nt,
(∀ζ ∈ t)

[
F (ζ)(n) 6=

(
F
(
hs,t(ζ)

))
(n)
]

( or just pxs1 � s1 = hs,t(p
x
t1 � t1) where

t1 = {ξ ∈ t : F (ξ)(n) = (F (hs,t(ξ)))(n)}, s1 = {hs,t(ξ) : ξ ∈ t1}), then there is
y ∈ Rn+1, x ≤ y such that r1 = pys and r2 = pyt .

Proof. Left to the reader. �

E Stage: 1

We define: T ∗k ⊆ 2k≥2 by induction on k as follows:

T ∗0 ={〈〉, 〈1〉}

T ∗k+1 =
{
ν : ν ∈ T ∗k or 2k < `g(ν) ≤ 2k+1 , ν � 2k ∈ T ∗k and

[2k ≤ i < 2k+1 ∧ ν(i) = 1]⇒ i = 2k + (
∑
m<2k

ν(i)2m)]
}
.

We define

Tr Emb(k, n) =

{
h : h a is function from T ∗k into n≥2 such that

for ν, ρ ∈ T ∗k :

[η = ν ⇔ h(η) = h(ν)]

[η C ν ⇔ h(η)C h(ν)]

[`g(η) = `g(ν)⇒ `g(h(η) = `g(h(ν)][
ν = ηˆ〈i〉 ⇒ (h(ν))[`g(h(η))] = i

]
[
`g(η) = k2⇒ `g(h(η)) = n]

}
.

T(k, n) =
{

Rang h : h ∈ Tr Emb(k, n)
}
,

T(∗, n) =
⋃
k

T(k, n),

T(k, ∗) =
⋃
k

T(k, n).

For T ∈ T(k, ∗) let n(T ) be the unique n such that T ∈ T(k, n) and let

BT =
{
α ∈ B : F (α) � n(T ) is a maximal member of T

}
,

fsT =

{
t ⊆ BT : η ∈ t ∧ ν ∈ t ∧ η 6= ν ⇒ η � n(T ) 6= ν � n(T )

}
,

ΘT =

{
〈ps : s ∈ fsT 〉 : ps ∈ P ∩Ns,

[
s ⊆ t ∧ {s, t} ⊆ fsT ⇒ ps = pt � Ns

]}
.

Let further
Θk =

⋃{
ΘT : T ∈ T(k, ∗)

}
Θ =

⋃
k

Θk.

For p̄ ∈ Θ, np̄ = n(p̄), Tp̄ are defined naturally.
For p̄, q̄ ∈ Θ, p̄ ≤ q̄ iff np̄ ≤ nq̄ and for every s ∈ fsTp̄ we have ps ≤ qs. F

Stage: Let g
˜

: ω → ω, g
˜
∈ Ns, g

˜
grows fast enough relative 〈σn : n < ω〉. We

1We will have T ⊂ ω>2 gotten by 2.7(2) and then want to get a subtree with as few as possible
colors, we can find one isomorphic to ω>2, and there restrict ourselves to ∪nT ∗

n .
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define a game Gm. A play of the game lasts after ω moves, in the nth move player I
chooses p̄n ∈ Θn and a function hn satisfying the restrictions below and then player
II chooses q̄n ∈ Θn, such that p̄n ≤ q̄n (so Tp̄n = Tq̄n). Player I loses the play if
sometimes he has no legal move; if he never loses, he wins. The restrictions player
I has to satisfy are:

(a) for m < n, q̄m ≤ p̄n, pns forces a value to g
˜
� (n+ 1),

(b) hn is a function from [BTp̄n ]≤g(n) to ω,
(c) if m < n⇒ hn, hm are compatible,
(d) If m < n, ` < g(m), s ∈ [BTp̄n ]`, then pns  d

˜
(s) = hn(s),

(e) Let s1, s2 ∈ Domhn. Then hn(s1) = hn(s2) whenever s1, s2 are similar over n
which means:

(i)

(
F
(
HOP
s2,s1(ζ)

))
� n[p̄n] =

(
F (ζ)

)
� n[p̄n] for ζ ∈ s1,

(ii) HOP
s2,s1 preserves the relations

(
F (ζ1), F (ζ2)

)
<

(
F (ζ3), F (ζ4)

)
and F (ζ3)

((
F (ζ1), F (ζ2)

))
=

i (in the interesting case ζ3 6= ζ1, ζ2 implies i = 0).

G Stage/Claim: Player I has a winning strategy in this game.

Proof. As the game is closed, it is determined, so we assume player II has a winning
strategy , and eventually we shall get a contradiction. We define by induction on
n, r̄n and Φn such that

(a) r̄n ∈ Rn, r̄n ≤ r̄n+1,
(b) Φn is a finite set of initial segments of plays of the game,
(c) in each member of Φn player II uses his winning strategy,
(d) if y belongs to Φn then it has the form 〈p̄y,`, hy,`, q̄y,` : ` ≤ m(y)〉; let hy = hy,ny

and Ty = Tq̄y,m(y); also Ty ⊆n≥ 2, qy,`s ≤ rns for s ∈ fsTy .
(e) Φn ⊆ Φn+1, Φn is closed under taking the initial segments and the empty se-
quence (which too is an initial segment of a play) belongs to Φ0.

(f) For any y ∈ Φn and T, h either for some z ∈ Φn+1, nz = ny +1, y = z � (ny +1),
Tz = T and hz = h or player I has no legal (ny + 1)th move p̄n, hn (after y was
played) such that Tp̄n = T , hn = h, and pns = rns for s ∈ fsT (or always ≤ or always
≥).

There is no problem to carry the definition. Now 〈r̄ns : n < ω〉 define a
function d∗: if η1, . . . , ηk ∈m 2 are distinct then d∗

(
〈η1, . . . , ηk〉

)
= c iff for

every (equivalently some) ζ1 < · · · < ζk from B, η` C F (ζ`) and rk{ζ1,...,ζk} 

“d
˜
k

(
{ζ1, . . . , ζk}

)
= c”.

Now apply 2.7(2) to this coloring, get T ∗ ⊆ω> 2 as there. Now player I could
have chosen initial segments of this T ∗ (in the nth move in Φn) and we get easily a
contradiction. �

H Stage: We fix a winning strategy for player I (whose existence is guaranteed by
stage G).

We define a forcing notion Q∗. We have (r, y, f) ∈ Q∗ iff
(i) r ∈ P cn

aδ

(ii) y = 〈p̄`, h`, q̄` : ` ≤ m(y)〉 is an initial segment of a play of Gm in which player
I uses his winning strategy

(iii) f is a finite function from B to {0, 1} such that f−1({1}) ∈ fsTy (where Ty =
Tq̄m(y) ).

(iv) r = q
y,m(y)
f−1({1}).

The Order is the natural one.

I Stage: If J ⊆ P cn
aδ

is dense open then
{

(r, y, f) ∈ Q∗ : r ∈ J
}

is dense in Q∗.
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Proof. By 3.8(1) (by the appropriate renaming). �

J Stage: We define Qδ in V Pδ as
{

(r, y, f) ∈ Q∗ : r ∈ G
˜
Pδ

}
, the order is as in Q∗.

The main point left is to prove the Knaster condition for the partial ordered set
Q̄∗ = Q̄ˆ〈Pδ, Q

˜
δ, aδ, eδ〉 demanded in the definition of K1. This will follow by 3.8(3)

(after you choose meaning and renamings) as done in stages K,L below.
K Stage: So let i < δ, cf(i) 6= ℵ1, and we shall prove that P+

δ+1/Pi satisfies
the Knaster condition. Let pα ∈ P ∗δ+1 for α < ω1, and we should find p ∈ Pi,
p Pi“there is an unbounded A ⊆ {α : pα � i ∈ G

˜
Pi} such that for any α, β ∈ A,

pα, pβ are compatible in P ∗δ+1/G˜
Pi”.

Without loss of generality:
(a) pα ∈ P cnδ+1.
(b) for some 〈iα : α < ω1〉 increasing continuous with limit δ we have: i0 > i,
cfiα 6= ℵ1, pα � δ ∈ Piα+1

, pα � iα ∈ Pi0 .
Let p0

α = pα � i0, p1
α = pα � δ = pα � iα+1, pα(δ) = (rα, yα, fα), so without loss

of generality
(c) rα ∈ Piα+1

, rα � iα ∈ Pi0 , m(yα) = m∗,
(d) Domfα ⊆ i0 ∪ [iα, iα+1),
(e) fα � i0 is constant (remember otp(B) = ω1,
(f) if Domfα = {jα0 , . . . jαkα−1} then kα = k, [jα` < iα ⇔ ` < k∗],

∧
`<k∗ j

α
` = j`,

f(jα` ) = f(jβ` ), F (jα` )) � m(yα) = F (jβ` ) � m(yβ).

The main problem is the compatibility of the qyα,m(yα). Now by the definition
Θα (in stage E) and 3.8(3) this holds. �

L Stage: If c ⊂ δ + 1 is closed for Q̄∗, then P ∗δ+1/P
cn
c satisfies the Knaster

condition.
If c is bounded in δ, choose a successor i ∈ (sup c, δ) for Q̄ � i ∈ K1. We know

that Pi/P
cn
c satisfies the Knaster condition and by stage K, P ∗δ+1/Pi also satisfies

the Knaster condition; as it is preserved by composition we have finished the stage.
So assume c is unbounded in δ and it is easy too. So as seen in stage J, we have

finished the proof of 3.1.

Theorem 3.11. If λ ≥ iω, P is the forcing notion of adding λ Cohen reals then

(∗)1 in V P , if n < ω d : [λ]≤n → σ, σ < ℵ0, then for some c.c.c. forcing
notion Q we have Q “there are an uncountable A ⊆ λ and an one-to-one
F : A→ ω2 such that d is F -canonical on A” (see notation in §2).

(∗)2 if in V , λ ≥ µ→wsp (κ)ℵ0 (see [Sh289]) and in V P , d : [µ]≤n → σ, σ < ℵ0

then in V P for some c.c.c. forcing notion Q we have Q “there are A ∈ [µ]κ

and one-to-one F : A→ω 2 such that d is F -canonical on A” (see §2, ).
(∗)3 if in V , λ ≥ µ →wsp (ℵ1)nℵ2

and in V P d : [µ]≤n → σ, σ < ℵ0 then in V P

for every α < ω1 and F : α →ω 2 for some A ⊆ µ of order type α and
F ′ : A→ω 2, F ′(β) = F (otp(A ∩ β)), d is F ′-canonical on A.

(∗)4 in V P , 2ℵ0 → (α, n)3 for every α < ω1, n < ω. Really, assuming V |=
GCH, we have ℵn1

3
→ (α, n) see [Sh289].

Proof. Similar to the proof of 3.1. Superficially we need more indiscernibility then
we get, but getting 〈Mu : u ∈ [B]≤n〉 we ignore d({α, β}) when there is no u with
{α, β} ∈Mu. �

Theorem 3.12. If λ is strongly inaccessible ω-Mahlo, µ < λ, then for some c.c.c.
forcing notion P of cardinality λ, V P satisfies

(a) MAµ

(b) 2ℵ0 = λ = 2κ for κ < λ
(c) λ→ [ℵ1]nσ,h(n) for n < ω, σ < ℵ0, h(n) is as in 3.1.
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Proof. Again, like 3.1. �

§ 4. Partition theorem for trees on large cardinals

Lemma 4.1. Suppose µ > σ + ℵ0 and
(∗)µ for every µ-complete forcing notion P , in V P , µ is measurable.
Then

(1) for n < ω, Prfeht(µ, n, σ).

(2) Prfeht(µ,< ℵ0, σ), if there is λ > µ, λ→
(
µ+
)<ω

2
.

(3) In both cases we can have the Prfehtn version, and even choose the 〈<∗α :
α < µ〉 in any of the following ways.
(a) We are given 〈<0

α: α < µ〉, and we let for η, ν ∈α 2 ∩ T , α ∈ SP (T )
(T is the subtree we consider):
• η <∗α ν if and only if clpT (η) <0

β clpT (ν) where β = otp(α ∩
SP (T )) and clpT (η) = 〈η(j) : j ∈ `g(η), j ∈ SP(T )〉.

(b) We are given 〈<0
α: α < µ〉, we let that for ν, η ∈α 2 ∩ T , α ∈ SP (T ):

η <∗α ν if and only if n � (β + 1) <0
β+1 ν � (β + 1) where β =

sup(α ∩ SP (T )).

Remark 4.2. 1) (∗)µ holds for a supercompact after Laver treatment. On hyper-
measurable see Gitik Shelah [GS89].
2) We can in (∗)µ restrict ourselves to the forcing notion P actually used. For it
by Gitik [M. Gitik, Measurability preserved by κ-complete forcing notion] much
smaller large cardinals suffice.
3) The proof of 4.1 is a generalization of a proof of Harrington to Halpern Lauchli
theorem from 1978.

Conclusion 4.3. In 4.1 we can get Prfht(µ, n, σ) (even with (3)).

Proof. 4.3 We do the parallel to 4.1(1). By (∗)µ, µ is weakly compact hence by

2.6(2) it is enough to prove Prfaht(µ, n, σ). This follows from 4.1(1) by 2.6(1). �

Proof. 4.1 1), 2). Let κ ≤ ω, σ(n) < µ, dn ∈ Colnσ(n)(
µ>2) for n < κ.

Choose λ such that λ→ (µ+)<2κ
2µ (there is such a λ by assumption for (2) and by

κ < ω for (1)). Let Q be the forcing notion (µ>2,C), and P = Pλ be {f : dom(f)
is a subset of λ of cardinality < µ, f(i) ∈ Q} ordered naturally. For i 6∈ dom(f),
take f(i) = 〈 〉. Let η

˜
i be the P-name for

⋃
{f(i) : f ∈ G

˜
P }. Let D

˜
be a P-name

of a normal ultrafilter over µ. For each n < ω, d ∈ Colnσ(n)(
µ>2), j < σ(n) and

u = {α0, . . . , αn−1}, where α0 < · · · < αn−1 < λ, let A
˜

j
d(u) be the Pλ-name of the

set

Ajd(u) =
{
i < µ : 〈η

˜
α` � i : ` < n〉 are pairwise distinct, j = d(ηα0 � i, . . . , ηαn−1 � i)

}
.

So A
˜

j
d(u) is a Pλ-name of a subset of µ, and for j(1) < j(2) < σ(n) we have

Pλ“A
˜

j(1)
d (u) ∩ A

˜

j(2)
d (u) = ∅, and

⋃
j<σ(n)A˜

j
d(u) is a co-bounded subset of µ”. As

P “D is µ-complete uniform ultrafilter on µ”, in V P there is exactly one j < σ(n)

with Ajd(u) ∈ D. Let j
˜
d(u) be the P -name of this j.

Let Id(u) ⊆ P be a maximal antichain of P , each member of Id(u) forces a value
to j

˜
d(u). Let Wd(u) =

⋃
{dom(p) : p ∈ Id(u)} and W (u) =

⋃
{Wdn(u) : n < κ}. So

Wd(u) is a subset of λ of cardinaltiy ≤ µ as well as W (u) (as P satisfies the µ+-c.c.
and p ∈ P ⇒ |dom(p)| < µ).

As λ→ (µ++)<2κ
2µ , dn ∈ Colnσn(µ>2) there is a subset Z of λ of cardinality µ++

and set W+(u) for each u ∈ [Z]<κ such that:

(i) W+(u1) ∩W+(u2) = W+(u1 ∩ u2),
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(ii) W (u) ⊆W+(u) if u ∈ [Z]<κ,
(iii) if |u1| = |u2| < κ and u1, u2 ⊆ Z then W+(u1) and W+(u2) have the same

order type – and note that H[u1, u2] = HOP
W+(u1),W+(u2) naturally induces

a map from P � u1 = {p ∈ P : dom(p) ⊆ W+(u1)} to P � u2 = {p ∈ P :
dom(p) ⊆W+(u2)}.

(iv) if u1, u2 ∈ [Z]<κ, |u1| = |u2| then H[u1, u2] maps Idn(u1) onto Idn(u2) and

q  “j
˜
d
(u1) = j”⇔ H[u1, u2](q)  “j

˜
d
(u2) = j”

(v) if u1 ⊆ u2 ∈ [Z]<κ, u3 ⊆ u4 ∈ [Z]<κ, |u4| = |u2|, HOP
u2,u4

maps u1 onto u3

then H[u1, u3] ⊆ H[u2, u4].

Let γ(i) be the ith member of Z.
Let s(m) be the set of the first m members of Z and

Rn =

{
p ∈ P : dom(p) ⊆W+(s(n))\

⋃
t⊂s(n)

W+(t)

}
.

We define by induction on α < µ a function Fα and pu ∈ R|u| for u ∈
⋃
β<α[β2]<κ

where we let ∅β be the empty subset of [β2] and we behave as if [β 6= γ ⇒ ∅β 6= ∅γ ]
and we also define ζ(β) < µ, such that:

(i) Fα is a function from α>2 into µ>2, extending Fβ for β < α,

(ii) Fα maps β2 to ζ(β)2 for some ζ(β) < µ and β1 < β2 < α⇒ ζ(β1) < ζ(β2),
(iii) η C ν ∈α> 2 implies Fα(η)C Fα(ν),
(iv) for η ∈β 2, β + 1 < α and ` < 2 we have Fα(η)ˆ〈`〉E Fα(ηˆ〈`〉),
(v) pu ∈ Rm whenever u ∈ [β2]m, m < κ, β < α and for u(1) ∈ [Z]m let

pu,u(1) = H[s(|u|), u(1)](pu).

(vi) η ∈β 2, β < α, then p{η}(minZ) = Fα(η).

(vii) if β < α, u ∈ [β2]n, n < κ, h : u → s(n) one-to-one onto (not necessarily
order preserving) then for some c(u, h) < σ(n):⋃

t⊆u

pt,h′′(t) Pλ “d
˜
n(η

˜
γ(0), . . . , η

˜
γ(n−1)) = c(u, h)”,

(Note: as pu ∈ R|u| the domains of the conditions in this union are pairwise
disjoint.)

(viii) If n, u, β, h are as in (vii), u = {ν0, . . . , νn−1}, ν`Cρ` ∈ γ2, β ≤ γ < α then
dn(Fα(ρ0), . . . , Fα(ρn−1)) = c(u, h) where h is the unique function from u
onto s(n) such that [h(ν`) ≤ h(νm)⇒ ρ` <

∗
γ ρm].

(ix) if β < γ < α, ν1, . . . , νn−1 ∈ γ2, n < κ, and ν0 � β, . . . , νn−1 � β are
pairwise distinct then:

p{ν0� β,...,νn� β} ⊆ p{ν0,...,νn−1}.

For α limit: no problem. For α+ 1, α limit: we try to define Fα(η) for η ∈α 2 such

that
⋃
β<α Fβ+1(η � β)EFα(η) and (viii) holds. Let ζ =

⋃
β<α ζ(β), and for η ∈α 2,

F 0
α(η) =

⋃
β<α Fα(η � β) and for u ∈ [α2]<κ, p0

u =
⋃
{p0
{ν�β:ν∈u} : β < α, |u| =

|{ν � β : ν ∈ u}|}. Clearly p0
u ∈ R|u|.

Then let h :α 2 → Z be one-to-one, such that η <∗α ν ⇔ h(η) < h(ν) and let
p =

⋃
{p0
u,u(1) : u(1) ∈ [Z]<κ, u ∈ [α2]<κ, |u(1)| = |u|, h′′(u) = u(1)}.

For any generic G ⊆ Pλ to which p belongs, β < α and ordinals i0 < · · · < in−1

from Z such that 〈h−1(i`) � β : ` < n〉 are pairwise distinct we have that

B{i`:`<n},β =
{
ξ < µ : dn(ηi0 � ξ, . . . , ηin−1

� ξ) = c(u, h∗)
}
,
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belongs to D[G], where u = {h−1(i`) � β : ` < n} and h∗ : u→ s(|u|) is defined by
h∗(h−1(i`) � β) = HOP

{i`:`<n},s(n)(i`). Really every large enough β < µ can serve so

we omit it. As D[G] is µ-complete uniform ultrafilter on µ, we can find ξ ∈ (ζ, κ)
such that ξ ∈ Bu for every u ∈ [α2]n, n < κ. We let for ν ∈α 2, Fα(ν) = η

˜
h(i)[G] � ξ,

and we let pu = p0
u except when u = {ν}, then:

pu(i) =

{
p0
u(i) i 6= γ(0)

Fα+1(ν) i = γ(0)

For α+ 1, α is a successor: First for η ∈ α−12 define F
(
ηˆ〈`〉

)
= Fα(η)ˆ〈`〉. Next

we let
{

(ui, hi) : i < i∗
}

, list all pairs (u, h), u ∈ [α2]≤n, h : u→ s(|u|), one-to-one

onto. Now, we define by induction on i ≤ i∗, piu
(
u ∈ [α2]<κ

)
such that:

(a) piu ∈ R|u|,
(b) piu increases with i,
(c) for i+ 1, (vii) holds for (ui, hi),
(d) if νm ∈α 2 for m < n, n < κ, 〈νm � (α − 1) : m < n〉 are pairwise distinct,

then p{νm� (α−1) :m<n} ≤ p0
{νm:m<n},

(e) if ν ∈ α2, ν(α− 1) = ` then p0
{ν}(0) = Fα(ν � (α− 1))ˆ〈`〉.

There is no problem to carry the induction.
Now Fα+1 � α2 is to be defined as in the second case, starting with η → pi

∗

{η}(η).

For α = 0, 1: Left to the reader.

So we have finished the induction hence the proof of 4.1(1), (2).
3) Left to the reader ( the only influence is the choice of h in stage of the induction).

�

§ 5. Somewhat complementary negative partition relation in ZFC

The negative results here suffice to show that the value we have for 2ℵ0 in §3 is
reasonable. In particular the Galvin conjecture is wrong and that for every n < ω
for some m < ω, ℵn 6→ [ℵ1]mℵ0

.
See Erdos Hajnal Máté Rado [EHMR84] for

Fact 5.1. If 2<µ < λ ≤ 2µ, µ 6→ [µ]nσ then λ 6→ [(2<µ)+]n+1
σ .

This shows that if e.g. in 1.4 we want to increase the exponents, to 3 (and still
µ = µ<µ) e.g. µ cannot be successor (when σ ≤ ℵ0) (by [She88], 3.5(2)).

Definition 5.2. Prnp(λ, µ, σ̄), where σ̄ = 〈σn : n < ω〉, means that there are func-
tions Fn : [λ]n → σn such that for every W ∈ [λ]µ for some n, F ′′n ([W ]n) = σ(n).
The negation of this property is denoted by
NPrnp(λ, µ, σ̄).

If σn = σ we write σ instead of 〈σn : n < ω〉.

Remark 5.3. 1) Note that λ → [µ]<ωσ means: if F : [λ]<ω → σ then for some
A ∈ [λ]µ, F ′′([A]<ω) 6= σ. So for λ ≥ µ ≥ σ = ℵ0, λ 6→ [µ]<ωσ , (use F : F (α) = |α|)
and Prnp(λ, µ, σ) is stronger than λ 6→ [µ]<ωσ .
2) We do not write down the monotonicity properties of Prnp — they are obvious.

Claim 5.4. 5.31) We can (in 5.2) w.l.o.g. use Fn,m : [λ]n → σn for n,m < ω and
obvious monotonicity properties holds, and λ ≥ µ ≥ n.
2) Suppose NPrnp(λ, µ, κ) and κ 6→ [κ]nσ or even κ 6→ [κ]<ωσ . Then the following
case of Chang conjecture holds:

(*) for every model M with universe λ and countable vocabulary, there is an ele-
mentary submodel N of M of cardinality µ,

|N ∩ κ| < κ
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3) If NPrnp(λ,ℵ1,ℵ0) then (λ,ℵ1)→ (ℵ1,ℵ0).

Proof. Easy. �

Theorem 5.5. Suppose Prnp(λ0, µ,ℵ0), µ regular > ℵ0 and λ1 ≥ λ0, and no µ′ ∈
(λ0, λ1) is µ′-Mahlo. Then Prnp(λ1, µ,ℵ0).

Proof. Let χ = i8(λ1)+, let {F 0
n,m : m < ω} list the definable n-place functions

in the model (H(χ),∈, <∗χ), with λ0, µ, λ1 as parameters, let F 1
n,m(α0, . . . , αn−1)

(for α0, . . . , αn−1 < λ1) be F 0
n,m(α0, . . . , αn−1) if it is an ordinal < λ1 and zero

otherwise. Let Fn,m(α0, . . . , αn−1) (for α0, . . . , αn−1 < λ1) be F 0
n,m(α0, . . . , αn−1)

if it is an ordinal < ω and zero otherwise. We shall show that Fn,m(n,m < ω)
exemplify Prnp(λ1, µ,ℵ0) (see 5.3(1)).

So supposeW ∈ [λ1]µ is a counterexample to Pr(λ1, µ,ℵ0) i.e. for no n,m,F ′′n,m([W ]n) =

ω. Let W ∗ be the closure of W under F 1
n,m(n,m < ω). Let N be the Skolem Hull

of W in (H(χ),∈, <∗χ), so clearly N ∩ λ1 = W ∗. Note W ∗ ⊆ λ1, |W ∗| = µ. Also as
cf(µ) > ℵ0 if A ⊆ W ∗, |A| = µ then for some n,m < ω and ui ∈ [W ]n (for i < µ),
F 1
n,m(ui) ∈ A and [i < j < µ ⇒ F 1

n,m(ui) 6= F 1
n,m(ui)]. It is easy to check that

also W 1 = {F 1
n,m(ui) : i < µ} is a counterexample to Pr(λ1, µ, σ). In particular,

for n,m < ω, Wn,m = {F 1
n,m(u) : u ∈ [W ]n} is a counterexample if it has power µ.

W.l.o.g. W is a counterexample with minimal δ = sup(W ) = ∪{α + 1 : α ∈ W}.
The above discussion shows that |W ∗ ∩ α| < µ for α < δ. Obviously cfδ = µ+.
Let 〈αi : i < µ〉 be a strictly increasing sequence of members of W ∗, converging to
δ, such that for limit i we have αi = min(W ∗ −

⋃
j<i(αj + 1). Let N =

⋃
i<µNi,

Ni ≺ N , |Ni| < µ, Ni increasing continuous and w.l.o.g. Ni ∩ δ = N ∩ αi. α Fact:

δ is > λ0.
Proof. Otherwise we then get an easy contradiction to Pr(λ0, µ, σ)

)
as choosing

the F 0
n,m we allowed λ0 as a parameter. β Fact: If F is a unary function definable

in N , F (α) is a club of α for every limit ordinal α(< λ1) then for some club C of
µ we have(

∀j ∈ C \ {minC}
)(
∃i1 < j

)(
∀i ∈ (i1, j)

)[
i ∈ C ⇒ αi ∈ F (αj)

]
.

Proof. For some club C0 of µ we have j ∈ C0 ⇒
(
Nj , {αi : i < j},W

)
≺
(
N, {αi :

i < µ},W
)
. We let C = C ′0 = acc(C) (= set of accumulation points of C0).

We check C is as required; suppose j is a counterexample. So j = sup(j ∩ C)
(otherwise choose i1 = max(j ∩ C)). So we can define, by induction on n, in, such
that:

(a) in < in+1 < j
(b) αin 6∈ F (αj)
(c) (αin , αin+1) ∩ F (αj) 6= ∅.

Why (C ′0)? |= “F (αj) is unbounded below αj” hence N |= “F (αj) is unbounded
below αj”, but in N , {αi : i ∈ C0, i < j} is unbounded below αj .

Clearly for some n,m,αj ∈ Wn,m (see above). Now we can repeat the proof of
[She88, 3.3(2)] (see mainly the end) using only members of Wn,m.
Note: here we use the number of colors being ℵ0. β+ Fact: Wolog the C in Fact β

is µ.
Proof: Renaming. γ Fact: δ is a limit cardinal.

Proof: Suppose not. Now δ cannot be a successor cardinal (as cfδ = µ ≤ λ0 < δ)
hence for every large enough i, |αi| = |δ|, so |δ| ∈W ∗ ⊆ N and |δ|+ ∈W ∗.

So W ∗ ∩ |δ| has cardinality < µ hence order-type some γ∗ < µ. Choose i∗ < µ
limit such that [j < i∗ ⇒ j + γ∗ < i∗]. There is a definable function F of (H(χ),∈
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18 S. SHELAH

, <∗χ) such that for every limit ordinal α, F (α) is a club of α, 0 ∈ F (α), if |α| < α,
F (α) ∩ |α| = ∅, otp(F (α)) = cfα.

So in N there is a closed unbounded subset Cαj = F (αj) of αj of order type
≤ cfαj ≤ |δ|, hence Cαj ∩ N has order type ≤ γ∗, hence for i∗ chosen above
unboundedly many i < i∗, αi 6∈ Cαi∗ . We can finish by fact β+. δ Fact: For each

i < µ, αi is a cardinal.
Proof: If |αi| < i then |αi| ∈ Ni, but then |αi|+ ∈ Ni contradicting to Fact γ, by
which |αi|+ < δ, as we have assumed Ni ∩ δ = N ∩ αi. ε Fact: For a club of i < µ,

αi is a regular cardinal.
(Proof: if S = {i : αi singular} is stationary, then the function αi → cf(αi) is
regressive on S. By Fodor lemma, for some α∗ < δ, {i < µ : cfαi < α∗} is
stationary. As |N ∩ α∗| < µ for some β∗, {i < µ : cfαi = β∗} is stationary. Let
F1,m(α) be a club of α of order type cf(α), and by fact β we get a contradiction as
in fact γ. ζ Fact: For a club of i < µ, αi is Mahlo.

Proof: Use F1,m(α) = a club of α which, if α is a successor cardinal or inaccessible
not Mahlo, then it contains no inaccessible, and continue as in fact γ. ξ Fact: For

a club of i < µ, αi is αi-Mahlo.
Proof: Let F1,m(0)(α) = sup{ζ : α is ζ-Mahlo}. If the set {i < µ : αi is not
αi-Mahlo} is stationary then as before for some γ ∈ N , {i : F1,m(0)(αi) = γ} is
stationary and let F1,m(1)(α) — a club of α such that if α is not (γ+1)-Mahlo then
the club has no γ-Mahlo member. Finish as in the proof of fact δ. �

Remark 5.6. We can continue and say more.

Lemma 5.7. 1) Suppose λ > µ > θ are regular cardinals, n ≥ 2 and
(i) for every regular cardinal κ, if λ > κ ≥ θ then κ 6→ [θ]<ωσ(1).

(ii) for some α(∗) < µ for every regular κ ∈ (α(∗), λ), κ 6→ [α(∗)]nσ(2).

Then
(a) λ 6→ [µ]n+1

σ where σ = min{σ(1), σ(2)},
(b) there are functions d2 : [λ]n+1 → σ(2), d1 : [λ]3 → σ(1) such that for every
W ∈ [λ]µ, d′′1([W ]3) = σ(1) or d′′2([W ]n+1) = σ(2).
2) Suppose λ > µ > θ are regular cardinals, and

(i) for every regular κ ∈ [θ, λ), κ 6→ [θ]<ωσ(1),

(ii) sup{κ < λ : κ regular} 6→ [µ]nσ(2).

Then
(a) λ 6→ [µ]2nσ where σ = min{σ(1), σ(2)}
(b) there are functions d1 : [λ]3 → σ(1), d2 : [λ]2n → σ(2) such that for every
W ∈ [λ]µ, d′′1([W ]3) = σ(1) or d′′2([W ]2n = σ(2).

The proof is similar to that of [She88] 3.3,3.2.

Proof. 1) We choose for each i, 0 < i < λi, Ci such that: if i is a successor ordinal,
Ci = {i − 1, 0}; if i is a limit ordinal, Ci is a club of i of order type cfi, 0 ∈ Ci,
[cfi < i ⇒ cfi < min(Ci − {0})] and Ci \ acc(Ci) contains only successor ordinals.

Now for α < β, α > 0 we define by induction on `, γ+
` (β, α), γ−` (β, α), and then

κ(β, α), ε(β, α).

(A) γ+
0 (β, α) = β, γ−0 (β, α) = 0.

(B) if γ+
` (β, α) is defined and> α and α is not an accumulation point of Cγ+

` (β,α)

then we let γ−`+1(β, α) be the maximal member of Cγ+
` (β,α) which is < α

and γ+
`+1(β, α) is the minimal member of Cγ+

` (β,α) which is ≥ α (by the

choice of Cγ+
` (β,α) and the demands on γ+

` (β, α) they are well defined).

So

Paper Sh:288, version 2022-07-04. See https://shelah.logic.at/papers/288/ for possible updates.



STRONG PARTITION RELATIONS BELOW THE POWER SET: CONSISTENCY; WAS SIERPINSKI RIGHT? II.19

(B1) (a) γ−` (β, α) < α ≤ γ+
` (β, α), and if the equality holds then γ+

`+1(β, α) is
not defined.

(b) γ+
`+1(β, α) < γ+

` (β, α) when both are defined.

(C) Let k = k(β, α) be the maximal number k such that γ+
k (β, α) is defined (it

is well defined as 〈γ+
` (β, α) : ` < ω〉 is strictly decreasing). So

(C1) γ+
k(β,α)(β, α) = α or γ+

k(β,α) > α, γ+
k(β,α) is a limit ordinal and α is an

accumulation point of Cγ+
k(β,α)

(β, α).

(D) For m ≤ k(β, α) let us define

εm(β, α) = max{γ−` (β, α) + 1 : ` ≤ m}.
Note

(D1) (a) εm(β, α) ≤ α (if defined),
(b) if α is limit then εm(β, α) < α (if defined),
(c) if εm(β, α) ≤ ξ ≤ α then for every ` ≤ m we have

γ+
` (β, α) = γ+

` (β, ξ), γ−` (β, α) = γ−` (β, ξ), ε`(β, α) = ε`(β, ξ).

(explanation for (c): if εm(β, α) < α this is easy (check the definition)
and if εm(β, α) = α, necessarily ξ = α and it is trivial).

(d) if ` ≤ m then ε`(β, α) ≤ εm(β, α)

For a regular κ ∈ (α(∗), λ) let g1
κ : [κ]<ω → σ(2) exemplify κ 6→ [θ]<ωσ(1) and for

every regular cardinal κ ∈ [θ, λ) let g2
κ : [κ]n → σ(2) exemplify κ 6→ [α(∗)]nσ(2). Let

us define the colourings:
Let α0 > α1 > . . . > αn. Remember n ≥ 2.
Let n = n(α0, α1, α2) be the maximal natural number such that:

(i) εn(α0, α1) < α0 is well defined,
(ii) for ` ≤ n, γ−` (α0, α1) = γ−` (α0, α2).

We define d2(α0, α1, . . . , αn) as g2
κ(β1, . . . , βn) where

κ =cf
(
γ+
n(α0,α1,α2)(α0, α1)

)
,

β` =otp

[
α` ∩ Cγ+

n(α0,α1,α2)
(α0,α1)

]
.

Next we define d1(α0, α1, α2) .

Let i(∗) = sup
[
Cγ+

n (α0,α2) ∩ Cγ+
n (α1,α2)

]
where n = n(α0, α1, α2), E be the

equivalence relation on Cγ+
n (α0,α1) \ i(∗) defined by

γ1Eγ2 ⇔ ∀γ ∈ Cγ+
n (α0,α2)[γ1 < γ ↔ γ2 < γ].

If the set w =
{
γ ∈ Cγ+

n (α0,α1) : γ > i(∗), γ = min γ/E
}

is finite, we

let d1(α0, α1, α2) be g1
κ

(
{βγ : γ ∈ w}

)
where κ =

∣∣∣Cγ+
n (α0,α1)

∣∣∣, βγ = otp
(
γ ∩

Cγ+
n (α0,α1)

)
.

We have defined d1, d2 required in condition (b) ( though have not yet proved
that they work) We still have to define d (exemplifying λ 6→ [µ]n+1

` ). Let n ≥ 3, for
α0 > α1 > . . . > αn, we let d(α0, . . . , αn) be d1(α0, α1, α2) if w defined during the
definition has odd number of members and d2(α0, . . . , αn) otherwise.

Now suppose Y is a subset of λ of order type µ, and let δ = supY . Let M be a
model with universe λ and with relations Y and {(i, j) : i ∈ Cj}. Let 〈Ni : i < µ〉
be an increasing continuous sequence of elementary submodels of M of cardinality
< µ such that α(i) = αi = min(Y \Ni) belongs to Ni+1, sup(N ∩αi) = sup(N ∩ δ).
Let N =

⋃
i<µ

Ni. Let δ(i) = δi = sup(Ni∩αi), so 0 < δi ≤ αi, and let n = ni be the

first natural number such that δi an accumulation point of Ci = Cγ+
n (αi,δ(i))

, let
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εi = εn(i)(αi, δi). Note that γ+
n (αi, δi) = γ+

n (αi, εi) hence it belongs to N . Case I:

For some (limit) i < µ, cf(i) ≥ θ and (∀γ < i)[γ+α(∗) < i] such that for arbitrarily
large j < i, Ci ∩Nj is bounded in Nj ∩ δ = Nj ∩ δj .
This is just like the last part in the proof of [She88], 3.3 using g1

κ and d1 for
κ = cf(γ+

ni(αi, δi).

Case II: Not case I.
Let S0 = {i < µ : (∀α < i)[γ+α(∗) < i], cf(i) = θ}. So for every i ∈ S0 for some

j(i) < i, (∀j)
[
j ∈ (j(i), i)⇒ Ci ∩Nj is unbounded in δj

]
. But as Ci ∩ δi is a club

of δi, clearly (∀j)
[
j ∈ (j(i), i)⇒ δj ∈ Ci

]
.

We can also demand j(i) > εn(α(i),δ(i))(α(i), δ(i)).
As S0 is stationary, (by not case I) for some stationary S1 ⊆ S0 and n(∗), j(∗)

we have (∀i ∈ S1)
[
j(i) = j(∗) ∧ n(α(i), δi) = n(∗)

]
.

Choose i(∗) ∈ S1, i(∗) = sup(i(∗) ∩ S1), such that the order type of S1 ∩ i(∗)
is i(∗) > α(∗). Now if i2 < i1 ∈ S1 ∩ i(∗) then n(αi(∗), αi1 , αi2) = n(∗). Now

Li(∗) =
{

otp(αi ∩ Ci(∗)) : i ∈ S1 ∩ i(∗)
}

are pairwise distinct and are ordinals <

κ = |Ci(∗)|, and the set has order type α(∗). Now apply the definitions of d2 and
g2
κ on Li(∗). 2) The proof is like the proof of part (1) but for α0 > α1 > · · · we let

d2(α0, . . . , α2n−1) = g2
κ(β0, . . . , βn) where

β` = otp
(
Cγ+

n (β2`,β2`+1)(β2`, β2`+1) ∩ β2`+1

)
and in case II note that the analysis gives µ possible β`’s so that we can apply the
definition of g2

κ. �

Definition 5.8. Let λ 6→stg [µ]nθ mean: if d : [λ]n → θ, and 〈αi : i < µ〉 is strictly
increasingly continuous and for i < j < µ, γi,j ∈ [αi, αi+1) then

θ =
{
d(w) : for some j < µ, w ∈

[
{γi,j : i < j}

]n}
.

Lemma 5.9. 1) ℵt 6→ [ℵ1]n+1
ℵ0

for n ≥ 1.

2) ℵn 6→stg [ℵ1]n+1
ℵ0

for n ≥ 1.

Proof. 1) For n = 2 this is a theorem of Todorčevič [[Tod87]], and if it holds for
n ≥ 2 by 5.5(1) we get that it holds for n+1 (with n, λ, µ, θ, α(∗), σ(1), σ(2) there
corresponding to n+ 1, ℵn+1, ℵ1, ℵ0, ℵ0, ℵ0, ℵ0 here).
2) Similar. �
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