
Studies in Logic: Mathematical Logic and Foundations, Vol 18

Classification Theory
for Abstract Elementary Classes
Volume 1

                                                 Saharon Shelah



aaei aed`d ipal ywn

Dedicated to my beloved son Yovav



Contents

N Introduction E-53 1

A Annotated Contents 78

I Abstract elementary classes near ℵ1 – Sh88r 115

II Categoricity in abstract elementary classes: going up

inductively – Sh600 224

III Toward classification theory of good λ-frames and

abstract elementary classes – Sh705 378

IV Categoricity and solvability of a.e.c., quite highly –

Sh734 645

Bibliography 803



INTRODUCTION TO:

CLASSIFICATION THEORY

FOR ABSTRACT ELEMENTARY CLASSES

E-53

Abstract

Classification theory of elementary classes deals with first order
(elementary) classes of structures (i.e. fixing a set T of first order
sentences, we investigate the class of models of T with the elementary
submodel notion). It tries to find dividing lines, prove their conse-
quences, prove “structure theorems, positive theorems” on those in
the “low side” (in particular stable and superstable theories), and
prove “non-structure, complexity theorems” on the “high side”. It
has started with categoricity and number of non-isomorphic mod-
els. It is probably recognized as the central part of model theory,
however it will be even better to have such (non-trivial) theory for
non-elementary classes. Note also that many classes of structures
considered in algebra are not first order; some families of such classes
are close to first order (say have kind of compactness). But here we
shall deal with a classification theory for the more general case with-
out assuming knowledge of the first order case (and in most parts
not assuming knowledge of model theory at all).

For technical reasons the book has been split into two volumes.

§0 Introduction and notation

In §2 we shall try to explain the purpose of the book to mathe-
maticians with little relevant background. §1 describes dividing lines
and gives historical background. In §5 we point out the (reasonably
limited) background needed for reading various parts and some basic
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2 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

definitions and in §6 we list the use of symbols. The content of the
book is mostly described in §2-§3-§4 but §4 mainly deals with further
problems and §6 with the symbols used.

Is this a book? I.e. is it a book or a collection of articles? Well,
in content it is a book but the chapters have been written as arti-
cles, (in particular has independent introductions and there are some
repetitions) and it was not clear that they will appear together, see
§5(A) for more on how to read them.

§1 Introduction for model theorists

(A) Why to be interested in dividing lines?
Classification theory for first order (= elementary) classes is so

established now that up to the last few years most people tended to
forget that there are non-first order possibilities. There are several
good reasons to consider these other possibilities; first, it is better to
understand a more general context, we would like to prove stronger
theorems by having wider context, classify a larger family of classes.
Second, understanding more general contexts may shed light on the
first order one. In particular, larger families may have stronger clo-
sure properties (see later). Third, many classes arising in ”nature”
are not first order (“in nature” here means other parts of mathemat-
ics).

Of course, we may suspect that applying to a wider context may
leave us with little content, i.e., the proofs may essentially be just
rewording of the old proofs (with cumbersome extra conditions);
maybe there is no nice theory, not enough interesting things to be
discovered in this context; it seems to me that experience has already
refuted the first suspicion. Concerning the other suspicion, we shall
try to give a positive answer to it, i.e. develop a theory; on both see
the rest of the introduction.

In any case, “not first order” does not define our family of classes
of models as discussed below. This is both witnessed from the his-
tory (on which this section concentrates) and suggested by reflection;
clearly we cannot prove much on arbitrary classes, so we need some
restriction to reasonable classes. Now there may be incomparable
cases of reasonableness and a priori it is natural to expect to be able
to say considerably more on the “more reasonable” cases. E.g. we
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N.§1 INTRODUCTION FOR MODEL THEORISTS 3

expect that much more can be said on first order classes than on the
class of models of a sentence from Lω1,ω.

We are mainly interested here in generalizing the theorems on cat-
egoricity, superstability and stability to such contexts, in particular
we consider the parallel of  Loś Conjecture and the (very probably
much harder) main gap conjecture as test problems.

This choice of test problem is connected to the belief in (a),(b),(c)
discussed below (that motivates [Sh:c]).

(a) It is very interesting to find dividing lines and it is a fruitful
approach in investigating quite general classes of models.

That is, we start with a large family of (in our case) classes (e.g., the
family of elementary (= first order) classes or the family of universal
classes or the family of locally finite algebras satisfying some equa-
tions) and we would like to find natural dividing lines. A dividing
line is not just a good property, it is one for which we have some
things to say on both sides: the classes having the property and the
ones failing it. In our context normally all the classes on one side,
the “high” one, will be provably “chaotic” by the non-structure side
of our theory, and all the classes on the other side, the “low” one
will have a positive theory. The class of models of true arithmetic is
a prototypical example for a class in the “high” side and the class of
algebraically closed field the prototypical non-trivial example in the
“low” side.

Of course, not all important and interesting properties are like
that. If F is a binary function on a set A, not much is known to
follow from (A, F ) not being a group. In model theory introducing
o-minimal theories was motivated by looking for parallel to minimal
theories and attempts to investigate theories close to the real field
(e.g., adding the function x 7→ ex). Their investigation has been
very important and successful, including parallels of stability theory
for strongly minimal sets, but it does not follow our paradigm. A
success of the guideline of looking for dividing lines had been the
discovery of being stable (elementary classes, i.e. (ModT ,≺), [Sh
1]). From this point of view to discover a dividing line means to
prove the existence of complementary properties from each side:

(i) T is unstable iff it has the order property (recall that T
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4 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

has the order property means that: some first order formula
ϕ(x̄, ȳ) linearly orders in M some infinite I ⊆ ℓg(x̄)M in a
model M of T )

(ii) T is stable iff A ⊆ M |= T implies |S(A,M)|, the set of
1-types on A for M is not too large (≤ |A||T |).

A case illustrating the point of dividing line is a precursor of the order
property, property E of Ehrenfeucht [Eh57], it says that some first or-
der formula ϕ(x1, . . . , xn) is asymmetric on some infinite A ⊆M,M
a model of T ; it is stronger than the order property (= negation of
stability). A posteriori, order on the set of n-tuples is simpler; this is
not a failure, what Ehrenfeucht did was fine for his aims, but looking
for dividing lines forces you to get the “true” notion.

Even better than stable was superstable because it seems to me
to maximize the “area” which we view as being how many elemen-
tary classes it covers times how much we can say about them. On
the other hand, it has always seemed to me more interesting than
ℵ0-stable as the failure of ℵ0-stability is weak, i.e. it has a few con-
sequences. There is a first order superstable not ℵ0-stable class K
such that a model M ∈ K is determined up to isomorphism by a
dimension (a cardinal) and a set of reals. This exemplifies that an
elementary class can fail to be ℵ0-stable but still is “low”: we largely
can completely list its models. Such a class is the class of vector
spaces over Z/2Z expanded by predicates Pn for independent sub-
spaces of co-dimension 2. A model M in this class is determined
up to isomorphism by one cardinal (the dimension of the sub-space
VM = ∩{PMn : n ∈ N}) and the quotient M/VM which has size at
most continuum (alternatively the set {ηa : a ∈ M}, ηa(n) ∈ {0, 1}
and where ηa = 〈ηa(0), ηa(1), . . . 〉 and ηa(n) = 0 ⇔ a ∈ PMn ).

Of course, the guidelines of looking for dividing lines if taken re-
ligiously can lead you astray. It does not seem to recommend in-
vestigation of FMR (Finite Morley Rank) elementary classes which
has covered important ground (see e.g. Borovik-Nessin [BoNe94]).
This guideline has helped, e.g. to discover dependent and strongly
dependent elementary classes, but so far our approach has seemingly
not succeeded too much in advancing the investigation.

See more on this in end of §2(B), in particular Question 2.15.
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N.§1 INTRODUCTION FOR MODEL THEORISTS 5

(b) It is desirable to have an exterior a priori existing goal as a
test problem.

Such a problem in model theory was  Los conjecture which says: if a
first order class of countable vocabulary (= language) is categorical
in one λ > ℵ0 (= has one and only one model of cardinality λ up to
isomorphisms) then it is categorical in every λ > ℵ0. At least for me
so was Morley conjecture [Mo65] which says that for first order class
with countable vocabulary, the number of its models of cardinality
λ > ℵ0 up to isomorphism is non-decreasing with λ. This motivated
my research in the early seventies which eventually appeared as [Sh:a]
(with several late additions like local weight in [Sh:a, Ch.V,§4]). Now
having introduced “ℵε-saturated models”, it seems unconvincing to
understand İ(λ,K), the number of models in K of cardinality λ up
to isomorphism, for K the class of ℵε-saturated models of a first
order class, hence though essentially done then, was not written till
much later. Eventually “İ(λ, T ) non-decreasing” was done for the
family of classes of models of a countable first order theory (which
was the original center of interest; see [Sh:c]).

By this solution, there are very few “reasons” for such K = ModT
to have many models: being unstable, unsuperstable, DOP (dimen-
sional order property), OTOP (omitting type order property) and
deepness (for fuller explanation see after 2.12; see more, charac-

terizing the family of functions İ(λ, T ) for countable T in Hart-
Hrushovski-Laskowski [HHL00]). So the direct aim was to solve
the test question (e.g., the main gap1), but the motivation has al-
ways been the belief that solving it will be rewarded with discovering
worthwhile dividing lines and developing a theory for both sides of
each.

The point is that looking at the number of non-isomorphic models
and in particular the main gap we hope to develop a theory. Other
exterior problems will hopefully give rise to other interesting theories,
which may be related to stability theory or may not; this was the
point of [Sh 10], in particular the long list of exterior results in the
end of its introduction, and the words “classification theory” in the

1which says that either İ(λ, T ) = 2λ for every (> |T |, or large enough) λ or

İ(ℵα, T ) ≤ iγ(T )(|α|) for every α (for some ordinal γ(T )); see more in 2.10.
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6 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

name of [Sh:a]. But, the above point seemingly was slow in being
noticed.

Of course, if we consider the family of classes which are “high”
by one criterion/dividing line, we expect that with respect to other
questions/dividing lines the “previously high ones” will be divided
and on a significant portion of them we have another positive theory,
quite reasonably generalizing the older ones (but maybe we shall be
led to very different theories). E.g. for unstable first order classes
[Sh:93] succeeded in this respect: “low ones” are the simple theories
and the “high ones” are theories with the tree property (on exciting
later developments, see [KiPi98] or [GIL02]).

(c) successful dividing lines will throw light on problems not con-
sidered when suggesting them.

The point is that the theory should be worthwhile even if you discard
the original test problems. Stability theory is just as interesting
for some other problems as for counting number of non-isomorphic
models. E.g.

(∗)1 the maximal number of models no one embeddable into an-
other.

This sounds very close to counting, so we expect this is to have a
closely related answer.

In fact for elementary classes (with countable vocabulary) which
have a structure theorem (see 2.10 below), this number is < iω1

,
for the others it is very much higher (see more on the trichotomy
after 2.12); so the answer to (∗)1 turns out to be nicer than the one

concerning the number, λ 7→ İ(λ, T ).

(∗)2 in K there are models very similar yet non-isomorphic.

This admits several interpretations which in general have complete
and partial solutions quite tied up with stability theory. One is find-
ing L∞,λ-equivalent not isomorphic models of cardinality λ. Stronger
along this line are EFλ-equivalent not isomorphic. Another is that
there are non-isomorphic models of T such that a forcing neither
collapsing cardinals nor adding too short sequences makes them iso-
morphic. For non-logicians we should explain that this says in a
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N.§1 INTRODUCTION FOR MODEL THEORISTS 7

very strong sense that there are no reasonable invariants, see [Sh
225], [Sh 225a], Baldwin-Shelah [BLSh 464], Laskowski-Shelah [LwSh
489], Hyttinen-Tuuri [HyTu91], Hyttinen-Shelah-Tuuri [HShT 428],
Hyttinen-Shelah [HySh 474], [HySh 529], [HySh 602].

(∗)3 For which classes K do we have: its models are no more com-
plicated than trees (in the graph theoretic sense say rooted
graphs with no cycle)?

This question was specified to having a tree of submodels which is
“free” (= “non-forking”) and it is a decomposition, i.e., the whole
model is prime over the tree. This is answered by stability theory
(for ModT , T countable)

(∗)4 similarly replacing graphs with no cycles by another simple
class, e.g., linear orders.

This is very interesting, but too hard at present (see more in Cohen-
Shelah [CoSh:919])

(∗)5 decidable theories, e.g. we may note that there was much
done on decidability and understanding of the monadic the-
ory of some structures (in particular Rabin’s celebrated the-
orem). Those works concentrated on linear orders and on
trees. Was this because of our shortcoming or for inherent
reasons?

We may interpret this as a call to classify classes, in particular, first
order ones by their complexity as measured by monadic logic. This
was carried to large extent in Baldwin-Shelah [BlSh 156] for first
order classes. Now this seems a priori orthogonal to classification
taking number of models as the test question; note that the class of
linear orders is unstable but reasonably low for [BlSh 156], whereas
any class is maximally complicated if it has a pairing function (e.g.
a one-to-one function FM from PM1 × PM2 into PM3 while PM1 , PM2
are infinite) and there are such classes which are categorical in every
λ ≥ ℵ0. In spite of all this [BlSh 156] relies heavily on stability
theory; see [Bl85], [Sh 197], [Sh 205], [Sh 284c]

(∗)6 the ordinal κ-depth of a model (Karp complexity).
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8 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

For a model M and a partial automorphism f of M , Dom(f) of
cardinality < κ, we can define its κ-depth in M , an ordinal (or ∞) by
Dpκ(f,M) ≥ α iff for every β < α and subsets A1, A2 of cardinality
< κ, there is a partial automorphism f ′ of M extending f of κ-depth
≥ β such that |Dom(f ′)| < κ,A1 ⊆ Dom(f ′), A2 ⊆ Rang(f ′).

Let

Dpκ(M) = ∪{Dpκ(f,M) + 1 :f a partial automorphism of M of

cardinality < κ and DpM (f) <∞}.

This measures the complexity of the models and Dpκ(T ) = ∪{Dp(M)+
1 : M a model of T} is a reasonable measure of the complexity of
T . With considerable efforts, reasonable knowledge concerning this
measure was gained by Laskowski-Shelah [LwSh 560], [LwSh 687],
[LwSh 871] confirming to some extent the thesis above.

(∗)7 categoricity and number of models in ℵα, in ZF (i.e., with no
choice).

See [Sh 840].
You may view in this context the question of having non-forking

(= abstracts dependence relations), orthogonality, regularity but for
me this is part of the inside theory rather than an external problem

(d) non-structure is not so negative.

Now this book predominantly deals with the positive side, structure
theory, so defending the honour of non-structure is not really neces-
sary (it is the subject of [Sh:e] though). Still first we may note that
finding the maximal family of classes for which we know something is
considerably better than finding a sufficient condition. In particular
finding “the maximal family ... such that ...” is finding dividing lines
and this is meaningless without non-structure results.

Second, this forces you to encounter real difficulties and develop
better tools; also using the complicated properties of a class which
already satisfies some “low side properties” may require using and/or
developing a positive theory.

Last but not least, non-structure from a different perspective is
positive. Applying “non-structure theory” to modules this gives
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N.§1 INTRODUCTION FOR MODEL THEORISTS 9

representation theorems of rings as endomorphism rings (see Göbel-
Trlifaj [GbTl06]; note that the “black boxes” used there started from
[Sh:c, VIII]). In fact, generally for unstable elementary class K, we
can find models which in some respect represent a pregiven ordered
group (see [Sh 800]). This has been applied to clarify in some cases
to which generalized quantifiers give a compact logic (see [Sh:e] and
more in [Sh 800]).

It may clarify to consider an alternative strategy: we have a rea-
sonable idea of what we look for and we have a specific class or
structure which should fit the theory. This works when the analysis
we have in mind is reflected reasonably well in the specific case. It
may be misleading when the examples we have, do not reflect the
complexity of the situation, and it seems to be the case in the prob-
lems we have at hand. More specifically, though the “example” of
the theory of superstable first order classes stand before us, we do
not try to take the way of trying to assume enough of its properties
so that it works; rather we try look for dividing lines.
See more on “why dividing lines” in the end of (B) of §2.

(B) Historical comments on non-elementary classes:

Let us return to non-elementary classes. Generally, on model the-
ory for non-elementary classes see Keisler [Ke71] and the handbook
[BaFe85]: closer to our interest in the forthcoming book of Baldwin
[Bal0x] and the older Makowsky [Mw85], mainly around ℵ1.

Below we present the results according to the kind of classes dealt
with (rather than chronologically).
The oldest choice of families of classes (in this context) is the family
of class of κ-sequence homogeneous models for a fixed D.

Morley and Keisler [KM67] proved that there are at most 22|T |

such models of T in any cardinality. Keisler [Ke71] proved that
if ψ ∈ Lω1,ω is categorical in ℵ1 and its model in ℵ1 is sequence
homogeneous then it is categorical in every λ > ℵ1; generalizing (his
version of) the proof of Morley’s theorem. In [Sh 3] instead of having
a monster C, i.e., a κ̄-saturated model of a first order T , we have a κ̄-
sequence homogeneous model C. Let D = D(C) = {tp(ā, ∅,C) : ā ∈
C; i.e., ā a finite sequence from C}; note that D, κ̄ determines C and
we look at the class of M ≺ C (or the class of (D, λ)-homogeneous
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10 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

M ≺ C). There the stability spectrum was reasonably characterized,
splitting and strong splitting were introduced (for first order theory
this was later refined to forking). See somewhat more in [Sh 54].

Lately, this (looking at the ≺-submodels of a (D, λ)-homogeneous
monster C) has become very popular, see Hyttinen [Hy98], Hytti-
nen and Shelah [HySh 629], [HySh 632], [HySh 629] (the main gap
for (D,ℵε)-homogeneous models for a good diagram D), Grossberg-
Lessman [GrLe02], [GrLe0x] (the main gap for good ℵ0-stable (=
totally transcendental)), [GrLe00a], Lessman [Le0x], [Le0y] (all on
generalizing geometric stability).

We may look at contexts which are closer to first order, i.e., having
some version of compactness. Chang-Keisler [ChKe62], [ChKe66]
has looked at models with truth values in a topological space such
that ultraproducts can be naturally defined. Robinson had looked
at model theory of the classes of existentially closed models of first
order universal or just inductive theories. Henson [He74] and Stern
[Str76] have looked at Banach spaces (we can take an ultraproduct
of the spaces, throw away the elements with infinite norm and divide
by those with infinitesimal norm). Basically the logic is “negation
deficient”, see Henson-Iovino [HeIo02].

The aim of [Sh 54] was to show that the most basic stability
theory was doable for Robinson style model theory. In particular
it deals with case II (the models of a universal first order theory
which has the amalgamation property) and case III (the existentially
closed models of a first order inductive (= Π1

2) theory); those are
particular cases of (D, λ)-homogeneous models. Case II is a special
case of III where T has amalgamation. Lately, Hrushovski dealt
with Robinson classes (= case II above). A Ph.D. student of mine
in the seventies was supposed to deal with Banach spaces but this
has not materialized. Henson and Iovino continued to develop model
theory of Banach spaces. Lately, interest in the classification theory
in such contexts has awakened and dealing with cases II and III
and complete metric spaces and Banach spaces and relatives, see
Ben-Yaacov [BY0y], Ben-Yaacov Usvyatsov [BeUs0x], Pillay [Pi0x],
Shelah-Usvyatson [ShUs 837].

The most natural stronger (than first order) logic to try to look
at, in this context, has been Lω1,ω and even Lλ+,ω. By 1970 much
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N.§1 INTRODUCTION FOR MODEL THEORISTS 11

was known on Lω1,ω (see Keisler’s book [Ke71]); however, if you do
not like non-first order logics, look at the class of atomic models of
a countable first order T . The general question looks hard. At the
early seventies I have clarified some things on ψ ∈ Lω1,ω categorical
in ℵ1, but it was not clear whether this leads to anything interesting.
Then the following question of Baldwin catches my eye (question 21
of the Friedman list [Fr75])

(∗)1 can ψ ∈ L(Q) have exactly one uncountable model up to
isomorphism?
Q stands for the quantifier “there are uncountably many”

This is an excellent question, a partial answer was ([Sh 48])

(∗)2 if ♦ℵ1
and ψ ∈ Lω1,ω(Q) has at least one but < 2ℵ1 models

in ℵ1 up to isomorphism then it has a model in ℵ2 (hence
has at least 2 non-isomorphic models)

Only later the original problem (even for ψ ∈ Lω1,ω(Q)) was solved
in ZFC, see below. It seems natural to ask in this case how many
models ψ has in ℵ2, and then successively in ℵn (raised in [Sh 48]),
but as it was hard enough, the work concentrates on the case of
ψ ∈ Lω1,ω, so ([Sh 87a], [Sh 87b] and generalizing it to cardinals
λ, λ+, ... is a major aim of this book):

(∗)3 (a) if n < ω, 2ℵ0 < 2ℵ1 < . . . < 2ℵn , ψ ∈ Lω1,ω, İ(ℵℓ, ψ) <
µwd(ℵℓ), for2

ℓ ≤ n and İ(ℵ1, ψ) ≥ 1 then ψ has a model in ℵn+1

and
without loss of generality ψ is categorical in ℵ0

(b) if the assumption of (a) holds for every n < ω and ψ is
for simplicity

categorical in ℵ0 then the class Modψ is so-called
excellent (see (c))

(c) if ψ ∈ Lω1,ω is excellent and is categorical in one λ > ℵ0

then it is
categorical in every λ > ℵ0.

2µwd(ℵℓ) is “almost” equal to 2ℵℓ
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12 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

Essentially, it was proved that excellent ψ ∈ Lω1,ω are very similar
to ℵ0-stable (= totally transcendental) first order countable theories
(after some “doctoring”). The set of types over a model M,S (M)
is restricted (to not violate the omission of the types which every
model of ψ omit). The types themselves are as in the first order
case, set of formulas but we should not look at complete types over
any A ⊆ M |= ψ, only at the cases A = N ≺ M or A = M1 ∪M2

where M1,M2 are stably amalgamated over M0 and more generally
at ∪{Mu : u ∈ P−(n)}, where 〈Mu : u ∈ P−(n)〉 is a “stable
system”.

This work was continued in Grossberg and Hart [GrHa89], (main
gap), Mekler and Shelah [MkSh 366] (dealing with free algebras),
Hart and Shelah [HaSh 323] (categoricity may hold for ℵ0,ℵ1,ℵ2, . . . ,
ℵn but fail for large enough λ) and lately Zilber [Zi0xa], [Zi0xb]
(connected to his programs). Further works on more general but
not fully general are [Sh 300], Chapter II (universal classes), She-
lah and Villaveces [ShVi 635], van Dieren [Va02] (abstract elemen-
tary class with no maximal models). See also the closely related
Grossberg and Shelah [GrSh 222], [GrSh 238], [GrSh 259], [Sh 394],
(abstract elementary class with amalgamation), Grossberg [Gr91]
and Baldwin and Shelah [BlSh 330], [BlSh 360], [BlSh 393]. Lately,
Grossberg and VanDieren [GrVa0xa], [GrVa0xb] Baldwin-Kueker-
VanDieren [BKV0x] investigate the related tame abstract elemen-
tary class including upward categoricity. They prove independently
of IV.7.12 that tame a.e.c. with amalgamation has nice categoric-
ity spectrum; i.e. prove categoricity in cardinals > µ in the rel-
evant cases; in the notation here “tame” means locality of orbital
types over saturated model; on IV.7.12, see §4(B) after (∗∗)λ. Con-
cerning Lκ,ω, see Makkai-Shelah [MaSh 285] (on cateogoricity of
T ⊆ Lκ,ω, κ compact starting with λ successor), Kolman-Shelah
[KlSh 362] (T ⊆ Lκ,ω, κ measurable, amalgamation derived from
categoricity), [Sh 472] (T ⊆ Lκ,ω, κ measurable, only down from
successor). See more in the book [Bal0x] of Baldwin on the subject.

Going back, (∗)3 deals with ψ ∈ Lω1,ω, it generalizes the case
n = 1 which, however, deals with ψ ∈ Lω1,ω(Q). On the other hand,
ψ ∈ Lω1,ω(Q) is not a persuasive end of the story as there are similar
stronger logics. Also the proof deals with Lω1,ω(Q) in an indirect
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N.§1 INTRODUCTION FOR MODEL THEORISTS 13

way, we look at a related class K which has also countable models
but some first order definable set should not change when extending.
So it seems that the basic notion is the right version of elementary
extensions. This leads to analysis which suggests the notion of ab-
stract elementary class, K with LS(K) ≤ ℵ0 which, moreover, is PCℵ0

(in [Sh 88], represented here in Chapter I).
Now much earlier Jonsson [Jn56], [Jn60] had considered axiom-

atizing classes of models. Compared with the abstract elementary
classes used (much later) in [Sh 88]=Chapter I, the main3 differences
are that he uses the order ⊆ (being a submodel) on K (rather than
an abstract order ≤K) and assume the amalgamation (and JEP joint
embedding property). His aim was to construct and axiomatize the
construction of universal and then universal homogeneous models so
including amalgamation was natural; Morley-Vaught [MoVa62] use
this for elementary class. In fact if we add amalgamation (and JEP)
to abstract elementary classes we get such theorems (see I§2, in fact
we also get uniqueness in a case of somewhat different character,
I.2.17). From our perspective amalgamation (also ≤K=⊆) is a heavy
assumption (but an important property, see later). Now, model the-

3Jonsson axioms were, in our notations, (for a fix vocabulary τ , finite in

[Jn56], countable in [Jn60]), K is a class of τ -models satisfying

(I) there are non-isomorphic M, N ∈ K in [Jn56]

(I)′ K has members of arbitrarily large cardinality in [Jn60]

(II) K is closed under isomorphisms

(III) the joint embedding property

(IV ) disjoint amalgamation in [Jn56]

(IV )′ amalgamation in [Jn60]

(V ) ∪{Mα : α < δ} ∈ K if Mα ∈ K is ⊆-increasing

(V I) if N ∈ K and M ⊆ N (so |M | 6= ∅ but not necessarily M ∈ K) and
α > 0, ‖M‖ < ℵα then there is M ′ ∈ K such that M ⊆ M ′ ⊆ N and

‖M ′‖ < ℵα (this is a strong form of the LS property).

Note that for an abstract elementary class (K,≤K), if ≤K=⊆↾ K, then AxIV
(smoothness) and AxV (if M1 ⊆ M2 are ≤K -submodels of N then M1 ≤K M2)

of I.1.2 or II.1.4 and part of AxI become trivial (hence are missing from Jonsson

axioms), the others give II, and a weaker form of VI (specifically, for one ℵα, i.e.
ℵα = LS(K)+, the other cases are proved).
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14 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

orists have preferred saturated on universal homogeneous and prefer
first order classes (Morley-Vaught [MoVa62], Keisler replete) with
very good reasons, as it is better (more transparent and give more)
to deal with one element than a model. That is, assume our aim
is to show that N from our class K is universal, i.e., we are given
M ∈ K of cardinality not larger than that of N and we have to
construct an (appropriate) embedding of M into N . Naturally, we
do it by approximations of cardinality smaller than ‖M‖, the num-
ber of elements of M . Jonsson uses as approximations isomorphisms
f from a submodel M ′ of M of cardinality < ‖M‖. Morley and
Vaught use functions from a subset A of M into N such that: if
n < ω, a0, . . . , an−1 ∈ A satisfy a first order formula in M then their
image satisfies it in N . So they have to add one element at each step
which is better than dealing with a structure. In fact, also in this
book, for a different notion of type, the types of elements continue
to play a major role (but we use types which are not sets of formulas
over models). So we try to have “the best of both approaches” - all
is done over models from K, but we ask existence, etc., only of sin-
gletons, for this reason in the proof of the uniqueness of “saturated”
models we have to go “outside” the two models, build a third (see
V.B.3.18 or II.1.14).

Here we have chosen abstract elementary class as the main direc-
tion. This includes classes defined by ψ ∈ Lω1,ω and we can analyze
models of ψ ∈ Lω1,ω(Q) in such context by a reduction. In [Sh 88]
= Chapter I Baldwin’s question was solved in ZFC. Also superlimit
models were introduced and amalgamation in λ was proved assum-

ing categoricity in λ and 1 ≤ İ(λ+,K) < 2λ
+

when 2λ < 2λ
+

. The
intention of the work was to prepare the ground for generalizing [Sh
87b]. Note that sections §4,§5 from Chapter I are harder than the
parallel in [Sh 87a] because we deal with abstract elementary class
(not just ψ ∈ Lω1,ω(Q)).

Now [Sh 300] deals with universal classes. This family is incompa-
rable with first order and [Sh 155] gives hope it will be easier. Note
that in excellent classes the types are set of formulas and this is true
even for Chapter I though the so-called materializing replaces real-
izing a type. In [Sh 300] (orbital)-type is defined by ≤K-mapping.
Surprisingly we can still show “λ-universal homogeneous” is equiva-
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N.§2 INTRODUCTION FOR THE LOGICALLY CHALLENGED 15

lent to λ-saturated under the reasonable interpretations (so have to
find an element rather than a copy of a model) what was a strong
argument for sequence homogenous models (rather than model ho-
mogeneous).

In [Sh 576], which is a prequel of the work here we generalize
[Sh 88] to any abstract elementary class K having no remnant of
compactness, see on it below. On Chapter II, Chapter III see later.

I thank the institutions in which various parts of this book were
presented and the student and non-students who heard and com-
mented. Earlier versions of Chapter V.A, Chapter V.B, [Sh:e, III],
Chapter V.C, Chapter V.D, Chapter V.E were presented in Rut-
gers in 1986; some other parts were represented some other time. In
Helsinki 1990 a lecture was on the indiscernibility from Chapter V.F,
Chapter V.G. First version of [Sh 576] was presented in seminars
in the Hebrew University, Fall ’94. The Gödel lecture in Madison
Spring 1996 was on [Sh 576] and Chapter II. The author’s lecture
in the logic methodology and history of science, Kracow ’99, was on
Chapter II and Chapter III. In seminars at the Hebrew University,
Chapter I was presented in Spring 2002, [Sh 576] was presented in
98/99, Chapter II + Chapter IV were presented in 99/00, Chapter II
+ Chapter III were presented in 01/02 and my lecture in the Helsinki
2003 ASL meeting was on good λ-frames and Chapter IV.

I thank John Baldwin, Emanuel Dror-Farajun, Wilfred Hodges,
Gil Kalai, Adi Jarden, Alon Siton, Alex Usvyatsov, Andres Villaveces
for many helpful comments and error detecting in the introduction
(i.e. Chapter N).

Last, but not least, I thank Alice Leonhardt for beautifully type-
setting the contents of this book.

§2 Introduction for the logically challenged

(This is recommended reading for logicians too, but there are some
repetitions of part (A) of §1).

This is mainly an introduction to Chapter II, Chapter III as §1
and the introduction to the others can serve.

We assume the reader knows the notion of an infi-
nite cardinal but not that he knows about first order
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16 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

logic (and first order theories); for reading (most of)
the book, not much more is needed, see §5.

Paragraphs assuming more knowledge or are not so es-
sential will be in indented, e.g. when a result is ex-
plained ignoring some qualifications and we comment
on them in indented text.

(A) What are we after?
This introduction is intended for a general mathematical audience.

We may view our aim in this book as developing a theory dealing with
abstract classes of mathematical structures that will also be referred
to as models. Examples of structures are the field R, any group
and any ring. The classes of models we consider are called “abstract
elementary classes” or briefly a.e.c. An abstract elementary class K

is a class of structures denoted by K together with an order relation
denoted by ≤K which distinguishes for each structure N a certain
family {M ∈ K : M ≤K N} of substructures (= submodels).

First, rather than giving a formal definition, we will give several
examples:
2.1 Examples:

(i) the class of groups where the order relation is “being a sub-
group”.

In this example ≤K is simply being substructures. (In the sequel
when we do not specify the order relation is means simply to take
all substructures).

(ii) The class of algebraically closed fields with characteristic zero

(iii) the class of rings

(iv) the class of nill rings, i.e. ring R such that for every x ∈ R,
xn = 0 for some n ≥ 1

(v) the class of torsion R-modules for a fix ring R

(vi) the class of R-modules for a fix ring R but unlike the previous
cases the relation of ≤K is not just being a submodule, it is
being a “pure submodule”4

4A left R-module M is a pure submodule of a left R-module N when if
rx = y, x ∈ N and y ∈ M then rx′ = y for some x′ ∈ M
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N.§2 INTRODUCTION FOR THE LOGICALLY CHALLENGED 17

(vii) the class of rings but R1 ≤K R2 means here: R1 is a subring
of R2 and if R′

2 is a finitely generated subring of R2 then
R1 ∩R

′
2 is a finitely generated subring of R1

(viii) the class of partial orders.

Abstract elementary class form an extension of the notion of ele-
mentary class which mean a class of structures which are models
of a so-called first order theory. The notion of abstract elementary
classes, while more general, does not rely on elementary classes and
indeed, for reading this introduction we do not assume knowledge of
first order logic.

We will be mainly interested in this book in finding parallel to the
“superstability theory” which is part of the “classification theory”
(this is explained below; on the first order case see, e.g. [Sh:c], [Sh
200] or other books on the subject, e.g. Bladwin [Bal88]).

Superstability theory can be described as dealing with elementary
classes of structures for which there is a good dimension theory; but
see on our broader aim below.

A structure M will have a so-called vocabulary τM (this is its
“kind”, e.g. is it a ring or a group). Note that for each class
K = (K,≤K) we shall consider, all M ∈ K has the same vocabu-
lary (sometimes called language), which we denote by τ = τK, e.g.,
for a class of fields it is {+,×, 0, 1} where +,× are binary functions
symbols interpreted in each field as two-place functions and similarly
0, 1 are individual constant symbols. We may have also relations, (in
example (viii) the partial order is a relation), note that relation sym-
bols are usually called predicates. The reader may restrict himself
to the case of countable or even finite vocabulary with function sym-
bols only. We certainly demand each function symbol to have finitely
many places (and similarly for relation symbols).

We try now, probably prematurely, to give exact definitions of
some basic notions toward what long term goal we would like to ad-
vance, probably it will make more sense after/if the reader continues
to read the introduction. (But most of this will be repeated and
expanded).

We think that the family of abstract elementary classes K (de-
fined in 2.2 below) can be divided, in some ways, so that we can say
significant things both on the “low”, simple side and on the “high,
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18 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

complicated” side. This sounds vague, can we already state a con-
jecture? It seems reasonable that a class K with a unique member
(up to isomorphism, of course) in a cardinality λ is simple; but what
can be the class of cardinals for which this holds? This class is called
the “categoricity spectrum of the abstract elementary class K” (see
Definitions 2.2, 2.3 below), we conjecture that is a simple set, e.g.
contains every large enough cardinal or does not contain every large
enough cardinal. Moreover, this also applies to the so-called super-
limit spectrum of K (see Definition 2.4). In the “low, simple” case
we have, e.g. a dimension theory for K, and in the “high case” we
can prove the class is complicated and so cannot have such a nice
theory (this paragraph will be explained/expanded later).

Here we make some advances in this direction.
First, what exactly is an abstract elementary class? It is much easier
to explain than the so-called “elementary classes” which is defined
using (first order) logic. A major feature are closure under isormor-
phism and unions.

2.2 Definition. K = (K,≤K) is an abstract elementary class when

(A)(a) K is a class of structures all of the same “kind”, i.e. vocab-
ulary; e.g. they can be all rings or all graphs, τ denote a
vocabulary

(b) K is closed under isomorphisms

(c) ≤K is a partial order of K, also closed under isomorphisms
and M ≤K N implies M ⊆ N,M a substructure of N and,
of course, M ∈ K ⇒M ≤K M

(d) K (and ≤K) are closed under direct limits, or, what is equiv-
alent, by unions of ≤K-increasing chains, i.e. if I is a linear
order andMt(t ∈ I) is ≤K-increasing with t thenM = ∪{Mt :
t ∈ I} belongs to K and; morever, t ∈ I ⇒Mt ≤K M

(e) similarly to clause (d) inside N ∈ K, i.e., if t ∈ I ⇒Mt ≤K N
then M ≤K N .

Two further demands are only slightly heavier

(B)(f) if5 Mℓ ≤K N for ℓ = 1, 2 and M1 ⊆M2 then M1 ≤K M2

5this certainly holds if ≤K is defined as ≺L (τ(K)) for some logic L
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(g) (K,≤K) has countable character, which means that every
structure can be approximated by countable ones; i.e., if
N ∈ K then every countable set of elements of N is included
in some countable M ≤K N (in the book but not in the in-
troduction we allow replacing “countable” by “of cardinality
≤ LS(K)” for some fixed cardinality LS(K)).

Not all natural classes are included, e.g. the class of Banach spaces is
not, as completeness is not preserved by unions of increasing chains.
Still it seems very broad and the question is can we prove something
in such a general setting.

2.3 Definition. 1) K (or K) is categorical in λ when it has one and
only one model of cardinality λ up to isomorphism.
2) The categoricity spectrum of K, cat(K), is the class of cardinals λ
in which K is categorical.

A central notion in model theory is elementary classes or first order
classes which are defined using so called first order logic (which the
general reader is not required here to know, it is explained in the
indented text below).

Each such class is the class of models of a first order theory with
the partial order ≺.

Among elementary classes, a major division is between the so-
called superstable ones and the non-superstable ones, and for each
superstable one there is a dimension theory (in the sense of the di-
mension of a vector space). Our long term aim in restricted terms is
to find such good divisions for abstract elementary classes, though we
do not like to dwell on this further now, it seems user-unfriendly not
to define them at all, so for the time being noting that for elemen-
tary classes being superstable is equivalent to having a superlimit
model in every large enough cardinality; also noting that supersta-
bility for abstract elementary classes suffer from schizophrenia, i.e.
there are several different definitions which are equivalent for ele-
mentary classes, the one below is one of them.
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20 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

2.4 Definition. Let K be an abstract elementary class.
1) We say f is a ≤K-embedding of M into N when f is an isomor-
phism of M onto some M ′ ≤K N .
2) Kλ = (Kλ,≤Kλ

) where Kλ = {M ∈ K : ‖M‖ = λ} and ≤Kλ
=≤K↾

Kλ.
3) An abstract elementary class K is superstable iff for every large
enough λ, there is a superlimit structure M for K of cardinality λ;
where
4) We say that M is a superlimit (for K) when for some (unique) λ

(a) M ∈ K has cardinality λ

(b) M is ≤K-universal, i.e., if M ′ ∈ Kλ then there is a ≤K-
embedding of M ′ into M , in fact with range 6= M

(c) for any ≤K-increasing chain of models isomorphic to M with
union of cardinality λ, the union is isomorphic to M .

5) The superlimit spectrum of K is the class of λ such that there is
a superlimit model for K of cardinality λ.

We shall return to those notions later.

What about the examples listed above? Concerning the strict
definition of elementary classes as classes of the form (ModT ,≺)
defined below, among the examples in 2.1 the class of algebraically
closed fields (example (ii)) is an elementary class since it can be
proved that being a sub-field is equivalent to being an elementary
substructure for such fields.

In the example (i), the class of models is elementary, i.e., equal
to ModT : the class of groups, but the order is not ≺ but ⊆. This is
true also in the examples (iii), rings and (viii), partial orders.
In the example (vi), the class of torsion R-modules is not a first

order class as we have to say (∀x)
∨

r∈R\{0}

rx = 0 and we really need

to use an infinite disjunction. The situation is similar for the class
of nill ring (example (iv)). In example (vii), the class of rings with
≤K defined using finitely generated subrings not only is the class of
structures not elementary by ≤K is neither ≺ nor ⊆. In the example
(vii), R-modules, K is elementary but ≤K is different.
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Recall6 the traditional frame of model theory are the
so-called elementary (or first order) classes. That is,
for some vocabulary τ , and set T of so-called sentences
in first order logic in this vocabulary, K = ModT =
{M : M a τ -structure satisfying every sentence of T}
and ≤K being ≺, “elementary submodel”. Recall that
M ≺ N if M ⊆ N and for every first order formula
ϕ(x0, . . . , xn−1) in the (common) vocabulary, i.e., from
the language L(τ) and a0, . . . , an−1 ∈M,ϕ(a0, . . . , an−1)
is satisfied by M , (symbolically M |= ϕ[a0, . . . , an−1])
iff N satisfies this.

Now here an elementary class is one of the form
(ModT ,≺), any such class is an abstract elementary
class (see below). A different abstract elementary class
derived from T is (ModT ,⊆) but then we should restrict
ourselves to T being a set of universal sentences or just
Π2-sentences as we like to have closure under direct lim-
its. For each such T another abstract elementary class
which can be derived from it is ({M ∈ ModT : M is
existentially closed},⊆).

We are not disputing the choice of first order classes
as central in model theory but there are many inter-
esting other classes. Most notably for algebraists are
classes of locally finite structures and for model the-
orists are (Modψ,≺L ) where ψ belongs to the logic
denoted by Lω1,ω(τ) or just ψ ∈ Lλ+,ω(τ) for some
λ where L is a fragment of this logic to which the
sentence ψ belongs; if ψ ∈ Lω1,ω(τ) we may choose a
countable such L .

(This logic may seem obscure to non-logicians but

it just means that we allow to say
∧

i∈I

ϕi(x0, . . . , xn−1)

where I has at most λ members so enable us to say
“a ring is nill, locally finite, etc.”, but not “< is a well
ordering”).

In some sense if we look at classification theory of

6we urge the logically challenged: when lost, jump ahead
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elementary classes as a building, we note that several
“first floors” disappear (in the context of abstract ele-
mentary class) but we aim at saving considerable part of
the rest (of course not all) by developing a replacement
for those lower floors.

We may put in the basement the downward LS the-
orems (there are small N ≺ M), it survived. But not
so the compactness theorem, even very weak forms like
“if ā = 〈an : n ∈ N〉, b̄ = 〈bn : n ∈ N〉 are sequences
of members of M and fn is an automorphism of M
mapping ā ↾ n to b̄ ↾ n then some ≤K-extension of M
has an automorphism mapping ā to b̄”. (Note that for
“(D, λ)-homogeneous models” (e.g. [Sh 3]) such forms
of compactness hold and the point of [Sh 394] is to
start investigating classes for which all is nice except
that types are not determined by their small restric-
tions, that is, defining EκN = {(p, q) : p, q ∈ S (N) and
M ∈ Kκ ⇒ p ↾ M = q ↾ M}, this is, a priori, not
the equality ([Sh 394, 1.8,1.9,pg.4]). We lose as well
the upward LS theorem (a model have a proper <K-
extension); (those fit the first floor).

Also in abstract elementary classes the roles of for-
mulas disappear. Hence we lose the notion of the type
of an element a over a set A inside a model M ; so goes
the second floor including the “κ-saturated model” (in
the traditional sense) down the drain as the types dis-
appear.

What is saved? (I.e. not by definitions but in the
positive case of a dividing line which has a non-structure
result.) In a suitable sense non-forking amalgamation of
models, prime models, a decomposition of a model over
a non-forking tree of models (a relative of free amalga-
mation), and for a different notion of type, being (satu-
rated and) orthogonal, regular and eventually the main
gap for the parallel of ℵε-saturated model of a super-
stable T .
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We now try to describe our aim in broad terms; if this seems vague,
in (B) below we describe it in a restricted case more concretely.
Our aim is to consider a family of classes K (all the “reasonable”
classes) and try to classify them in the sense of taxonomy, we look
for dividing lines among them. This means dividing the family to
two, one part are those which are “high”, “complicated”. Typically
we have for each K in the “high side” a non-structure result, saying
there are many complicated such models M ∈ K (in suitable sense).
Those in the other side, the “low” one have some “positive” theory,
we have to some extent understood those models, e.g. they have a
good dimension theory.

A reader interested to see more quickly what is done rather than
why it is done and what are our hopes should go to (C) below.

A good dividing line of a family of classes is such that we really
can say something on both sides, with some being complementary;
ideally it also should help us prove things on all K’s by division to
cases. So it seems advisable to prove the equivalence of an external
property (like not having many models) and an internal property
(some understanding of models of K). Now clearly such a dividing
line is interesting but, of course, there are properties which are in-
teresting for other reasons (see more on this in the end of (A) of
§1).

(B) The structure/non-structure dichotomy
More specifically we may ask: which classes have a structure the-

ory? By a structure theory we mean “determined up to isomorphism
by an invariant called the dimension or several dimensions or some-
thing like that”. A non-structure property (or theorem) will be a
strong witness that there is no structure theory. So the question is:
2.5 Question: When does a class K of models have a structure the-
ory? In particular, each model from K is characterized up to iso-
morphism by a “complete set of reasonable invariants” like those
of Steinitz (for algebraically closed fields) and Ulm (for countable
torsion abelian groups).

This is still quite vague, and it takes some explanation (and choices)
to make it concrete. Instead we shall be even more specific. We shall
explain two more concrete questions: categoricity and the main gap
and the solution in the known (first order countable vocabulary) case.
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Counting the number of models in a class seems very natural and to
make sense we have to count them in each cardinality separately. If
the reader is not enthusiastic about this counting, some alternative
questions lead us to the same place: e.g.: having models which are
almost isomorphic but not really isomorphic (see more in (∗)2 from
§1(B)(c)).

2.6 Definition. For a class K of models and infinite cardinal λ
let İ(λ,K) be the number of models in K of cardinality λ up to
isomorphism. So for any K it is a function from Card, the class of
cardinals to itself; we may write K = (K,≤K) instead of K.

Now a priori we may get quite arbitrary functions. But it seems
reasonable to hope that all our classes K will have a simple function
λ 7→ İ(λ,K) and classes with a “structure theory” will have such
functions with small values. It seems more hopeful to try to first
investigate the most extreme cases (being one and being maximal),
considering both our chances to solve and for getting an interesting
answer; also we expect the “upper” one to give the important divid-
ing lines. It is most natural to start asking above the spectrum of
existence, i.e., being non-zero, i.e., what can be {λ : Kλ 6= ∅}? This
had been answered quite completely (see I.1.11,I.1.13), and it seems
easier at least from the present perspective.

Considering this, the number one naturally has a place of honor;
this is categoricity. RecallK is said to be categorical in λ iff İ(λ,K) =
1.

A natural thesis is
2.7 Thesis: If we really understand when a (reasonable) class is cat-
egorical in λ it should have little dependence on λ, ignoring “few,
exceptional” cardinals.
[Why? How can we understand why K is categorical in λ? We should
know so much on the class so that given two models from K of car-
dinality λ we can construct in a coherent way an isomorphism from
one onto the other; but this should work for any other (large enough)
cardinal. Also being categorical implies the model is a very simple
one, analyzable.

This is, of course, not true for every class of, e.g. if K is the class of
{(I, <): is < well order I, such that if |I| is a successor cardinal then
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every initial segment has cardinality < |I|}. This class is categorical
in ℵα iff ℵα is a limit cardinal (we could change it to “α even”, etc).
However, we have to restrict ourselves to “reasonable” classes.]

An antagonist argument against the thesis 2.7 is that for first order
T , the class {λ : T has in λ a rigid model, i.e., one without (non-
trivial) automorphism}, e.g. can be “any class of cardinals” in some
sense, e.g., {ℵ3,ℵ762,iω3

, first inaccessibly cardinality}. Essentially
any Σ1

2 class of cardinal (see [Sh 56]).

We may answer that rigidity implies a complicated model so we
may have T coding a definition of a complicated class, of cardinals,
whereas being categorical implies the models are simple. The antag-
onist may answer that allowing enough classes of models it would
not work, the categoricity spectrum will be weird and probably  Los
(see below) has no good enough reasons for his conjecture (of course
we can argue till the problem is resolved). We may answer that  Los
conjecture implicitly says that first order classes (of countable vo-
cabulary) are “nice”, “analyzable”. So 2.7 beg the question which
classes are reasonable and this book contend that abstract elemen-
tary classes are.

Of course, there may be reasonable classes for which “K is categor-
ical” depend on simple properties of the cardinal (e.g. being strong
limit).

More specifically we may ask: is it true for every (relelvant) K,
either K is categorical in almost every λ or non-categorical in almost
every λ? Indeed  Los had conjectured that if an elementary class K

with countable vocabulary is categorical in one λ > ℵ0 then K is cat-
egorical in every λ > ℵ0, having in mind the example of algebraically
closed fields of a fixed characteristic. A milestone in mathematical
logic history was Morley’s proof of this conjecture. The solution
forces you to understand such K.

We may ask: Is İ(λ,K) a non-decreasing function? Of course,
this is a question on K but the assumptions are on K = (K,≤K).
This sounds very reasonable as “having more space we have more
possibilities”. For elementary K with countable vocabulary this was
conjectured by Morley (for λ > ℵ0). It is not clear how to prove
it directly so it seemed to me a reasonable strategy is to find some
relevant dividing lines: the complicated classes will have the maximal
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number of models, the less-complicated ones can be investigated as
we understand them better. This may lead us to look at the dual
to categoricity, the other extreme - when İ(λ, T ) is maximal (or just
very large).

2.8 Definition. The main gap conjecture for K says that either
İ(λ,K) is maximal (or at least large) for almost all λ or the number is
much smaller for almost all λ; for definiteness we choose to interpret
“almost all λ” as for every λ large enough.

(We cheat a little: see 2.10).

This seems to me preferable to “İ(λ,K) is non-decreasing” be-
ing more robust; this will be even more convincing if we succeed in
proving the stronger statement:

2.9 The structure/non-structure Thesis For every reasonable class
either its models have a complete set of cardinal invariants or its
models are too complicated to have such invariants.

This had been accomplished for elementary classes (= first order
theories) with countable vocabularies. We suggest that the main gap
problem is closely connected to 2.9.

So ideally, for classes K with structure for every model M of K we
should be able to find a set of invariants which is complete, i.e., deter-
mines M up to isomorphism. Such an invariant is the isomorphism
type, so we should restrict ourselves to more reasonable ones, and
the natural candidates are cardinal invariants or reasonable general-
izations of them. E.g. for a vector space over Q we need one cardinal
(the dimension = the cardinality of any basis). For a vector space
over an algebraically closed field, two cardinals; (the dimension of
the vector space and the transcedence degree (= maximal number
of algebraically independent elements) of the field, both can be any
cardinal; of course, we have also to say what the characteristic of the
field is). For a divisible abelian group G, countably many cardinals
(the dimension of {x ∈ G : px = 0} for each prime p and the rank
of G/Tor(G) where Tor(G) is the subgroup consisting of the torsion
members of G, i.e. {x ∈ G : nx = 0 for some n > 0}). For a struc-
ture with countably many one-place relations Pn (i.e., distinguished
subsets), we need 2ℵ0 cardinals (the cardinality of each intersection
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of the form ∩{PMn : n ∈ u}∩{M\PMn : n /∈ u}) for u a set of natural
numbers).

We believe the reader will agree that every structure of the form
(|M |, E), where E is an equivalence relation, has a reasonably com-
plete set of invariants: namely, the function saying, for each cardinal
λ, how many equivalence classes of this cardinality occur. Also, if
we enrich M by additional relations which relate only E-equivalent
members and such that each E-equivalence class becomes a structure
with a complete set of invariants, then the resulting model will have
a complete set of invariants. We know that even if we allow such
generalized cardinal invariants, we cannot have such a structure the-
ory for every relevant class (e.g. the class of linear orders has no
such cardinal invariants). So if we have a real dichotomy as we hope
for, we should have a solution of (a case of) the main gap conjecture
which says each class K either has such invariant or is provably more
complicated.

Let us try to explicate this matter. We define what
is a λ-value of depth α by induction on the ordinal α:
for α = 0 it is a cardinal ≤ λ, for α = β + 1 it is a
sequence of length ≤ 2ℵ0 of functions from the set of
λ-values of depth β to the set of cardinals ≤ λ or a λ-
value of depth β, and for α a limit ordinal it is a λ-value
of some depth < α.

An invariant [of depth α] for models of T is a func-
tion giving, for every model M of T of cardinality λ,
some λ-value [of depth α] which depends only on the
isomorphism type of M . If we do not restrict α, the set
of possible values of the invariants is known, in some
sense, to be as complicated as the set of all models.

This leads to:
2.10 Main Gap Thesis: 1) A class K has a structure
theory if there are an ordinal α and invariants (or sets
of invariants) of depth α which determines every struc-
ture (from K) up to isomorphism.
2) If K fails to have a structure theory it should have
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“many” models and we expect to have reasonably de-
finable such invariants.

We can prove easily, by induction on the ordinal α, that

2.11 Observation. The number of ℵγ-values of depth α
has a bound iα(|τK | + |γ|) where

iβ(µ) = µ+
∏

ε<β

2iε(µ).

2.12 Corollary of the thesis. If K has a structure
theory by the interpretation of 2.10 then there is an or-
dinal α such that for every ordinal γ,K has ≤ iα(|τK|+
|γ|) non-isomorphic models of cardinality ℵγ.

It is easy to show, assuming e.g., the G.C.H., that for
every α there are many γ’s such that iα(|ω+γ|) < 2ℵγ

and even < ℵγ . Thus, if one is able to show that K

has 2ℵγ models of cardinality ℵγ , this establishes non-
structure.

In the case in which the main gap was proved, it turns out that
there are only few “reasons” for an elementary class K with countable
vocabulary to have the maximal number of models:

(a) K is so called unstable, prototypical example are the class
of infinite linear orders and the class of random graphs [for-
mally: in some model from K some first order formula ϕ(x̄, ȳ)
with ℓg(x̄) = m = ℓ(ȳ) for every linear order I there is M ∈ K

and an m-tuple āt from M for each t ∈ I such that ϕ[ās, āt]
is satisfied in M iff s <I t]

(b) K has the so called OTOP, it is similar to (a), but the order
is defined in a different way, not by a so-called first order

formula but by a formula of the form (∃z̄)
∧

n

ϕn(x̄, ȳ, r̄). The
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prototypical example is straightforward but somewhat cum-
bersome

(c) it has the DOP, this is harder to define and even to give ex-
ample too. It means that in some members M of K, we can
define large linear orders by using dimensions

proto-typical example is: for some infinite I and
R ⊆ I × I,MI,R has universe I ∪ {(s, t, α) : s ∈ I, t ∈
I, α < ω1 and (s, t) ∈ R ⇒ α < ω} and relation
PM = {(s, t, a) : a = (s, t, α) for some α}. So R can
be defined in MI,R (though is not a relation of M) as
{(s, t): the set {x : MI,R |= P (s, t, x)} is uncountable}.
But the definition is not first order, it speaks on dimen-
sion (actually we can also interpret any graphs). Note
that T = Th(MI,R) does not depend on R.

(d) K is so called unsuperstable; proto-typical example (ωI, En)n<ω
where ωI is the set of functions from N into I and En =
{(η, ν) : η, ν ∈ ωI and η ↾ n = ν ↾ n}

(e) T is deep, proto-typical example is the class of graphs which
are trees (i.e. with no cycles).

We return to the more concrete question: the main gap and the
thesis 2.9. We can hope that a non-structure theorem should imply
İ(λ,K) is large, whereas a structure theorem should enable us to
show it is small and even allow us to show it is non-decreasing, and
to compute it.

Actually the picture of the “non-structure” side (in
the resolved case) is more complicated. In some classes
“reasons” (a)-(d) fail but “reason” (e) holds, in this
case the members of K are essentially as complicated
as graphs which are trees (i.e., no cycle); for them we
get the maximal number of non-isomorphic models, but
we have a “handle” on understanding the models. So,
e.g., a result proving this is the following: possibly7 for

7formally: if some (mild) large cardinal exists
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some λ we cannot find λ models no one embeddable
into the others. For the rest there are stronger results
in the inverse direction (e.g. we can code stationary
sets modulo the club filter). So it seemed that we end
up with a trichotomy rather than a dichotomy. That is,
for the question of counting the number of models up
to isomorphism the middle family behaves more like the
high one: has maximal number. But for the question
mentioned above and also for questions of the form:
“are there two very similar non-isomorphic models in
the class” the middle family behaves like the low (e.g.
we can build reasonable invariants when not restricting
the ordinal depth). Still there are clear results for each
of the three families.

It was (and is) our belief that there is such a theory even for ab-
stract elementary classes and that we should look at what occurs
at large enough cardinals, as in small cardinals various “incidental”
facts interfere. Notice that a priori there need not be a solution to the
structure/non-structure problem or to the spectrum of categoricity

problem: maybe İ(λ, T ) can be any one of a family of complicated
functions, or, worse, maybe we cannot characterize reasonably those
functions, or, maybe the question of which functions occur is inde-
pendent of the usual axioms of set theory.

Now, of course, the aim of classification is not just those specific
questions. We rather think and hope that trying to solve them will
on the way give interesting dividing lines among the classes. A class
K here may have too many models but still we can say much on the
structure of its models.

Now the thesies underlining the above is
2.13 Thesis

(a) dividing lines are interesting, and obviously reasonable test
questions are a good way to find them (and we try to use test
questions of self-interest)

(b) good dividing lines throw light also on questions which seem
very different from the original test questions
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(c) in particular, investigating İ(λ,K) (and more profoundly,
characterizing the classes with complete set of invariants) is
a good way to find interesting dividing lines, but naturally
there are other ways to arrive at them and

(d) there are measures of complexity of a class (other than İ(λ,K))
which lead to interesting dividing lines and some such work
was done on elementary classes (see §1).

Behind the discussion above also stands
2.14 Thesis: To investigate classes K it is illuminating to look for
each λ, at problems on Kλ,K which is restricted to cardinal λ and

(a) to try to prove that the answer does not depend on λ or at
least depends just on a small amount of information on λ

(b) to discard too small cardinals (essentially to look at asymp-
totic behaviour)

This seems to be successful in discovering stability (and superstabil-
ity).

An illustration is that Rowbottom had defined λ-
stable (i.e. A ⊆M ∧ |A| = λ⇒ |S (A,M)| ≤ λ) but it
seems to me only having ([Sh 1]) the characterization
of {λ : T stable in λ} and the equivalence with the
order property and defining “T stable” started stability
theory. (Of course, for his aims this was irrelevant).

The rationale is that if the answer is the same for “most λ”, this
points to a profound property of the class and it forces you to find
inherent principles which you may not be so directly led to otherwise.
Hence it probably will be interesting even if you care little about
these cardinals. A parallel may be that even low dimension algebraic
topologists were interested in the solution of Poincare conjecture for
dimension ≥ 5. Also the behaviour in too small cardinals may be
“incidental”. So the class of dense linear order with neither first
nor last element and the class of atomless Boolean Algebra or the
class of random enough graphs are categorical in ℵ0, but have many
complicated models in higher ones. (One may feel these are low
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theories. This is true by some other criterions, other test problems;
in fact, there are dividing lines among the elementary classes for
which they are low. Still, for the test questions considered here,
provably those classes are complicated, e.g., in a strong sense do
not have a set of cardinal invariants characterizing the isomorphism
type).

You may wonder:

2.15 Question: Do we recommend dividing lines everywhere? (in
mathematics) or is this something special for model theory?

Now dividing lines are meaningful in many circumstances. But
on the one hand it is better to list all simple finite groups than
to find a dividing line among them. Similarly for the elementary
classes categorical in every λ ≥ ℵ0. On the other hand, surely for
many directions there are no fruitful dividing lines. The thesis that
appeared here means that for broad front in model theory this is
fruitful. (Not everywhere: too strong infinitary logics are out). It
seemed that this has been vindicated for stability (and to some extent
for simplicity and hopefully for (the family of) dependent elementary
classes).

It may be helpful to compare this to alternative approaches in
model theory. One extreme position will say that there is a central
core in mathematics (built around classical analysis and geometry;
and number theory of course) and other areas have to justify them-
selves by contributing something to this central core. Dealing with
cardinals is pointless bad taste, and while some interaction of ele-
mentary classes with cardinals had been helpful, its time has passed.

It seemed to me that the criterion and its application leave out
worthwhile directions. We all know that some neighboring subjects
are just hollow noise and sometimes we are even right. So an ex-
cellent witness for a mathematical theory to be worthwhile is its
ability to solve problems from others, preferably classical areas or
problem from other sciences. Certainly a sufficient condition. What
is doubtful is whether it is a necessary condition; we do not agree.

However, even within this narrow criterion, the direct attack is not
the only way to look for applications to other areas. Not so seldom
do we find that only after developing strong enough theory, deep
applications become possible, the history of model theory seems to

Paper Sh:E53, Introduction



N.§2 INTRODUCTION FOR THE LOGICALLY CHALLENGED 33

support this (in particular, lately in works of Hrushovski and Zilber).
Looking at large enough cardinals serve as asymptotic behaviour, in
which it is more transparent what are the general outlines of the
picture.

The reader may wonder how this work is related, e.g. to category
theory? universal algebra? soft model theory?. For category theory
this work, in short, is closer than classical model theory but still not
really close, similarly in category theory each class K is equipped
with a notion of mapping (rather than ≤K being defined from K
by some specific logic as in classical model theory). But here we
restrict ourselves to embeddings (this is not unavoidable but things
are already hard enough without this) and the main difference is that
we do not forget the elements.

What about universal algebra? A traditional model8 theorist def-
inition of model theory is universal algebra logic, so a large part of
this work is, by that definition, in universal algebra. I do not see any
reason to disagree but still the methods and results are well rooted
in the model theoretic tradition.

What about soft model theory? Though our work itself does not
need soft model theory, it fits well there (and Chapter I, Chapter IV
use infinitary logics hence are not discussed in this part).

First, for many important logics L , for theories T ⊆
L (τ) the class (ModT ,≺L (τ)) or variants are abstract
elementary classes (certainly for the logic Lλ+,ω) and

by choosing the ≤K appropriately also L(Qcard
≥λ ); in fact

they were the original motivation to look at abstract
elementary classes. So if you ask for the part of soft
model theory dealing with classification theory or at
least investigate categoricity, you arrive here. Also not
just varying the logic, but fixing a class ModT fits it
well.

This work certainly reflects the author’s preference to find some-
thing in the white part of our map, the “terra incognita” rather
than understand perfectly what we have reasonably understood to
begin with (which is exemplified by looking at abstract elementary

8but no universal algebraist agree

Paper Sh:E53, Introduction



34 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

classes on which our maps reflect our having little to say on them,
rather than FMR theories or o-minimal theories, cases where we had
considerable knowledge and would like to complete it). Anyhow, by
experience, there will not be many complaints on lack of generality
and broadness.

Note that we would like to get results, not consistency results and
allowing definability of well ordering or completeness runs into set-
theoretic independence results so restricting ourselves to an abtract
elementary class, a framework which excludes well ordering and com-
plete spaces is reasonable. But we shall not really object to cardinal
arithmetic assumptions like weak forms of GCH.

In fact, having the non-structure results depend on
the universe of set theories is not desirable but is reason-
able, as they still witness the impossibility of a positive
theory. It is reasonable to adopt this as part of the rules
of the games. In some cases, consistency results forbid
us to go further (see, e.g. [Sh:93]). But still the positive
side should better be in ZFC.

(C) Abstract elementary classes

We now return to the question: With which classes of structures
we shall deal? Obviously, “a class of structures” is too general. Get-
ting down to business we concentrate on

⊠ (a) abstract elementary classes

(b) good λ-frames

(c) beautiful λ-frames.

In short, in ⊠(a), see below, we suggest abstract elementary classes
(a.e.c.) as our framework, i.e., the family of classes we try to classify;
it clearly covers much ground and seems, at least to me, very natu-
ral. What needs justification is whether we can say on it interesting
things, have non-trivial theorems.

Among elementary (= first order) classes we know which classes
have reasonable dimension theory, the so called superstable elemen-
tary classes; and we like to understand the case for the family of
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abstract elementary class . In ⊠(c), see below in §3(C), we sug-
gest beautiful λ-frames as our “promised land”, as a context where
we have reasonable understanding, e.g., have dimension theory, can
prove the main gap, etc. (but of course more wide families “on our
way” probably will be interesting per se). Now it is very unsurprising
that if we assume enough axioms, we shall regain paradise (which
means here quite full fledge analog to the so called superstability the-
ory, at least for my taste). Hence the problem in justifying the choice
in ⊕(c) is mainly not in pointing to many good properties but have
to show that there are enough such frames and/or that it helps prove
theorems not mentioning it. On the second, see e.g. 2.20 below. In
our context ideally the first means to show that they are the only
ones, i.e., the broadest family of abstract elementary class which
has so good dimension theory. We are far from this, still we would
according to our “guidelines” like at least to get beautiful frames
by choosing to consider the classes which fall on the “low” side (in
the elementary classes case) by dividing lines (= dichotomies) inside
a family of classes which is large and natural, here among abstract
elementary classes. That is, the program is to suggest some dividing
lines, for the high side to prove the so-called non-structure theorems
and for the low side to have some theory. Being always in the low
sides we should arrive to beautiful frames.

But most of our work falls under ⊠(b), good λ-frames. So it needs
double justification: on the one hand we have to show it arises nat-
urally from our program.
[In details, a weak case for “arising naturally” is to start with an ab-
stract elementary classes satisfying some external condition of being
“low” like categoricity, and prove that “inside K” we can find good
frames. A strong case is to find a dividing line such that for each low
K we can find inside it “enough” good frames, and for all other “few”.
There is another meaning of “arising naturally” which would mean
that we have looked at some natural examples and extracted the def-
inition from their common properties; this is not what we mean. We
rather try to solve questions on the number of models but of course
the first order case was before our eyes as first approximation to the
paradise we would like to arrive to.]

On the other hand for such frames, possibly with more assump-
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tions justified similarly we can say something significant.
In fact, we see good λ-frames essentially as the rock-

bottom analogs of the family of elementary classes called
superstable mentioned above.

We shall discuss ⊠(a) and (b) and (c) in more detail. We start
with

⊠(a) abstract elementary classes.

Recall the definition of abstract elementary classes Definition 2.2.

2.16 Explanation: An abstract elementary class is easy to explain
(probably much simpler than elementary (= first order) class). Such
K consists of a class K of structures = models, all of the same
“kind”, e.g. all rings have the same kind, but a group has a dif-
ferent kind. We express this by saying “all members of K has the
same vocabulary τ = τK”. E.g., K consists of objects of the form
M = (AM , FM0 , FM1 , QM ), AM its universe, a non-empty set, FMℓ
a binary function on it, QM a binary relation. K has also an or-
der ≤K on K, its notion of being a sub-structure (which refines the
standard notion). Now (K,≤K) have to satisfy some requirements:
preservation under isomorphisms, ≤K being an order, preserved by
direct limits and also direct limits inside N ∈ K, remembering that
our mapping are embedding. Also if M1 ⊆ M2 are both ≤K-sub-
structures of N then M1 ≤K M2, and lastly we demand every M ∈ K
has a countable ≤K-sub-structure including any pregiven countable
set of elements (or replace countable by a fix cardinality, we ignore
this point in the introduction; see II§1).

Concerning “Mℓ ≤K N, (ℓ = 1, 2),M1 ⊆ M2 ⇒
M1 ≤K M2” note that if we define ≤K as ≺L for any
logic, this will hold.

For elementary classes K, because of the so-called compactness
and Löwenheim-Skolem theorems, the situation in all cardinals is to
a significant extent similar.

In particular, if K is an elementary class (with countable vocab-
ulary) and λ1, λ2 are (infinite) cardinals then there is M ∈ K of
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cardinality λ1 iff there is M ∈ K of cardinality λ2. So recalling that
Kλ = {M ∈ K : M has cardinality λ} and Kλ = (Kλ,≤K↾ Kλ)
we have Kλ1

6= ∅ ⇔ Kλ2
6= ∅. Moreover, any infinite M ∈ K

has ≤K-extension in every larger cardinality. But for abstract ele-
mentary classes it is not necessarily true, and even if (∀λ)Kλ 6= ∅
there may be many ≤K-maximal models, i.e., M ∈ K such that
M ≤K N ⇒ M = N . This (and more) makes the theory very
different.

The context of abstract elementary class may seem so general,
we may doubt if anything interesting can be said about it; still note
that this context does not allow the class of Banach spaces as the
union of an increasing chain is not necessarily complete. Certainly
a loss. Also the class (W,⊆), the class of well orders, is not an
abstract elementary class ; (recall I is a well order if it is a linear
order such that every non-empty set has a first element). Similarly
the class (K fgi,⊆) where K fgi = the class of rings (or even inte-
gral domains) in which every ideal is finitely generated, is not an
abstract elementary class (where ≤K is being a subring). However,
we get an abstract elementary class when we consider only K≤n =
the class of rings in which every ideal is generated by ≤ n elements.

We may like to replace n by a countable ordinal α, i.e.,

K fgi
≤α = {M ∈ K : dpM (∅) ≤ α}; where for a ring

M we define dp:{u : u ⊆ M finite} → the ordinals
by dpM (u) = ∪{dp(w) + 1 : u ⊆ w and w is not in-
cluded in the ideal of M which u generates}. But then
we have problems with closure under unions; a reason-
able remedy is to have an appropriate ≤K: M ≤K N
if M,N are rings and for every finite u ⊆ M we have
dpN (u) = dpM (u).
Why have we restricted ourselves to “countable α”?
Only because in clause (g) of Definition 2.2 we have
used “countable”.

But the family of abstract elementary classes includes all the ex-
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amples listed in 2.1 in the beginning (of this section, 2).
Also, other abstract elementary classes are (K,≺)

where K is the class of locally finite models of a first
order theory T . Another example is (Modψ,≺L ) where
ψ is a sentence from logic Lλ+,ω with L the set of
subformulas of ψ. Also (K,≺) where P ∈ τK is a unary
predicate, T first order and K = {M ∈ ModT : PM =
N, the natural numbers}.

A natural property to consider is amalgamation. We say that K

has the amalgamation property when for any Mℓ ∈ K, ℓ = 0, 1, 2 and
≤K-embedding f1, f2 ofM0 intoM1,M2 respectively (this means that
fℓ is an isomorphism from M0 onto some M ′

ℓ ≤K Mℓ) there are M3 ∈
K and ≤K-embeddings g1, g2 of M1,M2 into M3 respectively such
that g1◦f1 = g2◦f2. Should we adopt it? Now it is a very important
property, we would like to have it, but it is a strong restriction (our
prototyical problem, models of ψ ∈ Lω1,ω fails it); so we do not
assume it, but it will appear as a dividing line.
So the thesis is
2.17 Thesis:

(a) In the context of abstract elementary classes we can answer
some non-trivial questions

(b) In particular we can say something on the categoricity spec-
trum

(c) In the long run a parallel to the main gap will be found.

A reasonable reader may require an example of results. First we
quote [Sh 576] represented here in Chapter VI:

2.18 Theorem. Assume 2ℵα < 2ℵα+1 < 2ℵα+2 and K is an abstract
elementary class categorical in ℵα, in ℵα+1 and has an “intermedi-
ate” number of models in ℵα+2, then K has at least one model in
ℵα+3.

Note that

2.19 Notation. If λ = ℵα we let λ+n = ℵα+n, so can write this
theorem in such a notation, similarly later.
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So it is an example for 2.17(a)+(b): not “every function” can

occur as λ 7→ İ(λ,K).

Note that this theorem gives a weak conclusion, but with very
weak assumptions. In fact at first glance it seems we are facing a
wall: our assumptions are so weak to exclude all possible relevant
methods of model theory, in particular all relatives of compactness.

I.e., we have no compact (even just ℵ0-compact) logic
defining our class. Of course, the upward LS cannot be
used, it does not make sense: the desired conclusion is
a weak form of it. As for the downward Löwenheim
Skolem theorem, with only three cardinals available it
seems to say very little.

We do not have formulas hence no types and no sat-
urated models. Here we cannot use versions of “well
ordering is undefinable” as in previous cases (see Chap-
ter I; if ℵα = ℵ0 and K is reasonable we have used “no
ψ ∈ Lω1,ω(Q) defines well ordering (in a richer vocab-
ulary)”; this does not apply in [Sh 576], i.e. Chapter
VI even when λ = ℵ0 as we demand only LS(K) ≤
ℵ0 rather than “K is a PCℵ0

-class”; and we certainly
like to allow any ℵα). Also in general we cannot find
Ehrenfeuch-Mostowski models (another way to say well
orders are not definable). Also we do not assume the
existence of relevant so called large cardinals, e.g. K is
definable in some Lκ,ω, κ a compact or just a measur-
able cardinal. So indeed no remnants of compactness
are available here.

The proof of 2.18 leads us to our second framework, good λ-frames
which has a crucial role in our investigations, see below. The main
neatly stated result in Chapter II (part (1) of 2.20), Chapter III(part
(2) of 2.20) is:

(omitting a weak set theoretic assumption which will
be eliminated in the full version of Chapter VII).
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2.20 Theorem. Assume K is an abstract elementary class .
1) K has a member in ℵα+n+1 if (n ∈ N and)

(a) n ≥ 2 and 2ℵα < 2ℵα+1 < . . . < 2ℵα+n

(b) K is categorical in ℵα and in ℵα+1

(c) K has a model in ℵα+2

(d) İ(ℵα+m,K) is not too large for m = 2, . . . , n.

2) If (a)-(d) holds for every n then K is categorical in every ℵβ ≥ ℵα.

Actually above “K having Löwenheim-Skolem num-
ber ≤ λ” (rather than ℵ0) is enough.

(D) Toward Good λ-frames (i.e. ⊠(b):

2.21 Thesis Good λ-frames are a right context to start our “positive”
structure theory.

They are a rock-bottom parallel of superstable ele-
mentary classes.

Now compared to abstract elementary classes, much more has to be
said in order to explain what they are and how to justify them. We
describe good λ-frames s in several stages. We need several choices
to specify our context. Usually in model theory we fix an elementary
class K and consider M ∈ K. Here we concentrate on one cardinal λ,
that is, we usually investigate Kλ = (Kλ,≤Kλ

) where Kλ = {M ∈
K : M has cardinality λ} and ≤Kλ

is defined by M ≤Kλ
N iff

M ≤K N,M ∈ Kλ and N ∈ Kλ. This is not a clear cut deviation,
also for elementary classes we sometimes fix λ, and here we usually
look at least at Kλ and Kλ+ together, still the flavour is different.
So (the notion “choice” may be seemingly problematic but a better
alternative was not found).

2.22 Choice: We concentrate on Kλ, an abstract elementary class
restricted to one cardinal.

This seems reasonable because as noted above, transfer from one
cardinal to another is central, but in our context quite hard, so we
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may know various “good” properties only around λ. Also there are
K which in some cardinals are model theoretically “very simple” but
in other (e.g. larger) cardinals complicated, and we may like to say
what we can say about Kλ in λ for which Kλ is “simple”.

2.23 Choice: We concentrate here on Kλ with amalgamation and the
JEP (joint embedding properties).

But is amalgamation not a very strong/positive property? Yes,
but amalgamation for models of cardinality λ only is much weaker
and its failure in some reasonable circumstances leads to non-structure
results, so it can serve as a dividing line. More specifically, we know
that if K is categorical in λ ≥ LS(K) and Kλ fails amalgamation and
Kλ+ 6= ∅ then in Kλ+ we have many complicated models (provided

that 2λ < 2λ
+

; see Chapter I).

2.24 Choice: In Kλ there is a superlimit model M∗ which means
that: M∗ ∈ Kλ is universal, (i.e., any M ′ ∈ Kλ can be ≤K-embedded
into it), has a proper <K-extension and if M is the union of a <K-
increasing chain of models isomorphic to M∗ and M is of cardinality
λ, then M is isomorphic to M∗.

Can we give a natural example of a superlimit model? For the
abstract elementary class of linear orders, the rational order (Q, <) is
superlimit (in ℵ0). However, this is somewhat misleading as in larger
cardinals it is much “harder”, in fact, for the abstract elementary
class of linear orders there is no superlimit model in λ > ℵ0. The
abstract elementary class of algebraically closed fields of some fixed
character has a superlimit model in every λ ≥ ℵ0. However, consider
the class of {(A,E) : E an equivalence relation on A}. Easily (A,E)
is superlimit in it iff the number of E-equivalence classes as well as
the cardinality of each E-equivalence class is the number of elements
of A.

Of course, if K is categorical in λ then every M ∈ Kλ is superlimit
(if it is not ≤K-maximal in which case every M ∈ K has cardinality
≤ λ), but having a superlimit is a much weaker condition and it
seems a right notion of generalizing superstability (or, probably, a
good first approximation). This may surely look tautological in view
of Definition 2.3, but that definition is misleading. There are not
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few properties which for elementary classes are equivalent to being
superstable and we have chosen the existence of superlimit. However,
so far the existence of a superlimit model in λ has few consequences.

Why the choice? As this is an exterior way to say that our class
is “simple, low”; it is weaker than categoricity and we next demand
much more.

Note that if K is an elementary class and λ = λℵ0 +
|τK| or λ ≥ iω + |τK|, then M ∈ Kλ,M is superlimit iff
M is saturated and the theory is superstable; see [Sh
868, 3.1].

Now we are very interested in the existence of something like “free
amalgamation”, which in our context will be called non-forking amal-
gamation. That is, we are interested in saying when “M1,M2 are
freely amalgamated over M0 inside M3” (all in Kλ). In our main
example we have to use a more restrictive notion, having quadru-
ples (M0,M1, a,M3) is non-forking where M0 ≤K M1 ≤K M3, a ∈
M3\M1. This says that “inside M3 the element a and the model M1

are freely amalgamated over M0”. (Mainly in [Sh 576], i.e. Chapter
VI, use so called “minimal types”, which give rise to such quadru-
ples).

This leads us to define a central notion here: tpK(a,M,N), the
“orbit” of a ∈ N over M ≤K N . We express (M0,M1, a,M3) is
non-forking also as “

⋃
(M0,M1, a,M3)” and also as “tps(a,M1,M3)

does not fork over M0” because it is analogous to the non-forking
in first order model theory. But this background is not needed, as
non-forking is an abstract, axiomatic relation in our context.

This replaces here the notion of type in the investi-
gation of elementary (= first order) classes. But there
the types are defined as tp(ā, A,N) = {ϕ(x̄, b̄) : b̄ ⊆
A,ϕ(x̄, ȳ) is a first order formula and N |= ϕ[ā, b̄]}.
Note: the case A is the universe of M ≤K N is not
excluded but is not particularly distinguished. In fact,
it was unnatural there to make the restriction as there
are theorems using our ability to restrict the type to
any subset of A (e.g. for inductive proof) and it is im-
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portant to have results on any A.

We let SKλ
(M) = {tpKλ

(a,M,N) : M ≤Kλ
N and a ∈ N} be

called the set of types over M . The set of axioms (i.e., Definition
II.2.1) of good λ-frames expresses the intuition of “non-forking” as a
free amalgamation (in fact we are allowed to restrict the non-forking
relation to types tps(a,M1,M3) which are, so called basic ones, they
should mainly be “dense” enough). We may consider these axioms
per se, but we feel obliged to find evidence of their naturality of the
form indicated above. So

2.25 Definition. A good λ-frame s consists of

(a) an abstract elementary class K = Ks and let Ks = Kλ

(b) for M ∈ Kλ we have S bs
s (M), a subset of SKλ

(M) and

(c) a notion of “p ∈ S bs(M2) does not fork over M1 ≤Kλ
M2”

satisfying some reasonable axioms.

How does this help us in proving Theorem 2.20? Relying on the
main results of [Sh 576], Chapter VI, we in II§3 prove that there
is a good λ+-frame s with Ks = Kλ+ . Also in II§3 using a similar
theorem from Chapter I for the case λ = ℵ0 with a little different
assumptions, we get a good ℵ0-frame K.

We take a spiralic approach: we look at a good λ-frame s, sug-
gest a question, i.e., dividing lines, if s falls under the complicated
side we prove a non-structure theorem. If not, we know some things
about it and we can continue to investigate it, after we have enough
knowledge we ask another question. In II§5 we start with a good λ-
frame, gain some knowledge and if there are not enough essentially
unique amalgamations we get many complicated models in λ++. If
s avoids this, we call it weakly successful and understand Ks bet-
ter. In particular, we define the promised “M1,M2 are non-forking
amalgamated over M0 inside M3”, we call this relation NF = NFλ
= NFs and prove that it has the properties hoped for. Listing its
desired properties, it is unique. But this has a price: we have to
restrict Ks to isomorphic copies of the superlimit models. After as-
suming s fails, another non-structure property we succeed to find for

λ+ another good frame, s+ such that Ks
+

λ+ ⊆ Ks

λ+ .
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What have we gained? Have we not worked hard just to find
ourselves in the same place? Well, s+ is a good λ+-frame and

İ(µ,Ks
+

) ≤ İ(µ,Ks) for every µ ≥ λ+ and

(∗) for every χ and good χ-frame t, Kt has models of cardinality
χ+ and moreover of cardinality χ++.

So this is enough to prove the Theorem 2.20(1), by induction on n.
Let us compare this to [Sh 87a], [Sh 87b]. There in stage n we

have some knowledge on models in Kℵℓ
for ℓ ≤ n but our knowledge

decreases with ℓ. Now (all in [Sh 87b]) dealing with n+1 we have to
consider a question on models of cardinality λ = ℵ0, for which our
specific tools for ℵ0 (the omitting type theorem and the assumption
that K is (Modψ,≺) where ψ ∈ Lω1,ω) enable us to have proved a
dichotomy, each side implied additional information concerning ℵℓ
for ℓ ≤ n, again decreasing with ℓ.

[We elaborate: for each ℓ < n we can define so called
full stable (P−(m),ℵℓ)-systems 〈Mu : u ∈ P−(m)〉 for
m ≤ (n− ℓ) where P−(m) = {u : u ⊂ {0, . . . , m− 1}}.
So our knowledge “decreases” with ℓ: we can handle
only systems of lower “dimension”. We ask on such
systems whether we can find suitable M{0,...,n−1}, is it
weakly unique (up to embedding), is it unique, is there a
prime one. We can transfer up a positive property from
(P−(m),ℵℓ) to (P−(m − 1),ℵℓ+1), and also negative
ones if 2ℵℓ < 2ℵℓ+1 . A crucial point is the existence of a
strong dichotomy in the cardinality ℵ0, either we have
a prime solution or we have 2ℵ0 pairwise incompatible
ones.
Note that in [Sh 87a], [Sh 87b], we deal with types as
in elementary classes (i.e. as set of formulas) but only
over models or ∪{Mu : u ∈ P−(n)} when 〈Mu : u ∈
P−(n)〉 is so called stable.]

The proofs of Chapter II seem neater than [Sh 87a], [Sh 87b]: because
we are “poorer”, we do not have the special knowledge on the first
λ. So we do not have to look back, we can forget s when advancing
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to s+. This is nice for its purpose but suppose that we have a good
λ+n-frame sn for n < ω, sn+1 being gotten from s+n as above. For
this purpose, forgetting the past costs us the future - we cannot say
anything on models of cardinality ≥ λ+ω. This is rectified in Chapter
III.

So in Chapter III we investigate the Ks+n for every
n large enough, a priori it is fine to do this for n ≥ 756,
and increasing the number as we continue to investi-
gate. But in spite of this knowledge, considerable effort
was wasted on small n, i.e., assuming little on s, and
in III§2-§11 we get the theory of prime, independence,
dimension, regular types and orthogonality we like (see,
maybe, [Sh:F735] on what we really need to assume).

But for going up we need to deal with P−(n)-amal-
gamation - their existence and uniqueness. Then we
can go up, see III§12.

§3 On Good λ-frames

This continues §2 and should be “non-logician friendly” too, though
it may well be more helpful after some understanding/reading of the
material itself.

(A) Getting a good λ-frame

We try below to describe in more details the proof of Theorem 2.20(1)
+ (2) proved in Chapter II, Chapter III, so we somewhat repeat what
was said before in (D) of §2. We have to start by getting good λ-
frames. We could have concentrated on the case λ = ℵ0 and rely
on Chapter I, but as this does not fit the “for non-logicians” we
instead rely on [Sh 576], [Sh 603], that is on Chapter VI and the
non-structure from Chapter VII, at least the “lean” version.

For presentation we cheat a little in the non-structure

part, saying we prove results like İ(µ++,K) = 2µ
++

when K satisfies some “high” property and say 2µ
+

<

2µ
++

. One point is that this relies on using an extra set
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theoretic assumption on µ+: the weak diamond ideal on
µ+ not being µ++-saturated. This is a very weak as-
sumption, it is not clear whether its failure is consistent
when µ ≥ ℵ1 and in any case its failure has high con-
sistency strength, that is, if the ideal is µ++-saturated
then there are inner models with quite large cardinals.
We may eliminate this extra set theoretic assumption
as done in the full version of Chapter VII (see later part
of the introduction). The second point is we prove only

that there are ≥ µunif(2
µ++

, 2µ
+

) many non-isomorphic

models in µ++. This number is always > 2µ
+

(recall we

are assuming 2µ
+

< 2µ
++

), and is equal to 2µ
++

when

µ ≥ iω and conceivably the statement “2µ
+

< 2µ
++

⇒

µunif(2
µ++

, 2µ
+

) = 2µ
++

” is provable in ZFC.
Of course, below LS(K) ≤ λ suffices instead of LS(K) =

ℵ0.

So first assume

⊡1 K is an abstract elementary class, and for simplicity 2λ <

2λ
+

< . . . < 2λ
+n

< 2λ
+n+1

< . . . ,K is categorical in λ, λ+,

has a model in λ++, and İ(λ+2,K) < 2λ
+2

.

We can deduce that Kλ and Kλ+ have amalgamation.
(Why? Otherwise it has many complicated models in λ+, λ++, re-

spectively). Now we consider the class K3,na
λ of triples (M,N, a),

M ≤Kλ
N , a ∈ N\M with the (natural) order, which is (M1, N1, a1)

≤ (M2, N2, a2) iff a1 = a2 (yes! equal) and M1 ≤Kλ
M2 and

N1 ≤Kλ
N2.

We may look at them as representing the “orbit (or type of) a
over M inside N, tpK(a,M,N)”, which is not defined by formulas
but by mappings, (i.e. types are orbits over M) so if M ≤Kλ

Nℓ
and aℓ ∈ Nℓ\M then tpKλ

(a1,M,N1) = tpK(a2,M,N2) iff for some
≤Kλ

-extension N3 of N2 there is a ≤Kλ
-embedding h of N1 into N3

over M which maps a1 to a2, recalling Kλ has amalgamation.
Why do we consider K3,na

λ := {(M,N, a) : M ≤Kλ
N, a ∈ N\M}

instead of S na
Kλ

(M) := {tpKλ
(a,M,N) : (M,N, a) ∈ K3,na

λ }? (The
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types tpKλ
(a,M,N) when a ∈M are called algebraic (and na stands

for non-algebraic) and are trivial, so S na
Kλ

(M) is the rest.) Now
SKλ

(M) is very important and for M1 ≤Kλ
M2, p ∈ SKλ

(M2) we
can define its restriction to M1, p ↾ M1 ∈ SKλ

(M1), with some
natural properties, and this mapping is onto (= surjective) as Kλ
has the amalgamation property. But it is not clear that an in-
creasing sequence of types of length δ < λ+ of types has a bound
(when cf(δ) > ℵ0), see Baldwin-Shelah [BlSh 862]. For K3,na

λ this
holds. That is, if the sequence 〈(Mα, Nα, aα) : α < δ〉 is increas-

ing in K3,na
λ , so α < δ ⇒ aα = a0, then it has a lub: the triple

(∪{Mα : α < δ},∪{Nα : α < δ}, a0).
Some types (and triples) are in some sense better understood:

here the ones representing minimal types; where

(∗) p ∈ S na
Kλ

(M) is minimal if for every ≤Kλ
-extension N of M

the type p has at most one extension in S na
Kλ

(N).

Note that p always has at least one extension in SKλ
(N) by amal-

gamation and we can prove that p has at least one from S na
Kλ

(N) in
our context, and recall that we have discarded the algebraic types,
i.e. those of a ∈M .

It is too much to expect that every p ∈ S na
Kλ

(M) is minimal, but
what about
3.1 Question: Is the class of minimal types dense, i.e., for every
p1 ∈ S na

Kλ
(M1) there are M2 ∈ Kλ and a minimal p2 ∈ S na

Kλ
(M2)

such that M1 ≤Kλ
M2 and p2 extends p1?

As we are assuming categoricity in λ and λ+, this is not unreason-
able and its failure implies having large S na

Kλ
(M). Now §3,§4 relying

on Chapter VII (earlier: [Sh 603] and part of [Sh 576]) are dedicated
to proving that the minimals are dense. (This requires looking more
into the set theoretic side but also the model theoretic one; an ex-
ample of a property which we consider is: given M0 <Kλ

M1 is there
M2,M0 <Kλ

M2 such that M1,M2 can be amalgamated over M0

uniquely?).

So we assume the answer to 3.1 is yes that is make the hypothesis:

3.2 Hypothesis. The answer to question 3.1 is yes.

Paper Sh:E53, Introduction



48 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

Having arrived here, further investigation shows

(∗) S na
Kλ

(M) has cardinality ≤ λ.

Now it is natural to define (M0,M1, a,M3) is a non-forking quadru-
ple or

⋃
s

(M0,M1, a,M3) iff M0 ≤Kλ
M1 ≤Kλ

M3, a ∈ M3\M1 and

tpKλ
(a,M0,M3) is minimal. Recalling Candid, we note that having

chosen the unique non-trivial extension, we certainly have made the
free choice: we have no freedom left on what is tpKλ

(a,M1,M3)!
Now we find a good λ-frame s, with Ks = Kλ and Ks = K[s] will
denote K≥λ = K ↾ {M ∈ K : ‖M‖ ≥ λ} and the set of basic types, is
S bs

Kλ
(M) is the set of minimal p ∈ S na

Kλ
(M). Note that good λ-frame

is defined in II§2, existence in our case is proved in II§3.
More accurately, in II§3 we prove in our present con-

text the existence of a good λ+-frame s with Ks = Kλ+ ,
and we rely on having developed NFλ in [Sh 576, §8].
But something parallel to [Sh 576, §8] is done in II§6
and described below. Moreover, in Chapter VI this is
circumvented at the price of arriving to almost good
λ-frame and then by Chapter VII it is even a good λ-
frame and it converges with the description here.

We assume here that Ks(= Ks

λ) is categorical; in the present con-
text this is reasonable (e.g., as otherwise you restrict yourself to
{M ∈ Ks : M is superlimit}).

(B) The successor of a good λ-frame

Now we look at our good λ-frame s, and the s-basic types in this case
are the minimal types. But we can forget the minimality and just use
the properties required in the definition of a good λ-frame (i.e. we
are in Chapter II). Now as M ∈ Ks ⇒ S bs

s (M) has cardinality ≤ λ,
we can find ≤s-increasing chains 〈Mi : i ≤ λ× δ〉 such that for every
i < λ × δ every p ∈ S bs

s (Mi) is realized in Mi+1. It follows that
Mλ×δ is determined uniquely up to isomorphisms over M0 (seem-
ingly, depending on cf(δ) := Min{otp(C) : C ⊆ δ unbounded}). In
such a case we say that Mλ×δ is brimmed over M0 and eventually
we succeed to prove that the choice of the limit ordinal δ(< λ+) is
immaterial.
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(These are relatives of universal homogeneous, satu-
rated models and special models.)

We define K3,bs
s as the class of triples (M,N, a) such that M ≤Ks

N
and tpKs

(a,M,N) ∈ S bs
s (M). By the axioms of “good λ-frames”

for (M1, N1, a) ∈ K3,bs
s and M2 such that M1 ≤s M2 we can find

M ′
2 ∈ Kλ isomorphic to M2 over M1 and N2 ∈ Kλ, which is ≤K-above

M ′
2 and N1 and tps(a,M ′

2, N2) does not fork over M1. In this case
we say (M1, N1, a) ≤s (M ′

2, N2, a), (or use ≤bs=≤s

bs instead ≤s).

Having existence is nice, but having also uniqueness is better.

So we become interested in K3,uq
s , the class of (M,N, a) ∈ K3,bs

s

satisfying: if (M∗, N∗, a) ∈ K3,bs
s is ≤s-above (M,N, a), then the

way M∗, N are amalgamated over M inside N∗ is unique (up to
common embeddings).

For the first order case this means “tp(N,M ∪ {a})
is weakly orthogonal to M”; (i.e., domination).

3.3 Question: 1) (Density) Do we have “K3,uq
s is dense in K3,bs

s

(under ≤s)”?
2) (Existence) Assume p ∈ S bs

s (M), can we find a,N such that

(M,N, a) ∈ K3,uq
s and tps(M,N, a) = p?

As Ks is categorical, we can prove that density implies existence.

“Have we not been here before?” the reader may wonder. This is
the spiral phenomena: in 3.1 we were interested in a different kind
of uniqueness. Now we prove that the non-density is a non-structure
property and as a token of our pleasure, s with positive answer is
called weakly successful.

3.4 Hypothesis. The answer to 3.3 is yes, enough triples in K3,uq
s

exist.

So we have some cases of uniqueness of the non-forking amal-
gamation. When we (in II§6) close this family of cases of unique-
ness, under transitivity and monotonicity we get a four-place relation
NFλ = NFs on Kλ. Working enough we show that NFs conforms
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reasonably with “M1,M2 and are in non-forking (≡ free) amalga-
mation over M0 inside M3”. We justify the definition showing that
some natural properties it satisfies has at most one solution (for any
good λ-frame).

Now we start to look at models in Ks

λ+ ; in an attempt to find a
good λ+-frame s+ = s(+), a successor of s. There are some mod-
els in Ks

λ+ ; in fact, there is a universal homogeneous one M∗ and
it is unique so if there is a superlimit M ∈ Ks

λ+ then M ∼= M∗.
Now if 〈Mi : i < λ+〉 is ≤Ks

λ+
-increasing Mi

∼= M∗ then ∪{Mi :

i < λ+} ∼= M∗ but it is not clear if, e.g., ∪{Mi : i < ω} ∼= M∗.
So we consider another choice of being a substructure in Ks

λ+ :
M1 ≤∗

λ+ M2 iff M1,M2
∼= M∗ and for some ≤K-representations

(also called ≤K-filtrations) 〈M ℓ
α : α < λ+〉 of Mℓ for ℓ = 1, 2 we have

NFs(M1
i ,M

2
i ,M

1
j ,M

2
j ) for every i < j < λ+.

[We say that 〈Mα : α < λ+〉 is a ≤K-representation
or ≤K-filtration of M ∈ Kλ+ when Mα ∈ Kλ is ≤Kλ

-
increasing continuous for α < λ+ and M = ∪{Mα :
α < λ+}.]

We would love to understand Kλ+ , but this seems too hard, so
presently so we restrict ourselves to isomorphic copies of the model
we do understand, M∗.

This conforms with the strategy of first understand-
ing the quite saturated models.

This helps to prove “M∗ is superlimit” but with a price: we have
to consider the following question.

3.5 Question: Assume 〈Mi : i ≤ δ〉 is ≤∗
λ+ -increasing continuous, δ a

limit ordinal < λ++ and i < δ ⇒Mi
∼= M∗ and i < δ ⇒Mi ≤

∗
λ+ N

and N ∼= M∗. Does it follow that Mδ ≤
∗
λ+ N?

This is an axiom of an abstract elementary class, so we know that
it holds for (Kλ+ ,≤K) but not necessarily for ≤∗

λ+ . This is another
dividing line: if the answer is no, we get a non-structure theorem. If
the answer is yes, we call s successful.
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3.6 Hypothesis. s is successful.
We go on and prove that s+ is a good λ+-frame. Well, the reader

may wonder: all this work and you just end up where you have
started, just one cardinal up? True, but if s is a good λ-frame then
Ks

λ++ 6= ∅, so for a successful s, applying this to the good λ+-frame
s+ we get Kλ+3

s

6= ∅. Having “arrived to the same place one cardinal

up” is enough to prove part (1) of Theorem 2.20!
More elaborately, under the assumptions of 2.20 there is a good

λ+-frame s1 with Ks1 ⊆ Ks. Second, if we prove by induction on
k = 1, . . . , n−1 that there is a good λ+k-frame sk with Ksk ⊆ Ksk−1 ,
the induction step is what we have proved. For k = n− 1, “Ksk has
a model in λ++

sk
” means that Kλ+n+1 6= ∅ as asked for in 2.20(1). All

this is Chapter II, so its proof proceeds by “forgetting” the previous
s when advancing s+ and λ+

s . Next assume

⊡2 s is a λ-good frame, İ(λ+n,Ks) < 2λ
+n

and 2λ
+n

< 2λ
+n+1

for n < ω.

We now define by induction on n a good λ+n-frame s+n = s(+n). Let
s0 = s and having defined s+n, it has to be successful by the previous
argument so s+(n+1) := (s+n)+ is a well defined good λ+(n+1)-frame.
We can prove by induction on n that Ks(+n) ⊆ K and m < n ⇒

Ks(+n) ⊆ Ks(+m).
Note that if Ks is the class of (A,E) where |A| ≥ λ and E is an

equivalence relation on A then Ks
+n

is the class of (A,E) ∈ Ks such
that E has ≥ λn equivalence classes each of cardinality ≥ λ+n.

(C) The beauty of ω successive good λ-frames

What about part (2) of 2.20, i.e., models in cardinalities ≥ λ+ω? The
connection between s+n, s+(n+1) is not strict enough. Now though we

have Ks
+n+1

⊆ Ks
+n

, we do not know whether ≤s(+n+1) is ≤K[s(+n)]↾

Ks(+n+1) and whether Ks(+n+1) = K
s(+n)
λ+n+1 . We can overcome the

first problem. We show that if s is so called good+ then ≤s(+)=≤K[s]↾

Ks(+) (and s is good+ “usually” holds e.g., if s = t+, t is good+ and

successful, see III§1). In this case 〈Ks
+n

: n < ω〉 is decreasing

and even 〈Ks
+m

λ+n : m ≤ n〉 is decreasing in m, but the orders agree
when well defined. The crux of the matter is in the end (III§12,
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relying on what we prove earlier in Chapter III), to show that for

some s+ω, Ks+ω = ∩{K
s(+n)
λ+ω : n < ω} and s+ω is so called beautiful,

so at last we shall arrive to “the promised land” from ⊠(c) from
the beginning of §2(C). But this comes only at the very end. In
particular before starting we have to know much on the Ks(+n)’s. It
is enough to prove any of the nice things we like to know on Ks(+n)

just for “n < ω large enough”. A priori we may have from time to
time to say “if s has the desirable properties (A)1, . . . , (A)ℓ−1 then
s+n has (A)ℓ (as we are assuming all s+n(n < ω) are successful),
and so when we prove a desirable property X we prove it for s+n

when n ≥ nX”. Originally we were using n ≥ 2 or n ≥ 3, but try to
use little, say “s is weakly successful” (which means n is 0 or 1) and
lately try just to finish.

Note also that without loss of generality s is type-full, i.e. S bs
s (M)

= S na
s (M), as we can use our knowledge on NFs to define when

“p ∈ S na
s (N) does not fork over M ≤s N” and prove that t is a

good λ-frame when we define t by Kt = Ks,S bs
t = S na

s , and non-
forking as above. As we can replace s by t the “w.l.o.g.” above is
justified.

Note that the Ks(+n) are categorical, but this is deceptive: Ks(+n)

is, but K
s(+n)
λ+n+1 is not necessarily categorical. So in order to eventually

understand the categoricity spectrum in III§2 we sort out when is
Ks

λ+ categorical (for a successful good λ-frame s).

We define several (variants of) s is uni-dimensional, prove the
equivalence with “Ks is categorical in λ+

s ” and show that (for suc-
cessful s) s is uni-dimensional iff s+ is uni-dimensional (so this applies
to s+n and s+(n+1) when well defined). So in the case we have cho-

sen, s+, s+2, ... are uni-dimensional and K
s(+n)
λ+n = Ks

λ+n so in the
beautiful (see below) case it implies categoricity in all µ > λ.

We now review Chapter III in more detail. We define and investi-
gate “J is a set of elements in N\M which is independent over M”

in symbols (M,N,J) ∈ K3,bs
s . The idea is that if 〈Mi : i ≤ α〉 is

≤s-increasing, ai ∈ Mi+1\Mi and tps(ai,Mi,Mi+1) does not fork

over Mi for i < α, then (M0,Mα, {ai : i < α}) ∈ K3,bs
s and even

(M0,M
′, {ai : i < α}) ∈ K3,bs

s if M ∪{ai : i < α} ⊆M ′ ≤s Mα. But
we have to prove that this notion has the expected properties, e.g.,
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the finite character (see III§5).

We know about (M,N, a) ∈ K3,uq
s , but also important is (M,N, a)

∈ K3,pr
s : the triple is prime, i.e., such that if (M,N ′, a′) ∈ K3,bs

s and
tps(a,M,N) = tps(a′,M,N ′) then there is a ≤s-embedding of N
into N ′ over M mapping a to a′. We prove existence in enough
cases (mainly for s+) and eventually define and investigate also “N

is prime over M ∪ J” when (M,N,J) ∈ K3,bs
s and J is maximal.

Next we develop orthogonality: assume pℓ ∈ S bs
s (M) for ℓ = 1, 2.

Then p1 ⊥ p2 when: if (M,N, a) ∈ K3,uq
s and p1 = tps(a,M,N)

then p2 has a unique extension in Ss(N). This means that there
is no connection, no interaction between p1 and p2. It implies that

(M,N, {ai : i < α}) ∈ K3,bs
s , i.e., is independent iff for each j <

α, (M,N, {ai : i < α, pj ⊥ pi}) is independent where pi = tps(ai,M,
N). We prove that this behaves reasonably; in particular, is pre-
served by non-forking extensions. We similarly define p ⊥M (when
M ≤s N, p ∈ S bs

s (N)). Because of the categoricity (and s = t+) we

can prove K3,pr
s = K3,uq

s .

In those terms we can characterize when (M,N, a) ∈ K3,bs
s has

uniqueness (i.e., ∈ K3,uq
s ), under the assumption that there are

primes. It holds iff there is a decomposition 〈(Mi, aj) : i ≤ α, j < α〉

of (M,N), i.e., M0 = M,Mα = N, (Mi,Mi+1, ai) ∈ K3,pr
s such that

a0 = a and i ∈ (0, α) ⇒ tps(ai,Mi,Mi+1) ⊥ M0. We can define
regular types such that: for M ≤s N and regular p ∈ S bs

s (M) the
dependence relation on IM,N = {a ∈ N : a realizes p} behaves as
independence in vector spaces (for others it behaves like sets of finite
sequences from a vector space), and regular types are dense (i.e.,
if M <s N then for some a ∈ N\M, tps(a,M,N) is regular). So
a ∈ IM,N depends on J ⊆ IM,N iff there are M1 ≤Ks

N1 such that
M ≤Ks

M1, N ≤Ks
N1,J ⊆M1, the triple (M,N,J) has uniqueness

and tps(a,M1, N1) forks over M . It has local character (if a ∈ IM,N
depends on J then it depends on some finite subsets of it), mono-
tonicity, transitivity (if a ∈ IM,N depends on J′ ⊆ IM,N and each
b ∈ J′ depends on J ⊆ IM,N then a depends on J) and satisfies the
exchange lemma. Then we can define (and prove the relevant prop-
erties) when “{Mi : i < α} is independent over M inside N” and
we can deal similarly with “〈Mη : η ∈ T 〉 is independent inside N”
when T ⊆ ω>(λs) is closed under initial segments.
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We may now consider the main gap in this context (but mostly
this is delayed). From some perspective this is ridiculous: Ks is
categorical in λs. But we analyze {N : M∗ ≤s N} for a fixed M∗.
(In this still there is some degeneration, but we can analyze models
from Ks

λ+ , in this case there is no real difference between what we do
and the actual main gap theorem. And if s is beautiful, see below,
we can do the same for Ks).

So if M ≤s N (assuming, e.g. s is a successful λ-frame with
primes, less is needed), we can find a decomposition 〈Nη, aν : η ∈
T , ν ∈ T \{<>}〉 of N which means

⊛ (a) T ⊆ ω>(λs) is non-empty closed under initial segments

(b) Nη ≤s N

(c) ν ⊳ η ⇒ Nν ≤s Nη

(d) (Nη, Nηˆ<α>, aηˆ<α>) ∈ K3,pr
s if ηˆ < α >∈ T

(e) {aηˆ<α> : ηˆ < α >∈ T } is independent in (Mη, N)
and is

a maximal such set (with no repetitions, of course)

(f) N<> = M ,

(g) if ∪{Nη : η ∈ T } ⊆ N ′ <s N, p = tps(a,N ′, N) ∈
S bs

s (N ′)
then p±Nη for some η ∈ T

(h) if ν ⊳ η ⊳ ηˆ〈α〉 ∈ T then tps(aηˆ〈α〉, Nη, Nηˆ〈α〉)⊥Nν .

3.7 Question: Is always N prime and/or minimal over ∪{Nη : η ∈
T }?

The answer is yes iff whenever T = {<>,< 0 >,< 1 >} the an-
swer is yes and we then say that s have the so-called NDOP. More-
over, its negation DOP is a strong non-structure property: for every
R ⊆ λ × λ we can find NR ∈ Ks

λ++ and āα, b̄α ∈ λs(NR) for α < λ
such that some condition (preserved by isomorphism) is satisfied by
āαˆb̄β in NR iff (α, β) ∈ R. Also the NDOP holds for s+ iff it holds

for s when s is successful from DOP. We can get İ(λ++
s , Ks) = 2λ

++
s

and more.

∗ ∗ ∗
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How does all this help us to go up? That is, we assume s+n is well
defined and successful for every n (equivalently s is n-successful for
every n) and we would like to understand the models in Ks(+ω), (so
they have cardinality ≥ λ+ω and are close to being λ+ω-saturated).
The going up is done in the framework of stable P(−)(n)-system
of models 〈Mu : u ∈ P−(n)〉,P−(n) = {u : u ⊂ {0, . . . , n − 1};
explained below. This is done in III§12 (which should be helpful for
completing [Sh 322]).

In short, to understand existence/uniqueness of models (and of
amalgamation) in λ, we consider such properties for some n-dimen-
sional systems of models in every large enough µ ≤ λ. So for n =
0, 1, 2 we get the original problems but understanding the n-th case
given in λ is intimately connected to understand the (n+ 1)-case for
every large enough µ < λ. So for λ = µ+ we get a positive property
for (µ+, n) from one for (µ, n+ 1).

Why do we need such systems? Consider λ∗ ≥ µ∗ ≥ λs and we try
to analyze models of cardinality ∈ [µ∗, λ∗] by pieces of cardinality
µ∗ or µ′ ∈ [µ∗, λ∗) (in the end we consider µ∗ = λ+ω

s , but most
of the analysis is for the case λ∗, µ∗ ∈ [λs, λ

+ω
s )). We can analyze

a model M from K of cardinality λ0 ∈ (µ∗, λ∗] by a ≤K-increasing
continuous sequence 〈Mα : α < λ0〉, µ∗ ≤ ‖Mα‖ = ‖Mα+1‖ < λ0,
with M = ∪{Mα : α < λ0}; so it suffices to analyze Mα+1 over
Mα for each α. We can analyze M1 over M0 for a pair of models
M0 ≤K M1 of the same cardinality which we call λ1 when λ1 > µ∗ by
an (≤K)-increasing continuous sequence of pairs 〈(M0

i ,M
1
i ) : i < λ1〉

where ‖M0
i ‖ = ‖M0

i+1‖ = ‖M1
i ‖ = ‖M1

i+1‖ < λ1, and we have to

analyze M1
i+1 over 〈M0

i ,M
1
i ,M

0
i+1) for each i. In the next stage we

have 8 = 23 models and have to analyze the largest over the rest.
Eventually we arrive to the case that all of them have cardinality µ∗.

In short, we have to consider suitable P(n)-systems 〈Mu : u ∈
P(n)〉 where P(n) = {u : u ⊆ {0, . . . , n−1}}, u ⊆ v ⇒Mu ≤Ks Mv

and ‖Mu‖ = ‖M0‖ ∈ [µ∗, λ∗].

We would like to analyze M{0,...,n−1} over ∪{Mu : u ∈ P−(n)}
where P−(n) = P(n)\{0, . . . , n − 1}. Such analysis of a “big”
system of small models naturally help proving cases of uniqueness,
e.g., uniqueness of non-forking-amalgamations suitably defined. So
if for µ∗ we have positive answers for every n, then this holds for
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every λ ∈ [µ∗, λ∗].

But we are interested as well in existence proofs. (Note that in the
proof we have to deal with uniqueness, existence (and some relatives)
simultaneously.) For the existence we need for a given suitable sys-
tem 〈Mu : u ∈ P−(n)〉 to complete it by finding M{0,...,n−1}. Well,
but what are the suitable systems? Those are defined, by several
demands including u ⊆ v ⇒ Mu ≤Ks Mv (and many more restric-
tions which hold if the sequence of approximations chosen above
are “fast” enough). We called them the stable ones. For each n, k
we can ask on s+n some questions on P(k)-systems: mainly ver-
sions of existence and uniqueness. A major point is that failure of
uniqueness for λ+n,P(m+1) implies failure for λ+n+1,P(m) (using

2λ
+n

< 2λ
+n+1

). But to get strong dichotomy we have to use sys-
tems which have the right amount of brimmness. At last we have a
glimpse of “paradise”, we can define when s is n-beautiful essentially
when it satisfies all the good properties on stable P(m)-systems for
m ≤ n. In the end we prove that s+n is (n+ 2)-beautiful, i.e. has all
the desired properties for m ≤ n + 2 but for this we use sn+ℓ being
successful for ℓ ≤ n.

Having all this we can prove that s+ω has all the good properties
(but we have to work on changing the brimmness demands) so is
ω-beautiful. This now can be lifted up, in particular Ks(+ω) has
amalgamation and the types tpK[s(+ω)](a,M,N) are µ-local for µ =
λ+ω (in fact µ = λ is enough) where

(∗) K an abstract elementary class with amalgamation, is µ-local
when for M ≤K N and a1, a2 ∈ N we have:
tpK(a1,M,N) = tpK(a2,M,N) iff for every M ′ ≤K M of
cardinality µ, tpK(a2,M

′, N) = tpK(a2,M
′, N).

Now for a beautiful s, in particular we have amalgamation/stable
amalgamation, prime models over a triple of models in stable amal-
gamation. In particular we can prove the main gap. However, here
we just present the characterization of the categoricity spectrum (see
2.20(2)) and delay the rest.
On Chapter IV and Chapter VII see §4(B).
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§4 Appetite comes with eating

Here we mainly review open questions, Chapter IV, Chapter VII
and further relevant works which could have been part of this book
but were not completely ready; so decided not to wait because my
record of dragging almost finished books is bad enough even without
this case. Note that Chapter IV use infinitary logics and most of
Chapter VII has largely set theoretic character hence does not fit
§2,§3.

But we begin by looking at what has been described so far has
not accomplished. (By this division we end up dealing with some
issues more than once.)

(A) The empty half of the glass:

(a) Categoricity in one large enough λ:
We have here concentrated on going up in cardinality, (assuming

that in ω successive cardinals there are not too many models without
even assuming the existence of models of cardinality ≥ λ+3!). We

use weak instances of GCH (2λ < 2λ
+

) and prove a generalization
of [Sh 87a], [Sh 87b]. But originally, and it still seems a priori more
reasonable, probably even more central case should be to start as-
suming categoricity in some high enough cardinal. There are several
approximations in Makkai-Shelah [MaSh 285], Kolman-Shelah [KlSh
362], [Sh 472] using so called “large cardinals”.

(Compact cardinals in the first, measurable cardinal
in the second and third).

(b) Main Gap:
If we assume that for some “large enough” λ, we do not have

“many very complicated models”, we expect to be able to show the
class is “managable”, hence has a structure theory. But the proofs
described above, do not do that job. Not only do we usually start
with categoricity assumptions, in our main line here we learn what-
ever we learn only on the λ+ω-brimmed models. However, just on
the class of models, i.e., on the original K, we know little. This is not
surprising as, e.g. for elementary classes with countable vocabulary,
the solution of  Los conjecture predates the main gap considerably.
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(c) Superstability:

Having claimed that the superstability is a central dividing lines,
it is unsatisfactory to arrive at it here from categoricity assumptions
only.

That is, the detailed building of apparatus parallel to supersta-
bility is built on examples which are mostly categorical. (But if
ψ ∈ Lω1,ω or K is an abstract elementary class which is PCℵ0

and

2ℵ0 + İ(ℵ1,K) < 2ℵ1 this is not so: by II§3 there is a good ℵ0-frame
s whose ℵ1-saturated models belongs to Modψ but s is not necessar-
ily uni-dimensional (which is the “internal” form of categoricity)).
Probably the main weakness of beautiful λ-frames as a candidate to
being the true superstable is the lack of non-structure results which
are not “local”, in addition to just failure of categoricity.

(d) ℵ1-compact structures:

We may like to relax the definition of abstract elementary class
to investigate classes of structures satisfying some kind of countable
compactness, i.e., any reasonable countable set of demands has a
solution. This will include “ℵ1-saturated models” of an elementary
class (even with countable vocabulary) also complete metric spaces
but those are closer to elementary classes.

What we lose is closure under unions of ω-chains. For elemen-
tary classes this corresponds to ℵ1-saturated models (more generally,
LS(K)+-saturated) and we have stable instead of superstable (the
class of complete metric spaces is closer to elementary classes). We
have considerable knowledge on them but much less than on super-
stable ones. In particular, even for elementary classes with countable
vocabulary the main gap is not known.

(e) Some unaesthetic points in Theorem 2.17

One of them is that from [Sh 576] we get (in II§3) a good λ+-
frame and not a good λ-frame. Second, we use here for simplicity in
the non-structure results an extra set theoretic assumption, though
a very weak one.

Namely, the weak diamond ideal on λ+ is not λ++-
saturated. The negation of this statement, if consistent,
has high consistency strength. In fact, my attempts
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to derive good λ-frames from [Sh 576] or dealing with
weaker versions had delayed Chapter II considerable.

(f) Lack of Counter-examples:
By Hart-Shelah [HaSh 323], Shelah-Villaveces [ShVi 648] there are

some examples for the categoricity spectrum being non-trivial. Still
in many theorems on dividing lines it is not proved that they are
real, i.e., that there are examples.

(g) Natural Examples:
This bothers me even less than clause (f) but for many investiga-

tors the major drawback is lack of “natural examples”, i.e., finding
classes which are already important where the theory developed on
the structure side throw light on the special case. (E.g., for sim-
ple theories, pseudo finite fields; for ℵ0-stable theories, differentially
closed fields of characteristic zero; for countable stable theories, dif-
ferentially closed fields of characteristic p > 0 (and even separably
closed fields of charactertistic p > 0)).

(B) The full half and half baked:
Some works throw some light on some of the points from (A), in

particular Chapter IV, Chapter VI, Chapter VII. Concerning (a), in
Chapter IV we assume an abstract elementary class K is categorical
in large enough µ and we investigate Kλ for λ < µ which are carefully
chosen, specifically we assume

(∗)λ (a) cf(λ) = ℵ0 which means λ = Σ{λn : n < ω} for some
λn < λ

(b) λ = iλ which means that for every κ < λ not only
2κ < λ but iκ < λ

where iα is defined inductively by iterating exponen-
tiation, i.e.,

defining inductively iα = ℵ0 + Σ{2iβ : β < α}

or even

(∗∗)λ (a) + (b) + λ is the limit of cardinals λ′ satisfying (∗)λ.
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Are such cardinals large? Not in the set theoretic sense (i.e., provably
in ZFC there are such cardinals), they are in some sense analog to the
tower function in finite combinatorics. Ignoring “few” exceptional µ,
a result of Chapter IV is the existence of a superlimit model in Kλ;
moreover the main theorem IV.4.10 of Chapter IV says that there is
a good λ-frame s with Ks ⊆ K; the proof uses infinitary logics. Also if
the categoricity spectrum contains arbitrarily large cardinals then for
some closed unbounded class C of cardinals, [λ ∈ C∧cf(λ) = ℵ0 ⇒ K

categorical in λ]. It seems reasonable that this can be combined with
Chapter III, but there are difficulties.

Having IV.4.10 may still leave us wondering whether we have more
tangible argument that we have advance. So we go back to earlier
investigations of such general contexts. Now Makkai-Shelah [MaSh
285] deal with T ⊆ Lκ,ω categorical in some µ big enough than κ+|T |
and develop enough theory to prove that the categoricity spectrum
in an end-segment of the cardinals starting not too far, but, with
two extra assumptions.

First, κ is a strongly compact cardinal, this is natural as our
problem is that Lκ,ω lack many of the good properties of first order
logic, and for strongly compact cardinals, some form of compactness
is regained (even for T ⊆ Lκ,κ), still very undesirable.

Second, we should assume that µ is a successor cardinal, this
exhibit that the theory we build is not good enough. Now Kolman-
Shelah [KlSh 362] + [Sh 472] partially rectify the first problem: κ is
required just to be a measurable cardinal (instead strongly compact),
still measurable is not a small cardinal. Moreover, there is an extra,
quite heavy price - we deal with the categoricity spectrum just below
µ and say nothing on it above so the categoricity spectrum is proved
to be an interval instead of an end-segment. A parallel work [Sh
394] replace measurability by the assumption that our K an abstract
elementary class with amalgamation; a major point there is trying
to deal with the theory problem of locality of types (and see Baldwin
[Bal0x]). Note that in both works we get amalgamation of K below
µ.

We address both cases together, assuming only that our abstract
elementary class K has the amalgamation property below µ. We
try to eliminate those two model theoretic drawbacks: starting from
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a successor cardinal, and looking only below it, in IV.7.12, using
Chapter III. For this we prove that suitable cases of failure of non-
structure imply cases of (< µ, κ)-locality for saturated models (which
means if p ∈ SK(M),M ∈ K<µ is saturated then 〈p ↾ N : N ≤K

M, ‖N‖ = κ〉 determine p). We also show that every M ∈ KN is
quite saturated, using a generalization of the stability spectrum for
linear orders from IV§6.

Finally, we conclude (also for abstract elementary class) K with

amalgamations assuming enough cases of 2λ < 2λ
+

we can char-
acterize the categoricity spectrum (eliminating earlier restriction to
successor cardinals). This is done showing Chapter III applies, so we

need the existence of enough λ, such that 〈2λ
+n

: n < ω〉 is strictly
increasing.

So we have eliminated the two thorny model theoretic problems
and we eliminated the use of large cardinals but we use this weak
form of GCH, we intend to deal with it in [Sh 842].

Considering clause (b) from (A), the main gap, it seems far ahead.
A more basic short-coming is that in III§12 we get “s+ω is λ+ω

s -
beautiful” and “for beautiful µ-frame t we can prove the main gap”
but this is just for, essentially, the class of λ+ω

s -saturated models.

Concerning (A)(c), superstability, [Sh 842] suggests “K is (λ, κ)-
solvable” as the true generalization of superstable (remembering su-
perstability is schizophrenic in our context); this is weaker than cat-
egoricity and we use this assumption in Chapter IV when not hard.
Essentially it means:

⊡ for some vocabulary τ1 ⊇ τK of cardinality κ and ψ ∈ Lκ+,ω(τ1), ψ
has a model of cardinality ≥ i(2κ)+ and ([M |= ψ ∧ ‖M‖ =
λ⇒M ↾ τ is superlimit in K].

A major justification for the parallelism with superstability is that
for elementary classes this is equivalent to superstability.

But in [Sh 842], III§12 needs to be reworked hopefully toward the
needed continuation.

We can look at results from [Sh:c] which were not regained in
beautiful λ-frames. Well, of course, we are far from the main gap
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for the original K ([Sh:c, XIII]) and there are results which are ob-
viously more strongly connected to elementary classes, particularly
ultraproducts. This leaves us with parts of type theory: semi-regular
types, weight, P-simple9 types, “hereditarily orthogonal to P” (the
last two were defined and investigated in [Sh:a, V,§0 + Def4.4-
Ex4.15], [Sh:c, V,§0,pg.226,Def4.4-Ex4.15,pg.277-284]). The more
general case of (strictly) stable classes was started in [Sh:c, V,§5]
and [Sh 429] and much advanced in Hernandes [He92].

Note that “a type q is p-simple (or P-simple)” and “q is hered-
itarily orthogonal to p (or P)” are essentially the10 “internal” and
“foreign” in Hrushovski’s profound works.

Some years ago [Sh 839] started to deal with this to some extent.
No problem to define weight, but for having “simple” types we need
to be somewhat more liberal in the definition of abstract elementary
class - allow function symbols of infinite arity (= number of places)
while preserving the uniqueness of direct limit. In the right form
which includes the case of ℵ1-saturated models of a stable theory, we
generalize what was known (for elementary classes); see more in 4.9
and before.

9The motivation is for suitable P (e.g. a single regular type) that on the

one hand stp(a, A)±P ⇒ stp(a/E, A) is P-simple for some equivalence relation
definable over A and on the other hand if stp(ai, A) is P-simple for i < α then

Σ{w(ai, A)∪{aj : j < i}) : i < α} does not depend on the order in which we list

the ai’s. Note that P here is P there.
10Note, “foreign to P” and “hereditarily orthogonal to P are equivalent. Now

(P = {p} for ease)

(a) q(x) is p(x)-simple when for some set A, in C we have q(C) ⊆ acl(A ∪
S

pi(C))

(b) q(x) is p(x)-internal when for some set A, in C we have q(C) ⊆ dcl(A∪
p(C)).

Note

(α) internal implies simple

(β) if we aim at computing weights it is better to stress acl as it covers more

(γ) but the difference is minor and

(δ) in existence it is better to stress dcl, also it is useful that {F ↾ (p(C) ∪
q(C) : F an automorphism of C over p(C)∪ Dom(p)} is trivial when q(x)
is p-internal but not so for p-simple (though form a pro-finite group).
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Lastly, considering (A)(e), to a large extent this is resolved as a
product of redoing and extending the non-structure theory of [Sh
576] in Chapter VII.

In view of I§5 it is natural to weaken the stability demand to M ∈
Ks ⇒ |S bs

s (M)| ≤ λ+
s as otherwise we restrict the class of models

(i.e. in II§3 getting semi-good frames are introduced and investigated
by Jarden-Shelah [JrSh 875]. Concerning clause (A)(f), Baldwin-
Shelah [BlSh 862] expands our knowledge of examples considerably.
Concerning clause (A)(g) see Zilber [Zi0xa], [Zi0xb].

In [Sh:F709] may try to axiomatize the end of I§5 and connect it
to good ℵ0-frames, [Sh:E54] will say more on Chapter II. In Chapter
VII we also deal with the positive theory of almost good frame and
weak versions of K3,uq

s . Also [Sh:F735] will consider redoing Chapter
III under weaker assumptions and getting more and [Sh:F782] will
continue Chapter IV, e.g. how the good λ-frame from IV§4 fit Chap-
ter III. Also [Sh:F888] will try to continue [Sh:E56], and [Sh:F841]
to continue Chapter VII.

(C) The white part of the map:

So we would really like to know
4.1 Problem: What can be the categoricity spectrum Cat-SpecK =
{λ : K is categorical} for an abstract elementary class ?

This seems too hard at present and involves independence results.
Note also that easily (by known results, see [Ke70] or see ([Sh:c,
VII,§5]) for any α < ω1 for some abstract elementary class K (with
LS(K) = ℵ0) we have: λ ∈ Cat-SpecK ⇔ λ > iα (just let ψ =
ψ1 ∨ ψ2 ∈ Lω1,ω(τ), ψ1 has a model of cardinality λ iff λ ≤ iα and
ψ2 says that all predicates and function symbols are trivial).

Considering the history it seemed to me that the main question
on our agenda should be

4.2 Conjecture: If K is an abstract elementary class then either every
large enough λ belongs to Cat-SpecK or every large enough λ does
not belong to Cat-SpecK (provably in ZFC).

After (or you may say if) this is resolved positively we should consider

4.3 Conjecture. 1) If K is an a.e.c. with LS(K) = χ then
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(a) Cat-SpecK includes or is disjoint to [iω(χ),∞)
or even better

(a)+ similarly for [λω,∞) where λ0 = χ, λn+1 = min{λ : 2λ >
2λn}, λω = Σ{λn : n < ω}

probably more realistic are

(b) similarly for [i(2χ)+ ,∞), or at least

(c) similarly (i1,1(χ),∞) or at least (i1,ωω (χ),∞), see IV§0.

This will be parallel in some sense to the celebrated investigations of
the countable models for (first order) countable T categorical in ℵ1.

Further questions are: (recall ⊡ above)
4.4 Question: What can be {(λ, κ) : Kλ is (λ, κ)-solvable, λ >>
κ >> LS(K)}?

Question 4.4 seems to us to be more profound than the categoricity
spectrum as solvability is a form of superstability. We conjecture
that the situation is as in 4.3(c); note that solvability seems close to
categoricity and we have a start on it (Chapter IV, [Sh 842]).

Still more easily defined (but a posteri too early for us) is:
4.5 Question: 1) What can be {λ : Kλ has a superlimit model}?
2) Similarly for locally superlimit (see IV.0.4).
3) For suitable Φ what can be {λ: if I is a linear order of cardinality
λ then EMτ(K)(I,Φ) is pseudo superlimit}? see IV.0.5(3).

We conjecture it will be a variant of 4.3 but will be harder and
even:

4.6 Conjecture. If λ > i1,1(LSK) (or λ > i1,ω(LSK), then K has a
superlimit model in λ iff K is (λ,LSK)-solvable.

We now return to (D, λ)-homogeneous models. Of course, for special
D’s we may be interested in some special classes of models, but not
necessarily the elementary sub-models of C. Of course, parallely to
the first order case, the main gap for them is an important problem
(e.g. the class of existentially closed models of a universal first order
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theory is a natural and important case). But the most natural main
case seems to me the “C is (D, κ)-sequence homogeneous” context:

4.7 Problem: Prove the main gap for the class of (D, κ)-sequence-
homogeneous M ≺ C; considering what we know, we can assume
κ ≥ κ(D), see [Sh 3] (and §1(B)) and concentrate on κ ≥ ℵ1 and we
would like to prove that

(a) either the number of such models of cardinality ℵα = ℵ
<κ(D)
α +

λ(D) is small, i.e., ≤ iγ(D)(|α|) for11 some γ(D) not de-

pending on α or the number is 2ℵα (where λ(D) is the first
“stability cardinal” of D).

(b) γ(D) does not depend on κ.

A parallel of “the main gap for the class of ℵε-saturated models
of a first order T” in this context is dealt with in Hyttinen-Shelah
[HySh 676], and a parallel to the “main gap for the class of model of a
totally transcendental first order T” in Grossberg-Lessman [GrLe0x],
and surely there is more to be said in those cases but in the problem
above, even the case κ = ℵ1,C saturated is not covered.

We hope eventually to find a stability theory for the “countably com-
pact abstract elementary class” strong enough to prove as a special
case the main gap for the ℵ1-saturated models of elementary classes
(i.e., clause (d) of (A)) as said above maybe [Sh 839] help.

The reader may wonder: if not known for elementary classes why
you expect more from a general frame? Of course, we do not know,
but:

4.8 Thesis: The better closure properties of the abstract frames
should help us, being able to, e.g., make induction on frames.

Hence
4.9 Thesis: Some problems on elementary classes are better dealt

11of course, iγ(D)(|α|) may be ≥ 2ℵα in which case this says little; this

consistently occurs for every α ≥ ω. But if G.C.H. holds, and if we ask on
İĖ(λ,−) for the class we get clear cut results
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with in some non-elementary contexts (close to abstract elementary
class), as if we would like during the proof to consider some derived
other classes, those contexts give you more freedom. In particular
this may apply to

(a) main gap for |T |+-saturated models (the parallel of (D, λ)-
sequence-homogeneous above in 4.7 and (d) of (A) and dis-
cussion on it in (B))

(b) the main gap for the class of models of T for an uncountable
first order T .

Note that [Sh 300], Chapter II has tried to materialize this, but that
program is not finished.

4.10 Problem: Similar questions for the number of pairwise non-
elementarily embeddable (D, λ)-sequence homogeneous models.

In the case of the class of models (not the class of ℵ1-saturated
models) for countable first order theories, those two problems were
solved together.

There are many other interesting questions in this context. An
important one, of a different character is:
4.11 Problem: 1) [Hanf number for sequence homogeneous]

Given a cardinal κ, what is the first λ such that: if T is a com-
plete first order theory, D ⊆ D(T ) = {tp(ā, ∅,M) : M a model of
T, ā ∈ ω>M} and there is a (D, λ)-sequence-homogeneous model,
then for every µ > λ there is a (D, µ)-sequence homogeneous model.
2) Similarly for {κ: in K we have amalgamation for models of cardi-
nality < κ (and κ ≥ LS(K) > ℵ0}).
3) Similarly for (D, λ)-model homogeneous models (see V.B§3).

Toward this we may define semi-beautiful classses as in III§12
(or [Sh 87a], [Sh 87b]) replacing the stable P−(n)-systems by an
abstract notion, omitting uniqueness and the definability of types
and retaining existence. Semi-excellent classes seem like an effec-
tive version of having amalgamation, so it certainly implies it; such
properties may serve as what we actually have to prove to solve the
problem 4.11 above. We may have to use more complicated frames:
say classes Kn so that M ∈ Kn is actually a P−(n)-system of models
from K. (See more in [Sh 842]).
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Recall that a class K of structures with fixed vocabulary τ is called
universal if it is closed under isomorphisms, and M ∈ K if and only if
every finitely generated submodel of M belongs to K. So not every
elementary class is a universal class, but many universal classes are
not first order (e.g., locally finite groups). This investigation leads
(see [Sh 300], Chapter II) to classes with an axiomatized notion of
non-forking and much of [Sh:c] was generalized, sometimes changing
the context (a case of Thesis 4.9), but, e.g., still:

4.12 Problem: Prove the main gap for the universal context.

4.13 Question: Can we in [Sh 576], i.e. Chapter VI weaken the
“categorical in λ+” to “has a superlimit model in λ+”?

See on this hopefully [Sh:F888].

4.14 Question: Do we use a parallel of III§12 with existential side for
serious effect? (See more in [Sh 842]).

§5 Basic knowledge

(A) What knowledge needed and dependency of the chapters

The chapters were written separately, hence for better or for worse
there are some repetitions, hopefully helping the reader if he likes to
read only parts of this book.

Chapter III depends on Chapter II and Chapter VI depends some-
what, e.g. on II§1, but in other cases there are no real dependency.

In fact, reading Chapter II, Chapter III requires little knowledge
of model theory, they are quite self-contained, in particular you do
not need to know Chapter I, Chapter II; this apply also to Chapter
II and to Chapter VI. Of course, if a claim proves that the axioms
of good λ-frames are satisfied by the class of models of a sentence ψ
in a logic you have not heard about, it will be a little loss for you
to ignore the claim (this occurs in II§3). Still much of the material
is motivated by parallelism to what we know in elementary (= first
order) contexts. Let me stress that neither do we see any merit in not
using large model theoretic background nor was its elimination an a
priori aim, but there is no reason to hide this fact from a potential
reader who may feel otherwise.
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Also the set theoretic knowledge required in Chapter II, Chapter
III is small; still we use cardinals and ordinals of course, induction on
ordinals, cofinality of an ordinal, so regular cardinals, see here below
for what you need. A priori it seemed that somewhat more is needed
in the proof of the non-structure theorems, i.e., showing a class with
a so-called “non-structure property” has many, complicated models
so cannot have a structure theory. But we circumvent this by quoting
Chapter VII, or you can say delaying the proof. That is, we carry the
construction enough to give a reasonable argument. So the reader
can just agree to believe; similarly in Chapter II and in Chapter VI.

In Chapter VII itself, we rely somewhat on basics of II§1, and
in the applications (VII§4) we somewhat depend on the relevant
knowledge and for VII§5-§8 we assume the basics of II§2. Also
VII§9,§10,§11 are set theoretic, mainly use results on the weak dia-
mond which we quote.

The situation is different in Chapter I. Still you can read §1, §2, §3
of it ignoring some claims but in §4,§5 the infinitary logics Lω1,ω(Q)
and its relatives and basic theorems on them are important.

For Chapter IV you need basic knowledge of infinitary logics and
Ehenfeucht-Mostowski models, and in IV§4 (the main theorem) we
use the definition of good λ-frame from II§2.

(B) Some basic definitions and notation
We first deal with model theory and then with set theory.

5.1 Definition. 1) A vocabulary τ is a set of function symbols
(denoted by G,H, F ) and relation symbols, (denoted by P,Q,R) (=
predicates), to each such symbol a number of places (= arity) is
assigned (by τ) denoted by arityτ (F ), arityτ (P ), respectively.
2) M is a τ -model or a τ -structure for a vocabulary τ means that M
consists of:

(a) its universe, |M |, a non-empty set

(b) PM , the interpretation of a predicate P ∈ τ and PM is an
arityτ (P )-place relation on |M |

(c) FM , the interpretation of a function symbol F ∈ τ and FM

is an arityτ (F )-place function from |M | to |M | in the case of
arity 0, FM is an individual constant.
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3) We agree τ is determined by M and denote it by τM . If τ1 ⊆ τ2,M2

a τ2-model, then M1 = M2 ↾ τ1, the reduct is naturally defined.
4) The cardinality of M, ‖M‖, is the cardinality, number of elements
of the universe |M | of M . We may write a ∈ M instead of a ∈ |M |
and 〈ai : i < α〉 ∈M instead i < α⇒ ai ∈M , i.e., ā ∈ α|M |.
5) Let M ⊆ N mean that

τM = τN , |M | ⊆ |N |, PM = PN ↾ |M |, FM = FN ↾ |M |

for every predicate P ∈ τM and for every function symbol F ∈ τM .
6) If N is a τ -model and A is a non-empty subset of |M | closed
under FN for each function symbol F ∈ τ , then N ↾ A is the unique
M ⊆ N with universe A.

5.2 Definition. 1) K denotes a class of τ -models closed under iso-
morphisms, for some vocabulary τ = τK .
2) K denotes a pair (K,≤K); K as above (with τK := τK) and ≤K

is a two-place relation on K closed under isomorphisms such that
M ≤K N ⇒M ⊆ N .
3) f is a ≤K-embedding of M into N when for some N ′ ≤K N, f is
an isomorphism from M onto N ′.
4) K is categorical in λ if K has one and only one model up to
isomorphism of cardinality λ. If K = (K,≤K) we may say “K is
categorical in λ”.

5.3 Definition. 1) For a class K (or K) of τK-models

(a) Kλ = {M ∈ K : ‖M‖ = λ}

(b) Kλ = (Kλ,≤K↾ Kλ)

(c) İ(λ,K) = İ(λ,K) = |{M/ ∼=: M ∈ Kλ}| so K (or K) is

categorical in λ iff İ(λ,K) = 1

(d) İĖ(λ,K) = sup{µ: there is a sequence 〈Mα : α < µ〉 of
members of Kλ such that Mα is not ≤K-embeddable into
Mβ for any distinct α, β < µ}. But writing İĖ(λ,K) ≥ µ we
mean the supremum is obtained if not said otherwise.
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(e) M ∈ K is (≤K, λ)-universal if every N ∈ Kλ can be ≤K-
embedded into it. If λ = ‖M‖ we may write ≤K-universal.
If K is clear from the context we may write λ-universal or
universal (for K).

We end the model-theory part by defining logics (this is not needed
for Chapter II, Chapter III, Chapter VI and Chapter II except some
parts of Chapter V.A).

5.4 Definition. A logic L consisting of

(a) function L (−) (actually a definition) giving for every vocab-
ulary τ a set of so-called formulas ϕ(x̄), x̄ a sequence of free
variables with no repetitions

(b) |=L , satisfaction relation, i.e., for every vocabulary τ and
ϕ(x̄) ∈ L (τ) and τ -model M and ā ∈ ℓg(x̄)M we have
“M |=L ϕ[ā]” or in words “M satisfies ϕ[ā]”; holds or fails.

As for set theory

5.5 Definition. 1) A power = number of elements of a set, is iden-
tified with the first ordinal of this power, that is a cardinal. Such
ordinals are called cardinals, ℵα is the α-th infinite ordinal.
2) Cardinals are denoted by λ, µ, κ, χ, θ, ∂ (infinite if not said other-
wise).

5.6 Definition. 0) Ordinals are denoted by α, β, γ, δ, ε, ζ, ξ, i, j, but,
if not said otherwise δ denotes a limit ordinal.
1) An ordinal α is a limit ordinal if α > 0 and (∀β < α)[β + 1 < α].
2) For an ordinal α, cf(α), the cofinality of α, is min{otp(u) : u ⊆ α
is unbounded}; it is a regular cardinal (see below), we can define the
cofinality for linear orders and again get a regular cardinal.
3) A cardinal λ is regular if cf(λ) = λ, otherwise it is called singular.
4) If λ = ℵα then λ+ = ℵα+1, the successor of λ, so λ++ =
ℵα+2, λ

+ε = ℵα+ε.

Recall:
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5.7 Claim. 1) If λ is a regular cardinal, |Ut| < λ for t ∈ I and
|I| < λ then ∪{Ut : t ∈ I} has cardinality < λ.
2) λ+ is regular for any λ ≥ ℵ0 but λ+δ is singular if δ is a limit
ordinal < λ (or just < λ+δ), and, obviously, ℵ0 is regular but e.g.
ℵω is singular, in fact ℵδ > δ ⇒ ℵδ is singular, but the inverse is
false.

Sometimes we use (not essential)

5.8 Definition/Claim. 1) H (λ) is the set of x such that there is
a set Y of cardinality < λ which is transitive (i.e. (∀y)(y ∈ Y ⇒ y ⊆
Y ) and x belongs to λ.
2) Every x belongs to H (λ) for some x.
So for some purpose we can look at H (λ) instead of the universe of
all sets.

§6 Index of symbols12

a member of a model

A set of elements of model

A a “complicated” model

b member of a model

B set of members of models

B a “complicated” model

c member of model (also individual constant)

c colouring, mainly Chapter VII

C set or elements of models or a club

C club of [A]<λ,

C a complicated model, or a monster

d member of model

d expanded I-system, III§12; u-free rectangle or triangle in
Chapter VII

12some will be used only in subsequent works; in particular concerning forcing
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D diagram; set of (< ω)-types in the first order sense realized
in a model, Chapter I, Chapter V.B

D a function whose values are diagrams, Chapter I, Chapter
V.B

D diagram for model homogeneity, Chapter I, so set of isomor-
phism types of models, also Chapter V.B

D a set of D’s, Chapter V.B

D filter

Dλ club filter on the regular cardinal λ > ℵ0

e element of a model or a club

e expanded I-system (used in continuations), III§12; u-free rec-
tangle or triangle in Chapter VII

E a club

E filter

E an equivalence relations, (e.g. EM , E at
M in II.1.9 for definition

of type and EK,χ, E mat
K,χ in V.B§3)

f function (e.g., isormorphism, embedding usually)

f function (Chapter VII in (M̄, J̄, f) ∈ K3,qt
u , also in II§5,

(M̄, f̄), (M̄, J̄, f))

F function symbol

F amalgamation choice function (Chapter VII also see [Sh 576,
§3])

F function (complicated, mainly it witnesses a model being
limit, I§3)

g function

g witness for almost every (M̄, J̄, f) see VII.1.22–VII.1.26

G function symbol

a game

h function

h witnesses for almost every (M̄, J̄, f) ∈ Kqt
u , see VII.1.22–

VII.1.26

H function symbol
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H in H (λ), rare here see 5.8

i ordinal/natural number

I linear order, partial order or index set

İ İ(λ,K), numbers on non-isomorphic models;

İĖ(λ,K)” (see Chapter I), also İ(K), see Chapter VII

I set of sequences or elements from a model, in particular:
IM,N = {c ∈ N : tps(c,M,N) ∈ S bs

s (M)}, see Chapter II,
Chapter III

Ǐ[λ] a specific normal ideal, see I§0, marginal here

I ideal

I predense set in a forcing P, very rare here

j ordinal/natural number

J linear order, index set, Chapter I

J set of sequences or elements from a model

J ideal

J , predense set in a forcing P, very rare here

k natural number

K class of model of a fix vocabulary τK, Kλ is {M ∈ K : ‖M‖ =
λ}

K is (K,≤K), usually abstract elementary class

K3,x
s for x = {bs,uq,pr,qr,vq,bu}, appropriate set of triples (M,N, a)

or (M,N, I), see Chapter II, Chapter III

K3,na
λ for triples (M,N, a), see Chapter VI

K3,x
u set of triples (M,N,J) ∈ FRℓ

u, see Chapter VII

ℓ natural number

L language (set of formulas, e.g., L (τ) but also subsets of L (τ)
which normally are closed under subformulas and first order
operations), used in Chapter I.

LS Löwenheim-Skolem numbers, mainly LS(K) = LSK

L logic, i.e., a function such that L (τ) is a language for vocab-
ulary τ (but also a language mainly L a fragment of Lλ+,ω,

Paper Sh:E53, Introduction



74 N. INTRODUCTION: CLASSIFICATION THEORY FOR A.E.C.

i.e., a subset closed under subformulas and the finitary oper-
ations)

≺L is used for M ≺L N iff M ⊆ N and for every ϕ(x̄) ∈ L (τM)
and ā ∈ ℓg(x̄)M we have M |= ϕ[ā] ⇔ N |= ϕ[ā]

L first order logic and Lλ,κ,L
ℓ
λ,κ, see Chapter I so ϕ(x̄) ∈ Lλ,κ

has < κ free variables

L the constructible universe

m natural number

m an I-system in III§12

M model

M complicated object, see VI§3,§4

n natural number

n an I-system in III§12, for continuation and in Chapter V.F

N model

N the natural numbers

p type

p member of P, a forcing condition, very rare here

P predicate

P power set, family of sets,

P family of types, Chapter III

P forcing notion, very rare here

q type

q forcing condition, very rare here

Q predicate

Q a quantifier written (Qx)ϕ, see Chapter I, if clear from the
context means Qcar

≥ℵ1

Qcar
≥κ the quantifier there are ≥ κ many

Q the rationals

r type

r forcing condition, very rare here

R predicate
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R reals

s member of I, J

s frame

S set of ordinals, stationary set many times

S SK(M) is a set of types in the sense of orbits, S bs
s (M) the

basic types (there are some alternatives to bs)

S or SαL(A,M): set of complete (L, α)-types over M , so a set
of formulas, used when we are dealing with a logic L , may
use Sα

L
(A,M)

S or S(M) is a set of pseudo types, are neither set of formulas
nor orbits, but formal non-forking extension (for continua-
tions, see [Sh 842])

t member of I, J

tp type as set of formulas

tp type as an orbit, an equivalence class under mapping

t type function

t frame

T first order theory, usually complete

T a tree

u a set

u a nice construction framework, in Chapter VII

unif in µunif(λ, 2
<λ), see I.0.5 or VII.0.4(6)

U a set

U a set

v a set

V a set

V universe of set theory

w a set

W a set (usually of ordinals)

W a class of triples (N, M̄, J̄); see III§7

wd in µwd(λ) see I§0, VII§0
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WDmIdλ the weak diamond ideal, see I.0.5

x variable (or element)

x complicated object, in Chapter VII such that is a sequence
〈(M̄α, J̄α, fα) : α < α(∗)〉

X set

y variable

y like x

Y set

Y a high order variable (see I§3)

z variable

Z set

Z the integers

Greek Letters:

α ordinal

β ordinal

γ ordinal

Γ various things; in Chapter VI a set of models or types

δ ordinal, limit if not clear otherwise

∂ cardinal

∆ set of formulas (may be used for symmetric difference)

ǫ ordinal

ε ordinal

ζ ordinal

η sequence, usually of ordinals

θ cardinal, infinite if not clear otherwise

ϑ a formula, very rare

Θ set of cardinals/class of cardinals

ι ordinal (sometimes a natural number)

κ cardinal, infinite if not clear otherwise
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λ cardinal, infinite if not clear otherwise

λ(K) is the L.S.-number of an abstract elementary class (≥ |τK|
for simplicity), rare

Λ set of formulas, used in Chapter IV, Chapter I

µ cardinal, infinite if not said otherwise

ν sequence, usually of ordinals

ξ ordinal

Ξ a complicated object

π permutation

Π product

ρ sequence, usually of ordinals

̺ sequence, usually of ordinals

σ a term (in a vocabulary τ)

Σ sum

τ vocabulary (so L (τ),L(τ),Lλ,µ(τ) are languages)

Υ ordinal and other objects

ϕ formula

Φ blueprint for EM-models

χ cardinal, infinite if not said otherwise

ψ formula

Ψ blueprint for EM-models

ω the first infinite ordinal

Ω a complicated object

Paper Sh:E53, Introduction



ANNOTATED CONTENTS

Annotated Content for Ch.N (E53):
Introduction

Abstract

§1 Introduction for model theorists,

(A) Why to be interested in dividing lines,

(B) Historical comments on non-elementary classes,

§2 Introduction for the logically challenged,

(A) What are we after?

[We first explain by examples and then give a full definition of
an a.e.c. (abstract elementary class), central in our context,
K = (K,≤K), with K a class of models (= structures), ≤K

a special notion of being a submodel, it means having only
the quite few of the properties of an elementary class (like
closure under direct limit). Such a class is (ModT ,≺) with
M ≺ N meaning “being an elementary submodel”; but also
the class of locally finite groups with ⊆ is O.K. Second, we
explain what is a superlimit model (meaning mainly that a
≤K-increasing chain of models isomorphic to it has a union
isomorphic to it (if not of larger cardinality). We can define
“an a.e.c. is superstable” if it has a superlimit model in
every large enough cardinality. For first order class this is an
equivalent definition. A stronger condition (still equivalent
for elementary classes) is being solvable: there is a PCλ,λ-
class, i.e the class of reducts of some ψ ∈ Lλ+,ω which, in large
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enough cardinality, is the class of superlimit models; similarly
we define being (µ, λ)-solvable. Of course we investigate the
one cardinal version (hoping for equivalent behaviour) in all
large enough cardinals, etc. We state the problem of the
categoricity spectrum and the solvability spectrum. We finish
explaining the parallel situation for first order classes and
explain “dividing lines”.]

(B) The structure/non-structure dichotomy,

[We define the function İ(λ,K) counting the number of non-
isomorphic models from K of cardinality λ, define the main
gap conjecture, phrase and discuss some thesis explaining
an outlook and intention. We then explain the main gap
conjecture and the case it was proved and list the possible
reasons for having many models. We then discuss dividing
lines and their relevance to our problems.]

(C) Abstract elementary classes,

[We shall deal with a.e.c., good λ-frames and beautiful λ-
frames. The first is very wide so we have to justify it by
showing that we can say something about them, that there is
a theory; the last has excellent theory and we have to justify
it by showing that it arises from assumptions like few non-
isomorphic models (and help prove theorems not mentioning
it); the middle one needs justifications of both kinds. In this
part, we concentrate on the first, a.e.c., explain the meaning
of the definition, discuss examples, phrase our opinion on
its place as a thesis, and present two theorems showing the
function İ(λ, κ) is not “arbitrary” under mild set theoretic
conditions.]

(D) Toward good λ-frames,

[We explain how we arrive to “good λ-frame s” mentioned
above, which is our central notion; it may be considered a
“bare bone case of superstable class in one cardinal”. We
choose to concentrate on one cardinal λ, so Ks = Kλ. Also
we may assume Kλ has a superlimit model, and that it has
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amalgamation and the joint embedding property, so only in
λ! Amalgamation is an “expensive” assumption, but amalga-
mation in one cardinal is much less so. This crucial difference
holds because it is much easier to prove amalgamation in one
cardinality (e.g. follows from having one model in λ (or a
superlimit one) and few models in λ+ up to isomorphism
and mild set theoretic assumptions). We are interested in
something like “M1,M2 are in non-forking (= free) amal-
gamation over M0 inside M3”. But in the axioms we only
have “an element a and model M1 are in non-forking amalga-
mation over M0 inside M3, equivalently tps(a,M1,M3) does
not fork over M0”, however the type is orbital, i.e. defined
by the existence mapping and not by formulas. There are
some further demands saying non-forking behave reasonably
(mainly: existence/uniqueness of extensions, transitivity and
a kind of symmetry). So far we have described a good λ-
frame. Now we consider a dividing line - density of the class
of appropriate triples (M,N, a) with unique amalgamation.

Failure of this gives İ(λ++, Ks) is large if 2λ < 2λ
+

< 2λ
++

,
from success (i.e. density) we derive the existence of non-
forking amalgamation of models in Ks. After considering a
further dividing line we get s+, a good λ+-frame such that

Ks
+

µ ⊆ Ks
µ for µ ≥ λ+. All this (in Chapter II) gives the

theorem: if 2λ < 2λ
+

< . . . < 2λ
+n

, LS(K) ≤ λ,K categorical
in λ, λ+, has a model in λ+2 and has not too many models
in λ+2, . . . , λ+n then K has a model in λ+n+1. If this holds
for every n, we get categoricity in all cardinals µ ≥ λ. For
the first result (from Chapter II) we just need to go from s

to s+, for the second (from Chapter III) need considerably
more.]

§3 Good λ-frames,

(A) getting a good λ-frame,

[We deal more elaborately on how to get a good λ-frame
starting with few non-isomorphic models in some cardinals.

If K is categorical in λ, λ+ and 2λ < 2λ
+

we know that K
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has amalgamation in λ. Now we define the (orbital) type
tpKλ

(a,M,N) for M ≤K N, a ∈ N . Instead of dealing

with SKλ
(M), the set of such types, we deal with K3,na

λ =
{(M,N, a) : M ≤Kλ

N and a ∈ N\M}, ordered natu-
rally (fixing a!) The point is of dealing with triples, not
just types, is the closureness under increasing unions, so ex-
istence of limit. Now we ask: are there enough minimal
triples? (which means with no two contradictory extensions).
If no, we have a non-structure result. If yes, we can deduce
more and eventually get a good λ-frame. Here we consider

K3,bs
s = {(M,N, a) : M ≤Ks

N, tp(a,M,N) ∈ S bs
s

(M), i.e.
is a basic type} (this is part of the basic notions of a good
λ-frame s).]

(B) the successor of a good λ-frame,

[We elaborate the use of successive good frames in Chapter
II. If s is a good λ-frame, we investigate “N is a brimmed
extension of M in Ks = Ks

λ”, it is used here instead of satu-
rated models, noting that as Ks

<λ may be empty we cannot

define saturated models. We now consider the class K3,uq
s

of triples (M,N, a) ∈ K3,bs
s such that if M ≤K M+ then

M+, N can be ≤K-amalgamated uniquely over M as long as
the type of a over M+ does not fork over M . If the class of

uniqueness triples (M,N, a) is not dense (in K3,bs
s ) we get a

non-structure result. Otherwise (assuming categoricity in λ,
a soft assumption here) we can define NFs, non-forking amal-
gamation of models. We then investigate Ks

λ+ , more exactly
the models there which are saturated. Either we get a non-
structure result or our frame s is successful and then we get
a successor, a good λ+-frame, s+ = s(∗). Now Ks(+) ⊆ Ks

λ+ ,
but ≤s(+) is only ⊆≤Ks↾ Ks(+).]

(C) the beauty of ω successive good λ-frames,

[Here we describe Chapter III. Assume for simplicity that
letting s0 = s, sn+1 = (sn)+ our assumption means that:
each s+n is a (well defined) successful good λ+n-frame. We
first try to understand better what occurs for each sn (at
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least when n is not too small). But to understand models of
larger cardinalities we have to connect better the situation in
the various cardinals, for this we use (λ,P(−)(n))-systems of
models, particularly stable ones and in general properties for
(λ, n) are connected to properties of (µ, n+1) for every large
enough µ < λ.]

§4 Appetite comes with eating

(A) The empty half of the glass,

[Here we try to see what is lacking in the present book.]

(B) The full half and half baked,

[Here we review Chapter IV which deals with abstract el-
ementary classes which are catogorical (or just solvable) in
some large enough µ. We also review Chapter VII which
do the non-structure in particular eliminating the “weak di-
amond ideal on λ+ is not λ++-saturated” (but also do some
positive theory on almost good λ-frames). We also discuss
further works, which in general gives partial positive answer
to the lackings in the previous subsection.]

(C) The white part of the map,

[We state conjectures and discuss them.]

§5 Basic knowledge,

(A) knowledge needed and dependency of chapters,

(B) Some basic definitions and notation,

[We review the basic set theory required for the reader and
then review the model theoretic notation. Some parts need
more - mainly Chapter I, Chapter IV.]

§6 Symbols,
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Annotated Content for Ch.I (88r):
A.e.c. near ℵ1

I.§0 Introduction

[We explain the background, the aims and what is done con-
cerning the number of models of ψ ∈ Lω1,ω(Q) in ℵ1 and
in ℵ2; here Q is the quantifier there are uncountably many.
Also several necessary definitions and theorems are quoted.
We justify dealing with a.e.c. (abstract elementary classes).
The original aim had been to make a natural, not arbitrary
choice of the context (ψ ∈ Lω1,ω or ψ ∈ Lω1,ω(Q)?, see [Sh
48]). The net result is a context related to, but different
than, the axioms of Jónson for the existence of universal ho-
mogeneous models. One difference is that the notion of a
submodel is abstract rather than a submodel; this forces us
to formalize properties of being submodels and decide which
we adopt, mainly AxV, (if M1 ⊆ M2 are ≤K-submodels of
N then M1 ≤K M2). Another serious difference is the omis-
sion of the amalgamation property. So they are more like
a class of models of ψ ∈ Lω1,ω, recalling (as a background)
that amalgamation and compactness are almost equivalent
as properties of logics but formulas are not involved in the
definition here.]

I.§1 Axioms and simple properties for classes of models

[We define the a.e.c. and deal with their basic properties, the
classical examples being, of course, (ModT ,≺), T a first order
theory, but also (Modψ,≺sub(ψ)), ψ ∈ Lλ+,ω(τ). Surprisingly
(but not complicatedly) it is proved that every such class K

can be represented as a PCλ,2λ , i.e. the class of τK-reducts
of models of a first order T omitting every type p ∈ Γ, where
|Γ| ≤ 2λ and the vocabulary has cardinality ≤ λ. So though
a wider context than Mod(ψ), ψ ∈ Lλ+,ω, it is not totally de-
tached from it by the representation theorem just mentioned
above. A particular consequence is the existence of relatively
low Hanf numbers.]
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I.§2 Amalgamation properties and homogeneity

[We present (D, λ)-sequence homogeneous and (D, λ)-model
homogeneous, various amalgamation properties and basic prop-
erties, in particular the existence and uniqueness of homoge-
neous models. Those are important properties but here they
are usually unreasonable to assume; we have to console our-
selves in proving them under strong assumptions (like cate-
goricity) and after working we get the weak version.]

I.§3 Limit models and other results

[We introduce and investigate (several variants of) “limit
models in Kλ”, the most important one is superlimit. Ig-
noring the case “M∗ is <K-maximal”, M∗ is superlimit in Kλ

means that if 〈Mi : i ≤ δ〉 is ≤Kλ
-increasing continuous, and

i < δ ⇒ Mi
∼= M∗ then Mδ

∼= M∗ and another formulation
is “Kλ ↾ {M : M ∼= M∗} is a λ-a.e.c.”. Note that if K is cat-
egorical in λ, any M ∈ Kλ is trivially superlimit. The main
results use this to investigate the number of non-isomorphic
models. We get amalgamation in Kλ if K has superlimit (or

just so called λ+-limit) models in λ, 1 ≤ İ(λ+, K) < 2λ
+

and

2λ < 2λ
+

. We at last resolve the Baldwin problem in ZFC: if
ψ ∈ Lω1,ω(Q) is categorical in ℵ1 then it has a model in ℵ2.
In fact, the solution is in considerable more general context.]

I.§4 Forcing and Categoricity

[We assume K is a PCℵ0
-a.e.c. and it has at least one but

less than the maximal number of models in ℵ1, we would
like to deduce as much as we can on K or at least on some
K′ = K ↾ K ′, which is still an a.e.c. and has models of
cardinality ℵ1. Toward this we build a “generic enough”
model M ∈ Kℵ1

by an ≤K-increasing ω1-sequence of mod-

els in Kℵ0
so define N 

ℵ1

K
ϕ(ā) for suitable N ∈ Kℵ0

, i.e.
countable. This is reasonable for ϕ a formula in Lω1,ω(τK)
or even Lω1,ω(Q)(τK). Now using Lω1,ω1

seems too strong.
But we can do it over a fix N ∈ Kℵ0

, so N ≤K M . What
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does this mean? We have a choice: should we fix N point-
wise (so adding an individual constant for each c ∈ N) or
as a set (so adding a unary predicate always interpreted as
N). The former makes sense only if 2ℵ0 < 2ℵ1 as is the case
in §5, so in the present section we concentrate on the sec-
ond. By the “not many models in ℵ1” we deduce that fixing
N , for a “dense” family of M satisfying N ≤K M ∈ Kℵ0

we have: (M,N) 
ℵ1

K
decides everything. So we know what

type pā each ā ∈M realizes in any generic enough M+ when
M ≤K M+ ∈ Kℵ1

. But in general the sequence ā does
not realize the type pā in M itself (e.g., this phenomena
necessarily occurs if the formula really involves Q). So we
say ā materializes the type in (M,N) and we play between
some relevant languages (the logics are mainly L−1

ω1,ω
which

is without Q,L0
ω1,ω

= Lω1,ω(Q), the vocabulary is τ = τK or

τ+0 = τK ∪ {P}, P predicate for N ; and more cases). If we
restrict the depth of the formulas by some countable ordinal,
then the number of complete types is countable. We have to
work in order to show that the number of complete Lω1,ω(Q)-
types realized in quite generic models in Kℵ1

is ≤ ℵ1 (recall-
ing that there may be Kurepa trees). We end commenting
on further more complicated such results and the relevant
logics.]

I.§5 There is a superlimit model in ℵ1

[Here we add to §4 the assumption 2ℵ0 < 2ℵ1 hence we prove
amalgamation of Kℵ0

(or get a non-structure result). Some-
one may say something like §1-§3 are conceptual and rich,
I.§4-§5 are technicalities. I rather think that §1,§2,§3 are
the preliminaries to the heart of the matter which is §4 and
mainly §5. Assuming properties implying non-structure re-
sults in (ℵ1 and) ℵ2 fails, we understand models in Kℵ0

and
Kℵ1

better. In particular we get for countable N that the
number of types realized in some generic enough M ∈ Kℵ1

,
so called D(N) which ≤K-extend N , is ≤ ℵ1, and we can
restrict ourselves to subclasses with strong notion of elemen-
tary submodel such that each D(N) is countable. A central
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question is the existence of amalgamations which are stable,
definable in a suitable sense of countable models trying to
prove symmetry, equivalently some variants and eventually
uniqueness. The culmination is proving the existence of a
superlimit model in ℵ1, though this is more than necessary
for the continuation (see II§3).]

I.§6 Counterexamples

[Some of our results (in previous sections) were gotten in
ZFC, but mostly we used 2ℵ0 < 2ℵ1 . We show here that this
is not incidental. Assuming MAℵ1

, there is an a.e.c. K which
is PCℵ0

, categorical in ℵ0 and in ℵ1, but fails the amalgama-
tion property. We can further have that it is axiomatized by
some ψ ∈ Lω,ω(Q), and we deal with some related examples.]

Annotated Content for Ch.II (600):
Categoricity in a.e.c.: going up inductive steps

II.§0 Introduction

[We present the results on good λ-frames and explain the re-
lationship with [Sh 576] that is Chapter VI and with Chapter
I. We then suggest some reading plans and some old defini-
tions.]

II.§1 Abstract elementary classes

[First we recall the definition and some claims. In particular
we define types (reasonable over models which are amalgama-
tion basis), and we prove some basic properties, in particular,
model homogeneity - saturativity lemma II.1.14 which relate
realizing types of singleton elements to finding copies of mod-
els. We also define “N is (λ, θ)-brimmed over M”, etc., and
their basic properties. Then we prove that we could have re-
stricted our class K to cardinality λ without any real loss, i.e.,
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any λ-a.e.c. can be blown up to an a.e.c. with LS-number λ
and any a.e.c. with LS-number ≤ λ can be restricted to car-
dinality λ and as long as we ignore the models of cardinality
< λ, this correspondence is one to one (see II.1.23, II.1.24);
reading those proofs is a good exercise in understanding what
is an a.e.c.]

II.§2 Good frames

[We introduce the central axiomatic framework called “good
λ-frames”, s = (Ks,≤s,NFs). The axiomatization gives the
class Ks of models and a partial order ≤s on it, forming
an a.e.c., Ks = (Ks,≤s), a set S bs

s (M) of “basic” types over
any model M ∈ Ks, the ones for which we have a non-forking
notion. A (too good) example is regular types for superstable
first order theories. We also check how can the non-forking
of types be lifted up to higher cardinals or fewer models; but
unlike the lifting of λ-a.e.c. in §1 in this lifting we lose some
essential properties; in particular uniqueness and existence.
We end noting some implications between axioms of good
λ-frames.]

II.§3 Examples

[We prove here that cases treated in earlier relevant works
fit the framework from §2. This refers to [Sh 576], Chapter I
and also to [Sh 87a], [Sh 87b], [Sh 48].]

II.§4 Inside the frame

[We prove some claims used later, in particular stability in
λ, sufficient condition for Mδ being (λ, cf(δ))-brimmed over
M0 for a chain 〈Mi : i ≤ δ〉 and the uniqueness of the (λ, ∗)-
brimmed model overM0 ∈ Kλ. We deal (for those results but
also for later uses) with non-forking rectangles and triangles.
An easy (but needed in the end) consequence is that Ks

λ++

is not empty.]
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II.§5 Non-structure or some unique amalgamations

[We prove that we have strong non-structure in Ks

λ++ or for

enough triples (M0,M1, a) ∈ K3,bs we have unique amalga-
mation of M1,M2 over M0 when M0 ≤K M2 ≤K M3,M0 ≤K

M1 ≤K M3 and we demand that tp(a,M2,M3) does not fork
over M0. Naturally, we use the framework of [Sh 576, §3]
or better Chapter VII and we do the model theoretic work
required to be able to apply it. More explicitly, from the
non-density of such triples with uniqueness we prove a non-
structure theorem in λ++. A major point in proving this

dichotomy is to guarantee that
⋃

α<δ

Mα ∈ Kλ+ is saturated,

when δ < λ++ and each Mα ∈ Kλ+ is saturated at least
when 〈Mα : α < δ〉 appears in our constructions. For this
we use Mα which is ≤K-represented by 〈Mα

i : i < λ+〉 so

Mα =
⋃

i<λ+

Mα
i and 〈〈Mα

i : i < λ+〉 : α < λ++〉 is used with

extra promises on non-forking of types, which are preserved
in limits of small cofinality. Note that we know that in Ks

λ+

there is a model saturated above λ but we do not know that
it is superlimit.]

II.§6 Non-forking amalgamation in Kλ

[Our aim is to define the relation of non-forking amalga-
mations for models in Kλ and prove the desired properties
promised by the name. What we do is to start with the cases
which §5 provides us with a unique amalgamation modulo
non-forking of a type of an element, and “close” them by it-
erations arriving to a (λ, θ)-brimmed extension. This defines
non-forking amalgamation in the brimmed case, and then by
closing under the submodels we get the notion itself. Now we
have to work on getting the properties we hope for. To clar-
ify, we prove that “a non-forking relation with the reasonable
nice properties” is unique. A consequence of all this is that
we can change s retaining Ks such that it is type-full, i.e.,
every non-algebraic type (in SKλ

(M) is basic for s. (This is
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nice and eventually needed.)]

II.§7 Nice extensions in Kλ+

[Using the non-forking amalgamation from §6, we define nice
models (Knice

λ+ ) and “nice” extensions in λ+(≤∗
λ+), and prove

on them nice properties. In particular Kλ+ with the nice
extension relation has a superlimit model - the saturated one.]

II.§8 Is Knice
λ+ with ≤∗

λ+ a λ+-a.e.c.?

[We prove that Knice
λ+ = (Knice

λ+ ≤∗
λ+) is an a.e.c. under an ad-

ditional assumption but we prove that the failure of this extra
assumption implies a non-structure theorem. We then prove
that there is a good λ+-frame t with Kt = Knice

λ+ and prove
that it relates well to the original s, e.g. we have locality of
types.]

II.§9 Final conclusions

[We reach our main conclusions (like II.0.1) in the various
settings.]

Annotated Content for Ch.III (705):
Toward classification theory
of good λ-frames and a.e.c.

III.§0 Introduction

III.§1 Good+ Frames

[We define when a good λ-frame is successful (III.1.1) and
when it is good+ (III.1.3). There are quite many good+

frames s: the cases of good λ-frames we get in II§3 all are
good+ and further, if s is successful good λ-frame (not neces-
sarily good+!) then s+ is good+ (see III.1.5, III.1.9). More-
over, if s is a good+ successful λ-frame, then s+ = s(+) sat-
isfies ≤s(+)=≤K[s]↾ Ks(+) (see Definition III.1.7 and Claim
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III.1.8), and we can continue and deal with s+ℓ = s(+ℓ), (see
III.1.14). We define naturally “s is n-successful” and look
at some basic properties. We end recalling some things from
Chapter II which are used often and add some. We prove lo-
cality for basic types and types for s(+), see III.1.10, III.1.11.
In III.1.21 we show that if M1 ≤s M2 are brimmed and the
type p2 ∈ S bs

s
(M2) does not fork over M1 then some isomor-

phism from M2 to M1 maps p2 to p2 ↾ M1, similarly with
< λ types. In III.1.16-III.1.20 we essentially say to what we
use on NFs, assuming s is weakly successful; this is the part
most used later.]

III.§2 Uni-dimensionality and non-splitting

[We are interested not only in the parallel of being super-
stable but also of being categorical, which under natural as-
sumptions is closely related to being uni-dimensional. We
now define (the parallel of) uni-dimensional, more exactly
some variants including non-multi-dimensionality (in III.2.2,
III.2.13). We then note when our examples are like that; we
show that s(+) satisfies such properties when (even iff) s does
(III.2.6, III.2.10, III.2.17 and more in III.2.12). Of course we
show the close connection between uni-dimensionality and
categoricity in λ+ (see III.2.11). Next we deal with mini-
mal types and with good λ-frames for minimals (III.2.13 -
III.2.17). We then look at splitting, relevant ranks and con-
nection to non-forking (from III.2.18 on). We also know what
occurs if we make s type-full (III.2.7) and we then consider
frames where the basic types are the minimal types (III.2.15
- III.2.17). We then recall splitting.]

III.§3 Prime triples

[We define K3,pr
s , the family of prime triples (M,N, a), the

family of minimal triples and “s has primes” (Definition III.3.2).
We look at the basic properties (III.3.5,III.3.8), connection

to K3,uq
s (III.3.7) and x-decompositions for x = pr,uq,bs in

Definition III.3.3. In particular if s has primes then any pair
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M <s N has a pr-decomposition (see III.3.11). We prove the
symmetry for “the type of aℓ overM3−ℓ does not fork overM0

wherever M3−ℓ is prime over M0 ∪{a3−ℓ}” (III.3.9, III.3.12);
note that the symmetry axiom say “for some M3−ℓ . . . ”.]

III.§4 Prime existence

[We deal with good+ successful λ+-frame s. We recall the
definition of ≤bs and variants, and prove that s+ has primes
(III.4.9). For this we prove in III.4.9 that a suitable condition

is sufficient for (M,N, a) to belong toK3,pr
s(+), proving it occurs

(in III.4.3), and more in III.4.5, III.4.14, III.4.20. We use
for it ≤bs (defined with the variants <∗

bs, <
∗∗
bs in III.4.2), the

relevant properties in III.4.6. We then investigate more on
how properties for s

+ reflects to λs, for NFs(+) in III.4.15 also
in III.4.13(2). Also we consider other sufficient conditions for
III.3.9’s conclusion in III.4.13(1). Lastly, III.4.20 deals with
the examples.]

III.§5 Independence

[We define IM,N and define when J ⊆ IM,N is independent in
(M,N), (see Definition III.5.2). In III.5.4 + III.5.5 + III.5.6
+ III.5.8(2) we prove fundamental equivalences and proper-
ties, includingM0-based pr/uq-decomposition inN/ofN and
that “independent in (M,N)” has finitary character. We also

define “N is prime over M ∪J” denoted by (M,N,J) ∈ K3,qr
s

(Definition III.5.7). We note existence and basic properties
(claim III.5.8). We show embedding existence (III.5.9(1))
and how this implies NF (see III.5.9(2)). We show that “nor-
mally” independence satisfies continuity (III.5.10) and reflect
from s+ to s (III.5.11). Using this we prove the basic claims
on dimension for non-regular types, (see III.5.12, III.5.13 +
III.5.14).

We generalizeK3,uq
s , the class of uniqueness triples (M,N, a),

to K3,vq
s , the class of uniqueness triples (M,N,J),J inde-

pendent in (M,N), Definition III.5.15(1). We then define
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when (M,N,J) ∈ K3,vq
s is thick (Definition III.5.15) and

prove their basic properties, in particular K3,qr
s ⊆ K3,vq

s (see

III.5.16, III.5.16(3)). When s = t+ we “reflect” K3,qr
s to cases

of K3,vq
t

(see III.5.22). Lastly, every triple in K3,bs
s can be

extended to one in K3,vq
s (with the same J, Claim III.5.24).]

III.§6 Orthogonality

[We define when p, q ∈ S bs
s (M) are weakly orthogonal/ortho-

gonal, (Definition III.6.2), show that “for every (M,N, a) ∈

K3,uq
s ...” can be replaced “for some ...”, (III.6.3) and prove

basic properties (III.6.4, III.6.7), and define parallelism (see
III.6.5,III.6.6). We define “a type p is orthogonal/super-
orthogonal to a model” (Definition III.6.9, the “super” say
preservation under NF amalgamation), prove basic properties
(III.6.10), and how we reflect from s

+ to s (see III.6.11 con-
cerning p⊥q, p⊥M). Orthogonality helps to preserve inde-
pendence (III.6.12). We investigate decompositions of tower

with orthogonality conditions. If (M,N, a) ∈ K3,uq
s ,M ∪

{a} ⊆ N ′ < N and p = tps(b, N
′, N) then p is weakly ortho-

gonal to M (see III.6.14(1),III.6.14(2)), and decompose such
triples by it (III.6.14(2)), look at an improvement (III.6.15(1))
and reflection from s

+ (in III.6.15(2)), how we can use in-

dependence, K
3,vq/qr
s and orthogonality (III.6.16, III.6.18,

III.6.20, III.6.22). In particular by III.6.20(2) if (Mn,Mn,Jn)

∈ K3,uq
s for n < ω and c ∈ Jn+1 ⇒ tps(c,Mn+1,Mn+2)⊥M0

then (M0,
⋃

n

Mn,J0) ∈ K3,vq
s

. From pairwise orthogonal-

ity we can get independence (III.6.21), and one p cannot be
non-orthogonal to infinitely many pairwise orthogonal types
(III.6.22).]

III.§7 Understanding K3,uq
s

[In III.7.2, we define W ,≤W (weak form of decompositions

of triples from K3,vq
s ) and related objects, in III.7.3 we prove

basic properties. In III.7.4 we define Kx
s

for x = or,ar,br,
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decompositions of length ≤ ω of triples in K3,or
s with various

orthogonality conditions (why of length ≤ ω? so that in
inductive proof when we arrive to a limit case we are already
done). We also define fat, related to thick, (III.5.8(5)) and
we prove in III.7.6 some properties. In III.7.5 we define “s

weakly has regulars” and later, in III.7.18, define “almost
has regulars”. Existence for K3,or

s , K3,ar
s (assuming enough

regulars) are investigated (in III.7.7, III.7.8). We characterize

being in K3,uq
s in III.7.9, this is the main result of the section.

We then deal with universality and uniqueness for fat uq/vq
triples (see III.7.11 - III.7.13). We also deal with hereditary
and limits of uq/vq triples in III.7.15, III.7.16.]

III.§8 Tries to decompose and independence of sequences of models

[We define and prove existence of x-decompositions (M̄, ā)
with tps(ai,Mi,Mi+1) does not fork over some Mj but is
orthogonal to Mζ when ζ < j and show that (M0,Mα, {ai :

tps(ai,Mi,Mi+1) does not fork over M0}) ∈ K3,vq
s and also

revisit existence for K3,vq
s (see III.8.2, III.8.3, III.8.6). We

define and investigate when 〈Mi : i < α〉 is s-independent
over M inside N with witness N̄ = 〈Ni : i ≤ α〉 (see III.8.8
- III.8.18). In III.8.19 we return to investigating NFs, prove
that it is preserved under reasonable limits and by III.8.21
this holds for K3,vq

s . We also further deal with K3,vq
s .]

III.§9 Between cardinals, non-splitting and getting fullness

[We deal mainly with varying s. We fulfill a promise, proving
that a weakly successful good λ-frame s can be doctored to be
full (see III.9.5 - III.9.6. Also we show that if s is a successful
λ-good+ frame, then we can define a λ+-good+ successor snf

with Ksnf = Ks and snf is full, i.e. S bs
s(+) = S na

s(+); moreover

if s is categorical and successful.]
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III.§10 Regular types

[We deal mainly with type-full s. We define regular and
regular+ (Definition III.10.2),prove some basic equivalences
(III.10.4) and prove that the set of regular types is “dense”
(III.10.5). To prove that for regular type p, non-orthogonality,
(p±q) is equivalent to being dominated, (p E q) (in III.10.8),
we prove a series of statements on regular and regular+ types
(in III.10.6). We prove e.g. that if 〈Mi : i ≤ δ+1〉 is increas-
ing continuous, Mδ 6= Mδ+1 then some c ∈Mδ+1\Mδ realizes
a regular type over Mδ which does not fork over Mj but is
orthogonal toMj−1 if j > 0, for some j, which necessarily is a
successor ordinal (III.10.9(3)) that is, we prove that s almost
has regulars. Hence weakly has regulars as expected from
the names we choose. Using this, we revisit decompositions
(III.10.12).]

III.§11 DOP

[We deal with the dimensional order property.]

III.§12 Brimmed Systems

[This is the crux of the matter. We deal with systems m =
〈Mu : u ∈ P〉,P usually is P(n) or P−(n), which are “sta-
ble”, as witnessed by various maximal independent sets. A
parameter ℓ = 1, 2, 3 measure how brimmed is m, presently
the central one is ℓ = 3. We then phrase properties re-
lated to such stable system, e.g. the weak (λ, n)-existence
say every such (λ,P−(n))-system can be completed to a
(λ,P(n))-system; the strong (λ, n)-existence property says
that we can do it “economically”, by a “small Mn”. We also
define weak/strong uniqueness, weak/strong primeness and
weak/strong prime existence. The main work is proving the
relevant implications. The culmination is proving that if s is

ω-successful and 〈2λ
+n
s : n < ω〉 is increasing, then all posi-

tive properties holds and so can understand, e.g. categoricity
spectrum (and superlimit models).]
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Annotated Content for Ch.IV (734):
Categoricity and Solvability of a.e.c., quite highly

IV.§0 Introduction

[Our polar star is: if an a.e.c. is categorical in arbitrarily large
cardinals then it is categorical in every large enough cardi-
nal. We make some progress getting some good λ-frames; and
to point to a more provable advancement, confirm this con-
jecture (and even a reasonable bound on starting) for a.e.c.
with amalgamation (as promised in [Sh:E36]). In fact we put
forward solvability as the true parallel to superstability.]

IV.§1 Amalgamation in K∗
λ

[We assume K is categorical in µ (or less-solvable in µ); and
the best results are on λ such that µ > λ = iλ > LS(K) (i.e.
λ is a fix point in the beth sequence) and λ has cofinality ℵ0;
we fix suitable Φ ∈ Υor[K]. We mostly assume µ = µλ.

First we investigate K∗
θ = {M : M ∼= EM(I,Φ) for some

linear order I of cardinality θ}, which is in general not an
a.e.c. under ≤K, but in our µ it is. We investigate such
models in the logic L∞,∂ , particularly when θ is large enough
than ∂, ∂ > LS(K) (mainly θ ≥ i1,1(∂)). We get more and
more cases when M ≺L∞,∂ [K] N follows from M ≤K N+
additional assumptions. An evidence of our having gained
understanding is proving the amalgamation theorem IV.1.29:
the class (K∗

λ,≤K) has the amalgamation property. In the
end we prove that if λ = Σ{λn : n < ω} < µ each λn is
as above and < λn+1 and is µ as above then Kλ has a local
superlimit model, see IV.1.38, in fact we get a version of
solvability in λ, see IV.1.41.]

IV.§2 Trying to Eliminate µ = µ<λ

[In §1 essentially (in the previous section) the first step in our
ladder was proving M ≺L∞,θ

N for M ≤K N from Kµ but we

have to assume µ = µ<θ. As we use it for many θ < λ, the
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investigation does not even start without assuming µ = µ<λ.
We eliminate this assumption except “few” exceptions (i.e.,
for a given K and θ).]

IV.§3 Categoricity for cardinals in a club

[We assume K is categorical in unbounded many cardinals.
We show that for some closed and unbounded class C of car-
dinals, K is categorical in µ for every µ ∈ C of cofinality ℵ0

(or ℵ1). This is a weak theorem still show that the cate-
goricity spectrum is far from being “random” (as is, e.g. the
rigidity spectrum is by [Sh 56]).]

IV.§4 Good frames

[Assume for simplicity that K is categorical in arbitrarily
large cardinals µ. Then for every λ = Σ{λn : n < ω}, λn =
iλn

> LS(K) there is a superlimit model in Kλ, and even a
version of solvability. Moreover there is a good λ-frame sλ

such that Ksλ
⊆ Kλ,≤sλ

=≤K↾ Ksλ
. Other works, in partic-

ular Chapter III, are a strong indication that this puts us on
our way for proving the goal from §0.]

IV.§5 Homogeneous enough linear orders

[We construct linear order I of any cardinality λ > µ such
that there are few J ∈ [I]µ up to an automorphism of I
and more. This helps when analyzing EM models using the
skeleton I. Used only in §2 and §7. The proof is totally
direct: we give a very explicit definition of I, though the
checking turns out to be cumbersome.]

IV.§6 Linear orders and equivalence relations

[For a “small” linear order J and a linear order I, mainly well
ordered we investigate equivalence relations E on incJ (I) =
{h : h embed J into I} which are invariant, i.e., defined by
a quantifier free (infinitary) formula, hence can (under rea-
sonable conditions) be defined on every I ′. We are interested
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mainly to find when E has > |I| equivalence classes; and
for “there is a suitable I of cardinality λ”. The expected
answer is a simple question on λ: is λ > λ|J|/D for some
suitable filter D? but we just prove enough for the applica-
tion in §7, dealing with the case λ > λ|J|/D holds for some
non-principal ultrafilter on |J |.]

IV.§7 Categoricity spectrum for a.e.c. with bounded amalgamation

[Let K be a.e.c. categorical in µ (or less, Φ ∈ Υor
LS[K][K], if

λ > µ ≥ cf(µ) > LS(K) and K<µ has amalgamation. Then
for µ∗ < µ, every saturated M ∈ K of cardinality ∈ [µ∗, µ)
is µ∗-local, i.e., any type p ∈ SK(M) is determined by its
restriction to model N ≤K M of cardinality µ∗. Also M ∈ K
is (χ, µ)-saturated, e.g., if 22χ

< µ. Then we prove that if
K is an a.e.c. categorical in a not too small cardinal µ and
has amalgamation up to µ or less) then it is categorical in
every not too small cardinal. We delay the improvements
concerning solvability spectrum and saying more in the case
K = (ModT ,≺Lκ,ω

), where T ⊆ Lκ,ω, κ measurable. In all
cases we eliminate the restriction of starting with “µ succes-
sor” and having the upward directions, too.]
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Annotated Content for Ch.V.A (300a):
Stability theory for a model

(This chapter will appear in book 2.)

V.A.§0 Introduction

[Introduction and notation.]

V.A.§1 The order property revisited

[We define some basic properties. First a model M has the
(ϕ(x̄; ȳ; z̄), µ)-order property (= there are āα, b̄α, c̄ for α < µ
such that ϕ(āα; b̄β, c̄) is satisfied iff α < β) and the non-order
property is its negation. Also indiscernibility (of a set and
of a sequence), and non-splitting. We then prove the non-
splitting/order dichotomy: if M is an elementary submodel
of N in a strong enough way related to χ and κ and ā ∈ κN
then either tp∆(ā,M,N) is definable in an appropriate way
(i.e., does not split over some set ≤ χ relevant formulas) or
N has (ψ, χ+)-order for a formula ψ related to ∆. Lastly, we
prove that (∆, χ+)-non-order implies (µ,∆)-stability if for
appropriate χ, µ. We also define various sets of formulas ∆x

derived from ∆.]

V.A.§2 Convergent indiscernible sets

[For stable first order theory, an indiscernible set I ⊆ M de-
fine its average type over M : the set of ϕ(x̄, b̄) satisfied by
all but finitely many c̄ ∈ I. In general not every indiscernible
set I has an average, so we say I is (∆, χ)-convergent if any
formula ϕ(x̄, b̄) where ϕ ∈ ∆ and b̄ is from M , divide I to two
sets, exactly one of which has < χ members. We prove that
convergent sets exists (V.A.2.8) under reasonable conditions
(mainly non-order). We also prove that convergent sets con-
tain indiscernible ones. Toward the existence we give a suffi-
cient condition in V.A.2.10 for a sequence 〈c̄i : i < µ+〉 being
(∆, χ+)-convergent including the (∆, χ+)-non-order property
which is easy to obtain.]
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V.A.§3 Symmetry and indiscernibility

[We prove a symmetry lemma (V.A.3.1), give sufficient condi-
tions for being an indiscernible sequence (V.A.3.2), and when
an indiscernible sequence is an indiscernible set (V.A.3.5),
and on getting an indiscernible set from a convergent set.]

V.A.§4 What is the appropriate notion of a submodel

[We define M ≤κ∆,µ,χ N which says that for c̄ ∈ κ>N , the ∆-
type which it realizes over M inside N is the average of some
(∆, χ+)-convergent set of cardinality µ+ inside M . We give
an alternative definition of being a submodel (in V.A.4.4)
when M has an appropriate non-order property, prove their
equivalence and note some basic properties supporting the
thesis that this is a reasonable notion of being a submodel.
We then define “stable amalgamation of M1,M2 over M0

inside M3” and investigate it to some extent.]

V.A.§5 On the non-order implying the existence of indiscernibility

[We give a sufficient condition for the existence of “large”
indiscernible set J ⊆ I, in which |J| < |I|, but the demand
on the non-order property is weaker than in V.A.§2 speaking
only on non-order among singletons. Even for some first or-
der T which are unstable, this gives new cases e.g. for ∆ =
the set of quantifier free formulas.]

Annotated Content for Ch.V.B (300b):
Axiomatic framework

(This chapter will appear in book 2.)

V.B.§0 Introduction

[Rather than continuing to deal with universal classes per
se, we introduce some frameworks, deal with them a little
and show that universal classes with the (χ,< ℵ0)-non-order
property fit some of them (for suitable choices of the extra
relations). In the rest of Chapter II almost always we deal
with AxFr1 only.]
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V.B.§1 The Framework

[We suggest several axiomatizations of being “a class of mod-
els K with partial order ≤K with non-forking and possibly
the submodel generated by a subset” (so being a submodel,
non-forking and 〈A〉gnM for A ⊆M are abstract notions). The
main one here, AxFr1 is satisfied by any universal class with
(χ,< ℵ0)-non-order; (see §2). For AxFr1 if M1,M2 are in
non-forking amalgamation over M0 inside M3 then the union
M1 ∪M2 generate a ≤K-submodel of M3. In such contexts
we define a type as an orbit, i.e. by arrows (without formu-
las or logic); to distinguish we write tp (rather than tp∆)
for such types. Also “Tarski-Vaught theorem” is divided to
components. On the one hand we consider union existence
Ax(A4) which says that: the union of an ≤K-increasing chain
belongs to the class and is ≤K-above each member. On the
other hand we consider smoothness which says that any ≤K-
upper bound is ≤K-above the union.]

V.B.§2 The Main Example

[We consider a universal class K with no “long” linear orders,
e.g. by quantifier free formulas (on χ-tuples), we investigate
the class K with a submodel notion introduced in V.A§4,
and a notion of non-forking, and prove that it falls under the
main case of the previous section. We also show how the first
order case fits in and how (D, λ)-homogeneous models does.]

V.B.§3 Existence/Uniqueness of Homogeneous quite Universal Mod-
els

[We investigate a model homogeneity, toward this we define
Dχ(M),Dχ(K),D′

K,χ and define “M is (D, λ)-model homoge-

neous”. We show that being λ+-homogeneous λ-universal
model in K can be characterized by the realization of types
of singletons over models (as in the first order case) so having
“the best of both worlds”.]
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Annotated Content for Ch.V.C (300c):
A frame is not smooth or not χ-based

(This chapter will appear in book 2.)
V.C.§0 Introduction

[The two dividing lines dealt with here have no parallel in
the first order case, or you may say they are further parallels
to stable/unstable, i.e. stability “suffer from schizophrenia”,
there are distinctions between versions which disappear in
the first order case, but still are interesting dividing lines.]

V.C.§1 Non-smooth stability

[This section deals with proving basic facts inside AxFr1. On
the one hand we assume we are hampered by the possible
lack of smoothness, on the other hand the properties of 〈−〉gnM
are helpful. These claims usually say that specific cases of
smoothness, continuity and non-forking hold. So it deals with
the (meagre) positive theory in this restrictive context.]

V.C.§2 Non-smoothness implies non-structure

[We start with a case of failure of κ-smoothness, copy it many
times on a tree T ⊆ κ≥λ; for each i < κ for every η ∈ T ∩ iλ
we copy the same things while for η ∈ T ∩ κλ we have a free
choice. This is the cause of non-structure, but to prove this
we have to rely heavily on §1. If we assume the existence of
unions, for any <s-increasing sequence, i.e. Ax(A4), the non-
structure (in many cardinals), is proved in ZFC, but using
weaker versions we need more.]

V.C.§3 Non χ-based

[We note some basic properties about directed systems and
how much they depend on smootheness. We then define
when s is χ-based: if M ≤s N and A ⊆ N has cardinal-
ity ≤ χ then for some M1, N1 of cardinality ≤ χ we have
NFs(M1, N1,M,N) and A ⊆ N1. This is a way to say that
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tps(N1, N) does not fork over M1, so being χ-based is a
relative of being stable, and when it fails, a very explicit
counterexample.]

V.C.§4 Stable construction

[We generalize [Sh:c, IV] to this context. That is we deal
with constructions: in each stage we add a “small” set which
realizes over what was constructed so far a type which does
not fork over their intersection. We define and investigate
the basic properties of such constructions.]

V.C.§5 Non-structure from “NF is not χ-based”

[Assuming the explicit failure of “χ-based over models of car-
dinality χ+”, and using the existence of good stationary sub-
sets S∗ of regular λ > χ++ of cofinality χ+, we build a model
in Ks

λ which codes any subset S of S∗ (modulo the club fil-
ter) hence get a non-structure theorem. Naturally we use the
stable constructions from the previous section, §4 and have
some relatives.]

Annotated Content for Ch.V.D (300d):
Non-forking and prime models

(This chapter will appear in book 2.)

V.D.§0 Introduction

[Here we deal with types of models (rather than types of
single elements). This is O.K. for parallel to some properties
of stable first order theories T , mainly dealing with |T |+-
saturated models.]

V.D.§1 Being smooth and based propagate up

[By Chapter V.C we know that failure of smoothness and fail-
ure of being χ-based are non-structure properties, but they
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may fail only for some large cardinal. We certainly prefer
to be able to prove that faillure, if it happens at all, hap-
pens for some quite small cardinal; we do not know how to
do it for each property separately. But we show that if s is
(≤ χ,≤ χ+)-smooth and (χ+, χ)-based and LSP(χ) then for
every µ ≥ χ, s is (≤ µ,≤ µ)-based, and (≤ µ,≤ µ)-smoothed
and has the LSP(µ). So it is enough to look at what occurs
in cardinality LS(Ks) for the non-structure possibility (rather
than “for some χ”). We then by Chapter V.C get a non-
structure result from the failure of the assumption above.
We also investigate when Ks has arbitrarily large models.
So being “(≤ χ,≤ χ+)-smooth, (χ+, χ)-based, LSP(χ)” is a
good dividing line.]

V.D.§2 Primeness

[We define prime models (over A), isolation (for types of the
form N/M + c) and primary models. We prove the existence
of enough isolated types; the difference with the first order
case is that we need to deal withM <s C even if we start with
a singleton. From this we deduce the existence of primary
models over A <s C hence primes.]

V.D.§3 Theory of types of models

[We look at TP(N,M) when N ∩ M,N,M are in stable
amalgamation. The set of such types is called S α

c (M) if
〈ai : i < α〉 list the elements of N . For such types we can
define non-forking, stationarization and prove properties par-
allel to the first order case of stable first order classes.]

V.D.§4 Orthogonality

[For types in S<∞
c (M) we can define weak orthogonality and

orthogonality of types and orthogonality of a type to a model
and prove expected claims.]

V.D.§5 Uniqueness of (Ds, µ)-primary models
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[We prove that the non-forking restriction of an isolated type
is isolated. We then prove the uniqueness of the primary
model.]

V.D.§6 Uniqueness of (Ds, µ)-prime models

[We deal with the uniqueness of prime models and only com-
ment on Ceq.]

Annotated Content for Ch.V.E (300e):
Types of finite sequences

(This chapter will appear in book 2.)

V.E.§0 Introduction

[The investigations in Chapter V.C, Chapter V.D do not sug-
gest a parallel to superstable. For this we have to look at
types of singletons, and the picture is more complicated, but
a very reasonable parallel exist.]

V.E.§1 Forking over models of types of sequences

[We define when tp(c̄, N) does not fork over M ≤s N even
for sequences c̄ not enumerating any appropriate N ′ <s C

and investigate the properties.]

V.E.§2 Forking over sets

[We define when tp(c̄, B) does not fork over A, show the
equivalence and compatibility of several variants; we define
when tp(c̄, B) is stationary over A and investigate the basic
properties (including symmetry). Compared to the first order
stable case there may be “bad types”, e.g. there may be no
“small” A ⊆ B such that “tp(c̄, B) does not fork over A”. We
also define strong splitting in this context and convergence,
independence and parallelism.]
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V.E.§3 Defining superstability and κ(s)

[We define κ(s), a set of regular cardinals, which replace
{θ : θ = cf(θ) < κr(T )} for stable first order T ; (supersta-
bility means κ(s) = ∅) and get a non-structure theorem for
unsuperstable s. We connect κ(s), the existence of (Ds, λ)-
homogeneous model in λ and the behaviour of a directed
union of quite homogeneous models. For a regular cardinal-
ity θ, we have: θ ∈ κ(s) iff there is a ≤s-increasing sequence
〈Mi : i ≤ θ〉 of models and p ∈ S 1(Mθ) such that for each
i < θ the type p forks over Mi (but not necessarily p ↾ Mi+1

forks over Mi!). This is related to the existence of (λ, κ)-
brimmed models.]

V.E.§4 Orthogonality

[We generalize the orthogonality calculus to the present con-
text.]

V.E.§5 Niceness of types

[In general here we do not know that not all types behave
“nicely”. But for some we can translate problems about
them to problems of types in S α

c (M) from Chapter V.D.
This motivates the definition of nice and prenice types over
models. The prenice ones behave as in stable theories. But
without existence of pre-nice types this is of limited interest.
However, there are quite many of them and in particular see
§6 below.]

V.E.§6 Superstable frames

[We deal with rank of types. For superstable s, the rank is
< ∞ and then we show that every p ∈ S <ω(M) is prenice
fulfilling a promise from §5. The notion of rank is less central
than in the first order case as “every p ∈ S (M) has rank
<∞” is not equivalent to κ(s) = ∅ but to a failure of a weak
version of ℵ0 ∈ κ(s).]
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V.E.§7 Regular types and weight

[We generalize regular types and weight to this context. We
delay dealing with P-simple, P-hereditarily orthogonal to P

and wP to [Sh 839].]

V.E.§8 Trivial regular types

[We deal with trivial regular types, the ones where depending
on a set is equivalent to depending on some member.]

Annotated Content for Ch.V.F (300f):
The Heart of the Matter

(This chapter will appear in book 2.)

V.F.§0 Introduction

[We show that if s falls under the high side of some dividing
lines, it has many complicated models. If it falls under the
low side, we can find s+ = s(+) with a stronger ≤s(+) which
also satisfies AxFr1.]

V.F.§1 More on indiscernibility

[In our context and in particular for stable theories we can
combine getting indiscernibles and Erdös-Rado theorem. E.g.
if M is a model of a (first order complete) stable T and
a{α,β} ∈ M for α < β < (2λ)+, λ ≥ |T |, then we can find

u ∈ [(2λ)+]λ
+

such that 〈a{α,β} : α < β are from u〉 is indis-
cernible, not just 〈a{α} : α ∈ u〉 is 2-indiscernible in M .

The point is that we define when 〈Mu : u ∈ [λ]≤n〉 in in-
dependent (this applies even to Mu ≺ C,C a model of a
stable theory). We prove existence of such systems parallel
to Erdös-Rado theorem. We then turn to other cases.]
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V.F.§2 Order properties considered again

[We start with non-order for infinitary formulas and get a
non-structure result. This will justify the concentration on
the case we have the relevant non-order property.]

V.F.§3 Strengthening the order ≤s

[Assuming enough non-order, we derive from the framework
s a framework s+ = s(+) satisfying AxFr∗1, the order letting
M ≤s(+) N mean (≤s and) preservation of the satisfaction
of some infinitary universal formulas.]

V.F.§4 Regaining existence of ω-unions

[We investigate and get non-structure from failure of the ex-
istence of ω-limits for the new notion of being a sub-model,
≤s(+). The main point is investigation in the ranks of a tree
of the form {f : f is a ≤s-embedding of Mn into N} ordered
by ⊆ where 〈Mn : n < ω〉 is ≤s-increasing. We conclude (in
Conclusion V.F.4.9) that non-structure follows from failure

of Ax(A4)θ for θ = ℵ0 but get only İ(µ,Ks) ≥ µ+ for many
µ’s.]

V.F.§5 Non-existence of union implies non-structure

[This section is complementary to the previous one getting
non-structure from non-existence of an ≤s(+)-upper bound of
an ≤s(+)-increasing continuous δ-chain also when θ = cf(δ)
is minimal and θ > ℵ0. So the counterexample is less easily
manipulated, and the rank from §4 is meaningless. But by
the amount of existence which follows by the minimality of
θ (and free amalgamation of families of models), we know
more how to construct non-forking trees of models and this
enables us to prove non-structure.]
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Annotated Content for Ch.V.G (300g):
Changing the framework

(This chapter will appear in book 2.)

V.G.§0 Introduction

[We hope that by repeating the operation s 7→ s+ up to some
limit ordinal δ we get an s+δ for which we can prove the main
gap. Here we take some steps toward this.]

V.G.§1 On the family of s’s

[We define a natural (partial) order on the family of reason-
able frameworks s, and prove its basic properties. In partic-
ular, increasing sequences has a limit.]

V.G.§2 From large enough rkemb,2
M̄

(f,N) to every ordinal

[This continues V.F§1. Here we are interested in well-founded
trees, and so if we start with a well-founded tree of ≤s-
submodels of N of cardinality ≤ µ which form a tree of large
enough rank, then there is a large enough subtree which is
“free enough” so we can “blow it up” to larger ordinals. This

is applied to the case rkemb,2
M̄

(f,N) is large enough.]

Annotated Content for Ch.VI, (E46):
Categoricity of an abstract elementary

class in two successive cardinals revisited

(This chapter will appear in book 2.)

VI.§0 Introduction

VI.§1 Basic properties

[We look at an a.e.c. K with LS(K) ≤ λ, with assumptions as
in the abstract and, by Chapter I, deduce amalgamation (in
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Kλ and Kλ+). We define the class K3,na
λ of triples (M,N, a)

ordered by ≤=≤na representing (orbital) types in S na(M)
for M ∈ Kλ, and start to investigate it, dealing with the
weak extension property, the extension property, minimality,
reduced triples and types (except for minimality, in the first
order case, these hold trivially). Our aims are to have the
extension property or at least the weak extension property
for all triples in K3,na

λ , and the density of minimal triples.
The first property makes the model theory more like the first
order case, and the second is connected with categoricity.
We start by proving the weak extension property under rea-
sonable assumptions and a consequence of having too many
types, reminding the ∆-system lemma.]

VI.§2 The extension property and toward density of minimal types

[We deal with triples fromK3,na
λ . Under “expensive” assump-

tions (mainly categoricity in λ+) we prove that all triples have
the extension property and that we have disjoint amalgama-
tion in Kλ. We prove the density of minimal triples under
the strong assumptions: Kλ+3 = ∅ and an extra cardinal

arithmetic assumption (2λ
+

> λ++). Now the assumption
Kλ+3 = ∅ does no harm if we just intend to prove Theorem
VI.0.2(1),(2)(a), i.e. Kλ+3 6= ∅ but is a disaster if we would
like to continue as in Chapter II or try to get an almost good
λ-frame from the present assumptions (without Kλ+3 = ∅),
i.e. VI.0.2(2)(b). The reader willing to accept these assump-
tions may skip some proofs later.]

VI.§3 On UQ from non-density of minimal (assuming weak ex-
tensions)

[Assume (Kλ has amalgamation and) the minimal types are

not dense in K3,na
λ , we define and investigate UQ, the class

of triples of models with unique amalgamation. So we have
some positive model theoretic consequences from what is a
non-structure assumption. We get some non-structure results
relying on Chapter VII.]
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VI.§4 Density of minimal types

[We continue §3 getting the promised results, relying on Chap-
ter VII.]

VI.§5 Inevitable types and stability in λ

[We continue to “climb the ladder”, using the amount of
structure we already have (and sometimes categoricity) to
get more. We start by assuming there are minimal types,
and show that some minimal types are inevitable. We con-
struct pi ∈ S (Ni) minimal (i ≤ λ+) both strictly increasing
continuous and with p0, pδ inevitable, and then as in the proof
of the equivalence of saturativity and model homogeneity, we
show Nδ is universal over N0. We can then deduce stability
in λ, so the model in λ+ is saturated. Then we note that we
have disjoint amalgamation in Kλ.]

VI.§6 Density of uniqueness and proving for K categorical in λ+2

[We give a shortcut to proving the main theorem by using
stronger assumptions (may be useful in categoricity theo-

rems). For this we first look at uniqueness triples. If İ(λ+2, K) =

1 and İ(λ+3, K) = 0 then for some triple (M,N, a) ∈ Kλ+ ,
a is “1-algebraic” over M , i.e. this is a maximal triple. Now
first assuming for some pair M0 ≤K M2 in Kλ we have
unique (disjoint) amalgamation for every possible M1 with
M0 ≤K M1 ∈ Kλ (and using stability), we get a pair of mod-
els in λ+ which contradicts the existence of maximal triples.
We then rely on Chapter VII to prove that there are enough
cases of unique amalgamation.]

VI.§7 Extensions and Conjugacy

[We investigate types. We prove that in S (N), N ∈ Kλ the
following: reduced implies inevitable, and non-algebraic ex-
tensions preserve the conjugacy classes for minimal reduced
types (so solving parallel to the realize/materialize problem
from Chapter I, see in particular Definition I.4.3(5), the dis-
cussion in the beginning of I§5 just after I.5.1 and Claim
I.5.23).]
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VI.§8 Almost good frame

[We prove the main theorem in particular find an almost good
λ-frame s with Ks = Kλ.]

Annotated Content for Chapter VII (838):
Non-structure in λ++ using instances of WGCH

(This chapter will appear in book 2.)

VII.§0 Introduction

[In addition to explaining what we are doing, we quote some
definitions (and results) on the weak diamond.]

VII.§1 Nice construction framework

[The intention is to build (many complicated) models of car-
dinality ∂+ by approximations of cardinality < ∂. We give
the basic definitions: of u being a nice construction frame-
work (consisting of a (< ∂)-a.e.c. Ku, the class of approxima-
tions to the desiredM ∈ Ku

∂+ , classes FRℓ of triples (M,N,J)
for ℓ = 1, 2 and some relations on Ku) and of u-free rectan-
gles and triangles. We define approximations of size ∂, i.e.
the class of triples (M̄, J̄, f) from Kqt

u and some quasi orders
on them. We prove some basic properties and define what is
meant by: almostℓ all such triples has a property; this will
many times mean M = ∪{Mα : α < ∂} ∈ Ku

∂ is saturated.]

VII.§2 Coding properties and non-structure

[the coding properties are sufficient conditions on u for finding
many non-isomorphic models in Ku,∗

∂+ . They have the form
that Ku has strong forms of failure of amalgamation of two
members of Ku, so of cardinality < ∂ over a third using FR1,
FR2]
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VII.§3 Invariant coding

[We deal with some further coding properties; the invariant
meaning that the relevant isomorphisms (which we demand
does not exist) fix some models setwise rather than point-
wise.]

VII.§4 Straight Applications of codings properties

[We mainly deal with theorems using the weak coding prop-
erty of a suitable u derived from an a.e.c. with ∂u = λ+

when 2λ < 2λ
+

< 2λ
++

so assuming WDmId∂ is not λ++-
saturated. The first case (in §4(A)) deals with the density of
minimal types for Kλ when K is categorical in λ, λ+ and has
a medium number of models in λ++ and LS(K) ≤ λ; this is
promised in VI§4. The second case (in §4(C)) deals with an
a.e.c. which is PCℵ0

and has a medium number of models in
ℵ1 and not too many models in ℵ2 and derive uniqueness of
one sided stable amalgamation (promised in Chapter I). The
third case (in §4(D)) continues the first, proving the density

of uniqueness triples (M,N, a) in K3,na
λ under the same as-

sumptions, as promised in VI§6. The fourth case (in §4(E))

proves the density of uniqueness triples in K3,bs
s , for s a good

λ-frame as promised in II§5. In addition, concerning the first
case we eliminate the use of “WDmIdλ+ is λ++-saturated”
by using u with the vertical coding property, this is done in
§4(B); this redo [Sh 603]. Finally in §4(F) we do the full ver-
sions of the theorems, assuming only the relevant cases of the
WGCH, but relying on the results of the subsequent sections
§5-§8.]

VII.§5 On almost good λ-frames

[We say some basic things on almost good λ-frames s; they
arise in Chapter VI. E.g. we prove that “N is brimmed
over M” is unique up to isomorphism over M (i.e. if Nℓ
is (λs, κℓ)-brimmed over M for ℓ = 1, 2 then N1, N2 are iso-
morphic over M). This is a consequence of analyzing full
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and brimmed u-free rectangles and triangles for some nice
construction framework u derived from s.]

VII.§6 Density of weak versions of uniqueness

[For a good λ-frame, for any ξ < λ+ we prove that either
Ks has non-structure in λ++ by getting vertical uq-invariant
coding, from §3, or prove density for K3,up

s,ξ , a quite weak
form of uniqueness of triples, i.e. of a kind of uniqueness
for a suitable form of amalgamation. As we like to deal also
with almost good λ-frames, we rely on §5. This relates to
§4(D),§4(E).]

VII.§7 Pseudo uniqueness

[From existence for K3,up
s,ξ for ξ = λ+ we define WNFs, a

weak form of the class of quadruples 〈Mℓ : ℓ < 4〉 of models
fromKs withM1,M2 amalgamated in a non-forking way over
M0 inside M3. We prove that WNFs is a weak s-non-forking
relation which respects s.]

VII.§8 Density of K3,uq
s

[We try to prove non-structure in λ++ from failure of density

of K3,uq
s . By §6 we justify assuming existence for K3,up

s , so
by §7 the relation WNFs is a well defined weak s-non-forking
relation on Ks (respecting s). So we can define u such that
(M0, N0, a) ≤ℓu (M1, N1, a) implies WNF(M0, N0,M1, N1).

We also show that it is enough to show K3,up
s ⊆ K3,uq

s .
Now the proof splits to two cases. In the first we assume
wnf-delayed uniqueness fails and get vertical coding. In the
second we assume wnf-delayed uniqueness holds but density
of uniqueness triples fail and get horizontal coding (using the
properties of WNF).]
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VII.§9 The combinatorial part

[We first quote; central in justifying our results is µunif(∂
+, 2∂)

which “usually” is 2∂
+

, (in VII.9.4). We show that build-

ing an appropriate tree 〈Mη : η ∈ ∂+≥(2∂)〉 is enough (in
VII.9.1). We present building 〈M̄ηˆ<α> : α < 2∂〉 as above
(in VII.9.3); as well as the “universal case”, i.e. when Mη(η ∈
∂2) are pairwise non-isomorphic of M<>. Also we deal with
the results on having many models in ∂ (when ∅ ∈ WDmId∂)
and mention the case in each step α < ∂+ we use, e.g. ∂ sub-
steps.]

VII.§10 Proofs of the non-structure theorems, with choice functions

[This has a somewhat more set theoretic character compared
to, and fulfills promises from §2,§3. We prove various coding
theorems saying that there are many non-isomorphic mod-
els in ∂+. In particular we prove this for nice construction
frameworks in cases in which we need amalgamation choice
functions.]

VII.§11 Remarks on pcf

[We prove things in pcf relevant to non-structure in a reason-
ably self contained way. One is a relative of Hajnal free subset

theorem. The main other says that if 2λ < 2λ
+

then one of
three cases occurs, each helpful in proof of non-structure and
some related results. This is a revised version of part of [Sh
603].]
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ABSTRACT ELEMENTARY

CLASSES NEAR ℵ1

SH88R

§0 Introduction

In [Sh 48], proving a conjecture of Baldwin, we show that (Q here
stands for the quantifier Qcar

≥ℵ1
, there are uncountably many)

(∗)1 no ψ ∈ Lω1,ω(Q) has a unique uncountable model up to
isomorphism

by showing that

(∗)2 categoricity (of ψ ∈ Lω1,ω(Q)) in ℵ1 implies the existence of
a model of ψ of cardinality ℵ2 (so ψ has ≥ 2 non-isomorphism
models).

Unfortunately, both (∗)1 and (∗)2 were not proved in ZFC because
diamond on ℵ1 was assumed. In [Sh 87a] and [Sh 87b] this set
theoretic assumption was weakened to 2ℵ0 < 2ℵ1 ; here we shall prove
it in ZFC (see §3). However, for getting the conclusion from the

weaker model theoretic assumption İ(ℵ1, ψ) < 2ℵ1 as there, we still
need 2ℵ0 < 2ℵ1 .

The main result of [Sh 87a], [Sh 87b] was:

(∗)3 if n > 0, 2ℵ0 < 2ℵ1 < . . . < 2ℵn , ψ ∈ Lω1,ω, 1 ≤ İ(ℵℓ, ψ) <
µwd(ℵℓ) for ℓ ≤ n, ℓ ≥ 1 (where µwd(ℵℓ) is usually 2ℵℓ and
always > 2ℵℓ−1 , see 0.5 below) then ψ has a model of cardi-
nality ℵn+1

(∗)4 if 2ℵ0 < 2ℵ1 < . . . < 2ℵn < 2ℵn+1 < . . . and ψ ∈ Lω1,ω, 1 ≤

İ(ℵℓ, ψ) < µwd(ℵℓ) for ℓ < ω then ψ has a model in every
infinite cardinal (and satisfies  Los Conjecture), (note that
(∗)3 for n = 1, assuming ♦ℵ1

was proved in [Sh 48]).

Typeset by AMS-TEX
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In (∗)4, it is proved that without loss of generality K is excellent;
this means in particular that K is the class of atomic models of
some countable first order T . The point is that an excellent class
K is similar to the class of models of an ℵ0-stable first order T . In
particular the set of relevant types, SK(A,M) is defined as {p(x) :
p(x) a complete type over A in M in the first order sense such that
p ↾ B is isolated for every finite B ⊆ A}. But we better restrict
ourselves to “nice A”, that is A which is the universe of some N ≺
M or A = N1 ∪ N2 where N0, N1, N2 are in stable amalgamation
or ∪{Nu : u ∈ P ⊆ P(n)} for some (so called) stable system
〈Nu : u ∈ P〉; on stable such systems in the stable first order case
see [Sh:c, XII,§5]. So types are quite like the first order case. In
particular we say M ∈ K is λ-full when: if p ∈ SK(A,M), A as
above, |A| < λ implies p is realized in M ; this is the replacement of
λ-saturated for that context.

Why in [Sh 87a] and [Sh 87b], ψ was assumed to be just in Lω1,ω

and not more generally in Lω1,ω(Q)? Mainly because we feel that
in [Sh 48], the logic Lω1,ω(Q) was incidental. We delay the search
for the right context to this sequel. So here we are working in a.e.c.,
“abstract elementary class” (so no logic is present in the context)
which are formally like elementary classes, i.e. (ModT ,≺), T first
order but note the absence of amalgamation, still they have closure
under union of increasing chains. It is K = (K,≤K) where ≤K is the
“abstract” notion of elementary submodel. So if L is a fragment of
L∞,ω(τ) (for a fixed vocabulary), T ⊆ L a theory included in L ,
and we let K = {M : M |= T},M ≤K N if and only if M ≺L N ,
we get such a class; if L is countable then K has L.S. number ℵ0.
So the class of models of ψ ∈ Lω1,ω(Q) is not represented directly,
but can be with minor adaptation; see 3.18(2). Surprisingly (and by
not so hard proof), every a.e.c. K can be represented as a pseudo
elementary class if we allow omitting types, (see 1.9). We introduce a
relative of saturated models (for stable first order T ) and full models
(for excellent classes, see [Sh 87a] and [Sh 87b]): limit models; really
several variants of this notion. See Definition 3.3. The strongest and
most important variant is “M ∈ Kλ superlimit” which means: M
is universal (under ≤K), (∃N)(M ≤K N ∧M 6= N) and if Mi

∼= M
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for i < δ ≤ ‖M‖ and Mi is ≤K-increasing then
⋃

i<δ

Mi
∼= M . If we

restrict ourselves to δ’s of cofinality κ we get (λ, κ)-superlimit. Such
M exists for a first order T for some pairs λ, κ. In particular (see
more in [Sh 868])

(∗)5 for every λ ≥ 2|T |+iω, a superlimit model of T of cardinality
λ exists if and only if T is superstable (by [Sh 868, 3.1]).

Moreover

(∗)6 “almost always”; for λ ≥ 2|T | + κ, κ = cf(κ) (for simplicity)
we have:
a (λ, κ)-superlimit model exists iff T is stable in λ & κ ≥
κ(T ) or λ = λ<κ.

But we can prove something under those circumstances: if K is
categorical in λ or just have a superlimit model M∗ in λ, but the λ-

amalgamation property fails for M∗ and 2λ < 2λ
+

then İ(λ+, K) =

2λ
+

(see 3.8). With some reasonable restrictions on λ and K, we

can prove e.g. İ(λ,K) = İ(λ+, K) = 1 ⇒ İ(λ++, K) ≥ 1, (see 3.11,
3.13).

However, our long term main aim was to do the parallel of [Sh
87a] and [Sh 87b] in the present context, i.e., for an a.e.c. K and it
is natural to assume K is PCℵ0

, here we prepare the ground.
Sections 4,5 present work toward this goal (§5 assuming 2ℵ0 < 2ℵ1 ;

§4 without it). We should note that dealing with superlimit models
rather than full ones make problems, as well as the fact that the class
is not necessarily elementary in some reasonable logics. Because of
the second we were driven to use formulas which hold “generically”,
are “forced” instead of are satisfied, and “the type ā materialize”
instead of realize and gtp(ā, N,M) instead of tp(ā, N,M). We also
(necessarily) encounter the case “D(N) of cardinality ℵ1 for N ∈
Kℵ0

”, see 5.2, 5.4(6). Because of the first, the scenario for getting
a full model in ℵ1 (which can be adapted to (ℵ1, {ℵ1})-superlimit -
see 5.17) does not seem to be enough for getting superlimit models
in ℵ1 (see 5.39).

We had felt that arriving at enough conclusions on the models of
cardinality ℵ1 to start dealing with models of cardinality ℵ2, will be
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a strong indication that we can complete the generalization of [Sh
87a] and [Sh 87b], so getting superlimits in ℵ1 is the culmination of
this paper and a natural stopping point. Trying to do the rest (of
the parallel to [Sh 87a] and [Sh 87b]) was delayed.
Much remains to be done,

0.1 Problem:

1) Prove (∗)3, (∗)4 in our context.
2) Parallel results in ZFC; e.g. prove (∗)3 for n = 1, 2ℵ0 = 2ℵ1 .

Note that if 2ℵ0 = 2ℵ1 , assuming 1 ≤ İ(ℵ1, K) < 2ℵ1 give really less
model theoretic consequences, as new phenomena arise (see §6). See
§4 (and its concluding remarks).
3) Construct examples; e.g. (an a.e.c.) K (or ψ ∈ Lω1,ω), categorical
in ℵ0,ℵ1, . . . ,ℵn but not in ℵn+1.
4) If K is a PCλ class, categorical in λ, λ+, does it necessarily have
a model in λ++?

See the book’s introduction Chapter N on the progress on those
problems in particular on [Sh 576], redone here in Chapter VI. The
direct motivation for [Sh 576] was that Grossberg asked me (Oct.
1994) some questions in this neighborhood (mainly 0.1(4)), in par-
ticular:

(∗) assume K = Mod(T ), (i.e. K is the class of models of T ),

T ⊆ Lω1,ω, |T | = λ, I(λ,K) = 1 and 1 ≤ I(λ+, K) < 2λ
+

.
Does it follow that I(λ++, K) > 0?

We think of this as a test problem and much prefer a model theoretic
to a set theoretic solution. This is closely related to 0.1(4) above and

to 3.11 (where we assume categoricity in λ+, do not require 2λ < 2λ
+

but take λ = ℵ0 or some similar cases) and 5.27(4) (and see 5.2 and

4.8 on the assumptions) (there we require 2λ < 2λ
+

, 1 ≤ I(λ+, K) <

2λ
+

and λ = ℵ0).

Problem [Sh 576, 0.1] was stated a posteriori but is, I think, the
real problem, it says:

(∗∗) Can we have some (not necessarily much) classification the-
ory for reasonable non-first order classes K of models, with no
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uses of even traces of compactness and only mild set theoretic
assumptions?

This is a revised version of [Sh 88] which continues [Sh 87a], [Sh 87b]
but do not use them. The paper [Sh 88] and the present chapter
relies on [Sh 48] only when deducing results on ψ ∈ Lω1,ω(Q); it
improves some of its early results and extends the context. The
work on [Sh 88] was done in 1977, and a preprint was circulated.
Before the paper had appeared, a user-friendly expository article of
Makowsky [Mw85a] represent, give background and explain the easy
parts of the paper. In [Sh 88] the author have corrected and replaced
some proofs and added mainly §6. See more in [Sh:F709].

We thank Rami Grossberg for lots of work in the early eighties
on previous versions, i.e. [Sh 88], which improved this paper, and
the writing up of an earlier version of §6 and Assaf Hasson on help-
ful comments in 2002 and Alex Usvyatsov for very careful reading,
corrections and comments and Adi Jarden and Alon Siton on help
in the final stages.

∗ ∗ ∗

On history and background on Lω1,ω,L∞,ω and the quantifier Q

see [Ke71]. On (D, λ)-sequence-homogeneous (which 2.2 - 2.5 here
generalized) see Keisler-Morley [KM67], this is defined in 2.3(5), and
2.5 is from there. Theorem 3.8 is similar to [Sh 87a, 2.7] and [Sh
87b, 6.3].

Remark. On non-splitting used here in 5.6 see [Sh 3], [Sh:c, Ch.I,
Def.2.6, p.11] or [Sh 48].
We finish §0 by some necessary quotation.

By [Ke70] and [Mo70],

0.2 Claim. 1) Assume that ψ ∈ Lω1,ω(Q) has a model M in which
{tp∆(ā, ∅,M) : ā ∈ M} is uncountable where ∆ ⊆ Lω1,ω(Q) is
countable, then ψ has 2ℵ1 pairwise non-isomorphic models of car-
dinality ℵ1, in fact we can find models Mα of ψ of cardinality ℵ1 for
α < 2ℵ1 such that {tp∆(a; ∅,Mα) : a ∈ Mα} are pairwise distinct
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where tp∆(ā, A,M) = {ϕ(x̄, b̄) : ϕ(x̄, ȳ) ∈ ∆ and M |= ϕ[ā, b̄] and
b̄ ∈ ω>A}.
2) If ψ ∈ Lω1,ω(Q),∆ ⊆ Lω1,ω(Q) is countable and {tp∆(ā, ∅,M) :
ā ∈ ω>M and M is a model of ψ} is uncountable, then it has cardi-
nality 2ℵ0 .

Also note

0.3 Observation. Assume (τ is a vocabulary and)

(a) K is a family of τ -models of cardinality λ

(b) µ > λκ

(c) {(M, ā) : M ∈ K and ā ∈ κM} has ≥ µ members up to
isomorphism.

Then K has ≥ µ models up to isomorphisms (similarly for = µ).

Proof. See [Sh:a, VIII,1.3] or just check by cardinal arithmetic. �0.3

Further

0.4 Claim. 1) Assume λ is regular uncountable, M0 is a model
with countable vocabulary and T = ThL(M0), < a binary predicate
from τ(T ) and (PM0 , <M0) = (λ,<). Then every countable model
M of T has an end extension, i.e., M ≺ N and PM 6= PN and
a ∈ PN ∧ b ∈ PM ∧ a <N b⇒ a ∈M .
2) Moreover, we can further demand (PN , <N ) is non-well ordered
and we can demand |PN | = ℵ1, (P

N , <N ) is ℵ1-like (which means
that it has cardinality ℵ1 but every (proper) initial segment has car-
dinality < ℵ1); and we can demand N is countable.
3) Moreover, we can add the demand that in (PN , <N ) there is a
first element in PN\PM and we can add the demand: in (PN , <N ),
there is no first element in PN\PM .

Proof. 1),2) Keisler [Ke70].
3) By [Sh 43] and independently Schmerl [Sc76]. �0.4

By Devlin-Shelah [DvSh 65], and [Sh:f, Ap,§1] (the so-called weak
diamond).
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0.5 Theorem. Assume that 2λ < 2λ
+

.
1) There is a normal ideal WDmIdλ+ on λ+ and λ+ /∈ WDmIdλ+ ,
of course, (the members are called small set) such that: if S ∈

(WDmIdλ+)+ (e.g., S = λ+) and c : λ
+>(λ+) → {0, 1}, then there

is ℓ̄ = 〈ℓα : α < λ+〉 ∈ λ+

2 such that for every η ∈ λ+

(λ+) the set
{δ ∈ S : c(η ↾ δ) = ℓα} is stationary; we call ℓ̄ a weak diamond
sequence (for the colouring c and the stationary set S).
2) µ∗ = µwd(λ+), the cardinal defined by (∗) below, is > 2λ (we do

not say ≥ 2λ
+

!)

(∗) (α) if µ < µ∗ and cε for ε < µ is as above then we can
find ℓ̄ as in part (1) for all the cε’s simultaneously

(β) µ∗ is maximal such that clause (α) holds.

3) µ∗ = µunif(λ
+, 2λ) satisfies µℵ0

∗ = 2λ
+

and moreover λ ≥ iω ⇒
µ∗ = 2λ where µunif(λ

+, χ) is the first cardinal µ such that we can
find 〈cα : α < µ〉 such that:

(a) cα is a function from λ+>(λ+) to χ

(b) there is no ρ ∈ λ+

χ such that for every α < µ for some

η ∈ λ+

(λ+) the set {δ < λ : cα(η ↾ δ) 6= ρ(δ)} is stationary
(so µwd(λ+) = µunif(λ

+, 2)).

See more in VII§0,§9 and hopefully in [Sh:E45].

The following are used in §2.

0.6 Definition. 1) For a regular uncountable cardinal λ let Ǐ[λ] =
{S ⊆ λ: some pair (E, ā) witnesses S ∈ Ǐ(λ), see below}.
2) We say that (E, u) is a witness for S ∈ Ǐ[λ] if:

(a) E is a club of the regular cardinal λ

(b) u = 〈uα : α < λ〉, aα ⊆ α and β ∈ aα ⇒ aβ = β ∩ aα

(c) for every δ ∈ E ∩ S, uδ is an unbounded subset of δ of order-
type < δ (and δ is a limit ordinal).

By [Sh 420] and [Sh:E12]
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0.7 Claim. Let λ be regular uncountable.
1) If S ∈ Ǐ[λ] then we can find a witness (E, ā) for S ∈ Ǐ[λ] such
that:

(a) δ ∈ S ∩ E ⇒ otp(aδ) = cf(δ)

(b) if α /∈ S then otp(aα) < cf(δ) for some δ ∈ S ∩ E.

2) S ∈ Ǐ[λ] iff there is a pair (E, P̄) such that:

(a) E is a club of the regular uncountable λ

(b) P̄ = 〈Pα : α < λ〉, where Pα ⊆ {u : u ⊆ α} has cardinality
< λ

(c) if α < β < λ and α ∈ u ∈ Pβ then u ∩ α ∈ Pα

(d) if δ ∈ E ∩ S then some u ∈ Pδ is an unbounded subset of δ
(and δ is a limit ordinal).

§1 Axioms and simple properties for classes of models

1.1 Context. 1) Here in §1-§5, τ is a vocabulary, K will be a class
of τ -models and ≤K a two-place relation on the models in K. We
do not always strictly distinguish between K and K = (K,≤K). We
shall assume that K,≤K are fixed; and usually we assume that K is
an a.e.c. (abstract elementary class) which means that the following
axioms hold.
2) For a logic L let M ≺L N mean M is an elementary submodel
of N for the language L (τM ) and τM ⊆ τN , i.e., if ϕ(x̄) ∈ L (τM)
and ā ∈ ℓg(x̄)M then M |= ϕ[ā] ⇔ N |= ϕ[ā]; similarly M ≺L N for
L a language, i.e. a set of formulas in some L (τM ). So M ≺ N in
the usual sense means M ≺L N as L is first order logic and M ⊆ N
means M is a submodel of N .

1.2 Definition. 1) We say K is a a.e.c. with L.S. number λ(K) =
LS(K) if:

Ax 0: The holding of M ∈ K,N ≤K M depend on N,M only up
to isomorphism, i.e. [M ∈ K,M ∼= N ⇒ N ∈ K] and [if N ≤K M
and f is an isomorphism from M onto the τ -model M ′, f ↾ N is an
isomorphism from N onto N ′ then N ′ ≤K M ′].
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Ax I: if M ≤K N then M ⊆ N (i.e. M is a submodel of N).

Ax II: M0 ≤K M1 ≤K M2 implies M0 ≤K M2 and M ≤K M for
M ∈ K.

Ax III: If λ is a regular cardinal, Mi(i < λ) is a ≤K-increasing (i.e.
i < j < λ implies Mi ≤K Mj) and continuous (i.e. for δ < λ,Mδ =⋃

i<δ

Mi) then M0 ≤K

⋃

i<λ

Mi.

Ax IV: If λ is a regular cardinal and Mi (for i < λ) is ≤K-increasing

continuous and Mi ≤K N for i < λ then
⋃

i<λ

Mi ≤K N .

Ax V: If N0 ⊆ N1 ≤K M and N0 ≤K M then N0 ≤K N1.

Ax VI: If A ⊆ N ∈ K and |A| ≤ LS(K) then for some M ≤K

N,A ⊆ |M | and ‖M‖ ≤ LS(K) (and LS(K) is the minimal infinite
cardinal satisfying this axiom which is ≥ |τ |; the ≥ |τ | is for nota-
tional simplicity).
2) We say K is a weak1 a.e.c. if above we omit clause IV.

Remark. Note that AxV holds for ≺L for any logic L .

Notation: Let Kλ = {M ∈ K : ‖M‖ = λ} and K<λ =
⋃

µ<λ

Kµ and

Kλ = (Kλ,≤K↾ Kλ) and similarly K<λ, K≤λ,K≥λ, K≥λ. Recall L is
first order logic.

1.3 Definition. The embedding f : N →M is called a ≤K-embedding
if the range of f is the universe of a model N ′ ≤K M (so f : N → N ′

is an isomorphism onto).

1.4 Definition. Let T1 be a theory in L (τ1),Γ a set of types in
L (τ1) for some logic L , usually first order.
1) EC(T1,Γ) = {M : M an τ1-model of T1 which omits every p ∈ Γ}.
We implicitly use that τ1 is reconstructible from T1,Γ. A problem

1this is not really investigated here
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may arise only if some symbols from τ1 are not mentioned in T1 and
in Γ, so we may write EC(T1,Γ, τ1), but usually we ignore this point.
2) For τ ⊆ τ1 we let PC(T1,Γ, τ) = PCτ (T1,Γ) = {M : M is a τ -
reduct of some M1 ∈ EC(T1,Γ)}.
3) We say that K, a class of τ -models, is a PCµλ or PCλ,µ class
when for some T1,Γ1, τ1 we have τ ⊆ τ1, T1 a first order theory in
the vocabulary τ1,Γ1 a set of types in L(τ1), K = PCτ (T1,Γ1) and
|T1| ≤ λ, |Γ1| ≤ µ.
4) We say K is PCµλ or PCλ,µ if for some (T1,Γ1, τ1), (T2,Γ2, τ2) as in
part (3) we have K = PC(T1,Γ1, τ) and {(M,N) : M ≤K N hence
M,N ∈ K} = PC(T2,Γ2, τ

′) where τ ′ = τ ∪ {P} ⊆ τ2, P a new
one-place predicate, so |τℓ| ≤ λ, |Γℓ| ≤ µ for ℓ = 1, 2.
If µ = λ we may omit µ.
5) In (4) we may say “K is (λ, µ)-presentable” and if λ = µ we may
say “K is λ-presentable”.

1.5 Example: If T ⊆ L(τ),Γ a set of types in L(τ), then K :=
EC(T,Γ),≤K:=≺L form an a.e.c. with LS-number ≤ |T |+ |τ |+ ℵ0,

that is, satisfy the Axioms from 1.2 (for LS(K) := |τ | + ℵ0).

1.6 Observation. Let I be a directed set (i.e. partially ordered by ≤,
such that any two elements have a common upper bound).
1) If Mt is defined for t ∈ I and t ≤ s ∈ I implies Mt ≤K Ms then⋃

s∈I

Ms ∈ K and for every t ∈ I we have Mt ≤K

⋃

s∈I

Ms.

2) If in addition t ∈ I implies Mt ≤K N then
⋃

s∈I

Ms ≤K N .

Proof. By induction on |I| (simultaneously for (1) and (2)).

If I is finite, then I has a maximal element t(0), hence
⋃

t∈I

Mt =

Mt(0), so there is nothing to prove.
So suppose |I| = µ and we have proved the assertion when |I| < µ.
Let λ = cf(µ) so λ is a regular cardinal; hence we can find Iα
(for α < λ) such that |Iα| < |I|, α < β < λ implies Iα ⊆ Iβ ⊆

I,
⋃

α<λ

Iα = I, for limit δ < λ, Iδ =
⋃

α<δ

Iα and each Iα is directed
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and non-empty; this is trivial when λ > ℵ0 and obvious otherwise.

Let Mα =
⋃

t∈Iα

Mt; so by the induction hypothesis on (1) we know

that t ∈ Iα implies Mt ≤K Mα. If α < β then t ∈ Iα implies t ∈ Iβ
hence Mt ≤K Mβ; hence by the induction hypothesis on (2) applied

to 〈Mt : t ∈ Iα〉,Mβ we have Mα =
⋃

t∈Iα

Mt ≤K Mβ. So by Ax III,

applied to 〈Mα : α < λ〉 we have Mα ≤K

⋃

β<λ

Mβ =
⋃

t∈I

Mt, and as

t ∈ Iα implies Mt ≤K Mα, by Ax II, t ∈ I implies Mt ≤K

⋃

s∈I

Ms. So

we have finished proving part (1) for the case |I| = µ. To prove (2)
in this case note that for each α < λ, 〈Mt : t ∈ Iα〉 is ≤K-directed
and t ∈ Iα ⇒ Mt ≤K N , so clearly by the induction hypothesis for
(2) we have Mα := ∪{Mt : t ∈ Iα} is ≤K N . So α < λ⇒Mα ≤K N
and as proved above 〈Mα : α < λ〉 is ≤K-increasing and obviously it

is continuous, hence by Ax IV,
⋃

s∈I

Ms =
⋃

α<λ

Mα ≤K N . �1.6

1.7 Lemma. Let τ1 = τ ∪ {Fni : i < LS(K), n < ω}, Fni an n-place
function symbol (assuming, of course, Fni /∈ τ).

Every model M (in K) can be expanded to an τ1-model M1 such
that:

(A) Mā ≤K M when n < ω, ā ∈ n|M | and where Mā is the
submodel of M with universe {Fni (ā) : i < LS(K)}

(B) if ā ∈ n|M | then ‖Mā‖ ≤ LS(K)

(C) if b̄ is a subsequence of a permutation of ā, then Mb̄ ≤K Mā

(D) for every N1 ⊆M1 we have N1 ↾ τ ≤K M .

Proof. We define by induction on n, the values ofMā and of Fni (ā) for
every i < LS(K), ā ∈ n|M | such that Fni is symmetric, i.e. preserved
under permuting its variables. Arriving to n, for each ā ∈ nM by
Ax VI there is an Mā ≤K M such that ‖Mā‖ ≤ LS(K), |Mā| include
∪{Mb̄ : b̄ a subsequence of ā of length < n} ∪ ā and Mā does not
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depend on the order of ā. Let |Mā| = {ci : i < i0 ≤ LS(K)} and
define Fni (ā) = ci for i < i0 and c0 for i0 ≤ i < LS(K).

Clearly our conditions are satisfied; in particular, if b̄ is a subse-
quence of ā,Mb̄ ≤K Mā by Ax V and clause (D) holds by 1.6 and Ax
IV. �1.7

1.8 Remark. 1) This is the “main” place we use Ax V,VI; it seems
that we use it rarely, e.g., in 2.11 which is not used later. It is clear
that we can omit Ax V if we strengthen somewhat Ax VI for the
proofs above.
2) Note that in 1.7, we do not require that Mā is closed under the
functions (Fni )M1 . By a different bookkeeping we can have it: renam-
ing τ1,ε = τ ∪{Fni : i < LS(K)×ε, n < ω} for ε ≤ ω and we choose a
τ1,n-expansion M1,n of M such that m < n ⇒ M1,n ↾ τ1,m = M1,m.
Let M1,0 = M , and if M1,n is defined, choose for every ā ∈ ω>(M1,n)

a (non-empty) subset A1,n
ā of M1,n of cardinality ≤ LS(K) such that

A1,n
ā is closed under the functions of M1,n and M ↾ A1,n

ā ≤K M , let

A1,n
ā = {cā,i : i ∈ [LS(K)×n, LS(K)× (n+ 1)) and define M1,n+1 by

letting (Fmi )M1,n+1(ā) = cā,i. Let M1 = M1,ω be the τω-model with
the universe of M such that n < ω ⇒M1 ↾ τ1,n = M1,n.
3) Actually M1,1 suffices if we expand it by making every term τ(x̄)
equal to some function F (x̄).

4) Alternatively demand for n > 0 that Fni (ā) is F
|u|
i (ā ↾ u), u =

{i < n : ai /∈ {aj : j < i}.

1.9 Lemma. 1) K is (LS(K), 2LS(K))-presentable.
2) There is a set Γ of types in L(τ1) in fact complete quantifier free
(where τ1 is from Lemma 1.7) such that K = PCτ (∅,Γ).
3) For the Γ from part (2), if M1 ⊆ N1 ∈ EC(∅,Γ) and M,N are
the τ -reducts of M1, N1 respectively then M ≤K N .
4) For the Γ from part (2), we have {(M,N) : M ≤K N so N,M ∈
K} = {(M1 ↾ τ,N1 ↾ τ) : M1 ⊆ N1 are both from PCΓ(∅,Γ)}.

Proof. 1) By part (2) the first half of “K is (LS(K), 2LS(K))-presentable
holds”. The second part will be proved with part (4).
2) Let Γn be the set of complete quantifier free n-types p(x0, . . . , xn−1)
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in L(τ1) such that: if M1 is a τ1-model, ā realizes p in M1 and M
is the τ -reduct of M1, then Mā ∈ K and Mb̄ ≤K Mā for any sub-
sequence b̄ of any permutation of ā; where Mc̄(c̄ ∈ m|M1|) is the
submodel of M whose universe is {Fmi (c̄) : i < LS(K)}. Clearly
there are such submodels (when K 6= ∅).

Let Γ be the set of p which, for some n, are complete quantifier
free n-types (in L(τ1)) which do not belong to Γn. By 1.6(1) we have
PCτ (∅,Γ) ⊆ K and by 1.7 K ⊆ PCτ (∅,Γ).
3) Similar to the proof of (2) using 1.6(2).
4) The inclusion ⊇ holds by part (3); so let us prove the other direc-
tion. Given N ≤K M we apply the proof of 1.7 to M , but demand
further ā ∈ nN ⇒ Mā ⊆ N ; simply add this demand to the choice
of the Mā’s (hence of the Fni ’s). We still have a debt from part (1).

We let Γ′
n be the set of complete quantifier free n-types in τ ′1 :=

τ1 ∪ {P} (P a new unary predicate), p(x0, . . . , xn−1) such that:

(∗) if M1 is an τ ′1-model, ā realizes p in M1,M the τ -reduct of
M1, then

(α) Mb̄ ≤K Mā for any subsequence b̄ of ā where Mc̄ (for
c̄ ∈ |M1|) is the submodel of M whose universe is
{(Fmi )M1(c̄) : i < LS(K)}, where m = ℓg(c̄) (and there
are such models),

(β) b̄ ⊆ PM1 ⇒Mb̄ ⊆ PM1 for b̄ ⊆ ā.

We leave the rest to the reader (alternatively, use PCτ ′
1
(T ′,Γ), T ′

saying “P is closed under all the functions Fni ). �1.9

By the proof of 1.9(4).

1.10 Conclusion. The τ1 and Γ from 1.9 (so |τ1| ≤ LS(K)) satisfy:
for any M ∈ K and any τ1-expansion M1 of M which is in ECτ1(∅,Γ)

(a) N1 ≺L M1 ⇒ N1 ⊆M1 ⇒ N1 ↾ τ ≤K M

(b) N1 ≺L N2 ≺L M1 ⇒ N1 ⊆ N2 ⊆M1 ⇒ N1 ↾ τ ≤K N2 ↾ τ

(c) if M ≤K N then there is a τ1-expansion N1 of N from
ECτ1(∅,Γ) which extends M1.
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1.11 Conclusion If for every α < (2LS(K))+,K has a model of cardi-
nality ≥ iα then K has a model in every cardinality ≥ LS(K).

Proof. Use 1.9 and the classical upper bound on value of the Hanf
number for: first order theory and omitting any set of types, for
languages of cardinality LS(K) (see, e.g., [Sh:c, VII,5.3,5.5]). �1.11

1.12 Conclusion: Assume that K is an a.e.c., µ = |τK| + LS(K) and
for simplicity τK ⊆ µ or just τK ⊆ Lµ, recalling L is the constructible
universe of Gödel. If λ > µ and A ≺ (H (χ,∈) and µ + 1 ⊆ A and
K ∈ A which means {(M,N) : M ≤K N has universe ⊆ µ} ∈ A then:

(a) M ∈ K ∩K ⇒M ↾ A ≤K M

(b) if M ≤K N so both belongs to K and M,N ∈ A then M ↾

A ≤K N ↾ A

(c) if A ≺ B and [b <B µ ⇒ b ∈ A] and B |= “M ∈ K” then
M [B] ∈ K

(d) similarly for B |= “M ≤K N”
where

(∗)1 if M ∈ A then M ↾ A is the submodel of M with
universe |M | ∩ |A|

(∗)2 if B |= “M ∈ K” then M [B] is the following τK-model:

(a) it has universe {b ∈ B : B |= “b an element of
the model M”}

(b) for any m-place predicate Q of τ ,
QM = {〈b0, . . . , bm−1〉 : B |= “M |= Q[b0, . . . , bm−1]”}

(c) for any m-place function symbol G of τ , similarly.

Proof. Should be clear. �1.12

1.13 Remark. 1) Clearly {µ : µ ≥ LS(K) and Kµ 6= 0} is an initial
segment of the class of cardinals ≥ LS(K).
2) For every cardinal κ(≥ ℵ0) and ordinal α < (2κ)+ there is an a.e.c.
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K such that: LS(K) = κ = |τK| and K has a model of cardinality λ
iff λ ∈ [κ,iα(κ)). This follows by [Sh:c, VII,§5,p.432] in particular
[Sh:c, VII,5.5](6), because

(a) if a vocabulary of cardinality ≤ κ and T ⊆ L(τ) and Γ a set of
(L(τ), < ω)-types then K = {M : M a τ -model of T omitting
every ∈ Γ} and ≤K=≺↾ K form an a.e.c. (we can use Γ a set
of quantifier free types, T = ∅), with LS((K,≤K) ≤ κ

(b) if {ci 6= cj : i < j < κ} ⊆ T then K above has no model of
cardinality < κ.

3) More on such theorems see [Sh 394].
4) We can phrase 1.12 “for any B in appropriate EC(T1,Γ1)”, but
the present formulation is the way we use it.

§2 Amalgamation properties and homogeneity

2.1 Context. K is an a.e.c.
The main theorem 2.8, the existence and uniqueness of the model-

homogeneous models, is a generalization of Jonsson [Jo56], [Jo60] to

the present context. The result on the upper bound 22ℵ0+|τ|

for the
number of D-sequence homogeneous universal-models of cardinality
is of Keisler-Morley [KM67]. Earlier there were serious good reasons
to concentrate on sequence-homogeneous models, but here we deal
with the model-homogeneous case. From 2.13 to the end we consider
what we can say when we omit smoothness, i.e. AxIV of Definition
1.2.

2.2 Definition. 1) D(M) := {N/ ∼=: N ≤K M, ‖N‖ ≤ LS(K)}.
2) D(K) := {N/ ∼=: N ∈ K, ‖N‖ ≤ LS(K)}.
3) D(M) = {tpL(τM )(ā, ∅,M) : ā ∈ ω>M}.

2.3 Definition. Let λ > LS(K).
1) A model M is λ-model-homogeneous when: if N0 ≤K N1 ≤K

M, ‖N1‖ < λ, f an ≤K-embedding of N0 into M , then some ≤K-
embedding f ′ : N1 →M extends f .
1A) A model M is (D, λ)-model-homogeneous if D = D(M) and M
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is a λ-model homogeneous.
1B) Adding “above µ” means in K≥µ.
2) M is λ-strongly model-homogeneous if: for every N ∈ K<λ such
that N ≤K M and a ≤K-embedding f : N → M there exists an
automorphism g of M extending f .
3) M is λ-model universal homogeneous (for K) when: λ > LS(K),
every2 N ∈ KLS(K) is ≤K-embeddable into M and for every Nℓ ∈
K<λ (for ℓ = 0, 1) such that N0 ≤K N1 and ≤K-embedding f : N0 →
M there exists a ≤K-embedding g : N1 →M extending f (unlike (1),
we do not demand that N1 is ≤K-embeddable into M ; the universal
is related to λ, it does not imply M is universal).
4) For each of the above three properties and the one below, if M
has cardinality λ and has the λ-property then we may say for short
that M has the property (i.e. omitting λ).
5) M is (D, λ)-sequence-homogeneous if:

(a) D = D(M) = {tpL(τM )(ā, ∅,M) : ā ∈ |M |, i.e., ā a finite
sequence from M} and

(b) if ai ∈ M for i ≤ α < λ, bj ∈ M for j < α and tpL(τM)(〈ai :
i < α〉, ∅,M) = tpL(τM )(〈bi : i < α〉, ∅,M), then for some
bα ∈ M , tpL(τM )(〈ai : i ≤ α〉, ∅,M) = tpL(τM )(〈bi : i ≤
α〉, ∅,M).

5A) In (5) we omit D when D = {tpL(τK)(ā, ∅, N) : ā ∈ nN where
n < ω and M ≺L N}.
6) We omit the “model/sequence”, when which one is clear from the
context, i.e., if D is as in 2.2(3) = 2.3(5)(a), (D, λ)-homogeneous
means (D, λ)-sequence-homogeneous: if D is as in Definition 2.2(1),
(D, λ)-homogeneous means (D, λ)-model-homogeneous, if not obvi-
ous we mean the model version.
7) M is λ-universal when every N ∈ Kλ can be ≤K-embedded into
it. Similarly (< λ)-universal, (≤ λ)-universal.

2.4 Claim. Assume N is λ-model-homogeneous and D(M) ⊆ D(N),
(and LS(K) < λ, of course).

2in fact, N ∈ K≤λ is O.K. by 2.5(2)
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1) If M0 ≤K M1 ≤K M, ‖M0‖ < λ, ‖M1‖ ≤ λ and f is a ≤K-
embedding of M0 into N , then we can extend f to a ≤K-embedding
of M1 into N .
2) If M1 ≤K M, ‖M1‖ ≤ λ then there is a ≤K-embedding of M1 into
N .

Proof. We prove by induction on µ ≤ λ simultaneously that:

(i)µ for every M1 ≤K M, ‖M1‖ ≤ µ (yes! not < µ) there is a
≤K-embedding of M1 into N

(ii)µ if M0 ≤K M1 ≤K M, ‖M1‖ ≤ µ, ‖M0‖ < λ then any ≤K-
embedding f ofM0 intoN can be extended to a ≤K-embedding
of M1 into N .

Clearly (i)λ is part (2) and (ii)λ is part (1) so this is enough.

Proof of (i)µ. If µ ≤ LS(K), this follows by D(M) ⊆ D(N).
If µ > LS(K), then by 1.10 we can find M̄1 = 〈Mα

1 : α < µ〉 such

that M1 =
⋃

α<µ

Mα
1 and α < µ ⇒ Mα

1 ≤K M1 and Mα
1 is ≤K-

increasing continuous with α and α < µ ⇒ ‖Mα
1 ‖ < µ. We define

by induction on α, a ≤K-embedding fα : Mα
1 → N , such that for

β < α, fα extend fβ. For α = 0 we can define fα by (i)χ(0) which

holds as by the induction hypothesis, where χ(β) := ‖Mβ
1 ‖. We next

define fα for α = γ + 1: by (ii)χ(α) which holds by the induction
hypothesis there is a ≤K-embedding fα of Mα

1 into N extending fγ .

Lastly, for limit α we let fα =
⋃

β<α

fβ , it is a ≤K-embedding into

N by 1.6. So we finish the induction and
⋃

α<µ

fα is as required.

Proof of (ii)µ. First, assume that µ = λ so we have proved (ii)θ for
θ < λ and ‖M1‖ = λ > ‖M0‖, so LS(K) < µ = λ hence we can find
〈Mα

1 : α < µ〉 as in the proof of (i)µ such that M0
1 = M0 and let

χ(β) = ‖Mβ
1 ‖. Now we define fβ by induction on β ≤ µ such that

fβ is a ≤K-embedding of M1
β into N and fβ is increasing continuous
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in β and f0 = f . We can do this as in the proof of (i)µ by (ii)χ(α)

for α < µ.

Second, assume ‖M1‖ < λ. Let g be a ≤K-embedding of M1

into N , it exists by (i)µ which we have just proved. Let g be onto
N ′

1 ≤K N , and let g ↾ M0 be onto N ′
0 ≤K N ′

1, and let f be onto
N0 ≤K N . So clearly h : N ′

0 → N0 defined by h(g(a)) = f(a) for
a ∈ |M0|, is an isomorphism from N ′

0 onto N0. So N0, N
′
0, N

′
1 ≤K N .

As ‖M1‖ < λ clearly ‖N ′
1‖ < λ so (by the assumption “N is λ-

model-homogeneous”, see Definition 2.3(1)) we can extend h to an
isomorphism h′ from N ′

1 onto some N1 ≤K N , so h′ ◦ g : M1 → N is
as required. �2.4

2.5 Conclusion 1) If M,N are model-homogeneous, of the same car-
dinality (> LS(K)) and D(M) = D(N) then M,N are isomorphic.
Moreover, if M0 ≤K M, ‖M0‖ < ‖M‖, then any ≤K-embedding of
M0 into N can be extended to an isomorphism from M onto N .
2) The number of model-homogeneous models from K of cardinality

λ is ≤ 22LS(K)

; if in Definition 1.2, AxVI, in the definition of LS(K)

we omit |τ | ≤ LS(K), the bound is 22LS(K)+|τ(K)|

.
3) If M is λ-model-homogeneous and D(M) = D(K) then M is (≤ λ)-
universal, i.e. every model N (in K) of cardinality ≤ λ, has a ≤K-
embedding intoM . So if D(M) = D(K) then: M is λ-model universal
homogeneous (see Definition 2.3(3)) iff M is a λ-model-homogeneous
iff M is (λ,D(K))-homogeneous.
4) If M is λ-model-homogeneous then it is λ-universal for {N ∈ Kλ :
D(N) ⊆ D(M)}.
5) If M is (D, λ)-sequence-homogeneous, (λ > LS(K)) then M is a
λ-model homogeneous.
6) For λ > LS(K),M is λ-model universal homogeneous iff M is
λ-model-homogeneous and (≤ LS(K))-universal.

Proof. 1) Immediate by 2.4(1), using the standard hence and forth
argument.
2) The number of models (in K) of power ≤ LS(K) is, up to isomor-
phism, ≤ 2LS(K) (recalling that we are assuming |τ(K)| ≤ LS(K)).

Hence the number of possible D(M) is ≤ 22LS(K)

. So by 2.5(1) we
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are done.
3),4),5) Immediate. �2.5

2.6 Remark. The results parallel to 2.5(1)-(4) for λ-sequence homo-
geneous models and D(M) hold, too.

2.7 Definition. 1) A model M has the (λ, µ)-amalgamation prop-
erty (= am.p., in K, of course) if: for every M1,M2 such that
‖M1‖ = λ, ‖M2‖ = µ,M ≤K M1 and M ≤K M2, there is a model
N and ≤K-embeddings f1 : M1 → N and f2 : M2 → N such that
f1 ↾ |M | = f2 ↾ |M |. Now the meaning of e.g. the (≤ λ,< µ)-amal-
gamation property should be clear. Always λ, µ ≥ LS(K) (and, of
course, if we use < µ, µ > LS(K)).
1A) In part (1) we add the adjective “disjoint” when f1(M1) ∩
f2(M2) = M . Similarly in (2) below.
2) K has the (κ, λ, µ)-amalgamation property if every model M (in
K) of cardinality κ has the (λ, µ)-amalgamation property. The
(κ, λ)-amalgamation property for K means just the (κ, κ, λ)-amal-
gamation property. The κ-amalgamation property for K is just the
(κ, κ, κ)-amalgamation property.
3) K has the (λ, µ)-JEP (joint embedding property) if for any M1 ∈
K,M2 ∈ K of cardinality λ, µ respectively there is N ∈ K into which
M1 and M2 are ≤K-embeddable.
4) The λ-JEP is the (λ, λ)-JEP.
5) The amalgamation property means the (κ, λ, µ)-amalgamation
property for every λ, µ ≥ κ(≥ LS(K)).
6) The JEP means the (λ, µ)-JEP for every λ, µ ≥ LS(K).

Remark. Clearly in 2.7, parts (1), (2) first sentence, (3),(5), the roles
of λ, µ are symmetric.

2.8 Theorem. 1) If LS(K) < κ ≤ λ, λ = λ<κ, Kλ 6= ∅ and K

has the (< κ, λ)-amalgamation property then for every model M of
cardinality λ, there is a κ-model-homogeneous model N of cardinality
λ satisfying M ≤K N . If κ = λ, alternatively the (< κ,< λ)-amal-
gamation property suffices.
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2) So in (1) if κ = λ, there is a universal, model-homogeneous model
of cardinality λ, provided that for some M ∈ K≤λ,D(M) = D(K) or
just K has the LS(K)-JEP.
3) If K has the amalgamation property and the LS(K)-JEP, then K

has the JEP.

2.9 Remark. 1) The last assumption of 2.8(2) holds, e.g., if (≤
LS(K), < 2LS(K))-JEP holds and |D(K)| ≤ λ.

2) If for some M ∈ K,D(M) = D(K) then we can have such M of
cardinality ≤ 2LS(K).
3) We can in 2.8 replace the assumption “(< κ, λ)-amalgamation
property” by “(< κ,< λ)-amalgamation property” if, e.g., no M ∈
K<λ is maximal.

Proof. Immediate; in (1) note that if κ is singular then necessarily

λ > κ & λ = λκ = λ<κ
+

so we can replace κ by κ+.

2.10 Remark. Also the corresponding converses hold.

2.11 Lemma. 1) If LS(K) ≤ κ and K has the κ-amalgamation
property then K has the (κ, κ+)-amalgamation property and even the
(κ, κ+, κ+)-amalgamation property.
2) If κ ≤ µ ≤ λ and K has the (κ, µ)-amalgamation property and
the (µ, λ)-amalgamation property then K has the (κ, λ)-amalgama-
tion property. If K has the (κ, µ, µ) and the (µ, λ)-amalgamation
property, then K has the (κ, λ, µ)-amalgamation property.
3) If λi(i ≤ α) is increasing and continuous, LS(K) ≤ λ0 and for
every i < α,K has the (λi, µ+ λi, λi+1)-amalgamation property then
K has the (λ0, µ+ λ0, λα)-amalgamation property.
4) If κ ≤ µ1 ≤ µ and for every M, ‖M‖ = µ1, there is N,M ≤K

N, ‖N‖ = µ, then the (κ, µ, λ)-amalgamation property (for K) im-
plies the (κ, µ1, λ)-amalgamation property (for K).
5) Similarly with the disjoint amalgamation version.

Proof. Straightforward, e.g.
3) So assume M0 ∈ Kλ0

,M0 ≤K M1 ∈ Kµ+λ0
and M0 ≤K M2 ∈ Kλα
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and for variety we prove for the disjoint amalgamation version (see
part (5)). By e.g. 1.10 we can find an ≤K-increasing continuous
sequence 〈M2,i : i ≤ α〉 such that M2,0 = M0,M2,α = M2 and
M2,i ∈ Kλi

for i ≤ α.
Without loss of generality M1 ∩M2 = M0. We now choose M1,i

by induction on i ≤ α such that:

(∗) (a) 〈M1,j : j ≤ i〉 is ≤K-increasing continuous

(b) M1,i = M1 if i = 0

(c) M1,i ∈ Kµ+λi

(d) M2,i ≤K M1,i

(e) M2,i ∩M1,α = M1,i.

For i = 0 see clause (b), for i limit take union, for i = j + 1 apply
the disjoint (λj , µ+λj , λi)-amalgamation to M2,j,M1,j,M2,j+1. For
i = α we are done. �2.11

2.12 Conclusion. If LS(K) ≤ χ1 < χ2 and K has the κ-amalgamation
property whenever χ1 ≤ κ < χ2 then K has the (κ, λ, µ)-amalgamation
property whenever χ1 ≤ κ ≤ λ ≤ χ2, κ ≤ µ ≤ χ2 and κ < χ2.

∗ ∗ ∗

It may be interesting to note that even waiving AX IV we can say
something.

2.13 Context: For the remainder of this section K is just a weak
a.e.c., i.e., Ax IV is not assumed.

2.14 Definition. Let M ∈ K have cardinality λ, a regular uncount-
able cardinal > LS(K). We say M is smooth if there is a sequence
〈Mi : i < λ〉 with Mi being ≤K-increasing continuous, Mi ≤K M and

‖Mi‖ < λ for i < λ and M =
⋃

i<λ

Mi.

2.15 Remark. We can define S/D-smooth, for S a subset of P(λ),D
a filter on P(λ), that is: M ∈ Kλ is (S/D)-smooth when for every
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one-to-one function f from |M | onto λ the set {u ∈ P(λ) : M ↾

{a : f(a) ∈ u} ≤K M} ∈ D. Usually we demand that for every
permutation f on λ, {u ⊆ λ: u is closed under f} ∈ D , and usually
we demand that D is a normal LS(K)+-complete filter).

2.16 Claim. Assume that λ = λ<λ > |τK |,K<λ has no maxi-
mal member and K has (< λ,< λ,< λ)-amalgamation property and
LS(K) < λ or at least assume in the (< λ,< λ,< λ)-amalgamation
demand that the resulting model has cardinality < λ. Then Kλ has a
smooth model-homogeneous member.

Proof. Same proof. �2.16

2.17 Lemma. If M,N ∈ Kλ(λ > LS(K)) are smooth, model-homo-
geneous and D(M) = D(N) then M ∼= N .

Proof. By the hence and forth argument, left to the reader (the set
of approximations is {f : f isomorphism from some M ′ ≤K M of
cardinality < λ onto some N ′ ≤K N} but note that not for any
increasing continuous sequence of approximations is the union an
approximation). �2.17

2.18 Remark. It is reasonable to consider

(∗) if M ∈ Kλ, (λ > LS(K)) is smooth and model-homogeneous
and N ∈ Kλ is smooth, D(N) ⊆ D(M) then N can be ≤K-
embedded into M .

This can be proved in the context of universal classes (e.g. AxFr1
from Chapter V.B).

2.19 Fact: 1) If Ki = (Ki, <i) is a (weak) a.e.c., i.e. with λi =
LS(Ki,≤i) where λi ≥ ℵ0 for i < α, i < α ⇒ τKi

= τ and K =⋂

i<α

Ki and ≤ is defined by M ≤ N if and only if for every i <

α,M ≤i N then K = (K,≤) is a [weak] a.e.c. with LS(K) ≤
∑

i<α

λi.
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2) Concerning AxI-V, we can omit some of them in the assumption
and still get the rest in the conclusion. But for AxVI we need in

addition to assume AxV + AxIVθ for at least one θ = cf(θ) ≤
∑

i<α

λi.

Proof. Easy.

2.20 Example Consider the class K of norm spaces over the reals with
M ≤K N iff M ⊆ N and M is complete inside N . Now K = (K,≤K)
is a weak a.e.c. with LS(K) = 2ℵ0 and it is as required in 2.16.

§3 Limit models and other results

In this section we introduce various variants of limit models (the
most important are the superlimit ones). We prove that if K has a
superlimit model M∗ of cardinality λ for which the λ-amalgamation

property fails and 2λ < 2λ
+

then İ(λ,K) = 2λ (see 3.8). We later
prove that if ψ ∈ Lω1,ω(Q) is categorical in ℵ1 then it has model in
ℵ2 see 3.18(2). This finally solves Baldwin’s problem (see §0). In
fact we prove an essentially more general result on a.e.c. and λ (see
3.11, 3.13).

The reader can read 3.3(1),(1A),(1B) ignore the other definitions,
and continue with 3.7(2),(5) and everything from 3.8 (interpreting
all variants as superlimits).
You may wonder can we prove the parallel to Baldwin conjecture in
λ+ if λ > ℵ0; it is

⊛λ if K is λ-presentable a.e.c. with LS(K) = λ, categorical in λ+

then Kλ++ 6= ∅.

This is false when cf(λ) > ℵ0.

3.1 Context. K is an a.e.c.

3.2 Example: Let λ be given and K = (K,≤K) be defined by

K = {(A,<) : (A,<) a well order of order type ≤ λ+}

Paper Sh:88r, Chapter I



138 I. A.E.C. NEAR ℵ1

≤K= {(M,N) : M,N ∈ K and N is an end extension of M}.

Now

(a) K is an abstract elementary class with LS(K) = λ and K

categorical in λ+

(b) if λ has cofinality ≥ ℵ1 then K is λ-presentable (see, e.g.,
[Sh:c, VII,§5] and history there); by clause (a) it is always
(λ, 2λ)-presentable,

(c) K has no model of cardinality > λ+.

Note that if we are dealing with classes which are categorical (or just
simple in some sense), we have a good chance to find limit models
and they are useful in constructions.

3.3 Definition. Let λ be a cardinal ≥ LS(K). For parts 3) - 7)
but not 8), for simplifying the presentation we assume the axiom
of global choice (alternatively, we restrict ourselves to models with
universe an ordinal < λ+).
1) M ∈ Kλ is locally superlimit (for K) if:

(a) for every N ∈ Kλ such that M ≤K N there is M ′ ∈ Kλ

isomorphic to M such that N ≤K M ′ and N 6= M ′

(b) if δ < λ+ is a limit ordinal and 〈Mi : i < δ〉 is ≤K-increasing

sequence and Mi
∼= M for i < δ then

⋃

i<δ

Mi
∼= M .

1A) M ∈ Kλ is globally superlimit if (a) +(b) and

(c) M is universal in Kλ, i.e., any N ∈ Kλ can be ≤K-embedded
into M .

1B) Just superlimit means globally. Similarly with the other notions
below we define the global version as adding clause (c) from (1A) and
the default version is the global one. (Note that in the local version
we can restrict our class to {N ∈ Kλ : M can be ≤K-embedded into
N} and get the global one).
2) For Θ ⊆ {µ : ℵ0 ≤ µ < λ, µ regular},M ∈ Kλ is locally (λ,Θ)-
superlimit if:

Paper Sh:88r, Chapter I



I.§3 LIMIT MODELS AND OTHER RESULTS 139

(a) as in part (1) above

(b) if 〈Mi : i ≤ µ〉 is ≤K-increasing, Mi
∼= M for i < µ and µ ∈ Θ

then ∪{Mi : i < µ} ∼= M .

2A) If Θ is a singleton, say Θ = {θ}, we may say that M is locally
(λ, θ)-superlimit.
3) Let S ⊆ λ+ be stationary. M ∈ Kλ is called locally S-strongly
limit or locally (λ, S)-strongly limit when for some function: F :
Kλ → Kλ we have:

(α) for N ∈ Kλ we have N ≤K F(N)

(β) if δ ∈ S is a limit ordinal and 〈Mi : i < δ〉 is a ≤K-increasing
continuous sequence3 in Kλ and M0

∼= M and i < δ ⇒
F(Mi+1) ≤K Mi+2, then M ∼= ∪{Mi : i < δ}

(γ) if M ≤K M1 ∈ Kλ then there is N such that M1 <K N ∈ Kλ.

4) Let S ⊆ λ+ be stationary. M ∈ Kλ is called locally S-limit or
locally (λ, S)-limit if for some function F : Kλ → Kλ we have:

(α) for every N ∈ Kλ we have N ≤K F(N)

(β) if 〈Mi : i < λ+〉 is a ≤K-increasing continuous sequence of
members of Kλ,M0

∼= M,F(Mi+1) ≤K Mi+2 then for some
closed unbounded4 subset C of λ+,

[δ ∈ S ∩ C ⇒Mδ
∼= M ].

(γ) if M ≤K M1 ∈ Kλ then there is N,M1 <K N ∈ Kλ.

5) We define “locally S-weakly limit”, “locally S-medium limit” like
“locally S-limit”, “locally S-strongly limit” respectively by demand-
ing that the domain of F is the family of ≤K-increasing continuous se-
quence of members of K<λ of length < λ and replacing “F(Mi+1) ≤K

Mi+2” by “Mi+1 ≤K F(〈Mj : j ≤ i + 1〉) ≤K Mi+2”. We replace
“limit” by “limit−” if “F(Mi+1) ≤K Mi+2”, “Mi+1 ≤K F(〈Mj :
j ≤ i + 1〉) ≤K Mi+2” are replaced by “F(Mi) ≤K Mi+1”, “Mi ≤K

3no loss if we add Mi+1
∼= M , so this simplifies the demand on F, i.e., only

F(M ′) for M ′ ∼= M are required
4we can use a filter as a parameter
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F(〈Mj : j ≤ i〉) ≤K Mi+1” respectively.
6) If S = λ+ then we omit S (in parts (3), (4), (5)).
7) For Θ ⊆ {µ : ℵ0 ≤ µ ≤ λ and µ is regular},M is locally (λ,Θ)-
strongly limit if M is locally {δ < λ+ : cf(δ) ∈ Θ}-strongly limit.
Similarly for the other notions (where Θ ⊆ {µ : µ regular ≤ λ}. If
we do not write λ we mean λ = ‖M‖. Let locally (λ, θ)-strongly
limit mean locally (λ, θ)-strongly limit.
8) We say that M ∈ Kλ is invariantly strong limit when in part (3)
we demand that F is just a subset of {(M,N)/ ∼=: M ≤K N are from
Kλ} and in clause (b) of part (3) we replace “F(Mi+1) ≤K Mi+2” by
“(∃N)(Mi+1 ≤K N ≤K Mi+2 ∧ ((Mi+1, N)/ ∼=) ∈ F)” but abusing
notation we still write N = F(M) instead ((M,N)/ ∼=) ∈ F. Simi-
larly with the other notions, so if F acts on suitable ≤K-increasing
sequence of models then we use the isomorphic type of M̄ˆ〈N〉.

3.4 Obvious implication diagram: For Θ, S1 as in 3.3(7) and S1 ⊆
{δ < λ+ : cf(δ) ∈ Θ} is a stationary subset of λ+:

superlimit = (λ, {µ : µ ≤ λ regular})-superlimit

↓

(λ,Θ)-superlimit

↓

S1-strongly limit

↓ ↓
S1-medium limit, S1-limit

↓ ↓

S1-weakly limit.

3.5 Lemma. 0) All the properties are preserved if S is replaced
by a subset and if K has the λ-JEP, the local and global version in
Definition 3.3 are equivalent.
1) If Si ⊆ λ+ for i < λ+, S = {α < λ+ : (∃i < α)α ∈ Si} and
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Si ∩ i = ∅ for i < λ then: M is Si-strongly limit for each i < λ if
and only if M is S-strongly limit.
2) Suppose κ ≤ λ is regular and S ⊆ {δ < λ+ : cf(δ) = κ} is a
stationary set and M ∈ Kλ then the following are equivalent:

(a) M is S-strongly limit

(b) M is (λ, {κ})-strongly limit

(c) M ∈ Kλ is ≤K-universal not <K-maximal and there is a func-
tion F : Kλ → Kλ satisfying (∀N ∈ Kλ)[N ≤K F(N)] such
that if Mi ∈ Kλ for i < κ, [i < j ⇒Mi ≤K Mj],F(Mi+1) ≤K

Mi+2 and M0
∼= M then

⋃

i<κ

Mi
∼= M .

2A) If S ⊆ λ+,Θ = {cf(δ) : δ ∈ S} then M is S-strongly limit iff
clause (c) in part (2) above holds for every κ ∈ Θ.
3) In part (1) we can replace “strongly limit” by “limit”, “medium
limit” and “weakly limit”.
4) Suppose κ ≤ λ is regular, S ⊆ {δ < λ+ : cf(δ) = κ} is a stationary
set which belongs to Ǐ[λ] (see 0.6, 0.7 above) and M ∈ Kλ.

The following are equivalent

(a) M is S-medium limit in Kλ

(b) M ∈ Kλ is ≤K-universal not maximal and there is a function
F from

⋃
α<κ

α(Kλ) to K such that

(α) for any ≤K-increasing 〈Mi : i ≤ α〉 if M0 = M,α <
κ,Mi is ≤K-increasing, Mi ∈ Kλ, then Mα ≤K F(〈Mi :
i ≤ α〉)

(β) if 〈Mi : i < κ〉 is ≤K-increasing, M0 = M,Mi ∈ Kλ

and for i < κ we have Mi+1 ≤K F(〈Mj : j ≤ i+ 1〉) ≤K

Mi+2 then
⋃

i<κ

Mi
∼= M .

Proof. 0) Trivial.
1) Recall that in Definition 3.3(3), clause (b) we use F only on Mi+1;
(see the proof of (2A) below, second part).
2) For (c) ⇒ (a) note that the demands on the sequence are “local”,
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Mi+1 ≤K F(Mi+1) ≤K Mi+2, (whereas in part (4) they are “global”).
2A) First assume that M is S-strongly limit and let F witness it.
Suppose κ ∈ Θ, so we choose δκ ∈ S with cf(δκ) = κ and let 〈αi : i <
κ〉 be increasing continuous with limit δ, α0 = 0, αi+1 a successor of
a successor ordinal for each i < κ. We now define Fκ as follows: to
define Fκ(M) we define Fκ,α for α ≤ δ by induction on α ≤ δ. Let:

(a) if α = 0 then Fκ,0(M) = M

(b) if α = β + 1 then Fκ,α(M) = F(Fκ,β(M))

(c) if α ≤ δ a limit ordinal then Fκ,α(M) = ∪{Fκ,β(M) : β < α}.

Lastly, let Fκ(M) be Fκ,δ(M).

Now suppose 〈Ni : i ≤ κ〉 is ≤K-increasing continuous, Ni ∈ Kλ

and Fκ(Ni+1) ≤K Ni+2 for i < κ and we should prove Nκ ∼= M .
Now we can find 〈Mj : j < λ+〉 such that it obeys F and Mαi

= Ni
for i < κ; so clearly we are done.

Second, assume that for each κ ∈ Θ, clause (c) of 3.5(2) holds
and let Fκ exemplify this. Let 〈κε : ε < ε(∗)〉 list Θ so ε(∗) < λ+

and define F as follows. For any M ∈ K choose M[ε] by induction on
ε ≤ ε(∗) as follows: M[0] = M,M[ε+1] = Fκε

(M[ε]) and for ε limit
ordinal let M[ε] = ∪{M[ζ] : ζ < ε}. Lastly, let F[M ] = M[ε(∗)]. Now
check.
3) No new point.
4) First note that (a) ⇒ (b) should be clear. Second, we prove that
(b) ⇒ (a) so let F witness that clause (b) holds. Let E, 〈uα : α < λ〉
witness that S ∈ Ǐ[λ], i.e.

(∗)1 (a) E a club of λ

(b) uα ⊆ α and otp(uα) ≤ κ for α < λ

(c) if α ∈ S ∩E then α = sup(uα) and otp(uα) = κ

(d) if α ∈ λ\S ∩ E then otp(uα) < κ

(e) if α ∈ uβ then uα = uβ ∩ α.

We can add

(∗)2 (f) if β ∈ uα then β has the form 3γ + 1.
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Let 〈αε : ε < λ〉 list E in increasing order and without loss of gener-
ality α0 = 0, α1+ε is a limit ordinal (note that only the limit ordinals
of S count).

To define F′ as required we shall deal with the requirement ac-
cording to whether δ ∈ S is “easy”, i.e. δ /∈ E so δ ∈ (αε, αε+1] for
some ε < λ+ so after αε we can “take care of it”, or δ is “hard”, i.e.
δ ∈ E so we use the α ∈ uδ.

We choose 〈eδ : δ ∈ S\E〉 such that δ ∈ (αε, αε+1] ∩ S implies
eδ ⊆ δ = sup(eδ) and min(eδ) > αε, otp(eδ) = κ, eδ is closed and
α ∈ eδ ⇒ α = sup(eδ ∩ α) ∨ (α ∈ {3γ + 2 : γ < δ}). If δ ∈ S ∩ E let
eδ be the closure of uδ. Let 〈γδ,ζ : ζ < κ〉 list eδ in increasing order.

We now define a function F′ so let 〈Mj : j ≤ i + 1〉 be given
and let αε ≤ i < αε+1. We fix ε so (αε, αε+1) and now define
F′(〈Mj : j ≤ i + 1〉) by induction on i ∈ [αε, αε+1) assuming that if
αε ≤ j′ + 1 < i+ 1 then F′(〈Mj : j ≤ j′ + 1〉) ≤K Mj′+2 and further

there is N̄ j′+1 = 〈Nj′+1,ξ : ξ < αε+1〉 such that the following holds:

(∗)3 N̄ j′+1 is ≤Kλ
-increasing continuous, Mj′+1 ≤K Nj′+1,0 and

Nj′+1,ξ ≤Kλ
Mj′+2

(∗)4 if δ ∈ (S\E) ∩ (αε+1\αε), j
′ + 1 = γδ,ζ (so necessarily j′ +

1 ∈ (αε, αε+1), j′ + 1 ∈ {3γ + 2 : γ < λ}, ζ is a successor
ordinal) then let N̄∗

δ,j′ = 〈N∗
δ,j′,ζ′ : ζ ′ ≤ ζ〉 be the following

sequence of length ζ+1, N∗
δ,j′,ζ′ is Nγδ,ζ′ ,ζ′ if ζ ′ is a successor

ordinal and is Mγδ,ζ′ if ζ ′ is limit or zero, and we demand

F(〈N∗
δ,j′,ζ′ : ζ ′ ≤ ζ〉) ≤K Nj′+1,ζ+1

(∗)5 if j′ + 1 ∈ uδ for some δ ∈ S ∩E hence j′ + 1 ∈ {3γ + 1 : γ <
δ} and ζ = otp(uj′+1) < κ and fε is the one-to-one order
preserving function from ζ + 1 onto cℓ(uj′+1 ∪ {j′ + 1}) and
ζ ′ is a successor, then F(〈Mαfε(ζ′)

: ζ ′ ≤ ζ〉) ≤K Mαε+1.

This implicitly defines F′. Now F′ is as required: Mi
∼= M when

i < λ, cf(i) = κ by (∗)4 when (∃ε)(αε < i < αε+1) and by (∗)5 when
(∃ε)(i = αε). �3.5

3.6 Lemma. Let T be a first order complete theory, K its class of
models and ≤K=≺L.
1) If λ is regular, M a saturated model of T of cardinality λ, then
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M is (λ, {λ})-superlimit.
2) If T is stable, and M a saturated model of T of cardinality λ then
M is (λ, {µ : κ(T ) ≤ µ ≤ λ and µ is regular})-superlimit (on κ(T )-
see [Sh:c, III,§3]). (Note that by [Sh:c] if λ is singular and T has a
saturated model of cardinality λ then T is stable and cf(λ) ≥ κ(T )).
3) If T is stable, λ singular > κ(T ),M a special model of T of
cardinality λ, S ⊆ {δ < λ+ : cf(δ) = cf(λ)} is stationary and S ∈ Ǐ[λ]
(see above 0.6, 0.7) then M is (λ, S)-medium limit.

Remark. See more in [Sh 868].

Proof. 1) Because if Mi is a λ-saturated model of T for i < δ,

cf(δ) ≥ λ, then
⋃

i<δ

Mi is λ-saturated. Remembering the uniqueness

of a λ-saturated model of T of cardinality λ we finish.
2) Use [Sh:c, III,3.11]: if Mi is a λ-saturated model of T, 〈Mi : i < δ〉

increasing cf(δ) ≥ κ(T ) then
⋃

i<δ

Mi is λ-saturated.

3) Should be clear by now. �3.6

3.7 Claim. 1) If Mℓ ∈ Kλ are Sℓ-weakly limit and S0 ∩ S1 is sta-
tionary, then M0

∼= M1, provided κ has (λ, λ)-JEP.
2) K has at most one locally weakly limit model of cardinality λ pro-
vided K has (λ, λ)-JEP.
3) If M ∈ Kλ then {S ⊆ λ+ : M is S-weakly limit or S not
stationary} is a normal ideal over λ+.
Instead “S-weakly limit”, also “S-medium limit”,“S-limit”, “S-strongly
limit” can be used.
4) In Definition 3.3 without loss of generality F(N) ∼= M or F(M̄) ∼=
M according to the case (and we can add N <K F(N), etc.)
5) If K is categorical in λ, then the M ∈ Kλ is superlimit provided
that Kλ+ 6= ∅ (or, what is equivalent, M has a proper ≤K-extension).

Proof. Easy.
1) E.g., let Fℓ witness that Mℓ is Sℓ-weakly limit. We can choose
(M0

α,M
1
α) by induction on α such that: 〈M ℓ

β : β ≤ α〉 is ≤K-

increasing continuous for ℓ = 0, 1,M0
α ≤K M1

α+1,M
1
α ≤K M0

α+1
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and Fℓ(〈M
ℓ
β : β ≤ α + 1〉) ≤ M ℓ

α+2. So for some club Eℓ of

λ+, δ ∈ Sℓ ∩ Eℓ ⇒ M ℓ
δ
∼= Mℓ for ℓ = 0, 1. But S0 ∩ S1 is sta-

tionary hence there is a limit ordinal δ ∈ S0 ∩ S1 ∩ E0 ∩ E1, hence
M0

∼= M0
δ = M1

δ
∼= M1 as required. �3.7

3.8 Theorem. If 2λ < 2λ
+

,M ∈ Kλ superlimit, S = λ+ or M
is S-weakly limit, S is not small (see Definition 0.5) and M does

not have the λ-amalgamation property (in K) then İ(λ+, K) = 2λ
+

,

moreover there is no universal member in Kλ+ and (2λ)+ < 2λ
+

⇒

İĖ(λ+, K) = 2λ
+

, that is there are 2λ
+

models M ∈ Kλ+ no one
≤K-embeddable into another.

3.9 Remark. 0) So in 3.8, if K is categorical in λ then it has λ-
amalgamation.
1) We can define a superlimit for a family of models, i.e., when N =
{Nt : t ∈ I} ⊆ Kλ is superlimit (i.e., if 〈Mi : i < δ〉 is ≤K-increasing,
i < δ ⇒ Mi ∈ Kλ, δ a limit ordinal < λ+,Mδ = ∪{Mi : i < δ}

then
∧

i<δ

∨

t∈I

Mi
∼= Nt ⇒

∨

t∈I

Mδ
∼= Nt (and the other variants). Of

course, the family is ⊆ Kλ and is not empty. Essentially everything
generalizes but in 3.8 the hypothesis should be stronger: the family
should satisfy that any member does not have the amalgamation
property. E.g. N = Kλ, (and we can reduce the general case to this
by changing K). But this complicates the situation, and the gain is
not clear, so we do not elaborate this.
2) We can many times (and in particular in 3.8) strengthen “there
is no ≤K-universal M ∈ Kλ+” to “there is no M ∈ Kµ into which
every N ∈ Kλ+ can be ≤K-embedded” for µ not too large. We need
¬ Unif(λ+, S, 2, µ), (see [Sh:f, AP,§1]).

Proof. Let F be as in Definition 3.3(5) for M . We now choose by
induction on α < λ+, models Mη for η ∈ α2 such that:

⊛1 (i) Mη ∈ Kλ,M<> = M ,

(ii) if β < α and η ∈ α2 then Mη↾β ≤K Mη

(iii) if i+2 ≤ α and η ∈ α2, then (F(〈Mη↾j : j ≤ i+1〉)) ≤K

Mη↾(i+2)
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(iv) if α = β+1 and β non-limit, η ∈ α2, then Mη↾β 6= Mη

(v) if α < λ is a limit ordinal and η ∈ α2 then:

(a) Mη = ∪{Mη↾β : β < ℓg(η)} and

(b) if Mη fails the λ-amalgamation property
thenMηˆ<0>,Mηˆ<1> cannot be amalgamated overMη,
i.e. for no N do we have:

Mη ≤K N ∈ K and Mηˆ<0>,M<ηˆ<1> can be
≤K-embedded into N over Mη.

For α = 0, α limit, we have no problem, for α + 1, α limit: if Mη

fails the λ-amalgamation property - use its definition, otherwise let
Mηˆ<1> = Mη = Mηˆ<0>; for α+1, α non-limit - use F to guaranteee
clause (iii), and then for clause (iv) use clause (γ) of Definition 3.3(5),
i.e., 3.3(4).

Let for η ∈ λ+

2,Mη =
⋃

α<λ+

Mη↾α. By changing names we can

assume that

⊛1 (vi) for η ∈ α2(α < λ+) the universe of Mη is an
ordinal < λ+ (or even ⊆ λ× (1 + ℓg(η))
and we could even demand equality).

So (by clause (iv)) for η ∈ λ+

2,Mη has universe λ+.
First, why is there no universal member in Kλ+? If N ∈ Kλ+ is

universal (by ≤K, of course), without loss of generality its universe

is λ+. For η ∈ λ+

2 as Mη ∈ Kλ+ , there is a ≤K-embedding fη of

Mη into N . So fη is a function from λ+ to λ+. Let η ∈ λ+

2, by
the choice of F and of 〈Mη↾α : α < λ+〉 there is a closed unbounded
Cη ⊆ λ+ such that α ∈ S∩Cη ⇒Mη↾α

∼= M , hence Mη↾α fails the λ-
amalgamation property. Without loss of generality for δ ∈ Cη,Mη↾δ

has universe δ. Now by 0.5, if 〈(fρ, Cρ) : ρ ∈ λ+

2〉 satisfies that for

each ρ ∈ λ+

2, fρ : λ+ → λ+ and Cρ ⊆ λ+ is closed unbounded then

for some η 6= ν ∈ λ+

2 and δ ∈ Cη ∩ S we have η ↾ δ = ν ↾ δ, η(δ) 6=
ν(δ) and fη ↾ δ = fν ↾ δ.
[Why? For every δ < λ+, ρ ∈ δ2 and f : δ → λ+ we define c(ρ, f) ∈ 2

as follows: it is 1 iff there is ν ∈ λ+

2 such that ρ = ν ↾ δ & f =
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fν ↾ δ & ν(δ) = 0 and is 0 otherwise. So some η ∈ λ+

2 is a
weak diamond sequence for the colouring c and the stationary set
S. Now Cη, fη are well defined and S′ = {δ ∈ S : δ limit and
η(δ) = c(η ↾ δ, f ↾ δ)} is a stationary subset of λ+, so we can choose
δ ∈ S′ ∩ Cη. If η(δ) = 0, then c(η ↾ δ, f ↾ δ) = 0 by the choice
of S′ but η witness that c(η ↾ δ, f ↾ δ) is 1, standing for ν there.
If η(δ) = 1 there is ν witnessing c(η ↾ δ, fη ↾ δ) = 1, in particular
ν(δ) = 0, so η, ν, η ↾ δ, are as required.]

Now as δ ∈ S∩Cη ⊆ Cη it follows that Mη↾δ
∼= M hence Mη↾δ fails

the λ-amalgamation property. Also Mη↾δ has universe δ as δ ∈ Cη
and Mη↾δ = Mν↾δ as η ↾ δ = ν ↾ δ.

So fη ↾ Mη↾δ = fη ↾ δ = fν ↾ δ = fν ↾ Mν↾δ. So fη ↾ Mη↾(δ+1), fν ↾

Mν↾(δ+1) show that Mη↾(δ+1),Mν↾(δ+1), can be amalgamated over
Mη↾δ contradicting clause (v)(b) of the construction, i.e. of ⊛. So
there is no ≤K-universal N ∈ Kλ+ .

It takes some more effort to get 2λ
+

pairwise non-isomorphic mod-
els (rather than just quite many).

Case A5: There is M∗ ∈ Kλ,M ≤K M∗ such that for every N
satisfying M∗ ≤K N ∈ Kλ there are N1, N2 ∈ Kλ such that N ≤K

N1, N ≤K N2 and N2, N1 cannot be ≤K-amalgamated over M∗ (not
just N). In this case we do not need “M is S-weakly limit”.

We redefine Mη, η ∈ α2, α < λ+ such that:

⊛2 (a) ν ⊳ η ∈ α2 ⇒Mν ≤K Mη ∈ Kλ:

(b) if α = 0,M<> = M∗;

(c) if α limit and η ∈ α2 then Mη =
⋃

β<α

Mη↾β;

(d) if η ∈ β2, α = β + 1, use the assumption for N = Mη,
now obviously the (N1, N2) there satisfies
N1 6= N and N2 6= N , so we can have
Mη <K Mηˆ<1> ∈ Kλ, Mη <K Mηˆ<0> ∈ Kλ,
such that Mηˆ<0>,Mηˆ<1> cannot be amalgamated
over M∗.

5we can make it a separate claim
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Obviously, the models Mη =
⋃

α<λ+

Mη↾α, for η ∈ λ+

2 are pairwise

non-isomorphic over M∗ and by 0.3 as 2λ < 2λ
+

we finish proving

İ(λ+,K) = 2λ
+

.

Note also that for each η ∈ λ+

2 the set {ν ∈ λ+

2 : Mν can be
≤K-embedded into Mη} has cardinality ≤ |{f : f a ≤K-embedding

of M∗ into Mη}| ≤ 2λ. So if (2λ)+ < 2λ
+

, then by Hajnal free subset

theorem ([Ha61]), there are 2λ
+

models Mη ∈ Kλ+(η ∈ λ+

2) no one
≤K-embeddable into another.

Case B: Not Case A.
Now we return to the first construction, but we can add

(vii) if η ∈ (α+1)2, then if Mη ≤K N1, N2 both in Kλ, then N1, N2

can be ≤K-amalgamated over Mη↾α.

As {W ⊆ λ+ : W is small} is a normal ideal (see 0.5), (and it is on
a successor cardinal) it is well known that we can find λ+ pairwise
disjoint non-small Sζ ⊆ S for ζ < λ+. We define a colouring (=
function) c:

⊛3 (a) c(η, ν, f) will be defined iff
for some limit ordinal δ < λ+, η ∈ δ2, ν ∈ δ2
and f is a function from δ to λ+

(b) c(η, ν, f) = 1 iff
the triple (η, ν, f) belongs to the domain of c

(i.e., is as in (a)) and Mη,Mν have universe δ,
f is a ≤K-embedding of Mη into Mν

and for some ρ, νˆ < 0 > ⊳ρ ∈ λ+

2
the function f can be extended to a
≤K-embedding of Mηˆ<0> into Mρ

(c) c(η, ν, f) is zero iff it is defined but is 6= 1.

For each ζ, as Sζ is not small, by simple coding, for every ζ < λ+

there is hζ : Sζ → {0, 1} such that:

(∗)ζ for every η ∈ λ+

2, ν ∈ λ+

2 and f : λ+ → λ+, for a stationary
set of δ ∈ Sζ

c(η ↾ δ, ν ↾ δ, f ↾ δ) = hζ(δ).
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Now for every W ⊆ λ+ we define ηW ∈ λ+

2 as follows:
ηW (α) is hζ(α), if ζ ∈ W and α ∈ Sζ (note that there is at most

one ζ)
ηW (α) is zero if there is no such ζ.
Now we can show (chasing the definitions) that

⊛4 if W (1),W (2) ⊆ λ+,W (1) * W (2), then MηW (1)
cannot be

≤K-embedded into MηW (2)
.

This clearly suffices.
Why is ⊛4 true? Suppose W (1) * W (2), let ζ ∈ W (1)\W (2) and
toward contradiction let f be a ≤K-embedding ofMηW (1)

intoMηW (2)
,

so E = {δ : MηW (1)↾δ,MηW(2)↾δ have universe δ and f ↾ δ is a ≤K-

embedding of MηW (1)↾δ into MηW (2)↾δ} is a club of λ+. Hence by the
choice of c and hζ there is δ ∈ E ∩ Sζ such that

⊠ c(ηW (1) ↾ δ, ηW (2) ↾ δ, f ↾ δ) = hζ(δ) and Mηw(1)↾δ is not an
amalgamation base.

Now the proof splits to two cases.

Case 1: hζ(δ) = 0.
So ηW (1)(δ) = 0 = ηW (2)(δ) and by clause (b) of ⊛3 above, i.e., the

definition of c we have the objects ηW (1), ηW (2), f ↾ MηW (1)ˆ<0> =

f ↾ MηW (1)↾(δ+1) witness that c(ηW (1) ↾ δ, ηW (2) ↾ δ, f ↾ δ) = 1,
contradiction.

Case 2: hζ(δ) = 1.
So ηW (1)(δ) = 1, ηW (2)(δ) = 0, c(ηW (1) ↾ δ, ηW (2) ↾ δ, f ↾ δ) = 1.

By the definition of c, we can find ν such that (ηW (2) ↾ δ)ˆ < 0 >E

ν ∈ λ+

2 and a ≤K-embedding g of M(ηW (1)↾δ)ˆ<0> into Mν .

For some α ∈ (δ, λ+), f embeds MηW (1)↾(δ+1) = M(ηW (1)↾δ)ˆ<1>

into MηW (2)↾α and g embeds M(ηW (1)↾δ)ˆ<0> into Mν↾α.
As ηW (2) ↾ δˆ < 0 > ⊳ν ↾ α and ηW (2) ↾ δˆ < 0 > ⊳ηW (2) ↾ α by

clause (vii) above there are f1, g1 and N ∈ Kλ such that

(a) MηW (2)↾δ ≤K N

(b) f1 is a ≤K-embedding of MηW (2)↾α into N over MηW (2)↾δ

(c) g1 is a ≤K-embedding of Mν↾α into N over MηW (2)↾δ.
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So

(b)∗ f1 ◦ f is a ≤K-embedding of M(ηW (1)↾δ)ˆ<1> into N

(c)∗ g1 ◦ g is a ≤K-embedding of M(ηW (1)↾δ)ˆ<0> into N

(d)∗ f1 ◦ f, g1 ◦ g extend f ↾ δ : MηW (1)↾δ → N (both).

So together we get a contradiction to assumption (∗)1(d). �3.8

3.10 Theorem. 1) Assume one of the following cases occurs:

(a)1 K is PCℵ0
(hence LS(K) = ℵ0) and 1 ≤ İ(ℵ1,K) < 2ℵ1

or

(a)2 K has models of arbitrarily large cardinality, LS(K) = ℵ0 and

İ(ℵ1,K) < 2ℵ1 .

Then there is an a.e.c. K1 such that

(A) M ∈ K1 ⇒ M ∈ K and M ≤K1
N ⇒ M ≤K N and

LS(K1) = LS(K)(= ℵ0)

(B) if K has models of arbitrarily large cardinality then so does
K1

(C) K1 is PCℵ0

(D) (K1)ℵ1
6= ∅

(E) all models of K1 are L∞,ω-equivalent and M ≤K1
N ⇔

M ≺L∞,ω
N & M ≤K N and K1 is categorical in ℵ0

and M∗ ∈ (K1)ℵ0
⇒ K1 = {N ∈ K : N ≡L∞,ω(τK) M∗}

(F ) if K is categorical in ℵ1 then (K1)λ = Kλ for every λ > ℵ0;
moreover ≤K1

=≤K↾ (K1)≥ℵ1
.

2) If in (1) we add LS(K) names to formulas in L∞,ω (i.e. to a set of
representatios up to equivalence) then we can assume each member of
K is ℵ0-sequence-homogeneous. The vocabulary remains countable,
in fact, for some countable first order theory T , the models of K are
the atomic models of T (in the first order sense) and ≤K becomes ⊆
(being a submodel).

Proof. Like [Sh 48, 2.3,2.5] (using 2.19 here for α = 2). E.g. why,
if K is categorical in ℵ1 then ≤K1

=≤K↾ (K1)≥ℵ1
? We have to prove
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that if M ≤K N are uncountable then M ≺L∞,ω(τK) N . But there is
M∗ ∈ Kℵ0

such that K1 = {M ′ ∈ K : M ′ ≡L∞,ω
M∗} and (K1)ℵ1

=
Kℵ1

6= ∅, so it suffices to prove M ≺Lω1,ω(T ) N , so assume this is a

counterexample so for some ϕ(x, ȳ) ∈ Lω1,ω(τ) and ā ∈ ℓg(ȳ)M, b ∈ N
we have N |= ϕ[b, ā] but for no b′ ∈M do we have N |= ϕ[b′, ā] and
without loss of generality the quantifier depth of ϕ(x, ȳ), γ is minimal
(for all such pairs (M,N)). Let ∆γ = {ψ(z̄) ∈ Lω1,ω(τK) : ψ has
quantifier depth ≤ γ} hence M ′ ≤K N ′,M ′ ∈ K>ℵ0

⇒ M ′ ≺∆γ
N ′.

Also without loss of generality ‖M‖ = ‖N‖ = ℵ1. Now choose Mα ∈
Kℵ1

by induction on α < ω2, which is ≤K-increasing continuous
(hence ≺∆γ

increases) and for each α there is an isomorphism fα from
N onto Mα+1 mapping M onto Mα, recalling the categoricity. By
Fodor lemma for some α < β we have fα(ā) = fβ(ā), so f−1

β (fα(b))

contradict the choice of ϕ(x, ȳ), b, ā. �3.10

We arrive to the main theorem of this section.

3.11 Theorem. Suppose K and λ satisfy the following conditions:

(A) K has a superlimit member M∗ of cardinality λ, λ ≥ LS(K),
(if K is categorical in λ, then by assumption (B) below there
is such M∗; really invariantly λ+-strongly limit suffice if (d)
of (∗) of 3.12(2) below holds, see Definition 3.3)

(B) K is categorical in λ+

(C) (α) K is PCℵ0
, λ = ℵ0 or

(β) K = PCλ, λ = iδ, cf(δ) = ℵ0 or

(γ) λ = ℵ1,K is PCℵ0
or

(δ) K is PCµ, λ ≥ i(2µ)+ ; not useful for 3.11, still it too
implies (∗)λ,µ in 3.12.

Then K has a model of cardinality λ++.

3.12 Remark. 1) If λ = ℵ0 we can wave hypothesis (A) by the
previous theorem 3.10.
2) Hypothesis (C) can be replaced by (giving a stronger theorem):

(∗)λ,µ(a) K is PCµ and
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(b) any ψ ∈ Lµ+,ω which has a modelM of order-type λ+, |PM | =
λ, has a non-well-ordered model N of cardinality λ

(c) {M ∈ Kλ : M ∼= M∗} is PCµ (among models in Kλ) and

(d) for some F witnessing “M∗ is invariantly λ-strongly limit”,
that is the class {(M,F(M)) : M ∈ Kλ} is PCµ (if M∗ is
superlimit this clause is not required as F = the identity on
Kλ is O.K.)

3) It is well known, see e.g. [Sh:c, VII,§5] that hypothesis (C) implies
(∗)λ,µ from part (2), see more [GrSh 259].

Proof. By 3.12(3) we can assume (∗)λ,µ from 3.12(2).

Stage a: It suffices to find N0 ≤K N1, ‖N0‖ = λ+, N0 6= N1.
Why? We define by induction on α < λ++ a model Nα ∈ Kλ+

such that β < α implies Nβ ≤K Nα and Nβ 6= Nα. Clearly N0, N1

are defined (without loss of generality ‖N1‖ = λ+ as λ ≥ LS(K),
also otherwise we already have the desired conclusion), for limit δ <

λ++ the model
⋃

α<δ

Nα is as required. For α = β + 1, by the λ+-

categoricity, N0 is isomorphic to Nβ, say by f and we define Nβ+1

such that f can be extended to an isomorphism from N1 onto Nβ+1,

so clearly Nβ+1 is as required. Now
⋃

α<λ++

Nα ∈ Kλ++ is as required.

Hence the following theorem completes the proof of 3.11 (use F =
the identity for the superlimit case).

3.13 Theorem. Suppose the following clauses:

(A) K has an invariantly λ-strongly limit member M∗ of cardi-
nality λ, as exemplified by F : Kλ → Kλ and Kλ has the JEP
(see Definition 3.3)

(B) İ(λ+, Kλ+) < 2λ
+

or even just İ(λ+, KF

λ+) < 2λ
+

(or just

İĖ(λ+, KF

λ+) < 2λ
+

(see below))

(C) K is a PCµ class, as well as F, i.e., K ′ is PCµ where K ′ is a
class closed under an isomorphism of (τK ∪ {P})-models, P
a unary predicate such that K ′

λ = {(N,M) : N = F(M)}
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(D) µ = λ = ℵ0 or µ = λ = iδ, cf(δ) = ℵ0 or µ = ℵ0, λ = ℵ1 or
just (∗)λ,µ(c) from 3.12(2)

(E) K categorical in λ or at least there is ψ ∈ Lω1,ω(τ+) such
that (M∗/ ∼=) = {M ↾ τK : M |= ψ, ‖M‖ = λ}.

Then we can find N0 ≤K N1, N0 6= N1 such that N0, N1 ∈ KF

λ+ ,
where

3.14 Definition. Assume F : Kλ → Kλ satisfies M ≤K F(M)
for M ∈ Kλ or more generally F ⊆ {(M,N) : M ≤K N are
from Kλ} satisfies (∀M ∈ Kλ)(∃N)((M,N) ∈ F) or just (∀M ∈
Kλ)(∃N0, N1)[(N0, N1) ∈ F∧M ≤K N0 ≤K N1]. Then we let KF

λ+ :=

{
⋃

i<λ+

Mi : Mi ∈ Kλ, 〈Mi : i < λ+〉 is ≤K-increasing continuous not

eventually constant and F(Mi+1) ≤K Mi+2 or (Mi+1,Mi+2) ∈ F}
for i < λ.

3.15 Remark. 1) As the sequence in the definition of KF

λ+ is ≤K-
increasing and the sequence is not eventually constant (which follows
if (M,N) ∈ F ⇒M 6= N), necessarily KF

λ+ ⊆ Kλ+ .
2) Theorem 3.13 is good for classes which are not exactly a.e.c., see,
e.g., 3.18.

Considering KF

λ+ we may note that the proofs of some earlier claims
give more. In particular (before proving 3.13), similarly to 3.8:

3.16 Claim. Assume that

(a) 2λ < 2λ
+

(b) K is an a.e.c. and LS(K) ≤ λ

(c) M ∈ Kλ is S-weakly limit, S not small (see Definition 0.5)

(d) M does not have the amalgamation property in K (= is an
amalgamation base)

(e) F is as in 3.14.
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Then İ(λ+, KF

λ+) = 2λ
+

.

Proof. To avoid confusion rename F of clause (e) as F1, and choose
F2 which exemplifies “M is S-weakly limit”, i.e., as in Definition
3.3(5). Now we define F′ with the same domain as F2 by F′(〈Mj :
j ≤ i〉) = F1(F2(〈Mj : j ≤ i〉), and continue as in the proof of 3.8
noting that F′ works as well there.

The sequence of models 〈Mη : η ∈ λ+

2〉 we got there are from

KF1

λ+ (so witness that İ(λ+, KF1

λ+) = 2λ
+

) because:

(∗) if the sequence 〈Mα : α < λ+〉,Mα ∈ Kλ for α < λ+ is ≤K-
increasing continuous and F′(〈Mj : j ≤ i+1〉) ≤K Mi+2 then

∪{Mα : α < λ+} ∈ KF1

λ+ .

�3.16

Also similarly to 3.10 we can prove:

3.17 Claim. Assume K is a PCℵ0
and F a PCℵ0

is as in 3.14. If

1 ≤ İ(ℵ1, K
F

ℵ1
) < 2ℵ1 then the conclusion of 3.10 above holds.

Proof of 3.13. (Hence of 3.11). The reader may do well to read it
with F = the identity in mind.

Stage b: We now try to find N0, N1 as mentioned in stage (a) above
by approximations of cardinality λ. A triple will denote here (M,N, a)
satisfying M,N ∼= M∗ (see hypothesis (A)), M ≤K N and a ∈ N\M .
Let < be the following partial order among this family of triples:
(M,N, a) < (M ′, N ′, a′) if a = a′, N ≤K N ′,M ≤K M ′,M 6= M ′ and
moreover (∃N ′′)[N ≤K N ′′ & F(N ′′) ≤K N ′] and (∃M ′′)[M ≤K

M ′′ & F(M ′′) ≤K M ′]. (It is tempting to omit a and require
M = M ′ ∩ N , but this apparently does not work as we do know if
disjoint amalgamation Kℵ0

exist).
We first note that there is at least one triple (as M∗ has a proper

elementary extension which is isomorphic to it, because it is a limit
model by clause (A) of the assumption).

Stage c: We show that if there is no maximal triple, our conclusions
follows.
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We choose by induction on α a triple (Mα, Nα, a) increasing by
<. For α = 0 see the end of previous stage, for α = β + 1, we
can define (Mα, Nα, a) by the hypothesis of this stage. For limit

δ < λ+, (Mδ, Nδ, a) will be (
⋃

α<δ

Mα,
⋃

α<δ

Nα, a) (notice Mδ ≤K Nδ

by AxIV of 1.2 and Mδ, Nδ are isomorphic to M∗ by the choice of F

and the definition of order on the family of triples). Now similarly

M =
⋃

α<λ+

Mα ≤K N =
⋃

α<λ+

Nα are both from K
F

λ+ and the element

a exemplifies M 6= N , so by Stage (a) we finish.
Recall

⊛ if (M,N, a) is a maximal triple then there is no triple (M ′, N ′, a)
such that M ′ ≤K N ′,M <K M ′, N ≤K N ′, a ∈ N ′\M ′ and
(∃M ′′)(M ≤K M ′′ ≤K F(M ′′) ≤K M ′) and (∃N ′′)(N ≤K

N ′′ ≤K F(N ′′) ≤K N ′).

Stage d: There are Mi
∼= M∗ for i ≤ ω such that [i < j ≤ ω ⇒

Mj <K Mi], i < ω ⇒ F(Mi+1) ≤K Mi and |Mω| =
⋂

n<ω

|Mn| and

note that Mi is λ+-strongly limit.
This stage is dedicated to proving this statement. As M∗ is super-
limit (or just strongly limit), there is an ≤K-increasing continuous
sequence 〈Mi : i < λ+〉,Mi

∼= M∗ and F(Mi+1) ≤K Mi+2. (Note
that this is true also for limit models as we can restrict ourselves
to a club of i’s). So without loss of generality

⋃

i<λ+

Mi has universe

λ+,M0 has universe λ.
Define a model B.

Its universe is λ+.

Relations and Functions:

(a) those of
⋃

i<λ+

Mi

(b) R-two place: aRi if and only if a ∈Mi

(c) P (monadic relation) P = λ which is the universe of M0
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(d) g, a two-place function such that for each i, g(i,−) is an iso-
morphism from M0 onto Mi

(e) < (two-place relation) - the usual ordering (on the ordinals
< λ+)

(f) relations with parameter i witnessing Mi ≤K

⋃

j<λ+

Mj (we

can instead make functions witnessing M ∈ K as in 1.9 (the
strong version) and have: each Mi is closed under them))

(g) relations with parameter i witnessing each F(Mi+1) ≤K Mi+2

and Mi+1 6= Mi+2 (including (Mi+1,F(Mi+1)) ∈ F)

(h) if µ = λ, also individual constant for each a ∈M0.

Let ψ ∈ Lµ+,ω describe this, in particular for clauses (f), (g) use
clause (C) of the assumptions. So ψ has a non-well ordered model
B∗, |PB

∗

| = λ (by clause (D) of the assumption see 3.12(2)+(3)).
So let

B
∗ |= “an+1 < an” for n < ω.

Let for a ∈ B
∗, Aa = {x ∈ B

∗ : B
∗ |= xRa}

Ma = (B∗ ↾ τK) ↾ Aa.

Easily Ma ≤K (B∗ ↾ τK) (use clause (f)) and ‖Ma‖ = λ. In fact
Ma is superlimit or just isomorphic to M∗ if µ = λ, as ψ includes
the diagram of M0 = M∗, having names for all members, and if
µ < λ see assumption (E). So Man

≤K B∗ ↾ τK,Man+1
⊆Man

hence
Man+1

≤K Man
by Ax V. Let Mn := Man

. Let I = {b ∈ B
∗ :∧

n<ω

[B∗ |= b < an]}.

Also as for b ∈ I,Mb <K B∗ ↾ τK and Mb1 <K Mb2 for b1 <
B

∗

b2,

by Ax IV clearly Mω := (B∗ ↾ (τK)) ↾
⋃

b∈I

Ab satisfies Mω ≤K B∗ ↾ τK

hence Mω ≤K Mn for n < ω. Obviously Mω ⊆
⋂

n<ω

Mn and equality

holds as ψ guarantee

(∗) for every y ∈ B∗ there is a minimal x ∈ B∗ such that y ∈Mx.
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As each Mb is isomorphic to M∗, of cardinality λ, also Mω is.

Stage e: Suppose that there is a maximal triple, then we shall show

İ(λ+, K) = 2λ
+

and moreover İ(λ+, KF

λ+) = 2λ
+

, and so we shall
get a contradiction to assumption (B).

So there is a maximal triple (M0, N0, a). Hence by the uniqueness
of the limit model for each M ∈ Kλ which is isomorphic to M∗ hence
to M0 there are N, a satisfying M ≤K N ∼= M∗ ∈ Kλ, a ∈ N\M such
that: if M <K M ′ ≤K N ′ ∈ Kλ, N <K N ′, (∃M ′′)(M ≤K M ′′ ≤K

F(M ′′) ≤K M ′ ∼= M∗) and (∃N ′′)(N ≤K N ′′ ≤K F(N ′′) ≤K N ′ ∼=
M∗) then a ∈ M ′. (That is, in some sense a is algebraic over M).
We can waive (∃N ′′)(N ≤K N ′′ ≤K F(N ′′) ≤K N ′ ∼= M∗) as by the
definition of strongly limit there is N ′

∗
∼= M∗ such that F(N ′) ≤K N ′

∗.
On the other hand by Stage d

(∗)1 for eachM ∈ Kλ isomorphic toM∗ there areM ′
n(n < ω) such

that M ≤K M ′
n+1 <K M ′

n ∈ Kλ,M
′
n
∼= M∗ and F(M ′

n+1) ≤K

M ′
n and

⋂

n<ω

M ′
n = M .

For notational simplicity: M ∈ Kλ, |M | an ordinal ⇒ |F(M)| an
ordinal.

Now for each S ⊆ λ+ we define by induction on α ≤ λ+,MS
α ,

increasing (by <K) and continuous with universe an ordinal < λ+

such that MS
α

∼= M∗ and if β + 2 ≤ α then F(Mβ+1) ≤K Mβ+1.

Let MS
0 = M∗ and for limit δ < λ+ and let MS

δ =
⋃

α<δ

MS
α ; by

the induction assumption and the choice of M∗,F clearly MS
δ is

isomorphic to M∗. For α = β + 1, β successor let MS
α be such that

F(MS
β ) <K MS

α
∼= M∗. So we are left with the case α = δ+1, δ limit

or zero.
Now if δ ∈ S hence MS

δ
∼= M∗, choose Mδ+1, a

S
δ such that

(MS
δ+1,M

S
δ , a

S
δ ) is a maximal triple (possible as by the hypothesis

of this case there is a maximal triple, and there is a unique strong

limit model). If δ /∈ S we choose MS,n
δ ∈ Kλ for n < ω (not used)

such that MS
δ <K MS,n+1

δ ≤K MS,n
δ and F(MS,n+1

δ ) ≤K MS,n
δ for

n < ω and MS
δ =

⋂

n<ω

MS,n
δ and MS,n

δ
∼= M∗; and let MS

δ+1 = MS,0
δ
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(again possible as Mδ
∼= M∗ and an (∗)1 above).

Lastly, let MS =
⋃

α

MS
α .

Now clearly it suffices to prove that if S0, S1 ⊆ λ+, S1\S0, is sta-

tionary then MS1

≇ MS0

. So suppose f is a ≤K-embedding from

MS1

onto MS0

or just into MS0

. Then E2 = {δ < λ+ : MS1

δ ,MS0

δ

each has universe δ and i < λ+ implies [i < δ ⇔ f(i) < δ]} is
a closed unbounded subset of λ+, hence there is a limit ordinal

δ ∈ (S1\S0)∩E2. Let us look at f(aS
1

δ ); as δ ∈ S1, aS
1

δ is well defined,

also aS1

δ ∈ MS1

δ+1\M
S1

δ , as δ ∈ E2 it follows that f(aS
1

δ ) ≮ δ hence

f(aS
1

δ ) belongs to MS0

\MS0

δ but MS0

δ =
⋂

n<ω

MS0,n
δ (as δ /∈ S0).

Hence for some n, f(aS
1

δ ) /∈ MS0,n
δ . Let β ∈ (δ, λ+) be large enough

such that f(MS1

δ+1) ⊆ MS0

β . But then f(MS1

δ ) ≤K MS0,n
δ ≤K MS0

β

and f(MS1

δ+1) ≤K MS0

β and aS
1

δ /∈ f−1(MS0,n
δ ).

Now (f(MS1

δ )), f(MS1

δ+1), f(aS
1

δ )) has the same properties as

(MS1

δ ,MS1

δ+1, a
S1

δ ) because if f is an isomorphism from M ′ onto M ′′ ∈
Kλ then we can extend f to an isomorphism from F(M ′) onto

F(M ′′) (i.e., the “invariant”). But (f(MS1

δ ), f(MS1

δ+1), f(aS
1

δ )) <

(MS0,n
δ ,MS0

β , f(aS
1

δ )), contradiction. So we are done. �3.11

3.18 Conclusion. 1) If LS(K) = ℵ0, K is PCℵ0
and İ(ℵ1, K) = 1,

then K has a model of cardinality ℵ2.
2) If ψ ∈ Lω1,ω(Q) (Q is the quantifier “there are uncountably
many”) has one and only one model of cardinality ℵ1 up to iso-
morphism then ψ has a model in ℵ2.

Proof. 1) By 3.10 we get suitable K1 (as in its conclusion) and by
3.11 the class K1 has a model in ℵ2, hence K has a model in ℵ2.
2) We can replace ψ by a countable theory T ⊆ Lω1,ω(Q).
Let L be a fragment of Lω1,ω(Q)(τ) in which T is included (e.g.,
L is the closure of T∪(the atomic formulas) under subformulas,
¬,∧, (∃x), (Qx); in particular L includes, of course, first order logic).
By [Sh 48], without loss of generality T “says” that every formula
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ϕ(x0, . . . , xn−1) of L is equivalent to an atomic formula (i.e., of
the form P (x0, . . . , xn−1), P a predicate) and every type realized in
model of T is isolated (i.e., every model is atomic), and T is complete
in L. Let

K = {M :M an atomic τ(T )-model of T ∩ L and if M |= P [ā]

and (∀x̄)[P (x̄) ≡ ¬(Qy)R(y, x̄)] ∈ T

then {b : M |= R[b, ā]} is countable}

M ≤K N iff M ≤∗ N , which means:

(a) M ≺L N
(b) if M |= P (ā) and ∀x̄[P (x̄) ≡ ¬QyR(y, x̄)] ∈ T then for no

b ∈ N\M do we have N |= R[b, ā].

So K = (K,≤K) is categorical in ℵ0, is an a.e.c. and is PCℵ0
. Let

F be (see 3.3(8)) such that for M ∈ Kℵ0
, N = F(M) iff: M <∗∗ N

which says M ≤K N ∈ Kℵ0
and if ā ∈ M,M |= P [ā], ∀x̄[P (x̄) ≡

QyR(y, x̄)] ∈ T , then for some b ∈ N\M we have N |= R[b, ā]. So F

is invariant.
Note that every M ∈ KF

ℵ1
is a model of ψ. So 3.13 gives that

some M ∈ KF

ℵ1
has a proper extension in KF

ℵ1
.

The rest should be easy, just as in stage (a) of the proof of 3.11.
�3.18

3.19 Question 1) Under the assumptions of 3.18(2), can we get M ∈
Kℵ2

, such that: if M |= P [ā], ∀x̄[P (x̄) ≡ (Qy)R(y, x̄)] ∈ T then
{b ∈M : M |= R[b, ā]} has cardinality ℵ2? Note that in the proof of
3.13 we show that no triple is maximal.

3.20 Remark. 1) We could have used multi-valued F then in the
proof above N = F(M) just means the demand there.
2) To answer 3.19, i.e., to prove the existence of M ∈ Kℵ2

as above
we have to prove:

(∗)1 there are N,Ni ∈ KF

ℵ1
for i < ω1 and N ≤K Ni such that

if N |= P [ā] and the sentence (∀x̄)(P (x̄) ≡ (Qy)R(y, x̄)]
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belongs to T , then for some i < ω1 there is b∗ ∈ Ni\N such
that Ni |= R[b, ā].
Clearly

(∗)2 the existence of N,Ni as in (∗)1 is equivalent to “ψ∗ has a
model” for some ψ∗ ∈ Lω1,ω(Q) which is defined from T,≤K.

Hence

(∗)3 it is enough to prove that for some forcing notion P in VP

there are N,Ni as in (∗)1.

There are some natural c.c.c. forcing notions tailor-made for this

(∗)4 consider the class of triples (M,N, a) such that M ≤K N ∈
Kℵ0

, ā ∈ ω>N, ℓ < ℓg(ā) ⇒ aℓ /∈ M , order as in the proof of
3.13. By the same proof there is no maximal triple.

3) We can restrict ourselves in (∗)2 to

{R(y, ā) : ā ∈ ℓg(x̄)N and ā realizes a type p(x̄)}.

Also we may demand i < ω1 ⇒ Ni = N0 and we may try to force
such a sequence of models (or pairs) and there is a natural forcing.
By absoluteness it is enough to prove that it satisfies the c.c.c.

3.21 Problem: If K is PCλ, K categorical in λ and λ+, does it neces-
sarily have a model in λ++?

Remark. The problem is proving (∗) of 3.12.

3.22 Question: Assume ψ ∈ Lω1,ω(Q)(τ) is complete in Lω1,ω(Q)(τ),
is categorical in ℵ1, has an uncountable model M, ā ∈ nM and
ϕ ∈ Lω1,ω(Q)(τ) axiomatizes the Lω1,ω(Q)(τ)-theory of (M, ā). Is ϕ
categorical in ℵ1?

3.23 Question: Can we weaken the demand on M∗ in 3.13 to “M∗

is a λ+-limit model”?
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§4 Forcing and categoricity

The main aim in this section is, for K as in §1 with LS(K) = ℵ0,

to find what we can deduce from 1 ≤ İ(ℵ1, K) < 2ℵ1 , first without
assuming 2ℵ0 < 2ℵ1 .

We can build a model of cardinality ℵ1 by an ω1-sequence of count-
able approximations. Among those, there are models which are the
union of a quite generic <K-increasing sequence 〈Ni : i < ω1〉 of
countable models, so it is natural to look at them (e.g. if K is cat-
egorical in ℵ1, every model in Kℵ1

is like that). We say on such
models that they are quite generic. More exactly, we look at count-
able models and figure out properties of the quite generic models in
Kℵ1

. The main results are 4.13(a),(f). Note that the case 2ℵ0 = 2ℵ1 ,
though in general making our work harder, can be utilized positively
- see 4.11.

A central notion is (e.g.) “the type which ā ∈ ω>(N1) materializes
in (N1, N0)”, N0 ≤K N1 ∈ Kℵ0

. This is as the name indicates, the

type materialized in N+
1 , which is N1 expanded by PN

+
1 = N0; it

consists of the set of formulas forced (in the model theoretic sense
started by Robinson) to satisfy; here forced is defined thinking on
(Kℵ0

,≤ℵ0
) so models in Kℵ1

can be constructed as the union of quite
generic <K-increasing ω1-sequence. As we would like to build models
of cardinality ℵ1 by such sequence, the “materialize” in (N1, N0)
becomes realized in the (quite generic) N ∈ Kℵ1

; but most of our
work is in Kℵ0

. This is also a way to express Q speaking on countable
models.

By the hypothesis 4.8 justified by §3, the L∞,ω(τK)-theory of M ∈
K is clear, in particular has elimination of quantifiers hence M ≤K

N ⇒ M ≺L∞,ω
N , but for N̄ = 〈Nα : α < ω1〉 as above we would

like to understand (Nβ, Nα) for α < β (from the point of view of
N, N̄ is not reconstructible, but its behaviour on a club is). Toward a
parallel analysis of such pairs we again analyze them by 〈L0

α : α < ω1〉
(similarly to [Mo70]).

4.1 Convention. We fix λ > LS(K) as well as the a.e.c. K.

The main case below is here λ = ℵ1, κ = ℵ0.
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4.2 Definition. For λ > LS(K) and N∗ ∈ K<λ and µ, κ satisfying
λ ≥ κ ≥ ℵ0, µ ≥ κ and let
1) L0

µ,κ be first order logic enriched by conjunctions (and disjunc-
tions) of length < µ, homogeneous strings of existential quantifiers
or of universal quantifiers of length < κ, and the cardinality quanti-
fier Q interpreted as ∃≥λ. But we apply those operations such that
any formula has < κ free variables, and the non-logical symbols are
from τ(K) so actually we should write L0

µ,κ(τK) but we may “forget”
to say this when clear; the syntax does not depend on λ but we shall
mention it in the definition of satisfaction.
2) For a logic L and Ai, A ⊆ N∗ for i < α, α < λ let L (N∗, Ai;A)i<α
be the language, with the logic L , and with the vocabulary τN∗,Ā,A

where Ā = 〈Ai : i < α〉 and τN∗,Ā;A consists of τ(K), the predi-
cates x ∈ N∗ and x ∈ Ai for i < α and the individual constants
c for c ∈ A. (If A = ∅, we may omit the A; if we omit N∗ then
“x ∈ N∗” is omitted, if the sequence of the Ai is omitted then the
“x ∈ Ai” are omitted, so L () means having the vocabulary τ(K)).
So L (N∗, Ai;A)i<α formally should have been written L (τN∗,Ā;A).

3) L1
µ,κ is defined is as in part (1), but we have also variables (and

quantification) over relations of cardinality < λ. Let L−1
µ,κ be as in

part (1) but not allowing the cardinality quantifier Q; this is the
classical logic Lµ,κ.
4) (N,N∗, Ai;A)i<α is the model N expanded to a τN∗,Ā;A-model by
monadic predicates for N∗, Ai(i < α) and individual constants for
every c ∈ A.
5) For “x ∈ N∗”, “x ∈ Ai” we use the predicates P, Pi respectively,
so we may write L (τ + P ) instead L (N∗), but writing L (N∗) we
fix the interpretation of P .
Let τ+α = τ ∪ {P, Pβ : β < α} and if L = L (τ+0), i.e., for α = 0
then L(N) means L but we fix the interpretation of P as N , i.e.,
|N |, the set of elements of N .
Let L(N∗, Ni)i∈u where u a set of < κ ordinals means the language
L in the vocabulary T ∪{P, Pi : i ∈ u} when we fix the interpretation
of P as N∗ and of Potp(u∩α) as Nα.

4.3 Definition. 1) For N∗ ∈ K<λ and ϕ(x0, . . . ) ∈ L1
µ,κ(N∗, Ā;A)

we define by induction on ϕ when N0 λ
K
ϕ[a0, . . . ] holds where
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N∗ ≤K N0 ∈ K<λ, a0, . . . are elements of N0 or appropriate relations
over it, depending on the kind of xi. Pedentically we should write
(N0, N∗, Ā;A) λ

K
ϕ[a0, . . . ]; and we may do it when not clear from

the context.
For ϕ atomic this means N0 |= ϕ[a0, . . . ]. For ϕ =

∧

i

ϕi this

means

N0 λK ϕi[a0, . . . ] for each i.

For ϕ = ∃x̄ψ(x̄, a0, . . . ) this means that for every N1 satisfying
N0 ≤K N1 ∈ K<λ there is N2 satisfying N1 ≤K N2 ∈ K<λ and b̄ from
N2 of the appropriate length (and kind) such that N2 λ

K
ψ[b̄, a].

For ϕ = ¬ψ this means that for no N1 do we have N0 ≤K N1 ∈
K<λ and N1 λ

K
ψ[a0, . . . ].

For ϕ(x0, . . . ) = (Qy)ψ(y, x0, . . . ) this means that for every N1

satisfying N0 ≤K N1 ∈ K<λ there is N2 satisfying N0 ≤K N2 ∈ K<λ

and a ∈ N2\N1 such that N2 λ
K
ψ[a, a0, . . . ].

2) In part (1) if ϕ ∈ L1
µ,κ(N∗) we can omit the demand “N∗ ≤K N”

similarly below.
3) For a language L ⊆ L1

µ,κ(N∗, Ā;A) and a model N satisfying

N∗ ≤K N ∈ K<λ and a sequence ā ∈ λ>N the L-generic type of ā in
N is gtp(ā;N∗, Ā;A;N) = {ϕ(x̄) ∈ L : N λ

K
ϕ[ā]}.

4) Let gtpλL(ā;N∗, Ā;A;N) whereN∗ ≤K N ∈ Kλ and L ⊆ L (N∗, Ā;A)
be {ϕ(x̄) : ϕ ∈ L (N∗, Ā;A) and for some N ′ ∈ K<λ we have N ≤K

N ′ ≤K N and N ′ λ
K
ϕ[ā]}; we may omit Ā, A (and omit λ if clear

from the context) and may write L instead of L = L (N∗, Ā;A);
but note Definition 5.5.
5) We say “ā materializes p (or ϕ)” if p (or {ϕ}) is a subset of the
L-generic type of ā in N .

4.4 Definition. Let Ni(i < λ) be an increasing (by ≤K) continuous

sequence, N =
⋃

i<λ

Ni, ‖Ni‖ < λ and L∗ ⊆
⋃

α<κ

L1
∞,κ(τ+α).

1) N is L∗-generic, if for any formula ϕ(x0, . . . ) ∈ L∗∩L1
∞,κ(τK) and

a0, . . . ∈ N we have:
N |= ϕ[a0, . . . ] ⇔ for some α < λ,Nα λ

K
ϕ[a0, . . . ].

2) The ≤K-presentation 〈Ni : i < λ〉 of N is L∗-generic when for any
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α < λ of cofinality ≥ κ and ψ(x0, . . . ) ∈ L∗(Nα, Ni)i∈I satisfying
I ⊆ α, |I| < κ and a0, . . . ∈ N we have:

N |= ψ[a0, . . . ] ⇔ for some γ < λ,Nγ λK ψ[a0, . . . ]

and for each β ≥ α, with cofinality ≥ κ,Nβ is almost L∗(Nα, Ni)i∈I-
generic (see part (5)).
3) N is strongly L∗-generic if it has an L∗-generic presentation (in
this case, if λ is regular, then for any presentation 〈Ni : i < λ〉 of
N there is a closed unbounded E ⊆ λ such that 〈Ni : i ∈ E〉 is an
L∗-generic presentation).
4) We say that N ∈ K<λ is pseudo L∗-generic if

(a) for every ϕ(x̄) = ∃ȳψ(x̄, ȳ) ∈ L∗, if N λ
K
ϕ(ā) then for some

b̄, N λ
K
ψ(ā, b̄)

(b) for every ā ∈ N, ā materializes in N some complete L∗-type.

5) We add “almost” to any of the above defined notions when: for
λ

K
, the inductive definitions of satisfaction works except possibly for

Q (e.g., N λ
K
∃xϕ(x, . . . ) iff for some a ∈ N,N λ

K
ϕ(a, . . . )).

4.5 Remark. 1) Notice we can choose Ni = N0 = N , so ‖N‖ < λ. In
particular almost (and pseudo) L∗-generic models of cardinality < λ
may well exist.
2) Here we concentrate on λ = ℵ1 and fragments of L0

∞,ω (mainly

L0
ω1,ω

and its countable fragments).
3) There are obvious implications, and forcing is preserved by iso-
morphism and replacing N(∈ K<λ) by N ′, N ≤K N ′ ∈ K<λ.

There are obvious theorems on the existence of generic models, e.g.,

4.6 Theorem. 1) Assume N0 ∈ K<λ, λ = µ+, µ<κ = µ, L ⊆⋃

α<κ

L∞,κ(τ+α) and L is closed under subformulas and |L| < λ. Then

there are Ni(i < λ) such that 〈Ni : i < λ〉 is an L-generic represen-

tation of N =
⋃

i<λ

Ni, (hence N is strongly L-generic).

2) In part (1), N ∈ Kλ if no N ′, N0 ≤K N ′ ∈ K<λ is ≤K-maximal.
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Proof. Straightforward. �4.6

4.7 Remark. 1) If L =
⋃

i<λ

Li, |Li| < λ, then we can get “〈Ni : j <

i < λ〉 is an Lj-generic representation of N for each j < λ”.
2) When we speak on “complete L-type p” we mean p = p(x0, . . . , xn−1)
for some n.

From time to time we add some hypothesis and prove a series of
claims; such that the hypothesis holds, at least without loss of gen-
erality in the case we are interested in. We are mainly interested
in the case İ(ℵ1,K) < 2ℵ1 , etc., so by 3.10, 3.17 it is reasonable to
make:

4.8 Hypothesis. K is PCℵ0
,≤K refines L∞,ω and K is categorical

in ℵ0 and 1 ≤ İ(ℵ1, K) and İ(ℵ1, K
F

ℵ1
) < 2ℵ1 where KF

ℵ1
is as in

Definition 3.14 and is PCℵ0
or just KF

ℵ1
= {M ↾ τK : M |= ψ} for

some ψ ∈ Lω1,ω(Q) (if F is invariant, this follows).

4.9 Remark. 0) We can add: every M ∈ Kℵ0
is atomic (model of

ThL(M)).

1) Usually below we ignore the case İ(ℵ1,K) < 2ℵ0 as the proof is
the same.
2) We can deal similarly with the case 1 ≤ İ(ℵ1, K

′) < 2ℵ0 where
Kℵ1

⊆ K ′
ℵ1

⊆ {M ∈ Kℵ1
: M is strongly L∗-generic} and K ′ is PCℵ0

(or less: {M ↾ τK : M a model of ψ ∈ Lω1,ω(Q)(τ∗)}).
3) Can we use F a function with domain Kℵ0

such that M ≤K

F(M0) ∈ Kℵ0
for M ∈ Kℵ0

without the extra assumptions or even
F : {M̄ = 〈Mi : i ≤ α〉 is ≤Kℵ0

-increasing continous} → Kℵ0
such

that Mα ≤K F(Mi : i ≤ α〉)? We cannot use the non-definability of
well ordering (see 3.10(3)); (as in the proof of (f) of 4.13).

4.10 Claim. 1) If ā ∈ N ∈ Kℵ0
and ϕ(x̄) ∈ L0

∞,ω(τ+0) (so ā is a

finite sequence) then (N,N) ℵ1

K
ϕ[ā] or (N,N) ℵ1

K
¬ϕ[ā] (i.e. P

is interpreted as N).

2) If (N,N) ℵ1

K
∃x̄ ∧ p(x̄), where p(x̄) is a not necessarily complete
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n-type (n = ℓg(x̄)) in L where L ⊆ L0
ω1,ω

(τ+0) is countable, then

for some complete n-type q in L extending p we have (N,N) 
ℵ1

K

∃x̄ ∧ q(x̄).

Proof. 1) Suppose not, for each S ⊆ ω1, we define by induction on
α,NS

α ∈ Kℵ0
(α < ω1), increasing (by ≤K) and continuous, NS

0 = N

and for limit α,NS
α =

⋃

β<α

NS
β . For α = 2β + 1 remember that

(NS
β , ā) ∼= (N, ā) because N = N0 ≤K NS

β hence N0 ≺L∞,ω
NS
β ∈

Kℵ0
hence (NS

β , ā) ≡L∞,ω
(N, ā) hence they are isomorphic. So

(NS
β , N

S
β ) forces (ℵ1

K
) neither ϕ[ā] nor ¬ϕ[ā]. So there are Mℓ (for

ℓ = 0, 1) such that NS
β ≤K Mℓ ∈ Kℵ0

and (M0, N
S
β ) 

ℵ1

K
ϕ[ā] but

(M1, N
S
β ) ℵ1

K
¬ϕ[ā]. Now if β ∈ S we let NS

α = M0 and if β /∈ S we

let NS
α = M1.

Lastly, M2β+2 = F(M2β+1) recalling F is from 4.8. Let NS =⋃

α<ω1

NS
α . Now if S(0)\S(1) is stationary then (NS(0), ā) ≇ (NS(1), ā).

Why? Because if f : NS(0) → NS(1) is an isomorphism from NS(0)

onto NS(1) mapping ā to ā then for some closed unbounded set

E ⊆ ω1, we have: if α ∈ E then f maps N
S(0)
α onto N

S(1)
α , so

choose some α ∈ E ∩ S(0)\S(1) and choose β ∈ E\(α + 1). Now

(N
S(0)
α+1 , N

S(0)
α ) 

ℵ1

K
ϕ[ā], hence (N

S(0)
β , N

S(0)
α ) 

ℵ1

K
ϕ[ā], and simi-

larly (N
S(1)
β , N

S(1)
α ) ℵ1

K
¬ϕ(ā), but f ↾ N

S(0)
β is an isomorphism

from N
S(0)
β onto N

S(1)
β mapping N

S(0)
α onto N

S(1)
α and ā to itself and

we get a contradiction. By 0.3, we get İ(ℵ1, K) = 2ℵ1 , contradiction.
2) Easy by 4.6 and part (1). In detail, if N ≤K M1 ∈ Kℵ0

then by the

definition of ℵ1

K
and the assumption we can find (M2, ā) satisfying

M1 ≤K M2 ∈ Kℵ0
and ā ∈ M2 such that (M2, N) ℵ1

K
∧p(ā). As

L is countable and the definition of ℵ1

K
without loss of generality

for every formula ϕ(x̄) ∈ L, (M2, N) ℵ1

K
ϕ[ā] or (M2, N) ℵ1

K
¬ϕ[ā].

(Why? Simply let 〈ϕn(x̄) : n < ω〉 list the formulas ϕ(x̄) ∈ L and
choose M2,n ∈ Kℵ0

by induction on n such that M2,0 = M2,M2,n ≤K

M2,n+1 such that (M2,n+1, N) ℵ1

K
ϕn(x̄) or (M2,n+1, N) ℵ1

K
¬ϕn(x̄);

now replace M2 by ∪{M2,n : n < ω}). Recalling Definition 4.3(4), let
q = gtpL(N)(ā, N,M2), it is a complete (L(N), n)-type. So clearly
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(M2, N) 
ℵ1

K
(∃x̄) ∧ q(x̄). Now apply the proof of part (1) to the

formula (∃x̄) ∧ q(x̄) so we are done. �4.10

4.11 Claim. For each countable L ⊆ L0
ω1,ω

(τ+0) and N ∈ Kℵ0
the

number of complete L(N)-types p (with no parameters) such that

N ℵ1

K
(∃x̄) ∧ p(x̄), is countable.

Proof. At first glance it seemed that 0.2 will imply this trivially.
However, here we need the parameter N as an interpretation of the
predicate P and if 2ℵ0 = 2ℵ1 there are too many choices. So we shall
deal with “every Nα in some presentation”. Suppose the conclusion
fails. First we choose by induction Nα (for α < ω1) such that:

(i) Nα ∈ Kℵ0
is ≤K-increasing and 〈Nα : α < ω1〉 is L-generic

(ii) for each β < α, there is aβα ∈ Nα+1\Nα materializing an
L(Nβ)-type not materialized in Nα, (i.e. in (Nα, Nβ); see
Definition 4.3(2) on materialize), (possible by 4.10 and our
assumption toward contradiction)

(iii) |Nα| = ωα
(iv) for α < β,Nβ is pseudo L(Nα)-generic and F(N2β+1) ≤K

N2β+2.

Now let N = ∪{Nα : α < ω1} and we expand N by all relevant in-
formation: the order < on the countable ordinals, c(c ∈ N0), enough
“set theory”, “witness” for Nβ ≤K Nα for β < α and the 2-place
functions F, F (β, α) = aβα and lastly witnesses of F(N2β+1) ≤K

N2β+2 recalling F is quite definable by Definition 4.8 and names
for all formulas in L(Nα) (with α as a parameter), i.e., the rela-
tions Rϕ(x̄) = {〈α〉ˆā : α < ω1, ā ∈ ℓg(x)N and for every β < ω1

large enough (Nβ , Nα) ℵ1

K
“ϕ(ā)”} for ϕ(x̄) ∈ L. Clearly for every

α < ω1, ϕ(x̄) ∈ L(Nα) and ā ∈ ℓg(x̄)N we have (N,Nα) |= ϕ[ā] iff for

every β < ω1 large eough we have (Nβ, Nα) ℵ1

K
“ϕ[ā]”. We get a

model B with countable vocabulary and ψ ∈ Lω1,ω(Q) expressing all
this. By 0.2(1) applied to the case ∆ = L, there are models Bi (for
i < 2ℵ1) of cardinality ℵ1 (note N0 ≤K B ↾ τK), so that the set of
L(N0)-types realizes in N i (the τ(K)-reduct of Bi) are distinct for
distinct i’s. So (N i, c)c∈N0

are pairwise non-isomorphic. If 2ℵ0 < 2ℵ1

we finish by 0.3.
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So we can assume 2ℵ0 = 2ℵ1 . In N , uncountably many complete
L(N0)-n-types are realized hence by 0.2(2) the set {p : p a complete
L(N0) − m-type is realized in some N ′, N0 ≤K N ′ ∈ Kℵ1

for some
m < ω} has cardinality continuum, hence by 4.10 the set of com-

plete L(N0)-types p = p(x) such that (N0, N0) ℵ1

K
∃x̄ ∧ p(x̄) has

cardinality 2ℵ0 . So we choose by induction on α < 2ℵ0 a sequence
〈Nα

i , a
α
i : i < ω1〉 such that:

(a) Nα
i ∈ Kℵ0

(b) Nα
i0

≤K Nα
i for i0 < i < ω1

(c) aαi ∈ Nα
i+1\N

α
i materialize a complete L(Nα

i )-type pαi

(d) if j < ω1 is a limit ordinal then Nα
j = ∪{Nα

i : i < j}

(e) pαi /∈ {gtp(ā;Nβ
j1

;Nβ
j2

) : j1 < j2 < ω1, ā ∈ ω>(Nβ
j2

) and

β < α} (see Definition 4.3(4))

(f) F(N2β+1) ≤K N2β+2.

As ℵ1 < 2ℵ1 = 2ℵ0 this is possible, i.e., in clause (e) we should
find a type which is not in a set of ≤ ℵ1 × |α| < 2ℵ0 types, as
the number of possibilities is 2ℵ0 ; let Nα = ∪{Nα

i : i < ω1} for
α < 2ℵ0 , clearly Nα ∈ Kℵ1

. Now toward contradiction if β < α <
2ℵ0 and Nα ∼= Nβ then there is an isomorphism f from Nα onto

Nβ ; necessarily f maps Nα
i onto Nβ

i for a club of i. For any such

i, pαi ∈ gtpL(f(āαi );Nβ
i ;Nβ

j ) for j large enough, contradiction. �4.11

4.12 Remark. In the proof of 4.11(2), we can fix m and we can
combine the two cases, when for N ∈ KF

ℵ1
represent by 〈Nα : α < ω1〉

we consider PN = {p : p a complete L−m-type such that for a club
of α < ω1 for some β ∈ (α, ω1) and ā ∈ m(Nβ) materialize p in
(Nβ , Nα)}, can replace “club” by “stationarily many”. That is we
can prove that {PN : N ∈ KF

ℵ1
} has cardinality 2ℵ1 .

4.13 Lemma. 1) There are countable L0
α ⊆ L0

ω1,ω
(τ+0) for α <

ω1 increasing continuous in α, closed under finitary operations and
subformulas such that, letting L0

<ω1
= ∪{L0

α : α < ω1} we have

(some clauses do not metion the L0
α’s):
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(a) for each N ∈ Kℵ0
and every complete L0

α(N)-type p(x̄) we

have N ℵ1

K
(∃x̄) ∧ p(x̄) ⇒ ∧p ∈ L0

α+1(N). Hence for every
L0
ω1,ω

(τ+0)-formula ψ(x̄) there are formulas ϕn(x̄) ∈ L0
<ω1

for n < ω such that (N,N) ℵ1

K
(∀x̄)[ψ(x̄) ≡

∨

n

ϕn(x̄)]

(b) for every N0 ≤K N1 ∈ Kℵ0
there is N2, N1 ≤K N2 ∈ Kℵ0

,
such that for every ā ∈ N2 and ϕ(x̄) ∈ L0

ω1,ω
(N0), of course

with ℓg(ā) = ℓg(x̄) < ω, we have (N2, N0) ℵ1

K
ϕ[ā] or

(N2, N0) ℵ1

K
¬ϕ[ā]

(c) If N ≤K Nℓ ∈ Kℵ0
(ℓ = 1, 2), āℓ ∈ Nℓ and the L0

<ω1
(N)-

generic types of āℓ in Nℓ are equal (though they are not nec-
essarily complete; i.e., for every ϕ(x̄) ∈ L0

<ω1
(N) we have

N1 
ℵ1

K
ϕ(ā1) iff N2 

ℵ1

K
ϕ[ā2]), then so are the L0

∞,ω(N)-
generic types. In fact, there isM,N ≤K M and ≤K-embeddings
fℓ : Nℓ → M such that fℓ maps N onto itself and f1(ā1) =
f2(ā2) though we do not claim f1 ↾ N = f2 ↾ N . Also if
N1 = N2 then there is M ∈ Kℵ0

which ≤K-extends N1 and
an automorphism f of M mapping N onto itself and ā1 to
a2.

(d) For each N ∈ Kℵ0
and complete L0

ω1,ω
(N)-type p(x̄), the

class K1 := {(N,M, ā) : M ∈ Kℵ0
, N ≤K M and for some

M ′,M ≤K M ′ ∈ Kℵ0
and ā materialize p in (M ;N)} is a

PCℵ0
-class.

(e) for any complete L−1
ω1,ω

(N)-type p(x̄),

for some complete L0
ω1,ω

(N)-type qp, if N ≤K M ∈ Kℵ0
, ā ∈

M and ā materialize p in (M,N), then ā materialize qp in
(M,N); on L0,L−1 see Definition 4.2(1),(3)

(f) the number of complete L0
ω1,ω

(N)-types p which for some

ā,M we have ā ∈ ω>M,M ∈ Kℵ0
, N ≤K M and ā mate-

rialize in (M,N) is ≤ ℵ1

(g) if in clause (f) we get that there are ℵ1 such types then

İ(ℵ1, K) ≥ ℵ1

(h) let L−1
α := L0

α∩L−1
ω1,ω

(τ+0) then the parallel clauses to (a)-(g)
holds.
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2) Clause (e) means that

(i) assume further that N0 ≤K Nℓ ∈ Kℵ0
for ℓ = 1, 2 and āℓ ∈

Nℓ and the L−1
<ω1

(N)-type which ā1 materializes in N1 is equal

to the L−1
<ω1

(N)-type which ā2 materializes in N2. Then we

can find N+
1 , N

+
2 such that Nℓ ≤K N+

ℓ ∈ Kℵ0
for ℓ = 1, 2

and isomorphism f from N+
1 onto N+

2 mapping N onto itself
and ā1 to ā2.

4.14 Remark. 1) We cannot get rid of the case of ℵ1 types (but see
5.22, 5.27) by the following variant of a well known example of Morley

[Mo70] for İ(ℵ0, K) = ℵ2. For let K = {(A,E,<) : E an equivalence
relation on A, each E-equivalence class is countable, x < y ⇒ xEy
and on each E-equivalence class < is a 1-transitive linear order, i.e.
xEy ⇒ (x/E,<, x) ∼= (y/E, <, y)} and M ≤K N if M ⊆ N and
[x ∈ M ∧ y ∈ N ∧ xEy ⇒ y ∈ M ]. By the analysis of such count-
able linear orders, each (a/EM , <) up to isomorphism is determined
by (α, ℓ) ∈ ω1 × 2. For appropriate F, if M = F(N), a ∈ N and
I is an interval of (a/EN , <N ) which is 1-transitive then for some
b ∈M\N, (b/EM , <M ) is isomorphic to (I, <N ). This is enough.
2) In clauses (c),(i) of 4.13 the mapping are not necessarily the iden-
tity on N . In clause (i) the assumption is apparently weaker (those
by its conclusion the assumption of (c) holds).
3) Note that clause (f) of 4.13 does not follow from clause (a) as
there may be ℵ1-Kurepa trees.
4) In clause (c) of 4.13 for the second sentence we can weaken

the assumption: if ϕ(x̄) ∈ L0
<ω1

(N) and (N1;N) 1ℵ1

K
ϕ(ā1) then

(N2, N) 1ℵ1

K
ϕ(ā2). This is enough to get the M1,α,M2,α from

the proof. (Why? For each α < ω1, there are M1,α such that
N1 ≤K M1,α ∈ Kℵ0

and a complete L0
α − ℓg(āi)-type p∗(x̄) such

that (M1,α, N)  ∧p∗(ā1). But ¬ ∧ p1(x̄) ∈ Lα+1 and obviously

(N1, N) 1 ¬ ∧ p∗(ā1) hence (N2, N) 1ℵ1

K
¬ ∧ p∗(ā2) hence there is

M2,α such that N2 ≤K M2,α ∈ Kℵ0
and (M2,α;N) ℵ1

K
∧p∗[ā2]. Now

continue as in the proof below).

Remark. We can prove clause (b) and the last sentence in clause (c)
of 4.13 directly not mentioning the L0

α-s.
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Proof. Note that proving clause (e) we say “repeat the proof of clause
(a),(b),(c),(d) for L−1

ω,ω”.

Clause (a): We choose L0
α by induction on α using 4.11. The second

phrase is proved by induction on the depth of the formula using 4.10.

Clause (b): By iterating ω times, it suffices to prove this for each
ā ∈ N1, so again by iterating ω times it suffices to prove this for a
fix ā ∈ N1.

If the conclusion fails we can define by induction on n < ω for every
η ∈ n2, a model Mη and ϕη(x̄) ∈ L0

ω1,ω
(N) such that:

(i) M<> = N1

(ii) Mη ≤K Mηˆ<ℓ> ∈ Kℵ0
for ℓ = 0, 1

(iii) (Mη, N) ℵ1

K
ϕη(ā)

(iv) ϕηˆ<1>(x̄) = ¬ϕηˆ<0>(x̄).

Now for η ∈ ω2, let Mη =
⋃

n<ω

Mη↾n. Clearly for η ∈ ω2 we have

Mη 
ℵ1

K
(∃x̄)[

∧

n<ω

ϕη↾n(x̄)] and, after slight work, we get contradic-

tion to 4.11 + 4.10.

Clause (c): In general by clause (a) for each α < ω1 we can find Mα
ℓ ∈

Kℵ1
for ℓ = 1, 2 such that Nℓ ≤K Mα

ℓ and (Mα
1 , ā1), (Mα

2 , ā2) are
L0
α(N)-equivalent and without loss of generality each of N,Nℓ,M

α
ℓ

have universe an ordinal < ω1. Let A = (H (ℵ2), N,N1, N2, 〈M
α
1 :

α < ω1〉, 〈M
α
2 : α < ω1〉) let A1 ≺ A be countable and recalling

0.4(3) find a non-well ordered countable model A2, which is an end

extension of A1 for ωA1
1 , hence ωA2 = ω so NA2 = N,NA2

ℓ = Nℓ
for ℓ = 1, 2. For x ∈ (ω1)A2\A1 let Mx

ℓ = (Mx
ℓ )A2 so Nℓ ≤K Mx

ℓ ∈
Kℵ0

. Now there are xn such that A2 |= “xn+1 < xn are countable
ordinals”; so using the hence and forth argument (Mx0

1 , ā1, N) ∼=
(Mx0

2 , ā2, N).
[Why? Let Fn = {(b̄1, b̄2) : b̄ℓ ∈ n(Mx0

ℓ ) and A2 |= gtpL0
xn

(ā1ˆb̄1, N ;

Mx0
1 ) = gtpL0

xn
(ā2ˆb̄2;N ;Mx0

2 )}. Clearly (<>,<>) ∈ F0 and if

(b̄1, b̄2) ∈ Fn, ℓ ∈ {1, 2} and bℓn ∈ Mx0

ℓ then there is b3−ℓn ∈ Mx0

3−ℓ

such that (b̄1ˆ〈b1n〉, b̄
2ˆ〈b2n〉) ∈ Fn+1. As Mx0

1 ,Mx0
2 are countable we
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can find an isomorphism.]
But this is as required in the second phrase of (c).

We still have to prove the first phrase. For this we prove by
induction on the ordinal α that

⊛1
α if for ℓ = 1, 2, āℓ ∈

ω>(Nℓ) materialize in (Nℓ, N∗) a complete
L0
<α-type p(x̄) not depending on ℓ and ϕ(x̄) ∈ L0

∞,ω(N∗) has

quantifier depth < α then: ℓ ∈ {1, 2} ⇒ (Nℓ, N∗) ℵ1

K
ϕ(āℓ)

or ℓ ∈ {1, 2} ⇒ (Nℓ, N∗) 
ℵ1

K
¬ϕ(āℓ).

For countable N ≤K M and ā ∈ ω>N

⊙1 let Pα(N,M, ā) = {gtpL0
<α

(ā;N ;M⊥) : M ≤K M+ ∈ Kℵ0

and gtpL0
α
(ā;N ;M+) is a complete L0

α-type}.

Now

⊙2 for β < α < ω1, from gtpL0
α

(ā;N ;M) we can complete
Pβ(N,M, ā)

⊙3 for α < ω1, from Pβ(N,M, ā) we can compute gtpL0
α
(ā;N ;M)

⊙4 assume N ≤K M are countable and ā ∈ ω>M ; for ϕ(x̄) ∈
L0
ω1,ω

(N) of quantifier depth < α we have:
ϕ(x̄) ∈ gtpL0

ω1,ω(N)(ā;N ;M), iff for every q(x̄) ∈ Pα(N,M, ā),

ϕ(x̄) belong to the type computed implicitly in ⊛α, i.e. if

q(x̄) = gtpL0
<α

(ā′;N ′;M ′) then (N ′,M ′) ℵ1

K
ϕ(x̄).

Those three should be clear and gives the desired conclusion. Also
the last sentence is easy.

Clause (d): Let N0 ≤K M0 ∈ Kℵ0
and ā0 ∈ M0 be such that

(M0, N0) ℵ1

K

∧

ϕ(x̄)∈p

ϕ[ā0], (if it does not exist, the set of triples

is empty). Let K ′′ := {(N,M, ā) : M ∈ Kℵ0
, N ∈ Kℵ0

, N ≤K

M , and there are M ′′ ∈ Kℵ0
,M ≤K M ′′ and ≤K-embedding f :

M0 → M ′′, such that f(N0) = N, g(ā0) = ā}. Clearly it is a
PCℵ0

class. Also M0 ≤K M ′ ∈ Kℵ0
⇒ gtpL0

ω1,ω(N0)(ā;N0;M0) =

gtpL0
ω1,ω(N0)(ā;N0,M

′).

Now first if (N,M, ā) ∈ K ′′ let (M ′′, f) witness this so by ap-
plying clause (b) of 4.13 gtpL0

ω1,ω
(ā;N ;M) ⊆ gtpL0

ω1,ω
(ā;N ;M ′′) =
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gtpL0
ω1,ω

(ā;N ; f(M0)) = gtpL0
ω1,ω

(a0;N0;M0) = p so (N,M, ā) ∈

K1.
Second, if (N,M, ā) ∈ K1 let f0 be an isomorphism from M0

onto M0. Let (M1, f1) be such that N0 ≤K M1 ∈ Kℵ0
, f1 ⊇ f0

is an isomorphism from M1 onto M and ā1 = f−1
i (ā) hence p =

gtpL0
ω1,ω

(ā1;N0;M1) and we apply clause (c) of 4.13 with N0, M0,

ā0, M1, ā1 here standing for N , M1, ā1, M2, ā2 there and can finish
easily.

Clause (e): We can define 〈L−1
α : α < ω1〉 satisfying the parallel of

Clause (a) and repeat the proofs of clauses (b),(c) and we are done.

Clause (f): Suppose this fails.
The proof splits to two cases.

Case A: 2ℵ0 = 2ℵ1 .
We shall prove İ(ℵ1, K) ≥ 2ℵ0 , thus, (as 2ℵ0 = 2ℵ1) contradicting

Hypothesis 4.8.
Let pi (for i < ω2) be distinct complete L0

ω1,ω
(τ+0)-types such that

for each i, pi is materialized in some pair (M ;N), so N ≤K M ∈ Kℵ0

(they exist by the assumption that (f) fails). For each i < ω2 we
define Ni,α, ξi,α (for α < ω1) and āi,α such that:

⊠1 (i) Ni,α ∈ Kℵ0
has universe ω(1 + α), N0,0 = N

(ii) 〈Ni,α : α < ω1〉 is ≤K-increasing continuous

(iii) āi,α ∈ Ni,α+1, āi,α materialize pi in (Ni,α+1, Ni,α)
(iv) for every α < β < ω1 and ā ∈ ω>(Ni,β), the sequence ā

materialize in (Ni,β, Ni,α) a complete L0
ω1,ω

(τ+0)-type
(v) ξi,α < ω1 is strictly increasing continuous in α
(vi) for α < β,Ni,β is pseudo L0

β(Ni,α)-generic, see 4.4(4) and

take care of Q, i.e., if γ < β, p(y, x̄) a complete L0
γ-type and

(Ni,β, Ni,α) 
ℵ1

K
(Qy)∧p(y, ā), then for some b ∈ Ni,β+1\Ni,β

we have (Ni,β+1, Ni,α) ℵ1

K
∧p(b, ā)

(vii) if α < β and ā, b̄ ∈ Nβ−1 materialize different L0
ω1,ω

(Ni,α)-
types in Ni,β,

then ā, b̄ realize different (Lω1,ω(τ+0)∩L−1
ξi,β+1

)(Nα)-types in

Ni,β
(viii) Ni = ∪{Ni,α : α < ω1}
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(ix) if αℓ < β for ℓ = 1, 2, γ < β, n < ω and ā1 ∈ n(Ni,β)
then for some ā2 ∈ n(Ni,β) we have gtpL0

γ
(ā1;Ni,α1

;Ni,β) =

gtpL0
γ
(ā2;Ni,α2

;Ni,β)

(ix)+ moreover, if n < ω, γ1 < γ2 < β, αℓ < β, āℓ ∈
n(Ni,β) for ℓ =

1, 2 and gtpL0
γ2

(ā1;Ni,α−1;Ni,β) = gtpL0
γ2

(ā2;Ni,α2
;Ni,β)

and b1 ∈ Ni,β
then for some b2 ∈ Ni,β we have gtpL0

γ1
(ā1ˆ〈b1〉;Ni,α1

;Ni,β) =

gtpL0
γ1

(āˆ〈b2〉;Ni,α2
;Ni,β).

This is possible by the earlier claims. By clause (e) of 4.13 clearly

⊠2 the pair (Ni, N0) is L−1
<ω1

(τ+0)-homogeneous.

We could below use Di a set of complete L0
δ(i)-types, the only prob-

lem is that the countable (Di,ℵ0)-homogeneous models have to be
redefined using “materialized” instead “realized”. As it is we need
to use clause (e) to translate the results on L0

δ(i) to L−1
δ(i).

Let τ∗ = {∈, Q1, Q2} ∪ {cℓ : ℓ < 5}, cℓ an individual constant
and A∗

i be (H (ℵ2),∈) expanded to a τ∗-model, by predicates for

K,≤K with Q
A

∗
i

1 = K ∩ H (ℵ2), QA
∗

2 = {(M,N) : M ≤K N both in

H (ℵ2)}, c
A

∗
i

0 , . . . , c
A

∗
i

4 being {〈Ni,α : α < ω1〉}, 〈ξi,α : α < ω1〉, {〈āi,α :
α < ω1〉}, Ni and {i} respectively.

Let Ai be a countable elementary submodel of A∗
i so |Ai| ∩ ω1 is

an ordinal δ(i) < ω1. It is also clear that cAi

3 is Ni,δ(i) as c
A

∗
i

3 = Ni.
As Ai is defined for i < ω2, for some unbounded S ⊆ ω2 and δ < ω1,
for every i ∈ S, δ(i) = δ and for i, j ∈ S, some sequence from Nj
materializes pi in the pair (Nj, Nj,δ(j)) iff i = j. For i ∈ S let

Di = {p : p is a complete L−1
δ(i)-type materialized in (Ni,δ(i), Ni,0)}.

Because of the ξi,α’s choice and ⊠2 the pair (Ni,δ, N0) is (Di,ℵ0)-

homogeneous and Di is a countable set of complete L−1
δ -types. Note

that by the choice of S, i 6= j(∈ S) ⇒ Di 6= Dj .

Let Γ = {D : D a countable set of complete L−1
δ -types, such that

for some model A = AD of
⋂

i∈S

ThLω,ω
(Ai), with {a : AD |= “a

countable ordinal} = δ (and the usual order) we have D = {{ϕ(x̄) :

ϕ(x̄) ∈ L−1
δ and AD |= “(N ;N0) 

ℵ1

K
ϕ[ā]”} : ā ∈ N where N =

cAD

3 }}.
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So Di ∈ Γ for i < ω2, hence Γ is uncountable.
By standard descriptive set theory Γ (is an analytic set hence) has

cardinality continuum. So let D(ζ) ∈ Γ be distinct for ζ < 2ℵ0 . For
each ζ, let A0

D(ζ) be as in the definition of Γ. We define by induction

on α < ω1,A
α
D(ζ) such that

(α) AαD(ζ) is countable

(β) α < β ⇒ AαD(ζ) ≺Lω,ω
A
β

D(ζ)

(γ) for limit α we have AαD(ζ) =
⋃

β<α

A
β

D(ζ)

(δ) if d ∈ A
α+1
D(ζ)\A

α
D(ζ),A

α+1
D(ζ) |= “d a countable ordinal” then for

a ∈ AαD(ζ) we have A
α+1
D(ζ) |= “if a is a countable ordinal then

a < d”

(ε) for α = 0 in clause (δ) there is no minimal such d

(ζ) for every α there is dζ,α ∈ A
α+1
D(ζ)\A

α
D(ζ) satisfying A

α+1
D(ζ) |=

“dζ,α a countable ordinal” and for α 6= 0 it is minimal.

without loss of generality

(∗) (H (ℵ1)A
0
D(ζ) ,∈A

0
D(ζ)) is equal to its Mostowski collapse (and

Lω1,ω(N) ⊆ H (ℵ1)).

(We could have fixed also otp(Ai ∩ ω2), hence ensure that also

(A0
D(ζ),∈

A
0
D(ζ)) is equal to its Mostowski collapse).

Let Mζ,α be the dζ,α-th member of the ω1-sequence of models in

A
β

D(ζ) for β > α (remember c
A

∗
i

0 = 〈Ni,α : α < ω1〉). Let Mζ =
⋃

α<ω1

Mζ,α. By absoluteness from A
β

D(ζ) we have Mζ,α ≤K Mζ,β ∈

Kℵ0
. Now

(∗) 0 < α < β, (Mζ,β,Mζ,α) is (D(ζ),ℵ0)-homogeneous.

[Why? Assume AαD(ζ) |= “d1 < d2 are countable ordinals > γ” when

γ < δ.

Now if ā, b̄ ∈ ω>(N
A

α
D(ζ)

d2
) and [γ < δ ⇒ gtpL0

γ
(ā;N

A
α
D(ζ)

d1
;N

A
α
D(ζ)

d2
) =

gtpL0
γ
(b̄;N

A
α
D(ζ)

d1
;N

A
α
D(ζ)

d2
)] then also A

α
D(ζ) satisfies this but “A

α
D(ζ)
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thinks that the countable ordinals are well ordered” hence for some
d,AαD(ζ) |= “d is a countable ordinal > γ” for each γ < δ and we

have A
α
D(ζ) |= “gtpL0

d
(ā;Nd1 ;Nd2) = gtpL0

d
(ā;Nd1 ;Nd2)”. Hence if

AαD(ζ) |= “d′ < d” then for every a ∈ N
A

α
D(ζ)

d2
for some b ∈ N

A
α
D(ζ)

d2
we

have

A
α
D(ζ) |= “gtpL0

d
(āˆ〈a〉;Nd1 ;Nd2) = gtpL0

d
(b̄ˆ〈b〉;Nd1 ;Nd2)”

hence gtpL0
γ
(āˆ〈a〉;NA

α
D(ζ);N

A
α
D(ζ)

d2
) = gtp(b̄ˆ〈b〉;N

A
α
D(ζ)

d1
;N

A
α
D(ζ)

d2
).

Also we can replace L0
δ by L−1

δ . By clause (x) of ⊠1 the set

{gtpL0
δ
(ā;N

A
α
D(ζ)

d1
;N

A
α
D(ζ)

d2
) : a ∈ ω>(N

A
α
D(ζ)

d2
)} is Di.

So (N
A

α
D(ζ)

d2
, N

A
α
D(ζ)

d2
) is (Di,ℵ0)-homogenous.

So from the isomorphism type of Mζ we can compute D(ζ). So
ζ 6= ξ ⇒Mζ ≇ Mξ. As Mζ ∈ Kℵ1

we finish.

Case B: 2ℵ0 < 2ℵ1 .
By 3.8, K has the ℵ0-amalgamation property. So clearly if N ≤K

M∈Kℵ0
, ā ∈M , then āmaterializes in (M,N) a complete L0

ω1,ω
(τ+0)-

type. We would now like to use descriptive set theory.
We represent a complete L0

ω1,ω
(τ+0)-type materialized in some

(N,M) by a real, by representing the isomorphism type of some
(N,M, ā), N ≤K M ∈ Kℵ0

, ā ∈ M . The set of representatives is
analytic recalling K is PCℵ0

, and the equivalence relation is Σ1
1. [As

(N1,M1, ā1), (N2,M2, ā2) represents the same type if and only if for
some (N,M), N ≤K M ∈ Kℵ0

, there are ≤K-embeddings f1 : M1 →
M, f2 : M2 → M such that f1(N1) = f2(N2) = N and f1(ā) =
f2(ā).]

By Burgess [Bg] (or see [Sh 202]) as there are > ℵ1 equivalence
classes, there is a perfect set of representation, pairwise representing
different types.

From this we easily get that without loss of generality that their
restriction to some L0

α are distinct, contradicting part (a).

Clause (g): Easy by the proof of clause (f), Case A above but much
simpler as in 4.12.

Clause (h): As in the proof of clause (e).
2) Should by clear by now. �4.13
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4.15 Remark. 1) Note that in the proof of Clause (f) of 4.13, in Case
(A) we get many types too but it was not clear whether we can make
the Nζ to be generic enough, to get the contradiction we got in Case
(B) but this is not crucial here.
2) We may like to replace L0

ω1,ω
by L1

ω1,ω
in 4.10, 4.11 and 4.13

(except that, for our benefit, in 4.13(e), we may retain the definition
of L1(N)). We lose the ability to build L-generic models in Kℵ1

(as
the number of (even unary) relations on N ∈ Kℵ0

is 2ℵ0 , which may
be > ℵ1). However, we can say “ā materializes in N ∈ Kℵ0

the
type p = p(x̄) which is a complete type in L1

ω1,ω
(Nn, Nn−1, . . . , N0);

where N0 ≤K . . . ≤K Nn ≤K N,Nℓ countable)”.
[Why? Let some N1, ā1 be as above, ā1 materialize p in (N1, Nn, . . . ,
N0) then this holds for (N, ā) iff for some N ′, f we have N ≤K N ′ ∈
Kℵ1

and f is an isomorphism from N1 onto N ′′ mapping ā1 to ā and
Nℓ to Nℓ for ℓ ≤ n. If there is no such pair (N1, ā1) this is trivial.]
We can get something on formulas.

This suffices for 4.10.

4.16 Concluding remarks for §4. 0) We can get more information on

the case 1 ≤ İ(ℵ1, K) < 2ℵ1 (and the case 1 ≤ İ(ℵ1, K
F

ℵ1
) < 2ℵ1 ,

etc.).
1) As in 3.8, there is no difficulty in getting the results of this section
for the class of models of ψ ∈ Lω1,ω(Q) because using (K,≤K) from
the proof of 3.18(2) in all constructions we get many non-isomorphic
models for appropriate F, as in 4.9(2).
2) For generic enough N ∈ Kℵ1

with ≤K-representation 〈Nα : α <
ω1〉, we have determined the Nα’s (by having that without loss of
generality K is categorical in ℵ0). In this section we have shown that
for some club E of ω1, for all α < β from E the isomorphism type
of (Nβ , Nα) essentially6 is unique. We can continue the analysis,
e.g., deal with sequences N0 ≤K N1 ≤K . . . ≤K Nk ∈ Kℵ0

such
that Nℓ+1 is pseudo L0

α(Nℓ, Nℓ−1, . . . , N0)-generic. We can prove
by induction on k that for any countable L ⊆ L0

ω1,ω
(τ+k) for some

α, any strong L-generic N ∈ Kℵ1
is L-determined. That is, for

6why only essentially? as the number of relevant complete types can be ℵ1;
we can get rid of this by shrinking K
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any 〈Nα : α < ω1〉, Nα ≤K N countable ≤K-increasing continuous
with union N , for some club E for all α0 < . . . < αk from N the
isomorphic type of 〈Nαk

, Nαk
, . . . , Nα0

〉 is the same; i.e., determining
for L∞,ω(aa).
3) We can do the same for stronger logics, let us elaborate.

Let us define a logic L ∗. It has as variable
variables for elements x1, x2...and
variables for filters Y1,Y2...

The atomic formulas are:

(i) the usual ones

(ii) x ∈ Dom(Y ).

The logical operations are:

(a) ∧ conjunction, ¬ negation

(b) (∃x) existential quantification where x is individual variable

(c) the quantifier aa acting on variables Y so we can form (aaY )ϕ

(d) the quantification (∃x ∈ Dom(Y ))ϕ

(e) the quantification (∃fx ∈ Dom(Y ))ϕ.

It should be clear what are the free variables of a formula ϕ. The
variable Y vary on pairs (a countable set, a filter on the set). Now
in ∃x[ϕ,Y ], (∃x ∈ Dom(Y ))ϕ, (∃fx ∈ Dom(Y ))ϕ, x is bounded
but not Y and in aaY ,Y is bounded. The satisfaction relation is
defined as usual plus

(α) M |= (∃x ∈ Dom(Y )ϕ(x,Y , ā) if and only if for some b
from the domain of Y ,M |= ϕ[b,Y , ā]

(β) M |= ∃fx ∈ Dom(Y )ϕ(x,Yā) if and only if {x ∈ Dom(Y ) :
|= ϕ(x,Y , ā)} ∈ Y

(γ) M |= (aaY , ā)ϕ(Y ) if and only if there is a function F from
ω>([M ]<ℵ1) → [M ]<ℵ1 such that:
if An ⊆ M, |An| ≤ ℵ0, An ⊆ An+1 and F(A0, . . . , An) ⊆
An+1 then M |= ϕ[Y〈An:n<ω〉, ā] where Y〈An:n<ω〉 is the filter

on
⋃

n<ω

An, generated by {∪{An : n < ω}\Aℓ : ℓ < ω}.
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4) We, of course, can define L ∗
µ,κ (extending Lµ,ℓ). As we like to

analyze models in ℵ1, it is most natural to deal with L ∗
ω1,ω

.

We can prove that (if 1 ≤ İ(ℵ1,K) < 2ℵ1) the quantifier aaY is
determined on Kℵ1

(i.e., for almost all Y , ϕ(Y ) iff not for almost all
Y ,¬ϕ(Y ).
5) The logic from (3) strengthens the stationary logic L(aa), see [Sh
43], [BKM78].
Not so strongly: looking at PCℵ0

class for Lω1,ω(aa) (i.e., {M ↾ τ : M
a model of ψ of cardinal ℵ1}), we can assume that ψ ⊢ “ < is an
ℵ1-like order”. Now we can express ϕ ∈ L ∗

ω1,ω
, but the determinacy

tells us more. Also we can continue to define higher variables Y .

§5 There is a superlimit model in ℵ1

Here we make

5.1 Hypothesis. Like 4.8, but also 2ℵ0 < 2ℵ1 .
(Note that we can assume that Kℵ0

is the class of atomic models
of a first order complete countable theory).

This section is the deepest (of this paper = chapter). The main
difficulties are proving the facts which are obvious in the context
of [Sh 48]. So while it was easy to show that every p ∈ D∗(N) is
definable over a finite set (D∗(N) is defined below), it was not clear
to me how to prove that if you extend the type p to q ∈ D∗(M) where
N ≤K M ∈ Kℵ0

, by the same definition, then q |= p (remember p, q
are types materialized not realized, and at this point in the paper
we still do not have the tools to replace the models by uncountable
generic enough models). So we rather have to show that failure is a
non-structure property, i.e., implies existence of many models.

Also symmetry of stable amalgamation becomes much more com-
plicated. We prove existence of stable amalgamation by four stages
(5.26,5.27(3),5.30,5.32). The symmetry is proved as a consequence
of uniqueness of one sided amalgamation, (so it cannot be used in its
proof). Originally the intention was the culmination of the section
to be the existence of a superlimit models in ℵ1 (5.39). This seems
a natural stopping point as it seems reasonable to expect that the
next step should be phrasing the induction on n, i.e., dealing with
ℵn and P(n− ℓ)-diagrams of models of power ℵℓ as in [Sh 87a], [Sh
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87b]; (so this is done in Chapter III). But less is needed in Chapter
II.

5.2 Definition. We define functions D,D∗ with domain Kℵ0
.

1) For N ∈ Kℵ0
let D(N) = {p : p is a complete L0

ω1,ω
(N)-type over

N such that for some ā ∈ M ∈ Kℵ0
, N ≤K M and ā materializes p

in (M,N)}, (i.e. the members of p have the form ϕ(x̄, ā), (x̄ finite
and fixed for p) ā a finite sequence from N and ϕ ∈ L0

ω1,ω
(N)).

2) For N ∈ Kℵ0
let D∗(N) = {p : p a complete L0

ω1,ω
(N ;N)-type

such that for some ā ∈ M ∈ Kℵ0
, N ≤K M and ā materializes p in

(M,N ;N)}.
3) For p(x̄, ȳ) ∈ D(N) let p(x̄, ȳ) ↾ x̄ ∈ D(N) be defined naturally;
i.e. if for someM,N ≤K M ∈ Kℵ0

and ā ↿ b̄ ∈ ℓg(x̄ˆȳ)M materializing
p(x̄, ȳ) such that ℓg(x̄) = ℓg(ā), the sequence ā materializes p(x̄, ȳ) ↾

x ∈ D(N). Similarly for permuting the variables.

5.3 Explanation: 0) Recall that any formula in L0
ω1,ω

(N) has finitely
many free variables.
1) So for every finite b̄ ∈ N and ϕ(x̄, ȳ) ∈ L0

ω1,ω
(N), if p ∈ D(N),

then ϕ(x̄, b̄) ∈ p or ¬ϕ(x̄, b̄) ∈ p.
2) But a formula from p ∈ D∗(N) may have all c ∈ N as parameters
whereas a formula from p ∈ D(N) can mention only finitely many
members of N .

5.4 Lemma. 1) K has the ℵ0-amalgamation property.
2) If N∗ ≤K N ∈ Kℵ0

, Ai ⊆ N∗ for i ≤ n then for every sentence
ψ ∈ L1

∞,ω(N∗, An, . . . , A1;A0) we have

N ℵ1

K
ψ or N ℵ1

K
¬ψ.

3) If N ≤K M ∈ Kℵ0
, then every ā ∈ M materializes in (M,N ;N)

one and only one type from D∗(N) and also materializes in (M,N)
one and only one type from D(N). Also for every N ≤K M ∈ Kℵ0

and q ∈ D∗(N) for some M ′,M ≤K M ′ ∈ Kℵ0
and some b̄ ∈ M ′

materializes q in (M ;N).
4) For every N ∈ Kℵ0

and countable L ⊆ L0
ω1,ω

(N ;N) the number of
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complete L(N ;N)-types p such that N 
ℵ1

K
“(∃x̄) ∧ p” is countable;

note that pedantically L ⊆ Lω1,ω(τ+ ∪ {c : c ∈ N}) and we restrict
ourselves to models M such that PM = |N |, cM = c.
5) For N ∈ Kℵ0

there are countable L0
α ⊆ L0

ω1,ω
(N ;N) for α < ω1

increasing continuous in α, closed under finitary operations (and
subformulas) such that:

(∗) for each complete L0
α-type p we have

[N 
ℵ1

K
∃x̄ ∧ p⇒ ∧p ∈ L0

α+1].

Hence for every L0
ω1,ω

(N ;N) formula ψ(x̄) for some ϕn(x̄) ∈
⋃

α<ω

L0
α

for n < ω for every N ∈ Kℵ0

(N,N) ℵ1

K
(∀x̄)[ψ(x̄) ≡

∨

n<ω

ϕn(x̄)].

6) For N ∈ Kℵ0
we have |D∗(N)| ≤ ℵ1 and |D(N)| ≤ ℵ1.

7) If p ∈ D∗(N) then there is q such that: if N ≤K M ∈ Kλ, ā ∈M
materializes p in (M ;N) then the complete L0

∞,ω(N)-type which ā
realizes in M over N is q; also q belongs to D(N) and is unique.
Moreover, we can replace q by the complete L−1

ω1,ω
(N)-type which ā

materializes in M . Similarly for D(N),L0
∞,ω(N),L−1

ω1,ω
(N).

8) If n < ω and b̄, c̄ ∈ nN realize the same Lω1,ω(τ)-type in N then
they materialize the same L1

ω1,ω
(τ+0)-type in (N,N).

9) If f is an isomorphism from N1 ∈ Kℵ0
onto N2 ∈ Kℵ0

then f
induces a one to one function from D(N1) onto D(N2) and from
D∗(N1) onto D∗(N2).

Proof. 1) By 3.8.
2) By 1).
3) By 2) and 1).
4) Like the proof of 4.11 (just easier).
5) Like the proof of 4.13(a).
6) Like the proof of 4.13(f) (recalling 0.3).
7) Clear as in p ∈ D∗(N) we allow more formulas than for q ∈ D(N).
8),9) Easy, too. �5.4
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We shall use from now on a variant of gtp (in Definition 4.3(4) we
define gtpL(ā;N∗, Ā;A;N).

5.5 Definition. 1) If N0 ≤K N1 ∈ Kℵ0
, ā ∈ N1, gtp(ā, N0, N1) is

the p ∈ D(N0) such that (N1, N0) ℵ1

K
∧p[ā]. So ā materializes (but

does not necessarily realize) gtp(ā, N0, N1). We may omit N1 when
clear from context. We define gtp∗(ā, N0, N1) ∈ D∗(N0) similarly.
2) We say p = gtp∗(b̄, N0, N1) is definable over ā ∈ N0 if gtp(b̄, N0, N1) =
p− := {ϕ(x̄, ā) ∈ p : ϕ(x̄, ȳ) ∈ L0

ω1,ω
(N0) and ā ∈ ℓg(ȳ)(N0) ⊆

ω>(N0)} is definable over ā (see Definition 5.7 below, note that
p 7→ p− is a one-to-one mapping from D∗(N0) onto D(N0) by 5.9(1)
below). So stationarization is defined for p ∈ D∗(N0), too, after we
know 5.9(1).

5.6 Claim. 1) Each p ∈ D(N) does not (L0
ω1,ω

(τ+0),Lω1,ω(τ))-split
(see Definition 5.7 below; also see more below) over some finite sub-
set C of N , hence p is definable over it.
Moreover, letting c̄ list C there is a function gp satisfying gp(ϕ(x̄, ȳ))
is ψp,ϕ(ȳ, z̄) ∈ Lω1,ω(τ) such that for each ϕ(x̄, ȳ) ∈ L0

ω1,ω
(N) and

ā ∈ N we have [ϕ(x̄, ā) ∈ p ⇔ N |= ψp,ϕ(ā, c̄)], (in particular, Q is
“not necessary”).
2) Every automorphism of N maps D(N) onto itself and each p ∈
D(N) has at most ℵ0 possible images; we may also call them con-
jugates. So if g is an isomorphism from N0 ∈ Kℵ0

onto N1 ∈ Kℵ0

then g(D(N0)) = D(N1).
3) If N0 ≤K N1 ≤K N2 ∈ Kℵ0

and ā ∈ N1 then gtp(ā, N0, N1) =
gtp(ā, N0, N2).

Before we prove 5.6:

5.7 Definition. Assume

(a) N is a model

(b) ∆1 is a set of formulas (possibly in a vocabulary * τN ) closed
under negation

(c) ∆2 is a set of formulas in the vocabulary τ = τN

(d) p is a (∆1, n)-type over N (i.e., each member has the form
ϕ(x̄, ā), ā from N,ϕ(x̄, ȳ) from ∆1, x̄ = 〈xℓ : ℓ < n〉; no
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more is required (we may allow other formulas but they are
irrelevant)

(e) A ⊆ N .

0) We say p is a complete ∆1-type over B when:

(i) B ⊆ N

(ii) ϕ(x̄, b̄) ∈ p⇒ b̄ ⊆ A ∧ ϕ(x̄, ȳ) ∈ ∆1

(iii) if ϕ(x̄, ȳ) ∈ ∆1 and b̄ ∈ ℓg(ȳ)A then ϕ(x̄, b̄) ∈ p or ¬ϕ(x̄, b̄) ∈
p.

The default value here for ∆1 is Lω1,ω(τK).
1) We say that p does (∆1,∆2)-split over A when there are ϕ(x̄, ȳ) ∈
∆1 and b̄, c̄ ∈ ℓg(ȳ)N such that

(α) ϕ(x̄, b̄),¬ϕ(x̄, c̄) ∈ p
(β) b̄, c̄ realize the same ∆2-type over A.

2) We say that p is (∆1,∆2)-definable over A when: for every formula
ϕ(x̄, ȳ) ∈ ∆1 there is a formula ψ(ȳ, z̄) ∈ ∆2 and c̄ ∈ ℓg(z̄)A such that

ϕ(x̄, b̄) ∈ p⇒ N |= ψ[b̄, c̄]

¬ϕ(x̄, b̄) ∈ p⇒ N |= ¬ψ[b̄, c̄]

(in the case p is complete over B, b̄ ⊆ B we get “iff”).
3) Above we may write ∆2 instead of (∆1,∆2) when this holds for
every ∆1 (equivalently ∆1 is {ϕ(x̄, ȳ) : ϕ(x̄, ā) ∈ p}).

5.8 Observation. Assume

(a), (b), (c), (d), (e) as in 5.7 and in addition
(d)+ p is a complete (∆1, n)-type over N , i.e., if

ϕ(x̄, ȳ) ∈ ∆1, d̄ ∈ ℓg(ȳ)N, x̄ = 〈xℓ : ℓ < n〉
then ϕ(x̄, d̄) ∈ p or ¬ϕ(x̄, d̄) ∈ d.

Then the following conditions are equivalent:

(α) p does not (∆1,∆2)-splits over A
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(β) there is a sequence of 〈gϕ(x̄,ȳ) : ϕ(x̄, ȳ) ∈ ∆1〉 of functions
such that:

(i) gϕ(x̄,ȳ) is a function with domain including {tp∆2
(b̄, A,N):

b̄ ∈ ℓg(ȳ)N}

(ii) the values of gϕ(x̄,ȳ) are truth values

(iii) if ϕ(x̄, ȳ) ∈ ∆1, b̄ ∈ ℓg(ȳ)N and q = tp∆2
(b̄, A,N)

then:
ϕ(x̄, b̄) ∈ p⇒ gϕ(x̄,ȳ)(q) = true, and

¬ϕ(x̄, b̄) ∈ p⇒ gϕ(x̄,ȳ)(q) = false.

Proof of 5.8. Reflect on the definitions.

Proof of 5.6. 1) Clearly the second sentence follows from the first, so
we shall prove the first. Assume this fails. Let (M, ā) be such that
N ≤K M ∈ Kℵ0

the sequence ā ∈ M materializes p and clearly for
every b̄ ∈M, (M,N)  ∧q[b̄] for some q(x̄) ∈ D(N) and let 〈b∗ℓ : ℓ <
ω〉 list N . We choose by induction on n, 〈C0

η , C
1
η , fη, ā

0
η, ā

1
η : η ∈ n2〉

such that

(a) Cℓη is a finite subset of N for ℓ < 2, η ∈ n2

(b) fη is an automorphism of N mapping C0
η onto C1

η

(c) {b∗ℓg(η)} ∪ C
0
η ∪ C

1
η ⊆ C0

ηˆ<ℓ> ∩ C1
ηˆ<ℓ> for ℓ = 0, 1

(d) ā0
η, ā

1
η ∈ N realize in N the same Lω1,ω(τ)-type over C0

η ∪

C1
η ∪ {b∗ℓg(η)} in (M,N) but āˆā0

η, āˆā1
η do not materialize

the same L0
ω1,ω

(τ+0) in (M,N) (this exemplifies splitting),
so ϕη(x̄, ȳη) belongs to the first, ¬ϕη(x̄, ȳη) belongs to the
second (where ℓg(x̄) = ℓg(ā), ℓg(ȳη) = ℓg(ā0

η))

(e) fηˆ<0>(ā0
η) = ā1

η, fηˆ<1>(ā1
η) = ā1

η

(f) fη ↾ C0
η ⊆ fηˆ<ℓ> for ℓ = 0, 1

(g) ā0
ηˆā1

η ⊆ C0
ηˆ<ℓ> ∩ C1

ηˆ<ℓ>.

For n = 0 let C0
η , C

1
η = ∅, fη = idN . Recall that Kℵ0

is categorical

in ℵ0 and N is countable, hence if n < ω, b̄′, b̄′′ ∈ nN realize the same
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Lω1,ω(τ)-type over a finite subset B of N , then some automorphism
of N over B maps b̄′ to b̄′′ by a theorem of Scott (see [Ke71]). If
(C0

η , C
1
η , fη) are defined and satisfies clauses (a), (b) we recall that

by our assumption toward contradiction as C0
η ∪ C1

η ∪ {b∗ℓg(η)} is a

finite subset of N , there are ā0
η, ā

1
η ∈ ω>N as required in clause (d)

again. So clearly there are automorphisms fηˆ<0>, fηˆ<1> extending
fη ↾ C0

η such that fηˆ<0>(ā0
η) = ā1

η, fηˆ<1>(ā1
η) = ā1

η as required in
clause (e), (f).
Lastly, choose C0

ηˆ<ℓ> = C0
η∪C

1
η∪f

−1
ηˆ<f>(C0

η)∪{b∗ℓg(η), f
−1
ηˆ<ℓ>(b∗ℓg(η)),

ā0
ηˆā1

η, f
−1
ηˆ<ℓ>(ā0

ηˆā1
η)} and C1

ηˆ<ℓ> = fηˆ<ℓ>(C0
ηˆ<ℓ>).

Having carried the induction, for every η ∈ ω2 clearly fη =
∪{fη↾n ↾ C0

η : n < ω} is an automorphism of N .

[Why? As 〈fη↾n ↾ C0
η↾n : n < ω〉 is an increasing sequence of func-

tions by clauses (b) + (c) + (f), the union fη is a partial function;
as in addition each fη is an automorphism of N by clause (b), also
fη is a partial automorphism of N . Recalling 〈b∗ℓ : ℓ < n〉 list N ,
clearly fη have domain N by clause (c) and as fη↾n(C0

η↾n) = C1
η↾n

the union fη has range N by clause (c).] Hence for some Mη ∈ Kℵ0

there is an isomorphism f+
η from M onto Mη extending f . Now for

some pη ∈ D(N), fη(ā) materialize pη in (Mη, N). Choose a count-
able L ⊆ L0

ω1,ω
(τ+) which include {ϕη(x̄, ȳη) : η ∈ ω>2}. Easily if

ηˆ〈ℓ〉 ⊳ ηℓ ∈ ω2 for ℓ = 0, 1 then ϕ(x̄, ā1
η) ∈ p0,¬ϕ(x̄, ā1

η) ∈ p1. So
η 6= ν ∈ ω2 ⇒ pη ∩L 6= pν ∩L by clauses (d) + (e), contradiction to
5.4(4) as we can use ≤ ℵ0 formulas to distinguish.
2) Follows.
3) Trivial. �5.6

5.9 Claim. 1) Suppose N0 ≤K N1 ∈ Kℵ0
and N1 forces that ā, b̄ (in

N1) realize the same L0
ω1,ω

(N0)-type over N0, then N1 forces that

they realize the same L0
ω1,ω

(N0;N0)-type; (the inverse is trivial).

1A) Suppose N0 ⊆K Nℓ ∈ Kℵ0
and āℓ ∈ ω>(Nℓ) for ℓ = 1, 2 and

gtp(ā1, N0, N1) = gtp(ā2, N0, N1) then we can find (N+
1 , N

+
2 , f) such

that N1 ≤K N+
1 ∈ Kℵ0

, N2 ≤K N+
2 ∈ Kℵ0

and f is an isomorphism
from N+

1 onto N+
2 over N0 mappnig ā1 to ā2.

2) If N0 ≤K N1 ≤K N2 ∈ Kℵ0
and ā, b̄ ∈ N2 (remember N2 de-

termines the complete L0
ω1,ω

(N1)-generic types of ā, b̄) then from the
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L0
ω1,ω

(N1)-generic type of ā over N1 we can compute the L0
ω1,ω

(N0)-

generic type of ā over N0 (hence if the L0
ω1,ω

(N1)-generic types of

ā, b̄ over N1 are equal, then so are the L0
ω1,ω

(N0)-generic types of ā, b̄
over N0).
3) For every Na ∈ Kℵ0

there is a one-to-one function f from D(N)
onto D∗(N) such that: if N ⊆K M ∈ Kℵ0

and ā ∈ ω>M then
f(gtp(ā, N,M)) = gtpLω1,ω(N ;N)(ā;N ;N ;M).

Remark. 1) So there is no essential difference between D(N) and
D∗(N).
2) Recall that in a formula of L0

ω1,ω
(N0;N0) all c ∈ N0 may appear

as individual constants.

Proof. 1) We shall prove there are N2 such that N1 ≤K N2 ∈ Kℵ0
and

an automorphism of N2 over N0 taking ā to b̄; this clearly suffices;
and we prove the existence of such N2, of course, by hence and
forth arguments. We shall use 5.4(2) freely. So by renaming and
symmetry, it suffices to prove that

(∗) if m < ω,N0 ≤K N0 and ā, b̄ ∈ m(N1) materialize the same
L0
∞,ω(N0)-type over N0 then for every c ∈ N1, there are N2

and d ∈ N2 such that āˆ < c >, b̄ˆ < d > materialize the
same L0

ω1,ω
(N0)-type over N0.

However, by the previous claim 5.4, for some ā∗ ∈ ω>(N0) the
L0
ω1,ω

(N0)-type over N0 that āˆ < c > materialize in (N1, N0) does

not L0
ω1,ω

(τ+0)-split over ā∗. Now ā, b̄ materialize in (N1, N0) the

same L0
ω1,ω

(N0)-type overN0 hence ā∗ˆā, ā∗ˆb̄materialize in (N1, N0)

the same L0
ω1,ω

(N0)-type. Hence there is N2, N1 ≤K N2 ∈ K0 and
an automorphism f of N2 mapping N0 onto N1 and mapping ā∗ˆā
to ā∗ˆb̄ (but possibly f ↾ N0 6= idN0

), this holds by the last sentence
in 4.13(c). Let d = f(c), hence if āˆ < c >, b̄ˆ < d > materialize
the same L0

ω1,ω
(N0)-type in (N2, N0) then they materialize the same

L0
ω1,ω

(N0)-type over N0 in (N2, N0).
1A) Similarly to part (1).
2) Clearly it suffices to prove the “hence ” part. By the assumption
and proof of 5.9(1) there are N3 satisfying N2 ≤K N3 ∈ Kℵ0

and f
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an automorphism of N3 over N1 taking ā to b̄. Now the conclusion
follows.
3) Should be clear. �5.9

5.10 Definition. 1) We say that D∗ is a K-diagram function when

(a) D∗ is a function with domain Kℵ0
(later we shall lift it to K)

(b) D∗(N) ⊆ D(N) and has at least one non-algebraic member
for N ∈ Kℵ0

(c) if N1, N2 ∈ Kℵ0
and f is an isomorphism from N1 onto N2

then f maps D∗(N1) onto D∗(N2), this applies in particular
to an automorphism of N ∈ Kℵ0

.

1A) Such D∗ is called weakly good when:

(d) (α) D∗(N) is closed under subtypes, that is: if p(x̄) ∈
D∗(N), x̄ = 〈xℓ : ℓ < m〉, π is a function from {0, . . . , m− 1}
into {0, . . . , n− 1}
then some (necessarily unique) q̄(〈x0, . . . , xn−1〉) ∈ D∗(N) is
equal to {ϕ(〈x0, . . . , x̄n−1〉) : ϕ(xπ(0), . . . , xπ(m−1)) ∈ p(x̄)}

(β) if N ≤K M ∈ Kℵ0
, ā1, b̄1 ∈ ω>N, ā2 ∈ ℓg(ā1)M and

(M, ā1) ∼= (M, ā2) and gtpLω1,ω(τ+)(ā2;N ;M) ∈ D(N)

then for some M+, b̄2 we have M ≤K M+ ∈ Kℵ0
, b̄2 ∈

ℓg(b̄1)(M+), (M+, ā1ˆb̄1) ∼= (M+, ā2ˆb̄2) and
gtpLω1,ω(τ+)(ā2ˆb̄2;N ;M+)

(γ) if N ≤K M ∈ Kℵ0
, ā ∈ ω>M and b̄ ∈ ω>N and

gtpLω1,ω(τ+)(ā;N ;M) ∈ D(N) then gtpLω1,ω(τ+)(āˆb̄;N ;M) ∈

D(N).

2) Such D∗ is called countable if N ∈ Kℵ0
⇒ |D∗(N)| ≤ ℵ0.

3) Such D∗ is called good when it is weakly good (i.e., clause (d)
holds) and

(e) D∗(N) has amalgamation (i.e., if p0(x̄), p1(x̄, ȳ), p2(x̄, z̄) ∈
D∗(N) and p0 ⊆ p1 ∩ p2 then there is q(x̄, ȳ, z̄) ∈ D∗(N)
which includes p1(x̄, ȳ) ∪ p2(x̄, z̄)).
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4) Such D∗ is called very good if it is good and:

(f) N0 ≤K N1 ≤K N2 ∈ Kℵ0
, ā0 ⊆ ā1 ⊆ ā2 and āℓ ⊆ Nℓ for

ℓ = 0, 1, 2 and gtp(āℓ+1, Nℓ, Nℓ+1) is definable over āℓ and
belongs to D∗(Nℓ) for ℓ = 0, 1 then gtp(ā2, N0, N2) belongs
to D∗(N0) and is definable over ā0.

5.11 Remark. 1) Note that if D is a weakly good K-diagram function
and N ∈ Kℵ0

and p ∈ D(N) then we can find (M, ā) such that
N ≤K M ∈ Kℵ0

, ā ∈ ω>M, p = gtpLω1,ω(τ+)(ā;N ;M) and for every

b̄ ∈ ω>M the type gtpLω1,ω(τ+)(b̄;N ;M) belongs to D(N).

2) If moreover, D is a good K-diagram function then we can demand
above that M is (D(N),ℵ0)∗-homogeneous, see Definition 5.14(1)
below.
3) On very good D see 5.12(2).
4) The Dα’s in 5.12 below are very good K-diagrams and for us it
sufices to have then the properties mentioned above, so we do not
elaborate.

5.12 Fact. 1) There are Dα,D
∗
α for α < ω1, functions with domain

Kℵ0
such that:

(a) for N ∈ Kℵ0
,Dα(N),D∗

α(N) is a countable subset of D(N),
D∗(N) respectively

(b) for each N ∈ Kℵ0
, 〈Dα(N) : α < ω1〉 as well as 〈D∗

α(N) :
α < ω1〉 are increasing continuous

(c) D(N) =
⋃

α<ω1

Dα(N) and D∗(N) =
⋃

α<ω1

D∗
α(N)

(d) if N1, N2 ∈ Kℵ0
, f is an isomorphism from N1 onto N2 then

f maps Dα(N1) onto Dα(N2) and D∗
α(N1) onto D∗

α(N2) for
α < ω1

(e) for every α < ω1 and N ∈ Kℵ0
there is a (Dα(N),ℵ0)∗-

homogeneous model (see below Definition 5.14(1)) (obviously
it is unique up to isomorphism over N)
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(f) ifN0 ≤K N1 ≤K N2 ∈ Kℵ0
, N2 is (Dα(N1),ℵ0)∗-homogeneous

(see Definition 5.14(1) below) andN1 is (Dα(N0),ℵ0)∗-homo-
geneous or just (Dβ(N0),ℵ0)∗-homogeneous for some β ≤ α
or just b̄ ∈ ω>(N1) ⇒ gtpLω1,ω(τ+)(b̄;N0;N1) ∈ D(N0) then

N2 is (Dα(N0),ℵ0)∗-homogeneous

(f)+ if 〈αε : ε ≤ ζ〉 is increasing continuous sequence of countable
ordinals, ζ > 0 and 〈Nε : ε ≤ ζ〉 is ≤K-increasing contin-
uous, Nε ∈ Kℵ0

, for every ā ∈ Nε+1, gtp(ā, Nε, Nε+1) ∈
Dα(Nε) and for every ξ < ζ for some ε ∈ [ξ, ζ), Nε+1 is
(Dαε

(Nε),ℵ0)∗-homogeneous then Nζ is (Dαζ
(N0),ℵ0)∗-ho-

mogeneous

(g) N1 is (Dα(N0),ℵ0)∗-homogeneous if and only if
N1 is (D∗

α(N0),ℵ0)∗-homogeneous where N0 ≤K N1 ∈ Kℵ0

(h) Dα is a very good countable K-diagram function.

2) If D is very good then clauses (d),(e),(f),(f)+ hold for it (and also
(g), defining D∗ as f ′′(D), f from 5.16(3).

5.13 Remark. 1) We can add

(h) if K, <∗ are as derived from the ψ ∈ Lω1,ω(Q) in the proof
of 3.18(2) then we can add: if N0 ≤K N1 ∈ Kℵ0

and every
p ∈ D0(N0) is materialized in N1 then N0 <

∗ N1.

2) So our results apply to ψ ∈ Lω1,ω(Q), too.
3) So it follows that if 〈Ni : i ≤ α〉 is ≤K-increasing in Kℵ0

, Ni+1 is
(Dβi

(N0),ℵ0)∗-homogeneous and 〈βi : i < α〉 is non-decreasing with
supremum β then Nα is (Dβ ,ℵ0)∗-homogeneous.
4) So by 5.12(1)(h) each Dα is very good and countable.

Proof of 5.12. First, D is a K-diagram function by Definition 5.2
and 5.4(9). As D(N) has cardinality ≤ ℵ1 by 5.4(6) we can find a
sequence 〈Dα : α < ω1〉 such that

⊛ (a) Dα is a countable K-diagram function

(b) for every N ∈ Kℵ0
the sequence 〈Dα(N) : α < ω1〉 is

increasing continuous with union D(N).
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Second, D is very good (clause (f) of 5.10 holds obviously but to
prove that it reflects to Dα for a cub of α < ω1 we need 5.22 below,
no vicious circle; the other - easier).

Third, note that for each of the demands (d),(e),(f) from Defini-
tion 5.10, for a club of δ < ω1,Dδ satisfies it. So without loss of
generality each Dα is very good.

The parts on D∗
α follow by 5.9, and see 5.16(1) below which does

not rely on 5.12-5.15 (and see proof of 5.18). �5.12

5.14 Definition. Assume N0 ≤K N1 ∈ Kℵ0
and D∗ is a K-diagram.

1) We say that (N1, N0) or just N1 is (D∗(N0),ℵ0)∗-homogeneous
over N0 (but we may omit the “over N0”) if:

(a) every ā ∈ N1 materializes in (N1, N0) over N0 some p ∈
D∗(N0) and every q ∈ Dα(N0) is materialized in (N0, N1) by
some b̄ ∈ N1

(b) if ā, b̄ ∈ N1, ā, b̄ materialize in (N1, N0) the same type over N0

and c ∈ N1 then for some d ∈ N1 sequence āˆ < c >, b̄ˆ < d >
materialize in (N1, N0) the same type from D∗(N0).

2) Similarly for (D∗
∗(N0),ℵ0)∗-homogeneity, pedantically we have to

say (N1, N0;N0) is (D∗(N),ℵ0)∗-homogeneous, but normally say N1

is.

5.15 Remark. 1) Now this is meaningful only for N ≤K M ∈ Kℵ0
,

but later it becomes meaningful for any N ≤K M ∈ K.
2) Uniqueness for such countable models hold in this context too.

Now by 5.9.

5.16 Conclusion. If (N1, N0) is (Dα(N0),ℵ0)∗-homogeneous then
N1, i.e. (N1, N0, c)c∈N0

is (D∗
α(N0),ℵ0)∗-homogeneous.

Proof. This is easy by 5.9(1) and clause (g) of 5.12. �5.16
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5.17 Lemma. There is N∗ ∈ Kℵ1
such that N∗ =

⋃

α<ω1

Nα and

Nα ∈ Kℵ0
is ≤K-increasing continuous with α and Nα+1 is (Dα+1(Nα),

ℵ0)∗-homogeneous for α < ω1.

Proof. Should be clear. �5.17

5.18 Theorem. The N∗ ∈ Kℵ1
from 5.17 is unique (even not de-

pending on the choice of Dα(N)’s), is universal and is, (D(K),ℵ1)-
model-homogeneous hence model-homogeneous (for K).

Proof.

Uniqueness: For ℓ = 0, 1 let N ℓ
α,D

ℓ
α (α < ω1) be as in 5.12, 5.17 and

we should prove
⋃

α<ω1

N0
α
∼=

⋃

α<ω1

N1
α; because of clause (g) of 5.12 it

does not matter if we use the D or D∗ version. As Dℓ
α (α < ω1) is

increasing and continuous, |Dℓ
α(N)| ≤ ℵ0 and

⋃

α<ω1

Dℓ
α(N) = D(N)

for every N ∈ Kℵ0
and the Dℓ

α’s commute with isomorphisms, clearly
there is a closed unbounded E ⊆ ω1 consisting of limit ordinals, such
that α ∈ E ⇒ D0

α = D1
α. Let E = {α(i) : i < ω1}, α(i) increasing

and continuous. Now we define by induction on i < ω1, an isomor-
phism fi from N0

α(i) on N1
α(i), increasing with i. For i = 0 use the

ℵ0-categoricity of K and for limit i let fi =
⋃

j<i

fj. Suppose fi is de-

fined, then by clause (d) of 5.12 the function fi maps D0
α(i+1)(N

0
α(i))

onto D0
α(i+1)(N

1
α(i)) and by the choice of E,D0

α(i+1) = D1
α(i+1).

By the assumption on the N ℓ
α and clause (f)+ of 5.12, N ℓ

α(i+1) is

(Dℓ
α(i+1)(N

ℓ
α(i)),ℵ0)∗-homogeneous. Summing up those facts and

5.12(e) we see that we can extend fi to an isomorphism fi+1 from
N0
α(i+1) onto N1

α(i+1).

Now
⋃

i<ω1

fi is the required isomorphism.

Universality: Let M ∈ Kℵ1
, so M =

⋃

α<ω1

Mα,Mα is ≤K-increasing
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continuous and ‖Mα‖ ≤ ℵ0. We now define fα, Nα, γα by induction
on α < ω1 such that: γα ∈ [α, ω1) is increasing continuous with
α, fα is a ≤K-embedding of Mα into Nα ∈ Kℵ0

, Nα is ≤K-increasing
continuous, fα is increasing and continuous, and for β < α,Nβ+1

is (Dγβ+1
(Nβ),ℵ0)∗-homogeneous. For α = 0 let Nα = Mα and

fα = idNα
. For α limit use unions. Let α = β + 1, we use the

ℵ0-amalgmation property (which holds by 3.8, 4.8). So there is a
pair (fα, N

′
α) such that Nβ ≤K N ′

α ∈ Kℵ0
and fα is a ≤K-embedding

of Mα into N ′
α extending fβ . The set {gtp(ā, Nβ, N

′
α), ā ∈ ω>(N ′

α)}
is a countable subset of D(Nβ) hence is ⊆ Dγα

(Nβ) for some γ ∈
(γβ, ω1). By 5.12(1)(c) there is Nα which ≤K-extends N ′

α and is
(Dγα

(N ′
α),ℵ0)∗-homogeneous; by 5.12(1)(f) we are done. So f =

∪{fα : α < ω1} embeds M into N = ∪{Nα : α < ω1} which is
isomorphic to N∗ by the uniqueness. So the universality follows
from the uniqueness.

(D(K),ℵ1)-Model-homogeneity: So let 〈Nα : α < ω1〉,Dα, N
∗ be as

in 5.12, 5.17 and we are given (M0,M1,M
+
0 , f) such that M0 ≤K

M+
0 ∈ Kℵ0

,M1 ≤K N∗, f an isomorphism from M0 onto M1. For
some γ < ω1 we have M1 ≤K Nγ .

Now {gtp(ā,M0,M
+
0 ) : ā ∈ ω>(M+

0 )} is a countable subset of
D(M0) hence ⊆ Dγ0(M0) for some γ0 < ω1; also {gtp(ā,M1, Nγ) :
ā ∈ ω>(Nγ)} is a countable subset of D(M1) hence ⊆ Dγ1(M1)
for some γ1 < ω1. Let β = max{γ, γ0, γ1} and let M∗

0 ∈ Kℵ0
be

(Dβ(M+
0 ),ℵ0)∗-homogeneous so M+

0 ≤K M∗
0 , exists by 5.12(1)(e),

hence M∗
0 ∈ Kℵ0

is (Dβ(M0),ℵ0)∗-homogeneous by 5.12(1)(f) be-
cause β ≥ γ0. Now Nβ is (D(Nγ),ℵ0)∗-homogeneous by 5.12(1), so
as β ≥ γ1 is follows that Nβ is (Dγ(M1),ℵ0)∗-homogeneous.

By 5.12(1)(d),(e) we can extend f to an isomorphic g from M∗
0

onto Nβ , so g ↾ M+
0 is a ≤K-embedding of M+

0 into N .

We can deduce “N∗ is a model-homogeneous directly; let M0,M1

≤K N∗ be countable, and f is isomorphic from M0 onto M1. Let γ <
ω1 be such that M0,M1 ≤K Nγ , Let γℓ be such that {gtp(ā,Mℓ, Nγ) :
ā ∈ ω>(Nγ)} ⊆ Dγℓ

(Mℓ) for ℓ = 0, 1 and let β = max{γ, γ0, γ1}+1.
As above Nβ is (Dβ(Mℓ),ℵ0)∗-homogeneous, and now we choose an
automorphism fα of Nα increasing with α and extended f for α ∈
[β, ω1) by induction. Now ∪{fα : α ∈ (β, ω1)} is an automorphism
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of N∗ extending f . �5.18

5.19 Definition. 1) If N0 ≤K N1 ∈ Kℵ0
and pℓ ∈ D(Nℓ) for ℓ = 1, 2

and they are definable in the same way (see Definition 5.7 (and 5.6),
so in particular both do not split over the same finite subset of N0),
then we call p1 the stationarization of p0 over N1.
2) For pℓ ∈ D(Nℓ) for ℓ = 0, 1 let p1 |= p0 mean that N0 ≤K N1 and
if N1 ≤K N2 ∈ Kℵ0

and ā ∈ N2 materializes p1 then it materializes
p0.

5.20 Remark. It is easy to justify the uniqueness implied by “the
stationarization”.

Observe

5.21 Claim. If pℓ = gtp(ā, Nℓ, N2) for ℓ = 0, 1 and N0 ≤K N1 ≤K

N2 ∈ Kℵ0
then p1 |= p0.

Proof. Easy. �5.21

5.22 Claim. 1) Suppose N0 ≤K N1 ≤K N2 ∈ Kℵ0
, āi ∈ Ni, (for

i = 0, 1, 2), ā0 ⊆ ā1 ⊆ ā2, i.e. the ranges increase, gtp(ā1, N0, N1)
is definable over ā0 and gtp(ā2, N1, N2) is definable over ā1. Then
gtp(ā2, N0, N2) is definable over ā0. Moreover, the definition depends
only on the definitions mentioned previously.
2) If N0 ≤K N1 ≤K N2 and pℓ ∈ D(Nℓ) for ℓ = 0, 1, 2 and pℓ+1

is the stationarization of pℓ over Nℓ+1 for ℓ = 0, 1, then p2 is the
stationarization of p0 over N2.

Proof. 1) So we have to prove that gtp(ā2, N0, N2) does not split over
ā0. Let n < ω and b̄, c̄ ∈ nN0 realize the same type in N0 over ā0 (in
the logic Lω1,ω(τK), or even first order logic when every N ∈ Kℵ0

is
atomic). Now also b̄ˆā1, c̄ˆā1 materialize the same Lω1,ω(N0)-type
in N1 hence they realize the same Lω1,ω(τK)-type (recall 5.4(8)).
Hence b̄, c̄ realize the same Lω1,ω(τK)-type in N1 over ā1 in N1. But
gtp(ā2, N0, N2) does not split over ā1, so by the previous sentence
we get that b̄ˆā2, c̄ˆā2 materializes the same Lω1,ω(N0)-type in N2.
2) Easy. The “moreover” is proved similarly. �5.22

Paper Sh:88r, Chapter I



194 I. A.E.C. NEAR ℵ1

5.23 Lemma. Suppose N0 ≤K N1 ∈ Kℵ0
, pℓ ∈ D(Nℓ) and p1 is a

stationarization of p0 over N1, then p1 |= p0, i.e., every sequence
materializing p1 materializes p0 in any N2 such that N1 ≤K N2.

Remark. 1) In [Sh 48], [Sh 87a], [Sh 87b] and [Sh:c] the parallel
proof of the claims were totally trivial, but here we need to invoke
İ(ℵ1, K) < 2ℵ1 .
2) A particular case can be proved in the context of §4.

Proof. So suppose N0, N1, p0, p1 contradict the claim and let ā∗ ∈ N0

be such that p0 is definable over ā∗ so p1, too. By 5.12(e)+(f) there
are δ < ω1 and N2 ∈ Kℵ0

satisfying N1 ≤K N2 such that N2 is
(D∗

δ(Nℓ),ℵ0)∗-homogeneous for ℓ = 0, 1. We can find p2 ∈ D(N2)
which is the stationarization of p0, p1. It is enough to prove that
p2 |= p1.
[Why? First, note that there is an automorphism f of N2 which maps
N1 onto N0 and f(ā∗) = ā∗ hence f(p2) = p2, f(p1) = p0 hence p2 |=
p0. Now assume that N1 ≤K N+

1 ∈ Kℵ0
and ā1 ∈ N+

1 materializes
p1 clearly we can find N+

2 , ā2 such that N2 ≤K N+
2 ∈ Kℵ0

and
ā2 ∈ N+

2 which materializes p2, as we are assuming p2 |= p1 it also
materializes p1 hence there are N3, f such that N+

1 ≤K N3 ∈ Kℵ0

and f is a ≤K-embedding of N+
2 into N3 over N1 mapping ā2 to ā1.

But p2 |= p0 (see above) hence f(ā2) = ā1 materializes p0 and p1,
too.]

So without loss of generality for some δ

⊛ N1 is (D∗
δ(N0),ℵ0)∗-homogeneous over N0.

For N ∈ Kℵ0
, N0 ≤K N , let pN be the stationarization of p over N ;

so

⊠1 if N0 ≤K N ∈ Kℵ0
then pN is definable over ā∗.

Without loss of generality the universes of N0, N1 are ω, ω × 2 re-
spectively.

Now we choose by induction on α a model Nα ∈ Kℵ0
(α <

ω1), |Nα| = ω(1+α), [β < α⇒ Nβ ≤K Nα]; N0, N1 are the ones men-
tioned in the claim and āα ∈ Nα+1 materializes the stationarization
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pα ∈ D∗
δ(Nα) of p0 over Nα and for α < β,Nβ is (D∗

δ(Nα),ℵ0)-
homogeneous (see 5.12(f),(f)+). Recalling that K is categorical in ℵ0

(and uniqueness over N0 of (Dδ(N0),ℵ0)∗-homogeneous models) we
have α > β ⇒ (Nα, Nβ) ∼= (N1, N0) so, recalling ⊛ clearly āα does
not materialize pNβ

(in Nα+1). Let N = ∪{Nα : α < ω1}. Let B be
(H (ℵ2),∈) expanded by N,K ∩ H (ℵ2),≤K↾ H (ℵ2) and anything
else which is necessary. Let B− be a countable elementary submodel
of B to which 〈Nα : α < ω1〉, N belong and let δ(∗) = B− ∩ ω1. For
any stationary co-stationary S ⊆ ω1, let BS be a model which is

(α) BS an elementary extension of B−

(β) BS is an end extension of B− for ω1, that is, if BS |= “s < t
are countable ordinals” and t ∈ B− then s ∈ B−

(γ) among the BS-countable ordinals not in B− there is no first
one

(δ) “the set of countable ordinals” of BS is IS , IS =
⋃

α<ω1

ISα ,

even IS0 is not well ordered, each Iα a countable initial seg-
ment of IS , α < β ⇒ ISα ⊆ ISβ ∧ ISα 6= ISβ

(ε) IS\I
S
α has a first element if and only if α ∈ S and then we

call it s(α).

In particular ω and finite sets are standard in BS . For s ∈ IS,
Ns[Bs] := NBS

s is defined naturally, and so is NS = NBS ; clearly
NBS
s ∈ Kℵ0

is ≤K-increasing with s ∈ I as those definitions are Σ1
1

(as K is PCℵ0
). Let NS

α =
⋃

s∈Iα

NBS
s and let s + 1 be the successor

of s in IS.
So

⊞ if BS |= “s < t are countable ordinals”, then (NBS

t , NBS
s )

is (D∗
δ(N

BS
s ),ℵ0)∗-homogeneous and if s ∈ Iα then NS

α is

(D∗
δ(N

BS

1 ),ℵ0)∗-homogeneous.

If α ∈ S then clearly the type p = pNS
α

satisfies (using absoluteness

from BS because NS
α is definable in BS as NBS

s(α)):

(a) p is materialized in NS (i.e. in NS
β for a club of β ∈ S)
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but by the assumption toward contradiction

(b) for a closed unbounded E ⊆ ω1 for no β ∈ E ∩ S, β > α∗

and γ ∈ (β, ω1) does a sequence from NS materialize both
p = pNS

α
and its stationarization pNS

β
over NS

β in NS
γ (again

remember NS
α = NBS

s(α) because α ∈ S)

and similarly

(c) for a closed unbounded set of β > α,NS
β is (D∗

δ(N
S
α ),ℵ0)∗-

homogeneous.

We shall prove that every α < ω1,

⊡ if α /∈ S then α cannot satisfy the statement (c) above.

This is sufficient because if S(1), S(2) ⊆ ω1 are stationary co-sta-
tionary, f is an isomorphism from NS(1) onto NS(2) mapping ā∗ to
itself, then for a closed unbounded set E ⊆ ω1, for each α < ω1

the function f maps N
S(1)
α onto N

S(2)
α , hence the property above

is preserved, hence S(1) ∩ E = S(2) ∩ E. But there is a sequence
〈Si : i < 2ℵ1〉 of subsets of ω1 such that for i 6= j the set Si\Sj is

stationary. So by 0.3 we have İ(ℵ1, K) = 2ℵ1 , contradiction.
So suppose α ∈ ω1\S, p = pNS

α
and clause (c) above hold; but

obviously (c) ⇒ (a), recalling p0 ∈ Dδ(N0) hence pNS
α
∈ Dδ(N

S
α ) so

let ā ∈ NS materialize p in NS and we shall get a contradiction.
There are elements 0 = t(0) < t(1) < . . . < t(k) of IS and ā0 ∈

N0 = NBS

t(0), āℓ+1 ∈ NBS

t(ℓ)+1 such that ā ⊆ āk, ā
∗ ⊆ ā0, āℓ ⊆ āℓ+1

and gtp(āℓ+1, N
BS

t(ℓ) , N
BS

t(ℓ+1)) is definable over āℓ and if t(ℓ + 1) is a

successor (in IS) then it is the successor of t(ℓ) and if limit in IS

then āℓ = āℓ+1.
[Why do they exist? Because of the sentence saying that for every
ā we can find such k, t(ℓ)(ℓ ≤ k), āℓ(ℓ ≤ k) as above is satisfied by
B and involve parameters which belong to B− hence to BS , etc., so
BS inherits it (and finiteness is absolute from BS)]. It follows that

gtp(ā, NBS

t(ℓ) , N
BS

t(k)) is definable over āℓ for each ℓ < k.

Clearly t(0) = 0 ∈ Iα but t(k) /∈ Iα (otherwise t(k) +1 ∈ Iα hence

ā ∈ NBS

t(k)+1 ≤K NS
α , impossible as p is a non-algebraic type over
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NBS
α ). Hence for some ℓ we have t(ℓ) ∈ Iα, t(ℓ + 1) /∈ Iα. By the

construction t(ℓ + 1) is limit (in IS) hence āℓ+1 = āℓ. As α /∈ S we
can choose t(∗) ∈ IS\I

S
α , t(∗) < t(ℓ+1). As we are assuming (toward

contradiction) that α, p satisfy clause (c), for some β ∈ S, s(β) is well
defined and s(β) > t(k) (on the definition of s(γ) for γ ∈ S see clause

(ε) above) and NS
β is (D∗

δ(N
S
α ),ℵ0)∗-homogeneous. Now NBS

s(β) =

NS
β , N

BS

t(ℓ+1) are isomorphic over Nt(∗) (being both (D∗
δ(N

BS

t(∗)),ℵ0)∗-

homogeneous by the choice of BS , see ⊞ above).

So as NS
α ≤K NBS

t(ℓ+1) ≤K NBS

s(β) = NS
β and, as said above, NS

β is

(D∗
δ(N

S
α ),ℵ0)∗-homogeneous also NBS

t(ℓ+1) is (D∗
δ(N

S
α ),ℵ0)∗-homoge-

neous, too, hence (NBS

t(ℓ+1), N
S
α , ā

∗) ∼= (N1, N0, ā
∗).

As, by ⊞ above, clearly NS
α , N

BS

t(∗) are (D∗
δ(N

BS

t(ℓ)+1)),ℵ0)∗-homo-

geneous there is an isomorphism f0 from NS
α onto NBS

t(∗) over NBS

t(ℓ)+1.

As NBS

t(ℓ+1) is (D∗
δ(N

BS

t(∗)),ℵ0)∗-homogeneous and (D∗
δ(N

S
α ),ℵ0)∗-ho-

mogeneous by the previous paragraph (where we use β) we can ex-

tend f0 to an automorphism f1 of NBS

t(ℓ+1). Let γ ∈ S ∩ E satisfy

s(γ) ≥ t(k) + 1. As gtp(āk, N
BS

t(ℓ+1), N
S
γ ) is definable over āℓ =

āℓ+1 and āℓ = f0(āℓ) = f1(āℓ) (as āℓ ∈ NBS

t(ℓ)+1) and NS
γ+1 is

(D∗
δ(N

BS

t(ℓ+1)),ℵ0)∗-homogeneous, we can extend f1 to an automor-

phism f2 of NS
γ satisfying f2(āk) = āk.

Notice that by the choice of 〈āℓ : ℓ ≤ k〉 and 〈t(ℓ) : ℓ ≤ k〉 it
follows that for any m < k, gtp(āk, Nt(m), Nt(k)+1) does not split
over ām hence is definable over it by 5.22, and recall that we know
that āℓ = āℓ+1.

So there is in NS a sequence materializing both gtp(ā, NS
α , N

S
γ ) =

pNS
α

and its stationarization over NS
t(ℓ+1): just ā(⊆ āk) (so use f2).

This contradicts the assumption as (N1, N0, ā
∗) ∼= (NBS

t(ℓ+1), N
S
α , ā

∗).

�5.23

The following claim 5.24(5)-(9) and Definition 5.25 are closely re-
lated.

5.24 Claim. 1) If ā ∈ N0 ≤K N1 ≤K N2 ∈ Kℵ0
, b̄ ∈ N2, p1 =

gtp(b̄, N1, N2) is definable over ā ∈ N0, then p0 = gtp(b̄, N0, N2) is
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definable in the same way over ā, hence gtp(b̄, N1, N2) is its station-
arization.
2) For a fixed countable M ∈ Kℵ0

to have a common stationarization
in D(N ′) for some N ′ satisfying M ≤K N ′ or N ′ ≤K M is an equiv-
alence relation over {p: for some N ≤K M, p ∈ D(N)} (and we can
choose the common stationarization in D(M) as a representative).
So if N0 ≤K N1 ≤K N2 ∈ Kℵ0

, pℓ ∈ D(Nℓ) for ℓ = 0, 1, 2 and p1, p2

are stationarizations of p0 then p2 |= p1.
3) If Nα ∈ Kℵ0

(α ≤ ω + 1) is ≤K-increasing and continuous and
ā ∈ Nω+1 then for some n < ω, for every k we have: n < k ≤ α ≤ ω
implies gtp(ā, Nα, Nω+1) is the stationarization of gtp(ā, Nk, Nω+1).
4) If N ≤K M ∈ K,N ∈ Kℵ0

, ā ∈ M then for all M ′ ∈ Kℵ0
, satis-

fying ā ∈ M ′, N ≤K M ′ ≤K M, gtp(ā, N,M ′) is the same, we call it
gtp(ā, N,M) (the new point is that M is not necessarily countable.
This is compatible with Definition 5.25(c) being a special case).
5) Suppose N0 ≤K N1 (in K), ā ∈ N1, then there is a countable
M ≤K N0, such that for every countable M ′ satisfying M ≤K M ′ ≤K

N0 we have gtp(ā,M ′, N1) is the stationarization of gtp(ā,M,N1).
Moreover there is a finite A ⊆ N0 such that any countable M ≤K N0

which includes A is O.K. So gtp(ā, N0, N1) from 5.25(c) is well de-
fined and ∈ D(N0) and is definable over some finite A ⊆ N0.
6) The parallel of Part (3) holds for Nα ∈ K, too, and any limit or-
dinal instead of ω. That is if 〈Nα : α ≤ δ+ 1〉 is ≤K-increasing con-
tinuous and ā ∈ Nδ+1, then for some α < δ and countable M ≤K Nα
we have: M ≤K M ′ ≤K Mδ ⇒ gtp(ā,M ′,Mδ) is the stationarization
of gtp(ā,M,Mδ); similarly for every p ∈ D(Nδ).
7) If N0 ≤K N1 ≤K N2 ≤K N3 ≤K N4 and ā ∈ N4 and gtp(ā, N3, N4)
is the stationarization of gtp(ā, N0, N4) then gtp(ā, N2, N4) is the
stationarization of gtp(ā, N1, N3). Also if b̄′ satisfies Rang(b̄′) ⊆
Rang(ā) and gtp(ā, N2, N4) is the stationarization of gtp(ā, N1, N4)
then this holds also for b̄. We can replace gtp(ā, N3, N4) by p ∈
D(N4).
8) If N0 ≤K N1 ≤K N2 ∈ Kℵ0

and pℓ ∈ D(Nℓ) for ℓ = 0, 1, 2 and
pℓ+1 is the stationarization of pℓ for ℓ = 0, 1 then p2 is the station-
arization of p0.
9) If 〈Mα : α ≤ δ+ 1〉 is ≤K-increasing continuous, δ a limit ordinal
and ā ∈ ω>(Mδ+1) then
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(a) for some α < δ we have gtp(ā,Mβ,Mδ+1) is the stationar-
ization of gtp(ā,Mα,Mδ+1) whenever β ∈ [α, δ)

(b) if gtp(ā,Mα,Mδ+1) is the stationarization of gtp(ā,M0,Mδ+1)
for every α < δ then this holds for α = δ, too.

10) If 〈Mα : α ≤ δ〉 is ≤K-increasing continuous, δ a limit ordinal
and pδ ∈ D(Mδ), then for some α < β there is pα ∈ D(Mα) such
that pδ is the stationarization of pα.
11) Those definitions in 5.25 are compatible with the ones for count-
able models.
12) gtp(ā, N,M) (where ā ∈ M,N ≤K M are both is K) is the sta-
tionarization over N of gtp(ā, N ′,M) for every large enough count-
able N ′ ≤K N , see 5.24(5).

Proof. 1) As we can replace N2 by any N ′
2 satisfying N2 ≤K N ′

2 ∈
Kℵ0

,. without loss of generality for some α,N2 is (D∗
α(N0),ℵ0)∗-

homogeneous and (D∗
α(N1),ℵ0)∗-homogeneous. Let p2 ∈ D(N2) be

the stationarization of p1 over N2.
So by 5.23 we get p2 |= p1. On the other hand, clearly there is an

isomorphism f0 from N0 onto N1 such that f0(ā) = ā; and by the
assumption above on N2, f0 can be extended to an automorphism f1
of N2.

Note that f1 maps p0 = gtp(b̄, N0, N2) to p′0 := gtp(f1(b̄), f1(N0),
N2) and maps p2 to itself as f0(ā) = ā.

Now p1 |= p0 (by the choices of p1, p0) and p2 |= p1 by 5.9(1),
together p2 |= p0. As f1(p2) = p2, f1(p0) = p′0 it follows that
p2 |= p′0. As also p2 |= p1 and p′0, p1 ∈ D(N1) it follows that
p′0 = p1 hence p1, p

′
0 have the same definition over ā, but now also

p0 ∈ D(N0), p′0 ∈ D(N1) have the same definition over ā (using f1),
together also p1, p0 have the same definition over ā, which means
that p1 is the stationarization of p0 over N1 and we are done.
2) Trivial.
3) By part (1).
4) Easy.
5) By (3) and (4).
6)-12) Easy by now. �5.24
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5.25 Definition. By 5.24(5) the type gtp(ā,M,N) can be reason-
ably defined when M ≤K N, ā ∈ ω>N and we can define D(N) and
D∗(N), gtp(ā, N,M) and stationarization for not necessarily count-
able N and N ≤K M ∈ K. Everything still holds, except that maybe
some p’s are not materialized in any ≤K-extension of N .

More formally

(a) if N ≤K M and N ∈ Kℵ0
and p ∈ D(N) then the stationar-

ization of p over M is ∪{q : N1 ∈ Kℵ0
satisfies N1 ≤K N1 ≤K

M and q is the stationarization of p ∈ D(N1)}

(b) if M ∈ K then D(M) = {q: for some countable N ≤K M and
p ∈ D(N) the type q is the stationarization of p over M},
similarly for D∗, a K-diagram

(c) if N ≤K M and ā ∈ ω>M then gtp(ā, N,M) is defined
as ∪{gtp(ā, N ′,M ′) : N0 ≤K N ′ ≤K M ′ ∈ Kℵ0

,M ′ ≤K

M,N ′ ≤K N} for every countable large enough N0 ≤K N ; it
is well defined and belongs to D(N) by 5.24(5) and we say ā
materializes gtp(ā, N,M) in M

(d) if N ∈ K, N ≤K M and p ∈ D(N) is definable over the
countable N0 ≤K N equivalently is the stationarization of
some p′ ∈ D(N0), then the stationarization of p over M is
the stationarization of p′ over M , see clause (a), equivalently
∪{pM0

: N0 ≤K M0 ≤K M,M0 is countable} where pM0
is the

stationarization of p′ ∈ D(N0) over M0; it belongs to D(N0)

(e) if p(x̄, ȳ) ∈ D(M) then p(x̄, ȳ) ↾ x̄ ∈ D(M) is naturally
defined; 5.2(3) similarly for permuting the variables

(f) for N ≤K M we say that M is (D(N),ℵ0)∗-homogeneous
when for every p(x̄, ȳ) ∈ D(N) and ā ∈ ℓg(x̄)(M) materi-
alizing p(x̄, ȳ) ↾ x in M there is b̄ ∈ ℓg(ȳ)M such that āˆb̄
materializes p(x̄, ȳ) in M .

Remark. Claim 5.26 below strengthens 3.8, it is a step toward non-
forking amalgamation.

Paper Sh:88r, Chapter I



I.§5 THERE IS A SUPERLIMIT MODEL IN ℵ1 201

5.26 Claim. Suppose N0 ≤K N1 ∈ Kℵ0
, N0 ≤K N2 ∈ Kℵ0

, ā ∈ N1.
Then we can find M,N0 ≤K M ∈ Kℵ0

and ≤K-embeddings fℓ of Nℓ
into M over N0 (for ℓ = 1, 2) such that gtp(f1(ā), f2(N2),M) is a
stationarization of p0 = gtp(ā, N0, N1) (so f1(ā) /∈ f2(N2)).

Proof. Let p2 ∈ D(N2) be the stationarization of p0. Clearly we
can find an α < ω1 (in fact, a closed unbounded set of α’s) and
N ′

1, N
′
2 from Kℵ0

which are (D∗
α(N0),ℵ0)∗-homogeneous and Nℓ ≤K

N ′
ℓ (for ℓ = 1, 2) and some b̄ ∈ N ′

2 materializing p2. But by 5.23,
b̄ materializes p0 hence there is an isomorphism f from N ′

1 onto N ′
2

over N0 satisfying f(ā) = b̄, recalling 5.9(1A). Now let M = N ′
2, f1 =

f ↾ N1, f2 = id. �5.26

5.27 Claim. 1) For any N0 ≤K N1 ∈ Kℵ1
so N0 ∈ K≤ℵ1

, there
is N2 such that N1 ≤K N2 ∈ Kℵ1

and N2 is (D(N0),ℵ0)∗-homoge-
neous.
2) Also 5.26 holds for N2 ∈ Kℵ1

(but still N0, N1 ∈ Kℵ0
).

3) If N0 ≤K N1 ∈ Kℵ0
and N0 ≤K N2 ∈ K≤ℵ1

then we can find
M ∈ K≤ℵ1

and ≤K-embeddings f1, f2 of N1, N2 into M over N0

respectively such that gtp(f1(c̄), f2(N2),M) is a stationarization of
gtp(c̄, N0, N1) for every c̄ ∈ N1, hence f1(N1) ∩ f2(N2) = N0.
4) Kℵ2

6= ∅.

Remark. 1) Note that 5.27(3) is another step toward stable amalga-
mation.
2) Note that 5.27(3) strengthen 5.27(2) hence 5.26.

Proof. 1) As we can iterate ≤K-increasing N1 in Kℵ1
, it is enough

to prove that: if p(x̄, ȳ) ∈ D(N0) and ā ∈ N1 materializes p(x̄, ȳ) ↾ x̄
in (N1, N0) then for some N2 ∈ Kℵ1

, N1 ≤K N2 and for some b̄ ∈ N2

the sequence āˆb̄ materializes p(x̄, ȳ) in (N2, N0). Let M0 ≤K N0 be
countable and q ∈ D(M0) be such that p(x̄, ȳ) a stationarization of
q. Without loss of generality if N0 is countable then M0 = N0. Note
that the case N0 = M0 is easier. Choose Mi(0 < i < ω1) such that

Mi ≤K N1, N1 =
⋃

i<ω1

Mi, 〈Mi : i < ω1〉 is ≤K-increasing continuous

sequence of countable models, M0 ∪ ā ⊆ M1. As 〈Mi ∩N0 : i < ω1〉
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is an increasing continuous sequence of countable sets with union N0

clearly for a club of i < ω1,Mi ∩N0 ≤K N0 hence Mi ∩N0 ≤K Mi.
So without loss of generality i < ω1 ⇒ Mi ∩ N0 ≤K N0,Mi. For
every c̄ ∈ N1 there is a countable N0,c̄ such that M0 ≤K N0,c̄ ≤K N0

and: if N0,c̄ ≤K N ′ ≤K N0 and N ′ ∈ Kℵ0
then gtp(c̄, N ′, N1) is

the stationarization of gtp(c̄, N0,c̄, N1). Without loss of generality
c̄ ∈Mi ⇒ N0,c̄ ⊆Mi hence

(∗) for every c̄ ∈Mi, gtp(c̄, N0, N1) is a stationarization of gtp(c̄,
N0 ∩Mi,Mi).

We can find M∗
1 ∈ Kℵ0

satisfying M1 ≤K M∗
1 and b̄ ∈ M∗

1 such
that q = gtp(āˆb̄,M0,M

∗
1 ). We can find ā2, ā1, ā0 such that ā0 ∈

M1 ∩ N0, ā1 ∈ M1, ā2 ∈ M∗
1 , b̄ ⊆ ā2, ā ⊆ ā1 and ā0 E ā1 E ā2

and gtp(ā2,M1,M
∗
1 ), gtp(ā1,M1 ∩N0,M1) are definable over ā1, ā0,

respectively. Now we define fj ,M
∗
j , 1 ≤ j < ω1 by induction on i

such that:

(i) 〈M∗
i : 1 ≤ i ≤ j〉 is ≤K-increasing continuous

(ii) M∗
j is countable, M∗

1 already given

(iii) fj is a ≤K-embedding of Mj into M∗
j

(iv) f1 is the identity on M1

(v) fj is increasing continuous with j

(vi) gtp(ā2, fj(Mj),M
∗
j ) is the stationarization of gtp(ā2,M1,M

∗
1 )

(so definable over ā1).

For j = 1 we have it letting f∗
j = idM1

.
For j > 1 successor, use 5.26 to define (Mj , fj) such that grp(ā2,
fj(Mj),M

∗
j ) is the stationarization of gtp(ā2, fj−1(Mj−1),M∗

j−1).
So clauses (i)-(v) clearly holds. Clause (vi) follows by 5.24(8).

For j limit: let M∗
j =

⋃

1≤i<j

M∗
i and fj = ∪{fi : 1 ≤ i < j}, condition

(vi) holds by 5.24(3).
By renaming without loss of generality fj = idMj

for j ∈ [1, ω1).
By (∗) we get that gtp(ā1, N0 ∩Mj ,M

∗
j ) = gtp(ā1, N0 ∩ Mj,Mj)

is definable over ā0 (as this holds for j = 1). Combining this and
clause (vi), by 5.22(1) we get for every j ≥ 1, that gtp(ā2, N0 ∩
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Mj ,M
∗
j ) is the stationarization of gtp(ā2, N0 ∩M1,M

∗
1 ). Hence by

the choice of ā2, ā1, a0 and 5.24(7), easily gtp(āˆb̄, N0∩Mj ,M
∗
j ) is the

stationarization of gtp(āˆb̄, N0∩M1,M
∗
1 ) hence of gtp(āˆb̄,M0,M

∗
1 ).

Let N2 = ∪{M∗
j : j ∈ [1, ω1)}, clearly N1 ≤K N2 ∈ Kℵ1

.
So by 5.24(9), clause (c) and the first sentence in the proof, we

finish.
2) Similar proof7 (or use the proof of part (3)).
3) Without loss of generality N2

∼= N∗ from 5.17 (as we can replace
N2 by an extension so use 5.18 and 5.24(7)).

Also (by 5.27(1)) there is M,N2 ≤K M ∈ Kℵ1
such that M is

(D(N2),ℵ0)∗-homogeneous. As N1 is countable there is α < ω1 such

that for every c̄ ∈ N1, gtp(c̄, N0, N1) ∈ Dα(N0). Let M =
⋃

i<ω1

Mi

with Mi ∈ Kℵ0
being ≤K-increasing continuous. So for some i we

have α < i < ω1,Mi∩N2 ≤K M and (recalling 5.24(6)) for every c̄ ∈
Mi, gtp(c̄, N2,M) is stationarization of gtp(c̄, N2∩Mi,Mi) and Mi is
(Di(N2 ∩Mi),ℵ0)∗-homogeneous. Now we can find an isomorphism
f0 from N0 onto N2 ∩Mi (as K is ℵ0-categorical) and extend it to
an automorphism f2 of N2 (by 5.18-model homogeneity). Also there
is N ′

1 such that N1 ≤K N ′
1 ∈ Kℵ0

and N ′
1 is (Di(N1),ℵ0)∗-homo-

geneous, hence is (Di(N0),ℵ0)∗-homogeneous (by the choice of α as
α < i see 5.12(f)), hence there is an isomorphism f ′

1 from N ′
1 onto

Mi extending f0. Now f0, f
′
1 ↾ N1, f2,M show that amalgamation as

required exists (we just change names).
4) Immediate, use 1) or 2) or 3) ω2-times. �5.27

5.28 Definition. For any D∗ = Dα for some α < ω1 (or just any
very good K-diagram D∗, see 5.10, i.e., satisfies the demands on each
Dα in 5.12) we define:
1) M ≤D∗

N if M ≤K N and for every ā ∈ N

gtp(ā,M,N) ∈ D∗(M).

2) KD∗
is the class of M ∈ K which are the union of a family of

countable submodels, which is directed by ≤D∗
.

3) KD∗
= (KD∗

≤D∗
), or pedantically (KD∗

,≤D∗
↾ KD∗

).

7here N1 ∈ Kℵ1
is O.K.; similar to 2.11(1)
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5.29 Claim. Let D∗ be countable and as in 5.28.
1) The pair (KD∗

,≤D∗
) is an ℵ0-presentable a.e.c., that is it satisfies

all the axioms from 1.2(1) and is PCℵ0
.

2) Also for (KD∗
,≤D∗

), we get D(N) countable and equal to D∗(N)
for every countable N ∈ KD∗

.

Proof. 1) Obviously KD∗
is a class of τ -models and ≤D∗

is a two-
place relation on KD∗

; also they are preserved by isomorphisms.
About being PCℵ0

note that

⊛1 M ∈ KD∗
iffM ∈ K and for some model B with universe |M |

and countable vocabulary, for every countable B1 ⊆ B2 ⊆ B

we have M ↾ B1 ≤D∗
M ↾ B2 iff there is a directed partial

order and 〈Mt : t ∈ I〉 such that Mt ∈ Kℵ0
and s <I t ⇒

Ms ≤K Mt and ā ⊆Mt ⇒ gtp(ā,Ms,Mt) ∈ D∗(Ms)

⊛2 similarly for M ≤D∗
N .

Ax I: If M ≤D∗
N then M ≤K N hence M ⊆ N .

Ax II: The transitivity of ≤D∗
holds by 5.10(4), 5.22(1) + Definition

5.25 (works as D∗ is closed enough or use clause (f) of 5.12). The
demand M ≤D∗

M is trivial8.

Ax III: Assume 〈Mi : i < λ〉 is ≤D∗
-increasing continuous and M =

∪{Mi : i < λ}. As K is an a.e.c. clearly M ∈ K and i < λ⇒Mi ≤K

M . Also for each i < λ and ā ∈M for some j ∈ (i, λ) we have ā ∈Mj

hence gtp(ā,Mi,Mj) ∈ D∗(Mi) but recalling 5.24(7) it follows that
gtp(ā,Mi,M) = gtp(ā,Mi,Mj) ∈ D∗(Mi). So i < λ⇒Mi ≤D∗

M .
By applying ⊛1 to every Mi and coding we can easily show that
M ∈ KD∗

thus finishing.

Ax IV: Assume 〈Mi : i < λ〉,M are as above and i < λ ⇒ Mi ≤D∗

N . To prove M ≤D∗
N note that as K is an a.e.c., we have M ≤K N

and consider ā ∈ N . By 5.24(6) for some i < λ, gtp(ā,M,N) is the
stationarization of gtp(ā,Mi, N) but the latter belongs to D∗(Mi)
hence gtp(ā,M,N) ∈ D∗(M) as required.

8recall that M ↾ B = M ↾ {a ∈ M : a ∈ B}
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Ax V: By ⊛2 this is translated to the case N0, N1,M ∈ Kℵ0
but

then it holds easily.

Ax VI: By ⊛1 + ⊛2 + Ax VI for K.
2) So we replace K by K′ = KD∗

and easily all that we need for D

for K′ is satisfied by D∗ (actually repeating the works in §5 till now
on K′ we get it) noting that

⊛ if M0 ≤D∗
Mℓ ∈ Kℵ0

for ℓ = 1 and gtp(ā1,M0,M1) =
gtp(ā2,M0,M2) then there is a triple (M+

1 ,M
+
2 , f) such that

Mℓ ≤D∗
M+
ℓ ∈ Kℵ0

,M+
ℓ is (D(Mi),ℵ0)∗-homogeneous for

i = 0, ℓ and f is an isomorphism from M+
1 onto M+

2 over M0

mapping ā1 to a2.

This by:

⊛1 if M0 ≤D∗
M1 ≤D∗

M2 and ā ∈ M1 then gtp(ā,M0,M1) =
gtp(ā,M0,M2) ∈ D∗(M0)

⊛2 if M0 ∈ Kℵ0
then for some M1 ∈ Kℵ0

we have M0 ≤D∗
M2

and M1 is (D∗(M0),ℵ0)∗)-homogeneous

⊛3 if M0 ≤D∗
M1 ≤D∗

M2 and M2 is (d∗(M1),ℵ0)∗-homoge-
neous then M2 is (D∗(M0),ℵ0)∗-homogeneous

⊛4 if M0 ≤D∗
Mℓ ∈ Kℵ0

, gtp(ā1,M0,M1) = gtp(ā2,M0,M2)
then there is an isomorphism from M1 onto M2 over M0

mapping ā1 to ā2.

�5.29

5.30 Claim. Suppose N0 ≤K Nℓ ∈ Kℵ0
(ℓ = 1, 2) and c̄ ∈ N2, then

there is M,N0 ≤K M and ≤K-embeddings fℓ of Nℓ into M over N0

for ℓ = 1, 2 such that

(i) for every ā ∈ N1, gtp(f1(ā), f2(N2),M) is a stationarization
of gtp(ā, N0, N1)

(ii) gtp(f2(c̄), f1(N1),M) is a stationarization of gtp(c̄, N0, N2).

Remark. This is one more step toward stable amalgamation: in 5.26
we have gotten it for one ā ∈ N1, in 5.27(3) for every ā ∈ N1, which
gives disjoint amalgamation.
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Proof. Clearly we can for ℓ = 1, 2 replace Nℓ by any N ′
ℓ, Nℓ ≤K

N ′
ℓ ∈ Kℵ0

, and without loss of generality N0 = N1 ∩ N2. By
5.27(3) there is N3 ∈ Kℵ0

such that Nℓ ≤K N3 for ℓ < 3 and ā ∈
ω>(N1) ⇒ gtp(ā, N2, N3) is the stationarization of gtp(ā, N0, N1).
So we can assume that for some Dα as in Definition 5.28 we have Nℓ
is (Dα(N0),ℵ0)∗-homogeneous for ℓ = 1, 2. As in the proof of 5.23,
we can find a countable linear order I, such that every element s ∈ I
has an immediate successor s+1, 0 is first element and I∗ has a sub-
set isomorphic to the rationals (follow really) and models Ms ∈ Kℵ0

,
(for s ∈ I) such that s < t ⇒ Ms ≤K Mt and Mt is (Dα(Ms),ℵ0)-
homogeneous when s <I t, etc. So by 5.24(3) for every initial seg-
ment J of I and t ∈ I such that J < t, that is, (∀s ∈ J)(s <I t),
if J has no last element and I\J has no first element then Mt is

(Dα(MJ),ℵ0)∗-homogeneous, where MJ =
⋃

s∈J

Ms =
⋂

t∈I\J

Mt. We

let NJ
0 = MJ , N

J
1 = MI and NJ

2 be a (Dα(NJ
0 ),ℵ0)∗-homogeneous

model satisfying NJ
0 ≤K NJ

2 and without loss of generality NJ
1 ∩

NJ
2 = NJ

0 . Also easily there is N ′
0 <K N0 such that gtp(c̄, N0, N1) is

definable over some c̄0 ⊆ N ′
0 and N0 is (Dα(N ′

0),ℵ0)-homogeneous.
Clearly the triples (N0, N1, N2), (NJ

0 , N
J
1 , N

J
2 ) are isomorphic and

let fJ0 , f
J
1 , f

J
2 be appropriate isomorphisms such that fJ0 ⊆ fJ1 , f

J
2

and without loss of generality fJ0 (N ′
0) = M0. Now by 5.27(3), there

is MJ ∈ Kℵ0
satisfying NJ

ℓ ≤K MJ (ℓ = 0, 1, 2) such that for every
ā ∈ NJ

1 , gtp(ā, NJ
2 ,M

J) is the stationarization of gtp(ā, NJ
0 , N

J
1 )

and there are N3 ∈ Kℵ0
, Nℓ ≤K N3 for ℓ = 0, 1, 2 and an isomor-

phism fJ3 ⊇ fJ1 ∪ fJ2 from N3 onto MJ .

Suppose our conclusion fails, then gtp(fJ2 (c̄), NJ
1 ,M

J) is not the
stationarization of gtp(fJ2 (c̄), NJ

0 ,M
J). Moreover, as in the proof

of 5.23, t ∈ I\J ⇒ MI = NJ
1 ,Mt are isomorphic over NJ

0 = MJ ,
hence we can replace NJ

1 by Mt for any t ∈ I\J so as we assume
that our conclusion fails, t ∈ I\J ⇒ gtp(fJ2 (c̄),Mt,M

J) is not a
stationarization of gtp(fJ2 (c̄), NJ

0 ,M
J) and the latter is the station-

arization of gtp(fJ2 (c̄),M0,M
J). Let pJ = gtp(fJ2 (c̄), NJ

1 ,M
J) =

gtp(c̄,MI ,M
J); all this was done for any appropriate J . So it is

easy to check that J1 6= J2 ⇒ pJ1
6= pJ2

, but as I∗ ⊆ I & |I| = ℵ0,
we have continuum many such J ’s hence such pJ ’s. If CH fails,
we are done. Otherwise, note that moreover, we can ensure that
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for J1 6= J2 as above there is an automorphism of MI taking pJ1

to pJ2
, hence for some β < ω1, {pJ : J as above} ⊆ Dβ(MI), i.e.,

(fJ2
1 ) ◦ (fJ1

1 )−1 maps one to the other, contradiction by clause (d) of
5.12. (Alternatively repeat the proof of 5.23. More elaborately by
the way Dα was chosen, Claim 5.27(3) holds for KD∗

hence without
loss of generality MJ is (Dα(N1),ℵ0)-homogeneous and so without
loss of generality for some t(∗) ∈ I\J,NJ

1 = Mt(∗)), N
J = Mt(∗)+1

and we get a contradiction as in the proof of 5.23 (i.e., the choice of
〈āℓ : ℓ ≤ ℓ(∗)〉 there9). �5.30

5.31 Definition. 1) K has the symmetry property when the fol-
lowing holds: if N0 ≤K Nℓ ≤K N3 (ℓ = 1, 2) and for every ā ∈ N1,
gtp(ā, N2, N3) is the stationarization of gtp(ā, N0, N3), then for ev-
ery b̄ ∈ N2, gtp(b̄, N1, N3) is the stationarization of gtp(b̄, N0, N3).
2) If N0, N1, N2 ≤K N3 satisfies the assumption and conclusion of
part (1) we say that N1, N2 are in stable amalgamation over N0 in-
side N3 (or in two-sided stable amalgamation over N0 inside N3).
If only the hypothesis of (1) holds we say they are in a one sided
stable amalgamation over N0 inside N3 (then the order of (N1, N2)
is important).
3) We say that K has unique [one sided] amalgamation when: if
N0 ≤K Nℓ ∈ Kℵ0

for ℓ = 1, 2 then N1, N2 has unique [one sided]
stable amalgamation, see part (4).
4) We say N1, N2 have a unique [one sided] stable amalgamation over
N0, where for notational simplicity N1 ∩N2 = N0, provided that: if
(∗), i.e. clauses (a)-(d) below hold then (∗∗) below holds, where:

(∗) (a) N1 ≤K N3, N2 ≤K N3 and (N1, N2) in [one sided] stable
amalgamation inside N3 over N0 and ‖N3‖ ≤ ‖N1‖ + ‖N2‖

(b) M0 ≤K Mℓ ≤K M3 for ℓ = 1, 2 and (M1,M2) are in
[one sided] stable amalgamation inside M3 over M0 (hence
M1 ∩M2 = M0)

(c) fℓ is an isomorphism from Nℓ onto Mℓ for ℓ = 0, 1, 2

(d) f0 ⊆ f1 and f0 ⊆ f2

(∗∗) we can find M ′
3,M3 ≤K M ′

3 and f3, a ≤K-embedding of N3

into M ′
3 extending f1 ∪ f2.

9A third way is to use forcing and absoluteness to use the case CH fail
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We at last get the existence of stable amalgamation (to which we
earlier get approximations).

5.32 Claim. For any N0 ≤K N1, N2, all from Kℵ0
, we can find

M,N0 ≤K M ∈ Kℵ0
and ≤K-embeddings f1, f2 of N1, N2 respectively

over N0 into N such that N0, f1(N1), f2(N1) are in stable amalga-
mation.

Remark. In the proof we could have “inverted the tables” and used
c̄ζ in the ω1 direction.

Proof. We define by induction on ζ < ω1, 〈M
ζ
α : α < ω1〉 and c̄ζ such

that:

(i) 〈M ζ
α : α < ω1〉 is ≤K-increasing continuous and M ζ

α ∈ Kℵ0

(ii) for α < ζ,M ζ
α = Mα

α and ξ < ζ & α < ω1 ⇒M ξ
α ≤K M ζ

α

(iii) for ζ limit, M ζ
α =

⋃

ξ<ζ

M ξ
α

(iv) for ζ ≤ α < ω1, ζ non-limit M ζ
α+1 is (Dα+1(M ζ

α),ℵ0)∗-homo-
geneous

(v) for every c̄ ∈M ζ
α+1, gtp(c̄,M ζ+1

α ,M ζ+1
α+1) is a stationarization

of gtp(c̄,M ζ
α,M

ζ
α+1)

(vi) c̄ζ ∈M ζ+1
ζ+1 and for ζ + 1 < α < ω1, gtp(c̄ζ ,M

ζ
α,M

ζ+1
α ) is the

stationarization of gtp(c̄ζ ,M
ζ
ζ+1,M

ζ+1
ζ+1 )

(vii) for every p ∈ D(M ξ
α) for some ζ satisfying ξ + α < ζ < ω1

we have gtp(c̄ζ ,M
ζ
ζ+1,M

ζ+1
ζ+1 ) is a stationarization of p.

There is no problem doing this (by 5.30 and as in earlier construc-
tions); in limit stages we use local character 5.24(3) and Dα being
closed under stationarization.
Now easily for a thin enough closed unbounded set of E ⊆ ω1, for
every ζ ∈ E we have

(∗)ζ(a) M ζ
ζ is (Dζ(M

0
ζ ),ℵ0)∗-homogeneous
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(b) for every c̄ ∈M ζ
ζ , gtp(c̄,

⋃

α<ω1

M0
α,

⋃

ξ<ω1

M ξ
ξ ) is a stationariza-

tion of gtp(c̄,M0
ζ ,M

ζ
ζ )

(c) for every c̄ ∈M0
ζ+1, gtp(c̄,M ζ+1

ζ ,M ζ+1
ζ+1 ) is a stationarization

of gtp (c̄,M0
ζ ,M

0
ζ+1).

[Why? Clause (c) holds by clause (v) of the construction (as 〈M ζ
ε :

ε ≤ ζ〉 is ≤K-increasing continuous). Clause (b) holds as E is thin
enough, i.e., is proved as in earlier constructions (i.e., see the proof
of (∗) in the proof of 5.27(1)). As for Clause (a), first note that
by clauses (i),(ii),(iii) the sequence 〈M ζ

ε : ε ≤ ζ〉 is ≤K-increasing
continuous. By clause (vi) we have ε < ζ ⇒ gtp(c̄ε,M

ε
ζ ,M

ε+1
ζ )

does not fork over M ε
ζ and clause (vii) of the construction we have:

if p ∈ Dζ(M
ζ
ε ), ε < ζ then for some ξ ∈ (ε, ζ), gtp(c̄ξ,M

ζ
ξ ,M

ζ
ξ+1) is a

non-forking extension of p. As E is thin enough we have d̄ ∈M ζ
ζ ⇒

gtp(d̄,M ζ
0 ,M

ζ
ζ ) ∈ Dζ(M

ζ
0 ). Together it is easy to get clause (a),

e.g., see 5.41.]
So as in the proof of 5.27(3) we can finish (choose ζ ∈ E, f0 an

isomorphism from N0 onto M0
ζ , f1 ⊇ f0 is an ≤K-embedding of N1

into M ζ
ζ and f2 ⊇ f0 a ≤K-embedding of N2 into M0

ζ+1). �5.32

5.33 Remark. Note that in Chapter II we use only the results up to
this point.

5.34 Theorem. 1) Suppose in addition to the hypothesis of this
section that 2ℵ1 < 2ℵ2 and the club ideal on ℵ1 is not ℵ2-saturated
and İ(ℵ2, K) < 2ℵ2 or just İ(ℵ2, K(ℵ1-saturated)) < 2ℵ2 . Then K

has the symmetry property.
2) Assume 2ℵ1 < 2ℵ2 and İ(ℵ2, K(ℵ1-saturated)) < µunif(ℵ2, 2

ℵ1);
this number is always > 2ℵ1 , usually 2ℵ2 , see 0.5. Then K has the
symmetry property and stable amalgamation in Kℵ0

is unique (we
know that it always exists and it follows by (1) + (2) that one sided
amalgamation is unique).

5.35 Discussion: 1) This certainly gives a desirable conclusion. How-
ever, part (2) is not used so we shall return to it in Chapter VII.
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More elaborately, in VII.4.1, in the “lean” version of Chapter
VII, see reading plan A in VII§0, assuming the weak diamond ideal
is not ℵ2-saturated we prove 5.34(2) hence we also prove a slight

weaker version of 5.34(1), replacing “İ(ℵ2, K)(ℵ1-saturated) < 2ℵ2”

by İ(ℵ2, K(ℵ1-saturated)) < µunif(ℵ2, 2
ℵ1).

Better, in VII.4.40 we prove 5.34(2) fully. Still, the proof given
below of part (1) is not covered presently by Chapter VII and it
gives nicer reasons for non-isomorphisms (essentially diferent natural
invariants).
2) As for part (1), we can avoid using it (except in 5.39 below). More
fully, in II§3 dealing with K as here by II.3.4 for every α < ω1 we
derive a good ℵ0-frame sα with Ksα = KDα

(if we would have liked
to derive a good ℵ1-frame we would need 5.34).

Then in Chapter III if s is successful (holds, e.g. if 2ℵ0 < 2ℵ1 < 2ℵ2

and İ(ℵ2,K
sα) < 2ℵ2 and WDmIdℵ1

is not ℵ2-saturated) then we

derive the successor s+
α , a good ℵ1-frame with Ks

+
α ⊆ {M ∈ Ksα

ℵ1
: M

is ℵ1-saturated for Ksα}, and s+
α is even good+ (see Claim III.1.6(2)

and Definition III.1.3). This suffices for the main conclusions of II§9
and end of III§12.
3) Still we may wonder is ≤

s
+
α

=≤K↾ K
s
+
α

? If sα is good+ then the

answer is yes (see III.1.6(1)). That is, the present theorem 5.34 is
used in III§1 to prove s is “good+”, really this is proved in 5.39.
In fact part (1) of 5.34 is enough to prove that sD∗

is good+, see
III.1.5(1A).
3) The proof of 5.34(1) gives that if K fails the symmetry property

then İ(ℵ2, K) ≥ 2ℵ1 even if 2ℵ1 = 2ℵ2 and do not use 2ℵ0 = 2ℵ1

directly (but use earlier results of §5). The case “Dℵ1
is ℵ2-saturated,

2ℵ0 < 2ℵ1 < 2ℵ2 , İ(ℵ2,ℵ2) < µunif(ℵ2, 2
ℵ2)” is covered in Chapter

VII.

Proof. 1) So in the first part toward contradiction we can assume
that K4 6= ∅ where K4 is the class of quadruple N̄ = (N0, N1, N2, N3)
such that N1, N2 are one sided stably amalgamated overN0 inside N3

but N2, N1 are not. Hence there is c̄ ∈ N2 such that gtp(c̄, N1, N3) is
not the stationarization of gtp(c̄, N0, N2) = gtp(c̄, N0, N3). We de-
fine a two-place relation ≤ on K4 by N̄1 ≤ N̄2 iff N1

0 = N2
0 , N

1
ℓ ≤K

N2
ℓ for ℓ = 0, 1, 2 and ā ∈ N1

1 ⇒ gtp(ā, N2
2 , N

2
3 ) is definable over
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some b̄ ∈ N1
0 . Easily this is a partial order and K4 is closed un-

der union of increasing countable sequences. Hence without loss of
generality for some D∗, N̄

∗

(∗) (a) D∗ ∈ {Dα : α < ω1}

(b) N̄∗ ∈ K4

(c) N∗
ℓ is (D∗(N∗

0 ),ℵ0)∗-homogeneous over N∗
0 for ℓ = 1, 2

(d) N∗
3 is (D∗(N∗

ℓ ),ℵ0)∗-homogeneous over N∗
ℓ for ℓ = 1, 2

So we have proved

5.36 Observation. To prove 5.34, we can assume that D = Dα for
α < ω1, i.e., D is countable.

Continuation of the proof. A problem is that we still have not proven
the existence of a superlimit model of K of cardinality ℵ1 though we
have a candidate N∗ from 5.17. So we use N∗, but to ensure we get
it at limit ordinals (in the induction on α < ℵ2), we have to take a
stationary S0 ⊆ ω1 with ω1\S0 not small, i.e., ω1\S0 does not belong
to the ideal WDmIdℵ1

from Theorem 0.5 and “devote” it to ensure
this, using 5.32.

The point of using S0 is as follows (this is supposed to help to un-
derstand the quotation from Chapter VII):

5.37 Definition. 1) Let Kqt = {N̄ : N̄ = 〈Nα : α < ω1〉 be
≤K-increasing continuous, Nα ∈ Kℵ0

, Nα+1 is (Dα(Nα),ℵ0)∗-homo-
geneous}.
2) On Kqt we define a two-place relation <aS (for S ⊆ ω1) as follows:
N̄1 <aS N̄

2 if and only if for some closed unbounded E ⊆ ω1

(a) for every α ∈ C we have N1
α ≤K N2

α and N1
α+1 ≤K N2

α+1

(b) for every α < β from E we have N2
β ∩

⋃

α<ω1

N1
α = N1

β and

N1
β , N

2
α are in one sided stable amalgamation over N1

α inside

N2
β , i.e. if ā ∈ N1

β then gtp(ā, N2
α, N

2
β) is the stationarization

of gtp(ā, N1
α, N

1
β)

(c) if α ∈ S ∩C then N2
α, N

1
α+1 are in stable amalgamation over

N1
α inside N2

α+1.
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5.38 Fact. 0) The two-place relation <aS defined in 5.37 are partial
orders on Kqt for n < ω.
1) If N̄n ≤aS0

N̄n+1 and let En exemplify this (as in the Definition

5.37) and let Eω =
⋂

n<ω

En, E
′
ω = {α, α + 1 : α ∈ Cω} and let

Nω
α =

⋃

n<ω

Nn
β when β = Min[E′

ω\α]. Then 〈Nω
α : α < ω1〉 ∈ K<ℵ1

and N̄n ≤aS0
〈Nω

α : α < ω1〉 for n < ω.

2) If 〈N̄ε : ε < ω1〉 is<aS -increasing andNε = ∪{Nε
α : α < ω1} ∈ Kℵ1

is ≤K-increasing continuous, the club Eε,ζ witness N̄ε ≤ N̄ ζ for
ε < ζ < ℵ1 and 〈Nα : α < ω1〉 a ≤K-representation of N , and for a
club of α < ℵ1, Nα = ∪{Nε

α : ε < α}, Nα+1 = ∪{Nε
α+1 : ε < α} then

ε < ω1 ⇒ N̄ε ≤aS0
N̄ .

Proof. Should be easy by now. �5.38

Returning to the proof of 5.34 it is done as follows.
There is 〈Sε : ε < ω1〉 such that Sε ⊆ ω1, ζ < ε ⇒ Sζ ∩ Sε

countable and S0, Sε+1\Sε ∈ (Dω1
)+, possible by an assumption.

Now for any u ⊆ ω2 we choose Nu
ε , N

u
ε by induction on ε < ω2

such that

⊛(a) N̄u
ε = 〈Nu

ε,α : α < ω1〉 ∈ Kqt

(b) Nu
ε = ∪{Nu

ε,α : α < ω1} ∈ Kℵ1

(c) for ζ < ε we have N̄u
ζ <1

Sξ
N̄u
ε when ξ /∈ [ζ, ε) ∩ u (we can

use S′
[ζ,ε), the complement of the diagonal union of {〈Sξ : ε ∈

[ζ, ε)〉 ∩ u}
(d) we can demand continuity as defined implicitly in Fact 5.38
(e) for each ε ∈ u for a club of α < ω1 if α ∈ Sε thenNu

ε+1,α, N
u
ε,α+1

are not in stable amalgamation over Nu
ε,α inside Nu

ε+1,α+1

(though is in one side).

Lastly, let Nu = ∪{Nu
ε : ε < ω1} ∈ Kℵ2

. Now we can prove that if
u, v ⊆ ω2 and Nu ≈ Nv then for some club C of ω2, u∩C = v∩C. So
we can easily get İ(ℵ2,K) = 2ℵ2 and even İ(ℵ2,K(ℵ1-saturated)) =
2ℵ2 . �5.34
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5.39 Theorem. Suppose K has the symmetry property (holds if the
assumption of 5.34(1) hold). Then K has a superlimit model in ℵ1.

Proof. We have a candidate N∗ from 5.17. So let 〈Ni : i < δ〉 be
≤K-increasing, Ni ∼= N∗ and without loss of generality δ = cf(δ).

If δ = ω1 this is very easy. If δ = ω, let Nω =
⋃

i<ω

Ni and for each

i ≤ ω let 〈Nα
i : α < ω1〉 be ≤K-increasing continuous with union Ni

and Nα
i ∈ Kℵ0

. Now by restricting ourselves to a club E of α’s and
renaming it E = ω1, we get: for i < j ≤ ω,Nα

i = Ni ∩N
α
j , and

⊛1 for any α < β < ω1, ā ∈ Nα
ω and i < ω, the type gtp(ā, Nβ

i , N
β
ω )

is a stationarization of gtp(ā, Nα
i , N

α
ω ).

To prove Nω ∼= N∗ it is enough to prove:

⊛2 if α < ω1, p ∈ D(Nα
ω ) then some b̄ ⊆ Nω realizes p in Nω.

By 5.24(3) there is i < ω such that p is the stationarization of q =
p ↾ Nα

i ∈ D(Nα
i ). As Ni ∼= N∗, there is b̄ ⊆ Ni which realizes q and

we can find β ∈ (α, ω1) such that b̄ ⊆ Nβ
i . By ⊛1 we have Nα

ω , N
β
i is

in one sided stable amalgamation over Nα
i inside Nβ

ω (see 5.31(2)).

As we assume K has the symmetry property, also Nβ
i , N

α
ω is in

stable amalgamation over Nα
i inside Nβ

ω . In particular, as b̄ ⊆

Nβ
i , we have gtp(b̄, Nα

ω , N
β
ω ) is the stationarization of gtp(b̄, Nα

i , N
β
i )

but the latter is p ↾ Nα
i so by uniqueness of stationarization, p =

gtp(b̄, Nα
ω , N

β
ω ) which is gtp(b̄, Nα

ω , Nω), so p is realized in Nω as
required. �5.39

We have implicitly proved

5.40 Claim. Assume that N0 ≤K N1 ∈ Kℵ0
and āℓ ∈

ω>(N1) for
ℓ = 1, 2. Then (∗)1 ⇔ (∗)2 where for ℓ = 1, 2

(∗)ℓ there are M1,M2, b̄1, b̄2 such that

(a) N0 ≤K M1 ≤K M2 ∈ Kℵ1

(b) āk ∈ ω>(Mk) for k = 1, 2

(c) gtp(b̄3−ℓ, N0,M1) = gtp(ā3−ℓ, N0, N1)
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(d) gtp(b̄ℓ,M1,M2) is the stationarization of gtp(āℓ, N0, N1)
from D(M1)

(e) gtp(b̄1ˆb̄2, N0,M2) = gtp(ā1ˆā2, N0, N1)

Proof. We can deduce it from 5.30 (or immitate the proof of 5.23).
In detail by symmetry it is enough to assume (∗)2 and prove (∗)1.

So let M1,M2, b̄1, b̄2 witness (∗)2.
By 5.32 we can find M ′

2, f such that: M2 ≤K M ′
2 ∈ Kℵ0

, f is a
≤K-embedding of M2 into M ′

2 over N0 such that M1, f(M2) is in
stable amalgamation over N0 inside M ′

2. Now, as f(M2),M1 are in
one sided stable amalgamation over N0 inside M ′

2 by the choice of
(M1,M2, b̄1, b̄2) we get gtp(f(b̄2),M1,M

′
2) = gtp(b̄2,M1,M

′
2) hence

gtp(b̄1ˆb̄2, N0,M
′
2) = gtp(b̄1ˆf(b̄2), N0,M

′
2).

By the choice of M2
1 , f ,gtp(b̄1, f(M2),M ′

2) is the stationarization
of gtp(b̄1, N0,M2) = gtp(ā1, N0, N1). Now (∗)1 holds as exemplified
by (f(M2),M ′

2, f(b̄2), b̄1). �5.40

5.41 Exercise. Assume α ≤ ω1 and

(a) 〈Mi : i ≤ δ〉 is ≤K-increasing continuous, δ a limit ordinal

(b) if p ∈ D(Mi) is realized in Mi+1 then it ∈ Dα(Mi) or just
p ↾ M0 ∈ D(M0)

(c) if i < δ, p ∈ Dα(Mi) then p is materialized in Mj for some
j ∈ (i, δ).

Then Mδ is (Dα(M0),ℵ0)∗-homogeneous.

Proof. Easy.

5.42 Discussion: 1) Consider ψ ∈ Lω1,ω(Q), |τψ| ≤ ℵ0, 1 ≤ İ(ℵ1, ψ) <
2ℵ0 . We translate it to K and <∗∗ as earlier, see 3.18.
2) What if we waive categoricity in ℵ0? The adoption of this was
O.K. as we shrink K but not too much. But without shrinking prob-
ably we still can say something on the models in K∗ = {M ∈ K≥ℵ0

:
if N0 ≤K M,N0 ∈ Kℵ0

then for some N1, N0 <
∗ N1 ≤K M} as there

are good enough approximations.
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§6 Counterexamples

In [Sh 48] the statement of Conclusion 3.8 was proved for the
first time where K is the class of atomic models of a first order
theory assuming Jensen’s diamond ♦ℵ1

(taking λ = ℵ0). In [Sh 87a]
and [Sh 87b] the same theorem was proved using 2ℵ0 < 2ℵ1 only
(using 0.5). Let us now concentrate on the case λ = ℵ0. We asked
whether the assumption 2ℵ0 < 2ℵ1 is necessary to get Conclusion 3.8.
In this section we construct three classes of models K1, K2, K3, K4

failing amalgamation, i.e., failing the conclusion of 3.8, K2, K3, K4

are a.e.c. with LS-number ℵ0 while K1 satisfy all the axioms needed
in the proof of Conclusion 3.8 (but it is not an abstract elementary
class - fails to satisfy AxIV,AxV).
K2 is PCℵ0

and is axiomatizable in Lω1,ω(Q).
K3 is PCℵ0

and is axiomatizable in L(Q).

Now the common phenomena to K1, K2, K3, K4 are that all of them
satisfy the hypothesis of Conclusion 3.8, i.e., for ℓ = 1, 2, 3 we have
İ(ℵ0, K

ℓ) = 1 and the ℵ0-amalgamation property fails in Kℓ, but

assuming ℵ1 < 2ℵ0 and MAℵ1
for ℓ = 1, 2, 3 we have İ(ℵ1, K

ℓ) = 1.

6.1 Definition. Let Y be an infinite set. A family P of infinite
subsets of Y is called independent if for every η ∈ ω>2 and pairwise
distinct X0, X1, . . . , Xℓg(η)−1 (notation: for X ∈ P denote X0 = X

and X1 = Y \X) the following set
⋂

k<ℓg(η)

X
η[k]
k is infinite.

6.2 Definition. 1) The class of models K0 is defined by

K0 = {M :M = 〈|M |, PM , QM , RM〉, |M | = PM ∪QM ,

PM ∩QM = ∅, |PM | = ℵ0 ≤ |QM | and

R ⊆ PM ×QM}.

2) For M ∈ K0, let AMy = {x ∈ PM : xRMy} for every y ∈ QM .

3) Let K1 be the class of M ∈ K0 such that

(a) the family {AMy : y ∈ QM} is independent, which means that
if m < n and y0, . . . , yn−1 are pairwise distinct members of
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QM then the set {x ∈ PM : xRMyℓ ≡ ℓ < m for every ℓ < n}
is infinite

(b) for every disjoint finite subsets u, w of PM we have ‖M‖ =
|AMu,w| where AMu,w := {y ∈ QM : a ∈ u ⇒ (aRMy) and

b ∈ w ⇒ ¬(bRMy)}.

4) The notion of (strict) substructure ≤K1 is defined by: forM1,M2 ∈
K1,M1 ≤K1 M2 iff M1 ⊆M2, P

M1 = PM2 and for any finite disjoint
u, w ⊆ PM2 the set AM2

u,w\M1 is infinite when M1 6= M2 (equivalently
- non-empty).
5) K1 = (K1,≤K1).

6.3 Lemma. The class (K1, <K1) satisfies
0) Ax 0.
1) Ax I.
2) Ax II.
3) Ax III.
4) Ax IV fails even for λ = ℵ0; but if 〈Mα : α ≤ δ〉 is ≤K-increasing

and ‖
⋃

α<δ

Mα‖ < ‖Mδ‖ then
⋃

α<δ

Mα <K1 Mδ.

5) Ax V fails for countable models.
6) Ax VI holds with LS(K1) = ℵ0, in fact it holds for every cardinal.
7) For every M ∈ K1, ‖M‖ ≤ 2ℵ0 .

Proof. 0), 1), 2) follows trivially from the definition.

3) To prove that M =
⋃

i<λ

Mi ∈ K1, it is enough to verify that for

every finite disjoint u, w ⊆ PM , |AMu,w| = ‖M‖. If 〈Mi : i < λ〉
is eventually constant we are done hence without loss of generality
〈Mi : i < λ〉 is <K1 -increasing; from the definition of <K1 it follows

that for each i,Mi+1 has a new y = yi as above, i.e., yi ∈ A
Mi+1
u,w \Mi

for every i < λ. Also for each i there are at least ‖Mi‖ many members
in AMi

u,w ⊆ AMu,w. Together there are at least ‖M‖ members in AMu,w.

4) Let {Mn : n < ω} ⊆ K1
ℵ0

be an <K1 -increasing chain, let M =⋃

n<ω

Mn; by part 3) we have M ∈ K1
ℵ0

. Since |QM | = ℵ0 by Claim

6.5(a) below there exists A ⊆ PM\{AMy : y ∈ QM} infinite such
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that {Ay : y ∈ QM} ∪ {A} is independent. Now define N ∈ K1 by
PN = PM , let y0 /∈M,QN = QM ∪{y0} and finally let RN = RM ∪
{〈a, y0〉 : a ∈ PN & a ∈ A}. Clearly for every n < ω,Mn ≤K1 N

but N is not an ≤K1 -extension of M =
⋃

n<ω

Mn because the second

part in Definition 6.2(4) is violated.
5) Let N0 <K1 N ∈ K1 be given; as in 4) define N1 ⊆ N, |N0| ⊆ |N1|
by adding a single element to QN0 (from the elements of QN\QN0)
it is obvious that N0 ≤K1 N,N1 ≤K1 N but N0 �K1 N1.
6) By closing the set under the second requirement in Definition
6.2(3).
7) Let y1 6= y2 ∈ QM , we show that AMy1 6= AMy2 ; if AMy1 ⊆ AMy2
then AMy1 ∩ (PM\AMy2 ) = ∅ contradiction to the requirement that

{Ay : y ∈ Q} is independent hence |QM | ≤ 2|P
M | = 2ℵ0 and as

|PM | = ℵ0 we are done. �6.3

6.4 Theorem. K1 = (K1, <K1) satisfies the hypothesis of Conclu-
sion 3.8. Namely
1) İ(ℵ0, K

1) = 1.
2) Every M ∈ K1

ℵ0
has a proper ≤K1-extension in K1

ℵ0
.

3) K1 is closed under chains of length ≤ ω1.
4) K1 fails the ℵ0-amalgamation property.

Proof. 1) Let M1,M2 ∈ K1
ℵ0

, pick the following enumerations |M1| =
{an : n < ω} and |M2| = {bn : n < ω}. It is enough to define an
increasing sequence of finite partial isomorphisms 〈fn : n < ω〉 from
M1 to M2 such that for every k < ω for some n(k) < ω satisfy

ak ∈ Dom(fn(k)) and bk ∈ Range(fn(k)), (finally take f =
⋃

n<ω

fn

and this will be an isomorphism from M1 onto M2).
Define the sequence 〈fn : n < ω〉 by induction on n < ω: let

f0 = ∅, if n = 2m denote k = min{k < ω : ak /∈ Dom(fn)}.
Distinguish between the following two alternatives:

(A) if ak ∈ PM1 let {a′0, . . . , a
′
j−1} = QM1 ∩ Dom(fn). Without

loss of generality there exists i ≤ j − 1 such that for all
ℓ < i, akR

M1a′ℓ and for all i ≤ ℓ ≤ j − 1,¬akRa
′
ℓ. By 6.2(1),
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PMℓ is infinite, hence by clause (b) of 6.2(2) also QMℓ is
infinite. Hence by clause (a) of 6.2(3) there are infinitely
many y ∈ PM2 such that yRM2fn(a′ℓ) for all ℓ < i and for
all i ≤ ℓ < j − 1,¬yRM2fn(a′ℓ). But Rang(fn) is finite.
Hence there is such y ∈ PM2\ Rang(fn). Finally let fn+1 =
fn ∪ {〈ak, y〉}

(B) if ak ∈ QM1 let {a′0, . . . , a
′
j−1} = PM1 ∩ Dom(fn) and as be-

fore we may assume that there exists i ≤ j−1 such that for all
ℓ < i, a′ℓR

M1ak and for all i ≤ ℓ < j−1 we have ¬(a′ℓ)R
M1ak.

By the second requirement in Definition 6.2(3) there exists
y ∈ QM2\ Dom(fn) such that (∀ℓ < i)[fn(a′ℓ)R

M2y] and
(∀ℓ)[i ≤ ℓ < j − 1 ⇒ ¬fn(a′ℓ)R

M2y]. Now define fn+1 =
fn ∪ {〈ak, y〉}.

2) First we prove the following.

6.5 Observation.

(a) Let P be a countable set. For every countable family P of
infinite subsets of P if P is independent then there exists an
infinite A ⊆ P such that P∪{A} is independent and A /∈ P,
of course

(b) if A,P are as in (a) then for every infinite B ⊆ P satisfying
|A∆B| < ℵ0 also P ∪ {B} is independent (and B /∈ P)

(c) moreover in clause (a) we can require in addition that: for
any disjoint finite u, w ⊆ P there exists A ⊆ P as in (a)
satisfying u ⊆ A and A ∩ w = ∅.

Proof of Claim 6.5.

Clause (a): Let P∗ = {X ⊆ P : (∃n < ω)(∃X0 ∈ P) . . . (∃Xn−1 ∈
P)(∃k ≤ n) [X or P\X is equal to ∩{Xi : i < k} ∩ ∩{P\Xi : k ≤
i < n}}.

Clearly |P∗| = ℵ0 hence we can find a sequence 〈An : n < ω〉
such that {An : n < ω} = P∗ and such that for every k < ω there
exists n > k satisfying An = Ak hence for some n > k,An = P\Ak.
Let P = {an : n < ω} without repetition.
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Now define i(n) < ω by induction on n.

Let i(0) = 0.
If n = k + 1, let i(n) = Min{ℓ < ω : i(n− 1) < ℓ and

aℓ ∈ (Ak\{ai(0), . . . , ai(n−1))}.

It is easy to verify that the construction is possible. Directly from the
construction it follows that A = {ai(n) : n < ω} is a set as required.

Clause (b): Easy.

Clause (c): Let u, w ⊆ P be finite disjoint and P a countable family
of subsets of P which is independent.

Let A′ ⊆ P be as proved in clause (a). According to (b) also
A = (A′ ∪ u)\w satisfies: the family P ∪ {A} is independent.

Return to the proof of Theorem 6.4(2). Let P = {AMy ⊆ PM :

y ∈ QM}. Let 〈sn : n < ω〉 be an enumeration of [PM ]<ℵ0 with
repetitions such that for every finite disjoint u, w ⊆ PM there exists
n < ω such that s2n = u, s2n+1 = w and for each k < ω, s2k∩s2k+1 =
∅.

It is enough to define {Pn : n < ω} increasing chain of countable
independent families of subsets of PM such that P0 = P and for
all k < ω and every finite disjoint u, w ⊆ PM , (∃n < ω)(∃A ∈

Pn\Pk)[u ⊆ A ∧ A ∩ w = ∅] because
⋃

n<ω

Pn enables us to define

N ∈ K1
ℵ0

such that M ≤K1 N as required. Assume Pn is defined;

apply Claim 6.5(c) on P = PM and Pn when substituting u =
s2n, w = s2n+1 let A ⊆ P be supplied by the Claim and define
Pn+1 = Pn ∪ {A}. It is easy to check that {Pn : n < ω} satisfies
our requirements.
3) This is a special case of Ax III which we checked in Lemma 6.3(3).
4) Let M ∈ K1

ℵ0
and we shall find Mℓ ∈ K1

ℵ0
(ℓ = 0, 1),M ≤K1 Mℓ,

which cannot be amalgamated over M . By part (2) we can find a
model M1 such that M <K1 M1 ∈ K1

ℵ0
and choose y ∈ QM1\QM .

Define M2 ∈ K1
ℵ0

; its universe is |M1|, P
M2 = PM1 , QM2 = QM1

and RM2 = {(a, b) : aRM1b & b 6= y or a ∈ PM & b = y &
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¬(aRy)}. Clearly M1,M2 cannot be amalgamated over M (since
the amalgamation must contain a set and its complement). �6.4

6.6 Theorem. Assume MAℵ1
(hence 2ℵ0 > ℵ1). The class (K1, <K1)

is categorical in ℵ1.

Proof. Let M,N ∈ K1
ℵ1

and we shall prove that they are isomorphic.
By repeated use of Lemma 6.3(6),(4) for AxVI we get (strictly) <K1 -
increasing continuous chains {Mα : α < ω1}, {Nα : α < ω1} ⊆ K1

ℵ0

such that M =
⋃

α<ω1

Mα and N =
⋃

α<ω1

Nα, so for α < β,Mα <K1

Mβ , Nα <K1 Nβ .
Now define a forcing notion which supplies an isomorphism g :

M → N .

P = {f :f is a partial finite isomorphism from M into N satisfying

(∀α < ω1)(∀a ∈ Dom(f))[a ∈Mα ⇔ f(a) ∈ Nα]},

the order is inclusion. It is trivial to check that if G ⊆ P is a directed
subset then g = ∪G is a partial isomorphism from M to N , we
show that Dom(g) = |M | if G is generic enough. For every a ∈ |M |
define Ja = {f ∈ P : a ∈ Dom(f)}, and we shall show that for
all a ∈ |M | the set Ja is dense. For a ∈ M let α(a) = Min{α <
ω1 : a ∈ Mα}, clearly it is zero or a successor ordinal. Let f ∈ P
be a given condition, it is enough to find h ∈ Ja such that f ⊆ h
and a ∈ Dom(h). Let A = Dom(f), let B,C ⊆ A be disjoint sets
such that B ∪ C = A and B = Dom(f) ∩ PM , C = Dom(f) ∩QM .
Without loss of generality a /∈ B ∪ C. If a ∈ PM let ϕ(x, c̄) =
∧{±xRc : c ∈ C and M |= ±aRc}. From the definition of K1 there
exists b ∈ PN\ Rang(f) such that N |= ϕ[b, f(c̄)]. If a ∈ QM let
ϕ(x, b̄) = ∧{±bRx : b ∈ B,M |= ±bRa}, we can find infinitely many

b ∈ QNα(a)\
⋃

β<α(a)

Nβ , satisfying ϕ(x, f(b̄)).

Why? This is as ∪{Nβ : β < α(a)} <K1 Nα(a) as C is finite without
loss of generality b /∈ f(C).
Finally, let h = f ∪ {〈a, b〉}.
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The proof that Range(g) = |N | is analogous to the proof that
Dom(g) = |M |. In order to use MA we just have to show that R
has the c.c.c. Let {fα : α < ω1} ⊆ R be given. It is enough to
find α, β < ω1 such that fα, fβ have a common extension. Without
loss of generality we may assume |M | ∩ |N | = ∅. By the finitary ∆-
system lemma there exists S ⊆ ω1, |S| = ℵ1 such that {Dom(fα) ∪
Range(fα) : α ∈ S} is a ∆-system with heart A. Let B ⊆ |M |, C ⊆
|N | be such that A = B∪C, now without loss of generality for every
α ∈ S, fα maps B into C.
[Why? If not, S1 = {α ∈ S: for some b = bα ∈ B, fα(bα) /∈ C}
is uncountable hence for some b ∈ B, S2 = {α ∈ S1 : bα = b}
is uncountable; so 〈fα(b) : α ∈ S2〉 is without repetitions hence is
uncountable. But {f(b) : f ∈ P and b ∈ Dom(f) ∩ B} is countable
because f ∈ P & b ∈ Dom(f) & α < ω1 ⇒ [b ∈ Mα ≡
f(b) ∈ Nα]. Similarly, f−1

α maps C into B, so necessarily fα maps
B onto C; but the number of possible functions from B to C is
|C||B| < ℵ0. Hence there exists S1 ⊆ S, |S1| = ℵ1 such that for all
α, β ∈ S1, fα ↾ B = fβ ↾ B and Dom(fα)∩M0 ⊆ B, Rang(fα)∩N0 ⊆
C. As PMα = PM0 ⊆ M0, P

Nα = PN0 ⊆ N0 for every α ∈ S1 we
have PM ∩ Dom(fα) ⊆ B,PN ∩ Range(fα) ⊆ C, therefore for all
α, β ∈ S1, fα∪fβ ∈ P and in particular there exists α 6= β < ω1 such
that fα ∪ fβ ∈ P. �6.6

In the terminology of [GrSh 174] Theorems 6.4 and 6.6 give us to-
gether:

6.7 Conclusion. Assuming 2ℵ0 > ℵ1 and MAℵ1
,K1 is a nice category

which has a universal object in ℵ1, moreover it is categorical in ℵ1.

6.8 Definition. 1) K2 is the class of M ∈ K0 (see Definition 6.2)
satisfying:

(a) (∀x ∈ QM )(∀u ∈ [PM ]<ℵ0)(∃y ∈ Q)[AMx ∆AMy = u]

(b) if k < ω and y0, . . . , yk−1 ∈ Q satisfies |Ayℓ
∆Aym

| ≥ ℵ0 for
ℓ < m < k then the set {AMyℓ

: ℓ < k} is an independent

family of subsets of PM

(c) Q(y) ∧Q(z) ∧ (∀x ∈ P )[xRy ↔ xRz] → y = z,
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(d) for every k < ω for some y0, . . . , yk ∈ QM we have∧

ℓ<m≤k

|Ayℓ
∆Aym

| ≥ ℵ0.

2) For M1,M2 ∈ K2

M1 ≤K2 M2 ⇔df M1 ⊆M2, P
M1 = PM2 .

3) K2 = (K2,≤K2).
4) K3 is the class of models M = (|M |, PM , QM , RM , EM) such that

(a) (|M |, PM , QM , RM) ∈ K1

(b) EM is an equivalence relation on QM

(c) EM has infinitely many equivalence classes

(d) each equivalence class of EM is countable

(e) if u, w ⊆ PM are finite disjoint and y ∈ QM then for some
y′ ∈ y/EM we have a ∈ u⇒ aRMy′ and b ∈ w ⇒ ¬(bRMy′).

5) We define ≤K3 : M1 ≤K3 M2 ⇔df M1 ⊆ M2 and a ∈ M1 ⇒
a/EM2 = a/EM1.
6) K3 = (K3,≤K3).

If we like to have a class defined by a sentence from Lω1,ω (rather
than Lω1,ω(Q)) we can use:

6.9 Definition. 1) K
4 is defined as follows:

(A) τ(K4) = {P,Q,R}∪ {Pn : n < ω}, R is two-place predicates,
P,Q, Pn are unary predicates

(B) M ∈ K4 iff M is a τ(K4)-model such that M ↾ {P,Q,R} ∈
K2 and

(a) 〈PMn : n < ω〉 is a partition of PM

(b) PMn has exactly 2n elements

(c) (∀x ∈ Q)(∀u ∈ [PM ]<ℵ0)(∃y ∈ QM )[AMx ∆AMy = u]

(d) if k < ω and y0, . . . , yk−1 ∈ Q satisfies |Ayℓ
∆Aym

| ≥
ℵ0 for ℓ < m < k then the set {AMyℓ

: ℓ < k} is an
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independent family of subsets of PM ; moreover for any
n large enough for any η ∈ k2 the set PMn ∩ ∩{AMyℓ

:

η(ℓ) = 1}\∪{AMyℓ
: η(ℓ) = 0} has exactly 2n−k elements

(e) QM (y)∧QM(z)∧(∀x ∈ PM )[xRMy ↔ xRMz] → y = z,

(f) for every k < ω for some y0, . . . , yk ∈ QM we have∧

ℓ<m≤k

|Ayℓ
∆Aym

| ≥ ℵ0

(C) M ≤K4 N iff M,N ∈ K4 and M ⊆ N and PM = PN .

6.10 Theorem. 1) (K2, <K2) is an ℵ0-presentable abstract elemen-
tary class which is categorical in ℵ0.
2) Also K3 and K4 are ℵ0-presentable a.e.c. categorical in ℵ0.

Proof. Similar to the proof for K1. �6.10

6.11 Theorem. 1) K1
ℵ1

has an axiomatization in L(Q) and ≤K1 is
<∗∗ from the proof of 3.18 (this is <∗∗ from [Sh 87a] and [Sh 87b]).
2) K2 has an axiomatization in Lω1,ω(Q) and ≤K2 is ≤∗ from the
proof of 3.18 (this is <∗

ω1,ω
from [Sh 87a] and [Sh 87b]).

3) K3 has an axiomatization in L(Q) and ≤K3 is <∗ from [Sh 87a]
and [Sh 87b].
4) K4 has an axiomatization in Lω1,ω and ≤K4 is just being a submodel.

5) (∀ℓ ∈ {1, 2, 3, 4})[Kℓ is PCℵ0
].

Proof. Should be clear. �6.11

6.12 Theorem. If MAℵ1
then Kℓ is categorical in ℵ1 for ℓ = 2, 3.

Proof. Easy10.

6.13 Conclusion. Assuming MAℵ1
there exists an abstract elemen-

tary class, which is PCℵ0
, categorical in ℵ0,ℵ1 but without the ℵ0-

amalgamation property.

10In the earlier version this was claimed also for ℓ = 4, but, as Baldwin noted,
this was wrong
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CATEGORICITY IN ABSTRACT

ELEMENTARY CLASSES:

GOING UP INDUCTIVELY

SH600

§0 Introduction

The paper’s main explicit result is proving Theorem 0.1 below.
It is done axiomatically, in a “superstable” abstract framework with
the set of “axioms” of the frame, verified by applying earlier works,
so it suggests this frame as the, or at least a major, non-elementary
parallel of superstable.
A major case to which this is applied, is the one from [Sh 576] rep-
resented in Chapter VI; we continue this work in several ways but
the use of [Sh 576] is only in verifying the basic framework; we refer
the reader to the book’s introduction or [Sh 576, §0] for background
and some further claims but all the definitions and basic properties
appear here. Otherwise, the heavy use of earlier works is in proving
that our abstract framework applies in those contexts. If λ = ℵ0 is
O.K. for you, you may use Chapter I or [Sh 48] instead of [Sh 576]
as a starting point.

Naturally, our deeper aim is to develop stability theory (actually
a parallel of the theory of superstable elementary classes) for non-
elementary classes. We use the number of non-isomorphic models
as test problem. Our main conclusion is 0.1 below. As a concession
to supposedly general opinion, we restrict ourselves here to the λ-
good framework and delay dealing with weak relatives (see Chapter
VII, Jarden-Shelah [JrSh 875], hopefully [Sh:F888]. Also, we assume
that the (normal) weak-diamond ideal on the λ+ℓ is not saturated
(for ℓ = 1, . . . , n− 1). We had intended to rely on [Sh 576, §3], but
actually in the end we prefer to rely on the lean version of Chapter

Typeset by AMS-TEX
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VII, see “reading plan A” in VII§0. Relying on the full version of
Chapter VII, we can eliminate this extra assumption “not λ+ℓ+1-

saturated1 (ideal)”. On µunif(λ
+ℓ+1, 2λ

+ℓ

), see, e.g. I.0.5(3)).

0.1 Theorem. Assume 2λ < 2λ
+1

< · · · < 2λ
+n+1

and the (so called
weak diamond) normal1 ideal WDmId(λ+ℓ) is not λ+ℓ+1-saturated2

for ℓ = 1, . . . , n.
1) Let K be an abstract elementary class (see §1 below) categorical
in λ and λ+ with LS(K) ≤ λ (e.g. the class of models of ψ ∈ Lλ+,ω

with ≤K defined naturally). If 1 ≤ İ(λ+2,K) and 2 ≤ ℓ ≤ n ⇒

İ(λ+ℓ,K) < µunif(λ
+ℓ, 2λ

+ℓ−1

), then K has a model of cardinality
λ+n+1.
2) Assume λ = ℵ0, and ψ ∈ Lω1,ω(Q).

If 1 ≤ İ(λ+ℓ, ψ) < µunif(λ
+ℓ, 2λ

+ℓ−1

) for ℓ = 1, . . . , n− 1 then ψ
has a model in λ+n (see [Sh 48]).

Note that if n = 3, then 0.1(1) is already proved in [Sh 576] ≈
Chapter VI. If K is the class of models of some ψ ∈ Lω1,ω this is
proved in [Sh 87a], [Sh 87b], but the proof here does not generalize
the proofs there. It is a different one (of course, they are related).
There, for proving the theorem for n, we have to consider a few
statements on (ℵm,P

−(n−m))-systems for allm ≤ n, (going up and
down). A major point (there) is that for n = 0, as λ = ℵ0 we have the
omitting type theorem and the types are “classical”, that is, are sets
of formulas. This helps in proving strong dichotomies; so the analysis
of what occurs in λ+n = ℵn is helped by those dichotomies. Whereas
here we deal with λ, λ+, λ+2, λ+3 and then “forget” λ and deal with
λ+, λ+2, λ+3, λ+4, etc. So having started with poor assumptions
there is less reason to go back from λ+n to λ. However, there are some
further theorems proved in [Sh 87a], [Sh 87b], whose parallels are not
proved here, mainly that if for every n, in λ+n we get the “structure”
side, then the class has models in every µ ≥ λ, and theorems about

1recall that as 2λℓ−1 < 2λℓ this ideal is not trivial, i.e., λ+ℓ is not in the ideal
2actually the statement “some normal ideal on µ+ is µ++-saturated” is “ex-

pensive”, i.e., of large consistency strength, etc., so it is “hard” for this assump-
tion to fail
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categoricity. We shall deal with them in subsequent works, mainly
Chapter III. Also in [Sh 48], [Sh 88] = Chapter I we started to deal
with ψ ∈ Lω1,ω(Q) dealing with ℵ1,ℵ2. Of course, we integrate them
too into our present context. In the axiomatic framework (introduced
in §2) we are able to present a lemma, speaking only on 4 cardinals,
and which implies the theorem 0.1. (Why? Because in §3 by [Sh 576]
≈ Chapter VI we can get a so-called good λ+-frame s with Ks ⊆ K,
and then we prove a similar theorem on good frames by induction
on n, with the induction step done by the lemma mentioned above).
For this, parts of the proof are a generalization of the proof of [Sh
576, §8,§9,§10].

A major theme here (and even more so in Chapter III) is:
0.2 Thesis: It is worthwhile to develop model theory (and supersta-
bility in particular) in the context of Kλ or Kλ+ℓ , ℓ ∈ {0, . . . , n}, i.e.,
restrict ourselves to one, few, or an interval of cardinals. We may
have good understanding of the class in this context, while in general
cardinals we are lost.

As in [Sh:c] for first order classes
0.3 Thesis: It is reasonable first to develop the theory for the class
of (quite) saturated enough models as it is smoother and even if you
prefer to investigate the non-restricted case, the saturated case will
clarify it and you will e able to rely on it. In our case this will mean

investigating s+n for each n and then ∩{Ks
+n

: n < ω}.

0.4 The Better to be poor Thesis: Better to know what is essential.
e.g., you may have better closure properties (here a major point of
poverty is having no formulas, this is even more noticeable in Chapter
III).

I thank John Baldwin, Alex Usvyatsov, Andres Villaveces and Adi
Yarden for many complaints and corrections.

§1 gives a self-contained introduction to a.e.c. (abstract elemen-
tary classes), including definitions of types, M2 is (λ, κ)-brimmed
over M1 and saturativity = universality + model homogeneity. An
interesting point is observing that any λ-a.e.c. Kλ can be lifted to
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K≥λ, uniquely; so it does not matter if we deal with Kλ or K≥λ (un-
like the situation for good λ-frames, which if we lift, we in general,
lose some essential properties).

The good λ-frames introduced in §2 are a very central notion here.
It concentrates on one cardinal λ, in Kλ we have amalgamation and
more, hence types, in the orbital sense, not in the classical sense of
set of formulas, for models of cardinality λ can be reasonably defined
and “behave” reasonably (we concentrate on so-called basic types)
and we axiomatically have a non-forking relation for them.

In §3 we show that starting with classes belonging to reason-
ably large families, from assumptions on categoricity (or few mod-
els), good λ-frames arise. In §4 we deduce some things on good
λ-frames; mainly: stability in λ, existence and (full) uniqueness of
(λ, ∗)-brimmed extensions of M ∈ Kλ.

Concerning §5 we know that if M ∈ Kλ and p ∈ S bs(M) then

there is (M,N, a) ∈ K3,bs
λ such that tp(a,M,N) = p. But can we

find a special (“minimal” or “prime”) triple in some sense? Note
that if (M1, N1, a) ≤bs (M2, N2, a) then N2 is an amalgamation of
N1,M2 overM1 (restricting ourselves to the case “tp(a,M2, N2) does
not fork over M1”) and we may wonder is this amalgamation unique
(i.e., allowing to increase or decrease N2). If this holds for any such

(M2, N2, a) we say (M1, N1, a) has uniqueness (= belongs to K3,uq
λ =

K3,uq
s ). Specifically we ask: is K3,uq

λ dense in (K3,bs
λ ,≤bs)? If no,

we get a non-structure result; if yes, we shall (assuming categoricity)

deduce the “existence for K3,uq
s ” and this is used later as a building

block for non-forking amalgamation of models.

So our next aim is to find “non-forking” amalgamation of models
(in §6). We first note that there is at most one such notion which
fulfills our expectations (and “respect” s). Now if

⋃

(M0,M1, a,M3),

M0 ≤K M2 ≤K M3 equivalently (M0,M2, a) ≤bs (M1,M3, a) and

(M0,M2, a) ∈ K3,uq
λ by our demands we have to say that M1,M2

are in non-forking amalgamation over M0 inside M3. Closing this
family under the closure demands we expect to arrive to a notion
NFλ = NFs which should be the right one (if a solution exists at all).
But then we have to work on proving that it has all the properties
it hopefully has.

Paper Sh:600, Chapter II



228 II. CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES

A major aim in advancing to λ+ is having a superlimit model in
Kλ+ . So in §7 we find out who it should be: the saturated model of
Kλ+ , but is it superlimit? We use our NFλ to define a “nice” order
≤∗
λ+ on Kλ+ , investigate it and prove the existence of a superlimit

model under this partial order. To advance the move to λ+ we
would like to have that the class of λ+-saturated model with the
partial order ≤∗

λ+ is a λ+-a.e.c. Well, we do not prove it but rather
use it as a dividing line: if it fails we eventually get many models in
Kλ++ (coding a stationary subset of λ++ (really any S ⊆ {δ < λ++ :
cf(δ) = λ+})), see §8.

Lastly, we pay our debts: prove the theorems which were the
motivation of this work, in §9.

∗ ∗ ∗

Reading Plans:

As usual these are instructions on what you can avoid reading.

Note that §3 contains the examples, i.e., it shows how “good λ-
frame”, our main object of study here, arise in previous works. This,
on the one hand, may help the reader to understand what is a good
frame and, on the other hand, helps us in the end to draw conclusions
continuing those works. However, it is not necessary here otherwise,
so you may ignore it.

Note that we treat the subject axiomatically, in a general enough
way to treat the cases which exist without trying too much to elim-
inate axioms as long as the cases are covered (and probably most
potential readers will feel they are more than general enough).
We shall assume

(∗)0 2λ < 2λ
+

< 2λ
+2

< . . . < 2λ
+n

and n ≥ 2.

In the beginning of §1 there are some basic definitions.

Reading Plan 0: We accept the good frames as interesting per se so
ignore §3 (which gives “examples”) and: §1 tells you all you need to
know on abstract elementary classes; §2 presents frames, etc.
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Reading Plan 1: The reader decides to understand why we reprove
the main theorem of [Sh 87a], [Sh 87b] so

(∗)1 K is the class of models of some ψ ∈ Lλ+,ω (with a natural
notion of elementary embedding ≺L for L a fragment of
Lλ+,ω of cardinality ≤ λ to which ψ belongs).

So in fact (as we can replace, for this result, K by any class with fewer
models still satisfying the assumptions) without loss of generality

(∗)′1 if λ = ℵ0 then K is the class of atomic models of some com-
plete first order theory, ≤K is being elementary submodel.

The theorems we are seeking are of the form

(∗)2 ifK has few models in λ+ℵ1, λ
+, . . . , λ+n then it has a model

in λ+n+1.
[Why “λ + ℵ1”? If λ > ℵ0 this means λ whereas if λ = ℵ0

this means that we do not require “few model in λ = ℵ0”.
The reason is that for the class or models of ψ ∈ Lω1,ω (or
∈ Lω1,ω(Q) or an a.e.c. which is PCℵ0

, see Definition 3.3) we
have considerable knowledge of general methods of building
models of cardinality ℵ1, for general λ we are very poor in
such knowedge (probably as there is much less).]

But, of course, what we would really like to have are rudiments of
stability theory (non-forking amalgamation, superlimit models, etc.).
Now reading plan 1 is to follow reading plan 2 below but replacing
the use of Claim 3.7 and [Sh 576] by the use of a simplified version
of 3.4 and [Sh 87a].

Reading Plan 2: The reader would like to understand the proof of
(∗)2 for arbitrary K and λ. The reader

(a) knows at least the main definitions and results of [Sh 576] ≈
Chapter VI,
or just

(b) reads the main definitions of §1 here (in 1.1 - 1.7) and is
willing to believe some quotations of results of [Sh 576] ≈
Chapter VI.
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We start assuming K is an abstract elementary class, LS(K) ≤ λ
(or read §1 here until 1.16) and K is categorical in λ and λ+ and

1 ≤ İ(λ++, K) < µunif(λ
++, 2λ

+

) and moreover, 1 ≤ İ(λ++, K) <

µunif(λ
++, 2λ

+

). As an appetizer and to understand types and the
definition of types and saturated (in the present context) and brimmed,
read from §1 until 1.17.
He should read in §2 Definition 2.1 of λ-good frame, an axiomatic
framework and then read the following two Definitions 2.4, 2.5 and
Claim 2.6. In §3, 3.7 show how by [Sh 576] ≈ Chapter VI the context
there gives a λ+-good frame; of course the reader may just believe
instead of reading proofs, and he may remember that our basic types
are minimal in this case.
In §4 he should read some consequences of the axioms.
Then in §5 we show some amount of unique amalgamation. Then
§6,§7,§8 do a parallel to [Sh 576, §8,§9,§10] in our context; still
there are differences, in particular our context is not necessarily uni-
dimensional which complicates matters. But if we restrict ourselves
to continuing [Sh 576] ≈ Chapter VI, our frame is “uni-dimensional”,
we could have simplified the proofs by using S bs(M) as the set of
minimal types.

Reading Plan 3: ψ ∈ Lω1,ω(Q) so λ = ℵ0, 1 ≤ İ(ℵ1, ψ) < 2ℵ1 reclling
Q denote the quantifier “there are uncountably many”.

For this, [Sh 576] ≈ Chapter VI is irrelevant (except if we quote
the “black box” use of the combinatorial section §3 of [Sh 576] when
using the weak diamond to get many non-isomorphic models in §5,
but we prefer to use Chapter VII).

Now reading plan 3 is to follow reading plan 2 but 3.7 is replaced
by 3.5 which relies on [Sh 48], i.e., it proves that we get an ℵ1-good
frame investigating ψ ∈ Lω1,ω(Q).

Note that our class may well be such that K is the parallel of
“superstable non-multidimension complete first order theory”; e.g.,
ψ1 = (Qx)(P (x)) ∧ (Qx)(¬P (x)), τψ = {P}, P a unary predicate;
this is categorical in ℵ1 and has no model in ℵ0 and ψ1 has 3 models
in ℵ2. But if we use ψ0 = (∀x)(P (x) ≡ P (x)) we have İ(ℵ1, ψ0) = ℵ0;
however, even starting with ψ1, the derived a.e.c. K has exactly three
non-isomorphic models in ℵ1. In general we derived an a.e.c. K from
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ψ such that: K is an a.e.c. with LS number ℵ0, categorical in ℵ0, and
the number of somewhat “saturated” models of K in λ is ≤ İ(λ, ψ)
for λ ≥ ℵ1. The relationship of ψ and K is not comfortable; as
it means that, for general results to be applied, they have to be

somewhat stronger, e.g. “K has 2λ
++

non-isomorphic λ+-saturated
models of cardinality λ++”. The reason is that LS(K) = λ = ℵ0;
we have to find many somewhat λ+-saturated models as we have
first in a sense eliminate the quantifier Q = ∃≥ℵ1 , (i.e., the choice
of the class of models and of the order guaranteed that what has to
be countable is countable, and λ+-saturation guarantees that what
should be uncountable is uncountable). This is the role of KF

ℵ1
in

I§3.

Reading Plan 4: K an abstract elementary class which is PCω (= ℵ0-
presentable, see Definition 3.3); see Chapter I or [Mw85a] which
includes a friendly presentation of [Sh 88, §1-§3] so of I§1-§3).

Like plan 3 but we have to use 3.4 instead of 3.5 and fortunately
the reader is encouraged to read I§4,§5 to understand why we get a
λ-good quadruple.

§1 Abstract elementary classes

First we present the basic material on a.e.c. K, that is types,
saturativity and (λ, κ)-brimmness (so most is repeating some things
from I§1 and from Chapter V.B).
Second we show that the situation in λ = LS(K) determine the
situation above λ, moreover such lifting always exists; so a λ-a.e.c.
can be lifted to a (≥ λ)-a.e.c. in one and only one way.

1.1 Conventions. Here K = (K,≤K), where K is a class of τ -models
for a fixed vocabulary τ = τK = τK and ≤K is a two-place relation
on the models in K. We do not always strictly distinguish between
K, K and (K,≤K). We shall assume that K,≤K are fixed, and M ≤K

N ⇒ M,N ∈ K; and we assume that it is an abstract elementary
class, see Definition 1.4 below. When we use ≤K in the ≺ sense
(elementary submodel for first order logic), we write ≺L as L is first
order logic.
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1.2 Definition. For a class of τK -models we let İ(λ,K) = |{M/ ∼=:
M ∈ K, ‖M‖ = λ}|.

1.3 Definition. 1) We say M̄ = 〈Mi : i < µ〉 is a representation
or filtration of a model M of cardinality µ if τMi

= τM ,Mi is ⊆-
increasing continuous, ‖Mi‖ < ‖M‖ and M = ∪{Mi : i < µ} and
µ = χ+ ⇒ ‖Mi‖ = χ.
2) We say M̄ is a ≤K-representation or ≤K-filtration of M if in ad-
dition Mi ≤K M for i < ‖M‖ (hence Mi,M ∈ K and 〈Mi : i < µ〉 is
≤K-increasing continuous, by Av V from Definition 1.4).

1.4 Definition. We say K = (K,≤K) is an abstract elementary
class, a.e.c. in short, if (τ is as in 1.1, Ax0 holds and) AxI-VI hold,
where:
Ax0: The holding of M ∈ K,N ≤K M depends on N,M only up to
isomorphism, i.e., [M ∈ K,M ∼= N ⇒ N ∈ K], and [if N ≤K M and
f is an isomorphism from M onto the τ -model M ′ mapping N onto
N ′ then N ′ ≤K M ′], and of course 1.1.

AxI: If M ≤K N then M ⊆ N (i.e. M is a submodel of N).

AxII: M0 ≤K M1 ≤K M2 implies M0 ≤K M2 and M ≤K M for
M ∈ K.

AxIII: If λ is a regular cardinal, Mi (for i < λ) is ≤K-increasing
(i.e. i < j < λ implies Mi ≤K Mj) and continuous (i.e. for limit
ordinal δ < λ we have
Mδ =

⋃

i<δ

Mi) then M0 ≤K

⋃

i<λ

Mi.

AxIV : If λ is a regular cardinal, Mi (for i < λ) is ≤K-increasing

continuous and Mi ≤K N for i < λ then
⋃

i<λ

Mi ≤K N .

AxV : If M0 ⊆M1 and Mℓ ≤K N for ℓ = 0, 1, then M0 ≤K M1.

AxV I: LS(K) exists3, where LS(K) is the minimal cardinal λ such

3We normally assume M ∈ K ⇒ ‖M‖ ≥ LS(K) so may forget to write

‖M‖“ + LS(K)” instead ‖M‖, here there is no loss in it. It is also natural to

assume |τ(K)| ≤ LS(K) which means just increasing LS(K), but no real need
here; dealing with Hanf numbers it is natural.
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that: if A ⊆ N and |A| ≤ λ then for some M ≤K N we have A ⊆ |M |
and ‖M‖ ≤ λ.

1.5 Notation: 1) Kλ = {M ∈ K : ‖M‖ = λ} and K<λ =
⋃

µ<λ

Kµ,

etc.

1.6 Definition. 1) The function f : N → M is ≤K-embedding
when f is an isomorphism from N onto N ′ where N ′ ≤K M , (so
f : N → N ′ is an isomorphism onto).
2) We say f is a ≤K-embedding of M1 into M2 over M0 when for
some M ′

1 we have: M0 ≤K M1,M0 ≤K M ′
1 ≤K M2 and f is an

isomorphism from M1 onto M ′
1 extending the mapping idM0

.

Recall

1.7 Observation. Let I be a directed set (i.e., I is partially ordered
by ≤=≤I , such that any two elements have a common upper bound).
1) If Mt is defined for t ∈ I, and t ≤ s ∈ I implies Mt ≤K Ms then

for every t ∈ I we have Mt ≤K

⋃

s∈I

Ms.

2) If in addition t ∈ I implies Mt ≤K N then
⋃

s∈I

Ms ≤K N .

Proof. Easy or see I.1.6 which does not rely on anything else. �1.7

1.8 Claim. 1) For every N ∈ K there is a directed partial order
I of cardinality ≤ ‖N‖ and sequence M̄ = 〈Mt : t ∈ I〉 such that
t ∈ I ⇒ Mt ≤K N, ‖Mt‖ ≤ LS(K), I |= s < t ⇒ Ms ≤K Mt and

N =
⋃

t∈I

Mt. If ‖N‖ ≥ LS(K) we can add ‖Mt‖ = LS(K) for t ∈ I.

2) For every N1 ≤K N2 we can find 〈M ℓ
t : t ∈ Iℓ〉 as in part (1) for

ℓ = 1, 2 such that I1 ⊆ I2 and t ∈ I1 ⇒M2
t = M1

t .
3) Any λ ≥ LS(K) satisfies the requirement in the definition of LS(K).

Proof. Easy or see I.1.7 which does not require anything else. �1.8

We now (in 1.9) recall the (non-classical) definition of type (note that
it is natural to look at types only over models which are amalgama-
tion bases, see part (4) of 1.9 below and consider only extensions of
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the models of the same cardinality). Note that though the choice
of the name indicates that they are supposed to behave like com-
plete types over models as in classical model theory (on which we
are not relying), this does not guarantee most of the basic proper-
ties. E.g., when cf(δ) = ℵ0, uniqueness of pδ ∈ S (Mδ) such that
i < δ ⇒ pδ ↾ Mi = pi is not guaranteed even if pi ∈ S (Mi),Mi is
≤K-increasing continuous for i ≤ δ and i < j < δ ⇒ pi = pj ↾ Mi.
Still we have existence: if for i < δ, pi ∈ S (Mi) increasing with i,
then there is pδ ∈ S (∪{Mi : i < δ}) such that i < δ ⇒ pi = pδ ↾ Mi.
But when cf(δ) > ℵ0 even existence is not guaranteed.

1.9 Definition. 1) For M ∈ Kµ,M ≤K N ∈ Kµ and a ∈ N let
tp(a,M,N) = tpK(a,M,N) = (M,N, a)/EM where EM is the tran-
sitive closure of E at

M , and the two-place relation E at
M is defined by:

(M,N1, a1)E
at
M (M,N2, a2) iff M ≤K Nℓ, aℓ ∈ Nℓ, ‖Nℓ‖ = µ = ‖M‖

for ℓ = 1, 2

and there is N ∈ Kµ and ≤K -embeddings

fℓ : Nℓ → N for ℓ = 1, 2 such that:

f1 ↾ M = idM = f2 ↾ M and f1(a1) = f2(a2).

We may say p = tp(a,M,N) is the type which a realizes over M
in N . Of course, all those notions depend on K so we may write
tpK(a,M,N) and EM [K], E at

M [K].
(If in Definition 1.4 we do not require M ∈ K ⇒ ‖M‖ ≥ LS(K), here
we should allow any N such that ‖M‖ ≤ ‖N‖ ≤ M + LS(K).) The
restriction to N ∈ Kµ is essential, and pedantically (M,N, a)/EM
should be replaced by ((M,N, a)/Eµ)∩H (χ(M,N,a)) where χ(M,N,a) =
min{χ : ((M,N, a)/EM) ∩ H (χ) 6= ∅} so that the equivalence class

is a set.
1A) For M ∈ Kµ let4 SK(M) = {tp(a,M,N) : M ≤K N and
N ∈ Kµ (or just N ∈ K≤(µ+LS(K))) and a ∈ N} and S na

K
(M) =

{tp(a,M,N) : M ≤K N and N ∈ K≤(µ+LS(K)) and a ∈ N\M}, na
stands for non-algebraic. We may write S na(M) omitting K when

4if we omit M ∈ K ⇒ ‖M‖ ≥ LS(K) in 1.4, still we can insist that N ∈ Kµ,
the difference is not serious
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K is clear from the context; so omitting na means a ∈ N rather than
a ∈ N\M .
2) Let M ∈ Kµ and M ≤K N . We say “a realizes p in N” and “p =
tp(a,M,N)” when: if a ∈ N, p ∈ S (M) and N ′ ∈ K≤(µ+LS(K)) sat-

isfiesM ≤K N ′ ≤K N and a ∈ N ′ then p = tp(a,M,N ′) and there is
at least one such N ′; so M,N ′ ∈ Kµ (or just M ≤ ‖N ′‖ ≤ µ+LS(K))
but possibly N /∈ Kµ.
3) We say “a2 strongly5 realizes (M,N1, a1)/E

at
M in N” when for

some N2 of cardinality ≤ ‖M‖ + LS(K) we have M ≤K N2 ≤K N
and a2 ∈ N2 and (M,N1, a1) E at

M (M,N2, a2) hence µ = ‖N1‖.
4) We say M0 ∈ Kλ is an amalgamation base (in K, but normally
K is understood from the context) if: for every M1,M2 ∈ Kλ and
≤K-embeddings fℓ : M0 → Mℓ (for ℓ = 1, 2) there is M3 ∈ Kλ and
≤K-embeddings gℓ : Mℓ →M3 (for ℓ = 1, 2) such that g1◦f1 = g2◦f2.
Similarly for K≤λ.
4A) K has amalgamation in λ (or λ-amalgamation or Kλ has amal-
gamation) when every M ∈ Kλ is an amalgamation base.
4B) K has the λ-JEP or JEPλ (or Kλ has the JEP) when any
M1,M2 ∈ Kλ can be ≤K-embedded into some M ∈ Kλ.
5) We say K is stable in λ if (LS(K) ≤ λ and)M ∈ Kλ ⇒ |S (M)| ≤ λ
and moreover there are no λ+ pairwise non-E at

µ -equivalent triples
(M,N, a),M ≤K N ∈ Kλ, a ∈ N .
6) We say p = q ↾ M if p ∈ S (M), q ∈ S (N),M ≤K N and for
some N+, N ≤K N+ and a ∈ N+ we have p = tp(a,M,N+) and
q = tp(a,N,N+); see 1.11(1),(2). We may express this also as “q
extends p or p is the restriction of q to M”.
7) For finite m, for M ≤K N, ā ∈ mN we can define tp(ā,M,N)

and Sm
K

(M) similarly and S
<ω
K

(M) =
⋃

m<ω

S
m
K (M); similarly for

S α(M) (but we shall not use this in any essential way, so we agree
S (M) = S 1(M).) Again we may omit K when clear from the
context.
8) We say that p ∈ SK(M) is algebraic when some a∈M realizes it.
9) We say that p ∈ SK(M) is minimal when it is not algebraic and
for every N ∈ K of cardinality ≤ ‖M‖ + LS(K) which ≤K-extend

5note that E at
M is not necessarily an equivalence relation and hence in general

is not EM
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M , the type p has at most one non-algebraic extension in SK(M).

1.10 Remark. 1) Note that here “amalgamation base” means only
for extensions of the same cardinality!
2) The notion “minimal type” is important (for categoricity) but not
used much in this chapter.

1.11 Observation. 0) Assume M ∈ Kµ and M ≤K N, a ∈ N then
tp(a,M,N) is well defined and is p if for some M ′ ∈ Kµ we have
M ∪ {a} ⊆M ′ ≤K N and p = tp(a,M,M ′).
1) If M ≤K N1 ≤K N2,M ∈ Kµ and a ∈ N1 then tp(a,M,N1) is
well defined and equal to tp(a,M,N2), (more transparent if K has
the µ-amalgamation, which is the real case anyhow).
2) If M ≤K N and q ∈ S (N) then for one and only one p we have
p = q ↾ M .
3) If M0 ≤K M1 ≤K M2 and p ∈ S (M2) then p ↾ M0 = (p ↾ M1) ↾

M0.
4) IfM ∈ Kµ is an amalgamation base then E at

M is a transitive relation
hence is equal to EM .
5) If M ≤K N are from Kλ,M is an amalgamation base and p ∈
S (M) then there is q ∈ S (N) extending p, so the mapping q 7→ q ↾

M is a function from S (N) onto S (M).

Proof. Easy. �1.11

1.12 Definition. 1) We say N is λ-universal over M when λ ≥
‖N‖ and for every M ′,M ≤K M ′ ∈ Kλ, there is a ≤K-embedding
of M ′ into N over M . If we omit λ we mean ‖N‖; clearly if N is
universal over M and both are from Kλ then M is an amalgamation
base.
2) K3,na

λ = {(M,N, a) : M ≤K N, a ∈ N\M and M,N ∈ Kλ},
with the partial order ≤ defined by (M,N, a) ≤ (M ′, N ′, a′) iff
a = a′,M ≤K M ′ and N ≤K N ′.
3) We say (M,N, a) ∈ K3,na

λ is minimal when: if (M,N, a) ≤

(M ′, Nℓ, a) ∈ K3,na
λ for ℓ = 1, 2 implies tp(a,M ′, N1) = tp(a,M ′, N2)

moreover, (M ′, N1, a)E
at
λ (M ′, N2, a) (this strengthening is not needed

if every M ′ ∈ Kλ is an amalgamation bases).
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4) N ∈ K is λ-universal if every M ∈ Kλ can be ≤K-embedded into
it.
5) We say N ∈ K is universal for K ′ ⊆ K when every M ∈ K ′ can
be ≤K-embedded into N .

Remark. Why do we use ≤ on K3,na
λ ? Because those triples serve us

as a representation of types for which direct limit exists.

1.13 Definition. 1) M∗ ∈ Kλ is superlimit if: clauses (a) + (b)
+ (c) below hold, and locally superlimit if clauses (a)− + (b) + (c)
below hold and is pseudo superlimit if clauses (b) + (c) below hold,
where:

(a) it is universal, (i.e. every M ∈ Kλ can be ≤K-embedded into
M∗),

(b) if 〈Mi : i ≤ δ〉 is ≤K-increasing continuous, δ < λ+ and
i < δ ⇒Mi

∼= M∗ then Mδ
∼= M∗

(a)− if M∗ ≤K M1 ∈ Kλ then there is M2 ∈ K2 which ≤K-extend
M1 and is isomorphic to M∗

(c) there is M∗∗ isomorphic to M∗ such that M∗ <K M∗∗.

2) M is λ-saturated above µ when ‖M‖ ≥ λ > µ ≥ LS(K) and:
N ≤K M,µ ≤ ‖N‖ < λ,N ≤K N1, ‖N1‖ ≤ ‖N‖ + LS(K) and
a ∈ N1 then some b ∈ M strongly realizes (N,N1, a)/E

at
N in M ,

see Definition 1.9(3). Omitting “above µ” means “for some µ < λ”
hence “M is λ+-saturated” mean that “M is λ+-saturated above λ”
and K(λ+-saturated) = {M ∈ K : M is λ+-saturated} and “M is
saturated” means “M is ‖M‖-saturated”.

In the following lemma note that amalgamation in K<λ is not as-
sumed it is even deduced. For variety we allow K<LS(K) 6= ∅.

1.14 The Model-homogeneity = Saturativity Lemma. Let
λ > µ+ LS(K) and M ∈ K.
1) M is λ-saturated above µ iff M is (DK≥µ

, λ)-homogeneous above
µ, which means: for every N1 ≤K N2 ∈ K such that µ ≤ ‖N1‖ ≤
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‖N2‖ < λ and N1 ≤K M , there is a ≤K-embedding f of N2 into M
over N1.
2) If M1,M2 ∈ Kλ are λ-saturated above µ < λ and for some N1 ≤K

M1, N2 ≤K M2, both of cardinality ∈ [µ, λ), we have N1
∼= N2 then

M1
∼= M2; in fact, any isomorphism f from N1 onto N2 can be

extended to an isomorphism from M1 onto M2.
3) If in (2) we demand only “M2 is λ-saturated” and M1 ∈ K≤λ

then f can be extended to a ≤K-embedding from M1 into M2.
4) In part (2) instead of N1

∼= N2 it suffices to assume that N1 and
N2 can be ≤K-embedded into some N ∈ K, which holds if K has the
JEP or just θ-JEP for some θ < λ, θ ≥ µ. Similarly for part (3).
5) If N is λ-universal over M ∈ Kµ and K has µ-JEP then N is
λ-universal (where λ ≥ LS(K) for simplicity).
6) Assume M is λ-saturated above µ. If N ≤K M and µ ≤ ‖N‖ < λ
then N is an amalgamation base (in K≤(‖N‖+LS(K)) and even in K≤λ)
and |S (N)| ≤ ‖M‖. So if every N ∈ Kµ can be ≤K-embedded into
M then K has µ-amalgamation.

Proof. 1) The “if” direction is easy as λ > µ+ LS(K). Let us prove
the other direction.

We prove this by induction on ‖N2‖. Now first consider the case
‖N2‖ > ‖N1‖ + LS(K) then we can find a ≤K-increasing continuous
sequence 〈N1,ε : ε < ‖N2‖〉 with union N2 with N1,0 = N1 and
‖N1,ε‖ ≤ ‖N1‖+|ε|. Now we choose fε, a ≤K-embedding of N1,ε into
M , increasing continuous with ε such that f0 = idN1

. For ε = 0 this
is trivial for ε limit take unions and for ε successor use the induction
hypothesis. So without loss of generality ‖N2‖ ≤ ‖N1‖ + LS(K).

Let |N2| = {ai : i < κ}, and we know µ ≤ κ′′ := ‖N1‖ ≤ κ :=
‖N2‖ ≤ κ′ := ‖N1‖+ LS(K) < λ; so if, as usual, ‖N1‖ ≥ LS(K) then
κ′ = κ. We define by induction on i ≤ κ,N i

1, N
i
2, fi such that:

(a) N i
1 ≤K N i

2 and ‖N i
1‖ ≤ ‖N i

2‖ ≤ κ′

(b) N i
1 is ≤K-increasing continuous with i

(c) N i
2 is ≤K-increasing continuous with i

(d) fi is a ≤K-embedding of N i
1 into M

(e) fi is increasing continuous with i

(f) ai ∈ fi(N
i+1
1 )
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(g) N0
1 = N1, N

0
2 = N2, f0 = idN1

.

For i = 0, clause (g) gives the definition. For i limit let:

N i
1 =

⋃

j<i

N j
1 , N i

2 =
⋃

j<i

N j
2 , fi =

⋃

j<i

fj .

Now (a)-(f) continues to hold by continuity (and ‖N i
2‖ ≤ κ′ easily).

For i successor we use our assumption; more elaborately, let M i−1
1

≤K M be fi−1(N
i−1
1 ) and let M i−1

2 , gi−1 be such that gi−1 is an iso-

morphism from N i−1
2

onto M i−1
2 extending fi−1, so M i−1

1 ≤K M i−1
2 (but without loss of

generality M i−1
2 ∩M = M i−1

1 ). Now apply the saturation assump-

tion, see Definition 1.13(21) with M, (M i−1
1 ,M i−1

2 ), gi−1(a)) here

standing for M, (N,N1, a) there (note: ai−1 ∈ N2 = N0
2 ⊆ N i−1

2

and λ > κ′ ≥ ‖N i−1
2 ‖ = ‖M i−1

2 ‖ ≥ ‖M i−1
1 ‖ = ‖N i−1

1 ‖ ≥ ‖N0
1 ‖ =

‖N1‖ = κ′′ ≥ µ so the requirements including the requirements on
the cardinalities in Definition 1.13(2) holds). So there is b ∈M such
that tp(b,M i−1

1 ,M) = tp(gi−1(ai−1),M
i−1
1 ,M i−1

2 ). Moreover (if K

has amalgamation in µ the proof is slightly shorter) remembering the
end of the first sentence in 1.13(2) which speaks about “strongly real-
izes”, b strongly realizes (M i−1

1 ,M i−1
3 , gi−1(ai−1))/E

at
Mi−1

1

inM . This

means (see Definition 1.9(3)) that for some M i,∗
1 we have b ∈ M i,∗

1

and M i−1
1 ≤K M i,∗

1 ≤K M and (M i−1
1 ,M i−1

2 , gi−1(ai−1)) E at
Mi−1

1

(M i−1
1 ,M i,∗

1 , b). This means (see Definition 1.9(1)) thatM i,∗
1 too has

cardinality ≤ κ′ and there is M i,∗
2 ∈ K≤κ′ such that M i−1

1 ≤K M i,∗
2

and there are ≤K-embeddings hi2, h
i
1 of M i−1

2 ,M i,∗
1 into M i,∗

2 over

M i−1
1 respectively, such that hi2(gi−1(ai−1)) = hi1(b).

Now changing names, without loss of generality hi1 is the identity.
Let N i

2, hi be such that N i−1
2 ≤K N i

2 and hi an isomorphism from N i
2

onto M i,∗
2 extending gi−1. Let N i

1 = h−1
i (M i,∗

1 ) and fi = (hi ↾ N i
1).

We have carried the induction. Now fκ is a ≤K-embedding of Nκ
1

into M over N1, but |N2| = {ai : i < κ} ⊆ Nκ
1 hence by AxV of

Definition 1.4, N2 ≤K Nκ
1 , so fκ ↾ N2 : N2 →M is as required.

2), 3) By the hence and forth argument (or see I.2.4,I.2.5 or see [Sh
300, II,§3] = V.B§3).
4),5),6) Easy, too. �1.14
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1.15 Definition.
1) For ∂ = cf(∂) ≤ λ+, we say N is (λ, ∂)-brimmed over M if
(M ≤K N are in Kλ and) we can find a sequence 〈Mi : i < ∂〉
which is ≤K-increasing6, Mi ∈ Kλ,M0 = M,Mi+1 is ≤K-universal7

over Mi and
⋃

i<∂

Mi = N . We say N is (λ, ∂)-brimmed over A if

A ⊆ N ∈ Kλ and we can find 〈Mi : i < ∂〉 as above such that
A ⊆ M0 but M0 ↾ A ≤K M0 ⇒ M0 = A; if A = ∅ we may omit
“over A”. We say continuously (λ, ∂)-brimmed (over M) when the
sequence 〈Mi : i < ∂〉 is ≤K-increasing continuous; if Kλ has amal-
gamation, the two notions coincide.
2) We say N is (λ, ∗)-brimmed over M if for some ∂ ≤ λ,N is (λ, ∂)-
brimmed over M . We say N is (λ, ∗)-brimmed if for some M,N is
(λ, ∗)-brimmed over M .
3) If α < λ+ let “N is (λ, α)-brimmed over M” mean M ≤K N are
from Kλ and cf(α) ≥ ℵ0 ⇒ N is (λ, cf(α))-brimmed over M .

On the meaning of (λ, ∂)-brimmed for elementary classes, see 3.1(2)
below. Recall

1.16 Claim. Assume λ ≥ LS(K).
1) If K has amalgamation in λ, is stable in λ and ∂ = cf(∂) ≤ λ,
then

(a) for everyM ∈ Kλ there is N,M ≤K N∈Kλ, universal overM

(b) for every M ∈ Kλ there is N ∈ Kλ which is (λ, ∂)-brimmed
over M

(c) if N is (λ, ∂)-brimmed over M then N is universal over M .

2) If Nℓ is (λ,ℵ0)-brimmed over M for ℓ = 1, 2, then N1, N2 are
isomorphic over M .
3) Assume ∂ = cf(∂) ≤ λ+, and for every ℵ0 ≤ θ = cf(θ) < ∂ any
(λ, θ)-brimmed model is an amalgamation base (in K). Then:

6we have not asked continuity; because in the direction we are going, it makes
no difference if we add “continuous”. Then we have in general fewer cases of

existence, uniqueness (of being (λ, ∂)-brimmed over M ∈ Kλ) does not need

extra assumptions and existence is harder
7hence Mi is an amalgamation base
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II.§1 ABSTRACT ELEMENTARY CLASSES 241

(a) if Nℓ is (λ, ∂)-brimmed over M for ℓ = 1, 2 then N1, N2 are
isomorphic over M

(b) if K has λ-JEP (i.e., the joint embedding property in λ) and
N1, N2 are (λ, ∂)-brimmed then N1, N2 are isomorphic.

3A) There is a (λ, ∂)-brimmed model N over M ∈ Kλ when: M is
an amalgamation base, and for every ≤Kλ

-extension M1 of M there
is a ≤Kλ

-extension M2 of M1 which is an amalgamation base and
there is a λ-universal extension M3 ∈ Kλ of M2.
4) Assume K has λ-amalgamation and the λ-JEP and M̄ = 〈Mi :
i ≤ λ〉 is ≤K-increasing continuous and Mi ∈ Kλ for i ≤ λ.

(a) If λ is regular and for every i < λ, p ∈ S (Mi) for some
j ∈ (i, λ), some a ∈Mj realizes p, then Mλ is universal over
M0 and is (λ, λ)-brimmed over M0

(b) if for every i < λ every p ∈ S (Mi) is realized in Mi+1 then
Mλ is (λ, cf(λ))-brimmed over M0.

5) Assume ∂ = cf(∂) ≤ λ and M ∈ K is continuous (λ, ∂)-brimmed.
Then M is a locally (λ, {∂})-strongly limit model in Kλ (see Defini-
tion I.3.3(2),(7), not used).
6) If N is (λ, ∂)-brimmed over M and A ⊆ N, |A| < ∂, e.g. A = {a}
then for some M ′ we have M ∪ A ⊆ M ′ <K M and M is (λ, ∂)-
brimmed over M ′.

Proof. 1) Clause (c) holds by Definition 1.15.
As for clause (a), for any given M ∈ Kλ, easily there is an

≤K-increasing continuous sequence 〈Mi : i ≤ λ〉 of models from
Kλ,M0 = M such that p ∈ S (Mi) ⇒ p is realized in Mi+1, this by
stability + amalgamation. So 〈Mi : i ≤ λ〉 is as in part (4) below
hence by clause (b) of part (4) below, we get that Mδ is ≤K-universal
over M0 = M so we are done. Clause (b) follows by (a).
2) By (3)(a) because the extra assumption in part (3) is empty when
∂ = ℵ0.
3) Clause (a) holds by the hence and forth argument, that is assume
〈Nℓ,i : i < ∂〉 is ≤K-increasing with union Nℓ,∂ , Nℓ,0 = M,Nℓ,i+1 is
universal over Nℓ,i and Nℓ = Nℓ,∂ so Nℓ,i ∈ Kλ.

Now for each limit δ < ∂ the model N ′
ℓ,δ := ∪{Nℓ,i : i < δ}

is an amalgamation base (and is ≤K Nℓ,δ+1) hence without loss of
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generality 〈Nℓ,i : i ≤ ∂〉 is ≤K-increasing continuous. We now choose
fi by induction on i ≤ ∂ such that:

(i) if i is odd, fi is a ≤K-embedding of N1,i into N2,i

(ii) if i is even, f−1
i is a ≤K-embedding of N2,i into N1,i

(iii) if i is limit then fi is an isomorphism from N1,i onto N2,i

(iv) fi is increasing continuous with i

(v) if i = 0 then f0 = idM .

For i = 0 let f0 = idM . If i = 2j + 2 use “N1,i is a universal exten-
sion of N1,2j+1 (in Kλ) and f2j+1 is a ≤K-embedding of N1,2j+1 into
N2,2j+1 (by clause (i) applied to 2j+1) and N1,2j+1 is an amalgama-
tion base”. That is, N2,i is a ≤K-extension of f2j+1(N2j+1) which is

an amalgamation base so f−1
2j+1 can be extended to a ≤K-embedding

of f−1
i of N2,i into N1,i. For i = 2j + 1 use “N2,i is a universal

extension (in Kλ) of N2,2j and f−1
2j is a ≤K-embedding of N2,2j into

N1,2j and N2,2j is an amalgamation base (in Kλ)”.
For i limit let fi = ∪{fj : j < i}. Clearly f∂ is an isomorphism from
N1 = N1,∂ onto N2,∂ = N2 so we are done, i.e. clause (a) holds.

As for clause (b), for ℓ = 1, 2 we can assume that 〈Nℓ,i : i ≤ ∂〉
exemplifies “Nℓ is (λ, ∂)-brimmed” so Nℓ = Nℓ,∂ and without loss of
generality as above 〈Nℓ,i : i ≤ ∂〉 is ≤Kλ

-increasing continuous. By
the λ-JEP there is a pair (g1, N) such that N1,0 ≤K N ∈ Kλ and g1 is
a ≤K-embedding of N2,0 into N . As above there is a ≤K-embedding
g2 of N into N1,1 over N1,0. Let f0 = (g2 ◦ g1)

−1 and continue as in
the proof of clause (a).
3A) Easy, too.
4) We first proved weaker version of (a) and of (b) called (a)−,(b)−

respectively.

Clause (a)−: Like (a) but we conclude only: Mλ is universal over
M0.

So let N satisfy M0 ≤K N ∈ Kλ and we shall prove that N is
≤K-embeddable into Mλ over M0. Let 〈Si : i < λ〉 be a partition of
λ such that |Si| = λ, min(Si) ≥ i for i < λ. We choose a quadruple
(Ni, fi, āi, ji) by inductin on i < λ such that:

⊛ (a) Ni ∈ Kλ is ≤K-increasing continuous
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(b) N0 = N

(c) āi = 〈aα : α ∈ Si〉 list the members of Ni

(d) ji < λ is increasing continuous

(e) fi is a ≤K-embedding of Mi into Mi

(f) f0 = idM0

(g) fi is ⊆-increasing continuous

(h) if i = α+ 1 then aα ∈ Rang(fi).

There is no problem to carry the definition (below, proving (a) we
give more details) and necessarily f = ∪{fi : i < λ} is an iso-
morphism from Mλ onto Nλ := ∪{Ni : i < λ}, so f−1 ↾ N is a
≤K-embedding of N into Mλ over M0 (as f−1 ↾ N ⊇ idM0

), so we
are done.

Clause (b)−: Like clause (b) but we conclude only: Mλ is universal
over M0.

Similar to the proof of (a)− except that we demand ji = i.

Clause (a): Let M0 ≤K N ∈ Kλ and we let 〈Si : i < λ〉 be a partition
of λ to λ sets each with λ members, i ≤ Min(Si). Let M1,i = Mi for
i ≤ λ and we choose 〈M2,i : i ≤ δ〉 which is ≤K-increasing such that
M2,i ∈ K,M2,0 = M1,0, N ≤K M2,1 and M2,i+1 ∈ Kλ is ≤K-universal
over M2,i, possible as we have already proved clause (a)− recalling
K has λ-amalgamation and the λ-JEP.

We shall prove that M1,λ,M2,λ are isomorphic over M0 = M1,0,
this clearly suffices. We choose a quintuple (ji,M3,i, f1,i, f2,i, āi) by
induction on i < λ such that

⊛ (a) ji < λ is increasing continuous

(b) M3,i ∈ Kλ is ≤K-increasing continuous

(c) fℓ,i is a ≤K-embedding of Mℓ,ji into M for ℓ = 1, 2

(d) fℓ,i is increasing continuous with i for ℓ = 1, 2

(e) āi = 〈aiε : ε ∈ Si〉 lists the members of M3,i

(f) if ε ∈ Si then aiε ∈ Rang(f1,2ε+1) and aiε ∈ Rang(f2,2ε+2).
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If we succeed then fℓ := ∪{fℓ,i : i < λ} is a ≤K-embedding of Mℓ,λ

into M3,λ := M3 := ∪{M3,i : i < λ} and this embedding is onto
because a ∈ M3 ⇒ for some i < λ, a ∈ M3,i ⇒ for some i < λ and

ε ∈ Si, a = aiε ⇒ a = aiε ∈ Rang(fℓ,ε+1) ⇒ a ∈ Rang(fℓ). So f−1
1 ◦f2

is an isomorphism from M2,λ onto M1,λ = Mλ so as said above we
are done.

Carrying the induction; for i = 0 use “K has the λ-JEP” for
M1,0,M2,0.

For i limit take unions.
For i = 2ε+ 1 let ji = min{j < λi : j > j2ε and

(f1
2ε)

−1(tp(aiε, f
1
2ε(M1,i),M3,i)) ∈ SK(M1,i) is realized in Mj and

continue as in the proof of 1.14(1), so can avoid using “(f1
i )−2 of a

type.
For i = 2ε+2, the proof is similar. So M2,λ is (λ, cf(λ))-brimmed

over M2,0 = M0 hence also Mλ being isomorphic to M2,λ over M0 is
(λ, cf(λ))-brimmed over M0, as required.

Clause (b): As in the proof of clause (a) but now ji = i.
5) Easy and not used. (Let 〈Mi : i ≤ ∂〉 witness “M is (λ, ∂)-
brimmed”, so M can be ≤K-embedded into Mi, hence without loss of
generality M0

∼= M1. Now use F such that F(M ′) is a ≤Kλ
-extension

of M ′ which is ≤Kλ
-universal over it and is an amalgamation base.)

6) Easy. �1.16

1.17 Claim. 1) Assume that K is an a.e.c., LS(K) ≤ λ and K has
λ-amalgamation and is stable in λ and no M ∈ Kλ is ≤K-maximal.
Then there is a saturated N ∈ Kλ+ . Also for every saturated N ∈
Kλ+ (in K, above λ of course) we can find a ≤K-representation N̄ =
〈Ni : i < λ+〉, with Ni+1 being (λ, cf(λ))-brimmed over Ni and N0

being (λ, λ)-brimmed.
2) If for ℓ = 1, 2 we have N̄ ℓ = 〈N ℓ

i : i < λ+〉 as in part (1), then
there is an isomorphism f from N1 onto N2 mapping N1

i onto N2
i

for each i < λ+. Moreover, for any i < λ+ and isomorphism g
from N1

i onto N2
i we can find an isomorphism f from N1 onto N2

extending g and mappng N1
j onto N2

j for each j ∈ [i, λ+).

3) If N0 ≤K N1 are both saturated (above λ) and are in Kλ+ (hence
LS(K) ≤ λ), then we can find ≤K-representation N̄ ℓ of N ℓ as in (1)
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for ℓ = 1, 2 with N0
i = N0 ∩N1

i , (so N0
i ≤K N1

i ) for i < λ+.
4) If M ∈ Kλ+ and K has λ-amalgamation and is stable in λ (and
LS(K) ≤ λ), then for some N ∈ Kλ+ saturated (above λ) we have
M ≤K N .

Proof. Easy (for (2),(3) using 1.14(6)), e.g.
4) There is a ≤K-increasing continuous sequence 〈Mi : i < λ+〉 with
union M such that Mi ∈ Kλ. Now we choose Ni by induction on
i < λ

(∗) (a) Ni ∈ Kλ is ≤K-increasing continuous

(b) Ni+1 is (λ, cf(λ))-brimmed over Ni

(c) N0 = M0.

This is possible by 1.16(1). Then by induction on i ≤ λ+ we choose
a ≤K-embedding fi of Mi into Ni, increasing continuous with i. For
i = 0 let fi = idM0

. For i limit use union.
Lastly, for i = j + 1 use “K has λ-amalgamation” and “Nj is

universal over Ni”. Now by renaming without loss of generality
fλ+ = idN

λ+ and we are done. (Of course, we hae assumed less).
�1.17

You may wonder why in this work we have not restricted ourselves K

to “abstract elementary class in λ” say in §2 below (or in [Sh 576]);
by the following facts (mainly 1.23) this is immaterial.

1.18 Definition. 1) We say that Kλ is a λ-abstract elementary class
or λ-a.e.c. in short, when:

(a) Kλ = (Kλ,≤Kλ
),

(b) Kλ is a class of τ -models of cardinality λ closed under iso-
morphism for some vocabulary τ = τKλ

,

(c) ≤Kλ
a partial order of Kλ, closed under isomorphisms

(d) axioms (0 and) I,II,III,IV,V of abstract elementary classes
(see 1.4) hold except that in AxIII we demand δ < λ+ (you
can demand this also in AxIV).
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2) For an abstract elementary class K let Kλ = (Kλ,≤K↾ Kλ) and
similarly K≥λ,K≤λ,K[λ,µ] and define (≤ λ)-a.e.c. and [λ, µ]-a.e.c.,
etc.
3) Definitions 1.9, 1.12, 1.13, 1.15 apply to λ-a.e.c. Kλ.

1.19 Observation. If K1 is an a.e.c. with K1
λ 6= ∅ then

(a) K1
λ is a λ-a.e.c.

(b) if K2
λ is a λ-a.e.c., and K1

λ = K2
λ then Definitions 1.9, 1.12,

1.13, 1.15 when applied to K
1 but restricting ourselves to

models of cardinality λ and when applied to K2
λ are equiva-

lent.

Proof. Just read the definitions. �1.19

We may wonder
1.20 Problem: Suppose K

1,K2 are a.e.c. such that for some λ >
µ ≥ LS(K1), LS(K2) and K1

λ = K2
λ. Can we bound the first such

λ above µ? (Well, better bound than the Lowenheim number of
Lµ+,µ+(second order)).

1.21 Observation. 1) Let K be an a.e.c. with λ = LS(K) and µ ≥ λ
and we define K≥µ by: M ∈ K≥µ iff M ∈ K & ‖M‖ ≥ µ and
M ≤K≥µ

N if M ≤K N and ‖M‖, ‖N‖ ≥ µ. Then K≥µ is an a.e.c.
with LS(K≥µ) = µ.
2) If Kλ is a λ-a.e.c. then observation 1.7 holds when |I| ≤ λ.
3) Claims 1.11, 1.16 apply to λ-a.e.c.

Proof. Easy. �1.21

1.22 Remark. Recall if K is an a.e.c. with Lowenheim-Skolem number
λ, then every model of K can be written as a direct limit (by ≤K)
of members of Kλ (see 1.8(1)). Alternating we prove below that
given a λ-abstract elementary class Kλ, the class of direct limits of
members of Kλ is an a.e.c. Kup. We show below (Kλ)

up = K, hence
Kλ determines K≥λ.
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1.23 Lemma. Suppose Kλ is a λ-abstract elementary class.
1) The pair (K ′,≤K′) is an abstract elementary class with Lowenheim-
Skolem number λ which we denote also by Kup where we define

K ′ =

{

M :M is a τKλ
-model, and for some directed partial order

(a)

I and M̄ = 〈Ms : s ∈ I〉 we have

M =
⋃

s∈I

Ms

s ∈ I ⇒Ms ∈ Kλ

I |= s < t⇒Ms ≤Kλ
Mt

}

.

We call such 〈Ms : s ∈ I〉 a witness for M ∈ K ′, we call it reasonable
if |I| ≤ ‖M‖

M ≤K′ N iff for some directed partial order J, and(b)

directed I ⊆ J and 〈Ms : s ∈ J〉 we have

M =
⋃

s∈I

Ms, N =
⋃

t∈J

Mt,Ms ∈ Kλ and

J |= s < t⇒Ms ≤Kλ
Mt.

We call such I, 〈Ms : s ∈ J〉 witnesses forM ≤K′ N or say (I, J, 〈Ms :
s ∈ J〉) witness M ≤K′ N .
2) Moreover, K ′

λ = Kλ and ≤K′
λ

(which means ≤K′↾ K ′
λ) is equal to

≤Kλ
so (K′)λ = Kλ.

3) If K′′ is an abstract elementary class satisfying (see 1.21) K ′′
λ =

Kλ, <K′′↾ Kλ =≤Kλ
and LS(K′′) ≤ λ then8 K′′

≥λ = K′.

4) If K′′ is an a.e.c., Kλ ⊆ K ′′
λ and ≤Kλ

=≤K′′↾ Kλ, then K ′ ⊆ K ′′

and ≤K′⊆≤K′′↾ K ′ and if LS(K′′) ≤ λ then equality holds..

8if we assume in addition that M ∈ K′′ ⇒ ‖M‖ ≥ λ then we can show that
equality holds
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Proof. The proof of part (2) is straightforward (recalling 1.7) and
part (3) follows from 1.8 and part (4) is also straightforward hence
we concentrate on part (1). So let us check the axioms one by one.

Ax 0: K ′ is a class of τ -models, ≤K′ a two-place relation on K ′, both
closed under isomorphisms.
[Why? Trivially by their definitions.]

Ax I: If M ≤K′ N then M ⊆ N .
[Why? trivial.]

Ax II: M0 ≤K′ M1 ≤K′ M2 implies M0 ≤K′ M2 and M ∈ K ′ ⇒
M ≤K′ M .
[Why? The second phrase is trivial (as if M̄ = 〈Mt : t ∈ I〉 witness
M ∈ K ′ then (I, I, M̄) witnessM ≤K′ M above). For the first phrase
let for ℓ ∈ {1, 2} the directed partial orders Iℓ ⊆ Jℓ and M̄ ℓ = 〈M ℓ

s :
s ∈ Jℓ〉 witness Mℓ−1 ≤K′ Mℓ and let M̄0 = 〈M0

s : s ∈ I0〉 witness
M0 ∈ K ′. Now without loss of generality M̄0 is reasonable, i.e.
|I0| ≤ ‖M0‖, why? by

⊠1 every M ∈ K ′ has a reasonable witness, in fact, if M̄ = 〈Mt :
t ∈ I〉 is a witness for M then for some I ′ ⊆ I of cardinality
≤ ‖M‖ we have M̄ ↾ I ′ is a reasonable witness for M .
[Why? If M̄ = 〈Mt : t ∈ I〉 is a witness, for each a ∈ M
choose ta ∈ I such that a ∈ Mta and let F : [I]<ℵ0 → I be
such that F ({t1, . . . , tn}) is an upper bound of {t1, . . . , tn}
and let J be the closure of {ta : a ∈M} under F ; now M̄ ↾ J
is a reasonable witness of M ∈ K ′.]

Similarly

⊠2 if (I, J, 〈Ms : s ∈ J〉 witness M ≤K′ N then for some directed
I ′ ⊆ I, |I ′| ≤ ‖M‖ we have (I ′, J, 〈Ms : s ∈ J〉) witness
M ≤K′ N

⊠3 if I, M̄ = 〈Mt : t ∈ J〉 witness M ≤K′ N then for some
directed J ′ ⊆ J we have ‖J ′‖ ≤ |I|+ ‖N‖, I ⊆ J ′ and I, M̄ ↾

J ′ witness M ≤K′ N .
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Clearly ⊠1 (and ⊠2,⊠3) are cases of the LS-argument. We shall
find a witness (I, J, 〈Ms : s ∈ J〉) for M0 ≤K′ M2 such that 〈Ms :
s ∈ I〉 = 〈M0

s : s ∈ I0〉 so I = I0 and |J | ≤ ‖M2‖. This is
needed for the proof of Ax III below. Without loss of general-
ity I1, I2 has cardinality ≤ ‖M0‖, ‖M1‖ respectively, by ⊠2. Also
without loss of generality M̄1, M̄1 ↾ I1, M̄

2, M̄2 ↾ I2 are reasonable
as by the same argument we can have |J1| ≤ ‖M1‖, |J2| ≤ ‖M2‖ by
⊠3.

As 〈M0
s : s ∈ I0〉 is reasonable, there is a one-to-one function h

from I0 into M2 (and even M0); the function h will be used to get
that J defined below is directed. We choose by induction on m < ω,
for every c̄ ∈ m(M2), sets I0,c̄, I1,c̄, I2,c̄, J1,c̄, J2,c̄ such that:

⊗1(a) Iℓ,c̄ is a directed subset of Iℓ of cardinality ≤ λ for ℓ ∈ {0, 1, 2}

(b) Jℓ,c̄ is a directed subset of Jℓ of cardinality ≤ λ for ℓ ∈ {1, 2}

(c)
⋃

s∈Iℓ+1,c̄

M ℓ+1
s =

(

⋃

s∈Jℓ+1,c̄

M ℓ+1
s

)

∩Mℓ for ℓ = 0, 1

(d)
⋃

s∈I0,c̄

M0
s = (

⋃

s∈I1,c̄

M1
s ) ∩M0

(e)
⋃

s∈J1,c̄

M1
s =

⋃

s∈I2,c̄

M2
s

(f) c̄ ⊆
⋃

s∈J2,c̄

M2
s

(g) if d̄ is a permutation of c̄ (i.e., letting m = ℓg(c̄) for some one
to one g : {0, . . . , m−1} → {0, . . . , m−1} we have dℓ = cg(ℓ))
then Iℓ,c̄ = Iℓ,d̄, Jm,c̄ = Jm,d̄
(for ℓ ∈ {0, 1, 2}, m ∈ {1, 2})

(h) if d̄ is a subsequence of c̄ (equivalently: an initial segment
of some permutation of c̄) then Iℓ,d̄ ⊆ Iℓ,c̄, Jm,d̄ ⊆ Jm,c̄ for
ℓ ∈ {0, 1, 2}, m ∈ {1, 2}

(i) if h(s) = c so s ∈ I0 then s ∈ I0,<c>.

There is no problem to carry the definition by LS-argument recalling
clauses (a) + (b) and ‖M ℓ

s‖ = λ when ℓ = 0∧s ∈ I0 or ℓ = 1∧s ∈ J1

or ℓ = 2 ∧ s ∈ J2. Without loss of generality Iℓ ∩
ω>(M2) = ∅.
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Now let J have as set of elements I0∪{c̄ : c̄ a finite sequence from M2}
ordered by: J |= x ≤ y iff I0 |= x ≤ y or x ∈ I0, y ∈ J\I0, ∃z ∈
I0,y[x ≤I0 z] or x, y ∈ J\I0 and x is an initial segment of a permu-
tation of y (or you may identify c̄ with its set of permutations).

Let I = I0.

Let Mx be M0
x if x ∈ I0 and

⋃

s∈J2,x

M2
s if x ∈ J\I0.

Now

(∗)1 J is a partial order
[Clearly x ≤J y ≤J x ⇒ x = y, hence it is enough to prove
transitivity. Assume x ≤J y ≤J z; if all three are in I0 use
“I0 is a partial order”, if all three are not in J\I0, use the
definition of the order. As x′ ≤J y

′ ∈ I0 ⇒ x′ ∈ I0 without
loss of generality x ∈ I0, z ∈ J\I0. If y ∈ I0 then (as y ≤J z)
for some y′, y ≤I0 y

′ ∈ I0,z but x ≤I0 y (as x, y ∈ I0, x ≤J y)
hence x ≤I0 y

′ ∈ I0,z so x ≤J z. If y /∈ I0 then I0,y ⊆ I0,z
(by clause (h)) so we can finish similarly. So we have covered
all cases.]

(∗)2 J is directed and I ⊆ J is directed
[Let x, y ∈ J and we shall find a common upper bound. If
x, y /∈ I0 their concatanation xˆy can serve. If x, y ∈ I0 use
“I0 is directed”. If x ∈ I0, y ∈ J\I0, then 〈h(x)〉 ∈ J\I0 and
z = yˆ〈h(x)〉 ∈ J\I0 is <J above y (by the choice of ≤J ) and
is ≤J -above x as x ∈ I0,〈h(x)〉 ⊆ I0,z by clause (i) of ⊗1 so we
are done. If x ∈ J\I0, y ∈ J0 the dual proof works. Lastly,
I ⊆ J as a partial order by the definition of I, J , and I is
directed as I0 is and I = I0.]

(∗)3 if x ∈ J\I0 then Mx ∩Mℓ ≤Kx
Mx for ℓ = 0, 1

[Why? Clearly Mx ∩ M0 = (∪{M2
t : t ∈ J1,x}) ∩ M0 =

((∪{M2
t : t ∈ J2,x) ∩ M1) ∩ M0 = (∪{M2

t : t ∈ I2,x}) ∩
M0 = (∪{M1

t : t ∈ J1,x}) ∩ M0 = ∪{M1
t : t ∈ I1,x} by

the choice of M2
x , as M0 ⊆ M1, by clause (c) for ℓ = 1, by

clause (e) and by clause (c) for ℓ = 0, respectively. Similarly
Mx∩M1 = ∪{M1

t : t ∈ J1,x}. Now the sets I1,x ⊆ J1,x(⊆ J1)
are directed by ≤J1

so by the assumption on 〈M1
t : t ∈ J1〉

and Lemma 1.7 we have Mx ∩M0 ≤Kλ
Mx ∩M1. Using J2
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we can similarly prove Mx ∩M1 ≤Kλ
Mx ∩M2 and trivially

Mx ∩M2 = Mx. As ≤Kλ
is transitive we are done.]

(∗)4 if x ≤J y then Mx ≤Kλ
My

[Why? If x, y ∈ I0 use the choice of 〈M0
s : s ∈ I0〉. If

x, y ∈ J\I0 the proof is similar to that of (∗)3 using J2.
If x ∈ I0, y ∈ J\I0 there is s ∈ I0,y such that x ≤I0 s,
hence Mx = M0

x ≤Kλ
M0
s and as 〈M0

t : t ∈ I0,y〉 is ≤Kλ
-

directed clearly M0
s ≤Kλ

∪{M0
t : t ∈ I0,y} = My ∩M0 and

My ∩M0 ≤Kλ
My by (∗)3. By the transitivity of ≤Kλ

we are
done.]

(∗)5 ∪{Mx : x ∈ I} = ∪{M0
x : x ∈ I0} = M0

[Why? Trivially recalling I0 = I and x ∈ I ⇒Mx = M0
x .]

(∗)6 M2 = ∪{Mx : x ∈ J}
[Why? Trivially as c̄ ⊆ M2

c̄ ⊆ M2 for c̄ ∈ ω>(M2) and
t ∈ I0 ⇒M0

t ⊆M0 ⊆M1 ⊆M2.]

By (∗)1+(∗)2+(∗)4+(∗)5+(∗)6 we have checked that I, 〈Mx : x ∈ J〉
witness M0 ≤K′ M2. This completes the proof of AxII, but we also
have proved

⊗2 if M̄ = 〈Mt : t ∈ I〉 is a reasonable witness to M ∈ K ′

and M ≤K′ N ∈ K ′, then there is a witness I ′, M̄ ′ = 〈M ′
t :

t ∈ J ′〉 to M ≤K′ N such that I ′ = I, M̄ ′ ↾ I = M̄ and
M̄ ′ is reasonable and x ≤J ′ y ∧ y ∈ I ′ ⇒ x ∈ I ′; can add
M = N ⇒ I ′ = I.]

Ax III: If θ is a regular cardinal, Mi (for i < θ) is ≤K′ -increasing

and continuous, then M0 ≤K′

⋃

i<θ

Mi (in particular
⋃

i<θ

Mi ∈ K
′).

[Why? Let Mθ =
⋃

i<θ

Mi, without loss of generality 〈Mi : i < θ〉 is

not eventually constant and so without loss of generality i < θ ⇒
Mi 6= Mi+1 hence ‖Mi‖ ≥ |i|; (this helps below to get “reasonable”,
i.e. |Iℓ| = ‖Mi‖ for limit i). We choose by induction on i ≤ θ, a
directed partial order Ii and Ms for s ∈ Ii such that:

⊗3(a) 〈Ms : s ∈ Ii〉 witness Mi ∈ K ′

(b) for j < i, Ij ⊆ Ii and (Ij, Ii, 〈Ms : s ∈ Ii〉) witnessMj ≤K′ Mi
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(c) Ii is of cardinality ≤ ‖Mi‖

(d) if Ii |= s ≤ t and j < i, t ∈ Ij then s ∈ Ij

For i = 0 use the definition of M0 ∈ K ′.

For i limit let Ii :=
⋃

j<i

Ij (and the already defined Ms’s) are as

required because Mi =
⋃

j<i

Mj and the induction hypothesis (and

|Ii| ≤ ‖Mi‖ as we have assumed above that j < i⇒Mj 6= Mj+1) .
For i = j + 1 use the proof of Ax.II above with Mj,Mi,Mi, 〈Ms :
s ∈ Ij〉 here serving as M0,M1,M2, 〈M

0
j : s ∈ I0〉 there, that is, we

use ⊗2 from there. Now for i = θ, 〈Ms : s ∈ Iθ〉 witness Mθ ∈ K ′

and (Ii, Iθ, 〈Ms : s ∈ Iθ〉) witness Mi ≤K′ Mθ for each i < θ.]

Axiom IV: Assume θ is regular and 〈Mi : i < θ〉 is ≤K-increasingly

continuous, M ∈ K ′ and i < θ ⇒ Mi ≤K′ M and Mθ =
⋃

i<θ

Mi (so

Mθ ⊆M). Then Mθ ≤K′ M .
[Why? By the proof of Ax.III there are 〈Ms : s ∈ Ii〉 for i < θ
satisfying clauses (a),(b),(c) and (d) of ⊗3 there and without loss of
generality Ii ∩ θ = ∅. For each i < θ as Mi ≤K′ M there are Ji and
Ms for s ∈ Ji\Ii such that (Ii, Ji, 〈Ms : s ∈ Ji〉) witnesses it; without

loss of generality with 〈
⋃

i<θ

Ii〉ˆ〈Ji\Ii : i < θ〉 a sequence of pairwise

disjoint sets; exist by ⊗2 above. Let I :=
⋃

i<θ

Ii, let i : I → θ be

i(s) = Min{i : s ∈ Ii} and recall |I| ≤ ‖Mθ‖ hence by clause (d) of
⊗3 we have s ≤I t ⇒ i(s) ≤ i(t) and let h be a one-to-one function
from I intoMθ. Without loss of generality the union below is disjoint
and let

(∗)7 J := I∪
{

(A, S) : A ⊆M finite, S ⊆ I finite with max. element
}

.

ordered by: J |= x ≤ y iff x, y ∈ I, I |= x ≤ y or x ∈ I, y = (A, S) ∈
J\I and x ∈ S or x = (A1, S1) ∈ J\I, y = (A2, S2) ∈ J\I, A1 ⊆
A2, S1 ⊆ S2.

We choose Ny for y ∈ J as follows:
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If y ∈ I we let Ny = My.

By induction on n < ω, if y = (A, S) ∈ J\I saisfies n = |A|+ |S|, we
choose the objects Ny, Iy,s, Jy,s for s ∈ S such that:

⊗4(a) Iy,s is a directed subset of Ii(s) of cardinality ≤ λ and s ∈ Iy,s

(b) Jy,s is a directed subset of Ji(s) of cardinality ≤ λ

(c) s ∈ Ii(s) for s ∈ S (follows from the definition of i(s))

(d) Iy,s ⊆ Jy,s for s ∈ S and for s <I t from S we have Iy,s ⊆
Iy,t & Jy,s ⊆ Jy,t

(e) if y1 = (A1, S1) ∈ J\I, (A1, S1) <J (A, S) and s ∈ S1 then
Iy1,s ⊆ Iy,s, Jy1,s ⊆ Jy,s

(f) Ny =
⋃

t∈Jy,s

Mt for any s ∈ S

(g) A ⊆Mt for some t ∈ Jy,s for any s ∈ S, hence A ⊆ Ny.

No problem to carry the induction and check that (I, J, 〈Ny : y ∈ J〉)
witness Mθ ≤K′ M .

Axiom V: Assume N0 ≤K′ M and N1 ≤K′ M .
If N0 ⊆ N1, then N0 ≤K′ N1.
[Why? Let (I0, J0, 〈M

0
s : s ∈ J0〉) witness N0 ≤K′ M and without

loss of generality |I0| ≤ ‖N0‖ and h0 : I0 → N0 be one-to-one. Let
〈M1

s : s ∈ I1〉 witness N1 ∈ K′ and without loss of generality I1
is isomorphic to ([N1]

<ℵ0 ,⊆) and let h1 be an isomorphism from
I1 onto ([N1]

<ℵ0 ,⊆). Now by induction on n, for s ∈ I1 satisfying
n = |{t : t <I1 s}| we choose directed subsets F0(s), F1(s) of I0, I1
respectively, each of cardinality ≤ λ such that:

(i) s ∈ I1 ⇒ s ∈ F1(s) and t <I1 s ⇒ F0(t) ⊆ F0(s) & F1(t) ⊆
F1(s)

(ii) if s ∈ I1 then

(α)
⋃

{M0
t : t ∈ F0(s)} =

⋃

{M1
t : t ∈ F1(s)} ∩N0

(β) r ∈ I0 & t ∈ I1 & h0(r) ∈M1
t ⇒ r ∈ F0(s).
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Now letting M2
s = ∪{M1

t : t ∈ F1(s)} and letting F = F0 we get:

(iii) t ∈ I1 ∧ s ∈ F (t)(⊆ I0) ⇒M0
s ⊆M2

t

(iv) F is a function from I1 to [I0]
≤λ

(v) for s ∈ I1, F (s) is a directed subset of I0 of cardinality ≤ λ

(vi) for s ∈ I1,M
2
s ∩N0 = ∪{M0

t : t ∈ F (s)}

(vii) I1 |= s ≤ t⇒ F (s) ⊆ F (t)

(viii) 〈M2
s : s ∈ I1〉 witness N1 ∈ K ′.

As N1 ≤K′ M by the proof of Ax.II, i.e., by ⊗2 above we can find J1

extending I1 and M2
s for s ∈ J1\I1 such that (I1, J1, 〈M

2
s : s ∈ J1〉)

witnesses N1 ≤K′ M . We now prove

⊠4 if r ∈ I1, s ∈ I0 and s ∈ F (r) then M0
s ≤Kλ

M2
r .

[Why? As 〈M0
t : t ∈ J0〉, 〈M

2
t : t ∈ J1〉 are both witnesses for

M ∈ K ′, clearly for r ∈ I1(⊆ J1) we can find directed J ′
0(r) ⊆ J0 of

cardinality ≤ λ and directed J ′
1(r) ⊆ J1 of cardinality ≤ λ such that

r ∈ J ′
1(r), F (r) ⊆ J ′

0(r) and
⋃

t∈J ′
0(r)

M0
t =

⋃

t∈J ′
1(r)

M2
t , call it M∗

r .

Now M∗
r ∈ K ′

λ = Kλ (by part (2) and 1.7) and t ∈ J ′
1(r) ⇒M2

t ≤Kλ

M∗
r (as Kλ is a λ-abstract elementary class applying the parallel to

observation 1.7, i.e., 1.21(2)) and similarly t ∈ J ′
0(r) ⇒M0

t ≤Kλ
M∗
r .

Now the s from ⊠4 satisfied s ∈ F (r) ⊆ J ′
0(r) hence M0

s ⊆M1
r (why?

by clause (iii) above s ∈ F (r) is as required in ⊠4). But above we
got M0

s ≤K M∗
r ,M

2
r ≤K M∗

r , so by AxV for Kλ we have M0
s ≤K M1

r

as required in ⊠4.]
Without loss of generality I0 ∩ I1 = ∅ and define the partial order

J with set of elements I0 ∪ I1 by J |= x ≤ y iff x, y ∈ I0, I0 |= x ≤ y
or x ∈ I0, y ∈ I1 and x ∈ F (y) or x, y ∈ I1, I1 |= x ≤ y.

⊠5 J is a partial order and x ≤J yinI0 ⇒ x ∈ I0 (hence x ≤J
y & x ∈ I1 ⇒ y ∈ I1).

[Why? The second phrase holds by the definition of ≤J . For J
being a partial order obviously x ≤J y ≤J x ⇒ x = y, so assume
x ≤J y ≤J z and we shall prove x ≤J z. If x ∈ I1 then y, z ∈ I1 and
we use “I1 is a partial order”, and if z ∈ I0 then x, y ∈ I0 and we can
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use “I0 is a partial order”. So assume x ∈ I0, z ∈ I1. If y ∈ I0 use
“F (z) = F1(z) satisfies clause (i) above. If y ∈ I1, use clause (vii)
above with (y, z) here standing for (s, t) there.]

⊠6 J is directed.

[Why? Note that I0, I1 are directed, x ≤J y ∈ I0 ⇒ x ∈ I0 and
(∀x ∈ I0)(∃y ∈ I1)[x ≤J y] because given r ∈ I0, h0(r) ∈ N0 hence
h0(r) belongs to M1

t for some t ∈ I1, and so by clause (i) we have
t ∈ F1(t) hence by clause (ii)(β) above r ∈ F0(t). Together this is
easy.]

Define Ms for s ∈ J as M0
s if s ∈ I0 and as M2

s if s ∈ I1

⊠7 Ms ∈ Kλ for s ∈ J .

[Why? Obvious.]

⊠8 if x ≤J y then Mx ≤x My.

[Why? If y ∈ I0 (hence x ∈ I0) use 〈M0
t : t ∈ I0〉 is a witness for

N0 ∈ K ′. If x ∈ I1 (hence y ∈ I1) use clazuse (viii) above, i.e.
〈M2

s : s ∈ I1〉 is a witness for N1 ∈ K ′.]

⊠9 ∪{Mx : x ∈ J} = N1.

[Why? As (∀x ∈ I0)(∃y ∈ I1)(x ≤J y), see the proof of ⊠6 recalling
⊠ we have ∪{Mx : x ∈ J} = ∪{Mx : x ∈ I1} but the latter is
∪{M2

x : x ∈ I1} which is equal to N2.]

⊠10 I0 ⊆ J is directed and ∪{Mx : x ∈ J} = N1.

[Why? Obvious.]
Together (I0, J, 〈Ms : s ∈ J〉) witnesses N0 ≤K′ N1 are as re-

quired.]

Axiom VI: LS(K′) = λ.
[Why? Let M ∈ K ′, A ⊆M, |A|+λ ≤ µ < ‖M‖ and let 〈Ms : s ∈ J〉
witness M ∈ K ′. As ‖M‖ > µ we can choose a directed I ⊆ J of

cardinality ≤ µ such that A ⊆ M ′ :=
⋃

s∈I

Ms and so (I, J, 〈Ms : s ∈

J〉) witnesses M ′ ≤K′ M , so as A ⊆M ′ and ‖M ′‖ ≤ |A| + µ; this is
more than enough.] �1.23
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We may like to use K≤λ instead of Kλ; no need as essentially K

consists of two parts K≤λ and K≥λ which have just to agree in λ.
That is

1.24 Claim. Assume

(a) K1 is an abstract elementary class with λ = LS(K1), K1 =
K1

≥λ

(b) K2
≤λ is a (≤ λ)-abstract elementary class (defined as in 1.18(1)

with the obvious changes so M ∈ K2
≤λ ⇒ ‖M‖ ≤ λ and in

Axiom III, ‖
⋃

i

Mi‖ ≤ λ is required)

(c) K2
λ = K1

λ and ≤K2↾ K2
λ =≤K1↾ K1

λ

(d) we define K as follows: K = K1∪K2,M ≤K N iff M ≤K1 N
or M ≤K2 N or for some M ′,M ≤K2 M ′ ≤K1 N .

Then K is an abstract elementary class and LS(K) = LS(K2) which
trivially is ≤ λ.

Proof. Straight. E.g.
Axiom V: We shall use freely

(∗) K≤λ = K2 and K≥λ = K1.

So assume N0 ≤K M,N1 ≤K M,N0 ⊆ N1.
Now if ‖N0‖ ≥ λ use assumption (a), so we can assume ‖N0‖ < λ. If
‖M‖ ≤ λ we can use assumption (b) so we can assume ‖M‖ > λ and
by the definition of ≤K there is M ′

0 ∈ K1
λ = K2

λ such that N0 ≤K2

M ′
0 ≤K1 M . First assume ‖N1‖ ≤ λ, so we can find M ′

1 ∈ K1
λ such

that N1 ≤K2 M ′
1 ≤K1 M (why? if N1 ∈ K<λ, by the definition of ≤K

and if N1 ∈ Kλ just choose M ′
1 = N1). Now we can by assumption

(a) find M ′′ ∈ K1
λ such that M ′

0 ∪ M ′
1 ⊆ M ′′ ≤K1 M , hence by

assumption (a) (i.e. AxV for K1) we have M ′
0 ≤K1 M ′′,M ′

1 ≤K1 M ′′,
so by assumption (c) we have M ′

0 ≤K2 M ′′,M ′
1 ≤K2 M ′′. As N0 ≤K2

M ′
0 ≤K2 M ′′ ∈ K≤λ by assumption (b) we have N0 ≤K2 M ′′, and

similarly we have N1 ≤K2 M ′′. So N0 ⊆ N1, N0 ≤K2 M ′′, N1 ≤K2 M ′

so by assumption (b) we have N0 ≤K2 N1 hence N0 ≤K N1.
We are left with the case ‖N1‖ > λ; by assumption (a) there

is N ′
1 ∈ Kλ such that N0 ⊆ N ′

1 ≤K1 N1. By assumption (a) we
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have N ′
1 ≤K1 M , so by the previous paragraph we get N0 ≤K2 N ′

1,
together with the previous sentence we have N0 ≤K2 N ′

1 ≤K1 N1 so
by the definition of ≤K we are done. �1.24

Recall

1.25 Definition. If M ∈ Kλ is locally superlimit or just pseudo

superlimit let K[M ] = K
[M ]
λ = {N ∈ Kλ : N ∼= M},K[M ] = K

[M ]
λ =

(K[M ],≤K↾ K
[M ]
λ ) and let K[M ] be the K′ we get in 1.23(1) for K =

K[M ] = K
[M ]
λ . We may write Kλ[M ],K[M ].

Trivially but still important is showing that assuming categoricity in
one λ is a not so strong assumption.

1.26 Claim. 1) If K is an λ-a.e.c., M ∈ Kλ is locally superlimit
or just pseudo superlimit then K[M ] is a λ-a.e.c. which is categorical
(i.e. categorical in λ).
2) Assume K is an a.e.c. and M ∈ Kλ is not ≤K- maximal. M
is pseudo superlimit (in K, i.e., in Kλ) iff K[M ] is a λ-a.e.c. which

is categorical iff K[M ] is an a.e.c., categorical in λ and ≤K[M]=≤K↾

K [M ].
3) In (1) and (2), LS(K[M ]) = λ = Min{‖N‖ : N ∈ K[M ]}.

Proof. Straightforward. �1.26

1.27 Exercise: Assume K is a λ-a.e.c. with amalgamation and
stability in λ. Then for every M1 ∈ Kλ, p1 ∈ SK(M1) we can find
M2 ∈ K and minimal p2 ∈ SK(M2) such that M1 ≤K M2 and
p1 = p2 ↾ M1.

[Hint: See VI.2.3(2).]

1.28 Exercise: 1) Any ≤Kλ
-embedding f0 of M1

0 into M2
0 can be ex-

tended to an isomorphism f fromM1
δ ontoM2

δ such that f(M1
2α) ≤Kλ

M2
2α, f

−1(M2
2α+1) ≤Kλ

M1
2α+1 for every α < δ, provided that
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⊛ (a) Kλ is a λ-a.e.c. with amalgamation and δ is a limit
ordinal ≤ λ+

(b) 〈M ℓ
α : α ≤ δ〉 is ≤Kλ

-increasing continuous for ℓ = 1, 2

(c) M ℓ
α is an amalgamation base in Kλ (for α < δ and ℓ =

1, 2)

(d) M ℓ
α+1 is ≤Kλ

-universal extension of M ℓ
α for α < δ, ℓ =

1, 2.

2) Write the axioms of “a λ-a.e.c.” which are used.
3) For Kλ, δ as in (a) above, for any M ∈ Kλ there is N ∈ Kλ which
is (λ, cf(δ))-brimmed over it.

[Hint: Should be easy; is similar to 1.16 (or 1.17).]

§2 Good Frames

We first present our central definition: good λ-frame (in Defini-
tion 2.1). We are given the relation “p ∈ S (N) does not fork over
M ≤K N when p is basic” (by the basic relations and axioms) so it is
natural to look at how well we can “lift” the definition of non-forking
to models of cardinality λ and later to non-forking of models (and
types over them) in cardinalities > λ. Unlike the lifting of λ-a.e.c.
in Lemma 1.23, life is not so easy. We define in 2.4, 2.5, 2.7 and we
prove basic properties in 2.6, 2.8, 2.10 and less obvious ones in 2.9,
2.11, 2.12. This should serve as a reasonable exercise in the meaning
of good frames; however, the lifting, in general, does not give good
µ-frames for µ > λ. There may be no M ∈ Kµ at all and/or amal-
gamation may fail. Also the existence and uniqueness of non-forking
types is problematic. We do not give up and will return to the lifting
problem, under additional assumptions in III§12 and [Sh 842].

In 2.15 (recalling 1.26) we show that the case “Ks categorical in
λ” is not so rare among good λ-frames; in fact if there is a superlimit
model in λ we can restrict Kλ to it. So in a sense superstability and
categoricity are close, a point which does not appear in first order
model theory, but if T is a complete first order superstable theory
and λ ≥ 2|T |, then the class K = KT,λ of λ-saturated models of T
is in general not an elementary class (though is a PCλ class) but is
an a.e.c. categorical in λ though in general not in λ+ and for some
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good λ-frame s, Ks = KT,λ. How justified is our restriction here
to something like “the λ-saturated model”? It is O.K. for our test
problems but more so it is justified as our approach is to first analyze
the quite saturated models.

Last but not least in 2.16 we show that one of the axioms from 2.1,
i.e., (E)(i), follows from the rest in our present definition; additional
implications are in Claims 2.17, 2.18. Later “Ax(X)(y)” will mean
(X)(y) from Definition 2.1.

Recall that good λ-frame is intended to be a parallel to (bare bones)
superstable elementary class stable in λ; here we restrict ourselves
to models of cardinality λ.

2.1 Definition. We say s = (K,
⋃

λ
,S bs

λ ) = (Ks,
⋃

s
,S bs

s
) is a good

frame in λ or a good λ-frame (λ may be omitted when its value is
clear, note that λ = λs = λ(s) is determined by s and we may write
Ss(M) instead of SKs(M) and tps(a,M,N) instead of tpKs(a,M,N)
whenM ∈ Ks

λ, N ∈ Ks; we may write tp(a,M,N) for tpKs(a,M,N))
when the following conditions hold:

(A) K = (K,≤K) is an abstract elementary class also denoted by
K[s], the Löwenheim Skolem number of K, being ≤ λ (see
Definition 1.4); there is no harm in assuming M ∈ K ⇒
‖M‖ ≥ λ; let Ks = Ks

λ and ≤s=≤K↾ Kλ, and let Ks =
(Kλ,≤s) and K[s] = Ks so we may write s = (Ks,

⋃

s
,S bs

s
)

(B) K has a superlimit model in λ which9 is not <K-maximal.

(C) Kλ has the amalgamation property, the JEP (joint embedding
property), and has no ≤K-maximal member.

(D)(a) S bs = S bs
λ (the class of basic types for Kλ) is included in

⋃

{S (M) : M ∈ Kλ} and is closed under isomorphisms in-
cluding automorphisms; for M ∈ Kλ let S bs(M) = S bs ∩
S (M); no harm in allowing types of finite sequences, i.e.,
replacing S (M) by S <ω(M), (S ω(M)) is different as be-
ing new (= non-algebraic) is not preserved under increasing
unions).

9in fact, the “is not <K-maximal” follows by (C)
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(b) if p ∈ S bs(M), then p is non-algebraic (i.e. not realized by
any a ∈M).

(c) (density)
ifM ≤K N are fromKλ andM 6= N , then for some a ∈ N\M
we have tp(a,M,N) ∈ S bs

[intention: examples are: minimal types in [Sh 576],
i.e. Chapter VI,
regular types for superstable first order (= elementary)
classes].

(d) bs-stability
S bs(M) has cardinality ≤ λ for M ∈ Kλ.

(E)(a)
⋃

λ
denoted also by

⋃

s
or just

⋃

, is a four place relation10 called

non-forking with
⋃

(M0,M1, a,M3) implying M0 ≤K M1 ≤K

M3 are from Kλ, a ∈M3\M1 and tp(a,M0,M3) ∈ S bs(M0)
and
tp(a,M1,M3) ∈ S bs(M1). Also

⋃

is preserved under iso-

morphisms and we demand: if M0 = M1 ≤K M3 both in Kλ

and a ∈M3, then:
⋃

(M0,M1, a,M3) is equivalent to “tp(a,M0,M3) ∈ S bs(M0)”.

The assertion
⋃

(M0,M1, a,M3) is also written as M1

M3
⋃

M0

a

and also as “tp(a,M1,M3) does not fork over M0 (inside
M3)” (this is justified by clause (b) below). So tp(a,M1,M3)
forks over M0 (where M0 ≤s M1 ≤s M3, a ∈ M3) is just the
negation

[Explanation: The intention is to axiomatize non-
forking of types, but we already commit ourselves to
dealing with basic types only. Note that in [Sh 576],

10we tend to forget to write the λ, this is justified by 2.6(2), and see Definition
2.5
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i.e. Chapter VI we know something on minimal types
but other types are something else.]

(b) (monotonicity):
if M0 ≤K M ′

0 ≤K M ′
1 ≤K M1 ≤K M3 ≤K M ′

3,M
′
1 ∪ {a} ⊆

M ′′
3 ≤K M ′

3 all of them in Kλ, then
⋃

(M0,M1, a,M3) ⇒
⋃

(M ′
0,M

′
1, a,M

′
3) and

⋃

(M ′
0,M

′
1, a,M

′
3) ⇒

⋃

(M ′
0,M

′
1, a,M

′′
3 ),

so it is legitimate to just say “tp(a,M1,M3) does not fork
over M0”.

[Explanation: non-forking is preserved by decreasing
the type, increasing the basis (= the set over which it
does not fork) and increasing or decreasing the model
inside which all this occurs, i.e. where the type is com-
puted. The same holds for stable theories only here we
restrict ourselves to “legitimate”, i.e., basic types. But
note that here the “restriction of tp(a,M1,M3) to M ′

1

is basic” is a worthwhile information.]

(c) (local character):
if 〈Mi : i ≤ δ+1〉 is ≤K-increasing continuous in Kλ, a ∈Mδ+1

and
tp(a,Mδ,Mδ+1) ∈ S bs(Mδ) then for every i < δ large enough
tp(a,Mδ,Mδ+1) does not fork over Mi.

[Explanation: This is a replacement for superstabil-
ity which says that: if p ∈ S (A) then there is a finite
B ⊆ A such that p does not fork over B.]

(d) (transitivity):
if M0 ≤s M ′

0 ≤s M ′′
0 ≤s M3 are from Kλ and a ∈ M3

and tp(a,M ′′
0 ,M3) does not fork over M ′

0 and tp(a,M ′
0,M3)

does not fork over M0 (all models are in Kλ, of course,
and necessarily the three relevant types are in S bs), then
tp(a,M ′′

0 ,M3) does not fork over M0
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(e) uniqueness:
if p, q ∈ S bs(M1) do not fork over M0 ≤K M1 (all in Kλ)
and
p ↾ M0 = q ↾ M0 then p = q

(f) symmetry:
if M0 ≤K M3 are in Kλ and for ℓ = 1, 2 we have
aℓ ∈ M3 and tp(aℓ,M0,M3) ∈ S bs(M0), then the following
are equivalent:

(α) there are M1,M
′
3 in Kλ such that M0 ≤K M1 ≤K M ′

3,
a1 ∈ M1,M3 ≤K M ′

3 and tp(a2,M1,M
′
3) does not fork

over M0

(β) there are M2,M
′
3 in Kλ such that M0 ≤K M2 ≤K M ′

3,
a2 ∈ M2,M3 ≤K M ′

3 and tp(a1,M2,M
′
3) does not fork

over M0.

[Explanation: this is a replacement to “tp(a1,M0 ∪
{a2},M3) forks over M0 iff tp(a2,M0 ∪{a1},M3) forks
over M0” which is not well defined in our context.]

(g) extension existence:
if M ≤K N are from Kλ and p ∈ S bs(M) then some q ∈
S bs(N) does not fork over M and extends p

(h) continuity:
if 〈Mi : i ≤ δ〉 is ≤K-increasing continuous, all in Kλ (recall
δ is always a limit ordinal), p ∈ S (Mδ) and i < δ ⇒ p ↾

Mi ∈ S bs(Mi) does not fork over M0 then p ∈ S bs(Mδ)
and moreover p does not fork over M0.

[Explanation: This is a replacement to: for an in-
creasing sequence of types which do not fork over A,
the union does not fork over A; equivalently if p forks
over A then some finite subtype does.]

(i) non-forking amalgamation:
if for ℓ = 1, 2, M0 ≤K Mℓ are from Kλ, aℓ ∈ Mℓ\M0, and
tp(aℓ,M0,Mℓ) ∈ S bs(M0),
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then we can find f1, f2,M3 satisfying M0 ≤K M3 ∈ Kλ such
that for ℓ = 1, 2 we have fℓ is a ≤K-embedding of Mℓ into M3

over M0 and tp(fℓ(aℓ), f3−ℓ(M3−ℓ),M3) does not fork over
M0 for ℓ = 1, 2.

[Explanation: This strengthens clause (g), (existence)
saying we can do it twice so close to (f), symmetry, but
see 2.16.]

∗ ∗ ∗

2.2 Discussion: 0) On connections between the axioms see 2.16, 2.17,
2.18.
1) What justifies the choice of the good λ-frame as a parallel to
(bare bones) superstability? Mostly starting from assumptions on
few models around λ in the a.e.c. K and reasonable, “semi ZFC” set
theoretic assumptions (e.g. involving categoricity and weak cases of
G.C.H., see §3) we can prove that, essentially, for some

⋃

,S the

demands in Definition 2.1 hold. So here we shall get (i.e., applying
our general theorem to the case of 3.4) an alternative proof of the
main theorem of [Sh 87a], [Sh 87b] in a local version, i.e., dealing
with few cardinals rather than having to deal with all the cardinals
λ, λ+1, λ+2, . . . , λ+n as in [Sh 87a], [Sh 87b] in an inductive proof.
That is, in [Sh 87b], we get dichotomies by the omitting type the-
orem for countable models (and theories). So problems on ℵn are
“translated” down to ℵn−1 (increasing the complexity) till we arrive
to ℵ0 and then “translated” back. Hence it is important there to deal
with ℵ0, . . . ,ℵn together. Here our λ may not have special helpful
properties, so if we succeed to prove the relevant claims then they
apply to λ+, too. There are advantages to being poor.
2) Of course, we may just point out that the axioms seem reasonable
and that eventually we can say much more.
3) We may consider weakening bs-stability (i.e., Ax(D)(d) in Defi-
nition 2.1) to M ∈ Kλ ⇒ |S bs(M)| ≤ λ+, we have not looked into
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it here; Jarden-Shelah [JrSh 875] will; actually Chapter I deals in a
limited way with this in a considerably more restricted framework.
4) On stability in λ and existence of (λ, ∂)-brimmed extensions see
4.2.

From the rest of this section we shall use mainly the defintion ofK3,bs
λ

in Definition 2.4(3), also 2.20 (restricting ourselves to a superlimit).
We sometimes use implications among the axioms (in 2.16 - 2.18).
The rest is, for now an exercise to familiarize the reader with λ-
frames, in particular (2.3-2.15) to see what occurs to non-forking
and basic types in cardinals > λ. This is easy (but see below). For
this we first present the basic definitions.

2.3 Convention. 1) We fix s, a good λ-frame soK = Ks,S bs = S bs
s

.
2) By M ∈ K we mean M ∈ K≥λ if not said otherwise.

We lift the properties to K≥λ by reflecting to the situation in
Kλ. But do not be too excited: the good properties do not lift
automatically, we shall be working on that later (under additional
assumptions). Of course, from the definition below later we shall use

mainly K3,bs
s = K3,bs

λ .
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2.4 Definition. 1)

K3,bs = K3,bs
≥s

:=

{

(M,N, a) :M ≤K N, a ∈ N\M and there is

M ′ ≤K M satisfying M ′ ∈ Kλ,

such that for every M ′′ ∈ Kλ we have:

[M ′ ≤K M ′′ ≤K M ⇒

tp(a,M ′′, N) ∈ S
bs(M ′′)

does not fork over M ′];

equivalently [M ′ ≤K M ′′ ≤K M

& M ′′ ≤K N ′′ ≤K N

& N ′′ ∈ Kλ & a ∈ N ′′

⇒
⋃

λ
(M ′,M ′′, a, N ′′)]

}

.

2) K3,bs
=µ = K3,bs

s,µ := {(M,N, a) ∈ K3,bs
≥s

: M,N ∈ K
s
µ}.

3) K3,bs
s := K3,bs

=λ,s; and let K3,bs
µ = K3,bs

=µ , used mainly for µ = λs

and K3,bs
s,≥µ is defined naturally.

2.5 Definition. We define
⋃

<∞
(M0,M1, a,M3) (rather than

⋃

λ
) as

follows: it holds iff M0 ≤K M1 ≤K M3 are from K (not necessarily
Kλ), a ∈ M3\M1 and there is M ′

0 ≤K M0 which belongs to Kλ

satisfying: if M ′
0 ≤K M ′

1 ≤K M1,M
′
1 ∈ Kλ,

M ′
1 ∪ {a} ⊆M ′

3 ≤K M3 and M ′
3 ∈ Kλ then

⋃

λ
(M ′

0,M
′
1, a,M

′
3).

We now check that
⋃

<∞
behaves correctly when restricted to Kλ.

2.6 Claim. 1) Assume M ≤K N are from Kλ and a ∈ N . Then

(M,N, a) ∈ K3,bs
s iff tp(a,M,N) ∈ S bs

s (M).
2) Assume M0,M1,M3 ∈ Kλ and a ∈M3. Then

⋃

<∞
(M0,M1, a,M3)

iff
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⋃

λ
(M0,M1, a,M3).

3) Assume M ≤K N1 ≤K N2 and a ∈ N1. Then

(M,N1, a) ∈ K3,bs
≥s

⇔ (M,N2, a) ∈ K3,bs
≥s

.

4) Assume M0 ≤K M1 ≤K M3 ≤K M∗
3 and a ∈M3 then:

⋃

<∞
(M0,M1, a,M3) iff

⋃

<∞
(M0,M1, a,M

∗
3 ).

Proof. 1) First assume tp(a,M,N) ∈ S bs
s

(M) and check the defini-
tion of (M,N, a) ∈ K3,bs. Clearly M ≤K N, a ∈ N and a ∈ N\M ;
we have to find M ′ as required in Definition 2.4(1); we let M ′ = M ,
so M ′ ≤K M,M ′ ∈ Kλ and

M ′ ≤K M ′′ ≤K M & M ′′ ∈ Kλ ⇒M ′′ = M

⇒ tpKλ
(a,M ′′, N) = tpKλ

(a,M,N) ∈ S
bs
s (M) = S

bs
s (M ′′)

so we are done.
Second assume (M,N, a) ∈ K3,bs so there is M ′ ≤K M as asserted

in the definition 2.4(1) of K3,bs so (∀M ′′)[M ′ ≤K M ′′ ≤K M &
M ′′ ∈ Kλ ⇒ tp(a,M ′′, N) ∈ S bs

s
(M ′′)] in particular this holds for

M ′′ = M and we get tp(a,M,N) ∈ S bs
s

(M) as required.
2) First assume

⋃

<∞
(M0,M1, a,M3).

So there is M ′
0 as required in Definition 2.5; this means

M ′
0 ∈ Kλ,M

′
0 ≤K M0 and

(∀M ′
1 ∈ Kλ)(∀M

′
3 ∈ Kλ)[M

′
0 ≤K M ′

1 ≤M1 & M ′
1 ∪ {a} ⊆M ′

3 ≤K M3

→
⋃

λ
(M ′

0,M
′
1, a,M

′
3)].

In particular, we can choose M ′
1 = M1,M

′
3 = M3 so the antecedent

holds hence
⋃

λ
(M ′

0,M
′
1, a,M

′
3) which means

⋃

λ
(M ′

0,M1, a,M3) and

by clause (E)(b) of Definition 2.1,
⋃

λ
(M0,M1, a,M3) holds, as re-

quired.
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Second assume
⋃

λ
(M0,M1, a,M3). So in Definition 2.5 the de-

mands M0 ≤K M1 ≤K M3, a ∈M3\M1 hold by clause (E)(a) of Defi-
nition 2.1; and we chooseM ′

0 asM0; clearlyM ′
0 ∈ Kλ & M ′

0 ≤K M0.
Now suppose M ′

0 ≤K M ′
1 ≤K M1 & M ′

1 ∈ Kλ,M
′
1 ∪ {a} ≤K M ′

3 ≤
M3; by clause (E)(b) of Definition 2.1 we have

⋃

λ
(M ′

0,M
′
1, a,M

′
3); so

M ′
0 is as required so really

⋃

<∞
(M0,M1, a,M3).

3) We prove something stronger: for any M ′ ∈ Ks which is ≤K[s]

M,M ′ witnesses (M,N1, a) ∈ K3,bs iff M ′ witnesses (M,N2, a) ∈
K3,bs (of course, witness means: as required in Definition 2.4). So
we have to check the statement there for every M ′′ ∈ Kλ such
that M ′ ≤s M ′′ ≤K M . The equivalence holds because for every
M ′′ ≤K M,M ′′ ∈ Kλ we have tp(a,M ′′, N1) = tp(a,M ′′, N2), by
1.11(2), more transparent as Kλ has the amalgamation property (by
clause (C) of Definition 2.1) and so one is “basic” iff the other is by
clause (E)(b) of Definition 2.1.
4) The direction ⇐ is because if M ′

0 witness
⋃

<∞
(M0,M1, a,M

∗
3 )

(see Definition 2.5), then it witnesses
⋃

<∞
(M0,M1, a,M3) as there

are just fewer pairs (M ′
1,M

′
3) to consider. For the direction ⇒

the demands M0 ≤K M1 ≤K M3, a ∈ M3\M1, of course, hold
and let M ′

0 be as required in the definition of
⋃

<∞
(M0,M1, a,M3);

let M ′
0 ≤K M ′

1 ≤K M1,M
′
1 ∪ {a} ⊆ M ′

3 ≤K M∗
3 ,M

′
3 ∈ Kλ. As

λ ≥ LS(K) we can find M ′′
3 ≤K M3 such that M ′

1 ∪ {a} ⊆M ′′
3 ∈ Kλ

and then find M ′′′
3 ≤s M

∗
3 such that M ′

3 ∪M
′′
3 ⊆ M ′′′

3 ∈ Kλ. So by
the choice of M ′

0 and M ′′
3 clearly

⋃

λ
(M ′

0,M
′
1, a,M

′′
3 ) and by clause

(E)(b) of Definition 2.1 we have

⋃

λ
(M ′

0,M
′
1, a,M

′′
3 ) ⇔

⋃

λ
(M ′

0,M
′
1, a,M

′′′
3 ) ⇔

⋃

λ
(M ′

0,M
′
1, a,M

′
3)

(note that we know the left statement and need the right statement)
soM ′

1 is as required to complete the checking of
⋃

<∞
(M0,M1, a,M

∗
3 ).

�2.6
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We extend the definition of S bs
s (M) from M ∈ Kλ to arbitrary

M ∈ K.

2.7 Definition. 1) For M ∈ K we let

S
bs(M) = S

bs
≥s(M) =

{

p ∈ S (M) : for some N and a,

p = tp(a,M,N) and

(M,N, a) ∈ K3,bs
≥s

}

(for M ∈ Kλ we get the old definition by 2.6(1); note that as we
do not have amalgamation (in general) the meaning of types is more
delicate. Not so in Kλ as in a good λ-frame we have amalgamation
in Kλ but not necessarily in K≥λ).
2) We say that p ∈ S bs

≥s
(M1) does not fork over M0 ≤K M1 if for

someM3, a we have p = tpK[s](a,M1,M3) and
⋃

<∞
(M0,M1, a,M3).

(Again, for M ∈ Kλ this is equivalent to the old definition by 2.6).
3) For M ∈ K let E λM be the following two-place relation on S (M) :
p1E

λ
Mp2 iff p1, p2 ∈ S bs(M) and if pℓ = tp(aℓ,M,M∗), N ≤K

M,N ∈ Kλ then p1 ↾ N = p2 ↾ N . Let E s

M = E
λ(s)
M ↾ S bs(M).

4) K is (λ, µ)-local if every M ∈ Kµ is λ-local which means that E λM
is equality; let (s, µ)-local means (λs, µ)-local.

Though we will prove below some nice things, having the exten-
sion property is more problematic. We may define “the extension”
in a formal way, for M ∈ K>λ but then it is not clear if it is
realized in any ≤K-extension of M . Similarly for the uniqueness
property. That is, assume M0 ≤K M ≤K Nℓ and aℓ ∈ Nℓ\M ,
and M0 ∈ Ks and tp(aℓ,M,Nℓ) does not fork over M0 for ℓ =
1, 2 and tp(a1,M0, N1) = tp(a2,M0, N1). Now does it follow that
tp(a1,M,N1) = tp(a2,M,N2)? This requires the existence of some
form of amalgamation in K, which we are not justified in assuming.
So we may prefer to define S bs(M) “formally”, the set of stationar-
ization of p ∈ S bs(M0),M0 ∈ Ks, see [Sh 842]. We now note that in
definition 2.7 “some” can be replaced by “every”.
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2.8 Fact. 1) For M ∈ K

S
bs
≥s(M) =

{

p ∈ SK[s](M) : for every N, a we have

if M ≤K N, a ∈ N\M and

p = tpK(a,M,N)

then (M,N, a) ∈ K3,bs
≥s

}

.

2) The type p ∈ SK[s](M1) does not fork over M0 ≤K M1 iff for
every a,M3 satisfying M1 ≤K M3 ∈ K, a ∈ M3\M1 and p =
tpK[s](a,M1,M3) we have

⋃

<∞
(M0,M1, a,M3).

3) (M,N, a) ∈ K3,bs
≥s

is preserved by isomorphisms.

4) If M ≤K Nℓ, aℓ ∈ Nℓ\M for ℓ = 1, 2 and tp(a1,M,N1) E s

M

tp(a2,M,N2) then (M,N1, a1) ∈ K3,bs
≥s

⇔ (M,N2, a2) ∈ K3,bs
≥s

.

5) E s

M is an equivalence relation on S bs
≥s

(M) and if p, q ∈ S bs
≥s

(M)

do not fork over N ∈ Kλ so N ≤K M then pE s

Mq ⇔ (p ↾ N = q ↾ N).

Proof. 1) By 2.6(3) and the definition of type.
2) By 2.6(4) and the definition of type.
3) Easy.
4) Enough to deal with the case (M,N1, a1)E

at
M , (M,N2, a2) or (by

(3)) even a1 = a2, N1 ≤K N2. This is easy.
5) Easy, too. �2.8

We can also get that there are enough basic types, as follows:

2.9 Claim. If M ≤K N and M 6= N , then for some a ∈ N\M we
have tpK(a,M,N) ∈ S bs(M).

Proof. Suppose not, so as we are assuming K = K≥λ by clause
(D)(c) of Definition 2.1 necessarily ‖N‖ > λ. If ‖M‖ = λ < ‖N‖
choose N ′ satisfying M <K N ′ ≤K N,N ′ ∈ Kλ and by clause (D)(c)
of Definition 2.1 choose a∗ ∈ N ′\M such that tps(a

∗,M,N ′) ∈
S bs

s
(M). So we can assume ‖M‖ > λ; choose a∗ ∈ N\M . We
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choose by induction on i < ω,Mi, Ni,Mi,c (for c ∈ Ni\Mi) such
that:

(a) Mi ≤K M is ≤K-increasing

(b) Mi ∈ Kλ

(c) Ni ≤K N is ≤K-increasing

(d) Ni ∈ Kλ

(e) a∗ ∈ N0

(f) Mi ≤K Ni

(g) if c ∈ Ni\M , tps(c,Mi, N) ∈ S bs
s

(Mi) and there is M ′ ∈ Kλ

such that Mi ≤K M ′ ≤K M and tps(c,M
′, N) forks over Mi

then Mi,c satisfies this, otherwise Mi,c = Mi

(h) Mi+1 includes the set
⋃

c∈Ni\M

Mi,c ∪ (Ni ∩M).

There is no problem to carry the definition; in stage i+1 first choose
Mi,c for c ∈ Ni\M then choose Mi+1 and lastly choose Ni+1. Let

M∗ =
⋃

i<ω

Mi and N∗ =
⋃

i<ω

Ni. It is easy to check that:

(i) Mi ≤K M∗ ≤K M for i < ω
(by clause (a))

(ii) M∗ ∈ Kλ

(by clause (i) we have M∗ ∈ K and ‖M∗‖ = λ by the choice
of M∗ and clause (b))

(iii) Ni ≤K N∗ ≤K N
(by clause (c))

(iv) N∗ ∈ Kλ

(by clause (iii) we have N∗ ∈ K and ‖N∗‖ = λ by the choice
of N∗ and clause (d))

(v) Mi ≤K M∗ ≤K N∗ ≤K N
(by clauses (a) + (f) + (iii) we have Mi ≤K N∗ hence by
clause (a) and the choice of M∗ we have M∗ ≤K N∗, and
N∗ ≤K N by clause (iii))

(vi) M∗ = N∗ ∩M
(by clauses (f) + (h) and the choices of M∗, N∗)
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(vii) M∗ 6= N∗

(as a∗ ∈ N\M and a∗ ∈ N0 ≤K N∗ ≤K N andM∗ = N∗∩M ;
they hold by the choice of a∗, clause (e), clause (iii), clause
(iii) and clause (vi) respectively)

(viii) there is b∗ ∈ N∗\M∗ such that tp(b∗,M∗, N∗) ∈ S bs(M∗)
[why? by clause (v) and (viii) recalling Definition 2.1 clause
(D)(c) (density)]

(ix) for some i < ω we have
⋃

(Mi,M
∗, b∗, N∗), so

tp(b∗,M∗, N∗) ∈ S bs
s (M∗) and tps(b

∗,Mj, N
∗) ∈ S bs

s (Mj)
for j ∈ [i, ω)
[why? by Definition 2.1 clause (E)(c) (local character) ap-
plied to the sequence 〈Mn : n < ω〉ˆ〈M∗, N∗〉 and the ele-
ment b∗, using of course (E)(a) of Definition 2.1 and clause
(viii)]

(x)
⋃

(Mi,Mi,b∗ , b
∗, N∗)

[why? by clause (ix) and Definition 2.1(E)(b) (monotonicity)
as
Mi ≤K Mi,b∗ ≤K Mi+1 ≤K M∗ by clause (g) in the construc-
tion]

(xi) if Mi ≤K M ′ ≤K M and M ′ ∪ {b∗} ⊆ N ′ ≤K N and M ′ ∈
Kλ, N

′ ∈ Kλ then
⋃

(Mi,M
′, b∗, N ′)

[why? by clause (x) and clause (g) in the construction.]

So we are done. �2.9

2.10 Claim. If M ≤K N, a ∈ N\M , and tp(a,M,N) ∈ S bs
≥s

(M)
then for some M0 ≤K M we have

(a) M0 ∈ Kλ

(b) tp(a,M0, N) ∈ S bs
s (M0)

(c) if M0 ≤K M ′ ≤K M , then tp(a,M ′, N) ∈ S bs
s (M ′) does not

fork over M0.

Proof. Easy by now. �2.10
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2.11 Claim. 1) Assume M1 ≤K M2 and p ∈ SK(M2). Then p ∈
S bs

≥s
(M2) and p does not fork over M1 iff for some N1 ≤K M1, N1 ∈

Kλ and p does not fork over N1 iff for some N1 ≤K M1, N1 ∈ Kλ and
we have (∀N)[N1 ≤K N ≤K M2 & N ∈ Kλ ⇒ p ↾ N ∈ S bs

s (N) &
(p ↾ N does not fork over N1)]; we call such N1 a witness, so every
N ′

1 ∈ Kλ, N1 ≤K N ′
1 ≤M1 is a witness, too.

2) Assume M∗ ∈ K and p ∈ SK(M∗).
Then: p ∈ S bs

≥s
(M∗) iff for some N∗ ≤K M∗ we have N∗ ∈ Kλ, p ↾

N∗ ∈ S bs(N∗) and (∀N ∈ Kλ)(N
∗ ≤K N ≤K M∗ ⇒ p ↾ N ∈

S bs(N) and does not fork over N∗) (we say such N∗ is a witness,
so any N ′ ∈ Kλ, N

∗ ≤K N ′ ≤K M is a witness, too).
3) (Monotonicity)
If M1 ≤K M ′

1 ≤K M ′
2 ≤K M2 and p ∈ S bs

≥s
(M2) does not fork over

M1, then
p ↾ M ′

2 ∈ S bs
≥s

(M ′
2) and it does not fork over M ′

1.

4) (Transitivity)
If M0 ≤K M1 ≤K M2 and p ∈ S bs

≥s
(M2) does not fork over M1 and

p ↾ M1 does not fork over M0, then p does not fork over M0.
5) (Local character) If 〈Mi : i ≤ δ + 1〉 is ≤K-increasing continuous
and a ∈ Mδ+1 and tpK(a,Mδ,Mδ+1) ∈ S bs

≥s
(Mδ) then for some

i < δ we have tpK(a,Mδ,Mδ+1) does not fork over Mi.
6) Assume that 〈Mi : i ≤ δ + 1〉 is ≤K-increasing and p ∈ S (Mδ)
and for every i < δ we have p ↾ Mi ∈ S bs

≥s
(Mi) does not fork over

M0. Then p ∈ S bs
≥s

(Mδ) and p does not fork over M0.

Proof. 1), 2) Check the definitions.
3) As p ∈ S bs

≥s
(M2) does not fork over M1, there is N1 ∈ Kλ which

witnesses it.

This same N1 witnesses that p ↾ M ′
2 does not fork over M ′

1.
4) Let N0 ≤K M0 witness that p ↾ M1 does not fork over M0 (in par-
ticular N0 ∈ Kλ); let N1 ≤K M1 witness that p does not fork over
M1 (so in particular N1 ∈ Kλ). Let us show that N0 witnesses p
does not fork over M0, so let N ∈ Kλ be such that N0 ≤K N ≤K M2

and we should just prove that p ↾ N does not fork over N0. We can
find N ′ ≤K M1, N

′ ∈ Kλ such that N0 ∪N1 ⊆ N ′, we can also find
N ′′ ≤K M2 satisfying N ′′ ∈ Kλ such that N ′ ∪ N ⊆ N ′′. As N1

witnesses that p does not fork over M1, clearly p ↾ N ′′ ∈ S bs
s

(N ′′)
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does not fork over N1, hence by monotonicity does not fork over N ′.
As N0 witnesses p ↾ M1 does not fork over M0, clearly p ↾ N ′ belongs
to S bs(N ′) and does not fork over N0, so by transitivity (in Ks) we
know that p ↾ N ′′ does not fork over N0; hence by monotonicity
p ↾ N does not fork over N0.
5) Let p = tpK(a,Mδ,Mδ+1) and let N∗ ≤K Mδ witness p ∈
S bs(Mδ). Assume toward contradiction that the conclusion fails.
Without loss of generality cf(δ) = δ.

Case 0: ‖Mδ‖ ≤ λ(= λs).
Trivial.

Case 1: δ < λ+, ‖Mδ‖ > λ.
As ‖Mδ‖ > λ, for some i, ‖Mi‖ > λ so without loss of generality

i < δ ⇒ ‖Mi‖ > λ. We choose by induction on i < δ, models Ni, N
′
i

such that:

(α) Ni ∈ Kλ

(β) Ni ≤K Mi (hence Ni ≤K Mj for j ∈ [i, δ))

(γ) Ni is ≤K-increasing continuous

(δ) N ′
i ∈ Kλ, N

∗ ≤K N ′
0

(ε) Ni ≤K N ′
i ≤K Mδ,

(ζ) N ′
i is ≤K-increasing continuous

(η) p ↾ N ′
i forks over Ni when i 6= 0 for simplicity

(θ) Ni ∪
⋃

j≤i(N
′
j ∩Mi+1) ⊆ Ni+1.

No problem to carry the induction, but we give details.

First, if i = 0 trivial. Second let i be a limit ordinal.
Let Ni = ∪{Nj : j < i}, now Ni ≤K Mi by clauses (β) + (γ)

and K being a.e.c. and ‖Ni‖ = λ by clause (α), as i ≤ δ < λ+;
so clauses (α), (β), (γ) hold. Next, let N ′

i = ∪{N ′
j : j < i} and

similarly clauses (δ), (ε), (ζ) hold. Lastly, we shall prove clause (η)
and assume toward contradiction that it fails; so p ↾ N ′

i does not fork
over Ni in particular p ↾ Ni ∈ S bs

s
(Ni) hence for some j < i the type

p ↾ N ′
i does not fork over Nj ≤K Ni, (by (E)(c) of Definition 2.1)

hence by transitivity (for Ks), p ↾ N ′
i does not fork over Nj hence by
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monotonicity p ↾ N ′
j does not fork over Nj (see (E)(b) of Definition

2.1) contradicting the induction hypothesis.

Lastly, clause (θ) is vacuous.

Third assume i = j + 1, so first choose Ni satisfying clause (θ)
(with j, i here standing for i, i + 1 there), and (α), (β), (γ); this is
possible by the L.S. property. Now Ni cannot witness “p does not
fork over Mi” hence for some N∗

i ∈ Kλ we have Ni ≤K N∗
i ≤K Mδ

and p ↾ N∗
i forks over Ni; again by L.S. choose N ′

i ∈ Kλ such that
N ′
i ≤K Mδ and N∗ ∪ Ni ∪ N ′

j ∪ N∗
i ⊆ N ′

i , easily (Ni, N
′
i) are as

required.

Let Nδ =
⋃

i<δ

Ni, so by clause (β), (γ) we have Nδ ≤K Mδ and by

clause (α), as δ < λ+ we have Nδ ∈ Kλ and by clauses (δ)+(θ) in the
construction we have i < δ ⇒ N ′

i = ∪{N ′
i ∩Mj+1 : j ∈ [i, δ)} ⊆ N

so by clause (δ), N∗ ≤K N ′
0 ≤K Nδ. Hence by the choice of N∗, p ↾

Nδ ∈ S bs
s (Nδ) and it does not fork over N∗. Now as p ↾ Nδ ∈

S bs
s

(Nδ) by local character, i.e., clause (E)(c) of Definition 2.1, for
some i < δ, p ↾ Nδ does not fork over Ni (so p ↾ Ni ∈ S bs

s
(Ni)). Now

Ni ≤K N ′
i ≤K Mδ and by clause (θ) of the construction N ′

i ⊆ Nδ
hence Ni ≤K N ′

i ≤K Nδ hence by monotonicity of non-forking (i.e.
clause (E)(b) of Definition 2.1), p ↾ N ′

i ∈ S bs(Ni) does not fork
over Ni. But this contradicts the choice of N ′

i (i.e., clause (η) of the
construction).

Case 2: δ = cf(δ) > λ.

Recall that N∗ ≤K Mδ, N
∗ is from Kλ and N∗ ≤K N ≤K Mδ &

N ∈ Kλ ⇒
p ↾ N ∈ S bs

s (N). Now as δ = cf(δ) > λ ≥ ‖N∗‖ clearly for some
i < δ we have N∗ ⊆ Mi hence N∗ ≤K Mi (hence i ≤ j < δ ⇒ p ↾

Mj ∈ S bs
≥s

(Mj)), and N∗ witnesses that p ∈ S bs
≥s

(Mδ) does not fork
over Mi so we are clearly done.
6) LetN0 ∈ Kλ, N0 ≤K M0 witness p ↾ M0 ∈ S bs

≥s
(M0). By the proof

of part (4) clearly i < δ & N0 ≤K N ∈ Kλ & N ≤K Mi ⇒ p ↾ N
does not fork over N0. If cf(δ) > λ we are done, so assume cf(δ) ≤ λ.
Let N0 ≤K N∗ ∈ Kλ & N∗ ≤K Mδ, and we shall prove that
p ↾ N∗ does not fork over N0, this clearly suffices. As in Case 1
in the proof of part (5) we can find Ni ≤K Mi for i ∈ (0, δ) such
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that 〈Ni : i ≤ δ〉 is ≤K-increasing with i, each Ni belongs to Kλ and

N∗ ∩Mi ⊆ Ni+1, hence N∗ ⊆ Nδ :=
⋃

i<δ

Ni. Now Nδ ≤K Mδ and

as said as i < δ ⇒ p ↾ Ni ∈ S bs
≥s

(Ni) does not fork over N0 hence
p ↾ Nδ does not fork over N0 and by monotonicity p ↾ N∗ does not
fork over N0, as required. �2.11

2.12 Lemma. If µ = cf(µ) > λ and M ≤K N are in Kµ, then we
can find ≤K-representations M̄, N̄ of M,N respectively such that:

(i) Ni ∩M = Mi for i < µ

(ii) if i < j < µ & a ∈ Ni then

(a) tp(a,Mi, N) ∈S
bs
≥s

(Mi) ⇔

⇔ tp(a,Mj, N) ∈ S
bs
≥s(Mj)

⇔ tp(a,M,N) does not fork over Mi

⇔ tp(a,Mj, N) is a non-forking extension

of tp(a,Mi, N)

(b) Mi ≤K Ni ≤K Nj and Mi ≤K Mj ≤K Nj
(and clearly Mi ≤K Nj and Mi ≤K M,Mi ≤K N,Ni ≤K N).

2.13 Remark. In fact for any representations M̄, N̄ of M,N respec-
tively, for some club E of µ the sequences M̄ ↾ E, N̄ ↾ E are as
above.

Proof. Let M̄ be a ≤K-representation of M . For a ∈ N we define
Sa = {α < µ : tp(a,Mα, N) ∈ S bs

≥s
(Mα)}. Clearly if δ ∈ Sa is a

limit ordinal then for some i(a, δ) < δ we have i(a, δ) ≤ i < δ ⇒
i ∈ Sa & (tp(a,Mi, N) does not fork over Mi(a,δ)

) by 2.11(5). So

if Sa is stationary, then for some i(a) < µ the set S′
a = {δ ∈ Sa :

i(a, δ) = i(a)} is a stationary subset of λ hence by monotonicity we
have i(a) ≤ i ≤ µ⇒ tp(a,Mi, N) does not fork over Mi(a). Let Ea
be a club of µ such that: if Sa is not stationary (subset of µ) then
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Ea ∩ Sa = ∅ and if Sa is not stationary then Sa ∩ Ea = ∅.
Let N̄ be a representation of N , and let

E∗ = {δ < µ :Nδ ∩M = Mδ and Mδ ≤K M,Nδ ≤K N

and for every a ∈ Nδ we have δ ∈ Ea}.

Clearly it is a club of µ and M̄ ↾ E∗, N̄ ↾ E∗ are as required. �2.12

∗ ∗ ∗

We may treat the lifting of K3,bs
λ as a special case of the “lifting”

of Kλ to K≥λ = (Kλ)
up in Claim 1.23; this may be considered a good

exercise.

2.14 Claim. 1) (K3,bs
λ ,≤bs) is a λ-a.e.c.

2) (K3,bs
≥s

,≤bs) is (K3,bs
λ ,≤bs)

up.

Remark. What is the class in 2.14(1)? Formally let τ+ = {R[ℓ] : R a
predicate of τK , ℓ = 1, 2} ∪ {F[ℓ] : F a function symbol from τK and
ℓ = 1, 2}∪{c} where R[ℓ] is an n-place predicate when R ∈ τ is an n-
place predicate and similarly F[ℓ] and c is an individual constant. A

triple (M,N, a) is identified with the following τ+-model N+ defined
as follows:

(a) its universe is the universe of N

(b) cN
+

= a

(c) RN
+

[2] = RN

(d) FN
+

[2] = FN

(e) RN
+

[1] = RM

(f) FN
+

[1] = FM

(if you do not like partial functions, extend them to functions with
full domain by F (a0, . . . ) = a0 when not defined if F has arity > 0, if

F has arity 0 it is an individual constant, FN
+

= FN so no problem).

Proof. Left to the reader (in particular this means that K3,bs
λ is

closed under ≤bs-increasing chains of length < λ+). �2.14

Continuing 1.23, 1.26 note that (and see more in 2.20):
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2.15 Lemma. Assume

(a) K is an abstract elementary class with LS(K) ≤ µ

(b) K ′
≤µ is a class of τK-model, K ′

≤µ ⊆ K≤µ is non-empty and

closed under ≤K-increasing unions of length < µ+ and iso-
morphisms (e.g. the class of µ-superlimit models of Kµ, if
there is one)

(c) define K ′ := {M ∈ K : M is a ≤K-directed union of members
of K ′

µ} ∪K
′
≤µ

(d) let K′ = (K ′,≤K↾ K ′) so ≤K′ is ≤K↾ K ′, so K′
≤µ := (K ′

≤µ,≤K↾

K ′
≤µ); or ≤K is as in 1.23(1), see 1.23(4).

Then

(A) K′ is an abstract elementary class, LS(K) ≤ LS(K′) ≤ µ

(B) If µ ≤ λ and (K,
⋃

,S bs) is a good λ-frame and K′
λ has amal-

gamation and JEP and M ∈ K′
λ ⇒ SK′(M) = SK(M), then

(K′,
⋃

,S bs) (with
⋃

,S bs restricted to K
′) is a good λ-frame

(C) in clause (B), instead “M ∈ K′
λ ⇒ SK′(M) = SK(M), it

suffices to require: if M ∈ K′
λ,M ≤K N ∈ K′

λ, p ∈ S bs
s

(N), p
does not fork overM and p ↾ M is realized in someM ′,M ≤K′

M ′ then p is realized in some N ′, N ≤K N ′ ∈ K′
λ.

Remark. If in 2.15, K ′
µ is not closed under ≤K-increasing unions, we

can close it but then the “so K′
≤µ = . . .” in clause (d) may fail.

Proof. Clause (A): As in 1.23.

Clauses (B),(C): Check. �2.15

∗ ∗ ∗

Next we deal with some implications between the axioms in 2.1.

2.16 Claim. 1) In Definition 2.1 clause (E)(i) is redundant, i.e.,
follows from the rest, recalling
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(E)(i) non-forking amalgamation:
if for ℓ = 1, 2,M0 ≤K Mℓ are in Kλ, aℓ ∈Mℓ\M0,
tp(aℓ,M0,Mℓ) ∈ S bs(M0), then we can find f1, f2,M3 sat-
isfying M0 ≤K M3 ∈ Kλ such that for ℓ = 1, 2 we have fℓ is
a ≤K-embedding of Mℓ into M3 over M0 and
tp(fℓ(aℓ), f3−ℓ(M3−ℓ),M3) does not fork over M0.

2) In fact, proving part (1) we use Axioms (A),(C),(E)(b),(d),(f),(g)
only.

M2

a2
M0

M1

a1

N1

f1(a2)

N∗
2

N2

f2(f1(a2))

f2(f1(M2))

f3(N
∗
3 )

N3

N∗
3

Proof. By Axiom (E)(g) (existence) applied with tp(a2,M0,M2),
M0, M1 here standing for p, M , N there; there is q1 such that:

(a) q1 ∈ S bs(M1)

(b) q1 does not fork over M0

(c) q1 ↾ M0 = tp(a2,M0,M2).

By the definition of types and as Kλ has amalgamation (by Axiom
(C)) there are N1, f1 such that
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(d) M1 ≤K N1 ∈ Kλ

(e) f1 is a ≤K-embedding of M2 into N1 over M0

(f) f1(a2) realizes q1 inside N1.

Now consider Axiom (E)(f) (symmetry) applied withM0, N1, a1, f1(a2)
here standing for M0,M3, a1, a2 there; now as clause (α) of (E)(f)
holds (use M1, N1 for M1,M

′
3) we get that clause (β) of (E)(f) holds

which means that there are N2, N
∗
2 (standing for M ′

3,M2 in clause
(β) of (E)(f)) such that:

(g) N1 ≤K N2 ∈ Kλ

(h) M0 ∪ {f1(a2)} ⊆ N∗
2 ≤K N2

(i) tp(a1, N
∗
2 , N2) ∈ S bs(N∗

2 ) does not fork over M0.

As Kλ has amalgamation (see Axiom (C)) and the definition of type
and as
tp(f1(a2),M0, f1(M2)) = tp(f1(a2),M0, N2) = tp(f1(a2),M0, N

∗
2 ),

we can find N∗
3 , f2 such that

(j) N∗
2 ≤K N∗

3 ∈ Kλ

(k) f2 is a ≤K-embedding11 of f1(M2) intoN∗
3 overM0∪{f1(a2)}.

As by clause (i) above tp(a1, N
∗
2 , N2) ∈ S bs(N∗

2 ), so by Axiom
(E)(g) (extension existence) there are N3, f3 such that

(l) N2 ≤K N3 ∈ Kλ

(m) f3 is a ≤K-embedding of N∗
3 into N3 over N∗

2

(n) tp(a1, f3(N
∗
3 ), N3) ∈ S bs(N∗

3 ) does not fork over N∗
2 .

By Axiom (E)(d) (transitivity) using clauses (i) + (n) above we have

(o) tp(a1, f3(N
∗
3 ), N3) ∈ S bs(N∗

3 ) does not fork over M0.

Letting f = f3 ◦ f2 ◦ f1 as f(M2) ⊆ f3(N
∗
3 ) by clauses (e), (k), (m)

we have

(p) f is a ≤K-embedding of M2 into N3 over M0.

11we could have chosen N∗

3 = N2, f2 = idf1(M2)
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By (E)(b) (monotonicity) and clause (o) and clause (p)

(q) tp(a1, f(M2), N3) ∈ S bs(f(M2)) does not fork over M0.

As tp(f1(a2),M1, N3) = tp(f1(a2),M1, N1) = q1 does not fork over
M0 by clauses (b) + (f), and f2(f1(a2)) = f1(a2) by clause (k) and
f3(f1(a2)) = f1(a2) by clauses (m) + (h), we get

(r) tp(f(a2),M1, N3) ∈ S bs(M1) does not fork over M0.

So by clauses (o) and (r) we have idM1
, f, N3 are as required on

f1, f2,M3 in our desired conclusion. �2.16

2.17 Claim. 1) In the local character Axiom (E)(c) of Definition
2.1 if S bs

s
= S na

Ks

recalling S na
Ks

(M) = {tp(a,M,N) : M ≤s N and
a ∈ N\M} then it suffices to restrict ourselves to the case that δ has
cofinality ℵ0 (i.e., the general case follows from this special case and
the other axioms).
2) In fact in part (1) we need only Axioms (E)(b),(h) and you may
say (A),(D)(a),(E)(a).
3) If S bs = S na then the continuity Axiom (E)(h) follows from the
rest.
4) In (3) actually we need only Axioms (E)(c), (local character) (d),
(transitivity) and you may say (A),(D)(a),(E)(a).

Proof. 1), 2) Let 〈Mi : i ≤ δ + 1〉 be ≤Kλ
-increasing, a ∈ Mδ+1\Mδ

and without loss of generality ℵ0 < δ = cf(δ), so for every α ∈ S :=
{α < δ : cf(α) = ℵ0}, tp(a,Mα,Mδ+1) ∈ S bs(Mα) by the assump-
tion “Sbs

s
= S na

Ks

hence there is βα < α such that tp(a,Mα,Mδ+1)
does not fork overMβα

, so for some β < δ the set S1 = {α ∈ S : βα =
β) is a stationary subset of δ. By Axiom (E)(b) (monotonicity) it
follows that for any γ1 ≤ γ2 from [β, δ) the type tp(a,Mγ2,Mδ+1) ∈
S bs(Mγ2) does not fork over Mγ1 . Now for any γ ∈ [β, δ) the type
tp(a,Mδ,Mδ+1) does not fork over Mγ by applying (E)(h) (conti-
nuity) to 〈Mα : α ∈ [γ, δ + 1] so we have finished.
3),4) So assume 〈Mi : i ≤ δ〉 is ≤K-increasing continuous, all in Kλ

and δ is a limit ordinal, p ∈ S (Mδ) and pi := p ↾ Mi ∈ S bs(Mi) does
not fork over M0 for each i < δ; we should prove that p ∈ S bs(Mδ)
and p does not fork over M0.
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First, for each i < δ, pi ∈ S bs(Mi) hence pi is not realized in
Mi. As Mδ = ∪{Mi : i < δ} clearly p is not realized in Mδ so
p ∈ S na(Mδ) = S bs(Mδ).

Second, by Ax(E)(c) the type p does not fork over Mj for some
j < δ. As pj = p ↾ Mj does not fork over M0 (by assumption) by
the transitivity Axiom (E)(d), we get that p does not fork over M0,
as required. �2.17

Remark. So in some sense by 2.17 we can omit in 2.1, the local
character Axiom (E)(c) or the continuity Axiom (E)(h) but not
both. In fact (under reasonable assumptions) they are equivalent.

2.18 Claim. In Definition 2.1, Clause (E)(d), i.e., transitivity of
non-forking follows from (A),(C),(D)(a),(b),(E)(a),(b),(e),(g).

Proof. As Kλ is an λ-a.e.c. with amalgamation, types as well as
restriction of types are not only well defined but are “rasonable”.

So assume M0 ≤s M ′
0 ≤s M ′′

0 ≤s M3, a ∈ M3 and p′′ :=
tps(a,M

′′
0 ,M3) does not fork over M ′

0 and p′ := tps(a,M
′
0,M3)

does not fork over M0. Let p = p′ ↾ M0. As p′ does not fork over M0,
by Axiom (E)(a) we have p′ ∈ S bs(M ′

0) and p = tp(a,M0,M3) =
p′ ↾ M0 belongs to S bs(M0). As p′′ does not fork over M ′

0 clearly
p′′ ∈ S bs(M ′′

0 ) and recall p′′ ↾ M ′
0 = p′. By the existence axiom

(E)(g) the type p has an extension q′′ ∈ S bs(M ′′
0 ) which does not

fork over M0. By the monotonicity Axiom (E)(b) the type q′′ does
not fork over M ′

0 and q′ = q′′ ↾ M ′
0 does not fork over M0. As

p′, q′ ∈ S bs(M ′
0) do not fork over M0 and p′ ↾ M0 = p = q′′ ↾ M0 =

q′ ↾ M0, by the uniqueness Axiom Ax(E)(e), we have p′ = q′. Simi-
larly p′′ = q′′, but q′′ does not fork over M0 hence p′′ does not fork
over M0 as required. �2.18

2.19 Claim. 1) The symmetry axiom (E)(f) is equivalent to (E)(f)′

below if we assume (A),(B),(C),(D)(a),(b),(E)(a),(b),(g) in Defini-
tion 2.1

(E)(f)′ there are no Mℓ(ℓ ≤ 3) and aℓ(ℓ ≤ 2) such that

(a) M0 ≤s M1 ≤s M2 ≤s M3
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(b) tp(aℓ,Mℓ,Mℓ+1) does not fork over M0 for ℓ = 0, 1, 2

(c) tps(a0,M0,M1) = tps(a2,M0,M3)

(d) tps(〈a0, a1〉,M0,M1) 6= tps(〈a2, a1〉,M0,M1).

Proof. Easy.

∗ ∗ ∗

A most interesting case of 2.15 is the following. In particular it tells
us that the categoricity assumption is not so rare and it will have
essential uses here.

2.20 Claim. If s = (K,
⋃

λ
,S bs) is a good λ-frame and M ∈ Kλ

is a superlimit model in Kλ and we define s′ = s[M ] = s[M ] =
(K[s[M ]],

⋃

λ
[s[M ]],S bs[s[M ]]) by

K[s[M ]] = K
[M ], see Definition 1.25 so Ks[M ] = K ↾ {N : N ∼= M}

⋃

λ
[s[M ]] = {(M0,M1, a,M3) ∈

⋃

λ
: M0,M1,M3 ∈ K

[M ]
λ }

S
bs[s[M ]] =

{

tp
K[M ](a,M0,M1) :M0 ≤K M1,M0 ∈ K

[M ]
λ , N ∈ K

[M ]
λ

and tpK(a,M0,M1) ∈ S
bs(M0)

}

.

Then

(a) s′ is a good λ-frame

(b) K[s′] ⊆ K≥λ[s]

(c) ≤K[s′]=≤K↾ K[s′]

(d) Kλ[s
′] is categorical.

Proof. Straight by 1.23, 1.26, 2.15. �2.20

Paper Sh:600, Chapter II



II.§3 EXAMPLES 283

§3 Examples

We show here that the context from §2 occurs in earlier investi-
gation: in [Sh 88] = Chapter I, [Sh 576] that is Chapter VI, [Sh 48]
(and [Sh 87a], [Sh 87b]). Of course, also the class K of models of
a superstable (first order) theory T (working in Ceq), with ≤K=≺
and S bs(M) being the set of regular types (when we work in Ceq) or
just “the set non-algebraic types” works, with

⋃

(M0,M1, a,M3) iff

M0 ≤K M1 ≤K M3 are in Kλ, a ∈M3 and tp(a,M1,M3) ∈ S bs(M1)
does not fork over M0, (in the sense of [Sh:c, III], of course). The
reader may concentrate on 3.7 (or 3.4) below for easy life.
Note that 3.4 (or 3.5) will be used to continue [Sh 88] = Chapter I
and also to give an alternative proof to the theorem of [Sh 87a], [Sh
87b] + (deducing “there is a model in ℵn” if there are not too many
models in ℵℓ for ℓ < n) and note that 3.5 will be used to continue
[Sh 48], i.e., on ψ ∈ Lω1,ω(Q) and 3.7 will be used to continue [Sh
576]. Many of the axioms from 2.1 are easy.

(A) The superstable prototype.

3.1 Claim. Assume T is a first order complete theory and λ be a
cardinal ≥ |T | + ℵ0; let K = KT,λ = (KT,λ ≤KT,λ

) be defined by:

(a) KT,λ is the class of models of T of cardinality ≥ λ

(b) ≤KT,λ
is “being an elementary submodel”.

0) K is an a.e.c. with LS(K) = λ.
1) If T is superstable, stable in λ, then s = sT,λ is a good λ-frame
when s = (KT,λS

bs,
⋃

) is defined by:

(c) p ∈ S bs(M) iff p = tpKt,λ
(a,M,N) for some a,N such

that tpL(τT )(a,M,N), see Definition 3.2 is a non-algebraic
complete 1-type over M , so M ≺ N, a ∈ N\M

(d)
⋃

(M0,M1, a,M3) iff M0 ≺ M1 ≺ M3 are in KT,λ and a ∈

M3 and tpL(τT )(a,M1,M3) is a type that does not fork over
M0 in the sense of [Sh:c, III].
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2) Let κ = cf(κ) ≤ λ. The model M is a (λ, κ)-brimmed model for
KT,λ iff (i)+(ii) or (i)+(iii) where

(i) T is stable in λ

(ii) κ = cf(κ) ≥ κ(T ) and M is a saturated model of T of cardi-
nality λ

(iii) κ = cf(κ) < κ(T ) and there is a ≺-increasing continuous
sequence 〈Mi : i ≤ κ〉 (by ≺, equivalently by ≤s) such that
M = Mκ and (Mi+1, c)c∈Mi

is saturated for i < κ.

2A) So there is a (λ, κ)-brimmed model for KT,λ iff T is stable in λ.
3) M is (λ, κ)-brimmed over M0 in KT,λ iff (M, c)c∈M0

is (λ, κ)-
brimmed.
4) Assume T is superstable first order complete theory stable in λ
and we define s

reg
T,λ as above only S bs(M) is the set of regular types

p ∈ SKT
(M) and we work in T eq. Then s

reg
T,λ is a good λ-frame.

5) For κ ≤ λ or κ = ℵε (abusing notation), sκT,λ is defined similarly

restricting ourselves to Faκ-saturated models. (Let s
0
t,λ = sT,λ.) If T

is superstable, stable in λ then s
κ
T,λ is a good λ frame.

Remark. We can replace (c) of 3.1 by:

(c)′ p ∈ S bs(M) iff p = tpKT,λ
(a,M,N) for some a,N such that

tpL(τT )(a,M,N) is a complete 1-type over M

except that clause (D)(b) of Definition 2.1 fail. In fact the proofs are
easier in this case; of course, the two meaning of types essentially
agree.

Proof. 0),1),2),2A),3) Obvious (see [Sh:c]).
4) As in (1), except density of regular types which holds by [HuSh
342].
5) Also by [Sh:c]. �3.1

Recall
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3.2 Definition. 1) For a logic L and vocabulary τ,L (τ) is the set
of L -formulas in this vocabulary.
2) L = Lω,ω is first order logic.
3) A theory in L (τ) is a set of sentences from L (τ) which we assume
has a model if not said otherwise. Similarly in a language L(⊆ L (τ))

Very central in Chapter I (and Chapter IV) but peripheral here (ex-
cept when in (parts of) §3 we continue Chapter I in our framework)
is:

3.3 Definition. Let T1 be a theory in L(τ1), τ ⊆ τ1 vocabular-
ies, Γ a set of types in L(τ1); (i.e. for some m, a set of formulas
ϕ(x0, . . . , xm−1) ∈ L(τ1)).
1) EC(T1,Γ) = {M : M a τ1-model of T1 which omits every p ∈ Γ}.
So without loss of generality τ1 is reconstructible from T1,Γ) and
PCτ (T1,Γ) = PC(T1,Γ, τ) = {M : M is a τ -reduct of some M1 ∈
EC(T1,Γ)}.

2) We say that K is PCµλ or PCλ,µ if for some T1, T2,Γ1,Γ2 and τ1
and τ2 we have: (Tℓ a first order theory in the vocabulary τℓ,Γℓ a set
of types in L(τℓ) and) K = PC(T1,Γ1, τK) and {(M,N) : M ≤K N
and M,N ∈ K} = PC(T2,Γ2, τ

′) where
τ ′ = τK ∪ {P}, (P a new one place predicate and (M,N) means the

τ ′-model N+ expanding N where PN
+

= |M |) and |Tℓ| ≤ λ, |Γℓ| ≤ µ
for ℓ = 1, 2.
3) If µ = λ, we may omit µ.

(B) An abstract elementary class which is PCℵ0
.

3.4 Theorem. Assume 2ℵ0 < 2ℵ1 and consider the statements

(α) K is an abstract elementary class with LS(K) = ℵ0 (the last
phrase follows by clause (β)) and τ = τ(K) is countable

(β) K is PCℵ0
, equivalently for some sentences ψ1, ψ2 ∈ Lω1,ω(τ1)

where τ1 is a countable vocabulary extending τ we have

K = {M1 ↾ τ : M1 a model of ψ1}

{(N,M) : M ≤K N} = {(N1 ↾ τ,M1 ↾ τ) : (N1,M1) a model of ψ2}
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(γ) 1 ≤ İ(ℵ1,K) < 2ℵ1

(δ) K is categorical in ℵ0, has the amalgamation property in ℵ0

and is stable in ℵ0

(δ)− like (δ) but “stable in ℵ0” is weakened to: M ∈ Kℵ0
⇒

|S (M)| ≤ ℵ1

(ε) all models of K are L∞,ω-equivalent and M ≤K N ⇒M ≺L∞,ω

N .

For M ∈ Kℵ0
we define K′

M as follows: the class of members is
{N ∈ K : N ≡L∞,ω

M} and N1 ≤K′
M
N2 iff N1 ≤K N2 & N1 ≺L∞,ω

N2.

1) Assume (α) + (β) + (γ), then for some M ∈ Kℵ0
the class K′

M

satisfies (α) + (β) + (γ) + (δ)− + (ε); in fact any M ∈ Kℵ0
such that

(K′
M )ℵ1

6= ∅ will do and there are such M ∈ Kℵ0
. Moreover, if K

satisfies (δ) then also K′
M satisfies it; also trivially K ′

M ⊆ K and
≤K′

M
⊆≤K.

1A) Also there is K′ such that: K′ satisfies (α)+(β)+(γ)+(δ)+(ε),
and for every µ we have K ′

µ ⊆ Kµ. In fact, in the notation of I.5.12
for every α < ω1 we can choose K′ = KDα

.
2) Assume (α)+(β)+(γ)+(δ). Then (K,

⋃

,S bs) is a good ℵ0-frame

for some
⋃

and S bs.

3) In fact, in part (2) we can choose S bs(M) = {p ∈ S (M) :
p not algebraic} and

⋃

is defined by I.5.19 (the definable extensions).

Remark. 1) In I.5.34 we use the additional assumption İ(ℵ2, K) <
µunif(ℵ2, 2

ℵ1). But this Theorem is not used here!
2) Note that K′

M is related to K [M ] from Definition 1.25 but is
different.
3) In the proof we relate the types in the sense of Ss(M), and those
in I§5. Now in I§5 we have lift types, from Kℵ0

to any Kµ, i.e.,
define D(N) for N ∈ Kµ. In µ > ℵ0, in general we do not know
how to relate them to types SKs

(N). But when s+ is defined (in
the “successful” cases, see §8 here and III§1) we can get the parallel
claim.

Paper Sh:600, Chapter II



II.§3 EXAMPLES 287

Discussion: 1) What occurs if we do not pass in 3.4 to the case “D(N)
countable for every N ∈ Kℵ0

”? If we still assume “K categorical in
ℵ0” then as |D(N0)| ≤ ℵ1, if we assume “there is a superlimit model
in Kℵ1

” we can find a good ℵ1-frame s; this assumption is justified
by I.5.34, I.5.39.

Proof. 1) Note that for anyM ∈ Kℵ0
, the class K′

M satisfies (α), (β), (ε)

and it is categorical in ℵ0 and (K ′
M )µ ⊆ Kµ hence İ(µ,K ′

M) ≤

İ(µ,K). By Theorem I.3.10, (note: if you use the original version
(i.e., [Sh 88]) by its proof or use it and get a less specified class with
the desired properties) for some M ∈ Kℵ0

we have (K′
M )ℵ1

6= ∅.
By I.3.8 we get that K′

M has amalgamation in ℵ0 and by Chapter
I almost we get that in K′

M the set S (M) is of small cardinality
(≤ ℵ1); be careful - the types there are defined differently than here,
but by the amalgamation (in ℵ0) and the omitting types theorem in
this case they are the same, see more in the proof of part (3) below.
So by I.5.2,I.5.4 we have M ∈ (K′

µ)ℵ0
⇒ |SK′

µ
(M)| ≤ ℵ1.

Also the second sentence in (1) is easy.
1A) Use I.5.28,I.5.29.
In more detail, (but not much point in reading without some under-
standing of I§5, however we should not use I.5.34 as long as we do not
strengthen our assumptions) by part (1) we can assume that clauses
(δ)− + (ε) hold. (Looking at the old version [Sh 88] of Chapter I
remember that there ≺ means ≤K.) We can find D∗ = D∗

α, α < ω1,
which is a good countable diagram (see Definition I.5.10 and Fact
I.5.12 or I.5.22, I.5.27. So in particular (give the non-maximality of
models below) such that for some countable M0 <K M1 <K M2 we
have Mm is (D∗(Mℓ),ℵ0)-homogeneous for ℓ < m ≤ 2. In I.5.28 we
define (KD∗

,≤D∗
). By I.5.29 the pair (KD∗

,≤D∗
) is an abstract el-

ementary class (the choice of D∗ a part, e.g. transitivity = Axiom II
which holds by the existence of the Mℓ’s above and I.5.22) categor-
ical in ℵ0 and no maximal countable model (by ≤D∗

, see I.5.12(2).
Now ℵ0-stability holds by I.5.29(2) and the equality of the three def-
initions of types in the proof of parts (2),(3) and KD∗

⊆ K so we
are done by part 3) below.
2),3) The first part of the proof serves also part (1) of the theorem
so we assume (δ)− instead of (δ). We should be careful: the notion
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of type has three relevant meanings here. For N ∈ Kℵ0
the three

definitions for S<ω(N) and of tp(ā, N,M) when ā ∈ ω>M,N ≤K

M ∈ Kℵ0
(of course we can use just 1-types) are:

(α) the one we use here (recall 1.9) which uses elementary map-
pings; for the present proof we call them S

<ω
0 (M), tp0(ā,M,N)

(β) S1(N) which is (recall: materialzie is close to but different
from realize)

D(N) =
{

p : p a complete L0
ℵ1,ℵ0

(N)-type over N

(so in each formula only finitely many parameters

from N appear)

such that for some M, ā ∈ ω>M,

ā materializes p in (M,N)
}

(“materializing a type” is defined in I.4.3(2)) so

S1(N) = {tp1(ā, N,M) : ā ∈ ω>M and N ≤K M ∈ Kℵ0
}

where

tp1(ā, N,M) = {ϕ(x̄) ∈ L0
ℵ1,ℵ0

(N) : M ℵ1

K
ϕ(ā)}

(see I.4.3(1) on the meaning of this forcing relation).

(γ) S2(N) which is

D∗(N) =
{

p : p a complete L0
ℵ1,ℵ0

(N ;N)-type over N

(so in each formula all members of N may appear)

such that for some M ∈ Kℵ0
and

ā ∈ ω>M satisfying N ≤K M the sequence

ā materializes p in (M,N)
}

so

S2(N) = {tp2(ā, N,M) : ā ∈ ω>M and N ≤K M ∈ Kℵ0
}

tp2(ā, N,M) = {ϕ(x̄) ∈ L0
ℵ1,ℵ0

(N,N) : M ℵ1

K
ϕ(ā)}.
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As we have amalgamation in Kℵ0
it is enough to prove for ℓ,m < 3

that

(∗)ℓ,m if k < ω,N ≤K M ∈ Kℵ0
and ā, b̄ ∈ kM , then

tpℓ(ā, N,M) = tpℓ(b̄, N,M) ⇒ tpm(ā, N,M) = tpm(b̄, N,M).

Now (∗)2,1 holds trivially (more formulas) and (∗)1,2 holds by I.5.9.
By amalgamation in Kℵ0

, if tp0(ā, N,M) = tp0(b̄, N,M), then for
some M ′,M ≤K M ′ ∈ Kℵ0

there is an automorphism f of M ′ over
N such that f(ā) = b̄, so trivially (∗)0,1, (∗)0,2 hold (we use the facts
that tpℓ(ā, N,M) is preserved by isomorphism and by replacing M
by M1 if M ≤K M2 ∈ Kℵ0

and N ∪ ā ⊆ M1 ≤K M2). Lastly we
prove (∗)2,0.
So N ≤K M ∈ Kℵ0

, hence tp2(c̄, N,M) : c̄ ∈ ω>M} ⊆ D∗(N) is
countable so by I.5.12(b),(c) for some countable α < ω1 we have
{tp2(c̄, N,M) : c̄ ∈ ω>M} ⊆ D∗

α(N). Now there is M ′ ∈ Kℵ0
such

that M ≤K M ′,M ′ is (D∗
α,ℵ0)

∗-homogeneous (by I.5.12(e) see Defi-
nition I.5.14) hence M ′ is (D∗

α(N),ℵ0)
∗- homogeneous (by I.5.12(f)),

and tp2(ā, N,M
′) = tp2(b̄, N,M

′) by I.5.7(3), (N here means N0

there, that is increasing the model preserve the type).
Lastly by Definition I.5.14 there is an automorphism f of M ′ over
N mapping ā to b̄, so we have proved (∗)2,0, so the three definitions
of type are equivalent.

Now we define for M ∈ Kℵ0
:

(a) S bs(M) = {p ∈ SK(M) : p not algebraic}

(b) for M0,M1,M3 ∈ Kℵ0
and an element a ∈M3 we define:

⋃

(M0,M1, a,M3) iff M0 ≤K M1 ≤K M3 and a ∈M3\M1 and

tp1(a,M1,M3)(= gtp(a,M1,M3) in Chapter I’s notation)
is definable over some finite b̄ ∈ ω>M0 (equivalently is pre-
served by every automorphism of M1 over b̄ (see I.5.19)
equivalently gtp(a,M1,M3) is the stationarization
of gtp(a,M0,M3).

Now we should check the axioms from Definition 2.1.

Clause (A): By clause (α) of the assumption.
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Clauses (B),(C): By clause (δ) or (δ)− of the assumption except
“the superlimit M ∈ Kℵ0

is not ≤K-maximal” which holds by clause
(γ) + (δ) or (γ) + (δ)−.

Clause (D): By the definition (note that about clause (d), bs-stability,
that it holds by assumption (δ), and about clause (c), i.e., the density
is trivial by the way we have defined S bs).

Subclause (E)(a): By the definition.

Subclause (E)(b)(monotonicity):
Let M0 ≤K M ′

0 ≤K M ′
1 ≤K M1 ≤K M3 ≤ M ′

3 be all in Kℵ0
and

assume
⋃

(M0,M1, a,M3). So M ′
0 ≤K M ′

1 ≤K M3 ≤ M ′
3 and a ∈

M3\M1 ⊆M ′
3\M

′
1. Now by the assumption and the definition of

⋃

,

for some b̄ ∈ ω>(M0), gtp(a,M1,M3) is definable over b̄. So the same
holds for gtp(a,M ′

1,M3) by I.5.24, in fact (with the same definition)
and hence for gtp(a,M ′

1,M
′
3) = gtp(a,M ′

1,M3) by I.5.7(3), so as
b̄ ∈ ω>(M0) ⊆

ω>(M ′
0) we have gotten

⋃

(M ′
0,M

′
1, a,M

′
3).

For the additional clause in the monotoncity Axiom, assume in ad-
ditionM ′

1∪{a} ⊆M ′′
3 ≤K M ′

3 again by I.5.7(3) clearly gtp(a,M ′
1,M

′′
3 ) =

gtp(a,M ′
1,M

′
3), so (recalling the beginning of the proof) we are

done.

Sublcause (E)(c)(local character):
So let 〈Mi : i ≤ δ + 1〉 be ≤K-increasing continuous in Kℵ0

and a ∈ Mδ+1 and tp(a,Mδ,Mδ+1) ∈ S bs(Mδ), so a /∈ Mδ and
gtp(a,Mδ,Mδ+1) is definable over some b̄ ∈ ω>(Mδ) by I.5.6.
As b̄ is finite, for some α < δ we have b̄ ⊆ Mα, hence we have
(tp(a,Mβ,Mδ+1) ∈ S bs(Mβ) trivially and) tp(a,Mδ,Mδ+1) does
not fork over Mβ.

Sublcause (E)(d)(transitivity):
By I.5.24(2) or even better I.5.22.

Subclause (E)(e)(uniqueness):
Holds by the Definition I.5.19.

Subclause (E)(f)(symmetry):
By I.5.30 + uniqueness we get (E)(f). Actually I.5.30 gives this

more directly.
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Subclause (E)(g)(extension existence):
By I.5.19 (i.e., by I.5.6 + all M ∈ Kℵ0

are ℵ0-homogeneous).
Alternatively, see I.5.26.

Subclause (E)(h)(continuity):
Suppose 〈Mα : α ≤ δ〉 is ≤K- increasingly continuous, Mα ∈

Kℵ0
, δ < ω1, p ∈ S (Mδ) and α < δ ⇒ p ↾ Mα does not fork over

M0. Now we shall use (E)(c)+(E)(d). As p ↾ Mα ∈ S bs(Mα)
clearly p ↾ Mα is not realized in Mα hence p is not realized in Mα;

as Mδ =
⋃

α<δ

Mα necessarily p is not realized in Mδ, hence p is not

algebraic.
So p ∈ S bs(Mδ). For some finite b̄ ∈ ω>(Mδ), p is definable over

b̄, let α < δ be such that b̄ ∈ ω>(Mα), so as in the proof of (E)(c),
(or use it directly) the type p does not fork over Mα. As p ↾ Mα

does not fork over M0, by (E)(d) we get that p does not fork over
M0 as required. Actually we can derive (E)(h) by 2.17.

Subclause (E)(i)(non-forking amalgamation):
One way is by I.5.30; (note that in I.5.34 we get more, but assum-

ing, by our present notation İ(ℵ2, K) < µwd(ℵ2)); but another way
is just to use 2.16.

�3.4

(C) The uncountable cardinality quantifier case, Lω1,ω(Q).
Now we turn to sentences in Lω1,ω(Q).

3.5 Conclusion. Assume ψ ∈ Lω1,ω(Q) and 1 ≤ İ(ℵ1, ψ) < 2ℵ1 and
2ℵ0 < 2ℵ1 .
Then for some abstract elementary classes K,K+ (note τψ ⊂ τK =
τK+) we have:

(a) K satisfies (α), (β), (δ), (ε) from 3.4 with τK ⊇ τψ countable
(for (γ), (b) is a replacement)

(b) for every µ > ℵ0, İ(µ,K(ℵ1-saturated)) ≤ İ(µ, ψ), where12

“ℵ1-saturated” is well defined as Kℵ0
has amalgamation, see

1.14

12much less than saturation suffice, like “obeying” <∗∗
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(c) for some
⋃

,S bs (and λ = ℵ0), the triple (K,
⋃

, Sbs) is as in

3.4(2) so is a good ℵ0-frame

(d) every ℵ1-saturated member of K belongs to K+ and there is an
ℵ1-saturated member of K (and naturally it is uncountable,
even of cardinality ℵ1)

(e) K+ is an a.e.c., has LS number ℵ1 and {M ↾ τψ : M ∈ K+} ⊆
{M : M |= ψ} and every τ -model M of ψ has a unique

expansion in K+ hence µ ≥ ℵ1 ⇒ İ(µ, ψ) = İ(µ,K+) and K+

is the class of models of some complete ψ ∈ Lω1,ω(Q).

Proof. Essentially by [Sh 48] and 3.4.
I feel that upon reading [Sh 48] the proof should not be inherently

difficult, much more so having read 3.4, but will give full details.
Recall Mod(ψ) is the class of τψ-models of ψ. We can find a countable
fragment L of Lω1,ω(Q)(τψ) to which ψ belongs and a sentence
ψ1 ∈ L ⊆ Lω1,ω(Q)(τψ) such that ψ1 is “nice” for [Sh 48, Definition
3.1,3.2], [Sh 48, Lemma 3.1]

⊛1(a) ψ1 has uncountable models
(b) ψ1 ⊢ ψ, i.e., every model of ψ1 is a model of ψ
(c) ψ1 is Lω1,ω(Q)-complete
(d) every model M |= ψ1 realizes just countably many complete

Lω1,ω(Q)(τψ)-types (of any finite arity, over the empty set),
each isolated by a formula in L .

The proof of ⊛1(d) is sketched in Theorem 2.5 of [Sh 48]. The ref-
erence to Keisler [Ke71] is to the generalization of theorems 12 and
28 of Keisler’s book from Lω1,ω to Lω1,ω(Q), see I.0.2.
Let

⊛2 (i) K0 = (Mod(ψ),≺L ),

(ii) K1 = (Mod(ψ1),≺L )

⊛3 Kℓ is an a.e.c. with L.S. number ℵ1 for ℓ = 0, 1.

Toward defining K, let τK = τψ ∪ {Rϕ(x̄) : ϕ(x̄) ∈ L }, Rϕ(x̄) a new
ℓg(x̄)-predicate and let ψ2 = ψ1∧{(∀ȳ)(Rϕ(x̄)(ȳ) = ϕ(ȳ) : ϕ(x̄) ∈ L}.
For every M ∈ Mod(ψ) we define M+ by
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⊛4 M+ is M expanded to a τK-model by letting RM
+

ϕ(x̄) = {ā ∈
ℓg(x̄)M : M |= ϕ[ā]}

⊛5 (a) K
+
0 = ({M+ : M ∈ Mod(ψ)},≺L) is an a.e.c. with

LS(K+
0 ) = ℵ1

(b) K
+
1 = ({M+ : M ∈ Mod(ψ1)},≺L) is an a.e.c. with

LS(K+) = ℵ1.

Clearly

⊛6 if M |= ψ1 then M+ is an atomic model of the complete
first-order theory Tψ1

where Tψ1
is the set of first order con-

sequences in L(τK) of ψ2.

So it is natural to define K:

⊛7(a) N ∈ K iff

(α) N is a τK-model which is an atomic model of Tψ1

(β) if ψ1 ⊢ (∀x̄)[ϕ1(x̄) = (Qy)ϕ2(y, x̄)] and ϕ1, ϕ2 ∈ L and
N |= ¬Rϕ1(x̄)[ā] then {b ∈ N : N |= Rϕ2(y,x̄)(b, ā)} is
countable

(b) N1 ≤K N2 iff (N1, N2 ∈ K,N1 ≺L N2 equivalently N1 ⊆
N2 and) for ϕ1(x̄), ϕ2(y, x̄) as in subclause (β) of clause (a)
above, if ā ∈ ℓg(x̄)(N1), N1 |= ¬Rϕ1(x̄)[ā] and b ∈ N2\N1 then
N2 |= ¬Rϕ2(y,x̄)[b, ā].

Observe

⊛8 N ∈ K iff N is an atomic τK-model of the first order L(τK)-
consequences ψ2 (i.e. of ψ and every τK sentence of the form
∀x̄[Rϕ(x̄) ≡ ϕ(x̄)]) and clause (β) of ⊛7(a) holds

⊛9 K is an a.e.c. with LS(K) = ℵ0 and is PCℵ0
,K is categorical

in ℵ0 (and ≤K is called ≤∗ in [Sh 48, Definition 3.3]).

Note that K1,K
+
1 has the same number of models, but K has “more

models” than K
+
1 , in particular, it has countable members and K0 has

at least as many models as K1. For N ∈ K to be in K
+
1 = {M+ : M ∈

Mod(ψ1)} what is missing is the other implications in ⊛7(a)(β).
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This is very close to 3.4, but K may have many models in ℵ1 (as Q
is not necessarily interpreted as expected). However,

⊛10 constructing M ∈ Kℵ1
by the union as ≤K-increasing con-

tinuous chain 〈Mi : i < ω1〉, to make sure M ∈ K
+
1 it is

enough that for unboundedly many α < ω1,Mα <
∗∗ Mα+1

and (∀M ∈ Kℵ0
)(∃N ∈ Kℵ0

)(M <∗∗ N)
where

⊛11 for M,N ∈ K,M <∗∗ N iff

(i) M ≤K N

(ii) in ⊛7(b) also the inverse direction holds.

Does K have amalgamation in ℵ0? Now [Sh 48, Lemma 3.4], almost
says this but it assumed ♦ℵ1

instead of 2ℵ0 < 2ℵ1 ; and I.3.8 almost
says this, but the models are from Kℵ1

rather than K
+
ℵ1

but I.3.16

fully says this using the so called KF

ℵ1
, see Definition I.3.14 and

using F such that M ∈ Kℵ0
⇒ M <∗∗ F(N) ∈ Kℵ0

; or pedantically
F = {(M,N) : M <∗∗ N are from K}. So

⊛12 K has the amalgamation property in ℵ0.

It should be clear by now that we have proved clauses (a),(b),(d),(e)
of 3.5 using K. We have to prove clause (c); we cannot quote 3.4
as clause (γ) there is only almost true. The proof is similar to (but
simpler than) that of 3.4 quoting [Sh 48] instead of Chapter I; a
marked difference is that in the present case the number of types
over a countable model is countable (in K) whereas in Chapter I it
seemingly could be ℵ1, generally [Sh 48] situation is more similar to
the first order logic case.

Recall that all models from K are atomic (in the first order sense)
and we shall use below tpL.

As K has ℵ0-amalgamation (by ⊛12), clearly [Sh 48, §4] applies;
now by [Sh 48, Lemma 2.1](B) + Definition 3.5, being (ℵ0, 1)-stable
as defined in [Sh 48, Definition 3.5](A) holds. Hence all clauses of
[Sh 48, Lemma 4.2] hold, in particular ((D)(β) there and clause (A),
i.e., [Sh 48, Def.3.5](B)), so
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⊛13 (i) if M ≤K N and ā ∈ N then tpL(ā,M,N) is definable
over a finite subset of M

(ii) if M ∈ Kℵ0
then {tpL(ā,M,N) : ā ∈ ω>N and M ≤K

N} is countable.

By [Sh 48, Lemma 4.4] it follows that

⊛14 if M ≤K N are countable and ā ∈ M then tpL(ā,M,N)
determine tpK(ā,M,N).

Now we define s = (Kℵ0
,S bs,

⋃

) by

⊛15 S bs(M) = {tpK(ā,M,N) : M ≤K N are countable and
ā ∈ ω>N but ā /∈ ω>M}

⊛16 tpK(ā,M1,M3) does not fork over M0 where M0 ≤K M1 ≤K

M3 ∈ Kℵ0
iff tpL(ā,M1,M3) is definable over some finite

subset of M0.

Now we check “s is a good frame”, i.e., all clauses of Definition 2.1.

Clause (A): By ⊛9 above.

Clause (B): As K is categorical in ℵ0, has an uncountable model and
LS(K) = ℵ0 this should be clear.

Clause (C): Kℵ0
has amalgamation by ⊛12 and has the JEP by cat-

egoricity in ℵ0 and Kℵ0
has no maximal model by (categoricity and)

having uncountable models (and LS(K) = ℵ0).

Clause (D): Obvious; stability, i.e., (D)(d) holds by ⊛13(ii) + ⊛14.

Subclause (E)(a),(b): By the definition.

Subclause (E)(c): (Local character).
If 〈Mi : i ≤ δ + 1〉 is ≤K-increasing continuous Mi ∈ Kℵ0

, ā ∈
ω>(Mδ+1) and ā ∈ ω>(Mδ),
then for some finite A ⊆ Mδ, tpL(ā,Mδ,Mδ+1) is definable over A,
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so for some i < δ, A ⊆ Mδ hence j ∈ [i, δ) ⇒ tpL(ā,Mi,Mδ+1) is
definable over A⇒

⋃

(Mi,Mδ, ā,Mδ+i).

Subclause (E)(d): (Transitivity).
As if M ′ ≤K M ′′ ∈ Kℵ0

, two definitions in M ′ of complete types,
which give the same result in M ′ give the same result in M ′′.

Sublause (E)(e)(uniqueness): By ⊛14 and the justification of transi-
tivity.

Subclause (E)(f)(symmetry): By [Sh 48, Theorem 5.4], we have the
symmetry property see [Sh 48, Definition 5.2]. By [Sh 48, 5.5] + the
uniqueness proved above we can finish easily.

Subclause (E)(g): Extension existence.
Easy, included in [Sh 48, 5.5].

Subclause (E)(h): Continuity.
As S bs

s (M) is the set of non-algebraic types this follows from
“finite character”, that is by 2.17(3)(4).

Subclause (E)(i): non-forking amalgamation
By 2.16. �3.5

3.6 Remark. So if ψ ∈ Lω1,ω(Q) and 1 ≤ İ(ℵ1, ψ) < 2ℵ1 , we essen-
tially can apply Theorem 0.1, exactly see 9.4.

(D) Starting at λ > ℵ0.
The next theorem puts the results of [Sh 576] in our context hence

rely on it heavily.
(Alternatively, even eliminating “WDmId(λ+) is λ++-saturated”

we can deduce 3.7 by Chapter VI, Chapter VII, i.e. by VI.0.2(2)
there is a so called almost good λ-frame s and by VII.4.32 it is even
a good λ-frame, and by §9 here, also s

+ is a good λ+-frame and
easily it is the frame described in 3.7(2).)

We use K3,na
λ as in Chapter VI called K3

λ is [Sh 576]. Note that
while the material does not [Sh 576, §1,§2,§4,§7] appears in Chapter
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VI, the material in [Sh 576, §8,§9,§10] similar to §6 - §9 here, so we
still need some parts of [Sh 576], though as said above we can avoid
it.

3.7 Theorem. Assume 2λ < 2λ
+

< 2λ
++

and

(α) K is an abstract elementary class with LS(K) ≤ λ

(β) K is categorical in λ and in λ+

(γ) K has a model in λ++

(δ) İ(λ+2, K) < µunif(λ
+2, 2λ

+

) and WDmId(λ+) is not λ++-
saturated or just some consequences: density of minimal types
(see by VI.4.13, VI.4.14) and ⊗, i.e. K3,uq

λ 6= ∅ of [Sh
576, 6.4,pg.99] = VI.6.6 proved by the conclusion of [Sh 576,
Th.6.7 (pg.101)] or VI.6.11.

Then 1) Letting µ = λ+ we can choose
⋃

µ
,S bs such that (K≥µ,

⋃

µ
,S bs)

is a µ-good frame.
2) Moreover, we can let

(a) S bs(M) := {tpK(a,M,N) : for some M , N , a

we have (M,N, a) ∈ K3,na
λ+

and for some M ′ ≤K M we have M ′ ∈ Kλ

and tpK(a,M ′, N) ∈ SK(M ′) is minimal}

(see Definition [Sh 576, 2.3(4),pg.56] and [Sh 576, 2.5(1),(13),pg.57-
58] or (VI.1.6, VI.1.11)

(b)
⋃

=
⋃

µ
be defined by:

⋃

(M0,M1, a,M3) iff M0 ≤K M1 ≤K

M3 are from Kµ, a ∈ M3\M1 and for some N ≤K M0 of
cardinality λ, the type tpK(a,N,M3) ∈ SK(N) is minimal.

Proof. 1), 2). Note that K has amalgamation in λ and in λ+, see
I.3.8. By clause (δ) of the assumption, we can use the “positive”
results of [Sh 576] in particular [Sh 576] freely. Now (see Definition
1.12(2))
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(∗) if (M,N, a) ∈ K3,na
λ+ and M ′ ≤K M,M ′ ∈ Kλ and p =

tpK(a,M ′, N) is minimal (see Definition 1.9(0)) then

(a) if q ∈ SK(M) is not algebraic and q ↾ M ′ = p then
q = tpK(a,M,N)

(b) if 〈Mα : α < µ〉, 〈Nα : α < µ〉 are ≤K-representations
of M,N respectively then for a club of δ < µ we have
tpK(a,Mδ, Nδ) ∈ SK(Mδ) is minimal and reduced

[Why? For clause (b) let α∗ = Min{α : M ′ ≤K Mα}, so
α∗ is well defined and as M is saturated (for K), for a club
of δ < µ = λ+, the model Mδ is (λ, cf(δ))-brimmed over M ′

hence by [Sh 576, 7.5(2)(pg.106)] we are done.
For clause (a) let M0 = M,M1 = N and a1 = a and

M2, a2 = a be such that (M0,M2, a2) ∈ K3,na
µ = K3,na

λ+ and

q = tpK(a2,M0,M). Now we repeat the proof of [Sh 576,
9.5(pg.120)] but instead f(a2) /∈ M1 we require f(a2) = a1;
we are using [Sh 576, 10.5(1)(pg.125)] which says <∗

λ+=<K↾

Kλ+ .]

In particular we have used

(∗∗) if M0 ≤Kλ
M1,M1 is (λ, κ)-brimmed over M0, p ∈ SK(M1) is

not algebraic and p ↾ M0 is minimal, then p is minimal and
reduced.

Clause (A):
This is by assumption (α).

Clause (B):
As K is categorical in µ = λ+, the existence of superlimit M ∈ Kµ

follows; the superlimit is not maximal as LS(K) ≤ λ & Kµ+ =
Kλ++ 6= ∅ by assumption (γ).

Clause (C):
Kλ+ has the amalgamation property by I.3.8 or [Sh 576, 1.4(pg.46),

1.6(pg.48)] and Kλ has the JEP in λ+ by categoricity in λ+.

Clause (D):
Subclause (D)(a), (b):
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By the definition of S bs(M) and of minimal types (in SK(N), N ∈
Kλ,
[Sh 576, 2.5(1)+(3)(pg.57), 2.3(4)+(6)(pg.56)], this is clear.

Subclause (D)(c):
Suppose M ≤K N are from Kµ and M 6= N ; let 〈Mi : i <

λ+〉, 〈Ni : i < λ+〉 be a ≤K-representation of M,N respectively,
choose b ∈ N\M so E = {δ < λ+ : Nδ ∩M = Mδ and b ∈ Nδ} is
a club of λ+. Now for δ = Min(E) we have Mδ 6= Nδ,Mδ ≤K Nδ
and there is a minimal inevitable p ∈ SK(Mδ) by [Sh 576, 5.3,pg.94]
and categoricity of K in λ; so for some a ∈ Nδ\Mδ we have p =
tpK(a,Mδ, Nδ). So tpK(a,M,N) is non-algebraic as a ∈ M ⇒
a ∈ M ∩ Nδ = Mδ, a contradiction, so tpK(a,M,N) ∈ S bs(M) as
required.

Subclause (D)(d): IfM ∈ Kµ let 〈Mi : i < λ+〉 be a ≤K-representation
of M , so by (∗)(a) above p ∈ S bs(M) is determined by p ↾ Mα if
p ↾ Mα is minimal and reduced. But for every such p there is such
α(p) < λ+ by the definition of S bs(M) and for each α < λ+ there are
≤ λ possible such p ↾ Mα as K is stable in λ by [Sh 576, 5.7(a)(pg.97)],
so the conclusion follows. Alternatively, M ∈ Kµ ⇒ |S bs(M)| ≤ µ
as by [Sh 576, 10.5(pg.125)], we have ≤∗

λ+=≤K↾ Kλ+ , so we can
apply [Sh 576, 9.7(pg.121)]; or use (∗) above.

Clause (E):
Subclause (E)(a):

Follows by the definition.

Subclause (E)(b): (Monotonicity)
Obvious properties of minimal types in S (M) for M ∈ Kλ.

Subclause (E)(c): (Local character)
Let δ < µ+ = λ++ and Mi ∈ Kµ be ≤K-increasing continuous for

i ≤ δ and p ∈ S bs(Mδ), so for some N ≤K Mδ we have N ∈ Kλ and
p ↾ N ∈ SK(N) is minimal. Without loss of generality δ = cf(δ)
and if δ = λ+, there is i < δ such that N ⊆ Mi and easily we are
done. So assume δ = cf(δ) < λ+.
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Let 〈M i
ζ : ζ < λ+〉 be a ≤K-representation of Mi for i ≤ δ, hence E

is a club of λ+ where:

E :=
{

ζ < λ+ :ζ a limit ordinal and for j < i ≤ δ we have

M i
ζ ∩Mj = M j

ζ and for ξ < ζ, i ≤ δ we have :

M i
ζ is (λ, cf(ζ))-brimmed over M i

ξ and N ≤K M δ
ζ

}

.

Let ζi be the i-th member of E for i ≤ δ, so 〈ζi : i ≤ δ〉 is increasing
continuous, 〈M i

ζi
: i ≤ δ〉 is ≤K-increasingly continuous in Kλ and

M i+1
ζi+1

is (λ, cf(ζi+1))-brimmed over M i+1
ζi

hence also over M i
ζi

. Also

p ↾ M δ
ζδ

is non-algebraic (as p is) and extends p ↾ N (as N ≤K M δ
ζδ

as ζδ ∈ E) hence p ↾ M δ
ζδ

is minimal.

Also M δ
ζδ

is (λ, cf(ζδ))-brimmed over M δ
ζ0

hence over N , hence by

(∗∗) above we get that p ↾ M δ
ζδ

is not only minimal but also reduced.

Hence by [Sh 576, 7.3(2)(pg.103)] applied to 〈M i
ζi

: i ≤ δ〉, p ↾ M δ
ζδ

we know that for some i < δ the type p ↾ M i
ζi

= (p ↾ M δ
ζδ

) ↾ M i
ζi

is minimal and reduced, so it witnesses that p ↾ Mj ∈ S bs(Mj) for
every j ∈ [i, δ), as required.

Subclause (E)(d): (Transitivity)
Easy by the definition of minimal.

Subclause (E)(e): (Uniqueness)
By (∗)(a) above.

Subclause (E)(f): (Symmetry)
By the symmetry in the situation assume M0 ≤K M1 ≤K M3 are

from Kµ,
a1 ∈ M1\M0, a2 ∈ M3\M1 and tpK(a1,M0,M3) ∈ S bs(M0) and
tpK(a2,M1,M3) ∈ S bs(M1) does not fork over M0; hence for ℓ =
1, 2 we have tpK(aℓ,M0,M3) ∈ S bs(M0). By the existence of dis-
joint amalgamation (by [Sh 576, 9.11 (pg.122), 10.5(1) (pg.125)]
there are M2,M

′
3, f such that M0 ≤K M2 ≤K M ′

3 ∈ Kµ, M3 ≤K

M ′
3, f is an isomorphism from M3 onto M2 over M0, and M3 ∩

M2 = M0. By tpK(a2,M0,M3) ∈ S bs(M1) and as f(a2) /∈ M1
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being in M2\M0 = M2\M3 and a2 /∈ M1 by assumption and as
a2, f(a2) realize the same type from SK(M0) clearly by (∗)(a) we
have tpK(a2,M1,M

′
3) = tpK(f(a2),M1,M

′
3).

Using amalgamation in Kµ (and equality of types) there is M ′′
3

such that:
M ′

3 ≤K M ′′
3 ∈ Kµ, and there is an ≤K-embedding g of M ′

3 into
M ′′

3 such that g ↾ M1 = idM1
and g(f(a2)) = a2. Note that as

a1 /∈ g(M2),M1 ≤K g(M2) ∈ Kµ and tpK(a1,M1,M
′′
3 ) is minimal

then necessarily tpK(a1, g(M2),M
′′
3 ) is its non-forking extension. So

g(M2),M
′′
3 are models as required.

Subclause (E)(g): (Extension existence)
Claims [Sh 576, 9.11(pg.122), 10.5(1)(pg.125)] do even more.

Subclause (E)(h): (Continuity)
Easy.

Subclause (E)(i): (Non-forking amalgamation)
Like (E)(f) or use 2.16. �3.7

3.8 Question: If K is categorical in λ and in µ and µ > λ ≥ LS(K),
can we conclude categoricity in χ ∈ (µ, λ)?

3.9 Fact. In 3.7:
1) If p ∈ S bs(M) and M ∈ Kµ, then for some N ≤K M,N ∈ Kλ

and p ↾ N is minimal and reduced.
2) If M <K N,M ∈ Kµ and p ∈ S bs(M), then some a ∈ N\M
realizes p, (i.e., “a strong version of uni-dimensionality” holds).

Proof. The proof is included in the proof of 3.7.

∗ ∗ ∗

(E) An Example:
A trivial example (of an approximation to good λ-frame) is:
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3.10 Definition/Claim. 1) Assume that K is an a.e.c. and λ ≥
LS(K) or K is a λ-a.e.c. We define s = sλ[K] as the triple s =
(Kλ,S

na,
⋃

na
) where:

(a) S na(M) = {tpK(a,M,N),M ≤K N and a ∈ N\M}

(b)
⋃

(M0,M1, a,M3) iff M0 ≤Kλ
M1 ≤Kλ

M3 and a ∈M3\M1.

2) Then s satisfies Definition 2.1 of good λ-frame except possibly:
(B), existence of superlimits, (C) amalgamation and JEP, (D)(d)
stability and (E)(e),(f),(g),(i) uniqueness, symmetry, extension exis-
tence and non-forking amalgamation.

§4 Inside the frame

We investigate good λ-frames. We prove stability in λ (we have
assumed in Definition 2.1 only stability for basic types), hence the
existence of a (λ, ∂)-brimmed ≤K-extension in Kλ over M0 ∈ Kλ (see
4.2), and we give a sufficient condition for “Mδ is (λ, cf(δ))-brimmed

over M0” (in 4.3). We define again K3,bs
λ (like K3

λ from 1.12(2) but
the type is basic) and the natural order ≤bs on them as well as “re-
duced” (Definition 4.5), and indicate their basic properties (4.6).
We may like to construct sometimes pairs Ni ≤Kλ

Mi such that
Mi, Ni are increasing continuous with i and we would like to guar-
antee that Mγ is (λ, cf(γ))-brimmed over Nγ , of course we need to
carry more inductive assumptions. Toward this we may give a suffi-
cient condition for building a (λ, cf(γ))-brimmed extension over Nγ
where 〈Ni : i ≤ γ〉 is ≤Kλ

-increasing continuous, by a triangle of
extensions of the Ni’s, with non-forking demands of course (see 4.7).
We also give conditions on a rectangle of models to get such pairs in
both directions (4.11), for this we use nice extensions of chains (4.9,
4.10).

Then we can deduce that if “M1 is (λ, ∂)-brimmed over M0” then
the isomorphism type of M1 over M0 does not depend on ∂ (see 4.8),
so the brimmed N over M0 is unique up to isomorphism (i.e. being
(λ, ∂)-brimmed over M0 does not depend on ∂). We finish giving
conclusion about Kλ+ , Kλ++ .
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4.1 Hypothesis. s = (K,
⋃

,S bs) is a good λ-frame.

4.2 Claim. 1) K is stable in λ, i.e., M ∈ Kλ ⇒ |S (M)| ≤ λ.
2) For every M0 ∈ Kλ and ∂ ≤ λ there is M1 such that M0 ≤K M1 ∈
Kλ and M1 is (λ, ∂)-brimmed over M0 (see Definition 1.15) and it
is universal13 over M0.

Proof. 1) LetM0 ∈ Kλ and we choose by induction on α ∈ [1, λ],Mα ∈
Kλ such that:

(i) Mα is ≤K-increasing continuous

(ii) if p ∈ S bs(Mα) then this type is realized in Mα+1.

No problem to carry this: for clause (i) use Axiom(A), for clause
(ii) use Axiom (D)(d) and amalgamation in Kλ, i.e., Axiom (C).
If every q ∈ S (M0) is realized in Mλ we are done. So let q be a
counterexample, so let M0 ≤K N ∈ Kλ be such that q is realized in
N . We now try to choose by induction on α < λ a triple (Nα, fα, āα)
such that:

(A) Nα ∈ Kλ is ≤K-increasingly continuous

(B) fα is a ≤K-embedding of Mα into Nα

(C) fα is increasing continuous

(D) f0 = idM0
and N0 = N

(E) āα = 〈aα,i : i < λ〉 lists the elements of Nα

(F ) if there are β ≤ α, i < λ such that tp(aβ,i, fα(Mα), Nα) ∈
S bs(fα(Mα)) then for some such pair (βα, iα) we have:

(i) the pair (βα, iα) is minimal in an appropriate sense, that
is: if (β, i) is another such pair then β + i > βα + iα or
β + i = βα + iα & β > βα or β + i = βα + iα & β =
βα & i ≥ iα

(ii) aβα,iα ∈ Rang(fα+1).

13in fact, this follows
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This is easy: for successor α we use the definition of type and let
Nλ := ∪{Nα : α < λ}. Clearly fλ := ∪{fα : α < λ} is a ≤s-
embedding of Mλ into Nλ over M0.

As in N , the type q is realized and it is not realized in Mλ nec-
essarily N * fλ(Mλ) hence Nλ 6= fλ(Mλ) but easily fλ(Mλ) ≤K

Nλ. So by Axiom (D)(c) for some c ∈ Nλ\fλ(Mλ) we have p =
tp(c, fλ(Mλ), Nλ) ∈ S bs(fλ(Mλ)). As 〈fγ(Mγ) : γ ≤ λ〉 is ≤K-

increasing continuous, by Axiom (E)(c) for some γ < λ we have
tp(c, fλ(Mλ), Nλ) does not fork over fγ(Mγ), also as c ∈ Nλ =
⋃

β<λ

Nβ clearly c ∈ Nβ for some β < λ and let i < λ be such that

c = aβ,i. Now if α ∈ [max{γ, β}, λ) then (β, i) is a legitimate can-
didate for (βα, iα) that is tp(aβ,i, fα(Mα), Nα) ∈ S bs(fα(Mα)) by
monotonicity of non-forking, i.e., Axiom (E)(b). So (βα, iα) is well
defined for any such α and βα + iα ≤ β + i by clause (F)(i). But
α1 < α2 ⇒ aβα1

,iα1
6= aβα2

,iα2
(as one belongs to fα1+1(Mα1

) and

the other not), contradiction by cardinality consideration.
2) So Kλ is stable in λ and has amalgamation, hence (see 1.16) the
conclusion holds; alternatively use 4.3 below. �4.2

4.3 Claim. Assume

(a) δ < λ+ is a limit ordinal divisible by λ

(b) M̄ = 〈Mα : α ≤ δ〉 is ≤K-increasing continuous sequence in
Kλ

(c) if i < δ and p ∈ S bs(Mi), then for λ ordinals j ∈ (i, δ)
there is c′ ∈Mj+1 realizing the non-forking extension of p in
S bs(Mj).

Then Mδ is (λ, cf(δ))-brimmed over M0 and universal over it.

4.4 Remark. 1) See end of proof of 6.29.
2) Of course, by renaming, Mδ is (λ, cf(δ))-brimmed over Mα for any
α < δ.
3) Why in clause (c) of 4.3 we ask for “λ ordinals j ∈ (i, δ)” rather
than “for unboundedly many j ∈ (i, δ)”? For λ regular there is no
difference but for λ singular not so. Think of K the class of (A,R), R
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an equivalence relation on A; (so it is not categorical) but for some λ-
good frames s,Ks = Kλ and exemplifies a problem; some equivalence
class of Mδ may be of cardinality < λ.

Proof. Like 4.2, but we give details.
Let g : δ → λ be a one to one and choose by induction on α ≤ δ

a triple (Nα, fα, āα) such that

(A) Nα ∈ Kλ is ≤K-increasing continuous

(B) fα is a ≤K-embedding of Mα into Nα

(C) fα is increasing continuous

(D) f0 = idM0
, N0 = M0

(E) āα = 〈aα,i : i < λ〉 list the elements of Nα

(F ) Nα+1 is universal over Nα

(G) if α < δ and there is a pair (β, i) = (βα, iα) satisfying the

condition (∗)β,ifα,Nα
stated below and it is minimal in the sense

that
(∗)β

′,i′

fα,Nα
⇒ (∗∗)β

′,i′,β,i
g , see below, then aβ,i ∈ Rang(fα+1),

where

(∗)β,ifα,Nα
(a) β ≤ α and i < λ

(b) tp(aβ,i, fα(Mα), Nα) ∈ S bs(fα(Mα))
(c) some c ∈ Mα+1 realizes f−1

α (tp(aβ,i, fα(Mα), Nα), so
by clause (b) it follows that c ∈Mα+1\Mα

(∗∗)β
′,i′,β,i
g g(β) + i < g(β′) + i′]∨

[g(β) + i = g(β′) + i′ & g(β) < g(β′)]∨
∨[g(β) + i = g(β′) + i′ & g(β) = g(β′) & i ≤ i′].

There is no problem to choose fα, Nα. Now in the end, by clauses
(A),(F) clearly Nδ is (λ, cf(δ))-brimmed over N0, i.e., over M0, so it
suffices to prove that fδ is onto Nδ. If not, then by Axiom (D)(c), the
density, there is d ∈ Nδ\fδ(Mδ) such that p := tp(d, fδ(Mδ), Nδ) ∈
S bs(fδ(Mδ)) hence for some β(∗) < δ we have d ∈ Nβ(∗) so for
some i(∗) < λ, d = aβ(∗),i(∗). Also by Axiom (E)(c), (the local
character) for every β < δ large enough say ≥ βd the type p does
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not fork over fδ(Mβ), without loss of generality βd = β(∗). Let

q = f−1
δ (tp(d, fδ(Mδ), Nδ), so it ∈ S bs(Mδ).

Let u = {α : β(∗) ≤ α < δ and q ↾ Mα ∈ S bs(Mα) (note
β(∗) ≤ α) is realized in Mα+1}. By clause (c) of the assumption
clearly |u| = λ. Also by the definition of v for every α ∈ u the

condition (∗)
β(∗),i(∗)
Nα,fα

holds, hence in clause (F) the pair (βα, iα) is

well defined and is “below” (β(∗), i(∗)) in the sense of clause (G).
But there are only ≤ |g(β(∗)) × i(∗)| < λ such pairs hence for
some α1 < α2 in u we have (βα1

, iα1
) = (βα2

, iα2
), a contradic-

tion: aβα1
,iα1

∈ Rang(fα1+1) ⊆ Rang(fα2
) = fα2

(Mα2
) hence

tp(aβα1
,iα1

, fα2
(Mα2

), Nα2
) /∈ S bs(fα2

(Mα2
)), contradiction. So we

are done. �4.3

∗ ∗ ∗

The following is helpful for constructions so that we can amalga-
mate disjointly preserving non-forking of a type; we first repeat the

definition of K3,bs
λ , <bs.

4.5 Definition. 1) Let (M,N, a) ∈ K3,bs
λ if M ≤K N are models

fromKλ, a ∈ N\M and tp(a,M,N) ∈ S bs(M). Let (M1, N1, a) ≤bs

(M2, N2, a) or write ≤s

bs, when: both triples are in K3,bs
λ ,M1 ≤K

M2, N1 ≤K N2 and tp(a,M2, N2) does not fork over M1.

2) We say (M,N, a) is bs-reduced when if it belongs to K3,bs
λ and

(M,N, a) ≤bs (M ′, N ′, a) ∈ K3,bs
λ ⇒ N ∩M ′ = M .

3) We say p ∈ S bs(N) is a (really the) stationarization of q ∈
S bs(M) if M ≤K N and p is an extension of q which does not
fork over M .

Remark. 1) The definition of K3,bs
λ is compatible with the one in 2.4

by 2.6(1).
2) We could have strengthened the definition of bs-reduced (4.5),
e.g., add: for no b ∈ N ′\M ′, do we have tp(b,M ′, N ′) ∈ S bs(M ′)
and there are M ′′, N ′′ such that (M ′, N ′, a) ≤bs (M ′′, N ′′, a) and
tp(b,M ′′, N ′′) forks over M ′.
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4.6 Claim. For parts (3),(4),(5) assume s is categorical (in λ).

1) If κ ≤ λ, (M,N, a) ∈ K3,bs
λ , then we can find M ′, N ′ such that:

(M,N, a) ≤bs (M ′, N ′, a) ∈ K3,bs
λ ,M ′ is (λ, κ)-brimmed over M,N ′

is (λ, κ)-brimmed over N and (M ′, N ′, a) is bs-reduced.

1A) If (M,Nℓ, aℓ) ∈ K3,bs
λ for ℓ = 1, 2, then we can find M+, f1, f2

such that: M ≤K M+ ∈ Kλ and for ℓ ∈ {1, 2}, fℓ is a ≤K-embedding
of Nℓ intoM+ overM and (M, fℓ(Nℓ), fℓ(aℓ)) ≤bs (f3−ℓ(N3−ℓ),M

+,
fℓ(aℓ)), equivalently tp(fℓ(aℓ), f3−ℓ(N3−ℓ),M

+) does not fork over
M .
2) If (Mα, Nα, a) ∈ K3,bs

λ is ≤bs-increasing for α < δ and δ < λ+ is

a limit ordinal then their union (
⋃

α<δ

Mα,
⋃

α<δ

Nα, a) is a ≤bs-lub. If

each (Mα, Nα, a) is bs-reduced then so is their union.
3) Let λ divide δ, δ < λ+. We can find 〈Nj, ai : j ≤ δ, i < δ〉 such

that: Nj ∈ Kλ is ≤K-increasing continuous, (Nj , Nj+1, aj) ∈ K3,bs
λ

is bs-reduced and if i < δ, p ∈ S bs(Ni) then for λ ordinals j ∈
(i, i + λ) the type tp(aj , Nj, Nj+1) is a non-forking extension of p;
so Nδ is (λ, cf(δ))-brimmed over each Ni, i < δ. We can add “N0 is
brimmed”.
4) For any (M0,M1, a) ∈ K3,bs

λ and M2 ∈ Kλ such that M0 ≤K M2

there are N0, N1 such that (M0,M1, a) ≤bs (N0, N1, a),M0 = M1 ∩
N0 and M2, N0 are isomorphic over M0. (In fact, if (M0,M2, b) ∈

K3,bs
λ we can add that for some isomorphism f from M2 onto N0

over M0 we have (M0, N0, f(a)) ≤bs (M1, N1, f(a)).)
5) If M0 ∈ Kλ is brimmed and M0 ≤s Mℓ for ℓ = 1, 2 and there is a
disjoint ≤s-amalgamation of M1,M2 over M0.

Proof. 1) We choose Mi, Ni, b
ℓ
i(ℓ = 1, 2), c̄i by induction on i < δ :=

λ such that

(a) (Mi, Ni, a) ∈ K3,bs
s is ≤bs-increasing continuous

(b) (M0, N0) = (M,N)

(c)1 b1i ∈Mi+1\Mi and tp(b1i ,Mi,Mi+1) ∈ S bs(Mi),

(c)2 b2i ∈ Ni+1\Ni and tp(b2i , Ni, Ni+1) ∈ S bs(Ni)

(d)1 if i < λ and p ∈ S bs(Mi) then the set {j : i ≤ j < λ and
tp(b1j ,Mj,Mj+1) is a non-forking extension of p} has order
type λ

Paper Sh:600, Chapter II



308 II. CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES

(d)2 if i < λ and p ∈ S bs(Ni) then the set {j : i ≤ j < λ and
tp(b2j , Nj , Nj+1) is the non-forking extension of p} has order
type λ

(e) c̄i = 〈ci,j : j < λ〉 list Ni

(f) if α < λ, i ≤ α, j < λ, ci,j /∈ Mα but for some (M ′′, N ′′) we
have (Mα+1, Nα+1, a) ≤bs (M ′′, N ′′, a) and ci,j ∈ M ′′ then
for some i1, j1 ≤ max{i, j} we have ci1,j1 ∈Mα+1\Mα.

Lastly, let M ′ = ∪{Mi : i < λ}, N ′ = ∪{Ni : i < λ}, by 4.3 M ′ is
(λ, cf(λ))-brimmed overM (using (d)1), andN ′ is (λ, cf(λ))-brimmed
over N (using (d)2).
Lastly, being bs-reduced holds by clauses (e)+(f).
1A) Easy.
2) Recall Ax(E)(h).
3) For proving part (3) use part (1) and the “so” is by using 4.3.
4) For proving part (4), without loss of generality M2 is (λ, cf(λ))-
brimmed over M0, as we can replace M2 by M ′

2 if M2 ≤K M ′
2 ∈ Kλ.

By part (3) there is a sequence 〈ai : i < δ〉 and an ≤K-increasing
continuous 〈Ni : i ≤ δ〉 with N0 = M0, Nδ = M2 and (Ni, Ni+1, ai) ∈

K3,bs
λ is reduced. Then use (1A) successively.

5) By part (3) as in the proof of part (4). �4.6

4.7 Claim. Assume

(a) γ < λ+ is a limit ordinal

(b) δi < λ+ is divisible by λ for i ≤ γ, 〈δi : i ≤ γ〉 is increasing
continuous

(c) 〈Ni : i < γ〉 is ≤K-increasing continuous in Kλ

(d) 〈Mi : i < γ〉 is ≤K-increasing continuous in Kλ

(e) Ni ≤K Mi for i < γ

(f) 〈Mi,j : j ≤ δi〉 is ≤K-increasing continuous in Kλ for each
i < γ

(g) Mi,0 = Ni, Mi,δi
= Mi, aj ∈ Mi,j+1\Mi,j and tp(aj ,Mi,j,

Mi,j+1) ∈ S bs(Mi,j) when i < γ, j < δi

(h) if j ≤ δi(∗), i(∗) < γ then 〈Mi,j : i ∈ [i(∗), γ)〉 is ≤K-
increasing continuous
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(i) tp(aj ,Mβ,j,Mβ,j+1) does not fork over Mi,j when i < γ, j <
δi, i ≤ β < γ

(j) if i < γ, j < δi, p ∈ S bs(Mi,j) then for λ ordinals j1 ∈ [j, δi)
we have tp(aj1 ,Mi,j1,Mi,j1+1) ∈ S bs(Mi,j1) is a non-forking
extension of p
or we can ask less

(j)− if i < γ, j < δi and p ∈ S bs(Mi,j) then for λ ordinals j1 ∈
[j, δγ) for some i1 ∈ [i, γ) we have tp(aj1 ,Mi1,j1 ,Mi1,j1+1) ∈
S bs(Mi1,j1) is a non-forking extension of p.

Then Mγ := ∪{Mi,j : i < γ, j < δi} = {Mi : i < γ} is (λ, cf(γ))-
brimmed over Nγ := ∪{Ni : i < γ}.

Proof. For j < δγ let Mγ,j = ∪{Mi,j : i < γ}, and let Mγ,δγ
= Mγ

be ∪{Mγ,j : j < δγ}. Easily 〈Mγ,j : j ≤ δγ〉 is ≤K-increasing
continuous, Mγ,j ∈ Kλ and i ≤ γ ∧ j < δi ⇒ Mi,j ≤K Mγ,j. Also if
i < γ, j < δi then tp(aj ,Mγ,j,Mγ,j+1) ∈ S bs(Mγ,j) does not fork
over Mi,j by Axiom (E)(h), continuity.
Now if j < δγ and p ∈ S bs(Mγ,j) then for some i < γ, p does not
fork over Mi,j (by Ax(E)(c)) and without loss of generality j < δi.

Hence if clause (j) holds we have u := {ε : j < ε < δi and
tp(aε,Mi,ε,Mi,ε+1) is a non-forking extension of p ↾ Mi,j} has λ
members. But for ε ∈ u, tp(aε,Mγ,ε,Mγ,ε+1) does not fork over
Mi,ε (by clause (i) of the assumption) hence does not fork over Mi,j

and by monotonicity it does not fork over Mγ,i and by uniqueness it
extends p. If clause (j)− holds the proof is similar. By 4.3 the model
Mγ is (λ, cf(γ))-brimmed over Nγ . �4.7

4.8 Lemma. 1) If M ∈ Kλ and the models M1,M2 ∈ Kλ are (λ, ∗)-
brimmed over M (see Definition 1.15(2)), then M1,M2 are isomor-
phic over M .
2) If M1,M2 ∈ Kλ are (λ, ∗)-brimmed then they are isomorphic.

We prove some claims before proving 4.8; we will not much use the
lemma, but it is of obvious interest and its proof is crucial in one
point of §6.
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4.9 Claim. 1)

(E)(i)+ long non-forking amalgamation for α < λ+:
if 〈Ni : i ≤ α〉 is ≤K-increasing continuous sequence of mem-
bers of Kλ, ai ∈ Ni+1\Ni for i < α, pi = tp(ai, Ni, Ni+1) ∈
S bs(Ni) and q ∈ S bs(N0), then we can find a ≤K-increasing
continuous sequence 〈N ′

i : i ≤ α〉 of members of Kλ such that:
i ≤ α⇒ Ni ≤K N ′

i ; some b ∈ N ′
0\N0 realizes q, tp(b, Nα, N

′
α)

does not fork over N0 and tp(ai, N
′
i , N

′
i+1) does not fork over

Ni for i < α.

2) Above assume in addition that there are M, b∗ such that N0 ≤K

M ∈ Kλ, b
∗ ∈M and tp(b∗, N0,M) = q. Then we can add: there is

a ≤K-embedding of M into N ′
0 over N0 mapping b∗ to b.

Proof. Straight (remembering Axiom (E)(i) on non-forking amalga-
mation of Definition 2.1). In details
1) Let M0, b

∗ be such that N0 ≤K[s] M0 and q = tp(b∗, N0,M0) and
apply part (2).
2) We choose (Mi, fi) by induction on i ≤ α such that

⊛ (a) Mi ∈ Ks is ≤K-increasing continuous

(b) fi is a ≤K-embedding of Ni into Mi

(c) fi is increasing continuous with i ≤ α

(d) M0 = M and f0 = idN0

(e) tp(b∗, fi(Ni),Mi) does not fork over N0

(f) tp(fi+1(ai),Mi,Mi+1) does not fork over fi(Ni).

For i = 0 there is nothing to do. For i limit take unions; clause
(e) holsd by Ax(E)(h). Lastly, for i = j + 1, we can find (M ′

i , f
′
i)

such that fj ⊆ f ′
i and f ′

i is an isomorphism from Ni onto M . Hence
fj(Nj) ≤K[s] N

′
i . Now use Ax(E)(i) for fj(Nj),M

′
i , Ni, f

′
i(aj), b

∗.
Having carried the induction, we rename to finish. �4.9

In the claim below, we are given a ≤Kλ
-increasing continuous 〈Mi :

i ≤ δ〉 and u0, u1, u2 ⊆ δ such that: u0 is where we are already given
ai ∈ Mi+1\Mi, u1 ⊆ δ is where we shall choose ai(∈ M ′

i+1\M
′
i) and

u2 ⊆ δ is the place which we “leave for future use”; main case is
u1 = δ; u0 = u2 = ∅.

Paper Sh:600, Chapter II



II.§4 INSIDE THE FRAME 311

4.10 Claim. 1) Assume

(a) δ < λ+ is divisible by λ

(b) u0, u1, u2 are disjoint subsets of δ

(c) δ = sup(u1) and otp(u1) is divisible by λ

(d) 〈Mi : i ≤ δ〉 is ≤K-increasing continuous in Kλ

(e) ā = 〈ai : i ∈ u0〉, ai ∈Mi+1\Mi, tp(ai,Mi,Mi+1) ∈ S bs(Mi).

Then we can find M̄ ′ = 〈M ′
i : i ≤ δ〉 and ā′ = 〈ai : i ∈ u1〉 such that

(α) M̄ ′ is ≤K-increasing continuous in Kλ

(β) Mi ≤K M ′
i

(γ) if i ∈ u0 then tp(ai,M
′
i ,M

′
i+1) is a non-forking extension of

tp(ai,Mi,Mi+1)

(δ) if i ∈ u2 then Mi = Mi+1 ⇒M ′
i = M ′

i+1

(ε) if i ∈ u1 then tp(ai,M
′
i ,M

′
i+1) ∈ S bs(M ′

i)

(ζ) if i < δ, p ∈ S bs(M ′
i) then for λ ordinals j ∈ u1 ∩ (i, δ) the

type tp(aj ,M
′
j,M

′
j+1) is a non-forking extension of p.

2) If we add in part (1) the assumption

(g) M0 ≤K N ∈ Kλ

then we can add to the conclusion

(η) there is an ≤K-embedding f of N into M ′
0 over M0 and more-

over f is onto.

3) If we add in part (1) the assumption

(h)+ M0 ≤K N ∈ Kλ and b ∈ N\M0, tp(b,M0, N) ∈ S bs(M0)

then we can add to the conclusion

(η)+ as in (η) and tp(f(b),Mδ,M
′
δ) does not fork over M0.

4) We can strengthen clause (ζ) in part (1) to

(ζ)+ if i < δ and p ∈ S bs(M ′
i) then for λ ordinals j we have

j ∈ [i, δ)∩u1 and tp(aj,M
′
j,M

′
j+1) is a non-forking extension

of p and otp(u1 ∩ j\i) < λ.
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Proof. Straight like 4.9(2). Note that we can find a sequence 〈u1,i,ε :
i < δ, ε < λ〉 such that: this is a sequence of pairwise disjoint sub-
sets of u1 each of cardinality λ satisfying u1,i,ε ⊆ {j : i < j, j ∈
u1 and |u1 ∩ (i, j)| < λ} (or we can demand that i ≤ i1 < i2 ≤
δ ∧ |u1 ∩ (i1, i2)| = λ⇒ |u1,i,ε ∩ (i1, i2)| = λ). �4.10

Toward building our rectangles of models with sides of difference
lengths (and then we shall use 4.7) we show (to understand the aim
of the clauses in the conclusion of 4.11 see the proof of 4.8 below):

4.11 Claim. Assume

(a) δℓ < λ+ is divisible by λ for ℓ = 1, 2

(b) M̄ ℓ = 〈M ℓ
α : α ≤ δℓ〉 is ≤K-increasing continuous for ℓ = 1, 2

(c) uℓ0, u
ℓ
1, u

ℓ
2 are disjoint subsets of δℓ, otp(uℓ1) is divisible by λ

and δℓ = sup(uℓ1) for ℓ = 1, 2

(d) āℓ ≡ 〈aℓα : α ∈ uℓ0〉 and tp(aℓα,M
ℓ
α,M

ℓ
α+1) ∈ S bs(M ℓ

α) for

ℓ = 1, 2, α ∈ uℓ0

(e) M1
0 = M2

0

(f) α ∈ uℓ1 ∪ u
ℓ
2 ⇒M ℓ

α = M ℓ
α+1 for ℓ = 1, 2.

Then we can find f̄ ℓ = 〈f ℓα : α ≤ δℓ〉, b̄
ℓ = 〈bℓα : α ∈ uℓ0 ∪ uℓ1〉 for

ℓ = 1, 2 and M̄ = 〈Mα,β : α ≤ δ1, β ≤ δ2〉 and functions ζ : u1
1 → δ2

and ε : u2
1 → δ1 such that

(α)1 for each α ≤ δ1, 〈Mα,β : β ≤ δ2〉 is ≤K-increasing continuous

(α)2 for each β ≤ δ2, 〈Mα,β : α ≤ δ1〉 is ≤K-increasing continuous

(β)1 for α ∈ u1
0, b

1
α belongs toMα+1,0 and tp(b1α,Mα,δ2 ,Mα+1,δ2) ∈

S bs(Mα,δ2) does not fork over Mα,0

(β)2 for β ∈ u2
0, b

2
β belongs to M0,β+1 and tp(b2β,Mδ1,β,Mδ1,β+1) ∈

S bs(Mδ1,β) does not fork over M0,β

(γ)1 for α ∈ u1
1, ζ(α) < δ2 and we have b1α ∈ Mα+1,ζ(α)+1 and

tp(b1α,Mα,δ2,Mα+1,δ2) does not fork over Mα,ζ(α)+1

(γ)2 for β ∈ u2
1, ε(β) < δ1 and we have b2β ∈ Mε(β)+1,β+1 and

tp(b2β ,Mδ1,β,Mδ1,β+1) does not fork over Mε(β)+1,β
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(δ)1 if α < δ1, β < δ2 and p ∈ S bs(Mα,β) or just p ∈ S bs(Mα,β+1)
then for λ ordinals14 α′ ∈ [α, δ1)∩u

1
1, the type tp(b1α′ ,Mα′,β+1,

Mα+1,β+1) is a (well defined) non-forking extension of p and
β = ζ(α′)

(δ)2 if α < δ1, β < δ2 and p ∈ S bs(Mα,β) or just p ∈ S bs(Mα+1,β)
then for λ ordinals15 β′ ∈ [β, δ2)∩u

2
1, the type tp(b2β′ ,Mα+1,β′,

Mα+1,β′+1) is a non-forking extension of p and α = ε(β′)

(ε) M0,0 = M1
0 = M2

0

(ζ)1 f1
α is an isomorphism from M1

α onto Mα,0 such that α ∈
u1

0 ⇒ f1
α(a1

α) = b1α
f1
0 = idM1

0
and f1

α is increasing continuous with α

(ζ)2 f2
β is an isomorphism from M2

β onto M0,β such that β ∈

u2
0 ⇒ f2

β(a2
β) = b2β

f2
0 = idM2

0
and f2

α is increasing continuous with α

(η)1 if α ∈ u1
2 then Mα,β = Mα+1,β for every β ≤ δ2

(η)2 if β ∈ u2
2 then Mα,β = Mα,β+1 for every α ≤ δ1.

Proof. Straight, divide uℓ1 to δ3−ℓ subsets large enough), in fact, we
can first choose the function ζ(−), ε(−). Now choose 〈Mα,β : α ≤
δ1, β ≤ β∗〉, 〈f1

α : α ≤ δ1〉, 〈f
2
β : β ≤ β∗〉 and 〈b1α : ζ(α) ∈ β∗〉, 〈b2β :

β < β∗〉 by induction on β∗ using 4.10. �4.11

Proof of 4.8. By 1.16(3), i.e., uniqueness of the (λ, θℓ)-brimmed
model over M , it is enough to show for any regular θ1, θ2 ≤ λ that
there is a modelN ∈ Kλ which is (λ, θℓ)-brimmed overM for ℓ = 1, 2.
Let δ1 = λ × θ1, δ2 = λ × θ2 (ordinal multiplication, of course),
M1
α = M2

β = M for α ≤ δ1, β ≤ δ2, u
1
0 = u2

0 = ∅, u1
1 = δ1, u

2
1 =

δ2, u
1
2 = u2

2 = ∅. So there are 〈Mα,β : α ≤ δ1, β ≤ δ2〉, 〈b
1
α : α <

δ1〉, 〈b
2
β : β < δ2〉 and 〈f1

α : α ≤ δ1〉, 〈f
2
β : β ≤ δ2〉 as in Claim 4.11.

Without loss of generality f1
α = f2

α = idM . Now

(∗)1 〈Mα,δ2 : α ≤ δ1〉 is ≤K-increasing continuous inKλ (by clause
(α)1, of 4.11). Also

14we can add “and otp(α′ ∩ u1
1\α2) < λ”

15we can add “and otp(β′ ∩ u2
1\β2) < λ”

Paper Sh:600, Chapter II



314 II. CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES

(∗)2 if α < δ1 and p ∈ S (Mα,δ2) then for λ ordinals α′ ∈ (α, δ1)∩
u1

1 the type tp(b1α′,δ2
,Mα′,δ2 ,Mα′+1,δ2) is a non-forking ex-

tension of p.

(Easy, by Axiom (E)(c) for some β < δ2, p does not fork over Mα,β+1

and use clause (δ)1 of 4.11).
So by 4.7, Mδ1,δ2 is (λ, cf(δ1))-brimmed over M0,δ2 which is M .
Similarly Mδ1,δ2 is (λ, cf(δ2))-brimmed over Mδ1,0 which is M ; so

together we are done.
�4.8

4.12 Claim. 1) If M ∈ Kλ+ and p ∈ S bs(M0),M0 ≤K M (so
M0 ∈ Kλ), then we can find b, 〈N0

α : α ≤ λ+〉 and 〈N1
α : α ≤ λ+〉

such that

(a) 〈N0
α : α < λ+〉 is a ≤K-representation of N0

λ+ = M

(b) 〈N1
α : α < λ+〉 is a ≤K-representation of N1

λ+ ∈ Kλ+

(c) N1
α+1 is (λ, λ)-brimmed over N1

α (hence N1
λ+ is saturated over

λ in K)

(d) M0 ≤ N0
0 and N0

α ≤K N1
α

(e) tps(b, N
0
α, N

1
α) is a non-forking extension of p for every α <

λ+.

2) We can add

(f) for α < β < λ+, N1
β is (λ, ∗)-brimmed over N0

β ∪N1
α.

Proof. 1) Easy by long non-forking amalgamation 4.9 (see 1.17).
2) Use 4.7. �4.12

4.13 Conclusion. 1) Kλ++ 6= ∅.
2) Kλ+ 6= ∅.
3) No M ∈ Kλ+ is ≤K-maximal.

Proof. 1) By (2) + (3).
2) By (B) of 2.1.
3) By 4.12. �4.13
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4.14 Exercise: 1) Let M ∈ Ks be superlimit and t = s[M ], so Kt is

categorical. If (M,N, a) ∈ Kbs
t is reduced for t, then it is reduced

for s.
2) In 4.6(3),(4),(5), we can omit the assumption “s is categorical” if:

(a) we add in part (3), eachNi is superlimit (equivalently brimmed)

(b) in parts (4),(5) add the assumption “M0 is superlimit”.

2) Some extra assumption in 4.6(5) is needed.

§5 Non-structure or some unique amalgamation

We shall assuming 2λ < 2λ
+

< 2λ
++

get from essentially İ(λ++, K) <

2λ
++

pedantically< µunif(λ
++, 2λ

+

) or just İ(λ++, K(λ+-saturated))

< µunif(λ
++, 2λ

+

), many cases of uniqueness of amalgamation as-
suming in addition WDmId(λ+) is not λ++-saturated, a weak as-
sumption. The proof is similar to [Sh 482], [Sh 576, §3] but now we
rely on Chapter VII, the “lean” version; and by the “full version”
without we can eliminate the additional assumption.

We define K3,bt
λ , it is a brimmed relative of K3,bs

λ hence the choice
of bt; it guarantees much brimness (see Definition 5.2) hence it guar-

antees some uniqueness, that is, if (M,N, a) ∈ K3,bt
λ ,M is unique

(recalling the uniqueness of the brimmed model) and more crucially,

we consider K3,uq
λ , (the family of members of K3,bs

λ for which we
have uniqueness in relevant extensions). Having enough such triples
is the main conclusion of this section (in 5.9 under “not too many
non-isomorphic models” assumptions). In 5.4 we give some proper-

ties of K3,bt
λ , K3,uq

λ .
To construct models in λ++ we use approximations of cardianl-

ity in λ+ with “obligation” on the further construction, which are
presented as pairs (M̄, ā) ∈ Ksq

λ ordered by ≤ct, see Definition 5.5,
Claims 5.6, 5.7. We need more: the triples (M̄, ā, f) ∈ Kmqr

S , Knqr
S

in Definition 5.12, Claim 5.13. All this enables us to quote results of
[Sh 576, §3] or better VII§2, but apart from believing the reader do
not need to know non of them.

5.1 Hypothesis.
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(a) s = (K,
⋃

,S bs) is a good λ-frame.

5.2 Definition. 1) Let K3,bt
λ = K3,bt

s be the set of triples (M,N, a)
such that for some ∂ = cf(∂) ≤ λ,M ≤K N are both (λ, ∂)-brimmed
members of Kλ, a ∈ N\M and tp(a,M,N) ∈ S bs(M).

2) For (Mℓ, Nℓ, aℓ) ∈ K3,bt
λ for ℓ = 1, 2 let (M1, N1, a1) <bt (M2, N2, a2)

mean a1 = a2, tp(a1,M2, N2) does not fork over M1 and for some
∂2 = cf(∂2) ≤ λ, the model M2 is (λ, ∂2)-brimmed over M1 and
the model N2 is (λ, ∂2)-brimmed over N1. Finally (M1, N1, a2) ≤bt

(M2, N2, a2) means (M1, N1, a1) <bt (M2, N2, a2) or (M1, N1, a1) =
(M2, N2, a2).

5.3 Definition. 1) Let “(M0,M2, a) ∈ K3,uq
λ ” mean: (M0,M2, a) ∈

K3,bs
λ and: for every M1 satisfying M0 ≤K M1 ∈ Kλ, the amalgama-

tion M of M1,M2 over M0, with tp(a,M1,M) not forking over M0,
is unique, that is:

(∗) if for ℓ = 1, 2 we have M0 ≤K M1 ≤K M ℓ ∈ Kλ and fℓ is a
≤K-embedding of M2 into M ℓ over M0 (so f1 ↾ M0 = f2 ↾

M0 = idM0
) such that tp(fℓ(a),M1,M

ℓ) does not fork over
M0, then

(a) [uniqueness]:
for some M ′, g1, g2 we have: M1 ≤K M ′ ∈ Kλ and
gℓ is a ≤K-embedding ofM ℓ intoM ′ overM1 for ℓ = 1, 2
such that g1 ◦ f1 ↾ M2 = g2 ◦ f2 ↾ M2

(b) [being reduced] fℓ(M2) ∩M1 = M0

[this is “for free” in the proofs; and is not really neces-
sary so the decision if to include it is not important but
simplify notation, but see 5.4(3)].

2) K3,uq
λ is dense (or s has density for K3,uq

λ ) when K3,uq
λ is dense in

(K3,bs
λ ,≤bs), i.e., for every (M1,M2, a) ∈ K3,bs

λ there is (M1, N2, a) ∈

K3,uq
λ such that (M1,M2, a) ≤bs (N1, N2, a) ∈ K3,uq

λ .

3) K3,uq
λ has existence or s has existence for K3,uq

λ when for every
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M0 ∈ Kλ and p ∈ S bs(M0) for some M1, a we have (M0,M1, a) ∈
K3,uq
λ and p = tp(a,M0,M1).

4) K3,uq
s = K3,uq

λ .

5.4 Claim. 1) The relation ≤bt is a partial order on K3,bt
λ that is

transitive and reflexive (but not necessarily satisfying the parallel of
Ax V of a.e.c. see Definition 1.4).

2) If (Mα, Nα, a) ∈ K3,bt
λ is ≤bt-increasing continuous for α < δ

where δ is a limit ordinal < λ+ then (M,N, a) = (
⋃

α<δ

Mα,
⋃

α<δ

Nα, a)

belongs to K3,bt
λ and α < δ ⇒ (Mα, Nα, a) ≤bt (M,N, a) and so

(M,N, a) is a ≤bt-upper bound of 〈(Mα, Nα, a) : α < δ〉.
3) In (∗) of 5.3(1), clause (b) follows from (a).

Proof. Easy, e.g. (3) by the uniqueness (i.e., clause (a)) and 4.6(4).
�5.4

We now define Ksq
λ+ , a family of ≤K-increasing continuous sequences

(the reason for sq) in Kλ of length λ+, will be used to approximate
stages in constructing models in Kλ++ .

5.5 Definition. 1) Let Ksq
λ+ = Ksq

s be the set of pairs (M̄, ā) such
that (sq stands for sequence):

(a) M̄ = 〈Mα : α < λ+〉 is a ≤K-increasing continuous sequence
of models from Kλ

(b) ā = 〈aα : α ∈ S〉, where S ⊆ λ+ is stationary in λ+ and
aα ∈Mα+1\Mα

(c) for some club E of λ+ for every α ∈ S∩E we have tp(aα,Mα,
Mα+1) ∈ S bs(Mα)

(d) if p ∈ S bs(Mα) then for stationarily many δ ∈ S we have:
tp(aδ,Mδ,Mδ+1) ∈ S bs(Mδ) does not fork over Mα and
extends p.

In such cases we let M =
⋃

α<λ+

Mα.

2) When for ℓ = 1, 2 we are given (M̄ ℓ, āℓ) ∈ Ksq
λ+ we say (M̄1, ā1) ≤ct
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(M̄2, ā2) if for some club E of λ+, letting āℓ = 〈aℓδ : δ ∈ Sℓ〉 for
ℓ = 1, 2, of course, we have

(a) S1 ∩E ⊆ S2 ∩ E

(b) if δ ∈ S1 ∩E then

(α) M1
δ ≤K M2

δ ,

(β) M1
δ+1 ≤K M2

δ+1

(γ) a2
δ = a1

δ

(δ) tp(a1
δ,M

2
δ ,M

2
δ+1) does not fork over M1

δ , so in partic-

ular a1
δ /∈M2

δ .

5.6 Observation. 1) If (M̄, ā) ∈ Ksq
λ+ then M :=

⋃

α<λ+

Mα ∈ Kλ+ is

saturated.
2) Ksq

λ+ is partially ordered by ≤ct. �5.6

5.7 Claim. Assume 〈(M̄ ζ, āζ) : ζ < ζ∗〉 is ≤ct-increasing in Ksq
λ+ ,

and ζ∗ is a limit ordinal < λ++, then the sequence has a ≤ct-lub
(M̄, ā).

Proof. Let āζ = 〈aζδ : δ ∈ Sζ〉 for ζ < ζ∗ and without loss of
generality ζ∗ = cf(ζ∗) and for ζ < ξ < ζ∗ let Eζ,ξ be a club of λ+

consisting of limit ordinals witnessing (M̄ ζ , āζ) ≤ct (M̄ ξ, āξ), i.e. as
in 5.5(2).

Case 1: ζ∗ < λ+.

Let E = ∩{Eζ,ξ : ζ < ξ < ζ∗} and for δ ∈ E let Mδ = ∪{M ζ
δ :

ζ < ζ∗} and Mδ+1 = ∪{M ζ
δ+1 : ζ < ζ∗} and for any other α,Mα =

MMin(E\α). Let S =
⋃

ζ<ζ∗

Sζ ∩ E and for δ ∈ S let aδ = aζδ for every

ζ for which δ ∈ Sζ . Clearly Mα ∈ Kλ is ≤K-increasing continuous

and ζ < ζ∗ ∧ δ ∈ E ⇒M ζ
δ ≤K Mδ & M ζ

δ+1 ≤K Mδ+1.
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Now if δ ∈ E ∩ Sζ then ξ ∈ [ζ, ζ∗) implies tp(aδ,M
ξ
δ ,Mδ+1) =

tp(aζδ ,M
ξ
δ ,M

ξ
δ+1) does not fork over M ζ

δ (and 〈M ξ
δ : ξ ∈ [ζ, δ)〉,

〈M ξ
δ+1 : ξ ∈ [ζ, δ)〉 are ≤K-increasing continuous); hence by Axiom

(E)(h) we know that tp(aδ,Mδ,Mδ+1) does not fork over M ζ
δ and

in particular ∈ S bs(Mδ). Also if N ≤K M :=
⋃

α<λ+

Mα, N ∈ Kλ

and p ∈ S bs(N) then for some δ(∗) ∈ E,N ≤K Mδ(∗), let p1 ∈

S bs(Mδ(∗)) be a non-forking extension of p, so for some ζ < ζ∗, p

does not fork over M ζ

δ(∗) hence for stationarily many δ ∈ Sζ , q
0
δ =

tp(aδ,M
ζ
δ ,M

ζ
δ+1) is a non-forking extension of p1 ↾ M ζ

δ(∗), hence

this holds for stationarily many δ ∈ S ∩ E and for each such δ, qδ =

tp(aδ,Mδ,Mδ+1) is a non-forking extension of p1 ↾ M ζ

δ(∗), hence of

p1 hence of p. Looking at the definitions, clearly (M̄, ā) ∈ Ksq
λ+ and

ζ < ζ∗ ⇒ (M̄ ζ , āζ) ≤ct (M̄, ā).
Lastly, it is easy to check the ≤ct-l.u.b.

Case 2: ζ∗ = λ+.
Similarly using diagonal union, i.e., E = {δ < λ+ : δ is a limit

ordinal such that ζ < ξ < δ ⇒ δ ∈ Eζ,ε} and we choose Mα =
∪{M ζ

α : ζ < α} when α ∈ E and Mα = Mmin(E\(α+1)) otherwise.
�5.7

5.8 Observation. Assume K3,uq
λ is dense in K3,bs

λ , i.e., in (K3,bs
λ ,≤bs)

and even in (K3,bt
λ , <bt). Then

(a) if M ∈ Kλ is superlimit and p ∈ S bs(M) then there are N, a

such that (M,N, a) ∈ K3,uq
λ and p = tp(a,M,N)

(b) if in addition Ks is categorical (in λ) then s has existence

for K3,uq
λ (recall that this means that for every M ∈ Ks and

p ∈ S bs(M) for some pair (N, a) we have (M,N, a) ∈ K3,uq
λ

and p = tp(a,M,N)).

Proof. Should be clear. �5.8

Now the assumption of 5.8 are justified by the following theorem
(and the categoricity in (b) is justified by Claim 1.26).
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5.9 First Main Claim. Assume that

(a) as in 5.1

(b) WDmId(λ+) is not λ++-saturated and16 2λ < 2λ
+

< 2λ
++

.

If İ(λ++, K) < µunif(λ
++, 2λ

+

or just İ(λ++, K(λ+-saturated)) <

µunif(λ
++, 2λ

+

), then for every (M,N, a) ∈ K3,bs
λ there is (M∗, N∗, a)

∈ K3,bt
λ such that (M,N, a) <bt (M∗, N∗, a) and (M∗, N∗, a) ∈

K3,uq
λ .

5.10 Explanation. The reader who agrees to believe in 5.9 can ignore
the rest of this section (though it can still serve as a good exercise).

Let 〈Sα : α < λ++〉 be a sequence of subsets of λ+ such that
α < β ⇒ |Sα\Sβ | ≤ λ and Sα+1\Sα 6= ∅ mod WDmId(λ+), exists
by assumption.

Why having (M,N, a) failing the conclusion of 5.9 helps us to
construct many models in Kλ++? The point is that we can choose
(M̄α, āα) ∈ Ksq

λ+ with Dom(āα) = Sα for α < λ++, <ct-increasing
continuous (see 5.7).

Now for α = β + 1, having (M̄β, āβ), without loss of generality

Mβ
i+1 is brimmed over Mβ

i and we shall choose Mα
i by induction on

i < λ+ (for simplicity we assume Mα
i ∩∪{Mβ

j : j < λ+} = Mβ
i ) and

Mβ
i ≤K Mα

i ∈ Kλ and tp(aβi ,M
α
i ,M

α
i+1) does not fork over Mβ

i and
Mα
i+1 is brimmed over Mα

i ).

Given (M̄β, āβ), M̄β = 〈Mβ
i : i < λ+〉, āβ = 〈aβi : i ∈ Sβ〉 we work

toward building (M̄α, āα), αβ+1.

We start with choosing (Mα
0 , b) such that no member of K3,bs

λ

which is ≤bs-above (Mβ
0 ,M

α
0 , b) ∈ K3,bs

λ belongs to K3,uq
λ and will

choose Mβ
i by induction on i such that (Mβ

i ,M
α
i , b) ∈ K3,bs

λ is ≤bs-
increasing continuous and even <bt-increasing hence in particular

that tp(b,Mβ
i ,M

α
i ) does not fork over Mα

0 . Now in each stage i =

j + 1, as Mβ
i is universal over Mβ

j , and the choice of Mα
0 , b we have

some freedom. So it makes sense that we will have many possible
outcomes, i.e., models M = ∪{Mα

i : α < λ++, i < λ+} which are in

16alternatively the parallel versions for the definitional weak diamond, but
not here
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Kλ++ . The combination of what we have above and §3 better VII§2

gives that 2λ < 2λ
+

< 2λ
++

is enough to materialize this intuition. If
in addition 2λ = λ+ and moreover ♦λ+ it is considerably easier. In
the end we still have to define āα ↾ (Sα\Sβ) as required in Definition
5.5, [Sh 832]. An alternative is to force a model in λ++. Now below

we replace K3,sq
λ+ by Kmqr

λ+ , Knqr
S but actually K3,sq

λ+ is enough. So
we need a somewhat more complicated relative as elaborated below
which anyhow seems to me more natural.

5.11 Second Main Claim. Assume 2λ < 2λ
+

< 2λ
++

(or the par-

allel versions for the definitional weak diamond). If İ(λ++, K(λ+-

saturated)) < µunif(λ
++, 2λ

+

), then for every (M,N, a) ∈ K3,bt
λ there

is (M∗, N∗, a) ∈ K3,bt
λ such that (M,N, a) <bt (M∗, N∗, a) and

(M∗, N∗, a) ∈ K3,uq
λ .

We shall not prove here 5.11 and shall not use it, it is proved in the
full version of Chapter VII; toward proving 5.9 (by quoting) let

5.12 Definition. Let S ⊆ λ+ be a stationary subset of λ+.
1) Let Kmqr

S or Kmqr
λ+ [S] be the set of triples (M̄, ā, f) such that:

(a) M̄ = 〈Mα : α < λ+〉 is ≤K-increasing continuous, Mα ∈ Kλ

(we denote
⋃

α<λ+

Mα by M) and demand M ∈ Kλ+

(b) ā = 〈aα : α < λ〉 with aα ∈Mα+1

(c) f is a function from λ+ to λ+ such that for some club E
of λ+ for every δ ∈ E ∩ S and ordinal i < f(δ) we have
tp(aδ+i,Mδ+i,Mδ+i+1) ∈ S bs(Mδ+i)

(d) for every α < λ+ and p ∈ S bs(Mα), stationarily many δ ∈ S
satisfies: for some ε < f(δ) we have tp(aδ+ε,Mδ+ε,Mδ+ε+1)
is a non-forking extension of p.

1A) Knqr
λ+ [S] = Knqr

S is the set of triples (M̄, ā, f) ∈ Kmqr
S such that:

(e) for a club of δ < λ+, if δ ∈ S then f(δ) is divisible by λ
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and17 for every i < f(δ) if q ∈ S bs(Mδ+i) then for λ ordinals
ε ∈ [i, f(δ)) the type tp(aδ+ε,Mδ+ε,Mδ+ε+1) ∈ S bs(Mδ+ε)
is a stationarization of q (= non-forking extension of q, see
Definition 4.5).

2) Assume (M̄ ℓ, āℓ, f ℓ) ∈ Kmqr
S for ℓ = 1, 2; we say (M̄1, ā1, f1) ≤0

S

(M̄2, ā2, f2) iff for some club E of λ+, for every δ ∈ E ∩ S we have:

(a) M1
δ+i ≤K M2

δ+i for18 i ≤ f1(δ)

(b) f1(δ) ≤ f2(δ)

(c) for i < f1(δ) we have a1
δ+i = a2

δ+i and

tp(a1
δ+i,M

2
δ+i,M

2
δ+i+1) does not fork over M1

δ+i.

3) We define the relation <1
S on Kmqr

S as in part (2) adding

(d) if δ ∈ E and i < f1(δ) then M2
δ+i+1 is (λ, ∗)-brimmed over

M1
δ+i+1 ∪M

2
δ+i.

5.13 Claim. 0) If (M̄, ā, f) ∈ Kmqr
S then

⋃

α<λ+

Mα ∈ Kλ+ is saturated.

1) The relation ≤0
S is a quasi-order19 on Kmqr

λ ; also <1
S is.

2) Kmqr
S ⊇ Knqr

S 6= ∅ for any stationary S ⊆ λ+.
3) For every (M̄, ā, f) ∈ Kmqr

λ [S] for some (M̄ ′, ā, f ′) ∈ Knqr
λ [S] we

have (M̄, ā, f) <1
S (M̄ ′, ā, f ′).

4) For every (M̄1, ā1, f1) ∈ Kmqr
S and q ∈ S bs(M1

α), α < λ+, there is
(M2, ā2, f2) ∈ Kmqr

S such that (M̄1, ā1, f1) <1
S (M̄2, ā2, f2) ∈ Knqr

S

and b ∈ M2
α realizing q such that for every β ∈ [α, λ+) we have

tp(b,M1
β,M

2
β) ∈ S bs(M1

β) does not fork over M1
α.

5) If 〈(M̄ ζ , āζ, f ζ) : ζ < ξ(∗)〉 is ≤0
S-increasing continuous in Kmqr

S

and ξ(∗) < λ++ a limit ordering, then the sequence has a ≤0
S-lub.

17if we have an a priori bound f∗ : λ+ → λ+ which is a <D
λ+

-upper bound

of the “first” λ++ functions in λ+
(λ+)/D, we can use bookkeeping for ui’s as in

the proof of 4.10
18could have used (systematically) i < f1(δ)
19quasi order ≤ is a transitive relation, so we waive x ≤ y ≤ x ⇒ x = y
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Proof. 0, 1) Easy.
2) The inclusion Kmqr

S ⊇ Knqr
S is obvious, so let us prove Knqr

S 6= ∅.
We choose by induction on α < λ+, aα,Mα, pα such that

(a) Mα ∈ Kλ is a super limit model,

(b) Mα is ≤K-increasingly continuous,

(c) if α = β + 1, then aβ ∈Mα\Mβ realizes pβ ∈ S bs(Mβ),

(d) if p ∈ S bs(Mα), then for some i < λ, for every j ∈ [i, λ) for
at least one ordinal ε ∈ [j, j + i), pα+ε ↾ Mα = p and pα+ε

does not fork over Mα.

For α = 0 choose M0 ∈ Kλ. For α limit, Mα =
⋃

β<α

Mβ is as

required. Then use Axiom(E)(g) to take care of clause (d) (with
careful bookkeeping). Lastly, let f : λ+ → λ+ be constantly λ, M̄ =
〈Mα : α < λ〉, ā = 〈aα : α < λ〉; now for any stationary S ⊆ λ+, the
triple (M̄, ā ↾ S, f ↾ S) belong to Knqr

S .
3) Let E be a club witnessing (M̄1, ā1, f1) ∈ Kmqr

S such that δ ∈
E ⇒ δ + f1(δ) < Min(E\(δ + 1)). Choose f2 : λ+ → λ+ such that
α < λ+ implies f1(α) < f2(α) < λ+ and f2(α) is divisible by λ. We
choose by induction on α < λ+, fα,M

2
α, pα, a

2
α such that:

(a), (b), (c) as in the proof of part (2)

(d) fα is a ≤K-embedding of M1
α into M2

α

(e) fα is increasing continuous

(f) if δ ∈ E ∩ S and i < f1(δ) hence tp(a1
δ+i,M

1
δ+i,M

1
δ+i+1) ∈

S bs(M1
δ+i),

then fδ+i+1(a
1
δ+i) = a2

δ+i and pε+i = tp(a2
δ+i,M

2
δ+i,M

2
δ+i+1)

∈ S bs(M2
δ+i) is a stationarization of

tp
(

fδ+i+1(a
1
δ+i), fδ+i(M

1
δ+i), fδ+i+1(M

1
δ+i+1)

)

=

tp(a2
δ+i, fδ+i(M

1
δ+i),M

2
δ+i+1)

(g) if δ ∈ E and i < f2(δ), q ∈ S bs(M2
δ+i) then for some λ

ordinals ε ∈ (i, f2(δ)) the type pδ+ε is a stationarization of q

(h) if δ ∈ E, i < f2(δ) thenMδ+i+1 is (λ, ∗)-brimmed overMδ+i∪
fδ+i+1(M

1
δ+i+1).
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The proof is as in part (2) only the bookkeeping is different. At

the end without loss of generality
⋃

α<λ∗

fα is the identity and we are

done.
4) Similar proof but in some cases we have to use Axiom (E)(i),
the non-forking amalgamation of Definition 2.1, in the appropriate
cases.
5) Without loss of generality cf(ξ(∗)) = ξ(∗). First assume that
ξ(∗) ≤ λ. For ε < ζ < ξ(∗) let Eε,ζ be a club of λ+ witnessing
M̄ ε <0

S M̄
ζ . Let

E∗ =
⋂

ε<ζ<ξ(∗)

Eε,ζ∩{δ < λ+ : for every α < δ we have sup
ε<ξ(∗)

fε(α) <

δ}, it is a club of λ+. Let f ξ(∗) : λ+ → λ+ be f ξ(∗)(i) = sup
ε<ξ(∗)

fε(i)

now define M
ξ(∗)
i as follows:

Case 1: If δ ∈ E∗ and ε < ξ(∗) and i ≤ fε(δ) and i ≥
⋃

ζ<ε

f ζ(δ) then

(α) M
ξ(∗)
δ+i =

⋃
{

M ζ
δ+i : ζ ∈ [ε, ξ(∗))

}

(β) i < fε(δ) ⇒ a
ξ(∗)
δ+i = aεδ+i.

(Note: we may define M
ξ(∗)
δ+i twice if i = fε(δ), but the two values

are the same).

Case 2: If δ ∈ E∗, i = f ξ(∗)(δ) is a limit ordinal let

M
ξ(∗)
δ+i =

⋃

j<i

M
ξ(∗)
δ+i .

Case 3: If M
ξ(∗)
i has not been defined yet, let it be M

ξ(∗)
Min(E∗\i).

Case 4: If a
ξ(∗)
i has not been defined yet, let a

ξ(∗)
i ∈ M

ξ(∗)
i+1 be arbi-

trary.

Note that Case 3,4 deal with the “unimportant” cases.
Let ε < ξ(∗), why (M̄ ε, āε, fε) ≤0

S (M̄ ξ(∗), āξ(∗), f ξ(∗)) ∈ Kmqr
S ?

Enough to check that the club E∗ witnesses it.

Paper Sh:600, Chapter II



II.§5 NON-STRUCTURE OR SOME UNIQUE AMALGAMATION 325

Why tp(aδ+i,M
ξ(∗)
δ+i ,M

ξ(∗)
δ+i+1) ∈ S bs(M

ξ(∗)
δ+i ) and when δ ∈ E∗, i <

f ξ(∗)(i), and does not fork over M ε
δ+i when i < fε(δ) ? by Axiom

(E)(h) of Definition 2.1.
Why clause (e) of Definition 5.12(1A)? By Axiom (E)(c), local char-
acter of non-forking.

The case ξ(∗) = λ+ is similar using diagonal intersections. �5.13

Remark. If we use weaker versions of “good λ-frames”, we should
systematically concentrate on successor i < f(δ).

Proof of 5.9. We can use VII.2.3 or more explicitly VII.4.20: the
older version runs as follows. The use of λ++ /∈ WDmId(λ++) is as
in the proof of [Sh 576, 3.19(pg.79)]. But now we need to preserve
saturation in limit stages δ < λ++ of cofinality < λ+, we use <1

S ,
otherwise we act as in [Sh 576, §3]. �5.9

Let us elaborate

5.14 Definition. We define C = (K+,Seq,≤∗) as follows:

(a) τ+ = τ ∪ {P,<},K+ is the set of (M,PM , <M ) where M ∈
K<λ, P

M ⊆M,<M a linear ordering of PM (but =M may be
as in [Sh 576, 3.1(2)] and M1 ≤K+ M2 iff (M1 ↾ τ) ≤K (M2 ↾

τ) and M1 ⊆M2

(b) Seqα = {M̄ : M̄ = 〈Mi : i ≤ α〉 is an increasing continuous
sequence of members of K+ and 〈Mi ↾ τ : i ≤ α〉 is ≤K-
increasing, and for
i < j < α : PMi is a proper initial segment of (PMj , <Mj )
and there is a first element in the difference}
we denote the <Mi+1 -first element of PMi+1\PMi , by ai[M̄ ]
and we demand tp(ai(M̄),Miτ ↾,Mi+1 ↾ τ) ∈ S bs(Mi ↾ τ)
and if α = λ,M = ∪{Mi ↾ τ : i < λ+} is saturated

(c) M̄ <∗
t N̄ iff

M̄ = 〈Mi : i < α∗〉, N̄ = 〈Ni : i < α∗∗〉 are from Seq, t is
a set of pairwise disjoint closed intervals of α∗ and for any
[α, β] ∈ t we have (β < α∗ and):
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γ ∈ [α, β) ⇒Mγ ≤K Nγ & aγ [M̄ ] /∈ Nγ , moreover
aγ [M̄ ] = aγ[N̄ ] and tp(aj[M̄ ], Nγ ↾ τ,Nγ+1, τ) does not fork
over Mγ ↾ τ .

5.15 Claim. 1) C is a λ+-construction framework (see [Sh 576,
3.3(pg.68)].
2) C is weakly nice (see Definition [Sh 576, 3.14(2)(pg.76)].
4) C has the weakening λ+-coding property.

Discussion: Is it better to use (see [Sh 576, 3.14(1)(pg.75)]) stronger
axiomatization in [Sh 576, §3] to cover this?
But at present this will be the only case.

Proof. Straight. �5.15

Now 5.11 follows by [Sh 576, 3.19(pg.79)].

§6 Non-forking amalgamation in Kλ

We deal in this section only with Kλ.
We would like to, at least, approximate “non-forking amalgamation
of models” using as a starting point the conclusion of 5.9, i.e., K3,uq

λ

is dense. We use what looks like a stronger hypothesis: the existence
for K3,uq

λ (also called “weakly successful”); but in our application
we can assume categoricity in λ; the point being that as we have a
superlimit M ∈ Kλ, this assumption is reasonable when we restrict
ourselves to K

[M ], recalling that we believe in first analyzing the
saturated enough models; see 5.8. By 4.8, the “(λ, cf(δ))-brimmed
over” is the same for all limit ordinals δ < λ+, (but not for δ = 1 or
just δ non-limit); nevertheless for possible generalizations we do not
use this.

It may help the reader to note, that (assuming 6.8 below, of
course), if there is a 4-place relation NFλ(M0,M1,M2,M3) on Kλ,
satisfying the expected properties of “M1,M2 are amalgamated in a
non-forking = free way over M0 inside M3”, i.e., is a Kλ-non-forking
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relation from Definition 6.1 below then Definition 6.12 below (of
NFλ) gives it (provably!). So we have “a definition” of NFλ satisfy-
ing that: if desirable non-forking relation exists, our definition gives
it (assuming the hypothesis 6.8). So during this section we are trying
to get better and better approximations to the desirable properties;
have the feeling of going up on a spiral, as usual.

For the readers who know on non-forking in stable first order the-
ory we note that in such context NFλ(M0,M1,M2,M3) says that
tp(M2,M1,M3), the type of M2 over M1 inside M3, does not fork
over M0. It is natural to say that there are 〈N1,α, N2,α : α ≤
α∗〉, Nℓ,α is increasing continuous. N1,0 = M0, N2,0 = M2,M1 ⊆
M1,α,M3 ⊆ M ′

3, N2,α ⊆ M ′
3, Nℓ,α+2 is prime over Nℓ,α + aα for

ℓ = 1, 2 and tp(aα, N2,α) does not fork over N1,α but this is not

available. The K3,uq
λ is a substitute.

6.1 Definition. 1) Assume that K = Kλ is a λ-a.e.c. We say NF
is a non-forking relation on 4(Kλ) or just a Kλ-non-forking relation
when:

⊠NF(a) NF is a 4-place relation on Kλ and NF is preserved under
isomorphisms

(b) NF(M0,M1,M2,M3) implies M0 ≤K Mℓ ≤K M3 for ℓ = 1, 2

(c)1 (monotonicity): if NF(M0,M1,M2,M3) and M0 ≤K M ′
ℓ ≤K

Mℓ for ℓ = 1, 2 then NF(M0,M
′
1,M

′
2,M3)

(c)2 (monotonicity): if NF(M0,M1,M2,M3) and M3 ≤K M ′
3 ∈

Kλ,M1 ∪M2 ⊆M ′′
3 ≤K M ′

3 then NF(M0,M1,M2,M
′′
3 )

(d) (symmetry) NF(M0,M1,M2,M3) iff NF(M0,M2,M1,M3)

(e) ((long) transitivity) if NF(Mi, Ni,Mi+1, Ni+1) for i < α, 〈Mi :
i ≤ α〉 is ≤K-increasing continuous and 〈Ni : i ≤ α〉 is ≤K-
increasing continuous then
NF(M0, N0,Mα, Nα)

(f) (existence) if M0 ≤K Mℓ for ℓ = 1, 2 (all in Kλ) then for some
M3 ∈ Kλ, f1, f2 we have M0 ≤K M3, fℓ is a ≤K-embedding of
Mℓ into M3 over M0 for ℓ = 1, 2 and NF(M0, f1(M1), f2(M2),
M3)

(g) (uniqueness) if NF(M ℓ
0 ,M

ℓ
1 ,M

ℓ
2 ,M

ℓ
3) and for ℓ = 1, 2 and

fi is an isomorphism from M1
i onto M2

i for i = 0, 1, 2 and
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f0 ⊆ f1, f0 ⊆ f2 then f1∪f2 can be extended to an embedding
f3 of M1

3 into some M2
4 ,M

2
3 ≤Kλ

M2
4 .

2) We say that NF is a pseudo non-forking relation on 4(Kλ) or a
weak Kλ-non-forking relation if clauses (a)-(f) of ⊠NF above holds
but not necessarily clause (g).
3) Assume s is a good λ-frame and NF is a non-forking relation
on K or just a weak one. We say that NF respects s or NF is an
s-non-forking relation when:

(h) if NF(M0,M1,M2,M3) and a ∈ M2\M0, tps(a,M0,M2) ∈
S bs(M0) then tps(a,M1,M3) does not fork over M0 in the
sense of s.

6.2 Observation. Assume Kλ is a λ-a.e.c. and NF is a non-forking
relation on 4(Kλ).
1) Assume K is stable in λ. If in clause (g) of 6.1(1) above we
assume in addition that M ℓ

3 is (λ, ∂)-brimmed over M ℓ
1 ∪M ℓ

2 , then
in the conclusion of (g) we can add M2

3 = M2
4 , i.e., f1 ∪ f2 can

be extended to an isomorphism from M1
3 onto M2

3 . This version of
(g) is equivalent to it (assuming stability in λ; note that “Kλ has
amalgamation” follows by clause (f) of Definition 6.1).
2) If M0 ≤K M1 ≤K M3 are from Kλ then NF(M0,M0,M1,M3).
3) In Definition 6.1(1), clause (d), symmetry, it is enough to demand
“if”.

Proof. 1) Chase arrows and the uniqueness from 1.16.
2) By clause (f) of ⊠NF of 6.1(1) and clause (c)2, i.e., first apply
existence with (M0,M0,M3) here standing for (M0,M1,M2) there,
then chase arrows and use the monotonicity as in (c)2.
3) Easy. �6.2

The main point of the following claim shows that there is at most
one non-forking relation respecting s; so it justifies the definition of
NFs later. The assumption “NF respects s” is not so strong by 6.7.
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6.3 Claim. 1) If s is a good λ-frame and NF is a non-forking rela-

tion on 4(Ks) respecting s and (M0, N0, a) ∈ K3,uq
λ and (M0, N0, a) ≤bs

(M1, N1, a) then NF(M0, N0,M1, N1).

2) If s is a good λ-frame, weakly successful (which means K3,uq
s

has existence in K3,uq
s , i.e., s satisfies hypothesis 6.8 below) and

NF is a non-forking relation on 4(Ks) respecting s then the relation

NFλ = NFs, i.e., N1

N3
⋃

N0

N2 defined in Definition 6.12 below is equiv-

alent to NF(N0, N1, N2, N3). [Recalling 6.34, but see 6.35(2), 6.36.]
3) If s is a weakly successful good λ-frame and for ℓ = 1, 2, the
relation NFℓ is a non-forking relation on 4(Ks) respecting s, then
NF1 = NF2.

Proof. Straightforward but we elaborate.
1) We can find (M ′

1, N
′
1) such that NF(M0, N0,M

′
1, N

′
1) and M1,M

′
1

are isomorphic over M0, say f1 is such an isomorphism from M1 onto
M ′

1 over M0; why such (M ′
1, N

′
1, f1) exists? by clause (f) of ⊠NF of

Definition 6.1.

As NF respects s, see Definition 6.1(2), recalling tp(a,M0, N0) ∈
S bs(M0) we know that tp(a,M ′

1, N
′
1) does not fork over M0, so by

the definition of ≤bs we have (M0, N0, a) ≤bs (M ′
1, N

′
1, a).

As (M0, N0, a) ∈ K3,uq
λ , by the definition of K3,uq

λ (and chasing
arrows) we conclude that there are N2, f2 such that:

(∗) N1 ≤K[s] N2 ∈ Kλ and f2 is a ≤K-embedding of N ′
1 into N2

extending f−1
1 and idN0

.

As NF(M0, N0,M
′
1, N

′
1) and NF is preserved under isomorphisms

(see clause (a) in 6.1(1)) it follows that NF(M0, N0,M1, f2(N
′
1)). By

the monotonicity of NF (see clause (c)2 of Definition 6.1) it follows
that NF(M0, N0,M1, N2). Again by the same monotonicity we have
NF(M0, N0,M1, N1), as required.
2) First we prove that NFλ,δ̄(N0, N1, N2, N3), which is defined in
Definition 6.11 below implies NF(N0, N1, N2, N3). By definition 6.11,
clause (f) there are 〈(N1,i, N2,i : i ≤ λ × δ1〉), 〈ci : i < λ × δ1〉 as
there. Now we prove by induction on j ≤ λ × δ1 that i ≤ j ⇒
NF(N1,i, N2,i, N1,j, N2,j). For j = 0 or more generally when i = j
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this is trivial by 6.2(2). For j a limit ordinal use the induction
hypothesis and transitivity of NF (see clause (e) of 6.1(1)).

Lastly, for j successor by the demands in Definition 6.11 we know
that N1,j−1 ≤K N1,j ≤K N2,j, N1,j−1 ≤K N2,j−1 ≤K N2,j are all in
Kλ, tp(cj−1, N2,j−1, N2,j) does not fork over N1,j−1 and (N1,j−1,

N1,j , cj−1) ∈ K3,uq
λ . By part (1) of this claim we deduce that

NF(N1,j−1, N1,j, N2,j−1, N2,j) hence by symmetry (i.e., clause (d)
of Definition 6.1(1)) we deduce NF(N1,j−1, N2,j−1, N1,j, N2,j).

So we have gotten i < j ⇒ NF(N1,i, N2,i, N1,j, N2,j).
[Why? If i = j − 1 by the previous sentence and for i < j − 1
note that by the induction hypothesis NF(N1,i, N2,i, N1,j−1, N1,j−1)
so by transitivity (clause (e) of 6.1(1) of Definition 6.1) we get
NF(N1,i, N2,i, N1,j, N2,j)].

We have carried the induction so in particular for i = 0, j = α we
obtain NF(N1,0, N2,0, N1,α, N2,α) which means NF(N0, N1, N2, N3)
as promised. So we have proved NFλ,δ̄(N0, N1, N2, N3) ⇒ NF(N0, N1,
N2, N3).

Second, if NFλ(N0, N1, N2, N3) as defined in Definition 6.12 then
there areM0,M1,M2,M3 ∈ Kλ such that NFλ,〈λ,λ〉(M0,M1,M2,M3),
Nℓ ≤K Mℓ for ℓ < 4 andN0 = M0. By what we have proved above we
can conclude NF(M0,M1,M2,M3). As N0 = M0 ≤K Nℓ ≤K Mℓ for
ℓ = 1, 2 by clause (c)1 of Definition 6.1(1) we get NF(M0, N1, N2,M3)
and by clause (c)2 of Definition 6.1(1) we get NF(N0, N1, N2, N3). So
we have proved the implication NFλ(N0, N1, N2, N3) ⇒ NF(N0, N1,
N2, N3).

For the other implication assume NF(N0, N1, N2,M3). Now as we
have existence for NFλ (as proved below, see 6.21), we can find N ′

ℓ for
ℓ = 0, 1, 2, 3 and fℓ for ℓ = 0, 1, 2 such that NFλ(N

′
0, N

′
1, N

′
2, N

′
3), fℓ is

an isomorphism from Nℓ onto N ′
ℓ for ℓ = 0, 1, 2 and f0 ⊆ f1, f0 ⊆ f2.

But what we have already proved it folows that NF(N ′
0, N

′
1, N

′
2, N

′
3).

As we have uniqueness for NF by clause (g) of Definition 6.1 we
can find (f3, N

′′
3 ) such that N ′

3 ≤Kλ
N ′′

3 and f3 is a ≤K-embedding
of N3 into N ′′

3 extending f1 ∪ f2. As NFλ satisfies clause (c)2
of 6.1, recalling NFλ(N

′
0, N

′
1, N

′
2, N

′
3) it follows that NFλ(N

′
0, N

′
1,

N ′
2, f3(N3)) holds. As NFλ is preserved by isomorphisms, it fol-

lows that NFλ(N0, N1, N2, N3) holds as required.
3) By the rest of this section, i.e., the main conclusion 6.34, the rela-
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tion NFλ defined in 6.12 is a non-forking relation on 4(Ks) respecting
s. Hence by part (2) of the present claim we have NF1 = NFλ =
NF2. �6.3

6.4 Example: Do we need s in 6.3(3)? Yes.
Let K be the class of graphs and M ≤K N iff M ⊆ N ; so K is an

a.e.c. with LS(K) = ℵ0. For cardinal λ and ℓ = 1, 2 we define
– NFℓ = {(M0,M1,M2,M3) : M0 ≤K M1 ≤K M3 and M0 ≤K

M2 ≤K M3 and M1 ∩M2 = M0 and if a ∈ M1\M0, b ∈ M2\M0

then {a, b} is an edge of M3 iff ℓ = 2}, and
– NFℓλ := {(M0,M1,M2,M3) ∈ NF : M0,M1,M2,M3 ∈ Kλ}.

Then NFℓλ is a non-forking relation on 4(Kλ) but NF1
λ 6= NF2

λ.

6.5 Remark. 1) So the assumption on Kλ that for some good λ-frame
s we have Ks = Kλ is quite a strong demand on Kλ.
2) However, the assumption “respect” essentially is not necessary as
it can be deduced when s is good enough.
3) Below on “good+” see III§1 in particular Definition III.1.3.

6.6 Exercise: 1) Assume NF1,NF2 are non-forking relations on 4(Kλ).
If NF1 ⊆ NF2 then NF1 = NF2.
2) In part (1) write down the clauses from 6.1. We need to assume
on NF1, and those we need assume on NF2.

[Hint: Read the last paragraph of the proof of 6.3(3).]

6.7 Claim. Assume that s is a good+λ-frame and NF is a non-
forking relation on 4(Ks). Then NF respects s.

Remark. The construction in the proof is similar to the ones in 4.9,
6.14.

Proof. Assume NF(M0,M1,M2,M3) and a ∈M2\M0, tp(a,M0,M2) ∈
S bs(M0). We define (N0,i, N1,i, fi) for i < λ+

s
as follows:

⊗1(a) N0,i is ≤s-increasing continuous and N0,0 = M0

(b) N1,i is ≤s-increasing continuous and N1,0 = M1
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(c) NF(N0,i, N1,i, N0,i+1, N1,i+1)

(d) fi is a ≤K-embedding of M2 into N0,i+1 over M0 = N0,0 such
that tp(fi(a), N0,i, N0,i+1) does not fork over M0 = N0,0.

We shall choose fi together with N0,i+1, N1,i+1.
Why can we define? For i = 0 there is nothing to do. For i limit
take unions. For i = j + 1 choose fj, N0,i satisfying clause (d) and
N0,j ≤s N0,i, this is possible for s as we have the existence of non-
forking extensions of tp(a,M0,M2) (and amalgamation).

Lastly, we take care of the rest (mainly clause (c) of ⊗1 by clause
(f) of Definition 6.1(1), existence). Now

⊛2 for i < j < λ+ we have NF(N0,i, N1,i, N0,j, N1,j)
[why? by transitivity for NF, i.e., clause (e) of Definition
6.1(1), transitivity]

⊛3 for some i, tp(fi(a), N1,i, N1,i+1) does not fork over M0

[why? by the definition of good+].

So for this i,M0 ≤s fi(M2) ≤s N0,i+1 by clause (d) of ⊗1, hence
by clause (c)1 of Definition 6.1, monotonicity we have NF(M0,M1,
fi(M2), N1,i+1). Now again by the choice of i, i.e., by ⊛3 we have
tp(fi(a),M1, N1,i+1) does not fork over M0. By clause (g) of Def-
inition 6.1(1), i.e., uniqueness of NF (and preservation by isomor-
phisms) we get tp(a,M1,M3) does not fork over M0 as required.
�6.7

We turn to our main task in this section proving that such NF exist;
till 6.34 we assume:

6.8 Hypothesis. 1) s = (K,
⋃

,S bs) is a good λ-frame.

2) s is weakly successful which just means that it has existence for

K3,uq
λ : for every M ∈ Kλ and p ∈ S bs(M) there are N, a such that

(M,N, a) ∈ K3,uq
λ (see Definition 5.3) and p = tp(a,M,N). (This

follows by K3,uq
s is dense in K3,bs

s ; when s is categorical, see 5.8.)

In this section we deal with models from Kλ only.
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6.9 Claim. If M ∈ Kλ and N is (λ, κ)-brimmed over M , then we
can find M̄ = 〈Mi : i ≤ δ〉,≤K-increasing continuous, (Mi,Mi+1, ci) ∈

K3,uq
λ ,M0 = M,Mδ = N and δ any pregiven limit ordinal < λ+ of

cofinality κ divisible by λ.

Proof. Let δ be given, e.g., δ = λ× κ. By 6.8(2) we can find a ≤K-
increasing sequence 〈Mi : i ≤ δ〉 of members of Kλ and 〈ai : i < δ〉

such that M0 = M and i < δ ⇒ (Mi,Mi+1, ai) ∈ K3,uq
λ and for

every i < δ, p ∈ S bs(Mi) for λ ordinals j ∈ (i, i + λ) we have
tp(aj,Mj,Mj+1) is a non-forking extension of p. So the demands in
4.3 hold hence Mδ is (λ, κ)-brimmed over M0 = M . Now we are done
by the uniqueness of N being (λ, κ)-brimmed over M0, see 1.16(3).
�6.9

6.10 Claim. If M ℓ
0 ≤K M ℓ

1 ≤K M ℓ
3 and M ℓ

0 ≤K M ℓ
2 ≤K M ℓ

3 , cℓ ∈
M ℓ

1 and (M ℓ
0 ,M

ℓ
1 , cℓ) ∈ K3,uq

λ and tp(cℓ,M
ℓ
2 ,M

ℓ
3) ∈ S bs(M ℓ

2) does

not fork over M ℓ
0 and M ℓ

3 is (λ, ∂)-brimmed over M ℓ
1∪M

ℓ
2 all this for

ℓ = 1, 2 and fi is an isomorphism from M1
i onto M2

i for i = 0, 1, 2
such that f0 ⊆ f1, f0 ⊆ f2 and f1(c1) = c2, then f1 ∪ f2 can be
extended to an isomorphism from M1

3 onto M2
3 .

Proof. Chase arrows (and recall definition of K3,uq
λ ), that is by 6.1(1)

and Definition 6.2(1) and 1.16(3). �6.10

6.11 Definition. Assume δ̄ = 〈δ1, δ2, δ3〉, δ1, δ2, δ3 are ordinals <
λ+, maybe 1. We say that NFλ,δ̄(N0, N1, N2, N3) or, in other words:
N1, N2 are brimmedly smoothly amalgamated in N3 over N0 for
δ̄

when:

(a) Nℓ ∈ Kλ for ℓ ∈ {0, 1, 2, 3}

(b) N0 ≤K Nℓ ≤K N3 for ℓ = 1, 2

(c) N1∩N2 = N0 (i.e. in disjoint amalgamation, actually follows
by clause (f))

(d) N1 is (λ,cf(δ1))-brimmed over N0; recall that if cf(δ1) = 1
this just means N0 ≤K N1
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(e) N2 is (λ,cf(δ2))-brimmed over N0; so that if cf(δ2) = 1 this
just means N0 ≤K N2 and

(f) there are N1,i, N2,i for i ≤ λ× δ1 and ci for i < λ× δ1 (called
witnesses and 〈N1,i, N2,i, cj : i ≤ λ× δ1, j < λ× δ1〉 is called
a witness sequence as well as 〈N1,i : i ≤ λ × δ1〉, 〈N2,i : i ≤
λ× δ1〉) such that:

(α) N1,0 = N0, N1,λ×δ1 = N1

(β) N2,0 = N2

(γ) 〈Nℓ,i : i ≤ λ × δ1〉 is a ≤K-increasing continuous se-
quence of models for ℓ = 1, 2

(δ) (N1,i, N1,i+1, ci) ∈ K3,uq
λ

(ε) tp(ci, N2,i, N2,i+1) ∈ S bs(N2,i) does not fork over N1,i

andN2,i∩N1 = N1,i, for i < λ×δ1 (follows by Definition
5.3)

(ζ) N3 is (λ,cf(δ3))-brimmed over N2,λ×δ1 ; so for cf(δ3) = 1
this means just N2,λ×δ1 ≤K N3

6.12 Definition. 1) We say N1

N3
⋃

N0

N2 (or N1, N2 are smoothly

amalgamated over N0 inside N3 or NFλ(N0, N1, N2, N3) or NFs(N0,
N1, N2, N3)) when we can find Mℓ ∈ Kλ (for ℓ < 4) such that:

(a) NFλ,〈λ,λ,λ〉(M0,M1,M2,M3)

(b) Nℓ ≤K Mℓ for ℓ < 4

(c) N0 = M0

(d) M1,M2 are (λ, cf(λ))-brimmed over N0 (follows by (a) see
clauses (d), (e) of 6.11).

2) We call (M,N, a) strongly bs-reduced if (M,N, a) ∈ K3,bs
λ and

(M,N, a) ≤bs (M ′, N ′, a) ∈ K3,bs
λ ⇒ NFλ(M,N,M ′, N ′); not used.

Clearly we expect “strongly bs-reduced” to be equivalent to “∈ K3,uq
λ ”,

e.g. as this occurs in the first order case. We start by proving exis-
tence for NFλ,δ̄ from Definition 6.11.
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6.13 Claim. 1) Assume δ̄ = 〈δ1, δ2, δ3〉, δℓ an ordinal < λ+ and
Nℓ ∈ Kλ for ℓ < 3 and N1 is (λ, cf(δ1))-brimmed over N0 and
N2 is (λ, cf(δ2))-brimmed over N0 and N0 ≤K N1 and N0 ≤K N2

and for simplicity N1 ∩ N2 = N0. Then we can find N3 such that
NFλ,δ̄(N0, N1, N2, N3).
2) Moreover, we can choose any 〈N1,i : i ≤ λ× δ1〉, 〈ci : i < λ× δ1〉
as in 6.11 subclauses (f)(α), (γ), (δ) as part of the witness.
3) If NFλ(N0, N1, N2, N3) then N1 ∩N2 = N0.

Proof. 1) We can find 〈N1,i : i ≤ λ × δ1〉 and 〈ci : i < λ × δ1〉 as
required in part (2) by Claim 6.9, the (λ, cf(λ× δ1))-brimness holds
by 4.3 and apply part (2).
2) We choose the N2,i (by induction on i) by 4.9 preserving N2,i ∩
N1,λ×δ2 = N1,i; in the successor case use Definition 5.3 + Claim
5.4(3). We then choose N3 using 4.2(2).
3) By the definitions of NFλ, NFλ,δ̄. �6.13

The following claim tells us that if we have “(λ, cf(δ3))-brimmed” in
the end, then we can have it in all successor stages.

6.14 Claim. In Definition 6.11, if δ3 is a limit ordinal and κ =
cf(κ) ≥ ℵ0, then without loss of generality (even without changing
〈N1,i : i ≤ λ× δ1〉, 〈ci : i < λ× δ1〉)

(g) N2,i+1 is (λ, κ)-brimmed over N1,i+1∪N2,i (which means that
it is
(λ, κ)-brimmed over some N , where N1,i+1 ∪ N2,i ⊆ N ≤K

N2,i+1).

Proof. So assume NFλ,δ̄(N0, N1, N2, N3) holds as being witnessed by
〈Nℓ,i : i ≤ λ × δ1〉, 〈ci : i < λ × δ1〉 for ℓ = 1, 2. Now we choose by
induction on i ≤ λ× δ1 a model M2,i ∈ Kλ and fi such that:

(i) fi is a ≤K-embedding of N2,i into M2,i

(ii) M2,0 = fi(N2)

(iii) M2,i is ≤K-increasing continuous and also fi is increasing
continuous

(iv) M2,j ∩ fi(N1,i) = fi(N1,j) for j ≤ i
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(v) M2,i+1 is (λ, κ)-brimmed over M2,i ∪ fi(N2,i+1)

(vi) tp(fi+1(ci),M2,i,M2,i+1) ∈ S bs(M2,i) does not fork over
fi(N1,i).

There is no problem to carry the induction. Using in the successor
case i = j + 1 the existence Axiom (E)(g) of Definition 2.1 there is
a model M ′

2,i ∈ Ks such that M2,j ≤K M ′
2,i and fi ⊇ fj as required

in clauses (i), (iv), (vi) and then use Claim 4.2 to find a model
M2,i ∈ Kλ which is (λ, κ)-brimmed over M2,j ∪ fi(N2,i).

Having carried the induction, without loss of generality fi =
idN2,i

. Let M3 be such that M2,λ×δ1 ≤K M3 ∈ Kλ and M3 is
(λ,cf(δ3))-brimmed over M2,λ×δ1 , it exists by 4.2(2) but N2,λ×δ1 ≤K

M2,λ×δ1 , hence it follows that M3 is (λ, κ)-brimmed over N1,λ×δ1 .
So both M3 and N3 are (λ,cf(δ3))-brimmed over N2,λ×δ1 , hence they
are isomorphic over N2,λ×δ1 (by 1.16(1)) so let f be an isomorphism
from M3 onto N3 which is the identity over N2,λ×δ1 .
Clearly 〈N1,i : i ≤ λ × δ1〉, 〈f(M2,i) : i ≤ λ × δ1〉 are also witnesses
for
NFλ,δ̄(N0, N1, N2, N3) satisfying the extra demand (g) from 6.14.
�6.14

The point of the following claim is that having uniqueness in every
atomic step we have uniqueness in the end (using the same “ladder”
N1,i for now).

6.15 Claim. (Weak Uniqueness).
Assume that for x ∈ {a, b}, we have NFλ,δ̄x(Nx

0 , N
x
1 , N

x
2 , N

x
3 )

holds as witnessed by 〈Nx
1,i : i ≤ λ× δx1 〉, 〈c

x
i : i < λ× δx1 〉, 〈N

x
2,i : i ≤

λ× δx1 〉 and δ1 := δa1 = δb1, cf(δ
a
2 ) = cf(δb2) and cf(δa3 ) = cf(δb3) ≥ ℵ0.

(Note that cf(λ× δa1 ) ≥ ℵ0 by the definition of NF).

Suppose further that fℓ is an isomorphism from Na
ℓ onto N b

ℓ for
ℓ = 0, 1, 2, moreover: f0 ⊆ f1, f0 ⊆ f2 and f1(N

a
1,i) = N b

1,i, f1(c
a
i ) =

cbi .
Then we can find an isomorphism f from Na

3 onto N b
3 extending

f1 ∪ f2.

Proof. Without loss of generality for each i < λ × δ1, the model
Nx

2,i+1 is (λ, λ)-brimmed over Nx
1,i+1 ∪N

x
2,i (by 6.14, note there the
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statement “without changing the N1,i’s”). Now we choose by induc-
tion on i ≤ λ× δ1 an isomorphism gi from Na

2,i onto N b
2,i such that:

gi is increasing with i and gi extends (f1 ↾ Na
1,i) ∪ f2.

For i = 0 choose g0 = f2 and for i limit let gi be
⋃

j<i

gj and for i = j+1

it exists by 6.10, whose assumptions hold by (Nx
1,i, N

x
1,i+1, c

x
i ) ∈

K3,uq
λ (see 6.11, clause (f)(δ)) and the extra brimness clause from

6.14. Now by 1.16(3) we can extend gλ×δ1 to an isomorphism from
Na

3 onto N b
3 as Nx

3 is (λ, cf(δ3))-brimmed over Nx
2,λ×δ1

(for x ∈
{a, b}). �6.15

Note that even knowing 6.15 the choice of 〈N1,i : i ≤ λ × δ1〉, 〈ci :
i < λ × δ1〉 still possibly matters. Now we prove an “inverted”
uniqueness, using our ability to construct a “rectangle” of models
which is a witness for NFλ,δ̄ in two ways.

6.16 Claim. Suppose that

(a) for x ∈ {a, b} we have NFλ,δ̄x(Nx
0 , N

x
1 , N

x
2 , N

x
3 )

(b) δ̄x = 〈δx1 , δ
x
2 , δ

x
3 〉, δ

a
1 = δb2, δ

a
2 = δb1, cf(δ

a
3 ) = cf(δb3), all limit

ordinals

(c) f0 is an isomorphism from Na
0 onto N b

0

(d) f1 is an isomorphism from Na
1 onto N b

2

(e) f2 is an isomorphism from Na
2 onto N b

1

(f) f0 ⊆ f1 and f0 ⊆ f2.

Then there is an isomorphism from Na
3 onto N b

3 extending f1 ∪ f2.

Before proving we shall construct a third “rectangle” of models such
that we shall be able to construct appropriate isomorphisms each of
Na

3 , N
b
3

6.17 Subclaim. Assume

(a) δa1 , δ
a
2 , δ

a
3 < λ+ are limit ordinals

(b)1 M̄1 = 〈M1
α : α ≤ λ× δa1 〉 is ≤K-increasing continuous in Kλ

and (M1
α,M

1
α+1, cα) ∈ K3,bs

λ
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(b)2 M̄2 = 〈M2
α : α ≤ λ× δa2 〉 is ≤K-increasing continuous in Kλ

and (M2
α,M

2
α+1, dα) ∈ K3,bs

λ

(c) M1
0 = M2

0 we call it M and M1
α∩M

2
β = M for α ≤ λ×δa1 , β ≤

λ× δa2 .

Then we can find Mi,j (for i ≤ λ× δa1 and j ≤ λ× δa2 ) and M3 such
that:

(A) Mi,j ∈ Kλ and M0,0 = M and Mi,0 = M1
i ,M0,j = M2

j

(B) i1 ≤ i2 & j1 ≤ j2 ⇒Mi1,j1 ≤K Mi2,j2

(C) if i ≤ λ × δa1 is a limit ordinal and j ≤ λ × δa2 then Mi,j =
⋃

ζ<i

Mζ,j

(D) if i ≤ λ × δa1 and j ≤ λ × δa2 is a limit ordinal then Mi,j =
⋃

ξ<j

Mi,ξ

(E) Mλ×δa
1 ,j+1 is (λ, cf(δa1 ))-brimmed over Ma

λ×δa
1 ,j

for j < λ×δa2

(F ) Mi+1,λ×δa
2

is (λ, cf(δa2 ))-brimmed over Mi,λ×δa
2

for i < λ×δa1

(G) Mλ×δa
1 ,λ×δ

a
2
≤K M3 ∈ Kλ moreover

M3 is (λ, cf(δa3 ))-brimmed over Mλ×δa
1 ,λ×δ

a
2

(H) for i < λ × δa1 , j ≤ λ × δa2 we have tp(ci,Mi,j,Mi+1,j) does
not fork over Mi,0

(I) for j < λ × δa2 , i ≤ λ × δa1 we have tp(dj,Mi,j,Mi,j+1) does
not fork over M0,j.

We can add

(J) for i < λ×δa1 , j < λ×δb2 the model Mi+1,j+1 is (λ, ∗)-brimmed
over Mi,j+1 ∪Mi+1,j.

Remark. 1) We can replace in 6.17 the ordinals λ × δaℓ (ℓ = 1, 2, 3)
by any ordinal αaℓ < λ+ (for ℓ = 1, 2, 3) we use the present notation
just to conform with its use in the proof of 6.16.
2) Why do we need uℓ1 in the proof below? This is used to get the
brimmness demands in 6.17.
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Proof. We first change our towers, repeating models to give space for
bookkeeping. That is we define ∗M1

α for α ≤ λ× λ× δa1 as follows:

if λ× β < α ≤ λ× β + λ and β < λ× δa1 then ∗M1
α = M1

β+1

if α = λ× β, then ∗M1
α = M1

β .

Let u1
0 = {λβ : β < δa1}, u

1
1 = λ×λ×δa1 \u

1
0, u

1
2 = ∅ and for α = λβ ∈

u1
0 let a1

α = cβ .
Similarly let us define ∗M2

α (for α ≤ λ × λ × δa2 ),u2
0, u

2
1, u

2
2 and

〈a2
α : α ∈ u2

0〉.
Now apply 4.11 (check) and get ∗Mi,j , (i ≤ λ × λ × δa1 , j ≤

λ × λ × δa2 ). Lastly, for i ≤ δa1 , j ≤ δa2 let Mi,j = ∗Mλ×i,λ×j . By
4.3 clearly ∗Mλ×i+λ,λ×j+λ is (λ, cf(λ))-brimmed over ∗Mλ×i+1,λ×j+1

hence Mi+1,j+1 is (λ, cf(λ))-brimmed over Mi+1,j ∪Mi,j+1. And, by
4.2(1) chooseM3 ∈ Kλ which is (λ, cf(δa3 ))-brimmed overMλ×δa

1 ,λ×δ
a
2
.

�6.17

Proof of 6.16. We shall let Mi,j ,M3 be as in 6.17 for δ̄a and M̄1, M̄2

determined below. For x ∈ {a, b} as NFλ,δ̄x(Nx
0 , N

x
1 , N

x
2 , N

x
3 ), we

know that there are witnesses 〈Nx
1,i : i ≤ λ × δx1 〉, 〈c

x
i : i < λ ×

δx1 〉, 〈N
x
2,i : i ≤ λ × δx1 〉 for this. So 〈Nx

1,i : i ≤ λ × δx1 〉 is ≤K-

increasing continuous and (Nx
1,i, N

x
1,i+1, c

x
i ) ∈ K3,uq

λ for i < λ × δx1 .

Hence by the freedom we have in choosing M̄1 and 〈ci : i < λ× δ1〉
without loss of generality there is an isomorphism g1 from Na

1,λ×δa
1

onto Mλ×δa
1

mapping Na
1,i onto M1

i = Mi,0 and cai to ci; remember

that Na
1,λ×δa

1
= Na

1 . Let g0 = g1 ↾ Na
0 = g1 ↾ Na

1,0 so g0 ◦ f
−1
0 is an

isomorphism from N b
0 onto M0,0.

Similarly as δb1 = δa2 , and using the freedom we have in choosing
M̄2 and 〈di : i < λ × δb1〉 without loss of generality there is an
isomorphism g2 from N b

1,λ×δa
2

onto M2
j = M0,λ×δa

2
mapping N b

1,j

onto M0,j (for j ≤ λ × δa2 ) and mapping cbi to di and g2 extends

g0 ◦ f
−1
0 .

Now would like to use the weak uniqueness 6.15 and for this note:

(α) NFλ,δ̄a(Na
0 , N

a
1 , N

a
2 , N

a
3 ) is witnessed by the sequences 〈Na

1,i :
i ≤ λ× δa1 〉, and 〈Na

2,i : i ≤ λ× δa1 〉
[why? an assumption]
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(β) NFλ,δ̄a(M0,0,Mλ×δa
1 ,0
,M0,λ×δa

2
,M3) is witnessed by the se-

quences 〈Mi,0 : i ≤ λ× δa1 〉, 〈Mi,λ×δa
2

: i ≤ λ× δa1 〉
[why? check]

(γ) g0 is an isomorphism from Na
0 onto M0,0

[why? see its choice]

(δ) g1 is an isomorphism from Na
1 onto Mλ×δa

1 ,0
mapping Na

1,i

onto Mi,0 for i < λ × δa1 and cai to ci for i < λ × δa1 and
extending g0
[why? see the choice of g1 and of g0]

(ε) g2 ◦ f2 is an isomorphism from Na
2 onto M0,λ×δa

2
extending

g0
[why? f2 is an isomorphism from Na

2 onto N b
1 and g2 is an

isomorphism from N b
1 onto M0,λ×δa

1
extending g0 ◦ f

−1
0 and

f0 ⊆ f2].

So there is by 6.15 an isomorphism ga3 from Na
3 onto M3 extending

both g1 and g2 ◦ f2.

We next would like to apply 6.15 to the N b
i ’s; so note:

(α)′ NFλ,δ̄b(N b
0 , N

b
1 , N

b
2 , N

b
3) is witnessed by the sequences 〈N b

1,i :

i ≤ λ× δa2 〉,
〈N b

2,i : i ≤ λ× δa2 〉

(β)′ NFλ,δ̄b(M0,0,M0,λ×δa
2
,Mλ×δa

1 ,0
,M3) is witnessed by the se-

quences 〈M0,j : j ≤ λ× δa2 〉, 〈Mλ×δa
1 ,j

: j ≤ λ× δa2 〉

(γ)′ g0 ◦ (f0)
−1 is an isomorphism from N b

0 onto M0,0

[why? Check.]

(δ)′ g2 is an isomorphism from N b
1 onto M0,λ×δa

2
mapping N b

1,j

ontoM0,j and caj to dj for j ≤ λ×δa2 and extending g0◦(f2)
−1

[why? see the choice of g2: it maps N b
1,j onto M0,j]

(ε)′ g1 ◦(f1)
−1 is an isomorphism from N b

2 onto Mλ×δa
0

extending
g0
[why? remember f1 is an isomorphism from Na

1 onto N b
2

extending f0 and the choice of g1: it maps Na
1 onto Mλ×δa

1 ,0
].

So there is an isomorphism gb3 form N b
3 onto M3 extending g2 and

g1 ◦ (f1)
−1.
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Lastly (gb3)
−1◦ga3 is an isomorphism from Na

3 onto N b
3 (chase arrows).

Also

((gb3)
−1 ◦ ga3) ↾ Na

1 = (gb3)
−1(ga3 ↾ Na

1 )

= (gb3)
−1g1 = ((gb3)

−1 ↾ Mλ×δa
1 ,0

) ◦ g1

= (gb3 ↾ N b
2)−1 ◦ g1 = ((g1 ◦ (f1)

−1)−1) ◦ g1

= (f1 ◦ (g1)
−1) ◦ g1 = f1.

Similarly ((gb3)
−1 ◦ ga3 ) ↾ Na

2 = f2.
So we have finished. �6.16

But if we invert twice we get straight; so

6.18 Claim. [Uniqueness]. Assume for x ∈ {a, b} we have
NFλ,δ̄x(Nx

0 , N
x
1 , N

x
2 , N

x
3 ) and cf(δa1 ) = cf(δb1), cf(δ

a
2 ) = cf(δb2), cf(δ

a
3 ) =

cf(δb3), all δxℓ limit ordinals < λ+.
If fℓ is an isomorphism from Na

ℓ onto N b
ℓ for ℓ < 3 and f0 ⊆

f1, f0 ⊆ f2 then there is an isomorphism f from Na
3 onto N b

3 ex-
tending f1, f2.

Proof. Let δ̄c = 〈δc1, δ
c
2, δ

c
3〉 = 〈δa2 , δ

a
1 , δ

a
3〉; by 6.13(1) there are N c

ℓ

(for ℓ ≤ 3) such that NFλ,δ̄c(N c
0 , N

c
1 , N

c
2 , N

c
3) and N c

0
∼= Na

0 . There
is for x ∈ {a, b} an isomorphism gx0 from Nx

0 onto N c
0 and without

loss of generality ga0 = gb0 ◦ f0. Similarly for x ∈ {a, b} there is an
isomorphism gx1 from Nx

1 onto N c
2 extending gx0 (as Nx

1 is (λ, cf(δx1 ))-
brimmed over Nx

0 and also N c
2 is (λ, cf(δc2))-brimmed over N c

0 and
cf(δc2) = cf(δa1 ) = cf(δx1 )) and without loss of generality gb1 = ga1 ◦ f1.
Similarly for x ∈ {a, b} there is an isomorphism gx2 from Nx

2 onto
N c

1 extending gx0 (as Nx
2 is (λ, cf(δx2 ))-brimmed over Nx

0 and also
N c

1 is (λ, cf(δc1))-brimmed over N c
0 and cf(δc1) = cf(δa2 ) = cf(δx2 )) and

without loss of generality ga2 = gb2 ◦ f2.
So by 6.16 for x ∈ {a, b} there is an isomorphism gx3 from Nx

3 onto
N c

3 extending gx1 and gx2 . Now (gb3)
−1 ◦ ga3 is an isomorphism from

Na
3 onto N b

3 extending f1, f2 as required. �6.18

So we have proved the uniqueness for NFλ,δ̄ when all δℓ are limit
ordinals; this means that the arbitrary choice of 〈N1,i : i ≤ λ × δ1〉
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and 〈ci : i < λ × δ1〉 is immaterial; it figures in the definition and,
e.g. existence proof but does not influence the net result. The power
of this result is illustrated in the following conclusion.

6.19 Conclusion. [Symmetry].
If NFλ,〈δ1,δ2,δ3〉(N0, N1, N2, N3) where δ1, δ2, δ3 are limit ordinals

< λ+ then NFλ,〈δ2,δ1,δ3〉(N0, N2, N1, N3).

Proof. By 6.17 we can find N ′
ℓ(ℓ ≤ 3) such that: N ′

0 = N0, N
′
1 is

(λ, cf(δ1))-brimmed over N ′
0, N

′
2 is (λ, cf(δ2))-brimmed over N ′

0 and
N ′

3 is (λ, cf(δ3))-brimmed over N ′
1 ∪ N ′

2 and NFλ,〈δ1,δ2,δ3〉(N
′
0, N

′
1,

N ′
2, N

′
3) and NFλ,〈δ2,δ1,δ3〉(N

′
0, N

′
2, N

′
1, N

′
3). Let f1, f2 be an isomor-

phism from N1, N2 onto N ′
1, N

′
2 over N0, respectively. By 6.18 (or

6.16) there is an isomorphism f ′
3 form N3 onto N ′

3 extending f1 ∪f2.
As isomorphisms preserve NF we are done. �6.19

Now we turn to smooth amalgamation (not necessarily brimmed,
see Definition 6.12). If we use Lemma 4.8, of course, we do not really
need 6.20.

6.20 Claim. 1) If NFλ,δ̄(N0, N1, N2, N3) and δ1, δ2, δ3 are limit or-
dinals, then NFλ(N0, N1, N2, N3) (see Definition 6.12).
2) In Definition 6.12(1) we can add:

(d)+ Mℓ is (λ, cf(λ))-brimmed over N0 and moreover over Nℓ,

(e) M3 is (λ, cf(λ))-brimmed over M1∪M2 (actually this is given
by clause (f)(ζ) of Definition 6.11).

3) If N0 ≤K Nℓ for ℓ = 1, 2 and N1 ∩N2 = N0, then we can find N3

such that NFλ(N0, N1, N2, N3).

Proof. 1) Note that even if every δℓ is limit and we waive the
“moreover” in clause (d)+, the problem is in the case that e.g.
(cf(δa), cf(δb), cf(δc)) 6= (cf(λ), cf(λ), cf(λ)). For ℓ = 1, 2 we can find
M̄ ℓ = 〈M ℓ

i : i ≤ λ × (δℓ + λ)〉 and 〈cℓi : i < λ × (δi + λ)〉 such that

M ℓ
0 = N0, M̄

1 is ≤K-increasing continuous (M ℓ
i ,M

ℓ
i+1, ci) ∈ K3,uq

s

and if p ∈ S bs(M ℓ
i ) and i < λ× (δℓ + λ) then for λ ordinals j < λ,

tp(ci,M
ℓ
i+j,M

ℓ
i+j+1) is a non-forking extension of p. So M ℓ

λ×δℓ
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is (λ, cf(δℓ))-brimmed over M ℓ
0 = N0 and M ℓ

λ×(δℓ+λ) is (λ, cf(λ))-

brimmed over M ℓ
λ×δℓ

; so without loss of generality M ℓ
λ×δℓ

= Nℓ for
ℓ = 1, 2.
By 6.17 we can find Mi,j for i ≤ λ × (δ1 + λ), j ≤ λ × (δ2 + λ) for
δ̄′ := 〈δ1 + λ, δ2 + λ, δ3〉 such that they are as in 6.17 for M̄1, M̄2 so
M0,0 = N0; then choose M ′

3 ∈ Kλ which is (λ, cf(δ3))-brimmed over
Mλ×δ1,λ×δ2 . So NFλ,δ̄(M0,0,Mλ×δ1,0,M0,λ×δ2 ,M

′
3), hence by 6.18

without loss of generality M0,0 = N0,Mλ×δ1,0 = N1,M0,λ×δ2 = N2,
and N3 = M ′

3. Lastly, let M3 be (λ, cf(λ))-brimmed over M ′
3. Now

clearly also
NFλ,〈δ1+λ,δ2+λ,δ3+λ〉(M0,0,Mλ×(δ1+λ),0,M0,λ×(δ2+λ),M3) and
N0 = M0,0, N1 = Mλ×δ2,0 ≤K Mλ×(δ2+λ),0, N2 = M0,λ×δ2 ≤K

M0,λ×(δ2+λ)

and Mλ×(δ1+λ),0 is (λ, cf(λ))-brimmed over Mλ×δ1,0 and M0,λ×(δ2+λ)

is
(λ, cf(λ))-brimmed over M0,λ×δ2 and N3 = M ′

3 ≤K M3. So we
get all the requirements for NFλ(N0, N1, N2, N3) (as witnessed by
〈M0,0,Mλ×(δ1+λ),0,M0,λ×(δ2+λ),M3〉). 2) Similar proof.
3) By 6.13 and the proof above. �6.20

Now we turn to NFλ; existence is easy.

6.21 Claim. NFλ has existence, i.e., clause (f) of 6.1(1).

Proof. By 6.20(3). �6.21

Next we deal with real uniqueness

6.22 Claim. [Uniqueness of smooth amalgamation]:
1) If NFλ(N

x
0 , N

x
1 , N

x
2 , N

x
3 ) for x ∈ {a, b}, fℓ an isomorphism from

Na
ℓ onto N b

ℓ for ℓ < 3 and f0 ⊆ f1, f0 ⊆ f2 then f1 ∪ f2 can be
extended to a ≤K-embedding of Na

3 into some ≤K-extension of N b
3 .

2) So if above Nx
3 is (λ, κ)-brimmed over Nx

1 ∪ Nx
2 for x = a, b, we

can extend f1 ∪ f2 to an isomorphism from Na
3 onto N b

3 .

Proof. 1) For x ∈ {a, b} let the sequence 〈Mx
ℓ : ℓ < 4〉 be a witness

to
NFλ(N

x
0 , N

x
1 , N

x
2 , N

x
3 ) as in 6.12, 6.20(2), so in particular
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NFλ,〈λ,λ,λ〉(M
x
0 ,M

x
1 ,M

x
2 ,M

x
3 ). By chasing arrows (disjointness) and

uniqueness, i.e. 6.18 without loss of generality Ma
ℓ = M b

ℓ for ℓ < 4
and f0 = idNa

0
. As Ma

1 is (λ, cf(λ))-brimmed over Na
1 and also over

N b
1 (by clause (d)+ of 6.20(2)) and f1 is an isomorphism from Na

1

onto N b
1 , clearly by 1.16 there is an automorphism g1 of Ma

1 such
that f1 ⊆ g1, hence also idNa

0
= f0 ⊆ f1 ⊆ g1. Similarly there is an

automorphism g2 of Ma
2 extending f2 hence f0. So gℓ ∈ AUT(Ma

ℓ )
for ℓ = 1, 2 and g1 ↾ Ma

0 = f0 = g2 ↾ Ma
0 . By the uniqueness of

NFλ,〈λ,λ,λ〉 (i.e. Claim 6.18) there is an automorphism g3 of Ma
3

extending g1 ∪ g2. This proves the desired conclusion.
2) Should be clear. �6.22

We now show that in the cases the two notions of non-forking amalga-
mations are meaningful then they coincide, one implication already
is a case of 6.20.

6.23 Claim. Assume

(a) δ̄ = 〈δ1, δ2, δ3〉, δℓ < λ+ is a limit ordinal for ℓ = 1, 2, 3;
N0 ≤K Nℓ ≤K N3 are in Kλ for ℓ = 1, 2

(b) Nℓ is (λ, cf(δℓ))-brimmed over N0 for ℓ = 1, 2

(c) N3 is cf(δ3)-brimmed over N1 ∪N2.

Then NFλ(N0, N1, N2, N3) iff NFλ,δ̄(N0, N1, N2, N3).

Proof. The “if” direction holds by 6.20(1). As for the “only if” direc-
tion, basically it follows from the existence for NFλ,δ̄ and uniqueness
for NFλ; in details by the proof of 6.20(1) (and Definition 6.11, 6.12)
we can findMℓ(ℓ ≤ 3) such thatM0 = N0 and NFλ,δ̄(M0,M1,M2,M3)

and clauses (b), (c), (d) of Definition 6.12 and (d)+ of 6.20(2) hold
so by 6.20 also NFλ(M0,M1,M2,M3). Easily there are for ℓ < 3,
isomorphisms fℓ from Mℓ onto Nℓ such that f0 = fℓ ↾ Mℓ where f0 =
idN0

. By the uniqueness of smooth amalgamations (i.e., 6.22(2)) we
can find an isomorphism f3 from M3 onto N3 extending f1∪f2. So as
NFλ,δ̄(M0,M1,M2,M3) holds also NFλ,δ̄, (f0(M0), f3(M1), f3(M2),
f3(M3)); that is NFλ,δ̄(N0, N1, N2, N3) is as required. �6.23
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6.24 Claim. [Monotonicity]: If NFλ(N0, N1, N2, N3) and N0 ≤K

N ′
1 ≤K N1 and N0 ≤K N ′

2 ≤K N2 and N ′
1 ∪N

′
2 ⊆ N ′

3 ≤K N ′′
3 , N3 ≤K

N ′′
3 then NFλ(N0, N

′
1, N

′
2, N

′
3).

Proof. Read Definition 6.12(1). �6.24

6.25 Claim. [Symmetry]: NFλ(N0, N1, N2, N3) holds if and only if
NFλ(N0, N2, N1, N3) holds.

Proof. By Claim 6.19 (and Definition 6.12). �6.25

We observe

6.26 Conclusion. If NFλ(N0, N1, N2, N3), N3 is (λ, ∂)-brimmed over
N1 ∪N2 and λ ≥ ∂, κ ≥ ℵ0, then there is N+

2 such that

(a) NFλ(N0, N1, N
+
2 , N3)

(b) N2 ≤K N+
2

(c) N+
2 is (λ, κ)-brimmed over N0 and even over N2

(d) N3 is (λ, ∂)-brimmed over N1 ∪N
+
2 .

Proof. Let N+
2 be (λ, κ)-brimmed over N2 be such that N+

2 ∩N3 =
N2. So by existence 6.21 there isN+

3 such that NFλ(N0, N1, N
+
2 , N

+
3 )

and N+
3 is (λ, ∂)-brimmed over N1 ∪N

+
2 . By monotonicity 6.24 we

have NFλ(N0, N1, N2, N
+
3 ). So by uniqueness (i.e., 6.22(2)) without

loss of generality N3 = N+
3 , so we are done. �6.26

The following claim is a step toward proving transitivity for NFλ;
so we first deal with NFλ,δ̄. Note below: if we ignore N c

i we have

problem showing NFλ,δ̄(N
a
0 , N

a
α, N

b
0 , N

b
α). Note that it is not clear at

this stage whether, e.g. N b
ω is even universal overNa

ω , but N c
ω is; note

that the N c
i are ≤K-increasing with i but not necessarily continuous.

However once we finish proving that NFλ is a non-forking relation
on Ks respecting s this claim will lose its relevance.
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6.27 Claim. Assume α < λ+ is an ordinal and for x ∈ {a, b, c}
the sequence N̄x = 〈Nx

i : i ≤ α〉 is a ≤K-increasing sequence of
members of Kλ, and for x = a, b the sequence N̄x is ≤K-increasing
continuous, N b

i ∩N
a
α = Na

i , N
c
i ∩N

a
α = Na

i , N
a
i ≤K N b

i ≤K N c
i and

N b
0 is (λ, δ2)-brimmed over Na

0 and NFλ,δ̄i(Na
i , N

a
i+1, N

c
i , N

b
i+1) (so

necessarily i < α⇒ N c
i ≤K N b

i+1) where

δ̄i = 〈δi1, δ
i
2, δ

i
3〉 with δi1, δ

i
2, δ

i
3 are ordinals < λ+ and δ3 < λ+ is

limit, N c
α is (λ, cf(δ3))-brimmed over N b

α, δ1 =
∑

β<α

δβ1 and δ3 = δα3

and δ2 = δ02 , δ̄ = 〈δ1, δ2, δ3〉.
Then NFλ,δ̄(N

a
0 , N

a
α, N

b
0 , N

c
α).

Proof. For i < α let 〈N i
1,ε, N

i
2,ε, d

i
ζ : ε ≤ λ × δi1, ζ < λ × δi1〉 be a

witness to NFλ,δ̄i(Na
i , N

a
i+1, N

c
i , N

b
i+1). Now we define a sequence

〈N1,ε, N2,ε, d
i
ζ : ε ≤ λ× δ1 and ζ < λ× δ1〉 where

(a) N1,0 = Na
0 , N2,0 = N b

0 and

(b) if λ×(
∑

j<i

δj1) < ζ ≤ λ×(
∑

j≤i

δj1) then we letN1,ζ = N i
1,εζ

, N2,ζ =

N i
2,εζ

where εζ = ζ − λ× (
∑

j<i

δj1) and

(c) if 0 < ζ = λ ×
∑

j<α

δj1 we let N1,ζ = Na
i , N2,ζ = N b

i = α

(if i is non-limit we should note that this is compatible with
clause (b), note that by this if i = α then N1,ζ = Na

α, N2,ζ =
∪{N i

2,λ×δ1
: i < α}

(d) if λ× (
∑

j<i

δj1) ≤ ζ < λ× (
∑

j≤i

δj1) then we let dζ = diεζ
where

εζ = ζ − λ× (
∑

j<i

δjj ) = ∪{N∗
2,ζ : ζ < λ× (

∑

j<α

δj1).

Clearly 〈N1,ζ : ζ ≤ λ × δ1〉 is ≤K-increasing continuous, and also

〈N2,ζ : ζ ≤ λ × δ1〉 is. Obviously (N1,ζ , N1,ζ+1, dζ) ∈ K3,uq
λ as this

just means (N i
1,εζ

, N i
1,εζ+1, d

i
ζ) ∈ K3,uq

λ when λ ×
∑

j<i

δj1 : j ≤ ζ <

Paper Sh:600, Chapter II



II.§6 NON-FORKING AMALGAMATION IN Kλ 347

λ×
∑

j≤i

δj1 and εζ as above.

Why tp(dζ , N2,ζ , N2,ζ+1) does not fork over N1,ζ for ζ, i such that

λ× (
∑

j<i

δj1)ζ < λ× (
∑

j≤i

δjj )? If λ×
∑

j<i

δj1 < ζ this holds as it means

tp(diεζ
, N i

2,εζ
, N i

2,εζ+1) does not fork over N i
1,ζ . If λ ×

∑

j<i

δj1 = ζ

this is not the case but N i
1,0 = N1,ζ ≤K N2,ζ ≤K N c

i = N i
2,0 and we

know that tp(dζ , N
i
2,0, N

i
2,1) does not fork over N i

1,0 = N1,ζ hence by
monotonicity of non-forking tp(dζ , N2,ζ , N2,ζ+1) does not fork over
N1,ζ is as required.
Note that we have not demanded or used “N̄ c continuous”; the N c

i

is really needed for i limit as we do not know that N b
i is brimmed

over Na
i . �6.27

6.28 Claim. [transitivity] 1) Assume that α < λ+ and for x ∈ {a, b}
we have 〈Nx

i : i ≤ α〉 is a ≤K-increasing continuous sequence of
members of Kλ.
If NFλ(N

a
i , N

a
i+1, N

b
i , N

b
i+1) for each i < α then NFλ(N

a
0 , N

a
α, N

b
0 , N

b
α).

2) Assume that α1 < λ+, α2 < λ+ and Mi,j ∈ Kλ (for i ≤ α1, j ≤
α2) satisfy clauses (B), (C), (D), from 6.17, and for each i < α1, j <
α2 we have:

Mi,j+1

Mi+1,j+1
⋃

Mi,j

Mi+1,j.

Then Mi,0

Mα1,α2
⋃

M0,0

M0,j for i ≤ α1, j ≤ α2.

Proof. 1) We first prove special cases and use them to prove more
general cases.

Case A: Na
i+1 is (λ, κi)-brimmed overNa

i andN b
i+1 is (λ, ∂i)-brimmed

over Na
i+1 ∪N

b
i for i < α (∂i infinite, of course).
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In essence the problem is that we do not know “N b
i is brimmed

over Na
i ” (i limit) so we shall use 6.27; for this we introduce appro-

priate N c
i .

Let δi1 = κi, δ
i
2 = κi, δ

i
3 = ∂i where we stipulate ∂α = λ. For i ≤ α

we can choose N c
i ∈ Kλ such that

(a) N b
i ≤K N c

i ≤K N b
i+1, N

c
i is (λ, κi)-brimmed over N b

i , and

NFλ,〈δi
1,δ

i
2,δ

i
3〉

(Na
i , N

a
i+1, N

c
i , N

b
i+1)

(b) N c
α ∈ Kλ is (λ, δα3 )-brimmed over N b

α

(c) 〈N c
i : i < α〉 is ≤K-increasing (in fact follows)

(Possible by 6.26). Now we can use 6.27.

Case B: For each i < α we have: Na
i+1 is (λ, κi)-brimmed over Na

i .
In essence our problem is that we do not know anything about

brimmness of the N b
i , so we shall “correct it”.

Let δ̄i = (κi, λ, λ).
We can find a ≤K-increasing sequence 〈Mx

i : i ≤ α〉 of models in
Kλ for x ∈ {a, b, c}, continuous for x = a, b such that i < α ⇒
Ma
i ≤K M b

i ≤K M c
i ≤K M b

i+1 and M b
α ≤K M c

α and M c
i is (λ, κi)-

brimmed overM b
i (hence overMa

i ) and NFλ,δ̄i(Ma
i ,M

a
i+1,M

c
i ,M

b
i+1)

by choosing Ma
i ,M

b
i ,M

c
i by induction on i,Ma

0 = Na
0 and M b

0 is
universal over Ma

0 recalling that the NFλ,δ̄i implies some brimness

condition, e.g. M b
i+1 is (λ, cf(δi3))-brimmed over Ma

i+1∪M
b
i . By Case

A we know that NFλ(M
a
0 ,M

a
α,M

b
0 ,M

c
α) holds.

We can now choose an isomorphism fa0 from Na
0 onto Ma

0 , as the
identity (exists as Ma

0 = Na
0 ) and then a ≤K-embedding f b0 of N b

0

into M b
0 extending fa0 . Next we choose by induction on i ≤ α, fai an

isomorphism from Na
i onto Ma

i such that: j < i⇒ faj ⊆ fai , possible
by “uniqueness of the (λ, κi)-brimmed model over Ma

i ” so here we
are using the assumption of this case.

Now we choose by induction on i ≤ α, a ≤K-embedding f bi of N b
i

into M b
i extending fai and f bj for j < i. For i = 0 we have done it,

for i limit use
⋃

j<i

f bj , lastly for i a successor ordinal let i = j + 1,

now we have
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(∗)2 NFλ(M
a
j ,M

a
j+1, f

b
j (N

b
j ),M

b
j+1)

[why? because NFλ,δ̄j (Ma
j ,M

a
j+1,M

c
j ,M

b
j+1) by the choice

of the
Mx
ζ ’s hence by 6.23 we have NFλ(M

a
j ,M

a
j+1,M

c
j ,M

b
j+1) and

as
Ma
j = faj (Na

j ) ≤K f bj (N
b
j ) ≤M b

j ≤K M c
j by 6.24 we get (∗)2.]

By (∗)2 and the uniqueness of smooth amalgamation 6.22 and as
M b
j+1 is (λ, cf(δ3j ))-brimmed over Ma

j+1 ∪ M b
j hence over Ma

j+1 ∪

f bj (N
b
j ) clearly there is f bi as required.

So without loss of generality faα is the identity, so we have Na
0 =

Ma
0 , Na

α = Ma
α, N b

0 ≤K M b
0 , N b

α ≤K M b
α; also as said above,

NFλ(M
a
0 ,M

a
α,M

b
0 ,M

b
α) holds (using Case A) so by monotonicity,

i.e., 6.24 we get NFλ(N
a
0 , N

a
α, N

b
0 , N

b
α) as required.

Case C: General case.
We can find M ℓ

i for ℓ < 3, i ≤ α such that (note that M1
0 = M0

0 ):

(a) M ℓ
i ∈ Kλ

(b) for each ℓ < 3,M ℓ
i is ≤K-increasing in i (but for ℓ = 1, 2 they

are not required to be continuous)

(c) M0
i = Na

i

(d) M ℓ+1
i+1 is (λ, λ)-brimmed over M ℓ

i+1 ∪M
ℓ+1
i for ℓ < 2, i < α

(e) NFλ(M
ℓ
i ,M

ℓ
i+1,M

ℓ+1
i ,M ℓ+1

i+1 ) for ℓ < 2, i < α

(f) M1
0 = M0

0 and M2
0 is (λ, cf(λ))-brimmed over M1

0

(g) for ℓ < 2 and i < α limit we have

M ℓ+1
i is (λ, λ)-brimmed over

⋃

j<i

M ℓ+1
j ∪M ℓ

i

(h) for i < α limit we have

NFλ(
⋃

j<i

M1
j ,M

1
i ,

⋃

j<i

M2
j ,M

2
i ).

[How? As in the proof of 6.17 or just do by hand.]
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Now note:

(∗)3 M ℓ+1
i is (λ, cf(λ× (1 + i)))-brimmed over M ℓ

i if ℓ = 1∨ i 6= 0
[why? If i = 0 by clause (f), if i a successor ordinal by clause
(d) and if i is a limit ordinal then by clause (g)]

(∗)4 for i < α,NFλ(M
0
i ,M

0
i+1,M

2
i ,M

2
i+1).

[Why? If i = 0 by clause (e) for ℓ = 1, i = 0 we get
NFλ(M

1
0 ,M

1
1 ,M

2
0 ,M

2
1 ) so by clause (f) (i.e., M1

0 = M0
0 ) and

monotonicity (i.e., Claim 6.24) we have NFλ(M
0
0 ,M

1
0 ,M

2
0 ,M

2
1 )

as required. If i > 0 we use Case B for α = 2 with M0
i , M0

i+1,

M1
i , M1

i+1, M
2
i , M2

i+1 here standing for Na
0 , N b

0 , Na
1 , N b

1 , Na
2 ,

N b
2 there (and symmetry).]

Let us define N ℓ
i for ℓ < 3, i ≤ α by: N ℓ

i is M ℓ
i if i is non-limit and

N ℓ
i = ∪{N ℓ

j : j < i} if i is limit.

(∗)5(i) 〈N ℓ
i : i ≤ α〉 is ≤K-increasing continuous, N0

i = Na
i and

N ℓ
i ≤K M ℓ

i

(ii) for i < α, NFλ(N
0
i , N

0
i+1, N

2
i , N

2
i+1)

[why? by (∗)4+ monotonicity of NFλ]

(iii) for i < α,N2
i+1 is (λ, cf(λ))-brimmed over N0

i+1∪N
2
i and even

over N1
i+1 ∪N

2
i

[why? by clause (d)]

(∗)6 NFλ,〈λ,λ,1〉(N
1
0 , N

1
α, N

2
0 , N

2
α).

[Why? As we have proved case A (or, if you prefer, by 6.27;
easily the assumption there holds).]

Choose fai = idNa
i

for i ≤ α and let f b0 be a ≤K-embedding of N b
0

into N2
0 .

Now we continue as in Case B defining by induction on i a ≤K-
embedding f bi ofN b

i intoN2
i , the successor case is possible by (∗)5(ii)+

(∗)5(iii). In the end by (∗)6 and monotonicity of NFλ (i.e., Claim
6.24) we are done.
2) Apply for each i < α2 part (1) to the sequences 〈Mβ,i : β ≤

α1〉, 〈Mβ,i+1 : β ≤ α1〉 so we get Mα1,i

Mα1,i+1
⋃

M0,i

M0,i+1 hence by
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symmetry (i.e., 6.22) we have M0,i+1

Mα1,i+1
⋃

M0,i

Mα1,i.

Applying part (1) to the sequences 〈M0,j : j ≤ α2〉, 〈Mα1,j : j ≤ α2〉

we get M0,α2

Mα1,α2
⋃

M0,0

Mα1,0 hence by symmetry (i.e. 6.22) we have

Mα1,0

Mα1,α2
⋃

M0,0

M0,α2
; so we get the desired conclusion. �6.28

6.29 Claim. Assume α < λ+, 〈N ℓ
i : i ≤ α〉 is ≤K-increasing con-

tinuous sequence of models for ℓ = 0, 1 where N ℓ
i ∈ Kλ and N1

i+1 is

(λ, κi)-brimmed over N0
i+1 ∪N

1
i and NFλ(N

0
i , N

1
i , N

0
i+1, N

1
i+1).

Then N1
α is (λ, cf(

∑

i<α

κi))-brimmed over N0
α ∪N1

0 .

6.30 Remark. 1) If our framework is uni-dimensional (see III§2; as
for example when it comes from [Sh 576]) we can simplify the proof.
2) Assuming only “N1

i+1 is universal over N0
i+1 ∪N

1
i ” suffices when

α is a limit ordinal, i.e., we get N1
α is (λ, cf(α))-brimmed over N0

α.
Why? We choose N2

j for j ≤ i such that N2
j = N1

j if j = 0 or j a limit

ordinal and N2
j is a model ≤s N

1
j and (λ, κ1)-brimmed over N0

j ∪N
1
i

when j = i + 1. Now 〈N2
j : j ≤ α〉 satisfies all the requirements in

〈N1
j : j ≤ α〉 in 6.29.

3) We could have proved this earlier and used it, e.g. in 6.28.

Proof. The case α not a limit ordinal is trivial so assume α is a limit
ordinal. We choose by induction on i ≤ α, an ordinal ε(i) and a
sequence 〈Mi,ε : ε ≤ ε(i)〉 and 〈cε : ε < ε(i) non-limit〉 such that:

(a) 〈Mi,ε : ε ≤ ε(i)〉 is (strictly) <K-increasing continuous in Kλ

(b) N0
i ≤K Mi,ε ≤K N1

i

(c) N0
i = Mi,0 and N1

i = Mi,ε(i)

(d) ε(i) is (strictly) increasing continuous in i and ε(i) is divisible
by λ
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(e) j < i & ε ≤ ε(j) ⇒Mi,ε ∩N
1
j = Mj,ε

(f) for j < i and ε ≤ ε(j + 1), the sequence 〈Mβ,ε : β ∈ (j, i]〉 is
≤K-increasing continuous

(g) for j < i, ε < ε(j) non-limit; the type tp(cε,Mi,ε,Mi,ε+1) ∈
S bs(Mi,ε) does not fork over Mj,ε (actually, here allowing
all ε is O.K., too)

(h) Mi+1,ε+1 is (λ, cf(λ))-brimmed over Mi+1,ε ∪Mi,ε+1

(i) if ε < ε(i) and p ∈ S bs(Mi,ε) then for λ successor ordinals
ξ ∈ [ε, ε(i)) the type tp(cξ,Mi,ξ,Mi,ξ+1) is a non-forking
extension of p.

If we succeed, then 〈Mα,ε : ε ≤ ε(α)〉 is a (strictly) <K-increasing
continuous sequence of models from Kλ,Mα,0 = N0

α, and Mα,ε(α) =

N1
α. We can apply 4.3 and we conclude that N1

α = Mα,ε(α) is

(λ, cf(α))-brimmed over Mα,ε(j) hence over N0
α∪N

1
0 (both ≤K Mα,1).

Carrying the induction is easy. For i = 0, there is not much
to do. For i successor we use “N j

i+1 is brimmed over N0
i+1 ∪ N1

i ”
the existence of non-forking amalgamations and 4.2, bookkeeping
and the extension property (E)(g). For i limit we have no problem.
�6.29

6.31 Conclusion. 1) If NFλ(N0, N1, N2, N3) and 〈M0,ε : ε ≤ ε(∗)〉
is an ≤K-increasing continuous sequence of models from Kλ, N0 ≤K

M0,ε ≤K N2 then we can find 〈M1,ε : ε ≤ ε(∗)〉 and N ′
3 such that:

(a) N3 ≤K N ′
3 ∈ Kλ

(b) 〈M1,ε : ε ≤ ε(∗)〉 is ≤K-increasing continuous

(c) M1,ε ∩N2 = M0,ε

(d) N1 ≤K M1,ε ≤K N ′
3

(e) if M0,0 = N0 then M1,0 = N1

(f) NFλ(M0,ε,M1,ε, N2, N
′
3), for every ε ≤ ε(∗).

2) If N3 is universal over N1 ∪ N2, then without loss of generality
N ′

3 = N3.
3) In part (1) we can add

(g) M1,ε+1 is brimmed over M0,ε+1 ∪M1,ε.
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Proof. 1) Define M ′
0,i for i ≤ ε∗ := 1 + ε(∗) + 1 by M ′

0,0 =
N0,M

′
0,1+ε = M0,ε for ε ≤ ε(∗) and M ′

0,1+ε(∗)+1 = N2. By ex-

istence (6.21) we can find an ≤K-increasing continuous sequence
〈M ′

1,ε : ε ≤ ε∗〉 with M ′
1,0 = N1 and ≤K-embedding f of N2 into

M ′
1,ε∗ such that ε < ε∗ ⇒ NFλ(f(M ′

0,ε),M
′
1,0, f(M ′

0,ε+1),M
′
1,ε+1).

By transitivity we have NFλ(f(M ′
0,0),M

′
1,0, f(M ′

0,ε∗),M
′
1,ε∗). By dis-

jointness (i.e., f(M ′
0,ε∗) ∩ M ′

1,0 = M ′
0,0, see 6.13(3)) without loss

of generality f is the identity. By uniqueness for NF there are
N ′

3, N3 ≤K N ′
3 ∈ Kλ and ≤K-embedding of M ′

1,ε∗ onto N ′
3 over

N1 ∪N2 = M ′
0,ε∗ ∪M

′
1,0 so we are done.

2) Follows by (1).
3) Similar to (1). �6.31

6.32 Claim. NFλ respects s.
That is, assume NFλ(M0,M1,M2,M3) and a ∈ M1\M0 satisfies
tp(a,M0,M3) ∈ S bs(M0), then tp(a,M2,M3) ∈ S bs(M2) does not
fork over M0.

Proof. Without loss of generality M1 is (λ, ∗)-brimmed over M0.
[Why? By the existence we can find M+

1 which is a (λ, ∗)-brimmed
extension of M1. By the existence for NFλ without loss of generality
we can find M+

3 such that NFλ(M1,M
+
1 ,M3,M

+
3 ), hence by tran-

sitivity for NFλ we have NFλ(M0,M
+
1 ,M2,M

+
3 ).] By the hypoth-

esis of the section there are M ′
1, a

′ such that M0 ∪ {a′} ⊆ M ′
1 and

tp(a′,M0,M
′
1) = tp(a,M0,M1) and (M0,M

′
1, a) ∈ K3,uq

λ ; as M+
1

is (λ, ∗)-brimmed over M0 without loss of generality M ′ ≤K M+
1

and a′ = a and M1 is (λ, ∗)-brimmed over M ′
1. We can apply

6.9 to M ′
1,M

+
1 getting 〈M∗

i , ai : i ≤ δ < λ+〉 as there. Let M ′
i

be: M0 if i = 0,M∗
j if 1 + j = i so M ′

1 = M∗
0 = M ′

1 and let
ai be a if i = 0, aj if 1 + j = i. So we can find M ′

3 and f such
that M2 ≤K M ′

3, f is a ≤K-embedding of M+
1 into M ′

3 extending
idM0

such that NFλ,〈δ,λ,λ〉(M0, f(M+
1 ),M2,M

′
3) and M ′

3, this is wit-
nessed by 〈f(M ′

i) : i ≤ δ〉, 〈M ′′
i : i ≤ δ〉, 〈f(ai) : i < δ〉 and M ′′

0 =
M2; this is possible by 6.13(2). Hence NFλ(M0, f(M+

1 ),M2, N) =
NFλ(f(M ′

0), f(M ′
δ),M

′′
0 , N) hence by the uniqueness for NFλ with-

out loss of generality f = idM+
1

and M3 ≤K N . By the choice of

f,N we have tp(a,M2,M3) = tp(a0,M2, N) = tp(a0,M
′′
0 ,M

′
1) ∈
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S bs(M ′′
0 ) = S bs(M2) does not fork over M ′

0 = M0 as required.
�6.32

6.33 Conclusion. If M0 ≤K Mℓ ≤K M3 for ℓ = 1, 2 and (M0,M1, a) ∈

K3,uq
λ and tp(a,M2,M3) ∈ S bs(M2) does not fork over M0 then

NF(M0,M1,M2,M3).

Proof. By the definition of K3,uq
λ and existence for NFλ and 6.32 (or

use 6.3 + 6.34. �6.33

We can sum up our work by

6.34 Main Conclusion. NFλ is a non-forking relation on 4(Kλ) which
respects s.

Proof. We have to check clauses (a)-(g)+(h) from 6.1. Clauses (a),(b)
hold by the Definition 6.12 of NFλ. Clauses (c)1, (c)2, i.e., mono-
tonicity hold by 6.24. Clause (d), i.e., symmetry holds by 6.25.
Clause (e), i.e., transitivity holds by 6.28. Clause (f), i.e., existence
hold by 6.21. Clause (g), i.e., uniqueness holds by 6.22.

Lastly, clause (h), i.e., NFλ respecting s by 6.32. �6.34

The following definition is not needed for now but is natural (of
course, we can omit “there is superlimit” from the assumption and
the conclusion). For the rest of the section we stop assuming Hy-
pothesis 6.8.

6.35 Definition. 1) A good λ-frame s is type-full when for M ∈
Ks,S

bs(M) = S na
Kλ

(M).
2) Assume Kλ is a λ-a.e.c. and NF is a 4-place relation on Kλ. We
define t = tKλ,NF = (Kt,

⋃

t

,S bs
t ) as follows:

(a) Kt is the λ-a.e.c. Kλ

(b) S bs
t

(M) is S na
Kλ

(M) for M ∈ Kλ

(c)
⋃

t

is defined by: (M0,M1, a,M3) ∈
⋃

t

when we can find

M2,M
′
3 such that M0 ≤Kλ

M2 ≤Kλ
M ′

3,M3 ≤Kλ
M ′

3, a ∈
M2\M0 and NF(M0,M1,M2,M

′
3).
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6.36 Claim. 1) Assume that

(a) Kλ is a λ-a.e.c. with amalgamation (actually follows by (c))
and a superlimit model

(b) Kλ is stable

(c) NF is a Kλ-non-forking relation, see Definition 6.1(1).

Then t = tKλ,NF is a type-full good λ-frame.

2) Assume that s is a good λ-frame which has existence for K3,uq
λ

(see 6.8(2)) and NF = NFλ. Then t is very close to s, i.e.:

(a) Ks = Kt

(b) if p ∈ S bs
s (M1) and M0 ≤Kλ

M1 then p ∈ S bs
t (M1) and p

forks over M0 for s iff p forks over M0 for t.

Proof. For the time being, left to the reader (but before it is really
used it is proved in III.9.6).

Remark. Note that this actually says that from now on we could
have used type-full s, but it is not necessary for a long time.

6.37 Definition. 1) Let s be a good λ-frame. We say that NF is a
weak s-non-forking relation when

(a) NF is a pseudo Ks-non-forking relation, see Definition 6.1(2),
i.e., uniqueness is omitted

(b) NF respects s, see Definition 6.1(3)

(c) NF satisfies 6.31, (NF-lifting of an ≤K-increasing sequence).

1A) If in part (1) we replace “s-non-forking” by “non-forking”, we
mean that we omit clause (c).
1B) In part (1) we omit “weak” when we omit the “pseudo” in clause
(a), so clause (c) becomes redundant.
2) We say s is pseudo-successful if some NF is a weak s-non-forking
relation witnesses it.
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6.38 Observation. 1) If s is a good λ-frame which is weakly successful

(i.e., has existence for K3,uq
λ , i.e., 6.8) then NFλ = NFs is a s-non-

forking relation.
2) If s is a good λ-frame and NF is a weak s-non-forking relation
then 6.33 holds.
3) If s is a good λ-frame and NF is an s-non-forking relation then
NF is a weak s-non-forking relation which implies NF is a pseudo
non-forking relation.

Proof. Straight.
1) Follows by 6.34, NFλ satisfies clauses (a)+(b) and by 6.31 it sat-
isfies also clause (c) of Definition 6.1(1).
2) Also easy.
3) We have just to check the proof of 6.31 still works.

6.39 Remark. 1) In Chapter III ,§1 -§11 we can use “s is pseudo suc-
cessful as witnessed by NF” so has lifting of decompositions instead
of “s is weakly successful”. We shall return to this elsewhere, see
Chapter VII, [Sh 842].

§7 Nice extensions in Kλ+

7.1 Hypothesis. Assume the hypothesis 6.8.

So by §6 we have reasonable control on smooth amalgamation in Kλ.
We use this to define “nice” extensions in Kλ+ and prove some basic
properties. This will be treated again in §8.

7.2 Definition. 1) Knice
λ+ is the class of saturated M ∈ Kλ+ .

2) Let M0 ≤∗
λ+ M1 mean:

M0 ≤K M1 and they are from Kλ+ and we can find M̄ ℓ =
〈M ℓ

i : i < λ+〉, a ≤K-representation of Mℓ for ℓ = 0, 1 such
that:
NFλ(M

0
i ,M

0
i+1,M

1
i ,M

1
i+1) for i < λ+.
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3) Let M0 <
+
λ+,κ

M1 mean20 that (M0,M1 ∈ Kλ+ and) M0 ≤∗
λ+ M1

by some witnesses M ℓ
i (for i < λ+, ℓ < 2) such that NFλ,〈1,1,κ〉(M

0
i ,

M0
i+1, M

1
i , M1

i+1) for i < λ+; of course M0 ≤K M1 in this case. Let

M0 ≤+
λ+,κ

M1 mean (M0 = M1 ∈ Kλ+) ∨ (M0 <
+
λ+,κ

M1). If κ = λ,

we may omit it.

4) Let K3,bs
λ+ = {(M,N, a) : M ≤∗

λ+ N are from Kλ+ and a ∈ N\M
and for some M0 ≤K M,M0 ∈ Kλ we have [M0 ≤K M1 ≤K M &
M1 ∈ Kλ implies tp(a,M1, N) ∈ S bs(M1) and does not fork over

M0]}. We call M0 or tp(a,M0, N) a witness for (M,N, a) ∈ K3,bs
λ+ .

(In fact this definition on K3,bs
λ+ is compatible with the definition in

§2 for triples such that M ≤∗
λ+ N but we do not know now whether

even (Knice
λ+ ,≤∗

λ+) is a λ+-a.e.c..)

7.3 Claim. 0) Knice
λ+ has one and only one model up to isomorphism

and M ∈ Knice
λ+ implies M ≤∗

λ+ M and M ≤+
λ+ M ; moreover, M ∈

Kλ+ ⇒ M ≤∗
λ+ M . Also ≤∗

λ+ is a partial order and if Mℓ ∈ Kλ+

for ℓ = 0, 1, 2 and M0 ≤K M1 ≤K M2 and M0 ≤∗
λ+ M2 then M0 ≤∗

λ+

M1.
1) If M0 ≤∗

λ+ M1 and M̄ ℓ = 〈M ℓ
i : i < λ+〉 is a representation of

Mℓ for ℓ = 0, 1 then

(∗) for some club E of λ+,

(a) for every α < β from E we have NFλ(M
0
α,M

0
β ,M

1
α,M

1
β)

(b) if ℓ < 2 and Mℓ ∈ Knice
λ+ then for α < β from E the

model M ℓ
β is (λ, ∗)-brimmed over M ℓ

α.

2) Similarly for <+
λ+,κ

: if M0 <+
λ+,κ

M1, M̄
ℓ = 〈M̄ ℓ

i : i < λ+〉 a

representation of Mℓ for ℓ = 0, 1 then for some club E of λ+ for ev-
ery α < β from E we have NFλ,〈1,1,κ〉(M

0
α,M

0
β ,M

1
α,M

1
β), moreover

NFλ,〈1,cf(λ×(1+β)),κ〉(M
0
α,M

0
β ,M

1
α,M

1
β) and if (Mα, M̄

0
β ,M

1
α,M

1
β), M0

∈ Knice
λ+ then we can add NFλ,〈λ,cf(λ×(1+β)),κ)(M

0
α,M

0
β ,M

′
α,M

′
β).

3) The κ in Definition 7.2(3) does not matter.

20Note that M0 <+
λ+,κ

M1 implies M1 ∈ Knice
λ+ but in general M0 ∈ Knice

λ+

does not follow.
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4) If M0 <
+
λ+,κ

M1, then M1 ∈ Knice
λ+ .

5) If M ∈ Kλ+ is saturated, equivalently M ∈ Knice
λ+ then M has a

≤K-representation M̄ = 〈Mα : α < λ+〉 such that Mi+1 is (λ, λ)-
brimmed over Mi for i < λ+ and also the inverse is true.
6) If M ≤∗

λ+ N and N0 ≤K N,N0 ∈ Kλ then we can find M1 ≤K N1

from Kλ such that M1 ≤K M,N0 ≤K N1 ≤K N and: for every
M2 ∈ Kλ satisfying M1 ≤K M2 ≤K M there is N2 ≤K N such that
NFs(M1,M2, N1, N2).

Proof. 0) Obvious by now (for the second sentence use part (1) and
NFs being a non-forking relation on Ks) in particular transitivity
and monotonicity.
1) Straight by 6.28 as any two representations agree on a club.
2) Up to “moreover” quite straight. For the “moreover” use 6.29 to
show that M1

β is (λ, cf(β))-brimmed over M0
β . Lastly, for the “we

can add” just use part (5), choosing thin enough club E of λ+ then
use {α ∈ E : otp(α ∩ E) is divisible by λ}.
3) By 6.29.
4) By 6.29.
5) Trivial.
6) Easy. �7.3

7.4 Claim. 0) For every M0 ∈ Kλ+ for some M1 ∈ Knice
λ+ we have

M0 ≤K M1.
1) For every M0 ∈ Kλ+ and κ = cf(κ) ≤ λ for some M1 ∈ Kλ+ we
have M0 <

+
λ+,κ

M1 so M1 ∈ Knice
λ+ .

1A) Moreover, if N0 ≤K M0 ∈ Kλ+ , N0 ∈ Kλ, p ∈ S bs(N0) then in

(1) we can add that for some a, (M0,M1, a) ∈ K3,bs
λ as witnessed by

p.
2) ≤∗

λ+ and <+
λ+,κ

are transitive.

3) If M0 ≤K M1 ≤K M2 are in Kλ+ and M0 ≤∗
λ+ M2, then M0 ≤∗

λ+

M1.
4) If M1 <

+
λ+,κ

M2, then M1 <
∗
λ+ M2.

5) If M0 <
∗
λ+ M1 <

+
λ,κ M2 then M0 <

+
λ,κ M2.

Proof. 0) Easy and follows by the proof of part (1) below.
1), 1A) Let 〈M0

i : i < λ+〉 be a ≤K-representation of M0 with M0
i
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brimmed and brimmed over M0
j for j < i and for part (1A) we have

M0
0 = N0, and for part (1) let p be any member of S bs(M0

0 ). We
choose by induction on i a model M1

i ∈ Kλ and a ∈ M1
0 such that

M1
i is (λ, cf(λ × (1 + i)))-brimmed over M0

i , 〈M
1
i : i < λ+〉 is <K-

increasing continuous, M1
i ∩M0 = M0

i and tp(a,M0
0 ,M

1
0 ) = p and

M1
i+1 is (λ, κ)-brimmed overM0

i+1∪M
1
i and NFλ,〈1,cf(λ×(1+i)),κ〉(M

0
i ,

M0
i+1,M

1
i ,M

1
i+1) for i < λ+. Note that for limit i, by 6.29, M1

i is

(λ, cf(i))-brimmed over M0
i ∪M1

j for any j < i.

Note that for i < λ+, the type tp(a,M0
i ,M

1
i ) does not fork over

M0
0 = N0 and extends p by 6.32 (saying NFλ respects s) 6.25 (sym-

metry) and 6.23. So clearly we are done.
2) Concerning <+

λ+,κ
use 7.3 and 6.28 (i.e. transitivity for smooth

amalgamations). The proof for <∗
λ+ is the same.

3) By monotonicity for smooth amalgamations in Kλ; i.e., 6.24.
4), 5) Check. �7.4

7.5 Claim. 1) If (M0,M1, a) ∈ K3,bs
λ+ and M1 ≤∗

λ+ M2 ∈ Kλ+ then

(M0,M2, a) ∈ K3,bs
λ+ .

2) If M0 <
∗
λ+ M1, then for some a, (M0,M1, a) ∈ K3,bs

λ+ .

Proof. 1) By the transitivity of ≤∗
λ+ which holds by 7.4(2).

2) As in the proof of 2.9, in fact it follows from it. �7.5

Remark. Note that the parallel to 7.4(1A) is problematic in §2 as,

.e.g. locality may fail, i.e., (M,Ni, ai) ∈ K3,bs
λ+ and M ′ ≤K M ∧M ′ ∈

Kλ ⇒ tps(a1,M
′, N1) = tps(a2,M

′, N2) but tpKs

λ+
(a1,M,N1) 6=

tpKs

λ+
(ā2,M,N2). �7.5

7.6 Claim. 1) [Amalgamation of ≤∗
λ+ and toward extending types]

If M0 ≤∗
λ+ Mℓ for ℓ = 1, 2, κ = cf(κ) ≤ λ and a ∈ M2\M0 is

such that (M0,M2, a) ∈ K3,bs
λ+ is witnessed by p, then for some M3

and f we have: M1 <+
λ+,κ

M3 and f is an ≤K-embedding of M2

into M3 over M0 with f(a) /∈ M1, moreover, f(M2) ≤∗
λ+ M3 and

(M1,M3, f(a)) ∈ K3,bs
λ+ is witnessed by p.

2) [uniqueness] Assume M0 <
+
λ+,κ

Mℓ for ℓ = 1, 2 then there is an

Paper Sh:600, Chapter II



360 II. CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES

isomorphism f from M1 onto M2 over M0.
3) [locality] Moreover21, in (2) if aℓ ∈Mℓ\M0 for ℓ = 1, 2 and [N ≤K

M0 & N ∈ Kλ ⇒ tp(a1, N,M1) = tp(a2, N,M2)], then we can de-
mand f(a1) = a2 (so in particular tp(a1,M0,M1) = tp(a2,M0,M2)
where the types are as defined in Kλ+ and even in (Kλ+ ,≤∗

λ+).
4) Moreover in (2), assume further that for ℓ = 1, 2, the follow-
ing hold: N0 ≤K Nℓ ≤K Mℓ, N0 ∈ Kλ, N0 ≤K Nℓ, Nℓ ∈ Kλ and
(∀N ∈ Kλ)[N0 ≤K N ≤K M0 → (∃N ′ ∈ Kλ)(N ∪ Nℓ ⊆ N ′ ≤K

Mℓ∧NFλ(N0, Nℓ, N,N
′)]. If f0 is an isomorphism from N1 onto N2

over N0 then we can add f ⊇ f0.

Proof. We first prove part (2).
2) By 7.3(1) + (2) there are representations M̄ ℓ = 〈M ℓ

i : i < λ+〉 of
Mℓ for ℓ < 3 such that for ℓ = 1, 2 we have: M ℓ

i ∩M0 = M ℓ
0 and

NFλ,〈1,1,κ〉(M
0
i ,M

0
i+1,M

ℓ
i ,M

ℓ
i+1) and without loss of generality M ℓ

0

is (λ, κ)-brimmed over M0
0 for ℓ = 1, 2.

Now we choose by induction on i < λ+ an isomorphism fi from M1
i

onto M2
i , increasing with i and being the identity over M0

i . For i = 0
use “M ℓ

0 is (λ, κ)-brimmed over M0
0 for ℓ = 1, 2” which we assume

above. For i limit take unions, for i successor ordinal use uniqueness
(Claim 6.18).

Proof of part (1). By 7.4(1) there are for ℓ = 1, 2 models N∗
ℓ ∈ Kλ+

such that Mℓ <
+
λ+,κ

N∗
ℓ . Now let M̄ ℓ = 〈M ℓ

i : i < λ+〉 be a represen-

tation of Mℓ for ℓ = 0, 1, 2 and let N̄ ℓ = 〈N ℓ
i : i < λ+〉 be a represen-

tation of N∗
ℓ for ℓ = 1, 2. By 7.4(4) and 7.3(2) without loss of gener-

ality N ℓ
0 is (λ, κ)-brimmed over M ℓ

0 and NFλ(M
0
i ,M

0
i+1,M

ℓ
i ,M

ℓ
i+1)

and NFλ,〈1,1,κ〉(M
ℓ
i ,M

ℓ
i+1, N

ℓ
i , N

ℓ
i+1) respectively for i < λ+, ℓ = 1, 2.

Let M∗
0 be such that p ∈ S bs(M∗

0 ),M∗
0 ∈ Kλ,M

∗
0 ≤K M0; without

loss of generality M∗
0 ≤K M0

0 and a ∈ M2
0 ≤K N2

0 . Now N ℓ
0 is

(λ, κ)-brimmed over M ℓ
0 hence over M0

0 (for ℓ = 1, 2) so there is an
isomorphism f0 from N2

0 onto N1
0 extending idM0

0
. There is a′ ∈ N1

0

such that tp(a′,M1
0 , N

1
0 ) is a non-forking extension of p and without

21the meaning of this will be that types over M ∈ Knice
λ+ for (Knice

λ+ ,≤∗

λ+) can

be reduced to basic types over a model in Kλ, i.e., locality
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loss of generality f0(a) = a′ hence tp(f0(a),M
1
0 , N

1
0 ) ∈ S bs(M1

0 )
does not fork over M0

0 .

We continue as in the proof of part (2). In the end f =
⋃

i<λ+

fi is

an isomorphism of N∗
2 onto N∗

1 over M0 and as f0(a) is well defined
and in N1

0 \M
1
0 clearly tp(f(a),M1

i , N
1
i ) does not fork over M1

0 and
extends p hence the pair (N∗

1 , f ↾ M2) is as required.

Proof of part (3), (4). Like part (2). �7.6

7.7 Claim. 1) If δ is a limit ordinal < λ+2 and 〈Mi : i < δ〉

is a ≤∗
λ+ -increasing continuous (in Kλ+) and Mδ =

⋃

i<δ

Mi (so

Mδ ∈ Kλ+), then Mi ≤
∗
λ+ Mδ for each i < δ.

2) If δ is a limit ordinal < λ+2 and 〈Mi : i < δ〉 is a ≤∗
λ+ -increasing

sequence, each Mi is in Knice
λ+ , then

⋃

i<δ

Mi is in Knice
λ+ .

3) If δ is a limit ordinal < λ+2 and 〈Mi : i < δ〉 is a <+
λ+ -increasing

continuous (or just <∗
λ+ -increasing continuous, andM2i+1 <

+
λ+ M2i+2

for i < δ), then i < δ ⇒Mi <
+
λ+

⋃

j<δ

Mj.

Proof. 1) We prove it by induction on δ. Now if C is a club of δ, (as
≤∗
λ+ is transitive) then we can replace 〈Mj : j < δ〉 by 〈Mj : j ∈ C〉 so

without loss of generality δ = cf(δ), so δ ≤ λ+; similarly it is enough

to prove M0 ≤∗
λ+ Mδ :=

⋃

j<δ

Mj . For each i ≤ δ let 〈M i
ζ : ζ < λ+〉

be a <∗
K
-representation of Mi.

Case A: δ < λ+.
Without loss of generality (see 7.3(1)) for every i < j < δ and ζ < λ+

we have:
M j
ζ ∩Mi = M i

ζ and NFλ(M
i
ζ ,M

i
ζ+1,M

j
ζ ,M

j
ζ+1). Let M δ

ζ =
⋃

i<δ

M i
ζ ,

so
〈M δ

ζ : ζ < λ+〉 is ≤K-increasing continuous sequence of members
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of Kλ with limit Mδ, and for i < δ,M δ
ζ ∩ Mi = M i

ζ . By sym-

metry (see 6.25) we have NFλ(M
i
ζ ,M

i+1
ζ ,M i

ζ+1,M
i+1
ζ+1) so as 〈M i

ζ :

i ≤ δ〉,〈M i
ζ+1 : i ≤ δ〉 are ≤K-increasing continuous, by 6.28, the

transitivity of NFs, we know NFλ(M
0
ζ ,M

δ
ζ ,M

0
ζ+1,M

δ
ζ+1) hence by

symmetry (6.25) we have NFλ(M
0
ζ ,M

0
ζ+1,M

δ
ζ ,M

δ
ζ+1).

So 〈M0
ζ : ζ < λ+〉, 〈M δ

ζ : ζ < λ+〉 are witnesses to M0 ≤∗
λ+ Mδ.

Case B: δ = λ+.

By 7.3(1) (using normality of the club filter, restricting to a club
of λ+ and renaming), without loss of generality for i < j ≤ 1 + ζ <

1 + ξ < λ+ we have M j
ζ ∩Mi = M i

ζ , and NFλ(M
i
ζ ,M

i
ξ,M

j
ζ ,M

j
ξ ).

Let us define Mλ+

ζ =
⋃

j<1+ζ

M j
ζ . So 〈Mλ+

ζ : ζ < λ+〉 is a <K-

representation of Mλ+ = Mδ and continue as before.
2) Again without loss of generality δ = cf(δ) call it κ. Let 〈M i

ζ : ζ <

λ+〉 be a <K-representation of Mi for i < δ.

Case A: δ = κ < λ+.

Easy by now, yet we give details, noting 7.8. So without loss of
generality (see 7.3(1)) for every i < j < δ and ζ < ξ < λ+ we have:

M j
ζ ∩Mi = M i

ζ , NFλ(M
i
ζ ,M

i
ξ,M

j
ζ ,M

j
ξ ) and M i

ζ+1 is (λ, λ)-brimmed

over M i
ζ . Let M δ

ζ =
⋃

β<δ

Mβ
ζ . Let ξ < λ+. Now if p ∈ S bs(M δ

ξ ) then

by the local character Axiom (E)(c) + the uniqueness Axiom (E)(e),
for some i < δ, p does not fork over M i

ξ. As Mi is λ+-saturated

above λ, the type p ↾ M i
ξ is realized in Mi. So let b ∈ Mi realize

p ↾ M i
ξ and by Axiom (E)(h), continuity, it suffices to prove that for

every j ∈ (i, δ), b realizes p ↾ M j
ξ in Mj which holds by 6.32 (note

that b ∈ Mi ≤K Mj as j ∈ [i, δ)). So p is realized in Mδ =
⋃

i<δ

Mi.

As this holds for every ξ < λ+ and p ∈ S bs(M δ
ξ ), the model Mδ is

saturated.

Case B: cf(δ) = λ+.
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Straight, in fact true for K a.e.c. with the λ-amalgamation property.

3) Similar. �7.7

7.8 Remark. Note that in Ax(E)(c),Ax(E)(h) the continuity of the
sequences is not required.

7.9 Claim. 1) If M0 ∈ Kλ+ then there is M1 such that M0 <
+
λ+

M1 ∈ Knice
λ+ , and any such M1 is universal over M0 in (Kλ+ ,≤∗

λ+).

2) Assume ⊠N̄1,N̄2,M1,M2
below holds. Then M1 <+

λ+ M2 iff for

every α < λ+ for stationarily many β < λ+ there is N such that
N1
β ∪N2

α ⊆ N ≤K N2
β and N2

β is (λ, ∗)-brimmed over N where

⊠N̄1,N̄2,M1,M2
M1 ≤∗

λ+ M2 is being witnessed by N̄1, N̄2 that is N̄ℓ = 〈N ℓ
α :

α < λ+〉 is a ≤K-representation of Mℓ for ℓ = 1, 2 and α <
λ+ ⇒ NFλ(N

1
α, N

1
α+1, N

2
α, N

2
α+1) (hence α ≤ β < λ+ ⇒

NFλ(N
1
α, N

1
β , N

2
α, N

2
β)).

Proof. 1) The existence by 7.4(1). Why “any such M1, . . . ?” if
M0 ≤∗

λ+ M2 then for some M+
2 ∈ Knice

λ+ we have M2 <
+
λ M+

2 ∈ Knice
λ+

so M0 ≤∗
λ+ M1 <

+
λ+ M+

2 hence by 7.4(5) we have M0 <
+
λ M+

2 ; so

by 7.6(2) the models M+
2 ,M1 are isomorphic over M0, so M2 can be

≤∗
λ+ -embedded into M1 over M0, so we are done.

2) Not hard. �7.9

§8 Is Knice
λ+ with ≤∗

λ+ an a.e.c.?

8.1 Hypothesis. The hypothesis 6.8.
An important issue is whether (Knice

λ+ ,≤∗
λ+) satisfies Ax IV of a.e.c.

So a model M ∈ Kλ++ may be the union of a ≤∗
λ+ -increasing chain

of length λ++, but we still do not know if there is a continuous such
sequence.

E.g. let 〈Mα : α < λ++〉 be ≤∗
λ+ -increasing with unionM ∈ Kλ++

let M ′
n = Mn,M

′
ω+α+1 = Mω+α and M ′

δ = ∪{Mβ : β < δ} for δ
limit. So 〈M ′

α : α < λ++〉 is ≤K-increasing continuous, 〈M ′
α+1 : α <

λ++〉 is ≤∗
λ+ -increasing, but we do not know whether M ′

δ ≤
∗
λ+ M ′

δ+1

for limit δ < λ++.
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8.2 Definition. Let M ∈ Kλ++ be the union of an ≤K-increasing
continuous chain from (Knice

λ+ ,≤∗
λ+) or just (Kλ+ ,≤∗

λ+), M̄ = 〈Mi :
i < λ++〉 such that 〈Mi : i < λ++ non-limit〉 is ≤∗

λ+ -increasing.
1) Let S(M̄) = {δ : Mδ �∗

λ+ Mδ+1 (see 8.3(3) below)}, so S(M̄) ⊆
λ++.
2) For suchM let S(M) be S(M̄)/Dλ++ where M̄ is a ≤K-representation
of M and Dλ++ is the club filter on λ++; it is well defined by 8.3
below.
3) We say 〈Mi : i < δ〉 is non-limit <∗

λ+ -increasing if for non-limit
i < j < δ we have Mi ≤

∗
λ+ Mj.

8.3 Claim. 1) If M̄ ℓ = 〈M ℓ
i : i < λ++〉 for ℓ ∈ {1, 2} is ≤K-

increasing continuous and i < j < λ++ ⇒M0 ≤∗
λ+ Mi+1 ≤∗

λ+ Mj+1

and M =
⋃

i<λ++

M1
i =

⋃

i<λ++

M2
i has cardinality λ++ then S(M̄1) =

S(M̄2) mod Dλ++ .

2) If M, M̄ are as in 8.2 hence M =
⋃

i<λ++

Mi then S(M̄)/Dλ++

depends just on M/ ∼=.
3) If M̄ is as in 8.2 or, equivalently as in part (1), and i < j < λ++,
then Mi ≤

∗
λ+ Mi+1 ⇔Mi ≤

∗
λ+ Mj.

4) If M ∈ Kλ++ is the union of a ≤∗
λ+-increasing chain from (Knice

λ+ ,≤∗
λ+

), not necessarily continuous, then there is M̄ as in Defintion 8.2,
that is M̄ = 〈Mi : i < λ++〉, a ≤K-representation of M with
Mi ≤

∗
λ+ Mj for non-limit i < j.

Proof. 1) We can find a club E of λ++ consisting of limit ordinals
such that i ∈ E ⇒ M1

i = M2
i . Now if δ1 < δ2 are from E then

δ1 ∈ S(M̄1) ⇔ M1
δ1

≤∗
λ+ M1

δ1+1 ⇔ M1
δ1

≤∗
λ+ M1

δ2
⇔ M2

δ1
≤∗
λ+

M2
δ2

⇔M2
δ1

≤∗
λ+ M2

δ1+1 ⇔ δ1 ∈ S(M2).

[Why? By the definition of S(M̄1), by part (3), by “δ1, δ2 ∈ E”, by
part (3), by the definition of S(M̄2), respectively.] So we are done.
2) Follows by parts (1) and (3).
3) The implication ⇐ is by 7.4(3); for the implication ⇒, note that
assuming Mi <

∗
λ+ Mi+1, as ≤∗

λ+ is a partial order, noting that by
the assumption on M̄ we have Mi+1 ≤∗

λ+ Mj+1, and by 7.4(3) we
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are done.
4) Trivial. �8.3

8.4 Claim. If (∗) below holds then for every stationary S ⊆ Sλ
++

λ+ (=
{δ < λ++ : cf(δ) = λ+}) for some λ+-saturated M ∈ Kλ++ we have
S(M) is well defined and equal to S/Dλ++ , where

(∗) we can find 〈Mi : i ≤ λ++1〉 which is <K-increasing continu-
ous sequence of members of Knice

λ+ such that i < j ≤ λ++1 &

(i, j) 6= (λ+, λ++1) ⇒Mi <
+
λ+ Mj but ¬(Mλ+ ≤∗

λ+ Mλ++1).

Proof. Fix S ⊆ Sλ
++

λ+ and 〈Mi : i ≤ λ+ + 1〉 as in (∗).
Without loss of generality |Mλ++1\Mλ+ | = λ+.

We choose by induction on α < λ+2 a model MS
α such that:

(a) MS
α ∈ Knice

λ+ has universe an ordinal < λ++

(b) for β < α we have MS
β ≤K MS

α

(c) if α = β + 1, β /∈ S then MS
β <+

λ+ MS
α

(d) if α = β + 1, β ∈ S then (MS
β ,M

S
α ) ∼= (Mλ+ ,Mλ++1)

(e) if β < α, β /∈ S then MS
β ≤+

λ+ MS
α

(f) if α is a limit ordinal, then Mα = ∪{Mβ : β < α}.

We use freely the transitivity and continuity of ≤∗
λ and of <+

λ .

For α = 0 no problem.

For α limit no problem; choose an increasing continuous sequence
〈γi : i < cf(α)〉 of ordinals with limit α each of cofinality < λ, γi /∈ S,
and use 7.7(3) for clause (e).

For α = β + 1, β /∈ S no problem.

For α = β + 1, β ∈ S so cf(β) = λ+, let 〈γi : i < λ+〉 be increasing
continuous with limit β and cf(γi) ≤ λ, hence γi /∈ S and each
γi+1 a successor ordinal. By clause (e) above and 7.4(5) we have
MS
γi
<+
λ+ MS

γi+1
, hence 〈Mγi

: i < λ+〉 is <+
λ+ -increasing continuous.

Now there is an isomorphism fβ from Mλ+ onto MS
β mapping Mi
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onto MS
γi

for i < λ (why? choose fβ ↾ Mi by induction on i, for

i = 0 by 7.3(0), for i successor MS
γi
<+
λ M

S
γi+1

by 7.4(3) as MS
γi
<∗
λ+

MS
γi+1

<+
λ+ MS

γi+1
so we can use 7.6(2)). So we can choose a one-to-

one function fα from Mλ++1 onto some ordinal < λ++ extending fβ
and let Mα = fα(Mλ++1).

Finally having carried the induction, let MS =
⋃

α<λ+2

MS
α , it is

easy to check that MS ∈ Kλ++ is λ+-saturated and M̄ = 〈MS
α : α <

λ++〉 witnesses that S(MS)/Dλ++ is well defined and S(MS)/Dλ++ =
S(〈MS

α : α < λ++〉)/Dλ++ = S/Dλ++ as required. �8.4

Below we prove that some versions of non-smoothness are equivalent.

8.5 Claim. 1) We have (∗∗)M∗
1 ,M

∗
2
⇒ (∗ ∗ ∗) (see below).

2) If (∗) then (∗∗)M∗
1 ,M

∗
2

for some M∗
1 ,M

∗
2 and trivially (∗∗∗) ⇒ (∗).

3) In part (1) we get 〈Mi : i ≤ λ+ + 1〉 as in (∗ ∗ ∗), see below, such
that Mλ+ = M∗

1 ,Mλ++1 = M∗
2 if we waive i < λ+ ⇒ Mi <

+
λ Mλ+1

or assume M∗
1 <K M∗ <+

λ M∗
2 for some M∗.

4) If M∗
1 ≤∗

λ+ M∗
2 and M∗

1 ∈ Knice
λ+ and N1 ≤K N2 ∈ Kλ, Nℓ ≤ M∗

ℓ

for ℓ = 1, 2 and p ∈ S bs(N2) does not fork over N1 then some
c ∈M∗

1 realizes p
where

(∗) there are limit δ < λ++, N and M̄ = 〈Mi : i ≤ δ〉 a ≤∗
λ+-

increasing continuous sequence with Mi, N ∈ Knice
λ+ such that:

Mi ≤
∗
λ+ N ⇔ i < δ

(∗∗)M∗
1 ,M

∗
2

(i) M∗
1 ∈ Knice

λ+ ,M∗
2 ∈ Knice

λ+

(ii) M∗
1 ≤K M∗

2

(iii) M∗
1 �∗

λ+ M∗
2

(iv) if N1 ≤K N2 are from Kλ, Nℓ ≤K M∗
ℓ for ℓ = 1, 2 and

p ∈ S bs(N2) does not fork over N1, then some a ∈M∗
1

realizes p in M∗
2

(∗∗∗) there is M̄ = 〈Mi : i ≤ λ+ + 1〉,≤K-increasing continuous,
every Mi ∈ Knice

λ+ and Mλ+ �∗
λ+ Mλ++1 but i < j ≤ λ++1 &
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i 6= λ+ ⇒Mi <
+
λ+ Mj;

note that this is (∗) of 8.4.

Proof. 1),3) Let 〈aℓi : i < λ+〉 list the elements of M∗
ℓ for ℓ = 1, 2.

Let 〈N∗
2,i : i < λ+〉 be a ≤K-representation of M∗

2 .

Let 〈(pζ , N
∗
ζ , γζ) : ζ < λ+〉 list the triples (p,N, γ) such that γ <

λ+, p ∈ S bs(N), N ∈ {N∗
2,i : i < λ+} with each such triple appearing

λ+ times. By induction on α < λ+ we choose 〈Nα
i : i ≤ α〉, Nα such

that:

(a) Nα
i ∈ Kλ and Nα

i ≤K M∗
1

(b) Nα ≤K M∗
2 and Nα ∈ Kλ

(c) 〈Nα
i : i ≤ α〉 is ≤K-increasing continuous

(d) Nα
α ≤K Nα, Nα ∩M∗

1 = Nα
α

(e) if i ≤ α then 〈Nβ
i : β ∈ [i, α]〉 is ≤K-increasing continuous

(f) 〈Nβ : β ≤ α〉 is ≤K-increasing continuous

(g) if α = β + 1, i ≤ β then NFλ(N
β
i , Nβ, N

α
i , Nα)

(h) if α = 2β + 1 then a2
β ∈ Nα+1

(i) if α = 2β + 2 and i < α then Nα
i+1 is brimmed over Nα

i ∪

N2β+1
i+1 and Nα

0 is brimmed over N2β
0 .

Why is this enough?
We let Mλ+ = M∗

1 ,Mλ++1 = M∗
2 and let M ′

λ++1 ∈ Knice
λ+ be such

that Mλ++1 <
+
λ+ M ′

λ++1 and for i < λ+ we let Mi = ∪{Nα
i : α ∈

[i, λ+)}; now

(α) M∗
1 =

⋃

α<λ+

Nα
α =

⋃

i<λ+

Mi and M∗
2 =

⋃

α<λ+

Nα

[why? the second by clause (h) (and (b) of course), the first
as Nα ∩M∗

1 = Nα
α ].

Now:

(β) 〈Mi : i ≤ λ+ + 1〉 is ≤K-increasing continuous
[trivial by clauses (c) + (e) if i < λ+ and (d) if i = λ+]
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(γ) for i < λ+,Mi is saturated, i.e., ∈ Knice
λ+ .

[Why? Clearly 〈Nα
i : α ∈ (i, λ+)〉 is a ≤K-representation of

Mi by clause (e) and the choice of Mi. If i = 0 this follows
by clauses (i) + (e). If i = j + 1 this follows by clauses (e) +
(i). If i is a limit ordinal use 7.7(2) and clause (g)]

(δ) for i < λ+, i < j ≤ λ+ + 1 we have Mi ≤
∗
λ+ Mj .

[Why? Let Nα
λ+ := Nα

α , Nα
λ++1 = Nα for α < λ+ and let γ be

i if j = λ+, λ+ +1 and be j if j < λ+; so in any case γ < λ+.
Now as 〈Nα

i : α ∈ [γ, λ+)〉 is a ≤K-representation of Mi and
〈Nα

j : α ∈ [γ, λ+)〉 is a ≤K-representation of Mj and if γ ≤

β < λ+ then by clause (g) we have NFλ(N
β
i , Nβ, N

β+1
i , Nβ+1)

hence by symmetry NFλ(N
β
i , N

β+1
i , Nβ, Nβ+1), hence by mono-

tonicity NFλ(N
β
i , N

β+1
i , Nβ

j , N
β+1
j ); this suffices]

(ε) if i < j ≤ λ+ then Mi <
+
λ+ Mj

[why? by 7.7(3) it suffices to prove this in the cases j = i+1.
Now claim 7.9(2), clause (i) guaranteed this.]

Clearly 〈Mi : i ≤ λ+ + 1〉 is as required for part (1) and for part
(3) for first possibility (with waiving) obviously. For the second
possibility in part (2), easily 〈Mi : i ≤ λ+〉ˆ〈M ′

λ++1〉 is as required

but M∗
2 ,M

1
λ+1 are isomorphic over M∗, so also 〈Mi : i ≤ λ+ + 1〉 is

O.K.
So we are done.

So let us carry the construction.

For α = 0 trivially.

For α limit: straightforward.

For α = 2β + 1 we let Nα
i = N2β

i for i ≤ 2β and Nα ∈ Kλ is chosen
such thatN2β∪{a

2
β} ⊆ Nα ≤K M∗

2 andNα ↾ M∗
1 ≤K M∗

1 , easy by the
properties of abstract elementary class and we let Nα

2β+1 = Nα ↾ M∗
1 .

For α = 2β+2 we choose by induction on ε < λ2, a triple (N⊕
α,ε, N

⊗
α,ε,

aα,ε) such that:

(A) N⊗
α,ε ≤K M∗

2 belongs to Kλ and is ≤K-increasing continuous
with ε
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(B) N⊗
α,0 = N2β+1 and N⊗

α,ε ↾ M∗
1 ≤∗

K
M∗

1

(C) N⊕
α,ε ≤K M∗

1 belongs to Kλ and is ≤K-increasing continuous
with ε

(D) N⊕
α,0 = N2β+1

2β+1

(E) (N⊕
α,ε, N

⊕
α,ε+1, aα,ε) ∈ K3,uq

λ

(F ) tp(aα,ε, N
⊗
α,ε,M

∗
2 ) does not fork over N⊕

α,ε

(G) N⊕
α,ε ≤K N⊗

α,ε

(H) for every p ∈ S bs(N⊕
α,ε) for some odd ζ ∈ [ε, ε+ λ) the type

tp(aα,ζ , N
⊗
α,ζ, N

⊗
α,ζ+1) is a non-forking extension of p.

No problem to carry this. [Why? For ε = 0 and ε limit there
are no problems. In stage ε + 1 by bookkeeping gives you a type
pε ∈ S bs(N⊕

α,ε) and let qε ∈ S bs(N⊗
α,ε) be a non-forking extension

of pε. By assumption (iv) of (∗∗)M∗
1 ,M

∗
2

there is an element aα,ε ∈M∗
1

realizing qε. Now M∗
1 is saturated hence there is a model N⊕

α,ε+1 ∈

Kλ such that N⊕
α,ε+1 ≤K M∗

1 and (N⊕
α,ε, N

⊕
α,ε+1, aα,ε) ∈ K3,uq

λ .

Lastly, choose N⊗
α,ε+1 satisfying clauses (A),(B),(G) so we have

carried the induction on ε.]
Note that NFλ(N

⊕
α,ε, N

⊗
α,ε, N

⊕
α,ε+1, N

⊗
α,ε+1) for each ε < λ2 by

clauses (E),(F) and 6.33, hence NF(N2β+1
2β+1 , N2β+1,∪{N

⊕
α,ε : ε <

λ2},∪{N⊗
α,ε : ε < λ2}) by 6.28 as (N⊕

α,0, N
⊗
α,0) = (N2β+1

2β+1 , N2β+1)

and the sequence 〈N⊕
α,ε : ε < λ+〉, 〈N⊗

α,ε : ε < λ+〉 are increasing
continuous.

Now let Nα =
⋃

{N⊗
α,ε : ε < λ2}, Nα

α = Nα ∩M∗
1 recalling clauses

(A)+(B).

Now ∪{N⊕
α,ε : ε < λ2} ≤K M∗

1 is (λ, ∗)-brimmed over N2β+1
2β+1 by

4.3 (and clause (H) above). Hence there is no problem to choose

Nα
i ≤K Nα

α for i ≤ 2β + 1 as required, that is N2β+1
i ≤K Nα

i , 〈N
α
i :

i ≤ 2β+1〉 is ≤K-increasing continuous, NFλ(N
2β+1
i , N2β+1

i+1 , Nα
i , N

α
i+1)

and Nα
i+1 is (λ, ∗)-brimmed over N2β+1

i+1 ∪ Nα
i and Nα

0 is (λ, ∗)-

brimmed over N2β+1
0 . So we have finished the induction step on

α = 2β + 2.
Having carried the induction we are done.

2) So assume (∗) and let Mδ+1 := N from (∗). It is enough to

Paper Sh:600, Chapter II



370 II. CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES

prove that (∗∗)Mδ,Mδ+1
holds. Clearly clauses (i), (ii), (iii) hold,

so we should prove (iv). Without loss of generality δ = cf(δ) so
δ = λ+ or δ ≤ λ. For i ≤ δ + 1 let 〈Mi,α : α < λ+〉 be a ≤K-
representation of Mi and for i < δ, j ∈ (i, δ + 1] let Ei,j be a club
of λ+ witnessing Mi ≤

∗
λ+ Mj for M̄ i, M̄ j. First assume δ ≤ λ. Let

E = ∩{Ei,j : i < δ, j ∈ (i, δ+1]}, it is a club of λ+. So assume N2 ≤K

Mδ+1, N1 ≤K N2, N1 ≤K Mδ and N1, N2 ∈ Kλ and p ∈ S bs(N2)
does not fork over N1. We can choose ζ ∈ E such that N2 ⊆Mδ+1,ζ,
let p1 ∈ S bs(Mδ+1,ζ) be a non-forking extension of p, so p1 does not
fork over N1 hence (by monotonicity) over Mδ,ζ so p2 := p1 ↾ Mδ,ζ ∈
S bs(Mδ,ζ). By Axiom (E)(c) for some α < δ, p2 does not fork over
Mα,ζ hence p2 ↾ Mα,ζ ∈ S bs(Mα,ζ). As Mα ∈ Knice

λ+ , i.e., Mα is λ+-
saturated (above λ), clearly for some ξ ∈ (ζ, λ+) ∩E some c ∈Mα,ξ

realizes p2 ↾ Mα,ζ but NFλ(Mα,ζ,Mδ+1,ζ,Mα,ξ,Mδ+1,ξ) hence by
6.32 we know that tp(c,Mδ+1,ζ,Mδ+1,ξ) belongs to S bs(Mδ+1,ζ)
and does not fork over Mα,ζ hence c realizes p2 and even p1 hence p
and we are done.

Second, assume δ = λ+, then for some δ∗ < δ we haveN1 ≤K Mδ∗ ,
and use the proof above for 〈Mi : i ≤ δ∗〉,Mδ+1 (or use Mδ∗ ≤∗

λ+

Mδ+1).
4) Straight, in fact included the proof of 7.7(2). �8.5

The definition below has affinity to “blowing Kλ to K
up
λ ” in §1.

8.6 Definition. 0) K3,cs
λ+ = {(M,N, a) ∈ K3,bs

λ+ : M,N are from

Knice
λ+ }; we say N ′ ∈ Kλ (or p′) witness (M,N, a) ∈ K3,cs

λ+ if it wit-

nesses (M,N, a) ∈ K3,bs
λ .

1) S cs
λ+ := {tp(a,M,N) : M ≤∗

λ+ N are in Knice
λ+ , a ∈ N and

(M,N, a) ∈ K3,cs
λ+ }, the type being for Knice

λ+ = (Knice
λ+ ,≤∗

λ+), see

below22 so the notation is justified by 8.7(1).
2) We define K

⊗ = (K⊗,≤⊗) as follows

(a) K⊗ = K ↾ {M ∈ K : M = ∪{Ms : s ∈ I} where Ms ∈
Knice
λ+ , I is a directed partial order and s <I t⇒Ms ≤

∗
λ+ Mt}

22actually to define tpKλ
(a, M, N) where M ≤Kλ

N, ā ∈ N we need less that

“Kλ is a λ-a.e.c.”, and we know on (Knice
λ+ ,≤∗

λ+) more than enough
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(b) Let M1 ≤⊗ M2 if M1,M2 ∈ K⊗,M1 ≤K M2 and:

(∗)M1,M2
if Nℓ ∈ Kλ, Nℓ ≤K Mℓ, for ℓ = 1, 2, p ∈ S bs(N2) does
not fork over N1 and N1 ≤K N2 then some a ∈ M1

realizes p in M2

(c) let ≤⊗
λ+=≤⊗↾ K⊗

λ+ .

3)
⋃

λ+
= {(M0,M1, a,M3) : M0 ≤∗

λ+ M1 ≤∗
λ+ M3 are in Knice

λ+ and

(M1,M3, a) ∈ K3,cs
λ+ as witnessed by some N ≤K M0 from Kλ}.

4) Knice
λ+ = (Knice

λ+ ,≤∗
λ+), that is (Knice

λ+ ,≤∗
λ+↾ Knice

λ+ ).
5) We say that M ′ or p′ witness p = tpKnice

λ+
(a,M,N) when M ′ ≤K

M,M ′ ∈ Kλ and [M ′ ≤Kλ
M ′′ ≤K M ⇒ tps(a,M

′′, N) does not
fork over M ′ and p′ = tps(a,M

′, N).

8.7 Conclusion. Assume23 (recalling 8.4):

⊠ not for every S ⊆ Sλ
++

λ+ is there λ+-saturated M ∈ Kλ++

such that S(M) = S/Dλ++ .

0) On Knice
λ+ , the relations ≤∗

λ+ ,≤⊗ agree.

1) Knice
λ+ = (Knice

λ+ ,≤∗
λ+) is a λ+-abstract elementary class and is cat-

egorical in λ+ and has no maximal member and has amalgamation.
2) K⊗ is included in the class of λ+-saturated models in K and
K⊗
λ+ = Knice

λ+ .

3) K⊗ is an a.e.c. with LS(K⊗) = λ+ and is the lifting of Knice
λ+ .

4) On Knice
λ+ , (S cs

λ+ ,
⋃

λ+
) are equal to (S bs ↾ Knice

λ+ ,
⋃

<∞
↾ Knice

λ+ )

where they are defined in 2.4, 2.5.
5) (Knice

λ+ ,S cs
λ+ ,

⋃

λ+
) is a good λ+-frame.

6) ForM1 ≤∗
λ+ M2 fromK⊗

λ+ and a ∈M2\M1, the type tpK⊗(a,M1,M2)
is determined by tpKλ

(a,N1,M2) for all N1 ≤K M1, N1 ∈ Kλ.

Proof. 0) By 8.4 and our assumption ⊠, we have M1,M2 ∈ Knice
λ+ &

M1 ≤⊗ M2 ⇒ M1 ≤∗
λ+ M2 (otherwise (∗∗)M1,M2

of 8.5 holds hence

23this is like (∗∗)M1,M2
from 8.5, particularly see clause (iv) there
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(∗ ∗ ∗) of 8.5 holds and by 8.4 we get ¬⊠, contradiction). The other
direction is easier just see 8.5(4).
1) We check the axioms for being a λ+-a.e.c.:

Ax 0: (Preservation under isomorphisms) Obviously.

Ax I: Trivially.

Ax II: By 7.4(2).

Ax III: By 7.7(2) the union belongs to Knice
λ+ and it ≤∗

λ+ -extends
each member of the union by 7.7(1).

Ax IV: Otherwise (∗) of 8.5 holds, hence by 8.5 also (∗ ∗ ∗) of 8.5
holds. So by 8.4 our assumption ⊠ fail, contradiction; this is the
only place we use ⊠ in the proof of (1).

Ax V: By 7.4(3) and Ax V for K.
Also K

nice
λ+ is categorical by the uniqueness of the saturated model

in λ+ for K has no maximal model by 7.4(1). K
nice
λ+ has amalgamation

by 7.6(1).
2) Every member of K⊗ is λ+-saturated in K by 7.7(2) (prove by in-
duction on the cardinality of the directed family in Definition 8.6(2),
i.e. by the LS-argument it is enough to deal with the index family
of ≤ λ+ models each of cardinality λ+, which holds by part (0) +
(1)). If M ∈ Kλ+ is λ+-saturated, clearly ∈ Knice

λ+ .
3),4) Easy by now (or see §1).
5) We have to check all the clauses in Definition 2.1. We shall use
parts (0)-(3) freely.

Axiom (A): By part (3) (of 8.7).

Axiom (B):
There is a superlimit model in K⊗

λ+ = Knice
λ+ by part (1) and

uniqueness of the saturated model.

Axiom (C):
By part (1), i.e., 7.6(1) we have amalgamation; JEP holds asKnice

λ+

is categorical in λ+. “No maximal member in K
⊗
λ+” holds by 7.4(1).

Axiom (D)(a),(b): By the definition 8.6(1).
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Axiom (D)(c):
By 2.9 (and Definition 8.6(1)). Clearly K3,cs

λ+ = K3,bs ↾ Knice
λ+ .

Axiom (D)(d):
For M ∈ K

⊗
λ+ let M̄ = 〈Mi : i < λ+〉 ≤K-represent M , so

if M ≤⊗ N ∈ K⊗
λ+ , (hence M ≤∗

λ+ N ∈ K⊗
λ+ = Knice

λ+ ) and

a ∈ N , tpKnice
λ+

(a,M,N) ∈ S cs
λ+(M), we let α(a,N, M̄) = Min{α :

tp(a,Mα, N) ∈ S bs(Mα) and for every β ∈ (α, λ+), tp(a,Mβ, N) ∈
S bs(Mβ) is a non-forking extension of tp(a,Mα, N)}.
Now

(a) α(a,N, M̄) is well defined for a,N as above
[Why? By Defintion 2.7 + 8.6(1)]

(b) if aℓ, Nℓ are above for ℓ = 1, 2 and α(a1, N1, M̄) = α(a2, N2, M̄)
call it α and tps(a1,Mα, N) = tps(a2,Mα, N2) then

(∗) for β < λ+ we have tps(a1,Mβ, N1) = tps(a1,Mβ, N2) ∈
S bs(Mβ)
[Why? By the non-forking uniqueness (Ax(E)(e)) when
β ≥ α by monotonicity if β ≤ α]

(c) if aℓ, Nℓ are as above for ℓ = 1, 2 and (∗) above holds then

(∗∗) tp
K

⊗

λ+
(a1,M,N1) = tp

K
⊗

λ+
(a2,M,N2)

[Why? Use 7.6(3) or by part (6) below].

As α < λ ⇒ |S bs
s

(Mα)| ≤ λ (by the stability Axiom (D)(d) for s),

clearly |S cs
λ+(M)| ≤

∑

α<λ+

|S bs(Mα)| ≤ λ+ = ‖M‖ as required.

The reader may ask why do we not just quote the parallel result
from §2: The answer is that the equality of types there is “a formal,
not the true one”. The crux of the matter is that we prove locality
(in clause (c) above).

Axiom (E)(a): By 2.4 - 2.7.

Axiom (E)(b); monotonicity:
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Follows by Axiom (E)(b) for s and the definition.

Axiom (E)(c); local character:
By 2.11(5) or directly by translating it to the s-case.

Axiom (E)(d); (transitivity): By 2.11(4).

Axiom (E)(e); uniqueness: By 7.6(3) or by part (6) below.

Axiom (E)(f); symmetry:
So assume M0 ≤∗

λ+ M1 ≤∗
λ+ M2 are from K⊗

λ+ and for ℓ = 1, 2
we have aℓ ∈ Mℓ, tpKnice

λ+
(aℓ,M0,Mℓ) ∈ S cs

λ+(M0) as witnessed by

pℓ ∈ S bs
s (N∗

ℓ ), N∗
ℓ ∈ Kλ, N

∗
ℓ ≤K M0 and tp

K
⊗

λ+
(a2,M1,M2) does

not fork (in the sense of
⋃

λ+
) over M0 (note that M0,M1,M2 here

stand for M0,M1,M
′
3 in clause (i) of Ax(E)(f) from Definition 2.1).

As we know by monotonicity without loss of generality M1 <
+
λ+ M2.

We can finish by 7.6(4) (and Axiom (E)(e) for s).
In more details, we can find N0, N1, N2 such that: Nℓ ≤K Mℓ

and Nℓ ∈ Kλ for ℓ = 0, 1, 2 and N∗
1 ∪ N∗

2 ⊆ N0 ≤K N1 ≤K N2 and
a1 ∈ N1, a2 ∈ N2 and N2 is (λ, ∗)-brimmed over N1 hence over N0,
and (∀N ∈ Kλ)[N0 ≤K N ≤K M0 → (∃M ∈ Kλ)(M ≤K M2 &
NFλ(N0, N,N2,M))].

By Axiom (E)(f) for s = (K,S bs,
⋃

λ
) we can find N ′ such that N0 ≤K

N ′ ≤K N2 such that a2 ∈ N ′ and tps(a1, N
′, N2) does not fork over

N0. Now we can find f ′
0,M

′
1 such that M0 ≤+

λ+ M ′
1, f

′
0 is a ≤K-

embedding of N ′ into M ′
1 and (∀N ∈ Kλ)[N0 ≤K N ≤K M0 →

(∃M ∈ Kλ)(M ≤K M ′
1 & NFλ(N0, N, f

′
0(N

′),M))]. Next we
can find f ′′

0 ,M
′
2 such that M ′

1 <+
λ+ M ′

2, f
′′
0 ⊇ f ′

0 and f ′′
0 is a ≤K-

embedding of N2 into M ′
2 and (∀N ∈ Kλ)[N0 ≤K N ≤K M0 →

(∃M ∈ Kλ)(M ≤K M ′
2 & NFλ(N0, N, f

′′
0 (N2),M)].

Lastly, by 7.6(4) there is an isomorphism f from M2 onto M ′
2 over

M0 extending f ′′
0 . Now f−1(M ′

1) is a model as required.

Axiom (E)(g); extension existence:
Assume M0 ≤∗

λ+ M1 are from Knice
λ+ , p ∈ S cs

λ+(M0), hence there
is N0 ≤K M0, N0 ∈ Kλ such that (∀N ∈ Kλ)(N0 ≤K N <K M0 →
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p ↾ N does not fork over N0). By 7.4(1A) there are M2 ∈ K⊗
λ+ and

a ∈M2 such that M1 ≤∗
λ+ M2 and tpKnice

λ+
(a,M1,M2) ∈ S cs

λ+(M1) is

witnessed by p ↾ N0 and by part (6) we have tpK
nice
λ+

(a,M0,M2) = p.

Checking the definition of does not fork, i.e.,
⋃

λ+
we are done.

Axiom (E)(h), (continuity): By 2.11(6).

Axiom (E)(i):
It follows from the rest by 2.16.

6) So assume M ≤∗
λ+ Mℓ, aℓ ∈ Mℓ\M for ℓ = 1, 2 and N ≤K M ∧

N ∈ Kλ ⇒ tpK(a1, N,M1) = tpK(a2, N,M2). By 7.4(1) there are
M+

1 ,M
+
2 ∈ Knice

λ+ such that Mℓ <
+
λ+ M+

ℓ for ℓ = 1, 2. By 7.6(2),(3)

there is an isomorphism f from M+
1 onto M+

2 over M which maps
a1 to a2. This clearly suffices. �8.7

§9 Final conclusions

We now show that we have actually solved our specific test ques-
tions about categoricity and few models. First we deal with good
λ-frames.

9.1 Main Lemma. 1) Assume

(a) (α) 2λ < 2λ
+

< 2λ
++

< . . . < 2λ
+n

, and n ≥ 2

(β) and WDmId(λ+ℓ) is not λ+ℓ+1-saturated (normal ideal
on λ+ℓ) for ℓ = 1, . . . , n− 1

(b) s = (K,S bs,
⋃

) is a good λ-frame

(c) İ(λ+ℓ,K(λ+-saturated)) < µunif(λ
+ℓ, 2λ

ℓ−1

) for ℓ = 2, . . . , n.

Then

(α) K has a member of cardinality λ+n+1

(β) for ℓ < n there is a good λ+ℓ-frame sℓ = (Kℓ,S bs
sℓ
,
⋃

sℓ

) such

that Kℓ
λ+ℓ ⊆ Kλ+ℓ and ≤Kℓ⊆≤K

(γ) s0 = s and if ℓ < m < n then Kℓ
λ+m ⊇ Km

λ+m & ≤Kℓ↾

Km ⊇≤Km .
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2) Like part (1) omitting (β) of clause (a).

Proof. 1) We prove this by induction on n.
For n = m+1 ≥ 2, by the induction hypothesis for ℓ = 0, . . . , m−

1, there is a frame sℓ = (Kℓ,
⋃

sℓ

,S bs
sℓ

) which is λ+ℓ-good and Ksℓ
⊆

Ks

λ+ℓ and ≤Kℓ⊆≤K↾ Kℓ. By 5.9 and clause (c) of the assumption we

know that s has density for K3,uq
s . Now without loss of generality

Km−1 is categorical in λ+(m−1) (by 2.20 really necessary only for
ℓ = 0) and by Observation 5.8 we get the assumption 6.8 of §6 hence
the results of §6, §7, §8 apply. Now apply 8.7 to (Km−1,S bs

sm−1
,

⋃

sm−1

)

and get a λ+m-frame sm as required in clause (β). By 4.13 we have
Km
λ+m+1 6= ∅ which is clause (α) in the conclusion. Clause (β) has

already been proved and clause (γ) should be clear.
2) Similarly but we use 5.11 instead of 5.9, i.e. we use the full version.
�9.1

Second (this fulfills the aim of [Sh 576] equivalently Chapter VI).

9.2 Theorem. 1) Assume 2λ
+ℓ

< 2λ
+(ℓ+1)

for ℓ = 0, . . . , n − 1
and the normal ideal WDmId(λ+ℓ) is not λ+ℓ+1-saturated for ℓ =
1, . . . , n− 1.

If K is an abstract elementary class with LS(K) ≤ λ which is

categorical in λ, λ+ and 1 ≤ İ(λ+2, K) and İ(λ+m,K) < µunif(λ
+m,

2λ
+(m−1)

), see I.0.5(3). For m ∈ [2, n) (or just İ(λ+m,K(λ+-saturated))

< µunif(λ
+m, 2λ

+(m−1)

), then Kλ+n 6= ∅ (and there are sℓ(ℓ < n) as
in (γ) of 9.1).
2) We can omit the assumption “not λ+ℓ+1-saturated”.

Proof. 1) By 3.7 and 9.1(1).
2) By 3.7 and 9.1(2), i.e. using the full version of Chapter VII. �9.2

Next we fulfill an aim of Chapter I.

9.3 Theorem. 1) Assume 2ℵℓ < 2ℵ(ℓ+1) for ℓ = 0, . . . , n − 1 and
n ≥ 2 and WDmId(λ+ℓ) is not λ+ℓ+1-saturated for ℓ = 1, . . . , n− 1.

If K is an abstract elementary class which is PCℵ0
and 1 ≤ İ(ℵ1,K) <

2ℵ1 and İ(ℵℓ,K) < µunif(ℵℓ, 2
ℵℓ−1), for ℓ = 2, . . . , n, then K has a
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model of cardinality ℵn+1 (and there are sℓ(ℓ < n) as in 9.2.
2) We can omit the assumption “not λ+ℓ+1-saturated”.

Remark. Compared with Theorem 9.2 our gains are no assumption
on İ(λ,K) and weaker assumption on İ(λ+, K), i.e., < 2ℵ1 (and ≥ 1)
rather than = 1. The price is λ = ℵ+

0 and being PCℵ0
.

Proof. 1) By 3.4 and 9.1(1).
2) By 3.4 and 9.1(2), i.e. using the full version of Chapter VII. �9.3

Lastly, we fulfill an aim of [Sh 48].

9.4 Theorem. 1) Assume 2ℵℓ < 2ℵℓ+1 for ℓ ≤ n−1 and WDmId(λ+ℓ)

is not λ+ℓ+1-saturated for ℓ = 1, . . . , n− 1, ψ ∈ Lω1,ω(Q), İ(ℵ1, ψ) ≥

1 and İ(ℵℓ, ψ) < µunif(ℵℓ, 2
ℵℓ−1), for ℓ = 1, . . . , n. Then ψ has a

model in ℵn+1 and there are s1, . . . , sn−1 as in 9.3 with Ksℓ
⊆ Modψ

and appropriate ≤K.
2) We can omit the assumption “not λ+ℓ+1-saturated”.

Proof. 1) By 3.5 mainly clauses (c)-(d) and 9.1(1). Note that this

time in 9.1 we use the İ(λ+ℓ,K(λ+-saturated)) < µunif(ℵℓ, 2
ℵℓ−1).

2) As in part (1) using 9.1(2). �9.4
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TOWARD CLASSIFICATION THEORY

OF GOOD λ-FRAMES AND ABSTRACT

ELEMENTARY CLASSES

SH705

§0 Introduction

For us the family of good λ-frames is a good family of (enriched)
classes of models for which to study generalizations of superstability
theory to a.e.c.. A priori our main line is to start with a good+ λ-
frame s, categorical in λ,m-successful for m ≤ n, where n is large
enough and try to have parallel of superstability theory for Ks(+ℓ)

for ℓ < n not too large. Characteristically from time to time we have
to increase n relative to ℓ to get our desirable properties; considering
our intentions a priori we do not critically mind the exact n, so you
can think of an ω-successful s. Usually each claim or definition is for
a fixed s, assumed to be successful enough. So using assumptions on
λ+2 rather than λ+3 is not so crucial now.

But a postriori we are interested in the model theory of such
classes Ks per-se so use small n, however eventually we mainly were
interested in finishing so delay sorting out what is needed to [Sh:F735].
The original aim which we see as a test for this theory, is that in the
ω-successful case we can understand also models in higher cardinals,
e.g., prove that K

s
µ 6= ∅ for every µ ≥ λ. Recall there are reason-

able λ-frames which are not n-successful but still we can say a lot
on models in Ks(+ℓ) for ℓ < n so we have worked to reduce the
assumption.

Moving from λ to λ+ we would have preferred not to restrict
ourselves to saturated models but at present we do not know how
to eliminate this. However, in the ω-successful case we can prove
that s+n is n-beautiful (see §12) and using this we shall be able to

Typeset by AMS-TEX
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understand essentially the class of λ+ω-saturated models in Ks, in all

cardinals, i.e., more exactly the class Ks(+ω). Recall that K
+(n+1)
s

is the class of models in Ks(+n) which are saturated for Ks(+n), but
we do not know if Ks(+(n+2)) is the class of models from Ks(+n)

of cardinality λ+n+2 which are saturated for Ks(+n) as we do not
know that K

s(+n) has amalgamation in λ+(n+1). (Actually here we
draw conclusions on the existence of models in every µ ≥ λ and on
the categoricity spectrum and the full consequences are delayed to
subsequent work). This fits well the thesis that it is reasonable to
first analyze the quite saturated case which guides [Sh:c].

Why are we interested in Ks a λs-a.e.c. rather than Ks, an a.e.c.?
(see 0.2(1)). We can “blow a λs-.a.e.c., e.g. Ks, up to all cardinals
≥ λ” by II.1.23, what we get is an a.e.c. but for being good frames
this is not necessarily preserved.

Note that for our main purpose it is reasonable to assume always
that s is a successful good λ-frame, to assume that it is good+ from
1.9 on and to assume that s has primes after 4.9. Also we can
assume all the time that s is type-full (that is S bs

s (M) = S na
s (M)

for M ∈ Ks), see II.6.36 and 9.6, note that the assumptions are
“weakly successful”. Also we may assume categoricity in λs, hence
⊥
wk

= ⊥, etc., after 6.10(5) or 6.11. On the other hand on weakening

the assumptions see [Sh:F735].
Concerning the framework note that the uni-dimensional (or just

non-multi-dimensional) case is easier. In the characteristic uni-di-
mensional case, each p ∈ S bs

s (M) is (regular and morever) minimal
and any p, q ∈ S bs

s (M) are not orthogonal. In the characteristic
non-multi-dimensional case for any M ∈ Kλ,S

bs
s (M) contains up

to non-orthogonality every p ∈ S bs
s (N),M ≤s N ∈ Kλ.

Generally the uni-dimensional case is easiest and is enough to con-
tinue [Sh 576] = Chapter VI, and to deal with categoricity.

A drawback in II§5 is that we need to assume that the normal
ideal WDmId(λ+) is not λ++-saturated. This will be essentially
eliminated in Chapter VII; it is easier to do it when we have the
theory developed here. Let me stress again most work here is in one
cardinal, λs.

We sometimes give first a proof from stronger assumptions, which
as explained above suffice for our purposes.
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We thank John Baldwin, Adi Yarden for helpful remarks and Alex
Usvyatsov for doing much to improve this work.
0.1 Notation: Let s denote a good λ-frame and rarely just a pre-λ-
frame, but we may omit λ, that is

0.2 Definition. 1) We say s is a pre-λ-frame if s = (Ks,S
bs
s ,

⋃

s
)

with Ks = K(s) a λs-a.e.c., S bs[s] = S bs
s ,

⋃

[s] =
⋃

s
,≤s=≤Ks

and

they satisfy axioms (A), (D)(a),(b), (E)(a)(b) from II.2.1.
1A) We say s is a weak frame if it satisfies axioms (A), (B), (C),
(D)(a),(b), (E)(a),(b) from II§2 and s is a frame if it satisfies also
(D)(c),(E)(d),(e),(f),(g),(i). Recall that s is a good frame if it satis-
fies all the axioms there.
2) For a pre-λ-frame s let Ks = K[s] be the a.e.c. derived from Ks

and Ks
µ = (K[s])µ so Ks = Ks

λ(s) and let K(s) = Ks. Recall that if K

is a λ-a.e.c., then the a.e.c.-derived from it, Kup is the unique a.e.c.
K′ with τ(K′) = τ(K),LS(K′) = λ,K′

λ = Ks, see II.1.23.
3) For a frame s let ≤s=≤Ks be ≤K[s] (and ≤s=≤Ks

=≤K(s)=≤K[s]↾

Ks).
4) Let <+

s be the following two place relation on Ks : M <+
s N iff

M ≤s N and N is Ks-universal over M .

0.3 Convention: For notational simplicity we (sometimes) assume K

is such that if ā ∈ ω>M,M ∈ K then ā can be considered an element
of M . This can be trivially justified.

0.4 Definition. Let s be a good frame and µ ≥ λs.
1) Let s〈µ〉 = (Ks

µ,S
bs
s,µ,

⋃

s, µ
) with S bs

s,µ,
⋃

s, µ
as defined in II§2; also

S bs
s,<µ, S bs

s,<∞,
⋃

s, < µ
and

⋃

s, <∞
are from there.

2) Let s[µ] := (Ks[µ],S
bs
s,µ,

⋃

s(µ)
) where Ks[µ] := {M ∈ Ks

µ : M is

superlimit in Ks
µ},≤Ks[µ]

=≤s

K
↾ Ks[µ], and of course S bs

s[µ] = S bs
s,µ ↾

Ks[µ],
⋃

s, [µ]
=

⋃

s
↾ Ks,s

µ ; of course on the one hand Ks[µ] may be

empty and on the other hand maybe Ks[µ] 6= ∅ but still s[µ] is not a
good frame.
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3) For M ≤s N let IM,N = {a ∈ N : tps(a,M,N) ∈ S bs
s (M)}.

4) If s is ω-successful let s+ω = s(+ω) be s(λ+ω
s ); used only in §12.

Remark. Note that Definition 0.2(1), 0.4(1),(2) are, in this Chapter
, really peripheral.

0.5 Remark. On s+n = s(+n) and, in particular, s+ = s(+), see 1.7.

0.6 Definition. For a good λ-frame s and M ∈ Ks let

Ss(M) = S
all
s (M) = {tps(a,M,N) : a ∈ N and M ≤s N}

S
na
s (M) = {tps(b,M,N) : b ∈ N\M and M ≤s N}.

§1 Good+ frames

In II.8.7 there was what may look like a minor drawback: moving
from λ to λ+ the derived abstract elementary class not only have
fewer models of cardinality ≥ λ+ but also the notion of being a
submodel changes; this is fine there, and, it seemed, unavoidable in
some circumstances. More specifically, for proving the main theo-
rem there, it was enough to move from s to a good frame t satisfying
λt = λ+

s , λs < µ < λ+ω ⇒ İ(µ,Kt) ≤ İ(µ,Ks) and forget s. But for
us now this is undesirable (as arriving to λ+ω we have forgotten ev-
erything!) and toward this we consider a (quite mild) strengthening
of good.

We prove that we do not lose much: the examples of good λ-
frames from II§3 are all good+ and when s+ is well defined and s is
good+ then it is good+, see 1.5, 1.6(2); moreover, by 1.9, even if s is
just good and successful then s+ is good+.

We say some things on [weakly] n-successful, this will become
important in §12. Also we present basic properties of NFs, which is
well defined when s is weakly successful and are widely used.

Recall
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1.1 Definition. 1) Let s be a good λ-frame. We say s is successful
if the conclusions of Chapter II under “no non-structure assumptions
in λ++” hold, that is:

(∗)(a) it has existence for K3,uq
λ ; i.e., for every M ∈ Kλ and p ∈

S bs
s (M) there is

(M,N, a) ∈ K3,uq
λ such that tps(a,M,N) = p (see II§5, fol-

lows from density of K3,uq
s if Ks is categorical)

(b) if 〈Ni : i ≤ δ〉 is ≤∗
λ+ [s]-increasing continuous in Knice

λ+ [s] and

i < δ ⇒ Ni ≤∗
λ+ N ∈ Knice

λ+ then Nδ ≤∗
λ+ N (see II.8.7(1),

recall Knice
λ+ [s] consists of the saturated M ∈ Ks

λ+).

2) We say (the good λ-frame) s is weakly successful if clause (a) of
(∗) above holds.

Usually at least “s is weakly successful” is used, but sometimes less
suffices (this is helpful though not crucial).

1.2 Remark. For successful s we define a successor, s+ = s(+), a good
λ+-frame (see 1.7 below), but not with the most desirable ≤Ks(+)

,

for rectifying this we consider below good+ frames. Together with

locality of types for models in K
s(+)

λ
+
s

, see 1.10 or II.7.6(3) this seems

to be in the right direction. Less central, still worthwhile, is that s+

has a strong property we call saturative such that: for a good λ+-
frame t, being saturative can be used in several cases as an alternative
assumption to “t has the form s+ with s a successful good+ frame”.
Usually we do not adopt it and we feel it is really too restrictive.

1.3 Definition. 1) We say that s = (Kλ,S
bs,

⋃

λ
) = (Kλ,≤Kλ

,S bs,
⋃

s
) is a good+ λ-frame when:

(a) s is a good λ-frame

(b) the following is impossible

(∗) 〈Mi : i < λ+〉 is ≤s-increasing continuous (so each Mi

is from Kλ) and 〈Ni : i < λ+〉 is ≤s-increasing contin-
uous (so each Ni is from Kλ) and i < λ+ ⇒ Mi ≤s
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Ni,∪{Mi : i < λ+} ∈ Ks

λ+ is saturated, p∗ ∈ S bs
s (M0)

and for each i < λ+ we have:
ai+1 ∈Mi+2, tps(ai+1,Mi+1,Mi+2) is a non-forking ex-
tension of p∗ but tp(ai+1, N0, Ni+2) is not.
We then say 〈Mi, Ni, ai : i < λ+〉 is a counterexample
(well, actually ai being defined only for successor i; we
could for non-successor i let ai ∈Mi+2 and tps(ai,Mi,
Mi+2) does not fork over M as above, this follows by
monotonicity of non-forking or requiring Mδ = Mδ+1).

2) We say a good λ-frame s is saturative if:

(∗) if M0 ≤s M1 ≤s M2 and M1 is (λ, ∗)-brimmed over M0 then
M2 is (λ, ∗)-brimmed over M0.

1.4 Remark. 1) The “s is saturative” is a relative of “non-multi-
dimensional”. But be careful, see clause (iii) of 1.5(3) below, so in
the first order case, we may really look at the saturated models in λ
of a superstable class.
2) Well, do we lose much by adopting the good+ version? First, are
the old cases covered? Yes, by the following claim (and 1.6(2)).

1.5 Claim. 1) In II§3 essentially all the cases where we prove “good
λ-frame” we actually get “good+ λ-frames; more fully:
1A) In II.3.4(2) we get good+ ℵ0-frame when K has the symmetry
property (this is defined in I.5.31(1), actually deal with countable
models and is proved in I.5.34(1) when we add 2ℵ1 < 2ℵ2 and e.g.

İ(ℵ2,K) < 2ℵ2 and, presently “Dℵ1
is not ℵ2-saturated”, see more in

VII.4.40).
1B) Similarly for II.3.5 because I.5.34(1) speaks on many non-isomorphic
models in Kℵ2

which are ℵ1-saturated.
1C) Similarly for II.3.7 which rely on [Sh 576].
2) In fact the frames from II.3.7, II.3.4 are also saturative.
3) If T is a complete superstable first order theory stable in λ and
κ ≤ λ (so κ ≥ ℵ0) or κ = ℵε (in an abuse of notation stipulat-
ing 0 < ε < 1,ℵ0 < ℵε < ℵ1) or κ = 0, λ ≥ |T | and [κ > 0 ⇒
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T stable in λ] and s = sκ
T,λ (so Ks = {M : M |= T, ‖M‖ = λ and M

is κ-saturated},≺↾ Ks), that is the s which is defined in II.3.1(5),
then

(i) s is a good+ λ-frame

(ii) assume ℵε ≤ κ < λ, then: s is saturative iff T is non-multi-
dimensional (see 2.2(5))

(iii) if s
′ = s

κ
T,λ[M ]; see Definition II.2.20 of s[M ]; where M ∈ Kλ

is the superlimit model (i.e., the saturated one), then s′ is
saturative

(iv) if κ = λ, s is saturative.

Proof. 1), 2).

Case 1: Concerning Claim II.3.7.

So 2λ < 2λ+

< 2λ++

,K is an abstract elementary class categorical

in λ, λ+ and 1 ≤ İ(λ++, K) < 2λ++

, with LS(K) ≤ λ, WDmId(λ+)

is not λ++-saturated (or İ(λ++, K) < µunif(λ
++, 2λ+

), see II.3.7 or
just a model theoretic consequence). Recall that we have defined s as
follows: we let λs = λ+,Ks = Kλ+ and for M ∈ Ks we let S bs

s (M) =
{p ∈ SK(M) : p is not algebraic and for some M0 ≤K M,M0 ∈ Kλ

and p ↾ M0 is minimal} and
⋃

s
(M0,M1, a,M3) iff M0 ≤K M1 ≤K M3

are in Ks and a ∈ M3\M1 and for some M ′
0 ≤K M0 from Kλ the

type tpK(a,M ′
0,M3) is minimal. So we know that s is a λ+-good

frame, etc.

To prove “s is good+” assume toward contradiction that 〈(Mi, Ni, ai) :
i < λ+

s 〉 is as in (∗) of clause (b) of Definition 1.3. So for suc-
cessor i < λ+

s , tps(ai,M0, Ni+1) ∈ S bs
s (M0) hence ai ∈ Ni+1\Ni

and for some M ′
0 ≤K M0,M

′
0 ∈ Kλ and M ′

0 ≤Kλ
M ′′

0 ≤K Mi ⇒
tpK(ai,M

′′
0 , Ni) is minimal while tps(ai, N0, Ni+1) is not its non-

forking extension, hence necessarily i < λ+
s ⇒ ai+1 ∈ N0\M0. But

recall that 〈ai+1 : i < λ+
s 〉 is a sequence with no repetitions of mem-

bers from N0\M0 while by the last sentence {ai+1 : i < λ+
s } ⊆ N0

and N0 ∈ Kλs
so ‖N0‖ = λs < λ+

s , contradiction. Also saturativity
should be clear.
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Case 2: Claim II.3.4; actually from Chapter I.
Let s be defined as there so λs = ℵ0. Toward contradiction

let 〈(Mi, Ni, ai) : i < ω1〉 be as in clause (b) of 1.3. Recall that
tps(ai,Mi,Mi+1) does not fork over M0 (i a successor ordinal) hence
there is a finite A0 ⊆M0 such that gtp(ai+1,Mi+1,Mi+2) is definable
over A0 (see I.5.19), but gtp(ai+1, N0, Ni+2) does not have the same
definition hence it splits over A0 hence α ≤ i⇒ gtp(ai+1, Nα, Ni+2)
is not the non-forking extension of gtp(ai+1,Mα, Ni+1). By I.5.24(5)
for some club of E of ω1 we have

⊠ δ ∈ E & δ < α < ω1 & ā ∈ Nδ ⇒ gtp(ā,Mα, Nα) is
definable over some finite Bā ⊆Mδ.

We get a contradiction to “K has the symmetry property”, which is
defined in I.5.31(1), and is proved in I.5.34(1). (Note that this is not
equivalent to the symmetry axiom Ax(E)(f) of good λ-frame proved
inside the proof of II.3.4). Also saturatively should be clear.

Case 3: Claim II.3.5; actually fro m [Sh 48].
Similar to case 2 (note that saturativity is unreasonable here).

3) Naturally this proof assumes knowledge of first order (superstable)
classes and use types as in [Sh:c] and as in II.3.1, we can replace
tp(a,M,N) by tp(a,M,N). We leave to the reader the proof. By
II.3.5 we know clause (a) of 1.3(1), that is “s is a good λ-frame” and
clause (iii) of 1.5(3), in fact it is like clause (iv). But we prove clause
(b) of 1.3(1), i.e. we prove s is a good+ frame; so assume toward
contradiction that 〈Mi : i < λ+〉, 〈Ni : i < λ+〉, p∗ and ai+1 for
i < λ+ are as in (∗) of 1.3(2) clause (b). Let M = ∪{Mi : i < λ+}
and N = ∪{Ni : i < λ+}. Now for every finite sequence c̄ from
N0, there is ic < λ+ such that tps(c̄,M,N) does not fork over Mic̄

(in the first order sense!), and let i∗ = sup{ic̄ : c̄ ∈ ω>(N0)} so
i∗ < λ+ and easily i ∈ [i∗, λ+) & c̄ ∈ ω>(N0) ⇒ tp(c̄,Mi+2, N)
does not fork over Mi+1, hence by symmetry and finite character
([Sh:c, III,§0]) we have tp(ai+1,Mi+1 ∪ N0, N) does not fork over
Mi+1 hence (transitivity) over M0, contradiction. So clause (i) holds.

As for saturativeness, we have two cases. One is clause (iv),
for it notes that for M,N ∈ Ks, “N is (λ, ∗)-brimmed over M
iff (N, c)c∈M is a saturated model”. So we have to show that the

Paper Sh:705, Chapter III



386 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

model (M2, c)c∈M0
is saturated, for this it is enough to show that

for every A ⊆ M2, |A| < ℵ0 and regular p ∈ S1(A ∪M0), we have
dim(p,M2) = λ. Why this holds? If p ± M0 then we can find
a regular q ∈ S(M0), q ± p and as M1 is (λ, ∗)-brimmed over M0,
dim(q,M2) ≥ dim(q,M1) = λ and easily dim(p,M2) = dim(q,M2).
If p ⊥M0 then see [Sh 225a].

The other case concerning saturativeness is clause (ii). The proof
of clause (ii) is easy too; if T is multi-dimensional then by [Sh 429] in
a modelM0 ∈ Ks we can find 〈Iα : α < λ〉, Iα an infinite indiscernible
set, α 6= β ⇒ Iα ⊥ Iβ , Iα ⊇ {āα,n : n < ω} and 〈āα,0ˆāα,1ˆ . . . : α <
λ〉 is an indiscernible sequence.

Now we can find M1 ∈ Ks brimmed over M0 and M2 ∈ Ks which
≤s-extends M1 and 〈āλ,n : n < ω〉 such that:

(∗)1 〈āα,ˆāα,1 . . . : α ≤ λ〉 is an indiscernible sequence

(∗)2 Iλ = {āα,n : n < ω} is orthogonal to M1 and is included in
M2

(∗)3 Av(Iλ,∪Iλ) is omitted by M2.

The other direction follows, too. (The reader may wonder about the
case κ = 0 when for some M , Th(M, c)c∈M is categorical in λ+, see
[Sh:c] and properties as in [ShHM 158] and the analysis of Laskowski
([Las88]) of models of T in λ = |T | when T is categorical in λ+).

�1.5

Also in the main result of Chapter II we can get good+, see more
below in 1.14.

1.6 Goodness Plus Claim. 1) Assume that s = (Kλ,S
bs,

⋃

λ
) is a

weakly successful good+ λ-frame. Then:

(a) if M∗
1 ≤K M∗

2 are from Knice
λ+ and M∗

1 �∗
λ+ M∗

2 then (∗∗)M∗

1 ,M∗

2

from II.8.5 holds

(b) if ⊠ from II.8.7 (which holds if İ(λ++, K) < 2λ++

) then

(α) ≤∗
λ+ ,≤K agree on Knice

λ+

(β) (Knice
λ+ ,≤∗

λ+ ,S bs
λ+ ,

⋃

λ+
) (as defined there, called s+ be-

low) is a good+ λ+-frame.
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2) If s = (Kλ,S
bs,

⋃

λ
) is a successful good+ λ-frame, then s+ (defined

in 1.7 below) is a good+ λ+-frame.

Remark. Recall that in Chapter II we get a weak version of (α) of
(b), that is ≤∗

λ,≤
⊗
K

agree on Knice
λ+ .

Before proving 1.6 we see a conclusion. Recall

1.7 Definition. 1) For a good λ-frame s = (K,S bs,
⋃

) define s+ =

s(+), a λ+-frame, as follows (so λ(s+) = λ+):

(a) K(s+) = Kλ+ [s+] = the class of λ+-saturated models from
Ks of cardinality λ+ (also called Knice

λ+ [s])

(b) ≤K(s+)=≤∗
λ+↾ Kλ+ [s+]

(c) S bs[s+] = S bs
s(+) = {tps(+)(a,M1,M2) : M1 ≤s(+) M2 are

from Ks(+) = Kλ+ [s+], a ∈ M2\M1 and there is N1 ≤K[s]

M1 called a witness, N1 ∈ Kλ, such that N1 ≤K N ≤K

M1 & N ∈ Ks ⇒ tps(a,N,M2) ∈ S bs
s (N) does not

fork over N1 (in s’s sense)}; recalling tps(+)(a,M1,M2) =
tpKs(+)

(a,M1,M2) and note that for p = tps(+)(a,M1,M2) ∈
Ss(+)(M1), M2 ∈ Ks(+) and M ≤K[s] M1,M ∈ Kλ the type

p ↾ M ∈ S bs
s (M) is well defined as tpKs

(a,M,M2) is well
defined

(d)
⋃

= {(M0,M1, a,M2) : M0 ≤s(+) M1 ≤s(+) M2 so of cardi-

nality λ+, a ∈M2\M1 and
tps(+)(a,M1,M2) ∈ S bs

s(+)(M1) has a witness N1 ≤K M0}.

2) If a,M1,M2, N1 are as in clause (c) then we callN1 or tps(a,N1,M2),
a witness for tps(+)(a,M,N); we may abuse our notation and say
that tps(+)(a,M1,M2) does not fork over N1. Similarly for station-
arization (= non-forking extension).

1.8 Conclusion. Assume s is a good λ-frame and is successful (see
Definition 1.1). If s is good+, then ≤s(+)=≤K[s]↾ Ks(+) and s+ is a
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good+ λ+-frame, so: if 〈M ℓ
α : α < λ+〉 is an ≤K-representation of a

saturated Mℓ ∈ Ks

λ+ for ℓ = 1, 2 and M1 ≤K[s] M2 then for some club

E of λ+ for every α < β from E we have NFs(M
1
α,M

2
α,M

1
β ,M

2
β).

2) For M1,M2 ∈ Knice
λ+ [s] we have M1 ≤+

λ+ M2 for s (see Definition
II.7.2(3)) iff M2 is (λ+, ∗)-brimmed over M1 for s+.
3) Ks(+) is the class of λ+-saturated models from Ks and if s is good+

then ≤Ks(+)=≤K[s]↾ K
s(+).

Proof. 1) By clause (b) of 1.6(1) we know that ≤s(+)=≤Ks
↾ Ks(+).

By this and II.8.7 clearly s+ is a good λ+-frame and by Definition
II.7.2(2) the equality ≤s(+)=≤K[s]↾ Ks(+) it follows that s+ is good+.
The last phrase holds by Definition II.7.2(2) and the first sentence.
2) By the proof of II.7.6(2).
3) Easy. �1.8

We shall use this conclusion freely.

Proof of 1.6(1).

Clause (a):
Assume that (∗∗)M∗

1 ,M∗

2
fails, then by the assumptions of clause

(a), from the clauses of (∗∗)M∗

1 ,M∗

2
all except possibly clause (iv) there

follows, hence clause (iv) there has to fail. So we can find N∗
1 ≤s N

∗
2

from Kλ satisfying N∗
ℓ ≤K[s] M

∗
ℓ for ℓ = 1, 2 and p ∈ S bs

s (N∗
2 ) which

does not fork over N∗
1 such that no a ∈ M∗

1 realizes p in M∗
2 . Let

〈M ℓ
α : α < λ+〉 be a ≤s-representation of M∗

ℓ for ℓ = 1, 2. Without
loss of generality N∗

2 ≤s M
2
0 and M2

α ∩M∗
1 = M1

α for α < λ+ and as
M∗

1 ∈ Knice
λ+ also M1

α+1 is (λ, ∗)-brimmed over M1
α for α < λ+. For

each α < λ+ the type p ↾ N∗
1 ∈ S bs

s (N∗
1 ) has a non-forking extension

pα ∈ S bs
s (M1

α) which is equal to p ↾ M1
α. As M1

α+1 is (λ, ∗)-brimmed
over M1

α clearly for every α < λ+ there is aα ∈ M1
α+1\M

1
α realizing

pα.
Let Mα := M1

α, Nα := M2
α, p

∗ = p0; note that N∗
1 ≤s M0, N

∗
2 ≤s

N0, so all the demands in (∗) of clause (b) of Definition 1.3(1) hold,
in particular ai+1 ∈ Mi+2\Mi+1, tps(ai+1,Mi+1,Mi+2) = pi+1 ∈
S bs

s (Mi+1) is a non-forking extension of p ↾ N∗
1 hence of p∗ := p0

but if tps(ai+1, N0, Ni+1) does not fork over M0 then it is also a non-
forking extension of p (recall N∗

2 ≤s N0) impossible by the choice of
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p,N∗
1 , N

∗
2 . So we have gotten a counterexample to “s is good+”, i.e.,

clause (b) of Definition 1.3. In other words, as we assume that s

is good+, some ai realizes p so actually clause (iv) of (∗∗) of II.8.5
holds.

Clause (b): Subclause (α).
Note that II.8.5 show the equivalence of (∗∗)M∗

1 ,M∗

2
to some rel-

atives. Now II.8.4 proves that if one of those relatives holds then
every stationary set S ⊆ {δ < λ++: cf(δ) = λ+} can (modulo Dλ++)
be coded by the isomorphic type of a model MS ∈ Kλ+ , i.e., the
failure of ⊠ from the assumption of II.8.7 which we are assuming (in
(b) of 1.6(1)). So we have proved that (∗∗)M1,M2

fails and now we
have gotten a contradiction by clause (a).

Clause (b): Subclause (β).
Recalling II.8.7, the only new point is the + of the good+ (for

s+).
So assume that 〈(Mi, Ni, ai) : i < λ++〉 is a counterexample to the

“s+ is a good+ λ+-frame”. So in particular Mi, Ni ∈ Ks(+) and p ∈

S bs
s(+)(M0) and pi = tps(+)(ai+1,Mi+1,Mi+2) the type, for Ks(+) =

Knice
λ+ of course, which by subclause (b)(α) is (Knice

λ+ ,≤K↾ Knice
λ+ ). As

p := pi ↾ M0 ∈ S bs
s(+)(M0) there are M ′ ≤K[s] M0,M

′ ∈ Kλ and

q ∈ S bs
s (M ′) which witness p ∈ S bs

s(+)(M0) (see Definition 1.7).

Let 〈N ′
ε : ε < λ+〉 be a sequence which ≤K[s]-represents N0. For

each i < λ++, as p′i = tps(+)(ai+1, N0, Ni+2) is not a non-forking

extension of p necessarily there is ε = εi < λ+ such that M ′ ≤K[s] N
′
ε

and p′i ↾ N ′
ε = tps(ai+1, N

′
ε, Ni+2) is not a non-forking extension of

q. So for some ε < λ+ the set Sε = {i < λ++ : εi = ε} is unbounded
in λ++. We now choose by induction on ζ < λ+ a triple (iζ ,M

∗
ζ , N

∗
ζ )

such that:

(a) iζ < λ++ is increasing continuous

(b) ζ = ξ + 1 ⇒ iζ ∈ Sε

(c) M∗
ζ ≤K[s] Miζ

(d) M∗
ζ ∈ Ks is ≤s-increasing continuous

(e) N∗
ζ ≤K[s] Niζ

(f) N∗
ζ ∈ Ks is ≤s-increasing continuous
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(g) M∗
ζ = N∗

ζ ∩Miζ

(h) ζ = ξ + 1 ⇒ aiξ+1 ∈M∗
ζ+1

(i) M∗
0 = M ′ and N∗

0 = N ′
ε and i0 = Min(Sε).

There is no problem to do this and letting a∗ζ = aiζ
clearly

〈(M∗
ζ , N

∗
ζ , a

∗
ζ) : ζ < λ+〉 contradict “s is good+”.

2) By II.8.7, s+ is a good λ- frame. The good+ holds by clause (b)(β)
of part (1) above. �1.6

1.9 Claim. : If s is a successful good λ-frame then s
+ is a good+ λ+-

frame.

Remark. 1) This is a strong justification for assuming good+ here.
2) So by this we can improve 4.16.

Proof.: By II.8.4, II.8.7 it is a good λ+-frame, so it is enough to
prove that it is good+.

Let 〈(Mi, Ni, ai) : i < λ++〉, pi,M
′, q, 〈N ′

ε : ε < λ+〉 and 〈εi :
i < λ++〉 be as in the proof of clause (b), subclause (β) of 1.6. So
for some ε(∗) the set Sε(∗) := {i < λ++ : εi = ε(∗)} is unbounded

in λ++, and let iζ be the ζ-th member of Sε(∗) for ζ < λ+ and let
i(∗) = ∪{iζ : ζ < λ+}. Let 〈Mi(∗),ζ : ζ < λ+〉, 〈Ni(∗),ζ : ζ < λ+〉 be
a ≤K-representation of Mi(∗), Ni(∗) respectively.

As Mi(∗) ≤s(+) Ni(∗) by the definition of λ+ for some club E of
λ+ we have:
(∗) if ζ1 < ζ1 are fromE then NFs(Mi(∗),ζ1

, Ni(∗),ζ1
,Mi(∗),ζ2

, Ni(∗),ζ2
).

Recalling that as s is weakly successful, NFs is a non-forking re-
lation on Ks respecting s, see II.6.1, for some limit ordinal ζ(∗) we
have:

⊛ (a) ζ(∗) is from E

(b) Mi(∗),ζ(∗) ≤s Ni(∗),ζ(∗)

(c) M ′ ≤s Mi(∗),ζ(∗)

(d) N ′
ε(∗) ≤s Ni(∗),ζ(∗)

(e) Mi(∗),ζ(∗) ≤K[s] Miζ(∗)
.
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As M ′ ≤s Mi(∗),ζ(∗) ≤K[s] Miζ(∗)
holds, and as εiζ(∗)

= ε(∗) clearly

the type tps(aiζ(∗)+1,Mi(∗),ζ(∗),Miζ(∗)+2) is a non-forking extension

of tps(aiζ(∗)+1,M
′,Miζ(∗)+2) which is equal to q.

We can find ξ(∗) ∈ E which is > ζ(∗) + 2 such that aiζ(∗)+1 ∈
Mi(∗),ξ(∗), hence tps(aiζ(∗)+1,Mi(∗),ζ(∗),Mi(∗),ξ(∗)) is a non-forking
extension of q.
By (∗) above we have NFs(Mi(∗),ζ(∗), Ni(∗),ζ(∗),Mi(∗),ξ(∗), Ni(∗),ξ(∗))
hence, as NFs respects s by (∗) we know that

tps(aiζ(∗)+1, Ni(∗),ζ(∗), Ni(∗),ξ(∗))

is a non-forking extension of tps(aiζ(∗)+1,Mi(∗),ζ(∗),Mi(∗),ξ(∗)) hence

of q. As q ∈ S bs
s (M ′) and M ′ ≤s N

′
ε(∗) ≤s Mi(∗),ζ(∗) recalling clause

(c) of ⊛ we conclude that

tps(aiζ(∗)+1, N
′
ε(∗),Mi(∗),ξ(∗)) = tps(aiζ(∗)+1, N

′
ε(∗),Mi(∗)) =

= tps(aiζ(∗)+1, N
′
ε(∗),Miε(∗)+1)

is a non-forking extension of q. But this contradicts the choice of
εiζ(∗)

= ε(∗). �1.9

The following claim sums up the “localness” of the basic types for
s(+), i.e., how to translate their properties to ones in s.

1.10 Claim. [s is a successful good λ-frame].
Assume 〈Mα : α < λ+〉 is a ≤s-representation of M ∈ Ks(+).

1) If p1, p2 ∈ S bs
s(+)(M) then p1 = p2 ⇔

∧

α<λ+

p1 ↾ Mα = p2 ↾ Mα ⇔

(∃λ+

α)(p1 ↾ Mα = p2 ↾ Mα) ⇔ (∃β < λ+)[p1 ↾ Mβ = p2 ↾ Mβ &

(∀α)(∀ℓ ∈ {1, 2})(β ≤ α < λ+ → pℓ ↾ Mα ∈ S
bs
s (Mα) does not fork

over Mβ)] ⇔ (∃N ∈ Ks)[(N is a witness for p1, p2)∧ (p1 ↾ N = p2 ↾

N)]; see Definition 1.7.
2) If S ⊆ λ+ = sup(S), α∗ ≤ min(S) and for α ∈ S the type pα ∈
S bs

s (Mα) does not fork over Mα∗
and pα ↾ Mα∗

= p∗, then

(a) there is p ∈ S bs
s(+)(M) satisfying α ∈ S ⇒ p ↾ Mα = pα

(b) there is no p′ ∈ S bs
s(+)(M)\{p} satisfying this, i.e., p is

unique
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3) If p = tps(+)(a,M,N) ∈ Ss(+)(M) so M ≤s(+) N and a ∈ N ,
then
p ∈ S bs

s(+)(M) ⇔

[for every α < λ+ large enough, tps(a,Mα, N) ∈ S bs
s (Mα)] ⇔

for stationarily many α < λ+, tps(a,Mα, N) ∈ S bs
s (Mα)].

4) Assume M1 ≤s(+) M2 ≤s(+) M3 and 〈M ℓ
α : α < λ+〉 is a ≤s-

representation of Mℓ for ℓ = 1, 2, 3 and assume a ∈M3.
Then tps(+)(a,M2,M3) belongs to S bs

s(+)(M2) and does not fork over

M1 (for s+) iff for some club E of λ+, for every α < β from
E, tps(a,M

2
β,M

3
β) ∈ S bs

s (M2
β) does not fork over M1

α (for s) iff for

some stationary subset S ⊆ λ+ for every δ from S, tps(a,M
2
δ ,M

3
δ ) ∈

S bs
s (M2

δ ) does not fork over M1
δ .

Proof. 1) Among the four statements which we have to prove equiv-
alent, the first implies the second trivially, the second implies the
third trivially, the third implies the second easily by monotonicity
for equality of types and it implies the fourth by our assumption
“p1, p2 ∈ S bs

s(+)(M)” and the definition of S bs
s(+)(M). Also the first

implies the fifth by the definition of S bs
s(+)(M) and the fifth implies

the third by the closure properties of “a type does not fork over M”
for s. To finish we shall prove that the fourth implies the first.

Let M0 = M,M0
α = Mα, let M ℓ, aℓ for ℓ = 1, 2 be such that

M0 ≤s(+) M
ℓ, aℓ ∈ M ℓ and tps(+)(aℓ,M

0,M ℓ) = pℓ and let 〈M ℓ
α :

α < λ+〉 be a ≤K-representation ofM ℓ for ℓ = 1, 2. As we can replace
M1 by some M ′ satisfying M1 <+

λ+ M ′ (where <+
λ is defined in

II.7.2), and similarly for M2, recalling the definition of <+
λ+ without

loss of generality α < β ⇒ NFs(M
0
α,M

ℓ
α,M

0
β ,M

ℓ
β),M ℓ

α+1 is (λ, ∗)-

brimmed over M0
α+1 ∪M

ℓ
α and aℓ ∈M ℓ

0 . Clearly tps(a1,M
0
0 ,M

1
0 ) =

tps(a2,M
0
0 ,M

2
0 ) and we can build an isomorphism f from M1 onto

M2 over M0 mapping a1 to a2 by choosing f ↾ M1
α : M1

α −→
onto

M2
α by

induction on α < λ+.
2) For proving clause (a), we choose M1

α∗

∈ Ks such that Mα∗
≤s

M1
α∗

and M1
α∗

∩M = Mα∗
and a ∈ M1

α∗
realizes p∗. Now choose

M1
α by induction on α ∈ [α∗, λ

+) satisfying M1
α ∩ M = Mα and

M ′
α is ≤s-increasing continuous with α such that α∗ ≤ β < α ⇒

NFs(Mβ,M
1
β ,Mα,M

1
α), this should be clear.
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Lastly, letM1 = ∪{M1
α : α < λ+, α ≥ α∗} and let p = tps(+)(a,M ,

M1). Now for α ∈ S the type p ↾ Mα = tpK[s](a,Mα,M
1) =

tps(a,Mα,M
1
α) is a non-forking extension of tpK[s](a,Mα∗

,M1
α∗

) =

p∗ but also pα satisfies this hence pα = tpKs
(a,Mα,M

1) = p ↾ Mα

so we are done by part (1). We can prove clause (b) of part (2) as
in the proof of part (1).
3), 4) By the definition of s+ and properties of NFs. �1.10

We may like in 1.10(1) to replace basic types by any types (later
this is needed and more is done), note that if s is type-full (Defini-
tion II.6.35) this is not needed. Also we may like in 1.10(3),(4) to
replace “stationary” by “unbounded”, i.e. add it as another equiva-
lent clause. The answer is positive by the following.

1.11 Claim. [s is a successful good λ-frame]. (λ+-locality)
Assume 〈Mα : α < λ+〉 is a ≤K-representation of M ∈ Ks(+).

1) For any p1, p2 ∈ Ss(+)(M), then p1 = p2 ⇔ (∀α)(p1 ↾ Mα = p2 ↾

Mα) ⇔ (∃λ+

α)(p1 ↾ Mα = p2 ↾ Mα).
2) In 1.10(2),(3) we can replace stationary by unboundedly.

Proof. 1) The first condition implies the second by the basic proper-
ties of types, see II§1 mainly II.1.11. The second conditions implies
the third condition trivially and the third condition implies the sec-
ond by the basic properties of types. Lastly, the second condition
implies the first by the proof of 1.10(1).
2) Note that by 1.16 below and Fodor lemma for any p ∈ SK[s](M),M ∈

Ks

λ+ if S := {α < λ+ : p ↾ Mα ∈ S bs
s (Mα)} is unbounded in λ+

then it contains an end-segment of λ+. �1.11

1.12 Definition. 1) We shall define by induction on n:

(a) s is n-successful

(b) s+m = s(+m) for m ≤ n.

For n = 0: We say s is 0-successful if it is a good λs-frame.
Let s+0 = s.

For n = 1: We say s is 1-successful if it is good (λs-frame) and suc-
cessful; let s+1 = s+.
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For n = m+ 1 ≥ 2: We say s is n-successful if it is m-successful and
s+m is 1-successful.

We let s
+n = (s+m)+ (so s

+m is well defined iff s is m-successful).
2) We say s is (n+ 1

2
)-successful or say is weakly (n+ 1)-successful

if it is n-successful and s+n satisfies clause (a) of 1.1.
3) We say s is ω-successful if it is n-successful for every n.

4) If s+n is well defined let Bn = Bs
n = B

s(+n)
n = B(s+n) be a

superlimit model in K[s+n]; it is well defined, i.e., is unique only up
to isomorphism.

1.13 Claim. Assume s is an n-successful good frame.
1) NFs[+n] = NF[s+n] is well defined if s is (n+ 1

2
)-successful.

2) There is Bs
n ∈ Kλ+n , that is a K[s+n]-superlimit is well defined.

3) Ks(+n) = Ks(+n)[B
s
n] if n > 0.

4) If k+m = n then s
+k is m-successful good frame and ((s+k)+m) =

s+n.
5) sk is m-successful iff s is (k+m)-successful; and if this holds then
(s+k)+m = s+(k+m). Also sk is (m+ 1

2 )-successful iff s is (k+m+ 1
2 )-

successful.
6) If s is a good+ λ-frame and 0 < n < ω then

(a) ≤s(+n)=≤K[s]↾ Ks(+n),

(b) B
s
n is pseudo superlimit also in K

s

λ+n , i.e.: it has a <K[s]-
extension isomorphic to itself and if 〈Mi : i ≤ δ〉 is ≤K[s]-

increasing continuous, δ < λ+(n+1) a limit ordinal of course,
and i < δ ⇒ Mi

∼= Bs
n then Mδ

∼= Bs
n, but the universality

of B
s
n in K

s

λ+n is not clear

(c) Ks(+n) = K
s

λ+n [Bs
n].

Proof. Easy, by induction on n (and for (5) on k +m). For (6)(a)
use 1.8 hence (b)(α) of 1.6 holds. �1.13

1.14 Conclusion. In the main lemma II.9.1, if we strengthen the
assumptions (which includes s is successful) by “s = (Kλ,S

bs,
⋃

λ
) is
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a good+ λ-frame”, K = K
up
λ , then we can strengthen the conclusion

to:

(α) sℓ = (Ksℓ
,S bs

sℓ
,
⋃

sℓ

) is a good+ λ+ℓ-frame

(β) sℓ = s
+ℓ, hence for B

s

ℓ ∈ Kλ+ℓ we have:

(i) Bs

ℓ is superlimit (in Ksℓ
= K

s(+ℓ)

λ+ℓ and if ℓ = m+1, even

in K
s(+m)

λ+ℓ )

(ii) Ksℓ
is K[Bs

ℓ ], see Definition II.1.25, and ≤Ks

λ+ℓ
=≤K↾

Ksℓ

λ+ℓ (this equality is the new point)

(iii) S bs
sℓ
,
⋃

sℓ

are defined as in II§2 but restricted to Ksℓ
of

course

(γ) if Bs

ℓ is the unique superlimit in Ks

λ+ℓ then sℓ = s[λ+ℓ], see
0.4(2); note that Bs

ℓ may be just locally superlimit in Ks

λ+ℓ .

Proof. Should be clear (or combine II.9.1 with 1.6). �1.14

Note that in particular

1.15 Claim. Assume s is successful good+ frame. Then s+ = s[λ+
s ]

where on s[λ+
s ] see Definition 0.4(2).

Proof. Easy because Bs
1 is ≤Ks

λ+
-universal. �1.15

1.16 Claim. [Assume s is a weakly successful good λ-frame.] Let
δ < λ+, be a limit ordinal and 〈Mi : i ≤ δ + 1〉 be ≤s-increasing
continuous.
If b ∈ Mδ+1 satisfies tps(b,Mi,Mδ+1) ∈ S bs

s (Mi) for arbitrarily
large i < δ, then tps(b,Mδ,Mδ+1) ∈ S bs

s (Mδ) hence tps(b,Mδ,Mδ+1)
does not fork over Mi for every i < δ large enough.

Remark. If tps(b,Mδ,Mδ+1) ∈ S bs
s (Mδ), this is an axiom of good

frames.
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Proof. Let 〈Ni : i ≤ δ〉 be as in Claim 1.17(1) below, so in partic-
ular Nδ is (λ, ∗)-brimmed over Mδ hence ≤s-universal over Nδ, so
without loss of generality Mδ+1 ≤s Nδ. But Nδ = ∪{Ni : i < δ},
so for some i < δ we have b ∈ Ni, so without loss of generality
tps(b,Mi,Mδ+1) ∈ S bs

s (Mi) (by the assumptions on b), now as
NFs(Mi,Mδ, Ni, Nδ) holds by 1.17(2), we can by 1.18 below deduce
that have tps(b,Mδ, Nδ) = tps(b,Mδ,Mδ+1) is a non-forking exten-
sion of tps(b,Mi, Ni), and so we are done. �1.16

∗ ∗ ∗

Recall from Chapter II some claims on non-forking which we shall
use.

1.17 Claim. [Assume s is a weakly successful good λ-frame.]
1) If 〈Mi : i ≤ δ〉 is ≤s-increasing continuous, then we can find
an ≤s-increasing continuous sequence 〈Ni : i ≤ δ〉 such that Mi ≤s

Ni, i < δ ⇒ NFs(Mi, Ni,Mi+1, Ni+1) and Ni+1 is universal over
Ni ∪Mi+1.
2) If 〈Mi, Ni : i ≤ δ〉 are as in part (1), then i ≤ j ≤ δ ⇒
NFs(Mi, Ni,Mj, Nj) and Nδ is (λ, ∗)-brimmed over Mδ and even
over Mδ ∪Mi for i < δ.
3) In part (1) we can add “Ni is brimmed over Mi for every i”.
4) If α < λ+, 〈Mi : i ≤ α〉 is ≤s-increasing continuous and NFs(M0,
N0,Mα, N

′) then we can find N ′′ and 〈Ni : i ≤ α, i 6= 0〉 such that
〈(Mi, Ni) : i ≤ α〉 is as in (1),(3) above, Nα ≤s N

′′, N ′ ≤s N
′′ and

even N ′ ≤s Nα.
5) In parts (1),(3) we can allow Mδ ∈ Ks

λ+ though i < δ ⇒Mi ∈ Ks

(so δ = λ+).

Proof. 1), 2), 3) By II.6.29, II.6.30(2) and the properties of NF.
4) Let 〈N ′

i : i ≤ α〉 be as in part (1) + (3), let f0 be a ≤s-embedding
of N0 into N ′

0 over Mα. By the uniqueness for NFs we can find
N ′′

α , f
′ such that N ′

α ≤s N
′′ and f ′ ⊇ f ∪ idMα

is a ≤s-embedding
of N ′ into N ′′, (in fact without loss of generality N ′′ = N ′

α by part
(2)).
5) Should be clear. �1.17
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1.18 Claim. [Assume s is a weakly successful good λ-frame.]

If NFs(M0,M1,M2,M3) and (M0,M2, a) ∈ K3,bs
s then

tps(a,M1,M3) ∈ S bs
s (M1) does not fork over M0.

Remark. This holds as “NFs respects s” which is defined in II.6.1
and holds by II.6.34.

Proof. See II.6.32.

1.19 Claim. Assume s is a weakly successful good λ-frame. If
M0 ≤s Mℓ ≤s M3 for ℓ = 1, 2 and (M0,M1, a) belongs to K3,uq

s

and tps(a,M2,M3) does not fork over M0 (e.g. tps(a,M0,M1) has
a unique extension in Ss(M2)) then NFs(M0,M1,M2,M3).

Remark. This is close to the definition of K3,uq
s , which says that

there is a unique such amalgamation up to embeddings.

Proof. By II.6.33. �1.19

1.20 Claim. [s is a weakly successful good λ-frame.] Assume M0 ≤s

M1 ≤s M2, a ∈ M2 and tps(a,M1,M2) does not fork over M0

and b ∈ M1, tps(b,M0,M1) ∈ S bs
s (M0). Then there are M∗

1 ,M
∗
2

such that M2 ≤s M
∗
2 ,M0 ≤s M

∗
1 ≤s M

∗
2 , (M0,M

∗
1 , a) ∈ K3,uq

s and
tps(b,M

∗
1 ,M

∗
2 ) does not fork over M0.

Proof. By NF calculus (i.e. using II.6.34 and Definition II.6.1).
That is, by s being weakly successful we can find (M∗

1 , a
∗) such that

(M0,M
∗
1 , a

∗) ∈ K3,uq
s and tps(a

∗,M0,M
∗
1 ) = tps(a,M0,M2). By

the amalgamation property for Ks and the definition of tps with-
out loss of generality for some M∗

2 we have M2 ≤s M
∗
2 ,M

∗
1 ≤s M

∗
2

and a∗ = a. As tps(a,M1,M2) does not fork over M0 and by 1.19
above we have NFs(M0,M

∗
1 ,M2,M

∗
2 ) and by symmetry for NFs we

have NFs(M0,M2,M
∗
1 ,M

∗
2 ). As tps(b,M0,M1) ∈ S bs(M0) and

M0 ≤s M1 ≤s M2 clearly (M0,M2, b) ∈ K3,bs
s hence by 1.18 we

get tps(b,M
∗
1 ,M

∗
2 ) does not fork over M0 as required. �1.20

We could have mentioned in Chapter II:
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1.21 Claim. [s is a good λ-frame].
Assume that M1 ≤s M2 are superlimit in Ks and pi ∈ S bs

s (M2) does
not fork over M1 for i < α < λs. Then there is an isomorphism f
from M1 onto M2 such that i < α⇒ f(pi ↾ M1) = pi.

Proof. First assume that M2 is (λ, ∗)-brimmed over M1. Clearly
we can find a regular cardinal θ such that α < θ ≤ λ. Now we
can find a sequence 〈Nβ : β < θ〉 which is ≤s-increasing continuous,
Nβ+1 being universal over Nβ (of course, we are using II§4). Clearly
⋃

β<θ

Nβ ∈ Ks is (λ, ∗)-brimmed over N0, so without loss of generality

is equal to M1.
So for each i < α for some β(i) < θ the type pi ↾ M1 which belongs

to S bs
s (M1) does not fork over Nβ(i), so β = sup{β(i) : i < α} < θ,

hence by transitivity and monotonicity of non-forking i < α ⇒ pi

does not fork over Nβ . Clearly M2 is (λ, ∗)-brimmed over Nβ and by
the choice of 〈Nγ : γ < θ〉 also M1 is (λ, ∗)-brimmed over Nβ hence
there is an isomorphism f from M2 onto M1 over Nβ . Now for i < α
the types pi ↾ M1 and f(pi) are members of S bs

s (M1) which do not
fork over Nβ and have the same restriction to Nβ hence are equal.
So f−1 is as required.

Second without the assumption “M2 is (λ, ∗)-brimmed over M1”
we can find M3 ∈ Ks which is (λ, ∗)-brimmed over M2 hence also
over M1 and let qi ∈ S bs

s (M3) be a non-forking extension of pi for
i < α.

Applying what we have already proved to the pair (M1,M3) there
is an isomorphism f1 from M1 onto M3 mapping pi ↾ M1 = qi ↾ M1

to qi for i < α. Applying what we have already proved to the pair
(M2,M3), there is an isomorphism f2 from M2 onto M3 mapping pi

to qi for i < α. Now f−1
2 ◦ f1 is as required. �1.21

1.22 Claim. Let s be a good λ-frame.
1) Assume M̄ = 〈Mi : i ≤ δ+1〉 is ≤s-increasing continuous. If P ⊆
S bs

s (Mδ+1), |P| < cf(δ) and Mδ ≤s N and N,Mδ+1 are brimmed
over Ni for i < δ and p ∈ P ⇒ p does not fork over Mδ. Then for
every large enough i < δ there is an isomorphism f from N onto
Mδ+1 over Mi such that p ∈ P ⇒ f−1(p) ↾ Mδ = p ↾ Mδ.
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2) Instead |P| < cf(δ) it is enough to demand: for some i < δ we
have p ∈ P ⇒ p does not fork over Mi.

Proof. 1) For p ∈ P, choose i(p) < δ such that p ∈ P ⇒ p ↾ Mδ

does not fork over Mi(p) and let i(∗) = sup{i(p) : p ∈ P} it is < δ or
|Γ| < cf(δ). Continue as in 1.20.
2) Similar. �1.22

1.23 Exercise: Assume s is a good λ-frame.
If M0 is (λ, ∗)-brimmed, M1 is (λ, ∗)-brimmed over M0, f an au-

tomorphism of M1 and pi, qi ∈ S (M1) do not fork over M0 for
i < α, f(pi) = qi and α < λ then for some automorphism g of
M0, i < α⇒ g(pi ↾ M0) = qi ↾ M0.

1.24 Exercise: Assume s is a good λ-frame.
If N ∈ Ks is (λ, ∗)-brimmed and P ⊆ S bs

s (N) has cardinality
< λs then for some M :

(a) M ∈ Ks is (λ, ∗)-brimmed

(b) N is (λ, ∗)-brimmed over M

(c) p does not fork over M for every p ∈ P.

1.25 Exercise: If s is successful andM <+
λ,κ N , see Definition II.7.2(2),

then N is (λ, κ)-brimmed over M for s+.

[Hint: Obvious by now. E.g. for every M ′ ∈ Ks(+) there is M ′′ ∈
Ks(+) such that M ′ <λ+,κ M ′′, by II.7.4(1). Hence there is ≤s(+)-

increasing continuous sequence 〈Mα : α ≤ κ〉 such that M2α+1 <
+
λ,κ

M2α+2 for α < κ and M0 = M . Now M2α+2 is ≤s)(+)-universal over
M2α+1 for α < κ by II.7.9(1) hence Mκ is (λ∗, κ)-brimmed over M0.

By II.7.7(3) it follows that M = M0 <
+
λ+,κ

Mκ and uniqueness,

II.7.6(2), without loss of generality N = Mκ.]

§2 uni-dimensionality and non-splitting

Dealing all the time with good frames, we may wonder what occurs
to the question on the spectrum of categoricity. As in the first order
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case it is closely related to being uni-dimensional. So we may wonder
how to define “uni-dimensional” and whether: if s is categorical in
λ and is uni-dimensional and s is n-successful (see 1.12), then Ks

λ+n

is categorical. By 2.11 below the answer is yes. There are several
variants of uni-dimensional but when Ks is categorical (in λ) we have:
K

s is catgorical in λ+ iff s is weakly uni-dimensional iff all models
from Ks

λ+ are saturated and it implies that s+ is weakly uni-dimen-
sional; concerning the other variants see 2.15(3). By this in the end
of §12 we shall be able to derive results on the categoricity spectrum.

We may consider a more restricted framework, s is saturative, it is
close to categoricity. Note that “saturative” is closed to non-multi-
dimensional but see 1.4. Note that if we know more (e.g. s has
primes, see §4 (and is categorical in λ)) we can invert the implications
of 2.10.

2.1 Hypothesis. s is a good λ-frame.

2.2 Definition. 1) We say s is semibs-uni-dimensional when for any
modelM ∈ Ks, ifM <s Nk ∈ Ks for k = 1, 2 then some p ∈ S bs

s (M)
is realized in N1 and in N2. Let “s is semina-uni-dimensional” be
defined similarly but we allow p ∈ S na

s (M) and let “s is semibs-uni-
dimensional” be called “s is semi-uni-dimensional”. Instead of na,bs
as superscripts to semi we may write 0, 1 respectively.
2) We say s is almost uni-dimensional if for any model M ∈ Ks,
there is an unavoidable p ∈ S bs

s (M) (see below).
3) For M ∈ Ks we say p ∈ S all

s (M) is unavoidable, if for every N
satisfying M <s N ∈ Ks, some a ∈ N\M realizes p. This is well
defined for any λ-a.e.c. Kλ.
4) We say s is explicitly uni-dimensional if every p ∈ S bs

s (M) where
M ∈ Ks, is unavoidable.
5) We call s non-multi-dimensional if for every M0 ∈ Kλ whenever
M0 ≤s M1 <s M2, there is p ∈ S bs

s (M1) which does not fork over
M0 and is realized in M2.
6) We say s is weakly uni-dimensional when: if for every M <s Mℓ

for ℓ = 1, 2, then there is c ∈M2\M such that tps(c,M,M2) belongs
to S bs

s (M) and has more than one extension in S all
s (M1).
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7) We say a λ-a.e.c. K with amalgamation is weakly [or is semi] uni-
dimensional when: ifM <K Nℓ for ℓ = 1, 2 then there is p ∈ S na

K
(M)

realized in N1 and having at least two extensions in S all
K

(M) or
realized in N1 and in N2.
8) We say a λ-a.e.c. K with amalgamation is almost uni-dimensional
when for every M ∈ K, there an unavoidable p ∈ SK(M)

On the meaning in the first order case see 2.6(5) below; the definition
in 2.2(5) fits the first order one for superstable T .
We naturally first look at the natural implications. Note that being
“semibs/almost/ explicitly/weakly uni-dimensional” may be influ-
enced by the choice of the basic types (compare 2.6(1) with 2.6(2))
as well as non-multi-dimensional but not so semina-uni-dimensional.

2.3 Claim. 1) If s is explicitly uni-dimensional, then s is almost
uni-dimensional.
2) If s is almost uni-dimensional, then s is semix-uni-dimensional
for x ∈ {na,bs}; if s is semibs-uni-dimensional then s is semina-uni-
dimensional.
3) If s is semina-uni-dimensional, then Ks is categorical in λ+

s .
4) If s is weakly uni-dimensional, then Ks is categorical in λ+

s .
5) If s is semibs-uni-dimensional then s is weakly uni-dimensional.
6) If s is weakly uni-dimensional then Ks is weakly uni-dimensional.
7) If s is a type-full then s is weakly uni-dimensional iff Ks is weakly
uni-dimensional.
8) If a λ-a.e.c. Kλ with amalgamation and the JEP is almost uni-di-
mensional (or semi-uni-dimensional) then Kλ+ = (Kup

λ )λ+ is cateogor-
ical in λ+.

2.4 Remark. 1) Concerning non-multi-dimensionality and minimal
≤s-extension, see 3.8.
2) See more in 2.10.
3) If s has primes for S na

s (see later 3.2(5)) and s is semina-uni-dimen-
sional then s has semibs-uni-dimensional; this helps for s+ because
s
+ has primes by 4.9, and even for p ∈ S na

s (M) by II.6.34,II.6.36.
4) See more in 2.15(3).
5) Assume Kλ is a λ-a.e.c. with amalgamation and the JEP and Kλ

is stable in λ, (i.e. if M ∈ Kλ then |SKλ
(M)| ≤ λ). If Kλ is weakly
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uni-dimensional then Kλ+ = (Kup
λ )λ+ is categorical in λ. See more

in [Sh:F735].

Proof. 1) By the definitions and as S bs
s (M) 6= ∅ for every M ∈ Ks.

(Why? Because there is N,M <s N and Ax(D)(c) of good λ-frames
(density of basic types)).
2) Check the definitions.
3) Let M0,M1 ∈ Ks

λ+ and we shall prove that they are isomorphic.

Let 〈M ℓ
α : α < λ+〉 be <s-representation of Mℓ such that α < λ+ ⇒

M ℓ
α 6= M ℓ

α+1 for ℓ = 0, 1. Let 〈aℓ
i : i < λ+〉 list the elements of Mℓ.

We choose by induction on ε < λ+ a tuple (Nε, α
0
ε, f

0
ε , α

1
ε, f

1
ε ) such

that:

(a) Nε ∈ Ks is ≤s-increasing continuous

(b)ℓ αℓ
ε < λ+ is increasing continuous

(c)ℓ f ℓ
ε is a ≤s-embedding of M ℓ

αℓ
ε

into Nε

(d)ℓ f ℓ
ε is increasing continuous with ε

(e)ℓ if ε = 4ζ+ℓ, ℓ ∈ {0, 1} and jε = Min{i : f ℓ
ε(tp(aℓ

i ,M
ℓ
αℓ

ε
,Mℓ))

is realized by some d ∈ N4ζ\ Rang(f ℓ
ε)} is well defined then

aℓ
jε

∈ Dom(f ℓ
ε+1) and f ℓ

ε+1(a
ℓ
jε

) ∈ N4ζ}; also in any case

f1−ℓ
ε+1 = f1−ℓ

ε

(f)ℓ if ε = 4ζ + 2 + ℓ, ℓ ∈ {0, 1} then αℓ
ε+1 > αℓ

ε.

First, assume that we succeed, then for some club E of λ+ for ev-
ery ℓ < 2, α < λ+ and δ ∈ E we have aℓ

α ∈ M ℓ
δ ⇔ α < δ and

δ ∈ E ⇒ Nδ∩
⋃

ε<λ+

Rang(f ℓ
ε) = Rang(f ℓ

δ ). Let δ ∈ E and ℓ ∈ {0, 1}

and note that f ℓ
δ+ℓ = f ℓ

δ .

[Why? If ℓ = 0 trivially and if ℓ = 1 by the demand f1−0
ε+1 =

f1−0
ε in (e)0.] Now if Rang(f ℓ

δ ) 6= Nδ then by the assumption
(“s is semina-uni-dimensional”) see Definition 2.2(1), for some c ∈
M ℓ

αℓ
δ
+1

\M ℓ
αℓ

δ

and d ∈ Nδ\ Rang(f ℓ
δ ) we have tps(d,Rang(f ℓ

δ ), Nδ) =

f ℓ
δ (tps(c,M

ℓ
αδ
,Mℓ)) and recall f ℓ

δ+ℓ = f ℓ
δ for ℓ = 0, 1, so by (e)ℓ we

have Rang(f ℓ
δ+2) ∩Nδ\ Rang(f ℓ

δ ) 6= ∅ contradiction. So δ ∈ E ∧ ℓ ∈
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{0, 1} ⇒ Rang(f ℓ
δ ) = Nδ hence fℓ :=

⋃

δ∈E

f ℓ
δ is an isomorphism from

Mℓ onto N :=
⋃

δ∈E

Nδ, so M1
∼= N ∼= M2 and we are done.

So we have just to carry the induction, which is straight as Ks is
a λs-a.e.c. with amalgamation and the hypothesis1.
4) The proof is similar to that of part (3) but we replace clause (e)ℓ

by

(e)∗ℓ if ε = 4ζ + ℓ, ℓ ∈ {0, 1} and for some c ∈ N4ζ\ Rang(f ℓ
ε) we

have tps(c, f
ℓ
ε(M ℓ

αℓ
ε
), Nε) ∈ S bs

s (f ℓ
ε(M ℓ

αℓ
ε
)) and

(f ℓ
ε)−1(tps(c, f

ℓ
ε(M ℓ

αℓ
ε
), Nε)) has at least two extensions in

S all
s (M ℓ

β) for some β ∈ (αℓ
ε, λ

+) then:2

for some c′ ∈ N4ζ\Rang(f ℓ
ε) the type tps(c

′, f ℓ
ε(M ℓ

αℓ
ε
), Nε)

belongs to S bs
s (f ℓ

ε(M ℓ
αε

)), and tps(c
′, f ℓ

ε+1(M
ℓ
αℓ

ε+1
), Nε+1) is

not the non-forking extension of tps(c, f
ℓ
ε(M ℓ

αℓ
ε
), Nε)

in S bs
s (f ℓ

ε+1(M
ℓ
αℓ

ε+1
)); also f1−ℓ

ε+1 = f1−ℓ
ε .

Again there is no problem to carry the definition. So it is enough
to prove for ℓ = 0, 1 that ∪{Rang(f ℓ

ε) : ε < λ+} = Nλ+ , and for
this it suffices to prove that Sℓ = {δ < λ+ : δ is a limit ordinal such
that ε < δ ⇒ αℓ

ε < δ and Nδ 6= Rang(f ℓ
δ )} is not stationary. To-

ward contradiction assume Sℓ is stationary; for every δ ∈ Sℓ by the
assumption “s is weakly uni-dimensional” we know that the assump-
tion of (e)∗ℓ holds hence there is c = cℓδ as there. By Fodor lemma
for some cℓ the set S′

ℓ = {δ ∈ Sℓ : cℓδ = cℓ} is stationary. Choose
ordinals δ(1) < δ(2) from S′

ℓ so aℓ
jδ(1)

= cℓδ(1) = cℓδ(2) = aℓ
jδ(2)

, easy

contradiction.
5) So assume s is semibs-uni-dimensional. To prove that s is weakly
uni-dimensional, let us have M <s Mℓ for ℓ = 1, 2 and we should
find c ∈ M2\M1 as required in 2.2(6). As we are assuming “s is
semibs-uni-dimensional”, by Definition 2.2(2) there is p ∈ S bs

s (M)
realized in M1 and M2. So there are c1 ∈ M1, c2 ∈ M2 such that

1actually the “semina-uni-dimensional” can be weakened - in Definition 2.2(1)

we may ask N1 ∈ Ks

λ+
2by the proof here also in the proof of part (3) we can avoid using 〈aℓ

ε : ε < λ+〉

Paper Sh:705, Chapter III



404 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

tps(c1,M,M1) = p = tps(c2,M,M2). Let c = c2 so as c2 realizes
p ∈ S bs

s (M) in M2 necessarily c2 ∈ M2\M and tps(c2,M,M2) =
p ∈ S bs

s (M).
Now p has at least two extensions in S all

s (M1) : tps(c1,M1,M1) ∈
S all

s (M1)\S
na
s (M1) and the non-forking extension of p in S bs

s (M1).
6),7) Easy.
8) Similar to the proof of parts (3),(4). �2.3

A conclusion is (see Definitions 0.4, 1.7):
2.5 Conclusion: [s is successful good+ λ-frame.]
1) If s is semina-uni-dimensional then s〈λ+〉 = s+ so Ks

λ+ = Ks(+);
see Definition 0.4.
2) Similarly if Ks is categorical in λ+

s .

Proof. 1) ClearlyKs(+) ⊆ Ks

λ+ and by 1.8 we know ≤Ks↾ Ks(+) =≤s(+).

But by 2.3(3), Ks is categorical in λs(+) = λ+. Hence Ks(+) = Ks

λ+

and even Ks(+) = Ks

λ+ and check similarly for
⋃

and S bs.

2) So again Ks(+) = Ks

λ+ and just check. �2.5

Remark. 1) But we may need “if s is non-multi-dimensional then
so is s+”, similarly for uni-dimensional. On this see 2.10 by later
results.
2) We also note that the cases we have dealt with in II§3 using
categoricity hypothesis, give not just good frames but even uni-di-
mensional ones.

2.6 Claim. 1) In II.3.7 (= 1.5(1) Case 1 above) we can add: the s

obtained there is explicitly uni-dimensional.
2) In II.3.4, if K is categorical in ℵ1 (see above 1.5(1), Case 2) then
the s obtained there is almost uni-dimensional.
3) In II.3.5, if ψ is categorical in ℵ2 (see above 2.6(1), Case 3) then
the s obtained there is almost uni-dimensional.
4) Assume that s is a successful good λ-frame (not necessarily good+),
if s is almost uni-dimensional, then also the good λ+-frame s+ ob-
tained in II.8.7 is almost uni-dimensional.

Paper Sh:705, Chapter III



III.§2 UNI-DIMENSIONALITY AND NON-SPLITTING 405

5) If T is complete superstable first order and s = sκ
T,λ (see 1.5(3))

and λ ≥ |T | + κ+ (and κ 6= 0 ⇒ T stable in λ) then:

(i) s is saturative iff T is non-multi-dimensional (see [Sh:c]; this
is (ii) of 1.5(3))

(ii) K
s is categorical in λ+ iff T is uni-dimensional iff s is almost

uni-dimensional.

Proof. 1) As for s, every minimal type ∈ Ss(M) is unavoidable (see
the proof of II.3.7).
2) We can easily show that for M ∈ Kℵ0

there is a minimal p ∈
S bs

s (M), and every minimal p ∈ S bs
s (M) is unavoidable (see the

proof of II.3.4), using the categoricity in ℵ1 of course.
3) Similarly.
4) By the analysis of the types for s+ by those for s.
5) Look at 1.5(3), left to the reader. �2.6

2.7 Claim. Assume that s is a weakly successful good λ-frame and
t is the full good λ-frame constructed from it in Definition II.6.35,
Claim II.6.36, (the type-full one).
1) If s is weakly uni-dimensional then t is.
2) If s is categorical in λ also the inverse holds.

Proof. 1) By the definition.
2) By 2.3(4) and 2.9 below we have: s is weakly uni-dimensional
iff Ks is categorical in λ+

s iff Kt is categorical in λ+
t iff t is weakly

uni-dimensional. �2.7

2.8 Exercise: Assuming s, t are as in 2.7 and sort out the easy impli-
cations for the properties defined in 2.2.

The following is an inverse to 2.3(4).

2.9 Claim. [Ks categorical in λs]. If Ks

λ+ is categorical in λ+ then
s is weakly uni-dimensional.

Proof. Assume toward contradiction that s is not weakly uni-di-
mensional, hence we can find M0 <s Mℓ for ℓ = 1, 2 such that:
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if c ∈ M2\M0 and tps(c,M0,M2) ∈ S bs
s (M0) then it has a unique

extension in Ss(M1). By Axiom (D)(d) of good λ-frames (existence)
we can choose c ∈M2\M0 such that p = tps(c,M0,M2) ∈ S bs

s (M0).
Now we choose by induction on α < λ+ a model Nα ∈ Ks,≤s-
increasing continuous, Nα 6= Nα+1, N0 = M0 and p has a unique
extension in Ss(Nα), call it pα and by Axiom (E)(g) (extension) we
know that pα ∈ S bs

s (Nα) does not fork over N0. For α = 0 this is
trivial, for α = β+1 by 1.21 (noting that everyM ∈ Ks is isomorphic
to M0 and is (λ, ∗)-brimmed as Ks is categorical in λ) there is an
isomorphism fβ from N0 = M0 onto Nβ such that fβ(p0) = pβ,
so we can find Nα = Nβ+1 and isomorphism gβ from M1 onto Nα

extending fβ . Hence f(p) = pβ and so pβ has a unique extension in
Ss(gβ(M1)) = Ss(Nα) as required. For β limit use Axiom (E)(h),
continuity.

Now N :=
⋃

α<λ+

Nα ∈ Ks

λ+ (recall Nα 6= Nα+1), and pβ is not

realized in Nβ for β < λ+ hence p = p0 is not realized in N , so
N ∈ Ks

λ+ is not saturated contradicting categoricity in λ+. �2.9

Now we consider those properties and how they are related in s and
s+.

2.10 Claim. Assume s is a successful good λ-frame.
1) If s is semix-uni-dimensional where x ∈ {na,bs} then s+ is semix-
uni-dimensional.
2) If s is weakly uni-dimensional, then s+ is weakly uni-dimensional.
3) If s is almost uni-dimensional, then s+ is almost uni-dimensional.
4) If s is explicitly uni-dimensional, then s+ is explicitly uni-dimen-
sional.
5) If s is non-multi-dimensional, then so is s+.

Proof. 1) First let x = na. Assume toward contradiction, that s+ is
not semina-uni-dimensional, so we can find M0 <s(+) Mℓ for ℓ = 1, 2
such that c1 ∈ M1\M0 & c2 ∈ M2\M0 ⇒ tps(c1,M0,M1) 6=
tps(c2,M0,M2). Let 〈M ℓ

α : α < λ+〉 be a ≤s-representation of Mℓ

for ℓ < 3, hence by 1.11 and the definition of ≤s(+) for some club E
of λ+ the following holds:
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(∗) for ℓ ∈ {1, 2} and α < β inE, we have NFs(M
0
α,M

ℓ
α,M

0
β ,M

ℓ
β)

(hence M ℓ
α ∩M0 = M0

α) and M0
α 6= M ℓ

α and for any c1, c2 we
have:
if c1 ∈M1

α\M
0
α & c2 ∈M2

α\M
0
α

& (∃γ < λ+)[tps(c1,M
0
γ ,M

1
γ ) 6= tps(c2,M

0
γ ,M

2
γ )]

then tps(c1,M
0
α,M

1
α) 6= tps(c2,M

0
α,M

2
α).

Let δ = Min(E) and apply the assumption on s so there are c1 ∈
M1

δ \M
0
δ , c2 ∈M2

δ \M
0
δ satisfying tps(c1,M

0
δ ,M

1
δ ) = tps(c2,M

0
δ ,M

2
δ ).

By the choice of E we have β < λ+ ⇒ tps(c1,M
0
β ,M1) = tps(c2,M

0
β ,

M2) and use 1.11(1).
If x = bs the proof is similar using basic types (and 1.10(3), 1.18).
2) So assume M0 <s(+) Mℓ for ℓ = 1, 2. Let 〈M ℓ

α : α < λ+〉 be a

≤s-representation of Mℓ and E a thin enough club of λ+.

For each δ ∈ E we have M0
δ <s M

ℓ
δ for ℓ = 1, 2 but s is weakly uni-

dimensional hence for some cδ ∈M2
δ \M

0
δ the type pδ = tps(cδ,M

0
δ ,

M2
δ ) belongs to S bs

s (M0
δ ) and has more than one extension in Ss(M

1
δ ).

Clearly there is αδ < δ such that pδ does not fork for s over M0
αδ

and trivially pδ ↾ M0
αδ

∈ S bs
s (M0

αδ
), a set which has cardinality

≤ λ. We also demand that if δ = sup(E ∩ δ) then αδ ∈ E. By
Fodor lemma for some S ⊆ E, a stationary subset of λ+ we have
δ ∈ S ⇒ αδ = α∗ & cδ = c∗ & pδ ↾ M0

α∗

= p∗ so α∗ ∈ E.

For α ∈ [α∗, λ
+) let pα = pδ ↾ M0

α for every (equivalent for some)
δ ∈ S\α, so α∗ ≤ α < β < λ+ ⇒ pα = pβ ↾ M0

α and pα does not
fork over pα ↾ M0

α∗

= p∗. Now c∗ realizes pα for α ∈ [α∗, λ
+) hence

by 1.10 the type p := tps(+)(c∗,M0,M2) belongs to S bs
s(+)(M0).

Also by the choice of c∗ there are q1α∗
6= q2α∗

∈ Ss(M
1
α∗

) extending

p∗ ∈ S bs(M0
α∗

).

By 1.17 we can find M3, 〈M
3
α : α < λ+〉 such that M1 ≤s(+)

M3, 〈M
3
α : α < λ+〉 is ≤s-representation of M3 and α < β < λ+ ⇒

NFs(M
1
α,M

3
α,M

1
β ,M

3
β) and M3

α is brimmed over M1
α (and M3

α+1 is

brimmed over M3
α+1 ∪M1

α; help in building the M3
α’s). Hence we

can find a1, a2 ∈M3
α∗

realizing q1α∗
, q2α∗

respectively.

Now if β ∈ (α∗, λ
+) ∩ S then NFs(M

1
α∗
,M3

α∗
,M1

β ,M
3
β) and also

NFs(M
0
α∗
,M1

α∗
,M0

β ,M
1
β) by the choice of E (recall M0 ≤s(+) M1),

so as NFs satisfies transitivity we have NFs(M
0
α∗

,M3
α∗

,M0
β ,M

3
β), so
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together with the previous sentence tps(aℓ,M
0
β ,M

3
β) extends p∗ and

does not fork overM0
α∗

hence is equal to pβ which is tps(+)(c∗,M
0
β ,M

1
β).

As this holds for every β ∈ (δ, λ+) ∩ S by 1.10 it follows that
tps(+)(aℓ,M0,M3) = p = tps(+)(c∗,M0,M3).

So for ℓ = 1, 2 the type qℓ := tps(aℓ,M1,M3) ∈ Ss(+)(M0) ex-
tend tps(+)(c∗,M0,M3). But q1 = tps(a1,M1,M3) 6= tps(a2,M1,

M3) = q2 because q1 ↾ M1
α∗

6= q2 ↾ M1
α∗

. So q1, q2 are as required in
the definition of “s+ is weakly uni-dimensional”.
3) Similar. So let M0 ∈ Ks(+) and let 〈M0

α : α < λ+〉 be a

<K[s]-representation of M0. For limit δ < λ+ there is an unavoid-

able pδ ∈ S bs
s (Mδ) and there is an ordinal αδ < δ such that pδ

does not fork over M0
αδ

. For some stationary S ⊆ λ+, we have

[δ ∈ S ⇒ αδ = α∗ ∧ pδ ↾ M0
αδ

= p∗]. For α ∈ [α∗, λ
+) define

pα ∈ S bs
s (Mα) such that pα = pδ ↾ M0

α for every δ ∈ S\α. So for
some p ∈ S bs

s(+)(M0) we have α∗ ≤ α < λ+ ⇒ p ↾ M0
α = pα hence

{α < λ+ : p ↾ M0
α ∈ S bs

s (M0
α) is unavoidable} is stationary. It is

easy to check that p is unavoidable (for Ks(+)).
4) Essentially the same proof as of part (3).
5) So suppose “s is non-multi-dimensional”. To prove that s+ is non-
multi-dimensional, (see Definition 2.2(5)) let M0 ≤s(+) M1 <s(+) M2

be given. We have to find p ∈ S bs
s(+)(M1) which is realized in M2

and does not fork over M0.
Let 〈M ℓ

α : α < λ+〉 be a <K[s]-representation of Mℓ for ℓ = 0, 1, 2.

So for some club E of λ+

⊛1 if ℓ(1) < ℓ(2) ≤ 2 and α < β are from E then

NFs(M
ℓ(1)
α ,M

ℓ(2)
α ,M

ℓ(1)
β ,M

ℓ(2)
β ).

Also without loss of generality

⊛2 for α ∈ E,M1
α 6= M2

α.

Choosing α ∈ E, by the assumption on s, for some a ∈ M2
α\M

1
α we

have

⊛3 tps(a,M
1
α,M

2
α) ∈ S bs

s (M1
α) does not fork over M0

α.

By ⊛1 and 1.18 + 1.10, we have: if β ∈ E\α ⇒ tps(a,M
1
β ,M

2
β)

does not fork over M1
α hence (transitivity) over M0

α. Hence we can
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deduce that p := tps(+)(a,M1,M2) ∈ S bs
s(+)(M1) does not fork over

M0, as required. �2.10

Together we can “close the circle”; to continuing “up” we shall get
more (see more in 4.18).
2.11 Conclusion: Assume s is a good λ-frame categorical in λ.
1) The frame s is weakly uni-dimensional iff Ks

λ+ is categorical in
λ+.
2) If in addition s is successful and good+ we can add: iff s+ is
weakly uni-dimensional and Ks

λ+ = Ks(+).

Proof. 1) The second condition implies the first by 2.9, the first
condition implies the second by 2.3(4).
2) The first implies the third as by 2.10(2) we have s+ is weakly uni-
dimensional and Ks

λ+ = Ks(+) by 2.3(4) + 2.5. The third condition

implies the second as Ks(+) is categorical in λ+ by the definition of
Ks(+). �2.11

A strengthening of 2.11 is

2.12 Claim. Assume s is categorical (in λ) and successful good+

(λ-frame). Then s is weakly uni-dimensional iff s+ is.

Remark. We use in the proof that: if M ∈ Ks is brimmed and
there are so-called “weakly orthogonal” p1, p2 ∈ S bs

s (M), (but this
is defined later) then s+ is not weakly uni-dimensional. We also use
a special case of independence (see 3.9 and §5) in the proof.

Proof. The “only if” direction holds by 2.10(2). For the other direc-
tion assume that s is not weakly uni-dimensional and we shall prove
this for s+, so let M <s Mℓ for ℓ = 1, 2 be such that

(∗)1 if c ∈ M2\M and p := tps(c,M,M2) ∈ S bs
s (M) then p has

a unique extension in S all
s (M1).

For ℓ = 1, 2 let aℓ ∈ Mℓ\M be such that pℓ := tps(aℓ,M,M1) ∈
S bs

s (M).
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By the categoricity of Ks, every M ′ ∈ Ks is brimmed hence by 1.21
it follows that

(∗)2 if M <s N and b1, b2 ∈ N realizes p1, p2 respectively then
we can find N1, N2, N3 such that M ∪ {b3−ℓ} ⊆ Nℓ <s N3

and tps(bℓ, Nℓ, N3) does not fork over M for ℓ = 1, 2 and
N ≤s N3.

As s is weakly successful and categorical in λ we can find 〈M0
α : α <

λ+〉 which is <s-increasing continuous, M0
α+1 brimmed over M0

α and

M0
α = M . Also for ℓ = 1, 2 we can find 〈M ℓ

α : α < λ+〉 which is <s-
increasing continuous, M ℓ

α+1 brimmed over M ℓ
α and M0

α <s M
ℓ
α and

cℓ ∈ M ℓ
0 and tps(cℓ,M

ℓ
α,M

ℓ
α) does not fork over M0

0 = M and α <

λ+ ⇒ M ℓ
α ≤s Mℓ, (M

0
α,M

ℓ
α, cℓ) ∈ K3,uq

s and pℓ
α := tps(cℓ,M

0
α,M

ℓ
α)

is a non-forking extension of pℓ (why? see later in 4.3, we shall not
use this claim till then and note that Hypothesis 4.1 holds by the
assumption of our claim 2.12).
So M ′

ℓ = ∪{M ℓ
α : α < λ+} satisfies M0 ∪ {cℓ} ⊆M ′

ℓ ≤K[s] Mℓ, hence
without loss of generality Mℓ = M ′

ℓ.
Now for α < λ+ by (∗)2 and 1.21 we have

(∗)3α if N is a <s-extension of M0
α and b1, b2 ∈ N realizes p1

α, p
2
α

respectively then we can find N1, N2, N3 such that N ≤s

Nℓ ≤s N3, bℓ ∈ N3−ℓ, tps(bℓ, Nℓ, N3) does not fork over M0
α

for ℓ = 1, 2.

So if in (∗)3α also N ′
ℓ ≤s N3 and (M0

α, N
′
3−ℓ, aℓ) ∈ K3,uq

s , then

NFs(M
0
α, N3−ℓ, N

′
ℓ, N3), i.e. we can replace Nℓ by N ′

ℓ hence as

(M0
α,M

1
α, c1) ∈ K3,uq

s

(∗)4α for α < λ+, p2
α has a unique extension in S bs

s (M1
α).

Let Mℓ := ∪{M ℓ
α : α < λ+} so Mℓ ∈ Ks(+),M0 ≤s(+) Mℓ for

ℓ = 1, 2. By (∗)4α and 1.10(2) we have

(∗)5 tps(+)(c2,M0,M2) has a unique extension in S all
s(+)(M1).

Still we have to show more. Let b2 ∈M2\M0 be such that tps(b2,M0,
M2) ∈ S bs

s(+)(M0) and let α < λ+ be large enough such that b2 ∈M2
α.

For β ∈ (α, λ+) by 1.18 clearly p+
β = tps(b2,M

0
β ,M

2
β) belongs to
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S bs
s (M0

β) and it is a witness for tps(+)(b2,M0,M2). Now if p+
β has

at least two extensions in S bs
s (M1

β) then as above we easily get

contradiction to (M0
β ,M

2
β , c2) ∈ K3,uq

s .

As this holds for every β ∈ [α, λ+), we get that tps(+)(b2,M0,M2)

has a unique extension in S bs
s(+)(M1). So we are done. �2.12

∗ ∗ ∗

Earlier (say in [Sh 576]) minimal type were central, so let us mention
them:

2.13 Definition. 1) We say s is (a good λ-frame) of minimals when
the following holds: p ∈ S bs

s (M0) implies p is s-minimal which
means: if M0 ≤s M1 ≤s N1,M0 ≤s N0 ≤s N1, a ∈ M1, p =
tps(a,M0,M1) and a /∈ N0 then tps(a,N0, N1) is a non-forking ex-
tension of p (so p ∈ S bs

s (M0)).
Also the triple (M0,M1, a) is called s-minimal when tps(a,M0,M1)
is s-minimal.
2) For an λ-a.e.c. K we say that p ∈ S na

K
(M) is minimal or K-

minimal or ≤K-minimal when for every N,M ≤K N ∈ Kλ, p has at
most one extension in S na

K
(N).

3) For an λ-a.e.c. Kλ let framemin(Kλ) = framemin(K, λ) be defined
as in II.3.7 so S bs

s (M) = {p ∈ SK(M) : p is minimal}.

2.14 Exercise: Assume s is a good λ-frame. We have s is of minimals
iff for every M ∈ Ks every p ∈ S bs

s (M) is K-minimal.

How is weakly uni-dimensional preserved in passing to minimal and
in II§6? First

2.15 Definition/Claim. Let s be a good λ-frame and
t = framemin(Ks).
1) t satisfies all the demands of being a “good λ-frame” from Defini-
tion II.2.1 except possibly axiom(D)(c) “density of basic types”.
2) t is a good λ-frame iff for every M <s N for some c ∈ N\M the
type tps(c,M,N) is minimal.
3) If s is categorical (in λ) and is weakly uni-dimensional then t is
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a good λ-frame almost and even explicitly uni-dimensional; also s is
almost uni-dimensional.
4) Assume s is type-full categorical in λ. If t is a good λ-frame, then
s is weakly uni-dimensional iff t is weakly uni-dimensional.

Proof. 1) As in the proof of II.3.7 or of II.6.36, except the extension
axioms (E)(c),(E)(g). The latter holds because

(a) minimal types has at most one non-algebraic extension which
necessarily is minimal

(b) the existence of disjoint amalgamation proved in II.4.6(5).

We prove Ax(E)(c). So assume that 〈Mα : α ≤ δ+1〉 is ≤s-increasing
continuous, c ∈Mδ+1\Mδ and tpKs

(c,Mα,Mδ+1) is not minimal for
α < δ. By 1.17 applied to s we can find M ℓ

α for α ≤ δ, ℓ ≤ 2 such
that

⊛ (a) M0
α = Mα

(b) NFs(M
ℓ
α,M

ℓ+1
α ,M ℓ

β,M
ℓ+1
β ) when ℓ ∈ {0, 1} and α <

β < δ

(c) M ℓ+1
α+1 is brimmed over M ℓ

α+1 ∪M
ℓ+1
α for α ≤ δ

(d) M ℓ+1
α is brimmed over M ℓ

α for α ≤ δ (actually follows).

So there is an ≤s-embedding f of Mδ+1 into M1
δ over Mδ = Mδ,

so for some α < δ we have f(c) ∈ M1
α+1. As tps(c,Mα+1,Mδ+1) =

tps(f(c),M0
α+1,M

1
α+1) is not a minimal type there are distinct p1, p2 ∈

S na
Ks

(M1
α+1) extending tp(c,Mα,Mδ+1) and let c1, c2 ∈ M2

α+1 real-
izes p1, p2 respectively.
As NFs(M

0
α+1,M

2
α+1,M

0
δ ,M

2
δ ) and tps(c1,M

0
α+1,M

2
α+1) =

tps(c,Mα+1,Mδ+1) = tps(c2,M
0
α+1,M

2
α+1) and the uniqueness of

NF we have tps(c1,Mδ,M
2
δ ) = tps(c,Mδ,Mδ+1) = tps(c2,Mδ,M

2
δ ),

but M1
α+1 ≤s M

1
δ and p1 6= p2 hence

tps(c1,M
1
δ ,M

2
δ+1) 6= tps(c2,M

1
δ ,M

2
δ ).

This shows that also tps(c,Mδ,Mα+1) is not minimal, as required.
2) By part (1) we have to just check Ax(D)(c) which obviously holds.
3) We shall use part (1) freely.

We can show that for some M <s N and c ∈ N\M the type
tps(c,M,N) is minimal (this is proved as in [Sh 576], essentially as
otherwise we contradict M ∈ Ks ⇒ |Ss(M)| ≤ λ proved in II.4.2).
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Assume toward contradiction that p ∈ S na
K[s](M) is minimal and

not unavoidable. Then there is N such that M <s N and N does
not realize p. Now if M ≤s M ′ then by part (1) the type p has
an extension p′ ∈ S na

Ks
(M ′). So M,M ′ are superlimit (as Ks is

categorical). By the proof of 1.21 there is an isomorphism f from
M onto M ′ mapping p to p′, hence there is N ′ such that M ′ <s N

′

and p′ is not realized in N ′; so by the definition of minimal also
p is not realized in N ′. Hence we can choose Mi ∈ Ks which is
<s-increasing continuous in i,M0 = M,M1 = N and Mi omits p.
So M∗ = ∪{Mi : i < λ+} ∈ Ks

λ+ is not saturated. But Ks has
amalgamation and JEP in λ and is stable in λ hence there is a
saturated M ∈ Ks

λ+ . Together we get a contradiction by 2.3(4) to
“s is weakly uni-dimensional”. This proves that M <Kt

N ⇒ every
p ∈ S bs

t (M) is realized in N ; hence t satisfies the density of basic
type axiom (D)(c).

So by part (1), t is a good λ-frame. Also (by categoricity in λ) for
every M ∈ Ks = Kt every p ∈ S bs

t (M) is unavoidable. This means
that t is explictly uni-dimensinal hence is weakly uni-dimensional
and almost uni-dimensional by 2.3(1),(2),(5)).
4) First assume that t is weakly uni-dimensional, note that Kt = Ks

and as s is type-full M ∈ Ks ⇒ S bs
t (M) ⊆ S bs

s (M), so by the
definitions s is weakly uni-dimensional. The other direction holds by
(3). �2.15

2.16 Remark. 1) In 2.15(3),(4), if we know and assume enough about
orthogonality, primes, etc., (which follows by reasonable assump-
tion, e.g. (relying on later sections) s is type-full and ⊥ = ⊥

wk
and

rk:∪S bs
s (M) → Ord a “reasonable” rank function, see on it later in

this section), then we can omit the assumption of categoricity in λ.
[Why? It is enough to prove 2.15(3). We can assume s = sfull is
a good λ-frame see 9.6 and ⊥ = ⊥

wk
. Toward contradiction assume

p ∈ S bs
s (M) is with minimal rk(p), for this M but not unavoid-

able so there is N such that M ≤s N and N omits p. So there is
b ∈ N\M such that q := tps(b,M,N) ∈ S bs

s (M). Now p has a
unique extension in S na

Ks
(M) hence p⊥

wk
q (in any reasonable defini-

tion of ⊥
wk

) hence by a hypothesis p⊥q. So we can choose Mα, aα
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by induction on α < λ+ such that Mα is ≤s-increasing continuous
and tps(aα,Mα,Mα+1) is a non-forking extension of q and p has a
unique extension in S na

Ks
(Mα). Then continue as in the proof of (3).]

2.17 Claim. 1) In II.3.7 (= above in 1.5(1),2.6(1)) we can add: s

is a good λ-frame of minimals.
2) Similarly3 in 2.6(2),(3).
3) In Definition 1.7, if s is a frame of minimals and is successful
then so is s+.
4) If (M0,M1, a) is s-minimal (i.e., see end of Definition 2.13(1))
then:

(i) p = tpKs
(a,M0,M1) is minimal for Ks, (and ∈ S bs

s (M0))

(ii) if M0 ≤s M2 and q ∈ Ss(M2) extends p and is not alge-
braic then q does not fork over M0; hence, in particular,
q ∈ S bs

s (M0).

5) If M0 ≤s M1 and p = tps(b,M0,M1) satisfies clauses (i) and (ii)
from part (4) (or just clause (i)) then (M0,M1, b) is s-minimal.

Proof. Straight (for (2) see II.3.4).

∗ ∗ ∗

We now deal with splitting.

2.18 Definition. Let K be a λ-a.e.c. (so K = Kλ) with amalgama-
tion (in λ) for simplicity.

1) We say that p ∈ S
β
K

(M1) does α-splits or (α,K)-split over A ⊆M1

if there are ā1, ā2 ∈ α(M1) such that:

(α) ā1, ā2 realize the same type over A inside M1 that is,

(∗) for some M2, f we have:

(i) M1 ≤K M2 (so necessarily ‖M1‖ = ‖M2‖ = λ)

(ii) f is an automorphism of M2 over A mapping ā1 to ā2

3this is not just under the assumptions of Chapter I as in 2.6(2), 2.6(3) we
are assuming categoricity in ℵ1,ℵ2 respectively
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(β) if M1 ≤K M2 and c̄ ∈ β(M2) realizes p inside M2 then ā1, ā2

do not realize the same type over A∪ c̄ inside M2, that is for
no M3, f do we have M2 ≤K M3 and f is an automorphism
of M3 over A mapping ā1ˆc̄ to ā2ˆc̄.

3) We may write ā instead of A = Rang(ā) and M0 instead of
A = |M0|. If we omit α (and write split or K-split) we mean “for
some α < λ+”; in fact for now always α < λ+

s .
4) We say K has χ-non-splitting if for every M ∈ Kλ and p ∈ SK(M)
there is A ⊆M, |A| ≤ χ such that p does not split over A (in K).
5) We say s has χ-non-splitting if Ks has basically χ-non-splitting
which means that this holds for p ∈ S bs

s (M).
6) In part (1), (2), (3) though not (4) writing s instead of K means
Ks, and (< κ)-non-splitting has the natural meaning.

Remark. 1) In part (4),(5) we may instead consider ≤s-increasing
chains 〈Mα : α ≤ δ〉, when cf(δ) ≥ χ (or cf(δ) = χ).
2) If in 2.21(1) we add “Mα is (λ, ∗)-brimmed over Mα for α < δ”,
then we do not need 2.19, similarly 2.21(1A).

For the rest of this section (though not always needed)

2.19 Hypothesis. The good λ-frame s is weakly successful, so NFs is
well defined.

2.20 Claim. 1) If NFs(M0,M1,M2,M3) and c ∈M2 then
tps(c,M1,M3) does not split over M0.
2) Similarly for c̄ ∈ α(M2) where α < λ+

s if not said otherwise.

Proof. Straightforward (by uniqueness of NFs). �2.20

We could have noted earlier (actually this holds for a λ-a.e.c. K = Kλ

which has amalgmation and is stable in λ):

2.21 Claim. 1) Assume

(a) δ < λ+
s is a limit ordinal
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(b) 〈Mα : α ≤ δ〉 is ≤s-increasing continuous

(c) p ∈ Ss(Mδ).

Then for some i < δ the type p does not λ-split over Mi for Ks.
1A) If p ∈ S bs

s (N) does not fork oever M ≤s N , then p does not
split over M .
1B) Assume λcf(δ) > λ,Kλ is a λ-a.e.c. with amalgamation, δ < λ+

a limit ordinal 〈Mα : α ≤ δ〉 is ≤K-increasing continuous, and p ∈
SK(Mδ). Then for some i < δ for every j ∈ [i, δ) the type p ↾ Mj

does not split over Mi.
2) Assume K is an a.e.c., LS(K) ≤ λ < µ,Kλ has amalgamation, is
stable in λ and M ∈ Kµ. If p = tp(a,M,N) ∈ SK(M), then for
some M0 ≤K M of cardinality λ, the type p does not λ-split over Mδ.

Proof. 1) By 1.17(1) we can find a <s-increasing continuous sequence
〈Nα : α ≤ δ〉 such that Mα ≤s Nα and Nα+1 is (λ, ∗)-brimmed over
Mα+1 ∪ Nα and NFs(Mα, Nα,Mα+1, Nα+1) for every α < δ. We
know (see 1.17(2)) that Nδ is (λ, ∗)-brimmed over Mδ, hence some
c ∈ Nδ realizes p, so for some i < δ, c ∈ Ni. Easily this i is as
required by 2.20.
1A) Similar to (1).
1B) By building a tree of types as in [Sh 31], [Sh 576].
2) Recalling λ < λcf(λ) this follows by part (1A). �2.21

We define rank (we can define it for any λ-a.e.c. K)

2.22 Definition. rk = rks is defined as follows:

(a) rks(p) is defined if p ∈ Ss(M) for some M ∈ Ks

(b) it is an ordinal or ∞

(c) rks(p) ≥ α iff for every β < α we can find (M1, p1) such that

(α) M ≤s M1

(β) p1 ∈ Ss(M1) is an extension of p which splits over M
and

(γ) rks(p1) ≥ β.

Paper Sh:705, Chapter III



III.§2 UNI-DIMENSIONALITY AND NON-SPLITTING 417

Lastly,

(d) rks(p) = α iff rks(p) ≥ α and rks(p) � α+ 1.

A basic properties of rks is

2.23 Claim. If M ∈ Ks and p ∈ Ss(M), then rks(p) <∞.

Remark. So if s is successful, then by 2.27 below, the claim 2.27
below applies to s+, too, in fact by 2.26 we have p ∈ S bs

s(+)(M) ⇒

rks(+)(p) < α∗ for some α∗ < λ+
s .

Before proving we note that trivially (part (3) see proof of 2.26).

2.24 Exercise. 1) rks(p) is a well defined ordinal or ∞ when p ∈
Ss(M),M ∈ Ks.
2) rk is preserved by isomorphisms.
3) For some ordinal α∗ < (2λ)+ the set {rks(p) : p ∈ S (M),M ∈
Ks} is α∗ or is α∗ ∪ {∞}.

Proof of 2.23. Assume rks(p) = ∞ hence we can choose by induction
on n a triple (Mn, Nn, a),Mn ≤s Nn, a ∈ Nn, rks(tps(a,Mn, Nn)) =
∞ and Mn ≤s Mn+1, Nn ≤s Nn+1 and tps(a,Mn+1, Nn+1) does λ-
split over Mn and p = tps(a,M0, N0) so M0 = M .
(Why? For n = 0 use M0 = M and N, a such that tps(a,M0, N0) =
p. Let the ordinal α∗ be as 2.24(3); if (Mn, Nn, a) has been chosen
then pn = tps(a,Mn, Nn) satisfies rks(pn) = ∞ > α∗ hence by the
definition, there is a pair (Mn+1, pn+1) such that Mn ≤s Mn+1 and
pn+1 ∈ Ss(Mn+1) extends pn, splits over Mn and rks(pn+1) ≥ α∗.
By the choice of α∗ in 2.24(3) we have rks(pn+1) = ∞, and without
loss of generality for some Nn+1 we have: Mn+1 ≤s Nn+1, Nn ≤s

Nn+1 and a realizes pn+1 (we use Ks has amalgamation and the
definition of tps).

Clearly we can find 〈N+
n : n < ω〉 such that Mn ≤s N+

n and
NFs(Mn,Mn+1, N

+
n , N

+
n+1), N

+
n+1 is (λ, ∗)-brimmed overMn+1∪N

+
n

for n < ω. By 1.17 we know that N+
ω = ∪{N+

n : n < ω} is (λ, ∗)-
brimmed over Mω = ∪{Mn : n < ω}, hence we can ≤s-embed Nω =
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∪{Nn : n < ω} into N+
ω over Mω so without loss of generality n <

ω ⇒ Nn ≤s N
+
ω . So for some n < ω we have a ∈ N+

n , and by long
transitivity for NFs we have NFs(Mn, N

+
n ,Mω, N

+
ω ). We get easy

contradiction by 2.20 to tps(a,Mn+1, N
+
n+1) = tps(a,Mn+1, N

+
ω ) =

tps(a,Mn+1, Nn+1) does λ-split over Mn. �2.23

2.25 Remark. An important point is that for any 〈Mi : i ≤ δ〉 which
is ≤s-increasing continuous and pi ∈ Ss(Mi) for i < δ such that
i < j ⇒ pi = pj ↾ Mi in general there is no p ∈ Ss(∪{Mi : i < δ})
such that i < δ ⇒ pi = p ↾ Mi, but for δ = ω there is (essentially
the proof is included in 2.23).

2.26 Claim. 1) If rks(p) is well defined then it is < λ+
s even < αs

for some αs < λ+
s .

2) If M <s N and p ∈ Ss(N) splits over M , then rks(p) < rks(p ↾

M).
3) If NFs(M0,M1,M2,M3) and a ∈M2, then rks(tps(a,M0,M3)) =
rks(tps(a,M1,M3)).
4) If M ≤s N and p ∈ S bs

s (N) does not fork over M then p does
not split over M and rks(p) = rks(p ↾ M).
5) If M1 is brimmed over M0, p ∈ Ss(M1), p ↾ M0 ∈ S bs

s (M0) and
p is not the non-forking extension of p ↾ M0 in Ss(M1) then p does
λs-splits over M0.
6) Assume p ∈ Ss(N),M ≤s N and p ↾ M ∈ S bs

s (M). Then p does
not fork over M iff rks(p) = rks(p ↾ M).

Proof. 1) The set S = {rks(p) : p ∈ Ss(M),M ∈ Ks} does not
contain ∞ by 2.23 and has cardinality ≤ 2λ by preservation by auto-
morphisms and is downward closed by its definition (and specifically
by 2.24(3)) hence is an ordinal (as |S| ≤ 2λ it cannot be the class of
ordinals). By part (3), the set S is equal to {rks(p) : p ∈ S (M),M
is superlimit in Ks}, and, of course, if pℓ ∈ Ss(Mℓ), ℓ = 1, 2,Mℓ ∈
Ks, π an isomorphism from M1 to M2 then it induces a mapping
π̂ from Ss(M1) onto Ss(M2) which preserves rks, see 2.24(2). So
S = {rks(p) : p ∈ Ss(M)}, for any M a superlimit model of Ks, but
|Ss(M)| ≤ λs. As S is an ordinal we are done.
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2) By the definition and part (1) or 2.23.
3) Prove by induction on the ordinal α that

rks(tps(a,M0,M3)) ≥ α⇔ rks(tps(a,M2,M3)) ≥ α

using the NFs-calculus.
4) By (3) or recall 2.20(1) or recall 2.21(1A).
5) We can find a ≤s-increasing continuous sequence 〈M1,α : α ≤ ω〉
such that M1,0 = M0,M1,ω = M1 and M1,n+1 is (λs, ∗)-brimmed
over M1,n. We can also find M0,n which is (λs, ∗)-brimmed over
M0 and NFs(M0,M1,n,M0,n,M1,n+1); note that M0,n does not in-
crease with n. We can also find an ≤s-increasing continuous 〈M2,α :
α ≤ ω〉 such that M1,n ≤s M2,n and M2,n+1 is (λ, ∗)-brimmed over
M1,n+1 ∪ M2,n and NFs(M1,n,M2,n,M1,n+1,M2,n+1) for n < ω.
So by 1.17 the model M2,ω is (λs, ∗)-brimmed over M1,ω = M1

hence some a ∈ M2,ω realizes p hence for some n, a ∈ M2,n. So
necessarily tps(a,M1,n,M2,ω) is not a non-forking extension of p ↾

M0 because tps(a,M1,M2,ω) forks over M0 and M1 = M1,ω and
NFs(M1,n,M2,n,M1,ω,M2,ω). However, tps(a,M0,n,M2,ω) is a non-
forking extension of p ↾ M0 because NFs(M0,M0,n,M2,n,M2,n+1)
follows by transitivity of NFs. Also as M1,n,M0,n both are (λ, ∗)-
brimmed over M0 there is an isomorphism f0 from M1,n onto M0,n

over M0. As M1,ω = M1 is (λ, ∗)-brimmed over M1,n+1 ⊇ M0,n ∪
M1,n and M0,n ≤s M0,n+1,M1,n ≤s M1,n+1 we can extend f0 to an
automorphism of M1 over M0. Let ā0 list the members of M1 (or
M1,n), ā1 = f1(ā0), so ā, ā1 exemplifies the splitting.
6) Should be clear, e.g. we can find Nℓ (ℓ ≤ 3) such that N0 = N ,
NFs(N0, N1, N2, N3), a ∈ N2 realizes p andN1 is (λ, ∗)-brimmed over
N0 = N ; by part (3) we have rks(tp(a,N1, N3)) = rks(tp(a,N0, N3)) =
p and we apply part (5) to M , N1, tp(a,N1, N3)). �2.26

We may like to translate ranks between s and s+.

2.27 Claim. [s is a successful good λ-frame]
Assume N1 <K[s] M1, N1 ∈ Ks,M1 ∈ Ks(+).

1) If p ∈ Ss(+)(M1) does not λ-split over N1 for K
s, then rks(+)(p) =

rks(p ↾ N1).
2) Also the inverse holds.
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3) If p ∈ S bs
s(+)(M1) and N1 ∈ Ks witnesses it then p does not λ-split

over N1 and moreover does not split over N1.
4) If p ∈ Ss(+)(M1) then for some N0 <K[s] M1 of cardinality λ, the
type p does not λ-split over N0 and even does not split over N0.
5) If p ∈ S bs

s(+)(M1) then N1 is a witness for p ∈ S bs
s(+)(M1) iff

p does not λ-split over N1. (“N1 is a witness for p” is defined in
Definition 1.7(1C)).
6) If p ∈ S bs

s(+)(M) is witnessed by N ≤K[s] M and N ∈ Ks then p

does not split over N (for Ks(+)).

Before proving

2.28 Remark. 1) No real harm in assuming “s is type-full” (see
Definition II.6.34 and Claim II.6.36 or Definition 9.2). Also rks(p) is
defined in Ks.
2) Note that 2.27(1),(2) are similar to 2.26(2),(6) when we replace
“N1 ∈ Ks” by N1 ∈ Ks(+) and replace λ-split by split.

Proof of 2.27. 1) We prove by induction α that

⊛α for any such (N1,M1, p) we have
rks(+)(p) ≥ α⇔ rks(p ↾ N1) ≥ α

This clearly suffices.
For α = 0 and α limit there are no problems. So assume α = β + 1.
First assume rks(+)(p) ≥ α hence by the definition of rks(+) we can
find q,M2 such that M1 ≤s(+) M2, q ∈ Ss(+)(M2), q ↾ M1 = p and q

does λ+-split over M1 and rks(+)(q) ≥ β. Clearly if s(+) is weakly
successful then by 2.23 we have rks(+)(q) < rks(+)(p), hence there

is no isomorphism from M1 onto M2 mapping p to q; if s+ is not
necessarily weakly successful still there is no such isomorphism by
part (6) proved below. Also N1 is a witness to p by part (5) and
p ↾ N1 = q ↾ N1 and there is an isomorphism from M1 onto M2

extending idN1
. Hence q is not witnessed by N1 hence by part (5)

the type q does λ-split over N1 hence for some N2 ∈ Ks we have
N1 ≤s N2 ≤K[s] M2 and q ↾ N2 does λ-split over N1 for Ks and
without loss of generality N2 is a witness for q. So by the induction
hypothesis rks(+)(q) ≥ β ⇔ rks(q ↾ N2) ≥ β.
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But by the choice of q, rks(+)(q) ≥ β hence rks(q ↾ N2) ≥ β. By
the definition of rks, as q ↾ N2 does λ-split over N1 for s, we get
rks(p ↾ N1) > rks(q ↾ N2) ≥ β so rks(p ↾ N1) ≥ β + 1 = α as
required.

Second assume rks(p ↾ N1) ≥ α so we can find N2, N3, a such that
N1 ≤s N2 ≤s N3, a ∈ N3, q

− = tps(a,N2, N3) is a λ-splitting (for s)
extension of p− = p ↾ N1. We use NFs amalgamation to lift this to
M2, q.
2) It is enough to prove rks(+)(p) < rks(p ↾ N1) assuming that p
does λ-split over N1. Now we can find N2 ∈ Ks such that N1 ≤s

N2 ≤K[s] M1 and N2 is a witness for p hence by part (5) the type p
does not λ-split over N2 but p ↾ N2 does λ-split over N1. So by part
(1) we have rks(+)(p) = rks(p ↾ N2), and by the definition of rks we
know that rks(p ↾ N2) < rks(p ↾ N1). Together we are done.
3),4) Left to the reader.
5) Using 1.11 similarly to the proof of 2.26(5).
6) So assume γ < λ++ and b̄, c̄ ∈ γM , realize the same type over
N inside M which means here that we can find (M1, f1) such that
M ≤s(∗) M1 and f1 is an automorphism of M1 over N mapping

b̄ to c̄. Let M2 be (λ+, ∗)-brimmed over M1 for Ks(+) (which is a

good λ+-frame). There is isomorphism g2 from M onto M2 over N
and let p2 := g(p), also p2(∈ S bs

s(+)(M2)) is witnessed by N , (and

this implies that p2 does not λ-split over N). Also easily N ′ ≤K[s]

M ∧N ′ ∈ Ks ⇒ p2 ↾ N ′ = p ↾ N ′ hence by 1.11 we have p = p2 ↾ M .
Also f1 can be extended to an automorphism f2 of M2.

Again by 1.11 we know p2 = f2(p2) hence b̄, c̄ = f2(b̄) cannot
witness that p2 split over N hence this holds for p2 ↾ M , as required.
�2.27

§3 primes triples

3.1 Hypothesis. s = (K,
⋃

,S bs) is a good λ-frame.

3.2 Definition. 1) Let K3,pr
λ = K3,pr

s be the family (pr stands for

prime) of triples (M,N, a) ∈ K3,bs
λ = K3,bs

s such that: if (M,N ′, a′) ∈
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K3,bs
λ and tps(a,M,N) = tps(a

′,M,N ′) then there is a ≤s-embedding
f : N → N ′ over M satisfying f(a) = a′. Such triples are called
prime.
2) We say that s = (K,

⋃

,S bs) has primes if (s is a good λ-frame

and)

(a) if M ∈ Kλ and p ∈ S bs
s (M) then for some N, a we have

(M,N, a) ∈ K3,pr
λ and p = tps(a,M,N).

3) We say that (M,N, a) is model-minimal if it belongs to K3,bs
λ and

there is no N ′ such that M <s N
′ <s N and a ∈ N ′ (this notion is

close to “tps(a,M,N) is of depth zero, N prime over M ∪ {a}” in
the context of [Sh:c]).
4) We say s has model-minimality if for every M ∈ Ks and p ∈

S bs
s (M) there is (M,N, a) ∈ K3,bs

λ in which a realizes p and (M,N, a)
is model-minimal (compare with Definition 2.13).
5) We say that s has primes for S ′ where M ∈ Ks ⇒ S ′(M) ⊆
S all

s (M) when for every p ∈ S ′(M),M ∈ Ks we can find N, a such
that M ≤s N, a ∈ N, p = tps(a,M,N) and (M,N, a) belongs to

K
3,pr(∗)
s , which is defined as in part (1) but the triple is not neces-

sarily in K3,bs
s .

3.3 Definition. 1) We say 〈Mi, aj : i ≤ α, j < α〉 is a pr-decomposition
of N over M or of (M,N) if: Mi is ≤s-increasing continuous,

(Mi,Mi+1, ai) ∈ K3,pr
s ,M0 = M and Mα = N ; we may allow

N ∈ Ks

λ+ but i < α ⇒ Mi+1 ∈ Ks and M0 ∈ Ks . If we de-
mand just Mα ≤s N (instead Mα = N) we say “inside N” instead
of “of N”. If we also allow M ≤s M0,Mα ≤s N we say in (M,N).
Instead “over M” we can say M -based. We call α the length of the
decomposition.
2) Similarly for uq (K3,uq

s is from Definition II.5.3) and we define uq-
decomposition and similarly bs-decomposition. We may write just
decomposition (or s-decomposition) instead pr-decomposition.

Existence of uq-decomposition was used extensively in II§6, (see
II.6.9).
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3.4 Observation. Assume s is weakly successful. If N1 ∈ Ks is (λ, ∗)-
brimmed over N0 then we can find a uq-decomposition 〈Mi, aj : i ≤
λ, j < λ〉 of N1 over N0. For any a ∈ N1 such that tps(a,N0, N1) ∈
S bs

s (N0) we can add a0 = a.

Proof. Should be clear. �3.4

3.5 Claim. 1) If (M,N, a) ∈ K3,pr
s and M ∪ {a} ⊆ N ′ ≤s N then

(M,N ′, a) ∈ K3,pr
λ .

2) Similarly for K3,uq
s .

3) If (M,N1, a1) ∈ K3,bs
s is model-minimal and (M,N2, a2) ∈ K3,pr

s

and p = tps(a1,M,N1) = tps(a2,M,N2) then there is an isomor-
phism from N1 onto N2 over M , mapping a1 to a2 (so both triples are
model-minimal and prime and so if (M,N ′, a′) is prime or is model
minimal with tps(a

′,M,N ′) = tps(aℓ,M,Nℓ) for some ℓ = 1, 2 then
for ℓ = 1, 2 there is an isomorphism fℓ from N ′ onto Nℓ mapping a′

to aℓ and being the identity on M).
4) If M0 ≤s M1 ≤s M2, aℓ ∈Mℓ+1 and tps(aℓ,Mℓ,Mℓ+1) ∈ S bs

s (Mℓ)

does not fork over M0 for ℓ = 0, 1 then (M0,M2, a0) /∈ K3,uq
s .

Proof. Easy, e.g.
4) By symmetry, (Ax(E)(f) of II.2.1) there are M+

0 ,M
+
2 ∈ Ks such

thatM0 ≤s M
+
0 ≤s M

+
2 ,M2 ≤s M

+
2 and a1 ∈M+

0 and tps(a0,M
+
0 ,M

+
2 )

does not fork over M0. Now (M0,M2, a0) ≤bs (M+
0 ,M

+
2 , a0) and a1

exemplifies M+
0 ∩M2 6= M0. If s is weakly successful we recall that

non-forking amalgamation is disjoint hence ¬ NFs(M0,M2,M
+
0 ,M

+
2 ).

Now (M0,M2, a0) ∈ K3,uq
s ∧ (M0,M2, a0) ≤bs (M+

0 ,M
+
2 , a0) ⇒

NFs(M0,M2,M
+
0 ,M

+
2 ) by 1.19, contradiction.

In general we can find (M ′
0,M

′
2, f) such that (M0,M2, a0) ≤bs

(M ′
0,M

′
2, a0) and f is an isomorphism from M+

0 onto M ′
0 over M0

and M ′
0 ∩M2 = M0.

(Why? By the existence of disjoint amalgamation; see II.4.6). To-
gether f , (M+

0 ,M
+
2 , a0), (M ′

0,M
′
2, a0) exemplify that (M0,M2, a) /∈

K3,uq
s . �3.5

3.6 Exercise: 1) In 3.5(4) also (M0,M2, a1) /∈ K3,uq
s .

2) Another proof of 3.5(4) is to find M+
0 ≤s M

+
1 ≤s M

+
2 such that
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Mℓ ≤s M
+
ℓ for ℓ = 0, 1, 2 and (M0,M1, a0) ≤bs (M+

0 ,M
+
1 , a0) and

(M1,M2, a1) ≤bs (M+
1 ,M

+
2 , a1).

[Hint: 1) First, find (M ′
0,M

′
1, f

′) such that (M0,M2, a0) ≤bs

(M ′
0,M

′
1, a0) and f ′ is an isomorphism from M1 onto M ′

0 and
tps(f

′(a0),M1,M
′
1) does not fork over M0, exists as tp(a0,M0,M2)

has a non-forking extension p′0 in S bs
s (M1) and the definitions and

use symmetry.
Second, find (M ′′

1 ,M
′′
2 , f

′′) such that (M1,M2, a1) ≤bs (M ′′
1 ,M

′′
2 , a1)

and f ′′ is an isomorphism from M ′
1 onto M ′′

1 over M1 such that
tps(f

′′(f ′(a0)),M2,M
′′
2 ) does not fork over M1, exists for the same

reason. LetM ′′
0 = f ′′(M ′

0) so we have: (M0,M2, a1) ≤bs (M ′′
0 ,M

′′
2 , a1)

and f ′′ ◦ f ′ is an isomorphism from M1 onto M ′′
0 and a0 ∈ M1 ≤s

M2, f
′′ ◦ f ′(a0) /∈ M2 but trivially (M0,M2, a1) ≤bs (M1,M2, a1)

easy contradiction to (M0,M2, a1) ∈ K3,uq
s .]

3.7 Claim. 1) Assume that s has primes; if (M,N, a) ∈ K3,uq
s then

for some N ′ we have M ∪ {a} ⊆ N ′ ≤K N and (M,N ′, a) ∈ K3,pr
s ∩

K3,uq
s ; also K3,pr

s ⊆ K3,uq
s .

2) If (M,N, a) ∈ K3,pr
s and s has existence for K3,uq

s (i.e., s is

weakly successful) or just for some N ′, a′, (M,N ′, a′) ∈ K3,uq
s and

tps(a
′,M,N ′) = tps(a,M,N) then (M,N, a) ∈ K3,uq

s .

Proof. Immediate:
1) By the definition and monotonicity of K3,uq

s .
2) Easy. �3.7

3.8 Claim. 1) If s is non-multi-dimensional and is weakly success-

ful, then all (M,N, a) ∈ K3,pr
s are model minimal.

2) If in addition s has primes, then s has model-minimality.

Proof. For part (2), let M ∈ Ks and p ∈ S bs
s (M). We know (by

Definition 3.2(2)(a)) that there is (M,N2, a) ∈ K3,bs
s which is prime

and p = tps(a,M,N2) and if we know part (1) we are done. For
proving part (1) assume (M,N2, a) is prime. If (M,N2, a) is model-
minimal we are done, otherwise there is N1 satisfying M ∪ {a} ⊆
N1 <s N2. So by non-multi-dimensionality there is b ∈ N2\M such
that tps(b, N1, N2) ∈ S bs

s (N1) does not fork over M hence by 3.5(4)
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we have (M,N2, a) /∈ K3,uq
s (where M,N1, N2, a, b here correspond

to M0,M1,M2, a0, a1 there). This easily contradicts “(M,N2, a) ∈

K3,pr
s ⊆ K3,uq

s ” which holds by 3.7(2).
�3.8

3.9 Claim. [s is a weakly successful (good λ-frame)].
1) Assume M0 ≤s Mℓ ≤s M3, aℓ ∈Mℓ for ℓ = 1, 2 and (M0,Mℓ, aℓ) ∈

K3,uq
s for ℓ = 1, 2.
Then tps(a2,M1,M3) does not fork over M0 iff tp(a1,M2,M3)

does not fork over M0.
2) Assume M0 ≤s Mℓ ≤s M3 and aℓ ∈ Mℓ for ℓ = 1, 2 and

(M0,M1, a1) ∈ K3,uq
s and tps(a2,M0,M2) ∈ S bs

s (M0).
If tps(a1,M2,M3) does not fork over M0 then tps(a2,M1,M3)

does not fork over M0.

Proof. 1) By the symmetry in the claim it is enough to prove the
if part, so assume that tps(a1,M2,M3) does not fork over M0. As

(M0,M1, a1) ∈ K3,uq
s by 1.19 it follows that NFs(M0,M1,M2,M3),

hence by symmetry of NFs (see II.6.25) we have NFs(M0,M2,M1,M2)
which implies that tp(a2,M1,M3) does not fork over M0 by 1.18.
2) The proof is included in the proof of part (1). �3.9

3.10 Exercise: In 3.9 we can omit the assumption “s is weakly successful”.

[Hint: It is enough to prove part (2). By axiom (E)(i) of the defini-
tion of good λ-frame (II.2.1) we can find (M ′

3, f1, f2) such that:

⊛ (a) M0 ≤s M
′
3

(b) fℓ is a ≤s-embedding of Mℓ into M ′
3 over M0 for ℓ = 1, 2

(c) tp(fℓ(aℓ), f3−ℓ(M3−ℓ),M
′
3) does not fork over M0 for

ℓ = 1, 2.

Now use the definition of K3,uq
s .]

3.11 Claim. Assume s has primes.

(1) If M ≤s N then there is a decomposition of N over M (see

Definition 3.3(1),(2)). Moreover, if (M,N, a) ∈ K3,bs
s then

without loss of generality a0 = a.
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(2) If M ≤K[s] N,M ∈ Ks, N ∈ Ks

≤λ+ , then there is a decompo-

sition of N over M

(3) In part (2), if N ∈ Ks

λ+ the length of the decomposition is
λ+

(4) In part (1) there is a decomposition of N over M of length
≤ λ

(5) In part (1) if N is (λ, ∗)-brimmed overM or just ≤s-universal
over M , then there is a decomposition of N over M of length
exactly λ.

Proof. 1) Without loss of generality M 6= N .
We try to choose ai,Mi by induction i < λ+ such that Mi ≤s N is

≤s-increasing continuous, M0 = M and i = j+1 ⇒ (Mj ,Mj+1, aj) ∈

K3,pr
s . Arriving to i, if i = 0 letMi = M . If i is limit letMi = ∪{Mj :

j < i}. If Mi = N we are done, if not then for some ai ∈ N\Mi

we have tps(ai,Mi, N) ∈ S bs
s (Mi) and if i = 0, and a is given we

choose ai = a. If i = j + 1 then Mj, aj are already well defined
and we know (as s has primes and the definition of a prime triple)

that there is Mj+1 ≤s N such that (Mj ,Mj+1, aj) ∈ K3,pr
s ; again if

Mi = N we are done and otherwise we can choose ai ∈ N\Mi such
that tp(ai,Mi, N) ∈ S bs

s (Mi). So by cardinality consideration at
some point we are stuck, i.e., Mi = N so we are done.
2) By part (1) without loss of generality N ∈ Kλ+ . Let 〈bε : ε < λ+〉
list the elements of N . Repeating the proof of part (1), now in
choosing ai when i > 0 we can choose any a ∈ Ii = {a ∈ N\Mi :
tps(a,Mi, N) ∈ S bs

s (Mi)} so we can demand that ai = bε1
&

(∀ε2 < λ+)[bε2
∈ Ii ⇒ ε1 ≤ ε2]. Let Mλ+ = ∪{Mi : i < λ+},

obviously Mλ+ ≤K[s] N . If N = Mλ+ we are done, otherwise let
〈Ni : i < λ+〉 be a ≤K-representation of N . Clearly for some club E
of λ+ we have:

(∗) if δ ∈ E then Nδ ∩Mλ+ = Mδ and Mδ ≤s Nδ and Nδ * M
(and δ is a limit ordinal).

For each such δ for some aδ ∈ Nδ\Mδ and iδ < δ we have
tps(aδ,Mδ, Nδ) ∈ S bs

s (Mδ) does not fork over Miδ
. So by Fodor

lemma we can find a ∈ N\Mλ+ such that S = {i : tps(a,Mi, N) ∈
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S bs
s (Mi)} is stationary, so i ∈ S ⇒ a ∈ Ii, hence (by the “we

can demand” above) we have: if a = bε(∗) then i ∈ S ⇒ ai ∈
{bε : ε < ε(∗)}, so we have a 1-to-1 function from S into [0, ε(∗)),
contradiction. Actually we can get S = [i(∗), λ+).
3)-5) Left to the reader. �3.11

3.12 Claim. 1) [s is a weakly successful (good λ-frame) with primes].

If C ∈ Ks

λ+ is λ+-saturated (above λ of course), M ∈ Ks,M ≤K[s] C

and a1, a2 ∈ C satisfy tps(aℓ,M,C) ∈ S bs
s (M) for ℓ = 1, 2, then the

following are equivalent:

(a) there are M1,M2 from Ks such that NFs(M,M1,M2,C) and
a1 ∈ M1, a2 ∈ M2 (the meaning of NFs above is that for
some M3 ≤K[s] C from Ks we have NFs(M,M1,M2,M3))

(b)ℓ there is Mℓ ≤K[s] C from Ks satisfying M ≤s Mℓ ≤K[s] C

such that aℓ ∈ Mℓ and tps(a3−ℓ,Mℓ,C) does not fork over
M

(c)ℓ if (M,Mℓ, aℓ) ∈ K3,uq
s and Mℓ ≤K[s] C then tps(a3−ℓ,Mℓ,C)

does not fork over M

(d)ℓ if (M,Mℓ, aℓ) ∈ K3,pr
s and Mℓ ≤K[s] C then tps(a3−ℓ,Mℓ,C)

does not fork over M .

2) [s is a (good) weakly successful λ-frame.] Above (a) ⇔ (b)ℓ ⇔
(c)ℓ ⇒ (d)ℓ.

Proof. 1)

(a) ⇒ (b)ℓ by 1.18 (and the symmetry of NF).

(b)ℓ ⇒ (a) + (c)3−ℓ. To prove (c)3−ℓ assume (M,M3−ℓ, a3−ℓ) ∈ K3,uq
s

so only M3−ℓ (and a1, a2) are defined.
As we assume (b)ℓ for someMℓ ≤K C inKs, we have tps(a3−ℓ,Mℓ,C)

does not fork overM and aℓ ∈Mℓ, soM ≤s Mℓ. As tps(aℓ,M,Mℓ) ∈

S bs
s (M) clearly (M,Mℓ, aℓ) ∈ K3,bs

s .
By 1.19 we have NFs(M,Mℓ,M3−ℓ,C) hence by 1.18 the desired con-
clusion of (c)3−ℓ holds. This proves also clause (a) if we note that,

as s is weakly successful, for some (M,N, b) ∈ K3,uq
s , tps(b,M,N) =
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tps(a3−ℓ,M,C), so as C is λ+-saturated without loss of generality
a3−ℓ = b, N ≤K[s] C and we let Mℓ := N .

(c)3−ℓ ⇒ (d)3−ℓ: To prove (d)3−ℓ assume that (M,M3−ℓ, a3−ℓ) ∈
K3,pr

s and M3−ℓ ≤K[s] C; now as “s is weakly successful” Claim 3.7(2)

implies that (M,M3−ℓ, a3−ℓ) ∈ K3,uq
s , and we can apply clause (c)3−ℓ

to get the desired conclusion of (d)3−ℓ.

(d)ℓ ⇒ (b)ℓ: As s has primes there is Mℓ such that (M,Mℓ, aℓ) ∈

K3,pr
s and Mℓ ≤K[s] C so by clause (d)ℓ we have tps(a3−ℓ,Mℓ,C)

does not fork over M . So Mℓ is as required in clause (b)ℓ.
Clearly those implications are enough.
2) The proof is included in the proof of part (1) except (c)ℓ ⇒ (b)ℓ

which is proved like (d)ℓ ⇒ (b)3−ℓ using “weakly successful”. �3.12

§4 Prime existence

We give some easy properties of primes for s+. A major point is
4.9: existence of primes. We also note how various properties reflect
from Ks+ to Ks. How much the “s being good+” rather than just
“s being good” is necessary? It plays a role, e.g., in the end of proof
of 4.3 (and similarly 4.7). If K3,uq

s is closed under union of <∗
bs-

sequences (or less), we could avoid it (in nice cases we shall show it),
see 4.10 below.

4.1 Hypothesis. s = (Ks,
⋃

,S bs) is a successful good+ λ-frame, K =

K[s] as usual.

Recall (Definition II.4.5) and add

4.2 Definition. 1) We let ≤bs be the following two-place relation

(really quasi order) on K3,bs
s : (M,N, a) ≤bs (M ′, N ′, a) if both are

in K3,bs
s ,M ≤s M

′, N ≤s N
′ and tps(a,M

′, N ′) does not fork over
M .
2) ≤∗

bs is the following quasi order onK3,bs
s : (M,N, a) ≤∗

bs (M ′, N ′, a)

if (they are in K3,bs
s and) (M,N, a) ≤bs (M ′, N ′, a) and if they are
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not equal then M ′, N ′ is ≤s-universal over M,N respectively (and
<∗

bs has the obvious meaning).
3) ≤∗∗

bs is defined similarly with brimmed instead of universal.
4) We may write ≤s

bs,≤
∗,s
bs ,≤

∗∗,s
bs to recall the frame.

4.3 Claim. Assume M0 ∈ Ks(+) and p ∈ S bs
s(+)(M0). Then we can

find a, M̄0,M1, M̄1 such that:

(i) M0 ≤s(+) M1

(ii) a ∈M1

(iii) p = tps(+)(a,M0,M1)

(iv) M̄ℓ = 〈Mℓ,α : α < λ+〉 is a ≤K[s]-representation of Mℓ for
ℓ = 0, 1

(v) a ∈M1,0

(vi) (M0,α,M1,α, a) ∈ K3,uq
s for every α < λ+

(vii) Mℓ,i+1 is (λ, ∗)-brimmed over Mℓ,i for i < λ+, ℓ < 2

(viii) (M0,α,M1,α, a) is <s

bs-increasing and even <∗∗
bs -increasing with

α.

4.4 Definition. We say (M0,M1, a) is canonically s+-prime (over
s) if there are M̄0, M̄1 as in claim 4.3 above (see 4.9 below, of course,
this depends on s, but our s is constant).

Proof. Let M0,0 ≤K[s] M0,M0,0 ∈ Ks be such that M0,0 is a witness
for p.

We choose by induction on α < λ+, a pair (M0,α,M1,α) and a
such that:

(a) (M0,α,M1,α, a) ∈ K3,bs
s and tps(a,M0,0,M1,0) is p ↾ M0,0

(b) (M0,β,M1,β, a) ≤bs (M0,α,M1,α, a) for β < α

(c) if α is a limit ordinal then Mℓ,α =
⋃

β<α

Mℓ,β for ℓ = 0, 1

(d) for every even α, if (M0,α,M1,α, a) /∈ K3,uq
s then

¬ NFs(M0,α,M1,α,M0,α+1,M1,α+1)

(e) for odd α,Mℓ,α+1 is brimmed over Mℓ,α for s, for ℓ = 1, 2.

Paper Sh:705, Chapter III



430 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

There is no problem to carry the definition (concerning clause (d),
it follows that we can do it by 4.5 below).

Before we continue recall

4.5 Claim. 1) If (M,N, a) ∈ K3,bs
s then: (M,N, a) /∈ K3,uq

s iff

for some (M ′, N ′, a) ∈ K3,bs
s we have (M,N, a) ≤bs (M ′, N ′, a) and

¬NFs(M,N,M ′, N ′).
2) If (Mℓ, Nℓ, a) <

∗
bs (Mℓ+1, Nℓ+1, a) for ℓ = 0, 1 and (Mℓ, Nℓ, a) ∈

K3,uq
s for ℓ = 0 then (M2, N2, a) is universal over (M0, N0, a) for

≤bs.
3) In part (1) we can add (M,N, a) <∗∗

bs (M ′, N ′, a).

Proof. 1) The implication ⇐ (if) holds by Claim 1.19. The other

direction holds by the definition of K3,uq
s and the uniqueness of NFs-

amalgamation by II§6.
2) Easy (by the definition of ≤∗

bs and ≤bs being transitive).
Assume (M0, N0, a) ≤bs (M ′, N ′, a). Now M1 is ≤s-universal over

M0 (as (M0, N0, a) <
∗
bs (M1, N1, a)) hence there is a ≤s-embedding

f0 of M ′ into M1 over M0. By uniqueness of NFs as (M0, N0, a) ∈
K3,uq

s , there is a pair (N+
1 , f1) such that: N1 ≤s N+

1 , f1 is a ≤s-
embedding of N ′ into N+

1 extending f0 ∪ idN0
. As (M1, N1, a) <

∗
bs

(M1, N2, a) we know that N2 is ≤s-universal over N1 so as N1 ≤s N
+

there is a ≤s-embedding f2 of N+ into N2 over N . Now f2 ◦ f1 is a
≤s-embedding as required.
3) Should be clear. �4.5

Continuation of the proof of 4.3

By clause (e), necessarily M ′
ℓ :=

⋃

α<λ+

Mℓ,α ∈ Ks

λ+ are satu-

rated for ℓ = 0, 1. Also M ′
0 ≤K[s] M

′
1 and by clause (b) we have

tps(+)(a,M
′
0,M

′
1) ∈ S bs

s(+)(M
′
0) is a stationarization of p ↾ M0,0,

i.e., is witnessed by it. Now M ′
0,M0 ∈ Ks(+) are saturated and

<K[s]-extend M0,0 which ∈ Ks hence clearly there is an isomorphism

h from M0 onto M ′
0 over M0,0. So h(p) ∈ S bs

s(+)(M
′
0) does not

fork over M0,0 and h(p) ↾ M0,0 = p ↾ M0,0 = tps(a,M0,0,M1,0).
Now also tps(a,M

′
0,M

′
1) has those properties hence by 1.10 we have
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h(p) = tps(a,M
′
0,M

′′
0 ). So by renaming without loss of generality

M ′
0 = M0 and tps(a,M

′
0,M

′
1) = p and by 1.6(1), clause (b) we have

M0 ≤∗
λ+ M1, so by its definition (see II.7.2) for some club E of λ+

we have α ∈ E & α < β ∈ E ⇒ NFs(M0,α,M1,α,M0,β,M1,β),
hence by monotonicity of NFs and clause (d) of the construction we

have α ∈ E ⇒ (M0,α,M1,α, a) ∈ K3,uq
λ . By renaming we get the

conclusion. �4.3

4.6 Conclusion: 1) K3,uq
s is <∗

bs-dense and <∗∗
bs -dense in K3,bs

s .
2) If (M1, N1, a) <

∗
bs (M2, N2, a) ≤bs (M3, N3, a) then (M1, N1, a) <

∗
bs

(M3, N3, a).
3) If (M1, N1, a) ≤bs (M2, N2, a) <

∗
bs (M3, N3, a) then (M1, N1, a) <

∗
bs

(M3, N3, a).
4) If (M1, N1, a) ≤bs (M2, N2, a) <

∗∗
bs (M3, N3, a) then (M1, N1, a) <

∗∗
bs

(M3, N3, a).
5) If (M1, N1, a) <

∗∗
bs (M2, N2, a) then (M1, N1, a) <

∗
bs (M2, N2, a).

If (M1, N1, a) <
∗
bs (M2, N2, a) then (M1, N1, a) <bs (M1, N1, a).

Proof. 1) By the proof of 4.3.
2),3),4),5) Immediate. �4.6

The point of the following claim is in clause (iv).

4.7 Claim. 1) Assume β < λ+, 〈Mi : i ≤ β〉 is ≤s-increasing con-

tinuous and (Mi,Mi+1, ai) ∈ K3,bs
s for i < β and M0 ≤s M

+. Then
we can find 〈Ni : i ≤ β〉 such that:

(i) Mi ≤s Ni

(ii) Ni is ≤s-increasing continuous

(iii) tps(ai, Ni, Ni+1) does not fork over Mi

(iv) (Ni, Ni+1, ai) ∈ K3,uq
s

(v) M+ can be ≤s-embedded into N0 over M0

(vi) Ni is (λ, ∗)-brimmed over Mi for i ≤ β

2) Assume further NFs(M0,M
+,Mβ,M

∗), so in particular M+ =
M0,Mβ ≤s M

∗, then we can replace (v) by

(v)+ M+ ≤s N0 and M∗ ≤s Nβ.
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3) If in part (1) we have (Mi,Mi+1, ai) ∈ K3,uq
s for i < β then i <

j ≤ β ⇒ NFs(Mi, Ni,Mj, Nj) so in particular NFs(M0, N0,Mβ, Nβ)
so NFs(M0,M

+,Mβ, Nβ).

Proof. 1) We try to choose by induction on ζ < λ+ a sequence

M̄ ζ = 〈M ζ
i : i ≤ β〉 such that

⊛ (a) M̄ ζ is ≤s-increasing continuous

(b) M̄0 = 〈Mi : i ≤ β〉

(c) for each i ≤ β the sequence 〈M ε
i : ε ≤ ζ〉 is ≤s-

increasing continuous

(d) tps(ai,M
ζ
i ,M

ζ
i+1) belongs to S bs

s (M ζ
i ) and does not

fork over M0
i

(e) if ζ = 1 then M+ can be ≤s-embedded into M ζ
0 over

M0 = M0
0

(f) if ζ = ε + 1 and ε limit, then for some i < β we have

¬ NFs(M
ε
i ,M

ε
i+1,M

ζ
i ,M

ζ
i+1)

(g) if ζ = ε + 2 then M ζ
i is (λ, ∗)-brimmed over M ε+1

i for
i ≤ β

(h) if ζ = ε+2 and i = j+1 ≤ β then M ζ
i is (λ, ∗)-brimmed

over M ζ
j ∪M ε+1

i .

There is no problem to define for ζ = 0, ζ = 1 and ζ limit. For

ζ = ε+1, ε not limit straightforward: we choose M ζ
i by induction on

i ≤ β such that NFs(M
ε
i ,M

ε
i+1,M

ζ
i ,M

ζ
i+1) and M ζ

i+1 ∩M
ε
β = M ε

i+1

for i < β and M ζ
i+1 is brimmed over M ε

i+1 ∪M
ζ
i , recalling 1.17. So

assume ε is a limit ordinal, if i < β ⇒ (M ε
i ,M

ε
i+1, ai) ∈ K3,uq

s then

we are done: let 〈Ni : i ≤ β〉 = 〈M ζ
i : i ≤ β〉, obviously clause (iv)

holds and clause (vi) holds by clause (g).

So assume i < β and (M ε
i ,M

ε
i+1, ai) /∈ K3,uq

s , but of course

(M ε
j ,M

ε
j , ai) ∈ K3,bs

s for j ≤ β. Now we choose 〈M ζ
j : j ≤ i〉 as

in the case of ζ = ε′ + 2 and M ζ
i ∩ M ε

β = M ε
i . As above, M ζ

i

is (λ, ∗)-brimmed over M ε
i . By 4.5(3) there is (M ′, N ′) such that

(M ε
i ,M

ε
i+1, ai) <

∗∗
bs (M ′, N ′, ai) and ¬NF(M ε

i ,M
ε
i+1,M

′, N ′). But
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M ′,M ζ
i are both (λ, ∗)-brimmed over M ε

i , so without loss of gener-

ality M ′ = M ζ
i and let M ζ

i+1 := N ′ and without loss of generality

M ζ
i+1 ∩M

ε
β = M ε

i+1.

Lastly, we choose 〈M ζ
j : j ∈ (i+ 1, β]〉 as in the case ζ = ε′ + 2.

Next assume that we succeed to carry the induction for all ζ < λ+.
As s is successful and good+ by 1.8(1), for each i < β for some club

Ei of λ+, for every ε < ζ from Ei we have NFs(M
ε
i ,M

ε
i+1,M

ζ
i ,M

ζ
i+1).

Let ε < ζ be successive members of E = ∩{Ei : i < β}, so by mono-

tonicity of non-forking we have i < β ⇒ NFs(M
ε
i ,M

ε
i+1,M

ζ
i ,M

ζ
i+1),

contradiction to the construction.
2) Repeat the construction in (1) but in clause (f) this is demanded
only if possible. So obviously we can carry the construction. Let f
be a ≤s-embedding of M+ into M0

0,1, this guarantees clause (e).

Now Mi := ∪{M ζ
i : ζ < λ+} is saturated for i ≤ β so we can

find a ≤s-embedding f of M∗ into Nβ over Mβ and by uniqueness

of NF. Without loss of generality g extends f hence f is into M
ζ(1)
β

for some ζ(1) < λ+. In the end of the proof of (1) demand ζ > ζ(1).
(Alternatively use clause (g) for i = β).
3) Easy. �4.7

4.8 Exercise: Even if in 4.7 we omit the assumption 〈Mi : i < β〉 is
continuous, we can still get the result.

4.9 Claim. (Prime Existence) 1) If M ∈ Ks(+), p ∈ S bs
s(+)(M),

then there are N ∈ Ks(+) and an element a satisfying (M,N, a) ∈

K3,pr
s(+) and p = tps(+)(a,M,N). This means that if M ≤K N ′ ∈

Ks(+) and a′ ∈ N ′ realizes p then there is a ≤K-embedding f of N
into N ′ such that f ↾ M = idM , f(a) = a′.
2) In fact if (M,N, a) is like (M0,M1, a) of 4.3 then this holds, i.e.,
if (M,N, a) is canonically s+-prime then it is prime for s+.

Proof of 4.9. Let M0 = M and let M̄0,M1, M̄1, a be as in 4.3 and
let N = M1 and we shall prove that N, a are as required. So let
M ≤s(+) M

′ ∈ Ks(+) and a′ ∈M ′ be such that tps(+)(a
′,M,M ′) =

p. We choose by induction on α < λ+ a ≤K-embedding fα of M1,α

into M ′, such that fα(a) = a′, fα is increasing continuous and fα ↾
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M0,α ≡ idM0,α
. For α = 0, as M ′ is saturated in Ks

λ+ (above λ)
and a′ realizes in M ′ the type p ↾ M0,0 this should be clear. For α
limit take the unions. For α = β + 1, choose a model Nα ≤K[s] M

′

from Ks which includes fβ(M1,β) ∪ M0,β+1 and is (λ, ∗)-brimmed
for s over this set; there is such Nα as M ′ is saturated above λ.
So as (M0,β,M1,β, a) ∈ K3,uq

λ and tps(a,M0,β+1,M
′) does not fork

over M0,β, we have NFs(M0,β, fβ(M1,β),M0,β+1, Nα) hence by the

uniqueness of NFs (i.e., the Definition of K3,uq
s ) we can extend fβ ∪

idM0,α
to a ≤K-embedding fα of M1,α into Nα.

So having carried the induction, f = ∪{fα : α < λ+} is a ≤K[s]-

embedding of M1 =
⋃

α<λ+

M1,α into M ′ over M = M0 mapping a to

a′, so we are done. �4.9

Closely related to claim 4.9 is:

4.10 Claim. (K3,uq
s ,≤s

bs) is λ+-strategically closed inside (K3,bs
s ,≤s

bs).

Moreover, (K3,uq
s , <∗

bs) is λ+-closed, i.e., if δ < λ+ is a limit ordi-

nal, 〈(N0,i, N1,i, a) : i < δ〉 is ≤bs-increasing continuous in K3,uq
s and

N0,i+1, N1,i+1 is (λ, ∗)-brimmed or just universal over N0,i, N1,i re-
spectively for each i < δ (equivalently, the sequence is ≤∗

bs-increasing
continuous),

then (
⋃

i<δ

N0,i

⋃

i<δ

N1,i, a) ∈ K3,uq
s is <∗∗

bs -above (N0,j, N1,j, a) for ev-

ery j < δ.

Recalling

4.11 Definition. Let I, J be partial orders and I ⊆ J . We say I
is δ-strategically closed inside J if in the following game the COM
player has a winning strategy. A play last δ moves, for α < δ the
COM player chooses sα ∈ I such that β < α ⇒ tβ ≤J sα and if α
is a limit ordinal, sα is the ≤I -lub of 〈sβ : β < α〉 in I and then
the player INC (for incomplete) chooses tα such that sα ≤J tα. The
player COM wins the play if for every α < δ he has a legal move;
otherwise, the player INC wins the play.
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Proof of 4.10. It suffices to prove the second sentence by 4.6(1). Let
〈(M0,i,M1,i, a) : i < λ+〉 be as constructed in 4.3 such that i = 0 ⇒
(M0,i,M1,i, a) = (N0,i, N1,i, a). Recall that 〈(N0,i, N1,i, a) : i < δ〉 is
<∗

bs-increasing.
We now by induction on i choose fi, αi such that:

(a) fi is an ≤s-embedding of N1,i into M1,αi

(b) fi increasing continuous in i

(c) fi maps N0,i into M0,αi

(d) αi is increasing continuous

(e) α0 = 0 and f0 is the identity

(f) fi(N1,i) ∩
⋃

γ<λ+

M0,γ = fi(N0,i)

(g) N0,αi
≤s fi+1(M0,i+1) and N1,αi

≤s fi+1(M1,i+1).

We may add

(h) αi < i+ ω and αi = i for i limit.

Note that clause (f) follows automatically as (N0,i, N1,i, a) ∈ K3,uq
λ

implies αi ≤ j ⇒ NF(M0,i, fi(Nj,i),M0,j,M1,j) but non-forking
amalgamation of models is disjoint which in our case means that
i < j ⇒ M0,j ∩ fi(N1,i) = M0,i. Also for limit i, clearly fi(N0,i) =
M0,αi

and fi(N1,i) = M1,αi
and αi = i.

During the induction the case i = 0 is trivial, the case i limit is
easy and the case i = j + 1 is done using 4.5(2).

Lastly fi maps (
⋃

i<δ

N0,i,
⋃

i<δ

N1,δ, a) isomorphically into (M0,αδ
,

M1,αδ
, a) and maps

⋃

i<δ

Nℓ,i ontoMℓ,αδ
(see clause (g), i.e., a previous

paragraph). The latter belongs toK3,uq
λ , so (actually only fε(N1,δ) ⊆

M1,αδ
is needed by 1.19 monotonicity for K3,uq

s ) we are done. �4.10

4.12 Claim. Assume (∗)M̄ holds (see below) and p ∈ S bs
s (M0) then

we can find N̄ and a such that (∗)N̄,M̄ holds, where:

(∗)N̄,M̄,a ℓg(N̄) = ℓg(M̄),Mi ≤s Ni are from Ks, N̄ is <s-increasing
continuous, a ∈ N0, tps(a,Mi, Ni) is a non-forking extension
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of p and (Mi, Ni, a) ∈ K3,uq
s for every i < ℓg(M̄) and Ni+1

is (λ, ∗)-brimmed over Ni when i + 1 < ℓg(M̄) and N0 is
(λ, ∗)-brimmed; (we can even add N0 is (λ, ∗)-brimmed over
M0 and Ni+1 is (λ, ∗)-brimmed over Mi+1 ∪Ni)

(∗)M̄ M̄ = 〈Mi : i < α〉 is ≤s-increasing continuous, α ≤ λ+,M0

is (λ, ∗)-brimmed and Mi+1 is (λ, ∗)-brimmed over Mi for
any i such that i+ 1 < α (hence [i < j < α ⇒ Mj is (λ, ∗)-
brimmed over Mi] and if α < λ+ is limit, then [i < α ⇒
∪{Mj : j < α} is (λ, ∗)-brimmed over Mi]).

Proof. By 4.10. �4.12

In 4.13(1) below we prove the inverse of 4.9.
In 4.13(2) below we show how relevant situations in s+ reflects to s

(some of its clauses repeat 1.10).

4.13 Claim. 1) If (M0,M1, a) ∈ K3,pr
s(+) and M̄ ℓ = 〈M ℓ

α : α < λ〉 is

a ≤s-representation of Mℓ for ℓ = 0, 1 then for some club E of λ+

we have

(∗) if α ∈ E then (M0
α,M

1
α, a) ∈ K3,uq

s .

2) Assume M0 ≤s(+) Mℓ ≤s(+) M3 and aℓ ∈Mℓ and pℓ =

tps(+)(aℓ,M0,Mℓ) for ℓ = 1, 2 and 〈M ℓ
α : α < λ+〉 be a ≤s-represen-

tation of Mℓ for ℓ ≤ 3. Then for some club E of λ+ for every δ ∈ E
we have

(i) for ℓ = 1, 2 if pℓ ∈ S bs
s(+)(M0) then pℓ,δ = tps(aℓ,M

0
δ ,Mℓ,δ) ∈

S bs
s (M0

δ ) and M ℓ
δ (and pℓ,δ) are witnesses for pℓ

(ii) if (M0,Mℓ, aℓ) is canonically prime and tps(+)(aℓ,M3−ℓ,M3)
is an s+-non-forking extension of pℓ for ℓ ∈ {1, 2}
then tps(aℓ,M

3−ℓ
δ ,M3

δ ) is an s-non-forking extension of

tps(aℓ,M
0
δ ,M

ℓ
δ ) (hence of tps(aℓ,M

0
min(E),M

ℓ
min(E))

(iii) if α < δ ∈ E then M ℓ
δ is (λ, ∗)-brimmed over M ℓ

α for ℓ < 4.

Remark. In 4.13(2), if we know enough on s we can add

(iv) if (M0,Mℓ, aℓ) ∈ K3,uq
s(+) then (M0

δ ,M
ℓ
δ , aℓ) ∈ K3,uq

s .
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This can be proved after we analyze K3,uq
s , see later.

Proof. 1) We can findM2, a2 such that (M0,M2, a2) ∈ K3,pr
s(+) and this

triple is canonically s+-prime, i.e., is as in 4.3 (with M0,M2, a2 here
standing for M0,M1, a there, of course) and tps(+)(a2,M0,M2) =
tps(+)(a,M0,M1). As (M0,M1, a) is a prime triple there is a ≤s(+)-
embedding of M1 into M2 over M0 mapping a to a2 so without loss
of generality a2 = a & M1 ≤s(+) M2. Let M̄ ℓ = 〈M ℓ

α : α <
λ+〉 be a ≤s-representation of Mℓ, for ℓ < 3 and E a thin enough
club of λ+. As Mℓ ≤s(+) Mℓ+1, for any α < β from E we have

NFs(M
ℓ
α,M

ℓ+1
α ,M ℓ

β,M
ℓ+1
β ) for ℓ = 0, 1 and by the choice of M2 for

any α from E we have (M0
α,M

2
α, a) ∈ K3,uq

s . By monotonicity of

K3,uq
s , i.e., 3.5(2) as α ∈ E ⇒ M0

α ∪ {a} ⊆ M1
α ≤K[s] M

2
α we get

α ∈ E ⇒ (M0
α,M

1
α, a) ∈ K3,uq

s as required.
2) Straightforward. (For (iii) recall that Mℓ ∈ Ks

λ+ is saturated
(above λ) for s).

�4.13

4.14 Claim. 1) (M,N, a) ∈ K3,pr
s(+) iff the triple (M,N, a) is canon-

ically s+-prime.
2) Uniqueness: if (M,Nℓ, aℓ) ∈ K3,pr

s(+) and tps(+)(a1,M,N1) =

tps(+)(a2,M,N2) then there is an isomorphism f from N1 onto N2

over M satisfying f(a1) = a2.

Proof. 1) The “if” direction by 4.9 and the “only if” direction by
4.13(1) and Definition 4.4.
2) By part (1), we know that (M,Nℓ, aℓ) is canonically s+-prime.
Now we build the isomorphism by hence and forth as in the proof of
4.9. �4.1

It is good to know that also NFs(+) reflects down (when we have it).

4.15 Claim. Assume that also s
+ is weakly successful so NFs(+) is

well defined. If Mℓ ∈ Ks(+) for ℓ = 0, 1, 2, 3 and NFs(+)(M0,M1,M2,

M3) and M̄ℓ = 〈Mℓ,α : α < λ+〉 does ≤s-represent Mℓ for ℓ < 4,
then for a club of δ < λ+ we have NFs(M0,δ,M1,δ,M2,δ,M3,δ).
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Proof. Without loss of generality Mℓ is (λ+, ∗)-brimmed over M0 for
s+ for ℓ = 1, 2 and M3 is (λ+, ∗)-brimmed over M1 ∪M2 (by density
of (λ+, ∗)-brimmed extension recalling s+ is a weakly successful good
λ+-frame, and the existence property of NFs(+) and the monotonicity
of NFs(+) and NFs).

Let 〈N1,α, a
1
α : α < λ+〉 be as in 3.11 applied to s(+) for (M0,M1)

(the length being λ+ is somewhat more transparent and is allowed as
Mℓ is (λ+, ∗)-brimmed over M0 for s+ by 3.11(5)). As M3 is (λ+, ∗)-
brimmed over M1 ∪M2, chasing arrows (by the definition of primes
and properties of NFs(+)) without loss of generality there is a se-
quence 〈N3,α : α ≤ λ+〉 which is ≤s(+)-increasing continuous, N3,0 =

M2, N3,λ+ ≤s(+) M3, N3,α∩M1 = N1,α and (N1,α, N1,α+1, a
1
α) ≤

s(+)
bs

(N3,α, N3,α+1, a
1
α); see 1.17(3). For each α ≤ λ+, ℓ = 1, 3 let 〈Nℓ,α,i :

i < λ+〉 be a sequence which ≤s-represent Nℓ,α. For ℓ = 1, 3
and α < λ+ let Eℓ,α be a club of λ+ such that i ∈ Eℓ,α implies

(Nℓ,α,i, Nℓ,α+1,i, a
1
α) ∈ K3,uq

s and tps(aα, Nℓ,α,i, N1,α+1,i) does not
fork over Nℓ,Min(E1,α); note that Eℓ,α exists by 4.13(1).

Let E = {δ < λ+ : δ limit, δ ∈ Eℓ,α for α < δ, ℓ = 1, 3 and
Mm,δ ∩ Mℓ = Mℓ,δ for ℓ < m ≤ 3, (ℓ,m) 6= (1, 2) and M1,δ =
⋃

α<δ

N1,α,δ =
⋃

α<δ

N1,α,α,M3,δ ∩ N3,λ+ = N3,λ+,δ =
⋃

α<δ

N3,α,δ =

⋃

α<δ

N3,α,α,M0,δ = N1,0,δ and M2,δ = N3,0,δ}. Now let δ ∈ E. The

sequences 〈N1,α,δ : α < δ〉, 〈N3,α,δ : α < δ〉 are ≤s-increasing con-
tinuous, also for α < δ, (N1,α, N1,α+1,δ, aα) ≤s

bs (N3,α,δ, N3,α+1,δ, aα)

are both in K3,bs
s and (N1,α,δ, N1,α+1,δ, aα) belongs to K3,uq

s hence
NFs(N1,α,δ, N3,α,δ, N1,α+1,δ, N3,α+1,δ). Without loss of generality,
for δ ∈ E we have N1,δ,δ = ∪{N1,α,δ : α < δ} and N3,δ,δ = ∪{N3,α,δ :
α < δ} and N3,λ+,δ = N3,δ,δ so N1,δ = M1,δ and N3,δ,δ = N3,λ+,δ ≤s

M3,δ.

By long transivity for NFs we get NFs(N1,0,δ, N3,0,δ, N1,δ,δ, N3,δ,δ)
which means NFs(M0,δ,M2,δ,M1,δ, N3,λ+,δ) hence by monotonicity
NFs(M0,δ,M2,δ,M1,δ,M3,δ).

By symmetry of NFs we are done. �4.15

We can summarize what we can say so far of the n-successors of s.
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4.16 Claim. Assume s is good+ and n-successful and n > 0.
1) s+n is a good+ λ+n-frame.

2) S bs
s(+n) = S bs

s<λ+n>
↾ Ks

+n

λ+n (see 0.4, the S bs
s<λ+n>

is from II§2

and is {p ∈ S bs
s (M) : M ∈ Ks

+n

λ+n}).

3) If M ∈ Ks
+n

λ+n and p ∈ S bs
s(+n)(M) then for some (M,N, a) ∈

K3,pr
λ+n [s+n] we have tps(a,M,N) = p.

4) If (M,N, a) ∈ K3,pr
λ+n [s+n] then (M,N, a) ∈ K3,uq

λ+n [s+n] provided
that s+n is weakly successful.

5) If M ≤K N1 ≤K N2 are in Ks
+n

λ+n and a ∈ N1 then (M,N2, a) ∈

K3,uq
λ+n [s+n] ⇒ (M,N1, a) ∈ K3,uq

λ+n [s+n] and (M,N2, a) ∈ K3,pr
λ+n [s+n] ⇒

(M,N1, a) ∈ K3,pr
λ+n [s+n].

6) Assume n = m + 1, and (M0,M1, a) ∈ K3,bs
λ+n [s+n] and M̄ℓ =

〈Mℓ,α : α < λ+n〉 a ≤K-representation of Mℓ for ℓ = 1, 2. Then:

(∗) (M0,M1, a) ∈ K3,pr
λ+n [s+n] iff for some club E of λ+ we have:

for α < β in E, (M0,α,M1,α, a) ∈ K3,uq
s [s+m] and

(M0,α,M1,α, a) <
∗,s+m

bs (M0,β,M1,β, a), see 4.2.

Proof. Straight; all by induction on n; part (3) by 4.9 + 4.3, part
(4) by 3.7, part (5) by 3.5(1),3.5(2), part (6) by 4.13(1) + the proof
of 4.9, see also 4.17(2). �4.16

4.17 Remark. 1) If we assume s0 is uni-dimensional (see §2), life

is easier: (M,N, a) ∈ K3,pr
λ+n implies model-minimality, see 3.8. On

categoricity see 4.18 below.

2) For 4.16(6), note that M1 is saturated (in Ks
+(n−1)

above λ+(n−1)).

Now if (M0,M2, b) ∈ K3,bs
λ+n [s+n] and

tps(+n)(b,M0,M2) = tps(+n)(a,M0,M1) then by induction on α ∈
E we can choose an ≤K[s]-embedding fα of M1,α into M2,α, increas-
ing continuous with α, mapping a to b. For α = min(E) use the
saturation, for α ∈ E the successor in E of β use (M1,α,M2,α, a) ∈

K3,uq
s(+(n−1))+ saturation.
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4.18 Claim. If s is an n-successful good+ λ-frame and weakly uni-
dimensional and categorical in λ, then

(i) Ks(+n) = Ks

≥λ+n

(ii) s(+n) is weakly uni-dimensional, and categorical in λ+n.

Proof. By 4.16 and 2.10 and 2.3(4). �4.18

∗ ∗ ∗

4.19 Discussion: By the above in the cases we construct good λ-
frames s in II.3.7, s is essentially t+, t is a λ-frame which is very
closed to be a good λ-frame, also by [Sh 576] we know that t is
successful. Now t is good+ by the definition of minimal types hence
we can deduce that s has primes; we cannot apply 4.9 itself but t is
close enough to being good+ and successful that s itself has primes.
In another one of the cases of 1.5(1) there are primes for different
reason: ℵ0 is easier. Alternatively, see Chapter VII.

4.20 Claim. 1) If s is as in II.3.7, then s has primes.
2) If s is as in II.3.5, i.e. Case 3 of 1.5(1), then s has primes.

Proof. 1) Like the proof of 4.9.
2) Using stability in ℵ0 we can construct primes directly. �4.20

Concerning 4.20:
4.21 Example: We define

(a) let 〈Vn : n < ω〉 be a (strictly) decreasing sequence of vector
spaces over the rational field, each of dimension ℵ0, with
intersection {0}

(b) let τ = {R}∪{Pt : t ∈ V0} where R and each Pt is a two-place
relation

(c) K is the class of τ -models M such that

(α) RM is an equivalence relation

(β) PM
t ⊆ RM
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(γ) for each RM -equivalence class A there are n < ω and
one to one function h from Vn onto A such that for
every t ∈ V0

PM
t ∩(A×A) = {(h(s1), h(s2)) : s1, s2 ∈ Vn, Vn |= “t = s1−s2”}

(d) ≤K is the partial order of ⊆ on K.

A) Prove that K := (K,≤K) is an a.e.c.
B) K is PCℵ0

, is stable in ℵ0, has amalgamation.
C) K is not categorical in ℵ0.
D) If M ≤K Nℓ, aℓ ∈ Nℓ is not RNℓ -equivalent to any b ∈ M then
tp(a1,M,N1) = tp(a2,M,N), call this type pM .
E) If M ≤K N and PM = tp(a,M,N) then (M,N, a) ∈ K3,pr.
F) Change to get categoricity.

4.22 Example: Assume Ks is the class of structures of the form
(A, E ) such that |A| = λs, E an equivalence relation on A,≤s=⊆↾

Ks,S
bs
s = S na

s and tps(a,M1, N) does not fork over M0 ≤s M1 iff
a ∈ N\M1 and M1 ∩ (a/E N ) 6= ∅ ⇒ M0 ∩ (a/E N ) 6= ∅. Assume
M ⊆ N are from Ks, a ∈ N\M and N\M = a/E N so a/E N is
disjoint to M , then

(a) (M,N, a) ∈ K3,bs
s ,

(b) if a/E N is not a singleton then (M,N, a) /∈ K3,pr
s .

If we like an elementary class we let λs = ℵ0 and restrict ourselves
to Ks

′

= {M ∈ Ks : M/E M is infinite and a ∈M ⇒ |a/E M | ≥ ℵ0},

then above (M,N, a) ∈ K3,pr
s ⇔ |a/E N | = ℵ0.

§5 Independence

Here we make a real step forward: independence (of set of elements
realizing basic types) can be defined and proved to be as required.
In an earlier version we have used existence of primes but eventually
eliminate it. Note that good+ is used in proving 5.5(2)(6); we can
weaken 5.1, see [Sh:F735].
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5.1 Hypothesis.

(a) s is a successful good+ λ-frame

or at least

(a)− s is a weakly successful good λ-frame and 4.7 holds.

5.2 Definition. Let M ≤s N (hence from Ks = Ks

λ).
1) Let IM,N = {a ∈ N : tps(a,M,N) ∈ S bs

s (M)}.
2) We say that J is independent in (M,A,N) if (∗) below holds;
when A = N ′ we may write N ′ instead of A; if N is understood from
the context we may write “over (M,A)”; if A = M we may omit it
and then we say “in (M,N)” or “for (M,N)” or “over M”; where:

(∗) J ⊆ IM,N ,M ≤s N,M ⊆ A ⊆ N and we can find a witness
〈Mi, aj : i ≤ α, j < α〉 and N+ which means:

(a) 〈Mi : i ≤ α〉 is ≤K-increasing continuous4

(b) M ∪A ⊆Mi ≤s N
+, (usually M ⊆ A) and N ≤s N

+

(c) ai ∈ Mi+1\Mi, (if we forget to mention Mα we may
stipulate Mα = N+)

(d) tps(ai,Mi,Mi+1) does not fork over M ,

(e) J = {ai : i < α}.

The notion independent indicates we expect various properties, like
finite character, so we start to prove them.

5.3 Claim. Assume that NFs(M0,M1,M2,M3) and J ⊆M2. Then
J is independent in (M0,M2) iff J is independent in (M0,M1,M3).

Proof. The “if” implication is trivial. The “only if” implication is
easy by 1.17(4).

�6.16

4note that omitting “continuous” makes no difference in the present context
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5.4 Theorem. Assume M ≤s N so are from Ks and J ⊆ IM,N .
1) The following are equivalent:

(∗)0 every finite J′ ⊆ J is independent in (M,N)

(∗)1 J is independent in (M,N)

(∗)2 like (∗) of Definition 5.2 adding

(f) Mi+1 is (λ, ∗)-brimmed over Mi ∪ {ai} for i < α

(∗)3 for every ordinal β satisfying |β| = |J| and a list 〈ai : i < β〉
with no repetitions of J there are N+,Mi (for i ≤ β) such
that 〈Mj, ai : j ≤ β, i < β〉 and N+ which satisfy:

(a) Mi is ≤s-increasing continuous,

(b) M ≤s Mi ≤s N
+ and N ≤s N

+

(c) ai ∈Mi+1\Mi

(d) tps(ai,Mi,Mi+1) does not fork over M

(e) J = {ai : i < β}

(f)3 Mi+1 is (λ, ∗)-brimmed5 over Mi ∪ {ai} for i < α

(∗)4 like (∗)3 replacing (f)3 by

(f)4 (Mi,Mi+1, ai) ∈ K3,uq
s and M0 = M

(∗)5 like (∗)4 adding

(g) if there is M ′
i+1 ≤s Mi+1 such that (Mi,M

′
i+1, ai) ∈

K3,pr
s then (Mi,Mi+1, ai) ∈ K3,pr

s

(∗)6 like (∗)5 adding

(h) if (Mi,Mi+1, ai) ∈ K3,pr
s for each i < β (holds e.g. if s

has primes) then Mβ ≤s N .

(so in (∗)6 the sequence 〈(Mj, ai) : j ≤ β, i < β〉 is a witness for
“J independent for (M,N)” and it is an M -based pr-decomposition

5omitting {ai} give an equivalent condition

Paper Sh:705, Chapter III



444 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

inside (M,N) see Definition 3.3).
2) If M ∪J ⊆ N− ≤s N and N ≤s N

+ ∈ Ks, then: J is independent
in (M,N+) iff J is independent in (M,N) iff J is independent in
(M,N−).
3) If J is independent in (M,N) and ai ∈ J for i < β are with
no repetitions, M0 = M and 〈Mi : i ≤ β〉, 〈ai : i < β〉 are as
in (∗)4 clauses (a),(c),(d),(f)4 from part (1) and Mβ ≤s N , then
J\{ai : i < β} is independent in (M,Mβ, N).
4) If M− ≤s M,J is independent in (M,N) and J′ ⊆ J and [a ∈
J′ ⇒ tps(a,M,N) does not fork over M−], then J′ is independent
in (M−, N); moreover if M− ⊆ A ⊆ M then J′ is independent in
(M−, A,N).
5) If J is independent in (M,M0, N) and M ≤s M

′ ≤s M0 ≤s N ,
then J is independent in (M ′, N), e.g. in (M0, N).

Proof. First note that part (2) is immediate by the amalgamation
property. Also parts (4),(5) are straightforward so it is enough to
prove parts (1) + (3). Clearly

⊠0 (∗)4 ⇒ (∗)3
[Why? We choose (fi,M

′
i) by induction on i ≤ β such

that M ′
i is ≤s-increasing continuous, fi is a ≤s-embedding

of Mi into M ′
i , fi is increasing continuous, M ′

0 = M0, f0 =
idM0

, tps(fi+1(ai),M
′
i ,M

′
i+1) does not fork over M,M ′

i+1 is
(λ, ∗)-brimmed over M ′

i∪{fi+1(ai)}. By amalgamation with-
out loss of generality there are (g,N ′) such that M ′

β ≤s N
′, g

is a ≤s-embedding of N+ into N ′ extending fβ . Renaming,
without loss of generality g = idN+ so clearly we are done
(note that this is similar to the proof of ⊠5 below but use
less).]

⊠1 (∗)6 ⇒ (∗)5 ⇒ (∗)4 ⇒ (∗)3 ⇒ (∗)2 ⇒ (∗)1 ⇒ (∗)0
[Why? The implication (∗)4 ⇒ (∗)3 holds by ⊠0, (∗)5 ⇒ (∗)4
holds trivially (and note that K3,pr ⊆ K3,uq by 3.7(2) as we
assume 5.1, i.e., s is weakly successful). For the others, just
read them.]

⊠2 if 〈M ′
i : i ≤ α′〉, 〈ai : i < α′〉 and N+ are as in (∗)3, so in

particular witnessing “J is independent in (M,N)” then we
can find M ′′

i ≤s M
′
i for i ≤ α′ such that 〈M ′′

i : i ≤ α′〉, N+

Paper Sh:705, Chapter III



III.§5 INDEPENDENCE 445

is as required in (∗)4 clauses (a)-(e),(f)4 of part (1).
[Why? Choose M ′′

i by induction on i such that M ′′
i is ≤s-

increasing continuous, M ′′
0 = M ≤s M

′
0 and (M ′′

i ,M
′′
i+1, ai) ∈

K3,uq
s and i ≤ α ⇒ M ′′

i ≤K M ′
i , using the hypothesis “s is

weakly successful” and “M ′
i+1 is (λ, ∗)-brimmed over M ′

i +
ai”].

Hence

⊠3 (∗)3 ⇒ (∗)4

and similarly (recallingK3,pr
s ⊆ K3,uq

s and the definition of (M,N, a) ∈
K3,pr

s )

⊠4 (∗)4 ⇒ (∗)5.

Also if 〈Mi : i ≤ α〉, N+, 〈ai : i < α〉 are as in (∗)1, i.e., satisfy clauses
(a)-(e) of (∗)3 with α instead of β then we can choose (M+

i , fi)
by induction on i ≤ α such that M+

i is ≤s-increasing continuous,
fi is a ≤s-embedding of Mi into M+

i , fi is increasing continuous,
NFs(fi(Mi),M

+
i , fi+1(Mi+1),M

+
i+1) and M+

i is (λ, ∗)-brimmed over

M+
i ∪ {ai}. By renaming without loss of generality fi = idMi

and
by amalgamation without loss of generality M+

i ≤s N
+ (actually we

could have used 1.16(1)). So

⊠5 (∗)1 ⇒ (∗)2.

Now we prove parts (1) + (3) of the Lemma by induction on |J|.

Case 1: |J| ≤ 1.
Trivial.

Case 2: n = |J| finite > 1.
As J is finite (and monotonicity of independence) clearly

⊗1 (∗)0 ⇔ (∗)1.

We first show

⊗2 (∗)2 ⇒ (∗)3.

Paper Sh:705, Chapter III



446 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

Note that in (∗)3, as J is finite, necessarily β = |J| = n. As
the permutations exchanging m,m+ 1 generate all permutations of
{0, . . . , n− 1}, it is enough to show

⊗3 if 〈Mk, aℓ : k ≤ n, ℓ < n〉 and N+ are as in (∗)2 and m < n−1
and a′ℓ is aℓ if ℓ < n & ℓ 6= m & ℓ 6= m + 1, is am+1 if
ℓ = m and is am if ℓ = m+1, then for some M ′

ℓ for ℓ < n we
have 〈M ′

k, a
′
ℓ : k ≤ n, ℓ < n〉 and N+ are as in (∗)3.

Why does ⊗3 hold? Let M ′
ℓ be Mℓ if ℓ ≤ m ∨ ℓ ≥ m+ 2.

As s is a good frame and tps(am+1,Mm+1,Mm+2) ∈ S bs
s (Mm+1)

does not fork over M and M ≤s Mm ≤s Mm+1,
clearly tps(am+1,Mm+1,Mm+2) ∈ S bs

s (Mm+1) does not fork over
Mm and similarly tps(am,Mm,Mm+1) ∈ S bs

s (Mm). Hence there are
by symmetry (see Ax(E)(f) from Definition II.2.1) M ′,M ′′ such that
Mm+2 ≤s M

′′,Mm ≤s M
′ ≤s M

′′, am+1 ∈M ′ and tps(am,M
′,M ′′)

does not fork over Mm and without loss of generality M ′ is (λ, ∗)-
brimmed over Mm ∪ {am+1} and M ′′ is (λ, ∗)-brimmed over M ′ ∪
{am+1} which include Mm∪{am, am+1}. AsMm+2 is (λ, ∗)-brimmed
over Mm+1 ∪ {am+1} which include Mm ∪ {am, am+1}, by the pre-
vious sentence there is an isomorphism f from M ′′ onto Mm+2 over
Mm∪{am, am+1}, (in fact, even over Mm+1∪{am+1}), so by renam-
ing without loss of generality M ′′ = Mm+2. Let M ′

m+1 = M ′ so we
have finished proving ⊗3 hence ⊗2 holds (in the present case!).
So (in the present case, the ⇒ by ⊠1 and the ⇐ by ⊗1,⊠5,⊗2,⊠3,⊠4)
we have

⊗4 (∗)0 ⇔ (∗)1 ⇔ (∗)2 ⇔ (∗)3 ⇔ (∗)4 ⇔ (∗)5.

Next

⊗5 part (3) holds.

Why? By the induction hypothesis and parts (5),(4), it is enough
to deal with the case β = 1, i.e., to prove that J\{a0} is inde-

pendent in (M1, N) assuming (M,M1, a0) ∈ K3,uq
s , a0 ∈ J, also

without loss of generality J\{a0} 6= ∅ (otherwise the conclusion
is trivial) hence n ≥ 2. Choose b0, . . . , bn−2 such that they list
J\{a0} and we can let bn−1 = a0 and possibly increasing N let
〈M ′

ℓ : ℓ ≤ n〉 be such that 〈bℓ : ℓ < n〉, 〈M ′
ℓ : ℓ ≤ n〉 are as
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in (∗)4 clauses (a)-(e),(f)4, they exist as we have already proved
most of part (1) in ⊗4 above in the present case. As a0 = bn−1 in
particular we have tps(a0,M

′
n−1,M

′
n) = tps(bn−1,M

′
n−1, N) does

not fork over M so as (M,M1, a0) ∈ K3,uq
s we can deduce that

NFs(M,M ′
n−1,M1, N) by 1.19. Hence easily (by 1.17(4)) by the

NFs-calculus for some N+ satisfying N ≤K N+ ∈ Ks we can find
M2, . . . ,Mn such that M1 ≤s M2 ≤s . . . ≤s Mn ≤K N+, ℓ ∈
{1, 2, . . . , n− 1} ⇒ NFs(M

′
ℓ,Mℓ+1,M

′
ℓ+1,Mℓ+2). By 1.18 the type

tps(bℓ,Mℓ+1,Mℓ+2) does not fork over M ′
ℓ hence by transitivity of

non-forking for ℓ < n−1 the type tps(bℓ,Mℓ+1,Mℓ+2) does not fork
over M . So 〈M1+ℓ : ℓ ≤ n−1〉 witness that 〈b0, . . . , bn−2〉 is indepen-
dent in (M1, N

+). So by part (2), i.e., for n−1, clearly 〈b0, . . . , bn−2〉
is independent in (M1, N), hence by part (4) we have shown part (3),
i.e., ⊗5.
To complete the proof in the present case we need

⊗6 (∗)5 ⇒ (∗)6.

We do more: we prove this in the general case provided that part
(3) has already been proved.
So let 〈ai : i < β〉 list J with no repetitions and let N+, 〈Mi :
i ≤ β〉 be as in (∗)5. The only non-trivial case is when i < β ⇒
(Mi,Mi+1, ai) ∈ K3,pr

s . We now choose by induction on i ≤ β a ≤s-
embedding fi of Mi into N such that f0 = idM0

and fi+1(ai) = ai

and i < j ⇒ fi ⊆ fj.
Now f0 is defined and in limit stages we take the union.

Lastly, if fi is defined, then by part (3) which we have already
proved for this case we know that J\{aj : j < i} is independent in
(M, fi(Mi), N

+) so in particular tps(ai, fi(Mi), N
+) does not fork

over M hence fi(tps(ai,Mi,Mi+1)) = tps(ai, fi(Mi), N
+). Hence

fi+1 exists as (Mi,Mi+1, ai) ∈ K3,pr
s and the definition of K3,pr

s .
Lastly 〈fℓ(Mℓ) : ℓ ≤ n〉 witnesses that (∗)6 holds.

Case 3: |J| = µ ≥ ℵ0.
We first prove what we now call (3)−, a weaker variant of part

(3), which is: replacing in the conclusion “independent” by “every
finite subset is independent”, this will be subsequently used to prove
the other parts, and part (3) itself. We prove (3)− by induction on
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the ordinal β (for all possibilities) and for a fixed β by induction on
|J\{ai : i < β}|.

First, for β = 0 it is trivial.
Second, assume β = γ + 1 and let b0, . . . , bn−1 ∈ J\{ai : i <
β} be pairwise distinct, so M0 = M, 〈Mi : i ≤ β〉, 〈ai : i < β〉
are as in (a),(c),(d),(f)4 of (∗)4,Mβ ≤s N and we should prove
that {b0, . . . , bn−1} is independent in (M,Mβ, N). Now by the in-
duction hypothesis on β applied to 〈Mj, ai : j ≤ γ, i < γ〉 and
{b0, . . . , bn−1, aγ} we deduce that {b0, . . . , bn−1, aγ} is independent
in (M,Mγ, N) hence in (Mγ , N).

Now by the case with J finite, {b0, . . . , bn−1} is independent as
(Mβ, N). So by part (4), {b0, . . . , bn−1} is indepedent in (M,Mβ, N)
as required.

Lastly, assume β is a limit ordinal and let n < ω, b0, . . . , bn−1 ∈
J′ := J\{ai : i < β} be pairwise distinct. We should prove that
{b0, . . . , bn−1} is independent in (M,Mβ, N); the case n = 0 is
trivial. By the induction hypothesis on β we have ε < β implies
tp(b0,Mε, N) does not fork over M , hence by the continuity axiom
(E)(h) the type tps(b0,Mβ, N) does not fork over M . So if n = 1
we are done hence without loss of generality n ≥ 2. By Claim 5.5(2)
(if s has primes we can use 5.5(1)) we can find M̄ ′, N+ such that

(α) M̄ ′ = 〈M ′
ε : ε ≤ β〉

(β) M̄ ′ is ≤s-increasing continuous

(γ) N ≤s N
+ ∈ Ks

(δ) NFs(Mε,Mζ ,M
′
1+ε,M

′
1+ζ) for ε < ζ ≤ β

(ε) M ′
β ≤s N

+,M0 ≤s M
′
0

(ζ) tps(aε,M
′
1+ε,M

′
1+ε+1) does not fork over M for ε < β

(η) tps(b0,M
′
0, N

+) does not fork over M

(ι) letting a′0 = b0, a
′
1+ε = aε we have (M ′

ε,M
′
ε+1, a

′
ε) ∈ K3,uq

s ;
note that 1 + β = β as β is a limit ordinal.

Now noting Mε ≤s M
′
1+ε for ε < β

⊗7 〈M ′
ε, a

′
ζ : ε ≤ β, ζ < β〉 is as in (∗)4 for (M ′

0, N
+).
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By clauses (ε) + (ζ) necessarily J is independent in (M,M ′
0, N

+)
hence in (M ′

0, N
+).

Hence by the induction hypothesis on n, {b1, . . . , bn−1} is indepen-
dent in (M ′

0,M
′
β, N

+) so by part (4) also in (M,M ′
β, N

+) and re-

call tps(b0,Mβ, N
+) does not fork over M while b0 ∈ M ′

β,M ≤s

Mβ ≤s M
′
β, so easily {b0, . . . , bn−1} is independent in (M,Mβ, N

+),

i.e. by 5.6(1) below, hence by part (2) for the case of finite J the set
{b0, . . . , bn−1} is independent in (M,Mβ, N) as required so we have
proved (3)−

Next we prove (∗)0 ⇒ (∗)4 in part (1).
For proving (∗)4 let 〈ai : i < β〉 be a given list of J and we will

find N+, 〈Mi : i ≤ β〉 as required; we do it by induction on β, i.e.
we prove (∗)4,β. We now choose by induction on i a pair of models
Mi ≤s Ni such that

⊡ Ni is ≤s-increasing continuous, N0 = N,Mi is ≤s-increasing
continuous, M0 = M and i = j + 1 implies (Mj,Mi, aj) ∈

K3,uq
λ and every finite subset of J\{aj : j < i} is independent

in (M,Mi, Ni).

Subcase a: For i = 0 there is no problem.

Subcase b: For i limit let Mi =
⋃

j<i

Mj , Ni =
⋃

j<i

Nj , the least trivial

part is the clause in ⊡ on independence. Now for i = β this clause
is trivial, in fact (∗)4,β is already proved. We can assume i < β and
let {ai0 , . . . , ain−1

} ⊆ J\{aj : j < i} be with no repetitions. Now
if i < µ then by renaming without loss of generality max[{iℓ : ℓ <
n} ∪ {i}] < µ so we can use our induction hypothesis on µ. So we
can assume β > µ∨ (i = β = µ) and the case i = β = µ is trivial, so
as we are inducting on all listings of subsets of J of a given length we
have actually proved (∗)0 ⇒ (∗)4,β for β = µ, so J in independent
in (M,N) (as witnessed by some list of length µ!). So we can apply
(3)− and get that {ai0 , . . . , ain−1

} is independent in (M,Mi, Ni) as
required.

Subcase c: For i = j + 1, as for s we know that K3,uq
s satisfies

existence (as s is weakly successful and good) we can find Ni,Mi as
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required and the induction assumption on i holds as we have proved
the claims for finite J.
So we have finished the induction on i, thus proving (∗)0 ⇒ (∗)4
for J of cardinality ≤ µ. Hence we have part (1) for µ because
(∗)5 ⇒ (∗)4 ⇒ (∗)3 ⇒ (∗)2 ⇒ (∗)1 ⇒ (∗)0 by ⊠1 and (∗)0 ⇒ (∗)4
was just proved, (∗)4 ⇒ (∗)5 by ⊠4 above and (∗)5 ⇒ (∗)6 was
proved inside the proof of the finite case. Hence we have proved part
(1). Now part (3) for µ follows from (1) + (3)−. So we have finished
the induction step for µ also in the infinite case (case 3) so have
finished the proof. �5.4

Still to finish the proof of 5.4 we have to show 5.5(2), 5.6(1) below.

5.5 Claim. 1) [Assume s has primes.] If 〈Ni, aj : i ≤ α, j < α〉 is
an M -based pr-decomposition for s inside N (so N0 = M and Nα ≤s

N , see Definition 3.3), b ∈ N, tps(b, Nα, N) is a non-forking exten-
sion of p ∈ S bs

s (N0), then we can find 〈N ′
i , a

′
j : i ≤ 1+α, j < 1+α〉,

an M -based pr-decomposition for s inside N+, such that Ni ≤s

N ′
1+i, N0 = N ′

0, b = a′0, ai = a′1+i, tps(ai, N
′
1+i, N

′
1+i+1) does not fork

over Ni, N
′
α ≤s N

+ and N ≤K N+; note that NFs(Ni, N
′
1+i, Ni+1,

N ′
1+i+1) for i < α follows.

2) Similarly for uq-decomposition except that we require only N0 ≤s

N ′
0 (instead equality) but still require tps(b, N

′
0, N

+) does not fork
over M so necessary NFs(Ni, N

′
1+i, Ni+1, N

′
1+i+1) holds for i < α.

3) In part (1) if N ′ ≤s N and (M,N ′, b) ∈ K3,pr
s then we can add

N ′
1 = N ′.

4) In part (2) if M ≤s M
′ we can demand that M ′ is ≤s-embeddable

into N ′
0 over M and if M ′ is (λ, ∗)-brimmed over M we can add M ′

is isomorphic to N ′
0 over M .

Proof. 1) Chasing arrows: first ignore b = a′0, demand just tps(a
′
0, N0,

N ′
1) = tps(b, N0, N) and ignore N ≤s N

+. After proving this we
can use equality of types.

In details, we choose by induction on i ≤ α a pair (N∗
i , fi) and

b∗, a∗i (if i < α) such that:

(a) fi is a ≤s-embedding of Ni into N∗
i

(b) N∗
i is ≤s-increasing continuous
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(c) N∗
0 satisfies (N0, N

∗
0 , b

∗) ∈ K3,pr
s and

tps(b
∗, N0, N

∗
0 ) = tps(b, N0, N)

(d) f0 = idN0

(e) if i = j + 1 then (N∗
j , N

∗
i , a

∗
j ) ∈ K3,pr

s and fi(aj) = a∗j

(f) tps(b
∗, fi(Ni), N

∗
i ) does not fork over N0

(g) i < j ⇒ fi ⊆ fj.

For i = 0 just use “s has primes”.
For i = j + 1 first choose pj ∈ S bs

s (N∗
j ), a non-forking exten-

sion of p−j = fj(tps(aj , Nj, Nj+1)) and second choose N∗
i , a

∗
j such

that (N∗
j , N

∗
i , a

∗
j ) ∈ K3,pr

s and tps(a
∗
j , N

∗
j , N

∗
i ) = pj ; now clause (f)

is satisfied (using “s has primes”), lastly choose a ≤s-embedding
fi ⊇ fj of Ni into N∗

i mapping aj to a∗j using the assumption

(Nj , Ni, aj) ∈ K3,pr
s and a∗j ’s realizing pj .

For i limit take union.
Having finished the induction without loss of generality each fi is
the identity on Ni hence j < α ⇒ a∗j = aj. So Nα ≤s N∗

α and
Nα ≤s N and tps(b

∗, Nα, N
∗
α) does not fork over N0 (by clause (f))

and extends tps(b, N0, N); also tps(b, Nα, N) satisfies this so as Ks

has amalgamation without loss of generality b = b∗ and for some
N+ ∈ Ks we have N ≤s N

+ & N∗
α ≤s N

+.
Letting N ′

0 = N ′, N ′
1+i = N∗

i we are done.
2) Using 4.7.
3) Similarly.
4) Similarly. �5.5

Some trivial properties are:

5.6 Claim. 1) If 〈Mi : i ≤ α〉 is ≤s-increasing continuous, and Ji

is independent in (M0,Mi,Mi+1) for each i < α then ∪{Ji : i < α}
is independent in (M0,Mα).
2) If NFs(M0,M1,M2,M3) and J is independent in (M0,M1) then
J is independent in (M2,M3) and even in (M0,M1,M3).
If NFs(M0,M1,M2,M3),M0 ≤s M

−
1 ≤s M1,J1 independent in

(M−
1 ,M1) and J2 independent in (M0,M2) then J1 ∪ J2 is indepen-

dent in (M−
1 ,M3).
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3) [Monotonicity] If J is independent in (M,A,N) and I ⊆ J, then
I is independent in (M,A,N).
4) If J is independent in (M1, N) and M0 ≤s M1 ≤s N and c ∈
J ⇒ tps(c,M1, N) does not fork over M0, then J is independent in
(M0,M1, N).
5) [s has primes]. Assume that NFs(M0,M1,M2,M3) and 〈M0,i, aj :
i ≤ α, j < α〉 is a decomposition of M2 over M0. Then we can find
M+

3 satisfying M3 ≤s M
+
3 and 〈M1,i : i ≤ α〉 such that M1,α ≤s

M+
3 , 〈M1,i, aj : i ≤ α, j < α〉 is a decomposition of M1,α over M1

and M0,i ≤s M1,i and tps(ai,M1,i,M
+
3 ) does not fork over M0,i for

i < α.
6) Similarly for uq-decompositions except that M1 ≤s M1,0 (not nec-
essarily equal); we may add M1,i is brimmed over M0,i.

7) The set {a} is s-independent in (M,N) iff (M,N, a) ∈ K3,bs
s .

Proof. 1) Should be clear (e.g., as in the proof of (∗)1 ⇒ (∗)2 inside
the proof of 5.4(1) without loss of generality Mi+1 is (λ, ∗)-brimmed
over Mi ∪ Ji).
2) The first phrase is satisfied by 5.3.

For the second phrase by symmetry NFs(M0,M2,M1,M3).
The first phrase of part (2) applied with M0,M2,M1,M3,J2 here

standing for M0,M1,M2,M3,J there we get J2 is independent in
(M0,M1,M3) hence in (M−

1 ,M1,M3). By part (1) applied toM−
1 ≤s

M−
3 ≤s M

+
3 and J2,J1 we can deduce that J1 ∪ J2 is independent

in (M−
1 ,M

−
3 ), hence in (M−

1 ,M3) (and even in (M0,M
−
1 ,M3)) as

required.
3) Trivial.
4) Easy by the non-forking calculus.
5) As in the proof of the previous claim 5.5 there is an ≤s-increasing
continuous sequence 〈M1,i : i ≤ α〉 and a ≤s-embedding fα of
M2 = M0,α into M1,α such that M1,0 = M1, f ↾ M0 = idM0

and fi(M0,i) ≤s M1,i and tps(f(ai),M1,i,M1,i+1) does not fork

over f(M0,i) and (M1,i,M1,i+1, fi+1(ai)) ∈ K3,pr
s (e.g., just choose

M1,i, fi = f ↾ M0,i by induction on i ≤ α).

As (M0,i,M0,i+1, ai) ∈ K3,pr
s also (f(M0,i), f(M0,i+1), f(ai)) be-

longs to K3,pr
s hence to K3,uq

s hence NFs(f(M0,i), f(M0,i+1),M1,i,
M1,i+1) hence by long transitivity NF(f(M0,0), f(M0,α),M1,0,M1,i).
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By the uniqueness of NF, without loss of generality f is the identity
and for some M+

3 we have M1,α ≤s M
+
3 and M3 ≤s M

+
3 .

6) Using 4.7, see details inside the proof of 6.16.
7) Trivial by the definitions. �5.6

∗ ∗ ∗

5.7 Definition. 1) We say N is prime over M ∪ J (for s), or

(M,N,J) ∈ K3,qr
s if:

(a) M ≤s N in Kλ

(b) J ⊆ IM,N and J is independent in (M,N), actually the sec-
ond statement follows from clause (c)

(c) if M ≤s N ′,J′ ⊆ IM,N ′ and J′ is independent in (M,N ′)
and h is a one to one mapping from J onto J′ such that
tps(a,M,N) = tps(h(a),M,N ′) for every a ∈ J, then there
is a ≤s-embedding of N into N ′ over M extending h.

2) Let (M,N,J) ∈ K3,bs
s mean that J is independent in the pair

(M,N).
3) We define ≤∗

bs as in Definition 4.2(2):

(M1, N1,J1) ≤
∗
bs(M2, N2,J2)

when both are from K3,bs
s and either they are

equal or J1 ⊆ J2 is independent in (M1,M2, N2)

and M2, N2 is ≤s -universal over

M1, N2 respectively.

4) We defined ≤∗∗
bs as in Definition 4.2(3):

(M1, N1,J1) ≤
∗∗
bs(M2, N2,J2)

when both are from K3,bs
s and either they are

equal or J1 ⊆ J2 is independent in (M1,M2, N2)

and M2, N2 is ≤s -brimmed over

M1, N1 respectively.

Some basic properties are
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5.8 Claim. 1) [Assume s has primes.] If M ≤s N (in Ks) and
J ⊆ IM,N is independent in (M,N), then there is N ′ ≤s N which is
prime over M ∪ J.
2) If J is independent in (M,N) and 〈Mi, aj : i ≤ α, j < α〉 is
an M -based pr-decomposition of (M0, N) (see Definition 3.3(1)) and
J = {aj : j < i}, then Mα is prime over M0 ∪ J.

3) (M,N, {a}) ∈ K3,qr
s iff (M,N, a) ∈ K3,pr

s and also (M,N, {a}) ∈

K3,bs
s iff (M,N, a) ∈ K3,bs

s .

4) If (M,N,J) ∈ K3,qr
s and M ∪ J ⊆ N− ≤s N then (M,N−,J) ∈

K3,qr
s .

5) Assume δ < λ+
s is a limit ordinal, 〈Mi : i ≤ δ〉 is ≤s-increasing

continuous; 〈Ni : i ≤ δ〉 is ≤s-increasing continuous, Ji is ⊆-

increasing continuous and i < δ ⇒ (Mi, Ni,Ji) ∈ K3,bs
s , Then

(Mδ, Nδ,Jδ) ∈ K3,bs
s ; note: i < δ ⇒ Ni = Nδ is O.K. Moreover, we

can weaken the assumption to i < δ ⇒ (Mi+1, Ni+1,Ji+1) ∈ K3,bs
s .

6) If pi ∈ S bs
s (M) for i < α then for some N and J = {ai : i < α}

with no repetitions we have (M,N,J) ∈ K3,bs
s and tps(ai,M,N) =

pi for i < α.

Proof. 1) By 5.4(1), (∗)1 ⇔ (∗)6, letting 〈ai : i < α〉 list J we can
find Mi ≤s N for i < α such that 〈Mi, aj : i ≤ α, j < α〉 as in (∗)6
of 5.4. Now we can use part (2).
2) Let N∗ satisfying M = M0 ≤s N

∗ and a one-to-one function h :
J → J′ ⊆ N∗ satisfying c ∈ J ⇒ tps(h(c),M0, N

∗) = tps(c,M0,Mα)
and J′ independent in (M0, N

∗) be given. Let h(aj) = cj . We
now choose by induction on i ≤ α a ≤s-embedding fi of Mi into
N∗, increasing continuous with i and mapping aj to cj . For i = 0
this is given, for i limit take union. For i = j + 1, we know that
tps(cj , fj(Mj), N

∗) does not fork over f0(M0) by 5.4(3) (because

(Mj ,Mj+1, aj) ∈ K3,uq
s by 3.7(2)) and so as tps(aj,Mj,Mi) does not

fork over M0 and fj [tps(aj,M0,M1)] = tps(cj, f0(M0), N
∗) clearly

fj [tps(aj ,Mj,Mα)] = tps(cj , fj(Mj), N
∗). But (Mj,Mj+1, aj) ∈

K3,pr
s so we can find fi ⊇ fj as required. So fα is as required in

Definition 5.7.
3) By the definitions.
4) Easy, like in 3.5(1).
5) By 5.4(1) it suffices to prove that for any finite non-empty I ⊆ Jδ,
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we have (Mδ, Nδ, I) ∈ K3,bs
s . By 1.16 for each c ∈ I for some

i(c) < δ we have c ∈ Ji(c) and tps(c,Mδ, Nδ) does not fork over
Mi(c). Let i(∗) = max{i(c) : c ∈ I}, so i(∗) < δ and i ∈ [i(∗), δ) ⇒

(Mi+1, Ni+1, I) ∈ K3,bs
s . By renaming i(∗) = 0 so I ⊆ N0 and we

shall prove the statement by induction on n = |I|. If n = 1, this
is said above (or use 5.6(7) and Ax(E)(h)). So assume n = m + 1,
choose c ∈ I, let I′ = I\{c}.

We can choose (fi,M
′
i , N

′
i) for i ≤ δ such that

⊛ (a) (M ′
i , N

′
i , c) ∈ K3,bs

s is ≤s-increasing continuous

(b) M ′
0 = M0, N

′
0 = N0

(c) fi is a ≤s-embedding of Mi into M ′
i , increasing with i

(d) if i = j + 1 then (M ′
i , N

′
i , c) ∈ K3,uq

s

(e) NFs(fi(Mi),M
′
i , fi+1(Mi+1),M

′
i+1).

Without loss of generality fi = idMi
for i ≤ δ. By the existence of

non-forking amalgamation and existence of amalgamation without
loss of generality for some N+ ∈ Kλ we have N ′

δ ≤s N
+ and Nδ ≤s

N+ and NFs(Mδ,M
′
δ, Nδ, N

+). Now by long transitivity for any
successor i < δ by clauses (e) and (a) we have NFs(Mi,M

′
i ,Mδ,M

′
δ)

hence (by transitivity for NFs) we have NFs(Mi,M
′
i , Nδ, N

+) hence
by monotonicity NFs(Mi,M

′
i , Ni, N

+).

Recall that for successor i < δ, the set I is independent in (Mi, Ni)
hence it follows by 5.3 that I is independent in (Mi,M

′
i , N

+) and
even (M0,M

′
i , N

+). By 5.4(3) for every successor i < δ the set
I′ = I\{c} is independent in (M0, N

′
i , N

+) hence by monotonicity,
5.4(4) this holds for every i < δ. By the induction hypothesis I′ is
independent in (N ′

δ, N
+), hence in (M0, N

′
δ, N

+) hence by 5.6(1) the
set I = I′∪{c} is independent in (M0,M

′
δ, N

+) butM0 ≤s Mδ ⊆s M
′
δ

hence I is independent in (Mδ, N
+) but I ∪Mδ ⊆ Nδ ⊆s N

+ hence
I is independent in (Mδ, Nδ) as required.
6) Easy. �5.8

∗ ∗ ∗
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5.9 Claim. 1) If (M0,M1,J) ∈ K3,qr
s (hence J is independent in

(M0,M1)) and N0 ≤s N1, f0 is an isomorphism from M0 onto N0

and {ca : a ∈ J} is an independent set in (N0, N1) satisfying tps(ca,
N0, N1) = f0[tps(a,M0,M1)] for a ∈ J (and of course 〈ca : a ∈ J〉
is with no repetitions) then there is a ≤s-embedding f of M1 into N1

extending f0 and mapping each b ∈ J to cb.
2) [Assume s has primes]. Assume (M0,M1,J) ∈ K3,qr

s and M0 ≤s

M2 ≤s M3,M0 ≤s M1 ≤s M3 and J is independent in (M0,M2,M3).
Then NFs(M0,M1,M2,M3).

3) [Assume s has primes] If (M,N,J) ∈ K3,qr
s and {aα : α < α∗}

list J with no repetitions of course then we can find M̄ = 〈Mα : α ≤
α(∗)〉 such that: M̄ is ≤s-increasing continuous6, M = M0, N ≤s

Mα(∗), (Mα,Mα+1, aα) ∈ K3,pr
s (hence tps(aα,Mα,Mα+1) does not

fork over M).

4) If M0 ≤s M1 ≤s M2 and (M0,M1,J0) ∈ K3,qr
s and (M0,M2,J1) ∈

K3,bs
s and J0 ⊆ J1 then J1\J0 is independent in (M0,M1,M2).

Proof. 1) This just rephrases Definition 5.7.
2) We are allowed to increase M1,M3, i.e. if M3 ≤s M ′

3,M
′
1 ≤s

M ′
3,M1 ≤s M

′
1 but still (M0,M

′
1,J) ∈ K3,qr

s then by the monotonic-
ity of the relation NF we can replace M1,M3 by M ′

1,M
′
3. By 5.4(1),

specifically (∗)5, we can find M ′ and 〈M0
i , aj : i ≤ α, j < α〉 such

that M0
0 = M0,M

0
i is ≤s-increasing continuous, (M0

i ,M
0
i+1, ai) ∈

K3,pr
s ⊆ K3,uq

s for i < α and 〈ai : i < α〉 list J with no repetitions
and M0

α ≤s M
′
3 and M3 ≤s M

′
3. As “M1 is prime over M0 ∪ J” by

assumption, there is an ≤s-embedding f from M1 into M0
α over M0,

and by amalgamation we can extend f−1 to a ≤s-embedding f+ of
M0

α into some M ′′
3 where M ′

3 ≤s M
′′
3 . So without loss of generality

f+ is the identity hence M1 ≤s M
0
α and so by the first sentence in

this proof without loss of generality M ′′
3 = M3,M

0
α = M1. We now

choose by induction on i ≤ α,M2
i ,M

3
i such that:

(α) M2
i is ≤s-increasing continuous

(β) M3
i is ≤s-increasing continuous

(γ) M2
0 = M2,M

3
0 = M3

6of course, we can have Mα(∗) ≤s N , but having equality is harder, see later
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(δ) M0
i ≤s M

2
i ≤s M

3
i

(ε) (M2
i ,M

2
i+1, ai) ∈ K3,pr

s

(ζ) tps(ai,M
2
i ,M

3
i ) does not fork over M0

i

(η) M0
i ≤s M

3
i .

Why is this enough? For each i we have (M0
i ,M

0
i+1, ai) ∈ K3,uq

s

(by the choice of M0
i ,M

0
i+1, ai we have (M0

i ,M
0
i+1, ai) ∈ K3,pr

s and
use claim 3.7(2)). By this, 1.19 and clauses (δ) and (ζ) we have
NFs(M

0
i ,M

0
i+1,M

2
i ,M

2
i+1). By the symmetry property of NFs we

have NFs(M
0
i ,M

2
i ,M

0
i+1M

2
i+1). As this holds for every i < α and

clauses (α)+(β) by the long transitivity property of NFs (see II.6.28)
we get NFs(M

0
0 ,M

2
0 ,M

0
α,M

2
α), which means NFs(M0,M2,M1,M

2
α).

Now by monotonicity we can replace M2
α first by M3

α then by M3 so
we got NFs(M0,M2,M1,M3) as required.

Why is it possible to carry the induction? Having arrived to i
we can find models M2,∗

i+1 ≤s M3
i+1 such that M3

i ≤s M3
i+1 and

(M2
i ,M

2,∗
i+1, ai) ∈ K3,pr

s . By 5.4(3) the type tps(ai,M
2,∗
i ,M3

i ) does

not fork over M0
i .

Now by the definition of prime, there is a ≤s-embedding fi of
M0

i+1 into M3
i+1 over M0

i satisfying fi(ai) = ai. As (M0
i ,M

0
i+1, ai) ∈

K3,pr
s ⊆ K3,uq

s , possibly replacing M3
i+1 by a ≤s-extension we can

extend f−1
i to an ≤s-embedding gi of M2,∗

i+1 into M3
i+1 extending

idM2
i
; lastly let M2

i+1 := gi(M
2,∗
i ).

3) Easy and included in the proof of part (2).
4) By part (3) and 5.4(3). �5.9

5.10 Claim. Assume 〈Mi : i ≤ δ + 1〉 is ≤s-increasing continuous
and J ⊆ IMδ,Mδ+1

.
1) If |J| < cf(δ) and J is independent in (Mδ,Mδ+1) then for every
i < δ large enough, J is independent in (Mi,Mδ,Mδ+1).
2) If J ⊆ IMδ ,Mδ+1

is independent in (Mi,Mδ+1) for every i <
δ, then J is independent in (Mδ,Mδ+1). If J is independent in
(M0,Mi,Mδ+1) for every i < δ then J is independent in (Mi,Mδ,Mδ+1)
for every i < δ.
3) Assume 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉 are ≤s-increasing continuous,
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〈Ji : i < δ〉 is ⊆-increasing continuous and (Mi, Ni,Ji) ∈ K3,bs
s for

i < δ. Then (Mδ, Nδ,Jδ) ∈ K3,bs
s for i < α.

Discussion: 1) At this point, if 〈Mi : i ≤ α〉 is ≤s-increasing con-
tinuous Mα ≤s N, a ∈ N and tps(a,Mα, N) ∈ S bs

s (Mα) does not
fork over M0 we do not know if there is 〈Ni : i ≤ α〉 which is ≤s-

increasing continuous a ∈ N0,Mi ≤s Ni and (Mi, Ni, a) ∈ K3,pr
s . So

we go around this. The claim 5.10 is used in 6.16.
2) Note that 5.8(5) implies 5.10(2),(3) and also the inverse is easy,
but we give different proofs.

Proof. 1) For each c ∈ J for some ic ∈ δ, tps(c,Mδ,Mδ+1) does not
fork over Mic

let i(∗) = sup{ic : c ∈ J} and use 5.4(4).
2) By 5.4(1) it suffices to deal with finite J, say J = {bℓ : ℓ < n}
with no repetitions.
By the NFs-calculus, i.e. by 1.17 there is a ≤s-increasing continu-
ous sequence 〈M+

i : i ≤ δ + 1〉 such that NFs(Mi,M
+
i ,Mj,M

+
j ) for

any i < j ≤ δ + 1 and M+
i+1 is (λ, ∗)-brimmed over Mi+1 ∪M

+
i for

i < δ, hence M+
δ is (λ, ∗)-brimmed over Mδ, see 1.17(1). Hence

there is a ≤s-embedding h of Mδ+1 into M+
δ over Mδ, so with-

out loss of generality Mδ+1 ≤s M
+
δ . As J is finite and M+

δ is the

union of the ≤s-increasing sequence 〈M+
i : i < δ〉 clearly for some

i < δ we have J ⊆ M+
i hence “J is independent in (Mi,M

+
i ). But

NFs(Mi,M
+
i ,Mδ,M

+
δ ) hence by Claim 5.3 we deduce “J is indepen-

dent in (Mi,Mδ,M
+
δ ) hence in (Mi,Mδ,Mδ+1) as required.

3) For every finite J ⊆ Jδ, for some α < δ we have J ⊆ Jα

hence by monotonicity, β ∈ (α, δ) ⇒ (Mβ , Nδ,J) ∈ K3,bs
s , hence

by part (2) we know that (Mδ, Nδ,J) ∈ K3,bs
s . By 5.4(1) we deduce

(Mδ, Nδ,Jδ) ∈ K3,bs
s . �5.10

5.11 Claim. Assume s = t+, t a successful good+ λt-frame so λ =
λs = λ+

t . Assume Mℓ ∈ Ks and 〈M ℓ
α : α < λ〉 is a ≤K[t]-representation

of Mℓ for ℓ = 0, 1.
If M0 ≤s M1 and J ⊆ IM0,M1

then: J is independent (for s) in
(M0,M1) iff for a club of δ < λ the set J∩M1,δ is independent (for
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t) in (M0,δ,M1,δ) iff for stationarily many δ < λ,J∩M1,δ is indepen-
dent (for t) in (M0,δ,M1,δ) iff for unboundedly many α < λ,J∩M1,δ

is independent (for t) in (M0,α,M1,α).

Proof of 5.11. By 5.4(1), applied to s and to t without loss of gener-
ality J is finite. As t satisfies the Hypothesis 4.1, clearly the results
of §4 apply. Note that s has primes by 4.9 applied to t, also s is
good+ by 1.6(2) and moreover by 1.9 and is weakly successful by
5.1.

Using 5.8(5), the “moreover” and see last sentence, the third
clause implies the second clause and trivially second implies third;
similarly for the fourth. So assume the failure of the first and we
show the failure of the third. Let J = {aℓ : ℓ < n} without repeti-
tions. We can try to choose by induction on ℓ a model M ′

ℓ ≤s M1

such that M ′
0 = M0, (M

′
ℓ,M

′
ℓ+1, aℓ) ∈ K3,pr

s , moreover is as con-

structed in 4.9 + 4.3 and tps(aℓ,M
′
ℓ,M1) ∈ S bs

s (M ′
ℓ) does not fork

over M0. We cannot succeed so for some m < n we have M ′
0, . . . ,M

′
m

as above but tps(am,M
′
m,M1) forks over M0. Rename M1 as M ′

m+1

and let 〈M ′
ℓ,α : α ≤ λ〉 be a ≤t-representation of M ′

ℓ for ℓ ≤ m + 1

and M ′
0,α = M0

α,M
′
m+1,α = M1

α. Now by 4.13(1) for some club

E of λ, if δ is from E and ℓ < m then (M ′
ℓ,δ,M

′
ℓ+1,δ, aℓ) ∈ K3,uq

s

and am ∈M ′
m+1,δ and tps(am,Mm,δ,Mm+1,δ) forks over M0,δ while

Mm,δ ≤t Mm+1,δ. By 5.4(3) for t we get {aℓ : ℓ ≤ m} ⊆ IM0,δ,Mm,δ

is not independent. So we have gotten the failure of the third clause.
The proof that the first clause implies the third one is similar.

�5.11

We can deal with dimension as in [Sh:c, Ch.III].

5.12 Definition. Assume that M ≤s N and p ∈ S bs
s (M), then we

let

dim(p,N) = Min{|J| : J satisfies

(i) J is a subset of {c ∈ N : tps(c,M,N) is equal to p},

(ii) the triple (M,N,J) belongs to K3,bs
s and

(iii) J is maximal under those restrictions}.
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We shall say more on dim after we understand regular types (see
§10, mainly 10.15).

5.13 Claim. Assume M ∈ Ks and J is independent in (M,N∗).
1) If tps(a,M,N∗) ∈ S bs

s (M), then for some finite J′ ⊆ J the set
(J\J′) ∪ {a} is independent in (M,N∗) and a /∈ J\J′, of course.
2) [s has primes] If a ∈ N∗ then for some finite J′ ⊆ J and M ′ we
have: M ∪{a} ⊆M ′ ≤s N and J\J′ is independent in (M,M ′, N∗).
3) If a ∈ N∗ ubthen for some finite J′ ⊆ J and M ′, N ′ we have: M∪
{a} ⊆M ′ ≤s N

′, N ≤s N
′ and J\J′ is independent in (M,M ′, N ′).

Proof. 1) Let J = {ai : i < α}, we prove the statement by induction
on α. For α = 0, α successor this is trivial. For α limit < λ+ by
the definition there are N+ ∈ Ks and a ≤s-increasing continuous
sequence 〈Mi : i ≤ α〉 such that M0 = M,Mi ≤s N

+, N∗ ≤s N
+

and tps(ai,Mi,Mi+1) ∈ S bs
s (Mi) does not fork over M for each

i < α. By 1.17, as in the proof of 5.10(2) we can find a ≤s-increasing
continuous 〈Ni : i ≤ α〉 such that for each i < α,Mi ≤s Ni and
NFs(Mi, Ni,Mi+1, Ni+1) hence tps(ai, Ni, Ni+1) does not fork over
Mi and Nα is (λ, ∗)-brimmed over Mα. Hence we can ≤s-embed N+

into Nα overMα so by renaming without loss of generalityN+ = Nα.

Lastly, replace the Mi by Ni so without loss of generality Mα =
N∗.

Now for some β < α, a ∈Mβ and by the induction hypothesis on
α for some finite u ⊆ β the set {ai : i ∈ β\u} ∪ {a} is independent
in (M,Mβ). Clearly by the Definition 5.2 the set {ai : i ∈ α\β} is
independent in (M,Mβ,Mα). By 5.6(1) and the last two sentences
({ai : i ∈ β\u} ∪ {a}) ∪ ({ai : i ∈ α\β}) is independent in (M,Mα)
hence in (M,N+) hence in (M,N∗) by 5.4(2). But the set is {ai :
i ∈ α\u} ∪ {a} so we are done.
2),3) Similar. �5.13

5.14 Conclusion. Assume that M ≤s N and p ∈ S bs
s (M). Then

any two sets J satisfying the demands (i) + (ii) + (iii) from Defini-
tion 5.12 have the same cardinality or are both finite. �5.14

Proof. By 5.13(3) and 5.8(5). �5.14
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As K3,pr
s was generalized to K3,qr

s above so now we generalize
K3,uq

s to K3,vq
s .

5.15 Definition. 1) Let (M,N,J) ∈ K3,vq
s mean:

(a) M ≤s N

(b) J is independent in (M,N)

(c) if N ≤s M3,M ≤s M2 ≤s M3 and J is independent in
(M,M2,M3) then NFs(M,M2, N,M3).

2) We say (M,N,J) ∈ K3,bs
s is thick when for every p ∈ S bs

s (M)
the set {c ∈ J : tps(c,M,N) = p} has cardinality λ.

3) We say that (M,N,J) ∈ K3,bs
s is S ∗-thick when S ∗ ⊆ S bs

s (or
S ∗ ⊆ S bs

s (M)) and for every p ∈ S ∗(M) (or p ∈ S ∗
s ) the set

{c ∈ J : tps(c,M,N) = p} has cardinality λ (we can below replace
S bs

s by any dense S ∗ ⊆ S bs
s where dense means that Ax(D)(c) of

Definition II.2.1 holds).

4) We say that (M,N,J) ∈ K3,bs
s is weakly S ∗-thick7 when for every

p ∈ S ∗ (or p ∈ S ∗(M)) the set {c ∈ J : tps(c,M,N) ± p}, see 6.2
below has cardinality λ (where S ∗ ⊆ S bs

s or S ∗ ⊆ S bs
s (M)). If

S ∗ = S bs
s (M) we may omit S ∗.

5.16 Claim. Assume s is successful good+ in (2)(b), (2)(c), (3),
(4), (8) hence for them 4.4 holds hence all §4 apply.

1) [s has primes] If (M,N,J) ∈ K3,qr
s then (M,N,J) ∈ K3,vq

s .

2) If (M,N,J) ∈ K3,bs
s then

(a) for some thick (M ′, N ′,J′) ∈ K3,bs
s we have (M,N,J) <∗∗

bs

(M ′, N ′,J′)
moreover (M ′, N ′,J′\J) is thick

(b) for some (M ′, N ′,J) ∈ K3,vq
s we have (M,N,J) <∗∗

bs (M ′, N ′,
J); hence if (M,N,J) ≤bs (M∗, N∗,J) and M∗ is (λ, ∗)-
brimmed over M then without loss of generality M ′ = M∗

and N ′ ≤s N
′′, N∗ ≤s N

′′ for some N ′′

7This notion is not really used now. It becomes convenient when one restricts
himself to regular types, see §10.
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(c) for some thick (M ′, N ′,J′) ∈ K3,vq
s we have (M,N,J) <∗∗

bs

(M ′, N ′,J′) moreover (M ′, N ′,J′\J) is thick.

3) If 〈Mi : i ≤ α〉 is ≤s-increasing continuous and i < α ⇒
(Mi,Mi+1, ai) ∈ K3,uq

s and tps(ai,Mi,Mi+1) does not fork over M0,

then (M0,Mα, {ai : i < α}) belongs to K3,vq
s .

4) If (Mℓ,Mℓ+1,Jℓ) ∈ K3,vq
s for ℓ = 0, 1 and J1 is (M0,M1,M2)-

independent then (M0,M2,J0 ∪ J1) belongs to K3,vq
s . Moreover if

〈Mi : i ≤ α〉 is ≤s-increasing continuous, Ji is independent in

(M0,Mi,Mi+1) for i < α and (Mi,Mi+1,Ji) ∈ K3,vq
s

then (M0,Mα,∪{Ji : i < α}) ∈ K3,vq
s .

5) If (M0,M1,J0) ∈ K3,vq
s ,J0∩J1 = ∅ and J0∪J1 is independent in

(M0,M2) and M1 ≤s M2 then J1 is independent in (M0,M1,M2).
6) If 〈Mi : i ≤ α + 1〉 is ≤s-increasing continuous, Ji is inde-

pendent in (M0,Mi,Mi+1) for i < α, (Mi,Mi+1,Ji) ∈ K3,vq
s for

i < α,Jα ⊆M\M0\ ∪ {Ji : i < α} and ∪{Ji : i < α+ 1} is indepen-
dent in (M0,Mα+1) then Jα is independent in (M0,Mα,Mα+1).

7) Assume that M0 ≤s M1 ≤s M2, (M0,M2,J2) ∈ K3,vq
s and J0 =

M1 ∩ J2 and J2\J0 is independent in (M0,M1,M2).

Then (M0,M1,J0) ∈ K3,vq
s .

8) If 〈Mi : i ≤ α〉 is ≤s-increasing continuous, α < λ+ and Ji is
independent in (M0,Mi,Mi+1) for i < α then we can find a ≤s-
increasing continuous sequence 〈Ni : i ≤ α〉 such that Mi ≤s Ni, Ni

is (λ, ∗)-brimmed over Mi and (Mi,Mi+1,Ji) ≤bs (Ni, Ni+1,Ji) ∈

K3,vq
s for i < α.

Remark. See 4.2(3) and 5.7(4) for the definition of <∗∗
bs .

Note also:

5.17 Observation. Assume s is a successful good+ frame.
If (Mi, Ni,Ji) ∈ K3,vq

s for i < δ, δ a limit ordinal < λ+
s , (Mi, Ni,Ji)

is <∗∗
bs -increasing for i < δ (hence Mi is ≤s-increasing, Ni is ≤s-

increasing, we have not demanded continuity) then

(a) (Mδ, Nδ,Jδ) ∈ K3,vq
s when we let Mδ = ∪{Mi : i < δ}, Nδ =

∪{Ni : i < δ} and Jδ = ∪{Ji : i < δ}

(b) for i < j ≤ δ we have NFs(Mi, Ni,Mj, Nj)
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(c) if α ≤ j ≤ δ and α is a limit ordinal then

NFs(
⋃

i<α

Mi,
⋃

i<α

Ni,Mj, Nj).

Remark. Note that in the proof of 5.16 + 5.17 actually only the
following order is required:

(a) 5.16(2),(5),(7) before 5.17,

(b) 5.16(3),(5),(8) before 5.16(4) and

(c) 5.16(5) before 5.16(6).

Proof of 5.17. By 5.8(5) for non-zero α ≤ δ we have (∪{Mi : i <

α},∪{Ni : i < α},∪{Ji : i < α}) belongs to K3,bs
s . We get that

(Mδ, Nδ,Jδ) belongs to K3,bs
s ; this partially proves clause (a).

We prove the observation by induction on δ, so by the induction
hypothesis without loss of generality 〈(Mi, Ni,Ji) : i < δ〉 is ≤bs-
increasing continuous as we can for limit i redefine (Mi, Ni,Ji) as
(∪{Mj : j < i},∪{Nj : j < i},∪{Jj : j < i}). Hence it belongs to

K3,vq
s by the induction hypothesis and <∗∗

s continues to hold.
Now (using clause (a) of 5.16(2)) we choose an <∗∗

s -increasing
continuous sequence 〈(M ′

i , N
′
i ,J

′
i) : i < λ+〉 such that

(∗) (a) (M ′
i , N

′
i ,J

′
i) ∈ K3,bs

s is thick

(b) M ′
0 = M0, N0 ≤s N

′
0 and J0 ⊆ J′

0

(c) if (M ′
i , N

′
i ,J

′
i) /∈ K3,vq

s then ¬ NFs(M
′
i , N

′
i ,M

′
i+1, N

′
i+1)

(d) (M ′
i , N

′
i ,J

′
i\Jj) is thick when i = j + 1.

As s is successfull good+ the set {δ < λ+: NFs(Mδ, Nδ,Mδ+1, Nδ+1)}
contains a club of λ+. Let 〈αi : i < λ+〉 list such club in increasing
order so clearly without loss of generality M ′

αi+1
, N ′

αi+1
is brimmed

over M ′
αi+1, N

′
αi+1 respectively.

Now we choose fi by induction on i ≤ δ such that

⊡ (a) fi is a ≤s-embedding of Ni into N ′
αi+2

(b) fi maps Mi onto M ′
αi
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(c) fi maps Ji into J′
αi

(d) fi is increasing continuous in i

(e) for j < i we have fi(Ji) ∩ J′
αj

= fi(Jj).

For i = 0 this holds for fi = idN0
by (∗)(b).

For i limit take unions. So let i = j + 1. As M ′
i is brimmed

over M ′
j we can find an isomorphism f1

i from Mi onto M ′
i extending

fj ↾ Mj ; this will ensure clause (b) of ⊡.

Let N+
i , N

−
i be such that Ni ≤s N

+
i and N−

i ≤s N
+
i and

(Mj , Nj,Jj) ≤bs (Mi, N
−
i ,Jj) ∈ K3,vq

s and N+
i is brimmed over Nj

(possibly by 5.16(2b), the “hence...”). We know that (M ′
αj
, N ′

αj
,J′

αj
)

≤bs (M ′
αi
, N ′

αi
,J′

αi
) and fj(Jj) ⊆ J′

αj
hence fj(J

+
αj

) is indepen-

dent in (M ′
αj
,M ′

αi
, N ′

αi
) and, of course, M ′

αi
≤s N ′

αi
∧ fj(Nj) ≤s

N ′
αj+1 ≤s N

′
αi

. Hence as (Mj , Nj,Jj) ∈ K3,vq
s we know that

NFs(M
′
αj
, fj(Nj),M

′
αi
, N ′

αi
) and of course NFs(Mj, Nj ,Mi, N

+
i ).

So as N ′
αi+1 is brimmed over N ′

αi
, there is a ≤s-embedding f2

i of

N+
i intoN ′

αi+1 extending f1
i ∪fj . By 5.16(5) from (M ′

αi
, N ′

αi+1,J
′
αi

) ∈

K3,bs
s we can deduce that Jαi

\fj(Jj) is independent in

(M ′
αi
, f2

i (N−
i ), N ′

αi+1
).

So we can find a one to one gi : Ji\Jj → J′
αi
\fj(Jj) such that a ∈

Ji\Jj ⇒ tps(gi(a), f
2
i (N−

i ), Nαi+1
) = f2

i (tps(a,N
−
i , N

+
i )). Next,

we can choose f3
i ⊇ (f2

i ↾ N−
i )∪ gi which is an ≤s-embedding of N+

i

into N ′
αi+2. The f3

i ⊇ gi will ensure clause (c) of ⊡ and f3
i ⊇ f2

i ⊇ fj

will ensure (d) of ⊡.

Lastly, let fi = f3
i ↾ Ni so the relevant cases of clauses (a)-(d) are

satisfied.

So we have carried the inductive definition of f̄ = 〈fi : i ≤ δ〉 as
required in ⊡. Clearly fi(Ni) ≤s Nαi

for every limit i ≤ δ and

⊙(a) fδ(Mδ) = M ′
αδ

≤s fδ(Nδ) ≤s N
′
δ

(b) for every i < δ,J′
αi
\fi(Ji) is independent in

(M ′
αi
, fi(Ni), N

′
αi+1)

(c) 〈J′
αi
\fi(Ji) : i ≤ δ〉 is ⊆-increasing continuous

(d) J′
δ\fδ(Jδ) is independent in (M ′

αδ
, fδ(Nδ), N

′
αδ

).
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[Why? Clause (a) of ⊙ holds by the choice of f̄ . As for clause (b) note

that for every i < δ we have (M ′
αi
, N ′

αi
,J′

αi
) ∈ K3,bs

s and M ′
αi

≤s

fi(Ni) ≤s N
′
αi+1 and (Mi, Ni,Ji) ∈ K3,vq

s by an assumption of the
observation 5.17 which we are proving hence (M ′

αi
, fi(Ni), fi(Ji)) =

(fi(Mi), fi(Ni), fi(Ji)) ∈ K3,vq
s hence by 5.16(5) really clause (b) of

⊙ holds.
Now, clause (c) of ⊙ holds by ⊡(d), (e). By ⊙(a) and 5.8(5) we

get also that J′
αδ
\fδ(Jδ) = ∪{J′

i\fi(Ji) : i < δ} is independent in
(M ′

αδ
, fδ(Nδ), N

′
αδ

). So clause (d) of ⊙ holds.]

Now by 5.16(7) and ⊙ as (M ′
αδ
, fδ(Nδ)), fδ(Jδ)) = (fδ(Mδ), fδ(Nδ),

fδ(Jδ)) belongs toK3,vq
s we get that (Mδ, Nδ,Jδ) ∈ K3,vq

s as required
in clause (a) of the conclusion of 5.17.

As for clause (b) there note that obviously (Mi, Ni,Ji) ∈ K3,uq
s is

≤bs (Mδ, Nδ,Jδ) and use the definition of K3,vq
s and the definition of

<bs, i.e., 4.2(1), which is included in the definition of <∗∗
bs and clause

(c) there holds as presently it is a case of clause (b). �5.17

Proof of 5.16. 1) By 5.9(2) and the definition of K3,vq
s .

2) Clause (a):
Let M ′ be a <s-extension of M which is brimmed over M and

without loss of generality M ′ ∩ N = M . So for some N ′ we have
NFs(M,N,M ′, N ′). LetN ′′ be a<s-extension ofN ′ which is brimmed
over N ′ and moreover there is a ≤s-increasing continuous sequence
〈N ′

i : i ≤ λ〉 such that N ′
0 = N ′, N ′

λ = N ′′, N ′
i+1 is brimmed over

N ′
i , ai ∈ N ′

i+1, tps(ai, N
′
i , N

′
i+1) does not fork over M ′ and for each

p ∈ S bs
s (M ′) for λ ordinals i < λ the element ai realizes p. Now

choose J′ = J∪{ai : i < λ} and so (M ′, N ′′,J′) exemplify the desired
conclusion. In fact also (M ′, N ′′,J′\J) is thick.

Clause (b),(c): [We use s successful good+]

We give the details for clause (c), for clause (b) below in ⊠ we
demand Jα = J and omit the thickness demands or just see 5.24.

We choose (Mα, Nα,Jα) by induction on α < λ+ such that

⊠(α) (Mα, Nα,Jα) ∈ K3,bs
s is ≤bs-increasing continuous

(β) (M0, N0,J0) = (M,N,J)
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(γ) if α is non-limit then (Mα+1, Nα+1,Jα+1) is thick; more-
over (Mα+1, Nα+1,Jα+1\Jα) is thick and (Mα, Nα,Jα) <∗∗

bs

(Mα+1, Nα+1,Jα+1)

(δ) if α is a limit ordinal then, if possible under clause (α)
then ¬ NFs(Mα, Nα,Mα+1, Nα+1).

By 5.8(5) for every limit α < λ+ and β < α we have (Mβ, Nβ,Jβ) <∗∗
bs

(Mα, Nα,Jα).
Also by the local character axiom (E)(c), also for limit α, (Mα, Nα,Jα)
is thick. Lastly, by s being good+ we know that ≤K↾ Ks(+) =≤∗

λ+↾

Ks(+) hence by clause (δ) for a club of δ < λ+, (Mδ, Nδ,Jδ) ∈ K3,vq
s .

So we are done.
3) Let J = {ai : i < α}. We prove this by induction on α. So
assume (M0,Mα,J) ≤bs (M ′

0,M
′
α,J) and we have to prove that

NFs(M0,M
′
0,Mα,M

′
α).

We can find (M ′′
0 ,M

′′
α) such that (M ′

0,M
′
α,J) <bs (M ′′

0 ,M
′′
α ,J),M ′′

0

is brimmed over M ′
0 and M ′′

α is brimmed over M ′′
0 ∪M ′

α. So it is
enough to prove that NFs(M0,Mα,M

′′
0 ,M

′′
α).

By 4.7 we can find a ≤s-increasing continuous sequence 〈Ni : i ≤
α〉 such that

⊛1 (a) Mi ≤s Ni for i ≤ α

(b) N0 is brimmed over M0

(c) if i < α then tps(ai, Ni, Ni+1) does not fork over Mi

hence over M0

(d) (Ni, Ni+1, ai) ∈ K3,uq
s for i < α.

Now we choose (N∗
i , fi) by induction on i ≤ α such that

⊛2 (a) N∗
i is ≤s-increasing continuous

(b) N∗
0 = M ′′

α

(c) fi is a ≤s-embedding of Ni into N∗
i

(d) fi ↾ Mi = idMi

(e) f0 maps N0 into M ′′
0 and M ′

0 ≤s f0(N0)

(f) fi(aj) = aj if j < i.
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For i = 0 this is possible by N∗
0 = M ′′

α and N0 being ≤s-universal
over M0 and M0 ≤ M ′

0 and M ′′
α being ≤s-universal over M0. For i

limit take union. So let i = j + 1.
Now note that:

(∗)1 J is independent in (M0,M
′′
0 ,M

′′
α) hence in (M0,M

′′
0 , N

∗
j ).

[Why? As (M0,Mα,J) ≤bs (M ′
0,M

′
α,J) ≤bs (M ′′

0 ,M
′′
α ,J) and M ′′

α =
N∗

0 ≤s N
∗
j .]

(∗)2 J\{ai : i < j} is independent in (M ′′
0 , fj(Nj), N

∗
j ).

[Why? By 5.4(3) recalling M0 ≤s fj(N0) ⊆M ′′
0 .]

(∗)3 tps(aj, fj(Nj), N
∗
j ) does not fork over M ′′

0 hence over M0.

[Why? By (∗)2 and the definition of independent.]

(∗)4 NFs(Mj ,Mj+1, fj(Nj), N
∗
j ).

[Why? By (∗)3 as (Mj,Mj+1, aj) ∈ K3,uq
s .]

(∗)5 NFs(Mj ,Mj+1, Nj , Nj+1).

[Why? By ⊛1 as (Mj,Mj+1, aj) ∈ K3,uq
s by an assumption.]

By (∗)4 + (∗)5 we can find (N∗
i , f

∗
i ) as required.

Having carried the induction we have
NFs(Mi,Mi+1, fi(Ni), fi+1(Ni+1)) for every i < α and the sequences
〈Mi : i ≤ α〉, 〈fi(Ni) : i ≤ α〉 are increasing continuous. So by
long transitivity for NFs we have NFs(M0,Mα, f0(N0), f(Nα)). But
f0(M0) = M0 ≤s M

′
0 ≤s f0(N0) ≤s M

′′
0 ,M0 ≤s f0(N0) ≤s M

′′
0 and

fα(Nα) ≤s N
∗
α and Mα ≤s M

′
α ≤s M

′′
α ≤s N

∗
α so together we get

NFs(M0,Mα,M
′
0,M

′
α) as required.

4) We prove this by induction on α. We repeat the proof of part (3)

replacing ai by Ji, K
3,uq
s by K3,vq

s . However, in the parallel to ⊛1

instead of 4.7 we use part (8); then in the proof of ⊛2, in (∗)2 we
use part (5) instead 5.4(3) and in (∗)3 now say Jj is independent in
(M0, fj(Nj), N

∗
γ ).

5) By the assumption J1 is independent in (M0,M2). Let J1 = {ai :
i < α} without repetitions of course and so we can find (M0

i ,M
2
i )

for i ≤ α such that
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(∗) (a) (M0
i ,M

2
i ) = (M0,M2) for i = 0

(b) M ℓ
i (i ≤ α) is ≤s-increasing continuous for ℓ = 0, 2

(c) (M0
i ,M

0
i+1, ai) ∈ K3,uq

s

(d) tps(ai,M
0
i ,M

0
i+1) does not fork over M0.

Easy to construct by 5.4(1).

Now we can prove by induction on i ≤ α that Ii = J0 ∪ {aε : ε ∈
[i, α)} is independent in (M0,M

0
i ,M

2
i ).

[Why? For i = 0 this is assumed. For i = j + 1 this follows by Ij =
Ii∪{aj} is independent in (M0,M

0
j ,M

2
j ) hence in (M0

j ,M
2
j ) hence by

monotonicity in (M0
j ,M

2
i ) hence by 5.4(3) the set Ii is independent

in (M0
j ,M

0
i ,M

2
i ) and in (M0

i ,M
2
i ) hence by 5.4(4) is independent in

(M0,M
0
i ,M

2
i ). For i limit use monotonicity and 5.10(2).]

So we have proved that J0 = Iα is independent in (M0,M
0
α,M

2
α).

As (M0,M1,J0) ∈ K3,vq
s by the definition of K3,vq

s it follows that
NFs(M0,M1,M

0
α,M

2
α) and this implies by 5.3 that J1 is independent

in (M0,M1,M
2
α) hence in (M0,M1,M2) as required.

6) For i ≤ δ let Ii = ∪{Jj : i ≤ j < δ + 1} and we prove that Ii

is independent in (M0,Mi,Mδ+1) for i ≤ δ by induction on i. For
i = 0 this is given, for i successor use part (5) and for i limit use
5.8(5).
7) Toward contradiction assume that this fails. Then we can find
N0, N1 such that M0 ≤s N0 ≤s N1 and M1 ≤s N1 and J0 is inde-
pendent in (M0, N0,M2) but ¬ NFs(M0,M1, N0, N1) hence by sym-
metry of NF we have ¬NFs(M0, N0,M1, N1). For simplicity without
loss of generality N1 ∩M2 = M1. By the existence of non-forking
amalgamation (which is necessarily disjoint) we can find N2 such
that NFs(M1, N1,M2, N2). From this and the monotonicity of NFs

we conclude that ¬ NFs(M0, N0,M2, N2). As J2\J0 is independent
in (M1,M2) by an assumption and NFs(M1, N1,M2, N2) we deduce
that J2\J0 is independent in (M1, N1, N2) hence in (M0, N1, N2).
Also we have J0 is independent in (M0, N0, N1) so we deduce that
J = J0 ∪ (J2\J0) is independent in (M0, N0, N2). As (M0,M2,J) ∈

K3,vq
s we get a contradiction.

8) As in the proof of 4.7 and 5.24 below. �5.16
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5.18 Conclusion. 1) Assume s is good+ and successful and

(a) 〈Mi : i ≤ δ〉 is ≤s-increasing continuous

(b) Mi+1 is (λ, ∗)-brimmed over Mi

(c) (M0, N0,J) ∈ K3,vq
s

(d) N0 ∩Mδ = M0.

Then we can find Ni for i ∈ (0, δ] such that

(α) N̄ = 〈Ni : i ≤ δ〉 is ≤s-increasing continuous

(β) (Mi, Ni,J) ∈ K3,vq
s for i ≤ δ.

Proof. We choose (M ′
i , N

′
i) by induction on i ≤ δ such that

(a) M ′
i is ≤s-increasing continuous

(b) N ′
i is ≤s-increasing continuous

(c) (M ′
i , N

′
i ,J) ∈ K3,vq

s

(d) (M ′
0, N

′
0) = (M0, N0)

(e) (M ′
j, N

′
j ,J) <∗∗

s (M ′
i , N

′
i ,J) when i = j + 1 < δ.

For i = 0 use clause (d). For i = j + 1 use 5.16(2)(b).
For i limit take unions and use 5.17.
Having carried the definition we can choose an isomorphism fi

from Mi onto M ′
i increasing continuous with i such that f0 = idM0

.
This is possible for i = 0 as M ′

0 = M0, for i limit by taking union
and by i = j + 1 by the uniqueness of a (λ, ∗)-brimmed extension in
Ks. So by renaming M ′

i = Mi for i ≤ δ so we are done.
�5.18

Recall (Definition 4.4)

5.19 Definition. Assume s = t+, t is a successful good+ λt-frame,
so λ = λs = λ+

t . We say that (M,N,J) is canonically prime for s

(over t) when there are ≤K[t]-representations 〈Mα : α < λ〉, 〈Nα :

α < λ〉 of M,N respectively such that (Mα, Nα,J∩Nα) ∈ K3,vq
t for

every α < λ.
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5.20 Claim. [s = t+, t a successful good+ λ-frame.]
If (M0,M2,J) is canonically prime for s (see Definition 5.19) and
M0 ∪ J ⊆M1 ≤s M2 then (M0,M1,J) is canonically prime for s.

5.21 Remark. In 5.20 it is enough to assume t is a successful good
λ-frame.

Proof. Let 〈Mℓ,α : α < λ〉 be a ≤K[t]-representation of Mℓ for ℓ =
, 0, 1, 2. Clearly M0 ≤s M1 ≤s M2 hence for some club E for every
α < β from E and ℓ ≤ 1 we have NFt(Mℓ,α,Mℓ+1,α,Mℓ,β,Mℓ+1,β).

Also without loss of generality α ∈ E ⇒ (M0,α,M2,α,Jα) ∈ K3,vq
t

where Jα := J∩M2,α. Now by 5.16(7) for t applied with M0,α,M1,α,
M2,α,Jα here standing for M0,M1,M2,J2 there (but in this case

J0 = J2, a simpler case), we have α ∈ E ⇒ (M0,M1,Jδ) ∈ K3,vq
t , so

we are done.
Note that 5.16(7) does not need “good+”. �5.20

5.22 Claim. [s = t+, t a successful good+ λt-frame, so λ = λ+
t , and

recall s is successful (and good+, of course by 1.9).]
Assume

(a) 〈M ℓ
α : α < λs〉 is a ≤t-representation of Mℓ ∈ Ks for ℓ = 1, 2

(b) M1 ≤s M2

(c) J ⊆ IM1,M2
is independent in (M1,M2) and let Jα = J∩M2

α.

Then the following conditions are equivalent:

(α) (M1,M2,J) ∈ K3,qr
s

(β) for a club of δ < λs the triple (M1
α,M

2
α,Jα) belongs to K3,vq

t

(i.e. (M1,M2,J) is canonically prime)

(γ) for stationarily many δ < λs the triple (M1
α,M

2
α,Jα) belongs

to K3,vq
t

(δ) for arbitrarily large δ ∈ E the triple (M1
α,M

2
α,Jα) belongs

to K3,vq
t wherever E is a club of λ satisfying: if α < β are

from E then NFt(M
1
α,M

2
α,M

1
β ,M

2
β) and (M1

α,M
2
α,Jα) <∗∗

bs

(M1
β ,M

2
β ,Jα).
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Proof. For clauses (β), (γ) as we can restrict ourselves to a club (for
(δ) - the given E) so without loss of generality M ℓ

α+1 is brimmed over

M ℓ
α (for α < λ+, ℓ = 1, 2) and α < β ⇒ NFt(M

1
α,M

2
α,M

1
β ,M

2
β) and

recalling 5.11 also (M1
α,M

2
α,Jα) ∈ K3,bs

s for α < λs and α < β <
λs ∧ c ∈ Jα ⇒ tpt(c,M

1
β ,M

2
β) does not fork over M1

α. For clause (δ)
without loss of generality E = λ.

Recalling Definition 5.19 by repeating the proof of 4.9 we can
prove “clause (β) is equivalent to clause (α)”. Clause (β) implies
clause (γ) which implies clause (δ) trivially. Now clause (δ) implies
clause (β) by 5.17 as for every α < β < λ+

t we have (M1
α,M

2
α,Jα) <∗∗

bs

(M1
β ,M

2
β ,Jβ). �5.22

5.23 Conclusion. [t, s are successful good+ and s = t+]

1) Uniqueness for K3,qr
s . If (M,Nℓ, {a

ℓ
t : t ∈ I}) ∈ K3,qr

s for ℓ =
1, 2 and tps(a

1
t ,M,N1) = tps(a

2
t ,M,N2) for t ∈ I then there is an

isomorphism f from N1 onto N2 over M mapping a1
t to a2

t for t ∈ I.

2) [Existence] If (M,N,J) ∈ K3,bs
s then some N ′ ≤s N we have

(M,N ′,J) ∈ K3,qr
s .

Remark. Of course, we have existence as s = t+.

Proof. 1) As in the proof for K3,pr
s .

2) By 4.9 we know that s has primes (i.e. existence for K3,pr
s ) hence

by 5.8(1) we are done. �5.23

Close to 5.16(2)(b) and 5.16(8) is:

5.24 Claim. [s is successful good+.]
If J is independent in (M0, N0), then we can find (M1, N1) such

that:

(a) M0 ≤s M1 ≤s N1 and M0 ≤s N0 ≤s N1

(b) M1 is (λ, ∗)-brimmed over M0

(c) N1 is (λ, ∗)-brimmed over N0

(d) (M1, N1,J) ∈ K3,vq
s
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(e) tps(c,M1, N1) does not fork over M0 for every c ∈ J so J is
independent in (M0,M1, N1).

Proof. We try to choose by induction on ζ < λ+
s , a pair (M ′

ζ , N
′
ζ)

such that:

(∗)1 (M ′
0, N

′
0) = (M0, N0)

(∗)2 M ′
ζ is ≤s-increasing continuous,

(∗)3 N ′
ζ is ≤s-increasing continuous

(∗)4 M ′
ζ ≤s N

′
ζ ,J is independent in (M0,M

′
ζ , N

′
ζ)

(∗)5 ¬ NFs(M
′
ζ , N

′
ζ ,M

′
ζ+1, N

′
ζ+1) for ζ even

(∗)6 M ′
ζ+1 is brimmed over M ′

ζ and N ′
ζ+1 is brimmed over N ′

ζ if
ζ is odd.

For ζ = 0 this is trivial. For ζ = ξ + 1, if (M ′
ζ , N

′
ζ ,J) /∈ K3,vq

s

there are no problems and otherwise (M ′
ζ , N

′
ζ) satisfies the demands

on (M1, N1) in the claim so we are done and for limit stages use
5.10(2).
We necessarily (as ≤s(+)=<

∗
λ+ [s] by 1.6) get stuck for some ζ and

(M ′
ζ , N

′
ζ) can serve as (M1, N1).

�5.24

5.25 Exercise: 1) Assume M0 ≤s Mℓ ≤s M3 for ℓ = 1, 2 and

(M0,M2,J) ∈ K3,qr
s and J is independent in (M0,M1,M3). Then

we can find M+
3 ,M

−
3 such that Ms ≤s M

+
s ,M1 ∪M2 ⊆M−

s ≤s M
+
3

and (M1,M
−
3 ,J) ∈ K3,qr

s .

[Hint: Clearly NFs(M0,M1,M2,M3). We can find M+
3 which is

(λ, ∗)-brimmed over M3. As s has primes there is M ′
s ≤s M

+
3 such

that (M1,M
′
s,J) ∈ K3,qr

s . As (M0,M2,J) ∈ K3,qr
s there is a ≤s-

embedding f ofM2 intoM ′
3 overM0∪J. As above NFs(M,M1, f(M2),

M+
3 ) and by uniqueness of NF possibly increasing M+

3 , there is an
automorphism g of M+

3 extending f . Let M−
s := g−1(M ′

3). Used in
8.13. Actually just s is weakly successful with primes.]
2) First we choose N+

i and if i = j + 1 also M+
j ,Jj such that

⊛ (a) 〈N+
j : j ≤ i〉 is ≤s-increasing continuous
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(b) N+
i = M if i = 0

(c) if i = j + 1 then Mj ≤s M
+
j and (M,M+

j ,Jj) belongs

to K3,vq
s and NFs(Mj, N

+
j ,M

+
j , N

+
d ).

This is similar to the proof of part (1). Second, we prove by induction
on n that if u1, u2 are disjoint finite subsets of α and n ≥ |u2| then
{Mi : i ∈ u1} ∪ {M+

i : i ∈ u2} is independent inside (M,N+). This
as in part (1) we use part (3).

§6 Orthogonality

Note that presently the case “orthogonality = weak orthogonality”
is the main one for us. In the latter part of the section “s has primes”
is usually used and we shall later weaken this, but this is not a serious
flaw here. We can weaken the hypothesis see [Sh:F735].

6.1 Hypothesis. As in 5.1:

(a) s is a good+ λ-frame, successful or at least

(b) s is a weakly successful good λ-frame and 4.7 holds.

6.2 Definition. 1) For p, q ∈ S bs
s (M) we say that they are weakly

orthogonal, p⊥
wk
q when: if (M,N, b) ∈ K3,uq

s and tps(b,M,N) = q

then p has a unique extension in Ss(N); equivalently, every exten-
sion of p in Ss(N) does not fork over M ; note: the order of p, q is
seemingly important. (In the first order case the symmetry is essen-
tially by the definition and here it will be proved).
2) For p, q ∈ S bs

s (M) we say that they are orthogonal, p⊥
st
q or p⊥q

if p1, q1 are weakly orthogonal whenever M ≤s M1 and p1, q1 ∈
S bs

s (M1) are non-forking extensions of p, q respectively.
3) If p ∈ S bs

s (M1), q ∈ S bs
s (M2) and Mℓ ≤s N for ℓ = 1, 2 then

orthogonality of p and q means that p′, q′ are orthogonal where p′ ∈
S bs

s (N) is the unique non-forking extension of p and q′ ∈ S bs
s (N)

is the unique non-forking extension of q (this is justified by 6.8(1)).
4) If p ∈ S bs

s (M1), q ∈ S bs
s (M2) and Mℓ ≤s M for ℓ = 1, 2

then p, q being weakly orthogonal means that for some M ′,M ′′ we
have M ≤s M ′′,M ′ ≤s M ′′,M1 ∪ M2 ⊆ M ′ and letting p′ ∈
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S bs
s (M ′′), q′ ∈ S bs

s (M ′′) be non-forking extensions of p, q respec-
tively, we have (p′ ↾ M ′)⊥

wk
(q′ ↾ M ′), (see 6.7(7)).

Naturally we now show that the definition is equivalent to some
variants (e.g. for some such pair (N, b) rather than all such (N, b);
so if s has primes and they are unique this is trivial).

6.3 Claim. 1) Assume that p, q ∈ S bs
s (M) and (M,N, b) ∈ K3,uq

s

and q = tps(b,M,N). Then p⊥
wk
q iff p has a unique extension in

Ss(N).

2) Assume (M,N, b) ∈ K3,uq
s , (M,N2, b) ∈ K3,uq

s and M ≤s N1 ≤s

N+ and M ≤s N ≤s N
+,M ≤s N2 ≤s N

+.
Then NFs(M,N,N1, N

+) ≡ NFs(M,N2, N1, N
+) ≡ (tps(b, N1, N

+)
does not fork over M).

Proof. 1) The implication ⇒ holds by the “every” in the definition.
So assume p has a unique extension in S bs

s (N) and we shall prove
p⊥
wk
q.

So assume (M,N2, b2) ∈ K3,uq
s and tps(b2,M,N2) = q and let p2 ∈

Ss(N2) extend p. So there are N+ ∈ Ks and a ∈ N+ such that
N2 ≤s N

+ and a realizes p2 in N+. As a realizes p2 in N+ it also
realized p2 ↾ M which is p, so tps(a,M,N+) ∈ S bs

s (M). As s is
weakly successful, possibly replacing N+ by a ≤s-extension, there
is N1 ≤s N+ such that (M,N1, a) ∈ K3,uq

s . Also without loss of
generality N ≤s N

+ and b2 = b (as N,N+ are ≤s-extensions of M
and b ∈ N ≤s N

+, b2 ∈ N2 ≤s N
+ realizes the same type so we can

amalgamate).
Now as a realizes p2 in N+ it also realizes p2 ↾ M which is p so

tps(a,N,N
+) is an extension of p in Ss(N) hence by our present as-

sumption it does not fork over M . As the triple (M,N1, a) ∈ K3,uq
s ,

we can conclude by Claim 1.19 that NFs(M,N,N1, N
+), but b ∈

N, tps(b,M,N) ∈ S bs
s (M) hence by 1.18 the type tps(b, N1, N

+)

does not fork over M . But we have (M,N2, b) ∈ K3,uq
s hence

NFs(M,N2, N1, N
+) from which (as a ∈ N1, tps(a,M,N+) ∈ S bs

s (M))
we deduce tps(a,N2, N

+) does not fork over M , but this last type
is p2 so we are done.
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2) By the same proof. Actually 2) is the idea of the proof of 1).
�6.3

6.4 Claim. 1) Assume (M,N, b) ∈ K3,pr
s or just (M,N, b) ∈ K3,uq

s

and q = tps(b,M,N) and p ∈ S bs
s (M).

If p is realized in N , then p, q are not orthogonal and even not weakly
orthogonal.
2) Let p, q ∈ S bs

s (M). Then p ±
wk
q iff for some a, b, N ′ we have

M ≤s N
′, a ∈ N ′ realizes p, b ∈ N ′ realizes q and the (indexed) set

{a, b} is not independent in (M,N ′), e.g. a = b.

Proof. 1) The type p has at least two extensions in Ss(N): one
algebraic, is tps(a,N,N) where a ∈ N realizes p and the second is
in S bs

s (N), hence non-algebraic, in fact a non-forking extension of
p. So by the definition we have p ±

wk
q.

2) Let (M,N, b) ∈ K3,uq
s be such that q = tps(b,M,N). If p ±

wk
q

then by 6.3 there is p1 ∈ Ss(N) extending p forking over M , and let
a,N ′ be such that N ≤s N

′, and p1 = tps(a,N,N
′); now by 5.4(3)

we get {a, b} is not independent in (M,N ′).
[Why? Use it with J,M,N, β, 〈ai : i < β〉,J\{ai : i < β}, (M,Mβ, N)
there standing for {a, b},M,N ′, 1, 〈a〉, {b}, (M,N,N ′) here so we get
that {b} is independent in (M,N,N ′), contradicting the choice of
(N ′, b).]

So we have proved that the first phrase implies the second. If
p⊥
wk
q then we shall show that the second phrase fails. So assume that

M ≤s N
′ and a, b ∈ N realize p, q respectively. Then we can find

N1, N2 such that N ′ ≤s N2,M ≤s N1 ≤s N2 and (M,N1, b) ∈ K3,uq
s .

By Definition 6.2(1) clearly tps(a,M1, N2) does not fork over M .
Now {a, b} is independent over M inside N2 hence in N ′ by the
Definition 5.2 and 6.2. �6.4

6.5 Definition. Fixing C ∈ Ks, if pℓ ∈ S bs
s (Mℓ) and Mℓ ≤K[s] C

for ℓ = 1, 2, then let p1‖p2, in words p1, p2 are parallel inside C, mean
that for some M, p we have M1 ∪M2 ⊆M <K[s] C and M ∈ Ks, p ∈

S bs
s (M) does not fork over Mℓ and extends pℓ for ℓ = 1, 2.
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Remark. 1) As we shall note, e.g. (see 6.7(4), 6.8(2)), “p orthogonal
to −” is a property of p up to parallelism (as being parallel is an
equivalence relation). For this we have to use the extended definition
of being orthogonal from 6.2(3).

Similarly for p⊥M defined in 6.9 below.

Obvious properties of parallelism are

6.6 Claim. 1) Parallelism inside C ∈ Ks is an equivalence relation.
2) If M ∈ Ks and M ≤K[s] C, then on S bs

s (M), parallelism inside C

is equality.

Proof. Easy.

6.7 Claim. 1) If p, q ∈ S bs
s (M) and f is an isomorphism from M

onto N then p⊥
wk
q ⇔ f(p)⊥

wk
f(q). Similarly for ⊥.

2) [symmetry] If p, q ∈ S bs
s (M) then p⊥

wk
q ⇔ q⊥

wk
p. Similarly for ⊥.

3) Assume that M,N ∈ Ks are brimmed (e.g. Ks categorical). If
M ≤s N , and p, q ∈ S bs

s (N) do not fork over M , then p⊥
wk
q ⇔ (p ↾

M)⊥wk(q ↾ M).
4) Assume M,N ∈ Ks are brimmed. If p1, p2 ∈ S bs

s (M) and
q1, q2 ∈ S bs

s (N) and M ≤K[s] C, N ≤K[s] C and p1‖q1, p2‖q2 in-
side C then p1⊥

wk
p2 ⇔ q1⊥

wk
q2.

5) If 〈Mi, aj : i ≤ α, j < α〉 is an M0-based pr-decomposition or
just uq-decomposition of (M0,Mα) and p ∈ S bs

s (M0) is weakly or-
thogonal to tps(aj ,Mj,Mj+1) for every j < α then p has a unique
extension in Ss(Mα).
6) Assume M0 ≤s M1 and p, q ∈ S bs

s (M1) do not fork over M0. If
p⊥
wk
q then (p ↾ M0)⊥

wk
(q ↾ M0).

7) Assume that M1 ≤s M2 and p, q ∈ S bs
s (M2). If p, q does not fork

over M1 then p⊥
wk
q ⇔ (p ↾ M1)⊥

wk
q ⇔ p⊥

wk
(q ↾ M2). Also if only p

does not fork over M1, then still the first ⇔ holds.

Proof. 1) Immediate.
2) By 3.9 alternatively this follows from 6.4(2).
3) By 1.21 there is an isomorphism f from M onto N such that

Paper Sh:705, Chapter III



III.§6 ORTHOGONALITY 477

f(p ↾ M) = p, f(q ↾ M) = q so the result holds by part (1).
4) We can find a model B ≤K[s] C of cardinality λ which includes

M ∪ N hence M ≤s B and N ≤s B. We can find B+ such that
B ≤s B

+ ∈ Ks and B
+ is brimmed over B hence over M and over

N . Let rℓ ∈ S bs
s (B+) be a non-forking extension of pℓ ∈ S bs

s (M)
for ℓ = 1, 2. As pℓ‖qℓ,M ≤s B ≤s B+,C, N ≤s B ≤s B+ and
B ≤K[s] C it follows that rℓ is a non-forking extension of qℓ for
ℓ = 1, 2.

Now we apply part (3) with r1, r2,M,B+ here standing for p, q,M ,
N there, (recalling that M ∈ Ks is brimmed by the assumption of
part (4)), so we get its conclusion r1⊥

wk
r2 ⇔ (r1 ↾ M)⊥

wk
(r2 ↾ M).

But r1 ↾ M = p1, r2 ↾ M = p2 so r1⊥
wk
r2 ⇔ p1⊥

wk
p2.

Similarly r1⊥
wk
r2 ⇔ q1⊥

wk
q2, so as ⇔ is transitive we can deduce

p1⊥
wk
p2 ⇔ q1⊥

wk
q2, which is the first desired conclusion.

5) Let Mα ≤s N and c ∈ N realizes p. We prove by induction on
β ≤ α that tps(c,Mβ, N) ∈ S bs

s (Mβ) does not fork over M0. For
β = 0 this is trivial, and for β successor use part (7) and for β a limit
ordinal use the continuity axiom (E)(h) of good frames. Lastly, for
β = α we get the desired result.
6) Note that here we do not have the brimness assumption. Assume
toward contradiction (p ↾ M0)±

wk
(q ↾ M0). So there areN1, N2, b such

that M0 ≤s N1 ≤s N2, b ∈ N1 realizes q ↾ M0, (M0, N1, b) ∈ K3,uq
s

and a ∈ N2 realizes p ↾ M0 but tps(a,N1, N2) forks over M0. By
our knowledge on NFs without loss of generality for some N3 we
have NFs(M0,M1, N2, N3) hence a, b realize p, q in N3 respectively
(see 1.18). By 5.3, if {a, b} is independent in (M1, N3) then {a, b}
is independent in (M0, N3) which fails. So N1, N3, a, b witness p ±

wk
q

by 6.4(2).
7) By the definition 6.2(4) and part (6); (note that in 6.2(4), our
case M1 ≤s M2, by part (6) without loss of generality M ′ = M2).
�6.7

6.8 Claim. 1) If p, q ∈ S bs
s (M1) does not fork over M0 where

M0 ≤s M1 then (p⊥q) ⇔ (p ↾ M0)⊥(q ↾ M0).
1A) Assume Mℓ ≤s N, pℓ ∈ S bs

s (Mℓ), qℓ ∈ S bs
s (Mℓ) for ℓ = 1, 2. If
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p1, p2 are parallel and q1, q2 are parallel then p1⊥q2 ⇔ p2⊥q2.
2) If p⊥q then p⊥

wk
q.

3) Assume that 〈Mα : α ≤ δ〉 is ≤s-increasing continuous, δ < λ+

limit ordinal and p, q ∈ S bs
s (Mδ). Then p⊥

wk
q iff for every α < δ

large enough (p ↾ Mα)⊥
wk

(q ↾ Mα). Similarly for ⊥.

4) If M ∈ Ks is brimmed and p, q ∈ S bs
s (M) then p⊥

wk
q ⇔ p⊥q.

5) If Ks is categorical then ⊥, ⊥
wk

are equal.

6) If M <s N,N is universal over M, p, q ∈ S bs
s (N) do not fork

over M and p⊥
wk
q then p⊥q (hence (p ↾ M)⊥q ↾ M).

Proof. 1) The implication ⇐ is by the definition 6.2(2). For the
other direction assume p⊥q and M0 ≤s M2 and p2, q2 ∈ S bs

s (M2)
are non-forking extensions of p ↾ M0, q ↾ M0 respectively. Without
loss of generality for some M3 we have M2 ≤s M3,M1 ≤s M3 and
let p3, q3 ∈ S bs

s (M3) be non-forking extensions of p2, q2 respectively
hence of p ↾ M0, q ↾ M0 respectively. As p⊥q we have p3⊥

wk
q3 and by

6.7(6) also (p3 ↾ M2)⊥
wk

(q3 ↾ M2) which means p2⊥
wk
q2, as required.

1A) Follows by part (1).
2) Read the definitions.
3) By axiom (E)(c) of good λ-frame for some α∗ < δ the types p, q
does not fork over Mα∗

.

If α ∈ [α∗, δ) and p ↾ Mα, q ↾ Mα are not weakly orthogonal then
by 6.7(6) the types p, q are not weakly orthogonal.

If p, q are not weakly orthogonal then by 6.4(2) there are a ≤s-
extension N of Mδ and a, b ∈ N realizing p, q respectively such that
the (indexed) set {a, b} is not independent in (Mδ, N). By 5.10(2)
applied to the sequence 〈Mα : α ∈ [α∗, δ)〉 for some α ∈ [α∗, δ), the
(indexed) set {a, b} is not independent in (Mα, N). As a, b realizes
p ↾ Mα, q ↾ Mα respectively by 6.4(2) the types p ↾ Mα, q ↾ Mα are
not weakly orthogonal hence by 6.7(6) for every β ∈ [α, δ) the types
p ↾ Mβ , q ↾ Mα are not weakly orthogonal. The last two paragraphs
prove the desirable equivalence concerning ⊥

wk
. As for ⊥ this follows

by part (1).
4) First assume ¬(p⊥

wk
q) then by the definitions ¬(p⊥q), the coun-
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terexample being M itself (or use part (2)).
Second, assume p⊥

wk
q and let N1 be such that M ≤s N1 and p1, q1 ∈

S bs
s (N1) be non-forking extensions of p, q respectively; we shall

prove p1⊥
wk
q1, this suffices for p⊥q hence finishes the proof. Now

there are N2, p2, q2 such that N1 ≤s N2, N2 is (λ, ∗)-brimmed and
p2, q2 ∈ S bs

s (N2) are non-forking extensions of p, q respectively hence
p2 ↾ N1 = p1, q2 ↾ N1 = q1. By 6.7(4) we have (p⊥

wk
q) ≡ (p2⊥

wk
q2) but

our present assumption is p⊥
wk
q so necessarily p2⊥

wk
q2. Now by 6.7(6)

we have p1⊥
wk
q1 so we are done.

[If we know part (6) first then we can say that: if p⊥
wk
q by 1.24 there

is M such that M0 ≤s M and M is brimmed over M0 and p, q does
not fork over M0. Now by (6) we get p⊥q as required.]
5) By part (4).
6) As N is universal over M , clearly there is M1 ≤s N which is
brimmed over M . By monotonicity, p, q ∈ S bs

s (N) does not fork
over M1 and as we assume that p⊥

wk
q, by 6.7(6) it follows that

(p ↾ M1)⊥
wk

(q ↾ M1). But M1 is brimmed so by part (4) we get

(p ↾ M1)⊥(q ↾ M1), hence by part (1) we get p⊥q as required.
�6.8

6.9 Definition. 1) Assuming M ≤s N and p ∈ S bs
s (N), we let

p⊥M (p is orthogonal to M) mean that: for any q, if q ∈ S bs
s (N)

does not fork over M then p⊥q (but see 6.10(1) below). Similarly
for p⊥

wk
M, p weakly orthogonal to M .

2) Assuming M ≤s N and p ∈ S bs
s (N), we say that p is super-

orthogonal to M and write p⊥
su
M when: if NFs(M,N,M ′, N ′) and

q ∈ S bs
s (M ′) then p⊥q.

6.10 Claim. 0) Automorphism of any C ∈ Ks

≥λ preserves p‖q, p⊥
x
q,

p⊥
x
M for x ∈ {wk,st,su} where p ∈ S bs

s (M), q ∈ S bs
s (N), and

M,N ∈ Ks are ≤K[s] C.

1) If M ≤s Nℓ (≤K[s] C), pℓ ∈ S bs
s (Nℓ) for ℓ = 1, 2 and p1‖p2 then

p1⊥M ⇔ p2⊥M . Similarly for ⊥
su

(so for x = st,su we can write p⊥
x
N
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if for some p′ ∈ S bs
s (N ′) parallel to p we have M ≤s N

′ & p′⊥
x
N).

2) Assume 〈Mα : α ≤ δ〉 is ≤s-increasing continuous, p ∈ S bs
s (N)

where N ≤K[s] C,Mδ ≤K[s] C (so N ∈ Ks). If α < δ ⇒ p⊥Mα then
p⊥Mδ. If α < δ ⇒ p⊥

su
Mα then p⊥

su
Mδ.

3) If M is brimmed, M ≤s Nℓ ≤s N and pℓ ∈ S bs
s (Nℓ) for ℓ =

1, 2 and NFs(M,N1, N2, N) then p2⊥M ⇒ p2⊥p1 (hence p2⊥M ⇒
p2⊥N1, i.e., p2⊥M ⇒ p2⊥

su
M).

4) (monotonicity) If p ∈ S bs
s (M3),M0 ≤s Mℓ ≤s M3 for ℓ = 1, 2,

the type p does not fork over M2 and p⊥
x
M1 then p ↾ M2⊥

x
M0 when

x ∈ {st,wk,su}.
5) If Ks is categorical, M ≤s N and p ∈ S bs

s (M), then p⊥M ⇔
p⊥
wk
M ⇔ p⊥

su
M .

Proof. 0) Trivial.
1) Let N3 ≤K[s] C be such that N1 ∪ N2 ⊆ N3 ∈ Ks and let p3 ∈

S bs
s (N3) be a non-forking extension of p1 (and of p2 (see 6.6(1)).

Toward proving the first sentence assume q ∈ S bs
s (M) and qℓ ∈

S bs
s (Nℓ) is a non-forking extension of q for ℓ = 1, 2 and for the

first sentence it is enough to show that q1⊥p1 ⇔ q2⊥p2 and let
q3 ∈ S bs

s (N3) be the non-forking extension of q (hence of q1 and of
q2). By 6.8(1) we have p1⊥q1 ⇔ p3⊥q3 ⇔ p2⊥q2 so we are done.

For the second sentence, by symmetry it is enough to assume that
p1⊥

su
M and to prove p2⊥

su
M . So assume NFs(M,N2,M

+, N+
2 ) and

p+
2 ∈ S bs

s (N+
2 ) be a non-forking extension of p2; and we should prove

that (p2⊥M
+, equivalently) p+

2 ⊥M
+. By part (0) without loss of

generality for some N+
3 ≤K[s] C of cardinality λs we have N3 ≤s

N+
3 , N

+
2 ≤s N

+
3 and NFs(N2, N

+
2 , N3, N

+
3 ) and let p+

3 ∈ S bs
s (N+

3 )
be a non-forking extension of p+

2 so of p2 and of p1.

By symmetry and transitivity of NFs we get NFs(M,M+, N3, N
+
3 )

hence by monotonicity NFs(M,M+, N1, N
+
3 ). As we are assuming

p1⊥
su
M we deduce p1⊥M

+, but p+
3 is the non-forking extension of p

in S bs
s (N+

3 ) hence p+
3 ⊥M

+ but p+
2 ‖p

+
3 hence by the first sentence

of part (1) we get p+
2 ⊥M

+ as required for proving p2⊥
su
M .

2) The first implication is easy by the local character (i.e., Axiom
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(E)(c) of good frames) and 6.8(3).
For the second implication by part (1) for ⊥

su
, without loss of

generality Mδ ≤s N ; so assume that NFs(Mδ, N,M
′
δ, N

′) and q ∈
S bs

s (M ′
δ) and we should prove that p⊥q. We know that there is a

≤s-increasing continuous sequence 〈M∗
α : α ≤ δ〉 such that α < β ≤

δ ⇒ NFs(Mα,M
∗
α,Mβ,M

∗
β) and M∗

δ is (λ, ∗)-brimmed over Mδ. So

without loss of generality M ′
δ ≤s M

∗
δ . Also without loss of generality

for some N∗ we have NFs(M
′
δ, N

′,M∗
δ , N

∗). By the NFs calculus,
NFs(Mα,M

∗
α, N,N

∗). Let q∗ ∈ S bs
s (M∗

δ ) be a non-forking extension
of q, hence for some α < δ, the type q∗ does not fork over M∗

α so
by the last sentence as p⊥Mα by an assumption of the clause we get
p⊥(q∗ ↾ Mα) hence p⊥q.
3) By part (1) without loss of generality

(∗)1 Nℓ is (λ, ∗)-brimmed over M for ℓ = 1, 2.
[Why? We can find N+

1 , N
+
2 , N

+ such that Nℓ ≤s N
+
ℓ ≤s

N+ and N+
ℓ is (λ, ∗)-brimmed over Nℓ for ℓ = 1, 2 and N ≤s

N+ and NFs(M,N+
1 , N

+
2 , N

+). Let p+
ℓ ∈ S bs(N+

ℓ ) be a

non-forking extension of pℓ for ℓ = 1, 2. Clearly p+
2 ⊥M and

p+
2 ⊥p

+
1 ⇒ p2⊥p1; so we can replace (M,N1, N2, N, p1, p2) by

(M,N+
2 , N

+
2 , N

+, p+
1 , p

+
2 ) and for them (∗)1 holds.]

Also we can find 〈Mn, N2,n : n < ω〉 such that: NFs(Mn, N2,n,Mn+1,
N2,n+1),Mn+1 is (λ, ∗)-brimmed over Mn, N2,n+1 is (λ, ∗)-brimmed

over Mn+1 ∪N2,n (by NF calculus). So by 1.17 we know
⋃

n<ω

N2,n is

(λ, ∗)-brimmed over
⋃

n<ω

Mn which is (λ, ∗)-brimmed so by (∗)1+

“M is brimmed” without loss of generality
⋃

n<ω

N2,n = N2 and

⋃

n<ω

Mn = M . So for some k < ω the type p2 does not fork over N2,k.

By the NFs calculus we have NFs(Mk, N2,k, N1, N). Let C ∈ Ks be
(λ, ∗)-brimmed over N , so we can find an automorphism f of C such
that f ↾ N2,k = idN2,k

, f(N1) ⊆ Mk+1 ⊆ M recalling that Mk+1

and N1 are (λ, ∗)-brimmed over Mk and NFs(Mk, N2,k, N1, N). Let
p′1 = f(p1) ∈ S bs

s (f(N1)) and let p′′1 ∈ S bs
s (M) be a non-forking

extension of p′1 recalling that f(N1) ≤s M . Now p′′1⊥p2 as p2⊥M ,
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hence p′1⊥(p2 ↾ Mk) by 6.8(1A). By part (0) we have p1⊥(p2 ↾ Mk)
and lastly p1⊥p2 by 6.8(1A).
4) Let q0 ∈ S bs

s (M0) and let q3 ∈ S bs
s (M3) be its non-forking exten-

sion. If p⊥
wk
M1 then by the definition p⊥

wk
(q3 ↾ M1) which by 6.7(7)

means p⊥
wk
q3 hence by 6.7(6) we get (p ↾ M2)⊥

wk
(q3 ↾ M2) which by the

definitions mean p ↾ M2⊥
wk
q0; this is enough for x = wk. The case

x = st is even easier. For the case x = su, use the second sentence
of part (1) of this claim so it is enough to prove p⊥

su
M0. Assume that

NFs(M0,M3,M
′
0,M

′
3) and we should prove that p⊥M ′

0. By unique-
ness of NF for some M ′′

0 ,M
′′
1 ,M

′′
3 we have NFs(M0,M

′′
0 ,M1,M

′′
1 )

and NFs(M1,M
′′
1 ,M3,M

′′
3 ) and M ′

0 ≤s M ′′
0 ,M

′
s ≤s M ′′

3 . As p ∈
S bs

s (M3) and p⊥
su
M1 clearly p⊥M ′′

1 hence p⊥M ′′
0 as required.

5) By part (3), p⊥M ⇔ p⊥
su
M and by 6.8(4) we get p⊥

wk
M ⇔ p⊥M .

�6.10

Naturally, we would like to reduce orthogonality for s = t+, to or-
thogonality for t.

6.11 Claim. Assume s = t+, t a successful good+ λt-frame, so λ =
λs = λ+

t .
Below if Mℓ ∈ Ks then 〈M ℓ

α : α < λ〉 will be some ≤t-representation
of Mℓ and Mℓ ≤s Cs for ℓ = 0, 1, 2.
0) For s we have ⊥ = ⊥

wk
= ⊥

su
.

1) If p1, p2 ∈ S bs
s (M0) then:

p1⊥sp2 iff for unboundedly many α < λ we have (p1 ↾ M0
α)⊥

wk
t(p2 ↾

M0
α) iff for every large enough α < λ, we have (p1 ↾ M0

α)⊥t(p2 ↾

M0
α).

2) If M0 ≤s M1 ≤s M2 and a ∈ M2\M1, then: tps(a,M1,M2) ∈
S bs

s (M1) and is orthogonal (for s) to M0 iff for a club of ordi-
nals δ < λ we have tpt(a,M

1
δ ,M

2
δ ) ∈ S bs

t (M1
δ ) and is orthogonal

(for t) to M0
δ iff for a stationary set of ordinals δ < λ we have

tpt(a,M
1
δ ,M

2
δ ) ∈ S bs

t (M1
δ ) and is ⊥tM

0
δ .

3) In part (2), “for all but boundedly many δ < λ”, “for unboundedly
many δ < λ” can replace “club of δ < λ”, “stationarily many δ < λ”
respectively.
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Proof. 0) By 6.10(5) or 6.8(5) and 6.10(3) and the definition of t+,
i.e. as s = t+ implies Ks is categorical. .
1) We can find a club E of λ such that for every α ∈ E and ℓ = 1, 2
we have M0

α is t-brimmed and pℓ ↾ M0
α ∈ S bs

t (M0
α) does not fork

over M0
min(E) (and so pℓ ↾ M0

α is a witness for pℓ) and without loss

of generality 0 ∈ E, 1 ∈ E. Hence by 6.7(6) + 6.8(4) + 6.8(1) for
every α < λ we have (p1 ↾ M0

α)⊥
wk

t(p2 ↾ M0
α) ⇔ (p1 ↾ M0

α)⊥t(p2 ↾

M0
α) ⇔ (p1 ↾ M0

0 )⊥t(p2 ↾ M0
0 ) and by transitivity of equivalence

(p1 ↾ M0
α)⊥

wk
t(p2 ↾ M0

α) ⇔ (p1 ↾ M0
β)⊥t(p2 ↾ M0

β) for α, β < λ.

Case 1: Assume that (p1 ↾ M0
0 )⊥t(p2 ↾ M0

0 ).
Assume that M2, a1, a2 satisfy M0 ≤s M2 and a1, a2 ∈ M2 and

pℓ = tps(aℓ,M0,M2) for ℓ = 1, 2, and it suffices to prove that
{a1, a2} is independent in (M0,M2).

Now there are M1, a
′
1 such that M0 ≤s M1, a

′
1 ∈ M1 and p1 =

tps(a
′
1,M0,M1) and (M0,M1, a

′
1) is canonically prime. As s has

primes (by 4.9(1)), 4.3 so without loss of generality M1 ≤s M2 and
a′1 = a1. Clearly it suffices to prove that tps(a2,M1,M2) is a non-
forking extension of p2. So for some club E′ ⊆ E of λ, for every
δ ∈ E′ we have:

(∗) (M0
δ ,M

1
δ , a1) ∈ K3,uq

t and M1
δ ≤t M

2
δ , a2 ∈M2

δ ,
tpt(a2,M

0
δ ,M

2
δ ) is a non-forking extension of p2 ↾ M0

0 and
tpt(a1,M

0
δ ,M

1
δ ) is a non-forking extension of p1 ↾ M0

0 .

We are assuming (p1↾M
0
0 )⊥t(p2↾M

0
0 ) hence (p1↾M

0
δ )⊥t(p2 ↾ M0

δ ), so
we get by (∗) and the definition of orthogonality that tpt(a2,M

1
δ ,M

2
δ )

is a non-forking extension of tpt(a2,M
0
δ ,M

2
δ ) hence it does not fork

over M0
0 . As this holds for every δ ∈ E clearly M0

0 witnesses that
tps(a2,M1,M2) does not fork over M0 as required in this case.

Case 2: Assume that (p1 ↾ M0
0 ) ±t (p2 ↾ M0

0 ).
We shall prove that p1 ± p2, this suffices. We can assume that
M0 <s M1, a1 ∈ M1, (M0,M1, a1) ∈ K3,pr

s (recall that s has primes
being t+) and p1 = tps(a1,M0,M1) and so as t is successful (i.e.
the definition of t+), without loss of generality α < β < λ =
λ+

t ⇒ NFs(M
0
α,M

1
α,M

0
β ,M

1
β) and (as t is good+) we have α <
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λ+
t ⇒ (M0

0 ,M
1
α, a1) ∈ K3,uq

t . As pℓ is witnessed by pℓ ↾ M0
0 and

M0
0 is brimmed and without loss of generality also M1

0 is brimmed
and there is q2 ∈ St(M

1
0 ) extending p2 ↾ M0

0 which forks over
M0

0 . We can choose M2
0 , a2 such that M1

0 ≤t M
2
0 , a2 ∈ M2

0 and
q2 = tpt(a2,M

1
0 ,M

2
0 ). Now we can choose inductively fα,M

2
α such

that M2
α is ≤t-increasing continuous, fα is a ≤t-embedding of M1

α

into M2
α, increasing continuous with α, f0 = idM1

0
and α = β + 1 ⇒

NFt(M
1
β ,M

2
β ,M

1
α,M

2
α) and M2

α is (λ, ∗)-brimmed over M2
β . No

problem to do it and at the end without loss of generality
⋃

α<λs

fα =

idM1
and let M2 := ∪{M2

α : α < λ}. Clearly M2 ∈ Kt is satu-
rated above λt hence M2 ∈ Ks. Clearly for α < β from E we have by
symmetry NFs(M

0
α,M

0
β ,M

1
α,M

1
β) and NFs(M

1
α,M

1
β ,M

2
α,M

2
β) hence

by transitivity we get NFs(M
0
α,M

0
β ,M

2
α,M

2
β) hence by symmetry

NFs(M
0
α,M

2
α,M

0
β ,M

2
β). EasilyM1, a1,M2, a2 exemplify p1±p2; that

is by 1.18 for every α < λ the type tpt(a2,M
0
α,M

2
α) is a non-forking

extension of tpt(a2,M
0
0 ,M

2
0 ) = p2 ↾ M0

0 , hence tps(a2,M0,M2) =
p2. We conclude tps(a2,M1,M2) extends p2 but is not its non-
forking extension in Ss(M1) as required for proving p1 ±s p2.
2) Let E be a club of λs such that for every α < β from E,M ℓ

β is

brimmed overM ℓ
α,M

ℓ
α is brimmed (for ℓ = 0, 1, 2) and NFt(M

ℓ
α,M

ℓ+1
α ,

M ℓ
β ,M

ℓ+1
β ) for ℓ = 0, 1 and a ∈ M2

α and M1
α is a witness for

p = tps(b,M1,M2) if b ∈ M2
α\M

1
α and tpt(b,M

1
α,M

2
α) ∈ S bs

s (M1).
Now each of the statements which we should prove are equivalent
implies that tps(a,M1,M2) ∈ S bs

s (M1) (by 1.10(4) and 1.16) so
we can assume this. Without loss of generality E = λ and a ∈
M2

0 . We shall use part (1) freely. Clearly tps(a,M1,M2)⊥sM0

iff for every q ∈ S bs
s (M0) we have tps(a,M1,M2)⊥sq iff for each

α < λ for every q ∈ S bs
s (M0) which does not fork over M0

α we
have tps(a,M1,M2)⊥sq iff for each α < λ for every q ∈ S bs

t (M0
α),

for some β ∈ [α, λ), the type p ↾ M1
β is t-orthogonal to the non-

forking extension of q in S bs
t (M0

β) iff for each γ < λ we have

(p ↾ S bs
t (M1

γ ))⊥tM
0
γ . Thus we finish.

3) By monotonicity, i.e. 6.10(4) and 1.16. �6.11

6.12 Claim. If J is independent in (M,N) and tps(a,M,N) ∈
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S bs
s (M) is orthogonal to tps(c,M,N) for every c ∈ J,M ≤s N1 ≤s

N and (M,N1, a) ∈ K3,uq
s then J is independent in (M,N1, N).

Remark. 1) We shall below replace K3,uq
s by K3,vq

s .
2) In 6.12, weak orthogonality suffice.

Proof. Let J = {ci : i < α}.
By 5.4(1) there are N+ and ≤s-increasing continuous sequence

〈Mi : i ≤ α〉 such that M0 = M,Mα ≤s N+, N ≤s N+ and

(Mi,Mi+1, ci) ∈ K3,uq
s for every i < α. Now we prove by induc-

tion on i ≤ α that tps(a,Mi, N
+) does not fork over M0. For i = 0

this is trivial. For i limit this holds by the continuity Ax(E)(h). For
i = j + 1, we know that tps(a,Mj, N

+), tps(ci,Mj, N
+) are weakly

orthogonal and (Mj,Mj+1, ci) ∈ K3,uq
s hence by the definition of or-

thogonality tps(a,Mj+1, N
+) = tps(a,Mi, N

+) does not fork over
Mj hence by transitivity of non-forking this type does not fork over
M0. Having carried the induction, we can conclude that J ∪ {a}
is independent in (M0, N

+). As (M0, N1, a) ∈ K3,uq
s , by 5.4(3) we

get that J is independent in (M0, N1, N
+) hence by monotonicity in

(M0, N1, N), as required.
�6.12

6.13 Claim. : We can in 6.12 replace (M,N1, a) ∈ K3,uq
s by

(M,N1, I) ∈ K3,vq
s , which means: if M ≤s N1 ≤s N,J is inde-

pendent in (M,N) and (M,N1, I) ∈ K3,vq
s and a ∈ I ∧ c ∈ J ⇒

tps(a,M,N)⊥tps(c,M,N1) then J is independent in (M,N1,M).

Proof. Let 〈ci : i < α〉, N+, 〈Mi : i ≤ α〉 be as in the proof of
6.12. We now prove by induction on β ≤ α that I is independent
in (M,Mβ, N

+). For β = 0 this is given. For β limit this holds by
5.8(5). For β = γ + 1, use 6.12. For β = α we get that I is indepen-
dent in (M,Mα, N

+). As M ≤s N1 ≤s N ≤s N
+ and (M,N1, I) ∈

K3,vq
s , by the definition of K3,vq

s we get that NFs(M,N1,Mα, N
+).

By symmetry for NFs we deduce that NFs(M,Mα, N1, N
+), so as

clearly (M,Mα,J) ∈ K3,bs
s by 5.3 we get that J is independent in

(M,N1, N
+), so by monotonicity also in (M,N1, N) as required.

�6.13
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For understanding K3,uq
s the following claim is crucial.

6.14 Claim. 1) Assume (M,N, a) ∈ K3,uq
s .

If M ∪ {a} ⊆ N ′ <s N, b ∈ N\N ′ and q = tps(b, N
′, N) ∈ S bs

s (N ′)
then q is weakly orthogonal to M .

2) [s has primes.] Assume (M,N, a) ∈ K3,bs
s . We can find 〈Mi, aj :

i ≤ α, j < α〉 for some α < λ+, which is a pr-decomposition of N
over M with a0 = a (so we stipulate Mα := N), i.e., such that:

(a) a0 = a

(b) M0 = M .

(c) Mi ≤s N is ≤s-increasing continuous for i ≤ α

(d) tps(ai,Mi, N) ∈ S bs
s (Mi)

(e) (Mi,Mi+1, ai) ∈ K3,pr
s for i < α.

3) [s has primes]. In part (2) if also (M,N, a) ∈ K3,uq
s and 〈Mi, aj :

i ≤ α, j < α〉 is as there then we can add, in fact necessarily have

(f) if i > 0 then tps(ai,Mi, N) is weakly orthogonal to M .

4) If (M,N,J) ∈ K3,vq
s and M ∪ J ⊆ N ′ ≤s N and b ∈ N\N ′ and

q = tps(b, N
′, N) ∈ S bs

s (N ′) then q is weakly orthogonal to M .

Proof. (1) If q ±
wk
M then for some c, N+, r we have N ≤s N

+, c ∈

N+, r = tps(c, N
′, N+) ∈ S bs

s (N ′) does not fork over M but the
set {b, c} is not independent in (N ′, N+) (or b = c). Possibly ≤s-
increasing N+, as tps(c, N

′, N+) does not fork overM ≤s N
′, clearly

there is M ′ such that M ∪ {c} ⊆ M ′ and NFs(M,M ′, N ′, N+). As
a ∈ N ′ and tps(a,M,N ′) ∈ S bs

s (M) this implies that tps(a,M
′, N+) ∈

S bs
s (M ′) does not fork over M . As (M,N, a) ∈ K3,uq

s it follows that
NFs(M,N,M ′, N+), and this implies that {b, c} is independent in
(N ′, N+) by 5.6(2), second sentence contradicting the choice of c.
2) This is 3.11(1).
3) Follows by (part (2) and) part (1).
4) Like part (1). �6.14
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6.15 Claim. 1) [s has primes]. Assume (M,N, a) ∈ K3,uq
s . Then

we can find 〈Mi, aj : i ≤ α, j < α〉 such that:

(a) − (e) as in 6.14(2)

(f) as in 6.14(3)

(g) α ≤ λ.

2) If in addition s = t
+, t is a successful good+ λt-frame (so λ = λ+

t )
then we can add

(h) for each i < α, (Mi,Mi+1, ai) is canonically prime, that is
for any <t-representations 〈M i

ε : ε < λ+
t 〉, 〈M

i+1
ε : ε < λ+〉

of M i,M i+1 respectively, for a club of ordinals δ < λ+
t we

have (M i
δ,M

i+1
δ , ai) ∈ K3,uq

t .

Proof. 1) Exactly as in 3.11(5), i.e., in the proof of 3.11(1) use a
bookkeeping in order to get clause (g).
2) By 4.13(1). �6.15

6.16 Claim. Assume

(a) NFs(M0,M
+
0 ,M1,M3)

(b) J is independent in (M1,M3)

(c) tps(c,M1,M3) is super-orthogonal to M0 for every c ∈ J, see
6.9(2).

Then we can find M+
1 ,M

+
3 such that:

(α) M3 ≤s M
+
3

(β) M1 ∪M
+
0 ⊆M+

1 ≤s M
+
3

(γ) tps(c,M
+
1 ,M

+
3 ) does not fork over M1 for c ∈ J

(δ) J is independent8 in (M+
1 ,M

+
3 ).

Remark. 1) A related claim is 6.20.
2) No great harm at present if in 6.16 - 6.20 we assume that “s has

8so (γ) + (δ) says that J is independent in (M1, M+
1 , M+

3 )
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primes”.
3) Before we prove 6.16 note that:

6.17 Conclusion. If to the assumptions of 6.16 we add

(d) (M1,M2,J) ∈ K3,qr
s or just (M1,M2,J) ∈ K3,vq

s and M2 ≤s

M3,

then we can add to the conclusion (in fact follows from it):

(ε) NFs(M1,M2,M
+
1 ,M

+
3 ).

Proof. If (M1,M2,J) ∈ K3,qr
s , by 6.16 and 5.9(2). In general by the

definition of K3,vq
s (see 5.15) and clause (δ) of the conclusion of 6.16.

�6.17

Proof of 6.16. First assume that s has primes. By 6.14(2) we can
find 〈M0

i , aj : i ≤ α, j < α〉 which is a decomposition of M+
0 over

M0. We can now choose by induction on i ≤ α a pair (M1
i , fi) such

that M1
i ∈ Ks is ≤s-increasing continuous, M1

0 = M1, f0 = idM0
, fi

is an ≤s-embedding of M0
i into M1

i , increasing continuous with i

and (M1
i ,M

1
i+1, fi+1(ai)) ∈ K3,pr

s and tps(fi+1(ai),M
1
i ,M

1
i+1) does

not fork over fi(M
0
i ). There is no problem to do this, (as in stage

i = j + 1 first choose pi = fi(tps(ai,M
0
i ,M

0
i+1)) and then M1

i+1

such that some bi ∈ Mi+1 realizes pi and as (M0
i ,M

0
i+1, ai) ∈ K3,pr

s

we can choose a ≤K-embedding fi of M0
i+1 into M1

i+1 extending

fj and mapping ai to bi). As K3,pr
s ⊆ K3,uq

s and the definition

of K3,uq
s easily NFs(fi(M

0
i ), fi+1(M

0
i+1),M

1
i ,M

1
i+1) hence by NFs-

symmetry NFs(fi(M
0
i ), M1

i , fi+1(M
0
i+1), M

1
i+1) for every i hence

by long transitivity we have NFs(f0(M0),M
1
0 , fα(M0

α),M1
α), and re-

calling f0 = idM0
,M0

0 = M0,M
1
0 = M1,M

0
α = M+

0 this means
NFs(M0,M1, fα(M+

0 ),M1
α). But also we assume NFs(M0,M1,M

+
0 ,

M3), hence by NFs-uniqueness without loss of generality for some
M+

3 ,M3 ≤s M
+
3 , fi = idM0

i
and M1

α ≤s M
+
3 . This actually repeats

the proof of 5.6(5).
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For i < α for each c ∈ J, note that tps(c,M1,M3) is super-
orthogonal to M0 (by a hypothesis) hence it is orthogonal to M0

i

for i ≤ α. We prove by induction on i ≤ α that J is independent
over (M1,M

1
i ) inside M+

3 and for every c ∈ J, tps(c,M
1
i ,M

+
3 ) (does

not fork over M1
0 = M1 and) is orthogonal to M0

i . For i = 0 this is
trivial. For i limit easy by 5.10(2) for independence and by 6.8(3) for
orthogonality. For i+1, as tps(ai,M

1
i ,M

+
3 ) does not fork overM0

i , it
is orthogonal to tps(c,M

1
i ,M

+
3 ) for c ∈ J hence by 6.12 we know that

J∪{ai} is independent over M1
i . As (M1

i ,M
1
i+1, ai) ∈ K3,pr

s ⊆ K3,uq
s

we get tps(c,M
1
i+1,M

+
3 ) does not fork over M1

i hence over M1 for

c ∈ J and J is independent in (M1,M
1
i ,M

+
3 ). Let M+

1 be chosen as
M1

α so we are done.
Let us turn to the general case where s does not necessarily have

primes. First

(∗)1 without loss of generality M+
0 is (λ, ∗)-brimmed over M1.

[Why? By assumption (a) and symmetry we have NFs(M0,M1,M
+
0 ,

M3). We can find M∗
0 ,M

∗
3 such that NFs(M

+
0 ,M3,M

∗
0 ,M

∗
3 ) and

M∗
0 is (λ, ∗)-brimmed over M+

0 hence over M0; by transitivity for
NFs and the previous sentence we know that NFs(M0,M1,M

∗
0 ,M

∗
3 )

hence by symmetry NFs(M0,M
∗
0 ,M1,M

∗
3 ). Now by monotonicity

J is independent in (M1,M
∗
3 ) and c ∈ J ⇒ tps(c,M1,M

∗
3 ) =

tps(c,M1,M3)⊥
su
M0 so the assumptions of the claim holds for (M0,M1,

M∗
0 ,M

∗
3 ,J).

Lastly, the conclusion for this quintuple implies the desired con-
clusion, so we can replace M+

0 ,M3 by M∗
0 ,M

∗
3 so really without loss

of generality M+
0 is (λ, ∗)-brimmed over M0.]

(∗)2 without loss of generality M1 is (λ, ∗)-brimmed over M0 and
M3 is (λ, ∗)-brimmed over M+

0 ∪M1.

[Why? Similar to the proof of (∗)1.]
Hence there is a uq-decomposition 〈M0,i, aj : i ≤ α, j < α〉 of

M+
0 over M0 even with α = λ and M+

0 = M0,α := ∪{M0,i : i <
α}. By 4.7 we can find a ≤s-increasing continuous sequence 〈M1,i :
i ≤ α〉 such that M0,i ≤s M1,i, tps(ai,M1,i,M1,i+1) does not fork

over M0,i and (M1,i,M1,i+1, ai) ∈ K3,uq
s and M1,0 is brimmed over
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M0,0 = M0. Hence NFs(M0,i,M1,i,M0,i+1,M1,i+1) for each i < α
so by long transitivity NFs(M0,0,M1,0,M0,α,M1,α) so by symmetry
NFs(M0,0,M0,α,M1,0,M1,α).

Now NFs(M0,M
+
0 ,M1,M3) and NFs(M0,M0,α,M1,0,M1,α),M0,α =

M+
0 , so by the uniqueness of NFs and M1,0,M1 being brimmed over

M0,0 = M0 and M3 being brimmed over M+
0 ∪M3 without loss of

generality M1,0 = M1 and M1,α ≤s M3 (we could have quoted 5.6(6)
but here we give a detailed proof). Let M+

3 = M3 and M+
1 = M1,α,

so clauses (α), (β) of the desired conclusion obviously holds. By Def-
inition 6.9(2) clearly c ∈ J ⇒ tps(c,M1,M3)⊥tps(ai,M0,i,M0,i+1);
hence c ∈ J ⇒ tps(c,M1,M3)⊥tps(ai,M1,i,M1,i+1) so by 6.18 be-
low this shows that clause (γ) of the desired conclusion. Lastly, for
clause (δ) of the desired conclusion, we apply 6.18 below. �6.16

6.18 Claim. Assume x ∈ {pr,uq} and

(a) M0 ≤s Mℓ ≤s M3 for ℓ = 1, 2

(b) 〈M0,i, ai : i < α〉 is a x-decomposition of M2 over M0 (so
M0,α := M2)

(c) J is independent in (M0,M1)

(d) tps(c,M0,M1)⊥tps(ai,M0,i,M2) for i < α and c ∈ J.

Then J is independent in (M2,M3) moreover in (M0,M2,M3).

6.19 Remark. We can replace clauses (b),(d) by:

(b)′ 〈M0,i : i ≤ α〉 is ≤s-increasing continuous, M0,0 = M0,M0,α =

M2 and (Mi,Mi+1,Ji) ∈ K3,vq
s

(d)′ tps(c,M0,M1) ⊥ tps(a,M0,i,M2) for i < α, c ∈ J and a ∈
Ji.

See the after 6.13.

Proof. We prove by induction on i ≤ α that J is independent in
(M0,M0,i,M3). For i = 0 this holds by assumption (c) as M0,i = M0

and M1 ≤s M3. For i a limit ordinal use 5.8(5). For i = j + 1 by
the induction hypothesis J is independent in (M0,M0,j,M3) hence
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is independent in (M0,j,M3). By clause (d) we have c ∈ J implies
tp(c,M0,j,M3)⊥ tps(ai,M0,j,Mi) and by the induction hypothesis
tp(c,M0,M1)‖tp(c,M0,j,M3) hence clearly Claim 6.12 implies that

J∪ {ai} is independent in (M0,j,M3). As (M0,j,M0,j+i, ai) ∈ K3,uq
s

it follows by 5.4(3) that J is independent in (M0,j,M0,j+i,M3). As
c ∈ J ⇒ tps(c,M0,j+1,M3) does not fork over M0 it follows that
J is independent in (M0,M0,j+1,M3) = (M0,M0,i,M3) so we have
carried the induction.

For i = α we get the desired conclusion. �6.18

Below the restriction γ ≤ ω may seem quite undesirable but it will
be used as a stepping stone for better things. Note that in the proof
of 6.20(1), clause (γ) in the induction hypothesis on 〈Mn

i : i ≤ α〉,
primeness is not proved to hold for 〈Mω

i : i ≤ α〉, though enough is
proved to finish the proof, this is why the proof does not naturally
work for γ > ω. It will be used in the proof of 7.7(3).

6.20 Claim. 1) Assume

(a) 〈Mβ : β ≤ γ〉 is ≤s-increasing continuous with γ ≤ ω

(b) M0 ≤s M
+
0 ≤s M

+
3 and Mγ ≤s M

+
3

(c) NFs(M0,M1,M
+
0 ,M

+
3 )

(d) if 0 < β < γ then (Mβ,Mβ+1,Jβ) ∈ K3,qr
s or at least ∈ K3,vq

s

(so Jβ is independent in (Mβ ,Mβ+1))

(e) for every β ∈ (0, γ) and a ∈ Jβ the type tps(a,Mβ,Mβ+1) is
super-orthogonal to M0.

Then NFs(M0,Mγ,M
+
0 ,M

+
3 ).

2) If 〈Mβ : β ≤ γ〉, 〈Jβ : 0 < β < γ〉 satisfy clauses (a), (d), (e)

above and (M0,M1,J) ∈ K3,vq
s then (M0,Mγ,J) ∈ K3,vq

s .

Proof. 1) If s has primes we choose 〈M∗
i , aj : i ≤ α, j < α〉, a

decomposition of M+
0 over M0 so M∗

α = M+
0 (as in the proof of 6.16).

If s does not necessarily have primes, as the proof of 6.16 without
loss of generality M+

0 is (λ, ∗)-brimmed over M0, and so there is a
uq-decomposition 〈M∗

i , aj : i ≤ α, j < α〉 of M+
0 over M0. Now by

induction on n ≤ γ, n < ω we choose N3
n, M̄

n = 〈Mn
i : i ≤ α〉 such

that:
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⊠(α) N3
0 = M+

3 and M̄0 = 〈M∗
i : i ≤ α〉 so, i.e. M0

i = M∗
i

(β) N3
n ≤s N

3
n+1

(γ) 〈Mn
i , aj : i ≤ α, j < α〉 is a uq-decomposition inside N3

n over
Mn

0

(δ) Mn
i ≤s M

n+1
i

(ε) tps(ai,M
n
i , N

3
n) does not fork over M0

i

(ζ) (i) if s has primes Mn = Mn
0 for n < ω; in general

(ii) Mn ≤s M
n
0 and n = 0 ⇒Mn

0 = M0 and
NFs(Mn,Mγ,M

n
0 , N

3
n)

(this holds trivially when n = 0 by clause (c)
and also holds in subclause (i) trivially).

For n = 0 this is done. The step from n to n + 1 is by the first
paragraph of the proof of 6.16 or 5.6(5) when s has primes, by 5.6(6)
in general, but for this we need to know that

⊛ NFs(Mn,Mn+1,M
n
α , N

3
n).

[Why does ⊛ hold? First if n = 0 this holds by clause (c)
of the assumption as M0

α = M∗
α = M+

0 . Second if n > 0
then by clause (ζ) we have NFs(Mn,Mγ ,M

n
0 , N

3
n) hence by

monotonicity NFs(Mn,Mn+1,M
n
0 , N

3
n). Now we can prove

by induction on i that Jn is independent in (Mn,M
n
i , N

3
n)

and note that as (Mn,Mn+1,Jn) ∈ K3,vq
s this implies that

NFs(Mn,Mn+1,M
n
i , N

3
n). For i = 0 this was proved in the

sentence before last and for i limit by continuity of indepen-
dence by 5.10(3). For i = j + 1 this holds as by clause (ε)
of ⊠ the type tps(ai,M

n
i ,M

n
i+1) does not fork over M0

i =
M0,i hence over M0 whereas for every c ∈ Jn by the induc-
tion hypothesis for j the type tps(c,M

n
i ,M

∗
n) is parallel to

tps(c,Mn,Mn+1) which is super-orthogonal to M0, so they

are orthogonal. As (Mn
j ,M

n
j+1, aj) ∈ K3,uq

s by clause (γ) of
⊠ clearly by claim 6.12 the statement holds for i. So we have
carried the induction so we are done.]

If γ < ω we are done. So assume γ = ω, and for i < α let

Mω
i :=

⋃

n<ω

Mn
i . Now for each i < α, and n < ω we have (by clauses
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(γ) + (δ) + (ε) and the Definition of K3,uq
s or see the proof of 6.16),

NFs(M
n
i ,M

n
i+1,M

n+1
i ,Mn+1

i+1 ), hence by long transitivity of NFs (see

II.6.28) we have NFs(M
0
i ,M

0
i+1,M

ω
i ,M

ω
i+1). By symmetry we get

NFs(M
0
i ,M

ω
i ,M

0
i+1,M

ω
i+1) for i < ω. As 〈M0

i : i ≤ α〉, 〈Mω
i : i ≤ α〉

are ≤s-increasing continuous, by long transitivity of NFs we get
NFs(M

0
0 ,M

ω
0 ,M

0
α,M

ω
α ) which means NFs(M0,M

ω
0 ,M

+
0 ,M

ω
α ) so by

using monotonicity twice we get
NFs(M0,Mω,M

+
0 ,M

+
3 ) as required.

2) By definition 5.15 we are given (M+
0 ,M

+
3 ) such that M0 ≤s

M+
0 ≤s M

+
3 ,Mγ ≤s M

+
3 and J is independent in (M0,M

+
0 ,M

+
3 ); we

should prove NFs(M0,Mγ,M
+
0 ,M

+
3 ). As we are assuming (M0,M1,J)

∈ K3,vq
s we can deduce that NFs(M0,M1,M

+
0 ,M

+
3 ), i.e., clause (c)

of the assumption of part (1). Now clause (b) of the assumption
of part (1) holds trivially, so the assumption of part (1) hence its
conclusion, i.e., NFs(M0,Mγ,M

+
0 ,M

+
3 ) is as required. �6.20

We could have noted earlier

6.21 Claim. Assume pi = tps(ai,M,N) ∈ S bs
s (M) for i < α are

pairwise orthogonal. Then {ai : i < α} is independent in (M,N).

Proof. By (∗)0 ⇒ (∗)1 from 5.4(1) and renaming it is enough to deal
with finite α, (not really needed).
We now choose a pair (Mℓ, Nℓ) by induction on ℓ ≤ α such that

⊛(i) Mℓ ≤s Nℓ

(ii) M0 = M,N0 = N

(iii) if m < ℓ then Mm ≤s Mℓ and Nm ≤s Nℓ

(iv) if ℓ = m+ 1 then (Mm,Mℓ, am) ∈ K3,uq
s

(v) tps(am,Mm,Mm+1) does not fork over M0.

For ℓ = 0 this is trivial. For ℓ = m + 1, first we prove by induction
on k ≤ m that pk

m = tps(am,Mk, Nm) is the non-forking extension
of pm in Ss(Mk). Now for k = 0 this is trivial by the choice of pm.
For k + 1 ≤ m by the induction hypothesis on k, tps(am,Mk, Nm)
is a non-forking extension of pm. Now pk⊥pm and by clause (v) for
k, tps(ak,Mk,Mk+1) is a non-forking extension of pk. So tps(am,Mk,
Nm) is orthogonal to tps(ak,Mk,Mk+1).
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As (Mk,Mk+1, ak) ∈ K3,uq
s we get that tps(am,Mk+1,Mm+1)

does not fork over Mk. Together with the induction hypothesis by
transitivity of non-forking of types tps(am,Mk+1,Mm+1) does not
fork over M0. So we have carried the induction on k ≤ m.
Second, as s is weakly successful there are bm,M

∗
ℓ such that (Mm,M

∗
ℓ ,

bm) ∈ K3,uq
s and tps(bm,Mm,M

∗
ℓ ) = pm

m. By the definition of types
and as Ks has amalgamation by renaming there is Nℓ such that
M∗

ℓ ≤s Nℓ, Nm ≤s Nℓ and bm = am and let Mℓ = M∗
ℓ . So we can

define (Mℓ, Nℓ) for ℓ ≤ n as in ⊛. By the definition of independence
we are done. Alternatively use 6.12.

�6.21

6.22 Claim. If pi ∈ S bs
s (M) for i < α are pairwise orthogonal and

q ± pi for i < α then α < ω.

Proof. By 5.13 and 6.21. That is assume α ≥ ω, let q = tps(b,M,N0)
and we can find Nn for n < ω such that (N0 is as above and)
Nn ≤K Nn+1 and an ∈ Nn+1 realizing pn such that {b, an} is
not independent. By 6.21, the set {an : n < ω} is independent
in Nω = ∪{Nn : n < ω} and so by 5.13, we get a contradiction.

�6.22

6.23 Exercise: Assume that

(a) Ji is independent in (M,N) for i < α

(b) if i1 6= i2 are < α and c1 ∈ Ji1 , c2 ∈ Ji2

then tps(c1,M,N)⊥tps(c2,M,N).

Then ∪{Ji : i < α} is independent in (M,N) and the Ji’s are pair-
wise disjoint.

6.24 Exercise: 1) Assume that

(a) T ⊆ ω>Ord

(b) J̄ = 〈Jη : η ∈ T 〉 is a sequence of pairwise disjoint subsets of
IM,N

(c) for η ∈ T the set ∪{Iν : ν E η} is independent in (M,N)
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(d) if η1, η2 ∈ T are E-incomparable and cℓ ∈ Jηℓ
for ℓ = 1, 2,

then
tps(c1,M,N)⊥tps(c2,M,N).

Then ∪{Jη : η ∈ T } is independent in (M,N).
2) Similar for any partial order T which is a tree.

[Hint: first reduce to finite T , then prove by induction on |T |. If
T has no root use the induction hypothesis and 6.23.

If η0 is the root, without loss of generality it is <> and we can
find N ′ such that N ≤s N

′ and ≤s-increasing continuous 〈Mi : i ≤

α〉,M0 = M,Mα ≤s N, (Mi,Mi+1, ai) ∈ K3,uq
s for i < α where 〈ai :

i < α〉 list Jη0
with no repetitions. Let u = {η(0) : η ∈ T \{<>}}

and for each α ∈ u let T ′
α = {ν : 〈α〉ˆν ∈ T }. Now first, by the

induction hypothesis for each α ∈ u the set ∪{J〈α〉ˆν : ν ∈ T ′
α} is

independent in (M,Mα, N
′) and then by 6.23, also ∪{J〈α〉ˆν : ν ∈ T ′

α

and α ∈ u} is independent in (Mα, N
∗) hence in (M,Mα, N

′). As
J<> is independent in (M,Mα) we are easily done.]

6.25 Exercise: Assume M∗ ≤s M ≤s N, (M,N, a1) ∈ K3,uq
s and

a2 ∈ N and pℓ = tps(aℓ,M,N) ∈ S bs
s (M) for ℓ = 1, 2. Then

p1⊥M∗ ⇒ p2⊥M∗ and p1⊥
su
M∗ ⇒ p2⊥

su
M∗.

[Hint: Use 6.26 below, reducing to the case of brimmed M over M∗

as in the proof of 6.16.]

6.26 Exercise: 1) Assume M0 ≤s M1 ≤s M2 and (M1,M2, a) ∈

K3,uq
s and (M1,M2, b) ∈ K3,bs

s . If tps(a,M1,M2)⊥
wk
M0 then tps(b,M1,

M2)⊥
wk
M0, recalling Definition 6.9(1).

2) If M0 ≤s M1 ≤s M2 and (M1,M2,J) ∈ K3,vq
s and a ∈ J ⇒

tps(a,M1,M2)⊥
wk
M and q ∈ S bs

s (M1) is realized in M2 then q⊥
wk
M0.

[Hint: 1) If not, then there is q ∈ S bs
s (M1) which does not fork over

M0 such that q ±
wk

tps(b,M1,M2). We can find a pair (M3, c) such

that M2 ≤s M3 and c ∈ M3 realizes q but {c, b} is not independent
in (M1,M3). As tps(a,M1,M2)⊥

wk
M0, necessarily tps(a,M1,M2)⊥

wk
q

hence {a, c} is independent in (M1,M
′
3). As (M1,M2, a) ∈ K3,uq

s

necesarily tps(c,M2,M3) does not fork over M1. This implies {c, b}
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is independent in (M1,M3), contradiction.
2) Similar to part (1) using 6.23.]

6.27 Exercise [s has primes] Assume:

⊛ (a) 〈N ℓ
α : α ≤ δ〉 is ≤s-increasing continuous for ℓ = 1, 2

and λ|δ

(b) Pℓ ⊆ S bs
s (N ℓ

0)

(c) if N ℓ
0 ≤s M <s N

ℓ
δ then for some c ∈ N ℓ

δ\M the type
p = tps(c,M,N ℓ

δ) belongs to S bs
s (M) and is orthogonal to

Pℓ, i.e., p to q for every q ∈ Pℓ

(d) if p ∈ S bs
s (N ℓ

α), α < δ, ℓ ∈ {1, 2} and p is orthogonal
to Pℓ, then for λ ordinals β ∈ (α, δ) there is c ∈ N ℓ

β+1 such

that tps(c, N
ℓ
β, N

ℓ
β+1) is a non-forking extension of p

(e) f0 is an isomorphism from N1
0 onto N2

0 mapping P1

onto P2.

Then there is an isomorphism from N1
δ onto N2

δ extending f0.

[Hint: Hence and forth, as usual (using the existence of primes).]

6.28 Exercise 1) If ⊛N̄ ,P then ⊠N̄,P̄ where:

⊛N̄,P (a) N̄ = 〈N0, N1〉, N0 ≤s N1

(b) P ⊆ S bs
s (N0)

(c) if N0 ≤s M <s N1 then for some c ∈ N1,M the type
tp(c,M,N1) belongs to S bs

s (M) and is orthogonal to P, i.e.,
q ∈ P ⇒ q⊥tps(c,M,N1)

⊛N̄,P there is ≤s-increasing continuous sequence 〈Mα : α ≤ α(∗)〉
such that N0 = M0, N1 ≤s Mα(∗) and for each α < α(∗) for

some aα we have (Mα,Mα+1, aα) ∈ K3,uq
s and

tps(aα,Mα,Mα+1)⊥P.

[Hint: See 8.3.]

Paper Sh:705, Chapter III



III.§7 UNDERSTANDING K
3,VQ
S

497

§7 Understanding K3,vq
s

We would like to show that K3,vq
s = K3,qr

s and K3,pr
s = K3,uq

s and
more when we assume that s is categorical (in λ).
The hypothesis below holds if t is a good+ successful frame, s = t+

is successful9 .

7.1 Hypothesis.

(a) s is a good+ λ-frame

(b) s is successful

(c) s has primes

(d) ⊥ = ⊥
wk

(e) ⊥
su

= ⊥, i.e. p⊥M ⇔ p⊥
su
M when M ≤s N and p ∈ S bs

s (M).

In the definition below note that our aim is to analyze (M,N,J0) ∈

K3,bs
s so J0 has a special role.

7.2 Definition. 1) Wα = {(N, M̄, J̄) : M̄ = 〈Mi : i < α〉 is ≤s-
increasing continuous, Mi ≤s N for i < α and J̄ = 〈Ji : i < α〉 and
Ji is independent in (Mi,Mi+1) for i < α stipulating Mα = N} and
we let

W =
⋃

α<λ+

Wα

Let (〈Mi : i ≤ α〉, 〈Ji : i < α〉) mean (Mα, 〈Mi : i < α〉, 〈Ji : i < α〉).
2) ≤W =≤W [s] is the following two place relation on W :

(N1, M̄1, J̄1) ≤W (N2, M̄2, J̄2) iff both are from W and (a)+(b) where

(a) N1 ≤s N
2, ℓg(M̄1) ≤ ℓg(M̄2), i < ℓg(M̄1) ⇒ M1

i ≤s M
2
i &

J1
i ⊆ J2

i

(b) a ∈ J1
i ⇒ tps(a,M

2
i ,M

2
i+1) does not fork over M1

i

9where do we use weakly successful good+ rather than weakly successful
good? E.g. in 7.3(3).
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3) ≤fx
W

is defined like ≤W but also J̄1 = J̄2 (so ℓg(M̄1) = ℓg(M̄2) in
particular).

4)We say that (N, M̄, J̄) ∈ W is prime if (Mn,Mn+1,Jn) ∈ K3,qr
s for

n < ℓg(M̄).

7.3 Claim. 1) ≤W is a partial order.
2) If δ < λ+

s is a limit ordinal and 〈(Nα, M̄α, J̄α) : α < δ〉 is
≤W -increasing, then this sequence has a ≤W -lub (N, M̄,J), with
ℓg(M̄) = sup{ℓg(M̄α) : α < δ}, N = ∪{Nα : α < δ},Mi = ∪{Mα

i :
α < δ satisfies that i < ℓg(M̄α)},Ji = ∪{Jα

i : α < δ satisfies that i <
ℓg(M̄α)}. We call this ≤W -lub the union of the chain.
3) If (N1, M̄1, J̄1) ∈ Wα then for some (N2, M̄2) we have

(α) (N1, M̄1, J̄1) ≤fx
W

(N2, M̄2, J̄1) ∈ Wα

(β) (M2
i ,M

2
i+1,J

1
i ) ∈ K3,vq

s for each i < ℓg(M̄)

(γ) N2 = ∪{M2
i : i < ℓg(M̄2)}.

Proof. Straight: part (1) is trivial, part (2) holds by 5.10(3), and
part (3) is proved repeating, e.g. the proof of 5.24 but using part (2)
here. �7.3

We are interested in “nice” such sequences; we define several variants.

7.4 Definition. 1) Kor
s = {(N, M̄, J̄) ∈ Wω: if (n < ω and) a ∈

Jn+1 then tps(a,Mn+1,Mn+2) is orthogonal to M0}, if we omit N
we mean N = ∪{Mn : n < ω}.
2) Kar

s = {(N, M̄, J̄) ∈ Wω: if a ∈ Jn+1 then tps(a,Mn+1,Mn+2) is
orthogonal to Mn}.
3) Kbr

s = {(N, M̄, J̄) ∈ Wω: if b ∈ Jn+1 then for some m = m(b) ≤ n
we have tps(b,Mn+1,Mn+2) does not fork over Mm+1 and is orthog-
onal to Mm}.
4) We say that (N, M̄, J̄) is Kor

s -fat if it belongs to Kor
s and10

p⊥
wk
M0 & p ∈ S bs

s (Mn+1) ⇒ λs = |{c ∈ Jn+1 : p = tps(c,Mn+1,

Mn+2)}| and N = ∪{Mn : n < ω}.

10Note that on J0 there are no demands; we can write ⊥ here or “weakly
orthogonal” above by 7.1(d).
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5) We say that (N, M̄, J̄) isKar
s -fat if it ∈ Kar

s and p ∈ S bs
s (Mn+1) &

p⊥
wk
Mn ⇒ λs = |{c ∈ Jn+1 : p = tps(c,Mn+1,Mn+2)}| and N =

∪{Mn : n < ω}.
6) We say that (N, M̄, J̄) is Kbr

s -fat if it ∈ Kbr
s and for every m ≤

n < ω we have p ∈ S bs
s (Mn+1) & p does not fork over Mm+1 &

p⊥
wk
Mm ⇒ λs = |{c ∈ Jn+1 : c realizes p}| and N = ∪{Mn : n < ω}.

7) ≤or=≤s
or is the following two place relation over Kor

s :

(N1, M̄1, J̄1) ≤or (N2, M̄2, J̄2) iff (N1, M̄1, J̄1) ≤W (N2, M̄2, J̄2) and

J1
0 = J2

0.

7.5 Definition. We say s weakly has regulars when: if M̄ = 〈Mα :
α ≤ β + 1〉 is ≤s-increasing continuous and Mβ+1 6= Mβ, then there
are α < β and c ∈ Mβ+1 such that tps(c,Mβ,Mβ+1) ∈ S bs

s (Mβ)
does not fork over Mα and α = 0 or α = γ + 1 & p⊥Mγ for some
γ; this definition is meaningful for any good λ-frame.

Remark. 1) The name will be justified in claim 10.9(2), see also
Definition 7.18.
2) If we are dealing with s

κ
T,λ, see 1.5(3), (so T is superstable first

order complete theory) then (using in the proof regular types) this
property holds.
3) Note that “fat” is closely related to “thick” from Definition 5.15.
We do not use the same word as then in Definition 7.11(2) we get a
contradiction.

7.6 Claim. 1) Kar
s ⊆ Kbr

s ⊆ Kor
s .

2) ≤or is a partial order on Kor
s ; for an ≤or-increasing sequence of

length δ < λ+
s , it has a ≤or-lub.

3) If (Nα, M̄α, J̄α) ∈ Kor
s for α < δ < λ+ is ≤or-increasing, then its

≤W -lub (see 7.2) is its ≤or-lub (so it belongs to Kor
s ).

4) In part (2), if (Nα, M̄α, J̄α) ∈ Kar
s for α < δ is ≤or-increasing

then the ≤or-lub belongs to Kar
s .
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5) In part (2), if (Nα, M̄α, J̄α) ∈ Kbr
s for α < δ is ≤or-increasing,

then the ≤or-lub (of this sequence) belongs to Kbr
s .

6) If (N1, M̄1, J̄1) ∈ Kor
s then there is a Kor

s -fat (N2, M̄2, J̄2) such
that (N1, M̄1, J̄1) ≤or (N2, M̄2, J̄2).
7) If (N1, M̄1, J̄1) ∈ Kar

s then there is a Kar
s -fat (N2, M̄2, J̄2) such

that (N1, M̄1, J̄1) ≤or (N2, M̄2, J̄2).
8) If (N1, M̄1, J̄1) ∈ Kbr

s then there is a Kbr
s -fat (N2, M̄2, J̄2) such

that (N1, M̄1, J̄1) ≤or (N2, M̄2, J̄2).
9) Like parts (3), (4), (5) for Kor

s -fat, Kar
s -fat, Kbr

s -fat triples.

Proof. Straight, e.g.
1) By the definition and monotonicity, i.e. Claim 6.10(4).
2) Concerning “≤or is a partion order” read the definition. The sec-
ond phrase follows from part 3).
3),4),5) The independence holds by 5.10 or use 7.3(2), the orthogo-
nality holds by 6.10(2).
6),7),8) As in the proof of 5.16(8), so 4.7, recalling part (2) and its
proof.
9) Easy, too. �7.6

7.7 Claim. 1) Assume that (M,N,J) ∈ K3,vq
s or at least (∗)(M,N,J)

below. Then we can find (M̄, J̄) such that (∗∗)(M,N,J),M̄,J̄ below
holds, where

(∗)(M,N,J) (M,N,J) ∈ K3,bs
s and for no N ′, b do we have

J ⊆ N ′,M ≤s N
′ ≤s N, b ∈ N\N ′ and tp(b, N ′, N) ±

wk
M

(∗∗)(M,N,J),M̄,J̄ (a) (M,N,J) ∈ K3,bs
s

(b) M̄ = 〈Mn : n < ω〉,Mn ≤s Mn+1

(c) M0 = M and ∪{Mn : n < ω} = N
(d) (M̄, J̄) ∈ Kor

s

(e) (Mn,Mn+1,Jn) ∈ K3,qr
s

(f) J0 = J
(g) if n < ω and b ∈ Jn+1 then

tps(b,Mn+1,Mn+2)⊥
wk
M0

(follows by clause (d)).

2) Assume s weakly has regulars. If (M,N,J) ∈ K3,bs
s then we can

find M̄, J̄ such that (a)-(e),(g) above hold and
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(d)+ (M̄, J̄) ∈ K3,ar
s

(f)′ J ⊆ J0, so: if J is maximal s.t. (M,N,J) ∈ K3,bs
s

then they are equal

(g)′ if n < ω, b ∈ Jn+1 then tps(b,Mn+1,Mn+2)⊥
wk
Mn,

(follows by clause (d)+).

3) If (in part (2)) J is maximal such that (M,N,J) ∈ K3,bs
s , then

(M,N,J) ∈ K3,vq
s .

Proof. 1) By 6.14(4), we know that (∗)(M,N,J) holds in both cases.
We shall choose Mn,Jn by induction on n satisfying the relevant

clauses in (∗∗). Let M0 = M , let J0 = J and let M1 ≤s N be

such that (M0,M1,J) ∈ K3,qr
s , exists by 5.8(1). If Mn ≤s N is well

defined, n ≥ 1 let Jn be a maximal subset of IMn,N independent in
(Mn, N) such that b ∈ Jn ⇒ tps(b,Mn, N)⊥M0.

Lastly, let Mn+1 ≤s N be such that (Mn,Mn+1,Jn) ∈ K3,qr
s ,

exists by 5.8(1). To finish we need to prove that Mω :=
⋃

n<ω

Mn

is equal to N . Clearly Mω ≤s N , if Mω 6= N then for some
b ∈ N\Mω we have tps(b,Mω, N) ∈ S bs

s (Mω). Now by (∗)(M,N,J)

clearly tps(b,Mω, N)⊥
wk
M0 and clearly for some n < ω, tps(b,Mω, N)

does not fork over Mn (and necessarily n ≥ 1), and similarly (by
7.1(d)) we have tps(b,Mn, N)⊥

wk
M0 so b contradicts the choice of Jn

(as “maximal such that ...”, see 5.6(1)). So we are done.

2) Let J0 ⊆ IM,N be maximal such that (M,N,J0) ∈ K3,bs
s and

J ⊆ J0.
We repeat the proof of part (1) (except requiring (g)′ instead of

(g)), till the proof that Mω = N . If Mω 6= N stipulate Mω+1 = N
and apply Definition 7.5 for β = ω and so there are n = α < ω and
c as there. If n = 0 we get contradiction to the choice of J0 and if
n > 0 we get contradiction to the choice of Jn.
3) By part (1) and 6.20(2). �7.7

7.8 Claim. [s weakly has regulars, see Definition 7.5].
1) In 7.7(1) we can get

(∗∗)+
(M,N,J),M̄,J̄

(a)-(f) as in 7.7
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(d)+ (M̄, J̄) ∈ Kar
s (i.e. we strengthen clause

(d)).

2) In 7.9 below we can add

(B)+ like (B) there adding (N, M̄, J̄) ∈ Kar
s .

Proof. 1) Similar to the proof of 7.7(2) noting that J is maximal

such that (M,N,J) ∈ K3,bs
s .

2) In 7.9 note that (C) ⇒ (B)+ by 7.8(1) and (B)+ ⇒ (B) trivially.
�7.8

Now we arrive to “understanding K3,vq
s ”; this is reformulated in 12.6.

7.9 Theorem. For every triple (M,N,J), the following conditions
are equivalent:

(A) (M,N,J) ∈ K3,vq
s

(B) We can find M̄, J̄ such that (N, M̄, J̄) ∈ Kor
s ,J0 = J,M0 =

M,N =
⋃

n<ω

Mn and (Mn,Mn+1,Jn) ∈ K3,qr
s (so in particu-

lar (N, M̄, J̄) is prime, see Definition 7.2(4)), recall that by
the definition of Kor

s , tps(b,Mn+1,Mn+2) is orthogonal to
M0 for every n < ω, b ∈ Jn+1

(C) (a) M ≤s N

(b) J is independent in (M,N)

(c) if M∪J ⊆ N ′ ≤s N , b ∈ N\N ′, tps(b, N
′, N) ∈ S bs

s (N ′)
then tps(b, N

′, N)⊥
wk
M

(D) (a), (b) as above

(c) if N ≤s N
+, b ∈ N+\M\J and

J ∪ {b} is independent in (M,N+)
then tps(b, N,N

+) ∈ S bs
s (N) does not

fork over M , (so in particular b /∈ N)

(E) there is a uq-decomposition 〈Mi, aj : i ≤ α, j < α〉 inside

(M0, N) such that (M,M0,J) ∈ K3,vq
s ,Mα = N and each

tps(aj,Mj,Mj+1) is weakly orthogonal to M .
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From this we shall deduce (after the proof of 7.9):

7.10 Conclusion. If δ < λ+
s and 〈Mi : i ≤ δ〉 is ≤s-increasing con-

tinuous, and 〈Ji : i ≤ δ〉 is ⊆-increasing continuous and (M,Mi,Ji)

belongs to K3,vq
s for i < δ, then (M,Mδ,Jδ) belongs to K3,vq

s .

Remark. See also 7.15 for more (changing the basis) and also 7.16.

Proof of 7.9. The following implications clearly suffice.

(A) ⇒ (E): Let α = 0,M0 = N .

(E) ⇒ (D): Clauses (a), (b) are obvious, so let us turn to (c). As-
sume b, N+ are as in clause (c) of (D), so by Claim 5.16(5) we know
that tps(b,M0, N

+) does not fork over M ; now we prove by induc-
tion on i ≤ α that tps(b,Mi, N

+) does not fork overM . For i = 0 see
above, for i limit use Axiom (E)(h), for i successor by the definition
of orthogonality. For i = α,Mα = N , so we are done.

(C) ⇒ (B): By 7.7(1).

(B) ⇒ (A): By 6.20(2); here we use the hypothesis “super-orthogo-
nality is equal to orthogonality”, i.e. 7.1(e).

(A) ⇒ (D): (Actually not used). Clauses (a), (b) are obvious. For
clause (c), as tps(b,M,N+) ∈ S bs

s (M), there is M ′ ≤s N+ such

that (M,M ′, b) ∈ K3,pr
s (recalling s has primes). By 5.4(3) we know

J is independent over (M,M ′, N+) hence by Definition 5.15, we
have NFs(M,M ′, N,N+) hence by 1.18 we get that tps(b, N,N

+) ∈
S bs

s (N) does not fork over M as required.

(D) ⇒ (C):
Again the problem is to prove clause (c) of (C) so toward con-

tradiction assume that M ∪ J ⊆ N ′ <s N and b ∈ N\N ′ and
p = tps(b, N

′, N) ∈ S bs
s (N ′) is not weakly orthogonal to M . So for

some q ∈ S bs
s (M) we have p ±

wk
q, and let q1 ∈ S bs

s (N ′) be a non-

forking extension of q. We can find N2 such that N ′∪{b} ⊆ N2 ≤s N

and11 (N ′, N2, b) ∈ K3,pr
s . So (see 6.3) the type q1 has some extension

11if we like to avoid using “s has primes” here we find N ′′, N2 such that

N ≤s N ′′, N2 ≤s N ′′ and (N ′, N2, b) ∈ K
3,uq
s .
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q2 ∈ Ss(N2) which is not a non-forking extension of q, and so we can
find N4 and c such that N ≤s N4 and q2 = tps(c, N2, N4). Now as c
realizes q1 clearly tps(c, N

′, N4) does not fork over M hence J∪ {c}
is independent in (M,N4). By the choice of q2 ∈ Ss(N2), as c real-
izes q2 clearly tps(c, N2, N4) forks over M , hence as N2 ≤s N ≤s N4

also tps(c, N,N4) forks over M . So we have gotten a contradiction
to clause (c) of (D) thus finishing. �7.9

Proof of 7.10. It is enough to check clause (D) of 7.9, now clause (a) is
trivial, clause (b) holds by 5.10(3). For proving clause (c) we assume
Mδ ≤s N

+, b ∈ N+\J\M and J ∪ {b} is independent in (M,N+),
and we should prove that “tps(b,Mδ, N

+) belongs to S bs
s (Mδ) and

does not fork over M”. Now clearly for each i < δ the set Ji ∪ {b}
is independent in (M,N+) by monotonicity of independence. Hence

by 7.9 (A) ⇒ (D) as we are assuming (M,Mi,Ji) ∈ K3,vq
s we can

conclude that tps(b,Mi, N) ∈ S bs
s (Mi) does not fork over M ; so

this holds for every i < δ. Now tps(b,Mδ, N
+) does not fork over

M by Axiom (E)(h).
�7.10

∗ ∗ ∗

We now try to show that there is a parallel to “N brimmed over M”
among {(M,N, a) ∈ K3,uq

s : tps(a,M,N) = p}

7.11 Definition. 1) If M∗ ∈ Ks, p
∗ ∈ S bs

s (M∗) then let K3,uq
s,p∗ =

{(M,N, a) ∈ K3,uq
s : M = M∗ and p∗ = tps(a,M,N)}.

1A) If M∗ ∈ Ks and p̄ = 〈pt : t ∈ I〉 is a sequence of members of

S bs
s (M∗) and |I| ≤ λ, then K3,vq

s,p̄ = {(M,N,J) ∈ K3,vq
s : M = M∗

and J = {at : t ∈ I} with no repetitions such that t ∈ I ⇒ pt =
tps(at,M,N)}.

2) We say (M,N,J) ∈ K3,vq
s is fat or is K3,vq

s -fat if there is a fat

(N, M̄, J̄) ∈ K3,or
s satisfying J0 = J,M0 = M and ∪{Mn : n <

ω} = N . If J = {a} we may write a instead of J and say (M,N, a) is

K3,uq
s -fat and if p = tps(a,M,N) we may say (M,N, a) is K3,uq

s,p -fat.

We define “K3,vq
s,p̄ -fat” similarly.
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7.12 Universality/Uniqueness Claim.

1) If (M,N, a) ∈ K3,uq
s,p∗ and (N1, M̄1, J̄1) is Kor

s -fat, see Definition

7.4(4), J1
0 = {a∗}, (M1

0 ,M
1
1 , a

∗) ∈ K3,uq
s,p∗ and M = M1

0 then there is

a ≤s-embedding f of N into N1 = ∪{M1
n : n < ω} over M mapping

a to a∗.
2) If (N ℓ, M̄ ℓ, J̄ℓ) is Kor

s -fat, Jℓ
0 = {aℓ}, (M

ℓ
0 , N

ℓ,Jℓ
0) ∈ K3,vq

s , tps(aℓ,
M ℓ

0 , M
ℓ
1) = p for ℓ = 1, 2 (so M ℓ

0 = Dom(p) does not depend on ℓ).
Then there is an isomorphism f from N1 onto N2 over Dom(p)
which maps a1 to a2.
3) Similar to (2) with Jℓ

0 = J,M ℓ
0 = M0 and tps(c,M

1
0 ,M

1
1 ) =

tps(c,M
2
0 ,M

2
1 ) for c ∈ J for ℓ = 1, 2.

4) If (M,N,J) ∈ K3,vq
s and (N1, M̄1, J̄1) is Kor

s -fat and M =
M1

0 ,J = J1
0 and c ∈ J ⇒ tps(c,M,N) = tps(c,M

1
0 , N

1) then there
is an embedding of N into ∪{M1

n : n < ω} which is the identity on
M ∪ J.

Remark. 1) In 7.12 we can make stronger demands on f . In part (1)
if M ∪ {a} ⊆ N ′ ≤s N, f

′ a ≤s-embedding of N ′ into M1
n for some

n < ω, f ′ ⊆ idM , f ′(a) = a∗, then we can require f ′ ⊆ f .
2) In part (2) of 7.12, if M ℓ

0 ∪ {aℓ} ⊆ M ′
ℓ ≤ M ℓ

n for ℓ = 1, 2, f ′ an
isomorphism from M ′

1 onto M ′
2 extending idDom(p) ∪ {〈a1, a2〉} then

we can require f ′ ⊆ f .
3) We can in 7.12 use Kar

s , K
br
s instead of Kor

s but then parts (1),(2)
of the remark may fail.

Proof. 1) By 7.9 (A) ⇒ (B), we can find (N, M̄, J̄) ∈ Kor
s with

M0 = M,J0 = {a}, as in 7.9, clause (B) so N = ∪{Mn : n <

ω} and (Mn,Mn+1,Jn) ∈ K3,qr
s for n < ω. Now we choose by

induction on n < ω a ≤s-embedding fn of Mn into M1
n increasing

with n, f0 = idM0
, f1(a) = a∗. For n = 0 this is trivial, for n = 1

note that tps(a,M,M1) = tps(a
∗,M,M1

1 ) and recall the definition

of (M,M1, a) ∈ K3,pr
s . For n = m+ 1 > 1, for every b ∈ Jm, by the

definition of Kor
s , p := tps(b,Mm,Mm+1)⊥M0. So the non-forking

extension of fm(p) to M1
m is orthogonal to M0. So by the definition

of “fat” in 7.4(4) we can find a one-to-one mapping hm from Jm into
J1

m such that
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(i) b ∈ Jm ⇒ tps(hm(b),M1
m,M

1
m+1) does not fork over Rang(fm)

(ii) b ∈ Jm ⇒ fm(tps(b,Mm,Mm+1)) = tps(hm(b), Rang(fm),
M1

m+1).

Then choose a ≤s-embedding fn of Mn into M1
n satisfying fn ⊇

fm, fm(c) = hm(c) for c ∈ Jm, this is possible by the definition of

(Mm,Mm+1,Jm) ∈ K3,qr
s . Having carried the induction, f := ∪{fn :

n < ω} is as required.
2) We choose by induction on n a tuple (N1

n, N
2
n, fn, I

1
n) such that

(with ℓ ∈ {1, 2}):

(a) N ℓ
n ≤s M

ℓ
n for ℓ = 1, 2

(b) fn is an isomorphism from N1
n onto N2

n

(c) N ℓ
n ≤s N

ℓ
n+1 and fn ⊆ fn+1 for ℓ = 1, 2

(d) N ℓ
0 = M ℓ

0 and f0 is the identity

(e) (N1
0 , N

1
1 ,J

1
0) ∈ K3,qr

s and f1(a1) = a2

(f) if n = ℓ mod 2 (where ℓ ∈ {1, 2}) and n ≥ 1 then

(α) In is a maximal subset of
{b ∈ INℓ

n,Mℓ
n+1

: tps(b, N
ℓ
n,M

ℓ
n+1)⊥M0} which is inde-

pendent in (N ℓ
n,M

ℓ
n+1)

(β) (N ℓ
n, N

ℓ
n+1, In) ∈ K3,qr

s

(γ)1 if ℓ = 1, fn+1 ↾ In is a one-to-one mapping from In into
J2

n+1

(γ)2 if ℓ = 2, f−1
n+1 ↾ In is a one-to-one mapping from In into

J1
n+1.

There is no problem to carry the induction. Let Nℓ := ∪{N ℓ
n : n <

ω} so Nℓ ≤s N
ℓ recalling N ℓ = ∪{M ℓ

n : n < ω} by Definition 7.4(4)

and f :=
⋃

n<ω

fn is an isomorphism from N1 onto N2. We shall show

that they are as required as in the proof of 7.7. That is, we prove
that Nℓ = N ℓ, if not we have Nℓ := ∪{N ℓ

n : n < ω} <s N ℓ so
we can find b ∈ N ℓ\Nℓ such that tps(b, Nℓ, N

ℓ) ∈ S bs
s (Nℓ), hence

for some n1 < ω, this type does not fork over N ℓ
n and for some
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n2 < ω, b ∈ M ℓ
n2

. By 7.7 clearly (M,N0,Jℓ
0) ∈ K3,vq

s , hence by

6.14(1) clearly tps(b, Nℓ, N
ℓ)⊥M = M0. Choose n < ω, n = ℓ mod

2, n > n1, n > n2 and we could have added b to In, contradiction.
3), 4) Similarly. �7.12

7.13 Conclusion. 1) If (M,Nℓ, a) ∈ K3,uq
s,p is fat for ℓ = 1, 2 then

N1, N2 are isomorphic over M ∪ {a}.

2) Similarly for K3,vq
s,p̄ .

3) If (M,N,J) ∈ K3,bs
s then for some N ′ ≤s N

′′ we have J ⊆ N ′

and N ≤s N
′′ and (M,N ′,J) is K3,vq

s -fat.

Proof. 1),2) By the proof of 7.12(2) (note that under a stronger as-
sumption in 7.14 below (i.e. s = t+) we get uniqueness even without
assuming fatness).
3) Easy. �7.13

7.14 Claim. [s = t+, t is a good+ and successful frame.]

1) K3,uq
s = K3,pr

s ; so together with 4.14(2) we get uniqueness for

K3,uq
s .

2) (M,N,J) ∈ K3,qr
s iff (M,N,J) ∈ K3,vq

s so together with 5.10(5)(2)

we get uniqueness for K3,vq
s .

3) (M,N,J) ∈ K3,qr
s iff (M,N,J) belongs to K3,vq

s and is fat.

Question: Can we assume less than s = t+?

Proof of 7.14. 1) This is a special case of (2).
2) Note that by changing t without loss of generality Kt is cate-
gorical hence it satisfies 7.1. The “only if” implication we already
proved in 3.7(2), more exactly 5.16(1). For the other direction as-

sume (M,N,J) ∈ K3,vq
s and by 7.7(1) applied to (M,N,J) we get

(M̄, J̄) satisfying (∗∗)(M,N,J),M̄,J̄ of 7.7(1) which means that it is as in

clause (B) of 7.9 in particular J0 = J and (Mn,Mn+1,Jn) ∈ K3,qr
s for

n < ω and b ∈ Jn+1 ⇒ tps(b,Mn+1,Mn+2)⊥
wk
M0 hence by 7.1 we get

b ∈ Jn+1 ⇒ tps(b,Mn+1). Let 〈Mβ
i : i < λs〉 be ≤t-representations
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of Mβ for β ≤ ω. Now by 5.22 there is a club E of λs = λ+
t such

that (NFt(M
n
α ,M

n+1
α ,Mn

β ,M
n+1
β ) for every n < ω and α < β from

E and) for δ ∈ E the triple (Mn
δ ,M

n+1
δ ,Jn∩M

n+1
δ ) belongs to K3,vq

t

for each n < ω.

Let δ ∈ E and b ∈ Jn+1∩M
n+2
δ . By 6.11(2) (reflecting non-super-

orthogonality) for some ε ∈ [δ, λs) we have tpt(b,M
n+1
ε ,Mn+2

ε )⊥
su
M0

ε .

But tpt(b,M
n+1
ε ,Mn+2

ε ) does not fork over Mn+1
δ , so by monotonic-

ity (6.10(4)) we have tpt(b,M
n+1
δ ,Mn+2)⊥

su
M .

So by 6.20(2) we can deduce that for δ ∈ E we have (M0
δ ,M

ω
δ ,J∩

Mω
δ ) ∈ K3,vq

t .

Hence (see 4.9 as M0,Mω ∈ Ks, more exactly by 4.13(1) if J is a

singleton, by 5.22 in general) the triple (M0,Mω,J) belongs to K3,qr
s ,

as required.
3) The “if” direction is trivial by part (2).

For the “only if” part we can use the uniqueness from part (2),

but we give a direct proof. Assume (M,N,J) ∈ K3,qr
s . By part (2)

we have (M,N,J) ∈ K3,vq
s and again by claim 5.23(2) (uniqueness

of K3,qr
s ) it is enough to find N ′ such that

⊛ (a) (M,N ′,J) ∈ K3,vq
s

(b) tps(c,M,N ′) = tps(c,M,N) for c ∈ J

(c) (M,N ′,J) is fat.

By 7.13(3) this holds so we are done. �7.14

7.15 Claim. Assume (Mi, Ni,Ji) ∈ K3,vq
s for i < δ where δ < λ+

s .
Assume further that 〈Mi : i < δ〉 is ≤s-increasing continuous, 〈Ni :
i < δ〉 is ≤s-increasing continuous and 〈Ji : i < δ〉 is ⊆-increasing
continuous and i < j < δ & c ∈ Ji ⇒ tps(c,Mj, Nj) does not
fork over Mi. Let Mδ = ∪{Mi : i < δ}, Nδ = ∪{Ni : i < δ} and

Jδ = ∪{Ji : i < δ}. Then (Mδ, Nδ,Jδ) ∈ K3,vq
s .

Remark. 1) We should compare this claim to 5.17. Here we assume
less on 〈(M,Mi,Ji) : i ≤ δ〉, as Mi being <∗

s-increasing is not de-
manded here. However, we assume more on s as the hypothesis of
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this section is stronger.
2) Compare also with 8.21, there we do not assume that s has primes.

Proof. 1) Note that Jδ is independent in (Mδ, Nδ) by 5.10(3).
We shall use Claim 7.9, our desired conclusion is clause (A) for

(Mδ, Nδ,Jδ) so it is enough to check clause (D). So letMδ ≤s N
+
δ , b ∈

N+
δ \Jδ\Mδ and assume that Jδ ∪ {b} is independent in (Mδ, N

+
δ ).

So tps(b,Mδ, N
+
δ ) ∈ S bs

s (Mδ) hence for some i(∗) < δ the type

tps(b,Mδ, N
+
δ ) does not fork over Mi(∗). It is enough to prove that

for every i ∈ [i(∗), δ), the type tps(b, Ni, N
+
δ ) ∈ S bs

s (Ni) does not

fork over Mi. (Why? Recalling tps(b,Mi, N
+
i ) does not fork over

Mi(∗), by transitivity of non-forking tps(b, Ni, N
+
δ ) does not fork

over Mi(∗); as this is true for every i ∈ [i(∗), δ) and 〈Ni : i ∈ [t(∗), δ]〉

is ≤s-increasing continuous, clearly then also tps(b, Nδ, N
+
δ ) does

not fork over Mi(∗) hence over Mδ as required). Let i be any ordinal
∈ (i(∗), δ), so by monotonicity Ji ∪ {b} is independent in (Mδ, N

+);
as Ji ∪ {b} ⊆ Jδ ∪ {b}. As c ∈ Ji ∪ {b} ⇒ tps(c,Mδ, N

+
δ ) does not

fork over Mi it follows that Ji ∪ {b} is independent in (Mi,Mδ, N
+
δ )

hence in (Mi, N
+
δ ). As (Mi, Ni,Ji) ∈ K3,vq

s by claim 7.9 clearly

tps(b, Ni, N
+
δ ) does not fork over Mi, and as said earlier this suffices.

�7.15

7.16 Claim. Assume 〈Mi : i ≤ α〉 is ≤s-increasing continuous and

(Mi,Mi+1,Ji) ∈ K3,vq
s and Ji is independent in (M0,Mi,Mi+1) for

i < α. Then (M0,Mα,∪{Ji : i < α}) ∈ K3,vq
s .

Remark. Compare with 7.10.

Proof. We prove the statement by induction on α. Let J = ∪{Ji :
i < α}. First note that J is independent in (M0,Mα) by 5.10(3).

To prove that (M0,Mα,J) ∈ K3,vq
s by 7.9 it suffices to prove clause

(D) there, so assume toward contradiction that Mα ≤s N and b ∈
N\J\M0 and J ∪ {b} is independent in (M0, N). If α = 0 this is
trivial. For α limit, note that each i < α, clearly {Jj : j < i}∪{b} is
independent in (M0, N

+) hence by the induction hypothesis and 7.9
we know that tps(b,Mi, N) does not fork over Mi; as this holds for
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every i < α, we can deduce that tps(b,Mα, N) does not fork over
M0 as required.
So we are left with the case α = β + 1. So J ∪ {b} is independent

in (M0, N) hence so is
⋃

i<β

Ji ∪ {b} and by the induction hypothesis

for β the type tps(b,Mβ, N) does not fork over M0 hence b /∈ Mβ.
Hence clearly (J ∪ {b}) ∩ Mβ = ∪{Ji : i < β}, so by 5.16(6) we
know that J ∪ {b}\Mβ = Jβ ∪ {b} is independent in (M0,Mβ, N).

As (Mβ,Mα,Jβ) ∈ K3,vq
s by 5.16(5), tps(b,Mα, N) does not fork

over Mβ hence over M0. �7.16

The following claim will be used in §12; this is a strengthening of “s

weakly has regulars” replacing a chain by a finite partial order. Note
that the conclusion of 7.17 is given a name in 7.18.

7.17 Claim. Assume s weakly has regulars; (see Definition 7.5,
enough for sequence of length 4), I any set.
1) Assume

(a) uℓ ⊆ I is finite, Mℓ ≤s M ≤s N for ℓ < n and uℓ ⊂ um ⇒
Mℓ ≤s Mm

(b) J satisfies

(α)J (M,N,J) ∈ K3,bs
s

(β)J if a ∈ J, ℓ < n and tps(a,M,N) ±
wk
Mℓ then for some

k < n the type tps(a,M,N) does not fork over Mk and
is ⊥

wk
Mm whenever um ⊂ uk.

Then there is J′ ⊇ J such that (α)J′ , (β)J′ and J′ is maximal under
those conditions.
1A) In part (1) if J′ is any set satisfying its conclusions then

(γ)J′ (M,N,J′) ∈ K3,vq
s .

2) Assume Mℓ ≤s M ≤s M ′ <s N, uℓ ⊆ I finite for ℓ < n and
uℓ ⊂ um ⇒ Mℓ ≤s Mm and for some a ∈ IM ′,N , tps(a,M

′, N)
is not (weakly) orthogonal to M (and ∈ S bs

s (M ′)). Then for some
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a ∈ IM ′,N the type tps(a,M
′, N) does not fork over M and is weakly

orthogonal to Mℓ for ℓ < n or for some k < n does not fork over Mk

and either is weakly orthogonal to Mℓ whenever uℓ ⊂ uk.
3) If 〈Mi : i ≤ α〉 is ≤s-increasing continuous, β < α and Mα <s N
and for some a ∈ N\Mα the type tps(a,Mα, N) ∈ S bs

s (Mα) is
not (weakly) orthogonal to Mβ then for some non-limit γ ≤ β and
b ∈ N\Mα we have:

(a) tps(b,Mγ, N) does not fork over Mγ

(b) tps(b,Mγ, N) is (weakly) orthogonal to Mγ′ for every γ′ < γ.

Remark. In parts (1),(2) we can allow 〈Mi : i < β〉, 〈ui : i < β〉, β, α
not necessarily finite if we can find n < ω, Sℓ ⊆ β for ℓ < n such that
β = ∪{Sℓ : ℓ < n} and 〈ui : i ∈ Sℓ〉 is increasing (see in 12.18).

Proof. 1) The conclusion is obvious by 5.4(1), i.e. (∗)0 ⇔ (∗)1 there.
1A) If not, then by (C) ⇔ (A) from claim 7.9 there are N ′, b such
that M ∪ J ⊆ N ′ <s N and b ∈ N\J\N ′ such that tps(b, N

′, N) ∈
S bs

s (N ′) is ±M . Hence by part (2) of the present claim there is
a ∈ N\N ′ such that one of the following cases holds.

Case 1: tps(a,N
′, N) does not fork over M and is ⊥Mℓ for ℓ < n.

Case 2: For some k < n, the type tps(a,N
′, N) does not fork over

Mk but ℓ < n ∧ uℓ ⊂ uk ⇒ tps(a,N
′, N)⊥Mℓ.

Now both cases contradict the assumption that “J′ is a maximal
set such that ...” as exemplified by J′ ∪ {a}.
2) We prove this by induction on n. We can easily choose an ordinal
α < λ+ and 〈N ′

i : i ≤ α〉, 〈bi : i < α〉 such that

⊛ (a) N ′
i ≤s N is ≤s-increasing continuous

(b) N ′
0 = M ′

(c) (N ′
i , N

′
i+1, bi) ∈ K3,pr

s

(d) tps(bi, N
′
i , N

′
i+1) is orthogonal to M

(e) for no a ∈ N\N ′
α is tps(a,N

′
α, N) ∈ S bs

s (N ′
α) orthog-

onal to M .
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If q ∈ S bs
s (M ′) = S bs

s (N ′
0) does not fork over M then we can prove

by induction on i ≤ α that q has a unique extension in Ss(N
′
i).

Hence a ∈ IM ′,N ′

α
⇒ tps(a,M

′, N ′
α)⊥M so if N ′

α = N it follows
that the assumption never holds, so assume N 6= N ′

α. Without loss
of generality uℓ ⊆ uk ⇒ ℓ ≤ k. Now we prove by induction on m ≤ n
that for some am ∈ N\N ′

α

(∗) the type tps(am, N
′
α, N) ∈ S bs

s (N ′
α) does not fork over M

and is orthogonal to M0, . . . ,Mm−1.

For m = 0 note that M ≤s N ′
α <s N , so by the assumption “s

weakly has regulars” there is a0 ∈ IN ′

α,N such that tps(a0, N
′
α, N)

either does not fork over M or is orthogonal to M . The latter is
impossible by clause (e) of ⊛, so a0 is as required. Next assume
that am is well defined and m < n. Let N ′′ ≤s N be such that
(N ′

α, N
′′, am) ∈ K3,pr

s . Now Mm ≤s M ≤s N
′
α <s N

′′ and apply “s

weakly has regulars” to this sequence. So there is am+1 ∈ IN ′

α,N ′′

such that pm+1 = tps(am+1, N
′
α, N

′′) satisfies one of the following
cases:

(i) pm+1 does not fork over Mm

(ii) pm+1 does not fork over M and is orthogonal to Mm

(iii) pm+1 is orthogonal to M .

Now the case (iii) is impossible by clause (e) of ⊛.
Also if case (i) holds, by (∗) above we have obtained the second

possibility in the conclusion, hence without loss of generality case (ii)
holds. Now for each ℓ < m, pm+1⊥Mℓ by (∗) above and Example
6.25. So am+1 is as required so we have carried the induction and
an is as required in the second possibility in the conclusion so we are
done.
3) Similar; without loss of generality β is minimal, i.e. γ < β ∧
b ∈ N\Mα ∧ tps(b,Mα, N) ∈ S bs

s (Mα) ⇒ tps(b,Mγ, N)⊥Mγ. Let
γ ≤ β be minimal such that β ≤ γ + 1 so if β is successor then
β = γ + 1 and if not, (i.e. β is zero or limit) then β = γ. Now
the sequence 〈Mγ ,Mβ,Mα, N〉 is ≤s-increasing and by the choice of
β, for some b ∈ N\Mα the type tps(b,Mα, N) belongs to S bs

s (Mα)
and is ±Mβ . As s weakly has regulars, there is c ∈ N\Mα such
that either tps(c,Mα, N) does not fork over Mβ and is ⊥Mγ or
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tps(c,Mα, N) does not fork over Mγ . If β = γ + 1 and the first case
holds, we are done. If β = γ + 1 and the second case occurs we get
a contradiction to “β is minimal such that ...”

If β = γ the first case is impossible, so the second case holds; if
β = γ = 0 we are done; otherwise β = γ is a limit ordinal hence by
Ax(E)(c) for some ε < β the type tps(c,Mα, N) does not fork over
Mε and we get a contradiction to the choice of β. So in all cases we
are done. �7.17

7.18 Definition. We say that s almost has regulars when the con-
clusions of 7.17 holds (even if s is just a good λ-frame, e.g. does not
have primes).

7.19 Claim. 1) In the Definition 7.5 of “weakly has regulars” with-
out loss of generality the sequence 〈Mα : α ≤ β + 1〉 is finite, i.e.
β < 4.
[Actually “s is a good λ-frame” suffice instead 7.1.]
2) If s is weakly has regulars, then s+ weakly has regulars and even
almost has regulars.

Proof. 1) By the proof of 7.17(3).
2) By the translations between s+ and s. �7.19

Explanation: In §10 regular types are defined and investigated,
they are useful, but in the main theorem in §12 it is enough to
assume weaker properties than actual denseness of regulars. Also
we sometimes work with sets P ⊆ S bs

s (M) which have some of the
properties of the set of regular types which we call auto-dense P.

7.20 Definition. 1) We say that P ⊆ S bs
s (M) is auto-dense when:

if M ≤s N1 <s N2 and for some c ∈ N2\N1, the type tps(c, N1, N2)
is not orthogonal to some p ∈ P then for some c ∈ N2\N1 the type
tps(c, N1, N2) is a non-forking extesnion of some p ∈ P.
2) For P ⊆ S bs

s (M) let P⊥ = {q ∈ S bs
s (M) : p⊥q for every p ∈ P}.

If P = ∅ this is S bs
s (M), but pedantically we have to say who is M .
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7.21 Definition. We say that P is a type base of (M, M̄) when

(a) M̄ = 〈Mℓ : ℓ < n〉

(b) Mℓ ≤s M

(c) P ⊆ S bs
s (M)

(d) if p ∈ P and ℓ < n then p⊥Mℓ

(e) if M ≤s N
′ <s N

′′ and a ∈ N ′′\N ′, tps(a,N
′, N ′′) does not

fork over M and is orthogonal to Mℓ for ℓ < n then for some
b ∈ N ′′\N ′, tps(b, N

′, N ′′) is the non-forking extension of
some p ∈ P.

The following notion is used in the proof 12.30(10); used implicitly
in what is quoted there, in particularly in “base”.

7.22 Definition. 1) Assume Mℓ ≤s N for ℓ = 1, 2. We say that q ∈
S bs

s (M1) is dominated by p ∈ S bs
s (M2) when: if M ≤s N

′, N ≤s N
′

and p′, q′ ∈ S bs
s (M) are parallel to p, q respectively and (M,M+, a) ∈

K3,bs
s and tps(a,M,M+) = p′ then for some b ∈M+ realizes q′.

2) We say above “essentially dominated” when we require that M is
brimmed (equivalently for some brimmed M ′ ≤s M the types p′, q′

does not fork over M ′). We say weakly if we demand M = N = M2.

7.23 Claim. 1) The property “p weakly dominates q” depends on p
and on q only up to parallelism. Also in Definition 7.22 without loss
of generality (M,M+, a) ∈ K3,pr

s .
2) If p, r are orthogonal and q is dominated by p then q, r are orthogonal.

3) [s weakly has regulars] If M ≤s N and p ∈ S bs
s (N) is not or-

thogonal to M , then some q ∈ S bs
s (M) is essentially dominated by

p (hence M ′ <s N ∧ p⊥M ′ ⇒ q⊥M ′).
4) If p, q ∈ S bs

s (N) do not fork over M and p⊥
wk
q and q dominates

q1 ∈ S bs
s (N) then p⊥

wk
q1.

5) If p dominates q then it essentially dominates q and weakly dom-
inates p; if s is categorical in λ all three are equivalent.
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Proof. 1) Obvious.
2) By 6.25.

3) Let (N,N1, a) ∈ K3,pr
s be such that tps(a,N,N1) = p. As “s

weakly has regulars”, for some b ∈ N1\N , we have tps(b, N,N1) ∈
S bs

s (N) does not fork overM (we can letN2 ≤s N we have (N,N2, b) ∈

K3,pr
s ). Now use part (2).

4) Use 6.26.
5) Left to the reader. �7.23

Remark. We may replace “s has prime” by the weaker demands.

Important but not presently used in

7.24 Definition. s has super density for K3,uq
s when:

If (M,N, a) ∈ K3,bs
s then for some N ′ we have N∪{a} ⊆ N ′ ⊆s N

and (M,N ′, a) ∈ K3,uq
s .

§8 Tries to decompose and

independence of sequences of models

We try to find smooth or otherwise good decompositions; at present
only 8.3 works. We shall get really what we want after using type-
fullness hence regular types. On this assumption, having S na

s equal
to S bs

s , i.e., fullness being “soft”, see §9.
On 〈Mη : η ∈ I〉, I ⊆ ω>λ and the needed assumptions, see

[Sh:F735] and [Sh 842]. We put sometimes as an exercise an easy
case of weakening the hypothesis. Also we try to understand NFs

better - it is closed under union of increasing chains.

8.1 Hypothesis. 1) (a) s is a successful good+ frame.
2)

(b) s has primes,

(c) K3,uq
s = K3,pr

s , moreover K3,vq
s = Kqr

s

(d) ⊥ = ⊥
wk

as a relation between two types

(e) ⊥ = ⊥
su

, as a relation between a type and a model.
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Remark. Hypothesis 8.1(2)(d),(e) are reasonable as if s is categori-
cal by 6.10(5) and 6.8(5) they hold, but in some examples it holds
without going to the successor, so we use them as an hypothesis.
Hypothesis 8.1(a),(b) are justified by 4.9, 7.14.

8.2 Definition. We say that 〈Mi, aj : i ≤ α, j < α〉 is a smooth
x-decomposition inside N over M (where x ∈ {pr,uq}, if x = pr we
may omit it); when:

(a) it is a decomposition inside N over M (see Definition 3.3),
which means

〈Mi : i ≤ α〉 is ≤s-increasing continuous
Mα ≤s N
M = M0

tps(ai,Mi,Mi+1) ∈ S bs
s (Mi)

(Mi,Mi+1, ai) ∈ K3,x
s

(b) for every i < β there is j ≤ i such that tps(ai,Mi,Mi+1)
does not fork over Mj and if j > ε, then the type is weakly
orthogonal to Mε; so by 6.26 necessarily j is non-limit and
by 8.1(d) the type is orthogonal to Mε.

In the claim below, if N is (λ, ∗)-brimmed over M then we can choose
Mα = N , see 8.6(2) similarly in other cases.

8.3 Claim. 1) If M ≤s N then we can find 〈Mi, aj : i ≤ α, j < α〉
such that

⊠M,N,M̄,ā (a) M0 = M and12 N ≤K Mα

(b) Mi is ≤K-increasing continuous

(c) (Mi,Mi+1, ai) ∈ K3,uq
s moreover ∈ K3,pr

s as s has primes,
i.e., 8.1(b)

(d) for each j < α either tps(aj ,Mj,Mj+1) does not fork
over M0 or it is weakly orthogonal to M0.

12recalling s has primes, can we add N = Mα? Of course, under additional
assumptions,e.g. on regular types
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2) If (M,N,J) ∈ K3,bs
s then we can demand in (1) that J = {ai :

i < α′} for some α′ ≤ α.
3) In (1) we can add 〈Mj , ai : j ≤ α〉 is smooth (i.e. we strengthen
clause (d)).

Remark. Proving 8.3 we do not use the hypothesis 8.1(2).

Proof. 1) We try to choose by induction on i < λ+ a pair (Mi, Ni)
and if i = j + 1 also aj such that: Mi ≤s Ni,Mi is ≤s-increasing
continuous, Ni is ≤s-increasing continuous, and the Mi, aj satisfy
the relevant cases of clauses (b), (c), (d) and M0 = M,N0 = N and
i = j+1 ⇒ ¬NFs(Mj , Nj,Mi, Ni). We cannot succeed (as s is good+

and successful, see §1) and we can define for i = 0 and i limit. Hence
for some i we have (Mi, Ni) but cannot choose Mi+1, Ni+1, ai. If
Mi = Ni then we are done. If Mi 6= Ni there is bi ∈ Ni such
that tps(b,Mi, Ni) ∈ S bs

s (Mi). Trivially, one of the following cases
occurs and in each case we get a contradiction.

Case 1: tps(bi,Mi, Ni) is weakly orthogonal to M0.
Then we let ai = bi and we can find a pair Mi+1 ≤s Ni+1 such

that Ni ≤s Ni+1 and (Mi,Mi+1, ai) ∈ K3,uq
s and if s has primes

then Ni+1 = Ni and (Mi,Mi+1, ai) ∈ K3,pr
s . All the induction de-

mands hold and tps(ai,Mi+1, Ni) is algebraic so does not belong to
S bs

s (Mi+1) hence this type forks over Mi. As NFs respects s (see
II.6.1(3)), it follows that ¬NFs(Mi, Ni,Mi+1, Ni+1).

Case 2: tps(bi,Mi, Ni) is not weakly orthogonal to M0.
So there is pi ∈ S bs

s (Mi) which does not fork overM0 such that pi,
tps(bi,Mi, Ni) are not weakly orthogonal. Hence we can find Ni+1 ∈
Ks such thatNi ≤s Ni+1 and some ai ∈ Ni+1 realizing pi inNi+1 and
tps(ai, Ni, Ni+1) is not the non-forking extension of pi in S bs

s (Ni).
As we can increase Ni+1 without loss of generality there is Mi+1 ≤s

Ni+1 such that (Mi,Mi+1, ai) is in K3,pr
s (if not assuming 8.1(b),

then just in K3,uq
s ), so clearly ¬NFs(Mi, Ni,Mi+1, Ni+1) again, by

“NFs respects s”, see 1.18. So all the demands hold.
So if Mi 6= Ni then we can continue the induction, contradiction,
hence Mi = Ni and so α = i, 〈Mj : j ≤ α〉, 〈aj : j < α〉 are as
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required.
2) First use (∗)2 ⇔ (∗)3 from 5.4(1) and then continue as above.
3) In the proof of part (1) when Mi 6= Ni are defined after we choose
b, let j = ji ≤ i be minimal such that tps(b,Mi, Ni) ±

wk
Mj, well

defined as j = i is O.K. Now continue as above. �8.3

8.4 Claim. If 〈Mi : i ≤ α〉 is ≤s-increasing continuous and p ∈
S bs

s (Mα) does not fork over M0, then we can find an ≤s-increasing
continuous sequence 〈Ni : i ≤ α〉 and a such that Mi ≤s Ni, a ∈ N0,
tps(a,Mα, Nα) = p and (Mi, Ni, a) is prime for i ≤ α.

Proof. We choose by induction on i ≤ α a pair (Ni, fi) and a
such that Ni is ≤s-increasing, fi is an ≤s-embedding of Mi into
Ni, fi is increasing continuous, f0 = idM0

, tps(a,M0, N0) = p ↾

M0, (fi(Mi), Ni, a) ∈ K3,pr
s and tps(a, fi(Mi), Ni) does not fork over

f0(M0) = M0. For i = 0 use existence of primes.
For i limit use 7.15 and the hypothesis (c) of 8.1, and for i = j+1

use the definition of a prime triple, chasing arrows. In the end,
renaming, without loss of generality fi = idMi

for i ≤ α. �8.4

8.5 Claim. If ⊠M,N,M̄,ā from Claim 8.3 holds and
J = {ai : tps(ai,Mi,Mi+1) does not fork over M = M0} then

(M,N,J) belongs to K3,vq
s .

Proof. We shall use Claim 7.9, this is O.K. as hypothesis 7.1 holds.
Now the desired conclusion is clause (A) there, so it suffices to prove
clause (D) there. Now subclauses (a), (b) are obvious so let us prove
subclause (c). For this we prove by induction on β ≤ α = ℓg(ā) that
letting Jβ = {ai : i < β and tps(ai,Mi,Mi+1) does not fork over
M0}, we have:

⊛β if Mβ ≤s N+, n < ω and bℓ ∈ N+ for ℓ < n and Jβ ∪
{b0, . . . , bn−1} is independent in (M0, N

+) (and bℓ /∈ Jβ and
ℓ 6= k ⇒ bℓ 6= bk of course), then {b0, . . . , bn−1} is indepen-
dent in (M,Mβ, N

+).

For β = 0 this is trivial. For β limit this holds by 5.10(2) as
(M0,Mγ, {bℓ : ℓ < n}) is independent by the induction hypothe-
sis for each γ < β. Lastly, let β = γ + 1; then by 7.9, as we have
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proved ⊛γ , we have (M0,Mγ,Jγ) ∈ K3,vq
s . First assume aγ ∈ Jβ .

So

(∗)1 we are given n, b0, . . . , bn−1 we let bn = aγ and we are assum-
ing Jβ ∪ {b0, . . . , bn−1} is independent in (M0, N

+).
Hence trivially

(∗)2 Jγ ∪ {b0, . . . , bn} is independent in (M0, N
+).

Now apply ⊛γ for n+ 1, b0, . . . , bn−1, bn, so {b0, . . . , bn} is indepen-

dent in (M,Mγ, N
+). As (Mγ ,Mβ, aγ+1) ∈ K3,uq

s by 5.16(5) we
deduce that {b0, . . . , bn−1} is independent in (M0,Mβ, N

+), which
gives the desired conclusion.
Second, assume aγ /∈ Jβ and n, b0, . . . , bn−1 are given as in ⊛β . By
the induction hypothesis {b0, . . . , bn−1} is independent in (M,Mγ, N

+).
But tps(aγ,Mγ,Mβ) = tps(aγ ,Mγ, N

+) is orthogonal to M0,
tps(bℓ,Mγ, N

+) does not fork over M = M0 and (Mγ ,Mβ, aγ) ∈

K3,uq
s so by 6.18, (with α = 1 there) necessarily {b0, . . . , bn−1} is

independent in (M,Mβ, N
+),M0, as required.

Having carried the induction we got ⊛α which for n = 1 is the
statement (D) of 7.9 hence gives the desired conclusion. �8.5

Now we can show that any type in a sense is below a non-forking
combination of basic ones.

8.6 Conclusion. 1) If M ≤s N then for some pair (N ′,J) we have

N ≤s N
′ and (M,N ′,J) ∈ K3,vq

s .
2) If N is brimmed over M , we can demand N ′ = N . Also, if

(M,N,J) ∈ K3,bs
s then for some (N ′,J′) we have N ≤s N ′ and

J ⊆ J′ and (M,N ′,J′) ∈ K3,vq
s .

Proof. 1) By 8.3 + 8.5.
2) Easy. �8.6

8.7 Claim. If p ∈ Ss(M) then for some n,Mℓ(ℓ ≤ n), ak(k < n)
and b we have:

(a) M0 = M
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(b) (Mℓ,Mℓ+1, aℓ) ∈ K3,uq
s and as s has primes (i.e. 8.1(b))

even ∈ K3,pr
s

(c) tps(aℓ,Mℓ,Mℓ+1) does not fork over M0, so

(d) {aℓ : ℓ < n} is independent in (M0,Mn) and (M0,Mn, {aℓ :

ℓ < n}) ∈ K3,vq
s̄ and as s has primes even ∈ K3,qr

s

(e) b ∈Mn and p = tps(b,M,Mn).

Proof. We can find N , b such that M ≤s N and b ∈ N and
tps(b,M,N) = p. By 8.3, without loss of generality, possibly in-
creasing N , we have ⊠M,N,M̄,ā for some M̄, ā as there. By 8.5 as we

have clauses (c),(d) of the Hypothesis 8.1 we have (M,N,J) ∈ K3,vq
s

for some J. Among all such triples (N,J, b) choose one (N∗,J∗, b∗)
with the cardinality of J∗ being minimal. Let J∗ = {ai : i <

θ}; by hypothesis 8.1(b) we know (M,N∗,J∗) ∈ K3,qr
s so we can

find an M -based pr-decomposition 〈Mi, bj : i ≤ θ, j < θ〉 over M ,
i.e., M0 = M such that tps(bj,M,Mj+1) = tps(ai,M,N∗) and
tps(bj,Mj,Mj+1) does not fork over M , of course. So there is a
≤s-embedding of N∗ into Mθ over M mapping bi to ai for i < θ
so without loss of generality N∗ ≤s Mθ and i < θ ⇒ ai = bi.
Now if θ < ℵ0 we have gotten the desired conclusion, otherwise

b ∈ N∗ ⊆ Mθ =
⋃

i<θ

Mi so for some β < θ we have b ∈ Mβ and has

clearly (M0,Mβ, {ai : i < β}) ∈ K3,qr
s by 5.8(2) so we have gotten a

contradiction to the minimality of |J∗|. �8.7

Exercise: Prove 8.7 for s a weakly successful full a good λ-frame so
demanding (Mℓ,Mℓ+1, aℓ) ∈ K3,uq

s only.

[Hint: E.g. do it for full s, justified by §9.]

8.8 Definition. 1) For α < λ+ we say that 〈Mi : i < α〉 is s-
independent over M inside N or inside (M,N) when M ≤s Mi ≤s N
and we can find a ≤s-increasing continuous sequence N̄ = 〈Ni : i ≤
α〉 such that N0 = M,N ≤s Nα and NFs(M,Ni,Mi, Ni+1) for every
i < α. We call such 〈Ni : i ≤ α〉 a witness.
2) For α = λ+ we define similarly so i < α⇒ Ni ∈ Ks, but Nα ∈ Ks.
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8.9 Observation. 1) Assume 〈Ni : i ≤ α〉 is ≤s-increasing but not
necessarily continuous, and N̄ ,M, 〈Mi : i < α〉 satisfies the other
requirements in 8.8, so N ≤s Nα. Then the sequence 〈N ′

i : i ≤ α′〉
is a witness for 〈M ′

i : i < α〉 being s-independent over M inside N
when:

(a) let α′ = α

(b) N ′
i is Ni if i ≤ α is non-limit, is ∪{Nj : j < i} if i ≤ α is

limit

(c) M ′
i is Mi if i < α.

2) Moreover, there is a sequence 〈N ′
i : i ≤ α〉 witnessing M̄ is inde-

pendent in (M,N) such that Nα ≤s N
′
α.

Proof. 1) Straight.
2) We can choose a ≤s-increasing continuous sequence 〈N ′′

i : i ≤ α〉
such that i < α ⇒ N ′′

i ∩ N ′
α = N ′

i and i < j ≤ α ⇒ NFs(N
′
i , N

′′
i ,

N ′
j , N

′′
j ) andN ′′

α is brimmed overN ′
α. Hence there is a ≤s-embedding

of N ′
α+1 into N ′′

α over N ′
α, so without loss of generality N ′

α+1 ≤s N
′′
α .

So 〈N ′′
i : i ≤ α〉 is as required. �8.9

8.10 Weak Uniqueness Claim. Assume

(a) for ℓ = 1, 2, 〈M ℓ
i : i < α〉 is s-independent over Mℓ inside Nℓ

(b) f is an isomorphism from M1 onto M2

(c) for i < α, fi is an isomorphism from M1
i onto M2

i extending
f .

Then there is N3 such that N2 ≤s N3 and a ≤s-embedding f∗ of N1

into N3 extending every fi.

Proof. Let 〈N ℓ
i : i ≤ α〉 be a witness to 〈M ℓ

i : i < α〉 being s-
independent overMℓ insideNℓ for ℓ = 1, 2. Without loss of generality
M1 = M2 call it M and f is the identity on M , so N ℓ

0 = M .
We choose by induction on i ≤ α the tuple (N3

i , g
1
i , g

2
i ) such that

(α) N3
0 = M, gℓ

0 = idM
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(β) N3
i is ≤s-increasing continuous

(γ) gℓ
i is a ≤s-embedding of N ℓ

i into N3
i for ℓ = 1, 2

(δ) gℓ
i is increasing continuous for i

(ε) (∀a ∈M1
i )(g2

i+1(fi(a)) = g1
i+1(a)).

For i = 0, i limit this is obvious. For i = j + 1 use the uniqueness of
NFs-amalgamation. Having carried the induction, by renaming we
get the conclusion.

�8.10

8.11 Claim. Assume that 〈Mi : i < α〉 is s-independent over M ,
inside N with N̄ = 〈Ni : i ≤ α〉 a witness.
1) If M ≤s M

′
i ≤s Mi for i < α, then 〈M ′

i : i < α〉 is s-independent
over M inside N .
2) In part (1), N̄ is also a witness for 〈M ′

i : i < α〉 being s-
independent over M inside N .
3) If Mi ≤s M

+
i for i < α then we can find N+, 〈N+

i : i ≤ α〉, 〈fi :
i < α〉 such that:

(a) Ni ≤s N
+
i ≤s N

+ and N ≤s N
+

(b) 〈N+
i : i ≤ α〉 is ≤s-increasing continuous

(c) fi is a ≤s-embedding of M+
i into Ni+1 over Mi

(d) 〈N+
i : i ≤ α〉 witness 〈fi(M

+
i ) : i < α〉 is s-independent over

M inside N+
1 .

4) There are 〈M∗
i : i < α〉, 〈N+

i : i ≤ α〉, N+, 〈Ji : i < α〉 such that:

(a) Mi ≤s M
∗
i ≤s N

+ for i < α,N ≤s N
+ and Ni ≤s N

+
i for

i ≤ α

(b) 〈N+
i : i ≤ α〉 witness that 〈M∗

i : i < α〉 is s-independent over
M inside N+

(c) (M,M∗
i ,Ji) ∈ K3,vq

s for i < α.

5) If N ≤s N
+ or ∪{Mi : i < α} ⊆ N+ ≤s N then 〈Mi : i < α〉 is

s-independent over M inside N+.
6) If 〈Mi : i < α〉 is independent inside (M,N+) as witnessed by
〈Ni : i ≤ α〉 and α ≤ β,Mi = M ∧Ni = Nα for i ∈ [α, β) then 〈Mi :
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i < β〉 is independent inside (M,N+) as witnessed by 〈Ni : i ≤ β〉.
If α = 0, then 〈Mi : i < α〉 is independent inside (M,M).

Proof. 1), 2) Straightforward.
3) By induction on i ≤ α we choose N ′

i , N
+
i , fi and if i = j + 1 ≤ α

also gj such that

⊛ (a) N+
i is ≤s-increasing continuous

(b) fi is a ≤s-embedding of Ni into N+
i

(c) fi is increasing continuous with i

(d) if i = j + 1 then N ′
j ≤s N

+
j ≤s N

′
i

(e) gj is a ≤s-embedding ofM+
i into N+

i when i = j+1 ≤ α

(f) gj ↾ Mi = fi ↾ Mi ⊇ fj ↾ M when i = j + 1 ≤ α

(g) if i = j + 1 ≤ α then NFs(fj(Nj), fi(Ni), N
+
j , N

′
i)

(h) if i = j + 1 ≤ α then NFs(fi(Mj), N
′
i , gj(M

+
j ), N+

i ).

There is no problem to carry the induction by the basic properties
of NFs. That is, for i = 0 we let N+

i = M, fi = idM . For i limit let
N+

i = ∪{N+
j : j < i} and fi = ∪{fj : j < i}. Lastly, for i = j + 1

we apply the “existence property for NFs” twice to have clauses (g)
and then (h).

Having carried the induction clearly 〈N+
i : i ≤ α〉 is ≤s-increasing

continuous. Let i = j + 1 ≤ α, so NFs(M, fi(Mj), fj(Nj), fi(Ni)) as
it means NFs(M,Mj, Nj, Ni) which is assumed. But by clause (g)
of ⊛ we have NFs(fj(Nj), fi(Ni), gj(M

+
j ), N ′

i) hence by transitivity

of NFs we get NFs(M, fi(Mj), N
+
j , N

′
i).

By symmetry we have NFs(M,N+
j , fi(Mj), N

′
i), but by clause (h) of

⊛ we have NFs(fi(Mj), N
′
i , gj(M

+
j ), N+

i ) so again by transitivity we

get NFs(M,N+
j , gj(M

+
j ), N+

i ), so renaming i < α⇒ fi = idNi
and

so 〈gi : i < α〉 satisfies the requirements on 〈fi : i < α〉.
4) For each i < α choose M+

i ∈ Ks which is brimmed over Mi

hence in particular Mi ≤s M∗
i . Now we apply part (3) and get

N+, 〈N+
i : i ≤ α〉, 〈fi : i < α〉 as there and let M∗

i := fi(M
+
i ).

Clearly N+, 〈N+
i : i < α〉, 〈M∗

i : i < α〉 satisfies clauses (a),(b) of
part (4). As for clause (c), recalling M ≤s Mi ≤s M

∗
i by 8.6(1),(2)
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for i < α there is Ji such that (M,M∗
i ,Ji) belongs to K3,vq

s , so clause
(c) holds and we are done.
5), 6) Trivial. �8.11

8.12 Conclusion. If M ≤s M
′
i for i < α < λ+ then we can find N

and M̄ = 〈Mi : i < α〉 such that M̄ is independent inside (M,N)
and Mi,M

′
i are isomorphic over M for i < α.

Proof. We apply 8.11(3) with M, 〈M : i < α〉, 〈M : i ≤ α〉, 〈Mi :
i < α〉 here standing for M, 〈Mi : i < α〉, 〈Ni : i ≤ α〉, 〈M+

i : i < α〉
there. Its assumption holds by 8.11(6). Its conclusion gives the
desired conclusion. �8.12

8.13 Claim. Assume M ≤s Mi ≤s N for i < α.
1) For any M̄ ′ = 〈M ′

i : i < α′〉, a permutation of M̄ = 〈Mi : i < α〉
(that is for some one to one function π from α onto α′ we have
i < α ⇒ Mi = M ′

π(i)) we have: M̄ is s-independent over M inside

N iff M̄ ′ is s-independent over M inside N .
2) M̄ = 〈Mi : i < α〉 is s-independent over M inside N iff every
finite subsequence M̄ ′ of M̄ is s-independent over M inside N .
3) Assume (M,Mi,Ji) ∈ K3,vq

s for i < α. Then: 〈Mi : i < α〉 is
s-independent over M inside N iff ∪{Ji : i < α} is independent in
(M,N) and, of course, the Ji are pairwise disjoint.

Proof. 1) By the symmetry assume 〈Mi : i < α〉 is s-independent
over M inside N . By 8.11(4) there are 〈M∗

i : i < α〉, 〈N+
i : i <

α〉, N+, 〈Ji : i < α〉 as there, in particular 〈M∗
i : i < α〉 is indepen-

dent inside (M,N+) as witnessed by 〈N+
i : i ≤ α〉 and (M,M∗

i ,Ji)

belongs to K3,vq
s and Mi ≤s M

∗
i for each i < α. By 8.11(1),(5) it suf-

fices to prove that 〈M∗
π−1(i) : i < α′〉 is independent inside (M,N+).

Together without loss of generality, for each i < α for some Ji we
have (M,Mi,Ji) ∈ K3,vq

s . Now using part (3) which is proved below,
part (1) is translated to parts of 5.4.
2) Similarly.
3) First assume that 〈Mi : i < α〉 is s-independent over M inside N ,

Paper Sh:705, Chapter III



III§8 DECOMPOSITION; INDEPENDENCE OF SEQUENCES 525

let 〈Ni : i ≤ α〉 witness this; of course, i 6= j ⇒ Ji ∩ Jj = 0 because
i 6= j ⇒Mi ∩Mj = M (by properties of NFs).

We prove by induction on β ≤ α that ∪{Ji : i < β} is independent
in (M,Nβ) = (N0, Nβ); of course, we can increase Nβ (see 5.4(2)).
For β = 0 this is trivial, for β limit use by e.g. 5.10(3), for β = γ+1,
by 5.6(2) we know that Jγ is independent in (M,Nγ , Nβ) and so
by 5.6(1) we deduce that (∪{Ji : i < γ}) ∪ Jγ = ∪{Ji : i < β} is
independent in (M,Nβ). For β = α we get that ∪{Ji : i < α} is
independent in (M,N) as required.

Second assume that the Ji-s are pairwise disjoint and ∪{Ji : i <
α} is independent in (M,N). Let J<β = ∪{Ji : i < β}, so 〈J<β :
β ≤ α〉 is ⊆-increasing continuous.

We now choose by induction on β ≤ α, the tuple13 (M∗
β , N

∗
β ,J

∗
β)

such that:

(a) M∗
β is ≤s-increasing continuous

(b) N∗
β is ≤s-increasing continuous

(c) M∗
0 = M,N∗

0 = N

(d) M∗
β ≤s N

∗
β

(e) Mi ≤s M
∗
β for i < β

(f) J∗
β ⊆ N∗

β\M\J<α

(g) J∗
β is ⊆-increasing continuous

(h) (M,M∗
β ,J

∗
β ∪ J<β) belongs to K3,vq

s

(i) J∗
β ∪ J<α is independent in (M,N∗

β)

(j) NFs(M,M∗
γ ,Mγ, N

∗
β) for β = γ + 1.

Note that by clauses (a),(b),(e),(j) this is enough to prove that 〈M∗
β :

β ≤ α〉 witness that 〈Mi : i < α〉 is independent in (M,N), (see
Definition 8.8) as required.
For β = 0 let M∗

β = M,N∗
β = N and J∗

β = ∅; easy to check.

For β a limit ordinal let M∗
β = ∪{M∗

γ : γ < β}, N∗
β = ∪{N∗

γ : γ <

β} and J∗
β = ∪{J∗

γ : γ < β}; the least obvious points are clause (h)

13the sequence 〈M∗

β
: β ≤ α〉 will witness that 〈Mi : i < α〉 is independent in

(M, N)
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which holds by 7.10 and clause (i) which holds by the local character
of independence (by 5.4(1) and, of course, 5.4(2)).

Lastly, for β = γ + 1 as (M,M∗
γ ,J

∗
γ ∪ J<γ) ∈ K3,vq

s by clause
(h), and J∗

γ ∪ J<γ ⊆ J∗
γ ∪ J<β ⊆ J∗

γ ∪ J<α obviously as the last
one, J∗

γ ∪ J<α is independent in (M,N∗
γ ) by clause (i) clearly J∗

γ ∪
J<β is independent in (M,N ′

γ). Together by 5.16(5) we deduce that
Jγ = J∗

γ ∪ J<β\J
∗
γ ∪ J<γ is independent in (M,M∗

γ , N
∗
γ ). So as

(M,Mγ,Jγ) ∈ K3,vq
s , by the definition of K3,vq

s (see Definition 5.15)
we get NFs(M,M∗

γ ,Mγ, N
∗
γ ), i.e., clause (j) holds.

By Example 5.25 we can find N∗
β which ≤s-extends N∗

γ and M∗
β

which ≤s-extends Mγ . Hence easily clauses (h),(i) holds. So we
have carried the induction on β ≤ α hence 〈M∗

β : β ≤ α〉 witness

that 〈Mβ : β < α〉 is s-independent inside (M,N) so we are done.
�8.13

Remark. Alternatively, by 5.24 we can find (M ′
γ, N

′
γ) such that:

M∗
γ ≤s M

′
γ ≤s N

′
γ , N

∗
γ ≤s N

′
γ ,M

′
γ is (λ, ∗)-brimmed over M∗

γ , N
′
γ

is (λ, ∗)-brimmed over N∗
γ and (M ′

γ , N
′
γ,Jγ) ∈ K3,vq

s and Jγ is

independent in (M,M ′
γ, N

′
γ). By Definition 5.15 (of K3,vq

s ) this
implies NFs(M,Mγ,M

′
γ, N

′
γ). There are also (fβ, N

′′
γ ) such that

N ′
γ ≤s N ′′

γ , fβ is a ≤s-embedding of M ′
γ into N ′′

γ over M∗
γ and

NFs(M
∗
γ , N

∗
γ , fβ(M ′

γ), N ′′
γ ), simply by the existence of NFs-amal-

gamation.]
As we also have NFs(M,Mγ,M

∗
γ , N

∗
γ ) (see above), by transitivity

for NFs we have NFs(M,Mγ, fβ(M ′
γ), N ′′

γ ). As we have NFs(M,Mγ,
M ′

γ , N
′
γ) by the uniqueness of NFs-amalgamation, possibly increas-

ing N ′′
γ , we can extend fβ to f ′

β , a ≤s-embedding of N ′
γ into N ′′

γ

such that idMγ
⊆ f ′

β. Let N∗
β = N ′′

γ ,M
∗
β = f ′

β(N ′
γ), note that

f ′
β(N ′

γ) is (λ, ∗)-brimmed over f ′
β(M∗

γ ) = M∗
γ and J∗

γ ∪ J<γ is in-

dependent in (M, f ′
β(M ′

γ)) and J∗
γ ∪ J<γ ⊆ f ′

β(M∗
γ ) = M∗

γ , hence

we can find J′
γ ⊆ M∗

β\(J
∗
γ ∪ J<γ)\M such that: J′

γ ∪ J∗
γ ∪ J<γ

is independent in (M, f ′
β(M ′

γ)) and (M, f ′
β(M ′

γ),J′
γ ∪ J∗

γ ∪ J<γ) ∈

K3,vq
s by 8.5 + 8.3. As M ≤s f ′

β(M ′
γ) ≤s f ′

β(N ′
γ) = M∗

β and

(M, f ′
β(M ′

γ),J′
γ ∪ J∗

γ ∪ J<γ) ∈ K3,vq
s and (f ′

β(M ′
γ), f ′

β(N ′
γ),Jγ) =

(f ′
β(M ′

γ), f ′
β(N ′

γ), f ′
β(Jγ)) ∈ K3,vq

s we get by 7.16 that (M, f ′
β(N ′

γ),
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J′
γ ∪ J∗

γ ∪ J<γ ∪ Jγ) = (M,M∗
β , (J

′
γ ∪ J∗

γ) ∪ J<β) ∈ K3,vq
s .

Let J∗
β = J′

γ ∪ J∗
γ , so we have almost finished proving the induc-

tion step, we still need: J∗
β disjoint to J∗

<α and J∗
β ∪J<α is indepen-

dent in (M,N∗
β); for this we recall that J∗

β ∪ J<γ is independent in

(M, f ′
β(M ′

γ)) and M ≤s f
′
β(M ′

γ) <s N
∗
β and (J∗

β ∩ J<α)\f ′
β(M ′

γ) =

(J<α\J<γ) hence it suffices to prove that J<α\J<γ is independent in
(M, fβ(M ′

γ), N∗
β). But NFs(M

∗
γ , fβ(M ′

γ), N∗
γ , N

′′
γ ) and J<α\J<γ ⊆

N∗
γ is independent in (M,M∗

γ , N
∗
γ ) as stated above, so by 5.6(2) we

are done.

8.14 Conclusion. 1) If 〈Mi : i < α〉 is s-independent over M inside
N,α ≥ 2, fi is an isomorphism from M0 onto Mi over M for i < α
and π is a permutation of α and N+ is (λ, ∗)-brimmed over N , then
for some automorphism f of N+ over M we have π(i) = j ⇒ fj ◦
f−1

i ⊆ f . So 〈fi : i < α〉 is (< λ+)-indiscernible over M inside N ,
see Definition 8.15 below.
2) [uniqueness] Assume that 〈M ℓ

i : i < α〉 is s-independent over Mℓ

inside Nℓ for ℓ = 1, 2 and fi ⊇ f is an isomorphism from M1
i onto

M2
i for i < δ, f an isomorphism from M1 onto M2 and Nℓ is (λ, ∗)-

brimmed over ∪{M ℓ
i : i < α}. Then there is an isomorphism from

N1 onto N2 extending ∪{fi : i < α}.

Proof. 1) By (2).
2) By 8.10 and uniqueness of the (λ, ∗)-brimmed model over a model
in Ks.

�8.14

8.15 Definition. 1) We say that f̄ = 〈fi : i < α〉 is (< θ)-
indiscernible over M inside N when: for some sequence ā = 〈aε :
ε < ζ〉 (possibly infinite) we have Dom(fi) = {aε : ε < ζ} for every
i < α,M ≤s N and ∪{Rang(fi) : i < α} ⊆ N and for every par-
tial one to one function π such that Dom(π) ∪ Rang(π) ⊆ α and
|Dom(π)| < θ there are N+, g such that N ≤s N

+, g is an automor-
phism of N+ over M and for every i ∈ Dom(π) the function g maps
fi(ā) to fπ(i)(ā).
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8.16 Claim. If 〈Mi : i < α〉 is s-independent over M inside N then
we can find 〈M+

i : i < α〉,M+, N+ such that:

(a) M ≤s M
+ ≤s M

+
i ≤s N

+

(b) N ≤s N
+

(c) 〈M+
i : i < α〉 is independent over M+ inside N+

(d) NFs(M,M+, N,N+) hence NFs(M,M+,Mi,M
+
i ) for i < α

(e) M+ is brimmed over M

(f) M+
i is brimmed over M+ and even over Mi ∪M

+

(g) N+ is brimmed over ∪{M+
i : i < α} ∪M+

(h) if p ∈ S bs
s (M+

i ) does not fork over Mi then p⊥M+ ⇔ (p ↾

Mi)⊥M .

Proof. Should be easy by now. By the assumption we can find
N ′, 〈M ′

i : i < α〉, 〈J′
i : i < α〉 such that N ≤s N

′,Mi ≤s M
′
i , 〈M

′
i :

i < α〉 is independent over M inside N ′ and (M,M ′
i ,Ji) ∈ K3,vq

s for
i < α.
We can find M+, 〈M+

i : i < α〉, N+ such that NFs(M,N ′,M+, N+)
and clauses (c),(e),(f) (without “and even”) and (g).

We can find a ≤s-embedding fi of M ′
i into M+

i over M such that
NFs(M,M+, fi(Mi),M

+
i ) and M+

i is brimmed over M+ ∪ fi(Mi).
Now ∪{fi : i < α} can be extended to an ≤s-embedding of N ′ into
N+. Renaming f is the identity and lastly clause (h) follows by
8.1(e), see Definition 6.9(2). �8.16

8.17 Claim. Assume α ≥ 2 and 〈Mi : i < α〉 is s-independent over
M inside N, fi (i < α) is an isomorphism from M0 onto Mi over M
for i < α, and p ∈ S bs

s (M0). Then the following are equivalent:

(A) p⊥M

(B) p⊥f1(p)

(C) for some i < j < α we have fi(p)⊥fj(p)

Proof. By 8.16 without loss of generality M is (λ, ∗)-brimmed, Mi is
brimmed over M and by 8.11(6), 8.16 without loss of generality α is
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infinite.
(B) ⇔ (C): by the indiscernibility (i.e., by 8.14(1)).

¬(C) ⇒ ¬(A): So we have i < j < α⇒ fi(p) ± fj(p).
First we can find 〈M∗

n : n < ω〉 which is ≤s-increasing and M∗
n+1 is

(λ, ∗)-brimmed over M∗
n such that ∪{M∗

n : n < ω} = M . Second,
we can also find 〈M∗

0,n : n < ω〉 which is ≤s-increasing M0,n+1

brimmed over M0,n ∪Mn+1 and NFs(M
∗
n,M

∗
0,n,M

∗
n+1,M

∗
0,n+1) for

n < ω and ∪{M∗
0,n : n < ω} = M0, see 1.17 and uniqueness of

being brimmed over M . Third, for some n the type p does not
fork over M∗

0,n so without loss of generality n = 0. Hence we can
consider M∗

0 , 〈fi(M
∗
0,0) : i < α〉, 〈f ′

i = fi ↾ M∗
0,0 : i < α〉, 〈p′i = fi(p ↾

M∗
0,0) : i < α〉 and can choose one more copy f ′

α inside M , that is,
f ′

α has domain M∗
0,0, f

′
α, (M

∗
0,0) ≤s M such that 〈f ′

i ↾ M∗
0,0 : i ≤ α〉

is indiscernible over M∗
0 , there is such f ′

α as M is brimmed over
M∗

0 . By the indiscernibility clearly p′0 ± p′α but p′0‖p0 and there is
q ∈ S bs

s (M), q‖p′α, so we are done. [This is similar to the proof of
6.10].

¬(A) ⇒ ¬(C):

Assume q ∈ S bs
s (M), q ± p, so q ± pi for i < α where pi = fi(p).

Let N+, b be such that N ≤s N
+, b ∈ N+ and tps(b, N,N

+) is a
non-forking extension of q. So by 6.4(2), possibly increasing N+, for
each i < α there is ai ∈ N+ such that tps(ai, N,N

+) is a non-forking
extension of pi and {b, ai} is not independent in (N,N+). But if
clause (C) holds then by 6.21(1) the set {ai : i < α} is independent
in (N,N+), contradicting 5.13(1) as α is infinite. Alternatively use
6.22. �8.17

A conclusion of 8.11 is

8.18 Claim. 1) If 〈Mi : i < α〉 is s-independent over M inside N
and ai ∈ Mi, tps(ai,M,Mi) ∈ S bs

s (M) for i < α then {ai : i < α}
is independent over M inside N .

2) If above (M,Mi,Ji) ∈ K3,bs
s , then ∪{Ji : i < α} is independent

in (M,N) and the Ji(i < α) are pairwise disjoint.

Proof. Easy.
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∗ ∗ ∗

We now return to investigating NFs.

8.19 Claim. 1) Assume that 〈Mi : i ≤ δ〉 is ≤s-increasing contin-
uous sequence, δ < λ+

s and NFs(M0, N0,Mi, N
+) for every i < δ.

Then NFs(M0, N0,Mδ, N
+).

2) If 〈Mi : i ≤ δ+1〉 is ≤s-increasing continuous and 〈Ni : i ≤ δ+1〉
is increasing continuous and NFs(Mi, Ni,Mδ+1, Nδ+1) for each i < δ
then NFs(Mδ, , Nδ,Mδ+1, Nδ+1).
3) Assume that 〈M ℓ

i : i ≤ δ〉 is ≤s-increasing for ℓ ≤ 3.
If NFs(M

0
i ,M

1
i ,M

2
i ,M

3
i ) for each i < δ then this holds for i = δ,

too.

Proof of 8.19. In all cases, of course δ is a limit ordinal and without
loss of generality δ < λ+

s .
1) Note that

(∗)1 without loss of generality N0 is (λ, ∗)-brimmed over M0 and
N+ is (λ, ∗)-brimmed over N0 ∪Mδ.

[Why? We can find N ′ such that N0 ≤s N
′, N ′ is (λ, ∗)-brimmed

over N0 and N ′ ∩ N+ = N0. Also we can find N ′′ such that
NFs(N0, N

′, N+, N ′′) hence N ′ <s N ′′, N+ <s N ′′ and such that
N ′′ is (λ, ∗)-brimmed over N ′ ∪ N+ hence over N ′ ∪ Mδ. Now
for i < δ clearly NFs(M0,Mi, N0, N

+) and NFs(N0, N
+, N ′, N ′′)

hence by transtivity NFs(M0,Mi, N
′, N ′′). Also if we prove that

NFs(M0,Mδ, N
′, N ′′) then by monotonicity we shall get

NFs(M0,Mδ, N0, N
+) and we are done. So we can replace N0, N

+

by N ′, N ′′ and they are as required in (∗)1.]

(∗)2 without loss of generality Mi+1 is (λ, ∗)-brimmed over Mi for
each i < δ.

[Why? We can choose M ′
i by induction on i ≤ δ such that: M ′

i is
≤s-increasing continuous, M ′

i ∩ N
+ = Mi,M

′
0 = M0,Mi ≤s M

′
i for

i ≤ δ and NFs(Mi,M
′
i ,Mi+1,M

′
i+1) andM ′

i+1 is (λ, ∗)-brimmed over
M ′

i∪Mi+1 for i < δ. Then let N∗ be such that NFs(Mδ, N
+,M ′

δ, N
∗)

and N∗ is (λ, ∗)-brimmed over M ′
δ ∪ N

+. Now by long transitivity
for each i ≤ j ≤ δ we have NFs(Mi,M

′
i ,Mj,M

′
j).
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Let i < δ, in particular NFs(Mi,M
′
i ,Mδ,M

′
δ), also NFs(Mδ, N

+,
M ′

δ, N
∗) hence by symmetry NFs(Mδ,M

′
δ, N

+, N∗) so by transitivity
we have NFs(Mi,M

′
i , N

+, N∗).
By an assumption we have NFs(M0, N0,Mi, N

+) and by the pre-
vious sentence and symmetry NFs(Mi, N

+,M ′
i , N

∗) hence by tran-
sitivity NFs(M0, N0,M

′
i , N

∗). As this holds for every i < δ and
M ′

0 = M0 clearly the sequence 〈M ′
i : i ≤ δ〉, with N0, N

∗ satisfies
the assumptions (so far) on 〈Mi : i ≤ δ〉, N0, N

+.
Lastly, if we shall prove that NFs(M0, N0,M

′
δ, N

∗) then by mono-
tonicity we get NFs(M0, N0,Mδ, N

+) so we can replace 〈Mi : i ≤
δ〉, N0, N

+ by 〈M ′
i : i ≤ δ〉, N0, N

∗, so (∗)2 is O.K.]

(∗)3 there is Ji ⊆ IMi,Mi+1
such that (Mi,Mi+1,Ji) ∈ K3,vq

s .

[Why? By 8.6(2) as Mi+1 is (λ, ∗)-brimmed over Mi.]

(∗)4 we can find N̄ ′, I such that

(a) N̄ ′ = 〈N ′
i : i ≤ δ〉 is ≤s-increasing continuous

(b) Mi ≤s N
′
i

(c) NFs(Mi, N
′
i ,Mj, N

′
j) for i < j ≤ δ

(d) (Mi, N
′
i , I) ∈ K3,vq

s for i ≤ δ

(e) N ′
0 is (λ, ∗)-brimmed over M0

(f) N ′
i ∩N

+ = M ′
i .

[Why? First choose N ′
0, I by 8.6(2) satisfying (b),(d),(e) such that

N ′
0 ∩Mδ = M0. Second, first ignoring clause (f), by (∗)2 we can

choose N ′
i for i ∈ (0, δ], by 5.18 (as s is good+ and successful). But

for clause (f), by clause (c) clearly N ′
i ∩Mδ = Mi so by renaming we

get it.]

(∗)5 we can choose (fi, N
+
i ) by induction on i ≤ δ such that

(a) N+
i is ≤s-increasing continuous

(b) fi is a ≤s-embedding of N ′
i into N+

i

(c) fi is increasing continuous

(d) fi is the identity on Mi
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(e) f0 is onto N0

(f) N+
0 = N+.

[Why? For i = 0 note that both N ′
0 and N0 are ≤s-extensions of M0

which are (λ, ∗)-brimmed over it.
For i limit take unions. For i = j + 1, note that (i < δ and)

(α) f0(I) = fj(I) is independent in (M0, f0(N
′
0)) = (M0, fj(N

′
0)) =

(M0, N0).
[Why? By (∗)4(d) we have I is independent in (M0, N

′
0).]

(β) NFs(M0, N0,Mi, N
+
j ) hence f0(I) is independent in (M0,Mi, N

+).

[Why? By an assumption of the claim NFs(M0, N0,Mi, N
+)

and by the induction hypothesis N+ = N+
0 ≤s Nj so by

monotonicity NFs(M0, N0,Mi, N
+
j ). The hence is by 5.3.]

(γ) M0 ≤s Mj ≤s Mi and (Mj , fj(N
′
j), f0(I)) ∈ K3,vq

s .
[Why? Recall (∗)4(d).]

(δ) NFs(Mj , fj(N
′
j),Mi, N

+
j ).

[Why? By (β) + (γ) and the definition of K3,vq
s .]

and recall from (∗)4(c)

(ε) NFs(Mj , N
′
j,Mi, N

′
i).

Now by the uniqueness of NFs and (δ)+(ε), recalling by the induction
hypothesis, (∗)5(b) + (c) for j we can extend fj ∪ idMi

to a ≤s-
embedding of N ′

i into some ≤s-extension of N+
j which we call N+

i .

So we have finished carrying the induction hence proving (∗)5.]

(∗)6 NFs(M0, N0,Mδ, fδ(N
′
δ)).

[Why? As by (∗)4(c) we have NFs(M0, N
′
0,Mδ, N

′
δ) and fδ maps N ′

0

onto Nδ and is the identity on Mδ.]
As f(N ′

δ) ≤s N
+
δ , N0 ≤ N+

δ by monotonicity of NF we are done.
2) We should prove that NFs(Mδ, Nδ,Mδ+1, Nδ+1) when 〈Mi : i ≤
δ + 1〉 is ≤s-increasing continuous, 〈Ni : i ≤ δ + 1〉 is ≤s-increasing
continuous and for all i < δ NFs(Mi, Ni,Mδ+1, Nδ+1) holds. Now
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(∗)1 without loss of generality there is J such that (Mδ,Mδ+1,J) ∈
K3,vq

s .

[Why? By 8.6(1) there are M ′, J such that Mδ+1 ≤s M ′ and

(Mδ,M
′,J) ∈ K3,vq

s and without loss of generality M ′ ∩ Nδ+1 =
Mδ. We can find N ′ such that NFs(Mδ+1, Nδ+1,M

′, N ′) hence by
transitivity i < δ ⇒ NFs(Mi, Ni,M

′, N ′). Now if we shall prove
NFδ(Mδ, Nδ,M

′, N ′) then by monotonicity it follows that
NFs(Mδ, Nδ,Mδ+1, Nδ+1) so we can replace (Mδ+1, Nδ+1) by (M ′, N ′)
and J is as required.]

(∗)2 it suffices to prove that J is independent in (Mδ, Nδ, Nδ+1).

[Why? By a basic property of K3,vq
s .]

Let Ji = {c ∈ J: tps(c,Mδ,Mδ+1) does not fork over Mi}

(∗)3 〈Ji : i < δ〉 is increasing with union J.

[Why? By local character, i.e., Ax(E)(c) of good λ-frames.]

(∗)4 it suffices to prove that Ji is independent in (Mδ, Nδ, Nδ+1)
for each i < δ.

[Why? By the finite character of being independent, i.e., 5.4(1) it
suffices to prove that Ji is independent in (Mδ, Nδ, Nδ+1).]

(∗)5 Ji is independent in (Mi,Mδ,Mδ+1) hence in (Mi,Mj, Nδ+1)
for j ∈ [i, δ].

[Why? As Ji is independent in (Mδ,Mδ+1) and
c ∈ Ji ⇒ tps(c,Mδ,Mδ+1) does not fork over Mi, using 5.6(4).]

(∗)6 Ji is independent in (Mi, Nj, Nδ+1) when i ≤ j < δ.

[Why? As Ji is independent in (Mi,Mj, Nδ+1) and
NFs(Mj , Nj,Mδ+1, Nδ+1) and Ji ⊆Mδ+1 by 5.3.]

(∗)7 Ji is independent in (Mi, Nδ, Nδ+1) for i < δ.

[Why? By (∗)6 and using 5.10(2) recalling the definition of Ji.]
So by (∗)4 + (∗)7 we are done.
3) We prove by induction on δ hence without loss of generality 〈M ℓ

i :
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i ≤ δ〉 is ≤s-increasing continuous for each ℓ ≤ 3. We would like to
show that without loss of generality M2

δ is (λ, ∗)-brimmed over M0
δ ,

this will be done in (∗)2 below. Toward this we shall first prove

(∗)1 we can choose (M4
i ,M

5
i ) by induction on i ≤ δ such that

(a) M5
i is ≤s-increasing continuous

(b) M3
i ≤s M

5
i and M5

i ∩M3
δ = M3

i

(c) NFs(M
3
j ,M

5
j ,M

3
i ,M

5
i ) when i = j + 1 < δ

(d) M4
i is ≤s-increasing continuous

(e) M2
i ≤s M

4
i ≤s M

5
i

(f)1 M4
i+1 is (λ, ∗)-brimmed over M4

i ∪M2
i+1

(f)2 M5
i+1 is (λ, ∗)-brimmed over M5

i ∪M3
i+1

(g) NFs(M
2
j ,M

4
j ,M

2
i ,M

5
i ) when i = j + 1 < δ

(h) NFs(M
2
i ,M

4
i ,M

3
i ,M

5
i ) if i < δ.

Why?

Case 1: i = 0.
Easy.

Case 2: i a limit ordinal.
Let M5

i = ∪{M5
j : j < i},M4

i = ∪{M4
j : j < i}. Clauses (a)-(e)

holds trivially. Clauses (f)1, (f)2, (g) are irrelevant and lastly clause
(h) holds by the induction hypothesis on δ if i < δ and is empty
otherwise.

Case 3: i = j + 1.
First we can findM5

i such that NFs(M
3
j ,M

5
j ,M

3
i ,M

5
i ). Moreover,

we can choose M5
i such that

⊙1 M5
i ∩M3

δ = M3
i and M5

i is (λ, ∗)-brimmed over M5
j ∪M3

i .

Notice that:

(i) M2
j ≤s M

3
j ≤M3

i .
[Why? By the assumptions of the claim.]
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(ii) M4
j ≤s M

5
j ≤M5

i .

[Why? By clause (e) for j and the choice of M5
i .]

(iii) M2
j ≤s M

4
j ,M

3
j ≤s M

5
j and M3

i ≤M5
i .

[Why? By clause (e) for j, by clause (b) for j and by the
choice of M5

i .]

(iv) NFs(M
2
j ,M

4
j ,M

3
j ,M

5
j ).

[Why? By clause (h) in the present induction.]

(v) NFs(M
3
j ,M

5
j ,M

3
i ,M

5
i ).

[Why? By the choice of M5
i .]

(vi) NFs(M
2
j ,M

4
j ,M

3
i ,M

5
i ).

[Why? By (iv) + (v) and transitivity of NFs.]

But M2
j ≤s M

2
i ≤s M

3
i hence by ((vi) and) monotonicity for NFs

we have

(vii) NFs(M
2
j ,M

4
j ,M

2
i ,M

5
i ).

Recall

(viii) M2
j ≤s M

2
i ≤s M

3
i and M2

j ≤s M
4
j

and by (vi) we have NFs(M
2
j ,M

4
j ,M

3
i ,M

5
i ), hence

(ix) M4
j ∩M3

i = M2
j .

Next by (viii) we have M2
j ≤s M4

j ,M
2
j ≤s M2

i and by (viii) first

clause + (ix) we have M4
j ∩M2

i = M2
j hence we can find N4

i such
that

(x) NFs(M
2
j ,M

4
j ,M

2
i , N

4
i ), and N4

i is (λ, ∗)-brimmed over M4
j ∪

M2
i and N4

i is disjoint to M3
i \M

2
i .

So M2
i ≤s M

3
i (by (viii)) andM2

i ≤s N
4
i (by (x)) andM3

i ∩N
4
i = M2

i

(by the last phrase in (x)), hence there is N5
i such that

(xi) NFs(M
2
i , N

4
i ,M

3
i , N

5
i )

so by (x) + (xi) and transitivity of NFs

(xii) NFs(M
2
j ,M

4
j ,M

3
i , N

5
i ).
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By (xii) + (vi) and uniqueness of NFs recalling M5
i is (λ, ∗)-brimmed

over M5
j ∪M3

i

(xiii) there is a ≤s-embedding f = fi of N5
i into M5

i which is the
identity on M3

i ∪M4
j .

Lastly, we choose

⊙2 M4
i = f(N4

i ),

well defined as N4
i ≤s N

5
i = Dom(f) so we have chosen (M4

i ,M
5
i )

and just have to check that clauses (a)-(h) of (∗)1 are satisfied.
Clauses (a),(b) and (c) hold by the choice of M5

i in ⊙1.
Clause (d), i.e. M4

j ≤s M
4
i holds as M4

j ≤s N
4
i ,M

4
i = f(N4

i ) and f

is the identity on M4
j by (x),⊙2,(xiii) respectively.

Clause (e) holds, i.e. M2
i ≤s M4

i ≤s M5
i as M2

i ≤s N4
i by (x)

and f ↾ N4
i is a ≤s-embedding of N4

i into M5
i over M2

i by (xiii) as
M2

i ≤s M
3
i by the assumptions of 8.19(3).

Clause (f)1 with i, j here standing for i + 1, i there holds as N4
i is

(λ, ∗)-brimmed over M4
j ∪M2

i (see (x)) and f preserves this as it is

the identity on M4
j ∪M2

i ⊆M4
j ∪M3

i by (xiii).

Clause (f)2 holds by the choice of M5
i in ⊙1.

Clause (g) holds by (vii) above.
Clause (h) holds because NFs(M

2
i , N

4
i ,M

3
i , N

5
i ) holds by clause (xi),

but f is a ≤s-embedding of N5
i into M5

i so we also have
NFs(f(M2

i ), f(N4
i ), f(M3

i ), f(N5
i )), but f(M2

i ) = M2
i by (xiii) +

M2
i ≤s M

3
i and f(N4

i ) = M4
i by ⊙2 and f(M3

i ) = M3
i by (xiii) and

f(N5
i ) ≤s M

5
i by (xiii), hence NFs(M

2
i ,M

4
i ,M

3
i ,M

5
i ) as required.

So we have finished proving (∗)1.

(∗)2 without loss of generality M2
δ is (λ, ∗)-brimmed over M0

δ .

Why? Note that:

(i)2 〈M ℓ
i : i ≤ δ〉 is ≤s-increasing continuous for ℓ ≤ 5.

[Why? By an assumption of 8.19(3) for ℓ ≤ 3 and by clauses
(a),(d) of (∗)1, for ℓ = 4, 5 respectively.]

(ii)2 M0
i ≤s M

2
i ≤s M

4
i .

[Why? By the assumptions of 8.19(3) and (∗)1(e).]
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(iii)2 M1
i ≤s M

3
i ≤s M

5
i .

[Why? By the assumptions of 8.19(3) and (∗)1(b).]

(iv)2 M ℓ
i ≤s M

ℓ+1
i for ℓ = 0, 2, 4.

[Why? By an assumption of 8.19(3) for ℓ = 0, 2 and (∗)1(e)
for ℓ = 4.]

(v)2 NFs(M
0
i ,M

1
i ,M

2
i ,M

3
i ) for i < δ.

[Why? By an assumption of the claim 8.19(3).]

(vi)2 NFs(M
2
i ,M

3
i ,M

4
i ,M

5
i ) for i < δ.

[Why? By clause (h) of (∗)1 and the symmetry property of
NFs.]

(vii)2 NFs(M
0
i ,M

1
i ,M

4
i ,M

5
i ) for i < δ.

[Why? By (v)2 + (vi)2+ transitivity of NFs.]

(viii)2 if NFs(M
0
δ ,M

1
δ ,M

4
δ ,M

5
δ ) then NFs(M

0
δ ,M

1
δ ,M

2
δ ,M

3
δ ).

[Why? By monotonicity of NFs as (using (i)2 + smoothness
from M0

δ ≤s M
4
δ by (ii)2, M

1
δ ≤s M

5
δ by (iii)2 and M1

δ ≤s

M2
δ , e.g. by (iv)2.]

So by (i)2 for ℓ = 0, 1, 4, 5 and (ii)2 and (iii)2 and (iv)2 for ℓ = 0, 4
and (viii)2 if we replace 〈M2

i : i ≤ δ〉, 〈M3
i : i ≤ δ〉 by 〈M4

i : i ≤
δ〉, 〈M5

i : i ≤ δ〉 respectively, the assumptions still holds for the new
case; and also, by (viii)2, the conclusion for the new case implies the
conclusion for the original case. However, M4

δ is (λ, ∗)-brimmed over
M0

δ by clauses (d),(e),(f)1 of (∗)1, so we have proved (∗)2.

(∗)3 There is J2 such that (M0
δ ,M

2
δ ,J2) ∈ K3,vq

s .
[Why? By (∗)2 and 8.6(2).]

(∗)4 without loss of generality there is J1 such that (M0
δ ,M

1
δ ,J1) ∈

K3,vq
s .

[Why? The claim is symmetric for 〈M1
i : i ≤ δ〉, 〈M2

i : i ≤ δ〉
as NFs is symmetric, and in (∗)1 +(∗)2, 〈M

1
i : i ≤ δ〉 was not

changed as well as 〈M0
i : i ≤ δ〉.]

For ℓ = 1, 2 define a function iℓ : Jℓ → δ by iℓ(c) = Min{i : c ∈ M ℓ
i

and tps(c,M
0
δ ,M

ℓ
δ ) does not fork over M0

i }. Now

(∗)5 iℓ(i) < δ is well defined for c ∈ Jc, ℓ = 1, 2.
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[Why? If c ∈ Jℓ then c ∈ M ℓ
δ , but M ℓ

δ = ∪{M ℓ
i : i < δ} hence for

some i < δ, c ∈M ℓ
i . Also tps(c,M

0
δ ,M

1
δ ) ∈ S bs

s (M0
δ ) as (M0

δ ,M
ℓ
δ ,Jℓ)

∈ K3,vq
s by (∗)3 + (∗)4 hence by Ax(E)(c) (local character) of good

λ-frames, for some j < δ, tps(c,M
0
δ ,M

ℓ
δ ) does not fork over M0

j . So
max{i, j} show that iℓ(c) is well defined and < δ.]

Let Jℓ
i = {c ∈ Jℓ : iℓ(c) ≤ i}, so clearly

(∗)6 〈Jℓ
i : i < δ〉 is ⊆-increasing with union Jℓ

(∗)7 J1 ∩ J2 = ∅.
[Why? Easy as for i < δ, NFs(M

0
0 ,M

1
i ,M

2
i ,M

3
i ) hence M1

i ∩
M2

i = M0
i , but 〈M ℓ

i : i ≤ δ〉 is ≤s-increasing continuous, so
M1

δ ∩M2
δ = M0

δ but Jℓ ⊆M ℓ
δ\M

0
δ so we are done.]

(∗)8 J1
i ∪ J2

i is independent in (M0
i ,M

0
j ,M

3
δ ) when i ≤ j < δ.

[Why? By the definition of and the choice of Jℓ
i , iℓ(c) for c ∈

J1
i ∪ J2

i clearly tps(c,M
0
j ,M

3
j ) does not fork over M0

i . Also

by (∗)3 + (∗)4 we know that Jℓ
i is independent in (M0

δ ,M
ℓ
δ )

hence by the previous sentence and 5.6(4) it is independent
in (M0

i ,M
0
δ ,M

ℓ
δ ) but i ≤ j < δ hence by monotonicity, e.g.

5.4(4) + 5.6(4) the set Jℓ
i is independent in (M0

i ,M
0
j ,M

3
δ ) but

Jℓ
i ⊆M ℓ

i ⊆M ℓ
j hence in (M0

i ,M
0
j ,M

3
j ). AsM0

i ≤s M
0
j by an

assumption and NFs(M
0
j ,M

1
j ,M

2
j ,M

3
j ) by an assumption,

clearlya by 5.6(2) it follows that J1
i ∪ J2

i is independent in
(M0

i ,M
0
j ,M

3
j ).]

(∗)9 J1
i ∪ J2

i is independent in (M0
i ,M

0
δ ,M

3
δ ).

[Why? By (∗)8 this holds for every j ∈ [i, δ) hence it holds
for j = δ by 5.10(2) as required.]

(∗)10 J1 ∪ J2 is independent in (M0
δ ,M

3
δ ).

[Why? By 5.4(1) as the sequence 〈J1
i ∪ J2

i : i < δ〉 is ⊆-
increasing with union J1 ∪ J2.]

So M0
δ ≤s M

ℓ
δ ≤s M

3
δ for ℓ = 1, 2 (by the assumptions of the claim)

and (M0
δ ,M

ℓ
δ ,Jℓ) ∈ K3,vq

s by (∗)3 + (∗)4 and J1 ∪ J2 is independent
in (M0

δ ,M
3
δ ) (by (∗)10) and J1 ∩ J2 = ∅ by (∗)7 hence by claim

8.13(2) (so again we use s is good+, successful, ⊥ = ⊥
wk

) we have

NFs(M
0
δ ,M

1
δ ,M

2
δ ,M

3
δ ) as desired in the claim. �8.19
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8.20 Exercise: 1) Assume that β < λ+ and their sequences 〈M2
i :

i ≤ β〉, 〈M3
i : i ≤ β〉 are ≤s-increasing continuous and M2

i ≤s M
3
i

for i ≤ β.
Then we can choose 〈M4

i : i ≤ β〉, 〈M5
i : i ≤ β〉 which satisfy

clauses (a)-(h) of (∗)1 from the proof of 8.19(3).
2) Similarly for 〈M2

i : i < λ+〉, 〈M3
i : i < λ+〉.

Remark. 1) On 8.19 see more in [Sh 842].
2) Compare the following conclusion with 7.15, but we give a different
proof.

8.21 Conclusion. Assume that δ < λ+ is a limit ordinal, the se-
quences 〈Mi : i < δ〉 and 〈Ni : i < δ〉 are ≤s-increasing, Ji (i ≤ δ) is

⊆-increasing and (Mi, Ni,Ji) ∈ K3,vq
s for i < δ and c ∈ Ji ∧ i < j <

δ ⇒ tps(c,Mj, Nj) does not fork over Mi.

Then (Mδ, Nδ,Jδ) ∈ K3,vq
s when we letMδ = ∪{Mi : i < δ}, Nδ =

∪{Ni : i < δ},Jδ ≡ ∪{Ji : i < δ}.

Proof. We shall use 8.19(2). We prove this by induction on δ hence
without loss of generality 〈Mi : i < δ〉, 〈Ni : i < δ〉 are ≤s-increasing
continuous and 〈Ji : i < δ〉 is ⊆-increasing continuous. Now i <

δ ⇒ (Mi, Ni,Ji) ∈ K3,bs
s as i < δ ⇒ (Mi, Ni,Ji) ∈ K3,vq

s . Hence

by 5.10(3) we have (Mδ, Nδ,Jδ) ∈ K3,bs
s . For proving the desired

conclusion assume that Mδ ≤s Mδ+1 ≤s Nδ+1 and Nδ ≤s Nδ+1 and
Jδ is independent in (Mδ,Mδ+1, Nδ+1) and we should prove that
NFs(Mδ, Nδ,Mδ+1, Nδ+1).

Now for each i < δ, (Mi, Ni,Ji) ∈ K3,bs
s . As c ∈ Ji ∧ j ∈ (i, δ) ⇒

tps(c,Mj, Nj) does not fork over Mj , clearly Ji is independent in
(Mi,Mj, Nj) hence by 5.10(2) we also have Ji is independent in
(Mi,Mδ, Nδ).

As Ji ⊆ Jδ and Jδ is independent in (Mδ,Mδ+1, Nδ+1) we get
that Ji is independent in (Mi,Mδ+1, Nδ+1). As (Mi, Ni,Ji) ∈ Kvq

s

we can deduce NFs(Mi, Ni,Mδ+1, Nδ+1). As this holds for every
i < δ by 8.19(2) we get NFs(Mδ, N0,Mδ+1, Nδ+1) as required.

�8.21
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8.22 Claim. 1) [s weakly has regulars] Assume that (M,N,J) ∈
K3,vq

s is fat and is thick (or just S ∗-thick for some dense S ∗ ⊆ S bs
s ;

see Definition 7.11(2) and 5.15(2)), then N is (λ, ∗)-brimmed over
M .
2) [s weakly has regulars.] If (M,N,J) ∈ K3,bs

s is thick, then N is
(λ, ∗)-brimmed over M .

Remark. 1) Note 8.22(1) is used later in the proof of 10.20 and
8.22(2) and is used in 12.5.
2) In the proof of 8.22 we try to minimize the use of 8.1(b),(c).

Proof. 1) Let N ′ be (λ, ∗)-brimmed over M . Now we choose by
induction on n < ω first Mn and then Jn such that

⊛ (a) Mn ≤s N
′

(b) M0 = M

(c) n = m+ 1 ⇒Mm <s Mn

(d) Jn ⊆ {c ∈ N ′ : tps(c,Mn, N
′) ∈ S bs(Mn) and if n =

m+ 1 then tps(c,Mn, N
′) is orthogonal to Mm}

(e) Jn is independent in (Mn, N
′)

(f) under (d)+(e), Jn is maximal

(g) if n = m+ 1 then (Mm,Mn,Jm) ∈ K3,qr
s

(h) there is a one to one mapping h from J onto J0 such
that tps(c,M,N) = tps(h(c),M,N ′) for c ∈ J.

There is no problem to carry the definition; (for n = 0 use (M,N,J)
is thick”). As “s weakly has regulars” see 7.5 it follows that N ′ =
∪{Mn : n < ω}. By 7.9[(B) ⇒ (A)] we know that (M,N ′,J0) ∈
K3,vq

s , and we can prove that it is fat see 7.11(2) (or use part (2)).
Using h from clause (h) and the uniqueness of fat triples there is
an isomorphism f from N onto N ′ over N extending h. As N ′ is
brimmed over M also N is brimmed over M .
2) Let J+ be a maximal subset of IM,N which is independent in
(M,N) and extend J, exists by the local character of independence
(see 5.4(3)). As s weakly has regulars by 7.7(3) we know that

(M,N,J+) ∈ K3,vq
s . As s has uniqueness for K3,vq

s it follows that
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(M,N,J) is fat (by the existence theorem for fat members of K3,vq
s ).

Now by part (1) the conclusion follows. �8.22

8.23 Exercise: Prove 8.6 replacing “Hypothesis 8.1” by: s is a good
λ-frame, which is categorical and (close to II§5)

⊛ we cannot find Mi,j ∈ Ks for i < λ+, j < λ × (1 + i) such
that Mi,j is ≤s-increasing continuous with i and with j and
Mi+1,j+1 is ≤s-universal over Mi+1,j ∪Mi,j+1 and for every
i < λ+ for some j < λ× (1 + i) we have
¬NFs(Mi,j,Mi,j+1,Mi+1,j,Mi+1,j+1).

§9 Between cardinals,

Non-splitting and getting fullness

Our major aim is to get type-full good λ-frames. Fullness seems
naturally desirable (being closer to superstability) and will help in
proving the existence of enough regular types. This fulfills a promise
from the end of II§6. We also deal with “type-closed” and snsp but
they will not be used.

9.1 Hypothesis. s is a good λ-frame.

Below note that a
N
⋃

M
b means “a 6= b and {a, b} is independent in

(M,N)” but in §5 we assume s is weakly successful.

9.2 Definition. 1) We say that a pre-frame t is type-full (or just
full) if S bs

t = S na
t .

2) Let “{a0, . . . , an−1} be independent in (M,N)” mean that tps(aℓ,
M,N) ∈ S bs

s (M) and for some Mℓ (for ℓ ≤ n) we have M0 =
M,N ≤s Mn for ℓ ≤ n,Mℓ ≤s Mℓ+1, aℓ ∈Mℓ+1 and tps(aℓ,Mℓ,Mℓ+1)
does not fork over M0 for ℓ < n. So necessarily 〈aℓ : ℓ < n〉 is with-
out repetitions.
3) We may allow not to distinguish types of elements and of finite
tuples, so we use Ss(M) = ∪{S m

s (M) : m < ω}, we say such s deals
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with (< ω)-types, then let ab be the concatanation (this makes no
real difference).
4) We say that s is type-closed if s deals with (< ω)-types and:
tps(aℓ,M,N) ∈ S bs

s (M) for ℓ = 1, 2 and {a1, a2} is independent in
(M,N) implies tps(a1a2,M,N) ∈ S bs

s (M).

9.3 Definition. For a good λ-frame s we define a frame t = s
tc =

s[tc]:
λt = λs, Kt = Ks

S
bs
t =

{

tps(〈a0 . . . an−1〉,M,N) : M ≤s N, n < ω,

aℓ ∈ N\M for ℓ < n

and {aℓ : ℓ < n} is independent

in (M,N)
}

⋃

t

=
{

(M0,M1, ā,M3) : M0 ≤s M1 ≤s M3,

for some n and 〈M∗
ℓ : ℓ ≤ n〉 we have

ā ∈ n(M3), ā = 〈a0 . . . an−1〉,M3 ≤s M
∗
n,

M1 = M∗
0 ≤s M

∗
1 ≤s . . . ≤s M

∗
n

and tps(aℓ,M
∗
ℓ ,M

∗
ℓ+1) ∈ S

bs
s (Mℓ)

does not fork over M0 for ℓ < n
}

.

9.4 Exercise Assume s is a good λ-frame.
1) t := stc is a good λ-frame and deals with (< ω)-type and is type
closed.
2) If s is a good+ λ-frame, then t is a good+ λ-frame.
3) In (1), if s has primes then t has primes.
4) If s is (weakly) successful, then t is (weakly) successful.
5) If āα = 〈aα,ℓ : ℓ < nα〉 for α < α∗ and tpt(āα,M,N) ∈ St(M)
for α < α∗ and there are no repetitions in 〈aα,n : n < nα, α < α∗〉
then
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(α) (M,N, {āα : α < α∗}) ∈ K3,bs
t ⇔ (M,N, {aα,n : α < α∗, n <

nα}) ∈ K3,bs
s

(β) (M,N, {āα : α < α∗}) ∈ K3,vq
t ⇔ (M,N, {aα,n : n <

nα, α < α∗}) ∈ K3,vq
s

(γ) (M,N, {āα : α < α∗}) ∈ K3,qr
t ⇔ (M,N, {aα,n : n < nα, α <

α∗}) ∈ K3,qr
s .

[Hint: See [Sh:F735], Chapter VII.]
5) [s is successful and a type-full or type-closed good λ-frame].

If M0 ≤s M1 ≤s M2 and (Mℓ,Mℓ+1, aℓ) ∈ K3,pr
λ for ℓ = 1, 2 and

tps(a1,M1,M2) does not fork over M0, then (M0,M2, a0a1) ∈ K3,pr
λ .

[Hint: Use 5.8(2).

∗ ∗ ∗

Now we return to trying to deal with all types in Ss(M), i.e.
fullness keeping a promise from II.6.36.

9.5 Definition. 1) [s is a weakly successful good λ-frame].
Let snf = s(nf) be the following λs-frame (see below)

(a) Ks(nf) = Ks

(b) S bs
s(nf)(M) = S na

s (M)

(c)
⋃

s(nf)
(M0,M1, a,M3) holds iff M0 ≤s M1 ≤s M3 and a ∈

M3\M1 and there are M ′
3,M2 such that M0 ≤s M2 ≤s

M ′
3,M3 ≤s M

′
3 and a ∈M2 and NFs(M0,M1,M2,M

′
3).

2) [s a successful good λ-frame]
Let s+nsp be the λ+

s -frame which we also denote by s(∗) or s(+nsp),
defined by

(a) Ks(∗) = Ks(+)

(b) S bs
s(∗)(M) = S

nsp
s(+)(M) := {p ∈ S na

s(∗)(M) : for some M0 ≤K[s]

M from Ks

λ, p does not λs-split over M0}, (see Definition
2.18(1); note that in our case as M is Ks-saturated above λ,
this means that every automorphism g of M over M0 maps p
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to itself); note as the types are not necessarily basic, we use
splitting rather than non-forking

(c)
⋃

s(∗)
(M0,M1, a,M3) if M0 ≤s M1 ≤s M3, a ∈ M3\M1 and

tps(∗)(a,M1,M3) does not λs-split over some N0 ≤K[s] M0,
N0 ∈ Ks.

3) If Kλ has amalgamation and JEP, and NF is a non-forking rela-
tion on 4(Kλ) (see Definition II.6.1) then let sKλ,NFλ

be the λ-frame
defined as in part (1).

9.6 Claim. 1) (s+ is local over s): Assume s is a successful good
λ-frame. If M ∈ Ks(+) and (the not necessarily basic types) p, q ∈
Ss(+)(M) and [N ≤K[s] M & N ∈ Ks ⇒ (p ↾ N) = (q ↾ N)] then

p = q and for every M ≤s(+) N and p ∈ S bs
s(+)(N) we have p does

not fork over M in the sense of s+nsp iff p does not fork over M in
the sense of s+.
2) If s is a weakly successful good λ-frame then t := s

nf is a type-full
good λ-frame.
2A) If s is a weakly successful good λ-frame then K3,uq

s ⊆ K3,uq
t .

2B) If s is a categorical successful good+ λ-frame then t = snf is a
successful good+ λ-frame.
3) In part (2), NFs is a non-forking relation on Ks = Kt respecting
t, so NFt = NFs.
4) In part (2), if J is independent in (M0,M,N) for s then it is
independent in (M0,M,N) for s

nf. Also the inverse holds.
5) In part (2),

(a) (M,N, a) ∈ K3,uq
s then (M,N, a) ∈ K3,uq

t

(a)+ if (M,N, a) ∈ K3,bs
s then (M,N, a) ∈ K3,uq

s iff (M,N, a) ∈

K3,uq
t

(b) if p, q ∈ S bs
s (M) then p⊥

wk
q for s iff p⊥

wk
q for t

(c) like clause (c) for ⊥

(d) if M ≤s N and p ∈ S bs
s (N) then p⊥M for s iff p⊥M for t

(e) if s weakly has regulars (see Definition 7.5) then t weakly has
regulars.
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6) If NF is a non-forking relation on Ks respecting s, then sKs,NF is
a full good λ-frame.
6A) If t is a weakly successful good λ-frame, then t(nf) = sKt,NFt

.
�9.6

Proof. 1) By 1.11(1) or similarly to 2.21.
2) This is promised in II.6.36.

Axioms (A),(B),(C):
As Kt = Ks.

Axiom (D)(a),(b),(c):
By the definition of S bs

t (M).

Axiom (D)(d):
We have proved M ∈ Ks ⇒ |Ss(M)| ≤ λ in II.4.2(1), this implies

that M ∈ Kt ⇒ |S bs
t (M)| = |S na

s (M)| ≤ |Ss(M)| ≤ λ.

Axiom (E)(a):
By the definitions.

Axiom (E)(b)(monotonicity):
So assume p ∈ Ss(nf)(M3) does not fork over M0 and M0 ≤Ks

M1 ≤Ks
M2 ≤Ks

M3.
As p ∈ S bs

s(nf)(M3) does not fork over M0 for s(nf) we can find

N0, N3 such that M0 ≤Ks
N0 ≤Ks

N3,M3 ≤Ks
N3 and a ∈ N0 such

that NFs(M0, N0,M3, N3) and p = tpKs
(a,M3, N3). Also by NFs-

existence we can findN ′
ℓ for ℓ ≤ 3 such that NFs(Mℓ, N

′
ℓ,Mℓ+1, N

′
ℓ+1)

for ℓ = 0, 1, 2 and N ′
0 is isomorphic to N0 over M0. By transi-

tivity for NFs we have NFs(M0, N
′
0,M3, N

′
3). By uniqueness for

NFs without loss of generality N ′
0 = N0, N

′
3 ≤s N

′′
3 , N3 ≤s N

′′
3 . So

NFs(M1, N
′
1,M2, N

′′
3 ) and a ∈ N0 = N ′

0 ≤Ks
N ′

1 realizes tps(a,M2, N
′
3)

and (by the definition of s(nf) this type does not fork for s(nf) over
M1, but this type is p ↾ M2. So we are done.

Axiom (E)(c)(local character):
So let 〈Mi : i ≤ δ+1〉 be ≤K[s]-increasing and p = tps(a,Mδ,Mδ+1)

∈ S bs
t (M) = S na

s (M).
By 1.17 we can find 〈Ni : i ≤ δ〉 which is ≤s-increasing contin-

uous, i < j ≤ δ ⇒ NFs(Mi, Ni,Mj, Nj) and Nδ is (λ, ∗)-brimmed
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over Mδ. Hence without loss of generality Mδ+1 ≤s Nδ, so a ∈
Mδ+1 ≤s Nδ = ∪{Ni : i < δ} hence for some i < δ, a ∈ Ni. By
NFs(Mi, Ni,Mδ, Nδ) we deduce tps(a,Mδ,Mδ+1) does not fork over
Mi for snf as required.

Axiom (E)(d)(transitivity):
By II.2.18 it follows from Axioms which we have proved and

(E)(e),(E)(g) proved below.

Axiom (E)(e)(uniqueness):
By uniqueness for NFs and the definition of (orbital) type.

Axiom (E)(f)(symmetry):
So assume that M0 ≤K(s) M1 ≤K(s) M3 and a2 ∈ M3\M1 and

a1 ∈ M1\M0 and tpK(s)(a2,M1,M3) does not fork over M0 for t.
By the definition of non-forking for t we can find N0, N3 such that
NFs(M0,M1, N0, N3) and M3 ≤s N3 and a2 ∈ N0. By the symmetry
for NFs we have tpK(s)(a1, N0, N3) does not fork over M0 for t so as
a2 ∈ N0 clearly we are done.

Axiom (E)(g)(extension existence):
By existence for NFs.

Axiom (E)(h):
By II.2.17(3),(4) it follows from axioms which we prove.

Axiom (E)(i):
By II.2.16.

So we have proved that t = snf is a good λ-frame and trivially it is
a type-full good λ-frame as required.
2A) Trivial.

2B) Why t has density for K3,uq
t ? Let (M,N, a) ∈ K3,bs

t and we try

to choose (Mα, Nα, a) ∈ K3,bs
s such that

⊛ (M0, N0, a) = (M,N, a)

(b) (Mα, Nα, a) is ≤t

bs-increasing continuous

(c) if α = β + 1, β even and (Mβ, Nβ, a) /∈ K3,uq
t then

¬NFt(Mβ , Nβ,Mα, Nα)

(d) if α = β + 1, β odd then Mα, Nβ is brimmed (for Ks) over
Mβ, Nβ respectively.
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For α = 0 and α limit there are no problems. So let α = β+1; if β is
odd this should be clear, so assume β is even. If (Mβ , Nβ, a) /∈

K3,uq
t then we can find (Mα, N

1
α, N

2
α) such that (Mβ , Nβ, a) ≤t

bs

(Mα, N
ℓ
α, a) for ℓ = 1, 2 and

(∗) we cannot find N3
α ∈ Kt which ≤t-extends N2

α and a ≤t-
embedding f of N1

α into N3
α over Mα ∪Nβ .

As Ks = Kt clearly (∗) holds for Ks too so for some ℓ ∈ {1, 2} we
have ¬NFs(Mβ, Nβ,Mα, N

ℓ
α) so we can choose Nα = N ℓ

α.

If we are stuck we have proved the given case of density of K3,uq
t .

If we have carried the induction then M∗ := ∪{Mα : α < λ+} is
≤K[s] N := ∪{Nα : α < λ+} are saturated (recalling ⊛(d)) but we
know that ≤K[s]↾ Kλ+ =≤s(+), hence for some club E of λ+, for
every α < β from E we have NFs(Mα, Nα,Mβ, Nβ), contradiction.

We can deduce “snf is weakly successful” by “s, i.e. Ks is cate-
gorical”. Hence NFt is well defined and it is a non-forking relation
on 4(Kt) = 4(Ks) respecting t. But by part (3), also NFs is a non-
forking relation on 4(Kt) = 4(Ks)) respecting t.

So by the uniqueness of such relations, (see II.6.3(4)), NFs = NFt.
Now the proof of the other half of “t is successful” is similar to

the proof of the density of K3,uq
s or just use the NFs = NFt. The

“good+” holds as ≤s(+)=≤t(+) because Kt = Ks ∧ NFt = NFs.
3) Trivially NFs is a non-forking four-place relation on Ks = Kt, i.e.,
on 4(Ks). Does it respect t? Of course, it does by the definition of t.
4) First assume M0 ≤s M1 ≤s M3 and a ∈ M3 satisfies “tps(a,
M1,M3) does not fork over M0 for s”. By existence for NFs, we can
find N0, N1, f such that NFs(M0, N0,M3, N3) and f is an isomor-
phism from N0 onto M0 over M0. Now as NFs respects s, “tpt(f(a),
M1, N3) does not fork over M0 for s and extends tps(a,M0,M3)
hence it is equal to tps(a,M1, N3). So we get tpKt

(a,M1,M3) =
tpKt

(f(a),M1, N0) = tpKt
(f(a),M1, N3) and the latter does not

fork over M0 for t by the definition of t.
From this by the definition of independence we can deduce part

(4). The inverse is easy, too.
5) Clause (a):

By part (4), if M ≤Ks
M ′ <Ks

N ′, N ≤Ks
N ′ and tps(a,M,N) ∈

S bs
s (M) then tpKs

(a,M ′, N ′) does not fork over M for s iff it does
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not fork over M for t. By the definition of K3,uq
s this is enough.

Clause (a)+:
Similarly.

Clause (b):
Follows by clause (a) and the definition of ⊥

wk
.

Clauses (c),(d):
Should be clear.

Clause (e):
By Definition 7.5(1) we are given a ≤s-increasing sequence 〈Mα :

α ≤ β + 1〉 and Mβ 6= Mβ+1. As s weakly has regulars, for some
c ∈Mβ+1\Mβ and non-limit α ≤ β we have tpKs

(c,Mβ,Mβ+1) does
not fork over Mα is ⊥Mα−1 if α > 0. Now tpKt

(c,Mβ,Mβ+1) does
not fork over Mα by part (4), and is ⊥Mα−1 if α > 0 by (part (5)),
clause (c).
6) Left to the reader (and not used).
6A) Easy. �9.6

9.7 Lemma. 1) Assume that s is a successful good+ λ-frame. Then
the frame s(+nsp) = s(∗) is a full good+ λ+

s -frame and S bs
s(∗)(M) =

S na
s(∗)(M).

2) If in addition s(∗) is weakly successful then weak orthogonality is
equivalent to orthogonality and to super-orthogonality for s(∗).

Exercise: In 9.7, s(∗) has primes and Ks(∗) is categorical and is equal
to K(snf)+ .

Remark. 1) We can actually omit the assumption “s+ is weakly
successful” in 9.7(2) but for this we have to define those notions.
2) In some sense we do not really need both 9.7 and 9.6, so we make
both proofs self contained.

Proof. Let λ = λs. Recall that s+ is a good+ λ+
s -frame. We have to

check the axioms there.

Axioms: (A),(B),(C).
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As Ks(∗) = Ks(+) this follows from 1.8.

Axiom: (D),(a),(b) by the Definition of S bs
s(∗).

Axiom (D)(c): If M <s(∗) N then any a ∈ N\M is O.K. by 2.27(4),

i.e. tpKs(∗)
(a,M,N) ∈ S bs

s(∗)(M). Hence we get also S bs
s(∗)(M) =

S na
s(∗)(M), i.e. fullness.

Axiom (D)(d): This holds as Ks(+) is stable in λ+
s by 1.8(1) and

II.4.2 but Ks(∗) = Ks(+), alternately use II.7.6(3). In more detail
note below;

⊛1 p1 = p2 when:
(a) N0 ≤s N1 ≤K[s] M0

(b) N1 is ≤s-universal over N0

(c)ℓ M0 ≤s(∗) Mℓ

(d)ℓ pℓ = tps(∗)(aℓ,M0,Mℓ)

(e)ℓ pℓ does not λs-split over N0

(f) p1↾N1 = p2↾N1, i.e., tpK[s](a1, N1,M1) = tpK[s](a2, N1,M2).

[Why? First note that N1 ≤s N2 ≤K[s] M0 ⇒ tpK[s](a1, N2,M1) =
tpK[s](a2, N2,M1).

Second, use II.7.6(3).]

⊛2 for every M0 ∈ Ks(∗) and ≤K[s]-representation 〈M0,α : α <

λ+
s 〉 we have: for every p ∈ S na

s(∗)(M0) for some α < β <

λ+
s , the quadruple (p,M0,M0,α,M0,β) satisfies the demands

(p1,M0, N0, N1) satisfies in ⊛1, i.e. clause (a),(b),(e)1 and
p1 ∈ Ss(∗)(M0).

Axiom (E)(a): By the definitions.

Axiom (E)(b): [monotonicity].
So assume M0 ≤s(∗) M

′
0 ≤s(∗) M

′
1 ≤s(∗) M1 ≤s(∗) M3 ≤s(∗) M

′
3

and
⋃

s(∗)
(M0,M1, a,M3) so it is witnessed by some N0 ≤K[s] M0 with

N0 ∈ Ks.
Now the same N0 witnesses also

⋃

s(∗)
(M ′

0,M
′
1, a,M3). The other

statement

(
⋃

s(∗)
(M0,M1, a,M3) ⇔

⋃

s(∗)
(M0,M1, a,M

′
3))
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is immediate by tps(∗)(a,M
′
1,M

′
3) = tps(∗)(a,M

′
1,M3).

Axiom (E)(c): (local character).
So assume that 〈Mi : i ≤ δ + 1〉 is s(∗)-increasing continuous,

δ < (λs(∗))
+ = λ++, c ∈Mδ+1\Mδ, and assume toward contradiction

that tps(∗)(c,Mδ,Mδ+1) ∈ S bs
s(∗)(Mδ) is a counterexample. Without

loss of generality δ = cf(δ), so δ ≤ λ+
s . Let M̄ i = 〈M i

α : α < λ+
s 〉 be

a ≤s-representation of Mi, E a thin enough club of λ+, so e.g.

(a) α ∈ E ⇒ c ∈M δ+1
α

(b) α ∈ E & i < j ≤ δ + 1 & [(j < α) ∨ (i < (δ ∩ α) ∧ j ≥
δ) ∨ (i = δ ∧ j = δ + 1)] ⇒M i

α ≤s M
j
α

(c) α ∈ E & α < β ∈ E & i ≤ δ & i < α ⇒
tps(c,M

i
β,M

δ+1
α ) does not λ-split over M i

α

(d) α < β ∈ E & i < δ ⇒ tps(c,M
δ
β,M

δ+1
β ) does λs-split over

M i
α

(e) α < β ∈ E & i ≤ δ + 1(i < β ∨ i ≥ δ) ⇒ M i
β is (λs, ∗)-

brimmed over M i
α.

Choose εi ∈ E for i ≤ δ, increasing continuous, so 〈M i
εi

: i ≤ δ〉
is <s-increasing continuous, each M i

εi
is (λs, ∗)-brimmed for s and

i < j ≤ δ ⇒ M j
εj

is (λs, ∗)-brimmed over M i
εi

for s. If δ < λ+, by

Subclaim 2.21, for some i < δ, tps(c,M
δ
εδ
,M δ+1

εδ+1
) does not λs-split

over M i
εi

for Ks, contradiction to the choice of E above (and obvious
monotonicity of non-splitting). If δ = λ+

s , use what we proved for
every limit δ′ < δ and Fodor’s lemma.

Axiom (E)(d): [transitivity]
Assume

(α) M1 ≤s(∗) M2 ≤s(∗) M3 ≤s(∗) M4

(β) a ∈M4\M3

(γ) tps(∗)(a,M2,M4) does not s(∗)-fork over M1 and

(δ) tps(∗)(a,M3,M4) does not s(∗)-fork over M2.

Let M̄ ℓ = 〈M ℓ
ζ : ζ < λ+〉, for ℓ = 1, 2, 3, 4 be a ≤s-representation of

Mℓ such that a ∈M4
0 and without loss of generality α < β < λ+ &

1 ≤ ℓ < m ≤ 4 ⇒ NFs(M
ℓ
α,M

m
α ,M

ℓ
β,M

m
β ) and for ℓ = 1, 2
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⊠ℓ M ℓ
0 witnesses that tps(∗)(a,Mℓ+1,M4) does not s(∗)-fork over

Mℓ.

Let āℓ list M ℓ
0 so āℓ ∈

λs(M ℓ
0). Now assume b̄, c̄ ∈ λs(M3) are such

that

(ε) tpK[s](b̄,M
1
0 ,M4) = tpK[s](c̄,M

1
0 ,M4).

As M2 is Ks-saturated above λs we can find b̄′ ∈ λs(M2) such that

(ζ) tpK[s](b̄
′,M2

0 ,M4) = tp(b̄,M2
0 ,M4)

similarly we can find c̄′ ∈ λ(M2) such that

(η) tpK[s](c̄
′,M2

0 ,M4) = tp(c̄,M2
0 ,M4).

Chasing equalities (ε) + (ζ) + (η), as M1
0 ⊆M2

0 , clearly
tpK[s](b̄

′,M1
0 ,M4) = tpK[s](c̄

′,M1
0 ,M4), hence by clause (γ) more

exactly by ⊠1 we have

(θ) tpK[s](〈a〉ˆb̄
′,M1

0 ,M4) = tpK[s](〈a〉ˆc̄
′,M1

0 ,M4).

By clause (δ), i.e., by ⊠2 and the statement (η) we have

(ι) tpK[s](〈a〉ˆc̄,M
2
0 ,M4) = tpK[s](〈a〉ˆc̄

′,M2
0 ,M4)

and similarly by ⊠2 and (ζ)

(κ) tpK[s](〈a〉ˆb̄,M
2
0 ,M4) = tpK[s](〈a〉ˆb̄

′,M2
0 ,M4).

By chasing the equalities (θ)+(ι)+(κ) we get tpK[s](〈a〉ˆb̄,M
1
0 ,M4) =

tpK[s](〈a〉ˆc̄,M
1
0 ,M4) as required.

Alternatively use II.2.18.

Axiom (E)(e): [Unique non-forking extension].
So let M0 <s(∗) M1 and p, q ∈ S bs

s(∗)(M1) do not fork over M0

and p ↾ M0 = q ↾ M0. Let M1 <s(∗) M2 and a1, a2 ∈ M2 be
such that tps(∗)(a1,M1,M2) = p and tps(∗)(a2,M1,M2) = q and

without loss of generality M1 <+
λ+ M2. Let 〈Mℓ,ζ : ζ < λ+〉 be

a ≤s-representation of Mℓ for ℓ = 0, 1, 2 with a1, a2 ∈ M2,0. By
the assumption and the definition of s(∗) for a club E of λ+

s we
have, for ζ ∈ E ⇒ p ↾ M0,ζ = q ↾ M0,ζ ∈ Ss(M0,ζ) call it rζ and
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p ↾ M1,ζ , q ↾ M1,ζ belong to Ss(M1,ζ) and without loss of generality
do not λs-split over M0,0 and they extend rζ ; also for ζ < ξ in
E and ℓ < 2 we have NFs(Mℓ,ζ ,Mℓ+1,ζ ,Mℓ,ξ,Mℓ+1,ξ) and for ζ <
ξ ∈ E,Mℓ,ξ is (λs, ∗)-brimmed over Mℓ,ζ for s. Also without loss
of generality ζ ∈ E ⇒ M2,ζ is (λs, ∗)-brimmed over M1,ζ . Hence
for ξ ∈ E, tps(ā1,M1,ξ,M2,ξ) = tps(ā2,M1,ξ,M2,ξ) because their
restriction to M0,ξ are equal and for ℓ = 1, 2, tps(āℓ,M1,ξ,M2,ξ)
does not λs-split over M0,0 ≤s M1,ζ (by the hypothesis). So clearly
p ↾ M1,ξ = q ↾ M1,ξ. By ⊛1 above we get p = q (recall that Ks(+) =
Ks(∗)).

Axiom (E)(f): [Symmetry].
So assume that M0 ≤s(∗) M1 ≤s(∗) M3, a1 ∈ M2, a2 ∈ M2 and

tps(∗)(a2,M1,M3) does not s(∗)-fork over M0.

For ℓ = 0, 1, 3 there is a ≤K[s]-representation 〈Mℓ,α : α < λ+
s 〉

of Mℓ, without loss of generality each Mℓ,α is brimmed for s and
Mℓ,β is brimmed over Mℓ,α for s when α < β < λ+

s and without
loss of generality NFs(Mℓ,α,Mm,α,Mℓ,β,Mm,β) when α < β < λ+

s

and ℓ < m, {ℓ,m} ⊆ {0, 1, 3}. Also without loss of generality a1 ∈
M1,0, a2 ∈M3,0 and tps(∗)(aℓ+1,Mℓ,M3) does not λs-split over M0,0

for ℓ = 0, 1.
By 4.9 we can find a club E of λ+

s and ≤s-increasing continuous se-
quence 〈M2,α : α ∈ E〉 such thatM2,α ≤s M3,α and (M0,α,M2,α, a2) ∈

K3,uq
s , by renaming E = λ+

s . By 5.4 for every α < λ+
s the type

tps(a1,M2,α,M3,α) does not fork over M0,0, hence it does not λs-
split over M0,0. Letting M2 = ∪{M2,α : α < λ+

s } we are easily
done.

Axiom(E)(g): [extension existence]
So let M0 ≤s(∗) M1 and p ∈ S bs

s(∗)(M0) so for some N0, N1 ∈

Ks, N0 ≤s N1 ≤K[s] M0, N1 is ≤s-universal over N0 and p does not

λs-split over N0. So M0,M1 are saturated models in λ+
s for Ks above

λs hence there is an isomorphism f from M0 onto M1 over N1 and
f(p) ∈ S bs

s(∗)(M1) is witnessed by N0 and extends p ↾ N0 hence it

extends p by the uniqueness proved above.

Axiom (E)(h): By claim II.2.17(3),(4).

Axiom (E)(i): By II.2.16.
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Lastly
s(∗) is good+: when s is good+

So assume M̄ ℓ = 〈M ℓ
α : α < λ++〉 is ≤s(∗)-increasing continuous

for ℓ = 0, 1 andM0
α ≤s M

1
α, aα ∈M0

α+1, tps(∗)(aα+1,M
0
α+1,M

0
α+2) ∈

S bs
s(∗)(M

0
α+1) is an s(∗)-non-forking extension of p∗ ∈ S bs

s(∗)(M
0
0 ) but

tps(∗)(aα+1,M
1
0 ,M

1
α+2) does s(∗)-fork over M0

0 and we shall get a
contradiction.

As p∗ ∈ S bs
s(∗)(M

0
0 ) clearly for some N∗ ∈ Ks we have N∗ ≤K[s]

M0
0 and p∗ does not λs-split over N∗ hence (by 9.8(2) below) also

tps(∗)(aα+2,M
0
α+1,M

0
α+2) does not λs-split over N∗. Let 〈Nε : ε <

λ+〉 be a ≤s-representation of M1
0 , and without loss of generality

N∗ ≤s N0.
Now for each α < λ++

s the type tps(∗)(aα+1,M
1
0 ,M

1
α+2) does

s(∗)-fork over M0
0 hence it does λs-split over N∗, but clearly for

some ζα < λ+ − s it does not λ-split over Nζα
. So for some ζ∗ < λ+

s

the set S = {α < λ++
s : ζα = ξ} is unbounded in λ++

s . Now choose
by induction on ε < λ a triple (αε,M0,ε,M1,ε) such that:

(a) αε ∈ S is increasing

(b) M0,ε ≤K[s] M
0
αε

is ≤s-increasing continuous

(c) M1,ε ≤K[s] M
1
αε

is ≤s-increasing continuous

(d) M0,ε ≤s M1,ε

(e) a ∈M0,ε+1

(f) N∗ ⊆M0,ε, Nζ∗ ⊆M1,ε.

There is no problem to carry the definition and 〈(M0,ε,M1,ε; aε) :
ε < λ+

s a〉 provide a counterexample to “s is good+”.
2) Equivalence of the three versions of orthogonality

Follows by “s(∗) is categorical” by claim 6.10(5).

�9.7

9.8 Observation. In clause (c) of Definition 9.5(2), an equivalent
condition is

(∗) if N0 ≤K[s] M0, N0 ∈ Ks and tps(∗)(a,M0,M3) does not λ-
split over N0 then also tps(∗)(a,M1,M3) does not λ-split over
it.
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Proof. Easy. �9.8

Of course

9.9 Claim. 1) If s is a successful type-full λ-good-frame, then s+ is
a type-full λ+-good frame and s∗ = s+.
2) Similarly for type-closed.

Proof. Easy.

Exercise: Clarify on snf for s saturative.

§10 Regular types

10.1 Hypothesis. s is a λ-good+ successful frame with primes such
that s is type-full.

Remark. So the earlier Hypothesis 2.1, 2.18, 3.1, 4.1, 5.1, 6.1, 9.1
hold.

10.2 Definition. 1) We say that p ∈ S bs
s (M) is regular if there are

M0,M1, a,M2 such that:

(a) M1 is (λ, ∗)-brimmed over M0

(b) M ≤s M1 and M0 ≤s M1 ≤s M2 and a ∈M2

(c) p′ = tps(a,M1,M2) is parallel to p

(d) p′ does not fork over M0

(e) if c ∈ M2\M1 realizes p′ ↾ M0 then c realizes p′ (in other
words for every c ∈ M2\M1 realizing p′ ↾ M0 the type
tps(c,M1,M2) does not fork over M0).

2) We say that p ∈ S bs
s (M) is regular+ if there are M1,M2, a such

that clauses (a)-(d) above holds and (see Definition 2.22 and the rest
of §2)

(e)′ if c ∈M2\M1, then rks(tp(c,M,M2)) ≥ rks(p).
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3) We say p ∈ S bs
s (M) is “directly regular” (or “directly regular+”)

when in part (1) (or in part (2)) we add

(f) M1 = M .

4) We say that s has regulars or truely has regulars when every
p ∈ S bs

s (M) is not orthogonal to some q ∈ S bs
s (M).

10.3 Remark. 1) Note that regular 6= regular+. For example let T
be the first order theory of M = (λ × λ ∪ λ, PM , QM , FM ) where
PM = λ × λ,QM = λ, FM ((α, β)) = α, FM (α) = α. Lastly, choose
the p(x) ∈ S(M) which contains {P (x)∧ x 6= a∧F (x) 6= b : a ∈ PM

and b ∈ QM}.
Now let

M0 = M ↾ ({(α, β) : α, β < λ are odd} ∪ {α : α < λ is odd})

M1 = M ↾ ({(α, β) : α, β < λ and α 6= 0} ∪ {α : α < λ, α 6= 0})

M2 = M

a = (0, 0) ∈ M2\M1. Now easily M0 ≺ M1 ≺ M2 and T is super-
stable (even ℵ0-stable).

Now p = tp(a,M1,M2) is regular in the sense of Definition
10.2(1) asM0,M1,M2 witness but p is not regular+ as rks(p) = 2 and

if M1 ≺M ′
2, p realized in M2 then QM ′

2 6= QM1 and b ∈ QM ′

2\QM1 ⇒
rks(tps(b,M1,M

′
2)) = 1.

2) But for our purposes every regular type is “equivalent” to a
regular+ type so those suffice, i.e., no loss in using them.
3) Naturally “s has regulars” ⇒ “s almost has regular” ⇒ “s weakly
has regulars” but we shall not use this here so this is delayed.
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10.4 Claim. 1)

(a) If p1‖p2 then p1 is regular iff p2 is regular

(b) if M ∈ Ks is (λ, ∗)-brimmed (trivially holds if Ks is cate-
gorical) and p ∈ S bs

s (M), then p is regular iff it is directly
regular.

2) Assume p ∈ S bs
s (M),M is (λ, ∗)-brimmed over M0, p does not

fork over M0 and (M,M2, a) ∈ K3,pr
s , tps(a,M,M2) = p and we let

M1 = M . Then p is regular iff clause (e) of 10.2(1) holds.
3) The parallel of parts (1),(2) holds for regular+.

4) If (M,N, a) ∈ K3,pr
s and p = tps(a,M,N) is regular+, then

c ∈ N\M ⇒ rks(tps(c,M,N)) ≥ rks(p).
5) If p is regular+ then p is regular.
6) If M0,M1,M2 satisfies clauses (a),(b) of 10.2(1), a ∈ M2\M1

realizes p ∈ S bs
s (M1) which does not fork over M0 but for ev-

ery b ∈ M2\M1 realizing p ↾ M0 we have rks(tps(b,M1,M2)) ≥
rks(tps(a,M1,M2) then tps(a,M1,M2) is regular.

7) If M0 ≤s M1, (M1,M2, a) ∈ K3,pr
s and p = tps(a,M1,M2) does

not fork over M0 and is regular and c ∈M2\M1 realizes p ↾ M0 then
c realizes p.
8) If (M1,M2, a) ∈ K3,pr

s and M1 is (λ, ∗)-brimmed over M0 and
p = tps(a,M1,M2) does not fork over M0 then

(a) p is regular iff (∀c)[c ∈ M2\M1 realizes p ↾ M0 ⇒ c realizes
p]

(b) p is regular+ iff (∀c)[c ∈ M2\M1 ⇒ rks(tp(c,M1,M2)) ≥
rks(tp(a,M2,M2)].

Proof. 1) Clause (a): So assume that M ′ ≤s M and M ′′ ≤s M and
p′ ∈ S bs(M ′), p′′ ∈ S bs

s (M ′′) are parallel, that is some p ∈ S bs(M)
does not fork overM ′ and overM ′′ and p ↾ M ′ = p′, p ↾ M ′′ = p′′ and
we should prove that p′ is regular iff p′′ is regular. By the symmetry
it suffices to show that p′ is regular iff p is regular. Now the “if”
direction is trivial (the same witnesses M0,M1,M2, a work). For the
“only if” direction, let (M ′

0,M
′
1,M

′
2, a) witness p′ is regular.

As Ks has amalgamation and M ′ ≤s M,M ′ ≤s M
′
1 without loss of

generality for some M1 we have M ′
1 ≤s M1 and M ≤s M1 and with-

out loss of generality M1 is (λ, ∗)-brimmed over M ′
1∪M . There is an
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isomorphism f from M ′
1 ontoM1 over M ′

0 as both are (λ, ∗)-brimmed
over it, and we can find f∗,M2, a

∗ such that M1 ≤s M2, f
∗ ⊇ f, f∗

an isomorphism from M ′
2 onto M2 and f∗(a) = a∗.

Now M0 := f∗(M ′
0),M1 = f∗(M ′

1),M2 = f∗(M ′
2) and a∗ witness

the regularity of p.
Clause (b) of (1): The if direction is obvious (same witnesses).

For the other direction assume that M0,M1,M2, a witness that
p ∈ S bs

s (M) is regular; so p+ := tps(a,M1,M2) does not fork over
M0 and over M and extends p.

As M ≤s M1 are (λ, ∗)-brimmed and p+ ∈ S bs
s (M1) does not

fork over M and extend p, by 1.21 there is an isomorphism h from
M1 onto M mapping p+ to p. There is a pair (h+,M ′

2) such that
M ≤s M2 and h+ is an isomorphism from M2 onto M ′

2 extending h.
Now (h(M0),M,M ′

2, h
+(a)) witness the desired conclusion.

2) If no b ∈M2\M1 realizes p ↾ M0 then (M0,M1,M2) witness that p
is regular. If p is regular recalling M is (λ, ∗)-brimmed by 10.4(1)(b)
clearly p ∈ S bs

s (M) is directly regular, so let it be witnessed by

M ′
0,M

′
2, a

′, but as (M,N, a) ∈ K3,pr
s without loss of generality a′ =

a,N ≤s M
′
2, hence every b ∈ N\M realizing p ↾ M0 in N realzies it

in M2 hence realizes p in M2 hence in N . So clause (e) of 10.2(1)
holds.
3) Similarly.
4) If M is (λ, ∗)-brimmed the proof is similar to the proof of part
(2). Otherwise we can find M+ such that M ≤s M+ and M+

is (λ, ∗)-brimmed over M and we let p+ ∈ S bs
s (M+) be the non-

forking extension of p. Now by part (3), the parallel to part (1),
p+ ∈ S bs

s (M+) is regular+.
So there are M0,M1,M2, a

′ witnessing it. By part (3), the parallel
to part (2), without loss of generality M1 = M+, and let N+ = M2

hence, p+ = tps(a
′,M+, N+). So a′ realizes p = p+ ↾ M inside N+

hence, recalling (M,N, a) ∈ K3,pr
s , there is a ≤s-embedding f of N

into N+ mapping a to a′. So without loss of generality f = idN . By
the choice of M1 = M+, N+ = M2, recalling clause (e)′ of 10.2(2)
we have:

(∗) c ∈ N+\M+ ⇒ rks(tps(c,M
+, N+) ≥ rks(p

+).

But tps(a,M
+, N+) is p+ hence does not fork overM and (M,N, a) ∈
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K3,pr
s ⊆ K3,uq

s hence by 1.19 we have NFs(M,N,M+, N+). So
c ∈ N\M ⇒ tps(c,M

+, N+) does not fork overM hence if c ∈ N\M
then c ∈ N+\M+ and rks(tps(c,M,N)) = rks(tp(c,M+, N+)) ≥
rks(p

+) = rks(p) = rks(tp(a,M,N)) by 2.26(3), by (∗) above, by
2.26(4), and by an assumption respectively. So we are done.
5) Because if M1 is (λ, ∗)-brimmed over M0 and p ∈ S bs

s (M1) does
not fork over M0 and q ∈ Ss(M1), q 6= p, q ↾ M0 = p ↾ M0 then
rks(p) = rks(p ↾ M0) > rks(q), see 2.26(6), i.e., the inequality
holds as q forks over M0.
6) Easy, follows by the definition as in the proof of part (5).
7) Similar to the proof of part (4).
8) Easy by part (2), (and see Exercise 1.24). �10.4

10.5 Claim. 1) If M <s N and M is (λ, ∗)-brimmed, then for some
c ∈ N\M the type tps(c,M,N) is regular+ (hence regular).
2) If M ′ <s M <s N,M is (λ, ∗)-brimmed and p ∈ S bs

s (M ′) is
realized by some member of N\M and moreover M is (λ, ∗)-brimmed
over M ′, then for some c ∈ N\M realizing p we have tps(c,M,N)
is regular. Note that possibly tps(c,M,N) forks over M0.

Proof. 1) Choose c ∈ N\M such that rks(tps(c,M,N)) is mini-
mal. Then choose (λ, ∗)-brimmed M0 <s M such that M is (λ, ∗)-
brimmed over M0 and tps(c,M,N) does not fork over M0, exists by
Exercise 1.24. Let M1 := M,M2 := N, a := c so by Claim 10.4(3),
the parallel to 10.4(2) the type tps(c,M,N) ∈ S bs

s (M) is regular+

(hence regular by 10.4(5)).
2) Choose c ∈ N\M realizing p with rks(tps(c,M,N)) minimal. Let
M0 <s M be such that M ′ ≤s M0 and M is (λ, ∗)-brimmed over M0

and M0 is (λ, ∗)-brimmed over M ′; it follows that tps(c,M,N) does
not fork over M0.
Now we are done by 10.4(6). �10.5

10.6 Claim. [s = t+, t is a good+ λs-frame, successful with primes

and K3,uq
t = K3,pr

t .]

Assume (M,N, a) ∈ K3,bs
s , p = tps(a,M,N) and q ∈ S bs

s (M)
and M0 ∈ Kt,M0 ≤K[t] M (so M is (λ, ∗)-brimmed as s = t+).
1) If p does not fork over M0 (i.e. M0 is a witness for p) then
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(a) p is regular (for s) iff p ↾ M0 is regular (for t)

(b) Similarly for regular+

(c) if (M,N, a) ∈ K3,pr
s and c ∈ N\M realizes p ↾ M0 and p is

regular (for s) then c realizes p.

2) There is a regular+ type p1 ∈ S bs
s (M) not orthogonal to p, and

realized in N such that rks(p1) ≤ rks(p) and rks(r) < rks(p1) ⇒ r⊥p
for every r ∈ S bs

s (M) or even14 every r ∈ Ss(M
′),M ≤s M

′. In
fact also rks(r) < rks(p1) ⇒ r⊥p1 for every r as above.
3) If p is regular+ not orthogonal to q, then rks(q) ≥ rks(p).
4) If M∗ ≤s M, p ↾ M∗ = q ↾ M∗, p 6= q, p does not fork over M∗

and p is regular then p⊥q.
5) If p is regular+ and rks(q) < rks(p) then p⊥q.
6) Let p1 ∈ S bs

s (M) be not orthogonal to p with minimal rank. Then

(α) p1 is realized in N and is regular+

(β) if p is regular and (M,N1, a1) ∈ K3,pr
s and tps(a

1,M,N1) =
p1 then p is realized in N1

(γ) if p is regular then p⊥q ⇔ p1⊥q (recall q is any member of
S bs

s (M))

(δ) if p⊥q then p1⊥q.

7) Assume (M,N, a) ∈ K3,pr
s . If a1 ∈ N\M and (recalling q ∈

S bs
s (M)) we have p⊥q and tps(a1,M,N) ∈ S bs

s (M)
then tps(a1,M,N)⊥q and M ′ <s M & p⊥M ′ ⇒ tps(a1,M,N)⊥M ′.

8) If q is regular and p, q are not orthogonal (or just q has at least
two extensions in Ss(N)) then q is realized in N .

9) If q is regular and (M,N, a) ∈ K3,pr
s then p± q iff q is realized in

N .

Remark. 1) Note that by part (6) we can “replace” a regular p by
a regular+ one which is advantageous and helps, e.g. in part (8) in
this claim 10.6.
2) Note that in 10.6 the proof of (6)(γ) depends on part (7).

14We may wonder, is the “existence of t” is necessary? But anyhow we usually
have arrived to good λ-frames with primes by deriving it from such t.
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Proof. Clearly t is as reuried in 10.2 so it satisfies what we hae proved
so far; in particular t is full.

As s = t
+ let 〈Mα : α < λ+

t 〉, 〈Nα : α < λ+
t 〉 be ≤t-representations

of M,N respectively. Checking all parts of the claim, clearly without
loss of generality (M,N, a) ∈ K3,pr

s and even is canonically prime, see
4.9, recalling that t being successful good+ λ-frame satisfies Hypoth-
esis 4.1. Hence without loss of generality α < λ+

t ⇒ (Mα, Nα, a) ∈

K3,uq
t and α < β ⇒ NFt(Mα, Nα,Mβ, Nβ) and α < β ⇒ Nβ ,Mβ is

(λ, ∗)− t-brimmed over Nα,Mα respectively and α⇒ λ+
t ⇒Mα, Nα

are (λ, ∗)− t-brimmed.

1) Note that assumption K3,uq
t = K3,pr

t helps. (The proof is similar
to the proof of 2.27 which deals with rk).

Clause (a):

First, assume that p ↾ M0 ∈ S bs
t (M0) is not regular; then p ↾ M1

is not regular, M1 is (λs, ∗)-brimmed over M0, a ∈ N0 ⊆ N1 realizes
p ↾ M1 hence by 10.4(2) some c ∈ N1\M1 realizes p ↾ M0 but not
p ↾ M1. Now we can choose M ′

α ∈ Kt for α < λ+
t ,≤t-increasing

continuous such that M ′
0 = M0,M

′
1 = M0,M

′
α ≤s Mα and β < α⇒

NFt(M
′
β ,Mβ,M

′
α,Mα) and if α = β + 1 ≥ 2 then M ′

α is (λt, ∗)-
brimmed over M ′

β for t and Mα is (λt, ∗)-brimmed over M ′
α ∪Mβ.

Let M ′ = ∪{M ′
α : α < λ+

t }. Easily M ′ ∈ Ks and M is (λt, ∗)-
brimmed over M ′. Also by symmetry for NFt recalling M ′

0 = M ′
1 for

every α ≥ 2, NFt(M
′
0,M

′
α,M1,Mα) but also NFt(M1,Mα, N1, Nα)

hence by transitivity for NFt we have NFt(M
′
0,M

′
α, N1, Nα). As

tpt(b,M0, N1) = p ↾ M0 it follows that tpt(b,M
′
α, Nα) hence is a

non-forking extension of p ↾ M0 hence is p ↾ M ′
α.

We can conclude by 1.11 that tps(b,M
′, N) = p ↾ M ′, but trivially

tps(b,M,N) 6= p and as M0 ≤K[t] M we know that p does not fork
over M ′ for s. So (M ′,M,M) witness that p is not regular for s.
This gives one implication of clause (a).

Second, asume that p ↾ M0 is regular (for t). For every α < λ+
s

clearly (Mα, Nα, a) ∈ K3,uq
s = K3,pr

s , hence by 10.4(2) every b ∈
Nα\Mα realizing p ↾ M0 realizes p ↾ Nα. As this holds for every
α < λs, it follows by 1.10(1) that every b ∈ N\M realizing p ↾ M0

realizes p. This is more than eough to show that p is regular.

Clause (b):
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Similar using 2.27 with s there standing for t here.

Clause (c):
By the proof of clause (a).

2) Choose p1 ∈ S bs
s (M) realized by some c1 ∈ N\M with rks(p1)

minimal and let N1 ≤s N be such that (M,N1, c1) ∈ K3,pr
s . As in

the proof above we can find M ′ such that M0 ≤K[t] M
′ ≤s M and

M is (λs, ∗)-brimmed over M ′ and p1 does not fork over M ′. Now
p1 is regular+ by 10.4(2),(3), is not orthogonal to p and it is realized
in N as exemplified by c1. Also rks(p1) ≤ rks(p) by the minimality
of rks(p1).

Lastly, assume r ∈ S bs
s (M ′′), r ± p,M ≤s M ′′ and we should

prove that rks(r) ≥ rks(p1). Without loss of generality M = M ′′.
[Why? Because without loss of generality, in fact by the assumption
on s the model M ′′ is (λs, ∗)-brimmed and by 1.21 there is an iso-
morphism f from M onto M ′′ which maps p to the extension p′ of
p which does not fork over M . Now p⊥r ⇔ p′⊥r ⇔ p⊥f−1(r) and
rks(r) = rks(f

−1(r)), so we can replace (r,M ′) by (f−1(r),M).]
Without loss of generality p, p1, r do not fork over M0, so as N is

λ+
t -saturated (above λt for Kt) and p ± r there is c2 ∈ N realizing
r ↾ M0 such that {a, c2} is not independent over M0 inside N for t.
Now this implies c2 /∈ M [as for every c′ ∈ M\M0, the pair {a, c′}
is independent over M0 inside N for t as a realizes p ∈ S bs

s (M)
which does not fork over M0] hence rks(tps(c2,M,N)) ≥ rks(p1)
by the choice of p1 so necessarily using 2.27(1) we have rks(r) =
rkt(r ↾ M0) = rkt(tpt(c2,M0, N)) ≥ rks(tps(c2,M,N) ≥ rks(p1)

as required. The proof of the “in fact” is similar.
3) Without loss of generality p, q do not fork over M0 ∈ Kt, so q ↾ M0

is regular+ not orthogonal to p ↾ M0 (for t, by part (1) and by 6.11
respectively). As a ∈ N realizes p ↾ M0 and N is λ+

t -saturated and
P⊥q clearly there is c ∈ N realizing q ↾ M0 such that {a, c} is not
independent over M0 inside N for t. Hence c /∈M .

As p is regular+ and (M,N, a) ∈ K3,pr
s,p , by 10.4(4) we know that

rks(tps(c,M,N)) ≥ rks(p). As tps(c,M,N) extends q ↾ M0 it has
rank ≤ rks(q ↾ M0) = rks(q) so by the previous sentence rks(p) ≤
rks(q).

4) Without loss of generality M∗
0 := M∗ ∩M0 <t M0 and p does not

fork over it.
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Without loss of generality also q does not fork over (i.e. is wit-
nessed by) M0 and again using 6.11 we have p⊥q ⇔ (p ↾ M0⊥q ↾

M0). Assume toward contradition p±q hence (p ↾ M0)± (q ↾ M0) so
for some c ∈ N realizing q ↾ M0, {a, c} is not independent over M0

for t inside N , hence c ∈ N\M .

Now choose a non-zero α < λ+
t such that c ∈ Nα and recall

(Mα, Nα, a) belongs to K3,uq
t hence by an assumption of the claim

it belongs to K3,pr
t , and Nα is (λt, ∗) − t-brimmed over M0.

So use M0,Mα, Nα, a, p ↾ Mα, c to apply 10.4(7) and we get that
tpt(c,Mα, Nα) does not fork over M0; hence is equal to p ↾ Mα. As
α < β < λ+

t ⇒ NFt(Mα, Nα,Mη, Nβ) ⇒ tpt(c,Mβ, Nβ) does not
fork over Mα ⇒ tpt(c,Mβ, Nβ) = p ↾ Mβ we get that c realizes p
inside N for s. Hence indeed p⊥q.
5) Proof similar to (4).
6) Clause (α): As in the proof of part (2), starting with “lastly”.

Proof of Clause (β):

By clause (α) we know that p1 is realized in N , so without loss of
generality N1 ≤s N hence a1 ∈ N . Without loss of generality both p
and p1 do not fork over M0 and so as in earlier cases there is c ∈ N1

realizing p ↾ M0 such that {c, a1} is not independent in N over M0.
This implies c ∈ N1\M hence by clause (c) of part (1) we know that
c realizes p, as required.

Proof of Clause (γ):

First assume p⊥q. Let (M,N ′, b) ∈ K3,pr
s where tps(b,M,N ′) = q

and without loss of generality N ≤s N
+, N ′ ≤s N

+. By clause (α)
some a1 ∈ N realizes p1 by part (7) below withM,N ′, b, a1, q here by
standing for M,N, a, a1, q there we conclude that tps(a1,M,N ′)⊥q
which means p1⊥q.

For the other direction let (M,N1, b1) ∈ K3,pr
s be such that

tp(b1,M,N1) = p1, by clause (β) some a1 ∈ N ′ realizes p and con-
tinue as above (interchanging p and p1).

Clause (δ):

By the first paragraph in the proof of claue (γ).
7) Easy (and do not use part (6) and less than 10.1) but we elaborate.
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Let N1 ≤s N be such that (M,N1, a1) ∈ K3,pr
s . Now as q⊥p

clearly p⊥
wk
q so by 6.3 it follows that q has a unique extension in

S bs
s (N) hence it has a unique extension in S bs

s (N1) which by 6.3
implies that tps(a,M,N1)⊥

wk
p; but for s,⊥ = ⊥

wk
by 6.8(5) as its

assumption, “categoricity in λs” holds. The second phrase (or ⊥M ′)
follows.

Clause (β):
Without loss of generality p and q does not fork overM0. Clearly if

p⊥q then q has at least two extensions in Ss(M), so we can assume
the latter. We try by induction on α < λ+

s to choose Mα and if
α = β + 1 also aβ such that:

(∗) (a) Mα is ≤s-increasing continuous

(b) M0 = M

(c) Mα ≤s N

(d) if α = β + 1 then (Mβ,Mα, aβ) ∈ K3,pr
s

(e) tps(aβ,Mβ, N) is orthogonal to p, q.

Necessarily for some α∗ < λ+
s ,Mα is well defined iff α < α∗. As for

α = 0 and α limit there are no problems, necessarily α∗ has from
β∗ + 1. Now we can prove by induction on α ≤ β∗ that q has a
unique extension in Ss(Mα). But Mβ∗

≤s N and q has at least two
extensions in S bs

s (N) hence Mβ∗
6= N . So we can choose aβ∗

∈
N\Mβ∗

as s is full and has primes, necessarily tps(aβ∗
,Mβ∗

, N)⊥q.
8) Let qβ∗

∈ Ss(Mβ∗
) be the unique extension of q in Ss(Mβ∗

).
So there is a Mβ∗,0 ≤K[t] Mβ∗

from Kt, brimmed for t such that
tps(aβ∗

,Mβ∗
, N) and q+ does not fork oever Mβ∗,0 hence q+ ↾ Mβ∗,0

is regular for t and is not orthogonal to tpt(aβ∗
,Mβ∗,0, N) for t.

As before we can choose c ∈ N\Mβ∗
realizing q+ ↾ Mβ∗,0 such that

{c, aβ∗
} is not independent in (Mβ∗,0, N) for t hence) c ∈ N\Mβ∗

.
By the choice of β∗ the type tps(c,Mβ∗

, N) is not orthogonal to
q, so for some Mβ∗,1 we have Mβ∗,0 ≤t Mβ∗,1 ≤K[t] Mβ∗

, the type
tps(c,Mβ∗

, N) does not fork over Mβ∗,1 and Mβ∗,1 is brimmed over
Mβ∗,0 for t. So necessarily tpt(c,Mβ∗,1, N) forks over Mβ∗,0 for t

hence is orthogonal to q+ ↾ Mβ∗,1. This implies then tps(c,Mβ∗
, N)
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and q+ are orthogonal contradiction to the choice of β∗.
9) If q is realized in N then by 6.4 we know p ± q. So assume that
p± q and then use part (8). �10.6

10.7 Hypothesis. Assume, in addition to 10.1

(a) s = t+, t is λt-good+ successful with primes and K3,qr
t =

K3,vq
t .

Remark. So t satisfies Hypotheis 10.1; the “t type-full” require a
short argument.

10.8 Conclusion. 1) Non-orthogonality among regular types is an
equivalence relation.
2) For non-orthogonal regular p, q ∈ S bs

s (N) and M ≤s N , we have
p⊥M ⇔ q⊥M .
3) If p, q ∈ S bs

s (M), p± q the type q is regular, (M,N, a) ∈ K3,pr
s or

just (M,N, a) ∈ K3,bs
s and tps(a,M,N) = p then q is realizes in N .

4) For p, q, r ∈ S bs
s (M), q regular, p± q, q ± r we have p± r.

5) For regular p, q ∈ S bs
s (M) and r ∈ S bs

s (M) we have p±q, q±r ⇒
p± r.

Remark. Alternative proof of 10.8(3),(4),(5) appear after the proof
of 10.16.

Proof. 1) Assume M ∈ Ks and regular p1, p2, p3 belongs to S bs
s (M)

and p1±p2, p2±p3. Let a1, N1 be such that (M,N1, a1) ∈ K3,pr
s,p1

, so by

10.6(8) for some a2 ∈ N2 and N2 ≤s N1 we have (M,N2, a2) ∈ K3,pr
s,p2

.
Similarly there is a3 ∈ N2 ≤s N1 which realizes p3, so by 6.4(1)
easily p1 ± p3. This proves that non-orthogonality is transitive, but
symmetry was proved in 6.7(2) and reflexivity is obvious so we are
done.
2) By symmetry we assume p ±M and we shall prove q ±M , this
suffices. By 10.9(1) below there is a r ∈ S bs

s (M) not orthogonal to
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p and regular. Now use part (1).

3) If (M,N, a) ∈ K3,bs
s then for some N ′ ≤s N we have a ∈ N ′

and (M,N ′, a) ∈ K3,pr
s so without loss of generality (M,N, a) ∈

K3,pr
s . Now apply 10.6(9), noting that the assumption of 10.6 holds

by Hypothesis 10.7.
4) Let (M,N, aℓ) ∈ K3,pr

s and pℓ = tps(aℓ,M,Nℓ) for ℓ = 1, 2, 3 be
such that p1 = p, p2 = q, p3 = r. Now as q is regular and p ± q,
by part (3) the type q is realized in N1 say by b1. So b1 ∈ N1\M .
Similarly q is realized by some b3 ∈ N3\M . Now N1, N3 can be
amalgamated in two incompatible ways over M : identifying b3 with
b1 or not, which gives p = p1 ± p3 = r.
5) Follows by part (3). �10.8

10.9 Claim. 1) If M ≤s N and p ∈ S bs
s (N) is not orthogonal to M

then there is q ∈ S bs
s (N) not orthogonal to p, conjugate to p (i.e.,

f(p) = q for some f ∈ Aut(M)) and q does not fork over M .
2) If 〈Mi : i ≤ δ + 1〉 is ≤s-increasing continuous and Mδ 6=
Mδ+1, then for some c ∈ Mδ+1\Mδ and non-limit i < δ, we have
tps(c,Mδ,Mδ+1) is regular, does not fork over Mi, and is orthogonal
to Mi−1 if i > 0 so s weakly has regulars (see Definition 7.5).
3) If in part (2), q ∈ S bs

s (Mδ) is regular realized by some member of
Mδ+1, then we can demand tps(c,Mi,Mδ+1) is conjugate to q hence
regular.
4) In part (1), if for some M0 the model M is (λ, ∗)-brimmed over
M0, then we can get q conjugate to p over M0.

Remark. Part (1) of 10.9 could have appeared earlier.

Proof. 1) Without loss of generality N is (λ, ∗)-brimmed over M (us-
ing 10.7(a)). Let r ∈ S bs

s (M) be not orthogonal to p. Let 〈Mα : α ≤
ω〉, 〈Nα : α ≤ ω〉 be as in the proof of 8.17, i.e., M = Mω = ∪{Mn :
n < ω}, N = Nω = ∪{Nn : n < ω}, NFs(Mn, Nn,Mn+1,Mn+1, Nn+1)
and Mn+1, Nn+1 are (λ, ∗)-brimmed over Mn, Nn respectively for
n < ω; without loss of generality p does not fork over N0 and r
does not fork over M0. We can find 〈fi : i < λ〉 such that f1+i

is a ≤s-embedding of N0 into M over M0, f0 = idN0
, such that

〈fi(N0) : i < ω〉 is independent over M0 (see 8.17) and clearly
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fi(p ↾ N0) ± r ↾ M0 for i < λ hence fi(p ↾ N0) ± M0. By 8.17
clearly p ↾ N0 ± f1(p ↾ N0) and let q ∈ S bs

s (N) be a non-forking
extension of f1(p ↾ N0).
2) By 10.5(1) for some d ∈ Mδ+1\Mδ, the type tps(d,Mδ,Mδ+1) is
regular, and apply part (3).
3) Let j = Min{i ≤ δ : q ±Mi}, as q ±Mδ clearly j is well de-
fined. By 6.10(2), j is a non-limit ordinal and by part (1) there is
r ∈ S bs

s (Mδ) not forking over Mj not orthogonal to q and conjugate
to q hence r is regular and by 10.8(2) is orthogonal to Mj1 for j1 < j
but not orthogonal to p.

By 10.6(8) some c ∈Mδ+1\Mδ realizes r.
4) By a similar proof. �10.9

10.10 Claim. If NFs(M0,M1,M2,M3) and p ∈ S bs
s (M3) is regular

and p±M1, p±M2 then p±M0.

Proof. As p ±M1, by 10.9(1) there is q ∈ S bs
s (M1) conjugate to p

and not orthogonal to p. As q is conjugate to p it is regular. As p±q
by 10.8(2) it is enough to prove q ±M0 and we know that q ±M2.
Now if q is orthogonal to M0, by 6.10(5) (recalling Definition 6.9(2)),
as s is categorical, (see Hypothesis 10.7), it is super-orthogonal to
M0, which implies that it is orthogonal to M2, contradiction so we
are done.

�10.10

10.11 Definition. We call (M̄, J̄) ∈ W (from Definition 7.2) regu-
lar if c ∈ Ji ⇒ tps(c,Mi,Mi+1) is regular; we say “regular except
J” if the c ∈ J are excluded.

10.12 Claim. 1) Assume M ≤s N and J ⊆ IM,N is independent

in (M,N). Then we can find a prime (M̄, J̄) ∈ K3,ar
s , see Definition

7.4(2),(8) so M̄ = 〈Mn : n < ω〉 with J ⊆ J0,M0 = M,N = ∪{Mn :
n < ω} and (M̄, J̄) is regular except (possibly) J.

2) If (M,N, a) ∈ K3,uq
s then we can find prime (M̄, J̄) ∈ K3,ar

s with
J0 = {a},M0 = M,N = ∪{Mn : n < ω} and (M̄, J̄) is regular
except possibly J0. Of course, we can replace {a} by J ⊆ IM,N if

(M,N,J) ∈ K3,vq
s so J0 = J.
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3) If N0 ≤s N1 ≤s N2, c ∈ N2\N1 and tps(c, N1, N2) ± N0 and
tps(c, N1, N2) ∈ S bs

s (N1) (actualy follows) then for some b ∈ N2\N1

the type tps(b, N1, N2) does not fork over N0 and is regular.

Remark. Can be viewed as changing S bs
s .

Proof. 1) Clearly (M,N,J) ∈ K3,bs
s so the assumption of 7.7(2)

holds by 10.9(2). By 7.7(2) the desired conclusion almost holds, i.e.
holds except “regular except J”. So repeat the proof of 7.7(2) such
that c ∈ Jn+1 ⇒ tps(c,Mn+1,Mn+1) is regular and c ∈ J0\J ⇒
tps(c,M,N) is regular using 10.9(2); alternatively use 10.19.

2) The same proof using 6.14(1) and 7.9(A) ⇒ (C) for K3,vq
s .

3) Apply part (1) with (N1, N2, ∅) here standing for (M,N,J) there
and get (M̄, J̄) as there. If for some b ∈ J0, tps(b, N1, N2) ± N0,
then we get the desired conclusion. (Why? By 10.9(1) there is
q ∈ S bs

s (N1) not orthogonal to tps(b, N1, N2) conjugate to it, and
not forking over N0; now by 10.6(8) the type q is realized by some
b′ ∈ N2\N1 and it is as requried.)

Otherwise, now 7.7(3) is applicable as s weakly has regulars by

10.9(2), so we have (M,N,J0) ∈ K3,vq
s . Now if q ∈ S bs

s (N1) does
not fork over N0 then c ∈ J0 ⇒ tps(c, N1, N2)⊥q so by Claim 6.13
the type q has a unique extension in S bs

s (N2). Hence: if N2 ≤s N
′

and b ∈ N ′ realizes q then {b, c} is independent in (N1, N
′) (recall s

is type-full) so q⊥
wk

tps(c, N1, N2). As q was any member of S bs
s (N1)

which does not fork over N0, we get tps(c, N1, N2)⊥
wk
N0, but s is

categorical hence tps(c, N1, N2)⊥N0, contradicting an assumption.
�10.12

10.13 Claim. 1) If (M0,Mℓ, aℓ) ∈ K3,uq
s for ℓ = 1, 2 and M1 ∩

M2 = M0 then we can find M3 such that (Mℓ,M3, a3−ℓ) ∈ K3,uq
s for

ℓ = 1, 2.
2) Similarly for (M0,Mℓ,Jℓ) ∈ K3,vq

s .

Proof. 1) Let p′1 ∈ S bs
s (M2) be a non-forking extension of p1 :=

tps(a1,M0,M1). Let (M3, a
′
1) be such that (M2,M3, a

′
1) ∈ K3,uq

s
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and p′1 = tps(a
′
1,M2,M3); we can choose M3, a

′
1 because s has exis-

tence for K3,pr
s .

Similarly we can find M ′
1 ≤s M3 such that (M0,M

′
1, a

′
1) ∈ K3,pr

s .

As {M ′′
1 : M ′′

1 ≤s M3 and (M0,M
′
1, a

′
1) ∈ K3,uq

s } is non-empty (as
M ′

1 belongs to it) and is closed under ≤s-increasing unions (by 7.10),
necessarily it has a ≤s-maximal member, call it M∗

1 . By uniqueness

for K3,uq
s = K3,pr

s , see 7.14, there is an isormophism f from M1 onto
M∗

1 over M0 mapping a1 to a′1.
As M0 ≤s M2 ≤s M3 and tp(a′1,M2,M3) does not fork over M0

and M0 ≤s M∗
1 ≤s M3 and (M0,M

∗
1 , a

′
1) ∈ K3,uq

s it follows that
NFs(M0,M

∗
1 ,M2,M3) hence M∗

1 ∩ M2 = M0. So without loss of
generality f = idM1

so a′1 = a1,M
∗
1 = M1.

Do we have (M∗
1 ,M3, a2) ∈ K3,uq

s ? If not, then as above, let

M−
3 ≤s M3 be ≤s-maximal such that (M∗

1 ,M
−
3 , a2) ∈ K3,uq

s . Let
b ∈M3\M

−
3 be such that tps(b,M

−
3 ,M3) ∈ S bs

s (M−
3 ). By a case of

10.9(2), without loss of generality tps(b,M
−
3 ,M3) is regular and is

⊥M∗
1 or does not fork over M∗

1 (not used) and is ⊥M0 or does not
fork over M0.

Now first if tps(b,M
−
3 ,M3)⊥M0 we can find M ′

3 ≤s M3 such that

(M−
3 ,M

′
3, b) ∈ K3,pr

s , so M ′
3 contradict the maximality of M∗

1 .
Second, if tps(b,M

−
3 ,M3) ± M0 then it does not fork over M0

so as {a1, a2} is independent in (M0,M
−
3 ) also {a1, a2, b} is inde-

pendent in (M0,M3). However, recall (M0,M2, a2), (M2,M3, a1) ∈

K3,uq
s , which by 5.4(3) gives tps(b,M3,M3) does not fork over M0,

contradiction.
2) Similar (and not used). �10.13

10.14 Definition. 1) ForM ≤s N let IregM,N = {c ∈ N : tps(c,M,N)

is regular}.
2) For M <s N , we define on Ireg

M,N a dependence relation called the

regular (M,N)-dependence relation by:

(a) J ⊆ Ireg
M,N is (M,N)-independent or regularly independent in

(M,N) if if it is independent

(b) c ∈ Jreg
M,N is (M,N)-dependent on J ⊆ Jreg

M,N or c is regularly

dependent on J ⊆ Jreg
M,N if there is an independent J′ ⊆ J

such that c ∈ J′ or J ∪ {c} is not independent.
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We may omit (M,N) if clear and may omit the “regular” if clear.

Remark. We can use only regular+ types; somewhat simplify.

10.15 Claim. 1) Assume Ji ⊆ IregM,N for i < i∗ and i 6= j & a ∈
Ji & b ∈ Jj ⇒ tps(a,M,N) ⊥ tps(b,M,N).
Then

(α) i 6= j ⇒ Ji ∩ Jj = ∅

(β) ∪{Ji : i < i∗} is independent in (M,N) iff for each i,Ji is
independent in (M,N).

2) Assume J ⊆ Ireg
M,N and E is the following equivalence relation on

IregM,N : aE b ⇔ tps(a,M,N) ± tps(b,M,N). Then J is independent

in (M,N) iff for every a ∈ IM,N the set J ∩ (a/E ) is independent
in (M,N) iff for every a ∈ J the set J∩ (a/E ) is independent in
(M,N).

Proof. Easy. �10.15

10.16 Claim. Assume M ≤s N .
1) The relations in 10.14 and their negations are preserved if we re-
place N by a ≤s-extension.
2) If J1,J2 ⊆ IregM,N are (M,N)-independent, every b ∈ J2 does

(M,N)-depend on J1 and c ∈ Ireg
M,N depend on J2, then c does

(M,N)-depend on J1.
3) The regular (M,N)-dependence relation satisfies the axioms of
dependence relation, so dimension is well defined. Also if p, q ∈
S bs

s (M) are regular not orthogonal then dim(p,N) = dim(q,M).
4) J ⊆ Ireg

M,N is a maximal (M,N)-independent subset of Ireg
M,N iff

(M,N,J) ∈ K3,vq
s .

5) If P ⊆ {p ∈ S bs
s (M) : p regular} is a maximal set of pairwise

orthogonal types and J ⊆ Ireg
M,N is independent, then we can find J′, h

such that:

(a) J′ ⊆ IregM,N is (M,N)-independent

Paper Sh:705, Chapter III



570 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

(b) h is a function from J onto J′ such that h(c) does (M,N)-
depend on {c}

(c) c ∈ J′ ⇒ tps(c,M,N) ∈ P.

6) Assume P ⊆ ∪{S bs
s (M ′) : M ′ ≤s M} and every q ∈ S bs

s (M) is
non-orthogonal to some p ∈ P

(a) if M ≤s N and q ∈ S bs
s (N) is not orthogonal to M then q

is not orthogonal to some p ∈ P

(b) if q ∈ M then we can find n < ω and a ≤s-increasing se-
quence 〈Mℓ : ℓ ≤ n〉 with M0 = M, aℓ ∈ Mℓ+1 such that

(Mℓ,Mℓ+1, aℓ) ∈ K3,pr
s for ℓ < n such that tps(aℓ,Mℓ+1) is

parallel to some p ∈ P and q is realized in Mn, i.e. as in 8.7.

Proof. 1) Trivial.
2) If c ∈ J2 then conclusion is trivial, so we can assume that c /∈ J2

and even more obviously if c ∈ J1 the conclusion holds so we can
assume that c /∈ J1.

Let

J′
2 = {b ∈ J2 : tps(b,M,N) is not orthogonal to

tps(c,M,N)}

and let

J′
1 = {a ∈ J1 : tps(a,M,N) is not orthogonal to

tps(c,M,N)}.

We know that J2 ∪ {c} is not independent, hence by 10.15(2) nec-
essarily J′

2 ∪ {c} is not independent. Similarly for every b ∈ J′
2 we

have b ∈ J′
1 or J′

1 ∪ {b} is not independent (trivially b /∈ J1\J
′
1).

Toward contradiction assume that “J′
1 ∪ {c} is independent”.

Let 〈ai : i < α1〉 list J′
1, without repetition and let 〈ai : i ∈ [α1, α2)〉

list J′
2 without repetitions and let aα2

= c. We can find a pr-
decomposition 〈Mi, ai : i ≤ α2〉 over M inside N (recall that s is
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type-full; also uq-decomposition inside N ′, N ≤s N
′ is O.K.; possi-

bly ai ∈Mi and the Mi+1 = Mi).

Now by 5.4(3) the type tps(c,Mα1
, N1) does not fork over M .

Also for each i ∈ [α1, α2) the type tps(ai,Mα1
, N) forks over M

(as ai depends on J′
1 in (M,N)) hence by Claim 10.6(4) the type

tps(ai,Mα1
, N) is orthogonal to tps(ai,M,N) hence by 10.8(1) also

to tps(c,M,N) recalling that ai ∈ J′
2, hence to tps(c,Mα1

, N). So
we can prove by induction on i ∈ [α1, α2] that tps(c,Mi, N) does
not fork over M . For i = α2 we get a contradiction, the reason being
the assumption “J′

2 ∪ {c} is not independent in (M,N)”, so we are
done.
3) The finite character holds by 5.4, transitivity holds by part (2),
monotonicity is trivial by the definitions and also the exchange prin-
ciple. The “also” follows by this and 10.6(8).

4) First assume (M,N,J) ∈ K3,vq
s , but J is not a maximal indepen-

dent set, so for some c ∈ N\M\J the set J∪{c} is independent. Let

N1 ≤s N be such that (M,N1,J) ∈ K3,qr
s , so by 5.16(5) the type

tps(c, N1, N) does not fork over M , but by 7.9(A) ⇒ (C), the type
tps(c, N1, N) is orthogonal to M , contradiction; so J is maximal.
That is the second implies the first.

Second assume J is maximal and let N0 ≤s N be such that
(M,N0,J) ∈ K3,qr

s . Now by 5.4, 5.8(2), 5.11(2) and 10.6(2) we can
find a pr-decomposition 〈(Mi, ai) : i < α〉 of N over N0, with each
tps(ai, Ni, N) regular.

If for some i < α, tps(ai, Ni, N) ±M then by 10.9(1) there is
a regular q ∈ S bs

s (Ni) not orthogonal to tps(ai, Ni, N) which does
not fork over M . Now by 10.6(8) some b ∈ Ni+1\Ni realizes q, but
this contradicts J’s maximality.

Hence i < α ⇒ tps(ai, Ni, N)⊥M then by 6.20(2) the triple

(M,Nα,J) belongs to K3,vq
s as required.

5) For every regular p ∈ S bs
s (M) let rp be the unique r ∈ P not

orthogonal to p, (exists by the maximality of P, unique as ± is
an equivalence relation on the family of regular types, see 10.8(2)).
Now for each a ∈ J let ra ∈ P be rtps(a,M,N), by 10.6(8) there
is ba ∈ N realizing ra such that {a, ba} is not independent (why?

choose Na ≤s N such that (M,Na, a) ∈ K3,pr
s and then choose

ba ∈ N realizing ra by 10.6(8) they are not independent by 6.3).
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Now by part (3) we can finish easily.
6) Let P′ = {r ∈ S bs

s (M) : p is regular not orthogonal to some
p ∈ P}, the rest should be clear. �10.16

Alternative Proof of 10.8(3),(4),(5):
(3) Let J ⊆ Ireg

M,N be a maximal set indepndent in (M,N). So

(M,N,J) ∈ K3,vq
s by 10.12(2). Now if c ∈ J ⇒ tps(c,M,N)⊥q

then by 6.13 we can deduce that q has unique extension in S bs
s (N).

As (M,N, a) ∈ K3,pr
s it follows that q⊥tps(a,M,N) but the latter

is p, contradicting an assumption.
So we can choose c ∈ J such that q1 = tps(c,M,N) is ±q, hence

by 10.6(8) (as q, q1 are regular) some c′ ∈ N realizes q so we are
done.
(4) We can find (M,N1, a1) ∈ K3,pr

s and (M,N2, a2) ∈ K3,pr
s such

that p = tps(a1,M,N1) and r = tps(a2,M,N2).
For ℓ = 1, 2 by part (3) there is cℓ ∈ Nℓ realizing r (in Nℓ).

So without loss of generality for some N we have N1 ≤s N,N2 ≤s

N and c1 = c2. Now if {a1, a2} is independent in (M,N) then it
follows that NFs(M,N1, N2, N), easy contradiction, so {a1, a2} is not
independent in (M,N) hence p = tps(a1,M,N)±tps(a2,M,N) = r,
as required.
(5) Let (M,N, c) ∈ K3,pr

s be such that tps(c,M,N) = r. As q±r by
part (3) clause (a) there is b ∈ N realizing p. As p± q by part (3) or
10.6(8) there is a ∈ N realizing p. This gives p± r by 6.4(1). �10.8

10.17 Remark.: 1) On weight of types and P-simple types (parallel
to [Sh:c, V,§5]) see [Sh 839].
2) If M0 ≤s M1 ≤s M2 and there is no c ∈ M2\M1 such that

tps(c,M1,M2) does not fork over M0 and (M0,M1,J) ∈ K3,vq
s then

(M0,M2,J) ∈ K3,vq
s .

[Why? As above by 10.12(2) it is enough to show that J is a maximal
subset of IM0,M2

which is independent in (M,N). If not, then for
some c ∈M2\M0\J the set J∪{c} is independent in (M0,M2). But
then by 6.13 the set {c} is independent in (M0,M1,M2), contradic-
tion.]
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10.18 Definition. We define a pre-frame t := sreg (= s[reg]) as
follows:

(a) λt = λs

(b) Kt = Ks

(c) S bs
t (M) = {p ∈ S bs

s (M) : p is regular (for s)}

(d) p = tpK[t](a,M1,M2) does not fork over M0 (for t) when
M0 ≤s M1 ≤s M2, a ∈ M2\M1, p is regular and does not
fork over M0 for s.

10.19 Claim. 1) t = s
reg = s[reg] is a good λ-frame.

2) Moreover, sreg is a successful good+ λ-frame with primes (so as in
10.1 except the type-full).

3) If (M,N,J) ∈ K3,bs
s[reg] then

(a) (M,N,J) ∈ K3,bs
s

(b) ≤
s[reg]
bs =≤s

bs↾ K
3,bs
s[reg]

(c) (M,N,J) ∈ K3,qr
s ⇔ (M,N,J) ∈ K3,qr

s[reg]

(d) N is (λ, ∗)-brimmed over M for s iff for sreg.

Proof. 1) As S bs
t (M) ⊆ S bs

s (M) for every M ∈ Ks = Kt and the
definition of “does not fork for t” the main point we should check is
density, i.e., Ax(D)(d), i.e., if M <s N , then for some c ∈ N\M the
type tps(c,M,N) belongs to S bs

t (M), i.e., is regular for s. But this
holds by 10.5(1).

A minor point we should notice is that if M1 ≤K[s] M2, p ∈

S bs
s (M2) does not fork over M1 for s, then p ∈ S bs

t (M2) ⇔ p ↾

M1 ∈ S bs
t (M) as this just means that regularity is preserved by

parallelism which holds by 10.4(1)(a).
2) Easy, too. Follows from “s has primes”.
3) Clause (a): Any sequence 〈Ni : i ≤ α〉 witnessing J is inde-
pendent for sreg do it for s, recalling S bs

s[reg](M) ⊆ S bs
s (M) for

M ∈ Ks = Ks[reg].

Clause (b): Similarly easy as regularity is preserved by parallelism.
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Clause (c): Check the definition.

Clause (d): Follows from Ks[reg] = Ks. �10.19

10.20 Claim. Assume

(a) M ≤s N are (λ, ∗)-brimmed

(b) if p ∈ S bs
s (M) is regular then for some regular q ∈ S bs

s (M)
we have dim(q,N) = λs and p± q, (see Definition 5.12).

Then N is (λ, ∗)-brimmed over M .

Remark. Used in 12.36.

Proof. By 10.19 we can work in s
reg. By the claim on dimension

10.16(3), we have p ∈ S
bs]
s[reg](M) ⇒ dim(p,N) = λs.

Hence we can find J ⊆ Ireg
M,N independent in (M,N) such that for

every p ∈ S bs
s[reg](M) ⇒ for λ elements c ∈ J, c realizes p. Without

loss of generality J ⊆ Ireg
M,N is maximal such that J is independent

in (M,N).

So (M,N,J) ∈ K3,vq
s by 10.16(4) and by the definition it is thick

for sreg, see Definition 5.15.
By 7.14(3) we know that (M,N,J) is fat noting that the assumption
of 7.14 holds by 10.7(a). Hence by 8.22 we know that N is (λ, ∗)-
brimmed over M as required. �10.20

§11 DOP

We start to look at the parallel of the DOP/NDOP dichotomy in
our context. We note some equivalent forms and then assuming DOP
prove a non-structure result: build many complicated models in λ++.
This section is not needed for continuing to read in this work, and we
do not deal with the complimentary side: proving a decomposition
theorem assuming NDOP, we shall return to it elsewhere. Note that
decomposition is meaningful even if s is categorical and we look only
at models from Ks, as we can decompose N over M when M ≤s
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N . Note that if s is n-beautiful1 (see end of §12) we shall get for
M ∈ Ks of cardinality ≤ λ+n, a decomposition by a tree of models
of cardinality λ, but not here. Note that this decomposition theorem
is meaningful for non-beautiful frames.

11.1 Hypothesis.

(a) s is a good+ λ-frame which is successful,

(b) s has primes

(c) ⊥
wk

= ⊥ and ⊥
su

= ⊥

(d) Hypothesis 10.7 or at least the conclusion of 10.13 (used
11.2(C), 10.12(3)) (used in 11.5, 10.16).

Remark. So Hypothesis 5.1, 7.1 hold.

Convention: Let C ∈ Ks

λ+ be saturated above λ; clearly exists.

11.2 Definition. 1) We say s has DOP when: we can find Mℓ (for
ℓ < 4) and aℓ (for ℓ = 1, 2) and q which exemplifies it, which means

⊛ (a) NFs(M0,M1,M2,M3)

(b) (M0,Mℓ, aℓ) ∈ K3,uq
λ for ℓ = 1, 2

(c) (Mℓ,M3, a3−ℓ) ∈ K3,uq
λ for ℓ = 1, 2

(d) no q ∈ S bs
s (M3) is orthogonal to M1 and to M2.

2) We say that (p1, p2) has the DOP when there areMℓ (ℓ < 4), aℓ (ℓ =
1, 2) exemplifying it which means satisfying clauses (a)-(d) from part
(1) and M3 ≤K[s] C and tps(aℓ,M0,Mℓ)‖pℓ for ℓ = 1, 2; we say
(p1, p2) has the explicit DOP if tps(aℓ,M0,Mℓ) = pℓ for ℓ = 1, 2.
3) We say s has NDOP if it fails to have DOP; similarly for (p1, p2).

We shall use freely

11.3 Observation. In 11.2(1) it follows that (M0,M3, {a1, a2}) ∈
K3,vq

s .

Proof. By 5.16(3). �11.3
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11.4 Claim. Assume P ⊆ ∪{S bs
s (M ′) : M ′ ≤s M} and for every

q ∈ S bs
s (M) and q±p for some p ∈ P. If M ≤s N and q ∈ S bs

s (N)
is not orthogonal to M , then it is not orthogonal to some p ∈ P used
in 11.8.

Proof. I.e. by Hypothesis 10.1, 10.7, by 10.16. �11.4

11.5 Claim. [s has NDOP] If (M0,Mℓ,Jℓ) ∈ K3,vq
s for ℓ = 1, 2 and

M1 ∩M2 = M0, then we can find M3 such that

(a) NFs(M0,M1,M2,M3)

(b) (Mℓ,M3,J3−ℓ) ∈ K3,vq
s for ℓ = 1, 2

(c) no q ∈ S bs
s (M3) is orthogonal to M1 and to M2 but not to

M0.

Proof. Case 1: J1 is a singleton say {b}.
We can find 〈M2,i : i ≤ α2〉, 〈a2,i : i < α2〉 and α′

2 ≤ α2

⊛1 (a) M2,i is ≤s-increasing continuous

(b) M2,i = M0,Mα2
= M2

(c) (M2,i,M2,i+1, a2,i) ∈ K3,uq
s

(d) J2 = {a2,i : i < α′
2}

(e) if i ∈ (α′
2, α2) then tps(a2,i,M2,i,M2,i+1) is orthogonal

to M0

(f) if i < α′
2 then tps(a2,i,M2,i,M2,i+1) does not fork over

M0.

[Why? As s weakly has regulars.]
Next by 5.6(5) we can find 〈N2,i : i ≤ α2〉 such that

⊛2 (a) N2,i is ≤s-increasing continuous

(b) M2,i ≤s N2,i

(c) N2,0 = M1

(d) tps(a2,i, N2,i, N2,i+1) does not fork over M2,i

(e) (N2,, N2,i+1, a2,i) ∈ K3,pr
s

(f) NFs(M2,j, N2,j,M2,i, N2,i) for j ≤ i

(g) (M2,i, N2,i, b) ∈ K3,uq
s .
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[Why is this possible? We choose N2,i by induction on i such that
the relevant clauses ⊛2 holds.

For i = 0 this is given. For i = j+ 1 note that (M2,i,M2,i+1, a2,i)

and (N2,i, N2,i+1, a2,i) belongs to K3,uq
s (and (M2,i, N2,i, b) ∈ K3,uq

s

by the induction hypothesis, hence by 10.13 such N2,i exists. Clause
(f) holds by long transitivity.

For i limit clause (g) holds by 7.15 so we have carried the induc-
tion.]

Lastly, we choose M3 = N2,α2
. Now we have to prove that M3 is

as required.
Toward this, we prove by induction on i ≤ α2 that

(∗)1i no p ∈ S bs
s (N2i) is orthogonal to M1 and to M2,i.

Subcase 1a: For i = 0.
This is trivial.

Subcase 1b: For i limit.
If p ∈ S bs

s (N2,i) then p does not fork over some N2,j for some
j < i and so p ↾ N2,j is ±M1 or ±M2,j by the induction hypothesis,
but the second possibility, p±M2,j implies p±M2, so we are done.

Subcase 1c: i = j + 1.
Let q ∈ S bs

s (N2,i). As “s has NDOP” it follows that q ±M2,i or
q±N2,j . In the first case we are done. In the second case use 10.12(3)
and the induction hypothesis. So (∗)1i holds for every i ≤ α2.

By ⊛2(f) we have NFs(M0,M1,M2,M3) and by ⊛2(g) for i = α2

we get

(∗)2 (M2,M3,J1) ∈ K3,vq
s .

Lastly (M1,M3,J2) ∈ K3,vq
s by 7.10.

Case 2: General.
Similar proof using Case 1 in the successor case of the induction

i = j + 1. �11.5
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11.6 Definition. Assume M1,M2 ∈ Ks are ≤s-extensions of M
and P ⊆ P[M∗] := ∪{Ss(N) : N ≤K[s] M and N ∈ Ks}. Then
M1 ≤s,P M2 means that M1 ≤s M2 and if p ∈ P, pℓ the non-forking
extension of p in Ss(Mℓ) for ℓ = 1, 2, then p2 is the unique extension
of p1 in Ss(M2).

11.7 Claim. Let M∗ ∈ Ks and P be as in 11.6.
1) ≤s,P is a partial order on {M ′ : M ≤K M ′ ∈ Ks} and if M1 ≤s,P

M2 and M1 ≤s M
′
1 ≤s M

′
2 ≤s M2 then M ′

1 ≤s,P M ′
2.

2) If 〈Mi : i < δ〉 is ≤s,P-increasing continuous, δ < λ+ and Mδ =
⋃

i<δ

Mi then i < δ ⇒Mi ≤s,P Mδ.

3) If M∗ ≤s M and r ∈ S bs
s (M) is (weakly) orthogonal to every

p ∈ P and (M,N, a) ∈ K3,uq
s ,

tps(a,M,N) = r then M ≤s,P N .
4) M ≤s,P N iff there is a pr-decomposition 〈Mi, ai : i < α〉 of
N over M (so letting Mα := N,Mi is ≤s-increasing continuous,

M0 = M, (Mi,Mi+1, ai) ∈ K3,pr
s ) such that tps(ai,Mi, N)⊥P for

every i < α (where q⊥P means q ∈ P ⇒ q⊥p).

Proof. Straight. E.g.

4) The “if” direction:
So assume 〈Mi : i ≤ α〉, 〈ai : i < α〉 are as in the claim, so in

particular M0 = M,Mα = N . We prove that (∀j ≤ i)(Mj ≤s,P Mi)
by induction on i ≤ α.

For i = 0 this is trivial (and included in part (1) of the claim).
For i limit use part (2) of the claim.
For i = j + 1 note that Mj ≤s,P Mi holds by part (3), hence

j′ ≤ j ⇒ Mj′ ≤s Mi holds by part (1) as Mj′ ≤s,P Mj by the
induction hypothesis. So in particular M = M0 ≤s,P,Mα = N as
required.

The “only if” direction:
So assume M ≤s,P N . We now try by induction on i < λ+ to

choose Mi and if i = j + 1 also aj such that

⊛ (a) 〈Mj : j ≤ i〉 is ≤s-increasing continuous
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(b) M0 = M

(c) Mj ≤s N for j ≤ i

(d) (Mj,Mj+1, aj) ∈ K3,pr
s for j < i

(e) tps(aj ,Mj,Mj+1)⊥P for j < i.

For i = 0 let M0 = M .
For i limit let Mi = ∪{Mj : j < i}.
For i = j + 1 if Mj = N we are done. Otherwise, for some

aj ∈ N\Mj we have pj = tps(aj ,Mj, N) ∈ S bs
s (Mi).

If pj ±
wk

P, let q ∈ P be not orthogonal to pj and let qj ∈ S bs
s (Mj)

be the non-forking extension of q in S bs
s (Mj) hence qj has an ex-

tension q∗ ∈ Ss(N) which forks over Mj hence over M . This easily
contradicts M ≤s,P N . So pj ⊥

wk
P and as s has primes we can find

Mi ≤s N so (Mj,Mi, aj) ∈ K3,pr
s . So we have carried the induction

hence finished the proof. �11.7

11.8 Claim. 1) Assume p ∈ Ss(M) and

(∗) P is a type base for M which means:

(a) P ⊆ P[M ] = ∪{S bs
s (N) : N ≤s M , (so N ∈ Ks)}

(b) for every q ∈ S bs
s (M) there is r ∈ P not orthogonal

to it; (moreover, if M ≤s N, q ∈ S bs
s (N) is ±M then

q ± P, follows by 11.4).

Then we can find a decomposition 〈Mi : ℓ ≤ n〉, 〈aℓ : ℓ < n〉 such
that

(i) M0 = M ,

(ii) p is realized in Mn

(iii) for each ℓ < n, the triple (Mℓ,Mℓ+1, aℓ) belongs to K3,pr
s

(iv) for each ℓ < n, either tps(aℓ,Mℓ,Mℓ+1) is a non-forking
extension of some q ∈ P or tps(aℓ,Mℓ,Mℓ+1) is orthogonal

to M (the second possibility can be waived if K3,uq
s = K3,pr

s ).
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2) Assume that s has NDOP and NFs(M0,M1,M2,M3)

and (M0,Mℓ, aℓ) ∈ K3,pr
s and (Mℓ,M3, a3−ℓ) ∈ K3,uq

s for ℓ = 1, 2.
Then S bs

s (M1) ∪ S bs
s (M2) is a type base for M3.

Proof. Easy.
1) By 10.16.
2) By the definitions. �11.8

The following claim will be helpful when starting with (M0,M1,M2,M3),
q as in 11.12 and creating many copies of M1,M2 over M0 and need
the orthogonality of the copies of q.

11.9 Claim. Assume

(a) 〈M∗
ℓ : ℓ < 4〉, 〈aℓ : ℓ = 1, 2〉, q are as in ⊛ of 11.2(1)

(b) ak
ℓ ∈ C realizes tps(aℓ,M

∗
0 ,Mℓ) for ℓ, k = 1, 2 and 〈ak

ℓ : ℓ =
1, 2 and k = 1, 2〉 is independent over M0

(c) Mk
ℓ <K[s] C and fk

ℓ is an isomorphism from Mℓ onto Mk
ℓ

over M∗
0 for ℓ = 1, 2,

k = 1, 2 and fk
ℓ (aℓ) = ak

ℓ

(d) fk1,k2 is an isomorphism from M3 onto Mk1,k2 <K C extend-

ing fk1
1 ∪ fk2

2

(e) qk1,k2 = fk1,k2(q).

Then the types q1,1, q1,2, q2,1, q2,2 are pairwise orthogonal and each
of them orthogonal to Mk

ℓ for k1 = 1, 2, k2 = 1, 2.

Proof. Straightforward.
We shall use ⊥

su
= ⊥ which holds by Hypothesis 11.1(c). Clearly

qk1,k2⊥M1
k1

and qk1,k2⊥M2
k2

. By the symmetry in the situation and
as ⊥ = ⊥

su
it is enought to note

(∗)1 {M1,1,M2,2} is independent over M∗
0 (hence q1,1⊥q2,2).

[Why? As {ak
ℓ : ℓ = 1, 2 and k = 1, 2} is independent overM∗

0

and (M∗
0 ,M

1,1, {a1
1, a

2
1}) ∈ K3,vq

s and (M∗
0 ,M

2,2, {a1
2, a

2
2}) ∈

K3,vq
s the statement in (∗)2 follows.]

(∗)2 {M1,1,M1,2} is independent over M1
1 (hence q1,1⊥q1,2).
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�11.9

11.10 Claim. [s = t+, t as in 11.1], s has DOP iff t+ has DOP.

Proof. First assume that s has DOP. Let 〈M∗
ℓ : ℓ ≤ 3〉, 〈a1, a2〉, q

exemplify it. Let 〈M∗
ℓ,α : α < λs〉 be a ≤K[t]-representation of M∗

ℓ

for ℓ ≤ 3. Let E be a thin enough club of λs.
Now for every δ ∈ E and ℓ = 1, 2 by 4.13, 7.14 we have

(M∗
0,δ,M

∗
ℓ,δ, aℓ) ∈ K3,uq

t and (M∗
ℓ,δ,M

∗
3,δ, a3−ℓ) ∈ K3,uq

t .
Also q is witnessed by M∗

3,δ and q ↾ M∗
3,δ⊥M

∗
ℓ,δ for ℓ = 1, 2 by

6.11(2) so we are done.
Second, assume t has the DOP as exemplified by 〈M∗

ℓ : ℓ ≤

3〉, 〈a1, a2〉, q, i.e. they satisfy ⊛ of 11.2(1). Let (M∗
3 ,M

∗∗
3 , b) ∈ K3,bs

t

be such that q = tps(b,M
∗
3 ,M

∗∗
3 ). Let 〈M∗

0,α : α < λ+
t 〉 be ≤t-

increasing continuous, M∗
0,α+1 brimmed over M∗

0,α for t,M∗
0,0 = M0.

Let N∗
0 = ∪{M∗

0,α : α < λ+
t } ∈ Ks and let p+

ℓ ∈ S bs
s (N∗

0 ) be
witnessed by pℓ = tpt(aℓ,M

∗
0 ,M

∗
ℓ ) for ℓ = 1, 2. By 10.13 we can

find N∗
ℓ (ℓ = 1, 2, 3) and a+

1 , a
+
2 such that NFs(N

∗
0 , N

∗
1 , N

∗
2 , N

∗
3 ) and

(N∗
0 , N

∗
ℓ , a

+
ℓ ) ∈ K3,uq

s , (N∗
ℓ , N

∗
3 , a

+
3−ℓ) ∈ K3,uq

s for ℓ = 1, 2. Now
easily there is ≤K[t]-embedding f of M∗

3 into N∗
3 over M∗

0 mapping

a1, a2 to a+
1 , a

+
2 respectively and let q∗ ∈ S bs

s (N∗
3 ) be witnessed by

f(q). Now check. �11.10

Discussion: Our aim is to get strong non-structure in λ++ when s

has DOP. [Why in λ++? We have quite strong independence but it
speaks on λ-tuples, hence it is hard to get many models in λ+, and if
we deal with Ks

λ++ , why not ask λ+-saturation. See more [Sh 839].]

For simplicity

11.11 Hypothesis. s and s+ are as in 11.1.

11.12 Definition. 1) We call a an approximation or an s-approxi-
mation (in symbols a ∈ A = As) if a consists of the following objects,
satisfying the following demands

(a) Ia
1 , I

a
2 disjoint index sets of cardinality ≤ λ+
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582 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

(b) Ra ⊆ Ia
1 ×I

a
2 , we write sRat for (s, t) ∈ Ra,¬sRat for s ∈ Ia

1 ,
t ∈ Ia

2 such that (s, t) /∈ Ra

(c) Ma

ℓ for ℓ < 4, aa

ℓ for ℓ = 1, 2 and qa exemplifying DOP

(d) Ma ∈ Ks

λ+ saturated (so ∈ Ks(+)) such that Ma
0 ≤K Ma

(e) fa

ℓ,t an ≤K-embeddiing of Ma

ℓ into Ma over Ma
0 for ℓ =

1, 2, t ∈ Ia

ℓ and we let Ma

ℓ,t = fa

ℓ,t(M
a

ℓ ), aa

ℓ,t = fa

ℓ,t(a
a

ℓ )

(f) {aa

ℓ,t : ℓ = 1, 2 and t ∈ Ia

ℓ } ⊆ IMa

0 ,Ma is independent over
Ma

0 ; hence
〈Ma

ℓ,t : ℓ = 1, 2, t ∈ Ia

ℓ } is independent by, see 8.8, 8.13

(g) if sRat then fa
s,t is a ≤K-embedding of Ma

3 into Ma extending
fa
1,s ∪ f

a
2,t; we let Ma

s,t = fa
s,t(M3) and qa

s,t = fa
s,t(q

a).

2) For an approximation a let P+
a = {qa

s,t : sRat hence s ∈ Ia
1 and

t ∈ Ia
2 } and P−

a = {f(qa) : for some f and (s, t) ∈ Ia
1 × Ia

2 we have
¬sRat and f is a ≤K-embedding of Ma

3 into M extending fa
1,s∪f

a
2,t}.

3) Let A = As be the class of s-approximations.

4) We call a− a DOP witness if it consists of justMa
−

ℓ (ℓ < 4), aa
−

ℓ (ℓ =

1, 2), qa
−

which are as above. If b is an approximation let b− be
defined naturally.

Remark. We can weaken the demands on s so that s
+ is not neces-

sarily well defined.

11.13 Definition. 1) If a, b are approximations, let a ≤ b means:

(α) Ma

ℓ = Mb

ℓ for ℓ < 4, aa

ℓ = ab

ℓ for ℓ = 1, 2 and qa = qb

(β) Ia

ℓ ⊆ Ia

b for ℓ = 1, 2 and Ra = Rb ∩ (Ia
1 × Ia

2 )

(γ) for ℓ = 1, 2, t ∈ Ia
1 we have fa

ℓ,t = fb

ℓ,t

(δ) for (s, t) ∈ Ra we have fa
s,t = fb

s,t

(ε) Ma ≤K[s] M
b, moreover Ma ≤

K,P
−

a

Mb.

2) If 〈aζ : ζ < δ〉 is ≤-increasing in A and δ < λ++ let their union

a =
⋃

ζ<δ

aζ be defined by Ia

ℓ =
⋃

ζ<δ

Iaℓ , Ra =
⋃

ζ<δ

Raζ
, fa

ℓ,t = f
aζ

ℓ,t for
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ζ < δ large enough, fa
s,t = f

aζ

s,t for ζ < δ large enough when sRat and
Ma = ∪{Maζ : ζ < δ}.

Below we restrict ourselves to Ks(+) for the application we have in
mind but Kλ+ would be also O.K.

11.14 Claim. 1) (s,≤) is a partial order.

2) If 〈aζ : ζ < δ〉 is increasing in A and δ < λ++ then a =
⋃

ζ<δ

aζ

belong to A is the lub of the sequence.

Proof. Straight.

11.15 Claim. 1) If a ∈ As, p ∈ S bs
s (Ma) is orthogonal to every

q ∈ P−
a and (Ma, N, a) ∈ K3,uq

s(+) and p = tps(a,M
a, N), then for

some b ∈ A we have a ≤ b and Mb = N .
2) Assume a ∈ A, ℓ(∗) ∈ {1, 2}, Y ⊆ Ia

3−ℓ(∗), t
∗ /∈ Ia

ℓ(∗) and 〈Mα :

α < λ+〉 is a ≤s-representation of Ma such that M0 = Ma
0 (and of

course Mα+1 is (λ, ∗)-brimmed over Mα in Kλ). Then we can find
b and 〈Nα : α < λ+〉 such that:

(A)(a) Nα is ≤K[s]-increasing continuous in Ks, Nα+1 is
(λ, ∗)-brimmed over Nα

(b) NFs(Mα, Nα,Mα+1, Nα+1)

(c) (Mα, Nα, a) ∈ K3,uq
s

(d) N0 is isomorphic to Ma

ℓ(∗) over Ma
0

(e) (
⋃

α

Mα,
⋃

α

Nα, a) ∈ K3,pr
s(+)

(B)(a) b ∈ A and a ≤ b

(b) Ib

ℓ(∗) = Ia

ℓ(∗) ∪ {t∗} and Ib

3−ℓ(∗) = Ia

3−ℓ(∗)

(c) Rb is Ra ∪ {〈t∗, s〉 : s ∈ Y } if ℓ(∗) = 1 and is Ra ∪ {〈s, t∗〉 :
s ∈ y} if ℓ(∗) = 2

(d) fa

ℓ(∗),t∗ is an isomorphism from Ma

ℓ(∗) onto N0 mapping aa

ℓ(∗)
to a.
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Proof. 1) Easy (as we can choose Ib

ℓ = Ia

ℓ , f
b

ℓ,t = Ma

ℓ,t, f
b
s,t = fa

s,t).

2) First choose a,Nα to satisfy (A). Then the choice of b is actually
described in (B); the orthogonality hold by 11.7. �11.15

11.16 Claim. Let a be a DOP-witness and R ⊆ λ++×λ++ be given.
For α < λ++ let Iα

1 = {i : 3i + 1 ≤ α}, Iα
2 = {i : 3i + 2 ≤ α}, R∗

α =
R ∩ (Iα

1 × Iα
2 ). We can find 〈aα : α < λ++〉 such that

(a) aα ∈ As is increasing continuous and a−α = a

(b) (Ia
α

1 , Ia
α

2 , Raα) = (Iα
1 , I

α
2 , Rα),

(c) for (s, t) ∈ Rα for arbitrarily large β ∈ (α, λ++) (by some

bookkeeping), some b ∈Ma
3β+3

\Ma
3β+2

the type tps(b,M
a
3β+2

,Ma
3β+3

) is a non-forking extension
of qaα

s,t

(d) aα depends just on (Iα
1 , I

α
2 , Rα)

(e) the universe of Ma
α

is γα < λ++ (really γα = λ∗ × (1 + α)
is O.K. for non-trivial cases.

Proof. We choose aα by induction on α. For α = 0 this is trivial,
for α limit by 11.14(2), for α = 3β + 1 by 11.15(2) for ℓ(∗) = 1, for
α = 3β+2 by 11.15(2) for ℓ(∗) = 2 for α = 3β+3 bookkeeping gives
as a pair (sα, tα) and we use 11.15(1).

�11.16

11.17 Claim. In 11.16 we can add: letting M∗ = {Ma
α

: α < λ++}

(∗) for (s, t) ∈ λ++ × λ++, the following are equivalent

(α) (s, t) ∈ R

(β) dim(qa
α

s,t ,M
∗) = λ++ when (s, t) ∈ T a

α

, that is, there

is a sequence 〈bγ : γ < λ++〉 independent in (Ma
α

,M∗)

of elements realizing qa
α

s,t , i.e. if (s, t) ∈ Raα , α < β < λ

then {bγ : γ < λ++ and bγ ∈ Ma
β

} is independent in

(Ma
α

,Ma
β

) and each member realizes the non-forking
extension of qa

α

s,1 in S bs
s (Ma

α

)
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(γ) if (s, t) ∈ Ra
α

, α < λ++ then there is a ≤K-embedding
f of Ma

α

3 into M∗, extending fa
α

1,s ∪ f
a

α

2,t such that

dim(f(qa
α

),M∗) = λ++ interpreted as in (β)

(δ) for no α < λ++ and f as in clause (γ), we have:
q∗ ∈ S bs

s (Ma
α

), the non-forking extension of f(qb) in
S bs

s (Ma
α

) satisfies: for every β ∈ (α, λ++), q∗ has a
unique extension in S bs

s (Maβ).

Proof. Easy.

11.18 Claim. [2λ+

< 2λ++

]. If s has DOP then İ(λ++, Ks(+)) =

2λ++

.

11.19 Remark. 1) It is a strong non-structure (i.e., neither like for
deepness, no even like unsuperstable.
2) We can in 11.16, 11.17 restrict more the types realized.
3) Alternatively, we may use [Sh 300, III] or [Sh:e, III] for proving

11.18 even without the assumption 2λ+

< 2λ++

.

Proof. We use the construction above in the framework of [Sh 576,
§3] or better Chapter VII. �11.18

§12 Brimmed Systems

This section generalizes [Sh 87b], [Sh:c, XII,§4,§5]. Here every system
is in the context of some good frame s and usually we look at models
of cardinality λ = λs (in this section), but we vary s. The problem
is that unlike [Sh:c, XII], the type tp(A,B,M) does not make much
sense for A,B ⊆ M ∈ K and unlike [Sh 87b], we cannot restrict
ourselves to finite A and suitable B = (∪{Mu : u ∈ P−(n)} ∪ ā,
with 〈Mu : u ∈ P−(n)〉 a so-called stable system and ā a finite
sequence. This has ramifications which further complicate our task,
anyhow we do not rely on [Sh 87b], [Sh:c, XII,§4,§5].
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The adoption of “Ks categorical in λ” (in 12.3) is very helpful
here but there is a price: when we shall work on “all λ+ω-saturated
models in Ks”, more exactly on ∩{Ks(+n) : n < ω} we cannot just
quote the results. Note that this restriction fits well the thesis that
the main road is first to understand a class of models is first to
analyze the quite saturated models.

Note that there is no real harm in assuming s is type-full or just
that the regular types are dense and even that s is as in 12.2.

12.1 Convention: 1) Without loss of generality always u∩P(u) = ∅
for the index sets u = Dom(I) which we shall use.
2) From 12.3 we use freely (a)-(d). In the cases we assume clauses
(e)∗ and or (f)∗ of 12.3 we add ∗ (e.g., 12.6(2)), and we add in
brackets (f)∗ or (f)∗∗ when used.

Justifying the Hypothesis 12.3 below is

12.2 Claim. If s is a 3-successful good λ-frame and s′ = (snf)+3, see
Definition 9.5, Claim 9.6 then s′ satisfies Hypothesis 12.3(1) +(2) +
(3) as well as 2.1, 2.19, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, 10.1, 10.7,
11.1, 11.11.

Proof. Note that what is proved below for s+ℓ holds for s+m, when
m ∈ [ℓ, 3]. Clearly s+0 is a successful full good λs-frame hence satis-
fies Hypothesis 2.1, 3.1, 9.1.

Just collect the relevant results: first s+ is a good+ λ-frame by
1.6 hence satisfies by 1.6. Second, s+2 has primes (i.e. clause (c))
by 4.9, as s+ satisfies Hypothesis 4.1, i.e. is a good+ λs(+)-frame.

Third, Ks+ is categorical (i.e. clause (e)∗) by its definition hence s+2

satisfies ⊥ = ⊥
wk

and ⊥
su

= ⊥ by 6.8(5), 6.10(5) respectively hence

K3,vq
s(+2) = K3,qr

s(2) by 7.14 hence Hypothesis 8.1 holds. Fourth, s+2

satisfies Hypothesis 10.1 hence s+3 satisfies Hypothesis 10.7, hence
by 10.9(2) the frame s+3 weakly has regulars and even almost has
regulars by 7.19(2) and satisfies Hypothesis 11.1.

Lastly, s+3 satisfies K3,vq
s(+) = K3,qr

s(+), i.e. clause (f)∗∗ by 8.22 hence

also (f)∗ holds by part (1). �12.2

12.3 Hypothesis. 1)
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(a) s is a successful good+ λ-frame (hence 4.1 and 4.7 hold)

(b) ⊥ = ⊥
wk

is well defined and ⊥
su

= ⊥; this follows from (e)∗ by

6.8(5), 6.10(5)

(c) s has primes (in the sense of K3,qr
s ) and they are unique

(d) (i) s “weakly has regulars” (see Definition 7.5 and Claim
7.6, 10.9; if s is type-full and (e)∗ then this follows from
10.9(2) noting that the Hypothesis 10.1 is satisfied by part
(1)); moreover

(ii) s almost has regulars (see Definition 7.18 and Claim
7.17).

2) Possibly, in addition

(e)∗ Ks is categorical in λ = λs

(f)∗ if (M,N,J) ∈ K3,bs
s is thick and N is brimmed then N is

brimmed over M (see Definition 5.15(2) and see 12.6 below)

(f)∗∗ K3,vq
s = K3,qr

s (justified by 7.14).

3) When we mention regular types we assume

(g) s has regulars and satisfies the Hypothesis of §10, i.e. 10.1,
10.7, note that on part (1) this adds “type-full”; (or just the
conclusions in §10).

12.4 Remark. The use of regulars is just for simplicity; note that
you can ignore all mentioning of regular types.

12.5 Observation. 0) The following Hypothesis holds: those from
§2,§7, i.e. (2.1, 2.19, 3.1, 4.1, 5.1, 6.1, 7.1) and 9.1; if (f)∗∗ then also
8.1 and if s is type-full then also 10.1.
1) In 12.3, clause (f)∗∗ implies (f)∗, even without “N is brimmed”.
2) If s

+ is successful then s
+ satisfies the hypothesis 12.3(1) and also

12.1(2). Moreover we can weaken the Hypothesis on s to s satisfies
just 12.1(1) and if s satisfies 12.1(3) then s+ satisfies it too.
3) Hypothesis 12.3(3) together with categoricity in λs implies 12.3(2).
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588 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

Proof. 0) Check.

1) Let (M,N,J) ∈ K3,bs
s be thick. Let J+ be maximal such that

(M,N,J+) ∈ K3,bs
s and J ⊆ J+, exist by the local character of in-

dependence. By the definition inside 12.6(1) below this means that

(M,N,J+) ∈ K3,mx
s , and by the claim itself implies that (M,N,J+) ∈

K3,vq
s .
As (M,N,J) is thick (see Definition 5.15(2)), trivially also (M,N,

J+) is thick. Now we can apply claim 8.22(2), noting the clause (f)∗∗

of 12.3 is one of the assumptions of §8, we deduce N is brimmed over
M .
2) Just collect the relevant results: first s+ is a good+ λ-frame (i.e.
clause (a) of 12.3(1)), by 1.6. Second, s has primes (i.e. clause (c))
by 4.9, as s+ satisfies 4.1, i.e. is a good+ λs(+)-frame. Third, Ks

is categorical (i.e. clause (e)∗) by its definition hence ⊥ = ⊥
wk

and

⊥
su

= ⊥, i.e. claues (b) of 12.3(1) holds. Fourth, s weakly has regulars

and even almost has regulars by 7.19(2) recalling that Hypothesis
7.1 of §7 holds by (a),(b),(c) and “s weakly has regulars” assumed in

7.19(2) holds by (d). Lastly, s+ satisfies K3,vq
s(+) = K3,qr

s(+), i.e. clause

(f)∗∗ by 8.22 hence also (f)∗ holds by part (1). Lastly, 12.1(3) holds
for s+ when it holds for s.
3) It suffices to prove (f)∗∗ which is proved by 7.14.

Recall (by 7.9)

12.6 Claim. 1) The following15 conditions on (M,N,J) are equiv-
alent

⊛1 (M,N,J) ∈ K3,mx
s which we define to mean that (M,N,J) ∈

K3,bs
s , and J is maximal

⊛2 (M,N,J) ∈ K3,bs
s and if M ∪ J ⊆ N ′ ≤s N, b ∈ N\N ′ and

tps(b, N
′, N) ∈ S bs

s (N ′) then tps(b, N
′, N)⊥M ,

⊛3 (M,N,J) ∈ K3,vq
s .

2)∗ [12.3(f)∗∗] We have K3,mx
s = K3,qr

s .

3) K3,qr
s ⊆ K3,mx

s .

15we may be interested in the case we replace K
3,mx
s by K

3,qr
s , but we have

troubles enough
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4) For every M ∈ Ks, i
∗ < λ+

s and pi ∈ S bs
s (M) for i < i∗ we can

find N and ai (i < i∗) such that: (M,N, {ai : i < i∗}) ∈ K3,qr
s ⊆

K3,mx
s ⊆ K3,bs

s and pi = tps(ai,M,N) and, of course, 〈ai : i < i∗〉
is without repetition.

5) If M ≤s N1 ≤s N2 and (M,N1,J1) ∈ K3,mx
s , (M,N2,J2) ∈ K3,bs

s

and J1 ⊆ J2 then (N1, N2,J2\J1) ∈ K3,bs
s .

Proof. 1) If ⊛1 holds, i.e. (M,N,J) ∈ K3,mx
s than by 7.7(3) we get

⊛3, i.e. (M,N,J) ∈ K3,vq
s . But by 7.7(3), we have ⊛3 ⇒ ⊛1.

By 7.9 several conditions on (M,N,J) are equivalent, now (A)
there is ⊛3 here, and (C) there is ⊛2 here, hence ⊛3 ⇔ ⊛2 so by the
previous paragraph we are done.
2) We have K3,ms

s = K3,vq
s by part (1) and K3,vq

s = K3,qr
s by clause

(f)∗∗ of 12.3.

3) Similar to (2) as K3,qr
s ⊆ K3,vq

s by 5.16.
4) Holds by 5.8(6) + 5.8(1).
5) Holds by 5.16(5) recalling part (1). �12.6

12.7 Definition. Let u∗ be a set (usually finite) and I a family
of finite subsets of u∗ (so for u∗ finite this is automatic) satisfying
I ⊆ P(u∗) is downward closed; I, J will denote such sets in this
section; let Dom(I) = ∪{u : u ∈ I}.
1) We say m is an I-system or (I, s)-system or I-system for s when:

(a) m consists of Mu (for u ∈ I), and hv,u (for u ⊆ v ∈ I)
(mappings, with hu,u = idMu

so we may ignore 〈hu,u : u ∈ I〉
when defining m)

(b) Mu ∈ Ks for u ∈ I

(c) if u ⊆ v ∈ I then hv,u is a ≤s-embedding of Mu into Mv,
and the diagram of the hu,v’s commutes and we let Mv,u :=
hv,u(Mu) and recall hu,u = idMu

; so if u ⊆ v ⊆ w ∈ I we
have Mw,u ≤s Mw,v and Mu,u = Mu.

2) We say m is a (µ, I)-system or (µ, I, s)-system if we replace (b)
by

(b)+ Mu ∈ Ks
µ.

Paper Sh:705, Chapter III



590 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

Similarly for (≥ µ, I, s), etc.
3) We shall write um

∗ for Dom(I) and hm
v,u, I

m,Mm
u , for hu,v, I,Mu,

respectively. If hv,u = idMu
for u ⊆ v ∈ Im and M s

u ∩M s
v = Mm

v∩u

for u, v ∈ I we call m normal.
4) We say ḡ is an isomorphism from the I-system m1 onto the I-

system m2 if ḡ = 〈gu : u ∈ I〉, gu is an isomorphism from Mm1

u

onto Mm2

u such that u ⊆ v ∈ I ⇒ hm2

v,u ◦ gu = gv ◦ hm1
v,u. If m1,m2

are normal we may say g =
⋃

u

gu is an isomorphism from m1 onto

m2. Similarly ḡ is a ≤s-embedding of m1 into m2 when gu(Mm1

u ) ≤s

Mm2

u or16 gu(Mm1

u ) ≤K[s] M
m2

u for u ∈ I and u ⊂ v ∈ I ⇒ hm2

v,u◦gu =

gv ◦ hm1

v,u. Let m1 ≤ m2 or m1 ≤Ks
m2 when 〈idM

m1
u

: u ∈ I〉 is a
≤s-embedding of Mm1

u into Mm2
u for u ∈ I, similarly ≤K[s].

5) We say f̄ is an ≤s-embedding of an I-system m to a model M if
f̄ = 〈fu : u ∈ I〉, fu is a ≤s-embedding of Mu into M and u ⊆ v ∈
I ⇒ fu = fv ◦ gv,u.
6) Similarly for (≥ µ, I)-systems, (≥ µ, I, s)-systems, so we use ≤K[s]-
embeddings. We may omit the “≤s ”-before embedding when s is
clear from the context.
7) If I1 ⊆ I2 and m2 is an I2-system, let m2 ↾ I1 = 〈Mm2

u , hm2
v,u : u ⊆

v ∈ I1〉.

We now define the class of systems which we are really interested in
here: the stables ones.
For m to be stable, there should be witnesses and a system expanded
by such witnesses is called an expanded stable system. We shall prove
that “all witnesses look alike”, the point is their existence.

12.8 Definition. 1) We say that d is an expanded stable (I, s)-
system or I-system or (λ, I)-system or (λ, I, s)-system if it consists
of m and Jv,u for u ⊆ v ∈ I such that:

(a) m = 〈Mu, hv,u : u ⊆ v ∈ I〉 is an (λ, I, s)-system

(b) Jv,u ⊆ IMv,u,Mv
\∪{Mv,w : w ⊂ v} for u ⊆ v ∈ I so Ju,u = ∅.

16the difference is meaningful only if Mm
2

u ∈ Ks\Ks
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such that

(c) if u0 ⊂ u1 ⊂ u2 ∈ I and c ∈ Ju2,u1
then tps(c,Mu2,u1

,Mu2
)

is orthogonal to Mu2,u0
, recalling that Mu2,u1

= hu2,u1
(Mu1

)

(d) Jv,u is a maximal subset of {c ∈ Mv : c /∈ ∪{hv,w(Jw,u) :
w satisfies u ⊂ w ⊂ v} and tps(c,Mv,u,Mv) belongs to
S bs

s (Mv,u) and is orthogonal to Mv,w for every w ⊂ u} such
that J∗

v,u := Jv,u ∪
⋃

{Jv,w,u : w satisfies u ⊂ w ⊂ v} is
independent in (Mv,u,Mv), see (1A)(α) below

(e) if uℓ ⊂ wℓ ⊆ v ∈ I for ℓ = 1, 2 and (u1, w1) 6= (u2, w2) then
a1 ∈ Jw1,u1

∧ a2 ∈ Jw2,u2
⇒ hv,w1

(a1) 6= hv,w2
(a2).

If we omit clauses (d),(e) we say “an expanded (I, s)-system”.
1A) For u0 ⊆ u1 ⊆ u2 ∈ I we define (if u2 = u1 we may omit it, this
catches the “main action”, so J0

u1,u1,u0
= J0

u1,u0
= Ju1,u0

)

(α) J0
u2,u1,u0

= {hu2,u1
(c) : c ∈ Ju1,u0

} and call it also Ju2,u1,u0

(β) J1
u2,u1,u0

= ∪{J0
u2,u1,u : u ⊆ u0}

(γ) J2
u2,u1,u0

= ∪{J0
u2,w1,w0

: w0 ⊆ w1 ⊆ u1 and w0 ⊆ u0 and

w1 * u0}

(δ) J∗
u2,u1,u0

:= {hu2,u1
(c) : c ∈ J∗

u1,u0
}.

2) We say d is normal if each hv,u is the identity (on Mu) and
Mu ∩Mv = Mu∩v, that is s is normal. We say that d is reduced in
u ∈ I when w ⊂ u⇒ Jd

u,w = ∅.

2A) Above we let md = m[d],Md
u = Mm

u , hd
v,u = hm

v,v,J
d
v,u =

Jv,u,J
ℓ,d
u2,u1,u0

= Jℓ
u2,u1,u0

but we do not write the superscript d
when clear from the context.
3) For an expanded stable (λ, I)-system d and M ∈ Ks we say that
f̄ is an embedding (or ≤s-embedding) of d into M when:

(A) f̄ embeds md into M , i.e.

(a) f̄ = 〈fu : u ∈ I〉

(b) fu is a ≤s-embedding of Md
u into M

(c) if u ⊂ v ∈ I then fu = fv ◦ hd
v,u
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(B) if u ∈ I then ∪{fu(J2,d
v,u) : v satisfies u ⊂ v ∈ I}, is an

independent set in (fu(Md
u ),M) and, of course, u ⊆ v1 ∈

I ∧ u ⊆ v2 ∈ I ∩ v1 6= v2 ⇒ fu(Jd
v1,u) ∩ fu(Jd

v2,u) = ∅.

4) We say that a normal expanded stable (λ, I)-system d is ≤s-
embedded into M ∈ Ks if (d is normal and) f̄ = 〈fu : u ∈ I〉 is an
embedding of d into M when we choose fu = idMd

u
.

5) We say d an expanded stable I-system is explicitly regular if:

(a) if u ⊂ v ∈ I and c ∈ Jd
v,u then tps(c,M

d
v,u,M

d
v ) is regular

(see 12.3(3))

(b) if c1 6= c2 ∈ Jd
v,u and u ⊂ v ∈ I then tps(c1,M

d
v,u,M

d
v ),

tps(c2,M
d
v,u,M

d
v ) are equal or orthogonal

(c) if u ⊆ vℓ ∈ I and cℓ ∈ Jd
vℓ,u for ℓ = 1, 2 and v1 6= v2 then

h−1
v1,u(tps(c1,M

d
v1,u,M

d
v1

)) and h−1
v2,u(tps(c2,M

d
v2,u,M

d
v2

)) are
equal or orthogonal.

6) An expanded stable (λ, I)-system d is called regular if

(a) if u ⊂ v ∈ I, c ∈ Jd
v,u then tps(c,Mv,u,Mv) is regular.

7) If d2 is an expanded stable I2-system and I1 ⊆ I2 then d1 = d2 ↾

I1 is defined by md1 = md2 ↾ I1 and Jd1
v,u = Jd2

v,u for u ⊆ v ∈ I1.

12.9 Definition. 1) We say f̄ is an isomorphism from the expanded
stable I-system d1 onto the expanded stable system d2 if f̄ is an

isomorphism from md
1

onto md
2

and fv maps Jd
1

v,u onto Jd
2

v,u for
u ⊆ v ∈ I.
2) For expanded stable (λ, I)-systems d1,d2, we say f̄ is an ≤s-
embedding of d1 into d2 if

(α) f̄ is an ≤s-embedding of m1 into m2

(β) for u ⊂ v ∈ I, fv maps Jd1
v,u into Jd2

v,u

(β)+ moreover, if u ⊂ v ∈ I and c ∈ Jd1
v,u then tps(fv,u(c),Md2

v,u,M
d2
v )

does not fork over fv(M
d1
v,u).
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3) A system m is called stable if for some expanded stable system d
we have m = md (d is called an expansion of m), we call the Jd

v,u’s
witnesses.
Similarly for other properties, e.g. we say that f̄ = 〈fu : u ∈ I〉 is
a stable embedding of m into N where m is a stable P(n)-system
when for some expanded stable I-system d,md = m and f̄ is a
stable embedding of d into M .
4) A (λ, I)-system m (or an expanded stable system d with md = m)
is called very brimmed if:

(g) for every v ∈ I,m is very brimmed in v which means

(g)0v Mm
v is (λs, ∗)-brimmed

(g)1v Mm
v is (λs, ∗)-brimmed over ∪{Mm

v,u : u ⊂ v} when v 6= ∅.

5) A stable I-system m (or an expanded stable system d with md =
m) is weakly brimmed if for every v ∈ I it is weakly brimmed at v
which means

(h)−v Mm
v is brimmed17.

6) An expanded stable system d is called brimmed if for every v ∈ Is
it is brimmed in v which means

(h)0v Md
v is brimmed

(h)1v if u ⊂ v ∈ I and p ∈ S bs
s (Md

v,u) is orthogonal to Md
v,w for

every w ⊂ u, then the set {c ∈ Jv,u : tps(c,M
d
v,u,M

d
v ) ± p}

has cardinality ‖Mv‖ = λs.

7) An I-system is [very][weakly] brimmed if there is a [very][weakly]
brimmed expanded stable system d expanding it (so the system is
stable). Similarly for “in u”.

12.10 Definition. 1) We say m is a (I, s)ℓ-system or a brimmedℓ I-
system or ℓ-brimmed I-system when it is a I-system and: if ℓ = 0
no additional demands; if ℓ = 1, it is stable; if ℓ = 2 it is a stable
system which is weakly brimmed, that is each Mm

u is brimmed; if

17note that if Ks is categorical (in λs) then this follows
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ℓ = 3, it is stable and brimmed; if ℓ = 4, it is a very brimmed stable
(I, s)-system.
2) Similarly for d, an expanded stable (I, s)-system (so ℓ = 0, ℓ = 1
become equivalent).
3) We say M is brimmedℓ if letting I = {∅},M∅ = M , we get that
〈Mt : t ∈ I〉 is a brimmedℓ system.
4) For ℓ = 1, 2, 3, 4 we say that an expanded stable I-system d is
brimmedℓ in u ∈ I when the demand in Definition 12.9 holds for u
(so for ℓ = 1: no demand).

Remark. The central case here will be ℓ = 3. A posteori we would
like to have ℓ = 1 (e.g. for analyzing Ks(+ω)).

Notation: Let P−(u∗) = {v ⊆ u∗ : v 6= u∗}.

12.11 Claim. Let d be an expanded stable I-system (so we may
omit the superscript d here).

0) If u ⊂ v ∈ I then (Mv,u,Mv,J
2
v,u) belongs to K3,mx

s ; equivalently

(see 12.6(1)) it belongs to K3,vq
s , recalling J2

v,v,u = J2
v,u.

0A) In Definition 12.8(1), we can weaken clause (b) to (b)− (and get
equivalent definition) where:

(b)− Jv,u ⊆ IMv,u,Mv
\∪{Jv,w,u : w satisfies u ⊂ w ⊂ v}, recalling

that Jv,w,u = hv,w(Jw,u).

1) If u1 ⊆ u ∈ I, u2 ⊆ u and u0 = u1 ∩ u2,
then NFs(Mu,u0

,Mu,u1
,Mu,u2

,Mu) hence Mu,u1
∩Mu,u2

= Mu.
1A) If u0, u1, u2 ⊆ v ∈ I, u0 ⊆ u1, c ∈ Jd

v,u1,u0
so u0 ⊂ u1 and

u0 * u2 then tps(c,Mv,u0
,Mv,u1

) is orthogonal to Mv,u2
. Moreover,

if u0, u2 ⊆ v ∈ I, u0 ⊆ u1 ∈ I, c ∈ Jd
u1,u0

so u0 ⊆ u1 and u0 * u2

then h−1
v,u1

(tps(c,Mu1,u0
,Mu1

)) is orthogonal to Mv,u2
.

2) If p ∈ S bs
s (Mv,u) is regular, then there is a unique set w ⊆ u

such that p is not orthogonal to Mv,w but p is orthogonal to Mv,w′

whenever w′ ⊆ u & w * w′ hence even when w′ ⊆ v & w * w′.
3) d is isomorphic to some normal d′ (see Definition 12.7(3)).
4) If ℓ ∈ {1, 2, 3} and the expanded stable I-system d is brimmedℓ+1

then it is brimmedℓ. If the I-system m is brimmedℓ+1 and ℓ =
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0, 1, 2, 3 then m is brimmedℓ.
5) If u0 ⊂ u2 ∈ I then Jd

u2,u0
is a maximal set J such that

(α) J ⊆Mu2
is disjoint to ∪{Mu2,w : w ⊂ u2}

(β) for each c ∈ J we have tps(c,Mu2,u0
,Mu2

) ∈ S bs
s (Mu2,u0

)
and it is orthogonal to Mu2,w whenever w ⊂ u0

(γ) J ∪
⋃

{Ju2,w1,w0
: w1 ⊆ u2,¬(w1 = u2 ∧ w0 = u0) and w1 *

u0, w0 ⊆ u0 ∩w1, w0 6= w1} is independent in (Mu2,u0
,Mu2

);
note that necessarily there are no repetitions in the union.

6) Assume that in addition to d being an expanded stable I-system
we have

(a) for u ⊂ v ∈ I,J′
v,u is a maximal subset of {c ∈ IMd

v,u,Md
v

:

tps(c,M
d
v,u,M

d
v )⊥Md

w for w ⊂ u and c /∈ Md
v,w for w ⊂ v}

such that the set J′
v,u ∪

⋃

{Jv,w1,u : u ⊂ w ⊂ w} is in-

dependent in (Md
v,u,M

d
v ); for the last phrase alternatively:

J′
v,u ∪

⋃

{hv,w1
(J′

w1,w0
) : w1 ⊆ v,¬(w1 = v ∧ w0 = u0), w1 *

u0, w0 ⊆ u0 ∩ w1, w0 6= w1} is independent in (Md
v,u,M

d
v )

(b) d′ is defined by md′

= md,Jd′

v,u = J′
v,u for u ⊂ v ∈ I.

Then d′ is an expanded stable I-system.
7) If d is a brimmed3 I-system and u ∈ I then Md

u \ ∪ {Md
u,w :

w ⊂ u} has cardinality λ; moreover, for w1 ⊂ u,Ju,w1
is a subset of

Md
u \ ∪ {Md

u,w2
: w2 ⊂ u} of cardinality λ.

8) In part (5) we can replace clause (α) by

(α)′ J ⊆Mu2
is disjoint to ∪{Ju2,u1,u0

: u0, u1 satisfies u0 ⊂ u1 ⊂
u2}.

9) In part (6) in clause (a) we can change the demand “J′
v,u is a

maximal subset of ... such that” to “J′
v,u is a maximal subset of

{c ∈ IMd
v,u,Md

v
: tps(c,M

d
v,u,M

d
v )⊥Md

w for w ⊂ u and c /∈ Jd
v,w,u

when u ⊂ w ⊂ v}.
10) [(f)∗∗ or just (f)∗ of 12.3]

If d is a brimmed3 I-system and u ⊂ v ∈ I then Md
v is brimmed

over Md
v,u.

11) If I1 ⊆ I then d ↾ I1 is an expanded stable I1-system; if d is
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brimmedℓ then so is d1; if d is normal then so is d1. If m is an
I-system [a stable I-system] then m ↾ I1 is an I1-system [a stable
I-system].

Proof. We prove (0),(0A),(1),(1A) together. More specifically, we
prove by induction on n < ω and then on m ≤ n that (0),(0A) hold
when |v| ≤ n, |u| ≤ m and (1) holds when |u| ≤ n and (1A) holds
when |v| ≤ n.
0) Note that the case (v\u) is a singleton is easy as then J2

v,u = Jv,u,

also note that for v = u we actually have J2
v,u = ∅ and so the

statement is trivial hence without loss of generality |u|+1 < |v| ≤ n.
Let u1 ⊆ u then by clause (d) of Definition 12.8(1) the set J∗

v,u1

is a maximal subset of {c ∈ IMv,u1
: tps(c,Mv,u1

,Mv) belongs to

S bs
s (Mv,u1

) and is ⊥Mv,u0
for u0 ⊂ u1} independent in (Mv,u1

,Mv).

By the induction hypothesis (Mu,u1
,Mu1

,J2
u,u1

) belongs to K3,mx
s

hence, by preservation by isomorphisms, (Mv,u1
,Mv,u,J

2
v,u,u1

) ∈

K3,mx
s = K3,vq

s .
If u1 ⊂ u then, as |u1| < |u| ≤ m and |v| ≤ n by the induction

hypothesis we know that (Mv,u1
,Mv,J

2
v,u1

) ∈ K3,bs
s .

But Mv,u1
≤s Mv,u ≤s Mv and J2

v,u,u1
⊆ J2

v,u1
, hence by the last

two sentences recalling 12.6(5)

(∗)1 (a) (Mv,Mv,u,J
2
v,u1

\J2
v,u,u1

) ∈ K3,bs
s

(b) if c ∈ J2
v,u1

\J2
v,u,u1

then tps(c,Mv,u,Mv) does not fork
over Mv,u1

.

But by clause (e) of Definition 12.8(1) easily J∗
v,u1

\J∗
v,u,u1

⊆ J2
v,u1

\J2
v,u,u1

hence

(∗)2 (a) (Mv,Mv,u,J
∗
v,u1

\J∗
v,u,u1

) ∈ K3,bs
s

(b) if c ∈ J∗
v,u1

\J∗
v,u,u1

then tps(c,Mv,u,Mv) does not fork
over Mv,u1

.

Now

(∗)3 if u1 6= u2 are subsets of u and cℓ ∈ J∗
v,uℓ

\J∗
v,u,u1

for ℓ = 1, 2
then tps(c1,Mv,u,Mv)⊥tps(c2,Mv,u,Mv).
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[Why? Let u0 = u1 ∩ u2, by applying part (1), i.e. the induc-
tion hypothesis, we know that NFs(Mv,u0

,Mv,u1
,Mv,u2

,Mv,u). Now
for ℓ = 1, 2 the type tps(cℓ,Mv,u,Mv) does not fork over Mv,uℓ

by
(∗)2(b) and is orthogonal Mv,w if w ⊂ uℓ. So if u1 ⊂ u2 or u2 ⊂ u1

we are easily done. So without loss of generality u0 ⊂ u1, u0 ⊂ u2

hence as ⊥
su

= ⊥ we know that tps(cℓ,Mv,u,Mv) is orthogonal to

M3−ℓ. Together we get the desired orthogonality.]
Hence by 6.24, clearly ∪{J∗

v,w\J
∗
v,u,w : w ⊆ u} is independent in

(Mv,u,Mv), but checking the definitions (see 12.3(1),(1A)) this union
is J2

v,u, hence J2
v,u is independent in (Mv,u,Mv).

If it is maximal we are done. Othewise as s almost has regulars
(see 12.3(1)(d)(ii)) there is a pair (c, u1) satisfying c ∈Mv\Mv,u\J

2
v,u

such that J2
v,u∪{c} is independent in (Mv,u,Mv) and tps(c,Mv,u,Mv)

does not fork over Mv,u1
and is ⊥Mv,u0

whenever u0 ⊂ u1. But this
contradicts the demand (d) in 12.8(1).
0A) By part (0).
1) We have

(i) Mu,u1∩u2
≤s Mu,uℓ

≤s Mu for ℓ = 1, 2 when u1 ∪ u2 ⊆ u ∈ I
[Why? Each case by a different instance of clause (c) of
12.7(1)]

(ii)ℓ (Mu,u1∩u2
,Mu,uℓ

,J2
u,uℓ,u1∩u2

) ∈ K3,mx
s hence ∈ K3,vq

s

[Why? Without loss of generality u1 6= u2 so u1∩u2 ⊂ u1 and
u1 ∩ u2 ⊂ u2. By part (0), we know that (Muℓ,u1∩u2

,Muℓ
,

J2
uℓ,u1∩u2

) ∈ K3,mx = K3,vq
s and by the definition of J2

u,uℓ,u

we know that hu,uℓ
maps this triple to the one mentioned in

clause (ii)ℓ]

(iii) J2
u,u1,u1∩u2

,J2
u,u2,u1∩u2

are disjoint
[Why? By clause (e) of Definition 12.8(1).]

(iv) J2
u,u1,u1∩u2

∪ J2
u,u2,u1∩u2

⊆ J2
u,u1∩u2

[Why? By their definitions]

(v) J2
u,u1,u1∩u2

∪ J2
u1,u2,u1∩u2

is independent in (Mu,u1∩u2
,Mu)

hence also in (Mu,u1∩u2
,Mu,u1∪u2

)
[Why? By monotonicity properties.]

Now by 8.13(3), 8.8 we are done. The “hence Mv,u1
∩ Mv,u2

=
Mv,u1∩u2

” follows by II.6.11 as NFs is a non-forking relation on Ks.
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1A) As u0∩u2 ⊂ u0, by 12.8(1)(c) the type p := tps(c,Mv,u0
,Mv,u1

)
is orthogonal to Mv,u0∩u2

(and belongs to S bs
s (Mv,u0

)). By part (1)
we know that NFs(Mv,u0∩u2

,Mv,u0
,Mv,u2

,Mv) holds hence by the
definition of ⊥

su
(and clause (b) of the Hypothesis 12.3(1)) we get the

conclusion. The “moreover” is proved similarly.
2) As u is finite, there is w ⊂ u such that p is not orthogonal to Mw

but is orthogonal to Mv,w′ if w′ ⊂ w. The “hence” follows by part
(1) and 10.10 (quoting 10.10 is O.K. by Hypothesis 12.3(3)). Note
that by 10.10 if M0 ≤s Mℓ ≤s M3 for ℓ = 1, 2 and p ∈ S bs

s (M3) is
regular orthogonal to M0 but not to M1 then p is orthogonal to M2

and this is what we use.
3) By renaming; possible as Mv,u1

∩ Mv,u2
= Mv,u1∩u2

whenever
u1, u2 ⊆ v ∈ I by part (1) and properties of NFs.
4) The least easy part is ℓ = 3. So we have to check clauses (h)0v, (h)

1
v

of 12.9(6). For the first, clearly everyMd
u (u ∈ I) is brimmed, because

clause (g)0v in 12.9(4) holds so only the second clause (h)1v there may
fail.
Assume toward contradiction that u ⊂ v ∈ I, p ∈ S bs

s (Md
v,u) is

orthogonal to Md
v,w for every w ⊂ u and the set J := {c ∈ Jd

v,u :

tps(c,M
d
v,u,M

d
v ) ± p} has cardinality < λs.

By the assumption (i.e. d is brimmed4) there is N such that
∪{Md

v,w : w ⊂ v} ⊆ N ≤s M
d
v and Md

v is (λ, ∗)-brimmed over N .

Hence there is I of cardinality λs independent in (Md
v,u, N,M

d
v ) such

that tps(c, N,M
d
v ) is a non-forking extension of p ∈ S bs

s (Md
v,u) for

every c ∈ I.

Clearly Jv,u ⊆ J∗
v,u and J∗

v,u\Jv,u ⊆ ∪{Mv,w : w ⊂ v} ⊆ N ,
hence I is disjoint to (J∗

v,u\Jv,u) and their union is independent in
(Mv,u,Mv). Also Jv,u hence also J is disjoint to J∗

v,u\Jv,u and their
union is independent in (Mv,u,Mv).

As |J| < |I| = λ it follows that for some c ∈ I\J also the set
(J∗

v,u\Jv,u) ∪ J ∪ {c} is independent in (Mv,u,Mv) (using models

from K3,vq
s ).

By orthogonality consideration, i.e. 6.24 also c /∈ J2,d
v,u and J2,d

v,u ∪

{c} is independent in (Md
v,u,M

d
v ), but by clause (d) of Definition

12.8(1) we get contradiction to d being an expanded stable I-system.
5) Left to the reader using 12.6 and 12.3(1)(d)(i),(ii); note that the
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case of regular systems is more transparent.
6) Also easy first assume that this is a unique pair (u, v) such that
Jd

v,u 6= J′
v,u; second prove by induction on |{(u, v) : u ⊂ v ∈ I,Jd

v,u 6=
J′

v,u}|.
7) The first conclusion follows from the second which holds by clause
(d) of Definition 12.8(1) and the definition of brimmed3 in 12.9(6).
8), 9) Left to the reader.
10) First note that the triple (Md

v,u,M
d
vd
,J2

v,v,u) is thick.

[Why? If p ∈ S bs
s (Md

v,u) then for some w ⊂ u, p ±Md
u,w and w1 ⊂

w ⇒ p⊥Md
u,w1

, hence there is q ∈ S bs
s (Md

u,w) orthogonal to Mu,w1

for every w1 ⊂ w such that q is dominated by p (see Definition 7.22);
(we assume that s is as in §10, we can use q is regular and simplify).
Now {c ∈ Jd

v,w : tps(c,M
d
v,w,M

d
v )±q} has cardinality λ and for each

c in this set, by the choice of q, tps(c,M
d
v,w,M

d
v ) ± p.]

Also Md
v,u is brimmed. Now clause (f)∗ of 12.3 holds by 12.5, and it

gives the required result.
11) Trivial. �12.11

12.12 Conclusion. 1) [Density of explicitly regular expanded stable
systems, see Definition 12.8(5) so 12.3(3)]. Assume s has regulars.

Assume

(a) m is a stable I-system

(b) for each u ∈ I,Pu ⊆ {p ∈ S bs
s (Mu) : p is regular orthogonal

to Md
u,w whenever w ⊂ u} is a maximal subset of pairwise

orthogonal types.

Then there is an expanded stable I-system d∗ such that:

(α) md∗

= m

(β) d∗ is regular, moreover, d obeys P̄ = 〈Pu : u ∈ Id〉 which
means:

⊠ if u ⊂ v ∈ Id and c ∈ Jd
v,u then for some q ∈ Pu we

have tps(c,M
d
v,u,M

d
v ) is q

(γ) d∗ is explicitly regular (see Definition 12.8(5)).
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2) Assume

(a) m is a stable I-system

(b) J ⊆ I (no closure demands!) and for u ∈ J,P′
u = {p ∈

S bs
s (Mm

u ) : p⊥M s
u,w for every w ⊂ u},P′′

u ⊆ P′
u is auto-

dense (see Definition 7.20(1)) and ((P′′
u)⊥)⊥ = P′

u.

Then there is an expanded stable I-system d∗ such that

(α) md∗

= m

(β) if u ∈ J, u ⊂ v ∈ I and c ∈ Jd∗

v,u then tps(c,M
d∗

v,u,M
d∗

v )
belongs to {hm

v,u(p) : p ∈ P′′
u}

(γ) if u ∈ I\J and u ⊂ v ∈ I then Jd∗

v,u = Jd
v,u.

Proof. 1) Note that (γ) follows from (β). This holds by 12.11(6) and
10.16(5); easier to see when 12.3(3) holds.
2) Similarly. �12.12

12.13 Claim. Assume ℓ ∈ {1, 2, 3, 4} and

(a) dk is an expanded stable (λ, I)-system for k = 1, 2

(b) md1 = md2 .

Then d1 is brimmedℓ iff d2 is brimmedℓ.

Proof. The least easy case is ℓ = 3, see Definition 12.9(6), and the
proof is similar to the proof of 12.11(4) or 12.12. �12.13

12.14 Definition. 1) For expanded stable I-systems d0,d1 let d0 ≤s

d1 or d0 ≤I
s d1 mean18 that:

(a) Md0
u ≤s M

d1
u for u ∈ I and hd0

v,u ⊆ hd1
v,u for u ⊂ u ∈ I

(b) Jd0
v,u ⊆ Jd1

v,u for u ⊆ v ∈ I

(c) if c ∈ Jd0
v,u then tps(c,M

d1
v,u,M

d1
v ) does not fork over Md0

v,u.

18in Definition 12.9’s terms this means that 〈id
M

d0
v

: v ∈ I〉 embeds d0 into

d1
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2) We say that J is a successor of I if for some t∗ /∈ Dom(I) we have
J = I ∪ {u ∪ {t∗} : u ∈ I} and we call t∗ the witness for J being a
successor of I; so Dom(J) = Dom(I) ∪ {t∗}.
3) For stable I-systems m0,m1 let19 m0 ≤s m1 or m0 ≤I

s m1

mean that for some expansions d0,d1 of m0,m1 respectively we
have d0 ≤I

s d1.
4) Assume that d0 ≤I

s d1 and J is a successor of I with the witness
t∗ and

(∗) if u ⊂ v ∈ I and c ∈ Jd1
v,u\J

d0
v,u then tps(c,M

d1
v,u,M

d1
v ) either

does not fork over Md0
v,u or is orthogonal to Md0

v,u.

Then we let d ≈ d0∗J d1 mean that d = 〈Md
u , h

d
v,u,J

d
v,u : u ⊆ v ∈ J〉

(but note that d is not determined uniquely by d0,d1, J as we have
freedom concerning Jd

u∪{t∗},u for u ∈ I, still we will use d0 ∗J d1 to

denote such d) where

(a) Md
u is Md0

u if u ∈ I

(b) Jd
v,u = Jd0

v,u if u ⊆ v ∈ I

(c) Md
u is Md1

u\{t∗} if u ∈ J\I

(d) Jd
v,u = {c ∈ Jd1

v\{t∗},u
: c /∈ Jd0

v\{t∗},u
and tps(c,M

d1
v,u,M

d1
v )

does not fork over Md0

v\{t∗},u
} if u ∈ I, v ∈ J\I and u ⊂

v\{t∗}

(e) Jd
v,u = {c ∈ Jd1

v\{t∗},u\{t∗} : tps(c,M
d1

v\{t∗},u\{t∗},M
d1
v ) is or-

thogonal to Md0

v\{t∗},u\{t∗}} if u ⊂ v are both from J\I

(f) (α) hd
v,u is hd0

v,u if u ⊆ v ∈ I

(β) hd
v,v is hd1

v\{t∗},u\{t∗} if t∗ ∈ u ⊆ v ∈ I and

(γ) hd
v,u is hd0

v\{t(∗)},u
if t(∗) ∈ v ∈ J, u ⊆ v1 ∈ I

(g) Jd
u∪{t(∗)},u is a maximal subset of

{c ∈Md1
u : tps(c,M

d0
u ,Md1

u ) ∈ S
bs
s (Md0

u )

19this relation, ≤s , is a two-place relation, we shall prove that it is a partial
order.
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is orthogonal to Md0
w for every w ⊂ u} which is independent

in (Md0
u ,Md1

u ) for every u ∈ I.

4A) Similarly for m = m0∗Jm1 (but now m is uniquely determined).
5) If δ < λ+

s and 〈dα : α < δ〉 is a ≤I
s-increasing sequence of expanded

stable I-systems (see Claim 12.15 below) then we let d =
⋃

α

dα be

〈Md
u , h

d
v,u,J

d
v,u : u ⊆ v ∈ I〉 where Md

u = ∪{Mdα
u : α < δ} and

hd
v,u = ∪{Mdα

v,u : α < δ} and Jd
v,u = ∪{Jdα

v,u : α < δ}. Similarly for
〈mα : α < δ〉.

12.15 Claim. 1) ≤I
s is a partial order on the family of expanded

stable I-systems.
2) If δ < λ+

s and 〈dα : α < δ〉 is ≤I
s-increasing sequence (of expanded

stable I-systems) then d =
⋃

α<δ

dα is an expanded stable I-system and

α < δ ⇒ dα ≤I
s d.

2A) In part (2), for ℓ = 1, 2, 3 if each dα is brimmedℓ for every α < δ
then dδ is brimmedℓ.
3) If d0 ≤I

s d1 and u ⊂ v ∈ I then NFs(M
d0
v,u,M

d0
v ,Md1

v,u,M
d1
v ).

4) If d0 ≤I
s d1 and d′

0 is an expanded stable I-system satisfying

md′

0 = md0 then we can find an expanded stable I-system d′
1 such

that d′
0 ≤I

s d′
1 and md′

1 = md1 .
5) The relation ≤I

s on the family of stable I-systems is a partial
order.
6) In Definition 12.14(4), always there is d such that d ≈ d0 ∗J d1

is an expanded stable (λ, J)-system.
7) For stable I-system m1,m2 we have m1 ≤s m2 iff m1 ≤ m2

and u ⊂ v ∈ I ⇒ NFs(M
m1
u ,Mm1

v ,Mm2
u ,Mm2

v ); recall Definition
12.14(4) of ≤.

Proof. 1) Obvious. Check the definition.
2) The main point is why, for u ⊂ v ∈ I, the triple (Md

v,u,M
d
v ,J

2,d
v,u)

belong to K3,mx
s . This is trivial by the definition of K3,mx

s , (have we

used K3,vq
s we should use e.g. 12.6).

2A) Easy.
3) As in the proof of 12.11(1).
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4) As in the proof of 12.11(6).
5) Being partial order follows by (4) and (1).
6) For u ∈ I we choose J = Jd

u∪{t(∗)},u such that

(a) J ⊆ I
M

d0
u ,M

d1
u

is independent in (Md0
u ,Md1

u )

(b) under (a), J is maximal.

Now we can check that all the demands in Definition 12.8(1) holds.
7) Easy by now (that is, let dℓ be an expanded I-system with m[dℓ] =
mℓ for ℓ = 1, 2. Now we shall choose J′

v,u for u ⊂ v ∈ I such that

d1 ≤I
s d′

2 where m[d′
v] = m2,J

d′

2
v,u = J′

v,u. We do this by induction
on |v|, as in previous cases).

�12.15

12.16 Claim. Assume

(a) m1 is a stable I-system

(b) m0 is an I-system

(c) Mm0
u ≤s M

m1
u for u ∈ I and hm0

v,u ⊆ hm1
v,u for u ⊂ v ∈ I

(d) if u ⊂ v ∈ I then NFs(M
m0
v,u ,M

m0
v ,Mm1

v,u ,M
m1
v ).

Then m0 is a stable I-system and m0 ≤I
s m1.

Proof. Let d1 be an expanded stable I-system such that md1 = m1.
For each u ⊂ v ∈ I we choose Iv,u as a maximal set such that

⊛1 (i) Iv,u ⊆ Mm0
v \ ∪ {Mm0

v,w : w ⊂ v} and for any c ∈ Iv,u we

have tps(c,M
m0
v,u ,M

m0
v ) ∈ S bs

s (Mm0
u,v ) is orthogonal to Mm0

v,w

whenever w ⊂ u

(ii) Iv,u∪{J
m1
v,w,u : u ⊆ w ⊂ v} is independent in (Mm1

v,u ,M
m1
v ).

Let J′
v,u be a maximal set such that

⊛2 (i) J′
v,u ⊆Mm1

v \ ∪ {Mm1
v,w : w ⊂ v}

(ii) J′
v,u ∪

⋃

{Jd1
v,w1,w0

: w0 ⊆ w1 ⊂ v, w1 * u} is indepen-
dent in (Mm1

v,u ,M
m1
v )

(iii) Iv,u ⊆ J′
v,u.
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[Why J′
v,u exists? Because Iv,u satisfies clauses (i) + (ii) in the role

of J′
v,u, i.e., clause (i) because u ⊆ v ∈ I ⇒ Mm0

u∩v = Mm1
u ∩Mm0

v

by clause (d) of the assumption and clause (ii) by clause (ii) of ⊛1.]
So by 12.11(6), d′

1 := 〈Mm1
u , hm1

v,u,J
′
v,u : u ⊆ v ∈ I〉 is an expanded

stable I-system. We could have chosen d1, 〈(Iv,u,J
′
v,u) : u ⊂ v ∈ I〉

such that I ′ = {v ∈ I: for every u ⊂ v we have Jd1
v,u = J′

v,u} is
maximal. By the proof so far, I ′ = I. Now for every u ⊂ v ∈ I, the
set I+v,u := ∪{hm0

v,w(Iw,u) : u ⊂ w ⊆ v} is included in J′
v,u∪

⋃

{Jd1
v,w,u :

u ⊂ w ⊂ v} hence is independent in (Mm1
v,u ,M

m1
v ).

Now I+v,u is included in Mm0
v and NFs(M

m0
u ,Mm0

v ,Mm1
u ,Mm1

v )

holds by clause (d) of the assumption, hence I+
v,u is independent in

(Mm0
v,u ,M

m1
v ).

Lastly, it is a maximal such set by the choice of Iv,u as maximal.
Hence d0 := 〈Mm0

u , hm0
v,u; Iv,u : u ⊆ v ∈ I〉 is an expanded stable

I-system. Now easily mℓ = mdℓ and d0 ≤I
s d′

1.
So we are done. �12.16

12.17 Claim. Assume J is a successor of I with witness t∗.
1) Assume m0,m1 are stable I-systems satisfying m0 ≤I

s m1. Then

(a) for one and only one m,m = m0 ∗J m1

(b) m is a stable J-system.

2) Assume that δ < λ+
s and 〈mα : α < δ〉 is a <I

s-increasing con-
tinuous sequence of stable I-systems and mα is brimmedℓ for α < δ
and ℓ ≤ 3 then mδ = ∪{mα : α < δ} is a stable I-system and is
brimmedℓ and mα ≤I

s mδ for α < δ.
3) Assume that s is successful hence s+ is as in 12.3 and ℓ = 3. If
〈mα : α < λ+

s 〉 is a <I
s-increasing sequence of stable I-systems and

mα ∗J mα+1 is brimmedℓ for each α < λ+ (or just for unboundedly
many α < λ+) then m = ∪{mα : α < λ+

s } is a brimmedℓ (λ+, I, s)-
system.
4) In part (3), if ℓ ∈ {0, 1, 2} and u ∈ I ⇒ Mm

u ∈ Ks(+) then m is

brimmedℓ (I, s+)-system.

Remark. In 12.17(3),(4) the case ℓ = 4 is ignored as we do not know
to prove this.
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Proof. 1) Clearly m is well defined.

Recall that d0 ≤I
s d1 above does not imply that for a unique

d,d = d0 ∗J d1.
By Definition 12.14(3) there are stable expanded I-system d1,d2

such that mdℓ = mℓ and d0 ≤s d1. For each u ∈ I let P0
u be the set

of p ∈ S bs
s (Mm0

u ) orthogonal to Mm0
u,w for every w ⊂ u [if s satisfies

12.3(3) you can use a maximal set of pairwise orthogonal regular
types from S bs

s (Mm0
u ) orthogonal to Mm0

u,w for every w ⊂ u]. For

each u ∈ I let P1
u be the set of p ∈ S bs

s (Mm1
u ) such that p⊥Mm1

u,w

for w ⊂ u and either p does not fork over Mm0
u or is orthogonal to

it [if e.g. 12.3(3), we can use a maximal set of pairwise orthogonal
regular types p ∈ S bs

s (Mm1
u ) orthogonal to Mmv

w for every w ⊂ u
such that either p is a non-forking extension of some q ∈ P0

u or
p ⊥Mm0

u ]. By Claims 12.11(6), 12.12(2) (and see 12.15(4)), without
loss of generality: if i ∈ {0, 1}, w ⊂ u ⊂ v ∈ I and c ∈ Jdi

v,u then

tps(c,M
diℓ
v,u ,Mdi

v,u) ∈ Pi
u and Jd0

v,u ⊆ Jd1
v,u.

So d0,d1 are as in Definition 12.14(4) (as J, t(∗) are given) hence
there is a stable expanded I-system d ≈ d0 ∗J d1. So m = md is as
required.
2) If ℓ = 0 we define mδ = 〈M δ

u, h
δ
u,v : u ⊆ v ∈ I〉 by M δ

u :=

∪{Mmα
u : α < δ} and hδ

u,v := ∪{hmα
u : α < δ}. As Ks is a λ-a.e.c.

and the definition of I-systems, mδ is as required. So assume ℓ ≥ 1,
i.e. we deal with stable systems, given a ≤I

s-increasing continuous
〈mα : α < δ〉, we choose by induction on α ≤ δ an expanded stable
I-system dα such that mdα = mα and 〈dβ : β ≤ α〉 is ≤I

s-increasing
continuous. First for α = 0 this is by the definition. Second, for
α = β + 1 by the definition of mβ ≤I

s mα there is a pair (d′
β,d

′′
β)

of expanded stable I-systems such that d′
β ≤I

s d′′
β and mβ = md′

β

and mα = md′′

β . But then by 12.15(4) there is an expanded stable
I-system dα such that dβ ≤I

s dα, but by 12.15(1) we have γ < α⇒
γ ≤ β ⇒ dγ ≤I

s dβ ≤I
s dα ⇒ dγ ≤I

s dα so we finish this case.

Lastly, for α limit ordinal ≤ δ by 12.15(2) we have dα = ∪{dβ :
β < δ} is an expanded stable I-system and γ < α ⇒ dγ ≤I

s dα.
Also if α < δ then as 〈mβ : β ≤ α〉 is increasing continuous, we have
mdα = mα. For α = δ,dδ := ∪{dα : α < δ} is an expanded stable
I-system and mδ := mdα is as required.
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For ℓ = 1 we are done.
For ℓ = 2 note that the union of an ≤s-increasing continuous

sequence of brimmed models is brimmed.
For ℓ = 3, and for α < δ above dα is brimmedℓ by 12.13 hence by

12.15(2A)) also dδ is brimmedℓ hence mδ is (by the definition).
3) Easy, too.
4) Easy, too. �12.17

12.18 Lemma. 1) Let ℓ ∈ {0, 2, 3}. Assume that s+ is successful
(see 12.5(2)) and

(a) J a successor of I, in details I ⊆ P(u∗) is downward closed,
u∗ finite, u∗∗ = u∗ ∪{t∗}, t∗ /∈ u∗ and J = I ∪{u∪{t∗} : u ∈
I}

(b) m is a brimmedℓ (λ+, I, s+)-system

(c) 〈Mm
u,α : α < λ+〉 is a <K[s]-representation of Mm

u

(d) for α < λ+ we try to define (λ, I, s)-system mα by Mmα
u =

Mm
u,α, h

mα
v,u = hm

v,u ↾ Mm
u,α

(e) for α < β < λ+ we try to define a (λ, J, s)-system mα,β by

M
mα,β
u = Mm

u,α for u ∈ I

M
mα,β

u∪{t∗} = Mm
β

h
mα,β
v,u = hm

v,u ↾ M
mα,β

u∪{t∗} if u ∈ I, u ⊆ v ∈ J

h
mα,β

v,u∪{t∗} = hm
v,u ↾ M

mα,β
u if u ∈ I, u ∪ {t∗} ⊆ v ∈ I.

Then for some club E of λ+ we have

(α) for every α ∈ E,mα is an (I, s)-system which is brimmedℓ

(β) for every α < β from E,mα,β is a brimmedℓ (J, s)-system

(γ) for every α < β from E,mα ≤I
s mβ and mα,β = mα ∗J mβ .
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2) [Assume 12.3(3)] Assume that ℓ ∈ {2, 3} and (a),(c),(d),(e) of
part (1) holds for m = md and

(b)′ d is an explicitly regular brimmedℓ expanded stable (λ+, I, s+)-
system.

Then for some club E of λ+, we can define for α ∈ E,dα as below
and we can find dα,β for α < β from E as below such that

(α) dα is an explicitly regular expanded stable (λ, I, s)-system

(β) dα,β is an explicitly regular brimmedℓ expanded stable (λ+, J, s+)-
system

(γ) m[dα,β] = mα,β from part (1) and m[dα] = mα from part
(1)

(δ) for u ⊂ v ∈ I,Jdα

v,u = Jd
v,u ∩Mdα

v .

3) Assume that ℓ ∈ {2, 3} and clauses (a),(b),(c),(d),(e) of parts
(1) holds and d is an expanded stable (λ+, I, s+)-system with md =
m. Then we can find a club E of λ+ and 〈dα : α ∈ E〉 such that
(α), (β), (γ), (δ) of part (2) holds provided that we omit the “explicitly
regular”.

Remark. In 12.18(1) we can add the case ℓ = 1 as any brimmed1(λ+,
I, s+)-system is brimmed2 as M ∈ Ks(+) is brimmed.

Proof. 1) We leave the case ℓ = 0 to the reader, so it is enough to
prove parts (2),(3).
2) For each u ∈ I let Pu := {p ∈ S bs

s(+)(M
m
u ) : p regular orthogonal

to Mm
u,w for every w ⊂ u}.

Recall that d is a stable expanded (λ, I)-system which is explicitly
regular. Now

⊛1 if p ∈ Pu then for some α0 = α0(p) ≤ α1 = α1(p) < λ+
s we

have:

(a) Mm
v,α1

is a witness for p

(b) p ↾ Mm
u,α1

is orthogonal to Mm
u,γ iff γ < α0.

Paper Sh:705, Chapter III



608 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

Easily

⊛2 for each u ∈ I there is a club Eu of λ+
s such that if p ∈ Pu

and α0(p) ≤ γ ∈ E then α1(p) ≤ γ.

For each p ∈ Pu let Jp be a maximal subset of IMm

u,α1(p)
,Mm

u
=

∪{IMm

u,α1(p)
,Mm

u,β
: β ∈ [α1(p), λ

+
s )} of elements realizing p ↾ Mm

u,α1(p)

in Mm
u which is independent in (Mm

u,α1(p),M
m
u ).

We can find a club E ⊆ ∩{Eu : u ∈ I} of λ+
s such that

⊛3 if δ ∈ E then

(a) for u ⊂ v ∈ I we have hd
v,u(Mm

u,δ) = Mm
v,u ∩Mm

v,δ

(b) for u ⊂ v and c ∈ Jd
v,u:

if c ∈Mm
v,δ then δ ≥ α1(tp(c,Mm

v,u,M
m
v ))

(c) (Mm
v,u ∩Mm

v,δ,M
m
v,δ,J

2,d
v,u ∩Mm

v,δ) belongs to K3,mx
s

(d) if u ∈ I and p ∈ Pu and α1(p) < δ then Jp ∩Mm
u,δ is

a maximal subset of IMm

u,α1(p)
,Mm

u,δ
of elements realizing

p ↾ Mm
u,α(p) which is independent in (Mm

u,α1(p),M
m
u,δ)

(e) if u ⊂ v ∈ I and δ1 < δ2 are from E
then NFs(M

m
u,δ1

,Mm
v,δ1

,Mm
u,δ2

,Mm
v,δ2

)

(f) if u ⊂ v ∈ I, c ∈ Jm
v,u and p = tps(+)(c,M

m
v,u,M

m
v ) and

α0(p) ≤ δ then α1(p) ≤ δ

(g) if u ⊂ v ∈ I and δ ∈ E then (hm
v,u(Mm

u,δ),M
m
v,δ,J

2,m
v,u ∩

Mm
v,δ) ∈ K3,mx

s .

For α ∈ E clearly mα as defined in clause (d) of part (1) is a (λ, I, s)-
system; and we expand it to dα by Jd

α

v,u = Jd
v,α ∩Mu for u ⊂ v ∈ I

easily dα is an expanded stable (I, λ, s)-system.
Let α < β be from E and let mα,β be as clause (e) of part (1) of

the claim. We define an expanded (λ, J)-system dα,β by (essentially
it is dα ∗J dβ recalling d is explicit)

⊛4(a) mdα,β

= mα,β (defined in part (1))

(b) if u ⊂ v ∈ I then Jdα,β

u,v = Jd
u,v ∩Mm

v,α
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(c) if u ⊂ v ∈ J, u ∈ I, v = v1 ∪ {t∗} hence u ⊂ v1 ∈ I then

Jdα,β

u,v = {c ∈ Jd
v,u : c ∈Mmα,β

v and α ≥ α1(tps(c,M
d
v,u,M

d
v ))}

(d) if u ⊆ v ∈ J, u = u1 ∪ {t∗}, v = v1 ∪ {t∗}, u ⊂ v ∈ I then

Jdα,β

v,u = {c ∈ Jd
v,u : c ∈ Jd

v,u and α < α1(tp(c,Md
v,u,M

d
v ))}

(e) if u ∈ I, v = u ∪ {t∗} then Jdα,β

v,u =
{c: for some p ∈ Pu, α1(p) ≤ α and c ∈ Jp ∩Mm

u,β\M
m
u,α}.

Now check.
3) This is like part (2) but we are dealing with the general case: s is
not necessarily type-full or just has regulars. For each u ∈ I, there
is a club Eu of λ+

s such that

⊛′
2 (a) if α ∈ Eu then Mm

u,α ∈ Ks is brimmed

(b) if α < β are from Eu then Md
u,β ∈ Ks is brimmed over

Mm
u,α.

Now for u ∈ I we let Pu := {p ∈ S bs
s(+)(M

m
u ) : p is orthogonal to

Mm
u,w for every w ⊂ u} and for some P′

u = ∪{P′
u,α : α ∈ Eu} where

for u ∈ Eu we let P′
u,α = {p ∈ Pu : Mm

u,α is a witness for p and

p ↾ Mm
u,α ∈ S bs

s (Mm
u,α) is orthogonal to Mm

u,β whenever β ∈ Eu ∩α}.

Now we have a choice: we can prove this through showing that P′
u

is auto-dense (see Definition 7.20). But we also can use the brimm-
ness of mα,β ’s; actually in the second we use weaker assumptions on
s.

Let d′ be an expanded stable (λ+, I, s+)-system and let E ⊆ {Eu :
u ∈ I} be a club of λ+ satisfying clauses (a),(c),(e),(f) of ⊛3 from
the proof of part (2). Now for each u ⊂ v ∈ I we choose J′

v,u,β by
induciton on β ∈ E such that

⊠ (a) J′
v,u,β ⊆ IMm

v,u,β
,Mm

v,β
; moreover ⊆

{c ∈Mm
v,u,β : tps(+)(c,M

m
v,u,M

s
v) ∈ ∪{P′

u,γ : γ ≤ β ∧ γ ∈ E}

(b) J′
v,u,β increasing with β

(c) (Mm
v,u,β,M

m
v,β,J

′
v,u,β) ∈ K3,bs

s

(d) under (a)+(c), J′
v,u,β is maximal.
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Now define an expanded (λ+, I, s+)-system by md = m and Jd
v,u =

∪{J′
v,u,β : β ∈ E}. By 7.17(3) it is as required. Now we continue as

in part (2). �12.18

∗ ∗ ∗

The following define the main notions of this section. Unfortunately
they may seem too many, but for our inductive proofs they seem
necessary. In those definitions the low cases (n = 0, 1 and sometimes
n = 2) follows as proved later, still they are given their natural
meaning and in the more general frameworks they will not be trivial.

12.19 Definition. Let ℓ ∈ {1, 2, 3, 4}.
1) We say that s satisfies (or has) the brimmedℓ weak (λ, n)-existence
property if:

Case 1: n = 0.
There is a brimmedℓ model in Ks (so always holds).

Case 2: n = 1.
If M∅ is brimmedℓ and pi ∈ S bs

s (M∅) for i < i∗ < λ+
s then we

can find ci(i < i∗) and M{∅} such that pi = tps(ci,M∅,M{∅}) and

(M∅,M{∅}, {ci : i < i∗}) ∈ K3,bs
s and i < j ⇒ ci 6= cj .

Case 3: n ≥ 2.

Every brimmedℓ expanded stable (λ,P−(n))-system d can be com-
pleted to an expanded stable (λ,P(n))-system d+, i.e. there is an
expanded stable P(n)-system d+ such that d+ ↾ P−(n) = d; recall
P−(n) = {u : u ∈ {0, . . . , n− 1}} = P(n)\{n}.
2) We say s satisfies (or has) brimmedℓ weak (λ, n)-uniqueness prop-
erty when:

Case 1: n = 0.
Ks has the JEP (the joint embedding property).

Case 2: n = 1.

If (M,Nk, {a
k
i : i < i∗}) ∈ K3,mx

s for k = 1, 2 and tps(a
1
i ,M,Nℓ) =

tps(a
2
i ,M,Nℓ) then there is a ≤s-embedding f of N1 into some N ′

2

such that N2 ≤s N
′
2 and f(a1

i ) = a2
i .
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Case 3: n ≥ 2.
If d1,d2 are brimmedℓ expanded stable (λ,P(n))-systems and

dm = dm ↾ P−(n) and f̄ = 〈fu : u ∈ P−(n)〉 is an isomorphism
from m[d1] onto m[d2], then we can find a pair (f,N) such that:

(a) Md2
n ≤s N ,

(b) f is a ≤s-embedding of Md1
n into N

(c) for u ⊂ n we have f ◦ hd1
n,u = hd2

n,u ◦ fu.

3) We say that s has the brimmedℓ strong (λ, n)-existence when:

Case 1: n = 0.
There is brimmedℓ model in Ks.

Case 2: n = 1.
As in part (1) but (M∅,M{∅}, {ci : i < i∗}) ∈ K3,mx

s .

Case 3: n ≥ 2.
For every brimmedℓ expanded stable (λ,P−(n))-system d we

can find an expanded stable (λ,P(n))-system d+ such that d+ ↾

P−(n) = d and d+ is reduced in n which means u ⊂ n⇒ Jd+

n,u = ∅

and if ℓ = 2, 3, 4 then20 Md+

n is brimmed (so if ℓ = 1, 2 then d+ is
brimmedℓ but for ℓ = 3, 4 necessarily this fails).
4) We say that s has the brimmedℓ strong (λ, n)-uniqueness property
when:

Case 1: If n = 0, any two brimmedℓ models from Ks are isomorphic.

Case 2: If n = 1, uniqueness for K3,mx
s , i.e., if (M,Nk, {a

k
α : α <

α∗}) ∈ K3,mx
s so ‖Nk‖ = ‖M‖ and M,Nk are brimmedℓ for k = 1, 2

and tps(a
1
α,M,N1) = tps(a

2
α,M,N2) for every α < α∗ then there

is an isomorphism from N1 onto N2 over M mapping a1
α to a2

α for
every α < α∗ (see 7.14(2) for sufficient conditions).

Case 3: n ≥ 2 and ℓ ∈ {3, 4}.
In part (2) we add N = Md2

n and f is onto N .

20if Ks is categorical this is an empty demand
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Case 4: n ≥ 2 and21 ℓ ∈ {1, 2}.
The conclusion of Case 3 holds22 if we assume (what is said in

part (2) and) that23:

⊡ either d1,d2 are reduced in n or d1,d2 are brimmedℓ in n
[on reduced in n see Case 3 of part 3; on brimmedℓ in n, see
Definition 12.9(4)-(7), 12.10]. .

5) We say that s has the brimmedℓ strong (λ, n)-primeness/weak
(λ, n)-primeness property when: n = 0, 1 or for any brimmedℓ ex-
panded stable (λ,P−(n))-system d0 and expanded stable (λ,P(n))-
system d1 such that Md1

n is brimmedℓ and d1 is reduced in n which
means u ⊆ n ⇒ Jd1

n,u = ∅ and d1 satisfy d1 ↾ P−(n) = d0 we have:

d1 is strongly primeℓ/weakly primeℓ over d0, see below.
5A) We say d1 is brimmedℓ strongly prime/weakly prime over d0

(and also say that d1 is weakly primeℓ/strongly primeℓ over d0)
when for some n,d1 is a stable expanded (λ,P(n))-system, d0 =
d1 ↾ P−(n), if ℓ ≥ 2 then Md1

n is brimmed and:

(∗) if d2 is a stable expanded (λ,P(n))-system satisfying d2 ↾

P−(n) = d0 and Md2
n is brimmedℓ, then there is an ≤s-

embedding f of Md1
n into Md2

n such that u ∈ P−(n) ⇒
f ◦ hd1

n,u = hd2
n,u, but in the weak case, we further demand on

d2 that it satisfies:

⊙d2
if p ∈ S bs

s (Md2
n ) is orthogonal to Md2

n,u for every u ⊂ n

21those cases are problematic, in the sense of rarely holding but this does not
concern us here

22in the case central for this section the Mdm
n are brimmed so the only free-

dom left are about dimensions of types from S bs
s (Mdm

n,u ) for u ⊂ n. But for the

general case, for s which is not very “low”, strong uniqueness holds for ℓ = 2 in

the beautiful case, but for ℓ = 1 fails. However, we may have uniqueness of a
prime model, see later.

23we could consider asking

⊡′ if u ∈ P−(n) and p ∈ S bs(Md1
n,u) then (here (and in part (5A))

as we concentrate on the case “Ks is categorical in λs”, the difference

is minor; not so in subsequent works) the cardinality of {c ∈ J
d1
n,u :

tps(c, M
d1
n,u, M

d1
un ) ± h

d1
n,u(p)} is equal to the cardinality of {c ∈ J

d2
n,u :

tps(c, M
d2
n,u, M

d2
n ) ± h

d2
n,u(fu(p))}.
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then for some M ≤s M
d2
n the type p does not fork over

M and dim(p,M) = λ.

6) Also in (1)-(5),(7) we may restrict ourselves to one brimmedℓ ex-
panded stable (λ,P−(n))-system or (λ,P(n))-system d, i.e., con-
sider the property as a property of d; may omit brimmedℓ so in this
case the brimmedℓ may refer to only u = n!
7) We say that s has the brimmedℓ strong prime (λ, n)-existence/weak
prime (λ, n)-existence if for every brimmedℓ expanded stable (λ,
P−(n))-system d1 there is an expanded stable (λ,P(n))-system
d2 with Md2

n being brimmed when ℓ ≥ 2 and which is strongly
primeℓ/weakly primeℓ over d1, (note: d2 is only reduced in n).
8) Writing “. . . (< n) . . . property” we mean “. . .m . . . property for
every m < n”.

Our main aim is to show that when each s+n is successful and the

sequence 〈2λ+n
s : n < ω〉 is increasing then every one of those prop-

erties is satisfied by s+m for m < ω large enough and we say s+n is
k-beautiful when all these properties are satisfied for m ≤ k.

12.20 Claim. 1) For n = 0, 1, 2, the frame s has the brimmedℓ weak
(λ, n)-existence property for ℓ = 1, 2, 3, 4.
2) For n = 0, 1, 2, the frame s has the brimmedℓ weak (λ, n)-uniqueness
property for ℓ = 1, 2, 3, 4.
3) For n = 0, 1 the frame s has the brimmedℓ strong (λ, n)-existence
property for ℓ = 1, 2, 3, 4.
4) For n = 0, 1, the frame s has the brimmedℓ/strong (λ, n)-primeness
property for ℓ = 1, 2, 3, 4.
5) For n = 0, 1 the frame s has the brimmedℓ/strong (λ, n)-prime
existence property for ℓ = 1, 2, 3, 4.
6) If s has the brimmedℓ strong (λ, n)-existence property and the
brimmedℓ strong (λ, n)-primeness/weak (λ, n)-primeness property,
then it has the brimmedℓ strongly prime (λ, n)-existence/weak prime
(λ, n)-existence property.

Proof. 1) If n = 0 this is trivial, and if n = 1 this holds by 5.8(6).
Lastly, if n = 2 by II.6.20(3); “the existence of stable amalgamation”
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we can find a (λ,P(n))-system m+ such that m+ ↾ P−(n) = md

and NFs(M
m+

n,∅ ,M
m+

n,{0},M
m+

n,{1},M
m+

n,{0,1}) hence we can extend Mm+

n

and choose Jn,u for u ⊂ n to get d+ as required.
2) For n = 2, by the uniqueness of NFs-amalgamation, see II.6.22.
3) If n = 0, this is clear, for n = 1 this is the existence theorem for

K3,mx
s , see 12.6(4).

4), 5) Easy, too.
6) Let d be a brimmedℓ (λ,P−(n))-system. By the brimmedℓ strong
(λ, n)-existence property there is an expanded stable (λ, P(n))-

system d∗, reduced in n such that d∗ ↾ P−(n) = d and Md∗

n is
brimmedℓ. By the brimmedℓ weakly/strongly (λ, n)-primeness prop-
erty d∗ is weakly/strongly primeℓ so we are done.

�12.20

12.21 Claim. Let d be an expanded stable (λ, I)-system.
The following properties of d are actually properties of m, that is,

their satisfaction depends just on md

(A)f̄ f̄ is a stable ≤I
s-embedding of d into M

(B)u,ℓ d is brimmedℓ at u where ℓ = 1, 2, 3, 4 and u ∈ I

(C) d has the brimmedℓ weak/strong uniqueness/existence prop-
erty

(D) d has the brimmedℓ strong prime/weak prime existence prop-
erty

(E) d has the brimmedℓ weak primeness/strong primeness prop-
erty.

Proof. The least easy case is that replacing Jd
v,u by similar J′

v,u does
not make a difference which is proved as in 12.11(6). �12.21

12.22 Discussion: Why do we define the “weak primeness”, “weak
prime existence” properties?

The problem arises in 12.36. Assume d0 is a brimmed3 expanded
stable (λ,P(n))-system, d1 is an expanded stable (λ,P(n))-system,
d1 ↾ P−(n) = d0 ↾ P−(n),d1 is reduced in n,Md1

n ≤s Md0
n

and hd1
n,u = hd0

n,u for u ⊂ n. Is Md0 really (λ, ∗)-brimmed over
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Md1
n ? If s has the NDOP (and n ≥ 2) yes, but in general for

p ∈ S bs
s (Md1

n ) which is ⊥ hd1
n,u(Md1

u ) for every u ⊂ n, we do not

know that dim(p,Md0
n ) = λs. This motivates the definition of weak

primeness. But for ℓ = 3, the weak and strong versions are equiva-
lent.

12.23 Claim. 1) Let ℓ ∈ {1, 2, 3, 4}. Assume I1 ⊆ I2 and s has
the brimmedℓ weak (λ, |u|)-existence property whenever u ∈ I2\I1.
Then for any brimmedℓ expanded stable (λ, I1)-system d1 there is a
brimmedℓ expanded stable (λ, I2, s)-system d2 satisfying d2 ↾ I1 =
d1.
2) Let ℓ ∈ {3, 4}. Assume that for any m < n, s has the brimmedℓ

strong (λ,m)-uniqueness property. Then for any two brimmedℓ ex-
panded stable (λ,P−(n))-systems d1,d2, the systems m[d1],m[d2]
are isomorphic. Similarly for (λ, I) if u ∈ I ⇒ |u| < n.
3) Let ℓ ∈ {3, 4}; if dk is a brimmedℓ expanded stable (λ, I2)-system,
for k = 1, 2 and I1 ⊆ I2 and s has the brimmedℓ strong (λ, |u|)-
uniqueness whenever u ∈ I2\I1 and f̄ = 〈fu : u ∈ I1〉 is an iso-
morphism from m[d1 ↾ I1] onto s[d2 ↾ I1], then we can find f̄ ′, an
isomorphism from m[d1] onto m[d2] such that f̄ ′ ↾ I1 = f̄ .

Proof. Natural (and part (2) is a special case of part (3) which is
proved by induction on |I2\I1|). �12.23

Remark. If we like in 12.23(2) to deduce also for ℓ = 1, 2 that d1,d2

are isomorphic, we should change Definition 12.19 accordingly.

12.24 Conclusion. Assume ℓ ∈ {3, 4} and

(a) s has the brimmedℓ strong (λ,< n)-uniqueness property

(b) there is a brimmedℓ stable (λ,P(n))-system.

Then s has the brimmedℓ weak (λ, n)-existence property.

Proof. The cases n = 0, 1 are trivial, see 12.20. Now by clause (b)
there is a brimmedℓ expanded stable (λ,P(n))-system d∗. To prove
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the brimmedℓ weak (λ, n)-existence property, let d be a brimmedℓ ex-
panded stable (λ,P−(n))-system. By assumption (a) and 12.23(2),
the (λ,P−(n))-systems m[d] and m[d∗ ↾ P−(n)] are isomorphic
hence, by clause (c) of 12.21, without loss of generality they are
equal, so d∗ prove the existence. �12.24

12.25 Claim. 1) Let ℓ = 1, 2, 3, 4. The brimmedℓ weak (λ, n)-
existence property is equivalent to: for every brimmedℓ expanded sta-
ble P−(n)-system d there are M ∈ Ks and f̄ = 〈fu : u ∈ P−(n)〉,
such that

⊛ f̄ is an embedding of d into M which means

(a) fu is a ≤s-embedding of Md
u into M

(b) if u ⊂ v ∈ P−(n) then fu = fv ◦ fd
v,u

(c) for any u ∈ P−(n), the set ∪{fv(J
d
v,u) : v satisfies

u ⊆ v ∈ P−(n)} is independent in (fu(Md
u ),M), as

an indexed set24.

1A) Similarly for “the brimmedℓ expanded stable (λ,P−(n))-system
d has the brimmedℓ weak existence property”.
2) Let ℓ = 1, 2, 3, 4

(a) If s has the brimmedℓ strong (λ, n)-existence property then s

has the brimmedℓ weak (λ, n)-existence property

(b) if s has the brimmedℓ strong (λ, n)-uniqueness property then
s has the brimmedℓ weak (λ, n)-uniqueness property

(c) if s has the brimmedℓ strong (λ, n)-primeness property then
s has the brimmedℓ weak (λ, n)-primeness property

(d) if s has the brimmedℓ strong prime (λ, n)-existence property
then s has the brimmedℓ weak prime (λ, n)-existence

(e) in clauses (c),(d) we get equivalence if s is categorical in λ.

24“as index sets” this just means that 〈{fv(c) : c ∈ Jd
v,u} : u ⊂ v ∈ P−(n)〉

is a sequence of pairwise disjoint sets
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2A) Each of the clauses of (2) holds for every brimmedℓ (λ,P−(n))-
system d separately and

(f) if d is a brimmedℓ (λ,P(n))-system and Md
n is brimmed then

the condition from ⊙d of 12.19(5A) holds.

3) If (ℓ(1), ℓ(2)) ∈ {(1, 2), (2, 3), (3, 4)} and s has the brimmedℓ(1)

strong (λ, n)-existence property then s has the brimmedℓ(2) strong
(λ, n)-existence property.
3A) If (ℓ(1), ℓ(2)) ∈ {(2, 3), (3, 4)} then the same holds for the weak
(λ, n)-existence property.
4) If (ℓ(1), ℓ(2)) ∈ {(1, 2), (2, 3), (3, 4))} and s has the brimmedℓ(1)

weak uniqueness, then s has the brimmedℓ(2) weak uniqueness.
5)∗

(a) every expanded stable (λs, I)-system for s is brimmed2

(b) for each of the properties defined in Definition 12.19, the
brimmed2 version and the brimmed1 one are equivalent.

Proof of 12.25. 1) By part (1A).
1A) First assume that d has the brimmedℓ weak (λ, n)-existence
property and we shall prove the condition ⊛ in 12.25(1). By the
present assumption, we can find d′ as in the definition 12.19(1), and

we let M = Md′

n , fu = fd′

n,u, clearly they are as required in ⊛.

Second assume that d satisfies the condition ⊛ from 12.25(1). So
d = d0, a brimmedℓ expanded stable (λ,P−(n))-system is given,
so by our assumption there are M, 〈fu : u ∈ P−(n)) as there.
Now we define an expanded stable (λ,P(n))-system d1 as follows:
d1 ↾ P−(n) = d0,M

d1
n = M for u ⊂ n let hd1

n,u = fu and let

Jd1
n,u be a maximal subset J of M\ ∪ {fv(Mv) : v ⊂ n} such that

J∗,d1
v,u = ∪{fv(J

d0
v,u) : v satisfies u ⊂ v ⊂ n} ∪ J is independent in

(fu(Mu),M).

Note that 〈fn,v(J
d1
v,u) : u ⊂ v ⊆ n〉 are pairwise disjoint, i.e.

fv,n1
(Jd1

v1,u1
), fn,v2

(Jd1
v2,u2

) are disjoint when uk ⊂ vk ⊆ n for k = 1, 2
and (v1, u1) 6= (u2, v2).
[Why? If u1 = u2 by an assumption so let u1 6= u2, and then use
super-orthogonality.]
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So clearly d1 is as required except that in the brimmed2 case
we are missing “M is brimmed”, and in the brimmed3 case, we are
missing the demand on Jn,u and in the brimmed4 case the rele-
vant condition. Choose M∗ such that M ≤s M

∗ and M∗ is (λ, ∗)-
brimmed over M . Define the expanded (λ,P(n))-system d2 as fol-
lows: d2 ↾ P−(n) = d0,M

d2
n = M∗ and hd2

n,u = hd1
n,u for u ⊂ n and

lastly, for each u ∈ P−(n) let Jd2
n,u be a maximal J such that:

(α) Jd1
n,u ⊆ J ⊆M∗ ∪ {fu(Jd

v,u) : v satisfies u ⊂ v ∈ P−(n)}

(β) c ∈ J ⇒ tps(c, fu(Md0
u ),M∗) ∈ S bs(fu(Md0

u ) is orthogonal
to fw(Md0

w ) for every w ⊂ u

(γ) J ∪
⋃

{fw1
(Jd

w1,u) : u ⊂ w1 ∈ P−(n)} is independent in

(fu(Mdℓ
u ),M∗)

(δ) J is maximal under (α) + (β) + (γ).

By 12.11(7) we are done.
2) By part (3).
2A) Clauses (a)-(d): Obvious.

Clause (e): Use clause (f).

Clause (f): Should be clear.
3), 4), 5) Left to the reader. �12.25

The following claim will give a crucial “saving” in our “spiralic going
up”.

12.26 Claim. Assume that (ℓ = 3 or just ℓ ∈ {1, 2, 3, 4} and n ≥ 2
and)

(a) s has the brimmedℓ weak (λ, n)-uniqueness

(b) d is an expanded stable (λ,P−(n))-system

(c) d ↾ [n]<n−1 is a brimmedℓ system (but d not necessarily).

Then the system d has weak uniqueness, i.e.

⊛ if d1,d2 are expanded stable (λ,P(n))-system satisfying d1 ↾

P−(n) = d2 ↾ P−(n) then we can find (N, f) such that
Md2

n ≤s N, f is a ≤s-embedding of Md1
n into N and u ⊂

n⇒ hd2
n,u = f ◦ hd1

n,u.
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Proof. We prove this by induction on kd = |Pd| where Pd = {v ∈
P−(n) : d is not brimmedℓ in v (so v ∈ [n]n−1)}.

Clearly kd ≤
(

n
n−1

)

= n(≤ |P−(n)| < 2n). If kd = 0 the conclu-

sion follows from assumption (a).
So assume that kd > 0 and choose v∗ ∈ Pd. We can find M

which is (λ, ∗)-brimmedℓ over Md
v∗

. Next we define an expanded
(λ,P−(n))-system d+:

⊛1 (a) d+ ↾ (P−(n)\{v∗}) = d ↾ (P−(n)\{v∗})

(b) hd+

v∗,u = hd
v∗,u if u ⊂ v∗

(c) Md+

v∗
= M

(d) Jd+

v,u = Jd
v,u if u ⊂ v ∈ P−(n)\{v∗}

(e) Jd+

v∗,u, for u ⊂ v∗, is a maximal subset J of

{c ∈M\∪{Md
v∗,u : u ⊂ v∗} : tp(c,Md

v∗,u,M) ∈ S bs
s (Mv,u)

is orthogonal to Mv∗,w when w ⊂ u} such that J is
independent in (Mv∗,u,M) and J ⊇ Jd

v∗,u.

It is easy to check that

(∗) d+ is a stable (λ,P−(n))-system and d+ ↾ [n]<n−1 is brimmedℓ

and kd+ = kd − 1.

Now let d1,d2 be as in the assumption of ⊛. Next for k = 1, 2 by the
existence of stable amalgamation there is a pair (Nk, fk) such that

Mdk
n ≤s Nk, fk is a ≤s-embedding of M = Md+

v∗
into Nk extending

fdk
n,v∗

and NFs(M
dk
n,v∗

,Mdk
n , fk(M), Nk) holds.

By renaming without loss of generality f1 = f2 = idM . We now
define an expanded stable (λ,P(n))-system d+

k

⊛2
k (a) d+

k ↾ P−(n) = d+

(b) M
d

+
k

n = Nk.

(c) h
d

+
k

n,u = hdk
n,u for u ∈ P−(n)\{v∗}

(d) hd+

n,v∗

= fk

(e) J
d

+
k

n,u for u ⊂ n are defined as in previous case, i.e. it is
a maximal
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subset of {c ∈ Nk : tps(c,M
d+

n,u, Nk) is orthogonal to Md+

n,w

for every w ⊂ u but c /∈Md+

n,v if u ⊂ v ⊂ n} such that

J
d

+
k

n,u ∪
⋃

{Jd+

n,v,u : v satisfies u ⊂ v ⊂ n} is independent in

(Md+

n,u, Nk).

Easily

⊛3 d+
k is a stable (λ,P(n))-system and d+

k ↾ P−(n) = d+.

Now we use the induction hypothesis on d+, justified by (∗). So we

can find (f ′, N ′) such that N
d

+
2

n ≤s N
′ and f ′ is a ≤s-embedding of

Nd1
n into N ′ such that u ⊂ n⇒ f

d
+
2

n,u = f ′ ◦ f
d

+
1

n,u.
So we are done. �12.26

12.27 Claim. Assume that I = P−(n) and (a) + (b) and: (c)1 or
(c)2 where;

(a) mk is a brimmedℓ stable (λ, I)-system for k = 1, 2

(b) m1 ↾ J = m2 ↾ J where J := {u ∈ I : (∃v ∈ I)(u ⊂ v)}

(c)1 if u ∈ I\J then mℓ ↾ P−(u) has the brimmedℓ weak unique-
ness property

(c)2 if v ∈ I\J then u ⊂ v ⇒ hm1

v,u = hm2

v,u and Mmℓ

v ≤s M
m3−ℓ

v

for some ℓ ∈ {1, 2}.

Then

(α) m1 has the weak existence property iff m2 has the weak ex-
istence property

(β) m1 has the weak uniqueness property iff m2 has the weak
uniqueness property.

Proof. Similar to the proof of 12.26, we prove by induction on

k(m1,m2) = ({u ∈ J : Mm1

u 6= Mm2

u }).
So without loss of generality k(m1,m2) = 1. When we use (c)2

the proof is the same. When we use (c)1 we have to take care of
making the images of the J in dℓ expanding mℓ in the big model
being independent using 12.11(6). �12.27
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In 12.18 we have proved actually some things on s+ concerning Def-
inition 12.19. [Why have we ignored ℓ = 1? As for s+, brimmed1 ⇒
brimmed2.]

12.28 Conclusion. Let ℓ ∈ {0, 2, 3} and assume that s+ is successful
hence s+ satisfies the demands in 12.3 by 12.5(2). If for s+ there is a
brimmedℓ stable P(n)-system, then for s there is a brimmedℓ stable
P(n+ 1)-system.

Remark. For ℓ = 0, 2 we can find trivial examples.

Proof. By 12.18. �12.28

12.29 Claim. Assume that dk is an expanded stable (λ, I)-system
for k = 1, 2 and f̄ is an embedding of d1 into d2, see Definition
12.9(1A).
1) If I = P−(n) and d2 has the weak existence property then d1 has
the weak existence property.
2) If I = P−(n) and f̄ ↾ [n]<n−1 is an isomorphism from d1 ↾

[n]<n−1 onto d2 ↾ [n]<n−1 and d2 has the weak uniqueness property
then d1 has weak uniqueness property.

Proof. 1) Easy (and was used inside the proof of 12.26).
2) Very similar to the proof of 12.26 (and we can use part (1)). �12.29

12.30 Lemma. [(f)∗ of 12.1(2)]

Let ℓ = 3 and n ≥ 2. Assume 2λ < 2λ+

and:

(a) s+ is successful hence s+ has the properties required in 12.3(1),
(2)

(b) s has the brimmedℓ weak (λ,≤ n+ 1)-existence property

(c) s has the brimmedℓ strong (λ,≤ n)-uniqueness property

(d) s does not have the brimmedℓ weak (λ, n+1)-uniqueness prop-
erty.
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Then s+ does not have the brimmedℓ strong (λ+, n)-uniqueness prop-
erty.

Remark. Of course, it would be better to have “strong” in clause
(d) of the assumption and it would be better to have weak in the
conclusion. Still we can prove a slightly stronger claim.

A stronger variant of 12.30 is

12.31 Claim. [(f)∗∗ of 12.1(2)]
1) In 12.30 we can replace clause (c) by (c)−1 +(c)−2 (which obviously
follows from it) where (recalling ℓ = 3)

(c)−1 s has the brimmedℓ strong (λ,< n)-uniqueness property

(c)−2 s has the brimmedℓ weak (λ, n)-uniqueness property.

2) We can strengthen the conclusion to: s+ fails the brimmedℓ weak
(λ+, n)-uniqueness property; used in the proof of (∗)4 in 12.37.

Proof of 12.30. We by induction on α < λ+ choose mη for every
η ∈ α2 such that:

⊛(α) mη is a normal brimmedℓ stable (λ,P(n))-system

(β) the universe of M
mη
n is the ordinal γℓg(η) = γη = λ × (1 +

ℓg(η)) < λ+

(γ) the sequence 〈M
mη↾γ
u : γ ≤ α〉 is ≤s-increasing continuous

for u ∈ P(n)

(δ) if α = β + 1 then m∗
η := mη↾β ∗P(n+1) mη is a brimmedℓ

stable (λ,P(n+ 1))-system

(ε) if α = β+1, ν ∈ β2, then: m∗
νˆ<0> ↾ P−(n+1) = m∗

νˆ<1> ↾

P−(n+ 1)

(ζ) if α = β + 1 and ν ∈ β2 then for no f,N do we have:

f is an ≤s-embedding of M
m

∗

νˆ<0>

n+1 into some N for which

M
s∗νˆ<1>

n+1 ≤s N and f is the identity onM
m∗

νˆ<0>
u = M

m∗

νˆ<1>
u

for u ∈ P−(n+ 1)
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(η) if ν1, ν2 ∈ α2 then mν1
↾ P−(n) = mν2

↾ P−(n) (this
strengthens25 clause (ε)).

Now

(∗)1 we can carry the induction
[Why? For α = 0 trivial. For α = β + 1 by clause (d) of
the assumption there are normal brimmedℓ stable P(n+1)-
system m′,m′′ with m′ ↾ P−(n+ 1) = m′′ ↾ P−(n+ 1) as

in clause (ζ), i.e., for no (N, f) do we have Mm
′′

n ≤s N and

f is a ≤s-embedding of Mm′

n+1 into N which is the identity

on Mm′

u for every u ⊂ n + 1. Now as we are proving 12.30,
by assumption (c) and claim 12.23(2) and renaming we have
mηˆ<0>,mηˆ<1> as required in clause (ε) and (ζ) of ⊛ and
by renaming we have (β).

What about clause (η)? We redo the above. We can first
choose f̄ = 〈fu : u ∈ P−(n)〉, an isomorphism from m′ ↾

P−(n) = m′′ ↾ P−(n) onto mη ↾ P−(n) for every η ∈ β2
recalling that clause (η) holds for β. Second, we choose f∗, a

one to one mapping from ∪{Mm′

u : u ∈ P−(n+1)\{n}〉 into
γβ∪{γβ +2i : i < λ}. By f∗ we define mη ↾ (P−(n+1)\{n})
for η ∈ α2 which does not depend on η. So mη ↾ P−(n+ 1)
is defined for every η ∈ α2 and ν ∈ β2 ⇒ mνˆ<0> ↾ P−(n+
1) = mνˆ<1> ↾ P−(n + 1). Now by the assumption (c)
of 12.30, the system mνˆ<0> ↾ P−(n + 1) fails the weak
uniqueness property so we can choose mνˆ<0>,mνˆ<1> as
before.

Note that M
mη
v \ ∪ {M

mη
u : u ⊂ v} has cardinality λ in

all relevant cases as the Jm
v,∅ witness if v 6= ∅ and trivially if

v = ∅.

(For proving 12.31 more work will be needed).

For α limit mη :=
⋃

β<α

mη↾β is a stable (λ,P(n))-system

by Claim 12.17(2); moreover is brimmedℓ by 12.17(2).]

25By looking better at the weak diamond, by a less natural application we
can avoid using clause (η).
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For η ∈ λ+

2 we define a normal (λ+,P(n))-system for s+ called mη

by M
mη
u = ∪{M

mη↾α
u : α < λ+}, clearly:

(∗)2 mη is really a (λ+,P(n))-system for the frame s+ (noting
that M

mη
u ∈ Ks(+) as it belongs to Ks and is saturated over

λs because by clause (δ) by 12.11(10) as (f)∗∗ of 12.1 holds

we know that M
mη↾(α+1)
u is (λ, ∗)-brimmed over M

mη↾α
u for

every α < λ+
s ; also ≤s(+)=≤K[s]↾ Ks(+ as s is good+ and

successful)

(∗)3 mη is a brimmedℓ stable (λ+,P(n))-system for s(+)
[why? by 12.17(3).]

(∗)4 mη ↾ P−(n) is the same for all η ∈ λ+

2 call it m.
[Why? By Clause (η) of ⊛.]

Let ρ ∈ λ+

2. To finish the proof of “s+ fail the strong (λ, n)-

uniqueness property” it is enough to find η ∈ λ+

2 such that h∗ =
∪{idMt

u
: u ⊂ n} cannot be extended to an isomorphism from M

mρ
n

onto M
mη
n ; toward contradiction assume that fη is such an isomor-

phism for every η ∈ λ+

2. By the weak diamond, (see I.0.5) for

some η0, η1 ∈ λ+

2 and δ < λ+ we have ν = ηℓ ↾ δ, νˆ〈ℓ〉 ⊳ ηℓ and
fη1

↾ Mmν
n = fη2

↾ Mmν
n . Clearly we get contradiction to clause (ζ)

in the construction. �12.30

Proof of 12.31. 1) In the proof of 12.30 there one point in which the
proofs differ. We are given the brimmedℓ stable (λ,P(n))-systems
mη for η ∈ β2 and we know that there are normal brimmedℓ stable
P(n+1)-system m′,m′′ such that m′ ↾ P−(n+1) = m′′ ↾ P−(n+

1) but there is no ≤s-embedding of Mm′

n+1 into any N,Mm′′

n+1 ≤s N

over
⋃

u⊂n+1

Mm′

u . By the amount of uniqueness we have, i.e. by

assumption (c)−1 without loss of generality m′ ↾ P−(n) = mη ↾

P−(n) (for every η ∈ β2, hence also m′′ ↾ P−(n) = mη). Without

loss of generality the universe of Mm′

n+1 and of Mm′′

n+1 is γβ +λ (recall

12.11(7)) and, of course, the universe of Mm
′

n = Mm
′′

n is γη.
Now we define m∗

η, a stable (λ,P−(n + 1))-system by m∗
η ↾

(P(n + 1)\{n, n + 1}) = m′ ↾ (P(n + 1)\{n, n + 1}) = m′′ ↾
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(P−(n + 1)\{n, n + 1}) and M
m∗

η
n = M

mη
n . Clearly m∗

η is stable

and brimmedℓ. Without loss of generality m∗
η is the same for all

η ∈ α2.
Now we can apply 12.27, clause (β), the version with (c)1 there (be-
cause its assumption (c)1 holds by (c)−2 here), so m′ ↾ P−(n+1) has
the brimmedℓ weak uniqueness iff m∗

η has it. So as m′ ↾ P−(n+ 1)

fails the brimmedℓ weak uniqueness, also m∗
η fails it. Hence we

can find a stable (λ,P∗(n + 1))-systems m′
η,m

′′
η witnessing it, so

m′
η ↾ P−(n + 1) = m∗

η = m′′
η ↾ P−(n + 1). By renaming we take

care of clause (β) of ⊛ (we use freely 12.11).
2) We choose in addition to mη also Nη such that

⊛ (α), (γ)− (η) as in the proof

(β)′ Nη is brimmed over Mmn
η , the universe of Nη is the

ordinal γℓg(η) < λ (instead of (β))

(θ) if ν⊳η then NFs(M
mν
n , Nν ,M

mη
n , Nη) andNη is brimmed

over M
mη
n ∪Nν .

In the end for η ∈ λ+

2 we define also Nη = ∪{Nη↾α : α < λ+} hence
M

mη
n ≤s(+) Nη and Nη is (λ+, ∗)-brimmed over M

mη
n by Definition

II.7.4(1) and 1.25.

So assume that ρ, η ∈ λ+

2,M
mη
n ≤s(+) N and f is a ≤s(+)-embedding

of M
mρ
n into N over ∪{M

mρ
u : u ⊂ n}. Without loss of gener-

ality N ≤s Nη. We can find N ′
η such that Nη <s(+) N ′

η, N
′
η is

brimmed over Nη (for s+). There is an isomorphism f1 from Nρ

onto N ′
η extending f and there is an isomorphism f2 from N ′

η onto

Nη over M
mη
n . So f2 ◦ f1 is an isomorphism from Nρ onto Nη over

∪{M
mρ
u : u ∈ P−(n)}. The rest should be clear. �12.31

12.32 Claim. [(f)∗∗ of 12.3] 1) Assume ℓ = 3 and n ≥ 1 and

(a) s has the brimmedℓ strong (λ,≤ n)-existence property

(b) s has the brimmedℓ weak (λ,≤ n)-primeness property

Then there is an expanded stable P(n+1)-system d reduced at n+1
such that d ↾ P−(n) is brimmedℓ.
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2) If in addition clause (c) below holds then s has the brimmedℓ

strong (λ, n+ 1)-existence property where

(c) s has the brimmedℓ strong (λ,≤ n)-uniqueness property.

Discussion: What is the aim of 12.32? Obviously it is to get the
brimmed3 strong (λ,≤ n+1)-existence property. As it happens that
there is a unique brimmed3 stable (λ,P−(n + 1))-system m, it is
enough to find one expanded stable (λ,P(n+ 1))-system d reduced
at n+1 such that d ↾ P−(n+1) is brimmed3. We construct a normal
such d by first choosing (Md

∅ ,M
d
n+1), and then choosing d ↾ [n+1]≤k

by induction on k = 1, . . . , n. Note that for k = n+1 we have nothing
to do in the proof. There are no Jd

n+1,u’s for u ⊂ n+ 1 because our
intention is that d is reduced in n+ 1.

Of course we have various problems, The most transparent one is
how to take care that for u ∈ [n+ 1]k, on the one hand we will have
large enough independent sets Ju,w = Jd

u,w when w ⊂ u ⊂ [n + 1]k

and, on the other hand, that when we finish, the set ∪{Jw,u : u ⊂
w ⊂ n} is a maximal subset of {c ∈ Md

n+1 : tps(c,M
d
u ,M

d
n+1) ∈

S bs
s (Md

u ) is ⊥Md
w for w ⊂ u} which is independent in (Md

u ,M
d
n+1).

The solution is to choose 〈Jw,u : u ⊂ w ⊂ n〉 in the k = |u|-th stage.
But if the reader has glanced on/peeped into the proof, he may

have noticed that we do not choose the 〈Jw,u : u ⊂ w ⊂ n〉 but J1
w,u

and J2
w,u, and may feel lost from too many indexes. However, there is

a real reason for them: dealing with u ∈ [n+ 1]k, (k ≥ 2, otherwise
things are somewhat degenerated) we choose Nu ≤m Md

n+1 such
that if we enrich d ↾ P−(u) to a stable (λ,P(u))-system by Nu, it
is stable and reduced in n, this is were assumption (a), i.e. s has the
brimmed3 strong (λ,≤ n)-existence property is used to choose some
such Nu (not necessarily ≤s M

d
n+1) and then assumption (b) says

that s has the brimmedℓ weak(λ,≤ n)-primeness property hence we
can have Nu ≤s M

d
n+1. This does not hurt the “division of work”

of the already defined Jv,w’s. But choosing Md
u (such that Nu ≤s

Md
u ≤s Md

n+1) we should be careful if p ∈ S sb
s (Nu) is ⊥Md

w for

w ⊂ u, maybe there is no J ⊆ {c ∈Md
n+1 : c realizes p} independent

in (Md
n+1,M

d
u , Nu) of cardinality λ. So we choose 〈J1

w,u : w satisfies
u ⊆ w ⊂ n+1〉, taking care of all such p’s (yes! also for w = u). This
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is possible as Md
n+1 is brimmed over Nu by clause (f)∗ of 12.3. Now

we choose Md
u ≤s M

d
n+1 such that (Nu,M

d
u ,J

1
u,u) ∈ K3,mx

s possible
as s has primes. So we can really carry the induction.

Proof. 1) Let M∅ ∈ Ks be brimmedℓ. Let M ∈ Ks be (λs, ∗)-
brimmed over M∅. Let P2

∅ = S bs
s (M0); (but if s has regulars then

we can let P2
∅ ⊆ {p ∈ S bs

s (M∅) : p regular} be a maximal family of

pairwise orthogonal types). Let J2
∅ be a maximal subset of {c ∈M : c

realizes some p ∈ P2
∅ inM overM∅} which is independent in (M∅,M)

so |J2
∅| = λs such that p ∈ P2

∅ ⇒ λ = |{c ∈ J2
∅ : tps(c,M∅, N) = p}|.

Next let {J2
u,∅ : ∅ ⊂ u ⊂ n + 1} be a partition of J2

∅ to sets each of

cardinality λs such that for every p ∈ P2
∅ and ∅ ⊂ u ⊂ n + 1 the

set {c ∈ J2
u : tps(c,M∅,M) = p} has cardinality λs. Let Ik = {u ⊆

n+ 1 : |u| ≤ k} for k ≤ n+ 1.
We now choose by induction on k ∈ {1, 2, . . . , n}, the objects dk

and 〈Nu,P
i
u : u ∈ Ik, |u| ≥ 1〉, 〈Ji

u,v : u ∈ Ik, |u| ≥ 1 and u ⊆ v ⊂
n+ 1〉 for i = 1, 2 such that

⊛(a) dk is a normal brimmedℓ expanded stable (λ, Ik)-system em-

bedded in M and Mdk

∅ = M∅ and for u ∈ I1\I0 we let

Nu = M∅ and J1
u = ∅ and J1

v,u = ∅ when u ⊆ v ⊂ n+ 1 and

also J1
u = ∅,J1

u,v = ∅ if u ∈ I0, i.e. u = ∅ and u ⊆ v ⊂ n+ 1

(b) 1 ≤ m < k ⇒ dm = dk ↾ Im

(c) for u ∈ Ik\I1, Nu is such that ∪{Mdk
w : w ⊂ u} ⊆ Nu ≤s M

and d∗
u is reduced in u where d∗

u is the normal brimmed1

expanded stable P(u)-system such that d∗
u ↾ P−(u) = dk ↾

P−(u),M
d∗

u
u = Nu and J

d∗

u
u,w = ∅ for w ⊂ u

(d) for u ∈ Ik\I1,P
1
u = {p ∈ S bs

s (Nu) : p ⊥Mw for w ⊂ u}, (if s

truely has regulars, see 10.2, then we can use P1
u is a maximal

set of pairwise orthogonal types from {p ∈ S bs
s (Nu) : p reg-

ular orthogonal to Mdk
w for w ⊂ u (hence to Mdk

w for w ∈ Ik
such that u * w by 10.10)})

(e) for u ∈ Ik\I1, the set J1
u is a maximal subset of {c ∈ M :

tps(c, Nu,M) ∈ P1
u} independent in (Nu,M) such that p ∈

P1
u ⇒ λ = |{c ∈ J1

u : tps(c, Nu,M) = p}|
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(f) if u ∈ Ik\I1, then 〈J1
v,u : u ⊆ v ⊂ n+ 1〉 is a partition of J1

u

to sets each of cardinality λs such that moreover, for every
p ∈ P1

u the set J1
v,u,p := |{c ∈ J1

v,u: tps(c, Nu,M) = p}| has
cardinality λs

(g) (Nu,M
dk
u ,

⋃

w⊆u

J1
u,w ∪

⋃

w⊂u

J2
u,w) ∈ K3,mx

m for u ∈ Ik\I0 =

Ik\{∅} recalling that we have J1
u,w = ∅ when w ⊆ u, |w| ≤ 1

(h) P2
u = {p ∈ S bs

s (Md1
u ) : p ⊥ Nu} (or when s truely has

regulars is a maximal set of pairwise orthogonal types from
{p ∈ S bs

s (Mdk
u ) : p orthogonal to Nu when u /∈ I1 and to M∅

if u ∈ I1\I0}) when u ∈ Ik\I0 (if u = ∅ then P2
u has already

been chosen)

(i) J2
u is a maximal subset of {c ∈ M : tps(c,M

dk
u ,M) ∈ P2

u}
independent in (Mdk

u ,M) such that for every p ∈ P2
u the set

{c ∈ J2
u : tps(c,M

dk
u ,M) is equal to p} has cardinality λ

when u ∈ Ik, (if u = ∅,J2
u has already been chosen), note

that the J2
u,w used is clause (g) has already been chosen)

(j) 〈J2
v,u : u ⊂ v ∈ P−(n + 1)〉 is a partition of J2

u such that

for every p ∈ P2
u and v such that u ⊂ v ∈ P−(n + 1) the

set {c ∈ J2
v,u : tps(c,M

dk
u ,M) = p} has cardinality λ when

u ∈ Ik

(k) Jdk
v,u = J1

v,u ∪ J2
v,u where u ⊂ v ∈ Ik

For k = 1,dk is described by clauses (a) + (g) that is for u ∈
I1\I0, Nu = M∅,J

2
∅,u has already been defined and J1

∅,u = ∅ = J1
u,u

so clauses (g) + (h) say that we should choose Md1
u ≤s M such

that (M∅,M
d1
u ,J2

∅,u) ∈ K3,mx
s and if |u| < n and p ∈ S bs

s (Md
u ) is

orthogonal toM∅ then dim(p,M) = λ. Now if |u| = n as s has primes

(see 12.3(1)(c), as (M∅,M,J2) ∈ K3,bs
s there is Md

u ≤s M such that

(M∅,M,J2
∅,u) ∈ K3,qr

s so by 12.6(3) it is as required. Now if |u| <

n we can find N ′
u such that Md1

u ≤s N ′
u, (M∅, N

′
u,J

2
∅,u) ∈ K3,mx

s

and if p ∈ S bs
s (Md1

u ) is orthogonal to M∅ then dim(p,N ′
u) = λ.

Why? Easy or see 12.33. So again by (f)∗∗ of 12.32 without loss of
generality N ′

u ≤s M and now also clause (h) will cause no problem.
Lastly, choose P2

u,J
2
u, 〈J

2
v,u : v satisfies u ⊆ v ⊂ n + 1〉 as above

for u ∈ Ik\I0 (i.e., u = {m}, m < n+ 1).
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For k = m+1 > 1 for each u ∈ Ik\Im clearly dm ↾ P−(u) is a nor-
mal brimmedℓ expanded stable P−(u)-system hence by assumption
(a) we can find d∗

u such that

⊙1 (a) d∗
u is a normal brimmed2 expanded stable P(u)-system

(b) d∗
u ↾ P−(u) = du ↾ P−(u)

(c) d∗
u is reduced in u.

By claim 12.33 below without loss of generality there is N ′
u such that

⊙2 (d) ∪ {M
d∗

u
u,w : w ⊂ u} ⊆ N ′

u ≤s N
′′
u ≤s M

d∗

u
u

(f) if p ∈ S bs
s (N ′

u) is orthogonal to Mdu
u,w for every w ⊂ u

then λ = dim(p,M
d∗

u
u ).

Note that

⊙3 (g) if p ∈ S bs
s (N ′′

u ) is orthogonal to Mdk
w for w ⊂ u then

dim(p,M
d∗

u
u ) = λ.

Now d∗
u is reduced in u hence d∗

u is prime over dm ↾ P−(u), clause
(b) of the assumption. We define a normal expanded (λ,P(u))-

system d′
u by d′

u ↾ P−(u) = dm ↾ P−(u) and Md′

u = M and for

v ⊂ u we let Jd′

u,v is a maximal subset of M\ ∪ {Mdm
w1

: w1 ⊂ u}

including J1
u,v ∪ J2

u,v such that Jd
u,v ∪

⋃

{J1
u,w : w ⊆ u} ∪

⋃

{J2
u,w :

w ⊂ u} is independent in (Mdm
v ,M).

So

(∗)1 d′
u is a normal expanded stable (λ,P(u))-system

(∗)2 d′
u is brimmedℓ

Now

(∗)3 d∗
u is weakly primeℓ.

[Why? By assumption (b), primeness see Definition 12.19(5) because
d∗

u is an expanded stable (λ,P−(u))-system, d∗
u ↾ P−(u) = dm ↾

P−(u) is brimmedℓ and d∗
u is reduced in u′.]

By the definition 12.19(6) of weakly prime, as (∗)2 + (∗)3 + d′
u ↾

P−(u) = d∗
u ↾ P−(u) there is an ≤s-embedding h of M

d∗

u
u into M
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which is the identity on ∪{Mdm
w : w ⊂ u}. Hence without loss of

generality M
d∗

u
u ≤s M . Define Nu := N ′

u and define P1
u as in clause

(d) of ⊛. Now.

(∗)4 if p ∈ S bs
s (Nu) then dim(p,M) = λ.

[Why? Let v(p) ⊆ u be such that p±M
d

∗

u
u,v and w ⊂ v(p) ⇒ p ⊥Md∗

u .
First, if v(p) ⊂ u we can use the set J2

u,v(p). Second, if v(p) = u then

we use “λ = dim(p,M
d∗

u
u )”, which holds by our choice of d∗

u, N
′
u, i.e.

clause (f) of ⊛.]
Now as |u| > 1 we can choose J1

u and 〈J1
v,u : v satisfies u ⊆ v ⊂

n+ 1〉 as required. Now let Mdk
u ≤s M be26 such that:

(α) Mdk
u is brimmedℓ over Nu

(β) (Nu,M
dk
u ,∪{J1

u,w ∪ J2
u,w : w ⊂ u} ∪ J1

u,u) ∈ K3,mx
s

(γ) if p ∈ S bs
s (Mdk

u ) is orthogonal to Nu then |u| < n ⇒
dim(p,M) = λ and |u| = n⇒ dim(p,M) = 0.

Concerning demands (α) + (β) this is possible as s has primes and
(f)∗ of 12.3.

If |u| < n we first choose Mdk
u = N ′′

u . If |u| = n, we try to
choose Nu,α ≤s M by induction on α < λ+, which is ≤s-increasing

continuous, Nu,0 = Mdk
u and (Nu,β, Nu,α, aβ) ∈ K3,pr

s and
tps(aβ, Nu,β,M)⊥Mdk

w for w ⊂ u when α = β + 1. For some α we
are stuck. We then choose P2

u,J
2
u,J

2
v,u (u ⊂ v ⊂ n+ 1) as required;

this is not in general possible but we could have chosen M
d

k
u

u such
that clause (f) holds of ⊛.

Having carried the induction we define a normal P(n+1)-system
dn+1 by

dn+1 ↾ P
−(n+ 1) = dn

M
dn+1

n+1 = M

26exists as for every w ⊂ u, the set Ju,w is independent in (Nu, M) because

(Mw , Nu,∪{Jv1,u1 : v1 ⊂ u, u1 ⊆ w, u1 ⊂ v1}) ∈ K
3,mx
s
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J
dn+1

n+1,u = ∅ for u ⊂ n+ 1.

It is easy to check that dn+1 is as required.
2) Easy, by 12.23(2). �12.32

12.33 Claim. Assume

(a) d is an expanded stable (λ,P(n))-system

(b) d is reduced at n.

Then we can find d′ such that

(α) d′ is an expanded stable (λ,P(n))-system reduced at n

(β) d′ ↾ P−(n) = d ↾ P−(n)

(γ) hd′

n,u = hd
n,u for u ⊂ n

(δ) Md
n ≤s M

d′

n

(ε) if p ∈ S bs
s (Md

n ) is orthogonal27 to Md
n,u for every u ⊂ n

then dim(p,Md′

n ) = λ.

Proof. Let M+ ∈ Ks be (λ, ∗)-brimmed over Md
n , let P = {p ∈

S bs
s (Md

n ) : p regular ⊥Md
n,u for every u ⊂ n}. Let J = {cp,α : p ∈ P

and α < λ} be such that

(i) cp,α ∈M+ realizes p

(ii) p ∈ P ∧ α 6= β ⇒ cp,α 6= cp,β

(iii) J is independent in (Md
n ,M

+).

Now let M ≤s M+ be such that (Md
n ,M,J) ∈ K3,mx

s and M is
maximal under this condition and define d′ such that ((α), (β), (γ)

above holds and) Md′

n = M . It is easy to check that d′ is as required.
�12.33

27when s has regulars then enough if p is regular
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12.34 Claim. 1) Assume ℓ = 3 (and also ℓ = 1, 2) and

(a) s is successful hence s+ satisfies the hypothesis 12.3

(b) s has the brimmedℓ weak (λ,≤ n + 1)-uniqueness property
[actually only the values n+ 1 and n are used]

(c) m is a brimmedℓ stable (P−(n), s+)-system

(d) m∗ is a stable (P(n), s+)-system reduced at n such that m∗ ↾

P−(n) = m.

Then m∗ is weakly prime over m for s+.
2) Moreover, m∗ is strongly primeℓ over m for s+.

Remark. This is similar to the proof of the existence of primes in s
+.

Proof. Without loss of generality m∗ is normal. Let 〈Mα
u : α < λ+

s 〉
be ≤s-increasing continuous with union Mm∗

u and let E be a thin
enough club of λ+

s . By 12.18 for each α ∈ E,m∗
α = 〈Mα

u : u ∈ P(n)〉
is a normal stable P(n)-system reduced at n and letting P = {u ⊆
n+1 : n * u} for α < β from E,m∗

α,β := mα ∗P(n+1) mβ is a stable

(P(n + 1), s)-system and mα,β ↾ P is a normal brimmed3 stable
(P, s)-system. Suppose that M ∈ Ks(+) and 〈fu : u ∈ P−(n)〉 is a
stable embedding of m into M (see Definition 12.9(3)).

As m is normal, we have u ⊆ v ∈ P−(n) ⇒ fu ⊆ fv. Let
〈Mα : α < λ+

s 〉 be ≤s-increasing continuous with union M and
without loss of generality E is a thin enough club for this too so, e.g.
α ∈ E & u ⊂ n ⇒ fu(Mα

u ) = fu(Mu) ∩Mα; by renaming E = λ+
s .

Let fα
u = fu ↾ Mα

u , so f̄α = 〈fα
u : u ∈ P−(n)〉 is an embedding of

mα into Mα ≤K[s] M . Now we choose fα
n by induction on α such

that

⊛(i) fα
n is a ≤K[s]-embedding of Mα

n into M (hence into Mβ(α) for
some β(α) < λ+

s )

(ii) fα
n extends fβ

n for β < α and fα
u for u ∈ P−(n).

For α = 0, f0
n exists as s has the brimmed3 weak (λ, n)-uniqueness

property and M is λ+-saturated above λ.

For α limit let fα
n =

⋃

β<α

fβ
n .
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For α = β + 1 let γ < λ+
s be such that Mγ is (λ, ∗)-brimmed over

Rang(fβ
n )∪

⋃

{Rang(fα
u : u ∈ P−(n)}. We shall show that there is a

≤s-embedding ofMα
n intoM and even intoMγ extending fβ

n∪
⋃

{fα
u :

u ∈ P−(n)}. We defined the normal (λ,P−(n + 1))-system m′
β,α

defined by m′ ↾ {u ⊂ n + 1 : n * u} = m∗
β,α and M

m′

α,β
n = Mβ

n .

Clearly m′
β,α is a normal stable (λ,P−(n + 1))-system. Now we

shall use “s has the brimmed3 weak (λ, n+ 1)-uniqueness property”
defined in 12.19(2) for the (λs,P

−(n+1))-system m∗
α,β. Now define

ḡα = 〈gα
u : u ≤ n〉 by gα

u = fα
u if u ⊆ n, gα

u = fα+1
u\{n} if n ∈

u ⊂ n + 1; now ḡα is a stable embedding of m′
α,β into Mβ(α) (see

Definition 12.9(3)) as Mα
n does not “contribute” (as m is reduced

in n). But the assumption of “s has brimmedℓ weak uniqueness” is
not fully satisfied because for m′

α,β the brimmedℓ demand does not

(necessarily) holds for u = n, i.e., for fα
n (Mα

n ); however, by Claim
12.26 this is overcomed. We get that there is a pair (f,N) such that
Mβ(α) ≤s N and f a ≤s-embedding Mα

n into N , but without loss of
generality N ≤s Mβ(α)+1 so we are done.

Now fn =
⋃

α<λ
+
s

fα
n is the required embedding. �12.34

12.35 Conclusion. Assume ℓ = 3 and

(a) s is successful hence s+ satisfies 12.3

(b) s has the brimmedℓ weak (λ,≤ n+ 1)-uniqueness property.

Then s+ has the brimmedℓ weak (λ+, n)-primenessℓ property.

Proof. By 12.34. �12.35

12.36 Claim. [Assume (f)∗∗ of 12.3]
1) Let ℓ = 3 and

(a) s has the brimmedℓ strong (λ, n)-existence property

(b) s has the brimmedℓ weak (λ, n)-primeness property.
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Then s has the brimmedℓ strong (λ, n)-uniqueness property.
2) Let ℓ = 4 and s has the brimmedℓ weak (λ, n)-uniqueness property
then s has the brimmedℓ strong (λ, n)-uniqueness property.

Proof. 1) The cases n = 0, 1 are easy; so assume n ≥ 2.
Assume d1,d2 are brimmedℓ stable (λ,P(n))-system and f̄ =

〈fu : u ∈ P−(n)〉 is an isomorphism from d1 ↾ P−(n) onto d2 ↾

P−(n). As s has the brimmedℓ strong (λ, n)-existence property,
(i.e., assumption (a)), clearly for k = 1, 2 there is an expanded stable

(λ,P(n))-system dk,dk ↾ P−(n) = dk ↾ P−(n),Mdk

n is brimmedℓ

and dk reduced in n, i.e., such that u ⊂ n⇒ Jdk

n,u = ∅).
Now we can find a pair (Nk,Jk) such that

(∗)1 (a) (Mdk

n , Nk,Jk) ∈ K3,mx
s

(b) if a ∈ Jk then tps(a,M
dk

n , Nk) is orthogonal to Mdk

n,u

for u ⊂ n

(c) if p ∈ S bs
s (Mdk

n ) is orthogonal to Mdk

n,u for u ⊂ n then

λ = |{a ∈ Jk : p = tps(a,M
dk

n , Nk)}|.

By assumption (b), recalling that for ℓ ≥ 2, weak primeness and
strong primeness are equivalent see the Definition 12.19 there is a

≤s-embedding gk of Nk into Mdk

n over ∪{Mdk

n,u : u ⊂ n}.
Let f ′

u = fu for u ⊂ n. Trivially, without loss of generality there
is an isomorphism f ′

n such that 〈f ′
u : u ∈ P(n)〉 is an isomorphism

from d1 onto d2 and such that f ′
n maps g1(N1) onto g2(N2) and it

maps N ′
1 = g1(M

d1

n ) onto N ′
2 = g2(M

d2

n ).
By clause (b) of the assumption + (∗) of Definition 12.19(5A)

without loss of generality Mdk

n ≤s M
dk
n ; recall u ⊂ n⇒ hdk

n,u = hdk
n,u.

For u ⊆ n let

Pk
u = {p ∈ S

bs
s (N ′

k) :p ⊥Mdk

n,u,w if w ⊂ u and p does not fork over

Mdk

n,u if u ⊂ n}.

Lastly, let Pk = ∪{Pk
u : u ⊆ n}.

Now

(∗)2 if k = 1, 2 and u ⊂ n and p ∈ Pk
u then dim(p,Md

n ) = λ.
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[Why? We use “d is brimmedℓ (λ,P(n))-system”.]

Note that (Mdk

n,u,M
dk

n ,J2,dk

n,u ) ∈ K3,mx
s hence (Mdk

n,u,M
dk
n ,J2

n,u) ∈

K3,mx
s hence J2,dk

n,u \J2,dk

n,u is independent in (Mdk
n,u,M

dk

n ,Mdk
n ) hence

by monotonicity is independent in (Md−k
n,u , N ′

k,M
dk
n ) and it provides

the necessary witnesses (the regular version is more transparent)

(∗)3 if k = 1, 2 and p ∈ Pk
n then dim(p,M

d∗

k
n ) = λ.

[Why? Note that p ∈ S bs
s (N ′

k). By the choice of gk this means

dim(g−1
k (p), Nk) = λ which holds by the choice Nk.]

We can apply (d)(ii) + (f)∗ of 12.3 with (Mdk
n ,Mdk

n ) here standing
for (M,N) and 〈Mdk

u : u ⊂ n〉 there standing for 〈Mℓ : ℓ < n〉 there,

hence Mdk
n is (λ, ∗)-brimmed over Mdk

n . As f ′
n is an isomorphism

from Md2

n onto Md2

n there is an isomorphism fu from Md1
n onto Md2

which extends f ′
n. So clearly 〈fu : u ⊆ n〉 is an isomorphism from d1

onto d2.
2) Left to the reader as an exercise (+ not used). �12.36

12.37 Theorem. [2λ+n

< 2λ+n+1

for n < ω]. Let ℓ = 3. Assume
s is ω-successful and s satisfies 12.1(e)∗,(f)∗∗ (starting with s+ this
follows). Then s+m is (m + 2)-beautiful for every m < ω; (see defi-
nition below, so s+m is m′-beautiful for m′ = 0, . . . , m+ 2).

12.38 Definition. 1) We say that s is n-beautifulℓ or (n, ℓ)-beautiful
if:

(a) s has the brimmedℓ strong (λ,≤ n)-existence property

(b) s has the brimmedℓ weak (λ,≤ n)-uniqueness property

(c) s has the brimmedℓ strong (λ,< n)-uniqueness property

(d) s has the brimmedℓ weak (λ,< n)-primeness property

(e) s has the brimmedℓ strong prime (λ,< n)-existence.

2) We say that s is ω-beautifulℓ if s is n-beautifulℓ for every n.

Remark. 1) In the Theorem we could restrict our demand to n ≤
n∗(< ω) and get the appropriate conclusion, essentially s

+m is n-

excellent3 if s is 2n-successful (and 〈2λ+ℓ

: ℓ ≤ 2n〉 is increasing).
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2) In clause (e) of 12.38 there is no difference between the strong and
weak versions because 12.1(e)∗ holds.

Proof of 12.37. We know by 12.5(2) that

(∗)1 s+m satisfies the demands in 12.3(1)+(2) and is successful
for m < ω

We now prove by induction on n ≥ 2 that

⊠n s
+m is n-beautifulℓ if m ≥ n− 2.

First we prove ⊠2.
So we have to check in Definition 12.38(1) clauses (a),(b) for n′ ≤ 2

and clause (c),(d),(e) for n′ < 2. First we deal with n′ = 0, 1. Now
clause (a) for n′ = 0 holds trivially and for n′ = 1 by the existence
of primes (by 5.8(6) noting that being a brimmed3 model is trivial
as s

+n is categorical by (e)∗ of 12.3). Clause (b), weak uniqueness
holds by 12.20(2). Clause (c), strong uniqueness, for n′ = 0 this
means categoricity, i.e. (e)∗ of 12.3 which we have assumed and for
n′ = 1, this follows by 12.20(3).

Lastly, clause (d), weak primeness holds because of the same rea-
son. Also clause (e) holds.

Now s+m has the brimmedℓ weak (λ, 2)-uniqueness as s+m is
a weakly successful good frame (i.e., the uniqueness of NFs(+m)-

amalgamation). Lastly, the brimmedℓ strong (λ+m, 2)-existence holds
by 12.32(2) for n = 1.

So let n ≥ 2 and we assume ⊠n and we shall prove ⊠n+1, this
suffices. Now we should consider all m ≥ (n+1)−2 = n−1; but the
first two assertions below (∗)2, (∗)3 are shown even in more cases, i.e.
for m ≥ n− 2

(∗)2 there is a brimmedℓ stable (P(n+ 1), s+m)-system for m ≥
n− 2
[Why? By 12.28; why its assumptions hold? As for ev-
ery n′ ≤ n, s+m+1 has the brimmedℓ weak (λ+m+1, n′)-
existence property by 12.23 there is a brimmedℓ expanded
stable (λ+m+1, n)-system for s+m.]
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(∗)3 s+m has the brimmedℓ weak (λ+m, n+1)-existence property
if m ≥ n− 2.
[Why? By (∗)2 there is brimmedℓ expanded stable (P(n +
1), s+m)-system call it d∗. Let a brimmedℓ expanded stable
(P−(n+ 1), s+m)-system d be given. By ⊠n we know that
s
+m has the strong (λ+n, < n)-uniqueness property hence

by 12.23(2) the systems d∗ ↾ [n + 1]<n,d ↾ [n + 1]<n are
isomorphic so without loss of generality they are equal. Now
we shall apply clause (α) of the conclusion of 12.27 to d and
d∗ ↾ P−(n+1), as the latter has the weak existence property
(as d∗ exemplify) it suffices to check the assumptions of 12.27.
So here I = P−(n+1) and J = [n+1]<n, clause (a) of 12.27 is
obvious, clause (b) was assumed above and clause (c)1 follows
from “s+m has the weak n-uniqueness property”, which holds
as we assume ⊠n.]

(∗)4 s+m has the brimmedℓ weak (λ+m, n + 1)-uniqueness prop-
erty if m ≥ n− 2.
[Why? We try to apply 12.31(2) hence implicitly 12.30 +
12.31(1) to s+m and n. Its conclusion fails by clause (b)
of Definition 12.38, applied to (s+m)+ = s+m+1 for n which
holds as we are assuming ⊠n so we have to checkm+1 ≥ n−2.
Clause (a) from its assumptions, see 12.30, i.e. (s+m)+ is suc-
cessful, holds by (∗)1, clause (b) which says that s+m has the
brimmedℓ weak (λ+m,≤ n+ 1)-existence property, holds by
(∗)3 for n+1 and by clause (a) of Definition 12.38 for m ≤ n.
Now clause (c)−2 which says that s+m has the brimmedℓ weak
(λ+m, n)-uniqueness property, see 12.31 holds by clause (b)
of Definition 12.38 by ⊠n applied to s+m and clause (c)−1 ,
which says that s+m has the brimmedℓ strong (λ+m, < n)-
uniqueness property, see 12.31 holds by clause (c) of Defini-
tion 12.38 by ⊠n applied to s

+m. So in 12.31 only the fourth
assumption (d), may fail, so as its conclusion fails, (d) there
fails.
Hence clause (d) from 12.30 has to fail which is the desired
conclusion.]

(∗)5 s+m has the brimmedℓ weak (λ+m, n)-primeness property if
m ≥ n− 1.
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[By 12.35 applied to n′ = n and s′ = s+(m−1). It gives the
desired conclusion. As for its assumption clause (a) there
holds by (∗)1 and clause (b) there for n + 1 by (∗)4 above
(applicable asm−1 ≥ n−2 because m−1 ≥ (n−1)−1 = n−2
and for 0, . . . , n by ⊠n.]

(∗)6 s
+m has the brimmedℓ strong (λ+m, n)-uniqueness property

if m ≥ n− 1.
[Why? By 12.36, assumption (a) there holds by clause (a) of
the definition 12.38 of beautiful and ⊠n and clause (b) there
holds by (∗)5 above.]

(∗)7 s+m has the brimmedℓ strong (λ+m, n+1)-existence property
for m ≥ n− 1.
[Why? We shall apply 12.32(2), its conclusion is what we
need so we have to check its assumptions. First, assump-
tion (a) there which says that s

+m has the brimmedℓ strong
(λ+m,≤ n)-existence property, holds by ⊠n. Assumption (b)
there which says that s+m has the brimmedℓ weak (λ+m,≤
n)-primeness property holds by (∗)5 and ⊠n (which says
that).
Lastly, assumption (c) there which says that s+m has the
brimmedℓ strong (λ,≤ n)-uniqueness property, holds by (∗)6
above +⊠n so we are done.]

So ⊠n+1 holds. Having carried the induction we are done. �12.37

We give here another cases of deriving a good λ-frame. It has a
(limited) use. Recall that Chapter II has tried generalizing [Sh 87a],
[Sh 87b] but through it give the parallel conclusions about each λ+n,
it does not say anything on µ ≥ λ+ω. In the claims (12.39), 12.41,
12.42, 12.43 below we derived the parallel of several of the further
conclusions of [Sh 87a], [Sh 87b].
The aim of the following claim is to help proving for the case ℓ =
3 that for non-uni-dimensional s, we can prove non-categoricity in
higher cardinals (of course, we shall get better results when we prove
beautifulness for ℓ = 1 in [Sh 842]).

12.39 Claim. 1) Assume that
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(a) s is a successful good+ λ-frame with primes

(b) M∗ ∈ Ks and 〈ci : i < λs〉 list the elements of M∗,
P ⊆ S bs

s (M∗) is a non-empty set of types such that there is
q ∈ S bs

s (M∗) orthogonal to P (so s is not weakly uni-dimen-
sional)

(c) τ∗ = τ ∪ {ci : c ∈M∗}

(d) K∗ = {M : M is a τ∗-model, M ↾ τ ∈ Ks and ci 7→ cMi is a
≤K[s]-embedding of M∗ into M ↾ τ and if if M∗ ≤K M ′ ≤K

M ↾ τ,M ′ ∈ Kλ and p ∈ P then p has a unique extension in
Ss(M

′)}

(e) K∗ = (K∗,≤K∗) where M1 ≤K∗ M2 iff (M1,M2 ∈ K∗ and)
M1 ↾ τ ≤K[s] M2 ↾ τ

(f) s∗ = (K∗,S bs
∗ ,

⋃

∗
) where

(i) S bs
∗ (M1) is essentially {tpK∗(a,M1,M2) : M1 ≤K∗ M2

both of cardinality λs and tps(a,M1 ↾ τ,M2 ↾ τ ∈
S bs

s (M1 ↾ τ)}

(ii)
⋃

∗
similarly, i.e.,

⋃

∗
(M0,M1, a,M3) iff M0 ≤K∗ M1 ≤K∗

M3, a ∈M3 and
⋃

s
(M0,M1, a,M3).

Then

(α) s∗ is a good λ-frame

(β) Ks
∗

⊆ Ks, Ks
∗

λ 6= ∅, Ks
∗

λ+ 6= ∅ so İ(µ,Ks
∗

) ≤ İ(µ,Ks
∗

) for
µ ≥ λ

(γ) if İ(λ+n+1, Ks
∗

) < µunif(λ
+n+1, 2λ+n

) for n < ω, then s∗ is
ω-successful.

Proof. Clause (α).
Check

Clause (β).
Trivial.

Clause (γ).
By 12.37 applied to s∗. �12.39
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12.40 Discussion: We are interested in the models of Ks of cardi-
nality ≥ λ+ω

s . Of course, we assume that s is ω-beautiful3, which

follows from 〈2λ+n
s : n < ω〉 is increasing and s is ω-successful by

Theorem 12.37 (otherwise we are stuck) and this follows from “s is

a good λ-frame and İ(λ+n+1, Ks) < µunif(λ
+n+1, 2λ+n

) for each n.
For simplicity we assume s is good+ (as s+ is good+ in any case)
and without loss of generality s is categorical (in λ).

First, let us look at s which is weakly uni-dimensional (see §2
mainly, Definition 2.2, claims 2.9,2.11, 2.12) then Ks is categorical
in λ+ hence Ks+ = Ks

λ
+
s

and in general Ks(+n) = Ks

λ+n , so Ks is

categorical in λ+n for each n. In this case we can prove that Ks is
categorical in µ for every µ and we can lift s to an ω-beautiful s[µ]
for every µ ≥ λ.

Second, we look at the case s is not weakly uni-dimensional. We
can naturally continue to define s+α = s[λ+α] for α ≥ µ (restricting
ourselves to superlimit models), again a good λ+α-frame categorical
in λ+α which is ω-beautiful3, and relates naturally to s+β for β <
α. In particular, each s

+α is not weakly uni-dimensional (as s is

not weakly uni-dimensional, and we can lift this) hence Ks
+α

is not
categorical in λ+α+1. So Ks has models in every cardinality µ ≥ λ
and is not categorical in every successor cardinality µ > λ. This
unfortunately leaves out the limit cardinals µ > λ.

Thirdly, we can remedy this (take care of the limit cardinals) as
follows. Without loss of generality s has primes and is as in 12.3
(otherwise use s

+3, see 12.2). We can find M∗ ∈ Ks and p, q ∈
S bs

s (M) which are orthogonal so we can define t as in 12.39, so τK[t] =

τK ∪ {ca : a ∈ M∗}, N ∈ Kt ⇒ M∗ ≤K[s], N ↾ τK. We still do not

know that t is ω-successful, as though Ks
µ, K

t
µ are closely related for

µ = λs and somewhat related for µ = λ+
s , we do not know about the

relation later. Still if n < ω ⇒ İ(λ+n+1, Ks) < µunif(λ
+n+1, 2λ+n

)

then also n < ω ⇒ İ(λ+n+1, Kt) < µunif(λ
+n+1, 2λ+n

) and so we can
prove that t is n-successful. From this by the above µ > λ⇒ Kt

µ 6= ∅.

But choose M1 ∈ Ks

s[µ],M2 ∈ Kt[µ] hence M1 is λ+
s -saturated above

λs, whereas M2 is not so Ks is not categorical for each µ > λ.

Fourth, though the assumption İ(λ+n+1, Ks) < µunif(λ
+n+1, 2λ+n

)
for n < ω is reasonable we may want to eliminate it. This involves
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a much more serious drawback of the above: it did not say much
on Ks, Ks(+n) and even on Ks(+ω). The last one can be remedied:
working harder we can prove that Ks(+ω) is ω-beautiful1.

This has strong consequences: in fact we can understand Ks(+ω),
it has amalgamation and we can define a ω-beautiful1, good+, λ+α-
frame s(λ+α) such that Ks(λ+α) = Ks

λ+α and it relates naturally to

s(λ+β) for β < α.
Let us return to the consequences of “s is not weakly uni-di-

mensional”. Again s+ω is not weakly uni-dimensional hence by ω-
beautiful1 (not proved here) for every µ > λ+ω we can build a model

Mµ ∈ K
s(+ω)
µ which is not λ+ω+1-saturated for Ks(+ω). By the

omitting type theorem for a.e.c. (see [Sh 394]) we can find M ′
µ ∈ Ks

µ

which is not λ+-saturated for Ks. As the M ∈ Ks[µ] is λ+
s -saturated

we are done.

12.41 Major Conclusion. Assume that s satisfies the conclusion of
12.37 and let t = s

+ω (see Definition 0.4(4)) then we can define
〈sµ : µ ≥ λ〉 such that

(a) sλ+ω = s+ω = s(+ω) is a good λ+ω
s -frame (recall that Ks(+ω)

is ∩{K
s(+n)
λ+ω : n < ω})

(b) t = s+ω is ω-beautiful3

(c) (α) if µ = λ+n then sµ = s+n

(β) if µ ≥ λ+ω, sµ is a good µ-frame, which is beautiful
and categorical in µ

(γ) sµ+ = (sµ)+

(δ) if µ ≥ λ+ω is a limit ordinal then

(i) Ksµ
= ∩{Ksθ : θ ∈ [λ, µ)}

(ii)
⋃

sµ

and S bs
sµ

are defined as in II§2 from 〈sθ : θ ∈ [λ, µ)〉

(iii) similarly NFsµ
, K3,mx

s

(d) if s is weakly uni-dimensional and µ ≥ λ then sµ = s[µ] and

for µ ≥ λ+ω, t[µ] = s[µ]; hence Ks(+) is categorical in µ for
every µ ≥ λ+

s hence
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(d)′ if in addition Ks is categorical in λ+
s then Ks is categorical

in µ for every µ ≥ λs

(e) if s is not weakly uni-dimensional then each s(µ) is not weakly
uni-dimensional

(f) s has NDOP iff t = s+ω has NDOP iff s(µ) has NDOP (for
any µ ≥ λs)

(g) Ks
µ 6= ∅ for µ ≥ λ, s[µ], s(µ) are well defined for µ ≥ λ (on

s[µ] see Definition 0.4(4)).

Before we prove note:

12.42 Conclusion. Assume 2λ+n

< 2λn+1

for n < ω and

(a) s is a good λ-frame not weakly uni-dimensional

(b) İ(λ+n+1, Ks) < µunif(λ
+n+1, 2λ+n

) for n < ω.

Then Ks is not categorical in µ, for every µ > λ.

Remark. We can add to 12.41 (but will be dealt with elsewhere)

(h) t(µ) is a beautiful1 frame

(i) Kt is essentially the class of λ+ω
s -saturated models from Ks,

pednatically it is the class of ∩{Ks(+n) : n < ω}.

This is done elsewhere mainly [Sh 842], where we separate the various
aspects (in particular the existence).

Proof of 12.41. Should be clear if you arrive here.
We still give some details. The properties are defined such that

they provably exist. E.g. a typical point of clause (a) is:

(∗)1 Kt has the disjoint amalgamation property.

[Where? Let µ = λ+ω. Assume that M∅ ≤t M{ℓ} for ℓ = 0, 1,
hence ‖Mℓ‖ = µ for ℓ = 0, 1, 2 and M1 ∩ M2 = M0. For α < µ
let n(α) = Min{n ≥ n : λ+n ≥ |α|}. Let χ be large enough and
we choose Bα ≺ (H (χ),∈) for α < µ, increasing continuous with α
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such that ‖Bα‖ = λ+1 + |α| and s,M0,M1,M2 belongs to B0. Now
let Mu

α := Mu ↾ Bα for α ≤ µ, u ⊂ {0, 1}; clearly Mu
α ∈ Ks(+n(α))

is ≤K-increasing continuous with union. Now we choose M
{0,1}
α by

induction on α such that

⊛ (a) M
{0,1}
α ∈ Ks(+n) if n = n(α)

(b) M{0,1} ∈ Ks(+n) if n = n(α)

(c) mα = 〈Mu
α : u ⊆ {0, 1}〉 is a brimmed3 stable

(〈
+n(α)
7 ,P(2), s+n(α))-system

(d) mα = mα ∗P(3) mα+1 is a brimmed3 stable

(λ+n(α),P(3), s+n(α))-system

(e) M
{0,1}
α ∩Mu

α = Mu
α for u ⊂ 2.

Note that easily tα is brimmed3 stable (P−({0, 1, 2, })\{{0, 1}}, sn(α))-
system. The proof should be clear. �12.37

Proof of 12.42. For each µ > λ, there is M1
µ ∈ Ks[µ] see 12.41. But

we can define t as s∗[+ω], where s∗ is as in 12.39 and apply it to
12.37, 12.41, and get M2

µ ∈ Kt[µ]. Looking at ≤K[s]-submodels of

M1
µ,M

2
µ it is clear that M1

µ ≈M2
µ so we are done. �12.42

We can sum up

12.43 Conclusion. Assume 2λ+n

< 2λ+n+1

for n < ω. If an a.e.c.
K with LS(K) ≤ λ, is categorical in λ, λ+, 1 ≤ İ(λ++, K) and

İ(λ+n+2, K) < µunif(λ
n+2, 2λ+n+1

) for n < ω then K is categorical in
every µ ≥ λ.

12.44 Remark. 1) This through light on [MaSh 285], [KlSh 362], [Sh
472], [Sh 394], (see more in Chapter N) and see Theorem IV.7.12.
In those works we start with an appropriate a.e.c. K and assume that
it is categorical in λ large enough then LS(K) and prove that for some
α∗ < (2LS(K))+ the class is categorical in every λ′ ∈ [iα∗

, λ), but
nothing is said about λ′ > λ. However, if for some µ, µ+ω ∈ (iα∗

, λ]
then by 12.43 we are done. This weak set theoretic assumption will
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644 III. CLASSIFICATION THEORY OF GOOD λ-FRAMES & A.E.C.

be eliminated in a sequel.
2) Moreover, we can eliminate the “λ successor” assumption.
3) We can say much more: ω-successful frames are very much like
superstable first order classes and more. See on this mainly [Sh 842].
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CATEGORICITY AND SOLVABILITY

OF A.E.C., QUITE HIGHLY

SH734

§0 Introduction

The hope which motivates this work is

0.1 Conjecture: If K is an a.e.c. then either for every large enough
cardinal µ,K is categorical in µ or for every large enough cardinal
µ,K is not categorical in µ.
Why do we consider this a good dream? See Chapter N.

Our main result is 4.10, it says that if K is categorical in µ (ignor-
ing few exceptional µ’s) and λ ∈ [LS(K), µ) has countable cofinality
and is a fix point of the sequence of the iα’s, (moreover a limit
of such cardinals) then there is a superlimit M ∈ Kλ for which
K[M ] = Kλ ↾ {M ′ : M ′ ∼= M} has the amalgamation property (and
a good λ-frame s with Ks = K[M ]). Note that Chapter III seems to
give a strong indication that finding good λ-frames is a significant
advance. This may be considered an unsatisfactory evidence of an
advance, being too much phrased in the work’s own terms. So we
prove in §5 - §7 that for a restrictive context we make a clear cut

advance: assuming amalgamation and enough instances of 2λ < 2λ+

occurs, much more than the conjecture holds, see Chapter N on
background.

Note that as we try to get results on λ = iλ > LS(K), clearly
it does not particularly matter if for κ ∈ (LS(K), λ) we use, e.g.
κ1 = κ+ or κ1 = i(2κ)+(= i1,1(κ)) or even i1,7(κ).

After 4.10 the next natural step is to show that sλ has the better
properties dealt with in Chapter II, Chapter III, see [Sh:F782]. Note
that if we strengthen the assumption on µ in §4 (to µ = µ<λ), then
it relies on §1 only. Without this we need §2 (hence 5.1(1),(4)).

Typeset by AMS-TEX

645

Paper Sh:734, Chapter IV



646 IV. CATEGORICITY AND SOLVABILITY OF A.E.C.

Originally we have used here categoricity assumptions but lately it
seems desirable to use a weaker one: (variants of) solvability. About
being solvable, see N§4(B), [Sh 842]. This seems better as it is a
candidate for being an “outside” generalization of being superstable
(rather than of being categorical).
Here we use solvable when it does not require much change; for more
on it see [Sh 842], [Sh:F820] and on material delayed from here see
[Sh:F782].
Note we can systematically use Ksc(θ)-lin, say with θ = ℵ0 or θ =
LS(K) instead of K lin; see Definition 0.14(8). In several respects
this is better, but not enough to make us use it. Also working
more it seemed we can get rid of “wide”, “wide over”, see Definition
0.14(1),(2),(3). If instead proving the existence of a good λ-frame it
suffices for us to prove the existence of almost good λ-frame, then
the assumption on λ can be somewhat weaker (fixed point instead
limit of fix points of the sequence of the iα’s). In §7 we sometimes
give alternative quotations in [Sh 394] but do not rely on it.
We thank Mor Doron, Esther Gruenhut, Aviv Tatarski and Alex
Usvyatsov for their help in proofreading.
Basic knowledge on infinitary logics is assumed, see e.g. [Di]; though
the reader may just read the definition here in N§5 and believe some
quoted results.

0.2 Notation. Let i0,α(λ) = iα(λ) := λ + Σ{iβ(λ) : β < α}. Let
i1,α(λ) be defined by induction on α : i1,0(λ) = λ, for limit β we

let i1,β =
∑

γ<β

i1,γ and i1,β+1(λ) = iµ where µ = (2i1,β(λ))+.

0.3 Remark. 1) For our purpose, usually i1,β+1(λ) = iδ(µ) where
µ = i1,β(λ) suffice, see e.g. V.A§1 in particular on δ(−). Generally
µ = (i1,β(λ))+ is a more natural definition, but:

(a) the difference is not significant, e.g. for α limit we get the
same value

(b) our use of omitting types makes our choice more natural.
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2) We do not use but it is natural to define iγ+1,0(λ) = λ, iγ+1,β+1(λ)

= iγ,µ(λ) with µ = (2iγ+1,β(λ))+, iγ+1,δ(λ) =
∑

β<δ

iγ+1,β(λ) and

iδ,0(λ) = sup{iγ,0(λ) : γ < δ} = λ,iδ,β+1(λ) = iδ,β(iδ,β(λ)),
iδ,δ1

= sup{iδ,α(λ) : α < δ1}; this is used, e.g. in [Sh:g, ChV].

0.4 Definition. Assume M is a model, τ = τM is its vocabulary
and ∆ is a language (or just a set of formulas) in some logic, in the
vocabulary τ .

For any set A ⊆ M and set ∆ of formulas in the vocabulary τM ,
let Sfrα

∆(A,M) which we call the set of formal (∆, α)-types over A
in M , be the set of p such that

(a) p a set of formulas of the form ϕ(x̄, ā) where ϕ(x̄, ȳ) ∈ ∆, x̄ =
〈xi : i < α〉 and ā ∈ ℓg(ȳ)A

(b) if ∆ is closed under negation (which is the case we use here)
then for any ϕ(x̄, ȳ) ∈ ∆ with x̄ as above and ā ∈ ℓg(ȳ)A we
have ϕ(x̄, ā) ∈ p or ¬ϕ(x̄, ā) ∈ p.

Recall

0.5 Definition. 1) For K an a.e.c. we say M ∈ Kθ is a superlimit
(model in K or in Kθ) when:

(a) M is universal

(b) if δ is a limit ordinal < θ+ and 〈Mα : α ≤ δ〉 is ≤Kθ
-increasing

continuous and α < δ ⇒ Mα
∼= M then Mδ

∼= M (equiva-

lently, K
[M ]
θ = K ↾ {N : N ∼= M} is a θ-a.e.c.)

(c) there is N such that M <K N ∈ Kθ and N is isomorphic to
M .

2) We say M ∈ Kθ is locally superlimit when we weaken clause (a)
to

(a)− if N ∈ Kθ is a ≤K-extension of M then N can be ≤K-
embedded into M .
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3) We say that M is pseudo superlimit when in part (1) clauses
(b),(c) hold (but we omit clause (a)); see 0.6(7) below.

3A) For M ∈ Kλ let K[M ] = K
[M ]
λ be K ↾ {N : N ∼= M}.

4) In (1) we may say globally superlimit.

0.6 Observation. Assume (K is an a.e.c. and) Kλ 6= ∅.
1) If K is categorical in λ and there are M <Kλ

N then every M ∈ Kλ

is superlimit.
2) If every/some M ∈ Kλ is superlimit then every/some M ∈ Kλ is
locally superlimit.
3) If every/some M ∈ Kλ is locally superlimit then every/some M ∈
Kλ is pseudo superlimit.
4) If some M ∈ Kλ is superlimit then every locally superlimit M ′ ∈
Kλ is isomorphic to M .
5) If M is superlimit in K then M is locally superlimit in K. If M
is locally superlimit in K, then M is pseudo superlimit in K. If M
is locally superlimit in Kθ then Kθ has the joint embedding property
iff M is superlimit.
6) In Definition 0.5(1), clause (c) follows from

(c)− LS(K) ≤ θ and K≥θ+ 6= ∅.

7) M ∈ Kλ is pseudo-superlimit iff K[M ] is a λ-a.e.c. and ≤K[M]
is

not the equality. Also Definition 0.5(3A) is compatible with II.1.25.

0.7 Definition. For an a.e.c. K, let Ksl
µ ,K

ls
µ ,K

pl
µ be the class of M ∈

Kµ which are superlimit, locally superlimit, pseudo superlimit respec-
tively with the partial order ≤Ksl

µ
,≤Kls

µ
,≤

K
pl
µ

being ≤K↾ Ksl
µ ,≤K↾ Kpl

µ

respectively.

0.8 Definition. 1) Φ is proper for linear orders when:

(a) for some vocabulary τ = τΦ = τ(Φ),Φ is an ω-sequence,
the n-th element a complete quantifier free n-type in the
vocabulary τ

(b) for every linear order I there is a τ -model M denoted by
EM(I,Φ), generated by {at : t ∈ I} such that s 6= t ⇒ as 6=
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at for s, t ∈ I and 〈at0 , . . . , atn−1
〉 realizes the quantifier free

n-type from clause (a) whenever n < ω and t0 <I . . . <I

tn−1; so really M is determined only up to isomorphism
but we may ignore this and use I1 ⊆ J1 ⇒ EM(I1,Φ) ⊆
EM(I2,Φ). We call 〈at : t ∈ I〉 “the” skeleton of M ; of
course again “the” is an abuse of notation as it is not neces-
sarily unique.

1A) If τ ⊆ τ(Φ) then we let EMτ (I,Φ) be the τ -reduct of EM(I,Φ).
2) Υor

κ [K] is the class of Φ proper for linear orders satisfying clauses
(a)(α), (b), (c) of Claim 0.9(1) below and |τ(Φ)| ≤ κ. The default
value of κ is LS(K) and then we may write Υor

K
or Υor[K] and for

simplicity always κ ≥ LS(K) (and so κ ≥ |τK|).
3) We define “Φ proper for K” similarly when in clause (b) of part
(1) we demand I ∈ K, so K is a class of τK -models, i.e.

(a) Φ is a function, giving for a quantifier free n-type in τK , a
quantifier free n-type in τΦ

(b)′ in clause (b) of part (1), the quantifier free type which 〈at0 ,
. . . , atn−1

〉 realizes in M is Φ(tpqf(〈t0, . . . , tn−1〉, ∅,M)) for
n < ω, t0, . . . , tn−1 ∈ I.

0.9 Claim. 1) Let K be an a.e.c. and M ∈ K be of cardinality
≥ i1,1(LS(K)) recalling we naturally assume |τK| ≤ LS(K) as usual.

Then there is a Φ such that Φ is proper for linear orders and:

(a) (α) τK ⊆ τΦ,

(β) |τΦ| = LS(K) + |τK|

(b) for any linear order I the model EM(I,Φ) has cardinality
|τ(Φ)| + |I| and we have EMτ(K)(I,Φ) ∈ K

(c) for any linear orders I ⊆ J we have
EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ)

(d) for every finite linear order I, the model EMτ(K)(I,Φ) can be
≤K-embedded into M .

2) If we allow LS(K) < |τK| and there is M ∈ K of cardinality
≥ i1,1(LS(K) + |τK|), then there is Φ ∈ Υor

LS(K)+|τ(Φ)|[K] such that
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EM(I,Φ) has cardinality ≤ LS(K) for I finite. Hence E has ≤
2LS(K) equivalence classes where E = {(P1, P2) : P1, P2 ∈ τΦ and

P
EM(I,Φ)
1 = P

EM(I,Φ)
2 for every linear order I}.

3) Actually having a model of cardinality ≥ iα for every
α < (2LS(K)+|τ(K)|)+ suffice (in part (2)).

Proof. Follows from the existence of a representation of K as a
PCµ,2µ-class when µ = LS(K) + |τ(K)| in I.1.4(3),(4),(5) and I.1.9
(or see [Sh 394, 0.6]). �0.9

0.10 Remark. Note that some of the definitions and claims below will
be used only in remarks: K

sc(κ)
θ from 0.14(8), in 1.7; and some only

in §6,§7 (and part of §5 needed for it): Υlin
κ [2] from 0.11(5) (and even

less Υlin
κ [α(∗)] from Definition 0.14(9)). Also the use of ≤⊗

κ ,≤
ie
κ ,≤

⊕
κ

is marginal.

0.11 Definition. We define partial orders ≤⊕
κ ,≤

ie
κ and ≤⊗

κ on Υ or
κ [K]

(for κ ≥ LS(K)) as follows:
1) Ψ1 ≤⊕

κ Ψ2 if τ(Ψ1) ⊆ τ(Ψ2) and EMτ(K)(I,Ψ1) ≤K EMτ(K)(I,Ψ2)
and EM(I,Ψ1) = EMτ(Ψ1)(I,Ψ1) ⊆ EMτ(Ψ1)(I,Ψ2) for any linear
order I.
Again for κ = LS(K) we may drop the κ.
2) For Φ1,Φ2 ∈ Υor

κ [K], we say Φ2 is an inessential extension of Φ1

and write Φ1 ≤ie
κ Φ2 if Φ1 ≤⊕

κ Φ2 and for every linear order I, we
have (note: there may be more function symbols in τ(Φ2)!)

EMτ(K)(I,Φ1) = EMτ(K)(I,Φ2).

3) Let Υlin
κ be the class of Ψ proper for linear order and (producing

a linear order extending the original one, i.e.) such that:

(a) τ(Ψ) has cardinality ≤ κ and the two-place predicate < be-
longs to τ(Ψ)

(b) EM{<}(I,Ψ) is a linear order which is an extension of I in
the sense that EM(I,Φ) |= “as < at” iff I |= “s < t”; in fact
we usually stipulate [t ∈ I ⇒ at = t].

4) Φ1 ≤⊗
κ Φ2 iff there is Ψ such that
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(a) Ψ ∈ Υlin
κ

(b) Φℓ ∈ Υor
κ [K] for ℓ = 1, 2

(c) Φ′
2 ≤ie

κ Φ2 where Φ′
2 = Ψ ◦ Φ1, i.e. for every linear order I

we have

EM(I,Φ′
2) = EM(EM{<}(I,Ψ),Φ1).

5) Υlin
κ [2] is the class of Ψ proper for K lin

τ∗

2
and producing structures

from K lin
τ∗

2
extending the originals, i.e.

(a) τ∗2 = {<,P0, P1} where P0, P1 are unary predicates, < a bi-
nary predicate

(b) K lin
τ∗

2
= {M : M a τ∗2 -model, <M a linear order, 〈PM

0 , PM
1 〉 a

partition of M}

(c) the two-place predicate < and the one place predicates P0, P1

belong to τ(Ψ)

(d) if I ∈ K lin
τ∗

2
then M = EMτ∗

2
(I,Φ) belongs to K lin

τ∗

2
and <M is

a linear order and I |= s < t ⇒ M |= as < at and t ∈ P I
ℓ ⇒

aℓ ∈ PM
ℓ .

6) Similarly Υlin
κ [α(∗)] using K lin

τ∗

α(∗)
(see below in 0.14(9)).

0.12 Claim. Assume Φ ∈ Υor
K

.
1) If π is an isomorphism from the linear order I1 onto the linear or-
der I2 then it induces a unique isomorphism π̂ from M1 = EM(I1,Φ)
onto M2 = EM(I2,Φ) such that:

(a) π̂(at) = aπ(t) for t ∈ I

(b) π̂(σM1(at0 , . . . , atn−1
)) = σM2(aπ(t0), . . . , aπ(tn−1)), where

σ(x0, . . . , xn−1) is a τΦ-term and t0, . . . , tn−1 ∈ I1.

2) If π is an automorphism of the linear order I then it induces a
unique automorphism π̂ of EM(I,Φ) (as above with I1 = I = I2).

0.13 Remark. 1) So in 0.11(2) we allow further expansion by func-
tions definable from earlier ones (composition or even definition by
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cases), as long as the number is ≤ κ.
2) Of course, in 0.12 is true for trivial K.

So we may be interested in some classes of linear orders; below 0.14(1)
is used much more than the others and also 0.14(5),(6) are used not
so few times, in particular parts (8),(9) are not used till §5.

0.14 Definition. 1) A linear order I is κ-wide when for every θ < κ
there is a monotonic sequence of lenth θ+ in I.
2) A linear order I is κ-wider if |I| ≥ i1,1(κ).
3) I2 is κ-wide over I1 if I1 ⊆ I2 and for every θ < κ there is a convex
subset of I2 disjoint to I1 which is θ+-wide. We say “I2 is wide over
I1” if “I2 is |I1|-wide over I2”.
4) K lin[K lin

λ ] is the class of linear orders [of cardinality λ].
5) Let Kflin be the class of infinite linear order I such that every
interval has cardinality |I| and is with neither first nor last elements.
6) Let the two-place relation ≤Kflin on Kflin be defined by: I ≤Kflin J
iff I, J ∈ Kflin and I ⊆ J and either I = J or J\I is a dense subset
of J and for every t ∈ J\I, I can be embedded into J ↾ {s ∈ J\I :
(∀r ∈ I)(s <J r ≡ t <J r)}.
6A) Let the two-place relation ≤∗

Kflin on K lin be defined similarly

omitting “I ∈ Kflin” (but not J ∈ Kflin).
7) Kflin

θ = {I ∈ Kflin : |I| = θ} and ≤Kflin
θ

=≤Kflin↾ Kflin
θ .

8) K
sc(κ)−lin
θ is the class of linear orders of cardinality θ which are

the union of ≤ κ scattered linear orders (recalling I is scattered when
there is no J ⊆ I isomorphic to the rationals). If κ = ℵ0 we may
omit it (i.e. write Ksc-lin

θ ).
9) Let τ∗α(∗) = {<}∪{Pi : i < α(∗)}, Pi a monadic predicate, K lin

τ∗

α(∗)
=

{I : I a τ∗α(∗)-model, <I a linear order and 〈P I
i : i < α(∗)〉 a partition

of I}. If α(∗) = 1 we may omit P I
0 , so I is a linear order, so any

ordinal can be treated as a member of K lin
τ∗

1
.

0.15 Observation. 1) If |I| > 2θ then I is θ+-wide.
2) If |I| ≥ λ and λ is a strong limit cardinal then I is λ-wide.
3) (Kflin

θ ,≤Kflin
θ

) almost is a θ-a.e.c., only smoothness may fail.

4) If I1 ∈ K lin then for some I2 ∈ Kflin we have: |I2| = |I1|+ℵ0 and
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I1 ≤∗
Kflin I2; and (∀I0)[I0 ⊆ I1 ∧ I0 ∈ Kflin ⇒ I0 ≤Kflin I2].

5) If I1 is κ-wide and I1 <Kflin I2 then I2 is κ-wide over I2.

Remark. If in the definition of ≤Kflin in 0.14(6) we can add “(∀t ∈
I)(∃t′ ∈ J)[t′ <J t ∧ (∀s ∈ I)(s <I t → s <J t′)]” (and its dual, i.e.
inverting the order). So we can strengthen 0.14(6) by the demand
above.

Proof. 1) By Erdös-Rado Theorem, i.e., by (2θ)+ → (θ+)22.
2) Follows by part (1).
3),4),5) Easy. �0.15

0.16 Claim. 1) (Υ or
κ[K],≤

⊗
κ ), (Υor

κ [K], <ie
κ ) and (Υ or

κ[K],≤
⊕) are partial

orders (and ≤⊗
κ ,≤

ie
κ⊆≤⊕

κ ).
2) If Φi ∈ Υor

κ [K] and the sequence 〈Φi : i < δ〉 is a ≤⊗
κ -increasing se-

quence, δ < κ+, then it has a <⊗
κ -l.u.b. Φ ∈ Υor

κ [K], and EM(I,Φ) =
⋃

i<δ

EM(I,Φi) for every linear order I, i.e. τ(Φ) = ∪{τ(Φi) : i < δ}

and for every j < δ we have EMτ(Φj)(I,Φ) = ∪{EMτ(Φi)(I,Φ) : i ∈
[j, δ)}.
3) Similarly for <⊕

κ and ≤ie
κ .

4) If Φ ∈ Υlin
κ and I ∈ K lin then I ⊆ EM{<}(I,Φ) as linear orders

stipulating (as in 0.11(3)) that at = t.

Proof. Easy. �0.16

Recall various well known facts on L∞,θ.

0.17 Claim. 1) If M,N are τ -models of cardinality λ, cf(λ) = ℵ0

and M ≡L∞,λ
N then M ∼= N .

2) If M,N are τ -models then M ≡L∞,θ
N iff there is F such that

⊛(a) (α) each f ∈ F is a partial isomorphism from M to N

(β) F 6= ∅

(γ) if f ∈ F and A ⊆ Dom(f) then f ↾ A ∈ F

(b) if f ∈ F , A ∈ [M ]<θ and B ∈ [N ]<θ then for some g ∈ F

we have f ⊆ g, A ⊆ Dom(g), B ⊆ Rang(g).
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2A) If M ⊆ N are τ -models, then M ≺L∞,θ
N iff for some F clauses

⊛(a), (b) hold together with

(c) if A ∈ [M ]<θ then for some f ∈ F we have idA ⊆ f .

2B) In part (2) (and part (2A)), we can omit subclause (γ) of clause
(a), and if F satisfies (a)(α), (β) + (b) (and (c)), then also F ′ =
{f ↾ A : f ∈ F and A ⊆ Dom(f)} satisfies the demands.
2C) Let M,N be τ -models and define F = {f : for some ā ∈ θ>M, f
is a function from Rang(ā) to N such that (M, ā) ≡L∞,θ

(N, f(ā))}
then M ≡L∞,θ

N iff F 6= ∅ iff F satisfies clauses (a),(b) of ⊛.

3) If M is a τ -model, θ = cf(θ) and µ = ‖M‖<θ then for some
γ < µ+ and ∆ ⊆ Lµ+,θ(τ) of cardinality ≤ µ such that each ϕ(x̄) ∈ ∆
is of quantifier depth < γ, we have

(a) for ā, b̄ ∈ θ>M we have (M, ā) ≡L∞,θ
(M, b̄) iff tp∆(ā, ∅,M) =

tp∆(ā, ∅,M)

(b) for any τ -model N we have N ≡L∞,θ
M iff {tp∆(ā, ∅, N) :

ā ∈ θ>N} = {tp∆(ā, ∅,M) : ā ∈ θ>M}.

4) Assume χ > µ = µ<κ and x ∈ H (χ). There is B such that (in
fact clauses (d)-(g) follow from clauses (a),(b),(c))

(a) B ≺ (H (χ),∈) has cardinality µ,

(b) µ+ 1 ⊆ B and [B]<κ ⊆ B and x ∈ B

(c) B ≺Lκ,κ
(H (χ),∈)

(d) if K is an a.e.c. with LS(K) + |τ(K)| ≤ µ and K ∈ B (which
means {(M,N) : M ≤K N has universes ⊆ LS(K)} ∈ B)
then

(α) M ∈ K ∩ B ⇒M ↾ B := M ↾ (B ∩M) ≤K M

(β) if M ≤K N belongs to B then M ↾ B ≤K N ↾ B

(e) if K is as in (d), Φ ∈ Υor
≤µ[K] ∩ B and I ∈ B is a linear

order and so M = EM(I,Φ) ∈ B then I ′ = I ↾ B ⊆ I and
M ↾ B = EM(I ′,Φ) so (M ↾ τ(K)) ↾ B = EMτ(K)(I

′,Φ) ≤K

M ↾ τ(K)

(f) if |τ | ≤ µ, τ ∈ B and M,N ∈ B are τ -models, then

(α) M ↾ B ≺Lκ,κ[τ ] M
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(β) M 6≡L∞,κ[τ ] N iff (M ↾ B) 6≡L∞,κ[τ ] (N ↾ B)

(γ) if M ⊆ N then (M ≺L∞,κ(τ) N) iff (M ↾ B) ≺L∞,κ(τ)

(N ↾ B); this applies also to (M, ā), (N, ā) for ā ∈ κ>M

(g) if I ∈ Kflin then I1 ∩ B ∈ Kflin and if I1 <∗
Kflin I2 then

(I1 ∩ B) <∗
Kflin (I2 ∩ B).

Proof. 1)-3) and 4)(a),(b),(c) Well known, e.g. see [Di].
4) Clauses (d),(e),(f): as in 0.9(1), i.e. by absoluteness. Also clause
(g) should be clear. �0.17

0.18 Remark. 1) We will be able to add, in 0.17(4):

(g) if K is as in clause (d) and τ = τK then in clause (f) we
can replace L∞,κ(τ) by L∞,κ[K] and Lκ,κ(τ) by Lκ,κ[K], see
Definition 1.9 and Fact 1.10(5).

2) We use part (4) in 1.26(3).

0.19 Definition. For a model M and for a set ∆ of formulas in
the vocabulary of M, x̄ = 〈xi : i < α〉, A ⊆ M and ā ∈ αM let the
∆-type of ā over A in M be tp∆(ā, A,M) = {ϕ(x̄, b̄) : M |= ϕ[ā, b̄]
where ϕ = ϕ(x̄, ȳ) ∈ ∆ and b̄ ∈ ℓg(ȳ)A}.

§1 Amalgamation in K∗
λ

Our aim is to investigate what is implied by 1.3 below but instead
of assuming it we shall shortly assume only some of its consequences.
For our purpose here, for θ ∈ [LS(K), λ), λ = iλ it does not really
matter if we use κ = i1,1(θ) or κ = i1,1(in(θ)) or i1,n(θ), as we are
trying to analyze models in Kλ.

1.1 Remark. 1) We can in our claims use only Φ ∈ Υor
K

= Υor
LS(K)[K]

because for every θ ≥ LS(K) we can replace K by K≥θ as LS(K≥θ) =
θ when K≥θ 6= ∅, of course.
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2) As usual we assume |τK| ≤ LS(K) just for convenience, otherwise
we should just replace LS(K) by LS(K) + |τK|.

1.2 Hypothesis.

(a) K = (K,≤K) is an a.e.c. with vocabulary τ = τ(K) (and we
can assume |τ | ≤ LS(K) for notational simplicity)

(b) K has arbitrarily large models (equivalently has a model of
cardinality ≥ i1,1(LS(K))), not used, e.g. in 1.10, 1.11 but
from 1.12 on it is used extensively.

1.3 Definition. We say (µ, λ) or really (µ, λ,Φ) is a weak/strong/
pseudo K-candidate when (weak is the default value):

(a) µ > λ = iλ > LS(K) (e.g. the first beth fix point > LS(K),
see 3.5; in the main case λ has cofinality ℵ0)

(b) K categorical in µ and Φ ∈ Υor
K

or just

(b)− K is weakly/strongly/pseudo solvable in µ and Φ ∈ Υor
K

wit-
nesses it; see below.

1.4 Definition. 1) We say K is weakly (µ, κ)-solvable when µ ≥
κ ≥ LS(K) and there is Φ ∈ Υor

κ [K] witnessing it, which means
that Φ ∈ Υor

κ [K] and EMτ(K)(I,Φ) is a locally superlimit member of
Kµ for every linear order I of cardinality µ. We may say (K,Φ) is
weakly (µ, κ)-solvable and we may say Φ witness that K is weakly
(µ, κ)-solvable.

If κ = LS(K) we may omit it, saying K or (K,Φ) is weakly µ-
solvable in µ.
2) K is strongly (µ, κ)-solvable when µ ≥ κ ≥ LS(K) and some
Φ ∈ Υor

κ [K] witness it which means that if I ∈ K lin
λ then EMτ [K](I,Φ)

is superlimit (for Kλ). We use the conventions from part (1).
3) We say K is pseudo (µ, κ)-solvable when µ ≥ κ ≥ LS(K) and
there is Φ ∈ Υor

κ [K] witnessing it which means that for some µ-
a.e.c. K′ with no ≤K′ -maximal member, we have M ∈ K′ iff M ∼=
EMτ(K)(I,Φ) for some I ∈ K lin

µ iff M ∼= EMτ(K)(I,Φ) for every
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I ∈ K lin
µ . We use the conventions from part (1).

4) Let (µ, κ)-solvable mean weakly (µ, κ)-solvable, etc., (including
1.3)

1.5 Claim. 1) In Definition 1.3, clause (b) implies clause (b)−.
Also in Definition 1.4 “K is strongly (µ, κ)-solvable” implies “K is
weakly (µ, κ)-solvable” which implies “K is pseudo (µ, κ)-solvable”.
Similarly for (K,Φ).

2) Assume Φ ∈ Υor
κ [K]; if clause (b)− of 1.3 or just İ(µ,K) < 2µ,

or just 2µ > İ(µ, {EMτ(K)(I,Φ) : I ∈ K lin
µ }) for some µ satisfying

LS(K) < κ+ < µ then we can deduce that

(∗) Φ, really (K,Φ) has the κ-non-order property, where the κ-
non-order property means that:
if I is a linear order of cardinality κ, t̄1, t̄2 ∈ κI form a ∆-
system pair (see below) and 〈σi(x̄) : i < κ〉 lists the τ(Φ)-
terms (with the sequence x̄ of variables being 〈xi : i < κ〉)
and 〈at : t ∈ I〉 is “the” indiscernible sequence generating
EM(I,Φ) (i.e. as usual “〈at : t ∈ I〉” is “the” skeleton of
EM(I,Φ), so generating it, see Definition 0.8) then for some
J ⊇ I there is an automorphism of EMτ(K)(J,Φ) which ex-
changes 〈σi(〈at1i

: i < κ〉) : i < κ〉 and 〈σi(〈at2i
: i < κ〉) : i <

κ〉.
where

⊠ t̄1, t̄2 ∈ αI is a ∆-system pair when for some J ⊇ I
there are t̄ζ ∈ αJ for ζ ∈ κ\{1, 2} such that 〈t̄α : α < κ〉
is an indiscernible sequence for quantifier free formulas
in the linear order J .

Proof. 1) The first sentence holds by Claim 0.9(1) and Definition 0.8
(and Claim 0.6). The second and third sentences follows by 0.6.
2) Otherwise we get a contradiction by [Sh 300, Ch.III] or better
[Sh:e, III]. �1.4
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1.6 Definition. 1) If M ′ is a class of linear orders and Φ ∈ Υor
κ [K]

then we let K[M ′,Φ] = {EMτ(K)(I,Φ) : I ∈ M ′}.

2) Let K
u(κ)-lin
θ be the class of linear orders I of cardinality θ such

that: for some scattered1 linear order J and Φ proper for K lin

such that < belongs to τΦ, |τΦ| ≤ κ we have I is embeddable into
EM{<}(J,Φ). If we omit κ we mean LS(K). If κ = ℵ0 we may omit
it.

1.7 Remark. 1) Note that in Definition 1.4(1) we can restrict our-

selves to I ∈ K
sc(θ)-lin
λ , see 0.14(8) and even I ∈ Ku(θ)-lin see 1.6(2),

i.e., assume 2µ > İ(µ,K[M ′,Φ]), for M ′ = K
sc(θ)-lin
λ or M ′ =

K
u(θ)-lin
λ and restrict the conclusion (∗) to I ∈ Ksc(θ)-lin. A gain is

that, if λ > θ, every I ∈ K
sc(θ)-lin
λ is λ-wide so later K∗ = K∗∗, and

being solvable is a weaker demand. But it is less natural. Anyhow
we presently do not deal with this.

1A) Note that K
sc(θ)−lin
λ ⊇ K

u(θ)−lin
λ .

2) An aim of 1.8 below is to show that: by changing Φ instead
of assuming I1 ⊂ I2 ∧ (I2 is κ-wide over I1) it suffices to assume
I1 ⊂ I2 ∧ (I2 is κ-wide).

1.8 Claim. For every Φ1 ∈ Υor
κ [K] there is Φ2 such that

(a) Φ2 ∈ Υor
κ [K] and if Φ1 witnesses K is weakly/strongly/pseudo

(λ, κ)-solvable then so does Φ2

(b) τΦ1
⊆ τΦ2

and |τΦ2
| = |τΦ1

| + ℵ0

(c) for any I2 ∈ K lin there are I1 and h such that:

(α) I1 ∈ K lin and even I1 ∈ Kflin, see 0.14(5)

(β) h is an embedding of I2 into I1

(γ) there is an isomorphism f from EMτ(Φ1)(I2,Φ2) onto
EM(I1,Φ1) such that f(at) = ah(t) for t ∈ I2

(δ) if J1 = I1 ↾ Rang(h) and we let E = {(t1, t2) : t1, t2 ∈
I1\J1 and (∀s ∈ J1)(s < t1 ≡ s < t2)} then: E is

1i.e. one into which the rational order cannot be embedded
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an equivalence relation and each equivalence class has
≥ |I2| members and J1 ≤Kflin I1, see 0.14(6)

(ε) [not used] if ∅ 6= J2 ⊆ I2, J1 = {t ∈ I1: for some
τ(Φ2)-term σ(x0, . . . , xn−1) and some t0, . . . , tn−1 ∈
J2 we have f−1(at) = σEM(I2,Φ2)(at0 , . . . , atn−1

)} and
J ′

1 ⊆ Rang(h)\J1 and t ∈ J ′
1 then {s ∈ t/E : f−1(as)

belongs to the Skolem hull of {f−1(ar) : r ∈ J ′
1} in

EM(I2,Φ)} has cardinality ≥ |J ′
1| and J ′

1 and its inverse
can be embedded into it; in fact, I1 and its inverse are
embeddable into any interval of I2.

Remark. 1) We can express it by ≤⊗
κ , see 0.11(4). So for some

Ψ proper for linear orders such that τΨ is countable, the two-place
predicate < belongs to τΨ and above EM{<}(I2,Ψ) is I1.
2) In fact, J2 ⊂ I2 ⇒ EM{<}(J2,Ψ) <Kflin EM{<}(I2,Ψ) and
I2 <

∗
Kflin EM{<}(I2,Φ) when we identify t ∈ I2 with at.

Proof. For I2 ∈ K lin let the set of elements of I1 be {η : η is a finite
sequence of elements from (Z\{0}) × I2}. For η ∈ I1 let (ℓη,k, tη,k)
be η(k) for k < ℓg(η).

Lastly, I1 is ordered by: η1 < η2 iff for some n one of the following
occurs

⊛(a) η1 ↾ n = η2 ↾ n, ℓg(η1) > n, ℓg(η2) > n and ℓη1,n < ℓη2,n

(b) η1 ↾ n = η2 ↾ n, ℓg(η1) > n, ℓg(η2) > n, ℓη1,n = ℓη2,n > 0 and
tη1,n <I2 tη2,n

(c) η1 ↾ n = η2 ↾ n, ℓg(η1) > n, ℓg(η2) > n, ℓη1,n = ℓη2,n < 0 and
tη2,n <I2 tη1,n

(d) η1 ↾ n = η2 ↾ n, ℓg(η1) = n, ℓg(η2) > n and ℓη2,n > 0

(e) η1 ↾ n = η2 ↾ n, ℓg(η1) > n, ℓg(η2) = n and ℓη1,n < 0.

We identify t ∈ I1 with the pair (1, t). Now check. �1.8
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1.9 Definition. 1) Let the language Lθ,∂ [K] or Lθ,∂,K where θ ≥
∂ ≥ ℵ0 and θ is possibly ∞, be defined like the infinitary logic
Lθ,∂(τK), except that we deal only with models from K and we add
for i∗ < ∂ the atomic formula “{xi : i < i∗} is the universe of a
≤K-submodel”, with obvious syntax and semantics. Of course, it is
interesting normally only for ∂ > LS(K) and recall that any formula
has < ∂ free variables.
2) For M a τK-model and N ∈ K let M ≺Lθ,∂ [K] N means that

M ⊆ N and if ϕ(x̄, ȳ) is a formula from Lθ,∂ [K] and N |= (∃x̄)ϕ(x̄, b̄)

where b̄ ∈ ℓg(ȳ)M , then for some ā ∈ ℓg(x̄)M we have N |= ϕ[ā, b̄].

1.10 Fact: 1) If θ ≥ ∂ > LS(K) and M,N are τK-models and N ∈ K
and M ≺Lθ,∂ [K] N , then M ≤K N and M ∈ K.
2) The relation ≺Lθ,∂ [K] can also be defined as usual: M ≺Lθ,∂ [K] N

iff M,N ∈ K,M ⊆ N and for every ϕ(x̄) ∈ Lθ,∂ [K] and ā ∈ ℓg(x̄)M
we have M |= ϕ[ā] iff N |= ϕ[ā].
3) If N ∈ K and M is a τK-model satisfying M ≺L∞,κ

N and κ >
LS(K) then M ∈ K,M ≤K N and M ≺L∞,κ[K] N .

4) If N ∈ K,M a τK-model and M ≡L∞,κ
N where κ > LS(K) then

M ∈ K and M ≡L∞,κ[K] N .
5) The parallel of 0.17(2) holds for L∞,κ[K], i.e. there is F satisfying
clauses (a),(b) there and

(d) if f ∈ F then

(α) M ↾ Dom(f) ≤K M

(β) N ↾ Rang(f) ≤K M .

6) Also the parallel of 0.17(2A) holds for L∞,κ[K].
7) The parallel of 0.17(4) holds for L∞,κ[K].

Proof. Part (1) is straight (knowing I§1 or [Sh 88, §1]). Part (2)
is proved as in the Tarski-Vaught criterion and parts (5),(6),(7) are
proved as in 0.17.

Toward proving parts (3),(4) we first assume just

⊠1 M,N are τK -models, N ∈ K and M ≡L∞,κ
N and κ >

LS(K) and λ ∈ [LS(K), κ)
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and we define:

⊡(a) I = Iλ = {(f,M ′, N ′) : M ′ ⊆ M and N ′ ⊆ N and f is an
isomorphism from M ′ onto N ′ and ‖M ′‖ ≤ λ and letting ā
list M ′ we have (M, ā) ≡L∞,κ

(N, f(ā))}

(b) for t ∈ I let t = (ft,Mt, Nt)

(c) for ℓ = 0, 1, 2 we define the two-place relation ≤ℓ
I on I:

let s ≤ℓ
I t hold iff

(α) ℓ = 0 and Ms ⊆Mt ∧Ns ⊆ Nt

(β) ℓ = 1 and Ms ≤K Mt ∧Ns ≤K Nt

(γ) ℓ = 2 and fs ⊆ ft

(d) I1 = I1
λ := {t ∈ I0 : Nt ≤K N} and let ≤ℓ

I1
=≤ℓ

I↾ I1 for
ℓ = 0, 1, 2.

Now easily

(∗)0 (α) I 6= ∅ is partially ordered by ≤ℓ
I for ℓ = 0, 1, 2

(β) s ≤1
I t⇒ s ≤0

I t

(γ) s ≤2
I t⇒ s ≤0

I t.

[Why? Straight, e.g. I 6= ∅ by 0.17(1).]

(∗)1 if t ∈ I1 then Mt ∈ K≤λ and Nt ∈ K≤λ.

[Why? As t ∈ I1 by the definition of I we have Nt ∈ K≤λ (because
Nt ≤K N) and Mt ∈ K≤λ as ft is an isomorphism from Mt onto Nt.]

(∗)2 if s ∈ I, A ∈ [M ]≤λ and B ∈ [N ]<λ then for some t we have
s ≤2

I t and A ⊆Mt and B ⊆ Nt.

[Why? By the properties of ≡L∞,κ
, see 0.17(2C) as κ > λ,M ≡L∞,κ

and the definition of I.]

(∗)3 if s ≤2
I1
t then s ≤1

I t, i.e. Ms ≤K Mt and Ns ≤K Nt.

[Why? As s, t ∈ I1 we know that Ns ≤K N and Nt ≤K N and
as s ≤2

I t we have fs ⊆ ft hence Ns ⊆ Nt. By axiom V of a.e.c. it
follows that Ns ≤K Nt. NowMs ≤K Mt as ft is an isomorphism from
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Mt onto Nt mapping Ms onto Ns (as it extends fs by the definition
of ≤2

I) and ≤K is preserved by any isomorphism. So by the definition
of ≤1

I we are done.]

(∗)4 if s ∈ I then for some t ∈ I1 we have s ≤2
I t (hence I1 6= ∅).

[Why? First choose N ′ ≤K N of cardinality ≤ λ such that Ns ⊆ N ′,
(possibly by the basic properties of a.e.c. (see I§1 or Chapter V.B)).
Second we can find t ∈ I such that Nt = N ′ ∧ fs ⊆ ft by the
characterization of ≡L∞,κ

as in (∗)2. So s ≤2
I t by the definition of

≤2
I and Nt = N ′ ≤K N hence t ∈ I1 as required. Lastly, I1 6= ∅ as

by (∗)0(α) we know that I 6= ∅ and apply what we prove.]

(∗)5 if s ≤0
I1
t then Ns ≤K Nt.

[Why? As in the proof of (∗)3 by AxV of a.e.c. we have Ns ≤K Nt

(not the part on the M ’s!)]

(∗)6 if s ∈ I1, A ∈ [M ]≤λ and B ∈ [M ]≤λ then for some t we have
s ≤2

I1
t and A ⊆Mt, B ⊆ Nt.

[Why? By (∗)2 there is t1 such that s ≤2
I t1, A ⊆Mt1 and B ⊆ Nt1 .

By (∗)4 there is t ∈ I1 such that t1 ≤2
I t hence by (∗)0(α) we have

s ≤2
I t. As s, t ∈ I1 this implies s ≤2

I1
t.]

Note that it is unreasonable to have “(I1,≤
2
I1

)-directed” but

(∗)7 (I1,≤
1
I1

) is directed.

[Why? Let s1, s2 ∈ I1. We now choose tn by induction on n < ω
such that

(a) tn ∈ I1

(b) Mtn
includes ∪{Mtk

: k < n} ∪Ms1
∪Ms2

if n ≥ 2

(c) Ntn
includes ∪{Ntk

: k < n} ∪Ns1
∪Ns2

if n ≥ 2

(d) t0 = s1

(e) t1 = s2

(f) if n = m+ 1 ≥ 2 then tm ≤0
I1
tn

(g) if n = m+ 2 then tm ≤2
I tn hence tm ≤2

I1
tn.
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For n = 0, 1 this is trivial. For n = m + 2 ≥ 2, apply (∗)6 with
tm,∪{Mtk

: k ≤ m+1},∪{Ntk
: k ≤ m+1} here standing for s, A,B

there getting tn, so we get tn ∈ I1 in particular tm ≤2
I1
tn, so clause

(a) is satisfied by tn. By the choice of tn and as s1 = t0, s2 = t1,
clauses (b) + (c) hold for tn. By the choice of tn, obviously also
clause (g). Now why does clause (f) hold (i.e. tm+1 ≤0

I tn)? It
follows from clauses (a),(b),(c), so tn is as required. Hence we have
carried the induction. Let N∗ = ∪{Ntn

: 2 ≤ n < ω}, so clearly
by (∗)5 and clause (f) we have Ntn

≤K Ntn+1
for n ≥ 1, and clearly

Mtn
⊆ Mtn+1

for n ≥ 1. Let M∗ = ∪{Mtn
: 2 ≤ n < ω}. Note that

by (∗)3 and clause (g) we have Mtn
≤K Mtn+2

, so 〈Mtn+2
: n < ω〉

is ⊆-increasing, and for ℓ = 0, 1 the sequence 〈Mt2n+ℓ
: n < ω〉 is

≤K-increasing with union M∗, hence by the basic properties of a.e.c.
we have M2n+ℓ ≤K M∗. So Ms1

= Mt0 ≤K M∗,Ms2
= Mt1 ≤K M∗.

Now Ms1
,Ms2

⊆ Mt2 ≤K M∗ hence Ms1
,Ms2

≤K Mt2 , Recall that
Ns1

= Nt0 ≤K Nt2 was proved above and Ns2
= Nt1 ≤K Nt2 was

also proved above so t2 is a common ≤1
I -upper bound of s1, s2 as

required.]

(∗)8 if s ≤0
I1
t then s ≤1

I1
t.

[Why? By (∗)7 there is t1 ∈ I1 which is a common ≤1
I1

-upper bound

of s, t. So Ms ⊆ Mt (as s ≤0
I1
t) and Ms ≤K Mt1 (as s ≤1

I1
t1) and

Mt ≤K Mt1 (as t ≤1
I1
t1). Together by axiom V of a.e.c. we get

Ms ≤K Mt and by (∗)5 we have Ns ≤K Nt. Together s ≤1
I1
t as

required.]

(∗)9 〈Ms : s ∈ (I1,≤
1
I1

)〉 is ≤K-increasing, (I1,≤
1
I1

) is directed
and ∪{Ms : s ∈ I1} = M .

[Why? The first phrase by the definition of ≤1
I1

in clause (c)(β) of
⊡, the second by (∗)7 and the third by (∗)6 + (∗)4.]

By the basic properties of a.e.c. (see I.1.6) we deduce

⊙ (a) M ∈ K

(b) t ∈ I1 ⇒Mt ≤K M .

Now we strengthen the assumption ⊠1 to

⊠2 the demands in ⊠1 and M ≺L∞,κ[τK] N .
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We note

⊛1(a) if ā ∈ αM, |α| + LS(K) ≤ λ < κ then for some t ∈ Iλ,
ft(ā) = ā

(b) if M ′ ⊆M and ‖M‖ ≤ λ then (idM ′ ,M ′,M ′) ∈ Iλ

(c) if M1 ⊆ N1 ⊆ N and M1 ⊆ M and ‖N1‖ ≤ λ then for some
t ∈ I we have Nt = N1 and idM1

⊆ ft.

[Why? Clause (a) is a special case of clause (b) and clause (b)
is a special case of clause (c). Lastly, clause (c) follows from the
assumption M ≺L∞,κ[τK] N and 0.17(2A),(2B).]

We next shall prove

⊛2 M ≤K N .

By I.1.6 and (∗)9 above for proving ⊛2 it suffices to prove:

⊛3 if s ∈ I1 then Ms ≤K N .

[Why ⊛3 holds? As M ⊆ N there is N∗ ≤K N of cardinality ≤ λ
such that Ms ∪Ns ⊆ N∗. By ⊛1(c) there is t ∈ I such that Nt = N∗

and idMs
⊆ ft. As N∗ ≤K N it follows that t ∈ I1. So by ⊠1 ⇒ ⊙(b)

applied to s and to t we can deduce Ms ≤K M and Mt ≤K M . But as
idMs

⊆ ft it follows that Ms ⊆ Mt hence by AxV of a.e.c. we know
that Ms ≤K Mt. But as t ∈ I clearly ft is an isomorphism from Nt

onto Mt hence f−1
t (Ms) ≤K Nt, and as idMs

⊆ ft this means that
Ms = f−1

t (Ms) ≤K Nt. Recalling Nt ≤K N and ≤K is transitive it
follows that Ms ≤K N as required.]

Let us check parts (3) and (4) of the Fact. Having proved ⊠1 ⇒
⊙(a), clearly in part (4) of the fact the first conclusion there, M ∈ K,
holds. The second conclusion, M ≡L∞,κ[K] N holds by

⊛4 if ϕ(x̄) ∈ L∞,κ[K] and |ℓg(x̄)| + LS(K) ≤ λ < κ and t ∈ I

and ā ∈ ℓg(x̄)(Mt) then M |= ϕ[ā] ⇔ N |= ϕ[ft(ā)].

[Why? Prove by induction on the depth of ϕ for all λ simultaneously.
For α = 0, first for the usual atomic formulas this should be clear.
Second, by (∗)4 there is t1 such that t ≤2

I t1 ∈ I1 hence by ⊛3+ clause
(d) of ⊡+ clause (b) of ⊙ we have Mt1 ≤K N∧Nt1 ≤K N∧Mt1 ≤K M
respectively. So if u ⊆ ℓg(x̄) then M ↾ Rang(ā ↾ u) ≤K M ⇔ M ↾
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Rang(ā ↾ u) ≤K Mt1 ⇔ N ↾ Rang(f(ā) ↾ u) ≤K Nt1 ⇔ N ↾

Rang(f(ā) ↾ u) ≤K N . So we have finished the case of atomic
formulas, i.e. α = 0. For ϕ(x̄) = (∃ȳ)ψ(x̄, ȳ) use (∗)2, the other
cases are obvious.]

So part (4) holds. As for part (3), the first statement, “M ∈ K”
holds by part (4), the second statement, M ≤K N , holds by ⊛2 and
the third statement, M ≺L∞,κ[K] N follows by ⊛1(b) + ⊛4. As we
have already noted parts (1),(2),(5),(6) and part (7) is proved as ⊛4

is proved, we are done. �1.10

1.11 Claim. For a limit cardinal κ > LS(K):
1) M ≺L∞,κ[K] N provided that

(a) if θ < κ and θ ∈ (LS(K), κ) then M ≺L∞,θ [K] N

(b) for every ∂ < κ for some θ ∈ (∂, κ) we have: if ā, b̄ ∈ ∂M
and (M, ā) ≡L∞,θ [K] (M, b̄) then (M, ā) ≡L∞,θ1

[K] (M, b̄) for

every θ1 ∈ [θ, κ).

1A) M ≡L∞,κ[K] N provided that

(a) if LS(K) < θ < κ then M ≡L∞,θ [K] N

(b) as in part (1).

2) In parts (1) and (1A) we can conclude

(b)+ for every ∂ < κ for some θ ∈ (∂, κ) we have: if ā, b̄ ∈ ∂M
and (M, ā) ≡L∞,θ [K] (M, b̄) then (M, ā) ≡L∞,κ[K] (M, b̄).

3) If cf(κ) = ℵ0 then M ∼= N when

(a) if θ < κ and θ ∈ (LS(K), κ) then M ≡L∞,θ [K] N

(b) as in part (1), i.e., for every ∂ ∈ (LS(K), κ) for some θ ∈
(∂, κ) we have: if ā ∈ ∂M and b̄ ∈ ∂N and (M, ā) ≡L∞,θ [K]

(N, b̄) then (M, ā) ≡L∞,θ1
[K] (N, b̄) for every θ1 ∈ (θ, κ)

(c) M,N have cardinality κ.

Proof. 1) By 1.10(3) it suffices to prove M ≺L∞,κ
N , for this it

suffices to apply the criterion from 0.17(2A).
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Let F be the set of functions f such that:

⊙ (α) Dom(f) ⊆M has cardinality < κ

(β) Rang(f) ⊆ N

(γ) if ā lists Dom(f) then for every θ ∈ (ℓg(ā), κ) we have
tpL∞,θ [K](ā, ∅,M) = tpL∞,θ[K](f(ā), ∅, N).

1A) Similarly.
2) Similarly to part (1) using 1.10(4) and 0.17(2) instead 1.10(3),
0.17(2A).
3) Recall 0.17(1). �1.11

1.12 Claim. 1) Assume 1.3(a) + (b), i.e. K is categorical in µ >
LS(K). If µ = µ<κ and κ > LS(K) then for every M ≤K N from Kµ

we have M ≺L∞,κ[K] N (and there are such M <Kµ
N).

2) Assume K is weakly or just pseudo µ-solvable as witnessed by
Φ (see Definition 1.4 and Claim 1.5) and M∗ = EMτ(K)(µ,Φ). If
µ = µ<κ and κ > |τΦ| and M ≤K N are both isomorphic to M∗ then
M ≺L∞,κ[K] N .

Proof. 1) We prove by induction on γ that for any formula ϕ(x̄) from
L∞,κ[K] of quantifier depth ≤ γ (and necessarily ℓg(x̄) < κ) we have

(∗) if M ≤K N are from Kµ and ā ∈ ℓg(x̄)M then M |= ϕ[ā] ⇔
N |= ϕ[ā].

If ϕ(x̄) is atomic this is clear (for the “{xi : i < i∗} is the universe
of a ≤K-submodel”, the implication ⇒ holds as ≤K is transitive and
the implication ⇐ as K satisfies AxV of a.e.c.).
If ϕ(x̄) is a Boolean combination of formulas for which the assertion
was proved, clearly it holds for ϕ(x̄). So we are left with the case
ϕ(x̄) = (∃ȳ)ψ(ȳ, x̄), so ℓg(ȳ) < κ. The implication ⇒ is trivial by
the induction hypothesis and so suppose that the other fails, say
N |= ψ[b̄, ā] and M |= ¬(∃ȳ)ψ(ȳ, ā). We choose by induction on
i < µ+ a model Mi ∈ Kµ,≤K-increasing continuous, and for each
i in addition we choose an isomorphism fi from M onto Mi and if
i = j + 1 we shall choose an isomorphism gj from N onto Mj+1

extending fj . For i = 0, let M0 = M , for i limit let Mi =
⋃

j<i

Mj.
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For any i, if Mi was chosen, fi exists as K is categorical in µ. Now
if i = j + 1 then Mj , fj are well defined and clearly we can choose
Mi = Mj+1, gj as required.

By Fodor lemma, as µ = µ<κ and the set {δ < µ+ : cf(δ) ≥ κ}
is stationary, clearly for some α < β < µ+ we have fα(ā) = fβ(ā),
now (by the choice of gα) we have Mα+1 |= ψ[gα(b̄), gα(ā)], hence
by the induction hypothesis applied to the pair (Mα+1,Mβ) we have
Mβ |= ψ[gα(b̄), gα(ā)] so Mβ |= ϕ[gα(ā)]. But gα(ā) = fα(ā) =
fβ(ā), contradiction to M |= ¬ϕ[ā].
2) The same proof but we restrict ourselves to models in K[M∗] so,
e.g. in (∗) we have M,N ∈ K[M∗] recalling that K[M∗] is a µ-a.e.c.,
see Definition 0.5(3A) and Claim 0.6(7). �1.12

1.13 Exercise: 1) For the proof (of 1.12(1)) it suffices to assume
“S ⊆ {δ < µ+ : cf(δ) ≥ κ} is a stationary subset of µ+ and M∗ ∈ Kµ

is locally S-weakly limit (see I.3.3(5)).
2) Similarly we can weaken the demands “M∗ = EMτ(K)(µ,Φ) and
(K,Φ) is pseudo solvable” to: for every M ≤K N isomorphic to M∗

(which ∈ Kµ) there is a ≤K-increasing sequence 〈Mα : α < µ+〉 such
that {δ < µ+: cf(δ) ≥ κ and (Mδ,Mδ+1) is isomorphic to (M,N)
and Mδ = ∪{Mα : α < δ}} is a stationary subset of µ+.

1.14 Claim. Assume Φ ∈ Υor
<κ[K] satisfies the conclusion of 1.12(2)

for (µ, κ) and LS(K) < κ ≤ µ and J, I1, I2 are linear orders and I1, I2
are κ-wide, see Definition 0.14(1). Then

(a) If I1 ⊆ I2 then EMτ(K)(I1,Φ) ≺L∞,κ[K] EMτ(K)(I2,Φ)

(b) Assume J ⊆ I1, J ⊆ I2; if ϕ(x̄) ∈ L∞,κ[K] so ℓg(x̄) <

κ and ā ∈ ℓg(x̄)(EM(J,Φ)), then EMτ(K)(I1,Φ) |= ϕ[ā] ⇔
EMτ(K)(I2,Φ) |= ϕ[ā]

(c) Assume σ̄ = 〈σi(. . . , xα(i,ℓ), . . . )ℓ<ℓ(i) : i < i(∗)〉 where i(∗) <

κ, each σi is a τ(Φ)-term, α(i, ℓ) < α(∗) < κ. If t̄ℓ =
〈tℓα : α < α(∗)〉 is a sequence of members of Iℓ for ℓ = 1, 2
and t̄1, t̄2 realizes the same quantifier free type in I1, I2 re-
spectively and āℓ = 〈σi(. . . , atℓ

α(i,j)
, . . . )j<j(i) : i < i(∗)〉

for ℓ = 1, 2 then ā1, ā2 realize the same L∞,κ[K] -type in
EMτ(K)(I1,Φ), EMτ(K)(I2,Φ) respectively.
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Proof of 1.14.

Clause (a): We prove that for ϕ(x̄) ∈ L∞,κ[K] we have

(∗)ϕ(x̄) if I1 ⊆ I2 are κ-wide linear orders of cardinality ≤ µ,

and ā ∈ ℓg(x̄)(EMτ(K)(I,Φ))
then EMτ(K)(I1,Φ) |= ϕ[ā] ⇔ EMτ(K)(I2,Φ) |= ϕ[ā].

This easily suffices as for any I ∈ K lin, the model EMτ(K)(I,Φ) is
the direct limit of 〈EM(I ′,Φ) : I ′ ⊆ I has cardinality ≤ µ〉, which is
≤K-increasing and µ+-directed and as we have:

⊙ M1 ≺L∞,κ[K] M
2 when:

(a) I is a κ-directed partial order

(b) M̄ = 〈Mt : t ∈ I〉

(c) s <I t→Ms ≺L∞,κ[K] Mt

(d) M2 = ∪{Mt : t ∈ I}

(e) M1 ∈ {Mt : t ∈ I} or for some κ-directed I ′ ⊆ I we
have M1 = ∪{Mt : t ∈ I ′}.

We prove (∗)ϕ(x̄) by induction on ϕ (as in the proof of 1.12 above).
The only non-obvious case is ϕ(x̄) = (∃ȳ)ψ(ȳ, x̄), so let I1 ⊆ I2 be
κ-wide linear orders of cardinality ≤ µ and ā ∈ ℓg(x̄)(EMτ(K)(I1,Φ)).

Now if EMτ(K)(I1,Φ) |= ϕ[ā] then for some b̄ ∈ ℓg(ȳ)(EMτ(K)(I1,Φ))

we have EMτ(K)(I1,Φ) |= ψ[b̄, ā] hence by the induction hypoth-

esis EMτ(K)(I2,Φ) |= ψ[b̄, ā], hence by the satisfaction definition
EMτ(K)(I2,Φ) |= ψ[ā], so we have proved the implication ⇒.

For the other implication assume that b̄ ∈ ℓg(ȳ)(EMτ(K)(I2,Φ))

and EMτ(K)(I2,Φ) |= ψ[b̄, ā]. Let θ = |ℓg(āˆb̄)| + ℵ0, so θ < κ and
without loss of generality if κ is singular then θ ≥ cf(κ). Hence
there is in I1 a monotonic sequence c̄ = 〈ci : i < θ+〉, without loss
of generality it is increasing. Clearly there is I∗ such that āˆb̄ ∈
ℓg(x̄ˆȳ)(EM(I∗,Φ)), I∗ ⊆ I2, |I

∗| ≤ θ and ā ∈ ℓg(x̄)( EM(I∗ ∩ I1,Φ))
and without loss of generality i < θ+ ⇒ [c0, ci]I2 ∩ I

∗ = ∅.
Similarly without loss of generality

(∗) I1\ ∪ {[c0, ci)I1 : i < θ+} is κ-wide or κ = θ+.
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Let J0 = I2; we can find J1 such that J0 = I2 ⊆ J1 and J1\I2 =
{dα : α < µ × θ+} with dα being <J1

-increasing with α and (∀x ∈

I2)(x <J1
dα ≡

∨

i<θ+

x <J1
ci).

As EMτ(K)(I2,Φ) |= ψ[b̄, ā] and I2 = J0 ⊆ J1, |J1| ≤ µ and I2
is κ-wide (and trivially J1 is κ-wide), by the induction hypothesis
EMτ(K)(J1,Φ) |= ψ[b̄, ā] hence EMτ(K)(J1,Φ) |= ϕ[ā]. Let J2 = J1 ↾

{x : x ∈ J1\J0 or x ∈ I1\ ∪ {[c0, ci]I1 : i < θ+}}. So J1 ⊇ J2,
both linear orders have cardinality µ and are κ-wide as witnessed
by 〈dα : α < µ × θ+〉 for both hence the conclusion of 1.12 holds,
i.e. EM(J2,Φ) ≺L∞,κ[K] EM(J1,Φ). Also I∗ ∩ I1 ⊆ J2 and recall

that ā ∈ ℓg(x̄)(EM(I∗ ∩ I1,Φ)) hence ā ∈ ℓg(x̄)(EM(J2,Φ)). However,
EMτ(K)(J1,Φ) |= ϕ[ā], see above, hence by the last two sentences
EMτ(K)(J2,Φ) |= ϕ[ā].

So there is b̄∗ ∈ ℓg(ȳ)(EMτ(K)(J2,Φ)) such that EMτ(K)(J2,Φ) |=

ψ[b̄∗, ā].
Let J∗ ⊆ J2 be of cardinality θ such that b̄∗ ∈ ℓg(ȳ)(EMτ(K)(J

∗,Φ))

and I∗ ∩ I1 ⊆ J∗ recalling I∗ ∩ [c0, ci)I2 = ∅ for i < θ+. Now let
u ⊆ µ × θ+ be such that J∗\I1 = {dα : α ∈ u} so |u| < θ+. Let
J3 = J2 ↾ {t : t ∈ J2 ∩ I1 or t = dα ∧ α > sup(u) or t = dα ∧ α ∈ u};
as cf(µ × θ+) = θ+ > |u|, clearly sup(u) < µ × θ+ hence |J3| = µ
and J3 is κ-wide. So by the conclusion of 1.12 (or by the induction
hypothesis) also EMτ(K)(J3,Φ) |= ψ[b̄∗, ā]. Let w = {α < µ × θ+ :

α ∈ u or α > sup(u) ∧ (α− sup(u) < θ+)}, so otp(w) = θ+.

Let J4 = (J3 ∩ I1) ∪ {dα : α ∈ w}, so J4 is κ-wide as witnessed
by I1\ ∪ {[c0, ci) : i < θ+} or by {dα : α ∈ w} recalling (∗) above
and J4 ⊆ J3 and J∗ ⊆ J4 hence ā, b̄∗ ⊆ κ>(EM(J4,Φ)) hence by the
induction hypothesis EMτ(K)(J4,Φ) |= ψ[b̄∗, ā].

Let J5 = J4 ∪ {ci : i < θ+}\{dα : α ∈ w} equivalently J5 =
(J3 ∩ I1)∪{cα : α < θ+} = (I1\∪{[c0, ci)I1 : i < θ+})∪{ci : i < θ+}
so J5 ⊆ I1 and let h : J4 → J5 be such that h(dα) = cotp(w∩α)

for α ∈ w and h(t) = t for others, i.e. for t ∈ J3 ∩ I1. So h

is an isomorphism from J4 onto J5. Recalling 0.12 let ĥ be the
isomorphism from EM(J4,Φ) onto EM(J5,Φ) which h induces, so

clearly ĥ(ā) = ā. Hence for some b̄∗∗ we have b̄∗∗ = ĥ(b̄∗) ∈
ℓg(ȳ)(EMτ(K)(J5,Φ)) and EMτ(K)(J5,Φ) |= ψ[b̄∗∗, ā]. Note that by
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the choice of 〈ci : i < θ+〉, (see (∗) above), we know that J5 is
κ-wide. Also J5 ⊆ I1 so by the induction hypothesis applied to
ψ(ȳ, x̄), J5, I1 we have EMτ(K)(I1,Φ) |= ψ[b̄∗∗, ā] hence by the defini-
tion of satisfaction EMτ(K)(I1,Φ) |= ϕ[ā], so we have finished proving
the implication ⇐ hence clause (a).

Clause (b): Without loss of generality for some linear order I we
have I1 ⊆ I, I2 ⊆ I and EM(Iℓ,Φ) ⊆ EM(I,Φ) for ℓ = 1, 2 and use
clause (a) twice.

Clause (c): Easy by now, e.g. using a linear order I ′ extending I1, I2
which has an automorphism h such that h(t1α) = t2α for α < α(∗).
�1.14

1.15 Definition. Fixing Φ ∈ Υor
K

.
1) For θ ≥ LS(K) let K∗

θ , [let K∗∗
θ ] [let K∗,∗

θ ] be the family of M ∈
Kθ isomorphic to some EMτ(K)(I,Φ) where I is a linear order of

cardinality θ [which is θ-wide][which ∈ Kflin
θ ]. More accurately we

should write K∗
Φ,θ, K

∗∗
Φ,θ, K

∗,∗
Φ,θ; similarly below.

2) Let K∗ is the class ∪{K∗
θ : θ a cardinal ≥ LS(K)}, similarly

K∗,∗, K∗
≥λ, K

∗∗
≥λ, etc.

3) Let K∗ = K∗
Φ = (K∗,≤K↾ K∗).

4) Let K∗
λ = K∗

Φ,λ be (K∗
Φ,λ,≤K↾ K∗

Φ,λ).

1.16 Claim. 1) K∗∗
θ is categorical in θ if LS(K) < θ ≤ µ, cf(θ) = ℵ0

and the conclusion of 1.12(2) hence of 1.14 holds for ∂ = θ (and Φ),
e.g. K is pseudo solvable in µ as witnessed by Φ and µ = µ<θ.
2) K∗,∗

θ , K∗∗
θ ⊆ K∗

θ .
3) If θ is strong limit > LS(K) then K∗∗

θ = K∗
θ .

Proof. 1) By 1.14 and 0.17(1).
2) Read the definitions.
3) Recall 0.15(2). �1.16

1.17 Remark. 1) We will be specially interested in 1.16 in the case
(µ, λ) is a K-candidate (see Definition .1.3) and θ = λ.
2) Note that K∗

θ in general is not a θ-a.e.c.
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3) If we strengthen 1.18(2) below, replacing (µ, λ) by (µ, λ+) then
categoricity of K∗

λ and in fact Claim 1.19(4) follows immediately
from (or as in) Claim 1.16(1).

For the rest of this section we assume that the triple (µ, λ,Φ) is a
pseudo K-candidate (see Definition 1.3) and rather than µ = µλ we
assume just the conclusion of 1.12, that is:

1.18 Hypothesis. 1) The pair (µ, λ) is a pseudo K-candidate and Φ
witnesses this, so |τΦ| ≤ LS(K) < λ = iλ < µ and Φ ∈ Υor

K
is as in

Definition 1.4 so I ∈ K lin
µ ⇒ EMτ(K)(I,Φ) ∈ Kpl

µ .
2) For every κ ∈ (LS(K), λ) the conclusion of 1.12(2) holds hence
also of 1.14 (if µ = µ<λ this follows from (1) even for κ = λ+ as
µ<κ = µλ = µ by cardinal arithmetic).

1.19 Claim. 1) If M1 ≤K M2 are fromK∗
λ or justK∗

≥λ and LS(K) <
θ < λ then M1 ≺L∞,θ [K] M2; moreover M1 ≺L∞,λ[K] M2.
2) If M1 ≤K M2 are from K∗ and ‖M1‖ ≥ κ := i1,1(θ) (recall that
this is i(2θ)+) and µ > θ ≥ LS(K) then M1 ≺L

∞,θ+ [K] M2.

3) Assume LS(K) < θ < κ = i1,1(θ) ≤ χ < µ, χ1 = i1,1(χ) and
M ∈ K∗

≥χ1
and ā, b̄ ∈ γM where γ < θ+ and (M, ā) ≡L∞,κ[K] (M, b̄),

i.e. ϕ(〈xβ : β < γ〉) ∈ L∞,κ+ [K] ⇒ M |= ϕ[ā] ⇔ M |= ϕ[b̄]. Then

(M, ā) ≡L∞,χ[K] (M, b̄).
4) K∗

λ is categorical in λ provided that cf(λ) = ℵ0.

1.20 Remark. 1) What is the difference between say 1.19(3) and
clause (a) of 1.14? Here there is no connection between the additional
τ(Φ)-structures expanding M1,M2.
2) Note that Φ has the κ-non-order property (see 1.5(2)(*)) when
κ ≥ LS(K), κ+ < µ using 1.19(4).
3) Concerning 1.19(2), note that if ‖M1‖ ≥ µ it is easy to deduce
this from 1.18(2), i.e, 1.12(2). But the whole point in this stage is
to deduce something on cardinals < µ.
4) Note that the proof of 1.19(2) gives:

⊛ assume LS(K) ≤ θ and δ(∗) = Min{(2θ)+, δ(2LS(K) + θ)}
where on the function δ(−), see V.A.1.4,V.A.1.3, if iδ(∗) ≤ µ
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then for some α(∗) < δ(∗) we have:

⊙ if M1 ≤K M2 are from K∗ and ‖M1‖ ≥ iα(∗) then
M1 ≺L

∞,θ+ [K] M2.

5) Similarly for 1.19(3) so we can weaken the demand M ∈ K∗
≥χ1

6) We use “λ has countable cofinality, i.e. cf(λ) = ℵ0” in the proof
of part (4) of 1.19, but not in the proof of the other parts.
7) Recall that for notational simplicity we assume LS(K) ≥ |τK| hence
θ ≥ |τΦ|.
8) Note that for 1.19(2),(3) we can omit λ from Hypothesis 1.18.
9) Note that we shall use not only 1.19 but also its proof.

Proof of 1.19. 1) The first phrase holds by part (2) noting that
κ < λ if θ < λ as θ < λ = iλ. The second phrase holds by 1.11 as
its assumption holds by parts (1) and (3).
2) We prove by induction on the ordinal γ that:

(∗) if M1 ≤K M2 are from K∗
≥κ and the formula ϕ(x̄) ∈ L∞,θ+ [K]

has depth ≤ γ (so necessarily ℓg(x̄) < θ+) and ā ∈ ℓg(x̄)(M1)
then M1 |= ϕ[ā] ⇔M2 |= ϕ[ā].

As in 1.12, the non-trivial case is to assume ϕ(x̄) = (∃ȳ)ψ(ȳ, x̄)
where ā ∈ ℓg(x̄)(M1) and M2 |= ϕ[ā] and we shall prove M1 |= ϕ[ā],
so necessarily ℓg(x̄) + ℓg(ȳ) < θ+ and we can choose b̄ ∈ ℓg(ȳ)(M2)
such that M2 |= ψ[b̄, ā]. For ℓ = 1, 2 as Mℓ ∈ K∗

≥κ there is an

isomorphism fℓ from EMτ(K)(Iℓ,Φ) onto Mℓ for some linear order Iℓ
of cardinality ≥ κ.

So we can find Jℓ ⊆ Iℓ of cardinality θ for ℓ = 1, 2 such that ā ⊆
M−

1 where M−
1 = f1(EMτ(K)(J1,Φ)), and āˆb̄ ⊆ M−

2 where M−
2 =

f2(EMτ(K)(J2,Φ)) and without loss of generality M−
1 = M−

2 ∩M1.

By 1.18(1), i.e. 0.9(1), clause (c) clearly M−
ℓ ≤K Mℓ and so by

AxV of a.e.c. (see Definition II.1.4), we have M−
1 ≤K M−

2 . First

assume θ ≥ 2LS(K); in fact it is not a real loss to assume this. By
renaming without loss of generality there is a transitive set B (in the
set theoretic sense) of cardinality ≤ θ such that the following objects
belong to it:
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⊕(a) J1, J2

(b) Φ (i.e. τΦ and 〈(EM(n,Φ), aℓ)ℓ<n : n < ω〉)

(c) K, i.e., τK and {(M,N) : M ≤K N have universe included in
LS(K)}

(d) EM(Jℓ,Φ) and 〈at : t ∈ Jℓ〉 for ℓ = 1, 2.

Let χ be large enough, B = (H (χ),∈, <∗
χ) and B+ be B expanded

by the individual constants M+
ℓ = EM(Iℓ,Φ), 〈aℓ

t : t ∈ Iℓ〉 the skele-

ton, Mℓ,M
−
ℓ and fℓ (all for ℓ = 1, 2), κ,B and x for each x ∈ B. By

the assumption ‖M1‖ ≥ κ = i1,1(θ), hence (see here V.A.1.3) there
is C such that

⊙ (a) C is a τ(B+)-model elementarily equivalent to B+ (that is,
in first order logic)

(b) C omits the type {x 6= b & x ∈ B : b ∈ B} but

(c) |{b : C |= “b ∈ κC”}| = µ = ‖C‖.

Without loss of generality b ∈ B ⇒ bC = b.
Now

⊛1 if C |= “M ∈ K”, so M is just a member of the model C then
we can define a τK-model MC = M [C] as follows

(a) the set of elements of MC is {a : C |= “a is a member
of the model M”}

(b) if R ∈ τK is an n-place predicate then RM [C] = {〈aℓ :
ℓ < n〉 : C |= “〈aℓ : ℓ < n〉 ∈ RM”}

(c) if F ∈ τK is an n-place function symbol, FM [C] is de-
fined similarly.

⊛2(a) if C |= “I is a linear order” then we define IC similarly

(b) similarly if C |= “M is a τ(Φ)-model”

⊛3 if C |= “I is a directed partial order, M̄ = 〈Ms : s ∈ I〉
satisfies Ms ∈ K has cardinality LS(K) and s ≤I t⇒Ms ≤K

Mt” then also 〈MC
s : s ∈ IC〉 satisfies this.
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By easy absoluteness (for clauses (a)1, (a)2 we use I.1.6, I.1.7 and
⊛3):

⊠(a)1 if C |= “M ∈ K” then MC ∈ K

(a)2 if C |= “M ≤K N” then MC ≤K NC

(b)1 if C |= “I is a linear order” then IC = I[C] is a linear order

(b)2 if C |= “I ⊆ J as linear orders” then IC ⊆ JC

(c) similarly for τΦ-models

(d)1 if C |= “M = EM(I,Φ)” then there is a canonical isomor-
phism fC

I from EM(IC,Φ) onto MC (hence it is also an iso-
morphism from EMτ(K)(I

C,Φ) onto MC ↾ τ(K))

(d)2 if C |= “I ⊆ J as linear orders” then fC

J extends fC

I .

Now clearly JC

ℓ = Jℓ and IC

ℓ is a linear order of cardinality µ extend-
ing Jℓ for ℓ = 1, 2. Let M∗

ℓ = (M−
ℓ )C for ℓ = 1, 2.

So recalling clause (c) of ⊙ we have: MC
1 ,M

C
2 ∈ K∗

µ,M
C
1 ≤K

MC
2 ,M

∗
ℓ ≤K MC

ℓ ,M
∗
1 ≤K M∗

2 and fC0

ℓ , fC
Iℓ

are isomorphisms from

EMτ(K)(I
C

ℓ ,Φ) ontoMC

ℓ , in fact, fC

Iℓ
is the identity on EMτ(K)(J

C

ℓ ,Φ) =

EMτ(K)(Jℓ,Φ) and fC

ℓ maps it onto M∗
ℓ for ℓ = 1, 2.

Now M2 |= ψ[ā, b̄], (why? assumed above) hence MC
2 |= ψ[ā, b̄]

(why? By 1.14, clause (b) or (c) and the situation recalling 1.18(2),
of course noting that I2, I

C
2 are of cardinality ≥ κ = i1,1(θ) hence

are θ+-wide), hence MC
2 |= ϕ[ā] (by definition of satisfaction), hence

MC
1 |= ϕ[ā] (why? as MC

1 ,M
C
2 ∈ K∗

µ hence MC
1 ≺L

∞,θ+ [K] M
C
2 by ⊠

and 1.18(2) and recalling 1.12(2)) hence M1 |= ϕ[ā] (why? by clause
(b) of 1.14 recalling 1.18(2)) as required in 1.19(2).]
So we are done except for a small debt: the case θ < 2LS(K) and fC

ℓ

is an isomorphism from EMτ(K)(I
C

ℓ ,Φ).
In this case choose two sets B1, B2 such that |B1| = θ, |B2| =

2LS(K), B1 ⊆ B2 and concerning the demands in ⊕ above the objects
from (a),(b),(d) and τK belong to B1, the objects from (c) belong to
B2.

Again, without loss of generality B1, B2 are transitive sets and
B1, B2 serve as individual constants of B+ as well as each member of
B1. Now concerning C we demand that it is elementarily equivalent
to B+; omit {x ∈ B1 ∧ x 6= b : b ∈ B1} and for some B+

1 ≺ B+ of
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cardinality θ we have B+
1 ≺ C and {b : C |= b ∈ B2} ⊆ B+. This

influences just the proof of ⊛3.
3) Without loss of generality M = EMτ(K)(I,Φ) and I ∈ K lin

≥χ1
.

As γ < θ+ and ā, b̄ ∈ γM there is I1 ⊆ I of cardinality θ such
that ā, b̄ ∈ γ(M1) where M1 = EMτ(K)(I1,Φ). As (M, ā) ≡L

∞,κ+ [K]

(M, b̄) necessarily there is I2 ⊆ I of cardinality κ and automorphism
f of M2 = EMτ(K)(I2,Φ) mapping ā to b̄ such that I1 ⊆ I2. Why?
Recalling 0.17(2), by the hence and forth argument as in the second
part of the proof of 1.10(3).
Now as in the proof of part (2) there is a linear order I3 extending
I1 of cardinality χ1 and an automorphism g of M3 = EMτ(K)(I3,Φ)

mapping ā to b̄. Without loss of generality for some linear order I4
we have I ⊆ I4 and I3 ⊆ I4.

Let M4 = EMτ(K)(I4,Φ), now M ≺L
∞,χ+ [K] M4 by part (2),

M3 ≺L
∞,χ+ [K] M4 by part (3) and (M3, ā) ≡L

∞,χ+ [K] (M3, b̄) by using

the automorphism g of M3 so together we are done.
4) So let M,N ∈ K∗

λ (in fact, hence ∈ K∗∗
λ recalling K∗

λ = K∗∗
λ by

1.16(3) but not used). By parts (1),(3) the assumptions of 1.11(3)
holds with λ here standing for κ there, hence its conclusion, i.e.
M ∼= N .

�1.19

Note: here the types below are sets of formulas.

1.21 Definition. Assume M ∈ K, I ⊆ γM and L ,L1,L2 are lan-
guages in the vocabulary τK.
1) We say that I is (L , ∂, < κ)-convergent in M , if: |I| ≥ ∂ and for
every b̄ ∈ κ>M , for some J ⊆ I of cardinality < ∂ for some2 p we
have:

(∗) for every c̄ ∈ I\J, the L -type of c̄ˆb̄ in M is p.

2) Let AvL ,∂,<κ(I,M) = {ϕ(x̄, b̄) : ϕ(x̄, ȳ) is an L -formula, ℓg(ȳ) <

κ and ā ∈ I ⇒ ℓg(ā) = ℓg(x̄) and b̄ ∈ ℓg(ȳ)M and for all but < ∂
of the sequences c̄ ∈ I, the sequence c̄ satisfies ϕ(x̄, b̄) in M}. If ∂

2We could have demanded it for every single formula, here this distinction is
not important
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is missing, we mean ∂ = κ. In parts (1) and (2) we may write “κ”
instead of < κ+; similarly below.
3) We say that I is (L1,L2, ∂, < κ)-based on A in M (if L1 = L =
L2 we may write only L ) when:

(a) A ⊆M

(b) I is (L1, ∂, < κ)-convergent,

(c) AvL1,∂,<κ(I,M) does not (L1,L2, < κ)-split over A, see be-
low.

4) We say that p(x̄) ∈ Sfrα
L

(B,M) does not (L1,L2, < κ)-split over

A when: if ϕ(x̄, ȳ) ∈ L1, α = ℓg(x̄) < κ, ℓg(ȳ) < κ and b̄, c̄ ∈ ℓg(ȳ)B
realize the same L2-type in M over A then ϕ(x̄, b̄) ∈ p⇔ ϕ(x̄, c̄) ∈ p;
recalling that Sfrα

L
(A,M) is defined in 0.4 and normally L1 = L2

or at least L1 ⊆ L2.
5) Let Av<κ(I,M) be AvL∞,κ[K](I,M) and let Avκ(I,M) be
AvL

∞,κ+ [K](I,M).

1.22 Remark. 1) See definition of Savα(M) in 1.34(2) below.
2) An alternative for clause (c) of 1.21(3) is:

(c)′ the set {AvL ,∂,<κ(f(I),M) : f an automorphism of M over
A} has cardinality ≤ i1,1(LS(K) + θ + |A|) < ‖M‖.

1.23 Claim. 1) Assume that M ∈ K,A ⊆ M, I ⊆ θM, |I| ≥ ∂ =
cf(∂) > κ ≥ θ + LS(K) and I is (L , ∂, κ)-convergent. Then the type
p = AvL ,∂,κ(I,M) belongs to Sfrθ

L
(M), i.e., it is complete, recalling

Definition 0.4 (no demand that it is realized in some N,M ≤K N !).
2) Also I is (L , ∂, κ)-based on some set of cardinality ≤ ∂, even on
∪J, for any J ⊆ I of cardinality ≥ ∂.

Proof. 1) By the definition.

2) By the definitions: if b̄ ∈ κ+>M,ϕ = ϕ(x̄, ȳ) ∈ L and ℓg(b̄) =
ℓg(ȳ), ℓg(x̄) = θ, then by the convergence

ϕ(x̄, b̄) ∈ p⇔ for all but < ∂ members ā of I,M |= ϕ[ā, b̄] ⇔

for all but < ∂ members of J,M |= ϕ[ā, b̄].
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So only tpL (b̄,∪J,M) matters hence the non-splitting required in
clause (c) of Definition 1.21(3). �1.23

As in V.A.1.12, we deduce non-splitting over a small set from non-
order.

1.24 Claim. Assume M = EMτ(K)(I,Φ), θ + LS(K) ≤ κ < λ and

i1,1(∂) ≤ |I| where ∂ = (22κ

)+ or I is well ordered and ∂ = (2κ)+. If
M ≺L∞,∂ [K] N then for every ā ∈ θ≥N there is B ⊆M of cardinality
< ∂ such that tpL

∞,κ+ [K](ā,M,N) does not (L∞,κ+ [K],L∞,κ+ [K])-

split over B.

Proof. Let x̄ = 〈xi : i < ℓg(ā)〉.
We try to choose Bα, γα, āα, b̄α, c̄α, ϕα(x̄, ȳα) ∈ L∞,κ+ [K] by in-

duction on α < ∂ such that

⊛ (a) Bα = ∪{āβ : β < α}

(b) b̄α, c̄α ∈ γαM and γα < κ+

(c) ϕα(x̄, ȳα) ∈ L∞,κ+ [K] such that ℓg(ȳα) = γα

(d) N |= “ϕα[ā, b̄α] ≡ ¬ϕα[ā, c̄α]”

(e) āα ∈ ℓg(ā)M realizes {ϕβ(x̄, b̄β) ≡ ¬ϕβ(x̄, c̄β) : β < α} in M

(f) M |= “ϕα[āβ, b̄α] ≡ ϕα[āβ, c̄α]” for β ≤ α.

If we are stuck at α(∗) < ∂ then we cannot choose γα, b̄α, c̄α, ϕα(x̄, ȳα)
clauses (b),(c),(d), because then āα as required in clauses (e),(f) ex-
ists because M ≺L∞,∂ [K] N . Hence B := ∪{āα : α < α(∗)} is
as required. So assume that we have carried the induction. As
γα < κ+ < ∂ = cf(∂) without loss of generality γα = γ < κ+ for
every α < ∂.

Let ∂1 = (2κ)+.
Now by 1.25(5) below when I is not well ordered and by 1.25(4)

below when I is well ordered (and part (1) of 1.25(1), recalling I
is κ+-wide as κ < ∂ and i1,1(∂) ≤ |I|) clearly for some S ⊆ ∂ of
order type ∂1, the sequence 〈āαˆb̄αˆc̄α : α ∈ S〉 is (L∞,κ+ [K], κ+, κ)-
convergent and (L∞,κ+ [K], < ω)-indiscernible in M hence without
loss of generality α ∈ S ⇒ ϕα = ϕ. But as ∂1 > κ+ this contradicts
(e) + (f) of ⊛ (if we use ∂1 = κ+, we can use a further conclusion of
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1.25(1) stated in 1.25(2), i.e., 〈āαˆb̄αˆc̄α : α ∈ S〉 is a (L∞,κ[K], < ω)-
indiscernible set not just a sequence, contradiction to (e) + (f) of ⊛).
�1.24

1.25 Claim. Assume M = EMτ(K)(I,Φ), I is κ+-wide, κ < λ and
LS(K) + θ ≤ κ < ∂.
1) Assume that L = L∞,κ+ [K] and āα = 〈σi(. . . , at(α,i,ℓ), . . . )ℓ<ni

:
i < θ〉 for α < ∂ so σi is a τ(Φ)-term, and cf(∂) > κ. Assume further
that letting t̄α = 〈t(α, i, ℓ) : i < θ, ℓ < ni〉, the sequence 〈t̄α : α < ∂〉
is indiscernible in I for quantifier free formulas (i.e. the truth val-
ues of t(α1, i1, ℓ1) < t(α2, i2, ℓ2) depends only on i1, ℓ1, i2, ℓ2 and the
truth value of α1 < α2, α1 = α2, α1 > α2). Then 〈āα : α < ∂〉 is
(L , ∂, κ)-convergent in the model M .
2) In part (1), even dropping the assumption cf(∂) > κ, moreover,
the sequence 〈āα : α < ∂〉 is (L , κ+, κ)-convergent and (L , < ω)-
indiscernible in M .
3) In part (1) and in part (2), letting J0 = {t(0, i, ℓ) : t(0, i, ℓ) =
t(1, i, ℓ) and i < θ, ℓ < ni} assume J0 ⊆ J ⊆ I, J is κ+-wide (e.g.
J = {t(α, i, ℓ) : α < κ+, i < θ, ℓ < ni}) and B is the universe of
EMτ(K)(J,Φ) and (i1, i2 < θ, ℓ1 < nℓ1 , ℓ2 < ni2 and [α, β < ∂ ⇒
t(α, i1, ℓ1) <I t(β, i2, ℓ2)] ⇒ ∃s ∈ J0[α, β < ∂ ⇒ t(α, i1, ℓ1) <I t <I

t(β, i2, ℓ2)] then B is a (∂, κ)-base of {āα : α < ∂}.
4) If I is well ordered (or just is EM{<}(J,Ψ),Ψ ∈ Υor, J well or-

dered), LS(K) + θ ≤ κ, 2κ < ∂, (∀α < ∂)[|α|θ < ∂ = cf(∂)] and b̄α ∈
θM for α < ∂, then for some stationary S ⊆ {δ < ∂ : cf(δ) ≥ θ+},
the sequence 〈b̄α : α ∈ S〉 is as in part (1) hence is (κ+, κ)-convergent
in M . Moreover, if S0 ⊆ {δ < ∂ : cf(δ) ≥ θ+} is stationary we can
demand S ⊆ S0.
5) If in (4) we omit the assumption “I is well ordered”, and add ∂ →
(∂1)

2
2κ, e.g. ∂1 = (2κ)+, ∂ = (22κ

)+ then we can find S ⊆ ∂, |S| = ∂1

such that 〈āα : α ∈ S〉 is as in (1).

Remark. In fact the well order case always applies at least if ∂ < µ.

Proof. 1) Let b̄ ∈ κM , so b̄ = 〈σ∗
j (. . . , as(j,ℓ), . . . )ℓ<mj

: j < κ〉 where
σ∗

i is a τ(Φ)-term, s(j, ℓ) ∈ I and let s̄ = 〈s(j, ℓ) : ℓ < mj , j < κ〉.
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Now for each i1 < θ, ℓ1 < ni1 and j1 < κ, k1 < mj1 the se-
quence 〈t(α, i1, ℓ1) : α < ∂〉 is monotonic (in I) hence there is
α(i1, ℓ1, j1, k1) < ∂ such that

(∗)1 if β, γ ∈ ∂\{α(i1, ℓ1, j1, k1)} and β < α(i1, ℓ1, j1, k1) ≡ γ <
α(i1, ℓ1, j1, k1) then

(

t(β, i1, ℓ1) <I s(j1, k1)
)

≡
(

t(γ, i1, ℓ1) <I

s(j1, k1)
)

and
(

t(β, i1, ℓ1) >I s(j1, k1)
)

≡
(

t(γ, i1, ℓ1) >I

s(j1, k1)
)

.

Let u := {α(i1, ℓ1, j1, k1) : i1 < θ, ℓ1 < ni1 , j1 < κ, k1 < mj1}, it is a
subset of ∂ of cardinality ≤ θ + κ = κ.
Hence

(∗)2 if β, γ ∈ ∂\u and βEuγ which is defined by (∀α ∈ u)(α <
β ≡ α < γ) then t̄βˆs̄, t̄γˆs̄ realizes the same quantifier free
type in I

Now by clause (c) of 1.14 recalling I is κ+-wide we have

(∗)3 if β, γ ∈ ∂\u and βEuγ then āβˆb̄, āγˆb̄ realizes the same
L∞,κ+ [K]-type in M .

As b̄ was any member of κM we have gotten

(∗)4 if b̄ ∈ κ≥M , then for some u = ub̄ ⊆ ∂ of cardinality ≤ κ we
have:
if β, γ ∈ ∂\u and βEuγ then āβˆb̄, āγˆb̄ realize the same
L∞,κ+ [K]-type in M .

As we are assuming cf(∂) > κ(≥ θ+ LS(K) ≥ |τΦ|) we can conclude
that

(∗)5 〈āα : α < ∂〉 is (L , ∂, κ)-convergent in M .

So we have proved 1.25(1).
2) We start as in the proof of part (1). However, after (∗)3 above
letting for simplicity u+ = {α < ∂: for some β ∈ u ∩ α we have
α+ κ = β + κ} we have

(∗)6 if β, γ ∈ ∂\u+ and β < γ,¬(βEu+γ)
then we can find (µ+, I+, s̄′, b̄) such that

(α) I ⊆ I+ ∈ K lin
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(β) M+ = EMτ(K)(I,Φ) hence M ≺L
∞,κ+ [K] N

(γ) s̄ = 〈s′(j, k) : k < m, j < κ〉 a sequence of elements of
I+

(δ) b̄′ = 〈σ∗
j (. . . , as′(j,ℓ), . . . )ℓ<mj

: j < κ〉 ∈ κ(M+)

(ε) b̄ˆāγ , b̄
′ˆāγ realize the same L∞,κ+ [K]-types in M+ as

b̄ˆāγ , b̄ˆāβ respectively

(ζ) s̄ˆt̄β, s̄
′ˆt̄β form a ∆-system pair, i.e. are as in ⊠ from

1.5(2).

[Why?
Let w+ = {(j, k) : k < mj and j < κ and for some ℓ < ni1 , i1 < θ

we have α(i1, ℓ1, j, k) ∈ (β, γ)}

w− := {(j, k) : j < κ, k < mj and (j, κ) /∈ w+}.

We choose I+ extending I and s̄ε = 〈si(j, k) : k < mj , j < κ〉 for
ε < κ such that

(a) the set of elements of I+ is the disjoint union of I and
{sε(j, k) : (j, k) ∈ w and ε ∈ (0, κ)}

(b) s̄ε, s̄ realize the same quantifier-free type in I+

(c) if ε, ζ < κ then t̄γ+εˆs̄ζ realizes in I+ the quantifier-free type
tpqf(t̄βˆs̄, ∅, I) if ε < ζ and tpq(t̄γˆs̄, ∅, I) if ε ≥ ζ

(d) 〈t̄γ+εˆs̄ε : ε < κ〉 is indiscernible for quantifier-free formulas
on I+

(e) s̄0 = s̄.

This is straight. Using s̄′ = s̄1 we are done.]
Now as Φ has the κ-non-order property (by Claim 1.5(2) which

contains a definition, noting that the assumption of 1.5 holds by
1.18(1) and also 1.18(2)), repeating (∗)4, (∗)5 we get

(∗)7 for every b̄ ∈ κ≥M , for some u = u+
b̄
∈ [∂]≤κ if β, γ ∈ ∂\u+

then āβˆb̄, āγˆb̄ realizes the same L∞,κ+ [K]-type in M .
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In other words

(∗)8 the sequence 〈āα : α < ∂〉 is (L∞,κ+ [K], κ+)-convergent.

The proof that it is a (L∞,κ+ [K], < ω)-indiscernible set is similar.
3) Not used; easy by 1.23(2) and convergence. [That is, note that
we can find I+ and ā′α = 〈σi(. . . , at′(α,i,ℓ), . . . )ℓi<ni

: i < θ〉 for
α < ∂ + γ such that:

(a) I+ ∈ K lin extend I

(b) t′(α, i, ℓ) ∈ I+

(c) t̄′α = 〈t′(α, i, ℓ) : i < θ, ℓ < ni〉

(d) 〈t̄′α : α < ∂ + γ〉 is indiscernible for quantifier-free formulas
in I+

(e) 〈t̄α : α < ∂〉ˆ〈t̄′α : α ∈ [∂, ∂+∂)〉 is indiscernible for quantifier-
free formulas in I ′

(f) for each i < θ, ℓ < ni such that t(0, i, ℓ) = (j, i, t) the convex
hull I∗ of {t′(α, i, ℓ) : α < ∂} in I+ is disjoint to I and if
s1 <I s2 and (s1, s2)I∗ ∩ I∗ = ∅ then [s1, s2]I∗ ∩ J0 6= ∅.

So we can average over 〈ā′α : α < ∂〉 instead averaging over 〈āα :
α < ∂〉, and this implies the result. In fact we can weaken the
assumption.]
4) Should be clear. [Still let t̄α = 〈tα,i : i < θ〉 be such that
b̄α = 〈σα,j(. . . , atα,i(j,α,ℓ)

, . . . )ℓ<n(α,j) : j < θ〉. So as (LS(K) +

|τΦ|)
θ < ∂ = cf(∂) for some stationary S1 ⊆ {δ < ∂: cf(δ) ≥ θ+}

we have α ∈ S1 ∧ j < θ ⇒ σα,j = σj (hence j < θ ⇒ n(α, j) =
n(j)) and α ∈ S1 ∧ j < θ ∧ ℓ < n(j) ⇒ i(j, α, ℓ) = i(j, ℓ) and
for every i1, i2 < θ we have tα,i1 <I tα,i2 ≡ (i1, i2) ∈ W for some
sequence σ̄ = 〈σj : j < θ〉 of τΦ-terms and W ⊆ κ× κ and sequence
〈〈i(j, ℓ) : ℓ < n(j)〉 : j < θ〉.

If I is well ordered, for δ ∈ S1 let γδ = Min{γ: if i < θ and there
are β < δ, j < θ such that tδ,i <I tβ,j and then letting (βδ,i, jδ,i)
be such a pair with tβδ,i,jδ,i

being <I -minimals, we have βδ,i < γ};
clearly γδ is well defined and < δ so by Fodor lemma for some γ∗ < ∂
the set S1 := {δ ∈ S2 : γδ = γ∗} is stationary. As |γ∗|

θ < ∂, for some
u ⊆ θ and stationary S3 ⊆ S2 we have: if δ ∈ S3 then j ∈ u ⇔
(βδ,i, jδ,i) well defined and j ∈ u∧α ∈ S3 ⇒ (βδ,i, jδ,i) = (βi, ji) and
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for each i ∈ u the truth value of “tδ,i = tβi,ji
” is the same for all

δ ∈ S3.
Now apply part (1) to 〈b̄α : α ∈ S3〉.]

5) By (1) and the definition of ∂ → (∂1)
2
2κ . �1.25

1.26 Claim. 1) If M ≤K N are from K∗
λ and κ ∈ [LS(K), λ), κ+ <

∂ = cf(∂) < λ and moreover θ ≤ κ and ā ∈ θN then there is a
(κ+, κ)-convergent set I ⊆ θM of cardinality ∂ such that Avκ(I,M)
is realized in N by ā.
2) In fact we can weaken M,N ∈ K∗

λ to M,N ∈ K∗
≥i1,1(∂′) where,

e.g. ∂′ = i5(κ)
+.

3) Assume θ ≤ κ, κ ∈ [LS(K), λ), ∂′ = i5(κ)
+ and M1 ∈ K∗

≥i1,1(∂′).

Assume further M1 ≤K M2 = EMτ(K)(I2,Φ), |ξ| = θ and I ⊆ ξ(M1)
is a (κ+, κ)-convergent set (in M1) of cardinality ∂′. If I2 <

∗
Kflin I3

(or just I3 is κ+-wide over I2, which follows as |I2| ≥ |I| = ∂′) and
M3 = EMτ(K)(I3,M3) then

(a) we can find d̄ ∈ ξ(M3) realizing Avκ(M2, I) so well defined

(b) if M1 ≤K N ∈ K∗ and d̄∗ ∈ ξN, |ξ| ≤ θ
then we can find d̄ ∈ ξ(M3) realizing tpL

∞,κ+ [K](d̄
∗,M1, N)

and tpL
∞,κ+ [K](d̄,M2,M3) is the average of some (κ+, κ)-

convergent I′ ⊆ α(M1) of cardinality ∂′.

Remark. The exact value of ∂′ have no influences for our purpose.

Proof. 1) Without loss of generality M = EMτ(K)(I,Φ). Let ∂0 = ∂

and ∂ℓ+1 = i2(∂ℓ)
+ for ℓ = 0, 1 so ∂ℓ < λ and ℓ = 1, 2 ⇒ (∀α <

∂ℓ)(|α|
κ+θ < ∂ℓ = cf(∂ℓ) < λ) (if I is well ordered (which is O.K. by

1.19(4)) and (∀α < ∂)(|α|κ < ∂) then we can use ∂ℓ = ∂).
By 1.24 there is B∗ ⊆M of cardinality < ∂2 (or just ≤ 22κ

< ∂2)
such that tpL

∞,κ+ [K](ā,M,N) does not (L∞,κ+ [K],L∞,κ+[K])-split

over B∗.
Now by 1.19(1) for every B ⊆ M, |B| < ∂2 there is ā′ ∈ θM

realizing in M , equivalently in N (with ℓg(x̄) = θ, of course), the
type tpL

∞,κ+ [K](ā, B,N) = {ϕ(x̄, b̄) : b̄ ∈ κ≥B,ϕ(x̄, ȳ) ∈ L∞,κ+ [K]

and N |= ϕ[ā, b̄]}.
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We can choose Jα, Bα, āα by induction on α < ∂2 such that Bα

includes ∪{āβ : β < α} ∪B∗, Bα is the universe of EM(Jα,Φ), Jα ⊆
I, |Jα| < ∂2, Jα increasing with α and Jα is quite closed (e.g. is Bα∩I
where Bα ≺L

κ+,κ+ (H (χ),∈, <∗
χ) with M,N,EM(I,Φ),K, 〈āβ : β <

α〉,K, κ, θ belonging to Bα and Bα has cardinality < ∂2 and B∩∂2 ∈
∂2). Then choose ā′ = āα as above, i.e. āα ∈ θM realizes the same
L∞,κ+ [K]-type as ā over Bα = M ∩Bα = EMτ(K)(Jα, ā) in N ; such
āα exists by 1.19(1). So for some set S1 ⊆ ∂2 of order type ∂1 the
sequence I = 〈āβ : β ∈ S1〉 is (κ+, κ)-convergent (by 1.25(4),(5)).

It is enough to show that I is as required, toward contradiction
assume that not. Then there is an appropriate formula ϕ(x̄, ȳ) with
ℓg(x̄) = θ, ℓg(ȳ) = κ and b̄ ∈ κM such that N |= ϕ[ā, b̄] but u :=
{α ∈ S1 : M |= ϕ[āα, b̄]} has cardinality < κ+. Now for α ∈ S1 as
Jα was chosen “closed enough”, there is b̄α ∈ κ(EMτ(K)(Jα,Φ)) ⊆
κM realizing tpL

∞,κ+ [K](b̄, B∗,M) such that β ∈ S1 ∩ α ⇒ M |=

“ϕ[āβ, b̄] ≡ ϕ[āβ, b̄α]” (possible, e.g. as |Bα|
|S∩α| ≤ (2<∂1)<∂1 < ∂2).

So, again by 1.25(4),(5), for some S0 ⊆ S1 of order type ∂ = ∂0,
the sequence 〈āαˆb̄α : α ∈ S0〉 is (L∞,κ+ , κ+, κ)-convergent in M and
(L∞,κ+ , < ω)-indiscernible. Let α ∈ S0 be such that |S0 ∩ α| > κ,

possible as |S0| = ∂0 > κ0. So the set {β ∈ S1 ∩ α : M |= ϕ[āβ, b̄α]}
has cardinality ≤ κ (being equal to {β ∈ S1 ∩α : N |= ϕ[āβ , b̄]}) but
α ∈ S0 ⊆ S1 and |S0 ∩ α| > κ, so for some β < α from S0,M |=
¬ϕ[aβ , b̄α] hence by the indiscernibility M |= ¬ϕ[āβ , b̄γ] for every
β < γ from S0.

On the other hand if α < β are from S0 then by the choice of b̄α
the sequences b̄, b̄α realizes the same L∞,κ+ [K]-type over B∗. Now
tpL

∞,κ+ [K](ā,M,N) does not split over B∗ by the choice of B∗ so

we have N |= “ϕ[ā, b̄] ≡ ϕ[ā, b̄α]” but by the choice of b̄ we have
N |= ϕ[ā, b̄] hence N |= ϕ[ā, b̄α] hence M |= ϕ[āβ, b̄α] by the choice
of āβ. Together this contradicts 1.5, i.e., 1.18(1).
2) Similarly (using 1.19(2) instead of 1.19(1).
3) Clause (a):

By 1.14 and the LS argument (i.e. by 0.17(4)) without loss of
generality M1 ∈ K∗

<λ. Let ∂ℓ = iℓ(κ)
+ for ℓ ≤ 5 so ∂′ = ∂5 and for

notational simplicity assume θ ≥ ℵ0.

Let {āα : α < ∂′} list the members of I, so for each α < ∂′ there
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is I2,α ⊆ I2 of cardinality θ such that āα is from EMτ(K)(I2,α,Φ).

For each α < ∂′ let t̄α = 〈tαi : i < θ〉 list I2,α and so āα =
〈σα,ζ(t̄

α) : ζ < ξ〉 for some sequence 〈σα,ζ(x̄) : ζ < ξ〉 of τΦ-terms.
We can find S ⊆ ∂′ of order type ∂4 such that ζ < ξ ∧ α ∈ S ⇒
σα,ζ = σζ and 〈t̄α : α ∈ S〉 is an indiscernible sequence (for quantifier
free formulas, in I2, of course).

By renaming κ+ ⊆ S. We define a partition 〈u−1, u0, u1〉 of ξ by

u0 = {i < θ : tαi = tβi for α, β ∈ S}

u1 = {i < θ : tαi <I2 t
β
i for α < β from S}

u−1 = {i < θ : tβi <I2 t
α
i for α < β from S}.

We define an equivalence relation e on u−1 ∪ u1

⊙ i1ei2 iff for some ℓ ∈ {1,−1}, i1, i2 ∈ uℓ and (tαi1 <I t
β
i2

) ≡

(tαi2 <I t
β
i1

) for every (equivalently some) α < β from S.

There is a natural set of representatives: W = {ζ < θ : ζ ∈ u−1 ∪ u1

and ζ = min(ζ/e)}.

We now define a linear order I+
2 ; its set of elements is {t : t ∈

I2} ∪ {t∗i : i ∈ u−1 ∪ u1} where, of course, t∗i ∈ I+
2 are pairwise

distinct and /∈ I2. The order is defined by (or see ⊛2 and think)

⊛1 s1 <I+
2
s2 iff

(a) s1, s2 ∈ I2 and s1 <I2 s2

(b) s1 ∈ I2, s2 = t∗i and s1 <I2 t
α
i for every α < κ+ large

enough

(c) s1 = t∗i , s2 ∈ I2 and tαi <I2 s2 for every α < κ+ large
enough

(d) s1 = t∗i , s2 = t∗j and tαi <I t
α
j for every α < κ+.
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Let t∗i = tαi for i ∈ u0 and any α < κ+. Let M+
2 = EMτ(K)(I

+
2 ,Φ).

It is easy to check (by 1.14(a),(c)) that

⊛2 (a) I2 ⊆ I+
2

(b) t̄∗ ∈ θ(I+
2 )

(c) if J ⊆ I2 has cardinality ≤ κ then for every α < κ+ large
enough, the sequences t̄∗, t̄α realizes the same quantifier free
type over J inside I+

2 .

Let

⊛3 d̄ := 〈σζ(t̄
∗) : ζ < ξ〉 ∈ ξ(M+

2 ).

Recall that ‖M2‖ < λ hence |I2| < λ and I2 is κ+-wide having
cardinality ≥ ∂′ > 2κ.

Note

⊛4 t̄∗ realizes Avqf({t̄
α : α ∈ S}, I2) in the linear order I+

2 .

Without loss of generality I+
2 ∩ I3 = I2, so we can find a linear order

I4 of cardinality λ such that I+
2 ⊆ I4 ∧ I3 ⊆ I4. As I3 is κ+-wide

over I2 (see the assumption and Definition 0.14(6)+(3)), there is
a convex subset I ′3 of I3 disjoint to I2 which contains a monotonic
sequence 〈sα : α < κ+〉. Without loss of generality there are elements
sα (α ∈ [κ+, λ×κ+) in I4 such that 〈sα : α < λ×κ+〉 is monotonic (in
I4), and its convex hull is disjoint to I2. Let I−3 = I2∪{sα : α < κ+}
and I±3 = I2 ∪ {sα : α < λ× κ+}.

Now we use 1.14 several times. First, EMτ(K)(I2,Φ) ≺L
∞,κ+ [K]

EMτ(K)(I
+
2 ,Φ) ≺L

∞,κ+ [K] EMτ(K)(I4,Φ) as I2 ⊆ I+
2 ⊆ I4 are κ+-

wide, hence by ⊛4 the sequence d̄ realizes q := Avκ({〈σζ(t̄
α) : ζ <

θ〉 : α < κ+},M2) = Av({āα : α < κ+},M2) = Avκ(I,M2) in
M+

2 and also in EMτ(K)(I4,Φ). Second, as |I2| < λ, I2 ⊆ I±3 ⊆ I4
and |I±3 | = |I4| = λ, by 1.19(1) we have EMτ(K)(I

±
3 ,Φ) ≺L∞,λ[K]

EMτ(K)(I4,Φ) so some d̄′ ∈ ξ(EMτ(K)(I
±
3 ,Φ)) realizes the type q

in EMτ(K)(I
±
3 ,Φ). Let w1 ⊆ λ × κ+ be of cardinality ≤ θ ≤ κ

such that d̄′ belongs to EMτ(K)(I2 ∪ {sα : α ∈ w1},Φ). Choose
w2 ⊆ λ × κ+ of order type κ+ including w1, so EMτ((K)(I2 ∪ {sα :

α ∈ w2},Φ) ≺L
∞,κ+ [K] EMτ(K)(I

±
3 ,Φ) and d̄′ belongs to the former
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hence realizes q in it. But there is an isomorphism h from I2 ∪ {sα :

α ∈ w2} onto I−3 over I2, hence it induces an isomorphism ĥ from

EMτ(K)(I2 ∪ {sα : α ∈ w2},Φ) onto EMτ(K)(I
−
3 ,Φ) so ĥ (d̄′) realizes

q in the latter. But I−3 ⊆ I3 are both κ+-wide hence by 1.14 the

sequence ĥ(d̄′) realizes q in M3 = EMτ(K)(I3,Φ) as required.

Clause (b):
By part (2) we can find appropriate I and then apply clause (a).

�1.26

1.27 Remark. 1) In fact in 1.24, we can choose B of cardinality κ,
hence similarly in the proof of 1.26(1).
2) Also using solvability to get well ordered I we can prove : if
A ⊆M = EMτ(K)(λ,Φ) and |A| < λ then the set of L∞,κ+ [K]-types
realized in M over A is ≤ (|A| + 2)κ.

1.28 Claim. 1) If M ∈ K∗∗
≥κ and LS(K) ≤ θ and ∂ = i1,1(θ) ≤ κ ≤

λ, then for ā, b̄ ∈ θM the following are equivalent: (the difference is
using ∂ or κ)

(a) ā, b̄ realize the same L∞,∂ [K]-type in M

(b) ā, b̄ realize the same L∞,κ[K]-type in M .

2) For M, θ, ∂, κ as above, the number of L∞,∂ [K]-types of ā ∈ θM
where M = EMτ(K)(I,Φ), |I| ≥ ∂ is ≤ 2θ.

Remark. Part (1) improves 1.19(3).

Proof. 1) Clearly (b) ⇒ (a), so assume clause (a) holds. AsM ∈ K∗∗
≥κ

without loss of generality there is a κ-wide linear order I such that
M = EMτ(K)(I,Φ); hence for some J ⊆ I, |J | = θ we have ā, b̄ ∈
θ(EMτ(K)(J,Φ)). So for every α < (2θ)+, by the hence and forth
argument for L∞,i+

α
[K] there are Jα, fα such that J ⊆ Jα ⊆ I, |Jα| =

iα and fα is an automorphism of EMτ(K)(Jα,Φ) which maps ā to b̄.

Hence as in the proof of 1.19 there is a linear order J+ of cardinality
µ extending J and an automorphism f of M+ = EMτ(K)(I

+,M)
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mapping ā to b̄. By clause (b) of Claim 1.14 we are done.
2) Easy by clause (c) of 1.14, i.e., by 1.18. �1.28

1.29 Claim. Assume:

(a) I1 ⊆ I2, I1 6= I2, moreover I1 <Kflin I2, see Definition 0.14(6)

(b) Mℓ = EMτ(K)(Iℓ,Φ) for ℓ = 1, 2

(c) b̄, c̄ ∈ α(M2)

(d) θ ≥ |α| + LS(K)

(e) κ = i1,1(θ2) ≤ λ where θ1 = 2θ, θ2 = (2θ1)+

(f) |I1| ≥ κ

(g) M1 ≤K M2, follows from (a) + (b)

1) Assume that for every ā ∈ κ>(M1) the sequences āˆb̄, āˆc̄ realize
the same L∞,κ[K]-type in M2. Then there are I3,M3 and f such that
I2 ≤Kflin I3 ∈ Kflin

λ ,M3 = EMτ(K)(I3,Φ) and f an automorphism of

M3 over M1 mapping b̄ to c̄.
2) Assume that for every ā ∈ κ>(M1) the sequences āˆb̄, āˆb̄ realize
the same L∞,κ[K]-type in M2 (as in part (a)) and i1,1(∂) ≤ |I1| and
∂ < λ. Then for every ā ∈ κ>(M1), the sequences āˆb̄, āˆc̄ realize
the same L∞,∂ [K]-type in M2.
3) Assume that cf(λ) = ℵ0 and |I1| = λ and recall λ = iλ > LS(K).
If M1 ≤K M∗

2 ∈ K∗
λ then for some I3, a linear order ≤Kflin

λ
-extending

I2 the model M∗
2 can be ≤K-embedded into M3 := EMτ(K)(I3,Φ) over

M1.

Remark. 1) Under mild assumptions with somewhat more work in
1.29(1),(3) we can choose I3 = I2 (but for this has to be more careful
with the linear orders). Recall that for I ∈ K lin

λ like I2 in 1.8(c) we
have α < λ+ ⇒ I × α can be embedded into I and 1.4(1)(d).

Proof. 1) There is J2 ⊆ I2 of cardinality ≤ θ such that b̄, c̄ ∈
α(EMτ(K)(J2,Φ)); let J1 = I1 ∩ J2.

We define a two-place relation E on I2\J2 : sE t iff (∀x ∈ J2)(x <I2

s ≡ x <I2 t). Clearly E is an equivalence relation. As I1 <Kflin I2
clearly
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⊙1 (α) any interval of I1 has cardinality |I1| ≥ κ

(β) for every t ∈ I2\J2 the equivalence class t/E is a singleton or
has |I2| ≥ κ members,

(γ) for every t ∈ I1\J1, (t/E ) ∩ I1 is a singleton or has |I1| ≥ κ
members

(δ) I1\J2 has at least κ elements

(ε) E has ≤ 2|J2| ≤ 2θ equivalence classes

(ζ) we may ≤Kflin-increase I2 so without loss of generality

(∗)1 t ∈ I2\J2 ⇒ |t/E | = |I2|

(∗)2 for every t ∈ I1 for some s1, s2 ∈ I2 we have s1 <I2

t <I2 s2 and (s1, tI2), (t, s2)I2 are disjoint to I1.

Let 〈Ui : i < i(∗)〉 list the equivalence classes of E , so without loss
of generality i(∗) ≤ 2θ. For ℓ = 0, 1 let uℓ = {i < i(∗) : Ui ∩ I1 has
exactly ℓ members} and let u2 = i(∗)\u0\u1, so by clause ⊙1(γ), i.e.
the definition of I1 ∈ Kflin we have i ∈ u2 ⇒ |Ui ∩ I1| = |I1| ≥ κ.
For i ∈ u1 let t∗i be the unique member of Ui ∩ I1.

Without loss of generality u1 = {i : i ∈ [j∗0 , j
∗
1)} for some j∗0 ≤

j∗1 ≤ i(∗) and let i′(∗) = i(∗) + (j∗1 − j∗0) and u′1 = [i(∗), i′(∗)) and
define U ′

i for i < i′(∗) by

⊙2 (a) U ′
i = Ui if i ∈ u0 ∪ u2

(b) U ′
i = {t ∈ Ui : t < t∗i } if i ∈ u1 and

(c) U ′
i = {t ∈ Uι : t∗ι <I2 t} if i ∈ [i(∗), i′(∗)], ι ∈ (j∗0 , j

∗
1) and

i− i(∗) = ι− j∗0 .

For i < i′(∗) let 〈ti,α : α < κ〉 be a sequence of pairwise distinct
members of U ′

i such that i ∈ u2 ⇒ ti,α ∈ I1 and i ∈ u0 ⇒ ti,α /∈ I1,
this actually follows. By ⊙1(ζ) and ⊙1(β), (γ) we can find such ti,α’s.

For ζ < θ2 (see clause (e) of the assumption so iζ < κ) let J1,ζ =
{ti,α : i ∈ u2, α < iζ} ∪ J1 ∪ {t∗i : i ∈ u1}. Now by the hence and
forth argument (or see 0.17(2)) for each ζ < θ2, there are J2,ζ and
fζ such that J2,ζ ⊆ I2 is of cardinality iζ , it includes J1,ζ ∪ J2 and
also {ti,α : i < i′(∗) and α < iζ} and fζ is an automorphism of
EMτ(K)(J2,ζ ,Φ) over EMτ(K)(J1,ζ ,Φ) mapping b̄ to c̄.
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(Why? Let ā0 list EM(J1,ζ ,Φ) so ā0ˆb̄, ā0ˆc̄ realize the same
L∞,i+

ζ
[K]-type in M2, and f be the mapping taking ā0ˆb̄ to ā0ˆc̄,

etc.)
Now we shall immitate the proof of 1.19. By renaming without loss
of generality there is a transitive set B (in the set theoretic sense) of
cardinality ≤ θ1 = 2θ which includes

⊕(a) J1, J2

(b) Φ (i.e. τΦ and 〈(EM(n,Φ), aℓ)ℓ<n : n < ω〉)

(c) K, i.e., τK and {(M,N) : M ≤K N have universe included in
LS(K)}

(d) 〈t∗i : i ∈ u1〉 so each t∗i for i ∈ u1

(e) the ordinal i(∗).

Let χ be large enough, let B = (H (χ),∈, <∗
χ) and let B+

ζ be B

expanded by

⊛1(a) QBζ = {α : α < iζ}

(b) P
Bζ

i = J2,ζ ∩ U ′
i for i < i′(∗)

(c) F
Bζ

2 (t) = at for t ∈ I2

(d) HBζ = fζ and Q
Bζ

1 = J1,ζ , Q
Bζ

2 = J2,ζ

(e) for i < i′(∗), H
Bζ

i is the function mapping α < iζ to ti,α

(f) individual constants for B and for each x ∈ B, hence, e.g.
for t∗i (i ∈ u1), J1, J2, t for t ∈ J2

(g) individual constants J1,∗, J2,∗ interpreted as the linear or-
ders J1,ζ , J2,ζ respectively and individual constants forM+

ℓ =
EM(J0,ζ ,Φ), and 〈at : t ∈ Iℓ〉 for ℓ = 1, 2.

As in the proof of 1.19 there is a τ(B+)-model C, such that

⊠ (a) for some unbounded S ⊆ θ2

(α) C is a first order elementarily equivalent to B+
ζ for every

ζ ∈ S

(β) C omits every type omitted by Bζ for every ζ ∈ S.
In particular this gives
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(γ) C omits the type {x 6= b ∧ x ∈ B : b ∈ B} so

(δ) without loss of generality b ∈ B ⇒ bC = b

(b) C is the Skolem hull of some infinite indiscernible sequence
〈yr : r ∈ I〉, where I an infinite linear order and yr ∈ QC for
r ∈ I.

Without loss of generality I ∈ Kflin and I2 can be ≤Kflin -embedded
into I say by the function g such that (∀t ∈ I2)(∃s1, s2 ∈ I)[s1 <I

g(t) <I s2 ∧ (∀t′ ∈ I2)(t
′ <I2 t→ g(t′) <I s1) ∧ (∀t′ ∈ I2)(t <I2 t

′ →
s2 <I g(t

′))]; and also ‖C‖ = |I|. Hence for each i < i′(∗) there is an
embedding hi of the linear order U ′

i , i.e., I2 ↾ U ′
i into (PC

i , (<I2)
C)

such that t ∈ U ′
i ⇒ (t ∈ I1 ↔ hi(t) ∈ QC

1 ).
[Why? Case 0: i ∈ u0.

Trivial.
Case 1: i ∈ u1 ∪ u

′
1.

Similar to Case 0 as U ′
i ∩ I1 = ∅, of course, we take care that

a = hi(t) ∧ t ∈ U ′
i ∧ i ∈ u1 ⇒ C |= “a <I2 t

∗
i ” and similarly for u−1.

Case 2: i ∈ u2.

First approximation is h′i = (HC
i ◦ (g ↾ Ui)), so t ∈ Ui ⇒ h′i(t) ∈

QC
1 . However by the choice of g we can find 〈(s−t , s

+
t ) : t ∈ Ui〉 such

that:

(α) s−t , s
+
t ∈ QC

2

(β) (s−t , s
+
t )IC

2
∩QC

2 = {h′i(t)}.

As I2 is dense with no extremal members (being from Kflin) clearly
t1 <I2↾U ′

i
t2 ⇒ s+t1 <(I2)C s−t2 . Now choose hi by: hi(t) is h′i(t) if

t ∈ I1 and is s+t1 if t ∈ I1\I2.]

Hence there is an embedding h of the linear order I2 into JC
1,∗ such

that:

⊛2 h(t) is:

(a) t if t ∈ J2 ∪ {t∗i : i ∈ u1}

(b) hi(t) if t ∈ U ′
i and i < i′(∗).
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Note

⊛3 for every t ∈ I2\J2 for some i < i(∗) ≤ θ1 we have (∀s ∈
J2)[s <I2 t ≡ s <I2 hi(ti,0)]

hence by the omitting type demand in ⊠(a)(β):

⊛′
3 for t ∈ IC

2 \J2 for some i < i(∗) we have (∀s ∈ J2)[s <IC
2
t ≡

s <IC

2
(hi(ti,0))].

We can find a linear order I3, I2 ⊆ I3 and an isomorphism h∗ from
I3 onto QC

2 extending h, so clearly I3 ∈ Kflin and without loss of

generality h(I2) <Kflin I3. Now let ĥ∗ be the isomorphism which h∗
induces from EMτ(K)(I3,Φ) onto (EMτ(K)(J

C
2,∗,Φ))C, so e.g., it maps

for each t ∈ I2, the member at of the skeleton to FC
2 (h∗(t)).

Note that h∗ maps Ui ∩ I1 into QC
1 ⊆ IC

1 when Ui ⊆ I1 and is the
identity on J1 ∪ {t∗i : i ∈ u1} so recalling QBζ = J1,ζ = {ti,α : i ∈ u2

and α < iζ}∪J1∪{t
∗
i : i ∈ u1} hence it map I1 intoQC

1 but Bζ |= “H
is a unary function, an automorphism of EMτ(K)(J

C
2,∗,Φ) mapping b̄

to c̄ and is the identity on EMτ(K)(J
C
1,∗,Φ)”. Now (ĥ∗)

−1HC(ĥ∗) is
an automorphism of EMτ(K)(I3,Φ) as required.
2) By part (1), i.e. choose I3,M3, f3 as there; so as f is an automor-
phism of M3 over M1 mapping b̄ to c̄, clearly b̄, c̄ realize the same
L∞,∂ [K]-type over M1 inside M3. The desired result (the type inside
M2 rather than inside M3) follows because M1 ≺L∞,∂ [K] M2 ≺L∞,∂ [K]

M3 by 1.14(a).

3) Let M∗
2 =

⋃

n<ω

M∗
2,n be such that n < ω ⇒ M∗

2,n ≤K M∗
2,n+1

and ‖M∗
2,n‖ < λ. Let c̄n list M∗

2,n for n < ω (with no repetitions)
and be such that c̄n ⊳ c̄n+1. Let θn = ‖M∗

2,n‖ + LS(K) so without
loss of generality θn = ℓg(c̄n) and let θ′n = i3(θn), κn = i1,1(θ

′
n),

without loss of generality κn < θn+1 and we choose for each n < ω,
a sequence b̄n ∈ ℓg(c̄n)(M2) realizing tpL

∞,κ
+
n

[K](c̄n,M1,M
∗
2 ) in M2.

This is possible by 1.26(3) after possibly <Kflin -increasing I2.
Now we choose (I3,n, fn,M3,n, b̄

′
n) by induction on n such that

(∗) (a) I3,0 = I2 and I3,n ∈ K lin
λ

(b) n = m+ 1 ⇒ I3,m <Kflin I3,n
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(c) M3,n = EMτ(K)(I3,n,Φ) (hence n = m+1 ⇒M3,m ≤Kλ

M3,n)

(d) fn is an automorphism of M3,n over M1

(e) b̄′n ∈ ℓg(b̄n)(M3,n) realizes tpL
∞,κ

+
n

[K](c̄n,M1,M
∗
2 )

(f) if n = m+ 1 then b̄′m E b̄′n

(g) if n = m + 1 then fn maps b̄n+1 ↾ ℓg(b̄n) to b̄′n and f0
maps b̄0 to b̄′0.

For n = 0, I3,0,M3,0 are defined in clauses (a),(c) of (∗) and we
let f0 = idM2

= idM3,n
, b̄′0 = b̄0 this is trivially as required. For

n = m+ 1 we apply part (1) with

⊡ I1, I3,m,M1,M3,m, b̄n+1 ↾ ℓg(c̄m), b̄′m, θm, κm here

standing for I1, I2,M1,M2, b̄, c̄, θ, κ there.

Why its assumptions holds? The main point is to check that for
every ā ∈ κm>(M1) the sequences āˆ(b̄n+1 ↾ θm), āˆb̄′m realize the
same L∞,κm

[K]-type in M3,m. Now āˆ(b̄m+1 ↾ θm), āˆb̄′m realize the
same L∞,κn

[K]-type in M3,m by the induction hypothesis. Also the
sequences b̄n+1 ↾ θm, b̄m+1 ↾ θm satisfy for any ā ∈ κm(M1) the
sequences āˆ(b̄n+1 ↾ θm), āˆ(b̄m+1 ↾ θm) realize the same L∞,κm

[K]-
type in M3,m because the L∞,κm

[K]-type which āˆ(b̄n+1 ↾ θm) real-
izes in M3,m is the same as the L∞,κm

[K]-type it realizes in M2 =
M3,0 which (by the choice of b̄n+1) is equal to the L∞,κm

[K]-type
which āˆ(c̄n+1 ↾ θm) realizes inM∗

2 which is the same as the L∞,κm
[K]-

type which āˆ(c̄m+1 ↾ θm) realizes in M∗
2 which is equal to the

L∞,κm
[K]-type which āˆ(b̄m+1 ↾ θm) realizes in M3,m.

By the last two sentences for every ā ∈ κm>(M1) the sequences
āˆ(b̄n+1 ↾ θm), āˆb̄′m realizes the same L∞,κm

[K]-type in M3,m, so
indeed the assumptions of part (1) holds for the case we are trying
to apply it, see ⊡ above.

So we get the conclusion of part (1), i.e. we get I3,n, fn here
standing for I3, f there so I3,m <Kflin

λ
I3,n and fn is an automorphism

of M3,n = EMτ(K)(I3,n,Φ) over M1 mapping b̄n+1 ↾ θm to b̄′m. Now

we let b̄′n = fn(b̄n+1 ↾ θn) and can check all the clauses in (∗). Hence
we have carried the induction. So we can satisfy (∗).
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So b̄′n satisfies the requirements on b̄n and b̄′n ⊳ b̄
′
n+1. Let I3 =

∪{I3,n : n < ω} and let M3 = EMτ(K)(I3,Φ) and let g : M∗
2 → M3

map cn,i to b′n,i for i < ℓg(c̄n), n < ω, easily it is as required. That
is, g(cn,i) is well defined as cn,i 7→ b′n,i, (i < ℓg(c̄n)) is a well defined
mapping for each n and i < ℓg(c̄n) ⇒ cn,i = cn+1,i ∧ b

′
n,i = b′n+1,i.

Also g ↾ {cn,i : i < ℓg(c̄n)} is a ≤K-embedding of M∗
2,n into M3

and is the identity on M∗
2,n ∩ M1 as c̄n list the elements of M2,i

and tpL
∞,κ

+
n

[K](c̄n,M1,M
∗
2 ) = tpL

∞,κ
+
n

[K](b̄
′
n,M1,M3) by clause (e)

of (∗). But 〈g ↾ M∗
2,n : n < ω〉 is ⊆-increasing with union g so

by Ax(V) of a.e.c. g is a ≤K-embedding of M∗
2 into M3. Lastly,

obviously g ⊇ ∪{idM∗

2,n∩M1
: n < ω} = idM1

, so we are done. �1.29

We arrive to the crucial advance:

1.30 The Amalgamation Theorem. If cf(λ) = ℵ0, then K∗
λ, i.e.,

(K∗
λ,≤K↾ K∗

λ) has amalgamation, even disjoint one.

Proof. So assume M0 ≤K∗

λ
Mℓ for ℓ = 1, 2. Choose I0 ∈ Kflin

λ

so M ′
0 := EMτ(K)(I0,Φ) ∈ K∗

λ but K∗
λ is categorical (see 1.16 or

1.19(4)) hence M ′
0
∼= M0, so without loss of generality M ′

0 = M0.
Choose I1 ∈ Kflin

λ such that I0 <Kflin I1 and letM ′
1 = EMτ(K)(I1,Φ)

so M0 ≤K M ′
1. By applying 1.29(3) with I0, I1,M0,M

′
1,M1 here

standing for I1, I2,M1,M2,M
∗
2 there, we can find a pair (I2, f1)

such that I1 <Kflin
λ

I2 and f1 is a ≤K-embedding of M1 into M ′
2 :=

EMτ(K)(I2,Φ) over M0.
Apply 1.29(3) again with I0, I2,M0,EMτ(K)(I2,Φ),M2 here stand-
ing for I1, I2,M1,M2,M

∗
2 there. So there is a pair (I3, f2) such that

I2 <Kflin
λ

I3 and f2 is ≤K-embedding M2 into M3 := EMτ(K)(I3,Φ)

over M0 = EMτ(K)(I0,Φ). Of course, M3 ∈ K∗
λ and we are done

proving the “has amalgamation”.

Why disjoint? Let (I4, h) be such that I3 <Kflin
λ

I4 and h is a

≤Kflin -embedding of I3 into I4 over I0 such that h(I3)∩I3 = I0. Now

h induces an isomorphism ĥ from EMτ(K)(I3,Φ) onto EMτ(K)(h(I3),
Φ) ≤K M3.

Lastly, by our assumptions on Φ if J1, J2 ⊆ J and I1∩I2 is a dense
linear order (in particular with neither first nor last member, e.g.
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are from Kflin
λ as in our case) then EMτ(K)(I1,Φ)∩ EMτ(K)(I2,Φ) =

EMτ(K)(I1 ∩ I2,Φ). So in particular, above

EMτ(K)(I3,Φ) ∩ EMτ(K)(ĥ(I3,Φ) = EMτ(K)(I0,Φ)

and f1, ĥ ◦ f2 are ≤K-embeddings of M1,M2 respectively
over M0 = EMτ(K)(I0,Φ) into EMτ(K)(I3,Φ) ≤K EMτ(K)(I4,Φ)
and EMτ(K)(h(I3),Φ) ≤K EMτ(K)(I4,Φ), respectively, so we are
done. �1.30

1.31 Claim. Assume cf(λ) = ℵ0. If δ < λ+, the sequence 〈Mi :
i < δ〉 is ≤K-increasing continuous and Mi ∈ K∗

λ for i < δ, then
Mδ := ∪{Mi : i < δ} can be ≤K-embedded into some member of K∗

λ.

Proof. We choose Ii ∈ Kflin
λ by induction on i ≤ δ, which is <Kflin

λ
-

increasing continuous with i and a ≤K-embedding fi ofMi into Ni :=
EMτ(K)(Ii,Φ), increasing continuous with i. For i = 0 choose I0 ∈

Kflin
λ , so N0 := EMτ(K)(I0,M) is isomorphic to M0 hence f0 exists;

for i limit use Ii := ∪{Ij : j < i} and fi := ∪{fj : j < i}. So
assume i = j + 1. Now we can find M ′

i , f
′
i satisfying: f ′

i is an
isomorphism from Mi ontoM ′

i extending fj such that fj(Mj) ≤K M ′
i

(actually this trivially follows) and M ′
i ∩ Nj = fj(Mj); so also M ′

i

belongs to K∗
λ. Now fj(Mj),EMτ(K)(Ij ,Φ),M ′

i can be disjointly
amalgamated (by 1.30) in (K∗

λ,≤K), so there is M∗
i ∈ K∗

λ such that
Nj = EMτ(K)(Ij,Φ) ≤K M∗

i and M ′
i ≤K M∗

i . Now by 1.29(3) there
are Ii, gi such that Ij <Kflin

λ
Ii and gi is a ≤K-embedding of M∗

i into

Ni := EMτ(K)(Ii,Φ) over EMτ (Ij,Φ). Let fi = gi ◦ f
′
i , clearly it is

as required. Having carried the induction, fδ is a ≤K-embedding of

Mδ into EMτ(K)(
⋃

j<δ

Ij ,Φ), as promised. �1.31

1.32 Claim. 1) Assume cf(λ) = ℵ0. For every M0 ∈ K∗
λ there is a

≤K-extension M1 ∈ K∗
λ of M0 such that: if M0 ≤Kλ

M2 ∈ K∗
λ and

ā ∈ λ>(M2) then for some (M3, f) we have:

M1 ≤K M3 ∈ K∗
λ, f is a ≤K-embedding of M2 into M3

over M0 and f(ā) ∈ λ>(M2).
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2) Assume cf(λ) = ℵ0. For every M0 ∈ K∗
λ there is a ≤K-extension

M1 ∈ K∗
λ which is universal over M0 for ≤Kλ

-extensions.
3) If (a) then (b) where

(a) I0 ≤Kflin
λ

I ′1 <Kflin
λ

I1

(b) if I0 ⊆ I2 ∈ Kflin
λ and β ≤ γ < λ, b̄1 ∈ β(EMτ(K)(I

′
1,Φ)) and

c̄2 ∈ γ(EMτ(K)(I2,Φ)) and b̄2 = c̄2 ↾ β and for every κ < λ
we have

tpL∞,κ[K](b̄1,EMτ(K)(I0,Φ)),EMτ(K)(I1,Φ)) =

= tpL∞,κ[K](b̄2,EMτ(K)(I0,Φ),EMτ(K)(I2,Φ))

then for some (I+
1 , f) we have I1 ≤Kflin I+

1 ∈ Kflin
λ and f is

a ≤K-embedding of EMτ(K)(I2,Φ) into EMτ(K)(I
+
1 ,Φ) over

EMτ(K)(I0,Φ) mapping b̄2 to b̄1 and c̄2 into EMτ(K)(I1,Φ).

4) Assume cf(λ) = ℵ0. If (c) then (d) and moreover (d)+ when

(c) 〈Jα : α ≤ ω〉 is <Kflin
λ

-increasing, I0 = J0, I1 = Jω

(d) if I0 ⊆ I2 ∈ Kflin
λ then some f is a ≤K-embedding of

EMτ(K)(I2,Φ) into EMτ(K)(I1,Φ) over EMτ(K)(I0,Φ)

(d)+ EMτ(K)(I1,Φ) is ≤K∗

λ
-universal over EMτ(K)(I0,Φ).

Proof. Note that by 1.29(3) clearly (3) ⇒ (1) and (4) ⇒ (2). So we
shall prove (3) and (4).
3) First assume β = 0, γ = 1 so c̄2 = 〈c〉. Toward contradiction
assume I0 ⊆ I2 ∈ K lin

λ , a ∈ M2 := EMτ(K)(I2,Φ) but there is no

pair (I+
1 , f) as required in clause (b). Without loss of generality for

some I3 we have I0 ≤Kflin
λ

I2 ≤Kflin
λ

I3 and I0 ≤Kflin
λ

I1 ≤Kflin
λ

I3.

Let EM(I2,Φ) |= “c2 = σ(at20
, . . . , at2n−1

)” where σ(x0, . . . , xn−1)

a τΦ-term, n < ω and I2 |= “t20 < . . . < t2n−1”. Let u = {ℓ < n : t2ℓ ∈
I0}. As I0 <Kflin

λ
I1, we can find 〈t10, . . . , t

1
n1
〉 such that:

⊛ (a) t1ℓ ∈ I1 for ℓ < n

(b) t10 <I1 . . . <I1 t
1
n−1

(c) if ℓ ∈ u then t2ℓ = t1ℓ (∈ I0)

(d) if ℓ < n ∧ ℓ /∈ u then t1ℓ ∈ I1\I0
(e) if ℓ1 ≤ ℓ2 < n and [ℓ1, ℓ2] ∩ u = ∅ then t2ℓ2 <I3 t

1
ℓ1

.
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Let Mℓ = EMτ(K)(Iℓ,Φ) for ℓ = 0, 1, 2, 3 and let c2 = c and c1 =

σEM(I1,Φ)(at10
, . . . , at1n−1

).

Let κ < λ be large enough such that tpL
∞,κ+ [K](cℓ,M0,Mℓ) for

ℓ = 1, 2 be distinct (exists by 1.29(1) because its conclusion fails
by the “toward contradiction”). We easily get contradiction to the
non-order property (see (∗) of 1.5(2)).

Note that if in addition 〈I1,α : α ≤ λ〉 is <Kflin
λ

-increasing contin-

uous, I1,0 = I ′1, I1,λ = I1 then by what we have just proved and the
proof of II.4.3 we can prove the general case (and part (4)). But we
also give a direct proof.

In the general case, let θ = |β| + ℵ0, so we assume clause (a)
and the assumptions of clause (b) and without loss of generality
I1 ∩ I2 = I0 hence there is I3 such that Iℓ <Kflin

λ
I3 for ℓ = 1, 2. Let

κ ∈ (θ, λ) be large enough.
Hence

EMτ(K)(I0,Φ) ≺L∞,λ[K] EMτ(K)(Iℓ,Φ) ≺L∞,λ[K] EMτ(K)(I3,Φ)

for ℓ = 1, 2. Applying 1.29(1) with I1, I2, b̄, c̄ there standing for
I0, I3, b̄1, b̄2 here we can find a pair (I4, f4) such that I3 <Kflin

λ
I4 and

f4 is an automorphism of M4 := EMτ(K)(I4,Φ) over EMτ(K)(I0,Φ)

mapping b̄2 to b̄1.
Clearly M3 := EMτ(K)(I3,Φ) ≺L∞,λ[K] EMτ(K)(I4,Φ). So f4(c̄2) ∈
γ(M4), hence we can apply clause (b) of Claim 1.26(3) with M1,
M2, I2, N, ξ, d̄

∗ there standing for EMτ(K)(I
′
1,Φ), EMτ(K)(I1,Φ), I1,

EMτ(K)(I4,Φ), γ, f4(c̄2) here. Hence we can find c̄′2 ∈ γ(M1) realizing
in M1 the type tpL∞,κ[K](f4(c̄2), EMτ(K)(I

′
1,Φ), EMτ(K)(I1,Φ)).

Lastly, applying Claim 1.29(1) with I1, I2, b̄, c̄ there standing for
I ′1, I4, f4(c̄2), c̄

′
2 here, clearly there is a pair (I5, f5) such that I4 <Kflin

λ

I5 and f5 is an automorphism of EMτ(K)(I5,Φ) over EM(I ′1,Φ) map-
ping to f4(c̄2) to c̄′2.
Let I+

1 := I5, f = f ′
5 ◦ f

′
4 where f ′

5 = f5 ↾ EMτ(K)(I4,Φ)), f ′
4 = f4 ↾

EMτ(K)(I2,Φ); now I+
1 , f are as required because f4(b̄2) = b̄1 while

f5(b̄1) = b̄1.
4) Easy by part (3). First note that (d)+ follows by (d) by 1.29(3), so
we shall ignore clause (d)+. Let EMτ(K)(I2,Φ) be ∪{M2,n : n < ω}
where M2,n ∈ K<λ and n < ω ⇒M2,n ≤K M2,n+1.
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Let ān list the elements of M2,n with no repetitions such that
ān ⊳ ān+1 for n < ω. By induction on n, we choose b̄n such that

⊛ (a) b̄n ∈ ℓg(ān)(EMτ(K)(Jn+1,Φ)

(b) if n = m+ 1 then b̄m ⊳ b̄n

(c) for every κ < λ the type
tpL∞,κ[K](b̄n,EMτ(K)(I0,Φ),EMτ(K)(In+1,Φ)))
is equal to the type
tpL∞,κ[K](ān,EMτ(K)(I0,Φ),EMτ(K)(I2,Φ)).

The induction step is by part (3). Let fn be the unique function
mapping ān to b̄n (with domain Rang(ān)). So fn ⊆ fn+1 and fn is
a ≤K-embedding of M2,n into EMτ(K)(Jn+1,Φ) but Jn+1 ⊆ I1 hence
into EMτ(K)(I1,Φ). So f := ∪{fn : n < ω} is a ≤K-embedding
of EMτ(K)(I2,Φ) into EMτ(K)(I1,Φ). Also fn is the identity on

Rang(ān)∩ EMτ(K)(I0,Φ) hence f is the identity on
⋃

n

(Rang(ān)∩

EMτ(K)(I0,Φ) = EMτ(K)(I0,Φ) so f is as required. �1.32

1.33 Exercise: 1) Assume Kλ = (Kλ,≤Kλ
) satisfies axioms I,II (and

0, presented below) and amalgmation. Then tp(a,M,N) for M ≤Kλ

N and a ∈ N and SKλ
(M) are well defined and has the basic prop-

erties of types from II§1.
2) If in addition Kλ satisfies AxIII⊙ below and Kλ is stable (i.e.
|SKλ

(M)| ≤ λ for M ∈ Kλ) then every M ∈ Kλ has a ≤K-universal
extensionN which meansM ≤Kλ

N and (∀N ′)(M ≤Kλ
N ′ → (∃f)[f

is a ≤Kλ
-embedding of N ′ into N over M ]).

3) AxIII (see II.1.4) implies AxIII⊙

where:

Ax0: K is a class of τK-models, ≤K a two place relation of Kλ, both
preserved under isomorphisms

AxI: if M ≤Kλ
N then M ⊆ N (are τ(Kλ)-models of cardinality λ

AxII: ≤Kλ
is a partial order (so M ≤Kλ

M for M ∈ Kλ)

AxIII⊙: In following game the COM player has a winning strategy.
A play last λ moves, they construct a ≤Kλ

-increasing continuous
sequence 〈Mα : α ≤ λ〉. In the α-th move Mα is chosen, by INC if
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α is even by COM is α is odd. Now Com wins as long as INC has
legal moves.

AxIV⊙: For each M ∈ Kλ, in the following game, INC has no win-
ning strategy: a play lasts λ+1 moves, in the α-th move fα,Mα, Nα

are chosen such that fα is a ≤K-embedding of Mα into Nα, both are
≤Kλ

-increasing continuous, fα is ⊆-increasing continuous, M0 = M
and in the α-th move, Mα is chosen by INC, and the pair is chosen
by the player INC if α is even and by the player COM if α is odd.
The player COM wins if INC has always a legal move (the player
COM always has: he can choose Nα = Mα)

1.34 Definition. 1) Let <∗
λ=<∗

K∗

λ
be the following two-place rela-

tion on K∗
λ (so M ≤∗

K∗

λ
N mean M = N ∈ K∗

λ or M <∗
K∗

λ
N):

M1 <
∗
λ M2 iff M1 ≤Kλ

M2 are from K∗
λ and M2 is ≤Kλ

-
universal over M1.

2) For α < λ, κ = i1,1(|α| + LS(K)) and M ∈ K∗
λ let Savbs,α(M) be

the set of {Avκ(I,M) : I is a ((2κ)+, κ)-convergent subset of αM}.
We define tp∗(ā,M,N) when M ≤K N are from K∗

λ and ā ∈ αN , as
tpL∞,κ[K](ā,M,N) ∈ Savbs,α(M) naturally.
3) Let K∗

λ = (K∗
λ,≤K↾ K∗

λ,≤
∗
K∗

λ
), see 1.35 below but if (K∗

λ,≤K↾ K∗
λ)

is a λ-a.e.c. then we omit ≤∗
K∗

λ
.

1.35 Remark. 1) Note that the relation <∗
λ=<∗

Kλ
seemingly depends

on the choice of Φ. However, assuming µ-solvability, by 1.37(2) below
it does not depend.
2) The proof of 1.37 is like II.1.16(3).
3) So K∗

λ is a semi-λ-a.e.c. (see Chapter N) but we do not use this
notion here.

1.36 Claim. Assume cf(λ) = ℵ0.
0) If M ∈ K∗

λ then for some N,M <∗
K∗

λ
N(∈ K∗

λ).

1) If M ≤K N are from K∗
λ, α < λ and ā ∈ αN\αM then ā realizes

some p ∈ Savbs,α(M).
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2) If M0 ≤K M1 <∗
K∗

λ
M2 ≤K M3 and Mℓ ∈ K∗

λ for ℓ < 4, then

M0 <
∗
K∗

λ
M3.

Proof. 0) As K∗
λ is categorical (by 1.16(1)) this follows by 1.32(2).

1) A proof of this is included in the proof of 1.29(2), i.e. by 1.26(1).
2) Easy recalling amalgamation. �1.36

1.37 Claim. Assume cf(λ) = ℵ0.
1) Assume 〈Mi : i ≤ δ〉 is ≤Kλ

-increasing continuous, M2i+1 <
∗
K∗

λ

M2i+2 for i < δ then Mδ ∈ K∗
λ.

2) Assume that 〈M ℓ
i : i ≤ δ〉 is an ≤K∗

λ
-increasing continuous se-

quence such that M ℓ
2i+1 <

∗
K∗

λ
M ℓ

2i+2 for i < δ all for ℓ = 1, 2. Any

isomorphism f from M1
0 onto M2

0 (or just a ≤Kλ
-embedding) can be

extended to an isomorphism from M1
δ onto M2

δ .

Proof. 1) We prove this by induction on δ, hence without loss of
generality i < δ ⇒Mi ∈ K∗

λ.
Let M1

α = Mα for α ≤ δ and let 〈Iα : α ≤ δ〉 be <Kflin
λ

-increasing.

Let M2
α = EMτ(K)(Iα,Φ). Now there is an isomorphism f from M1

0

onto M2
0 as K∗

λ is categorical, so by part (2) there is an isomorphism
g from M1

α onto M2
α, but M2

α ∈ K∗
λ so we are done.

2) Note

⊠2 without loss of generality

⊡ M2
i <

∗
λ M

2
i+1.

[Why? We can find 〈M3
i : i ≤ δ〉 which is ≤∗

K∗

λ
-increasing continuous

and M3
0 = M2

0 and M3
i <

∗
λ M

3
i+1. Now apply the restricted version

(i.e., with the assumption ⊡) twice.]
By induction on i ≤ δ we choose (fi, N

1
i , N

2
i ) such that

(b) fi is an isomorphism from N1
i onto N2

i

(c) N1
i , N

2
i , fi are increasing continuous with i

(d) for i = 0, N1
i = M1

i , fi = f and N2
i is f(M1

i ) = M2
i

(e) if i > 0 is a limit ordinal then N1
i = M1

i and N2
i = M2

i
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(f) when i = ωα+ 2n < δ we have

(α) N1
ωα+2n+1 = M1

ωα+2n+1

(β) N2
ωα+2n+1 ≤K M2

ωα+2n+1

(γ) N1
ωα+2n+2 ≤K M1

ωα+2n+2

(δ) N2
ωα+2n+2 = M2

ωα+2n+2.

Case 1: For i = 0 this is trivial by clause (d) and the assumption of
the claim on f .

Case 2: i = ωα+ 2n+ 1.
Note that N2

ωα+2n = M2
ωα+2n. (Why? If i = 0 (i.e. α = 0 = n)

by ⊛(d) and if i is a limit ordinal (i.e. α > 0 ∧ n = 0) by clause (e)
of ⊛ and if n > 0 by clause ((f)(δ) of ⊛).

Now we let N1
i = N1

ωα+2n+1 := M1
ωα+2n+1 and hence satisfying

clause (f)(α) of ⊛. SoN1
i−1 = N1

ωα+2n ≤K M1
ωα+2n ≤K M1

ωα+2n+1 =

N1
ωα+2n+1 = N1

i ; and note that N2
i−1 = N2

ωα+2n <∗
λ M2

ωα+2n by ⊡

above hence we can apply Definition 1.34(1) and find an extension
fi of fi−1 to ≤K-embedding of N1

i = M1
ωα+2n+1 into M2

ωα+2n+1 and
let N2

i := fi(N
1
i ).

Case 3: i = ωα+ 2n+ 2.
Note that N1

ωα+2n+1 = M1
ωα+2n+1 by clause (f)(α) of ⊛ hence by

the assumption of the claim N1
ωα+2n+1 <

∗
K∗

λ
M1

ωα+2n+2. We choose

N2
ωα+2n+2 := M2

ωα+2n+2 hence N2
i−1 = N2

ωα+2n+1 ≤K M2
ωα+2n+1 ≤K

M2
ωα+2n+2 = N2

ωα+2n+2 = N2
i . Now we apply Definition 1.34(1) to

find a ≤K-embedding gi of N2
ωα+2n+2 into M1

ωα+2n+2 extending f−1
i−1.

Lastly, let fi = g−1
i and N1

i = M1
i ↾ Dom(fi). So we can carry

the induction hence prove the claim. �1.37

Note that now we use more than in Hypothesis 1.18.

1.38 Claim. Assume

⊠ (a) 〈λn : n < ω〉 is increasing, λ = λω =
∑

n<ω

λn satisfying

λn = iλn
> LS(K) and cf(λn) = ℵ0 for n < ω

(b) Φ ∈ Υor
K

and for it each λn and λ = λω is as in Hypothesis
1.18 or just satisfies all its conclusions so far.
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1) K∗
λ is closed under unions ≤K-increasing chains (of length < λ+).

2) If Mn ∈ K∗
λn
,Mn ≤K Mn+1 and M =

⋃

n<ω

Mn then M ∈ K∗
λ.

3) If M ∈ Kλ and θ < λ⇒M ≡L∞,θ [K] EMτ(K)(λ,Φ) then M ∈ K∗
λ.

4) K∗
λ is categorical.

Proof of 1.38. 1) We rely on part (2) which is proven below.
So let 〈Mi : i < δ〉 be ≤K-increasing in K∗

λ with δ < λ+. Without
loss of generality δ = cf(δ) hence δ < λ so call it θ and we prove
this by induction on θ, so without loss of generality 〈Mi : i < θ〉
is ≤K-increasing continuous such that Mi ∈ K∗

λ for i < θ, and let

Mθ =
⋃

i<θ

Mi. By renaming without loss of generality θ < λ0.

Let In, I
′
n be such that:

⊙1 (a) In is a linear order of cardinality λn from Kflin

(b) I ′n is a linear order of cardinality 2λn from Kflin

(c) I ′n is λ+
n -saturated (which means that its cofinality is > λn,

the cofinality of its inverse is > λn and if I ′n |= “sα1
< sβ1

<
tβ2

< tα2
” where α1 < β1 < γ1, α1 < β2 < γ2 and |γ1|+|γ2| <

λ+
n then for some r we have I ′n |= “sα1

< r < tα2
” for

α1 < γ1, α2 < γ2)

(d) In <Kflin I ′n <Kflin In+1 for n < ω.

Let I = ∪{In : n < ω}, so I is a universal member of K lin
λ . Let

M∗ = EMτ(K)(I,Φ), so for every i < θ there is an isomorphism fi

fromM∗ ontoMi, exists asK∗
λ is categorical by 1.19(4) as cf(λ) = ℵ0.

Now

⊙2 (a) every interval of I is universal in K lin
λ

(b) if n < ω, J ⊆ I, χ = |J | < λ and EJ,I = {(t1, t2) : t1, t2 ∈ I\J
and s ∈ J ⇒ s <I t1 ≡ s <J t2} then for at most χ elements
of t of J\I the set t/EJ,I is a singleton.

[Why? Clause (a) is obvious. For clause (b) assume 〈tα : α < χ+〉
are pairwise distinct members of J\I such that tα/EJ,I is a singleton
for each α < χ+. Without loss of generality for some k < ω we
have α < χ+ ⇒ tα ∈ Ik hence χ ≤ λk. For each α < χ+ we can
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choose sα ∈ I ′k such that sα <I′

k
tα and (sα, tα)I′

k
∩ J = ∅. Clearly

α < β < χ+ ⇒ (tα <I sβ ∨ tβ <I sα) hence 〈(sα, tα)I : α < χ+〉 are
pairwise disjoint intervals of I, so for every α < χ+ large enough,
(sα, tα)I ∩ J = ∅, but then (sα, tα)I ⊆ tα/EJ,I , contradiction.]

Now by induction on n < ω and for each n by induction on ε ≤ θ
and for each n < ω and ε ≤ θ for i ≤ θ, we choose Jn,ε,i ∈ Kflin

λn
such

that:

⊙3 (a) Jn,ε,i ⊆ I

(b) Jn,ε,i has cardinality λn

(c) In <Kflin Jn,0,i

(d) if ζ < ε ≤ θ and i ≤ θ then Jn,ζ,i ⊆ Jn,ε,i, moreover if
for some ξ, ζ = 2ξ + 1 and ε = 2ξ + 2 then there is a <Kflin

λn
-

increasing continuous sequence of length ω with first member
Jn,ζ,i and union Jn,ε,i

(e) for ε limit, Jn,ε,i =
⋃

ζ<ε

Jn,ζ,i

(f) if ε is odd and i < j < θ then
fi(EMτ(K)(Jn,ε,i,Φ)) = Mi ∩ fj(EMτ(K)(Jn,ε,j,Φ))

(g) Jn,θ,i ⊆ Jn+1,0,i

(h) for every k < ω and s <I t from Jn,ε,i if [s, t]I ∩ I
′
k 6= ∅ then

[s, t]I ∩ I
′
k ∩ Jn,ε,i 6= ∅

(i) if ζ is odd and ε = ζ + 1 then
EMτ(K)(Jn,ζ,i,Φ) <∗

K∗

λn

EMτ(K)(Jn,ε,i,Φ).

There is no problem to carry the definition, for ε = 2ξ + 2 recalling
⊙2 above; the only non-trivial point is clause (i), which follows by
1.32(4) and clause (d) of ⊙3. Clearly 〈Jn,ε,i : ε ≤ θ〉 is ⊆-increasing
continuous by ⊙3(d) + (e).
Let M∗

n,ε,i = fi(EMτ(K)(Jn,ε,i,Φ)) and M∗
n,ε = M∗

n,2ε,ε. So clearly
M∗

n,ε,i ∈ K∗
λn

by ⊙3(b) and the choice of M∗
n,ε,i the sequence 〈M∗

n,ε :
ε < θ〉 is ≤K-increasing continuous, all members in K∗

λn
.

Now

⊙4 〈M∗
n,ε : ε < θ〉 is <∗

K∗

λn

-increasing.
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[Why? As ζ < ε < θ ⇒ M∗
n,ζ = Mn,2ζ,ζ ≤K∗

λn
Mn,2ζ+1,ζ ≤K∗

λn

Mn,2ζ+1,ε <∗
K∗

λn

Mn,2ζ+2,ε ≤K∗

λn
Mn,2ε,ε = M∗

n,ε by the choice of

M∗
n,ζ , by ⊙3(d) and Ax(V) of a.e.c., by ⊙3(f) and Ax(V) of a.e.c.,

by ⊙3(i), by ⊙3(d) + Ax(V) of a.e.c.(e), by the choice of M∗
n,ε re-

spectively). Now by 1.36(2) this argument shows that ζ < ε < θ ⇒
M∗

n,ζ <
∗
K∗

λn

M∗
n,ε.]

We can conclude by using 1.37(1) for K∗
λn

, that M∗
n :=

⋃

ε<θ

M∗
n,ε

belongs to K∗
λn

. Also as M∗
n,ε ≤K Mε ≤K Mδ for ε < θ = δ by

AxIV of a.e.c. we have M∗
n ≤K Mδ and similarly M∗

n ≤K M∗
n+1,

and obviously for each i < θ we have
⋃

n<ω

M∗
n includes ∪{M∗

n,ε :

n < ω, ε < θ} = ∪{M∗
n,2,ε,ε : n < ω, ε < θ} = ∪{M∗

n,2ε,i :

n < ω, i < θ, ε < θ} =
⋃

n<ω

M∗
n,0,i which recalling the choice of

M∗
n,0,i includes

⋃

n

fi(EMτ(K)(Jn,0,i,Φ)) ⊇
⋃

n<ω

fi(EMτ(K)(In,Φ)) =

fi(EMτ(K)(I,Φ)) = Mi. As this holds for every i < θ we get
⋃

n<ω

M∗
n = Mδ. So by part (2) we are done.

2) We choose In by induction on n such that:

⊙5 (a) In ∈ Kflin
λn

(b) Im <Kflin In if n = m+ 1.

Let Nn = EMτ(K)(In,Φ).
We now choose (gn, I

′
n, I

′′
n ,M

′
n,M

′′
n , N

′
n, N

′′
n ) by induction on n <

ω such that:

⊙6 (a) gn is an isomorphism from N ′′
n onto M ′′

n

(b) In ⊆ I ′n ⊆ I ′′n ⊆ In+2 and |I ′n| = λn, |I
′′
n | = λn+1 and

In+1 ⊆ I ′′n

(c) N ′
n = EMτ(K)(I

′
n,Φ) and N ′′

n = EMτ(K)(I
′′
n ,Φ)

(d) Mn ≤K∗

λn
M ′

n ≤K∗ M ′′
n ≤K∗ Mn+2 and Mn+1 ≤K∗

λn+1

M ′′
n

(e) gn maps N ′
n = EMτ(K)(I

′
n,Φ) onto M ′

n
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(f) gn extends gm ↾ N ′
m if n = m+ 1

(g) I ′n ⊆ I ′n+1.

Case 1: For n = 0.
First, let M ′′

n = M1, I
′′
n = I1 so also N ′′

n is defined. Second,
choose gn satisfying (a) of ⊙6 by 1.16(1), i.e. 1.19(4), categoricity
in K∗

λn
. Third, choose I∗n ⊆ I ′′n = I1 of cardinality λn such that

gn(EMτ(K)(I
∗
n,Φ)) includes M0. Fourth, let I ′n = I∗n ∪ In and N ′

n =
EMτ(K)(I

′
n,Φ) and let M ′

n = gn(N ′
n).

Case 2: For n = m+ 1.
Let k = n+ 2, let ā ∈ λm(M ′

m) list M ′
m (with no repetitions).

Now

(∗)1 If θ < λn then tpL∞,θ[K](ā, ∅, Nk) = tpL∞,θ [K](ā, ∅, N
′′
m).

[Why? As EMτ(K)(I
′′
m,Φ) ≺L∞,θ [K] EMτ(K)(Ik,Φ) by 1.14(a) as

I ′′m ⊆ Ik.]

(∗)2 if θ < λn = λm+1 then
tpL∞,θ

(ā, ∅, N ′′
m) = tpL∞,θ

(gm(ā), ∅,M ′′
m).

[Why? As gm is an isomorphism from N ′′
m onto M ′′

m by ⊙6(a), i.e.
the induction hypothesis.]

(∗)3 if θ < λn then tpL∞,θ [K](gm(ā), ∅,M ′′
m) = tpL∞,θ[K](gm(ā), ∅,Mk).

[Why? This follows from M ′
m ≺L∞,θ [K] Mk which we can deduce by

1.19(1) as M ′′
m ∈ K∗

λm+1
= K∗

λn
by clause (d) of ⊙6, Mk ∈ K∗

k by an

assumption of the claim, M ′′
m ≤Kλ

Mk by clause (d) of ⊙6.]

(∗)4 if θ < λn then tpL∞,θ [K](ā, ∅, Nk) = tpL∞,θ [K](gm(ā), ∅,Mk).

[Why? By (∗)1 + (∗)2 + (∗)3.]

(∗)5 tpL
∞,λ

+
n+1

[K](ā, ∅, Nk) = tpL
∞,λ

+
n+1

[K](gm(ā), ∅,Mk).

[Why? Clearly Nk,Mk ∈ K∗
λk

hence by 1.19(4) there is an iso-
morphism fn from Nk onto Mk, so obviously tpL∞,θ[K](ā, ∅, Nk) =
tpL∞,θ [K](fn(ā), ∅, Nk) so by (∗)4 we have tpL∞,θ [K](gm(ā), ∅,Mk) =
tpL∞,θ [K](ā, ∅, Nk) = tpL∞,θ [K](fn(ā), ∅,Mk) so by 1.19(3) we have
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tpL
∞,λ

+
n+1

[K](gn(ā), ∅,Mk) = tpL
∞,λ

+
n+1

[K](fn(ā), ∅,Mk).

But as fn is an isomorphism from Nk onto Mk and the previous sen-
tence we get tpL∞,λn+1

[K](ā, ∅, Nk) = tpL
∞,λ

+
n+1

[K](fn(ā), ∅,Mk) =

tpL∞,λ
(gn(ā), ∅,Mk) as required.]

(∗)6 there are gn, I
′′
n , N

′′
n ,M

′′
n as required in the relevant parts of

⊙6 (ignoring I ′n, N
′
n,M

′
n), i.e. clauses (a),(f) and the relevant

parts of (b),(c),(d):

(b)′ In ⊆ I ′′n ⊆ In+2 = Ik and |I ′′n | = λn+1 and In+1 ⊆ I ′n
(c)′ N ′′

n = EMτ(K)(I
′′
n ,Φ)

(d)′ Mn ≤K∗ M ′′
n ≤K∗ Mn+2 and Mn+1 ≤K∗

λn+2
M ′′

n .

[Why? By the hence and forth argument, but let us elaborate.
First, let ā′ be a sequence of length λn+1 listing (without repe-

titions) the set of elements of Mn+1 and without loss of generality
g(ā) ⊳ ā′. Note that Rang(gm) ⊆Mm+2 = Mn+1.

Second, let g′ be a function from Rang(ā′) into Nk extending
(gm↾N ′

m)−1 = (gm↾ Rang(ā))−1 such that tpL
∞,λ

+
n+1

[K](g
′(ā′), ∅, Nk)

= tpL
∞,λ

+
n+1

[K](ā
′, ∅,Mk); it exists by (∗)5. Let I ′′n ⊆ Ik of cardinality

λn+1 be such that Rang(g′) ⊆ EM(I ′′n ,Φ) and In+1 ⊆ I ′′n . Let ā′′ list
the elements of EMτ(K)(I

′′
n ,Φ) ⊆ Nk and without loss of generality

g′(ā′) ⊳ ā′′ and let gn be a function from EMτ(K)(I
′′
n ,Φ) to Mk ex-

tending (g′)−1 such that tpL
∞,λ

+
n+1

[K](ā
′′, ∅, Nk) = tpL

∞,λ
+
n+1

[K](gn(ā′′),

∅,Mk).
Lastly, let N ′′

n = EMτ(K)(I
′′
n ,Φ) and M ′′

n = gn(N ′
n) so we are

done.]

(∗)7 there are I ′n, N
′
n,M

′
n as required.

[Why? By the LS argument we can choose I ′n and define N ′
n,M

′
n

accordingly.]
So we can carry the induction. Now N ′

n ≤K N ′
n+1 (by clauses

(g),(c) of ⊙6) and gn ↾ N ′
n ⊆ gn+1 ↾ N ′

n+1 (by clause (f) + the pre-
vious statement). Hence g = ∪{gn ↾ N ′

n : n < ω} is an isomorphism
from ∪{N ′

n : n < ω} onto ∪{M ′
n : n < ω}. But N = ∪{Nn : n <
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ω} ⊆ ∪{N ′
n : n < ω} ⊆ Dom(g) ⊆ N and M = ∪{Mn : n < ω} ⊆

∪{M ′
n : n < ω} ⊆ Rang(g) ⊆ M . Together g is an isomorphism

from N onto M but obviously N ∈ K∗
λ hence M ∈ K∗

λ is as required.
3),4) Should be clear and depends just on 1.19(4). �1.38

1.39 Conclusion. Let λ be as in ⊠ of 1.38.
1) K∗

λ is a λ-a.e.c. (with ≤K↾ K∗
λ) and it has amalgamation and is

categorical.
2) K⊕

≥λ is an a.e.c., LS(K⊕
≥λ) = λ and (K∗

λ)up = K⊕
≥λ and (K⊕

≥λ)λ =
K∗

λ, see Definition below.

1.40 Definition. Let K⊕
≥λ = K ↾ K⊕

≥λ where K⊕
≥λ = {M ∈ Kλ :

M ≡L∞,λ[K] EMτ(K)(λ,Φ)}.

Proof. 1) It was clear defining (K∗
λ,≤K↾ K∗

λ) that it is of the right
form and “M ∈ K∗

λ”, “M ≤K∗

λ
N” are preserved by isomorphisms.

Obviously “≤K↾ K∗
λ is a partial order”, so AxI, AxII hold and ob-

viously AxV holds (see II.1.4). The missing point was AxIII, about
≤K-increasing union and it holds by 1.38(1). Then AxIV becomes
easy by the definition of ≤K∗

λ
=≤K↾ K∗

λ and lastly the amalgamation
holds by 1.30.
2) By II§1 we can “lift K∗

λ up”, the result is K⊕
≥λ (see II.1.23,II.1.24).

�1.39

Let us formulate a major conclusion in ways less buried inside our
notation.

1.41 Conclusion. Assume (K,Φ) is pseudo solvable in µ, then (K,Φ)
is pseudo solvable in λ provided that LS(K) < λ, µ = µ<λ (or just the
hypothesis 1.18 holds), cf(λ) = ℵ0 and λ is an accumulation point of
the class of the fix point of the sequence of the i’s.

Proof. By 1.39(1). �1.41

Remark. About [weak] solvability, see [Sh:F782].
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§2 Trying to Eliminate µ = µ<λ

There was one point in §1 where we use µ = µλ (i.e. in 1.12, more
accurately in justifying hypothesis 1.18(1)). In this section we try
to eliminate it. So we try to prove M1 ≤Kµ

M2 ⇒ M1 ≺L∞,θ [K] M2

for θ < λ, hence we fix K, µ, θ. We succeed to do it with “few
exceptions”.

2.1 Hypothesis. (We shall mention (b)µ or (b)−µ , (c), (d) when used!
but not clause (a))

(a) K is an a.e.c. and Φ ∈ Υor
K

(b)µ K categorical in µ and Φ ∈ Υor
K

, or at least

(b)−µ K is pseudo µ-solvable as witnessed by Φ ∈ Υor
K

, see Definition
1.4 in particular EMτ(K)(I, µ) is pseudo superlimit for I ∈

K lin
λ ,

(c) µ ≥ i1,1(LS(K))

(d) µ > LS(K).

2.2 Convention: K∗
λ = K∗

Φ,λ, etc., see Definition 1.15.

2.3 Definition. Assume

⊡ µ ≥ χ ≥ θ > LS(K)

1) We let K1
µ,χ = {(M,N) : N ≤K M,N ∈ Kχ,M ∈ Kµ and

µ = χ⇒M = N} and let ≤K=≤K,µ,χ be the following partial order
on Kµ,χ, (M0, N0) ≤K (M1, N1) iff M0 ≤K M1, N0 ≤K N1 (formally
we should have written ≤K,µ,χ). Note that each pair (M,N) ∈ Kµ,χ

determine µ, χ. So if χ = µ,Kµ,χ is essentially Kµ. Let K1
µ = Kµ

and let ∪{(Mi, Ni) : i < δ} = (∪{Mi : i < δ},∪{Ni : i < δ}) for any
≤K-increasing sequence 〈(Mi, Ni) : i < δ〉.
1A) Let Kµ,χ = K2

µ,χ = {(M,N) ∈ K1
µ,χ : M ∈ K∗

µ} and K2
µ = K∗

µ

but we use them only when Φ witnesses K is pseudo µ-solvable, i.e.
(b)−µ from Hypothesis 2.1 holds.
2) For k ∈ {1, 2} a formula ϕ(x̄) ∈ L∞,θ[K] (so ℓg(x̄) < θ), cardinal
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κ ≥ θ the main case being κ = µ; we may omit k if k = 2, and
M ∈ Kk

κ , ā ∈ ℓg(x̄)M we define when M k ϕ[ā] by induction on the
depth of ϕ(x̄) ∈ L∞,θ[K], so the least obvious case is:

(∗) M k (∃ȳ)ψ(ȳ, ā) when for every M1 ∈ Kk
κ such that M ≤K

M1 there is M2 ∈ Kk
κ satisfying M1 ≤K M2 and b̄ ∈ ℓg(ȳ)M2

such that M2 k ψ[b̄, ā].

Of course

(α) for ϕ atomic, M k ϕ[ā] iff M |= ϕ[ā]

(β) for ϕ(x̄) =
∧

i<α

ϕi(x̄) let M k ϕ[ā] iff M k ϕi[ā] for each

i < α

(γ) M k ¬ϕ[ā] iff for no N do we have M ≤K N ∈ Kk
κ and

N k ϕ[ā].

3) Let k ∈ {1, 2},Λ ⊆ L∞,θ[K] (each formula with < θ free variables,
of course):

(a) Λ is downward closed if it is closed under subformulas

(b) Λ is (µ, χ)-modelk complete (when µ is clear from the context
we may write χ-modelk complete) if |Λ| < µ, and for every
(M0, N0) ∈ Kk

µ,χ we can find (M,N) ∈ K2
µ,χ above (M0, N0)

which is Λ-generic, where:

(c) (M,N) ∈ Kk
µ,χ is Λ-generick when:

if ϕ(x̄) ∈ Λ and ā ∈ ℓg(x̄)N then
M k ϕ[ā] ⇔ N |= ϕ[ā] (yes! neither (M,N) k ϕ[ā] which
was not defined, nor “M |= ϕ[ā]”)

(d) Λ is called (µ,< µ)-modelk complete when |Λ|+ θΛ < µ and
for every χ: if |Λ|+θΛ ≤ χ < µ then Λ is χ-modelk complete
where θΛ := min{∂ : ∂ > LS(K) and Λ ⊆ L∞,∂ [K]}. We say
Λ is modelk complete if it is (µ,< µ)-modelk complete and µ
is understood from the context

(e) above if Φ or (K,Φ) is not clear from the context we may
replace Λ by (Λ,Φ) or by (Λ,Φ,K).

4) For M ∈ Kk
κ , ā ∈ θ>M and Λ ⊆ L∞,θ[K] let gtpk

Λ(ā, ∅,M) =
{ϕ[ā] : M k ϕ[ā]}; if we write θ instead of Λ we mean L∞,θ[K]
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(note: this type is not a priori complete) and we say that ā mate-

rializes this type in M . To stress κ we may write gtpκ,k
Λ (ā, ∅,M) or

gtpκ,k
θ (ā, ∅,M) though M determines κ.

5) We say M ∈ Kκ is Λ-generick when for every ϕ(x̄) ∈ Λ and
ā ∈ ℓg(x̄)M we have M k ϕ[ā] ⇔ M |= ϕ[ā]. So M ∈ Kk

µ is Λ-

generick iff (M,M) ∈ Kk
µ,µ is Λ-generick . We say Λ is κ-modelk

complete when every M ∈ Kk
κ has a Λ-generic ≤K-extension in Kk

κ

(so depend on K and if k = 2 also on Φ).
6) In all cases above, if k = 2 we may omit it.

2.4 Claim. Assume that LS(K) < θ ≤ χ < µ and κ > θ and
k ∈ {1, 2} so if k = 2 then 2.1(b)−µ holds, see 2.3(1A).

1) (Kk
µ,χ,≤K) is a partial order and chains of length δ < χ+ of mem-

bers has a ≤K-lub, this is the union, see 2.3(1). If EMτ(K)(µ,Φ) is

superlimit (not just pseudo superlimit) then K2
µ,χ is a dense subclass

of K1
µ,χ under ≤K.

2) If M1 k ϕ(ā) and M1 ≤K M2 are from Kk
κ then M2 k ϕ[ā].

3) If (Mℓ, Nℓ) ∈ Kk
µ,χ are Λ-generick for ℓ = 1, 2 and (M1, N1) ≤K

(M2, N2) then N1 ≺Λ N2.
4) If Mi ∈ Kk

κ for i < δ is ≤K-increasing, δ < κ+, cf(δ) ≥ θ,Λ ⊆

L∞,θ[K] and each Mi is Λ-generick, then Mδ :=
⋃

i<δ

Mi is Λ-generick

and i < δ ⇒Mi ≺Λ Mδ.
5) If (Mi, Ni) ∈ Kk

µ,χ for i < δ is ≤K-increasing, δ < χ+, cf(δ) ≥

θ,Λ ⊆ L∞,θ[K] and each (Mi, Ni) is Λ-generick, then (
⋃

i<δ

Mi,
⋃

i<δ

Ni)

is Λ-generick and Nj ≺Λ

⋃

i<δ

Ni for each j < δ.

Proof. Should be clear; in part (1) for k = 2 we use clause (b)−µ of

2.1. In part (5) note that ∪{Mi : I < δ} ∈ K∗
µ by Clause (b)−µ of

2.1. �2.4

2.5 Exercise: If (M,N) is Λ-generick and (M,N) ≤K (M ′, N) ∈ Kk
µ,χ

then (M ′, N) is Λ-generick.
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2.6 Claim. Assume that µ ≥ χ ≥ θ > LS(K) and k ∈ {1, 2}.
1) The set of quantifier free formulas in L∞,θ[K] is (µ, χ)-modelk

complete.
2) If Λε ⊆ L∞,θ(τK) is downward closed, (µ, χ)-modelk complete for

ε < ε∗, and Λ :=
⋃

ε<ε∗

Λε, θ = cf(θ) ≤ χ ∨ θ < χ, ε∗ < χ+ (and

µ > θ ∨ µ = θ = cf(θ)) then Λ is (µ, χ)-modelk complete.

Proof. 1) Easy.
2) Given (M,N) ∈ Kk

µ,χ let θr be min{∂ : ∂ ≥ θ is regular}. Clearly

θr ≤ χ and we choose (Mi, Ni) ∈ Kk
µ,χ for i ≤ ε∗ × θr such that

⊛ (a) 〈Mi : i ≤ ε∗ × θr〉 is ≤K-increasing continuous

(b) 〈Ni : i ≤ ε∗ × θr〉 is ≤K-increasing continuous

(c) if i = ε∗ × γ + ε and ε < ε∗ then (Mi+1, Ni+1) is Λε-generick

(d) (M0, N0) = (M,N).

There is no problem to do this.
Now for each ε < ε∗ the sequence 〈(Mε∗×γ+ε+1, Nε∗×γ+ε+1) :

γ < θr〉 is ≤K,µ,χ-increasing with union (Mε∗×θr
, Nε∗×θr

), and each
member of the sequence is Λε-generick hence by 2.4(5) we know that
the pair (Mε∗×θr

, Nε∗×θr
) is Λε-generick. As this holds for each Λε

it holds for Λ so (Mε∗×θr
, Nε∗×θr

) is as required. �2.6

From now on in this section

2.7 Hypothesis. We assume (a) + (b)−µ of 2.1 and we omit k using
Definition 2.3 meaning k = 2.

2.8 Claim. 1) For M ∈ K∗
µ and LS(K) < θ < µ the number of

complete L∞,θ[K]-types realized by sequences from θ>M is ≤ 2<θ,

moreover, the relation E
<θ
M := {(ā, b̄) : ā, b̄ ∈ θ>M and some auto-

morphism of M maps ā to b̄} is an equivalence relation with ≤ 2<θ

equivalence classes.
2) Hence there is a set Λ∗ = Λ∗

θ = Λ∗
K,Φ,µ,θ ⊆ L∞,θ[K] such that:

(a) |Λ∗| ≤ 2<θ and Λ∗ ⊆ L(2<θ)+,θ[K]
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(b) Λ∗ is closed under sub-formulas and finitary operations

(c) each ϕ(x̄) ∈ Λ∗ has quantifier depth < γ∗ for some γ∗ <
(2<θ)+

(d) for α < θ,M ∈ K∗
µ and ā ∈ αM , the Λ∗-type which ā realizes

in M determines the L∞,θ[K]-type which ā realizes in M ,
moreover one formula in the type determine it

(e) similarly for materialize in M ∈ K∗
µ, see Definition 2.3(4)

(f) if LS(K) ≤ χ < µ and (M,N) ∈ Kµ,χ is Λ∗-generic then it
is L∞,θ[K]-generic

(g) if M ∈ K2
µ is Λ∗-generic then it is L∞,θ[K]-generic.

Remark. Part (1) can also be proved using just (λ+ 1)× I∗ with I∗
a θ-saturated dense linear order with neither first nor last element,
but this is not clear for 2.11(1).

Proof. 1) By 5.1(1) and categoricity of K∗
λ.

2) Follows but we elaborate.
Let {āα : α < α∗ ≤ 2<θ} be a set of representatives of the E

<θ
M -

equivalence classes. For each α 6= β such that ℓg(ān) = ℓg(āβ), let
x̄α = 〈xi : i < ℓg(āα)〉 and choose ϕα,β(x̄α), ψα,β(x̄α) ∈ L(2<θ)+,θ[K]
such that, if possible we have M |= ϕα,β[āα] ∧ ¬ϕα,β [āβ] and, un-
der this, if possible M  “ψα,β(āα) ∧ ¬ψα,β(āβ) but in any case
M |= ϕα,β [āα] and M  ψα,β[āα]. Let ϕα(x̄) = ∧{ϕα,β(x̄α) : β <
α∗, β 6= α and ℓg(āβ) = ℓg(āα)} and similarly ψα(x̄α). Let Λ∗ be
the closure of {ϕα,β, ψα,β, ϕα, ψα : α 6= β < α∗} under subformulas
and finitary operations. Obviously, clauses (a), (b) hold hence the
existence of γ∗ < (2<θ)+ as required in clause (c) follows. Clause
(d) holds as āE <θ

M b̄ ⇒ tpL∞,θ [K](ā, ∅,M) = tpL∞,θ [K](b̄, ∅,M) using
the automorphisms and for α, β < α∗ such that ℓg(āα) = ℓg(āβ) we
have M |= (∀x̄α)(ϕα(x̄α) = ϕβ(x̄β) implies tpL

(2<θ)+,θ
[K](āα, ∅,M) =

tpL
(2<θ)+,θ

[K](āβ, ∅,M) and even tpL∞,θ[K](āα, ∅,M) = tpL∞,θ [K](āβ,

∅,M) recalling the choice of the ϕα,β ’s.
Clause (e) holds similarly by the choice of the ψα,β’s. Clauses

(f),(g) should also be clear. (The proof is similar to the proof of the
classical 0.17(3).) �2.8
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2.9 Observation. Assume (2.1(b)−µ of course and) Λ ⊆ L∞,θ[K] and

µ > 2<θ and θ > LS(K).
1) The number of complete L∞,θ[K]-types realized in some M ∈ K∗

µ,

by a sequence of length < θ of course, is ≤ 2<θ. Hence every for-
mula in L∞,θ[K] is equivalent, for models from K∗

µ to a formula of

quantifier depth < (2<θ)+, even from Λ∗ ⊆ L(2<θ)+,θ[K] where Λ∗ is
in 2.8(2).
2) Assume that I1 ⊆ I2 are well ordered, cf(I1), cf(I2) > 2<θ and
t ∈ I2\I1 ⇒ 2<θ < cf(I1 ↾ {s ∈ I1 : s <I2 t}) and t ∈ I2\I1 ⇒
2<θ < cf(I2 ↾ {s ∈ I2 : (∀r ∈ I1)(r <I2 t ≡ r <I2 s)}). Then
EMτ(K)(I1,Φ) ≺L∞,θ [K] EMτ(K)(I2,Φ).
3) If M = EMτ(K)(I,Φ), |I| = µ, I well ordered of cofinality >

2<θ, ā ∈ αM where α < θ and ai = σi(. . . , ati,ℓ
, . . . )ℓ<n(i) for i < α

then tpΛ∗
(ā, ∅,M) is determined by 〈σi(x0, . . . , xn(ℓ)−1) : i < ℓg(ā)〉

and the essential θ-type of 〈ti,ℓ : i < ℓg(ā), ℓ < n(i)〉, see Definition
2.10 below.

Before proving 2.9

2.10 Definition. 1) For t̄ = 〈ti : i < α〉 ∈ αI, I well ordered, let the
essential θ-type of t̄ in I be the essential (θ, (2<θ)+)-type where for
an ordinal γ we let the essential (θ, γ)-type of t̄ in I, estpθ,γ(t̄, ∅, I)
be the following information stipulating tα = ∞:

(a) the truth value of ti < tj (for i, j < α)

(b) otp([ri, ti)I) for i < α where for i ≤ α we let ri be the
minimal member r of I such that otp([r, ti)I) < θ × γ and
r ≤I ti and j < α ∧ tj < ti ⇒ tj ≤ r

(c) Min{θ × γ, otp[si, ri)I} for i ≤ α where we let si be the
minimal member of I such that (∀j < α)[tj <I ti ⇒ tj <I si]

(d) Min{θ, cf(I ↾ {s : s <I ri})} for i ≤ α which may be zero.

2) Let the function implicit in 2.9(3) be called t
µ
Λ = t

µ
K,Λ = t

µ
K,Φ,Λ,

i.e., t
µ
Λ(s, σ̄) = tpΛ(ā, ∅,M) when ā = 〈σi(. . . , atβ(i,ℓ)

, . . . )ℓ<ni
: i <

ℓg(ā)〉, σ̄ = 〈σi(. . . , xβ(i,ℓ), . . . )ℓ<n; i < ℓg(ā)〉 and s is the essential
θ-type of 〈ti,ℓ : i < ℓg(ā), ℓ < ni〉 in I.
If Λ = L∞,θ[K] we may write just θ.
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Proof of 2.9. 1) By 2.8(1) this holds for each M ∈ K∗
µ.

2) It is known by Kino [Kin66] that I1 ≺L I2 if L ⊆ {ϕ ∈ L∞,θ({<
}) : ϕ has quantifier depth < (2<θ)+}. From this the result follows
by part (1).

More fully let θr be the first regular cardinal ≥ θ, and we say that
the pair (I1, I2) is γ-suitable when we replace in the assumptions “of
cofinality > 2<θ” by “of cofinality ≥ θ and of order type divisible by
θ × γ”. Now we prove by induction on γ that

⊙1 assume that for α < θ and for ℓ = 1, 2 we have: Iℓ is a well
ordering, t̄ℓ = 〈tℓi : i < α〉 is <Iℓ

-increasing, tℓ0 is the first
element of Iℓ, we stipulate tℓα = ∞ and otp([tℓi , t

ℓ
i+1)I0) =

θrγα
ℓ
i +βi where βi < θγ and (cf(α1

i ) = cf(α1
i ))∨ ( cf(α1

i ) ≥
θ ∧ cf(α2

i ) ≥ θ).
Then for any formula ϕ(〈xi : i < α〉) ∈ L∞,θ({<}) of quanti-
fier depth ≤ γ we have I1 |= ϕ[t̄1] ⇔ I2 |= ϕ[t̄2].

Hence

⊙2 if ϑ(x̄) ∈ L∞,θ({<}) has quantifier depth < γ and (I1, I2) is

γ-suitable and t̄ ∈ ℓg(x̄)(I1) then I1 |= ϕ[t̄] ⇔ I2 |= θ[t̄].

3) Follows by part (2). �2.9

2.11 Claim. Assume

⊡ (a) (a) M ∈ K∗
µ

(b) Λ ⊆ L∞,θ[K] is downward closed, |Λ| ≤ χ, LS(K) < θ ≤ χ <
µ and 2<θ ≤ χ and θ = cf(θ) ∨ θ < χ so Λ = Λ∗ from 2.8 is
O.K.

(c) in part (3),(4),(5) we assume (χ<θ ≤ µ) ∨ (cf(µ) ≥ θ)

(d) for part (6) we assume cf(µ) ≥ θ (hence the demand in clause
(c) holds).

1) If M ∈ K∗
µ then {gtpΛ(ā, ∅,M) : ā ∈ θ>M} has cardinality ≤ 2<θ.

2) If (M,N) ∈ Kµ,χ then we can find N ′, (M,N) ≤K (M,N ′) ∈ Kµ,χ

such that
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(∗) if α < θ and b̄ ∈ αM and Λ ⊆ L∞,θ[K] then for some
b̄′ ∈ α(N ′) we have: for every ā ∈ θ>N , gtpΛ(āˆb̄, ∅,M) =
gtpΛ(āˆb̄′, ∅,M).

3) If (M,N) ∈ Kµ,χ, then we can find (M1, N1) such that (M,N) ≤K

(M1, N1) ∈ Kµ,χ and (note that ȳ may be the empty sequence)

(∗) if ∃ȳϕ(ȳ, x̄) ∈ Λ and ā ∈ ℓg(x̄)N then M1  ¬∃ȳϕ(ȳ, x̄) or for
some
b̄ ∈ ℓg(ȳ)(N1) we have M1  ϕ[b̄, ā].

4) In part (3) we can demand

(∗)+ if ∃ȳϕ(ȳ, x̄) ∈ Λ and ā ∈ ℓg(x̄)(N1) then M1  ¬(∃ȳ)ϕ(ȳ, x̄)
or for some b̄ ∈ ℓg(ȳ)(N1) we have M1 |= ϕ[b̄, ā].

5) In part (4) it follows that the pair (M1, N1) is Λ-generic (most
interesting for Λ∗, see 2.8).
6) If M1 ∈ K∗

µ then it is Λ-generic.

Proof. 1) Proved just like 2.8(1).
2) First assume θ is a successor cardinal. As M ∈ K∗

µ without loss
of generality M = EMτ(K)(I,Φ) for some linear order I of cardinal-
ity µ as in 5.1(1),(4) with θ−, θ, χ+, µ here standing for µ, θ1, θ2, λ
there. It follows that for some J ⊆ I of cardinality χ we have
N ⊆ EMτ(K)(J,Φ), and let J+ ⊆ I be such that J ⊆ J+, |J+\J | = χ

and for every t̄ ∈ θ>I there is an automorphism f of I over J which
maps t̄ to some member of ℓg(t̄)(J+).

Lastly, let N ′ = EMτ(K)(J
+,Φ), it is easy to check (see 1.4) that

(∗) holds. If θ is a limit ordinal it is enough to prove for each ∂ < θ,
a version of (∗) with α < ∂; and this gives N ′

∂ . Now we choose N ′

such that ∂ < θ ⇒ N ′
∂ ≤K N ′ and (M,N ′) ∈ Kµ,χ.

3),4),5),6) We prove by induction on γ that if we let Λγ be {ϕ(x̄) :
ϕ(x̄) ∈ Λ has quantifier depth < 1 + γ} then parts (3),(4),(5),(6)
holds for Λγ . For all four parts, |Λ| ≤ χ hence |Λγ | ≤ χ and it
suffices to consider γ < χ+. For γ = 0 they are trivial and for γ
limit also easy (let θr be the first regular ≥ θ and extend |γ|+ × θr

times taking care of Λβ in stage γ × ζ + β for each β < γ). So let
γ = β + 1.
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We first prove (3), but we have two cases (see clause (c)) of the
assumption. If χ<θ ≤ µ this is straight by bookkeeping. So assume
cf(µ) ≥ θ. Given (M,N) ∈ Kµ,χ we try to choose by induction on
i < χ+ a pair (Mi, Ni) and for i odd also ψi(ȳi, x̄i), āi, b̄i such that

⊛1 (a) (M0, N0) = (M,N)

(b) (Mi, Ni) ∈ Kµ,χ is ≤K-increasing continuous

(c) Mi+1 is Λβ-generic for i even

(d) for i odd ψi(ȳi, x̄i) ∈ Λβ and āi ∈ θ>N and b̄i ∈ θ>(Ni+1)
are such that ℓg(āi) = ℓg(x̄i), ℓg(b̄i) = ℓg(ȳi) and

(α) b̄ ∈ ℓg(ȳi)(Mi) ⇒Mi 1 ψi[b̄i, ā] but

(β) Mi+1  ψi[b̄i, āi]

(γ) for every b̄ ∈ θ>(Mi+1) there is an automorphism of
Mi+1 over Ni mapping b̄ into Ni+1.

If we succeed, by part (2) applied to the pair of models (
⋃

i<χ+

Mi, N)

as χ+ ≤ µ this pair belongs to Kµ,χ we get N ′ as there, hence for
some odd i < χ+, N ′ ⊆Mi, let ζ = i+2 and this gives a contradiction
to the choice of (ψζ , āζ, b̄ζ).
[Why? There is an automorphism f ofM := ∪{Mj : j < χ+} over N
mapping b̄ζ into N ′ hence into Mi hence f(b̄ζ) ∈

θ>(Mζ). We know
(by clause (d)(β) above) that Mζ+1  ψζ [b̄ζ , āζ ] but Mζ+1 ≤Kµ

M

hence M  ψζ [āζ , b̄ζ ]. Recall that f is an automorphism of M over
N hence M  ψζ [f(b̄ζ), f(āζ)], but āζ ∈ θ>N so f(āζ) = āζ hence
M  ψζ [b̄ζ , f(āζ)] but Mζ ≤Kµ

M and ā, f(b̄ζ) are from Mζ hence

Mζ 1 ¬ψζ [f(b̄ζ), (āζ)]. However by clause (d)(α) of ⊛1 we have
Mζ 1 ψζ [f(b̄ζ), āζ ]. But as i is an odd ordinal the last two sentences
contradicts clause (c) of ⊛1 applied to i+ 1.]
Hence we are stuck for some i < χ+. Now for i = 0 clause ⊛(a) gives
a permissible value and for i limit take unions noting that clauses
(c),(d) required nothing. So i = j + 1; if j is even we apply the
induction hypothesis to part (6) for the pair (Mi, Ni). Hence j is
odd so we cannot choose ψj(ȳ, x̄), āj, b̄j, recalling part (2) so the
pair (Mj , Nj) is as required thus proving (3) (for Λγ).
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Second, we prove part (4). We can now again try to choose by
induction on i < χ+ a pair (Mi, Ni) satisfying

⊛2 (a) (M0, N0) = (M,N)

(b) (Mi, Ni) ∈ Kµ,χ is ≤K-increasing continuous

(c) if i = 2j + 1, then (Mi+1, Ni+1) is as in part (3) for Λγ with
(Mi, Ni), (Mi+1, Ni+1) here standing for (M,N), (M1, N1)
there

(d) if i = 2j then for some ψi(ȳi, x̄i) ∈ Λβ and āi ∈
(ℓg(x̄i))(Ni)

and b̄i ∈ (ℓg(ȳi))(Ni+1) we have Mi+1  ψi(b̄i, āi) but b̄ ∈
ℓg(ȳi)(Mi) ⇒Mi 1 ψi[b̄, āi].

If we succeed, let S0 = {δ < χ+ : cf(δ) ≥ θ}, so by an assumption
S is a stationary subset of χ+, i.e. as by clause ⊡(b) we have θ =
cf(θ) ≤ χ ∨ θ < χ; also for δ ∈ S0, as 〈Ni : i < δ〉 is increasing with
union Nδ, and δ = 2δ clearly āδ is well defined, so for some i(δ) < δ
we have āδ ∈ θ>(Ni(δ)) and without loss of generality i(δ) = 2j(δ)+1
for some j(δ) hence by clause (c) of ⊛2 the pair (Mi(δ)+1, Ni(δ)+1) is
as required there contradiction as in the proof for part (3). Hence
for some i we cannot choose (Mi, Ni).

For i = 0 let (Mi, Ni) = (M,N) so only clauses (a) + (b) of ⊛2

apply and are satisfied. For i limit take unions. So i = j + 1. If
j = 1 mod 2, clause (d) of ⊛2 is relevant and we use part (3) for Λβ

which holds as we have just proved it.
Lastly, if j = 2 mod 2 and we are stuck then the pair (Mj, Nj) is

as required.
Third, Part (5) should be clear but we elaborate.

We prove by induction on γ′ that if ϕ(x̄) ∈ Λγ has quantifier

depth < 1 + γ′ then for every ā ∈ ℓg(x̄)(N1) we have M1 |= ϕ[ā] ⇔

N1 |= ϕ[ā]. For atomic ϕ this is obvious and for ϕ =
∧

i<α

ϕi should

be clear. If ϕ(x̄) = ¬ψ(x̄) note that in (∗)+ of part (4) we can use
empty ȳ so ¬(∃ȳ)ψ(x̄) = ¬ψ(x̄). Also for ϕ(x̄) = (∃ȳ)ϕ′(ȳ, x̄) we
apply part (4).

Fourth, we deal with part (6), so (see clause (d) of the assumption)
we have cf(µ) ≥ θ. Let χ = 〈χi : i < cf(µ)〉 be constantly µ− (so
µ = χ+

i ) if µ is a successor cardinal, and be increasing continuous
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with limit µ, 2<θ < χi < µ if µ is a limit cardinal recalling 2<θ < µ by
⊡(b). Consider Kµ,χ̄ = {M̄ : M̄ = 〈Mi : i ≤ cf(µ)〉 is ≤K-increasing
continuous, Mcf(µ) ∈ K∗

µ and Mi ∈ Kχi
for i < cf(µ)} ordered by

M̄1 ≤K M̄2 iff i ≤ cf(µ) ⇒M1
i ≤K M2

i .
By 2.11 and part (5) for Λγ which we proved we can easily find

M̄ ∈ Kµ,χ̄ such that i < cf(µ) ⇒ (Mcf(µ),Mi+1) is Λγ -generic; such

M̄ we call Λ∗-generic. Next

⊠ if ϕ(x̄) ∈ Λγ and M̄ is Λγ-generic, ā ∈ θ>(Mi), i successor,
ϕ(x̄) ∈ L∞,θ[K] and ℓg(x̄) = ℓg(ā) then Mcf(µ) |= ϕ[ā] ⇔
Mcf(µ)  ϕ[ā].

[Why? Recalling cf(µ) ≥ θ, we prove this by induction on the quan-
tifier depth of ϕ.]

By the definition of “M is Λ-generic” and categoricity of K∗
µ we

are done. �2.11

2.12 Conclusion. If µ ≥ (2<θ)+, θ > LS(K) and cf(µ) ≥ θ > LS(K)
then every M ∈ K∗

µ is L∞,θ[K]-generic, hence if M1 ≤K M2 are from
K∗

µ then M1 ≺L∞,θ [K] M2.

Remark. 1) With a little more care, if µ = µ+
0 also θ = µ is O.K.

but here this is prepheral.
2) θ ≤ LS(K) is not problematic, we just ignore it.
3) So 2.12 improve 1.12, i.e. we need cf(µ) ≥ λ(> LS(K)) instead
µ = µ<λ but still there is a class of µ which are not covered.

Proof. Let Λ∗ be as in 2.8(2) so in particular |Λ∗| ≤ 2<θ. Now 2.11(6)
and clause (g) of 2.8 proves the first assertion in 2.12. For the second
assume that M1 ≤Kµ

M2 and we shall prove that M1 ≺L∞,θ [K] M2.

By the categoricity of K in µ or clause (b)−µ of Hypothesis 2.1,
K∗ is categorical in µ hence M1,M2 ∈ K∗

µ are Λ∗-generic. Suppose

ā ∈ (ℓg(x̄))(M1), ϕ(x̄) ∈ Λ∗, so by M ′
1 being Λ∗-generic (or ⊠ from

the end of the proof of 2.11 applied to M̄2) we have

(∗)1 M1 |= ϕ[ā] ⇒M1  ϕ[ā] ⇒M1 |= ϕ[ā]
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and by M2 being Λ∗-generic (or ⊠ from the end of the proof of 2.11
applied to M̄2) we have

(∗)2 M2 |= ϕ[ā] ⇒M2  ϕ[ā] ⇒M2 |= ϕ[ā]

and by the definition of “M  ϕ[ā]” recalling M1 ≤Kµ
M2,

(∗)3 if M1  ϕ′[ā] then M2  ϕ′[ā] for ϕ′(x̄) ∈ {ϕ(x̄),¬ϕ(x̄)}.

So both M1 and M2 satisfy ϕ[ā] if M1 satisfy it, but this applies to
¬ϕ[ā] too; so we are done. �2.12

2.13 Claim. If K is categorical also in µ∗ or just Hypothesis 2.7
apply also to µ∗, too, (with the same Φ) and µ∗ ≥ µ<θ > µ > θ >
LS(K) and (∗) below, then every M ∈ K∗

µ is L∞,θ[K]-generic and
M1 ∈ K∗

µ ∧M2 ∈ K∗
µ ∧M1 ≤Kµ

M2 ⇒ M1 ≺L∞,θ [K] M2, i.e. the
conclusions of 1.12, 2.12 hold where

(∗) if M ∈ K∗
µ∗ and A ∈ [M ]µ then we can find N ≤K M such

that A ⊆ N ∈ K∗
µ and for every ϕ(x̄) ∈ L∞,θ[K] and ā ∈

ℓg(x̄)N we have M  ϕ[ā] ⇔ N  ϕ[ā].

Proof. We shall choose (Mi, Ni) ∈ Kµ∗,µ by induction on i ≤ θ+ such
that not only Mi ∈ K∗

µ∗ (see the definition of Kµ∗,µ) but also Ni ∈
K∗

µ and this sequence of pairs is ≤K-increasing continuous. For i = 0
use any pair, e.g. M0 = EMτ(K)(µ

∗,Φ) and N0 = EMτ(K)(µ,Φ).
For i limit take unions, recalling Mj , Nj are pseudo superlimit for

j < i.
For i = j + 1, let N+

j ≤K Mj be such that Nj ⊆ N+
j ∈ Kµ and

(Mj , N
+
j ) satisfies (∗) of the claim (standing for (M,N)). Let Λ∗

be as in 2.8 for µ∗. Then by 2.11(5) with (µ∗, µ, θ) here stand-
ing for (µ, χ, θ) there noting that in ⊡(c) there we use the case
χ<θ ≤ µ which here means µ = µ<θ, we can choose a Λ∗-generic
pair (Mi, Ni) ∈ Kµ∗,µ above (Mj , N

+
j ) hence by 2.8(2)(g) also it is a

L∞,θ[K]-generic pair. Now for j < θ+, for ā ∈ θ>(Nj), we can read

gtpµ∗

θ (ā, ∅,Mj+1) and it is complete, but as by our use of (∗) it is the

same as gtpµ
θ (ā, ∅, N+

j+1). So gtpµ
θ (ā, ∅, N+

j+1) is complete for every

ā ∈ θ>(Nj), so also gtpµ(ā, ∅, Nθ+) is complete by monotonicity.
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Now if ā ∈ θ>(Nθ+) then for some j < θ+ we have ā ∈ θ>(Nj), so

by the above pā := gptµ∗

θ (ā, ∅,Mj+1) = gtpµ
θ (ā, ∅, N+

j+1) = gtpµ
θ (ā,

∅, Nθ+) is complete and does not depend on j as long as j is large
enough.

Now we prove that if ā ∈ θ>(Nθ+) then ϕ(x̄) ∈ pā ⇒ Nθ+ |= ϕ[ā];
and we prove this by induction on the quantifier depth of ϕ(x̄); as
usual the real case is ϕ(x̄) = (∃ȳ)ϕ(ȳ, x̄). Let j < θ+ be such that

ā ∈ ℓg(x̄)(Nj), so pā = gtpµ∗

θ (ā,Mj+1) so Mj+1  ϕ[ā] and by the
choice of (Mj+1, Nj+1) it follows that Nj+1 |= ϕ[ā] hence for some

b̄ ∈ ℓg(ȳ)(Nj+1) we have Nj+1 |= ψ[b̄, ā] hence Mj+1  ψ(b̄, ā), hence
ψ(ȳ, x̄) ∈ pb̄ˆā hence by the induction hypothesis Nθ+ |= ψ[b̄, ā] hence
Nθ+ |= ϕ[ā].

�2.13

2.14 Conclusion. 1) For each θ ≥ LS(K) the family of µ > 2<θ

in which K is categorical but some (equivalent every) M ∈ Kµ is

not L∞,θ[K]-generic is ⊆ {[µi, µ
<θ
i ] : i < 22θ

} for some sequence

〈µi : i < 22θ

〉 of cardinals.
2) Similarly for pseudo solvable, i.e. for each θ ≥ LS(K) and Φ ∈ Υor

θ

for at most i2(θ) cardinals µ > 2<θ we have (∀α < µ)(|α|)<θ < µ)
and for some µ∗ ∈ [µ, µ<θ] the pair (K,Φ) is pseudo µ∗-solvable but
some ≡ every M ∈ K∗

Φ,µ∗ is not L∞,θ+ [K]-generic.

Proof. Straight. Note that it is enough to prove this for each Φ
separately.

Toward contradiction assume 〈µε : ε < (i2(θ))
+〉 is an increasing

sequence of such cardinals, satisfying (µε)
<θ < µε+1 and choose

Iε ×µε × (2<θ)+, hence 〈Iε : ε < (i2(θ))
+〉 is an increasing sequence

of linear orders as in 2.9, in particular, well ordered. Let Λε =
Λ∗

K,Φ,µε,θ be from 2.8(2) applied to I = Iε hence to any ordinal

< µ+
ε of cofinality > 2<θ. Now the number of functions t

µε

K,Λε
(see

Observation 2.9(3) and Definition 2.10(2)) is at most i2(θ), so for
some ε < ζ < (i2(θ))

+ we have t
µε

K,Λε
= t

µζ

K,Λζ
.

Now apply 2.13 with (µζ , µε) here standing for (µ∗, µ) there, (∗)
there holds easily by 2.9(3) so we get a contradiction. �2.14
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∗ ∗ ∗

For the rest of this section we note some basic facts on the depen-
dency on Φ (not used here).

2.15 Definition. 1) We define a two-place relation Eκ = E or
κ [K]

on Υor
κ [K], so κ ≥ LS(K) : Φ1EκΦ2 iff for every linear orders I1, I2

there are linear orders J1, J2 extending I1, I2 respectively such that
EMτ(K)(J1,Φ), EMτ(K)(J2,Φ) are isomorphic.
2) We define ≤or

κ =≤or
κ [K], a two-place relation on Υor

κ [K] as in
part (1) only in the end EMτ(K)(J1,Φ1) can be ≤K-embedded into
EMτ(K)(J2,Φ2).

2.16 Claim. 1) The following conditions on Φ1,Φ2 ∈ Υor
κ [K] are

equivalent

(a) Φ1EκΦ2

(b) there are I1, I2 ∈ K lin of cardinality ≥ i1,1(κ) such that
EMτ(K)(I1,Φ1), EMτ(K)(I2,Φ) are isomorphic

(c) there are Φ′
1,Φ

′
2 satisfying Φℓ ≤⊗ Φ′

ℓ ∈ Υor
κ [K] for ℓ = 1, 2

such that Φ′
1,Φ

′
2 are essentially equal (see Definition 2.17

below).

2) The following conditions are equivalent

(a) Φ1 ≤or
κ Φ2 recall ≤κ=≤or

κ [K]

(b) there are I1, I2 ∈ K lin of cardinality ≥ i1,1(κ) such that
EMτ(K)(I1,Φ1) can be ≤K-embedded into EMτ(K)(I2,Φ2)

(c) for every I1 ∈ K lin there is I2 ∈ K lin such that EMτ(K)(I1,Φ1)
can be ≤K-embedded into EMτ(K)(I2,Φ2).

2.17 Definition. Φ1,Φ2 ∈ Υor
κ [K] are essentially equal when for

every linear order I there is an isomorphism f from EMτ(K)(I,Φ1)
onto EMτ(K)(I,Φ2) such that for any τΦ1

-term σ1(x0, . . . , xn−1) there
is a τΦ2

-term σ2(x0, . . . , xn−1) such that: t0 <I . . . <I tn−1 ⇒
f(a1) = a2, where aℓ is σℓ(at0 , . . . , atn−1

) as computed in EM(I,Φℓ)
for ℓ = 1, 2.
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Proof of 2.16. Straight (particularly recalling such proof in 1.29(1)).
�2.17

2.18 Claim. 1) Eκ = E or
κ [K] is an equivalence relation,

and Φ1E
or
κ [K]Φ2 ⇒ Φ1 ≤or

κ [K]Φ2.
1A) In fact if 〈Φε : ε < ε(∗)〉 are pairwise Eκ-equivalent and ε(∗) ≤ κ
then we can find 〈Φ′

ε : ε < κ〉 satisfying Φ′
ε ≤⊗ Φ′

ε for ε < ε(∗) such
that the Φ′

ε for ε < ε(∗) are pairwise essentially equal.
2) ≤or

κ is a partial order.
3) If Φ1,Φ2 ∈ Υor

κ [K] are essentially equal then (K,Φ1) is pseudo/
weakly/strongly (µ, κ)-solvable iff (K,Φ2) is pseudo/weakly/strongly
(µ, κ)-solvable.
4) If Φ1 ∈ Υor

κ [K] is strongly (µ, κ)-solvable and Φ2 exemplifies K is
(µ, κ)-solvable then Φ1EκΦ2.
5) If K is categorical in µ and µ > κ ≥ LS(K) then every Φ ∈ Υor

κ [K]
is strongly (µ, κ)-solvable.
6) Assume (K,Φℓ) is pseudo (µ, κ)-solvable and µ ≥ i1,1(κ) for ℓ =
1, 2. Then Φ1EκΦ2 iff Φ1 ≤or

κ [K]Φ2 ∧ Φ2 ≤or
κ [K]Φ1.

7) If Φ1 ≤or
κ Φ2 and Φ1 is strongly (µ, κ)-solvable or just pseudo

(µ, κ)-solvable then Φ1,Φ2 are E or
κ [K]-equivalent.

Proof. Easy, use 1.29(1) and its proof. �2.18

§3 Categoricity for cardinals on a club

We draw here an easy conclusion from §2, getting that on a closed
unbounded class of cardinals which is ℵ0-closed we get a constant
answer to being categorical. This is, of course, considerably weaker
than conjecture 0.1 but still is a progress, e.g. it shows that the
categoricity spectrum is not totally chaotic.

We concentrate on the case the results of §1 holds (e.g. µ = µλ)
for the λ’s with which we deal. To eliminate this extra assumption
we need §2. This section is not used later. Note that 3.4 is continued
(and improved) in [Sh:F820] and Exercise 3.8, [Sh:F782] improve 3.6;
similarly 3.7.

In the claims below we concentrate on fix points of the sequence of
iα’s.
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3.1 Hypothesis. As in Hypothesis 1.2, (i.e. K is an a.e.c. with models
of arbitrarily large cardinality).

3.2 Definition. 1) Let CatK be the class of cardinals in which K is
categorical.
1A) Let Sol = SolK,Φ = Sol1

K,Φ be the class of µ > LS[K] such

that (K,Φ) is pseudo µ-solvable. Let Sol2
K,Φ[Sol3

K,Φ] be the class of

µ > LS(K) such that (K,Φ) is weakly [strongly] µ-solvable.
2) Let mod-comK,Φ be the class of pairs (µ, θ) such that: µ > θ ≥
LS(K) and L∞,θ+ [K] is µ-model complete (on K∗

Φ,µ, see Definition

2.3(3)(b), 2.3(5)).
3) Let Cat′

K
be the class of µ ∈ CatK such that: µ ≥ i1,1(LS(K)) and

if LS(K) ≤ θ and i1,1(θ) ≤ µ then L∞,θ+ [K] is µ-model complete.

3A) For Φ ∈ Υor
K

let Solk,∗
K,Φ be the class of µ ∈ Solk

K,Φ such that

µ ≥ i1,1(LS(K)) and: if LS(K) ≤ θ and i1,1(θ) ≤ µ then the pair
(L∞,θ+ [K],Φ) is µ-model complete.

Let Solℓ,<θ
K,Φ be the class of λ ∈ Solℓ

K,Φ such that L∞,θ[K] is µ-

model complete (see §2).

Let Sol′
K,Φ = Sol1,∗

K,Φ. Instead k, ∗ we may write 3 + k.

4) Let C = {λ : λ = iλ and cf(λ) = ℵ0}.

3.3 Exercise: 1) The conclusion of 1.12(1) equivalently 1.12(2) means
that θ ≤ λ⇒ (µ, θ) ∈ mod-comK,Φ.
2) Write down the obvious implications.

3.4 Claim. If µ > λ = iλ > κ ≥ LS(K) and Φ ∈ Υor
κ [K], cf(λ) = ℵ0

then µ = µ<λ ⇒ µ ∈ Sol′
K,Φ ⇒ λ ∈ Sol′

K,Φ.

Proof. The first implication holds by 1.12(2) and 3.3. The second
implication, its assumption implies Hypothesis 1.18, see 3.3(1) hence
its conclusion holds by 1.41.

�3.4

3.5 Observation. Kλ is categorical in λ (hence Hypothesis 1.18
holds), if:

⊛λ λ = iλ = sup(λ ∩ Cat′
K
) > LS(K) and ℵ0 = cf(λ).
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Proof. Fix Φ ∈ Υor
K

, now clearly Sol′
K,Φ ⊇ Cat′

K
by their definitions.

By the assumptions we can find 〈µn : n < ω〉 such that λ = Σ{µn :
n < ω}, LS(K) < µn ∈ Cat′

K
and i1,1(µ

′
n) < µn+1 where µ′

n =
i1,1(µn). As every M ∈ Kµn+1

is L∞,µ′

n
[K]-generic (as Kµn+1

⊆
KΦ,µn+1

and µn+1 ∈ Cat′
K
) easily

(∗)0 if M ≤K N are from K∗
Φ,≥µn+1

then M ≺L
∞,µ′

n
[K] N .

Let M ℓ ∈ Kλ, for ℓ ∈ {1, 2}; so we can find a ≤K-increasing sequence
〈M ℓ

n : n < ω〉 such that M ℓ
n ∈ Kµn

,M ℓ
n ≤K M ℓ

n+1 ≤K M ℓ and

M ℓ = ∪{M ℓ
n : n < ω}. Now

(∗)1 M ℓ
n ∈ K∗

Φ,µn
.

[Why? As K is categorical in µn = ‖M ℓ
n‖.]

(∗)2 if α ≤ µn, n < m < k and ā, b̄ ∈ α(M ℓ
m) then:

(a) tpL
∞,µ′

n
[K](ā, ∅,M

ℓ
m) = tpL

∞,µ′
n
(b̄, ∅,M ℓ

m) iff

tpL
∞,µ′

n
[K](ā, ∅,M

ℓ
k) = tpL

∞,µ′
n
(b̄, ∅,M ℓ

k).

(b) if tpL
∞,µ′

n
[K](ā, ∅,M

ℓ
k) = tpL

∞,µ′
n

[K](b̄, ∅,M
ℓ
k)

then tpL
∞,µ′

m
[K](ā, ∅,M

ℓ
k) = tpL

∞,µ′
m

[K](b̄, ∅,M
ℓ
k).

[Why? Clause (a) by (∗)0, clause (b) by 1.19(3).]

(∗)3 M1
n
∼= M2

n.

[Why? As K is categorical in µn.]
We now proceed as in the proof of 1.38.

Let Fn = {f : for some ā1, ā2 and α < µn we have āℓ ∈
α(M ℓ

n+2) for
ℓ = 1, 2, tpL∞,µn+1[K](ā1, ∅,M

1
n+2) = tpL∞,µn+1[K](ā2, ∅,M

2
n+1) and

f is the function which maps ā1 into ā2}, (actually can use α = µn).

By the hence and forth argument we can find fn ∈ Fn by induction
on n < ω such that M1

n ⊆ Dom(f2n+2),M
2
n ⊆ Rang(f2n+2) and

fn ⊆ fn+1; hence ∪{fn : n < ω} is an isomorphism from M1 onto
M1. �3.4
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724 IV. CATEGORICITY AND SOLVABILITY OF A.E.C.

3.6 Claim. K is categorical in λ when:

⊛+
λ λ = iλ > LS(K) and λ = otp(CatK ∩ λ∩C) and cf(λ) = ℵ0.

Proof. Fix Φ as in the proof of 3.4. Let 〈θn : n < ω〉 be increasing
such that λ = Σ{θn : n < ω} and LS(K) < θ0. For each n, by 2.14
we know {µ ∈ CatK : µ > θn and the M ∈ Kµ is not L∞,θ+

n
-generic}

is “not too large”, i.e. is included in the union of at most i2(θn)
intervals of the form [χ, χθn ]. Now we choose (n(ℓ), µℓ) by induction
on ℓ < ω such that

⊛ (a) n(ℓ) < ω and µℓ ∈ CatK ∩ λ

(b) if ℓ = k+ 1 then n(ℓ) > n(k), θn(ℓ) > µk, µℓ ∈ CatK ∩ λ\θ+
n(ℓ)

and the M ∈ Kµℓ
is L∞,θn(ℓ)

[K]-generic (hence L∞,µ+
k
[K]-

generic).

This is easy and then continue as in 3.5. �3.6

We have essentially proved

3.7 Theorem. In 3.5, 3.6 we can use SolK,Φ, Sol′
K,Φ instead of

CatK, Cat′
K
.

3.8 Exercise: For Claim 1.38(2), Hypothesis 1.18 suffice.
[Hint: The proof is similar to the existing one using 1.19.]

§4 Good Frames

Here comes the main result of Chapter : from categoricity (or
solvability) assumptions we derive the existence of good λ-frames.

Our assumption is such that we can apply §1.

4.1 Hypothesis. 1)

(a) K is an a.e.c.

(b) µ > λ = iλ > LS(K) and cf(λ) = ℵ0;

(c) Φ ∈ Υor
K
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(d) K is categorical in µ or just

(d)− (K,Φ) is pseudo superlimit in µ (this means Φ ∈ Sol1
K,Φ; so

1.18(1) holds)

(e) also 1.18(2)(a) holds, i.e. the conclusion of 1.12(2) holds.

2) In addition we may use some of the following but then we mention
them and (we add superscript ∗ when used; note that (g) ⇒ (f) by
1.39)

(f) K∗
λ is closed under ≤K-increasing unions (justified by 1.38)

(g) 〈λn : n < ω〉 is increasing, λ0 > LS(K), λ = Σ{λn : n < ω}
and the assumptions of 1.38 holds.

4.2 Observation. 1) K∗
λ is categorical.

2) K∗
λ has amalgamation.

3)∗ (We assume (f) of 4.1(2)). Kλ is a λ-a.e.c.

Proof. 1) By 1.16(1) or 1.19(4) as cf(λ) = ℵ0.
2) By 1.30(1).
3) As in 1.39, (i.e. as ≤K∗

λ
=≤K↾ K, closure under unions of ≤K-

increasing chains is the only problematic point and it holds by (f) of
4.1(2)). �4.2

4.3 Remark. 1) Why do we not assume 4.1(1),(2) all the time?
The main reason is that for proving some of the results assuming
4.1(1),(2) we use some such results on smaller cardinals on which we
use 4.1(1) only.
2) Note that it is not clear whether improvement by using 4.1(1)
only will have any affect when (or should we say if) we succeed to
have the parallel of III§12.

4.4 Claim. 1) Assume M0 ≤K∗

λ
Mℓ, α < λ and āℓ ∈ α(Mℓ) for

ℓ = 1, 2 and κ := i1,1(i2(θ)
+) where θ := |α| + LS(K) so κ < λ. If

tpL∞,κ[K](ā1,M0,M1) = tpL∞,κ[K](ā2,M0,M2) then tpK∗

λ
(ā1,M0,M1) =

tpK∗

λ
(ā2,M0,M2).
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726 IV. CATEGORICITY AND SOLVABILITY OF A.E.C.

2) If M1 ≤K∗

λ
M2 then M1 ≺L∞,θ [K] M2 for every θ < λ, and more-

over M1 ≺L∞,λ[K] M2.
2A) If M0 ≤K∗

λ
Mℓ for ℓ = 1, 2 and tpK∗

λ
(ā1,M0,M1) = tpK∗

λ
(ā2,

M0,M2) and āℓ ∈ α(M0), α < κ ≤ λ then tpL∞,κ[K](ā1),M0,M1) =
tpL∞,κ[K](ā2,M0,M2).
2B) In part (1), if Mℓ ≤K∗

λ
M ′

ℓ for ℓ = 1, 2 then tpL∞,κ[K](ā1,M,M ′
1) =

tpL∞,κ[K](ā2,M,M ′
2).

3) Assume that M0 ≤K∗

λ
M1 ≤K∗

λ
M2 ≤K∗

λ
M3, ā ∈ α(M2), α < λ and

κ = i1,1(|α| + LS(K)) < θ < λ. Then

(a) from tpL∞,κ[K](ā,M1,M2) we can compute tpL∞,θ [K](ā,M1,M2)
and tpL∞,λ[K](ā,M0,M3)

(b) from tpL∞,κ[K](ā, ∅,M2) we can compute tpL∞,θ [K](ā, ∅,M2)
and even tpL∞,λ[K](ā, ∅,M2)

(c) from tpK∗

λ
(ā,M1,M2) we can compute tpL∞,λ[K](ā,M1,M2)

and tpK∗

λ
(ā,M0,M3).

4) If M1 ≤K∗

λ
M2 and α < κ∗ < λ, Iℓ ⊆ α(M1), |Iℓ| > κ, Iℓ is

(L∞,θ[K], κ∗)- convergent in M1 for ℓ = 1, 2 and Av<κ(I1,M1) =
Av<κ(I1,M1) then Iℓ is (L∞,κ[K], κ∗)-convergent in Mℓ for ℓ = 1, 2
and Av<κ(I1,Mℓ) = Av<κ(I1,M2).

Proof. 1) Without loss of generality M0 = EMτ(K)(I0,Φ) and I0 ∈

Kflin
λ . By 1.29(3) for ℓ = 1, 2 there is a pair (Iℓ, fℓ) such that I0 ≤Kflin

Iℓ ∈ Kflin
λ and fℓ is a ≤K-embedding of Mℓ into M ′

ℓ = EMτ(K)(Iℓ,Φ)
over M0. By renaming without loss of generality fℓ is the identity
on Mℓ hence Mℓ ≤K M ′

ℓ. By 1.19(1) we know that Mℓ ≺L∞,κ[K] M
′
ℓ

hence tpL∞,κ[K](ā1,M0,M
′
1) = tpL∞,κ[K](ā1,M0,M1) = tpL∞,κ[K](ā2,

M0,M2) = tpL∞,κ[K](ā2,M0,M
′
2).

By 1.29(1) we can find (I3, g1, g2, h) such that I0 ≤Kflin I3 ∈
Kflin

λ , gℓ is a ≤K-embedding of M ′
ℓ into M4 := EMτ(K)(I3,Φ) over

M0 for ℓ = 1, 2 and h is an automorphism of M4 over M0 map-
ping g1(ā1) to g2(ā2). By the definition of orbital types, this gives
tpK∗

λ
(ā1,M0,M1) = tpK∗

λ
(ā2,M0,M2) as required.

2) This holds by 1.19(1) for θ ∈ (LS(K), λ), hence by 1.11(1) also for
θ = λ (the assumptions of 1.11 hold as clause (a) there holds by the
case above θ < λ and clause (b) there holds by 1.28(1)).
2A) Should be clear:
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(a) by part (2) this holds if ā1 = ā2 and M1 ≤K M2

(b) trivially it holds if there is an isomorphism from M1 onto M2

over M0 mapping ā1 to ā2

(c) by the definition of tp we are done.

2B) Should be clear by part (2).
3) Clause (a):

By parts (1) + (2).

Clause (b): By 1.28(1).

Clause (c): By part (2A) and the definition of tp.
4) Easy, too. �4.4

4.5 Definition. Assume M0 ≤K∗

λ
M1 ≤K∗

λ
M2, α < λ and ā ∈

α(M2) and p = tpK∗

λ
(ā,M1,M2). We say that p does not fork over

M0 (for K∗
λ) when, letting θ0 = |α|+ LS(K), θ1 = i1,1(i2(θ0)

+), θ2 =
2θ1 , θ2 = i2(θ1) we have:

(∗) for some N ≤K∗ M0 satisfying ‖N‖ ≤ θ2 we have
tpL∞,θ1

[K](ā,M1,M2) does not split over N .

We now would like to show that there is sλ which fits Chapter II and
Chapter III and Ksλ

= K∗
λ.

4.6 Observation. Assume that M0 ≤K∗

λ
M1 ≤K∗

λ
M2, ā ∈ α(M2), α <

λ, λ > κ0 ≥ |α|+LS(K), κ1 = i1,1(i2(κ0)
+) and κ2 = i2(κ1). Then

the following conditions are equivalent

(a) tpK∗

λ
(ā,M1,M2) does not fork over M0

(b) for some (κ+
1 , κ1)-convergent I ⊆ α(M0) of cardinality > κ2

we have
tpL∞,κ1

[K](ā,M1,M2) = Av<κ1
(I,M1) hence this type does

not split over ∪I′ for any I′ ⊆ I of cardinality > κ1

(c) for everyN ≤K M0 of cardinality ≤ κ2, if tpL∞,κ1
[K](ā,M0,M2)

does not split over N then the type tpL∞,κ1
[K](ā,M1,M2)

does not split over N .
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4.7 Remark. 1) See verification of axiom (E)(c) in the proof of The-
orem 4.10.
2) Note that have we used i7(κ1)

+ instead of κ1 in 4.5, 4.6, the
difference would be small.
3) We could in clause (c) of 4.6 use “for some N ≤K M0 of cardinality
< κ1, tpL∞,κ1

[K] ...” The proof is the same.

4) We can allow below M0 ≤K M1 if M0 ∈ K≥κ2
.

Proof. (a) ⇒ (b)
Let θ0, θ1, θ2 be as in Definition 4.5. By Definition 4.5 there is

N ≤K M0 of cardinality ≤ θ2 such that

(∗)1 the type tpL∞,θ1
[K](ā,M1,M2) does not split over N .

By Claim 1.26(1) there is a (κ+
1 , κ1)-convergent set I ⊆ α(M0) of

cardinality κ+
2 (convergence in M0, of course) such that tpL∞,κ1

[K](ā,

M0, M2) = Av<κ1
(I,M0). So as M0 ≺L∞,λ[K] M1 ≺L∞,λ[K] M2,

by Claim 4.4(2), clearly I is (κ+
1 , κ1)-convergent also in M1 and in

M2 hence Av<κ1
(I,M1) is well defined. Hence, by Claims 1.23(2),

1.21(3) the type Av<κ1
(I,M1) does not split over ∪I but θ2 ≤ κ2

and ∪I ⊆ ∪I ∪N hence

(∗)2 Av<θ1
(I,M1) does not split over ∪I ∪N .

But also

(∗)3 tpL∞,θ1
[K](ā,M1,M2) does not split over N (by the choice of

N) hence over ∪I ∪N .

As M0 ≺L∞,λ[K] M1 and | ∪ I ∪N | < λ and tpL∞,θ1
[K](ā,M0,M2) =

Av<θ1
(I,M0) clearly, by (∗)2+(∗)3 we have tpL∞,θ1

[K](ā,M1,M2) =

Av<θ1
(I,M1).

Now there is a pair (M ′
2, ā

′) satisfying thatM1 ≤K M ′
2 ∈ K∗

λ and ā′ ∈
α(M ′

2) such that tpL∞,θ1
[K](ā

′,M1,M
′
2) = Av<θ1

(I,M1) hence by

the previous sentence tpL∞,θ1
[K](ā

′,M1,M
′
2) = tpL∞,θ1

[K](ā,M1,M2).

Now by 4.4(1) and then 4.4(2A) it follows that tpL∞,κ1
[K](ā,M1,M0) =

Av<κ1
(I,M1) as required.

(b) ⇒ (c)
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Let I be as in clause (b), so I is (κ+
1 , κ1)-convergence in M0 and

is of cardinality > κ1. We know that M0 ≺L∞,λ[K] M1, so by the

previous sentence, I is (κ+
1 , κ1)-convergent inM1. To prove clause (c)

assume that N ≤K M0 is of cardinality κ2 and tpL∞,κ1
[K](ā,M0,M2)

does not split over N . Hence Av<κ1
(I,M0) = tpL∞,κ1

[K](ā,M0,M2)
does not split over N . Again as M0 ≺L∞,λ[K] M1 we can deduce that
Av<κ1

(I,M1) does not split over N but by the choice of I it is equal
to tpL∞,κ1

[K](ā, M1,M2), so we are done.

(c) ⇒ (a)

By Claim 1.24 there is B ⊆ M0 of cardinality ≤ κ2 such that
tpL∞,κ1

[K](ā,M0,M2) does not split over B.

As we can increase B as long as we preserve “of cardinality ≤
κ2”, without loss of generality B = |N | where N ≤K M0. So the
antecedent of clause (c) holds, but we are assuming clause (c) so the
conclusion of clause (c) holds, that is tpL∞,κ1

[K](ā,M1,M2) does not
split over N .

Also by 1.26(1) there is I1 ⊆ α(M0) of cardinality κ+
2 which

is (κ+
1 , κ1)-convergent and Av<κ1

(I1,M0) = tpL∞,κ1
[K](ā, M0,M1).

Clearly κ1 ≥ θ1 hence κ2 = (κ2)
θ1 . Now as K∗

λ is categorical
clearly M0

∼= EMτ(K)(λ,Φ) hence applying 1.25(4) we can find

I2 ⊆ I1 of cardinality κ+
2 which is (θ+

1 , θ1)-convergent. As above
M0 ≺L∞,κ1

[K] M1 so we deduce that I2 is (θ+
1 , θ1)-convergent and

(κ+
1 , κ1)-convergent also in M1.

As above we haveM0 ≺L∞,κ1
[K] M1 by 1.19(1) hence Av<κ1

(I2,M1)

is well defined and does not split overN hence is equal to tpL∞,κ1
[K](ā,

M1,M2). This implies that Av<θ1
(I2,M1) = tpL∞,θ1

[K](ā,M1,M2).

Now choose I3 ⊆ I2 ⊆ M0 of cardinality θ2 and N3 ≤K M0 of
cardinality θ2 such that I3 ⊆ α(N3). Now by 1.23(2) we know that
tpL∞,θ1

[K](ā,M1,M2) does not split over I3 hence it does not split

over N3, so N3 witnesses clause (a). �4.6

4.8 Definition. We define a pre-frame sλ = (Ksλ
,
⋃

sλ

,S bs
sλ

) as fol-

lows:

(a) Ksλ
= K∗

λ
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(b) S bs
sλ

is defined by S bs
s,λ(M) := {tpK∗

λ
(a,M,N) : M ≤K∗

λ

N, a ∈ N\M},

(c)
⋃

sλ

= {(M0,M1, a,M3) : M0 ≤K∗

λ
M1 ≤K∗

λ
M2 and

tpK∗

λ
(a,M1,M3) does not fork over M0}, see Definition 4.5.

4.9 Remark. 1) Recall ≤sλ
=≤K↾ Ksλ

=≤K∗

λ
.

2) Concerning the proof of 4.10 below we mention a variant which
the reader may ignore. This variant, from weaker assumptions gets
weaker conclusions. In detail, define the weak versions (f)− of (f)
of 4.1(2); see Definition 1.34 and Claim 1.37(1)

(f)− if 〈Mα : α ≤ δ〉 is ≤K-increasing continuous and α < δ ⇒
M2α+1 <

∗
K∗

λ
M2α+2 (e.g. M2α+2 is ≤K∗

λ
-universal overM2α+1)

hence both are from K∗
λ then Mδ ∈ K∗

λ.

Assuming only 4.1(1) + (f)− we do not know whether K∗
λ is a λ-a.e.c.

but still (K∗
λ,≤K↾ K∗

λ, <
∗
K∗

λ
), see Definition 1.34, is a so called semi

λ-a.e.c., see Chapter N.
If clause (f) from 4.1(2) holds (i.e., Ksλ

is closed under unions),
we can omit “<∗

sλ
”.

3) It will be less good but not a disaster if we have assumed below
λ = sup(Cat′

K
∩ λ).

4) It will be better to have Ksλ
= Kλ; of courses, this follows from

categoricity so by §3 is not unreasonable for conjecture 0.1.
5) But we can ask only for M ∈ Ksλ

to be universal in Kλ,
6) We can ask that for every µ > λ large enough, for every M ∈ Kµ

for a club of N ∈ Kλ satisfying N ≤K M we have N ∈ Ksλ
.

4.10 Theorem∗. (Assume 4.1(2),(g) hence (f)).
sλ is a good λ-frame categorical in λ and is full.

Proof. We check the clauses in the definition II.2.1.

Clause (A):
By observation 4.2(3), [in the weak version using (f)− from 4.9(1)].

Clause (B):
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Categoricity holds by 1.16 (or 4.2(1)) and this implies “there is a
superlimit model”, the non-maximality by ≤K∗

λ
holds by the choice

of Φ.

Clause (C):
Observation 4.2(2) guarantee amalgamation, categoricity (of K∗

λ

by 4.2(1)) implies the JEP and “no-maximal model” holds by clause
(B).

Clause (D)(a), (b):
Obvious by the definition.

(D) (c) (density).

Assume M <K∗

λ
N , then there are a ∈ N\M and for any such a the

type tpK∗

λ
(a,M,N) belongs to S bs

sλ
(M). In fact

⊛ sλ is type-full

(D) (d) (bs-stability).

The demand means M ∈ K∗
λ ⇒ |S 1

K∗

λ
(M)| ≤ λ.

This holds by 1.32(2) (and amalgamation).

(E)(a), (b). By the definition.

(E)(c) (local character)
This says that if 〈Mi : i ≤ δ+1〉 is ≤sλ

-increasing continuous and
p = tpsλ

(a,Mδ,Mδ+1) ∈ S bs
sλ

(Mδ) then for some i < δ the type p
does not fork over Mi (for sλ).

From now on (in the proof of 4.10) we use 4.6 freely and let (noting
cf(δ) < λ as λ is singular)

⊙ κ0 = LS(K) + cf(δ), κ1 = i1,1(i2(κ0))
+, κ2 = i2(κ1).

Now by 4.6 there is a (κ+
1 , κ1)-convergent I ⊆Mδ with Av<κ1

(I,Mδ) =
tpL∞,κ1

[K](a,Mδ,Mδ+1) such that I is of cardinality > κ2. For some

i(∗) < δ, |I ∩Mi(∗)| > κ2, so without loss of generality I ⊆ Mi(∗), so
by 4.6 we are done.

(E)(d) Transitivity of non-forking
We are given M0 ≤sλ

M1 ≤sλ
M2 ≤Ks

M3 and a ∈ M3 such
that tpsλ

(a,Mℓ+1,M3) does not fork over Mℓ for ℓ = 0, 1. So for
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ℓ = 0, 1 there is Iℓ ⊆Mℓ which is (κ+
1 , κ1)-convergent in Mℓ+1 of car-

dinality κ+
2 such that Av<κ1

(Iℓ,Mℓ+1) = tpL∞,κ1
[K](a,Mℓ+1,M3).

As Av<κ1
(I0,M1) = Av<κ1

(I1,M1) (being both realized by a) be-
cause M1 ≺L∞,λ[K] M2 by 4.4(4) clearly we have Av<κ1

(I0,M2) =
Av<κ1

(I1,M2) = tpL∞,κ1
[K](a,M2,M3) all well defined. So I0 wit-

ness by 4.6 that tpL∞,κ1
[K](a,M2,M3) does not fork over M0, which

means that tpK∗

λ
(a,M2,M3) does not fork over M0 as required.

(E)(e) Uniqueness.
Recalling 4.4(1), the proof is similar to (E)(d); the two witnesses

are now in M0.

(E)(f) Symmetry
Towards a contradiction, recalling II.2.19 assume M0 ≤K∗

λ
M1

≤K∗

λ
M2 ≤K∗

λ
M3 and aℓ ∈ Mℓ+1\Mℓ for ℓ = 0, 1, 2 are such that

pℓ = tpK∗

λ
(aℓ,Mℓ,Mℓ+1) does not fork over M0 for ℓ = 0, 1, 2 and

tpK∗

λ
(a0,M0,M1) = tpK∗

λ
(a2,M0,M3) but tpK∗

λ
(〈a0, a1〉,M0,M3) 6=

tpK∗

λ
(〈a2, a1〉,M0,M3).

By 4.6 we can deal with pℓ = tpL∞,κ1
[K](aℓ,Mℓ,Mℓ+1) for ℓ =

0, 1, 2. For each ℓ ≤ 2, we can find convergent Iℓ = {aℓ
α : α < κ+

2 } ⊆
M0 which is (κ+

1 , κ1)-convergent such that Av<κ1
(Iℓ,Mℓ) = pℓ.

So as M0 ≺L∞,κ1
[K] Mk we deduce the set Iℓ is (κ+

1 , κ1)-convergent

in Mk for ℓ, k = 0, 1, 2, also Av<κ1
(I0,M0) = Av<κ1

(I2,M0) hence
Av<κ1

(I0,M2) = Av<κ1
(I2,M2) so without loss of generality I0 =

I2.
Now use the non-order property to get symmetry.

(E)(g) Existence
So assume M ≤sλ

N and p ∈ S bs
sλ

(M). So we can find a pair
(M ′, a) such that M ≤sλ

M ′, a ∈ M1 and p = tpsλ
(a,M,M ′). By

1.26(1) there is a (κ+
1 , κ1)- convergent I ⊆M of cardinality κ+

2 such
that Av<κ1

(M, I) = tpL∞,κ1
[K](a,M,M ′). By 1.26(3) + 4.6 there is

a pair (N ′, a′) such that N ≤sλ
N ′, a′ ∈ N ′ and tpL∞,κ1

(a′, N,N ′) =

Av<κ1
(I, N). So by 4.6 the type tpsλ

(a′, N,N ′) easily ∈ S bs
sλ

(N),
does not fork over N and extend p, as required.

(E)(h) Continuity
Follow by II.2.17. Alternatively assume 〈Mi : i ≤ δ + 1〉 is ≤sλ

-
increasing continuous, and a ∈ Mδ+1\Mδ and tpsλ

(a,Mi,Mδ+1)
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does not fork over M0 for i < δ. So there is a convergent Ii ⊆ M0

such that i < δ ⇒ tpL∞,κ[K](a,Mi,Mδ+1) = Avκ(I,Mi).
As above, without loss of generality Ii = I0. We can find a conver-
gent I ⊆ Mδ of cardinality > cf(δ) + κ (recall cf(δ) < λ!) such
that tpL∞,κ[K](a,M0,Mδ+1) = Avκ(I,Mδ). So for some i(∗) <
δ, |I ∩ Mi(∗)| > κ so without loss of generality (by equivalence)
I ⊆Mi(∗). We finish as in (E)(f).

Axiom (E)(i):
Follows by II.2.16. �4.10

4.11 Exercise: Replace above Av<κ1
(I,M) by ∪{Aviζ(κ0)(I,M) :

ζ < (2κ0)+}.

§5 Homogeneous enough linear orders

5.1 Claim. Assume µ+ = θ1 = cf(θ1) < θ2 = cf(θ2) < λ.
1) Then there is a linear order I of cardinality λ such that: the
following equivalence relation E = E aut

I,µ on µI has ≤ 2µ equivalence
classes, where
η1E η2 iff there is an automorphism of I mapping η1 to η2.

2) Moreover if I ′ ⊆ I has cardinality < θ2 and n < ω then the follow-
ing equivalence relation E on nI has ≤ µ+ |I ′| equivalence classes:
s̄E t̄ iff there is an automorphism h of I over I ′ mapping s̄ to t̄.
3) Moreover, there is Ψ proper for K lin

τ∗

2
(i.e. Ψ ∈ Υlin

ℵ0
[2], see Def-

initions 0.11(5) and 0.14(9)) with τ(Ψ) countable such that I =
EM{<}(I

lin
θ2,λ×θ2

,Φ) where I lin
θ2,ζ = (ζ, <, P0, P1), Pℓ = {α < ζ:(cf(α) <

θ2) ≡ (ℓ = 0)}.
4) If I∗0 ⊆ I has cardinality < θ2 then for some I∗1 ⊆ I of cardinality
≤ µ+ + |I∗0 | for every J ⊆ I of cardinality ≤ µ there is an automor-
phism of I over I∗0 mapping J into I∗1 .
5) If I∗1 , I

∗
2 ⊆ I lin

µ,λ×µ+ has cardinality ≤ µ and h is an isomorphism

from I∗1 onto I∗2 then there is an automorphism ĥ of the linear or-
der I = EM{<}(I

lin
θ,λ,Ψ) extending the natural isomorphism ȟ from

EM{<}(I
∗
1 ,Ψ) onto EM{<}(I

∗
2 ,Ψ).

Remark. 1) Of course, if λ = λ<θ2 and I is a dense linear order of
cardinality λ which is θ-strongly saturated (hence θ-homogeneous)
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then the demand in 5.1(1) is satisfied (and in part (2) of 5.1 the
number (of E equivalence classes) is ≤ 2χ for every χ ∈ [ℵ0, θ2)).

Also if λ =
∑

i<δ

λi, δ < θ2 and i < δ ⇒ λ<θ2

i = λ we have such order.

2) Laver [Lv71, §2] deals with related linear orders but for his aims
I1, I2 are equivalent if each is embeddable into the other; see more in
[Sh:e, AP,§2]. For a cardinal ∂ and linear order I let ΘI,∂ = {cf(J):
for some <I -decreasing sequence 〈ti : i < ∂〉 we have J = I ↾ {t ∈
I : t <I ti for every i < ∂}}. So if ∂ ≤ µ then (µI)/Eaut

I,µ has

≥ |ΘI,∂ |. So we have to be careful to make ΘI,∂ small. We choose a
very concrete construction which leads quickly to defining I and the
checking is straight so we thought it would be easy but a posteriori
the checking is lengthy; [Sh:e, AP,§2] is an anti-thetical approach.
3) We can replace θ1 = µ+ by θ1 = cf(θ1) > ℵ0 and “of cardinality
≤ µ” by “of cardinality < θ1”.
4) In 2.8(1), 2.11(2) we use parts (1),(1)+(4) respectively. Also we
use 5.1 in the proof of 7.8.
5) The case 2µ ≥ λ in 5.1(1) says nothing, in fact if 2µ ≥ λ then
2µ = λµ = (µM)/E aut

I,µ for any model M of cardinality ≤ 2µ but ≥ 2,
for any vocabulary τM .
6) Claim 5.1(1),(2) holds also if we replace µ by χ ∈ [µ, θ2).

Proof. 1) Fix an ordinal ζ, λ ≤ ζ < λ+ such that cf(ζ) = θ2, e.g.,
ζ = λ× θ2 (almost always cf(ζ) ≥ θ2 suffice).

Let I1 be the following linear order, its set of elements is {(ℓ, α) :
ℓ ∈ {−2,−1, 1, 2}, α < ζ + ω} ordered by (ℓ1, α1) <I1 (ℓ2, α2) iff
ℓ1 < ℓ2 or ℓ1 = ℓ2 ∈ {−1, 2}∧α1 < α2 or ℓ1 = ℓ2 ∈ {−2, 1}∧α1 > α2.

For t ∈ I1 let t = (ℓt, αt).
Let I∗2 be the set {η : η is a finite sequence of members of I1}

ordered by η1 <I2 η2 iff (∃n)(n < ℓg(η1) ∧ n < ℓg(η2) ∧ η1 ↾ n =
η1 ↾ n & η1(n) <I1 η2(n)) or η1 ⊳ η2 ∧ ℓη2(ℓg(η1)) ∈ {1, 2} or
η2 ⊳ η1 ∧ ℓ

η1(ℓg(η2)) ∈ {−2,−1}.
Let I2 be I∗2 restricted to the set of η ∈ I∗2 satisfying ⊛ where

⊛ for no n < ω do we have:

(a) ℓg(η) > n+ 1

(b) αη(n) is a limit ordinal of cofinality ≥ θ1
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(c) αη(n+1) ≥ ζ

(d) ℓη(n) ∈ {−1, 2}, ℓη(n+1) = −2 or ℓη(n) ∈ {−2, 1},
ℓη(n+1) = 2.

Let M0 be the following ordered field:

(∗)1 (a) M0 as a field, is Q(at : t ∈ I2), the field of rational functions
with {at : t ∈ I2} algebraically independent

(b) the order of M0 is determined by

(α) if t ∈ I2, n < ω then M0 |= n < at

(β) if s <I2 t and n < ω then M0 |= “(as)
n < at”.

(c) let M be the real3 (algebraic) closure of M0 (i.e. the elements
algebraic over M0 in the closure by adding elements realizing
any Dedekind cut of M0).

Now we shall prove that I, which is M as a linear order, is as re-
quested.

⊠1 each of I1, I
∗
2 and I2 is anti-isomorphic to itself.

[Why? Let g : I1 → I1 be g(t) = (−ℓt, αt), clearly it is an anti-
isomorphism of I1. Let ĝ : I∗2 → I∗2 be defined by ĝ(η) = 〈g(η(m)) :
m < ℓg(η)〉, it is an anti-isomorphism of I∗2 . Lastly ĝ maps I2 onto
itself, in particular by the character of clause (d) of ⊛, i.e. the two
cases are interchanged by ĝ]

⊠2 (a) I1, I
∗
2 , I2 have cofinality ℵ0.

(b) if t ∈ I2 then I2,<t := I2 ↾ {s : s <I2 t} has cofinality
ℵ0.

[Why? For clause (a), {(2, λ+n) : n < ω} is a cofinal subset of I1 of
order type ω and {< t >: t ∈ I1} is a cofinal subset of I∗2 and of I2
of order type being the same as I1. For clause (b) for η ∈ I2 the set
{ηˆ〈(−1, λ+ n)〉 : n < ω} is a cofinal subset of I2,<η of order type ω
by ⊡ below.]

3in fact, we could just use M0
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Now

⊡ if η satisfies ⊛ and ℓ ∈ {1,−1} then also ηˆ〈(ℓ, α)〉 satisfies
⊛ for any α < λ+ ω.

[Why? By clause (d) of ⊛ as the only value of n there which is
not obvious is n = ℓg(η) − 1, but to be problematic we should have
ℓ(ηˆ<(ℓ,α)>)(n+1) ∈ {−2, 2} whereas ℓ = −1.]

⊠3 if ∂ = cf(∂) so ∂ is 0, 1 or an infinite regular cardinal and
η̄ = 〈ηi : i < ∂〉 is a <I2 -decreasing sequence and we let
Jη̄ = {s ∈ I2 : s <I2 ηi for every i < ∂} then (clearly exactly
one of the following clauses applies)

(a) if Jη̄ = ∅ then ∂ = ℵ0

(b) if cf(Jη̄) = 1 then ∂ = ℵ0

(c) if cf(Jη̄) = ℵ0 then ∂ < θ1

(d) if ℵ1 ≤ cf(Jη̄) < θ1 then ∂ = ℵ0 and for some ℓ ∈
{−1, 2}, ν ∈ I2 and ordinal δ < ζ of cofinality cf(Jη̄)
the set 〈νˆ〈(ℓ, α)〉 : α < δ〉 is an unbounded subset of
Jη̄

(e) if θ1 ≤ cf(Jη̄) then ∂ ≥ θ1 and moreover ∂ = θ2 ∨
cf(Jη̄) = θ2.

[Why does ⊠3 hold? The proof is split into cases and finishing a case
we can then assume it does not occur.

Clearly we can replace η̄ by 〈ηi : i ∈ u〉 for any unbounded subset
u of ∂ and by 〈νi : i ∈ u〉 if ηζ2i+1

≤I2 νi ≤I2 ηζ2i
and 〈ζi : i < ∂〉 an

increasing sequence of ordinals < ∂. We shall use this freely.

Case 0: ∂ = 0 or ∂ = 1.
By ⊠2 clearly clause (c) of ⊠3 holds.

Case 1: ∂ = ℵ0 and there is ν ∈ ω(I1) such that (∀n < ω)(∃i <
∂)(ηi ↾ n ⊳ ν).

Let ni = ℓg(ηi ∩ ν), it is impossible that {i : ni = k} is infinite
for some k, so without loss of generality 〈ni : i < ω〉 is an increasing
sequence and n0 > 0.
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For every i < ω we have ν ↾ (ni +1) E ηi+1 and ηi+1 <I2 ηi, so by
the definition of<I2 also ν ↾ (ni+1) <I2 ηi, and we choose βni

< ζ+ω
so that (−2, βni

) <I1 ν(ni) hence letting ρi = ν ↾ niˆ〈(−2, βni
)〉 we

have ρi ∈ I2. This can be done, e.g. because we can choose βni
such

that βni
= αν(ni) + 1 if ℓν(ni) = −2 and βni

= 0 otherwise.
For every i, j < ω we have ρi <I2 ρi+1 <I2 ηi+1 <I2 ηi, so if

i ≤ j then ρi <I2 ρj <I2< ηj , and if i > j then ρi <I2 ηi <I2 ηj , so
ρi ∈ Jη̄.

Now 〈ρi : i < ω〉 is <I2 -increasing also it is cofinal in Jη̄, for if
ρ ∈ Jη̄ let n = ℓg(ρ ∩ ν), so for i < ω such that ni ≤ n < ni+1 we
have ρ <I2 ηi+1 so ρ(n) <I1 ηi+1(n) = ρi+1(n) and as ρ ↾ n = ν ↾

n = ρi+1 ↾ n we have ρ <I2 ρi+1.
As 〈ρi : i < ω〉 is of order type ω clearly cf(Jη̄) = ℵ0 = ∂ hence

clause (c) of ⊠3 applies, and we are done.
So from now on assume that case 1 fails.
As ℓg(ηi) < ω and as not Case 1 without loss of generality for

some n, we have i < ∂ ⇒ ℓg(ηi) = n. Similarly without loss of
generality for some m and ν ∈ I2 we have i < ∂ ⇒ ηi ↾ m = ν
and 〈ηi(m) : i < ∂〉 with no repetitions so m < n. Without loss
of generality i < ∂ ⇒ ℓηi(m) = ℓ∗ and so 〈αηi(m) : i < ∂〉 is with
no repetitions; and without loss of generality is monotonic hence, as
∂ ≥ ℵ0 is an increasing sequence of ordinals. As η̄ is <I2 -decreasing
necessarily ℓ∗ ∈ {−2, 1} and let δ = ∪{αηi(m) : i < ∂}, so clearly
cf(δ) = ∂ and δ is a limit ordinal ≤ ζ + ω. Now those ℓ∗, δ will be
used till the end of the proof of ⊠3. So for the rest of the proof we
are assuming

⊙ (a) i < ∂ ⇒ ηi ↾ m = ν

(b) 〈ηi(m) : i < ∂〉 is (strictly) increasing with limit δ

(c) ℓηi(m) = ℓ∗ ∈ {−2, 1}

(d) cf(δ) = ∂, δ ≤ ζ + ω.

Also note by ⊛ that νˆ 〈(ℓ∗, δ)〉 /∈ I2 ⇒ δ ∈ {ζ + ω, ζ} and if δ =
ζ∧νˆ〈(ℓ∗, δ)〉 /∈ I2 then ℓg(ν) > 0 and the ordinal αν(ℓg(ν)−1) is limit
of cofinality ≥ θ1 (and more).

Case 2: Jη̄ = ∅.
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Clearly m = 0 ∧ ℓ∗ = −2 ∧ δ = ζ + ω hence ∂ = ℵ0 so clause (a)
of ⊠3 holds.

Case 3: ℓ∗ = 1 and νˆ〈(ℓ∗, δ)〉 /∈ I2.
As ℓ∗ = 1 clearly we cannot have δ = ζ by clause (d) of ⊛ so

δ = ζ + ω and recalling ∂ = cf(δ) we have ∂ = ℵ0. Now clearly Jη̄

has a last element, ν, so case (b) of ⊠3 applies.

Case 4: ℓ∗ = −2, ∂ = ℵ0 and νˆ〈(ℓ∗, δ)〉 /∈ I2.
Again δ = ζ + ω as ℵ0 = ∂ = cf(δ) and cf(ζ) = θ2 > µ ≥ ℵ0

making δ = ζ impossible; now ℓg(ν) > 0 (as we have discarded the
case Jη̄ = ∅, i.e. Case 2); and let k = ℓg(ν) − 1. Now we prove case
4 by splitting to several subcases.

Subcase 4A: ℓν(k) ∈ {−2, 1}.
Let ν1 = (ν ↾ k)ˆ〈(ℓν(k), αν(k) + 1)〉, note that ν1 ∈ I2 as ν ∈

I2 ∧ (αν(k) < ζ ≡ αν(k) + 1 < ζ) and (as ℓν(k) ∈ {−2, 1}) clearly
{ρ : ν1 E ρ ∈ I2} is a cofinal subset of Jη̄ even an end segment. Now
for n < ω we have ν1ˆ〈(2, ζ + n)〉 ∈ I∗2 and it satisfies ⊛. (Why? As
ν1 ∈ I2, only n = k may be problematic, but αν(k) + 1 = αν1(k) here
stands for αη(n) there hence clause (b) of ⊛ does not apply), so by
the definition of I2, clearly {ν1ˆ〈(2, ζ + n)〉 : n < ω} is ⊆ I2 and is a
cofinal subset of Jη̄ so ∂ = ℵ0 = cf(Jη̄) and clause (c) of ⊠3 holds.

Subcase 4B: ℓν(k) ∈ {−1, 2} and αν(k) is a successor ordinal.
Let ν1 = (ν ↾ k)ˆ〈(ℓν(k), αν(k) − 1)〉, of course ν1 ∈ I∗2 and as

ν ∈ I2 clearly ν1 ∈ I2 so the set {ρ : ν1 E ρ ∈ I2} is an end segment
of Jη̄ and has cofinality ℵ0 because n < ω ⇒ ν1ˆ〈(2, ζ + n)〉 ∈ I2.
(Why? It ∈ I∗2 and as ν1 ∈ I2 checking ⊛ only n = k may be
problematic, but (ℓν(k), 2) here stand for (ℓη(n), ℓη(n+1)) there but
presently ℓν(k) ∈ {−1, 2} contradicting clause (d) of ⊛). So clause
(c) of ⊠3.

Subcase 4C: ℓν(k) ∈ {−1, 2} and αν(k) = 0.
Then let ν1 = (ν ↾ k)ˆ〈(ℓν(k) − 1, 0)〉. Now ν1 ∈ I2 as ν ↾ k ∈ I2

and for n = k−1 clause (c) of ⊛ fails and ν1ˆ〈(2, ζ+n)〉 ∈ I2 because
of ν1 ∈ I2 and for n = k the failure of clause (b) of ⊛ so continue as
in Subcase 4B above.
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Lastly,
Subcase 4D: ℓν(k) ∈ {−1, 2} and αν(k) is a limit ordinal.

Then {(ν ↾ k)ˆ〈(ℓν(k), α)〉 : α < αν(k)} is ⊆ I2 and is an un-
bounded subset of Jη̄ hence cf(Jη̄) = cf(αν(k)). If cf(αν(k)) = ℵ0,

then clause (c) in ⊠3 holds, and if cf(αν(k)) ∈ [ℵ1, θ1) then necessarily
αν(k) 6= ζ so being a limit ordinal < ζ+ω clearly αν(k) < ζ so clause
(d) from ⊠3 holds. To finish this subcase note that cf(αν(k)) ≥ θ1 is
impossible.
[Why “impossible”? Clearly for large enough i < ∂ we have ηi(m) ≥
ζ (because δ = ζ +ω as said in the beginning of the case) and recall
ν ⊳ ηi ∈ I2. We now show that clauses (a)-(d) of ⊛ hold with ηi, k
here standing for η, n there. For clause (a) recall ℓg(ηi) ≥ ℓg(ν) + 1
and m = ℓg(ν) = k+1. Now ℓηi(k+1) = ℓηi(m) = ℓ∗ = −2 as ℓ∗ = −2
is part of the case, ℓηi(k) = ℓν(k) ∈ {−1, 2} in this subcase, so clause
(d) of ⊛ holds. Also αηi(k+1) = αηi(m) ≥ ζ as said above so clause
(c) of ⊛ holds and cf(αηi(k)) = cf(αν(k)) ≥ θ1 (as we are trying
to prove “impossible”), so clause (b) of ⊛ holds. Together we have
proved (a)-(d) of ⊛. But ηi ∈ I2, contradiction.]

Now subcases 4A,4B,4C,4D cover all the possibilities hence we are
done with case 4.

Case 5: ℓ∗ = −2, ∂ > ℵ0 and νˆ〈(ℓ∗, δ)〉 /∈ I2.

Recalling δ is the limit of the increasing sequence 〈αηi(m) : i <
∂〉 hence cf(δ) = ∂ > ℵ0 and νˆ〈(−2, δ)〉 /∈ I2, necessarily δ = ζ
so ∂ = θ2. As νˆ〈(−2, δ)〉 /∈ I2 necessarily clauses (a) - (d) of ⊛

hold for some n and as ν ∈ I2, clearly n = ℓg(ν) − 1 (see clause
(a) of ⊛) so we have ℓg(ν) > 0, and letting k = ℓg(ν) − 1, by
clause (d) of ⊛ the ℓη(n+1) there stands for ℓ∗ = −2 here so we
have ℓν(k) ∈ {−1, 2} and by clause (b) of ⊛ we have cf(αν(k)) ≥ θ1.
Hence {(ν ↾ k)ˆ〈(ℓν(k), β)〉 : β < αν(k)} is cofinal in Jη̄ and its

cofinality is cf(αν(k)) as (ν ↾ k)ˆ〈(ℓν(k), β)〉 increase (by ≤I2) with β
as ℓν(k) ∈ {−1, 2}. But cf(αν(k)) ≥ θ1 and ∂ = θ2 (see first sentence
of the present case), so clause (e) of ⊠3 holds.

Case 6: νˆ〈(ℓ∗, δ)〉 ∈ I2.

Subcase 6A: νˆ〈(ℓ∗, δ), (2, ζ)〉 ∈ I2.
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Note that for m = ℓg(ν) and the pair (νˆ〈(ℓ∗, δ), (2, ζ)〉, m) stand-
ing for (η, n) in ⊛, clauses (a),(c),(d) of ⊛ hold (recall ℓ∗ ∈ {−2, 1},
see the discussion after case 1) so necessarily clause (b) of ⊛ fails
hence cf(δ) < θ1 but ∂ = cf(δ) so ∂ < θ1. Now as νˆ〈(ℓ∗, δ), (2, ζ)〉 ∈
I2 clearly if ℓ < ω, then νˆ〈(ℓ∗, δ), (2, ζ + ℓ)〉 belongs to I2 hence
{νˆ〈(ℓ∗, δ), (2, ζ + ℓ)〉 : ℓ < ω} is a cofinal subset of Jη̄ by the choice
of I2 hence cf(Jη̄) = ℵ0 so clause (c) of ⊠3 applies.

Subcase 6B: νˆ〈(ℓ∗, δ), (2, ζ)〉 /∈ I2.
As νˆ〈(ℓ∗, δ)〉 ∈ I2, necessarily clauses (a)-(d) of ⊛ hold with

(νˆ〈(ℓ∗, δ), (2, ζ)〉, m) here standing for (η, n) there, recalling m =
ℓg(ν) so by clause (b) of ⊛ we know that cf(δ) ≥ θ1 but ∂ = cf(δ)
hence ∂ ≥ θ1. Also {νˆ〈(ℓ∗, δ), (2, α)〉 : α < ζ} is a subset of I2 and
cofinal in Jη̄ and is increasing with α so cf(Jη̄) = θ2 so clause (e) of
⊠3 applies.

As the two subcases 6A,6B are complimentary case 6 is done.

Finishing the proof of ⊠3:
It is easy to check that our cases cover all the possibilities (as

after discarding cases 0,1, if not case (6) then νˆ〈(ℓ∗, δ)〉 /∈ I2, as not
case (3), ℓ∗ 6= 1 but (see clause ⊙(c) before case 2), ℓ∗ ∈ {−2, 1}
so necessarily ℓ∗ = −2, so case (4),(5) cover the rest). Together we
have proved ⊠3.]

⊠4 recall ℵ0 ≤ µ < θ1 < θ2; if X ⊆ I2, |X | < θ2 then we can find
Y such that X ⊆ Y ⊆ I2, |Y | = µ + |X |, Y is unbounded in
I2 from below and from above and for every ν ∈ I2\Y the
following linear orders have cofinality ℵ0:

(a) J2
Y,ν = I2 ↾ {η ∈ I2\Y : (∀ρ ∈ Y )(ρ <I2 ν ≡ ρ <I2 η)}

(b) the inverse of J2
Y,ν

(c) J−
Y,ν = I2 ↾ {η ∈ I2 : (∀ρ ∈ J2

Y,ν)(η <I2 ρ)}

(d) the inverse of J+
Y,ν := I2 ↾ {η ∈ I2 : (∀ρ ∈ J2

Y,ν)(ρ <I2

η)}.

[Why? Let U = {αη(ℓ) : η ∈ X and ℓ < ℓg(η)}.
We choose Wn by induction on n < ω such that
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⊡1 (a) dU ⊆Wn ⊆ ζ + ω

(b) Wn has cardinality µ+ |U | = µ+ |X | and m < n ⇒ Wm ⊆
Wn

(c) µ ⊆W0 and ζ + n ∈W0 for n < ω

(d) α ∈Wn ⇒ α+ 1 ∈Wn+1

(e) α+ 1 ∈ Wn ⇒ α ∈Wn+1

(f) if δ ∈ Wn is a limit ordinal of cofinality < θ1 then δ =
sup(δ ∩Wn+1)

(g) if δ ∈Wn and cf(δ) ≥ θ1 (or just cf(δ) ≤ µ+ |X |) then
sup(δ ∩Wn) + 1 ∈Wn+1.

This is straight. Let W = ∪{Wn : n < ω}, so

⊡2 U ⊆W and |W | = µ+ |X | and W satisfies

(a) W ⊆ ζ + ω

(b) |W | < θ2

(c) 0 ∈W and {ζ +m : m < ω} ⊆W

(d) α ∈W ⇔ α+ 1 ∈W

(e) if δ ∈W and ℵ0 < cf(δ) ≤ µ then δ = sup(W ∩ δ)

(f) if δ ∈ W and cf(δ) ≥ θ1 or cf(δ) = ℵ0 then cf(otp(W ∩
δ))) = ℵ0.

Let Y = {η ∈ I2 : αη(ℓ) ∈ W for every ℓ < ℓg(η)}. Clearly X ⊆ Y
and |Y | = ℵ0 + |W | = µ + |U | < θ2. It suffices to check that Y is
as required in ⊠4. From now on we shall use only the choice of Y
and clauses (a)-(f) of ⊡2. By ⊡2(c) and the choice of Y clearly Y is
unbounded in I2 from above and from below.

So let ν ∈ I2\Y , as ν ↾ 0 ∈ Y there is n < ℓg(ν) such that
ν ↾ n ∈ Y, ν ↾ (n + 1) /∈ Y , so αν(n) < ζ + ω, and αν(n) /∈ W , but
by clause (c) of ⊡2 we have {ζ +m : m < ω} ⊆ W hence αν(n) < ζ
and so α1 := Min(W\αν(n)) is well defined, is ≤ ζ and > αν(n). As
clearly 0 ∈ W,β ∈ W ⇔ β + 1 ∈ W by the choice of W , obviously
α1 is a limit ordinal. By clause (e) of ⊡2 clearly α1 is of cofinality
ℵ0 or ≥ θ1 = µ+. So clearly α0 := sup(W ∩αν(n)) = sup(W ∩α1) =
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min{α : W ∩α = W ∩αν(n)} is a limit ordinal ≤ αν(n) and α0 /∈W
so cf(α0) ≤ |W | < θ2 but by the assumption on W , (see clause (f) of
⊡2) we have cf(α0) = ℵ0. So (ν ↾ n)ˆ〈(ℓν(n), α0)〉 ∈ J2

Y,ν ; moreover

⊡3 ρ ∈ J2
Y,ν iff ρ ∈ I2 satisfies one of the following:

(a) (i) ν ↾ n = ρ ↾ n, and ℓν(n) = ℓρ(n),

(ii) αρ(n) ∈ [α0, α1)

(b) (i) ν ↾ n = ρ ↾ n, and ℓν(n) = ℓρ(n),

(ii) αρ(n) = α1 and αρ(n+1) ∈ [sup(W ∩ ζ), ζ)

(iii) (ℓρ(n+1), ℓρ(n)) = (ℓρ(n1), ℓν(n)) ∈

{(2,−2), (2, 1), (−2,−1), (−2, 2)}

(c) (i) α1 = ζ and n > θ and (ν ↾ n)ˆ(ℓν(n), α1) /∈ I2

(ii) (ℓν(n), ℓν(n−1)) ∈ {(2,−2), (2, 1), (−2, 2), (−2,−1)}

(iii) cf(ν(n)) ≥ θ1 and ν(n) > sup(W ∩ ν(n))

(iv) ρ ↾ (n− 1) = ν ↾ (n− 1), ℓρ(n−1) = ℓν(n−1)

(v) αρ(n−1) ∈ [sup(ν(n− 1) ∩W ), ν(n− 1)).

[Why? First note that if ρ ∈ J2
Y,ν and ρ ↾ k = ν ↾ k, ρ(k) 6= ν(k),

and k ≤ n then necessarily k = n ∧ ℓρ(k) = ℓν(k). We now proceed
to check “if”. Let f : {−2,−1, 1, 2} → {2,−2} so that f−1({2}) =
{−2, 1} and f−1({−2}) = {−1, 2}. Case (a) is obvious. In case
(b) in order for η ∈ Y to separate between ν and ρ it is necessary
that η ↾ (n+ 1) = ρ ↾ (n+ 1), ℓη(n+1) = ℓρ(n+1) = f(ℓρ(n)) and that
αη(n+1) ≥ ζ, but then η /∈ I2. In case (c) in order to separate between
ρ and ν by η ∈ Y there are two possibilities. Either η ↾ n = ν ↾ n and
then ℓη(n) = ℓν(n) = f(ℓν(n−1)) (recall that ν ↾ nˆ〈(ℓν(n), α1)〉 /∈ I2),
and αη(n) ≥ ζ, but then also η /∈ I2. The other possibility is that
η ↾ (n− 1) = ν ↾ (n− 1), ℓη(n−1) = ℓν(n−1) and α = αη(n−1) is such
that α ∈ W and αρ(n−1) < α < αν(n−1) which is also impossible by
the choice of αρ(n−1). Showing that these are the only cases (the
“only if” direction) is similar and is actually done below.]

Now we proceed to check that clauses of ⊠4 hold.
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Clause (a):

First assume ℓν(n) ∈ {−2, 1}, and let J = {ν ↾ nˆ〈(ℓν(n), α0), (2, ζ+
m) : m < ω}. Now J ⊆ I2 [why? clearly if ρ ∈ J then ρ ↾ (n+1) ∈ I2
so we only need to check ⊛ for n, recall that cf(α0) = ℵ0 < θ1,
hence clause (b) of ⊛ fails]. Now by clause (a) of ⊡3 we have that
J ⊆ J2

Y,ν , and we claim that it is also cofinal in it. [Why? Note

that as ℓν(n) ∈ {−2, 1} then ν ↾ nˆ〈(ℓν(n), α0) <I2 ν ↾ (n + 1), and
if ρ ∈ J2

Y,ν is as in clauses (a) or (b) of ⊡3 then for every m large

enough ρ <I2 ν ↾ nˆ〈(ℓν(n), α0), (2, ζ + m)〉. If ρ ∈ J2
Y,ν is as in

clause (c) of ⊡3 then ℓν(n) ∈ {−2, 2} by (ii) there, and as in this case
ℓν(n) ∈ {−2, 1}, necessarily ℓν(n) = −2 and so by (ii) of (c) of ⊡3 we
have ℓν(n−1) ∈ {−1, 2}, but then ρ <I2 ν and so it is below every
element in J .]

Second, assume ℓν(n) ∈ {−1, 2} and ν ↾ nˆ〈(ℓν(n), α1)〉 ∈ I2;
let δ∗ = sup(W ∩ ζ), so as above δ∗ /∈ W , and has cofinality
ℵ0 (which is less than θ1), recall also that cf(α1) ≥ θ1. So (for
ℓ ∈ {−2,−1, 1, 2}) by ⊛ we have (ν ↾ n)ˆ〈(ℓν(n), α1), (ℓ, β)〉 ∈ I2 iff
β < ζ ∧ ℓ ∈ {−2,−1, 1, 2} or (ζ ≤ β < ζ + ω ∧ ℓ 6= −2). Hence
we have (ν ↾ n)ˆ〈(ℓν(n), α1), (−2, β)) ∈ I2 ⇔ β < ζ. Also (ν ↾

n)ˆ〈(ℓν(n), α1), (−2, β)〉 ∈ Y ⇔ β ∈ W , and as ν(n) < α1 ∧ ℓν(n) ∈
{−1, 2} clearly ν <I2 (ν ↾ n)ˆ〈(ℓν(n), α1), (−2, β)〉. Easily {(ν ↾

n)ˆ〈(ℓν(n), α1), (−2, ε)〉 : ε ∈W ∩ζ)} is a subset of {η ∈ Y : ν <I2 η}
unbounded from below in it.

So {(ν ↾ n)ˆ〈(ℓν(n), α1), (−2, δ∗), (2, α)〉 : ζ < α < ζ + ω} is
included in I2 (recalling clause (b) of ⊛ as cf(δ∗) = ℵ0) and moreover
is a cofinal subset of J2

Y,ν of order type ω, so cf(J2
Y,ν) = ℵ0 as required.

Third, assume ρν(n) ∈ {−1, 2} and (ν ↾ n)ˆ〈(ℓν(n), α1)〉 ∈ I2 and
cf(α1) < θ1, equivalently cf(α1) = ℵ0 by clause (e) of ⊡2. In this
case {(ν ↾ n)ˆ〈(ℓν(n), α)(−2, β)〉 : ζ ≤ β < ζ + ω} is included in I2
(recalling clause (b) of ⊛) and in Y , hence recalling ⊡3(a) the set
{(ν ↾ n)ˆ〈(ℓν(n), α)〉 : α ∈ [α0, α1)} is a cofinal subset of J2

Y,ν hence

its cofinality is cf(α1) = ℵ0 as required.

Fourth, we are left with the case that ℓν(n) ∈ {−1, 2} and (ν ↾

n)ˆ〈(ℓν(n), α1)〉 /∈ I2 so necessarily n > 0 and clauses (a)-(d) of ⊛

hold for it for n−1; then by clause (c) of ⊛ (recalling α1 ≤ ζ as shown
before ⊡3) necessarily α1 = ζ. Clearly k := n− 1 ≥ 0 and as clause
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(d) of ⊛ holds and it says there “ℓη(n+1) ∈ {2,−2}” which means here
ℓν(n) ∈ {2,−2} but we are assuming presently ℓν(n) ∈ {−1, 2} hence
ℓν(n) = ℓν(k+1) = 2 so using clause (d) of ⊛, see above, it follows
that ℓν(k) ∈ {−2, 1} and by clause (b) of ⊛ we have cf(αν(k)) ≥ θ1.
Let δ∗ = sup(W ∩αν(k)). Now if δ∗ < αν(k) then by clause (f) of ⊡2

we know cf(δ∗) = ℵ0 and {(ν ↾ k)ˆ〈(ℓν(k), δ∗)(2, ζ +m)〉 : m < ω} is
included in I2 (as ν ∈ I2 and δ∗ ≤ αν(k) we have to check in ⊛ only
with k + 1 here standing for n there, but cf(δ∗) = ℵ0 so clause (b)
there fails) and so recalling ⊡3(c) this set is a cofinal subset of J2

Y,ν

exemplifying that its cofinality is ℵ0.

Lastly, if δ∗ = αν(k) then 〈(ν ↾ n)ˆ〈(ℓν(n), α)〉 : α ∈ W ∩ ζ〉 is
<I2 -increasing with α, all members in Y , and in J2

Y,ν , cofinal in it

and has order type otp(W ∩ ζ) which has cofinality ℵ0 so also J2
Y,ν

has cofinality ℵ0 as required.

Clause (b): What about the cofinality of the inverse? Recall that
I2 is isomorphic to its inverse by the mapping (ℓ, β) 7→ (−ℓ, β), but
this isomorphism maps Y onto itself hence it maps J2

Y,ν onto J2
Y,ν′

for some ν′ ∈ I2\Y , but clause (a) was proved also for ν′, so this
follows.

Clause (c): As Y is unbounded from below in I2 (containing {〈(−2, ζ+
n)〉 : n < ω}) it follows that J−

Y,ν is non-empty, hence cf(J−
Y,ν) 6= 0,

but what is cf(J−
Y,ν)?

First, if ℓν(n) ∈ {−1, 2} then {(ν ↾ n)ˆ〈(ℓν(n), α)〉 : α < α0} is an
unbounded subset of J−

Y,ν of order type α0 hence cf(J−
Y,ν) = cf(α0) =

ℵ0 (see the assumption on W and the choice of α0).

Second, if ℓν(n) = {−2, 1} and (ν ↾ n)ˆ〈(ℓν(n), α1)〉 ∈ I2 and
cf(α1) ≥ θ1 then as in the proof of clause (a) we have
{(ν ↾ n)ˆ〈(ℓν(n), α1), (2, ζ + m)〉 /∈ I2 for m < ω and again letting
δ∗ = sup(W ∩ ζ) we have {(ν ↾ n)ˆ〈(ℓν(n), α1), (2, β)〉 : β ∈W ∩ ζ} is
included in I2 and in J−

Y,ν and even is an unbounded subset of J−
Y,ν

of order type otp(W ∩ δ∗) which has the same cofinality as δ∗ which
is ℵ0.

Third, if ℓν(n) ∈ {−2, 1} and (ν ↾ n)ˆ〈(ℓν(n), α1)〉 ∈ I2 and
cf(α1) < θ1, equivalently cf(α1) = ℵ0, then {(ν ↾ n)ˆ〈(ℓν(n), α1), (2, ζ+
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m)〉 : m < ω} is a subset of I2 (as cf(α1) = ℵ0) is included in J−
Y,ν ,

unbounded in it and has cofinality ℵ0, so we are done.
Fourth and lastly, if ℓν(n) ∈ {−2, 1} and (ν ↾ n)ˆ〈(ℓν(n), α1)〉 /∈ I2

then as in the proof of clause (a) we have α1 = ζ and again letting
δ∗ = sup(W ∩ ζ) we have cf(δ∗) = ℵ0 and (ν ↾ n)ˆ〈(ℓν(n), δ∗)〉 ∈ I2
and {(ν ↾ n)ˆ〈(ℓν(n), δ∗), (2, ζ+m)〉 : m < ω} is a subset of I2, more-
over a subset of J−

Y,ν unbounded in it and (ν ↾ n)ˆ〈(ℓν(n), δ∗), (2, ζ +

m)〉 is <I2–increasing with m. So indeed J−
Y,ν has cofinality ℵ0.

Clause (d): As in clause (b) we use the anti-isomorphism.
So ⊠4 holds.]

⊠5 if I ′ ⊆ I2 then the number of cuts of I ′ induced by members
of I2\I

′, that is {{s ∈ I ′ : s <I2 t} : t ∈ I2\I
′} is ≤ |I ′| + 1.

[Why? Let U := {αη(ℓ) : ℓ < ℓg(η) and η ∈ I ′}, it belongs
to [ζ + ω]≤µ. Now (by inspection) η1, η2 ∈ I2\I

′ realizes the
same cut of I ′ when:

(a) ℓg(η1) = ℓg(η2)

(b) ℓη1(n) = ℓη2(n) for n < ℓg(η1)

(c) αη1(n) ∈ U ⇔ αη2(n) ∈ U ⇒ αη1(n) = αη2(n) for n < ω

(d) β < αη1(n) ≡ β < αη2(n) for β ∈ U and n < ω

[Why? Now clauses (a)-(d) define an equivalence relation on I2\I
′

which refines “inducing the same cut” and has ≤ |U |+ℵ0 = |I ′|+ℵ0

equivalence classes. As the case I ′ is finite is trivial, we are done
proving ⊠5.]

⊠6 if ∂ is regular uncountable, n∗ < ω and tε,ℓ ∈ I2 for ε <
∂, ℓ < n∗ and tε,0 <I2 . . . <I2 tε,n∗−1 for ε < ∂ then for
some unbounded (and even stationary) set S ⊆ ∂,m ≤ n∗

and 0 = k0 < k1 < . . . < km = n∗ stipulating tε,km
= ∞ and

letting ε(∗) = Min(S) we have:

(a) for each i < m:

(α) if ε < ξ are from S and ℓ1, ℓ2 ∈ [ki, ki+1) then
tε,ℓ1 <I2 tξ,ℓ2 or
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(β) if ε < ξ are from S and ℓ1, ℓ2 ∈ [ki, ki+1) then
tξ,ℓ2 <I2 tε,ℓ1 or

(γ) ki+1 = ki + 1 and for every ε ∈ S we have tε,ki
=

tε(∗),ki

(b) there is a sequence 〈s−i , s
+
i : i < m〉 such that

(α) i < m⇒ s−i <I2 s
+
i

(β) if i < m−1 then s+i < s−i+1 except possibly when
〈tε,ki

: ε < ∂〉 is <I2 -decreasing and there is no t ∈ I2
such that ε < ∂ ⇒ tε,ki

<I2 t <I2 tε,ki+1
, hence (by ⊠3)

we have ∂ ≥ θ2

(γ) for each i < m the set {tε,ℓ : ε ∈ S and ℓ ∈
[ki, ki+1)} is included in the interval (s−i , s

+
i )I2 .

[Why? Straight. For some stationary S1 ⊆ ∂ and 〈nk : k < n∗〉 we
have ε ∈ S1∧k < n∗ ⇒ ℓg(tε,k) = nk. Without loss of generality also

〈ℓtε,k(i) : i < nk〉 does not depend on ε ∈ S1. By
∑

k<n∗

nk application

of ∂ → (∂, ω)2, without loss of generality for each k < n∗ and i < nk

the sequence 〈αtε,k(i) : ε ∈ S1〉 is constant or increasing. Cleaning a
little more we are done.
So ⊠6 holds.]

Lastly, recall that we chose I to be (|M |, <M), where M was the real
closure of M0 and (see (∗)1), M0 the ordered field generated over Q
by {at : t ∈ I2} as described in (∗)1 above and for every u ⊆ ζ let:

(∗)2(a) I1
u = {(ℓ, β) ∈ I1 : β ∈ u or β ∈ [ζ, ζ + ω)}

(b) I∗,2
u = {η ∈ I∗2 : αη(ℓ) ∈ I1

u for every ℓ < ℓg(η)}

(c) I2
u = {η ∈ I2 : αη(ℓ) ∈ I1

u for every ℓ < ℓg(η)}

(d) Iu = the real closure of Q(at : t ∈ I2
u) in M

(e) for t ∈ I2\I
2
u let

I2
u,t = I2 ↾ {s ∈ I2 : s /∈ I2

u and for every r ∈ I2
u we have

r <I2 t ≡ r <I2 s}

(f) for x ∈ I\Iu let Iu,x = I ↾ {y ∈ I : y /∈ Iu and (∀a ∈ Iu)(a <I

y ≡ a <I x)}
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(g) let Îu be the set Iu ∪ {Iu,a : a ∈ I\Iu} ordered by: x <Îu
y

iff
one of the following holds:

(α) x, y ∈ Iu and x <Iu
y

(β) x ∈ Iu, y = Iu,b and x <Iu
b

(γ) x = Iu,a, y ∈ Iu and a <Iu
y

(δ) x = Iu,a, y = Iu,b and a <Iu
b (can use it more!)

(note that by ⊠5, |u| ≤ µ⇒ |Îu| ≤ µ).

Now observe

(∗)3 for u ⊆ ζ, I2
u is unbounded in I2 from below and from above.

We define

(∗)4 we say4 that u is µ-reasonable if:

(a) u ⊆ ζ, |u| < θ2 and µ ⊆ u

(b) α ∈ u ≡ α+ 1 ∈ u for every α

(c) if δ ∈ u and ℵ0 ≤ cf(δ) ≤ µ then δ = sup(u ∩ δ)

(d) if δ ≤ ζ and cf(δ) > µ then cf(otp(δ ∩ u)) = ℵ0.

Now we note

(∗)5 if X ⊆ I has cardinality < θ2 and u∗ ⊆ ζ has cardinality
< θ2 then we can find a µ-reasonable u such that X ⊆ Iu
and u∗ ⊆ u and |u| = µ+ |X | + |u∗|.

[Why? By the proof of ⊠4.]

(∗)6 if u is µ-reasonable then Y := I2
u satisfies the conclusions of

⊠4.

4we may in clauses (e) + (c) replace µ by µ + |U |, no harm and it makes
(c)(β) of (∗)1, redundant
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[Why? By the proof of ⊠4, that is if u+ := u ∪ {ζ + n : n < ω} then
Y as defined in the proof there using u+ for W , is I2

u from (∗)2(c),
and it satisfies demands (a)-(f) from ⊡2 so the proof there applies.]

(∗)7 if u is µ-reasonable and x ∈ I\Iu then cf(Iu,x) ≤ ℵ0.

Why? The proof takes awhile. Toward contradiction assume ∂ =
cf(Iu,x) is > ℵ0 and let 〈bε : ε < ∂〉 be an increasing sequence of
members of Iu,x unbounded in it. So for each ε < ∂ there is a defin-
able function fε(x0, . . . , xn(ε)−1) where definable of course means in
the theory of real closed fields and tε,0 <I2 tε,1 <I2 . . . <I2 tε,n(ε)−1

from I2 such that M |= “bε = fε(atε,0
, . . . , atε,n(ε)−1

)” and n(ε) is

minimal. As Th(R) is countable and ℵ0 < ∂ = cf(∂), without loss of
generality ε < ∂ ⇒ fε = f∗ so ε < ∂ ⇒ n(ε) = n(∗).

Apply ⊠6 to 〈t̄ε = 〈tε,ℓ : ℓ < n(∗)〉 : ε < ∂〉 and get S ⊆ ∂
and 0 = k0 < k1 < . . . < km = n(∗) and 〈(s−i , s

+
i ) : i < m〉 and

ε(∗) = Min(S) as there. Without loss of generality the truth value
of “tε,ℓ ∈ I2

u” for ε ∈ S, depends just on ℓ. Let w1 = {i < m : (∀ε ∈
S)(tε,ki

= tε(∗),ki
)}, w2 = {ℓ < n(∗) : tε(∗),ℓ ∈ I2

u}; clearly for every
ℓ < n(∗) we have (∀ε ∈ S)(tε,ℓ = tε(∗),ℓ) ⇔ ℓ ∈ {ki : i ∈ w1} and
i ∈ w1 ⇒ ki + 1 = ki+1.

Let t∗ki
= tε,ki

for (ε < ∂ and i ∈ w1). Renaming without loss of
generality S = ∂ and ε(∗) = 0.

We have some free choice in choosing 〈bε : ε < ∂〉 (as long as it is
cofinal in Iu,x), so without loss of generality we choose it such that
n(∗) is minimal and then |w1| is maximal and then |w2| is maximal.

Now does the exceptional cae in (b)(β) of ⊠6 occurs? This is an
easier case and we delay it to the end.

As I2 and I2,<t for t ∈ I2 have cofinality ℵ0 (see ⊠2(a), (b)) and
⊠3 and this holds for the inverse of I2, too, while ∂ = cf(∂) > ℵ0

and we can replace 〈bε : ε < ∂〉 by 〈bn(∗)+ε : ε < ∂〉 we can find
t∂,ℓ (ℓ < n(∗)) such that

⊙ (a) t∂,0 <I2 t∂,1 <I2 . . . <I2 t∂,n(∗)−1

(b) if ε < ξ < ∂ and ℓ1, ℓ2 < n(∗) then (tε,ℓ1 <I2 t∂,ℓ2) ≡
(tε,ℓ1 <I2 tξ,ℓ2) and (t∂,ℓ1 <I2 tε,ℓ2) ≡ (tξ,ℓ1 < tε,ℓ2)

(c) if ℓ ∈ [ki, ki+1) then t∂,ℓ ∈ (s−i , s
+
i )I2 .
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Case 0: {0, . . . , m− 1} = w1.
This implies i < m ⇒ ki + 1 = ki+1 hence m = n hence ℓ <

n ⇒ tξ,ℓ = t∗ℓ and so contradicts “〈bε : ε < ∂〉 is increasing” (as it
becomes constant).

Case 1: [0, m)\w1 is not a singleton.
It cannot be empty by “not case 1”. Choose i(∗) ∈ {0, . . . , m −

1}\w1 and for ε, ξ < ∂ let t̄ε,ξ = 〈tε,ξ
ℓ : ℓ < n(∗)〉 be defined

by: tε,ξ
ℓ is tε,ℓ if ℓ ∈ [ki(∗), ki(∗)+1) and tξ,ℓ otherwise. Let bε,ξ =

f∗(atε,ξ
0
, . . . , atε,ξ

n(∗)−1
) ∈M .

Clearly

⊛0 for any ε1, ε2, ξ1, ξ2 ≤ ∂ the truth value of bε1,ξ1
< bε2,ξ2

de-
pend just on the inequalities which 〈ε1, ε2, ξ1, ξ2〉 satisfies and
even just on the inequalities which the tε1,ℓ, tε2,ℓ, tξ1,ℓ, tξ2,ℓ (ℓ <
n(∗)) satisfy.

[Why? Recall 〈〈tε,ℓ : ℓ < n(∗)〉 : ε ∈ S〉 is an indiscernible sequence
in the linear order I2 (for quantifier free formulas) and M has elim-
ination of quantifiers.]

⊛1

∧

ℓ=1,2

ε(0) < εℓ < ε(1) < ∂ ⇒ bε(0) <I bε1,ε2
<I bε(1).

[Why? By ⊛0 the desire statement, bε(0) <I bε1,ε2
<I bε(1) is equiv-

alent to bε(0) < bε1,ε1
< bε(1) which means bε(0) < bε1

< bε(1) which
holds.]

⊛2 b0,2 <I b1.

[Why? Otherwise b1 ≤I b0,2 hence ε ∈ (0, ∂) ⇒ bε <I b0,ε+1 <I bε+2

(by ⊛0 + ⊛1) so 〈b0,ε : ε ∈ (1, ∂)〉 is also an increasing sequence
unbounded in Iu,x contradiction to “w1 maximal”.]

⊛3 b0,2 < b1,2.

[Why? By ⊛0 + ⊛2 we have b0,4 < b1 and by ⊛1 we have b1 < b2,4

together b0,4 < b2,4 so by ⊛0 we have b0,2 < b1,2.]
But then 〈bε,∂ : ε < ∂〉 increases (by ⊛3 + ⊛0) and ε < ∂ ⇒

bε = bε,ε < bε+1,∂ < bε+2 (by ⊛1 and ⊛2 respectively) hence is an
unbounded subset of Iu,x contradiction to the maximality of |w1|.
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Case 2: m\w1 = {0, . . . , m− 1}\w1 is {i(∗)}.

Subcase 2A: For some i < m, i 6= i(∗) and j := ki /∈ w2.
Choose such i with |i− i(∗)| maximal. For any s let tε,ℓ,s be tε,ℓ

if ℓ 6= j and be s if ℓ = j.
Let I ′ = {s ∈ I2

u,tε(∗),j
: s, tε(∗),j realize the same cut of {tε,ℓ : ε <

∂, ℓ 6= j}}, note that kj+1 = kj +1. Recalling ⊠2(b), the cofinality of
I2,<tε(∗),j

is ℵ0 and also the cofinality of the inverse of I2,>tε(∗),j
is ℵ0

recalling the choice of 〈(s−ι , s
+
ι ) : ι < m〉 there is an open interval5

of I2 around tε(∗),j which is ⊆ I ′. Note that I ′ is dense in itself and
has neither first nor last member by ⊠2 + ⊠4(a), (b).

As f∗ is definable, by the choice of M0 and M and of I ′ ⊆ I2
u,tε(∗),j

we have: if ε < ∂ ∧ s ∈ I ′ then tε(∗),j and s realize the same cut of

I2
u ∪ {tε,ℓ : ε < ∂, j 6= ℓ} hence fM

∗ (. . . , atε,ℓ,s
, . . . )ℓ<n, bε realize the

same cut of Iu which means that f∗(. . . , atε,ℓ,s
, . . . )ℓ<n ∈ Iu,x hence

by the choice of 〈bε : ε < ∂〉 we have (∃ξ < ∂)(f∗(. . . , atε,ℓ,s
, . . . ) <

bξ).
So again by the definability (and indiscernibility)

⊛4 ε < ∂ ∧ s ∈ I ′ ⇒ fM
∗ (. . . , atε,ℓ,s

, . . . ) < bε+1.

As I ′ is dense in itself, what we say on the pair (s, tε(∗),j) when s ∈
I ′∧s <I2 tε(∗),j holds for the pair (tε(∗),j, s) when s ∈ I ′∧tε(∗),j <I s
so

⊛5 ε < ∂ ∧ s ∈ I ′ ⇒ bε < fM
∗ (. . . , atε+1,ℓ,s

, . . . )

(more fully let s1 <I2 tε(∗),j <I2 s2 and s1, s2 ∈ I ′ then the sequences
〈tε,ℓ : ℓ 6= j, ℓ < n(∗)〉ˆ〈s1〉ˆ〈tε+1,ℓ : ℓ 6= j, ℓ < n(∗)〉ˆ〈tε(∗),j〉 and
〈tε,ℓ : ℓ 6= j, ℓ < n(∗)〉ˆ〈tε(∗),j〉ˆ〈tε+1,ℓ : ℓ 6= j, ℓ < n(∗)〉ˆ〈s2〉 realizes
the same quantifier free type in I2, (recalling tε,j = tε(∗),j).

By ⊛4 + ⊛5 and indiscernibiity we can replace tε(∗),j by any
t′ ∈ I ′ which realizes the same cut as tε(∗),j of {tε,ℓ : ε < ∂, ℓ 6= j}.
But if j > i(∗) then {t∗j+1, . . . , t

∗
n(∗)−1} ⊆ I2

u by the choice of j,

and the set I ′′ = {t ∈ I2: if ε < ∂, ℓ 6= j then t 6= tε,ℓ and

tε,ℓ <I2 t ≡ tε,ℓ <I2 t∗j} include an initial segment of J+
I2

u,tε(∗),j
,

5if we allow +∞,−∞ as end points
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see ⊠4(d), i.e. (∗)6 so its inverse has cofinality ℵ0, say 〈s∗n : n < ω〉
exemplifies this, so n < ω ⇒ s∗n+1 <I2 s∗n. So for every ε < ∂

for some n < ω, fM
∗ (. . . , atε+1,ℓ,s∗

n
, . . . ) ∈ (bε, bε+1)I . So for some

n∗ < ω this holds for unboundedly many ε < ∂, contradictory to
“|w2| is maximal”. Similarly if j < i(∗).

Subcase 2B: For every ε < ∂ for some ξ ∈ (ε, ∂), the interval of I2
which is defined by tε,ki(∗)

, tξ,ki(∗)
is not disjoint to I2

u [so without

loss of generality has ≥ ki(∗)+1 − ki(∗) members of I2
u].

In this case as in case 1, without loss of generality {ki(∗), . . . , ki(∗)+1}
⊆ w2 so as |w2| is maximal this holds. So as not subcase 2A,
{tε,ℓ : ε < ∂, ℓ < n} ⊆ I2

u hence {bε : ε < ∂} ⊆ Iu, contradiction.

Subcase 2C: None of the above.
As not subcase(2B), without loss of generality {tε,ℓ : ε < ∂ and ℓ ∈

[ki(∗), ki(∗)+1)} ⊆ I2
u,tε(∗),ki(∗)

. Then as in subcase(2A) the sequence

〈tε,ki(∗)
: ε < ∂〉 is increasing/decreasing and is unbounded from

above/below in I2
u,tε(∗),ki(∗)

contradiction to (∗)6.

In more detail, so I ′ := I2
u,t0,ki(∗)

includes all {tε,ℓ : ε < ∂ and

ℓ ∈ [ki(∗), ki(∗)+1)}. Also I ′ and its inverse are of cofinality ℵ0 by
(∗)6 hence without loss of generality we can find (new) 〈t∂,ℓ : ℓ ∈
[ki(∗), ki(∗)+1)〉 such that t∂,ℓ <I2 t∂,ℓ+1, t∂,ℓ ∈ (s−i(∗), s

+
i(∗))I2 and ε <

∂ ⇒ tε,ℓ1 <I2 t∂,ℓ ≡ tε,ℓ1 < tε+1,ℓ2 and the convex hull in I2 of
{tζ,ℓ : ζ ≤ ∂ and ℓ ∈ [ki(∗), ki(∗)+1]} is disjoint to I2

u. Let t∂,ℓ = t∂,ℓ

for ℓ /∈ [ki(∗), ki(∗)+1], ℓ < m, b∂ = f∗(at∂,0
, . . . , at∂,n−1

).
Easily ε < ∂ ⇒ bε <I b∂ . As ε < ξ < ∂ ⇒ (bε, bξ)I2 ∩ u = ∅ easily

ε < ∂ ⇒ (bε, b∂)I2 ∩u = 0, contradiction to 〈bε : ε < ∂〉 being cofinal
in Iu,x.

To finish proving (∗)7, we have to consider the possibility that
applying ⊠6, the exceptional case in (b)(β) of ⊠6 occurs for some
i < m say for i(∗); see before ⊙.

Also without loss of generality as ∂ ≥ θ2 then without loss of
generality ℓ ∈ w2 ⇒ tε,ℓ = tε(∗),ℓ and for each ℓ < n(∗) we have

(∀ε, ζ < ∂)(∀s ∈ I2
u)(s <I2 tε,ℓ ≡ s <I2 tζ,ℓ).

Now we can define t̄ε,ξ = 〈tε,ξ
ℓ : ℓ < n(∗)〉 as in case 1 and prove

⊛0 − ⊛3 there.
Clearly all members of {tε,ℓ : ε < ∂, ℓ ∈ [ki(∗), ki(∗)+2)} realize the
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same cut of I2
u and we get easy contradiction.

As we can use only 〈tn(∗),ε : ε < ∂〉 and add to f∗ dummy vari-
ables, without loss of generality ki(∗)+1−ki(∗) = ki(∗)+2−ki(∗)+1. Let
J be {1,−1} × ∂ ordered by (ℓ1, ε1) <J (ℓ2, ε2) iff ℓ1 = 1 ∧ ℓ2 = −1
or ℓ1 = 1 = ℓ2 ∧ ε1 < ε2 or ℓ1 = −1 = ℓ2 ∧ ε1 > ε2.

For ι ∈ J let ι = (ℓι, ει) = (ℓ[ι], ε[ι]). For ζ < ∂ and ι1, ι2 ∈ J
we define t̄ζ,ι1,ι2 = 〈tζ,ι1,ι2,n : n < n(∗)〉 by tζ,ι1,ι2,n is tε[ι1],n if
n ∈ [ki(∗), ki(∗)+1), tε[ι2],n if n ∈ [ki(∗)+1, ki(∗)+2) and tζ,n otherwise.
Now letting bζ,ι1,ι2 := f∗(t̄ζ,ι1,ι2)

⊛6 all bζ,ι1,ι2 realize the ame cut of I2
u.

Now

⊛7 indiscernibility as in ⊛0 holds

⊛8 ¬(bζ,(1,ε),(1,ε+1) ≤I∗ bζ,(1,ε+2),(1+ε+3)).

[Why? Otherwise by indiscernibility, if ζ ∈ (6, ∂) then bζ,(1,ζ),(−1,3) <I

bζ,(−1,5),(−1,4). Hence 〈bζ,(−1,5),(−1,4) : ζ ∈ (6, ∂)〉 is monotonic in I∗,

all members realizing the fix cut of I2
u and is unbounded in it (by

the inequality above) so contradiction to maximality of |wj |.]

⊛9 ¬(bζ,(1,ε+2),(1,ε+3) <I bζ,(1,ε),(1,ε+1)).

[Similarly, as otherwise if ζ ∈ (6, ∂) then bζ,(1,ζ),(−1,ζ) <I bζ,(1,4),(1,5)).
Hence 〈bζ,(1,4),(1,5) : ζ ∈ (6, ∂)〉 contradict the maximality of (w1).]

So we have proved (∗)7

(∗)8 if u is µ-reasonable, x ∈ I\Iu then cf(Iu,x) = ℵ0.

[Otherwise by (∗)7 it has a last element say b = f∗(at0 , . . . , atn−1
)

where t0, . . . , tn−1 ∈ I2 and f∗ a definable function, without loss
of generality with n minimal hence {at0 , . . . , atn−1

} is transcenden-
tally independent and with no repetitions and b is not algebraic over
{at0 , . . . , atn−1

}\{atℓ
} for ℓ < n. So {t0, . . . , tn−1} * I2

u and let ℓ < n
be such that tℓ /∈ I2

u hence there are s0 <I2 s1 such that tℓ ∈ (s0, s1)I2

and (s0, s1)I2 ∩ I
2
u = ∅ (recall ⊠4(a), (b) and (∗)6 about cofinality ℵ0

and I2 being dense).
Also without loss of generality {t0, . . . , tn−1} ∩ (s0, s1)I2 = {tℓ},
now the function c 7→ fM

∗ (at0 , . . . , atℓ−1
, c, atℓ+1

, . . . , atn−1
) for c ∈
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(as0
, as1

)I is increasing or decreasing (cannot be constant by the
minimality on n and the elimination of quantifiers for real closed
fields and the transcendental independence of {t0, . . . , tn−1}). So
we can find s′0, s

′
1 such that s0 <I2 s′0 <I2 tℓ <I2 s′1 <I2 s1 such

that X := {fM
∗ (at0 , . . . , atℓ−1

, c, atℓ+1
, . . . , atn−1

) : c ∈ (as′

0
, as′

1
)I}

is included in Iu,x. Again as the function defined above is mono-
tonic on (as′

0
, as′

1
)I so for some value b′ ∈ (as′

0
, as′

1
) we have b <I

b′. But b is last in Iu,x by our assumption toward contradiction
hence (b, b′)Iu

∩ Iu = ∅. But this is impossible as all members
of {f(at0 , . . . , atℓ−1

, c, atℓ+1
, . . . , atn−1

) : c ∈ (as′

1
, as′

2
)I} realize the

same cut of Iu so (∗)8 holds.]

(∗)9 if u is µ-reasonable, x ∈ I\Iu then also the inverse of Iu,x has
cofinality ℵ0.

[Why? Similarly to the proof of (∗)7 +(∗)8 or note that the mapping
y 7→ −y (defined in M) maps Iu onto itself and is an isomorphism
from I onto its inverse.]

(∗)10 if u is µ-reasonable, then Iu is unbounded in I from below
and from above.

[Why? Easy.]

(∗)11 if h, u1, u2 are as in clauses (a),(b),(c) below then the function
h4 defined below is (well defined and) is, recalling (∗)2(g), an

order preserving function from Îu1
onto Îu2

mapping u1 onto
u2 and also the functions h0, h1, h

∗
2, h2, h3 are as stated where

(a) u1, u2 ⊆ ζ are µ-reasonable

(b) h is an order preserving function from u1 onto u2

(c) (α) for α ∈ u1, we have cf(α) ≥ θ1 ⇔ cf(h(α)) ≥ θ1

(β) if γ ∈ u1 then (∀α < γ)(∃β ∈ u1)(α ≤ β < γ) iff
(∀α < h(γ))(∃β ∈ u2)(α ≤ β < h(γ)))

(d) (α) h1 is the induced order preserving function from
I1
u1

onto I1
u2

, i.e., h1((ℓ, β
′)) = (ℓ, β′′) when h(β′) =

β′′ < ζ or β′ = β′′ ∈ [ζ, ζ + ω);

(β) let h0 be the partial function from ζ+ω into ζ+ω
such that h0(α) = β ⇔ (∃ℓ)[h1((ℓ, α)) = (ℓ, β)]
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(e) h∗2 is the order preserving function from I∗,2
u1

onto I∗,2
u2

defined by: for η ∈ I∗,2
η1
, h∗2(η) = 〈h1(η(ℓ)) : ℓ < ℓg(η)〉 =

〈(ℓη(ℓ), h0(α
η(ℓ))) : ℓ < ℓg(η)〉, recalling (d)

(f) h2 = h∗2 ↾ I2
u1

is an order preserving function from I2
u1

onto I2
u2

(g) h3 is the unique isomorphism from the real closed field
MI2

u1
onto the real closed field MI2

u2
mapping at to

ah2(t) for t ∈ I2
u1

, where for I ′ ⊆ I2 we let MI′ ⊆M be
the real closure of {at : t ∈ I ′} inside M

(h) h4 is the map defined by:
h4(x) = y iff

(α) x ∈ Iu1
∧ y = h3(x) or

(β) for some a ∈ I\Iu1
, b ∈ I\Iu2

we have x =
Iu,a, y ∈ Iu,b and (∀c ∈ Iu)(c <I a ≡ h3(c) <I b)

(i) Îu1
= Dom(h4) and Îu2

= Rang(h4) ordered natu-
rally.

[Why? Trivially h1 is an order preserving function from I1
u1

onto I1
u2

.

Recall I2,∗
uℓ

= {η ∈ I∗2 : η(ℓ) ∈ I1
uℓ

for ℓ < ℓg(η)}. So obviously h∗2 is

an order preserving function from I∗,2
u1

onto I∗,2
u2

. Now h2 = h∗2 ↾ I2
u1

,

but does it map I2
u1

onto I2
u2

? we have excluded some members of

I∗,2
u2

by ⊛ above. But by clauses (c) and (d)(α) of the assumption
being excluded/not excluded is preserved by the natural mapping,
i.e., h∗2 maps I2

u1
onto I2

u2
hence h2 = h∗2 ↾ I1

u1
is an isomorphism

from I1
u1

onto I1
u2

. Also by (∗)1 being the real closure of the ordered
field M0, and the uniqueness of “the real closure” h3 is the unique
isomorphism from the real closed field MI2

u1
onto MI2

u2
mapping at

to ah2(t) for t ∈ I2
u1

.

Let 〈(U 1
ε ,U

2
ε ) : ε < ε∗〉 list the pairs (U1,U2) such that:

⊛10 (a) Uℓ has the form Iuℓ,x for some x ∈ I\Iuℓ
for ℓ = 1, 2

(b) for every a ∈ Iu1
,

(∃y ∈ U1)(a <I y) ⇔ (∃y ∈ U2)(h2(a) <I y).
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Now

⊛11 〈U ℓ
ε : ε < ε∗〉 is a partition of I\Iuℓ

for ℓ = 1, 2.

[Why? First, note the parallel claim for I1. For this note that
h1((ℓ, 0)) = (ℓ, 0) as 0 ∈ u1∩u2 as u1, u2 are µ-reasonable, see clause
(e) of (∗)4 and h1((ℓ, α)) = (ℓ, β) ⇔ h1((ℓ, α + 1)) = (ℓ, β + 1), by
clause (b) of (∗)4 and if h((ℓ, δ1)) = (ℓ, δ2), δ1 is a limit (equivalently
δ2 is limit) then

δ1 = sup{α < δ : (ℓ, α) ∈ I1
u1
} ⇔ δ2 = sup{α < δ : (ℓ, α) ∈ I1

u2
}.

Second, note the parallel claim for h2, I
∗,2
uℓ
, h∗2.

Third, note the parallel claim for I2
uℓ
, h2.

Fourth, note the parallel claim for Iuℓ
, h3 (which is the required

one).]
So it follows that

⊛12 h4 is as promised.

So we are done proving (∗)11.
[Why? By clauses (b),(c) of (∗)11.]

(∗)12 if u1, u2 are µ-reasonable, h is an order preserving mapping

from Îu1
onto Îu2

which maps Iu1
onto Iu2

then there is an
automorphism h+ of the linear order I extending h ↾ Iu1

.

[Why? Let 〈U 1
ε : ε < ε∗〉 list Îu1

\Iu1
and U 2

ε = h(U 1
ε ). Now for

every ε we choose 〈aℓ
ε,n : n ∈ Z〉 such that

⊛13 (a) aℓ
ε,n ∈ U ℓ

ε

(b) aℓ
ε,n <I a

ℓ
ε,n+1 for n ∈ Z

(c) {aℓ
ε,n : n ∈ Z, n ≥ 0} is unbounded from above in U ℓ

ε

(d) {aℓ
ε,n : n ∈ Z, n < 0} is unbounded from below in U ℓ

ε .

This is justified by uℓ being µ-reasonable by (∗)6, ⊠4. Now define
h5 : I → I by:
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h5(x) = h4(x) if x ∈ Iu1
and otherwise

h5(x) = a2
ε,n + (a2

ε,n+1 − a2
ε,n)(x− a1

ε,n)/(a1
ε,n+1 − a1

ε,n)

if a1
ε,n ≤I2 x < a1

ε,n+1 and n ∈ Z.

Now check using linear algebra.]

(∗)13 (µI)/E aut
I,µ has ≤ 2µ members recalling that f1 E aut

I,h f2 iff f1,
f2 are functions from µ into I and for some automorphism h
of I we have (∀α < µ)(h(f1(α)) = f2(α)) [Why? Should be
clear recalling |I1

u| ≤ µ, recalling (∗)5, (∗)11, (∗)12.]

So we have finished proving part (1) of 5.1.
2) Really the proof is included in the proof of part (1). That is, given
I ′ ⊆ I of cardinality < θ2 by (∗)5 there is a µ-reasonable u ⊆ ζ such
that I ′ ⊆ Iu and |u| = µ+ |I ′|. Now clearly

(∗)14 for µ-reasonable u ⊆ ζ, the family {I2
u,x : x ∈ I2\I

2
u} has

≤ µ+ |u| members.

[Why? By ⊠5.]

(∗)15 for a µ-reasonable u ⊆ ζ, the family {Iu,x : x ∈ I\Iu} has
≤ µ members.

[Why? By (∗)16 below.]

(∗)16 if u is µ-reasonable then Iu,b1 = Iu,b2 when

(a) bk = f(atk,0
, . . . , atk,n−1

) for k = 1, 2

(b) f a definable function in M

(c) tk,0 <I2 . . . <I2 tk,n−1 for k = 1, 2

(d) t1,ℓ ∈ I2
u ∨ t2,ℓ ∈ I2

u ⇒ t1,ℓ = t2,ℓ

(e) if t1,ℓ /∈ I2
u then I2

u,t1,ℓ
= I2

u,t2,ℓ for ℓ = 0, . . . , n− 1.

[Why? Use the proof of (∗)11, for u1 = u = u2, h = idu2
so U 1

ε = U 2
ε

for ε < ε∗.
By the assumptions for each ℓ there is ε such that atε,1,ℓ

, at2,ℓ
∈

U 1
ε = U 2

ε . Now for each ε < ε∗ there is an automorphism πε of U 1
ε
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as a linear order mapping t1,ℓ to t2,ℓ if t1,ℓ ∈ U 1
ε . Let π = ∪{πε :

ε < ε∗} ∪ idIu
.]

(∗)17 if n < ω, tℓ0 <I t
ℓ
1 <I . . . <I t

ℓ
n−1 for ℓ = 1, 2, Iu,t1

k
= Iu,t2

k
for

k = 0, 1, . . . , n − 1 then for some automorphism g of I over
Iu we have k < n⇒ g(t1k) = t2k.

[Why? We shall use g such that g ↾ Iu = idIu
and g ↾ Iu,x is an

automorphism of Iu,x for each x ∈ I\Iu. Clearly it suffices to deal
with the case {tℓk : ℓ < n and ℓ ∈ {1, n}} ⊆ Iu,x for one x ∈ I\Iu.
We choose s1 < s2 from Iu,x such that s1 <I t

ℓ
k < s2 for ℓ = 1, 2. We

choose g ↾ Iu,x such that it is the identity on {s ∈ Iu,x : s ≤I s1 or
s2 ≤I s, now stipulates t−1 = s1, tn = s2 and maps (t1k, t

1
k+1)I onto

(t2k, t
2
k+1)I for k = −1, 0, . . . , n− 1 as in the definition above.]

So we have completed the proof of part (2) of 5.1.
3) Obvious from the Definition (0.14(9)) and the construction.
4) First

⊙1 there is J∗
1 ⊆ I of cardinality µ+ such that: for every J∗

2 ⊆ I
of cardinality ≤ µ there is an automorphism π of I which
maps J∗

2 into J∗
1 .

[Why? Let u = µ+×µ+ ⊆ ζ and let J∗
1 = Iu. Clearly u has cardinal-

ity µ+ and so does J∗
1 = Iu. So suppose J∗

2 ⊆ I has cardinality ≤ µ.
There is u2 ⊆ ζ of cardinality µ such that J∗

2 ⊆ Iu2
and without loss

of generality u2 is reasonable. We define an increasing function h
from u2 into u1, by defining h(α) by induction on α:

(∗)17 if cf(α) ≤ µ then h(α) = ∪{h(β) + 1 : β ∈ u2 ∩ α}

(∗)18 if cf(α) > µ then h(α) = ∪{h(β) + 1 : β ∈ u2 ∩ α} + µ+.

Let u1 := {h(α) : α ∈ u2} so u1 ⊆ u. Now h, u1, u2 satisfies clauses

(a),(b),(c) of (∗)11 hence h1, h
∗
2, h2, h3, h4, Îu1

, Îu2
are as there.

By (∗)12 there is an isomorphism h+ of I which extends h4; now
does h+ map J∗

2 into J∗
1 ? Yes, as J∗

2 ⊆ Iu2
and h+ ↾ Iu2

is an
isomorphism from Iu2

onto Iu1
but Iu1

⊆ Iu, Iu = J∗
1 , so we are

done proving ⊙1.]

Finally

Paper Sh:734, Chapter IV



758 IV. CATEGORICITY AND SOLVABILITY OF A.E.C.

⊙2 part (4) of 5.1 holds, i.e. if I∗0 ⊆ I, |I∗0 | < θ2 then for some
I∗1 ⊆ I of cardinality ≤ µ+ + |I∗0 | we have: for every J ⊆ I
of cardinality ≤ µ there is an automorphism of I over I∗0
mapping J into I∗1 .

Why? Given I∗0 ⊆ I of cardinality < θ2 we can find u1 ⊆ ζ of
cardinality µ + |I∗0 | such that I∗0 ⊆ Iu1

. By (∗)5 we can find a µ-
reasonable set u2 ⊆ ζ of cardinality µ+ |u1| such that u1 ⊆ u2.

Let 〈Uε : ε < ε∗〉 list the sets of the form Iu2,x, x ∈ I2\Iu1
, so

by (⊡5) ε
∗ ≤ µ + |I∗0 |. For each ε we choose 〈aε,n : n ∈ Z〉 as

in ⊛13 from the proof of (∗)12. For each ε < ε∗ and n ∈ Z let
πε,n be an isomorphism from I onto (aε,n, aε,n+1)I , exists by the
properties of ordered fields. Let J∗

1 ⊆ I be as in ⊙1 above and let
I∗2 = I∗1 ∪ {aε,n : ε < ε∗ and n < ω} ∪ {πε,n(J∗

1 ) : ε < ε∗ and n ∈ Z}.
Easily, I∗2 is as required.
5) By 0.12. �5.1

Remark. Concerning (∗)11, we could have used more time

(∗)′11 h2 is an order preserving function from I2
u1

onto I2
u2

and
h3 is an isomorphism from Iu1

onto Iu2
and h1 is an order

preserving mapping from Îu2
onto Îu2

.

§6 Linear orders and equivalence relations

This section deals with a relative of the stability spectrum. We
ask: what can be the number of equivalence classes in µI for an
equivalence realtion on µI which is so called “invariant”, in fact
definable (essentially by a quantifier free infinitary formula, mainly
for well ordered I).

It is done in a very restricted context, but via EM-models has
useful conclusions, for a.e.c. and also for a.e.c. with amalgamation;
i.e. it is used in 7.8.
There are two versions; one for well ordering and one for the class of
linear orders both expanded by unary relations.
On τ∗α(∗), K

lin
τ∗

α(∗)
see 0.14(4). We may replace sequences, i.e. incJ (I)

by subsets of I of cardinality |J |, this may help to eliminate 2|J|
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later, but at present it seems not to help in the final bounds in §7.
We do here only enough for §7.

6.1 Context. We fix α(∗), ū∗ = (u−, u+) such that

(a) α(∗) is an ordinal ≥ 1

(b) u− ⊆ α(∗)

(c) u+ ⊆ α(∗).

6.2 Remark. 1) The main cases are

(A) α(∗) = 1, so K lin
τ∗

α(∗)
is the class of linear orders

(B) α(∗) = 2, u+ = ∅, u− = {0}.

2) Usually the choice of the parameters does not matter.

6.3 Definition. 1) For I, J ∈ K lin
τ∗

α(∗)
, i.e. both linear orders ex-

panded by a partition Pα(α < α(∗)), pedantically the interpretation
of the Pα’s, let inc′J (I) be the set of embedding of J into I; see below,
we denote members by h.
2) Recalling ū∗ = (u−, u+) where u−∪u+ ⊆ α(∗) let incū∗

J (I) be the
set of h such that

(a) h is an embedding of J into I, i.e. one-to-one, order preserv-
ing function mapping P J

α into P I
α for α < α(∗)

(b) if α ∈ u− and t ∈ P J
α and s <I h(t) then for some t1 <J t we

have s ≤I h(t1)

(c) if α ∈ u+ and t ∈ P J
α and h(t) <I s then for some t1 we have

t <J t1 and h(t1) ≤I s.

Concerning ū∗

6.4 Observation. 1) For any h ∈ incū∗

J (I)

(a) if t is the successor of s in J (i.e. s <J t and (s, t)J = ∅) and
t ∈ P J

α , α ∈ u− then h(t) is the successor of h(s) in I
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(b) if 〈ti : i < δ〉 is <J -increasing with limit tδ ∈ J (i.e. i < δ ⇒
ti <J tδ and ∅ = ∩{(ti, tδ)J : i < δ}) and tδ ∈ P J

α , α ∈ u−

then 〈h(ti) : i < δ〉 is <I -increasing with limit h(tδ) in I

(c) if t is the first member of J and t ∈ P J
α , α ∈ u− then h(t) is

the first member of I.

2) If h1, h2 ∈ incū∗

J (I) then

(a) if t is the successor of s in J and t ∈ P J
α , α ∈ u− then h1(s) =

h2(s) ⇔ h1(t) = h2(t) and h1(s) <I h2(s) ⇔ h1(t) <I h2(t)
and h1(s) >I h2(s) ⇔ h1(t) >I h2(t)

(b) if 〈ti : i < δ〉 is <J -increasing with limit tδ and tδ ∈ P J
α , α ∈

u−, then (∀i < δ)(h1(ti) = h2(ti)) ⇒ h1(tδ) = h2(tδ) more-
over (∀i < δ)(∃j < δ)(h1(ti) <I h2(tj) ∧ h2(ti) <I h1(tj)) ⇒
h1(tδ) = h2(tδ) and also (∃j < δ)(∀i < δ)(h1(ti) <I h2(tj)) ⇒
h1(tδ) <I h2(tδ).

3) Similar to parts (1) + (2) for α ∈ u+ (inverting the orders of
course).

4) inc′I(J) = inc
(∅,∅)
I (J).

Proof. Straight (and see the proof of 6.7). �6.4

6.5 Convention. 1) α(∗), ū∗ will be constant so usually we shall

not mention them, e.g. write incJ(I) for incū∗

I (I) and pedantically

below we should have written eū∗

(J, I), eū∗

∗ (J) and also in notions
like reasonable and wide in Definition 6.10 mention ū∗.
2) I, J denote members of K lin

τ∗

α(∗)
.

Below we use mainly “e-pairs” (and weak e-pairs and the reasonable
case).

6.6 Definition. 1) let e(J) be the set of equivalence relations on
some subset of J such that each equivalence class is a convex subset
of J .
2) For h1, h2 ∈ incJ (I) we say that (h1, h2) is a strict e-pair (for
(I, J)) when e ∈ e(J) and (h1, h2) satisfies
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(a) s ∈ J\ Dom(e) iff h1(s) = h2(s)

(b) if s <J t and s/e 6= t/e (so s, t ∈ Dom(e)) then h1(s) <I

h2(t) and h2(s) <I h1(t)

(c) if s <J t and s/e = t/e (so s, t ∈ Dom(e)) then h1(t) <I

h2(s).

2A) We say that (h1, h2) is a strict (e,Y )-pair where e ∈ e(J) and
Y ⊆ Dom(e)/e when clauses (a)+(b) from part (2) hold and

(c)′ if s <J t and s/e = t/e (so s, t ∈ Dom(e)) then (h1(t) <I

h2(s)) ≡ (s/e ∈ Y ) ≡ (h1(s) < h2(t)).

2B) We say that (h1, h2) is an e-pair when (h1, h2) is a strict (e,Y )-
pair for some Y (this relation is symmetric, see below).
3) We say that (h1, h2) is a weak e-pair where h1, h2 ∈ incJ (I) when
clauses (a),(b) hold (this, too, is symmetric!)
4) For h1, h2 ∈ incJ (I), let e = e(h1, h2) be the (unique) e ∈ e(J)
such that (see 6.8(1) below)

(a) Dom(e) = {s ∈ J : h1(s) 6= h2(s)}

(b) (h1, h2) is a weak e-pair

(c) if e′ ∈ e(J) and (h1, h2) is a weak e′-pair then Dom(e) ⊆
Dom(e′) and e refines e′ ↾ Dom(e).

5) If e ∈ e(J) and Y ⊆ Dom(e)/e then we let set(Y ) = {s ∈ J :
s/e ∈ Y } and e ↾ Y = e ↾ set(Y ).
6) Let e(J, I) be the set of e ∈ e(J) such that there is an e-pair.
7) Let e∗(J) = ∪{e(J, I) : I ∈ K lin

τ∗

α(∗)
}.

Concerning ū∗

6.7 Observation. Assume that e ∈ e(J, I).
0)

(a) If t is the first member of J and t ∈ P J
α , α ∈ u− then t /∈

Dom(e).

(b) If t ∈ Dom(e) and t is the first member of t/e and t ∈ P J
α

then α /∈ u−.
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1) If t is the <J -successor of s and t ∈ P J
α , α ∈ u− then s ∈

Dom(e) ⇔ t ∈ Dom(e) and s ∈ Dom(e) ⇒ s ∈ t/e.
2) If 〈ti : i < δ〉 is <J -increasing with limit tδ and tδ ∈ P J

α and
α ∈ u− then:

(a) if (∀i < δ)(ti /∈ Dom(e)) then tδ /∈ Dom(e)

(b) if (∀i < δ)(¬tieti+1) or just (∀i < δ)(∃j < δ)(i < j ∧ ¬tietj)
then tδ /∈ Dom(e)

(c) if (∀i < δ)(ti ∈ t0/e) then tδ ∈ t0/e.

3) Similar to parts (0),(1),(2) when α ∈ u+ (inverting the order, of
course).
4) e∗(J) is the family of e ∈ e(J) satisfying the requirements in parts
(0),(1),(2),(3) above so if ū∗ = (∅, ∅) then e∗(J) = e(J).

Proof. Easy by 6.4, e.g.

Part (1): We are assuming e ∈ e(J, I) hence by Definition 6.6 there
is an e-pair (h1, h2) where h1, h2 ∈ incJ (I). Now for ℓ = 1, 2, clearly
hℓ(s), hℓ(t) ∈ I and as s <J t we have hℓ(s) < hℓ(t). Now if hℓ(t)
is not the <I -successor of hℓ(s) then there is s′ℓ ∈ (hℓ(s), hℓ(t))I

hence by clause (b) of Definition 6.3(2) there is s∗ℓ ∈ [s, t)J such that
s′ℓ ≤I hℓ(s

∗
ℓ ) <I hℓ(t) so as hℓ(s) <I s

′
ℓ we have hℓ(s) <I hℓ(s

∗
ℓ ) <I

hℓ(t) hence s <I s
∗
ℓ <J t, contradiction to the assumption “t is the

successor of s in J”. So indeed hℓ(t) is the successor of hℓ(s) in I.
As this holds for ℓ = 1, 2, clearly h1(s) = h2(s) ⇔ h1(t) = h2(t)

but by Definition 6.3(2) we know s ∈ Dom(e) ⇔ (h1(s) 6= h2(s)) and
similarly for t hence s ∈ Dom(e) ⇔ t ∈ Dom(e). Lastly, assume
s, t ∈ Dom(e), but s, t are nor e-equivalent so by Definition 6.6(2)
clause (b) we have h1(s) <I h2(t)∧h2(s) <I h1(t) clear contradiction.

Part 2: We leave clauses (a),(b) to the reader.
For clause (c) of part (2), if tδ /∈ t0/e then choose h1, h2 ∈

incū∗

J (I) such that (h1, h2) is an e-pair, hence an (e,Y )-pair for some
Y ⊆ Dom(e)/e. If (t0/e) ∈ Y then h2(t0) is above {h1(ti) : i < δ}
by <I so we have h1(tδ) ≤I h2(t0) but if tδ /∈ t0/e this contradicts
clause (b) in Definition 6.6(2),(2A). The proof when t0/e /∈ Y is
similar. �6.7
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6.8 Observation. Let h1, h2 ∈ incJ(I) and e ∈ e(J).
1) e(h1, h2) is well defined.
2) (h1, h2) is a strict (e,Y1)-pair iff (h2, h1) is a strict (e,Y2)-pair
when (Y1,Y2) is a partition of Dom(e)/e.
3) (h1, h2) is a strict e-pair iff (h2, h1) is a strict (e, ∅)-pair.
4) (h1, h2) is an e-pair iff (h2, h1) is an e-pair.
5) (h1, h2) is a weak e-pair iff (h2, h1) is a weak e-pair.
6) If (h1, h2) is a strict e-pair then (h1, h2) is an e-pair which implies
(h1, h2) being a weak e-pair.
7) If eα ∈ e(J) for α < α∗, then e := ∩{eα : α < α∗} = {(s, t) : s, t
are eα-equivalent for every α < α∗} belongs to e(J) with Dom(e) =
∩{Dom(eα) : α < α∗}.
8) If e ∈ e(J, I) then for every Y ⊆ Dom(e)/e also e ↾ set(Y )
belongs to e(J, I) and there is a strict (e ↾ set(Y ))-pair (h′1, h

′
2);

moreover, for every Y1 ⊆ Y there is a strict (e ↾ set(Y ),Y1)-pair.
�6.8

Proof. Easy, e.g.:
1) Let

e = {(s1,s2) : h1(sℓ) 6= h2(sℓ) for ℓ = 1, 2 and if s1 6= s2 then

for some t1 <J t2 we have {s1, s2} = {t1, t2}

and there is no initial segment J ′ of J such that

J ′ ∩ {t1, t2} = {t1} and

(∀t′ ∈ J ′)(∀t′′ ∈ J\J ′)[h1(t
′) <I h2(t

′′) ∧ h2(t
′) <I h1(t

′′)]}.

Clearly e is an equivalence relation on {t ∈ J : h1(t) 6= h2(t)} and
each equivalence class is convex hence e1 ∈ e(J), so clauses (a),(b)
of 6.6(1),(4) holds. Easily e is as required.
8) Let (h1, h2) be an e-pair and Y1,Y2,Y3 be a partition of Dom(e)/e.
We define h′1, h

′
2 ∈ incJ (I) as follows, for ℓ ∈ {1, 2}

(a) if t ∈ J\ Dom(e) then h′ℓ(t) = h1(t) (= h2(t))

(b) if t ∈ set(Y1) then h′ℓ(t) = h1(t)
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(c) if t ∈ set(Y2) then h′ℓ(t) is min{h1(t), h2(t)} if ℓ = 1, and is
max{h1(t), h2(t)} if ℓ = 2

(d) if t ∈ set(Y3) then h′ℓ(t) is max{h1(t), h2(t)} if ℓ = 1 and is
min{h1(t), h2(t)} if ℓ = 2.

Now (h′1, h
′
2) is a strict (e ↾ (set(Y2) ∪ set(Y3)),Y2)-pair, so we are

done. �6.8

6.9 Definition. 1) For a subset u of J ∈ K lin
τ∗

α(∗)
we define e = eJ,u ∈

e(J) on J\u as follows:

s1es2 iff (∀t ∈ u)(t <J s1 ≡ t <J s2).

2) For I, J ∈ K lin
α(∗), we say that the pair (I, J) is non-trivial when:

e(J, I) 6= ∅.

6.10 Definition. 1) For h0, . . . , hn−1 ∈ incJ (I) let

tpqf
J (〈h0, . . . , hn−1〉, I) = {(ℓ,m, s, t) : s, t ∈ J and hℓ(s) < hm(t)}.

We may write tpqf
J (h0, . . . , hn−1; I) and we usually omit J as it is

clear from the context.
2) For h1, h2 ∈ incJ(I) let eq(h1, h2) = {s ∈ J : h1(s) = h2(s)}.
3) We say that the pair (I, J) is a reasonable (µ, α(∗)))-base when:

(a) I, J ∈ K lin
τ∗

α(∗)
, |J | ≤ µ and the pair (I, J) is non-trivial

(b) if e ∈ e(J, I) and h1, h2 ∈ incJ (I) and (h1, h2) is an e-pair
then we can find h′1, h

′
2, h

′
3 ∈ incJ (I) and Y ⊆ Dom(e)/e

such that

(α) tpqf((h
′
1, h

′
2), I) = tpqf((h1, h2), I)

(β) (h′1, h
′
3) and (h′2, h

′
3) are strict (e,Y )-pairs.

4) We say that the pair (I, J) is a wide (λ, µ, α(∗))-base when:

(a) I, J ∈ K lin
τ∗

α(∗)
, |J | ≤ µ and the pair (I, J) is non-trivial
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(b) for every e ∈ e(J, I) there is a sequence h̄ = 〈hα : α < λ〉
such that

(α) hα is an embedding of J into I

(β) if α < β < λ then (hα, hβ) is an e-pair.

5) We say that the pair (I, J) is a strongly wide (λ, µ, α(∗))-base
when:

(a) I, J ∈ K lin
τ∗

α(∗)
, the pair (I, J) is non-trivial and J has cardi-

nality ≤ µ

(b) for every e ∈ e(J, I) and Y ⊆ Dom(e)/e there is h̄ = 〈hα :
α < λ〉 such that

(α) hα ∈ incJ (I)

(β) if α < β then (hα, hβ) is a strict (e,Y )-pair.

6) Above we may omit µ meaning µ = |J | and we may omit α(∗),
as it is determined by J (and by I), and then may omit “base” so
in part (3) we say (I, J) is reasonable and in part (4) we say λ-wide
and in part (5) say strongly λ-wide.

6.11 Observation. 1) If (I, J) is a reasonable (µ, α(∗))-base then
(I, J) is a reasonable (µ′, α(∗))-base for µ′ ≥ µ.
2) If (I, J) is a wide (λ, µ, α(∗))-base and λ′ ≤ λ, µ′ ≥ µ then (I, J)
is a wide (λ′, µ′, α(∗))-base.
3) If (I, J) is a strongly wide (λ, µ, α(∗))-base, then (I, J) is a wide
(λ, µ, α(∗))-base.

Proof. Obvious. �6.11

6.12 Claim. 1) If α(∗) = 1 and µ ≤ ζ(∗) < µ+ ≤ λ, then the
pair (λ × ζ(∗), ζ(∗)) is a reasonable (µ, α(∗))-based which is a wide
(λ, µ, α(∗))-base.
2) If α(∗) = 2 and ū∗ = ({0}, ∅) as in 6.2 and µ ≤ ζ(∗) < µ+ <
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λ and ζ ′(∗) = ζ(∗) × 3 and w ⊆ ζ(∗), w 6= ζ(∗) then the pair
(I lin

µ,λ×ζ(∗), I
lin
µ,ζ(∗),w) is a reasonable (µ, α(∗))-base which is a wide

(λ, µ, α(∗))-base where

(∗) for any ordinal β and w ⊆ β we define I = I lin
µ,β,w, a τ∗α(∗)-

model (if w = ∅ we may omit it)

(α) its universe is β

(β) the order is the usual one

(γ) P I
1 = {α < β : cf(α) > µ or α ∈ w}, (if we write
I lin
≥µ,β,w we mean here cf(α) ≥ µ).

Proof. 1) First: (I, J) = (λ× ζ(∗), ζ(∗)) is a wide (λ, µ, α(∗))-base
Easily e(J, I) 6= ∅, |J | ≤ µ and I, J ∈ K lin

τ∗

α(∗)
so clause (a) of

Definition 6.10(4) holds (recalling Definition 6.9(2)), so it suffices to
deal with clause (b).

Let e ∈ e(J, I) and define

u = {ζ < ζ(∗) :ζ ∈ Dom(e) is minimal in ζ/e

or ζ ∈ ζ(∗)\ Dom(e)}.

Now for every α < λ we define hα ∈ incJ (I) as follows:

(a) if ζ ∈ ζ(∗)\ Dom(e) then hα(ζ) = λ× ζ

(b) if ζ ∈ Dom(e) and ε = min(ζ/e) then hα(ζ) = λ×ε+ζ(∗)×
α+ ζ.

Second: (I, J) = (λ× ζ(∗), ζ(∗)) is a reasonable (µ, α(∗))-base
Again clause (a) of Definition 6.10(3) holds so we deal with clause

(b).
So assume e ∈ e(J, I) and h1, h2 ∈ incJ (I) and (h1, h2) is just a

weak e-pair and Y ⊆ Dom(e)/e. Let u = Rang(h1) ∪ Rang(h2).
For ℓ = 1, 2 let h∗ℓ ∈ incJ(I) be h∗ℓ (ζ) = otp(u∩hℓ(ζ)), so Rang(h∗ℓ ) ⊆
ξ(∗) := otp(u) ≤ ζ(∗) × 3.
[Why? If ζ(∗) is finite this is trivial, so assume ζ(∗) ≥ ω. Let n < ω
and α be such that ωαn ≤ ζ(∗) < ωα(n + 1), so α ≥ 1, n ≥ 1. As
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ωα is additively indecomposable otp(u) ≤ ωα(2n+ 1), alternatively
use natural sums [MiRa65] which gives a better bound ζ(∗) ⊕ ζ(∗),
[actually < µ+ sufices using ζ(∗) < µ+ large enough below, still.]

For ℓ = 1, 2, 3 we define h′ℓ ∈ incJ(I) as follows:

(a) if ζ ∈ ζ(∗)\ Dom(e) then h′ℓ(ζ) = (ζ(∗) × 4) × ζ

(b) if ζ ∈ Dom(e) and ε = min(ζ/e) and ζ/e ∈ Y then

(α) if ℓ = 3 then h′ℓ(ζ) = (ζ(∗) × 4) × ε+ ζ(∗) × 3 + ζ

(β) if ℓ = 1, 2 then h′ℓ(ζ) = (ζ(∗) × 4) × ε+ h∗ℓ (ζ)

(c) if ζ ∈ Dom(e) and ε = min(ζ/e) and ζ/e /∈ Y then

(α) if ℓ = 3 then h′ℓ(ζ) = (ζ(∗) × 4) × ε+ ζ

(β) if ℓ = 1, 2 then h′ℓ(ζ) = (ζ(∗) × 4) × ε+ ζ(∗) + h∗ℓ (ζ).

Now check.
2) First: (I, J) = (I lin

µ,λ×ζ(∗), I
lin
µ,ζ(∗),w) is a wide (λ, µ, α(∗))-base.

Note that P J
1 = w because ζ(∗) < µ+ and P I

1 = {α ∈ I : cf(α) >
µ}. As above clause (a) of the Definition 6.10 holds so we deal with
clause (b).

Let

u = {ζ < ζ(∗) : ζ ∈ Dom(e) is minimal in ζ/e or ζ ∈ ζ(∗)\ Dom(e)}.

Clearly u is a closed subset of ζ(∗) and 0 ∈ u.
Given ζ < ζ(∗) let εζ := max(u∩ (ζ +1)), clearly well defined by

the choice of u and εζ ≤ ζ.
For every α < λ we define hα ∈ incJ (I) as follows:
We define hα(ζ) by induction on ζ < ζ(∗) such that hα(ζ) <

λ× (εζ + 1).

Case A: for ζ ∈ ζ(∗)\ Dom(e)

Subcase A1: ζ ∈ P J
1

Let hα(ζ) be λ× εζ + µ+.

Subcase A2: ζ ∈ P J
0 and ζ = 0
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Let hα(ζ) = 0.

Subcase A3: ζ ∈ P J
0 , ζ = ξ + 1

Let hα(ζ) = hα(ξ) + 1.

Subcase A4: ζ ∈ P J
0 , ζ is a limit ordinal, ζ = sup(u ∩ ζ)

Let hα(ζ) = λ× εζ which is equal to ∪{hα(ζ ′) : ζ ′ < ζ}.

Subcase A5: ζ ∈ P J
0 , ζ is a limit ordinal and ξ = sup(u∩ζ) < ζ.

So (ξ+1)/e is an end-segment of ζ, but this is impossible
by 6.7(2)(c).

Case B: ζ ∈ Dom(e):

Subcase A1: ζ = min(ζ/e) hence ζ ∈ P J
1 (see 6.7(0)(b))

Let hα(ζ) = λ× εζ + µ+ × ζ(∗) × α+ µ+.

Subcase A2: ζ ∈ P J
0 hence ζ > min(ζ/e)

Let hα(ζ) = ∪{hα(ζ ′) + 1 : ζ ′ < ζ}.

Subcase A3: ζ ∈ P J
1 and ζ > min(ζ/e)

Let hα(ζ) = ∪{hα(ζ ′) : ζ ′ < ζ} + µ+.
So clearly we can show by induction on ζ < ζ(∗) that:

hα(ζ) < λ× εζ + µ+ × ζ(∗) × (α2 + 2).

Now check.
Also recalling µ+ < λ clearly for α < λ, ζ < ζ(∗) we have hα(ζ) <

λ× εζ + λ.
Now check.

Second (I lin
µ,λ×ζ(∗), I

lin
µ,ζ(∗),w) is a reasonable (µ, α(∗))-base

Combine the proof of “first” with the parallel proof in part (1).
�6.12

6.13 Definition. 1) Let I, J ∈ K lin
τ∗

α(∗)
. We say that E is an invariant

(I, J)-equivalence relation when:

(a) E is an equivalence relation on incJ (I), so E determines I
and J

(b) if h1, h2, h3, h4 ∈ incJ (I) and tpqf(h1, h2; I) = tpqf(h3, h4; I)
then h1E h2 ⇔ h3E h4.
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2) We add non-trivial when:

(c) if eq(h1, h2) = {t ∈ J : h1(t) = h2(t)} is co-finite then h1E h2

(d) there are h1, h2 ∈ incJ (I) such that ¬(h1E h2).

3) Let J, I1, I2 ∈ K lin
τ∗

α(∗)
. Then I1 ≤1

J I2 means that:

(a) I1 ⊆ I2

(b) for every h1, h2, h3 ∈ incJ (I2) we can find h′1, h
′
2, h

′
3 ∈ incJ(I1)

such that tpqf(h
′
1, h

′
2, h

′
3; I1) = tpqf(h1, h2, h3; I2).

6.14 Claim. Assume J, I1, I2 ∈ K lin
τ∗

α(∗)
.

1) If I1 ⊆ I2, E is an invariant (I2, J)-equivalence relation then E ↾

incJ(I1) is an invariant (I1, J)-equivalence relation.
2) If I1 <1

J I2 and E1 is an invariant (I1, J)-equivalence relation
then there is one and only one invariant (I2, J)-equivalence relation
E2 such that E2 ↾ incJ(I1) = E1.
3) Assume e ∈ e(J) and Y ⊆ Dom(e)/e. If (h′1, h

′
2) is a strict

(e,Y )-pair for (I1, J) and (h′′1 , h
′′
2) is a strict (e,Y )-pair for (I2, J)

then tpqf(h
′
1, h

′
2; I1) = tpqf(h

′′
1 , h

′′
2 ; I2).

4) Assume α(∗) = 1, J = ζ(∗), Iℓ = βℓ with the usual order (for
ℓ = 1, 2), µ ≤ ζ(∗) < µ+ and µ+ ≤ β1 ≤ β2. Then I1 <

1
J I2 (see

Definition 6.13(3)).
5) Assume α(∗) = 2, J = I lin

µ,ζ(∗),w, Iℓ = I lin
µ,βℓ

for ℓ = 1, 2 and µ++ ≤

β1 ≤ β2. Then I1 <
1
J I2 (see Definition 6.13(3)).

Proof. 1) Obvious.
2) We define

E
∗
2 =

{

(h1, h2) :h1, h2 ∈ incJ (I2) and for some

h′1, h
′
2 ∈ incJ (I1) we have

tpqf(h
′
1, h

′
2; I1) = tpqf(h1, h2; I2) and

h′1E1h
′
2

}

.

Now

(∗)1 E ∗
2 is a set of pairs of members of incJ(I2).

Paper Sh:734, Chapter IV



770 IV. CATEGORICITY AND SOLVABILITY OF A.E.C.

[Why? By its definition]

(∗)2 h1E
∗
2 h1 if h1 ∈ incJ (I2).

[Why? Let h′ ∈ incJ(I1) so clearly h′E1h
′ and tpqf(h

′, h′; I1) =
tpqf(h, h; I2)]

(∗)3 E ∗
2 is symmetric.

[Why? As E1 is.]

(∗)4 E ∗
2 is transitive.

[Why? Assume h1E
∗
2 h2 and h2E

∗
2 h3 and let h′1, h

′
2 ∈ incJ(I1) wit-

ness h1E
∗
2 h2 and h′′2 , h

′′
3 ∈ incJ (I1) witness h2E

∗
2 h3.

Apply clause (b) of part (3) of Definition 6.13 to (h1, h2, h3)
so there are g1, g2, g3 ∈ incJ (I1) such that tpqf(g1, g2, g3; I1) =
tpqf(h1, h2, h3; I2). Now h′1E1h

′
2 by the choice of (h′1, h

′
2),

and tpqf(g1, g2; I1) = tpqf(h1, h2; I2) = tpqf(h
′
1, h

′
2; I1) so as E1 is

invariant we get g1E1g2. Similarly g2E1g3, so as E1 is transitive we
have g1E1g3. But clearly tpqf(g1, g3; I1) = tpqf(h1, h3; I2) hence g1, g2
witness that h1E2h3 is as required.]

(∗)5 E ∗
2 is invariant.

[Why? See its definition.]

(∗)6 E ∗
2 ↾ incI(I1) = E1.

[Why? By the way E ∗
2 is defined and E1 being invariant.]

So together E ∗
2 is as required. The uniqueness (i.e. if E2 is an

invariant equivalent relation on incJ (I) such that E2 ↾ incJ (I1) = E1

then E2 = E ∗
2 ) is also easy.

3) Straight.
4) See6 the proof of “Second” in the proof of 6.12(1).
5) Combine7 the proof of part (4) and of “First” in the proof of
6.12(2). �6.14

Below mostly it suffices to consider DE ,e.

6Actually instead “µ+ ≤ β1” it suffice to have ζ(∗) × 4 ≤ β1 because if

ζ(∗) =
X

i<γ

ζi then
X

i<γ

ζi×4 ≤ ζ(∗)×4 or just the natural sum ζ(∗)⊕ζ(∗)⊕ζ(∗).

7Here (µ+ + 1) × (ζ(∗) × 4) will suffice.
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6.15 Definition. 1) Let E be an invariant (I, J)-equivalence rela-
tion; we define

DE = {u ⊆ J :if h1, h2 ∈ incJ(I) satisfies eq(h1, h2) ⊇ u

then h1E h2}

recalling
eq(h1, h2) := {t ∈ J : h1(t) = h2(t)}.

2) If in addition e ∈ e(J, I) then we let

DE ,e = {u ⊆ Dom(e)/e :if h1, h2 ∈ incJ (I) and (h1, h2) is an

(e ↾ (Dom(e)\set(u)))-pair then h1E h2}.

6.16 Claim. Assume I, J ∈ K lin
τ∗

α(∗)
and (I, J) is reasonable (see Def-

inition 6.10(3),(6)) and E is an invariant (I, J)-equivalence relation.
1) For u ⊆ J such that eJ,u ∈ e(J, I) we have: u ∈ DE iff h1E h2

for every eJ,u-pair (h1, h2) iff h1E h2 for some eJ,u-pair (h1, h2); see
Definition 6.9(1).
2) Assume e ∈ e(J, I), then for any u ⊆ Dom(e)/e we have: u ∈
DE ,e iff h1E h2 for any (e ↾ set(u))-pair iff h1E h2 for some (e ↾

set(u))-pair.
3) If e ∈ e(J, I) and u1, u2 ⊆ Dom(e)/e then we can find h1, h2, h3 ∈
incJ(t) such that (h1, h2) is a strict (e ↾ set(u1))-pair, (h2, h3) is a
strict (e ↾ set(u2)) pair and (h1, h3) is a strict (e ↾ (set(u1∪u2))-pair.
4) Assume e ∈ e(J, I) and that in clause (b) of Definition 6.10(3)
we allow (h1, h2) to be a weak e-pair, then for any u ⊆ Dom(e)/e we
have: Dom(e)\u ∈ DE ,e iff h1E h2 for every weak e-pair (h1, h2).

Proof. 1) Like part (2).
2) In short, by transitivity of equivalence and the definitions + mix-
ing, but we elaborate.
The “first implies the second” holds by Definition 6.15(2) and “the
second implies the third” holds trivially as there is such a pair (h1, h2)
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by the assumption e ∈ e(J, I). So it is enough to prove “the third
implies the first”; hence suppose that g1E g2, where (g1, g2) is an
e1 := e ↾ set(u)-pair (recalling that e1 ∈ e(J, I) by 6.8(8)), and let
(h1, h2) be an e1-pair, we need to show that h1E e2. By Definition
6.6(2B) for some sets Yg,Yh ⊆ Dom(e1)/e1 the pair (g1, g2) is a strict
(e1,Yg)-pair and the pair (h1, h2) is a strict (e1,Yh)-pair. Recalling
clause (b) of 6.10(3) there are g′1, g

′
2, g

′
3 and Y such that:

(∗)1 (a) g′ℓ ∈ incJ(I) for ℓ = 1, 2, 3

(b) tpqf(g1, g2) = tpqf(g
′
1, g

′
2)

(c) Y ⊆ Dom(e1)/e1

(d) (g′1, g
′
3) and (g′2, g

′
3) are strict (e1,Y )-pairs.

Now for each s ∈ Dom(e1), we can find a permutation ℓ̄s = (ℓs,1,
ℓs,2, ℓs,3) of {1, 2, 3} such that I |= g′ℓs,1

(s) < g′ℓs,2
(s) < g′ℓs,3

(s). By

(∗)1(d) and (∗)1(b) and (g1, g) being an e1-pair, clearly ℓ̄s depends
only on s/e1 and every member of {(g′ℓs,1

(t) : t ∈ s/e1} is below every

member of {g′ℓs,2
(t) : t ∈ s/e1} and similarly for the pair (g′ℓs,2

, g′ℓs,3
).

Now we can find (g′′1 , g
′′
2 , g

′′
3 ) such that:

(∗)2 (a) g′′ℓ ∈ incJ (I) for ℓ = 1, 2, 3

(b) (g′′1 , g
′′
2 ) is a strict (e1,Yh)

(c) (g′′1 , g
′′
3 ) and (g′′2 , g

′′
3 ) are strict (e1,Yg)-pairs

[Why? We do the choice for each s/e1 separately such that: {g′′1 ↾

(s/e1), g
′′
2 ↾ (s/e1), g

′′
3 ↾ (s/e1)} = {g′1 ↾ (s/e1), g

′
2 ↾ (s/e1), g

′
3 ↾

(s/e1)}.]
Clearly tpqf(g

′′
1 , g

′′
3 ; I) = tpqf(g1, g2; I) = tpqf(g

′′
2 , g

′′
3 ; I) so as E

is invariant and g1E g2 clearly g′′1E g′′3 ∧ g′′2E g′′3 which implies g′′1E g′′2 .
For Y ′ = Yh by clause (b) of (∗)2 we conclude that tpqf(g

′′
1 , g

′′
2 ; I) =

tpqf(h1, h2; I) so as E is invariant we are done.
3),4) Similarly. �6.16

6.17 Claim. Assume I, J ∈ K lin
τ∗

α(∗)
and E is an invariant (I, J)-

equivalence relation.
0) If e ∈ e(J, I) and E is non-trivial then DE ,e contains all co-finite
subsets of Dom(e)/e.
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1) If the pair (I, J) is reasonable and e ∈ e(I, J) then DE ,e is a filter
on Dom(e)/e but possibly ∅ ∈ DE ,e.
2) (a) DE is a filter on J

(b) if E is non-trivial then all cofinite subsets of J belongs
to DE but ∅ /∈ DE .

Proof. 0) Easy, see Definition 6.13(2).
1) By 6.16(2) and 6.16(3).
2) Trivial by Definition 6.15(1). �6.17

6.18 Main Claim. Assume

(a) I, J ∈ K lin
τ∗

α(∗)

(b) E is an invariant (I, J)-equivalence relation

(c) (I, J) is a reasonable (µ, α(∗))-base which is a wide (λ, µ, α(∗))-
base

(d) e ∈ e(J, I)

(e) g is a function from Dom(e)/e into some cardinal θ

(f) D∗ = {Y ⊆ θ : g−1(Y ) ∈ DE ,e} is a filter, i.e., ∅ /∈ D∗.

Then E has at least χ := λθ/D∗ equivalence classes.

Proof. Let 〈fα : α < χ〉 be a set of functions from θ to λ exemplifying
χ := λθ/D∗ so α 6= β ⇒ {i < θ : fα(i) = fβ(i)} /∈ D∗.

Let 〈hζ : ζ < λ〉 exemplify the pair (I, J) being a wide (λ, µ, α(∗))-
base, see Definition 6.10(4), so hζ ∈ incJ (I).

Lastly for each α < χ we define hα ∈ incJ (I) as follows:
hα(t) is: h0(t) if t ∈ J\Dom(e)

hfα(g(t/e))(t) if t ∈ Dom(e).

Now

(∗)1 hα is a function from J to I.

[Why? Trivially recalling each hζ is.]

(∗)2 hα is increasing.
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[Why? Let s <J t and we split the proof to cases.
If s, t ∈ J\Dom(e) use “h0 ∈ incJ (I)”.
If s ∈ J\Dom(e) and t ∈ Dom(e), then hα(t) = hfα(g(t/e))(t), h

α(s) =
h0(s) = hfα(g(t/e))(s) because 〈hα ↾ (J\Dom(e)) : α < λ〉 is constant
(recalling (h0, hα) is an e-pair (for α > 0)), so as hfα(g(t/e)) ∈ incJ (I)
we are done.
If s ∈ Dom(e), t ∈ J\Dom(e), the proof is similar.
If s, t ∈ Dom(e), s/e 6= t/e, we again use Definition 6.6(2B), clause
(b)(β) of Definition 6.10(4).

Lastly, if s, t ∈ Dom(e), s/e = t/e we get g(s/e) = g(t/e) hence
fα(g(s/e)) = fα(g(t/e)) call it γ so hα(s) = hγ(s), hα(t) = hγ(t) and
of course hγ ∈ incJ (I) hence hγ(s) <I hγ(t) so necessarily hα(s) <I

hα(t) as required. So (∗)2 holds.]

(∗)3 hα ∈ incJ(I).

[Why? Clearly if i < α(∗) and t ∈ P J
i then (∀β < λ)hβ(t) ∈ P J

i

hence α < χ ⇒ hfα(g(t/e))(t) ∈ P J
i which means α < χ ⇒ hα(t) ∈

P J
i ; so recalling (∗)2, clause (a) of Definition 6.3(2) holds. We should

check clauses (b),(c) of Definition 6.3(2) which is done as in the proof
of 6.7 and of (∗)2 above.]

(∗)4 if α < β and we let u = uα,β := ∪{g−1(ζ) : ζ < θ and fα(ζ) 6=
fβ(ζ)} so u ⊆ Dom(e)/e then (hα, hβ) is a (e ↾ set(u))-pair.

[Why? Case 1: If s ∈ J\Dom(e) then hα(s) = h0(s) = hβ(s).

Case 2: If s ∈ Dom(e)\set(u) then hα(s) = hfα(g(s/e))(s) =

= hfβ(g(s/e))(s) = hβ(s).

Case 3: If s, t ∈ set(u), s/e 6= t/e, s <J t then hα(s) <I hβ(t) ∧
hβ(s) <I h

α(t) because

Subcase 3A: If fα(g(s/e)) = fβ(g(t/e)) we use hfα(g(t/e)) ∈ incJ (I)
hence

hα(s) = hfα(g(s/e))(s) <I hfα(g(s/e))(t) = hfβ(g(t/e))(t) = hβ(t)

and similarly hβ(s) <I h
α(t).
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Subcase 3B: fα(g(s/e)) 6= fβ(g(t/e)) we use “(hfα(g(s/e)), hfβ(g(t/e)))
is an e-pair”.

Case 4: And lastly, if s, t ∈ set(u), s/e = t/e and s <J t then
hα(t) <I h

β(s) ≡ (s/e ∈ u) ≡ hα(s) <I h
β(t).

Why? Recalling fα(g(s/e)) 6= fβ(g(t/e)) as s, t ∈ set(u) by the
definition of u, see (∗)4 and we just use “(hfα(g(s/e)), hfβ(g(s/e)))” is
an e-pair and clause (c)′ of Definition 6.6.]

(∗)5 if α < β then uα,β 6= ∅ mod DE ,e.

[Why? By the choice of 〈fα : α < λ〉.]

(∗)6 if α < β then hα, hβ are not E -equivalent.

[Why? By (∗)4 + (∗)5 and 6.16(2).]
Together we are done. �6.18

6.19 Claim. Assume E is an invariant (I, J)-equivalence relation,
I, J are well ordered and |incJ (I)/E | ≥ λ = cf(λ) > µ = |I| >
|2 + α(∗)||J|. Then for some e ∈ e(I, J) there is an ultrafilter D on
Dom(e)/e extending DE ,e which is not principal.

Remark. This is close to [Sh 620, §7].

Proof. Without loss of generality as linear orders, J is ζ(∗) and I is
ξ(∗) ∈ [µ, µ+).

Toward contradiction assume the conclusion fails. Let g be a one-
to-one function from µ onto [ξ(∗)]<ℵ0 and χ be large enough and
κ = |J | and ∂ = |2 + α(∗)||J| so ∂κ = ∂.

We now choose 〈Nη : η ∈ nµ〉 by induction on n < ω such that

⊛1 (a) Nη ≺ (H (χ),∈)

(b) ‖Nη‖ = ∂ and ∂ + 1 ⊆ Nη

(c) A ⊆ Nη ∧ |A| ≤ κ⇒ A ∈ Nη

(d) I, J and g as well as η belong to Nη

(e) ν ⊳ η ⇒ Nν ∈ Nη (hence Nν ⊆ Nη so Nν ≺ Nη).

Paper Sh:734, Chapter IV



776 IV. CATEGORICITY AND SOLVABILITY OF A.E.C.

There is no problem to do this. Now it suffices to prove that for
every h ∈ incJ (I), for some h′ ∈ ∪{Nη : η ∈ ω>µ} ∩ incJ(I) we
have hE h′.

Fix h∗ ∈ incJ (I) such that h∗ /∈ ∪{h/E : h ∈ incJ (I) ∩ Nη for
some η ∈ ω>µ} and for each η ∈ ω>µ we define ᾱη, eη as follows:

⊛2 (a) ᾱη = 〈αη,t : t ∈ J〉

(b) αη,t = min((ξ(∗) + 1) ∩Nη\h∗(t))

(c) eη := {(s, t) : s, t ∈ J and αη,s = αη,t and αη,s > h∗(s) and
αη,t > h∗(t)}

(d) for α ∈ Nη let Xη,α := {t ∈ J : αη,t = α > h∗(t)}.

Note

(∗)1 ᾱη ∈ Nη.

[Why? As [Nη]≤κ ⊆ Nη and |J | = κ and αη,t ∈ Nη for every t ∈ J .]

(∗)2 (a) eη ∈ e(J), i.e. eη is an equivalence relation on some
subset of J with each equivalence class a convex subset of J ,
see Definition 6.6(1)

(b) 〈Xη,α : α ∈ {αη,t : t ∈ Dom(e)} hence Xη,α 6= ∅〉 list
the eη-equivalence classes.

[Why? Think.]

(∗)3 hη := h∗ ↾ (J\ Dom(eη)) ∈ Nη.

[Why? By the definition of eη we have t ∈ J ∧ t /∈ Dom(eη) ⇒
h∗(t) ∈ Nη and recall [Nη]≤κ ⊆ Nη.]

(∗)4 if t ∈ Dom(eη) then cf(αη,t) > ∂.

[Why? As αη,t ∈ Nη ≺ (H (χ),∈) if cf(αη,t) = θ ≤ ∂ then there is
a cofinal set B of αη,t of cardinality θ in Nη but θ ≤ ∂ + 1 ⊆ Nη

therefore B ⊆ Nη. In particular as h∗(t) < αη,t there is β ∈ B so
that h∗(t) < β, but this contradicts the choice of αη,t.]

(∗)5 eη ∈ e(J, I).
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[Why? Choose h′ ∈ incJ (I) ∩Nη similar enough to h∗, specifically:
t ∈ J\ Dom(eη) ⇒ h′(t) = h∗(t) and t ∈ Dom(eη) ⇒ sup{αη,s :
s ∈ J, s <J t and s /∈ t/eη} < h′(t) < αη,t. The point being that
sup{αη,s : s ∈ J, s <J t and s /∈ t/en} ∈ Nη. Now (h′, h∗) is a strict
e-pair.]

(∗)6 there is ℓη < ω and a finite sequence 〈βη,ℓ : ℓ < ℓη〉 of mem-
bers of Rang(ᾱη ↾ Dom(eη)) so Xη,βη,ℓ

∈ Dom(eη)/eη for
ℓ < ℓη such that ∪{Xη,βη,ℓ

: ℓ < ℓη} ∈ DE ,eη
.

[Why? Otherwise there is an ultrafilter as desired, but toward con-
tradiction we have assumed this does not occur; in trying to get
generalizations we should act differently.]

Now we choose (ηn, hn) by induction on n < ω such that

⊡(a) (a) ηn ∈ nµ

(b) if n = m+ 1 then ηm = ηn ↾ m

(c) hn ∈ incJ (I)

(d) h0 = h∗

(e) if n = m+ 1 then:

(α) hnE hm hence hnE h∗ and Dom(eηn
) ⊆ Dom(eηm

)

(β) hm ↾ (J\ Dom(eηm
)) ⊆ hn

(γ) (hm ↾ ∪{Xηm,βηm,ℓ
: ℓ < ℓηm

}) ⊆ hn

(δ) hn ↾ (Dom(eηm
)\∪{Xηm,βηm,ℓ

: ℓ < ℓηm
}) belongs

to Nηm

(ε) moreover t ∈ Dom(eηm
)\∪{Xηm,βηm,ℓ

: ℓ < ℓηm
}

implies hn(t) < hm(t)

(ζ) ℓηm
> 0

(f) Ym+1 ⊆ Ym where Ym := ∪{Xηm,βηm,ℓ
: ℓ < ℓη}.

Why can we carry out the construction? For n = 0 we obviously
can (choose h0 = h∗). For n = m + 1 first choose h′m ∈ Nηm

as we
choose in the proof of (∗)5. Now recalling 〈Xηm

, βηm,ℓ : ℓ < ℓηm
〉

was chosen in (∗)6, and define hn by hn ↾ (Dom(eηm
)\∪{Xηm,βηm,ℓ

:
ℓ < ℓηm

}) = h′m ↾ (Dom(eηm
)\ ∪ {Xηm,βηm,ℓ

: ℓ < ℓη}) and hn ↾
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(J\ Dom(eηm
)) = hm ↾ (J\ Dom(eηm

) and hn ↾ (∪{Xηm,βηm,ℓ
: ℓ <

nηm
}) = hm ↾ (∪{Xηm,βηm,ℓ

: ℓ < ℓηm
}). Why hnE hm? Because

(i) as in the proof of (∗)5, (hn, hm) form a strict ℓη-pair

(ii) they agree on ∪{Xηm,βηm,ℓ
: ℓ < ℓη}

(iii) {Xηm,βηm ,ℓ : ℓ < n} ∈ DE ,eη
.

Lastly, choose ηn = ηmˆ〈γm〉 where γm is chosen such that g(γm) =
{sup(βηm,ℓ\ sup{hm(t) : t ∈ Xβηm,ℓ

}) : ℓ < ℓηm
} recalling that g is a

function from µ onto [ξ(∗)]<ℵ0 = [I]<ℵ0 .
Now check that ηn, hn are as required.
Note that this induction never stops in the sense that hn /∈ Nηn

recalling the choice of h∗ and hnE h∗. Now Un := {βηm,ℓ : ℓ < nη} is
a finite non-empty set of ordinals, and if n = m+1, then easily (∀ℓ <
ℓηn

)(∃k < ℓηm
)(βηn,ℓ < βηm,k) because for ℓ < ℓηn

letting t ∈ Xηn,ℓ

we know that for some k ≤ ℓηm
we have t ∈ Xηm,k and ηn(m) was

chosen above such that as γm, now h∗(t) ≤ γn ∈ Nηn
, γm ≤ αηm,t

and the inequality is strict as cf(αηm,t) > 0. So 〈max(Un) : n < ω〉
is a decreasing sequence of ordinals, contradiction, so we are done.
�6.19

6.20 Example: For e ∈ e(J, I), J ∈ K lin
τ∗

α(∗)
and I ∈ K lin

τ∗

α(∗)
we de-

fine E ∗
e = E ∗

e,I ; it is an invariant equivalent relation on incJ (I), by:
h1E

∗
e,Ih2 iff:

(a) if t ∈ J\Dom(e) then h1(t) = h2(t)

(b) if t ∈ Dom(e) then cnvI,h1
(t) = cnvI,h2

(t) where cnvI,h(s) :=
the convex hull (in I) of the set {h1(s)} ∪

⋃

{[h1(s), h1(t)]I :
s <J t and t ∈ s/e} ∪

⋃

{[h(t), h(s)]I : t <J s and t ∈ s/e}.

1) If J, I ∈ K lin
τ∗

α(∗)
are well ordered and e = J×J then E ∗

e,I from part

(1) has ≤ |I| + ℵ0 equivalence classes.
2) If J ∈ K lin

τ∗

α(∗)
and e as in part (2), θ = cf(J) and |J | < λ = λ<θ <

λθ then there is I ∈ K lin
τ∗

α(∗)
of cardinality λ such that E ∗

e,I has λθ

equivalence classes.

Remark. We can define the stability spectrum for some classes, essen-
tially this is done in §7, generally we intend to look at it in [Sh:F782].
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§7 Categoricity for a.e.c. with bounded amalgamation

Recall that 4.10 is the main result of this chapter; we think that
it will lead to understanding the categoricity spectrum of an a.e.c.
In particular we hope eventually to prove that this spectrum con-
tains or is disjoint to some end segments of the class of cardinals.
Still here we like to show that what we have is enough at least for
restricted enough families of a.e.c. K’s, those definable by Lκ,ω, κ a
measurable cardinal or with enough amalgamation (concerning them
and earlier results see Chapter N). We could have relied on8 [Sh 394],
but though we mention connections, we do not rely on it, preferring
self-containment.

We can say much even if we replace categoricity by strong solv-
ability, but do this only when it is cheap; we can work even with
weak and even pseudo-solvability but not here.

7.1 Hypothesis. 1) K is an a.e.c., so S (M) = SKλ
(M) for M ∈ Kλ,

see II.1.9.
2) Let Kx

µ be the class Kµ if K is categorical in µ and the class
of superlimit models in Kµ if there is one, (the two definitions are
compatible).

The following is a crucial claim because lack of locality is the problem
in [Sh 394].

7.2 Claim. Assume

(a) cf(µ) > κ ≥ LS(K)

(b) K<µ has amalgamation

(c) Φ ∈ Υor
κ [K] satisfies: if I is θ-wide and θ ∈ (κ, µ) then

EMτ(K)(I,M) is θ-saturated (see 0.14(1), II.1.13(2) and II.1.14).

Then

(α) for some µ∗ < µ, the class {M ∈ K<µ : M is saturated} is
[µ∗, µ)-local, see Definition 7.4(3) below

8In the references to [Sh 394], e.g. 1.6tex is to 1.6 in the published version
and 1.8 is in the e-version.
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(α)+ this applies not only to S (M) = S 1(M) but also for S ∂(M)
if cf(µ) > κ∂ .

Recall

7.3 Definition. K is µ-stable if µ ≥ LS(K) and M ∈ K≤µ ⇒
|S (M)| ≤ µ.

Recall ([Sh 394, Def.1.8=1.6tex](1),(2).

7.4 Definition. 1) For M ∈ K, µ ≥ LS(K), satisfying µ ≤ ‖M‖
and α, let EM,µ,α be the following equivalence relation on S α(M) :
p1EM,µ,αp2 iff for every N ≤K M of cardinality µ we have p1 ↾ N =
p2 ↾ N . We may suppress α if it is 1, similarly below; let Eµ,α be
⋃

{EM,µ,α : M ∈ K} and so Eµ = Eµ,1.
2) We say that M ∈ K is µ−α-local when EM,µ,α is the equality; we
say that p ∈ S α(M) is µ-local if p/EM,µ,α is a singleton and we say
e.g. K ′ ⊆ K is µ−α-local (in K, if not clear from the context) when
every M ∈ K ′ is.
3) We say K ′ ⊆ K is [µ∗, µ) − α-local if every M ∈ K ′ ∩ K[µ∗,µ) is
µ∗ − α-local.
4) We say that ā ∈ N realizes p ∈ S α

K
(M)/Eµ,α if M ≤K N and for

every M ′ ≤K N of cardinality µ the sequence ā realizes p ↾ M ′ in N
or pedantically realizes q ↾ M ′ for some, equivalently every q ∈ p.

Remark. If M ∈ Kµ, then M is µ− α-local.

Proof of 7.2. Recall Φ ∈ Υor
κ [K], see Definition 0.8(2) and Claim

0.9. Easily there is 〈Iθ : θ ∈ [κ, µ)〉, an increasing sequence of wide
linear orders which are strongly ℵ0-homogeneous (that is dense with
neither first nor last element such that if n < ω and s̄, t̄ ∈ n(Iθ) are
<I -increasing then some automorphism of Iθ maps s̄ to t̄, e.g. the
order of any real closed field/or just ordered field) satisfying |Iθ| = θ.

Recalling Q here is the rational order, we let Jθ = Q + Iθ,Mθ =
EMτ(K)(Iθ,Φ) and Nθ = EMτ(K)(Jθ,Φ). So

⊛(a) Mθ ≤Kθ
Nθ
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IV§7 CATEGORICITY WITH BOUNDED AMALGAMATION 781

(b) Mθ1
≤K Mθ2

and Nθ1
≤K Nθ2

when κ ≤ θ1 < θ2 < µ

(c) Mθ is saturated (for K, of course) when θ > κ

(d) every type from S (Mθ) is realized in Nθ

(e) if n < ω, ā ∈ n(Nθ) then for some ā′ ∈ n(Nκ) and automor-
phism π of Nθ, π(ā) = ā′ and π maps Mθ onto itself.

[Why? Clauses (a),(b) holds by clause (c) of Claim 0.9(1) recalling
Definition 0.8(2).
Clause (c) holds by Clause (c) of the assumption of 7.2; you may
note [Sh 394, 6.7=6.4tex](2).
Clause (d) holds as EMτ(K)(θ

+ + Jθ,Φ) ∈ Kθ+ is saturated, and
use the definition of a type (or like the proof of claue (e) below
using appropriate I ′ + Iθ instead θ+ + Jθ); you may note [Sh 394,
6.8=6.5tex].
Clause (e) holds as for every finite sequence t̄ from Jθ there is an
automorphism π of Jθ such that: π is the identity on Q, it maps Iθ
onto itself and it maps t̄ to a sequence from Jκ = Q + Iκ, such π
exists as Iθ is strongly ℵ0-homogeneous and Iκ ⊆ Iθ is infinite.]
For any a 6= b from Nκ let

µ(a, b) = Min{θ :θ ≥ κ and if θ < µ

then tpK(a,Mθ, Nθ) 6= tpK(b,Mθ, Nθ)}.

So µ(a, b) ≤ µ. Let

µ∗ = sup{µ(a, b) : a, b ∈ Nκ and µ(a, b) < µ}.

So µ∗ is defined as the supremum on a set of ≤ κ× κ cardinals < µ,
which is a cardinal of cofinality cf(µ) > κ, hence clearly µ∗ < µ. Also
µ∗ ≥ κ as there are a 6= b from Mκ hence µ(a, b) = κ. Now suppose
that θ ∈ [µ∗, µ),M ∈ Kθ is saturated and p1 6= p2 ∈ S (M) and we
shall find M ′ ≤K M,M ′ ∈ Kµ∗

such that p1 ↾ M ′ 6= p2 ↾ M ′, this
suffice.

Clearly Mθ ∈ Kθ is saturated (by clause (c) of ⊛) hence the
models M,Mθ are isomorphic so without loss of generality M = Mθ.
But by clause (d) of ⊛ every type from S (Mθ) is realized in Nθ, so
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let bℓ be such that pℓ = tpK(bℓ,Mθ, Nθ) for ℓ = 1, 2. Now there
is an automorphism π of Nθ which maps Mθ onto itself and maps
b1, b2 into Nκ (by clause (e) of ⊛) and let aℓ = π(bℓ) for ℓ = 1, 2, so
a1, a2 ∈ Nκ.

Now

tp(a1,Mθ, Nθ) = tp(π(b1), π(Mθ), π(Nθ)) = π(tp(b1,Mθ, Nθ)) 6=

6= π(tp(b2,Mθ, Nθ)) = tp(π(b2), π(Mθ), π(Nθ)) = tp(a2,Mθ, Nθ).

Hence by the definition of µ(a1, a2) we have µ(a1, a2) ≤ θ < µ.
Hence by the definition of µ∗ we have µ(a1, a2) ≤ µ∗ which implies
that tpK(a1,Mµ∗

, Nµ∗
) 6= tpK(a2,Mµ∗

, Nµ∗
).

As π is an automorphism of Nθ and Mµ∗ ≤K Mθ it follows that

tpK(π−1(a1),π
−1(Mµ∗), π−1(Nθ)) 6=

6= tpK(π−1(a2), π
−1(Mµ∗), π−1(Nθ))

which means
tpK(b1, π

−1(Mµ∗), Nθ) 6= tpK(b2, π
−1(Mµ∗), Nθ), but π−1(Mµ∗) ≤K

Mθ as π maps Mθ onto itself and recall that pℓ = tpK(bℓ,Mθ, Nθ) so
pℓ ↾ π−1(Mµ∗) is well defined for ℓ = 1, 2. Hence p1 ↾ π−1(Mµ∗) 6=
p2 ↾ π−1(Mµ∗) and clearly π−1(Mµ∗) has cardinality µ∗ and is ≤K

Mθ, so we are done proving clause (α). The proof of clause (α)+ is
the same except that

(∗)1 if θ ∈ [κ, µ), t̄ ∈ ∂(Iθ) then some automorphism π of Iθ maps
t̄ to some t̄′ ∈ ∂(Iκ), justified by 5.1

(∗)2 we replace Q by ∂+

(∗)3
∂(Nκ) has cardinality ≤ (∂+ + κ)∂ ≤ κ∂ < cf(µ).

�7.2

Implicit in non-µ-splitting is

7.5 Definition. Assume α < µ+, N ∈ K≤µ, N ≤K M and p ∈
S α(M) does not µ-split over N , see Definition III.2.18(1). The
scheme of the non-µ-splitting, p = schµ(p,N) is {(N ′′, c, b̄)c∈N/ ∼=:
we have N ≤K N ′ ≤K M and N ′ ≤K N ′′, {N ′, N ′′} ⊆ Kµ and the
sequence b̄ realizes p ↾ N ′ in the model N ′′}.
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7.6 Definition. For a cardinal µ and model M let
1)

ps − Sµ(M) = SK,µ(M) = {p :p is a function with domain

{N ∈ Kµ : N ≤K M}

such that p(N) ∈ S (N)

and N1 ≤K N2 ∈ Dom(p)

⇒ p(N1) = p(N2) ↾ N1}.

2) For p ∈ S (M) let p ↾ (≤ µ) be the function p with domain
{N ∈ Kµ : N ≤K M} such that p(N) = p ↾ N .

7.7 Observation. 1) The function p 7→ p ↾ (≤ µ) is a function from
S (M) into ps-Sµ(M) such that for p1, p2 ∈ S (M) we have p1 ↾ (≤
µ) = p2 ↾ (≤ µ) ⇔ p1Eµp2.
2) The subset {p ↾ (≤ µ) : p ∈ S (M)} of ps-Sµ(M) has cardinality
|S (M)/Eµ|.

Proof. Should be clear. �7.7

7.8 Claim. Every (equivalently some) M ∈ Kx
µ is λ+-saturated

when:

(a) (α) K is categorical in µ
or just
(β) K is strongly solvable in µ

(b) LS(K) ≤ λ < χ ≤ µ and 22λ

≤ µ (actually 2λ ≤ µ suffice)

(c) (α) ℵλ+4 = λ+λ+4

≤ χ
or at least

(β) if θ = cf(θ) ≤ λ is ℵ0 or a measurable cardinal then
for some ∂ ∈ (λ, χ) we have: ∂ = ∂<θ < ∂θ or at least
∂<θ>tr > ∂ (i.e. there is a tree T with θ levels, ∂ nodes and
the number of θ-branches of T is > χ, see [Sh 589])
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(d) K≥∂ 6= ∅ for every ∂, equivalently K≥θ 6= ∅ for arbitrarily
large θ < i1,1(LS(K))

(e) (α) K<µ has amalgamation and JEP
or just

(β) if LS(K) ≤ ∂ < χ then

(i) K∂ has amalgamation and JEP and

(ii) K has (∂,≤ ∂+, µ)-amalgamation9 (see I.2.7(2))
hence10

(iii) every M ∈ K∂+ has a ≤K-extension in Kx
µ

(actually (i) + (iii) suffices).

Remark. 1) M is λ+-saturated is well defined as K≤λ has amalga-
mation.
2) We assume 22λ

≤ µ because the proof is simpler with not much
loss (at least as long as other parts of the analysis are not much
tighter).
3) We can weaken the assumptions. In particular using solvability
instead categoricity, but for non-essential reasons this is delayed;
similarly in 7.12.
4) If µ = µλ the claim is easy (as in §1).

Proof. Note that by [Sh:g, IX,§2], [Sh:g, II,3.1] if clause (c)(α) holds
then clause (c)(β) holds, hence we can assume (c)(β).

Let Φ ∈ Υor
K

see Definition 0.8(2), exist by 0.9 and clause (d) of
the assumption and I ∈ K lin

µ ⇒ EMτ(K)(I,Φ) ∈ Kx
µ (trivially if K

is categorical in µ, otherwise by the definition of solvable).
Clearly

(∗)0 if ∂ ∈ [LS(K), χ) then K is stable in ∂.

9It suffices to have: if M0 ≤K M1 ∈ K∂+ , M1 ≤K M2 ∈ Kx
µ and M0 ∈ K∂

then M1 can be ≤K -embedded into some M3 ∈ Kx
µ . Similarly in 7.12.

10Why? Assume M ∈ K∂+ let M2 ∈ Kx
µ , let M0 ≤K M2 be of cardinality

∂, let M1 ∈ K∂+ be a ≤K -extension of M0 which there is an ≤K -embedding

f of M into M1 (exists as K∂ has amalgamation and JEP). Lastly, use “K has
(∂,≤ ∂+, µ)-amalgamation
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[Why? We prove assuming clause (e)(β), as the case of clause (e)(α)
is easier. Otherwise as K∂ has amalgamation there are M0 ≤K M1

such that M0 ∈ K∂ ,M1 ∈ K∂+ and {tpK(a,M0,M1) : a ∈ M1}
has cardinality ∂+. By assumption (e)(β)(iii) there is N1 such that
M1 ≤K N1 ∈ Kµ and without loss of generality N1 ∈ Kx

µ . Let I be as

in 5.1 with (λ, θ2, θ1, µ) there standing for (µ, ∂++, ∂+, ∂) here and
N2 := EMτ(K)(I,Φ). Now by 5.1(2), N1 ≇ N2, contradiction to “K

categorical in µ”. Or you may see [Sh 394, 1.7=1.5tex].]

The proof now splits to two cases.
Case 1: For every M ∈ Kx

µ we have µ ≥ |S (M)/Eλ|.
For every M ∈ Kx

µ there is M ′ such that: M ≤K M ′ ∈ Kµ and
for every p ∈ S (M)/Eλ either p is realized in M ′ or there are no
M ′′, a such that M ′ ≤K M ′′ ∈ Kµ and a ∈M ′′ realizes p in M ′′.
[Why? Let 〈pi/Eλ : i < µ〉 list S (M)/Eλ, exists by the assumptions
and choose Mi for i ≤ µ,≤Kµ

-increasing continuous such that Mi+1

satisfies the demand for p = pi/Eλ, possibly no p ∈ pi/Eλ has an
extension in S (Mi+1) (hence is not realized in it), so then the desired
demand holds trivially; note that it is not unreasonable to assume
Kµ has amalgamation and it clarifies but it is not necessary.]

Also without loss of generality M ′ ∈ Kx
µ as any model M from

Kµ has a ≤K-extension in Kx
µ (at least if M does ≤K-extend some

M ′ ∈ Kx
µ).

Now we can choose by induction on i ≤ λ+ a model Mi ∈ Kx
µ ,≤K-

increasing continuous with i, such that for every p ∈ S (Mi) either
there is q ∈ S (Mi) realized in Mi+1 which is Eλ-equivalent to p
or there is no ≤K-extension of Mi+1 satisfying this. Now we shall
prove that Mλ+ is λ+-saturated recalling Definition II.1.13. Now if
N ≤K Mλ+ , ‖N‖ ≤ λ and p ∈ S (N) then there is i < λ+ such
that N ≤K Mi and we can find p′ ∈ S (Mλ+) extending p. (Why?
If clause (e)(α) holds then this follows by K<µ having amalgama-
tion, see I.2.12. If clause (e)(β) holds, use “K has the (λ,≤ λ+, µ)-
amalgamation property” recalling LS(K) ≤ λ < χ.) Hence there is
a ∈ Mi+1 such that tp(a,Mi,Mi+1)Eλ(p′ ↾ Mi), hence a realizes p
in Mi+1 hence in Mλ+ .

Case 2: Not Case 1.
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Let I be as in 5.1 with (λ, θ2, θ1, µ) there standing for (µ, λ++, λ+, λ)
here, so |I| = µ. Let M = EMτ(K)(I,Φ), so by not Case 1 we can

find pi ∈ S (M) for i < µ+ pairwise non-Eλ-equivalent. As Kλ is
a λ-a.e.c. with amalgamation and is stable in λ (by (∗)0) we can
deduce, see III.2.21(2), that: if p ∈ S (M) then for some N ≤K M of
cardinality λ the type p does not λ-split over N (or see [Sh 394, 3.2
= 3.2tex](1)). For each i choose Ni ≤K M of cardinality λ such that
pi does not µ-split over Ni. As there is no loss in increasing Ni (as
long as it is ≤K M and has cardinality λ) without loss of generality

(∗)1 Ni = EMτ(K)(Ii,Φ) where Ii ⊆ I and |Ii| = λ and let t̄i =

〈tiε : ε < λ〉 list Ii with no repetitions.

As 2λ ≤ µ without loss of generality the Ii’s are pairwise isomorphic,
so without loss of generality for i, j < µ+, the mapping tiε 7→ tjε is
such an isomorphism. Moreover, without loss of generality

(∗)2 for every i, j < µ+ there is an automorphism πi,j of I map-
ping tiε to tjε for ε < λ.

[Why? By 5.1(1) as we can replace 〈pi : i < µ+〉 by 〈pi : i ∈ U 〉 for
every unbounded U ⊆ µ+.]

Let pi be the non-λ-splitting scheme of p over Ni (see Definition
7.5). Without loss of generality:

(∗)3 for i, j < µ+, the isomorphism hi,j from Nj = EMτ(K)(Ij,Φ)

onto Ni = EMτ(K)(Ii,Φ) induced by the mapping tjζ 7→ tiζ
(for ζ < λ) satisfies

(i) it is an isomorphism from Nj onto Ni

(ii) it maps pj to pi.

[Why? For (i) this holds by the definition of EM(Ii,Φ). For (ii) let

hi,0 map pi to p′i. The number of schemes is ≤ 22λ

; so if µ ≥ 22λ

then without loss of generality i < µ+ ⇒ p′i = p′1 hence we are done

(with no real loss). If we weaken the assumption µ ≥ 22λ

to µ ≥ 2λ

(or even µ > λ so waive (∗)2) using 5.1(4) we can find I+
i such that

Ii ⊆ I+
i ⊆ I, |I+

i | ≤ λ+ and for every J ⊆ I of cardinality ≤ λ

Paper Sh:734, Chapter IV



IV§7 CATEGORICITY WITH BOUNDED AMALGAMATION 787

there is an automorphism of I over Ii mapping J into I+
i . So only

〈p′i((EMτ(K)(I
+
0 ,Φ), c, b̄))c∈EMτ(K)(I0,Φ)/ ∼=) : b̄ ∈ λ(EMτ(K)(I

+
0 ,Φ))〉

matters (an overkill) but this is determiend by pi ↾ EMτ(K)(I
+
0 ,Φ))

which ∈ S (EMτ(K)(I
+
0 ,Φ)) by (∗)0 and as K is stable in λ+ without

loss of generality p′1+i = p′1 and we are done.]

Now we translate our problem to one on expanded (by unary
predicates) linear orders which was treated in §6. Recall that by
5.1(3), we can use I = EM{<}(I

∗,Ψ) where Ψ ∈ Υlin
ℵ0

[2], see Defini-

tion 0.11(5), and I∗ = I lin
λ,µ×λ+ from 6.12(2) with α(∗) = 2. Recall

that I∗ = I lin
λ,µ×λ++ is µ× λ++ expanded by P1 = {α ∈ I∗ : cf(α) ≥

λ+}, P0 = I∗\P0 so I∗ is a well ordered τ∗2 -model, i.e. ∈ K lin
τ∗

2
, see

Definition 0.11(5). Without loss of generality Ii = EM{<}(I
∗
i ,Ψ)

where I∗i ⊆ I∗ has cardinality λ and the pair (I∗, I∗i ) is a reason-
able (λ, α(∗))-base which is a wide (µ, λ, α(∗))-base, see Definition
6.10(3)(4), Claim 6.12(2). Without loss of generality for every i < µ+

there is hi, an isomorphism from I∗0 onto I∗i such that (see below)

the induced function h
[1]
1 maps t̄0 to t̄i. Let J∗ = I∗0 and J = I0.

We like to apply §6 for J∗, I∗ fixing α(∗) = 2, ū∗ = (u−, u+) =

({0}, ∅). So recalling Definition 6.3(2) for every h ∈ incū∗

J∗(I∗) we can

naturally define the function h[1] by h[1](σEM(J∗,Ψ)(t0, . . . , tn−1)) =

σEM(J∗,Ψ)(ah(t0), . . . , ah(tn−1)) whenever σ(x0, . . . , xn−1) is a τ(Ψ)-
term and J∗ |= “t0 < . . . < tn−1” so it is an isomorphism from
EM{<}(J

∗,Ψ) onto EM{<}(I
∗ ↾ Rang(h),Ψ) so as J∗ ⊆ I∗ by 5.1(5)

there is an automorphism h[2] of I extending h[1] and so there is an
automorphism h[3] of EM(I,Φ) such that h[3](at) = ah[2](t) for t ∈ I

and h[3](σEM(I,Φ)(at0 , . . . , atn−1
)) = σEM(I,Φ)(ah[2](t0), . . . , ah[2](tn))

where t0 <I . . . <I tn−1 and σ(x0, . . . , xn−1) is a τ(Φ)-term.

Note that

(∗)4 if h′, h′′ are automorphisms of EMτ [K](I,Φ) extending h[3] ↾

EMτ [K](I0) then h′(p0/Eλ) = h′′(p0/Eλ).

[Why? Because p0 does not λ-split over EMτ [K](I0,Φ).]

We define a two-place relation E on incJ∗(I∗) by: h1E h2 if

h
[3]
1 (p0/Eλ) = h

[3]
2 (p0/Eλ). (Note that h 7→ h[3] is a function so this

is well defined and h[3] is an automorphism of EMτ(K)(I,Φ)). By

Paper Sh:734, Chapter IV



788 IV. CATEGORICITY AND SOLVABILITY OF A.E.C.

(∗)4 clearly E is an invariant equivalence relation on incū∗

J∗(I∗) with
> µ equivalence classes as exemplified by 〈hi : i < µ+〉.

By 6.19 there is e ∈ e(J∗, I∗) such that (recalling Definition 6.16)
the filter DE ,e has an extension to a non-principal ultrafilter D so
for some regular θ ≤ λ there is a function g from Dom(e)/e onto
θ which maps D to a uniform ultrafilter g(D) on θ, so ∂<θ>tr ≤
∂Dom(e)/e/DE ,e for every cardinal ∂. Choose such a pair (g, θ) with
minimal θ so D is θ-complete hence θ = ℵ0 or θ is a measurable
cardinal ≤ λ. By clause (c)(β) of our assumption justified in the
beginning of the proof there is ∂ ∈ (λ+, χ) such that ∂ < ∂<θ>tr

hence ∂+ ≤ ∂<θ>tr ≤ ∂Dom(e)/e/DE ,e. So letting I0
∂ = I lin

λ,∂×λ++ ⊆ I∗

the set {t̄/E : t̄ ∈ incrJ∗(I∗) and Rang(t̄) ⊆ I0
∂} has cardinality > ∂.

Now for each t̄ ∈ incJ∗
ū∗

(I∗) let πt̄ ∈ Aut(I) be such that πt̄(t̄0) = t̄
and let π̂t̄ be the automorphism of EMτ(K)(I,Φ) which πt̄ induce,

and let pt = π̂t̄(p0) ∈ S (M). Hence {π̂t̄(p0) ↾ EMτ(K)(I
lin
λ,∂×λ+ ,Φ) :

t̄ ∈ incJ∗
ū∗

(I∗) and Rang(t̄) ⊆ I lin
λ,∂×λ++} is of cardinality > ∂,

contradicting “K stable in ∂” from (∗)0. �7.8

Note but we shall not use

7.9 Conclusion. 1) Under the assumptions of 7.8 we have κ(Kµ) =
ℵ0, see below.
2) Moreover, κst(Kµ) = ∅.

Recall

7.10 Definition. If Kµ is an µ-a.e.c. with amalgamation which is
stable, then:

(a) κ(Kµ) = ℵ0 + sup{κ+ : κ regular ≤ µ and there is an ≤Kµ
-

increasing continuous sequence 〈Mi : i ≤ κ〉 and p ∈ S (Mκ)
such that M2i+2 is universal over M2i+1 and p ↾ M2i+2 does
µ-split over M2i+1}

(b) κsp(Kµ) := {κ : κ regular ≤ µ and there is an ≤Kµ
-increasing

continuous sequence 〈Mi : i ≤ κ〉 and p ∈ S (Mκ) which
µ-splits over Mi for each i < κ and M2i+2 is universal over
M2i+1}.
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Proof of 7.9. By playing with EM(I,Φ), (or see Claim [Sh 394,
5.7=5.7tex] and Definition [Sh 394, 4.9=4.4tex]). �7.9

7.11 Question: Can we omit assumption 7.8(c) (see below so χ =
LS(K))?

7.12 Theorem. For some cardinal λ∗ < χ and a cardinal λ∗∗ <
i1,1(λ

+ω
∗ ) above λ∗,K is categorical in every cardinal λ ≥ λ∗∗ but in

no λ ∈ (λ∗, λ∗∗) provided that:

⊛
µ,χ
K

(a) K is an a.e.c. cateogorical in µ

(b) K has amalgamation and JEP in every λ < ℵχ, λ ≥
LS(K)

(c) χ is a limit cardinal, cf(χ) > LS(K), and for arbitrarily

large λ < χ the sequence 〈2λ+n

: n < ω〉 is increasing

(d) µ > i1,1(λ) for every λ < χ hence µ ≥ ℵχ

(e) every M ∈ K<ℵχ
has a ≤K-extension in Kµ.

Remark. 1) Concerning [Sh 394] note

(a) there the central case was K with full amalgamation (not just
below χ≪ µ!), trying to concentrate on the difficulty of lack
of localness,

(b) when we use clause (e) this is just to get the “M ∈ Kµ is
λ-saturated”, this is where we use 7.8

(c) we demand “cf(χ) > LS(K)” to prove locality.

2) We rely on Chapter II and Chapter III in the end.
3) The assumption (e) of 7.12 follows if K has amalgamation in every
λ′ ≤ i1,1(λ) for λ < χ which is a reasonable assumption.
4) Most of the proof works even if we weaken the assumption (a) to
“K is strongly solvable in µ” and even weakly solvable, i.e. up to ⊡7,
we continue in and see more [Sh:F782].
5) Theorem 7.12 also continue Kolman-Shelah [KlSh 362], [Sh 472],
as its assumptions are proved there.
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Proof. Let κ = LS(K) and let Φ ∈ Υor
κ [K] be as guaranteed by 0.9(1)

hence

(∗)1 if I ∈ K lin
λ then EMτ(K)(I,Φ) belongs to Kλ for λ ≥ LS(K)

(and in the strongly solvable case, I ∈ K lin
µ ⇒ EMτ(K)(I,Φ) ∈

Kx
µ)

and

(∗)2 if I ⊆ J are from K lin then EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ).

Also

(∗)3 〈SK(M) : M ∈ K<ℵχ
〉 has the reasonable basic properties.

[Why? See II.1.9 and II.1.11 because K<ℵχ
has the amalgamation

property by clause (b) of the assumption ⊛
µ,χ
K

).]

(∗)4 if M ∈ Kµ then M is χ-saturated (hence χ-model homoge-
neous).

[Why? We shall prove that: if LS(K) ≤ λ < χ and M ∈ Kx
µ then M

is λ+-saturated. We shall show that all the assumptions of 7.8 with
(µ, χ, λ) there standing for (µ,ℵχ, λ) here hold. Let us check; clause
(a) of 7.8 means “K is categorical in µ” (or is strongly solvable) which
holds by clause (a) of ⊛

µ,χ
K

. Clause (b) of 7.8 says that LS(K) ≤ λ <

ℵχ ≤ µ and 22λ

≤ µ; the first holds because of the way λ was
chosen above and the second holds as clause (d) of ⊛

µ,χ
K

says that

µ > i1,1(λ) and µ ≥ ℵχ. Clause (c)(α) of 7.8 holds as λ+λ+4

< ℵλ+5

which is < ℵχ as χ is a limit cardinal and ℵχ here plays the role of
χ there. Clause (d) of 7.8 says K≥∂ 6= ∅ for every cardinal ∂, holds
by (∗)1 above. Lastly, clause (e) of 7.8 holds more exactly clauses
(e)(β)(i) + (iii) hold by clauses (b) + (e) of ⊛

µ,χ
K

and they suffice.
We have shown that all the assumptions of 7.8 holds, hence its

conclusion, which says, as M ∈ Kµ, that M is λ+-saturated. The
“χ-model homogeneous” holds by II.1.14.]

(∗)5 if M ≤K N are from Kx
µ then M ≺L∞,χ[K] N .

[Why? Obvious by (∗)4.]
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(∗)6 if λ ∈ (κ, χ) and I ∈ K lin
≥λ is λ-wide then EMτ(K)(I,Φ) is

λ-saturated; moreover, if I+ ∈ K lin
λ is wide over I then every

p ∈ S (EMτ(K)(I,Φ)) is realized in EMτ(K)(I
+,Φ).

[Why? By 1.14, its assumption “Φ satisfies the conclusion of 1.12”
holds by (∗)5, (or as in [Sh 394, 6.8=6.5tex]). The “moreover” is
immediate by (∗)4 as in the proof of ⊛(d) inside the proof of 7.2
above or see the proof of (∗)10 below.]

(∗)7 K is stable in λ when κ ≤ λ < χ.

[Why? Recalling clause (e) of the assumption of 7.12, by Claim 7.8
or more accurately (∗)0 in its proof as we have proved (in the proof of
(∗)4) that the assumptions of 7.8 holds with (µ, χ, λ) there standing
for (µ,ℵχ, λ) here.]

(∗)8 if λ ∈ [κ, χ) and M ∈ Kx
λ then there is N ∈ Kλ which is

(λ,ℵ0)-brimmed over M

[Why? By (∗)7 and II.1.16(1)(b) remembering the amalgamation,
clause (b) of the assumption of the theorem.]

(∗)9 if 〈Mα : α ≤ λ〉 is ≤K-increasing continuous, κ ≤ ‖Mλ‖ ≤
λ < χ, then no p ∈ SK(Mλ) satisfies p ↾ Mi+1 does λ-split
over Mi for every i < λ.

[Why? Otherwise we get contradiction to stability in λ, i.e. (∗)7,
see in III.2.21(1B), using amalgamation (using the tree θ>2 when
θ = min{∂ : 2∂ > λ}; also we can prove it as in the proof of case 2
inside the proof of 7.8.]

We could use more

(∗)10 if I1, I2 are wide linear orders of cardinality λ ∈ (κ, χ) and
I2 is wide over I1 so I1 ⊆ I2 and Mℓ = EMτ(K)(Iℓ,Φ), then
M2 is universal over M1 and even brimmed over I1, even
(λ, ∂)-brimmed for any regular ∂ < λ.

[Why? As I2 is wide over I1, we can find a sequence 〈Jγ : γ < λ〉
of pairwise disjoint subsets of I2\I1 such that each Jγ is a convex
subset of I2 and in Jγ there is a monotonic sequence 〈tγ,n : n < ω〉
of members. Let 〈γε : ε < λ × ∂〉 list λ, and let I2,0 = I1 and
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I2,1+ε = I2\ ∪ {Jγζ
: ζ ∈ [1 + ε, λ× ∂)} and M ′

ζ = EMτ(K)(I2,ε,Φ).

So 〈M ′
ζ : ζ ≤ λ×∂〉 is ≤K-increasing continuous sequence of members

of Kλ; first member M1, last member M2.
By II.1.16(4)(b) it is enough to prove that if ε < λ × ∂ and p ∈

S (Mε) then p is realized in Mε+1. As I1 is wide of cardinality λ so is
I2,ε hence M ′

ε is saturated. Also for each ε we can find a linear order
I+
2,ε of cardinality λ such that I2,ε+1 ⊆ I+

2,ε and J+
ε = I+

2,ε+1\I2,ε is

a convex subset of I+
2,ε+1 and is a wide linear order of cardinality λ

which is strongly ℵ0-homogeneous, (recall Jγε
⊆ J+

γε
is infinite). So

in M+
ε+1 = EMτ(K)(I

+
2,ε+2,Φ) every p ∈ S (M1

ε ) is realized (as I+
2,ε+1

is wide over I2,ε as J+
ε is wide of cardinality λ), moreover realized in

M ′
ε+1 (why? by the strong ℵ0-homogeneous every element and even

finite sequence from M+
ε+1 can be mapped by some automorphism of

M+
ε+1 over Mε into Mε+1). As said above, this suffices.]

⊛1 χ∗ is well defined ∈ (κ, χ) where

χ∗ = Min{θ :κ < θ < χ and for every saturated

M ∈ K, if θ ≤ ‖M‖ < χ, every

p ∈ S (M) is θ-local, see Definition 7.4(2)}.

[Why? By 7.2 which we apply with (µ, κ) there standing for (χ, κ)
here recalling κ = LS(K); this is O.K. as: clause (a) in 7.2 holds by
clause (c) of the assumption here, clause (b) in 7.2 holds by clause
(b) of the assumption here as χ ≤ ℵχ. Lastly, clause (c) in 7.2 easily
follows by (∗)6 above.]

⊛2 if λ ∈ (κ, χ) and 〈Mi : i ≤ δ〉 is ≤Kλ
-increasing continuous,

Mi+1 is ≤K-universal over Mi for i < δ then Mδ is saturated
and moreover every p ∈ S (Mδ) does not λ-split over Mα for
some α < δ.

[Why? For i ≤ δ let Ii be the linear order λ × λ × (1 + i) and
M ′

i = EMτ(K)(Ii,Φ). So 〈M ′
i : i ≤ δ〉 is ≤Kλ

-increasing continuous.
Also for i ≤ δ, ζ ≤ λ let Ii,ζ = λ × λ × (1 + i) + λ × ζ and M ′

i,ζ =

EMτ(K)(Ii,ζ ,Φ), so for each i < δ the sequence 〈M ′
i,ζ : ζ ≤ λ〉

is ≤Kλ
-increasing continuous, M ′

i,0 = M ′
i ,M

′
i,λ = M ′

i+1. Now for
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i < δ, ζ < λ every p ∈ S (Mi,ζ) is realized in M ′
i,ζ+1 by (∗)6 and

the definition of type, varying the linear order. By II.1.16(4)(b) the
model M ′

i+1 is ≤Kλ
-universal over M ′

i and by Definition II.1.15 the
models M ′

δ and Mδ are (λ, cf(δ))-brimmed hence by II.1.16(3) are
isomorphic. But M ′

δ is saturated by (∗)6, hence Mδ is saturated.

What about the “moreover”? (Note that if λ = λcf(δ) then (∗)9
does not cover it.) We can find easily 〈I ′′α : α ≤ λ× δ+ 1〉 such that:

(a) I ′′α is a linear order of cardinality λ into which λ can be em-
bedded

(b) I ′′α is increasing continuous with α

(c) I ′′α is an initial segment of I ′′β for α < β ≤ δ + 1

(d) I ′′α+1 has a subset of order types λ × λ whose convex hull is
disjoint to I ′′α

(e) if α ≤ β < λ × δ and s ∈ I ′′λ×δ+1\I
′′
λ×δ then there is an

automorphism πα,β,s of I ′′λ×δ+1 mapping I ′′β+1 onto I ′′λ×δ and

is over I ′′α ∪ {t ∈ I ′′λ×δ+1 : s ≤I′′

λ×δ+1
t}.

Let M ′′
α = EMτ(K)(I

′′
α,Φ), so 〈M ′′

λ×α : α ≤ δ〉 has the properties of
〈M ′

α : α ≤ δ〉, i.e. every p ∈ S (M ′′
α) is realized in M ′′

α+1 hence M ′′
α+λ

is ≤Kλ
-universal over M ′′

α . So (easily or see II.1.16,II.1.15) there is an
isomorphism f from Mδ onto M ′′

λ×δ such that M ′′
λα ≤K f(Mα+1) ≤

M ′′
λα+2. So it suffices to prove the “moreover” for 〈M ′′

λ×α : α ≤ δ〉,
equivalently for 〈M ′′

α : α ≤ λ × δ〉. Let p ∈ S (M ′′
λ×δ) so some a ∈

M ′′
λ×δ+1 realizes it, hence for some t0 < . . . < tn−1 from I ′′λ×δ+1 and

τΦ-term σ(x0, . . . , xn−1) we have a = σEM(I′′

λ×δ+1,Φ)(at0 , . . . , atn−1
),

it follows that for some m ≤ n we have tℓ ∈ I ′′λ×δ ⇔ ℓ < m and
let α < λ × δ be such that {tℓ : ℓ < m} ⊆ I ′′α; if m = n choose
any tn ∈ I ′′λ×δ+1\I

′′
λ×δ. If β ∈ (α, λ× δ) and tpK(a,M ′′

δ ,M
′′
δ+1) does

λ-split over M ′′
β then π′ := πβ,β,tm

is an automorphism of I ′′λ×δ+1

mapping I ′′β+1 onto I ′′λ×δ and is over I ′′β ∪{s ∈ I ′′λ×δ+1 : tm ≤I′′

λ×δ+1
s}

hence it is the identity on the set {tℓ : ℓ < n}; now π′ induces an
automorphism π̂′ of EMτ(K)(I

′′
λ×δ+1,Φ), so clearly it maps a to itself

and maps tpK(a,M ′′
β+1,M

′′
λ×δ+1) to tpK(a,M ′′

λ×δ,M
′′
λ×δ+1) and it

maps M ′′
β onto itself, hence also tpK(a,M ′′

β+1,M
′′
δ+1) does λ-split

over M ′′
β . So if for some β ∈ (α, λ× δ), the type tpK(a,M ′′

δ ,M
′′
δ+1)
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does not λ-split overM ′′
β we get the desired conclusion, but otherwise

this contradicts (∗)9.]

⊛3 If λ ∈ [χ∗, χ) and M ∈ Kλ is saturated and p ∈ S (M) then
for some N we have:

(a) N ≤K M

(b) N ∈ Kχ∗
is saturated

(c) p does not χ∗-split over N

(d) p does not λ-split over N (follows by (a),(b),(c)).

[Why ⊛3 holds? For clauses (a),(b),(c) use ⊛2 or just (∗)9; for clause
(d) use localness, i.e. recall ⊛1 and Definition 7.4.]

⊛4 Assume λ ∈ [κ, χ) and M1 ≤K M2 ≤K M3 are members of
K,M2 is λ+-saturated and p ∈ S (M3). If Nℓ ≤K Mℓ is from
K≤λ and p ↾ Mℓ+1 does not λ-split over Nℓ for ℓ = 1, 2 then
p does not λ-split over N1.

[Why? Easy manipulations. Without loss of generality N1 ≤K N2

as we can increase N2. So for some pair (M4, a) we have M3 ≤K

M4, a ∈ M4 and p = tpK(a,M3,M4). Assume α < λ+ and let
b̄, c̄ ∈ α(M3) be such that tpK(b̄, N1,M3) = tpK(c̄, N1,M3). AsM2 is
λ+-saturated and N2 ≤K M2 ≤K M3 we can find b̄′, c̄′ ∈ α(M2) such
that tpK(b̄′ˆc̄′, N2,M3) = tpK(b̄ˆc̄, N2,M3) using II.1.14. Hence
tpK(b̄′, N1,M3) = tpK(b̄, N1,M3) = tpK(c̄, N1,M3) = tpK(c̄′, N1,M3).

By the choice of (M4, a) and the assumption on N1 that p ↾ M2

does not λ-split over N1 we get

tpK(〈a〉ˆb̄′, N1,M4) = tpK(〈a〉ˆc̄′, N1,M4).

Clearly tpK(b̄′, N2,M3) = tpK(b̄, N2,M3) hence by the choice of
(M4, a) and the assumption on N2 that p does not λ-split over N2 we
have tpK(〈a〉ˆb̄′, N2,M4) = tp(〈a〉ˆb̄, N2,M4) hence by monotonic-
ity

tpK(〈a〉ˆb̄′, N1,M4) = tpK(〈a〉ˆb̄, N1,M4).
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Similarly

tpK(〈a〉ˆc̄′, N1,M4) = tpK(〈a〉ˆc̄, N1,M4).

As equality of types is transitive, we have tpK(〈a〉ˆc̄, N1,M4) =
= tpK(〈a〉ˆc̄′, N1,M4) = tpK(〈a〉ˆb̄′, N1,M4) = tpK(〈a〉ˆb̄, N1,M4)
as required.]

⊛5 Assume I3 = I0 + I ′1 + I ′2 are wide linear orders of cardinality
λ where χ > λ > κ and let Iℓ = I0 + I ′ℓ for ℓ = 1, 2 and Mℓ =
EMτ(K)(Iℓ,Φ) for ℓ = 0, 1, 2, 3. If ℓ ∈ {1, 2} and ā ∈ λ>(Mℓ)
then tpKλ

(ā,M3−ℓ,M3) does not λ-split over M0, (moreover
if tpKλ

(ā,M0,M3) does not λ-split over N ∈ K≤λ then also
tpKλ

(ā,M3−ℓ,M3) does not λ-split over N).

[Why? For ℓ = 2, if the desired conclusion fails we get a contradiction
as in the proof of ⊛2 so for ℓ = 2 we get the conclusion. For ℓ =
1 if the desired conclusion fails (but it holds for ℓ = 2) we get a
contradiction to categoricity in µ by the order property (by 1.5).]

⊛6 If λ ∈ (χ∗, χ), δ < λ+, 〈Mi : i ≤ δ〉 is ≤Kλ
-increasing contin-

uous and i < δ ⇒Mi saturated then Mδ is saturated.

[Why? Let N ≤K Mδ, ‖N‖ < λ and p ∈ S (N). If cf(δ) > ‖N‖
this is easy so assume cf(δ) ≤ ‖N‖ hence cf(δ) < λ and without loss
of generality δ = cf(δ) and choose a cardinal θ such that LS(K) <
χ∗ + |cf(δ)| + ‖N‖ ≤ θ < λ and ‖N‖+ < λ ⇒ ‖N‖ < θ and let
q ∈ S (Mδ) extend p, exist as K≤λ has amalgamation.

Now for every X ⊆ Mδ of cardinality ≤ θ we can choose Ni ≤K

Mi by induction on i ≤ δ such that Ni ∈ Kθ is saturated, is ≤K-
increasing continuous with i and Ni is ≤K-universal over Nj and
includes (X∪N)∩Mi when i = j+1. So by ⊛2 (we justify the choice
of Ni for limit i and) the model Nδ is saturated, so if ‖N‖+ < λ then
N ≤K Nδ, Nδ is saturated of cardinality θ > ‖N‖ so we are done as
Nδ ≤K Mδ, so without loss of generality λ = ‖N‖+ hence λ = θ+.

Also for some α∗ < δ and N∗ ≤K Mα∗
of cardinality θ, the type

q does not θ-split over N∗. [Why? Otherwise we choose (Ni, N
+
i )

by induction on i ≤ δ such that Ni ≤K N+
i are from Kθ, Ni ≤K

Mi, N
+
i ≤K Mδ, Ni is ≤K-increasing continuous, Ni is ≤K-universal
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over Nj if i = j+1 and q ↾ N+
i does θ-split over Ni and ∪{N+

j ∩Mi :

j < i} ⊆ Ni. In the end we get a contradiction to ⊛2.]
We can find N ′ ≤K Mα∗

from Kχ∗
such that q ↾ Mα∗

does not θ-
split over N ′, (why? by ⊛3) and without loss of generality N ′ ≤K N∗

and N ′ ≤K N . Also q does not θ-split overN ′ (why? by applying ⊛4,
with θ,N∗,Mα∗

,Mδ here standing for λ,M1,M2,M3, N1, N2 there;
or use N ′ = N∗).

By (∗)6 as Mα∗
is saturated without loss of generality Mα∗

=
EMτ(K)(λ,Φ) and for ε < λ let Mα∗,ε = EMτ(K)(θ× θ× (1+ ε),Φ),

so Mα∗,ε ∈ Kθ is saturated and is brimmed over Mα∗,ζ when ε =
ζ + 1 by (∗)10. So for each ε < λ there is aε ∈ Mα∗,ε+1 realizing
q ↾ Mα∗,ε. Also without loss of generality Mδ ≤K EMτ(K)(λ+ λ,Φ)
as in the proof of ⊛2 or by (∗)10, now for some ε(∗) < λ we have
N ≤K EMτ(K)(I2,Φ) and N∗ ≤K EMτ(K)(I0,Φ) where I0 = θ× θ×
(1 + ε(∗)) and I2 = [λ, λ + ε(∗)) ∪ I0. Let I1 = θ × θ × ζ(∗) where
ζ(∗) ∈ (ε(∗), λ) is large enough such that aε(∗) ∈ EMτ(K)(I1,Φ),
e.g. ζ(∗) = 1 + ε(∗) + 1 and let I3 = I1 ∪ I2 ⊆ λ + λ. Let M ′

ℓ =
EMτ(K)(Iℓ,Φ) for ℓ = 0, 1, 2, 3.

Now we apply ⊛5, the “moreover” with θ, I0, I1, I2, I1\I0, I2\I0,
aε(∗), N

′ here standing for λ, I0, I1, I2, I
′
1, I

′
2, ā, N there and we

conclude that tpKλ
(aε(∗),M

′
2,M

′
3) does not θ-split over N ′.

AsN ′ ≤K M ′
0 ≤K M ′

2 also the type q′ := tpKλ
(aε(∗),M

′
2,M

′
3) does

not θ-split over N ′. Let us sum up: q ↾ M ′
2, q

′ belong to SKλ
(M ′

2),
does not θ-split overN ′, N ′ ∈ Kχ∗

and χ∗ ≤ θ. Also N ′ ≤K∗
M ′

0 ≤K∗

M ′
2, the model M ′

0 is θ-saturated and q ↾ Mα∗
= q′ ↾ Mα∗

. By the
last two sentences obviously q = q′ (it may be more transparent to
consider q ↾ (≤ χ∗) = q′ ↾ (≤ χ∗)), so we are done proving ⊛6.]

⊛7 If λ ∈ (χ∗, χ) then the saturated M ∈ Kλ is superlimit.

[Why? By ⊛6, (existence by (∗)6, the non-maximality by (∗)6+
uniqueness; you may look at [Sh 394, 6.7=6.4tex](1).]

Now we have arrived to the main point

⊙1 If λ ∈ (χ∗, χ) then sλ is a full good λ-frame, Ksλ
categorical

where sλ is defined by

(a) Ksλ
= Kλ ↾ {M ∈ Kλ : M saturated}

(b) S bs
sλ

(M) = S na
sλ

(M) := {tps(a,M,N) : M ≤Kλ
N and

a ∈ N\M} for M ∈ Ksλ
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(c) p ∈ S bs
sλ

(M2) does not fork over M1 when M1 ≤sλ
M2

and for some M ≤K M1 of cardinality χ∗, the type p
does not χ∗-split over N .

[Why? We check the clauses of Definition II.2.1.

Ksλ
is categorical:

By II.1.26(1) and ⊛7.

Clause (A),Clause (B): By ⊛7 recalling that there is a saturated
M ∈ Ksλ

(and it is not <sλ
-maximal) by (∗)6 and trivially recalling

II.1.26, of course.

Clause (C): By categoricity and (∗)6 clearly noM ∈ Ksλ
is maximal;

amalgamation and JEP holds by clause (b) of the assumption of the
claim.

Clause (D)(a),(b): By the definition.

Clause (D)(c): Density is obvious; in fact sλ is full.

Clause (D)(d): (bs - stability).
Easily Ssλ

(M) = SKλ
(M) which has cardinality ≤ λ by the

moreover in (∗)6.

Clause (E)(a): By the definition.

Clause (E)(b): Monotonicity (of non-forking).
By the definition of “does not χ∗-split”.

Clause (E)(c): Local character.
Why? Let 〈Mα : α ≤ δ〉 be ≤sλ

-increasing continuous, δ < λ+

and q ∈ S bs
sλ

(Mδ). Using the third paragraph of the proof of ⊛6 for
θ = χ∗, for some α∗ < δ and N∗ ≤sλ

Mα∗
of cardinality θ the type

q does not θ-split over N∗. So clearly q does not fork over Mα∗
(for

sλ), as required.

Clause (E)(d): Transitivity of non-forking.
By ⊛4.

Clause (E)(e): Uniqueness.
Holds by the choice of χ∗, i.e. by ⊛1.

Clause (E)(f): Symmetry.
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Why? Let Mℓ for ℓ ≤ 3 and a0, a1, a2 be as in (E)(f)′ in II.2.19.
We can find a ≤K-increasing continuous sequence 〈M0,α : α ≤ λ+〉
such that M0,0 = M0,M0,α+1 is ≤sλ

-universal over M0,α and with-
out loss of generality M0,α = EMτ(K)(γα,Φ) so is ≤K-increasing
continuous, and λ divides γα.

By (E)(g) proved below we can find aℓ
α ∈M0,α+1 realizing tpsλ

(aℓ,
M0,Mℓ+1) such that tpsλ

(aℓ
α,M0,α,M0,α+1) does not fork overM0 =

M0,0, for ℓ = 1, 2. We can find N∗ ≤K M0 of cardinality χ∗ such that
tpsλ

(〈a1, a2〉,M0,M3) does not χ∗-split over N∗ so N∗ ≤K M0,0.
Then as in 1.5 we get a contradiction (recalling II.2.19).

Clause (E)(g): Extension existence.
IfM ≤sλ

N and p ∈ S bs
sλ

(M) = S na
K

(M), then p does not χ∗-split
over M∗ for some M∗ ≤K M of cardinality χ∗ by ⊛3. Let M∗ ∈ Kχ∗

be such that M∗ ≤K M∗ ≤K M and M∗ is ≤K-universal over M∗.
As M,N ∈ Ksλ

⊆ Kλ are saturated there is an isomorphism π from
M onto N over M∗ and let q = π(p)+.

Now q ↾ M = p by ⊛1 as both are from S na
K

(M), does not χ∗-split
over M∗ and has the same restriction to M∗.

Clause (E)(h): Follows by II.2.17(3),(4) recalling sλ is full.

Clause (E)(i): Follows by II.2.16.
So we have finished proving “sλ is a good λ-frame.]

⊙2 If λ ∈ (χ∗, χ) then Ksλ is K ↾ {M : M is λ-saturated}.

[Why? Should be clear.]

⊙3 λ∗ is well defined where
λ∗ = Min{λ : χ∗ < λ < χ and 2λ+n

< 2λ+n+1

for every
n < ω}.

[Why? By clause (c) of the assumption.]
Let Θ = {λ+n

∗ : n < ω}.

⊙4 sλ is weakly succsesful for λ ∈ Θ.

[Why? Recalling that “sλ categorical”, by Definition III.1.1, Defini-
tion II.5.2 and Observation II.5.8(b) this means that if (M,N, a) ∈

K3,bs
sλ

then for some (M1, N1, a) ∈ K3,uq
sλ

we have (M,N, a) ≤bs
sλ
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(M1, N1, a) (see Definition II.5.3). Toward contradiction, assume
that this fails. Let 〈Mα : α < λ+〉 be ≤sλ

-increasing continuous,
Mα+1 is brimmed over Mα for α < λ+ such that M0 = M . Now
directly by the definitions (as in II§5, see more in Chapter VII) we

can find 〈Mη, fη : η ∈ λ+>2〉 such that:

(a) if η ⊳ ν ∈ λ+>2 then Mη ≤sλ
Mν

(b) if η ∈ λ+>2 then fη is a one-to-one function from Mℓg(η)

to Mη over M0 = M such that ρ ⊳ η ⇒ fρ ⊆ fη and
fη(Mℓg(η)) ≤sλ

Mη in fact f0 = idM and (M,N, a) ≤bs
sλ

(fη(Mℓg(η)),Mη, a) ∈ Kbs
s

(c) if ν = ηˆ〈ℓ〉 ∈ λ>2 then Mν is brimmed over Mη

(d) if η ∈ λ+>2 then fηˆ<0>(Mℓg(η)+1) = fηˆ<1>(Mℓg(η)+1)

(e) if η ∈ λ>2 then there is no triple (N, f0, f1) such that
fηˆ〈1〉(Mℓg(η)+1) ≤s N , and fℓ is a ≤sλ

-embedding ofMηˆ<ℓ>

into N over fηˆ<ℓ>(Mℓg(η)+1) for ℓ = 0, 1 and f0 ↾ Mη = f1 ↾

Mη.

Having carried the induction by renaming without loss of generality

η ∈ λ+>2 ⇒ fη = idMℓg(η)
. Now M∗ := ∪{Mα : α < λ+}; it belongs

to sλ+ and is saturated and for η ∈ λ+

2 let Mη := ∪{Mη↾α : α < λ+}
so M∗ ≤s

λ+ Mη ∈ Ks
λ+ . But χ is a limit cardinal so also λ+ ∈ (κ, χ)

so let N∗ ∈ Ks
λ+ be ≤s

λ+ -universal over M∗, so for every η ∈ λ+

2

there is an ≤s+ -embedding hη of Mη into N∗ over M∗. But 2λ < 2λ+

by the choice of λ∗ so by I.0.5 we get a contradiction to clause (e).]

⊙5 for λ ∈ Θ, if M ∈ Ksλ

λ+ is saturated above λ for Ksλ , then M
is saturated for K.

[Why? Should be clear and implicitly was proved above.]

⊡1 NFsλ
is well defined and is a non-forking relation on Ksλ

respecting sλ (for λ ∈ Θ).

[Why? By II§6 as sλ is a weakly successful good λ frame.]

⊡2 sλ is a good+ λ-frame (for λ ∈ Θ).
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[Recalling Definition III.1.3, assume that this fails so there are 〈Mi, Ni :
i < λ+〉 and 〈ai+1 : i < λ+〉, as there, i.e. ai+1 ∈ Mi+2\Mi+1,
tpsλ

(ai+1, Mi+1,Mi+2) does not fork over M0 for sλ, but tpsλ
(ai+1,

N0,Mi+1) forks over M0. Also, recalling Definition III.1.3 the model
M = ∪{Mi : i < λ+} is saturated for Ksλ

λ+ hence by ⊙5 for K, so it
belongs to Ksλ+ .

We can find an isomorphism f0 from M onto EMτ(K)(λ
+,Φ), by (∗)6.

By the “moreover” from (∗)6, more exactly by (∗)10 we can find a
≤K-embedding f1 of N =: ∪{Ni : i < λ+} into EMτ(K)(λ × λ,Φ)
extending f0. As we can increase the Ni’s without loss of gener-
ality f1 is onto EMτ(K)(λ × λ,Φ). We can find δ < λ+ such that
Nδ = EMτ(K)(u,Φ) where u = {λα + β : α, β < δ}. By aδ+1 we get
a contradiction to ⊛5.]

⊡3 Let λ ∈ Θ

(α) ≤∗
sλ

is a partial order on Knice
λ+ [sλ] = Ks

λ+ and (Ks
λ+ ,≤

∗
sλ

)
satisfies the demands on a.e.c. except possibly smoothness,
see II§7

(β) if M ∈ Kλ+ is saturated and p ∈ SK(M) then for some pair
(N, a) we have M ≤∗

sλ
N and a ∈ N realizes p

(γ) if M ∈ Kλ+ is saturated then some N satisfies:

(a) N ∈ Kλ+ is saturated

(b) N is ≤K-universal over M

(c) M ≤∗
sλ
N

(δ) sλ is successful.

[Why? Clause (α):
We know that both Knice

λ+ [sλ] and Ks
λ+ are the class of saturated

M ∈ Kλ. The rest holds by II§7,§8.

Clause (β):
By ⊛3 we can find M∗ ≤K M of cardinality χ∗ such that p does

not χ∗-split over it (equivalently does not λ+-split over it).
Let 〈Mα : α < λ+〉 be ≤sλ

-increasing continuous such that Mα+1

is brimmed over Mα for sλ for every α < λ+ and M∗ ≤K M0 (so
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‖M∗‖ < ‖M0‖ otherwise we would require M0 is brimmed over M∗).
Hence ∪{Mα : α < λ+} ∈ Kλ+ is saturated (by ⊙5) so without
loss of generality is equal to M . We can choose a∗, Nα(α < λ)
such that 〈Nα : α < λ+〉 is ≤sλ

-increasing continuous, Mα ≤sλ

Mα, NFsλ
(Mα, Nα,Mβ,Mβ) for α < β < λ+, Nα+1 is brimmed over

Mα+1 ∪ Nα and tpsλ
(a,N0,M0) = p ↾ M0 so a ∈ N0. Let N =

∪{Nα : α < λ+} so again N ∈ Kλ+ is saturated (equivalently N ∈
Knice

λ+ [sλ]) and M ≤K N and even M ≤∗
sλ

N (by the definition of
≤∗

sλ
). For each α < λ+ we have NFsλ

(M0, N0,Mα, Nα) but NFsλ

respect sλ hence tpsλ
(a,Mα, Nα) does not fork over M0 hence by the

definition of sλ the type tpsλ
(a,Mα, Nα) does not λ-split over M∗

hence tpsλ
(a,Mα, Nα) = p ↾ Mα. As this holds for every α < λ+,

by the choice of χ∗, i.e. by ⊛1 clearly a realizes p.

Clause (γ):

By clause (β) as in the proofs in II§4; that is, we choose N ∈ Kλ+

which is ≤Kλ
-universal over M . We now try to choose (Mα, fα, Nα)

by induction on α < λ+ such that: M0 = M,N0 = N, f0 = idM ,Mα

is ≤∗
sλ

-increasing continuous, Nα is ≤K-increasing continuous, fα is
a ≤K-embedding of Mα into Nα, fα is ⊆-increasing continuous with
α and α = β + 1 ⇒ fα(Mα) ∩Nβ 6= fβ(Mβ).

For α = 0, α limit no problems. If α = β + 1 and fα(Mα) = Nα

we are done and otherwise use clause (β). But by Fodor lemma we
cannot carry the induction for every α < λ+, so we are done proving
(γ).

Clause (δ):

We should verify the conditions in Definition III.1.1. Now clause
(a) there, being weakly successful, holds by ⊙4. As for clause (b)
there, it suffices to prove that if M1,M2 ∈ Knice

λ+ [sλ] = K
s
+
λ

and

M1 ≤K M2 then M1 ≤∗
sλ

M2 which means: if 〈M ℓ
α : α < λ+〉 is

≤sλ
-increasing continuous, M ℓ

α+1 is brimmed over M ℓ
α with Mℓ =

∪{M ℓ
α : α < λ+}, then for some club E of λ+ for every α < β from

E, NFsλ
(M1

α,M
2
α,M

1
β ,M

2
δ ).

By clause (γ) there is N ∈ K
s
+
λ

such that M1 ≤∗
s

λ+
N (hence

M1 ≤K N) and N is ≤Ksλ -universal over M1. So without loss of
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generality M2 ≤K N but by II.7.4(3) all this implies M1 ≤∗
λ+ M2.

So we are done proving ⊡3.

⊡4 sλ+ is the successor of sλ for λ ∈ Θ.

[Why? Now by ⊡3 the good frame sλ is successful; by III.1.6 we know
that s+

λ is a well defined good λ+-frame. Clearly Ksλ(+) is the class
of saturated M ∈ Kλ+ , by ⊙5, see the definitions in II.7.2, II.8.7(5).
But sλ is good+ by ⊡2 so by III.1.8 we know that ≤sλ(+)=<

∗
λ+ [sλ]

is equal to ≤K↾ Ksλ(+), so Ksλ(+) = Ks
λ+ . As both sλ(+) and sλ+

are full, clearly S bs
sλ(+) = S bs

s
λ+

. For M1 ≤sλ(+) M2 ≤sλ(+) M3 and

a ∈ M3\M2, comparing the two definitions of “tpKsλ(+)
(a,M2,M1)

does not fork over M1” they are the same. So we are done.]

⊡5 sλ+ω
∗

is the limit of 〈s+n
λ∗

: n < ω〉.

[Why? Should be clear.]

⊡6 sλ satisfies the hypothesis III.12.3 of III§12 if λ ∈ Θ\λ+3
∗

holds.

[Why? By ⊡2,⊡3,⊡4 and III.12.2.]
Hence

⊡7 sλ∗
is beautiful λ+ω

∗ -frame.

[Why? By III.12.37 and III.12.41.]

⊡8 K[sλ+ω
∗

] is categorical in one χ > λ+ω
∗ iff it is categorical in

every χ > λ+ω.

[Why? By III.12.41(d),(e).]

⊡9 if λ ≥ i1,1(λ
+ω
∗ ) then Kλ = Kλ[sλ+ω

∗

].

[Why? The conclusion ⊇ is obvious. For the other inclusion let M ∈
Kλ, now by the definition of class in the left, it is enough to prove
that M is (λ+ω

∗ )+-saturated. But otherwise by the omitting type
theorem for a.e.c., i.e. by 0.9(1),(d), (or see [Sh 394, 8.6=X1.3A])
there is such a model M ′ ∈ Kµ, contradiction to (∗)4.]

By ⊡8 + ⊡9 we are done. �7.12
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