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ANNOTATED CONTENTS

Annotated Content for Ch.N (E53):
Introduction

(This chapter appeared in book 1.)

Abstract

§1 Introduction for model theorists,

(A) Why to be interested in dividing lines,

(B) Historical comments on non-elementary classes,

§2 Introduction for the logically challenged,

(A) What are we after?

[We first explain by examples and then give a full definition of
an a.e.c. (abstract elementary class), central in our context,
K = (K,≤K), with K a class of models (= structures), ≤K

a special notion of being a submodel, it means having only
the quite few of the properties of an elementary class (like
closure under direct limit). Such a class is (ModT ,≺) with
M ≺ N meaning “being an elementary submodel”; but also
the class of locally finite groups with ⊆ is O.K. Second, we
explain what is a superlimit model (meaning mainly that a
≤K-increasing chain of models isomorphic to it has a union
isomorphic to it (if not of larger cardinality). We can define
“an a.e.c. is superstable” if it has a superlimit model in
every large enough cardinality. For first order class this is an
equivalent definition. A stronger condition (still equivalent
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2 ANNOTATED CONTENTS (BOOK 1)

for elementary classes) is being solvable: there is a PCλ,λ-
class, i.e the class of reducts of some ψ ∈ Lλ+,ω which, in large
enough cardinality, is the class of superlimit models; similarly
we define being (µ, λ)-solvable. Of course we investigate the
one cardinal version (hoping for equivalent behaviour) in all
large enough cardinals, etc. We state the problem of the
categoricity spectrum and the solvability spectrum. We finish
explaining the parallel situation for first order classes and
explain “dividing lines”.]

(B) The structure/non-structure dichotomy,

[We define the function İ(λ,K) counting the number of non-
isomorphic models from K of cardinality λ, define the main
gap conjecture, phrase and discuss some thesis explaining
an outlook and intention. We then explain the main gap
conjecture and the case it was proved and list the possible
reasons for having many models. We then discuss dividing
lines and their relevance to our problems.]

(C) Abstract elementary classes,

[We shall deal with a.e.c., good λ-frames and beautiful λ-
frames. The first is very wide so we have to justify it by
showing that we can say something about them, that there is
a theory; the last has excellent theory and we have to justify
it by showing that it arises from assumptions like few non-
isomorphic models (and help prove theorems not mentioning
it); the middle one needs justifications of both kinds. In this
part, we concentrate on the first, a.e.c., explain the meaning
of the definition, discuss examples, phrase our opinion on
its place as a thesis, and present two theorems showing the
function İ(λ, κ) is not “arbitrary” under mild set theoretic
conditions.]

(D) Toward good λ-frames,

[We explain how we arrive to “good λ-frame s” mentioned
above, which is our central notion; it may be considered a
“bare bone case of superstable class in one cardinal”. We
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ANNOTATED CONTENT FOR E53 3

choose to concentrate on one cardinal λ, so Ks = Kλ. Also
we may assume Kλ has a superlimit model, and that it has
amalgamation and the joint embedding property, so only in
λ! Amalgamation is an “expensive” assumption, but amalga-
mation in one cardinal is much less so. This crucial difference
holds because it is much easier to prove amalgamation in one
cardinality (e.g. follows from having one model in λ (or a
superlimit one) and few models in λ+ up to isomorphism
and mild set theoretic assumptions). We are interested in
something like “M1,M2 are in non-forking (= free) amal-
gamation over M0 inside M3”. But in the axioms we only
have “an element a and model M1 are in non-forking amalga-
mation over M0 inside M3, equivalently tps(a,M1,M3) does
not fork over M0”, however the type is orbital, i.e. defined
by the existence mapping and not by formulas. There are
some further demands saying non-forking behave reasonably
(mainly: existence/uniqueness of extensions, transitivity and
a kind of symmetry). So far we have described a good λ-
frame. Now we consider a dividing line - density of the class
of appropriate triples (M,N, a) with unique amalgamation.

Failure of this gives İ(λ++, Ks) is large if 2λ < 2λ
+

< 2λ
++

,
from success (i.e. density) we derive the existence of non-
forking amalgamation of models in Ks. After considering a
further dividing line we get s+, a good λ+-frame such that

Ks
+

µ ⊆ Ks
µ for µ ≥ λ+. All this (in Chapter II) gives the

theorem: if 2λ < 2λ
+

< . . . < 2λ
+n

, LS(K) ≤ λ,K categorical
in λ, λ+, has a model in λ+2 and has not too many models
in λ+2, . . . , λ+n then K has a model in λ+n+1. If this holds
for every n, we get categoricity in all cardinals µ ≥ λ. For
the first result (from Chapter II) we just need to go from s

to s+, for the second (from Chapter III) need considerably
more.]

§3 Good λ-frames,

(A) getting a good λ-frame,

[We deal more elaborately on how to get a good λ-frame
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4 ANNOTATED CONTENTS (BOOK 1)

starting with few non-isomorphic models in some cardinals.

If K is categorical in λ, λ+ and 2λ < 2λ
+

we know that K

has amalgamation in λ. Now we define the (orbital) type
tpKλ

(a,M,N) for M ≤K N, a ∈ N . Instead of dealing

with SKλ
(M), the set of such types, we deal with K3,na

λ =
{(M,N, a) : M ≤Kλ

N and a ∈ N\M}, ordered natu-
rally (fixing a!) The point is of dealing with triples, not
just types, is the closureness under increasing unions, so ex-
istence of limit. Now we ask: are there enough minimal
triples? (which means with no two contradictory extensions).
If no, we have a non-structure result. If yes, we can deduce
more and eventually get a good λ-frame. Here we consider

K3,bs
s = {(M,N, a) : M ≤Ks

N, tp(a,M,N) ∈ S bs
s

(M), i.e.
is a basic type} (this is part of the basic notions of a good
λ-frame s).]

(B) the successor of a good λ-frame,

[We elaborate the use of successive good frames in Chapter
II. If s is a good λ-frame, we investigate “N is a brimmed
extension of M in Ks = Ks

λ”, it is used here instead of satu-
rated models, noting that as Ks

<λ may be empty we cannot

define saturated models. We now consider the class K3,uq
s

of triples (M,N, a) ∈ K3,bs
s such that if M ≤K M+ then

M+, N can be ≤K-amalgamated uniquely over M as long as
the type of a over M+ does not fork over M . If the class of

uniqueness triples (M,N, a) is not dense (in K3,bs
s ) we get a

non-structure result. Otherwise (assuming categoricity in λ,
a soft assumption here) we can define NFs, non-forking amal-
gamation of models. We then investigate Ks

λ+ , more exactly
the models there which are saturated. Either we get a non-
structure result or our frame s is successful and then we get
a successor, a good λ+-frame, s+ = s(∗). Now Ks(+) ⊆ Ks

λ+ ,
but ≤s(+) is only ⊆≤Ks↾ Ks(+).]

(C) the beauty of ω successive good λ-frames,

[Here we describe Chapter III. Assume for simplicity that
letting s0 = s, sn+1 = (sn)+ our assumption means that:
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ANNOTATED CONTENT FOR E53 5

each s+n is a (well defined) successful good λ+n-frame. We
first try to understand better what occurs for each sn (at
least when n is not too small). But to understand models of
larger cardinalities we have to connect better the situation in
the various cardinals, for this we use (λ,P(−)(n))-systems of
models, particularly stable ones and in general properties for
(λ, n) are connected to properties of (µ, n+1) for every large
enough µ < λ.]

§4 Appetite comes with eating

(A) The empty half of the glass,

[Here we try to see what is lacking in the present book.]

(B) The full half and half baked,

[Here we review Chapter IV which deals with abstract el-
ementary classes which are catogorical (or just solvable) in
some large enough µ. We also review Chapter VII which
do the non-structure in particular eliminating the “weak di-
amond ideal on λ+ is not λ++-saturated” (but also do some
positive theory on almost good λ-frames). We also discuss
further works, which in general gives partial positive answer
to the lackings in the previous subsection.]

(C) The white part of the map,

[We state conjectures and discuss them.]

§5 Basic knowledge,

(A) knowledge needed and dependency of chapters,

(B) Some basic definitions and notation,

[We review the basic set theory required for the reader and
then review the model theoretic notation. Some parts need
more - mainly Chapter I, Chapter IV.]

§6 Symbols,
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6 ANNOTATED CONTENTS (BOOK 1)

Annotated Content for Ch.I (88r):
A.e.c. near ℵ1

(This chapter appeared in book 1.)

I.§0 Introduction

[We explain the background, the aims and what is done con-
cerning the number of models of ψ ∈ Lω1,ω(Q) in ℵ1 and
in ℵ2; here Q is the quantifier there are uncountably many.
Also several necessary definitions and theorems are quoted.
We justify dealing with a.e.c. (abstract elementary classes).
The original aim had been to make a natural, not arbitrary
choice of the context (ψ ∈ Lω1,ω or ψ ∈ Lω1,ω(Q)?, see [Sh
48]). The net result is a context related to, but different
than, the axioms of Jónson for the existence of universal ho-
mogeneous models. One difference is that the notion of a
submodel is abstract rather than a submodel; this forces us
to formalize properties of being submodels and decide which
we adopt, mainly AxV, (if M1 ⊆ M2 are ≤K-submodels of
N then M1 ≤K M2). Another serious difference is the omis-
sion of the amalgamation property. So they are more like
a class of models of ψ ∈ Lω1,ω, recalling (as a background)
that amalgamation and compactness are almost equivalent
as properties of logics but formulas are not involved in the
definition here.]

I.§1 Axioms and simple properties for classes of models

[We define the a.e.c. and deal with their basic properties, the
classical examples being, of course, (ModT ,≺), T a first order
theory, but also (Modψ,≺sub(ψ)), ψ ∈ Lλ+,ω(τ). Surprisingly
(but not complicatedly) it is proved that every such class K

can be represented as a PCλ,2λ , i.e. the class of τK-reducts
of models of a first order T omitting every type p ∈ Γ, where
|Γ| ≤ 2λ and the vocabulary has cardinality ≤ λ. So though
a wider context than Mod(ψ), ψ ∈ Lλ+,ω, it is not totally de-
tached from it by the representation theorem just mentioned
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ANNOTATED CONTENT FOR 88R 7

above. A particular consequence is the existence of relatively
low Hanf numbers.]

I.§2 Amalgamation properties and homogeneity

[We present (D, λ)-sequence homogeneous and (D, λ)-model
homogeneous, various amalgamation properties and basic prop-
erties, in particular the existence and uniqueness of homoge-
neous models. Those are important properties but here they
are usually unreasonable to assume; we have to console our-
selves in proving them under strong assumptions (like cate-
goricity) and after working we get the weak version.]

I.§3 Limit models and other results

[We introduce and investigate (several variants of) “limit
models in Kλ”, the most important one is superlimit. Ig-
noring the case “M∗ is <K-maximal”, M∗ is superlimit in Kλ

means that if 〈Mi : i ≤ δ〉 is ≤Kλ
-increasing continuous, and

i < δ ⇒ Mi
∼= M∗ then Mδ

∼= M∗ and another formulation
is “Kλ ↾ {M : M ∼= M∗} is a λ-a.e.c.”. Note that if K is cat-
egorical in λ, any M ∈ Kλ is trivially superlimit. The main
results use this to investigate the number of non-isomorphic
models. We get amalgamation in Kλ if K has superlimit (or

just so called λ+-limit) models in λ, 1 ≤ İ(λ+, K) < 2λ
+

and

2λ < 2λ
+

. We at last resolve the Baldwin problem in ZFC: if
ψ ∈ Lω1,ω(Q) is categorical in ℵ1 then it has a model in ℵ2.
In fact, the solution is in considerable more general context.]

I.§4 Forcing and Categoricity

[We assume K is a PCℵ0
-a.e.c. and it has at least one but

less than the maximal number of models in ℵ1, we would
like to deduce as much as we can on K or at least on some
K
′ = K ↾ K ′, which is still an a.e.c. and has models of

cardinality ℵ1. Toward this we build a “generic enough”
model M ∈ Kℵ1

by an ≤K-increasing ω1-sequence of mod-

els in Kℵ0
so define N ℵ1

K
ϕ(ā) for suitable N ∈ Kℵ0

, i.e.
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8 ANNOTATED CONTENTS (BOOK 1)

countable. This is reasonable for ϕ a formula in Lω1,ω(τK)
or even Lω1,ω(Q)(τK). Now using Lω1,ω1

seems too strong.
But we can do it over a fix N ∈ Kℵ0

, so N ≤K M . What
does this mean? We have a choice: should we fix N point-
wise (so adding an individual constant for each c ∈ N) or
as a set (so adding a unary predicate always interpreted as
N). The former makes sense only if 2ℵ0 < 2ℵ1 as is the case
in §5, so in the present section we concentrate on the sec-
ond. By the “not many models in ℵ1” we deduce that fixing
N , for a “dense” family of M satisfying N ≤K M ∈ Kℵ0

we have: (M,N) ℵ1

K
decides everything. So we know what

type pā each ā ∈M realizes in any generic enough M+ when
M ≤K M+ ∈ Kℵ1

. But in general the sequence ā does
not realize the type pā in M itself (e.g., this phenomena
necessarily occurs if the formula really involves Q). So we
say ā materializes the type in (M,N) and we play between
some relevant languages (the logics are mainly L−1

ω1,ω
which

is without Q,L0
ω1,ω

= Lω1,ω(Q), the vocabulary is τ = τK or

τ+0 = τK ∪ {P}, P predicate for N ; and more cases). If we
restrict the depth of the formulas by some countable ordinal,
then the number of complete types is countable. We have to
work in order to show that the number of complete Lω1,ω(Q)-
types realized in quite generic models in Kℵ1

is ≤ ℵ1 (recall-
ing that there may be Kurepa trees). We end commenting
on further more complicated such results and the relevant
logics.]

I.§5 There is a superlimit model in ℵ1

[Here we add to §4 the assumption 2ℵ0 < 2ℵ1 hence we prove
amalgamation of Kℵ0

(or get a non-structure result). Some-
one may say something like §1-§3 are conceptual and rich,
I.§4-§5 are technicalities. I rather think that §1,§2,§3 are
the preliminaries to the heart of the matter which is §4 and
mainly §5. Assuming properties implying non-structure re-
sults in (ℵ1 and) ℵ2 fails, we understand models in Kℵ0

and
Kℵ1

better. In particular we get for countable N that the
number of types realized in some generic enough M ∈ Kℵ1

,
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so called D(N) which ≤K-extend N , is ≤ ℵ1, and we can
restrict ourselves to subclasses with strong notion of elemen-
tary submodel such that each D(N) is countable. A central
question is the existence of amalgamations which are stable,
definable in a suitable sense of countable models trying to
prove symmetry, equivalently some variants and eventually
uniqueness. The culmination is proving the existence of a
superlimit model in ℵ1, though this is more than necessary
for the continuation (see II§3).]

I.§6 Counterexamples

[Some of our results (in previous sections) were gotten in
ZFC, but mostly we used 2ℵ0 < 2ℵ1 . We show here that this
is not incidental. Assuming MAℵ1

, there is an a.e.c. K which
is PCℵ0

, categorical in ℵ0 and in ℵ1, but fails the amalgama-
tion property. We can further have that it is axiomatized by
some ψ ∈ Lω,ω(Q), and we deal with some related examples.]

Annotated Content for Ch.II (600):
Categoricity in a.e.c.: going up inductive steps

(This chapter appeared in book 1.)

II.§0 Introduction

[We present the results on good λ-frames and explain the re-
lationship with [Sh 576] that is Chapter VI and with Chapter
I. We then suggest some reading plans and some old defini-
tions.]

II.§1 Abstract elementary classes

[First we recall the definition and some claims. In particular
we define types (reasonable over models which are amalgama-
tion basis), and we prove some basic properties, in particular,
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model homogeneity - saturativity lemma II.1.14 which relate
realizing types of singleton elements to finding copies of mod-
els. We also define “N is (λ, θ)-brimmed over M”, etc., and
their basic properties. Then we prove that we could have re-
stricted our class K to cardinality λ without any real loss, i.e.,
any λ-a.e.c. can be blown up to an a.e.c. with LS-number λ
and any a.e.c. with LS-number ≤ λ can be restricted to car-
dinality λ and as long as we ignore the models of cardinality
< λ, this correspondence is one to one (see II.1.23, II.1.24);
reading those proofs is a good exercise in understanding what
is an a.e.c.]

II.§2 Good frames

[We introduce the central axiomatic framework called “good
λ-frames”, s = (Ks,≤s,NFs). The axiomatization gives the
class Ks of models and a partial order ≤s on it, forming
an a.e.c., Ks = (Ks,≤s), a set S bs

s
(M) of “basic” types over

any model M ∈ Ks, the ones for which we have a non-forking
notion. A (too good) example is regular types for superstable
first order theories. We also check how can the non-forking
of types be lifted up to higher cardinals or fewer models; but
unlike the lifting of λ-a.e.c. in §1 in this lifting we lose some
essential properties; in particular uniqueness and existence.
We end noting some implications between axioms of good
λ-frames.]

II.§3 Examples

[We prove here that cases treated in earlier relevant works
fit the framework from §2. This refers to [Sh 576], Chapter I
and also to [Sh 87a], [Sh 87b], [Sh 48].]

II.§4 Inside the frame

[We prove some claims used later, in particular stability in
λ, sufficient condition for Mδ being (λ, cf(δ))-brimmed over
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M0 for a chain 〈Mi : i ≤ δ〉 and the uniqueness of the (λ, ∗)-
brimmed model overM0 ∈ Kλ. We deal (for those results but
also for later uses) with non-forking rectangles and triangles.
An easy (but needed in the end) consequence is that Ks

λ++

is not empty.]

II.§5 Non-structure or some unique amalgamations

[We prove that we have strong non-structure in Ks

λ++ or for

enough triples (M0,M1, a) ∈ K3,bs we have unique amalga-
mation of M1,M2 over M0 when M0 ≤K M2 ≤K M3,M0 ≤K

M1 ≤K M3 and we demand that tp(a,M2,M3) does not fork
over M0. Naturally, we use the framework of [Sh 576, §3]
or better Chapter VII and we do the model theoretic work
required to be able to apply it. More explicitly, from the
non-density of such triples with uniqueness we prove a non-
structure theorem in λ++. A major point in proving this

dichotomy is to guarantee that
⋃

α<δ

Mα ∈ Kλ+ is saturated,

when δ < λ++ and each Mα ∈ Kλ+ is saturated at least
when 〈Mα : α < δ〉 appears in our constructions. For this
we use Mα which is ≤K-represented by 〈Mα

i : i < λ+〉 so

Mα =
⋃

i<λ+

Mα
i and 〈〈Mα

i : i < λ+〉 : α < λ++〉 is used with

extra promises on non-forking of types, which are preserved
in limits of small cofinality. Note that we know that in Ks

λ+

there is a model saturated above λ but we do not know that
it is superlimit.]

II.§6 Non-forking amalgamation in Kλ

[Our aim is to define the relation of non-forking amalga-
mations for models in Kλ and prove the desired properties
promised by the name. What we do is to start with the cases
which §5 provides us with a unique amalgamation modulo
non-forking of a type of an element, and “close” them by it-
erations arriving to a (λ, θ)-brimmed extension. This defines
non-forking amalgamation in the brimmed case, and then by

Paper Sh:E53, Annotated Content



12 ANNOTATED CONTENTS (BOOK 1)

closing under the submodels we get the notion itself. Now we
have to work on getting the properties we hope for. To clar-
ify, we prove that “a non-forking relation with the reasonable
nice properties” is unique. A consequence of all this is that
we can change s retaining Ks such that it is type-full, i.e.,
every non-algebraic type (in SKλ

(M) is basic for s. (This is
nice and eventually needed.)]

II.§7 Nice extensions in Kλ+

[Using the non-forking amalgamation from §6, we define nice
models (Knice

λ+ ) and “nice” extensions in λ+(≤∗
λ+), and prove

on them nice properties. In particular Kλ+ with the nice
extension relation has a superlimit model - the saturated one.]

II.§8 Is Knice
λ+ with ≤∗

λ+ a λ+-a.e.c.?

[We prove that Knice
λ+ = (Knice

λ+ ≤∗
λ+) is an a.e.c. under an ad-

ditional assumption but we prove that the failure of this extra
assumption implies a non-structure theorem. We then prove
that there is a good λ+-frame t with Kt = Knice

λ+ and prove
that it relates well to the original s, e.g. we have locality of
types.]

II.§9 Final conclusions

[We reach our main conclusions (like II.0.1) in the various
settings.]

Annotated Content for Ch.III (705):
Toward classification theory
of good λ-frames and a.e.c.

(This chapter appeared in book 1.)

III.§0 Introduction

III.§1 Good+ Frames

Paper Sh:E53, Annotated Content
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[We define when a good λ-frame is successful (III.1.1) and
when it is good+ (III.1.3). There are quite many good+

frames s: the cases of good λ-frames we get in II§3 all are
good+ and further, if s is successful good λ-frame (not neces-
sarily good+!) then s+ is good+ (see III.1.5, III.1.9). More-
over, if s is a good+ successful λ-frame, then s

+ = s(+) sat-
isfies ≤s(+)=≤K[s]↾ Ks(+) (see Definition III.1.7 and Claim

III.1.8), and we can continue and deal with s+ℓ = s(+ℓ), (see
III.1.14). We define naturally “s is n-successful” and look
at some basic properties. We end recalling some things from
Chapter II which are used often and add some. We prove lo-
cality for basic types and types for s(+), see III.1.10, III.1.11.
In III.1.21 we show that if M1 ≤s M2 are brimmed and the
type p2 ∈ S bs

s
(M2) does not fork over M1 then some isomor-

phism from M2 to M1 maps p2 to p2 ↾ M1, similarly with
< λ types. In III.1.16-III.1.20 we essentially say to what we
use on NFs, assuming s is weakly successful; this is the part
most used later.]

III.§2 Uni-dimensionality and non-splitting

[We are interested not only in the parallel of being super-
stable but also of being categorical, which under natural as-
sumptions is closely related to being uni-dimensional. We
now define (the parallel of) uni-dimensional, more exactly
some variants including non-multi-dimensionality (in III.2.2,
III.2.13). We then note when our examples are like that; we
show that s(+) satisfies such properties when (even iff) s does
(III.2.6, III.2.10, III.2.17 and more in III.2.12). Of course we
show the close connection between uni-dimensionality and
categoricity in λ+ (see III.2.11). Next we deal with mini-
mal types and with good λ-frames for minimals (III.2.13 -
III.2.17). We then look at splitting, relevant ranks and con-
nection to non-forking (from III.2.18 on). We also know what
occurs if we make s type-full (III.2.7) and we then consider
frames where the basic types are the minimal types (III.2.15
- III.2.17). We then recall splitting.]
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14 ANNOTATED CONTENTS (BOOK 1)

III.§3 Prime triples

[We define K3,pr
s , the family of prime triples (M,N, a), the

family of minimal triples and “s has primes” (Definition III.3.2).
We look at the basic properties (III.3.5,III.3.8), connection

to K3,uq
s (III.3.7) and x-decompositions for x = pr,uq,bs in

Definition III.3.3. In particular if s has primes then any pair
M <s N has a pr-decomposition (see III.3.11). We prove the
symmetry for “the type of aℓ overM3−ℓ does not fork overM0

wherever M3−ℓ is prime over M0 ∪{a3−ℓ}” (III.3.9, III.3.12);
note that the symmetry axiom say “for some M3−ℓ . . . ”.]

III.§4 Prime existence

[We deal with good+ successful λ+-frame s. We recall the
definition of ≤bs and variants, and prove that s+ has primes
(III.4.9). For this we prove in III.4.9 that a suitable condition

is sufficient for (M,N, a) to belong toK3,pr
s(+), proving it occurs

(in III.4.3), and more in III.4.5, III.4.14, III.4.20. We use
for it ≤bs (defined with the variants <∗

bs, <
∗∗
bs in III.4.2), the

relevant properties in III.4.6. We then investigate more on
how properties for s+ reflects to λs, for NFs(+) in III.4.15 also
in III.4.13(2). Also we consider other sufficient conditions for
III.3.9’s conclusion in III.4.13(1). Lastly, III.4.20 deals with
the examples.]

III.§5 Independence

[We define IM,N and define when J ⊆ IM,N is independent in
(M,N), (see Definition III.5.2). In III.5.4 + III.5.5 + III.5.6
+ III.5.8(2) we prove fundamental equivalences and proper-
ties, includingM0-based pr/uq-decomposition inN/ofN and
that “independent in (M,N)” has finitary character. We also

define “N is prime over M ∪J” denoted by (M,N,J) ∈ K3,qr
s

(Definition III.5.7). We note existence and basic properties
(claim III.5.8). We show embedding existence (III.5.9(1))
and how this implies NF (see III.5.9(2)). We show that “nor-
mally” independence satisfies continuity (III.5.10) and reflect

Paper Sh:E53, Annotated Content



ANNOTATED CONTENT FOR 705 15

from s+ to s (III.5.11). Using this we prove the basic claims
on dimension for non-regular types, (see III.5.12, III.5.13 +
III.5.14).

We generalizeK3,uq
s , the class of uniqueness triples (M,N, a),

to K3,vq
s , the class of uniqueness triples (M,N,J),J inde-

pendent in (M,N), Definition III.5.15(1). We then define

when (M,N,J) ∈ K3,vq
s is thick (Definition III.5.15) and

prove their basic properties, in particular K3,qr
s ⊆ K3,vq

s (see

III.5.16, III.5.16(3)). When s = t+ we “reflect” K3,qr
s to cases

of K3,vq
t

(see III.5.22). Lastly, every triple in K3,bs
s can be

extended to one in K3,vq
s (with the same J, Claim III.5.24).]

III.§6 Orthogonality

[We define when p, q ∈ S bs
s

(M) are weakly orthogonal/ortho-
gonal, (Definition III.6.2), show that “for every (M,N, a) ∈

K3,uq
s ...” can be replaced “for some ...”, (III.6.3) and prove

basic properties (III.6.4, III.6.7), and define parallelism (see
III.6.5,III.6.6). We define “a type p is orthogonal/super-
orthogonal to a model” (Definition III.6.9, the “super” say
preservation under NF amalgamation), prove basic properties
(III.6.10), and how we reflect from s+ to s (see III.6.11 con-
cerning p⊥q, p⊥M). Orthogonality helps to preserve inde-
pendence (III.6.12). We investigate decompositions of tower

with orthogonality conditions. If (M,N, a) ∈ K3,uq
s ,M ∪

{a} ⊆ N ′ < N and p = tps(b, N
′, N) then p is weakly ortho-

gonal to M (see III.6.14(1),III.6.14(2)), and decompose such
triples by it (III.6.14(2)), look at an improvement (III.6.15(1))
and reflection from s+ (in III.6.15(2)), how we can use in-

dependence, K
3,vq/qr
s and orthogonality (III.6.16, III.6.18,

III.6.20, III.6.22). In particular by III.6.20(2) if (Mn,Mn,Jn)

∈ K3,uq
s for n < ω and c ∈ Jn+1 ⇒ tps(c,Mn+1,Mn+2)⊥M0

then (M0,
⋃

n

Mn,J0) ∈ K3,vq
s

. From pairwise orthogonal-

ity we can get independence (III.6.21), and one p cannot be
non-orthogonal to infinitely many pairwise orthogonal types
(III.6.22).]
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III.§7 Understanding K3,uq
s

[In III.7.2, we define W ,≤W (weak form of decompositions

of triples from K3,vq
s ) and related objects, in III.7.3 we prove

basic properties. In III.7.4 we define Kx
s

for x = or,ar,br,

decompositions of length ≤ ω of triples in K3,or
s with various

orthogonality conditions (why of length ≤ ω? so that in
inductive proof when we arrive to a limit case we are already
done). We also define fat, related to thick, (III.5.8(5)) and
we prove in III.7.6 some properties. In III.7.5 we define “s

weakly has regulars” and later, in III.7.18, define “almost
has regulars”. Existence for K3,or

s , K3,ar
s (assuming enough

regulars) are investigated (in III.7.7, III.7.8). We characterize

being in K3,uq
s in III.7.9, this is the main result of the section.

We then deal with universality and uniqueness for fat uq/vq
triples (see III.7.11 - III.7.13). We also deal with hereditary
and limits of uq/vq triples in III.7.15, III.7.16.]

III.§8 Tries to decompose and independence of sequences of models

[We define and prove existence of x-decompositions (M̄, ā)
with tps(ai,Mi,Mi+1) does not fork over some Mj but is
orthogonal to Mζ when ζ < j and show that (M0,Mα, {ai :

tps(ai,Mi,Mi+1) does not fork over M0}) ∈ K3,vq
s and also

revisit existence for K3,vq
s (see III.8.2, III.8.3, III.8.6). We

define and investigate when 〈Mi : i < α〉 is s-independent
over M inside N with witness N̄ = 〈Ni : i ≤ α〉 (see III.8.8
- III.8.18). In III.8.19 we return to investigating NFs, prove
that it is preserved under reasonable limits and by III.8.21
this holds for K3,vq

s . We also further deal with K3,vq
s .]

III.§9 Between cardinals, non-splitting and getting fullness

[We deal mainly with varying s. We fulfill a promise, proving
that a weakly successful good λ-frame s can be doctored to be
full (see III.9.5 - III.9.6. Also we show that if s is a successful
λ-good+ frame, then we can define a λ+-good+ successor s

nf

with Ksnf = Ks and snf is full, i.e. S bs
s(+) = S na

s(+); moreover

if s is categorical and successful.]
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III.§10 Regular types

[We deal mainly with type-full s. We define regular and
regular+ (Definition III.10.2),prove some basic equivalences
(III.10.4) and prove that the set of regular types is “dense”
(III.10.5). To prove that for regular type p, non-orthogonality,
(p±q) is equivalent to being dominated, (p E q) (in III.10.8),
we prove a series of statements on regular and regular+ types
(in III.10.6). We prove e.g. that if 〈Mi : i ≤ δ+1〉 is increas-
ing continuous, Mδ 6= Mδ+1 then some c ∈Mδ+1\Mδ realizes
a regular type over Mδ which does not fork over Mj but is
orthogonal toMj−1 if j > 0, for some j, which necessarily is a
successor ordinal (III.10.9(3)) that is, we prove that s almost
has regulars. Hence weakly has regulars as expected from
the names we choose. Using this, we revisit decompositions
(III.10.12).]

III.§11 DOP

[We deal with the dimensional order property.]

III.§12 Brimmed Systems

[This is the crux of the matter. We deal with systems m =
〈Mu : u ∈ P〉,P usually is P(n) or P−(n), which are “sta-
ble”, as witnessed by various maximal independent sets. A
parameter ℓ = 1, 2, 3 measure how brimmed is m, presently
the central one is ℓ = 3. We then phrase properties re-
lated to such stable system, e.g. the weak (λ, n)-existence
say every such (λ,P−(n))-system can be completed to a
(λ,P(n))-system; the strong (λ, n)-existence property says
that we can do it “economically”, by a “small Mn”. We also
define weak/strong uniqueness, weak/strong primeness and
weak/strong prime existence. The main work is proving the
relevant implications. The culmination is proving that if s is

ω-successful and 〈2λ
+n
s : n < ω〉 is increasing, then all posi-

tive properties holds and so can understand, e.g. categoricity
spectrum (and superlimit models).]
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Annotated Content for Ch.IV (734):
Categoricity and Solvability of a.e.c., quite highly

(This chapter appeared in book 1.)

IV.§0 Introduction

[Our polar star is: if an a.e.c. is categorical in arbitrarily large
cardinals then it is categorical in every large enough cardi-
nal. We make some progress getting some good λ-frames; and
to point to a more provable advancement, confirm this con-
jecture (and even a reasonable bound on starting) for a.e.c.
with amalgamation (as promised in [Sh:E36]). In fact we put
forward solvability as the true parallel to superstability.]

IV.§1 Amalgamation in K∗
λ

[We assume K is categorical in µ (or less-solvable in µ); and
the best results are on λ such that µ > λ = iλ > LS(K) (i.e.
λ is a fix point in the beth sequence) and λ has cofinality ℵ0;
we fix suitable Φ ∈ Υor[K]. We mostly assume µ = µλ.

First we investigate K∗
θ = {M : M ∼= EM(I,Φ) for some

linear order I of cardinality θ}, which is in general not an
a.e.c. under ≤K, but in our µ it is. We investigate such
models in the logic L∞,∂ , particularly when θ is large enough
than ∂, ∂ > LS(K) (mainly θ ≥ i1,1(∂)). We get more and
more cases when M ≺L∞,∂ [K] N follows from M ≤K N+
additional assumptions. An evidence of our having gained
understanding is proving the amalgamation theorem IV.1.29:
the class (K∗

λ,≤K) has the amalgamation property. In the
end we prove that if λ = Σ{λn : n < ω} < µ each λn is
as above and < λn+1 and is µ as above then Kλ has a local
superlimit model, see IV.1.38, in fact we get a version of
solvability in λ, see IV.1.41.]

IV.§2 Trying to Eliminate µ = µ<λ

[In §1 essentially (in the previous section) the first step in our
ladder was proving M ≺L∞,θ

N for M ≤K N from Kµ but we
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have to assume µ = µ<θ. As we use it for many θ < λ, the
investigation does not even start without assuming µ = µ<λ.
We eliminate this assumption except “few” exceptions (i.e.,
for a given K and θ).]

IV.§3 Categoricity for cardinals in a club

[We assume K is categorical in unbounded many cardinals.
We show that for some closed and unbounded class C of car-
dinals, K is categorical in µ for every µ ∈ C of cofinality ℵ0

(or ℵ1). This is a weak theorem still show that the cate-
goricity spectrum is far from being “random” (as is, e.g. the
rigidity spectrum is by [Sh 56]).]

IV.§4 Good frames

[Assume for simplicity that K is categorical in arbitrarily
large cardinals µ. Then for every λ = Σ{λn : n < ω}, λn =
iλn

> LS(K) there is a superlimit model in Kλ, and even a
version of solvability. Moreover there is a good λ-frame sλ

such that Ksλ
⊆ Kλ,≤sλ

=≤K↾ Ksλ
. Other works, in partic-

ular Chapter III, are a strong indication that this puts us on
our way for proving the goal from §0.]

IV.§5 Homogeneous enough linear orders

[We construct linear order I of any cardinality λ > µ such
that there are few J ∈ [I]µ up to an automorphism of I
and more. This helps when analyzing EM models using the
skeleton I. Used only in §2 and §7. The proof is totally
direct: we give a very explicit definition of I, though the
checking turns out to be cumbersome.]

IV.§6 Linear orders and equivalence relations

[For a “small” linear order J and a linear order I, mainly well
ordered we investigate equivalence relations E on incJ (I) =
{h : h embed J into I} which are invariant, i.e., defined by
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a quantifier free (infinitary) formula, hence can (under rea-
sonable conditions) be defined on every I ′. We are interested
mainly to find when E has > |I| equivalence classes; and
for “there is a suitable I of cardinality λ”. The expected
answer is a simple question on λ: is λ > λ|J|/D for some
suitable filter D? but we just prove enough for the applica-
tion in §7, dealing with the case λ > λ|J|/D holds for some
non-principal ultrafilter on |J |.]

IV.§7 Categoricity spectrum for a.e.c. with bounded amalgamation

[Let K be a.e.c. categorical in µ (or less, Φ ∈ Υor
LS[K][K], if

λ > µ ≥ cf(µ) > LS(K) and K<µ has amalgamation. Then
for µ∗ < µ, every saturated M ∈ K of cardinality ∈ [µ∗, µ)
is µ∗-local, i.e., any type p ∈ SK(M) is determined by its
restriction to model N ≤K M of cardinality µ∗. Also M ∈ K
is (χ, µ)-saturated, e.g., if 22χ

< µ. Then we prove that if
K is an a.e.c. categorical in a not too small cardinal µ and
has amalgamation up to µ or less) then it is categorical in
every not too small cardinal. We delay the improvements
concerning solvability spectrum and saying more in the case
K = (ModT ,≺Lκ,ω

), where T ⊆ Lκ,ω, κ measurable. In all
cases we eliminate the restriction of starting with “µ succes-
sor” and having the upward directions, too.]

Paper Sh:E53, Annotated Content



ANNOTATED CONTENT FOR 300A 21

Annotated Content for Ch.V.A (300a):
Stability theory for a model

V.A.§0 Introduction

[Introduction and notation.]

V.A.§1 The order property revisited

[We define some basic properties. First a model M has the
(ϕ(x̄; ȳ; z̄), µ)-order property (= there are āα, b̄α, c̄ for α < µ
such that ϕ(āα; b̄β, c̄) is satisfied iff α < β) and the non-order
property is its negation. Also indiscernibility (of a set and
of a sequence), and non-splitting. We then prove the non-
splitting/order dichotomy: if M is an elementary submodel
of N in a strong enough way related to χ and κ and ā ∈ κN
then either tp∆(ā,M,N) is definable in an appropriate way
(i.e., does not split over some set ≤ χ relevant formulas) or
N has (ψ, χ+)-order for a formula ψ related to ∆. Lastly, we
prove that (∆, χ+)-non-order implies (µ,∆)-stability if for
appropriate χ, µ. We also define various sets of formulas ∆x

derived from ∆.]

V.A.§2 Convergent indiscernible sets

[For stable first order theory, an indiscernible set I ⊆ M de-
fine its average type over M : the set of ϕ(x̄, b̄) satisfied by
all but finitely many c̄ ∈ I. In general not every indiscernible
set I has an average, so we say I is (∆, χ)-convergent if any
formula ϕ(x̄, b̄) where ϕ ∈ ∆ and b̄ is from M , divide I to two
sets, exactly one of which has < χ members. We prove that
convergent sets exists (V.A.2.8) under reasonable conditions
(mainly non-order). We also prove that convergent sets con-
tain indiscernible ones. Toward the existence we give a suffi-
cient condition in V.A.2.10 for a sequence 〈c̄i : i < µ+〉 being
(∆, χ+)-convergent including the (∆, χ+)-non-order property
which is easy to obtain.]
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V.A.§3 Symmetry and indiscernibility

[We prove a symmetry lemma (V.A.3.1), give sufficient condi-
tions for being an indiscernible sequence (V.A.3.2), and when
an indiscernible sequence is an indiscernible set (V.A.3.5),
and on getting an indiscernible set from a convergent set.]

V.A.§4 What is the appropriate notion of a submodel

[We define M ≤κ∆,µ,χ N which says that for c̄ ∈ κ>N , the ∆-
type which it realizes over M inside N is the average of some
(∆, χ+)-convergent set of cardinality µ+ inside M . We give
an alternative definition of being a submodel (in V.A.4.4)
when M has an appropriate non-order property, prove their
equivalence and note some basic properties supporting the
thesis that this is a reasonable notion of being a submodel.
We then define “stable amalgamation of M1,M2 over M0

inside M3” and investigate it to some extent.]

V.A.§5 On the non-order implying the existence of indiscernibility

[We give a sufficient condition for the existence of “large”
indiscernible set J ⊆ I, in which |J| < |I|, but the demand
on the non-order property is weaker than in V.A.§2 speaking
only on non-order among singletons. Even for some first or-
der T which are unstable, this gives new cases e.g. for ∆ =
the set of quantifier free formulas.]

Annotated Content for Ch.V.B (300b):
Axiomatic framework

V.B.§0 Introduction

[Rather than continuing to deal with universal classes per
se, we introduce some frameworks, deal with them a little
and show that universal classes with the (χ,< ℵ0)-non-order
property fit some of them (for suitable choices of the extra
relations). In the rest of Chapter II almost always we deal
with AxFr1 only.]
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V.B.§1 The Framework

[We suggest several axiomatizations of being “a class of mod-
els K with partial order ≤K with non-forking and possibly
the submodel generated by a subset” (so being a submodel,
non-forking and 〈A〉gnM for A ⊆M are abstract notions). The
main one here, AxFr1 is satisfied by any universal class with
(χ,< ℵ0)-non-order; (see §2). For AxFr1 if M1,M2 are in
non-forking amalgamation over M0 inside M3 then the union
M1 ∪M2 generate a ≤K-submodel of M3. In such contexts
we define a type as an orbit, i.e. by arrows (without formu-
las or logic); to distinguish we write tp (rather than tp∆)
for such types. Also “Tarski-Vaught theorem” is divided to
components. On the one hand we consider union existence
Ax(A4) which says that: the union of an ≤K-increasing chain
belongs to the class and is ≤K-above each member. On the
other hand we consider smoothness which says that any ≤K-
upper bound is ≤K-above the union.]

V.B.§2 The Main Example

[We consider a universal class K with no “long” linear orders,
e.g. by quantifier free formulas (on χ-tuples), we investigate
the class K with a submodel notion introduced in V.A§4,
and a notion of non-forking, and prove that it falls under the
main case of the previous section. We also show how the first
order case fits in and how (D, λ)-homogeneous models does.]

V.B.§3 Existence/Uniqueness of Homogeneous quite Universal Mod-
els

[We investigate a model homogeneity, toward this we define
Dχ(M),Dχ(K),D′

K,χ and define “M is (D, λ)-model homoge-

neous”. We show that being λ+-homogeneous λ-universal
model in K can be characterized by the realization of types
of singletons over models (as in the first order case) so having
“the best of both worlds”.]
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Annotated Content for Ch.V.C (300c):
A frame is not smooth or not χ-based

V.C.§0 Introduction

[The two dividing lines dealt with here have no parallel in
the first order case, or you may say they are further parallels
to stable/unstable, i.e. stability “suffer from schizophrenia”,
there are distinctions between versions which disappear in
the first order case, but still are interesting dividing lines.]

V.C.§1 Non-smooth stability

[This section deals with proving basic facts inside AxFr1. On
the one hand we assume we are hampered by the possible
lack of smoothness, on the other hand the properties of 〈−〉gnM
are helpful. These claims usually say that specific cases of
smoothness, continuity and non-forking hold. So it deals with
the (meagre) positive theory in this restrictive context.]

V.C.§2 Non-smoothness implies non-structure

[We start with a case of failure of κ-smoothness, copy it many
times on a tree T ⊆ κ≥λ; for each i < κ for every η ∈ T ∩ iλ
we copy the same things while for η ∈ T ∩ κλ we have a free
choice. This is the cause of non-structure, but to prove this
we have to rely heavily on §1. If we assume the existence of
unions, for any <s-increasing sequence, i.e. Ax(A4), the non-
structure (in many cardinals), is proved in ZFC, but using
weaker versions we need more.]

V.C.§3 Non χ-based

[We note some basic properties about directed systems and
how much they depend on smootheness. We then define
when s is χ-based: if M ≤s N and A ⊆ N has cardinal-
ity ≤ χ then for some M1, N1 of cardinality ≤ χ we have
NFs(M1, N1,M,N) and A ⊆ N1. This is a way to say that
tps(N1, N) does not fork over M1, so being χ-based is a
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relative of being stable, and when it fails, a very explicit
counterexample.]

V.C.§4 Stable construction

[We generalize [Sh:c, IV] to this context. That is we deal
with constructions: in each stage we add a “small” set which
realizes over what was constructed so far a type which does
not fork over their intersection. We define and investigate
the basic properties of such constructions.]

V.C.§5 Non-structure from “NF is not χ-based”

[Assuming the explicit failure of “χ-based over models of car-
dinality χ+”, and using the existence of good stationary sub-
sets S∗ of regular λ > χ++ of cofinality χ+, we build a model
in Ks

λ which codes any subset S of S∗ (modulo the club fil-
ter) hence get a non-structure theorem. Naturally we use the
stable constructions from the previous section, §4 and have
some relatives.]

Annotated Content for Ch.V.D (300d):
Non-forking and prime models

V.D.§0 Introduction

[Here we deal with types of models (rather than types of
single elements). This is O.K. for parallel to some properties
of stable first order theories T , mainly dealing with |T |+-
saturated models.]

V.D.§1 Being smooth and based propagate up

[By Chapter V.C we know that failure of smoothness and fail-
ure of being χ-based are non-structure properties, but they
may fail only for some large cardinal. We certainly prefer
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to be able to prove that faillure, if it happens at all, hap-
pens for some quite small cardinal; we do not know how to
do it for each property separately. But we show that if s is
(≤ χ,≤ χ+)-smooth and (χ+, χ)-based and LSP(χ) then for
every µ ≥ χ, s is (≤ µ,≤ µ)-based, and (≤ µ,≤ µ)-smoothed
and has the LSP(µ). So it is enough to look at what occurs
in cardinality LS(Ks) for the non-structure possibility (rather
than “for some χ”). We then by Chapter V.C get a non-
structure result from the failure of the assumption above.
We also investigate when Ks has arbitrarily large models.
So being “(≤ χ,≤ χ+)-smooth, (χ+, χ)-based, LSP(χ)” is a
good dividing line.]

V.D.§2 Primeness

[We define prime models (over A), isolation (for types of the
form N/M + c) and primary models. We prove the existence
of enough isolated types; the difference with the first order
case is that we need to deal withM <s C even if we start with
a singleton. From this we deduce the existence of primary
models over A <s C hence primes.]

V.D.§3 Theory of types of models

[We look at TP(N,M) when N ∩ M,N,M are in stable
amalgamation. The set of such types is called S α

c (M) if
〈ai : i < α〉 list the elements of N . For such types we can
define non-forking, stationarization and prove properties par-
allel to the first order case of stable first order classes.]

V.D.§4 Orthogonality

[For types in S<∞
c (M) we can define weak orthogonality and

orthogonality of types and orthogonality of a type to a model
and prove expected claims.]

V.D.§5 Uniqueness of (Ds, µ)-primary models
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[We prove that the non-forking restriction of an isolated type
is isolated. We then prove the uniqueness of the primary
model.]

V.D.§6 Uniqueness of (Ds, µ)-prime models

[We deal with the uniqueness of prime models and only com-
ment on Ceq.]

Annotated Content for Ch.V.E (300e):
Types of finite sequences

V.E.§0 Introduction

[The investigations in Chapter V.C, Chapter V.D do not sug-
gest a parallel to superstable. For this we have to look at
types of singletons, and the picture is more complicated, but
a very reasonable parallel exist.]

V.E.§1 Forking over models of types of sequences

[We define when tp(c̄, N) does not fork over M ≤s N even
for sequences c̄ not enumerating any appropriate N ′ <s C

and investigate the properties.]

V.E.§2 Forking over sets

[We define when tp(c̄, B) does not fork over A, show the
equivalence and compatibility of several variants; we define
when tp(c̄, B) is stationary over A and investigate the basic
properties (including symmetry). Compared to the first order
stable case there may be “bad types”, e.g. there may be no
“small” A ⊆ B such that “tp(c̄, B) does not fork over A”. We
also define strong splitting in this context and convergence,
independence and parallelism.]
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V.E.§3 Defining superstability and κ(s)

[We define κ(s), a set of regular cardinals, which replace
{θ : θ = cf(θ) < κr(T )} for stable first order T ; (supersta-
bility means κ(s) = ∅) and get a non-structure theorem for
unsuperstable s. We connect κ(s), the existence of (Ds, λ)-
homogeneous model in λ and the behaviour of a directed
union of quite homogeneous models. For a regular cardinal-
ity θ, we have: θ ∈ κ(s) iff there is a ≤s-increasing sequence
〈Mi : i ≤ θ〉 of models and p ∈ S 1(Mθ) such that for each
i < θ the type p forks over Mi (but not necessarily p ↾ Mi+1

forks over Mi!). This is related to the existence of (λ, κ)-
brimmed models.]

V.E.§4 Orthogonality

[We generalize the orthogonality calculus to the present con-
text.]

V.E.§5 Niceness of types

[In general here we do not know that not all types behave
“nicely”. But for some we can translate problems about
them to problems of types in S α

c (M) from Chapter V.D.
This motivates the definition of nice and prenice types over
models. The prenice ones behave as in stable theories. But
without existence of pre-nice types this is of limited interest.
However, there are quite many of them and in particular see
§6 below.]

V.E.§6 Superstable frames

[We deal with rank of types. For superstable s, the rank is
< ∞ and then we show that every p ∈ S <ω(M) is prenice
fulfilling a promise from §5. The notion of rank is less central
than in the first order case as “every p ∈ S (M) has rank
<∞” is not equivalent to κ(s) = ∅ but to a failure of a weak
version of ℵ0 ∈ κ(s).]
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V.E.§7 Regular types and weight

[We generalize regular types and weight to this context. We
delay dealing with P-simple, P-hereditarily orthogonal to P

and wP to [Sh 839].]

V.E.§8 Trivial regular types

[We deal with trivial regular types, the ones where depending
on a set is equivalent to depending on some member.]

Annotated Content for Ch.V.F (300f):
The Heart of the Matter

V.F.§0 Introduction

[We show that if s falls under the high side of some dividing
lines, it has many complicated models. If it falls under the
low side, we can find s+ = s(+) with a stronger ≤s(+) which
also satisfies AxFr1.]

V.F.§1 More on indiscernibility

[In our context and in particular for stable theories we can
combine getting indiscernibles and Erdös-Rado theorem. E.g.
if M is a model of a (first order complete) stable T and
a{α,β} ∈ M for α < β < (2λ)+, λ ≥ |T |, then we can find

u ∈ [(2λ)+]λ
+

such that 〈a{α,β} : α < β are from u〉 is indis-
cernible, not just 〈a{α} : α ∈ u〉 is 2-indiscernible in M .

The point is that we define when 〈Mu : u ∈ [λ]≤n〉 in in-
dependent (this applies even to Mu ≺ C,C a model of a
stable theory). We prove existence of such systems parallel
to Erdös-Rado theorem. We then turn to other cases.]

V.F.§2 Order properties considered again

[We start with non-order for infinitary formulas and get a
non-structure result. This will justify the concentration on
the case we have the relevant non-order property.]
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V.F.§3 Strengthening the order ≤s

[Assuming enough non-order, we derive from the framework
s a framework s+ = s(+) satisfying AxFr∗1, the order letting
M ≤s(+) N mean (≤s and) preservation of the satisfaction
of some infinitary universal formulas.]

V.F.§4 Regaining existence of ω-unions

[We investigate and get non-structure from failure of the ex-
istence of ω-limits for the new notion of being a sub-model,
≤s(+). The main point is investigation in the ranks of a tree
of the form {f : f is a ≤s-embedding of Mn into N} ordered
by ⊆ where 〈Mn : n < ω〉 is ≤s-increasing. We conclude (in
Conclusion V.F.4.9) that non-structure follows from failure

of Ax(A4)θ for θ = ℵ0 but get only İ(µ,Ks) ≥ µ+ for many
µ’s.]

V.F.§5 Non-existence of union implies non-structure

[This section is complementary to the previous one getting
non-structure from non-existence of an ≤s(+)-upper bound of
an ≤s(+)-increasing continuous δ-chain also when θ = cf(δ)
is minimal and θ > ℵ0. So the counterexample is less easily
manipulated, and the rank from §4 is meaningless. But by
the amount of existence which follows by the minimality of
θ (and free amalgamation of families of models), we know
more how to construct non-forking trees of models and this
enables us to prove non-structure.]

Annotated Content for Ch.V.G (300g):
Changing the framework

V.G.§0 Introduction

[We hope that by repeating the operation s 7→ s+ up to some
limit ordinal δ we get an s+δ for which we can prove the main
gap. Here we take some steps toward this.]
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V.G.§1 On the family of s’s

[We define a natural (partial) order on the family of reason-
able frameworks s, and prove its basic properties. In partic-
ular, increasing sequences has a limit.]

V.G.§2 From large enough rkemb,2

M̄
(f,N) to every ordinal

[This continues V.F§1. Here we are interested in well-founded
trees, and so if we start with a well-founded tree of ≤s-
submodels of N of cardinality ≤ µ which form a tree of large
enough rank, then there is a large enough subtree which is
“free enough” so we can “blow it up” to larger ordinals. This

is applied to the case rkemb,2

M̄
(f,N) is large enough.]

Annotated Content for Ch.VI, (E46):
Categoricity of an abstract elementary

class in two successive cardinals revisited

VI.§0 Introduction

VI.§1 Basic properties

[We look at an a.e.c. K with LS(K) ≤ λ, with assumptions as
in the abstract and, by Chapter I, deduce amalgamation (in

Kλ and Kλ+). We define the class K3,na
λ of triples (M,N, a)

ordered by ≤=≤na representing (orbital) types in S na(M)
for M ∈ Kλ, and start to investigate it, dealing with the
weak extension property, the extension property, minimality,
reduced triples and types (except for minimality, in the first
order case, these hold trivially). Our aims are to have the
extension property or at least the weak extension property
for all triples in K3,na

λ , and the density of minimal triples.
The first property makes the model theory more like the first
order case, and the second is connected with categoricity.
We start by proving the weak extension property under rea-
sonable assumptions and a consequence of having too many
types, reminding the ∆-system lemma.]
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VI.§2 The extension property and toward density of minimal types

[We deal with triples fromK3,na
λ . Under “expensive” assump-

tions (mainly categoricity in λ+) we prove that all triples have
the extension property and that we have disjoint amalgama-
tion in Kλ. We prove the density of minimal triples under
the strong assumptions: Kλ+3 = ∅ and an extra cardinal

arithmetic assumption (2λ
+

> λ++). Now the assumption
Kλ+3 = ∅ does no harm if we just intend to prove Theorem
VI.0.2(1),(2)(a), i.e. Kλ+3 6= ∅ but is a disaster if we would
like to continue as in Chapter II or try to get an almost good
λ-frame from the present assumptions (without Kλ+3 = ∅),
i.e. VI.0.2(2)(b). The reader willing to accept these assump-
tions may skip some proofs later.]

VI.§3 On UQ from non-density of minimal (assuming weak ex-
tensions)

[Assume (Kλ has amalgamation and) the minimal types are

not dense in K3,na
λ , we define and investigate UQ, the class

of triples of models with unique amalgamation. So we have
some positive model theoretic consequences from what is a
non-structure assumption. We get some non-structure results
relying on Chapter VII.]

VI.§4 Density of minimal types

[We continue §3 getting the promised results, relying on Chap-
ter VII.]

VI.§5 Inevitable types and stability in λ

[We continue to “climb the ladder”, using the amount of
structure we already have (and sometimes categoricity) to
get more. We start by assuming there are minimal types,
and show that some minimal types are inevitable. We con-
struct pi ∈ S (Ni) minimal (i ≤ λ+) both strictly increasing
continuous and with p0, pδ inevitable, and then as in the proof
of the equivalence of saturativity and model homogeneity, we
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show Nδ is universal over N0. We can then deduce stability
in λ, so the model in λ+ is saturated. Then we note that we
have disjoint amalgamation in Kλ.]

VI.§6 Density of uniqueness and proving for K categorical in λ+2

[We give a shortcut to proving the main theorem by using
stronger assumptions (may be useful in categoricity theo-

rems). For this we first look at uniqueness triples. If İ(λ+2, K) =

1 and İ(λ+3, K) = 0 then for some triple (M,N, a) ∈ Kλ+ ,
a is “1-algebraic” over M , i.e. this is a maximal triple. Now
first assuming for some pair M0 ≤K M2 in Kλ we have
unique (disjoint) amalgamation for every possible M1 with
M0 ≤K M1 ∈ Kλ (and using stability), we get a pair of mod-
els in λ+ which contradicts the existence of maximal triples.
We then rely on Chapter VII to prove that there are enough
cases of unique amalgamation.]

VI.§7 Extensions and Conjugacy

[We investigate types. We prove that in S (N), N ∈ Kλ the
following: reduced implies inevitable, and non-algebraic ex-
tensions preserve the conjugacy classes for minimal reduced
types (so solving parallel to the realize/materialize problem
from Chapter I, see in particular Definition I.4.3(5), the dis-
cussion in the beginning of I§5 just after I.5.1 and Claim
I.5.23).]

VI.§8 Almost good frame

[We prove the main theorem in particular find an almost good
λ-frame s with Ks = Kλ.]

Annotated Content for Chapter VII (838):
Non-structure in λ++ using instances of WGCH

VII.§0 Introduction
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[In addition to explaining what we are doing, we quote some
definitions (and results) on the weak diamond.]

VII.§1 Nice construction framework

[The intention is to build (many complicated) models of car-
dinality ∂+ by approximations of cardinality < ∂. We give
the basic definitions: of u being a nice construction frame-
work (consisting of a (< ∂)-a.e.c. Ku, the class of approxima-
tions to the desiredM ∈ Ku

∂+ , classes FRℓ of triples (M,N,J)
for ℓ = 1, 2 and some relations on Ku) and of u-free rectan-
gles and triangles. We define approximations of size ∂, i.e.
the class of triples (M̄, J̄, f) from Kqt

u and some quasi orders
on them. We prove some basic properties and define what is
meant by: almostℓ all such triples has a property; this will
many times mean M = ∪{Mα : α < ∂} ∈ Ku

∂ is saturated.]

VII.§2 Coding properties and non-structure

[the coding properties are sufficient conditions on u for finding
many non-isomorphic models in Ku,∗

∂+ . They have the form
that Ku has strong forms of failure of amalgamation of two
members of Ku, so of cardinality < ∂ over a third using FR1,
FR2]

VII.§3 Invariant coding

[We deal with some further coding properties; the invariant
meaning that the relevant isomorphisms (which we demand
does not exist) fix some models setwise rather than point-
wise.]

VII.§4 Straight Applications of codings properties

[We mainly deal with theorems using the weak coding prop-
erty of a suitable u derived from an a.e.c. with ∂u = λ+

when 2λ < 2λ
+

< 2λ
++

so assuming WDmId∂ is not λ++-
saturated. The first case (in §4(A)) deals with the density of
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minimal types for Kλ when K is categorical in λ, λ+ and has
a medium number of models in λ++ and LS(K) ≤ λ; this is
promised in VI§4. The second case (in §4(C)) deals with an
a.e.c. which is PCℵ0

and has a medium number of models in
ℵ1 and not too many models in ℵ2 and derive uniqueness of
one sided stable amalgamation (promised in Chapter I). The
third case (in §4(D)) continues the first, proving the density

of uniqueness triples (M,N, a) in K3,na
λ under the same as-

sumptions, as promised in VI§6. The fourth case (in §4(E))

proves the density of uniqueness triples in K3,bs
s , for s a good

λ-frame as promised in II§5. In addition, concerning the first
case we eliminate the use of “WDmIdλ+ is λ++-saturated”
by using u with the vertical coding property, this is done in
§4(B); this redo [Sh 603]. Finally in §4(F) we do the full ver-
sions of the theorems, assuming only the relevant cases of the
WGCH, but relying on the results of the subsequent sections
§5-§8.]

VII.§5 On almost good λ-frames

[We say some basic things on almost good λ-frames s; they
arise in Chapter VI. E.g. we prove that “N is brimmed
over M” is unique up to isomorphism over M (i.e. if Nℓ
is (λs, κℓ)-brimmed over M for ℓ = 1, 2 then N1, N2 are iso-
morphic over M). This is a consequence of analyzing full
and brimmed u-free rectangles and triangles for some nice
construction framework u derived from s.]

VII.§6 Density of weak versions of uniqueness

[For a good λ-frame, for any ξ < λ+ we prove that either
Ks has non-structure in λ++ by getting vertical uq-invariant
coding, from §3, or prove density for K3,up

s,ξ , a quite weak
form of uniqueness of triples, i.e. of a kind of uniqueness
for a suitable form of amalgamation. As we like to deal also
with almost good λ-frames, we rely on §5. This relates to
§4(D),§4(E).]
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VII.§7 Pseudo uniqueness

[From existence for K3,up
s,ξ for ξ = λ+ we define WNFs, a

weak form of the class of quadruples 〈Mℓ : ℓ < 4〉 of models
fromKs withM1,M2 amalgamated in a non-forking way over
M0 inside M3. We prove that WNFs is a weak s-non-forking
relation which respects s.]

VII.§8 Density of K3,uq
s

[We try to prove non-structure in λ++ from failure of density

of K3,uq
s . By §6 we justify assuming existence for K3,up

s , so
by §7 the relation WNFs is a well defined weak s-non-forking
relation on Ks (respecting s). So we can define u such that
(M0, N0, a) ≤ℓ

u
(M1, N1, a) implies WNF(M0, N0,M1, N1).

We also show that it is enough to show K3,up
s ⊆ K3,uq

s .
Now the proof splits to two cases. In the first we assume
wnf-delayed uniqueness fails and get vertical coding. In the
second we assume wnf-delayed uniqueness holds but density
of uniqueness triples fail and get horizontal coding (using the
properties of WNF).]

VII.§9 The combinatorial part

[We first quote; central in justifying our results is µunif(∂
+, 2∂)

which “usually” is 2∂
+

, (in VII.9.4). We show that build-

ing an appropriate tree 〈Mη : η ∈ ∂+≥(2∂)〉 is enough (in
VII.9.1). We present building 〈M̄ηˆ<α> : α < 2∂〉 as above
(in VII.9.3); as well as the “universal case”, i.e. when Mη(η ∈
∂2) are pairwise non-isomorphic of M<>. Also we deal with
the results on having many models in ∂ (when ∅ ∈ WDmId∂)
and mention the case in each step α < ∂+ we use, e.g. ∂ sub-
steps.]

VII.§10 Proofs of the non-structure theorems, with choice functions

[This has a somewhat more set theoretic character compared
to, and fulfills promises from §2,§3. We prove various coding
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theorems saying that there are many non-isomorphic mod-
els in ∂+. In particular we prove this for nice construction
frameworks in cases in which we need amalgamation choice
functions.]

VII.§11 Remarks on pcf

[We prove things in pcf relevant to non-structure in a reason-
ably self contained way. One is a relative of Hajnal free subset

theorem. The main other says that if 2λ < 2λ
+

then one of
three cases occurs, each helpful in proof of non-structure and
some related results. This is a revised version of part of [Sh
603].]
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UNIVERSAL CLASSES: STABILITY

THEORY FOR A MODEL

SH300A

§0 Introduction

(A) Introduction to Chapter V
We have been interested in classifying first order theories, not in

the sense of finite group theory, i.e. explicit list of familities but like
biology - find main taxonomies, dividing lines. See Chapter N.

We try here to develop the case of universal classes (see below). In
fact we develop it less concretely, more abstractly, both per se, and
as by our program we think that we shall need eventually to define
inductively a sequence of such frameworks; and we had thought such
proofs necessary and intriguing.

0.1 Convention.

(a) Let τ be a vocabulary (= signature)

(b) K will denote a class of τ(K)-models (= structures).

0.2 Definition. K is universal if K is closed under submodels, in-
creasing chains and under isomorphisms.

Note:

0.3 Observation. 1) Not every elementary class is universal, but
many universal classes are not elementary, e.g. the locally finite
groups.
2) If K is universal, τ(M) = τ(K) then M ∈ K if and only if every
finitely generated submodel of M belongs to K (see V.B.2.5).

Typeset by AMS-TEX

38

Paper Sh:300A, Chapter V.A



V.A.§0 INTRODUCTION 39

It may be instructive to remember in this context the following the-
orem of Tarski:

0.4 Theorem. For a finite relational vocabulary (i.e., with predi-
cates only so no function symbols) K is universal if and only if K is
the class of models of a universal first order theory.

A strong motivation for developing a classification for universal classes
was [Sh 155], which proves the main gap for universal first order the-
ories. It was not superceded by [Sh:c, XIII] as it does not assume
“the vocabulary is countable”, and moreover gives additional infor-
mation.

The main point there is that

0.5 Theorem. Assume T is a universal first order theory which
is stable, i.e., every completion T ′ of T (i.e. complete first order
T ′ ⊇ T , in L(τT ) of course) is stable.
1) (a) ⇒ (b) where

(a) n < ω, 〈Mu : u ∈ P(n)〉 is a stable system of models of T (so
u ⊆ n ⇒ Mu ≺ Mn and tp∗(Mu,∪{Mv : v ⊆ n, u * v},Mn)
does not fork over ∪{Mv : v ⊂ u} for every u ⊂ n; (see [Sh:c,
XII,§4])

(b) Mn ↾ A ≺ M where A is the closure of ∪{Mu : u ⊂ n} in
Mn.

2) So every completion of T has a (strong) variant of the (λ, n)-
existence property, see [Sh:c, Ch.XII,Definition 5.2,5.4,pg.616].

Note that this work contains several results on the existence of in-
discernibility which are meaningful also for first order logic. This
contains finding for any given 〈aα : α < λ〉 a long indiscrenible of
subsequence if no ϕ(x, y, c̄) has the µ-order property (note: here finite
sequences are not the same as elements), see 5.1. Also we can find
a relative to Erdös-Rado theorem, e.g. given 〈ā{α,β} : α < β < λ〉,
for a large U ⊆ λ, 〈āα,β : α < β from U 〉 is indiscernible (not just
2-indiscernible, see V.F§1).
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Lastly, we similarly deal with tree with ω-levels (end of V.F§1)
and with trees like des(α) = {η : η a decreasing sequence of ordinals
< α} (see V.G.2.7).

In [Sh:c, VIII] we have worked hard to get İ(λ, T ) is maximal
in all relevant cases. But now we will have less strict “rules of the
game”, accepting as sufficient, results negating a structure theory
(e.g. getting İ(λ, κ) for many cardinals), unfortunately sometimes
we get only consistency (see V.F§5).

In the framework of Chapter V.B the main role of Chapter V.A is
§4. If a universal class K fails (relevant cases of) the order property,
we would like to make it a class with amalgamation. Toward this we
define some appropriate partial orders ≤K. We would like (K,≤K)
to be an a.e.c. (see Chapter I) with amalgamation. In §4 we prove
the equivalence of two versions and define stable amalgamation and
prove the LS property and closure under increasing unions.

In V.B§1 we introduce our main framework, AxFr1, and deal
somewhat with relatives; compared to a.e.c. such s has “explicite”
amalgamation, but may lack smoothness, see below; so this choice
is incomparable with a.e.c. We then prove in V.B§2 that if K is a
universal class with suitable non-order property, then we can find s

satisfying AxFr1 such that Ks is the original class K (and LS(Ks)
is not too large). We also say how first order stable T fits and
where the class of (D, µ)-homogeneous models fit. In V.B§3 we
sort out sequence-homogeneity = (D, λ)-homogeneity and model-
homogeneity = (D, λ)-homogeneity and saturation. In particular we
prove “λ-saturated is equivalent to λ-model-homogeneous” where M
is λ-saturated when: if N ≤s M∧‖N‖ < λ∧p ∈ S 1(N) ⇒ p realizes
in M . Note that we do not use types which are sets of formulas, but
define them by “orbits over the model”.

If we look at s satisfying AxFr1 as a generalization of first order
theory much is lacking. In particular we point two dividing lines
which do not appear in the first order case: being smooth and be-
ing χ-based. Smoothness is the property “if 〈Mα : α ≤ δ〉 is ≤s-
increasing then ∪{Mα : α < δ} ≤s Mδ”; it is what Ks is missing to
be an a.e.c. To get non-structure from it we have to know something
on constructing models (so developing the positive theory); this is
done in V.C§1, using < − >gn heavily, and subsequently, in V.C§2
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we get the non-stucture. We then deal in V.C§3-§5 with the failure
of “s is χ-based” which means that: if M ≤s N and A ⊆ N has
cardinality ≤ χ then for some M1, N1 of cardinality ≤ χ we have
A ⊆ N1 and NFs(M1, N1,M,N).

Now the failures imply non-structures from the “cardinality of the
failure up”. Naturally we would like to say that if there is a failure
then it occurs in reasonably small cardinals (e.g. like (i2((2

LS(K)+)
rather than the first weakly compact cardinal or whatever). We do
not know this for each of those properties separately but we know it
when we put them together, e.g. if we have smoothness in K≤χ+ , s
is χ-based and LSP(s) ≤ χ holds then this holds in all χ′ ≥ χ; this
is done in V.D§1 and is sufficient for our program.

The rest of Chapter V.D tries to understand the class of (Ds, κ)-
homogeneous models, the parallel of the class of κ-saturated model
of a stable elementary class ModT with κ ≥ κr(T ). A crucial point
is defining isolated types and proving their density. However, the
types are not of singletons (or finite sequences) but of submodels,
i.e. p ∈ S

α
0 (M) and we use “orbital” types (not set of formulas); we

shall use the stable construction from V.C§4.

We deal with the basic properties, of such types, the existence
(and uniqueness) of (Ds, µ)-prime models and orthogonality of types.
This is fine when we consider frames including “λ-saturated mod-
els in a strictly stable elementary class”. But if we like to in-
clude properties of superstable such classes this will not help. So in
Chapter V.E we investigate types of singletons (or finite sequences).
We have a theory parallel to that of superstable elementary class.
While we have no problem with the parallel of DOP, as we like
to analyze M ∈ Ks (not just (Ds, χ

+
s
)-homogeneous ones) we have

to consider order properties defined as follows. Assume 〈M{α} :
α < α∗} are independent over M∅ inside C, āα list the elements
of M{α}, aα,i 7→ aβ,i (i < ℓg(ā0)) is an isomorphism from M{α}

onto M{β} over M∅ called hβ,α and M{α} ∪ M{β} ⊆ M{α,β} and
hβ1,α1

∪ hβ2,α2
can be extended to an isomorphism from M{α1,α2}

onto M{β1,β2}. Varying R ⊆ [α(∗)]2 we ask: does the model MR =
〈∪{M{α} : α < λ} ∪ {M{α,β} : {α, β} ∈ R}〉gn represent (up to

isomorphisms) somewhat R, i.e. if R1, R2 ⊆ [α(∗)]2 are “differ-
ent enough” then MR1

≇ MR2
. In a sense our problem is that
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M ≤s N does not imply that M is a Σ1-submodel of N in an appro-
priate sense. So we define the appropriate order property (V.F§2)
which is enough for a non-structure result. If the non-order prop-
erties hold we would like to define a “successor” s+ = s(+) to s

using ≤s(+) as a strong submodel. (Σ1-submodel for formulas with
χ variable for appropriate χ). However, it is far from clear that the
s
+ we have gotten satisfies AxFr1. Not only smoothness is missing

for the intended ≤s(+), but even the existence of union, Ax(A3).
That is, a ≤s(+)-increasing sequence 〈Mα : α < δ〉 have a union
Mδ := ∪{Mα : α < δ} and it is in Ks(+) = Ks, but do we have
α < δ ⇒Mα ≤s(+) Mδ? We use this as another dividing line. But to
prove non-structure we have, as in Chapter V.C, to do some construc-
tions in such a weak frame. We use weaker forms of (A4) which holds:
first M = 〈∪{M{α} : α < α(∗)}〉gn when M∅ ≤s(+) M{α} are so
called independent overM∅ inside someN and second if 〈Mα : α ≤ δ〉
is ≤s(+)-increasing then Mα ≤s(+) M

−
δ := ∪{Mα : α < δ} though

we do not know if M−
δ ≤s(+) Mδ. The non-structure uses minimal δ

(so δ = cf(δ)) and the case δ = ω has a different character (we get
≥ λ+ models in λ rather than 2λ).

In Chapter V.G we actually deal with the successor framework
s
+. There is a natural order such that s ≤ s

+. Also if 〈sα : α < δ〉
is increasing continuous then a natural limit sδ is well defined and
satisfies (AxFr)1 (provided that along the way, our class falls on
the structure side). So we can iterate the operation s+. See on
improvements and comments in [Sh:E54] (on all subchapters).

Our expectations were (and still are) that for δ large enough, sδ

is similar enough to first order to enable us to prove a main gap
theorem.

This work was mainly done on 6-12/85 and lectured on at Rutgers.
Chapter V.D, Chapter V.E exists but were not in good enough form
for publication in [Sh 300], but the situation concerning the rest turns
out to be more complicated than what seemed at first. So Chapter
V.F, Chapter V.G were done later in the eighties and present in the
Helsinki ’90 meeting. Because of hopes to continue and technical
reasons the appearance was delayed.

We thank John Baldwin and Alex Usuyatsov (and the reader
should more so) for many corrections, and help in filling in more
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details, writing up some proofs and improvements of the presenta-
tion. We also thank the participants of the logic seminar in Rutgers,
Fall 1985 for their attentiveness, Leo Harrington for hearing this in
first verbal versions and Adi Jarden, J. Kupplevitch, Rabinowich and
Alon Siton for some corrections.

(B) Notation
There is some repetitions on N§5(B).

0.6 Set Theoretic Notation.

1) λ, µ, χ, κ denote cardinals (usually infinite).
2) α, β, γ, i, j, ε, ζ, ξ denote ordinals.
3) δ denotes a limit ordinal.
4) H (λ) denote the family of sets with transitive closure of cardi-
nality < λ.

Note that 0.7(8)-(12) are not used often.

0.7 Model Theoretic Notation. 1) τ denotes a vocabulary, i.e., set
of predicates and function symbols, each with a designated fixed (fi-
nite) arity.
2) M a model (= a structure), τ(M) its vocabulary, for τ = τ(M)
we say M is a τ -model, |M | the universe of M .
3) K a class of models all with the same vocabulary τ(K), for
τ = τ(K) we say K is a τ -class.
4) ā, b̄, c̄ denote sequences of elements from a model, not necessar-
ily finite. The length of a sequence ā is denoted by ℓg(ā). Instead
ā ∈ ℓg(ā)(|M |) we may write ā ∈ ℓg(ā)M or ā ∈M .
5) L a logic, i.e. for every vocabulary τ , L (τ) is a set of formu-
las ϕ(x̄) not necessarily first order; (x̄ is a possibly infinite sequence
of variables including all free variables of ϕ) and we assume always
[τ1 ⊆ τ2 ⇒ L (τ1) ⊆ L (τ2)], [ϕ ∈ L (τ1) and ϕ ∈ L (τ2) implies
ϕ ∈ L (τ1 ∩ τ2)]; if M is a τ -model, c̄ ∈ ℓg(x̄)|M |, the truth value of
“M |= ϕ[c̄]” is defined.
6) For every sentence ψ which is in some L (τ), there is a vocabulary
τ(ψ) such that for any vocabulary τ ′, ψ ∈ L (τ ′) ⇔ τ ⊆ τ ′. For a
theory T (i.e. set of sentences) let τ(T ) = ∪{τ(ψ) : ψ ∈ L } and the
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truth of M |= ϕ[ā] depends only on M ↾ τ if ϕ ∈ L (τ).
7) Let ϕ, ψ, ϑ denote formulas, on ϕ(x̄) see above; ϕ, ϕ(x̄), ϕ(x̄; ȳ)
may be treated as objects of a different kind (see below) but ϕ(x̄, ȳ)
is really ϕ(x̄ˆȳ) and we shall not be pedantic concerning the differ-
ence when clear from the context. We sometimes separate “type”,
“free” variables from “parameter” variables. Lλ,κ is the logic such
that Lλ,κ(τ) is the set of formulas we get from the atomic formulas

by closing under ¬ϕ (negation),
∧

i<α

ϕi (where α < λ, conjunction)

and (∃x0, . . . , xi, · · · )i<αϕ (where α < κ, existential quantification),
but for ϕ(x̄) ∈ Lλ,κ(τ) we demand ℓg(x̄) < κ. (So Lλ,κ is a logic,
Lω,ω first order logic).
8) A class K of τ -models is a PC<λ, so PCλ = PC<λ+ , when for
some vocabulary τ1, τ ⊆ τ1, |τ1| < λ and ψ ∈ Lλ,ω(τ1) we have
K = {M ↾ τ : M |= ψ}. PC(T1, T ) is the class of τ(T )-reducts of
models of T1.
9) A class K of models is PCλ,κ if for some τ1, τ ⊆ τ1, |τ1| = κ, first
order theory T1 ⊆ Lω,ω(τ1) and set Γ of λ (< ω)-types in Lω,ω(τ1),
K = {M ↾ τ : M a model of T1 omitting every p ∈ Γ}. If κ = λ we
may omit it. We know that PCλ = PCλ,1 = PCλ,λ.
10) ∆,Λ,Γ will denote sets of formulas of the form ϕ(x̄, ȳ) or ϕ(x̄). If
ϕ(x̄) ∈ ∆ this means ϕ(x̄1, x̄2) ∈ ∆ when x̄ = x̄1ˆx̄2. These formulas
may have parameters. Let arity(∆) = sup{|ℓg(x̄)|+ : ϕ(x̄) ∈ ∆ or
ϕ(x̄, ā) ∈ ∆}. Usually for x̄, ȳ of length α with no repetitions, there
is no difference between ϕ(x̄) and ϕ(ȳ).
11) Let ∆qf

τ be the set of quantifier free formulas in Lω,ω(τ), we may
write just qf.
12) For a logic L we define the logic △(L ) as follows: for a vo-
cabulary τ a sentence is a pair ψ = (ψ1, ψ2) where ψℓ ∈ L (τℓ), τℓ a
vocabulary extending τ such that:

(a) for every τ -model M,M has a τ1-expansion M1 to a model
satisfying ψ1 iff M has no τ2-expansion M2 to a model satis-
fying ψ2

(b) naturally for a τ -model M , we let M |= ψ iff M has an
expansion to a τ1-model satisfying ψ1.

For a vocabulary τ let ∆qf(τ) be the set of finite Boolean combina-
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tions of atomic formulas, i.e., first order quantifier free formulas. We
may write qf intead ∆qf(τ) assuming τ is clear from the context.

0.8 Definition. 1) We say that p is a (formal) type inside M if p
is a set of τ(M)-formulas with parameters from M and a fixed set
of variables x̄; so we have no requirement like “finitely satisfiable”!
unlike the first order case.
We say a ∆-type when each member has the form ϕ(x̄, ā), ϕ(x̄, ȳ) ∈
∆. We say over A if ϕ(x̄, ā) ∈ p ⇒ ā ⊆ A. If ∆ is closed under
negations (but we do not distinguish between ϕ and ¬¬ϕ), we say
a complete ∆-type over A inside M when for every ϕ(x̄, ȳ) ∈ ∆ and
ā ∈ ℓg(ȳ)A we have ϕ(x̄, ā) ∈ p or ¬ϕ(x̄, ā) ∈ p.
2) tpϕ(x̄;ȳ)(ā, A,M) = {ϕ(x̄; b̄) : b̄ ∈ ℓg(ȳ)A and M |= ϕ[ā; b̄]} where
ϕ(x̄; ȳ) ∈ L (τ(M)) for some L and A ⊆ |M |.

Notation for such types is needed when a monster model (C) is
absent (or still is absent), (otherwise we can omit M).
3) If p ⊆ tpϕ(x̄;ȳ)(ā, A,M) then we say that p is a ϕ(x̄ˆȳ)-type (or
ϕ(x̄; ȳ)-type) which ā realizes over A inside M so ℓg(ā) = ℓg(x̄).
4) Similarly for the following variants

(a) tpϕ(x̄)(ā, A,M) = tpϕ(x̄1;x̄2)(ā, A,M) where x̄ = x̄1ˆx̄2, ℓg(ā) =
ℓg(x̄1)

(b) tp{ϕ}(ā, A,M) = tpϕ(ā, A,M)

(c) tp∆(ā, A,M) =
⋃

ϕ∈∆

tpϕ(ā, A,M)

and tp±ϕ(ā, A,M) = tp{ϕ,¬ϕ}(ā, A,M)

(d) Sα∆(A,M) = {tp∆(ā, A,M) : ā ∈ α|M |}

(e) now Sfrα∆(A,M) is the set of formal complete ∆-type over A,
i.e.

Sfrα∆(A,M) =
{

p :p ⊆ {ϕ(x̄, ā),¬ϕ(x, ā) : ϕ(x̄, ȳ) ∈ ∆,

ℓg(x̄) = α and ā ∈ (ℓg(ȳ))A}

and for any such ϕ(x̄, ā) we have

ϕ(x̄, ā) ∈ p⇔ ¬ϕ(x̄, ā) /∈ p
}
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(used in 1.10(2),(4) 2.7, and the proof of 4.4 only, clearly
|Sα∆(A,M)| ≤ |Sfrα∆(A,M)| and actually in Sfrα∆(A,M),M
is not necessary)

(f) if A = |M | we may write Sfrα∆(M).

5) We can replace A by J, a family of sequences, e.g.

tpϕ(x̄;ȳ)(ā,J,M) = {ϕ(x̄; b̄1, . . . , b̄n) :n < ω,M |= ϕ[ā, b̄1, . . . , b̄n],

b̄ℓ ∈ J for ℓ = 1, . . . , n}

or by a set of formulas with parameters, e.g.

tpϕ(x̄;ȳ)(ā,Γ,M) = {ϕ(x̄; c̄) : M |= ϕ(ā; c̄) and ϕ(x̄; c̄) ∈ Γ}.

We then say “type over Γ” or “type over J”.
6) M ≤∆ N means that M ⊆ N and for ϕ(x̄) ∈ ∆ and ā ∈ ℓg(x̄)M
we have:

M |= ϕ[ā] if and only if N |= ϕ[ā]

7) Let
∑

λ,χ,κ(∆) be the set of formulas of the form

ψ(ȳ, z̄) := (∃x̄)
∧

α<λ

ϕα(x̄, ȳ, z̄ ↾ wα)η(α)

where η ∈ λ2, x̄ = 〈xi : i < α∗〉, α∗ ≤ κ (or just |α∗| ≤ κ), ℓg(ȳ) ≤ χ
or just |ℓg(ȳ)| ≤ χ,wα ⊆ ℓg(z̄), |wα| ≤ χ, but z̄ of any length ≤ λ
and even < λ+ is allowed, ϕα(x̄, ȳ, z̄ ↾ wα) ∈ ∆ for each α < λ and
recall ϕ1 = ϕ, ϕ0 = ¬ϕ; if χ = κ we may omit it. So

∑

λ,χ,κ(∆)

includes every ϕ(ȳ) ∈ ∆ and its negation, when ℓg(ȳ) ≤ χ [used in
4.3, we may consider bounding wα by a different cardinal but we
have enough parameters].

Above we do not distinguish between ∆ and {ϕ,¬ϕ : ϕ ∈ ∆}, and
so define
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0.9 Definition. 1) M ≤pos
∆ N iff (M ⊆ N and) for every ϕ(x̄) ∈

∆ and
ā ∈ ℓg(x̄)M we have M |= ϕ[ā] ⇒ N |= ϕ[ā]. We define M ≤neg

∆ N

iff (M ⊆ N) and for every ϕ(x̄) ∈ ∆ and a ∈ ℓg(x̄)M we have
N |= ϕ[ā] ⇒M |= ϕ[ā].
2)

Σpos
λ,χ,κ(∆) = {ϕ(ȳ, z̄) : ℓg(ȳ) ≤ χ, ℓg(z̄) ≤ λ and

ϕ(ȳ, z̄) = (∃x0, . . . , xi, . . . )i<κ
∧

α<λ

ϕα(x̄, ȳ, z̄↾wα),

where wα ⊆ ℓg(z̄), |wα| ≤ χ and ϕα(x̄, ȳ, z̄↾wα) ∈ ∆}.

[Used in 1.12 with χ = κ.]
3) Above writing “< κ” instead κ means having < κ instead of ≤ κ,
similarly for < χ,< λ. If κ = χ we may omit κ.
4) LetM ≤∗

Σλ,χ,κ(∆) N means that: (M ⊆ N) and for every ψ(ȳ, z̄) =

(∃x̄)
∧

α<λ

ϕα(x̄, ȳ, z̄ ↾ wα)η(α) as in Definition 0.8(7), if c̄ ∈ ℓg(z̄)M, ȳ ∈

ℓg(ȳ)M and N |= ψ[b, ā] then for some ā ∈ ℓg(x̄)M we have N |=
∧

α<λ

ϕα(ā, b̄, c̄ ↾ wα)η(α); note that satisfaction in M does not appear

unlike part (1)!.
5) We define M ≤∗

Σpos
λ,χ,κ

(∆)
N parallely.

Remark. Why, in Definition 0.9(4), do we not just say: “without loss
of generality ∆ is a set of quantifier free formulas”?, e.g. as then the
arity of the vocabulary is > ℵ0. Really not “the end of the world”,
but not yet. You can say that we pretend ∆ is a set of quantifier
free formulas.

0.10 Observation. 1) M ≤Σλ,χ,κ(∆) N iff M ≤∆ N and M ≤∗
Σλ,χ,κ(∆)

N .
2) M ≤Σpos

λ,χ,κ
(∆) N iff M ≤pos

∆ N and M ≤∗
Σpos

λ,χ,κ
(∆)

N .
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(C) Introduction to Chapter V.A:
Stability Theory for a Model

In [Sh:a, Ch.I,§2] little stability theory was developed for one (ar-
bitrary) model; quite naturally as this was peripheral there. More
attention was given to non-structure theorems for infinitary logics
(see [Sh 16, §2] and Grossberg and Shelah [GrSh 222], [GrSh 238],
[GrSh 259] and concerning applications, see Macintyre and Shelah
[McSh 55], Grossberg and Shelah [GrSh 174]).

However, in our present framework it is important to get results
on infinitary languages. As we have fewer transfer theorems, it is
natural to concentrate on one model.

Surprisingly we have something to say, most of it was in some form
in [Sh:a, Ch.1,§2]: the theorems that non-stability implies order (i.e.
existence of quite long set of sequences, linearly order by a formula),
that non-order implies the existence of indiscernibles and that we
can average types, all have reasonable analogs. Toward this end we
introduce here “convergent sets”, which capture a crucial property
of indiscernible sets in the stable case. In particular the difference
between 2.8 and the results in [Sh:c, Ch.I,§2] is the use of convergence
which essentially strengthens indiscernibility and proves existence for
it. In §3 we note symmetry for averages (when we do not have order).
In §4 we investigate some derived partial order.

Lastly, we prove (in §5) that in order to get just indiscernible
sets, less “non-order” is needed, and this gives new information
even on first order theories. E.g. if T is first order, there is no
quantifier free formula ϕ(x, y; z̄) such that some model M of T has
the (ϕ(x, y; z̄),ℵ0)-order property (note that x, y are not sequences),
M a model of T , ai ∈ M for i < (2λ)+, λ ≥ |T |, then for some
w ⊆ (2λ)+, |w| > λ, the set {ai : i ∈ w} is an indiscernible set in
M . For first order theories with elimination of quantifiers this does
not add anything new (see [Sh 715, 1.37]) but in general it does, see
5.6. Compared to [Sh:c] we get somewhat less good cardinal bound
but weaker non-order demand (see [Sh:c, I,2.12,2.18], the result of
[Sh:c] is represented here in 2.13, and not in §5 as had confused some
readers).
Splitting and strong splitting are from [Sh 3].
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§1 The order property revisited

The main results of this section are Theorem 1.3 and 1.19. We
begin by recounting the appropriate definition of the order property
in this context. We note in Theorem 1.3 (proved in [Sh:e, Ch.III,§3])
that this relevant order property implies the existence of many non-
isomorphic models.

These notions have two parameters: a formula and a cardinal. As
we no longer are attached to first order logic, the formula (or set of
formulas) as a parameter is even more important than in [Sh:c]. As
we assume generally no closure properties for the set of formulas, we
have to be more explicit in asserting ”there is a formula”. (Note that
we may have to consider several logics, simultaneously, as in [MaSh
285], and that usually we use weaker closure properties).

A new parameter is a cardinal (the length of the order). Its pres-
ence is desirable as we no longer assume compactness, so not neces-
sarily all infinite cardinals give equivalent definitions.

Then we describe the notions of “indiscernible” and “splitting”
appropriate for this context. In Theorem 1.12 we show that either
for each type we can find a “base” over which it does not split or the
order property holds. In Theorem 1.20 we show that for appropriate
µ if the number of ∆-types over a set of cardinality µ which are real-
ized in M is not bounded by µ then there is a ∆∗ (closely associated
with ∆) such that M has the (∆∗, κ+)-order property. We could
have replaced M by κ>M and thus avoide infinary sequences, but
the existing presentation is closer to our intentions.

1.1 Definition.
1) M has the (ϕ(x̄; ȳ; z̄), µ)-order property if there are sequences
c̄, āα, b̄α (for α < µ) from M (with ℓg(c̄) = ℓg(z̄), ℓg(āα) = ℓg(x̄),
ℓg(b̄α) = ℓg(ȳ)), such that for α, β < µ:

M |= ϕ[āα, b̄β, c̄] if and only if α < β.

We extend this notion to sets (or classes) of formulas and classes
of models as follows.
2) M has the (∆, µ)-order property if for some ϕ(x̄; ȳ; z̄) ∈ ∆ the
model M has the
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(ϕ(x̄; ȳ; z̄), µ)-order property.
3) K has the (∆, µ)-order property if for some M ∈ K,M has the
(∆, µ)-order property.
4) M [or K] has the (∆, < µ)-order property if M [or K] has the
(∆, µ1)-order property for every µ1 < µ.
5) Replacing “order” by “non-order” is just the negation. We may
replace µ by an ordinal (but this is not central here).
6) M has the (±ϕ, µ)-order property if it has the (ϕ, µ)-order prop-
erty or the (¬ϕ, µ)-order property; similarly for the other definitions.
7) Let “(ϕ(x̄, ȳ), µ)-order” mean “(ϕ(x̄; ȳ; z̄), µ)-order” for z̄ the empty
sequence, and (ϕ(x̄), µ)-order” means (ϕ(x̄1; x̄2; x̄3), µ)-order” where
x̄ = x̄1ˆx̄2ˆx̄3 for some x̄1, x̄2, x̄3.

1.2 Remark. 1) Usually ∆ ⊆ L∞,ω , but sometimes ∆ ⊆ △(L∞,ω)
(the △-closure of L∞,ω, see Definition 0.7(12) which means that
every sentence ψ from ∆, it and its negation are defined as {M ↾

τ∆ : M |= ψ} for some ψ ∈ L∞,ω).
2) On the other hand for universal K (see §2) we may well use ∆ =
set of quantifier free finite formulas.
3) Note that if M has the (ϕ(x̄; ȳ; z̄), µ)-order property, then it has
the (ϕ(x̄; ȳˆz̄), µ)-order property and the (ψ(x̄′, ȳ), µ)-order property
where x̄′ = x̄ˆz̄;ψ(x̄ˆz̄, y) = ϕ(x̄; ȳ; z̄).
4) In Definition 1.1(1) we can ignore the case α = β as we can use
ā′α = a2α+1, b̄

′
α = b2α. This may be a better definition - see some

exercises.
5) We prove in [Sh 300, Ch.III] and better in [Sh:e, Ch.III] (and in
[Sh 220]) that order implies complexity, “non-structure”.
6) If M has the (ϕ(x̄; ȳ; z̄), γ)-order property, then letting z̄ℓ = x̄ℓˆȳℓ,
ℓg(x̄ℓ) = ℓg(x̄), ℓg(ȳℓ) = ℓg(ȳ) for ℓ = 1, 2 and we let ϕ′(z̄1; z̄2; z̄) =
ϕ(x̄2; ȳ2, z̄), then for some c̄β ∈ ℓg(z̄ℓ)M for β < γ and d̄ ∈ ℓg(z̄)M we
have: if α, β < γ then M |= ϕ′[c̄α, c̄β, d̄] iff α < β.

Very relevant is (but our proof consists of quoting):

1.3 Theorem. 0) If K is a PCκ class and there is M ∈ K of cardi-
nality ≥ iδ(κ) (see Definition 1.4(1) below noting that δ(κ) < (2κ)+)
or just there is M ∈ K of cardinality ≥ iα for every α < δ(κ), then

Paper Sh:300A, Chapter V.A



V.A.§1 THE ORDER PROPERTY REVISITED 51

K has members in every cardinal µ ≥ κ. If K is a PCκ,2κ class,
similarly replacing δ(κ) by (2κ)+.
0A) Similarly if K is definable by some sentence from △(Lκ,ω).
1) If K is a PCλ,2λ class or is definable by a sentence in △(Lλ+,ω),
and it has the (ϕ(x̄; ȳ), < ∞)-order property for some ϕ(x̄; ȳ) ∈
△(Lλ+,ω), see Definition 0.7(12) but we allow ℓg(x̄) = ℓg(ȳ) to be
infinite then:

(a) for every µ > λ+|ℓg(x̄ˆȳ)|+ the class K has 2µ non-isomorphic
members of cardinality µ

(b) if µ > λ+, cf(µ) > λ and µ is regular or strong limit, then K
has 2µ non-isomorphic members of cardinality µ which are
L∞,µ-equivalent

(c) if µ > λ is regular, µ = µℓg(x̄ˆȳ) then K has 2µ members of
cardinality µ, no one embeddable into another by an embed-
ding preserving ±ϕ(x̄, ȳ).

2) If K is a PCλ class or is definable by a sentence from △(Lκ+,ω)
and it has the (ϕ(x̄; ȳ), λ)-order property, ϕ(x̄, ȳ) ∈ Lµ+,ω but we
allow ℓg(x̄) = ℓg(ȳ) to be infinite then (see below):

(a) if λ ≥ iδ(µ+κ) then K has the (ϕ(x̄; ȳ), <∞)-order property

(b) if λ ≥ iδ(µ+κ) then for some ϕ′(x̄′; ȳ′) ∈ Lκ+,ω the class K
has the
(ϕ′(x̄′, ȳ′), <∞)-order property and ϕ′ “inherits all relevant
properties” of ϕ. More exactly1, for some λ, ϕ ∈ H (λ), and
for some elementary submodel N of (H (λ),∈) of cardinality
κ, ϕ′ is the image of ϕ under the Mostowski Collapse of N)

(c) if λ ≥ iδwo(µ,κ) then (see Definition 1.4(2) below) the con-
clusion of clause (b) holds.

3) Similar conclusions holds for ϕ(x̄; ȳ; z̄).

1recalling H (λ) is the family of sets with transitive closure of cardinality
< λ
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1.4 Definition. 1) For a cardinal κ let δ(κ) be the first ordinal δ
such that: if τ is a vocabulary of cardinality ≤ κ, ψ ∈ Lκ+,ω(τ) and
the predicate < belongs to the vocabulary τ, < is binary, P ∈ τ is
unary and for every α < δ, the sentence ψ has a model M such that
(PM , <M ) is a well ordering of order type ≥ α then for some model
M of ψ, (PM , <M ) is not well ordered.
2) Let δwo(µ, κ) is the first ordinal δ > µ such that: if ψ ∈ Lκ+,ω(τ), <
is a binary predicate from τ and P is a unary predicates from τ and
for every α < δ the sentence ψ has a model M such that (PM , <)
is a well ordering of order type ≥ α and QM consists of the first λ
members of (PM , <) then there are models N1 ≺ N2 of ψ such that
N1 ≺M and (PN2 , <N2) is not well ordered and QN1 = QN2 .

Remark. 1) For a proof of more than 1.3(1) see [Sh:e, Ch.III,§3].
2) On the subject and proof of 1.3(2), 1.3(3) see Shelah [Sh 16] and
Grossberg and Shelah [GrSh 222], [GrSh 259].
3) We do not try to get the optimal results, just state what previous
proofs obviously give. E.g. we ignore the slightly stronger versions
we can get by replacing µ by a limit cardinal.

Proof of 1.3. 0) By Morley and improvements of Chang, see e.g.
[Sh:c, VIII,§5].
0A) Similarly.
1) Clause (a).

By [Sh 300, III,§3] or better [Sh:e, III,3.4] using [Sh:e, 1.11](3).

Clause (b):
If µ is regular by [Sh 220, §2] using [Sh:e, III,1.11](3).
If µ is strong limit by [Sh 220, §3] using [Sh:e, III,1.11](3).

Clause (c):
By [Sh:e, III,§3].

2),3) Clause (a):
Similarly.

Clause (b):
By [Sh:c] or use clause (c).
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Clause (c):
By Grossberg-Shelah [GrSh 222], [GrSh 259]. �1.3

1.5 Definition. 1) The sequence 〈āt : t ∈ I〉, where I is a linear
order and for some ordinal α we have āt ∈

αM for t ∈ I, is a (∆, n)-
indiscernible sequence inside M over A if: for all t1 <I . . . <I tn ∈
I, ātnˆ · · ·ˆāt1 realize the same ∆-type inside M over A.
2) Writing ∆ instead (∆, n) means “for all n < ω”. If we omit A we
mean A is empty.
3) Instead “over A” we may say “over J”, for J a set of sequences
from M , meaning that: if ϕ(x̄n, . . . , x̄1, ȳ1, . . . , ȳk) ∈ ∆, ℓg(x̄ℓ) = α
and c̄1, . . . , c̄k ∈ J satisfying ℓg(c̄ℓ) = ℓg(ȳℓ) for ℓ = 1, . . . , k then
for any s1 <I . . . <I sn and t1 <I . . . <I tn we have M |=
“ϕ[ātn , . . . , āt1 , c̄1, . . . , c̄k] ≡ ϕ[ās1 , . . . , āsn

, c̄1, . . . , c̄k]”.
4) We say “strictly over J” when in part (3) we demand k ≤ 1.

1.6 Remark. Note that the sequences may have infinite length but
still in 1.5(1) we have n < ω. I.e. we use only finitely many sequences
at a time. This should not be surprising, as λ→ (µ)ωχ is much more
difficult to have than λ→ (µ)<ωχ .

1.7 Definition. 1) {āt : t ∈ I} is a (∆, n)-indiscernible set inside
M (over A) if for all pairwise distinct t1, . . . , tn ∈ I

(āt1ˆ . . .ˆātn) realizes the same ∆-type in M (over A).

2) The parallels of Definition 1.5(2),(3),(4) for indiscernible set.

Remark. Applying Definition 1.7 we shall not always pedantically
say “{āt : t ∈ I} as an indexed set is ...”.

∗ ∗ ∗

We define here the notion “the type p does not (∆,Λ)-split over A”
(inside M). This says that in some weak sense, p ↾ ∆ is definable over
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A. More specifically the Λ-type of the parameters over A, separates
between the b̄ such that ϕ(x̄, b̄) ∈ p and the b̄ such that ¬ϕ(x̄, b̄) ∈ p.
In Definition 1.8(2) we replace the pair (Λ, A) by a collection of
formulas Γ.

1.8 Definition. 1) For a type p = p(x̄) inside M we say that it
(∆,Λ)-splits over A if there are b̄, c̄ ∈M , and ϕ(x̄; ȳ) ∈ ∆ such that:

(i) ϕ(x̄, b̄),¬ϕ(x̄, c̄) ∈ p

(ii) in appropriate sense, b̄ and c̄ realize the same Λ-type over
A inside M ; more exactly, for every ψ(x̄; ȳ; z̄) ∈ Λ satisfying
ℓg(b̄) = ℓg(c̄) = ℓg(ȳ) and ē ∈ ℓg(z̄)A, ā′ ∈ ℓg(x̄)A we have:
M |= ψ[ā′, b̄, ē] if and only if M |= ψ[ā′, c̄, ē]; note that x̄ is
determined by p(x̄).

2) For a type p = p(x̄) inside M , we say that it (∆,Λ)-splits over Γ
where Γ consisting of Λ-formulas with parameters from M , see below
when there are b̄, c̄ ∈M of equal length and ϕ(x̄; ȳ) ∈ ∆ such that:

(i) ϕ(x̄; b̄),¬ϕ(x̄, c̄) ∈ p,

(ii) if ψ(x̄; ȳ; z̄) ∈ Λ, ℓg(ȳ) = ℓg(c̄) = ℓg(b̄) and ā′ ∈ ℓg(x̄)A, ē ∈
ℓg(z̄)A and ψ(ā′, ȳ, ē) ∈ Γ then M |= ψ[ā′, b̄, ē] if and only if
M |= ψ[ā′, c̄, ē].

3) We define “p does ∆-split over Γ” similarly, omitting “Γ consist
of Λ-formulas with parameters from M”.

1.9 Remark. Clearly 1.8(1) is an instance of 1.8(2).

1.10 Fact. 1) If p = p(x̄) is a type inside M , which (∆,Λ)-splits over
A inside M and p ⊆ q(x̄), with q(x̄) a type inside M,∆ ⊆ ∆1,Λ1 ⊆ Λ
then q(x̄) does (∆1,Λ1)-splits over A inside M .
2) Suppose for ℓ = 1, 2 that pℓ(x̄) does not (∆,Λ)-split over Γ,Γ a set

of formulas over A, pℓ ∈ Sfr
ℓg(x̄)
∆ (C,M) recalling Definition 0.8(4)(e),

and A ⊆ B ⊆ C ⊆ |M |. If for every b̄ ∈ C there is b̄′ ∈ B such that
for every ϕ(ā, ȳ, ē) ∈ Γ we have M |= ϕ[ā, b̄, ē] ≡ ϕ[ā, b̄′, ē] provided
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that ℓg(b̄) = ℓg(b̄′) = ℓg(ȳ) and ℓg(ā) = ℓg(x̄) then p1 ↾ B = p2 ↾ B
implies p1 = p2. We can replace A by any set including the sequences
appearing as ā in any ψ(ā, ȳ, ē) ∈ Γ.
3) Suppose p(x̄) is a type inside M,A ⊆M and Γ = {ψ(x̄; ȳ; ē) : ē ∈
ℓg(z̄)A and ψ(x̄; ȳ; z̄) ∈ Λ}.
Then: p(x̄) does not (∆,Λ)-split over A if and only if p(x̄) does not
(∆,Λ)-split over Γ.
4) If B ⊆ |M | and M,∆,Λ,Γ are as in 1.8(2) and α is an ordinal,
then P = {p ∈ Sfrα∆(B,M) : p does not (∆,Λ)-split over Γ} has car-

dinality ≤ 2(2|Γ|×|∆|) and so ≤ 2(2|Γ|+|∆|) if p,∆ are not both finite.
5) If A ⊆ M , then |Sfrα∆(A,M)| ≤ Π{|Sfrα

ϕ(x̄;ȳ)(A,M)| : ℓg(x̄) =

α, ϕ(x̄; ȳ) ∈ ∆}. Similarly for S instead Sfr recalling Definition
0.8(4)(d).

1.11 Remark. We can systematically replace sets of elements by sets
of formulas.

Proof. Easy, e.g.
4) For each p ∈ Sfrα∆(A,M) and ϕ(x̄, ȳ) ∈ ∆ and Γ let F p

ϕ(x̄,ȳ)

be the following function. Its domain is Sfr
ℓg(ȳ)
ψ (Γ ↾ ψ) (where

ψ(ȳ, x̄) = ϕ(x̄, ȳ) and Γ ↾ ψ = {ψ(ȳ, ā) : ψ(ȳ, ā) ∈ Γ}), its range
is {true,false} and F pϕ(q) = true iff for some η ∈ Γ↾ψ{0, 1} we have:

q = {ψ(ȳ, ā)η(ψ(ȳ,ā)) : ψ(ȳ, ā) ∈ Γ} and: for some (if there are such b̄,
equivalently every) b̄ ∈ ℓg(ȳ)(B) realizing q we have ϕ(x̄, b̄) ∈ p. The
“some, equivalently every” holds by the definition of non-splitting

(and F p
ϕ(x̄,ȳ) ↾ {q ∈ Sfr

ℓg(ȳ)
ψ (Γ ↾ ψ) : q is realized in M} suffice). So

if ∆ = {ϕ(x̄, ȳ)} then |P| ≤ |{F pϕ : p ∈ S}| ≤ 22|Γ|

. By part (5) we
can finish the general case. Note that there was no need to deal with
ϕ(x̄; ȳ; z̄) as we use Γ and in 1.8(2) the formulas in Γ were allowed
to have parameters from M .
5) We define below a one to one map, H with domain Sfrα∆(A,M)
and
range included in Π{Sfrαϕ(x̄,ȳ)(A,M) : ℓ(x̄) = α, ϕ(x̄, ȳ) ∈ ∆}, this

clearly suffices. Now H is defined by H(p) = 〈p ↾ ϕ : ϕ ∈ ∆, ϕ =
ϕ(x̄, ȳ)〉. �1.10
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1.12 The non-splitting/order dichotomy theorem. Suppose
M ≤∗

P

pos
χ,κ({¬ψ(x̄;ȳ1ˆȳ2)})

N recalling Definition 0.9(4) and ϕ(x̄; ȳ)

is a τ(N)-formula, ℓg(x̄) ≤ κ, ℓg(ȳ) = ℓg(ȳ1) = ℓg(ȳ2) ≤ κ and
ψ(x̄; ȳ1ˆȳ2) := [ϕ(x̄; ȳ1) ≡ ϕ(x̄; ȳ2)]. Then (i) or (ii) (or both) hold
where:

(i) for every c̄ ∈ |N | satisfying ℓg(c̄) = ℓg(x̄) for some Γ ⊆
{ϕ(d̄; ȳ) : d̄ ∈ ℓg(x̄)|M |}, |Γ| ≤ χ and tpϕ(x̄;ȳ)(c̄, |M |, N) does
not (ϕ(x̄; ȳ), ϕ(x̄; ȳ))-split over Γ

(ii) N has the (ψ, χ+)-order property (in fact, exemplified by se-
quences from M).

Note that

1.13 Fact. Assume ϕ = ϕ(x̄, ȳ) and ℓg(x̄) ≤ κ and ℓg(ȳ) ≤ κ are in
the vocabulary of M ⊆ N .
1) When χ = χκ (just combining definitions)M ≤∗

P

χ,κ({ϕ}) N means

the following: for every c̄ ∈ κN and A ⊆ |M | satisfying |A| ≤ χ,
there is c̄′ ∈ κ|M | realizing the type tp{ϕ}(c̄, A,N) in the model N .

2) M ≤∗
Σχ,κ({ϕ}) N iff: for every c̄ ∈ ℓg(x̄)N and I ⊆ ℓg(ȳ)M of cardi-

nality ≤ χ some c̄′ ∈ ℓg(x̄)M we have tp{ϕ}(c̄, I, N) = tp{ϕ}(c̄
′, I, N),

see Definition 0.8(5).
3) IfM ≤∗

Σχ,κ({ϕ}) N thenM ≤∗
Σpos

χ,κ({¬ψ(x̄;ȳ1ˆȳ2)})
N where ψ(x̄; ȳ1ˆȳ2)

is defined as in 1.12.

Proof of 1.13. Easy. �1.13

1.14 Remark. In 1.12 we essentially contrast (ϕ(x̄; ȳ), ϕ(x̄; ȳ))-splitting
with the (±ϕ(x̄; ȳ), χ+)-order property where χ = ℓg(ȳ), (see 1.15
below). This χ is the crucial parameter because it governs our ability
to continue to choose āi, b̄i.

Proof of 1.12. Assume that tpϕ(x̄;ȳ)(c̄, |M |, N) fails clause (i) and
we shall prove clause (ii). We choose by induction on i < χ+ the
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sequences āi, b̄i, c̄i from M with ℓg(c̄i) = ℓg(x̄), ℓg(b̄i) = ℓg(āi) =
ℓg(ȳ); such that:

(a) N |= “[ϕ(c̄; āi) ≡ ¬ϕ(c̄; b̄i)]”

(b) for j < i,N |= “ϕ[c̄j, āi] ≡ ϕ[c̄j , b̄i]”

(c) c̄i realizes {ϕ(x̄, āj) ≡ ¬ϕ(x̄, b̄j) : j ≤ i} inside N .

Note: Clauses (a) and (b) say exactly: ϕ(x̄, ȳ), āi, b̄i exemplify that
tpϕ(x̄;ȳ)(c̄, |M |, N) does (ϕ(x̄; ȳ), ϕ(x̄; ȳ))-split over {ϕ(c̄j ; ȳ) : j < i}.
Hence as we are assuming the failure of clause (i), for i < χ+ if
c̄j , b̄j, āj (j < i) are defined, we can choose āi, b̄i as required in clauses
(a) + (b); then using M ≤∗

Σpos
χ,κ(¬ψ) N we can choose c̄i as required

in clause (c).
Having defined all āj , b̄j, c̄j (for j < χ+), clearlyN |= “ϕ(c̄α, b̄β) ≡

ϕ(c̄α, āβ)” if and only if α < β. So 〈c̄α : α < χ+〉 and 〈b̄βˆāβ : β <
χ+〉 exemplify clause (ii).

�1.12

1.15 Observation. 1) Suppose ϕ, ψ are as in 1.12, and N has the
(ψ, µ1)-order property and µ1 → (µ2)

2
4. ThenN has the (±ϕ(x̄; ȳ), µ2)-

order property.
2) For µ1, µ2 as above and ∆, if N has the (∆eb, µ1)-order property
then it has the (∆i,r, µ2)-order property.

Proof. 1) So there is 〈(āαˆbα, c̄α) : α < µ1〉 such thatN |= “ϕ[c̄α; c̄β] =
ϕ[c̄α; b̄β]” iff α < β. We choose a function f from [µ1]

2 to {0, 1, 2, 3}
as follows: if α < β then f({α, β}) = i0 + 2i1 where i0 is 1 if
N |= ϕ[c̄β , āα] and 0 otherwise, and i1 = 1 if N |= ϕ[c̄α, āβ] and
0 otherwise. Let Y ⊆ µ1 be of order type µ2 such that f ↾ [Y ]2 is
constantly i0+2i1. Now check all the possibilities: if i0 = 0 & i1 = 1
then 〈(c̄2α+1, ā2α) : α ∈ Y 〉 exemplifies that M has the (ϕ(x̄; ȳ), µ2)-
order property; if i0 = 1 & i1 = 0 then 〈(c̄2α+1, ā2α) : α ∈ Y 〉 ex-
emplies that M has the (¬ϕ(x̄; ȳ), µ2)-order property; and if i0 = i1
we replace āα by b̄α above.
2) Follows. �1.15
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1.16 Remark. Using this, and only (±ϕ(x̄; ȳ), λ)-order properties,
the formulation of theorems in this section becomes nicer. I.e. we
lose some sharpness in cardinality bounds, but we use only ±ϕ-order
and ϕ-unstability properties.

1.17 Observation. 1) Theorem 1.12 has an obvious version for (∆,∆)-
splitting and the (∆, χ+)-order property. We just have to demand
|∆| ≤ χ and in the proof replace (a), (b), (c) by:

(a)′ N |= “ϕi[c; āi] ≡ ¬ϕi[c̄, b̄i]”

(b)′ for j < i,N |= “ϕj[c̄j , āi] ≡ ϕj [c̄j , b̄i]”

(c)′ c̄i realizes {ϕj(x̄; āj) ≡ ¬ϕj(x̄; b̄j) : j ≤ i}.

In the end for some ϕ(x̄; ȳ) ∈ ∆ the set S = {i < χ+ : ϕi(x̄; ȳ) =
ϕ(x̄, ȳ)} is an unbounded subset of χ+ and we use 〈(āiˆb̄i, c̄i) : i ∈ S〉.
2) Assume that we strengthen the assumption of 1.12 toM ≤∗

Σχ,κ(ϕ(x̄,ȳ))

N . Then in the proof of 1.12 we can strengthen clauses (a),(b),(c)
to:

(a)+ N |= “ϕ[c̄; āi] & ¬ϕ[c̄, b̄i]”

(c)+ c̄i realizes {ϕ(x̄; āj) ∧ ¬ϕ(x̄; b̄j) : j ≤ i}.

Then in 1.15 it is enough to demand µ1 → (µ2)
2
2.

3) We could have replaced χ+ by a limit cardinal (sometimes of large
cofinality or regular and/or uncountable).

Proof. Straight, e.g.
2) The proof works because in stage i we first choose āi, bi such that
clause (a) holds and then, if clause (a)+ fails we interchange āi with
b̄i. �1.17

Remark. 1) We have remarked above that for non-first order logics
we must be careful about closure properties of sets of formulas. The
following notation permits us to take this care.
2) The operations (i.e., ∆ 7→ ∆x) defined in Definition 1.18 below
are the ones used explicitly or implicitly in this section, e.g., ∆es is
used in 1.19 below.
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1.18 Definition. 1) Let (for ∆ a set of formulas with the variables
divided to two, i.e. ϕ(x̄; ȳ)):

(a) ∆i = ∆

(b) ∆cn = {¬ϕ : ϕ ∈ ∆}

(c) ∆nc = ∆ ∪ ∆cn

(d) ∆es = {ψ(x̄; ȳ1, ȳ2) : ψ(x̄; ȳ1, ȳ2) := [ϕ(x̄; ȳ1) ≡ ϕ(x̄; ȳ2)] for
some ϕ(x̄; ȳ) ∈ ∆}

(e) ∆r = {ψ(ȳ; x̄) : ψ(ȳ; x̄) = ϕ(x̄; ȳ) ∈ ∆}

(f) ∆rs = ((∆)r)es = {ψ(ȳ; x̄1ˆx̄2) : ψ(ȳ; x̄1ˆx̄2) := [ϕ(x̄1; ȳ) ≡
(x̄2; ȳ)]}

(g) ∆eb = ∆es ∪ ∆rs.

2) If x1, . . . , xm ∈ {cn,nc,es,r,rs,eb,i} then we let ∆x1,...,xm =

m
⋃

ℓ=1

∆xℓ

and ∆x1,...,xk;xk+1,...,xm = (∆x1,...,xk)xk+1,...,xn and z = x ∗ y means
∆z = (∆x)y.
3) We say that ∆ is (< κ)-variable closed when: if ϕ(x̄) ∈ ∆, x̄ =
x̄′ˆx̄′′, ℓg(x̄′) < κ, x̄′ = x̄′0ˆ . . .ˆx̄

′
n−1, ȳ = ȳ′ˆȳ′′, ℓg(ȳ′′) = ℓg(x̄′′), ȳ′ =

ȳ′0ˆ . . .ˆȳ
′
n−1, π is a permutation of {0, . . . , n− 1}, ℓg(ȳ′π(ℓ)) = ℓg(x̄ℓ)

and ϕ′(ȳ) := ϕ(y′π(0)ˆȳ
′
π(1)ˆ . . .ˆȳ

′
π(n−1)ˆȳ

′′) then ϕ′(ȳ) ∈ ∆.

The next theorem connects non-order and stability.

1.19 The Stability Theorem. Suppose M has the (∆es, χ+)-non-
order property, µ = µχ+22χ

, |∆| ≤ χ and [ϕ(x̄) ∈ ∆ ⇒ |ℓg(x̄)| ≤ χ].
Then for A ⊆ M, |A| ≤ µ implies Sκ∆(A,M) = {tp∆(ā, A,M) : ā ∈
κ|M |} has cardinality ≤ µ.

Proof. We would like to say that clearly there is M1 satisfying
A ⊆ M1 ⊆ M, |M1| ≤ µ such that M1 ≤P

χ,χ(∆) M . But this is

problematic, maybe even there is no M1 ≤∆ M,M1 6= M . However,
there is M1 ⊆ M of cardinality ≤ µ such that M1 ≤∗

Σχ,κ(∆) M and

A ⊆ M so if M |= (∃x̄)
∧

i<χ

ϕi(x̄, āi)
η(i) where ϕi = ϕi(x̄, ȳi) ∈ ∆
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and āi ∈
ℓg(ȳi)(M1) for i < χ then for some b̄ ∈ ℓg(x̄)(M1) we have

M |=
∧

i<χ

ϕi(b̄, āi)
η(i). (Note that it does not matter if we use

∧

i<i(∗)

with i(∗) < χ+.)
Without loss of generality replace A by M1 and assume ∆ is

{ϕ(x̄; ȳ)} (by 1.10(5)). Now by the assumption of our present the-
orem, clause (ii) of Theorem 1.12 fails, hence clause (i) of Theo-
rem 1.12 holds. So every p = tp∆(ā,M1,M) ∈ Sκ∆(M1,M) does
not (ϕ(x̄; ȳ), ϕ(x̄; ȳ))-split over some Γp ⊆ {ϕ(c̄′; ȳ) : c̄′ ∈ |M1|,
ℓg(c̄′) = ℓg(x̄)} which has cardinality ≤ χ. There are at most
‖M1‖

χ ≤ µ such sets Γp. So if the conclusion fails then for some
Γ the set {p ∈ Sκ∆(M1,M) : Γp = Γ}| has cardinality > µ and so
necessarily |Γ| ≤ χ. Hence {p ∈ Sκ∆(M1,M) : p does not (∆,∆)-

split over Γ} has cardinality > µ. But it has cardinality ≤ 22χ

(by
1.10(4)), contradiction. �1.19

1.20 Conclusion. Suppose M has the (∆nc, χ+)-non-order property,
µ = µ2χ

+ i3(χ), |∆| ≤ 2χ and [ϕ(x̄) ∈ ∆ ⇒ ℓg(x̄) ≤ χ]. Then for
A ⊆M, |A| ≤ µ implies Sκ∆(A,M) has cardinality ≤ µ.

Proof. By Observation 1.15

(∗) M has the (2χ)+-non-order property.

Now apply 1.19 with 2χ here standing for χ there. �1.20

1.21 Exercise. 1) |Sα∆x(A,M)| ≤ |Sα∆(A,M)| for x = cn,nc,es,i.
Similarly for Sfr when the right side is infinite (or we restrict our-
selves to formal types “respecting” the connectives in the natural
sense).
2) The ({ϕ(x̄; ȳ)}r, λ)-order property is equivalent to the (¬ϕ(x̄, ȳ), λ)-
order property.

1.22 Exercise: In 1.19 + 1.20 replace χ+ by a limit cardinal (e.g.
χ = ℵ0).
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1.23 Fact: 1) If M has the (∆x, χ)-non-order property, then M has
the (∆y, χ)-non-order property when (x, y) ∈ {(eb,es),(eb,rs),(es ∗
r,i),(r ∗ es ∗ r,i),(es,r),(rs,i)}.
2) IfM has the (∆x, χ)-non-order property thenM has the (∆y, χ+)-
non-order property when (x, y) ∈ {(es,i),(rs,r)}.
3) If ψ = ψ(x̄; ȳ; z̄) = ϕ = ϕ(ȳ; x̄; z̄), then M has the (ψ, χ)-
order property iff M has the (¬ϕ, χ)-order property, so M has the
({ϕ(x̄; ȳ)}, χ)-non-order property iff M has the ({¬ϕ(x̄; ȳ)}r, χ)-non-
order property.

Proof. Easy, and it seems more convenient to start with the order
property.
1) Case 1: (x, y) = (rs,i).

Without loss of generality ∆ = {ϕ(x̄, ȳ)}. So assume 〈(āα, b̄α) :
α < χ〉 exemplifies “M has the ({ϕ(x̄, ȳ)}, χ)-order property”, so
M |= ϕ[āα, b̄β] iff α < β. Let ψ(ȳ; x̄1ˆx̄2) := [ϕ(x̄1, ȳ) ≡ ϕ(x̄2, ȳ)] ∈
{ϕ(x̄, ȳ)}rs.

Let ā′α = b̄1+α, b̄
′
α = ā1+αˆā0. So M |= ψ[ā′α, b̄

′
β] iff M |=

“ϕ[ā1+β, b̄1+α] ≡ ϕ[ā0, b̄1+α]”. As 0 < 1 +α clearly M |= ϕ[ā0, b̄1+α]
hence M |= ψ[ā′α, b̄

′
β] iff M |= ϕ[ā1+β, b̄1+α]. But M |= ϕ[ā1+β, b̄1+α]

iff 1 + β < 1 + α iff α < β. So M |= ψ[ā′α, b̄
′
β] iff α < β, so we are

done.

Case 2: (x, y) = (es,r).
Without loss of generality ∆ = {ϕ(x̄; ȳ)}. Let ϑ(ȳ; x̄) = ϕ(x̄; ȳ),

so we assume M has the ({ϑ(ȳ; x̄)}, χ)-order property so we can find
〈(āα, b̄α) : α < χ〉 such that M |= ϑ[āα, b̄β] iff α < β.

So

(∗)1 M |= ϕ[b̄β , āα] iff α < β.

Let ā′α = b̄1+α, b̄
′
β = ā1+βˆā0 and let ψ(x̄, ȳ1ˆȳ2) = [ϕ(x̄, ȳ1) ≡

ϕ(x̄, ȳ2)].
Now M |= ψ[ā′α, b̄

′
β] iff M |= “ϕ[b̄1+α, ā1+β] ≡ ϕ[b̄1+β, ā0]”. But

M |= ϕ[b1+β, ā0] as 0 < 1 + β hence M |= ψ[ā′α, b̄
′
α] iff M |=

ϕ[b̄1+β , ā1+α] iff (1 + α < 1 + β) iff α < β. So 〈(ā′α, b̄
′
α) : α < χ〉

exemplies that M has the ({ϕ(x̄, ȳ)}es, χ)-order property.
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Case 3: (x, y) = (es ∗ r,i).
As ∆i = ∆ let 〈(āα, b̄α) : α < χ) exemplify the (∆, χ)-order

property for ϕ(x̄, ȳ) ∈ ∆. Let b̄′α = ā1+2α+1, ā
′
α = b̄0ˆb̄1+2α and let

ψ(ȳ1ˆȳ2, x̄) = [ϕ(x̄, ȳ1) ≡ ϕ(x̄, ȳ2)], so it belongs to ∆es∗r. So for
α, β < χ, clearly

(∗)1 M |= ψ[ā′α, b̄
′
β] iffM |= “ϕ[ā1+2β+1, b̄0] ≡ ϕ[a1+2β+1, b̄1+2α]”.

But 1 + 2β + 1 ≮ 0 hence M |= ¬ϕ[ā1+2β+1, b̄0] so

(∗)2 M |= ψ[ā′α, b̄
′
β] iff M |= ¬ϕ[ā1+2β+1, b̄1+2α]

but

(∗)3 M |= ¬ϕ[ā1+2β+1, b̄1+2α] iff ¬(1+2β+1 < 1+2α) iff α < β.

Together we are done.

Case 4: (x, y) = (r ∗ es ∗ r,i).
Let 〈(āα, b̄α) : α < χ+〉 and ϕ(x̄, ȳ) be as in case 1.
Let ψ = ψ(x̄′, ȳ) = [ϕ(x̄1, ȳ) ≡ ϕ(x̄2, ȳ)] so x̄′ = x̄1ˆx̄2, ℓg(x̄1) =

ℓg(x̄2) = ℓg(x̄) so ψ(x̄′, ȳ) ∈ ∆r∗es∗r and any member of ∆r∗es∗r has
such form.

Let ā′α = ā1+αˆā0 and let b̄′α = b̄1+α. We leave the checking to the
readers.

Case 5: (x, y) ∈ {(eb,es),(eb,rs)}.
Note that ∆x ⊇ ∆y so the desired implication is trivial.

2),3) Left to the reader. �1.23

1.24 Exercise: Why does Fact 1.23(1) ignore, e.g. the pair (es,i)?
Let χ ≥ ℵ0 be regular (for simplicity).
Let τ = {R}, R a two-place predicate. Let M be the τ -model with

universe χ and RM = {(2α, 2β + 1) : α < β} and ϕ(x, y) = R(x, y).
Then

(a) M has the {{ϕ}, χ)-order property

(b) M fails the ({ϕ}es, χ)-non-order property.

[Hint: Clause (a): Let aα = 2α, bα = 2α+ 1.
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Clause (b): So toward contradiction assume M has the (ψ, χ)-order
property where ψ = ψ(x; y1, y2) = [ϕ(x, y1) ≡ ϕ(x, y2)] and let
〈(aα, 〈bα, cα〉) : α < χ〉 exemplifies it. Clearly 〈aα : α < χ〉 is
without repetitions.

Let (aα, bα, cα) = (γ1(α), γ2(α), γ3(α)〉 for α < χ; easily as χ is
regular, without loss of generality 〈(γ1(α), γ2(α), γ3(α)) : α < χ〉 is
an indiscernible sequence of triples in the model (χ,<).

Clearly for α > β,¬(γ1(α)Rγ2(β) ≡ γ1(α)Rγ3(β)) so necessarily
(γ1(α)Rγ2(β))∨ (γ1(α)Rγ3(β)) so: γ1(α) is even and γ2(β) is odd or
γ3(β) is odd (but not both). So without loss of generality (as we can
interchange γ2(β), γ3(β) for every β) for every α < χ we have γ1(α)
is even, γ2(α) is odd and γ3(α) is even.

Then for α, β < λ we have M |= “¬γ1(α)Rγ3(β)”, i.e. M |=
“¬ϕ[aα, cβ]” hence M |= “ψ[aα, bβ, cβ] ≡ [ϕ(aα, bβ) ≡ ϕ(aα, cβ)] ≡
¬ϕ[aα, bβ]”. So as we start with a counterexample, α < β ⇔
(γ1(α), γ2(α)) /∈ R. Hence by the indiscernibility 〈bβ : β < χ〉 is
without repetitions hence it is increasing hence sup{γ2(β) : β <
χ} = χ hence for some α < β we have γ1(α) < γ2(β) hence (aα, bβ) =
(γ1(α), γ2(β)) ∈ RM , contradiction.]

1.25 Exercise: 0) If M has the (ϕ(x̄; ȳ; z̄), β)-order property and
α < β then M has the (ϕ(x̄; ȳ, z̄), α)-order property.
1) In 1.15 replace the cardinals µ1, µ2 by ordinals.
2) Assume (x, y) ∈ {(es,r),(rs,i)} and β ≥ 1 + α,

or (x, y) ∈ {(eb,es),(eb,rs)} and β ≥ α,
or (x, y) ∈ {(es ∗ r,i), (r ∗ es ∗ r,i) and β ≤ 1 + 2α}.

If M has the (∆x, α + β)-order property, then M has the (∆y, β)-
order property.
[Hint: see 1.23(1)’s proof.]
3) Assume (x, y) ∈ {(r,i),(i,r)}, β ≥ α+1 or (x, y) ∈ {(es,i),(rs,r)}, β ≥
1 + 2α + 1}. If M has the (∆x, α)-non-order property then M has
the (∆y; β)-non-order property.
4) Assume ψ = ψ(x̄; ȳ; z̄) ≡ ϕ = ϕ(ȳ; x̄; z̄); if M has the (ψ, 2α+ 1)-
order property then M has the (¬ϕ, α)-order property.

1.26 Exercise Prove that under the following definition we have bet-
ter bounds in the parallel to 1.25.
We say thatM has the (ϕ(x̄, ȳ, z̄), γ)-order′ property when: there are
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sequences c̄, āα, b̄α (for α < γ) from M (with ℓg(c̄) = ℓg(z̄), ℓg(āα) =
ℓg(x̄), ℓg(b̄α) = ℓg(ȳ) such that for α, β < γ we have:

(a) M |= ϕ[āα, b̄β, c̄] if α < β < γ

(b) M |= ¬ϕ[āα, b̄β, c̄] if β < α < γ.

Remark. This (1.26) is an alternative to Definition 1.1(1) and imitate
the other parts of Definition 1.1.

§2 Convergent and Indiscernible Sets

2.1 Definition. We say that {āt : t ∈ I} is a (∆, χ)-convergent set
inside M when for every c̄ ∈ M (of suitable length, i.e., ℓg(āt) +
ℓg(c̄) = ℓg(x̄) for some ϕ(x̄) ∈ ∆ or ϕ(x̄, ȳ) ∈ ∆, ℓg(āt) = ℓg(x̄),
ℓg(c̄) = ℓg(ȳ)), for all but< χmembers t ∈ I the type tp∆(ātˆc̄,∆,M)
(i.e., the ∆-type which ātˆc̄ realizes inside M) is constant (so of
course we demand that all āt have the same length). We also de-
mand, of course |I| ≥ χ.

2.2 Remark. 1) In the first order case we were able to show that if
T is stable and I is an infinite set of indiscernibles then I admits
an average. Here, we do not know this. Fortunately we have a rea-
sonable replacement: we show in 2.8 below that if M does not have
the (∆eb, χ+)-order property then each sufficiently long indiscernible
sequence from M contains a (∆, χ+)-convergent subsequence. Orig-
inally in the first order case we were interested in the existence of
indiscernible sets, but in fact we use quite extensively their being
convergent. So we will be more interested in the existence of conver-
gent sets here.
2) We can in Definition 2.1 demand that all but < χ for each formula
separately; no real difference here.

2.3 Claim. 1) Assume that ∆ is (< κ)-variable closed (see Def-
inition 1.18(3)) and I = {āt : t ∈ I} is (∆, χ)-convergent in the
model M, ℓg(āt) < κ, |I| > χ, χ regular, |∆| < χ,A ⊆ M and
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[ϕ(x̄) ∈ ∆ ⇒ |A||ℓg x̄| < χ]. Then there is J ⊆ I, |J | = |I| such
that {āt : t ∈ J} is a ∆-indiscernible set over A in the model M .
Moreover, if I0 ⊆ I, |I0| < |I| then we can demand that 〈āt : t ∈ J〉
is ∆-indiscernible over A ∪ {ās : s ∈ u} for every finite u ⊆ I0.
2) Assume that n(∗) ≤ ω,∆ is a set of formulas ϕ(x̄), α an ordinal

and for n < n(∗) we have [
n
∧

ℓ=1

ℓg(x̄ℓ) = α & ϕ(x̄n, . . . , x̄1, ȳ) ∈ ∆ ⇒

ϕ(x̄n−1, . . . , x̄1, x̄n, ȳ) ∈ ∆}].
If {āt : t ∈ I} is (∆, χ)-convergent in the model M, ℓg(āt) =

α, |I| > χ, χ regular, |I| > χ, χ regular, |∆| < χ and J a set of
sequences from M each of length α, and J of cardinality ≤ χ then
for some subset J of I of cardinality |I| the set {āt : t ∈ J} is
(∆, < n(∗))-indiscernible over J inside M .

Remark. 1) Why do we require “finite u”? As maybe |I0|
ℵ0 ≥ |I|.

2) Assume ∆ is (< κ)-variable closed (see 1.18(3)), κ > ℵ0 and
〈āt : t ∈ I〉 is ∆-indiscernible over A in M and α = ℓg(āt) ≥ ω
for t ∈ I. In this case if I0 ⊆ I is infinite it does not follow that
〈āt : t ∈ I\I0〉 is indiscernible over ∪{āt : t ∈ I0}. The reason is that
there may be a formula ϕ(x0, x̄1, . . . ) ∈ ∆ with ℓg(x̄n) = α such
that ϕ(−, āt0 , āt1 , . . . ) divide {āt : t ∈ I\I0} to two infinite sets. The
point is that “∆-indiscernible” means “(∆, n)-indiscernible for every
n”.

Proof. 1) Let λ = |I| and so by renaming without loss of generality
I = λ. First we consider the case λ is regular.

For any finite u ⊆ λ let c̄u = āα0
ˆ . . .ˆāα|u|−1

when {α0, . . . , α|u|−1}
list u in increasing order and let wu ∈ [λ]<χ be such that the sequence
〈tp∆(ātˆc̄u, A,M) : t ∈ λ\wu〉 is constant (exists by Definition 2.1
and the assumptions). Let E = {δ < λ : δ is a limit ordinal such
that u ∈ [δ]<ℵ0 ⇒ wu ⊂ δ}, it is a club of λ. Clearly

(∗)1 if δ ∈ E, δ ≤ αℓ < λ for ℓ = 1, 2 and u ⊆ δ is finite then
āα1

ˆc̄u, āα2
ˆc̄u realize the same ∆-type over A for every finite

u ⊆ δ.
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Now
Question: Is there an α∗ < λ such that 〈āα : α ∈ E\α∗〉 is an
indiscernible set over A ∪ c̄u for every finite u ⊆ α∗?

If yes, then we are done (also for the “Moreover”), so assume that
the answer is no. So for every δ ∈ E there are n = n(δ) and βδ0 <
. . . < βδn−1, γ

δ
0 < . . . < γδn−1 from E\δ and k = kδ = k(δ) < ω, αδ0 <

. . . < αδk−1 < δ (e.g., k = 0) such that āαδ
0
ˆ . . .ˆāαδ

k−1
ˆāβδ

0
ˆ . . . ˆāβδ

n−1

and āαδ
0
ˆ . . .ˆāαδ

k−1
ˆāγδ

0
ˆ . . .ˆāγδ

n−1
does not realize the same ∆-type

over A. Without loss of generality we choose an example with mini-
mal n(δ).

By the choice of E

(∗)2 (a) if βδn−1 ≤ β < λ then āαδ
0
ˆ . . .ˆāαδ

k−1
ˆāβδ

0
ˆ . . .ˆāβδ

n−2
ˆāβδ

n−1

and
āαδ

0
ˆ . . . ˆāαδ

k−1
ˆāβδ

0
ˆ . . .ˆāβδ

n−2
ˆāβ realizes the same

∆-type over A

(b) similarly replacing βδℓ by γδℓ .

Hence without loss of generality

(∗)3 βδn(δ)−1 = γδn(δ)−1

and similarly

(∗)4 if βδn(δ)−1 ≤ β < λ ∧ γδn(δ)−1 ≤ β then the tuples

āαδ
0
ˆ . . . āαδ

k(δ)−1
ˆāβδ

0
ˆ . . . ˆāβδ

n(δ)−2
ˆāβ and

āαδ
0
ˆ . . .ˆāαδ

k(δ)−1
, āγδ

0
ˆ . . .ˆāγδ

n(δ)−2
ˆāβ realize different ∆-types

over A.

For some stationary S ⊆ E we have: δ ∈ S ⇒ n(δ) = n(∗) & kδ =

k(∗) &
∧

ℓ<n(∗)

αδℓ = α∗
ℓ and δ ∈ S ⇒ βδn(∗)−1 < Min(S\(δ+1)). For

i < λ let ξ(i) be the i-th member of S and let u = {α
ξ(χ)
ℓ , β

ξ(χ)
m , γ

ξ(χ)
m :

ℓ < k(∗), m < n(∗) − 1} so we can find i < χ such that [ξ(i), ξ(i+
1)) ∩ wu = ∅. By (∗)3 clearly

ā
α

ξ(χ)
0

ˆ . . .ˆā
α

ξ(χ)

k(∗)−1

ˆā
β

ξ(χ)
0

ˆ . . .ˆā
β

ξ(χ)

n(∗)−2

ˆāξ(χ+1)

and
ā
α

ξ(χ)
0

ˆ . . .ˆā
α

ξ(χ)

k(∗)−1

ˆā
γ

ξ(χ)
0

ˆ . . .ˆā
γ

ξ(χ)

n(∗)−2

ˆāξ(χ+1)
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realize different ∆-types over A hence this holds also if we replace
ξ(χ + 1) by ξ(i), but this contradicts the choice on n(ξ(χ)). So we
have proved the claim in the case λ is regular.

Second, if λ is singular let λ = Σ{λi : i < cf(λ)} such that

i < cf(λ) ⇒ χ+ + cf(λ) +
∑

j<i

λj < λi, and for each i < cf(λ) we

can find Ji ⊆ [λi, λ
+
i ) of cardinality λ+

i such that 〈āt : t ∈ Ji〉 is
∆-indiscernible over A∪ c̄u for every finite u ⊆ λi (by the case of the
claim we have already proved).

Let I ′i ⊆ Ji be of cardinality χ, so ∪{I ′i : i < cf(κ)} ≤ cf(λ)+χ <
λ0. Now we can find J ′

i ⊆ Ji of cardinality λ+
i such that 〈āt : t ∈ J ′

i〉
is ∆-indiscernible over A∪ c̄u for every finite u ⊆ ∪{I ′j : j < cf(λ)}∪
λi (by the case of the claim we have already proved). Now it is easy to
check that for each i < cf(λ) the set {āt : t ∈ J ′

i} is ∆-indiscernible
over ∪{āt : t ∈ u} ∪ A for every finite u ⊆ ∪{J ′

j : j < cf(λ) and
j 6= i}. Now recalling that {āt : t ∈ I} is ∆-convergent we see that
J = ∪{J ′

i : i < cf(λ)} is as required.
2) Left to the reader. �2.3

2.4 Remark. If I is a (∆i, χ)-convergent inside M for i < α, and

cf(χ) > |α| then I is a (
⋃

i<α

∆i, χ)-convergent inside M . Also obvi-

ous monotonicity holds, and (∆, χ)-convergence implies (∆i,es,cn, χ)-
convergence.

2.5 Remark. We can define something similar to 2.1 for sequences
instead of sets (so we have that tp∆(ātˆc̄, ∅,M), divide I into < χ
convex subsets); but no need arises here.

2.6 Definition. For I which is a (∆, χ)-convergent set insideM , and
A ⊆ |M |, define Av∆(I, A,M) = {ϕ(x̄, c̄) : c̄ ∈ A and ϕ(x̄, ȳ) ∈ ∆
are such that for at least |I| sequences ā ∈ I we have M |= ϕ[ā, c̄]}.
Of course, all members of I have the same length.

Note that the definition of the average does not depend on χ.

2.7 Fact. If I is (∆, χ)-convergent inside M,A ⊆ M and [ā ∈ I ⇒
ℓg(ā) = α] then p := Av∆(I, A,M) satisfies the requirements on
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being from Sfrα∆(A,M) but may not be realized in M . However,

if Λ is a set of formulas of the form ϕ(x̄, ā), ℓg(x̄) = α, ā ∈ ℓg(ȳ)A
and ϕ(x̄, ȳ) ∈ ∆ and |Λ| < cf(|I|) or |Λ| < χ+ + |I| then p ∩ Λ ∈
Sα∆(Λ,M) := {p∩Λ : p ∈ Sα∆(M,M)} and p = ∪{p∩Λ : Λ as above}.

Proof. By the assumption on I, if ϕ(x̄; ȳ) ∈ ∆ and c̄ ∈ A then
exactly one of ϕ(x̄; c̄),¬ϕ(x̄; c̄) belongs to Av∆(I, A,M). Also the
second sentence is easy. �2.7

2.8 The convergent set existence theorem. Suppose M has
the (∆eb, χ+)-non-order property, µ = µχ + 22χ

and |∆| ≤ χ and
arity(∆) ≤ χ+, see 0.7(10).
1) Let I be a family of β∗-sequences from M , β∗ ≤ κ (≤ χ) and
|I| = µ+; then there is J ⊆ I such that:

(i) |J| = µ+

(ii) J is (∆, χ+)-convergent (and ∆-indiscernible sequence if ∆
is (< κ+)-variable closed).

2) If I = {āα : α < µ+}, then there is a closed unbounded E ⊆ µ+,
and a function h on µ+ which is regressive (i.e., h(α) < 1 +α) such
that for every i < µ+ the set Ji = {āα : α ∈ E, h(α) = i, cf(α) >
χ}, when not empty, is (∆, χ+)-convergent (and ∆-indiscernible se-
quence if ∆ is (< κ+)-variable closed) .
3) If we replace “|∆| ≤ χ” by “µ|∆| = µ”, we still get a (∆, χ+ +
|∆|+)-convergent (and ∆-indiscernible) J.

2.9 Remark. Alternatively we could have demanded just “M has
(∆i,r, χ+)-non-order” when µ ≥ i3(χ).

Proof. Let I = {āα : α < µ+}. The ∆-indiscernibility in clause
(ii) of part (1) can be gotten by applying 2.3 with ∆, µ+, χ+, κ+

here standing for ∆, |I|, χ, κ there and similarly for the “and ∆-
indiscernibles” in parts (2),(3) hence we can ignore them. Also part
(2) implies part (1) and we leave part (3) to the reader, so henceforth
we shall deal only with part (2). Clearly it suffices to prove (2) for
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∆ a singleton, (by Fodor’s lemma as µ = µ|∆|) hence without loss of
generality ∆ = {ϕ(x̄; ȳ)}. Let ψ = ψ(ȳ; x̄) := ϕ(x̄; ȳ). We choose by
induction on α < µ+ a submodel Mα of M such that:

(a) Mα is increasing continuously (in α), āα ∈ Mα+1 and Mα

has cardinality ≤ µ

(b) Every p ∈ S
ℓg(x)
ϕ (Mα,M) ∪ S

ℓg(ȳ)
ψ (Mα,M) is realized in M

by some sequence from Mα+1.

This is possible - for clause (b) use 1.19 because by Fact 1.23 the
modelM has the ({ϕ}es, χ+)-non-order property and the ({ϕ}rs, χ+)-
non-order property hence by 1.19, clause (b) above deals with ≤
µ types. Now for every α < µ+, if cf(α) > χ then (by (a),(b)
and 1.13(2)) we have Mα ≤∗

P

χ,χ(ϕ) M . So by 1.12 there is Γα ⊆

{ϕ(ā, ȳ) : ā ∈ |Mα|, ℓg(x̄) = ℓg(ā)} of cardinality ≤ χ such that
tpϕ(āα,Mα,M) does not (ϕ(x̄; ȳ), ϕ(x̄; ȳ))-split over Γα. As cf(α) >
χ, there is h0(α) < α such that Γα ⊆ {ϕ(c̄, ȳ) : c̄ ∈Mh0(α)}. Now (by
straightforward coding and 1.19) for some closed unbounded subset
E of µ+ and regressive h1, for every α ∈ E satisfying cf(α) > χ the
type tpϕ(āα,Mh0(α)+1,M) is determined by h1(α), and also h0(α)
is determined by h1(α). Without loss of generality for α ∈ E, if
cf(α) > χ then {δ : h1(δ) = α and cf(δ) > χ} is a stationary subset
of µ+.

Now suppose S ⊆ {δ ∈ E : cf(δ) > χ}, S 6= ∅ and h1 is constant
on S. We shall prove

(∗) {āα : α ∈ S} is (ϕ(x̄, ȳ), χ+) − convergent inside M.

Being an indiscernible sequence follows by 3.2 below (and then, e.g.
by being convergent it is an indiscernible set).
It is enough for proving (∗) to prove the Claim 2.10 below [just define
by induction on i < µ+, α0 = Min(S), βi = Min(S\αi), αi+1 =

Min(S\(βi + 1)) (so αi+1 = βi+1), αδ =
⋃

i<δ

αi when δ is a limit

ordinal, M ′
i = Mαi

, ā′i = āβi
. Clearly 〈βi : i < µ+〉 list S and

〈αi : i < µ+〉 is increasing continuous; βi ∈ S; now we apply 2.10 to
the sequence 〈M ′

i , ā
′
i : i < µ+〉 clearly the assumptions of 2.10 hold].
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2.10 Claim. Suppose

(a) µ = µχ + 22χ

and ℓg(x̄ˆȳ) ≤ χ

(b) M has the ({ϕ(x̄, ȳ)}eb, χ+)-non-order property

(c) Mi, i < µ+ is increasing continuous, Mi ⊆M

(d) āi ∈Mi+1 and Mi+1 ≤∗
P

χ,χ(ϕ) M

(e) ψ(ȳ, x̄) = ϕ(x̄, ȳ) and ϑ(x̄, ȳ1ˆȳ2) = [ϕ(x̄, ȳ1) ≡ ϕ(x̄, ȳ2)]

(f) every p ∈ S
ℓg(x̄)
{ϕ(x̄,ȳ)}(Mi,M) ∪ S

ℓg(ȳ)
{ψ(ȳ,x̄)}(Mi,M) is realized in

M by a sequence from Mi+1

(g) ‖Mi‖ ≤ µ for i < µ+

(h) tpϕ(āi,Mi,M) does not (ϕ, ϕ)-split over Γ and

Γ ⊆ {ϕ(c̄, ȳ) : c̄ ∈M0}

(i) tpϕ(āi,M1,M) is constant for i ≥ 1.

Then {āi : i < µ+} is ({ϕ}, χ+)-convergent inside M

Proof of 2.10. Let c̄ ∈M be such that ℓg(c̄) = ℓg(ȳ). We would like
to prove that

|{i < µ+ : M |= ϕ[āi, c̄]}| ≤ χ

or

|{i < µ+ : M |= ¬ϕ[āi, c̄]}| ≤ χ.

Let Mµ+ =
⋃

i<µ+

Mi.

Now
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2.11 Fact. There is a set A of elements and a set E of ordinals such
that:

(i) A ⊆Mµ+ , E ⊆ µ+ + 1, and |A| ≤ χ, |E| ≤ χ
(ii) (a) i+ 1 ∈ E ⇒ i ∈ E

(b) if δ ∈ E and cf(δ) ≤ χ then δ = sup(E ∩ δ)

(iii) if δ ∈ E and cf(δ) > χ then tpψ(c̄,Mδ,M) does not (ψ, ψ)-
split over A ∩Mδ and A ∩Mδ ⊆Msup(E∩δ)

(iv) µ+ ∈ E.

Proof of 2.11. To see this, choose En, An by induction on n < ω,
both increasing with n as follows:

⊛ (α) E0 = {µ+}

(β) i+ 1 ∈ En ⇒ i ∈ En+1

(γ) if δ ∈ En and cf(δ) ≤ χ then δ = sup(En+1 ∩ δ)

(δ) if δ ∈ En and cf(δ) > χ then tpψ(c̄,Mδ,M) does not
(ψ, ψ)-split over

An+1 ∩Mδ

(ε) An ∩ (Mi+1\Mi) 6= ∅ ⇒ i, i+ 1 ∈ En+1

(ζ) An ⊆ An+1

(η) En ⊆ En+1

(θ) |En| + |An| ≤ χ.

For n = 0 use clause (α). For n + 1, clauses (β) − (θ) tells you
to throw in ≤ χ sets, each of cardinality ≤ χ. For clause (δ) use
Theorem 1.12 and clause (b) of the assumption of 2.10 but note that
ψ(ȳ, x̄), ϑ(ȳ, x̄2ˆx̄2) := [ψ(ȳ, x̄1) ≡ ψ(ȳ, x̄2)] here stand for ϕ, ψ in

1.12. Now
⋃

n<ω

En,
⋃

n<ω

An are as required in Fact 2.11. E.g. for

clause (iii), if δ ∈ E and cf(δ) ≥ χ and we let α = sup(δ ∩ E), it is
< δ as cf(δ) > χ and the non-splitting demands holds by clause (δ)
of ⊛, and “A ∩Mδ ⊆Msup(E∩δ) holds by clause (ε) of ⊛. �2.11

Continuation of the Proof of 2.10. By clause (f) of the assumption of
2.10 for each i < µ+ we can choose c̄i ∈Mi+1 realizing tpψ(c̄,Mi,M)
inside M ; so if c̄ ⊆Mi then c̄i = c̄.
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Now E divides (µ++1)\E naturally into ≤ χ intervals. That is for
α ∈ E we let Iα := {i < µ+ : i /∈ E and α = Min{j : i < j ∈ E}}.
We first show that “M |= ϕ[āi, c̄]” has constant truth value on each
interval, then we prove that all intervals give the same answer. Note
that Iα 6= ∅ implies that α is a limit ordinal of cofinality greater than
χ.

First part.
Let δ1 ∈ E be such that cf(δ1) > χ and δ0 = min{γ : [γ, δ1)∩E =

∅}. Now δ0 is not necessarily a limit ordinal (but have we added in
⊛ above also 0 ∈ E0, [i ∈ En ⇒ i + 1 ∈ En+1) it would be). So
Iδ1 = {i : δ0 ≤ i < δ1}.

Remember:

(A) tpψ(c̄,Mδ1 ,M) does not (ψ, ψ)-split over A ∩Mδ1

[Why? By clause (iii) of 2.11.]

(B) A ∩Mδ1 ⊆Mδ0

[Why? By clause (iii) of 2.11 as δ1 is ≥ sup(E ∩ δ1).]

(C) 〈tpϕ〈(āi,Mi,M) : i < µ+〉 is increasing with i
[Why? By (h) + (i) + (f) of 2.10 by 1.10(2).]
hence

(D) δ0 ≤ i, j < δ1 ⇒ tpϕ(āi,Mδ0 ,M) = tpϕ(āj ,Mδ0 ,M)

Together ϕ(āi, c̄) ≡ ϕ(āj , c̄), we mean of course M |= “...”.

Second part.
Let δ0 < δ1 and δ2 < δ3 be such that δ1, δ3 ∈ E, cf(δ1),cf(δ3) >

χ, δ0 = min{γ < δ1 : [γ, δ1)∩E = ∅} and δ2 = min{γ : [γ, δ3)∩E =
∅}. We would like to prove ϕ(āδ0 , c̄) ≡ ϕ(āδ2 , c̄). Suppose not and,
possibly exchanging (δ0, δ1) with (δ2, δ3) we have

(α) ϕ(āδ0 , c̄) & ¬ϕ(āδ2 , c̄).

Then

(β) i ∈ [δ0, δ1) ⇒ ϕ(āi, c̄)
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[Why? By the first part]

(γ) if i < j are both in [δ0, δ1) then ϕ(āi, c̄j)

[Why? By the choice of c̄j and clause (β)].

(δ) j < α ≤ β < µ+ ⇒ ϕ(āα, c̄j) ≡ ϕ(āβ , c̄j).

[Why? As tpϕ(āα,Mα,M) is increasing with α by clauses (h) + (i)
and (f) of the assumptions of Claim 2.10, by Fact 1.10(2)].

(ε) j1, j2 < α < µ+ ⇒ ϕ(āα, c̄j1) ≡ ϕ(āα, c̄j2)

[Why? As tpϕ(āα,Mα,M) does not (ϕ, ϕ)-split over M0 and c̄j1 , c̄j2
realize tpψ(c̄,M0,M)].

(ζ) if j1 < α1 < µ+, j2 < α2 < µ+ then ϕ(āα1
, c̄j1) ≡ ϕ(āα2

, c̄j2)

[Why? Combine (δ) and (ε) using ϕ(āmax{α1,α2}, c̄jℓ) for ℓ = 1, 2 as
intermediates]

(η) j ∈ [δ2, δ3) ⇒ ¬ϕ(āj , c̄)

[Why? By first part and the assumption (see clause (α)) that ¬ϕ(āδ2 , c̄)]

(θ) if j < α and both are in [δ2, δ3) then ¬ϕ(āj , c̄α)

[Why? By combining (η) and “c̄α realizes tpψ(c̄,Mj,M)”].

Now if |= ϕ[ā1, c̄0] then by clauses (ζ) and (θ) the model M has the
(¬ϕ(x̄, ȳ), χ+)-order property as exemplified by 〈āδ2+j , c̄δ2+j : j <
χ+〉 hence by 1.23(3) the model M has the (ψ, χ+)-order property;
pedantically we should have considered 〈āδ2+2j+1, c̄δ2+2j : j < χ+〉,
similarly below. Second, if |= ¬ϕ[ā1, c̄0] then by clauses (ζ) and
(γ) the model M has the (ϕ, χ+)-order property exemplified by
〈āδ0+j , c̄δ0+j : j < χ+〉. As both intervals has cardinality > χ we get
a contradiction as ϕ, ψ ∈ {ϕ}i,r and apply Fact 1.23(1).]

This completes the proof of the second part. So ϕ(āj , c̄) has the
same truth value for all j ∈ µ+\E, but |E| ≤ χ so we have finished.
�2.10

2.12 Exercise. In Theorem 2.8, replace µ+ by a (possibly weakly)
inaccessible cardinal µ.

2.13 Conclusion. 1) Assume µ = µχ + 22χ

, the model M has
the {∆eb, χ+}-non-order property, |∆| ≤ χ (or just µ|∆| = µ) and
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ℓg(x̄), ℓg(ȳ) < χ+. If I ⊆ M has cardinality µ+ then some J ⊆ I of
cardinality µ+ is ∆-indiscernible set and (∆, χ+)-convergent. Also
in 2.8(2) we get an indiscernible set.
2) If in addition µ ≥ i3|χ| then it is enough in part (1) to demand
“M has the (∆i,r, χ+)-non-order property.

Proof. Just put together 2.8 + 2.3 + 1.15(2) + 3.5 + 3.6. �2.13

2.14 Exercise: Assume that (a)-(i) of Claim 2.10 and M ≤∆ N and
tp{ϕ}(c̄,M,N) does not (ϕ, ϕ)-split over Γ and extend tp{ϕ}(c̄i,Mi,M)
for i < µ+. Then

(a) Av{ϕ}({āi : i < µ+},M,N) = tp{ϕ}(c̄,M,N)

(b) Av{ϕ(x̄,ȳ)}({āi : i < µ+},M,N) does not (ϕ, ϕ)-split over Γ.

[Hint:

Clause (a): As in the proof of 2.10, that is assume toward contra-
diction that b̄ ∈ ℓg(ȳ)M and N |= “ϕ[c̄, b̄] ≡ ¬ϕ[c̄i, b̄]” for every
i < µ+ large enough say ≥ i(∗). For i < µ+ choose b̄i ∈

ℓg(ȳ)(Mi+1)
realizing tpψ(b̄,Mi, N). Now if i(∗) < i < j < µ+ then N |=
“ϕ[c̄, b̄] ≡ ϕ[c̄, b̄i]” because tp{ϕ}(c̄,M,N) does not (ϕ, ϕ)-split over

Γ and tp{ψ}(b̄,Mi,M) include Γ. Also for i < j from (i(∗), µ+) we

have N |= “ϕ[c̄, b̄i] ≡ ϕ[c̄j , b̄i]” as c̄j realizes tp{ϕ}(c̄,Mj, N). But if

i(∗) ≤ i < j < µ+ then N |= “ϕ[c̄i, b̄] ≡ ϕ[c̄i, b̄j]” by the choice of
b̄j . Together M has the ({ϕ}i,r, µ+)-order property, contradiction by
clause (b) of 2.10 and 1.23(1).

Clause (b): By clause (a) and 1.10(2) (used in the proof of 4.4.]

§3 Symmetry and indiscernibility

3.1 The Symmetry Lemma. 1) Assume M has ({ϕ,¬ϕ}, µ)-non-
order, ℓ = 1, 2, µ ≤ µℓ ≤ µ′

ℓ, all regular cardinals. Suppose Iℓ = {āℓα :
α < µ′

ℓ} is (ϕℓ, µℓ)-convergent inside M where

ϕ = ϕ(x̄; ȳ; z̄)
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ϕ1(x̄; ȳ; z̄) = ϕ(x̄; ȳ; z̄)

ϕ2(ȳ; x̄; z̄) = ϕ(x̄; ȳ; z̄)

ℓg(ā1
α) = ℓg(x̄), ℓg(ā2

α) = ℓg(ȳ).

Then for c̄ ∈ M ; taking the averages of the ā1
α’s and of the ā2

β’s in

ϕ(ā1
α, ā

2
β, c̄) commutes, that is

(∃≥µ1α < µ′
1)(∃

≥µ2β < µ′
2)ϕ(ā1

α, ā
2
β, c̄)

if and only if

(∃≥µ2β < µ′
2)(∃

≥µ1α < µ′
1)ϕ(ā1

α, ā
2
β, c̄)

2) We can omit the assumption “M has the ({ϕ,¬ϕ}, µ)-non-order”
if min{µ1, µ2} < max{µ′

1, µ
′
2}.

Proof. 1) So assume that the conclusion fails. First assume that
(∃≥µ1α < µ′

1)(∃
≥µ2β < µ′

2)ϕ(ā1
α, ā

2
β, c̄) holds so U1 := {α < µ′

1 :

(∃≥µ2β < µ′
2)ϕ(ā1

α, ā
2
β, c̄)} has cardinality ≥ µ1. So the other asser-

tion fails, so as µ2 ≤ µ′
2 the set

U2 := {β < µ′
2 : ¬(∃≥µ1α < µ′

1)ϕ(ā1
α, ā

2
β, c̄)}

has cardinality µ′
2. Now we choose a pair (αε, βε) by induction on

ε < µ such that

⊛1 (a) αε ∈ U1\{αζ : ζ < ε}

(b) βε ∈ U2\{βζ : ζ < ε}

(c) if ζ < ε then ¬ϕ(ā1
αε
, ā2
βζ
, c̄)

(d) if ζ ≤ ε then ϕ(ā1
αζ
, ā2
βε
, c̄).
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In stage ε, we are looking for αε ∈ U1 and recall |U1| ≥ µ1. The
demand (a) excludes |ε| < µ ≤ µ1 ordinals: {αζ : ζ < ε}. Also
for each ζ < ε, the demand (c) excludes < µ1 ordinals as for each
β ∈ U2 by the definition of U2 we have ¬(∃≥µ1α < µ′

1)ϕ(ā1
α, ā

2
β, c̄)

hence by 〈ā1
α : α < µ′

1〉 being (ϕ1, µ1)-convergent we exclude < µ1.
As µ1 is regular and each ζ < ε excludes < µ1 and |ε| < µ ≤ µ1, we
exclude < µ1 members of U1. So we can choose αε.

Similarly we can choose βε (we have |U2| = µ′
2 ≥ µ2 ≥ µ candi-

dates, clause (b) excludes |ε| < µ ≤ µ1 candidates and for each ζ ≤ ε
clause (d) excludes < µ2 candidates (by 〈ā2

β : β < µ′
2〉 being (ϕ2, µ2)-

convergent). So for ε, ζ < µ we have |= ϕ[ā1
αε
, ā2
βζ
, c̄] iff ε ≤ ζ, so

〈(ā1
αε
, ā2
βε

: ε < µ〉 exemplify “M has the (ϕ(x̄, ȳ, c̄), µ)-order prop-
erty”, contradicting an assumption.

But we have another case: when

(∃≥µ2β < µ′
2)(∃

≥µ1α < µ′
1)ϕ(ā1

α, ā
2
β, c̄)

holds and so ¬(∃≥µ1α < µ′
1)(∃

≥µ2β < µ′
2)ϕ(ā1

α, ā
2
β, c̄) and we let

U1 = {α < µ′
1 : ¬(∃≥µ2β < µ′

2)ϕ(ā1
α, ā

2
β, c̄)}

U2 = {β < µ′
2 : (∃≥µ1α < µ′

1)ϕ(ā1
α, ā

2
β, c̄)}.

So by induction on ε < µ we choose αε, βε such that

⊛ (a) αε ∈ U1\{αζ : ζ < ε}

(b) βε ∈ U2\{βζ : ζ < ε}

(c) if ζ < ε then ϕ(ā1
αε
, ā2
βζ
, c̄)

(d) if ζ ≤ ε then ¬ϕ(ā1
αζ
, ā2
βε
, c̄).

We continue as above and get that M has the (¬ϕ, µ)-order property
hence by 1.23(3) has the (ϕ2, µ)-order property, contradiction.
2) So µ1 < µ′

2 or µ2 < µ′
1. In each case it is trivial. �3.1
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3.2 The indiscernibility/non-splitting Lemma. Assume

(a) for i < i(∗) let ϕi(x̄ni
; . . . ; x̄1; ȳi) be a τ(M)-formula, α =

ℓg(x̄ℓ)

(b) ∆n = {ϕi(x̄ni
; . . . ; x̄1; ȳ) : i < i(∗), ni = n}, and ∆ =

⋃

m<ω

∆n

(c) I is a linear order

(d) āt ∈
α|M | for t ∈ I

(e) A ⊆ |M |

(f) for t ∈ I and n the type pt,n := tp∆(āt, A ∪
⋃

s<It

ās,M) or

just pt,n = {ϕi(x̄, ātni−1
, . . . , āt1 , c̄)

t : i < i(∗) satisfy ni =

n, c̄ ∈ ℓg(ȳ)A and t1 <I . . . <I tni−1 <I t, t a truth value (or
∈ {0, 1}) and M |= ϕi[āt; ātni−1

; . . . ; āt̄1 ; c̄]
t} does not split

over Γt,n, where

(α) Γt,n = {ϕi(x̄ni
; . . . ; x̄1; c̄) : i < i(∗) satisfies ni = n− 1

and c̄ ∈ A} and

(β) s <I t⇒ ps,n ⊆ pt,n.

Then 〈āt : t ∈ I〉 is a ∆-indiscernible sequence over A.

Proof. Note that if I ′ ⊆ I and we restrict ourselves to 〈āt : t ∈ I ′〉
and redefine pt for t ∈ I ′ accordingly, all the assumptions still holds.
Hence it suffices to deal with the case I is finite; and we prove this
by induction on |I|. See the proof of [Sh:c, Lemma 2.5,p.11]. Note
the order in Definition 1.7(2); note that if we make ∆ close under
permuting the variables (or the first n blocks of α variables), things
may be clearer. �3.2

3.3 Exercise: In 3.2 we can conclude that {at : t ∈ I} is (∆, < n(∗))-
indiscernible strictly over J inside M when:

(a) − (d) as in 3.2
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(e) J is a family of sequences from M

(f) for n < n(∗) and t ∈ I the type {ϕi(x, ātni−1
, . . . , āt1 , c̄)

t :

i < i(∗) satisfies ni = n; c̄ ∈ J and t1 <I . . . <I tni−1 <I t, t
a truth value and M |= ϕi[āt, ātni−1

, . . . , āt1 , c̄]
t} does not

split over Γt,n where (α, β) are as there.

3.4 Conclusion. Suppose ϕ(x̄n, . . . , x̄1, ȳ) is a τ(M)-formula and for
ℓ = 0, . . . , n− 1

ϕℓ(x̄n, . . . , x̄1, ȳ) := ϕ(x̄n−ℓ, x̄n−ℓ−1, . . . , x̄1, x̄n, . . . , x̄n−ℓ+1, ȳ)

and α = ℓg(x̄ℓ) for ℓ = 1, . . . , n and let ∆ = {ϕℓ : ℓ = 0, . . . , n− 1}.
1) If I is a linear order, āt ∈ αM for t ∈ I, pt = tp∆(āt, A ∪
⋃

s<It

ās,M) increases with t, and is finitely satisfiable in A then

〈āt : t ∈ I〉 is a ∆-indiscernible sequence over A.
2) Suppose I is a linear order and J is a family of sequences, āt ∈
α|M | for t ∈ I and let Jt = J ∪ {ās : s <I t}. Further assume

pt = tp∆(āt,Jt,M) :=
{

ϑ(x̄, c̄1, . . . , c̄k) :ϑ ∈ ∆, c̄ℓ ∈ Jt for ℓ = 1, . . . , k

and M |= ϑ[āt, c̄1, . . . , c̄k]
}

is increasing with t and is finitely satisfiable in J. Then 〈āt : t ∈ I〉
is a ∆-indiscernible (sequence) over J.
3) We can in (2) replace pt by

p′t = {ϕℓ(x̄, āsn−1
, . . . , ās1; c̄)

t :s1 <I . . . <I sn−1s and c̄ ∈ J, t

a truth value (or ∈ {0, 1}) and

M |= ϕ[āt, asn−1
, . . . , ās1; c̄]

t}.

4) We can replace ∆ by a union of such sets, fixing α.
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Remark. 1) Of course we can restrict pt to the set of formulas used,
this is done in part (3).

Proof. Easy. �3.4

3.5 Lemma. Suppose 〈āi : i < i(∗)〉 is a (ϕ(x̄n, . . . , x̄1, c̄), n)-indis-
cernible sequence but not an (ϕ(x̄n, . . . , x̄1, c̄), n)-indiscernible set so
n ≥ 2.
1) For any permutation π of {1, . . . , n}, let
ϕπ(x̄n, . . . , x̄1, z̄) := ϕ(x̄π(n), . . . , x̄π(1), z̄).
Then for some permutation π and m ∈ {0, 1, . . . , n − 2}, for any j
such that m+ j + (n−m− 2) ≤ i(∗) the model M has the
(ϕπ(x̄m; x̄m−1; ā0, . . . , ām−1, ām+j, ām+j+1, . . . , ām+j+n−m−3, c̄), j)-
order property.
2) Let ϕ′

π,m(x̄∗, ȳ∗, z̄∗) = ϕ′
π,m(x̄1, . . . , x̄m; ȳ1, . . . , ȳm; z̄m−1, . . . , z̄n, z̄) =

ϕ(x̄π(1), . . . , x̄π(m−1), ȳm; z̄m+1, . . . , z̄n, z̄). Then for some π and m ∈
{2, . . . , n}, the model M has the
(ϕ′
π,m(x̄∗; ȳ∗; ām−1, . . . , ā1, c̄), (i(∗) −m)/(n−m))-order property.

Proof. By now left to the reader (really by Morley [Mo65] or see
[Sh:c, AP 3.9]).

�3.5

3.6 Observation. 1) If 〈āi : i < i(∗)〉 is a ∆-indiscernible sequence
over A but not a ∆-indiscernible set over A, then for some formula
ϕ(x̄n, . . . , x̄1, ȳ) ∈ ∆ with ℓg(x̄ℓ) = ℓg(āi) and c̄ ∈ ℓg(ȳ)A the as-
sumption of 3.5 holds.
2) In (1) we can fix n and use (∆, n)-indiscernibility.

3.7 Claim. Suppose I = {āi : i < λ} is (∆, χ+)-convergent in M ,
ℓg(āi) = α for i < λ and J is a set of sequences from M . Suppose
further that M has (∆, χ+)-non-order property and ∆ satisfies

(∗) if ϕ(x̄n, . . . , x̄1, ȳ) ∈ ∆, ℓg(x̄ℓ) = α, π a permutation of
{1, . . . , n} then ϕπ(x̄n, . . . , x̄1, ȳ) := ϕ(x̄π(n), . . . , x̄π(1), ȳ) be-
longs to ∆.
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1) If λ = cf(λ) > χ+ |J| + ∆ then there is I′ ⊆ I, |I′| = λ such that
I′ is a ∆-indiscernible set over J inside M .
2) In fact there is an algebra N with universe λ and ≤ |J|+ χ+ |∆|
functions such that: if for ζ < λ, iζ < λ, iζ not in the N -closure of
{iξ : ξ < ζ} then {aiζ : ζ < λ} is an ∆-indiscernible set over J inside
M .

3.8 Remark. In 3.7:
1) If we assume “{aiζ : ζ < λ} is a ∆-indiscernible sequence over J”
in M we can weaken (∗) to [ϕ ∈ ∆ ⇒ ϕℓ ∈ ∆] for ϕℓ as in 3.4.
2) This is a variant strengthening of 2.3.
3) We can replace the role of (|J| + χ+ |∆|)+ by regular χ∗ or just
cf(χ∗) (so the N closure of a finite set has cardinality < χ∗).
4) If we weaken the conclusion to “indiscernible sequence”, then we
can omit the “non-order” assumption.

Proof of 3.7. 1) by 2) as we can choose iζ < λ by induction on ζ < λ
such that iζ /∈ cℓN ({iξ : ξ < ζ}).
2) We define for ψ = ψ(x̄n, . . . , x̄1, z̄m, . . . , z̄1) ∈ ∆, c̄ℓ ∈ J (for ℓ =

1, m), ℓg(c̄ℓ) = ℓg(z̄ℓ) and γ < χ a function F γ = Fψ,γc̄m,...,c̄1 such that

(∗) for i1, . . . , in−1 < λ the set Ui1,...,in−1
= {F γ(i1, . . . , in−1) :

γ < χ} satisfies

(a) it includes {i : i < χ}

(b) for any j1, j2 ∈ λ\Ui1,...,in−1
, we have

M |= “ψ[āj1, āin−1
, ..., āi1, c̄m, ..., c̄1] ≡ ψ[āj2 , āin−1

, ..., āi1, c̄m, ..., c̄1]”

[this is possible as I is (∆, < χ)-convergent in M ].

Now if 〈iζ : ζ < λ〉 are as in 3.7(2), by 3.4(2) (with J∪{āi; i < λ}
here standing for J there) 〈āiζ : ζ < λ〉 is a ∆-indiscernible sequence
over J which suffices. By 3.5 the sequence 〈āiζ : ζ < λ〉 is a ∆-
indiscernible sequence over J. �3.7
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§4 What is the appropriate notion of a submodel

We would like a context for which amalgamation exists preferably
close to being a.e.c. and with a non-forking notion. For this we need a
suitable notion of elementary submodel. UsingM ≤L N,L a strong
logic, is not good enough. For example, for δ a limit ordinal Mα ≤L

Mβ ≤L M for α < β < δ does not necessarily imply
⋃

α<δ

Mα ≤L M

and even M0 ≤L

⋃

α<δ

Mα, an undesirable phenomena. For δ of large

cofinality (i.e. ≥ κ) this holds, e.g., for L = Lλ,κ, but remember
that if we can quantify over countable sets concepts become very
dependent on the exact set theoretic hypothesis. Our problem is:
Find a good notion of an elementary submodel.

We use the following relation: M <κ∆,µ,χ N saying mainly that for

α < κ types in Sα∆(M,N), i.e. the types from Sfrα∆(M,N) realized in
N are averages of convergent sets, (see 4.1). In Lemma 4.4 we show
that if the suitable non-order property holds, then we are dealing
with ≤Σµ,(<κ)

.

4.1 Definition. M ≤κ∆,µ,χ N when (µ > χ ≥ κ and we let ∆[<θ] :=

{ϕ(x̄) ∈ ∆ : ℓg(x̄) < θ},∆[θ] = ∆[<θ+] and):

(a) M ⊆ N

(b) M ≤∆[χ]
N , that is for every ϕ(x̄) ∈ ∆[χ] and c̄ ∈ ℓg(x̄)M we

have:
M |= ϕ[c̄] if and only if N |= ϕ[c̄]

(c) for every c̄ ∈ N satisfying ℓg(c̄) < κ there is I = {c̄i :
i < µ+}, which is (∆, χ+)-convergent inside M such that
tp∆(c̄,M,N) = Av∆(I,M,N).

4.2 Remark. 1) Our main case is:

∆ = the set of finite quantifier free formulas, κ = ℵ0 and µ, χ
are related as in Theorem 2.8 and then we omit them and
write just ≤.
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2) We could separate the two roles of ∆, but we have already enough
parameters.
3) Similarly we could use µ, χ instead µ+, χ+ gaining a little in
generality.
4) Many of the “obvious” properties of a candidate for “elementary
submodel” here are not so obvious. Some are proved, the failure of
some is used in non-structure theorems.
5) We could have demanded ℓg(ȳ) < κ below. Note that in some of
the claims we can use µ+-convergence, but not so in 4.4.
6) Note that χ below has some roles which we could separate:

(a) the part of z̄ we can use for ϕ(x̄, ȳ, z̄) ∈ ∆

(b) bound the length of ȳ above

(c) the (∆, χ+)-non-order property

(d) say how good is the convergence (connected to (c)).

We could have separated.
7) Why do we usually demand µ = µχ?

This is because the assumption we use is a suitable (∆, χ+)-non-
order property so we use 1.20 and it requires µ = µχ. This holds for
2.8, too, though there we could have redefined (∆, µ)-stability as: if
J is a set of ≤ µ sequences then |S∆(J,M)| ≤ µ. But reorganizing,
so it seems, do not get material gains.

4.3 Observation. If M ≤κ∆,µ,χ N then M ≤Σµ,χ,<κ(∆) N ; see Defini-

tion 0.8(7),(8).

Proof. Without loss of generality ∆ = ∆[χ], just check the defini-
tions, so M ≤∆ N by clause (b) of Definition 4.1.

Let ϕ(ȳ, z̄) = (∃x̄)
∧

α<µ

ϕα(x̄, ȳ, z̄ ↾ wα)η(α) where ϕα ∈ ∆, η ∈

µ2, ℓg(ȳ) ≤ χ, ℓg(x̄) < κ,wα ⊆ ℓg(z̄) such that |wα| ≤ χ for every
α < µ. First, if M |= ϕ[b̄, c̄] then some ā ∈ ℓg(x̄)M witnesses it and it
witnesses also N |= ϕ[b̄, c̄]. Second, assume that N |= ϕ[b̄, c̄]. Hence

there is ā ∈ ℓg(x̄)N such that N |=
∧

α<µ

ϕα(ā, b̄, c̄ ↾ wα)η(α). Apply
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clause (c) of Definition 4.1 to (M,N, ā) so there is a set I = {āi :
i < µ+} which is (∆, χ+)-convergent inside M and tp∆(ā,M,N) =
Av∆(I,M,N). Now for each α < µ there is iα < µ+ such that
i ∈ [iα, µ

+) ⇒ N |= “ϕα[āi, b̄, c̄ ↾ wα] ≡ ϕα[ā, b̄, c̄ ↾ wα]”.
So if i = ∪{iα : α < µ}, then āi witness N |= ϕ[b̄, c̄] but āi ∈

ℓg(x̄)M so as M ≤∆ N we get that āi witness M |= ϕ[b̄, c̄]. �4.3

4.4 Lemma. Suppose µ = µχ + 22χ

, κ ≤ χ+, |∆| ≤ χ, [ϕ(x̄) ∈ ∆ ⇒
ℓg(x̄) ≤ χ], and M has the (∆eb, χ+)-non-order property.
Then: M ≤κ∆,µ,χ N if and only if M ≤P

µ,χ,(<κ)(∆) N .

Remark. In ∃x̄
∧

α<µ

ϕα(x̄, ȳ, z̄ ↾ wα), the cardinal κ is used for ℓg(x̄) <

κ and χ is used to bound the length of ȳ and of the number of
variables from z̄ really appearing in ϕα.

Proof. The direction ⇒ holds by 4.3. For the other direction, easily
clauses (a),(b) of Definition 4.1 holds (and ∆ = ∆[χ]), so it suffices
to deal with clause (c). So let c̄ ∈ αN , α < κ. Let ∆ = {ϕε(x̄; ȳε) :
ε < ε(∗)} and ε(∗) ≤ χ and let ψε(ȳε, x̄) = ϕε(x̄, ȳε). By 1.12 for
some Γε ⊆ {ϕε(ā, ȳ) : ā ∈ M}, |Γε| ≤ χ and tpϕε(x̄;ȳ)(c̄,M,N) does
not (ϕε(x̄, ȳ), ϕε(x̄, ȳ))-split over Γε.

Let Γ = ∪{Γε : ε < ε(∗)} so tp∆(c̄,M,N) does not (∆,∆)-
split over Γ. By induction on i < µ+ choose Mi, c̄i such that Γ
is over M0,Mi ⊆ M, j < i ⇒ Mj ⊆ Mi, ‖Mi‖ ≤ µ, for ε < ε(∗)

every q such that q ∈ S
ℓg(x̄)
ϕ(x̄,ȳ)(Mi, N) or q ∈ S

ℓg(ȳε)
ψε(ȳ,x̄)(Mi, N) is real-

ized inside M by some sequence from Mi+1 and c̄i ∈ Mi+1 realizes
tpϕε(x̄,ȳ)(c̄,Mi, N) in N for each ε < ε(∗). This is clearly possible
by 1.19. As M ≤∆ N , clearly tp∆(c̄i,Mi,M) = tp∆(c̄i,Mi, N) ⊆
tp∆(c̄,M,N) hence also tp∆(c̄i,Mi, N) does not (∆,∆)-split over Γ.
Now by 2.10 the set I := {c̄α : α < µ+} is ({ϕε(x̄, ȳ)}, χ

+)-convergent
in M for each ε < ε(∗) hence recalling µ = µχ also is (∆, χ+)-
convergent in M . Hence by Fact 2.7 the type q = Av∆(I,M,M) is
well defined and by 1.10(2) is equal to Av∆(I,M,N) which belongs

to Sfr
ℓg(x̄)
∆ (M,N).
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Now the types q and tp∆(c̄,M,N) are both from Sfr
ℓg(x̄)
∆ (M,N),

do not (∆,∆)-split over Mχ+ .
[Why? The type tp∆(c̄,M,N) by the choice of Γ, the type q by
clause (a) of 2.14.] Also they have the same restriction to Mχ++1

which is tp∆(ci,Mχ++1N) for every i ∈ (χ+ + 1, µ+). Hence by
1.10(2) they are equal. So we finish the second direction.

�4.4

4.5 Conclusion. For κ,∆, µ, χ as in 4.4, on the class of models with
the (∆eb, χ+)-non-order property, the relation ≤κ∆,µ,χ is transitive.
�4.5

Proof. Because ≤P

µ,χ,(<κ)(∆) is transitive. �4.5

4.6 Claim. 1) Assume M1 ≤κ∆,µ,χ M2 and α < κ and I ⊆ α(M1)

has cardinality µ+. Then I is (∆, χ+)-convergent inside M1 iff I is
(∆, χ+)-convergent inside M2.
2) If I1, I2 are (∆, χ+)-convergent inside M1, M1 ≤κ∆,µ,χ M2, |Iℓ| =

µ+, Iℓ ⊆
κ>(M1) then: Av∆(I1,M1) = Av∆(I2,M1) iff Av∆(I1,M2) =

Av∆(I2,M2).
3) In part (1) we can replace χ+ by λ when χ < λ ≤ µ. Also we can
replace χ+ by λ = µ+ if M1 has the (∆i,cn, µ+)-non-order property.
4) In part (2) we can replace χ+ by χ < λ ≤ µ. If M1 has the
(∆i,cn, µ+)-non-order property then in part (2) we can replace χ by
λ = µ+.

Remark. We can replace ∆i,cn by ∆i,r.

Proof. 1) Without loss of generality ∆ = ∆[χ]. The “if” direction
follows byM1 ≤∆ M2 recalling clause (b) of Definition 4.1, so we deal
with the “only if” direction. Let c̄ ∈ κ>(M2). By “M1 ≤κ∆,µ,χ M2”

there is J ⊆M1 of cardinality µ+ which is (∆, χ+)-convergent inside
M1 such that Av∆(J,M1,M2) = tp∆(c̄,M1,M2) so if ϕ(x̄, c̄) divides
I into two sets each of cardinality > χ then so does some c̄′ ∈ J
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by 3.1(2) (recalling that by Definition 4.1, we have |I| > µ > χ),
impossible so we are done.
2) Similar; alternatively use 4.3 and the definitions (see Example
4.11).
3) If χ < λ ≤ µ then the proof of part (1) holds so we are left
with the case λ = µ+, i.e. the second sentence in part (3) so we are
assuming that M1 has the (∆i,cn, µ+)-non-order property. Assume
toward contradiction that ϕ(x̄, ȳ) ∈ ∆, so ℓg(x̄) = ℓg(c̄) < κ, ℓg(ȳ) ≤
χ and It = {ā ∈ I : M2 |= ϕ[c̄, ā]t} has cardinality µ+ for t =
true, false. For every q ⊆ tp{ϕ(x̄,ȳ)}(c̄,M1,M2) of cardinality ≤

µ some c̄q ∈ ℓg(ȳ)(M1) realizes it and as I is (∆, λ)-convergent in
M1, for some tq ∈ {true, false} for all but ≤ µ members ā of I we
have M1 |= ϕ[c̄q, ā]

tq . As [q1 ⊆ q2 ⇒ c̄q2 can serve as c̄q2 ] without
loss of generality for some t∗ for every q ⊆ tp{ϕ(x̄,ȳ)}(c̄,M1,M2) of
cardinality ≤ µ we choose c̄q, tq such that tq = t(∗). Now we choose

c̄α ∈ ℓg(x̄)(M1) and āα ∈ I by induction on α < µ+ such that

(∗)1 āα ∈ I¬t(∗)

(∗)2 {ā ∈ I : M1 |= ϕ[c̄α, ā]
¬t(∗)} has cardinality ≤ µ

(∗)3 β < α⇒M1 |= ϕ[c̄β , āα]t(∗)

(∗)4 β ≤ α⇒|= ϕ[c̄α, āβ]
¬t(∗).

In stage α, we first can choose āα ∈ I¬t(∗) as required in (∗)1 + (∗)3
because |I¬t(∗)| = µ+ and by (∗)2 each case of (∗)3 excludes ≤ µ

members. We then can choose c̄α as c̄qα
where qα = {ϕ(x̄, āβ)

¬t(∗) :
β ≤ α}; it is well defined as qα ⊆ tp{ϕ(x̄,ȳ)}(c̄,M1,M2) by (∗)1 and

qα has cardinality ≤ µ < µ+.
We have gotten that M1 has the (ϕ(x, ȳ)t(∗), µ+)-order property,

contradicting an assumption.
4) The proof is similar to that of part (3). �4.6

4.7 Union existence lemma. Let ∆, µ, χ, κ be as in 4.4, each Mi

with the (∆eb, χ+)-non-order property. If Mi is ≤κ∆,µ,χ-increasing

for i < δ and cf(δ) ≥ κ then Mi ≤
κ
∆,µ,χ

⋃

j<δ

Mj provided that i <

δ ⇒Mi ≤∆

⋃

j<δ

Mj.
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Remark. For our main case (κ = ℵ0 and ∆ = the set of quantifier
free formulas) the demands in 4.9 are satisfied.

Proof. Straightforward recalling that µ > χ. �4.9

4.8 The Lowenheim-Skolem Lemma. If ∆ is a set of quantifier
free formulas and ∆, µ, χ, κ are as in 4.4, and M has the (∆eb, χ+)-
non-order property, A ⊆ M , |A| ≤ µ+ then there is M ′ satisfying
A ⊆M ′ ≤κ∆,µ,χ M and ‖M ′‖ ≤ µ+.

Proof. Trivial for ≤P

µ,χ,(<κ)
recalling that M is (µ,∆)-stable by 1.19

which is applicable as ∆es ⊆ ∆eb, see Definition 1.18(1)(g)). Now
use 4.4. �4.8

4.9 Definition. We say that M0,M1,M2 are in (∆, µ, χ, κ)-stable
(or stable for <κ∆,µ,χ) amalgamation inside M (or M1,M2 are in

(∆, µ, χ, κ)-stable amalgamation over M0 inside M) when

(a) each Mℓ has the (∆, χ+)-non-order property

(b) Mℓ ≤∆ M for ℓ = 0, 1, 2

(c) M0 ≤∆ Mℓ for ℓ = 1, 2; actually M0 ⊆Mℓ suffice

(d) for every c̄ ∈M1 for some ∆-convergent I ⊆M0, |I| = µ+ we
have Av∆(I,M2,M2) = tp∆(c̄,M2,M).

4.10 Observation. In Definition 4.9 if we replace clause (d) by clause
(d)′ we get an equivalence definition, where

(d)′ for every c̄ ∈ κ>(M1) and every (∆, χ+)-convergent I ⊆M0,
if Av∆(I,M0,M) = tp∆(c̄,M0,M) then Av∆(I,M2,M) =
tp∆(c̄,M2,M), (see 4.6)).

Proof. By 4.6(2). �4.10

4.11 Exercise: Assume α < κ and M ≤Σµ,χ,<κ(∆) N and I,J ⊆ αM
has cardinality > µ. Then
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(a) I is (∆, χ+)-convergent in M iff I is (∆, χ+)-convergent in N

(b) if I,J are (∆, χ+)-convergent in M then Av∆(I,M,M) =
Av(J,M,M) ⇔ Av∆(I, N,N) = Av(I, N,N).

§5 More on the non-order implying

the existence of indiscernibles

The results here, 5.1, 5.3 improve in some respects the older re-
sults 2.13 (see [Sh:c, I,§1]) by weakening the demands on M , “M
has a suitable non-order property”. In detail, we are dealing with
sets of singletons, the non-order property is for ϕ = ϕ(x, y, c̄) with
x, y singleton elements not finite sequences. (Alternatively deal with
n-tuples but then deal with the non-order property for ϕ(x̄, ȳ, z̄)
such that ℓg(x̄) = n = ℓg(ȳ). Choosing n = 1 is just a notational
restriction.)

Note that in 5.1, possibilities (B) and (C) give only that some
ϕ(x̄, ȳ, z̄) ∈ ∆ has the µ-order property in M with ℓg(x̄) = ℓg(ȳ)
for some n < ω. However, if µ′ < µ then some ϕ′(x, y, c̄) with
ϕ′(x, y, z̄) ∈ ∆ has the µ′-order property; note that now x, y are
singletons, (see 5.2(5)). To compare with earlier results note that if
M has the (∆eb, µ)-non-order property and for simplicity we assume
µ = χ+ then M is (22χ

,∆)-stable (by 1.19, note that µ there is not
the same as here) hence, e.g. for every I ⊆M of cardinality (22χ

)+ =

(2(2<µ))+ there is a (∆, χ)-convergent ∆-indiscernible subset J ⊆ I
of the same cardinality. Compared to 2.13 (or [Sh:c]) the loss in 5.1
is

(α) we get in possibility (A) an indiscernible set J ⊆ I of cardi-
nality µ only.

The gains are

(β) being able to speak on singletons in possibilities (B), (C), i.e.,
in the variants of order

(γ) the “distance” between the place of non-order and the size of
the indiscernible set is smaller.
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So the result in this section and 2.13 (equivalently [Sh:c]) are incom-
parable.

5.1 Theorem. Suppose µ is a regular uncountable cardinal, M is a
τ -model, ∆ a set of < µ quantifier free Lτ -formulas ϕ = ϕ(x̄) closed
under negation, adding dummy variables and permuting the variables
(each formula from ∆ is with finitely many variables).
If I ⊆ M has cardinality > 2<µ then at least one of the following
possibilities holds.

Possibility A. There is a ∆-indiscernible set J ⊆ I of cardinality
µ.

Possibility B. There are distinct ai ∈ I for i ≤ µ and n, 2 ≤ n < ω
and ϕ = ϕ(z̄, x1, . . . , xn) ∈ ∆ and c̄ ∈ ℓg(z̄)M finite such that:

(a) 〈ai : i ≤ µ〉 is (< n)-end-indiscernible which means that: if
m < n, k < ω, α1 < · · · < αk, αk < β1 < · · · < βm ≤ µ, αk <
γ1 < · · · < γm ≤ µ and ψ(z̄, y1, . . . , yk, x1, . . . , xm) ∈ ∆ then:

M |= ψ[c̄, aα1
, . . . , aαk

, aβ1
, . . . , aβm

] iff

M |= ψ[c̄, aα1
, . . . , aαk

, aγ1, . . . , aγm
]

moreover

(a)+ 〈ai : i ≤ µ〉 is an indiscernible sequence

(b) if β1 < · · · < βn ≤ µ and d̄ = 〈aβ3
, aβ4

, . . . , aβn
〉 then

M |= ϕ[c̄, aβ1
, aβ2

, d̄]

M |= ¬ϕ[c̄, aβ2
, aβ1

, d̄]
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Possibility C. There are pairwise distinct ai ∈ I for i ≤ µ and n,
2 ≤ n < ω and ϕ = ϕ(ȳ, x1, . . . , xn) ∈ ∆ and c̄ ∈ ℓg(ȳ)M so finite,
such that:

(a) as in Possibility B (but not (a)+! there)

(b) If α, β < γ3 < · · · < γn ≤ µ, α 6= β, d̄ = 〈aγ3 , . . . , αγn
〉 then

M |= ϕ[c̄, aα, aβ, d̄] if and only if Min{α, β} is even.

Before we prove 5.1 we make some remarks, draw a conclusion for
first order theories and give an example.

5.2 Remark. 0) Putting the parameters (c̄) first in the formulas is
accidental, also without loss of generality c̄ ∈ ω>I.
1) From each of the clauses (B) and (C) of the theorem it follows that:
for some ϕ′(x̄, ȳ, z̄) ∈ ∆, ℓg(x̄) = ℓg(ȳ) = n gotten from ϕ by adding
dummy variable, the model M has the (∆, µ)-order property. If we
define the (∆, µ)-order property more liberally, we get the (∆, µ)-
order property for singletons, i.e. if we define it as in clauses (B),(C);
see more in part (4),(5).
2) We can do everything over a set of < µ parameters - just expand
M by individual constants or restrict its universe to I.
3) We can deal instead of elements with m-tuples (or α-tuples) -
replace M by an appropriate model with universe m‖M‖.
4) Note that in possibility (C), if γ < µ, letting θ(x0, x1)) =

ϕ(c̄, x0, y0, a2γ+3, . . . , a2γ+n) ≡ ¬ϕ(c̄, x1, y0, a2γ+3, . . . , a2γ+n)

is a formula which linearly orders 〈〈a2α, a2α+1〉 : 2α+ 1 < γ〉, be-
cause

M |= ϕ[c̄, a2α, a2β+1, aγ+3, aγ+4, . . . , aγ+n] iff (α < β) ≡ t.

A parallel statement for possibility (B) should be more transparent.
5) From each of the clauses (B) and (C) of the theorem it follows
that for some ϕ′(x1, x2; ȳ) ∈ ∆ for any µ′ < µ the model M has
the (ϕ′(x1, x2; ȳ), µ

′)-order property, see Definition 1.1(1). How do
we get ϕ′? If clause (B) holds for c̄ and ϕ(ȳ′, x1, . . . , xn) let ϕ′ =
ϕ′(x1, x2; ȳ) be
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ϕ(ȳ′, x1, x2; z1, . . . , zn−2)

so ȳ = ȳ′ˆ〈z1, . . . , zn−2〉.
For any ordinal γ < µ let d̄γ = c̄ˆ〈aγ , aγ+1, . . . , aγ+n−3〉; so by clause
(b) of Possibility B we have: for every β1 < β2 < γ

M |= ϕ′[aβ1
, aβ2

, d̄γ]

M |= ¬ϕ′[aβ2
, aβ1

, d̄γ].

If Possibility C holds as witnessed by ϕ = ϕ(ȳ, x1, . . . , xn) ∈ ∆
and c̄ ∈ ℓg(ȳ)M , then we let ϕ′ be as above. For any γ < µ let
d̄γ = c̄ˆ〈a2γ, . . . , a2γ+1, . . . , a2γ+n−3〉 and lastly for β < γ, let aℓβ =

a2β+ℓ−1 for ℓ = 1, 2. So by clause (b) of Possibility (C) of the theorem
(a) ⇔ (b) ⇔ (c) where

(a) M |= ϕ′[a1
β1
, a2
β2
, d̄γ]

(b) M |= ϕ[c̄, a2β1
, a2β2+1, a2γ, a2γ+1, . . . , a2γ+n−1]

(c) Min{2β1, 2β2 + 1} is even which holds iff β1 < β2.

5.3 Conclusion. Suppose T is first order and

(∗) for no model M of T and quantifier free formula ϕ(x, y, z̄)
doesM have the (ϕ(x, y; z̄))-order property [i.e. for no c̄, an, bn
(for n < ω) from M , M |= ϕ[aℓ, bk, c̄] if and only if ℓ < k].

If N is a model of T , µ ≥ |T |+, λ is regular and A,B subsets of N
such that |A| < µ, |B| > 2<µ then B has a subset of cardinality µ
which is an indiscernible set for quantifier free formulas over A inside
N .

5.4 Conclusion. Suppose

(∗) the modelM is such that for no quantifier free formula ϕ(x, y, z̄)
does M have the (ϕ(x, y; z̄), κ)-order property.
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If µ > κ + |τµ| is regular, A ⊆ M,B ⊆ M and |A| < µ, |B| > 2<µ

then B has a subset of cardinality µ which is an indiscernible set
over A in M for quantifier free formulas.

5.5 Discussion: 1) Why in 5.3 we demand “quantifier free”?
Because of [Sh 715, 1.37=np1.11tex].

2) Is 5.3 non-empty? Yes, by the following example.

5.6 Example: Let τ = {R}, R a three-place relation.
Let M be the following τ -model:

(a) its universe is {aℓr : ℓ < 3 and r is rational (i.e. a number)}
without repetitions

(b) RM = {(a0
r1
, a1
r2
, a2
r2

) : r1 < r2 are rationals}.

Let T = Th(M), now:

⊠ T has an unstable quantifier free formula: ϕ(x; ȳ) = R(x; y0, y1).

[Why? Because M |= R[a0
r1
, a1
r2
, a2
r2

] iff r1 < r2.]
But

⊠ T is as in 5.3, i.e. satisfies (∗) there.

[Why? Consider a quantifier free formula ϕ(x, y, z̄). Clearly it is
enough to find n such that

⊛1 for no d̄ ∈ ℓg(z̄)M can we find bℓ, cℓ ∈M for ℓ < n such that
M |= ϕ[bℓ, ck, d̄]

if(ℓ<k) for ℓ, k < n.

Why does ⊛1 hold? Let d̄ ∈ ℓg(z̄)M , let u be a minimal set of
rationals such that Rang(d̄) ⊆ {aℓr : ℓ < 3 and r ∈ u}.

Let k = |u|, so k ≤ ℓg(z̄) and u divides the rationals minus u into
k + 1 open convex sets I0, I1, . . . , Ik. Now let H = {h̄ : h̄ = 〈hm :
m ≤ k〉, hm a permutation of Im} and for each h̄ ∈ H we define a
function πh̄ with domain the universe of M by

πh̄(a
ℓ
r) is :aℓr if r ∈ u

aℓhm(r) if r ∈ Im.
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Let A = {aℓr : r ∈ u and ℓ < 3}, so A ⊆ M has ≤ 3k ≤ 3ℓg(z̄)
elements.

Clearly it is enough to prove

⊛2 for each h̄ ∈ H, πh̄ is a permutation of M such that:

(α) for every b ∈ M\A the elements b, πh̄(b) realize the
same quantifier free type over A

(β) for every b 6= c ∈ M\A the pairs (b, c), (πh̄(b), πh̄(c))
realize the same quantifier free type over A.

[Why ⊛2 holds? This follows by ⊛3 + ⊛4 + ⊛5 below. Why? Clause
(α) of ⊛2 holds mainly by ⊛3 with air, a

j
s there standing for b, πh̄(b)

in (α) above, but we need also ⊛4 + ⊛5 in the case r1 = s1, r2 = s2.
Then (knowing clause (α)) clause (β) of ⊛2 holds by ⊛4 + ⊛5 with
air1 , a

j
s1
, air2 , a

j
s2

standing in ⊛4,⊛5 for b, c, πh̄(b), πh̄(c) in clause (β)
above]

⊛3 if b, c ∈ A and m ≤ k and r, s ∈ Im and i ∈ {0, 1, 2} then

(a) M |= R[air, b, c] ≡ R[ais, b, c]

(b) M |= R[b, air, c] ≡ R[b, ais, c]

(c) M |= R[b, c, air] ≡ R[b, c, ais].

[Why this holds? As (a′, b′, c′) ∈ RM ⇒ (b′, c′) ∈ {(a1
t , a

2
t ) : t ∈ Q},

by the choice of A clearly in clauses (b),(c) both sides fail. In clause
(a), if at least one side holds then i = 0 and for some t, (b, c) =
(a1
t , a

2
t ) and the equivalence means r < t ≡ s < t but t ∈ u, and

{r, s} ∈ Im so the equivalence holds.]

⊛4 if a ∈ A and m ≤ k, n ≤ k and rℓ, sℓ satisfy sℓ ∈ Im, rℓ ∈ In
for ℓ = 1, 2 and i, j ∈ {0, 1, 2} and r1 = s1 ↔ r2 = s2 then

(a) M |= R[a, air1, a
j
s1

] ≡ R[a, air2, a
j
s2

]

(b) M |= R[air1, a, a
j
s1

] ≡ R[air2 , a, a
j
s2

]

(c) M |= R[air1, a
j
s1
, a] ≡ R[air2 , a

j
s2
, a].
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[Why this holds? In clauses (b),(c) both sides fail as (a′, b′, c′) ∈
RM ⇒ (b′, c′) ∈ {(a1

t , a
2
t ) : t ∈ Q}, so we are left with clause (a).

Assume that at least one side holds, so for some ℓ ∈ {1, 2} we have
M |= R[a, airℓ

, ajsℓ
], hence i = 1, j = 2 and rℓ = sℓ hence r3−ℓ = s3−ℓ

and we continue as in the proof of ⊛3.]

⊛5 in ⊛4 we can add:

(a) M |= R[ajs1, a
i
r1
, air1] ≡ R[ajs2, a

i
r2
, air2 ]

(b) M |= R[air1, a
j
s1
, air1] ≡ R[air2 , a

j
s2
, air2 ]

(c) M |= R[air1, a
i
r1
, ajs1] ≡ R[air2 , a

i
r2
, ajs2 ].

[Why? In clauses (a),(b),(c) both sides fail as (a′, b′, c′) ∈ R ⇒
(a′, b′, c′) ∈ {(a1

r1
, a2
r2
, a3
r2

) : r1, r2 ∈ Q}.]
So we are done. �5.6

Proof of 5.1. Without loss of generality the formulas in ∆ are atomic
and restrict the universe of M to I. Let A∗ ⊆M, |A∗| = 2<µ be such
that:

(∗) if A ⊆ A∗, |A| < µ and a ∈ M then some a′ ∈ A∗\A realizes
tp∆(a, A,M).

Such A∗ exists as (2<µ)<µ = 2<µ which holds as µ is regular. Choose
a∗ ∈M\A∗.

Now for every c̄ ∈ A∗ and formula ϕ = ϕ(c̄, x̄) = ϕ(c̄, x1, . . . , xn)
such that ϕ(z̄, x1, . . . , xn) ∈ ∆, (so we write n = n(ϕ), c̄ = c̄ϕ) we
define a game aϕ = aM,ϕ(c̄,x̄) as follows:

A play of the game lasts n+1 moves (numbered by 0, 1, 2, . . . , n);
in the ℓ-th move: player I chooses a set Aℓ satisfying Aℓ ⊆ A∗,
[m < ℓ ⇒ Am ∪ {am} ⊆ Aℓ] and |Aℓ| < µ; player II chooses an
element aℓ, aℓ ∈ A∗\Aℓ which realizes tp∆(a∗, Aℓ,M).

In the end player I wins if

M |= “ϕ[c̄, a1, a2, a3, . . . , an]” ⇔M |= “ϕ[c̄, a0, a2, a3, . . . , an]”.

This game is clearly determined. So one of the players has a win-
ning strategy F̄ϕ = 〈Fϕℓ : ℓ ≤ n〉, Fϕℓ computes his ℓ-th move from
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the previous moves of his opponent. Without loss of generality if
player I wins then for every a0, . . . , aℓ−1 ∈ A∗, Fϕℓ (a0, . . . , aℓ−1) is
well defined and is a subset of A∗ of cardinality < µ, extending
Fϕm(a0, . . . , am−1) ∪ {a0, . . . , am} for each m < ℓ, (of course, Fϕℓ
depends on c̄ = c̄ϕ). Also if player II wins then without loss of gen-
erality Fϕℓ is such that for any A0 ⊆ . . . ⊆ Aℓ ⊆ A∗ of cardinality
< µ the set Fϕℓ (A0, . . . , Aℓ) is a member of A∗\Aℓ.

Case I. For every ϕ(c̄, x̄) as above, player I wins the game aϕ(c̄,x̄),
i.e. has a winning strategy.

We choose by induction on α < µ a pair (aα, Aα) such that:

(i) {aβ} ∪ Aβ ⊆ Aα ⊆ A∗ for β < α and |Aα| < µ

(ii) aα ∈ A∗\Aα realizes tp∆(a∗, Aα,M)

(iii) if β < α, c̄ ∈ ω>(Aβ ∪ {aβ}), ϕ(ȳ, x̄) ∈ ∆, ℓg(ȳ) = ℓg(c̄),
x = 〈x1, . . . , xn〉, ℓ ≤ n and b0, . . . , bℓ−1 ∈ Aβ ∪ {aβ}, then

F
ϕ(c̄,x̄)
ℓ (b0, . . . , bℓ−1) ⊆ Aα

(we can further restrict b0, . . . , bℓ−1, c̄)

(iv) if ϕ(x̄) ∈ ∆ and x̄ = 〈x1, . . . , xn〉 then F
ϕ(x̄)
0 () ⊆ A0.

There is no problem to do it. (In stage α, first choose Aα to satisfy
clause (iv) if α = 0, and to satisfy clauses (i) + (iii) if α > 0, [exists

as the value of F
ϕ(c̄,x̄)
ℓ is always a subset of A∗ of cardinality < µ,

µ regular > ℵ0]. Then choose aα to satisfy (ii). [This is possible by
the choice of A∗, a∗].

Now we can prove

(∗)a if n, k < ω and α1 < · · · < αk < β0 < β1 < · · · < βn < µ,

and ϕ(y1, . . . , yk, x1, . . . , xn) ∈ ∆

then

M |= ϕ[aα1
, . . . , aαk

, aβ1
, aβ2

, . . . , aβn
] if and only if

M |= ϕ[aα1
, . . . , aαk

, aβ0
, aβ2

, . . . , aβn
]

(∗)b if α1 < · · · < αk < µ, αk < β1 < · · · < βn < µ,
αk < γ1 < · · · < γn < µ and

ϕ(y1, . . . , yk, x1, . . . , xn) ∈ ∆
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then

M |= ϕ[aα1
, . . . , aαk

, aβ1
, . . . , aβn

] if and only if

M |= ϕ[aα1
, . . . , aαk

, aγ1 , . . . , aγn
].

Why this holds? As for (∗)a, let c̄ = 〈aα1
, . . . , aαk

〉, remember that

player I wins the game aϕ(c̄,x̄) and that 〈F
ϕ(c̄,x̄)
ℓ : ℓ ≤ n〉 is a winning

strategy for him. Let Aℓ = F
ϕ(c̄,x̄)
ℓ (aβ0

, . . . , aβℓ−1
) for ℓ ≤ n. By

(iii) + (iv) above Aℓ ⊆ Aβℓ
hence aβℓ

realizes tp∆(a∗, Aℓ,M) and
aβℓ

∈ A∗\Aℓ. So A0, aβ0
, A1, aβ1

, . . . , An, aβn
is a play of the game

aϕ(c̄,x̄) in which player I uses his winning strategy 〈F
ϕ(c̄,x̄)
ℓ : ℓ ≤ n〉,

so he wins the play, i.e. the conclusion of (∗)a holds.
By the transitivity of equivalence we can deduce (∗)b proving it

by induction on n.
So 〈aα : α < µ〉 is a ∆-indiscernible sequence.
If it is a ∆-indiscernible set, possibility (A) of the theorem holds.

If it is not, then (see 3.5; by Morley’s work [Mo65], see, e.g., [Sh:c,
AP.3.9]) for some n, possibility (B) of the theorem holds (i.e. use
again transitivity of equivalence to get the “good form”) [we have to
check that letting aµ := a∗ is O.K., but this is easy].

Case II. For some ϕ(c̄, x̄), player II wins in the game aϕ(c̄,x̄).
Choose such ϕ0 = ϕ0(c̄0, x1, . . . , xn(0)) with minimal n(0). Neces-
sarily n(0) ≥ 2.

We now choose by induction on ζ < µ, for every α < (n(0)+1)×ζ
the set Aα and element aα such that:

(i) c̄0 ∪ {aβ} ∪Aβ ⊆ Aα ⊆ A∗ for β < α and |Aα| < µ

(ii) aα ∈ A∗\Aα realizes tp∆(a∗, Aα,M)

(iii) if β < α, c̄ ∈ ω>(Aβ ∪ {aβ}), ϕ(ȳ, x̄) ∈ ∆, ℓg(ȳ) = ℓg(c̄),
x̄ = 〈x1, . . . , xn〉, ℓ ≤ n and
b0, . . . , bℓ−1 ∈ Aβ ∪ {aβ} and player I wins the game aϕ(c̄,x̄)

(which occurs when n < n(0)), then

F
ϕ(c̄,x̄)
ℓ (b0, . . . , bℓ−1) ⊆ Aα
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(iv) if α = (n(0) + 1) × ζ and ℓ ≤ n(0) then

aα+ℓ = F
ϕ0(c̄0,x̄)
ℓ (Aα, Aα+1, . . . , Aα+ℓ)

(v) if ϕ(x̄) ∈ ∆ and x̄ = 〈x1, . . . , xn〉 then F
ϕ(x̄)
0 () ⊆ A0.

There are no problems in carrying this out.

As in Case I we can prove

(∗)c if n < n(0), k < ω, c̄ ∈ ω>(Aα), α < µ,

α ≤ β1 < · · · < βn < µ, α ≤ γ1 < · · · < γn < µ

and ϕ(ȳ, x1, . . . , xn) ∈ ∆

then

M |= ϕ[c̄, aβ1
, . . . , aβn

] if and only if

M |= ϕ[c̄, aγ1 , . . . , aγn
]

and let the truth value be

tϕ(c̄,x1,...,xn).

Let tζ,ℓ be the truth value of M |= ϕ0[c̄, aα+ℓ, aα+2, aα+3, . . . , aα+n]
for ℓ ∈ {0, 1} where α = (n(0)) + 1) × ζ.

There are truth values t0, t1 such that S = {ζ < µ : tζ,0 = t0 and
tζ,1 = t1} is an unbounded subset of µ.

By clause (iv) in the construction and the choice of 〈F
ϕ0(c̄0,x̄)
ℓ :

ℓ ≤ n〉 clearly tζ,0 6= tζ,1 hence t0 6= t1. By (∗)c we have: if ζ ∈ S
and α = (n(0) + 1) × ζ and α + 1 < α1 < α2 . . . < αn(0) < µ and
ℓ ∈ {0, 1} then M |= ϕ0(c̄0, aα+ℓ, aα1

, . . . , aαn(0)
) iff tζ,ℓ.

By renaming we have S = µ. Let a′2ζ = aζ×(n(0)+1), a
′
2ζ+1 =

aζ×(n(0))+1)+1 so 〈a′ζ : ζ < µ〉, ϕ(c̄0, x1, x2, . . . , xn(0)) are as required

in possibility (C). �5.1

Remark. 1) The example does not show that for first order theories
with no quantifier free formula ϕ(x; y; z̄) with the order property, the
cardinality bound in 5.1 is optimal.
2) But “|I| > 2<µ” cannot be improved in 5.1 at least if e.g. µ =
κ+ = 2κ.
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UNIVERSAL CLASSES:

AXIOMATIC FRAMEWORK

SH300B

§0 Introduction

We give here (§1) an axiomatic framework for dealing with classes
of models which have something like ”free amalgamations”. We give
several versions, but we shall deal here mainly with the strongest one.
(Somewhere else we have intended to concentrate on the “prime”
framework for which we can repeat the development, see beginning
Baldwin Shelah [BlSh 330], [BlSh 360], [BlSh 393] and much later
in [Sh 839]). We show that it holds for two main examples: stable
first order T (for simplicity T and T eq has elimination of quantifiers;
and we work in Ceq or assume we can eliminate imaginaries; here
the models are algebraically closed subsets of Ceq) and a universal
class (with a special submodel relation as developed in I,§4 assuming
some non-order property). So the main applications are the results
for universal classes, whereas our guiding line is to make the theory
similar to the one of stable first order T .

In the third section we deal with a weaker framework, but with
smoothness (just as the “abstract elementary classes” of Chapter
I). An easy theorem but with important consequences is the “model
homogeneity equal to saturativity” lemma, saying that for a model to
be (D, λ)-model homogeneous, it is enough that all relevant 1-types
are realized. This makes dealing with model-homogeneous models
similar to saturated ones. Still tps(a,M,N) (for M ≤s N, a ∈ N)
may not be determined by the collection of tps(a,M

′, N) for all
“small” M ′ ≤s M , i.e., not be local (κ-local if “small” means of
cardinality ≤ κ).

Typeset by AMS-TEX
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In the main framework, if M1,M2 are in stable amalgamation
over M0 inside M,M1 ∪M2 generates a “good” submodel of M3; in
a weaker variant there is over M1 ∪M2 a prime model, and similarly
for union of increasing chains.

Now 1.2 through 1.6 describe the context for the rest of “universal
classes”. We then discuss some parallel sets of axioms of various or-
der of strength. These are AxFr1 in 1.6, the main framework, AxFr+1 ,
a variant AxFr2 in 1.11, the primal framework, and AxFr3, in 1.9,
the existential framework. The difference between these frameworks
is the way in which a “cover” of a pair of models (extending a given
one, i.e. we are amalgamating) or of an increasing sequence of mod-
els is described. In the main framework the axiom group Cgn express
the idea that the “cover” is generated from the given models by func-
tions. The existential framework simply demands the existence of a
“cover”. The primal framework expresses the idea that the “cover”
is prime in the sense of a first order model theory.

These frameworks all avoid the introduction of element-types and
deal only with models. In 1.13 we move in an orthogonal direction
and describe axioms which generalize the idea of a non-forking type
of element.

§1 The Framework

We introduce here the framework AxFr1, which is the main (for
analyzing universal classes), some relatives and sort out some rela-
tions.

1.1 Notation. As we introduce axioms we give their names in round
brackets, e.g. (A4) or Ax(A4) and to set of axioms, i.e. axiomatic
frameworks as AxFr2 or (AxFr2). Later we write an axiom in square
brackets to indicate in the case of a theorem that the axiom is needed
to prove it and in the case of a definition that we only use the defined
concept when the indicated axiom holds.

We may feel it reasonable to demand K = (K,≤K) (etc) are de-
fined reasonably. Note however that by 3.16(2) (really by Chapter
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I), under enough (but not many) assumptions, K and (K,≤K) (i.e.
{(M,N) : N ≤K M}) are PCχ,2χ-classes.

1.2 Context: In all the frameworks, s denotes a tuple consisting of
classes and relations whose properties we axiomatize. E.g. s = 〈K,≤
,NF〉 and K = Ks = (K,≤), so we may instead of ≤ write ≤K or ≤s

and NFs instead of NF. For our K’s, K will be a class of models of
a fixed vocabulary τ(K) = τ(K) = τs,≤K a two-place relation on K
(a generalization of being elementary submodel) and usually a four-
place relation NF = NFs (where NF(M0,M1,M2,M3) means (i.e.
intend to mean) that M1,M2 are in stable amalgamation over M0

insideM3. [In AxFr4 we use NFe = NFe
s
(where NFe(M0,M1, a,M3)

means that tp(a,M1,M3) does not fork over M0 so a ∈ M3)]. We
may like to say in the former case that M3 is generated by M1 ∪
M2 (M3 = 〈M1 ∪M2〉

gn
M3

) or at least is prime over M1 ∪ M2 (say
Pr(M0,M1,M2,M3)) or just any two possible M3’s are compatible.
Also sometimes an increasing union is not by itself a member of K
but we can close it or take over it a prime model or just any two
possible bounds are compatible. Naturally we adopt:

1.3 Meta Axiom. K and all relations on it (here we shall have
≤K=≤s, NF = NFs, NFe = NFe

s
below and Pr, etc.), are closed

under isomorphisms.

1.4 Group A. The following axioms always1 will be assumed on K =
(K,≤K):

(A0) M ≤K M for M ∈ K

(A1) M ≤K N implies M ⊆ N (M a submodel of N)

(A2) ≤K is transitive

(A3) if M0 ⊆M1 ⊆ N,M0 ≤K N and M1 ≤K N then M0 ≤K M1.

1In fact, Ax(A3) will be used considerably less than the others, but we shall

not seriously investigate this; still we many times will mention which of the
axioms we shall use.
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1.5 Definition. We say f : M → N is a ≤K-embedding if f is an
isomorphism from M onto some M ′ ≤K N .

1.6 Definition. The Main Framework: (AxFr1):
Here s = (K,≤,NF, <>gn) or (K,NF, <>), where “gn” stands for
“generated” and we may write ≤s or ≤K for ≤, Ks for K,Ks for
(K,≤K),NFs for NF, 〈A〉gn,s

M for 〈A〉gnM and we omit M when clear
from the context (and we are assuming Ax(B3)); Ks

λ = {M ∈ K :
‖M‖ = λ},Ks

λ = Ks ↾ Ks

λ and Ks

<λ,K
s

<λ, etc., similarly.
AxFr1 consists of (1.3, and (A0) - (A3) of 1.4 and) (A4),(B),(C)gn
where:

(A4) Existence of General Union
If Mi(i < δ) is ≤K-increasing then

M :=
⋃

j<δ

Mj ∈ K and Mj ≤K M for j < δ.

The second group deals with the “algebraic closure”.

Group B.

(B0) if B = 〈A〉gnM then A ⊆M ∈ K and A ⊆ B ⊆M

(B1) If B = 〈A〉gnM then 〈B〉gnM = B

(B2) If A ⊆ B ⊆M then 〈A〉gnM ⊆ 〈B〉gnM

(B3) If A ⊆M ≤K N then 〈A〉gnM = 〈A〉gnN .

The third group of axioms deals with stable amalgamation.

Group Cgn.

(C0) NF is a four-place relation on K (we may say that M1,M2

are stably (or NF-stably) amalgamated over M0 inside M instead
NF(M0,M1,M2,M)); we usually shall not mention this axiom; we
may say “in stable amalgamation” or say “M0,M1,M2 are in stable
amalgamation inside M”.
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(C1) If NF(M0,M1,M2,M) then M0 ≤K M1 ≤K M , and M0 ≤K

M2 ≤K M (hence M0,M1,M2,M ∈ K).

(C2) Existence for NF: If M0,M1 and M2 such that M0 ≤K M1 and
M0 ≤K M2, then there are M∗

1 ,M
∗
2 ,M from K and f1, f2 such that:

fℓ is an isomorphism from Mℓ onto M∗
ℓ over M0 for ℓ = 1, 2 and

NF(M0,M
∗
1 ,M

∗
2 ,M).

Note that without loss of generalityM∗
1 = M1 (so we can use f1 =

idM1
); also if M1 ∩M2 = M0 then without loss of generalityM∗

1 =
M1,M

∗
2 = M2 provided that we have disjoint amalgamation, i.e.

M∗
1 ∩M∗

2 = M0 above.

(C2)− Existence of amalgamation: if M0 ≤K M1 and M0 ≤K M2

then there are M∗
1 ,M

∗
2 ,M from K and f1, f2 such that: fℓ is an

isomorphism from Mℓ onto M∗
ℓ for ℓ = 1, 2 and M0 ≤K M∗

1 ≤K M
and M0 ≤K M∗

2 ≤K M
(i.e. amalgamation exists with no reference to NF).

(C3) Monotonicity:

(a) NF(M0,M1,M2,M) implies NF(M0,M1,M
∗
2 ,M) whenM0 ≤K

M∗
2 ≤K M2

(a)d NF(M0,M1,M2,M) implies NF(M0,M
∗
1 ,M2,M) whenM0 ≤K

M∗
1 ≤K M1

(b) NF(M0,M1,M2,M),M ≤K M∗ implies NF(M0,M1,M2,M
∗)

(c) NF(M0,M1,M2,M), M1 ∪M2 ⊆M∗ ≤K M implies
NF(M0,M1,M2,M

∗); [note that the superscript d stands for
dual, actually (a)d follows from (a) and symmetry].

(C4) Base enlargement: If NF(M0,M1,M2,M) and M0 ≤K M ′
0 ≤K

M2, then NF(M ′
0, 〈M1∪M

′
0〉

gn
M ,M2,M) so in particular 〈M1∪M

′
0〉

gn
M ,

that is M restricted to this set, belongs to K and is ≤K M .

(C5) Uniqueness: If for ℓ = 1, 2, NF(M ℓ
0 ,M

ℓ
1 ,M

ℓ
2 ,M

ℓ) for ℓ = 1, 2
and for m = 0, 1, 2 the mapping fm is an isomorphism from M1

m onto
M2

m and f0 ⊆ f1, f0 ⊆ f2 then for some N ∈ K satisfying M2 ≤K N
there is a ≤K-embedding h of M1 into N , which extends f1 ∪ f2.
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(C6) Symmetry: NF(M0,M1,M2,M) implies NF(M0,M2,M1,M).

(C7) Finite Character: if 〈M1,i : i ≤ δ〉 is ≤K-increasing continu-
ous, M0 ≤K M1,0 and NF(M0,M1,δ,M2,M) then 〈M1,δ ∪M2〉

gn
M =⋃

i<δ

〈M1,i ∪M2〉
gn
M .

1.7 Remark. 1) Below when using 〈A〉gnN , we may always assume the
group (B) of axioms; in any case we always assume Ax(B0).
2) Note that Ax(C1),(C2),(C3)(a),(c) implies Ax(A3); but we are
assuming (A).
3) If we use NF we may as well assume Ax(C0) and Ax(C1).
4) We shall not pay much attention to not using all the axiom group
(B), as it will not be used.

1.8 Definition. 1) AxFr+1 is defined like AxFr1 adding axiom (C8),
see below.
2) We define two more axioms.

(C8) If 〈M1,i : i < δ〉 is ≤K-increasing and NF(M0,M1,i,M2,M)
for each i < δ then for some M1,δ and M ′ we have M ≤K M ′ and
(∀i < δ)(M1,i ≤K M1,δ) and NF(M0,M1,δ,M2,M

′).

(C8)∗ Like (C8) adding that M1,δ = ∪{M1,i : i < δ}.

1.9 Definition. The Existential Framework: (AxFr3)
Here K = (K,≤K,NF).
We have 1.3 and Axioms (A0) - (A3) from 1.4 and (A4)− and (C)ex
where:

(A4)− Limit Existence: If 〈Mi : i < δ〉 is ≤K-increasing, then there
is M ∈ K satisfying Mi ≤K M for i < δ.

Group Cex. Ax(C0), (C1), (C2), (C3), (C5), (C6).
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1.10 Discussion: In the first order case one defines prime models over
arbitrary subsets of members of K. But this cannot be expected gen-
erally, and experience has shown that it suffices for many purposes
to have prime models only in more specific cases: over unions of
chains and over pairs of independent models. The following axioms
describe the properties of such prime models.

There are (at least) three ways in which one could introduce prime
models; first locally (i.e. within a specified model), second relatively
or within compatibility and thirdly absolutely. (The compatibility
class of N over N̄ is {N ′ ∈ K: for some N∗ ∈ K we have N ≤K N∗

and N ′ ≤K N∗ and Ni ≤K N ′ for each i}; we may consider the clo-
sure of compatibility to an equivalence relation.) The axioms below
are the compatibility version; we describe the absolute version in
Definition 1.15; at present the relative version does not seem useful.

1.11 Definition. The Primal Framework (AxFr2) is: to (AxFr3) we
add

Group D: On prime models
(D1) If 〈Mi : i ≤ δ〉 is ≤K-increasing then there is a model N ≤K Mδ

satisfying (∀i < δ)[Mi ≤K N ] such that: if (∀i < δ)[Mi ≤K N ′ ≤K

N∗] and N ≤K N∗ then there is a ≤K-embedding f of N into N ′

over
⋃

i<δ

Mi.

We write in this case rPr(〈Mi : i < δ〉, N) and say thatN is relatively
prime over 〈Mi : i < δ〉.

(D2) If NF(M0,M1,M2,M3) then there is N relatively prime over
M1 ∪M2 inside M3, i.e.:

(i) M1 ∪M2 ⊆ N ≤K M3 and

(ii) for every M,M∗
3 , if M1 ≤K M∗

3 ,M2 ≤K M∗
3 and M∗

3 ≤K M
and N ≤K M then there is a ≤K-embedding f of N into M∗

3

over M1 ∪M2.

We write in this case rPr(M0,M1,M2, N).

Ax(C4)pr Base enlargement: If NF(M0,M1,M2,M3) and M0 ≤s

M ′
0 ≤s M2 then:
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(a) we can find M ′
1,M

′
3 such that M1 ∪M

′
0 ⊆M ′

1 ≤s M
′
3,M3 ≤s

M ′
3 and NF(M ′

0,M
′
1,M2,M

′
3);

(b) moreover the last assertion follows if rPr(M0,M
′
0,M1,M

′
1).

1.12 Definition. (AxFr2)
+, the primal framework with uniqueness

means that to (AxFr2) we add:
(D3) Uniqueness of the prime model over 〈Mi : i < δ〉:
If rPr(〈Mi : i < δ〉, N ℓ) and N ℓ ≤K N for ℓ = 1, 2 then N1, N2 are

isomorphic over
⋃

i<δ

Mi.

(D4) Uniqueness of the Prime Model over M1 ∪M2:
If rPr(M0,M1,M2, N

ℓ) and N ℓ ≤K N for ℓ = 1, 2 then N1, N2 are
isomorphic over M1∪M2. More exactly: if rPr(M ℓ

0 ,M
ℓ
1 ,M

ℓ
2 , N

ℓ) and
N ℓ ≤K N for ℓ = 1, 2 and fi is an isomorphism from M1

i onto M2
i

for i = 0, 1, 2 and f0 ⊆ f1, f0 ⊆ f2 then there is an isomorphism f
from N1 onto N2 extending f1 and f2 (what is the difference? well
we have to consider M ℓ

1 ∩M ℓ
2\M

ℓ
0 for ℓ = 1, 2).

1.13 Definition. The NF for elements framework (AxFr4)
Here s = (K,≤K,NFe).
We have here Ax(A0) - (A3),(A4)− and2 the group (E) where

Group E:

(E1) NFe(M0,M1, a,M3) implies: M0 ≤K M1 ≤K M3 and a ∈M3.

(E2) Existence: For every M0,M1,M2, a such that a ∈ M2,M0 ≤K

M1,M0 ≤K M2 there are M and f , such that M1 ≤K M, f is a
≤K-embedding of M2 into M over M0, and NFe(M0,M1, f(a),M).

(E3) Monotonicity:

(a) NFe(M0,M1, a,M) and M0 ≤K M∗
1 ≤K M1 implies

NFe(M0,M
∗
1 , a,M)

2it is natural to demand Ax(C2)− or at least enough instances of it
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(b) NFe(M0,M1, a,M) and M ≤K M∗ implies
NFe(M0,M1, a,M

∗)

(c) NFe(M0,M1, a,M),M1 ∪ {a} ⊆M∗ ≤K M implies
NFe(M0,M1, a,M

∗)

(E4) Base Enlargement: NFe(M0,M1, a,M) and M0 ≤ M∗
0 ≤ M1

implies NFe(M∗
0 ,M1, a,M).

(E5) Uniqueness: Suppose M0 ≤K M1 ≤K M , NFe(M0,M1, a,M),
NFe(M0,M1, b,M) and M0 ∪ {a} ⊆ Na ≤K M , M0 ∪ {b} ⊆ N b ≤K

M , and there is an isomorphism from Na onto N b over M0 mapping
a to b then there are Na, Nb,M

∗ and f such that: M ≤K M∗,M1 ∪
{a} ⊆ Na ≤K M∗,M1 ∪ {b} ⊆ Nb ≤K M∗ and f is an isomorphism
from Na onto Nb over M1 mapping a to b.

(E6) Continuity: If 〈M1,i : i < δ〉 is ≤K-increasing, 〈Mi : i < δ〉 is
≤K-increasing and NFe(M0,M1,i, a,Mi) for every i < δ, then we can
find M1,δ and Mδ such that M1,i ≤K M1,δ and Mi ≤K Mδ (for i < δ)
and NFe(M0,M1,δ, a,Mδ).

Here are some properties which do not obviously follow from the
axioms we have given but are plausible additional axioms. As an
example of their use note that the proof of V.E.1.3(1) is carried out
without recourse to (F1), disjointness for NF; but assuming it would
materially simplify the proof.

1.14 Definition. We define additional properties of frames s:
0) (C10),(Rigidity) If NF(M0,M1,M2,M3) and M3 = 〈M1 ∪M2〉

gn
M3

then the only automorphism of M3 over M1 ∪M2 is the identity.

(1)(F1) Disjointness: NF(M0,M1,M2,M3) implies M1 ∩M2 = M0.
(F2) Disjointness: if NFe(M0,M1, a,M3) and a /∈M0 then a /∈M1.
(A5)− Limit Uniqueness: If 〈Mi : i < δ〉 is ≤K-increasing and for
ℓ = 1, 2 and [i < δ ⇒ Mi ≤K N ℓ] then there is N,N2 ≤K N and a
≤K-embedding f of N1 into N, f ↾ Mi = idMi

for i < δ.
(2)(G1) Connecting NFe to NF: if NFe(M0,M1, a,M3), then there
areM ′

2,M
′
3 such thatM0∪{a} ⊆M ′

2 ≤K M ′
3 and NF(M0,M1,M

′
2,M

′
3).
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1.15 Definition. Let K = (K,≤K) be as in 1.4. Parts (1) and (2)
of the following define the absolute notion of prime. (As hoped for,
analogue of §1 of Chapter V.C would derive from (D1) a dichotomy
between condition (1) and non-structure.)
(1) N is prime over 〈Mi : i < δ〉, (where Mi is ≤K-increasing) if:

(a) Mi ≤K N for i < δ and

(b) if (∀i < δ)Mi ≤K N∗ then N can be ≤K-embedded into N∗

over
⋃

i<δ

Mi.

We write Pr(〈Mi : i < δ〉, N) for this.
(2) N is a prime stable amalgamation of M1,M2 over M0 when:

(a) NF(M0,M1,M2, N) and

(b) there is a ≤K-embedding N into M∗ extending f1 ∪ f2 when:

(α) NF(M0,M
∗
1 ,M

∗
2 ,M

∗),

(β) f1 an isomorphism from M1 onto M∗
1 over M0

(γ) f2 an isomorphism from M2 onto M∗
2 over M0.

We write Pr(M0,M1,M2, N) for this.
(3) For M ∈ K we define a relation E at

M between pairs (ā, N), ā ∈
N,M ≤K N as follows: (ā1, N1)E

at
M (ā2, N2) if and only if there are

N∗
1 , N

+
1 , N

∗
2 , N

+
2 , f such that:

(a) M ≤K N∗
1 ≤K N+

1 , N1 ≤K N+
1

(b) M ≤K N∗
2 ≤K N+

2 , N2 ≤K N+
2

(c) ā1 ∈ N∗
1

(d) ā2 ∈ N∗
2

(e) f is an isomorphism from N∗
1 onto N∗

2 over M mapping ā1

to ā2.

(4) E
tp
M will be the closure of E at

M to an equivalence relation and

tp(ā,M,N) is (ā, N)/E tp
M (note: if K has amalgamation then E

tp
M =

E at
M ).

(5) We say 〈Mi : i < α〉 is ≤K-increasing semi-continuous if it is
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≤K-increasing and for each limit ordinal δ < α,Mδ is ≤K-prime over
〈Mi : i < δ〉.
(6) Of course, E at

M , E tp
M , tp depends on K so we may write E at

K,M , E tp
K,M

and tpK, i.e., tpK(ā,M,N) or use s instead of Ks.

Now we note some interactions between the axioms and later de-
fine some related notions.

1.16 Definition. 1) K has the λ-Löwenheim-Skolem property (λ−
LSP) if:

[A ⊆M and |A| ≤ λ ≤ ‖M‖] ⇒ (∃N ≤K M)[A ⊆ N and ‖N‖ = λ]

2) K has the (< λ)-Lowenheim-Skolem property ((< λ)-LSP) means:

[A ⊆M and |A| < λ] ⇒ (∃N ≤K M)[A ⊆ N and ‖N‖ < λ].

The (≤ λ)-LSP is defined similarly, it is quite closed to the λ-LSP.
3) LS(K) is the minimal λ for which K has λ-LSP. We also write χK

for LS(K) and LS(s) = LS(Ks) = LSs.
4) Instead λ-LSP we also write LSP(λ). LSP(µ, λ) means that in
(1), |A| ≤ λ, ‖M‖ ≤ µ. We define LPS(< µ,< λ) etc., similarly.

1.17 Remark. The statement “λ < µ and the λ-Lowenheim-Skolem
property ⇒ µ-Lowenheim-Skolem property” will be considered.

1.18 Definition. 1) We say that K (or s) has κ-smoothness when:

If 〈Mi : i < κ〉 is ≤K-increasing, then there is N prime over 〈Mi :
i < κ〉. (If Ax(A4) holds, e.g., in AxFr1 this means: if each Mi ≤K M

for i < κ and 〈Mi : i < κ〉 is ≤K-increasing, then
⋃

i<κ

Mi ≤K M).

1A) We may add “full” when the union is the prime.
2) The weak κ-smoothness means: if 〈Mi : i < κ〉 is ≤K-increasing
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semi-continuous and i < κ ⇒ Mi ≤K M then there is Mκ which
is prime over 〈Mi : i < κ〉. [Semi-continuous is defined in 1.15(5).
This condition is weaker than 1.18(1) since we have assumed the
〈Mi : i < κ〉 is semi-continuous].
3) Let (λ, κ)-smoothness be defined as in (1) but demanding ‖Mi‖ ≤
λ, and ‖M‖ ≤ λ + κ. Let (λ, κ)+ -smoothness be defined as in (1)
but demanding ‖Mi‖ ≤ λ for i < κ. Let (λ, µ, κ)-smoothness be
defined in (1) but demanding ‖Mi‖ ≤ λ for i < κ and ‖M‖ ≤ µ.
4) (< κ)-smoothness, etc. has the obvious meaning.
5) K has smoothness (or is smooth) if it has κ-smoothness for every
κ.
6) Let Ax(A4)−κ mean that if 〈Mi : i < δ〉 is ≤s-increasing and
cf(δ) = κ then for some M we have i < δ ⇒Mi ≤s M .
7) Let Ax(A4)−λ,κ be defined similarly except that we assume i <

δ ⇒ ‖Mi‖ < λ and we demand ‖M‖ < λ.
8) We define Ax(A4)κ, Ax(A4)λ,κ similarly only M = ∪{Mi : i < δ}.
Let Ax(A6)κ mean: if 〈Mα : α ≤ κ〉 is ≤s-increasing then i < κ ⇒

Mi ≤s

⋃

i<κ

Mi, see V.F§2. Let (A6) mean (A6)κ for every regular κ,

and (A6)κ, (A6)λ,κ, etc. similarly.
9) Let

(A4)∗ if 〈Mα : α < δ〉 is ≤K-increasing continuous then α < δ ⇒
Mα ≤K ∪{Mβ : β < δ}.

10) Let (A4)∗θ be like (A4)∗ but δ = θ, (A4)∗<θ, etc. are defined
naturally.

1.19 Exercise: Check where we use (A4) rather than (A4)∗, see Def-
inition 1.18(9).
[See more in V.C§1.]

1.20 Observation. 1) K satisfies Ax(A4), and moreover smoothness
when it satisfies

(a) over every ≤K-increasing sequence there is a prime and

(b) if N is prime over 〈Mi : i < δ〉 which is a ≤K-increasing
sequence then N = ∪{Mi : i < δ}.
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1A) If K satisfies (A4)−, see Definition 1.9, and is smooth then (A4)
holds.
2) So smoothness and (A4) are together paralllel to the Tarski-
Vaught theorem on elementary chains in this context and the union
being prime.
3) K has κ-smoothness if for every regular θ ≤ κ, it has weak θ-
smoothness.
4) [weak] κ-smoothness is equivalent to [weak] cf(κ)-smoothness.
5) Our framework is (< κ)-smooth if and only if our framework in
weakly (< κ)-smooth.

Remark. 1) But if we shall weaken Ax(A4) to, e.g., cases of cofinality
> ℵ0, then being prime is a new notion.
2) So with smoothness, in axiom (A4) it does not matter if we have or
have not “〈Mi : i < δ〉 is not just ≤K-increasing but also continuous”.
3) On 1.21(1) see more in V.C.1.2.

1.21 Lemma. 1) [AxFr1 or just (B0),(C1),(C4)].
If NF(M0,M1,M2,M) then M3 := 〈M1 ∪ M2〉

gn
M (i.e. the re-

striction of M to this set is well defined), is a member of K and
M1 ∪M2 ⊆M3 ≤K M hence M1 ≤K M3 and M2 ≤K M3.
2) [AxFr1 or just (B0), (B3), (C2)−].
Suppose that the conclusion of 1.21(1) holds, then Ax(C5), unique-
ness is equivalent to:

(∗) if NF(M ℓ
0 ,M

ℓ
1 ,M

ℓ
2 ,M

ℓ) for ℓ = 1, 2 and for m = 0, 1, 2, fm

is an isomorphism from M1
m onto M2

m and f0 ⊆ f1, f0 ⊆ f2
then f1 ∪ f2 can be extended to an isomorphism from 〈M1

1 ∪
M1

2 〉
gn
M1 onto 〈M2

1 ∪M2
2 〉

gn
M2 .

3) AxFr+1 implies AxFr1 which implies AxFr3 and AxFr1+ smooth-
ness implies AxFr2 which implies AxFr3.
4) Ax(C8) follows from (A4);(B) or just (B0),(B2),(B3);(C1),(C2),
(C3), (C4),(C5) and smoothness (see Definition 1.18). Moreover we
get (C8)∗, that is we can add M1,δ = ∪{M1,i : i < δ}.
5) If Ax(C1),(C3)(c), Ax(C5) and rPr(M0,M1,M2,M), then M is
a prime stable amalgamation of M1,M2 over M0; recalling Defini-
tion 1.15 and Ax(D2) from Definition 1.11 which defines rPr(. . . ).
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6) If (C3)(a),(C3)(c),(A4) and K is smooth, then Ax(C8) equiva-
lent to Ax(C8)∗, that is we can add M1,δ = ∪{M1,i : i < δ} and
M ′ = M3.
7) If (B0),(B3),(C1),(C2),(C3)(c),(C4),(C5) then prime stable amal-
gamation exists. In fact if NF(M0,M1,M2,M3) and M3 = (M1 ∪
M2)

gn
M3

then Pr(M0,M1,M2,M3).

Proof. 1) Apply Ax(C4) with M ′
0 := M2. [Note M0 ≤K M ′

0 as
M0 ≤K M2 by Ax(C1) andM ′

0 ≤K M2 by Ax(A0)]. So NF(M2, 〈M1∪
M2〉

gn
M ,M2,M). Now by Ax(B0),(C1) this implies M1 ∪M2 ⊆ 〈M1 ∪

M2〉
gn
M ≤K M .

2) First, assume that (∗) holds, and we shall prove Ax(C5); let f3 be
as guaranteed in (∗), i.e. f3 is an isomorphism from M1

3 = 〈M1
1 ∪

M1
2 〉

gn
M1 onto M2

3 = 〈M2
1 ∪ M2

2 〉
gn
M2 , and by part (1) of the claim

M ℓ
3 ≤K M ℓ for ℓ = 1, 2. Trivially, there is a pair (M4, f4) such that

M2
3 ≤K M4 and f4 is an isomorphism from M1 onto M4 extending

f3. By the existence axiom Ax(C2), in fact just Ax(C2)− there is a
pair (M5, f5) such that M2 ≤K M5 and f5 is a ≤K-embedding of M4

into M5 over M2
3 . So the pair (f5 ◦ f4,M5) satisfies the demand on

(h,N) in Ax(C5).
Second, assume that Ax(C5) holds and we should prove (∗) of

1.21(2); this is easy too, (or see the proof of V.C.1.2).
3) First, AxFr+1 implies AxFr1 by Definition 1.8 as the former has
all the axioms of the latter. Second, AxFr1 implies AxFr3 by Def-
inition 1.9 as Ax(A4) ⇒ Ax(A4)−. Third, AxFr2 implies AxFr3
by Definition 1.11. Fourth, AxFr1+ smoothness implies AxFr2, for
this we have to check just the axioms of AxFr2 not from AxFr3,
i.e. (D1),(D2) from Definition 1.11, now (D1) holds by Definition
1.18(1),(5), and Ax(D2) holds by 1.21(2).
4) Let M2,M0,M and 〈M1,i : i < δ〉 be as in the assumption of
Ax(C8), that isM1,i ≤K M1,j for i < j < δ and NF(M0,M1,i,M2,M)
for i < δ where, of course, δ is a limit ordinal. For i ≤ δ let M ′

1,i

be ∪{M1,j : j < i} when i is a limit ordinal and M1,i when i is a
non-limit ordinal.

So by smoothness and Ax(A4) the sequence 〈M ′
1,i : i < δ〉 is

≤K-increasing continuous, and by Ax(A4) also the sequence 〈M ′
1,i :

i ≤ δ〉 is ≤K-increasing continuous. By Ax(C2) we can find a triple
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(f,M ′′
1,δ,M

′) such that NF(M0,M
′′
1,δ,M2,M

′) and f is an isomor-

phism from M ′
1,δ onto M ′′

1,δ over M0. So by part (1) and Ax(C3)(c)

without loss of generalityM ′ = 〈M ′′
1,δ ∪M2〉

gn
M ′ . By Ax(C3)(a)d for

each i < δ we have NF(M0, f(M ′
1,i),M2,M

′) hence as above there is

M ′
2,i ≤K M ′ such that M ′

2,i = 〈f(M ′
1,i) ∪M2〉

gn
M ′ .

By Ax(B2) clearly 〈M ′
2,i : i ≤ δ〉 is ⊆-increasing; as M ′

2,i ≤K M ′ it
follows by Ax(A3) that 〈M ′

2,i : i ≤ δ〉 is ≤K-increasing. For non-limit

i ≤ δ let M ′′
2,i = M ′

2,i so M ′′
2,i ≤K M ′ and M ′′

2,i = 〈f(M ′
1,i) ∪M2〉

gn
M ′ .

By smoothness and Ax(A4) of course, if i ≤ δ is a limit ordinal
then M ′′

2,i := ∪{M ′
2,j : j < i} is ≤K M ′ and includes f(M ′

1,i) ∪M2

hence NF(M0, fi(M
′
1,i),M2,M

′′
2,i) by Ax(C3)(c). Now 〈f(M ′

1,i) ∪

M〉gnM ′ = 〈f(M ′
1,i)∪M〉gn

M ′′

2,i
⊆M ′′

2,i = ∪{M ′
2,j : j < i} ⊆ 〈

⋃

j<i

f(M ′
1,j)∪

M2〉
gn
M ′ = 〈f(M ′

1,i) ∪M2〉
gn
M ′ hence M ′′

2,i = 〈f(M ′
1,i) ∪M2〉

gn
M ′ . It fol-

lows that M ′′
2,i = 〈fi(M

′
1,i)∪M2)

gn
M ′ ⊆M ′

2,i for i ≤ δ, combining the

statements for non-limit and limit i ≤ δ. So 〈M ′′
2,j : j ≤ δ〉 is not

only ≤s-increasing but also continuous.
Let fi = f ↾ M ′

1,i. Now by induction on i ≤ δ we choose gi, a ≤K-

embedding of M ′′
2,i into M such that gi ⊇ f−1

i ∪ idM2
is increasing

and continuous (in i):
– For i = 0 this is trivial.
– For i limit take unions and use smoothness.
– For i = j + 1 we have NF(fj(M

′
1,j), fi(M

′
1,i),M2,M

′′
2,i) and also

NF(M ′
1,j,M

′
1,i,M2,M) by monotonicity, Ax(C3)(a)d and base en-

largement, Ax(C4). Hence by uniqueness Ax(C5), more exactly
(∗) of part (2) we can choose gi.

Having carried the induction, using gδ we get NF(M0,M
′
1,δ,M2,

gδ(M
′′
2,δ)) and gδ(M

′′
2,δ) ≤K M and M ′

1,δ ∪M2 ⊆ gδ(M
′′
2,δ). So by

monotonicity Ax(C3)(b) we get NF(M0,M
′
1,δ,M2,M), as M ′

1,δ =

∪{M ′
1,i : i < δ} = ∪{M1,i : i < δ} we are done.

5)-7) The other proofs are left to the readers. �1.21

There are more implications. Note that the claim above (i.e. 1.21(4))
says that in AxFr+1 + smoothness, Ax(C8) is redundant so AxFr1+
smoothness is equivalent to AxFr+1 + smoothness; moreover we de-
duce the strong version of Ax(C8). Smoothness is necessary for this.
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1.22 Example: A) K is the class of metric graphs:

(a) τK = {R,Pq : q a positive rational} where R,Pq are binary
predicates

(b) A τK-model M belongs to K when

(α) RM is a symmetric irreflexive two-place relation

(β) PM
q is symmetric

(γ) dM is a metric on M when dM (a, b) := inf{q : (a, b) ∈
PM

q }

(δ) PM
q = {(a, b) : dM (a, b) < q}

(c) M1 ≤K M2 iff M1 ⊆M2 and under dM1 ,M1 is a closed subset
of M2.

B) We define s:

(a) K as in (A)

(b) 〈A〉gnM = A

(c) NF(M0,M1,M2,M3) iff:

(α) M0 ≤K Mℓ ≤K M3 for ℓ = 1, 2

(β) if a1 ∈M1\M0 and a2 ∈M2\M0 then (a1, a2) /∈ RM3

(γ) if a1 ∈ M1\M0 and a2 ∈ M2\M0 then dM (a1, a2) =
inf{dM1(a1, b) + dM2(b, a2) : b ∈M0}

(δ) M1 ∪M2 is a closed subset of M3.

0) AxFr2 holds for s.
1) AxFr1 holds for s and κ-smoothness holds iff cf(κ) > ℵ0.
2) The framework s satisfies also Ax(D4),(F1). Also:
rPr(M0,M1,M2,M3) iff Pr(M0,M1,M2,M3) iffM∩N,M0 ≤K Mℓ ≤K

M3 for ℓ = 1, 2,M1 ∩ M2 = M0, |M3| = |M1| ∪ |M2| and RM3 =
RM1 ∪RM2 . But Ax(D1) fails, (use cases with cf(δ) = ℵ0).
3) The framework s fails (AxFr2)

+, as it fails Ax(C8).
[Hint: Note that if cf(δ) = ℵ0 then the union M1,δ := ∪{M1,i : i < δ}
will satisfy i < δ ⇒M1,i ≤K M1,δ ∈ K but possibly M1,δ �K Mδ.]
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1.23 Example: Like the earlier but we omit R (from τK and so omit
(A)(b)(α), (B)(c)(β).

Now all AxFr+1 is satisfied including Ax(C8) but not Ax(C8)∗ (be-
cause one has to take the closure of the union). Also ℵ0-smoothness
fails.

A canonical example of AxFr2 is the following:
1.24 Example Let T be a first order complete strictly stable theory
(i.e. stable not superstable).

Let K be the class of |T |+-saturated models of T and K = (K,≤K

) = (K,≺). Define NF by

NF(M0,M1,M2,M3) iff M0 ≤K Mℓ ≤K M3

and tp(ā,M1,M3) does not fork over M0

for every ā ∈ ω>(M2).

This is an example of AxFr2 and we have primes, not just relatively
prime.

1.25 Remark. In V.C§2 a central notion is “NF is κ-based” which
means:

if M ≤K N,A ⊆ N, |A| ≤ κ then there are M0,M1, such that
NF(M0,M,M1, N), ‖M1‖ ≤ κ and A ⊆M1.

1.26 Definition. 1) λ0(s) = λ0(K) = λ0(K) is the first λ such that
K is a PCλ-class, (equivalently the class of τ(K)-reducts of models
of some ψ ∈ Lλ+,ω).
2) λ1(s) = λ1(K) = λ(K,≤K) is the first λ such that {(M,N) : M ∈
K,N ∈ K,N ≤K M} is a PCλ-class.
3) λ2(s) = λ(NF, gn) is the first cardinal λ such that
(M0,M1,M2,M) : NF(M0,M1,M2,M) and M = 〈M1 ∪M2〉

gn
M} is a

PCλ-class.

4) λ∗(s) =
∑

ℓ<3

λℓ(s) and λℓ1,ℓ2(s) = λℓ1(s) + λℓ2(s).

5) We define λ∗0(s) = λ∗0(K) = λ∗0(K), λ∗1(s) = λ∗1(K), λ∗2(s) =
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λ∗2(NF,gn) and λ∗(s) similarly when we replace PCλ by PCλ,2λ .
6) In all cases above, if there is no such λ then the result is ∞.

1.27 Definition. We say λ is s-inaccessible also written as ≤s-
inaccessible [or K-inaccessible (also written as ≤K-inaccessible)] when:

(A) if M0 ≤K M1,M0 ≤K M2 (all in K) each of cardinality < λ
such that we can ≤K-amalgamated M1,M2 over M0 (which
usually holds), then there is M ∈ K, ‖M‖ < λ, and for ℓ =
1, 2 ≤K-embeddings fℓ of Mℓ into M over M0 [and, for the
s-version we also have NFs(M0, f1(M1), f2(M2),M)]

(B) if δ < λ, ‖
⋃

i<δ

Mi‖ < λ and 〈Mi : i < δ〉 is ≤-increasing, then

for some M ∈ K of cardinality < λ, we have Mi ≤K M for
i < λ.

The following definition of pseudo cardinality is an attempt to ax-
iomatize the idea of a structure being generated by χ elements; we
shall not use it.

1.28 Definition. [AxFr2]
We define pscardχ

s (M) as follows:

(I) for M ∈ K, pscardχ
s (M) = χ if ‖M‖ ≤ χ

(II) for M ∈ K, λ ≥ χ : pscardχ
s (M) = λ iff:

(i) for some ≤s-increasing sequence 〈Mi : i < δ〉:

(a) δ ≤ λ

(b) Pr(〈Mi : i < δ〉,M)

(c) pscardχ
s (Mi) < λ for every i < δ

(ii) for no µ < λ, pscardχ
s (M) = µ.

1.29 Remark. 1) Rather than defining pscard, we can use it as a
basic function and put on it an axiom.
2) It may be more natural to say pscardN

s
(M) iff there is a directed
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partial order I and M̄ = 〈Mt : t ∈ I〉 which is ≤K-increasing and
“nice enough” each of cardinality ≤ χ,M is prime over ∪{Mt : t ∈ I}
in a suitable sense. But too cumbersome for now.

§2 The Main Examples

We consider here three examples: first order, universal classes and
(D, λ)-homogeneous models.

2.1 First Order Theories. Let T be a stable first order theory.
Assume that T eq has elimination of quantifiers. Let

(i) K = {M : M is a submodel of some N |= T eq and |M | =
acℓN (M)}.
(If you like - omit the unnecessary elements of N , note that
M ≺ N is not demanded)

(ii) ≤K is being a submodel

(iii) let for some N,M ⊆ N |= T eq; then: B = 〈A〉gnM if and only
if A ⊆ M,B = acℓNA (i.e., B is the algebraic closure of A
inside N)

(iv) Aℓ ⊆ N for ℓ < 4, N |= T eq, then NF(A0, A1, A2, A3) holds
if and only if:
Aℓ = acℓNAℓ for ℓ = 0, 1, 2, 3, A0 ⊆ A1 ⊆ A3 and
A0 ⊆ A2 ⊆ A3 and tp∗(A2, A1) does not fork over A0.

Remark. In this context “models” disappear. I.e. “model” in our
context, is just an algebraically closed set. Later “λ-saturated model,
λ > |T |” are defined. But “models of T” are not naturally defined
in this context. As we prefer to have theorems which say something
when specialized to this case, we will try to have non-structure the-
orems saying not only
“there are many M ∈ K” but
“there are many quite homogeneous (≡ quite saturated) models”
or at least
“there are many models in Kus

µ ” (see Definition 3.20 below).

2.2 Fact. All axioms from §1 except Ax(C10) hold under those cir-
cumstances with the LS-number being ≤ |T | + ℵ0.
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Remark. So most of [Sh:c] can be done in this framework, and some
of the proofs here are adaptations of proofs from [Sh:c] to our context
under this translation.

∗ ∗ ∗

2.3 Universal Classes.

2.4 Definition. A class K of τ(K)-models is called universal if it
is closed under submodels and under unions of increasing chains.

Remark. Recall that for A ⊆ M, cℓM (A) = {σ(ā) : ā ∈ A, σ(x̄) a
τM -term, ℓg(ā) = ℓg(x̄)}.

2.5 Claim. The following are equivalent for a class K of τ(K)-
models:

(i) K is a universal class

(ii) a τ(K)-model M belongs to K iff every finitely generated
submodel of M belongs to K. (Of course, N is a finitely gen-
erated submodel of M when N = M ↾ cℓM (A) for some finite
A ⊆ M where cℓM (A) is the closure of A under the func-
tions of M including the zero place functions, i.e. individual
constants, and, of course, we assume that A 6= ∅ or at least
cℓM (A) 6= ∅).

Proof. Now (ii) ⇒ (i) should be clear.
So assume (i). Let M be a τ(K)-model. Now

(a) If M ∈ K then every finitely generated submodel of M be-
longs to K.
[Why? It is true as “membership in K” is closed under being
a submodel.]

(b) If every finitely generated submodel of M belongs to K then
M ∈ K.
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Why? We prove by induction on κ that if N = N ↾ cℓM (A) where
A ⊆M, |A| ≤ κ and every finitely generated submodel of N belongs
to K, then N ∈ K.
For κ finite (< ℵ0) it is trivial, i.e. holds by the assumptions.
For κ ≥ ℵ0 let A = {ai : i < |A|} and let

Ni = N ↾ cℓM{aj : j < 1 + i}.

So Ni (for i < |A|) is ⊆-increasing and N =
⋃

i<κ

Ni (as the functions

FM have finite arity). Clearly every finitely generated submodel of
Ni is a finitely generated submodel of M hence it belongs to K hence
by the inductive hypothesis (as 1 ≤ |{aj : j < 1 + i}| ≤ |i| < κ) we
have Ni ∈ K. But K, being universal, is closed under unions of
increasing chains, hence

N =
⋃

i<κ

Ni ∈ K.

So we are done proving (b) hence 2.5. �2.5

Recall

2.6 Claim. Let K be a universal class and ∆qf(τK) be the set of
first order quantifier free formulas in the vocabulary τK and we may
write qf instead of ∆qf(τK).
0) K is a PCκ,2κ class, where κ = |τK | + ℵ0.

1) If K has the (qf,iα)-order property, for every α < (2|τ(K)|+ℵ0)+

then

(∗) for some quantifier free L(τK)-formula ϕ(x̄, ȳ), K has the
(ϕ(x̄; ȳ), χ)-order property for every χ.

2) If K satisfies (∗), then for every λ ≥ ℵ1 + |τK|, there are 2λ

non-isomorphic models in Kλ.

Proof. As this direction is not continued here we do not elaborate.
0) Let τ1 = τK and
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Γ = {p(x̄) : for some n < ω and τK -model N and sequence ā ∈ nN

we have p(x̄) = tp∆qf(τK)(ā, ∅, N) but there are no

M ∈ K and b̄ ∈ nM such that b̄ realizes p(x̄) in M}.

Clearly

⊡1 K is the class of τK-models M omitting every p(x̄) ∈ Γ
hence

⊡2 K is a PCκ,2κ class and even ECκ,2κ one.

1) By part (0) we know that K is a PCκ,2κ class. Now apply
V.A.1.3(0).
2) By [Sh:e, III] or see [Sh 300, III], (in fact stronger non-structure
theorems hold).

�2.6

This (in particular 2.6(1),(2)) is a reasonable justification of:

2.7 Hypothesis. K is a universal class and it has (qf, χ+)-non-order,
χ ≥ |τ(K)|; the non-order means that for no n < ω and quantifier
free (i.e. from ∆qf(τK)) formula ϕ = ϕ(x̄, ȳ) = ϕ(〈xℓ : ℓ < n〉, 〈yℓ :
ℓ < n〉) do we have M ∈ K and āα ∈ nM for α < χ+ such that
M |= ϕ[āα, āβ] ⇔ α < β.

2.8 Definition. We define s = (K,≤,NF,<>gn) = (Ks,≤s,NFs, <>
gn
s

) as follows, letting µ = 22χ

:

(a) Ks = K so τ(s) = τ(K)

(b) ≤s=≤ℵ0

qf,µ,χ, see V.A.4.1

(c) 〈A〉gnN be cℓN (A), i.e. the closure of A under the functions of
N

(d) NF(M0,M1,M2,M3) iff (they belong to K and)

(α) M0 ≤s M2 ⊆M3

(β) M0 ≤s M1 ⊆M3 (see 2.12)
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(γ) if c̄ ∈ ω>(M1) and J is a (qf, χ+)-convergent subset of
ℓg(c̄)(M0) inside M0 of cardinality µ+ such that
Avqf(J,M0) = tpqf(c̄,M0,M1),
then Avqf(J,M2) = tpqf(c̄,M2,M3)

(δ) 〈M1 ∪M2〉
gn
M3

≤s M3.

Remark. NF(M0,M1,M2,M3) is very close to “M0,M1,M2 are in
(qf, µ, χ,ℵ0)-stable amalgamation inside M3 (see Definition V.A.4.9)
and 〈M1 ∪M2〉

gn
M3

≤s M3” and see V.A.4.10.
We shall below prove that NF(M0,M1,M2,M3) implies it, and in-

versely; note that in V.A.4.9, e.g. Mℓ ≤s M3 is not required and that
M3 here stands for M there. However, if M3 = 〈M1 ∪M2〉

gn
M3

then
“M0,M1,M2 are in (qf, µ, χ,ℵ0)-stable amalgamation” is equivalent
to NF(M0,M1,M2,M3).

2.9 Lemma. From the axioms from §1, s satisfies AxFr+1 , Ax(C8)∗,
Ax(C10) and LS(Ks) ≤ µ+, of course, s is from Definition 2.8.

Proof. Most are totally routine (using Lemma V.A.2.8, V.A.4.4).
Note that we use types consisting of quantifier free formulas.

Now the Meta Axiom 1.3, preservation under isomorphism is obvi-
ous, (A0),(A1),(A3) hold by the definition (as we use quantifier free
formulas) and (A2) holds by V.A.4.5. Lastly (A4) holds because the
union Mδ = ∪{Mi : i < δ} belongs to K because any finite sequence
from the union of an increasing chain is a finite sequence from some
of the models and i < δ ⇒Mi ⊆Mδ hence i < δ ⇒Mi ≤qf Mδ and
lastly i < δ ⇒Mi ≤K Mδ by V.A.4.7, noting that ℵ0 here stand for
κ there.

The axioms (B0),(B1),(B2),(B3) hold trivially by our choice of
<>gn. In the rest of the proof we shall rely on 2.10 - 2.13 below. Now
Ax(C0) holds trivially. As for Ax(C1), assume NFs(M0,M1,M2,M3)
and let M ′

3 = 〈M1 ∪M3〉
gn
M3

; now M0 ≤s M1,M0 ≤s M2 holds by
Definition 2.8, clauses (d)(α), (β) and M ′

3 ≤s M3 also holds by the
definition of s, i.e., clause (d)(δ) of Definition 2.8. Now M2 ≤s M3
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by 2.12 below and M1 ≤s M3 holds also by 2.12 below because
NFs(M0,M2,M1,M3) holds by symmetry, i.e. 2.11. So all the de-
mands in Ax(C1) hold.

Ax(C2), existence holds by 2.10(1) below. As for monotonicity
in M1 and M2, i.e. in Ax(C3)(a),(a)d only clause (δ) of 2.8(d) is
not obvious. For (C3)(a) we assume NF(M0,M1,M2,M3) and say
M0 ≤s M ′

2 ≤s M2, by 2.13 letting M ′
1 = 〈M1 ∪ M ′

2〉
gn
M3

we have
NF(M ′

0,M
′
1,M

′
2,M3) hence by 2.12 + symmetry we have M ′

1 ≤s

M3, as required. Of course (C3)(a)d follows by symmetry (and
Ax(C3)(a)). As for Ax(C3)(b) upward monotonicity in M3, it holds
by Ax(A2), i.e. ≤s being transitive. Concerning Ax(C3)(c), down-
ward monotonicity in M3, only clause (δ) of 2.8(d) is not obvious
and it holds by Ax(A3).

Now concerning Ax(C4), base enlargement, it holds by 2.13 and
Ax(C5), uniqueness holds by 2.10(2) below and Ax(C6), symmetry,
holds by 2.11 below and Ax(C7), finite character is trivial by the
choice of 〈−〉gn. Lastly, Ax(C8) is easy; moreover, Ax(C8)∗ hold.
Why? Let M1,δ := ∪{M1,i : i < δ} and J be a (qf, χ+)-convergent

subset of ℓg(c̄)(M0) of cardinality µ+ and c̄ be a finite sequence
from M1,δ. Then for some i < δ the sequence c̄ is from M1,i but
NF(M0,M1,i,M2,M) hence Avqf(J,M2) = tpqf(c̄,M2,M) as re-
quired. Also Ax(C10), rigidity holds trivially, moreover M ↾ cℓM (A)
has no non-trivial automorphisms over A for any A ⊆ M ∈ K; all
this because the closure is closing by the function, not something like
algebraic closure.

Lastly, LS(K) ≤ µ+ where µ = 22χ

by V.A.4.4. So modulo the
sublemmas below we are done.

2.10 Sublemma. 1) Ax(C2), existence, holds.
2) Ax(C5), uniqueness, holds.

Proof. 1) So suppose Mℓ ∈ K for ℓ < 3, M0 ≤s M1 and M0 ≤s M2.
We shall find M,M0 ≤s M and ≤s-embeddings fℓ : Mℓ → M

over M0 for ℓ = 1, 2 such that fℓ is an isomorphism from Mℓ onto
M ′

ℓ,M
′
ℓ ≤s M and f1 ↾ M0 = f2 ↾ M0 such that M = 〈f1(M1) ∪

f2(M2)〉
gn
M and NF(M0,M

′
1,M

′
2,M). This clearly suffices.
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For ℓ = 1, 2 we let Mℓ = {cℓi : i < ‖Mℓ‖} and for finite u ⊆ ‖Mℓ‖
let c̄ℓu = 〈cℓi : i ∈ u〉, x̄ℓ

u = 〈xℓ
i : i ∈ u〉. The universe of M will be

the set {σ(c̄1u, c̄
2
v) : u ⊆ ‖M1‖, v ⊆ ‖M2‖ are finite, σ a τ(K)-term}

(ℓ = 1, 2) divided by an equivalence relation E defined below; we
may identify c ∈ M0 with c/E then fℓ will be an isomorphism over
M0 for ℓ = 1, 2.
The operations will be defined in the obvious way and we still have
to prove their being well defined.
Let Γ be the set of all ϕ(σ1(c̄

1
u1
, c̄2v1

), . . . , σm(c̄1um
, c̄2vm

)) such that
∗ m < ω
∗ uℓ ⊆ ‖M1‖, vℓ ⊆ ‖M2‖ finite for ℓ = 1, . . . , m
∗ ϕ = ϕ(y1, . . . , ym) is a (first order) quantifier free formula and
∗ for some finite u ⊆ ‖M1‖, v ⊆ ‖M2‖ such that
ℓ ∈ {1, . . . , m} ⇒ uℓ ⊆ u & vℓ ⊆ v for ℓ ∈ {1, . . . , m},
and some (qf, χ+)-convergent (inM0) set J ⊆ u(M0) of cardinality
µ+ such that Avqf(J,M0) = tpqf(c̄

1
u,M0,M1)

we have ϕ(σ1(x̄
1
u1
, c̄2v1

), . . . , σm(x̄1
um
, c̄2vm

)) ∈ Avqf(J,M2).

The averages are well defined as J is convergent in M0 hence by
V.A.4.6(1) also inM2 because M0 ≤s M2. Note that in the definition
of Γ, the satisfaction of the demand does not depend on the choice
of J (and u, v) by part (2) of the claim V.A.4.6. So

(∗)1 Γ is complete (ϕ ∈ Γ or ¬ϕ ∈ Γ for ϕ (f.o.) quantifier free
with parameters from M0) and

(∗)2 Γ is finitely satisfiable in M0.

Also there are such J’s with the convergence property because M0 ≤s

M1, see clause (β) of Definition 2.8(d) and Definition V.A.4.1.
Now E , a two-place relation on the set of suitable terms, is defined

by:

σ1(c̄
1
u, c̄

2
v)E σ2(c̄

1
u′ , c̄2v′)

if and only if:

[σ1(x̄
1
u, c̄

2
v) = σ2(x̄

1
u′ , c̄2v′)] ∈ Γ.

As Γ is finitely satisfiable in M0, E is a congruence relation (and
of course an equivalence relation). So M is well defined, and f1, f2
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are defined naturally by fℓ(c
ℓ
α) = cℓα/E and they are embeddings (is

clear or see the proof of M ∈ K below).

Now, why is M ∈ K? By 2.5 it is enough to show that every
finitely generated submodel ofM belongs toK. Say such a submodel
is generated by c̄1u, c̄

2
v for some finite u ⊆ ‖M1‖, v ⊆ ‖M2‖, (pedanti-

cally we should replace cℓi by cℓi/E ). As said above becauseM0 ≤s M1

for some J of cardinality µ+ we have Avqf(J,M0) = tpqf(c̄
1
u,M0,M1)

and J is (qf, χ+)-convergent in M0, hence: for all but ≤ χ of the se-
quences d̄ ∈ J the quantifier free type of d̄ˆc̄2v in M2 is equal to the
quantifier free type of c̄1uˆc̄2v in M (recall χ ≥ |τ(K)| so there are ≤ χ
quantifier free formulas each may have ≤ χ “exceptions” so together
there are ≤ χ exceptions). The models they generate are isomorphic
but the first being a submodel of M2 belongs to K, as K is universal,
so also the second one belongs to K.

It is easy that fℓ embeds Mℓ into M for ℓ = 1, 2 and f1↾M0 =
f2↾M0. Also M = 〈f1(M1) ∪ f2(M2)〉, so easily NF(fℓ(M0), f1(M1),
f2(M2),M) and by renaming f1 ↾ M0 = f0 ↾ M2 is the identity so
we are done.
2) As we have proved Ax(C2) hence Ax(C2)− and the axiom group
(B) we can use 1.21(2), so it is enough to prove (∗) there. So assume
NF(M ℓ

0 ,M
ℓ
1 ,M

ℓ
2 ,M

ℓ) for ℓ = 1, 2 and for m = 0, 1, 2 the mapping
fm is an isomorphism from M1

m onto M2
m such that f0 ⊆ f1, f0 ⊆ f2.

For ℓ = 1, 2 let M ℓ
3 = 〈M ℓ

1 ∪M ℓ
2〉Mℓ , so by the definition of NF we

know that M ℓ
3 ≤s M

ℓ. It is enough to find an isomorphism f from
M1

3 onto M2
3 extending f1 ∪ f2.

We try to define f by:

(∗) f(σM1

(ā1, ā2)) = σM2

(f1(ā
1), f2(ā

2)) whenever σ(x̄1, x̄2) is

a τK-term, (with x̄1, x̄2 finite), āℓ ∈ ℓg(x̄ℓ)(Mℓ) for ℓ = 1, 2.

We can prove that f is well defined (using the averages) and similarly
it extends f1, f2, is onto M2

3 and it is an isomorphism. �2.10

2.11 Sublemma. Ax(C6) (symmetry) holds, that is:
if NF(M0,M1,M2,M3) then NF(M0,M2,M1,M3).
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Proof. Let ⊠ M ′
3 := 〈M1 ∪M2〉

gn
M3

.
As NF(M0,M1,M2,M3) we know that M ′

3 ≤s M3, but clearly
M ′

3 = 〈M2 ∪M1〉
gn
M3

, so clause (δ) of Definition 2.8(d) holds. Con-
cerning NF(M0,M2,M1,M3) we know that for ℓ = 1, 2 we have

M0 ≤ℵ0

qf,µ,χ Mℓ ⊆ M3 by clauses (α), (β) of Definition 2.8(d) hence

clauses (β), (α) of Definition 2.8(d) holds concerning NF(M0,M2,M1,
M3). Also as we use the set of quantifier free formulas, for every I ⊆
m(M0) and ℓ ∈ {0, 1, 2} we have Avqf(I,Mℓ,Mℓ) = Avqf(I,Mℓ,M3)
even if I is (qf, χ+)-convergent in Mℓ but not in M3. By V.A.4.6(1),
for ℓ = 1, 2 as M0 ≤s Mℓ clearly

(∗)ℓ for I ⊆ m(M0) of cardinality µ+, we have: I is (qf, χ+)-
convergent in Mℓ iff it is (qf, χ+)-convergent in M0.

So, by the statements above, the problem is to prove clause (d)(γ)
of Definition 2.8 for verifying NF(M0,M2,M1,M3).

Let ā ∈ ω>(M2); as M0 ≤s M2 clearly there is J ⊆ M0, |J| = µ+

such that J is (qf, χ+)-convergent inside M0 and Avqf(J,M0,M0) =
tpqf(ā,M0,M2); hence by (∗)1 the type q := Avqf(J,M1,M1) is

well defined. We should show that it is equal to tpqf(ā,M1,M3). So
assume b̄ ∈ M1, ϕ quantifier free, and M3 |= ϕ[ā, b̄] and it is enough
to show that ϕ(x̄, b̄) ∈ q.

Let I ⊆M0, |I| = µ+ be (qf, χ+)-convergent such that
Av(I,M0,M0) = tpqf(b̄,M0,M1) (exists for similar reasons, asM0 ≤s

M1).

Picture:

M3

b̄ ∈M1 ā ∈M2

M0

J

I
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Now as we assume NF(M0,M1,M2,M3) we have Avqf(I,M2,M3) =
tpqf(b̄,M2,M3), see (d)(δ) of Definition 2.8.

Hence (satisfaction of ϕ(−,−) means in M3)

M3 |= ϕ[ā, b̄] ⇒ ϕ(ā, x̄) ∈ tpqf(b̄,M2,M3)

⇒ ϕ(ā, x̄) ∈ Avqf(I,M2,M3)

⇒ (∃>χb̄′ ∈ I)ϕ(ā, b̄′)

⇒ (∃>χb̄′ ∈ I)[∃>χā′ ∈ J]ϕ(ā′, b̄′).

[Why? The first implication by the definition of tpqf(b̄,M2,M3), the
second implicaiton by the previous sentence, the third implication
by the definition of Av and the fourth implication by choice of J.]

Hence we deduce

M3 |= ϕ[ā, b̄] ⇒ (∃>χā′ ∈ J)(∃>χb̄′ ∈ I)ϕ(ā′, b̄′)

by the symmetry Lemma I, V.A.3.1. Now if ā′ ∈ J then ā′ ⊆ M0

then by the choice of I we have (∃>χb̄′ ∈ I)ϕ(ā′, b̄′) ⇒ ϕ(ā′, b̄). Hence
M3 |= ϕ[ā, b̄] ⇒ (∃>χā′ ∈ J)ϕ(ā′, b̄). So M3 |= ϕ[ā, b̄] ⇒ ϕ(x̄, b̄) ∈
Av(J,M1); as this holds for every quantifier free ϕ and b̄ from M1,

we get tpqf(ā,M1,M3) = Av(J,M1,M3). As ā is any finite sequence
from M2 we have gotten the desired result. �2.11

2.12 Claim. If NFs(M0,M1,M2,M3) then M2 ≤s M3, so by sym-
metry also M1 ≤s M3.

Proof. Note that we can use symmetry to get M1 ≤s M3, as the
proof of symmetry in 2.11 does not rely on this claim. Let M ′

3 =
〈M1∪M2〉

gn
M3

so by clause (d)(δ) of Definition 2.8 we have M ′
3 ≤s M3.

As ≤s is transitive (by V.A.4.5) it is enough to prove thatM2 ≤s M
′
3.

Let c̄ ∈ ω>(M ′
3), so for some finite sequence of τK -terms σ̄(x̄, ȳ)

and c̄1 ∈ ℓg(x̄)(M1) and c̄2 ∈ ℓg(ȳ)(M2) we have M ′
3 |= “c̄ = σ̄(c̄1, c̄2)”.

As we are assuming NFs(M0,M1,M2,M3) there is a (qf, χ+)-conver-
gent set J ⊆ ℓg(x̄)(M0) in M0 of cardinality µ+ such that Avqf(J,M2)
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= tpqf(c̄1,M2,M3) = tpqf(c̄1,M2,M
′
3). Let J′ = {σ̄(ā, c̄2) : ā ∈ J},

so J′ ⊆ (ℓg(c̄)(M2) and, as an indexed set, it has cardinality µ+. By
the convergence, for any ā′ ∈ J, consider the set {ā ∈ J : σ̄(ā, c̄2) =
σ(ā′, c̄2)}, if it has cardinality > χ we shall get c̄ = σ̄(c̄1, c̄2) ∈
M2 and the desired conclusion is trivial; so assume that this never
happens hence |J′| = µ+, in fact

⊙ if c̄ /∈ ℓg(c̄)(M2) then the mapping ā 7→ σ̄(ā, c̄2) is (≤ χ)-to-1
so without loss of generality it is one-to-one so |J′| = µ+.

We have to prove that J′ is (qf, χ+)-convergent inM2 and Avqf(J
′,M2)

is well defined and equal to tp(c̄,M2,M
′
3) and |J′| = µ+. All this

follows by (⊙ and)

⊡ if ϕ(z̄1, z̄2) is a quantifier formula in L(τκ), d̄ ∈ ℓg(z̄2)(M2)
and M ′

3 |= ϕ[c̄, d̄] then the following set has cardinality ≤ χ

{c̄′ ∈ J : M |= ¬ϕ[σ̄(c̄′, c̄2), d̄]}.

This trivially holds. �2.12

2.13 Sublemma. Ax(C4) (base enlargement) holds.

Proof. The proof relies on 2.12.
It is enough to prove: if NF(N0, B, C,M) (in particular by 2.12

we have N0 ≤s B ≤s M,N0 ≤s C ≤s M) and N0 ⊆ C′ ≤s C
then NF(C′, B′, C,M) where B′ = 〈C′ ∪ B〉gnM . As the proof of
Ax(C3)(b),(c), monotonicity in M3, does not rely on 2.13 we can
use it (and (A0)-(A4)), so without loss of generalityM = 〈B∪C〉gnM .
Also it is straightforward to check that NF(N0, B, C

′, 〈B ∪ C′〉gnM )
holds, hence by 2.12 we have C′ ≤s 〈B ∪ C′〉gnM , i.e. C′ ≤s B

′. So
C′ ≤s C ⊆ M,C′ ≤s B′ ⊆ M and 〈B′ ∪ C〉gnM = 〈B ∪ C〉gnM =
M ≤s M . So in checking Definition 2.8 for NF(C′, C, B′,M), the
only clause left is subclause (γ) of clause (d).

So let b̄′ = 〈b′ℓ : ℓ < n′〉 be a finite sequence from B′ and
we will find a (qf, χ+)-convergent sequence I′ inside C′ such that
tpqf(b̄

′, C,M) = Avqf(I
′, C). As B′ = 〈B ∪ C′〉gnM = cℓM (B ∪ C′)
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there are finite sequences ā, c̄ from B,C′ respectively and τK-term
σℓ(ℓ < n′) such that b′ℓ = σℓ(ā, c̄) for ℓ < n′. As N0 ≤s B there is

a (qf, χ)-convergent set I ⊆ ℓg(ā)(N0) in N0 (hence in M,B,C) such
that tpqf(ā, N0,M) = Avqf(I, N0). As NF(N0, B, C,M), we know
that tpqf(ā, C,M) = Avqf(I, C). Let I′ = {ā′ˆc̄ : ā′ ∈ I}, so triv-
ially also I′ is (qf, χ+)-convergent inside M and tpqf(āˆc̄, C,M) =
Avqf(I

′, C). Let J = {〈σℓ(ā
′, c̄) : ℓ < n′〉 : ā′ ∈ I}, so J is a set

of sequences from C′ (as ā′, c̄ are from C), it is (qf, χ+)-convergent
in M , as in the proof of 2.12 without loss of generality |J| = µ+ and
tpqf(b̄

′, C,M) = Avqf(J, C).
As b̄′ was any finite sequence from B′ we are done proving that

NF(C′, B′, C,M).
�2.13

∗ ∗ ∗

For the rest of this section we consider another example (which relies
on [Sh 3]).

2.14 Sequence Homogenous Models.

2.15 Context: Let τ be a vocabulary, ∆ a set of Lω,ω(τ)-formulas
closed under subformulas, D a set of types, each a complete (∆, n)-
type for some n.

For this example knowledge of, e.g. [Sh 3], [Sh 54] is assumed (in [Sh
3] we use ∆ = Lω,ω(τ), in [Sh 54], ∆ is Lω,ω(τ) is the set quantifier
free formulas, etc.; it does not matter).

2.16 Definition. 1) We say that D is µ-good if there is a (D, µ)-
sequence homogeneous model of cardinality ≥ µ for simplicity (see
Definition I.2.3(5) or [Sh 3]). We say D is good if it is µ-good for
every µ.
1A) Let KD be the class of τ -models M such that tp∆(ā, ∅,M) ∈ D
for every ā ∈ ω>M .
2) Let K = Kµ

D be the set of τ -models M which are (D, µ)-sequence
homogeneous; let K = K

µ
D = (Kµ

D,≤K
µ

D
) where M ≤K N iff M ≺∆

N .
3) Let κ−(D) = ℵ0 mean that if M ≺∆ N ∈ K, ā ∈ ω>N then
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tp∆(ā,M,N) does not split strongly over some finite subset of M
(by [Sh 3], κ−(D) > ℵ0 with an additional assumption weaker than
“D is good”, implies non-structure). Sometimes we use the following
variant.
4) Let κ(D) = ℵ0 mean: if A ⊆ N ∈ K, ā ∈ ω>N then tp∆(ā, A,N)
does not split strongly over some finite subset of A (equivalent to
κ−(D) = ℵ0 when D is good).
5) We let NF(M0,M1,M2,M3) mean: M0 ≺∆ M1 ≺∆ M3,M0 ≺∆

M2 ≺∆ M3, and for ā ∈ ω>(M1), the type tp∆(ā,M2,M3) does not
split strongly over some finite subset of M0. Clearly NFe(M0,M1, a,
M) is defined similarly.
6) Let λ(D) be minimal λ such that D in λ-stable (see [Sh 3]).
7) We say M is (D, µ)-primary over A when (M ∈ Kµ

D and) we can
find a sequence 〈aα : α < α∗〉 such that |M | = A ∪ {aα : α < α∗}
and for every α < α∗ for some Bα ⊆ Aα := A ∪ {aβ : β < α} of
cardinality < µ, the type tp∆(aα, Aα) is the unique p ∈ SD(A,M)
which extends tp∆(aα, Bα); see [Sh 3, §5] on it, this is called prime
there, but we use the terminology of [Sh:c, IV].

Let us check when the axioms hold (recall D stable implies D is
good, [Sh 3, 3.4]).

2.17 Lemma. Assume D is good and κ(D) = ℵ0 (also called “D
is superstable”) and µ ≥ λ(D)+. Let s = (Kµ

D,≺∆, <>
gn,NF) with

trivial <>gn, i.e., 〈A〉gnM = A.
Then for this framework satisfies AxFr2 (and Ax(A4) holds).

Proof: Note that by [Sh 3]

(∗)1 for every M ∈ KD there is N such that M ≺∆ N ∈ Kµ
D.

[Why? As D is good.]

(∗)2 if M ≤s N and ā is a finite sequence from N then there is an
indiscernible (index) set, 〈āα : α < λ(D)+〉 of ℓg(ā)-tuples
from M with Av∆({āα : α < µ+},M) = tp∆(ā,M,N) so if
ā is from M the set is trivial, āα = ā0, otherwise it is with
no repetitions.
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[Why? Let A ⊆ M be finite such that p = tp∆(ā,M,N) does not
strongly split over A, this holds as D is superstable. We can find
Mα ≤s M of cardinality λ(D), including A, increasing continuous
with α such that every q ∈ S<ω

D (Mα) is realized in Mα+1 and āα ∈
ℓg(ā)(Mα+1) realizes p ↾ Mα. By [Sh 3] there is an unbounded U ⊆
µ+ such that {āα : α ∈ U } is an indiscernible set and imitating the
proof of V.A.4.4, it is as required.]

Ax(A0). (M ≤K M for M ∈ K).
Obvious.

Ax(A1). (M ≤K N implies M ⊆ N).
By the definition.

Ax(A2). (≤K is transitive).
Proved as in 2.3, i.e. as in V.A.4.5.

Ax(A3). (if M0 ⊆M1 ≤K N and M0 ≤K N then M0 ≤K M1).
Obvious.

Ax(A4). The problem is whether M :=
⋃

i<δ

Mi is (D, µ)-homoge-

neous. For µ = ℵ0 this is trivial. Generally it still holds because
κ(D) = ℵ0 and D good by [Sh 54, Th1.15].

Smoothness: Holds trivially (by Ax(A4) and the relevant version of
Tarski-Vaught Theorem).

Ax(A4)∗. Follows from Ax(A4)

Ax(A4)−. Follows from Ax(A4)

Ax(C0),(C1). Obvious

Ax(C2)(Existence). As D is good, µ > λ(D) (an overkill), it is
clear by [Sh 3]

[We prove this as an exercise. Without loss of generality ∆ is the
set of quantifier free formulas. So assume M0 ≺∆ Mℓ for ℓ = 1, 2.
Without loss of generality M2 ≺∆ C, let 〈c1α : α < ‖M1‖〉 list the
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elements of M1 and for finite u ⊆ ‖M1‖ let c̄1u = 〈c1α : α ∈ u〉. Now
by (∗)2 we can define pu ∈ SD(M2) for finite u ⊆ ‖M1‖ such that
for some Ju ⊆ u(M0) as in (∗)2 we have pu = Av∆(Ju,M2). As in
2.3, i.e. 2.9’s proof we can find a τK -model M3 extending M2 and
〈c′α : α ∈ u〉 such that 〈c′α : α ∈ u〉 realizes pu in M3 for every finite
u ⊆ ‖M1‖ and |M3| = |M2| ∪ {c′α : α < ‖M1‖}. It is easy to see that
|M2| ∪ {c′α : α < ‖M1‖} is a D-set but D is good hence there is a
(µ,D)-sequence homogenous M4 ∈ KD such that M3 ⊆M4. In fact
we can choose M4 which is (D, µ)-primary over M3 as D is stable in
λ(D) which is < µ, actually 2µ > λ(D) suffice.]

Ax(C3). (Monotonicity)
Should be clear.

Ax(C4)pr. (Base enlargement, see Definition 1.11)
Assume NF(M0,M1,M2,M3) and M0 ≺∆ M ′

0 ≺∆ M2. We can
find M ′

3 ≺∆ M3 which is (D, µ)-primary over M1 ∪M ′
0 (do it first

for µ regular then use Ax(A4) for every regular µ′ ∈ (λ(D), µ]. The
rest should be clear, too.

Ax(C5). (Uniqueness)
Holds for good D, i.e. if NF(M0,M1,M2,M

ℓ
3) for ℓ = 1, 2 then

first note M1 ∩ M2 = M0 (see Ax(F1) below), second show that
c̄ ∈ ω>(M1 ∪M2) ⇒ tp∆(c̄, ∅,M1

3 ) = tp∆(c̄, ∅,M2
3 ) and then we use

the goodness of D (which implies D-sets can be amalgamated).

Ax(C6). (Symmetry)
Holds by “no order” as in V.A.3.5 or 2.11 as κ(D) = ℵ0.

Ax(C7). (Finite character)
Holds as we deal with types of finite sequences

Ax(C8). Follows by Ax(C8)∗.

Ax(C8)∗. (Continuity of NF)
Holds by the definition of NF.

Ax(D1). Obvious as (A4) + smoothness holds

Paper Sh:300B, Chapter V.B



130 V.B. UNIVERSAL CLASSES: AXIOMATIC FRAMEWORK

Ax(D2). This is how Ax(C2) was proved (as D is good, µ > λ(D)),
i.e. as said in the end there, M4 is (D, µ)-primary over |M3| and
(D, µ)-primary models over |M1| ∪ |M2| are primes over M1 ∪M2 (in
Kµ

D, see [Sh 3, 5.2](1).
We can obviously generalize to “(D, µ)-sequence-homogeneous”

the theorems on the uniqueness of prime models of [Sh:c, IV,§4] (in
our case we can use induction on rank, D good, µ > λ(D)).

Now we turn to NFe.

Ax(E1). Should be clear.

Ax(E2). (Existence)
Holds as D is good, just easier than Ax(C2).

Ax(E3). (Monotonicity)
Should be obvious.

Ax(E4). (Base enlargement).
Trivial.

Ax(E5). (Uniqueness)
True as D is good.

Ax(E6). (Continuity)
Holds (take unions), as Ax(A4) holds.

Also

Ax(F1). (Disjointness for NF)
Holds as the indiscernible set in the definition is not trivial - the

elements are distinct.

Ax(F2). (Disjointness for NFe)
Should be clear.

Ax(G1). (from NFe to NF, see Definition 1.14).
Just let M ′

3 = M3 and M ′
2 ≺∆ M3 be (D, µ)-primary over M0 ∪

{a}. �2.17
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2.18 Problem. What if for D good, µ > λ(D) and we assume just
κ(D) < ∞, and K = {M : M(D, µ)-homogeneous}: we have many
results, but not yet enough to prove the main gap.
On the superstable case see Hyttinen-Shelah [HySh 629], [HySh 676].

2.19 Exercise: 1) Assume D is good, stable and κ(D) ≤ κ = cf(κ)
and µ = λ(D)+.

Then s defined as in 2.17 satisfies AxFr2.
2) Similarly with µ = λ(D) but using K = {M : M is (D, µ)-
homogeneous and if M ≤∆ N ∈ KD and ā ∈ ω>M then there is
an indiscernible set I ⊆ ℓg(ā)M of cardinality µ with Av∆(I,M) =
tp∆(ā,M,N).

§3 Existence/Uniqueness of
Homogeneous quite Universal Models

3.1 Hypothesis. K satisfies the axioms of group (A) and has the
χ-LSP, see 1.16.

3.2 Remark. If we omit the χ-LSP but demand that χ1 := Min{λ :
λ ≥ χ and K has the λ-LSP} is well defined, we just sometimes have
to use χ1 instead of χ and replace = χ by “ ∈ [χ, χ1)”.

3.3 Definition. 1) We define a two place relation EK,µ on K≥µ: the
transitive closure of E mat

K,µ , defined in part (2).

2) ME
mat
K,µ N iff both are from K≥µ and they are isomorphic to ≤K-

submodels of some common member of K.
3) If µ = χ we may omit it (similarly in Definition 3.6).

It is straightforward to show:

3.4 Fact. 1) EK,χ is an equivalence relation with ≤ 2LS(K)+|τ(K)|+χ

equivalence classes, each having a member of cardinality χ.
2) K≥χ = ∪{KD : D ∈ D′

K,χ}, (see definition below; disjoint union).

3) Also K≥χ satisfies 3.1 and LS(K≥χ) = χ.
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3.5 Exercise 1) If N ′EK,χN
′′ and N ′, N ′′ ∈ Kχ then there are k <

ω and N0, . . . , Nk ∈ Kχ such that N0
∼= N ′, Nk

∼= N ′′, N2ℓ ≤K

N2ℓ+1, N2ℓ+2 ≤K N2ℓ+1 when 2ℓ+ 1 ≤ k, 2ℓ+ 2 ≤ k, respectively.
2) If N ′EK,µN

′′ and N ′, N ′′ ∈ K≤χ1
and µ ≤ χ1 and K has the

χ1-LSP, then there are k < ω and N0, . . . , Nk ∈ K≤χ1
as above.

Remark. To clarify our notation, note that D is a set of D’s, D a
set of isomorphism types of models (and also a function with such
values).

3.6 Definition. 1) For M ∈ K, ‖M‖ ≥ χ let

DM,χ = Dχ(M,K) = {N/ ∼=: ‖N‖ = χ and N ≤K M}

2)

(a) D′′
K,χ = {Dχ(M,K) : M ∈ K and ‖M‖ ≥ χ}

(b) DM
K,χ = ∪{Dχ(N,K) : NEK,χM}

(c) D′
K,χ = {DM

K,χ : M ∈ K and ‖M‖ ≥ χ}

(d) DK,χ = ∪{Dχ(M) : M ∈ K≥χ}

(e) DK means DK,χ where χ = LS(K), if K = Ks we let Ds = DK.

3) For D ⊆ DK,χ non-empty, of course, let KD = KD,χ = {M ∈
K≥χ : DM,χ ⊆ D} and KD = KD,χ = (KD,χ,≤K↾ KD,χ).
4) If s is a framework with Ks = K and D ⊆ DK,χ non-empty, of
course, then let sD = (KD,χ,≤KD

,NFs ↾ KD,χ, <>
gn).

3.7 Discussion: 1) Translating the symbols into words we have:

(a) DM,χ is the collection of isomorphism types of models of car-
dinality χ, which are ≤K-embeddable in M ,

(b) DM
K,χ is the collection of isomorphism types of models of car-

dinality χ which are “compatible” with M i.e. are EK,χ-
equivalent to some N ∈ DM,χ

(c) D′′
K,χ is the collection of DM,χ for M ∈ K with |M | ≥ χ

(d) D
′
K,χ is the collection of DM

K,χ for M ∈ K with |M | ≥ χ
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(e) DK,χ is in fact the set of isomorphism types of members of K
of cardinality χ. But in the sense (not denotation, see Frege)
of our definition, DK,χ is the union over all M ∈ K of the
collection DM,χ of isomorphism-types of models of power χ
which can be embedded in M

(f) Thus D′′
K,χ,D

′
K,χ are objects of one higher type than DK,χ,DM,χ

and DM
K,χ

(g) Finally, if D is a collection of isomorphism types of models
in K, each with cardinality χ,KD,χ is the collection of those
M ∈ K≥χ such that each ≤K-submodel of M of cardinality
χ is isomorphic to a member of D.

3.8 Claim. 1) Assume AxFrℓ is one of the frameworks from §1. If
D ⊆ DK,χ,KD,χ 6= ∅,Ks = K, s satisfies AxFrℓ then sD = 〈KD,χ,≤KD,χ

, 〈〉gns ,NFs〉 satisfies AxFrℓ with LS-number χ provided that: D ∈
D′

K,χ.

2) If D ∈ D′
K,χ then K′ = KD,χ satisfies 3.1 and LS(K′) = χ and

D
′
K′,χ = {D}.

3) K≥χ is the disjoint union of 〈KD,χ : D ∈ D′
K,χ〉.

Proof. Easy. �3.8

In the following convention we are fixing a particular compatibility
class (to guarantee joint embedding) and restricting our attention to
it.

3.9 Convention. If D′
K

is a singleton Ax(A4)− and Ax(C2)−, i.e. K

has amalgamation, then we can have a monster model C, i.e. one
which is (D, < ∞)-homogeneous (see below; really (D, κ̄)-homoge-
neous) as in [Sh 3, §1] (but for uniqueness we have to assume smooth-
ness). The existence of C is shown in 3.14 below.

3.10 Definition. 1)M ∈ KD or (D, λ)-model homogeneous or (D, λ)-
homogeneous (where λ ≥ χ+,D ∈ D′

K,χ) if:

(a) if N0, N1 ∈ KD satisfy N0 ≤K M,N0 ≤K N1 and ‖N1‖ < λ
then there is a ≤K-embedding of N1 into M over N0
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(b) every N1 ∈ KD of cardinality < λ can be ≤K-embedded into
M .

2) M ∈ KD is strongly (D, λ)-model homogeneous or strongly (D, λ)-
homogeneous (where λ ≥ χ+

1 ) if (b) above holds and

(a)+ if N0, N1 are from KD, N0 ≤K M,N1 ≤K M , h an isomor-
phism fromN0 ontoN1 and ‖N0‖ < λ then h can be extended
to an automorphism of M .

Remark. We may consider replacing “‖N1‖ < λ” by “‖N1‖ ≤ λ” in
Definition 3.10(1). If K is smooth (see Definition 1.18(1),(5)), there
is no difference.

3.11 Exercise: In Definition 3.10(1), clause (b) is redundant.
[Hint: Assume D ∈ D′

K,χ, λ ≥ χ+ and M ∈ KD satisfies clause (a)
of Definition 3.10. Assume further N ∈ KD has cardinality < λ.
We can find N ′ ≤K N of cardinality χ (as K has the χ-LSP by 3.1)
and N ′′ ≤K M of cardinality χ. Now N ′EK,χN

′′ so by 3.5(1) we
can find k and a sequence 〈Nℓ : ℓ ≤ k〉 of members of Kχ such
that N2ℓ ≤K N2ℓ+1, N2ℓ+2 ≤K N2ℓ+1 when 2ℓ + 1 ≤ k, 2ℓ + 2 ≤ k,
respectively and N0

∼= N ′′, Nk
∼= N ′. Now choose a ≤K-embedding

hℓ of Nℓ into M : for ℓ = 0 such h0 exists as N0
∼= N ′′. If h2ℓ is

defined and 2ℓ < k then such h2ℓ+1 exists, in fact one extending h2ℓ

as M satisfies clause (a) of 3.10(1). If h2ℓ+1 is defined and 2ℓ+2 ≤ k
let h2ℓ+2 = h2ℓ+1 ↾ N2ℓ+2.

Let g0 be an isomorphism from N ′ onto Nk so hk ◦ g0 is an iso-
morphism from N ′ onto hk(Nk) ≤K M hence there is a pair (g1, N

∗)
such that hk(Nk) ≤K N∗ and g1 is an isomorphism from N onto N∗

extending hk◦g0. As we are assuming clause (a) of Definition 3.10(1)
there is a ≤K-embedding f of N∗ into M (over hk(Nk)) so f ◦ g1 is
a ≤K-embeding of N into M , as required.]

3.12 Exercise: If D ∈ D
′
K,χ, λ ≥ χ+ and M ∈ KD is (λ,D)-homoge-

neous then (KD)<λ has the amalgamation property (and the joint
embedding property).
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3.13 Definition. K is trivial if [M ≤K N ⇒ M = N ]; hence in
this case, if D′

K,χ is a singleton then K has in cardinality χ, at most

one member up to isomorphism (and K>χ = ∅ recalling K has the
χ-LSP).

3.14 Lemma. Assume D′
K,χ = {D}, see 3.8(2),(3) and K satisfies

Ax(A4),Ax(C2)−.
1) If λ is K-inaccessible (see Definition 1.27) and λ is regular, λ =
λ<λ > χ and K<λ has amalgamation and no <K<λ

-maximal mem-
ber then there is M ∈ K of cardinality λ which is strongly (D, λ)-
homogeneous and the model M is smooth (which means that there
is a sequence 〈Mi : i < λ〉 which ≤K-represent M , that is M =⋃

i<λ

Mi, ‖Mi‖ < λ,Mi is ≤K-increasing continuous, Mi ≤K M for

i < λ).
2) If λ is regular and the models M,N are (DK, λ)-homogeneous of
cardinality λ and are smooth, then M ∼= N .

Remark. We can weaken somewhat the λ-inaccessibility demands.

Proof. Left to the reader (and on this see I.2.17 and I.2.14,I.2.15).
�3.14

3.15 Exercise: Assume D′
K,χ = {D} and in K<λ every ≤K-increasing

chain, if the length is < λ it has an ≤K-upper bound, and if the
length of the chain is λ, the union is such ≤K-upper bound in K≤λ.
If K<λ has amalgamation and no ≤K-maximal member then there is
a (D, λ)-homogeneous model of cardinality λ.

3.16 Claim. 1) If K satisfies (A4) and has smoothness, λ > LS(K),
then λ is K-inaccessible (and for A ⊆M ∈ K, ‖A‖ < λ ≤ ‖M‖ there
is N ≤K M, ‖N‖ = λ,A ⊆ N).
2) If LS(K)+ |τ(K)| ≤ χ and K has smoothness and satisfies Ax(A4),
then K and {(M,N) : M ≤K N} are PCχ,(2χ)+-class, hence Kiµ

6=
∅ ⇒ (∀λ ≥ χ)Kλ 6= ∅ for µ = (2χ)+.
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Remark. Using NF, we can improve 3.16(2).

Proof. 1) Now K satisfies the axioms (A0)-(A3), also (A4) and
smoothness hence K is an a.e.c. (see Definition I.1.2) with LS(K) ≤ χ,
see 3.1. Now apply I.1.10.
2) The first phrase by I.1.7, I.1.9 and the “hence” by I.1.11 or
V.A.1.3. �3.16

3.17 Conclusion. If K satisfies Ax(A4) and has smoothness, λ is
regular, ‖M‖ = λ > LS(K), then every M ∈ K of cardinality λ is
smooth (see the statement of Lemma 3.14).

Proof. As in 3.16(1), obvious from I§1. �3.17

Remark. We can begin classification theory for a class satisfying
Ax(A0)-(A4) + smoothness + amalgamation (= Ax(C2)−) + χ =
LS(K), using strong splitting. But we do not succeed to move

the properties between cardinals. We can arrive, e.g., that for a
class of suitable λ either union of (DK, λ)-homogeneous is (DK, λ)-
homogeneous, or suitable non-structure results holds.

The following Lemma states that in order to verify that a model is
homogeneous it is enough to check that types of singletons (in the ap-
propriate sense) are realized. So it shows that (DK, µ)-homogeneity
is equivalent to DK-saturativity.

3.18 The Model-homogeneity = Saturativity Lemma. Let
µ > LS(K) and K satisfies (A4) and smoothness, i.e. is an a.e.c.
and for simplicity D′

K
is a singleton.

1) M is (DK, µ)-homogeneous if and only if for every N1 ≤K N2 ∈
K, ‖N2‖ < µ,N1 ≤K M , and a ∈ N2\N1 there are models N ′

2, N3 ∈
K, such that N1 ≤K N ′

2 ≤K N3, N2 ≤K N3, a ∈ N ′
2 and there is

≤K-embedding f of N ′
2 into M over N1.

2) Assume K has amalgamation and let C be a monster model. M ≤K

C is (DK, µ)-homogeneous if and only if for every N ≤K M, ‖N‖ < µ
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and a ∈ C, there is a′ ∈ M realizing tp(a,N,C), i.e., there is an
automorphism f of C, f ↾ N = idN and f(a) ∈ M , see Definition
1.15(4).

Proof. 1) Clearly without loss of generality µ is regular. The “only
if” direction is trivial. Let us prove the other direction.

So assume N1 ≤K N2 ∈ K<µ and N1 ≤K M and we should find
a ≤K-embedding of N2 into M over N1. Let |N2| = {ai : i < κ},
and we know κ < µ as ‖N2‖ < µ. We choose by induction on
i ≤ κ,N i

1, N
i
2, fi such that:

(a) N i
1 ≤K N i

2, ‖N
i
2‖ < µ

(b) N i
1 is ≤K-increasing continuous in i

(c) N i
2 is ≤K-increasing continuous in i

(d) fi is a ≤K-embedding of N i
1 into M

(e) fi is increasing with i

(f) ai ∈ N i+1
1

(g) N0
1 = N1, N

0
2 = N2, f0 = idN1

For i = 0, clause (g) gives the definition. For i limit let

N i
1 =

⋃

j<i

N j
1 , N

i
2 =

⋃

j<i

N j
2 , fi =

⋃

j<i

fj.

Now (a)-(f) continues to hold by continuity as µ is regular and K is
smooth.

For i successor if ai−1 ∈ N i−1
1 then we let (N i

1, N
i
2, fi) = (N i−1

1 ,

N i−1
2 , fi−1), so assume ai−1 /∈ N i−1

1 ; we use our assumption; more

elaborately, let M i−1
1 ≤K M be fi−1(N

i−1
1 ) and let M i−1

2 , gi−1 be

such that gi−1 is an isomorphism from N i−1
2

onto M i−1
2 extending fi−1, so recalling ≤K is preserved under iso-

morphisms we have M i−1
1 ≤K M i−1

2 , now apply the assumption with

M,M i−1
1 ,M i−1

2 , gi−1(ai−1) here standing for M,N1, N2, a there

(note: ai−1 ∈ N2 = N0
2 ⊆ N i−1

2 ); so there are M i,∗
3 ,M i,∗

2 , f∗
i such

that:

(i) M i−1
1 ≤K M i,∗

2 ≤K M i,∗
3 ,
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(ii) ‖M i,∗
3 ‖ < µ

(iii) M i−1
1 ≤K M i−1

2 ≤K M i,∗
3 ,

(iv) gi−1(ai−1) ∈M i,∗
2

(v) f∗
i a ≤K -embedding of M i,∗

2 into M ,

(vi) f∗
i ↾ M i−1

1 = id.

Let N i
2, hi be such that N i−1

2 ≤K N i
2, hi an isomorphism from N i

2

onto M i,∗
3 extending gi−1. Let N i

1 = h−1
i (M i,∗

2 ) and fi = f∗
i ◦ (hi ↾

N i
1)].
We have carried the induction. Now fκ is a ≤K- embedding of Nκ

1

into M over N1, but |N2| = {ai : i < κ} ⊆ Nκ
1 , so fκ ↾ N2 : N2 →M

is as required.
2) This follows by (1). �3.18

So far we have only spoken about mappings between models. The
following fact says that also mappings from a set to a homogeneous
model can be extended, but we need models in order to state it
properly (as we do not know what a ≤K-mapping from a set is),
these are N1 and M2.

3.19 Fact. 1) If M is strongly (DK, µ)-homogeneous and µ ≥ λ >
LS(K) then M is (D, λ)-homogeneous.

2) Assume K has the LSP(λ). IfM is strongly (DK, λ
+)-homogeneous,

A ⊆ N1 ≤K M, |A| ≤ λ,N1 ≤K M2, h ∈ AUT(M2) or just h
is a ≤K-embedding of N1 into M2 and h(A) ⊆ N1 then for some
g ∈ AUT(M) and g ↾ A = h ↾ A.

Proof. 1) Left to the reader.
2) First, we can find N0 ≤K N1 such that A∪h(A) ⊆ N0 and ‖N0‖ ≤
λ as K has LSP(λ). Then we can find M1 ≤K M2 of cardinality ≤ λ
such that N0 ∪ h(N0) ⊆ M1 as K has LSP(λ) hence by Ax(A3) we
have N0 ≤K M1 and h(N0) ≤K M1. As M is (DK, λ

+)-homogeneous
and N0 ≤K M1 there is an ≤K-embedding g0 of M1 into M satisfying
g0 ↾ N0 = id. Let M ′

1 = g0(M1), so g0 is an isomorphism from M1

onto M ′
1 and M ′

1 ≤K M . Let h1 = h ↾ N0 and let g1 = g0 ◦ h1,
so g1 is an isomorphism from N0 onto g0 ◦ h1(N0) both of which
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has cardinality ≤ λ and are ≤K M . So (as M is strongly (DK, λ
+)-

homogeneous) g1 can be extended to an automorphism g of M , but
a ∈ A ⇒ a ∈ N0 ∧ h(a) ∈ N0 ⇒ g0(a) = a ∧ g0(h(a)) = h(a) ⇒
g1(a) = g0(h(a)) = h(a) hence g ⊇ h ↾ A so g is as required]. �3.19

3.20 Definition. 1) Kus
µ,κ = {M : there is a (< κ)-directed partial

order I and (DK, µ)-homogeneous models Mt ∈ Kµ for t ∈ I such

that M =
⋃

t∈I

Mt}.

2) If κ = ℵ0, we may omit it.

3.21 Remark. E.g. in 2.1 above, Kus
µ is included in the class of

models of T of cardinality ≥ µ.
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UNIVERSAL CLASSES: A FRAME IS NOT

SMOOTH OR NOT χ-BASED

SH300C

§0 Introduction

We deal in this chapter with two dividing lines: smoothness and
being χ-based. Both are absent in the first order case (but the second
is somewhat parallel to stability).

We do some positive theory without them, just enough to show
that their negation has strong non-structure consequences. Once
they are out of the way, much of the theory for stable first order
complete theories in [Sh:c] can be redone.

Recall that we work in (AxFr1) from II,§1 (in particular, limits
exist but smoothness may fail: 〈Mi : i ≤ δ〉 is ≤s-increasing does not

imply
⋃

i<δ

Mi �s Mδ inspite of our having ∪{Mi : i < δ} not only

belongs to K but also ≤K-extending Mi for every i < δ, i.e. Ax(A4).

§1 Non-smooth Stability

In this section we try to prove that an ⊆-increasing continuous
sequence of models is ≤K-increasing, i.e., a case of smoothness holds
under appropriate assumptions. We prove cases of NF holds in limit.
A major point concerning those claims is that they do not rely on
smoothness, in fact, their application is in §2, showing that non-
smoothness implies non-structure. Naturally there is a price for
avoiding to use smoothness: we heavily use the properties of 〈. . . 〉gn.

Note that we may tend to accept full smoothness “without say-
ing”, as it is a basic property for first order classes, hence we should

Typeset by AMS-TEX
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be careful of proofs claiming not to use it. However, the phenomenon
occurs also for first order T , if we look at

{M : M a |T |+-saturated model of T}

under a suitable order <∗. This is related to a non-smoothness prop-
erty called didip (dimensional discontinuity property, see [Sh 132],
[Sh:c, Ch.X]). But there we always have κ-smoothness for κ ≥ κr(T )
so the “problematic” sequences are of length < κr(T ) and any two
upper bounds are compatible, but in more complicated orders (even
for elementary classes) even this may be missing. Also for the order
<∗ from [Sh 48], not equal to the above, this may occur.

1.1 Context. Axiomatic Framework 1, AxFr1 from V.B.1.6 for s and
K = Ks, NF = NFs and C a monster model.

However, we shall pay special attention to the use of Ax(A4)
(mainly in exercises).

The next several results are Lemmas for the proof of Theorem 2.6.
Specifically Claim 1.11 carries out a major step in the construction;
Claims 1.3 and 1.10 are used to prove Claim 1.11.

We shall use freely

1.2 Observation. If NF(M ℓ
0 ,M

ℓ
1 ,M

ℓ
2 ,M

ℓ
4) and M ℓ

3 = 〈M ℓ
1 ∪M ℓ

2〉
gn

Mℓ
4

for ℓ = 1, 2 and fi is an isomorphism from M1
i onto M2

i for i =
0, 1, 2 such that f0 ⊆ f1, f0 ⊆ f2 then M ℓ

3 ≤s M
ℓ
4 for ℓ = 1, 2 and

NF(M ℓ
0 ,M

ℓ
1 ,M

ℓ
2 ,M

ℓ
3) and we can extend f1 ∪ f2 to an isomorphism

f3 from M1
3 onto M2

3 .

Proof. We have M ℓ
3 ≤s M ℓ

4 by Ax(C4) applied with M ′
0 = M ℓ

2 ,
more exactly by V.B.1.21(1). Hence we get NFs(M

ℓ
0 ,M

ℓ
1 ,M

ℓ
2 ,M

ℓ
3)

by Ax(B0),(C3)(c).
Lastly, by Ax(C5), uniqueness, we can find M, f such that M2

4 ≤s

M and f is an ≤s-embedding of M1
4 into M extending f1 ∪ f2. Now

M2
3 and f(M1

3 ) are ≤s M and have universe 〈M2
1 ∪M2

2 〉
gn
M2

4
= 〈M2

1 ∪

M2
2 〉

gn
M and f(〈M1

1 ∪ M1
2 〉

gn
M1

4
) = 〈f(M1

1 ) ∪ f(M1
2 )〉gn

f(M1
4 )

= 〈M2
1 ∪

M2
2 〉

gn
M respectively, recalling Ax(B3). So M2

3 , f(M1
3 ) are both ⊆ M
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and have the same universe, hence are equal, so f3 := f ↾ M1
3 is as

required. �1.2

One of the basic tools of first order stability theory is the “tran-
sitivity of non-forking”: let A ⊆ B ⊆ C, if tp(a, C) does not fork
over B and tp(a,B) does not fork over A then tp(a, C) does not fork
over A. Claim 1.3 is a slightly disguised version of this principle in
framework AxFr1. (Let M1 play the role of a and M0,M2,M4 play
the role of A,B,C respectively; the second hypothesis of Claim 1.3
is then apparently stronger than a direct translation. However, re-
placing M3 by the model generated by M1 and M2 yields by 1.2 the
original situation as the assumptions are “tps(M1,M2,M3) does not
fork over M0” and (as rephrased here) “tps(M3,M4,M5) does not
fork over M2” and the conclusion is “tps(M1,M4,M5) does not fork
over M0”).

1.3 Claim. If NF(M0,M1,M2,M3) and NF(M2,M3,M4,M5) then
NF(M0,M1,M4,M5).

1.4 Definition. We call this claim “transitivity of NF” and denote
it Ax(C9).

Proof. Let M ′
3 = 〈M1 ∪ M2〉

gn
M3

, so by 1.2 or Axiom (C4) (and
Ax(C1), or use V.B.1.21(1)) we have M ′

3 ≤s M3. So by Ax(C3)(c)
(monotonicity) we have NF(M0,M1,M2,M

′
3). So by Ax(C1), M2 ≤s

M ′
3 ≤s M3 and by Axiom (C3)(a) + (C6) (symmetry), [alternatively,

by (C3)(a)d] we get NF(M2,M
′
3,M4,M5). Similarly, letting M ′

5 =
〈M ′

3 ∪M4〉
gn
M5

we get M ′
5 ≤s M5 and NF(M2,M

′
3,M4,M

′
5).

By Axiom (C2) (existence) there are M ′′
4 ,M

′′
5 and an isomorphism

g from M4 onto M ′′
4 over M0, such that NF(M0,M1,M

′′
4 ,M

′′
5 ) and

as above without loss of generality (by 1.2) we have M ′′
5 = 〈M1 ∪

M ′′
4 〉

gn

M
′′

5

. Let M ′′
2 := g(M2) so M0 ≤s M

′′
2 ≤s M

′′
4 .

Let M ′′
3 = 〈M1 ∪M ′′

2 〉
gn

M
′′

5

. By the base enlargement axiom (C4)

(and (C1)) as NF(M0,M1,M
′′
4 ,M

′′
5 ) we have M ′′

3 ≤s M ′′
5 so by

Ax(C3), (first (a), then (c)) we have NF(M0,M1,M
′′
2 ,M

′′
3 ). By

Ax(C4) we have NF(M ′′
2 ,M

′′
3 ,M

′′
4 ,M

′′
5 ), and clearly M ′′

5 = 〈M ′′
3 ∪

M ′′
4 〉

gn
M ′′

5
and recall M ′′

3 = 〈M1∪M
′′
2 〉

gn
M ′′

5
. Applying twice the unique-

ness (Axiom (C5) and in fact 1.2) we can extend g to an isomor-
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phism g′′ from M ′
5 onto M ′′

5 such that g′′(M ′
3) = M ′′

3 and g′′ is the
identity on M1. As everything is preserved by isomorphism, clearly
NF(M0,M1,M4,M

′
5). By Ax(C3)(b) we have NF(M0,M1,M4,M5)

as required.
�1.3

∗ ∗ ∗

The next two lemmas can also be understood as part of the proof
of Lemma V.D.1.2. Specifically Lemma 1.6 is in the core of the proof
of the µ-based implies µ′-based (for µ′ > µ when Ks is (≤ µ,≤ µ)-
smooth). Lemma 1.5 is used to prove Lemma 1.6 (and the proof of
1.6 is used in the proof of 1.10).

Lemma 1.5 is a case of smoothness: it asserts that if 〈Mi : i ≤ δ〉 is
an ≤s-increasing continuous sequence, Ni = 〈Mi ∪N0〉

gn
Ni

is also ≤s-
increasing continuous and for i < j < δ we have NF(Mi, Ni,Mj, Nj)
then Mδ ≤s Nδ and some further corollaries. If, in the non-forking
condition, we could replace Mi by M0,Mj by Mδ, and Nj by Nδ we
would be in the situation of axiom (C7). Note this can be viewed
as long transitivity. The proof proceeds by showing that we achieve
this happy situation by replacing Mδ, Nδ by isomorphic copies which
are independent from N0 over M0. After applying axiom (C7) we
return to the original models by the invariance of non-forking under
isomorphism.

1.5 Claim. Assume 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉 are ≤s-increasing
continuous, (δ a limit ordinal) and for i < j < δ, NF(Mi, Ni,Mj, Nj)
and Ni = 〈Mi ∪ N0〉

gn
Ni

. Then Mδ ≤s Nδ and for i < δ we have

NF(Mi, Ni,Mδ, Nδ) and Nδ = 〈Mδ ∪N0〉
gn
Nδ

.

Proof. By Ax(C2), existence and 1.2, there are M ′
δ, N

′
δ and g such

that NF(M0, N0,M
′
δ, N

′
δ) and g is an isomorphism from Mδ onto M ′

δ

over M0 and N ′
δ = 〈M ′

δ ∪N0〉
gn
N ′

δ
. Let N ′

i = 〈M ′
i ∪N0〉

gn
N ′

δ
where M ′

i =

g(Mi) so clearly N ′
0 = N0,M

′
0 = M0. By Axiom (C3),(C4) for i <

j < δ, NF(M ′
i , N

′
i ,M

′
j, N

′
j) hence 〈N ′

i : i ≤ δ〉 is ≤s-increasing and
by Ax (C7) this sequence is also continuous. So by Observation 1.2
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(uniqueness) we can define by induction on i < δ, gi an isomorphism
from Ni onto N ′

i extending (g ↾ Mi)∪ idN0
and every gj(j < i). Now

gδ =
⋃

i<δ

gi is an isomorphism from
⋃

i<δ

Ni = Nδ onto
⋃

i<δ

N ′
i = N ′

δ

(the first equality by an assumption, the second equality holds by
Ax(C7)). Hence the mapping gδ is an isomorphism from Nδ onto
N ′

δ mapping Mi, Ni,Mδ onto M ′
i , N

′
i ,M

′
δ respectively for each i < δ

hence it follows that NF(Mi, Ni,Mδ, Nδ) (as NF(M ′
i , N

′
i ,M

′
δ, N

′
δ) by

Ax(C4)) and Nδ = 〈Mδ ∪N0〉
gn
Nδ

(as N ′
δ = 〈M ′

δ ∪N
′
0〉

gn
N ′

δ
). �1.5

1.6 Claim. Suppose 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉 are ⊆-increasing
continuous, and for i < j < δ, NF(Mi, Ni,Mj, Nj). Then Mδ ≤s Nδ

and for each i < δ we have NF(Mi, Ni,Mδ, Nδ).

Proof. Clearly i < j < δ ⇒ NF(Mi, Ni,Mj, Nj) ⇒ Mi ≤s Mj ≤s

Nj . As 〈Mi : i < δ〉 is ⊆-increasing continuous it follows that 〈Mi :
i < δ〉 is ≤s-increasing continuous.

By assumption Mδ = ∪{Mi : i < δ} hence by the previous sen-
tence and Ax(A4) clearly 〈Mi : i ≤ δ〉 is ≤s-increasing continuous.
Similarly 〈Ni : i ≤ δ〉 is ≤s-increasing continuous.

The proof will proceed by applying the following subclaim first to
the given pair 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉 and then to a second pair of
sequences of models. We shall use the following notation:

⊛ (a) for i ≤ j < δ let Ni,j = 〈Mj ∪Ni〉
gn
Nj

(b) for i < δ let Ni,δ =
⋃

i≤j<δ

Ni,j .

1.7 Subclaim. Assume that 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉 are ⊆-
increasing continuous and i < j < δ ⇒ NF(Mi, Ni,Mj, Nj) and Ni,j

for i ≤ j ≤ δ are defined as in ⊛ above. Then 〈Mi : i ≤ δ〉, 〈Ni : i ≤
δ〉 are ≤s-increasing continuous and for each i < δ:

(a) Mδ ≤s Ni,δ

(b) NF(Mj, Ni,j,Mδ, Ni,δ) (when i ≤ j < δ)

(c) Ni,δ = 〈Mδ ∪Ni〉
gn
Ni,δ
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(d) For i ≤ j1 < j2 < δ, NF(Ni,j1 , Nj1 , Ni,j2 , Nj2)

(e) for each i < δ, N̄ i = 〈Ni,j : i ≤ j ≤ δ〉 is ≤s-increasing
continuous.

Proof of 1.7. The first assertion (on ≤s-increasing) was proved above.
By Observation 1.2, i ≤ j < δ ⇒ Ni,j ≤s Nj .
Let i ≤ j1 < j2 < δ so by Axiom (C4) together with symme-
try Axiom (C6) applied to NF(Mi, Ni,Mj2 , Nj2), recalling Mi ≤s

Mj1 ≤s Mj2 we get NF(Mj1 , Ni,j1 ,Mj2 , Nj2). Hence by 1.2 we get
NF(Mj1 , Ni,j1 ,Mj2 , Ni,j2) and clearly Ni,j2 = 〈Mj2 ∪Ni,j1〉

gn
Ni,j2

.

[Why? As Ni,j2 = 〈Mj2∪Ni〉
gn
Nj2

= 〈Mj2∪Ni〉
gn
Ni,j2

(by the Definition

of Ni,j2 and Axiom (C4),(B3)) and as Ni ⊆ Ni,j1 ⊆ Ni,j2 we have
〈Mj2 ∪Ni〉

gn
Ni,j2

= 〈Mj2 ∪Ni,j1〉
gn
Ni,j2

so we are done.]

By Ax (C7) for each i < δ the sequence 〈Ni,j : i ≤ j < δ〉 is not
only ≤s-increasing but also continuous [i.e., clause (e) almost holds].

Remember that we have defined Ni,δ =
⋃

i≤j<δ

Ni,j hence by Ax(A4)

we have j ∈ (i, δ) ⇒ Ni,j ≤s Ni,δ [so together clause (e) holds].
Now by Claim 1.5 it follows that: for each i < δ we have Mδ ≤s Ni,δ

[so clause (a) holds] and for i ≤ j < δ we have NF(Mj , Ni,j,Mδ, Ni,δ)
[so clause (b) holds] and Ni,δ = 〈Mδ ∪Ni〉

gn
Ni,δ

[so clause (c) holds].

By Axiom (C4) if i ≤ j1 < j2 < δ as (by an assumption of the
subclaim) we have NF(Mj1 , Nj1 ,Mj2 , Nj2) and Mj1 ≤s Ni,j1 ≤s Nj1

clearly we get NF(Ni,j1 , Nj1 , Ni,j2 , Nj2) [so clause (d) holds] so all
the conclusions of 1.7 holds. �1.7

Continuation of the Proof of 1.6. We return to the proof of 1.6.
Applying the subclaim 1.7 to the original sequences 〈Mi : i ≤ δ〉
and 〈Ni : i ≤ δ〉 we see by clauses (e) and (d) of 1.7 that for each
i < δ the sequences 〈Ni,j : i ≤ j ≤ δ〉 and 〈Nj : i ≤ j ≤ δ〉 satisfy
the hypothesis of 1.7 [standing for 〈Mj : j ≤ δ〉 and 〈Nj : j ≤ δ〉
respectively], hence they satisfy the conclusion of Subclaim 1.7 (now
indexed by j with fix i).

To clarify notation we expand, fixing i < δ for a while, for j ∈
[i, δ] let M∗

j = Ni,j and N∗
j = Nj and when i ≤ j1 ≤ j2 < δ let
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N∗
j1,j2

= 〈M∗
j2
∪N∗

j1
〉gnN∗

j2

=
〈

〈Mj2 ∪Ni〉
gn
Nj2

∪Nj1

〉gn

N∗
j2

= 〈Mj2 ∪Ni ∪

Nj1〉
gn
Nj2

= 〈Mj2 ∪Nj1〉
gn
Nj2

= Nj1,j2 and N∗
j,δ = ∪{N∗

j,ε : ε ∈ [j, δ)} =

∪{Nj,ε : ε ∈ [j, δ)} = Nj,δ. Note that 〈M∗
j : j ∈ [i, δ]〉 is ⊆-increasing

continuous and even ≤s-increasing continuous (this holds by clause
(e) of 1.7 when applied above). Also 〈N∗

j : j ∈ [i, δ]〉 is ⊆-increasing
continuous and even ≤s-increasing continuous, as this is the sequence
〈Nj : j ∈ [i, δ]〉. Lastly, if j1 ≤ j2 are from the interval [i, δ) then
NF(M∗

j1
, N∗

j1
,M∗

j2
, N∗

j2
) by clause (d) of 1.7 when applied above. So

the pair 〈M∗
j : j ∈ [i, δ]〉, 〈N∗

j : j ∈ [i, δ]〉 of sequences satisfies the
assumptions of subclaim 1.7.

Applying the subclaim 1.7 to these sequences we conclude by
clause (a) there, for j ∈ [i, δ) that M∗

δ ≤s N
∗
j,δ which means Ni,δ ≤s

Nj,δ. As i < δ was arbitrary, we have proved j1 < j2 < δ ⇒ Nj1,δ ≤s

Nj2,δ.

Now note that
⋃

i<δ

Ni,δ includes each Ni (for i < δ) hence includes

⋃

i<δ

Ni, but this is Nδ (as 〈Ni : i ≤ δ〉 is ⊆-increasing continuous

(by an assumption, in fact it was proved that it is ≤s-increasing

continuous)) so Nδ ⊆
⋃

i<δ

Ni,δ. However, Ni,δ = ∪{Ni,j : j ∈ [i, δ)} ⊆

∪{Nj : j ∈ [i, δ)} ⊆ {Nδ : j ∈ [i, δ)} = Nδ so together Nδ =
⋃

i<δ

Ni,δ.

As we have noted above that 〈Ni,δ : i < δ〉 is ≤s-increasing, hence

by Ax(A4), we can for i < δ deduce that Ni,δ ≤s

⋃

ζ<δ

Nζ,δ, in fact

we can use a weaker version of Ax(A4) as we see in 1.8 below. By
1.5 and “M∗

δ ≤ N∗
0,δ” noted above we know that Mδ ≤s N0,δ and

Nδ =
⋃

ζ<δ

Nζ,δ, we get Mδ ≤s Nδ, one of the desired conclusions of

1.6 and, of course, i < δ ⇒ Ni,δ ≤s Nδ.

The second desired conclusion of 1.6 is NF(Mi, Ni,Mδ, Nδ) when
i < δ. Now as Ni,δ ≤s Nδ was proved above, the (second) desired
conclusion will follow from NF(Mi, Ni,Mδ, Ni,δ). Now we shall apply
1.5 to the pair of sequences M̄ i = 〈Mj : i ≤ j ≤ δ〉, N̄ i = 〈Ni,j :
i ≤ j ≤ δ〉, this is permissible as M̄ i is ≤s-increasing continuous
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(proved in the beginning of the proof of 1.6) and N̄ i is ≤s-increasing
continuous (by clause (e) of 1.7) and Mj ≤s Ni,j (by clause (b) of 1.7
and Ax(C1)) and i ≤ j1 ≤ j2 < δ ⇒ NF(Mj1 , Ni,j1 ,Mj2 , Ni,j2) by
clause (b) of 1.7 + monotonicity for NF andNi,j2 = 〈Ni,j1∪Mj2〉

gn
Ni,j2

easily. Hence the conclusion of 1.5 applied to (M̄ i, N̄ i) holds so we
get j ∈ [i, δ) ⇒ NF(Mj, Ni,j,Mδ, Ni,δ); or just use 1.7(6). But for
j = i this means NF(Mi, Ni,i,Mδ, Ni,δ), so as Ni,i = Ni because
Ni,i = 〈Mi ∪Ni〉

gn
Ni

= 〈Ni〉
gn
Ni

= Ni and Ni,δ ≤s Nδ by the end of the
previous paragraph, by Ax(C3) we get NF(Mi, Ni,Mδ, Nδ) so we are
done. �1.6

1.8 Exercise: 1) Prove that is the section so far (that is in 1.5 - 1.7) we
can weaken the axiom (A4) to (A4)∗ and even just (A4)∗≤cf(δ); (recall

that it says that if 〈Mi : i < δ〉 is ≤s-increasing and continuous and
Mδ = ∪{Mi : i < δ} then M0 ≤s Mδ).
2) In 1.7 we can add

(f) 〈Ni,δ : i ≤ δ〉 is ≤s-increasing continuous.

3) The use of Ax(A4) in the proof of 1.9, near the end can be re-
placed by Ax(A4)∗≤cf(δ).

4) The use of Ax(A4) in the proof of 1.10 can be replaced by (A4)∗≤cf(δ).

5) Check that there are no more uses in this section of Ax(A4) by
Ax(A4)∗.

[Hint: 1) Ax(A4) was used three times. The first (in the proof of
1.6 before 1.7), as well as the second (in the proof of 1.7) we leave
to the reader. The third is in the proof of 1.6 after 1.7 (the fourth
paragraph), on which we elaborate.

We prove by induction on β ≤ δ that the sequence 〈Ni,β : i < β〉
is (not only ≤s-increasing but also) continuous. Let α < β be a

limit ordinal and we should show that Nα,β =
⋃

i<α

Ni,β . For the ⊇

inclusion recall i < α ⇒ Ni ≤s Nα hence if i ≤ α ≤ j < δ, then
by Ax(B2) we have Ni,j = 〈Mj ∪ Ni〉

gn
Nj

⊆ 〈Mj ∪ Nα〉
gn
Nj

= Nα,j,

so (if β = δ taking unions) Ni,β ⊆ Nα,β. Hence
⋃

i<α

Ni,β ⊆ Nα,β.
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For the other inclusion, we know that Nα,β =
⋃

α≤ζ<β

Nα,ζ (by 1.7(e)

if β < δ, and by definition of Nα,β otherwise) hence it suffices to

prove, for a given ζ satisfying α ≤ ζ < β, that Nα,ζ+1 ⊆
⋃

i<α

Ni,β;

but as Ni,ζ+1 ⊆ Ni,β it suffices to prove that Nα,ζ+1 ⊆
⋃

i<α

Ni,ζ+1;

for this it suffices to know that 〈Ni,ζ+1 : i ≤ α〉 is continuous, but as
α ≤ ζ < β this holds by the induction hypothesis on β.
2) The proof is included in the proof of part (1).
3),4),5) Left to the reader.]

From Claim 1.5 we can derive the “local character of dependence”.
Specifically

1.9 Lemma. Axiom (C8)∗ holds, (it is from V.B.1.8) if smoothness
holds. That is, assume (that s has) cf(δ)-smoothness; if 〈M1,i : i ≤s

δ〉 is ≤s-increasing continuous and for each i < δ, NF(M0,M1,i,M2,M)
holds, then NF(M0,M1,δ,M2,M).

Remark. This reproves V.B.1.21(4).

Proof. Why the second sentence implies the first? Assuming the
second we should prove that if 〈M1,i : i < δ〉 is ≤s-increasing and
NF(M0,M1,i,M2,M) holds for every i < δ then NF(M0,∪{M1,i : i <
δ},M2,M) and we prove this by induction on δ. For each δ by the
induction hypothesis and axiom (A4) the sequence 〈M ′

1,i : i ≤ δ〉 is

≤s-increasing continuous and i < δ ⇒ NF(M0,M
′
1,i,M2,M) where

M ′
1,i = ∪{M1,j : j < i} for i limit and M ′

1,i = M1,i otherwise.
Applying the second sentence to 〈M ′

1,i : i ≤ δ〉,M0,M2,M we get
the desired statement. So we have to turn to the second sentence.

By the choice of the way Claim 1.5 was written we must first apply
symmetry, i.e. Ax(C6), to rewrite the hypothesis as NF(M0,M2,M1,i,
M) and without loss of generaltiy M1,0 = M0. Now for each i < δ,

let Ni denote 〈M1,i ∪M2〉
gn
M and let Nδ =

⋃

i<δ

Ni. By Ax(C4) (and
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monotonicity) we have NF(M1,i, Ni,M1,j, Nj) if i < j < δ hence
〈Ni : i < δ〉 is ≤s-increasing and by Ax(C7) even continuous and by
Ax(A4) even 〈Ni : i ≤ δ〉 is ≤s-increasing continuous. Now Claim 1.5
yields that NF(M1,i, Ni,M1,δ, Nδ) for i < δ but M1,0 = M0 and eas-
ily N0 = M2 so we got NF(M0,M2,M1,δ, Nδ) but cf(δ)-smoothness
gives Nδ ≤s M , so by monotonicity, i.e. Ax(C3)(b) this implies
NF(M0,M2,M1,δ,M) as required. �1.9

1.10 Claim. 1) Suppose 〈Mi : i ≤ δ + 1〉, 〈Na
i : i ≤ δ〉, 〈N b

i : i ≤ δ〉
are ≤s-increasing continuous sequences and NF(Mi, N

a
i ,Mδ+1, N

b
i )

and N b
i = 〈Mδ+1 ∪N

a
i 〉

gn

Nb
i

for i < δ. Then NF(Mδ, N
a
δ ,Mδ+1, N

b
δ ).

2) If Ks satisfies cf(δ)-smoothness, we can omit the assumption
“N b

i = 〈Mδ+1 ∪N
a
i 〉

gn

Nb
i

” for i < δ.

3) If λ1 = ‖N b
δ‖, λ2 > ‖N b

i ‖ + ‖Mδ+1‖ for i < δ and Ks has
(λ1, < λ2, cf(δ))-smoothness then we can omit N b

i = 〈Mδ+1∪N
a
i 〉

gn

Nb
i

.

Proof. We shall mention when we use smoothness and/or “N b
i =

〈Mδ+1 ∪N
a
i 〉

gn

Nb
i

”.

Let M = N b
δ ; as i < δ ⇒ NF(Mi, N

a
i ,Mδ+1, N

b
i ) we have i <

δ ⇒ Mi ≤s Na
i ≤s N b

i ≤s N b
δ = M and i ≤ j ≤ δ ⇒ Mj ≤s

Mδ+1 ≤s N
b
i ≤s N

b
δ = M . Hence clearly i < δ ⇒ N b

i ≤s M and
Mi ≤s M,Na

j ≤s M for i ≤ δ + 1, j ≤ δ and by Ax(C3)(b) we
have NF(Mi, N

a
i ,Mδ+1,M) for i < δ hence NF(Mi, N

a
i ,Mj,M) so

NF(Mi, N
a
i ,Mj, N

a
j ) when i < δ, j ∈ [i, δ + 1). We use the proof of

1.6 with Mi (i ≤ δ), Na
i (i ≤ δ) here corresponding to Mi (i ≤ δ)

and Ni (i ≤ δ) there. Using its notation

⊛1 〈Ni,δ : i ≤ δ〉 is ≤s-increasing continuous.

[Why? Recall Ni,j := 〈Mj ∪N
a
i 〉

gn
M for j ∈ [i, δ) and Ni,δ = ∪{Ni,j :

j ∈ [i, δ)}, they are defined in ⊛ of the proof of 1.6, the sequence is
≤s-increasing continuous by 1.8(2), or toward the end of the proof
of 1.6.]

And easily

⊛2 Na
δ = Nδ,δ :=

⋃

i<δ

Ni,δ.
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[Why? As Na
δ = ∪{Na

i : i < δ} ⊆ ∪{Ni,δ : i < δ} but if i < δ then
Ni,δ = ∪{Ni,j : j ∈ [i, δ)} ⊆ ∪{Na

j : j ∈ [i, δ)} = Na
δ so ⊛2 holds].

Clearly for i ≤ j < δ,Ni,j ≤s N b
i , hence Ni,δ ⊆ N b

i ; and by
1.7(c) + Ax(B)(3) we have Ni,δ = 〈Mδ ∪N

a
i 〉Na

i
= 〈Mδ ∪N

a
i 〉

gn

Nb
i

=

〈Mδ ∪ Na
i 〉

gn
M . By Ax(C4) for i < δ as Mi ≤K Mδ ≤K Mδ+1 and

NF(Mi, N
a
i ,Mδ+1,M) clearly

(∗)0 NF(Mδ, Ni,δ,Mδ+1,M) for i < δ.

For i < δ let N ′
i := 〈Mδ+1 ∪Ni,δ〉

gn
M and let N ′

δ :=
⋃

i<δ

N ′
i ; next

(∗)1 for i < j < δ we have NF(Ni,δ, N
′
i , Nj,δ, N

′
j).

[Why? By (∗)0 we have NF(Mδ, Nj,δ,Mδ+1,M) so the symmetry
axiom (C6) we have NF(Mδ,Mδ+1, Nj,δ,M) and Mδ ≤K Ni,δ ≤K

Nj,δ (by 1.7(a) and by 1.8(2)) so by Ax(C4) we have NF(Ni,δ, 〈Ni,δ∪
Mδ+1〉

gn
M , Nj,δ,M) which by the definition of N ′

i means NF(Ni,δ, N
′
i ,

Nj,δ,M) but 〈N ′
i ∪ Nj,δ〉

gn
M = 〈(Mδ+1 ∪ Ni,δ) ∪ Nj,δ〉

gn
M = 〈Mδ+1 ∪

(Ni,δ ∪Nj,δ)〉
gn
M = 〈Mδ+1 ∪Nj,δ〉

gn
M = N ′

j .

[Why the equalities? The first by the definition of N ′
i and Ax(B2,3),

second by the properties of union; third as trivially Ni,δ ⊆ Nj,δ,
fourth by the definition of N ′

j .]

As we have gotten NF(Ni,δ, N
′
i , Nj,δ,M) and 〈N ′

i ∪Nj,δ〉
gn
M = N ′

j by

Ax(C3)(c) or 1.2 we conclude NF(Ni,δ, N
′
i , Nj,δ, N

′
j) as promised in

(∗)1.]
Also

(∗)2 NF(Mδ,Mδ+1, N0,δ, N
′
0).

[Why? We know by (∗)0 that NF(Mδ, Ni,δ,Mδ+1,M) for i < δ hence
in particular NF(Mδ, N0,δ,Mδ+1,M) and by 1.2 we have N ′

0 ≤K M
and NF(Mδ, N0,δ,Mδ+1, N

′
0) and by the symmetry axiom (C6) we

finish proving (∗)2.]
We now apply 1.6 with 〈Ni,δ : i ≤ δ〉, 〈N ′

i : i ≤ δ〉 here standing
for 〈Mi : i ≤ δ〉, 〈Ni : i ≤ δ〉 there; why its assumption holds?

First, i < j < δ ⇒ NF(Ni,δ, N
′
i , Nj,δ, N

′
j) as said in (∗)1 above,

hence 〈Ni,δ : i < δ〉, 〈N ′
i : i < δ〉 are ≤K-increasing. Second, above

in ⊛1 we prove (more than) that 〈Ni,δ : i < δ〉 is ≤s-increasing
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continuous and Nδ,δ = ∪{Ni,δ : i < δ} hence 〈Ni,δ : i ≤ δ〉 is
<s-increasing continuous by Ax(A4). Third, N ′

i = 〈Mδ+1 ∪ Ni,δ〉
gn
M

for i < δ is ⊆-increasing by Ax(B1); and by the “first” above and
Ax(C4) we have 〈N ′

i : i < δ〉 is ≤s-increasing and by Ax(A4) even
〈N ′

i : i ≤ δ〉 is ≤s-increasing recalling N ′
δ = ∪{N ′

j : j < δ} by
the definition of N ′

δ. Hence to prove a 〈N ′
i : i ≤ δ〉 is continuous

it is enough to show 〈N ′
i : i < δ〉 is (not only ≤s-increasing but

also) continuous. For part (1) we have N ′
i = 〈Mδ+1 ∪ Ni,δ〉

gn
M =

〈Mδ+1 ∪Mδ ∪N
a
i 〉

gn
M = 〈Mδ+1 ∪N

a
i 〉

gn
M = N b

i but by an assumption
〈N b

i : i < δ〉 is ≤s-increasing continuous.
For parts (2),(3), by smoothness for i < δ limit, N ′′

i := ∪{N ′
j : j <

i} ≤s N
′
i . But Mδ+1 ≤s N

′
0 (as N ′

0 = 〈Mδ+1∪N
a
0 〉

gn
M ) and N ′

0 ≤s N
′′
i

(as N ′′
i = ∪{N ′

j : j < i}, i limit) so Mδ+1 ⊆ N ′′
i . Also Na

i =
∪{Na

j : j < i} (as 〈Na
j : j ≤ δ〉 is ≤s-increasing continuous by an

assumption of the claim) and ∪{Na
j : j < i} ⊆ ∪{N ′

j : j < i} (by the
definition ofN ′

j) and ∪{N ′
j : j < i} = N ′′

i (by the definition ofN ′′
i ) so

together Na
i ⊆ N ′′

i . By the last two sentences, Mδ+1∪N
a
i ⊆ N ′′

i and
N ′′

i ≤s N
′
i ≤s M by the one before, hence N ′

i = 〈Mδ+1 ∪Ni,δ〉
gn
M =

〈Mδ+1 ∪Mδ ∪ Na
i 〉

gn
M = 〈Mδ+1 ∪ Na

i 〉
gn
N ′′

i
⊆ N ′′

i , i.e. N ′
i ⊆ N ′′

i , but

we have shown above the other inclusion so N ′
i = N ′′

i . This means
N ′

i = ∪{N ′
j : j < i}, so as i was any limit ordinal < δ we have

finished showing 〈N ′
j : j < δ〉 is continuous. But this finishes the

proof of “〈N ′
i : i ≤ δ〉 is ≤s-increasing continuous”, hence all the

assumptions of 1.6 for 〈Ni,δ : i ≤ δ〉, 〈N ′
i : i ≤ δ〉 holds recalling (∗)1.

So the conclusions of 1.6 for 〈Ni,δ : i ≤ δ〉, 〈N ′
i : i ≤ δ〉 holds so

(a) Nδ,δ ≤s N
′
δ and

(b) NF(N0,δ, N
′
0, Nδ,δ, N

′
δ)

but Nδ,δ was defined as
⋃

i<δ

Ni,δ and as said in ⊛2 above is equal to

Na
δ and N ′

δ was defined as
⋃

j<δ

N ′
j so we get NF(N0,δ, N

′
0, N

a
δ ,

⋃

j<δ

N ′
j)

and as, see (∗)2 above, NF(Mδ,Mδ+1, N0,δ, N
′
0) we get (by 1.3, tran-

sitivity) that NF(Mδ,Mδ+1, N
a
δ ,

⋃

j<δ

N ′
j),

i.e., NF(Mδ,Mδ+1, N
a
δ , N

′
δ).
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So by symmetry for NF, that is Ax(C6), in order to get the desired
conclusion of 1.10, by Ax(C3)(b) it is enough to prove thatN ′

δ ≤s M .
If s, i.e., Ks is cf(δ)-smooth, i.e., for part (2), this is obvious (as
N ′

i ≤K M for i < δ by (Ax(C4) and 〈N ′
i : i ≤ δ〉 is ≤s-increasing

continuous). The proof for part (3) is similar. In the case left, i.e.,
part (1) we have

M = N b
δ =

⋃

i<δ

N b
i =

⋃

i<δ

〈Mδ+1 ∪N
a
i 〉

gn

Nb
i

=
⋃

i<δ

〈Mδ+1 ∪ (Mδ ∪N
a
i )〉gn

Nb
i

=
⋃

i<δ

〈Mδ+1 ∪Ni,δ〉
gn

Nb
i

=
⋃

i<δ

〈Mδ+1 ∪Ni,δ〉
gn
M

=
⋃

i<δ

N ′
i = N ′

δ.

�1.10

1.11 Claim. Suppose 〈Mi : i < δ〉, 〈Ni : i < δ〉 are ≤s-increasing
continuous, and for i < j < δ, NF(Mi, Ni,Mj, Nj). If Mi ≤K M for
i < δ, then we can find N such that Ni ≤s N for i < δ and M can

be ≤s-embedded into N over
⋃

i<δ

Mi.

1.12 Remark. 1) This is a strengthened version of the existence of

an amalgamation as possibly
⋃

i<δ

Mi �s M .

2) Note that for a successor ordinal instead of a limit δ, the proof is
trivial — use Axiom (C2).

Proof. We define by induction on i ≤ δ modelsNa
i , N b

i and a function
fi such that:

⊙ (a) fi is an isomorphism from Ni onto Na
i over Mi;

(b) 〈Na
j : j ≤ i〉 is ≤s-increasing continuous;
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(c) 〈N b
j : j ≤ i〉 is ≤s-increasing continuous;

(d) fi is increasing continuous in i;

(e) NF(Mi, N
a
i ,M,N b

i );

(f) N b
i = 〈M ∪Na

i 〉
gn

Nb
i

.

For i = 0, we just have to define Na
0 , f0, N

b
0 such that clauses (a),

(e) and (f) holds. This is possible by Axiom (C2).
For i = j+1: let Ny

i = 〈Mj+1∪N
a
j 〉

gn

Nb
j

. By clause (e) (i.e. the in-

duction hypothesis) we have NF(Mj, N
a
j ,M,N b

j ), so by Axiom (C4)

as Mj ≤s Mj+1 ≤s M we have Ny
i ≤K N b

j ; and by Axiom (C3)(a),

(b) we have NF(Mj, N
a
j ,Mj+1, N

y
i ). Let Nx

i = 〈Mj+1 ∪ Nj〉
gn
Nj+1

,

so as NF(Mj, Nj,Mi, Ni) by 1.2 or Axiom (C4), Nx
i ≤s Nj+1 and

NF(Mj, Nj ,Mi, N
x
i ) by Ax(C3)(b); i.e., NF(Mj, Nj,Mj+1, N

x
i ).

By Axiom (C5) (uniqueness) or more exactly 1.2 there is an iso-
morphism gi from Nx

i onto Ny
i , extending fj ∪ idMj+1

. By Ax-

iom (C2) (existence) there are Na
i , N

b
i , fi such that fi is an iso-

morphism from Ni onto Na
i extending gi and NF(Ny

i , N
a
i , N

b
j , N

b
i )

holds and (by Observation 1.2) without loss of generality N b
i =

〈N b
j ∪ Na

i 〉
gn

Nb
i

which is equal to
〈

〈M ∪Na
j 〉

gn

Nb
j

∪Na
i

〉gn

Nb
i

= 〈(M ∪

Na
j ) ∪Na

i 〉
gn

Nb
i

= 〈M ∪ (Na
j ∪Na

i )〉gn
Nb

i

= 〈M ∪Na
i 〉

gn

Nb
i

. So by the pre-

vious sentence and symmetry NF(Ny
i , N

b
j , N

a
i , N

b
i ). By the choice

of Ny
i , as NF(Mj,M,Na

j , N
b
j ) by clause (e) of the induction hy-

pothesis for j and as Mj ≤s Mi ≤s M by the axiom (C4) we get
NF(Mi,M,Ny

i , N
b
j ) but by the last sentence NF(Ny

i , N
b
j , N

a
i , N

b
i ), so

together by transitivity, 1.3 we get NF(Mi,M,Na
i , N

b
i ) hence by the

symmetry axiom (C6) we deduce NF(Mi, N
a
i ,M,N b

i ). This is clause
(e) for i, also the other clauses holds for i: we have dealt with clause
(f) just after choosing N b

i , clause (a) holds by the choice of fi. Clause
(b) holds by transitivity of ≤s means Na

j ≤s Na
i which holds as

Na
j ≤s N

y
i (as after the choice ofNy

i we note NF(Mj, N
a
j ,Mj+1, N

y
i ))

and Ny
i ≤s N

a
i (as NF(Ny

i , N
b
j , N

a
i , N

b
i ), see above) hence by transi-

tivity of ≤s we get Na
j ≤s N

a
i so indeed clause (b) holds.

As for clause (c), again by the transitivity of ≤s (and the induction
hypothesis) it meansN b

j ≤s N
b
i , which holds because NF(Ny

i , N
b
j , N

a
i ,
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N b
i ) was deduced above.
Lastly, for clause (d) it suffices to have fj ⊆ fi which holds as

fj ⊆ gi ⊆ fi by the choices of gi and fi respectively. So we have
carried the induction step for successor, i = j + 1.

For i limit < δ : let N b
i =

⋃

j<i

N b
j , fi =

⋃

j<i

fj, N
a
i =

⋃

j<i

Na
j . As

〈Nj : j < i〉, 〈Mj : j < i〉 are ≤s-increasing continuous by Ax(A4)
clauses (b),(c) hold and clauses (a),(d) holds trivially.

As for clause (e) use 1.10(1) with 〈Mj : j ≤ i〉ˆ〈M〉, 〈Na
j : j ≤

i〉, 〈N b
j : j ≤ i〉 here standing for 〈Mi : i ≤ δ + 1〉, 〈Na

i : i ≤ δ〉, 〈N b
i :

i ≤ δ〉 there. Why the assumptions of 1.10(1) hold? The sequence
〈Mj : j ≤ i〉ˆ〈M〉 is ≤s-increasing continuous by the assumptions
of 1.11, and the two other sequences by clauses (b),(c) of ⊙. Also
for 1.10(1) we need NF(Mj, N

a
j ,M,N b

j ) for j < i which holds by

clause (e) of ⊙ and N b
j = 〈M ∪ Na

j 〉
gn

Nb
j

for j < i which holds by

clause (f) of ⊙. So the conclusion of 1.10(1) holds which means
NF(Mi, N

a
i ,M,N b

i ), so we have indeed proved clause (e).
Lastly for clause (f), for each j < i,

N b
j = 〈M ∪Na

j 〉
gn

Nb
j

= 〈M ∪Na
j 〉

gn

Nb
i

⊆ 〈M ∪Na
i 〉

gn

Nb
i

,

hence N b
i =

⋃

j<i

N b
j ⊆ 〈M ∪ Na

i 〉
gn

Nb
i

⊆ N b
i so N b

i = 〈M ∪ Na
i 〉

gn

Nb
i

as

required.

So we can carry the induction. In the end using fδ =
⋃

i<δ

fi,

N b
δ =

⋃

i<δ

N b
i , Na

δ =
⋃

i<δ

Na
i and chasing arrows, we finish. �1.11

§2 Non-smoothness implies non-structure

We shall continue to assume

2.1 Hypothesis. s satisfies AxFr1 of V.B§1.
Our main aim in this section is told by its title. Remember that

s is smooth if:
⋃

i<δ

Mi ≤s M when 〈Mi : i < δ〉 is ≤s-increasing, and
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for every i < δ, Mi ≤s M . The main theorem is 2.6: if λ is regular
and s-inaccessible, and there is a counterexample to smoothness by

〈Mi : i < δ〉, M , with |δ|+ ‖M‖+
∑

i<δ

‖Mi‖ < λ then İ(λ,Ks) = 2λ.

(Usually there are 2λ models no one ≤s-embeddable into another).

Our main theorem 2.6 has some defects. First the requirement
that λ is regular and ≤s-inaccessible. By our “adopted rules of the
game” (see in V.A§0(A)) this is not serious and we intend to look
somewhere else whether when the singular case is covered by the
theorems in [Sh:e]. Second, and apparently more troublesome is
that we have no theorem showing that if κ-smoothness fails then
(< κsm(Ks))-smoothness fails for some reasonably small κsm(Ks).
The remedy we will have is to use V.D.1.2; by it LSP(χ) + (≤ χ)-
smoothness + “NF is χ-based” implies smoothness (in all cardinals).

So “if s is not (≤ LS(s))-smooth or NF is not LS(s)-based then

İ(λ,Ks) = 2λ for every regular λ = λLS(s) etc”. See end of the
section.

Here is a rough prescription for deducing the existence of many
models of power λ from the failure of smoothness at some κ < λ
for models of cardinality < λ (i.e., the existence of an ≤s-increasing

sequence 〈Mi : i ≤ κ〉 with
⋃

i<κ

Mi �s Mκ). For each η ∈ 2λ build a

sequence of models 〈Mη↾α : α < λ〉 such that Mη = ∪{Mη↾α : α < λ}
has cardinality λ and Smth(Mη) = {δ < λ : Mη↾δ ≤s Mη and
cf(δ) = κ}/Dλ is equal to η−1({0}) ∩ {δ < λ : cf(δ) = κ}/Dλ, (Dλ

is the club filter on λ, Cf. Definition 2.9, Fact 2.10). Now 2λ of
the Mη’s will be pairwise non-isomorphic since if Mη

∼= Mν , then
Smth(Mη) = Smth(Mν). The failure of smoothness should allow

us to decide for δ of cofinality κ whether
⋃

β<δ

Mη↾β ≤s Mη or not

depending on the value of η(δ).

But there is a fly in the ointment. If T ⊆ κ>λ, |T | = λ, 〈Ti : i <

λ〉 a representation of T (i.e., T =
⋃

i<δ

Ti,Ti increasing continuous,

|Ti| < λ), we may wonder whether (for suitable T ) for “many”
δ < λ, cf(δ) = κ and there is ηδ ∈ κλ such that {ηδ ↾ ζ : ζ < κ} ⊆ Tδ,
but (∀α < δ)[{ηδ ↾ ζ : ζ < κ} * Tα]. Under mild cardinality
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restrictions we can circumvent this difficulty by working on a “good”
stationary subset of λ (which are quite abundant). The required
definition and background facts are laid out in 2.2 and 2.4.

2.2 Definition. 1) For a regular λ > ℵ0, S ⊆ λ is called good if we
can find ū = 〈ui : i < λ〉 where ui is a subset of i and for some closed
unbounded E ⊆ λ for every limit δ ∈ E ∩ S, for some unbounded
u∗δ ⊆ δ of order type < δ we have (∀α < δ)[u∗δ ∩ α ∈ {ui : i < δ}].
2) The set of good S ⊆ λ is called Ǐ[λ].
3) We say (ū, E) witness S ∈ Ǐ[λ] when they are as above and more-
over as in 2.5 below.

2.3 Remark. 1) We can weaken the definition by replacing ui by < λ
candidates, and modulo a club we get an equivalent definition. More
exactly, let S ⊆ λ be called ∗-good if there are 〈〈ui,ξ : ξ < ξ(i)〉 :
i < λ〉, ui,ξ ⊆ λ, ξ(i) < λ and for every limit δ ∈ S, for some closed
unbounded u∗δ ⊆ δ of order type < δ we have (∀ζ < δ)[u∗δ ∩ α ∈
{ui,ξ : i < α, ξ < ξ(i)}].
Now (for S ⊆ λ, λ regular), S is good if and only if S is ∗-good, see
[Sh 420].
2) On 2.4, see [Sh 108], probably better to look at [Sh 88a], (last
phrase in 2.4(2) — by [Sh 420, §1])):

Recall

2.4 Lemma. Let λ > κ be regular, S = {δ < λ : cf(δ) = κ}.
1) S is good if (∀µ < λ)[µ<κ < λ] or λ = µ+ & µ = cf(µ) > κ;
(why? [Sh 351, §4]).
2) Some stationary S′ ⊆ S is good if: λ = λ<κ or λ = µ+ & (∀χ <
µ)χκ < µ, or just λ > κ+. [Why? See [Sh 420].]
3) If S ⊆ {δ < λ : cf(δ) = κ} is a good stationary set and µ < κ is
regular then there is a good stationary S′ ⊆ {δ < λ : cf(δ) = µ} such
that for a club of δ ∈ S, for a club of α < δ, cf(α) = µ ⇒ α ∈ S′.
[Why? An exercise.]

2.5 Observation. In Definition 2.2, without loss of generality, we can
demand that for limit δ ∈ S, u∗δ = uδ has order type cf(δ), α ∈ uβ ⇒
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uα = uβ ∩ α so uα ⊳ uβ, i.e. uα is an initial segment of uβ and
[α ∈ λ\S ⇒ otp(uα) < κ] and uα is a set of non-limit ordinals and
α > 0 ⇒ 0 ∈ uα.

Proof. See [Sh 420, §1].

2.6 Theorem. 1) Assume λ is regular and ≤s-inaccessible, see Def-
inition V.B.1.27 and S ⊆ {i < λ : cf(i) = κ} is a good stationary
subset of λ. Suppose Ks is not (< λ, κ)-smooth (i.e. some Mi(i ≤ κ)
are models from Ks of cardinality < λ, 〈Mi : i ≤ κ〉 is ≤s-increasing,

but
⋃

i<κ

Mi �s Mκ). Then İ(λ,Ks) = 2λ.

2) Moreover, if λ<χ + 2|τ(K)| = λ and χ > LS(s), then K has 2λ

models, (DK, χ)-homogeneous pairwise non-isomorphic each of car-
dinality λ.

2.7 Remark. 1) Not only do we get 2λ pairwise non-isomorphic mod-
els or (DK, χ)-homogeneous models inKλ, but the construction yields
usually that one has no ≤s-embedding into any other. (See Fact
2.11).
2) In the proof below, we may change κ as we argue that with-
out loss of generality K is (< λ, θ)-smooth for every regular θ < κ.
We can retain the same κ, if we assume that for some stationary
S ⊆ {i < λ : cf(i) = κ} we have square (i.e., there is S′, S ⊆ S′ ⊆
{i : cf(i) ≤ κ} and uδ a club of δ of order type ≤ κ for δ ∈ S′ such
that [δ1 ∈ uδ2

⇒ uδ1
= δ1 ∩ uδ2

]); see [Sh 351, §4] by which it holds
for successor of regular λ > κ+.
3) If we would like to use (AxA4)∗µ,λ + (AxA4)>µ only, see Definition

V.B.1.18(7),(8) (instead (AxA4)), we have to assume µ < λ and a
square on {δ < λ : cf(δ) < µ} avoiding S. In fact, just good S ⊆ Sλ

θ

not reflecting in Sλ
<µ for every regular θ < µ, see [Sh:E54].

4) What if we want in 2.6(1) or 2.6(2) to get at least 2λ non-
isomorphic models each of cardinality µ ≥ λ?
If whenever NF(M0,M1,M2,M3)&M3 = 〈M1 ∪M2〉

gn
M3

, M3 has a
reasonable representation over M1 ∪M2, we can (more below, see
[Sh:e, III]). This seems not so a restrictive demand.
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Proof of 2.6. 1) Without loss of generality, for our λ, and under
the assumptions on 〈Mi : i ≤ κ〉, κ is minimal (see 2.4(3)). So
without loss of generality, 〈Mi : i < κ〉 is ≤K-increasing continuous.
Alternatively, just assume that K fails the weak (< λ, θ)-smoothness
recalling that the failure of the (< λ, κ)-smoothness implies that
for some regular θ ≤ κ,K fails the weak (< λ, θ)-smoothness; see
V.B.1.20(3).

Without loss of generality let 〈ui : i < λ〉 exemplify that S ⊆ λ is
good (see Definition 2.2) and without loss of generality the demands
of 2.5 holds; this includes [i ∈ λ\S ⇒ |ui| < κ]. Let u′δ := {α < δ :
α = sup(α ∩ uδ)}.

For α ≤ λ let

Tα := {η : η a function from α+1 to {0, 1} and [i /∈ S ⇒ h(i) = 0]}

Now we define by induction on α < λ, for every η ∈ Tα a model Mη

and also a function fη (when α /∈ S) such that:

⊠ (a) Mη ∈ K has as universe some ordinal αη < λ;

(b) for β < α,Mη↾β ≤s Mη;

(c) if α is a limit ordinal and α /∈ S then Mη =
⋃

β<α

Mη↾β;

(d) if α ∈ λ\S then fη is a ≤s-embedding of Motp(uℓg(η)) into Mη;

(e) if α ∈ λ\S and uβ ⊳ uα then fη↾β ⊆ fη;

(f) if α ∈ S and η(α) = 0 then Mη =
⋃

β<α

Mη↾β;

(g) if α ∈ S and η(α) = 1 then
⋃

β<α

Mη↾β �s Mη;

(h)1 if α ∈ λ\S, β ∈ uα and η ∈ Tα, then
NF(fη↾β

(

Motp(uβ)

)

, Mη↾β, fη

(

Motp(uα)

)

,Mη)

(h)2 if α ∈ λ\S, β < α, β ∈ u′α and η ∈ Tα then

NF(
⋃

γ∈β∩uα

fη↾γ(Motp(uγ)),Mη↾β, fη(Motp(uα)),Mη)

(h)3 if α1 < α2 belongs to uβ ∪ u′β and η ∈ Tβ then

NF(∪{fη↾γ(Motp(uγ)): γ ∈ uβ , γ ≤ α1},Mη↾α1
,

∪{fη↾γ(Motp(uγ)) : γ ∈ uβ , γ ≤ α2},Mη↾α2
).
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Note that it follows that in fact (h)3 implies (h)1 + (h)2 so we have
to take care of it only.

The construction is by cases:

Case 0. α is zero.
Easy.

Case 1. α is a limit ordinal and [α ∈ S ⇒ η(α) = 0].

We let Mη =
⋃

β<α

Mη↾β and when α /∈ S, fη = f<>. Note that (h)3

holds by 1.6 (using monotonicity); note that (h)3 deals also with
β > α and that we do not use smoothness.

Case 2. α = β + 1.
So, recalling 0 ∈ uα, necessarily uα ∪ u′α has a last element, say

ζ = ζα = ζ(α) < α and if ζ ∈ u′α then s has (< λ, cf(ζ))-smoothness.
Let M ′

η↾ζ = ∪{fη↾γ(Motp(uα∩γ)) : γ ∈ uα, γ ≤ ζ}. Note that it may

depend on η ↾ α not just on η ↾ ζ. By (h)3 we have M ′
η↾ζ ≤s Mη↾ζ ≤s

Mη↾β (no use of smoothness). By Axiom (C2) there is an extension
fη of fη↾ζ and models Nη,Mη such that fη is an isomorphism from
Motp(Cα) onto Nη satisfying NF(fη↾ζ(Motp(uα∩ζ)),Mη↾β, Nη,Mη).
Without loss of generality the universe of Mη is an ordinal < λ (we
use “λ is ≤s-inaccessible”).

Case 3. α ∈ S and η(α) = 1.
We apply Claim 1.11 twice. In each case the 〈Ni : i < δ〉 from

Claim 1.11 stands for 〈Mη↾β : β ∈ uα ∪u′α〉 here and the 〈Mi : i < δ〉
there stands for 〈∪{fη↾γ(Motp(uγ)) : γ ≤ β and γ ∈ uα} : β ∈ uα∪u

′
α〉

here. The assumption holds by (h)3. In the first application M is
∪{fη↾β(Motp(Cβ) : β ∈ uα} and in the second application M is an
M ′ such that there is an isomorphism g from Mκ onto M ′ extending
fη↾β whenever β ∈ uα. We find models N1, N2 in K such that:

(i) Mη↾β ≤s N
ℓ for β ∈ uα ∪ u′α and ℓ = 1, 2
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(ii) ∪{fη↾β : β ∈ uα} is a ≤K-embedding of
⋃

i<κ

Mi into N1; we

call this embedding g1

(iii) there is a ≤s-embedding g2 of Mκ into N2 which extends
∪{fη↾β : β ∈ uα}

moreover

(i)+ Mη↾β ≤s N
ℓ for β < α, ℓ = 1, 2.

Condition (i)+ follows from (i) because ≤K is transitive and {Mη↾β :
β ∈ uα} is cofinal in {Mη↾β : β < α} as α ∈ S. Now we will show
⋃

β<α

Mη↾β �s N
ℓ for ℓ = 1 or for ℓ = 2.

If
⋃

β<α

Mη↾β ≤s N ℓ for ℓ = 1, 2, then by axiom (C2)− we can

find N ∈ K and ≤s-embeddings f ℓ of N ℓ into N over
⋃

β<α

Mη↾β

for ℓ = 1, 2. So (f1 ◦ g1) is a ≤s-embedding of
⋃

β<κ

Mβ into N so

(f1 ◦ g1)(
⋃

β<κ

Mβ) ≤s N .

Also f2◦g2 is a ≤s-embedding ofMκ intoN so (f2◦g2)(Mκ) ≤s N .

But (f1 ◦g1)(
⋃

β<κ

Mβ) ⊆ (f2 ◦g2)(Mκ) hence (by Axiom (A3)) we

have
(f1 ◦ g1)(

⋃

β<α

Mβ) ≤s (f2 ◦ g2)(Mκ), hence (by invariance under

isomorphisms)
⋃

β<κ

Mβ ≤s Mκ, contradicting that 〈Mi : i ≤ κ〉 is a

counterexample to smoothness.

So for some ℓ,
⋃

β<α

Mη↾β �s N
ℓ; in fact ℓ = 2 is O.K. by Ax(A3);

and (as λ is ≤s-inaccessible) without loss of generality ‖N ℓ‖ < λ,
so without loss of generality N ℓ has universe an ordinal < λ and let
Mη = N ℓ.

We have carried the induction.
Now
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⊛ let Mη = ∪{Mη↾i : i < λ} for every η ∈ Tλ.

Clearly by Ax(A4)

⊠ if η ∈ Tλ then Mη ∈ Kλ and i ∈ λ\S ⇒ Mη↾i ≤s Mη and
i ∈ S ⇒ [η(i) = 0 ⇔Mη↾i ≤s Mη]

The proof of 2.6(1) is finished by Fact 2.8, Definition 2.9 and Fact
2.10 below.

2.8 Fact. If η ∈ Tλ (recall Tλ = {η : η belongs to λ2 and [i ∈
λ\S ⇒ η(i) = 0]}) and the ⊆-increasing sequence 〈M i : i < λ〉 satis-

fies Mη :=
⋃

i<λ

M i, ‖M i‖ < λ, then Smth(Mη) = η−1({0}) mod Dλ

where

2.9 Definition. For M ∈ Kλ, λ regular, |M | =
⋃

i<λ

Ai, Ai increas-

ing continuous, |Ai| < λ, Mi := M ↾ Ai, then
Smth(M) = SmthK(M) = Smths(M) = {i : Mi ≤s M}/Dλ recall-
ing Dλ is the club filter.

2.10 Fact. Smth(M) does not depend on the choice of 〈Ai : i < λ〉.

End of the Proof of 2.6. 2) Now Theorem 2.6(2) is an easy variant:
for α successor ordinal, by any reasonable bookkeeping, take care to
make all the Mη (η ∈ Tλ) to be (DK, χ)-homogeneous. �2.6

2.11 Fact. 1) We can conclude in 2.6 that in Kλ there are 2λ

models, no one ≤s-embeddable into another (and when λ = λ<χ +
2χ(K)+|τ(K)|, each (DK, χ)-homogeneous) provided that

(∗) if M,N ∈ Kλ and M is ≤s -embeddable into N then
Smth(N) ⊆ Smth(M).
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2) The statement (∗) above holds when:

(∗)1 ≤s (i.e. the class {(M,N) : M ≤s N}) is a PCµ,ω-class,
where µ < λ
or just

⊛λ,κ K is a PCµ,θ-class where µ < λ and θ ≤ 2µ.

3) Assume that κ is minimal such that K<λ fails κ-smoothness, which
is not a loss for 2.6. Then, letting S = {δ < λ : cf(δ) = κ}, for the
desired conclusion in part (1), we can weaken (∗) to (∗)S for some
stationary S ⊆ λ, see below, and (∗)S is implied by ⊛′

λ,κ where

(∗)S if M ≤K N are from Kλ, then Smth(N)∩S ⊆ Smth(M)∩S

⊛′
λ,κ (∀θ < λ)θ<κ < λ and there is a vocabulary τ ′ ⊇ τ of car-

dinality < λ and ψ ∈ Lλ,κ(τ) such that ≤K is the class of
τ -reducts of models of ψ.

4) Assume (in 2.6) that S, as a subset of λ, is not small see I.0.5(1)
(or [DvSh 65], [Sh:b, Ch.XIV]). Let µwd(λ) be as in I.0.5(2) (so it is
“usually” 2λ). Then in Kλ there is no universal member and we can
find Mi ∈ Kλ for i < µwd(λ) such that:

(a) for i > j then Mi cannot be ≤s-embedded into Mj

(b) if λ = λ<χ+2χ(K)+|τ(K)| then eachMi is (DK, χ)-homogeneous.

Proof. 1) Obvious we elaborate. (Let S ∈ Ǐ[λ] be a stationary subset
of λ, hence there is a sequence 〈Sε : ε < λ〉 of pairwise disjoint subsets
of S. Now for every U ⊆ λ let ηU ∈ λ2 be: ηU (α) = 1 if α ∈ S2ζ+1

for some ζ ∈ U and ηU (α) = 0 otherwise).
2) So suppose without loss of generality that M ≤s N . Let 〈Mi :
i < λ〉, 〈Ni : i < λ〉 be representations of M,N respectively. As
M ≤s N by the assumption that “≤K is a PCµ,ω-class, µ < λ” the
set E = {δ < λ : Nδ ∩M = Mδ and Mδ ≤s Nδ} contains a closed
unbounded subset of λ.
3) Similar.
4) See Chapter VII or imitate the proof of [Sh 87b, Theorem 3.4];
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only here the construction of Mη is as above and Case A disappears.
�2.11

Remark. Some parts of 2.11 deal really just with K.

§3 Non χ-Based

3.1 Hypothesis. AxFr1 (of course) and χ is such that K has the χ-
LSP except in claims in which χ does not appear or appear but a
weaker relative of the χ-LSP is an assumption (e.g. LSP(≤ µ, χ)).

3.2 Remark. 0) Under a smoothness hypothesis we will show that
χ-LSP this implies K has the λ-LSP for all λ larger than χ.
1) We can through §3-5 replace χ+ by a regular uncountable cardinal.
2) Some of the claims below really says something on any K satisfying
(A0)-(A4).
3) Note that as long as we do not assume smoothness we cannot really
work only inside the monster C; because if we choose (or construct)
Mα ≤K C by induction on α ≤ α∗,≤K-increasing, in limit steps
δ < α∗ we may like to use Mδ := ∪{Mα : α < δ}, but possibly
Mδ �K C. But, of course, we can then continue outside C and in the
end embed Mα∗ into C over say M0.

3.3 Convention. C is a monster model, i.e., large (DK, κ̄)-homogeneous
model (see V.B.3.10, κ̄-universality is problematic as long as we do
not have smoothness).

∗ ∗ ∗

We did not assume an axiom bounding the cardinality of 〈A〉gnM in
terms of |A|. Thus even if K has Lowenheim Skolem property down
to κ that is LSP(κ), it may not have it down to λ > κ. This problem
disappears in the presence of smoothness.
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3.4 Claim. 1) For λ ≥ χ, LSP(λ) holds if (≤ λ,≤ λ)+-smoothness
holds (see Definition V.B.1.18(3),(4)).
2) If K is (< µ,< µ)-smooth and has LSP(≤ µ, χ) then for every λ
satisfying χ ≤ λ < µ,K has LSP(µ, λ). (See Definition V.B.1.16(4)).
3) In 2), if A ⊆M ∈ Kµ, |A| < µ then we can find 〈Mi : i < µ〉 which

is ≤s-increasing continuous, A ⊆M0, ‖Mi‖ < µ, M =
⋃

i<µ

Mi.

See proof below, but we shall need the following observation.

3.5 Claim. 1) Suppose 〈Mt : t ∈ I〉 is given where I is a directed
partial order and [t ∈ I ⇒ ‖Mt‖ ≤ λ] and |I| ≤ λ+:

(a) if (λ,≤ |I|)-smoothness holds and [I |= t < s ⇒ Mt ≤s Ms]
then for s ∈ I,

Ms ≤s M :=
⋃

t∈I

Mt = 〈
⋃

t∈I

Mt〉
gn
M ,

(b) if (λ,≤ |I|)+-smoothness holds and [t ∈ I ⇒ Mt ≤s M ] and
[I |= t < s ⇒ Mt ⊆ Ms] then for every s ∈ I we have

Ms ≤s

⋃

t∈I

Mt = 〈
⋃

t∈I

Mt〉
gn
M ≤s M .

2) If A ⊆M ∈ K and LSP(|A|) (or just LSP(‖M‖, |A|) then we can
find a directed I and Mt ≤s M , ‖Mt‖ = |A| for t ∈ I such that

A ⊆Mt ⊆Ms for t ≤I s from I and M =
⋃

t∈I

Mt.

3) In (1)(b) if NF(Ma,Mt, N
a,M) whenever t ∈ I (so Ma ≤s Mt

for every t) and we are assuming (≤ ‖
⋃

t∈I

Mt‖,≤ |I|)+-smoothness

then NF(Ma,
⋃

t∈I

Mt, N
a,M).

4) In parts (1),(2) instead (λ,≤ |I|)+-smoothness we can use (λ,≤
|I|, ‖M‖)-smoothness for clause (b), see Definition V.B.1.18(3).

Proof of Claim 3.5. 1) By induction on |I|, (i.e., we prove (a) and
(b) simultaneously by induction on |I|):

Case (i): |I| is finite.
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The result is trivial, use the maximal member.

Case (ii): |I| ≥ ℵ0.

Let I =
⋃

α<|I|

Iα, Iα increasing, |Iα| < |I| and each Iα directed.

Let Mα =
⋃

t∈Iα

Mt. Clearly 〈Mα : α ≤ |I|〉 is ⊆-increasing con-

tinuous. Let α < |I|. By clause (a) of the induction hypothesis,
if t ∈ Iα then Mt ≤s Mα, in particular, for every β < α we
have t ∈ Iβ ⇒ Mt ≤s Mα. Applying clause (b) of the induc-
tion hypothesis with Mα, Iβ here standing for M, I there we get
Mβ = ∪{Mt : t ∈ Iβ} ≤s Mα. As this holds for any β < α < |I| we
have proved that 〈Mα : α < |I|〉 is ≤s-increasing hence by Ax(A4) we
have α < |I| ⇒ Mα ≤s M := ∪{Mβ : β < |I|} = ∪{Mt : t ∈ I}. So
if t ∈ I then for some α < |I|, t ∈ Iα so Mt ≤s Mα ≤s ∪{Mt : t ∈ I}.

Also |M | ⊆ ∪{|Mt| : t ∈ I} ⊆ ∪{〈|Mt|〉
gn
M : t ∈ I} ⊆ 〈

⋃

t∈I

Mt〉
gn
M ⊆

〈M〉gnM = M . So we have proved clause (a).
For clause (b), by the induction hypothesis Mα ≤s M for each

α and clearly for β < α we have Mβ ⊆ Mα hence by Ax(A3) we
have β < α ⇒ Mβ ≤s Mα. So by the assumption on smoothness
⋃

α<|I|

Mα ≤s M but
⋃

α<|I|

Mα =
⋃

t∈T

Mt so we are done.

2) By I.1.7, replacing LS(K) by |A|, (e.g. replace K by K≥|A|); or just

like the1 proof of 3.4(2) which appears below.
3) Like the proof of (1), using Lemma 1.9 in the induction step is
O.K. as the relevant cases of smoothness holds by the assumptions
of part (1).
4) Easy. �3.5

3.6 Remark. In some circumstances, e.g., Banach spaces or |T |+-
saturated models of T , where (full) smoothness fails, if we still have
a prime model on (or closure of) the union of increasing chains, we
can “save” (∀µ ≥ χ)LSP(µ) by replacing the cardinality of a model
M by, e.g., the density character, i.e. the minimal cardinality µ,

1no viscious circle, the order is 3.5(1), 3.4(1),(2), 3.5(2),(3), 3.4(3)
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such that for some A ⊆M , |A| = µ, M the closure of A (for Banach
models) or is |T |+-primary over M (for |T |+-saturated models) or
by pscard(M) as in V.B.1.28.

Proof of Claim 3.4. 1) Let A ⊆M, |A| ≤ λ. Choose by induction on
n < ω for every finite set u ⊆ A of cardinality n, a model Nu such
that: u ⊆ Nu, Nu ≤s M , ‖Nu‖ ≤ χ and w ⊂ u ⇒ Nw ⊆ Nu. There

is no problem to do it, see I§1 A ⊆
⋃

u

Nu ⊆ M , ‖
⋃

u

Nu‖ ≤ λ and

⋃

u

Nu ≤s M by Claim 3.5(1)(b).

2) So assume M ∈ K, ‖M‖ ≤ µ and A ⊆ M with |A| = λ. For
each finite set u ⊆ |M | choose Nu ≤s M with ‖Nu‖ ≤ χ such that
u ⊆ Nu and [v ⊂ u implies Nv ⊆ Nu] (so they form a directed
indexed set of models). Since K is (< µ,< µ)-smooth, for each
B ⊆M of cardinality < µ the model NB := ∪{Nu : u ⊆ B is finite}
is in K and [u ∈ [B]<ℵ0 ⇒ Nu ≤s NB ] and ‖NB‖ ≤ |B| + χ (all by
3.5(1)(a)). It remains to show NA ≤s M .

Note again by (< µ,< µ)-smoothness:

(∗) [C ⊆ B ⊆M ∧ |B| < λ⇒ NC ≤s NB]

(use 3.5(1)(b)). Write M as
⋃

i<µ

Ai with A = A0, the Ai increasing

continuous and |Ai| < µ. Then M =
⋃

i<µ

NAi
, and by (∗) we have

〈NAi
: i < µ〉 is ≤s-increasing continuous. So by Ax(A4) for j < µ,

NAj
≤s

⋃

i<µ

NAi
; i.e., NAj

≤s M ; taking j = 0, we finish.

3) Included in the proof of 3.4(2).

The central definition of this section is “NF is κ-based”, 3.7(1):

3.7 Definition. 1) NF is κ-based when: if M ≤s M
∗ and A ⊆M∗

where |A| ≤ κ then for some N0, N1 we have ‖N1‖ ≤ κ,N0 =
M ∩N1, A ⊆ N1 and NF(N0,M,N1,M

∗). We define “(< κ)-based”
similarly. We may say s is κ-based.
2) NF is (λ, κ)-based if (1) hold when ‖M‖ = λ (similarly we define
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“NF is (≤ λ, κ)-based”,etc).
3) NF is χ-weakly κ-based if we weakened the conclusion to “N0,M,N1

are in χ-weakly stable amalgamation inside M∗”, which mean that:
N0 ≤s M ′ ≤s M & M ′ ∈ Kχ+κ ⇒ N0,M

′, N1 are in stable
amalgamation inside M∗. Similarly χ-weakly (λ, κ)-based.

The following lemma will lead via Section 4 to the conclusion in
theorem 5.2, that if K is not χ-based (but has some smoothness)
then for suitable µ the class Kλ has 2λ non-isomorphic (DK, µ)-
homogeneous models in many cardinals λ.

3.8 Lemma. Assume λ > χ,K is (≤ λ,≤ λ)-smooth (see V.B.1.18(3)),
K has LSP(λ, χ), NF is not (≤ λ, χ)-based as exemplified byM,A,M∗

hence ‖M∗‖ ≤ λ, |A| ≤ χ. Then there are Mi, Ni(i < χ+) such that:

⊙ (a) ‖Mi‖, ‖Ni‖ ≤ χ;

(b) A ⊆ N0;

(c) Mi = M ∩Ni;

(d) Mi ≤s Ni ≤s M
∗ and Mi ≤s M ≤s M

∗;

(e) the triple Mi,Mi+1, Ni is not in stable amalgamation
(inside M∗);

(f) 〈Mi : i < χ+〉 is continuous increasing;

(g) 〈Ni : i < χ+〉 is continuous increasing.

Proof. We choose (Mi, Ni) by induction on i.

Case 1. i = 0. We choose by induction on ζ < χ,Aζ , Bζ such

that |Aζ | + |Bζ | ≤ χ,Aζ ≤s M,Bζ ≤s M∗, Bζ ⊇
⋃

ξ<ζ

Bξ ∪ (Aζ ∩

M), Aζ ⊇ A ∪
⋃

ξ<ζ

Aξ ∪
⋃

ξ<ζ

Bξ. Now N0 :=
⋃

ζ<χ

Aζ is as required:

⋃

ζ<χ

Aζ ≤s M
∗, (by (≤ λ,≤ λ)-smoothness and the choice of Aζ , Bζ)

and (
⋃

ζ<χ

Aζ)∩M =
⋃

ζ<χ

(Aζ ∩M) =
⋃

ζ<χ

Bζ ≤s M , (by smoothness).
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Let M0 = M ∩N0 =
⋃

ζ<χ

Bζ . So clauses (a),(b),(c) hold and N0 ≤s

M∗ and M0 ≤s M . Now by Ax(A3) we have M0 ≤K N0 hence clause
(d) holds, too.

Case 2. i limit: Take unions (use smoothness).

Case 3. i = j + 1: Clearly “not NF(Mj, Nj,M,M∗)” (by the choice
of A,M,M∗). We can represent M as a direct limit of a directed set

of ≤s-submodels including Mj of cardinality ≤ χ, M =
⋃

t∈I

Mt (use

LSP(λ, χ) and 3.5(2)). Necessarily for some t, Mj , Mt, Nj are not in
stable amalgamation inside M∗. [Why? By 3.5(3),(4)]. Now define
Mi, Ni as in the case i = 0 such that Mt ⊆ Mi, Nj ⊆ Ni and (a),
(c), (d) holds. Now by monotonicity of NF (i.e., Ax(C3)) we have:
(e) holds. �3.8

3.9 Remark. 0) In the proof of 3.8 we use (≤ λ,≤ λ)-smoothness
only when we quote 3.5(4) in case 3. So we can replace “(≤ λ,≤ λ)-
smooth” by (≤ λ,≤ χ)-smooth at the price of strengthening the
assumption to NF is not χ-weakly (≤ λ, χ)-based. Similarly below.
1) In Case 1 we can choose Aζ , Bζ only for ζ < θ where θ is a regular
cardinal ≤ χ. Then we use (λ,≤ χ, θ)-smoothness only. Still we
should consider the use of smoothness in case 3.
2) Let θ = cf(θ) ≤ χ and assume only (χ, θ)+-smoothness that is
(λ, χ, θ)-smoothness, see Definition V.B.1.18(3). Then as explained
in 3.9(0),(1) above we can still prove the weaker version of lemma
(assuming even just that s is not χ-weakly (≤ λ, χ)-based), but in
clauses (f) and (g) of the conclusion we know that we get continuity
only for δ < χ+ of cofinality θ. This complicates the combinatorics
in section 4.

3.10 Claim. Suppose LSP(≤ χ+, χ) and s is (≤ χ+,≤ χ+)-smooth.
Then the existence of Mi, Ni (i < χ+) as in 3.8 is equivalent to “s

is not (χ+, χ)-based”.
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Proof. The implication “if” holds by 3.8. For the implication “only
if” let 〈(Mi, Ni : i < χ+〉 is as in 3.8, i.e. satisfies clauses (a)-(g)
there.

Note that by clause (e) we have Mi 6= Mi+1, hence M := ∪{Mi :
i < χ+} belongs to Kχ+ and i < χ+ ⇒ Mi ≤s M . Let N =
∪{Ni : i < χ+} so N ∈ Kχ+ and i < χ+ ⇒ Ni ≤s N . But by the
(≤ χ+,≤ χ+)-smoothness we have M ≤s N . Toward contradiction
assume that s is (χ+, χ)-based then for each α < χ+ applying the
definition to A = Nα we can find M ′

α, N
′
α of cardinality ≤ χ such

that Nα ⊆ N ′
α ≤s N,M

′
α = N ′

α ∩M and NF(M ′
α, N

′
α,M,N).

Let βα = min{β < χ+ : N ′
α ⊆ Nβ}. Now let γ0 = 0, γn+1 = βγn

and γω = ∪{γn : n < ω}. Also let M∗
ω = Mγω

= ∪{M ′
γn

: n <
ω}, N∗

ω = Nγω
= ∪{N ′

γn
: n < ω},M∗

ω+1 = Mγω+1, N
∗
ω+1 = Nγω+1

and let M∗
n = M ′

γn
, N∗

n = N ′
γn

. Now ¬NF(M∗
ω, N

∗
ω,M

∗
ω+1, N

∗
ω+1)

holds as it means ¬NF(Mα, Nα,Mα+1, Nα+1) for α = γω. But for
each n < ω we have NF(M∗

n, N
∗
n,M,N) by the choice of (M∗

n, N
∗
n)

hence by monotonicity we have NF(M∗
n, N

∗
n,M

∗
ω+1, N

∗
ω+1).

Apply 1.10(2) with 〈M∗
i : i ≤ ω + 1〉, 〈N∗

i : i ≤ ω〉, 〈N∗
ω+1 : i ≤ ω〉

here standing for 〈Mi : i ≤ δ + 1〉, 〈Na
i : i ≤ δ〉, 〈N b

i : i ≤ δ〉
there. This is O.K. as the assumption of 1.10 holds by a previous
sentence, hence we get its conclusion, i.e. NF(M∗

ω, N
∗
ω,M

∗
ω+1, N

∗
ω+1),

contradicting a previous sentence. The contradiction comes from
assuming “s is (χ+, χ)-based”, so we are done also with the “only if”
direction. �3.10

3.11 Remark. In Definition 3.7 we may ask that N0, N1 exist not
as submodels of M∗ but of some M∗∗, where M∗ ≤s M

∗∗. This is
apparently a weaker definition. However, assuming, e.g., (≤ χ, θ)+-
smoothness for some θ ≤ χ is enough to get back the old definition
(use 1.10(2)).

3.12 Claim. Assume s is κ-smooth, κ ≤ χ and s is χ-based. If
M1

t ≤s M2
t and At ⊆ M2

t , |At| ≤ χ for every t ∈ I and |I| ≤ χ
then for some set Y of cardinality χ, for every t ∈ I the models
M1

t ↾ Y,M1
t ,M

2
t ↾ Y are in stable amalgamation inside M2

t and
At ⊆M2

T ↾ Y .
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Proof. As without loss of generality I 6= ∅ we can let I = {tε : ε < χ}
and we choose M1

t,ε,M
2
t,ε by induction on ε < κ such that:

(a) M1
t,ε ≤s M

2
t,ε ≤s M

2
t

(b) M2
t include At ∪

⋃

{M2
s,ζ ∩M

2
t : s ∈ I, ζ < ε}

(c) ‖M2
t,ε‖ ≤ χ

(d) M1
t,ε,M

1
t ,M

2
t,ε are in stable amalgamation inside M2

t .

This is possible as s is χ-based. Let Y = ∪{M2
t,ε : t ∈ I, ε < κ} and

let M ℓ
t,κ := Y ∩M ℓ

t so we have

(α) 〈M ℓ
t,ε : ε < κ〉 is increasing with union M ℓ

t,κ for ℓ = 1, 2

(β) M1
t,ε,M

1
t ,M

2
t,ε is in stable amalgamation inside M2

t for every
ε < κ.

We can deduce that M1
t,κ,M

1
t ,M

2
t,κ is in stable amalgamation by

1.10(2).

Using Definition 4.8(1) below.

3.13 Claim. If s is (≤ κ)-smooth and χ-based and M1 ≤s M2 then
for the χ-majority of Y ∈ [M ]≤χ the triple M1 ↾ Y,M1,M2 ↾ Y is in
stable amalgamation inside M2.

Proof. Using a directed system of submodels. �3.13

§4 Stable Constructions

The following definition generalizes the notion of a construction
from Chapter IV of [Sh:c]. More precisely, since we are using inde-

pendence rather than isolation, an F
f
λ-construction recalling Fℓ

λ =
{(p, B): for some set A ⊆ C) and type p ∈ S<ω(A) we have B ⊆ A
and p does not fork over A}. We shall return to this in V.D§5 and say
there somewhat more, see in particular V.D.5.7(3) why this apply.

4.1 Context. AxFr1, i.e. s satisfies AxFr1.
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4.2 Definition. 1) A = 〈A,Bi, wi : i < α〉 is a stable construction
inside N (of length α = ℓg(A )) when (letting for u ⊆ α, Au =

〈A ∪
⋃

j∈u

Bj〉
gn
N ):

(i) A,Bi ≤s N and Aj ≤s N (note Aj = A{γ:γ<j})
for i < α, j ≤ α

(ii) (a) wi ⊆ i

(b) wi is closed for A ↾ i [defined below in 4.2(2)]

(iii) Bi ∩Ai ⊆ Awi

(iv) NF(Bi ∩ Ai, Bi, Ai, N)

(v) Bi ∩A ≤s A

(vi) For each i one of the following occurs:

Case (a) : Bi ⊆ A, wi = ∅

Case (b) : For some γi < i, wi = wγi
∪{γi} and Bi∩Ai =

Bγi

Case (c) : Bi = 〈
⋃

j∈wi

Bj〉
gn
N .

1A) Alternatively we define A = 〈A,Ai, Bj, wj : i ≤ α, j < α〉 by
simultaneous induction on α such that (i), (ii), (vi) and

(iii)′ Ai <s C is ≤s-increasing continuous

(iv)′ Bi ∩Ai, Bi, Ai is in stable amalgamation inside Ai+1

(v) Ai+1 = 〈Ai ∪Bi〉
gn
C

.

2) For such A , u is called closed or A -closed if:

(a) u ⊆ α

(b) i ∈ u⇒ wi ⊆ u.

3) A is a (< µ)-stable construction inside N if A is a stable con-
struction inside N and |wi| + |Bi| < µ for i < ℓg(A ). In this case
we say Aℓg(A ) is (< µ)-stably constructible over A.
4) Let ‖A ‖ = |α|+ |A|+ Σ{|Bi| : i < α}. For u ⊆ ℓg(A ) let cℓA (u)
be the minimal A -closed v ⊆ α such that u ⊆ v.
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4.3 Notation. 1) If A = 〈A,Bi, wi : i < α〉 then A ↾ β := 〈A,Bi, wi :
i < α ∩ β〉.
2) In Definition 4.2 we let AA = A,BA

i = Bi, A
A
i = Ai, w

A
i = wi.

4.4 Claim. Assume A is a stable construction inside N .
1) If β ≤ ℓg(A ) then A ↾ β is a stable construction inside N .
2) If γ ≤ ℓg(A ) then γ is closed for A .
3) The intersection of any family of sets each closed for A is closed
for A .
4) The union of any family of subsets of ℓg(A ) closed for A is closed
for A .
5) If u ⊆ ℓg(A ) is closed for A where A is a stable construction
inside N then AA

u ≤s N .
6) If A is a (< µ)-stable construction, µ regular, u1 ⊆ ℓg(A ) is A -
closed and a ∈ Au1

then for some A -closed u2 ⊆ u1 of cardinality
< µ we have a ∈ AA

u2
.

7) If u1 ⊆ u2 are A -closed then Au1
⊆ Au2

hence (by (5)), Au1
≤s

Au2
.

Proof. 1) - 4). Easy.
5),6),7) Are proved in 4.5; more specifically parts (5),(7) are proved
in 4.5(1) and part (6) is proved in 4.5(2). �4.4

4.5 Claim. 0) The two definitions 4.2(1), 4.2(1A) of a stable con-
struction are compatible.
1) If A is a stable construction inside N , for ℓ = 0, 1, 2, uℓ ⊆ α =
ℓg(A ) is closed, and u0 = u1 ∩ u2

then Auℓ
≤s N and NF(Au0

, Au1
, Au2

, N) and Au1∪u2
= 〈Au1

∪
Au2

〉gnN .
2) 4.4(6) holds for a ∈ Aα, in fact if A is a stable construction, µ
regular and ā ∈ µ>(AA

ℓg(A )) then for some u ⊆ ℓg(A ) of cardinality

< µ we have ā ∈ µ>(AA
u ). If A is a (< µ)-stable construction then

without loss of generality u is A -closed, in fact any v ⊆ ℓg(A ) of
cardinality < µ is included in some A -closed u ⊆ ℓg(A ) of cardinal-
ity < µ.
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Proof. 0) First, clearly if A is as in definition 4.2(1), then Ai :=
〈A ∪ {Bj : j ∈ i}〉gnN = 〈A ∪ {Bj : j < i}〉gnN is well defined (by
Ax(B3)) and easily 〈A,Ai, Bj, wj : i ≤ α, j < α〉 is as required in
Definition 4.2(1A).
Second, assume A is as in Definition 4.2(1A). Now we prove by
induction on α ≤ ℓg(A ) that

⊛ (a) if u ⊆ α is A -closed then Au <s C

(b) Aα := 〈A,Bi, wi : i < α〉 satisfies Definition 4.2(1)

(c) Aα satisfies Claim 4.5(1).

This is enough.
1) Straightforward by induction on α ≤ ℓg(A ), (for successor re-
member to use 1.3, for limit use 1.10(1)).
2) We prove by induction on α ≤ ℓg(A ) that if ā ∈ µ>(AA

α ) then for
some u ⊆ α we have |u| < µ and ā ∈ µ>(AA

u ). This is straight. Also
the additional assertions are. �4.5

4.6 Claim. 1) If A = 〈A,Bi, wi : i < α〉 is a stable construction
inside N, h a one-to-one function from α onto β satisfying [j ∈ wi ⇒
h(j) < h(i)] and let w∗

h(i) = {h(j) : j ∈ wi} and B∗
h(i) = Bi then

A ∗ = 〈A,B∗
i , w

∗
i : i < β〉 is a stable construction inside N .

2) [Smoothness + Ax(C8)] If U is an unbounded subset of δ, a limit
ordinal, A = 〈A,Bi, wi : i < δ〉 and for every α ∈ U the sequence
Aα = 〈A,Bi, wi : i < α〉 is a stable construction inside N then A is
a stable construction inside N .
3) [Smoothness + Ax(C8)] If U is an unbounded subset of δ, a limit
ordinal, A = 〈A,Bi, wi : i < δ〉 and for every α ∈ U the sequence
Aα = 〈A,Bi, wi : i < α〉 is a stable construction inside Nα satisfying
Nα = 〈∪{Bi : i < α} ∪ A〉gnNi

and for α, β ∈ U we have α < β ⇒
Nα ≤s Nβ then A is a stable construction inside Nδ := ∪{Nα : α <
δ}.

Remark. As it is clear how to add one step to a stable construction,
this enables us to “construct”.
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Proof. 1) Easy by 4.5.
2),3) Easy, too. �4.6

4.7 Claim. 1) If λ<χ +2|τ(K)| = λ, LSP(< χ),M ∈ Ks and ‖M‖ ≤
λ and λ+ is ≤s-inaccessible then there is a stable construction A =
〈A,Bi, wi : i < δ〉 inside some N ∈ Ks such that A = |M |, Aδ = |N |,
‖N‖ ≤ λ and N is (Ds, χ)-homogeneous.

Proof. Straightforward. �4.7

4.8 Definition. 1) Let P ⊆ [B]λ; we say that for the λ-majority of
A ⊆ B, we have A ∈ P when: for some algebra B with universe B
and with vocabulary with ≤ λ functions, if B′ is a subalgebra of B

of cardinality λ, then |B′| belongs to P. We can replace “A ∈ P”
by ϕ(A), ϕ(−) a property, well if |B| ≤ λ, “for the λ-majority of
A ⊆ B . . . ” means “for A = B, . . .”.
2) We say “for the λ-majority of M ⊆ N , M satisfies ϕ” instead
“for the λ-majority of A ⊆ |N | the model N ↾ A satisfies ϕ”; see 4.9
below.
3) We say that for the (< λ)-majority of A ⊆ B we have ϕ when: for
some algebra B with universe B ∪ λ and (< λ) many functions for
every B′, a subalgebra of B,B′ ∩ λ an ordinal and the set B′ ∩ B
satisfies ϕ.

We can conclude from 4.6:

4.9 Observation. 1) If M is a model, τM has ≤ λ function sym-
bols (including individual constants) then for the λ-majority of A ⊆
|M |,M ↾ A is a submodel, i.e. is ⊆M .
2) If s has LSP(λ) and has (≤ λ,≤ λ)+-smoothness and M ∈ Ks

then for the λ-majority of A ⊆ |M | we have M ↾ A ≤s M .
3) If s has smoothness, λ = LS(s) and M is a τs-model then M ∈ Ks

iff for the λ-majority A ⊆M we have M ↾ A ∈ Ks.
4) If s has smoothness, λ = LS(s) and M ⊆ N are τs-models then
M ≤s N iff for the λ-majority of A ⊆ M ∪N we have (M ↾ A) ≤s

(N ↾ A).
5) In parts (3),(4) we can replace Ks by an a.e.c. K with λ = LS(K).
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Proof. 1) Obvious.
2) Easy.
3),4) By (5).
5) By Chapter I. �4.9

4.10 Claim. 1) Suppose A = 〈A,Bi, wi : i < α〉 is a (< λ+)-stable
construction, |A| ≤ λ and λ+ is ≤s-inaccessible. Then for the λ-
majority of X ⊆ Aα ∪ α, Aα ↾ (X ∩Aα) ≤s Aα and 〈A ∩X,Bi, wi :
i ∈ α ∩X〉 is a (< λ+)-stable construction (of Aα ↾ (X ∩ Aα)).
2) If A is a (< λ+)-stable construction, |A| < λ+, λ+ is ≤s-
inaccessible and ℓg(A ) < λ+ then AA

ℓg(A ) has cardinality ≤ λ.

3) We can replace λ+ by any regular uncountable cardinal.

Proof. Easily, by induction on ℓg(A ). �4.10

4.11 Claim. Suppose A = 〈A,Bi, wi : i < α〉 is a (< θ)-stable
construction, θ is a ≤s-inaccessible regular uncountable cardinal.
1) If for the (< θ)-majority of X ⊆ A, we have A ↾ X ≤s A, then
for the (< θ)-majority of X ⊆ Aα ∪ α we have A ↾ (A ∩ X) ≤s A,
Aα ↾ (Aα ∩X) ≤s Aα and 〈A∩X,Bi, wi : i ∈ α∩X〉 is (< θ)-stable
construction.
2) If A is (< θ)-smooth then Aα is (< θ)-smooth, see Definition 4.12
below.

Remark. If |A| < θ then it follows that A is (< θ)-smooth.

Proof. Easy by 1.10(1). �4.11

4.12 Definition. We say the model A is (< θ)-smooth when we can

find 〈At : t ∈ I〉 such that A =
⋃

t∈I

At, At ≤s A, |At| < θ, I directed,

[s ≤I t⇒ As ≤s At] and [J ⊆ I directed &|J | < θ ⇒
⋃

t∈J

At ≤s A].

Paper Sh:300C, Chapter V.C



176 V.C. UC: A FRAME IS NOT SMOOTH OR NOT χ-BASED

4.13 Theorem. 1) In 2.6 suppose in addition that λ is ≤s-inaccessible.

Then for every µ > λ, İĖ(µ,K) ≥ 2λ.
2) If in addition µ = µ<θ + 2|τ(K)|, θ ≤ λ we can have 2λ pairwise
non-isomorphic models, each (DK, θ)-homogeneous.

Proof. Left to the reader.

Remark. We can generalize [Sh:c, IV,§3], (presenting a uniqueness
theorem) to the present context.

4.14 Exercise: Assume that

(a) w̄ = 〈wα : α < α(∗)〉, wα ⊆ α and 0 ∈ w1+α

(b) α ∈ wβ ⇒ wα ⊆ wβ

(c) C̄ = 〈Cα : α < α(∗)〉

(d) Cα <s C

(e) if β ∈ wα then wβ = wα ∩ β and 〈Cα : α ∈ wβ ∪ {β}〉 is
<s-increasing and β ∈ wα ⇒ ∪{Cγ : γ ∈ wβ} <s Cα

or just

(e)− if β < α(∗) and 〈αβ
ε : ε < ζα〉 list wβ in increasing order then

there is a stable construction Aα such that

(α) ℓg(Aα) = ζα

(β) AAα

0 = C1
0

(γ) BAα
ε = C

α
β
ε
.

Then we can find A , f̄ such that:

(a) f̄ = 〈fα : α < α(∗)〉

(b) A is a stable construction inside C

(c) α(∗) = ℓg(A )

(d) fα is an isomorphism from Cα onto BAα
α

(e) if α ∈ wβ then fα ⊆ fβ.

[Hint: Straight using Definition 4.2(1A).]
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§5 Non-structure from “NF is not χ-Based”

We are trying to get non-structure from “NF is not χ-based” for
suitable regular χ.
Remember the definition of “λ is ≤s-inaccessible” (see V.B.1.27).

5.1 Context. AxFr1, i.e. s satisfies AxFr1.

5.2 Theorem. Assume χ+ ≥ µ > LS(K) and (≤ χ+,≤ χ+)-
smoothness holds2 but NF is not χ-based with a counterexample as
in 3.8 Then:

0) If λ+ is ≤s-inaccessible and λ = λµ+

then there are 2λ pairwise
non-isomorphic (Ds, µ)-homogeneous models of cardinality λ.
1) For every λ = λ<µ + 2χ which is regular and ≤s-inaccessible
such that some S∗ ⊆ {δ < λ : cf(δ) = χ+} is good and stationary3

there are 2λ pairwise non-isomorphic (Ds, µ)-homogeneous models of
cardinality λ; moreover with different reasonable definable invariants.

5.3 Discussion. We give, in essence, three proofs of (variants of)
Theorem 5.2. Items 5.8 through 5.10 reduce the proof of the general
case (arbitrary λ) to results in [Sh 300, III], [Sh:e, IV] using black
boxes so by 5.11 we deduce 5.2(0), which is enough for the later
parts. Items 5.13 through 5.17 (using the construction of 5.8) prove
Theorem 5.2(1) as stated. We then comment on models of cardinality
> λ.

5.4 Idea of Proof.
In 3.8 from a counterexample we get a canonical counterexample

with 〈Mi : i ≤ χ+〉, 〈Ni : i ≤ χ+〉 (as in the picture). We now

copy 〈Mi : i < χ+〉 along the tree χ+>λ: i.e., choose to define

Mη <s C(η ∈ χ+≥λ) and fη : Mℓg(η)
onto
→

isomorphism
Mη, fη increasing,

amalgamating them freely (i.e. by NFs) say inside C. For η ∈ (χ+)λ

2hence the cardinals χ+, µ are ≤s -inaccessible
3if λ > χ++ then there is such S
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we can choose Nη and gη ⊇
⋃

α<χ+

fη↾α such that gη : N → Nη,

(isomorphism onto), again amalgamating them freely inside C. For

S ⊆ (χ+)λ let NS = 〈Nη,Mν : η ∈ S, ν ∈ (χ+)>λ〉gn
C

. Now in NS over
Mη there is a copy of Nη if and only if η ∈ S (i.e. we shall prove
this).

So we have coded S, see [Sh 300, III,§5] or [Sh:e, IV,§2] for why
this implies non-structure. We shall give the proof of 5.2 after some
further discussion.

5.5 Discussion. NF is not χ-based generalizes (roughly) the first
order notion “χ ≥ |T |, T unstable” (in Chapter V.A we have con-
sidered another one) for the stable first order class κ(T ) ≤ |T |+, the
case however does not not appear when χ < |T |, as |acl(∅)| = |T |
by the definition of Ceq. But it would appear if we varied the first
order notions slightly (perhaps to deal more precisely with algebra),
and instead of using the cardinality of a set A in the definitions used
the cardinality of a minimal set of generators for A. The following
example explores this possibility.

5.6 Example. T = T eq is (first order complete) stable, not super-
stable. Now if A,B ⊆ C are algebraically closed, B = acl(b̄), ℓg(b̄) <
κ, κ regular then we can find ā ∈ A, ℓg(ā) < κ such that acl(ā),
acl(ā ∪ b̄), A are in stable amalgamation if and only if κ ≥ κr(T ).
We can just use ‖A‖gen in the definition of χ-based. There are two
reasonable ways to define ‖A‖gen:

‖A‖gen = Min{|B| : B ⊆ A ⊆ acl(B)}.
‖A‖′gen = Min{|B| : A ⊆ acl(B)}.

The second is less natural but it satisfies A1 ⊆ A2 ⇒ ‖A1‖
′
gen ≤

‖A2‖
′
gen (i.e., monotonicity holds). So “NF κ-based” is a generaliza-

tion of κ ≥ κr(T ).

5.7 Discussion Continued. Later, in Chapter V.D, we shall have
another notion, capturing the parallel of κ(T ) and so in particu-
lar “superstability”. But remember that “stable” was captured in
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some sense in Chapter V.A and axiomatized in Chapter V.B. Look-
ing carefully at universal classes (see V.B.2.3) we see that for this

case (i.e., ≤s is ≤ℵ0

qf,µ+,χ+ - see V.B.2.8, K a universal class without

the (χ+, qf)-order property, µ = 22χ

) the statement “s is χs-based”
follows. However, this is seemingly not true for the general s we are
dealing with. Also note that if, e.g., K is the class of submodels
of models of T , T first order, stable not superstable with elimina-
tion of quantifiers, so K is a universal class, then in V.B.2.3 we get
(K,≤K,NF, 〈〉gn) satisfying AxFr1. After the following theorem and
assumption we shall be able to generalize some definitions and facts
on stable theories to our context, e.g., |T |+-primary model, paral-
lelism. In other words, only assuming smoothness and s is χ-based
we can really generalize stability theory.

5.8 Proof of Theorem 5.2. By our assumption (see Lemma 3.8), there
are sequences 〈Mi : i ≤ χ+〉, 〈Ni : i ≤ χ+〉 such that:

(∗)1 (i) both are ≤s-increasing continuous

(ii) i < χ+ ⇒ ‖Mi‖ + ‖Ni‖ ≤ χ

(iii) ¬ NF(Mi, Ni,Mi+1, Ni+1) for i < χ+

(iv) Mi ≤s Ni ≤s Nχ+ for i ≤ χ+.

Concerning clause (iv) note that (for i = χ+ we use (χ+, χ+)-
smoothness) to show that Mχ+ ≤s Nχ+ . Let N := Nχ+ and M :=
Mχ+ .

Let {ηi : i < i∗(0)} be a list of (χ+)>λ such that [i ≤ j ⇒ ℓg(ηi) ≤
ℓg(ηj)]. By induction on i < i∗(0) we choose fηi

, Mηi
, Ci such that:

(∗)2 (a) fηi
is an isomorphism from Mℓg(ηi) onto Mηi

(b) ηj = ηi ↾ α⇒ fηj
⊆ fηi

(hence Mηj
≤s Mηi

)

(c) Mηj
≤s Ci for j < i

(d) Ci is ≤s-increasing continuous

(e) if ℓg(ηi) = γ+1, let ηj = ηi↾γ and NF(Mηj
, Ci,Mηi

, Ci+1),
Ci+1 = 〈Mηi

∪ Ci〉
gn
Ci+1

(f) M<> = Mη0
= C0
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There is no problem.

Now for T ⊆ (χ+)>λ, let

(∗)3 CT = 〈
⋃

η∈T

Mη〉
gn
Ci∗(0)

.

5.9 Claim. 1) There a (< χ+)-stable construction A inside Ci∗(0)

with AA = ∅, BA
i = Mηj

if ℓg(ηi) = ℓg(ηj)+1 and ηj ⊳ηi, wi = {j <

i : ηj ⊳ ηi} and even AA
i = Ci for i ≤ i∗(0).

2) If T0,T1,T2 ⊆ (χ+)>λ are closed under initial segments, T0 =
T1 ∩ T2 then NF

(

CT0 , CT1 , CT2 , Ci∗(0)

)

.

Proof of 5.9. 1) Should be clear by comparing the construction with
Definition 4.2(3) recalling claim 4.5(0).
2) It is immediate by 4.5(1). �5.9

Remark. That is, is does not matter in which order we carry out the
definition.

Continuation of the Proof of 5.2. 0) We have built a tree of the

{Mη : η ∈ χ+>λ}. Since the original sequence 〈Mi : i ≤ χ+〉 was
continuous any model containing this tree will contain all the Mη :=
⋃

i<χ+

Mη↾i for η from χ+

λ such that ℓg(η) = χ+. Note: by 5.9(2)

we know that Mη ≤s Ci∗(0). Now we paste independent copies of
N = Nχ+ on the top of the tree. We will see that we can realize or

omit a particular Nη (for η ∈ χ+

λ) at will.

Formally let {να : α < λχ+

} list (χ+)λ and we can easily define

gνα
, Nνα

, gνα,ζ , Nνα,ζ , C
+
α and C⊕ for α < λχ+

, ζ < χ+ such that:

(∗)4 (α) gνα
: Nχ+ → Nνα

is an isomorphism onto extending

fνα
:=

⋃

ξ<χ+

fνα↾ξ

(β) gνα,ζ = gνα
↾ Nζ and Nνα,ζ = gνα,ζ(Nζ) for ζ < χ+
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(γ) C+
α is ≤s-increasing continuous

(δ) C+
0 = Ci∗(0)

(ε) C⊕ = C+

(λχ+
)

(ζ) NF(Mνα
, C+

α , Nνα
, C+

α+1) and C+
α+1 = 〈C+

α ∪Nνα
〉gn
C+

α+1

.

For T ⊆ χ+≥λ let (this is compatible with (∗)3):

(∗)5 CT = 〈∪{Mη : η ∈ T ∩ χ+>λ} ∪ {Nν : ν ∈ T ∩ χ+

λ}〉gn
C⊕ .

If λ = λ<µ + 2χ let CT
∗ be (Ds, µ) -homogeneous and (< µ)-stably

constructible over LT and let A T = 〈CT , BT
i , wT

i : i < iT 〉 be
such a construction and without loss of generality iT = λ, see 4.7 (if
we would like to deal with (Ds, µ)-homogeneous models of cardinality
λ1 = λ1 < µ+ 2λ ≥ λ, we shall use larger iT ). For other λ or when
proving the version without “(Dκ, µ)-homogeneous” let CT

∗ := CT .
Easily by 4.4, 4.5, 4.6, 4.7

(∗)6 CT
∗ is (< χ++)-stably constructible over Ci∗(0)

(∗)7 Ci∗(0) is (< χ+)-stably constructible over ∅

(∗)8 if T 1 ⊆ χ+≥λ is downward closed and T 0 = T 1∩χ+>λ then

(a) CT
0

is (< χ+)-stably constructible over ∅

(b) CT
1

is (< χ++)-stably constructible over CT0 (and
over ∅)

(c) CT
1

∗ (see below) is (< µ)-stably constructible over CT0

(and over ∅)

(d) ‖CT
1

∗ ‖ = λ when |T 1| ≤ λ.

Recall N = Nχ+ (see the beginning of the proof after (∗)1).

5.10 Claim. If T ⊆ χ+≥λ and ν ∈ χ+

λ are such that {ν ↾ α : α <
χ+} ⊆ T but ν /∈ T , then:

1) fν =
⋃

ξ<χ+

fν↾ξ cannot be extended to a ≤s-embedding of N into
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CT .
2) Similarly for CT

∗ .

Proof. 1) Toward contradiction assume that g : N → CT is an
≤s-embedding, extending fν . Without loss of generality T is closed
under initial segments. For ξ < χ+, let

Tξ = {ρ ∈ T : ¬((ν ↾ ξ) E ρ)}.

Clearly (see 4.4, 4.5, 4.6):

⊙ (i) CT =
⋃

ξ<χ+

CTξ [why? as ν /∈ T ]

(ii) CTξ is increasing continuous in ξ
[why? because if ξ is a limit ordinal, then note that

ν ↾ ξ =
⋃

ζ<ξ

ν ↾ ζ]

(iii) NF(Mν↾ζ , C
Tζ ,Mν , C

T ) rememberingMν =
⋃

ξ<χ+

Mν↾ξ

[why? by 5.9(2)].

Now by ⊙(i) for every ζ < χ+ the set g′′(Nζ) is ⊆
⋃

ζ<χ+

CTζ . But

CTζ increasing with ζ by ⊙(ii) and |g′′(Nζ)| ≤ χ; hence for some
ξ(ζ) < χ+ we have

g′′(Nζ) ⊆ CTξ(ζ) .

Hence

E := {α < χ+ : (∀ζ < α)ξ(ζ) < α and α is a limit ordinal}

is a closed unbounded subset of χ+. Fix ζ from E. Then g′′(Nζ) =
⋃

ǫ<ζ

g′′(Nǫ) ⊆
⋃

ξ<ζ

CTξ(ǫ) = CTζ ; so noting that
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g′′(Nζ) ≤s C
T , CTζ ≤s C

T

clearly by Ax(A3) we have g′′(Nζ) ≤s C
Tζ .

Remember NF
(

Mν↾ζ , C
Tζ ,Mν, C

T
)

by ⊙(iii), hence by monotonic-
ity

NF
(

Mν↾ζ , g
′′(Nζ),Mν, C

T
)

.

Again by monotonicity

NF
(

Mν↾ζ , g
′′(Nζ),Mν↾(ζ+1), C

T
)

but

g′′(Nζ) ∪Mν↾(ζ+1) ⊆ g′′(Nζ+1) ≤s C
T

hence

NF
(

Mν↾ζ , g
′′(Nζ),Mν↾(ζ+1), g

′′(Nζ+1)
)

which contradicts the hypothesis on 〈Mi, Ni : i ≤ χ+〉 (and g being
an ≤K-embedding).

2) If µ is singular then λ = λ<µ ⇒ λ = λµ = λ<µ+

, so without loss
of generality µ is regular and CT

∗ 6= CT . Suppose g : N → CT
∗ is

a ≤s-embedding extending fν . So |Rang(g)| ≤ χ+, and by 4.4 for

every a ∈ CT
∗ for some closed wa ⊆ CT , |wa| < µ and a ∈ AA

T

wa
. So

by 4.4 for some closed w ⊆ ℓg(A T ), |w| ≤ χ+ and Rang(g) ⊆ AA
T

w .
Recalling µ ≤ χ+ by the assumption of 5.2, by 4.6 without loss of
generality w is a subset of χ+. Now define h : χ+ → χ+ by: h(ξ) is
the first ordinal such that (using the notation from the proof of part
(1)): for every ζ < ξ,BT

ζ ∩ CT ⊆ CTξ and clearly E0 = {ξ : ζ <

ξ ⇒ h(ζ) < ξ and ξ is a limit ordinal} is a club of λ. For ζ ∈ E0

let Aζ
∗ = 〈CTζ ∪

⋃

ξ<ζ

BT
ξ 〉gn

CT
∗

. By 4.5 we know that 〈Aζ
∗ : ζ ∈ E0〉
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is ≤s-increasing continuous and
⋃

ζ∈E0

Aζ
∗ ≤s C

T
∗ ; and for ζ < ξ from

E0 we have NF(Nν↾ζ , A
ζ
∗, Nν↾ξ, A

ξ
∗). The rest is as in part (1). �5.10

5.11 Continuation of the proof of 5.2. Part (0).
By [Sh:e, IV,§2] or see [Sh 300, III,§5].

Remark. Note that the rest of the section is not essential for our
program.

5.12 Continuation of the proof of 5.2, Part (1).: The assumptions
on λ (in particular its being <K-inaccessible) imply that there are

T ⊆ χ+>λ and 〈Tα : α < λ〉 such that T =
⋃

α<λ

Tα,Tα is ⊆-

increasing continuous, Tα is closed under initial segments, |Tα| < λ,

and for δ ∈ S∗ we have ηδ ∈ (χ+)λ such that {ηδ ↾ ζ : ζ < χ+} ⊆ Tδ

and for no α < δ do we have {ηδ ↾ ζ : ζ < χ+} ⊆ Tα (i.e., as S∗

is good — see statement of Theorem). For S ⊆ S∗, let T [S] =

TS := T ∪ {ηδ : δ ∈ S} and let C[S] = C
T [S]
∗ = C

T ∪{ηδ:δ∈S}
∗ .

Clearly C[S] is a model of cardinality λ which is (Ds, µ)-homogeneous

when demanded. Decompose C[S] as
⋃

α<λ

C[S],α, the sequence C̄[S] =

〈C[S],α : α < λ〉 is ⊆-increasing continuous, ‖C[S],α‖ < λ. We would
like to reconstruct S/Dλ from C[S]/ ∼=, this is clearly beneficial for

our purpose. For t ⊆ TS let Mt = MS
t = C[S] ↾ 〈∪{Mη, Nν : η ∈

t ∩ T , ν ∈ t ∩ TS\T }〉gnC[S]
.

5.13 Definition. 1) For any M ∈ Kλ, λ regular > LSP(K) and
representation 〈Mi : i < λ〉 of M (i.e., it is ⊆-increasing continuous,

M =
⋃

i<λ

Mi and i < λ⇒ ‖Mi‖ < λ), we let:

Bsχ(〈Mi : i < λ〉) := {δ < λ :cf(δ) = χ+ and for every A ⊆M,

|A| ≤ χ+ some pair (N̄0, N̄1)

is a non-base χ-witnesses for A

inside (Mδ,M)}.
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where
2) We say that the pair (N̄0, N̄1) is a non-based χ-witnesses for A
inside (M0,M1) when:

(a) M0 ≤K M1

(b) A ⊆M1, |A| ≤ χ+

(c) N̄ℓ = 〈N ℓ
α : α < χ+〉 is ≤s-increasing continuous for ℓ = 1, 2

(d) N ℓ
α ∈ Kχ for α < χ+

(e) N1
α ≤s N

2
α for every α ≤ χ+

(f) N ℓ
α ≤s Mℓ for α < χ+, ℓ = 1, 2

(g) A ⊆ ∪{N2
α : α < χ+}

(h) NF(N1
α, N

2
α, N

1
β , N

2
β) fail for α < β < χ+.

3) For M ∈ Kλ, let Bsχ(M) := Bsχ(M̄)/Dχ+ whenever M̄ = 〈Mi :
i < λ〉 is a ≤K-representation of M , i.e. is as in part (1), recalling
Dχ+ is the club filter on χ+.

Remark. We can replace χ+ by a regular uncountable cardinal.

5.14 Observation. Bsχ(M̄) is an Dλ-invariant of M , i.e. if M̄1, M̄2

are ≤K-representations of M ∈ Kλ then Bsχ(M̄1) = Bsχ(M̄2) mod
Dλ.

Now we shall prove the result without the homogeneity condition;
using our proof of 5.10(1), but first:

5.15 Claim. A sufficient condition for NF(MS
t0
,MS

t1
,MS

t2
, C[S]) is:

if t1, t2, N̄
1, N̄2 satisfies ⊡ below then (α) ⇔ (β) where

(α) for some club E of χ+, for every α < β from E we have
NF(N1

α, N
2
α, N

1
β , N

2
β)

(β) if ν ∈ t2\T and ζ < χ+ ⇒ ν ↾ ζ ∈ t1 then ν ∈ t1
and

⊡ (a) t1 ⊆ t2 are subsets of TS of cardinality χ+

(b) tℓ is closed under initial segments
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(c) N̄ ℓ = 〈N ℓ
α : α < χ+〉 is a ≤K-representation of

〈∪{Mη : η ∈ tℓ ∩ T } ∪ {Nν : ν ∈ tℓ ∩
χ+

λ}〉gn
C⊕ .

Proof. Let {ηℓ
ε : ε < χ+} list tℓ∩T and 〈νℓ

ε : ε < χ+〉 list tℓ∩
χ+

λ; we
are assuming for notational simplicity that tℓ * T and also assume

ε < ℓg(ηℓ
ζ) ⇒ ηℓ

ζ ↾ ε ∈ {ηℓ
ξ : ξ < ζ}.

For ζ < χ+ let

N ℓ,∗
ζ = 〈∪{Mηℓ

ε
: ε < ζ} ∪ {Nνℓ

ε,ζ
: ε < ζ}〉gn

C⊕ .

Now for some club E1 of χ+ we have

⊙ (i) if ℓ ∈ {1, 2} and ζ ∈ E1 then N ℓ
ζ = N ℓ,∗

ζ and

(ii) {η2
ε , ν

2
ε : ε < ζ} ∩ t1 = {η1

ε , ν
1
ε : ε < ζ}.

Now for the N ℓ,∗
ζ ’s the result should be clear. �5.15

5.16 Fact. For part (1) of 5.2, for any stationary S ⊆ S∗, S∗ ∩
(λ\ Bsχ(C̄[S])) = S mod Dλ.

Proof. We shall show that a club E of λ as required in Claim 5.15 is

E =

{

α : C[S],α = 〈{Mη : η ∈ Tα} ∪ {Nνδ
: δ < α ∩ S}〉gn

C⊕

}

.

It is easy to see E is a club of λ since C[S] is generated by {Mη : η ∈
T } ∪ {Nνδ

: δ ∈ S}.

The result follows by 5.15. �5.16

5.17 End of the Proof of 5.2 part(1). First, without homogeneity
Theorem 5.2 easily follows from 5.16. For, if C[S]

∼= C[S′] (with
S, S′ ⊆ S∗), Fact 5.16 implies that S and S′ agree on a club. But
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there are 2λ stationary subsets of S∗ which are pairwise not equal
mod Dλ.

Second, with homogeneity the proof is similar replacing the role
of 5.15 by 5.18.

�5.2

Similarly to 5.15

5.18 Claim. If t1, t2, u1, u2, N̄
1, N̄2 satisfies ⊡ below then (α) ⇔

(β) when

(α) for some club E of χ+, for every α < β from E we have
NF(N1

α, N
2
α, N

1
β , N

2
β)

(β) if ν ∈ t2\T and ζ < χ+ ⇒ ν ↾ ζ ∈ t1 then ν ∈ t1

⊡ (a) t1 ⊆ t2 are subsets of TS of cardinality χ+

(b) tℓ is closed under initial segments

(c) uℓ ⊆ iT has cardinality ≤ χ+ is A T -closed
and is such that for every i ∈ uℓ we have

BT
i ∩ CT ⊆ 〈{Mη : η ∈ tℓ ∩ χ+

λ} ∪ {Nν : ν ∈

tℓ ∩
χ+

λ}〉gn
CT

for ℓ = 1, 2

(d) u1 ⊆ u2

(e) N̄ ℓ = 〈N ℓ
α : α < χ+〉 is a ≤K-representation of

Nℓ = 〈{Mη : η ∈ tℓ ∩
χ+>λ} ∪ {Nν : ν ∈ tℓ ∩

χ+

λ} ∪
{BT

i : i ∈ uℓ}〉C⊕.

Proof. Similar to 5.15. �5.18

∗ ∗ ∗

5.19 Remark. 1) So it was enough for 5.9 (so really 5.2) that

{i < χ+ : ¬ NF(Mi, Ni,Mi+1, Ni+1)}
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is stationary.
2) By [Sh:e, VI,2.1] we can get other variants of 5.2 as we have the
right representation.

5.20 Fact. We can use the proof of 5.2 to get 2λ models in λ1 ≥ λ.
Using models which have a stable construction 〈CT , BT

α , wT
α : α <

α(T )〉, ‖BT
α ‖ ≤ χ (so we get something for singular λ1).

3) We can in 5.2 omit the “(Ds, µ)-homogeneous” demand gaining
the omission of “λ = λ<µ”. If we demand only λ ≥ 2µ we have the
models in Kus

µ,χ+ (see Definition V.B.3.20).

Proof. We have to use an extension of the definition of Bs as defined
in 5.21 below.

5.21 Definition. Let M ∈ K≥λ. We say Bsλ
χ(M) = S/Dλ iff for

the λ-majority of A ⊆ |M |, |A| = λ ⇒ M ↾ A ≤s M & Bsχ(M ↾

A) = S/D.
To carry the proof we just need 4.11.
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UNIVERSAL CLASSES: NON-FORKING

AND PRIME MODELS

SH300-D

§0 Introduction

Lemma 1.2 is a necessary crucial step. It says that if µ is such that
s satisfies AxFr1, is (≤ µ,≤ µ)-smooth, (≤ µ+, µ)-based and satisfies
LSP(µ), then those conditions hold for all µ′ ≥ µ. From Section 2
we fix the least such µ as χs and from then on assume χs < ∞.

Note that in Chapter V.C we have gotten non-structure results
from the failure of such properties so this assumption is justified.

After assuming the existence of χs, this chapter is quite parallel
to Ch.III,IV of [Sh:c], and many theorems are parallel.

In Section 2 we define a (Ds, µ)-prime models and prove their
existence (for µ > χs). In Section 3 we begin the development of non-
forking for types. The first step is to extend the NF relation from a
relation between models to a relation between conjugacy classes. The
“orbital”, “algebraic” version of tp(M, N) is tp(M, N) := {F (M) :
F ∈ AUTN (C)} where C is “the” monster in this context.

In Sections 3 and 4 we develop this notion. But in this chapter
we concentrate almost exclusively on the case when the domain of
the type is a model and, moreover, a realization of a type is an
enumeration of a model.

In Sections 5 and 6 we develop further properties of (Ds, µ)-prime
models.

Note that our models here correspond to algebraically closed sets
in [Sh:c], (Ds, χ

+
s )-homogeneous models here correspond to Fa

κr(T )-

saturated models there, so some theorems in [Sh:a] on models have
no corresponding theorems here (like [Sh:c, IV,5.6]).

Typeset by AMS-TEX

189
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190 V.D. UC: NON-FORKING AND PRIME MODELS

§1 Being smooth and based progagate up

This section contains two results. In Lemma 1.2 we show that
if s is (≤ χ,≤ χ+)-smooth and (χ+, χ)-based and LSP(χ) then s is
µ-smooth and µ-based and has the µ-LSP for µ ≥ χ. The proof of
this result requires the refining of the notion of smooth to keep track
of the size of the models in the union. (Cf. Definition V.B.1.18).

Secondly, (Fact 1.12) we show that if the framework s contains a
single non-trivial amalgamation (e.g. NF(N0, N1, N2, N3) with N1 6=
N0 isomorphic to N2 over N0 (by a non-identity isomorphism) then
s has arbitrarily large models.

1.1 Context. (AxFr1) if not said otherwise.

1.2 Lemma. If s is (≤ χ,≤ χ+)-smooth (really Ks is), NF is
(χ+, χ)-based, LSP(χ) holds and µ ≥ χ then s is (≤ µ,≤ µ)-smooth,
NF is (≤ µ,≤ µ)-based and LSP(µ, λ) holds when µ ≥ λ ≥ χ.

Before we prove 1.2, we do 1.4.

1.3 Explanation. 1) Note that if s is (≤ χ,≤ χ,≤ χ)-smooth but
not (≤ χ, χ+, χ+)-smooth then there is a ≤s-increasing continuous
sequence 〈Mα : α < χ+〉 of members of Kχ and N ∈ Kχ+ such that
α < χ+ ⇒ Mα ≤s N but ∪{Mα : α < χ+} �s N . Recall that in
“(λ, χ, κ)-smoothness”, the λ is the size of each member of the ≤s-
increasing sequence say 〈Mα : α < δ〉, κ is the length of the sequence
(so δ = κ) and χ is the size of the model M in which they are (so
Mα ≤s M for α < κ and the conclusion is ∪{Mα : α < δ} ≤s M)
and we omit χ when χ = λ.
2) Remember that s is κ-based means: for every M ≤s M∗ and
A ⊆ M∗ with |A| ≤ κ there is an N ≤s M∗ with |N | ≤ κ, A ⊆ N
such that M is independent from N over M ∩N and s is (λ, κ)-based
when we restrict ourselves to M ∈ K≤λ. The next result shows that:

if A is contained in Mδ with
⋃

i<δ

Mi ⊆ Mδ then we can find an

N which satisfies this condition simultaneously for a subsequence
containing less than µ of the Mi.
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More precisely,

1.4 Fact. 1) Suppose LSP(µ, λ), µ > λ ≥ κ and s has (≤ λ, κ)-
smoothness. If 〈Mi : i ≤ κ〉 is ≤s-increasing, ‖Mκ‖ = µ and
∑

i<κ

‖Mi‖ ≤ λ then
⋃

i<κ

Mi ≤s Mκ.

2) Suppose Ks has (< µ, < µ)-smoothness and satisfies LSP(≤ µ, λ),

λ < µ. If |I| ≤ λ, {Mt : t ∈ I} ⊆ Ks
≤µ and A ⊆

⋃

t∈I

Mt, |A| ≤ λ then

we can find {Nt : t ∈ I} such that A ⊆
⋃

t∈I

Nt and for each t ∈ I we

have Nt ≤s Mt, ‖Nt‖ ≤ λ and |Nt| = |Mt| ∩

(

⋃

s∈I

Ns

)

.

3) In (2) we can assume only (≤ λ, κ)-smoothness, for every κ ≤ λ
(or just the conclusion of 1.4(1), (i.e., (≤ λ,≤ µ, κ)-smoothness).

Remark. In 1.4(1) we need to assume LSP(µ, λ) since ‖Mκ‖ may be
greater than λ. But using LSP(µ, λ) we interpolate a model of size
λ.

Proof. 1) By LSP(µ, λ) applied to Mκ,
⋃

i<κ

Mi as M, A respectively,

there is N , N ≤s Mκ, ‖N‖ ≤ λ such that
⋃

i<κ

Mi ⊆ N . By Ax(A3),

Mi ≤s N for i < κ. So by (≤ λ, κ)-smoothness
⋃

i<κ

Mi ≤s N hence

by transitivity of ≤s we have
⋃

i<κ

Mi ≤s Mκ, as required.

2) We choose 〈Nn
t : t ∈ I〉 by induction on n < ω such that:

(a) ‖Nn
t ‖ ≤ |A| + λ + |I| = λ

(b) Nn
t ≤s Mt

(c) Mt ∩ (A ∪
⋃

{N ℓ
s : ℓ < n, s ∈ I} is included in Nn

t

(d) If ‖Mt‖ ≤ λ then Mt ⊆ N0
t .
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For this we use just LSP(≤ µ, λ). Let Nt =
⋃

n<ω

Nn
t ; the only non-

trivial point is “Nt ≤s Mt” which follows by 1.4(1) (see V.C.3.4(2)).
3) Same proof but we define 〈Nε

t : t ∈ I〉 by induction on ε < κ.
�1.4

Proof of 1.2. We prove by induction on µ ≥ χ that Ks is (≤ µ,≤ µ)-
smooth, LSP(≤ µ, λ) when µ ≥ λ ≥ χ and NF is (≤ µ,≤ µ) -
based. For µ = χ this is given. So suppose µ > χ and for every µ′,
χ ≤ µ′ < µ the induction hypothesis holds. We shall prove it for µ
by the following series of subfacts.

1.5 Subfact. If M ∈ Ks
µ and A ⊆ |M |, then there is N ≤s M , such

that A ⊆ |N |, ‖N‖ ≤ χ + |A| (i.e., LSP(µ, λ) for µ ≥ λ ≥ χ, i.e. the
last conclusion of 1.2 holds for µ).

Proof. If |A| < µ then by Claim V.C.3.4(2); why? as the induction
hypothesis on µ holds we have (< µ, µ)-smoothness and recalling
we are assuming LSP(χ) hence in particular LSP(µ, χ)]. Lastly, if
|A| = µ choose N = M . �1.5

1.6 Subfact. If M ∈ Ks
µ, the sequence 〈Mi : i < δ〉 is ≤s-increasing,

for each i < δ, Mi ≤s M and
∑

i<δ

‖Mi‖ < µ then
⋃

i<δ

Mi ≤s M .

Proof. Without loss of generality 〈Mi : i < δ〉 is not eventually con-
stant, and without loss of generality δ = cf(δ), and (see our assump-

tions) λ :=
∑

i<δ

‖Mi‖ < µ and clearly δ < µ. Now we apply 1.4(1)

with 〈Mi : i < δ〉ˆ〈M〉, µ, λ, δ here standing for 〈Mi : i ≤ κ〉, µ, λ, κ
there. The assumption “s has (≤ λ, κ)-smoothness” demanded there
holding by the induction hypothesis and the assumption “LSP(µ, λ)”
holds by subfact 1.5. So the conclusion of 1.4 holds and it says that
⋃

i<δ

Mi ≤s M as required. �1.6
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1.7 Subfact. 1) If M ≤s M∗, A ⊆ M∗, ‖M∗‖ = µ and |A| < µ then
for some N ≤s M∗ we have:

⊙ A ⊆ N , ‖N‖ ≤ χ + |A|
and N ∩ M, N, M ′ is in stable amalgamation inside M∗

whenever M ∩ N ⊆ M ′ ≤s M, ‖M ′‖ < µ.

2) If µ > χ+ + |A| then in part (1) we can replace the assumption
“M ≤s M∗” by:

⊞ M ⊆ M∗ and if N ⊆ M, ‖N‖ < µ then N ≤s M ⇔ N ≤s M .

Proof. If µ = χ+ then for part (1) this is said in the assumptions of
1.2 and for part (2) this does not occur so without loss of generality
µ > χ+; hence |A| + χ+ < µ. We prove the statement by induction
on |A|. First assume |A| ≤ χ.

Note that LSP(µ, λ) holds for λ ∈ [χ, µ] by 1.5; imitating the proof
of V.C.3.8, i.e. by V.C.3.9(0), we can find N ≤s M∗ of cardinality
≤ χ such that M ∩ N ≤s N, A ⊆ N, N ⊆ M∗ and [M ∩ N ≤s

N ′ ≤ M & ‖N ′‖ ≤ χ ⇒ NF(N ∩ M, N, N ′, M∗)]. By ⊞ we
have M ∩ N ≤s M∗ hence by Ax(C3) we have M ∩ N ≤s N . We
shall prove that N is as required. Suppose N ∩ M ⊆ M ′ ≤s M
and ‖M ′‖ < µ; by 1.5 there is M∗

1 such that M ′ ∪ N ⊆ M∗
1 ≤s M∗

and ‖M∗
1 ‖ < µ hence by Ax(A3) N ≤s M∗

1 and by ⊞ we have
M ′ ≤s M∗

1 . As we are inside the induction on µ, letting µ1 = ‖M∗
1 ‖

we know that NF is (≤ µ1,≤ µ1)-based and we apply it to the pair
of models M ′ ≤s M∗

1 and the set |N |. So recalling we are assuming
|A| ≤ ‖N‖ ≤ χ there is N1, N ⊆ N1 ≤s M∗

1 such that ‖N1‖ ≤ χ
and the triple N1∩M ′, N1, M ′ is in stable amalgamation inside M∗

1 ,
i.e. NF(N1 ∩ M ′, N1, M

′, M∗
1 ) hence by monotonicity Ax(C3) also

NF(N1 ∩ M ′, N1, M
′, M∗). Note that N1 ∩ M ′ ≤s M by Ax(A3)

because N1 ∩ M ′ ≤s M∗ and N1 ∩ M ′ ⊆ M ′ ⊆ M ≤s M∗ and, for
part (2) the cardinality of N1 ∩ M ′ is ≤ χ. By the choice of N , we
have N ∩M , N1 ∩M ′, N is in stable amalgamation inside M∗ hence
(by monotonicity Ax(C3)) inside N1 so NF(N ∩M, N1 ∩M ′, N, N1)
hence by symmetry, Ax(C6) we have NF(N ∩ M, N, N1 ∩ M ′, N1).
By transitivity of NF (i.e., Ax(C9) see V.C.1.3,V.C.1.4) we have
NF(N ∩ M, N, M ′, M∗) as required.
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So we have proved for |A| ≤ χ; let |A| > χ.
Now let A = {ai : i < |A|}. We choose Ni by induction on i ≤ |A|
such that:

⊛ (i) ‖Ni‖ ≤ χ + |i|

(ii) Ni ≤s M∗

(iii) ai ∈ Ni+1

(iv) Ni is ≤s-increasing continuous

(v) Ni ∩ M, Ni, M
′ is in stable amalgamation (inside M∗)

whenever
Ni ∩ M ⊆ M ′ ≤s M, ‖M ′‖ < µ.

For i = 0 and for i successor — choose Ni satisfying (i)-(v) by the
induction hypothesis on |A|.
For i limit: by 1.6 we know that

Ni :=
⋃

j<i

Nj ≤s M∗

and

Ni ∩ M =
⋃

j<i

(Nj ∩ M) ≤s M∗.

Clearly clauses (i)-(iv) of ⊛ holds. For clause (v) let N1 ∩ M ⊆
M ′ ≤s M, ‖M ′‖ < µ; by ⊞ we have M ′ ≤s M . By the induction
hypothesis j < i ⇒ NF(Ni ∩ M, M ′, N ′

i , M
∗).

By Claim V.C.1.10(3) the models M ∩Ni, Ni, M
′ are in stable amal-

gamation inside M∗. Now N|A| is as required. �1.7

1.8 Subfact. NF is (≤ µ,≤ µ)-based (i.e., the second conclusion of
1.2 holds).

Proof. So we should prove

(∗) if M ≤s M∗, A ⊆ M∗, ‖M∗‖ ≤ µ, |A| ≤ µ then for some
N ⊆ M∗, we have: A ⊆ N , ‖N‖ ≤ χ+ |A| and N ∩M, N, M
is in stable amalgamation inside M∗
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If |A| = µ this is trivial (let N = M∗), so assume |A| < µ.
Let |M∗| = {ai : i < µ} where A = {ai : i < |A|}.

We now choose Ni by induction on i < µ exactly as in ⊛ in
the proof of 1.7. Now we cannot be stuck in i = 0 or i = j + 1
as 1.7 says so and we can prove we are not stuck for i limit as in
the proof of 1.7. So we have 〈Ni : i < µ〉 satisfying (i) - (v) of ⊛

there. Clearly 〈Ni : i < µ〉 is ≤s-increasing continuous (by (iv))
with union M∗ (by (ii),(iii) and the choice of 〈ai : i < µ〉 above).
Now 〈Ni ∩ M : i < µ〉 is an ⊆-increasing continuous sequence of
members of Ks with union M . Next Ni ∩ M ≤s M by (v) and note
that M ≤s M∗. By (v) and monotonicity + Ax(C3)(c) we have
i < j < µ ⇒ NF(Ni ∩ M, Ni, Nj ∩ M, Nj) hence by V.C.1.10(3) we
have NF(Ni ∩ M, Ni, M, M∗); so as A = {ai : i < |A|} clearly for
i = |A|, Ni is as required. �1.8

1.9 Subfact: The framework s has (≤ µ,≤ µ)-smoothness (i.e. the
first conclusion of 1.2 holds for µ).

Proof. By the assumption (of 1.2) without loss of generality µ > χ.
Toward contradiction suppose Mi ∈ K (for i ≤ δ) is ≤s-increasing,

‖Mδ‖ ≤ µ but M∗ :=
⋃

i<δ

Mi �s Mδ. Without loss of generality

〈Mi : i < δ〉 is not eventually constant and δ = cf(δ) hence δ ≤
µ, ‖Mδ‖ = µ and 〈Mi : i < δ〉 is continuous.

[Why? As we can prove by induction on δ; there is an increasing
continuous sequence 〈αε : ε < cf(δ)〉 of ordinals < δ with limit δ;
if cf(δ) < δ then the subfact holds for 〈Mαε

: ε < cf(δ)〉ˆ〈Mδ〉 and
this implies the desired conclusion, so without loss of generality δ =
cf(δ).

Also we let N ′
i be Ni if i = δ or i < δ is a non-limit ordinal and

N ′
i = ∪{Nj : j < i} otherwise. Now N ′

i ≤s Mi for i < δ, because if i
is a limit ordinal by the minimality of δ and trivially otherwise.]

Now we first prove:

1.10 SubFact:. If (δ and 〈Mi : i ≤ δ〉 are as above and) A ⊆ Mδ, |A| <
µ, i ≤ δ, i < µ then there is N satisfying ‖N‖ = χ+|A|+|i|, N ≤s Mδ
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such that for every j ∈ {γ : γ ≤ i}\{δ} we have N ∩ Mj ≤s Mj and
NF(N ∩ Mj , Mj, N, Mδ).

Proof. We choose by induction on n < ω for every α ∈ {j : j ≤
i}\{δ} models Mn

α , Nn
α such that:

(i) Mn
α ≤s Mα, Nn

α ≤s Mδ, N
n
α ∩ Mα = Mn

α

(ii) ‖Mn
α‖ ≤ χ + |A| + |i|

(iii) ‖Nn
α‖ = χ + |A| + |i|

(iv) Nn
α includes A ∪ ∪{Nk

β : k < n, β ∈ {j : j ≤ i}\{δ}}

(v) NF(Mn
α , Mα, Nn

α , Mδ) holds for α ≤ i.

This is easily done as we are assuming i < δ ≤ µ and NF is (≤ µ,≤

µ)-based by 1.8. Let N =
⋃

n<ω

Nn
0 ; by clause (iv) clearly N =

⋃

n<ω

Nn
α

for each α ∈ {j : j ≤ i}\{δ}. Now ‖N‖ ≤ χ + |A| + |i|, hence (by
(iii)) equality holds. Now N ≤s Mδ by 1.6 above.
Clearly for j ∈ {γ : γ ≤ i}\{δ} we have:

⋃

n<ω

Mn
j =

(

⋃

n<ω

Mn
j

)

∩ Mj ⊆ (
⋃

n<ω

Nn
0 ) ∩ Mj

⊆ N ∩ Mj ⊆
⋃

n<ω

(Nn
0 ∩ Mj)

⊆
⋃

n<ω

(

Mn+1
j ∩ Mj

)

=
⋃

n<ω

Mn+1
j =

⋃

n<ω

Mn
j

hence N ∩Mj =
⋃

n<ω

Mn
j and by 1.6 we have

⋃

n

Mn
j ≤s Mj. So N ∩

Mj =
⋃

n<ω

Mn
j ≤s Mj for each j ∈ {γ : γ ≤ i}\{δ} as required, but

also for j = δ because it means N ≤s Mδ which was proved. Lastly
for j ∈ {γ : γ ≤ i}\{δ}, by clause (v) we have NF(Mn

j , Mj, N
n
j , Mδ)

for n < ω hence NF

(

⋃

n<ω

Mn
j , Mj,

⋃

n<ω

Nn
j , Mδ

)

by V.C.1.10(3) re-

calling subfact 1.6. But this means that NF(N ∩ Mj, Mj, N, Mδ),
i.e., N is as required recalling ‖N‖ = χ + |A| + |i|. �1.10
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1.11 Continuation of the proof of 1.9.:

The proof splits to two cases.

Case α. δ < µ.
Let Mδ = {aγ : γ < µ} and by induction on γ < µ choose Nγ such
that:

(i) Nγ ≤s Mδ

(ii) ‖Nγ‖ ≤ |γ|+ χ + |δ|

(iii) aγ ∈ Nγ+1

(iv) for every j < δ, Nγ∩Mj ≤s Mj and NF(Nγ∩Mj , Mj, Nγ, Mδ)

(note: δ < µ)

(v) 〈Nγ : γ < µ〉 is ≤s-increasing continuous
hence

(vi) Mδ = ∪{Nγ : γ < µ}.

Successor stages and γ = 0 are done by Subfact 1.10 above. For limit

stages γ let Nγ =
⋃

β<γ

Nβ , then (i) holds by (< µ, < µ)-smoothness

and 1.6; clause (ii) is trivial, clause (iii) is irrelevant; for clause (iv)
we have Nγ ∩Mj ≤s Mj again by 1.6 (and the induction hypothesis)
and NF(Nγ ∩ Mj , Mj, Nγ, Mδ) holds by V.C.1.10(3) and the induc-
tion hypothesis; lastly, clause (v) holds trivially so we can carry the
induction and there are such Nγ ’s.

Suppose γ(1) < γ(2) < µ; for j < δ by clause (iv) we have
NF(Nγ(1)∩Mj , Mj, Nγ(1), Mδ) but Nγ(1)∩Mj ≤s Nγ(2)∩Mj ≤s Mj

(by Ax(A3) as Nγ(ℓ) ∩ Mj ≤s Mj for ℓ = 1, 2 and Nγ(1) ∩ Mj ⊆
Nγ(2) ∩ Mj).
Also (Nγ(2) ∩ Mj) ∪ Nγ(1) ⊆ Nγ(2) ≤s Mδ hence by monotonicity of

NF we have NF
(

Nγ(1) ∩ Mj , Nγ(2) ∩ Mj , Nγ(1), Nγ(2)

)

. So for each
γ < µ the sequence 〈Nγ ∩ Mj : j < δ〉 is ≤s-increasing continuous,
and j < δ ⇒ Nγ ∩ Mj ≤s Nγ ∈ K<µ hence by the induction hy-

pothesis on µ the sequence 〈Nγ ∩Mj : j < δ〉ˆ〈(
⋃

j<δ

Mj)∩Nγ , Nγ〉 is

≤s-increasing continuous for each γ < µ. Hence by V.C.1.10(2)
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NF(Nγ(1) ∩ (
⋃

j<δ

Mj), Nγ(2) ∩ (
⋃

j<δ

Mj), Nγ(1), Nγ(2)).

Now applying V.C.1.10(3) + monotonicity (i.e. Ax(C3)(b)) with Mi

there standing for Ni ∩
⋃

j<δ

Mj here and Ni there standing for Ni

here (and recalling
⋃

i<δ

Ni = Mδ) we finish the case δ < µ.

Case β. δ = µ (so µ is regular).

Note that if N is a submodel of
⋃

i<δ

Mi of cardinality < µ, then

N ≤s

⋃

i<δ

Mi iff N ≤s Mδ [because each such N is a submodel of Mi

for some i < δ and then N ≤s Mδ ⇔ N ≤s Mi ⇔ N ≤s

⋃

j<δ

Mj].

Clearly there is 〈Nα : α < δ〉 which is ⊆-increasing continuous
with union ∪{Mα : α < δ} such that ‖Nα‖ < µ for α < δ (= µ) and
Nα ≤s Mα for α non-limit hence Nα ⊆ Mα for every α < µ. So
if α ≤ β < δ and α is a non-limit ordinal then Nα ≤s Mα ≤s Mβ

so Nα ≤s Mβ ≤s ∪{Mγ : γ < δ}. By subfact 1.6 we deduce that
Nα ≤s ∪{Mβ : β < δ} for every α < µ; so for α < δ we have
Nα ≤s Mα ≤s Mδ hence Nα ≤s Mδ. We can replace 〈Mα : α ≤ δ〉 by
〈Nα : α < δ〉ˆ〈Mδ〉 so without loss of generality α < δ ⇒ ‖Mα‖ < µ.

If µ = χ+, then we can use the assumption “s is (≤ χ, χ+)-smooth
(of 1.2), so assume µ > χ+. Under those circumstances we can use

1.7(2) (with
⋃

i<δ

Mi, Mδ here corresponding to M, M∗ there).

So we get

(∗) if A ⊆ Mδ and |A| < µ then for some N1 ≤s N2 we have

N2 ≤s Mδ, N1 = N2 ∩
⋃

i<δ

Mi, ‖N2‖ ≤ |A| + χ and: if N1 ≤s

M ′ ∈ K<µ and M ′ ≤s ∪{Mi : i < δ} then NF(N1, N2, M
′, Mδ)

so N2 ∩ M ′ = N1 = N2 ∩ ∪{Mi : i < δ}.

Let Mδ = {ai : i < µ}. Now we can choose (N1,i, N2,i) by induction
on i < µ such that
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⊛ (a) N1,i ≤s N2,i ≤s Mδ

(b) ‖N2,i‖ = χ + |i|

(c) N1,i ≤s ∪{Mα : α < δ}

(d) ai ∈ N2,i+1 and ai ∈
⋃

α<δ

Mα ⇒ ai ∈ N1,i+1

(e) 〈Nℓ,j : j ≤ i〉 is ≤s-increasing continuous for ℓ = 1, 2

(f) if N1,i ≤s M ′ ≤s ∪{Mα : α < δ} and M ′ ∈ K<µ then
NF(N1,i, N2,i, M

′, Mδ).

For i = 0 and i successor use (∗), for i limit use V.C.1.10(3). Lastly,
having carried the induction clearly Mδ = ∪{N2,i : i < µ} and
∪{Mα : α < δ} = ∪{N1,i : i < µ} and by V.C.1.6 we get ∪{Mα :
α < δ} ≤s Mδ as required. �1.9, �1.2

1.12 Fact∗. [AxFr3 + LSP(χ) + χ ≥ |τK|].
1) If N0 ≤s N1 ≤s N3 and N0 ≤s N2 ≤s N3 and f is an isomorphism
from N1 onto N2 over N0, (so idN0

⊆ f) such that f 6= idN1
then

K≥λ 6= ∅ for every λ.
2) There are such Nℓ(ℓ < 4) if K≥(2χ)+ 6= ∅.
3) If K≥λ = ∅ for some λ, then K has a member M∗ of cardinality
≤ 2χ such that: M∗ is (Ds, µ)-homogeneous for every µ (even > 2χ!);
also if N ≤s M∗ then M∗ has no non-trivial automorphism over N .

1.13 Remark. 0) On AxFr3, see Definition V.B.1.9 and it follows
from AxFr1.
1) We are using only χ ≥ LS(s)+ |τ(s)| and axioms (A0),(A1),(A2),
(A4),(C1),
(C2)(existence),(C3)(monotonicity),(C5)(uniqueness).
2) Instead of (C5) we can assume Ax(F1).
3) Instead (A4) we can use just (A4)−, but then we have to omit
clause (d) in the proof of part (1).

Proof. We shall prove 1) later.
2) If ‖M‖ > 2χ, M ∈ K, as LSP(χ), we can find N0 ≤s M, ‖N0‖ ≤ χ.
For each c ∈ M let Nc be such that:
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N0 ≤s Nc ≤s M

‖Nc‖ ≤ χ

c ∈ Nc

Now the number of isomorphism types of (Nc, c, d)d∈N0
is ≤ 2χ hence

there are c1 6= c2 from M such that

(Nc1
, c1, d)d∈N0

∼= (Nc2
, c2, d)d∈N0

.

So there is an isomorphism f from Nc1
onto Nc2

such that

f ↾ N0 = idN0
, f(c1) = c2.

So N0, Nc1
, Nc2

, M, f are as required on N0, N1, N2, N3, f in part (1).
1) Let c ∈ N1 be such that f(c) 6= c. We choose by induction on
α < λ, fα, Nα, Mα such that:

(a) fα is an isomorphism from N3 onto Nα over N0,

(b) M0 = N3

(c) NF(N0, N
α, Mα, Mα+1)

(d) for α limit Mα =
⋃

β<α

Mβ

(e) Mα is ≤s-increasing.

Clearly 〈Mα : α < λ〉 is ≤s-increasing and Nℓ, N
β ≤s Mα for β <

α, ℓ < 4. How do we define? For α limit let Mα := ∪{Mβ : β <
α}, so by Ax(A4) we deduce Mα ∈ K and β < α ⇒ Mβ ≤s Mα

(clearly Nβ ≤s Mα by transitivity of ≤s, that is Ax(A2)). For
α + 1 use Ax(C2) to choose Mα+1, N

α, fα and by Ax(C1) we have
Mα ≤s Mα+1, Nα ≤s Mα+1. Let Mλ = ∪{Mα : α < λ}. Of course,
Nℓ ≤s Mα as Nℓ ≤s M0 ≤s Mα ≤s Mβ for ℓ < 3, α ≤ β ≤ λ. It is
enough to show

(∗) if α < λ then fα(c) /∈ Mα.
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Suppose not, by clause (c) and monotonicity (i.e., Ax(C3)):

NF (N0, f
α(N1), Mα, Mα+1)

and

NF (N0, f
α(N2), Mα, Mα+1) .

Let hα = (fα) ◦ f ◦ (fα ↾ N1)
−1, it is an isomorphism from fα(N1)

onto fα(N2) over fα(N0). So idfα(N0), hα,idMα
is an isomorphism

from fα(N0), f
α(N1), Mα onto fα(N0), f

α(N2), Mα, respectively and
idfα(N0) ⊆ hα, idMα

and hα(fα(c)) 6= fα(c). By the uniqueness

Ax(C5) there is a pair (M+
α+1, h

+
α ) such that: Mα+1 ≤s M+

α+1 and

h+
α is a ≤s-embedding of Mα+1 into M+

α+1 extending hα ∪ idMα
.

So h+
α (fα(c)) = hα(fα(c)) 6= fα(c), however if indeed fα(c) ∈ Mα

then h+
α (fα(c)) = idMα

(fα(c)) = fα(c), contradiction. So ‖Mλ‖ ≥
‖{fα(c) : α < λ}‖ is as required.
3) Left to the reader. �1.12

1.14 Remark. 1) Thus we have described models “generated” by long
sequences of indiscernibles. They are analogous to free algebras or
Ehrenfeucht Mostowksi models.
2) Of course, in 1.12(1) we can find M ∈ K≥λ which is (DK, λ)-
homogeneous.

1.15 Theorem. Suppose LSP(χ) but s does not have (≤ χ+,≤ χ+)-
smoothness or s is not (≤ χ+, χ)-based. Then:

(1) if λ is regular ≤s-inaccessible > χ++ then İ(λ, Ks) = 2λ

(2) if λ = λ<µ, µ ≤ χ+, λ Ks-inaccessible > χ then there are
2λ non-isomorphic (Ds, µ)-homogeneous models of cardinal-
ity λ.

Proof. 1) By V.C.2.4 we know that λ has stationary good subsets Sθ

of {δ < λ : cf(δ) = θ} for each θ = cf(θ) ≤ χ+. If s is not (≤ χ+,≤
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χ+)-smooth then for some θ = cf(θ) ≤ χ, s is not (≤ χ+, θ)-smooth
now use V.C.2.6. So we can assume that s is (≤ χ+,≤ χ)-smooth,
now by 1.17, the conclusion of V.C.3.8 holds so V.C.5.2(0) applies.
2) Similar using V.C.5.2(1). �1.15

1.16 Exercise:

(a) no M̄, N̄, M∗ satisfies ⊙ of V.C.3.8 for χ

(b) 〈Mα : α < χ+〉, 〈Nα : α < χ+〉 are ≤s-increasing continuous
sequences in Kχ.

Then for some club E of χ+ we have:
if α < β from E then NF(Mα, Nα, Mβ, Nβ).

[Hint: For α < χ+ let Sα = {β < χ+ : β > α and NF(Mα, Nα, Mβ, Nβ)}
and S = {α < χ+ : Sα is a stationary subset of χ+}.

(∗)1 if α < β < γ and γ ∈ Sα then β ∈ Sα.

[Why? By monotonicity of NF.]

(∗)2 if α ∈ S then Sα = (α, χ+).

[Why? By (∗)1 and the definition of S.]

(∗)3 if δ < χ+ and δ = sup(δ ∩ S) then δ ∈ S.

[Why? We prove this by induction on δ. So arriving to δ, S ∩ δ is a
closed subset of δ, let its order type be ζ and a limit ordinal and let
〈γε : ε < ζ〉 list S ∩ δ in increasing order. Let γζ = δ, γζ+1 = β.
Clearly ε < ζ ⇒ NF(Mγε

, Nγε
, Mγζ+1

, Nγζ+1
) hence by V.C.1.10 we

deduce NF(Mγζ
, Nγζ

, Mγζ+1
, Nγζ+1

) which means NF(Mδ, Nδ, Mβ, Nβ).
As β was any ordinal ∈ (δ, χ+) we conclude δ ∈ S as required.]

(∗)4 S is unbounded in χ+.

[Why? Otherwise we get a contradiction to clause (a) of the assump-
tion.]

(∗)5 S is a closed unbounded subset of χ+.
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[Why? By (∗)3 + (∗)4 it is closed unbounded.]
Now by (∗)2 + (∗)5 we are done.]

1.17 Exercise If s is not (χ+,≤ χ)-smooth but is (≤ χ,≤ χ)-smooth
and LSP(χ+, χ) then the conclusion of V.C.3.8 holds.

[Hint: Toward contradiction assume that the conclusion fails. By as-
sumption “s is not (χ+, χ)-smooth”, there are δ < χ+, a limit ordinal
and an ⊆-increasing continuous sequence 〈Mα : α ≤ δ + 1〉, Mα ∈
Kχ+ and α < β ≤ δ + 1 ∧ (α, β) 6= (δ, δ + 1) ⇒ Mα ≤s Mβ

but Mδ �s Mδ+1 (we use Ax(A4)). Without loss of generality
δ = cf(δ) and for each α ≤ δ + 1 we can find an ≤s-increasing
continuous sequence 〈Mα,i : i < χ+〉, a sequence of models of car-
dinality ≤ χ such that Mα = ∪{Mα,i : i < χ+}. By LSP(χ+, χ)
without loss of generalityMα,i ≤s Mα for non-limit i. Now the as-
sumptions of 1.6 holds with µ := χ+, hence also for limit i < χ+

we have Mα,i ≤s Mα. As we are assuming that the conclusion of
V.C.3.8 fail, by 1.16 if α < β ≤ δ + 1, (α, β) 6= (δ, δ + 1) then for
some club Eα,β of χ+ we have: if i < j < χ+ are from Eα,β then
NF(Mα,i, Mβ,i, Mα,j, Mβ,j). Let Eδ,δ+1 be a club of χ+ such that for
i < j from Eδ,δ+1, Mδ,j ∩Mδ+1,i = Mδ,i and Mδ,j ∪Mδ+1,i ⊆ Mδ+1,j.

Recall that δ < χ+.
Let E := ∩{Eα,β : α < β ≤ δ + 1}, clearly it is a club of χ+ so by

renaming without loss of generalityE = χ+. For i < χ+ we have:
〈Mα,i : α < δ〉 is ≤s-increasing continuous, each is ≤s Mδ+1 and
⊆ Mδ+1,i ≤s Mδ+1 so by Ax(A3) we have α < δ ⇒ Mα,i ≤s Mδ+1,i

hence (by s being (≤ χ,≤ χ)-smooth) we have ∪{Mα,i : α < δ} ≤s

Mδ+1,i which means Mδ,i ≤s Mδ+1,i. So 〈Mα,i : α ≤ δ + 1〉 is
≤s-increasing continuous for each i < χ+.

Let i < j < χ+, for α < β ≤ δ + 1, (α, β) 6= (δ, δ + 1) we
have NF(Mα,i, Mβ,i, Mα,j, Mβ,j) hence by symmetry Ax(C5) also
NF(Mα,i, Mα,j, Mβ,i, Mβ,j). This means that we can apply V.C.1.6
and get NF(Mδ,i, Mδ,j , Mδ+1,i, Mδ+1,j).

By symmetry Ax(C5) also NF(Mδ,i, Mδ+1,i, Mδ,j, Mδ+1,j) holds
for i < j < χ+. As 〈Mδ,i : i < χ+〉 is ≤s-increasing with union Mδ

and 〈Mδ+1,i : i < χ+〉 is ≤s-increasing continuous with union Mδ+1

by V.C.1.6. By V.C.1.6 we get Mδ ≤s Mδ+1 contradiction.]

The following is used in 4.5(6).
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1.18 Claim. 1) Assume χ is as in 1.2 and M0 ≤s Mℓ ≤s M3 for
ℓ = 1, 2. Then the folowing conditions are equivalent:

⊛1 (a) NF(M0, M1, M2, M3)

(b) for the χ-majority of Y ∈ [M3]
≤χ we have

NF(M0 ↾ Y, M1 ↾ Y, M2 ↾ Y, M3 ↾ Y )

(c) for the χ-majority of Y ∈ [M1]
≤χ we have NF(M0 ↾

Y, M1 ↾ Y, M2, M3).

2) If in addition M ′
3 ⊆ M3 then the following conditions are equiva-

lent:

⊛2 (a) NF(M0, M1, M2, M3) and M ′
3 = 〈M1 ∪ M2〉

gn
M3

(hence
M ′

3 ≤s M3)

(b) for the χ-majority of Y ∈ [M3]
≤χ we have NF(M0 ↾

Y, M1 ↾ Y1,
M2 ↾ Y, M3 ↾ Y ) and M ′

3 ↾ Y = 〈(M1 ↾ Y ) ∪ (M2 ↾

Y )〉gnM3↾Y .

3) Assume that χ is as in 1.2 and M0 ≤s M1 ≤s M3 and a ∈ M3.
Then the following conditions are equivalent:

⊛3 (a) tps(a, M1, M3) does not fork over M0

(b) for the χ-majority of Y ⊆ M3 we have tps(a, M1 ↾

Y, M3 ↾ Y ) does
not fork over M0 ↾ Y .

Proof. 1) We prove this by induction on µ := ‖M3‖ for every χ < µ.
Now the case µ ≤ χ is obvious, so assume µ > χ.

(a) ⇒ (c):
By V.C.3.13 and NF being transitivity.

(c) ⇒ (b):
By monotonicity of NF.

(b) ⇒ (a):
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By V.C.3.13 the majority of Y ∈ [M3]
≤χ belongs to Y = {Y ∈

[M1]
≤χ: NF(M0 ↾ Y, M1 ↾ Y, M0, M1)}. Now fix for awhile Y∗ ∈ Y .

Now if M0 ↾ Y∗ ≤s M ′
2 ≤s M2, M

′
2 ∈ K<µ, let µ1 = ‖M ′

1‖ + χ
then by the induction hypothesis (as the majorities form a filter) we
can find Y ∈ [M3]

µ1 such that: Y∗ ⊆ Y, M ′
2 ⊆ Y, Mℓ ↾ Y ≤s Mℓ

for ℓ ≤ 3 and NF(M0 ↾ Y, M1 ↾ Y, M2 ↾ Y, M3 ↾ Y ). But we have
NF(M0 ↾ Y∗, M1 ↾ Y∗, M0, M1) so by montonocity NF(M0 ↾ Y∗, M1 ↾

Y∗, M0 ↾ Y, M1 ↾ Y ) hence by transitivity of NF we have NF(M0 ↾

Y∗, M1 ↾ Y∗, M2 ↾ Y, M3 ↾ Y ). By monotonicity of NF (and Ax(A3))
we can deduce NF(M0 ↾ Y∗, M1 ↾ Y∗, M

′
2, M3) and recall that the

only requirements on M ′
2 were M ′

2 ∈ K<µ, M0 ↾ Y∗ ≤s M ′
2 ≤s M2.

Hence by V.C.1.10(2) we can deduce NF(M0 ↾ Y∗, M1 ↾ Y∗, M2, M3).

But Y∗ was any member of Y and we can replace χ by any
χ′ ∈ (χ, µ), hence we can find a ≤s-increasing continuous sequence
〈M1

α : α < µ〉 such that M1
α ∈ K<µ, M1 = ∪{M1

α : α < µ},
M0

α := M1
α ∩ M0 ≤s M0 and NF(M0

α, M1
α, M2, M3) for α < µ.

So again by V.C.1.10(2) we get NF(
⋃

α<µ

M0
α,
⋃

α<µ

M1
α, M2, M3), i.e.

NF(M0, M1, M2, M3) as required.
2),3) Similar. �1.18

1.19 Exercise: If s is not (χ+,≤ χ+)-smooth but is (≤ χ,≤ χ)-
smooth and LSP(χ+, χ) then the conclusion of V.C.3.8 holds.

[Hint: Assume toward contradiction that the conclusion fail. Let
〈Mα : α ≤ δ + 1〉 be a counterexample to “(χ+,≤ χ+)-smoothness”
as in the proof of 1.17; without loss of generality δ = cf(δ). By 1.17
without loss of generality δ = χ+, let 〈Mα,i : i < χ+, α ≤ δ + 1〉 and
〈Eα,β : α < β ≤ δ + 1 and (α, β) 6= (δ, δ + 1)〉 be as in the proof of
1.17.

Let E := {j < χ+ : j is a limit ordinal and if α1 < α2 < j then
j ∈ Eα1,α2

∩ Eα1,δ ∩ Eα2,δ+1 ∩ Eδ,δ+1}. Clearly E is a club of χ+.

For α ∈ E let M ′
α := ∪{Mβ,β : β < α}. Easily if (βℓ, γℓ) ∈ α × α

for ℓ = 1, 2 and α ∈ E then for some (β, γ) ∈ α×α we have Mβℓ,γℓ
≤s

Mβ,γ for ℓ = 1, 2.

So M ′
α = ∪{Mβ,γ : β, γ < α} and 〈M ′

α : α ∈ E〉 is ≤s-increasing
continuous, each M ′

α is ⊆ Mα (and ≤s Mα, applying 1.6 as above).
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Also ∪{M ′
α : α < χ+} is ⊆ Mδ and for each β < χ+ it includes

∪{Mβ,i : i < χ+}, i.e., include Mβ. As Mδ = ∪{Mβ : β < δ} we
conclude that Mδ = ∪{M ′

i : i < χ+}.
Now

(∗)1 if i ∈ E then 〈Mα,i : α < i〉 is ≤s-increasing continuous with
union M ′

i and M ′
i ≤s Mδ+1,i.

[Why? We use the definition of E so clearly 〈Mα,i : α < i〉 is
increasing continuous, moreover, union is included in Mδ+1,i, also
M ′

i = ∪{Mα : α < i} ⊆ {Mα,i : α < i} ⊆ ∪{Mα,j : α < i, j < i} ⊆
∪{Mmax{α,j} : α, j < i} = M ′

i , so the union of 〈Mα,i : α < i〉 is equal
to M ′

i and again by applying 1.6, it is ≤s Mδ+1,i.]

(∗)2 if i < j belongs to E then NF(M ′
i , Mδ+1,i, M

′
j, Mδ+1,j).

[Why? As above we have: if α < β < i then NF(Mα,i, Mβ,i, Mα,j,
Mβ,j) hence by symmetry, Ax(C5) also NF(Mα,i, Mα,j, Mβ,i, Mβ,j).

As in Case α we can deduce that NF(M ′
i ,
⋃

α<i

Mα,j, Mδ+1,i, Mδ+1,j)

which means that NF(M ′
i , Mi,j, Mδ+1,i, Mδ+1,j).

Now by Ax(A3),(C3),(C5) we get (∗)2, so we finish as in the proof
of 1.17.]

1.20 Remark. 1) Note that 1.17 says that we can weaken the as-
sumptions of 1.2.
2) Can we weaken the assumption “s is (≤ χ,≤ χ+)-smooth” in 1.2
to “s is (≤ χ,≤ χ)-smooth? This is a motivation of 1.17, 1.19, but
it uses a stronger version of (χ+, χ)-based.

§2 Primeness

In this section we introduce (for our context) the notions prime
and primary and isolation for (Ds, µ) where µ > χs and give their
obvious properties. The main lemma is 2.9: existence of isolated
types; the main point is to use “s is µ-based for µ ≥ χs”; this fact
is not needed in the first order case. The main result is 2.11, the
existence (Ds, µ)-primary models.
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For the rest of this chapter we assume

2.1 Hypothesis. 1) s satisfies AxFr1, C a monster model (so 〈A〉gn =
〈A〉gn

C
).

2) We assume χs < ∞ where χs = χ(s) is defined as

Min

{

χ :s is (≤ χ+, χ)-based, LSP(χ) and s is (≤ χ,≤ χ+)-smooth

(see V.C.3.7,V.B.1.16,V.B.1.27 respectively)

}

;

[Hence, by 1.2 for χ1 ≥ χ, smoothness holds and s is χ1-based,
LSP(χ1) holds and by V.B.3.9, the monster model C, is well defined].

2.2 Observation. If M0 ≤s Mℓ ≤s M3 for ℓ = 1, 2 and ¬NF(M0, M1,
M2, M3) then there is M ′

2 such that M0 ≤s M ′
2 ≤s M2; ‖M

′
2‖ ≤

‖M0‖ + χs and ¬NF(M0, M1, M
′
2, M3).

Proof. By transitivity of NF and s being (‖M0‖ + χ)-based (really
used in a proof in §1). �2.2

2.3 Definition. 1) M is (Ds, µ)-prime over A if:

(i) A ⊆ M ≤s C

(ii) M is (Ds, µ)-homogeneous1, see V.B.3.10

(iii) if M ′ satisfies (i) and (ii) then M can be ≤s-embedded into
M ′ over A.

2) M is (Ds, µ)-primitive over A if:

(i) A ⊆ M ≤s C

(ii) if A ⊆ M ′ ≤s C and M ′ is (Ds, µ)-homogeneous then M can
be ≤s-embedded into M ′ over A.

1this means model homogeneous as we use Ds
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2.4 Remark. So [M is (Ds, µ)-prime over A] is equivalent to [M is
(Ds, µ)-homogeneous and M is (Ds, µ)-primitive over A].

2.5 Definition. 1) We say N is isolated over (M, M0) if:

(i) M0, M, N are in stable amalgamation (i.e., inside C)

(ii) if N ′ is isomorphic to N over M0 (and N ′ ≤s C) then M0, M, N ′

are in stable amalgamation.

2) We say N is µ-isolated over (M, M0) if:

(i) M0, M, N are in stable amalgamation and

(ii) for some M1 we have M0 ≤s M1 ≤s M, ‖M1‖ < µ and
〈M1 ∪ N〉gn is isolated over (M, M1).

3) In parts (1) and (2) we may write M instead of (M, M0) when
M0 = M ∩ N .

2.6 Fact. 1) If N ≤s M then N is isolated over M .
2) If N ′ is isolated over M , (see 2.5(3)),

M ′ = 〈M ∪ N ′〉gn

χ(s) + ‖N ′‖ < µ

then M ′ is (Ds, µ)-primitive over M .
3) If Mi(i ≤ α) is ≤s-increasing continuous, Mi ≤s C and Mi+1 is
(Ds, µ)-primitive over Mi for i < α then Mα is (Ds, µ)-primitive over
M0.
4) If N is isolated over (M, M0) and µ ≥ ‖N‖+ + χ+

s then N is
µ-isolated over (M, M0).
5) If N is isolated over (M, M0), M0 ≤s M1 ≤s M, N1 = 〈M1 ∪N〉gn

then N1 is isolated over (M, M1).
6) If N is isolated over (M, M0), and M0 ≤s N0 ≤s N1 ≤s N and
M0 ≤s M1 ≤s M, M ′

1 = 〈M1 ∪ N0〉
gn and M ′

0 = N0 then N1 is
isolated over (M ′

1, M
′
0).
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7) If A ⊆ M1 ≤s M2 and M2 is (Ds, µ)-primitive over A and M1 is
(Ds, µ)-homogeneous then M1 is (Ds, µ)-prime over A.

Proof. 1) Easy.
2) Easy.
3) Suppose M is (Ds, µ)-homogeneous, M0 ≤s M ≤s C. We define
by induction on i ≤ α a ≤s-embedding fi of Mi into M , increasing
with i.
4),5),6) and 7), too, are easy. �2.6

2.7 Definition. 1) M is primarily (Ds, µ)-constructible over M0 if
M0 ≤s M ≤s C and there are an ordinal α and models Mi(i ≤
α), Ni(i < α) such that:

(i) M = Mα

(ii) M0 is the given model M0

(iii) 〈Mi : i ≤ α〉 is ≤s -increasing continuous

(iv) Mi+1 = 〈Mi ∪ Ni〉
gn
Mi+1

(v) ‖Ni‖ < µ

(vi) Ni is µ-isolated over Mi.

1A) We say A = 〈Mi, Nj , N
′
j : i ≤ α, j < α〉 is a primarily (Ds, µ)-

construction over M0 when clauses (i)-(vi) hold and

(vii) Ni ∩ Mi ≤s N ′
i ≤s Mi, ‖N

′
i‖ < µ

(viii) 〈Ni ∪ N ′
i〉

gn is isolated over Mi.

1B) If in (1A) we omit N ′
j we mean N ′

j = Nj ∩ Mj .
2) M is (Ds, µ)-primary over M0 when:

(i) M is primarily (Ds, µ)-constructible over M0 and

(ii) M is (Ds, µ)-homogeneous.

3) We say B is (Ds, µ)-atomic over A if A ≤s B <s C, and for every
B1 ⊆ B of power < µ for some B2, B1 ⊆ B2 ≤s B, |B2| < µ and
TP∗(B2, A) ∈ S <µ

c (A) is µ-isolated.
4) We may omit the “primarily” above.
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Remark. See Definition 5.3.

2.8 Claim. 1) If M is primarily (Ds, µ)-constructible over M0 then
M is (Ds, µ)-primitive over M0.
2) If M is (Ds, µ)-primary over M0 then M is (Ds, µ)-prime over
M0.

Proof. Put together parts (1),(2),(3) of Fact 2.6 recalling 2.4.

We still do not know if (Ds, µ)-prime models exist in non-trivial
cases. But now we remedy that situation.

2.9 Lemma - The Existence of Isolated Models. If M0 ≤s

M <s C, M0 ≤s N <s C and θ = ‖N‖ + χ(s) then there is N ′ <s C

isolated over M , (i.e., over (M, N ′ ∩ M)) with ‖N ′‖ ≤ θ such that
N can be ≤s-embedded into N ′ over M0.

2.10 Remark. In the first order case, extending a type to an isolated
one does not require addition of variables (as really the elements of N
serve as variables; elements of M0 as parameters). In the conclusion
of 2.9, variables are members of N ′ (or N ′\M0); parameters are
members of N ′ ∩ M .

Proof. Suppose this is impossible. We choose by induction on the
ordinal α ≤ θ+, models Mα, Nα and functions fβ,α(β < α) such
that:

⊛ (a) Mα ≤s M, ‖Mα‖ ≤ θ + |α|

(b) Nα <s C, ‖Nα‖ ≤ θ + |α|

(c) Mα is ≤s-increasing continuous with α

(d) Mα ≤s Nα

(e) for β < α, fβ,α is ≤s-embedding of Nβ into Nα

such that:

(f) γ < β < α ⇒ fγ,α = fβ,α ◦ fγ,β
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(g) α limit ⇒ Nα =
⋃

β<α

fβ,α(Nβ)

(h) fβ,α ↾ Mβ = idMβ

(i) ¬NF(Mα, Mα+1, fα,α+1(Nα), Nα+1)

(j) N0 = N , M0 as in the lemma

(k) Nα ∩ M = Mα for α > 0.

The construction follows.

Case 1. α = 0.
Let Nα = N , Mα = M0.

Case 2. α = β + 1 (hence α < θ, ‖Nβ‖ ≤ θ).
We look at Mβ, Nβ as candidates for being N ′∩M, N ′ in the con-

clusion of 2.9 with f0,β being the embedding. As Mβ ≤s Nβ , Mβ ≤s

M, f0,β(N) ≤s Nβ , M0 ≤s Mβ , ‖Nβ‖ ≤ θ, necessarily Nβ is not
isolated over (M, Mβ), hence there is a model N ′

β isomorphic to

Nβ over Mβ , say by h : Nβ → N ′
β such that Mβ, N ′

β, M are not

in stable amalgamation (in C). Now NF is θ-based (by 1.2 and
the Definition of χ(s)) hence by 2.2 there are Mβ+1, Nβ+1 such
that Mβ ≤s Mβ+1 ≤s M, N ′

β ≤s Nβ+1, ‖Nβ+1‖ + ‖Mβ+1‖ ≤ θ,
Nβ+1 ∩ M = Mβ+1 and Mβ+1, Nβ+1, M is in stable amalgamation.
Now by transitivity of NF, that is V.C.1.3 the triple Mβ, N ′

β, Mβ+1 is
not in stable amalgamation. For γ < α let fγ,α = h◦fγ,β stipulating
fβ,β = idNβ

.

Case 3. α a limit ordinal.
Let Mα =

⋃

β<α

Mβ and Nα, fβ,α(β < α) be a limit of the ≤s-

directed system 〈Nβ , fβ,γ : β < γ < α〉 (making fβ,α ↾ Mβ = idMβ
).

Note that
∧

β<α

Mβ ≤s Mα by Ax(A4), Mα ≤s M by smoothness,

Nα, fβ,α exists by Ax(A4) (and chasing arrows), Mα ≤s Nα by
smoothness.

So we finish the induction; let N∗
α = fα,(θ+)(Nα). Now 〈Mα : α ≤

θ+〉 is increasing continuous; also 〈N∗
α : α ≤ θ+〉 is ≤s-increasing
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continuous, Mα ≤s N∗
α for α ≤ θ+ and ¬ NF(Mα, Mα+1, N

∗
α, N∗

α+1)
for α < θ+. So NF is not (θ+, θ)-based (see V.C.3.10) contradicting
1.2. �2.10

2.11 Conclusion. 1) For µ > χs, M0 <s C there is a (Ds, µ)-primary
M over M0 and ‖M‖ ≤ ‖M0‖

<µ.
2) Moreover it is witnessed by a primarily (Ds, µ)-construction A

such that |NA
i | ≤ χs for i < ℓg(A ).

Proof. 1) It is enough to find M of cardinality ≤ ‖M0‖ < µ which is
primarily (Ds, µ)-constructible (hence primitive) over M0 and (Ds, µ)-
homogeneous (by 2.7(2), 2.8(2)). By facts 2.6(1),(2),(3) (and stan-
dard bookkeeping) it suffices to show:

(A) If M ∈ K, N1 ∈ K, N0 ≤s M, N0 ≤ N1 and ‖N1‖ < µ
then N1 can be ≤s-embedded into some M ′ which is (Ds, µ)-
primitive over N0.

Now (A) holds by Lemma 2.9, 2.6(2).
2) The same proof using V.B.3.18 and adapting 2.9 or use Chapter
V.E. �2.11

Concerning “simultaneous isolation”:

2.12 Fact. Suppose 〈Mi : i ≤ i(∗)〉 is ≤s-increasing continuous,
Na ≤s M0, N

a ≤s N b. Then we can find a closed w ⊆ i(∗) + 1 of
cardinality ≤ ‖N b‖+χs satisfying 0 ∈ w, i(∗) ∈ w and 〈Na

i , N b
i : i ∈

w〉 such that Na
i ≤s Mi, N

a ≤s Na
0 , 〈Na

i : i ∈ w〉 is ≤s-increasing
continuous, 〈N b

i : i ∈ w〉 is increasing continuous, Na
i ≤s N b

i , there
is a ≤s-embedding of N b into N b

i(∗) over Na and ‖Na
i ‖ ≤ ‖N b

i ‖ ≤

‖N b‖ + χs and for i ≤ i(∗), N b
i is isolated over (Mj, N

a
i ) where j =

Min{j ∈ w : j ≥ i}.

Proof. We repeat the proof of 2.9 letting M = Mi(∗) but we add to
⊛

(i) iα ≤ i(∗) is increasing continuous with α
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(j) Mα ≤s Miα

(k) if α = β + 1, then iα is minimal, (for all possible choices in
stage α) so if iβ < iα then Nβ is isolated over. �2.11

Remark. What is 2.12 about? It is intended for generalizing 2.10,
2.11 as in [Sh:c, IV,§3]. So it is not really used.

2.13 Conclusion. If 〈Mi : i ≤ α〉 is ≤s-increasing continuous and
µ > χs then we can find a ≤s-increasing sequence 〈Ni : i ≤ α〉
such that for each i, Mi ≤s Ni, Ni is (Ds, µ)-primary over Mi and
β ≤ α ∧ cf(β) ≥ µ ⇒ Mβ = ∪{Mi : i < β}.

§3 Theory of Types of Models

Previously we have studied the properties of a triple of models,
say, N0, N1, N2 which are in stable amalgamation. In this section
we consider the collection of all of N ′

2 which are conjugate to N2

by an automorphism of C which fixes N1, this is called the type of
N2 over N1. We begin by fixing some notation for describing the
conjugacy class of a sequence of elements ā. Until Definition 3.15
such a sequence will always enumerate a member of Ks. Throughout
this chapter the domain of a type will be always a member of Ks.

In this section we define in our context types, non-forking, sta-
tionarization, independence and give their basic properties. This
leads to the definition of dimension and Lemma 3.20, which says

that (Ds, µ)-homogeneity of M is equivalent to “every p ∈ S
χ(s)
c (N)

with N ≤s M and ‖N‖ ≤ χ(s) has dimension ≥ µ in M” (provided
that the model M is (Ds, χ

+
s )-homogeneous).

3.1 Definition. 1) For sequences ā, b̄ and a set A (from C) we2

define āEAb̄ if there is an automorphism f of C over A such that
f(ā) = b̄.
2) Sometimes we use sets instead of sequences abusing notation in
an understandable way.

2without smoothness (and amalgamation) this does not make sense)
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3.2 Fact. EA is an equivalence relation.

3.3 Definition. 1) Let TP(ā, A) = ā/EA. For a set B, TP∗(B, A) =
TP(〈ab : b ∈ B〉, A) where ab = b. (To conform with old notation,

p1 ⊆ p2 has the inverse meaning, see 3.7(1)). When no confusion
arises we may omit the “ ∗ ” from TP∗(B, A).
2) If A ⊆ B and p = TP(ā, B) then p ↾ A := TP(ā, A), easily
well defined; and p ⊆ q means that for some A ⊆ B and ā we have
p = TP(ā, A), q = TP(ā, B).

3.4 Remark. If you concentrated on the case of universal classes, you
might be misled to use quantifier free-types which seem to lead to
problems. If we define stable amalgamation in this way, we may lose
uniqueness of NF. Maybe TP(N2, N1) is definable over N0 (as in I)
but 〈N1 ∪N2〉

gn �s C). Avoiding this trap is one of the pluses of the
axiomatic approach.

We now define the collection of “complete” types over M which
are used in this section. Essentially TP(ā, M) is a complete type
over M if ā if an enumeration of a model N and (M ∩N, M, N) are
in stable amalgamation.

3.5 Definition. 1) S α(A) = {TP(ā, A) : ā ∈ αC} for A ⊆ M .
2) For M <s C,

S
α
c (M) =

{

TP(ā, M) :ā ∈ α
C and Rang(ā) is (the universe of) a

≤s -submodel N of C such that the triple

M ∩ N, N, M is in stable amalgamation

}

.

3.6 Remark. 1) Of course, S µ(A), S µ
c (M) depends on s and even C

(which can be avoided).
2) We shall really use just
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S
µ
c (M) and S

m(M) (m < ω).

The first is used for the parallel of theorems on stable theories. The
latter is used (in Chapter V.E and later) to develop superstability
theory and will be more different from the first order case; you have
to use more a model N with M ∪ ā ⊆ N ≤s C in order to analyze
TP(ā, M). The set S

µ
c (M) is more “closed in itself”.

In conformity with our earlier definitions we define here the notion
of a stationarization p2 of a type p1 (in better English a stationary
extension). However, since we deal only with types over models it
suffices, as will be pointed out in Claim 3.8, to deal only with the
notion of a non-forking extension.

3.7 Definition. 1) If pℓ = TP∗(Nℓ, Mℓ) ∈ S <∞
c (Mℓ), for ℓ = 1, 2

and M1 ⊆ M2 (equivalently M1 ≤s M2) we say p1 ⊆ p2 if some N ′

realizes both. In this case we say p1 = p2 ↾ M1 (this is well defined).
Similarly for pℓ ≡ TP(ā, Aℓ) for ℓ = 1, 2.
2) Let pℓ ∈ S

µ
c (Mℓ) for ℓ = 1, 2 then p2 is the stationarization of

p1 over M2 if: there is N realizing p2 and p1 and N ∩ M1, M2, N in
stable amalgamation and M1 ⊆ M2 (so p2 ⊇ p1 and M1 ≤s M2).
3) pℓ ∈ S µ

c (Mℓ), ℓ = 1, 2 are parallel if they have a common
stationarization.
4) If p1 ⊆ p2 (see above) M1 ≤s M2 and pℓ = TP∗(N, Mℓ) for
ℓ = 1, 2 we say p2 forks over M1 if p2 is not the stationarization of
p1.

The following two claims are obvious from the basic properties of NF
in Chapter V.B.

3.8 Claim. 1) If A1 ⊆ A2 ⊆ A3 and p ∈ S <∞(A3) then p ↾ A2 is
well defined, p ↾ A2 ⊆ p and (p ↾ A2) ↾ A1 = p ↾ A1 and “p1 ⊆ p2” is
a partial oder.
2) If M1 ≤s M2 (≤ C), p ∈ S

µ
c (M1) then p has one and only one

stationarization over M2, i.e. in S µ
c (M2).

Proof. Trivial. �3.8
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3.9 Claim. 1) Parallelism is an equivalence relation.
2) If p, q ∈ S <∞

c (M) are parallel then they are equal.

Proof. Obvious. �3.9

3.10 Claim. If N1, N2, N3 are in stable amalgamation,
then TP∗(N2, N3) is the stationarization of TP(N2, N1) over N3.

Proof. Check (just use the uniqueness axiom). �3.10

3.11 Claim. Suppose A ⊆ C and χs + |A| ≤ µ. Then for every M ,
for some N

A ⊆ N ⊆ C, ‖N‖ ≤ µ and TP∗(N, M) ∈ S
µ
c (M).

Proof. Follows from “NF is (|A|+χs)-based”. See 1.2 (and Definition
of χs). �3.11

3.12 Claim. 1) [Symmetry]: If TP∗(Nℓ, M) ∈ S
<∞
c (M) for ℓ =

1, 2 then:
TP∗(N1, 〈M ∪ N2〉

gn) forks over M if and only if TP∗(N2, 〈M ∪
N1〉

gn) forks over M .
2) If M0 ≤s M2 ≤s M3, M0 ≤s M1, TP∗(M2, M1) does not fork
over M0, and TP∗(M3, 〈M2 ∪ M1〉

gn) does not fork over M2, then
TP∗(M3, M1) does not fork over M0.

Proof. 1) Let N ′
ℓ = 〈M ∪Nℓ〉

gn for ℓ = 1, 2; now by symmetry for NF
it is easy to see that TP∗(N

′
1, N

′
2) does not fork over M if and only if

M, N ′
1, N

′
2 is in stable amalgamation if and only if TP∗(N

′
2, N

′
1) does

not fork over M . Now by the symmetry of the situation, it suffices
to prove:

(∗) TP∗(N
′
1, N

′
2) does not fork over M if and only if

TP∗(N1, N
′
2) does not fork over M .
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Proof of (∗). only if direction, “ ⇒ ”.
So we are assuming that TP∗(N

′
1, N

′
2) does not fork over M . Then

M, N ′
1, N

′
2 are in stable amalgamation but M ∩ N1, M, N1 are also

in stable amalgamation; together by transitivity of NF, i.e. V.C.1.3
we get M ∩N1, N1, N

′
2 are in stable amalgamation. So TP∗(N1, N

′
2)

does not fork over N1 ∩ M so inspecting the definitions, by Ax(C4)
the type TP∗(N1, N

′
2) does not fork over M .

if direction, “ ⇐ ”.
We assume TP∗(N1, N

′
2) does not fork over M ; i.e. TP∗(N1, N

′
2) is

the stationarization of TP∗(N1, M). So N1 ∩ M, N1, N
′
2 is in stable

amalgamation; by axiom (C4) the triple M , 〈N1 ∪ M〉gn, N ′
2 is in

stable amalgamation; i.e., M, N ′
1, N

′
2 is in stable amalgamation so

TP∗(N
′
1, N

′
2) does not fork over M .

2) Combine 3.12(1) with 3.13(1) below. �3.12

3.13 Claim. 1) Transitivity: If M1 ≤s M2 ≤s M3 ≤s C,

TP∗(N, M3) ∈ S <∞
c (M3) does not fork over M2 and

TP∗(N, M2) ∈ S <∞
c (M2) does not fork over M1

then

TP∗(N, M3) ∈ S <∞
c (M3) does not fork over M1.

2) Continuity a) If Ni (i < δ) is ≤s-increasing continuous and
TP∗(Ni, M) ∈ S <∞

c (M) does not fork over M0 ≤s M for each i < δ

then TP∗(
⋃

i<δ

Ni, M) ∈ S
<∞
c (M) does not fork over M0 ≤s M .

b) If Mi (i < δ) is ≤s-increasing continuous, TP∗(N, Mi) ∈

S <∞
c (Mi) does not fork over M0 for i < δ then TP∗(N,

⋃

i<δ

Mi)

does not fork over M0.
3) Monotonicity a) If TP∗(N, M) ∈ S

<∞
c (M) does not fork over

M0 ≤s M and M0 ≤s M1 ≤s M2 ≤s M then TP∗(N, M2) ∈
S

<∞
c (M2) does not fork over M1.
b) If TP∗(N, M) ∈ S <∞

c (M) does not fork over M0 ≤s M and
M0 ∩ N ≤s N1 ≤s N then TP∗(N1, M) ∈ S <∞

c (M) does not fork
over M0.
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c) If TP∗(N, M) ∈ S <∞
c (M) does not fork over M0 ≤s M and

N ∩ M0 ≤s N1 ≤s N and N ∩ M0 ≤s M−1 and N ′ = 〈N ∪ M−1〉
gn

and M ′
0 = 〈N1 ∪M0〉

gn, M ′ = 〈N1 ∪M〉gn then TP(N ′, M ′) does not
fork over M ′

0.

Proof. 1) By transitivity for NF, i.e. V.C.1.3 (and monotonicity, i.e.
Ax(C3)(c)); see the proof of ⇒ in (∗) in the proof of 3.12(1) above.
2) By V.C.1.10 (and symmetry for NF).
3) By monotonicity for NF and base enlargement axiom. �3.13

3.14 Claim. If M =
⋃

t∈I

Mt and µ ≥ χs, p ∈ S µ
c (M) and [t ≤I s ⇒

Mt ≤s Ms <s C] and I is µ+-directed then for some t, p does not
fork over Mt.

Proof. Easy (let N realize p and N0 = N ∩ M , so N0 ≤s M has
cardinality ≤ µ hence for some t ∈ I we have N0 ⊆ Mt and this t is
as required). �3.14

3.15 Definition. 1) We say {āα : α < α∗} is independent over M

where TP∗(āα, M) ∈ S <∞
c (M) if TP∗(āα, 〈M∪

⋃

β∈α∗\{α}

āβ〉
gn) does

not fork over M for every α < α∗.
2) We say {āα : α < α∗} is independent over (M1, M0) if M0 ≤s

M1 and TP(āα, M1) ∈ S <∞
c (M1) and TP∗(āα, 〈M1 ∪ ∪{āβ : β ∈

α∗\{α}〉gn) does not fork over M0 for every α < α∗.

Remark. Note that this relation does not satisfy enough axioms to
guarantee the classical definition of dimension (just as in [Sh:a, III]).

3.16 Claim. 1) If TP(āα, M) ∈ S <∞
c (M) and TP(āα, 〈M∪

⋃

β<α

āβ〉
gn)

does not fork over M for each α < α∗ then {āα : α < α∗} is inde-
pendent over M .
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2) If in addition α < α∗, I is directed and [t ≤I s ⇒ N ≤s Nt ≤s

Ns ≤s M ≤s C], M =
⋃

t

Nt and TP(āα, Nt) ∈ S <∞
c (Nt) does not

fork over N for every t ∈ I then TP(āα, M) ∈ S <∞
c (M) does not

fork over N .
3) If {āα : α < α∗} is independent over M or over (M, M0), w1 ⊆

w2 ⊆ α∗ then {āα : α ∈ w2\w1} is independent over 〈M ∪
⋃

α∈w1

āα〉
gn

or over (〈M ∪
⋃

{āα : α ∈ w1}〉, M0).
4) If wi(i < i(∗)) is ⊆-increasing with i, {āα : α ∈ wi} is indepen-

dent over M then {āα : α ∈
⋃

i

wi} is independent over M . Hence

{āα : α < α∗} is independent over M iff {aα : α ∈ w} is independent
over M for every finite w ⊆ α∗.
5) If J is a subset of {b̄ : TP(b̄, M) ∈ S <∞

c (M)}, J0 ⊆ J is inde-
pendent over M (possibly J0 = ∅) then among {J : J0 ⊆ J ⊆ J,J
independent over M} there is a maximal one.
6) If {ās : s ∈ I} is independent over M and 〈It : t ∈ J〉 is a
partition of I (i.e. I is the disjoint union of 〈It : t ∈ J〉) then

{〈
⋃

s∈It

ās ∪ M〉gn : t ∈ J} is independent over M .

Proof. 1) For each α we prove by induction on γ ≤ α∗, that

TP∗(āα, 〈M ∪
⋃

β<γ
β 6=α

āβ〉
gn)

does not fork over M . For γ ≤ α - by monotonicity and assumption.
For γ > α successor - by symmetry (i.e., 3.12). For γ limit by 3.13(2).
2) Easy by 3.13(2).
3) Immediate by properties of 〈−〉gn.
4) Just use part (1) and monotonicity.
5) Immediate from (4).
6) Left to the reader. �3.16
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3.17 Claim. If 〈āα : α < α∗〉 is independent over M and TP(b̄, M) ∈
S <∞

c (M) then for some w ⊆ α∗:

(i) |w| ≤ χ := |ℓg(b̄)| + χs

(ii) {āα : α < α∗, α /∈ w} ∪ {b̄} is independent over M

(in fact for some N , ‖N‖ ≤ |b̄| + χs,
⋃

α∈w

āα ∪ b̄ ⊆ N ,

TP∗(N, M) ∈ S <∞
c (M) and {N} ∪ {āα : α < α∗, α /∈ w}

is independent over M).

Proof. Use “NF is χ-based” and 3.16(1). �3.17

3.18 Definition. For p ∈ S <∞
c (M), M ≤s N <s C we let

dim(p, N) = Min

{

|J| :J is a maximal family of sequences from N

realizing p which is independent over M

}

.

This is well defined by 3.16(5).

3.19 Conclusion. 1) If M ≤s N ≤s C, p ∈ S µ
c (M),J is a maximal

subset of p(N) independent over M , then χs + µ + dim(p, M) ≥
|J| ≥ dim(p, N) recalling p(N) = {b̄ ∈ µN : b̄ realizes p}.
2) Above for the second inequality the maximality of J is not used.
Hence N ≤s N1 ⇒ dim(p, N) ≤ dim(p, N1) + χs + µ.

Proof. First |J| ≥ dim(p, N) because J exemplifies this in the
definition of dim(p, N). Second, assume toward contradiction that
|J| > χs + µ + dim(p, M) and let J1 exemplify the definition of
dim(p, N), so |J1| = dim(p, N). Let J = {āα : α < α∗}. For any
b̄ which is the concatanation of finitely many members of J1 let wb̄

be as guaranteed by 3.17. So there is α ∈ α∗\(∪{wb̄ : b̄ as above}).
Now obviously āα /∈ J1 and J1 ∪ {āα} is independent over M (by
3.16(4)) so āα contradicts the choice of J1. �3.19

Note also:
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3.20 Lemma. If M is (Ds, χ
+
s )-homogeneous and µ > χs, then

M is (Ds, µ)-homogeneous if and only if: for every N ≤s M , if

‖N‖ ≤ χ = χs and p ∈ S
χ(s)
c (N) then dim(p, M) ≥ µ.

Proof. The direction “ ⇒ ” is easy.
For the other direction “ ⇐ ”, we use V.B.3.18. So let M0 ⊆

M, ‖M0‖ < µ, M0 ≤s N0 <s C, c ∈ N0. As s is χs-based there are
M1 ≤s M0 and N1 ≤s N0 such that c ∈ N1, ‖M1‖ ≤ ‖N1‖ ≤ χs and
M1, N1, M0 is in stable amalgamation. By the assumption applied to
p = TP∗(N1, M1), for α < µ there are ≤s-embeddings fα : N1 → N
over M1 (i.e. fα ↾ M1 = idM1

, with no repetitions, of course)
such that {fα(N1) : α < µ} is independent over M1. By 3.17 for
some α, TP∗(fα(N1), M0) does not fork over M1 so fα(N1) realizes
TP∗(N1, M0) hence fα(c) is as required (in the criterion for M being
(Ds, µ)-homogeneous in V.B.3.18). �3.20

3.21 Conclusion. If 〈Mi : i < δ〉 is a ≤s-increasing chain of (Ds, µ)-

homogeneous models, and cf(δ) > χs then M =
⋃

i<δ

Mi is (Ds, µ)-

homogeneous.

Proof. We, of course, use the criterion of 3.20; this is allowed as M is
(Ds, χ

+
s )-homogeneous because cf(δ) > χs. Let N ≤s M, ‖N‖ ≤s χs

and p ∈ S χs

c (N). Now N ≤s M, ‖N‖ ≤s χs implies that for some
i < δ, N ⊆ Mi hence N ≤s Mi. Now dim(p, M) ≥ dim(p, Mi) ≥ µ
and we finish. �3.21

3.22 Exercise Assume

(a) {Mt : t ∈ I} is independent over M

(b) π is a permutation of I

(c) ft is an isomorphism from Mt onto Mπ(t) for t ∈ I.

Then there is an autormorphism f of 〈∪{Mt : t ∈ I}〉gn extending
∪{ft : t ∈ I}.
[Why? Prove by induction on |I|, using uniqueness and continuity
of NF.]
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§4 Orthogonality

We introduce here weak orthogonality, orthogonality of a type to
a model, and almost orthogonality in our context and give their basic
properties.

4.1 Definition. pℓ ∈ S <∞
c (M), ℓ = 1, 2 are weakly orthogonal

(p1⊥
wk

p2) when: if pℓ = TP∗(Nℓ, M) for ℓ = 1, 2 then M , 〈N1 ∪

M〉gn, 〈N2 ∪ M〉gn are in stable amalgamation.

The next claim is an easy consequence of transitivity.

4.2 Claim. If pℓ ∈ S <∞
c (M) for ℓ = 1, 2, p1, p2 are not weakly

orthogonal and M ≤s M ′ then the stationarizations of p1, p2 over
M ′ are not weakly orthogonal.

4.3 Observation. Assume that ā2 ∈ ∞>C and ā1 = ā2 ↾ w list N1.
Then tp(ā1, M) ∈ S <∞

c (M) is a reduct of tp(ā2, M) ∈ S <∞
c (M)

iff for some Nℓ <s C we have āℓ list Nℓ ∩ M, M, Nℓ is in stable
amalgamation for ℓ = 1, 2 and N |= (N1 ∩ M, N1, N2 ∩ M, N2).

Proof. Read the definition.

Remark. We are “better off” than in the first order case as every p
is stationary.

Proof of 4.2. By the assumption there are Nℓ realizing pℓ (for
ℓ = 1, 2) such that M , 〈N1 ∪ M〉gn, 〈N2 ∪ M〉gn are not in sta-
ble amalgamation. Choose N ⊇ M ∪ N1 ∪ N2 with N <s C.
Without loss of generality M, M ′, N are in stable amalgamation.
Clearly TP∗(Nℓ, M

′) does not fork over M , hence realizes the sta-
tionarization of pℓ for ℓ = 1, 2 (by transitivity of non-forking). As-
sume M ′, 〈N1 ∪ M ′〉gn, 〈N2 ∪ M ′〉gn are in stable amalgamation,
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and we shall get a contradiction, this clearly suffices. This im-
plies that TP∗(N1, 〈N2 ∪ M ′〉gn) does not fork over M ′. Remem-
ber TP∗(N1, M

′) does not fork over M so by 3.13(1), transitiv-
ity, TP∗(N1, 〈N2 ∪ M ′〉gn) does not fork over M . By monotonicity
TP∗(N1, 〈N2 ∪ M〉gn) does not fork over M , contradiction. �4.2

4.4 Definition. 1) If pℓ ∈ S <∞
c (M) for ℓ = 1, 2 we say p1 is a

reduct of p2 if there exist ā1, ā2 realizing p1, p2 respectively such
that ā1 is a subsequence of ā2. So if p2 ∈ S α

c (M), w ⊆ α, then p2 ↾

w ∈ S α
c (M) is naturally (and uniquely) defined (but not always).

2) Let pℓ ∈ S <∞
c (Mℓ), ℓ = 1, 2. We say p1 and p2 are orthogonal

(p1 ⊥ p2) if for every M , any p′1, p
′
2 ∈ S <∞

c (M) parallel to p1, p2

respectively are weakly orthogonal.

4.5 Claim. 0) If p1 = p2 ↾ w (both in S <∞
c (M)) and p′2 ∈ S <∞

c (M ′)
is parallel to p2 then p′1 = p′2 ↾ w is parallel to p1 and also ↾ w1, ↾ w2

commute.
1) If p′ℓ is a reduct of pℓ, (for ℓ = 1, 2) then p1⊥

wk
p2 ⇒ p′1⊥

wk
p′2 and so

p1 ⊥ p2 ⇒ p′1 ⊥ p′2.
2) Orthogonality of p1, p2 depends just on the parallelism type of the
p1, p2.
3) If p1, p2 ∈ S <∞

c (M) are orthogonal then they are weakly orthogonal.

4) If M is (Ds, χ
+
s )-homogeneous p1, p2 ∈ S <∞

c (M) then

p1⊥
wk

p2 ⇔ p1 ⊥ p2

5) If TP∗(Ni, M) ∈ S <∞
c (M), Ni is ≤s-increasing for i < δ and

p ∈ S <∞
c (M) then

p ⊥
(wk)

TP∗(
⋃

i

Ni, M) ⇔
∧

i<δ

[p ⊥
(wk)

TP(Ni, M)]

6) Suppose p1, p2 ∈ S <∞
c (M); then p1 ⊥

(wk)
p2 if and only if for every

pair of reducts p′1, p
′
2 of p1, p2 respectively with ≤ χs places each we

have p′1 ⊥
(wk)

p′2.
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7) Suppose M0 ≤s M, p ∈ S <µ
c (M) does not fork over M0, µ is

regular > χs, and dim(p ↾ M0, M) ≥ µ. If q ∈ S <µ
c (M) is µ-isolated

then q⊥
wk

p.

Proof. 0) Easy.
1) By (0) it suffices to deal with the case of weak orthogonality. So
we assume p1⊥

wk
p2. So there are M <s C and N1, N2 <s C such that

pℓ = TP∗(Nℓ, M). As p′ℓ is a reduct of pℓ there are N ′
ℓ ≤s Nℓ such

that p′ℓ = TP∗(N
′
ℓ, M) for ℓ = 1, 2, and p1, p2, p

′
1, p

′
2 all belong to

S <∞
c (M). So Nℓ ∩ M , Nℓ, M is in stable amalgamation as well as

N ′
ℓ∩M , N ′

ℓ, M (for ℓ = 1, 2). Let Mℓ = 〈Nℓ∪M〉gn, M ′
ℓ = 〈N ′

ℓ∪M〉gn,
so M ≤s M ′

ℓ ≤s Mℓ for ℓ = 1, 2..

Suppose p′1, p
′
2 are not weakly orthogonal. Then there is a ≤s-

embedding g (into C), Dom(g) = M ′
2, g ↾ M = idM and M, M ′

1, g(M ′
2)

are not in stable amalgamation. As C is homogeneous there is a ≤s-
embedding h (into C) extending g, Dom(h) = M2. As p1⊥

wk
p2, we

know that the triple M, M1, h(M2) is in stable amalgamation, and
by monotonicity we get a contradiction.
2) Easy.
3) By the definition and 3.9(2).
4) The direction “ ⇐ ” holds by part (3). So let us prove “ ⇒ ”, so we
are assuming p1⊥

wk
p2 and p1±p2 and we shall get a contradiction. So

there are M ′ ≤s C and p′1, p
′
2 ∈ S <∞

c (M ′) parallel to p1, p2 respec-
tively, such that p′1, p

′
2 are not weakly orthogonal. By 4.2 without

loss of generality M ≤s M ′. For ℓ = 1, 2 let Nℓ be such that p′ℓ =
TP∗(Nℓ, M

′). By part (6), (i.e., (5) and (1)) of 4.5 without loss of
generality ‖Nℓ‖ ≤ χs recalling 1.7(1). We can find N ≤s C such that
N1 ∪ N2 ⊆ N , and N ∩ M ′, N, M ′ are in stable amalgamation and
‖N‖ ≤ χs. By 1.10(2) without loss of generality also N ∩ M, N, M
are in stable amalgamation. Easily by 2.2 transitivity also N ∩ M ′,
〈N1∪(N∩M ′)〉gn, 〈N2∪(N∩M ′)〉gn are not in stable amalgamation.
Now by the assumption on M there is a ≤s-embedding h0 of N ∩M ′

into M over N ∩M . We can extend h0 to an automorphism g0 of C

such that the triple h0(N ∩M ′), g0(N), M is in stable amalgamation.
Easily TP∗(g0(Nℓ), M) = p′ℓ for ℓ = 1, 2 and the rest should also be
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clear, contradicting p1 ⊥
wk

p2.

5) For ⊥
wk

by 3.13(2). For ⊥ it follows.

6) First we deal with the ⊥
wk

version. The implication ⇒ is by part

(1) and the implication ⇐ by applying 1.18. We then deduce the
equivalence for the ⊥ version.
7) Easy too. �4.5

4.6 Definition. 1) Assume p ∈ S <∞
c (N). We say p ⊥ M (p or-

thogonal to M) if p is orthogonal to every q which ∈ S <∞
c (N ′) for

some N ′ which does not fork over M .
2) p⊥

a
M (p is almost orthogonal to M) if p ∈ S <∞

c (N) where

M ≤s N and p is weakly orthogonal to every q ∈ S <∞
c (N) which

does not fork over M .
3) Assume A = 〈A, Ni, wi : i < α〉 and κ = cf(κ) > χs +sup{‖Ni‖ :

i < α} and µ > |A| + χs +
∑

i<α

‖Ni‖. Then A is a (< µ)-stable

construction iff A is a stable (Ds, µ, κ)-construction.

Remark. 1) Why in 5.7(2) we cannot add BA
∗

j = N ′
j?

This is because in Definition 2.7(1A) we do not have the parallel
to “wj is A -closed” in V.C.4.2. Of course, we could have made
other choices in those definitions with no noticable difference in the
results.
2) By 5.7(2),(3), results on stable (Ds, µ, κ) constructions can be
translated to results on (< µ)-stable constructions and on primarily
(Ds, µ)-constructions.

Again the relevant information from [Sh:c, V,X] generalizes, e.g.

4.7 Claim. 1) Monotonicity. If p1 ⊥ M1, p0 is a reduct of p1 and
M0 ≤s M1, then p0 ⊥ M0. Also the parallel of 4.5(6) holds.
2) Similarly for ⊥

a
.

2A) If M1 ≤s M2 ≤s N2, M1 ≤s N1 ≤s N2 and p ∈ S <∞
c (N2) is

almost orthogonal to M2 then p ↾ N1 is almost orthogonal to M1.
3) If M is (Ds, µ)-saturated, for α < α(∗) we have TP(āα, M) ∈
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S <∞
c (M), χs < µ = cf(µ) and Nα is (Ds, µ)-constructible (or (Ds, µ)-

primary or (D, µ)-prime) over M ∪ āα and {āα : α < α∗} is inde-
pendent over M then:

(a) if q ∈ S <∞
c (〈M ∪ āα〉

gn) is realized in Nα then q ⊥
a

M

(b) {Nα : α < α∗} is independent over M .

Proof. Easy (e.g. for (2A), deal first with the case M1 = M2 and
then with the case N1 = N2). �4.7

§5 Uniqueness of (Ds, µ)-Primary Models

We first prove in 5.1 that a restriction of an (D, µ)-isolated type is
still isolated (if it does not fork) and similarly a reduct of a restric-
tion, 5.4. The rest of this section is parallel to [Sh:c, IV,§3], defining
and giving the basic properties of (Ds, µ)-constructions and primary
models.

5.1 Lemma. Suppose TP∗(N, M) does not fork over M0 and N
is µ-isolated over (M, M0), see Definition 2.5(2), µ > χs and, of
course, ‖N‖ < µ. If M0 ≤s M∗ ≤s M then N is µ-isolated over
(M∗, M0).

5.2 Remark. This generalizes [Sh:c, Ch.IV,4.2,4.3,pg.183,184]; so it
is natural.

5.3 Definition. We say p ∈ S <∞
c (M) is µ-isolated if p ∈ S <µ

c (M),
and for any (≡ some) N realizing it, N is µ-isolated over (M, M∩N).

Proof of 5.1. By the definition of N being µ-isolated over (M, M0)
from 2.5(2) there is M1 satisfying M0 ≤s M1 ≤s M such that 〈N ∪
M1〉

gn is isolated over (M, M1) and µ > ‖〈N ∪ M1〉
gn‖. By s being

µ-based we can find M2, M1 ≤s M2 ≤s M, ‖M2‖ = ‖M1‖ + χs < µ
such that TP∗(M2, M

∗) ∈ S <∞
c (M∗) does not fork over M2 ∩ M∗.
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By monotonicity and based enlargement (Axiom (C4)), we know that
〈N ∪M2〉

gn is isolated over (M, M2). We shall show that 〈N ∪ (M2∩
M∗)〉gn is isolated over (M∗, M∗∩M2) thus finishing as TP∗(N, M∗)
does not fork over M0, M

∗ ∩ M2 ≤s M∗, by 3.13(3).
Suppose this fails so there is a ≤s-embedding g : 〈N ∪ (M2 ∩

M∗)〉gn → C such that g ↾ (M2 ∩ M∗) = id and TP∗(Rang(g), M∗)
forks over M∗∩M2. Without loss of generality for some N∗ we have
M∗ ∪ Rang(g) ⊆ N∗ ≤s C and TP∗(N

∗, M) does not fork over M∗.
By 3.13(3)(a), i.e. monotonicity, the type TP∗(N

∗, 〈M∗ ∪ M2〉
gn)

does not fork over M∗. As also TP∗(M
∗, M2) does not fork over

M2∩M∗ [as TP∗(M2, M
∗) ∈ S <∞

c (M∗) does not fork over M2∩M∗

and symmetry], and M2 ∩ M∗ ≤s M∗ ≤s N∗ clearly by 3.12(2) the
type TP(N∗, M2) does not fork over M2 ∩ M∗. By monotonicity
it follows that TP∗(g(N), M2) does not fork over M2 ∩ M∗, hence
it is equal to TP∗(N, M2). As M1 ≤s M2 clearly TP∗(g(N), M1) =
TP∗(N, M1), hence by the choice of M1 we know that TP∗(g(N), M)
does not fork over M0, hence by monotonicity TP∗(g(N), M∗) does
not fork over M0 hence over M∗ ∩M2, contradicting the choice of g.
�5.1

5.4 Claim. Suppose M0 ≤s M1 ≤s M, N0 ≤s N1, TP∗(Nℓ, M)
does not fork over Mℓ for ℓ = 0, 1 and 〈N1 ∪ M1〉

gn is isolated over
(M, M1) then 〈N0 ∪ M1〉

gn is isolated over (M, M1).

Proof. By the proof of 4.5(1). �5.4

5.5 Fact. Assume N0 ≤s N1, N2 and N0, N1, N2 is in stable amal-
gamation. Then TP(N1, N2) is isolated over (N2, N0) if and only if
TP(N1, N0)⊥

wk
TP(N2, N0).

Proof. Easy (by the definitions). �5.5

We refine the notion of a stable construction (V.C.4.2). This is an
elaboration of Definition 2.7, we need it for proving uniqueness, etc.
The reader can restrict himself to the case κ = µ hence κ is regular.
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5.6 Definition. 1) We say A = 〈A, Ni, wi : i < α〉 is a stable
(Ds, µ, κ)-construction, when (always µ ≥ κ > χs and for simplicity
even cf(µ) > κ = cf(κ) > χs):

(a) A is a stable construction (inside C) (see V.C.4.2, so we can
use the notation there)

(b) ‖Ni‖ < κ, |wi| < κ, A <s C

(c) TP(Ni, A
A

{j:j<i}) ∈ S <∞
c (AA

{j:j<i}) is µ-isolated.

2) We say N is stably (Ds, µ, κ)-constructible over M if for some
stable (Ds, µ, κ)-construction A we have M = AA , N = AA

ℓg(A ).

3) We say B is (Ds, µ, κ)-atomic over A if A ≤s B <s C, and for
every B1 ⊆ B of power < κ for some B2, B1 ⊆ B2 ≤s B, |B2| < κ
and TP∗(B2, A) ∈ S <µ

c (A) is µ-isolated.

5.7 Claim. 1) The parallel of V.C.4.6 holds; i.e., we can change
the order of the construction.
2) If A = 〈Mi, Nj, N

′
j : i ≤ α, j < α〉 is a primarily (Ds, µ)-

construction, see Definition 2.7(1A), µ is regular > χs then we can
find a stable (Ds, µ, µ)-construction A ′ such that ℓg(A ′) = α and

AA
′

i = Mi for i ≤ α, N ′
j ≤s BA

′

j for j < α for every α ≤ ℓg(A ).
3) Assume A = langleA, Ni, wi : i < α〉 and κ = cf(κ) >

χs + sup{‖Ni‖ : i < α} and µ > |A| + χs +
∑

i<α

‖Ni‖. Then A is a

(< µ)-stable construction iff A is a stable (Ds, µ, κ)-construction.

Proof. 1) Use the weak orthogonality from §4.
2),3) Easy. �5.7

Remark. 1) Why in 5.7(2) we cannot add BA
′

j = N ′
j? This is

because in Definition 2.7(1A) we do not have the parallel to “wj is
A -closed” in V.C.4.2. Of course, we could have made other choices
in those definitions with no noticable difference in the results.
2) By 5.7(2),(3), results on stable (Ds, µ, κ) constructions can be
translated to results on (< µ)-stable constructions and on primarily
(Ds, µ)-constructions.
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5.8 Remark. On existence see 2.11(2).

5.9 Fact. 1) If β ≤ α and A = 〈A0, Ni, wi : i < α〉 and j ∈ wi ⇒
wj ⊆ wi, then: A is a stable (Ds, µ, κ)-construction, iff A ↾ β is
a (Ds, µ, κ)-construction and A ′ = 〈AA

β , NA

β+i, w
′
i : i < α − β〉 is a

stable (Ds, µ, κ)-construction where w′
i = {γ : β + γ ∈ wβ+i}.

2) Let A ⊆ B ⊆ C; if C is (Ds, µ, κ)-constructible over B and B is
(Ds, µ, κ)-constructible over A then C is (Ds, µ)-constructible over
A. Similarly for atomic.
3) If NF(N ∩A, N, A, C), ‖N‖ < µ, TP∗(N, A) is isolated over N ∩A
and B = 〈A ∪ N〉gn then B is (Ds, µ)-constructible over A.
4) If A is a stable (Ds, µ1, κ1)-construction and µ2 ≥ µ1, κ1 ≥
κ2 = cf(κ2) > χs and cf(µ2) ≥ µ2 then A is a stable (Ds, µ2, κ2)-
construction.

Proof. Should be clear, (on part (2) see [Sh:c, 3.2](4). �5.9

5.10 Fact. If M is primarily (Ds, µ)-constructible (see 2.7) over
M0, as exemplified by 〈Mi, Nj, N

′
j : i ≤ α, j < α〉, µ > χs and

κ = sup({‖Ni‖
+ : i < α} ∪ {χ+

s }), then for some stable (Ds, µ, κ)-
construction A = 〈M0, Ni, wi : i < α〉 we have M = AA

α (i.e.,

〈M ∪
⋃

i<α

Ni〉
gn) (see V.C.4.2).

Proof. By s being χ-based for χ ≥ χs. �5.10

5.11 Claim. If M is stably (Ds, µ, κ)-constructible over M0, then
M is (Ds, µ)-atomic over M0.

Remark. Here we use cf(µ) ≥ κ = cf(κ).

Proof. Let A ⊆ M, |A| < κ. By the definition and 5.10 there is a
stable (Ds, µ, κ)-construction A = 〈M0, Ni, wi : i < α〉, AA

α = M
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and so AA = M0. Clearly {AA
u : u ⊆ α is closed for A , |u| < κ} is a

κ-directed family of ≤s-submodels of M with union M , so for some
A -closed u ⊆ α of cardinality < κ we have A ⊆ AA

u (≤s M), see
Definition V.C.4.2. By 1.2 there is N ≤s M, ‖N‖ ≤ χs + |∪{Ni : i ∈

u}| < µ,
⋃

i∈u

Ni ⊆ N , TP∗(N, M0) does not fork over N∩M0. We can

now prove by induction on β ≤ α that 〈N ∩M0∪∪{Ni : i ∈ u∩β}〉gn

is isolated over (M0, N ∩ M0). �5.11

5.12 Fact. Let cf(µ) ≥ κ = cf(κ) > χs be regular.
1) If A is a stable (Ds, µ, κ)-construction, u ⊆ α := ℓg(A ) is A -
closed, A ⊆ M := AA

α , |A| < µ, then for some N ≤s M, ‖N‖ < µ,
A ⊆ N and N is isolated over AA

u .
2) If M is stably (Ds, µ, κ)-constructible over M0, N ≤s M, ‖N‖ < κ
and TP∗(N, M) ∈ S <µ

c (M) then M is (Ds, µ)-constructible over
〈M0 ∪ N〉gn.
3) If M0 ≤s M1 ≤s M2 and Mℓ+1 is (Ds, µ, κ)-atomic over Mℓ for
ℓ = 0, 1 then M2 is (Ds, µ, κ)-atomic over M0.

Proof. 1) By 5.7(1) without loss of generality u is an initial segment
of α, by 5.9(1) without loss of generality u = ∅, and then apply 5.11.
2) As in the proof of 5.11 there is an A -closed u ⊆ ℓg(A ) of cardinal-
ity < µ such that N ⊆ AA

u . By 5.7(1) without loss of generality u is
an initial segment {i : i < β} of ℓg(A ). There is M∗ ≤s M0, |M

∗| <

κ such that
∧

i<β

Ni ∩ M0 ⊆ M∗, and N ⊆ 〈M∗ ∪
⋃

i<β

Ni〉
gn. De-

fine by induction on i ≤ β, M∗
i , by: for i = 0 let M∗

i = M∗, for

limit i let M∗
i =

⋃

j<i

M∗
j and if i = j + 1, M∗

i = 〈M∗
j ∪ Nj〉

gn.

Clearly ‖M∗
i ‖ < κ for i ≤ β. By 5.11 the type TP(M∗

β , M0) is

µ-isolated. As ‖M∗
β‖ < κ, and the assumptions on N , by 2.6(6)

the type TP∗(M
∗
β , 〈M0 ∪ N〉gn) is µ-isolated. In other words AA

β is

(Ds, µ)-constructible over 〈M ∪ N〉gn by a construction of length 1
and by 5.9(1) + 5.7 the model AA

ℓg(A ) is (Ds, µ)-constructible over

AA

β . So by 5.9(2) we finish.

3) Left to the reader.
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5.13 Lemma. If cf(µ) ≥ κ = cf(κ) > χs is regular and M0 <s C,
then any two (Ds, µ, κ)-primary models over M0 are isomorphic.

Proof. As in [Sh:c, IV,3.8,3.9].

∗ ∗ ∗

5.14 Discussion. 1) A uniqueness of (Ds, µ)-prime models (as in
[Sh:c, Ch.IV,§4]) would be a better result. See Section 6. The
uniqueness without characterization (as in [Sh:c, Ch.IV,§5]) we had
not looked at it as χ is quite large anyhow; and the main point there
was doing it for models rather than quite saturated models.
2) For universal classes “prime among models” is not such a good
notion: if M �s C it is not a good object and we know too much if
M ≤s C then M is prime over itself.

§6 Uniqueness of (Ds, µ)-Prime Models

So now we can deal with prime models; we do not try to generalize
the theorem of the uniqueness of (Ds, µ)-prime models when µ ≤ χs.
(The case of cf(µ) > χs is proved just like the case µ is regular
because of 5.1).

We, of course, imitating [Sh:c, IV,§4].

6.1 Fact. If µ > χs is regular, N is (Ds, µ)-prime over M , N0 ≤s N ,
TP(N0, M) ∈ S <µ

c (M) then N is (Ds, µ)-prime and (Ds, µ)-atomic
over 〈M ∪ N0〉

gn.

Proof. We can find N1 which is (Ds, µ)-primary over M by 2.11;
without loss of generalityN1 satisfies N ≤s N1. [Why? As by 2.8(2)
primary ⇒ prime and the definition of prime.] So by 5.12(2) the
model N1 is (Ds, µ)-constructible over 〈M ∪N0〉

gn, hence the model
N1 is (Ds, µ)-prime over 〈M ∪N0〉

gn hence by 2.6(7) the model N is
(Ds, µ)-prime over 〈M ∪ N0〉

gn as required. �6.1
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6.2 Lemma. Assume

(i) N is (Ds, µ)-prime over M

(ii) µ > χs (µ regular for simplicity),

(iii) (M ′ ∩ M, M ′, M) is in stable amalgamation

(iv) M ′ ≤s N , ‖M ′‖ < µ,

(v) p ∈ S <µ
c (〈M ∪ M ′〉gnN ).

1) dim(p, N) ≤ µ.
2) Moreover, there is M ′′ ≤s N such that:

(a) ‖M ′′‖ ≤ µ, M ′ ⊆ M”

(b) M ′′ ∩ M, M ′′, M is in stable amalgamation

and

(c) the stationarization of p over 〈M ∪ M ′′〉gn has a unique ex-
tension over N .

Proof. It suffices to deal with N which is (Ds, µ)-primary over M
(for part (2) use 5.1). By the definition, N is (Ds, µ)-constructible
over M , say the (Ds, µ)-construction A witness this. Clearly M ′ ⊆
AA

u for some A -closed u of cardinality < µ, by 5.7 without loss of
generality u = β < µ.

Assume towards a contradiction that dim(p, N) > µ (or just
dim(p, N) ≥ µ, which may occur). Now by 5.7 without loss of
generality there is S ⊆ µ, |S| = µ and 〈Mα : α ∈ S〉 is ≤s-
increasing, Mα ≤s AA

α , ‖Mα‖ < µ, p has a stationarization pα over

Mα which Nα realizes and
⋃

β<α

Nβ ⊆ Mα, TP(Mα, M) does not fork

over Mα ∩ M . Now we prove that: if q ∈ S <µ
c (AA

µ ) is parallel to p

then q⊥
wk

TP(AA
γ , AA

µ ) for γ ≥ µ.

We prove this by induction on γ: use 4.5(7) for successor γ, 4.5(5)
for limit γ. The rest should be clear (or see [Sh:c, IV,4.9]). �6.2
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6.3 Theorem. For µ > χs regular, over any M :
1) All (Ds, µ)-prime models over M are isomorphic over M .
2) If N satisfies the conclusion of the last lemma and (∀A)(A ⊆

M)(|A| ≤ χ(s) ⇒ ∃M ′(TP(M ′, M) ∈ S
χ(s)
c (M) is (Ds, µ)-isolated,

A ⊆ M ′)) then N is (Ds, µ)-prime model over M .

Remark. By V.B.3.18 we can restrict ourselves to types of singletons
(see ChV). More easily to types in ≤ χ(s)-variables.

Proof. Similar to [Sh:a, IV,§4].

6.4 Exercise: Generalize 5.11 - 5.13 to the case µ > cf(µ) > χs.
[Hint: Read [Sh:c, IV,§4] and recalling §5.]

6.5 Exercise: We can generalize Ceq, canonical basis from [Sh:c, III].

[Hint: See [Sh:E54].]
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UNIVERSAL CLASSES: TYPES

OF FINITE SEQUENCES

SH300E

§0 Introduction

In this chapter we continue the hypotheses first laid out in Chapter
V.D. Namely, we assume AxFr1 and χs < ∞. Recall that χs is the
minimal χ such that s is (χ+, χ)-based, (≤ χ,≤ χ+)-smooth and
satisfies LSP(χ).

We have dealt in Chapter V.D with “good” types (i.e., M <s C

and p ∈ S <∞
c (M)). Now we shall deal with other types, particu-

larly of finite sequences. As earlier, we could weaken our axiomatic
framework to AxFr5.
Note the following:
1) Even for p ∈ S <∞

c (M), we do not know whether there are such
types which do not fork over ∅ (but we can remedy this by adding
an individual constant ca, a ∈ M∗ for a fixed M∗ <s C).
2) For p ∈ S 1(A), we don’t know much for arbitrary A, we use
“good sets” like models.
3) Dependence does not, in general, have finite character.

Note that not much is lost if considering “p ∈ S <∞(B) does not
fork over A” we restrict ourselves to the case “p does not fork over
some M ⊆ A”.

§1 Forking over Models of Types of Sequences

In this section we define non-forking and stationarization and par-
allelism for p ∈ S <∞(M) (not necessarily in S <∞

c (M), but still
over M <s C). We have to prove that stationarization of p over

Typeset by AMS-TEX

234
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M is unique (1.4(1)) and that parallelism is an equivalence relation
(1.4(2)). We also prove, for such types, that if tp(c̄, B) does not fork
over M, A ⊆ B <s C and M is (Ds, λ)-homogeneous (λ big enough
relative to |A|) then tp(c̄, A) is realized in M . We also have the basic
properties of non-forking (1.7, 1.5) and can get back the formulation
with models (1.8).

As in V.D.2.1 we assume from now on

1.1 Hypothesis.: The framework s satisfies AxFr1 and χ = χs is well
defined, so s is (χ+, χ)-based and (≤ χ,≤ χ+)-smooth and LSP(χ)
holds, C a monster model; so M, N vary on (small) <s-submodels of
C and A, B, C vary on (small) subsets of C but we may use A <s C.

1.2 Definition. 1) Let M ≤s N <s C; we say that tp(c̄, N) does not
fork over M if for some N ′, c̄′ we have: c̄′ realizes tp(c̄, N), c̄′ ∈ N ′

and the triple M, N, N ′ is in stable amalgamation (of course, without
loss of generality c̄′ = c̄ - use the definition of tp and the choice of
C).
2) tp(c̄, N) is the stationarization of tp(c̄′, N ′) over N if N ′ ≤s

N, tp(c̄, N ′) = tp(c̄′, N ′) and tp(c̄, N) does not fork over N ′ (on the
uniqueness, which is implicitly said here, see 1.4 below).
3) p1, p2 are parallel if they have a common stationarization.

1.3 Claim. 1) These definitions are compatible with the previous
ones (from V.D.3.7).
2) If M0 ≤s M1 ≤s M2 ≤s M3, pℓ ∈ S <∞(Mℓ) for ℓ ≤ 3, p3 a
stationarization of p0, p2 = p3 ↾ M2 and p1 = p3 ↾ M1 then p2 is a
stationarization of p1.
3) If p ∈ S <∞(M) then p is a stationarization of itself.

Proof. Easy.

1.4 Lemma. 1) If M ≤s N then every p ∈ S <∞(M) has one and
only one stationarization in S <∞(N).
2) Parallelism is an equivalence relation and for each M an equiva-
lence class has at most one member in S <∞(M).
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Remark. In our context the first statement (1.4(1)) is not totally
trivial.

Proof. 1) Existence: easy (by Ax(C2), existence for NF).

Uniqueness:. Suppose tp(c̄ℓ, N), for ℓ = 1, 2 are different station-
arizations of tp(c̄, M) over N (so M ≤s N). For ℓ = 1, 2, as
tp(c̄, M) ⊆ tp(c̄ℓ, N) there is an automorphism gℓ of C over M
satisfying gℓ(c̄) = c̄ℓ. Let g = g2 ◦ g−1

1 , so

(a) g ↾ M = idM and g(c̄1) = c̄2.

Again for ℓ = 1, 2 as tp(c̄ℓ, N) is a stationarization of tp(c̄, M), there
is a model Mℓ such that:

(b) M ≤s Mℓ ≤s C, c̄ℓ ∈ Mℓ and M, N, Mℓ are in stable amalga-
mation.

However, maybe for every M ′, [M1 ∪ M2 ⊆ M ′ ⇒ tp(M ′, N) forks
over M ]. Choose a model M∗ such that:

(c) M∗ <s C, N ∪M1∪M2 ⊆ M∗ and M∗ is closed under g, g−1.

By Ax(C2) there is an automorphism h of C over M , such that
{M∗, h(M∗)} is independent over M . For ℓ = 1, 2, as {N, Mℓ} is in-
dependent over M , N ∪Mℓ ⊆ M∗, by V.D.3.16(1) and monotonicity
of non-forking (= V.B.3.19(3)), we have {N, Mℓ, h(M∗)} is indepen-
dent over M (for ℓ = 1, 2). Hence (by Ax(C5)), (h ↾ Mℓ) ∪ idN can
be extended to an automorphism of C which we call hℓ. So

hℓ ↾ N = idN , hℓ(c̄
ℓ) = h(c̄ℓ),

hence

(∗)ℓ tp(c̄ℓ, N) = tp(h(c̄ℓ), N).

Obviously, hgh−1 is an automorphism of h(M∗) mapping h(c̄1) to
h(c̄2) (remember that g is an automorphism of M∗ mapping c̄1 to c̄2)
and (hgh−1) is the identity on M (as h ↾ M = g ↾ M = idM ). As
{N, h(M∗)} is independent over M there is an automorphism h∗ of C,
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extending idN ∪ ((hgh−1) ↾ h(M∗)). So h∗ ↾ N = idN , h∗(h(c̄1)) =
h(c̄2). Hence

(∗∗) tp(h(c̄1), N) = tp(h(c̄2), N).

Together by (∗)1, (∗)2 and (∗∗) we get the desired conclusion.
2) Why is parallelism an equivalence relation? Symmetry holds by
the definition. Reflexivity holds by 1.3(3).

We are left with transitivity. It will follows from 1.3 and 1.4(1)
by a straightforward computation. So suppose pℓ ∈ S <∞(Mℓ) for
ℓ < 3; for ℓ = 0, 1 let qℓ be a common stationarization of pℓ, pℓ+1.
So qℓ ∈ S <∞(Nℓ) where Mℓ ≤s Nℓ and Mℓ+1 ≤s Nℓ <s C. Choose
N such that N0 ∪N1 ⊆ N <s C and for ℓ = 0, 1, 2 let rℓ ∈ S <∞(N)
be a stationarization of pℓ. By 1.3(2) for ℓ = 0, 1 the type rℓ ↾ N0

is a stationarization of pℓ hence by 1.4(1), rℓ ↾ N0 = q1. Also by
1.3(2) for ℓ = 0, 1 the type rℓ is a stationarization of rℓ ↾ N0, hence
by 1.4(1), r0 = r1.

Similarly, for ℓ = 1, 2 by 1.3(2) the type rℓ ↾ N1 is a stationariza-
tion of pℓ hence by 1.4(1), rℓ ↾ N1 = q1. Also by 1.3(2) for ℓ = 1, 2,
rℓ is a stationarization of rℓ ↾ N1 hence by 1.4(1), r1 = r2.

Thus, p0 and p2 have a common stationarization: r0 = r1 = r2.
So parallelism satisfies transitivity.

So parallelism is an equivalence relation. The second phrase of
1.4(2) (every equivalence class has in S <∞(M) at most one member)
follows by the above using 1.4(1). �1.4

1.5 Lemma. (Transitivity). If M0 ≤s M1 ≤s M2 <s C, tp(c̄, M2)
does not fork over M1 and tp(c̄, M1) does not fork over M0 then
tp(c̄, M2) does not fork over M0.

Proof. We can deduce this from 1.4(2). �1.5

Remark. Alternatively, as tp(c̄, M2) does not fork over M1, there
is N1 such that M1 ≤s N1 <s C, c̄ ∈ N1, and M1, M2, N1 is
in stable amalgamation. Similarly, there is N0 such that M0 <s

N0 <s C,c̄ ∈ N0 and M0, M1, N0 is in stable amalgamation. Let λ >
λs+‖M2‖+‖N0‖+‖N1‖. There is Na

1 such that N1 ≤s Na
1 <s C, Na

1
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is strongly (Ds, λ)-homogeneous and M1, N
a
1 , M2 in stable amalga-

mation. So there is a ≤s-embedding h of 〈M1, N0〉
gn into Na

1 over
M1. So tp(c̄, M1) = tp(h(c̄), M1) hence there is an automorphism f
of Na

1 , f ↾ M1 = idM1
, f(h(c̄)) = c̄. Let Na

0 = f(h(N0)), so clearly
M0, Na

0 , M1 is in stable amalgamation, and c̄ = f(h(c̄)) ∈ Na
0 .

Now as M0, N
a
0 , M1 and M1, N

a
1 , M2 are in stable amalgamation,

M0 ≤s M1 ≤s M2 ≤s C, Na
0 ≤s Na

1 by V.D.3.12(2), M0, N
a
0 , M2 is

in stable amalgamation, and as c̄ ∈ Na
0 we finish.

1.6 Claim. If M ⊆ B, tp(c̄, B) does not fork over M, A ≤s B <s C

and M is (Ds, λ)-homogeneous and λ = (χs + ℓg(c̄) + |A|)+, then
tp(c̄, A) is realized by some c̄′ ∈ M .

Proof. There are N0, N1 <s C such that N0, N1, M is in stable
amalgamation, A ∪ c̄ ⊆ N1, N1 ∩ M = N0, N1 ∩ B ≤s B and
‖N1‖ < λ (as by V.D.1.2, s is (χs +ℓg(c̄)+ |A|)+-based, more exactly
by V.C.3.12). We can find a ≤s-embedding f of N1 into M over N0

(as M is (Ds, λ)-homogeneous). By monotonicity, N0, N1, f(N1) is
in stable amalgamation hence {N1, f(N1)} is independent over N0.
By Definition 1.2 letting d̄ := f(c̄), the type tp(d̄, N1) is parallel to
tp(d̄, N0) which is equal to tp(c̄, N0) which is parallel to tp(c̄, M).
Now N0 ≤s N1 ∩ B ≤s N1 hence by monotonicity tp(d̄, N1 ∩ B) is
parallel to tp(c̄, N0). As tp(c̄, B), tp(c̄, M) do not fork over M, N0

respectively, by transitivity (see 1.5) the type tp(c̄, B) does not fork
over N0, hence by monotonicity (see 1.3(2)) the types tp(c̄, N1 ∩B)
does not fork over N0. So, by “parallelism is an equivalence relation”
(see 1.4(2)) the types tp(d̄, N1 ∩B), tp(c̄, N1 ∩B) are parallel hence
(by 1.3) equal. Hence c̄′ := d̄ is as required. �1.6

1.7 Lemma. For every M <s C and c̄ ∈ ∞>C there is an N ≤s M
such that ‖N‖ ≤ |ℓg(c̄)| + χs, and tp(c̄, M) does not fork over N .

Proof. By NF being (ℓg(c̄) + χs)-based. �1.7
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1.8 Claim. If M ≤s N <s C, tp(c̄, N) does not fork over M and
M∪ c̄ ⊆ M1 <s C, then for some automorphism h of C, h ↾ (M∪ c̄) =
id and M, N, h(M1) is in stable amalgamation.

Proof. As tp(c̄, N) does not fork over M there is M2, M ∪ c̄ ⊆
M2, such that M, N, M2 is in stable amalgamation. Let N ∪ M2 ⊆
M+

2 <s C and let λ = ‖N‖ + ‖M2‖ + ‖M1‖ + χs, so there is a
strongly (Ds, λ)-homogeneous model M3 satisfying M2 ≤s M3 <s C.
Without loss of generality M2, M+

2 , M3 is in stable amalgamation
hence by transitivity of NF also M, N, M3 is in stable amalgamation.
Clearly there is an automorphism h0 of C satisfying h0 ↾ M = id
and h0(M1) ⊆ M3. Clearly tp(c̄, M) = tp(h0(c̄), M), hence there
is an automorphism h1 of C satisfying h1 ↾ M = id, h1(h0(c̄)) = c̄.
By the choice of λ and M3 and as c̄ ∈ M2 ⊆ M3, h0(c̄) ∈ M3,
clearly without loss of generality h1 ↾ M3 is an automorphism of M3.
So (h1 ◦ h0)(M1) ⊆ M3, h1 ◦ h0(c̄) = c̄, (h1 ◦ h0) ↾ M = id and
M, N, (h1 ◦ h0)(M1) is in stable amalgamation (by monotonicity as
M, N, M3 is). So we finish. �1.8

Remark. On existence for Definition 1.2, see 2.11(2) below.

§2 Forking Over Sets

In this section we deal with types over A ⊆ C without requiring
A <s C so A, B, C denote such sets but M, N <s C. We redo non-
forking for this, 2.1 - 2.5 and also 2.10 (symmetry) and we define
strong splitting (definition 2.6).

We also deal with convergent sequences, (2.7 (Definition), 2.9,2.11
(existence) independence (2.12 (Definition), 2.13) and parallelism
(2.14 (Definition), 2.15). In 1.2 we have defined “tp(c, M) does not
fork over N, N ≤s M <s C”. In (1) of 2.1 we shall drop the re-
quirement N <s C, and in (2) of 2.1 we also drop the requirement
M <s C.
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2.1 Definition. 1) Suppose A ⊆ M <s C we say that p = tp(c̄, M)
does not fork over A if for every N , M ≤s N <s C, and automor-
phism h of N over A, h maps the stationarization of p over N to
itself.
2) Suppose A ⊆ B ⊂ C, then tp(c̄, B) does not fork over A if for
every model N <s C satisfying B ⊆ N , for some sequence c̄′ realizing
tp(c̄, B), tp(c̄′, N) does not fork over A (according to part (1)).

Remark. Unfortunately, Definition 2.1(2) does not specialize for first
order T to the usual definition (but to a variant, see 2.5(8)).

2.2 Claim. 1) Definitions 2.1(1), 2.1(2) and 1.2(1) are compatible.
2) Assume A ⊆ B ⊂ C. The type p = tp(c̄, B) does not fork over A
iff: ⊛1 iff ⊛2 where

⊛1 for every N satisfying B ⊆ N <s C, there is an extension
q ∈ S <∞(M) of p such that for every automorphism h of N
over A, h maps p to itself

⊛2 like ⊛1 for some N which is strongly (Ds, λ)-homogeneous,
where λ = (χs + |A| + ℓg(c̄))+.

Proof. 1) Obviously, by 1.4(1) if p = tp(c̄, B) does not fork over A
by 1.2(1) (so A, B <s C) then p does not fork over A by 2.1(1).

Also if tp(c̄, B) does not fork over A by 2.1(1) (so B <s C) then
p does not fork over A by 2.1(2). [Why? Assume A ⊆ B = M <s C,
p = tp(c̄, B) = tp(c̄, M) and 2.1(1) holds, now we should prove
2.1(2). So let B ⊆ N <s C, and we should find an extension q =
tp(c̄′, N) of p such that q does not fork over A by 2.1(1). Let q be

the stationarization of p over N (see 1.2(1), 1.4(1)), we should prove
2.1(1) holds; i.e., let N1 ≤s C, N ≤s N1, r be the stationarization
of q over N1, and h be an automorphism of N1 over A, we should
prove h(r) = r. By 1.5 the type r does not fork over M , hence r is
the stationarization of p over N1, so according to 2.1(1), h(r) = r as
required.]

Next suppose tp(c̄, M) does not fork over A(⊆ M) in 2.1(1)’s
sense, and Definition 1.2(1) is applicable, so A = |M0|, A ⊆ M <s C.
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In the proof of the present this implication “does not fork” mean
in 1.2(1)’s sense which is compatible with Chapter V.D’s sense. We
should show that tp(c̄, M) does not fork over M0. Let λ = χs+‖M‖,
and N <s C be a strongly (Ds, λ

+)-homogeneous model such that
M ⊆ N . So by Definition 2.1(1) there is c̄1 realizing tp(c̄, M),
such that any automorphism of N over M0 maps tp(c̄1, N) to it-
self. By (Hypothesis 1.1 and) Claim V.D.1.2 clearly s is λ-based
so there are M1, N1 such that M ≤s M1 ≤s N, M1 ≤s N1 <s C,
‖M1‖ ≤ ‖N1‖ ≤ λ, c̄1 ∈ N1 and {N1, N} is independent over M1.
There is an automorphism h of C such that h ↾ M0 = idM0

and
{M1, h(M1)} is independent over M0; as N is strongly (Ds, λ

+)-
homogeneous, without loss of generality h maps N onto itself. By
the choice of c̄1 without loss of generality h(c̄1) = c̄1. As {N1, N}
is independent over M1, tp(c̄1, N) does not fork over M1, hence
tp(c̄1, N) = tp(h(c̄1), h(N)) does not fork over h(M1).

Now we shall use “does not fork” in Chapter V.D’s sense in
the next two sentences. But tp(N1, N) does not fork over M1,
hence, by symmetry, tp(N, N1) does not fork over M1, hence as
h(M1) ≤s N also tp(h(M1), N1) does not fork over M1. Now re-
call that tp(h(M1), M1) does not fork over M0, so by transitivity
(V.D.3.13(1)) the type tp(h(M1), N1) does not fork over M0; hence
(by symmetry (V.D.3.12(1)), the type tp(N1, h(M1)) does not fork
over M0.

So in Definition 1.2 sense the type tp(c̄1, h(M1)) does not fork
over M0, hence by an implication already proved (ie. from 1.2 to
2.1(1)) we know tp(c̄1, h(M1)) does not fork over M0 (from now on,
in 2.1(1) sense). But by few sentences above we get tp(c̄1, N) does
not fork over h(M1) hence (by transitivity for non-forking, 1.5) the
type tp(c̄1, N) does not fork over M0, hence by monotonicity (1.3(2))
the type tp(c̄1, M) does not fork over M0. But tp(c̄1, M) = tp(c̄, M)
so we have finished this implication.

To finish the proof that definitions 2.1(1), 2.1(2), 1.2(1) are com-
patible, suppose tp(c̄, B) does not fork over A in Definition 2.1(2)’s
sense, and Definition 2.1(1) applies; i.e., A ⊆ B = |M |, (M <s C),
and we shall show that tp(c̄, N) does not fork over A according to
Definition 2.1(1). This is easy, just apply the definitions (choosing
N is 2.1(2) as M).
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2) By part (1) we should prove just the equivalence of 2.1(2) with
2.2⊛1, 2.2⊛2.
Recall p = tp(c̄, B), A ⊆ B.

First, assuming 2.1(2) holds proving 2.2⊛1 is trivial (using N = M
in Definition 2.1(1)).

Second, if 2.2⊛1 holds, clearly 2.2⊛2 holds.
Third, and lastly, assume that 2.2⊛2 holds, let it be exemplified

by N, q; it suffices to show that q does not fork over A according to
Definition 2.1.
[Why? Given N ′ such that B ⊆ N ′ <s C, we let µ = ‖N ′‖ + ‖N‖
and N ′′ <s C be strongly (Ds, µ

+)-homogeneous containing N ′∪N ′′.
By the present assumption on the pair (N, q) there is c̄′ realizing

q such that tp(c̄′, N ′′) does not fork over N . By transitivity of non-
forking in the sense of 1.2 and part (1), clearly q′ does not fork over A
in the sense of 1.2 hence by part (1) in the sense of 2.1(1). Now this
implies that every automorphism h of N ′′ over A maps tp(c̄′, N ′′)
to itself. But c̄′ realizes also tp(c̄, B) = tp(c̄, N) ↾ B and every
automorphism of N ′ over A can be extended to an automorphism of
N ′′ over A, so we are done.]

Toward contradiction assume q forks over A according to 2.1(1).
So there are N1 and ē ⊆ C such that N ≤s N1 <s C, an auto-
morphism h of N1, r = tp(ē, N1) a stationarization of q such that
h ↾ A = idA and h maps r to r1 = h(r) 6= r. We can choose an
automorphism h+ of C extending h so r1 = tp(h+(ē), N1).

As s is (χs + |A|)-based, by V.C.3.12 we can find Na and N b such
that Na ≤s N1, A ⊆ Na, Na ≤s N b, ēˆh+(ē) ⊆ N b, h(Na) = Na,
tp(N b, N1) does not fork over Na, ‖N b‖ < λ, N b∩N = Na∩N ≤s N
and tp(N b, N) does not fork over N b ∩N = Na ∩N and h+(N b) =
N b.

As tp(N b, N) does not fork over N b ∩ N , there is an automor-
phism f of C such that f ↾ (Na ∩ N) = id, and f(Na) ⊆ N and
f(N b)

⋃

f(Na)
N1. Let ē0 = ē, ē1 = f(ē). Let N0 = N

(∗)1 tp(ē, Nℓ) does not fork over Na ∩ Nℓ for ℓ = 0, 1
[Why? As ē ⊆ N b and tp(N b, Nℓ) does not fork over N b ∩
Nℓ = Na ∩ Nℓ.]

(∗)2 tp(h+(ē), Nℓ) does not fork over N b ∩ Nℓ = Na ∩ Nℓ for
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ℓ = 0, 1
[Why? As h+(ē) ⊆ N b and tp(N b, N) does not fork over
N b ∩ N = Na ∩ N .]

(∗)3 tp(ē, Na) 6= tp(h+(ē), Na)
[Why? If this fails, as tp(ē, N1) = r, r1 = tp(h+(ē), N1) and
(∗)1 and (∗)2 we get r = r1 contradicting the choice of h and
ē.]

(∗)4 tp(f(ē), f(Na)) 6= tp(f(h+(ē)), f(Na))
[Why? By (∗)3 as f is an automorphism of C.]

(∗)5 tp(f(ē), N) does not fork over f(Na)
[Why? By the choice of f , tp(f(N b), N1) does not fork over
f(Na). Now f(Na) ≤s N ≤s N1, and use monotonicity
of non-forking (of course, in Chapter V.D’s sense) to get
tp(f(N b), N) does not fork over f(Na). But ē ⊆ N b, so
we are done.]

(∗)6 tp(f(h+(ē)), N) does not fork over f(Na)
[Why? As in (∗)5 because h+(ē) ⊆ N b as h+ maps N b onto
itself.]

(∗)7 tp(f(ē), N) 6= tp(f(h+(ē)), N)
[Why? By (∗)4 as f(Na) ⊆ N .]

(∗)8 tp(ē, N1) does not fork over Na ∩ N
[Why? Recall that tp(ē, N1) does not fork over N by the
choice of ē such that r = tp(ē, N1) is the stationarization of
q ∈ S (N). Also tp(ē, N) does not fork over Na ∩N by (∗)1
hence by transitivity (see 1.5) we know that tp(ē, N1) does
not fork over Na ∩ N .]

(∗)9 tp(ē, Na) does not fork over Na ∩ N
[Why? By (∗)8 and monotonicity, i.e. 1.3(2) as Na ≤s N1.]

(∗)10 tp(f(ē), N) does not fork over Na ∩ N
[Why? By (∗)5 the type tp(f(ē), N) does not fork over
f(Na). By (∗)9 it follows that tp(f(ē), f(Na)) does not fork
over f(Na∩N) but f ⊇ idNa∩N hence tp(f(ē), f(Na)) does
not fork over Na ∩ N . Together by transitivity (1.5) we get
tp(f(ē), N) does not fork over Na ∩ N as required.]

(∗)11 there is an automorphism h∗ of N over A such that
h∗(tp(f(ē), N)) = tp(f(h+(ē)), N)
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[Why? As h(Na) = Na by the choice of Na, clearly h′ :=
(f ◦h ◦ f−1) ↾ f(Na) is an automorphism of f(Na), (chasing
arrows) and clearly h′ ↾ A = idA as f ↾ A = idA and h ↾

A = idA and h′(tp(f(ē), f(Na))) = tp(f(h+(ē)), f(Na)).
As f(Na) ≤s N and ‖f(Na)‖ ≤ ‖N b‖ < λ there is an auto-
morphism h∗ of N which extends h′.
Now h∗(tp(f(ē), N)) = tp(f(h+(ē)), N) as both types does
not fork over f(Na) by (∗)5 and (∗)6 respectively and the
parallel statement holds for h′ = h∗ ↾ f(Na), f(Na) by the
first sentence. So we are done.]

(∗)12 tp(f(ē), N) = q
[Why? As tp(ē, N) is q by the choice of r, ē, it is enough to
prove tp(f(ē), N) = tp(ē, N). Now tp(ē, N) does not fork
over Na ∩N (by (∗)1) and by (∗)8 also tp(f(ē), N) does not
fork over Na ∩ N , hence it is enough to prove tp(f(ē), Na ∩
N) = tp(ē, Na ∩N). But f is the identity on Na ∩N by its
choice so we are done.]

By (∗)11 +(∗)12 +(∗)7 we deduce: h∗ is an automorphism of N over
A such that h∗(q) 6= q contradiction, so we have finished proving
that: if ⊛2 then tp(c̄, B) does not fork over A. �2.2

At the beginning of this chapter we have defined the notion of the
type of an element c̄ over a model N , being stationary over N0 ⊆ N
(the stationarization of tp(c̄, N0)). Now we extend this notation by
allowing sets as domains.

2.3 Definition. 1) The type p = tp(c̄, B) is stationary over A,
A ⊆ B if for every C, B ⊆ C ⊂ C, the type p has one and only one
extension in S ℓg(c̄)(C) which does not fork over A; see 2.4(4) second
sentence.
2) p = tp(c̄, B) is explicitly stationary over A if for some M ⊆
A, M <s C and p does not fork over M .
3) If A = B we omit “over A” (in both cases).

2.4 Claim. 1) If tp(c̄, M) does not fork over A ⊆ M then ev-
ery automorphism of M over B maps tp(c̄, M) to itself; i.e.: if
f ∈ AUT(M), f ↾ B = idB then there is g ∈ AUT(C) with f ⊆ g,
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g(c̄) = c̄.
2) If A ⊆ M , λ = |A| + χs + |ℓg(c̄)|, M is strongly (Ds, λ

+)-
homogeneous, then: tp(c̄, M) does not fork over A if and only if ev-
ery automorphism of M over A maps tp(c̄, M) to itself iff tp(c̄, M)
is stationary over A.
3) If p = tp(c̄, B), B <s C, λ = χs + |ℓg(c̄)| + |B|, then p has char-
acter ≤ λ or is λ-local which means: p is the unique extension in
S ℓg(c̄)(B) of all members of {tp(c̄, C) : C ⊆ B, |C| ≤ λ}.
4) If p = tp(ā, B) is explicitly stationary over A then it it stationary
over A. If tp(ā, B) is stationary over A then it does not fork over
A.
5) If A ⊆ B, c̄′ is a permutation of c̄ and tp(c̄, B) is [explicitly] sta-
tionary over A then so does tp(c̄′, B).
6) If p = tp(ā, B) does not fork over A, A ⊆ B ⊆ C then there is
q ∈ S ℓg(ā)(C) extending p which does not fork over A.

Proof. Check for part (1) + (2). Note that we are using Definition
2.1 and not the version of [Sh:c]. �2.4

In the following lemma we consider a number of basic facts of first
order stability theory in the present context. Note that 2.5(8) fails
in the first order case and that we do not assert tp(a, A) does not
fork over A. This dilutes the power of Claim 2.4(6). Moreover, it
changes the emphasis of the definition of stationary types from the
first order case. Now here the assertion that a stationary type has
a non-forking extension is an essential component of the definition.
The situation is similar to [Sh 87a], [Sh 87b], i.e. not every type has
a stationarization.

2.5 Lemma. 1) (monotonicity). Assume A ⊆ B ⊆ C. If tp(c̄, C)
does not fork over A, then tp(c̄, C) does not fork over B and tp(c̄, B)
does not fork over A.
2) If M <s C, then tp(c̄, M) is explicitly stationary, hence is sta-
tionary (hence does not fork over M).
3) If A0 ⊆ A1 ⊆ A2 ⊆ A3 ⊆ C, tp(c̄, A3) does not fork over A0 and
tp(c̄, A2) is stationary over A1 then tp(c̄, A3) is stationary over A0.
4) (transitivity) If A ⊆ B1 ⊆ B2 ⊆ C, tp(c̄, B2) does not fork over
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A, and tp(c̄, B2) is stationary over B1 and tp(c̄, C) does not fork
over B1 then tp(c̄, C) does not fork over A and is stationary over A.
5) If A ⊆ B, tp(c̄1, B) does not fork over A and tp(c̄2, B ∪ c̄1) does
not fork over A ∪ c̄1 then tp(c̄1ˆc̄2, B) does not fork over A.
6) Suppose Rang(c̄1) ⊆ Rang(c̄2). If tp(c̄2, B) does not fork over A,
then tp(c̄1, B) does not fork over A.
7) If Rang(c̄1) = Rang(c̄2), tp(c̄1, B) is stationary over A if and
only if tp(c̄2, B) is stationary over A and tp(c̄1, B) does not fork
over A if and only if tp(c̄2, B) does not fork over A.
8) If tp(c̄, B) does not fork over A, (so A ⊆ B), b̄1 ∈ B, b̄2 ∈ B and
tp(b̄1, A) = tp(b̄2, A) then tp(c̄ˆb̄1, A) = tp(c̄ˆb̄2, A).
9) If A ⊆ B, A ⊆ C, tp(B, C) does not fork over A and B0, B1 ⊆ B
and tp(B1, A ∪ B0) does not fork over A then tp(B1, C ∪ B0) does
not fork over A.

Proof. 1) Check by reading Definition of non-forking (2.1(1),(2)), or
use 2.2(2).
2) By 2.2 + 1.4(1) (and the two consequences by 2.4(4)).
3) Toward contradiction suppose tp(c̄, A3) is not stationary over
A0. Let λ = |A3| + χs + |ℓg(c̄)| and let N be a strongly (Ds, λ

+)-
homogeneous model satisfying A3 ⊆ N <s C. As tp(c̄, A3) does not
fork over A0 but is not stationary over A0, by 2.2 (using ⊛2 there)
there are c̄1, c̄2 realizing tp(c̄, A3), B <s C, tp(c̄ℓ, N) does not fork
over A0 for ℓ = 1, 2, but tp(c̄1, N) 6= tp(c̄2, N). So (by 2.5(1)) also
the type tp(c̄ℓ, N) does not fork over A1, and extends tp(c̄, A2). So
tp(c̄, A2) is not stationary over A1, contradiction.
4) As tp(c̄, B2) does not fork over A, by 2.4(6) there is c̄′ realiz-
ing tp(c̄, B2) such that tp(c̄′, C) does not fork over A. By 2.5(1),
tp(c̄′, C) does not fork over B1 and over B2; as also tp(c̄, C) does not
fork over B and both extend tp(c̄, B2) which is stationary, clearly
tp(c̄′, C) = tp(c̄, C). By the choice of c̄′, this type does not fork
over A so tp(c̄, C) does not fork over A as required. Concerning
“stationary” it follows by part (3) with (A, B1, B2, C) here standing
for (A0, A1, A2, A3) there.
5) Let N be such that B ⊆ N and we should find an extension p of
tp(c̄1ˆc̄2, B) in S ℓg(c̄1)+ℓg(c̄2)(N) such that every automorphism of
N over A maps p itself.
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As tp(c̄1, B) does not fork over A, there is c̄∗1 realizing tp(c̄1, B)
such that every automorphism of N over A maps tp(c̄∗1, N) to itself.
Let λ = ‖N‖ + χs + |ℓg(c̄1ˆc̄2)| and M <s C be a strongly (Ds, λ

+)-
homogeneous model extending N such that c̄∗1 ⊆ M . We can find c̄∗2
such that tp(c̄∗1ˆc̄∗2, B) = tp(c̄1ˆc̄2, B). So tp(c̄∗2, B ∪ c̄∗1) does not
fork over A∪ c̄∗1, hence there is c̄∗∗2 realizing tp(c̄∗2, B ∪ c̄∗1) such that
every automorphism of M over A ∪ c̄∗1 maps tp(c̄∗∗2 , M) to itself.

Now c̄∗1ˆc̄∗∗2 is as required: clearly, it realizes tp(c̄1ˆc̄2, B); let
f ∈ AUT(N), f ↾ A = idA, then by the choice of c̄∗1, there is
g ∈ AUT(C) satisfying f ⊆ g and g(c̄∗1) = c̄∗1; now by the choice of
M without loss of generality g ↾ M ∈ AUT(N), so by the choice of
c̄∗∗2 without loss of generality g(c̄∗∗2 ) = c̄∗∗2 , so we finish.
6) - 7) Easy.
8) Let f ∈ AUT(C) be the identity on A and maps b̄1 to b̄2. Let
M <s C be a model such that B ⊆ M and f(M) = M . Let c̄∗ realiz-
ing tp(c̄, B) be such that every automorphism of M maps tp(c̄∗, M)
to itself, it exists by Definition 2.1 but f ↾ M is a counterexample.
Note again that we are using Definition 2.1 and not the one of [Sh:c].
9) Let λ = χs+|B∪C| and let M be a strongly (Ds, λ

+)-homogeneous
model which contains A ∪ C. As tp(B, C) does not fork over A we
can find f ∈ AUT(C) mapping M onto itself such that f ↾ C = idC

and tp(f(B), M) does not fork over A, so:

(∗)1 every automorphism h0 of M over A can be extended to an
automorphism h+ of C which is the identity over B.

Let µ = χs+‖M∪B‖ and let N be a strongly (Ds, µ
+)-homogeneous

models which contains M ∪ B. As tp(B1, A ∪ B0) does not fork
over A there is an automorphism g ∈ C over A ∪ f(B0) such that
tp(g(f(B1)), N)) does not fork over A; clearly

(∗)2 every automorphism h of N over A can be extended to an
automorphism h+ of C which is the identity on g(f(B1)).

Now by the choice of f if h0 is an automorphism of M over A then
h0(tp(f(B), M)) = tp(f(B), M) but B0 ⊆ B∧g ↾ f(B0) = idf(B0)

hence h0(tp(f(B0), M)) = tp(f(B0), M). As B0 ⊆ B, by (∗)1 we
know that h0 ∪ idf(B0) can be extended to an automorphism of C.
Hence it can be extended to an automorphism h1 of N hence by (∗)2
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we know that h1 ∪ id(g(f(B1))) can be extended to an automorphism
of C so it extends h0 ∪ idf(B0)∪g(f(B1)).

The previous paragraph implies that tp(gf(B1), M) does not fork
over A and tp(gf(B1)∪f(B0), M) does not fork over A, so as C ⊆ M
we get that f∗ := ((gf) ↾ B1)∪ (f ↾ B0)∪ idC can be extended to an
automorphism of C. Also by the construction tp(gf(B1), N) does
not fork over A ∪ f(B0), hence by monotonicity, i.e. part (1) the
type tp(fg(B1), f(B0)∪C) does not fork over f(B0)∪A. Applying
(gf)−1 = f−1

∗ we get the desired result. �2.5

2.6 Definition. Let A ⊆ B, we say tp(c̄, B) does µ-strongly splits
over A if there are b̄i satisfying ℓg(b̄i) < µ, 〈b̄i : i < ((χs + |A|)µ)+〉
is 2-indiscernible over A (i.e., tp(b̄iˆb̄j, A) is the same for i < j <
((χs + |A|)µ)+) and b̄0, b̄1 ∈ B, tp(c̄ˆb̄1, A) 6= tp(c̄ˆb̄2, A) (if we omit
µ we mean µ = κ̄).

2.7 Definition. 1) We say J = 〈b̄α : α < α∗〉 is (µ, κ)-convergent
over A if for every c̄ of length < µ, for some w ⊆ α∗ satisfying
|w| < κ, for every i ∈ α∗\w the type tp(c̄ˆb̄i, A) is the same.
2) For C ⊆ C we let Avs(J, C) = {tp(b̄α, A ∪ c̄) : c̄ ∈ C, and for all
but < |α∗| ordinals γ < α∗ we have tp(b̄α, A ∪ c̄) = tp(b̄γ , A ∪ c̄)}.
3) The superscript s in part (1) signifies that we have found a set

of averages as we vary c̄ ∈ C. If there is a unique p ∈ S ℓg(b̄0)(C)
extending all those types we denote it by Av(J, C).
4) We say 〈b̄α : α < α∗〉 is based on A if for every C, extending A,
Av(J, C) is well defined and does not fork over A.

2.8 Observation. If J = {āα : α < α∗}, then there is at most one
p ∈ S ℓg(ā0)(N) which extends every q ∈ Avs(J, N) when cf(|α∗|) >
χs + |ℓg(āα)|, so the “unique” in Definition 2.7(4) is redundant.

Proof. By 2.4(3) there is at most one p. �2.8
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2.9 Lemma. 1) If b̄α = 〈bα
i : i < i0〉, c̄α = 〈bα

h(i) : i < i1〉 where h

is a function from i1 into i0, and 〈b̄α : α < α∗〉 is (µ, κ)-convergent
over A then 〈c̄α : α < α∗〉 is (µ, κ)-convergent over A. Similarly for
being based on A.
2) If M ≤s Mα <s C, (Rang(b̄α)) = Mα <s C, b̄α = 〈bα

i : i < i0〉
for α < α∗, b0

i 7→ bα
i is an isomorphism from M0 onto Mα extending

idM , and {Mα : α < α∗} is independent over M then {b̄α : α < α∗}
is (χs + |ℓg(b̄0)|)

+-convergent and is based on M .

Proof. Check.

2.10 Lemma. (Symmetry). If tp(d̄, B ∪ c̄) does not fork over A2

and A1 ⊆ B, A2 ⊆ B and tp(c̄, B) does not fork over A1, then
tp(c̄, B ∪ d̄) does not fork over A1.

Proof. Let λ = (|B| + 2)χ(s) and assume that the conclusion fails.
We choose by induction on α < λ+, c̄α, d̄α such that:

(i) c̄0 = c̄, d̄0 = d̄

(ii) tp(c̄α, (
⋃

β<α

c̄βˆdβ) ∪ B) does not fork over A1 and extend

tp(c̄α, B)

(iii) tp(d̄α, (
⋃

β<α

c̄βˆbβ)∪B∪ c̄α) does not fork over A2 and extend

tp(d̄, B ∪ c̄).

This is possible by 2.4(6) [and for α = 0, (ii), (iii) holds by assump-
tions].

Now if α ≤ β < λ+, by (iii) and 2.5(8) as c̄0 = c̄ and c̄α realizes
tp(c̄, B) then tp(d̄βˆcα, B) = tp(d̄βˆc̄, B). By the second phrase of
(iii), tp(d̄β, B ∪ c̄) = tp(d̄, B ∪ c̄). So [α ≤ β ⇒ tp(d̄βˆc̄α, B) =
tp(d̄ˆc̄, B)].

On the other hand, by (ii) and 2.5(1), for β < α, tp(c̄α, B ∪ d̄β)
does not fork over A1, hence necessarily tp(d̄βˆc̄α, B) 6= tp(d̄ˆc̄, B).
So we get an order on {c̄αˆd̄α : α < λ+} contradiction as we shall
prove in 2.11(3) below. �2.10
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2.11 Lemma. 1) Suppose A ⊆ M0, Mα(α ≤ γ) is ≤s-increasing,
āα ∈ Mα+1, tp(āα, Mα) does not fork over A and increase with α,
χ ≥ χs and γ is infinite. Then {āα : α < γ} is indiscernible over
M0, is (χ+, χ+)-convergent on A, and if γ ≥ χ+, based on A.
2) If p ∈ S γ(N), N <s C and χ = χs + |γ|, then for some M ≤s N
of cardinality ≤ χ the type p does not fork over M .
3) If χ = χs + |γ| and āα ∈ γC for α < µ and (∀α < µ)(|α|χ < µ =
cf(µ)) then

(a) for some unbounded U ⊆ µ the (index) set {āα : α ∈ U } is
indiscernible and (χ+, χ+)-convergent

(b) there is a function h on S = {δ < µ : cf(δ) > χ} which is
regressive (i.e. h(δ) < δ for δ ∈ S) satisfying: if U ⊆ S ∩ E
and h ↾ U is constant then {āα : α ∈ U } is indiscernible
and (χ+, χ+)-convergent.

Proof. 1) The indiscernibility follows by 2.5(8). That is, we can
prove by induction on n that if β ≤ βℓ,0 < βℓ,1 < . . . < βℓ,n−1 < γ
for ℓ = 1, 2 then āβ1,0

ˆ . . .ˆāβ1,n−1
and āβ2,0

ˆ . . .ˆāβ2,n−1
realizes the

same type over Mβ ; the induction step is by 2.5(8) as tp(āα, Mα)
increasing with α, so this is exactly as in V.A.2.8 and even better
V.A.3.2.

Let us prove convergence: without loss of generality 〈Mα : α ≤ γ〉
is not only ≤s-increasing but also continuous and recall Mα <s C.
For any c̄ ∈ C, ℓg(c̄) < χ+, there are w, N, N ′, c̄′ such that N ≤s

N ′ <s C, ‖N ′‖ ≤ χ, c̄ ∈ N ′, N ≤s Mγ , {N ′, Mγ} independent over

N, 0 ∈ w ⊆ γ, |w| ≤ χ, N =
⋃

α∈w

(N ′ ∩ Mα+1\Mα) ∪ (N ′ ∩ M0), and

for β ∈ w∪{γ}, {N ′, Mβ} independent over N ∩Mβ . [This holds by
the proof of V.C.3.12].

Now for β ∈ γ\w, let α = Min(w ∪ {γ}\β), (so α > β) so
{N ′, Mα} is independent over N ∩Mα; but N ∩Mα = N ∩Mβ , hence
{N ′, Mβ+1} is independent over N ∩Mβ, hence {〈N ′, Mβ〉

gn, Mβ+1}
is independent over Mβ, so tp(āβ, 〈N ′, Mβ〉

gn) does not fork over Mβ,
hence by 2.5(4) does not fork over A. So now as in V.A.2.8, using the
symmetry from 2.10, (recall that its proof will be completed below)
we finish.
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Also “based on A” is easy.
2) Let c̄ ∈ γC realize p. As s is χ-based we can find M ≤s M1 such
that ‖M1‖ ≤ χ, c̄ ⊆ M1 and M, N, M1 is in stable amalgamation.
By Definition 1.2(1) we can deduce that tp(c̄, N) does not fork over
M , but p = tp(c̄, N) so M is as required.
3) For completing the proof of 2.10, using its notation let µ := λ+

and āα := c̄αˆd̄α for α < λ+ = µ and choose Mα <s C by induction
on α < µ such that Mα is ≤s-increasing continuous and ‖Mα‖ ≤
λ, A ⊆ M0 and α = β + 1 ⇒ āβ ⊆ Mα. Now (for completing 2.10’s
proof), it suffices to prove that tp(āαˆāβ , M0) = tp(āβˆāα, M0) for
α < β < µ, as done below.

For proving 2.11(3), first we choose Mα <s C of cardinality <
λ,≤s-increasing continuous, āα ⊆ Mα+1. Now for each α < λ we can
find Nα ≤s Mα+1 of cardinality ≤ χ such that āα ⊆ Nα and N ′

α =
Nα∩Mα, N ′

α, Mα are in stable amalgamation. Let b̄α ∈ γ+χ(Nα) list
Nα such that āα ⊳ b̄α. We define a two-place relation E on λ: αEβ

iff the function hα,β mapping b̄α to b̄β is an isomorphism from Nα

onto Nβ, mapping (necessarily āα to āβ and) N ′
α = Nα ∩ Mα onto

N ′
β = Nβ ∩ Nβ , moreover it is the identity on Nα ∩ Mα. Easily E is

an equivalence relation and for every α < µ, {β/E : N ′
β ⊆ Mα} has

≤ ‖Mα‖
χ < µ members.

By Fodor lemma there are E -equivalent α 6= β ∈ S. Now by
symmetry for NF (for models) there is an automorphism h of C such
that h ↾ N ′

α = id, h(b̄α) = b̄β ∧h(b̄β) = b̄α. This completes the proof
of 2.10. Also for 2.11(3) we are done.

�2.11

2.12 Definition. We say {āα : α ∈ u} is independent over A if
tp(āα, A∪{āβ : β ∈ u, β 6= u}) does not fork over A for every α ∈ u.

2.13 Claim. If n < ω, tp(ām, A ∪
⋃

ℓ<m

āℓ) does not fork over A for

m < n then {ām : m < n} is independent over A.

Proof. By induction on n and use of symmetry (2.10). �2.13
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2.14 Definition. 1) The types tp(ā1, A1), tp(ā2, A2) are parallel if
both are stationary and they have a common stationarization (see
below) over some M satisfying A1 ∪ A2 ⊆ M .
2) Suppose p = tp(b̄, B) does not fork over A and A ⊆ B ⊆ C, then
tp(c̄, C) is a stationarization of (p, A) if it extends p and does not
fork over A. If A = Dom(p) we may write p instead of (p, A).
3) Assume pℓ is stationary over Aℓ (for ℓ = 1, 2) then (p1, A1),
(p2, A2) are parallel if they have a common stationarization over
some M satisfying Dom(p1) ∪ Dom(p2) ⊆ M .

2.15 Claim. 1) If tp(ā1, A1), tp(ā2, A1) are parallel (so each is
stationary) then for every B ⊆ C containing A1 ∪ A2, the stationar-
ization of tp(a1, A1), tp(a2, A2) over B are equal.
2) “parallel” is an equivalence relation.

Proof. 1) Suppose tp(ā1, A1), tp(ā2, A2) are parallel then for some
M , A1∪A2 ⊆ M ≤s C they have a common stationarization tp(ā, M).
Let A1∪A2 ⊆ B ⊂ C. Choose N <s C, B∪M ⊆ N , and without loss
of generality tp(ā, N) is the stationarization of tp(ā, M) over N . By
2.5(4), the type tp(ā, N) does not fork over Aℓ (for ℓ = 1, 2) hence
is a stationarization of tp(āℓ, Aℓ) (as clearly it extends tp(āℓ, Aℓ)).
By 2.5(1), the type tp(ā, B) does not fork over A1 and over A2,
and clearly it extends tp(āℓ, Aℓ), (ℓ = 1, 2). So tp(ā, B) exemplifies
tp(ā1, A1), tp(ā2, A2) has a common stationarization over B; being
stationary we finish.
2) Easy. �2.15

2.16 Exercise: Assume Rang(ā1) ⊆ Rang(ā2), A1 ⊆ A2 ⊆ B. If
tp(ā2, B) does not fork over A1 and ā′

2 realizes tp(ā2, B) and tp(ā′
2, A2)

does not fork over A1, then

(a) there is a unique ā′
1 such that ā′

1ˆā′
2 realizes tp(ā1ˆā2, A1)

(b) it follow that tp(ā′
1, B) does not fork over A1

(c) if tp(ā1, A2) is stationary over A1 then tp(ā′
1, B) is the sta-

tionarization of (tp(ā1, A2), A1).
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§3 Defining Superstability and κ(s)

We here define the parallel to κ(T ) : a set κ(s) of regular cardinals
in Definition (3.1); we say s is superstable if and only if κ(s) = ∅;
we show that κ(s) 6= ∅ implies a strong non-structure (3.5) and
prove sup κ(s) ≤ χs (3.7). We further show that a (< ω)-type over
a directed union of models does not fork over one of them for s

superstable; also the union is (Ds, µ)-homogeneous if each model is
(and a weaker Lemma when κ(s) 6= ∅) (in 3.8, 3.9, 3.10, 3.11, 3.13).
We then define stability in λ and derive some basic facts.

We also give some explanation for the “deviations” from the first
order case.

3.1 Definition. κ(s) is the class of regular κ such that for some
Mi <s C (i ≤ κ), ≤s-increasing and for some finite c̄ ∈ Mκ the type

tp(c̄,
⋃

i<κ

Mi) forks over Mj for every j < κ.

Because we have not shown that forking has finite character we
can’t show that κ(s) is an initial segment of the cardinals. Thus,
we must use the set κ(s) instead of its supremum which we denoted
κ(T ) in the first order case. (Note: we did not say that tp(c̄, Mj+1)
forks over Mj).

3.2 Remark. 1) “Finite c̄” is essential, otherwise, for any C even
with no relations, just equality, let Mi (i < κ) be strictly increasing,
c̄ = 〈ci : i < κ〉, ci ∈ Mi+1\Mi.
2) What about demanding just “κ > |ℓg(c̄)|”? There is no reason
of opposing this, but it just complicates our non-structure theorem,
with no gain visible now. But see 3.9.
3) Why not “tp(c̄, Mj+1) forks over Mj for every j < κ”? Definition
3.1 is more natural in our context and the witness for forking is no
longer a finite formula. Definition 3.1 is seemingly a different and
better definition, not harming much the non-structure proofs, while
helping with structure.
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3.3 Definition. We say s is superstable if κ(s) = ∅.

3.4 Remark. 1) So the finiteness in the definition of superstable dis-
appears; neither “a formula catching the rank” nor “does not fork
over a finite set” appear on the surface.
2) We can define Ceq (naturally, delayed to [Sh:E54]) and in it for
every parallelism class of (< ω)-type p, an element p/‖ such that
p/‖ ∈ M eq ⇔ (∃q)[p‖q & q ∈ S <∞(M)] and p does not fork over
p/‖.
3) Anyhow, types of models (i.e., Sc(M)) play a greater role here
than in first order case, but less than in Chapter V.D, as still we
need elements for the c̄. For superstability we shall see examples.
4) Why do we look at κ(s) and not, e.g. Min(κ(s))? If we would
like, e.g., to characterize {λ : s has a (Ds, λ)-homogeneous model of
cardinality λ} we shall need the set.
5) Even though we have established in V.D.3.16(4) the local char-
acter of dependence for models, this does not extend automatically
to elements. That is, it seems that may be in general there is a ≤s-
increasing sequence 〈Mi : i < ω〉 such that tp(c, Mi) does not fork

over M0 for each i but tp(c̄,
⋃

i<ω

Mi) forks over M0. In the presence

of superstability this is impossible since for some i we have tp(c, Mδ)
does not fork over Mi and we can apply transitivity. This observa-
tion is the key to the central Lemma 5.3.
Essentially the theorems on superstable first order theories general-
ize.

3.5 Theorem. [The non-structure theorem for unsuperstability] If
κ is a cardinal in κ(s) then we have strong non-structure as follows.

If λ = λκ + χχ(s), χ ≥ κ + χs, then there are 2λ non-isomorphic
models in sλ and even in

K
us
λ,χ,κ = K

us
χ,κ ∩ Kλ = {M ∈ Kλ :M is a (< κ)-directed union of

(Ds, χ
+)-homogeneous models}.
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Remark. 1) We can replace χχ(s) by Min{‖N‖ : N is a (Ds, χ
+)-

homogeneous model}; we can replace χ+ by suitable regular χ′.
2) We can get strong homogeneity, too.

Proof. Let Mi (i ≤ κ), c̄ witness κ ∈ κ(s). By Lowenheim-Skolem
and the fact that NF, i.e. s is χs-based without loss of generality
(by V.D.1.18 and Definition 1.2):

‖Mi‖ ≤ κ + χs.

We shall use below V.C§4.
Without loss of generality the sequence of Mi’s is ≤s-increasing and
continuous (except for i = κ) (if we waive smoothness, we can restore
the continuity demand using κ = Min[κ(s)∪{κ : κ smoothness fail}]
or redefining κ(s)). Now we can find Mη, fη for η ∈ κ≥λ such that:

(a) fη : Mℓg(η)
onto
−→ Mη <s C

(b) for α < ℓg(η), tp(Mη, Mη↾α ∪ ∪{Mν : ν ∈ κ>λ, ν ↾ (α + 1) 6=
η ↾ (α + 1)})
does not fork over Mη↾α

(c) fη↾α ⊆ fη.

Why? Let 〈ηα : α < α(∗)〉 list κ≥λ such that ηα ⊳ ηβ ⇒ α < β (we
can list only ∪{ζλ : ζ < κ successor or ζ = κ}).

Now let w∗
α = {β : ηβ ⊳ηα} and Cα = Mℓg(η). Now apply V.C.4.14

and get a stable construction A with ℓg(A ) = α(∗) and wA
α = w∗

for α < ℓg(A ). Now by V.C.4.5(1) we have

(∗) if u1, u2 ⊆ α(∗) are A -closed then AA
u1∩u2

, AA
u1

, AA
u2

, are in
stable amalgamation in C.

Translating this to our terms (for S ⊆ κ≥λ let cℓ(S) = {η ↾ i : η ∈
S, i ≤ ℓg(η)} and say S is ⊳-downward closed if S = cℓ(S), this is
compatible with V.C§4), note

(∗) (a) if S ⊆ κ≥λ then
〈∪{Mη : η ∈ S ∪ {<>}〉gn

C
= 〈∪{Mη : η ∈ cℓ(S)〉gn

C

(b) if S1, S2 ⊆ κ≥λ are ⊳-downward closed and non-empty then
MS1∩S2

, MS1
, MS2

is in stable amalgamation inside C.
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Now for η ∈ κλ, let c̄η := fη(c̄).

3.6 Fact. Assume κ>λ ⊆ S ⊆ κ≥λ and recall MS = 〈
⋃

η∈S

Mη〉
gn.

Then tp(c̄η,
⋃

α<κ

Mη↾α) is realized in MS if and only if η ∈ S.

[Proof of Fact: For every c̄∗ ∈ MS (of length ℓg(c̄)) there is a

finite w ⊆ S such that c̄ ⊆ 〈
⋃

ν∈w

Mν〉
gn (by the “finite character”,

explicitly V.C.4.5(2) for µ = ℵ0). We can prove by induction on

|w|, that tp(
⋃

ν∈w

Mν ,
⋃

α<κ

Mη↾α) does not fork over Mη↾α(w) for some

α(w) < κ, and finish easily].

By Chapter III of [Sh 300] or [Sh:e, IV,§2,§3] this is enough

for proving İ(λ, K) is large. But we would like to show that even

İ(λ, Kus
λ,χ,κ) is large.

We let {ui : i < λ} list a cofinal subset of {u : u ⊆ S, |u| < κ}
such that [ui ⊆ uj ⇒ i ≤ j] and let 〈wi : i < λ〉 be such that:

(a) wi ⊆ i, |wi| <s κ,

(b) [j ∈ wi ⇒ wj ⊆ wi]

(c) for each i and j (< λ) there is ζ satisfying max{i, j} < ζ < λ
such that wζ = wi ∪ {j} ∪ wj

(d) if w ⊆ µ & |w| < κ &
∧

i∈w

w ∩ i = wi then for some j,

w = wj .

Let u+
i =

⋃

j∈wi

uj . We now define by induction on i ≤ λ, M i
S, N j

S

(for j < λ), and gj1,j2 (for j1, j2 ≤ i) such that:

(a) M0
S = MS <s C

(b) M δ
S =

⋃

i<δ

M i
S for limit δ ≤ λ, moreover 〈M i

S : i ≤ λ〉 is

≤s-increasing continuous

(c) N i
S is (Ds, χ

+)-homogeneous of cardinality χχ(s) (and N i
S <s

C)
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(d) j ∈ wi ⇒ N j
S ≤s N i

S

(e) η ∈ u+
i ⇒ Mη ≤s N i

S

(f) tp(N i
S , MS) does not fork over 〈∪{Mη : η ∈ ui}〉

gn

(g) 〈MS, N i
S, wi : i < λ〉 is a stable construction,

(h) if i(0), i(1) < λ, and there are functions h1, h2 satisfying (α)−
(ε) below, then gi(0),i(1) is well defined, is an isomorphism

from N
i(0)
S onto N

i(1)
S extending gj,h2(j) for j ∈ wi(0) and

extending fh1(η) ◦ f−1
η for η ∈ u+

i(0) where

(α) h1 : ui(0) → ui(1) one to one onto,

(β) h2 : wi(0) → wi(1) one to one order preserving onto,

(γ) (∀η ∈ ui(0))[ℓg(η) = ℓg(h1(η))]

(δ) (∀η, ν ∈ ui(0))[η ⊳ ν ⇔ h1(η) ⊳ h1(ν)]

(ε) (∀η ∈ u+
i(0))(∀j ∈ wi(0))[η ∈ u+

j ⇔ h1(η) ∈ u+
h2(j)

].

The rest should be clear. �3.5

3.6 Remark.

0) We may elaborate in [Sh:e].

1) Suppose we would like to apply 3.5 to the first order case, i.e.,

to prove for a first order unsuperstable T that İ(λ, T ) = 2λ.
From the first conclusion in 3.5 we get only “many alge-
braically closed sets”. In order to get “many models”, we
use the second conclusion in 3.5: İ(λ, Kus

λ,χ,κ) = 2λ.

2) Here is the first order analog of the situation in Lemma 3.5.
Let T be a countable stable but not superstable theory. Then
one cannot prove (there are counterexamples) that for large
κ, T has 2κ pairwise non-isomorphic ℵ1-saturated models of
cardinality κ; but there are 2κ models which are direct limits
of ℵ1-saturated models.
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3.7 Lemma. 1) κ ∈ κ(s) ⇒ κ ≤ χs.
2) If κ ∈ κ(s) then there is a ≤s-increasing continuous sequence
〈Mi : i ≤ κ〉 of models from Ks

χs

and p ∈ S <ω(Mκ) which forks
over Mi for every i < κ.

Proof. 1) Let Mi (i ≤ κ) and c̄ witnesses κ ∈ κ(s); suppose for

contradiction that κ > χs and note that by smoothness
⋃

i<κ

Mi ≤s

Mκ.
As NF is χs-based there are N1, N2 satisfying

N1 ≤s

⋃

i<κ

Mi, N2 ≤ Mκ, c̄ ∈ N2

such that the triple N1, N2,
⋃

i<κ

Mi is in stable amalgamation and

‖Nℓ‖ ≤ χs for ℓ = 1, 2. As ‖N1‖ ≤ χs and κ is regular by definition
of κ(s) (i.e. the choice of 〈Mi : i ≤ κ〉 and c̄) there is α < κ such

that N1 ⊆ Mα. Now tp(N2,
⋃

i<κ

Mi) does not fork over N1 hence by

monotonicity it does not fork over Mα, hence tp(c̄,
⋃

i<κ

Mi) does not

fork over Mα, contradiction.
2) Easy (or see the proof of 3.5). �3.7

3.8 Lemma. 1) If I is a µ-directed partial order, (∀κ)[κ ∈ κ(s) →
κ < µ],

Mt ≤s M ⊆ N for t ∈ I,

[t < s ⇒ Mt ⊆ Ms], and M =
⋃

t∈I

Mt then for every c̄ ∈ ω>N there

is t ∈ I such that tp(c̄, M) does not fork over Mt.

Proof. Easy.
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3.9 Remark. 1) Using c̄ of greater length, say ω, we can get the right
conclusion, provided that we redefine κ(s). Let

κθ(s) = {κ :cf(κ) = κ > θ and there are Mi <s C,

≤s -increasing continuous for i ≤ κ + 1,

and c̄ ∈ Mκ+1, ℓg(c̄) = θ such that

for each i < κ, tp(c̄, Mκ) forks over Mi}.

In Lemma 3.8 we demand: ℓg(c̄) < µ and [κ ∈ κℓg(c̄)(s) ⇒ κ < µ].
Note that, e.g., if c̄ = 〈cℓ : ℓ < ω〉 then

[
∧

n<ω

tp(c̄ ↾ n, N) does not fork over M ⇒

⇒ tp(c̄, N) does not fork over M ]

does not seem true in general.
2) So if, e.g., κ(s) = {ℵ0} we can still be interested but we are
not now. If we look at the class of something like ℵ1-saturated (or
ℵ1-compact) then κℵ0

(s) = ∅ is a good dividing line but see 3.12.

3.10 Theorem. 1) If Mi (i < δ) is ≤s-increasing, each Mi is (Ds, µ)-

homogeneous, µ > χs, and cf(δ) /∈ κ(s), then
⋃

i<δ

Mi is (Ds, µ)-

homogeneous.
2) If κ = cf(δ) ∈ κ(s), λ<µ = λ, µ > χs + |τ(s)| then we can
find a (Ds, µ)-homogeneous model of cardinality λ, morever mod-
els Mi(i < δ) ≤s-increasing with i, each of cardinality λ such that
⋃

i<δ

Mi is not a (Ds, µ)-homogeneous model.

3.11 Remark. 1) A priori it looks as though the old proof fails to
generalize, as there we have dealt with the type of an element, but the
model-homogeneity=saturativity Lemma V.B.3.18 saves us (it shows
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homogeneity can be achieved by realizing only types of elements).
2) Without loss of generality µ is regular (and even is a successor
cardinal).

Proof. 1) By V.B.3.18 it is enough to prove that for every p ∈

S 1(
⋃

i<δ

Mi) and A ⊆
⋃

i<δ

Mi of cardinality < µ the type p ↾ A is

realized in
⋃

i<δ

Mi. As cf(δ) /∈ κ(s) for some i < δ, p does not fork

over Mi. Now Mi is (Ds, µ)-homogeneous, and we can apply 1.6.
2) Let Mi(i ≤ κ+1) be increasing continuous, c̄ ∈ ω>|Mκ|, tp(c̄, Mκ)
forks over Mα for each α < κ. By V.D.1.18 without loss of generality
‖Mi‖ ≤ χs for i ≤ κ. We now choose by induction on i ≤ κ, model
Ni such that:

(a) j < i ⇒ Nj ≤s Ni,

(b) if i is a limit ordinal then Ni = ∪{Nj : j < i}

(c) if i is non-limit then Ni is (Ds, µ)-homogeneous

(d) Mi ⊆ Ni and Mi, Ni, Mκ+1 is in stable amalgamation,

(e) ‖Ni‖ = λ.

This is easily done, e.g. in limit stage i use V.C.1.10. In particular

the triple Mκ =
⋃

i<κ

Mi, Nκ =
⋃

i<κ

Ni, Mκ+1 is in stable amalgama-

tion. If tp(c̄,
⋃

i<κ

Mi) is realized in
⋃

i<κ

Ni, let c̄′ ∈ ω>(
⋃

i<κ

Ni) realize

it, so for some α < κ, c̄′ ∈ ω>|Nα|, then tp(c̄′,
⋃

i<κ

Mi) does not

fork over Mα by clause (e), contradiction. So
⋃

i<κ

Ni is not (Ds, χ
+
s )-

homogeneous, and we finish. �3.10

3.12 Claim. 1) We can use κθ(s) in proving 3.10(2) when cf(δ) > θ
instead of κ(s), this holds for 3.10(1) too, trivially.
2) We can conclude that κθ(s) = κ(s)\θ+.
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Proof. 1) Similar proof.
2) For κ = cf(κ) > θ, Claim 3.10(1),(2) give a necessary and sufficient
condition for κ ∈ κ(s) and part (1) gives the same necessarily and
sufficient condition for κ ∈ κθ(s). �3.12

3.13 Conclusion. If µ∗ > χs, I is a µ1-directed partial order, and
(∀µ)[µ ∈ κ(s) ⇒ µ < µ1 ∨ µ > |I|] and Mt <s C for t ∈ I, [I |= s ≤

t ⇒ Mt ≤s Ms] and each Mt is (Ds, µ
∗)-homogeneous. Then

⋃

t∈I

Mt

is (Ds, µ
∗)-homogeneous.

Proof. Easy by now.

3.14 Definition. We say s (actually Ks) is stable in λ when: for
every M <s C of cardinality λ we have |S <ω(M)| ≤ λ (remember
S m(M) = {tp(c̄, M) : c̄ ∈ m|C|}), and (if not said otherwise) λ ≥
χs.

Remark. We could have restricted ourselves in Definition 3.14 to
m = 1, i.e. to S 1(M) see 3.16.

3.15 Lemma. 1) If s is stable in λ and κ = Min{κ : λκ > λ} then
κ /∈ κ(s) and κ is regular, of course.
2) If s is stable in λ and λ > χs, then s has a (Ds, λ)-homogeneous
model of cardinality λ.
3) If κ(s) = ∅ and λ ≥ 2χ(s)+|τ(s)| then s is stable in λ.
4) If s is stable in λ and λ < λ<κ>tr (i.e., there is T ⊆ κ≥λ closed
under initial segments such that |T ∩κ>λ| ≤ λ < |T |) then κ /∈ κ(s).

Proof. 1) Easy. If not let Mη(η ∈ κ≥λ), c̄ν(ν ∈ κλ) be as in the
proof of 3.5. Choose M such that ∪{Mη : η ∈ κ>λ} ⊆ M <s C and
‖M‖ = λ (clearly possible) so

|S <ω(M)| ≥ |{tp(c̄ν , M) : ν ∈ κλ}| = λκ > λ
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2) Let κ be as in part (1), δ = λ × κ (ordinal multiplication). We
choose by induction on α ≤ δ, Mα such that:

(i) Mα <s C, ‖Mα‖ = λ

(ii) every p ∈ S <ω(Mα) is realized in Mα+1

(iii) Mβ ≤s Mα for β < α.

There are no problems and M =
⋃

α<δ

Mα is as required.

[Why? By 3.17 below, Mλ×(i+1) is ≤s-universal over Mλ×i (in Ks

λ).
Now Mκ is (Ds, λ)-homogeneous is proved as in 3.10(1), reproving
1.6 under the present assumptions (or see II§4).]
3) Let M ∈ K, ‖M‖ = λ. We shall define by induction on n, Sn ⊆ nλ
and models Mη(η ∈ Sn). Let S0 = {<>}, M<> = M . If Mη is
defined, ‖Mη‖ > χs let Mη = ∪{Mηˆ<i> : i < ‖Mη‖}, ‖Mηˆ<i>‖ <
‖Mη‖, Mηˆ<i> ≤s Mη and 〈Mηˆ<i> : i < ‖Mη‖〉 is ≤s-increasing. So
for every p ∈ S m(M) we try to choose by induction on n, ηn ∈ Sn,
ηn+1 ↾ n = ηn such that p does not fork over Mηn

. For n = 0 this
certainly holds by 1.3(3). If ηn is defined and ‖Mηn

‖ > χs then
〈Mηnˆ<α> : α < ‖Mηn

‖〉 is well defined and as above, and for some
α, p ↾ Mηn

does not fork over Mηˆ<α> as cf(‖Mηn
‖) /∈ κ(s); so let

αn = min{α < ‖Mηn
‖ : p ↾ Mηn

does not fork over Mηnˆ<α>}
and let ηn+1 = ηnˆ〈αn〉. As 〈‖Mηn

‖ : n < ω〉 is decreasing, for some
n = n(p), ηn is well defined and ‖Mηn

‖ ≤ χs. So for some η ∈ ∪{Sn :
n < ω}, p does not fork over Mη, ‖Mη‖ ≤ χs. Now if p, q ∈ S m(M)
both do not fork over Mη and p ↾ Mη = q ↾ Mη then p = q (by

1.5), so |S m(M)| ≤
∑

{|S m(Mη)| : η ∈
⋃

n

Sn, ‖Mη‖ ≤ χs}, now

|
⋃

n

Sn| ≤
∑

n

λn = λ, and M ∈ Kχ(s) ⇒ |S m(M)| ≤ 2χ(s)+|τ(s)|

(count isomorphism types over M of extensions of M of cardinality
≤ χ(s) + |τ(s)| with expanded by a distinguished element).
4) As in the proof of part (1). �3.15

3.16 Conclusion. 1) K is superstable (i.e. κ(s) = ∅) if and only if K

is stable in every λ ≥ 2χ(s)+|τ(s)|, iff for every θ = cf(θ) ≤ χs, s is
stable in some λ < λ<θ>tr (which is ≥ χs).
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2) For λ > χs, K is stable in λ if and only if there is a (Ds, λ)-
homogeneous model of cardinality λ if and only if |S 1(M)| ≤ λ
whenever M ∈ Kλ.

Proof. 1) Easy.
2) The last statement implies the second as in the proof of 3.15(2).
Let us prove that the second statement implies the first. Suppose
M is (Ds, λ)-homogeneous of cardinality λ. Let 〈Mi : i < cf(λ)〉 be

≤s-increasing continuous, ‖Mi‖ < λ, M =
⋃

i<cfλ

Mi. As M is (Ds, λ)-

homogeneous for every i < cf(λ), every p ∈ S <ω(Mi) is realized in
M , hence |S <ω(Mi)| ≤ λ, hence S = {p ∈ S <ω(M) : p does not
fork over Mi, for some i < cf(λ)} has cardinality ≤ λ + cf(λ) = λ.
If S = S <ω(M), then (as every M ′ ∈ Kλ can be ≤s-embedded
into M) Ks is stable in λ and we finish. So toward contradiction
we assume S 6= S <ω(M) hence we can choose p ∈ S <ω(M)\S .
Clearly p, 〈Mi : i < cf(λ)〉 exemplify κ := cf(λ) ∈ κs. As λ > χs by
3.7 we have cf(λ) ≤ χs < λ and there is a ≤s-increasing continuous
sequence 〈Nε : ε ≤ κ〉 of members of Ks

≤χ(s) and p ∈ S m(Nκ) which

forks over Mε for every ε < κ and let c̄ ∈ mC realize p.
If λ<κ>tr > λ, see 3.15(4), we may try to imitate the proof of

3.15(1), but we do not know to deduce λ<κ>tr > λ, so we shall use
the choice of M and 〈Mi : i < cf(λ)〉, in fact imitate in the proof of
3.10(2).

We choose (fε, Mε, M
∗
ε ) by induction on ε ≤ κ such that:

⊛ (a) Mε ≤s M∗
ε ≤s M

(b) ‖M∗
ε ‖ ≤ ‖Mε‖ + χs < λ

(c) M∗
ε is ≤s-increasing continuous with ε

(d) fε is a ≤s-embedding of Nε into M∗
ε

(e) fε is ⊆-increasing continuous with ε

(f) if ζ < ε then the triple fζ(Nζ), fε(Nε), M
∗
ζ is in stable

amalgamation inside M .

There is no problem to carry the definition recalling M is (Ds, λ)-
homogeneous, Mε ≤s M, ‖Mε‖ < λ. Now clearly M∗

κ = M (as
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M∗
κ = ∪{M∗

ε : ε < κ} ⊆ M and M = ∪{Mε : ε < κ} ⊆ ∪{M∗
ε : ε <

κ} = M∗
κ).

Also if c̄ ∈ mM then for some ε < κ, c̄ ∈ m(M∗
ε ) but fε(Nε), fκ(Nκ),

M∗
ε is in stable amalgamation hence tp(c̄, fκ(Nκ)) does not fork

over fε(Nε) hence c̄ does not realize the type fκ(p). But fκ(p) ∈
S m(fκ(Nκ)), ‖fκ(Nκ)‖ = ‖Nκ‖ ≤ χs < λ, so this contradicts the
choice of M . Hence S = S m(M) so we are done proving “the
second statement” in 3.16(2) implies the first.

Lastly, the third statement follows from the first (see Definition
3.14) so we are done. �3.16

We may feel the lack of a (Ds, χs)-homogeneous model in cardinality
χs, when Ks is stable in χs (except that χ<χs

s > χs); the following
claim is a redemption of this.

3.17 Claim. If ‖M1‖ = ‖M2‖ = λ ≥ χK, and for ℓ = 1, 2, M ℓ =
∪{M ℓ

i : i < λ}, 〈M ℓ
i : i < λ〉 is ≤s-increasing, and every p ∈

S 1(M ℓ
i ) is realized in M ℓ

i+1 then M1 ∼= M2.

Proof. Like V.B.3.18 (or see II§1). �3.17

Similarly (or see II§1).

3.18 Subfact. If 〈Mi : i ≤ λ〉 is ≤s-increasing continuous, ‖Mi‖ = λ,
λ ≥ χs every p ∈ S 1(Mi) is realized in Mi+1 and M0 ≤s N <s C,
‖N‖ = λ then N can be ≤s-embedded into Mλ over M0.

Remark. Really we need on K only LSP(λ) and amalgamation for
Kλ.

§4 Orthogonality

In this section we redefine orthogonality and weak orthogonality,
then give their basic properties (4.1 - 4.6).
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4.1 Definition. 1) We say tp(ā, A)⊥
wk

tp(b̄, A) (they are weakly or-

thogonal) if for every ā′, b̄′ realizing tp(ā, A), tp(b̄, A) respectively,

tp(āˆb̄, A) = tp(ā′ˆb̄′, A).

2) We say tp(ā, A)⊥ tp(c̄, B) (they are orthogonal) if they both are
stationary and for every N satisfying A∪B ⊆ N <s C, and station-
arizations tp(ā′, N), tp(b̄′, N) of tp(ā, A), tp(b̄, B) respectively we
have

tp(ā′, N)⊥
wk

tp(b̄′, N).

3) We say tp(ā, B)⊥
a
A (where A ⊆ B) if tp(ā, B) is weakly orthog-

onal to tp(b̄, B) for every b̄ such that tp(b̄, B) does not fork over A
(a - for almost). We say for this tp(ā, A) is almost orthogonal to A.
4) We say tp(ā, A)⊥B when: tp(ā, A) is stationary and
if A ∪ B ⊆ M , tp(ā′, M) is the stationarization of tp(ā, A) and
tp(b̄, M) does not fork over B then tp(ā′, M)⊥ tp(b̄, M).

4.2 Observation. Assume Rang(ā1) ⊆ Rang(ā2).
1) If tp(ā2, A)⊥

wk
tp(b̄, A) then tp(ā1, A)⊥

wk
tp(b̄, A).

2) Assume tp(āℓ, A) is stationary for ℓ = 1, 2. Then for any B and b̄

(a) tp(ā2, A)⊥tp(b̄, B) implies tp(ā1, A)⊥tp(b̄, B) and

(b) tp(ā2, A)⊥
a
B implies tp(ā1, A)⊥

a
B when B ⊆ A

(c) tp(ā2, A)⊥B implies tp(ā1, A)⊥B.

3) If M ⊆ B and ā ∈ C then the following are equivalent

(a) tp(ā, A)⊥
a
M

(b) tp(ā, A)⊥
wk

tp(b̄, N) for every sequence b̄ listing the elements

of some N satisfying M ≤s N <s C and tp(N, A) does not
fork over A (equivalently tp(b̄, A) does not fork over A)

(c) like (b) but N = 〈M, N1〉 where ‖N1‖ ≤ |ℓg(a)|+χs and the
triple M ∩ N1, N1, M is in stable amalgamation.
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Remark. Note that p⊥
a
A has problematic cases if there are types in

S (A) with no extension in S <ω(B) which does not fork over A.
However, the main case is M ≤s N, c̄ ∈ ω>N and tp(N, M + c̄)⊥

a
M .

Proof of 4.2. Easy.
(For (2) recall 2.16 hence if B ⊇ A then there are ā′

1, ā
′
2 such that

tp(ā′
ℓ, B) is a stationarization of tp(āℓ, A) for ℓ = 1, 2 and ā′

1ˆā′
2

realize tp(ā1ˆā2, A). �4.2

4.3 Claim. Definition 4.1 is compatible with Definitions V.D.4.1,
V.D.4.4(2), V.D.4.6(1),(2).

Proof. Easy. �4.3

Remark. We do not have: tp(ā, A)⊥
wk

tp(b̄, A) implies tp(ā, A ∪ b̄)

does not fork over A. (Moreover, there may not be a non-forking
extension of tp(ā, A) to a member of S ℓg(ā)(A ∪ b̄)). The following
claim provides an acceptable substitute (cf. proof of Lemma 5.3).

4.4 Claim. Suppose tp(c̄, M) does not fork over M∗ ≤s M and
M∗ ∪ c̄ ⊆ N∗. The following are equivalent:

(a) tp(N∗, M∗ ∪ c̄)⊥
wk

tp(M, M∗ ∪ c̄)

(b) for any N ′ realizing tp(N∗, M ∪ c̄), tp(N ′, M) does not fork
over M∗.

Proof. Suppose (b) fails; this gives an N ′ realizing tp(N∗, M∗ ∪
c̄) which depends on M over M∗ (i.e., ¬ NF(M∗, M, N ′, C)). But
tp(c̄, M) does not fork over M∗ implies, by Claim 1.8, that there is
an N ′′ isomorphic to N ′ over M ∪ c̄ such that NF(M∗, M, N ′′, C).
This contradicts (a).

Since types over models [or which do not fork over models] are
stationary (Claim 2.4(4)), clearly (b) implies (a) is immediate. �4.4
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4.5 Claim. If tp(ā, M), tp(b̄, M) are not weakly orthogonal, M ⊆
A, tp(ā′, A), tp(b̄′, A) are the stationarization of tp(ā, M) and tp(b̄,
M) respectively, then tp(ā′, A), tp(b̄′, A) are not weakly orthogonal.

Proof. Like the proof of V.D.4.2. �4.5

4.6 Claim. 1) If tp(b̄, N), tp(c̄, N) are orthogonal, then they are
weakly orthogonal.
2) If N is (Ds, λ

+)-homogeneous and λ ≥ ℓg(b̄1)+ ℓg(b̄2)+ χs, then:

tp(b̄1, N)⊥tp(b̄2, N) if and only if tp(b̄1, N)⊥
wk

tp(b̄2, N).

Proof. 1) Obvious.
2) As in V.D.4.5(4), or deduce by V.D.2.9, V.D.4.5 it and 4.4, (or
read 4.8 first).

�4.6

4.7 Claim. If A ⊆ B, N ≤s M, M is (Ds, λ
+)-homogeneous, λ ≥

|B| + ‖N‖ + χs, tp(B, M) does not fork over N , and tp(B, N ∪
A), tp(M, N ∪ A) are weakly orthogonal, then tp(B, N ∪ A) and
tp(B, M ∪ A) are almost orthogonal to N .

Proof. Easy. �4.7

4.8 Lemma. 1) Suppose tp(N, M ∪ C)⊥
a
M, M ≤s N and C ⊆ N .

If M ≤s M1 and tp(C, M1) does not fork over M then {N, M1} is
independent over M and

tp(〈N ∪ M1〉
gn, M1 ∪ C)⊥

a
M1

2) If Mi(i < δ) is ≤s-increasing, Ni(i < δ) is ≤s-increasing, C ⊆ N0,
tp(C, Mi) does not fork over M0, Mi ≤s Ni and tp(Ni, Mi ∪C)⊥

a
Mi
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for i < δ then

tp(
⋃

i<δ

Ni,
⋃

i<δ

Mi ∪ C)⊥
a

⋃

i<δ

Mi.

3) If c̄ ∈ α
C, M ≤s M+, tp(c̄, M+) does not fork over M , M ≤s

N, c̄ ⊆ M+, N ≤s N+, M+ ≤s N+, {N, M+} is independent over M
and tp(N+, N ∪ c̄)⊥

a
N then tp(M+, M ∪ c̄)⊥

a
M .

4) Suppose tp(N, M ∪ C)⊥
a
M , M is (Ds, λ

+)-homogeneous, M ≤s

N, N1 ≤s N <s C, N1 ≤s N2, ‖N2‖ + |C| + χs ≤ λ, {N2, N} in-
dependent over N1 and tp(N2, N) isolated over N1 then tp(〈N ∪
N2〉

gn, M ∪ C)⊥
a
M .

Proof. 1),2) Easy (details on part (2), see [Sh:E54]).
3) If not then there is M1 satisfying M ≤s M1 and tp(c̄, M1) does not
fork over M , but tp(M+, M1 ∪ c̄) forks over M hence tp(M+, M1)
forks over M . Choose M+

1 <s C such that M1 ∪ M+ ⊆ M+
1 and we

can find an automorphism g of C satisfying g ↾ M+ = idM+ and
the triple M+, M+

1 , g(N+) is in stable amalgamation, note that in
particular g ↾ Rang(c̄) = idRang(c̄).

But we know M, N, M+ is in stable amalgamation, now each is
≤s N+ hence the triple M = g(M), g(N), M+ = g(M+) is in stable
amalgamation inside g(N+), so by transitivity of NF (and the previ-
ous paragraph) M , M+

1 , g(N) is in stable amalgamation — hence (by
monotonicity) M , M1, g(N) is. Let N1 = 〈g(N), M1〉

gn, so N1 ≤s C

and (by Ax(C4)) as M ≤s M1 ≤s M+
1 and M, M+

1 , g(N) is in stable
amalgamation clearly also M1, M+

1 , N1 is in stable amalgamation.
Now Rang(c̄) ⊆ M+ ⊆ M+

1 hence tp(c̄, N1) does not fork over M1.

As (by the choice of M1) also tp(c̄, M1) does not fork over M
we get (by transitivity) tp(c̄, N1) does not fork over M ; hence (by
monotonicity) tp(c̄, N1) does not fork over g(N) but g(c̄) = c̄ hence
tp(g(c̄), N1) does not fork over g(N). So as tp(N+, N ∪ c̄) is almost
orthogonal to N , we know that tp(g(N+), g(N)∪g(c̄))⊥

a
g(N), hence

(as g(N) ≤s N1 and the previous sentence) g(N), g(N+), N1 is in
stable amalgamation; so tp(N1, g(N+)) does not fork over g(N). By
the previous paragraph, M , M+

1 , g(N) is in stable amalgamation,
so as M ≤s M1 ≤s M+

1 we have tp(M1, g(N)) does not fork over
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M ; remember M ≤s g(N) ≤s N1, M ≤s M1 ≤s N1. By the last
two sentences (by transitivity of NF) the type tp(M1, g(N+)) does
not fork over M . Hence (by monotonicity) as M ≤s M+ ≤s N+, g ↾

M+ = idM+ , we have tp(M1, M
+) does not fork over M , contra-

dicting (by symmetry) the choice of M1.
4) For (4) use 1.6. �4.8

Note that we have showed

4.9 Lemma. Suppose M is (Ds, λ)-homogeneous, λ > χs, M0 ≤s

M, M0 ≤s N0, C ⊆ N0, tp(C, M) does not fork over M0, {N0, M} is
independent over M0, tp(N0, M0 ∪ C)⊥

a
M0 and ‖N0‖ < λ. If N is

(Ds, λ)-prime model over 〈N0 ∪ M〉gn, then tp(N, M ∪ C)⊥
a
M .

Proof. By V.D§4 (and the definitions) without loss of generality N
is (Ds, λ)-primary over 〈N0 ∪ M〉gn. Prove by induction on length
of construction using 4.6(2) for limit stages, 4.6(1),(4) for successor
stages. �4.9

4.10 Lemma. If M ≤s N , tp(ā, N ∪ c̄)⊥
a
N , tp(āˆc̄, N) does not

fork over M , λ = χs+|ℓg(āˆc̄)|+‖M‖ and N is (Ds, λ
+)-homogeneous

then tp(ā, M ∪ c̄)⊥
a
M .

Proof. Easy. �4.10

4.11 Exercise: 1) If λ ≥ |ℓg(b̄)|+|ℓg(c̄)|+χs and tp(b̄, M)±
wk

tp(c̄, M)

and A ⊆ M, |A| ≤ λ then for some M0 ≤s M we have ‖M0‖ ≤ λ, A ⊆
M0 and tp(b̄, M0) ±

wk
tp(c̄, M0) (see 2.4(3)).

2) Similarly for ±.

4.12 Exercise: 1) If M ≤s N, λ = χs + |ℓg(c̄)|
then we have tp(c̄, M)⊥

wk
tp(N, M) iff tp(c̄, M)⊥

wk
tp(ā, M) for every

ā ∈ λ≥M .
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2) Similarly for ⊥.
3) If M is (Ds, λ

+)-homogeneous and tp(c̄, M)⊥
wk

tp(N, M)

then tp(c̄, M)⊥tp(N, M).

§5 Niceness of Types

Note that not only do we have “problems” with types over sets,
but even with types (of sequences) over models.

When we want to generalize more facts on independence, we seem-
ingly need to translate those questions to questions on models. Nice
and/or prenice types are the ones for which we succeed to carry out
this intention. In §6 we shall prove that for superstable s, every
p ∈ S <ω(M) is prenice.

In 5.1, 5.2 we define, 5.3 sum some facts, 5.4(1) says that being
prenice has a “Lowenheim-Skolem property”; then we say how ho-
mogeneity of models simplify the matter. In 5.4 - 5.10 we show that
for sequences realizing prenice types, the theory of dependence is
similar to the one for C a model of a first order stable T : has local
character by 5.9; everything can be translated to models (5.6, 5.8)
and indiscernible set of M has to lose little to become indiscernible
over A, (M ⊆ A).

5.1 Definition. We call tp(c̄, M) nice if there is N satisfying M ∪
c̄ ⊆ N <s C such that tp(N, M ∪ c̄) is almost orthogonal to M . We
call N a witness to tp(c̄, M) being nice.

5.2 Definition. 1) We call tp(c̄, M) prenice if for some M ′, M ≤s

M ′ <s C, tp(c̄, M ′) does not fork over M and tp(c̄, M ′) is nice.
2) We call tp(c̄, A) prenice when for some M, p we have p ∈ S ℓg(c̄)(M)
is prenice and is the stationarization of tp(c̄, A).
3) Let κnice(s) = Min{κ: if M <s C and c̄ ∈ κ>C then tp(c̄, M) is
prenice}.

5.3 Fact. 1) If M1 ≤s M2 and tp(c̄, M2) does not fork over M1 and
tp(c̄, M1) is nice then tp(c̄, M2) is nice.
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2) If M ≤s N, N\M ⊆ Range(c̄) ⊆ N then tp(c̄, M) is nice.
3) Every nice type p ∈ S <∞(M) is prenice.
4) If M ≤s N and tp(c̄, N) does not fork over M then: tp(c̄, M) is
prenice iff tp(c̄, N) is prenice. Hence of pℓ ∈ S (Mℓ) for ℓ = 1, 2 and
p1, p2 are parallel then p1 is prenice iff p2 is prenice.
5) If 〈Ni : i < δ〉 is ≤s-increasing, tp(c̄, N0) is prenice, and

tp(c̄, N0)⊥
wk

tp(Ni, N0) for i < δ, then tp(c̄, N0)⊥
wk

tp(
⋃

i<δ

Ni, N0).

6) If 〈Nα : α ≤ δ〉 is ≤s-increasing continuous, tp(c̄, N0) is prenice
and tp(c̄, Nα) does not fork over N0 for α < δ then tp(c̄, Nδ) does
not fork over N0.
7) If tp(c̄, N) is prenice then for some M ≤s N, ‖N‖ ≤ χs +
|ℓg(c̄)|, tp(c̄, N) does not fork over M and tp(c̄, M) is prenice.

Proof. 1) By 4.8(1).
2) Easy.
3) Trivial.
4) By part (1) and the definition and transitivity of non-forking.
5) We rely on part (6). Let c̄′ realizes tp(c̄, N0) and we shall prove
that c̄′ realizes tp(c̄,∪{Ni : i < δ}), this suffices. For i < δ, as
tp(c̄, N0)⊥

wk
tp(Ni, N0) clearly tp(c̄′, Ni) = tp(c̄, Ni) and they do not

fork over N0. By part (6) we know that tp(c̄′,∪{Ni : i < δ}) and
tp(c̄,∪{Ni : i < δ} both do not fork over N0. We can conclude that
they are equal, so we are done.
6) Let Nδ := ∪{Ni : i < δ} and let Nδ+1 be such that Nδ ∪ c̄ ⊆
Nδ+1 <s C and Nδ+1 is (Ds, ‖Nδ‖ + χs)-homogeneous. We can find
M such that N0 ≤s M and tp(c̄, M) does not fork over N0 and is
nice. There is an ≤s-embedding f of M into C over N0 such that the
triple N0, f(M), Nδ+1 is in stable amalgamation. As c̄ ∈ Nδ+1, this
implies that tp(c̄, f(M)) does not fork over N0. As also tp(c̄, M)
does not fork over N0, we can extend f ∪ idc̄ to an automorphism of
C. So without loss of generality f = idM . As tp(c̄, M) is nice, there
is M+ satisfying M ∪ c̄ ⊆ M+ <s C such that tp(M+, M ∪ c̄) is
almost orthogonal to M . Fix for awhile i < δ, recall that the triple
N0, M, Nδ+1 is in stable amalgamation inside C. By an assump-
tion tp(c̄, Ni) does not fork over N0 hence there is N+

i such that
c̄ ∈ N+

i , N0 ≤s N+
i and N0, N

+
i , Ni is in stable amalgamation inside
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C. By the choice of Nδ+1 without loss of generalityN+
i ≤s Nδ+1.

Recall that {M, Nδ+1} is independent over N0 and {N+
i , Ni} is in-

dependent over N0 inside Nδ+1 hence easily {M, N+
i , Ni} is indepen-

dent over N0 (see V.D§3) hence tp(c̄, 〈Ni ∪M〉gn) does not fork over
N0. By the choice of M+, clearly tp(M+, 〈Ni ∪M〉gn) does not fork
over N0 hence tp(M+, Ni) does not fork over N0. So 〈Ni : i ≤ δ〉 is
≤s-increasing continuous, the triple N0, M

+, Ni is in stable amalga-
mation for every i < δ hence by V.D.3.13(2) the triple N0, M

+, Nδ

is in stable amalgamation (recalling Definition V.D.3.5,V.D.3.7).
So tp(c̄,∪{Ni : i < δ}) does not fork over N0 as required.

7) By “s is (χs + |ℓg(c̄)|)-based” and part (4). �5.3

5.4 Fact. 1) If tp(c̄, N) is nice then for some M ≤s N satisfying
‖M‖ ≤ χs + |ℓg(c̄)|, the type tp(c̄, N) does not fork over M and
tp(c̄, M) is nice.
2) If M ≤s N , tp(c̄, N) does not fork over M , and tp(c̄, M) is pre-
nice, λ > χs + |ℓg(c̄)| and N is (Ds, λ)-homogeneous, then tp(c̄, N)
is nice.
3) If N ≤s M , N ≤s N+, c̄ ⊆ N+, tp(N+, N ∪ c̄)⊥

wk
tp(M, N ∪ c̄),

λ = |(ℓg(c̄)|+‖N+‖+χs) and M is (Ds, λ
+)-homogeneous, tp(c̄, M)

does not fork over N then tp(c̄, N) is nice.
4) If λ = (|ℓg(c̄)| + χs), the type tp(c̄, M) is prenice and M is
(Ds, λ

+)-homogeneous then tp(c̄, M) is nice.

Proof. 1) There is N+, N ∪ c̄ ⊆ N+ ≤s C, such that tp(N+, N ∪ c̄)
is almost orthogonal to N . As s is χ-based for χ ≥ χs there are M ,
M+ such that:

⊛ (a) c̄ ⊆ M+ ≤s N+

(b) ‖N+‖ ≤ χs + |ℓg(c̄)|

(c) M = M+ ∩ N

(d) NF(M, M+, N, N+).

Clearly tp(c̄, N) does not fork over M . It suffices to prove: tp(M+,
M ∪ c̄) is almost orthogonal to M , thus finishing. But this holds by
4.8(3).
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2) By “s is (χs + |ℓg(c̄)|)-based” there is M0 ≤s M of cardinality
≤ (χs + |ℓg(c̄)|) < λ such that tp(c̄, M) does not fork over M0,
hence tp(c̄, N) does not fork over M0. By 5.3(4) also tp(c̄, M0) is
prenice. By the definition of “tp(c̄, M) is prenice”, there are M1, M2

such that M ≤s M1 ≤s M2, c̄ ∈ M2 and tp(M2, M1 ∪ c̄) is almost
orthogonal to M1. By part (1) and “s is (χs+|ℓg(c̄)|)-based” without
loss of generality ‖M1‖, ‖M2‖ < λ, so there is a ≤s-embedding f1

of M1 into M over M0. Now tp(c̄, N) does not fork over M hence
also does not fork over f1(M1) by monotonicity (see 1.3(2)). Also
tp(c̄, M1) does not fork over M hence f(tp(c̄, M1)) does not fork
over M and extend tp(c̄, M), so c̄ realizes f(tp(c̄, M1)).

Hence f1 ∪ idc̄ can be extended to an automorphism f2 of C.
Trivially tp(c̄, f1(M1)) is nice, M ≤s f(M1) ≤s N and tp(c̄, N)
does not fork over f1(M1), so by 5.3(1) we are done.
3) By 5.4(1), (2).
4) Should be clear. �5.4

5.5 Claim. Assume λ > χs, M is (Ds, λ)-homogeneous, tp(ā, M) is
nice and ℓg(ā) < λ. Then over M ∪ ā there is a (Ds, λ)-prime model.

Remark. 1) See Definition V.D.2.3(1), it naturally means: if N ′ is
(Ds, λ)-homogeneous, f is an automorphism of C mapping M + c̄ into
N ′ then f ↾ (M + c̄) can be extended to a ≤s-embedding of N into
M ; without loss of generality f ↾ M = idM so M ≤s N ′.

Proof. By 5.4(1) there is M0 ≤s M of cardinality χs + |ℓg(c̄)| such
that tp(c̄, M0) is nice and tp(c̄, M) does not fork over M0. Hence
there is N0 ≺s C such that M0 ∪ c̄ ⊆ N0 and tp(N0, M + c̄) is almost
orthogonal to M0, and by 5.4(5) without loss of generality ‖N0‖ ≤
χs + |ℓg(c̄)| hence M0, N0, M are in stable amalgamation and so
N := 〈N0 ∪ M〉gn is <s C, hence by V.D.2.11,V.D.2.8(2) there is
a (Ds, λ)-prime model N+ over N0. We shall show that N is as
required. So let N ′, f as above be given, so M ≤s N ′ and N ′ is
(Ds, λ)-homogeneous and f(c̄′) ∈ ℓg(c̄)(N ′) realizes tp(c̄, M) hence
by “N ′ is (Ds, λ)-homogeneous” we can find a ≤s-embedding g of
N0 into N ′ such that f ↾ M0 = idM0

and f(c̄) = c̄′.
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Now g∪ idM can be extended to an automorphism g+ of C by the
almost orghogonality. So g+ necessarily maps N onto 〈M∪f(N0)〉

gn.
As N+ is (D, λ)-prime over 〈M ∪N0〉

gn it follows by the definition
(V.D.2.3(1)) that we can extend g+ ↾ 〈M∪f(N0)〉 to a ≤s-embedding
of N+ into N ′, so we are done. �5.5

5.6 Claim. If α(∗) is an ordinal, for each α < α(∗), tp(āα, M) is

prenice and for every finite w ⊆ α, tp(āα, M ∪
⋃

β∈w

āβ) does not fork

over M then we can find Mα(α < α(∗)) such that:

(i) āα ⊆ Mα <s C and M ⊆ Mα

(ii) tp(Mα,
⋃

β<α

Mβ) does not fork over M .

5.7 Remark. 1) This will help us to deal with independence of sets
of finite sequences (if s superstable) — realizing prenice types by
translating to problems on sets of models.
2) The inverse of 5.6 is easy by 2.5(6).

Proof. We can find M1, M2 such that:

(a) M1, M2 are (Ds, µ
+)-homogeneous, where µ ≥ χs + ‖M ∪

⋃

α

āα‖

(b) M , M1, M2 are in stable amalgamation.

(c)
⋃

α<α(∗)

āα ⊆ M1.

So tp(āα, M2) does not fork over M , hence we can find (by Defini-
tion 5.1 and 5.4(1),(2)) models Mα, Nα such that: M ≤s Mα <s M2,
Mα ∪ āα ⊆ Nα, ‖Nα‖ ≤ µ and tp(Nα, Mα ∪ āα)⊥

a
Mα. Clearly

if M ′
α ≤s M2 is isomorphic to Mα over M , we can find N ′

α such
that (M ′

α, N ′
α) satisfies the demand on (Mα, Nα). So without loss

of generality {Mα : α < α(∗)} is independent over M , see V.D.3.15-
V.D.3.19. By 2.13, 2.5(6), we can prove by induction on m + n <
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ω, that if α0, . . . , αn−1, β0, . . . , βm−1 are distinct ordinals on <
α(∗) then {Nα0

, . . . , Nαn−1
, āβ0

, . . . , āβm−1
} is independent over M2.

Then we use it for m = 0 to show that any finite subfamily over
M and then use the finite character of independence of models (by
V.D.3.16(4)). �5.6

5.8 Fact. If {āα : α < α(∗)} is independent over M (see Definition
2.12), M ∪ āα ⊆ Nα and tp(Nα, M ∪ āα)⊥

a
M then {Nα : α < α(∗)}

is independent over M .

Proof. Easy, as in the proof of 5.6. �5.8

5.9 Conclusion. 1) If tp(āα, M) is prenice for every α < α(∗), then:
{āα : α < α(∗)} is independent over M if and only if every finite
subfamily is independent.
2) If {āα : α < α(∗)} is independent over M , each tp(āα, M) is
prenice and does not depend on α, α(∗) > χs then {āα : α < α(∗)}
is indiscernible over M , [in fact for every permutation h of α(∗) there
is an automorphism fh of C, fh ↾ M = idM , fh(āα) = āh(α)].

Proof. By 5.6 (and V.D.3.22). �5.9

5.10 Claim. Suppose α(∗) > χ(s), {āα : α < α(∗)} independent
over M0 and each tp(āα, M0) is prenice. Then:
1) For every sequence ā, for some w ⊆ α(∗), w has cardinality ≤
|ℓg(ā)| + χs and {āα : α ∈ (α(∗)\w)} ∪ {ā} is independent over

(M0 ∪
⋃

α∈w

āα, M0).

2) Suppose that for every α we have tp(āα, M0) = p. For every
N <s C for some w ⊆ α(∗), |w| ≤ ‖N‖+ χ(s), for all α ∈ (α(∗)\w),
tp(āα, N) is the same; (i.e. {āα : α < α(∗)} is convergent, see 2.7).

Proof. Easy by 5.6 and the parallel result for the case tp(āα, M0) ∈
S <∞

c (M0), see V.D.3.17. �5.10

Paper Sh:300E, Chapter V.E



276 V.E. UNIVERSAL CLASSES: TYPES OF FINITE SEQUENCES

5.11 Fact. Suppose p ∈ S <λ(N) is nice, ‖N‖ + χs < λ, N ≤s M ,
M is (Ds, λ)-homogeneous, I ⊆ p(M) := {c̄ ∈ M : c̄ realizes p} has
cardinality ≥ λ, I is independent over N , for ā ∈ I, ā ∈ Nā ≤s M ,

N ≤s Nā,tp(Nā, N ∪ ā)⊥
a
N and M is (Ds, λ

+)-primary over
⋃

ā∈I

Nā

(or just (Ds, λ
+)-atomic). If tp(c̄, M) is the stationarization of p

then tp(c̄, N ∪ ∪ I) ⊢ tp(c̄, M).

Proof. Easy. �5.11

§6 Superstable frames

Ranks are less important here as p “every type has of rank < ∞”
is seemingly not equivalent to superstability.

6.1 Definition. 1) For finite c̄ ∈ ω>C, N <s C and ordinal α, the
truth value of rk[tp(c̄, N)] ≥ α is defined as follows: rk[tp(c̄, N)] ≥ α
if and only if for every β < α there are M such that N ≤s M
and c̄1, c̄2 ∈ ℓg(c̄)C realizing tp(c̄, N) such that rk[tp(c̄ℓ, M)] ≥ β
for ℓ = 1, 2 and tp(c̄1, M) 6= tp(c̄2, M) (check that the definition
depends on tp(c̄, N), in particular in N but not on c̄).
2) Now rk[tp(c̄, M)] = α if and only if it is ≥ α but � α + 1.
If rk[tp(c̄, M)] is ≥ α for every α, we say it is not defined and also
write tp(c̄, M) = ∞ (stipulating α < ∞ for any ordinal α).
3) Let rk[c̄, M ] = rk[tp(c̄, M)].

6.2 Lemma. 1) Assume M <s C and c̄ finite, α, β ordinals. If:
α ≤ β and rk[tp(c̄, N)] ≥ β then rk[tp(c̄, N)] ≥ α.
2) For M <s C and c̄ ∈ C (finite) we have: rk[tp(c̄, M)] is equal
to a unique object, an ordinal or ∞, which is ≥ α, if and only if
“rk[tp(c̄, M)] ≥ α”.
3) If M ≤s N <s C and c̄ is finite, then

rk[tp(c̄, N)] ≤ rk[tp(c̄, M)].

4) If for no M ′ we have: (M ≤s M ′ & rk(c̄, M ′) = α) and
rk(c̄, M) ≥ α then rk(c̄, M) = ∞.
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5) If M ≤s N <s C, c̄ finite, tp(c̄, N) does not fork over M then
rk[tp(c̄, N)] = rk[tp(c̄, M)].

6) There is α <
(

2χ(s)+|τ(s)|
)+

such that (for finite c̄):

rk[tp(c̄, M)] ≥ α ⇒ rk[tp(c̄, M)] = ∞.

7) If for some c̄ ∈ M we have rk[tp(c̄, M)] = ∞ then ℵ0 ∈ κ(s).
8) If M ≤s N <s C the type tp(c̄, N) forks over M and rk[tp(c̄, N)] <
∞ then rk[tp(c̄, N)] < rk[tp(c̄, M)]. Also if ∞ > rk[tp(c̄, M)] > β
then for some N we have M ≤s N <s C, tp(c̄, N) forks over M and
rk[tp(c̄, N)] ≥ β and even = β.

Proof. 1) Check Definition 6.1(1).
2) By (1) and Definition 6.1(2).
3) Trivial by the definition.
4) We prove by induction on β ≥ α that: if N <s C and M <s N
and rk(tp(c̄, N)) ≥ α then rk[tp(c̄, N)] ≥ β.
5) By 6.2(3) it suffices to prove: rk[tp(c̄, M)] ≤ rk[tp(c̄, N)]; hence
it suffices to prove by induction on α:
rk[tp(c̄, M)] ≥ α ⇒ rk[tp(c̄, N)] ≥ α.
For α = 0, α limit: trivial.

For α = β + 1, as rk[tp(c̄, M)] ≥ α = β +1, there is M ′ such that
M ≤s M ′ and c̄1, c̄2 ∈ ℓg(c̄)C realizing tp(c̄, M) and realizing different
types in S ℓg(c̄)(M ′) such that rk[tp(c̄ℓ, M

′)] ≥ β for ℓ = 1, 2. Choose
M ′′ such that M ′ ∪ c̄1 ∪ c̄2 ⊆ M ′′.

For some f ∈ AUT(C), f ↾ M = idM and {N, f(M ′′)} is in-
dependent over M . For ℓ = 1, 2 as c̄ℓ ⊆ M ′′, clearly tp(f(c̄ℓ), N)
does not fork over M and as f ↾ M = idM clearly tp(c̄ℓ, M) =
tp(f(c̄ℓ), M) = tp(c̄, M) and recall tp(c̄, N) does not fork over M so
together tp(c̄, N) = tp(f(c̄ℓ), N). As we can replace (M ′, M ′′, c̄1, c̄2)
by (f(M ′), f(M ′′), f(c̄1), f(c̄2)), without loss of generality f is the
identity. As tp(c̄ℓ, 〈M

′ ∪ N〉gn) does not fork over M ′, [because
{f(M ′′), N} is independent over M and M ≤s M ′ ≤s M ′′ by the
base enlargement axiom], by the induction hypothesis rk[tp(c̄ℓ, 〈M

′∪
N〉gn)] ≥ β. Also tp(c̄1, 〈M

′ ∪ N〉gn) 6= tp(c̄2, 〈M
′ ∪ N〉gn) because
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tp(c̄1, M
′) 6= tp(c̄2, M

′). So 〈M ′′ ∪ N〉gn, c̄1, c̄2 satisfies the require-
ment in Definition 6.1. So clearly we are done.
6) By 6.2(5)

{rk[tp(c̄, M)] : c̄ ∈ ω>
C, M <s C} =

{rk[tp(c̄, M)] : c̄ ∈ ω>
C, M <s C, ‖M‖ ≤ χs}.

By 6.2(4) this set is an ordinal (plus maybe ∞). Clearly for h ∈
AUT(C)

rk[tp(c̄, M)] = rk[tp(h(c̄), h(M))],

so the second set above has cardinality ≤ 2χ(s)+|τ(s)|. Together we
get the result.
7) Let α(∗) = (2χ(s)+|τ(s)|)+. We choose Mn by induction on n such
that M0 = M , Mn ≤s Mn+1 <s C and rk[tp(c̄, Mn)] = ∞.
For n = 0 this is assumed. For n = m + 1, as rk[tp(c̄, Mm)] = ∞ >
α(∗) we can find M ′, c̄1, c̄2 such that M1 ≤s M ′, rk[tp(c̄ℓ, M

′)] ≥
α(∗), tp(c̄ℓ, Mm) = tp(c̄, Mm) for ℓ = 1, 2, and tp(c̄1, M

′) 6= tp(c̄2,
M ′). So for some ℓ ∈ {1, 2} the type tp(c̄ℓ, M

′) is not the sta-
tionarization of tp(c̄, Mm) hence it forks over Mm. By using an
automorphism of C over Mm without loss of generality c̄ℓ = c̄ and
let Mm = M ′. Having carried the induction, c̄, 〈Mn : n < ω〉 more
than exemplifies ℵ0 ∈ κ(s).
8) Should be clear. �6.2

6.3 The Existence of Nice Types Lemma: [s is superstable].
1) Suppose M <s C, c̄ a finite sequence, λ = χs. Then there are
M∗ ≤s M and N∗ <s C such that M∗ ≤s N∗, c̄ ∈ N∗, ‖N∗‖ ≤
λ, tp(c̄, M) does not fork over M∗ and the types tp(N∗, M∗ ∪ c̄),
tp(M, M∗ ∪ c̄) are weakly orthogonal.
2) So in (1) if M is (Ds, λ

+)-homogeneous, then tp(c̄, M∗) is nice,
hence tp(c̄, M) is nice.
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Proof. 1) We assume that such M∗, N∗ does not exist and will even-
tually derive a contradiction. We choose Mi, Ni(i < λ+), fi,j(j <
i < λ+) by induction on i such that:

⊡ (a) Mi ≤s M is ≤s-increasing, tp(c̄, M) does not fork over
M0

(b) c̄ ∈ Ni, Mi ≤s Ni, ‖Ni‖ ≤ λ

(c) fi,j is a ≤s-embedding of Nj into Ni over Mj and fi,j(c̄) =
c̄

(d) j1 < j2 < j3 ⇒ fj3,j1 = fj3,j2 ◦ fj2,j1

(e) tp(fi+1,i(Ni), Mi+1) forks over Mi

(f) for i limit, Mi =
⋃

j<i

Mj , Ni =
⋃

j<i

fi,j(Nj).

Construction:.

Case 1:. i = 0
Choose (as s is χs-based), N0 <s C such that c̄ ⊆ N0 and N0∩M ,

N0, M is in stable amalgamation and ‖N0‖ ≤ λ. Let M0 = N0 ∩M .
Clearly clause (b) holds as well as “M0 ≤s M” from clause (a) and
the other conditions are inapplicable.

Case 2:. i = j + 1.
So Nj , Mj are defined (and are as required). Consider Nj , Mj as

candidates for N∗, M∗ in the conclusion of 6.3(1), so they should
fail some demand. As ‖Mj‖ ≤ ‖Nj‖ ≤ λ, Mj ≤s M , Mj ≤s Nj <s C

and c̄ ∈ Nj necessarily tp(Nj, Mj ∪ c̄) is not weakly orthogonal to
tp(M, Mj ∪ c̄). So there is N ′

j <s C isomorphic to Nj over Mj ∪ c̄,
say by the isomorphism hj , such that:

tp(N ′
j, M) forks over Mj.

Then we can find Ni <s C, ‖Ni‖ ≤ λ such that N ′
j ⊆ Ni and Ni∩M ,

Ni, M are in stable amalgamation (exists as s is λ-based). We let
Mi := M ∩Ni and fi,j := hj and for ζ < j we have fi,ζ = fi,j ◦ fj,ζ .
As for checking the conditions, the main point is clause (e), now re-
member tp(Ni, M) does not fork over Mi, so if tp(fi,j(Nj), Mi) does
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not fork over Mj then (by transitivity, 1.5) the type tp(fi,j(Nj), M)
does not fork over Mj , but the former is just N ′

j , so this contradicts

the choice of N ′
j . So (e) holds.

Case 3. i = δ is a limit ordinal.
Let Mδ =

⋃

β<δ

Mβ.

Now 〈Nα, fγ,β : α < δ, β < γ〉 is a directed system hence it
has a limit: N∗

δ and f∗
δ,β for β < δ which means that f∗

δ,β (for

β < δ) is a ≤s-embedding of Nβ into N∗
δ , [β < γ < δ ⇒ f∗

δ,β =

f∗
δ,γ ◦ fγ,β ] and N∗

δ =
⋃

β<δ

f∗
δ,β(Nβ). Clearly 〈f∗

β,δ ↾ Mβ : β < δ〉

is increasing and f∗
δ,β ↾ Mβ is an ≤s-embedding of Mβ into N∗

δ , so
⋃

β<δ

f∗
δ,β(Mβ) ≤s N∗

δ , so without loss of generality
⋃

β<δ

f∗
δ,β ↾ Mβ is

the identity on Mδ :=
⋃

β<δ

Mβ. Now we come to the main point:

we would like also to have fδ,j(c̄) = c̄. In order to get this we need

tp(c̄,
⋃

β<δ

Mβ) = tp(fδ,0(c̄),
⋃

β<δ

Mβ). We know that for each β < δ,

tp(c̄, Mβ) = tp(fδ,0(c̄), Mβ), but we need continuity for this prop-
erty. By our choice of M0, tp(c̄, M) does not fork over M0, hence
for β ≤ δ, tp(c̄, Mβ) does not fork over M0. By the superstabil-

ity for some β(∗) < δ, tp(fδ,0(c̄),
⋃

β<δ

Mβ) does not fork over Mβ(∗);

now as tp(fδ,0(c̄), Mβ(∗)) = tp(c̄, Mβ(∗)) by 1.4(1) we get the desired
equality tp(fδ,0(c̄), Mδ) = tp(c̄, Mδ), so without loss of generality
fδ,0(c̄) = c̄ hence fδ,β(c̄) = c̄ for β < δ. So we finish the case i = δ
limit.

So we have finished the construction, we can choose Mλ+ , Nλ+ ,
〈fλ+,i : i < λ+〉 such that the relevant demands in ⊡(a) − (f) hold.
But then 〈Mi, fλ+,i(Ni) : i < λ+〉 contradict “s is χs-based” (see
V.C.3.11).
2) Left to the reader (use 5.4(4)). �6.3

6.4 Remark. 1) See more in [Sh:E54].
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2) If c̄ ⊆ N and |ℓg(c̄)| = λ, then tp(N, M ∪ c̄) has character (=
localness) ≤ λ + χs as s is (λ + χs)-based.

6.5 Conclusion. [s superstable]. Every p ∈ S m(N), (such that
N <s C, m < ω) is prenice; in other words κnice(s) ≥ ℵ0.

Proof. Let M <s C be a (Ds, χ
+
s )-homomorphic ≤s-extension of N

and q ∈ S m(M) is a non-forking extension of p. By 6.3(2) the type
q is nice hence p is prenice. �6.5

6.6 Lemma. [s superstable]. If {āα : α < α(∗)} is independent
over M , each āα finite, and b̄ a finite sequence then for some finite
w ⊆ α(∗), {āα : α ∈ (α(∗)\w)}∪{b̄} is independent over M (and also

over some N, M ∪
⋃

β∈w

āβ ⊆ N <s C, such that {āα : α ∈ (α(∗)\w)}

is independent over (N, M)).

Proof. As in the proof of 5.5 without loss of generality tp(āα, M) is
nice as well as tp(b̄, M). Let Na, Nā witness it. Choose by induction

on n finite wn ⊆ α(∗) such that tp(b̄, 〈∪{Nα : α ∈
⋃

ℓ≤n

wℓ}〉
gn forks

over 〈∪{Nα : α ∈
⋃

ℓ<n

wℓ}〉. By 6.2(7) eventually we stop, then use

symmetry. �6.6

6.7 Exercise:. In 6.6, replace the model M by a set.

6.8 Definition. 1) We say s has DOP (the dimensional order prop-
erty) when for some λ ≥ χs and (Ds, λ

+)-homogeneous models M0,
M1, M2 which are in stable amalgamation, choosing M3 as a (Ds, λ

+)-
prime models over M1 ∪ M2 we have: there is M ′

3 <s M3 which is
(Ds, λ

+)-homogeneous and includes M1 ∪ M2.
2) We say a prenice p ∈ S (M) is of depth zero when: if M ≤s M1 ≤s

M2 and M1, M2 are (Ds, χs)-homogeneous, a ∈ M2, tp(a, M1) is a
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non-forking extension of p, M2 is χ+
s -prime over M1 ∪ {a} then M2

is minimal over M1 ∪ {a} among the (Ds, χ
+
s )-homogeneous model.

6.9 Exercise: Imitate [Sh:c, Ch.X].

§7 Regular Types and Weight

We deal mainly with regular types and state a definition and a
theorem on weight ([Sh:c, V,§4]). Also our knowledge on the orders
≤w,≤st between stationary types as well (see [Sh:c, V,§2]) can be
generalized to the present context.

7.1 Hypothesis. s is superstable.
Actually we shall mention when we use superstability (however

7.9 which assumes it is our main interest).

7.2 Definition. We say tp(ā, M) is regular provided that it is
prenice and for every N : if M ≤s N <s C and tp(ā, N) forks over
M then tp(ā, N) ⊥ tp(ā, M).

7.3 Claim. 1) If tp(ā0, M0), tp(ā1, M1) are parallel and prenice
then: tp(ā0, M0) is regular if and only if tp(ā1, M1) is regular.
2) Being regular is a property of tp(ā, M) not of ā; moreover of the
parallelism equivalence class of it.

Proof. Part (2) is obvious, using part (1) (and moreover by 5.3(4)).
For part (1), let M be such that Mℓ ≤s M <s C, for ℓ = 0, 1.

For ℓ = 1, 2 let α = ℓg(āℓ) and let p ∈ S α(M) be a non-forking ex-
tension of pℓ hence it is prenice, clearly α, p does not depend on ℓ. By
symmetry it suffices to show [p1 is regular ⇔ p is regular]. Without
loss of generality tp(ā1, M) does not fork over M1 so tp(ā, M) = p.

If p1 is not regular, then is N1 <s C satisfying M1 ≤s N1 such that
tp(ā1, N1) forks over M1 and is not orthogonal to tp(ā1, M1). Let
N1 ∪ ā1 ⊆ N+

1 <s C, and using automorphisms of C over M ∪ ā1 as
tp(ā, M) does not fork over M1 without loss of generality the triple
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M1, N
+
1 , M is in stable amalgamation, hence also M1, N1, M is. Let

N = 〈N1 ∪ M〉gn, easily N witnesses that tp(ā1, M) = p is not
regular.

The other direction (p not regular ⇒ tp(ā1, M1) not regular) is
even easier. �7.3

7.4 Lemma. Suppose p ∈ S <∞(M) is regular. If

(i) I ∪ J ∪ {c̄} ⊆ {ā ∈ C : ā realizes p}

(ii) every b̄ ∈ J depends on I over M (i.e. tp(b̄, M ∪ ∪I) forks
over M)

(iii) c̄ depends on I ∪ J over M

then c̄ depends on I over M .

7.5 Remark. We can use A instead of M and also a set B ⊆ C instead
I if we say tp(ā, A) is regular and is defined similarly.

Proof. Assume the conclusion fails; i.e. tp(c̄, M ∪ I) does not fork
over M . Let λ = (χs+‖M‖+|I|+|J|)+ and N a (Ds, λ)-homogeneous
model satisfying M ∪ I ⊆ N <s C such that µ = µχ(s) = ‖N‖. As
tp(c̄, M ∪ I) does not fork over M there is c̄′ realizing tp(c̄, M ∪ I)
such that tp(c̄′, N) does not fork over M . Without loss of generality
c̄ = c̄′. We now try to choose Ni by induction on i ≤ µ+ such that:

(a) N0 = N

(b) for i limit Ni =
⋃

j<i

Nj

(c) for i = j + 1, if Nj is (Ds, λ)-homogeneous then for some
b̄j ∈ J, b̄j /∈ Nj and N∗

j , ‖N∗
j ‖ ≤ χ(s) < λ, N∗∗

j = N∗
j ∩ Nj ,

b̄j ∈ N∗
j and tp(N∗

j , N∗∗
j ∪ b̄j)⊥

a
N∗∗

j and Ni = 〈Nj ∪ N∗
j 〉

gn

(d) for i = j + 1, if Nj not (Ds, λ)-homogeneous, then Ni =
〈Nj ∪ N∗

j 〉
gn, ‖N∗

j ‖ ≤ χ(s) < λ, N∗∗
j = N∗

j ∩ Nj and N∗
j is

isolated
(i.e. tp(N∗

j , N∗∗
j )⊥

wk
tp(Nj, N

∗∗
j )).
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So for some i(∗) ≤ µ+ we stop. Note that by monotonicity of forking
(and regularity of p)

(e) if j < i(∗) and Nj is (Ds, λ)-homogeneous, then tp(b̄j, Nj) is
orthogonal to p.
[Why? As tp(b̄j , Nj) extend tp(b̄j , M) = p and forks over
M (as tp(b̄j, M ∪ I) forks over M and I ⊆ N ⊆ Nj) so the
definition of “p regular” gives the desired conclusions.]

(f) i(∗) < µ+.
[Why? Otherwise for some club E of λ+ we have [δ ∈ E &
cf(δ) > χs ⇒ Nδ is (λ, Ds)-homogeneous], hence for every
such δ clause (c) applies, but for each b̄ ∈ J, b̄ = bδ holds for
at most one δ whereas |J| ≤ λ, contradiction.]
Hence

(g) I ⊆ Ni(∗).
[Why? As I ⊆ N = N0 ⊆ Ni(∗).]

(h) Ni(∗) is (Ds, λ)-homogeneous.
[Why? By the density of isolated types from V.D.2.9.]

(i) J ⊆ Ni(∗).
[Why? Similarly.]

Before we finish we prove

7.6 Subfact. tp(c̄, Ni) does not fork over M for i ≤ i(∗).
Why? Just prove by induction.

Case A:. For i = 0 : as tp(c̄, Ni) = tp(c̄, N) and the choice of N .

Case B:. For i limit: use 5.3(6) (which is applicable as in Definition
7.2 we have demanded “prenice” (or justify it by 6.5 + superstabil-
ity)).

Case C:. For i = j + 1, Nj is (Ds, λ)-homogeneous:
Now

(C1) tp(c̄, Nj ∪ b̄j) does not fork over Nj .
[Why? By clause (e).]
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(C2) tp(Ni, Nj ∪ b̄j)⊥
a
Nj .

[Why? Because N∗∗
j , Ni, N

∗
j is in stable amalgamation and

tp(N∗
j , N∗∗

j ∪ b̄j)⊥
a
N∗∗

j by clause (c).]

(C3) tp(c̄, Ni) does not fork over Nj

[by (C2) and (C1) and definition of ⊥
a
].

As we know by the induction hypothesis that tp(c̄, Nj) does not fork
over M , by 2.5(4) + (C3) we know tp(c̄, Ni) = tp(c̄, Nj+1) does not
fork over M .

Case D:. For i = j + 1, Nj not (Ds, λ)-homogeneous.
Similar (remember 1.6 to get failure of the isolation in clause (d)
from failure of the non-forking).

So we have proved Subfact 7.6. So tp(c̄, Ni(∗)) does not fork over
M , hence by monotonicity (2.5(1)) the type tp(c̄, M ∪ I ∪ J) does
not fork over M , contradiction.

�7.4

7.7 Conclusion. 1) If p ∈ S m(M) is regular, on
p(C) := {c̄ ∈ mC : c̄ realizes p} dependency satisfies the axioms of
linear dependence; i.e.

(a) finite character: if c̄ depends on I over M it depends on some
finite subset (here we use M <s C)

(b) transitivity: if c̄ depends on J, each b̄ ∈ J depends on I then
c̄ depends on J

(c) exchange principle: if c̄ℓ does not depend on {c̄j : j < ℓ} for
ℓ < n then {c̄ℓ : ℓ < n} is independent.

2) So if J1, J2 are maximal independent subsets of I ⊆ p(mC) then
|J1| = |J2|.
3) If p ∈ S (M) is regular then on {c̄ : tp(c̄, M) is regular ±p} the
parallel to part (1) holds.
4) On {c̄ : c̄ realize a regular type in S <ω(M)} dependency over M
satisfies enough properties to define dimensions (see [Sh:a, AP] or
[Sh:c, V], i.e. in (A), I,J are independent).
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Proof. 1) Clause (a) by 5.9(1) + 6.5; clause (b) by 7.4 and clause (c)
by 2.13 and clause (a).
2) Follows.
3) Similar (but use 7.9,7.10 below).
4) Also easy, as in the citations. �7.4

7.8 Claim. Suppose p ∈ S m(M) is prenice, M is (Ds, λ)-homoge-
neous, p does not fork over N0 <s M and ‖N0‖ + χs < λ. Then p
is regular if and only if p is weakly orthogonal to every q ∈ S m(M)
extending p ↾ N0 and forking over N0 (equivalently q ⊥ p).

Proof. Easy recalling 4.6(2). �7.8

7.9 Claim. 1) [s superstable] If λ > χ(s), M <s N are (Ds, λ)-
homogeneous, pℓ ∈ S m(ℓ)(M), (m(ℓ) < ω) for ℓ = 1, 2, p2 is regular,
p1 ± p2 and p1 is realized in N then p2 is realized in N .
2) If M ≤s N <s C are (Ds, λ)-homogeneous, c̄1 ∈ N , c̄2 ∈ C (not
necessarily finite) tp(c̄ℓ, M) does not fork over Mℓ ≤s M, ‖Mℓ‖ +
|ℓg(c̄ℓ)| + χs < λ for ℓ = 1, 2, and tp(c̄1, M), tp(c̄2, M) are not
orthogonal then there is c̄′2 ∈ N realizing tp(c̄2, M2) such that c̄′2 /∈
M .
3) [s superstable] If p ∈ S m(M) is regular, M ≤s N <s C and M, N
are (Ds, χ

+
s )-homogeneous, p is not realized in N then p⊥

wk
tp(N, M)

hence p⊥tp(N, M).

Proof. 1) Follows by (3).
2) As tp(c̄1, M), tp(c̄2, M) are not orthogonal and M is (Ds, λ)-
homogeneous, there is M ′ satisfying M1 ∪ M2 ⊆ M ′ <s M and
‖M ′‖ ≤ χs + ‖M1‖ + ‖M2‖ + |ℓg(c̄1)| + |ℓg(c̄2)| < λ such that
tp(c̄1, M

′), tp(c̄2, M
′) are not weakly orthogonal; e.g. see 4.11. So

for some c̄′1, c̄′2 realizing tp(c̄1, M
′), tp(c̄2, M

′) respectively, tp(c̄′1, M
′∪

c̄′2) forks over M ′. Without loss of generality c̄′1 = c̄1; and as N
is (Ds, λ)-homogeneous, λ > |M ′ ∪ c̄1|, without loss of generality
c̄′2 ∈ N . Now c̄′2 is as required, it realizes tp(c̄2, M

′) hence tp(c̄2, M2)
(remember M2 ⊆ M ′). Why c̄′2 /∈ M? Because if c̄′2 ∈ M , then by

Paper Sh:300E, Chapter V.E



V.E.§7 REGULAR TYPES AND WEIGHT 287

monotonicity of non-forking tp(c̄1, M
′ ∪ c̄′2) does not fork over M ′,

contradiction.
3) By Definition 7.2, we know p is prenice, so by 5.4(3) it is nice.
Moreover by 5.4(4) we can choose M0 such that

⊛1 p does not fork over M0 ≤s M and ‖M0‖ ≤ χs.

Let 〈M i, N j, ℓj : i ≤ β, j < β〉 be maximal such that:

⊛2 (a) 〈M i : i ≤ β〉 is ≤s-increasing continuous

(b) M0 = M , M i ≤s N

(c) ‖N j‖ ≤ χs and Nj * Mj

(d) if ℓj = 0 then tp(N j, M j) is isolated (equivalently,
N j ∩ M j ≤s M j

and tp(N j, M j ∩ N j)⊥
wk

tp(M j , M j ∩ N j))

(e) if ℓj = 1, then N j ∩ M j, N j, M j is in stable amalga-
mation and there

is c̄j ∈ N j such that tp(N j, (M j ∩N j)∪ c̄j)⊥
a
(M j ∩

N j) and

tp(c̄j , M
j ∩ N j) ⊥ p

(f) ℓj ∈ {0, 1}.

Clearly there is such a sequence and M ≤s Mβ ≤s N . Now:

⊛3 (A) p⊥
wk

tp(M i, M) for every i ≤ β

[prove by induction on i, for limit i use 5.3(5), for i = j + 1,
if ℓj = 0 as in Case D of the proof of 7.6, if ℓj = 1 as in case
C of the proof of 7.6]

(B) Mβ is (Ds, χ
+
s )-homogeneous.

[Why? If not, then there is M ′ ≤s Mβ of cardinality < λ
and q ∈ S 1(M ′) omitted by Mβ and now use V.D.2.9.]

(C) there is no d̄ ∈ ω>N satisfying d̄ /∈ ω>M and tp(d̄, M) ⊥
p.
[Why? As then choose c̄β = d̄, ℓβ = 1, Nβ as required in (e)
exists by 6.3 (here we use superstability) and act as in Case
C of the proof of 7.6; contradicting β′s maximality]
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(D) if c̄ ∈ mN and c̄ realizes p ↾ M0 (recalling ⊛1) then
c̄ ∈ Mβ

[otherwise as p is not realized in N (by an assumption of
7.9(3) which we are proving) clearly tp(c̄, M) is not = p
hence it forks over M0 hence tp(c̄, Mβ) forks over M0 hence
(by p′s regularity) p ⊥ tp(c̄, Mβ) contradicting clause (C)]

(E) if c̄ ∈ N but c̄ /∈ Mβ then tp(c̄, Mβ) ⊥ p
[otherwise by (B) using 7.9(2) there is c̄′ ∈ mM , c̄′ /∈ m(Mβ),
c̄′ realizes p ↾ M0, but this contradicts (D)]

(F ) N = Mβ

[otherwise choose c ∈ N\Mβ, by (E) we have tp(c̄, Mβ) ⊥ p,
but this contradicts (C)]

(G) tp(N, M)⊥
wk

p

[combine (F) and (A) for i = β].

The “hence p⊥tp(N, M)” follows by 4.12 and actually not used.
�7.9

7.10 Conclusion. [s is superstable] Among regular types, non-ortho-
gonality is an equivalence relation.

Proof. By 7.9. �7.10

7.11 Claim. [s superstable] Assume m < ω, p ∈ S m(N) is prenice,
N ≤s M, λ ≥ ‖N‖ + χs, M is (Ds, λ

+)-homogeneous and c̄ ∈ C

realizes p.
If in addition, tp(c̄, M) does not fork over N hence it extends p, p

regular and I ⊆ p(M) is a maximal subset independent over N then
tp(c̄, N ∪ ∪I) ⊢ tp(c̄, M).

Proof. Assume that the conclusion fails, so there is c̄′ such that

⊛1 (a) c̄′ realizes tp(c̄, N ∪
⋃

I)

(b) c̄′ does not realize tp(c̄, M).
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But ⊛1(b) and the uniqueness for non-forking extensions

⊛2 tp(c̄′, M) forks over N .

Of course

⊛3 tp(c̄′, M) extends p ∈ S (N).

But p is regular (by an assumption) hence

⊛4 tp(c̄′, M) is orthogonal to p.

By 6.3(2) there is N1 ≤s M of cardinality ≤ λ such that:

⊛5 (a) N ⊆ N1

(b) tp(c̄′, M) does not fork over N1

(c) tp(c̄′, N1) is nice.

By “majority” considerations there is N2 such that

⊛6 (a) N2 ≤s M and ‖N2‖ ≤ λ

(b) N1 ⊆ N2

(c) if ā ∈ I\m(N2) then ā realizes tp(c̄, N2),
(a non-forking extension of p)

(d) I\m(N2) is independent over N2.

Now by 5.3(1)

⊛7 tp(c̄′, N2) is nice.

By the definition of “nice” there is N3 such that

⊛8 (a) N3 <s C and ‖N3‖ ≤ λ

(b) N2 + c̄′ ⊆ N2

(c) tp(N3, N2 + c̄′)⊥
a
N1.

As M is (Ds, λ
+)-homogeneous there is f such that:

⊛9 f is a ≤s-embedding of N3 into M over N2.

Now as f ↾ N = id N and c̄′ realizes tp(c̄′, N) = p clearly

⊙1 f(c̄′) ∈ mM realizes p
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moreover as tp(c̄′, N ∪ I) does not fork over N by monotonicity:

⊙2 tp(c̄′, N ∪ (I ∩ m(N2)) does not fork over N

hence

⊙3 tp(f(c̄′), N ∪ (I ∩ m(N2))) does not fork over N .

As tp(c̄′, N2) = tp(f(c̄′), N2) is ⊥p (by ⊛4 + ⊛5(b) + ⊛6) and
tp(N3, N2 + c̄′)⊥

a
N2 (by ⊛8(c)) and ⊛6 easily

⊙4 for any n < ω and distinct ā1, . . . , ān ∈ I\m(N2) we have

(α) tp(ām, ā1 + . . . + ām−1 + N2) does not fork over N for
m = 1, . . . , n

(β) tp(ām, ā1 + . . . + ām−1 + f(N2)) does not fork over N
for m = 1, . . . , n

(γ) tp(ā1ˆ . . . ˆān, f(N3)) does not fork over N

hence by ⊛6(d)

⊙5 if m < n, b̄0, . . . , b̄m−1 ∈ I ∩ n(N2) are distinct, b̄m = f(c̄′)
and ām+1, . . . , ān−1 ∈ I\m(N2) are pairwise distinct then
ℓ < n ⇒ tp(b̄ℓ, N + b̄0 + . . .+ b̄ℓ−1) does not fork over N and
extend p.

[Why? The sequence b̄ℓ realizes p for ℓ 6= m by the assumption on I
and for ℓ = m by ⊙1. The non-forking for ℓ holds: if ℓ < m by the
assumption on I, for ℓ = m by ⊙2 for ℓ ∈ (m, n) by ⊙4.]

Now by Claim 5.6, i.e. the local character of being independent,
I∪{f(c̄′)} is a subset of p(M) which is independent. This contradicts
the maximality of I. �7.11

7.12 Claim: [s superstable]. 1) If M ≤s N <s C are (Ds, χ
+
s )-

homogeneous models, M 6= N then for some c ∈ N\M the type
tp(c, M) is regular.
2) If M ≤s N, p ∈ S <ω(N) then: p ⊥ M (see Definition 4.1(4)) iff
whenever M ≤s M1, N

⋃

M
M1 and q ∈ S 1(M1) does not fork over
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M we have p ⊥ q.
3) Assume that p ∈ S <ω(N0), 〈Ni : i ≤ i(∗)〉 is ≤s-increasing con-
tinuous, λ ≥ χ+

s , N0 is (Ds, λ
+)-homogeneous and for each i < i(∗):

(a) Ni

⋃

N∗∗
i

N∗
i , ‖N∗

i ‖ ≤ χs, Ni+1 = 〈Ni, N
∗
i 〉

gn and ‖N∗
i ‖ ≤ λ

where
N∗∗

i ≤s Ni, N∗
i ≤s Ni+1

(b) either (i) or (ii) where

(i) there is b̄ ∈ N∗
i finite, N∗

i /(N∗∗
i ∪ b̄)⊥

a
N∗∗

i

(ii) N∗
i /Ni isolated over N∗∗

i .

Then p⊥
wk

Ni(∗)/N0.

Proof. 1) Choose c ∈ N\M with rk[tp(c, M)] minimal, see §6 in
particular 6.2(7). Let M1 ≤s M be such that ‖M1‖ ≤ χs and
tp(c, M) does not fork over M1. If tp(c, M) is not regular then
by 7.3 also tp(c, M1) is not regular, so there are M ′

1, M1 ≤s M ′
1 and

q ∈ S 1(M ′
1) extending tp(c, M1) such that q forks over M1 and q

not orthogonal to tp(c, M1). Without loss of generality ‖M ′
1‖ ≤ χs

and M ′
1 ≤s M . By 7.9(2) some d ∈ N\M realizes q hence tp(d, M)

extends tp(c, M1) and forks over M1 (as q does); so recalling 6.2(8)
we have rk(d, M) ≤ rk(d, M1) = rk(q) < rk(c, M1) = rk(c, M)
contradicting the choice of c.
2), 3) Left to the reader. �7.12

Concerning weight (see more on this in Chapter N).

7.13 Definition. We define for p ∈ S <ω(M) (or stationary p ∈
S <ω(A)) a number w(p) (the weight of p) (or w(ā, A) if p = tp(ā, A)).

It is n if and only if there is a (Ds, χ
+
s )-homogeneous model N , c̄,

c̄ℓ(ℓ < n) and N∗ such that:

(i) tp(c̄, N) is the stationarization of p over N

(ii) N∗ is (Ds, χ
+
s )-prime over N ∪ {c̄} (see 5.5)

(iii) N∗ is (Ds, χ
+
s )-prime over N ∪ {c̄ℓ : ℓ < n}
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(iv) tp(c̄ℓ, M) is regular

(v) {c̄ℓ : ℓ < n} is independent over N .

7.14 Theorem. 1) For every stationary p, w(p) has at most one
value.
2) [s superstable] For every stationary p, w(p) has a value.
3) If I = {āα : α < α(∗)} is independent over M , c̄ finite, then for
some w ⊆ α(∗) of cardinality ≤ w(c̄, M),

{āα : α ∈ (α(∗)\w)} ∪ {c̄} is independent over M.

Proof. Similar to [Sh:c, V]. �7.13

§8 Trivial Regular Types

We generalize here [Sh:c, V,§7]:

8.1 Definition. We call p ∈ S <m(M) trivial provided that p is
regular, and if āi(i ≤ n) realizes p, ān depends on {āi : i < n} over
M then for some i < n, ān depends on {āi} over M (we may say
〈ai : i ≤ n〉 witness the non-triviality).

8.2 Claim. If pℓ ∈ S <m(Mℓ), (ℓ = 1, 2), p1, p2 parallel and nice,
then p1 is trivial if and only if p2 is trivial.

Proof. There are p, M satisfying M1 ∪ M2 ⊆ M and p ∈ S m(M)
is parallel to p1 and to p2 such that M is (Ds, λ

+)-homogeneous,
λ := ‖M1‖ + ‖M2‖ + χ(s), so it is enough to prove that p is trivial
iff pℓ is trivial for ℓ = 1, 2. So by renaming without loss of generality
p1 ⊆ p2, M1 ⊆ M2 and M2 is (Ds, ‖M1‖

+ + χ(s))-homogeneous.
First assume p2 is (regular and) trivial. Then p1 is regular by 7.3.

Suppose p1 is not trivial and suppose ā0, . . . , ān−1, ān exemplifies it;
i.e. they realize p, ān depends on {ā0, . . . , ān−1} over M1 but not on
{āi} over M for any i < n. Let N1 <s C be such that M1∪ā0∪···ān ⊆
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N1; so there is an automorphism f of C over M1 such that M1, M2,
f(N1) are in stable amalgamation. As āi realize p1, clearly f(āi)
realize p2. As tp(ān, M1 ∪ āi) does not fork over M , by 2.5(9) the
type tp(f(ān), M2 ∪ f(āi)) does not fork over M1 hence over M2.

Lastly as tp(f(ān), M1∪
⋃

i<n

f(āi)) forks over M1, by 2.5(1) the type

tp(f(ān), M2 ∪
⋃

i<n

f(āi)) forks over M1 but tp(f(ān), M2) does not

fork over M1 hence tp(f(ān), M2 ∪
⋃

{f(āi) : i < n}) forks over M2.
So f(ā0), . . . , f(ān) exemplifies p2 is not trivial - contradiction, so p1

is trivial.
Secondly assume p1 is trivial. By 7.3 the type p2 is regular. Sup-

pose p2 is not trivial and we shall derive a contradiction. So let
n < ω, {ā0, . . . , ān} exemplify this. Let J be a maximal subset of
p1(M2) independent over M1. By their choice {āi : i < n} is inde-
pendent over M2 hence easily J ∪ {aℓ : ℓ < n} is independent over
M1. Let ā′

n be such that tp(ā′
n, M2∪{aℓ : ℓ < n}) is the stationariza-

tion of p hence easily tp(ā0ˆā1ˆ . . .ˆān−1ˆā′
n, M2) is prenice, hence

nice by 5.4(2). Now by 7.11

(∗)1 tp(ā0ˆā1ˆ . . . ˆān−1ˆā′
n, M1∪J) ⊢ tp(ā0ˆā1ˆ . . .ˆān−1ˆā′

n, M2).

Now ā0ˆā1ˆ . . .ˆān−1ˆān, does not realize the second type in (∗)1
by their choice hence

(∗)2 ān does not realize the stationarization of p over M1 ∪ J ∪
⋃

{āℓ : ℓ < n}.

By 6.6 for some finite J′ ⊆ J

(∗)3 ān does not realize the stationarization of p over M1∪J′∪{aℓ :
ℓ < n}.

Now J′ ∪ {āℓ : ℓ < n} ⊆ p(C) is independent over M1 (as J ∪ {āℓ :
ℓ < n} ⊆ p1(C) is) but

(∗)4 ℓ < n ⇒ tp(ān, M1 ∪ āℓ) does not fork over M2.
[Why? as tp(ān, M2 ∪ āℓ) is a non-forking extension of p2

hence of p2 ↾ M2 = p1]
and
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(∗)5 ā ∈ J′ ⇒ tp(ān, M1 ∪ ā) does not fork over M1.
[Why? As tp(ān, M2) does not fork over M1.]

So we are done. �8.2

8.3 Claim. If p1, p2 are regular not orthogonal then: p1 is trivial if
and only if p2 is trivial.

Proof. Let M be (Ds, χ(s)+) -homogeneous, and without loss of
generality p1 ∈ S m(1)(M), p2 ∈ S m(2)(M) and they are regular.
Suppose p1 is not trivial and let n < ω, ā0, . . . , ān ∈ m(1)(C) exem-
plify this. Let Mℓ be χ(s)+-primary over M ∪ āℓ (see 5.5). By 7.9(1)
there is b̄ℓ ∈ Mℓ realizing p2. So (see 7.12(3)) the type tp(b̄ℓ, M ∪ āℓ)
forks over M , so by symmetry (2.10) also tp(āℓ, M∪b̄ℓ) forks over M .
Similarly by 7.12(3) for ℓ < n, the type tp(b̄n, Mℓ) does not fork over
M as tp(b̄, M + b̄ℓ) does not fork over M hence tp(b̄n, M ∪ b̄ℓ) does
not fork over M . Also {Mℓ : ℓ < n} is independent over M hence
{bℓ : ℓ < n} is independent over M . On the other hand, by applying
7.7(3) twice (to I = {b̄ℓ : ℓ < n},J = {āℓ : ℓ < n} and ān, then
I = {b̄ℓ : ℓ < n}, J = {ān} and b̄n) we get tp(b̄n, M ∪ {b̄ℓ : ℓ < n})
forks over M . So b0, . . . , b̄n exemplify “p2 is not trivial”. �8.3

8.4 Claim. If pℓ = tp(āℓ, M) ∈ S <ω(M) is not orthogonal to a
trivial q for ℓ = 1, 2, then p1 ±

wk
p2.

Proof. We can find N such that M ∪ Dom(q) ⊆ N <s C, N is
(Ds, λ

+)-homogeneous where λ = ‖M‖ + χ(s). Without loss of gen-
erality q ∈ S <ω(N). Let qℓ ∈ S <ω(N) be the stationarization of pℓ

over N for ℓ = 1, 2. We continue as in [Sh:c, X,7.3,pg.552]. �8.4
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HEART OF THE MATTER

SH300-F

Introduction

The idea of this chapter is to start with a given (superstable)
framework s, to strengthen the notion of submodel, and arrives to
a similar s+ with the same class of models, NF relation except re-
stricting to the cases M0 ≤s(+) Mℓ ≤s(+) M3 for ℓ = 1, 2 and the
same closure operation 〈−〉gn) discarding along the way various non-
structure cases. So we may ask — why should we trouble so much
to return to our starting point? However, if we repeat this ω times,
the limit is more similar to the first order case; we try to start to
deal with this approach in Chapter V.G.

The first section revisits the problem of existence of indiscernibles
dealt with in I,§5, throwing more light even in the first order case. A
point is that we consider indiscernible sequences with other “index
models” (in addition to well orders and sets), the main case being
[λ]2. The main point is that we get independent 〈Mu : u ∈ [S]≤2〉.

In §2 we define the order properties for some variants of Σ1-
formulas (for Lχ+,χ+ [Ks]). We would like to use it to get non-
structure, but we have a problem in building from it many models
using non-well ordered linear orders because we lose track of the sat-
isfaction of those infinary formulas. Hence we use the indiscernibility
existence from §1 and partial well orders to get non-structure.

This leads in §3, assuming the suitable non-order property, to the
introduction of a successor s+ of s, with a stronger notion of sub-
models from §2. We prove that it satisfies AxFr−1 , an approximation
to our main framework here, and more, relative of being based and

Typeset by AMS-TEX
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weaker substitutes of existence of union and smoothness. The main
lack is the existence of union.

So in §4 we show that the failure of “the union of an increasing
ω-sequence does ≤s(+)-extend each of them” implies a non-structure

result. However, it gives only İ(µ,Ks) ≥ µ+ for many µ’s. In §5
we get a similar result about from failure of “the union of an ≤s(+)-
increasing continuous sequence of length θ.

§1 More on Indiscernibility

1.1 Context. s is as in V.B§1, satisfying AxFr1, i.e. Ax(A1)-(A4),(B0)-
(B3), (C1)-(C7) and (C8), smoothness and let C be a monster.

1.2 Definition. 1) We say 〈Mu : u ∈ W 〉 is independent inside M
where W ⊆ [I]<ℵ0 is closed under subsets, when:

(a) u ⊆ w ∈W ⇒Mu ≤s Mw ≤s M

(b) MW (1) ≤s M for W (1) ⊆ W where MW (1) = 〈∪{Mu :
u ∈ W (1)}〉gn so without loss of generalityW (1) is down-
ward closed

(c) if W (ℓ) ⊆ W for ℓ = 1, 2 are downward closed and W (0) =
W (1) ∩W (2) then MW (0),MW (1),MW (2) is in stable amal-
gamation.

1.3 Remark. 1) For a linear order I we do not strictly distinguish e.g.
[I]<n and {(s0, ...., sm−1) : m < n and I |= s0 < s1 < . . . < sm−1}.
2) Recall P−(w) = {u ⊆ w : u 6= w}.

1.4 Lemma. 1) For given n0 ≤ ω and M̄ = 〈Mu : u ∈ W 〉 where
W ⊆ [I]<n0 is downward closed, the following are equivalent:

(a) M̄ is independent

(b) there is {ui : i < i(∗)}, a list of W , such that:

(α) ui ⊆ uj ⇒ i ≤ j;

(β) for each i,MP−(ui),Mui
,M{uj:j<i} is in stable amalga-

mation.
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2) Independence has finite character, that is, for any downward closed
family W of finite sets, 〈Mu : u ∈W 〉 is independent iff 〈Mu : u ∈ V 〉
is independent for any finite downward closed V ⊆W .

Proof. 1) Now (a) ⇒ (b) is trivial as any list 〈ui : i < i(∗)〉 of
W satisfying clause (b)(α) satisfies clause (b)(β) as we are assuming
clause (a).

For the other direction let Ai := M{uj :j<i} <s C and Bi :=
MP−(ui), wi = {j : uj ⊂ ui}, so 〈∅, Ai, Bj, wj : i ≤ i(∗), j < i(∗)〉 is
a stable construction (so Definition V.C.4.2(2) and use V.C.4.5(1).
2) Let 〈ui : i < i(∗)〉 be a list of W such that ui ⊆ uj ⇒ i ≤ j,
i.e. as in (b)(α) of 1.4. We prove “〈Mu : u ∈W 〉 is independent” by
induction on i(∗). This is similr to the above except that for limit
i(∗),∪{M{uj:j<i} : i < i(∗)} is <s C by Ax(C8), smoothness. �1.4

Remark. 1) In the proof of 1.4(1) we did not use Ax(C8).
2) Claim 1.4(2) can be proved without Ax(C8) under the additional
assumption “〈Mu : u ∈ W 〉 is independent inside ∪{Mv : v ⊆ W}
and W is finite downward closed”?

1.5 Lemma. [s is χ-based and χ ≥ |τs|+ LS(χ)].

If λ is regular, (∀α < λ)[|α|χ < λ] and āα ∈ χ+

C for α < λ
then there are S ⊆ Sλ

>χ := {δ < λ : cf(δ) ≥ χ+} stationary,
N<> ≤s N<α> <s C for α ∈ S, ‖Nα‖ ≤ χ, āα ⊆ Nα, {N<α> : α ∈ S}
independent over N<> (see Definition V.D.3.15) and for α, β ∈ S
there is an isomorphism h<α>,<β> from N<α> onto N<β> over N<>

mapping āα to āβ.

Proof. We choose Mα <s C by induction on α, increasing contin-
uous such that āα ⊆ Mα+1 and ‖Mα‖ = χ + |α|. For each α
find Nα ≤s Mα+1 such that āα ⊆ Nα and Nα ∩ Mα, Nα,Mα is
in stable amalgamation, exists by Definition V.C.3.7. For δ ∈ Sλ

>χ

let βδ = min{β < δ : Nδ ∩ Mα ⊆ Mβ}, it is < δ as ‖Nδ‖ ≤
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χ < cf(δ). So by Fodor lemma for some stationary S1 ⊆ Sλ
<χ, we

have δ ∈ S1 ⇒ βδ = β∗. As ‖Mβ∗
‖χ < λ, for some stationary

S ⊆ S1, Nα ∩Mα = N<> for α ∈ S, and (Nα, c)c∈N<>
has the same

isomorphism type. Now 〈Nα : α ∈ S〉, N<> are as required. �1.5

1.6 The Pair Index Theorem. [χs is well defined so s is µ-based
for µ ≥ χs].

Suppose āt ∈ M ∈ Ks for t ∈ [λ]≤2, λ = (2µ)
+
, ℓg(āt) < κ, µ =

µ<κ, κ = cf(κ) > χs.
Suppose further g is a symmetric two place function from λ to

µ. Then we can find I ⊆ λ and Nt (for t ∈ [I]≤2) and hs,t (for
s, t ∈ [I]≤2, |s| = |t|) such that:

(a) I has order type µ+

(b) āt ⊆ Nt ≤s M and ‖Nt‖ < κ

(c) 〈Nt : t ∈ [I]≤2〉 is independent (see Definition 1.2)

(d) if t, s ∈ I [≤2]; i.e. t, s are increasing sequences of length ≤ 2
from I having the same length, then hs,t is an isomorphism
from Nt onto Ns mapping āt to ās

(e) if α < β and α1 < β1 are from I, then
h<>,<> ⊆ h<α>,<α1> ⊆ h<α,β>,<α1,β1>,
h<>,<> ⊆ h<β>,<β1> ⊆ h<α,β>,<α1,β1>

(f) if t1, t2, t3 ∈ I [≤2] have the same length then ht3,t1 = ht3,t2 ◦
ht2,t1.

Remark. 0) Recall h<>,<> is h∅,∅ and h<α>,<α1> is h{α},{α1} and
h<α,α1>,<β,β1> is h{α,α1},{β,β1}.
1) This is similar to V.A§5, but we have here a{α}, ā{α,β} rather than
ā{α} alone.
2) This is new even for first order stable T .
3) We can replace λ by a linear order of this cardinality, only then I
may have order type the inverse of µ+.

Proof. Let χ be large enough regular cardinal such that χ = χλ and
in particular,
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M, 〈āt : t ∈ λ[≤2]〉 belongs to H (χ).
Let B be an Lµ+,µ+-elementary submodel of B∗ := (H (χ+),∈

, s,M, 〈āη : η ∈ λ[≤2]〉) of cardinality 2µ, such that {α : α ≤ 2µ} ⊆ B,
so clearly B ∈ H (χ+) and B ∩ λ is an initial segment of λ recall-
ing λ = (2µ)+. Choose α = Min(λ\B); the s in B means that
{M : M ∈ Ks ∩ H (χ)}, {(M,N) : M ≤s N ∈ H (χ)} are relations
of B.

We say A is a candidate if

⊛0 A ≺ B∗, ‖A‖ ≤ µ,B ∈ A and µ + 1 ⊆ A hence M ∩ B ∩
A,M ∩ B,M ∩ A is in stable1 amalgamation by V.C.3.13,
also B, λ ∈ A hence α ∈ A ∩ λ.

We say x =
(

N<>, b̄<>, N<0>, b̄<0>, N<1>, b<1>, N<0,1>, b<0,1>, h, i
)

is a possible witness for the candidate A when:

⊛1 (i) N<> ≤s N<ℓ> ≤s N<0,1> ≤s M for ℓ = 0, 1

(ii) N<>, N<0>, N<1> is in stable amalgamation inside M ,

(iii) ‖N<0,1>‖ < κ,

(iv) b̄η ⊆ Nη for η ∈ {<>,< 0 >,< 1 >,< 0, 1 >},
satisfying b̄<> = a<> and b̄<1> = ā<α>

(v) N<> ⊆ |A| ∩ |B| ⊆M and N<1> ⊆ |A| ∩M

(vi) h is an isomorphism from N<0> onto N<1> over N<>

satisfying h(b̄<0>) = b̄<1>

(vii) i < µ.

We say x is a witness for the candidate A if in addition:

⊛2 for any candidate A1 such that A ≺ A1 and formula ϕ(x̄) ∈
Lµ+,µ+ with x̄ = 〈xc : c ∈ A1〉 such that B∗ |= ϕ(..., c, ...)c∈A1

there is a one to one function f from |A1| into |B| over |B| ∩
|A1|, and functions hη

for η ∈ {<>,< 0 >,< 1 >,< 0, 1 >} such that:

(a) B∗ |= ϕ(. . . , f(c), . . . )c∈A1
and f maps A1 ∩M into M

and f ↾ (A1 ∩M) is a ≤s-embedding of M ↾ (A1 ∩M)
into M

1pedantically we should write “M ↾ (M ∩B∩A), M ↾ (M ∩B), M ↾ (M ∩A)
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(b) g(f(α), α) = i = ix (remember: g was a two place
function from λ to µ, a “coloring” and f(α) < α as
B ∩ λ = α < λ)

(c) h<0,1> is a ≤s-embedding of N<0,1> into M

(d) hη = h<0,1> ↾ Nη for η =<>,< 0 >,< 1 >

(e) h<1> = idN<1>

(f) h<0> = f ◦ h and h<0>(b̄<0>) = āf(α) which is neces-
sarily equal to f(āα)

(g) h<0,1>(b̄<0,1>) = ā<f(α),α>

(h) the triple 〈h<0>(N<0>)∪h<1>(N<1>)〉gn, h<0,1>(N<0,1>),

〈(A1 ∩M)∪
(

f(A1 ∩M)
)

〉gn is in stable amalgamation
inside M .

If A1, ϕ form a counterexample to ⊛2, we say that the pair (A1, ϕ) ex-
emplifies the failure of the possible witness x =

(

N<>, b̄<>, N<0>, b̄<0>,

N<1>, b̄<1>, N<0,1>, b̄<0,1>, h, i
)

.
If x, y are possible witnesses for a candidate A, then we say that

x, y are isomorphic when there is an isomorphism g from x onto y

which means:

⊛3 (a) g is an isomorphism from N x
<0,1> onto Ny

<0,1>

(b) g maps N x
η to Ny

η for η = 〈〉, 〈0〉, 〈1〉

(c) g maps b̄xη to byη for η = 〈0〉, 〈1〉, 〈1, 2〉 and also η = 〈〉

(which is automatic)

(d) hyg = ghx

(e) iy = ix.

1.7 Fact. For some candidate A there is a witness.

Proof. Suppose not.
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By induction on ζ < µ we choose Aζ ,A
′
ζ , ϕζ and

xζ =
(

N ζ
<>, b

ζ
<>, N

ζ
<0>, b̄

ζ
<0>, N

ζ
<1>, b

ζ
<1>, N

ζ
<0,1>, b̄

ζ
<0,1>, h

ζ , iζ
)

such
that:

⊛4 (α) Aζ is a candidate (i.e., Aζ ≺ B, ‖Aζ‖ ≤ µ, µ + 1 ⊆
Aζ ,B ∈ Aζ ,

(hence α ∈ Aζ),

(β) Aζ is increasing (by ≺)

(γ) xζ is a possible witness for the candidate Aζ

(δ)
(

Aζ+1, ϕζ

)

exemplifies xζ is not a witness for the candi-
date Aζ

(ǫ) every possible witness for
⋃

ζ<µ

Aζ is isomorphic to xξ

over Aξ for some ξ < µ

(ζ) Aζ+1 ≺Lκ,κ
B.

For this, just note:

⊛5 if A ≺ A′ are candidates, any possible witness for A is a
possible witness for A′

⊛6 if 〈Aζ : ζ ≤ δ〉 is an increasing continuous sequence of candi-
dates and cf(δ) ≥ κ and x is a possible witness for Aδ, then x

is a possible witness for Aζ for some ζ < δ

⊛7 if A is a candidate then the number of possible witnesses over
A up to isomorphism is ≤ µ<κ = µ.

Now there is no problem to carry the definition.

Let A =
⋃

ζ<µ

Aζ , so A is a candidate and A ≺Lκ,κ
B∗. For ζ < µ we

can find a formula ψζ(. . . , xℓ, . . . )c∈Aζ∩M such that for any function
f ∈ H (χ) with domain Aζ∩M , we have B |= ψζ(. . . , f(c), . . . )c∈Aζ∩M

iff f is a ≤s-embedding of M ↾ (Aζ ∩M) into M .

Clearly
∧

ζ<µ

(ϕζ ∧ ψζ) is still an Lµ+,µ+ -formula and

B |=
∧

ζ<µ

(ϕζ(. . . , c, . . . )c∈Aζ
&ψζ(. . . , f(c), . . . )c∈Aζ∩M ). Hence there

is a one to one function f from A into B such that:
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(a′) B |=
∧

ζ<µ

(ϕζ(. . . , f(c), . . . )c∈A & ψζ(. . . , f(c), . . . )c∈Aζ∩M ).

By ⊛0 clearly NF(M∩B∩A,M∩A,M∩B,M) hence (M∩B∩A) ≤s

M ∩ B. Obviously M ∩ B ∩ A ⊆M ∩ f(A) ⊆M ∩ B.
Also M ∩ f(A) ≤s M by the choice of ψζ , hence by Ax(A3), see

V.B.1.4 we have M ∩ B ∩ A ≤s M ∩ f(A) ≤s M ∩ B. By the last
two sentences it follows that NF((M ∩B ∩A,M ∩A,M ∩ f(A),M)
(by monotonicity as A is a candidate). Hence N∗ := 〈M ∩ A,M ∩
f(A)〉gn ≤s M .

As χs + |ℓg(ā〈f(α),α〉)| < κ, by the assumption of 1.6 the frame-
work s is (χs + |ℓg(ā<f(α),α>)|)-based we can find N ≤s M of
cardinality < κ such that ā<> ∪ ā<α> ∪ ā<f(α)> ∪ a<f(α),α> ⊆
N, ‖N‖ < κ, NF(N ∩N∗, N,N∗,M), and NF(N ∩A, N,M ∩A,M),
NF(N ∩ f(A), N,M ∩ f(A),M), and
NF(N ∩ A ∩B, N,M ∩ A ∩ B,M). Why having those four NF con-
ditions is possible? By V.C.4.8 using N∗ ≤s M (see the previous
paragraph), M ∩A ≤s M (as N ∩(M ∩A) = N ∩A),M ∩f(A) ≤s M
and M ∩ A ∩ B ≤s M respectively.

By (a) ⇒ (b) in Claim V.D.1.18 the triple N ∩A∩B, N ∩A, N ∩
f(A) is in stable amalgamation inside N because M ∩ A ∩ B,M ∩
A,M ∩ f(A) is in stable amalgamation inside N∗.

Now we let

⊛7 (α) N<0,1> = N ∩N∗

(β) N<1> = N ∩ A

(γ) N<0> = f(N1) = f(N)

(δ) N<> = N ∩ A ∩ B

(ε) i = g(f(α), α)

(ζ) b̄<0,1> = f(ā<f(α),α>)

(η) b̄<1> = ā<α>

(θ) b̄<0> = ā<f(α)> which is f(āα)

(ι) b̄<> = ā<>

(κ) h = (f ↾ N<1>)−1.
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Now x :=
(

N<>,b̄<>, N<0>, b̄<0>, N<1>, b̄<1>, N<0,1>, b̄<0,1>, h, i
)

is a possible witness for A, hence by ⊛5 (as cf(µ) ≥ κ) it is a pos-
sible witness for Aξ for some ξ < µ hence is isomorphic to xζ for
some ζ > µ so there is an isomorphism h from x onto xζ . But then
“(ϕζ ,Aζ+1) exemplifies the failure of xζ as a witness for Aζ”. How-

ever, f ↾ Aζ+1, hη := h−1 ↾ N xζ

η contradicts this.
So the fact holds. �1.7

∗ ∗ ∗

Continuing Proof of 1.6. Now it is quite easy to use the exis-
tence of a witness to produce the desired 〈Nt : t ∈ [I]≤2〉 choosing
αε, N{αε}, N{αξ,αε} for ξ < ε by induction on ε (and the appropriate
maps, of course). �1.6

On partition theorems on trees see Rubin Shelah [RuSh 117], more
in [Sh:f].

1.8 Exercise: Suppose κ = cf(κ) > χs, λ is regular and (∀α <
λ)(|α|<κ < λ) and Iη is a normal ideal on λ for η ∈ ω>λ. If āη ∈ κ>C

for η ∈ ω>λ then we can find 〈Nη : η ∈ T 〉 such that

(a) T is a non-empty set of finite increasing sequences of ordinals
< λ

(b) T is closed under initial segments

(c) āη ⊆ Nη <s C and ‖Nη‖ < κ

(d) η ∈ T ⇒ {α < λ : ηˆ〈α〉 ∈ T } 6= ∅ mod Iη

(e) if ν = ηˆ〈α〉 ∈ T then Nη, Nν , 〈∪{Nρ : ρ ∈ T but ¬(µ E

ρ)〉gn is in stable amalgamation.

[Hint: Combines the proofs or see [Sh:E54]. We give some details.
Suppose λ is regular, κ > ℵ0, (T , Ī) is a λ-tagged tree, each Iη is

a normal ideal on λ and for notational simplicity the sets {SucT (η) :
η ∈ T } are pairwise disjoint.

Suppose further that Prn is a 2n-place relation with the even
places for sets s ∈ [λ]<κ, odd places for ordinals δ < λ, and Y =
{si : i < λ} and Y is equal to [λ]<κ or just is a subset of [λ]<κ and:
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(∗) if δ0 < δ1 < . . . < δn < . . . for n < ω, 〈δ0, . . . , δn−1〉 ∈ T for

each n then for some a ⊆
⋃

n<ω

δn we have:

(i) a ∩ δn ∈ {si : i < δn+1} for each n < ω

(ii) Prn
(

a ∩ δ0, δ0, a ∩ δ1, δ1, . . . , a ∩ δn−1, δn−1

)

holds for
each n.

Or just

(∗) for every closed unbounded E ⊆ λ for some sequence 〈δℓ :
ℓ < ω〉 of member of E, the demands in (∗) above holds.

Then there are T ′ ⊆ T and aη (for η ∈ T ′) such that:

(a) (T ′, Ī) is a λ-tagged tree of increasing sequences

(b) if ν = ηˆ < α >∈ T ′, then aν ∩ α = aη ∈ {si : i < α}

(c) if η = 〈α0, . . . , αn−1〉 ∈ T ′ then
Prn

(

a<>, α0, a<α1>, α1, . . . , αn−2, a〈α0,...,αn−2〉, αn−1

)

.

Remark. Instead the Prn(n < ω) we can use any Borel subset of the
tree of possible 〈a ∩ δn, δn : n < ω〉.]

Remark. Another such theorem is VII, 2.10 — it deals with
ds(α) = {η : η a strictly decreasing sequence of ordinals < α} (so
we get an isomorphic copy of ds(β) for β not much smaller than α
(in the ii’s-sequence).

1.9 Exercise: Generalize the Erdös-Rado theorem in(λ)+ → (λ+)n+1
2

as done for the case n = 2 in 1.6.

§2 Order Properties Considered Again

2.1 Definition. 1) For a set A ⊆ C let x̄A = 〈xa : a ∈ A〉, ȳA = 〈ya :
a ∈ A〉, etc. and āA = 〈a : a ∈ A〉; for N <s C, let ϕN = ϕN (x̄N )
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be the formula saying: a 7→ xa is a ≤s-embedding of N into C; for
A ⊆ N let

ϕN,A(x̄A) = (∃ȳN )[ϕ(ȳN ) &
∧

a∈A

ya = xa].

So ϕN,N (x̄N ) is equivalent to ϕN (x̄N ) and ϕN,A means ϕN,A(x̄A).
2) For χ ≥ χs let

Λs,χ = Λs
χ = {ϕN,A(x̄A) : A ⊆ N ∈ K≤χ}

Λs,<χ =
⋃

µ<χ

ΛK,µ(when χ > χK).

3) If χ = χs then we may omit it, and, of course, we may omit s

when clear from the context.

2.2 Remark. 1) Assume χ ≥ LS(s). Remember that: M∗ ≤Λs,χ
N∗

iff M∗ ≤s N
∗ and for every A ⊆ M∗ of cardinality ≤ χ satisfying

A ⊆ N <s C and ‖N‖ ≤ χ we have M∗ |= ϕN,A[āA] ⇔ N∗ |=
ϕN,A[āA].
2) In this section we deal with the expected “vice”: an order property.
So we consider χ ≥ χs.

Now till 2.16 we assume

2.3 Hypothesis. The framework s has the (Λχ, (i2(χ)+)-order prop-
erty where χ ≥ χs, i.e.:
there is a formula ϕ∗ = ϕ∗(x̄, ȳ) ∈ ±Λχ which has the (22χ

)+-order
property, i.e. there are āi, b̄i (for i < (i2(χ))+) in a model M such
that:

M |= ϕ∗[āi, b̄j] iff i < j.

So ϕ∗(x̄, ȳ) has the form ±(∃z̄)ϕN∗(z̄, x̄, ȳ) where ℓg(z̄) = ‖N∗‖ ≤ χ
and ℓg(x̄) ≤ χ, ℓg(ȳ) ≤ χ.
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2.4 Claim. In 2.3 without loss of generality ϕ∗ ∈ Λχ.

Proof. Suppose ϕ∗(x̄, ȳ) = ¬(∃z̄)ϕN∗(z̄, x̄, ȳ).
Let ψ∗(x̄, ȳ) = (∃z̄)ϕN∗(z̄, ȳ, x̄) and interchange the āi’s and b̄j’s.
(See V.A.1.18 and V.A.1.23). �2.4

2.5 Discussion. We would like to have a non-structure theorem as-
suming appropriate order property. For this we shall like to have
indiscernible sequences, however the formulas in Λχ are not finitary,
and so even getting an indiscernible sequence (and using stable amal-
gamation) we cannot vary the order at will. We do not know whether
we can use linear orders which are not well orders, 〈ātˆb̄t : t ∈ I〉 as
if tn+1 <I tn for n < ω, maybe āt0ˆb̄t0ˆ . . .ˆātn

ˆb̄
n
ˆ . . . gives wit-

ness to (∃z̄)ϕ(z̄, ās, b̄t) for some s, t not as in 2.3. Our solution is to
remember we are in the context of universal classes and use §1 as
follows.

2.6 Claim. There are āi, b̄i(i < χ+), c̄{i,j} (i < j < χ+) of length

ℓg(x̄), ℓg(ȳ), ℓg(z̄) respectively and models M,Mu(u ∈ [χ+]≤2) and
fu,w (for u, w ∈ [χ+]≤2 satisfying |u| = |w|) such that (so ϕ∗, N∗ are
from 2.3):

(a) āi, b̄i ⊆M{i}

(b) M = 〈∪{Mu : u ∈ [χ]≤2}〉gnC

(c) M |= ϕ∗[āi, b̄j] iff i < j;

(d) if i < j < χ+ then c̄{i,j} ⊆M{i,j} and M{i,j} |= ϕN∗ [c̄{i,j}, āi, b̄j]

(e) u ⊆ w ∈ [χ]≤2 implies Mu ⊆Mw

(f) 〈Mu : u ∈ [χ]≤2〉 is independent (see Definition 1.2), ‖Mu‖ ≤
χ, and of course, Mu <s C

(g) fu,w is an isomorphism from Mw onto Mu, when w, u ∈
[χ+]≤2 and |w| = |u| and fw,u = f−1

u,w

(h) fu(1),u(2) ◦ fu(2),u(3) = fu(1),u(3) when u(1), u(2), u(3) ∈ [χ+]ι

for ι ≤ 2

(i) f{i},{j}(ājˆb̄j) = āiˆb̄i
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(j) f{i1,i2},{j1,j2}(c̄{j1,j2}) = c̄{i1,i2} when i1 < i2 < χ, j1 < j2 <
χ

(k) f{i1,i2},{j1,j2} extend f{i1},{j1} and f{i2},{j2} when

i1 < i2 < χ+, j1 < j2 < χ+ and f{i},{j} extend f∅,∅.

Proof. We shall apply the pair index theorem 1.6 with i2(χ)+, 2χ, χ+

here standing for λ, µ, κ there. So the result follows.
By 1.6, 2.3 and 2.4 except clause (b), however easily letting M ′ =

〈∪{Mu : u ∈ [χ+]≤2}〉gnC we have M ′ ≤s M . But we can replace
M by M ′ as clause (c) continues to hold even for M ′. Why? For
i < j by clause (a) and ϕN∗ being a “quantifier free” formula, and
for i ≥ j as M |= ¬ϕ∗[āi, b̄j] ⇒M ′ |= ¬ϕ[āi, b̄j].

�2.6

2.7 Claim. For any ordinal α(∗) we can choose Mu = M
α(∗)
u ,

fu(1),u(2), āi, b̄j, c̄i1,j1 for u, u(1), u(2), i, j, i1, j1 satisfying u ∈

[α(∗)]≤2, u(1), u(2) ∈ [α(∗)]≤2, |u(1)| = |u(2)|, i < α(∗), j < α(∗),
i1 < j1 so that clauses (a) and (d)-(k) of 2.6 holds.

Remark. We may add a superscript α(∗) but we can assume that for
i, j < χ+ those objects are from 2.6.

Proof. Immediate using stable constructions (see V.C.4.2-V.C.4.6(2)).
�2.7

2.8 Notation. For α(∗) an ordinal and R a two place relation on

α(∗) which satisfies [iRj ⇒ i < j], we let M
α(∗)
R = 〈∪{M

α(∗)
u : u ∈

[α(∗)]≤1 or u = {i, j} and iRj}〉gn and similarly Mw
R↾w for w ⊆ α(∗).

2.9 Observation. For R as in 2.8 we have M
α(∗)
R <s C.

Proof. By V.C.4.2 and V.C.4.6(2). �2.9
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2.10 Main Claim.

M
α(∗)
R |= ϕ∗[āi, b̄j] if iRj and M

α(∗)
R |= ¬ϕ∗[āi, b̄j] if j ≤ i.

Remark. By 2.4 we are assuming ϕ∗ ∈ Λχ. We could do it similarly
for ϕ∗ ∈ ¬Λχ, but there is no need.

Proof. If iRj, then clearly C |= ϕN∗(c̄{i,j}, āi, b̄j) hence M
α(∗)
R |=

ϕN∗ [c̄i,j, āi, b̄j]

hence M
α(∗)
R |= ϕ∗[āi, b̄j]. If j ≤ i, and M

α(∗)
R |= ϕ∗[āi, b̄j] then for

some
c̄ ⊆M

α(∗)
R we have M

α(∗)
R |= ϕN∗ [c̄, āi, b̄j]. So for some w ⊆ α(∗) we

have |w| ≤ χ, i, j ∈ w and c̄ ⊆Mw
R↾w.

By an easy Lowenheim Skolem argument (or see 2.11 below) with-

out loss of generality i, j < χ+ and w ⊆ χ+. SoMχ+

|= ϕN∗ [c̄, āi, b̄j],
hence M |= ϕN∗ [c̄, āi, b̄j] hence M |= ϕ∗[ai, bj] contradicting (c) of
2.6. �2.10

2.11 Claim. 1) For any subsets w1, w2 of α(∗), and two place rela-
tions R1, R2 on w1, w2 respectively, as in 2.8 so [iRℓj ⇒ i < j], and
isomorphism h from (w1, R1) onto (w2, R2), there is a isomorphism
Hh = Hh,(w1,R1),(w1,R2) from Mw1

R1
onto Mw2

R2
, extending f{h(i)},{i}

for i ∈ w1 and extending f{h(i1),h(i2)},{i1,i2} for 〈i1, i2〉 ∈ R1.
2) If w∗

1 ⊆ w1, w
∗
2 = h′′(w∗

1), R∗
ℓ ⊆ Rℓ, h

′′(R∗
1) = R∗

2, then
Hh↾w∗

1 ,(w∗

1 ,R∗

1),(w∗

2 ,R∗

2) ⊆ Hh,(w1,R1),(w2,R2).

Proof. Immediate. �2.11

2.12 Claim. If R is a partial order of α(∗) included in < (i.e.
[iRj ⇒ i < j] and [i1Ri2 & i2Ri3 ⇒ i1Ri3]) then for i, j < α(∗) we
have

M
α(∗)
R |= ϕ∗[āi, āj] iff iRj.
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Proof. By 2.10 it suffices to deal with the case i < j & ¬(iRj), i.e.

to prove for such i, j that M
α(∗)
R |= ¬ϕ∗[āi, b̄j]. By 2.11 it suffices to

find a β(∗), R2 (so β(∗) an ordinal, R2 a two-place relation on β(∗)
as in 2.8) and an isomorphism h from (α(∗), R) onto (β(∗), R2) such
that h(j) < h(i).
Let I1 ⊆ α(∗) be such that: i ∈ I1, j ∈ I1, I1 is an R-antichain (i.e.
a set of pairwise R-incomparable elements) and I1 maximal under
those conditions. Let

I0 = {α < α(∗) : (∃γ ∈ I1)αRγ},

I2 = {α < α(∗) : (∃γ ∈ I1)γRα}.

Clearly

(∗)1 I0, I1, I2 form a partition of α(∗).

Let β(0) = otp(I0), β(1) = otp(I1\{i, j}), β(2) = otp(I2). Now let
β(∗) = β(0) + 2 + β(1) + β(2), and we define the function h (with
domain α(∗)) as follows:

⊛ (a) for α ∈ I0, h(α) = otp(I0 ∩ α)

(b) for α = j, h(α) = β(0)

(c) for α = i, h(α) = β(0) + 1

(d) for α ∈ I1\{i, j}, h(α) = β(0) + 2 + otp(α ∩ I1\{i, j})

(e) for α ∈ I2, h(α) = β(0) + 2 + β(1) + otp(α ∩ I2).

Clearly h is one to one from α(∗) onto β(∗) and h(j) < h(i) and
[α1Rα2 ⇒ h(α1) < h(α2)].

So we can find R2 such that h is an isomorphism from (α(∗), R)
onto (β(∗), R2) and [i1Rj1 ⇒ i1 < j1], and as said above this suffices.
�2.12

2.13 Conclusion [Recall we are assuming Hypothesis 2.3].

1) For λ = λχ + χ++ we have İ(λ,Ks) = 2λ.
2) Moreover just λ ≥ χ++ suffice.
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Proof. See [Sh:e, Ch.IV,3.1] or [Sh 300, III,§3], (in fact, using the
terms there, there is a representation, so life is easier). The “more-
over” is by applying [Sh:e, III,§3] using 2.14 below. Note that we
can use 2.15 below.

�2.13

In fact we can quote [Sh:e, III,§3] or [Sh 300, IV,§3] as

2.14 Claim. For any linear order I and two-place relation R on I
of cardinality λ ≥ χ we can find M and 〈(āt, b̄t) : t ∈ I〉 such that

(a) M ∈ Ks
λ

(b) M |= ϕ∗[ās, b̄t] iff sRt (for s, t ∈ I, so ℓg(ās) = ℓg(x̄), ℓg(b̄s) =
ℓg(ȳ))

(c) if c̄ ∈ ℓg(x̄(M) then for some J ⊆ I of cardinality ≤ χ we
have: if s, t ∈ I\J induce the same cut of J then M |=
“ϕ∗[c̄, b̄s] ≡ ϕ∗[c̄, b̄t]”

(d) if c̄ ∈ ℓg(ȳ)M then for some J ⊆ I of cardinality ≤ χ we have:
if s, t ∈ I\J induce the same cut of J then M |= “ϕ[ās, c̄] ≡
ϕ[āt, d̄]”

(e) M = 〈∪{M{s,t} : sRt} ∪
⋃

{M{s} : s ∈ I} ∪M∅〉
gn
C as in 2.6.

Proof. Similar.

Let {tζ : ζ < ζ(∗)} list I with no repetitions and let α(∗) = ζ(∗)+
ζ(∗) and let R = {(ζ1, ζ(∗)+ζ2) : tζ1

<I tζ2
}, so α(∗), R are as in 2.8,

so M := M
α(∗)
R is well defined. Now without loss of generalityα(∗)∩

I = ∅ and let atζ
= āζ , b̄tζ

= b̄ζ(∗)+ζ ; now check. �2.14

∗ ∗ ∗

So now we stop assuming Hypothesis 2.3.
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2.15 Claim. Suppose that λ ≥ χ ≥ χs and we have M,M∅,M
1
i ,M

2
j ,

M3
i,j , hi1,i2 , h

2
i1,i2

, hi1,j1,i2,j2 for i, j, i1, j1, i2, j2 < χ such that:

(a) M∅ ≤s M
1
i ≤s M

3
i,j for i, j < χ, of course

(b) M∅ ≤s M
2
j ≤s M

3
i,j

(c) hℓ
i1,j1

is an isomorphism from M ℓ
i1

onto M ℓ
j1

over M∅ for
ℓ = 1, 2

(d) hi1,j1,i2,j2 is an isomorphism from M3
i1,j1

onto M3
i2,j2

extend-

ing h1
i1,i2

∪ h2
j1,j2

(e) 〈Nu : u ∈W 〉 where W = {u: if |u| = 2 then u = {〈i, 0〉, 〈j, 1〉}
for some i, j < λ and u ∈ [λ × 2]≤2} is an independent se-
quence of models, each of cardinality ≤ χ where N∅ = M∅,
N{<i,ℓ>} = M ℓ

i , and

N{<i,1>,<j,2>} = M3
i,j

(f) M=〈M∅∪
⋃

ℓ,iM
ℓ
i ∪

⋃

{M3
i,j : i, j < χ and <i, j> 6= <0, 0>}〉gnC

(g) M3
0,0 has no ≤s-embedding into M over M1

0 ∪M2
0

(h) χ = χs + sup
i,j

‖M3
i,j‖.

Then

(α) s has the (Λχ, λ)-order property.

Remark. 1) The (Λχ, λ)-order property is defined in V.A.1.1(1).
2) Used in 3.15.

Proof. We use freely stable constructions (see V.C§4).
We let N ′

∅ = M∅ = N∅. By induction on i < λ we can choose

g1
{i}, g

2
{λ+i}, N

′
{i}, N

′
{λ+i} such that

⊛1 (a) N ′
{i} <s C for i < λ+ λ

(b) gℓ
λ(ℓ−1)+i is an isomorphism from M ℓ

0 onto N ′
{λ(ℓ−1)+i}

over M∅ for
i < λ, ℓ = 1, 2

(c) 〈N ′
{i} : i < λ+ λ} is independent over M∅.
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Next for i, j < λ we choose g{i,λ+j}, N
′
{i,λ+j} such that

⊛2 (a) N ′
{i,λ+j} <s C

(b) g{i,λ+j} is an isomorphism from M3
i,j onto N ′

{i,λ+j} ex-

tending g{i}, g{λ+j}

(c) 〈N ′
u : u = ∅ or u = {i}, i < λ+λ or u = {i, λ+ j}, i, j <

λ〉gnC is
independent (see Definition 1.2).

Now for every R ⊆ λ×λ let N ′
R = 〈∪{N ′

{i} : i < λ+λ}∪{N ′
{i,λ+j} :

(i, j) ∈ R}〉gnC .
To finish we need

⊙ for i, j < λ, there is a ≤s-embedding f of N ′
{i,λ+j} into N ′

R

extending g{i} ∪ g{λ+i} iff (i, j) ∈ R.

Why does ⊙ hold? The “if” direction is trivial; g{i,λ+j} is such an
≤s-embedding.

For the other direction, assume toward contradiction that f is such
an embedding but (i, j) /∈ R. We can find sets u, v ⊆ λ of cardinality
≤ χ such that Rang(f) ⊆Mu,v,R where Mu,v,R is defined as

Mu,v,R := 〈
⋃

{N ′
{i1}

: i1 ∈ u} ∪
⋃

{N ′
{λ+i2}

: i2 ∈ v}

∪
⋃

{N ′
{i1,λ+i2}

: i1 ∈ u, i2 ∈ v and (i1, i2) ∈ R}〉gnC .

Now we can find a one-to-one function π1 from u into χ such that
π1(i) = 0 because |u| ≤ χ. Also we can find a one-to-one function
π2 from v into χ such that π2(j) = 0. Now there is a mapping f∗

such that, recalling clauses (c),(d) of the assumption

⊛3 (a) Dom(f) =
⋃

{N ′
{i1}

: i1 ∈ u} ∪
⋃

{N ′
{λ+i2}

: i2 ∈ v}∪
⋃

{N ′
{i1,λ+i2}

, i1 ∈ u, i2 ∈ v and (i1, i2) ∈ R}

(b) f∗ ↾ N ′
{i1}

= h1
0,i1

◦ g−1
{i1}

for i1 ∈ v

(c) f∗ ↾ N ′
{λ+i2}

= h2
0,i2

◦ g−1
{λ+i2}

for i2 ∈ v

(d) f∗ ↾ N ′
{i1,λ+i2}

= h0,i1,0,i2 ◦ g
−2
{i1,λ+i2}

.
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Clearly f∗ ↾ N ′
{i1}

is an isomorphism from N ′
{i1}

onto M1
i1

and

f∗ ↾ N ′
{λ+i2}

is an isomorphism from N ′
{λ+i2}

onto M2
i2

and f∗ ↾

N ′
{i1,λ+i2}

is an isomorphism fromN ′
{i1,λ+i2}

ontoM3
i1,i2

. Also 〈f∗(N
′
w) :

w = ∅ or w = {i1}, i1 ∈ u or w = {λ + i2}, i2 ∈ v or w =
{i1, λ + i2}, i1 ∈ uj , i2 ∈ v and (i1, i2) ∈ R}〉 is independent. As
(i1, i2) ∈ R ⇒ (i1, i2) 6= (i, j), necessarily we can extend f∗ to a
≤s-embedding f+ of Mu,v,R into M . But by clause (g) of the as-
sumption we get a contradiction.

�2.15

Now, recalling again that we are not assuming Hypothesis 2.3

2.16 Claim. 1) If M∅ ≤s M1
0 ≤s M3

0,0,M∅ ≤s M2
0 ≤s M3

0,0 <s

C, ‖M3
0,0‖ ≤ χ and {M1

0 ,M
2
0 } is independent over M∅ then we can

choose M ℓ
i (for ℓ = 1, 2 and i < λ), M3

i,j(i, j < χ), hℓ
i,j, hi1,j1,i,j

satisfying (a) - (f) + (h) of 2.15.
2) For χ ≥ χs, the framework s has the (Λχ, λ)-order property for
some λ ≥ (i2(χ))+ iff s satisfies the conclusion of 2.6 iff s satisfies
the assumption of 2.15 iff s has the (Λχ, λ)-order property for every
λ ≥ χ.

Proof. 1) Easy. By V.C§4.
2) Easy by now. �2.16

2.17 Exercise: In Hypothesis 2.3 we can replace “the (Λχ, (2
2χ

)+)-

order property” by “the (Λeb
χ , (2

2χ

)+)-order property”.
[Hint: See Definition V.A.1.18(1)(g). The only difference is that
when we apply 1.6, we use g. That is, if e.g. ψ∗(x̄, ȳ1ˆȳ2) =
[ϕ∗(x, ȳ1) ≡ ϕ∗(x̄, ȳ2)] and M |= ϕ[āα, b̄β, c̄β] iff (α < β) ≡ t we

choose a function g from [(22χ

)+]2 to ω such that g{α, β} code the
truth values M |= ϕ∗[āα, b̄β],M |= ϕ∗[āα, c̄β],M |= ϕ∗[āβ, b̄α],M |=
ϕ∗[āβ, c̄α].]

2.18 Exercise: In 2.16(2) we can add: “iff s is not (Λχ, λ)-stable for
every λ ≥ χ iff s is not (Λχ, λ)-stable for some λ = λχ + i4(χ).

[Hint: See 3.2 and 2.14.]
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§3 Strengthening the order ≤s

We assume for this section

3.1 Hypothesis. The framework s is as in Chapter V.E, θ∗ > χs and s

does not have the (Λχ, (2
2χ

)+)-order property whenever χs ≤ χ < θ∗.
If not said otherwise, χ will denote such a cardinal (in this section).

It is O.K. to use θ∗ = iω(χs), this saves us complications com-
pared to trying to show that one χ ≥ χs suffice.

We shall use mainly x = i and to help it also x = j; note that
3.12 are not essential.

3.2 Conclusion. s is (Λχ, λ)-stable when χ ∈ [χs, θ
∗), λ = λχ+i4(χ);

i.e. for every M ∈ Ks, A ⊆M, |A| ≤ χ we have |{tpΛχ
(c̄, A,M) : c̄ ∈

χ|M |}| ≤ λ.

Proof. By 2.16(2) and V.A.1.19. �3.2

The main notion in this section is ≤i
λ,χ where

3.3 Definition. 1) For x = i, nc and λ ≥ χ ≥ LS(s) we say
M ≤x

λ,χ N when: (M ≤s N <s C and) for every c̄ ∈ χ≥(N), and2

p ⊆ tpΛx
χ
(c̄,M,N) of cardinality ≤ λ there is c̄′ ∈ χ≥|M | realiz-

ing p, where recalling V.A.1.18(1) that Λi
χ = Λχ,Λ

nc
χ = ±Λχ =

{ϕ,¬ϕ : ϕ ∈ Λχ}. If λ = λχ, this is equivalent to: for every
A ⊆ |M |, |A| ≤ λ there is c̄′ ∈ χ≥|M | realizing tpΛx

χ
(c̄, A,N); so for

x = nc this is tp±Λχ
(c̄, A,N), for x = i this is tpΛχ

(c̄, A,N); recall
V.A.0.8(2),(4)(c), so possibly, for some c̄, c̄′ we have tpΛχ

(c̄, A,N) is
a proper subset of tpΛχ

(c̄′, A,N).

2) Here x = j means the same as x = i and Λj
χ = Λi

χ. For x ∈
{i, j, nc},M ≤x

<λ,<χ N means M ≤x
λ1,χ1

N whenever λ1 < λ, χ1 < χ
when λ, χ > χs.

2so for x = i the type p consists only of instances of formulas from Λχ (not
their negations)
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3.4 Remark. Recall, as Λ is closed under permuting the variables,
(and we shall use this freely)

(a) the (Λχ, λ)-order property is equivalent to the (Λnc
χ , λ)-order

property, see V.A.1.23(3)

(b) the (Λeb
χ , (2

λ)+)-order property implies the (Λχ, λ
+)-order

property, see V.A.1.15(2) recalling the Erdős-Rado theorem:
(2λ)+ → (λ+)22.

3.5 Observation. Let χ ≥ LS(s).
1) M1 ≤i

χ,χ M2 iff M1 ≤s M2 and for every N1 ≤s N2 from Ks
χ such

that Nℓ ≤s Mℓ for ℓ = 1, 2 (and can add NFs(N1,M1, N2,M2)) there
is a ≤s-embedding of N2 into M1 over N1.
2) M1 ≤nc

χ,χ M2 iff M1 ≤s M2 and

⊛ if N1 ≤s N2 are from Ks
χ such that Nℓ ≤s Mℓ for ℓ = 1, 2 and

A2,i ⊆ N2 for i < χ and N2,i ∈ Ks
χ satisfying A2,i ⊆ N2,i <s

C such that there is no ≤s-embedding of N2,i into M2 over
A2,i then there is a ≤s-embedding f of N2 into M0 over N1

such that for i < χ there is no ≤s-embedding g of N2,i into
M1 extending f ↾ A2,i.

3) s is (Λx
χ, λ)-stable iff s is (Λy

χ, λ)-stable when x, y ∈ {i, nc,eb}.
4) The statements “〈āt : t ∈ I〉 is (∆x

χ, λ)-convergent” for x = i, j, nc
are equivalent.

Proof. Trivial. �3.5

3.6 Claim. : If M ≤s N, λ = cf(λ) > i4(χ), χ ∈ [χs, θ
∗) and

(∀µ < λ)µχ < λ and x = i [x = nc] then the following are equivalent:

(a) M ≤x,∗
λ,χ N which means:

for every c̄ ∈ χ≥N there is (Λχ, χ
+)-convergent set

I = {c̄i : i < λ+} ⊆ χ≥|M | with AvΛx(I,M) ⊇ tpΛx
χ
(c̄,M,N)

(b) M ≤x
λ,χ N .
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Remark. 1) The exact choice “λ > i4(χ)” is immaterial here (as
we shall use θ∗ = iω(χs)). The i4(χ) rather than i2(χ) occurs
as we use “the (Λχ, (2

2χ

)+)-non-order property”. In 3.2 we use

(Λχ, (2
2χ

)+)-non-order rather than (Λχ, (2
χ)+)-non-order so that §1

applies. A use of ∆eb rather than ∆i, see Definition V.A.1.18, cause
no problem by Exercise 2.17. May see more [Sh:E54].
2) In the end of clause (a) of 3.6, if x = nc the “⊇” is equality.

Proof. Use V.A.4.4 and see V.A.4.1, V.A.2.8. �3.6

3.7 Observation. For x = i, nc.
1) If λ1 ≤ λ, χ1 ≤ χ and λ ≥ χ ≥ LS(s), λ1 ≥ χ1 ≥ LS(s) then
M ≤x

λ,χ N implies M ≤x
λ1,χ1

N .

2) ≤x
λ,χ is transitive.

3) Suppose χ ∈ [χs, θ
∗). If A ⊆ N ∈ Ks and λ = λχ + i4(χ) then

there is M such that A ⊆ M ≤x
λ,χ N and ‖M‖ ≤ |A|χ + λ. (Use

V.A.1.20, note that even without the assumption on λ, demanding
only ‖M‖ ≤ |A|λ+χ is easy).
4) If Mℓ ≤

x
λ,χ N for ℓ = 1, 2 and M0 ⊆M1 then M0 ≤x

λ,χ M1.

5) In the definition of M ≤i
χ,χ N without loss of generality

p = {ϕ(x̄, b̄)}, ϕ = (∃z̄)ϕN (z̄, x̄, ȳ) and ℓg(z̄ˆx̄ˆȳ) < χ+.
6) If M0 ≤s M1 ≤s M2 and M0 ≤i

λ,χ M2 then M0 ≤i
λ,χ M1.

Proof. Easy. �3.7

3.8 Claim. 1) Suppose λ ≥ µ > χ ≥ χs,M ≤nc
λ,χ N, āi ∈M, ℓg(āi) ≤

χ for i < λ, λ > χ+. Then I = {āi : i < λ} is (Λχ, µ)-convergent
inside M iff I is (Λχ, µ)-convergent inside N .
2) Assume Iℓ = {āℓ

i : i < λ}, λ, χ,M,N are as in 3.8(1) for ℓ = 1, 2
and ℓg(ā1

i ) = ℓg(ā2
i ) for i < λ. Then AvΛχ

(I1,M) = AvΛχ
(I2,M)

iff Av±Λχ
(I1, N) = Av±Λχ

(I2, N).

Proof. Check. �3.8
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3.9 Definition. 1) For x = i, nc, j and λ ≥ χ ≥ χs let sx
λ,χ be

defined as (K,≤x
λ,χ, NFx

λ,χ, 〈−〉gn) where:

(a) K is our Ks

(b) 〈−〉gn is as in s

(c) ≤x
λ,χ is from Definition 3.3.

(d)1 when x = j or x = nc we let NFx
λ,χ be the class of quadruple

(M0,M1,M2,M3) satisfying:

(α) Mℓ ∈ K for ℓ < 4

(β) M0 ≤x
λ,χ Mℓ ≤

x
λ,χ M3 for ℓ = 1, 2

(γ) NFs(M0,M1,M2,M3)

(δ) if c̄ ∈ χ≥(M2) and p ⊆ tpΛx
χ
(c̄,M1,M3) is of cardinality

≤ χ then p is realized by some c̄′ ∈ ℓg(c̄)(M0)

(d)2 NFi
λ,χ = {(M0,M1,M2,M3) ∈ NFj

λ,χ : (M0,M2,M1,M3) ∈

NFj
λ,χ}.

2) sx
<λ,<χ is defined similarly when λ ≥ χ > χs.

3.10 Observation. Let x ∈ {i, j, nc} and λ ≥ χ ∈ [χs, θ
∗).

1) NFx
λ,χ(M0,M1,M2,M3) if M0 ≤x

λ,χ Mℓ ≤x
λ,χ M3 for ℓ = 1, 2 and

M1 = M0 or M2 = M0.
2) If NFx

λ,χ(M0,M1,M2,M3) and M0 ≤x
λ,χ M

′
ℓ ≤x

λ,χ Mℓ for ℓ = 1, 2

then NFx
λ,χ(M0,M

′
1,M

′
2,M3).

3) If M1 ∪ M2 ⊆ M ′
3 ≤x

λ,χ M ′′
3 then NFx

λ,χ(M0,M1,M2,M
′
3) iff

NFx
λ,χ(M0,M1,M2,M

′′
3 ).

4) Assume x = nc, γ < χ+ and λ ≥ i4(χ). If NFx
λ,χ(M0,M1,M2,M3)

and c̄ ∈ γ |M2| and I = {c̄α : α < λ+} ⊆ γ(M0) is (Λx
χ, λ)-convergent

with AvΛx
χ
(I,M0) ⊇ tpΛx

χ
(c̄,M0,M2) then Av(I,M1) ⊇ tpΛx

χ
(c̄,M1,M3).

Proof. Easy, e.g. for part (3) use 3.7(4) and 3.7(2). For part (4),

toward contradiction assume b̄ ∈ χ+>|M | and M3 |= ϕ[b̄, c̄] and ϕ ∈
Λx

χ but for some u ∈ [λ+]λ we have α ∈ u ⇒ M |= ¬ϕ[ā, c̄α] then
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by the definition of NFx
λ,χ we can find such b̄′ ∈ ℓg(b̄)(M) and get

contradiction to an assumption.
�3.10

3.11 Observation. Let x ∈ {i, j, nc}. Assume λ ≥ χ ≥ χs and
NFs(M0,M1,M2,M3) and M0 ≤x

λ,χ Mℓ ≤
x
λ,χ M3 for ℓ = 1, 2.

1) If ¬NFj
χ,χ(M0,M1,M2,M3) then there is N̄ such that

⊛N̄,M̄ (a) N̄ is the quadruple N̄ = 〈Nℓ : ℓ ≤ 3〉

(b) NFs(N0, N1, N2, N3)

(c) Nℓ ∈ Ks
χ and Nℓ ≤s Mℓ for ℓ ≤ 3

(d) NFs(N0,M0, Nℓ,Mℓ) for ℓ = 1, 2

(e) N3 ∩ 〈M1 ∪M2〉
gn
M3

= 〈N1 ∪N2〉
gn
M3

⊙ there is no ≤s-embedding f of N3 into M1 over N1 such that
f(N2) ⊆M0.

2) If A ⊆ M1 ∪M2, |A| ≤ χ then there is N̄ satisfying ⊛N̄,M̄ and
A ⊆ N1 ∪N2.
3) If NFj

χ,χ(M0,M1,M2,M3) and ⊛N̄,M̄ holds then there is a ≤s-
embedding f of N3 into M1 such that f(N2) ⊆M0.

Proof. Easy. �3.11

3.12 Claim. [Weak Symmetry] Suppose x ∈ {i, nc}.
Then NFx

λ,χ(M0,M2,M1,M3) when:

(a) NFx
θ,χ(M0,M1,M2,M3)

(b) λ ≥ i2(χ) ∧ θ = χ if x = nc

(c) λ ≥ χ ∧ θ = λ if x = i

(d) χ ∈ [χs, θ
∗).

Proof. Toward contradiction we suppose NFx
θ,χ(M0,M2,M1,M3)

fails. So there is c̄ ∈ χ≥|M1| and p ⊆ tpΛx
χ
(c̄,M2,M3) of cardi-

nality ≤ θ which is not realized by any c̄′ ∈ χ≥|M0|. Let B =
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Dom(p) and let b̄ list B so p is over B,B = Rang(b̄), b̄ ∈ θ≥|M2|,
and p = {ϕi(x̄c̄, b̄) : i < i(∗) ≤ θ}, (pedantically we should write
ϕi(x̄i ↾ ui, b̄ ↾ wi) where ui ⊆ ℓg(x̄i), wi ⊆ ℓg(b̄)).

Case 1: x = nc, so θ = χ.
We now choose by induction on α < λ+, b̄α, c̄α ∈ χ≥|M0| such

that:

(a) ℓg(b̄α) = ℓg(b̄) and ℓg(c̄α) = ℓg(c̄),

(b) b̄α realizes

pα(x̄b) := {ϕi(c̄, x̄b̄) : i < i(∗) and M3 |= ϕi[c̄, b̄]}∪

∪ {¬ϕi(c̄β , x̄b̄) : i < i(∗), β < α and M3 |= ¬ϕi[c̄β , b̄]}

(c) c̄α realizes

qα(x̄c̄) := {ϕi(x̄c̄, b̄β) : i < i(∗), β ≤ α and M3 |= ϕi[c̄, b̄β]}.

In stage α we can first choose b̄α ∈ ℓg(b̄)|M0| by the definition of
NFx

λ,χ(M0,M1,M2,M3), as pα(x̄b̄) is a set of ≤ λ formulas of the

right kind, with parameters from M1 realized by the sequence b̄ from
M2.

Second we can choose c̄α by the definition of M0 ≤x
λ,χ M1 as

qα(x̄c̄) is a set of ≤ λ formulas of the right kind with parameters
from M0, realized by c̄.

As c̄ realizes p =
{

ϕi(x̄c̄, b̄) : i < i(∗)
}

, clearly M3 |= ϕi[c̄, b̄] for
i < i(∗), hence (by clause (b), the first set in the union), clearly
M3 |= ϕi[c̄, b̄α] for i < i(∗), α < λ+, hence (by clause (c)) clearly
M3 |= ϕi[c̄β, b̄α] for i < i(∗) and α ≤ β < λ+.

On the other hand by the choice of p for α < λ+, c̄α does not real-
ize p, hence for some j(α) < i(∗) we have M3 |= ¬ϕj(α)[c̄α, b̄] hence

(by clause (b), second set in the union), clearly M3 |= ¬ϕj(α)[c̄α, b̄β]

when β satisfies α < β < λ+. As i(∗) ≤ χ for some j and W ⊆ λ+

of cardinality λ+, j(α) = j for every α ∈W .
Together this contradicts Hypothesis 3.1.

Case 2: x = i by the symmetry in clause (d)2 of Definition 3.9(1).
�3.12
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For the rest of the section we assume:

3.13 Hypothesis. s satisfies the rigidity axiom Ax(C10).

3.14 Remark. 1) Recall: we say that s satisfies Ax(C10), rigidity,
when: if NF(M0,M1,M2,M3) and M3 = 〈M1 ∪M2〉

gn
M3

then there
is no automorphism of M3 over M1 ∪M2 except the identity; and
it holds for the s derived from a universal class with the quantifier-
order property in V.B.2.3.
2) It is not used in 3.10, 3.12 and 3.19-3.25, in fact, it is used only
in 3.15, 3.19, 3.26. We intend to return to this in [Sh:E54].

3.15 Claim. Suppose x = i and χ ∈ [χs, θ
∗).

If NFx
χ,χ(M0,M1,M2,M3) then 〈M1 ∪M2〉

gn
C ≤x

χ,χ M3.

3.16 Remark. 1) We can also use copies of M1,M2,M3 to get a large
order.
2) If we let λ = i4(χ) and prove the version of 3.15 with the strength-
ened assumption NFx

λ,λ(M0,M1,M2,M3), then this does not affect

the results as we are using the case θ∗ = iω(χs).
3) What about x = j in 3.15? See [Sh:E54].

Proof. Let λ = χ.
Suppose not. Let M∗

3 := 〈M1 ∪M2〉
gn
M3

, so M1 ∪M2 ⊆M∗
3 ≤s M3

but ¬(M∗
3 ≤x

λ,χ M2). Then (by 3.7(5)) for some ϕ(x̄, ȳ) ∈ Λx
χ, d̄ ∈

χ≥(M∗
3 ) and c̄ ∈ χ≥|M3|, we have M3 |= ϕ[c̄, d̄] but there is no

c̄′ ∈ 〈M1 ∪M2〉
gn satisfying ℓg(c̄) = ℓg(c̄′) and realizing {ϕ(x̄, d̄)}.

Using smoothness and LSP(χ), (and s being χ-based by V.C.3.12)
there is N3 ≤s M3 such that for ℓ ≤ 3 we have N3 ∩ Mℓ ≤s

Mℓ, ‖N3‖ ≤ χ, d̄ ⊆ N3, N |= ϕ[c̄, d̄] and tps(N3,Mℓ) does not fork
over N3 ∩Mℓ for ℓ = 0, 1, 2, 3. Hence N3 ∩M0 ≤s N3 ∩M1 ≤s N3

and by monotonicity, tps(N3 ∩M1,M0) does not fork over N3 ∩M0.
As tps(M1,M2,M3) does not fork over M0 we can deduce tps(N3 ∩
M1,M2) does not fork over N3∩M0 and similarly tps(N3∩M2,M1)
does not fork over N3 ∩M0. Let Nℓ = Mℓ ∩ N3 and let ā, b̄, c̄ list
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N1, N2, N3 respectively, so by the rigidity axioms without loss of
generality ϕ = ϕ(x̄, ā, b).

For α(∗), β(∗) ≤ λ+, we say x = 〈fα, gβ, hα,β : α ∈ α(∗) ∪
{λ+}, β ∈ β(∗) ∪ {λ+}〉 is a (α(∗), β(∗))-approximation if:

(a) fα, gβ, hα,β are ≤s-embeddings

(b) for α < α(∗), fα is a ≤s-embedding N3 ∩M1 into M0

(c) for β < β(∗), gβ is a ≤s-embedding of N3 ∩M2 into M0

(d) fλ+ is the identity on N3 ∩M1

(e) gλ+ is the identity on N3 ∩M2

(f) (α) Dom (hα,β) = N3

(β) hλ+,λ+ = idN

(γ) fα ∪ gβ ⊆ hα,β

(δ) α < α(∗) ⇒ Rang(hα,λ+) ⊆M1

(ε) β < β(∗) ⇒ Rang(hλ+,β) ⊆M2

(ζ) α, β < λ+ ⇒ Rang(hα,β) ⊆M0

(g) 〈Nt : t ∈ Iα(∗),β(∗)〉 is independent where Iα(∗),β(∗) = {∅} ∪
{{α}, {λ+ + β} : α < α(∗) ∨ α = λ+ and β < β(∗) ∨ β =
λ+}∪{{α, λ+ +β} : α, β < λ+} and for α ∈ α(∗)∪{λ+}, β ∈
β(∗) ∪ {λ+} we have

(α) N∅ = N ∩M0

(β) N{α} = Rang(fα)

(γ) N{λ++β} = Rang(gβ)

(δ) N{α,λ++β} = Rang(hα,β).

[We could have used 3.11] The following two subfacts easily finish
the proof.

3.17 Subfact There is a (λ+, λ+)-approximation.
[Proof: We choose by induction on max{α(∗), β(∗)} then on α(∗)
and then on β(∗) we choose fα, gβ and hα,β for α ∈ α(∗) ∪ {λ+},
and β ∈ β(∗) ∪ {λ+} so sometimes increasing α(∗) < λ+, sometimes
increasing β(∗) < λ+.
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For α(∗) = 0 = β(∗) this is obvious. In limit stages we have no
problem — independence has finite character here, see 1.4. By the
symmetry let us increase β(∗) < λ+ to β(∗) + 1.

Choose A such that

(α) A ≤s M3

(β) |A| ≤ λ

(γ) the following set Bα is included in A and A ∩ M1 ≤s M1

where

Bα := N3 ∪
⋃

{

Rang(hα,β) : α ∈ α(∗) ∪ {λ+}, β ∈ β(∗) ∪ {λ+}
}

.

It is enough to find a function h such that

⊛2 (α) Dom(h) = A

(β) Rang(h) ⊆M1

(γ) h ↾ (A ∩M1) = id,

(δ) h(N3∩M2) ⊆M0 (for independence use 1.4) i.e. gβ(∗) =
h ↾ (N ∩M2),

(ε) hα,β(∗) = h ↾
(

Dom(hα,λ+)
)

.

For this it is enough to find a ≤s-embedding h′, Dom(h′) = N3∩M2,
Rang(h′) ⊆ M0, h

′(N3 ∩M2) realizes tpΛx
χ
(N3 ∩M2, A ∩M1). As

M0 ≤x
λ,χ M1 for this it suffices that h′(N3 ∩M2) realizes tpΛx

χ
(N ∩

M2, B) where B ⊆ M0 has cardinality ≤ λ. But this follows from
NFi

λ,χ(M0,M1,M2,M3)]. �3.17

3.18 Subfact If 〈fα, gβ, hα,β : α ≤ λ+, β ≤ λ+〉 is a (χ+, χ+)-approxi-

mation, then s has (Λχ, (2
2χ

)+)-order property (contradicting 3.1).

Proof. By 2.15 with 〈M1 ∪M2〉
gn here standing for M there, it is

immediate.
�3.18,3.18
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3.19 Claim. Suppose x = i, χ ∈ [χs, θ
∗), λ = χ, and

NFx
λ,χ(M0,M1,M2,M3) and M0 ≤x

λ,χ M
∗
0 ≤x

λ,χ M1,

M∗
2 = 〈M∗

0 ∪M2〉
gn.

Then NFx
λ,χ(M∗

0 ,M1,M
∗
2 ,M3).

Proof. By observation 3.10(2) we have NFx
λ,χ(M0,M

∗
0 ,M2,M3) hence

by 3.15 we have M∗
2 = 〈M∗

0 ∪M2〉
gn ≤x

λ,χ M3. By that and 3.7(4)
clearly M∗

0 ≤x
λ,χ M

∗
2 ≤x

λ,χ M3 and, of course, M∗
0 ≤x

λ,χ M1 ≤x
λ,χ M3.

Also by the Definition 3.9(d) of NFx
λ,χ we have NFs(M0,M1,M2,M3)

hence NFs(M
∗
0 ,M1,M

∗
2 ,M3) as s satisfied Ax(C4). So only the two

versions of one condition in Definition 3.9(d) is left to be confirmed:
clause (δ). The first version is for (M0,M1,M2,M3); the second
version is for (M0,M2,M1,M3).

For the first version, let c̄∗ ∈ χ≥(M∗
2 ) and p ⊆ tpΛx

χ
(c̄∗,M1) be

such that |p| ≤ λ. Clearly there are c̄0 ∈ χ≥|M0|, c̄
1 ∈ χ≥|M∗

0 |, c̄2 ∈
χ≥|M2| such that for ℓ = 1, 2 we have Rang(c̄ℓ) ≤s Mℓ, Rang(c̄0) ⊆
Rang(c̄ℓ) and tp(c̄ℓ,M0) does not fork over Rang(c̄0) and c̄∗ ⊆ 〈c̄1∪
c̄2〉gnM3

. We have to show that p is realized in χ≥|M∗
0 |.

We can find Nℓ (ℓ ≤ 3), N∗
0 , N

∗
2 such that:

(a) ‖Nℓ‖ ≤ χ and ‖N∗
0 ‖, ‖N

∗
2 ‖ ≤ χ

(b) c̄0 ⊆ N0, c̄2 ⊆ N2, c̄1 ⊆ N∗
0 , Dom(p) ⊆ N∗

2

(c) ⊛<Nℓ:ℓ≤3>,<Mℓ:ℓ≤3> and ⊛<N0,N∗

0 ,N2,N∗

2 >,<M0,M∗

0 ,M2,M∗

2 > and

⊛<N∗

0 ,N1,N∗

2 ,N3>,<M∗

0 ,M1,M∗

2 ,M3> from 3.11(1) holds.

So easily it suffices to prove the following

⊡1 there is a ≤s-embedding f2 of N3 into M1 over N1 such that
f2(N

∗
2 ) ⊆M∗

0 .

Why is ⊡1 true? As NFs(M0,M1,M2,M3) by clause (d)1(δ) of Def-
inition 3.9(1) for ℓ = 1 there is an ≤s-embedding f2 of N3 into M1

over N1 such that f2(N2) ⊆ M0. Now as NFs(N0, N1, N2, N3) and
f2(N

∗
2 ) = f2(〈N

∗
0 ∪M2)〉

gn = 〈f(N∗
0 )∪f(N2)〉

gn = 〈N∗
0 ∪f(N2)〉

gn ⊆
M0 we are done.
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For the second version we have c̄∗ ∈ χ≥(M1) and p ⊆ tpΛ∗
χ
(c̄∗,M∗

2 )

has cardinality ≤ χ and we have to find c̄′ ∈ ℓg(c̄∗)(M∗
0 ) realizing p

in M∗
2 . The proof is similar. �3.19

3.20 Claim. If x = i, λ ≥ χ ≥ χs and M0 ≤x
λ,χ M1 and M0 ≤x

λ,χ

M2 then there are Nℓ(ℓ < 4) and hℓ(ℓ < 3) such that:

(a) NFx
λ,χ(N0, N1, N2, N3)

(b) for ℓ = 0, 1, 2, hℓ is an isomorphism from Mℓ onto Nℓ and
h0 ⊆ h1, h0 ⊆ h2.

This follows by:

3.21 Claim. Assume λ = χ ≥ χs.
Suppose x = i and {Mt : t ∈ I} is independent over M , for the

framework s, of course, t ∈ I ⇒ M ≤x
λ,χ Mt, and for J ⊆ I let

M∗
J = 〈

⋃

t∈J

Mt〉
gn
C .

Then:

(a) M∗
J1

≤x
λ,χ M

∗
J2

if J1 ⊆ J2 ⊆ I

(b) NFx
λ,χ(M∗

J1∩J2
,M∗

J1
,M∗

J2
,M∗

I ) if J1, J2 ⊆ I.

Remark. This will be called Ax(C2)+, formally:

3.22 Definition. Assume the framework t satisfies Axioms (A0)-
(A3),(B0)-(B3) and (C0),(C1),(C3).
1) We say {Mt : t ∈ I} is locally independent3 over M inside N
when {Mt : t ∈ J} is independent inside N over M for every finite
J ⊆ I.
1A) For finite J , we say {Mt : t ∈ J} is independent over M inside
N when:

(a) M ≤t Mt ≤t N for t ∈ J

3Of course, if t satisfies (AxFr1) this is equivalent to being independent
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(b) there is a list 〈tα : α < α(∗)〉 of the members of J and ≤t-
increasing continuous sequences, N̄ = 〈Nα : α ≤ α(∗)〉 such
that M0 = M,Nα(∗) ≤t N and NFt(M,Nα,Mtα

, Nα+1) and
Nα+1 = 〈Nα ∪Mtα

〉gnNα+1
.

1B) We say 〈Mtα
: α < α∗〉 is independent over M inside N if (a)

+ (a) of part (1A) holds for J = {tα : α < α∗} which is with no
repetitions (and the enumeration 〈tα : α < α∗〉).
2) We say t satisfies the axiom (C2)+ when given M ∈ Ks, an index
set I and Mt ∈ Ks which ≤s-extends M for t ∈ I, we can find f̄ , N
such that

(a) M ≤s N

(b) f̄ = 〈ft : t ∈ I〉

(c) ft is a ≤s-embedding of Mt into M over M

(d) 〈ft(Mt) : t ∈ I〉 is independent over M inside N

(e) N = 〈∪{ft(Mt) : t ∈ I} ∪M〉gnN

(f) letting M∗
J = 〈∪{ft(Mt) : t ∈ J} ∪M〉gnN for J ⊆ I, we have

(α) M∗
J1

≤t M
∗
J2

for any J1 ⊆ J2 ⊆ I

(β) NFt(M
∗
J1∩J2

,M∗
J1
,M∗

J2
,M∗

J1∪J2
) for J1, J2 ⊆ I.

3) We say t satisfies Ax(C2)⊕ when: if 〈Mt : t ∈ I〉 is locally inde-
pendent over M inside N then

(∗) M∗
I ≤s N .

4) Let Ax(C2)∗ be defined like (C2)+ adding to clause (f) also

(γ) if M ≤s M
′
t ≤s Mt for t ∈ I then M ′ ≤s M

∗
I where

M ′ = 〈∪{M ′
t : t ∈ I} ∪M}〉gnN .

5) Let Ax(C2)⊗ be Ax(C2)∗ + Ax(C2)⊕.

Remark. In 3.22(3) the demand M∗
J ≤s N is a weak form of smooth-

ness.
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Proof of 3.21. We use V.C§4, V.D§3.
Clause (a) follows by clause (b). For clause (b) let J3 = J1 ∪

J2, J0 = J1 ∩ J2, M̄
∗ = 〈M∗

Jℓ
: ℓ ≤ 3〉.

By 3.11(1)+(3) it suffices to assume ⊛N̄,M̄∗ and prove the exis-
tence of an embedding as there.
By Definition V.C.4.8, Claim V.C.4.10, there are J ′

ℓ (ℓ ≤ 3), M ′, N ′,
N ′

t (t ∈ J ′
3) such that

(∗)1 (a) J ′
ℓ ⊆ Jℓ has cardinality ≤ χ

(b) J ′
3 = J ′

1 ∪ J
′
2

(c) J ′
0 = J ′

1 ∩ J
′
2

(d) M ′, N ′, N ′
t(t ∈ J ′

3) are from Ks
≤χ

(e) NFs(M
′,M,N ′

t,Mt) for t ∈ J ′
3

(f) NFs(M
′,M,N ′

ℓ,M
∗
Jℓ

)

(g) N0 ≤s M
′ and N ′ ≤s M

∗
J3

(h) Nℓ ⊆ 〈∪{N ′
t : t ∈ J ′

ℓ}〉
gn
M∗

J3

for ℓ = 1, 2, 3

(i) {N ′
t : t ∈ J ′

ℓ} is independent over M ′ inside N ′
ℓ

(j) N ′
ℓ = 〈∪{N ′

t : t ∈ Jℓ〉
gn
M∗

J3

.

Next let 〈tα : α < α∗ ≤ χ〉 list J ′
3 and choose ftα

by induction on α
such that

(∗)2 (a) ftα
is a ≤s-embedding of N ′

t into M over N ′

(b) {ftβ
(N ′

tβ
) : β ≤ α} is independent over N ′.

There is no problem to carry the induction as {ft(N
′
t) : t ∈ J ′

3} is
independent over M ′ inside M0 and clearly {Nt : t ∈ Jℓ} ∪ {M} is
independent over N ′, we can extend f ′

ℓ = ∪{ft : t ∈ Jℓ} to a ≤s-
embedding of fℓ of N ′

J ′

ℓ
into M . Now we can extend f ′

1∪ idN ′

J′

2

to an

≤s-embedding f of N ′
J ′

3
into M∗

J2
hence clearly f ↾ N3 is as required.

�3.21

3.23 Observation. Let t be as in Definition 3.22.
1) Assume t satisfies Ax(C2)+, see Definition 3.28(5) below. If 〈Mt :
t ∈ I〉 is locally independent over M inside N and letting M∗

J =
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〈∪{Mt : t ∈ J} ∪M〉gnN for J ⊆ I, then clauses (α) + (β) of (f) of
3.22(2) holds.
2) Assume t satisfies Ax(C4). If {Mt : t ∈ I} is locally independent
over M inside N and M ≤t M

′
t ≤t Mt for t ∈ I then {M ′

t : t ∈ I} is
locally independent over M inside N .
3) Assume t satisfies Ax(C4). If t satisfies Ax(C2)⊕ then t satisfies
Ax(C2)∗ hence Ax(C2)⊕.
4) In part (1), 〈Mt : t ∈ I〉 is independent over M inside M∗

I , as
witnessed by an enumeration 〈ti : i < α〉 of I.

Proof. 1) By Ax(C2)+ we can find N ′, f̄ such that the demands
(a)-(e) of 3.22(2) hold with N there replaced by N ′ here.

For J ⊆ I let Gj = {g : g is an isomorphism from 〈∪{Mt : t ∈
J}∪M〉gnN onto 〈∪{ft(M

−
t ) : t ∈ J}∪M〉gnN ′ and idM ⊆ g and ft ⊆ g

for t ∈ J}〉gnN .
Now we prove by induction on µ ≤ |I| that

⊛µ (a) if J ⊆ I and |J | ≤ µ then GJ 6= ∅

(b) if J1 ⊆ J2 ⊆ I and |J2| ≤ µ then every g1 ∈ GJ1
can be

extended to
some g2 ∈ GJ2

(c) if 〈Jα : α ≤ δ〉 is ⊆-increasing continuous, Jδ ⊆ I, |Jδ| ≤
µ and

gα ∈ GJα
for α < δ is ⊆-increasing with α then

∪{gα : α < δ} ∈ GJδ
.

There is no problem to carry the induction and for µ = |I| we are
done.
2) Without loss of generality I is finite; as {Mt : t ∈ I} is independent
over M inside N , clearly for some enumeration 〈tℓ : ℓ < n〉 of I there
are 〈Nℓ : ℓ ≤ n〉 such that NFt(M,Nℓ,Mtℓ

, Nℓ+1) for ℓ < n and
Nn ≤s N . So without loss of generalityNℓ+1 = 〈Nℓ ∪ Mtℓ

〉gnN for
ℓ < n and Nℓ = Nn. Now we can find N ′

ℓ ≤t N
′
ℓ such that for

ℓ ≤ n such that N ′
ℓ = N0 = M and NFt(M,N ′

ℓ,M
′
tℓ
, Nℓ+1) and

N ′
ℓ+1 = 〈N ′

ℓ ∪M
′
tℓ
〉. This is done by induction on ℓ.

3),4) Left to the reader. �3.23
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3.24 Claim. Let x = i, j, nc and assume λ ≥ χ ≥ χs.
1) If 〈Mi : i < δ〉 is ≤x

λ,χ-increasing and cf(δ) > λ + χ, then

Mi <
x
λ,χ

⋃

j<δ

Mj for every i < α, i.e. union existence.

2) If 〈Mi : i ≤ δ〉 is ≤x
λ,χ-increasing and cf(δ) > λ + χ, then

⋃

i<δ

Mδ ≤x
λ,χ Mδ (i.e. smoothness).

Proof. Easy. �3.24

3.25 Exercise: Assume x = i, j, nc and λ ≥ χ ≥ χs. If

(a) I is a λ+-directed partial order,

(b) Ms ≤x
λ,χ Mt for s ≤I t

(c) M = ∪{Ms : s ∈ I}.

Then

(α) s ∈ I ⇒Ms ≤x
s M

(β) M ≤x
λ,χ N when (∀s ∈ I)(M0 ≤x

λ,χ N).

3.26 Main Conclusion. Suppose θ∗ = iω(χs) hence restating Hy-
pothesis 3.1, for every χ < θ∗ but ≥ χs, s does not have the (Φs, (2

2χ

)+)-
order property. Let K+ be Ks (or K≥iω(χs), little difference) and

≤+=<i
<iω (χs),<iω (χs) and K+ = (K+,≤+), (A4)>θ∗ and s+ = s(+) =

(K+,NFs(+), <>
gn) where NFs(+) = NFi

<θ∗,<θ∗ .

1) s+ = s(+) satisfies AxFr−1 which means it satisfies the follow-
ing axioms (see Ch.II,§1):M ∈ K+,M ≤+ N are preserved by iso-
morphisms, (A0),(A1),(A2),(A3) and (B0) - (B3), see below and
(C1),(C2),(C2)+,(C3),(C4),(C5),(C6),(C7),(C9) and (C10), see 3.14
above, (C11), see 3.28(5) below and the λ-LSP for every λ satisfying
λ = λiω(χs).
2) s+ satisfies also (A4)>iω(χs) and (A6), and even (A6)+, see below
in 3.28(2)(2B), and smoothness for cofinality > iω(χs).
3) The pair (s+, s) has the λ-LSP for �s(+) whenever λ = λiω(χs),
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(see below Definition 3.31(1) below).
4) χ∗

s(+) is well defined and ≤ iω(χs) in fact χ = iω(χs) satisfies

the demand on χ in Definition 3.28(3) and even in 3.28(4), (and has
rigidity (Ax(C10)) as s has it).

Before proving 3.26:

3.27 Claim. Assume M0 ≤s(+) Mℓ ≤s(+) Ms for ℓ = 1, 2.
Then NFs(+)(M0,M1,M2,M3) iff NFs(M0,M1,M2,M3) and 〈M1∪

M2〉
gn
Ms

≤s(+) Ms.

Remark. Can phrase it for <∗
λ,χ’s.

Proof. Straight (recalling clause (β) of 3.21(2)(f)). �3.27

3.28 Definition. 1) AxFr−1 is what s+ = s(+) := (K+, NF ↾

K+, <>gn) satisfies from the axioms from V.B§1 as listed in 3.26(1)
except possibly Ax(C10),(C11), i.e. (A0)-(A3),(B0)-(B3),C(1)-(C7)
and (C2)+,(C9) (so not the cases of (A4)θ, (A6))θ).
2) We say s satisfies Ax(A6) when: if 〈Mα : α ≤ δ〉 is ≤s-increasing
and M ′

δ = ∪{Mα : α < δ} then M ′
δ ∈ Ks and α < δ ⇒ Mα ≤s M

′
δ

(but M ′
δ ≤s Mδ is not required).

2A) We define Ax(A6)θ, Ax(A6)>θ, etc., similarly.
2B) We say s satisfies Ax(A6)+ when: if I is a directed partial or-
der, 〈Mt : t ∈ I〉 is ≤s-increasing, and t ∈ I ⇒ Mt ≤s N and
M = ∪{Mt : t ∈ I} then M ∈ Ks and t ∈ I ⇒ Mt ≤s M . Let
Ax(A6)+≥θ be defined similarly restricting ourselves to θ-directed par-
tial orders I.
3) Let χ∗

s be the minimal χ satisfying the following (and ∞ if there
is no one):

(a) s has the LSPθ for every θ = θχ

(b) s is θ-based for every θ = θχ (see Ex V.B.1.19), also if 〈Mt :
t ∈ I〉 is locally independent over M inside N , see Definition
3.22(1) and A ⊆ N and θχ = θ ≥ ‖M‖ + |A| + sup{‖Mt‖ :
t ∈ I} then we can find N∗ ≤s N of cardinality ≤ θ and
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J ⊆ I of cardinality ≤ θ such that ∪{Mt : t ∈ J} ⊆ N∗ and
{Mt : t ∈ I\J} ∪ {N∗} is independent over M inside N

(c) Ax(A4)≥χ and (≥ χ)-smoothness and Ax(A6)≥χ holds

(d) if NFs(M0,M1,M2,M3) then the cardinality of 〈M1∪M2〉
gn
M3

is at most ‖M1‖ + ‖M2‖ + χ

(e) if Ax(A4)∗θ fails, then this is exmplified by a sequence 〈Mi :
i < θ〉 of models of cardinality ≤ 2χ.

4) We write χ∗∗
s when we add:

(f) if M ⊆ N are both from Ks, but M �s N then there is a P

such that

(α) P ⊆ P(N)

(β) if A ∈ [N ]≤χ then for some B ∈ [N ]≤χ we have A ⊆
B ∈ P

(γ) P is closed under increasing unions

(δ) if A ∈ P then ¬(M ↾ A ≤s N ↾ A).

5) Ax(C11) says4 that: if T is a subtree of some α>λ (so closed
under initial segments) and for ℓ = 1, 2 we have N ℓ

t ≤s Nℓ for t ∈ T

increasing continuously with t and 〈N ℓ
η : t ∈ T ′〉 is independent

in Nℓ for every finite T ′ ⊆ T closed under intersections and ft is
an isomorphism from N1

t onto N2
t increasing with t and N ′

ℓ is the
submodel of Nt with universe ∪{〈∪{N ℓ

t : t ∈ T ′}〉gnC : T ′ ⊆ T

is finite closed under intersections} then there is an isomorphism f
from N ′

ℓ onto N ′
2 extending every ft (t ∈ T ′); note that Nℓ ∈ Ks is

not required.
6) Ax(C11)+ is defined similarly but we require that 〈Ns : s ≤I t〉 is
≤s-increasing but we do not require that it is continuous.
7) Let Ax(C8)− be (if s has Ax(A4) + smoothness then is equivalent
to Ax(C8) see V.C.1.9): if 〈M1,i : i ≤ δ〉 is ≤s-increasing, continu-
ous in δ and Mδ ≤s N and NFs(M0,M1,i,M2,i,M) for i < δ then
NFs(M0,M1,δ,M2,δ,M)

4it is really closely related to Ax(C10)
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3.29 Remark. 1) Compared to AxFr1, in AxFr−1 we lose (A4) (ex-
istence of union) and get only 3.21’s conclusion (called Ax(C2)+)
and the cases of Ax(A4) and smoothness for large cofinality as a
weak compensation. Reasonable additions are (A6),(A6)+ which
also compensate.
2) Question: Does (A6) help us to get (A4)ℵ0

? Still §4 uses less.
3) Note that NFs(+) is very close to NFs, in fact it is the maximal
set of quadruples from NFs satisfying Ax(C1) for ≤s(+).

3.30 Observation. Assume t satisfies AxFr−1 (or just as in 3.23 and
Ax(C4)+).

Then Ax(C10) implies Ax(C11)+ which implies Ax(C11).

Proof. Easy, or see 5.15(1). �3.30

Proof of 3.26. 1) Membership in K+ = Ks(+) is preserved by iso-
morphisms.

Trivial as this holds for s.

The order ≤s(+) is preserved under isomorphisms:
Trivial by the definition of the order.

Axioms (A0),(A1),(A2),(A3)
First, Ax(A0), M ≤s(+) M , is trivial by the definition. Second,

Ax(A1), M ≤s(+) N ⇒ M ⊆ N holds as M ≤s(+) N ⇒ M ≤s N
while s satisfies Ax(A1). Third, Ax(A2), ≤s(+) is transitive holds by
Observations 3.7(2). Lastly, Ax(A3), if Mℓ ≤s(+) N for ℓ = 1, 2 and
M1 ⊆M2 then M1 ≤s(+) M2, holds by part (4) of Observation 3.7.

Axiom (A4)≥θ for θ ≥ iω(χs) which is regular, of course
By 3.24(1).

Axiom (B0)-(B3)
Follows from this holding for s.

Axiom (C1)
By clause (d)1(β) of Definition 3.9(1) of NFs(+) = NFi

<θ∗,<θ∗ .

Axiom (C2), existence
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Holds by Claim 3.20.

Axiom (C2)+, see Definition 3.22
Holds by 3.21 and properties of s

Axiom (C3), monotonicity
By Observation 3.10(2),(3)

Axiom (C4), base enlargement
Assume NFs(+)(M0,M1,M2,M4) and M0 ≤s(+) M

∗
0 ≤s(+) M1.

The result follows by 3.19.

Axiom (C5), uniqueness
Should be clear as by claim 3.15 we get the stronger version

V.C.1.2 and uniqueness for s.

Axiom (C6), symmetry
The definition is symmetric; alternatively if NFs(+)(M0,M1,M2,

M3) let M∗
3 = 〈M1 ∪M2〉

gn
M3

so by Claim 3.19 we have M∗
3 ≤s(+) M3

and by monotonicity obviously NFs(M0,M1,M2,M3) hence NFs(M0,
M1,M2,M3). By claim 3.21 we have NFs(+)(M0,M2,M1,M

∗
3 ) and

by Ax(C3) we get NFs(+)(M0,M1,M2,M3).

Axiom(C7), continuity
Should be clear (as nothing new for <>gn).

Axiom(C9), transitivity
By Claim V.C.1.3 and Definition V.C.1.4 it says: if NFs(+)(M0,M1,

M2,M3) and NFs(+)(M2,M3,M4,M5) then NFs(+)(M0,M1,M2,M3).
We finish by noting that the proof of V.C.1.3 use only axioms which
have been proved above.

Axiom(C10)
Obvious by Ax(C10) holding for s.

Axiom(C11)
See §5.

s(+) has the LSP(λ) if λ = λiω(χs)

By Observation 3.7(3).

Axiom (A4)>iω(χs)+ smoothness for cofinality > iω(χs)
By claim 3.24(2)

Axiom (A6),(A6)+

Obvious by the definition of ≤s(+) as we use x = i.
2), 3), 4) Should be clear. �3.26
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Paying a debt from 3.26(3) let:

3.31 Definition. 1) For frameworks t1, t2 satisfying Kt1 = Kt2 and
≤t2⊆≤t1 to say that the pair (t2, t1) has the (< θ)-LSP for M1 �t2

M2 means: if M1 ≤t1 M2 but ¬[M1 ≤t2 M2] then there are χ < θ
and Aℓ ⊆ Mℓ, |Aℓ| ≤ χ such that for no N1 ≤t1 N2 satisfying Aℓ ⊆
Nℓ ≤t1 Mℓ for ℓ = 1, 2 do we have N1 ≤t2 N2; instead (< θ+) we
may write θ.
2) We say that the framework t satisfies the χ-LSP for �t when: if
M1 ⊆ M2 but M1 �t M2 then for the χ-majority of X ⊆ M2 we
have M1 ↾ X �t M2.

3.32 Exercise: Prove the obvious implication and what holds in 3.26,
3.31(2),(3).

§4 Regaining existence of ω-unions

We assume

4.1 Hypothesis. s satisfies AxFr−1 (see Definition 3.28(1)).

4.2 Remark. 1) Note that for s, “[locally] independence” has some
properties proved as in Chapter V.B. Alternatively, we can assume
that for some framework s∗ satisfying AxFr1 is as in §3 and s derived
from it; then those properties are immediate and our loss is not
serious (this applies in particular to Exercise 4.5).
2) No harm in assuming that s satisfies whatever is proved in 3.26.

4.3 Definition. For a sequence M̄ = 〈Mn : n < ω〉 satisfying
∧

n

Mn ≤s Mn+1 and ≤s-embedding f : Mn → N (we let nM̄ (f) =

n(f, M̄) := n) and cardinal λ, where if λ = 1 we may omit it, we

define rkemb,λ

M̄
(f,N), an ordinal (or infinity) as follows:
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rkemb,λ

M̄
(f,N) ≥ α iff (M̄, f,N are as above and) for every

β < α there are fi(for i < λ) such that:

(i) rkemb,λ

M̄
(fi, N) ≥ β

(ii) nM̄ (fi) = nM̄ (f) + 1

(iii) {fi(MnM̄ (fi)) : i < λ} is locally

independent over f(MnM̄(f)) inside N

(iv) f ⊆ fi for i < λ.

So we let rkemb,λ

M̄
(f,N) = α if rkemb,λ

M̄
(f,N) ≥ α but � α+ 1, and

rkemb,λ

M̄
(f,N) = ∞ if for every rkemb,λ

M̄
(f,N) ≥ α. If λ is clear from

context, we may omit it.

4.4 Definition. 1) Let Tℵ0
be the class of trees I with ≤ ω levels,

a root rt(I), i.e. minimal element and no ω-branch. For η ∈ I let
levI(η) be the level of η in I. Let I1 ≤Tℵ0

I2 means that I1 ⊆ I2 (as

partial orders) and s ≤I2 t ∈ I1 ⇒ s ∈ I1.
1A) Let Tst

ℵ0
= {I : I is a non-empty set of decreasing sequences of

ordinals closed under initial segments}, where st stands for standard,
so levI(η) = ℓg(η) for η ∈ I ∈ Tst

ℵ0
.

2) For a sequence M̄ = 〈Mn : n < ω〉 such that for n < ω Mn ≤s

Mn+1 and ordinal α and tree I ∈ Tℵ0
, we define when is n =

〈N,Nη, fη : η ∈ I〉 = 〈Nn, N
n

η , f
n

η : η ∈ I〉 an (s, I)-tree of mod-

els for M̄ , as follows:

(a) fη is an isomorphism from Mℓg(η) onto Nη

(b) ν ⊳ η ⇒ fν ⊆ fη (hence ν ⊳ η ⇒ Nν ≤s fν)

(c) Nη ≤s N for η ∈ I.

3) We say n is a weakly independent (s, I)-tree (of models) for M̄
when clauses (a),(b),(c) of part (2) and

(d) if η ∈ I then 〈Nν : ν ∈ sucI(η)〉 is locally independent over
Nη inside N , recall 3.22(1).
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4) We say n is a canonical (s, I)-tree of models for M when clauses
(a),(b),(c) of part (2) and

(d) 〈Nη : η ∈ I〉 freely generates N which means: there are Mη

(for η ∈ I) such that:

(α) if η is <I -maximal then Mη = Nn

η

(β) if η is not <I -maximal then {Mν : ν ∈ sucI(η)} is
independent5 over Mη inside Nn

η

(γ) Mη = 〈∪{Mν : ν ∈ sucI(η)}〉
gn
Mη

for any non-<I -

maximal η ∈ I

(δ) Nn

η ≤s Mη

(ε) Mη ≤s Nn for η ∈ I

(ζ) Mrt(I) = N .

5) We say n an locally independent (s, I)-tree of models for M̄
when n = 〈Nn, N

n

η , f
n

η : η ∈ I〉 and for every finite J ≤Tℵ0
I,

for some (s, J)-canonical tree m of models we have Nm ≤s N and
(Nn

η , f
n

η ) = (Nm

η , fn

η ) for every η ∈ J .

6) For M̄ as in Definition 4.3, let Nℵ0
[let Nst

ℵ0
] be the class set of

canonical (s, I)-trees of models for M̄ with I ∈ Tℵ0
(with I ∈ Tst

ℵ0
).

If M̄ is not clear from the context we may write Nℵ0
[M̄ ],Nst

ℵ0
[M̄ ].

7) Let n1 ≤Nℵ0
n2 mean that In1

≤Tℵ0
In2

and (Nn1
η , fn1

η ) =

(Nn2
η , fn2

η ) for η ∈ In1
and Nn1

≤s Nn2
.

8) Let desλ(α) be the tree I such that:

(a) η ∈ I iff for some ℓ we have

(α) η = 〈(αℓ, εℓ) : ℓ < n)

(β) α > α0 > α1 > α > . . . > αn−1

(γ) εℓ < λ

(b) I is ordered by ⊳.

5assuming clause (γ), this is equivalent to locally independent
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9) Let des(α) be defined similarly omitting the ε’s.

4.5 Exercise: 1) Assume Ax(A6) and (C8) or Ax(C2)⊕. If M ≤s

Mα ≤s N for α < α∗ and 〈Mα : α ∈ u〉 is independent over M inside
N for every finite u ⊆ α∗, see Definition 3.22(1) then 〈Mα : α < α∗〉
is independent over M inside N .
2) Assume s satisfies Ax(C8) or Ax(C2)⊕. If I ∈ Tℵ0

and n is a
canonical (s, I)-tree of models, Nn ⊆ N and t ∈ In ⇒ Nn

t ≤s N
then Nn ≤s N . If n is a locally independent (s, I)-tree of models,
then 〈∪{Nn

t : t ∈ I〉gnNn

≤s Nn.
3) The results of V.C§4 for (< ℵ0)-stable constructions (where (< µ)-
stable construction are defined as in Definition V.C.4.2(3)) except
replacing “|Wi| + |Bi| < µ” by |Wi| < µ.
4) If n is a canonical (s, I)-tree of models then t ∈ I ⇒ Nn

t ≤s Nn.

4.6 Exercise: 1) If nℓ is a canonical (s, Iℓ)-tree of models for M̄ for
ℓ = 1, 2 and In1

≤Tℵ0
In2

then there is a ≤s-embedding g of Nn1

into Nn2
such that η ∈ In1

⇒ fn2
η = g ◦ fn1

η .
2) Moreover in (1) the range of the embedding is unique.
3) If n is a canonical (s, I)-tree of models, then Nn = ∪{〈∪{Nn

t :
n ≤ J}〉gn : J ∈ I is finite}.
4) If s satisfies Ax(C10), rigidity, then in part (1) the embedding is
unique.

4.7 Claim. Assume M̄ = 〈Mn : n < ω〉 is ≤s-increasing (as in
Definition 4.3, 4.4(2).
1) If Rang(f) ⊆ N1 ≤s N2 and n < ω, λ ≥ 1 and f is a ≤s-

embedding of Mn into N1 then rkemb,λ

M̄
(f,N1) ≤ rkemb,λ

M̄
(f,N2).

2)

(a) If I ∈ Tℵ0
(e.g. I = des(α)) then there is a canonical (s, I)-

tree n = 〈N,Nη, fη : η ∈ I〉 for M̄ (unique up to isomor-
phism, really).

(b) If n is a locally independent (s, I)-tree then for some N ⊆
Nn we have 〈N,Nn

η , f
n

η : η ∈ I〉 is a canonical (s, I)-tree.

Actually N = 〈∪{Nn

η : η ∈ I}〉gnNn

. If Ax(C2)⊕ then N ≤s Nn
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(c) Assume χ = χ∗
s is well defined (see Definition 3.28(3)) and

χ ≥ χ∗
s or just LSPχ holds. If χ ≥ |I|+χ∗

s +Σ{‖Mn‖} : n <
ω} then in part (a), ‖N‖ ≤ χ.

3) Assume λ∗ = χ∗
s + Σ{‖Mn‖ : n < ω} and rkemb,λ

M̄
(f,N∗) ≥

(‖N∗‖λ)+

(a) it is ∞ if λ ≥ λ∗

(b) if (∀α < λ)(|α|χ
∗

s + λ∗ < λ) and n(f, M̄) = 0 for simplicity,
then we can find (Nη, fη) for η ∈ ω>λ such that 〈N∗, Nη, fη :
η ∈ ω>λ〉 is a locally independent (s, I)-tree of models (for
M̄).

4) Assume nM̄ (f) = 0 and λ∗, λ are as in (3)(b), then:

rkemb,λ

M̄
(f,N∗) ≥ α iff we can find a tree n = 〈N∗, Nη, fη : η ∈

desλ(α)〉 for M̄ ↾ [n, ω) such that f = f<> hence N<> = f(Mn) and
such that

⊙ for every η = 〈(αℓ, εℓ) : ℓ < n〉 ∈ desλ(α) and αℓ < αℓ−1

(stipulating α−1 = α) the sequence 〈Nηˆ<(αn,ε)> : ε < λ〉 is
locally independent over Nη inside N∗.

5) Suppose λ ≥ |
⋃

n<ω

Mn| + χ∗
s, so in particular, χ∗

s is well defined.

If (∗)α
M̄

holds for every α < λ+, then for every ordinal α we have
(∗)α

M̄
where:

(∗)α
M̄

for some canonical (s, des(α)))-tree 〈N,Nη, fη : η ∈ des(α)〉

of models for M̄ we have rkemb
M̄

(f<>, N) <∞.

6) If M̄, λ are as in (5)’s assumption then α < β & (∗)β

M̄
⇒ (∗)α

M̄

hence (∀α < λ+)[(∗)α
M̄

] ⇔ (∗)λ+

M̄
⇔ ∀α[(∗)α

M̄
].

7) If M̄, λ are as in (5) and (∗)λ+

M̄
and s satisfies the LSPχ then

χ = χλ ⇒ İ(χ,Ks) > χ.

8) If λ = 1 then rkemb,λ

M̄
(f,N∗) = ∞ iff we can find ≤s-embedding

fn : Mn → N∗ for n ∈ [nM̄ (f), ω) such that fn ⊆ fn+1 and
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fn(f,M̄) = f .

9) If n is an independent (s, desλ(α))-tree for M̄ then rkemb,λ

M̄
(f<λ, Nn)

≥ α.
10) If n is a canonical (s, I)-tree of models for M̄ and (∀α)[(∗)α

M̄
]

then for some infinite u we have ‖Nn‖ ≥ Σ{η ∈ I : ℓg(η) ∈ u}, in
fact u does not depend on n.

Remark. 1) On 4.7(7), see more later.
2) We can continue 4.7(9), e.g. desλ(α) can be embedded into
des(λα) which can be embeded into desλ(λα).

Proof. 1) By induction on the ordinal γ we prove that rkemb,λ

M̄
(g,N1) ≥

γ ⇒ rkemb,λ

M̄
(g,N2) for every n < ω and ≤s-embedding g of Mn into

N1.
2) By induction on the ordinal γ we prove that: if η ∈ I, Dp(η) =
∪{Dp(ν)+1 : η⊳ν ∈ I} ≤ γ then we can find a canonical (s, I [η])-tree
for M̄ where I [η] = {ν ∈ I : ν E η or η E ν}. The induction step is
by Ax(C2)+. This suffices for the first clause, (a). The second clause
(b) is by 4.5(2) using Ax(C2)+ and we can prove it by induction on
rkI(ν) where ν is the E-maximal member of I such that I [ν] = I.
Also the last sentence of clause (b) and clause (c) are obvious.
3) The first clause is obvious. For the second, let 〈ηα : α < λ〉 list
ω>λ such that ηα ⊳ ηβ ⇒ α < β.

Now we choose nα by induction on α ≤ λ such that

⊛ (a) nα,Mα is a locally independent (s, {ηβ : η < α})-tree of
models for M̄ with β < α⇒ Nnα

ηβ
≤s N

∗

(b) β < α⇒ nα ≤Nℵ0
nβ

(c) rkemb,λ

M̄
(fnα

η , N∗) ≥ (‖N∗‖λ∗)+ if η ∈ {ηβ : β < α} = Inα

(d) fM̄
<> = f

(e) Mα ≤s N
∗ and ‖Mα‖ ≤ (|α| + λ∗)

χ∗

s < λ

(f) if β < α then Mβ ≤s Mα

(g) if α = β+1 and ηβ ∈ suc(ηγ) then NFs(N
nα
γ , Nnα

β ,Mβ,Mα).
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For the induction step assume α = β + 1 and ηβ ∈ sucTα
(ηγ). By

the definition of rkemb,λ

M̄
we can find 〈fηβ ,ε : ε < λ〉 such that:

⊕ (a) fηβ ,i is an ≤s-embedding of Mℓg(ηβ) into N∗ extending

f
nβ
ηγ such that 〈fηβ ,ε(Mℓg(ηβ) : ε < λ〉 is independent in N∗.

Now first chooseMα (possible as s is (|α|+λ∗)
χ∗

s-based, see Definition
3.28(3)(a), as required such that by Definition 3.28(3)(b), for at least
one ε < λ the choice fnα

ηβ
= fηβ ,ε will be O.K. (note if s = s′(+) we

can work for s′).
4) Let 〈ηα : α < α∗〉 list desλ(α) such that ηα ⊳ ηβ ⇒ α < β.

Let

Iα = {<>} ∪ {η :η has the form 〈(αℓ, εℓ) : ℓ ≤ n〉, and for some

β < α, ηβ has the form

〈(αℓ, εℓ) : ℓ < n〉ˆ〈(αn, ζ)〉;

for some ζ < λ}.

Now we proceed as in the proof of part (3) only replacing (c) by

(c)′ if η = 〈(αℓ, εℓ) : ℓ < n〉 ∈ Iα and n > 0 then rkemb,λ

M̄
(fη, N

∗) ≥
αn−1.

5) By 4.6(1),(2),(3).
6) For the first implication it is easy and the second by part (5).
7) For every N ∈ Ks

λ let

⊛1 αλ
M̄

(N) = sup{rkemb,λ

M̄
(f,N) : f is a ≤s-embedding of M0

into N satisfying ∞ > rkemb,λ

M̄
(f,N)}.

Now

⊛2 αλ
M̄

(N) < χ+.

[Why? It is the supremum on a set of ≤ ‖N‖‖M0‖ = χλ = χ < χ+

ordinals < χ+.]
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By the assumption and part (5) we have (∗)χ+

M̄
, hence for every

α ∈ [χ, χ+) there is a canonical (s, desλ(α))-tree nα of models for
M̄ . Clearly

(∗)1 Nnα
∈ Ks

χ if α ≥ χ ∈ [χ, χ+).
[Why? Read the Definition 4.4. By clause (c) of part (2) we
have ‖Nnα

‖ ≤ χ. By part (10) we get that ‖Nnα
‖ ≥ χ when

α ≥ χ.]

(∗)2 rkemb,λ

M̄
(fnα

<>, Nnα
) ≥ α

[Why? By Definition 4.4, i.e. by part (9).]

(∗)3 ∞ > rkemb,λ

M̄
(fnα

<>, Nnα
)

[Why? Because (∗)χ+

M̄
holds.]

(∗)4 αλ
M̄

(Nnα
) ∈ [α, χ+)

[Why? By (∗)2 + (∗)3+ the Definition of αλ
M̄

(Nnα
).]

Hence

(∗)5 {αλ
M̄

(N) : N ∈ Ks
χ} is an unbounded subset of χ+.

Now İ(χ,Ks
s) ≥ χ+ follows.

8),9), 10) Left to the reader. �4.7

4.8 Claim. Assume Ax(A6)ℵ0
. If s fails Ax(A4)ℵ0

as exemplified
by M̄ = 〈Mn : n < ω〉 then for every ordinal α the statement (∗)α

M̄

from 4.7 holds.

Proof. By 4.7(2) there is a canonical (s, des(α))-tree n of models for
M̄ . If rkemb

M̄
(fn

<>) <∞ we are done, so assume that rkemb
M̄

(fs
<>) = ∞

hence by 4.7(3) we can find 〈fn : n < ω〉 such that fn is a ≤s-
embedding of Mn into Nn satisfying fn ⊆ fn+1 for n < ω. By
Ax(A6)ℵ0

applied to 〈fn(Mn) : n < ω〉ˆ〈Nn〉 we know that n < ω ⇒
fn(Mn) ≤s ∪{fk(Mk) : n < ω}.

By preservation under isomorphisms we get n < ω ⇒ Mn ≤s

∪{Mk : k < ω}, contradicting the choice of M̄ . So we are done. �4.8

4.9 Conclusion. 1) Assume s satisfies Ax(A6)ℵ0
and χ∗

s is well de-
fined.
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If s fails Ax(A4)ℵ0
then there is a counterexample M̄ with λ :=

2χ∗

s ≥ Σ{‖Mn‖ : n < ω} then χ = χλ ⇒ İ(χ,Ks) > χ.
2) Assume (t, t+, χ∗

t+
) are like (s, s+, χs, χ

∗
s(+)) in 3.26 and t+ fail

Ax(A4)ℵ0
so χ∗

s(+) ≤ iω(χs). Then for some n < ω we have χ =

χin(χt) ⇒ İ(χ,Kt) = İ(χ,Kt+) > χ.

Proof. 1) By clause (e) of Definition 3.28 there is a counterexample
M̄ = 〈Mn : n < ω〉 to Ax(A4) such that λ := 2χ∗

s ≥ Σ{‖Mn‖ : n <
ω}. By 4.8 we know that (∀α)[(∗)α

M̄
] from 4.7(5) holds. Hence by

4.7(2)(b) for every α < χ+ there is a (s, des(α))-tree nα of models for

M̄ . By 4.7(7)(b) we know that χ = χλ ⇒ İ(χ,Ks) > χ as required.
2) Similarly. �4.9

§5 Non-existence of unions Implies Non-structure

Our aim is to prove a non-structure theorem for s satisfying AxFr−1 +
χ∗

s well defined (i.e. as gotten in §3) but s not satisfying AxFr1. The
first step was done in §4, so we can assume Ax(A4)ℵ0

= Ax(A4)∗ℵ0
.

We shall deal with the two variants of Ax(A4) in this section. Both
deal with the union being a ≤s-increasing chain, continuous for
k = 1, not necessarily for k = 2.

For k = 1 we get non-structure in ZFC, and for k = 2 under some
extra set theoretic assumption by Chapter V.C.

5.1 Definition. 1) Let Ax(A4)k
θ be Ax(A4)θ if k = 2 and Ax(A4)∗θ

if k = 1.
1A) Let Ax(A4)k be (∀θ)[Ax(A4)kθ ]. So (A4)2 is (A4),(A4)1 is (A4)∗.
2) Let Ax(C11)k be Ax(11) if k = 1, (C11)+ if k = 2.

So assume θ = θk is minimal such that Ax(A4)k
θ fails. As χ∗

s is
well defined clearly θ = cf(θ) ≤ χ∗

s and by clause (e) of Definition
3.28(3) there is a counterexample M̄∗ = 〈M∗

i : i < θ〉 such that

χ∗ = i < θ ⇒ ‖M∗
i ‖ ≤ 2χ∗

s ; so the sequence is ≤s-increasing and
continuous if k = 1.

We like to construct models in Ks
µ from say trees of copies of M∗

i

using as index sets subtrees of θ>µ assuming Ax(A4)k
<θ and Ax(C2)+
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and sometimes Ax(A6)+, (C10) or (C11)k. So for which trees T can
we find N “freely” generated by {Nη = fη(Mℓg(η)) : η ∈ T } in
particular when fη is a ≤s-embedding of Mℓg(η) into N ; of course
Nη is increasing with η, continuous when k = 1. Well, as usually
θ > ℵ0, of course “no η ∈ θµ is a θ-branch of T ” is necessary, but it
is not clear whether it is sufficient (i.e. to find such N ∈ Ks, etc.).

Now Tnc
θ , defined below is the class of trees for which we clearly

can construct, allowing increasing continuous unions of length < θ.
It would be nice, i.e. helpful for non-structure to be able to show
that for some limit δ < θ for any T ⊆ δ+1≥µ which includes δ≥µ (so
T ∈ Tnc

θ ), we can in N = NT distinguish among the η ∈ δµ between
those for which (∃α)(ηˆ〈α〉 ∈ T ) and those for which (∀α)(ηˆ〈α〉 /∈
T ), e.g. no automorphism g of NT , g◦fη1

= fη2
for some η1, η2 ∈ δµ

from different sets.

To prove this we tried to show that failure gives an increasing
sequence 〈fi : i < θ〉, fi a ≤s-embedding of Mi into one N ∈ Ks.
But this has not converged to a proof.

For k = 1 we use another possible avenue: to imitate §4. For any
M ∈ Ks let TM = {f̄ : f̄ = 〈fj : i < 1 + i〉, fj is a ≤s-embedding of
Mj into M increasing with j for some i < θ} is naturally a tree with
θ levels.

Now TM has no θ-branch and if we can build for it a model NT as
above, it cannot be ≤s-embedded into M . Such argument is enough
in order to prove İ(µ,Ks) > µ for many µ’s but can we find such
NT ? In general it is not clear, so we may try to restrict M to models
of the form MT . Analyzing lead to defining a class Nθ of models
constructed from suitable T ’s such that the construction above leads
to models which again are of this form.

How much do we care about using failure of Ax(A4)1θ or Ax(A4)2θ?
In the first case, the sequence 〈Mi : i < θ〉 is ≤s-increasing continu-
ous, so it is easier to build. But there is a price: we like to prove that
failure of smoothness implies non-structure. But, see Chapter V.C
we need some form of Ax(A4). Specifically, if Ax(A4) = Ax(A4)2
holds, the non-structure from failure of smoothness is proved in ZFC,
whereas if we assume only Ax(A4)∗ = Ax(A4)1, we need, e.g. the
existence of a quite non-reflecting stationary set. See more in V.G§1.

Naturally if we are dealing with Ax(A4)1θ, it is reasonable to as-
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sume Ax(A4)1<θ. Also note that some of the claims are proved for

any tree of model indexed by T ∈ Tθ not connected to M̄∗.

5.2 Hypothesis. 1) We assume k ∈ {1, 2}, s satisfies AxFr−1 and χ∗
s is

well defined and Ax(A4)k
<θ where θ is regular.

2) It is natural to use Ax(A6)+ and Ax(C10) or just Ax(C11)k but
we try to mention it.

5.3 Remark. 1) We may assume s = s+
1 , s1 as in §3, this saves in

some arguments and clarify.
2) We have two versions.
3) We see no harm in assuming Ax(A6),(C11)+ all the time.
4) No harm in adding θ > ℵ0 by §4, but for θ = ℵ0 we look again at
Nθ,Tθ.

5.4 Definition. 1) Let µk
θ(s) be min{Σ{‖Mε‖ : ε < θ} : 〈Mε : ε <

θ〉 a counterexample to Ax(A4)k
θ} when Ax(A4)k

θ fail.
2) Let θk(s) be the first cardinal θ such that Ax(A4)k

θ fails (hence
Ax(A4)k

<θ holds and so θ = cf(θ),ℵ0 ≤ θ < χ∗
s).

3) let M̄ = 〈Mi : i < α〉 be ≤s-increasing; we say that it is k-
continuous if k = 2 or it is continuous and k = 1.

Remark. If θ = θk(s) then θ is also minimal such that there is a
≤s-increasing k-continuous sequence 〈Mε : ε < θ〉 such that M0 �s

∪{Mε : ε < θ}.

5.5 Claim. 1) If θ = θk(s) then µk
θ(s) ≤ 2χ∗

s ; i.e. there is a ≤s-

increasing k-continuous sequence 〈M∗
ε : ε < θ〉 such that ‖Mε‖ ≤ 2χ∗

s

and M0 �s M
∗
θ := ∪{Mi : i < θ}.

2) For any θ, we have µk
θ(s) ≤ 2χ∗

s
+θ. �5.5

Proof. By the properties of s related to χ∗
s . �5.5

5.6 Convention. Let M̄∗ = 〈M∗
i : i ≤ θ〉 be such that
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(a) if i ≤ j < θ then Mi ≤s Mj ∈ Ks and moreover Mi <s Mj

(b) if k = 1 then M̄∗ is ⊆-increasing continuous if k = 2 then
just M∗

θ = ∪{M∗
i : i < θ}

(c) if ¬ AX(A4)k
θ then M∗

0 �s ∪{M∗
i : i < θ} so is an example

for the failure of Ax(A4)k
θ , fixed for this section and ‖M∗

i ‖ ≤
µk

θ(s).

Remark. 1) We do not use M∗
0 �s M

∗
θ till 5.18.

2) Note that possibly M∗
θ = ∪{M∗

i : i < θ} /∈ Ks.

5.7 Definition. 1) Tθ is the class T = (T , <) which satisfies:

(a) (T , <) is a partial order with a minimal element, the root

(b) (T , <) is a normal well founded tree, that is: for every t ∈
T ,T<t = {s : s <I t} is well ordered (so in particular linearly
ordered) and if it has no last element then x is its unique least
upper bound in T .

(c) For t ∈ T , otp{s : s <T t} is < θ and we call it levT (t)
moreover

(d) there is no <T -increasing sequence of length θ of members
of T .

2) T1 ≤Tθ
T2 (or T2 extends T1) when T1 ⊆ T2 are from Tθ and

s <T2
t ∈ T1 ⇒ s ∈ T1.

3) T1 ≤cℓ
Tθ

T2 when T1 ≤Tθ
T2 and if t ∈ T2 and levT2

(t) is a limit
ordinal then (∀s)(s <I2 t→ s ∈ T1) ⇒ t ∈ T1.
4) For T∗ ∈ Tθ let Tθ[T∗] be the class {T ∈ Tθ : T∗ ≤Tθ

T }.
5) For T∗ ∈ Tθ let sp(T1) := {t ∈ T : sucT1

(t) has at least two
members}.
6) For T1 ∈ Tθ let fin(T1) = {T : T <Tθ

T1 and t ∈ sp(T1) ⇒
sucT (t) is finite and sp(T1) is finite}.

7) For T1 ≤Tθ
T2 let fin(T2,T1) = {T2 ↾ (T1 ∪T ) : T ∈ fin(T2)}.

Remark. Presently 5.8, 5.9, 5.10 are not used.
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5.8 Definition. 1) Tnc
θ is the minimal subclass of Tθ, satisfying the

following closure properties (a)-(e):

(a) (α,<) ∈ Tnc
θ for any ordinal α < θ

(b) T nc
θ is closed under isomorphism

(c) T ∈ Tnc
θ when: T ∈ Tθ, and there is A ⊆ T , a maximal

set of pairwise <T -incomparable elements of T such that:

(α) T≤A := T ↾ {t ∈ T : ¬(∃s ∈ A)(s < t)} is in Tnc
θ and

(β) for each t ∈ A,T [t] = T ↾ {s ∈ T : t ≤T s or s ≤T t}
is in Tnc

θ

(d) If T ∈ Tθ,T =
⋃

i<δ

Ai, δ < θ, [i < j < δ ⇒ Ai ⊆ Aj], each

Ai is (non-empty and) <T -downward closed and i < δ ⇒
T ↾ Ai ∈ Tnc

θ then T ∈ Tnc
θ

(e) if T1 ≤Tθ
T2, every t ∈ T2\T1 is the ≤T2

-lub in T2 of
{s ∈ T1 : s ≤T2

t} and T1 ∈ Tnc
θ then T2 ∈ Tnc

θ .

2) For T∗ ∈ Tθ let Tnc
θ [T∗] be the minimal subclass of Tθ satisfing

the following closure conditions:

(a) T∗ ∈ Tnc
θ [T∗] and if T∗ ≤Tθ

T and T \T∗ is linearly ordered
by ≤T then T ∈ T∗

(b) − (e) as above.

3) For T∗ ∈ Tθ we define Tθ[T∗] := {T ⊆ Tθ : T∗ ≤Tθ
T }.

Remark. The superscript nc stands for “nice”.

5.9 Definition. 1) We define T
γ
θ by induction on γ ≤ ∞, increasing

with γ:

(a) T0
θ is the class of T ∈ Tθ isomorphic to (α,<) for some

α < θ (so satisfies clause (a) + (b) of Definition 5.8

(b) for limit γ,Tγ
θ =

⋃

β<θ

T
β
θ , and
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(c) for γ = β + 1, β a non-limit even ordinal, T
γ
θ is class of

T ∈ Tθ (which are from T
β
θ or) such that:

(∗)1 there is a set A ⊆ T of pairwise incomparable elements
of T such that:

(α) T≤A := T ↾ {t ∈ T : ¬(∃s ∈ A)[s < t]} is in T
β
θ

(β) T [t] = T ↾ {s ∈ T : t ≤T s or s ≤T t} is in T
β
θ

for each t ∈ A

(d) for γ = β + 1, β a limit ordinal, T
γ
θ is the class of T ∈ Tθ

(which are from T
β
θ or) such that

(∗)2 T =
⋃

i<δ

Ai, δ < θ, [i < j ⇒ Ai ⊆ Aj ], Ai downward

closed non-empty and i < δ ⇒ T ↾ Ai ∈ T
β
θ

(e) if γ ∈ β+1, β an odd ordinal is the class of T2 ∈ Tθ such that

for some T1 ∈ T
β
θ , (T1,T2) are as in clause (e) of Definition

5.8(1) above.

Clearly

5.10 Observation. 1) T
γ
θ increase with γ and Tnc

θ = ∪{Tγ
θ : γ an

ordinal}.
2) Tθ = Tnc

θ if θ = ℵ0.
3) Similarly for T

γ
θ [T∗] for any T∗ ∈ Tθ.

4) Tnc
θ [T∗] ⊆ {T ∈ Tθ : T∗ ≤Tθ

T }.
5) If T ∈ Tθ and T0 = T ↾ {rt(T )} then fin(T ) = fin(T ,T0).
6) If T1 ≤Tθ

T2 then fin(T2,T1) is a directed (under ≤Tθ
) family

of members of Tθ with union (also direct limit) T2.

5.11 Observation. 1) ≤Tθ
partial orders Tθ.

2) If 〈Tα : α < δ〉 is ≤Tθ
-increasing continuous sequence of members

of Tθ [of Tnc
θ ] and δ < θ then Tδ := ∪{Tα : α < δ} belongs to Tθ

[to Tnc
θ ] and α < δ ⇒ Tα ≤Tθ

Tδ . Similarly for Tnc
θ [T ∗].

3) [amalgamation] If T0 ≤cℓ
Tθ

Tℓ for ℓ = 1, 2 and T1 ∩ T2 = T0

then we can find T3 ∈ Tθ such that Tℓ ≤Tθ
T3 for ℓ = 1, 2 and
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T3 = T1 ∪ T2 (equivalently t ∈ T3 ⇒ t ∈ T1 ∨ t ∈ T2).
4) If T1 ≤Tθ

T2 and T2 ∈ Tnc
θ then T1 ∈ Tnc

θ , moreover γ <
∞∧ T2 ∈ T

γ
θ ⇒ I1 ∈ T

γ
θ . Similarly for Tnc

θ [T ∗].
5) If T ∈ Tθ and γ < θ, then T ∈ Tnc

θ iff η ∈ T ∩ γOrd ⇒ {ν :
ηˆν ∈ T } ∈ Tnc

θ .
6) In Definition 5.9, clause (d) without loss of generality 〈Ai : i < δ〉
is ⊆-increasing continuous.

Proof. Easy. �5.11

5.12 Convention. Obviously omitting k means k is as in 5.2. Several
of the definitions and claims below work for both versions (from (0)
and from (1)) so then we do not mention the version by writing T

instead of (T , ∗) or (T , M̄∗).

5.13 Definition. 0) We say that n is a (T , M̄∗)−k-tree of models
(for M̄∗, we may omit k as it is constant) when

(a) n = 〈Nn, N
n

t , f
n

t : t ∈ T 〉 and let T = Tn

(b) Nn

t ≤s Nn

(c) if s ≤T t then Nn

s ≤s N
n

t and fn

s ⊆ fn

t

(d) fn

t is an isomorphism from M∗
levT (t) onto Nn

t .

1) We say n is a (T , ∗)−k-tree of models or (T , ∗)−k-tree of models
when:

(a) T ∈ Tθ

(b) n = 〈Nn, N
n

η : η ∈ T 〉

(c) Nn

η ≤s Nn if η ∈ T

(d) Nn

η ≤s N
n

ν if η ≤T ν

(e) if k = 1 then Nn

η = ∪{Nn

ν : ν <T η} when η ∈ T is of limit
level.

1A) We say n is a T − k-tree of models when this holds for some
T = Tn ∈ T. Omitting T we mean Tθ; so we have (T, ∗)− k-trees
and (T , M̄∗) − k-trees.

Paper Sh:300F, Chapter V.F



348 V.F. UNIVERSAL CLASSES: THE HEART OF THE MATTER

1B) We say n is locally independent when: if T1 ∈ fin(T ) then
〈Nn

η : η ∈ T1〉 is independent inside Nn, which means, (similarly to
3.22(1),(1A)): we can find 〈Mη : η ∈ T1〉 such that:

(α) Nn

η ≤s Mη ≤s Nn

(β) if ¬(∃ν)(η ≤T1
ν ∈ sp(T1)) then Mη = ∪{Nn

ν : η ≤T1
ν}

(γ) if η ∈ sp(T1) then {Mν : ν ∈ sucT1
(η)} is independent over

Nn

η inside Nn and Mη = 〈∪{Mν : ν ∈ sucI1(η)〉
gn
Mη

(δ) in the remaining case Mη = Mν when ν is <T -minimal such
that η <T1

ν ∈ sp(T1).

1C) Let N
gn
θ [∗] be the class of (Tθ, ∗)-trees and N

gn
θ [M̄∗] be the

class of (Tθ, M̄
∗)-trees. Writing Ngn

θ means it works for both cases
of models. We define the two-place relation (actually partial order)
≤=≤N

gn

θ
on N

gn
θ as follows n1 ≤N

gn

θ
n2 when Tn1

≤Tθ
Tn2

and

Nn1
≤s Nn2

and (Nn1
η , fn1

η ) = (Nn2
η , fn2

η ) for every η ∈ Tn1
.

1D) If 〈nε : ε < δ〉 is ≤N
gn

θ
-increasing we define nδ := ∪{nε : ε < δ}

by Tnδ
= ∪{Tnε

: ε < δ} and (Nn

δη
, fnδ

η ) is (Nnε
η , fnε

η ) whenever

ε < δ is such that η ∈ Tnε
and Nnε

= ∪{Nnε
: ε < δ}; note that in

general maybe Tnδ
/∈ Tθ, Nnδ

/∈ Ks.
1E) We define when n = 〈N,Nη, fη : η ∈ T 〉 = 〈Nn, N

n

η , f
n

η : η ∈

Tn〉 is a canonical (T , M̄∗) − k-tree of models for T ∈ Tθ, i.e. for
n such that Tn ∈ Tθ.
Now n is a canonical T -tree of models if:6

(i) T ∈ Tnc
θ

(ii) n is locally independent (T , M̄∗)− k-tree of models hence if
T ′ ∈ fin(T ) then Nn

T ′ := Nn ↾ 〈∪{Nn

t : t ∈ T ′}〉gnNn

is well
defined and ≤s Nn, really is as in part (1B)

(iii) Nn is equal to ∪{Nn

T ′ : T ′ ∈ fin(T )}.

1F) Let Tcn
θ = Tcn

θ [M̄∗] is the set of T ∈ T such that there is a
canonical T-free of models for M̄∗.
1G) We define when n = 〈N,Nη : η ∈ T 〉 = 〈Nn, N

n

η ; η ∈ Tn〉 is a
canonical (T , ∗) − k-tree of models as in part (1E).

6remember M̄∗ is from 5.6
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2) Let Nθ = Ncn
θ be the class of canonical Tθ-trees of models so

actually we define Nθ[∗] = Ncn
θ [∗] and Nθ[M̄

∗] = Ncn
θ [M̄∗].

3) We define ≤Nθ
=≤N

gn

θ
↾ Nθ, i.e. the two-place relation on Nθ as

follows: m ≤Nθ
n means (m,n are Tθ-trees of models and):

(a) Tm ≤Tθ
Tn

(b) Nm

t = Nn

t or (Nm

t , fm

t ) = (Nn

t , f
n

t ) for t ∈ Tm according to
the case

(c) Nm ≤s Nm

hence

(d) if T ∈ fin(Tn,Tm), then Nm

T
= 〈∪{Nn

t : t ∈ T \Tm} ∪
Nm〉gnNn

is well defined and ≤s Nm.

3A) We define ≤cℓ
Nθ

similarly.
4) For ≤Nθ

-increasing sequence 〈nε : ε < δ〉 such that T := ∪{Tnε
:

ε < δ} ∈ Tθ we define n = ∪{nε : ε < δ} as in part (1D).
5) We write m = n ↾ T when: n ∈ Nθ,T ≤Tθ

Tn and m is the
unique canonical T -tree of models such that m ≤Nθ

n; see 5.15(3)
below.

5.14 Observation. 1) ≤N
gn

θ
partially ordered N

gn
θ .

2) The “hence” in Definition 5.13(1E)(ii), 5.13(3)(d) holds.

Proof. Straight.

5.15 Claim.

1) [Ax(C10) or just Ax(C11)k] If T ∈ Tcn
θ and n,m are canoni-

cal (T , M̄∗)-trees of models then Nn, Nm are isomorphic, moreover
there is an isomorphism g from Nm onto Nn such that η ∈ T ⇒
fn

η = g ◦ fm

η .
1A) Similarly for canonical (T , ∗)-free of models so assuming gη is
an isomorphism from Nn

η onto Nm

η increasing with η.

2) [Ax(A6)+] If T1 ≤Tθ
T2 and T2 ∈ Tcn

θ then T1 ∈ Tcn
θ .

3) [Ax(A6)+] Moreover in (2), if n2 is a canonical T2-tree of mod-
els then there is a unique canonical T1-tree of models n1 denoted by
n2 ↾ T1 such that:
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Tn1
= T1 and Nn2

η = Nn1

η or (Nn2

η , fn2

η ) = (Nn1

η , fn1

η ) for η ∈ T1

and Nn1
is the submodel of Nn2

with universe 〈∪{Nn2

T
: T ∈ fin(T1)}〉.

4) If T1 ≤Tθ
T2 ∈ Tθ and T1 ⊇ T2 ↾ {η ∈ T2: if levT2

(η) is a
limit ordinal then η is not <T2

-maximal} then

(a) T1 ≤Tθ
T2

(b) T1 ∈ Tcn
θ ⇔ T2 ∈ Tcn

θ when k = 1.

5) If T1 ≤Tθ
T2 ∈ Tθ and n2 is a T2-tree of models and T1 ⊇ {η ∈

T2: if levT2
(η) is a limit ordinal and Mη = ∪{Mν : ν <T2

η} then η
is not <T2

-maximal} and

(c) if T1 ∈ Tcn
θ and n2 is a canonical T2-tree of models and n1

defined from it then n1 is a T1-canonical tree of models and
Nn1

= Nn2

(d) if n1 is a canonical T1-model then we can define n2 from it.

Proof. 1) First we prove it for finite T by induction on |T | by the
uniqueness of NFs-amalgamation.

In general, by induction onm, we choose 〈gT ′ : T ′ ∈ fin(T ), |sp(T ′| ≤
m〉 such that

(a) gT ′ is an isomorphism from Nm

T ′ onto Nm

T ′

(b) if η ∈ T and T ′ = {ν ↾ ℓ : ℓ ≤ ℓg(η)} then (Nm

T ′ = Nm

T ′ =
Nm

η , Nn

T ′ = Nn

η and) gT = fn

η ◦ (fm

η )−1

(c) if T ′ ⊆ T ′′ are both from fin(T ) and |T ′′| ≤ m then gT ′ ⊆
gT ′′ .

There are no problems if Ax(C10) holds. If not use Ax(C11)k but
it just say that this holds (so we can prove (C10) ⇒ (C11)k). Note
alternatively if s is above t, t an AxFr1 this is also clear.
2),3) Let n2 be a canonical T2-tree of models. We define n1 as in
part (3). Now Nn1

∈ Ks by Ax(A6)+.
4),5) Left to the reader. �5.15
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5.16 Claim. Tcn
θ has the closure properties of Tnc

θ .

Proof. Straight. �5.16

5.17 Claim. [Ax(C10) or at least7 Ax(C11)k] Assume that n2 is a
canonical T2-tree of models.
1) T1 ≤cℓ

Tθ
T2 or k = 1 and T1 ≤Tθ

T2 and n1 = n2 ↾ T1 is defined
as in 5.15(3) then Nn1

≤s Nn2
.

2) If T1,ℓ ≤Tθ
T2 for ℓ = 0, 1, 2 and T1,1 ∩ T1,2 = T1,0 and n1,ℓ =

n2 ↾ T1,ℓ is defined as in 5.15(3) then NFs(Nn1,0
, Nn1,1

, Nn1,2
, Nn2

).
3) If T1,ℓ ≤Tθ

T2 for ℓ = 1, 2 and T1,0 := T1,1 ∩T1,2,T1,3 = T1,1 ∪
T1,2 then T1,ℓ ≤Tθ

T2 for ℓ = 0, 3 and NFs(Nn1,0
, Nn1,1

, Nn1,2
, Nn1,3

)
and Nn1,3

= 〈Nn1,1
∪Nn1,2

〉gnNn2
.

Proof. 1) By 5.15(4) without loss of generalityT1 is closed in T2.
Let A = {η ∈ T2 : sucT2

(η) * T1} and for each η ∈ T1 let
T1,η = {ν : ν E η or η ⊳ ν ∈ T2 ∧ ν ↾ (ℓg(η) + 1) /∈ T1} and
T2,η = T1,η ∪ T1 and T0,η = {ν : ν E η} and nℓ,η = n2 ↾ Tℓ,η.

For T ≤Tθ
T2 let NT = N [T ] = 〈∪{NT1

: T ′ ∈ fin(T )〉. So
NT ⊆ Nn2

,nT = n2 ↾ T is well defined as in 5.15 and T ′ ≤Tθ

T ′′ ≤Tθ
T2 ⇒ NT ′ ⊆ NT ′′ .

We prove in two stages: the first from a special case and then will
use it in the second stage which deal with the general case.

Stage 1: The case T1 is linearly ordered, closed inside T2.
Obviously, with η varying on T1

(a) nT0,η
≤N

cn
θ

nT1,η
and NT0,η

≤s NT1,η
.

[Why? As Nm

η ≤s Nm for every tree of models m and η ∈ Tm.]

(b) nT0,η
≤N

cn
θ

nT1
.

7Alternatively we require suitable continuity for NFs . Note that if s = t+, t

as in, this thing are more transparent
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[Why? As otp(T1) is < θ this means Nn1
η ≤s N

n1
ν for appropriate

η E ν < θ.]

(c) There is a model N ′
η such that NFs(NT0,η

, NT1
, NT1,η

, N ′
η).

[Why? As s satisfies existence for NFs, pedantically we use NFs-
amalgamation is disjoint.]

(d) There is an isomorphism fη from N ′
η onto NT2,η

over NT1
∪

NT1,η
.

[Why? Both are the direct limit of essentially the same directed
system.]

(e) NT0,η
≤s NT1

≤s NT2,η
and NT0,η

≤s NT1,η
≤s NT2,η

.

[Why? By (c) + (d).]

(f) T2 = ∪{T2,η : η ∈ T2}.

[Why? As T1 is closed.]

(g) There is a model N ′
T2

∈ Ks which is the NFs-amalgamation
of 〈NT2,η

: η ∈ T1〉 over NT1
.

[Why? By Ax(C2)+.]

(h) Without loss of generality N ′
T2

= NT2
= Nn2

.

[Why? The first equality by (f) as in proving claim (d).]

(i) NT1
≤s NT2

= Nn2
.

[Why? Follows.]

Stage 2: The general case.
Similar: for η ∈ A prove NT0,η

≤s NT2
as T0,η has the form

{ν : ν ≤T1
η}, so NT0,η

≤s NT1
, NT0,η

≤s NT1,η
, and as in Stage 1,

NFs(NT0,η
, NT1,η

, NT1
, NT2,η

).
Then NT2

is the NFs-amalgamation of 〈NT2,η
: η ∈ A〉 over NT2

,
so by Ax(C2)+ we are done.
2),3) Included in the proof of part (1). �5.17
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5.18 Theorem. Assume Ax(A6)+ and k = 1. We have İ(λ,Ks) ≥
λ+ when:

(a) Ax(A4)∗θ fail

(b) λ = λχ∗

s and α < λ⇒ |α|µθ(s)χ∗
s < λ.

Proof.

⊛1 For T ∈ Tθ let T ′ := T ∗ θ>λ be the following partial order

(a) set of elements is {(t, η) : t ∈ T and η ∈ levT (t)λ}

(b) (t1, η1) <T ′ (t2, η2) iff t2 ≤T t2 ∧ η1 ⊳ η2

⊛2 let T′
θ,λ = {T ∗ θ>λ : T ∈ Tθ has cadinality λ}

⊛3 if T ′ ∈ T′
θ,λ then T ′ ∈ Tθ.

Let K ′
λ = {Nn : n is a canonical (T , M̄∗)-tree of models for some

T ∈ T′
θ,λ hence Nn has cardinality λ}, it suffices to find ≥ λ+

pairwise non-isomorphic models among the members ofK ′
λ. So let nζ

be a canonical T ∗
ζ -tree of models and T ∗

ζ ∈ T′
θ,λ hence ‖Nnζ

‖ = λ

for ζ < λ and we shall find a member of K ′
λ not isomorphic to any

of them.
We shall prove more:

⊕ there is N ∈ K ′
λ not ≤s-embeddable into Nnζ

for ζ < λ.

For ζ < λ and i < θ let

⊛4 Wζ,i = {(f,T ) : f is a ≤s -embedding of M∗
i into Nnζ

and
T ≤Tθ

T ∗
ζ has cardinality ≤ µθ(s) satisfies Rang(f) ⊆ Nnζ

↾

T }, recalling Definition 5.13(3)(d),(5).

Let for ζ < λ, i < θ

⊛5 T ′
ζ,i is the set of η such that

(a) η is a sequence of length i

(b) if j < i then η(j) has the form (ζη,j, fη,j,Tη,j, γη,j)

(c) ζη,j = ζ
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(d) (fη,j,Tη,j) ∈ Wζ,j

(e) γη,j < λ

(f) 〈fη,j : j < i〉 is ⊆-increasing continuous

(g) 〈Tη,j : j < i〉 is ≤Tθ
-increasing continuous

(h) if j1 < j2 then NFs(fη,j1(M
∗
j1

)), Nnζ [Tη,j1
], fη,j2(M

∗
j2

),

Nnζ [Tη,j1
]).

Then we let (all ordered by ⊳)

(∗)1 T
+

ζ := ∪{T ′
ζ,i : i < θ}

(∗)2 T ′ = ∪{T ′
ζ : ζ < λ}

(∗)3 T ′
ζ = {η : η is not maximal in T

+
ζ }

(∗)4 T + is ∪{T +
ζ : ζ < λ}

(∗)5 T ′ = ∪{T ′
ζ : ζ < λ}.

Obviously

(∗)6 T + is closed under increasing unions of length < θ.

The crux of the matter is

⊗ T + ∈ Tcn
θ .

Why ⊗ is sufficient?
Let n+ be a canonical T +-tree of models, exists because T + ∈

Tcn
θ . Easily |T +| = ‖Nn+‖, so Nn+ ∈ K ′

λ and we should prove that
Nn+ is not ≤s-embeddable in Nζ for ζ < λ. So assume ζ < λ and
let g be a ≤s-embedding of Nn+ into Nnζ

. We now by induction
on i < θ choose ηi ∈ T ′

ζ of length i increasing with i such that

j < i ⇒ fη,j = g ◦ fn
+

η↾j . For i = 0 and i limit we have no problem

(and no real choice). For i = j + 1, we let fj = g ◦ fn
+

η↾j and then

by the definition of χ∗
s as µθ(s) ≥ ‖M∗

j ‖ there is T ′
j as required, i.e.

Tj ≤Tθ
T ∗

ζ , |Tj| ≤ µθ(s), ji < j ⇒ Tη,j1 ⊆ Tj . We shall choose ηi

as ηjˆ〈(ζ, fj,Tj , γ)〉 for some γ < λ.

The only problematic point is the demand on NFs(f
n

+

ηi
(M∗

j ),

Nnζ [Tj ], f
n

+

ηi
(M∗

i ), Nnζ [Ti]). This does not necessarily hold but it
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holds for all but ≤ µθ(s)
χ∗

s of the ordinal γ because χ∗
s is well de-

fined, see Definition 3.28(3), the “also ...” in clause (b).
Having carried the induction on i, we get that T ′

ζ has a θ-branch,

contradiction (as if 〈ηi : i < θ〉) is such a branch, then g := ∪{fηi+1,i :
i < θ} is an embedding of M∗

θ into Nnζ
such that i < θ ⇒ g(M∗

i ) ≤s

Nnζ
. By Ax(A6) this gives i < θ ⇒ g(M∗

∗ ) ≤s g(M
∗
θ ), contradiction

to the choice of M̄∗).

Why is ⊗ true?
By 5.16 it suffices to prove that T ′

ζ ∈ Tcn
θ for a fixed ζ < λ.

At first glance, there is a natural ≤s-embedding of Nn+ into Nnζ
,

using the fη,j’s and then we can use Ax(A6)+; however, their images
are not locally independent. So we shall thin the tree T ′

ζ to T ′′
ζ such

that this will hold, i.e. we get an isomorphic subtree, for which we
have an embedding. Because T ′

ζ ∈ T′
θ,λ, |T

′
ζ | = λ hence it suffices

to show

⊙1 there is T ′′
ζ ≤Tθ

T ′
ζ isomorphic to T ′

ζ such that: if η1, η2 ∈
T ′′

ζ then

(∪{Tη1,j : j < ℓg(η1)}) ∩ (∪{Tη2,j : j < ℓg(η2)}) = ∪{Tη1,j :
j < ℓg(η1) and η1 ↾ (j + 1) = η2 ↾ (j + 1)}).

Let 〈Sη : η ∈ T ′
ζ 〉 be a sequence of pairwise disjoint subsets of λ each

of cardinality λ.
As T ∗

ζ ∈ T′
θ,λ there is T ∗∗

ζ ∈ Tθ of cardinality λ such that

T ∗
ζ = T ∗∗

ζ ∗ θ>λ so for t ∈ T ∗
ζ let t = (st, ̺t) where st ∈ T ∗∗

ζ of

level levT ∗

ζ
(t) and ̺t ∈

levT ∗

ζ
(t)
λ.

Lastly, let

T
′′

ζ = {η ∈ T
′

ζ : if j < ℓg(η) and t ∈ Tη,j and

s <T ∗

ζ
t, levT∗

ζ
(s) = i+ 1 ≤ ℓg(ρ) and

s /∈ t ∪ {Tη,j1 : j1 < j} then ̺s(i) ∈ Sη↾j}.

�5.18
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UNIVERSAL CLASSES: CHANGING

THE FRAMEWORK – SH300G

§0 Introduction

First, we phrase what we have accomplished, when we vary s on
S1, i.e., on frameworks satisfying enough axioms. Discarding ap-
propriate non-structure cases we can assume s is smooth and LS(s)-
based (similarly to Chapter V.C, Chapter V.D) and s+ is well defined
and also belongs to S1, though LS(s+) is somewhat larger. We can
continue to define sα by induction on the ordinal α and there are
no problems in the limit. The hope is that for suitable limit δ, sδ is
similar enough to elementary class, because passing from s to s+ is
like allowing one existential quantification (or we can derive s′ which
is an “interpolation” between s and sδ).

Unfortunately, discarding the non-smooth cases is not done in
ZFC, we need the existence of somewhat non-reflecting sets, which
is easily forced by (< λ)-complete forcing for any λ. Still as argued
in Chapter N this suffices to show that in ZFC.

Note that having produced 〈sα : α < δ〉 we can try to prove that
for Ks, the quantifier depth cannot be too large (in suitable infinitary
logics). A step toward this is done in §2, we show that if we consider
existential quantifiers only (no negations) then the quantifier depth
is quite small, this supposedly helps in the dream above.

§1 On the family of s’s

1.1 Definition. 1) Let S1 be the class of frameworks satisfying
(AxFr1), i.e. quadruple as in V.B.1.6, with s = (Ks,≤Ks

, 〈〉s,gn, NFs)
and for simplicity s, LS(s) is well defined so has the LSP(LS(s)) and
if λ = λLS(s) then λ+ is ≤s-inaccessible.

Typeset by AMS-TEX

356

Paper Sh:300G, Chapter V.G



V.G.§1 ON THE FAMILY OF s’s 357

1A) Let S be the class of quadruples as in V.B.1.6 satisfying Ax(A0)-
(A3),(B0)-(B3) and (C1).
2) Let S1

sm be the class of s ∈ S1 satisfying smoothness. Let S1
sb,χ be

the class of s ∈ S1
sm which are χ-based (and LS(Ks) ≤ χ). We omit

χ when this holds for some χ. So χs is well defined when s ∈ S1
sb.

3) Let S0 be the class of quadruples s satisfying AxFr−1 . Let s ∈
S0

bs,χ when s ∈ S0 and χ∗
s is well defined ≤ χ, see V.F.3.28(3). Let

S0
bs,χ,θ be the class of s ∈ S0

bs,χ which satisfies Ax(A4)∗<θ and (< θ)-
smoothness.
4) We define a two place relation ≤ on S : s1 ≤ s2 when:

(a) Ks1
= Ks2

(b) M ≤s2
N ⇒ M ≤s1

N

(c) NFs2
⊆ NFs1

(d) if NFs1
(M0, M1, M2, M3) and M0 ≤s2

Mℓ ≤s2
M3 for ℓ =

1, 2,
then NFs2

(M0, M1, M2, M3) and 〈M1∪M2〉
gn
s2

= 〈M1∪M2〉
gn
s1

(e) in s1 we have 〈A〉gnM = B iff this holds in s2, too.

1.2 Claim. 1) S ⊇ S0 ⊇ S1 ⊇ S1
m ⊇ S1

sb and S0 ⊇ S0
bs,χ (and

S1
sb,χ increase with χ, etc.).

2) On the family S,≤ is a partial order.

Proof. Obvious. �1.2

1.3 Definition. If sα ∈ S, for α < δ, and α < β < δ ⇒ sα ≤
sβ , then the limit of sδ of 〈sα : α < δ〉 is defined as the following
quadruple:

(a) Ksδ
= Ksα

for every α < δ (equivalently, some α < δ)

(b) M ≤sδ
N iff M ≤sα

N for every α < δ

(c) NFsδ
(M0, M1, M2, M3) iff

∧

α<δ

NFsα
(M0, M1, M2, M3)

(d) 〈A〉gnM = B in sδ iff this holds in every sα (α < δ), equivalently
some α < δ.
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1.4 Claim. 1) If sα ∈ S1 for α < δ and 〈sα : α ≤ δ〉 is increasing,
sδ as in Definition 1.3, then s ∈ S1.
2) If for α < δ, sα ∈ S1

sb, then sδ satisfies it too. Similarly for S1
sm.

3) Similarly for S, S0, S
0
bs,χ and S0

bs,χ,θ and S0+ Ax(C11) + (A6)+.

Proof. Check.

1.5 Claim. 1) If s ∈ S1
sb, i.e. s satisfies AxFr1 + smoothness

+ NFs is χs-based and λ = 2χ(s) then the following classes (A)-
(E) below are PCλ,χ(s) (hence the class of reducts of some Lλ+,ω-
sentence).
2) If in addition s = s+

1 where s1 ∈ (AxFr)1 is as in V.F§3 and
µ = iω(χs) ≥ χ∗

s then the classes (A)-(E) defined below are PCλ

(hence the class of reducts of some Lλ+,ω-sentence where:

(A) Ks

(B) {(M, N) : M ≤s N}

(C) {(M0, M1, M2, M3): NFs(M0, M1, M2, M3)}

(D) {(M0, M1, M2, M3): NFs(M0, M1, M2, M3) and M3 = 〈M1 ∪
M2, M3〉

gn}

(E) {(M0, M1, a, M3) : M0 ≤s M1 ≤s M3 and a ∈ M3, and
tps(a, M1, M3)

in s’s sense does not fork over M0}.

Proof. Obvious.
1) Recall the “for the λ-majority A ⊆ B, see Definition V.C.4.8. For
Clauses (A),(B) use V.C.4.9(3) or I§1; for clause (C) use V.D.1.18(1);
for clause (D) use V.D.1.18(2) and for clause (E) use V.D.1.18(3).
2) Use si

µ,θ for µ ≥ θ from [χ, λ]. �1.5

1.6 Claim. Assume s1 ≤ s2 are from S.
1) If M0 ≤s2

M1, A ⊆ M1 and1 tps2
(M1, M0∪A)±wk M0 in s2 then

this holds for s1, too.

1still well defined
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2) If M0 ≤s2
Mℓ, āℓ ⊆ Mℓ for ℓ = 1, 2 and tps2

(ā1, M0, M1) =
tps2

(ā2, M0, M2) then tps1
(ā1, M0, M1) = tps1

(ā2, M0, M2).

Proof. Easy.

From the previous chapters

1.7 The Successor Framework Theorem. Assume s ∈ S1 sat-
isfies Ax(C11) + (A6)+ and χ = LS(Ks). If for some regular µ =

µiω+1(χs) we have İ(µ+, Ks) < µ+ then

(a) s is smooth and χ-based so χs = LS(s) is well defined

(b) s+ is well defined and χ∗
s(+) is well defined ≤ iω(χs)

(c) assume (∗)µ below then s+ ∈ S1 satisfies Ax(A6) + (C11)+

and even moreover is χ1-based where χ1 = iω(χ)

(∗)µ for any regular θ ≤ iω(χs) there is a square on S
µ+

≤iω(χ)

or just a stationary S ⊆ S
µ+

θ not reflecting in any δ ∈

S
µ+

≤iω(χs)).

Remark. 1) We can weaken the assumption to: for every n < ω for

some regular µ = µin(χs) we have İ(µ+, Ks) < µ+.

Proof. First, recall χ = LS(Ks), hence by Definition 1.1(1), we know
that µχ = µ implies µ+ is ≤s-inaccessible.

Hence by V.D.1.15, if s is not (≤ χ+,≤ χ+)-smoooth or s is
not (χ+, χ)-based and µ = µχ ≥ χ++ then (µ+ is ≤s-inaccessible

and) İ(µ+, Ks) = 2µ+

. This contradicts an assumption of 1.7 hence
s is (≤ χ+,≤ χ+)-smooth and is (χ+, χ)-based. Hence by lemma
V.D.1.12 we deduce: s is smooth and µ-based for every µ ≥ χ. So
χs is well defined and ≤ χ = LS(Ks), so is = χ = LS(Ks) in other
words s ∈ S1

sb,χ.

Second, for every θ < iω(χ), if s has the (Λs

θ, (2
θ)+)-order prop-

erty (see V.F.2.3) and λ = λχ + θ++ + χs then by V.F.3.2 we have
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İ(λ, Ks) = 2λ, contradicting an assumption of 1.7. Hence the Hy-
pothesis V.F.3.1 holds.

Third, by V.F.3.26, the framework s+ = s(+) is well defined and
satisfies AxFr−1 , so s+ ∈ S0 and easily s ≤ s+ moreover s+ ∈ S0

bs,χ∗

where χ∗ = iω(χs).

Fourth, toward contradiction assume s+ fails Ax(A4)∗ or smooth-
ness then by recalling Definition V.F.3.28(2) for some regular θ ≤
χ∗

s(+) it belongs to S0
bs,χ∗,θ but not to S0

bs,χ∗,θ+ , i.e. it satisfies

Ax(A4)∗<θ and (< θ)-smoothness but fail Ax(A4)∗θ or fail θ-smoothness.

Now, assume it fails Ax(A4)∗θ. If θ = ℵ0 by Theorem V.F.4.9
we get contradiction to an assumption of 1.7. If θ > ℵ0 we get a
contradiction to the same assumption by V.F§5. So Ax(A4)∗θ holds
hence s fails θ-smoothness, so essentially we get a contradiction by
Theorem V.C.2.6; well there are some cheating.

First, a minor point: there in V.C§1,§2 in the main presentation
we assume Ax(A4) whereas here we have gotten only Ax(A4)∗, but
as remarked in V.C.2.7(3) this is O.K.; see more in [Sh:E54].

Second, we need there a square on S
µ+

<cf(χ∗
s
) from Ǐ[µ+] but we

assume this.

Third, most serious, we just know that s ∈ Sbs,χ∗,θ and θ =
cf(θ) ∈ [χ, χ∗) but we can replace the use of stable constructions by

the ones in V.F§5, see more in [Sh:E54]. So s+ ∈ S1
bs,χ∗

s

and we are

done.
In fact, careful checking shows that: there is a good stationary S ⊆

S
µ+

θ which reflects in no δ ∈ S
µ+

<cf(χ∗

δ
) suffice.

§2 From large enough rk
emb,2
M̄

(f, N) to every ordinal

This is a continuation of V.F§4. Here we are quite close to the
combinatorial theorems of Komjath Shelah [KoSh 796], in particular
2.6 is a case of it.

2.1 Hypothesis. s as in ∈ S1
sb.
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2.2 Claim. Suppose M̄ ℓ = 〈M ℓ
n : n < ω〉 for ℓ = 0, 1, M ℓ

n ≤s

M ℓ
n+1, M

0
n ≤s M1

n and f : M1
n → N is a ≤s-embedding. Then

rkemb,2
M̄1 (f, N) ≤ rkemb,2

M̄0 (f ↾ M0
n, N).

Proof. Straightforward.

2.3 Lemma. Suppose λ ≥ χs + |
⋃

n<ω

Mn|, µλ = µ, Mn ≤s Mn+1,

M̄ = 〈Mn : n < ω〉. Suppose for some N∗ ∈ K and f we have

rkemb,2
M̄

(f, N∗) is

< ∞ but ≥ i2(µ)+. Then we can find M̄ ′ = 〈M ′
n : n < ω〉, ‖M ′

n‖ ≤
λ, M ′

n ≤ M ′
n+1, Mn ≤s M ′

n such that:

(∗)α
M̄

holds for every α (see V.F.4.7(5)).

Proof. Without loss of generality Dom(f) = M0 and assume first
µ > (2λ)+. By the definition we can find f̄ = 〈fη : η ∈ des(i2(µ)+)〉
such that:

(i) fη is a ≤s-embedding of Mℓg(η) into N

(ii) ν ⊳ η ⇒ fν ⊆ fη.

Let χ be regular large enough such that i2(λ)+, N , f̄ , M̄ belongs
to H (χ). For η ∈ des(i2(M)+) let the model Bη be the minimal
elementary submodel of (H (χ),∈, <∗

χ) such that

(a) Bη includes

{xη} ∪ {i : i ≤ µ} ∪ ∪{Bη↾ℓ : ℓ < ℓg(η)}

(b) Y ⊆ Bη & |Y | ≤ λ ⇒ Y ∈ Bη

where x∗η = 〈η, N, f̄, M̄ , λ, M〉.

Let us define a function c with domain (des(i2(M)+) as follows: c(η)
is the isomorphism type

(

Bη, Bη↾(ℓg η−1), . . . , Bη↾0, x
∗
η, i

)

. So note

that |Rang(c)| = i1(µ), i2(µ)i
(µ)
1 = i2(µ); hence by 2.6(2) below
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there is T ⊆ des(i2(µ)+) closed under initial segments such that
rkT (<>) ≥ i2(µ)+. Now we can find B′

0 ≺ B′
1 ≺ · · · ≺ B′

n ≺ · · ·
and x′n ∈ B′

n, and for η ∈ T an isomorphism gη from B′
ℓg(η) onto

Bη satisfying g∗
η(x′ℓg(η)) = xη, gη(B

′
ℓ) = Bη↾ℓ.

Let x′n = (η′
n, N ′, f̄ ′, M̄ ′, λ′, µ′); so without loss of generality M̄ ′ = M̄

and let N ′
n be the interpretation of N ′ in B′

n. Now M ′
n ∈ K as K is

a PC(2χ(s))+,ω-class (see (A) of 1.5). Similarly N ′
n ≤s N ′

n+1, N
′
n+1 ∩

B′
n = N ′

n. Now using 1.5 we can find M ′
n(n < ω) such that:

⊛ (a) M ′
n ∈ Ks

µ

(b) M ′
n ≤s N ′

n

(c) M ′
n ≤s M ′

n+1

(d) M ′
n+1

⋃

M ′
n

N ′
n

(e) Rang(fη′
n
) ⊆ M ′

n.

Let f ′
η be gη ↾ M ′

ℓg(η) for η ∈ T . We shall now prove by induction

on α < µ that

⊗

α if η ∈ T , rkT (η) ≥ α then rkemb,µ+

〈M ′
n:n<ω〉(f

′
η, N) ≥ α.

This suffices by V.F.4.7(5) as µ > 2λ (except that µ’s? do not extend

Mn only fBn

η′
n

is ≤s-embedding Mn into M ′
n; by chasing arrows we

can finish).

Proof of ⊗α. For α = 0 or α limit this should be clear. For α =
β +1, η ∈ T of length n there is ν ∈ T such that η ⊳ν, ℓg(ν) = n+1

and rkT (ν) ≥ β. Let ϕα
η

(

x̄M ′

n+1\M ′
n
, x̄Mn

)

be the formula such that

|= ϕα
η

(

āM ′

n+1\M ′
n
, āM ′

n

)

iff the mapping f , f(c) = ac for c ∈ M ′
n+1

satisfies rkemb,µ+

〈M ′

k
:k<ω〉(f, N) ≥ β. Now ϕα

η ∈ B′
n and is satisfied by

〈gν(c) : c ∈ M ′
n+1〉 (in the model N). The rest is as in V.F.4.8.

Now what about the case µ = 2λ? For each ζ < (2λ)+ we can repeat
the above proof with ζ + 1 ⊆ B0, and then prove ⊗α for α ≤ ζ. For
〈M ′

ζ,n : n < ω〉; now one isomorphism type of 〈M ′
ζ,n : n < ω〉 over
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〈Mn, fBn

η′
n

: n < ω〉 appears for (2λ)+ ordinals.

This is enough. �2.3

2.4 Definition. For a tree T with ω levels and η ∈ T , we define
rkT (η) = rk(η, T ) as ∪{rkT (ν) + 1 : ν ∈ SucT (η)} and rkT (η) =
∞ iff there is a ω-branch of T to which η belongs.

For η ∈ T we let levT (η) = otp{ν : ν < η}, η ↾ ℓ the unique
ν <T η such that levT (η) = ℓ and sucT (η) = {ν : ν <T η and
ρ <T η ⇒ ρ ≤T η} and let rkT be the root of T (if T is standard
then ?).

2.5 Observation. 1) If T1 ⊆ T2, η ∈ T1 then rkT1
(η) ≤ rkT2

(η).
2) If f : M0 → N is a ≤s-embedding and Mn ≤s Mn+1, then

rkemb,2
M̄

(f, N) is rk(f, T ) where

T = {g : for some n < ω, g is a ≤s -embedding of Mn into N}

ordered by inclusion.

2.6 Claim. Assume rk(η, T ) ≥ λ+ (and levT (η) = 0 for simplic-
ity) and c is a function from T to κ.
1) If κ ≤ λ then for some sequence ᾱ = 〈αn : n < ω〉, for every n

there is ν ∈ T , levT (ν) = n and
∧

ℓ≤n

c(ν ↾ ℓ) = αℓ.

2) If λ(κℵ0) = λ then for some ᾱ = 〈αn : n < ω〉 we have rk(rtT , T c,ᾱ)
≥ λ+ where T c,ᾱ = {ν ∈ T : c(ν ↾ ℓ) = αℓ for every ℓ ≤ levT (ν)}.

Proof. Without loss of generality (∀ν ∈ T )η E ν.
Part (1) is old: choose by induction on n, ᾱ ↾ n such that for every

γ < λ+ there is νn
γ ∈ T of length n such that: rk(νγ , T ) ≥ γ and

∧

ℓ≤n

c(νn
γ ↾ ℓ) = αℓ. for n + 1 for every γ < λ there is ργ ∈ SucT (νn

γ )

and rk(ργ, T ) ≥ γ, so for some αn+1 the set {γ < λ+ : c(ργ, T ) =
αn+1} is unbounded in λ+, now define the νn+1

γ ’s. We now prove
part (2): apply part (1) to c′ where for ν ∈ T we let c′(ν) :=
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〈rk(ν, T c,β̄) : β̄ ∈ ωκ〉. If γβ = rk(rtT , T c,β̄) < λ+ for each ν ∈ T

and β̄ ∈ ωκ, then |Rang(c′)| ≤ Π{|γβ + 1| : β̄ ∈ ωκ} ≤ λκℵ0
= λ.

Also c′′, c′′(ν) := 〈c(η), c′(η)〉 is a function from T with range of
cardinality ≤ λ.

So by part (1) we can find an ω-sequence 〈en : n < ω〉,
(en = 〈< γn

β̄
: β̄ ∈ ωκ >, αn〉) such that for every n for some ν = νn ∈

T , levT (νn) = n and
∧

ℓ≤n

c(νn ↾ ℓ) = eℓ. So
∧

n

∧

ℓ≤n

c(νn ↾ ℓ) = αℓ

and for every β̄ ∈ ωκ we have
∧

n

∧

ℓ≤n

rkT (νn ↾ ℓ, T c,β̄) = γℓ
β̄
, in

particular for ᾱ = 〈αn : n < ω〉, so rk(νn ↾ ℓ, T c,ᾱ) = γℓ
ᾱ hence, by

definition of rk, γℓ
ᾱ > γℓ+1

ᾱ , for each ℓ, contradiction to “the ordinals
are well ordered”). �2.6

In fact in 2.3 we prove, in V.F§1’s style, (we can use µ = 2λ by
the µ+ in the definition of rk).

2.7 Claim. If Nη <s N fo η ∈ des(i3(λ)+), λ ≥ χ(κ)+sup
η
‖Nη‖, [ν⊳

η ⇒ Nν ≤s Nη] then we can find T ⊆ des(i2(λ)+) closed under ini-
tial segments and Mη <s N for η ∈ T such that:

⊛ (a) rkT (<>) = i1(λ)

(b) Nη ≤s Nη

(c) λ ≥ ‖Mη‖

(d) 〈Mη : η ∈ T 〉 is independent inside N .

Proof. Should be clear. �2.7
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CATEGORICITY OF AN

ABSTRACT ELEMENTARY CLASS

IN TWO SUCCESSIVE CARDINALS

REVISITED

E46

§0 Introduction

Our primary concern is:

Problem 0.1. Can we have some (not necessarily much) classification
theory for an a.e.c., with no uses of even traces of compactness and
only mild set theoretic assumptions?

Let me try to clarify the meaning of Problem 0.1.
What is the meaning of “mild set theoretic assumptions?” We are
allowing requirements on cardinal arithmetic like GCH and weaker
relatives. Preferably, assumptions like diamonds and squares and
even mild large cardinals will not be used (so all is provable in ZFC,
or in ZFC plus allowable assumptions).

In fact we try to continue Chapter I, where results about the num-
ber of non-isomorphic models in ℵ1 and ℵ2 of a sentence ψ ∈ Lω1,ω

are obtained, replacing ℵ0 by some λ ≥ LS(K). Now in Chapter I
the theorem parallel to the present one is proved assuming 2ℵ0 < 2ℵ1

and to a large extent is provably necessary, so it is quite natural to
use such assumptions here.

What is the meaning of “some classification theory?” While the
dream is to have a classification theory as “full” as the one obtained
in [Sh:c], we will be glad to have theorems speaking just on having
few models in some cardinals or even categoricity and at least one
model in others. E.g. by Chapter I if ψ ∈ Lω1,ω(Q) satisfies 1 ≤

Typeset by AMS-TEX

365
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366 VI. CATEGORICITY IN TWO SUCCESSIVE CARDINALS

İ(ℵ1, ψ) < 2ℵ1 (and 2ℵ0 < 2ℵ1) then İ(ℵ2, ψ) > 0, confirming the
Baldwin conjecture.

What is the meaning of “uses traces of compactness?” For non-
first order classes we cannot use the powerful compactness theorem,
but there are many ways to get weak forms of it: one way is using
large cardinals (compact cardinals in Makkai Shelah [MaSh 285], or
just measurable cardinals as in Kolman Shelah [KlSh 362], and in [Sh
472]). Another way is to use “non-definability of well ordering” which
follows from the existence of Ehrenfeucht-Mostowski models, and
also from ψ ∈ Lω1,ω having uncountable models (used extensively in
Chapter I). Our aim is to use none of those and we would like to see
if any theory is left.

Above all, we hope the proofs will initiate classification theory
in this case, so we hope the flavour will be one of introducing and
investigating notions of a model theoretic character. Proofs of, say,
a descriptive set theory character, will not satisfy this hope.

It seems to us that this goal is met.

In [Sh 576] it was proved that if 2λ < 2λ+

< 2λ++

and an a.e.c.
K with LS(K) ≤ λ is categorical in λ, λ+ and neither zero nor too
large number of models in λ++ then it has a model in λ+3. This was
used in II§3 to get good λ+-frames s with Ks = Kλ+ and investigate
the models of cardinality > λ+3; subsequently [Sh 603] improve the
results on density of minimal pairs. The non-structure side is all
redone in Chapter VII and II§6 is related to the proof in [Sh 576,
§8], but one was not a special case of the other. Now here + Chapter
VII we do better than in [Sh 576] + [Sh 603]:

(a) this is essentially an improved version of [Sh 576], getting
enough structure results so justify the existence of good λ+-
frames and here the existence of almost good λ-frames used
in Chapter VII

(b) (i) we omit here the pure non-structure part [Sh 576, §1,§3]

(ii) we do it “better” in §3, §4, §8 [meaning that the set

theoretic assumption is 2λ < 2λ+

< 2λ++

only, with-
out the

additional “WDmIdλ+ is λ++-saturated”]
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(iii) still the work in §3,§4 (a little in §2 (2.18) and in §6)
rely on, i.e.

quote Chapter VII

(c) we would like to use: (slm)λ+ , which means “there is a su-
perlimit model in λ+” instead of using categoricity in λ+; we
try to do this, that is we delay as much as possible using the
assumption “K is categorical in λ+”

(d) in [Sh 576] at one point λ > ℵ0 was used, this was eliminated
in [Sh 603] and incorporated here

(e) in [Sh 576], having density of uniqueness triples (and earlier
results) we succeed to define non-forking amalgamation of
models; this is now done in II§6 (or see VII.8.12(4)).

In particular we shall prove (part (1) in 6.13, and part (2) in 8.4).

Theorem 0.2. (2λ < 2λ+

< 2λ++

). Let K be an abstract elementary
class with LS(K) ≤ λ.
1) If K is categorical in λ, λ+ and λ++ then I(λ+3,K) > 0.
2) Moreover, if K is categorical in λ, λ+ and

1 ≤ İ(λ+2,K) < µunif(λ
++, 2λ+

), see below then:

(a) Kλ+3 6= ∅

(b) there is an almost good λ-frame s such that Ks = Kλ hence
Ks = K≥λ”.

On µunif(λ
++, 2λ+

), see Definition VII.0.4(6),(7), Claim VII.9.4 it is

essentially equal to 2λ++

. So during our investigation we consider
weaker versions of the assumptions (introduced mainly in §1, listed
in 1.1). To let the reader see how we treat them we classify them by:

Group A: cheap ones: (cat)λ, (nmx)λ+ , (ext)λ+2 where cat, nmx, ext
stand for categorical, has no ≤K-maximal member, existence of mem-
ber of K in this cardinal.

Group B: reasonable ones: (slm)λ+ , (amg)λ, (mdn)1
λ+ , i.e. 1 ≤

İ(λ+, K) < 2λ+

, (mdn)2
λ++ , i.e. 1 ≤ İ(λ++, K) < µunif(λ

++, 2λ+

)
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where slm stands for superlimit model (exist), amg stands for amal-
gamation and mdn stands for medium number (of models up to iso-
morphism).

Group C: expensive: (cat)λ+ .

Group D: very expensive: Kλ+3 = ∅.
Why do we consider (cat)λ cheap and (cat)λ+ expensive? Because

if M∗ ∈ Kλ is superlimit, then K
[M∗] is categorical in λ; for our

present purposes the restriction of the class is reasonable, but we do
not know to do that for λ and λ+ simultaneously and still have an
a.e.c. Also without (cat)λ we cannot start our investigation, whereas
(cat)λ+ is needed later. Also in Chapter I the (cat)λ was “cheap”.

0.3 Remark. Let us stress again

1) Our main case is the case “2λ < 2λ+

< 2λ++

, LS(K) ≤ λ,K cate-

gorical in λ, λ+ and 1 ≤ İ(λ++,K) < 2λ++

” or just “< µunif(λ
++, 2λ+

)

but ≥ 1”, recalling µunif(λ
++, 2λ+

) is essentially equal to 2λ+

, see
VII.9.4; we conclude amalgamation in λ and λ+.
2) We hope eventually to weaken those assumptions (in particular,
(cat)λ+ to (slm)λ+), but for now we try at least to say what is needed
in each proof when the proof is not too long.
3) Note: we cannot simply hope to just replace (cat)λ+ by (slm)λ+

as in the latter case the minimal types are not necessarily inevitable.
They exist but there are others, hopefully analyzable by induction;
maybe see in [Sh:F888].

0.4 Conjecture. 1) Kλ+3 6= ∅ if: when (2λ < 2λ+

< 2λ++

and)

(a) K is an a.e.c. with LS(K) ≤ λ

(b) K has a superlimit model in λ

(c) K has a superlimit model in λ+

(d) 1 ≤ İ(λ++, K) < µunif(λ
++, 2λ+

).

2) Similarly at least when in addition we assume

(e) İ(λ+, K) < 2λ+

.
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Notation:

Dλ club filter

tp(a,M,N) means tpK(a,M,N) when K is clear from the context.

S (M) means SK(M) if K is clear from the context.

0.5 Remark. 1) Note that İ(µ,K) ≤ 2µ+|τK | hence if |τK| ≤ µ then

İ(µ,K) ≤ 2µ so our problem is to prove the lower bound but we may

“forget” this point and write İ(µ,K) = 2µ instead İ(µ,K) ≥ 2µ.
2) Alternatively we can use a weaker context: assume |τK| ≤ λ, a
very reasonable assumption.

§1 Basic properties

We use freely basic facts on an a.e.c., see the definitions and easy
claims of II§1.

The aim of this section (and §2) is to show that we can start
to analyze such classes and introduce some basic notions: the class
K3,na

λ of triples (M,N, a), minimal triples, reduced triples, and the
(weak) extension property.

Given amalgamation in Kλ (cf. I.2.7(2) or II.1.9(4A), justified in
1.4(1)) we try to define and analyze types p ∈ S (M) = SKλ

(M) for
M ∈ Kλ. But types here (as in [Sh 300]), i.e. Chapter V.B or II§1
are not sets of formulas, they are orbital. Types may be represented
by triples (M,N, a) with M ≤K N and a ∈ N\M ordered naturally
by ≤K

3,na

λ
; the advantage of representing types in this way is the

existence of upper bounds even union of increasing chains. We look
for “nice” types (i.e. triples) and try to prove mainly the weak
extension property. The major claim (for this section) says that if
S ⊆ SKλ

(N) has cardinality > λ+ then we can find N∗ <K∗
Ni

for i < λ++ such that the set {tpK(a,N∗, Ni) : a ∈ Ni\N
∗} are

non-empty and pairwise disjoint and more.

1.1 Hypothesis. 1) K is an abstract elementary class with LS(K) ≤ λ.
2) The following may be assumed (but mentioned explicitly, always
µ ≥ λ, mostly µ = λ, λ+, λ++)
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(cat)µ means: K is categorical in µ, i.e. İ(µ,K) = 1
(ext)µ means: there is M ∈ Kµ, i.e. Kµ 6= ∅
(nmx)µ means: (Kµ,≤K) has no maximal member and is non-

empty
(slm)µ means: Kµ has a superlimit model (so of cardinality µ, see

Definition II.1.13(1))
(lsl)µ means: Kµ has a locally superlimit model

(mdn)1µ means: 1 ≤ İ(µ,K) < 2µ

(mdn)2µ means: 1 ≤ İ(µ,K) < µunif(µ, 2
<µ)

(amg)µ means: Kµ has the amalgamation property (so in µ)
(unv)µ means: there is a ≤K-universal M ∈ Kµ

(stb)µ means: stability in µ of K, i.e. M ∈ Kµ ⇒ |SK(M)| ≤ µ
(mst)µ means: stability for minimal types
(jep)µ means: Kµ has the joint embedding property

(iev)λ means: some triple in K3,na
λ is minimal and inevitable

(will be defined in Definition 5.2)
(iev)−λ means: for every M ∈ Kλ the set S min

Kλ
(M) := {p ∈

SKλ
(M) : p is
minimal} is an inevitable set (of types)

(dmn)λ means: density of minimal types, i.e. the minimal triples

(M,N, a) ∈ K3,na
λ are dense in (K3,na

λ ,≤na)

1.2 Definition. 1) Kslm = {M ∈ K : M is superlimit}, K lsl =
{M : M is locally superlimit}, so Kslm

µ = Kslm ∩Kµ and, of course,

≤Kslm
µ

=≤K↾ Kslm
µ .

2) For locally (or just pseudo) superlimit M ∈ Kµ let K[M ] = {N ∈

Kµ : N ∼= M} and let K[M ] = (K[M ],≤K↾ K[M ]) and K[M ] = K
up
[M ];

see Definition II.1.25, Claim II.1.26; or IV.0.5, IV.0.6.

Easy properties are

1.3 Claim. Let µ ≥ λ.
1) (slm)µ ⇒ (lsl)µ ⇒ (ext)µ and (slm)µ ⇒ (unv)λ ∧ (nmx)µ and
Kslm

µ ⊆ Klsl
µ and Kslm

µ is categorical.

2) If (jep)µ then: K lsl
µ = Kslm

µ hence has at most one member (up
to isomorphism) so M ∈ Kµ is locally superlimit iff it is (globally)
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superlimit, i.e. (slm)µ ⇔ (lsl)µ.
3) (cat)µ ⇒ (mdn)2µ ⇒ (mdn)1µ ⇒ (ext)µ and (nmx)µ ⇒ (ext)µ.

4) (nmx)µ ⇒ (ext)µ+ ⇒<Kλ
6= ∅ (the last one is equivalent to K3,na

λ 6=
∅, see 1.14(0)(b) below).
5) If (cat)µ then (nmx)µ ⇔ (ext)µ+ ⇔<Kλ

6= ∅ ⇒ (slm)µ ⇔ (lsl)µ

also (jep)λ.

6) If M ∈ Kslm
µ or even just M ∈ K lsl

µ then K
[M ]
µ = K[M ] and K[M ]

is an a.e.c. with LS(K[M ]) = µ and K[M ] is categorical in µ and

K
[M ]
µ+ 6= ∅. Also K

[M ] has amalgamation in µ iff M is an amalgama-

tion base in K (i.e., Kµ) recalling that this means that: if M ≤Kµ
Mℓ

for ℓ = 1, 2 then for some N ∈ Kµ there are ≤K-embedding fℓ of Mℓ

into N for ℓ = 1, 2 such that f1 ↾ M = f2 ↾ M .

Proof. Easy, but
4) Assume (nmx)µ and we shall prove (ext)µ+ . By the definition of
(nmx)µ there is M0 ∈ Kµ, we try to choose Mα ∈ Kλ by induction
on α < µ+, which is <K-increasing continuous. For α = 0 the model
Mα has already been chosen. For α limit take union and for α = β+1
use (nmx)µ. So M = ∪{Mα : α < µ+} is as required. For the other
implication read the definitions in 1.1(2).

So (nmx)µ ⇒ (ext)µ+ and (ext)µ+ ⇒<Kλ
6= ∅ because LS(K) ≤ λ

by 1.1(1) recalling λ ≤ µ by the claim’s assumption.
5) Note (cat)λ does imply that (jep)µ and <Kµ

6= ∅ ⇒ (nmx)µ ⇒
(slm)µ and use earlier parts.
6) See Definition II.1.25 and Claim II.1.26 except amalgamation
which is straight. �1.3

1.4 Claim. 1) Assume (cat)λ and (mdn)1
λ+∨(unv)λ+ and 2λ < 2λ+

.
Then the λ-a.e.c. Kλ has amalgamation (i.e. (amg)λ).

2) In part (1) we can replace the assumption (mdn)1
λ+ ∨(unv)λ+ with

there a set of < µwd(λ+) members of Kλ+ which is ≤K-universal, i.e.
any member of Kλ+ is ≤K-embeddable into at least one of them.
3) Assume (ext)λ. Then (nmx)λ iff every M0 ∈ Kλ+ has a ≤K-
extension M of cardinality λ+. Also for every M ∈ Kλ has a ≤K-
extension in Kλ+ or has a ≤K-maximal extension in Kλ.
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4) If İ(λ++, K) = 0, i.e. ¬(ext)λ++ then any M0 ∈ Kλ+ has a ≤K-
extension M ∈ Kλ+ which is ≤K-maximal.
4A) If ¬(ext)µ then any M0 ∈ K<µ has a ≤K-extension which is
<K-maximal.
5) Assume (amg)λ; if M ∈ Kλ+ is <K-maximal then

(i) M is (DKλ
, λ+)-homogeneous for K≥λ, i.e. above λ, (I.2.3(1B))

(ii) M is saturated above λ (see Definition II.1.13(2)).

6) Assume ¬(ext)λ++ and (amg)λ. If N ∈ Kλ then |S (N)| ≤ λ+.
7) If M ∈ Kλ+ is locally superlimit and N ∈ Kλ+ is saturated above
λ then M ∼= N .

Proof. 1) If amalgamation fails in Kλ, then say as exemplified by
M0,M1,M2 ∈ Kλ by the definition M0 <Kλ

Mℓ for ℓ = 1, 2, so
<Kλ

6= ∅ hence the assumption (cat)λ by 1.3(5) we have (nmx)λ so
by 1.3(5) any M ∈ Kλ is a superlimit for Kλ and by the definitions,
is not an amalgamation base hence by I.3.8 recalling that we assume

2λ < 2λ+

, we get İ(λ+, K) = 2λ+

, contradiction to the assumption
(mdn)1

λ+ . Hence (amg)λ holds.
2) Similar proof.
3) By the proof of 1.3(4).
4) We try to repeat the proof of 1.3(4), with µ there standing for
λ+ here, i.e. to define Mα for α < λ++, starting with the given M0.
As we are assuming Kλ++ 6= ∅ we should fail; but neither for α = 0
nor for limit α, so for some α = β + 1,Mβ is defined but we cannot
choose Mα. So Mβ is as required.
4A) Similarly.
5) IfM is not (DKλ

, λ+)-homogeneous above λ then there areN0, N1 ∈
Kλ with N0 ≤K M and N0 ≤K N1 such that N1 cannot be ≤K-
embedded into M over N0. Use I.2.11(1) to get a contradiction,
so clause (i) of (∗) holds. Now clause (ii), saturation follows by
II.1.14(1).
6) By the second phrase of part (3), one of the following cases oc-
curs. In the first, M has a ≤K-extension M ′ in Kλ+ , so by part
(3) the model M ′ has a ≤K-maximal extension M+ in Kλ+ , and
by clause (ii) of part (5) every p ∈ S (M) is realized in M+, so
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|S (M)| ≤ ‖M+‖ = λ+. In the second M has a ≤K-maximal exten-
sion M+ ∈ Kλ and the proof is even easier (by (amg)λ).
7) Easy (or see the proof of 2.8(4)). �1.4

1.5 Exercise: 1) Assume (slm)λ, (mdn)1
λ+ and 2λ < 2λ+

.

Then any M ∈ Kslm
λ is an amalgamation base in Kλ.

2) If M ∈ Kslm
λ then M is an amalgamation base in Kλ iff M is an

amalgamation base in Kslm
λ .

1.6 Definition. 1) K3,na
λ = {(M0,M1, a) : M0 ≤K M1 are both in

Kλ and a ∈ M1\M0} and actually we should write K3,na
Kλ

, but as K

is constant we usually ignore this.
2) We define a two-place relation ≤K

3,na

λ
=≤na on K3,na

λ by:

(M0,M1, a) ≤na (M ′
0,M

′
1, a

′) if a = a′,M0 ≤K M ′
0,M1 ≤K M ′

1.

3) (M0,M1, a) ≤
na
h (M ′

0,M
′
1, a

′) when h(a) = a′ and for ℓ = 0, 1 we
have:

h ↾ Mℓ is a ≤K -embedding of Mℓ into M ′
ℓ.

4) (M0,M1, a) <na (M ′
0,M

′
1, a

′) if (M0,M1, a) ≤na (M ′
0,M

′
1, a) and

M0 6= M ′
0.

4A) (M0,M1, a) is maximal in K3,na
λ if (it belongs to K3,na

λ and) for
no (M ′

0,M
′
1, a

′) do we have (M0,M1, a) <na (M ′
0,M

′
1, a

′).
5) We define similarly <na

h .

1.7 Observation. 1) (K3,na
λ ,≤na) is a λ-a.e.c., in particular ≤na is

a partial order on K3,na
λ , preserved under isomorphism (see more in

1.14(2)(a)).
2) Similarly <na except smoothness (note that <na is not the partial
order derived from ≤K

3,na

λ
).

3) The parallel statements hold for ≤h, <h using compositions.

Proof. 1) Check the axioms of a.e.c., see II.1.4, the main point,
smoothness, is repeated in 1.14(2)(a) below.
2),3) Similarly. �1.7

Central notions here for some time are:
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1.8 Definition. 1) (M0,M1, a) ∈ K3,na
λ has the weak extension

property when there is (M ′
0,M

′
1, a) ∈ K3,na

λ such that (M0,M1, a) <na

(M ′
0,M

′
1, a), that is such that (M0,M1, a) ≤na (M ′

0,M
′
1, a) and M0 6=

M ′
0.

2) (M0,M1, a) ∈ K3,na
λ has the extension property when: for every

N0 ∈ Kλ and
≤K-embedding f of M0 into N0 there are N1, b and g such that:
(M0,M1, a) ≤

na
g (N0, N1, b) ∈ K3

λ and g ⊇ f (so g(a) = b and g is a
≤K-embedding of M1 into N1).

3) We say K3,na
λ has the extension property/weak extension property

when every (M,N, a) ∈ K3,na
λ has it.

Clearly the extension/weak extension property will help to build
models of cardinality λ+, and even λ++.
Under a strong hypothesis the weak version holds by:

1.9 Claim. Assume (cat)λ and (nmx)λ+

Every (M0,M1, a) ∈ K3,na
λ has the weak extension property.

Proof. By (cat)λ we can choose (Ni, ai, hi) by induction on i < λ+

such that:

(a) Ni ∈ Kλ is ≤K -increasing continuous in i;

(b) hi is an isomorphism from M1 onto Ni+1 such that
hi(M0) = Ni and hi(a) = ai.

Now as a ∈M1\M0 clearly i < j < λ+ ⇒ ai ∈ Ni+1 ≤K Nj & aj /∈
Ni hence

⋃

{Ni : i < λ+} ∈ Kλ+ . Let M ′
0 = ∪{Ni : i < λ+}, by

the hypothesis (nmx)λ+ there is M ′
1 ∈ Kλ+ satisfying M ′

0 <K M ′
1;

choose b ∈ M ′
1\M

′
0. Let χ be large enough and B ≺ (H (χ) ∈, <∗

χ)

be such that λ+ 1 ⊆ B, ‖B‖ = λ and 〈Ni, ai, hi : i < λ+〉,M ′
0,M

′
1, b

and the definition of K belong to B, e.g. ≤K↾ {M ∈ Kλ : M has
universe ⊆ λ} ∈ B.
Let δ = B ∩ λ+, so δ ∈ (λ, λ+) is a limit ordinal and clearly (using
e.g. I.1.12)

(c) Nδ ≤K Nδ+1 ≤K M ′
1
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(d) Nδ ≤K (M ′
1 ↾ B) ≤K M ′

1

(e) M ′
0 ↾ B = Nδ

(f) Nδ+1 ∩ (M ′
1 ↾ B) = Nδ.

so, recalling LS(K) ≤ λ, see II§1 or I.1.7, I.1.12, for some N we have:

(g) N ∈ Kλ, N ≤K M ′
1, and (Nδ+1 ∪ (M ′

1 ↾ B)) ⊆ N

so (see Definition 1.6(1) above)

(h) (Nδ, Nδ+1, aδ) ≤na (M ′
1 ∩ B, N, aδ),

and b witnesses that Nδ 6= M ′
1 ∩ B.

As hδ exemplifies that (M0,M1, a) ∼= (Nδ, Nδ+1, aδ), the result fol-
lows. �1.9

1.10 Claim. 1) Assume (amg)λ.

If (M0,M1, a) ≤na (M ′
0,M

′
1, a) are from K3,na

λ , and the second
has the extension property, then so does the first.
2) If (M0,M1, a) ≤na (M ′

0,M
′
1, a) are from K3,na

λ and the second has
the weak extension property then so does the first.
3) If (M,N, a) ∈ K3,na

λ has the extension property then it has the
weak extension property.
4) If Kλ has disjoint amalgamation then K3,na

λ has the extension
property.

Proof. 1) Use amalgamation over M0: if M0 ≤K N0 ∈ Kλ then we
can find N ′

0 such that M ′
0 ≤K N ′

0 ∈ Kλ and there is a ≤K-embedding
of N0 into N ′

0 over M0. Now use “(M ′
0,M

′
1, a) has the extension

property” for N ′
0 and ≤K

3,na

λ
being a partial order.

2) By the definitions (and, of course, transitivity of ≤na).
3) As (M,N, a) has the extension property and M <K N because

(M,N, a) ∈ K3,na
λ , we can apply it to the choice M ′ := N , so we

can find (M1, N1, f) such that (M,N, a) ≤na (M1, N1, a) and f is a
≤K-embedding of N into M1 over M .

So (M1, N1, a) exemplifies that the triple (M,N, a) has the weak
extension property.
4) Easy. �1.10
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Additional central notions are defined below. In §1-§4 our long term
aim will be to prove that the minimal triples are dense and the
extension property (later we prove reduced implies minimal).

The following definition will be used almost always only when (amg)λ

holds .

1.11 Definition. 1) (M0,M1, a) ∈ K3,na
λ is minimal when:

if (M0,M1, a) ≤na (M ′
0,M

ℓ
1 , a) ∈ K3,na

λ for ℓ = 1, 2,

then we can find N ∈ Kλ and ≤K -embeddings

hℓ of M ℓ
1 into N for ℓ = 1, 2 such that

h1 ↾ M ′
0 = h2 ↾ M ′

0 and h1(a) = h2(a)

(but maybe for every such triple (M ′
0,M

′
1, a) we have M ′

0 = M0).

1A) We say that the minimal members of K3,na
λ are dense when: for

every (M1, N1, a) ∈ K3,na
λ there is a minimal (M2, N2, a) ∈ K3,na

λ

such that (M1, N1, a) ≤na (M2, N2, a).

2) (M0,M1, a) ∈ K3,na
λ is called reduced when:

if (M0,M1, a) ≤na (M ′
0,M

′
1, a) ∈ K3,na

λ then M ′
0 ∩M1 = M0.

3) We say p ∈ S (M0) is minimal, where M0 ∈ Kλ, if for some a,M1

we have: p = tp(a,M0,M1) and (M0,M1, a) ∈ K3,na
λ is minimal.

4) We say p ∈ S (M0) is reduced where M0 ∈ Kλ, if for some a,M1

we have
p = tp(a,M0,M1) and (M0,M1, a) ∈ K3,na

λ is reduced.
5) We say p ∈ S (M) is algebraic where M ∈ Kλ if for some c ∈ M
we have p = tp(c,M,M).
6) For M ∈ Kλ let S min(M) = S min

K
(M) = S min

Kλ
(M) := {p ∈

SKλ
(M) : p is minimal}.

7) For M ∈ Kλ let S red(M) = S red
K

(M) = S red
Kλ

(M) := {p ∈
SKλ

(M) : p is reduced}.
8) ForM ∈ Kλ let S na(M) = S na

K
(M) = S na

Kλ
(M) := {tp(a,M,N) :

M ≤K N and a ∈ N\M}.
9) Let p ≤ q, in words q extends p, mean that for some M ≤K N we
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have p ∈ SK(M), q ∈ SK(N) and p = q ↾ M , i.e. for some N ′, a we
have q = tp(a,N,N ′), p = tp(a,M,N ′) so N ≤K N ′; see Definition
II.1.9(6) (usually we deal with M,N ∈ Kλ).

Note that in Definition 1.12(1) below the main case is “Kλ has amal-
gamation and we are dealing with Kλ”.

1.12 Definition. 1) We say S∗ is a ≤Kλ
-type-kind (and similarly

for ≤K) when:

(a) S∗ is a (class) function with domain Kλ

(b) S∗(M) ⊆ S (M) for M ∈ Kλ

(c) S∗ commutes with isomorphisms.

2) We say S1 is hereditarily in S2 when: forM ≤K N from Dom(S1),
normally Kλ, and p ∈ S2(N) we have p ↾ M ∈ S1(M) ⇒ p ∈
S1(N).
3) M ∈ K≥λ is (S∗, λ

+)-saturated above λ when: if M0 ≤K M and
M0 ∈ Kλ and p ∈ S∗(M0) then p is realized in M ; we may say M is
λ+-saturated above λ for S∗-types.
4) S∗ is λ-stable when: if M ∈ Kλ then S∗(M) has cardinality ≤ λ.
5) In part (2) if S2 = S na we may omit it and if S∗ = S na in part
(4) we may say K or Kλ is λ-stable.

1.13 Claim. 1) SKλ
,S min

Kλ
,S na

Kλ
,S red

Kλ
are ≤Kλ

-type-kinds.

2) S min
Kλ

is hereditary (i.e. in S na).
3) p ∈ SKλ

(M) is algebraic iff p /∈ S na
Kλ

(M).
4) If M ≤Kλ

N and p ∈ S na(N) then p ↾ M ∈ S na(M).

Proof. Obvious. �1.13

Basic facts are

1.14 Fact. Assume (amg)λ; actually need only in parts (5),(10),(13)
and the assumption of part (8) implies (amg)λ.
0)
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(a) If (nmx)λ then K3,na
λ 6= ∅

(b) K3,na
λ 6= ∅ iff <Kλ

6= ∅ iff there are N0 <Kλ
N1 if (ext)λ+

(c) if M ≤K N and a ∈ N then tp(a,M,N) ∈ S na(M) iff

(M,N, a) ∈ K3,na
λ iff a /∈M

(d) for M ∈ Kλ we have S na(M) = {tp(a,M,N) : (M,N, a) ∈

K3,na
λ } = {p ∈ S (M) : p not algebraic}.

1) For every (M0,M1, a) ∈ K3,na
λ there1 is a reduced (M ′

0,M
′
1, a)

such that: (M0,M1, a) ≤na (M ′
0,M

′
1, a) ∈ K3,na

λ .
2) Assume 〈(M0,α,M1,α, a) : α < δ〉 is an ≤na-increasing sequence of

members of K3,na
λ

(a) if δ < λ+ then2 (M0,α,M1,α, a) ≤na (
⋃

β<δ

M0,β,
⋃

β<δ

M1,β, a) ∈

K3,na
λ for α < δ.

(b) If δ = λ+ the result (i.e. union) may be in K3,na
λ+ but may

/∈ K3,na
λ ∪ K3,na

λ+ however if {α < δ : M0,α 6= M0,α+1} is

cofinal in δ then the union ∈ K3,na
λ+

(c) If δ < λ+ and each (M0,α,M1,α, a) is reduced then so is

(
⋃

β<δ

M0,β,
⋃

β<δ

M1,β, a).

3) If (M0,M1, a) ≤na (M ′
0,M

′
1, a) are in K3,na

λ and the first triple is
minimal then so is the second.
4) If (M0,M1, a) ≤na (M ′

0,M
′
1, a) are in K3,na

λ then tp(a,M0,M1) ≤
tp(a,M ′

0,M
′
1) and tp(a,M0,M1) = tp(a,M ′

0,M
′
1) ↾ M0; (see Defi-

nition 1.11(9)).

5) For (M0,M1, a) ∈ K3,na
λ the following are equivalent:

(a) (M0,M1, a) is a minimal triple

(b) if (M0,M1, a) ≤na
hℓ

(M ′
0,M

′
1, aℓ) ∈ K3,na

λ for ℓ = 1, 2 and
h1 ↾ M0 = h2 ↾ M0 then tp(a1,M

′
0,M

′
1) = tp(a2,M

′
0,M

′
1)

1see more in Exercise 2.4
2if we deal with an increasing sequence of types, the existence of union is not

clear, for cofinality ℵ0 there is one but not necesarily unique. See on this subject
Baldwin-Shelah [BlSh 862].
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(c) the type p = tp(a,M0,M1) satisfies: if M0 ≤Kλ
N then p

has at most one extension in S na(N)

(d) the type tp(a,M0,M1) is minimal (so in Definition 1.11, we
can replace “for some” by “for every”).

6) If there is no <na-maximal member3 of K3,na
λ and there are N0 <K

N1 in Kλ (i.e. K3,na
λ 6= 0), then there are N0 <K N1 in Kλ+ . If in

addition (cat)λ+ then (ext)λ++ , i.e. Kλ++ 6= ∅.

7) If every triple in K3,na
λ has the weak extension property, and there

are N0 <K N1 in Kλ then there are N0 <K N1 in Kλ+ .
8) If every triple in K3,na

λ has the extension property and K3,na
λ 6= ∅

then

(a) Kλ+ 6= ∅ and no M ∈ Kλ+ is <K-maximal hence Kλ++ 6= ∅

(b) if M ≤Kλ
N and p ∈ S na(M) then p has an extension in

S na(N).

9) If Kλ+ 6= ∅, then K3,na
λ 6= ∅. If (cat)λ then: Kλ+ 6= ∅ (i.e. (ext)λ+)

iff K3,na
λ 6= ∅ iff ≤K is not the equality.

10) The following are equivalent:

(a) all triples (M,N, a) ∈ K3,na
λ have the extension property

(b) if M ≤Kλ
N and p ∈ S na(M) then p has at least one exten-

sion in S na(N).

11) If K3,na
λ 6= ∅ and (jep)λ and every triple in K3,na

λ has the weak
extension property, then there is no maximal model in Kλ.
12) If every triple from K3,na

λ has the weak extension property and

(M0,M, a) ∈ K3,na
λ then M is not ≤K-maximal.

13) If (M,Mℓ, aℓ) ∈ K3,na
λ is reduced for ℓ = 1, 2 and tp(a2,M,Mℓ)

is not realized in M1 then the sets Γℓ = {tp(b,M,Mℓ) : b ∈Mℓ\M}
for ℓ = 1, 2 are disjoint.

Proof. Easy. Note that the assumption of parts (6) and (7) are
equivalent, part (8) is dual to 1.9. Parts (6) and (7) are essentially

3will be applied for λ+

Paper Sh:300G, Chapter VI



380 VI. CATEGORICITY IN TWO SUCCESSIVE CARDINALS

proved in the proofs of I.3.11, I.3.13 stages (a),(b),(c). Part (8)(a)
is proved similarly; part (8)(b) is proved by the definitions; in part
(9) the first sentence holds as LS(K) ≤ λ by Hypothesis 1.1(1) and
for the second sentence use part (0)(b) and 1.3(5), and we elaborate
the proofs of parts (11),(12).
11) Assume toward contradiction that M ′ ∈ Kλ is ≤K-maximal; by

an assumption there is (M0,M, a) ∈ K3,na
λ .

As (jep)λ without loss of generality for some M ′′ we have M ′ ≤Kλ

M ′′ ∧M ≤K M ′′ hence M ′ = M ′′ by M ′ being ≤Kλ
-maximal so we

can replace M by M ′. So (M0,M, a) ∈ K3,na
λ and M is a maximal

model in Kλ. Also without loss of generality there is no M ′
0 such that

M0 <K M ′
0 ≤K M ∧ a /∈M ′

0. Now as K3,na
λ has no maximal member

there are N0, N such that (M0,M, a) <na (N0, N, a), but by the last
sentence N0 * M hence necessarily N * M so M <K N . Recalling
M ′ = M clearly M ′ is not maximal.
12) Included in the proof of part (11). �1.14

1.15 Definition. 1) If p ∈ S na(N), N ∈ Kλ and N ′ ∈ Kλ then we
let

(a) Sp(N
′) = SK,p(N

′) = SKλ,p(N
′) := {f(p) : f is an isomor-

phism from N onto N ′}
(so if N ′ ≇ N this is empty, but if (cat)λ then N ′ ∼= N)

(b) S≥p(N
′) = SK,≥p(N

′) = {q ∈ S (N ′) : q not algebraic (i.e.
not realized by any c ∈ N ′) and, for some N ′′ ∈ Kλ satisfying
N ′′ ≤K N ′, we have q ↾ N ′′ ∈ Sp(N

′′)}

(c) we may write (M,N, a) instead of p when p = tp(a,M,N)

so (M,N, a) ∈ K3,na
λ .

2) We say the type p ∈ S (N) is µ-algebraic when for every M such
that N ≤K M we have: µ ≥ |{c ∈M : tp(c, N,M) = p}|.
3) For M ∈ Kλ let S nb(M) = S nb

K
(M) be {p ∈ S na(M) : p is not

1-algebraic}.
4) For M ∈ Kλ let S nc(M) = S nc

K
(M) be the set of p ∈ S na(M)

such that for no pair (N, q) do we have M ≤K N ∈ Kλ and q ∈
S na(N) is 1-algebraic and extends p.
5) For M ∈ Kλ let S nm(M) = {S nm

K
(M) = S nm

Kλ
(M) be the
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set of p ∈ S na(M) which has no minimal extension (i.e. in any

N ∈ Kλ which ≤K-extends M) and K3,nm
λ = {(M,N, a) ∈ K3,na

λ :
tp(a,M,N) ∈ S nm(M)}.

1.16 Definition. 1) For M ∈ Kλ let S sn(M) = S sn
K

(M) be the
set of p ∈ S (M) which are not λ-algebraic; see Definition 1.15(2).

2) Let K3,sn
λ be the family of triples (M,N, a) ∈ K3,na

λ such that
tp(a,M,N) ∈ S sn(M).
3) Let S al(M) = S (M)\S sn(M).

Remark. Note that λ-algebraic types are the obstacle to having the
extension property (which we desire; assuming (amg)λ), see Claim
2.7(3).

1.17 Claim. Assume (amg)λ.
0) Assume M0 ≤Kλ

M1 ≤Kλ
M2 and a ∈M2, pℓ = tp(a,Mℓ,M2) for

ℓ = 0, 1 and N1 ≤Kλ
N2. Then p1 ∈ Sp1

(M1) and p1 ∈ S≥p0
(M1)

and Sp1
(N1) ⊆ S≥p1

(N1) and S≥p1
(N1) ⊆ S≥p0

(N1). If q ∈
S≥p1

(N1) then (∃r ∈ S≥p1
(N2))[(q ≤ r) or q is realized in N2].

If q1 ∈ Sp1
(N1) then N ∈ Kλ ⇒ S≥q1

(N) ⊆ S≥p1
(N).

1) If N1 ≤K N2 are from Kλ and p1 ∈ S na(N1) is minimal and is
omitted by N2 then p1 has a one and only one extension in S (N2),
call it p2, and p2 is minimal and p1 ∈ S≥p∗(N1) ⇒ p2 ∈ S≥p∗(N2)
for any relevant p∗.
2) If N1 ≤K N2 are in Kλ and p1 ∈ S (N1) is minimal, then p1 has
at most one non-algebraic extension in S (N2) called p2; if it exists
it is minimal and p1 ∈ S≥p∗(N1) ⇒ p2 ∈ S≥p∗(N2).
3) (Continuity) if 〈Ni : i ≤ α〉 is a ≤K-increasing continuous se-
quence of members of Kλ, p0 ∈ S (N0) is minimal, pi ∈ S (Ni)
extends p0 and is non-algebraic for i ≤ α then 〈pi : i ≤ α〉 is in-
creasing continuous, the continuity means that for any limit ordinal
δ ≤ α, pδ is the unique p ∈ S (Mδ) such that (∀i < δ)(p ↾ Mi = pi).
3A) Assume 〈Ni : i ≤ δ〉 is ≤Kλ

-increasing continuous, δ < λ+ a
limit ordinal. If p̄ = 〈pi : i < δ〉, pi ∈ S na(Ni), pi ↾ N0 = p0 for
i < δ and p0 is minimal, then:

(a) there is pδ ∈ S (Nδ) such that i < δ ⇒ pi ≤ pδ
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(b) pδ is minimal so ∈ S na(Nδ)

(c) pδ is unique in clause (a).

4) If p ∈ S (N1) is minimal not λ-algebraic and N1 ≤Kλ
N2 then

p1 has one and only one extension p2 ∈ S na(N2) and p2 is minimal
not λ-algebraic.
5) Sp is a ≤K-type-kind, S≥p is a hereditarily ≤K-type-kind (in
S na).
6) If M ∈ Kλ and p ∈ S na(M) is 1-algebraic then p is minimal.
7) For M ∈ Kλ we have S nm(M) ⊆ S nc(M) ⊆ S nb(M) ⊆
S na(M) and S nm(M) ⊆ S (M)\S nb(M).

Remark. 1) Interesting mainly if K is categorical in λ.
2) On a non-λ-algebraic type and having the extension property see
later.
3) Concerning 1.17 note that S nm(M) ⊆ S sn(M) by 2.3(4).

Proof of 1.17. Easy. E.g.,
3) If i < j ≤ α then pj ↾ Ni is well defined, it belongs to S (Ni), also
it is non-algebraic (as pj is) and extends p0 hence by the uniqueness
(=1.17(2)) we have pi = pj ↾ Ni, so indeed 〈pi : i ≤ α〉 is increasing.
If δ ≤ α is a limit ordinal, then: pδ ∈ S (Nδ) extends pi for i < δ;
if p′δ ∈ S (Nδ) extends each pi(i < δ) then it extends p0 and is non-
algebraic (as each pi is) hence by uniqueness p′δ = pδ.

3A) Let (N ′
0, a) be such that (N0, N

′
0, a) ∈ K3,na

λ and p0 := tp(a,N0,
N ′

0). We choose (N ′
i , fi) by induction on i ≤ δ such that 〈N ′

j :
j ≤ i〉 is ≤K-increasing continuous, fi is a ≤K-embedding of Ni into
N ′

i such that a /∈ Rang(fi) and j < i ⇒ fj ⊆ fi, N
′
0 as above

and f0 = idN0
. For i = 0 the pair (N ′

0, f0) is already determined
and for limit take unions recalling 1.14(2)(a). For i = j + 1, by
(amg)λ+ the definition of type, letN+

i , ai be such that (Ni, N
+
i , ai) ∈

K3,na
λ and pi = tp(ai, Ni, N

+
i ), so clearly fj(pi ↾ Nj) = fj(pj) =

tp(a, fj(Nj), N
′
j). So by (amg)λ and the definition of types there is

a pair (N ′
i , f

′
i) such that N ′

j ≤Kλ
N ′

i , f
′
i is a ≤K-embedding of N+

i

into N ′
i extending fj and satisfying f ′

i(ai) = a. So we have chosen
N ′

i and let fi = f ′
i ↾ Ni. So we have carried the induction and for
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i = δ by renaming fδ = idNδ
so pδ = tp(a,Nδ, N

′
δ) is as required in

clause (a). Clauses (b),(c) are easy, too, e.g. by part (3). �1.17

The following will help to prove that we have a non-structure result
or density of minimal types.

1.18 Claim. Assume (amg)λ + λ > ℵ0.
If N ∈ Kλ,S ⊆ S (N) and |S | > λ+, then we can find N∗ and

Ni for i < λ++ such that:

(α) N ≤K N∗ <K Ni ∈ Kλ

(β) for no i0 < i1 < λ++ and cℓ ∈ Niℓ
\N∗ (for ℓ = 0, 1) do we

have
tp(c0, N

∗, Ni0) = tp(c1, N
∗, Ni1)

(γ) there are ai ∈ Ni (for i < λ++) such that tp(ai, N,Ni) ∈ S

is not realized in N∗ (hence ai /∈ N∗) and those types are
pairwise distinct; moreover tp(ai, N,Ni) is not realized in
Nj for j < i.

1.19 Remark. In clause (γ) above we can add moreover for j 6=
i, j < λ++, the type tp(ai, N,Ni) is not realized (by thinning 〈Ni :
i < λ++〉); of course this applies to 1.20, too.

Proof.

Stage A:
Without loss of generality |N | = λ; now by induction on α < λ++

choose N̄α, Nα, aα, Eα such that:

(A) Nα ∈ Kλ+ as a set of elements is an ordinal γα ≤ λ+×(1+α)
and Nα is ≤K-increasing continuous with α

(B) N̄α = 〈Nα
i : i < λ+〉 is ≤Kλ

-increasing sequence with union
Nα

(C) for α < λ++ successor, if i < j < λ+ and p ∈ S (Nα
i )

is realized in Nα
j and is λ-algebraic (see Definition 1.15(2))

then for no pair (N ′, b) do we have Nα
j ≤K N ′ ∈ Kλ and

b ∈ N ′\Nα
j realizes p (actually not used)
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(D) N ≤K Nα
0 ≤K Nα and aα ∈ Nα+1\Nα realizes in Nα+1 some

pα ∈ S not realized in Nα.

(E) for each α < λ++,

(α) Eα is a club of λ+

(β) 〈Nα
i : i ∈ Eα〉 is ≤K-increasing continuous

(γ) for each i ∈ Eα the triple (Nα
i , N

α+1
i , aα) belongs to

K3,na
λ and is “relatively reduced”, that is:

(∗)α if i ∈ Eα and b ∈ Nα+1
i \Nα

i then the type

tp(b, Nα
i , N

α+1
i ) is

not realized in Nα (a key point).

(F ) If ℵ0 < cf(α) ≤ λ then for j < λ+ let:

Nα
j :=

⋃

β∈e

Nβ
j for any club e of α such that for any β1 < β2

from e,Nβ1

j = Nβ2

j ∩ Nβ1
(any two such e’s gives the same

result) provided that there is such e

Let us carry the construction.

Case 1: α = 0
Trivial.

Case 2: α limit, cf(α) = ℵ0 ∨ cf(α) = λ+.
Easy. We let Nα = ∪{Nβ : β < α} so the universe of Nα is

γα := ∪{γβ : β < α} < λ++ and let 〈Nα
j : j < λ+〉 be any ≤K-

representation of Nα such that Nα
0 = N .

Case 3: α limit, λ ≥ cf(α) > ℵ0.
Let Nα := ∪{Nβ : β < α}. Let Sα = {j < λ+: there is a club e

of α such that for any β1 < β2 from e we have Nβ1

j = Nβ2

j ∩Nβ1
}.

If Sα = ∅ proceed as in Case 2, so assume Sα 6= ∅.
For j ∈ Sα choose a club eα

j of α witnessing it and let Nα
j =

∪{Nβ
j : β ∈ eα

j }.

If j ≤ sup(Sα), let Nα
j = ∪{Nα

i : i ∈ Sα ∧ i ≤ j or i = min(Sα)}.
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If sup(Sα) < λ+ we choose 〈Nα
j : j > sup(Sα), j < λ+〉 as in Case

2 only demanding that Nα
sup(Sα)+1 include Nα

sup(Sα); actually does
not occur.

Note that

(a) if j1 < j2 are from Sα then Nα
j1

≤K Nα
j2

.

[Why? If j1 < j2 < λ+ are from Sα then eα
j1

∩ eα
j2

is unbounded in

α and if β ∈ eα
j1

then there is γ ∈ eα
j1

∩ eα
j2
\β hence Nβ

j1
≤K Nγ

j1
≤K

Nγ
j2

≤K Nα
j2

, so as Mα
jℓ

= ∪{Nβ
jℓ

: β ∈ eα
jℓ
} for ℓ = 1, 2 we get

Mα
j1

≤K Mα
j2

.]

(b) if j1 < j2 < λ+ then Nα
j1

≤K Nα
j2

.

[Why? Check our choices.]
Let eα be a club of α of order type cf(α), and let Eα := {i < λ+:

for every β < γ from eα we have i ∈ Eβ ∩ Eγ and Nγ
i ∩Nβ = Nβ

i },
easily

(c) (α) Eα is a club of λ+

(β) Sα ⊇ Eα and

(γ) 〈Nα
j : j ∈ Eα〉 is ≤Kλ

-increasing continuous.

[Why? By the definitions.]

(d) ∪{Nα
j : j < λ+} = Nα.

[Why? As Eα is a club of λ+, including
⋂

β∈eα

Eβ , the choice ofNα
j , j ∈

Sα and the induction hypothesis.]

(e) clause (F) holds.

[Why? By our choice of Sα and Nα
i for i ∈ Sα.]

(f) N ≤K Nα
0 .

[Why? Use the induction hypothesis and our choices.]

Case 4: α = β + 1.
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Let pβ ∈ S ⊆ S (N) be a type not realized in Nβ , and let aβ, N
∗
α

be such that Nβ
0 ≤K N∗

α hence N ≤K N∗
α and pβ = tpKλ

(aβ , N,N
∗
α)

and by induction on i < λ+ we choose a triple (Nα,i, ji, fi) such that

⊛ (a) Nα,i ∈ Kλ is ≤K-increasing continuous with i

(b) ji < λ+ is increasing continuous (so ji < ji+1)

(c) fi is a ≤K-embedding of Nβ
ji

into Nα,i

(d) Nα,0 = N∗
α and j0 = 0, f0 = id

N
β
0

so N ≤K Nα,0

(e) for limit i, if there is c ∈ Nβ\N
β
ji

such that fi(tp(c, Nβ
ji
, Nβ)) ∈

S (fi(N
β
ji

)) is realized in Nα,i then there is c ∈ Nβ
ji+1

\Nβ
ji

such that fi+1(c) ∈ Nα,i\fi(N
β
ji

); this is helpful for clause

(E)(γ)

(f) if j ≤ i and p ∈ S (Nα,j) is λ-algebraic and is realized
in Nα,i+1 then for no M, c do we have Nα,i+1 ≤K M, c ∈
M\Nα,i+1 and tp(c, Nα,j,M) = p.

Using amalgamation and the definition of types there is no problem
to carry the induction on i. By renaming without loss of generality i <
λ+ ⇒ fi = id

N
β
ji

. Let Nα
i = Nα,i, Nα = ∪{Nα,i : i < λ+} and by

renaming without loss of generality the universe of Nα is an ordinal
γα ≤ λ+ × (1 + α) and let Eα be any club of λ+, we shall need that
it is disjoint to the non-stationary set S dealt with below and we
should check clauses (A)-(E).

Now clauses (A),(B) are trivial and clause (C) holds by (f) above
and clause (D) holds by the choice of aβ.

Toward proving clause (E), subclause (α) is trivial and subclause
(β) holds by clause (a) above. For subclause (γ) let S = {i < λ+ : i is

a limit ordinal and i = ji and for some c ∈ Nβ\N
β
ji

and b ∈ Nα
i \N

β
i

we have tp(c, Nβ
i , Nβ) = tp(b, Nβ

i , N
α
i )}. As {i : ji = i} is a club of

λ+ it is enough (for proving subclause (γ) of clause (E)) to show that
S is not stationary; toward contradiction assume that S is stationary.
Clearly for each i ∈ S by clause (e) there is c as required there
hence we can choose (ci, bi) which exemplifies this, i.e. such that
fi+1(ci) = bi actually ci = bi as fi = idN

p
ji

.
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By Fodor’s lemma for some i0 < i1 in S we have bi0 = bi1 , but
this gives contradiction so we have proved clause (E). Now clause
(F) by its formulation is trivial (for α successor) so the construction
is done.

Stage B:
For i < λ+, α < λ++ let wα

i := {β < α : Nα+1
i ∩ Nβ+1 * Nβ},

so necessarily |wα
i | ≤ ‖Nα+1

i ‖ = λ, wα
i is increasing continuous with

i < λ+ and α =
⋃

i<λ+

wα
i ; lastly, for β < α let i(β, α) = Min{i : β ∈

wα
i }.

Now for every α ∈ S∗ := {δ < λ++ : cf(δ) = λ+}, the set E∗
α is a

club of λ+ where (some clauses are redundant):

E∗
α :=

{

i<λ+ : i limit and belongs to Eα (from clause (E)), N≤KN
α+1
i ,

aα ∈ Nα+1
i , and for every β < α if

β ∈ wα
i then i ∈ Eβ ∩Eβ+1 and

Nβ
i = Nα

i ∩Nβ and for j < i

the closure of wα
j (in α) is included in wα

i

and sup(wα
j ) < sup(wα

i ) and

β1 < β2 & β1 ∈ wα
j & β2 ∈ wα

j ⇒ i(β1, β2) < i

}

.

Recall that we are assuming λ > ℵ0, so we can choose jα ∈ acc(E∗
α)

such that cf(jα) = ℵ1 and let δα = sup(wα
jα

), now wα
jα

is closed

under ω-limits (as 〈wα
j : j < λ+〉 is increasing continuous and j <

jα ⇒ closure(wα
j ) ⊆ wα

jα
and ℵ1 = cf(jα) as j < jα ⇒ sup(wα

j ) <

sup(wα
jα

) and obviously δα < α because cf(α) = λ+). So there
is an increasing continuous sequence 〈βε : ε < ω1〉 with limit δα
satisfying βε ∈ wα

jα
so ε < ω1 ⇒ Nα

jα
∩ Nβε

= Nβε

jα
and hence

ε < ζ < ω1 ⇒ Nβε

jα
= N

βζ

jα
∩ Nβε

and so recalling clause (F) from
Stage A

(∗)1 N δα

jα
= ∩{

⋃

j∈C

Nβ
j : C a club of δα}
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(∗)2 Nα
jα

= N δα

jα

4

By Fodor’s lemma for some j∗, δ∗ and stationary S ⊆ S∗ we have
α ∈ S ⇒ jα = j∗ & δα = δ∗. So for all α ∈ S,Nα

jα
is the same,

say N∗ = N δ∗

j∗ ; we shall show that N∗ and 〈Nα+1
j∗

: α ∈ S〉 are as

promised, thus finishing. Clause (α) is obvious. So N∗ ∈ Kλ and
for α ∈ S the type qα = tp(aα, N

∗, Nα+1
jα

) extend pα(∈ S ). Also

if r ∈ S (N∗) is realized in Nα+1
jα

say by b (for some α ∈ S) then

no member of
⋃

{Nβ+1
j∗ \Nβ

j∗ : β ∈ S ∩ α} realizes it (holds by clause

(D)).

Let Γα = {tp(b, N δ∗

j∗ , Nα+1
j∗ ) : b ∈ Nα+1

j∗ \N∗} for α ∈ S so Γα

has a member extending pα ∈ S (as exemplified by aα), also pα is

not extended by any p ∈
⋃

β<α

Γβ (as pα is not realized in Nα)). Also

each triple (N δ∗

j∗ , Nα+1
j∗ , aα) is “relatively reduced”, see (E)(γ), so by

a variant of 1.14(13) the sequence Γ̄ = 〈Γα : α ∈ S〉 is a sequence of
pairwise disjoint sets (each of cardinality ≤ ‖Nα+1

j∗ ‖ = λ, of course).
More fully if α1 < α2 are from S and p ∈ Γα2

then p is not realized

in Nα2
by clause (E)(γ) but Nα1+1

j∗ ≤K Nα2
so necessarily p /∈ Γα1

,

as required. So clause (β) of the desired conclusion holds and clause
(γ) was proved above. So we are done.

�1.18

Now 1.18 is superceded by 1.20, still (the older) 1.18’s proof may be
useful elsewhere.

1.20 Claim. We can allow λ = ℵ0 in Claim 1.18.

Proof. Assume toward contradiction that the conclusion fails. First

⊛1 if N ≤Kλ
N1 ≤K M1 ∈ K≤λ+ , then we can find a pair

(M2,S1) such that:

(a) M1 ≤K M2 ∈ K≤λ+

(b) S1 ⊆ S has cardinality ≤ λ+

4see [Sh 351, §4] on similar proof.
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(c) if the pair (N2, b) satisfies N1 ≤Kλ
N2, b ∈ N2\N1 and

tp(b, N,N2) ∈ S \S1 then for some c ∈ N2\N1 and
d ∈M2\N1 we have tp(c, N1, N2) = tp(d,N1,M2).

[Why ⊛1 holds? We try to choose a triple (pε, N1,ε, aε) by induction
on ε < λ++ such that:

⊙1(α) pε ∈ S

(β) N1 ≤Kλ
N1,ε and aε ∈ N1,ε\N1

(γ) pε = tp(aε, N,N1,ε)

(δ) if c ∈ N1,ε\N1, ζ < ε and d ∈ N1,ζ\N1

then tp(c, N1, N1,ε) 6= tp(d,N1, N1,ζ)

(ε) pε is not realized in N1 and in N1,ζ when ζ < ε.

If we succeed then N1, 〈N1,i : i < λ++〉 are as required on N∗, 〈Ni :
i < λ++〉 in the claim. So by our assumption toward contradiction for
some ε(∗) < λ++ we are stuck. As Kλ has amalgamation, recalling
I.2.11(1) we can find (M2, f̄) such that

⊙2 (a) M1 ≤K M2 ∈ K≤λ+

(b) f̄ = 〈fε : ε < ε(∗)〉

(c) fε is a ≤K-embedding of N1,ε into M2 over N1.

Now M2 and S1 := {p ∈ S : for some b ∈ M2 we have p =
tp(b, N,M2)} are as required in ⊛1.]

Now we choose Mα, M̄α,Sα by induction on α < λ+ such that:

⊛2 (a) M̄α = 〈Mα
i : i < λ+〉 is a ≤Kλ

-increasing continuous se-
quence and M0

0 = N

(b) Mα = ∪{Mα
i : i < λ+} ∈ K≤λ+

(c) 〈Mβ : β < λ+〉 is ≤K-increasing continuous

(d) if β < α then i < λ+ ⇒Mβ
i ≤K Mα

i

(e) if i < λ+ and α < λ+ is a limit ordinal then Mα
i = ∪{Mβ

i :
β < α}

(f) Sα ⊆ S has cardinality ≤ λ+
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(g) Sα is ⊆-increasing continuous with α

(h) if α < λ+ and Mα,α ≤Kλ
N2 and b ∈ N2, tp(b, N,N2) ∈

S \Sα+1 then for some c ∈ N2\Mα,α and d ∈ Mα+1\Mα,α

we have tp(c,Mα,α, N2) = tp(c,Mα,α,Mα+1).

[Why can we carry out the induction? For α = 0 trivial (e.g.
Mα

i = N for i < λ+). For α successor say α = β + 1 use ⊛1 where
N1,M1,M2,S1 there standing forMα,α,Mα,Mα+1,Sα+1 here. Lastly,
for α limit < λ+ take unions.]

Now let M := ∪{Mα : α < λ+}, so clearly 〈Mα,α : α < λ+〉 is a
≤K-representation of M and let p∗ ∈ S \ ∪ {Sα : α < λ+}, possible
by cardinality consideration. Now let the pair (N+, b) be such that
N ≤Kλ

N+, b ∈ N+\N and p∗ = tp(b, N,N+), clearly exists.

We choose (jα, fα, N
+
α ) by induction on α ≤ λ+ such that

⊛3 (a) N+
α ∈ Kλ is ≤K-increasing continuous, N+

0 = N+

(b) jα < λ+ is increasing continuous and j0 = 0

(c) fα is a ≤K-embedding of Mjα,jα
into N+

α and f0 = idN

(d) fα is ⊆-increasing continuous

(e) if there are c ∈ N+
α \fα(Mjα,jα

) and dα ∈M such that

fα(tp(dα,Mjα,jα
,M)) = tp(c, fα(Mjα,jα

), N+
α ) then

fα+1(Mjα+1,jα+1
) ∩N+

α 6= fα(Mjα,jα
).

There is no problem to carry out the induction. Having carried
out the induction let N+

λ+ := ∪{N+
α : α < λ+}, so easily f =

∪{fα : α < λ+} is a ≤K-embedding of M into N+
λ+ . By renam-

ing without loss of generality f = idM and b /∈ M by the choice of
p∗.

Let E = {α < λ+ : α is a limit ordinal and M ∩ N+
α = Mα,α}.

Clearly E is a club of λ+. By clause (e) of ⊛3 it follows that for every
α ∈ E we have c ∈ N+

α \Mα,α ∧ d ∈M\Mα,α ⇒ tp(c,Mα,α, N
+
λ+) 6=

tp(d,Mα,α, N
+
λ+).

But recalling b ∈ N+\M realizes in N+ the type p∗ ∈ S ⊆ S (N)
and b ∈ N+

α \Mα,α, by clause (h) of ⊛2 the previous sentence implies
that tp(b, N,N+

λ+) ∈ Sα+1. But tp(b, N,N+
λ+) = p∗ /∈ ∪{Sβ : β <

λ+}, hence in particular p∗ /∈ Sα+1, contradiction. �1.20
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1.21 Conclusion. Assume (amg)λ + (cat)λ.

If S (M) has cardinality > λ+ where M ∈ Kλ, and (M,N, a) ∈

K3,na
λ then this triple has the weak extension property.

Remark. Compared with 1.9: there we assume something on Kλ+ ,
i.e. (nmx)λ+ here on Kλ, i.e. (amg)λ.

Proof. Straight, but we elaborate.

The assumption of 1.18 or 1.20 with M,S (M) here standing for
N,S there holds hence its conclusion. So by (cat)λ we can find
M̄ = 〈Mi : i < λ++〉 such that i < λ+ = M <Kλ

Mi and the sets
Γi := {tp(b,M,Mi) : b ∈ Mi\M} for i < λ++ are pairwise disjoint
but we use them only for i < λ+. By (amg)λ there are M∗ ∈ Kλ+

which ≤K-extends M and ≤K-embedding g of N into M∗ over M
and ≤K-embedding fi of Mi into M over M for i < λ+. Clearly
〈fi(Mi)\M : i < λ+〉 are pairwise disjoint sets. So for some i < λ+

we have fi(Mi) ∩ g(N) = M .

Now as LS(K) ≤ λ there is N ′ ≤K M of cardinality λ such that
fi(Mi) ∪ g(N) ⊆ N ′, clearly (M, g(N), g(a)) ≤na (fi(Mi), N

′, a),
so the triple (M, g(N), g(a)) has the weak extension property. But
g is an isomorphism from (M,N, a) onto (M, g(N), g(a)) and the
weak extension property is preserved by isomorphisms so the triple
(M,N, a) has the weak extension property as required. �1.21

1.22 Exercise: Phrase and prove a generalization 1.20 reasonably
replacing λ+ by µ with cofinality > λ.

[Hint: We assume

⊠ (a) µ > λ, cf(µ) > λ and α < µ⇒ cov(|α|, λ+, λ+, 2) < µ

(b) K has (λ, λ,< µ)-amalgamation

(c) N ∈ Kλ

(d) S ⊆ S (N) has cardinality ≥ µ

(e) K has (amg)θ if θ = λ if λ ≤ θ & θ+ < λ.

Paper Sh:300G, Chapter VI



392 VI. CATEGORICITY IN TWO SUCCESSIVE CARDINALS

We deduce

⊛ for some N∗, 〈Ni : i < µ〉 we have N ≤K N∗ ≤Kλ
Ni for

i < µ

(α) for no i0 < i1 < µ and cℓ ∈ Niℓ
\N∗ (for ℓ = 0, 1) do we

have
tp(c0, N

∗, Ni0) = tp(c1, N
∗, Ni1)

(β) there are ai ∈ Ni (for i < µ) such that tp(ai, N,Ni) ∈
S is not realized in N∗ (hence ai /∈ N∗) and those
types are pairwise distinct; moreover tp(ai, N,Ni) is
not realized in Nj for j < i.

Imitating the proof of 1.20:

⊛1 if N ≤K N1 ≤K M,N1 ∈ Kλ,M1 ∈ K<µ then we cn find a
pair (M2,S1) as there (so M2 ∈ K<µ).]

1.23 Exercise: Assume Kλ is a λ-a.e.c., K ′ ⊆ Kλ is dense (i.e.
(∀M ∈ K)(∃N ∈ K ′)(M ≤K N) and K′ = (K ′,≤Kλ

↾ K ′) too is
a λ-a.e.c. Further M ∈ K ′

λ is an amalgamation base in Kλ. Then
SKλ

(M),SK′

λ
(M) are essentially equal.

§2 Toward the extension property

and toward density of minimal types

2.1 Hypothesis. K is an a.e.c. and LS(K) ≤ λ,Kλ 6= ∅.

We are interested in proving the extension property (for triples

from K3,na
λ ) and the density of minimal types.

The first is proved in 2.23(1), requiring an expensive assumption,
but reasonable for our aim: categoricity in λ+, i.e. the assumption
of Theorem 0.2 are enough.

Concerning the density of minimal types, to simplify matters we (in
2.25) allow uses of stronger assumptions than are desired and ul-

timately used (i.e. 2λ+

> λ++ and Kλ+3 = ∅), we use them for
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a “shortcut”, but the extra assumptions will be eliminated later.
However the first extra assumption is still a “mild set theoretic as-
sumption”, and the second is harmless if we think only of proving
our main theorem 0.2(1) and 0.2(2)(a) and not on subsequent con-
tinuations for which 0.2(2)(b) is helpful.

We shall construct models M ∈ Kλ+ which are saturated at least
in some restricted form (see 2.2), deduce the extension property for
triples <na-above which there is no minimal ones (in 2.3, 2.5) which
gives more, give sufficient conditions for disjoint amalgmation and
for the extension property (via λ-algebraic types, see 2.7). Using a
weak form of stability or the existence of an inevitable Γ ⊆ S na(M)
of cardinality ≤ λ+, we give sufficient conditions for the existence
of M ∈ Kλ+ saturated above λ, (see 2.8, also 2.11). We define µ-
minimal types, observe their properties (in 2.12, 2.13) and prove for
λ+-minimal p that |S≥p∗(M)| ≤ λ+ when M ∈ Kλ in 2.14, 2.15,
2.16 and give sufficient conditions for non-structure in λ+, see 2.18.

We then deduce version of saturation for every M ∈ Kslm
λ+ (in

2.19), get the extension property and disjoint amalgamation (2.21,
2.23) and deduce density of minimal types (in 2.24 - 2.25) and the
existence of a saturated M ∈ Kλ+ (in 2.26).

2.2 Claim. 1) Assume (amg)λ.

If M0 ≤K N0 ∈ Kλ and (M0,M1, a) ∈ K3,na
λ then there is N ∈

K≤λ+ such that: N0 ≤K N and for every c ∈ N satisfying tp(c,M0, N) =
tp(a,M0,M1), there is a ≤K-embedding h of M1 into N extending
idM0

such that h(a) = c and N /∈ Kλ+ ⇒ N is a <K-maximal mem-
ber of Kλ.
2) Assume M0 ≤K N0 ∈ Kλ and (M0,M1, a) ∈ K3,na

λ . Then there
is N ∈ K≤λ+ such that: N0 ≤K N and for every c ∈ N either for
some N ′ ∈ Kλ we have N0 ∪{c} ⊆ N ′ ≤K N and c does not strongly
realize tp(a,M0,M1) in N ′ or there is an ≤K-embedding h of M1

into N extending idM0
such that h(a) = c.

3) If (cat)λ or (M0,M1, a) ∈ K3,na
λ has the extension property or

(nmx)λ, then in parts (1),(2) we can add N ∈ Kλ+ .
4) Part (1) holds also when N0 ∈ K≤λ+ .

Proof. 1),2) We choose by induction on α < λ+, a model Nα ∈ Kλ
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increasing (by ≤K) continuous such that: N0 is given, for α even
Nα 6= Nα+1 if Nα is not ≤K-maximal, and for α odd let βα =
Min{β : β = α+ 1 or β ≤ α and there is c ∈ Nβ such that there is

no ≤K-embedding h ofM1 intoNα extending idM0
satisfying h(a) = c

but for some N ∈ Kλ, Nα ≤K N and there is a ≤K-embedding h of
M1 into N extending idM0

satisfying h(a) = c}. Note that for part
(1) the “but for some N ∈ Kλ” is equivalent to c realizes in Nα the
type tp(a,M0,M1). Now if βα = α + 1 then let Nα+1 = Nα and
if βα ≤ α then choose N exemplifying this and let Nα+1 = N . By
the definition of type (and “strongly realizes” when ¬(amg)λ) we are
done.
3) Same proof, note that the non-≤K-maximality of Nα (and hence
N ∈ Kλ+) follows from (nmx)λ and also by “(M0,M1, a) has the
extension property” applied to M0 ≤K Nα. This proves the asser-
tion, for the second part assume (cat)λ so as (M0,M1, a) ∈ K3,na

λ

exemplified that M0 ∈ Kλ is not ≤Kλ
-maximal, also Nα, which is

isomorphic to M0, is not ≤Kλ
-maximal. We also can use 1.14(10).

4) Easy because K has (λ, λ, λ+)-amalgamation, see Definition I.2.7(2)
and Claim I.2.11(1). �2.2

2.3 Claim. Assume (amg)λ and (M,N, a) ∈ K3,nm
λ , i.e. above

(M,N, a) ∈ K3,na
λ there is no minimal triple.

1) We can find 〈(M0
η ,M

1
η , a) : η ∈ λ+>2〉 such that

(i) (M0
η ,M

1
η , a) ∈ K3,na

λ

(ii) ν ⊳ η ⇒ (M0
ν ,M

1
ν , a) <na (M0

η ,M
1
η , a)

(iii) M0
ηˆ〈ℓ〉 for ℓ = 0, 1 are equal

(iv) tp(a,M0
ηˆ〈0〉,M

1
ηˆ〈0〉) 6= tp(a,M0

ηˆ〈1〉,M
1
ηˆ〈1〉); this makes sense

as M0
ηˆ〈0〉 = M0

ηˆ〈1〉

(v) if η ∈ δ2 and δ < λ+ is a limit ordinal, then M ℓ
η = {M ℓ

η↾α :

α < δ} for ℓ = 0, 1

(vi) (M0
<>,M

1
<>, a<>) = (M,N, a).

2) Assume that T is a tree with δ < λ+ levels and ≤ λ nodes and
|limδ(T )| > λ for simplicity and let p = tp(a,M,N).
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Then we can find Y ⊆ limδ(T ) of cardinality ≤ λ, and M∗ ∈ Kλ

and (M∗, Nη, a) ∈ K3,na
λ above (M,N, a) for η ∈ limδ(T )\Y such

that tp(a,M∗, Nη) for η ∈ limδ(T )\Y are pairwise distinct and
|S≥p(M

∗)| ≥ |S nm(M)| ≥ | limδ(T )|, see 1.15(4), 1.16(1).
3) If M ∈ Kλ is universal (in Kλ) then S≥p(M) ≥ sup{limδ(T ) : T

a tree with ≤ λ nodes and δ < λ+ levels}.
4) Stability in λ, (stb)λ, fails. Also if M ∈ Kλ the S nm(M) ⊆
S sn(M).
5) If 2λ > λ+ then for some M ∈ Kλ we have |S nc(M)| > λ+, in
fact |S nc(M)| ≥ |S sn(M)| ≥ |S nm(M)| > λ.

Remark. Used in 3.13 and in the proof of 2.5, 2.25, 4.5, 4.13.

Proof. 1) We choose 〈(M0
η ,M

1
η , a) : η ∈ α2〉 by induction on α < λ+.

This is straightforward: for α = 0 choose (M0
<>,M

1
<>, a) as the

given triple (M,N, a) ∈ K3,na
λ above which there is no minimal

triple; in limit α take limits, i.e. unions; in successor α, use non-
minimality and its definition (see Definition 1.11(1) or noting that
1.14(5) apply)).

2) First without loss of generalityT is a subtree of λ+>2 and even,
after changing T a little, of λ×cf(δ)>2 so δ = λ× cf(δ) and as usual
identify limδ(T ) with {η ∈ δ2 : (∀i < δ)η ↾ i ∈ T }. Second, by
1.11(4), 1.14(1), without loss of generality (M,N, a) is reduced.

Now let 〈ηα : α < α∗〉 list T without repetitions such that ηα ⊳
ηβ ⇒ α < β and ηα = νˆ〈0〉 ⇒ ηα+1 = νˆ〈1〉. Now we choose
Nα, fηα

by induction on α ≤ α∗ such that (where the M0
η are from

part (1)):

⊛ (a) Nα ∈ Kλ is ≤K-increasing continuous for α ≤ α∗

(b) N0 = M0
<>

(c) fηα
is a ≤K-embedding of M0

ηα
into Nα+1 for α < α∗

(d) if ηβ ⊳ ηα then fηβ
⊆ fηα

(e) if ηα = νˆ〈0〉 then fηα+1
= fνˆ<1> is equal to fηα

.

By (amg)λ we can carry the definition. Now for every η ∈ limδ(T )
let fη := ∪{fη↾i : i < δ} and let N0

η = fη(M0
η ) so N0

η ≤K Nα∗
and
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by (amg)λ there are N1
η , gη such that: Nα∗

≤K N1
η ∈ Kλ and gη

is a ≤K-embedding of M1
η into N1

η extending fη. Let aη = gη(a)
for η ∈ limδ(T ), so we do not know to exclude the possibility that
aη ∈ Nα∗

.
Now obviously

(∗) if η0, η1 ∈ limδ(T ), i < δ, η0 ↾ i = η1 ↾ i, η0(i) = 0, η1(i) = 1
then

(a) tp(aη, fηℓ↾(i+1)(M
0
ηℓ↾(i+1)), gηℓ↾(i+1)(M

1
η↾(i+1))) for ℓ =

0, 1 are distinct

(b) fη0↾(i+1)(M
0
η0↾(i+1)) = fη1↾(i+1)(M

0
η1↾(i+1)) ≤K Nα∗

(c) tp(aη0
, Nα∗

, N1
η0

) 6= tp(aη1
, Nα∗

, N1
η1

).

Let Y = {η ∈ limδ(T ) : aη ∈ Nα∗
}, so by clause (c) of (∗)

we have η0 6= η1 ∈ Y ⇒ aη0
6= aη1

hence |Y | ≤ λ. Clearly

η ∈ limδ(T )\Y ⇒ (Nα∗
, N1

η , aη) ∈ K3,na
λ also gη(N) ∩ Nα∗

= M ,
recalling that without loss of generality (M,N, a) is reduced, (not re-
ally necessary) hence by renaming η ∈ limδ(T )\Y ⇒ (M,N, a) ≤na

(Nα∗
, N1

η , aη). Also clearly |S≥p(Nα∗
)| ≥ |{tp(aη, Nα∗

, N ′
u) : η ∈

limδ(T )\Y }| = |limδ(T )\Y | = |limδ(T )| as |Y | ≤ λ < |limδ(T )|
and Nα∗

∈ Kλ, so we are done.
3) As for any N ∈ Kλ there is a model N ′ ≤K M isomorphic to N ,
now p 7→ p ↾ N ′ is a function from S (M) onto S (N ′) by II.1.11(5)
hence |S≥p(M)| ≥ |S≥p(N

′)| = |S≥p(N)|. Now we can use part
(2).
4) Should be clear as there is a tree T as in part (2), e.g. θ>2 if
θ = min{θ : 2θ > λ}.
5) If 2λ > λ+ then for some such T and δ, λ+ < | limδ(T )|; see (∗)
inside the proof of 4.13. Now apply part (2), recalling 1.17(7). �2.3

2.4 Exercise: If ⊛ then ⊠ where:

⊛ (a) T a subtree of λ+>(λ+) of cardinality ≤ λ

(b) M̄ = 〈Mη : η ∈ T 〉

(c) 〈Mη↾i : i ≤ ℓg(η)〉 is ≤K-increasing5 for each η ∈ T

5yes! we do not require continuity
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(d) (Mη,Mηˆ<α>, aηˆ<α>) ∈ K3,na
λ for every ηˆ〈α〉 ∈ T

⊠ (a) M̄∗ = 〈M∗
η : η ∈ T 〉

(b) 〈M∗
η↾i : i < ℓg(η)〉 is ≤K-increasing for each η ∈ T ∗

(c) (M∗
η ,M

∗
ηˆ<α>, aηˆ<α>) ∈ K3,na

λ is reduced for every

ηˆ〈α〉 ∈ T

(d) f̄ = 〈fη : η ∈ T 〉

(e) fη is a ≤K-embedding of Mη into M∗
η

(f) fν ⊆ fη if ν ⊳ η ∈ T

(g) (Mη,Mηˆ<α>, aηˆ<α>) ≤na
fηˆ<α>

(aηˆ<α>)).

[Hint: Straight; you may use lots of mapping or imitate Definition
3.7(3).]

2.5 Claim. Assume (amg)λ.

1) If above (M0,M1, a) ∈ K3,na
λ there is no minimal member of K3,na

λ

then (M0,M1, a) itself has the extension property.

2) If (M0,M1, a) ∈ K3,na
λ ,M0 ≤K N ∈ K and the number of c ∈ N

such that tp(c,M0, N) = tp(a,M0,M1) is > λ then (M0,M1, a) has
the extension property.
2A) Given (M0,M1, a) ∈ K3,na

λ there is N as required in part (2)
iff tp(a,M0,M1) is not λ-algebraic, i.e. ∈ S sn(M0) iff for every
M ′

0 ∈ Kλ which ≤K-extends M0 then are M ′′
0 , b such that M ′

0 <K M ′′
0

and b ∈M ′′
0 \M

′
0 realizes tp(a,M ′

0,M
′′
0 ).

2B) A triple (M,N, a) ∈ K3,na
λ has the extension property iff tp(a,

M,N) is not λ-algebraic.

3) Assume that above (M0,M1, a) ∈ K3,na
λ there is no minimal mem-

ber of K3,na
λ then

(∗)1 For some M+
0 ,M0 ≤K M+

0 ∈ Kλ and tp(a,M0,M1) has > λ
extensions in S (M+

0 ) (in fact ≥ min{2µ : 2µ > λ} and even
|limδ(T )| for any tree T with δ < λ+ levels and ≤ λ nodes).

3A) If (M0,M1, a) ∈ K3,na satisfies (∗)1 above then

(∗)2 for some N we have: M0 ≤K N and N is as required in part
(2).
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4) In 2.3(2) we can add “and each (M∗, Nη, aη) is reduced. That is,
we can find M∗, 〈((Nη, aη, fη) : η ∈ limδ(T )〉 such that

(M∗, Nη, fη(a)) ∈ K3,na
λ is reduced, (M,N, a) ≤na

fη
(M∗, Nη, fη(a)),

and 〈tp(fη(a),M∗, Nη) : η ∈ limδ(T )〉 are pairwise distinct when:

(a) (amg)λ

(b) above (M,N, a) ∈ K3,na
λ there is no minimal triple

(c) δ < λ+ is a limit ordinal

(d) T is a tree with δ levels and ≤ λ nodes.

Proof. 1) Follows by parts (2),(3) and (3A).
2) Trivially N has cardinality ≥ λ+. By II.1.8(3) and II.1.11(1), i.e.
by the LS property without loss of generality N has cardinality λ+

and also is as in 2.2(1).
By I.2.11(1) for any M ′

0 such that M0 ≤K M ′
0 ∈ Kλ there are

N1, N ≤K N1 ∈ Kλ+ and a ≤K-embedding h of M ′
0 into N1 ex-

tending idM0
. Now some c ∈ N\h(M ′

0) realizes tp(a,M0,M1) and
by the assumption on “N is as in 2.2(1)” there is g, a ≤K-embedding
of M1 into N over M0 such that g(a) = c. Let N−

1 ≤K N1 be such
that N1 ∈ Kλ include g(M1) ∪ h(M

′
0) ∪ {c}. So modulo chasing ar-

rows we have proved that (M0,M1, a) has the extension property for
the case M ′

0 ∈ Kλ,M0 ≤K M ′
0, which was arbitrary so we are done.

2A) Obviously, the first iff holds by the definitions, the first phrase
implies the third by the proof of part (2) which implies the second
by (2B).
2B) The “if” direction holds by part (2A) and the definition. For

the other direction recall (M,N, a) ∈ K3,na
λ and let p = tp(a,M,N).

We try to choose Ni ∈ Kλ which is ≤K-increasing with i such that:
there is bi ∈ Ni+1\Ni realizing p. We can continue by the third
phrase and ∪{Ni : i < λ} is as required.
3) Note that there are limit δ < λ+ and a tree T with δ levels, ≤ λ
nodes such that the set of δ-branches, limδ(T ), has cardinality > λ
(e.g. (θ>2, ⊳) for first θ such that 2θ > λ). Clearly (∗)1 holds by
2.3(2).
3A) We choose by induction on i < λ+, Ni ∈ Kλ which is ≤K-
increasing continuous, N0 = M+

0 (M+
0 is from (∗)1 above) and for
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each i some ci ∈ Ni+1 realizes over N0 = M+
0 an extension of

p = tp(a,M0,M1) not realized in Ni. There is such type by clause
(∗)1 above and there is such an Ni+1 as K has amalgamation in λ.
Clearly ci /∈ Ni and so ∪{Ni : i < λ+} is as required.
4) So as in the proof of 2.3(2) let T be a subtree of δ>2 with ≤ λ
nodes let Tα be T ∩ α2 if α < δ and limδ(T ) = {η ∈ δ2 : (∀α <
δ)(η ↾ α ∈ T )}. We choose Nα, 〈Nη,α, aη : η ∈ Tδ〉, 〈gη,ν,α : η, ν ∈
Tδ, α ≤ δ, η ↾ α = ν ↾ α〉 by induction on α ≤ δ such that:

⊛ (α) Nα ∈ Kλ is ≤K-increasing continuous

(β) (Nα, Nη,α, aη) ∈ K3,na
λ is reduced for η ∈ Tδ

(γ) 〈Nη,β : β ≤ α〉 is ≤Kλ
-increasing continuous

(δ) if η, ν ∈ Tδ and η ↾ α = ν ↾ α then gη,ν,α is an isomorphism
from Nν,α onto Nη,α over Nα maping aν to aη and being the
identity on Nα

(ε) if β < α and η, ν ∈ δ2, η ↾ α = ν ↾ α then gη,ν,β ⊆ gη,ν,α

(ζ) for every (equivalently some) η ∈ Tδ the triple (N0, Nη,0, aη)
is isomorphic to the given triple (M,N, a).

There is no problem to carry the induction: for α = 0 just note
clause (ζ), e.g. let N0 = M and 〈(Nη,0) : η ∈ Tδ〉 pairwise disjoint
copies of N over M .

For α = β + 1 let U ⊆ Tβ be maximal such that η 6= ν ∈ U ⇒

η ↾ α 6= ν ↾ α and we use the assumption on (M,N, a) ∈ K3,nm
λ to

get a “first version” of 〈Nα, Nηˆ〈ℓ〉,α : η ∈ U , and ℓ < 2〉, and then
use Exercise 2.6 to get “reduced”.

�2.5
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2.6 Exercise: Assume (amg)λ.
1) We can find M∗, 〈Nt : t ∈ I〉 such that for each t ∈ I we have
(Mt, Nt, at) ≤na (M∗, N

+
t , at) and (M∗, N

+
t , at) is reduced [and if (e)

also 〈Nt\M∗ : t ∈ I〉 are pairwise disjoint] when:

⊛ (a) I is a set of cardinality ≤ λ

(b) (Mt, Nt, at) ∈ K3,na
λ is reduced

(c) above (Mt, Nt, at) there is no minimal triple (or just every
≤na-extension of it has the extension property)

(d) for every s, t ∈ I we have Mt ≤K Ms ∨Ms ≤K Mt

(e) (optional) Nt\Mt is disjoint to ∪{Ns : s ∈ I}.

2) If we omit the “is reduced” in clause (b) then we get only (Mt, Nt, at) ≤
na
ft

(M∗, N
+
2 , a

+
t ) for some ft extending idMt

.

∗ ∗ ∗

Concerning disjoint amalgamation

2.7 Claim. Assume (amg)λ + (cat)λ + (cat)λ+ , i.e. K has amalga-
mation in λ and is categorical in λ, λ+.
1) If M ≤Kλ

N then we can find M̄ such that

(a) M̄ = 〈Mα : α ≤ α∗〉 is ≤Kλ
-increasing continuous

(b) α∗ < λ+

(c) M0 = M and N ≤Kλ
Mα∗

(d) (Mα,Mα+1, aα) ∈ K3,na
λ is reduced.

2) Assume that: if p ∈ S na
Kλ

(M) then p is non-λ-algebraic. Then Kλ

has disjoint amalgamation.
3) Every (M,N, a) ∈ K3,na

λ has the extension property iff for no
M ∈ Kλ and p ∈ S na(M) is p a λ-algebraic type.

Proof. 1) If not, we shall contradict categoricity in Kλ+ .
Clearly without loss of generalityM 6= N . By induction on i <

λ+ we chooseN0
i ∈ Kλ,≤K-increasing continuous such that (N0

i , N
0
i+1)

∼=

(M,N) (possible by the categoricity of K in λ). Let N0 =
⋃

i<λ+

N0
i .
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By induction on i < λ+ we choose N1
i ∈ Kλ,≤K-increasing con-

tinuous and ai such that (N1
i , N

1
i+1, ai) ∈ K3,na

λ is reduced (possible

by 1.14(1) and the categoricity of K in λ) and let N1 =
⋃

i<λ+

N1
i . So

by the categoricity in λ+ without loss of generality N1 = N0, hence
for some δ1 < δ2 < λ+ we have

N0
δ1

= N1
δ1
, N0

δ2
= N1

δ2
.

By changing names (N0
δ1
, N0

δ1+1) = (M,N) and so 〈Nδ1+i : i ≤
δ2 − δ1〉, 〈aδ1+i : i < δ2 − δ1〉 are as required.
2) So assume M0 ≤Kλ

Mℓ for ℓ = 1, 2. By part (1) we can find
α < λ+, a ≤K-increasing continuous M̄1 = 〈M1,i : i ≤ α〉 such that

M1,0 = M0,M1 ≤Kλ
M1,α and (M1,i,M1,i+1, ai) ∈ K3,na

λ is reduced
for i < α. Now we choose (M2,i, hi) by induction on i ≤ α such that:

⊛ (a) M2,i is ≤Kλ
-increasing continuous

(b) M2,0 = M2

(c) hi embeds M1,i into M2,i

(d) h0 = idM1,0
= idM0

(e) if i = j + 1 then hi(aj) /∈M2,i.

There is no problem to carry the definition as tp(ai,M1,i,M1,i+1) is
not λ-algebraic and 2.5(2A). Now we can prove hi(M1,i)∩M2 = M0

by induction on i.
For i = 0 this is trivial, for i limit obvious and for i successor say

i = j + 1 use (M1,j,M1,j+1, a) is reduced to show hi(M1,i) ∩M2,j =
hj(M1,j) so together with the induction hypothesis we are done.

Now (hα ↾ M1,M2,α) exemplifies the existence of the disjoint
amalgamation of M1,M2 over M0.
3) By 2.5(2B). �2.7

2.8 Claim. Assume (amg)λ and (nmx)λ, i.e., K has no ≤Kλ
-maximal

member.
1) There is M ∈ Kλ+ saturated above λ (above any N0 ∈ Kλ; so
N ∈ Kλ ⇒ |S (N)| ≤ λ+) when

⊛ small dense set of types: for M ∈ Kλ there is ΓM ⊆ S na(M)
of cardinality ≤ λ+ which is inevitable, see below.
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2) [Local version] Assume

⊛ (a) S∗ ⊆ S na is a ≤Kλ
-type-kind, see Definition 1.12

(b) |S∗(M)| ≤ λ+ for every M ∈ Kλ.

Then there is M such that:

⊙M,S∗
M ∈ Kλ+ and if 〈Mα : α < λ+〉 is a ≤K-representation of
M then for a club of δ < λ+, every p ∈ S∗(Mδ) is realized
in M .

3) If ⊙M,S∗
above holds and S∗ = S≥q, or just S∗ is hereditary

then: M is S∗-saturated, i.e. if M ′ <K M,M ′ ∈ Kλ and p ∈
S∗(M

′), then p is realized in M .
4) Every M ∈ K lsl

λ+ satisfies the conclusion of parts (1),(2),(3) if the
respective assumptions holds. So if Kλ+ has a superlimit model and
a model saturated above λ then the superlimit M ∈ Kλ+ is saturated
above λ.
5) In part (2) we can replace clause (b) by

(b)′ (α) S∗ is hereditary

(β) for every M ∈ Kλ there is an S∗-inevitable set Γ ⊆
S (M) of cardinality ≤ λ+.

2.9 Definition. 1) For M ∈ K and Γ ⊆ SK∗
(M) we say that Γ is

inevitable (for K) when: if M <K N then for some a ∈ N\M we
have tp(a,M,N) ∈ Γ.
2) We say Γ ⊆ S (M) is S∗-inevitable when: if M <K N and some
p ∈ S∗(M) is realized in N then some q ∈ Γ is realized in N , so if
S∗ = S na we get back “Γ is inevitable”.

Proof. 1) Let 〈Si : i < λ+〉 be a partition of λ+ such that Si ∩ i = ∅
and |Si| = λ. Now we choose Mi and 〈pi

α : α ∈ Si〉 by induction on
i < λ+ such that:

⊛ (a) Mi ∈ Kλ is ≤K-increasing continuous

(b) Γi ⊆ S na
K

(Mi) is as guaranteed by clause ⊛ of the assump-
tion; necessarily Γi 6= ∅ because (nmx)λ holds
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(c) 〈pi
α : α ∈ Si〉 list Γi, possibly with repetitions

(d) if i ∈ Sj hence j ≤ i then the type pi
j is realized in Mi+1.

As K has amalgamation in λ there is no problem to carry the induc-
tion noting that Γi is necessarily non-empty. Let M := ∪{Mi : i <
λ+} and we shall prove that M is saturated above λ, but we assume
(nmx)λ hence M has cardinality λ+.

So assume M ′ ≤K M,M ′ ∈ Kλ and q ∈ SK(M ′) and we shall
prove that q is realized in M . We can find α0 < λ+ such that M ′ ≤K

Mα0
and q0 ∈ S (Mα0

) extending q; hence we can find a pair (N0, a)

satisfying (Mα0
, N0, a) ∈ K3,na

λ , such that q0 = tp(a,Mα0
, N0). We

now try to choose (Nε, fε, αε) by induction on ε < λ+ such that

⊠ (a) N0, α0 are chosen above, f0 = idMα0

(b) Nε ∈ Kλ is ≤K-increasing continuous

(c) αε < λ+ is increasing continuous

(d) fε is a ≤K-embedding of Mαε
into Nε

(e) fε is increasing continuous with ε

(f) for each ε, for some c ∈ Mαε+1
realizing some p ∈ Γαε

we
have fε+1(c) ∈ Nαε

\fε(Mαε
).

If we succeed to carry the induction, by clause (f) and Fodor lemma
we get a contradiction. So we are stuck in some ε. For ε = 0 we
apply clause (a) and all the demands hold. For limit ε we define
by continuity. So necessarily for some ε = ζ + 1 we have defined
(Nζ , fζ , αζ) but cannot choose for ε.

If fζ(Mαζ
) = Nε then f−1

ζ (a) realizes tp(a0,Mα0
, N0) which is q0

hence it realizes q in M so we are done. Otherwise as the property
of (Mαζ

,Γαζ
) is preserved by isomorphisms, for some p ∈ Γαζ

, the
type fζ(p) is realized in Nε say by c′ ∈ Nαζ

and c′ /∈ fζ(Mαζ
) as

Γαζ
⊆ S na

K
(Mαζ

). By the construction of 〈Mα : α < λ+〉 some

c ∈ M realizes p. Let αε ∈ (αζ , λ
+) be such that c ∈ Mαε

. Now
by basic properties of types (see II.1.11) there are (Nε, fε) such that
Nζ ≤K Nε ∈ Kλ and fε is a ≤K-embedding of Nαε

into Nε extending
fζ and fε(c) = c′. So we have not been stuck in ζ, contradiction.
2) Similarly to the proof of (1) noting that the desired conclusion is
equivalent to “for some ≤K-representation 〈Mα : α < λ+〉 of M , for
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a club of α < λ+, every p ∈ S∗(Mα) is realized in M”.
3) So 〈Mα : α < λ+〉 is a ≤Kλ

-increasing sequence with union M ∈
Kλ+ and for some club E of λ+ (or just E ⊆ λ+ = sup(E)) we have
[α ∈ E & p ∈ S∗(Mα) ⇒ p is realized in M ].

Let N∗ ≤K M,N∗ ∈ Kλ and p ∈ S∗(N
∗) and we should prove

that p is realized in M . We can find α ∈ E such that N∗ ≤K Mα.
As (amg)λ clearly there is q ∈ S (Mα) extending p. Now first if
q ∈ S na(Mα) as S∗ is hereditary, necessarily q ∈ S∗(Mα) hence q
is realized in M by some c ∈ M , but then c also realizes p in M
so we are done. Second, if q /∈ S na(Mα) then q is algebraic hence
realized by some c ∈Mα and we are done.
4) It suffices to prove the conclusion of part (2) as the conclusion of
part (1) holds by 1.3(6) and the conclusion of part (3) follows from
the conclusion of part (2). Let 〈Si : i < λ+〉 be as in part (1). We
imitate the proof of part (1) but now we choose Mi,M

∗
i , 〈p

′
α : α ∈ Si〉

by induction on i < λ∗ such that:

⊛ (a) Mi ∈ Kλ is ≤K-increasing continuous

(b) M+
i ∈ Kλ+ is <K-increasing continuous

(c) Mi ≤K M+
i

(d) M+
i

∼= M has universe ∪{Sj : j < 1 + i}

(e) 〈pi
α : α ∈ Si〉 list S∗(Mi), possibly with repetitions

(f) if i ∈ Sj hence j ≤ i then the type pi
j is realized in Mi+1

(g) M+
j ∩ i ⊆Mi for j < i.

This is easy, noting that we can preserve clause (d) as M is locally
superlimit. Now ∪{M1,i : i < λ} is as required in part (2) and

∪{M+
i : i < λ} is equal to it and is isomorphic to M so we are done.

5) Similarly. �2.8

Remark. More on the proof of 2.8, see hopefully in [Sh:F888].

Let us rephrase 2.8(4).

2.10 Conclusion. Assume (amg)λ+ (nmx)λ.
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If S∗ ⊆ S na is a hereditary ≤Kλ
-type-kind (e.g. S na,S≥p) and

M ∈ Kλ ⇒ |S∗(M)| ≤ λ+ then any M ∈ K lsl
λ+ is S∗-saturated, (so

if S = S na,M is saturated above λ).

A sufficient condition for the demand in 2.10 is

2.11 Claim. 1) For every M ∈ Kλ we have |S∗(M)| ≤ λ+ when:

⊛ (a) (amg)λ, i.e., K has amalgamation in λ

(b) S∗ = S≥q for some q ∈ SKλ
(M∗) (or just S∗ is a hereditary

≤Kλ
-type-kind, see Definition 1.12)

(c) for every M0 ∈ Kλ there is an S∗-inevitable ΓM ⊆ S (M0)
of cardinality ≤ λ+ (i.e. see Definition 2.9) or equivalently

(c)’ for every M0 ∈ Kλ for some M1 we have M0 <K M1 ∈ K≤λ+

and if M0 <K M2 and some p ∈ S∗(M0) is realized in M2

then we can find b1 ∈ M1\M0 and b2 ∈ M2\M0 such that
tp(b1,M0,M2) = tp(b2,M0,M2).

2) If we strengthen clause (c) such that |ΓM | ≤ λ, or in clause (c)′

demand M1 ∈ Kλ then |S∗(M)| ≤ λ.

Proof. The same proof as 2.8. �2.11

2.12 Definition. 1) For M ∈ Kλ and 1 ≤ µ ≤ 2λ we say that p ∈
S na(M) is µ-minimal when: for every N satisfying M ≤K N ∈ Kλ

the set {q ∈ S na(N) : q ↾ M = p} has ≤ µ members. Similarly
(< µ)-minimal.
2) For M ∈ Kλ, the type p ∈ S (M) is pseudo-minimal if it is λ+-
minimal.
3) S µ-minimal(M) = {p ∈ S (M) : p is µ-minimal} for M ∈ Kλ.

2.13 Observation. 1) If M ≤K N ∈ Kλ and q ∈ S na(N) and q ↾ M
is µ-minimal then q is µ-minimal.
2) The function S µ-minimal is a hereditary ≤Kλ

-type-kind.
3) p ∈ S na

Kλ
(M) is minimal iff it is 1-minimal.
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4) If p ∈ SKλ
(M) is µ1-minimal and 1 ≤ µ1 ≤ µ2 then p is µ2-

minimal.

Remark. So in particular minimal are pseudo minimal as 1 ≤ λ+.

Proof. Obvious. �2.13

2.14 Claim. Assume (amg)λ+ (cat)λ + (mdn)1
λ+ and 2λ < 2λ+

.
1) If p ∈ S (M0) is pseudo minimal, M0 ∈ Kλ, then N ∈ Kλ ⇒
|S≥p(N)| ≤ λ+.
2) If in addition N ∈ Kslm

λ+ then N is S≥p-saturated.

Proof. 1) We shall use 2.16 below (so indirectly use 1.18 + 1.20 and
2.15). Choose M∗ ∈ Kλ. Note that S≥p∗(N) has the same car-
dinality for every N ∈ Kλ because of (cat)λ. So if S≥p∗(M∗) has
cardinality ≤ λ+ we are done. Otherwise, the assumptions of 2.16
below holds: first, (amg)λ+ (cat)λ and clause (a) there, are assump-
tions of 2.14, second, clause (b)− is an assumption of 2.14(1) and,
third, clause (c) holds by the “otherwise” above. But the conclusion

of 2.16 is İ(λ+, K) = 2λ+

contradicting the assumptions (mdn)1
λ+ of

2.14 so we are done.
2) Apply the conclusion of part (1) in 2.10, in equivalently in 2.8(2),
(3),(4). �2.14

2.15 Claim. Assume (amg)λ+ (cat)λ,M
∗ ∈ Kλ and p∗ ∈ S na(M∗),

S∗ is S≥p∗ or just is a hereditary ≤Kλ
-type-kind and lastly |S∗(M

∗)| >
λ+.

If N ∈ Kλ,Γ ⊆ S∗(N), |Γ| ≤ λ+ then

{p ∈ S∗(N) : for some N ′, N ≤K N ′ ∈ Kλ and some b ∈ N ′

realizes p but no b ∈ N ′ realizes any q ∈ Γ}

has cardinality ≥ λ++.
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Proof. Apply 1.18 + 1.20 with N and S∗(N) here standing for N
and S there, so we get N∗, Ni(i < λ++) such that N ≤K N∗ ≤K

Ni ∈ Kλ, and Γi = {tp(a,N∗, Ni) : a ∈ Ni\N
∗} are pairwise disjoint

and there are pi ∈ Γi such that qi := pi ↾ N ∈ S∗(N) are pairwise
distinct. Now pi is from Γi is not algebraic and S∗ is hereditary hence
pi ∈ S∗(N

∗). As K is categorical in λ, there is an isomorphism f
from N∗ onto N , and we can find (N ′

i , f
′
i) such that N ≤K N ′

i and
fi ⊇ f is an isomorphism from Ni onto N ′

i , so all but ≤ λ+ of the
models Ni can serve as the required N ′.

�2.15

2.16 Claim. Assume (amg)λ + (cat)λ.

We have İ(λ+,K) ≥ µwd(λ+) and moreover = 2λ+

when (for some
or any M∗ ∈ Kλ):

⊛ (a) 2λ < 2λ+

(b) S∗ = S≥p∗ , p∗ ∈ SKλ
(M∗) is pseudo minimal

or just

(b)− S∗ is a hereditary ≤Kλ
-type-kind and S∗ ⊆ S λ+-minimal

(c) S∗(M∗) has cardinality > λ+ so M∗ ∈ Kλ.

2.17 Remark. 0) On µwd(λ+), see VII.0.3(6), if 2λ < 2λ+

it is close

to 2λ+

.
1) We may consider replacing the assumption (c) by ⊠ from the
proof.
2) We can replace “≤ λ+” by “< µ” if |S≥p∗(M∗)| ≥ µ and cf(µ) ≥
λ+.
3) In 2.16, can we get İĖ(λ+,K) = 2λ+

, see probably [Sh:E45].

Proof. Now by 2.15 we have

⊠ if M ∈ Kλ and Γ ⊆ S∗(M) is of cardinality λ+ then for some
N, b we have M <Kλ

N, b ∈ N\M realizes some type from
S∗(M) but no q ∈ Γ is realized in N .
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Now we shall apply 2.18 for µ = λ++. Clearly the conclusion of 2.18
is the desired conclusion of 2.16. Now (amg)λ is assumed in 2.16,
clause (a),(c),(d) of 2.18 holds by clauses (a),(b) ∨ (b)−,(c) of 2.16
respectively, clause (b) of 2.18 holds as cf(µ) = cf(λ++) ≥ λ+, and
clause (e) of 2.18 holds by ⊠ above. �2.16

2.18 Claim. Assume (amg)λ. We have İ(λ+,K) = 2λ+

when

⊛ (a) 2λ < 2λ+

(b) cf(µ) ≥ λ+

(c) S∗ ⊆ S (<µ)-minimal

(d) S∗(M∗) has cardinality ≥ µ for some M∗ ∈ Kλ

(e) if M∗ ≤K M ∈ Kλ,Γ ⊆ S∗(M) has cardinality < µ then for
some N , b we have M <Kλ

N, b ∈ N\M realizes a type from
S∗(M) but no q ∈ Γ is realized in N .

Proof. Let M = {(M,Γ) : M ∈ Kλ and Γ ⊆ ∪{S∗(M
′) : M ′ ≤Kλ

M} has cardinality ≤ λ and no p ∈ Γ is realized in M} and let ≤M

be the following two-place relation on M : (M1,Γ1) ≤ (M2,Γ2) iff
M1 ≤Kλ

M2 and Γ1 ⊆ Γ2.
Easily

(∗)1 ≤M partially order M

(∗)2 if 〈(Mα,Γα) : α < δ〉 is ≤M-increasing and δ is a limit ordinal
< λ+ and M := ∪{Mα : α < δ} and Γδ = ∪{Γα : α < δ}
then (Mδ,Γδ) ∈ M is the ≤M-lub of the sequence.

[Why? E.g. does Mδ omit every p ∈ Γδ? Clearly for some α < δ we
have p ∈ Γα hence for some M ′ ≤K Mα we have p ∈ S∗(M

′). Also
if c ∈ Mδ then for some β < δ we have c ∈ Mβ and without loss of
generality α < β < δ, but p ∈ Γα ⊆ Γβ and (Mβ,Γβ) ∈ M hence
Mβ omits p hence c does not realize p in Mβ but Mβ ≤K Mδ hence c
does not realize p in Mδ, as required. Also |Γδ| ≤ λ as cf(µ) ≥ λ+.]

Now by induction on i < λ+, choose 〈(Nη,Γη) : η ∈ i2〉 such that:

⊛ (a) (Nη,Γη) ∈ M
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(b) (Nν ,Γν) ≤M (Nη,Γη) for ever ν ⊳ η

(c) if i is a limit ordinal, then Nη =
⋃

j<i

Nη↾j and Γη =
⋃

j<i

Γη↾j

(d) (α) some p ∈ Γηˆ〈0〉 is from S∗(Nη) and is realized in Nηˆ〈1〉

(β) similarly for Γηˆ〈1〉, Nηˆ〈0〉

For i = 0 let M<> = M∗ and Γ<> = ∅.
For i limit, for η ∈ i2 we choose (Nη,Γη) by clause (c) of ⊛. Now

the demands in ⊛ holds: for clauses (e) as if p ∈ Γη recall (∗)2. The
other clauses are even easier.

Lastly, assume i < λ+ is a successor ordinal say i = j + 1 and let
η ∈ j2. We define Γ′

η = {q ∈ S (Nη) : q extends some p ∈ Γη}.
So clearly Γ′

η ⊆ S na(Nη) because no p ∈ Γη is realized in Nη by
clause (d) of the induction hypothesis but S∗ is hereditary so

(∗)3 Γ′
η ⊆ S∗(Nη).

Also

(∗)4 Γ′
η has cardinality < µ.

[Why? Because

|Γ′
η| ≤ Σ{|{q ∈ S (Nη) : q↾Nη↾j1=p} : p ∈ Γη ∩ S (Nη↾j1) and j1 ≤ j}|

< µ

The inequalities are justified as follows: the first inequality by the
definition of Γ′

η, the second inequality as each p ∈ Γη is (< µ)-
minimal, so the middle term is the sum of ≤ |Γη| ≤ λ sets each of
cardinality < µ, but cf(µ) > λ so the sum is < µ.]

By clause (e) of the assumption applied to (Nη,Γ
′
η) we can find

(Nη,0, bη,0) such that Nη ≤Kλ
Nη,0, bη,0 ∈ Nη,0 and pη,0 := tp(bη,0,

Nη, Nη,0) belongs to S∗(Nη)\Γ′
η and no c ∈ Nη,0 realizes any q ∈ Γ′

η.
Let Γ′

η,1 = Γ′
η ∪ {tp(b, Nη, Nη,0) : b ∈ Nη,0 and tp(b, Nη, Nη,0) ∈

S∗(Nη)}, so pη,0 ∈ Γ′
η,1.

By clause (e) of the assumption applied to the pair (Nη,Γ
′
η,1) we

can find (Nη,1, bη,1) such that Nη ≤Kλ
Nη,1, no member of Nη,1 real-

izes any type from Γ′
η,1 and bη,1 ∈ Nη,1 and pη,1 := tp(bη,1, Nη, Nη,1)

belongs to S∗(Nη)\Γ′
η,1.
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Next, let Γη,0 = Γη∪{tp(b, Nη, Nη,1) : b ∈ Nη,0 and tp(b, Nη, Nη,1)
∈ S∗(Nη)} and Γη,1 = Γη ∪ Γ′

η,1.
Lastly, let Nηˆ<ℓ> = Nη,ℓ,Γηˆ<ℓ> = Γη,ℓ for ℓ = 0, 1. Now it

is easy to check that they are as required, e.g. Nηˆ<ℓ> omit every
p ∈ Γη as if c realizes p in Nηˆ<ℓ> then p′ := tp(c, Nη, Nηˆ<ℓ>) ∈
S∗(Nη↾ε) hence p′ ∈ Γ′

η ⊆ Γ′
η,1, contradiction.

For η ∈ λ+

2 let Nη =
⋃

i<λ+

Nη↾i.

Clearly

(∗) if ηˆ〈ℓ〉 ⊳ νℓ ∈
λ+

2 for ℓ = 1, 2 then Nν1
, Nν2

are not isomor-
phic over Nη.

This is enough to get İ(λ+, K) large, in fact ≥ |{Nη/ ∼=: η ∈ λ+

2}| ≥
µwd(λ) by VII.9.6; this is enough for 2.16. But the situation is similar

to the one in I.3.8 hence the set {Nη/ ∼=: η ∈ λ+

2} has cardinality

2λ+

by VII.9.7, but we give details. We consider the demand (not

necesary when it suffices for us to prove İ(λ+, K) ≥ µwd(λ+))

⊙(M1,Γ1),(M2,Γ2) (a) (M1,Γ1) ≤M (M2,Γ2)

(b) if (M2,Γ2) ≤M (M ℓ,Γℓ) for ℓ = 1, 2 then we
can find

(M ℓ+2,Γℓ+2) for ℓ = 1, 2 such that

(α) (M ℓ,Γℓ) ≤ (M ℓ+2,Γℓ+2) for ℓ =
1, 2

(β) {p ∈ S∗(M1) : p realized in M3} =
{p ∈ S∗(M1) : p realized in M4}.

The proof below will make a distinction to two cases.

Case 1: For some (M1,Γ1) ≤M (M2,Γ2), for every (M3,Γ3) which is
≤M-above (M2,Γ2) we have ¬⊙(M1,Γ1),(M3,Γ3).

In this case we can in ⊗ demand (M<>,Γ<>) = (M1,Γ1) and
(M<k>,Γ<k>) = (M2,Γ2) for k = 0, 1 and replace clause (d) of ⊛

above by

(d)′ if i = j + 1 ≥ 2 and η ∈ j2 and (Mηˆ<k>,Γηˆ<k>) ≤M

(Mk,Γk) for k = 0, 1 then {p ∈ S∗(M1) : p realizes in M1} 6=
{p ∈ S∗(M1) : p realizes in M2}.
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Easily done and sufficient by VII.9.5.

Case 2: Note Case 1.
So for every (M1,Γ2) ≤M (M2,Γ3) there is no (M3,Γ3) as above.

Now in ⊛ we add

(e) if i = j + 1, ν ∈ i2, η = ν ↾ j then ⊙(Mν ,Γν),(Mη,Γη).

Now we can apply VII.9.7, as in the proof of 3.11 below. �2.18

2.19 Claim. Assume (amg)λ+ (cat)λ+ (slm)λ+ and 2λ+İ(λ+, K) <

2λ+

.
1) If M0 ∈ Kλ,M1 ∈ Kslm

λ+ , and M0 ≤K M1 then every λ+-minimal
type p ∈ S (M0) is realized in M .
2) Every M1 ∈ Kslm

λ+ is saturated at least for λ+-minimal types (i.e.
if M0 ≤K M1,
M0 ∈ Kλ and M1 ∈ Kslm

λ+ then every λ+-minimal p ∈ S (M0) is
realized in M1).
3) If M ∈ Kλ then {p ∈ S (M) : p is λ+-minimal} has cardinality
≤ λ+.
4) The above holds for minimal types, too.

2.20 Remark. 1) Compare with 5.3.

2) Instead İ(λ+,K) < 2λ+

we can assume |S≥p(M)| ≤ λ+ when
M ∈ Kλ, p ∈ S (M) is λ+-minimal.

Proof. 1) Let N ∈ Kλ, p ∈ S (N) be λ+-minimal (if there is no such
N then the desired conclusion holds vaccuously).

We have (mdn)1
λ+ because İ(λ+,K) ≥ 1 follows from (slm)λ+ and

İ(λ+,K) < 2λ+

which are assumptions; so the assumptions of 2.14
holds, hence its conclusions.

In particular by 2.14(2) any N ′
λ+ ∈ Kslm

λ+ is S≥p-saturated hence
this holds for Nλ+ .

So this holds for every λ+-minimal p as required.
2) By part (1).
3) Follows by part (1).
4) Trivially. �2.19
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Now in 2.21 - 2.24 we shall use stronger hypothesis, (cat)λ+ which
is enough for our main result, still “expensive”, in particular not
enough for Conjecture 0.4, see §0.

Later in 2.25 we use Kλ+3 = ∅, but also a cardinal arithmetic
assumption which is stronger than WGCH is assumed.

We use categoricity in λ+ to deduce that every triple from K3,na
λ

has the extension property. By earlier results we can concentrate on
minimal types which we investigate. We prefer not to use (cat)λ+ ,
categoricity in λ+ but just the existence superlimit but we do not
succeed to avoid it.

Also we show how Kλ+3 = ∅+ cardinal arithmetic helps to prove
“minimal types are dense”. This we do not consider acceptable as-
sumption and eventually we shall avoid those assumptions (by the
harder proofs in §3,§4).

2.21 Claim. Assume (amg)λ+ (cat)λ+ (cat)λ+ + (nmx)λ+ + 2λ <

2λ+

.
If (M0,M1, a) ∈ K3,na

λ is minimal, then it has the extension prop-
erty.

Remark. 1) We have gotten the same conclusion from different as-
sumptions in 2.7.
2) The proof uses categoricity in λ+ not just “intermediate number
of models”. Recall that (mdn)1

λ+ follows from (cat)λ+ .

Proof. Let p∗ = tp(a,M0,M1), and assume (M0,M1, a) ∈ K3,na
λ is a

counter-example. We note:

⊗1 if p ∈ S≥p∗(N) and N ∈ Kλ and N ≤K N∗ ∈ K, then the
set of elements of b ∈ N∗ realizing p has cardinality ≤ λ.
[Why? By 2.5(2)]

⊗2 if N ∈ Kλ, then |S≥p∗(N)| > λ+.

Proof of ⊗2. If N forms a counterexample, as K is categorical in λ
we have M ∈ Kλ ⇒ |S≥p∗(M)| ≤ λ+. On the one hand by (cat)λ+ ,
any N ∈ Kλ+ belongs to K lsl

λ+ hence by 2.10 is S≥p∗ -saturated.
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On the other hand, we can choose by induction on α < λ+ a triple
(N0,α, N1,α, a) ∈ K3,na

λ which is ≤na-increasing continuous in α such
that (N0,0, N1,0, a) = (M0,M1, a) and N0,α 6= N0,α+1 (we can carry
the induction for α = 0 trivially, for α, limit by 1.14(2)(a) and for
α = β + 1 by the weak extension property which holds by 1.9 be-
cause its assumptions (cat)λ+ (nmx)λ+ are assumed here). Now

N0,λ+ =
⋃

α<λ+

N0,α ∈ Kλ+ hence by the previous paragraph it is

S≥p∗ -saturated, but 〈N0,α : α < λ+〉 is a ≤K-representation of
N0,λ+ , and for every α, tp(a,N0,α, N1,α) extend tp(a,N0,0, N1,0) =
tp(a,M0,M1) = p∗ hence pα = tp(a,N0,α, N1,α) ∈ S≥p∗(N0,α) ⊆
S na(N0,α) is realized inN0,λ+ say by bα ∈ N0,λ+ but pα ∈ S na(N0,α)
so bα /∈ Nα and it realizes p∗ so λ+ = |{bα : α < λ+}|. But this
contradicts ⊗1. So ⊗2 holds. �⊗2

To finish the proof of 2.21 we shall use 2.14(1) for p = p∗.
Its conclusion “N ∈ Kλ ⇒ |S≥p∗(N)| ≤ λ+”, contradiction to

⊗2. Among its assumptions, “(amg)λ+ (cat)λ + 2λ < 2λ+

” are
also assumptions of the present claim and “(mdn)1

λ+” follows from
(cat)λ+ .

Lastly, “p is pseudo minimal” holds for p∗ as p∗ is minimal by
2.13(4) recalling Definition 2.12; contradiction, so (M,N, a) cannot
be a counterexample. So we are done. �2.21

2.22 Claim. Assume (amg)λ, (cat)λ, (cat)λ+ and (nmx)λ+ .

If (M,N, a) ∈ K3,na
λ fails the extension property and p = tp(a,M,N)

is minimal, then |S≥p(M)| > λ+.

Proof. Similar to an initial segment of the proof of 2.21, i.e. ⊗1 +⊗2

there. �2.22

2.23 Conclusion. Assume as in 2.21 or for parts (1),(2) just the
conclusion of 2.21 and (amg)λ and for part (3) the conclusion of 2.21
+ (amg)λ+ (nmx)λ.

1) Every triple (M,N, a) ∈ K3,na
λ has the extension property.

2) If M ≤Kλ
N and p ∈ S min(M) then p has one and only one
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extension in S na(M) and it is minimal.
3) Kλ has disjoint amalgamation.

Proof. 1) Let (M,N, a) ∈ K3,na
λ be given.

Case 1: There is a minimal (M ′, N ′, a) ∈ K3,na
λ which is ≤na-above

(M,N, a).
By 2.21 the triple (M ′, N ′, a) has the extension property, and by

1.10(1) this implies that also the triple (M,N, a) has the extension
property.

Case 2: Not Case 1.
By 2.5(1) the result follows.

2) We know that there is at most one extension in S na(N) and by
the extension property there is at least one, by 1.14(8)(b)).
3) Follows from part (1) by 2.7(2),(3) or recalling 2.5(2B). �2.23

2.24 Claim. [(amg)λ+ (cat)λ+ (cat)λ+.]
If p ∈ SKλ

(M∗) is minimal6 then the set S≥p(M
∗) is inevitable,

i.e. if M <K N in Kλ then for some a ∈ N\M is tp(a,M,N) ∈
S≥p(M).

Proof. Otherwise, we can find 〈M1
i : i < λ+〉, a ≤K-representation of

a model M1 ∈ Kλ+ such that: a ∈ M1
i+1\M

1
i ⇒ tp(a,M1

i ,M
1
i+1) /∈

S≥p(M
1
i ). This implies i < λ+ ∧ a ∈ M1\M1

i ⇒ tp(a,M1
i ,M

1) /∈
S≥p(M

1
i ) (as for some j ∈ [i, λ+) we have a ∈ M1

j+1\M
1
j , so (M1

i ,

M1
j+1, a) ≤na (M1

j ,M
1
j+1, a) and the latter is not in S≥p(M

1
j )). But

we can build another ≤K-representation 〈M2
i : i < λ+〉 of a model

M2 ∈ Kλ+ such that for each i < λ+ for some a ∈M1
i+1\M

1
i we have

tp(a,M1
i ,M

1
i+1) ∈ Sp(M

1
i ) ⊆ S≥p(M

1
i ); (why? as K is categorical

in λ hence M∗,M1
i are isomorphic hence there is q ∈ Sp(M

1
i ) so

by the definition of type there are M1
i , ai such that M1

i ≤Kλ
M1

i+1

and q = tpKλ
(ai,M

1
i ,M

1
i+1) so M1

i+1 is as required). So M1 ≇ M2

contradicting the assumption (cat)λ+ . �2.24

6Note that every q ∈ S≥p(M∗) is minimal but still it is not clear if S≥p(M∗) =

Sp(M∗)
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2.25 Claim. Assume

(a) (amg)λ+ (amg)λ++ (jep)λ hence (jep)λ+

(b) Kλ++ 6= ∅

(c) 2λ+

> λ++

(d) Kλ+3 = ∅.

Then in K3,na
λ the minimal triples are dense (i.e., ≤na-above every

triple in K3,na
λ there is a minimal one).

Remark. We do not intend to adopt the hypotheses “2λ+

> λ++”,
“Kλ+3 = ∅”. They will be eliminated in §3,§4.

Proof. As Kλ++ 6= ∅ and LS(K) ≤ λ it follows that Kλ 6= ∅ 6= Kλ+ .
Toward contradiction assume that the desired conclusion fails. By
2.3(1) we can choose by induction on α < λ+, for η ∈ α2 a triple
(M0

η ,M
1
η , aη) such that:

⊛ (i) (M0
η ,M

1
η , aη) ∈ K3,na

λ

(ii) ν ⊳ η ⇒ (M0
ν ,M

1
ν , a) ≤na (M0

η ,M
1
η , aη)

(iii) M0
ηˆ<0> = M0

ηˆ<1>

(iv) tp(a,M0
ηˆ〈0〉,M

1
ηˆ〈0〉)) 6= tp(a,M0

ηˆ〈1〉,M
1
ηˆ〈1〉)

(v) if η ∈ δ2 and δ < λ+ is a limit ordinal, then M ℓ
η =

⋃

α<δ

M ℓ
η↾α

for ℓ = 0, 1,

(vi) (M0
<>,M

1
<>, a) ∈ K3,mn

λ , i.e. is a triple ∈ K3,na
λ above which

there is no minimal one.

Let M∗ ∈ Kλ++ be ≤K-maximal (exists by 1.4(3) noting Kλ++ 6= ∅).
So by 1.4(4) the model M∗ is necessarily homogeneous universal
above λ+; (note: λ there stands for λ+ here). As LS(K) ≤ λ and Kλ

has amalgamation, clearly M∗ is saturated also above λ.
We choose by induction on α < λ+ for every η ∈ α2, a ≤K-

embedding gη of M0
η into M∗ such that:
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(∗) (a) ν ⊳ η ⇒ gν ⊆ gη

(b) gηˆ〈0〉 = gηˆ〈1〉.

This is clearly possible. For η ∈ λ+>2 let N0
η = M∗ ↾ Rang(gη) =

gη(M0
η ). For η ∈ λ+

2 let N0
η = M∗ ↾ ∪{Rang(gη↾α) : α < λ+} and

let gη = ∪{gη↾α : α < λ+} and let M ℓ
η = ∪{M0

η↾α : α < λ+} for

ℓ = 0, 1 hence M0
η ≤K

λ+
M1

η and gη is a ≤K-embedding of M0
η into

M∗. But Kλ+ has amalgamation and M∗ is homogeneous univeral
above λ+ so we can extend fη to f+

η , a ≤K-embedding of M1
η into

M∗.
Let a∗η = f+

η (a) for η ∈ λ+

2.

As 2λ+

> λ++, necessarily for some η0 6= η1 from λ+ we have
a∗η0

= a∗η1
. So for some α < λ+, η0 ↾ α = η1 ↾ α but η0(α) 6= η1(α),

and without loss of generality ηℓ(α) = ℓ for ℓ = 0, 1 and by clause (iv)
of ⊛ above (recalling clause (iii) of ⊛ above) we get a contradiction.
�2.25

2.26 Conclusion. Assume (amg)λ, (nmx)λ and K3,min
λ is dense in

K3,na
λ or just K3,min

λ 6= ∅.

1) Assume further (cat)λ+ (cat)λ+ , 2λ < 2λ+

. Then there is M ∈
Kλ+ saturated above λ.
2) If the conclusions of 2.19(3), 2.24 then the conclusion of part (1)
holds.

Proof. 1) Clearly the assumptions of 2.24 are assumed and M ∈
Kλ ⇒ S min(M) 6= ∅ by an assumption of 2.26, so by 2.24 for ev-
ery M ∈ Kλ the set S min(M) is inevitable and by 2.19(3) it has
cardinality ≤ λ+.

[Why the assumptions of 2.19 holds? (cat)λ+ (amg)λ are assumed

here and (slm)λ++ (mdn)1
λ+ follows from (cat)λ+ and 2λ < 2λ+

.]
Now we shall apply 2.8(1) so we have to check its assumptions, i.e.

(amg)λ+ (nmx)λ and ⊛ there. Now (amg)λ holds by the assumptions
of 2.26 and (nmx)λ again is an assumption of 2.26. Lastly, ⊛ there
says that for any M ∈ Kλ there is an inevitable Γ ⊆ S na(M) of
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cardinality ≤ λ+; we choose Γ = S min(M) and it is as required as
deduced above.

Hence the conclusion of 2.8(1) holds, which says that there is
M ∈ Kλ+ which is saturated above λ, as desired.
2) By the same proof. �2.26

§3 on UQ triples of models with unique amalgamation

We shall quote here Chapter VII but in a black box way; from §1 +
§2 we use (the basic statements on a.e.c. and their types, superlimit

models and) K3,na
λ , minimal types and minimal triples, S nc(M).

3.1 Hypothesis.

(a) K abstract elementary class with LS(K) ≤ λ and Kλ 6= ∅

(b) K has amalgamation in λ, i.e. (amg)λ.

3.2 Remark. We shall use mostly x = a from the definition below.

The following definition is very natural but reflect an extreme situ-
ation, and will be central in §3 + §4. Still it gives some “positive
theory”.

3.3 Definition. 1) For x ∈ {a, d} we say UQx
λ(M0,M1,M2,M3)

when:

(a) Mℓ ∈ Kλ for ℓ ≤ 3

(b) M0 ≤K Mℓ ≤K M3 for ℓ = 1, 2

(c) if for i ∈ {1, 2} we have M i
ℓ ∈ Kλ for ℓ < 4 and M i

0 ≤K

M i
ℓ ≤K M i

3 ∈ Kλ for ℓ = 1, 2 and [x = d ⇒ M i
1 ∩M

i
2 = M i

0]
and f i

ℓ is an isomorphism from Mℓ onto M i
ℓ for ℓ < 3 and

f i
0 ⊆ f i

1, f
i
0 ⊆ f i

2 then there are M ′
3, f3 such that M2

3 ≤K M ′
3

and f3 is a ≤K-embedding of M1
3 into M ′

3 extending
(f2

1 ◦ (f1
1 )−1)∪ (f2

2 ◦ (f1
2 )−1) i.e. f3 ◦ f

1
1 = f2

1 & f3 ◦ f
1
2 = f2

2

(d) x = d⇒M1 ∩M2 = M0.
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2) We say UQx
λ(M0,M1,M2) if UQx

λ(M0,M
′
1,M

′
2,M3) for some M3

and M ′
1,M

′
2 isomorphic to M1,M2 over M0 respectively.

Let NUQx
λ(M0,M1,M2) be the negation of UQx

λ(M0,M1,M2). If the
identity of K is not clear we may write UQx

Kλ
, NUQx

Kλ
.

3) If we omit x, we mean x = a.

4) K3,nmr
λ is the family of reduced members of K3,nm

λ ; where nm

stands for “no minimal”; recall that K3,nm
λ is the family of triples

(M,N, a) ∈ K3,na
λ such that there is no minimal triple above it by

≤na in 1.15(4).

5) K2,nm
λ is the family {(M,N) : for some a, (M,N, a) ∈ K3,nm

λ }.

6) For M ∈ Kλ+ let7 S nm
∗ (M) = {tp(a,M,N) : (M,N, a) ∈ K3,nm

λ+,∗
}

where K3,nm
λ+,∗

= {(M,N, a) ∈ K3,na
λ+ : for some M0 ≤K N0 ≤K N we

have M0, N0 ∈ Kλ,M0 ≤K M and (M0, N0, a) ∈ K3,nm
λ }.

7) ForM ∈ Kλ+ let S nmr
∗ (M) = {tp(a,M,N) : (M,N, a) ∈ K3,nmr

λ+,∗
}

where K3,nmr
λ+,∗

= {(M,N, a) ∈ K3,na
λ+ : there is a ≤na-increasing con-

tinuous sequence 〈(Mα, Nα, a) : α < λ+〉 of members of K3,nmr
λ with

union (M,N, a)}.

The reader may find it helpful to look at the following example.

3.4 Exercise. LetK be the class of modelsM = (|M |, EM), ‖M‖ ≥ λ
such that EM is an equivalence relation on |M | and let ≤K be being
a submodel.
1) We have UQλ(M0,M1,M2) iff

(a) Mℓ ∈ Kλ for ℓ = 0, 1, 2

(b) M0 ⊆Mℓ for ℓ = 1, 2

(c) if aEM1c, bEM2d and a, b ∈ M0 and c ∈ M1\M0 and d ∈
M2\M0 then ¬(aEM0b)

(d) for at least one ℓ ∈ {1, 2} for every c ∈Mℓ we have (c/EMℓ)∩
M0 6= ∅.

2) We have UQd
λ(M0,M1,M2) iff clauses (a),(b),(d) above holds.

7recall that S nm(M) for M ∈ Kλ is defined in Definition 1.15(4).
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3.5 Claim. 0) UQx
λ is preserved by isomorphisms.

1) Symmetry: assuming x ∈ {a, d} we have UQx
λ(M0,M1,M2,M3) ⇒

UQx
λ(M0,M2,M1,M3); we also can omit M3. Moreover in Defini-

tion 3.3(1), clause (c) itself is symmetric.
2) If M1,M2 has a disjoint ≤Kλ

-amalgamation overM0 and UQa
λ(M0,

M1,M2) then UQd
λ(M0,M1,M2); moreover for any M3,

UQa
λ(M0,M1,M2,M3) ⇒ UQd

λ(M0,M1,M2,M3).
2A) Assume M0 ≤K Mℓ for ℓ = 1, 2 and a1 ∈ M1\M0 & a2 ∈
M2\M0 ⇒ tp(a1,M0,M1) 6= tp(a2,M0,M1). Then UQa

λ(M0,M1,M2)

iff UQd
λ(M0,M1,M2,M3).

3) UQx
λ(M0,M1,M2,M3) iff clauses (a),(b),(d) of Definition 3.3(1),

(2) holds and also (c)−, i.e., clause (c) restricted to the case M1
ℓ =

Mℓ for ℓ ≤ 3.
4) Monotonicity in M3: if UQx

λ(M0,M1,M2,M3) and M3 ≤K M ′
3 ∈

Kλ then UQx
λ(M0,M1,M2,M

′
3); and also the inverse: if UQx

λ(M0,M1,
M2,M

′
3) and M1 ∪M2 ⊆M3 ≤K M ′

3 then UQx
λ(M0,M1,M2,M3).

5) Assume (M,N, a) ∈ K3,na
λ and it is not minimal (even less) then

NUQλ(M,N,N).
6) Assume M0 ≤Kλ

M1 ≤Kλ
M3. Then UQλ(M0,M1,M1,M3) iff

for every a ∈ M1\M0 the type tp(a,M0,M1) is 1-algebraic, i.e. is
realized at most by one element in any ≤K-extension of M0.
7) If M1 ≤Kλ

N1 ≤Kλ
N2 ≤K M2 and NUQ(N1, N2, N2) then

NUQ(M1,M2,M2).

Proof. 0),1),2),2A) Trivial (for the second sentence in part (1) use
amalgamation in Kλ).
3) Done by chasing arrows. As trivially (c) ⇒ (c)− it is enough to
assume clause (c)− and prove clause (c) of Definition 3.3(1). Assume
we are given sequences 〈M1

ℓ : ℓ < 4〉, 〈M2
ℓ : ℓ < 4〉, 〈f i

ℓ : ℓ < 3〉 as
there for i = 1, 2. First for i = 1, 2 apply clause (c)− to 〈M i

ℓ : ℓ <
4〉, 〈f i

ℓ : ℓ < 3〉. So there are N i
3, f

i
3 such that: M i

3 ≤K N i
3 ∈ Kλ,

and f i
3 a ≤K-embedding of M3 into N i

3 extending f i
1 ∪ f

i
2. As K has

amalgamation in λ (by 3.1(b)) there areN ∈ Kλ and ≤K-embeddings
gi : N i → N such that g1 ◦ f1

3 = g2 ◦ f2
3 , so we are done.

4) Again by the amalgamation i.e., 3.1(b).
5) So we can find (M ′, N ′

ℓ, a) such that (M,N, a) ≤na (M ′,M ′
ℓ, a) for

ℓ = 1, 2 and tp(a,M ′,M ′
1) 6= tp(a,M ′,M ′

2). By (amg)λ we can find
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(N ′, f1, f2) such that M ′ ≤K N ′ ∈ Kλ and fℓ is a ≤K-embedding
of M ′

ℓ into N ′ over M ′ for ℓ = 1, 2. So necessarily a1 6= a2. Both
realizes tp(a,M,N) in N ′ hence this type is not 1-algebraic. Now
we can apply part (6).
6) First, assume that a ∈M1\M0 exemplify the failure of the second
phrase. So by (amg)λ we can find (N0, a1, a2) such that M0 ≤K N0 ∈
Kλ and a1 6= a2 both realizes tp(a,M0,M1). By (amg)λ and basic
properties of types we can find (N1, f1, f2) such that N0 ≤K N1 ∈ Kλ

and fℓ is a ≤K-embedding of M3 into N1 over M0 mapping aℓ to a.
Now for i = 1, 2 we choose 〈M i

ℓ : ℓ ≤ 3〉, 〈f i
ℓ : ℓ ≤ 3〉 as follows:

for i = 1, 2 let M i
0 = M0, f

i
0 = idM ,M i

3 = N1,M
i
1 = f1(M1), f

i
1 = fi

and (M i
2, f

i
2) is (fi(M1), fi) for i = 1, 2.

Clearly we have gotten two contradictory amalgamations, so we
are done.
7) Easy. �3.5

3.6 Claim. 1) transitivity: If UQλ(Mℓ, Nℓ,Mℓ+1, Nℓ+1) for ℓ = 0, 1
then
UQλ(M0, N0,M2, N2).
2) Long transitivity: if θ = cf(θ) < λ+, and 〈Mi : i ≤ θ〉 is
≤K-increasing continuous and 〈Ni : i ≤ θ〉 is ≤K-increasing and
UQλ(Mi, Ni,Mi+1, Ni+1) for each i < θ then
UQλ(M0, N0,Mθ, Nθ).
3) Assume:

(a) α, β < λ+

(b) Mi,j ∈ Kλ for i ≤ α, j ≤ β

(c) i1 ≤ i2 ≤ α & j1 ≤ j2 ≤ β ⇒Mi1,j1 ≤K Mi2,j2

(d) 〈Mi,j : i ≤ α〉 is ≤K- increasing continuous for each j ≤ β

(e) 〈Mi,j : j ≤ β〉 is ≤K-increasing continuous for each i ≤ α

(f) UQλ(Mi,j,Mi+1,j,Mi,j+1,Mi+1,j+1) for every i < α, j < β.

Then UQλ(M0,0,Mα,0,M0,β,Mα,β).
4) Monotonicity in M1,M2: if UQλ(M0,M1,M2) and M0 ≤K M ′

1 ≤K

M1 and M0 ≤K M ′
2 ≤K M2 then UQλ(M0,M

′
1,M

′
2).

5) If M ≤K Nℓ for ℓ = 1, 2 and N1 can be ≤K-embedded into N2 over
M , then UQλ(M,N2,M

′) implies UQλ(M,N1,M
′).
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Proof. Chasing arrows, and for part (3) use also symmetry, and long
transitivity, i.e. 3.5(2) (note: UQ = UQa is easier than UQd, for UQd

the parallel claim is not clear at this point, i.e. the straightforward
proof of transitivity fails). �3.6

The following definition will be widely used in our non-structure
proofs here in §3 + §4.

3.7 Definition. 1) Mdis
λ [K] = {(M,Γ) : M ∈ Kλ,Γ ⊆ Kλ, |Γ| ≤ λ

satisfies N ∈ Γ ⇒M <K N and N1 6= N2 ∈ Γ ⇒ N1 ∩N2 = M}.
The last demand N1 ∩N2 = M is for technical reasons.
2) Let (M1,Γ1) ≤

or
f (M2,Γ2) mean that

(a) (Mℓ,Γℓ) ∈ Mdis
λ [K] for ℓ = 1, 2

(b) f is a function with domain ∪{N : N ∈ Γ1} ∪M1

(c) f ↾ M1 is a ≤K-embedding of M1 into M2

(d) for every N1 ∈ Γ1 we have

(α) UQ(f(M1), f(N1),M2), this is the main point

(β) if f(N1) * M2 then for some (unique) N2 ∈ Γ2 the
function f ↾ N1 is a ≤K-embedding of N1 into N2

(γ) if f(N1) ⊆ M2 then f ↾ N1 is a ≤K-embedding of N1

into M2.

2A) Above we say f is simple in (M1,Γ2) ≤or
f (M2,Γ2) when, in

addition N ∈ Γ1 ⇒ f(N) ∩M2 = M1.
3) (M1,Γ1) ≤or (M2,Γ2) means that (M1,Γ1) ≤

or
f (M2,Γ2) for some

f such that:

(a) f is simple and f = ∪{idN : N ∈ Γ1} ∪ {idM}
or generally

(b) f ↾ M = idM and a ∈ N ∈ Γ1 ∧ a /∈ M1 ∧ f(a) /∈ M2 ⇒
f(a) = a.

3A) We say (M1,Γ1) ≤or (M2,Γ2) simply when there is f witnessing
it which is simple, in fact, f is unique.
4) (M1,Γ1) <∗

or (M2,Γ2) means that (M1,Γ1) ≤or (M2,Γ2) and
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NUQλ(M1,M2,M2) hence M1 <K M2 (so it is not the order derived
from ≤or) and ≤∗

or means equality or <∗
or.

5) We say that 〈(Mi,Γi) : i < i∗〉 is ≤or-increasing continuous when:

(a) if i < j < i∗ then (Mi,Γi) ≤or (Mj ,Γj) so both from Mdis
λ [K]

(b) if δ < i∗ is a limit ordinal then (Mδ,Γδ) := ∪{(Mi,Γi) : i <
δ} which means: Mδ = ∪{Mi : i < δ} and

Case 1: (Mi,Γi) ≤or (Mj ,Γj) simply for i < j < δ.
We let Γδ = {N : for some i < δ and Ni ∈ Γi we have Ni * Mδ

and letting Nj ∈ Γj be the unique N ′ ∈ Γj such that Ni ≤K N ′ for
j ∈ [i, δ), (necessarily well defined) we have N = ∪{Nj : j ∈ [i, δ)}}.

Case b: In general:
For i < j < δ let fj,i be the unique function witnessing (Mi,Γi) ≤or

(Mj ,Γj), see 3.8(0) below, we let X = {(i, N, c) : i < δ,N ∈ Γi, c ∈
N\Mi and j ∈ (i, δ) ⇒ fj,i(c) /∈ Mj}, for x ∈ X let x = (ix, Nx, cx)
and let Y = {x ∈ X: for no y ∈ X do we have iy < ix and
fix,iy(cy) = cx so necessarily cy = cx}.

For y ∈ X and j ∈ [iy, δ) let Ny,j be the unique N ∈ Γj such
that fj,iy(cy) ∈ N\Mj and let fy,δ be the function with domain Ny

such that: fy,δ(a) is fj,iy(a) if j is the minimal j ∈ [iy, δ) such that
fj,i(a) ∈Mj and is a if there is no such j.

For y ∈ X and j ∈ [iy, δ) let xy,j be the unique x ∈ X such that
cx = cy∧ix = j. Now for y ∈ X let gy = ∪{fxy,j ,δ : j ∈ [iy, δ)}. Now

let N−
y,δ be the unique τK-model such that gy,δ is an isomorphism

from Ny onto Ny,δ.

Clearly for any y ∈ X the sequence 〈N−
xy,j,δ: for j ∈ [iy, δ)〉 is a

≤K-increasing continuous and let Ny,δ = ∪{N−
xy,j

: j ∈ πy, δ)}.

Lastly, let Γδ := {Ny,δ : y ∈ X and Ny * Mδ}. Of course we may
well have y1 6= y2, Ny1

= Ny2
but Ny1

6= Ny1
⇒ Ny1,δ∩Ny2,δ = Mδ.

3.8 Observation. 0) In Definition 3.7(3), the function f is unique,
i.e. determined by (M1,Γ1,M2,Γ2).
1) ≤or is a partial order of Mdis

λ [K].
2) Mdis

λ [K] is non-empty, e.g., (M, ∅) ∈ Mdis
λ [K] when M ∈ Kλ.
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3) If δ < λ+ is a limit ordinal and 〈(Mi,Γi) : i < δ〉 is ≤or-increasing
continuous then this sequence has an upper bound
(Mδ,Γδ) := ∪{(Mi,Γi) : i < δ}, see clause (b) of Definition 3.7(5).
4) If (M0,Γ0) ≤or (M1,Γ1) <

∗
or (M2,Γ2) ≤or (M3,Γ3)

then (M0,Γ0) <
∗
or (M3,Γ3).

Proof. Easy, e.g.
3) The main point is that we use the long transitivity, i.e. 3.6(2).
4) By part (1) and the definition noting that NUQ(M0,M3,M3) by
3.5(7). �3.8

Below in 3.9 - 3.12 we investigate the non-structure consequences of
“there is no maximal member of (Mdis

λ [K], <∗
or)”.

First we get µwd(λ+) pairwise non-isomorphic models in Kλ+ , see
Definition VII.0.3(6), later we work more to get more.

3.9 Claim. Assume 2λ < 2λ+

.
If (∗)λ or at least (∗)′λ below holds, then İ(λ+, K) ≥ µwd(λ+),

where

(∗)λ for every (M,Γ) ∈ Mdis
λ [K] for some M ′,Γ′ we have (M,Γ) <∗

or

(M ′,Γ′)
or just

(∗)′λ for some (M∗,Γ∗) ∈ Mdis
λ [K], if (M∗,Γ∗) ≤

∗
or (M,Γ) then for

some M ′,Γ′ we have (M,Γ) <∗
or (M ′,Γ′).

Remark. From where some freedom, i.e. failure of amalgamation,
comes? E.g. if M0 <Kλ

M then (M, ∅), (M0, {M}) are contradictory
≤or-above (M0, ∅), in M.

Proof. Note that as Mdis
λ [K] 6= ∅, see 3.8(2), clearly (∗)λ ⇒ (∗)′λ

hence we can assume (∗)′λ.
We choose 〈(Mη,Γη,Γ

+
η ) : η ∈ α2〉 by induction on α < λ+ such

that:

⊛ (a) Mη ∈ Kλ has universe γη < λ+
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(b) (Mη,Γη) ∈ Mdis
λ [K]

(c) N ∈ Γη ⇒ (N\Mη) ∩ λ
+ = ∅

(d) ν ⊳ η ⇒ (Mν ,Γν) <∗
or (Mη,Γη);

moreover 〈(Mη↾β,Γη↾β) : β ≤ α〉 is <∗
or-increasing continuous

(e) (Mη,Γ
+
η ) ∈ Mdis

λ [K] and N ∈ Γ+
η ⇒ (N\Mη) ∩ λ+ = ∅

(f) Γη ⊆ Γ+
η

(g) (Mη,Γ
+
η ) ≤or (Mηˆ〈0〉,Γηˆ〈0〉)

(h) for some N ∈ Γ+
η we have N ∼=Mη

Mηˆ<1>.

There is no serious problem to carry the induction with Γ+
η (for

η ∈ α2) chosen in the (α + 1)-th step but we elaborate. For α =
0 let (M<>,Γ<>) be the (M∗,Γ∗) from (∗)′λ except that we re-
name the elements to make the relevant parts of clauses (a), (c)
true. For α limit use 3.8(3). For α = β + 1, η ∈ β2, by (∗)′λ we
can find (Mηˆ〈1〉,Γηˆ〈1〉) such that (Mηˆ〈1〉,Γηˆ〈1〉) ∈ Mdis

λ [K] and
(Mη,Γη) <∗

or (Mηˆ〈1〉,Γηˆ〈1〉).
By renaming without loss of generality the universe of Mηˆ〈1〉

is some γηˆ〈1〉 ∈ (γη, λ
+) and clause (c) holds. Let Nη be iso-

morphic to Mηˆ〈1〉 over Mη with Nη\Mη disjoint to λ+ ∪
⋃

{|N | :

N ∈ Γη} and let Γ+
η = Γη ∪ {Nη}, so (Mη,Γ

+
η ) ∈ Mdis

λ [K] and

N ∈ Γ+
η ⇒ (N\Mη) ∩ λ+ = ∅ as required in clause (d), now

apply (∗)′λ to this pair and get some (Mηˆ〈0〉,Γηˆ〈0〉) ∈ Mdis
λ [K]

such that (Mη,Γ
+
η ) <∗

or (Mηˆ〈0〉,Γηˆ〈0〉), and by renaming without

loss of generality the universe of Mηˆ〈0〉 is some γηˆ〈0〉 ∈ (γη, λ
+)

and clause (c) holds. Note that by 3.8(4) we have (Mη,Γη) <∗
or

(Mηˆ〈1〉,Γηˆ〈1〉). Why does clause (h) hold? By the choice of Nη and

Γ+
η . So Mη,Γη,Γ

+
η (η ∈ λ+>2) are defined.

Note:

⊕ if ηˆ〈0〉 ⊳ ν ∈ λ+>2, then Mηˆ<1> is not ≤K-embeddable into
Mν over Mη.

[Why? Toward contradiction assume that there is such an embed-
ding h. By clause (d) and Definition 3.7(4) we have
NUQλ(Mη, Mηˆ<1>,Mηˆ<1>) hence by Claim 3.6(5) applied to h we
get NUQλ(Mη,Mν ,Mηˆ<1>). Now by clause (g) we have (Mη,Γ

+
η ) ≤or
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(Mν ,Γν) so by Definition 3.7(4) we haveN ∈ Γ+
η ⇒ UQλ(Mη,Mν, N),

so by preservation under isomorphisms and clause (h) we have
UQλ(Mη,Mν,Mηˆ<1>), contradicting the previous sentence.]

By VII.9.6 we get the desired conclusion (really, usually also on

İĖ). �3.9

3.10 Claim. 1) An equivalent condition to (∗)λ from 3.9 is:

(∗∗)λ for every M ≤K N from Kλ for some M ′ we have M <K

M ′ ∈ Kλ and
UQλ(M,M ′, N) but NUQλ(M,M ′,M ′).

2) Also, the condition (∗)′λ from 3.9 is equivalent to (∗∗)′λ and follows
from (∗∗)′′ where:

(∗∗)′′λ for some M∗ ∈ Kλ if M∗ ≤K M ≤K N ∈ Kλ then for some
M ′,
M <K M ′ ∈ Kλ and UQλ(M,M ′, N) but NUQλ(M,M ′,M ′)

(∗∗)′λ for some M∗ <Kλ
N∗, if M∗ ≤K M ∈ Kλ, N∗ ≤K N and

UQλ(M∗, N∗,M,N) then for some M ′ we have M <K M ′ ∈
Kλ and UQλ(M,M ′, N) but NUQλ(M,M ′,M ′).

3) We have (∗)λ ⇒ (∗)′λ. If K is categorical in λ then (∗)λ ⇔ (∗)′λ ⇔
(∗∗)′λ ⇔ (∗∗)′′λ.

Proof. 1),2) For any (M,Γ) ∈ Mdis
λ [K], by “K has amalgamation in

λ and LS(K) ≤ λ” (and properties of abstract elementary classes),
there are N∗, 〈fN : N ∈ Γ〉 such that:

(a) M ≤K N∗ ∈ Kλ

(b) for N ∈ Γ, fN is a ≤K-embedding of N into N∗ over M .

Now if M ′ ∈ Kλ satisfies UQλ(M,N∗,M ′) then N ∈ Γ ⇒ UQλ(M,
N,M ′) by 3.6(5). This shows that (∗∗)λ ⇒ (∗)λ and also (∗∗)′λ ⇒
(∗)′λ.
The other direction is deduced by applying (∗)λ (or (∗)′λ) to the pair
(M, {N}).
3) Should be clear. �3.10
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We continue 3.9 getting a sharper result, (note that for proving just
Theorem 0.2, this improvement is not necessary).

3.11 Claim. İ(λ+,K) = 2λ+

when:

⊠0 2λ < 2λ+

⊠1 (M∗,Γ∗) ∈ Mdis
λ [K]

⊠2 if (M∗,Γ∗) ≤
∗
or (M,Γ) then for some M ′,Γ′ we have (M,Γ) <∗

or

(M ′,Γ′)

⊠3 if (M∗,Γ∗) ≤or (M1,Γ1) ∈ Mdis
λ [K] then we can find (M2,Γ2)

such that

(a) (M1,Γ1) ≤or (M2,Γ2) ∈ Mdis
λ [K]

(b) if (M2,Γ2) ≤or (M ℓ,Γℓ) for ℓ = 3, 4 then we can find
(M ℓ,Γℓ) for ℓ = 5, 6 such that (M ℓ,Γℓ) ≤or (M ℓ+2,Γℓ+2)
for ℓ = 3, 4 and M5,M6 are isomorphic over M1.

Remark. 1) This corresponds to case B in the proofs of I.3.8, VII.9.7.
2) The gain over 3.9 is in some sense not large but here we get the
“right” number.

Proof. Without loss of generality the universe of M∗ is γ<> < λ+

and N ∈ Γ∗ ⇒ N∗ ∩ λ
+ = M∗.

By induction on α < λ, we choose 〈(Mη,Γη,Γ
+
η ) : η ∈ α2〉 such

that:

⊛1(a) Mη ∈ Kλ has universe γη < λ+

(b) (Mη,Γη) ∈ Mdis
λ [K]

(c) N ∈ Γη ⇒ (N\Mη) ∩ λ
+ = ∅

(d) ν ⊳ η ⇒ (Mν ,Γν) <∗
or (Mη,Γη)

(e) (M<>,Γ<>) = (M∗,Γ∗) and (Mη,Γ
+
η ) ∈ Mdis

λ [K] and

N ∈ Γ+
η ⇒ (N\Mη) ∩ λ+ = ∅

(f) Γη ⊆ Γ+
η

(g) (Mη,Γ
+
η ) ≤or (Mηˆ〈0〉,Γηˆ〈0〉)
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(h) for some N ∈ Γ+
η we have N ∼=Mη

Mηˆ<1>

(i) if η ∈ λ+>2, ν ∈ {ηˆ〈0〉, ηˆ〈1〉} and
(Mν ,Γν) ≤or (M ℓ,Γℓ) ∈ Mdis

λ [K] for ℓ = 1, 2
then we can find (M ℓ+2,Γℓ+2) for ℓ = 1, 2
such that (M ℓ,Γℓ) ≤or (M ℓ+2,Γℓ+2) and M3,M4 are iso-
morphic over Mη.

There is no problem to carry the induction as in the proof of 3.9, to
guarantee clause (i) we use assumption ⊠3.
Clearly, by clauses (g) + (h), as in the proof of 3.9

⊛2 if η ∈ λ+>2 and (Mηˆ<ℓ>,Γηˆ<ℓ>) ≤or (Mℓ,Γℓ) ∈ Mdis
λ [K]

for ℓ = 0, 1 then we cannot find (M ′
ℓ,Γ

′
ℓ) ∈ M for ℓ = 0, 1

such that (Mℓ,Γℓ) ≤or (M ′
ℓ,Γ

′
ℓ) for ℓ = 0, 1 and M ′

0,M
′
1 are

isomorphic over Mη, equivalently: we cannot find (M,Γ) ∈
Mdis

λ [K] and functions f0, f1 such that (Mℓ,Γℓ) ≤or
fℓ

(M,Γ)
for ℓ = 0, 1 and f0 ↾ Mη = f1 ↾ Mη.

Now we would like to apply VII.9.7, so we have to check it’s assump-
tion.

The main point is proving (∗)1 there, a stronger version of ⊛2

above which says

⊛3 the following is impossible

(α) α < β < λ+

(β) η1, η2 ∈ α2

(γ) η1ˆ〈0〉 ⊳ ν1 ∈ β2 and η1ˆ〈1〉 ⊳ ρ1 ∈ β2

(δ) η2ˆ〈0〉 ⊳ ν2 ∈ β2 and8 η2ˆ〈0〉 ⊳ ρ2 ∈ β2

(ε) f is an isomorphism from Mν1
onto Mν2

mapping Mη1

onto Mη2

(ζ) g is an isomorphism from Mρ1
onto Mρ2

mapping Mη1

onto Mη1

(η) g ↾ Mη1
= f ↾ Mη1

.

8yes! again η2ˆ〈0〉
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Note: ν1, ρ1, ν2, ρ2 here stands for ν0, ν1, ν
′
0, ν

′
1 in ⊠1 in VII.9.7.

Proof of ⊛3. Toward contradiction assume that α, β, η1, η2, ν1, ν2,
ρ1, ρ2 form a counterexample.

We can find Γ∗
ν2

, Γ∗
ρ2

such that

(i) (Mν2
,Γν2

) ≤or (Mν2
,Γ∗

ν2
) ∈ Mdis

λ [K]

(ii) (Mρ2
,Γρ2

) ≤or (Mρ2
,Γ∗

ρ2
) ∈ Mdis

λ [K]

(iii) if N ∈ Γν1
then f can be extended to an isomorphism from

N onto some N ′ ∈ Γ∗
ν2

(iv) if N ∈ Γρ1
then g can be extended to an isomorphism from

N onto some N ′ ∈ Γ∗
ρ2

.

So (Mη2ˆ<0>,Γη2ˆ<0>) ≤or (Mν2
,Γν2

) ≤or (Mν2
,Γ∗

ν2
) and (Mη2ˆ<0>,

Γη2ˆ<0>) ≤or (Mρ2
,Γρ2

) ≤or (Mρ2
,Γ∗

ρ2
).

Now by applying clause (i) of ⊛1 with η2, η2ˆ<0>, (Mν2
,Γ∗

ν2
),

(Mρ2
,Γ∗

ρ2
) here standing for η, ν, (M1,Γ1), (M2,Γ2) there, we can

find (N ℓ,Γℓ
∗) for ℓ = 1, 2 and h such that

(v) (Mν2
,Γ∗

ν2
) ≤or (N1,Γ1

∗)

(vi) (Mρ2
,Γ∗

ρ2
) ≤or (N2,Γ2

∗)

(vii) h is an isomorphism from N1 onto N2 over Mη2
.

But now the mapping h◦f and g contradict the choice of (Mη1ˆ<0>,
Γη1ˆ<0>) and (Mη1ˆ<1>,Γη1ˆ<1>), that is ⊛2 above, in particular
clauses (g),(h) there.

Having proved ⊛3 we have justified applying VII.9.7 which gives
the desired conclusion. �3.11

3.12 Conclusion. If 2λ < 2λ+

and (∗∗)′′λ or just (∗∗)′λ from 3.10(2)

then İ(λ+, K) = 2λ+

.

Proof. First, clearly ⊠0 from 3.11 which says 2λ < 2λ+

holds by our
assumption. Second, by our assumption (∗∗)′λ and Claim 3.10(2)
clearly the statement (∗)′λ from 3.9 holds which says that we can
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choose (M∗,Γ∗) from M
3,dis
λ [K] which satisfy ⊠1 + ⊠2 from 3.11. If

⊠3 there holds too, then by 3.11 we are done so assume that it fails
for (M1,Γ1) ∈ Mdis

λ [K]. Now we choose (Mη,Γη) as the proof of 3.9
except that:

(a) − (d) as in ⊛ there

(e)′ we choose (M<>,Γ<>) = (M1,Γ1)

(f)′ for each η, for no (M1,Γ1), (M2,Γ2) do we have:

(i) (Mηˆ<0>,Γηˆ<0>) ≤or (M1,Γ1)

(ii) (Mηˆ<1>,Γηˆ<1>) ≤or (M2,Γ2)

(iii) M1,M2 are isomorphic over M<>.

So we can carry the definition as there because we assume that ⊠3

of 3.9 fail. Now İ(λ+, K) ≥ 2λ+

by VII.9.5, (or elaborating, note

that 〈Mη : η ∈ λ+

2〉 are pairwise non-isomorphic over M<> and this
suffices, see I.0.3). �3.12

Complimentary to 3.12 is

3.13 Claim. İ(λ++, K) ≥ µunif(λ
++, 2λ+

), see below, when ⊠ below
holds except possibly when ⊛λ holds where:

⊠ (a) (∗∗)′λ of 3.10 fails so in particular (equivalent by (c) below
recalling 3.10(3)): for some M∗ ≤Kλ

N∗ we have M∗ <Kλ

M ′ ∈ Kλ & NUQλ(M∗,M ′,M ′) ⇒ NUQ(M∗, N∗,M ′)

(b) M ∈ Kλ ⇒ |S nc(M)| > λ+ (or S nc, see Definition 1.15(4);

follows from “(cat)λ+ above some (M,N, a) ∈ K3,na
λ there is

no minimal triple” +2λ > λ+ see 2.3(5))

(c) K is categorical in λ, hence (jep)λ (or strengthen (a) to:
for any M∗ ∈ Kλ there is N∗ as there and retain (jep)λ)

(d) there is a superlimit M ∈ Kλ+

(e) 2λ < 2λ+

< 2λ++

.

⊛λ WDmId(λ+) is λ++-saturated, (it is a normal ideal on λ+).
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3.14 Remark. 1) On µunif(λ
++, 2λ+

), see VII.0.4(6),(7) and VII.9.4

it is usually 2λ++

and on “WDmId(λ+) is λ++-saturated”, see Defi-
nition VII.0.7.
2) This claim and VII§4(A) and more specifically VII.4.3(1) gives
the two halfs of the proof of one statement.
3) We may weaken the model theoretic assumption (d) in 3.13 to
“there is a (λ+, λ+)-superlimit M ∈ Kλ+” if we strengthen the set
theoretic assumptions, e.g.

(∗)1 for some stationary S ⊆ Sλ++

λ+ we have S ∈ Ǐ[λ] but S /∈
WDmId(λ++).

In this case we can use VII.4.3(2) instead VII.4.3(1).
4) Note that: if λ = λ<λ and V = VQ where Q is adding λ+-Cohen

set (3.1 and) the minimal types are not dense then İ(λ+, K) = 2λ+

.
More generally, this is connected to replacing WDmId(µ+) by the
“definable weak diamond ideal on µ+” for µ = λ, λ+, but we do not
pursue this here.

Proof. This holds by VII.4.3(1). So we have to check the demands
⊙(a), (b), (c) from VII.4.1 and (d)′ from VII.4.3(1).

Clause (a): 2λ < 2λ+

< 2λ++

.
Obvious by clause (e) of ⊠ which we are assuming.

Clause (b): WdmId(λ+) is not λ++-saturated.
Holds by ¬⊛λ from our claim.

Clause (c): K is an a.e.c. with LS(K) ≤ λ and has (amg)λ+ (jep)λ

and Kλ+ 6= ∅.
Clearly: “K is an a.e.c. with LS(K) ≤ λ” as well as (amg)λ

holds by the hypothesis of the section, (jep)λ by ⊠(c) here and lastly
Kλ+ 6= ∅ holds by ⊠(d).

Clause (d)′:
So let M ∈ Kλ+ be superlimit and 〈Mα : α < λ+〉 be a <K-

representation of M and we should find (α0, N0, a) as in clause (d) of
VII.4.3, i.e. satisfying clauses (α), (β), (γ) from clause (d) of VII.4.1.
As K has amalgamation in λ and M is superlimit, clearly without
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loss of generality for each even α < λ+, the pair (Mα,Mα+1) is
isomorphic to the pair (M∗, N∗) from clause ⊠(a) here, so

(∗) if α is even and Mα <Kλ
M ′ & NUQλ(Mα,M

′,M ′) then
NUQλ(Mα,Mα+1,M

′).

Now by ⊠(b) here there is N ∈ Kλ satisfying S nc
K

(N) has cardinality
> λ+. By (jep)λ+ (amg)λ+ (slm)λ+ there is M ′ ∈ Kslm

λ+ such that
N ≤K M ′, but M ′ ∼= M so without loss of generality M ′ = M so
N ≤K M but ‖M‖ ≤ λ+ < |S nc

K
(N)| hence some p ∈ S nc

K
(N) is

not realized in M and choose α0, (N0, a) such that α0 < λ+, N ≤K

Mα0
,Mα0

≤Kλ
N0 and a ∈ N0\M0 and p = tpKλ

(a,N,N0). It is
enough to show that the triple (M0, N0, a) is as required in subclauses
(α), (β), (γ) of clause (d) of VII.4.1.

But clause (α) says Mα0
≤K N0 which holds and clause (β) says

that p′ = tp(a,Mα0
, N0) is not realized in M but even p′ ↾ N is not

realized in M . We are left with clause (γ).
So assume α1 < λ+ is a limit ordinal > α0,Mα1

≤Kλ
N1 and

f is a ≤Kλ
-embedding of N0 into N1 over Mα0

. Let α2 = α1 + 1
and now Mα1

<K N1 by the choice of p, i.e. by (β) there which we
have proved, i.e. tp(f(a),Mα1

, N1) extends p hence is not algebraic
(reclling M omit p) and is not 1-algebraic as p ∈ S nc

Kλ
(N), see Defini-

tion 1.15(4), hence NUQ(Mα1
, N1, N1) holds by Claim 3.5(6). So as

(Mα1
,Mα2

) = (Mα1
,Mα1+1) ∼= (M∗, N∗) it follows that NUQ(Mα1

,
Mα2

, N1), i.e. is as required. �3.13

3.15 Remark. 1) We can get more abstract results.
2) Note that ¬⊛λ of 3.13 is a “cheap”, “light” assumption, in fact,
e.g. its negation has reasonably high consistency strength and we
have “to work” to get it to hold in forcing extensions.

§4 Density of minimal types

We deduce the density of minimal types from reasonable assump-
tion (so weaker than in 2.25). We rely on results from Chapter VII,
but not on the understanding of Chapter VII.
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From §1,§2 we use as in §3 (in particular K3,na
λ ) and quote 1.9, 2.3

in proof of 4.5(1); in 4.2 we quote VII.11.1, which we extensively use
below (and also VII.11.4). We shall use freely 2.5(1), the extension

property for K3,nm
λ .

4.1 Remark. Recall that

(∗)1 WDmId(λ+), the weak diamond is an ideal on λ+, which is

normal 6= P(λ+) when 2λ < 2λ+

, see Definition VII.0.3(4)(a)

(∗)2 µunif(λ
++, 2λ+

), see Definition VII.0.4(6),(7)

(∗)3 remember that

cov(χ, µ, θ, σ) = χ+ Min
{

|P| : P ⊆ [χ]<µ,

and every member of [χ]<θ

is included in the union

of < σ members of P
}

.

4.2 Claim. Assume 2λ < 2λ+

.
Then one of the following cases occurs: (clauses (α)− (λ) appear

later)

(A)λ χ∗ = 2λ+

and for some µ clauses (α) − (ε) hold

(B)λ for some χ∗ > 2λ and µ clauses (α) − (κ) hold (note: µ
appear only in (α) − (ε))

(C)λ χ∗ = 2λ and clauses (η) − (µ) hold
where

(α) λ+ < µ ≤ 2λ and cf(µ) = λ+

(β) pp(µ) = χ∗, moreover pp(µ) =+ χ∗

(γ) (∀µ′)(cf(µ′) ≤ λ+ < µ′ < µ⇒ pp(µ′) < µ) hence
cf(µ′) ≤ λ+ < µ′ < µ⇒ ppλ+(µ′) < µ

(δ) for every regular cardinal χ in the interval (µ, χ∗] there
is an increasing sequence 〈λi : i < λ+〉 of regular cardi-

nals > λ+ with limit µ such that χ = tcf

(

∏

i<λ+

λi/J
bd
λ+

)

,

and i < λ+ ⇒ max pcf{λj : j < i} < λi < µ

Paper Sh:300G, Chapter VI



VI.§4 DENSITY OF MINIMAL TYPES 433

(ε) for some regular κ ≤ λ, for any µ′ < µ there is a tree
T with ≤ λ nodes, κ levels and |limκ(T )| ≥ µ′ (in fact
e.g. κ = Min{θ : 2θ ≥ µ} is appropriate; without loss
of generality T ⊆ κ>λ)

(ζ) there is no normal λ++-saturated ideal on λ+

(η) there is 〈Tζ : ζ < χ∗〉 such that: Tζ ⊆ λ+>2, a subtree

of cardinality λ+ and λ+

2 = {limλ+(Tζ) : ζ < χ∗}

(θ) χ∗ < 2λ+

moreover χ∗ < µunif(λ
+, 2λ), but < µunif(λ

+, 2λ)
is not used here,

(ι) for some ζ < χ∗ we have limλ+(Tζ) /∈ UnfmTId(χ∗)+(λ+),
not used here

(κ) cov(χ∗, λ++, λ++,ℵ1) = χ∗ or χ∗ = λ+, equivalently
χ∗ = sup[{pp(χ) : χ ≤ 2λ,ℵ1 ≤ cf(χ) ≤ λ+ < χ} ∪
{λ+}] by [Sh:g, Ch.II,5.4]; note that clause (κ) trivially

follows from χ∗ = 2λ+

(λ) for no µ ∈ (λ+, 2λ] do we have cf(µ) ≤ λ+, pp(µ) > 2λ;

equivalently 2λ > λ+ ⇒ cf([2λ]λ
+

,⊆) = 2λ

(µ) if there is a normal λ++-saturated ideal on λ+, more-

over the ideal WDmId(λ+) is, then 2λ+

= λ++ (so as

2λ < 2λ+

clearly 2λ = λ+).

Proof. By VII.11.1. �4.2

4.3 Definition. 1) We say K ′ is (λ, λ+)-dense in K when K ′ ⊆ Kλ+

and in the following game the odd player has a winning strategy. A
play last λ+ moves, in the α-th move a model Mα ∈ Kλ is chosen,
<K-increasing continuous with α and we can add with universe ⊆ λ+.

Naturally,Mα is chosen by the even/odd player when α is even/odd.
Lastly, the odd player wins a play when ∪{Mα : α < λ+} ∈ K ′. To
avoid the use of global choice we may require the universe of Mα (or
just Mα\M0) is ⊆ λ+.
2) Writing above “K′ is” we mean K′ = (K ′,≤K↾ K ′) and K ′ is as
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above. We say “...dense over S...” when S ⊆ λ+ and for some club
E of λ+, for δ ∈ S ∩E we let the even player choose Mδ+1.

4.4 Claim. Let K be an a.e.c., LS(K) ≤ λ and (nmx)λ.
1) K′ = Kλ+ is (λ, λ+) dense in Kλ+ .
2) If K has (amg)λ and K ′ = Kslm

λ+ 6= ∅ then K ′ is (λ, λ+)-dense in
K.
3) Assume (amg)λ+ (jep)λ. If S ⊆ λ+ is satisfied |S| = λ+ = |λ+\S|
and the game aS is defined as in 4.3 but we let the odd player choose
Mα+1 iff α ∈ S, then “odd win in aS” does not depend on S (and
a{2α:α<λ+} is the original game).

4) If there is a (λ+, λ+)-superlimit model in Kλ+ then {N : N ∼= M}
is (λ, λ+)-dense in K.
5) K ′ is (λ, λ+)-dense in K when K has (amg)λ and K ′ ⊆ Kλ+ is
closed under isomorphisms, is dense in Kλ+ (i.e. (∀M ∈ Kλ+)(∃N ∈
K ′)[M ≤K N ]) and K ′ is closed under unions ≤K-increasing contin-
uous chains of length < λ++.

Proof. 1) Trivial.
2),3) Straight.
4),5) Obvious. �4.4

4.5 Claim. 1) Assume

(a) 2λ < 2λ+

and case (A)λ or (B)λ of Claim 4.2 holds for µ, χ∗

(or just the conclusions there)

(b) K is an abstract elementary class with LS(K) ≤ λ

(c) Kλ+ 6= 0

(d) K has amalgamation in λ

(e) in K3,na
λ , the minimal triples are not dense.

Then

(∗)1 for any regular χ < µ we have:

(∗)1χ there is M ∈ Kλ such that |SKλ
(M)| > χ.
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2) If in part (1) we strengthen clause (d) to (d)+, then we get (∗)+1
where:

(d)+ (amg)λ+ (unv)λ, i.e. K has amalgamation in λ and has a
universal member in λ (the second follows from (slm)λ)

(∗)+1 for some M ∈ Kλ we have |SKλ
(M)| ≥ µ, in fact every

≤Kλ
-universal M is O.K.

3) Assume (a), (b), (c), (e) of part (1) and (d)+ of part (2) then:

(∗)2 İ(λ+, K) ≥ χ∗ and if (2λ)+ < χ∗ then İĖ(λ+,K) ≥ χ∗

(∗)3 there is no universal model in Kλ+

(∗)4 if K′ is (λ, λ+)-dense in K then İ(λ+, K ′) ≥ χ∗ and if in

addition (2λ)+ < χ∗ then İĖ(λ+,K′) ≥ χ∗.

4) If in clause (a) of part (1) we restrict ourselves to Case (A)λ of

Fact 4.2, then χ∗ = 2λ+

and in part (3) we get

(∗)+2 İ(λ+, K) = 2λ+

and (2λ)+ < 2λ+

⇒ İĖ(λ+, K) ≥ 2λ+

.

4.6 Remark. 1) We can restrict clause (b) of 4.5(1) to Kλ, interpreting

in (c) + (e) the class Kλ+ as {
⋃

i<λ+

Mi : Mi ∈ Kλ is <K-increasing

(strictly and) continuous}, but see II.1.23.
2) Part (3) of 4.5 and 4.7 below generalize [Sh:g, Ch.II,4.10E] and
Kojman-Shelah [KjSh 409, §2].
3) We can apply this with λ+ standing for λ here.
4) We can state the part of (A) from 4.2 which we actually use (and

can replace 2λ+

by smaller cardinals).
5) We can replace λ+ by a weakly inaccessible cardinal with suitable
changes.

Proof. 1) Note that µ is singular (as by clause (α) of 4.2 (which holds
if (A)λ or (B)λ) we have cf(µ) = λ+ < µ).

We can apply 2.3, its assumption, because Hypothesis 2.1 holds
by clause (b) here, and (amg)λ and non-density of minimal triples
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in K3,na
λ hold by clauses (d),(e) here. Now by 2.3(2) to prove (∗)1

it suffices for each µ′ < µ to show that there are δ < λ+ and a tree
with ≤ λ nodes and δ levels and ≥ µ′ δ-branches. They exist by
clause (ε) of 4.2 (which holds as (A)λ or (B)λ hold).
2) Let M0

∗ ∈ Kλ be ≤K-universal. So for every χ < µ by part (1) ap-
plied to χ+ which is regular < µ, there isMχ ∈ Kλ such that S (Mχ)
has cardinality ≥ χ. As M∗ is ≤K-universal, without loss of gener-
ality Mχ ≤K M∗. But by II.1.11(5) we know that p 7→ p ↾ Mχ is a
mapping from S (M∗) onto S (Mχ) hence |S (M∗)| ≥ |S (Mχ)| ≥ χ.
As µ is a limit ordinal we are done.
3) By part (2) we can find M∗ ∈ Kλ such that SKλ

(M∗) has cardi-
nality ≥ µ, and apply 4.7 below. Let us elaborate, all the assump-
tions of 4.7 hold because:

Clause (a): holds by (β) of 4.2; recalling that cf(µ) = θ < µ ⇒
cf([µ]θ,⊂) ≥ pp(µ), apply it with µ, λ+ standing for µ, θ and in-

creasing χ∗ is O.K.

Clause (b): holds by clause (b) of 4.5.

Clause (c): holds by the choice of M∗ above as ∈ Kλ (recalling Kλ

has amalgamation by clause (d) of 4.5).

Clause (d): holds by the choice of M∗.
To prove (∗)2 + (∗)3 of 4.5(3) we let K′ = Kλ+ so all the as-

sumptions of 4.7 holds, i.e. also clause (e) by 4.4(1) hence also the
conclusion of 4.7 holds. Now (∗)2 holds by clause (α) + (β) of 4.7

because χ∗ here is ≤ cf([µ]λ
+

,⊆) which is χ∗ in 4.7. Next (∗)3 holds
by clause (γ) of 4.7. To prove (∗)4 of 4.5(3), we have K′ in it, then
assumption clause (e) of 4.7 holds by the assumption of (∗)4 and we
can apply 4.7.
4) Should be clear from the proof of part (3). �4.5

4.7 Claim. Assume

(a) µ > λ+ and χ∗ := cf([µ]λ
+

,⊆) > 2λ

(b) K is an a.e.c. with LS(K) ≤ λ

(c) M∗ ∈ Kλ is an amalgamation base in Kλ

(d) M∗ ∈ Kλ satisfies |SKλ
(M∗)| ≥ µ and for simplicity (nmx)λ

is satisfied by K
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(e) K′ ⊆ Kλ+ is (λ, λ+)-dense in K (if K ′ = Kλ+ we ignore it).

Then

(α) İ(λ+, K) ≥ χ∗ moreover İ(λ+,K′) ≥ χ∗

(β) if (2λ)+ < χ∗ then İĖ(λ+,K′) ≥ χ∗

(γ) there is no ≤K-universal N∗ ∈ Kλ+ (in fact cov(Kλ+ ,≤K) is
≥ χ∗ when defined reasonably; also there is no K′

λ+ universal
model even in Kλ+).

4.8 Remark. We add (nmx)λ just to justify using K ′ in (e), see
4.4(1). But this is not a real assumption as even not assuming it,
K ↾ {M : M∗ is ≤K-embeddable into M} satisfies all the assumptions
and (nmx)λ and each of its conclusions implies the parallel for the
original K. This applies also to 4.9.

Proof. Let pη ∈ S (M∗) for η ∈ Z be pairwise distinct, |Z| ≥ µ
and let (Nη, aη) for η ∈ Z be such that M∗ ≤K Nη ∈ Kλ and
pη = tp(aη,M

∗, Nη).

Now for every X ∈ [Z]λ
+

, as M∗ is an amalgamation base in Kλ

there is MX ∈ K≤λ+ such that M∗ ≤K MX and η ∈ X ⇒ N∗
η is

embeddable into MX over M∗ (hence pη is realized in MX). More-
over as “K ′ is (λ, λ+)-dense in K”, it is easy to guarantee MX ∈ K ′,
[ignoring K ′, (nmx)λ we can argue that as 〈pη : η ∈ Z〉 is with-
out repetitions it follows that ‖MX‖ ≥ λ+ so MX ∈ Kλ+ ]. Let

Y [X ] = {η ∈ Z : pη is realized in MX}. So X ⊆ Y [X ] ∈ [Z]λ
+

,

hence {Y [X ] : X ∈ [Z]λ
+

} is a cofinal subset of [Z]λ
+

, hence (see
clause (a) of the assumption)

|{(MX , c)c∈M∗/ ∼=:X ∈ [Z]λ
+

}| ≥

|{Y [X ] : X ∈ [Z]λ
+

}| ≥ cf([Z]λ
+

,⊆) ≥

cf([µ]λ
+

,⊆) = χ∗.

As 2λ < χ∗ also |{MX/ ∼=: X ∈ [Z]λ
+

}| ≥ χ∗, see I.0.3 because
‖MX‖ = λ+, ‖M∗‖ = λ and (λ+)λ = 2λ < χ∗ by clause (a) in 4.5.

But İ(λ+, K) is ≥ than the former so we have proved clause (α).
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Second, we shall prove (2λ)+ < 2λ+

⇒ İĖ(λ+, K) ≥ χ∗, i.e.
claues (β).

For each X ∈ [µ]λ
+

, let FX = {f : f is a ≤K-embedding of M∗

into MX}. We would like to apply claim VII.11.4; so for simplicity
without loss of generality Z = µ. We define the function F with

domain [µ]λ
+

by F(X) = {{η ∈ Z : f(pη) is realized in MX} : f

belongs to FX}, so F(X) is a subset of [µ]λ
+

of cardinality ≤ |FX | ≤
2λ.

Now we apply VII.11.4 with κ, µ, θ, χ∗,F, F there standing for
λ+, µ, 2λ, χ∗,F, X 7→ Y [X ] here, the assumptions clearly holds hence

we can find Xi ∈ [Z]λ
+

for i < χ∗ such that i 6= j < χ∗ & X ∈
F(Xj) ⇒ Y [Xi] * X . Clearly 〈MXi

: i < χ∗〉 is as required in clause
(β) of the conclusion and it holds.
Lastly, toward proving clause (γ) assume (toward contradiction) that

N∗ ∈ Kλ+ is ≤K-universal, then for every X ∈ [Z]λ
+

there is a ≤K-

embedding fX of MX into M∗. Let F = {fX ↾ M : X ∈ [Z]λ
+

} and

for f ∈ F let Xf = {X ∈ [Z]λ
+

: fX ↾ M = f}, so [Z]λ
+

= ∪{Xf :
f ∈ F}. Note that |F | ≤ (λ+)λ = 2λ < χ∗.

Let Y +[X ] = {η ∈ Z : fX(pη) is realized in N∗}, so Y [X ] ⊆

Y +[X ] ⊆ [Z]λ
+

and fX1
= fX2

⇒ Y +[X1] = Y +[X2], hence {Y +[X ] :

X ∈ [Z]λ
+

} is cofinal in [Z]λ
+

and has cardinality ≤ |F | ≤ 2λ, con-
tradiction. So also clause (γ) holds and we are done. �4.7

4.9 Claim. 1) Assume

(a) 2λ < 2λ+

< 2λ+2

and case (B)λ or (C)λ of Claim 4.2 for λ
occurs
(so χ∗ < 2λ+

and Tζ for ζ < χ∗ are determined)

(b) K is an abstract elementary class, LS(K) ≤ λ

(c) Kλ++ 6= ∅,

(d) K has amalgamation in λ

(e) in K3,na
λ , the minimal triples are not dense.

Then

(∗) for each ζ < χ∗ for some M ∈ Kλ+ we have |S nm
∗ (M)| ≥

| limλ+(Tζ)|
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(the tree is from clause (η) of 4.2; on S nm
∗ see Definition

3.3(6), make sense even without amalgamation in λ+)
moreover

(∗∗) for each ζ < χ∗ there are M ∈ Kλ+ and (M,Mε, aε) ∈

K3,nm
λ+,∗

for ε < |limλ+(Tζ)| such that 〈tp(aε,M,Mε)/Eλ :

ε < |limλ+(Tζ)|〉 is without repetitions, i.e. if ε1 < ε2 <
|limλ+(Tζ)| then for some M ′ ≤K M satisfying M ′ ∈ Kλ we
have tpK(aε1

,M ′,Mε1
) 6= tpK(aε2

,M ′,Mε2
)

(∗ ∗ ∗) if K ′ is (λ, λ+)-dense in K then we can add in (∗∗) that
M,Mε ∈ K ′.

2) Assume K satisfies clauses (a)-(e) and

⊠ at least one of the following occurs:

(α) K is categorical in λ+

(β) K has a universal member in λ+ and amalgamation in
λ+

(γ) there is a (λ, λ+)-dense K ′ ⊆ Kλ+ which is categorical

(δ) there is a (λ, λ+)-dense K ′ ⊆ Kλ+ such that (K′,≤K↾

K ′) has amalgamation and has a universal member.

Then for some M ∈ Kλ+ , and for clauses (γ) of (δ) moreover M ∈

K ′
λ+ , i.e. M is as in ⊠ we have |S rmr

∗ (M)| = 2λ+

and if (α) or (γ)

of ⊠ holds, moreover |S nmr
∗ (M)/Eλ| = 2λ+

.

Remark. Recall that pEλq iff (∀M ′ ≤K M)(M ′ ∈ Kλ ⇒ p ↾ M ′ =
q ↾ M ′).

Before we prove 4.5, we state a conclusion to be proved later.

4.10 Conclusion. If clauses (a)− (g) below holds, then İ(λ++, K) ≥

µunif(λ
++, 2λ+

), i.e. we assume:

(a) 2λ < 2λ+

< 2λ+2

(b) (α) K is an abstract elementary class LS(K) ≤ λ
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(β) |τK | ≤ λ

(c) Kλ++ 6= ∅,

(d) K has amalgamation in λ

(e) in K3,na
λ , the minimal triples are not dense

(f) K is categorical in λ

(g) (α) K is categorical in λ+ or at least K has a superlimit
member in λ+

(β) İ(λ+, K) < 2λ+

(γ) K has (amg)λ+ or at least the M ∈ Kslm
λ+ is an amalga-

mation basis in Kλ+ .

4.11 Remark. 1) Note that 4.10 put 4.5 + 4.9 together. Clause
(b)(β) is used in the end of case (2), clause (g)(β) is used in case
(1B).
1A) Can we eliminate (g)(β), i.e. (mdn)1

λ+ or replace it by (unv)λ+?
2) Note that 4.13 below is essentially another presentation, in it we
do not use 4.9.
3) We would like, compared to [Sh 603], to weaken in the assumption
“K categorical in λ+” to “no maximal model in Kλ”. So by 4.7 for
amalgamation bases M∗ ∈ Kλ+ ,S (M∗) cannot be too large (used

in the proof of 4.13) and as İ(λ++, K) < µunif(λ
++, 2λ+

), there are
many amalgamation basis and by 4.9(1) there are many M ∈ Kλ+

with S (M) large. But we have to put them together.

Proof of 4.9. 1) Let ζ < χ∗. Recall that Tζ is a subtree of λ+>2
of cardinality ≤ λ+, hence let Tζ = ∪{T ζ

α : α < λ+} where the
T ζ

α are pairwise disjoint for α < λ+, each T ζ
α has cardinality ≤

λ,T ζ
0 = {<>} and η ∈ T ζ

α & β < ℓg(η) ⇒ η ↾ β ∈
⋃

γ<α

T
ζ

γ ,

and η ∈ T ζ
α ⇒

∧

ℓ<2

ηˆ〈ℓ〉 ∈ T
ζ

ζ,α+1 and Tζ,α+1 = {ηˆ〈ℓ〉 : η ∈

T ζ
α and ℓ < 2}. For η ∈ T

ζ
δ , δ a limit ordinal, necessarily both

ℓg(η) and α(η) = sup{γ : for some ε < ℓg(η), η ↾ ε ∈ T ζ
γ } are limit

ordinals ≤ δ, clearly η ∈ Tα ⇒ ℓg(η) ≤ α.
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Let (M,N, a) ∈ K3,na
λ be such that there is no minimal triple

above it, i.e. ∈ K3,nm
λ ; without loss of generality it is reduced. If K ′

is not well defined, let K ′ = Kλ+ .
If we have K ′, i.e. for (∗ ∗ ∗), then let st be a winning strategy

for the odd player recalling Definition 4.3.
We now by induction on α < λ+ choose 〈M ζ

α, N
ζ
η : η ∈ T ζ

α 〉 such
that:

(a) (M ζ
α, N

ζ
η , a) ∈ K3,na

λ

(b) (M ζ
α, N

ζ
η , a) is reduced (see Definition 1.11(4)) if η ∈ T ζ

α , α
non-limit

(c) (M ζ
0 , N

ζ
<>, a) = (M,N, a)

(d) if ν ∈ T
ζ

β , η ∈ T ζ
α , ν⊳η, β < α and α, β are non-limit ordinals

then (M ζ
β , N

ζ
ν , a) ≤na (M ζ

α, N
ζ
η , a)

(e) if δ is a limit ordinal then:

(α) M ζ
δ =

⋃

β<δ

M ζ
β

(β) if η ∈ Tδ and δ = sup{β < δ : η ↾ γ ∈ T
ζ

β for some

γ < ℓg(η)} then N ζ
η = ∪{N ζ

η↾γ : γ < ℓg(η)}

(f) if η ∈ T ζ
α then tpKλ

(a,Mα+1, Nηˆ<0>) 6= tpKλ
(a,Mα+1, Nηˆ<1>)

(g) M ζ
α 6= M ζ

α+1

(h) if we are proving (∗ ∗ ∗), i.e. have K ′, st then in stage α

a successor we also choose 〈M ζ,∗
β : β ≤ 2α〉, fα, 〈N

ζ,∗
η,β : β ≤

2ℓg(η)〉, f ζ
η for η ∈ T ζ

α such that:

(α) 〈M ζ,∗
β : β ≤ 2α〉 is an initial segment of a play of the

game from 4.3 in which the odd player uses its winning
strategy st

(β) fα is an isomorphism from Mα onto M ζ,∗
2α , increasing

with α

(γ) 〈N ζ,∗
η,β : β ≤ 2ℓg(η)〉 is an initial segment of a play of the

game from 4.3 in which the odd player uses its winning
strategy st
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(δ) f ζ
α is an isomorphism from N ζ

η onto N ζ,∗
η,2ℓg(η)

(ε) if ν⊳η, ν ∈ Tβ , η ∈ Tα, and β (as well as α) are successor
ordinals and γ ≤ 2ℓg(ν) then N ζ,∗

ν,γ = N ζ,∗
η,γ and f ζ

ν ⊆ f ζ
η

There is no problem to carry the definition, recalling that for α suc-
cessor we can use Exercise 2.6 and for α limit, for any η ∈ T ζ

α the

triple (∪{M ζ
η↾ε : η ↾ ε ∈ T

ζ
β for some β < α},∪{N ζ

η↾ε : η ↾ ε ∈ T
ζ

β for

some β ∈ α}, a) is a reduced member ofK3,nm
λ . LetMζ =

⋃

α<λ+

M ζ
α ∈

Kλ+ , and for each ν ∈ limλ+(Tζ) let N ζ
ν =

⋃

α<λ+

N ζ
ν↾α, clearly

Mζ ≤K N ζ
ν are both from Kλ+ and even from K ′ in the relevant

case. Also a ∈ N ζ
ν and 〈tp(a,Mζ, N

ζ
ν ) : ν ∈ limλ+(Tζ)〉 are pairwise

distinct members of S (Mζ) and even of S nm
∗ (Mζ) moreover (par-

ticularly if Kλ+ fails the amalgamation property, it is better to add)
pairwise non-Eλ-equivalent. Now Mζ , 〈(Mζ , N

ζ
ν , a) : ν ∈ lim(Tζ)〉

exemplifies clauses (∗) and (∗∗) and (∗ ∗ ∗) of part (1).

2) Note that λ+

2 = ∪{limλ+(Tζ) : ζ < χ∗}, by clause (η) of 4.2

and χ∗ < 2λ+

by clause (θ) of 4.2. So for every regular χ ≤ 2λ+

for some ζ < χ∗ we have |limλ+(Tζ)| ≥ χ hence by part (1) for
some M∗ ∈ Kλ+ we have |S (Mχ)| ≥ |S (Mχ)/Eλ| ≥ |limλ+(Tζ)|

and M ′ ∈ K ′ when clause (γ) holds. If 2λ+

is regular we are done,
if it is singular the proof splits according to the case, i.e. which of
(α), (β), (γ), (δ) from ⊠ we assume. If K is categorical in λ+, i.e.
clause (α) holds, this is obvious. If Kλ+ has a universal member and
has amalgamation, i.e. clause (β) holds the result follows as in the
proof of 4.5(2). The proof when clause (γ) or clause (δ) holds is
similar using (∗∗) of part(1). �4.9

Proof of 4.10. Assume toward contradiction that the conclusion fails.
Let K′ = Kslm

λ+ so İ(K ′) = İ(λ+, K ′) = 1 and K ′ is (λ, λ+)-dense in
K, see 4.4(2) justified by clause (g)(α) of the assumption. Now if
(A)λ∨(B)λ of 4.2 of course, let χ∗ be as there, then the assumptions
of 4.5(3) holds. [Why? Clause (a) there by clause (a) of 4.10 and our
present assumption (A)λ ∨ (B)λ; clauses (b),(c) there by (b)(α) and
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(c) here; clause (e) there by clause (e) here, and clause (d)+ there
by clauses (d),(g)(α) here). So the conclusions of 4.5(3) holds and so
by (∗)3 from 4.5(3) we get that there is no ≤K-universal M ∈ Kλ+

contradicting clause (g)(α) of the assumption; we can use K ′ instead
of no universal. Hence we cannot assume (A)λ ∨ (B)λ, so in 4.2,

(∗)1 case (C)λ holds, so let 〈Tζ : ζ < χ∗〉 be as there.

Now we can apply 4.9(2) because:

⊙1 clauses (b),(c),(d),(e) of 4.9 holds by clauses (b)(α),(c),(d),(e)
of 4.10 respectively

⊙2 clause (a) of 4.9 holds by combining clause (a) of 4.10 and
(∗)1

⊙3 among the four possibilities in 4.9(2), clause (γ) holds by
4.4(2) recalling (g)(α) of 4.10.

So its conclusion holds, i.e. for some M ∈ K ′ ⊆ Kλ+ we have

|S nmr
∗ (M)/Eλ| = 2λ+

. We try to apply 4.7 with λ+, 2λ+

, 2λ++

,K′ =
Kslm

λ+ ,Kλ++ ,M here standing for λ, µ, χ∗,K,K′,M∗ pedantically use

(Kslm
λ+ )up there.

Now clause (b) there means “K is an a.e.c. with LS(K) ≤ λ+”,
obviously holds. Clause (c) there means “M ∈ Kλ+ is an amal-
gamation base” holds by clause (g)(γ) of the assumption here as
M ∈ K ′ = Kslm

λ+ . Clause (d) of the assumption of 4.7 means here:

“|SK′

λ+
(M)| ≥ 2λ+

which holds by the way M was chosen because

SK
λ+

(M),SK′

λ+
(M) are essentially the same as M is an amalgama-

tion base in Kλ+ , see 1.23.

Lastly, clause (e) there is trivial as K ′ there stands for Kλ++ here.
If the conclusions of this instance of 4.7 hold, in particular by clause

(α) there, we have İ(λ++, K) ≥ 2λ++

which is more than promised
in 4.10. But we are assuming toward contradiction that it fails. So
we deduce that the remaining assumption of 4.7, i.e. clause (a) fails,

i.e. ¬(2λ++

= cf([2λ+

]λ
++

,⊆) > 2λ+

& 2λ+

> λ++). It follows
that

(∗)2 2λ+

> λ++ ⇒ cf([2λ+

]λ
++

,⊆) < 2λ++

.
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Also note that

(∗)3 context 3.1 holds.

Why? By clauses (b)(β), (d) of 4.10. We shall use (∗)3 freely below.

Case 1: (2λ > λ+)+ (WDmId(λ+) is not λ++-saturated).

Subcase 1A: ¬(∗∗)′λ of 3.10 holds.
We shall try to apply Claim 3.13, so let us check its assumptions.

Clause (a) of 3.13 says that (∗∗)′λ of 3.13 fail, but this is the assump-
tion of the present subcase.

Clause (b) says that “|S nc(M)| > λ+ for M ∈ Kλ” which as

said there follows from “(cat)λ+ the minimal triple in K3,na
λ are not

dense +2λ > λ+” and: (cat)λ holds of clause (f) by 4.10, and the
non-density of the minimal triple holds by clause (e) of the present
claim 4.10 and 2λ > λ+ holds as we are in Case 1 of the proof. Next,
clause (c) of 3.13 says (cat)λ which holds by clause (f) of 4.10. Now
clause (d) of 3.13 says “there is a superlimit M ∈ Kλ+” and it holds
by clause (g)(α) of 4.10.

Next, clause (e) of 3.13 says “2λ < 2λ+

< 2λ++

” which hold by
clause (a) of 4.10. Lastly, ⊛λ of 3.13 fails as we are in Case 1 of the
proof.

Together by 3.13 we get İ(λ++, K) ≥ µunif(λ
++, 2λ+

) as required.

Subcase 1B: (∗∗)′λ of 3.12 holds.

By 3.12 we get a contradiction to İ(λ+, K) < 2λ+

, i.e. clause
(g)(β).
So we can assume that
Case 2: “(2λ > λ+) + (WDmId(λ+) is not λ++-saturated” fails.

If the second clause fails (i.e. WdmId(λ+) is λ++-saturated), as
we are in case (C)λ (see (∗)1 in the beginning of the proof), so by

clause (µ) of 4.2 we have 2λ+

= λ++ hence by (a) of 4.10 we have
2λ = λ+.

If the first clause fails, i.e. ¬(2λ > λ+) then 2λ = λ+. So in both
cases 2λ = λ+. However, once we know 2λ = λ+, from (amg)λ+
LS(K) ≤ λ, as in clause (b)(β) we are assuming |τK| ≤ LS(K) ≤ λ,
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clearly M ∈ Kλ ⇒ |S (M)| ≤ λ+. Now by Theorem I.2.8 with
λ+, λ+ here standing for κ, λ there, there isM ∈ Kλ+ which is model-
homogeneous for K≥λ, so by II.1.14 this model is λ+-saturated above
λ and we apply the claim 4.12 below. We are allowed to do it as the
assumption (h) of 4.12 was just proved above. �4.10

Remark. 1) Before Case 1, if it suffices for us to conclude (İ(λ++, K) >

2λ+

so the case left is cf((2λ+

)λ++

,⊆) = 2λ+

, does this help?
2) In Subcase (1B), cannot we use “weak coding”? This means re-
thinking §3. We can try to apply it to (Kslm

λ+ )up.

4.12 Claim. If the assumptions (a)-(e) + (g)(α) of 4.10 and clause

(h) below then ¬(mdn)2
λ++ , i.e. İ(K, λ++) ≥ µunif(λ

++, 2λ+

) where

(h) there is M ∈ Kλ+ saturated above λ (so it is universal).

Proof. We apply Theorem VII.4.10, why is this justified? The as-
sumptions (a)-(e) (i.e. there and here of 4.10) not only are the same
but the clauses names are equal except that (b)(β) there is not men-
tioned here; the assumption (f) there holds by (g)(α) of 4.10, and the
assumption (g) there is the assumption (h) here. But the conclusion
of VII.4.10 is the desired conclusion here so we are done. �4.12

Essentially another presentation of 4.10 is

4.13 Claim. Above (M∗, N∗, a) ∈ K3,na
λ the minimal triples are

dense when:

(a) 2λ < 2λ+

< 2λ++

(b) (α) K is an a.e.c., LS(K) ≤ λ,

(β) (cat)λ,

(γ) (amg)λ,

(δ) (slm)λ+ , (hence (unv)λ+)

(ε) |τK | ≤ λ or just if 2λ = λ+ then K has a saturated
model in λ+

(c) 1 ≤ İ(λ++, K) < µunif(λ
++, 2λ+

)

(d) (mdn)1
λ+ ,
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Remark. Weak extensions for K3,na
λ holds by 1.9 because we assume

(cat)λ and have (nmx)λ which follows from the assumptions (slm)λ+ ,
see 1.3(1).

Proof. Assume toward contradiction that above (M∗, N∗, a) ∈ K3,na
λ

there is no minimal type. If 2λ = λ+, then as we have LS(K) ≤
λ, |τK | ≤ λ there is a M ∈ Kλ+ saturated above λ, in fact, the
M ∈ Kslm

λ+ is by 1.4(6), hence we finish by 4.12 above.

So we can assume 2λ > λ+, hence

(∗) there are κ ≤ λ and tree T with ≤ λ nodes and κ levels with
|limκ(T )| > λ+.

[Why? Considerably more than this holds by 4.2, just check each of
the cases. Alternatively, use [Sh 430, 6.3] or directly κ = Min{θ :
2θ > λ+}, so if 2<κ ≤ λ then (κ>2, ⊳) is okay, otherwise by our

present assumption 2λ > λ+ hence κ ≤ λ so κ>2 =
⋃

i<λ+

Ti, |Ti| ≤

λ,Ti increasing with i so for some i, |{η ∈ κ2 :
∧

α<κ

η ↾ α ∈ Ti}| >

λ+].
Hence by 2.3(2) + 2.5(4) for some M ∈ Kλ, |S

nmr(M)| > λ+.
If WDmId(λ+) is not λ++-saturated, we try to apply Claim 3.13;
in it assumption (b) holds by the previous sentence by 1.17(7), and
assumptions (c) + (d) + (e) holds by (b)(β), (b)(δ), (a) from the
assumptions of the present claim but the conclusion of 3.13 fails by
the assumption (c) of the present Claim 4.13, so one of the following
occurs.

Case 1: Clause (a) from 3.13 fails,

That is (∗∗)′λ of 3.10 holds hence by 3.12 we have İ(λ+, K) = 2λ+

which contradicts clause (d) of the assumption of the present claim.

Case 2: WDmId(λ+) is λ++-saturated.
Hence the assumption of clause (µ) of 4.2 occurs, but not its

conclusions as we are assuming 2λ > λ+ so clause (µ) there fail,
hence Cases (B)λ, (C)λ of 4.2 do not occur and hence Case (A)λ for
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some µ and χ∗ = 2λ+

occurs. Now all the assumptions of 4.5 holds.
So by (∗)3 of 4.5(3) we get a contradiction to (unv)λ+ in λ+, see
clause (b)(δ) of our assumption. �4.13

We have used |τ(K)| ≤ LS(K) in the end of the proof of 4.10 and
in the beginning of 4.13; actually we use just 2λ = λ++ (amg)λ ⇒
there is a saturated M ∈ Kλ+ ; this demand is usually irrelevant and
can be eliminated there.

4.14 Exercise: Assume

(a) K is an a.e.c., LS(K) ≤ λ but |τK | > λ and K = K≥λ for
notational simplicity

(b) 2λ = λ+ but Kλ has no saturated model in λ+

(c) K satisfies (amg)λ+ (jep)λ.

1) For some M ∈ Kλ we have µM > λ+ where µM = |{(N, c)c∈M/ ∼=:
N satisfies M ≤K N ∈ Kλ}|.
2) If M1 ≤Kλ

M2 and N ∈ Kλ then there is N+ such that: N ≤Kλ

N+ ∈ Kλ+ and N+ is specifically (M0,M1)-homogeneous which
means that every ≤K-embedding of M0 into N+ can be extended
to a ≤K-embedding of M1 into N+.
3) If N ∈ Kλ+ then N has a ≤K-extension N+ ∈ Kλ+ such that: for
some <Kλ

-representation 〈Mα : α < λ+〉 of N+, the model N+ is
specifically (Mα,Mβ)-homogeneous for every α < β < λ.
3A) If N ∈ Kλ+ and M1 ∈ Kλ then the set {M2 : M1 ≤K M2 ∈ Kλ

and the model N is specifically (M1,M2)-homogeneous} modulo iso-
morphism over M1 has cardinality ≤ λ+.
4) For M ∈ Kλ such that µM > λ+ we have İ(λ+, K) ≥ µM

and moreover İ(λ+, K) ≥ cf([µ]λ
++

,⊆), in fact, this holds for any
(λ, λ+)-dense in K ′ ⊆ Kλ+ .
5) K has no superlimit model in λ+ (and even weaker relatives).

§5 Inevitable types and stability in λ

5.1 Hypothesis. 1) K is an a.e.c., λ ≥ LS(K) and Kλ 6= ∅.
2) (cat)λ+ (amg)λ +Kλ+2 6= ∅.
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Similarly to Definition 2.9:

5.2 Definition. 1) We call p ∈ S (N) inevitable when:
N ≤K M & N 6= M ⇒ some c ∈M realizes p.
2) We call (M,N, a) ∈ K3,na

λ inevitable when the type tp(a,M,N)
is inevitable.
3) Let (iev)λ = (iev)4λ means there is an inevitable minimal member

of K3,na
λ .

4) Let (iev)3λ means that there is an inevitable member of K3,na
λ .

5) Let (iev)1λ means that for every M ∈ Kλ the set Γmin
M = {p ∈

S(M) : p minimal} is inevitable (see Definition 2.9).
6) Let (iev)2λ means that for every M ∈ Kλ some Γ ⊆ S min(M) is
inevitable and is of cardinality ≤ λ.

5.3 Claim. Assume (cat)λ+ and 2λ < 2λ+

.

1) If there is a minimal triple in K3,na
λ , then there is an inevitable

minimal p ∈ SKλ
(M).

2) Moreover, if p0 ∈ S (N0) is minimal, N0 ∈ Kλ then we can find
N1, N0 ≤K N1 ∈ Kλ such that there is an extension p1 of p0 in
S na(N1), of course it is unique, and it is inevitable and, of course,
minimal.
3) (iev)4λ implies (iev)3λ which implies (iev)2λ which implies (iev)1λ.

Proof of 5.3. 1) Follows by part (2) and the categoricity of K in λ.
2) First we verify that all the assumptions of 2.19 holds (and Hy-
pothesis 2.1 holds by Hypothesis 5.1(1)); consider the assumptions of
2.19, now (amg)λ+ (cat)λ hold by 5.1(2), (slm)λ+ holds by (cat)λ+

assumed here (i.e. in 5.3) and İ(λ+, K) < 2λ+

holds as (cat)λ+ is

assumed and 2λ < 2λ+

holds as it is assumed here. So the conclu-
sion of 2.19(2) holds; i.e. every M ∈ Kslm

λ+ = Kλ+ is saturated for
minimal types, (and even λ+-minimal types, see Definition 2.12(1),
recalling Definition 2.12 and Observation 2.13(3),(4).

Let (M0,M1, a) ∈ K3,na
λ be minimal and p0 = tp(a,M0,M1). We

try to choose by induction on i a model Ni such that: N0 = M0, Ni ∈
Kλ is ≤K-increasing continuous and Ni omits p0, Ni 6= Ni+1. If we
succeed, ∪{Ni : i < λ+} is a member of Kλ+ which is non-saturated
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for minimal types, contradicting 2.19(2). As for i = 0, i limit we can
define, necessarily for some i we have Ni but not Ni+1. Now p0 has
at least one extension in S (Ni) by (amg)λ, has at most one non-
algebraic extension in S (Ni) which we call pi and p0 has no algebraic
extension in S (Ni). [Why? As Ni omits p0 and by amalgamation
it has an extension in S (Ni)]. So pi exists (i.e. is well defined and)
is the unique extension of p0 in S (Ni) [by 1.17(1)], and so

(∗) if Ni ≤K N ′ ∈ Kλ and N ′ 6= N , then pi is realized in N ′.

By L.S. we can omit “N ′ ∈ Kλ”, so (Ni, pi) are as required.
3) Read the definition. �5.3

5.4 Fact. 1) Being inevitable is preserved by isomorphisms.
2) Inevitable types have few (≤ λ) conjugates (i.e. for inevitable
p ∈ S (M0),M0 ∈ Kλ,M1 ∈ Kλ we have |Sp(M1)| ≤ λ), moreover
|{p ∈ S (N) : p inevitable}| ≤ λ for N ∈ Kλ.

Proof. 1) Being inevitable is preserved by isomorphisms is proved by
chasing arrows.
2) Trivial as if N0 <Kλ

N1 then every inevitable p ∈ S (N0) is
realized in N1 hence their number is ≤ ‖N1‖ = λ. �5.4

The following construction shall play a central role here, it is assumed
there is a minimal inevitable p, so essentially it relies on 5.3. Note
in particular that we shall use the construction to show stability in
λ, in 5.8.

5.5 Claim. Assume M ∈ Kλ and p ∈ SKλ
(M) is minimal and

inevitable.
1) For any limit α < λ+, we can find N̄ = 〈Ni : i ≤ α〉 and p̄ = 〈pi :
i ≤ α〉 satisfying ⊠α

N̄,p̄
below.

2) Moreover, if N̄ = 〈N0
α : α < λ+〉 is a <Kλ

-increasing continuous
sequence and N0 = ∪{N0

α : α < λ+} is not <Kλ+
-maximal, then for

some club E of λ, for any α ∈ acc(E), letting N̄ ′ = N̄ ↾ ((α+1)∩E)
for some sequence p̄ we have ⊠N̄ ′,p̄ and p0 ∈ Sp(Nmin(E))
where:
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⊠N̄ ,p̄ means that ⊠α
N̄,p̄

for some limit α < λ+

where

⊠α
N̄,p̄

N̄ = 〈Ni : i ≤ α〉, p̄ = 〈pi : i ≤ α〉 satisfy

(i) Ni ∈ Kλ,

(ii) Ni is ≤K-increasing continuous

(iii) pi ∈ S (Ni) is minimal

(iv) pi is increasing continuous with i (see 1.17(3))

(v) p0 ∈ Sp(M0) so is inevitable

(vi) pα ∈ Sp(Mα) so is inevitable

(vii) Ni 6= Ni+1

(viii) if i < α then some c ∈ Ni+1\Ni realizes p0 (hence
pi).

5.6 Remark. 1) Why not try to build a non-saturated model in λ+

in order to prove 5.5? Works, too. Note that M ∈ Kλ ⇒ 1 ≤
|Sp(M)| ≤ λ, the first inequality by (cat)λ, the second inequality by
5.4(2).
2) For 5.5(1) we can imitate the proof of II.4.2 so get any α < λ+

divisible by λ hence any α.
3) If p∗ ∈ S (N∗) is minimal and N∗ ∈ Kλ then in 5.1, forgetting
p, we can demand pi ∈ S≥p∗(Ni); also and if K is stable in λ then
in 5.5(1) in addition we can demand that Nα is (λ, cf(α))-brimmed
over N0, but see below.

Proof. For part (1) choose N0 <K N1 in Kλ+ (so N0 6= N1), such
a pair exists as Kλ+2 6= ∅ (and LS(K) ≤ λ), see 5.1(2). Let N ℓ =
⋃

i<λ+

N ℓ
i with N ℓ

i ∈ Kλ being ≤K-increasing continuous in i for ℓ =

0, 1. For part (2), N0, 〈N0
i : i < λ+〉 are given and we can choose

N1, 〈N1
i : i < λ+〉 because it is assumed that N0 is not <K

λ+
-

maximal.
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Now the set

E0 =
{

δ < λ+ : (a) N1
δ 6= N0

δ and

(b) N1
δ ∩N0 = N0

δ and

(c) N0
δ 6= N0

i for every i < δ and

(d) if i < δ and p ∈ S (N0
i ) is minimal

realized in N1
i and in N0

and i < δ then p is realized in N0
δ

}

is a club of λ+.

For each c ∈ N1\N0, obviously the set

Xc := {i < λ+ : c ∈ N1
i and (N0

i , N
1
i , c) is minimal}

is empty or is an end segment of λ+ hence

E1 =

{

δ ∈ E0 :(i) δ is a limit ordinal and N1
δ * N0

δ

(ii) if i < δ and q ∈ S
na(N0

δ ),

q ↾ N0
i is minimal inevitable

and realized in N0\N0
δ then for any

j ∈ (i, δ), q ↾ N0
j is realized in N0

δ \N
0
i

(iii) if c ∈ N1
δ \N

0 (hence ∃i < δ, c ∈ N1
i ) and Xc

is non-empty then δ ∈ Xc and min(Xc) < δ

}

is a club of λ+ (see 5.4; concerning (ii) note that if q′ ∈ S na(N0
δ ) is

an extension of q then q′ is minimal but we do not know that it is
inevitable; however recalling 5.4(2), the number of such q for a given
i is ≤ λ).

Now for δ ∈ E1, we have N0
δ <K N1

δ , so as K is categorical in λ,
by the assumption on p there is cδ ∈ N1

δ \N
0
δ such that:

(∗) (a) (N0
δ , N

1
δ , cδ) is minimal

(b) tp(cδ, N
0
δ , N

1
δ ) is inevitable, in fact ∈ Sp(N

0
δ ).
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As δ is a limit ordinal, for some i < δ, cδ ∈ N1
i , also δ ∈ Xcδ

hence
by clause (iii) in the definition of E1, there is j such that: i <

j < δ & j ∈ Xcδ
hence (N0

j , N
1
j , cδ) ∈ K3,na

λ is minimal; choose
such jδ, cδ. Let us concentrate on part (1), part (2) is similar, let
κ = cf(κ) := cf(α) ≤ λ where α is from the claim, so for some j∗, c∗

the set
S = {δ ∈ E1 : cf(δ) = κ, jδ = j∗, cδ = c∗}

is stationary in λ+. Let E2 = {δ ∈ E1 : δ = sup(S ∩ E1)}, clearly a
club of λ+.

Choose a closed set e ⊆ E2 of order type α+ 1 with first element
and last element in S; for ζ ∈ [j∗, λ+) let pζ = tp(c∗, N0

ζ , N
1
ζ ). (In

fact, we could have: all non-accumulation member of e are in S; no
real help.)

Now 〈N0
ζ , pζ : ζ ∈ e〉 is as required (up to re-indexing), in par-

ticular clause (viii) of ⊠α
N̄,f̄

holds as there is a member of S in the

open interval determined by any successive members of e recalling
e ⊆ E2, and also by clause (ii) in the definition of E1. �5.5

5.7 Claim. Assume the pair (N̄ , p̄), i.e. 〈Ni, pi : i ≤ α〉 is as in
5.5(1), i.e. ⊠α

N̄,p̄
holds, so in particular p0, pα are inevitable and in

addition the ordinal α < λ+ is divisible by λ. Then any p ∈ S (N0)
is realized in Nα, moreover Nα is universal in Kλ over N0.

Proof. (Similar to the proofs of II.1.14, II.4.2, II.1.28 II.1.16.)
Let N0 <K M0 be from Kλ and we shall show that M0 is ≤K-

embeddable into Nα over N0.
Let α = ∪{Si : i < α}, 〈Si : i < α〉 pairwise disjoint, each Si

unbounded in α, λ divides otp(Si) and Min(Si) ≥ i. We choose by
induction on i ≤ α the following:

⊛ N1
i ,M

1
i , hi, 〈aζ : ζ ∈ Si〉 (the last one only if i < α) such

that:

(a) N1
i ≤K M1

i are in Kλ

(b) N1
i is ≤K-increasing continuous in i
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(c) M1
i is ≤K-increasing continuous in i

(d) (N1
0 ,M

1
0 ) = (N0,M0)

(e) 〈aζ : ζ ∈ Si〉 is a list of Ai := {c ∈ M1
i : c realizes p0},

possibly with repetitions, note that Ai is non-empty by
⊠N̄,p̄(v) as N0 6= M0

(f) hi is an isomorphism from Ni onto N1
i

(g) j < i⇒ hj ⊆ hi and h0 = idN0

(h) ai ∈ N1
i+1 (note: M1

i ∩ N1
i+1 6= N1

i at least when ai /∈
N1

i ).

For i = 0: See clauses (d), (g) so we choose

N1
0 = N0, M

1
0 = M0, h0 = idN0

.

For i limit: Let N1
i =

⋃

j<i

N1
j and M1

i =
⋃

j<i

M1
j and hi =

⋃

j<i

hj and

lastly choose 〈aζ : ζ ∈ Si〉 by clause (e).

For i = j + 1: Note that aj is already well defined because if j ∈ Sε

then j ≥ Min(Sε) ≥ ε and by clause (e) clearly aj belongs to M1
j

and it realizes p0.

Case 1: aj ∈ N1
j (so clause (h) is no problem).

Use amalgamation on Nj , Ni,M
1
j and the mappings idNj

, hi, i.e.

Ni −−−−→ M1
i

idNj

x





x





id
N1

0

Nj
hi−−−−→ N1

j

Case 2: aj /∈ N1
j .

Then tp(aj , N
1
j ,M

1
j ) is not algebraic and (see clause (e) of ⊛) it

extends the minimal type p0 ∈ S (N0).
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Also by clause (viii) of 5.5 there is c ∈ Ni\Nj which realizes p0. As
p0 ∈ S (N) is minimal it follows that

hj (tp(c, Nj, Ni)) = tp(aj, N
1
j ,M

1
j )

so (by (amg)λ and definition of types) we can also guarantee hi(c) =
aj , so aj ∈ Rang(hi) = N1

i as required. So we have carried the
induction.

In the end we have N1
α ≤K M1

α. If N1
α = M1

α, then h−1
α ↾ M0 =

h−1
α ↾ M1

0 ⊆ h−1
α ↾ N1

α show that M0 can be ≤K-embedded into Nα

over N0 as required. So assume N1
α <K M1

α. Now pα ∈ S (Nα)
is inevitable hence hα(pα) ∈ S (N1

α) is inevitable. Hence some d ∈
M1

α\N
1
α realizes hα(pα) hence d realizes hα(pα) ↾ N1

0 = p0; also α is a
limit ordinal so for some i < α, d ∈M1

i and so d ∈M1
i \N

1
α ⊆M1

i \N
1
i

realizes p0 hence for some ζ ∈ Si we have aζ = d, hence by clause
(h) of ⊛

d = aζ ∈ N1
ζ+1 ⊆ N1

α,

contradicting the choice of d.
So we are done. �5.7

5.8 Conclusion. [Assume (iev)λ = (iev)4λ or just the conclusion of
5.5(1), i.e. for some N̄ , p we have ⊠N̄,p̄ of 5.5.]

If N ∈ Kλ then:

(a) |S (N)| = λ, i.e. (stb)λ

(b) there is N1, N <K N1 ∈ Kλ such that N1 is universal over N
in Kλ

(c) for any regular κ ≤ λ we can demand that N1 is (λ, κ)-
brimmed over N (see Definition II.1.15(1)

Proof. Recalling Definition 5.2(3), if there are M ∈ Kλ and in-
evitable minimal p ∈ S (M), then the assumption of 5.5(1) holds,
hence its conclusion so it holds in any case.

Let (N̄, p̄) be as in ⊠ of 5.5(1), for α such that λ divides α where
α + 1 = ℓg(p̄), but N ∼= N0 by 5.1(2) so by renaming without loss
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of generality N = N0. Now by 5.7, clearly |S (N)| = |S (N0)| ≤
‖Nα‖ ≤ λ.

So clause (a) holds. But, in fact, amalgamation in λ (which we
are assuming in 5.1) and stability in λ (i.e., clause (a) of 5.8) im-
plies clauses (b) and (c) of 5.8 by Claim II.1.16(1)(a) and Claim
II.1.16(1)(b), respectively; (for clause (b) we can use again 5.7). So
we are done. �5.8

5.9 Conclusion. Assume (iev)λ.
Every N ∈ Kλ+ is saturated above λ (i.e. over models in Kλ!)

hence (cat)λ+ holds.

Proof. Let N∗ ∈ Kλ and let q ∈ S (N∗) be minimal inevitable.
First assume N0 ∈ Kλ+ is not <K

λ+
-maximal, let 〈N0

i : i < λ+〉

be <Kλ
-increasing with union N0. So for every α < λ+ by 5.5(2)

applied to 〈N0
α+i : i < λ+〉, N0 we know that for some β ∈ (α, λ+)

for some N̄ ′, p̄′, δ and α′ ∈ [α, β) we have ⊠δ
N̄ ′,p̄′

where N ′
0 = Nα′ and

N ′
δ = N0

β hence by 5.7 we know that the model N0
β is ≤Kλ

-universal

over N0
α′ hence over N0

α. As this holds for every α < λ+ clearly N0

is saturated above λ as required. Now for any N ∈ Kλ+ we can
find N0 <K

λ+
N1 because Kλ++ 6= ∅ by 5.1(2) hence by the above

N0 is saturated above λ hence (recalling (amg)λ+ (jep)λ by 5.1(2)),
there is a ≤K-embedding h of N into N0; without loss of generality
N ≤K N0 hence N1 witness that N is not ≤K

λ+
-maximal hence is

saturated above λ as required. Hence (cat)λ+ follows.
�5.9

5.10 Claim. [(iev)λ]
Assume κ = cf(κ) ≤ λ.

There are N0, N1, a, N
+
0 , N

+
1 such that:

(i) (N0, N1, a) ∈ K3,na
λ

(ii) (N0, N1, a) ≤na (N+
0 , N

+
1 , a) ∈ K3,na

λ

(iii) N+
0 is (λ, κ)-brimmed over N0, see Definition II.1.15(1)

(iv) tp(a,N0, N1) is minimal inevitable and

(v) tp(a,N+
0 , N

+
1 ) is minimal inevitable.
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Proof. As in the proof of 5.5 but we start with N0 <K N1 from Kλ+

which are saturated, justified by 5.9 so clearly recalling 5.8

E∗ = {δ < λ+ :δ is a limit ordinal and for every i < δ,N ℓ
δ is brimmed over

N ℓ
i for ℓ = 0, 1}

is a club of λ+. �5.10

5.11 Claim. [(iev)λ]
1) In Kλ we have disjoint amalgamation.
2) If M ≤K N are from Kλ and p ∈ S (M) is non-algebraic then for
some N ′, c we have: N ≤K N ′ ∈ Kλ and c ∈ N ′\N realizes p.
3) For every M ≤K N ∈ Kλ we can find a sequence 〈Mi : i ≤ α〉
which is ≤K-increasing continuous in Kλ,M0 = M,N ≤K M∗ and
the triple (Mi,Mi+1, ai) is minimal and reduced for some ai, for
every i < α.

Remark. 1) Note that Part (1) was proved in 2.7(2) under an addi-
tional assumption on p and in 2.23(3) under other assumptions on
K.
2) Note that part (2) follows from part (1) but seemingly not part
(3).
3) Note that part (2) says that p is not λ-algebraic.

Proof. 1) We first prove a consequence of the disjoint amalgamation,
i.e. the extension property (see Definition 1.8(2),(3), it is a con-
sequence of disjoint amalgamation by 1.10(4)). Given (M,M, a) ∈
K3,na

λ , first if there is no minimal triple above it we apply 2.5(1).
There, the assumptions are (amg)λ+ 2.1 and they hold by 5.1.

Second, if not, then by 1.10(1) without loss of generality (M,N, a)
is minimal hence we can apply 2.22, i.e. we repeat the proof in 2.21.
Now its assumptions are (cat)λ, (amg)λ which holds by 5.1(2) (and
2.1 which holds by 5.1(1)), and (cat)λ+ which holds by 5.9 which can
be applied as its assumption (iev)λ is assumed here; and (nmx)λ+

which 1.3(5) says follows from (cat)λ+ & Kλ++ 6= ∅, the first holds
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by 5.9, the second by 5.1(2). So the conclusion of 2.22 holds, i.e.
letting p∗ = tp(a,M,N) we have |S≥p∗(M)| > λ+ for M ∈ Kλ, but
this contradicts 5.8.

Having proved the extension property by 2.7(3) + 2.7(2) we are
done.
2) Follows from part (1).

3) As we are assuming (iev)λ, there is a minimal (M,N, a) ∈ K3,na
λ ,

hence by 1.14(1) there is a reduced (M ′, N ′, a) which is ≤na-above
(M,N, a), and necessarily is minimal, hence we can find 〈Mi : i <
λ+〉 which is <K-increasing continuous, (Mi,Mi+1, ai) minimal re-

duced and M = M0. So by 5.9 we know
⋃

i<λ+

Mi ∈ Kλ+ is saturated,

hence we can embed N into
⋃

i<λ+

Mi over M so this is a ≤K- embed-

ding is into some Mα, α < λ+. �5.11

5.12 Question: If M ∈ Kλ, p ∈ S (M) is minimal, is it reduced?
Or at least, if M0 ≤K M1 are in Kλ, p1 ∈ S (Mℓ) is non-algebraic,
p0 = p1 ↾ M0, p0 is minimal and reduced is also p1 reduced?
(Probably true and would somewhat simplify our work, but we shall
go around it fulfulling our aims (here and in VII§4, II§3). Now 5.5
is an approximation.)
3) Can we prove it if λ < λℵ0 or there are E.M. models in K? We
hope to return to this in [Sh:F888].

5.13 Claim. [(iev)λ]
If ⊠δ

N̄,p̄
from 5.5 and δ is divisible by λ, then Nδ is (λ, cf(δ))-brimmed

over N0.

Proof. As in the proof of 5.7 above by exhausting.
But we elaborate, letting α = δ we repeat the proof of 5.7 but in

⊛ we add:

(i) M1
i+1 is ≤Kλ

-universal over M1
i .

This causes no problem by clause (b) of 5.8. In the end we prove
there thatM1

α = N1
α but obviouslyM1

α is (λ, cf(α))-brimmed overN0
0
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by clause (i) and the definition, hence Nα = h−1
α (M1

α) is (λ, cf(α))-
brimmed over h−1(N0

0 ) = N0 as required. �5.13

§6 Density of uniqueness and

Proving for K categorical in λ+2

6.1 Hypothesis. 1) K is an a.e.c., λ ≥ LS(K) and Kλ 6= ∅.
2) (cat)λ+ (amg)λ+ (nmx)λ.
3) (stb)λ+ disjoint amalgamation in λ.
4) (slm)λ+ .
5) For every M ∈ Kλ the set S min

K
(M) is inevitable.

6.2 Remark. 1) We can justify the hypothesis above, i.e. show that
it follows from the assumptions of 0.2(1) and even of 0.2(2) which
has weaker assumptions.

Now 6.1(1) is obvious by the first phrase in 0.2, recalling (cat)λ ⇒
Kλ 6= ∅; in 6.1(2), (cat)λ is an assumption of 0.2(2), (amg)λ holds by
1.4(1) and (nmx)λ holds by 1.3(5) because we have (cat)λ+ (ext)λ+

where (ext)λ+ holds by (cat)λ+ . Concerning 6.1(4), clearly (slm)λ+

follows by (cat)λ+ , so we are left with 6.1(3),(5). They are proved
in §5, (stb)λ in 5.8(a) and disjoint amalgamation in 5.11(1), both
assuming (iev)λ which implies S min

Kλ
(M) is inevitable, but (iev)λ is

proved in 5.3 assuming (cat)λ+ and 2λ < 2λ+

both of which are
assumed in 0.2(1). Still we have to justify quoting §5 by proving
Hypothesis 5.1, but (ext)λ++ is assumed in 0.2(2) and all its other
parts were proved above.
2) We use 2.23, 2.3, 4.13.

6.3 Definition. Let K3,uq
λ be the class of triples (M,N, a) ∈ K3,na

λ

such that:

(∗) if (M,N, a) ≤na (M ′, Nℓ, a) for ℓ = 1, 2 then we can find
(N ′, f1, f2) such that:

(a) N ′ ∈ Kλ

(b) fℓ is a ≤K-embedding of Nℓ into N ′ for ℓ = 1, 2

(c) f1 ↾ (M ′ ∪N) = f2 ↾ (M ′ ∪N).
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6.4 Claim. 1) In 6.3 we can add f1 = idN1
.

2) For every (M,N, a) ∈ K3,na
λ there is a minimal reduced (M ′, N ′, a) ∈

K3,na
λ which is ≤na-above it.

3) If (M,N, a) ∈ K3,uq
λ then (M,N, a) is minimal and reduced.

4) (M,N, a) ∈ K3,uq
λ is equiavlent to: (M,N, a) ∈ K3,na is reduced

and for some M ′ which is ≤Kλ
-universal over M and M ′ ∩N = M ,

the statement (∗) of 6.3 holds (i.e. for this M ′ any N1, N2).
4A) In part (4), if M ′ is brimmed over M then in (∗) of 6.3 we can
add (fℓ(M

′), N ′, fℓ(a)) is reduced for ℓ = 1, 2.

5) If (M0,M2, a) ∈ K3,uq
λ hence is minimal and M0 ≤Kλ

M1 then

UQd
λ(M0,M1,M2).

Proof. Easy, for part (2) to get minimality use (stb)λ, i.e. 2.3(4),
justified by 6.1(3); for parts (3) and (5) recall K has disjoint amal-
gamation in λ, justified by 6.1(3).

As for aprt (4A), first find (M ′, Nℓ, a) such that (M,N, a) ≤na

(M ′, N ′
ℓ, a) for ℓ = 0, 1 as in (∗) of 6.3. Now we can choose (Mα, N

0
α, N

1
α)

by induction on α < λ+ such that (M0, N
ℓ
0 , a) = (M ′, Nℓ) and

〈(Mβ, N
ℓ
β, a) : β ≤ α〉 is ≤na-increasing continuous and Mβ+1 is

≤Kλ
-universal over Nβ if β = 3γ, (Mβ+1, N

ℓ
β+1, a) is reduced if β =

3γ + 1 + ℓ for ℓ = 0, 1. If δ < λ+ is limit then Mδ is as required in
(4A) and is (λ, cf(δ))-brimmed over M (so M ′ is isomorphic over M
to some such Mδ). �6.4

6.5 Claim. 1) Assume (M,N, a) ∈ K3,na
λ is such that ≤na-above it

there is no member of K3,uq
λ and M∗ ∈ Kλ+ is saturated above λ;

and let 〈M∗
α : α < λ+〉 be a <Kλ

-representation of M∗, so without
loss of generality each M∗

α is brimmed and M∗
α+1 is brimmed over

M∗
α. Then we can find 〈Nη : η ∈ λ+>2〉 such that (for η ∈ λ+>2):

(a) Nη ∈ Kλ

(b) 〈Nη↾α : α ≤ ℓg(η)〉 is ≤K-increasing continuous
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(c) M∗
ℓg(η) ≤Kλ

Nη and M∗ ∩Nη = Mℓg(η) for η ∈ λ+>2

(d) Nηˆ<0>, Nηˆ<1> are ≤K-incompatible, ≤K-amalgamations of
M∗

ℓg(η)+1, Nη over M∗
ℓg(η)

(e) for some ≤K-embedding f of N into N<> we have (f(M),
f(N), f(a)) ≤na (M∗

0 , N<>, f(a))

(f) (M∗
ℓg(η), Nη, f(a)) is reduced.

2) In part (1), if M∗ ≤K M ∈ Kµ and cf([µ]λ
+

,⊆) < µwd(λ+) then

for some η ∈ λ+

2 the model Nη := ∪{Nη↾α : α < λ+〉 cannot be
≤K-embedded into M over M∗ (though, of course, M∗ ≤K

λ+
Nη).

Proof. 1) Easy using 6.4(4),(4A).
2) By part (1) and the definition of µwd(λ+), see VII.0.3(6) exactly
as in the proof of 1.4(1A). �6.5

6.6 Lemma. If ⊗ then ⊞ where:

⊗ K3,uq
λ 6= ∅

⊞ there are N0 <K N1 in Kλ+ such that:

(a) N0 6= N1

(b) for every c ∈ N1\N0 there is M = Mc satisfying N0 ≤K

M ≤K N1 and N0 6= M and c ∈ N1\M so M 6= N1.

Proof. Let (M0,M2, a) ∈ K3,uq
λ .

Choose 〈N0
i : i < λ+〉, a sequence of members of Kλ which is

≤K-increasing continuous, such that:

(N0
i , N

0
i+1)

∼= (M0,M2).

So N0
i 6= N0

i+1 hence N0 =
⋃

i<λ+

N0
i ∈ Kλ+ and without loss of

generality |N0| = λ+.
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We now choose by induction on i < λ+, N1
i and Mi,c for c ∈ N1

i \N
0
i

such that:

(a) N0
i ≤K N1

i ∈ Kλ and N0
i 6= N1

i

(b) N1
i is ≤K-increasing continuous in i

(c) j < i⇒ N1
j ∩N0

i = N0
j ; moreover N1

i ∩N0 = N0
i

(d) N0
i ≤K Mi,c ≤K N1

i

(e) c /∈Mi,c

(f) N0
i 6= Mi,c

(g) if j < i and c ∈ N1
j \N

0
j then Mi,c∩N

1
j = Mj,c hence Mj,c ≤K

Mi,c.

For i = 0: Choose N1
i such that N0

i ≤K N1
i , N

1
i ∩ N0 = N0

i , N
1
i

brimmed over N0
i (any cofinality will do). Then by disjoint amalga-

mation, recalling 6.1(3), it is easy to define the M0,c for every c ∈ N0
i

(remembering clause (c) and our knowledge on “N1
i brimmed over

N0
i ”), see Claim II.1.16(6).

For i limit: Straightforward, take unions.

For i = j + 1: First we disjointly amalgamate N1
j , N

0
i over N0

j get-

tingN ′
i ∈ Kλ such that, soN0

i ≤K N ′
i , N

1
j ≤K N ′

i and we can demand

|N ′
i | ∩ |N0| = |N0

i | (as set of elements).
Let N1

i be such that:

(∗) (a) N ′
i ≤K N1

i ∈ Kλ

(b) N1
i is brimmed over N ′

i , (any cofinality will do)

(c) |N1
i | ∩ |N0| = |N0

i |.

Lastly, we shall find the Mi,c’s, the point is that (N0
j , N

0
i , N

1
j ) ∈

UQd
λ (by 6.4(5)).

First, let c ∈ N1
j \N

0
j . By the disjoint amalgamation we can find

M ′
i,c ∈ K such that N0

i ≤K M ′
i,c and M ′

j,c ≤K M ′
i,c and without

loss of generality |M ′
i,c| ∩ |N1

j | = Mj,c. Again by disjoint amalgama-

tion there is M ′′
i,c ∈ Kλ such that M ′

i,c ≤K M ′′
i,c, N

1
j ≤K M ′′

i,c. But

UQd
λ(N0

j , N
0
i , N

1
j ) here there is a pair (N ′

i,c, fi,c) such that N ′
i ≤K
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N ′
i,c and fi,c is a ≤K-embedding of M ′′

i,c into N ′
i,c over |N0

i | ∪ |N1
j |.

Also there is a ≤K-embedding of N ′
i,c into N1

i over N ′
i . Lastly, let

Mi,c = f ′
i,c(fi,c(M

′
i,c)), easy to check.

Second, if c ∈ (N1
i \N

0
i ) but c /∈ N1

j \N
0
j , then there is M0

i,c such

that N0
i ∪ {c} ⊆M0

i,c <K N ′
i and N1

i is brimmed over M0
i,c by (∗)(b)

and the definition of brimmed over. By disjoint amalgamation there
is M ′

i,c ≤Kλ
M2

i,c such that M0
i,c ≤K M2

i,c, N
0
i <K M1

i,c and c /∈M1
i,c.

Let f0
i be a ≤K-embedding of M2

i,c into N1
i over M0

i,c and let

Mi,c = f0
i (M1

i,c).

Now let N1 :=
⋃

1<λ+

N1
i and for c ∈ N1\N0 let Mc =

⋃

{Mi,c : c ∈

N ′
i} they are as required. �6.6

6.7 Remark. 1) The proof of 6.8 below is similar to parts of Stages

(c),(d) of the proof of I.3.13. The aim is to contradict under K3,uq
λ 6=

∅, the existence of maximal triples in K3,na
λ+ .

2) The assumption “K has amalgamation in λ+” is O.K. in our cir-
cumstances, i.e. for proving Theorem 0.2, see 1.4(1).

6.8 Conclusion. Assume (cat)λ++ (amg)λ+ .

If K3,uq
λ 6= ∅, i.e. ⊗ of 6.6 or just ⊞ of 6.6, then there is no maximal

triple in K3,na
λ+ .

Proof. We can assume ⊞ of 6.6.
Toward contradiction, assume (N0, N2, a) ∈ K3,na

λ+ is <na-maximal,

and (N0, N1), 〈Mc : c ∈ N ′\N0〉 are as in ⊞ of 6.6, i.e. they sat-
isfy clauses (a) + (b) of 6.6. By categoricity in λ+ without loss of
generality N0 = N0 and let N1 = N1. Now K has amalgamation
for λ+ so there are N ∈ Kλ+ and f such that f : N2 → N is a
≤K-embedding of N2 into N over N0 and N1 ≤K N . If f(a) /∈ N1,
then (N0, N2, a) <

na
f (N1, N, f(a)) contradicting the maximality of

(N0, N2, a) under K3,na
λ+ .

If f(a) ∈ N1, then Mf(a) is well defined (see clause (b) of ⊞ from
6.6) and (N0, N2, a) <

na
f (Mf(a), N, f(a)) contradicts the choice of

(N0, N2, a). �6.8
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A similar claim is

6.9 Claim. Assume (cat)λ+ and “İ(λ+2, K) < 2λ+2

”.
If ⊗ or just ⊞ of 6.6 holds, then there is no maximal triple in

K3,na
λ+ .

Proof. Assume toward contradiction that (N0, N2, a) ∈ K3,na
λ+ is <na-

maximal, and as K is categorical in λ+ and ⊗ or just ⊞ of 6.6 holds,
there are N1, 〈Mc : c ∈ N0\N1〉 such that N0 <Kλ

N1, N0 <Kλ

M1,c <K N1, c /∈Mc. We build, for every S ⊆ λ+2, a sequence 〈MS
α :

α < λ+2〉 of members of Kλ+ , which is ≤K-increasing continuous,
and α ∈ S ⇒ (MS

α ,M
S
α+1, a

S
α) ∼= (N0, N2, a), and α ∈ λ+2\S ⇒

(MS
α ,M

S
α+1)

∼= (N0, N1). Let MS := ∪{MS
α : α < λ+2} ∈ Kλ+2 and

from MS/ ∼= we can reconstruct S/Dλ+2 . �6.9

6.10 Remark. So here we use İ(λ+2, K) < 2λ+2

but no need for (any
version of) the weak diamond for λ++.

2) Note that if 2λ+

< 2λ++

then the assumption of 6.9 implies the
assumption of 6.8 by 1.4(1).

6.11 Claim. İ(λ+2, K) ≥ µunif(λ
++, 2λ+

) when:

(∗)1 2λ < 2λ+

< 2λ++

(∗)2 (α) WDmId(λ+) is not a λ++-saturated ideal, or

(β) Kλ+3 = ∅

(∗)3 K3,uq
λ = ∅, i.e. ⊗ of 6.6 fails

(∗)4 (amg)λ+

(∗)5 λ = ℵ0 ⇒ 2λ > λ+.

Proof. We shall mention in each case if (∗)2 or a part of it is assumed.
Clearly cases 1,2,3,4 below cover all possibilities.

Case 1: WDmId(λ+) is not λ++-saturated, i.e., (∗)2(α) holds.
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Then by VII.4.20 we get the conclusion but we have to check the
assumptions.

For the set theoretic part of the assumption, (A)(a) says 2λ < 2λ+

<

2λ++

holds by (∗)1 and (A)(b) which says “WDmId(λ+) is not λ++

saturated” is the present case assumption. As for the model theoretic
part, (B)(a) holds by 6.1(1), (B)(b)(α) which says (cat)λ, holds by
6.1(2). Concerning (B)(b)(β), it holds as by 6.1(4) we have (slm)λ+

and (B)(c) which says (amg)λ+ (stb)λ, it holds by 6.1(2),(3). Then
(B)(d)(α), “the minimal types are dense” holds by 2.3(4) which apply
because its assumptions (amg)λ+ (stb)λ holds by 6.1(2),(3).

Clause (B)(d)(β), “for M ∈ Kλ the set S min
Kλ

(M) is inevitable”
holds by 6.1(5).

Clause (B)(d)(γ), “the M ∈ Kslm
λ+ is saturated above λ” holds by

(amg)λ+ (stb)λ and 2.8(4).
Lastly, Clause (B)(e) holds by (∗)3.

Case 2: Kλ+3 = ∅ and 2λ+

> λ++.
As Kλ+3 = ∅, by 1.4(4) there is M2 ∈ Kλ++ which is ≤K-maximal

hence by 1.4(5) is (DKλ
, λ++)-homogeneous above λ hence is satu-

rated (above λ+ and above λ as Kλ+ and Kλ has amalgamation),
and let M1 ≤K M2,M1 ∈ Kλ+ . There is a saturated M ′

1 ∈ Kλ by
(amg)λ+ (stb)λ so M1 is ≤K-embeddable into M ′

1 so without loss of
generality M1 ≤K M ′

1. By the choice of M2 we can embed M ′
1 into

M2 so without loss of generality M1 = M ′
1. Now 6.5(2) is applicable

by (∗)3. So as easily cf([λ++]λ
+

,⊆) = λ++ and (as 2λ < 2λ+

, by

(∗)1 and λ++ < 2λ+

by the case assumption), by VII.0.5(2) we have
λ++ < µwd(λ

+) and λ+ /∈ WDmIdµ(λ+) so there is a ≤K-extension
of M1 in Kλ+ not ≤K-embeddable into M2, contradiction.

Case 3: 2λ+

= λ++ and λ ≥ ℵ1.

Then as λ < 2λ < 2λ+

= λ++, by Cantor Theorem, by assumption
(∗)1 and by the case assumption respectively necessarily 2λ = λ+ so
by [Sh:922], because in the present case λ ≥ ℵ1, it follows that ♦λ+

holds hence easily WDmId(λ+) is not λ++-saturated, a possibility
we have dealt with in Case 1.

Case 4: 2λ+

= λ++ and λ = ℵ0.

As in Case 3 this implies 2λ = λ+ (and 2λ+

= λ++), but this
contradicts the assumption (∗)5. �6.11
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6.12 Discussion. 1) We can get İĖ(λ+2,K) = 2λ+2

when (2λ+

)+ <

2λ+2

.
2) The assumption (∗)5 of 6.11 looks unreasonable but anyhow this
is just a shortcut and it is treated separately when proving 6.13.

We now prove 0.2(1)

6.13 Theorem. Assume 2λ < 2λ+

< 2λ++

. If (cat)λ+ and (cat)λ++ ,

then (ext)λ+3, i.e. İ(λ+3, K) > 0.

6.14 Remark. 1) This has a parallel in I.3.11, I.3.13.
2) To show that this proves Theorem 0.2(1) we have to show that
both the assumptions of 6.13 and Hypothesis 6.1 follows from the
assumptions of 0.2(1). About 6.1, see Remark 6.2(1), and about the

assumptions of 6.13, clearly 2λ < 2λ+

< 2λ++

appears in 0.2(1) and
also (cat)λ+ and (cat)λ++ .

Proof. By 1.14(9) it is enough to show that for some M ∈ Kλ++

there is M ′ satisfying M <K M ′ ∈ Kλ++ .
[Why? As then we can choose by induction on i < λ+3 models
Mi ∈ Kλ+2 ,
≤K-increasing continuous, Mi 6= Mi+1; for i = 0 use Kλ+2 6= ∅, for
i limit take union, for i = j + 1 use the present assumption and
(cat)λ+2 ; so Mλ+3 = ∪{Mi : i < λ+3} ∈ Kλ+3 as required.]

We try to apply 6.11.
Now from the assumption of 6.11, the first, (∗)1 there holds by the
assumptions of 6.13. The second, (∗)2, without loss of generality the
possibility (β) holds, otherwise we already get the desired conclusion.
Also (∗)4 holds as (amg)λ+ follows by 1.4(1).

Now the final conclusion of 6.11, that is İ(λ+2, K) ≥ µunif(λ
++, 2λ+

)

fail as we are assuming (cat)λ+2 , i.e. İ(λ+2, K) = 1. So necessarily
(∗)3 or (∗)5 of 6.11 fails.

Case A: λ > ℵ0.
So also (∗)5 of 6.11 holds hence necessarily the assumption (∗)3 of

6.11 fails, that is, the statement K3,uq
λ = ∅ fail, so ⊗ of 6.6 holds
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hence by Claim 6.6 the statement ⊞ there holds so we can find
(N0, N1) as there so by 6.8 there is in K3,na

λ+ no maximal member.
This implies (easy, see 1.14(6)) that there are M∗ ≤K N∗ from Kλ+2

such that M∗ 6= N∗ which as said above (by categoricity in λ++),
suffices.

Case B: λ = ℵ0.
As in stage (d) of the proof of I.3.13 because of (ext)λ+2 . That

is, first let M∗ ∈ K have universe λ++ and let E be a club of λ++

such that min(E) ≥ λ+ and δ ∈ E ⇒ M∗ ↾ δ ≤K M∗, let χ be large
enough and A3 = (H (χ),∈).
Second, choose A0 ≺ A3 countable such thatM∗, E and the definition
of K belongs to A0, e.g. ≤K↾ {M ∈ K : |M | ⊆ λ} ∈ A0, see
Conclusion I.1.12.
Third, let A1 be such that: A0 ≺ A1,A1 is countable, ωA1 = ωA0

and in ωA1

2 \ωA0

2 under <A1 there is no first element, see I.0.4(3).
Hence there are 〈an : n < ω〉 such that A1 |= “an is an ordinal

from E and an+1 < an”.

Lastly, let A2 be such that A1 ≺ A2 and ωA1 = ωA2 and ωA2

1 has
cardinality ℵ1, i.e. {b ∈ A2 : A2 |= “b is a countable ordinal”} has
cardinality ℵ1. If A2 |= “a ∈ E” let Ma = MA2

∗ ↾ {b : b <A2 a},
so Ma ∈ Kλ+ and a <A2 b ⇒ Ma <K Mb by I.1.12. Let N1 =
∪{Ma : a ∈ EA2}, N0 = ∪{Ma : a ∈ EA2 and n < ω ⇒ A2 |= “a <
an”}, this union is on a non-empty set, linearly ordred by <A2 . So
clearly N0 ≤K N1 are from Kλ+ , N0 ≤K Man+1

≤K Man
≤K N1 for

n < ω and ∩{Man
: n < ω} = N0 hence the conclusion ⊞ of 6.6

holds as exemplified by (N0, N1), (though we are assuming that its
assumption fail, see (∗)3).

Hence so we can finish as in as Case A. �6.13

§7 Extensions and conjugacy

7.1 Hypothesis.

(a) K is an abstract elementary class with LS(K) ≤ λ

(b) (amg)λ,K has amalgamation in λ (see 1.4(1))
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(c) (cat)λ,K is categorical in λ (can be weakened)

(d) (stb)λ,K is stable in λ (see 5.8, clause (a))

(e) (iev)3λ, there is an inevitable p ∈ S (N) for some, equivalent
every N ∈ Kλ

(f) K3,na
λ has the extension property.

7.2 Remark. Those assumptions are justified by the earlier sections,
(see 6.2 which does more, recalling (iev)λ ⇒ (iev)3λ, see Definition
5.2, 5.3(3) and that the disjoint amalgamation (see 6.1(3)) implies

that K3,na
λ has the extension property; or see the proof of 8.1(1)). In

§8 we shall use 7.3, 7.5.

We now continue toward better understanding of K. We first deal
with the nice types in S (N), N ∈ Kλ in particular the parallel to
the realize/materialize problem from I§5; see I.4.3(5), the discussion
after I.5.12 and Claim I.5.23; this problem here means: if N1 ≤K N2

are in Kλ, pℓ ∈ S (Nℓ) is minimal, p1 ≤ p2, are they conjugate? (i.e.,
does p2 ∈ Sp1

(N2)?), see (∗) of 7.5.

7.3 Claim. If N ∈ Kλ and p ∈ S (N) is minimal and reduced or
just p is reduced (see Definition 1.11(2)(4)), then p is inevitable.

Remark. Compare with 5.3 and 2.24.

Proof. Suppose N, p form a counterexample. As p is reduced, see
Definition 1.11(2),(4) we can then find N1 and a such that N ≤K

N1 ∈ Kλ, a ∈ N1\N and p = tp(a,N,N1) and the triple (N,N1, a)
is reduced. As p is not inevitable, there is N2 such that: N ≤K N2 ∈
Kλ, N 6= N2 but no element of N2 realizes p. By amalgamation
in Kλ, without loss of generality there is N3 ∈ Kλ such that ℓ ∈
{1, 2} ⇒ Nℓ ≤K N3. By Hypothesis 7.1(e) there is q ∈ S (N)
which is inevitable so there are cℓ ∈ Nℓ with q = tp(cℓ, N,Nℓ) for
ℓ ∈ {1, 2}. By the equality of types (and amalgamation in Kλ) there
is N+ ∈ K, a ≤K-extension of N1 and a ≤K-embedding f of N2
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into N+ over N such that f(c2) = c1; so without loss of generality
N+ = N3 and f is the identity, hence c1 = c2. Now a /∈ N2 as
p = tp(a,N,N1) is not realized in N2. So (N,N1, a) ≤na (N2, N3, a)
and c2 = c1 ∈ N2 ∩N1\N 6= ∅ contradicting “(N,N1, a) is reduced”.
�7.3

7.4 Conclusion. For every M ∈ Kλ there is a minimal reduced
inevitable p ∈ S na

Kλ
(M).

Proof. Let M ∈ Kλ and p ∈ S na(M) be inevitable, exists by clause
(e) of 7.1, or use any p ∈ S na(M). So we can find (N, a) such

that (M,N, a) ∈ K3,na
λ and p = tp(a,M,N). As K is stable in λ

(and K3,na
λ has the extension property by 7.1(d), 7.1(f), respectively)

by Claim 2.3(4) there is (M ′, N ′, a) ∈ K3,na
λ which is ≤na-above

(M,N, a) and is minimal. By 1.14(1) there is (M ′′, N ′′, a) ∈ K3,na
λ

which is ≤na-above (M ′, N ′, a) and is reduced, clearly it is still min-
imal and by 7.3 it is inevitable. As K is categorical in λ by 7.1(c),
for every N ∈ Kλ there is such p ∈ S na(N). �7.4

7.5 Claim. 1) If κ = cf(κ) ≤ λ and N̄ = 〈Ni : i ≤ ωκ〉 is an
≤K-increasingly continuous sequence, Ni ∈ Kλ, Ni+1 universal over
Ni, and p ∈ S (Nωκ) is minimal reduced (or just minimal inevitable)
then for some i < ωκ we have p ↾ Ni ∈ S (Ni) is minimal (so p is
the unique a non-algebraic extension of p ↾ Ni in S (Nωκ) (and of
course, there is one)).
2) If λ ≥ κ = cf(κ), N̄ = 〈Ni : i ≤ κ〉 is ≤K-increasing continuous in
Kλ and
p ∈ S (Nκ) is minimal and reduced and the set Y := {i < κ :
Ni+1 is (λ, κ)-brimmed over Ni} is unbounded in κ then for every
large enough i ∈ Y there is an isomorphism f from Ni+1 onto Nκ

which is the identity on Ni and

(∗) f maps p ↾ Ni+1 ∈ S (Ni+1) to p ∈ S (Nκ).

Hence as p is minimal reduced, so is p ↾ Ni+1.
3) Assume δ < λ+ is a limit ordinal, 〈Mi : i ≤ δ〉 is ≤Kλ

-increasing
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continuous and δ = sup{i : Mi+1 is ≤Kλ
-universal over Mi}. If

p ∈ S (Mδ) is minimal and inevitable then for some i < δ the type
p ↾ Mi is minimal.

Proof. 1) We can choose for i < λ+ a reduced (N0
i , N

1
i , a) ∈ K3,na

λ

which is ≤na-increasing continuous such that N ℓ
i+1 is ≤Kλ

-universal

over N ℓ
i for i < λ+ and ℓ = 0, 1; exists by 7.1(f) and 7.1(b),(d), of

course. Let Nℓ =
⋃

i<λ+

N ℓ
i . As in the proof of 5.5 for c ∈ N1\N0 the

set I∗c is empty or is an end segment of λ+ where

I∗c = {j < λ+ : c ∈ N1
j and tp(c, N0

j , N
1
j ) is minimal}

by a basic property of minimal type, i.e. ifM ≤Kλ
N and p ∈ SK(M)

is minimal then any extension of p in S na
K

(N) is minimal, see 1.13(2).
Also the set

E = {δ < λ+ : δ is a limit ordinal;N1
δ ∩N0 = N0

δ ;

if c ∈ N1
δ and I∗c 6= ∅ then I∗c ∩ δ

is an unbounded subset of δ;

and if Pr is one of the properties reduced and/or

inevitable and/or minimal and there is i ≥ δ

such that (N0
i , N

1
i , c) has Pr,

then there are arbitrarily large such i < δ}

is a club of λ+.
Let δ ∈ acc(acc(E)) be such that cf(δ) = κ, let 〈αζ : ζ < ωκ〉 be

an increasing continuous sequence of ordinals from E with limit δ,
now set αωκ = δ.

So by the uniqueness for “N is (λ, θ)-brimmed over M” there is
an isomorphism f from Nωκ onto N0

αωκ
such that for every ζ < ωκ

we have N0
α2ζ

≤K f(Nα2ζ
) ≤K N0

α2ζ+1
(so if ζ is a limit ordinal,

then N0
αζ

= N0
α2ζ

= f(Nζ)), so without loss of generality f is the
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identity. As p ∈ S (Nωκ) is inevitable (by assumption or by 7.3)
and Nωκ = N0

αωκ
<K N1

αωκ
, for some c ∈ N1

αωκ
\N0

αωκ
we have p =

tp(c, N0
αωκ

, N1
αωκ

), so for some β < αωκ we have c ∈ N1
β . As p is

minimal (by assumption) clearly δ ∈ I∗c , but δ ∈ E so Min(Ic) < δ,
but Ic is an end segment of λ+ hence without loss of generality
for some ζ < ωκ we have β = αζ ∈ Ic. So for ξ ∈ (ζ, ωκ), both
p ∈ S (Nωκ) and p ↾ Nξ ∈ S (Nξ) are non-algebraic extensions of
the minimal p ↾ N0

αζ
∈ S (N0

αζ
) and N0

αζ
≤K Nξ ≤K Nωκ, all in Kλ,

so we have proved part (1). In fact by this argument we get p ↾ Ni

is minimal and inevitable for arbitrarily large i < δ.

2) By renaming without loss of generality every ζ < κ is in Y . So
again (as in the proof of part (1)) choose N ℓ

i for i < λ+, ℓ = 1, 2
as there and choose E, δ and 〈αζ : ζ ≤ ωκ〉 as there and without
loss of generality i ≤ κ ⇒ Ni = N0

αωi
. Choose also c, β as there,

as we can increase β without loss of generality for some ζ < κ we
have β = αωζ ∈ Ic. Clearly by the uniqueness of (λ, κ)-brimmed
models there is an isomorphism f from N0

ω(ζ+1) onto Nκ = N0
ωκ over

Nζ = N0
ωζ , and f(p ↾ Nζ+1) = p is proved by the uniqueness of the

non-algebraic extension.
3) Letting κ = cf(δ) by the definition of “≤K-universal over” we can
find a ≤K-increasing continuous sequence 〈Ni : i ≤ ωκ〉 as in part
(1) such that Nωκ = Mδ and (∀i < ωκ)(∃j < δ)(Ni ≤K Mj) and
(∀j < δ)(∃i < ωκ)[Mj ≤K Ni]. By part (1) for some j < ωκ the type
p ↾ Nj is minimal so for some i < δ we have Nj ≤K Mi ≤K Mδ so by
1.17(2) also p ↾ Mi is minimal as required. �7.5

7.6 Claim. 1) If M0 ≤K M1 are in Kλ and the types p∗ℓ ∈ S (Mℓ)
are minimal and reduced, for ℓ = 0, 1 and p∗0 = p∗1 ↾ M0 then p∗0, p

∗
1

are conjugate; (i.e., there is an isomorphism f from M0 onto M1

such that f(p∗0) = p∗1).
2) If in addition M ≤K M0 and M0,M1 are (λ, κ)-brimmed over M ,
then p0, p1 are conjugate over M .

Remark. Recall that p minimal (or reduced) implies that p is not
algebraic.
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Proof. 1) Let 〈(N0
i , N

1
i , a) : i < λ+〉 and E be as in the proof of

7.5(1) and κ = cf(κ) ≤ λ. For each δ ∈ Sκ := {α < λ+ : α ∈
acc(acc(E)) and cf(α) = κ}, and minimal and reduced p ∈ S (N0

δ ),
we know that for some ip < δ the type p ↾ N0

ip
is minimal and

reduced [why? by 7.5(1),(2)] and some qp ∈ S (N0
ip

) is conjugate to

p say by an isomorphism gp from N0
δ onto N0

ip
. For κ = cf(κ) ≤ λ

minimal q ∈ S (N0
i ), i < λ+ and minimal r ∈ S (N0

i ) let

Aκ,i
q,r =

{

δ < λ+ : there is a type p such that r ≤ p ∈ S (N0
δ ), p non-

algebraic (this determines p), p minimal and reduced, ip = i, qp = q
and clearly p ↾ N0

i = r) and cf(δ) = κ}.

Next let

E1 = {δ < λ+ : δ = sup(S ∩ δ) and for every κ = cf(κ) ≤ λ,

and minimal r, q ∈ S (N0
i ) and i < δ,

if Aκ,i
q,r is well defined and unbounded in λ+

then it is unbounded in δ}.

So if δ1 ∈ E1, κ = cf(δ1) and p1 ∈ S (N0
δ1

) is minimal reduced, then
we can find
δ0 < δ1 satisfying δ0 ∈ S so cf(δ0) = κ, and p0 ∈ S (N0

δ0
) minimal

reduced with
qp1

= qp0
, ip1

= ip0
, p0 ↾ N0

ip0
= p1 ↾ N0

ip1
call it r, it is necessarily

minimal.

As p1, p0 extend r,N0
ip0

= N0
ip1

≤K N0
δ0

≤K N0
δ1

, necessarily p1 =

p0 ↾ N0
δ0

, and also they are both conjugate to qp0
= qp1

hence they
are conjugate.
Next we prove

(∗) if M0 <K M1 are in Kλ,M1 is (λ, κ)-brimmed over M0, p
′
0 ∈

S (M0) is minimal and reduced and p′0 ≤ p′1 ∈ S (M1), p
′
1

non-algebraic, then p′0, p
′
1 are conjugate.

Above we have a good amount of free choice in choosing p1 ∈ S (N0
δ1

)
(it should be minimal and reduced) so we could have chosen p1 to be
conjugate to p′0, i.e., is in Sp′

0
(N0

δ1
); now also the corresponding p0
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is conjugate to p1 hence p0 is conjugate to p′0, hence we can find an
isomorphism f0 from M0 onto N0

δ0
satisfying f0(p

′
0) = p0, and extend

it to an isomorphism f1 fromM1 ontoN0
δ1

, exists asM1, N
0
δ1

is (λ, κ)-

brimmed over M0, N
0
δ0

respectively; so necessarily f1(p
′
1) = p1 (as p1

is the unique non-algebraic extension of p0 in S (Mδ1
)). As p0, p1

are conjugate (see a paragraph above), through (gp1
)−1 ◦ gp0

, also
p′0, p

′
1 are conjugate. So (∗) holds.

Now assume just

⊙ M0 ≤K M1 are in Kλ, p0 ∈ S (M0) minimal and reduced,
p1 ∈ S (M1) the unique non-algebraic extension of p0 and it
is reduced (and necessarily minimal).

There is M2 such that M1 ≤K M2 ∈ Kλ and M2 is (λ, κ)-brimmed
over M1 hence also over M0 and let p2 be the unique non-algebraic
extension of p1 in S (M2) hence p2 is also the unique non-algebraic
extension of p0 in S (M2) (we could choose M2 such that p2 is re-
duced (see 5.6(2) but not needed).
Using (∗) on (M0,M2, p0, p2) and on (M1,M2, p1, p2) and get that
p0, p2 are conjugate and that p1, p2 are conjugate respectively, hence
p1, p2 are conjugate, the required result.
2) Similar proof. �7.6

7.7 Claim. 1) Assume M1 ≤K M2 are in Kλ and M2 is (λ, κ)-
brimmed over M1. If p1 ∈ S (M1) is minimal and reduced, then p2,
the unique non-algebraic extension of p1 in S (M2), is reduced (and,
of course, minimal).
2) There is no need to assume “p1 reduced”.

Proof. 1) We choose (N1
i , N

2
i ) by induction on i ≤ κ such that:

(a) (N1
i , N

2
i , a) ∈ K3,na

λ

(b) (N1
i , N

2
i , a) is ≤na-increasing continuous

(c) N1
0 = M1 and tp(a,N1

i , N
2
i ) = p1

(d) if i = 2j + 1 then N1
i is ≤Kλ

-universal over N1
j

(e) if i = 2j + 2 then (N1
i , N

2
i , a) is reduced.
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There is no problem to do this. NowN2
κ is (λ, κ)-brimmed over N1

0 =
M1 so by the uniqueness of (λ, κ)-brimmed extensions of M1 without
loss of generality N2

κ = M2. Also tp(a,N1
κ, N

2
κ) ∈ S na(N1

κ) =
S na(M2), extends the minimal p1 and is not algebraic hence is equal
to p2.

Lastly, as 〈(N1
2i+2, N

2
2i+2, a) : i < κ〉 is an ≤na-increasing se-

quence of reduced members of K3,na
λ also their union is reduced by

1.14(2)(c), so (N1
κ , N

2
κ , a) ∈ K3,na

λ is reduced but this means that
tp(a,N1

κ, N
2
κ) = p2 is a reduced type so we are done.

2) Easy as we can find N,M1 ≤K N, q ∈ S na(N) extend p1 and is re-
duced; necessarily q is minimal; without loss of generality N ≤K M2

and M2 is (λ, κ)-brimmed over N , and apply part (1). �7.7

§8 To almost-good λ-frame

Here we sum up our results, for this we define “s is a pre-λ-
frame”, “s is an almost good λ-frame” (see Definition 8.2) and s[Kλ]
(in Definition 8.3).

In Theorem 8.1 we prove that we get such frames using the earlier
results and from it Theorem 0.2 can be deduced via Chapter VII +
Chapter II, of course an overkill (which we could have avoided). Of
course, 8.1 is close to II.3.7.

8.1 Theorem. 1) If Kλ is a λ-a.e.c. then sKλ
is a pre-λ-frame, see

Definitions 8.2, 8.3 below.
2) The pre-λ-frame sKλ

is an almost good λ-frame when K and λ
satisfies:

⊛ (a) K is an a.e.c. with LS(K) ≤ λ

(b) (cat)λ

(c) (amg)λ

(d) (ext)λ+ hence (ext)λ

(e) (iev)3λ, i.e. there is inevitable p ∈ SKλ
(M).

(f) (stb)λ

(g) K3,na
λ has the extension property.
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3) The assumptions hence the conclusion of (2) hold when 2λ <

2λ+

< 2λ+2

and

(α) K is an abstract elementary class with LS(K) ≤ λ

(β) K is categorical in λ and in λ+

(γ) K has a model in λ++

(δ) İ(λ+2, K) < µunif(λ
+2, 2λ+

).

Recall

8.2 Definition. 1) We say s is a pre-λ-frame when s = (Ks,S
bs,
⋃

)

satisfies axioms (A),(D)(a),(b),(E)(a),(b), see II.2.1.
2) s is an almost good λ-frame is defined as in II.2.1 except that we
weaken Ax(E)(c) and strengthen Ax(D)(d) as follows:

Ax(E)(c)−: the weak local character: if δ < λ+ is a limit ordinal
〈Mi : i ≤ δ + 1〉 is ≤s-increasing continuous and {i < δ : Ni+1 is
universal of Ni} is unbounded in δ then for some a ∈Mδ+1, the type
tp(a,Mδ,Mδ+1) does not fork over Mi for some i < δ hence belongs
to S bs

s (Mδ)

(D)(d)+ if M ∈ Ks then SKs
(M) has cardinality ≤ λ (for a good

λ-frame this holds by II.4.2).

8.3 Definition. For Kλ a λ-a.e.c. we define a pre-λ-frame s = sKλ
=

s[Kλ] by:

(a) Ks = Kλ

(b) S bs
s (M) = {tp(a,M,N) : for some M , N , a we have

(M,N, a) ∈ K3,na
λ and tp(a,M,N) ∈ S (M ′) is minimal}

(see Definitions 1.6, 1.11) and
(c)

⋃

=
⋃

s
be defined by:

⋃

(M0,M1, a,M3) iff M0 ≤K M1 ≤K

M3 are from Kλ, a ∈ M3\M1 and the type tp(a,M0,M3) ∈
S (N) is minimal.
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In other words

(c)′ p ∈ S na(M1) does not fork over M0 iff M0 ≤Kλ
M1 and

p ↾ M0 is minimal.

Remark. But first we show that Theorem 8.1 suffice to prove the
theorem promised in the introduction.

8.4 Proof of 0.2. 1) Now part (1) follows from part (2) and we have
already proved it in 6.13.
2) Now part (3) of 8.1 is proved below. Its assumptions hold by
the assumptions of 0.2(2), in fact, they are the same. Hence by
8.1(3) it follows that s = s[Kλ], defined in 8.3, is an almost good
λ-frame (and Ks = K). By VII.4.32(2) recalling we are assuming

İ(λ++,K) < µnif(λ
++, 2λ+

) it follows that s is a good λ–frame as its
conclusion fails and its assumptions hold except possibly (B)(c) (in
more detail, by VII§6, mainly VII.6.17, the almost good λ-frame s

has the so called almost existence for K3,up
s and even existence, hence

the Hypothesis VII.7.1 holds and by VII§7, mainly VII.7.19, we get
the s is a good λ-frame; still this is better exaplained in VII.4.32(2)).
Now we can apply the results of Chapter II, e.g. the Main Lemma
II.9.1, so we are done (of course, this is an overkill, we could as in
[Sh 576] work less, but it is easier to quote). �0.2

Proof of 8.1. Part (1) is obvious. Part (3) follows from part (2) and
the previous sections and part (2) holds by the previous sections.
Let us elaborate.

Proof of part (3) from part (2): We have to show that K satisfies
clauses (a)-(g) of ⊛ from 8.1.

First, “K is an a.e.c. with LS(K) ≤ λ” holds by assumption (α) of
8.1(3), so clause (a) of ⊛ holds.

Second, (ext)λ, (ext)λ+ , (ext)λ++ holds by assumption (γ) and
using LS(K) ≤ λ, so clause (d) of ⊛ holds.
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Third, (cat)λ holds by assumption (β) of 8.1(3) so clause (b) of
⊛ holds and by 1.3(5) and (ext)λ++ (ext)λ++ , see “second” above,
it follows that we also have (slm)λ.

Fourth, (mdn)2
λ+ , (mdn)2

λ++ holds by the assumptions (β), (γ) +
(δ) respectively.

Fifth, (amg)λ+ (amg)λ+ holds by applying 1.4(1) to λ and to λ+

respectively, this is justified as its assumptions are assumed or have
already been proved, i.e., (cat)λ+ (cat)λ+ are assumed in 8.1(3)(β)
so O.K., (ext)λ++ (ext)λ++ hold by “the second” above; (mdn)1

λ++
(mdn)1

λ++ holds by (cat)λ+ , i.e. 8.1(3)(β) and 8.1(3)(δ) respectively

and 2λ < 2λ+

, 2λ+

< 2λ++

are assumed in 8.1(3). In particular we
get clause (c) of ⊛ of 8.1(2).

Sixth, K3,na
λ has the weak extension property by 1.9; which we

can apply as its assumptions hold: on (cat)λ see 8.1(3)(β) above,
(nmx)λ+ follows by “(cat)λ++ (ext)λ++” assumed in (β) of 8.1(3)
and proved in “second” above respectively and similarly (nmx)λ.

Seventh, all the assumptions of 2.21 holds (they are (amg)λ, (cat)λ,
(cat)λ+ , (nmx)λ+ they appear in “fifth”, 8.1(3)(β), 8.1(3)(β), and in-

side “six” respectively; also 2λ < 2λ+

; and of course also Hypothesis
2.1), so this applies to 2.23(1) too, so its conclusion “every triple from

K3,na
λ has the extension property” holds so clause (g) of ⊛ holds.

Eighth, all the assumptions of claim 4.13 holds. [Why? Clause

(a) there saying 2λ < 2λ+

< 2λ++

is assumed in 8.1(3); clause (b)(α)
there saying “K is an a.e.c. and LS(K) ≤ λ” by 8.1(3)(α); clause
(b)(β) there saying “(cat)λ”, holds by 8.1(3)(β); clause (b)(γ) there,
saying “(amg)λ”, holds by “fifth” above; clause (b)(δ) there saying
“(slm)λ+” holds by 8.1(3)(β), i.e., (cat)λ+ recalling (nmx)λ+ , see
“sixth” above; clause (c) there saying (mdn)2

λ++ , holds by 8.1(3)(γ),
(δ); and clause (d) there saying (mdn)1

λ+ holds by 8.1(3)(β), i.e.,
(cat)λ+ . But what about clause (b)(ε)? We may reasonably restrict
ourselves to the case |τK | ≤ λ, otherwise, if this clause fails then
2λ = λ+ but there is no M ∈ Kλ+ saturated (above λ), but then by
Exercise 4.14(5) we get ¬(slm)λ+ ; contradiction.]

Hence conclusion 4.13 which says: the minimal triples are dense
in K3,na

λ , and in particular there are minimal triples in K3,na
λ ; alter-

natively use 4.10. As K3,na
λ 6= ∅ because (nmx)λ holds, it follows
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that there is a minimal triple in K3,na
λ (see proof of ⊕3 below).

Now all the requirements in 5.1 holds: 5.1(1) saying “K is an
a.e.c., λ ≥ LS(K) and Kλ 6= ∅” by 8.1(3)(α) and “second” above;
and 5.1(2) saying “(cat)λ+ (amg)λ + Kλ++” by 8.1(3)(β), “fifth”
above and “second” above respectively. Also the assumptions in

Claim 5.3 holds, i.e. (cat)λ+ and 2λ < 2λ+

: by 8.1(3)(β) and by
8.1(3)’s assumption respectively. Also the additional assumption of
5.3(1) holds as said in “eighth” above, i.e. there is a minimal triple

in K3,na
λ , hence its conclusion, i.e. there is minimal and inevitable

member of K3,na
λ so (iev)λ, see Definition 5.2(3), holds, which means

that clause (e) of ⊛ holds.
Now the assumption of 5.8 holds (and as said above 5.1, too) hence

the conclusions of 5.8, in particular clause (a) there, which says Kλ

is stable, i.e. (stb)λ, which means clause (f) of ⊛ holds.
So we have checked all clauses of ⊛ hence has finished deducing

the second phrase of part (3) of Theorem 8.1 from part (2).

The rest will be a
Proof of part (2) of Theorem 8.1: Also note that , as we are assum-
ing ⊛ of 8.1(2) obviously

⊕0 the hypothesis 1.1(1), 2.1 of §1,§2 hold (so we can apply the
results of §1,§2).

[Why? By Clause (a) of ⊛ except Kλ 6= ∅ which holds by clause (d)
of ⊛.]

⊕1 the hypothesis of 7.1 holds hence we can use claims of §7.

[Why? Compare the demands in 7.1 with ⊛ of 8.1, i.e. clauses
(a),(b),(c),(d),(e),(f) of 7.1 holds by clauses (a),(b),(c),(f),(e),(g) of
⊛ of 8.1(2) respectively.]

⊕2 there is a minimal p ∈ SKλ
(M).

[Why? By clause (d) of our assumption ⊛ we have (ext)λ+ hence by

1.3(4), 1.14(0)(b) we get K3,na
λ 6= ∅. Now the conclusion of 2.3(4)

contradict (stb)λ which is clause (f) of ⊛ which we are assuming. So
at least one of the assumptions of 2.3 fail, but the first, (amg)λ holds
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by clause (c) of ⊛, hence the second fails. This means that above

every triple from K3,na
λ there is a minimal one, but as we have noted

above that K3,na
λ 6= ∅ we can find a minimal (M,N, a) ∈ K3,na

λ . So
tp(a,M,N) ∈ S (M) is as required.]

⊕3 we have (iev)λ = (iev)4λ, i.e. there is p ∈ S na
Kλ

(M) which is
minimal and inevitable.

[Why? By ⊕2 there is a minimal type, so a minimal triple (M,N, a) ∈

K3,na
λ , so by Fact 1.14(2) there is a reduced triple (M ′, N ′, a) above it

and, of course, it too is minimal (1.14(3)). So the assumptions of 7.3
holds, recalling that by ⊕1 the hypothesis of 7.1 of §7 holds, hence
the conclusion of 7.3 holds, i.e. the triple (M ′, N ′, a) is inevitable,
so tp(a,M ′, N ′) is as required in ⊕3.]

⊕4 (nmx)λ+ and Kλ++ 6= ∅.

[Why? By ⊕0 hypothesis 1.1(1) holds, hence we can apply 1.14(8)(a).

Its assumptions hold: the first say “K3,na
λ has the extension prop-

erty” which holds by clause (g) of ⊛ of 8.1, and the second says

“K3,na
λ 6= ∅” which holds as LS(K) ≤ λ and (ext)λ+ by clause (d) of

⊛ of 8.1 by 1.14(0)(b). Hence the conclusions of 1.14(8) holds and
in particular clause (a) there says Kλ+ 6= ∅, (nmx)λ+ and Kλ++ 6= ∅,
so we are done.]

⊕5 the hypothesis of 5.1 holds hence we may use the claims of
§5.

[Why? Part (1) of 5.1 holds by ⊕0, i.e. as we proved Hypothesis
2.1. In part (2) of 5.1, the demands (cat)λ+ (amg)λ holds by clauses
(b),(c) of ⊛ respectively and the demand Kλ+2 6= ∅ holds by ⊕4.]
Let us check each axiom of Definition II.2.1 as revised in Definition
8.2(2) above.

Now

Clause (A):
This is by clause (a) of 8.1(2).

Clause (B):
As K is categorical in λ by clause (b) of the assumption of 8.1(2),
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the existence of superlimit M ∈ Kλ follows by 1.3(5) with µ there
standing for λ here, recalling that LS(K) ≤ λ & Kλ+ 6= ∅ by clause
(d) of 8.1(2) and (ext)λ+ means Kλ+ 6= ∅.

Clause (C):
Kλ has the amalgamation property by assumption (c) of 8.1(2)

and has JEP in λ by categoricity in λ, i.e. by clause (b) of the
assumption.

Clause (D):
Subclause (D)(a), (b):

By the definition of S bs
s (M) and of minimal types (in S (N), N ∈

Kλ), this should be clear.

Subclause (D)(c): [density of basic types]
Suppose M ≤K N are from Kλ and M 6= N ; there is a minimal

inevitable p ∈ Ss(M) by clause ⊕3 proved above and categoricity
of K in λ; so for some a ∈ N\M we have p = tp(a,M,N). So
tp(a,M,N) ∈ S bs

s (M) as required.

Subclause (D)(d)+:
Holds by stability of Kλ, see clause (f) of 8.1(2).

Clause (E):
Subclause (E)(a):

Follows by the definition.

Subclause (E)(b): (Monotonicity)
Obvious properties of minimal types in S (M),M ∈ Kλ. I.e. if

⋃

(M0,M1, a,M3) then changing M3 does not change the type of

a over M , decreasing M1 preserve a /∈ M1, i.e. the type being not
algebraic and increasingM0 (insideM1) preserve the type is minimal,
see 1.17(2).

Subclause (E)(c)−: (Weak local character)
Let δ < λ+ be a limit ordinal and Mi ∈ Kλ be ≤K-increasing con-

tinuous for i ≤ δ + 1,Mi+1 is ≤Kλ
-universal over Mi for unbounded
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many i < δ. By clause (e) of 8.1(2) or more exactly by ⊕3 some
p ∈ S (Mδ) is minimal and inevitable hence by 7.5(3), legitimatized
by ⊕1, for some i < δ the type p ↾ Mi is minimal and as p is in-
evitable, clearly it is realized by some a ∈Mδ+1, so we are done.

Subclause (E)(d): (Transitivity)
Easy by the definition of “a type does not fork”.

Subclause (E)(e): (Uniqueness)
By the definitions of minimal and of S bs

s (M).

Subclause (E)(f): (Symmetry)
AssumeM0 ≤s M3 and aℓ ∈M3, pℓ = tp(aℓ,M0,M3) ∈ S bs

s (M0).
By the symmetry it is enough to assume (∗)1 and prove (∗)2 where:

(∗)ℓ there are Mℓ,M
′
3 in Ks satisfying that M0 ≤s Mℓ ≤s M

′
3,

M3 ≤s M
′
3 such that aℓ ∈ Mℓ and a tp(a3−ℓ,Mℓ,M

′
3) does

not fork over M0 which here just means a3−ℓ /∈Mℓ.

So let M1,M
′
3 be as in (∗)1. We can apply 5.11(1) by ⊕5 as its

assumptions, (iev)λ holds by clause (e) of ⊛ of 8.1(2), more exactly
by ⊕3. So the conclusion 5.11(1) holds, i.e. Ks has the disjoint
amalgamation property.

As we are assuming (∗)1 we can find (f,M4) such that M ′
3 ≤K M4

and f is a ≤K-embedding of M ′
3 into M4 over M0 such that f(M ′

3)∩
M3 = M0. As p2 ∈ S (M0) is minimal and a2 ∈ M3\M1 ⊆ M4\M1

and f(a2) ∈ f(M ′
3)\f(M0) = f(M ′

3)\M0 ⊆ M4\M
′
3 ⊆ M4\M1 nec-

essarily tp(a2,M1,M4) = tp(f(a2),M1,M4). Hence there is a pair
(M5, g) such that M4 ≤Kλ

M5 and g is a ≤K-embedding of M4 into
M5 over M1 mapping f(a2) to a2. Together

(a) M0 ≤K M3 ≤Kλ
M ′

3 ≤Kλ
M4 ≤Kλ

M5

(b) g is a ≤K-embedding of M4 into M5

(c) gf(a2) = g(f(a2)) = a2

(d) f(M ′
3) ≤K M4

(e) M0 ≤K g(f(M ′
3)) ≤Kλ

M5

(f) a2 = g(f(a2)) ∈ g(f(M ′
3))

(g) a1 ∈M1 ≤Kλ
M ′

3 ≤Kλ
M5.
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AsM ′
3∩f(M ′

3) = M0 by their choice and a1 ∈M1 ≤K M ′
3 = Dom(f)

but a1 /∈M0 clearly

(h) a1 /∈ f(M ′
3).

Lastly, g ⊇ idM1
and so g−1(a1) = a1 /∈ f(M ′

3) hence

(i) a1 /∈ g(f(M ′
3)).

Obviously

(j) M0 ≤Kλ
gf(M ′

3) ≤Kλ
M5.

So together (M5, gf(M ′
3)) exemplify (∗)2 standing for M ′

3,M2 there.

Subclause (E)(g): (Extension existence)

By the extension property of K3,na
λ which holds by clause (g) of

⊛ of 8.1 (and basic properties of types).

Subclause (E)(h): (Continuity)
By existence and uniqueness for minimal types, i.e. by 1.17(3A).

Subclause (E)(i): (Non-forking amalgamation)
Like (E)(f) or use II.2.16 which does not depend on Ax(E)(c) as

said there explicitly. �8.1

8.5 Question: If K is categorical in λ and in µ and µ > λ ≥ LS(K),
can we conclude categoricity in χ ∈ (µ, λ)?
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NON-STRUCTURE IN λ++

USING INSTANCES OF WGCH

SH838

§0 Introduction

Our aim is to prove the results of the form “build complicated/many
models of cardinality λ++ by approximation of cardinality λ” assum-

ing only 2λ < 2λ+

< 2λ++

, which are needed in developing classifi-
cation of a.e.c., i.e. in this book and the related works (this covers
[Sh 87b], [Sh 88] redone in Chapter I and [Sh 576], [Sh 603] which
are redone in Chapter VI + Chapter and [Sh 87b] which is redone
by Chapter II, Chapter III, [Sh 842], so we ignore, e.g. [Sh 576]
now), fulfilling promises, uniformizing and correcting inaccuracies
there and doing more. But en-route we spend time on the structure
side.

As in [Sh 576, §3] we consider a version of construction framework,
trying to give sufficient conditions for constructing many models of
cardinality ∂+ by approximations of cardinality < ∂ so λ+ above
correspond to ∂. Compared to [Sh 576, §3], the present version is
hopefully more transparent.
We start in §1,§2 (and also §3) by giving several sufficient conditions
for non-structure, in a framework closer to the applications we have
in mind than [Sh 576, §3]. The price is delaying the actual proofs
and losing some generality. Later (mainly in §4, but also in §6 and
§8) we do the applications, usually each is quoted (in some way)
elsewhere. Of course, it is a delicate question how much should we
repeat the background which exists when the quote was made.

The “many” is interpreted as ≥ µunif(λ
++, 2λ+

), see 9.4 why this

is almost equal to 2λ++

. Unfortunately, there is here no one theorem
covering all cases. But if a “lean” version suffice for us, which means

Typeset by AMS-TEX
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that we assume the very weak set theoretic assumption “WDmIdλ+

(a normal ideal on λ+) is not λ++-saturated”, (and, of course, we

are content with getting ≥ µunif(λ
++, 2λ+

)) then all the results can
be deduced from weak coding, i.e. Theorem 2.3. In this case, some
parts are redundant and the paper is neatly divided to two: structure
part and non-structure part and we do now describe this.

First, in §1 we define a (so called) nice framework to deal with
such theorems, and in the beginning of §2 state the theorem but we
replace λ+ by a regular uncountable cardinal ∂. This is done in a
way closed to the applications we have in mind as deduced in §4. In
Theorem 2.3 the model in ∂+ is approximated triples by (M̄η, J̄η, fη)

for η ∈ ∂+>2 increasing with η where M̄η is an increasing chain of

length ∂ of models of cardinality < ∂ and for each η ∈ ∂+

2 the
sequence 〈∪{Mη↾ε

α : α < ∂} : ε < ∂+〉 is increasing; similarly in the
other such theorems.

Theorem 2.3 is not proved in §2. It is proved in §9, §10, specifically
in 10.10. Why? In the proof we apply relevant set theoretic results
(see in the end of §0 and more in §9 on weak diamond and failure of
strong uniformization), for this it is helpful to decide that the uni-
verse of each model (approximating the desired one) is ⊆ ∂+ and to
add commitments F̄ on the amalgamations used in the construction
called amalgamation choice function.

So model theoretically they look artificial though the theorems
are stronger.

Second, we deal with the applications in §4, actually in §4(A),(C),
(D),(E), so we have in each case to choose u, the construction frame-
work and prove the required properties. By our choice this goes
naturally.

But we would like to eliminate the extra assumption “WDmIdλ+

is λ++-saturated”. So in §2 and §3 there are additional “coding”
theorems. Some still need the “amalgamation choice function”, oth-
ers, as we have a stronger model theoretic assumption do not need
such function so their proof is not delayed to §10.

Probably the most interesting case is proving the density ofK3,uq
s ,

i.e. of uniqueness triples (M,N, a) ∈ K3,bs
s for s an (almost) good λ-

frame, a somewhat weaker version of the (central) notion of Chapter
II. Ignoring for a minute the “almost” this is an important step in

Paper Sh:300G, Chapter VII



484 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

(and is promised in) II§5. The proof is done in two stages. In the

first stage we consider, in §6, a wider class K3,up
s ⊆ K3,bs

s than K3,uq
s

and prove that its failure to be dense implies non-structure. This
is done in §6, the proof is easier when λ > ℵ0 or at least “Dλ+ is
not λ++-saturated”; (but this is unfortunate for an application to
Chapter I). But for the proofs in §6 we need before this in §5 to
prove some “structure positive theory” claims even if s is a good
λ-frame; we need more in the almost good case.

So naturally we assume (categoricity in λ and) density of K3,up
s

and prove (in §7) that WNFs, a weaker relative of NFs, is a weak
s-non-forking relation on Ks respecting s and that s is actually a
good λ-frame (see 7.19(1)); both results are helpful.

The second stage (in §8) is done in two substages. In the first
substage we deal with a delayed version of uniqueness, proving that
its failure implies non-structure. In the second substage we assume
delayed uniqueness but K3,uq

s is not dense and we get another non-
structure but relying on a positive consequence of density of K3,up

s

(that is, on a weak form of NF, see §7).

Why do we deal with almost good λ-frames? By II§3(E) from

an a.e.c. K categorical in λ, λ+ which have ∈ [1, µunif(λ
++, 2λ+

))
non-isomorphic models in λ++ we construct a good λ+-frame s with
Ks ⊆ K. The non-structure theorem stated (and used) there is fully
proven in §4. However, not only do we use the λ++-saturation of the
weak diamond ideal on λ+, but it is a good λ+-frame rather than a
good λ-frame.

This does not hamper us in Chapter III but still is regretable. Now
we “correct” this but the price is getting an almost good λ-frame,
noting that such s is proved to exist in VI§8, the revised version
of [Sh 576]. However, to arrive to those points in Chapter VI, [Sh
576] we have to prove the density of minimal types under the weaker
assumptions, i.e. without the saturation of the ieal WDmIdλ+ to-
gether Chapter + VI§3,§4 gives a full proof. This requires again on
developing some positive theory, so in §5 we do here some positive
theory. Recall that [Sh 603], [Sh 576] are subsumed by them.

We can note that in building models M ∈ Ks
λ++ for s an almost

good λ-frame, for convenience we use disjoint amalgamation. This
may seem harmless but proving the density of the minimal triples
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this is not obvious; without assuming this we have to use 〈Mα, hα,β :
α < β < ∂〉 instead of increasing 〈Mα : α < ∂〉; a notationally
cumbersome choice. So we use a congruence relation =τ but the
models we construct are not what we need. We have to take their
quotient by =τ , which has to, e.g. have the right cardinality. But
we can take care that |M |/ ≡τ has cardinality λ++ and a ∈ M ⇒
|a/ ≡τ | = λ++. For the almost good λ-frame case this follows if
we use not just models M which are λ+-saturated above λ but if
M0 ≤K[s] M1 ≤K[s] M,M0 ∈ Ks,M1 ∈ Ks

≤λ and p ∈ S bs
s (M0) then

for some a ∈ M , for every M ′
1 ≤K[s] M1 of cardinality λ including

M0, the type tps(a,M
′
1,M) is the non-forking extension of p, so not

a real problem.

Reading Plans: The miser model - theorist Plan A:
If you like to see only the results quoted elsewhere (in this book),

willing to assume an extra weak set theoretic assumption, this is the
plan for you.

The results are all in §4, more exactly §4(A),(C),(D),(E). They all
need only 2.3 relying on 2.2, but the rest of §2 and §3 are irrelevant
as well as §5 - §8.

To understand what 2.3 say you have to read §1 (what is u; what
are u-free rectangles; assuming K is categorical in λ+ you can ignore
the “almost”). You may take 2.3 on belief, so you are done; otherwise
you have to see §9 and 10.1 - 10.10.

The pure model - theorist Plan B:
Suitable if you like to know about the relatives of “good λ-frames”.

Generally see §5 - §8.
In particular on “almost good λ-frames” see §5; but better first

read 1.1 - 1.14, which deal with a related framework called “nice

construction framework” and in §6 learn of the class K3,up
s ⊆ K3,bs

s

with a weak version of uniqueness. By quoting we get non-structure
if they fail density. Then in §7 learn on weak non-forking relations
WNF on Kλ which respects s, it is interesting when we assume K3,up

s

has density or reasonably weak existence assumption, because then
we can prove that the definition given such existence, and this implies
that s is a good λ-frame (not just almost). In §8 we prove density of

uinqueness triples (K3,uq
s ) in K3,bs

s , so quote non-structure theorems.
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The set theorist Plan C:
Read §1,§2,§3,§9,§10,§11 this presents construction in ∂+ by ap-

proximation of cardinality ≤ λ.

0.1 Notation:

1) u, a construction framework, see §1, in particular Definition 1.2

2) Triples (M,N,J) ∈ FRℓ
u, see Definition 1.2

2A) J and I are ⊆M ∈ Ku

3) d, and also e, a u-free rectangle (or triangle), see Definitions 1.4,
1.6

4) Kqt
u , the set of (M̄, J̄, f), see Definition 1.15, where, in particular:
4A) f a function from ∂ to ∂
4B) J̄ = 〈Jα : α < ∂〉,Jα ⊆Mα+1\Mα

4C) M̄ = 〈Mα : α < ∂〉 where Mα ∈ K<∂ is ≤K-increasing
continuous

5) Orders (or relations) on Kqt
u :≤at

u ,≤
qt
u ,≤

qs
u

6) c, a colouring (for use in weak diamond)

7) F (usually F̄), for amalgamation choice functions, see Definition
10.3

8) g, a function from Kqt
u to itself, etc., see Definition 1.22

(for defining “almost every ...”)
9) Cardinals λ, µ, χ, κ, θ, ∂, but here ∂ = cf(∂) > ℵ0, see 1.8(2) in
1.8(1B), D∂ is the club filter on ∂

10) F in the definition of limit model, see Definition Chapter I, mar-
ginal.

0.2 Definition. 1) For K a set or a class of models let İ(K) =
{M/ ∼=: M ∈ K}, so it is a cardinality or ∞.

2) For a class K of models let İ(λ,K) = İ(Kλ) where Kλ = {M ∈
K : ‖M‖ = λ}.
3) For K = (K,≤K) let İ(K) = I(K) and İ(λ,K) = İ(λ,K).

Remark. We shall use in particular İ(Ku,h

∂+ ), see Definition 1.23.
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We now define some set theoretic notions (we use mainly the ideal
WDmTId∂ and the cardinals µwd(∂), µunif(∂

+, 2∂)).

0.3 Definition. Fix ∂ regular and uncountable.
1) For ∂ regular uncountable, S ⊆ ∂ and χ̄ = 〈χα : α < ∂〉 but only
χ̄ ↾ S matters so we can use any χ̄ = 〈χα : α ∈ S′〉 where S ⊆ S′ let

WDmTId(∂, S, χ̄) =

{

A : A ⊆
∏

α∈S

χα, and for some function

(= colouring) c with domain
⋃

α<∂

α(2<∂)

mapping α(2<∂) into χα,

for every η ∈ A, for some f ∈ ∂(2<∂)

the set{δ ∈ S : η(δ) = c(f ↾ δ)}

is not stationary (in ∂)

}

.

(Note: WDmTId stands for weak diamond target ideal; of course,
if we increase the χα we get a bigger ideal); the main case is when
α ∈ S ⇒ χα = 2 this is the weak diamond, see below.
1A) Here we can replace 2<∂ by any set of this cardinality, and so
we can replace f ∈ ∂(2<∂) by f1, . . . , fn ∈ ∂(2<∂) and f ↾ δ by
〈f1 ↾ δ, . . . , fn ↾ δ〉 and c(f ↾ δ) by c′(f1 ↾ δ, . . . , fn ↾ δ) so with c′

being an n-place function; justified in [Sh:f, AP,§1].
2)1

covwdmt(∂, S, χ̄) = Min

{

|P| : P ⊆ WDmTId(∂, S, χ̄) and

∏

α∈S

χα ⊆
⋃

A∈P

A

}

1in [Sh:b, AP,§1], [Sh:f, AP,§1] we express covwdmt(∂, S) > µ∗ by allowing
f(0) ∈ µ∗ < µ

Paper Sh:300G, Chapter VII



488 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

WDmTId<µ(∂, S, χ̄) =

{

A ⊆
∏

α∈S

χα : for some i∗ < µ and

3)

Ai ∈ WDmTId(∂, S, χ̄) for

i < i∗ we have A ⊆
⋃

i<i∗

Ai

}

4) (a) WDmTId(∂) = WDmTId(∂, ∂, 2)

4) (b) WDmId<µ(∂, χ̄) = {S ⊆ ∂ : covwdmt(∂, S, χ̄) < µ}.

5) Instead of “< µ+” we may write ≤ µ or just µ; if we omit µ
we mean (2<∂). If χ̄ is constantly 2 we may omit it, see below, if
χα = 2|α| we may write pow instead of χ̄; all this in the parts above
and below.

6) Let µwd(∂, χ̄) = covwdmt(∂, ∂, χ̄).

7) We say that the weak diamond holds on λ if ∂ /∈ WDmId(∂).

Remark. This is used in 3.9 VI.3.9, VI.6.11. Note that by 0.5(1A)

that µwd(λ+) is large (but ≤ 2λ+

, of course).

A relative is

0.4 Definition. Fix ∂ regular and uncountable.
1) For ∂ regular uncountable, S ⊆ ∂ and χ̄ = 〈χα : α < ∂〉 let

UnfTId(∂, S, χ̄) =

{

A : A ⊆
∏

α∈S

χα, and for some function

(= colouring) c with domain
⋃

α<∂

α(2<∂)

mapping α(2<∂) into χα,

for every η ∈ A, for some f ∈ ∂(2<∂) the set

{δ ∈ S : η(δ) 6= c(f ↾ δ)}

is not stationary (in ∂)

}

.
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(Note: UnfTId stands for uniformization target ideal; of course, if
we increase the χα we get a smaller ideal); when α ∈ S ⇒ χα = 2
this is the weak diamond, i.e. as in 0.3(1), similarly below.
1A) Also here we can replace 2<∂ by any set of this cardinality, and
so we can replace f ∈ ∂(2<∂) by f1, . . . , fn ∈ ∂(2<∂) and f ↾ δ by
〈f1 ↾ δ, . . . , fn ↾ δ〉 and c(f ↾ δ) by c′(f1 ↾ δ, . . . , fn ↾ δ) so with c′

being an n-place function, justified in [Sh:f, AP,§1].

covunf(∂, S, χ̄) = Min

{

|P| : P ⊆ UnfTId(∂, S, χ̄)

and
∏

α∈S

χα ⊆
⋃

A∈P

A

}

2)

UnfTId<µ(∂, S, χ̄) =

{

A ⊆
∏

α∈S

χα : for some i∗ < µ and

3)

Ai ∈ UnfTId(∂, S, χ̄) for

i < i∗ we have A ⊆
⋃

i<i∗

Ai

}

4) UnfId<µ(∂, χ̄) =

{

S ⊆ ∂ : covunf(∂, S, χ̄) < µ

}

.

5) Instead of “< µ+” we may write ≤ µ or just µ, if we omit µ we
mean (2<∂). If χ̄ is constantly 2 we may omit it, if χα = 2|α| we may
write pow instead of χ̄; all this in the parts above and below.
6) µunif(∂, χ̄) where χ̄ = 〈χα : α < ∂〉 is Min{|P| : P is a family

of subsets of
∏

α<∂

χα with union
∏

α<∂

χα and for each A ∈ P there is

a function c with domain
⋃

α<∂

∏

β<α

χβ such that f ∈ A ⇒ {δ ∈ S :

c(f ↾ δ) = f(δ)} is not stationary}.
7) µunif(∂, χ) = µunif(∂, χ̄) where χ̄ = 〈χ : α < ∂〉 and µunif(∂,< χ)
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means sup{µunif(∂, χ1) : χ1 < χ}; similarly in the other definitions
above. If χ = 2 we may omit it.

By Devlin Shelah [DvSh 65], [Sh:b, XIV,1.5,1.10](2);1.18(2),1.9(2)
(presented better in [Sh:f, AP,§1] we have:

0.5 Theorem.
1) If ∂ = ℵ1, 2

ℵ0 < 2ℵ1 , µ ≤ (2ℵ0)+ then ∂ /∈ WDmId<µ(∂).
2) If 2θ = 2<∂ < 2∂ , µ = (2θ)+, or just: for some θ, 2θ = 2<∂ <
2∂ , µ ≤ 2∂ , and χθ < µ for χ < µ, then ∂ /∈ WDmIdµ(∂) equivalently
∂2 /∈ WDmTIdµ(∂). So (µwd(∂))θ = 2∂ .
3) Assume 2θ = 2<∂ < 2∂ , µ ≤ 2∂ and

(a) µ ≤ ∂+ or cf([µ1]
≤∂ ,⊆) < µ for µ1 < µ and

(b) cf(µ) > ∂ orµ ≤ (2<∂)+.

Then WDmId<µ(∂, χ̄) is a normal ideal on ∂ and WDmTId<µ(∂, χ)
is a cf(µ)-complete ideal on ∂2. [If this ideal is not trivial, then
∂ = cf(∂) > ℵ0, 2

<∂ < 2∂ .]

4) WDmTId<µ(∂, S, χ̄) is cf(µ)-complete ideal on
∏

α∈S

χα.

0.6 Remark. 0) Compare to §9,§10, mainly 9.6.
1) So if cf(2∂) < µ (which holds if 2∂ is singular and µ = 2∂) then
0.5(3) implies that there is A ⊆ ∂2, |A| < 2∂ , A /∈ WDmTId(∂).
2) Some related definitions appear in [Sh:E45, §1], mainly DfWD<µ(∂),
but presently we ignore them.
3) We did not look again at the case (∀σ < λ)(2σ < 2<∂ < 2∂).
4) Recall that for an a.e.c. K:

(a) ifKλ 6= ∅ but K has no ≤K-maximal model inKλ then Kλ+ 6=
∅

(b) if K is categorical in λ and LS(K) ≤ λ then Kλ+ 6= ∅ iff K
has no ≤K-maximal model in Kλ.

5) About µwd(∂) see VI.1.4, VI.2.8, VI.6.5.
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0.7 Definition. 1) We say that a normal ideal I on a regular un-
countable cardinal λ is µ-saturated when we cannot find a sequence
Ā = 〈Ai : i < µ〉 such that Ai ⊆ λ,Ai /∈ I for i < µ and Ai ∩ Aj ∈ I
for i 6= j < µ; if µ ≤ λ+ without loss of generality Ai ∩ Aj ∈ [λ]<λ.
2) Similarly for a normal filter on a regular uncountable cardinal λ.

§1 Nice construction framework

We define here when u is a nice construction framework. Now u

consists of an a.e.c. K with LS(K) < ∂u = cf(∂u), and enables us to
build a model in K∂+ by approximations of cardinality < ∂ := ∂u.

Now for notational reasons we prefer to use increasing sequences of
models rather than directed systems, i.e., sequences like 〈Mα, fβ,α :
α ≤ β < α∗〉 with fβ,α : Mα → Mβ satisfying fγ,β ◦ fβ,α = fα,γ

for α ≤ β ≤ γ < α∗. For this it is very desirable to have disjoint
amalgamation; however, in one of the major applications (the density
of minimal types, see here in §4(A),(B) or in [Sh 576, §3] used in
VI§3,§4) we do not have this. In [Sh 576, §3] the solution was to
allow non-standard interpretation of the equality (see Definition 1.10
here). Here we choose another formulation: we have τ ⊆ τ(u) such
that we are interested in the non-isomorphism of the τ -reducts M [τ ]

of the M ’s constructed, see Definition 1.8. Of course, this is only a
notational problem.

The main results on such u appear later; a major theorem is 2.3,
deducing non-structure results assuming the weak coding property.
This and similar theorems, assuming other variant of the coding
property, are dealt with in §2,§3. They all have (actually lead to) the

form “if most triples (M̄, J̄, f) ∈ Kqt
u has, in some sense 2 (or many,

say 2<∂) extensions which are (pairwise) incompatible in suitable

sense, then we build a suitable tree 〈(M̄η, J̄η, fη) : η ∈ ∂+>2〉 and

letting Mη = ∪{Mη
α : α < λ} for η ∈ ∂+>2 and Mν := ∪{Mν↾α :

α < ∂+} for ν ∈ ∂+

2 we have: among 〈Mν : ν ∈ ∂+

2〉 many are non-

isomorphic (and inK∂+). Really, usually the indexes are η ∈ ∂+>(2∂)
and the conditions speak on amalgamation in Ku, i.e. on models of
cardinality < ∂ but using FR1, FR2, see below.
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As said earlier, in the framework defined below we (relatively)
prefer transparency and simplicity on generality, e.g. we can weaken
“Ku is an a.e.c.” and/or make FR+

ℓ is axiomatic and/or use more
than atomic successors (see 10.14 + 10.16).

In 1.1 - 1.6 we introduce our frameworks u and u-free rectan-
gles/triangles; in 1.7 - the dual of u, and in 1.8 - 1.12 we justify the
disjoint amalgamation through “τ is a u-sub-vocabulary”, so a reader
not bothered by this point can ignore it, then in 1.13 we consider
another property of u, monotonicity and in 1.14 deal with variants
of u.

In 1.15 - 1.26 we introduce a class Kqt
u of triples (M̄, J̄, f) serving

as approximations of size ∂, some relations and orders on it and
variants, and define what it means “for almost every such triple”
(if Ku is categorical in ∂ this is usually easy and in many of our
applications for most (M̄, J̄, f) the model ∪{Mα : α < ∂} is saturated
(of cardinality ∂).

1.1 Convention: If not said otherwise, u is as in Definition 1.2.

1.2 Definition. We say that u is a nice construction framework
when (the demands are for ℓ = 1, 2 and later (D) means (D)1 and
(D)2 and (E) means (E)1 and (E)2):

(A) u consists of ∂,K = (K,≤K),FR1,FR2,≤1,≤2 (also denoted
by ∂u,K

u = K
up
u = (Kup

u ,≤u),FRu
1 ,FRu

2 ,≤
1
u,≤

2
u) and let

τu = τK. The indexes 1 and 2 can be replaced by ver (ver-
tical2, direction of ∂) and hor (horizontal, direction of ∂+)
respectively

(B) ∂ is regular uncountable

(C) K = K
up
u = (K,≤K) is an a.e.c., K 6= ∅ of course with

LS(K) < ∂ (or just (∀M ∈ K)(∀A ∈ [M ]<∂)(∃N)(A ⊆ N ≤K

2Hard but immaterial choice. We construct a model of cardinality ∂+ by a

sequence of length ∂+ approximations, each of the form 〈Mα,Jα : α < ∂〉, Mα ∈
K<∂ is ≤K<∂

-increasing and (Mα, Mα+1,Jα) ∈ FR2. If 〈M ′

α,J′

α : α < ∂〉 is

an immediate successor in the ∂+-direction of 〈Mα,Jα : α < ∂〉 then for most

α, Mα ≤u M ′

α and (Mα, M ′

α, Iα) ∈ FR1 for suitable Iα, increasing with α and

(M ′

α, M ′

α+1,J′

α) ∈ FR2 is ≤2
u-above (Mα, Mα+1,Jα). Now the natural order

on FR2 leads in the horizontal direction.
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M ∧ ‖N‖ < ∂)). Let Ku = K<∂ = (K<∂ ,≤K↾ K<∂) where
K<∂ = Ku ↾ {M : M ∈ Kup

u has cardinality < ∂} and
K[u] = Kup

u .
(To prepare for weaker versions we can start with Ku, a (< ∂)-
a.e.c.3; this means K is a class of models of cardinality < ∂,
and in AxIII, the existence of union we add the assumption
that the length of the union is < ∂ (here equivalently the
union has cardinality < ∂) and we replace “LS(K<∂) exists”
by K<∂ 6= ∅ and let K

up
u be its lifting up, as in II.1.23 and

we assume K 6= ∅ so K = K
up
u and we write τu = τK and ≤K

for ≤Kup and ≤u for ≤K<∂
)

(D)ℓ (a) FRℓ is a class of triples of the form (M,N,J), closed

under isomorphisms, let FR+
ℓ = FRu,+

ℓ be the
family of (M,N,J) ∈ FRℓ such that J 6= ∅;

(b) if (M,N,J) ∈ FRℓ then M ≤u N hence both are
from Ku so of cardinality < ∂

(c) if (M,N,J) ∈ FRℓ then4 J is a set of elements of N\M

(d) if M ∈ Ku then5 for some N , J we have
(M,N,J) ∈ FR+

ℓ

(e) if M ≤u N ∈ Ku then6 (M,N, ∅) ∈ FRu
ℓ

(E)ℓ (a) ≤ℓ=≤ℓ
u is a partial order on FRℓ, closed under

isomorphisms

(b)(α) if (M1, N1,J1) ≤ℓ (M2, N2,J2)
then M1 ≤u M2, N1 ≤u N2 and J1 ⊆ J2

(β) moreover N1 ∩M2 = M1 (disjointness)

(c) if 〈(Mi, Ni,Ji) : i < δ〉 is ≤ℓ-increasing continuous
(i.e. in limit we take unions) and δ < ∂ then

3less is used, but natural for our applications, see §9
4If we use the a.e.c. K′ defined in 1.10 we, in fact, weaken this demand to

“J ⊆ N”. This is done, e.g. in the proof of 4.1 that is in Definition 4.5.
5We can weaken this and in some natural example we have less, but we

circumvent this, via 1.10, see 4.1(c); this applies to (E)(b)(β), too; see Example

2.8
6not a great loss if we demand M = N ; but then we have to strengthen the

amalgamation demand (clause (F)); this is really needed only for ℓ = 2
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the union
⋃

i<δ

(Mi, Ni,Ji) := (
⋃

j<δ

Mi,
⋃

i<δ

Ni,
⋃

i<δ

Ji)

belongs to FRℓ and

j < δ ⇒ (Mj , Nj,Jj) ≤ℓ (
⋃

i<δ

Mi,
⋃

i<δ

Ni,
⋃

i<δ

Ji)

(d) if M1 ≤u M2 ≤u N2 and M1 ≤u N1 ≤u N2 then
(M1, N1, ∅) ≤ℓ (M2, N2, ∅)

(F ) (amalgamation) if (M0,M1, I1) ∈ FR1, (M0,M2,J1) ∈ FR2

and M1 ∩M2 = M0 then we can find7 M3, I2,J2 such that
(M0,M1, I1)≤1(M2,M3, I2) and (M0,M2,J1)≤2(M1,M3,J2)
hence Mℓ ≤u M3 for ℓ = 0, 1, 2.

1.3 Claim. 1) Ku has disjoint amalgamation.
2) If ℓ = 1, 2 and (M0,M1, I1) ∈ FRℓ and M0 ≤u M2 and M1 ∩
M2 = M0 then we can find a pair (M3, I

∗
2) such that: (M0,M1, I) ≤

ℓ
u

(M2,M3, I
∗
2) ∈ FRu

ℓ .

Proof. 1) Let M0 ≤Ku
Mℓ for ℓ = 1, 2 and for simplicity M1 ∩M2 =

M0. Let I1 = ∅, so by condition (D)1(e) of Definition 1.2 we have
(M0,M1, I1) ∈ FR1. Now apply part (2), (for ℓ = 1).
2) By symmetry without loss of generality ℓ = 1. Let J1 := ∅, so
by Condition (D)2(e) of Definition 1.2 we have (M0,M2,J1) ∈ FRu

2 .
So M0,M1, I1,M2,J1 satisfies the assumptions of condition (F) of
Definition 1.2 hence there are M3, I2,J2 as guaranteed there so in
particular (M0,M1, I1) ≤2

u (M2,M3, I2) so the pair (M3, I2) is as
required. �1.3

1.4 Definition. 1) We say that d is a u-free (α, β)-rectangle or is
u-non-forking (α, β)-rectangle (we may omit u when clear from the
context) when:

(a) d = (〈Mi,j : i ≤ α, j ≤ β〉, 〈Ji,j : i < α, j ≤ β〉, 〈Ii,j : i ≤
α, j < β〉),

7we can ask for M ′

3 ≤K M ′′

3 and demand (M0, M1,J1) ≤2 (M2, M ′

3,J′

1),
(M0, M2, I1) ≤ (M1, M ′′

3 , I′2), no real harm here but also no clear gain
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(we may add superscript d, the “i < α”, “j < β” are not
misprints)

(b) 〈(Mi,j,Mi,j+1, Ii,j) : i ≤ α〉 is ≤1-increasing continuous for
each j < β

(c) 〈(Mi,j,Mi+1,j,Ji,j) : j ≤ β〉 is ≤2-increasing continuous for
each i < α

(d) Mα,β = ∪{Mi,β : i < α} if α, β are limit ordinals.

2) For d1 a u-free (α, β)-rectangle and α1 ≤ α, β1 ≤ β let d2 = d1 ↾

(α1, β1) means:

(a) d2 is a u-free (α1, β1)-rectangle, see 1.5 below

(b) the natural equalities: Md1

i,j = Md2

i,j ,J
d1

i,j = Jd2

i,j , I
d1
i,j = Id2

i,j

when both sides are well defined.

3) d2 = d1 ↾ ([α1, α2], [β1, β2]) when α1 ≤ α2 ≤ α, β1 ≤ β2 ≤ β is
defined similarly.
4) For d as above we may also write αd, α(d) for α and βd, β(d) for β
and if Idi,j is a singleton we may write Idi,j = {adi,j} and may just write

(Md
i,j ,M

d
i,j+1, a

d
i,j) and if Jd

i,j is a singleton we may write Jd
i,j = {bdi,j}

and may write (Md
i,j,M

d
i+1,j, b

d
i,j). Similarly in Definition 1.6 below.

5) We may allow α = ∂ and or β ≤ ∂, but we shall say this.

1.5 Observation. 1) The restriction in Definition 1.4(2) always gives
a u-free (α1, β1)-rectangle.
2) The restriction in Definition 1.4(3) always gives a u-free (α2 −
α1, β2 − β1)-rectangle.
3) If d is a u-free (α, β)-rectangle, then

(e) 〈Md
i,j : i ≤ α〉 is ≤u-increasing continuous for j ≤ β

(f) 〈Md
i,j : j ≤ β〉 is ≤u-increasing continuous for each i ≤ α.

4) In Definition 1.6 below, clause (d), when j < β or j = β ∧ (β
successor) follows from (b). Similarly for the pair of clauses (e),(c).
5) Assume that α1 ≤ α2, β1 ≥ β2 and dℓ is u-free (αℓ, βℓ)-rectangle

for ℓ = 1, 2 and d1 ↾ (α1, β2) = d2 ↾ (α1, β2) and Md1

α1,β1
∩Md2

α2,β2
=

Paper Sh:300G, Chapter VII



496 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

Mdℓ

α1,β2
. Then we can find a u-free (α2, β1)-rectangle d such that

d ↾ (αℓ, βℓ) = dℓ.

Proof. Immediate, e.g. in (5) we use clause (F) of Definition 1.2 for
each α ∈ [α1, α2), β ∈ [β2, β1) in a suitable induciton. �1.5

1.6 Definition. We say that d is a u-free (ᾱ, β)-triangle or u-non-
forking (ᾱ, β)-triangle when ᾱ = 〈αi : i ≤ β〉 is a non-decreasing8

sequence of ordinals and (letting α := αβ):

(a) d = (〈Md
i,j : i ≤ αj , j ≤ β〉, 〈Ji,j : i < αj , j ≤ β〉, 〈Ii,j : i ≤

αj , j < β〉)

(b) 〈(Md
i,j,M

d
i,j+1, Ii,j) : i ≤ αj〉 is ≤1-increasing continuous for

each j < β

(c) 〈(Md
i,j,M

d
i+1,j,Ji,j) : j ≤ β and j is such that i+ 1 ≤ αj〉 is

≤2-increasing continuous for each i < α

(d) for each j ≤ β the sequence 〈Mi,j : i ≤ αj〉 is ≤u-increasing
continuous

(e) for each i∗ ∈ [αj∗ , α), j∗ ≤ β the sequence 〈Mi∗,j : j ∈ [j∗, β]〉
is ≤K-increasing continuous.

1.7 Definition/Claim. 1) For nice construction framework u1 let
u2 = dual(u1) be the unique nice construction framework u2 such
that: ∂u2

= ∂u1
,Ku2

= Ku1
(hence K

up
u2

= Kup
u1

, etc) and (FRu2

ℓ ,≤ℓ
u2

) = (FRu1

3−ℓ,≤
3−ℓ
u1

) for ℓ = 1, 2.
2) We call u1 self-dual when dual(u1) = u1.
3) In part (1), if addition if d1 is u1-free rectangle then there is a
unique d2 = dual(d1) which is a u2-free rectangle such that:

αd2
= βd1

, βd2
= αd1

,Md2
i,j = Md1

j,i

Id2
i,j = Jd1

j,i and Jd2
i,j = Id1

i,j .

8not unreasonable to demand ᾱ to be increasing continuous
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1.8 Definition. 1) We say τ is a weak u-sub-vocabulary when:

(a) τ ⊆ τu = τKu
except that =τ is, in τu, a two-place predicate

such that for every M ∈ Ku hence even M ∈ K
up
u , the relation

=M
τ is an equivalence relation on Dom(=M

τ ) = {a : a =τ

b ∨ b =τ a for some b ∈ M} and is a congruence relation for
all RM ↾ Dom(=M

τ ), FM ↾ Dom(=M
τ ) for R,F ∈ τ and FM

maps9 the set Dom(=M
τ ) into itself for any function symbol

F ∈ τ .

So
1A) For M ∈ Kup

u , the model M [τ ] is defined naturally, e.g. with
universe
Dom(=M

τ )/ =M
τ and Kτ , Kτ

µ are defined accordingly. Let M1
∼=τ M2

means M
[τ ]
1

∼= M
[τ ]
2 .

1B) Let İτ (λ,Kup
u ) = {M [τ ]/ ∼=: M ∈ Ku

λ and M [τ ] has cardinality
λ}.
1C) We say that τ is a strong u-sub-vocabulary when we have clause
(a) from above and10

(b) if (M,N, I) ∈ FR+
1 then for some c ∈ I∩Dom(=N

τ ) we have
N |= “¬(c =τ d)” for every d ∈M

(c) if (M1, N1, I1) ≤1 (M2, N2, I2) and c ∈ I1 is as in clause (b)
for (M1, N1, I1) then c ∈ I2 is as in (b) for (M2, N2, I2).

2) We say that N1, N2 are τ -isomorphic over 〈Mi : i < α〉 when:
ℓ ∈ {1, 2} ∧ i < α ⇒ Mi ≤u Nℓ and there is a τ -isomorphism f

9we may better ask less: for F ∈ τ a function symbol letting n = arityτ (F ),

so F M[τ ]
is a function with n-place from Dom(=M

τ )/ =M
τ to itself and F M is

{(a0, a1, . . . , an) : (a0/ =M= F (a1/ =M ), . . . , an/ =M )}, i.e. the graph of M [τ ],

so we treat F as an (arityτ (F ) + 1)-place predicate; neither real change nor a
real gain

10note that it is important for us that the model we shall construct will

be of cardinality ∂+; this clause will ensure that the approximations will be of
cardinality ∂ for α < ∂+ large enough and the final model (i.e. for α = ∂+) will

be of cardinality ∂+. This is the reason for a preference to ≤1, however there is
no real harm in demanding clauses (b) + (c) for ℓ = 2, too. But see 1.9, i.e. if

|τ | ≤ ∂ and we get µ > 2∂ pairwise non-isomorphic models of cardinality ≤ ∂+,

clearly only few (i.e. ≤ 2∂) of them have cardinal < ∂+; so this problem is not
serious to begin with.
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of N1 onto N2 over
⋃

i<α

Mi which means: f is an isomorphism from

N
[τ ]
1 onto N

[τ ]
2 which is the identity on the universe of M

[τ ]
i for each

i < α.
2A) In part (2), if α = 1 we may write M0 instead 〈Mi : i < 1〉 and
we can replace M0 by a set ⊆ N1 ∩N2. If α = 0 we may omit “over
M̄”.
3) We say that N1, N2 are τ -incompatible extensions of 〈Mi : i < α〉
when:

(a) Mi ≤u Nℓ for i < α, ℓ = 1, 2

(b) if Nℓ ≤u N ′
ℓ for ℓ = 1, 2 then N ′

1, N
′
2 are not τ -isomorphic

over 〈Mi : i < α〉.

4) We say that N1
2 , N

2
2 are τ -incompatible (disjoint) amalgamations

of N1,M2 over M1 when (N1 ∩M2 = M1 and):

(a) M1 ≤u N1 ≤u N
ℓ
2 and M1 ≤u M2 ≤u N

ℓ
2 for ℓ = 1, 2 (equiv-

alently M1 ≤u N1 ≤u N
ℓ
2 ,M1 ≤u M2 ≤u N

ℓ
2)

(b) if N ℓ
2 ≤u N ℓ,∗

2 for ℓ = 1, 2 then (N1,∗
2 )[τ ], (N2,∗

2 )[τ ] are not

τ -isomorphic over M2 ∪N1, i.e. over M
[τ ]
2 ∪N

[τ ]
1 .

5) We say τ is a K-sub-vocabulary or K-sub-vocabulary when clause
(a) of part (1) holds replacing Ku by K; similarly in parts (1A),(1B).

1.9 Observation. Concerning 1.8(1B) we may be careless in checking
the last condition, = λ, i.e. ≤ λ usually suffice, because if |{M [τ ]/ ∼=:

M ∈ Kλ, ‖M
[τ ]‖ < λ}| < µ then in proving İτ (λ,Kup

u ) ≥ µ we may
omit it.

Remark. 1) But we give also remedies by FR+
ℓ , i.e., clause (c) of

1.8(1).
2) We also give reminders in the phrasing of the coding properties.
3) If |τ | < λ and 2<λ < λ the demand in 1.9 holds.

Proof. Should be clear. �1.9
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1.10 Definition. 1) For any (< ∂)-a.e.c. K let K′ be the (< ∂)-a.e.c.
defined like K only adding the two-place predicate =τ , demanding it
to be a congruence relation, i.e.

(a) τ ′ = τ(K′) = τ ∪ {=τ} where τ = τ(K)

(b) K ′ = {M : M is a τ ′-model, =M
τ is a congruence relation

and M/ =M
τ belongs to κ and ‖M‖ < ∂}

(c) M ≤K′ N iff M ⊆ N and the following function is a ≤K-
embedding of M/ =M

τ into N/ =N
τ : f(a/ =M

τ ) = a/ =N
τ

(see Definition 1.8(1)).
1A) Similarly for K an a.e.c. or a λ-a.e.c.
2) This is a special case of Definition 1.8.

3) We can interpretM ∈ K asM ′ ∈ K ′ just lettingM ′ ↾ τ = M,=M ′

τ

is equality on |M |.
4) A model M ′ ∈ K is called =τ -full when a ∈ M ′ ⇒ ‖M ′‖ = |{b ∈
M ′ : M ′ |= a =τ b}|.
5) A model M ′ ∈ K is called (λ,=τ )-full when a ∈ M ′ ⇒ λ ≤ |{b ∈
M ′ : M ′ |= “a =τ b”}|.
6) A model M ′ is called =τ -fuller when it is =τ -full and ‖M ′‖ is the

cardinality of M ′/ =M ′

τ .

1.11 Claim. Assume K is11 a (< ∂)-a.e.c. and12 K′ is from 1.10
and λ < ∂.
0) K′

λ is a λ-a.e.c.

1) If M ′, N ′ ∈ K ′
λ then (M ′/ =M ′

τ ) ∈ K≤λ and (N ′/ =N ′

τ ) ∈ K≤λ

and if in addition M ′ ≤K′
λ
N ′ then (up to identifying a/ =M ′

τ with

q/ =N ′

τ ) we have (M ′/ =M ′

τ ) ≤K≤λ
(N ′/ =N ′

τ ), i.e. (M ′)[τ ] ≤K

(N ′)[τ ].

2) If M ′ ⊆ N ′ are τ ′K-models of cardinality λ and =M ′

τ ,=N ′

τ are
congruence relation on M ′ ↾ τK, N

′ ↾ τK respectively, then

(a) M ′ ∈ K ′
<∂ iff (M ′/ =M ′

τ ) ∈ K<∂

11We can use K is an a.e.c. and have similar results.
12now pedantically K may be both a (< ∂1)-a.e.c. and a (< ∂2)-a.e.c., e.g. if

∂2 = ∂+
1 , K∂1

= ∅, so really ∂ should be given
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(b) M ′ ≤K′
<∂

N ′ iff (M ′/ =M ′

τ ) ≤K<∂
(N ′/ =N ′

τ ); pedantically13

(M ′/ =N ′

τ ) ≤Kλ
(N ′/ =N ′

τ ) or make the natural identification

(c) if M ′, N ′ are =τ -fuller then in clauses (a),(b) we can replace
“≤ λ” by “= λ”

(d) if K<λ = ∅ then in clauses (a),(b) we can replace “≤ λ” by
“= λ”.

3) K′ has disjoint amalgamation if K has amalgamation.
4) Kλ ⊆ K ′

λ and ≤Kλ
=≤K′

λ
↾ Kλ.

5) (Kup
<µ)′ = (K′

<µ)up for any µ so we call it K ′
<µ and K′

µ = (K′
<µ+)µ.

6) For every µ,

(a) İ(µ,K) = |{M ′/ ∼=: M ′ ∈ K ′
µ is =τ -fuller}|

(b) Kµ = {M ′/ =M ′

τ : M ′ ∈ K ′
µ is µ-fuller} under the natural

identification

(c) K≤µ = {M/ =M
τ : M ∈ K ′

µ} under the natural identification

(d) if M ′, N1 ∈ K ′
µ are µ-full then M ′ ∼= N ′ ⇔ (M ′/ =M ′

τ ) ∼=

(N ′/ =N ′

τ ).

Proof. Straight. �1.11

1.12 Exercise: Assume K,K′ are as in 1.10.

1) If λ ≥ |τK| and 2λ < 2λ+

then İ(λ+,K) + 2λ = İ(λ+,K′) + 2λ, so

if İ(λ+,K) > 2λ or İ(λ+,K′) > 2λ then they are equal.

2) If λ > |τK| and 2<λ < 2λ then İ(λ,K) + 2<λ = İ(λ+,K′) + 2<λ

(and as above).

Remark. Most of our examples satisfies montonicity, see below.
But not so FR1,≤1 in §4(C).

1.13 Exercise: Let u be a nice construction framework, as usual.
1) [Definition] We say u satisfies (E)ℓ(e), monotonicity, when:

13or define when f is a ≤K′
<∂

-embedding of M1 into N ′
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(E)ℓ(e) if (M,N,J) ∈ FRℓ
u and N ≤u N

′

then (M,N,J) ≤ℓ
u (M,N,J′) ∈ FRℓ

u.

1A) Let (E)(e) mean (E)1(e) + (E)2(e).
2) [Claim] Assume u has monotonicity.

Assume d is a u-free (α2, β2)-rectangle, h1, h2 is an increasing
continuous function from α1+1, β1+1 into α2+1, β2+1 respectively.
Then d′ is a u-free rectangle where we define d′ by:

(a) α(d′) = α1, β(d′) = β1

(b) Md′

i,j = Md
h1(i),h2(1)

if i ≤ α1, j ≤ β1

(c) Jd′

i,j = Jd
h1(i),h2(j)

for i ≤ α1, j < β1

(d) Jd′

i,j = Jd
h1(i),h2(j)

for i < α1, j ≤ β1.

3) [Claim] Phrase and prove the parallel of part (2) for u-free trian-
gles.

1.14 Observation. Assume u is a nice construction framework except
that we omit clauses (D)ℓ(e) + (E)ℓ(d) for ℓ = 1, 2 but satisfying
Claim 1.3. We can show that u′ is a nice construction framework
where we define u′ like u but, for ℓ = 1, 2, we replace FRℓ,≤ℓ by
FR′

ℓ,≤
′
ℓ defined as follows:

(a) FR′
ℓ = {(M1,M2,J) : (M1,M2,J) ∈ FRℓ or M1 ≤u M2 ∈

K<∂ and J = ∅}

(b) ≤′
ℓ= {((M1, N1,J

′), (M2, N2,J
′′)) : (M1, N1,J

′) ≤ℓ
u (M2, N2,

J′′) or M1 ≤u N1, J′ = ∅, M1 ≤u M2, N1 ≤u N2, N1 ∩
M2 = M1 and (M2, N2,J

′′) ∈ FRℓ or M1 ≤u N1 ≤u N2,
M1 ≤u M2 ≤u N2, N1 ∩M2 = M1 and J′ = ∅ = J′′}.

Proof. Clauses (A),(B),(C) does not change, most subclauses of
(D)ℓ(a),(b),(d),(E)ℓ(a),(b) hold by the parallel for u and the choice of
FR′

ℓ,≤
′
ℓ; clauses (D)ℓ(e) and (E)ℓ(d) holds by the choice of (FR′

ℓ,≤
′
ℓ);

and clause (F) holds by clause (F) for u and Claim 1.3. Lastly

Condition (E)ℓ(c):
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So assume 〈(Mi, Ni,Ji) : i < δ〉 be increasing continuous, where δ
is a limit ordinal; and let (Mδ, Nδ,Jδ) = (∪{Mi : i < δ},∪{Ni : i <
δ},∪{Ji : i < δ}).

First, assume i < δ ⇒ Ji = ∅ hence Jδ = ∅ and the desired con-
clusion holds trivially (by the properties of a.e.c. and our definition
of u′).

Second, assume i < δ ; Ji 6= ∅ hence j := min{i : Ji 6= ∅} is well
defined and let δ′ = δ−j, it is a limit ordinal. Now use the “u satisfies
the Condition (E)ℓ(c)” for the sequence 〈(Mj+i, Nj+i,Jj+i : i < δ′〉
and ≤ℓ

u being transitive.
�1.14

∗ ∗ ∗

Now we define the approximations of size ∂; note that the notation
≤qt and the others below hint that they are quasi orders, this will be
justified later in 1.19(2), but not concerning ≤at

u . On the existence
of canonical limits see 1.19(4).

1.15 Definition. 1) We let Kqt
∂ = Kqt

u be the class of triples
(M̄, J̄, f) such that

(a) M̄ = 〈Mα : α < ∂〉 is ≤u-increasing continuous, so Mα ∈
Ku (= Ku

<∂)

(b) J̄ = 〈Jα : α < ∂〉

(c) f ∈ ∂∂

(d) (Mα,Mα+1,Jα) ∈ FR2 for α < ∂.

1A) We call (M̄, J̄, f) ∈ Kqt
u non-trivial if for stationarily many δ < ∂

for some i < f(δ) we have Jδ+i 6= ∅ that is (Mδ+i,Mδ+i+1,Jδ+i) ∈
FR+

2 .

1B) If D is a normal filter on ∂ let Kqt
D

= Kqt
u,D be the class of triples

(M̄, J̄, f) ∈ Kqt
u such that

(e) {δ < ∂ : f(δ) = 0} ∈ D .

1C) When we have (M̄x, J̄x, fx) then Mx
α ,J

x
α for α < ∂ has the ob-

vious meaning and Mx
∂ or just Mx is ∪{Mx

α : α < ∂}
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2) We define the two-place relation ≤qt=≤qt
u on Kqt

u as follows:

(M̄1, J̄1, f1) ≤qt
u (M̄2, J̄2, f2) if they are equal (and ∈ Kqt

u ) or for
some club E of ∂ (a witness) we have:

(a) (M̄k, J̄k, fk) ∈ Kqt
u for k = 1, 2

(b) δ ∈ E ⇒ f1(δ) ≤ f2(δ)

(c) δ ∈ E & i ≤ f1(δ) ⇒M1
δ+i ≤u M

2
δ+i

(d) δ ∈ E & i < f1(δ) ⇒
⇒ (M1

δ+i,M
1
δ+i+1,J

1
δ+i) ≤2 (M2

δ+i,M
2
δ+i+1,J

2
δ+i)

(e) δ ∈ E & i ≤ f1(δ) ⇒M2
δ+i ∩

⋃

α<∂

M1
α = M1

δ+i, disjointness.

3) We define the two place relation ≤at=≤at
u onKqt

u : (M̄1, J̄1, f1) ≤at
u

(M̄2, J̄2, f2) if for some club E of ∂ and Ī (the witnesses) we have
(a)-(e) as in part (2) and

(f) Ī = 〈Iα : α < ∂〉 and 〈(M1
α,M

2
α, Iα) : α ∈ ∪{[δ, δ + f1(δ)] :

δ ∈ E}〉 is ≤1-increasing continuous, so we may use 〈Iα : α ∈
∪{[δ, δ + f1(δ)] : δ ∈ E〉 only.

3A) We say (M̄1, J̄1, f1), (M̄2, J̄2, f2) are equivalent when for a club
of δ < ∂ we have f1(δ) = f2(δ) and i ≤ f1(δ) ⇒ M1

δ+i = M2
δ+i and

i < f1(δ) ⇒ J1
δ+i = J2

δ+i.

3B) Let (M̄1, J̄1, f1) <at
u (M̄2, J̄2, f2) mean that in part (3) in addi-

tion

(g) for some α ∈ ∪{[δ, δ + f(δ)] : δ ∈ E} the triple (M1
α,M

2
α, Iα)

belongs to FR+
1 .

4) We say (M̄ δ, J̄δ, f δ) is a canonical limit of 〈(M̄α, J̄α, fα) : α < δ〉
when:

(a) δ < ∂+

(b) α < β < δ ⇒ (M̄α, J̄α, fα) ≤qt
u (M̄β, J̄β, fβ)

(c) for some increasing continuous sequence 〈αε : ε < cf(δ)〉 of
ordinals with limit δ we have:
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Case 1: cf(δ) < ∂.
For some club E of ∂ we have:

(α) ζ ∈ E ⇒ f δ(ζ) = sup{fαε(ζ) : ε < cf(δ)};

(β) ζ ∈ E & ξ < cf(δ) & i ≤ fαξ(ζ) implies that M δ
ζ+i =

∪{Mαε

ζ+i : ε < cf(δ) satisfies ε ≥ ξ};

(γ) ζ ∈ E & ξ < cf(δ) & i < f ξ(ζ) implies that Jδ
ζ+i =

∪{Jαε

ζ+i : ε < cf(δ) satisfies ε ≥ ξ}

(δ) if ζ ∈ E and j = f δ(ζ) > fαε(ζ) for every ε < cf(δ) then
M δ

ζ+j = ∪{M δ
ζ+i : i < j}.

Case 2: cf(δ) = ∂.
Similarly, using diagonal unions.

4A) We say 〈(M̄α, J̄α, fα) : α < α(∗)〉 is ≤qt
u -increasing continuous

when it is ≤qt
u -increasing and for every limit ordinal δ < α(∗), the

triple (M̄ δ, J̄δ, f δ) is a canonical limit of 〈(M̄α, J̄α, fα) : α < δ〉.
5) We define the relation ≤qs=≤qs

u on Kqt
u by:

(M̄ ′, J̄′, f ′) ≤qs (M̄ ′′, J̄′′, f ′′) if there is a ≤at
u -tower 〈(M̄α, J̄α, fα) :

α ≤ α(∗)〉 witnessing it, meaning that is is a sequence such that:

(a) the sequence is ≤qt
u -increasing of length α(∗) + 1 < ∂+

(b) (M̄0, J̄0, f0) = (M̄ ′, J̄′, f ′)

(c) (M̄α(∗), J̄α(∗), fα(∗)) = (M̄ ′′, J̄′′, f ′′)

(d) (M̄α, J̄α, fα) ≤at
u (M̄α+1, J̄α+1, fα+1) for α < α(∗)

(e) if δ ≤ α(∗) is a limit ordinal then (M̄ δ, J̄δ, f δ) is a canonical
limit of 〈(M̄α, J̄α, fα) : α < δ〉.

5A) Let <qs=<
qs
u be defined similarly but for at least one α < α(∗)

we have (M̄α, J̄α, fα) <at
u (M̄α+1, J̄α+1, fα+1).

5B) Let ≤qr=≤qr
u be defined as in part (5) but in clause (d) we use

<at
u . Similarly for <qr=<

qr
u , i.e. when α(∗) > 0.

6) We say that 〈(M̄α, J̄α, fα) : α < α(∗)〉 is ≤qs
u -increasing con-

tinuous when it is ≤qs
u -increasing and clause (e) of part (5) holds.

Similarly for ≤qr
u .

Some obvious properties are (see more in Observation 1.19).
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1.16 Observation. 1) (M̄1, J̄1, f1) ≤at
u (M̄2, J̄2, f2) iff for some club

E of ∂ and sequence Ī = 〈Iα : α ∈ ∪{[δ, δ+ f1(δ)] : α ∈ E}〉 we have
clause (a),(b),(c) of Definition 1.15(2) and

(f)′ (〈M1
δ+i : i ≤ f1(δ)〉, 〈M2

δ+i : i ≤ f1(δ)〉, 〈J1
δ+i : i < f1(δ)〉,

〈J2
δ+i : i < f1(δ)〉, 〈Iδ+i : i ≤ f1(δ)〉) is a u-free (f1(δ), 1)-

rectangle

(f)′1 if δ1 < δ2 are from E then (M1
δ1+f1(δ1)

,M2
δ1+f1(δ1)

, Iδ1+f1(δ1))

≤2 (M1
δ2
,M2

δ2
, Iδ2

).

2) The relation ≤qt
u ,≤

at
u ,≤

qs
u ,≤

qr
u and ≤at

u are preserved by equiv-
alence, see Definition 1.15(3A) (and equivalence is an equivalence
relation) and so are <at, <qt, <qs, <qr.

Proof. Straightforward. �1.16

1.17 Remark. 1) In some of our applications it is natural to rede-

fine the partial order ≤qs
u we use on Kqt

u as the closure of a more
demanding relation.
2) If we demand FR1 = FR+

1 hence we omit clause (D)1(e), (E)1(d)
of Definition 1.2, really <at

u is the same as ≤at
u . In Definition 1.15(3)

we can choose Iα = ∅, then we get ≤qt
u . But even so we would like

to be able to say “repeat §1 with the following modifications”. If in
Definition 1.15(5) clause (d) we use <at

u , i.e. use <qr
u , the difference

below is small.
3) Note that below Ku,∗

∂ ⊆ Kup
u,∂ and Ku,∗

∂+ ⊆ Kup
u,∂+ , see the defini-

tion below.
4) Should we use ≤qs

u or ≤qr
u (see Definition 1.15(5A),(5B))? So far

it does not matter.

1.18 Definition. 1) Ku,∗
∂ = {M : M = ∪{Mα : α < ∂} for some

non-trivial (M̄, J̄, f) ∈ Kqt
u }, recalling Definition 1.15(1A).

2) Ku,∗
∂+ = {

⋃

{Mγ : γ < ∂+} : 〈(M̄γ, J̄γ , fγ) : γ < ∂+〉 is ≤qs
u -

increasing continuous and for unboundedly many γ < ∂+ we have
(M̄α, J̄α, fα) <qs

u (M̄α+1, J̄α+1, fα+1) and as usual Mγ = ∪{Mγ
α :

α < ∂}}.
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1.19 Observation. 1) Kqt
u 6= ∅; moreover it has non-trivial members.

2) The two-place relations ≤qt
u and ≤qs

u ,≤
qr
u are quasi orders and so

are <qt, <qs, <qr but not necessarily ≤at, <at.

3) Assume (M̄1, J̄1, f1) ∈ Kqt
u and α < ∂, (M1

α,M
2
α, I

∗) ∈ FR1 and
f1 ≤D∂

f2 ∈ ∂∂ and M2
α ∩M1 = M1

α. Then we can find M̄2, J̄2, E
and Ī = 〈Iα : α ∈ ∪{[δ, f1(δ)] : δ ∈ E}〉 such that

(a) (M̄1,J1, f1) ≤at
u (M̄2, J̄2, f2) as witnessed by E, Ī

(b) if β ∈ ∪{[δ, f2(δ)] : δ ∈ E} then (M1
α,M

2
α, I

∗) ≤1 (M1
β ,M

2
β , Iβ)

(c) if (M1
α,M

2
α, I

∗) ∈ FR+
1 then (M̄1, J̄1, f1) <qs

u (M̄2, J̄2, f2)
moreover (M̄1, J̄1, f1) <at

u (M̄2, J̄2, f2).

4) If 〈(M̄α, J̄α, fα) : α < δ〉 is ≤qt
u -increasing continuous (i.e. we

use canonical limits) and δ is a limit ordinal < ∂+, then it has a
canonical limit (M̄ δ, J̄δ, f δ) which is unique up to equivalence (see
1.15(3A)). Similarly for ≤qs

u and ≤qr
u .

5) Ku,∗
∂ , Ku,∗

∂+ are non-empty and included in Ku, in fact in Ku
∂ , K

u
∂+ ,

respectively. Also if τ is a strong u-sub-vocabulary and M ∈ Ku,∗
∂

or M ∈ Ku,∗
∂+ then M [τ ] has cardinality ∂ or ∂+ respectively. If τ is

a weak u-subvocabulary we get only ≤ ∂,≤ ∂+ respectively.

Proof. 1) We choose Mi ∈ Ku = K<∂ ,≤u-increasing continuous with
i as follows. For i = 0 use K<∂ 6= ∅ by clause (C) of Definition 1.2.
For i limit note that 〈Mj : j < i〉 is ≤K-increasing continuous and
j < i ⇒ Mj ∈ Ku hence j < i ⇒ ‖Mj‖ < ∂ but i < ∂ and ∂ is
regular (by Definition 1.2, clause (B)) so Mi := ∪{Mj : j < i} has
cardinality < ∂ hence (by clause (C) of Definition 1.2) Mi ∈ Ku and
j < i ⇒ Mj ≤u Mi. For i = j + 1 by clause (D)2(d) of Definition

1.2 there are Mi,Jj such that (Mj,Mi,Jj) ∈ FR+
2 . Choose f ∈ ∂∂,

e.g., f(α) = 1.

Now (〈Mi : i < ∂〉, 〈Ji : i < ∂〉, f) ∈ Kqt
u is as required; moreover is

non-trivial, see Definition 1.15(1A).

2) We first deal with ≤qt
u .

Trivially (M̄, J̄, f) ≤qt
u (M̄, J̄, f) for (M, J̄, f) ∈ Kqt

u .
[Why? It is witnessed by E = ∂ (as (Mi,Mi, ∅) ∈ FR1 by clause
(D)1(e) of Definition 1.2 and i < j < ∂ ⇒ (Mi,Mi, ∅) ≤1 (Mj,Mj, ∅)
by clause (E)1(d) of Definition 1.2.]
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So assume (M̄ ℓ, J̄ℓ, f) ≤qt
u (M̄ ℓ+1, J̄ℓ+1, f ℓ) and let it be witnessed by

Eℓ for ℓ = 1, 2. Let E = E1 ∩ E2, it is a club of ∂. For every δ ∈ E
by clause (b) of Definition 1.15(2) we have f1(δ) ≤ f2(δ) ≤ f3(δ)
hence f1(δ) ≤ f3(δ) and for i ≤ f1(δ) by clause (c) of Definition
1.15(2), clearly M1

f1(δ)+i ≤u M2
f1(δ)+i ≤u M3

f1(δ)+i so as Ku is a

(< ∂)-a.c.e. we have M1
δ+i ≤u M3

δ+i. Similarly as ≤2
u is a quasi

order by clause (E)2(a) of Definition 1.2 we have δ ∈ E & i <
f1(δ) ⇒ (M1

δ+i,M
1
δ+i+1,J

1
δ+i) ≤

2
u (M3

δ+i,M
3
δ+i+1,J

3
δ+i) so clause (d)

of Definition 1.15(2) holds.
Also if δ ∈ E and i ≤ f1(δ) then M2

δ+i ∩ (∪{M1
γ : γ < ∂}) = M1

δ+i

and M3
δ+i ∩ (∪{M2

γ : γ < ∂}) = M2
δ+i hence M3

δ+i ∩ (∪{M1
γ : γ <

∂}) = M1
δ+i, i.e. clause (e) there holds and clause (a) is trivial.

Together really (M̄1, J̄1, f1) ≤qt
u (M̄3, J̄3, f3).

So ≤qt
u is actually a quasi order. As for ≤qs

u and ≤qr
u , this follows by

the result on ≤qt
u and the definitions. Similarly for <qt

u , <
qs
u , <

qr
u .

3) By induction on β ∈ [α, ∂) we choose (gβ,M
2
β , Iβ) and Jβ (but Jβ

is chosen in the (β + 1)-th step) such that

(a) M2
β ∈ Ku is ≤u-increasing continuous

(b) gβ is a ≤u-embedding of M1
β into M2

β , increasing and contin-
uous with β

(c) (gβ(M1
β),M2

β , Iβ) ∈ FRu
1 is ≤1

u-increasing and continuous

(d) if β = γ+1 then (gγ(M1
γ ), gβ(M1

β), gβ(J1
β)) ≤2

u (M2
γ ,M

2
β ,J

2
β).

For β = α let gβ = idM1
α
,M2

β as given, Iβ = I∗, so by the assump-
tions all is O.K.

For β limit use clause (E)1(c) of Definition 1.2.
For β = γ + 1 use clause (F ) of Definition 1.2. Having carried

the induction, by renaming without loss of generality gβ = idM1
β

for

β < ∂. So clearly we are done.
4),5) Easy, too. �1.19

1.20 Definition. 1) Kqt
α = Kqt

u,α is defined as in Definition 1.15(1)
above but α = Dom(f) = ℓg(J̄) = ℓg(M̄) − 1, where α ≤ ∂.

2) Kqt
<α = Kqt

u,<α, K
qt
≤α = Kqt

u,≤α are defined similarly.

∗ ∗ ∗
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1.21 Discussion: 1) Central here in Chapter are “τ -coding proper-
ties” meaning that they will help us in building M ∈ Ku

∂+ , moreover

in Ku,∗
∂+ (or Ku,h

∂+ , see below) such that we can code some subset of

∂+ by the isomorphism type of M [τ ]; that is during the construction,
choosing (M̄α, J̄α, fα) ∈ Kqt

u which are ≤qs
u -increasing with α < ∂+,

we shall have enough free decisions. This means that, arriving to the
α-th triple we have continuations which are incompatible in some
sense. This will be done in §2,§3.
2) The following definition will help phrase coding properties which

holds just for “almost all” triples from Kqt
u . Note that in the weak

version of coding we have to preserve f(δ) = 0 for enough δ’s.
3) In the applications we have in mind, ∂ = λ+, the set of (M̄, J̄, f) ∈
Kqt

u for which Mλ+ = ∪{Mi : i < λ+} is saturated above λ, is dense
enough which for our purpose means that for almost every (M̄, J̄, f)
this holds.
4) Central in our proof will be having “for almost all (M̄, J̄, f) ∈ Kqt

u

in some sense, satisfies ....”. The first version (almost3, in 1.22(0)),
is related to Definition 1.24.
5) The version of Definition 1.22 we shall use mostly in 1.22(3C),
“almost2...”, which means that for some stationary S ⊆ ∂, we de-
mand the sequences to “strictly S-obey g”; and from Definition 1.24
is 1.24(7), “{0, 2}-almost”.

1.22 Definition. 0) We say that “almost3 every (M̄, J̄, f) ∈ Kqt
u

satisfies Pr” when there is a function h witnessing it which means:

(∗)1 (M̄ δ, J̄δ, f δ) satisfies Pr when: the sequence x = 〈(M̄α, J̄α, fα) :
α ≤ δ〉 is ≤qs

u -increasing continuous (δ < ∂+ a limit ordinal,
of course) and obeys h which means that for some unbounded
subset u of δ for every α ∈ u the sequence x does obey3 or 3-
obeys h which means (M̄α+1, J̄α+1, fα+1) = h((M̄α, J̄α, fα)
(and for notational simplicity the universes of Mα

∂ ,M
α+1
∂ are

sets of ordinals14); we may write obeys instead 3-obeys when
this is clear from the context; also below

14we may alternatively restrict yourself to models with universe ⊆ ∂+ or use

a universal choice function. Also if we use h(〈M̄β , J̄β , fβ) : β ≤ α〉) the difference

is minor: make the statement a little cumbersome and the checking a little easier.
Presently we do not distinguish the two versions.
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(∗)2 above fα(i) = 0 ⇒ fα+1(i) = 0 for a club of i < ∂ and
{i : fα(i) > 0} is stationary for every α ≤ δ

(∗)3 h has the domain and range implicit in (∗)1 + (∗)2

(∗)4 we shall restrict ourselves to a case where each of the models
Mα

i above have universe ⊆ ∂+, (or just be a set of ordinals)
thus avoiding the problem of global choice; similarly below
(e.g. in part (3)).

1) We say that the pair ((M̄1, J̄1, f1), (M̄2, J̄2, f2)) does S-obey or
S-obeys1 the function g (or (M̄2, J̄2, f2) does S-obeys or S-obeys1 g

above (M̄1, J̄, f1)), when for some Ī and E we have

(a) S is a stationary subset of ∂ and E is a club of ∂

(b) (M̄1, J̄1, f1) <at
u (M̄2, J̄2, f2) as witnessed by E and Ī

(c) for stationarily many δ ∈ S

⊙ the triple (M̄2 ↾ (δ+ f2(δ)+1), J̄2 ↾ (δ+ f2(δ)), Ī ↾ (δ+
f2(δ)) + 1) is equal to, (in particular15 g is well defined
in this case) g(M̄1, J̄1, f1, M̄2 ↾ (δ + f1(δ) + 1), J̄2 ↾

(δ + f1(δ), Ī ↾ (δ + f1(δ) + 1), S)
or at least

⊙′ for some γ1 ≤ γ2 from the interval [f1(δ), f2(δ)], the
triple (M̄2 ↾ (γ2 + 1), J̄2 ↾ γ2, Ī ↾ (γ2 + 1)) is equal to
g(M̄1, J̄1, f1, M̄2 ↾ (γ1 + 1)), J̄2 ↾ γ1, Ī ↾ (γ1 + 1), S).

1A) Saying “strictly S-obeys1” mean that in clause (1)(c) we replace
“stationarily many δ ∈ S” by “every δ ∈ E ∩ S (we can add the
“strictly” in other places, too). Omitting S means for some station-
ary S ⊆ ∂; we may assume g codes S and in this case we write
S = Sg and can omit S. In the end of clause (1)(c), if the resulting
value does not depend on some of the objects written as arguments
we may omit them. We may use ḡ = 〈gS : S ⊆ ∂ stationary〉 and
obeying ḡ means obeying gS for some S (where g = gS ⇒ Sg = S).
2) A ≤qs

u -increasing continuous sequence 〈(M̄α, J̄α, fα) : α ≤ δ〉

15alternatively we can demand (as in §9,§10) that: the universe of M1
∂

and

of M2
∂

is an ordinal < ∂+
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obeys1 or 1-obeys ḡ when δ is a limit ordinal < ∂+ and for some
unbounded u ⊆ δ there is a sequence 〈Sα : α ∈ u∪{δ}〉 of stationary
subsets of ∂ decreasing modulo D∂ such that for each α ∈ u, the pair
((M̄α, J̄α, fα), (M̄α+1, J̄α+1, fα+1)) strictly Sα-obeys g.
2A) In part (2) we say S-obeys1 when Sα ⊆ S mod D∂ for α ∈ u∪{δ}.
Similarly for S̄′-obey1 when S̄′ = 〈S′

α : α ∈ u′〉 and α ∈ u ∪ {δ} ⇒
S∗

α ⊆ Sα and u ∪ {δ} ⊆ u′.
2B) In part (2) we say strictly S-obeys1 when this holds in each case.

3) We say “almost1 every (M̄, J̄, f) ∈ Kqt
u satisfies Pr” when there

is a function g witnessing it, which means (note: the use of “obey”
guarantees g is as in part (2) and not as implicitly required on h in
part (0)):

(c) if 〈(M̄α, J̄α, fα) : α ≤ δ〉 is ≤qs
u -increasing continuous obeying

g and δ < ∂+ a limit ordinal then (M̄ δ, J̄δ, f δ) satisfies the
property Pr.

3A) We add “above (M̄, J̄, f ′)” when we demand in clause (c) that
(M̄0, J̄0, f0) = (M̄ ′, J̄′, f ′).
3B) We replace16 almost1 by S-almost2 when we require that the
sequence “strictly S-obeys g”.
3C) We replace17 almost1 by almost2 when for every stationary

S ⊆ ∂, S-almost1 every triple (M̄, J̄, f) ∈ Kqt
u satisfies Pr; and “S-

almost2” we ?.

1.23 Definition. 1) For h as18 in Definition 1.22(0) we define Ku,h

∂+

as the class of models M such that for some ≤qs
u -increasing continu-

ous sequence x = 〈(M̄α, J̄α, fα) : α < ∂+〉 of members of Kqt
u such

that a club of δ < ∂+,x ↾ (δ + 1) obeys h is the sense of part (0) of
Definition 1.22 respectively, we have M = ∪{Mα

∂ : α < ∂+}.
2) For g as in Definition 1.22(1),(2) we define Ku,g

∂+ similarly.
3) We call h as in 1.22(0) appropriate3 or 3-appropriate and g as
in Definition 1.22(1),(2) we call appropriateℓ or ℓ-appropriate for

16again assume that all elements are ordinals < ∂+

17if we replaced it by “for a set of δ’s which belongs to D”, D a normal filter

on ∂, the difference is minor.
18we shall assume that no h is both as required in Definition 1.22 and as

required in Definition 1.23(0).
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ℓ = 1, 2; we may add “u-”if not clear from the context.
4) As in parts (1),(2) for h as in (any relevant part of) Definition
1.24 below.
5) Also Ku,h̄

∂+ = ∩{Ku,hε

∂+ : ε < ℓg(h̄)} where each Ku,hε

∂+ is well de-
fined.

1.24 Definition. 1) We say 〈(M̄ ζ , J̄ζ , f ζ) : α < α∗〉 does obey0 (or
0-obey) the function h in ζ when ξ + 1 < α∗ and (if α∗ = 2 we can
omit ζ):

(a) (M̄ ε, J̄ε, fε) ∈ Kqt
u is ≤qt

u -increasing continuous (with ε)

(b) M ζ
∂ and even M ζ+1

∂ has universe an ordinal < ∂+

(c) there is a club E of ∂ and sequence 〈Iα : α < ∂〉 witnessing

(M̄ ζ , J̄ζ , f ζ) ≤at
u (M̄ ζ+1, J̄ζ+1, J̄, f ζ+1) such that (M ζ

min(E),

M ζ+1
min(E), Imin(E)) = h(〈(M̄ ξ, J̄ξ, f ξ) : ξ ≤ ζ〉) ∈ FR+

1 .

2) We say that h is u-appropriate0 or u− 0-appropriate when: h has
domain and range as required in part (1), particularly clause (c).
We may say 0-appropriate or appropriate0 when u is clear from the
context and we say “(M̄ ζ , . . . ), (M̄ ζ+1, . . . ) does 0-obeys h”.
2A) We say the function h is u-1-appropriate when its domain and
range are as required in Definition 1.22(3); in this case Sh = S.
2B) We say the function h is u-2-appropriate for S when S ⊆ ∂ is
stationary and its domain and range are as required in Definition
1.22(3B), i.e. 1.22(3).
2C) If in (2B) we omit S this means that h̄ = 〈hS : S ⊆ ∂ is
stationary〉, each hS as above.

3) For 0-appropriate h we define K
u,h

∂+ to be the family of models
M , with universe ∂+ for simplicity, as the set of models of the form

∪{M ζ

∂+ : ζ < ∂+} where 〈(M̄ ζ, J̄ζ , f ζ) : ζ < ∂+〉 is ≤qt-increasing

continuous and 0-obeys h in ζ for unboundedly many ζ < ∂+. Simi-
larly for the other h, see below.
4) We say h is u − {0, 2}-appropriate or u-appropriate for {0, 2} if
h = h0 ∪ h2 and hℓ is ℓ-appropriate for ℓ = 0, 2; we may omit h when
clear from the context.
5) For a {0, 1}-appropriate h letting h0, h1 be as above we say
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〈(M̄α, J̄α, fα) : α < α(∗)〉 does {0, 1}-obeys h in ζ < α(∗) when
((M̄ ζ , J̄ζ , f ζ), (M̄ ζ+1, J̄ζ+1, f ζ)) does ℓ-obey hℓ for ℓ = 0, 2. We say
strictly {0, 2} − S-obeys h in ζ when for stationary S ⊆ ∂, for un-
boundedly many ζ < α(∗) the pair 0-obeys h0 and strictly 1−S-obeys
h1.
6) For a {0, 2}-appropriate h, we say 〈(M̄, J̄α, fα) : α < δ ≤ ∂+〉
does {0, 2}-obey h when this holds for some stationary S ⊆ ∂ for
unboundedly many ζ < δ the sequence strictly {0, 1} − S-obey h.
Similarly we define “the sequence {0, 2} − S-obeys h”.
7) “{0, 2}-almost every (M̄, J̄, f) (or every (M̄, J̄, f) above (M̄∗, J̄∗, f∗))”
is defined similarly to Definition 1.22.

1.25 Observation. 1) For any ε∗ < ∂+ and sequence 〈hε : ε < ε∗〉

of 3-appropriate h, there is an 3-appropriate h such that K
u,h

∂+ ⊆

∩{Ku,hε

∂+ : ε < ε∗} and similarly for <qs
u -increasing sequences of Kqt

u

length < ∂+.

2) Ku,h

∂+ ⊆ Ku,∗
∂+ for any 3-appropriate function h.

3) Similarly to parts (1)+(2) for g as in Definition 1.22(2).
4) Similarly to parts (1) + (2) for {0, 2}-appropriate h, see Definition
1.24(4),(5),(6).

1.26 Remark. 1) Concerning 1.25, if in Definition 1.22(1)(c) we do
not allow ⊙′, then we better19 in 1.22(2) add S̄ = 〈Sε : ε < ∂〉
such that: Sε ⊆ ∂ is stationary, ε < ζ < λ ⇒ Sε ∩ Sζ = ∅ and
ε < ∂ ∧ α ∈ u ∪ {δ} ⇒ Sε ∩ Sα is stationary.
2) A priori “almost3” look the most natural, but we shall use as our
main case “{0, 2}-almost”. We try to explain below.
3) Note that

(a) in the proof of e.g. 10.10 we use Krt
u not Kqt

u , i.e. carry F̄;
this does not allow us the freedom which “almost3” require

(b) model theoretically here usually there is a special model in
Ku

∂ , normally the superlimit or saturated one, and we try to
take care building the tree 〈(M̄η, J̄η, fη, (F̄η)) : η ∈ ∂>(2∂)〉
that, e.g. η ∈ γ(2∂) ∧ ∂|γ ⇒Mη

∂ is saturated.

19in the cases we would like to apply 1.25 there is no additional price for this.
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In the ‘almost3” case this looks straight; in successor of successor
cases we can take care.
4) We like to guarantee that for “almost” all (M̄η, J̄η, fη) the model
Mη

∂ ∈ Ku,∗
∂ is saturated so that we have essentially one case. If we

allow in the “almost”, for, e.g. γ+ 2, to choose some initial segment
in (M̄η, J̄η, fη) for η of length γ + 1, this guarantees saturation of
Mη

∂ if cf(ℓg(η)) = ∂, but

(c) set theoretically we do not know that S∂+

∂ = {δ < ∂+ :
cf(δ) = ∂} is not in the relevant ideal (in fact, even under
GCH, ♦

S∂+

∂

may fail)

(d) if K∂ is categorical, there is no problem. However, if we know
less, e.g. that there is a superlimit one, or approximation,
using the almost2, in γ = γ′ + 2, we can guarantee that Mη

for η ∈ γ(2∂) is up to isomorphism the superlimit one

(e) we may conclude that it is better to work with Krt
u rather

than Kqt
u , see Definition 10.3(1). This is true from the point

of view of the construction but it is model theoretically less
natural.

5) We may in Definition 1.24 demand on 〈(M̄α, J̄α, fα) : α < δ∗〉
satisfies several h’s of different kinds say of {0, 2} and of 3; make
little difference.
6) In the usual application here for u = uℓ

s for some g, if 〈(Mα, J̄α, fα) :

α ≤ δ〉 is ≤qt
u -increasing continuous and δ = u, u := {α < δ :

((M̄α, J̄α, fα), (M̄α+1, J̄α+1, fα1)) does strictly S-obey g}, then M δ
∂

is saturated. But without this extra knowledge, the fact that for
α ∈ u we may have Sα disjoint to other may be hurdle. But using
“strictly obey1” seems more general and the definition of “almost2”
fits this feeling.

§2 Coding properties and non-structure

We now come to the definition of the properties we shall use as
sufficient conditions for non-structure starting with Definition 2.2;
in this section and §3 we shall define also some relatives needed for
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sharper results, those properties have parallel cases as in Definition
2.2.

2.1 Hypothesis. We assume u be a nice construction framework and,
τ a weak u-sub-vocabulary, see Definition 1.8(1).

Remark. The default value is τu = τ(Ku) or better the pair (τ, τu)
such that τu = τ ′, as in Definition 1.8(1) and 2.8(1),(2); see also u

has faked equality, see 3.17 later.
Among the variants of weak τ -coding in Definition 2.2 the one we

shall use most is 2.2(5), “u has the weak τ -coding1 above (M̄∗, J̄∗, f∗)”.

2.2 Definition. 1) We say that M ∈ Ku has the weak τ -coding0-
property (in u) when:

(A) if N, I are such that (M,N, I) ∈ FR+
1 then (M,N, I) has the

weak τ -coding0 property,
where:

(B) (M,N, I) has the weak τ -coding0 property when we can find
(M∗, Nℓ, Iℓ) ∈ FR1 for ℓ = 1, 2 satisfying

(a) (M,N, I) ≤1
u (M∗, Nℓ, Iℓ) for ℓ = 1, 2

(b) M∗ ∩N = M (follows)

(c) N1, N2 are τ -incompatible amalgamations ofM∗, N over
M in Ku, (see Definition 1.8(4)).

1A) We say that (M,N, I) ∈ FR+
1 has the true weak τ -coding0

when: if (M,N, I) ≤1
u (M ′, N ′, I) then (M ′, N ′, I′) has the weak τ -

coding0 property, i.e. satisfies the requirement in clause (B) of part
(1).
1B) u has the explicit weak τ -coding0 property when every (M,N, I) ∈
FR+

u has the weak τ -coding property.

2) (M̄∗, J̄∗, f∗) ∈ Kqt
u has the weak τ -coding0 property when: for

a club of δ < ∂, not only M = M∗
δ has the true weak τ -coding0-

property but in clause (B) of part (1) above we demand M∗ ≤u M
∗
γ

for any γ < ∂ large enough.
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3) We say that (M̄, J̄, f) ∈ Kqt
u has the weak τ -coding1 property20

when: (we may omit the superscript 1):
recalling M∂ = ∪{Mα : α < ∂}, there are α(0) < ∂ and N0, I0 such
that (Mα(0), N0, I0) ∈ FR1, N0 ∩ M∂ = Mα(0) and for a club of

α(1) < ∂, if (Mα(0), N0, I1) ≤1
u (Mα(1), N1, I1) satisfies N1 ∩M∂ =

Mα(1) then there are α(2) ∈ (α(1), ∂) and N ℓ
2 , I

ℓ
2 for ℓ = 1, 2 such

that (Mα(1), N1, I1) ≤1
u (Mα(2), N

ℓ
2 , I

ℓ
2) for ℓ = 1, 2 and N1

2 , N
2
2 are

τ -incompatible amalgamations ofMα(2), N1 overMα(1) recalling Def-
inition 1.8(4).
4) We say that (M̄, J̄, f) has the S-weak τ -coding1 property when:
S is a stationary subset of ∂ and for some club E of ∂ the demand
in (3) holds restricting ourselves to α(1) ∈ S ∩E.
5) We say that u has the weak τ -codingk property when: {0, 2}-
almost every (M̄, J̄, f) ∈ Kqt

u has the weak τ -codingk property; omit-

ting k means k = 1. Similarly for “above (M̄, J̄, f) ∈ Kqt
u ”. Similarly

for “S-weak”.

The following theorem uses a weak model theoretic assumption,
but the price is a very weak but still undesirable, additional set
theoretic assumption (i.e. clause (c)), recall that µunif(∂

+, 2∂) is
defined in 0.4(7), see 9.4.

2.3 Theorem. We have İτ (∂+, Ku
∂+) ≥ µunif(∂

+, 2∂), moreover for
any u-0-appropriate h (see Definition 1.24) and even {0, 2}-appropriate

h (see Definition 1.24(3),(7) and Definition 1.23) we have İ(Ku,h

∂+ ) ≥

µunif(∂
+, 2∂), when:

(a) 2θ = 2<∂ < 2∂

(b) 2∂ < 2∂+

(c) the ideal WDmId(∂) is not ∂+-saturated

(d) u has the weak τ -coding (or just the S-weak τ -coding property

above some triple (M̄, J̄, f) ∈ Kqt
u with WDmId(∂) ↾ S not

∂+-saturated and S ⊆ f−1{0}).

20the difference between coding0 and coding1 may seem negligible but it is
crucial, e.g. in 4.1
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Proof. This is proved in 10.10. �2.3

2.4 Remark. 1) Theorem 2.3 is used in 4.1, 4.3(1), 4.20, 4.16 and
4.28, for 4.3(2) we use the variant 2.5. We could use Theorem 2.7
below to get a somewhat stronger result.
In other words, e.g. it is used for “the minimal types are not dense
in S (M) for M ∈ Kλ” for suitable K, see 4.1 (and Chapter VI or
the older [Sh 576], [Sh 603]).
2) We may think that here at a minor set theoretic price (clause (c)),
we get the strongest model theoretic version.
3) We can in 2.3 replace h by h̄, a sequence of {0, 2}-appropriate h’s
of length ≤ ∂+.
4) In part (3), we can fix a stationary S ⊆ ∂ such that WDmId(∂)+S
is not ∂+-saturated (so ∂ is not in it) and restrict ourselves to strict
S-obeying.
5) We can replace assumption (d) of 2.3 by

(d)′ for some D

(i) D is a normal filter on ∂ disjoint to WDmId(∂); more-
over

(∀A ∈ D)(∃B)[B ⊆ A ∧ ∂\B ∈ D ∧B ∈ (WDmId(∂))+]

(ii) almost2 every (M̄, J̄, f) ∈ Kqt
D

has the weak τ -coding

property (even just above some member of Kqt
D

).

A variant is

2.5 Claim. In Theorem 2.3 we can weaken the assumption to “u

has a weak τ -coding2”, see below.

Proof. As in 10.10. �2.5
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2.6 Definition. 1) We say that u has the S-weak τ -coding2 property

(or the S-weak game τ -coding property) [above (M̄∗,J∗, f∗) ∈ Kqt
u ]

when {0, 2}-almost every (M̄, J̄, f) ∈ Kqt
s [above (M̄∗, J̄∗, f∗)] has it.

2) We say (M̄, J̄, f) ∈ Kqt
u has the S-weak game τ -coding2 property

or S-weak τ -coding2 property for a stationary set S ⊆ ∂ (omitting
S means for every such S) when, recalling M∂ = ∪{Mα : α < ∂},
in the following game au,S(M̄, J̄, f), the Coder player has a winning
strategy where:

(∗)1 a play of au,S last ∂ moves after the ε-th move a tuple
(αε, eε, N̄

ε, J̄ε, fε, Īε) is chosen such that:

(a) αε < ∂ is increasing continuous

(b) eε is a closed subset of αε such that ζ < ε ⇒ αζ ∈
e ∧ eζ = eε ∩ αζ

(c) fε is a function with domain eε such that α+ fε(α) <
min(eε ∪ {αε}\α) and fε(α) ≥ f(α)

(d) uε = ∪{[α, α + fε(α)] : α ∈ eε} ∪ {αε} and u−ε =
∪{[α, α+ fε(α))) : α ∈ eε}

(e) N̄ε = 〈Nα : α ∈ uε〉 and Jε = 〈Jα : α ∈ u−ε 〉 and
Īε = 〈Iα : α ∈ uε〉

(f) 〈(Mα, Nα, Iα) : α ∈ uε〉 is ≤1
u-increasing

(g) Nε
α ∩M∂ = Mα for α ∈ uε

(h) J̄ε = 〈J∗
α : α ∈ u−ε 〉

(i) (Mα,Mα+1,Jα) ≤2
u (Nα, Nα+1,J

∗
α) for α ∈ u−ε

(j) the coder chooses (αε, eε, N̄
ε, J̄ε, Īε, fε) if ε = 0 or ε =

ζ+1, ζ a limit ordinal /∈ S, and otherwise the anti-coder
chooses

(∗)2 in the end the Coder wins the play when for a club of ε <
∂, if ε ∈ S, then the triple (Mαε

, Nε, Iε) has the weak τ -
coding0 property, i.e. satisfies clause (B) of Definition 2.2(1),
moreover such that M ≤K M∂ .

We can also get “no universal” over M∂ ∈ Ku
∂ (suitable for applying

9.2).
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2.7 Claim. If (M̄,J, f) ∈ Kqt
u ,M = ∪{Mα : α < ∂} and M ≤u

Nε ∈ K≤µ for ε < ε∗ < µ+ then there is (M̄ ′, J̄′, f) satisfying
(M̄, J̄, f) ≤u

at (M̄ ′, J̄′, f ′) such that M ′
∂ = ∪{Mα : α < ∂} ∈ K∂

cannot be ≤K[u]-embedded into Nε for ε < ∂ over M∂ provided that:
(a),(b),(d) as in 2.3

(e) ∂2 is not the union of cov(µ, ∂+, ∂+, 2) sets from
WDmTId(∂, 2<∂).

Proof. As in the proof of 10.10, anyhow not used. �2.7

2.8 Exercise: 1) [Definition] Call u a semi-nice construction frame-
work when in Definition 1.2 we omit clause (D)ℓ(d) and the disjoint-
ness demands (E)ℓ(b)(β)
2) For u as above we define u′ as follows:

(a) Ku′ is as in Definition 1.10(1)

(b) FRℓ
u′ = {(M,N,J) : M ≤K′

u

N so both of cardinality < ∂
and J ⊆ N\M and letting M∗ = M/ =τ , N

∗ = N/ =τ

and J∗ = {c/ =N
τ : c ∈ J and (c/ =τ ) /∈ M/ =τ} we have

(M∗, N∗,J∗) ∈ FRℓ
u}

pedantically =τ means =N
τ (even M/ =N

τ )

(c) (M1, N1,J1) ≤
ℓ
u′ (M2, N2,J1) iff M1 ≤u′ M2 ≤u′ N2,M1 ≤u′

N1 ≤u′ N2,J1 ⊆ J2,M2 ∩ N1 = M1 and (M∗
1 , N

∗
1 ,J1) ≤ℓ

u

(M∗
2 , N

∗
2 ,J

∗) when we define them as in clause (b).

3) (Claim) If u is a semi-nice construction framework then u′ is a
nice construction framework.
4) [Definition] For u a semi-nice construction framework we define
u′′ as in part (2) except that in clause (b) we demand c ∈ J ∧ a ∈
M ⇒ N |= ¬(a =τ c).
5) [Claim] If u is a nice, [semi-nice], [semi-nice satisfying (D)(d)] con-
struction framework then u′′ is a nice, [semi-nice], [nice] construction
framework.

Discussion: We now phrase further properties which are enough for
the desired conclusions under weaker set theoretic conditions. The
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main case is vertical coding (part (4) but it relies on part (1) in
Definition 2.9). On additional such properties, see later.

In the “vertical coding” version (see Definition 2.9 below), we
strengthen the “density of τ -incompatibility” such that during the
proof we do not need to preserve “f−1

η {0} is large” even allowing

f−1
η {0} = ∅.

We may say that “vertically” means that given (M̄1, J̄1, f1) ∈ Kqt
u

building M2
α,J

2
α, I

2
α by induction on α < ∂, arriving to some limit δ,

we are committed toM2
α+i for i ≤ f1(δ), but still like to have freedom

in determining the type of M2
δ over ∪{M1

β : β < ∂} (see more in the
proof of Theorem 8.6 and Definition 8.7 on delayed uniqueness, which
express failure of this freedom). In other words the property we have
is a delayed version of the weak coding.
As usual, always u is a nice construction framework.

2.9 Definition. 1) We say that (M̄1, J̄1) = (〈M1
i : i ≤ β〉, 〈J1

i : i <
β〉) has the vertical τ -coding0 property (in u) when:

(A)(a) β < ∂

(b)1 M1
i is ≤u-increasing continuous for i ≤ β

(c)1 (M1
i ,M

1
i+1,J

1
i ) ∈ FR2 for i < β

(B) if (〈M2
i : i ≤ β〉, 〈J2

i : i < β〉, 〈Ii : i ≤ β〉) satisfies ⊛1 below,

then we can find γℓ,M
1
∗ , I

ℓ
∗ and M2,ℓ

i (for i ∈ (β, γℓ]) and

J2,ℓ
i (for i ∈ [β, γℓ)), for ℓ = 1, 2 satisfying ⊛2 below where,

letting M2,ℓ
i = M2

i for i ≤ β and J2,ℓ
i = J2

i for i < β, we
have:

⊛1(d) M2
i (i ≤ β) is ≤u-increasing continuous

(e) M2
i ∩M1

β = M1
i

(f) 〈(M1
i ,M

2
i , Ii) : i ≤ β〉 is ≤1

u-increasing continuous and
(M1

i ,M
2
i , Ii) ∈ FR+

1

(g) (M1
i ,M

1
i+1,J

1
i ) ≤

2
u (M2

i ,M
2
i+1,J

2
i ) ∈ FR2 for i < β

(h) (M1
0 ,M

2
0 , I0) = (M,N, I)

⊛2 M2,1
γ1
,M2,2

γ2
are τ -incompatible amalgamation ofM1

∗ ,M
2
0

over M1
0 in K<∂ and for ℓ = 1, 2 we have

⊛2,ℓ(a)’ β < γℓ < ∂
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(b)′1 M1
β ≤u M

1
∗

(c)′1 (M2,ℓ
i ,M2,ℓ

i+1,J
2,ℓ
i ) ∈ FR2 for i < γℓ

(d)′ M2,ℓ
i (for i ≤ γℓ) is ≤u-increasing continuous

(e)′ M1
∗ ≤u M

2,ℓ
γℓ

(f)′ (M1
β ,M

2
β , Iβ) ≤1

u (M1
∗ ,M

2,ℓ
γℓ
, Iℓ

∗).

1A) We say that (M,N, I) has the vertical τ -coding0 property when:
if (M̄1, J̄1) = (〈M1

i : i ≤ β〉, 〈J1
i : i < β〉) satisfies clause (A) of

part (1) and (〈M2
i : i ≤ β〉, 〈J2

i : i < β〉, 〈Ii : i ≤ β〉) satisfies ⊛1 of
clause (B) of part (1) and (M1

0 ,M
2
0 , I0) = (M,N, I) then we can find

objects satisfying ⊛2 of clause (B) of part (1).
1B) We say that (M,N, I) has the true vertical τ -coding0 property
when it belongs to FR+

1 and every (M ′, N ′,J′) satisfying (M,N, I) ≤1
u

(M ′, N ′, I′) has the vertical τ -coding0 property.
1C) We say that u has the explicit vertical τ -coding0 property when
for every M for some N, I the triple (M,N, I) ∈ FR+

1 has the true
vertical τ -coding0 property.
2) (M̄∗, J̄∗, f∗) ∈ Kqt

u has the vertical τ -coding0 property when for
a club of δ < ∂, the pair (M̄1, J̄1) = (〈M∗

δ+i : i ≤ f∗(δ)〉, 〈J∗
δ+1 : i <

f∗(δ)〉) satisfies part (1) even demanding M1
∗ ≤K M∗

∂ .

3) We say that (M̄, J̄, f) ∈ Kqt
u has the vertical τ -coding1 prop-

erty when (we may omit the subscript 1) we can find α(0) < ∂ and
(Mα(0), N∗, I∗) ∈ FR1 satisfying N∗ ∩M∂ = Mα(0) such that: for

a club of δ < ∂ the pair (M̄1, J̄1) = (〈Mδ+i : i ≤ f(δ)〉, 〈Jδ+i : i <
f(δ)〉) satisfies part (1) when in clause (B) where we

(i) restrict ourselves to the case (Mα(0), N∗, I∗) ≤
1
u (M1

0 ,M
2
0 , I0)

(ii) demand that M1
∗ <K[u] M∂ .

4) We say that (M̄, J̄, f) ∈ Kqt
u has the S-vertical τ -coding1 property

when: S is a stationary subset of ∂ and for club E of ∂ the require-
ment in part (3) holds when we restrict ourselves to δ ∈ S ∩ E.

4A) We say that (M̄, J̄, f) ∈ Kqt
u has the S-vertical τ -coding2 prop-

erty as in Definition 2.6.
5) For k = 0, 1, 2 we say u has the vertical τ -codingk property when
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{0, 2}-almost every (M̄, J̄, f) ∈ Kqt
u has it. If k = 1 we may omit it.

Similarly adding “above (M̄∗, J̄∗, f∗)” and/or S-vertical, for station-
ary S ⊆ ∂.

The following observation is easy but very useful.

2.10 Observation. 1) Assume that some (M,N, I) ∈ FR+
1 has

the true vertical τ -coding0 property (from Definition 2.9(1B)). If

(M̄, J̄, f) ∈ Kqt
u and M∂ := ∪{Mα : α < ∂} is saturated (above λ,

for K = Ku) then (M̄, J̄, f) has the vertical τ -coding property. See
2.9(2),2.9(2A) used in 4.14(5).
2) If (M̄, J̄, f) has the vertical τ -coding0 property then it has the
vertical τ -coding1 property.
3) Similarly (to part (2)) for weak τ -coding.
4) Recalling Ku has amalgamation (by claim 1.3(1))

(a) if M ∈ Ku ⇒ |SK(M)| ≤ ∂ then there is a saturated M ∈ Ku
∂

(b) if every M ∈ Ku,∗
∂ is saturated and every (M,N, I) ∈ FR+

1

has weak τ -coding0, then every (M̄, J̄, f) ∈ Kqt
u has weak

τ -coding

(c) similarly for vertical τ -coding

(d) similarly replacing “everyM ∈ Ku,∗
∂ ” by “M∂ is saturated for

{0, 2}-almost every (M̄, J̄, f) ∈ Kqt
u ” [or just above (M̄∗, J̄∗, f∗)

∈ Kqt
u .]

Proof. Should be clear. �2.8

2.11 Theorem. We have İτ (∂+, Ku
∂+) ≥ µunif(∂

+, 2∂); moreover

İ(Ku,h

∂+ ) ≥ µunif(∂
+, 2∂) for any {0, 2}-appropriate h (see Definitions

1.24(2),(7), 1.23) when:

(a) 2θ = 2<∂ < 2∂

(b) 2∂ < 2∂+

(c) u has the vertical τ -coding1 property (or at least u has the

S-vertical τ -codingτ property above some triple from Kqt
u for

stationary S ∈ (WDmId(∂))+ (recall τ is a weak u-sub-voca-
bulary, of course, by 2.1)).

Paper Sh:300G, Chapter VII



522 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

Remark. Theorem 2.11 is used in 4.10 and in 8.6.

Proof. Proved in 10.12. �2.11

∗ ∗ ∗

2.12 Discussion: 1) In a sense the following property “horizontal τ -
coding” is dual to the previous one “vertical τ -coding”, it is “horizon-
tal”, i.e. in the ∂+-direction. This will result in building (M̄η, J̄n, f̄η)

for η ∈ ∂+>(2<∂) such that letting Mη
∂ = ∪{Mη↾α

∂ : α < ∂+} we have

η 6= ν ∈ ∂+

(2∂) ⇒Mη
∂ ,M

ν
∂ are not isomorphic over M<>

∂ , so the set
theory is simpler.
2) Note that in 2.13(4) below we could ask less than “for a club”,
e.g. having a winning strategy is the natural game; similarly in other
definitions of coding properties, as in Exercise 2.5.

2.13 Definition. 1) We say that (M0,M1,J2) ∈ FR2 has the
horizontal τ -coding0 property when: if ⊛1 holds then we can find

N+,ℓ
1 , Iℓ

5,J
ℓ
5 for ℓ = 1, 2 such that ⊛2 holds when:

⊛1 (a) M0 ≤u N0 ≤u N1,M0 ≤u M1 ≤u N1

(b) (M0,M1,J2) ≤
2
u (N0, N1,J3) so both are from FR2

(c) (N0, N
+
0 , I4) ∈ FR+

1 and N+ ∩N1 = N0

⊛2 (α) (N0, N
+
0 , I4) ≤

1
u (N1, N

+,ℓ
1 , Iℓ

5)

(β) (N0, N1,J3) ≤
2
u (N+

0 , N
+,ℓ
1 ,Jℓ

5)

(γ) N+,1
1 , N+,2

1 are τ -incompatible amalgamations ofM1, N
+
0

over M0 in Ku.

2) We say that (M̄, J̄, f) ∈ Kqt
u has the S-horizontal τ -coding0 prop-

erty when S is a stationary subset of ∂ and for a club of δ ∈ S, the
triple (Mδ,Mδ+1,Jδ) has it and f(δ) > 0. If S = ∂ we may omit it.

3) We say that (M̄, J̄, f) ∈ Kqt
u has the horizontal τ -coding1 property

when (we may omit the 1):

⊛ for {0, 2}-almost every (M̄ ′, J̄′, f ′) ∈ Kqt
u satisfying (M̄, J̄, f)

≤qs
u (M̄ ′, J̄′, f ′) we can find α < ∂ and N, I∗

satisfying (M ′
α, N, I

∗) ∈ FR+
2 and N ∩M ′

∂ = M ′
α such that
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⊡ for a club of δ < ∂ if (M ′
α, N, I

∗) ≤1 (M ′
δ, N

′, I′) ∈ FR+
1

and N ′ ∩ M ′
∂ = M ′

α, then the conclusion in 2.13(1)
above holds with Mα,i(∗),M

′
i(∗), Mδ,M

′
δ, N

′, I′,Jδ,J
′
δ

here standing for M0, N0,M1, N1, N
+
0 , I4,J2,J3 there.

4) We replace coding1 by coding2 when in ⊡ we use the game ver-
sion, as in 2.6.
5) We say u has the horizontal τ -codingk property when some (M̄, J̄, f)

∈ Kqt
u has it.

2.14 Claim. The coding0 implies the coding1 versions in Definition
2.13 for (M̄, J̄, f) ∈ Kqt

u in Definition 2.13(4) and for u in Definition
2.13(5).

Proof. Should be clear. �2.14

2.15 Theorem. We have İτ (∂+, Ku
∂+) ≥ 2∂+

; moreover İ(Ku,h

∂+ ) ≥

2∂+

for any {0, 2}-appropriate h (see Definition 1.24(4),(5),(6)),
when:

(a) 2θ = 2<∂ < 2∂

(b) 2∂ < 2∂+

(c) the ideal WDmId(∂) is not ∂+-saturated

(d) u has the horizontal τ -coding property (or just the S-horizontal
τ -coding2 property for some stationary S ⊆ ∂).

2.16 Remark. 1) Actually not used here.

2) What does this add compared to 2.3? getting ≥ 2∂+

rather than
≥ µunif(∂

+, 2∂).

Proof. Proved in 10.13. �2.15
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§3 Invariant codings

The major notion of this section is (variants of) uq-invariant cod-
ing properties. In our context, the point of coding properties is in
esssence that their failure gives that there are many of uniqueness
triples, (M,N,J) ones, i.e. such that: if (M,N, I) ≤1 (M ′, N ′

ℓ, I
′′)

for ℓ = 1, 2 then N ′
1, N

′
2 are compatible over N∪M ′. For uq-invariant

we ask for less: if (M,N, I) ≤ (M ′, N ′, I′) and d is a u-free (ξ, 0)-
rectanle with (Md

0,0,M
d
α(d),0) = (M,M ′), then we can “lift” d′′,

i.e. find a u-free (ξ + 1, 1)-rectangle d+ such that d+ ↾ (ξ, 0) =
d, (Md

0,0,M
d
0,1, I

d
0,0) = (M,N, I) and N ′ ≤u M

d
ξ+1,1.

So we look at the simplest version, the weak ξ-uq-invariant coding,
Definition 3.2, we can consider a “candidate” (M,N, I) ∈ FR1

u and
challenge d (so Md

0,0 = M) and looks for a pair of amalgamation
which are incompatile in a specific way, but unlike in §2, they are
not symmetric. One is really not an amalgamation but a family of
those exhibiting d is “liftable”, and “promise to continue to do so in
the future”, in the ∂+-direction. The real one just has to contradict
it.

Another feature is that instead of considering isomorphisms over
Md

α(d),0 ∪N we consider isomorphisms over Md
α(d),0 with some rem-

nants of preserving N ; more specifically we consider two u-free rect-
angles d1, d2 which continues the construction in those two ways and
demands Md1

α(d1)
is mapped onto Md2

0,α(d2)
.

There are more complicating factors: we have for a candidate
(M,N, I), for every M ′,M ≤u M

′ to find a u-free (ξ, 0)-rectangle d
with M ′ = Md

0,0 such that it will serve against (M ′, N ′, I′) whenever
(M,N, I) ≤1 (M ′, N ′, I′), rather than choosing d after (N ′, I′) is
chosen, i.e. this stronger version is needed. The case ξ < ∂ should
be clear but still we allow ξ = ∂, however then given (N ′, I′) we take
d ↾ (ξ′, 0) for some ξ′ < ξ′.

We can use only Definition 3.2, Claim 3.3, and Conclusion 3.5,

for which “2θ = 2<∂ < 2∂ < 2∂+

+ the extra WdmId(∂) is not ∂+-
saturated” is needed, (if ξ < ∂ less is needed; however ξ < ∂ shall not
be enough. But to get the sharp results (with the extra assumption)
for almost good λ-frames we need a more elaborate approach - using
vertical ξ-uq-invariant coding, see Definition 3.10.
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Actually we shall use an apparently weaker version, the so called
semi ξ-uq-invariant. However, we can derive from it the vertical
version under reasonable demands on u; this last proof is of purely
model theoretic characters. We also consider other variants.

In this section we usually do not use the τ from 3.1, i.e. use τ = τu
as it is not required presently.

3.1 Hypothesis. We assume u is a nice construction framework and
τ is a weak u-sub-vocabulary.

Remark. In Definition 3.2(1) below “d∗ witnesses not being able to
lift d”, of course we can ensure it can be lifted.

3.2 Definition. Let ξ ≤ ∂ + 1, if we omit it we mean ξ = ∂ + 1.
1) We say that (M,N, I) ∈ FR1

u has weak ξ-uq-invariant coding0

when:

⊛ if M ≤u M
′ and M ′∩N = M then there are an ordinal α < ξ

and a u-free (α, 0)-rectangle d so α = ∂ is O.K., such that:

(a) Md
0,0 = M ′ and Md

α,0 ∩N = M

(b) for every N ′, I′ such that (M ′, N ′, I′) is ≤1
u-above (M,

N, I) and N ′ ∩Md
α,0 = M ′ we can find α′, I1, α∗ and d∗

such that α′ ≤ α, α′ < ∂ (no harm21 in α < ∂ ⇒ α′ =
α) and:

(α) d∗ is a u-free (α∗, 0)-rectangle and α∗ < ∂

(β) Md∗

0,0 = N ′ and Md
α′,0 ≤u M

d∗

α∗,0

(γ) (M ′, N ′, I′) ≤1
u (Md

α,0,M
d∗

α∗,0, I
1)

(δ) there are no d1,d2 such that

•1 dℓ is a u-free rectangle for ℓ = 1, 2

•2 α(d1) = α∗ and d1 ↾ (α∗, 0) = d∗

•3 α(d2) ≥ α′ and d2 ↾ (α′, 0) = d ↾ (α′, 0)

21by natural monotonicity, similarly in 3.7, 3.10, 3.14
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•4 (Md2
0,0,M

d2
0,1, I

d2
0,0) = (M ′, N ′, I′) or just (M,N, I) ≤1

u

(Md2
0,0,M

d2
0,1, I

d2
0,0)

•5 there are N ∈ Ku and ≤u-embeddings fℓ of Ndℓ

α(dℓ),β(dℓ)

into N for ℓ = 1, 2 such that f1 ↾ Md
α′,0 = f2 ↾ Md

α′,0

and f1, f2 maps Md1

0,β(d1)
onto Md2

0,β(d2)
.

2) We say that (M̄∗, J̄∗, f∗) ∈ Kqt
u has the weak ξ-uq-invariant

coding0 property when: if α(0) < ∂ and (M∗, N0, I0) ∈ FR+
1 ,M∗ ≤u

M∗
α(0) and N0∩M

∗
∂ = ∅ then for some club E of ∂, for every δ ∈ E the

statement ⊛ of part (1) holds, with (M∗, N0, I0),Mδ here standing
for (M,N, I),M ′ there but with some changes:

(∗)1 d is such that Md
α′,0 ≤u M

∗
β for each α′ < α for any β < ∂

large enough and

(∗)2 in clause (b) we demand N ′∩M∗
∂ = Mδ and Md∗

α∗
≤u M

∗
β for

every β < ∂ large enough.

3) We say that (M̄∗, J̄∗, f) ∈ Kqt
u has the weak ξ-uq-invariant coding1

property as in part (2) but require only that there are such α(0),
(M∗, N0, I0) so without loss of generality M∗ = M∗

α(0).

3A) We say that (M̄, J̄, f) has the S-weak ξ-uq-invariant coding2

property when we combine the above with Definition 2.6.
4) For k = 0, 1 we say that (M̄, J̄, f) has the S-weak ξ-uq-invariant
codingk property when: S is a stationary subset of ∂ and for some
club E of ∂ the demand in part (2) if k = 0, part (3) if k = 1 holds
restricting ourselves to δ ∈ S ∩ E.
5) We say that u has the S-weak ξ-uq-invariant codingk property

when: {0, 2}-almost every (M̄, J̄, f) ∈ Kqt
u has the S-weak ξ-uq-

invariant codingk property. Similarly for “above (M̄∗, J̄∗, f∗) ∈ Kqt
u ”.

If S = ∂ we may omit it; if k = 1 we may omit it.

3.3 Claim. Assume (ξ ≤ ∂ + 1 and):

(a) S ⊆ ∂ is stationary

(b) (M̄, J̄, f) ∈ Kqt
u has the S-weak ξ-uq-invariant coding prop-

erty
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(c) f ↾ S is constantly zero

(d) ξ ≤ ∂ + 1 and if ξ = ∂ then the ideal WDmId(∂) + (λ\S) is
not ∂-saturated.

Then we can find 〈(N̄η, J̄η, fη) : η ∈ ∂2〉 such that

(α) (M̄, J̄, f) ≤qs
u (N̄η, J̄η, fη)

(β) fη(∂\S) = f ↾ (∂\S)

(γ) if η1 6= η2 ∈ ∂2 and (N̄ηℓ

, J̄ηℓ

, fηℓ

) ≤qt
u (N̄ ℓ, J̄ℓ, f ℓ) for ℓ =

1, 2 then N1
∂ , N

2
∂ are not isomorphic over M∂.

3.4 Remark. Note that in Definition 3.2(1) we choose the u-free
(αδ, 0)-rectangle dδ for every δ ∈ S before we have arrived to choos-
ing Nη

δ . This will be a burden in applying this.

Proof. For simplicity we first assume ξ ≤ ∂. Let 〈Sε : ε ≤ ∂〉 be
a sequence of pairwise disjoint stationary subsets of ∂ with union
S\{0} such that ε < min(Sε) (exists; if ξ = ∂ by assumption (d),
otherwise if ∂ successor by applying Ulam matrixes, in general by a
theorem of Solovay). Without loss of generality 0 /∈ S.

By assumption (b) we can find α(0) < ∂ and N0, I0 such that
N0 ∩M∂ = Mα(0) and (Mα(0), N0, I) ∈ FR1 and a club E0 of ∂
such that and for every δ ∈ S ∩ E0 we can choose αδ,dδ as in ⊛ of
Definition 3.2(1) withMα(0), N0, I0,Mδ here standing forM,N, I,M ′

there but demanding Mdδ

αδ,0 ≤u Mβδ
for some βδ ∈ (δ, ∂), see (∗)1

of Definition 3.2(2). Without loss of generality α(0) is a successor
ordinal.

Let

E1 = {δ ∈ E0 :δ > α(0) and if δ(1) ∈ δ ∩ S ∩ E0

then βδ(1) ≤ δ, i.e. M
dδ(1)

αδ(1),0
≤u Mδ

and (∀β < δ)(β × β < δ ∧ f(β) < δ)}.

Clearly E1 is a club of ∂.
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We now choose 〈(δρ, uρ, N̄ρ, M̄ρ, J̄0,ρ, J̄1,ρ, fρ, Iρ, eρ) : ρ ∈ i2〉 by
induction on i < ∂ such that

⊛ (a) (α) δρ < ∂ belongs to E1 ∪ {α(0)}

(β) eρ is a closed subset of E1 ∩ δ
ρ

(γ) min(eρ) = α(0), also Nρ

α(0) = N0, I
ρ

α(0) = I

(b) fρ : eρ → δρ

(c) fρ(α) < β if α < β are from eρ

(d) if α ∈ eρ\S then fρ(α) = f(α)

(e) (α) N̄ρ = 〈Nρ
i : i ≤ δρ〉 and M̄ρ = 〈Mρ

i : i ≤ δρ〉 are
≤u-increasing continuous

(β) 〈(Mρ
i , N

ρ
i , I

ρ↾i) : i ≤ δ〉 is ≤1
u-increasing continuous

(f) (α) J̄ℓ,ρ = 〈Jℓ,ρ
i : i < δρ〉

(β) (Mρ
i ,M

ρ
i+1,J

0,ρ
i ) ∈ FR2 for i < δρ

(γ) (Mρ
i ,M

ρ
i+1,ρ,J

0,ρ
i ) ≤2

u (Nρ
i , N

ρ
i+1,J

1,ρ
i ) when i < δρ &

(∃α)(α ∈ eρ ∩ S & α ≤ i ≤ α+ fρ(α))

(g) if α ∈ eρ then Mρ
α = Mα and Nα ∩M∂ = Mα,

(h) if α ∈ eρ\S then (fρ(α) = f(α) and)
i ≤ f(α) ⇒Mρ

α+i = Mα+i∧N
ρ
α+i∩M∂ = Mα+i = Mρ

α+i and

i < f(α) ⇒ J0,ρ
α+i = Jα+i and

i < f(α) ⇒ (Mρ
α+i,M

ρ
α+i+1,J

0,ρ
α+i) ≤

2
u (Nρ

α+i, N
ρ
α+i+1,J

1,ρ
α+i)

(i) if ̺⊳ρ then δ̺ < δρ, e
̺ = δ̺∩e

ρ, M̺̄⊳M̄ρ, N̺̄⊳N̄ρ, J̄ℓ,̺⊳J̄ℓ,ρ

for ℓ = 0, 1 and Ī̺ ⊳ Īρ

(j) if ε < ∂ and α ∈ eρ∩S and ρ(α) = 1 then (〈Mρ
α+i : i ≤ fρ(α)〉,

〈J0,ρ
α+i : i < fρ(α)〉) is equal to dα

(k) if ε < ∂, α ∈ eρ ∩ S and ρ(α) = 0 then there is d∗ as
in clause (b) of ⊛ of Definition 3.2(1), for transparency of
successor length β with (Mα(0), N0, I0), (Mρ

α, N
ρ
α, I

ρ
α), dα, d∗

here standing for (M,N, I), (M ′, N ′, I′), d, d∗ there, such

that fρ(α) = α′, Nρ
α+i,0 = Md∗

i for i ≤ fρ(α), J1,ρ
α+i = Jd∗

i,0 for

i < fρ(α), and (for transparency) Mα+i = Mα, J0,ρ
α+i = ∅ for

i ≤ fρ(α).
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Why can we construct?

Case 1: i = 0
For ρ ∈ i2 let δρ = α(0) and by clause (a)(γ) we define the rest

(well for i < α(0) and ℓ = 0, 1 let M ℓ
i = Mα(0), N

ρ
i = N0,J

ℓ,ρ
i =

∅, Iρ
i = I).

Case 2: i is a limit ordinal
For ρ ∈ i2, let δρ = ∪{δρ↾j : j < i} so δρ ∈ E1, δρ = sup(E1 ∩ α).
By continuity we can define also the others.

Case 3: i = j + 1
Let ρ ∈ j2 and we define for ρˆ〈ℓ〉 for ℓ = 0, 1 and first we deal

only with i ≤ δ + fρˆ<ℓ>(δ).

Subcase 3A: δρ /∈ S
We use clause (h) of ⊛ and 1.5(5).

Subcase 3B: δ ∈ S
If ℓ = 1 then we use dα for ρˆ〈ℓ〉 as in clause (j) of ⊛ so the

proof is as in subcase 3A. If ℓ = 0 clause (b) of ⊛ of Definition
3.2 can be applied with (M,N, I), (M ′, N ′, I′),d there standing for
(Mα(0), N0, I0), (M

ρ
δρ
, Nρ

δρ
, Iρ

δρ
),dδρ

here; so we can find α′
ρ, I

1
ρ, α

ρ
∗,d

ρ
∗

as there (presently α′
ρ there can be αδ); and without loss of generality

ℓg(dρ
∗) is a successor ordinal.

Now we choose:

(∗) (a) fρˆ<0>(δρ) = ℓg(dρ
∗)

(b) Mρˆ<0>
δρ+i = Mρ

δρ
for i < fρˆ<0>(δ)

(c) Mρˆ<0>
δρ+i = Mdδ

α′
ρ,0 for i = fρˆ<0>(δρ)

(d) Nρˆ<0>
δρ+i = N

dρ
∗

i,0 for i ≤ fρˆ<0>(δρ)

(e) J0,ρˆ<ℓ>
δρ+i = ∅,J1,ρˆ<ℓ>

δρ+i = J
dρ

∗

i,0 for i < fρˆ<0>(δρ).

Clearly clause (k) holds. This ends the division to cases 3A,3B.
Lastly, choose δρˆ<ℓ> ∈ E1 large enough; we still have to choose

(Mρˆ<ℓ>
i , Nρˆ<ℓ>

i , Iρˆ<ℓ>) for i ∈ (δρ + fρ(δρ), δρˆ<ℓ>]; we choose

them all equal, Mρˆ<ℓ>
i = Mδρˆ<ℓ>

and use 1.3(2) to choose Nρˆ<ℓ>
i ,
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Iρˆ<ℓ>
i . Then let Jm,ρˆ<ℓ>

i = ∅ when m < 2 & i ∈ [δρ +
fρ(δρ), δρˆ<ℓ>).

So we have carried the induction. For ρ ∈ ∂2 we define (M̄ρ, J̄ρ, fρ)

∈ Kqt
u by Mρ

α = Nρ↾i
α ,Jρ

α = J̄1,ρ↾i
α , fρ(α) = fρ↾i(α) for every i < ∂

large enough. Easily

⊙1 (M̄, J̄, f) ≤qt
u (M̄ρ, J̄ρ, fρ).

Next

⊙2 for ν ∈ ∂2 let ρν = ρ[ν] ∈ ∂2 be defined by ρν(i) = ν(ε) if
i ∈ Sε ∧ ε < ∂ and zero otherwise.

So it is enough to prove

⊙3 if ν1 6= ν2 ∈ ∂2 and (M̄ρ[νℓ], J̄ρ[νℓ], fρ[νℓ]) ≤qt
u (M̄ ℓ, J̄ℓ, f ℓ) for

ℓ = 1, 2, then M1
∂ ,M

2
∂ are not isomorphic over M∂ .

Why this holds? As ν1 6= ν2, by symmetry without loss of gen-
erality for some ε < ∂ we have ν1(ε) = 1, ν2(ε) = 0, and let f
be an isomorphism from M1

∂ onto M2
∂ over M∂ and let Eℓ wit-

ness (M̄ρ[νℓ], J̄ρ[νℓ], fρ[νℓ]) ≤qt
u (M̄ ℓ, J̄ℓ, f ℓ) for ℓ = 1, 2. Let E :=

E1 ∩ E2 ∩ {δ < ∂ : δ ∈ ∪{eρ[νℓ]↾i : i < ∂} and δ = otp(δ ∩ eρ[νℓ]↾δ)

for ℓ = 1, 2 and f maps M1
δ onto M2

δ }, clearly it is a club of ∂.
Hence there is δ ∈ Sε ∩ E, so ρ[ν1](δ) = 1, ρ[ν2](δ) = 0, now the

contradiction is easy, recalling:

(∗)1 clause (δ) of Defintion 3.2(1)

(∗)2 dδ does not depend on ρ[νℓ] ↾ δ.

We still owe the proof in the case ξ = ∂ + 1, it is similar with two
changes. The first is in the choice of dδ, as now αdδ

may be ∂, so
βδ may be ∂, hence we have to omit “βδ(1) ≤ δ” in the definition
of E1. In clause ⊛(j), (k) we should replace dα by dα ↾ (0, γρ↾α) so
α+γρ↾δ < min(eρ\(α+1)) where γρ↾α < min{ℓg(dα)+1, ∂} which
is the minimal α when we apply α in Definition 3.2.

Second, the choice of 〈ρν : ν ∈ ∂2〉 with ρν ∈ ∂2 is more involved.
For each ε < ∂ we choose ̺ε ∈ (Sε)2 such that:

⊡ if ρ1, ρ2 ∈ ∂2 then for stationarily many δ ∈ Sε we have:
fρ1(δ) ≤ fρ2(δ) ⇔ ̺ε(δ) = 1
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(noting that fρα(δ) depends only on ρ ↾ δ).

[Why possible? As Sε is not in the weak diamond ideal.]
Then we replace ⊙2 by

⊙′
2 for ν ∈ ∂2 let ρν = ρ[ν] ∈ ∂2 be defined by ρν(i) = ̺ε(i)+ν(ε)

mod 2 when i ∈ Sε ∧ ε < ∂ and ρν(i) is zero otherwise.

Why this is O.K.? I.e. we have to prove ⊙3 in this case. Why
this holds? As ν1 6= ν2 by symmetry without loss of generality
ν1(ε) = 1, ν2(ε) = 0 and let f, E be as before.

Let ρℓ := ρ[νℓ] ∈
∂2, so by the choice of ̺ε there is δ ∈ E ∩ Sε

such that

fρ1(δ) ≤ fρ2(δ) ⇔ ̺ε(δ) = 1.

First assume ̺ε(δ) = 1 hence fρ1(δ) ≤ fρ2(δ), so ρ1(δ) = ̺ε(δ) +
ν1(ε) = 1 + 1 = 0 mod 2 so ρ1(δ) = 0 and ρ2(δ) = ̺ε(δ) + ν2(ε) =
1 + 0 = 1 mod 2, so ν2(δ) = 1.

Now we continue as before, because what we need there for (M̄ρ[ν2],
J̄ρ[ν2], fρ[ν2]) in δ is satisfied for δ+ fν[ρ2](δ) hence also for δ+ fν[ρ1].

The other case, ̺ε(δ) = 0, is similar; exchanging the roles. �3.3

The following conclusion will be used in 6.15, 6.16.

3.5 Conclusion. We have İ(∂+,K) ≥ µunif(∂
+, 2∂) and moreover

İ(Ku,h

∂+ ) ≥ µunif(∂
+, 2∂) for any {0, 2}-appropriate h when (ξ ≤ ∂+1

and):

(a) 2∂ < 2∂+

and ∂ > ℵ0

(b) (α) D∂ , the club filter on ∂, is not ∂+-saturated

(β) if ξ = ∂ + 1 then WDmId(∂) + (∂\S) is not ∂+-
saturated

(c) {0, 2}−S-almost every (M̄, J̄, f) has the weak ξ-uq-invariant
coding property even just above (M̄∗, J̄, f), so S ⊆ ∂ is sta-
tionary.

Proof. By 3.3 we can apply 3.6 below using
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⊙ if D is a normal filter on the regular uncountable ∂,D not
∂+-saturated then also the normal ideal generated by A is
not ∂+-saturated where A = {A ⊆ ∂ : A ∈ D or ∂\A ∈ A +

but D + (∂\A) is ∂-saturated}.

�3.5

3.6 Theorem. 1) We have İ(∂+, Ku
∂+) ≥ µunif(∂

+, 2∂); moreover

İ(Ku,h

∂+ ) ≥ µunif(∂
+, 2∂) for any u−{0, 2}-appropriate h (see Defini-

tion 1.24) when:

(a) 2∂ < 2∂+

(b) D is a non-∂+-saturated normal filter on ∂

(c) for {0, 2}-almost every (M̄, J̄, f) ∈ Kqt
u (maybe above some

such triple (M̄∗, J̄∗, f∗) satisfying D∂ + f−1{0} is not ∂+-
saturated), if S ⊆ ∂ belongs to D+ and f ↾ S is constantly
zero then we can find a sequence 〈(M̄α, J̄α, fα) : α < 2∂〉
such that

(α) (M̄, J̄, f) ≤qt
u (M̄α, J̄α, fα) and fα ↾ (∂\S) = f ↾ (∂\S)

(β) if α(1) 6= α(2) < 2∂ and (M̄α(i), J̄α(i), fα(i)) ≤qt
u (M̄ ℓ,∗,

J̄ℓ,∗, f ℓ,∗) for ℓ = 1, 2 then M1,∗
∂ ,M2,∗

∂ are not isomor-
phic over M∂ .

2) Similarly omitting the “∂+-saturation” demands in clauses (b),(c)
and omitting f ↾ S is constantly zero in clause (c).

Proof. 1) By Observation 1.25(4) without loss of generality h =
h0 ∪ h2 witness clause (c) of the assumption; we shall use h2 for S∗

0

so without loss of generality h2 is a 2 − S∗
0 -appropriate. By clause

(b) of the assumption let S̄∗ be such that

⊙ (a) S̄∗ = 〈S∗
α : α < ∂+〉

(b) S∗
α ⊆ ∂ for α < ∂+

(c) S∗
α\S

∗
β ∈ [∂]<∂ for α < β < ∂+
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(d) S∗
α+1\S

∗
α is a stationary subset of ∂; moreover ∈ D+

(e) S = S∗
0 is stationary; it includes {δ < ∂ : f∗(δ) > 0}

when (M̄∗, J̄∗, f∗) is given.

Let (M̄∗, J̄∗, f∗) be as in clause (c) of the assumption; so {0, 2}-
almost every (M̄∗∗, J̄∗∗, f∗∗) ∈ Kqt

u which is ≤qs-above (M̄∗,J∗, f∗)
is as there witnessed by h.

Now we choose 〈(M̄η, J̄η, fη) : η ∈ α(2∂)〉 by induction on α < ∂+

such that

⊛ (a) (M̄η, J̄η, fη) ∈ Kqt
u , and is equal to (M̄∗,J∗, f∗) if η =<>

(b) 〈(M̄η↾β, J̄η↾β, fη↾β) : β ≤ ℓg(η)〉 is ≤qs
u -increasing continuous

(c) fη ↾ (∂\S∗
ℓg(η)+1) is constantly zero

(d) if ℓg(η) = β + 2 ≤ α and ν = η ↾ (β + 1)) then
(M̄η, J̄η, fη) ≤at

u (M̄ν , J̄ν , fν) and this pair strictly S-obeys
h

(e) if ℓg(η) = δ < α, δ limit or zero, ε0 < ε1 < 2∂ and

(M̄ηˆ<εℓ>, J̄ηˆ<εℓ>, fηˆ<εℓ>) ≤qt
u (M̄ ℓ, J̄ℓ, f ℓ) for ℓ = 0, 1

then M1
∂ ,M

2
∂ are not isomorphic over Mη

∂ .

The inductive construction is straightforward:

if α = 0 let (M̄η, J̄η, fη) = (M̄∗, J̄∗, f∗)

if α is limit use claim 1.19(4)

if α = β + 2 use clause ⊛(d)

if α = δ + 1, δ limit or zero use clause (c) of the assumption to
satisfy clause ⊛(e).

Having carried the induction, let Mη = ∪{Mη↾α : α < ∂+} for η ∈
∂+

(2∂). By 9.1 we get that |{Mη/ ∼=: η ∈ ∂+

(2∂)}| ≥ µunif(∂
+, 2∂)

so we are done.
2) Similarly. �3.5

∗ ∗ ∗

We now note how we can replace the ξ-uq-invariant by ξ-up-invariant,
a relative, not used.
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3.7 Definition. Let ξ ≤ ∂ + 1.
1) We say that (M,N, I) ∈ FR1

u has the weak ξ-up-invariant coding
property when:

⊛ if M ≤u M
′ and M ′∩N = ∅ then there are αℓ < ξ and u-free

(αℓ, 0)-rectangle dℓ for ℓ = 1, 2 such that:

(a) Md1
0,0 = M ′ = Md2

0,0

(b) Md1
α1,0 = Md2

α2,0

(c) Mdℓ

αℓ,0 ∩N = M

(d) if (M,N, I) ≤1 (M ′, N ′, I′) and Mdℓ

αℓ,0 ∩N
′ = M ′ then

there are no α′
ℓ ≤ αℓ, α

′
ℓ < ∂, βℓ < ∂ and u-free (α′

ℓ, βℓ)-
rectangles dℓ for ℓ = 1, 2 such that

•1 dℓ ↾ (αℓ, 0) = dℓ ↾ (α′
ℓ, 0)

•2 (M ′, N ′, I′) ≤1 (Mdℓ

0,0,M
dℓ

0,1, I
dℓ

α,0)

•3 there are N ′′, f such that Md2

α′
2,β2

≤u N and

f is a ≤u-embedding of Nd1

α′
1,β1

into N

over Md1

α′
1,0 = Md2

α2,0 mapping Md1

0,β1
onto Md2

0,β2
.

2)-5) As in Definition 3.2 replacing uq by up.

3.8 Claim. Like 3.3 replacing uq-invariant by up-invariant.

Proof. Similar. �3.8

3.9 Conclusion. Like 3.5 replacing uq-invariant by up-invariant (in
clause (c)).

Proof. Similar. �3.11

∗ ∗ ∗

Another relative is the vertical one.
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3.10 Definition. Let ξ ≤ ∂ + 1, omitting ξ means ∂ + 1. We
say that (M,N, I) ∈ FR1

u has the vertical ξ-uq-invariant coding1

property when:

⊗ if α0 < ∂ and d0 is an u-free (α0, 0)-rectangle satisfyingM ≤u

Md0
0,0 and Md0

α0,0 ∩N = M then there are α,d such that:

(a) α0 < α < ξ

(b) d is a u-free (α, 0)-rectangle, though α is possibly ∂ this
is O.K.

(c) d ↾ (α0, 0) = d0

(d) Md
α,0 ∩N = M

(e) for every N ′, I′ such that (Md
0,0, N

′, I′) ∈ FR1 is ≤1
u-

above (M,N, I) and N ′ ∩ Md
α,0 = Md

0,0 we can find
α′, α∗,d∗, I

′′,M ′′ such that

(α) α′ ≤ α, α′ < ∂, α0 ≤ α∗

(β) d∗ is a u-free (α∗, 0)-rectangle

(γ) Md∗

0,0 = N ′

(δ) there is an u-free (α0, 1)-rectangle d′ such that
d′ ↾ (α0, 0) = d0,d

′ ↾ ([0, α0), [1, 1]) = d∗ ↾ (α0, 0)

and Id
′

0,0 = I′ and

(Md′

α0,0,M
d′

α0,1, I
′) ≤1

u (M ′′,Md∗

α∗,0, I
′′)

(ε) there are no d1,d2 such that

•1 dℓ is a u-free rectangle for ℓ = 1, 2

•2 α(d1) = α∗ and d1 ↾ (α∗, 0) = d∗

•3 α(d2) ≥ α′ and d2 ↾ (α′, 0) = d ↾ (α′, 0)

•4 (Md2
0,0,M

d2
0,1, I

d2
0,0) = (Md

0,0, N
′, I′) or just

(Md
0,0, N

′, I′) ≤1
u (Md2

0,0,M
d2
0,1, I

d2
0,0)

•5 there are N1, N2, f such that Mdℓ

0,β(dℓ)
≤u Nℓ

for ℓ = 1, 2
and f is an isomorphism from N1 onto N2

over Md
α,0 mapping Md1

0,β(d1)
onto Md2

0,β(d2)
.
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2) We say that (M̄∗, J̄∗, f∗) ∈ Kqt
u has the vertical uq-invariant

coding1 propety as in Definition 3.2(2) only (〈Mδ+i : i ≤ f(δ)〉, 〈Jδ+i :
i < f(δ)〉) play the role of d0 in part (1). In all parts coding means
coding1.
3),4),5) Parallely to Definition 3.2.

3.11 Theorem. Like 3.3 using vertical ξ-uq-invariant coding in
clause (b) and omitting clause (c) of the assumption and omit clause
(β) in the conclusion. �3.11

Proof. Similarly.

3.12 Conclusion. Like 3.5 replacing clause (b)(β) of the assumption
(by ξ = ∂+1 ⇒ (∃θ)2θ = 2<∂ < 2∂) and with vertical ξ-uq-invariant
coding instead of the ξ-uq-invariant one (in clause (c), can use S =
∂).

Proof. Similar to the proof of 3.5. �3.12

∗ ∗ ∗

3.13 Discussion: The intention below is to help in §6 to eliminate
the assumption “WDmId(λ+) is not λ++-saturated” when s fails

existence for K3,up
s,λ+ . We do using the following relatives, semi and

vertical, from Definition 3.14, 3.10 are interesting because

(a) under reasonable conditions (see Definition 3.17) the first im-
plies the second

(b) the second, as in Theorem 2.11 is enough for non-structure
without the demand on saturation of WDmId(∂)

(c) the first needs a weak version of a model theoretic assumption
(in the application)

(d) (not used) the semi-version implies the weak version (from
3.2).
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3.14 Definition. Let ξ ≤ ∂ + 1.
1) We say that u has the semi ξ-uq-invariant coding1 property [above

some (M̄∗, J̄∗, f∗)] when for {0, 2}-almost every (M̄, J̄, f) ∈ Kqt
u

[above (M̄∗, J̄∗, f∗)] for some (α,N, I) we have α < ∂,M ∩N = Mα

and (Mα, N, I) ∈ FR+
1 has the semi ξ-uq-invariant coding1 property,

see below but restricting ourselves to M ′,Md
αd,0 ∈ {Mβ : β ∈ (α, ∂)}.

Here and in part (2) we may write coding instead of coding1.
2) We say that (M,N, I) ∈ FR1

u has the semi ξ-uq-invariant coding1

property (we may omit the 1) when: if M ≤u M
′ and M ′ ∩N = M

then we can find d such that:

⊛ (a) d is a u-free (αd, 0)-rectangle with αd < ξ so αd ≤ ∂

(b) Md
0,0 = M ′ and Md

α(d),0 ∩N = M

(c) for any N ′, I′:
if (M,N, I) ≤1 (M ′, N ′, I′) and Md

α(d),0 ∩N
′ = M ′

then we can find α′, N ′′, I′′ satisfying α′ ≤ α, α′ < ∂ and
(M ′, N ′, I′) ≤1 (Md

α′,0, N
′′, I′′) ∈ FR1

u such that for no triple

(e, f, N∗) do we have:

(α) e is a u-free rectangle

(β) αe = αd and e ↾ (α′, 0) = d ↾ (α′, 0)

(γ) (Me
0,0,M

e
0,1, I

e
0,0) = (Md

0,0, N
′′, I′′)

(δ) Me
α′,β(e) ≤u N∗

(ε) f is a ≤u-embedding of N ′′ into N∗

(ζ) f ↾ Md
α′,0 is the identity

(η) f maps N ′ into Me
0,β(e).

3.15 Remark. 1) This is close to Definition 3.2 but simpler, cover
the applications here and fit Claim 3.20.
2) We could have phrased the other coding properties similarly.
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3.16 Claim. If (M,N, I) ∈ FR1
u has the semi ξ-uq-invariant cod-

ing property then it has the weak ξ-uq-invariant coding property, see
Definition 3.2.

Proof. Should be clear. �3.16

The following holds in our natural examples when we add the fake,
i.e. artificial equality and it is natural to demand u = u[∗], see
Definition 3.18.

3.17 Definition. 1) We say that u has the fake equality =∗ when:

(a) τK has only predicates and some two-place relation =∗∈ τK
is, for every M ∈ K, interpreted as an equivalence relation
which is a congruence relation on M

(b) M ∈ K iff M/ =M
∗ belongs to K

(c) for M ⊆ N both from K we have M ≤u N iff (M/ =N
∗ ) ≤s

(N/ =N
∗ )

(d) assume M ≤u N and I ⊆ N\M and I′ = {d ∈ I : (∀c ∈
M)(¬c =N d)}, ℓ ∈ {1, 2}. If (M,N, I) ∈ FRℓ then (M/ =N

, N/ =N , I′/ =N ) ∈ FRℓ which implies (M,N, I′) ∈ FRℓ

(e) if M ⊆ N are from K and I ⊆ {d ∈ N : (∀c ∈M)(¬c =N d)}
and ℓ ∈ {1, 2} then (M,N, I) ∈ FRℓ iff (M/ =N , I/ =N ) ∈
FRℓ.

1A) In part (1) we may say that u has the fake equality =∗ or =∗ is
a fake equality for u.
2) We say u is hereditary when every (M,N, I) ∈ FR+

1 is hereditary,
see below.
3) We say (M,N, I) ∈ FR1

u is hereditary when:

(a) if d is u-free (1, 2)-rectangle, M ≤u Md
0,0 and (M,N, I) ≤1

u

(Md
0,1,M

d
0,2, I

d
0,1)

then (M,N, I) ≤1
u (Md

0,0,M
d
0,2, I

d
0,1) ≤

1
u (Md

1,0,M
d
1,2, I

d
1,1).

4) We say u is hereditary for the fake equality =∗ when every (M,N, I)
∈ FR+

1 is hereditary for =∗ which means that clause (a) of part (3)
above holds, =∗ is a fake equality for u and:
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(b) if d is a u-free (0, 2)-rectangle, M ≤u M
d
0,0 and (M,N, I) ≤1

u

(Md
0,1,M

d
0,2, I

d
0,1) then we can find M1, f,M2 such that:

(α) f is an isomorphism from Md
0,1 onto M1 over Md

0,0

(β) Md
0,0 ≤u M1 ≤u M2 and M0,2 ≤u M2

(γ) |M2| = |M1| ∪ |Md
0,2|

(δ) M2 |= “c =∗ f(c)” if c ∈M0,1

(ε) (M0,0,M0,2, I
d
0,1) ≤

1
u (M1,M2, I

d
0,1).

5) In parts (2),(3),(4) we can replace hereditary by weakly hereditary
when: in clause (a) we assume I = Id0,1 = Id1,1 and in clause (b) we

assume I = Id0,1.

3.18 Definition. For u is a nice construction framework we define
u[∗] = u[∗] like u except that, for ℓ = 1, 2 we have (M1, N1, I1) ≤

ℓ
u[∗]

(M2, N2, I2) iff (M1, N1, I1) ≤
ℓ
u (M2, N2, I2) and I1 6= ∅ ⇒ I1 = I2.

3.19 Observation. 1) u has the fake equality = (i.e. the standard
equality is also a fake equality).
2) u′ as defined in 2.8(2) has the fake equality =τ (and is a nice
construction framework, see 2.8(3)).
3) If u is hereditary then u′′ as defined in 2.8(4) is hereditary and
even hereditary for the fake equality =τ and is a nice construction
framework, see 2.8(5).
4) u[∗] is a nice construction framework, and if u is weakly hereditary
[for the fake equality =∗] then u[∗] is hereditary [for the fake equality
=∗].
5) If u is hereditarily (for the fake equality =∗) then u[∗] is hereditarily
(for the fake equality =∗).

Proof. Check (really 3.1). �3.19
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3.20 Claim. Let ξ ∈ {∂, ∂ + 1} or just ξ ≤ ∂ + 1. Assume u =
dual(u) has fake equality =∗ and is hereditary for =∗.

If (M,N, I) has the semi ξ-uq-invariant coding property, then
(M,N, I) has the vertical ξ-uq-invariant coding property.

Remark. So no “(M̄, J̄, f) ∈ Kqt
u ” here, but applying it we use Ku-

universal homogeneous M∂ .

Proof. So let d0 be a u-free (αd, 0)-rectangle satisfying M ≤u M
d0

0,δ

and Md0

α(d0),0
∩N = M so αd0

< ∂ and we should find d1 satisfying

the demand in Definition 3.10(1), this suffice. As we are assuming
that “(M,N, I) has the semi uq-invariant coding property”, there is

e0 satisfying the demands on d in 3.14(1)⊛ with (M,N, I,Md0
0,0) here

standing for (M,N, I,M ′) there.
Without loss of generality

(∗)1 Me0

α(e0),0
∩Md0

α(d),0 = Md0
0,0.

Let

(∗)2 e1 = dual(e0) so as u = dual(u) clearly e1 is a u-free (0, α(e0))-
rectangle, so β(e1) = α(e0).

Now by 1.5(5) for some e2 (note: even the case β(e1) = α(e0) = ∂
is O.K.)

(∗)3 (a) e2 is a u-free (α(d0), β(e1))-rectangle

(b) e2 ↾ (α(d0), 0) = d0

(c) e2 ↾ (0, β(e1))) = e1

and without loss of generality

(d) Me2

α(e2),β(e2)
∩N = M .

Now we choose d by

(∗)4 d is the u-free (α(d0) + α(e0), 0)-rectangle such that:

(a) Md
α,0 is Md0

α,0 if α ≤ α(d0)
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(b) Md
α,0 is Me2

α(d0),α−α(d0)
for α ∈ [α(d0), α(d0) + α(e0)]

(c) Jd
α,0 = Jd0

α,0 if α < α(d0)

(d) Jd
α,0 = Ie2

α(d0),α−α(d0)
if α = [α(d0), α(d0) + α(e0)).

[Why is this O.K.? Check; the point is that u = dual(u).]
And we choose d2,γ for γ < min{α(d0) + 1, ∂}

(∗)5 d2,γ is the u-free (γ + 1, 0)-rectangle such that:

(a) M
d2,γ

α,0 is Md0
α,0 if α ≤ γ

(b) M
d2,γ

α,0 is Me2

α(d),α(e0)
if α = γ + 1

(c) J
d2,γ

α,0 = Jd0
α,0 if α < γ

(d) J
d2,γ

α,0 is ∅ if α = γ.

[Why is this O.K.? Check.]
So it is enough to show

(∗)6 d is as required on d in 3.10 for our given d0 and (M,N, I).

But first note that

(∗)7 d = d1 is as required in clauses (b),(c),(d) of Definition
3.10(1).

Now, modulo (∗)7, clearly (∗)6 means that we have to show that

⊠ if (M,N, I) ≤1 (Md
0,0, N

′, I′) and Md1

α(d1),0
∩ N = M , i.e.

N ′, I′ are as in ⊗(e) of 3.10(1), then we shall find α′, α∗,d∗,
I′′,M ′′ as required in clauses (α)− (ε) of (e) from Definition
3.10(1).

By the choice of e0 to be as in Definition 3.14 before (∗)1, for (N ′,J′)
from ⊠ there are α′, α∗, e∗, N

′′, I′′∗ such that

⊙1(α) α′ ≤ α(e0) and α′ < ∂

(β) e∗ is a u-free (α∗, 0)-rectangle

(γ) Me∗

0,0 = N ′
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(δ) there is a u-free (α′, 1)-rectangle e′ such that e′ ↾ (α′, 0) =
e0 ↾ (α′, 0) and e′ ↾ (α′, [1, 1]) = e∗ ↾ (α′, 0)

(ε) there are no d1,d2 such that

•1 dℓ is a u-free rectangle for ℓ = 1, 2

•2 α(d1) = α∗,d2 ↾ (α∗, 0) = e∗

•3 α(d2, 0) ≥ α′ and d2 ↾ (α′, 0) = d ↾ (α′, 0)

•4 (Md2
0,0,M

d2
0,1, I

d2
0,0) is (M ′, N ′, I) or just ≤1-above it

•5 there are N∗
1 , N

∗
2 , f such that Mdℓ

α(dℓ),β(dℓ)
≤u N∗

ℓ for

ℓ = 1, 2, and f is an isomorphism from N∗
1 onto N∗

2

over Md
α(d),0 which maps Md1

0,β(d1)
onto Md2

0,β(d2)
.

Without loss of generality

⊙2 N ′′ ∩Me2

α′,β(e2)
= Me0

α′,0.

Now by induction on α ≤ α(d) we choose (M∗
α, N

∗
α, I

∗
α),J∗

α such that

⊙3 (a) (M∗
α, N

∗
α, I

∗
α) ∈ FR1

u

(b) 〈(M∗
γ , N

∗
γ , I

∗
γ) : γ ≤ α〉 is ≤1

u-increasing continuous

(c) (M∗
α, N

∗
α, I

∗
α) = (Me0

α′,0, N
′′, I′′) for α = 0

(d) M∗
α = Me2

α,α′

(e) N∗
α ∩Me2

α(e2),α′ = M∗
α

(f) if α = α1 + 1 then (Me2

α1,α′ ,M
e2

α1+1,α′ ,J
e2

α1,α(e0)
) ≤2

(N∗
α1
, N∗

α1+1,J
∗
α1

).

Now we shall use the assumption “u is hereditary for =∗” to finish.
Choose

⊙4 f is an isomorphism from M∗
α(d) onto a model M∗ such that

Me2

α′,β(e2)
= M∗ ∩M∗

α(d) and f ↾ Me2

α′,β(e2)
is the identity as

well as f ↾ N ′′

⊙5 M∗∗ is the unique model ∈ Ku such that M∗
α(d) ⊆ M∗∗ and

M∗ ⊆M∗∗ and c ∈M∗
α(d) ⇒M∗∗ |= “c = f(c)”.
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Lastly

⊙6 d∗ is the following u-free (α(d) + 1, 1)-rectangle:

(a) d∗ ↾ (α(d), 0) = d

(b) Md∗

α(d)+1 = Me2

α(e2),α
and Jd∗

α(d),0 = ∅

(c) Md∗

α(d)+1,1 is M∗∗

(d) if α ≤ α(d) the Md4
α,1 is Md

α,0 ∪ f(Me2

α,α′), i.e. the sub-
model of M∗∗ with this universe

(e) if α ≤ α(d) then Id∗

α,0 = f(I∗α) and Id∗

α(d) = f(I∗α(d))

(f) if α < α(d) then Jd∗

α,1 = f(Je2

α,α′).

�3.20

To phrase a relative of 3.20, we need:

3.21 Definition. 1) We say u satisfies (E)ℓ(f), is interpolative for ℓ
or has interpolation for ℓ when:
if (M1, N1, I1) ≤

ℓ
u (M2, N2, I2) then (M1, N1, I1) ≤

ℓ
u (M2, N2, I1) ≤

ℓ
u

(M2, N2, I2).
2) (E)(f) means (E)1(f) + (E)2(f).

Remark. This is related to but is different from monotonicity, see
1.13(1).

3.22 Claim. 1) Assume that for ℓ ∈ {1, 2}, u satisfies (E)ℓ(f). For
every u-free (α, β)-rectangle d, also e is a u-free (α, β)-rectangle
where Me

i,j = Md
i,j, ℓ = 1 ⇒ Je

i,j = Jd
i,j , ℓ = 1 ⇒ Iei,j = Id0,j and

ℓ = 2 ⇒ Je
i,j = Jd

i,0, ℓ = 2 ⇒ Iei,j = Idi,j.
2) Similarly for u-free triangle.
3) If s satisfies (E)(f) then in part (1) we can let Je

i,j = Jd
i,0, I

e
i,j =

Id0,j.

Proof. Easy. �3.22

Now we can state the variant of 3.20.
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3.23 Claim. Assume ξ ≤ ∂ + 1 and u = dual(u) has fake equality
=∗, is weakly hereditary for =∗ and has interpolation.

If (M,N, I) ∈ Kqt
u has the semi ξ-uq-invariant coding property

then (M,N, I) ∈ Kqt
u has the vertical ξ-uq-invariant coding property.

Proof. Similar to the proof of 3.20, except that

(A) in ⊙3 we add I′′ = I′, justified by monotonicity; note that
not only is it a legal choice but still exemplify 3.10

(B) in ⊙4 we add I∗α = I∗0 = I′′ = I′.

3.24 Theorem. We have İ(Ku,h

∂+ ) ≥ µunif(∂
+, 2∂) when:

(a) 2∂ < 2∂+

(b) some (M,N, I) ∈ FR2 has the vertical ξ-uq-invariant coding
property, see Definition 3.10

(c) h is a {0, 2}-appropriate witness that for {0, 2}-almost every

(M̄, J̄, f) ∈ Kqt
u , the model M∂ is Ku-model homogeneous

(d) ξ = ∂ or ξ = ∂+ and 2θ = 2<∂ < 2∂ .

3.25 Remark. 1) We can phrase other theorems in this way.
2) So if we change (b) to semi uq-invariant by 3.20 it suffices to add,
e.g.

(d) u is hereditary for the faked equality =∗.

Proof. Easily by clause (b) we know u has the vertical ξ-uq-invariant
coding property. Now we apply 3.11, i.e. as in the proof of theorems
3.5 using 3.6(2) rather than 3.6(1) and imitating the proof of 3.3.
�3.24

3.26 Exercise: Prove the parallel of the first sentence of the proof of
3.24 to other coding properties.
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∗ ∗ ∗

3.27 Discussion: We can repeat 3.13 - 3.24 with a game version. That
is we replace Definition 3.14 by 3.28 and Definition 3.10 and then
can imitate 3.20, 3.24 in 3.29, 3.30.

3.28 Definition. Let ξ ≤ ∂ + 1.
1) We say that u has the S-semi ξ-uq-invariant coding2 property,

[above (M̄∗, J̄∗, f∗) ∈ Kqt
u ] when {0, 2}-almost every (M̄, J̄, f) ∈ Kqt

u

[above (M̄∗, J̄∗, f∗)] has it, see below; if S = ∂ we may omit it.

2) We say that (M̄, J̄, f) ∈ Kqt
u has the S-semi ξ-invariant coding2

property when we can choose 〈dδ : δ ∈ S〉 such that

⊛ (a) dδ is a u-free (α(dδ), 0)-rectangle

(b) Mdδ

0,0 = Mδ

(c) Mdδ

α(dδ),0 ≤u M∂

(d) in the following game the player Coder has a winning strat-
egy; the game is defined as in Definition 2.6(2) except that
the deciding who wins a play, i.e. we replace (∗)2 by

(∗)′′2 in the end of the play the player Coder wins the play
when:
for a club of δ ∈ ∂ if δ ∈ S then there are N ′′, I′′

such that (Mδ, Nδ, Iα) ≤u (Mdδ

α(dδ),0, N
′′, I′′) and for no

(e, f, N∗) do we have the parallel of (α) − (η) of clause
(c) of Definition 3.14.

3) We define when u or (M̄, J̄, f) has the S-vertical ξ-uq-invariant
coding2 property as in parts (1),(2) replacing 3.14 by 3.10.

3.29 Claim. Like 3.20 using Definition 3.28.

3.30 Theorem. Like 3.24 using 3.28.

∗ ∗ ∗
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We now point out some variants of the construction framework, here
amalgamation may fail (unlike 1.3(1) used in 2.10(4) but not usu-
ally). This relates to semi a.e.c.

3.31 Definition. We define when u is a weak nice construction
framework as in Definition 1.2 but we considerably weaken the de-
mands of Ku being an a.e.c.

(A) u consists of ∂, τu,Ku = (Ku,≤u), FR1, FR2,≤1,≤2 (also
denoted by FRu

1 , FRu
2 ,≤

1
u,≤

2
u)

(B) ∂ is regular uncountable

(C) (a) τu is a vocabulary

(b) Ku is a non-empty class of τu-models of cardinality < ∂
closed under isomorphisms (but Ku,∗

∂ , Ku,∗
∂+ are

defined below)

(c) (restricted union) if ℓ ∈ {1, 2} then

(α) ≤u is a partial order on Ku,

(β) ≤u is closed under isomorphism

(γ) restricted union existence: if ℓ = 1, 2 and 〈Mα : α ≤ δ〉
is ≤K-increasing continuous, δ a limit ordinal < ∂ and
(Mα,Mα+1, Iα) ∈ FRℓ

u for α < δ

and δ = sup{α < δ: (Mα,Mα+1, Iα) ∈ FRℓ,+
u

then Mδ := {Mα : α < δ} belongs to Ku and
α < δ ⇒Mα ≤u Mδ

(d) restricted smoothness: in clause (c)(γ)
if α < δ ⇒Mα ≤u N then Mδ ≤u N

(D)ℓ as in Definition 1.2

(E)ℓ as in Definition 1.2 but we replace clause (c) by

(c)′ ((Mδ, Nδ,Jδ) ∈ FRℓ
u and

α < δ ⇒ (Mα, Nα,Jα) ≤ℓ
u (Mδ, Nδ,Jδ), when:

(α) δ < ∂ is a limit ordinal

(β) 〈(Mα, Nα,Jα) : α < δ〉 is ≤ℓ
u-increasing continuous

(γ) (Mδ, Nδ,Jδ) =
(∪{Mα : α < δ},∪{Nα : α < δ},∪{Jα : α < δ})

(δ) Mδ is a ≤u-upper bound of 〈Mα : α ≥ δ〉
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(ε) Nδ is a ≤u-upper bound of 〈Nα : α < δ〉

(ζ) Mδ ≤u Nδ

(F ) As in Definition 1.2.

3.32 Remark. 1) We may in condition (E)ℓ(c) use essentially a u-free
(δ, 2)-rectangle (or (2, δ)-rectangle).
2) A stronger version of (E)ℓ(c) is: (E)2(c)

+ as in (E)1(c)
′ adding:

(η) (Mα,Mα+1, Iα) ≤1
u (Nα, Nα+1, I

1
α)

(θ) (Mα, Nα, I
m
α ) ∈ FR1,+

u for m = 0, 1 for unboundedly many
α < δ (so clause (ζ) follows).

(E)1(c)
+ means clause (E)2(c)

+ is satisfied by dual(u).

3) We may demand for (M̄, J̄, f) ∈ Kqt
u that for a club of δ, if f(δ) > 0

then:

(a) f(δ) is a limit ordinal

(b) f(δ) = sup{i < f(δ) : (Mδ+i,Mδ+i+1,Jδ+i) ∈ FR2,+
u }

(c) in the examples coming for an almost good λ-frame s, see §5:
if i < δ and p ∈ S bs

s (Mδ+i) then δ = sup{j : j ∈ (i, δ) and
Jδ+j = {aδ+j} and tps(aδ+j,Mδ+j,Mδ+j+1) is a non-forking
extension of p; see more in §5 on this.

4) We may in part (3)(b) and in 3.33(A)(a) below restrict ourselves
to sucessor i.

3.33 Lemma. We can repeat §1 + §2 (and §3) with Definition 3.31
instead of Definition 1.2 with the following changes:

(A) from Definition 1.15:

(a) in the Definition of (M̄, J̄, f) ∈ Kqt
u we demand S =

{δ < ∂ : f(δ) > 0} is stationary and for a club of
δ ∈ S, f(δ) is a limit ordinal and

i < f(δ) ⇒ (Mδ+i,Mδ+i+1,Jδ+i) ∈ FR2,+
u

(b) we redefine ≤qr
u ,≤

qs
u as ≤qt

u was redefined
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(B) proving 1.19:

(a) in part (1), we should be given a stationary S ⊆ ∂ and
for α < ∂ let f(α) = ω

(b) in part (2), we use the restricted version of union exis-
tence and smoothness

(c) in part (3), we demand (M1
α,M

2
α, I

∗) ∈ FR+
1 and let

E ⊆ λ\α witness (M̄, J̄, f) ∈ Kqt
u and S = {δ ∈ E :

f(δ) > 0} and inthe induction we use just 〈Mβ : β ∈
{α} ∪

⋃

{[δ, δ, f(δ)] : δ ∈ S}〉.

3.34 Exercise: Rephrase this section with τ -codingk instead codingk.

[Hint: 1) Of course, we replace “coding” by “τ -coding” and isomor-
phic by τ -isomorphic.
2) We replace •5 of 3.2(1)(δ) by:

•′5 there are N1, N2 such that Ndℓ

α(dℓ),β(dℓ)
≤u Nℓ for ℓ = 1, 2

and there is a τ -isomorphism f from N1 onto N2 extending
idMd

α′,0
and mapping Md1

0,β(d1)
onto Md2

0,β(d2)
.

3) In Claim 3.3 in the end of clause (γ) “N1
∂ , N

2
∂ are not τ -isomorphic

over Mγ”, of course.

4) In 3.5 replace İ by İτ .

5) In 3.6, in the conclusion replace İ by İτ , in clause (c)(β) use “not
τ -isomorphic”.
6) In Definition 3.7 like (2), in Definition 3.10(e)(δ) as in (2).
7) Change 3.14(c)(ε) as in (2), i.e.

(ε)′ f is a τ -isomorphism from N∗ onto N∗ for some N∗ such that
N ′′ ≤u N

∗.]

§4 Straight Applications of (weak) coding

Here, to try to exemplify the usefulness of Theorem 2.3, the “lean”
version, i.e. using weak coding, we revisit older non-structure results.
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First, recall that the aim of [Sh 603] or better VI§3,§4 is to show that
the set of minimal types in S na

K (M),M ∈ Kλ is dense, when:

⊠λ
K 2λ < 2λ+

< 2λ++

,K is an a.e.c. with LS(K) ≤ λ, categorical
in λ, λ+ and have a medium number of models in λ++ (hence
K has amalgamation in λ and in λ+).

More specifically we have to justify Claim VI.3.13 when the weak
diamond ideal on λ+ is not λ++-saturated and we have to justify
claim VI.4.12 when some M ∈ Kλ+ is saturated; in both cases inside
the proof there we quote results from here.

We interpret medium as 1 ≤ İ(λ++, K) < µunif(λ
++, 2λ+

) (where

the latter is usually 2λ++

). This is done in 4.1-4.15, i.e., where we
prove the non-structure parts relying on the one hand on the pure
model theoretic part done in Chapter VI and on the other hand on
coding theorems from §2. More elaborately, as we are relying on
Theorem 2.3, in 4.1 - 4.9, i.e. §4(A) we assume that the normal
ideal WDmId(λ+) is not λ++-saturated and prove for appropriate
u that (it is a nice construction framework and) it has the weak
coding property. Then in 4.10 - 4.15, i.e. §4(B) relying on Theorem
2.11, we assume more model theory and (for the appropriate u) prove
the vertical coding property, hence eliminate the extra set theoretic
assumption (but retaining the relevant cases of the WGCH, i.e. 2λ <

2λ+

< 2λ++

).

Second, we relook at the results in VI§6, i.e. [Sh 576, §6] which
were originally proved relying on [Sh 576, §3]. That is, our aim is to

prove the density of uniqueness triples (M,N, a) in K3,na
λ , assuming

medium number of models in λ++, and set theoretically 2λ < 2λ+

<

2λ++

and in addition assume (for now) the non-λ++-saturation of
the weak diamond ideal on λ+. So we use the “weak coding” from
Definition 2.2, Theorem 2.3 (see 4.20, i.e. §4(D)). The elimination
of the extra assumption is delayed as it is more involved (similarly
for §4(E)).

Third, we fulfill the (“lean” version of the) promise from II§5,

proving density of uniqueness triples in K3,bs
s , for s a good λ-frame,

also originally relying on [Sh 576, §3], see 4.28, i.e. §4(E).

Fourth, we deal with the promises from I§5 by Theorem 2.3 in
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4.16 - 4.19, i.e. §4(C).
But still we owe the “full version”, this is §4(F) in which we elim-

inate the extra set theoretic result relying on the model theory from
§5-§8.

∗ ∗ ∗

(A) Density of the minimal types for Kλ

4.1 Theorem. We have İ(λ++, K) ≥ µunif(λ
++, 2λ+

) when:

⊙ (a) 2λ < 2λ+

< 2λ++

(b) the ideal WDmId(λ+), a normal ideal on λ+, is not λ++-
saturated

(c) K, an a.e.c. with LS(K) ≤ λ, has amalgamation in λ, the
JEP in λ, for simplicity and Kλ+ 6= ∅;

(d) for every M ∈ Kλ+ and ≤K-representation M̄ = 〈Mα : α <
λ+〉 of M we can find (α0, N0, a), i.e., a triple (Mα0

, N0, a)
such that:
(α) Mα0

≤Kλ
N0

(β) a ∈ N0\Mα0
and tpK(a,Mα0

, N0) is not realized in M

(γ) if α0 < α1 < λ+,Mα1
≤K N1 and f is a ≤K-embedding

of N0 into N1 over Mα0
then we can find α2 ∈ (α1, λ

+)
such that Mα2

, N1 are not uniquely amalgamated over
Mα1

(in Kλ), i.e. NUQλ(Mα1
,Mα2

, N1), see VI.3.3(2).

4.2 Remark. 1) Used in Claim VI.3.13, more exactly the relative 4.3
is used.
2) A further question, mentioned in VI.2.17(3) concern İĖ(λ++, K)
but we do not deal with it here.
3) Recall that for M ∈ Kλ the type p ∈ S na

Kλ
(M) is minimal when

there is no M2 ∈ Kλ which ≤K-extends M and p has at least 2
extensions in S na

Kλ
(M2); see Definition VI.1.11.

3A) We say that in Kλ the minimal types are dense when: for any
M ∈ Kλ and p ∈ S na

Kλ
(M) there is a pair (N, q) such that M ≤Kλ

N
and q ∈ S na

Kλ
(N) is minimal and extend p (see VI.1.11(1A)).
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4) A weaker version of Clause (d) of 4.1 holds when any M ∈ Kλ+ is
saturated (above λ) and the minimal types are not dense (i.e. omit
subclause (β) and in subclause (γ) add f(a) /∈ Mα1

; the proof is
similar (but using 4.11). Actually, 4.1 as phrased is useful normally
only when 2λ > λ+, but otherwise we use 4.3.
5) In VI.3.13 we work more to justify a weaker version (d)′′ of Lemma
4.3 below which suffice.

Similarly

4.3 Lemma. 1) Like 4.1 but we replace clause (d) by:

(d)′ there is a superlimit M ∈ Kλ+ and for it clause (d) of 4.1
holds.

2) For τ a K-sub-vocabulary, see 1.8(5), we have İτ (λ++, K) ≥

µunif(λ
++, 2λ+

) when (a),(b),(c) of 4.1 holds and

(d)′′ there22 is K ′′
λ+ such that

(α) K ′′
λ+ ⊆ Kλ+ , K ′′

λ+ 6= ∅ and K ′′
λ+ is closed under unions

of ≤K-increasing continuous sequences of length ≤ λ+

(β) there is M∗ ∈ K ′′
λ+ such that for any ≤Kλ

-increasing
continuous sequence 〈M1

α : α < λ+〉 with union M1 ∈
K ′′

λ+ satisfying M∗ ≤K M1, in the following game the
even player has a winning strategy. In the α-th move a
triple (βα,Mα, fα) is chosen such that βα < λ+,Mα ∈
Kλ has universe ⊆ λ+ and fα is a ≤K-embedding of
M1

βα
into Mα, all three are increasing continuous with

α. Of course, the α-th move is done by the even/odd
iff α is even/odd. Lastly, in the end the even player
wins iff ∪{Mα : α < λ+} belongs to K ′′

λ+ and for a club
of α < λ+ for some γ ∈ (βα, λ

+) and some N ∈ Kλ

such that there is an isomorphism from N onto Mα

extending fα we have NUQτ (M1
βα
, N,M1

γ ), i.e. N,Mγ

can be amalgamated over Mβα
in Kλ in at least two

τ -incompatible ways.

22Why not K′

λ
? Just because we use this notation in 1.10.
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4.4 Remark. 0) We may replace βα in clause (d)′′(β) above by β =
α+ 1, many times it does not matter.
1) We may weaken the model theoretic assumption (d)′′ of 4.3(2) so
weaken (d) in 4.1 and (d)′ in 4.3 if we strengthen the set theoretic
assumptions, e.g.

(∗)1 for some stationary S ⊆ Sλ++

λ+ we have S ∈ Ǐ[λ++] but S /∈
WDmId(λ++)

(∗)2 in 4.3, in subclause (α) of clause (d)′′ we weaken the closure
under union of K ′′

λ+ to: for a ≤K-increasing sequence in K ′′
λ+

of length λ+, its union belongs to K ′′
λ+ .

2) If, e.g. λ = λ<λ and V = VQ where Q is the forcing notion of
adding λ+-Cohen subsets of λ and the minimal types are not dense

then İ(λ+, K) = 2λ+

, (hopefully see more in [Sh:E45]).
3) If in part (2) of 4.3, we may consider omitting the amalgamation,
but demand “no maximal model in Kλ”. However, the minimality
may hold for uninteresting reasons.
4) This is used in VI.3.13.
5) We may assume 2λ 6= λ+ as essentially the case 2λ = λ+ is
covered23 by Lemma 4.10 below.
6) In clause (d)′′(β) of Lemma 4.3, we can let the even player choose
also for α = δ + 1 for δ ∈ S when S ⊆ λ+ but WDmId(λ+) + S is
not λ++-saturated.

Proof of 4.1. We shall apply Theorem 2.3. So (model theoretically)
we have an a.e.c. K with LS(K) ≤ λ, and we are interested in proving

İ(λ++,K) ≥ µunif(λ
++, 2λ+

).
We shall define (in Definition 4.5 below) a nice construction frame-

work u such that ∂u = λ+; the set theoretic assumptions of 2.3 hold;
i.e.

23by the assumption Kλ has amalgamation so togther with 2λ = λ+, if |τK | ≤
λ or just M ∈ Kλ ⇒ |SKλ

(M)| ≤ λ+ then there is a model M∗ ∈ Kλ+ which

is saturated above λ; in general this is how it is used in VI§4; but if there is
M ∈ Kλ with |SKλ

(M)| > λ+; we can use 4.1.
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(a) λ < ∂ and 2λ = 2<∂ < 2∂ ; i.e. we choose θ := λ and this
holds by clause ⊙(a) of Theorem 4.1

(b) 2∂ < 2∂+

; holds by clause ⊙(a) of 4.1

(c) the ideal WDmID(∂) is not ∂+-saturated; holds by clause
⊙(b) of 4.1

We still have to find u (and τ) as required in clause (d) of The-
orem 2.3. We define it in Definition 4.5 below, in particular we
let Ku = K′

λ, τ = τK, see Definition 1.10 where K is the a.e.c.

from 4.3 hence the conclusion “İτ (∂+, Ku,h

∂+ ) ≥ µunif(∂
+, 2∂) > 2∂

for any {0, 2}-appropriate function h” of Theorem 2.3 implies that

İ(λ++, Ku) ≥ µunif(λ
++, 2λ+

) as required using 4.7(3); we can use
Exercise 1.12. So what we should actually prove is that we can find
such nice construction frameworks u with the weak coding prop-
erty which follows from u having the weak coding property (by

2.10(2),(3)) and h such that every M ∈ Ku,h

λ++ is τ -fuller. This is
done in 4.6, 4.7 below. �4.1

Proof of 4.3. 1) By part (2), in particular letting K ′′
λ+ = {M ∈ Kλ+ :

M is superlimit}.
But why does subclause (β) of clause (d)′′ hold? Let M∗ ∈ K ′′

λ+

be superlimit, let 〈M1
α : α < λ+〉 be ≤Kλ

-increasing continuous with
union M1 ∈ K ′′

λ+ and assume M∗ ≤K M1. Without loss of generality
M1 has universe {β < λ+ : β odd}.

We shall prove that the even player has a winning strategy. We
describe it as follows: the even player in the α-th move also choose
(Nα, gα) for α even and also for α odd (after the odd’s move) such
that

(∗) (a) Nα ∈ Kλ+ is superlimit and M1 ≤K N0

(b) the universe of Nα is {γ < λ+ : γ is not divisible by
λα}

(c) Nβ ≤K Nα for β < α

(d) gα is a ≤K-embedding of Mα into Nα

(e) gβ ⊆ gα for β < α
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(f) if α is odd then the universe of gα+1(Mα+1) includes
α = Nα ∩ α.

It should be clear that the even player can do this. Also for any
such play 〈(Mα, fα, Nα, gα) : α < λ+〉 we have λ+ = ∪{Nα ∩ α :
α < λ+} ⊆ ∪{gα(Mα) : α < λ+} ⊆ ∪{Nα : α < λ+} ⊆ λ+, so
g = ∪{gα : α < λ+} is an isomorphism from ∪{Mα : α < λ+} onto
∪{Nα : α < λ+}. As the latter is superlimit we are done (so for this
part being (λ+, λ+)-superlimit suffice).
2) The proof is like the proof of 4.1 but we have to use a variant of
2.3, i.e. we use the variant of weak coding where we use a game, see
2.5. �4.3

4.5 Definition. [Assume clause (c) of 4.1.]
We define u = u1

Kλ
as follows (with τ(u) = (τK)′ so =τ is a con-

gruence relation in τ(u), O.K. by 1.10; this is a fake equality 3.17(1),
3.19)

(a) ∂u = λ+

(b) essentially Ku = Kλ; really K′
λ (i.e. =τ is a congruence rela-

tion!)

(c) FR1 = {(M,N, I) : M ≤Ku
N, I ⊆ N\M empty or a single-

ton {a}}

(d) FR2 = FR1

(e) (M1, N1,J1) ≤ℓ (M2, N2,J2) when

(i) both triples are from FRℓ

(ii) M1 ≤K M2, N1 ≤K N2 and J1 ⊆ J2

(iii) M2 ∩N1 = M1.

4.6 Observation. u is a nice construction framework which is self-
dual.

Proof. Easy and the proof of 4.13 can serve when we note that
(D)1(d) and (F) are obvious in our context, recalling we have fake
equality. �4.6
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4.7 Observation. [Assume λ,K are as in 4.1 or 4.3(1) or 4.3(2).]
1) u has the weak coding property (see Definition 2.2).

2) If (M̄, J̄, f) ∈ Kqt
u and so M∂ ∈ Kλ+ but for 4.3(2) the model M∂

is superlimit then (M̄, J̄, f) has weak coding property.

3) For some u−0-appropriate function h, everyM ∈ Ku,h

λ++ is τs-fuller,

i.e. the model M/ =M has cardinality λ++ and the set a/ =M has
cardinality λ++ for every a ∈M .

Proof. Easy.
1) By part (2) and (3).
2) For proving 4.1 by clause (d) there we choose (α(0), N0, I0), it is
as required in Definition 2.2(3), noting that we can get the necessary
disjointness because K′

λ has fake equality. Similarly for 4.3(1).
For proving 4.3(2) we fix a winning strategy st for the even player

in the game from clause (d) of 4.3. Again by the fake equality during
the game we can demand α1 < α⇒ fα(Mβα

) ∩Mα = fα1
(Mβ1

).
3) By 1.25(3) is suffice to deal separately with each aspect of being
τs-fuller.

First, we choose a u-0-appropriate function h0 such that if ((M̄1, J̄1,
f1), (M̄2, J̄2, f2)) does 0-obeys h0 as witnessed by (E, Ī) then for any
δ ∈ E, (M1

δ ,M
2
δ , Iδ) ∈ FR+

1 and there is a ∈ Iδ such that c ∈M1
∂ ⇒

M2
∂ |= ¬(a =τ c); this is possible as in every (M̄1, J̄1, f1) ∈ Kqt

u there
are α < λ+ and p ∈ S na(M1

α) not realized in M1 = ∪{M1
β : β < α}.

Why? For 4.1 by 4.1(d)(β), similarly for 4.3(1) and for 4.3(2), if it
fails, then the even player cannot win, because

(∗) if M0 ≤u Mℓ for ℓ = 1, 2 and (∀b ∈ M1)(∃b ∈ M1)(∃a ∈
M0)(M1 |= a =τ b) then M1,M2 can be uniquely disjointly
amalgamated in Ku.

Second, we choose a u − 0-suitable h2 such that if 〈(M̄α, J̄α, fα) :
α < ∂+〉 does 0-obeys h2, then for every α < ∂+ and a ∈ Mα for

λ++ many δ ∈ (α, λ++), we have (a/ =Mδ
τ ) ⊂ (a/ =

Mδ+1
τ ). �4.7

4.8 Example For K, u, st as in the proof of 4.7(2).
1) For some initial segment x = 〈(βα,Mα, fα) : α ≤ α∗〉, of a play
of the game of length α∗ < λ+ in which the even player uses the
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strategy st, for any longer such initial segment 〈(βα,Mα, fα) : α ≤
α∗∗〉 of such a play we have Mα∗

∩ fα∗∗
(M1

βα∗∗
) = fα∗

(M1
βα∗

) and

fα∗
(M1

βα∗
) <K Mα.

[Why? As in the proof of the density of reduced triples; just think.]
2) Moreover if c ∈ M∂\Mβα∗

then fα∗
(tpK(c,Mβα∗

,M∂)) is not re-
alized in Mα∗

(recall the definition of NUQ). �4.1

4.9 Remark. So we have finished proving 4.1, 4.3.

∗ ∗ ∗

(B) Density of minimal types: without λ++-saturation of the ideal

The following takes care of VI.4.12, of its assumptions, (a)-(g) are
listed in VI.4.10.

4.10 Theorem. We have İ(λ++, K) ≥ µunif(λ
++, 2λ+

) when:

(a) 2λ < 2λ+

< 2λ+2

(b) K is an abstract elementary class, LS(K) ≤ λ

(c) Kλ++ 6= ∅,

(d) K has amalgamation in λ

(e) the minimal types, for Kλ are not dense, see 4.2(3A)

(f) K is categorical in λ+ or at least has a superlimit model in
λ+

(g) there is M ∈ Kλ+ which is saturated (in K) above λ.

Proof. The proof is broken as in the other cases.

4.11 Definition. We define u = u2
Kλ

as in 4.5 so Ku = K′
λ but

replacing clauses (c),(e) by (we shall use the fake equality only for
having disjoint amalgamation):

(c)′ FR1 = {(M,N, I) : M ≤Ku
N, I ⊆ N\M empty or a sin-

gleton {a} and if (a/ =M ) /∈ M/ =M then tpKλ
(a,M,N)
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has no minimal extension, i.e. and tpKλ
((a/ =M

τ , (M/ =M
τ

), (N/ =N
τ )) has no minimal extension}

(e) (M1, N1,J1) ≤ℓ (M2, N2,J2) when: clauses (i),(ii),(iii) there
and

(iv) if b ∈ J1 and (∀a ∈M1)(¬a =N1
τ b)

then (∀a ∈M2)(¬a =N2
τ b).

4.12 Observation. Without loss of generality K has (jep)λ and for
every M ∈ Kλ there is p ∈ S na

Kλ
(M) with no minimal extension.

Proof. Why?

Because if (p∗,M∗) are as required we can replace K by K∗ =
K ↾ {M ∈ K: there is a ≤K-embedding of M∗ into M}. Clearly K∗

satisfies the older requirements and if h is a ≤K-embedding of M∗

into M ∈ K∗
λ then h(p∗) can be extended to some p ∈ SK∗

λ
(M) =

SKλ
(M) as required. Why it can be extended? As any triples

(M,N, a) ∈ K3,na
λ with no minimal extension has the extension prop-

erty, see VI.2.5(1). �4.12

The first step is to prove that (and its proof includes a proof of
4.6).

4.13 Claim. u is a nice construction framework (if it is as in 4.12).

Proof. Clauses (A),(B),(C) of Definition 1.2 are obvious. Also (D)1 =
(D)2 and (E)1 = (E)2 as FR1 = FR1 and ≤1=≤2. Now (D)1(a),
(b), (c), (e) and (E)1(a), (b)(α), (c), (d) holds by the definition of u.
Concerning (D)1(d), by assumption (e) of Lemma 4.10 clearly FR+

1 6=
∅ and by Observation 4.12 we have [M ∈ Kλ ⇒ (M,N, a) ∈ FR1

for some pair (N, I)], i.e. (D)1(d) holds. As Kλ has amalgamation
and (D)1(d) holds, clearly

(∗) if M ≤Kλ
N then for some pair (N ′,J) we have N ≤Kλ

N ′

and (M,N ′,J) ∈ FR+
1 .
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Concerning (E)1(b)(β), just remember that =τ is a fake equality,
recalling subclause (iii) of clause (e) of Definition 4.5. Now the main
point is amalgamation = clause (F) of Definition 1.2. We first ignore
the =τ and disjointness, that is, we work in Kλ not K′

λ; easily this
suffices. So we assume that (M0,Mℓ,Jℓ) ∈ FRℓ for ℓ = 1, 2 and
by (∗) above without loss of generality ℓ = 1, 2 ⇒ Jℓ 6= ∅ so let
Jℓ = {aℓ}. Let pℓ = tpKλ

(aℓ,M0,Mℓ) and by VI.1.14(1) we can find

a reduced (M ′
0,M

′
1, a1) ∈ K3,na

λ which is ≤na-above (M0,M1, a1). We
can apply Claim VI.2.5(1) because: first Hypothesis VI.2.1 holds (as
K is an a.e.c., LS(K) ≤ λ and Kλ 6= ∅) and, second, (amg)λ holds by
assumption (d) of 4.10. So by VI.2.5(1), the extension property for
such types (i.e. ones with no minimal extensions) holds, so there are
M ′

2 such that M ′
0 ≤Kλ

M ′
2 and ≤K-embedding g of M2 into M ′

2 over
M0 such that g(a2) /∈M ′

0.
Again by VI.2.5(1) we can find M ′′

1 ∈ Kλ such that M ′
2 ≤K M ′′

1

and f which is a ≤K-embedding ofM ′
1 intoM ′′

1 such that f(a1) /∈M ′
2.

By the definition of “(M ′
0,M

′
1, a) is reduced”, see Definition VI.1.11

it follows that f(M ′
1) ∩M

′
2 = M ′

0, so M ′
1 ∩M

′
2 = M ′

0. In particular
f(a1) ∈ M ′

2 ∧ g(a2) /∈ f(M ′
1) so we are done. Now the result with

disjointness follows because =τ is a fake equality. �4.13

4.14 Claim. 1) u has the vertical coding property, see Definition
2.9(5).
2) If (M,N, I) ∈ FR+

2 and a ∈ I & b ∈ M ⇒ ¬(a =N1
τ b) then this

triple has the true vertical coding0 property (see Definition 2.9(1B).
3) Kλ+ has a superlimit model which is saturated.

4) For almost2 every (M̄, J̄, f) ∈ Kqt
u the model M∂ is saturated.

5) Every (M̄, J̄, f) ∈ Kqt
u has the vertical coding property (see Defi-

nition 2.9(3)) when Mλ+ ∈ Kλ+ is saturated.

6) For some u − 0-appropriate function h, for every M ∈ Ku,h

λ++ the

model M/ =M have cardinality λ++ and the set a/ =M
τ has cardi-

nality λ++ for every a ∈M .

Proof. 1) Follows by part (3),(4),(5).
2) By the choice of FRu

1 for some a, I = {a} and the type tpKλ
(a,M,N)

has no minimal extension. To prove the true vertical coding property
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assume that (〈M ℓ
i : i ≤ β〉, 〈Jℓ

i : i < β〉) for ℓ = 1, 2 and 〈Ii : i ≤ β〉
are as in Definition 2.9(1), i.e., they form a u-free (β, 1)-rectangle
with (M,N, {a}) ≤1

u (M1
0 ,M

2
0 , I0); i.e. there is d, a u-free (β, 1)-

rectangle such that Md
i,0 = M1

i ,M
d
i,1 = M2

i ,J
d
i,ℓ = Jℓ

i , I
d
i,ℓ = Ii).

So M ≤Kλ
M1

β , N ≤Kλ
M2

β , a ∈ N\M1
β and Ii = {a}. As

tpKλ
(a,M,N) has no minimal extension we can find M1

β+1 such that

M1
β ≤Kλ

M1
β+1 and tpKλ

(a,M1
β ,M

2
β) has at least two non-algebraic

extensions in SKλ
(M1

β), hence we can choose p1 6= p2 ∈ S na
Kλ

(M1
β+1)

extending tpKλ
(a,M1

β ,M
2
β). Now treating equality as congruence

without loss of generality M1
β+1 ∩M

2
β = M1

β and there are N1, N2 ∈

Kλ such that M1
β+1 ≤K N ℓ,M2

β ≤K N ℓ and tpKλ
(a,M1

β+1, Nℓ) = pℓ

for ℓ = 1, 2.

Letting M2,ℓ
β+1 := Nℓ we are done.

3) If K is categorical in λ+ then the desired conclusion holds as every
M ∈ Kλ+ is saturated above λ by clause (g) of the assumption of
4.10. If K only has a superlimit model in Kλ+ as there is a M ′ ∈ Kλ+

saturated above λ, necessarily the superlimit M ′ ∈ Kλ+ is saturated
above λ by VI.2.8(4).
4) We prove the existence of g for the “almost2” (or use the proof of
4.3(1)). Now recalling (∗)4 of 1.22(1) for each M ∈ Kλ with universe
∈ [λ++]λ, we can choose a sequence 〈pM,α : α < λ+〉 listing SKλ

(M).
When defining the value g(M̄1, J̄1, f1, M̄2 ↾ (δ + f1(δ) + 1)), J̄2 ↾

(δ + f1(δ), Ī ↾ (δ + f1(δ) + 1), S), see Definition 1.22(1)(c) we just
realize all pM2

i ,j with i, j < δ. Recalling that by part (3) the union

of a ≤K-increasing sequence of length < λ++ of saturated members
of Kλ+ is saturated, we are done.
5) Holds by Observation 2.10(1).
6) Easy, as in 4.7(3). �4.14

Continuation of the Proof of 4.10. By the 1.19, 4.13, 4.14(1) we can
apply Theorem 2.11. �4.10

4.15 Remark. So we have finished proving 4.10.

∗ ∗ ∗
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(C) The symmetry property of PCℵ0
classes

Here we pay a debt from Theorem I.5.34(1), so naturally we as-
sume knowledge of I§5; of course later results supercede this. Also we
can avoid this subsection altogether, dealing with the derived good
ℵ0-frame in II.3.4.

4.16 Theorem. İ(ℵ2,K) ≥ µunif(ℵ2, 2
ℵ1),

moreover İ(ℵ2,K(ℵ1-saturated)) ≥ µunif(ℵ2, 2
ℵ1) when:

⊛ (a) (set theory)
(α) 2ℵ0 < 2ℵ1 < 2ℵ0 and

(β) WDmId(ℵ1) is not ℵ2-saturated
(b) K, an a.e.c., is ℵ0-representable, i.e., is PCℵ0

-a.e.c., see Def-
inition I.1.4(4),(5)

(c) K is as in I.4.8, I.5.1

(d) K fails the symmetry property or the uniqueness of two sided
stable amalgamation, see Definition I.5.31, equivalently

(d) K fails the uniqueness of one-sided amalgamation

(e) D is countable, see Definition I.5.2, I.5.10 and II§3(B).

Remark. 1) On omitting “WDmId(ℵ1) is not ℵ2-saturated”, see
Conclusion 4.35.
2) Clause (e) of 4.16 is reasonable as we can without loss of generality
assume it by Observation I.5.36.

Proof. Let λ = ℵ0, without loss of generality

(f) for M ∈ K, any finite sequence is coded by an element.

Now by II§3 (B), i.e. II.3.4 we have sℵ0
, which we call s = sK = s1

K,
is a good ℵ0-frame as defined (and proved) there, moreover sλ is
type-full and Ks = K.

The proof is broken, as in other cases, i.e., we prove it by Theorem
2.3 which is O.K. as by 4.18 + 4.19 below its assumptions holds.
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Remark. Note in the following definition FR1, FR2 are quite different
even though ≤1

u,≤
2
u are the same, except the domain.

4.17 Definition. We define u = u3
Kℵ0

by

(a) ∂ = ∂u = ℵ1

(b) Ku = Kℵ0
so Kup

u = K

(c) FR2 is the family of triples (M,N,J) such that:

(α) M ≤K N ∈ Kℵ0

(β) J ⊆ N\M and |J| ≤ 1

(d) (M1, N1,J1) ≤2 (M2, N2,J2) iff

(α) both are from FR1

(β) M1 ≤K M2 and N1 ≤K N2

(γ) J1 ⊆ J2

(δ) if c̄ ∈ J then gtp(c̄,M2, N2) is the stationarization of
gtp(c̄,M1, N1)

(e) FR1 is the class of triples (M,N,J) such that

(α) M ≤K N are countable

(β) J ⊆ N\M or, less pedantically, J ⊆ ω>N\ω>M

(γ) if |J| > 1 then J = ω>N\ω>M and N is (D(M),ℵ0)
∗-

homogeneous

(f) ≤1 is defined as in clause (d) but on FR2.

4.18 Claim. 1) u is a nice construction framework.

2) For almost2 all triples (M̄, J̄, f) ∈ Kqt
u the model M is saturated

(for K).

Proof. 1) The main points are:
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⊠1 (M,N,J) ∈ FR2 and n < ω ⇒ (Mn, Nn,Jn) ≤2 (M,N,J)
when:

(a) (Mn, Nn,Jn) ∈ FR2

(b) (Mn, Nn,Jn) ≤2 (Mn+1, Nn+1,Jn+1) for n < ω

(c) M = ∪{Mn : n < ω}

(d) N = ∪{Nn : n < ω}

(e) J = ∪{Jn : n < ω}.

[Why ⊠1 holds? See I.5.24(9).]

⊠2 (M,N,J) ∈ FR1 and n < ω ⇒ (Mn, Nn,Jn) ≤1 (M,N,J)
when

(a) (Mn, Nn,Jn) ∈ FR1

(b) (Mn, Nn,Jn) ≤1 (Mn+1, Nn+1,Jn+1) for n < ω

(c) M = ∪{Mn : n < ω}

(d) N = ∪{Nn : n < ω}

(e) J = ∪{Jn : n < ω}.

[Why does ⊠2 holds? If |J| ≤ 1 then the proof is similar to the one
in ⊠1, so assume that |J| > 1, so as n < ω ⇒ Jn ⊆ Jn+1 by clause
(b) of ⊠2 and J = ∪{Jn : n < ω} by clause (e) of the ⊠2 necessarily
for some n, |Jn| > 1, so without loss of generality |Jn| > 1 for every
n < ω. So by the definition of FR1, we have:

(∗)1 Jn = ω>(Nn)\ω>(Mn)

(∗)2 Nn is (D(Mn),ℵ0)
∗-homogeneous.

Hence easily

(∗)3 J = ω>N\ω>M

and as in the proof of ⊠1 clearly

(∗)4 if n < ω and c̄ ∈ Jn then gtp(c̄,M,N) is the stationarization
of gtp(c̄,Mn, Nn).
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So the demands for “(Mn, Nn,Jn) ≤1 (M,N,J)” holds except that
we have to verify

(∗)5 N is (D(M),ℵ0)
∗-homogeneous.

[Why this holds? Assume N ≤Kℵ0
N+, ā ∈ ω>N , b̄ ∈ ω>(N+).

So gtp(āˆb̄,M,N+) ∈ D(M), hence by I.5.24(9) it is the station-
arization of gtp(āˆb̄,Mn0

, N+) for some n0 < ω. Also for some
n1 < ω, we have ā ∈ ω>(Nn1

). Now some n < ω is ≥ n0, n1, so
by (∗)1 + (∗)2 for some b̄′ ∈ ω>(Nn) the type gtp(āˆb̄′,Mn, Nn) is
equal to gtp(āˆb̄,Mn, N

+) so b̄′ ∈ Jn. But by (∗)4, also the type
gtp(āˆb̄′,M,N) is a stationarization of gtp(āˆb̄′,Mn, N) = gtp(āˆb̄,
Mn, N

+) hence gtp(āˆb̄′,M,N) = gtp(āˆb̄,M,N+) so we are done.]
Thus we have finished proving ⊠2]

⊠3 clause (F) of Definition 1.2 holds.

[Why ⊠3? By I.5.30.]
Together we have finished proving u is a nice construction framework.
2) Note that

⊠4 Mω1
∈ Kℵ1

is saturated when:

(a) 〈Mα : α ≤ ω1〉 is ≤K-increasing continuous

(b) α < ω1 ⇒Mα ∈ Kℵ0

(c) Mα+1 is (D(Mα),ℵ0)
∗-homogeneous for α < ω1

or just

(c)′ if α < ω1 and p ∈ D(Mα) is a 1-type then for some
β ∈ [α, ω1) and some c ∈ Mβ+1, gtp(c,Mβ,Mβ+1) is
the stationarization of p.

[Why? Obvious.]
Let S ⊆ ω1 be stationary, so clearly it suffices to prove:

⊠5 there is g as in Definition 1.22(1), 1.23(3) for S and our u

such that:
if 〈(M̄α, J̄α, fα) : α ≤ δ〉 is ≤qs

u -increasing continuous 1-
obeying g

(and δ < ∂+ is a limit ordinal) thenM δ ∈ Kℵ1
is saturated.

Paper Sh:300G, Chapter VII



564 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

[Why? Choose g such that if the pair ((M̄ ′, J̄′, f ′), (M̄ ′′, J̄′′, f ′′)) does
1-obey g then for every α < ∂ and p ∈ D(M ′′

α) we have

(∗) for stationarily many δ ∈ S for some i < f ′′(δ) the type
gtp(a,M ′′

α,M
′′
δ+i+1) is the stationarization of p where J′′

δ+i =
{a}.

Now assume that 〈(M̄ ζ, J̄ζ , f ζ) : ζ < δ〉 is ≤qs-increasing (for our
present u) and δ = sup(u) where u = {ζ : ((M̄ ζ ,Jζ , f ζ), (M̄ ζ+1, J̄ζ+1,

f ζ+1)) does 1-obeys g}, and we should prove that M δ := ∪{M ζ
∂ : ζ <

∂} is saturated. Without loss of generality u contains all odd ordinals
< δ and δ = cf(δ). If δ = ℵ1 this is obvious, and if δ = ℵ0 just use
non-forking of types, and the criterion in ⊠4 using (∗). So ⊠5 is
proved.] �4.18

4.19 Claim. u has the weak coding property.

Proof. Clearly by clause (d)′ of the assumption, i.e. by Definition
I.5.31(2),(3) there are Nℓ (ℓ ≤ 2)), N ′

3, N
′′
3 such that:

(∗)1 (a) N0 ≤u N1 and N0 ≤u N2

(b) Nℓ ≤u N
′
3 and Nℓ ≤u N

′′
3 for ℓ = 1, 2

(c) N0, N1, N2, N
′
3 is in one-sided amalgamation, i.e.

ā ∈ ω>(N1) ⇒ (N0, N1, {ā}) ≤
2
u (N2, N

′
3, {ā})

(hence N1 ∩N2 = N0)

(d) N0, N1, N2, N
′′
3 is in one sided amalgamation

(e) there are no (N3, f) such that N ′′
3 ≤u N3 and f is a ≤u-

embedding of N ′
3 into N3 over N1 ∪N2.

Now without loss of generality

(∗)2 (N0, N1,J) ∈ FR1 where J ∈ ω>(N1)\
ω>(N0) such that

|J| > 1.

[Why? We can find N+
1 ∈ Ku which is (D(N1),ℵ0)

∗-homogeneous
over N1 and without loss of generality N+

1 ∩N ′
3 = N1 = N+

1 ∩N ′′
3 .

Now we can find N∗
3 and N∗∗

3 ∈ Ku such that (N1, N
+
1 , N

′
3, N

∗
3 ) as
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well as (N1, N
+
1 , N

′′
3 , N

∗∗
3 ) is in one sided stable amalgamation. It

follows that (N0, N
+
1 , N2, N

∗
3 , N

∗∗
3 ) satisfies all the requirements on

(N0, N1, N2, N
′
3, N

′′
3 ) and in addition the demand in (∗)2 so we are

done.]
Also without loss of generality

(∗)3 (N0, N2, I) ∈ FR2 and |I| = 1 and N2 is (D(N0),ℵ0)
∗-

homogeneous.

[Why? Similarly to (∗)1.]
To prove u has the weak coding we can assume (the saturation is

justified by 4.18(2))

(∗)4 (M̄, J̄, f) ∈ Kqt
u and M := ∪{Mα : α < ω1} is saturated for

K.

Now by renaming without loss of generality

(∗)5 N0 ≤K Mα(0) and N1 ∩M = N0 and
(N0, N1,J) ≤1 (Mα(0), N

′
1,J

′) and N ′
1 ∩M = Mα(0).

It suffices to prove that (α(0), N ′
1,J

′) is as required in 2.2(3). Next by
the definition of “having the weak coding property”, for our purpose
we can assume we are given (N ′′,J′′) such that

(∗)6 α(0) ≤ δ < ω1 and (N0, N
′
1,J

′) ≤1 (Mδ, N
′′,J′′).

By the definition of ≤1 we know that

(∗)7 N ′′ is (D(Mδ),ℵ0)
∗-homogeneous over Mδ.

As ∪{Mα : α < ω1} is saturated (for Ku) we can find β ∈ (δ, ω1)
such that Mβ is (D(Mδ),ℵ0)

∗-homogeneous over Mδ.
As K is categorical in ℵ0

(∗)8 there is an isomorphism f0 from N0 onto Mδ.

Similarly using the uniqueness over N0 of a countable (D(M0),ℵ0)
∗-

homogeneous model over N0

(∗)9 there are isomorphisms f1, f2 from N1, N2 onto N ′′,Mβ re-
spectively extending f0.
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Lastly, Mβ, N can be amalgamated over Mδ in the following two
ways:

⊙1 there are f ′,M ′ ∈ Ku such that f ′ is an isomorphism from
N ′

3 onto M ′ extending f1 ∪ f2

⊙2 there are f ′′,M ′′ ∈ Ku such that f ′′ is an isomorphism from
N1

3 onto M ′′ extedning f1 ∪ f2.

This is clearly enough. The rest should be clear.] �4.19

Proof of 4.16. By the claims above. �4.16

∗ ∗ ∗

(D) Density of K3,uq
λ when minimal triples are dense

Having taken care of VI§3,§4 and of I§5, we now deal with proving
the non-structure results of VI§6, i.e. [Sh 576, §6], relying on 2.3
instead of [Sh 576, §3]. Of course, later we prove stronger results
but have to work harder, both model theoretically (including “s is
almost a good λ-frame”) and set theoretically (using (vertical coding
in) Theorem 2.11 and §3 rather than (weak coding in) Theorem 2.3).

This is used in VI.6.11.

4.20 Theorem. The non-structure results of VI.6.11, Case 1 holds.

It details: İ(λ++,K) ≥ µunif(λ
++, 2λ+

) when we are assuming:

(A) set theoretically:

(a) 2λ < 2λ+

< 2λ++

and

(b) the weak diamond ideal on ∂ := λ+ is not ∂+-saturated

(B) model theoretically:

(a) K is an a.e.c., λ ≥ LS(K)

(b) (α) K is categorical in λ

(β) K is categorical in λ+ or just has a superlimit model
in λ+
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(c) (α) K has amalgamation in λ

(β) K is stable in λ or just M ∈ Kλ ⇒ |S min
K (M)| ≤ λ

(d) (α) the minimal types are dense (for M ∈ Kλ)

(β) for M ∈ Kλ the set S min
Kλ

(M) =
{p ∈ SKλ

(M) : p minimal} is inevitable

(γ) the M ∈ Kslm
λ+ is saturated above λ

(e) above (by ≤na) some (M∗, N∗, a) ∈ K3,na
λ there is no

triple with the uniqueness property, i.e. from K3,uq
λ , see

VI.6.3.

4.21 Remark. 1) Note: every M ∈ Kλ+ is saturated above λ when
the first, stronger version of (B)(b)(β) holds noting (B)(c)(β) +
(B)(d)(β).
2) When we use the weaker version of clause (b)(β), i.e. “there is
superlimit M ∈ Kλ+” then we have to prove that for almost2 every
(M̄, J̄, f), the model Mλ+ is saturated above λ which, as in earlier
cases, can be done; see VI.2.8(4).
3) Concerning clause (B)(d): “the minimal types are dense”, it fol-
lows from (amg)λ+ (stb)λ, i.e. from clause (c) recalling VI.2.3(4).
4) Note that 4.23, 4.24 does not depend on clause (A)(b) of 4.20.

4.22 Definition. We define u = u4 = u4
Kλ

as follows:

(a) ∂u = λ+

(b) Ku = Kλ or pedantically K′
λ, see Definition 1.10

(c)1 FRu
1 is the set of triples (M,N, I) satisfying M ≤K N ∈

Kλ, I = ∅ or I = {a} and the type tpKλ
(a,M,N) is minimal,

pedantically, if a/ =N /∈ M/ =N then tp(a/ =N ,M/ =N

, N/ =N ) is minimal

(c)2 (M1, N1, I1) ≤1 (M2, N2, I2) iff (both are FRu
1 and) M1 ≤K

M2, N1 ≤K N2 and I1 ⊆ I2 (in the non-trivial cases, equiv-
alently, I1 = I2), pedantically, if (a/ =N ) /∈ M/ =N then
tp(a/ =N ,M/ =N , N/ =N ) is minimal

(d) FRu
2 = FRu

1 and ≤2
u=≤1

u.
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4.23 Claim. u is a nice construction framework which is self-dual.

Proof. Easy (amalgamation, i.e. clause (F) of Definition 1.2 holds by
the proof of symmetry in Axiom (E)(f) in proof of Theorem VI.8.1).
�4.23

4.24 Claim. 1) Every (M,N, I) ∈ FR1 such that [a ∈ I & b ∈
M ⇒ ¬a =N

τ b] has the true weak coding property (see Definition
2.2(1A)).
2) u has the weak coding property.

3) For almost2 every (M̄, J̄, f) ∈ Kqt
u the model M∂ ∈ Kλ+ is satu-

arted above λ.
4) For some u − {0, 2}-appropriate function h, for every M ∈ Ku,h

λ++

the model M/ =M has cardinality λ++ and is saturated above λ.

Proof. 1) Straight.
2) By part (1) above and part (3) below.
3) By clauses (B)(c)(α), (β) of 4.20, clearly there is aM ∈ Kλ+ which
is saturated above λ. If in (B)(b)(β) we assume categoricity in λ+

then every M ∈ Kλ+ is saturated above λ, but then it is obvious that
part (1) implies part (2) by 2.10(4)(b). For any stationary S ⊆ ∂,
we choose h such that

(∗) if ((M̄1, J̄1, f1), (M̄2, J̄2, f2)) does 2-obeys h then: for sta-
tionarily many δ ∈ S there is successor ordinal i < f2(δ)
such that M2

δ+i+1 is <Kλ
-universal over M2

δ+i (hence M2
∂ is

saturated above λ and is the superlimit model in Kλ+).

Alternatively do as in 4.14(4), using VI.8.1.
4) As in 4.7(3).

Proof of 4.20. By 4.23, 4.24 and Theorem 2.3. �4.20

∗ ∗ ∗

(E) Density of K3,uq
s for good λ-frames
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We now deal with the non-structure proof in II.5.9, that is justi-
fying why the density of K3,uq

s holds.

Before we state the theorem, in order to get rid of the problem of
disjoint amalgamation, one of the ways is to note:

4.25 Definition. Assume that s is a good λ-frame (or just an almost
good λ-frame see Definition in 5.2 below or just a pre-λ-frame, see
VI.8.2).
1) We say that s has fake equality =∗ when Ks has the fake equality
=∗, see Definition 3.17(1) and tps(a,M1,M2) does not fork over M0

iff M0 ≤s M1 ≤s M2, a ∈ M2 and letting M ′
ℓ = Mℓ/ =M2

∗ we have
(∀b ∈ M1)(¬(a =M2

∗ b)) ⇒ tps(a/ =M2
∗ ,M ′

1,M
′
2) does not fork over

M ′
0.

2) We define s′ = (Ks′ ,S bs
s′ ,
⋃

s′
) as follows:

(a) Ks′ = K ′
s, see 1.10 as in 4.5

so τs′ = τ ′s = τs ∪ {=τ} and a τ ′s-model M belongs to Ks′ iff

=M
∗ is a congruence relation and the model M/ =M ′

τ belongs
to Ks

(b) for M ′ ∈ Ks′ we let S bs
s′ (M ′) = {tpK

s
′ (a,M

′, N ′) : M ′ ≤s′

N ′ and tps(a/ =N ′

τ ,M ′/ =M ′

τ , N ′/ =N ′

τ ) ∈ S bs
s (M ′/ =M ′

τ )
or a ∈ N ′\M ′ but (∃b ∈M ′)(a =τ b)}

(c) tps′(a,M ′
1,M

′
2) does not fork over M ′

0 when M ′
0 ≤s′ M ′

1 ≤s′

M ′
2 and either tps(a/ =

M ′
2

τ ,M ′
1 =

M ′
2

τ ,M ′
2/ =

M ′
2

τ ) does not fork

over M ′
0/ =M ′

2 or for some b ∈ M ′
0 we have M ′

2 |= “a =τ b”
but a /∈M ′

1.

4.26 Claim. Let s, s′ be as in 4.25(2).
1) If s is a good λ-frame then s′ is a good λ-frame and if s is an
almost good λ-frame then s′ is an almost good λ-frame; and if s is
a pre-λ-frame then s′ is a pre-λ-frame. In all cases s′ has the fake
equality =τ .
2) For µ ≥ λ, İ(µ,Ks) = |{M ′/ ∼=: M ′ ∈ Ks′

µ and is =τ -fuller, that

is a ∈M ′ ⇒ ‖M ′/ =M ′

τ ‖ = µ = |{b ∈M ′ : a =M ′

τ b}|}.
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3) If M ′ ∈ Ks′

then M ′ is λ+-saturated above λ for s′ iff M ′/ =M ′

τ is
λ+-saturated above λ for s and M ′ is (λ+,=τ )-full (recalling 1.10(5A)).

4.27 Remark. 1) By 4.26(2), the proof of “İ(µ,Ks′

) is ≥ χ” here

usually gives “İ(µ,Ks) is ≥ χ”.
2) We define s′ such that for some 0-appropriate h, if 〈(M̄α, J̄α, fα) :
α < ∂+〉 is ≤qt-increasing continuous 0-obeying h, then M = ∪{Mα

∂ :
α < ∂+} satisfies the condition in 4.26(2); it does not really matter
if we need {0, 2}-appropriate h.
3) Recall Example 1.12 as an alternative to 4.26(2).
4) Another way to deal with disjointness is by 5.22, 5.23 below.

Proof. Easy and see 1.11. �4.26

4.28 Theorem. Like 4.20 but dealing with s, i.e. replacing clause
(B) by clause (B)′ stated below; that is, İ(λ++, Ks) ≥ µunif(λ

++, 2λ)
when:

(A) set theoretically:

(a) 2λ < 2λ+

< 2λ++

and

(b) the weak diamond ideal on ∂ := λ+ is not ∂+-saturated

(B)′ model theoretic

(a) s is a good λ-frame (or just an almost good λ-frame,
see 5.2) with Ks = Kλ

(b) density of K3,uq
s fail, i.e. for some (M,N, a) ∈ K3,bs

s we

have (M,N, a) ≤bs (M ′, N ′, a) ⇒ (M ′, N ′, a) /∈ K3,uq
s ,

see Definition 5.3.

Proof. We apply 2.3, its assumption holds by Definition 4.29 and
Claim 4.30 below applied to s′ from 4.25 by using 4.26.
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4.29 Definition. Let s be as in 4.28 (or just a pre-λ-frame). We
let u = us = u1

s be defined as

(a) ∂u = λ+
s

(b) Ku = Ks

(c) FRu
1 = {(M,N, I) : M ≤Ku

N, I = ∅ or I = {a} where a ∈ N
and tps(a,M,N) ∈ S bs

s (M)}

(d) ≤1
u is defined by (M1, N1, I1) ≤

1
u (M2, N2, I2) when both are

from FRu
1 ,M1 ≤s M2, N1 ≤s N2, I1 ⊆ I2,M1 = M2 ∩N1 and

if I1 = {a} then tps(a,M2, N2) does not fork (for s) over
M1 (so if I2 = {aℓ} for ℓ = 1, 2 this means (M1, N1, a1) ≤bs

(M2, N2, a1))

(e) FRu
2 = FRu

1 and ≤2
u=≤1

u.

4.30 Claim. Let u = us′ where s′ is from Definition 4.25 or u = s

except when we mention equality (or =τ -fuller).
1) u is a nice construction framework which is self dual.

2) For almost2 every (M̄, J̄, f) ∈ Kqt
u the model M := ∪{Mα : α <

λ+} is saturated, see Definition 1.22(3C), see 4.3.
3) u has the weak coding property.

4) There is a u-0-appropriate function h such that every M ∈ Ku,h

λ++ is

λ+-saturated above λ and is =τ -fuller (hence M/ =M
τ has cardinality

λ++).
5) Moreover, there is a u−{0, 2}-appropriate function h such that if
〈(M̄α, J̄α, fα) : α < λ++〉 obeys h then for some club E of λ++ the

model M δ
∂ is saturated above λ for δ ∈ E and ∪{M ζ

∂ : ζ < λ++} is
=τ -fuller.
6) Also u

(α) satisfies (E)ℓ(e), monotonicity (see 1.13(1))

(β) is hereditary (see Definition 3.17(2),(3))

(γ) if u = us, s from 4.25(2) then =τ is a fake equality for u, (see
Definition 3.16(1))

(δ) u is hereditary for the fake equality =τ , (see Definition 3.17(4))

(ε) u is interpolative, see Definition 3.21.
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4.31 Remark. 1) In claim 5.11 we shall deal with the almost good
case, (see Definition 5.2), the proof below serves there too.
2) In 4.30, only clause (B)′(a) from the assumptions of Theorem 4.28
is used except in part (3) which uses also clause (B)′(b).
3) Part (6) of 4.30 is used only in 6.19.
4) Most parts of 4.30 holds also for u = us, i.e. we have to omit the
statements on =τ -fuller, fake equality.

Proof. 1) Note

Clause (D)ℓ(d): Given M ∈ Ks, it is not <s-maximal hence there
is N such that M <s N hence by density (Ax(D)(c) of (almost)
good λ-frames) there is c ∈ N such that tps(c,M,N) ∈ S bs

s (M), so
(M,N, a) ∈ FR+

1 , as required.

Clause (E)ℓ(c): Preservation under increasing union.
Holds by axiom (E)(h) of Definition of II.2.1 of s being a good

λ-frame (and similarly for being an almost good λ-frame).

Clause (F), amalgamation:
This holds by symmetry axiom (E)(i) of Definition II.2.1 of s

being a good λ-frame (and similarly for s being an almost good λ-
frame). The disjointness is not problematic in proving clause (F) of
Definition 1.2 because

(∗)1 for u = us we can prove it (when K is categorical in λ, see
5.23, 5.12 below) and it follows by our allowing the use of =τ

or use s′ (see 4.30).

2) We just use

(∗) M is saturated (∈ Kλ+) when

(a) M = ∪{Mα : α < λ+}

(b) Mα ∈ Ks is ≤s-increasing continuous

(c) if p ∈ S bs
s (Mα) then for some β ∈ [α, λ+) the non-

forking extension q ∈ S bs
s (Mβ) of p is realized in Mβ+1

(or just in some Mγ , γ ∈ (β, λ+)).
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See II§4; more fully see the proof of part (5).

3) Let (M,N, a) ∈ K3,bs
s be such that there is no triple (M ′, N ′, a) ∈

K3,uq
s which is <bs-above it, exists by clause (B)′(b) from Theorem

4.28. Let I = {a}, so if (M,N, I) ≤1
u (M ′, N ′, I′) then (I′ = I = {a}

and) (M ′, N ′, a) ∈ K3,bs
s \K3,uq

s hence there are M ′′, N1, N2 such
that (M ′, N ′, I) ≤1

u (M ′′, Nℓ, I) and N1, N2 are ≤s-incompatible
amalgamations of M ′′, N ′ over M ′. This shows that (M ′, N ′, I)
has the true weak coding property. As for almost2 every triple
(M̄, J̄, f) ∈ Kqt

s ,M∂ = Mλ+ is saturated, by 2.10(4) and part (5)
we get that u has the weak coding property.
4) Easy to check by 1.11 or as in (5).
5) We choose h such that:

⊠ if x = 〈(M̄ ζ , J̄ζ , f ζ) : ζ ≤ ζ(∗)〉 is ≤qt-increasing continuous
and obey h is ξ < ζ(∗) then

(α) (M̄ ξ, J̄ξ, f ξ) <at
u (M̄ ξ+1, J̄ξ+1, fα+1) and let it be wit-

nessed by E, Ī

(β) M ξ+1
δ+1 is brimmed over M ξ

δ for a club of δ < λ+

(γ) if ζ ≤ ξ is minimal such that one of the cases occurs,
then the demand in the first of the cases below holds:

Case A: There is a ∈M ξ
∂ such that a/ =Mξ

τ is ⊆M ζ
∂ and ζ < ξ.

Then for some such a′,M ξ+1
∂ |= “a′ =τ b” (but b /∈ M ζ

∂ ), in fact
b′ ∈ Iα for some α < ∂ large enough.

Case B: ζ < ξ, not Case A (for ζ) but for some α < ∂ and p ∈
S bs

s (M ζ
α) for no ε ∈ [ζ, ξ) are there a ∈ M ε+1

∂ such that tps(a,M
ε
β,

M ε+1
β ) is a non-forking extension of p for every β < ∂ large enough.

Then for some such (p, α) we have tps(b,M
ζ
β ,M

ζ+1
∂ ) is a non-

forking extension of p for every β < ∂ large enough.

Case C: ζ < ξ, Cases A,B fail for ζ and there is a pair (α, p) such that
α < ∂, p ∈ S bs

s (M ζ
α) such that for no ε ∈ [ζ, ξ) is the set S := {δ < ∂:

there is i < fε+1(δ) such that tps(aJε+1
δ+i
,M ε+1

δ+i ,M
ε+1
δ+i+1) is a non-

forking extension of p} stationary.
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Then for some such pair (α, p), the condition above holds for ξ.

Case D: ζ = ξ.
Does not matter.

6) Easy, too. �4.30

∗ ∗ ∗

(F) The better versions of the results:
Here we prove the better versions of the results, i.e. without using

on “WDmId(λ+) is λ++-saturated” but relying on later sections.
Of course, the major point is reproving the results of §4(E), i.e.

“non-structure for a good λ-frame s failing the density of K3,uq
s ”, we

have to rely on §5-§8.
We also deal with §4(D); here we rely on VI§8, so we get an almost

good λ-frame s (rather than good λ-frames). But in §5-§8 we deal
also with this more general case (and in §7, when we discard a non-
structure case, we prove that s is really a good λ-frame).

Lastly, we revisit §4(C).

4.32 Theorem. 1) In Theorem 4.28 we can omit the assumption
(A)(b).

2) İ(λ++,K) ≥ µunif(λ
++, 2λ+

) and moreover İ(λ++, Ku,h) ≥

µunif(λ
++, 2λ+

) for u = u1
s from Definition 4.29 or u = u3

s from
Definition 8.3 and any u − {0, 2}-appropriate function h, when:

(A) (set theoretic assumption), 2λ < 2λ+

< 2λ++

(B) (model theoretic assumptions),

(a) s is an almost good λ-frame

(b) s is categorical in λ

(c) s is not a good λ-frame or s (is a good λ-frame which)

fail density for K3,uq
s .

4.33 Remark. 1) This proves VI.0.2 from VI.8.4, proving the main
theorem VI.0.2.
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2) We can phrase the theorem also as: if (A),(B)(a),(B)(b) holds and

the İ(Ku,h

λ++) < µunif(λ
++, 2λ) then s is a good λ-frame for which

K3,uq
s is dense in (K3,bs

s ,≤bs) (and so has existence for K3,uq
s ).

Proof. 1) This is a special case of part (2).
2) Toward contradiction assume that the desired conclusion fail.

First, the Hypothesis 5.1 of §5 holds for s hence its results. Second,
the Hypothesis 6.1 of §6 apply hence its results. So consider conclu-

sion 6.17(2); its assumption “2λ+

< 2λ++

” holds by assumption (A)

here, and its assumption “İ(Ks,h

λ++) < µunif(λ
++, 2λ+

) for u = u1
s for

some u − {0, 2}-appropriate h” holds by our present assumption to-
ward contradiction and its assumption “Ks is categorical” holds by
clause (B)(b) of the assumption of 4.32.

Hence the conclusion of 6.17 holds which says that

(∗) s has existence for K3,up
s,ξ for every ξ ≤ λ+, see Definition 6.4.

Now consider Hypothesis 7.1; now part (1) there (s is an almost good
λ-frame) holds by the present assumption (B)(a), part (2) there was
just proven; part (3) there (s is categorical in λ) holds by the present
assumption (B)(b), and lastly, part (4) there (disjointness) is proved
in 5.23. So Hypothesis 7.1 of §7 holds hence the results of that section
up to 7.20 apply.

In particular, WNFs defined in 7.3(1),(2) is well defined and by
7.17(1) is a weak non-forking relation on 4(Ks) respecting s. Also s

is a good λ-frame by Lemma 7.19(1) so the first possibility in clause
(B)(c) of 4.32 does not hold. By inspection all parts of Hypothesis
8.1 of §8 holds hence the results of that section apply.

Now in Claim 8.19, its conclusion fails as this means our assump-
tion toward contradiction and among its assumptions, clause (a),

saying “2λ < 2λ+

< 2λ++

” holds by clause (A) of 4.32, clause (c) say-
ing “K is categorical in λ” holds by clause (B)(b) of 4.32 and clause

(d) saying “u = u3
s from 8.3 has existence for K3,up

s,λ+” was proved

above. So clause (b) of 8.19 fails, i.e. s fails the non-uniqueness
for WNFs, but by 8.12(1) this implies that we have uniqueness for
WNF.
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Lastly, we apply Observation 8.12(2), it has two assumptions, the

first “s has existence for K3,up
s,λ+”, was proved above, and second “s

has uniqueness for WNF” has just been proved; so the conclusion
of 8.12 holds. This means “s has existence for K3,uq

s ”, so also the
second possibility of clause (B)(c) of 4.32 fails; a contradiction. �4.32

4.34 Theorem. 1) In Theorem 4.20 we can omit the assumption
(A)(b) at least if K is categorical in λ+.

2) İ(λ++, Ku,h) ≥ µunif(λ
++, 2λ+

) when:

(A) (set theoretic) 2λ < 2λ+

< 2λ+

(B) (model theoretic) as in 4.20, but K categorical in λ+

(C) u = u4
Kλ

, see Definition 4.22, h is a u − {0, 2}-appropriate
function.

Remark. This theorem is funny as VI§6 and in particular VI.6.11 is
a shortcut, but we prove this by a detour (using VI§8) so in a sense
4.34 is less natural than 4.20; but no harm done.

Proof. 1) By part (2) and 4.24(4) recalling 4.21(4).
2) Toward contradiction, assume that the desired conclusion fails.
By VI.8.1 there is an almost good λ-frame s such that Ks = Kλ and
S bs

s (M) is the set of minimal p ∈ S bs
s (M).

Note that categoricity in λ+ is used in Chapter VI to deduce
the stability in λ for minimal types and the set of minimal types in
SK(M) being inevitable, but this is assumed in clause (B)(d) of the
assumption of 4.20, so natural to conjecture that it is not needed,
see Chapter VI.

Now using the meaning of the assumption (B)(e) of Theorem 4.20

is that “K3,uq
s is not dense in (K3,bs

s ,≤bs)” so we can apply Theorem
4.32 to get the desired result.

�4.34
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4.35 Theorem. 1) In Theorem 4.16 we can weaken the set theoretic
assumption, omitting the extra assumption (a)(β).

2) İ(ℵ2, K
u,h) ≥ µunif(ℵ2, 2

ℵ1) when:

(a) (set theory) 2ℵ0 < 2ℵ1 < 2ℵ2

(b) − (e) as in 4.20

(f) u = u3
Kℵ0

from Definition 4.17 and h is a u−{0, 2}-appropriate

function.

4.36 Discussion: 1) This completes a promise from I§5. You may say
that once we prove in II§3(B) that s = s1

K is a good ℵ0-frame we do
not need to deal with K any more, so no need of 4.35. In addition to
keeping promises this is only partially true because of the following.
2) First, arriving to s+, see III§1, we do not know that ≤s(+)=≤K↾

Ks(+), because this is proved only if s is good+ (see III§1). Now by
looking at the definitions (and II.3.4, equality of the various types),
we know that s being good+ is equivalent to the symmetry property,
i.e. every one sided stable amalgamation. We prove that its failure
implies non-structure in 4.38, 4.39, 4.40 below.
3) Another point is that even if s is weakly successful (i.e. we have

existence for K3,uq
s ), we can define NF = NFs and so we have unique

non-forking amalgamation, it is not clear that this is equal to the
one/two sided stable amalgamation from Chapter I.
4) Also defining s+n as in Chapter II we may hope not to shrink
Ks(+n), i.e. to get all the (ℵ0, n)-properties (as in [Sh 87b]). If we
start with ψ ∈ Lω1,ω(Q) as in [Sh 48] this seems straight, in general,
this is a priori not clear, hopefully see [Sh:F888].
5) Concerning (2) above, we like to use 3.14 - 3.20 in the proof as in
the proof of 6.14. If we have used u = u3

R from Definition 4.17, this
fails, e.g. it is not self dual. We can change (FR2,≤2) to make it
symmetric but still it will fail “hereditary”, so it is natural to use u2

defined in 4.38 below, but then we still need (Mδ, Nδ, Iδ) ∈ FR1
u2

to
ensure Nδ is (D(Mδ),ℵ0)

∗-homogeneous over Mδ. This can be done
by using the game version of the coding property. This is fine but
was not our “main road” so rather we use the theorem on u3 but use
u5 to apply §3.
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A price of using §3 is having to use fake equality. Also together
with symmetry, we deal with lifting free (α, 0)-rectangles.
6) To complete the proof of 4.35, by 4.40 it suffices to prove the
uniqueness of two-sided stable amalgamation. We use §8 and toward
this we define WNF∗, prove that it is a weak non-forking relation of
Kℵ0

respecting s, using the “lifting” from §5. Then we can apply §8.
7) A drawback of 4.35 as well as 4.16 and II§3(B) is that we restrict
ourselves to a countable D. Now in Chapter I this is justified as it is
proved that for some increasing continuous sequence 〈Dα : α < ω1〉
with each Dα countable, D = ∪{Dα : α < ω1}, i.e. for every
M ∈ Kℵ0

, the sequence (Dα(M) : α < ω1〉 is an increasing sequence
of sets of types with union D(M). However, from the positive results
on every Dα we can deduce positive results on D. See, hopefully, in
[Sh:F888].

4.37 Remark. 1) Assumption (d) of 4.16 gives: usually (M,N, I) ∈
FR1

u has non-uniqueness, i.e. when I = (ω>N)\(ω>M). We like to
work as in 4.32.
2) So as indirectly there we would like to use 3.24; for this we need
the vertical uq-invariant whereas we naturally get failure of the semi
uq-invariant coding property. So we would like to quote 3.20 but this
requires u to be self dual.
3) Hence use also a relative of u from 4.41, for it we prove the impli-
cation and from this deduce what we need for the old.
4) Our problem is to prove that s = sℵ0

is good+, equivalently prove
the symmetry property, this is done in Claim 4.40. It is natural to
apply 3.13 - 3.24.
5) The proof of 4.35 will come later.

4.38 Definition. In 4.35 we define u5 = u5
Kℵ0

as follows (ℓ is 1, 2)

(a) ∂ = ∂u = ℵ1

(b) Ku = Kℵ0
more pedantically Ku = K′

ℵ0

(c)1 FRu
1 is the class of triples (M,N, I) such that I ⊆ ω>N\ω>M

(c)2 (M1, N1, I1) ≤1 (M1, N2, I2) iff both are from FRu
1 ,M1 ≤K

M2, N1 ≤K N2 and c̄ ∈ I ⇒ gtp(c̄,M2, N2) is the stationar-
ization of gtp(c̄,M1, N1)
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(d) FR2 = FR1 and ≤2
u=≤1

u.

Now we have to repeat various things.

4.39 Claim. 1) u5 is a nice construction framework.

2) For almost2 every triples (M̄, J̄, f) ∈ Kqt
u5

the model M∂ = Mλ+

belongs to Kλ+ and is saturated.
3) u5 has fake equality =τ and is monotonic, see Definition (1.13(1)),
and weakly hereditary for the fake equality =τ , see Definition 3.17(5)
and interpolative (see Definition 3.21).

Proof. Should be clear (e.g. part (2) as in 6.2). �4.39

4.40 Claim. İ(λ++,K) ≥ µunif(ℵ2, 2
ℵ0) and moreover İ(ℵ2,K(ℵ1 −

saturated)) ≥ µunif(ℵ2, 2
ℵ2) when:

⊛ (a)(α), (b), (c), (e) from 4.16 and

(d)′′(α) K fails the symmetry property or

(β) K fails the lifting property, see Definition 4.41 below.

4.41 Definition. We define a 4-place relation WNF∗ on Kℵ0
as

follows:
WNF∗(M0,M1,M2,M3) when

(a) Mℓ ∈ Kℵ0
for ℓ ≤ 3

(b) M0 ≤K Mℓ ≤K M3 for ℓ = 1, 2

(c) for ℓ = 1, 2 if ā ∈ ω>(Mℓ) then gtp(ā,M3−ℓ,M3) is the sta-
tionarization of gtp(ā,M0,M3) = gtp(ā,M0,Mℓ).

4.42 Definition. We say that (K,WNF∗) has the lifting property
when WNF∗ satisfies clause (g) of Definition 7.18, see the proof of
7.18, i.e. if WNF∗(M0, N0,M1, N1) and α < λ+ and 〈M0,i : i ≤ α〉
is ≤s-increasing continuous, M0,0 = M0 and N0 ≤Kλ

,M0,α then we
can find a ≤Kλ

-increasing continuous sequence 〈M1,i : i ≤ α + 1〉
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such that M1,0 = M1, N1 ≤K M1,α+1 and for each i < α we have
WNF∗(M0,i,M0,i+1,M1,i,M1,i+1) for i < α.

Proof of 4.40. We start as in the proof of 4.16, choosing the good
ℵ0-frame s = sℵ0

and define u = u3
K as there, (except having the

fake inequality which causes no problem), so it is a nice construction

framework by 4.18(1) and for almost2 all triples (M̄, J̄, f) ∈ Kqt
u the

model M ∈ Kℵ1
is saturated (by 4.18(2)).

Now Theorem 3.24 gives the right conclusion, so to suffice to verify
its assumptions. Of course, u is as required in Hypothesis 3.1.

Clause (a) there means 2ℵ0 < 2ℵ0 < 2ℵ2 (as ∂u = ℵ1 and we
choose θ = ℵ0), which holds by clause (a)(α) of the present claim.

Clause (c) there says that for {0, 2}-almost every (M̄, J̄, f) ∈ Kqt
u

the model M∂ ∈ Kℵ2
is Ku-model homogeneous; this holds and can

be proved as in 6.2.
We are left with clause (b), i.e. we have to prove that some

(M,N, I) ∈ FRu
1 has the vertical uq-invariant coding property, see

Definition 3.10. Choose (M,N, I) ∈ FRu
1 such that |I| > 1, hence

N is (D(M), N)∗-homogeneous and I = (ω>N)\(ω>M) and we shall
prove that it has the vertical uq-invariant coding, so assume

(∗) d0 is a u-free (αd, 0)-rectangle satisfying M ≤s M
′ = Md

0,0

and Md
α(d),0 ∩N = M .

We have to find d as required in Definition 3.10.
Note that by the choice of (M,N, I), and the assumption “K fails

the symmetry property” we can find (M∗, N∗) and then c̄

(∗)2 (a) M ≤s M∗ ≤s N∗ and N ≤s N∗

(b) M,N,M∗, N∗ is in one-sided stable amalgamation, i.e. if b̄ ∈
ω>N then gtp(b̄,M∗, N∗) is the stationarization of gtp(b̄,M,N)

(c) M,M∗, N,N∗ is not in one sided stable amalgamation, so

(c)+ c̄ ∈ ω>(M∗) and gtp(c̄, N,N∗) is not the stationarization of
gtp(c̄,M,M∗).

We like to apply the semi version, i.e. Definition 3.14 and Claim
3.20. There are technical difficulties so we apply it to u5, see 4.38,
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4.39 above and in the end increase the models to have the triples in
FR1

u and use 3.23 instead of 3.20, so all should be clear.
Alternatively, works only with u5 but use the game version of the

coding theorem.
�4.40

4.43 Claim. 1) If (K,WNF∗) has lifting, see Definition 4.41, then
WNF∗ is a weak non-forking relationg of Kℵ0

respecting s with dis-
jointness (7.18(3)).
2) WNF∗ is a pseudo non-forking relation of Kℵ0

respecting s mean-
ing clauses (a)-(f) with disjointness, see the proof or see Definition
7.18(4),(3).
3) If Kℵ0

satisfies symmetry then in clause (c) of Definition 4.41, it
is enough if it holds for one ℓ.

Proof. 1) We should check all the clauses of Definition 7.18, so see
II.6.1 or the proof of 7.17(1).

Clause (a): WNF∗ is a 4-place relation on Kℵ0
.

[Why? By Definition 4.41, in particular clause (a).]

Clause (b): WNF∗(M0,M1,M2,M3) implies M0 ≤K Mℓ ≤K M3 for
ℓ = 1, 2 and is preserved by isomorphisms.
[Why? By Definition 4.41, in particular clause (c).]

Clause (c): Monotonicity
[Why? By properties of gtp, see I.5.24(1).]

Clause (d): Symmetry
[Why? Read Definition 4.41.]

Clause (e): Long Transitivity
As in the proof of I.5.29.

Clause (f): Existence
This is proved in I.5.32.

Clause (g): Lifting, see Definition 4.41.
This holds by an assumption.
WNF∗ respects s and has disjointness.
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Clear by the definition (in particular of gtp).
2) The proof included in the proof of part (1).
3) Should be clear. �4.43

Proof of 4.35. Let λ = ℵ0 and toward contradiction assume that
İ(λ++,K(λ+-saturated)) < µunif(λ

++, 2λ).
As in the proof of 4.16, by II.3.4 s := sℵ0

is a good λ-frame
categorical in λ. By Theorem 4.32, recalling our assumption toward

contradiction, K3,uq
s is dense in K3,bs

s hence s has existence forK3,uq
s ;

i.e. is weakly successful, but we shall not use this.
By 4.40 we know that K has the symmetry property, hence the

two-sided stable amalgamation fails uniqueness. Also by 4.40 we
know that it has the lifting property, so by 4.43, 4.40 we know that
WNF∗ is a weak non-forking relation on Kℵ0

which respects s, so
Hypothesis 8.1 holds.

Let u be defined as in 8.3 (for our given s and WNF∗). Now we
try to apply Theorem 8.19. Its conclusion fails by our assumption
toward contradiction and clause (a),(b),(c) there holds. So clause (b)
there fails so by 8.12(1). So we can conclude that we have uniqueness

for WNF∗ by 8.12(2) clearly s has existence for K3,bs
s , i.e. is weakly

successful.
So s+ is a well defined good λ+-frame, see Chapter III. By II§8,

Chapter III and our assumption toward contradiction, we know that
s is successful. Now if s is not good+ then K fails the symmetry
property hence by 4.40 we get contradiction, so ncessarily s is good+

hence we have ≤s(+)=≤s↾ Ks(+). This proves that the saturated
M ∈ Kλ+ is super limit (see Chapter III also this is I.5.39). �4.35

§5 On almost good λ-frames

Accepting “WDmId(∂) is not ∂+-saturated” where ∂ = λ+ we
have accomplished in §4 the applications we promised. Otherwise
for II§5 we have to prove for a good λ-frame s that among the triples

(M,N, a) ∈ K3,bs
s , the ones with uniqueness are not dense, as other-

wise non-structure in λ++ follows. Toward this (in this section) we
have to do some (positive structure side) work which may be of self
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interest. Now in the case we get s in II§3 starting from [Sh 576] or
better from VI§8, but with λs = λ rather than λs = λ+, we have to
start with an almost good λ-frames s rather than with good λ-frames.
However, there is a price: for eliminating the non-∂+-saturation of
the weak diamond ideal and for using the “almost λ-good” version,
we have to work more.

First, we shall not directly try to prove density of uniqueness
triples (M,N,J) but just the density of poor relatives like K3,up

s .
Second, we have to prove some positive results, particularly in the

almost good λ-frame case. This is done here in §5 and more is done in
§7 assuming existence for K3,up

s,λ+ justified by the non-structure result

in §6 and the complimentary full non-structure result is proved in
§8.

5.1 Hypothesis. s is an almost good λ-frame (usually categorical in
λ) and for transparency s has disjointness, see Definitions 5.2, 5.5
below; the disjointness is justified in the Discussion 5.6 and not used
in 5.21 - 5.25 which in fact prove it and let ∂ = λ+.

5.2 Definition. “s is an almost good λ-frame” is defined as in II.2.1
except that we weaken (E)(c) to (E)(c)− and strengthen (D)(d) to
(D)(d)+ where (recall tps = tpKs

):

Ax(E)(c)−: the local character

if 〈Mi : i ≤ δ + 1〉 is ≤s-increasing continuous and the set {i < δ :
Ni <

∗
s Ni+1, i.e. Ni+1 is universal over Ni} is unbounded in δ then

for some a ∈ Mδ+1 the type tps(a,Mδ,Mδ+1) belongs to S bs
s (Mδ)

and does not fork over Mi for some i < δ

Ax(D)(d)+ if M ∈ Ks then SKs
(M) has cardinality ≤ λ

(for good λ-frame this holds by II.4.2).

As in Chapter II

5.3 Definition. 1) K3,bs
s is the class of triples (M,N, a) such that

M ≤s N and a ∈ N\M .
2) ≤bs=≤bs

s is the following two-place relation (really partial order)
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on K3,bs
s . We let (M1, N1, a1) ≤bs (M2, N2, a2) iff a1 = a2,M1 ≤s

M2, N1 ≤s N2 and tps(a1, N1, N2) does not fork over M1.

5.4 Claim. 1) K3,bs
s and ≤bs are preserved by isomorphisms.

2) ≤bs is a partial order on K3,bs
s .

3) If 〈(Mα, Nα, a) : α < δ〉 is ≤bs-increasing and δ < λ+ is a limit
ordinal and Mδ := ∪{Mα : α < δ}, Nδ := ∪{Nα : α < δ} then

α < δ ⇒ (Mα, Nα, a) ≤bs (Mδ, Nδ, a) ∈ K3,bs
s (using Ax(E)(h)).

Proof. Easy. �5.4

5.5 Definition. We say s has disjointness or is disjoint when:

(a) strengthen Ax(C), i.e. Ks has disjoint amalgamation which
means that: if M0 ≤s Mℓ for ℓ = 1, 2 and M1 ∩M2 = M0

then for some Ms ∈ Ks we have Mℓ ≤s Ms for ℓ = 0, 1, 2

(b) strengthen Ax(E)(i) by disjointness: if above we assume in

addition that (M0,Mℓ, aℓ) ∈ K3,bs
s for ℓ = 1, 2 then we can

add (M0,Mℓ, aℓ) ≤bs (M3−ℓ,Ms, aℓ) for ℓ = 1, 2.

5.6 Discussion: How “expensive” is the (assumption of) disjoint amal-
gamation (in Ax(C) and Ax(E)(i))?
1) We can “get it for free” by using K′ and s′, see Definition 1.10
and 4.25(2) so we assume it.
2) Alternatively we can prove it assuming categoricity in λ (see 5.23
which relies on 5.22).
3) So usually we shall ignore this point.

5.7 Exercise. There is a good λ-frame without disjoint amalgama-
tion.

[Hint: Let

⊛1 (a) τ = {F}, F a unary function
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(b) ψ the first order sentence
(∀x, y)[F (x) 6= x ∧ F (y) 6= y → F (x) = F (y)] ∧

((∀x)[F (F (x)) = F (x)]

(c) K = {M : M is a τ -model of ψ}, so M ∈ K ⇒ |ϕ(M)| ≤ 1
where we let ϕ(x) = (∃y)(F (y) = x ∧ y 6= x)

(d) M ≤K N ′ iff M ⊆ N are from K and ϕ(M) = ϕ(N) ∩M .

Now note

(∗)1 K := (K,≤K) is an a.e.c. with LS(K) = ℵ0

(∗)2 K has amalgamation.

[Why? If M0 ≤K Mℓ for ℓ = 1, 2, then separate the proof to three
cases: the first when ϕ(M0) = ϕ(M1) = ϕ(M2) = ∅ the second
when |ϕ(M1)| + |ϕ(M2)| = 1 and ϕ(M0) = ∅; in the third case
ϕ(M0) = ϕ(M1) = ϕ(M2) is a singleton.]

So

(∗)3 Kλ = (Kλ,≤K↾ Kλ).

Now we define s by letting

(∗)4 (a) Ks = Kλ

(b) K3,bs
s := {(M,N, a) : M ≤Kλ

N, a ∈ N\M\ϕ(N)}

(c) for M1 ≤K M2 ≤K M3 and a ∈ M3 we say tpK(a,M2,M3)
does not fork over M1 iff a /∈M2 & FM3(a) /∈M2\M1.

Lastly

(∗)5 s is a good λ-frame.

[Why? Check. E.g.

Ax(D)(c): Density
So assume M <s N now if there is a ∈ N\M\ϕ(M) then a

tp(a,M,N) ∈ S bs
s (M) so a is as required. Otherwise, as M 6= M

necessary ϕ(N) is non-empty and ⊆ N\M , let it be {b}. By the
definition of ϕ there is a ∈ N such that FN (a) = b ∧ a 6= b so
necessarily a /∈M and is as required.]

Paper Sh:300G, Chapter VII



586 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

Ax(E)(e): Uniqueness
The point is that:

(∗)6 if ϕ(M) = ∅ then S bs
s (M) contains just two types p1, p2 such

that if pℓ = tp(a,M,N) ⇒ then ℓ = 1 ⇒ FN (a) = a ∈ N\M
and ℓ = 2 ⇒ FN (a) ∈ N\M\{a}

(∗)7 if ϕ(M) = {b} then S bs
s (M) contains just two types p1, p2

such that p1 is as above and p2 = tp(a,M,N) ⇒ FN (a) = b

(∗)8 there are M0 ≤K M1 = M2 such that ϕ(M1) 6= ∅ = ϕ(M0)
and let ϕ(Mℓ) = {b} for ℓ = 1, 2 so b ∈Mℓ\M0. So we cannot
disjointly amalgamate M1,M2 over M0.

[Why? Think.]
So we are done with Example 5.7.]

Recalling II.1.15, II.1.16:

5.8 Claim. 1) For κ = cf(κ) ≤ λ

(a) there is a (λ, κ)-brimmed M ∈ Ks, in fact (λ, κ)-brimmed
over M0 for any pregiven M0 ∈ Ks

(b) M is unique up to isomorphism over M0 (but we fix κ)

(c) if M ∈ Ks is (λ, κ)-brimmed over M0 then it is ≤s-universal
over M0.

2) So the superlimit M ∈ Ks is (λ, κ)-brimmed for every κ ≤ cf(κ) ≤
λ hence is brimmed.
3) If κ = cf(κ) ≤ λ and M1 ≤s M2 are both (λ, κ)-brimmed and
Γ ⊆ S bs

s (M2) has cardinality < κ and every p ∈ Γ does not fork
over M1 then there is an isomorphism f from M2 onto M1 such that
p ∈ Γ ⇒ f(p) = p ↾ M1.

Proof. 1) By Definition II.1.15 and Claim II.1.16 because Kλ has
amalgamation, the JEP recalling II.2.1 and has no <Kλ

-maximal
member (having a superlimit model).
2) By the definition of being brimmed and “superlimit in Ks” which
exists by “s is almost good λ-frame”.
3) Exactly as in the proof of III.1.21. �5.8
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5.9 Remark. 1) It seems that there is no great harm in weakening
(E)(h) to (E)(h)− as in (E)(c)−, but also no urgent need, where:.

Ax(E)(h)−: assume 〈Mi : i ≤ δ〉 is ≤s-increasing continuous and
δ = sup{i : Mi+1 is ≤s-universal over Mi}. If p ∈ SKs

(Mδ) and
i < δ ⇒ p ↾ Mi ∈ S bs

s (Mi) then p ∈ S bs
s (Mδ).

2) That is, if we weaken Ax(E)(h) then we are drawn to further prob-
lems. After defining u, does ≤ℓ-increasing sequence 〈(Mi, Ni,Ji) :
i < δ〉 has the union as a ≤ℓ-upper bound? If Mi+1 is universal over
Mi for i < δ this is O.K., but using triangles in the limit we have a
problem; see part (4) below.
3) Why “no urgent need”? The case which draws us to consider
Ax(E)(c)− is VI§8, i.e. by the s derived there satisfies Ax(E)(h). So
we may deal with it elsewhere, [Sh:F841].
4) When we deal with u derived from such s, i.e. as in part (1) we
may demand:

(A) First, dealing with u-free rectangles and triangles we add

(a) Idi,j = ∅ when j is a limit ordinal

(b) Jd
i,j = ∅ when i is a limit ordinal

(c) it is everywhere universal (eachMi+1,j+j is ≤s-universal
over Md

i+1,j ∪M
d
i,j+1 (or at least each)

(B) similarly with Kqt
s , i.e. defining (M̄, J̄, f) ∈ Kqt

s we add the
demands

(a) Jδ = ∅ for limit δ

(b) if δ ∈ S ∩ E, then d, the (us)-free (f(δ), 0)-rectangle
(〈Mδ+i : i ≤ f(δ)〉, 〈Jδ+i : i < f(δ)〉) is strongly full
(defined as below) and so for any θ ≤ λ, if λ|j and
i < j ≤ f(δ) and cf(δ) = θ then Mδ,j is (λ, θ)-brimmed
over Mδ+i.

(C) similarly for ≤at
us

,≤qr
us

.

5.10 Definition. 1) We define u = us = u1
s as in Definition 4.29, it

is denoted by u for this section so may be omitted and we may write
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s-free instead of us-free.
2) We say (M,N, I) ∈ FRℓ realizes p when tps(aI,M,N) = p,
recalling I = {aI}.

5.11 Claim. 1) us is a nice construction framework which is self-
dual.
2) Also us is monotonic and hereditary and interpolative.

5.12 Remark. 1) Here we use “s has disjointness” proved in 5.23.
2) Even without 5.23, if s = s′1 for some almost good λ-frame s1 then
s has disjointness.
3) Mostly it does not matter if we use u1

s, s
′ from 4.25 (see 6.18) but in

proving 6.13(1), the use of u1
s′ is preferable; alternatively in defining

nice construction framework we waive the disjointness, which is a
cumbersome but not serious change.

Proof. As in 4.30 except disjointness which holds by Hypothesis 5.2
and is justified by 5.6 above, (or see 5.23 below). �5.11

5.13 Remark. Because we assume on s only that it is an almost good
λ-frame we have to be more careful as (E)(c) may fail, in particular
in proving brimmness in triangles of the right kind. I.e. for a u-free
(ᾱ, β)- triangle d, we need that in the “vertical sequence”, 〈Md

i,β :

i ≤ αβ〉 the highest model Md
αβ,β is brimmed over the lowest Md

0,β.

This motivates the following.

5.14 Definition. 1) We say M̄ is a (Γ, δ)-correct sequence when:
Γ ⊆ S bs

s (Mδ), the sequence M̄ = 〈Mα : α ≤ α(∗)〉 is ≤s-increasing
continuous, δ ≤ α(∗) and: if N ∈ Ks satisfies Mδ <s N then for
some c ∈ N\Mδ and α < δ the type tps(c,Mδ, N) does not fork over
Mα and belongs to Γ.
2) We omit δ when this holds for every limit δ ≤ α(∗).
3) We say Γ is M -inevitable when Γ ⊆ S bs

s (M) and: if M <s N
then some p ∈ S bs

s (M) ∩ Γ is realized in N .
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4) Using a function S ∗ instead of Γ we mean we use Γ = S ∗(Mδ).
5) We may omit Γ (and write δ-correct) above when Γ is S bs

s .
6) For M̄ = 〈Mα : α ≤ α(∗)〉 let correctΓ(M̄) = {δ ≤ α(∗) : M̄
is (δ,Γ)-correct so δ is a limit ordinal} and we may omit Γ if Γ =
S bs

s (Mα(∗)).

7) If d is a us-free (ᾱ, β)-triangle let Γd = {p ∈ S bs
s (Mαβ,β) : p does

not fork over Mi,j for some j < β, i < αj}.

5.15 Definition. 1) We say that d is a brimmed (or universal)
us-free or s-free triangle when:

(a) d is a us-free triangle

(b) if i < αj(d) and j < β(d) then Md
i+1,j+1 is brimmed (or

universal) over Md
i+1,j.

2) We say strictly brimmed (universal) when alsoMd
i+1,j+1 is brimmed

(universal) over Md
i+1,j ∪M

d
i,j+1 when j < β, i < αj(d).

2A) We say that d is a weakly brimmed (or weakly universal) us-free
or s-free triangle when:

(a) d is a us-free triangle

(b) if j1 < βd, i1 < αj(d) then we can find a pair (i2, j2) such that
j1 ≤ j2 < βd, i1 ≤ i2 < αj(d) and Md

i2+1,j2+1 is brimmed (or

is ≤s-universal) over Md
i2,j2

or just over Md
i1,j1

.

2B) We say that d is a weakly brimmed (weakly universal) us-free
rectangle when it and its dual (see Definition 1.7(3)) are weakly
brimmed us-free triangles. Similarly for brimmed, strictly brimmed,
universal, strictly universal.
3) We say that a us-free triangle d is full when:

(a) λs divides αβ(d)(d) and β(d) is a limit ordinal and ᾱ is con-
tinuous or just αβ(d)(d) = ∪{αj(d) : j < β}

(b) if i < αj(d), j < β := β(d) and p ∈ S bs
s (Mi,j) then:

(∗) the following subset Sd
p of αβ(d) has order type ≥ λs

where Sd
p := {i1 < αβ(d): for some j1 ∈ (j, β) we

have i ≤ i1 < αj1(d) and for some c ∈ Ji1,j1 the type
tps(c,Mi1,j1 ,Mi1+1,j1) is a non-forking extension of p}.
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3A) We say that the us-free triangle is strongly full when:

(a) as in part (3)

(b) if i < αj(d) and j < β(d) and p ∈ S bs
s (Md

i,j) then for
λ ordinals i1 ∈ [i, i + λ) for some j1 ∈ [j2, β) the type
tps(b

d
i1,j1

,Md
i1,j1

Md
i1+1,j1

) is a non-forking extension of p and

i1 < αj1(d), of course.

3B) We say a us-free rectangle d is full [strongly full] when both d
and its dual are full [strongly full] us-free triangles.

5.16 Observation. 1) If M̄ = 〈Mα : α ≤ δ〉 is ≤s-increasing contin-
uous, δ a limit ordinal and δ = sup{α < δ : Mα+1 or just Mβ for
some β ∈ (α, δ), is ≤s-universal over Mα} then δ ∈ correct(M̄).
2) If cf(δℓ) = κ and M̄ ℓ = 〈M ℓ

α : α ≤ δℓ〉 is ≤s-increasing continuous
and hℓ : κ → δℓ is increasing with δℓ = sup(Rang(hℓ)) for ℓ = 0, 1
and ε < κ ⇒ M1

h1(ε)
= M2

h2(ε)
then M̄1 is δ1-correct iff M̄2 is δ2-

correct.
3) Instead of the h1, h2 is part (2) it suffices that (∀α < δℓ)(∃β <

δ3−ℓ)(M
ℓ
α ≤s M

3−ℓ
β ) for ℓ = 1, 2. Also instead of “δℓ-correct” we can

use (Γ, δℓ)-correct.
4) If M̄ = 〈Mα : α ≤ δ〉 is ≤s-increasing continuous and ΓM̄ = {p ∈
S bs

s (Mδ) : p does not fork over Mα for some α < δ} then M̄ is
δ-correct iff M̄ is (δ,Γ)-correct.

Proof. 1) By Ax(E)(c)− and the definition of correct(M̄).
2),3),4) Read the definitions. �5.16

5.17 Observation. Assume dver is a us-free (α, 0)-rectangle, dhor is

a us-free (0, β)-rectangle and Mdver

0,0 = Mdhor
0,0 . Then there is a pair

(d, f) such that:

(a) d is a strictly brimmed u-free (α, β)-rectangle

(b) d ↾ (0, β) = dhor
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(c) f is an isomorphism from dver onto d ↾ (α, 0) over Md
0,0

(d) if α is divisible by λ and Sver = {α′ < α : Jdver

α′ = ∅} is
an unbounded subset of α of order-type divisible by λ (so
in particular α is a limit ordinal) then we can add d as a
triangle is full; we can add strongly full if α′ < α ⇒ λ =
|Sver ∩ [α′, α′ + λ]|

(e) if Shor := {β′ < β : Ihor
β = 0} is an unbounded subset of β

of order-type divisible by λ then we can add “dual(d) as a
triangle is full”; and we can add strongly full if β′ < β ⇒
λ = |Shor ∩ [β′, β′ + λ]|.

Proof. Easy. �5.17

5.18 Exercise: Show the obvious implication concerning the notions
from Definition 5.15. Let d be a u-free (ᾱ, β)-triangle and e be a
u-free (α, β)-rectangle.
1) d strictly brimmed implies d is brimmed which implies d is weakly
brimmed.
2) Like (1) replacing brimmed by universal.
3) If d is strictly brimmed/brimmed/weakly brimmed then d is
strictly universal/universal/weakly universal.
4) If d is strongly full then d is full.
5) Similarly for the rectangle e.
6) If e is strictly brimmed/brimmed/weakly brimmed then so is
dual(e).
7) If e is strictly universal/universal/weakly universal then so is
dual(e).

5.19 The Correctness Claim. 1) Assume δ < λ+ is a limit or-
dinal, M̄ ℓ = 〈M ℓ

α : α ≤ δ〉 is ≤s-increasing continuous sequence for
ℓ = 1, 2 and α < δ ⇒M1

α ≤s M
2
α and M1

δ = M2
δ . If M̄1 is δ-correct

then M̄2 is δ-correct.
2) Mδ is (λ, cf(δ))-brimmed over M0; moreover over Mi for any i < δ
when:

(a) δ is a limit ordinal divisible by λ (the divisibility follows by
clause (d))
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(b) M̄ = 〈Mα : α ≤ δ〉 is ≤s-increasing continuous

(c) M̄ is (δ,Γ)-correct, so Γ ⊆ {p ∈ S bs
s (Mδ) : p does not fork

over Mα for some α < δ}, if Γ is equal this means δ ∈
correct(M̄), recalling Definition 5.14(1),(6)

(d) if α < δ and p ∈ {q ↾ Mα : q ∈ Γ} ⊆ S bs
s (Mα) then:

for ≥ λ ordinals β ∈ (α, δ) there is c ∈ Mβ+1 such that
tps(c,Mβ,Mβ+1) is a non-forking extension of p.

2A) Mδ is (λ, cf(δ))-brimmed over M0 when clauses (a),(b) of part
(2) holds and δ = sup(S) where S = {δ′ : δ′ < δ and M̄ ↾ (δ′ + 1)
satisfies clauses (a)-(d) from part (2)}.
3) Assume d is a us-free (ᾱ, β)-triangle, β is a limit ordinal, ᾱ is
continuous (or just αβ = αβ(d) = ∪{αj+1 : j < β}) and ᾱ ↾ β is not
eventually constant,

(a) if d is brimmed or just weakly universal then 〈Md
α,β : α ≤

αβ〉 is αβ-correct; moreover is correct for (αβ,Γd) recalling
Γd = {p ∈ S bs

s (Md
αβ,β) : p does not fork over Md

i,j for some

j < β, i < αj}

(b) if d is weakly universal and full then Mαβ ,β is brimmed over
Mi,β for every i < αβ.

3A) Assume d is an us-free (α, β)-rectangle

(a) if d is brimmed or just weakly universal (see Definition
5.15(2A)) and cf(α) = cf(β) ≥ ℵ0 then 〈Md

i,β : i ≤ α〉 is

α-correct and even (α,Γd)-correct

(b) if in clause (a), d is full then Md
α,β is (λ, cf(α))-brimmed over

Mi,β for i < α

(c) if d is strictly brimmed (or just strictly universal, see Defini-
tion 5.15(2)) and strongly full, (see Definition 5.15(3A),(3B))
and λ2ω divides α (but no requirement on the cofinalities)
then Md

α,β is (λ, cf(α))-brimmed over Md
i,β for every i < α.

4) For M ∈ Ks there is N ∈ Ks which is brimmed over M and
is unique up to isomorphism over M (so in other words, if Mℓ is
(λ, κℓ)-brimmed over M for ℓ = 1, 2 then N1, N2 are isomorphic
over M).
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Proof. 1) Assume M2
δ <s N , hence M1

δ <s N so as δ ∈ correct(M̄1)
necessarily for some pair (p, α) we have: α < δ and p ∈ S bs

s (M1
δ ) is

realized in N and does not fork over M1
α. As M1

α ≤s M
2
α ≤s M

2
δ =

M1
δ and montonicity of non-forking it follows that “p ∈ S bs

s (M2
δ )

does not fork over M2
α”, and, of course, p is realized in N . So (p, α)

are as required in the definition of “δ ∈ correct(M̄2)”.
2) Similar to II§4 but we give a full self-contained proof. The “more-
over” can be proved by renaming.

Let 〈Uα : α < δ〉 be an increasing continuous sequence of sub-
sets of λ such that |U0| = λ, |Uα+1\Uα| = λ. We choose a triple
(āα, Nα, fα) by induction on α ≤ δ such that:

⊕ (a) Nα ∈ Ks and N0 = M0

(b) fα is a ≤s-embedding of Mα into Nα

(c) 〈Nβ : β ≤ α〉 is ≤s-increasing continuous

(d) 〈fβ : β ≤ α〉 is ⊆-increasing continuous and f0 = idM0

(e) āα = 〈ai : i ∈ Uα〉, so β < α⇒ āβ = āα ↾ Uβ

(f) āα lists the elements of Nα each appearing λ times

(g) if α = β + 1 then Nα is ≤s-universal over Nβ

(h) if α = β + 1 and Wβ := {i ∈ Uβ: for some c ∈ Mα+1\Mα

we have fβ(tps(c,Mβ,Mα)) = tps(ai, fβ(Mβ), Nβ)} is not
empty and iβ := min(Wβ) then aiβ

∈ Rang(fα).

There is no problem to carry the definition; and by clauses (c),(g) of
⊕ obviously

⊙ Nδ is (λ, cf(δ))-brimmed over N0 (hence over f0(M0)).

Also by renaming without loss of generality fα = idMα
for α ≤ δ

hence Mδ ≤s Nδ.
Now if Mδ = Nδ then by ⊙ we are done. Otherwise by clause (c)

of the assumption M̄ is (δ,Γ)-correct hence by Definition 5.14(1),
for some c ∈ Nδ\fδ(Mδ) and α0 < δ the type tps(c,Mδ, Nδ) belongs
to Γ ⊆ S bs

s (Mδ) and does not fork over Mα0
. As 〈Nβ : β ≤ δ〉 is

≤s-increasing continuous, for some α1 < δ we have c ∈ Nα1
, hence

for some i∗ ∈ Uα1
we have c = ai∗ . So α2 := max{α0, α1} < δ

and by clause (d) of the assumption the set W := {α < δ : α ≥
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α2 and for some c′ ∈ Mα+1 the type tps(c
′,Mα,Mα+1) is a non-

forking extension of tps(c,Mα0
, Nδ)} has at least λ members and is

⊆ [α2, δ) and by the monotonicity and uniqueness properties of non-
forking we have W = {α < δ : α ≥ α2 and some c′ ∈ Mα+1 realizes
tps(c,Mα, Nδ) in Mα+1}. Now for every α ∈ W ⊆ [α2, δ) the set
Wα defined in clause (h) of ⊕ above is not empty, in fact, i∗ ∈ Wα

hence β ∈ W ⊆ [α2, δ) ⇒ iβ = min(Wβ) ≤ i∗ but |W | = λ, so by
cardinality consideration for some β1 < β2 from W we have iβ1

= iβ2

but aiβ1
∈ Rang(fβ1+1) ⊆ Rang(fβ2

) whereas aiβ2
/∈ Rang(fβ2

),
contradiction.
2A) If α < β ∈ S then by part (2) applied to the sequence 〈Mα+γ :
γ ≤ β−α〉, the model Mβ is (λ, cf(β))-brimmed over Mα hence Mβ is
≤s-universal over Mα by 5.8(1)(c). Choose an increasing continuous
sequence 〈αε : ε < cf(δ)〉 with limit δ such that ε < cf(δ) ⇒ αε+1 ∈
S and α0 = 0, so clearly 〈Mαε

: ε < cf(δ)〉 exemplifies that Mδ is
(λ, cf(δ))-brimmed over M0.
3) Clause (a):

Note that necessarily cf(αβ) = cf(β) as ᾱ = 〈αj : j ≤ β〉 is
non-decreasing and ᾱ ↾ β is not eventually constant.

Let 〈βε : ε < cf(αβ)〉, 〈γε : ε < cf(αβ)〉 be increasing continuous
sequences of ordinals with limit β, αβ respectively such that γε ≤ αβε

for every ε < cf(αβ).
We now choose a pair (iε, jε) by induction on ε < cf(αβ) such

that:

⊙ (a) jε < β is increasing continuous with ε

(b) iε ≤ αjε
is increasing continuous with ε

(c) if ε = ζ + 1 then Md
iε,jε

is ≤s-universal over Md
iζ,jζ

(d) if ε = ζ + 1 then iε > γε, jε > βε.

There is no problem to carry the definition as d is weakly universal,
see Definition 5.15(2A) and ᾱ not eventually constant. Now the
sequence 〈iε : ε < cf(αβ)〉 is increasing with limit αβ (by clause
⊙(d)), and 〈jε : ε < β〉 is an increasing continuous sequence and has
limit β (as 〈αj : j < β〉 is not eventually constant), hence

(∗) 〈Md
iε,jε

: ε < cf(β)〉 is ≤s-increasing continuous with union

Md
αβ,β .
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Let (icf(β), jcf(β)) := (αβ, β).

So by ⊙(c) + (∗) it follows that 〈Md
iε,jε

: ε ≤ cf(β)〉 satisfies the
assumptions of claim 5.16(1), hence its conclusion, i.e. the sequence
(〈Md

iε,jε
: ε ≤ cf(β)〉 is cf(β)-correct.

We shall apply part (1) of the present claim 5.19. Now the pair
(〈Md

iε,jε
: ε ≤ cf(β)〉, 〈Md

iε,β : ε ≤ cf(β)〉) satisfies its assumptions

hence its conclusion holds and it says that 〈Md
iε,β : ε ≤ cf(β)〉 is

cf(β)-correct. As 〈iε : ε ≤ cf(β)〉 is increasing continuous with
last element iε = αβ and also 〈Md

i,β : i ≤ αβ〉 is ≤s-increasing

continuous also 〈Md
i,β : i ≤ αβ〉 is αβ-correct, by Observation 5.16(2),

as required.

Clause (b):
We shall apply part (2) of the present claim on the sequence

〈Md
i,β : i ≤ αβ〉 and Γ = Γd := {p ∈ S bs

s (Md
αβ,β) : p does not

fork over Md
i,j for some i < αj , j < β}. By the definition of an s-free

triangle it is ≤s-increasing continuous hence clause (b) of part (2) is
satisfied. As d is full by clause (a) of Definition 5.15(3) the ordinal
αβ = αβ(d) is divisible by λ, i.e. clause (a) of part (2) holds. Clause
(c) of the assumption of part (2) is satisfied because we have proved
clause (a) here.

As for clause (d) of part (2) let i1 < αβ and p1 ∈ S bs
s (Md

i1,β)

be given; let p2 ∈ Γd = S bs
s (Md

αβ,β) be a non-forking extension of

p1. By the definition of Γd, see part (2) we can find j2 < β and
i2 ≤ αj2 such that p2 does not fork over Md

i2,j2
. By monotonicity,

without loss of generality i2 ≥ i1 and i2 < αj2 . As d is full (see
clause (b) of Definition 5.15(3)) we can find S ⊆ [i2, αβ) of order
type ≥ λs such that for each i ∈ S an ordinal j∗(i) < β satisfy-
ing j∗(i) > j2 and an element c ∈ Jd

i,j∗(i) such that i < αj∗(i) and

tps(c,M
d
i,j∗(i),M

d
i+1,j∗(i)) is a non-forking extension of p2 ↾ Md

i2,j2
.

So by the definition of us we have Jd
i,j∗(i) = {c} and so by the defi-

nition of “d is a us-free triangle” we have (Md
i,j∗(i),M

d
i+1,j∗(i), c) ≤

1
u

(Md
i,β,M

d
i+1,β, c). Hence (Md

i,β,M
d
i+1,β, c) realizes a non-forking ex-

tension of p2 ↾ Mi2,j2 , hence, by the uniqueness of non-forking exten-
sions the element c realizes p2 ↾ Md

i,β . So S is as required in clause

(d) of the assumption of part (2).
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So all the assumptions of part (2) applied to the sequence 〈Md
α,β :

α ≤ αβ〉 and the set Γd are satisfied hence its conclusion which says
that Md

αβ ,β is (λ, cf(αβ))-brimmed over Mi,β for every i < αβ . So

we are done proving clause (b) hence part (3).
3A) We prove each clause.

Clause (a):

So θ := cf(α) = cf(β). Let 〈αε : ε < θ〉 be an increasing sequence
of ordinals with limit α and 〈βε : ε < θ〉 be an increasing sequence of
ordinals with limit β. Now for each ε < θ we can find i ∈ (αε, α) and
j ∈ (βε, β) such that Md

i,j is ≤s-universal over Md
αε,βε

; this holds as

we are assuming d is weakly universal, see Definition 5.15(2A).

By monotonicity without loss of generality i ∈ {αζ : ζ ∈ (ε, θ)}
and j ∈ {βζ : ζ ∈ (ε, θ)}. So without loss of generality Md

αε+1,βε+1
is

≤s-universal over Md
αε,βε

for ε < θ. Let αθ := α, βθ = β.

Hence by Observation 5.16(1) we have θ ∈ correct(〈Md
αε,βε

: ε ≤

θ〉) which means θ ∈ correctΓd
(〈Md

αε,βε
: ε ≤ θ〉), see 5.16(4). So by

part (1) also θ ∈ correctΓd
(〈Md

αε,β : ε ≤ θ〉), hence by Observation

5.16(2) also α ∈ correctΓd
(〈Md

i,β : i ≤ α〉), as required.

Clause (b):

We can apply part (2) of the present claim to the sequence 〈Md
i,β :

i ≤ α〉. This is similar to the proof of clause (b) of part (3), alter-
natively letting α′

j = sup{αε : ε < θ and βε ≤ j} for j < β and
ᾱ′ = 〈α′

j : j ≤ β〉 use part (3) for the u-free triangle d ↾ (ᾱ, β), i.e.

M̄d = 〈Mi,j : j ≤ β and i ≤ α′
j〉, etc.; this applies to clause (a), too.

Clause (c):

Note that “cf(α) = cf(β)” is not assumed.

We use part (2A) of the present claim, but we elaborate. Let
S := {α′ < α : α′ is divisible by λ and has cofinality cf(β)}.

Now S is a subset of α, unbounded (as for every i < α we have
i + λ(cf(β)) ∈ S ∪ {α} and i + λ(cf(β)) ≤ i + λ2 < i + λ2ω ≤ α),
hence it is enough to show that i1 < i2 ∈ S ⇒ Md

i2,β is brimmed

over Md
i1,β .
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Now this follows by clause (b) of part (3A) which we have just
proved applied to d′ = d ↾ (i2, β), it is a u-free (i2, β)-rectangle, it is
strongly full hence full and cf(i2) = cf(β) ≥ ℵ0. So the assumptions
of part (2A) holds hence its conclusion so we are done.
4) Let κ1, κ2 be regular ≤ λ and choose αℓ = λ2 × κℓ, for ℓ = 1, 2.

Let M ∈ Ks and define a u-free (α1, 0)-rectangle by M
dver

0

(i,0) = M for

i ≤ α1 and J
dver

0

(i,0) = ∅ for i < α1.

Define a u-free (0, α2)-rectangle dhor by Mdhor

(0,j) = M for j ≤ α2

and Id(0,j) = ∅ for j < α2. By Observation 5.17 there is a strongly

full strictly brimmed u-free (α1, α2)-rectangle d such that its dual
is strongly full too (and automatically strictly brimmed recalling
5.18(6)).

We can apply clause (c) of part (3A) with (d, α1, α2) here standing
for (d, α, β) there; so we can conclude in particular that Mα1,α2

is
(λ, cf(α1))-brimmed over Md

0,α2
hence over M0,0 = M . But us is

self-dual so dual(d) is a us-free (α2, α1)-rectangle, and by the choice
of d (recalling 5.17(d)) it is still strongly full and, e.g. by 5.18(7) is

universal. So applying clause (c) of part (3A) we get that M
dual(d)
α2,α1

is (λ, cf(α2))-brimmed over M
dual(d)
0,α1

hence over M
dual(d)
0,0 = Md

0,0 =

M . However M
dual(d)
α2,α1 = Md

α1,α2
so this model ≤s-extend M and is

(λ, cf(αℓ))-brimmed over it for ℓ = 1, 2; this means (λ, κℓ)-brimmed
over M . So as for each regular κ ≤ λ, the “(λ, κ)-brimmed model
over M for some regular κ ≤ λ” is unique up to isomorphism over
M we conclude that the brimmed model over M is unique, so we are
done.

�5.19

5.20 Claim. If M1 ≤s M2 are brimmed and pi ∈ S bs
s (M2) does

not fork over M1 for i < i∗ < λs then for some isomorphism π from
M2 onto M1 we have i < i∗ ⇒ π(pi) = pi ↾ M1.

Proof. Easy, by 5.19(4) and 5.8(3), i.e. as in III.1.21. �5.20

∗ ∗ ∗
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Another way to deal with disjointness is through reduced triples
(earlier we have used 1.10, 1.11, 4.25 (with some repetitions).

5.21 Definition. 1) K3,rd
s is the class of triples (M,N, a) ∈ K3,bs

s

which are reduced24 which means: if (M,N, a) ≤bs (M1, N1, a) ∈

K3,bs
s then N ∩M1 = M .

2) We say that s has existence for K3,rd
s when for every M ∈ Ks and

p ∈ S bs
s (M) there is a pair (N, a) such that the triple (M,N, a) ∈

K3,rd
s realizes p, i.e. p = tps(a,M,N).

3) Let ξrds be the minimal ξ from Claim 5.22(4) below for M ∈ K3,bs
s

which is superlimit.
3A) For M ∈ Ks, let ξrds,M = ξrdM be the minimal ξ < λ+

s in 5.22(4)

below for M when it exists, ∞ otherwise (well defined, i.e. <∞ if s

has existence for K3,rd
s ).

5.22 Claim. 1) For every (M,N, a) ∈ K3,bs
s there is (M1, N1, a) ∈

K3,rd
s such that (M,N, a) ≤bs (M1, N1, a) and morever M1, N1 are

brimmed over M,N respectively.

2) K3,rd
s is closed under increasing unions of length < λ+, i.e. if

δ < λ+ is a limit ordinal and (Mα, Nα, a) ∈ K3,rd
s is ≤bs

s -increasing
with α(< δ) and Mδ := ∪{Mα : α < δ} and Nδ := ∪{Nα : α < δ}

then (Mδ, Nδ, a) ∈ K3,rd
s and α < δ ⇒ (Mα, Nα, a) ≤

bs
s (Mδ, Nδ, a).

3) If Ks is categorical (in λ) then s has existence for K3,rd
s .

4) For every M ∈ Ks and p ∈ S bs
s (M) there are ξ < λ+, a ≤s-

increasing continuous M̄ = 〈Mα : α ≤ ξ〉 and ā = 〈aα : α < ξ〉 such
that M0 = M,Mξ is brimmed over M0 and each (Mα,Mα+1, aα) is

a reduced member of K3,bs
s and a0 realizes p in M1, provided that25

s is categorical or M is brimmed (equivalently superlimit) or s has

existence for K3,rd
s .

5) If (M1, N1, a) ∈ K3,rd
s and (M1, N1, a) ≤bs (M2, N2, a) then M2 ∩

N1 = M1.

24This is different from our choice in Definition VI.1.11(2), but here this is

for a given almost good λ-frame, there it is for a λ-a.e.c. K.
25Why not ξ ≤ λ? The bookkeeping is O.K. but then we have to use Ax(E)(c)

in the end, but see Exercise 5.26.
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Proof. 1),2),3) Easy, or see details in [Sh:F841].
4) As in the proof of 7.10(2B) using Fodor lemma; for the “M
brimmed” case, use the moreover from part (1).
5) By the definitions. �5.22

5.23 Conclusion. (Disjoint amalgamation) Assume Ks is categorical

or just has existence for K3,rd
s recalling 5.22(3). If (M,Nℓ, aℓ) ∈

K3,bs
s for ℓ = 1, 2 and N1 ∩N2 = M then there is N3 ∈ Ks such that

(M,Nℓ, a3) ≤bs (N3−ℓ, N3, aℓ) for ℓ = 1, 2.
Hence s has disjointness, see definition 5.5.

Proof. Straight by 5.22(4) similarly to Observation 5.17 using 5.22(5),
of course. �5.23

5.24 Question: Is 5.23 true without categoricity (and without assum-

ing existence for K3,rd
s )?

5.25 Remark. So we can redefine u such that the amalgamation
is disjoint by restricting ourselves to s[M ],M ∈ Ks superlimit or

assuming s has existence for K3,rd
s .

We can work with u which includes disjointness so this enters the
definition of K3,up

s defined in 6.4, so this is a somewhat different
property or, as we prefer, we ignore this using =τ as in §1.

5.26 Exercise: If M is superlimit and (M,N, a) ∈ K3,bs
s then for

some ≤s-increasing continuous sequence M̄ = 〈Mα : α < λ〉 and
ā = 〈aα : α < λ〉,d we have M = M0 ≤s N ≤s Mλ and each

(Mα,Mα+1, aα) ∈ K3,bs
s is reduced and a = a0 and Mλ is brimmed

over M0.

[Hint: Let Ū = 〈Uα : α ≤ λ〉 be an increasing continuous sequence
of subsets of λ such that |U0| = λ = |Uα+1\U0| and min(Uα) ≥ α
for α < λ and Uλ = λ.

Let αi = i for i ≤ λ and ᾱi = 〈αj : j ≤ i〉. We choose pairs
(dβ, p̄

β) by induction on β ≤ λ such that
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⊛ (a) dβ is a u-free (ᾱβ, β)-triangle

(b) M
dβ

i+1,j+1 is ≤s-universal over M
dβ

i+1,j ∪M
dβ

i,j+1 when j < β

and i < αj and M
dβ

0,j+1 is ≤s-universal over M
dβ

0,j when j < β

(c) p̄β = 〈pi : i ∈ Uα〉 list ∪{S bs
s (M

dβ

i,j ) : j ≤ β, i ≤ αj} each
appearing λ times

(d) if β = 2α + 1, α ∈ Uε then J
dβ

2α,β 6= ∅ and letting a be the

unique member of J
dβ

2α,β, the type tps(a,M
dβ

2α,β,M
dβ

p,β) is a
non-forking extension of pα

(e) if β = 2α+ 2 and α ∈ Uε then there is (M ′
β, N

′
β,Jβ) ∈ K3,rd

s

such that (M
dβ

ε,2α+1,M
dβ

ε+1,2α+1,J
dβ

ε,2α+1) ≤
bs
s (M ′

β, N
′
β ,Jβ) ≤bs

s

(M
dβ

ε,β,M
dβ

ε+1,β,J
dβ

ε,β)]

(f) Md0
0,0 = M and (Md1

0,1,M
d1
1,1,J

d1
0,1) = (M,N, {a}).

Now 〈Mdλ

i,λ : i ≤ λ〉 is as required except “M = M0,λ ≤s N ≤s

Mλ,λ”. But (M,N, {a}) = (Md1
0,1,M

d1
1,1, {a}) ≤1

u (Mdλ

0,λ,M
dλ

1,λ,J
dλ

0,λ),

that is (M,N, a) ≤bs (Mdλ

0,λ, a) and both M and Mdλ

0,λ are brimmed

equivalently superlimit, hence by 5.8(3) there is an isomorphism π

fromM ontoM ontoMdλ

0,λ mapping tp(a,M,N) to tp(a,Mdλ

0,λ,M
dλ

1,λ).

Recalling Mdλ

λ,λis brimmed over Mdλ

0,λ we can extend π to a ≤s-

embedding π+ of N into Mdλ

λ,λ mapping a to itself, so renaming we

are done.]

§6 Density of weak version of uniqueness

We would like to return to “density of K3,uq
s ”, where s is a good λ-

frame or just almost good λ-frames, i.e. to eliminate the (weak) extra
set theoretic assumption in the non-structure results from failure of
density of K3,uq

s . But we start with a notion K3,up
s , weaker then

K3,uq
s related to weak non-forking relations defined later in Definition

7.18. Defining weak non-forking we shall waive uniqueness, but still
can “lift us-free (α, 0)-rectangles”. We now look for a dichotomy -
either a non-structure results applying the theorems of §2 or actually
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§3, or density of K3,up
s . Using the last possibility in the subsequent

sections §7, §8 we get a similar dichotomy with K3,uq
s .

It turns out here that what we prove is somewhat weaker than
density for K3,up

s in some ways. Mainly we prove it for the K3,up
s,ξ

version for each ξ ≤ λ+. Actually for everyM ∈ Ks and p ∈ S bs
s (M)

what we find is a triple (M1, N1, a) ∈ K3,up
s such that M ≤s M2 and

the type tps(a,M1, N1) is a non-forking extension of p; not a serious
difference when s is categorical which is reasonable for our purposes.
Eventually in this section we have to use Ks with fake equality (to
apply 3.16), this is justified in 6.18.

Discussion: Why do we deal with K3,up
s,ξ for ξ ≤ λ+ rather than

with K3,up
s ? The point is that, e.g. in the weak/semi/vertical uq-

invariant coding property in §3 (see Definitions 3.2, 3.14, 3.10), given

(M̄, J̄, f) ∈ Kqt
u and (Mα(0), N0, I) ∈ FR1

u, for a club of δ < ∂ we
promise the existence of a u-free (α, 0)-rectangle dδ, which is O.K.
for every Nδ such that (Mα(∗), N0, I) ≤1

u (Mδ, Nδ, I). So the failure
gives (not much more than) that for every u-free (α, 0)-rectangle d
and p ∈ S bs

s (Md
α,0) there is a pair (N, I) such that (M,N, I) realizes

p and d is what we call uq-orthogonal to (M,N, I). We like to invert
the quantifiers, i.e. “for p ∈ S bs

s (M) there is (N, I) such that for
every d....”. Of course, we assume categoricity (of Ks, that is in λ),
but we need to use a “universal d”. This is guaranteed by 6.12 for
K3,up

s,ξ for any ξ ≤ λ+ (but we have to work more for ξ = λ+, i.e. for

all ξ < λ+ at once, i.e. for K3,up
s ).

6.1 Hypothesis. 1) As in 5.1 and for transparency s has disjointness.
2) u = us, see Definition 5.10, Claim 5.11, so ∂ = λ+.

6.2 Claim. 1) For almost2 all (M, J̄, f) ∈ Kqt
u the model M∂ belongs

to Ks
λ+ and is saturated (above λ).

2) If s has the fake equality =τ (e.g. s = t′ where t is an almost
good λ-frame and t′ is defined as in 4.25(1), u = u1

s, see 5.10,5.11,
then for some u − 0-appropriate h, if 〈(M̄α, J̄α, fα) : α < ∂+

u 〉 is
≤qt

u -increasing continuous and obeys h, then M = ∪{Mα
j : α < ∂+

u 〉
is =τ -fuller.
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Remark. 1) See Definition 1.22.
2) Compare with 4.30.

Proof. 1) We choose g as in Definition 1.22(2) such that:

(∗)1 if S ⊆ ∂ is a stationary subset of ∂ and the pair ((M̄1, J̄1, f1),
(M̄2, J̄2, f2)) strictly S-obeys g then:
⊙ for some club E of ∂ for every δ ∈ S ∩E, we have

(a) if i < f1(δ) then M2
δ+i+1 is ≤s-universal over M1

δ+i+1 ∪

M2
δ+i

(b) f2(δ) is > f1(δ) and is divisible by λ2

(c) if i ∈ [f1(δ), f2(δ)) then

(α) M2
δ+i+1 is ≤s-universal over M2

δ+i

(β) if p ∈ S bs
s (M2

δ+i),
then for λ ordinals i1 ∈ [i, i+ λ)
the type tps(aJ2

δ+i
,M2

δ+i,M
2
δ+i+1)

is a non-forking extension of p, where
where bJ2

δ+i
is the unique member of J2

δ+i.

We can find such g. Now

(∗)2 assume 〈(M̄α, J̄α, fα) : α ≤ δ〉 is ≤qt
u -increasing continuous

(see Definition 1.15(4A)) and obey g (i.e. for some26 sta-
tionary S ⊆ ∂ for unboundedly many α < δ). Then M δ

∂ is
saturated above λ.

[Why? Let κ = cf(δ), of course ℵ0 ≤ κ ≤ λ+.
We can find an increasing continuous sequence 〈αε : ε < cf(δ) =

κ〉 of ordinals with limit δ such that:

(∗)3 if ε = ζ + 1 < κ and ε is an even ordinal then αε+1 =
αε + 1 and letting αcf(δ) = δ the pair 〈(M̄αε , J̄αε , fαε),

(M̄αε+1 , J̄αε+1 , fαε+1)〉 does S-obey g.

26we can use a decreasing sequence of S’s but then we really use the last one

only, the point is that g treat each δ ∈ S in the same way (rather than dividing
it according to tasks, a reasonable approach, but not needed here
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Now clearly

(∗)4 for every ε < λ+ satisfying ε ≤ κ for some club E = Eε of
λ+, for every δ ∈ S ∩E we have:

(a) 〈fαζ (δ) : ζ ≤ ε〉 is non-decreasing and is continuous

(b) dδ is a u-free (ᾱδ, β)-triangle where ᾱδ = 〈fαζ (δ) : ζ ≤

ε〉, β = ε such that Mdδ

i,ζ = M
αζ

δ+i for ζ ≤ ε, i ≤ fαζ (δ)

and Jdδ

i,ζ = J
αζ

δ+i for ζ ≤ ε, i < fαζ (δ) and Idδ

i,ζ = ∅ for

ζ < ε, i ≤ fαζ (δ).

Sorting out the definition by 5.14(3A)(a) and the correctness claim
5.19(3)(b), clearly:

(∗) for a club of γ < ∂, if γ ∈ S then Mακ

γ+fακ (γ) is brimmed over

Mακ
γ (and even Mακ

γ+i for i < fακ(γ))

which means that M δ
γ+fδ(γ)

is brimmed over M δ
γ .

This is clearly enough.
2) Should be clear. �6.2

6.3 Conclusion. For any (M̄, J̄, f) ∈ Kqt
u and for stationary S ⊆ ∂

there is u − 2-appropriate g with Sg = S (see 1.22 and 1.23) such
that:

⊛ if 〈(M̄α, J̄α, fα) : α ≤ ∂〉 is ≤qs
u -increasing continuous and

2-obeys g such that (M̄0, J̄0, f0) = (M̄, J̄, f) (so f∂(δ) =
sup{fα(δ) : α < δ} for a club of δ < ∂) then for a club
of δ < ∂ the model M∂

δ = ∪{Mα
δ : α < δ} ∈ Ks is brimmed

over Mδ = M0
δ .

Proof. Similar to the proof of 6.2; only the u-free triangle is flipped,
i.e. it is a dual(u)-free triangle but dual(u) = u. �6.3
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6.4 Definition. Let 1 ≤ ξ ≤ λ+, if we omit it we mean ξ = λ+.

1) K3,up
s,ξ is the class of (M,N, a) ∈ K3,bs

s which has up-ξ-uniqueness,
which means:

⊛ if (M,N, a) ≤1
u (M ′, N ′, a) and d is a u-free (α, 0)-rectangle

with α ≤ ξ, α < λ+ satisfying (Md
0,0,M

d
α,0) = (M,M ′) then

d can be lifted for ((M,N, a), N ′) which means:

⊡ we can find a u-free (α+ 1, 1)-rectangle d∗ and f such
that d∗ ↾ (α, 0) = d, f(N) ≤s Md∗

0,1, f(a) = ad
∗

0,0, i.e.

Id
∗

0,0 = {f(a)} and f is a ≤s-embedding of N ′ into

Md∗

α+1,1 over M ′ hence also f ↾ M = idM .

2) We say that K3,up
s,ξ is dense (in K3,bs

s ) or s has density for K3,up
s,ξ

when for every (M0, N0, a) ∈ K3,bs
s there is (M1, N1, a) ∈ K3,up

s,ξ such

that (M0, N0, a) ≤bs (M1, N1, a).

3) We say that s has (or satisfies) existence for K3,up
s,ξ or K3,up

s,ξ has

(or satisfies) existence when: if M ∈ Ks and p ∈ S bs
s (M) then for

some pair (N, a) we have (M,N, a) ∈ K3,up
s,ξ and p = tps(a,M,N).

3A) We say that s has existence for K3,up
s,<ξ when s has existence for

K3,up
s,ζ for every ζ ∈ [1, ξ); similarly in the cases below.

4) Let K3,up
s,ξ = ∩{K3,up

s,ζ : ζ < ξ}.

5) Let K3,up+rd
s,ξ be defined as K3,up

s,ξ ∩K3,rd
s recalling Definition 5.21,

and we repeat parts (2),(3),(4) for it.

6.5 Observation. 1) K3,up
s,ξ ⊆ K3,up

s,ζ ⊆ K3,rd
s recalling Definition 5.21

when 1 ≤ ζ ≤ ξ ≤ λ+.
2) ξ = λ+ ⇒ K3,up

s,ξ = ∩{K3,up
s,ζ : ζ ∈ [1, ξ)}.

3) The triple (M,N, a) ∈ K3,bs
s does not belong to K3,up

s,ξ iff we can
find d1,d2 such that for ℓ = 1, 2

� (a) dℓ is a u-free (αℓ, 1)-rectangle and αℓ < min{ξ+1, λ+
s }

(b) (Mdℓ

0,0,M
dℓ

0,1, I
dℓ

0,0) = (M,N, {a})

(c) Md1
α1,0 = Md2

α2,0 and Md1
0,0 = M = Md2

0,0
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(d) there is no triple (d, f) such that

(α) d is a u-free (αd, βd)-rectangle

(β) d ↾ (α1, 1) = d1 so βd ≥ 1, αd ≥ α1

(γ) f is a ≤s-embedding of Md2
α2,1 into Md

αd,βd
over

Md
α1,0 = Md1

α(d1),0
mapping Md2

0,1 into Md
0,β(d)

and ad2
0,0 to itself.

Proof. 0) By the definition; as for a u-free (α, β)-rectangle or (ᾱ, β)-
triangle d we have: if i = min{i1, i2}, j = min{j1, j2} and Md

i1,j1
,

Md
i2,j2

are well defined then Md
i,j = Md

i1,j1
∩Md

i2,j2
.

1) By the definition (no need of categoricity).
2) By 5.8(3).
3) Straight, recalling that u satisfies monotonicity, (E)(e), see 1.13
but we elaborate.

The Direction ⇒:

So (M,N, a) belongs to K3,bs
s but not to K3,up

s,ξ . So by Definition

6.4(1) there is (M ′, N ′,d) exemplifying the failure of ⊛ from 6.4(1),
which means

⊙ (a) (M,N, a) ≤1
u (M ′, N ′, a), i.e. see Definition 5.10, i.e. 4.29, i.e.

M = N ∩M ′ and (M,N, a) ≤bs (M ′, N ′, a)

(b) d is a u-free (α, 0)-rectangle with α ≤ ξ, α < λ+

(c) (Md
0,0,M

d
α,0) = (M,M ′)

(d) d cannot be lifted for (M,N, a,N ′), i.e. there is no pair
(d∗, f) such that

(α) d∗ is a u-free (α+ 1, 1)-rectangle

(β) d∗ ↾ (α, 0) = d

(γ) f is a ≤s-embedding of N ′ into Md∗

α+1,1 over M ′ = Md
α,0

(δ) f(N) ≤s M
d∗

0,1 and f(a) = ad
∗

0,0.
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We define d2 by

⊙2 d2 is the u-free (1, 1)-rectangle if

(a) (Md2
0,0,M

d2
1,0,J

d2
0,0) = (M,M ′, ∅)

(b) (Md2
0,0,M

d2
1,0, I

d2
0,0) = (M,N, {a})

(c) Md2
1,1 = N,Jd2

0,1 = ∅, Id2
1,0 = {a}.

We choose d1 such that

⊙2 (a) d2 is a u-free (α, 1)-rectangle

(b) d2 ↾ (α, 0) = d∗

(c) (Md2
0,0,M

d2
0,1, I

d2
0,0) = (M,N, {a}).

The Direction ⇐:

Choose d = d1 and use Exercise 1.13. �6.5

6.6 Definition. We say (M,N, a) is a up-orthogonal to d when:

⊛ (a) (M,N, a) ∈ K3,bs
s

(b) d is a u-free (αd, 0)-rectangle

(c) Md
0,0 = M

(d) Case 1: N ∩Md
α(d),0 = M .

If N1 satisfies (M,N, a) ≤1
u (Md

α(d),0, N1, a), so N1 does ≤s-

extends Md
α(d),0 and N ,

then the rectangle d can be lifted for ((M,N, a), N1);
Case 2: possibly N ∩Md

(α(d),0) 6= M .

We replace (N, a) by (N ′, a′) such that N ′∩Md
α(d),0 = M and

there is an isomorphism from N onto N ′ over M mapping a
to a′.

We now consider a relative of Definition 6.4.
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6.7 Definition. Let ξ ≤ λ+ but ξ ≥ 1, if ξ = λ+ we may omit it.
1) We say that s has almost-existence for K3,up

s,ξ when: if M ∈ Ks

and p ∈ S bs
s (M) we have

⊙M,p if α ≤ ξ and d is a u-free (α, 0)-rectangle withMd
0,0 = M (yes,

we allow α = ξ = λ+) then there is a triple (M,N, a) ∈ K3,bs
s

such that p = tps(a,M,N) and (M,N, a) is up-orthogonal
to d.

2) We say that s has the weak density forK3,up
s,ξ when: ifM ∈ Ks and

p ∈ S bs
s (M) then for some (M1, p1) the demand ⊙M1,p1

in part (1)
holds and M ≤s M1 and p1 ∈ S bs

s (M1) is a non-forking extension
of p.
3) We write “almost-existence/weak density for K3,up

s,<ξ” when this

holds for every ξ′ < ξ.

6.8 Observation. Assume s is categorical (in λs) and ξ ≤ λ+.

1) Then s has weak density for K3,up
s,ξ iff s has almost existence for

K3,up
s,ξ .

2) If s has existence for K3,up
s,ξ then s has almost existence for K3,up

s,ξ .

Proof. 1) The weak density version implies the existence version, i.e.
the first implies the second because if M ≤s M1 and p1 ∈ S bs

s (M1)
does not fork over M then there is an isomorphism f from M1 onto
M mapping p to p ↾ M , see 5.20. The inverse is obvious.
2) Read the definitions. �6.8

6.9 Discussion: Below we fix p∗ ∈ S bs
s (M∗) and look only at sta-

tionarization of p∗. We shall use the failure of almost-existence for
K3,up

s,ξ to get non-structure.

We first present a proof in the case D∂ is not ∂+-saturated (see
6.15) but by a more complicated proof this is not necessary, see

6.14. As it happens, we do not assume 2λ < 2λ+

, but still assume

2λ+

< 2λ++

using the failure of weak density for K3,up
s,<λ+ to get an up-

invariant coding property (avoiding the problem we encounter when
we try to use dδ depending on Nη

δ ).
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So in 6.15 for each α < λ++ = ∂+ we “give” a stationary Sα ⊆ ∂
almost disjoint to Sβ for β < α+.

Well, we have for the time being decided to deal only with up-
uniqueness arguing that it will help to deal with “true” uniqueness.
Also, in the non-structure we use failure of weak density for K3,up

s,ξ ,
whereas for the positive side, in §7, we use existence. The difference
is that for existence we have (N, a) for given (M, p, ξ) whereas for
almost existence we are given (M, p,d). However, we now prove their
equivalence. To get the full theorem 6.14 we use 3.10 - 3.24.

6.10 Claim. Assume s is categorical; if ξ ≤ λ+ and s has almost-
existence for K3,up

s,ξ then s has existence for K3,up
s,ξ .

Proof. This follows from the following two subclaims, 6.11, 6.12.

6.11 Subclaim. If (M,N, a) ∈ K3,bs
s is up-orthogonal to d2, then

it is up-orthogonal to d1 when:

⊛ (a) dℓ is a u-free (αℓ, 0)-rectangle for ℓ = 1, 2 where αℓ ≤
λ+

(b) Md1
0,0 = M = Md2

0,0

(c) h is an increasing function from α1 to α2

(d) f is an ≤s-embedding of Md1
α1,0 into Md2

α2,0

(e) f ↾ Md1
0,0 = idM

(f) if β < α1 then

(α) f(bd1

β,0) = bd2

h(β),0

(β) f maps Md1

β,0 into Md2

h(β),0

(γ) tps(b
d2

h(β),0,M
d2

h(β),0,M
d2

h(β)+1,0) does not fork over

f(Md1

β,0).

Proof. Without loss of generality f is the identity and Md2
α2,0 ∩N =

M .
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So assume N1 ∈ Ks is a ≤s-extension of N and of Md1
α1,0 such

that (M,N, a) ≤bs (Md1
α1,0, N1, a) and we should prove the exis-

tence of a suitable lifting. Without loss of generality N1 ∩Md2
α2,0 =

Md1
α1,0. Hence there is N2 which does ≤s-extend Md2

α2,0 and N1 and

(Md1
α1,0, N1, a) ≤1

u (Md2
α2,0, N2, a); but ≤1

u is a partial order hence

(M,N, a) ≤1
u (Md2

α2,0
, N2, a).

Recall that we are assuming (M,N, a) is up-orthogonal to d2

hence we can find d2, f as in Definition 6.6, i.e. as in ⊙ inside Defini-
tion 6.4(1), so d2 is a u-free (α2 +1, 1)-rectangle, d2 ↾ (α2, 0) = d2, f

is a ≤s-embedding of N2 into Md2
α2+1,1 over Md2

α2,0 mapping N into

Md
0,1 satisfying f(a) = ad

2

0,0, note: Idα,0 = {a} for α ≤ α2 + 1. Now

we define d1, a u-free (α1 + 1, 1)-rectangle by

⊠ (a) d1 ↾ (α1, 0) = d1

(b) Md1

α,1 is Md2

h(α),1 if α ≤ α1 is a non-limit ordinal

and is ∪{Md2

β,1 : β < h(α)} if α ≤ α1 is a limit ordinal

and is Md2

α1+1,1 if α = α1 + 1

(c) Md1

α1+1,0 = Md2

α1,0

(d) Id1
α,0 = Id2

h(α),0 for α ≤ α1

(e) Jd1
α,1 = Jd2

h(α),0 for α < α1

(f) Id
1

α1+1,0 = Id
2

α2+1,0

(g) Jd1

α1,0 = ∅ = Jd1

α1,1.

Now check. �6.11

6.12 Claim. For every α1 ≤ λ+ there is α2 ≤ λ+ (in fact α2 = λα1

is O.K.) such that: for every M ∈ Ks there is a u-free (α2, 0)-

rectangle d2 with Md2
α2,0 = M such that

(∗) if d1 is a u-free (α1, 0)-rectangle with Md1
0,0 = M then there

are h, f as in ⊛ of 6.11.

Proof. Let 〈Ui : i ≤ λ〉 be a ⊆-increasing continuous sequence of
subsets of λ such that Uλ = λ, min(Ui) ≥ i, λ = |U0| and λ =
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|Uα+1\Uα| for α < λ. We now choose (Mi, p̄i, ai) by induction on
i ≤ λα1 such that

⊕ (a) 〈Mi : j ≤ i〉 is ≤s-increasing continuous

(b) M0 = M

(c) if i = j + 1 then Mi is ≤s-universal over Mj

(d) if i = λi1 + i2 and i1 < α1, i2 < λ then
p̄i = 〈pi1

ε : ε ∈ Ui2〉 where pi1
ε ∈ ∪S bs

s (Mλi1+i) : i ≤ i2}

(e) if i = λi1 + i2, i1 < α1, j ≤ i2 < λ and q ∈ S bs
s (Mλi1+i2)

then (∃λζ ∈ Ui2)(p
i
ζ = q)

(f) if i = λi1 + i2, i2 = j2 + 1 < λ, and j2 ∈ Uε then ai−1 ∈ Mi

and the type tps(ai−1,Mi−1,Mi) is a non-forking extension

of pi1
j2

.

Now choose d2 = (〈Mi : i ≤ λα〉, 〈ai : i < λα〉). So assume d1 is

a u-free (α1, 0)-rectangle with Md1
0,0 = M = Md2

0,0. We now choose a

pair (fi, hi) by induction on i ≤ α1 such that: fi is a ≤s-embedding

of Md1
i into Md2

λ,i, hi : i → λi such that h(j) ∈ (λj, λ + λ), fi is ⊆-

increasing, hi is ⊆-increasing, tps(a
d2

h(j),0,M
d2

h(j)+1,0) is a non-forking

extension of fj+1(tps(a
d1
j ,Md1

j ,Md1
j+1)) and check; in fact ⊕ gives

more than necessary. �6.12 �6.10

6.13 Claim. Assume ξ ≤ λ+ and M∗ ∈ Ks and p∗ ∈ S bs
s (M∗)

witness that s fails the weak density for K3,up
s,ξ , see Definition 6.7.

1) If (M,N, {a}) ∈ K3,bs
s and M∗ ≤s M and tps(a,M,N) is a non-

forking extension of p∗ then (M,N, {a}) has the weak ξ-uq-invariant
coding property for u; pedantically assuming s has fake equality see
Definition 4.25, see 6.18, similarly in part (2); on this coding prop-
erty, (see Definition 3.2(1).
2) Moreover the triple (M,N, {a}) ∈ FR1

u has the semi ξ-uq-invariant
coding property, (see Definition 3.14).

Remark. If below 6.15 suffices for us then part (2) of 6.13 is irrelevant.

Proof. 1) Read the definitions, i.e. Definition 6.7(2) on the one hand
and Definition 3.2(1) on the other hand. Pedantically one may worry
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that in 6.7(2) we use ≤bs
s , where disjointness is not required whereas

in ≤ℓ
u it is, however as we allow using fake equality in Ku this is not

problematic.
2) Similar. �6.13

Now we arrive to the main result of the section.

6.14 Theorem. İ(λ++,Ks) ≥ µunif(λ
++, 2λ+

), and even İ(λ++,

Ks(λ+-saturated above λ)) ≥ µunif(λ
++, 2λ+

), and even İ(Ks,h

λ++) ≥

µunif(λ
++, 2λ+

) for any us − {0, 2}-appropriate h when:

(a) 2λ+

< 2λ++

(b) (α) s fail the weak density for K3,up
s,ξ where ξ ≤ λ+ or just

for ξ = λ+

(β) if ξ = λ+ then 2λ < 2λ+

.

Before we prove 6.14 we prove a weaker variant when we strengthen
the set theoretic assumption.

6.15 Theorem. Like 6.14 but we add to the assumption

(c) Dλ+ is not λ++-saturated (see 6.16(1) below).

6.16 Remark. 0) In the section main conclusion, 6.17, if we add
clause (c) of 6.15 to the assumptions then we can rely there on 6.15
instead of on 6.14.
1) Recall that λ > ℵ0 ⇒ Dλ+ is not λ+-saturated by Gitik-Shelah
[GiSh 577], hence this extra set theoretic assumption is quite weak.
2) We use 3.5 in proving 6.15.
3) We can add the version with h to the other such theorems.

Proof of 6.15. We can choose a stationary S ⊆ ∂ = λ+ such that
Dλ+ +(λ+\S) is not λ++-saturated. We shall apply Theorem 3.5 for
the S we just chose for ξ′ which is λ+ 1 if ξ = λ and is ξ if ξ < λ+.

We have to verify 3.5’s assumption (recalling ∂ = λ+): clauses (a)
+ (b) of 3.5 holds by clauses (a) + (c) of the assumption of 6.15 if
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ξ < λ+ and clauses (a) + (b)(β) of the assumptions of 6.15 if ξ = λ+.
Clause (c) of 3.5 holds by 6.2, 6.13(1), whose assumption holds by
clause (b) of the assumption of 6.14. Really we have to use 6.13(1),
1.8(6). �6.14

6.17 Conclusion. Assume 2λ+

< 2λ++

and ξ ≤ λ+ but ξ = λ+ ⇒

2λ < 2λ+

.
1) If İ(λ++, Ks(λ+-saturated)) is < µunif(λ

++, 2λ+

) and Ks is cate-

gorical then s has existence for K3,up
s,ξ for every ξ ≤ λ+.

2) Similarly for İ(Ks,h

λ++) for any us − {0, 2}-appropriate h.

Proof. Let ξ ≤ λ+. We first try to apply Theorem 6.14. Its conclu-
sion fails, but among its assumptions clauses (a) and (b)(β) hold by
our present assumptions. So necessarily the demand in clause (b)(α)

of 6.14 fails. So we have deduced that s has weak density for K3,up
s,ξ .

By Observation 6.8(1), recalling we are assuming that Ks is categor-

ical, it follows that s has almost existence for K3,up
s,ξ . By Claim 6.10

again recalling we are assuming Ks is categorical we can deduce that
s has existence for K3,up

s,ξ .
So we have gotten the desired conclusion. But we still have to

prove Theorem 6.14 in the general case. �6.17

6.18 Claim. Assume t′ is an almost good λ-frame derived from t as
in Definition 4.25 and u′ = u1

t′ is as defined in Definition 5.10, i.e.
Definition 4.29 (and see Claims 4.30, 5.11).

Then

⊠ (a) t′ satisfies all the assumptions on t in 6.1

(b) so all that we have proved on (t, u) in this section apply to
(t′, u′), too

(c) u′ has fake equality =τ (see Definition 3.17(1)

(d) u′ is hereditary for the fake equality =τ (see Definition 3.17(4)).

Proof. Clause (a) holds by Claim 4.26. Clause (b) holds by Claim
4.30, 5.11. Clause (c) holds by direct inspection on 4.29(6)(γ).
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In clause (d), “u′ is hereditary for the fake equality =τ”, i.e. satis-
fies clause (a) of Definition 3.17(3) by Claim 4.30(6)(β), 5.11 applied
to t′.

Lastly, to prove “u′ is hereditary for the fake equality =τ” we
have to show that it satisfies clause (b) of 3.17(4), which holds by
4.30(6)(δ). �6.18

6.19 Proof of 6.14: We shall use Claim 6.18 to derive (s′, u′), so we
can use the results of this section to (s, u) and to (s′, u′). Now by

6.2 for some us′ − 2-appropriate h, every M ∈ Ku′,h

∂+ is τ -fuller, see
Definition 1.8(6), so by 1.8(6) it is enough to prove Theorem 6.14 for
(s′, u′). Now by Claim 6.13(1) and clause (b)(α) of the assumption
we know that some (M,N, {a}) ∈ FR1

u′ has the semi uq-invariant
coding property (for u′). Also u′ has the fake equality =τ and is
hereditary for it by 6.18 and is self dual by 5.11(1).

Hence in Claim 3.20 all the assumptions hold for u′, (M,N, a),
hence its conclusion holds, i.e. (M,N, {a}) has the weak vertical
ξ-uq-invariant coding property. This means that clause (b) from
the assumptions of Theorem 3.24 holds. Clause (a) there means

2λ < 2λ+

< 2λ++

(choosing θ := λ, ∂ = λ+) and clause (c) holds
by 6.2. So we are done. Having shown that the assumptions of
Theorem 3.24 hold, we get its conclusion, which is the conclusion of
the present theorem (reclaling we show that it suffices to prove it for
s′, so we are done. �6.14

§7 Pseudo uniqueness

Our explicit main aim is to help in §8 to show that under the
assumptions of Chapter VI, i.e. [Sh 576] we can get a good λ-frame
not just a good λ+-frame as done in II§3(D),3.7. For this we deal
with almost good frames (see 7.1 and Definition 5.2) and assume

existence for K3,up
s,λ+ (see Definition 6.4(3A) justified by 6.17) and get

enough of the results of II§6 and few from Chapter III. This means
that WNFs is defined in 7.3 and proved to be so called “a weak non-
forking relation on Ks respecting s”; we also look at almost good
λ-frames with such relations and then prove that they are good λ-
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frames in 7.19(2). Those results are used in the proof of 4.32 (and
in §8).

But this has also interest in itself as in general we like to under-
stand pre-λ-frames which are not as good as the ones considered in
Chapter III, i.e. weakly successful good λ-frames. We will try to
comment on this, too. Note that below even if s is a good λ-frame
satisfying Hypothesis 7.1 which is weakly successful (i.e. we have

existence for K3,uq
s , still WNFs defined below is not in general equal

to NFs). We may wonder, is the assumption (3) of 7.1 necessary?
The problem is in 7.14, 7.11.

Till 7.20 we use:

7.1 Hypothesis. 1) s is an almost good λ-frame (see Definition 5.2).

2) s has existence27 for K3,up
s,λ+ , see Definition 6.4(3A) and sufficient

condition in 6.17.
3) s is categorical in λ (used only from 7.14 on).
4) s has disjointness (see Definition 5.5; used only from 7.10 on, just
for transparency, in fact follows from parts (1) + (3) by 5.23).

7.2 Definition. 1) Let u = us be as in Definition 4.29 and 5.10.
2) Let FRs be FRℓ

us

for ℓ = 1, 2 (they are equal).

7.3 Definition. 1) Assume ξ ≤ λ+. Let WNFξ
s(M0, N0,M1, N1)

mean that: M0 ≤s N0 ≤s N1,M0 ≤s M1 ≤s N1 and if α < ξ so
α < λ+ and d is an u-free (0, α)-rectangle and f is a ≤s-embedding
of N0 into Md

0,α such that f(M0) = Md
0,0 then we can find a model

N∗ and a u-free (1, α)-rectangle d+ satisfying d+ ↾ (0, α) = d and

Md+

1,α ≤s N∗ and ≤s-embedding g ⊇ f of N1 into N∗ such that

Md+

1,0 = g(M1).

2) If ξ = λ+ we may omit it. So WNFξ
s is also considered as the

class of such quadruples of models.

27if s is a good λ-frame, then actually K3,up

s,<λ+ is enough, see 6.4(3A); the

main difference is in the proof of 7.14
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7.4 Remark. 0) Definition 7.3(1) is dull for ξ = 0.
1) So this definition is not obviously symmetric but later we shall
prove it is.
2) Similarly, it seemed that the value of ξ is important, but we shall
show that for ξ < λ+ large enough it is not when s is a good λ-frame;
see e.g. 7.6.
3) In Definition 7.3 we may ignore ξ = 0 as it essentially says nothing.

7.5 Observation. 1) If 1 ≤ ξ ≤ λ+ and WNFξ
s(M0, N0,M1, N1)

and (M0, N0, a) ∈ K3,bs
s then (M0, N0, a) ≤bs (M1, N1, a) and in

particular (M1, N1, a) ∈ K3,bs
s .

2) WNFξ
s is ⊆-decreasing with ξ.

3) WNFs = WNFλ+

s = ∩{WNFξ
s : ξ < λ+}.

4) In Definition 7.3(1) in the end we can weaken “Md+

1,0 = g(M1)” to

“g(M1) ≤s M
d+

1,0 ”.

Proof. 1) Straight, use d, the u-free (0, 1)-rectangle such that Md
0,0 =

M0 and Md
0,1 = M and ad0,0 = a, i.e. Id0,0 = {a}.

2),3) Trivial.
4) Given (N∗,d1, g) as in Definition 7.5(4). We define d′, a u-

free (1, α)-rectangle by Md′

i,j is g(M1) if (i, j) = (1, 0) and is Md+

i,j

when i ≤ 1 & j ≤ α & (i, j) 6= (1, 0) and Id
′

0,j = Id
′

1,j =

Id0,j for j < α and Jd′

0,j = ∅ for j ≤ α. The only non-obvious

point is why (Md′

0,0,M
d′

0,1, I
d′

0,0) ≤1
u (Md′

1,0,M
d′

1,1, I
d′

0,0) which means

(Md
0,0,M

d
0,1, I

d
0,0) ≤1

u (g(M1),M
d+

1,1 , I
d+

0,0). This is because u is in-
terpolative by 4.30(6)(ε), see Definition 3.21. �7.5

7.6 Claim. [Monotonicity] Assume 1 ≤ ξ ≤ λ+.

If WNFξ
s(M0, N0,M1, N1) and M0 ≤s N

′
0 ≤s N0 and M0 ≤s M

′
1 ≤

M1 and N1 ≤s N
′
1, N

′
0∪M

′
1 ⊆ N ′′

1 ≤s N
′
1 then WNFξ

s(M0, N
′
0,M

′
1, N

′′
1 )

holds.

Proof. It is enough to prove that for the case three of the equalities
N ′

0 = N0,M
′
1 = M1, N

′′
1 = N ′

1, N
′
1 = N1 hold. Each follows: in the

Paper Sh:300G, Chapter VII



616 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

case N ′
0 6= N0 by the Definition 7.3, in the case M ′

1 6= M1 by 7.5(4),
and in the cases N ′′

1 = N ′
1 ∨N

′
1 = N1 by amalgamation (in Ks) and

the definition of WNFξ
s and 7.5(4).

�7.6

7.7 Observation. [s categorical in λ or M0 is brimmed or s has

existence for K3,rd
s , see Definition 5.21.]

If ξ > ξrdM0
, see Definition 5.21 and WNFξ

s(M0, N0,M1, N1) then
M1 ∩N0 = M0.

Remark. 1) Recall that if s is an almost good λ-frame then it has

density of K3,rd
s hence if s is categorical then it also has existence for

K3,rd
s .

It is convenient to assume this but not essential. Proving den-

sity for K3,up
s we actualy prove density for K3,up

s ∩K3,rd
s ; moreover

K3,up
s ⊆ K3,rd

s .
2) Recall ξrdM0

= ξrds if M0 is superlimit, e.g. when Ks is categorical.

Proof. Recall that letting α = ξrdM0
by 5.22(3) or 5.22(4) there is a

u-free (0, α)-rectangle d such that Md
0,0 = M0, N0 ≤s M

d
0,α and each

(Md
0,α,M

d
0,α+1, a

d
0,α) is reduced (see Definition 5.21). Now apply Def-

inition 7.3 to this d. Alternatively, recall for u-free (α, β)-rectangle
(or (ᾱ, β)-triangle) d we have Md

i1,j1
∩Md

i2,j2
= Md

min{i1,i2},min{j1,j2}
,

or we can use 6.5(0). �7.7

7.8 Claim. [Long transitivity]

Assume 1 ≤ ξ ≤ λ+. We have WNFξ
s(M0, N0,Mα(∗), Nα(∗))

when:

(a) 〈Mα : α ≤ α(∗)〉 is ≤s-increasing continuous

(b) 〈Nα : α ≤ α(∗)〉 is ≤s-increasing continuous

(c) WNFξ
s(Mα, Nα,Mα+1, Nα+1) for every α < α(∗).
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Remark. 1) Recall that we do not know symmetry for WNFs and
while this claim is easy its dual is not clear at this point.

Proof. By chasing arrows. �7.8

7.9 Claim. [weak existence] Assume 1 ≤ ξ ≤ λ+.

If (M0,M1, a) ≤bs (N0, N1, a) and (M0,M1, a) ∈ K3,up
s,ξ

then WNFξ
s(M0, N0,M1, N1).

Proof. Let α ≤ ξ be such that α < λ+ and d be a u-free (0, α)-
rectangle and let f be a ≤s-embedding of N0 into Md

0,α such that

f(M0) = Md
0,0. Let N ′

1 ∈ Ks be ≤s-universal over Md
0,α, exist by

5.8, and let N ′
0 = Md

0,α.

As (N0, N1, a) ∈ K3,bs
s we can find a ≤s-embedding g of N1 into

N ′
1 extending f such that (g(N0), g(N1), g(a)) ≤bs (N ′

0, N
′
1, g(a)) so

as ≤bs is a partial order preserved by isomorphisms, clearly (g(M0),

g(M1), g(a)) ≤bs (N ′
0, N

′
1, g(a)). Now as (M0,M1, a) ∈ K3,up

s,ξ it

follows that (g(M0), g(M1), g(a)) ∈ K3,up
s,ξ . Applying the defini-

tion of K3,up
s,ξ , see Definition 6.4(1) with g(M0), g(M1), g(a), N

′
0, N

′
1,

dual(d) here standing for M,N, a,M ′, N ′,d there, recalling that u

is self-dual we can find a u-free (α + 1, 1)-rectangle d∗ and h such
that: d∗ ↾ (α, 0) = dual(d), h(g(M1) ≤s Md∗

0,1, h(g(a)) = ad
∗

0,0 and

h is a ≤s-embedding of N ′
1 into Md∗

α+1,1 over N ′
0 = Md

0,α hence
h ↾ g(M0) = idg(M0).

Now N ′
1,d

+ := dual(d∗) ↾ (1, α) and h ◦ g are as required in
Definition 7.3 (standing for N∗,d+, g there) recalling 7.5. �7.9

7.10 Lemma. [Amalgamation existence] Let ξ < λ+ or just ξ ≤ λ+

and ξ ≥ 1.
1) If M0 ≤s Mℓ for ℓ = 1, 2 and M1 ∩M2 = M0 then for some M3

we have WNFξ
s(M0,M1,M2,M3).

2) If M0 ≤s M2 then we can find an u-free rectangle d satisfying
βd = 0 such that

⊠ (a) Md
0,0 = M0

Paper Sh:300G, Chapter VII



618 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

(b) M2 ≤s M
d
α(d),0

(c) (Md
α,0,M

d
α+1,0, b

d
α,0) belongs to K3,up

s,ξ for α < αd

(d) if M2 is (λ, ∗)-brimmed over M0 then Md
2 = Md

αd,0.

2A) If (M0,M2, b) ∈ K3,bs
s we can add bd0,0 = b.

2B) Assume K3,∗
s ⊆ K3,bs

s is such that s has existence for K3,∗
s then

in parts 2), 2A) we can replace K3,up
s,ξ by K3,∗

s .

3) In part (1) if (M0,Mℓ, bℓ) ∈ K3,bs
s for ℓ = 1, 2 then we can add

(M0,Mℓ, bℓ) ≤bs (M3−ℓ,M3, bℓ) for ℓ = 1, 2.

Proof. 1) Follows by part (3).
2) By Ax(D)(c), density, of almost good λ-frames there is b ∈M2\M0

such that tps(b,M0,M2) ∈ S bs
s (M0), hence (M0,M2, b) ∈ K3,bs

s , by

the definition of K3,bs
s it follows that so we can apply part (2A).

2A) By part (2B).

2B) So let (M0,M2, b) ∈ K3,∗
s be given. We try to choose (M0,α,M2,α)

and if α = β + 1 also aβ by induction on α < λ+ such that:

⊛ (a) Mℓ,α ∈ Ks is ≤s-increasing continuous for ℓ = 0, 2

(b) M0,α ≤s M2,α

(c) (M0,α,M2,α) = (M0,M2) for α = 0

(d) if α = β + 1 then (M0,β,M0,α, aβ) ∈ K3,∗
s and aβ ∈

M2,α\M0,α

(e) if α = β + 1 then M2,α is ≤s-brimmed over M2,β

(f) if α = 0 then aα = b.

By Fodor lemma we cannot choose for every α < λ+. For α = 0 and
α limit there are no problems, hence for some α = β + 1, we have
defined up to β but cannot define for α clearly β < λ+. First assume

(∗) M0,β 6= M2,β.

So by Ax(D)(c) of Definition 5.2 of almost good λ-frame we can
choose aβ ∈ M2,β\M0,β such that tps(b,M0,β,M2,β) ∈ S bs

s (M0,β)

and aβ = b if β = 0. By the assumption on K3,∗
s there is Nβ ∈ Ks
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such that (M0,α, Nβ, aβ) ∈ K3,∗
s and tps(aβ,M0,β, Nβ) = tps(aβ,

M0,β,M2,β).
By the definition of orbital type (and amalgamation of Ks) without

loss of generality for some M ′
2,β we have Nβ ≤s M

′
2,β and M2,β ≤s

M ′
2,β.

Let M2,α ∈ Ks be brimmed over M ′
2,β. So we can choose for α,

contradiction.
Hence (∗) cannot hold soM0,β = M2,β, easily β ≥ 1 (asM2 6= M0)

and by clause (e) of ⊛ M2,β is brimmed over M2,0 = M2 hence over
M0. What about clause (d) of the conclusion? It follows because
any two brimmed extensions of M0 are isomorphic over it by 5.19(4)
and with a little more work even over M0 ∪ {b}.

3) So let K3,∗
s = K3,up

s or just K3,∗
s ⊆ K3,up

s,ξ and s has existence for

K3,∗
s .
Let d be as guaranteed in parts (2),(2A) so ad0,0 = b2 and M0 =

Md
0,0,M2 ≤s M

d
αd,0. Without loss of generality Md

αd,0 ∩M1 = M0

and now we choose Nα by induction on α ≤ αd such that

⊞ (a) Nα ∈ Ks is ≤s-increasing continuous

(b) Md
αd,0 ∩Nα = Md

α,0

(c) Md
α,0 ≤s Nα

(d) (Md
α,0,M

d
α+1,0, a

d
α,0) ≤bs (Nα, Nα+1, a

d
α,0)

(e) Nα = M1 for α = 0.

There is no problem to carry the choice by Hypothesis 7.1(4) and
Definition 5.5.

Now for each α < αd by clause (c) of ⊠ of part (2) or (2B) we
have

(Md
0,α,M

d
0,α+1, a

d
α,0) ∈ K3,∗

s ⊆ K3,up
s,ξ

recalling the choice of d and by clause (d) of ⊞ we have

(Md
0,α,M

d
0,α+1, a

d
α,0) ≤bs (Nα, Nα+1, a

d
α,0),

hence by the weak existence Claim 7.9 we have WNFξ
s(M

d
0,α, Nα,

Md
0,α+1, Nα+1).
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As 〈Md
0,α : α ≤ αd〉 and 〈Nα : α ≤ αd〉 are ≤s-increasing contin-

uous, it follows the long transitivity claim 7.8 that WNFξ
s(M

d
0,0, N0,

Md
αd,0, Nα(d)) which means that WNFξ

s(M0,M1,M
d
αd,0, Nα(d)). Let

M3 := Nα(d), but now M0 ≤s M2 ≤s M
d
α(d),0 hence by the mono-

tonicity Claim 7.6 we have WNFξ
s(M0,M1,M2,M3).

This proves the desired conclusion of part (1), but there are more
demands in part (3). One is (M0,M1, b1) ≤bs (M2,M3, b1), but
M1 = N0 and M3 = Nα(d), so this means (M0, N0, b1) ≤bs

(M2, Nα(d), b1) and by monotonicity of non-forking it suffices to show

(M0, N0, b1) ≤bs (Md
α(d),0, Nα(d)).

But recall WNFξ
s(M0, N0,M

d
α(d),0, Nα(d)); this implies (M0, N0, b1)

≤bs (Md
α(d),0, Nα(d), b1) by Observation 7.5(1) which as said above

suffices.
Now also we have chosen ad0,0 as b2, so by clause (d) of ⊞ for α = 0

we have easily (M0,M
d
1,0, b2) = (Md

0,0,M
d
1,0, a

d
0,0) ≤bs (N0, N1, a

d
0,0) =

(M1, N1, b2) ≤bs (M1, Nα(d), b2) = (M1,M3, b2); but M0 ≤s M1 ≤s

Md
α(d),0 so by easy monotonicity we have (M0,M2, b2) ≤bs (M1,M3,

b2), as desired in part (3); so we are done.
�7.10

7.11 Remark. In the proof of 7.10(2B), if s is a good λ-frame, in
fact, λ steps in the induction suffice by a careful choice of aβ using
bookkeeping as in the proof of 5.19(1), so we get αd = λ. Without
this extra hypothesis on s, this is not clear.

7.12 Claim. Assume that 1 ≤ ξ ≤ λ+, α < λ+,d is a u-free (0, α)-
rectangle and M0 ≤s Md

0,0 ≤s Md
0,α ≤s N1. Then we can find

α′,d′, h such that

⊕ (a) α′ ∈ [α, λ+)

(b) d′ is a u-free (0, α′)-rectangle

(c) h is an increasing function, h : α+ 1 → α′ + 1

(d) Md′

0,0 = M0

(e) N1 ≤s M
d′

0,α′
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(f) i ≤ α⇒Md
0,i ≤s M

d′

0,h(i)

(g) for i < α, ad0,i = ad
′

0,h(i) and tps(a
d′

0,h(i),M
d′

0,h(i),M
d′

0,h(i)+1)

does not fork over Md
0,i

(h) (Md′

0,β,M
d′

0,β+1, a
d′

0,β) ∈ K3,up
s,ξ for β < α′.

Proof. We can choose M ′
i by induction on i ≤ 1 + α+ 1 such that

(α) 〈M ′
j : j ≤ i〉 is increasing continuous

(β) M ′
0 = M0

(γ) M ′
i is brimmed over M ′

j if i = j + 1 ≤ 1 + α+ 1

(δ) Mα ∩M ′
1+i = Md

0,i if i ≤ α

(ε) Md
0,i ≤s M

′
1+i if i ≤ α

(ζ) tps(a
d
0,i,M

′
i ,M

′
i+1) does not fork over Md

0,i if i < α

(η) N1 ≤s M
′
1+α+1.

This is possible because we have disjoint amalgamation (see 5.23).
Now for each i ≤ 1+α use 7.10(2A) withM ′

i ,M
′
i+1, a

d
0,i here standing

for M0,M2, b there (so clause (d) there apply). �7.12

7.13 Remark. Recall that from now on we are assuming that Ks is
categorical.

7.14 Claim. [Symmetry] There is ξ = ξs < λ+ such that (ξ ≥ ξrds

for simplicity, see 5.21 and) for every ζ < λ+, if WNFξ
s(M0, N0,

M1, N1) then WNFζ
s(M0,M1, N0, N1) holds.

Remark. 1) Yes, the models N0,M1 exchange places.
2) Without categoricity, ξ = ξs,M0

is O.K.

Proof. By 7.10(2) there are ξ = ξ(∗) < λ+ and d, a u-free (0, ξ)-

rectangle with each (Md
0,α,M

d
0,α+1, a

d
0,α) belonging toK3,up

s,ζ for every
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ζ < λ+ such that Md
0,ξ is brimmed over Md

0,0 and M0 = Md
0,0. Note

that the choice of ξ does not depend on ζ, 〈M0, N0,M1, N1〉, just on
M0 by 7.10 and it does not depend on M0 recalling Ks is categorical.

As Md
0,ξ is ≤s-universal over Md

0,0 without loss of generality N0 ≤s

Md
0,ξ.

Now let ζ < λ+ and recall that we assume WNFξ
s(M0, N0,M1, N1).

Let d+, N+, f be as guaranteed by Definition 7.3(1) and by renam-
ing without loss of generality the function f is the identity. Now
for each α < ξ, we shall apply the weak existence claim 7.9, with

Md+

0,α,M
d+

1,α,M
d+

0,α+1,M
d+

1,α+1, a
d+

0,α here standing forM0, N0,M1, N1, a

as there; this is O.K. as its assumptions mean (Md+

0,α,M
d+

0,α+1, a
d+

0,α) ≤bs

(Md+

1,α,M
d+

1,α+1, a
d+

0,α) and (Md+

0,α,M
d+

0,α+1, a
d+

0,α) ∈ K3,up
s,ζ which hold

by clause ⊠(c) of Claim 7.10(2), i.e. by the choice of d as d+ ↾

(0, α(d)) = d. Hence the conclusion of 7.9 applies, which gives that

we have WNFζ
s(M

d+

0,α,M
d+

1,α,M
d+

0,α+1,M
d+

1,α+1). Of course 〈Md+

0,α : α ≤

ξ〉 and 〈Md+

1,α : α ≤ ξ〉 are ≤s-increasing continuous. Together by the

long transitivity, claim 7.8 we have WNFζ
s(M

d+

0,0 ,M
d+

1,0 ,M
d+

0,ξ ,M
d+

1,ξ ).

ButMd+

0,0 = M0,M
d+

1,0 = M1 andN0 ≤s M
d
0,ξ andN1 ≤s N

+,Md+

1,ξ ≤s

N+ so by the monotonicity claim, 7.6, we have WNFζ
s(M0,M1, N0, N1)

as required. �7.14

7.15 Conclusion. If WNFξ
s(M0, N0,M1, N1) and ξ ≥ ξs, see 7.14 then

ζ < λ+ ⇒ WNFζ
s(M0, N0,M1, N1) that is WNFs(M0, N0,M1, N1).

Proof. Applying 7.14 twice recalling 7.5(3) in the end. �7.15

7.16 Claim. (WNFs lifting or weak uniqueness)
If WNFs(M0, N0,M1, N1) and α < λ+ and 〈M0,i : i ≤ α〉 is

≤s-increasing continuous, M0,0 = M0 and M0,α = N0 then we
can find a ≤s-increasing continuous sequence 〈M1,i : i ≤ α + 1〉
such that M1,0 = M1, N1 ≤s M1,α+1 and for each i < α we have
WNFs(M0,i,M0,i+1,M1,i,M1,i+1) for i < α.

Proof. We shall use 7.12.
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By induction on i ≤ α we can find M ′
i which is ≤s-increasing

continuous such that M ′
i ∩ N1 = M0,i,M0,i ≤s M

′
i and if i = j + 1

then M ′
i is brimmed over M ′

j and WNFs(M0,i,M0,i+1,M
′
i ,M

′
i+1).

So by 7.10(2) and see 7.14 we can find a us-free (0, ξsα)-rectangle

d such that Md
ξsi = M ′

i for i ≤ ξsα and (Md
ε,0,M

d
ε+1,0, a

d
ε,0) ∈ K3,up

s

for ε < ξsα. Recalling M0,α = N0, without loss of generality
Md

0,ξsα∩N1 = N0 so by 7.10(1) we can find N∗
1 such that WNFs(N0,

N1,M
d
0,ξsα, N

∗
1 ). Recalling that we are assuming WNFs(M0, N0, M1,

N1), by symmetry, i.e. 7.14 we have WNFs(M0,M1, N0, N1) hence
by transitivity, i.e. Claim 7.8 we can deduce that WNFs(M0,M1,
Md

0,ξsα, N
∗
1 ) hence by 7.14, i.e. symmetry WNFs(M0,M

d
0,ξsα,M1, N

∗
1 ).

By the definition of WNFs, we can find a us-free (1, ξsα+1)-rectangle

d+ such that d+ ↾ (0, ξsα) = d andN∗
1 ≤s M

d+

1,ξsα+1 andM1 = Md+

1,0 .

By the weak existence claim 7.9, we have WNFs(M
d+

0,ε , M
d+

1,ε ,

Md+

0,ε+1, M
d+

1,ε+1) for each ε < ξsα.

Let M1,α+1 = Md+

1,ξsα+1 and for i ≤ α let M1,i := Md+

1,ξsi. So

clearly 〈M1,i : i ≤ α + 1〉 is ≤s-increasing continuous, M1,0 =
M1, N1 ≤s M1,α+1. Now to finish the proof we need to show, for
i < α that WNFs(M0,i,M0,i+1,M1,i,M1,i+1).

For each i < α by the long transitivity claim, i.e. 7.8 applied to

〈Md+

0,ξsi+ε : ε ≤ ξs〉 and 〈Md+

1,ξs,i+ε : ε ≤ ξs〉 we have WNFs(M
d+

0,ξsi,

Md+

1,ξsi,M
d+

0,ξs(i+1),M
d+

1,ξs(i+1)), by symmetry we have WNFs(M
d+

0,ξsi,

Md+

0,ξs(i+1),M
d+

1,ξsi,M
d+

1,ξs(i+1)) which means WNFs(M
′
i ,M

′
i+1, M1,i,

Mi,1+i).

Recall that for each i < α we have WNFs(M0,i,M0,i+1,M
′
i ,M

′
i+1).

By the transitivity claim 7.8, the two previous sentences imply
WNFs(M0,i, M0,i+1,M1,i,M1,i+1) as required. �7.16

7.17 Theorem. 1) WNFs is a weak non-forking relation on Kλ

respecting s and having disjointness (see Definition 7.18 below).
2) If NF is a weak non-forking relation of Kλ respecting s, then NF ⊆
WNFs.

A relative of Definition II.6.1 is:
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7.18 Definition. Let Kλ be a λ-a.e.c.
1) We say that NF is a weak non-forking relation on Kλ when: it sat-
isfied the requirements in Definition II.6.1(1); except that we replace
uniqueness (clause (g) there) by weak uniqueness meaning that the
conclusion of Claim 7.16 holds (replacing WNFs by NF); or see the
proof of 7.17 below for a list or use Definition II.6.37(1).
2) Let t be an almost good λ-frame and Kλ = Kt and NF be a
weak non-forking relation on Kλ. We say that NF respects t when:

if NF(M0, N0,M1, N1) and (M0, N0, a) ∈ K3,bs
t then tpt(a,M1, N1)

does not fork over M0. We say NF is a weak t-non-forking relation
when it is a weak t-non-forking relation respecting t.
3) In part (1) we say NF has disjointness when
WNF(M0, N0,M1, N1) ⇒M0 ∩M1 = M0.
4) We say NF is a pseudo non-forking relation on Kλ when we have
clauses (a)-(f) of Definition II.6.1 or see the proof below. Also here
parts (2),(3) are meaningful.

Proof of 7.17. 1) Let us list the conditions on NF := WNFs being a
weak non-forking relation let Kλ = Ks. We shall use 7.15 freely.

Condition (a): NF is a 4-place relation on Kλ.
[Why? This holds by Definition 7.3(1),(2).]

Condition (b): NF(M0,M1,M2,M3) implies M0 ≤Kλ
Mℓ ≤Kλ

M3

for ℓ = 1, 0 and NF is preserved by isomorphisms.
[Why? The preservation by isomorphisms holds by the definition,
and also the order demands.]

Condition (c)1: [Monotonicity] If NF(M0,M1,M2,M3) and M0 ≤Kλ

M ′
ℓ ≤Kλ

Mℓ for ℓ = 1, 2 then NF(M0,M
′
1,M

′
2,M3).

[Why? By 7.6.]

Condition (c)2: [Monotonicity] If NF(M0,M1,M2,M3) and M3 ≤Kλ

M ′
3 and M1 ∪M2 ⊆M ′′

3 ≤Kλ
M3 then NF(M0,M1,M2,M

′′
3 ).

[Why? By Claim 7.6.]

Condition (d): [Symmetry] If NF(M0,M1,M2,M3) then
NF(M0,M2,M1,M3).
[Why? By Claim 7.14.]
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Condition (e): [Long Transitivity] If α < λ+, NF(Mi, Ni,Mi+1, Ni+1)
for each i < α and 〈Mi : i ≤ α〉, 〈Ni : i ≤ λ〉 are ≤Kλ

-increasing con-
tinuous sequences then NF(M0, N0,Mα, Nα).
[Why? By Claim 7.8.]

Condition (f): [Existence] Assume M0 ≤Kλ
Mℓ for ℓ = 1, 2. Then for

some M3, f1, f2 we have M0 ≤Kλ
M3 ∈ Kλ, fℓ is a ≤Kλ

-embedding for
Mℓ into M3 over M0 for ℓ = 1, 2 and NF(M0, f1(M1), f2(M2),M3).
Here we have the disjoint version, i.e. f2(M1) ∩ f2(M2) = M2.
[Why? By Lemma 7.10(1).]

Condition (g): Lifting or weak uniqueness [a replacement for unique-
ness]

This is the content of 7.16.
Thus we have finished presenting the definition of “NF is a weak

non-forking relation on Ks” and proving that WNFs satisfies those
demands.

But we still owe “WNFs respect s” where NF respect s means that
if NF(M0, N0,M1, N1) and (M0, N0, a) ∈ K3,s

s then tps(a,M1, N1)

does not fork over M0, i.e. (M0, N0, a) ≤bs (M1, N1, a) ∈ K3,bs
s .

[Why? This holds by Observation 7.5(1).]
Also the disjointness of WNF is easy; use 7.7 and categoricity.

Proof of 7.17(2).
So assume NF(M0, N0,M1, N1) and we should prove WNFs(M0,

N0,M1, N1) so let d be as in Definition 7.3(1). As NF satisfies ex-
istence, transitivity and monotonicity without loss of generality it
suffices to deal with the case Md

0,α(d) = N0.

This holds by the definition of WNFs in 7.3 and clause (g) in
the definition of being weak non-forking relation and “respecting s”.
�7.17

At last we can get rid of the “almost” in “almost good λ-frame”,
of course, this is under the Hypothesis 7.1, otherwise we do not know.

7.19 Lemma. 1) If t is an almost good λ-frame and WNF is a weak
non-forking relation on Kλ respecting t then t is a good λ-frame.
2) In 7.1, s is a good λ-frame.
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Proof. Part (2) follows from part (1) and 7.17(1) above. So recalling
Definition 5.2 we should just prove that t satisfies Ax(E)(c). Note
that the Hypothesis 7.20 below holds hence we are allowed to use
7.25.

Let 〈Mi : i ≤ δ〉 be ≤s-increasing continuous and p ∈ S bs
s (Mδ)

and we should prove that p does not fork over Mi for some i < δ.
By renaming without loss of generality δ < λ+ and δ is divisible by
λ2ω and ε ≤ λ ∧ i < δ ⇒Mi+1 = Mi+1+ε. Let u be as in Definition
7.2, so u is a nice construction framework. Let α = δ, β = δ.

Now

(∗)1 there is d such that

(α) d is a u-free (α, β)-rectangle

(β) d is a strictly brimmed, see Definition 5.15(2)

(γ) if i < α and j < δ then
WNF(Md

i,j ,M
d
i,j+1,M

d
i+1,j,M

d
i+1,j+1)

(δ) Md
i,0 = Mi for i ≤ δ

(ε) Jd
i,j = ∅ when i < δ, j ≤ δ and Idi,j = ∅ when i ≤ δ, j <
δ.

This will be done as in the proof of Observation 5.17.
By the properties of WNF (i.e. using twice long transitivity and

symmetry)

(∗)2 if i1 < i2 ≤ α and j1 < j2 ≤ β then WNF(Md
i1,j1

,Md
i1,j2

,

Md
i2,j1

,Md
i2,j2

) and WNF(Md
i1,j1

,Md
i2,j1

,Md
i1,j2

,Md
i2,j2

).

Now we can choose a u-free (αd, βd)-rectangle e such that

(∗)3 (a) Me
i,j = Md

i,j for i ≤ αd, j ≤ βd

(b) if i < α, j < β and p ∈ S bs
s (Md

i,j) then for λ ordinals ε < λ
we have:

(α) tpt(b
d
i+ε,j,M

d
i+ε,j+1,M

d
i+ε+1,j+1) is a non-forking ex-

tension of p, recalling Je
i+ε,j = {bei+ε,j},

(β) tpt(a
e
i,j+ε,M

d
i+1,j+ε,M

d
i+1,j+ε+1) is a non-forking ex-

tension of p, recalling Iei,j+ε = {aei+1,j+ε}.
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[Why? We can choose e ↾ (α, α) by induction on α ≤ δ. The
non-forking condition in the definition of u-free holds because WNF
respects t and (∗)2.]

So d is full (see Definition 5.15(3),(3A), even strongly full) hence
by Claim 5.19(3A)(c)

(∗)4 Md
α,β is brimmed over Md

α,0 = Mδ.

Hence p ∈ S bs
s (Mδ) = S bs

t (Md
α,0) is realized in Mα,β say by c ∈

Mα,β, so for some i < α we have c ∈Mi,β.
As WNF(Md

i,0,M
d
i,β,M

d
α,0,M

d
α,β) holds by (∗)2 above by Claim 7.25

below, it follows that tpt(c,M
d
α,0,M

d
α,β) does not fork over Md

i,0

which means i < δ and p does not fork over Mi as required. �7.19

Now for the rest of the section we replace Hypothesis 7.1 by

7.20 Hypothesis. Assume s is an almost good λ-frame categorical in
λ and WNF is a weak non-forking relation on Ks respecting s.

The following is related to the proof of 7.19.

7.21 Definition. 1) We say d = 〈Mα,β : α ≤ αd, β ≤ βd〉 is a
WNF-free rectangle (or (αd, βd)-rectangle) when:

(a) 〈Mα,j : j ≤ βd〉 is ≤s-increasing continuous for each α ≤ αd

(b) 〈Mi,β : i ≤ αd〉 is ≤s-increasing continuous for each β ≤ βd

(c) WNF(Mi,j,Mi+1,j,Mi,j+1,Mi+1,j+1) for i < α, j < β.

2) Let ᾱ = 〈αj : j ≤ β〉 be ≤-increasing.
We say d = 〈Mi,j : i ≤ αj and j ≤ β〉 is a WNF-free (〈αj : j ≤

β〉, β)-triangle when:

(a) 〈Mi,j : i ≤ αj〉 is ≤s-increasing continuous for each j ≤ β

(b) 〈Mi,j : j ≤ β satisfies i ≤ αj〉 is ≤s-increasing continuous for
each i < αβ

(c) WNF(Mi,j,Mi+1,j,Mi,j+1,Mi+1,j+1) for j < β, i < αj .
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Now we may note that some facts proved in Chapter III for weakly
successful good λ-frame can be proved under Hypothesis 7.1 or just
7.20. Systematically see [Sh 842].

7.22 Claim. Md
αβ,β is brimmed over M0,β when:

(a) ᾱ = 〈αj : α ≤ β〉 is increasing continuous

(b) d is a WNF-free (ᾱ, β)-triangle

(c) Mi+1,j+1 is ≤s-universal over Mi,j when i < αj , j < β.

Proof. If β and each αj is divisible by λ we can repeat (part of the)
proof of 7.19 and this suffices for proving 7.25 hence for proving 7.19
(no vicious circle!)

In general we have to repeat the proof of 5.19 or first find a WNF-
free (〈λαj : j ≤ β〉, β)-rectangle d′ which is brimmed and full and

Md′

λ,j = Md+

i,j for i ≤ αj , j ≤ β and then use the first sentence. �7.22

It is natural to replace ≤bs by the stronger ≤wnf defined below
(and used later).

7.23 Definition. 1) Let ≤wnf be the following two-place relation on

K2,bs
s := {(M,N) : M ≤s N are from Ks}, we have (M0, N0) ≤wnf

(M1, N1) iff:

(a) (Mℓ, Nℓ) ∈ K2,bs
s for ℓ = 0, 1

(b) WNF(M0, N0,M1, N1).

2) Let (M1, N1, a) ≤wnf (M2, N2, a) means (Mℓ, Nℓ, a) ∈ K3,bs
s for

ℓ = 1, 2 and (M1, N1) ≤wnf (M2, N2).

7.24 Claim. 1) ≤wnf is a partial order on K2,bs
s .

2) If 〈(Mα, Nα) : α < δ〉 is ≤wnf-increasing continuous then α <

δ ⇒ (Mα, Nα) ≤wnf (
⋃

β<δ

Mβ,
⋃

β<δ

Nβ) ∈ K3,bs
s .

3) If (M1, N1) ≤wnf (M2, N2) and (M1, N1, a) ∈ K
3,bs
s then (M1, N1, a)

≤bs (M2, N2, a) ∈ K3,bs
s .
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4) If M ≤s N
′ ≤s N and (M,N) ∈ K2,bs

s then (M,N ′) ≤wnf (M,N).
5) If (M1, N1) ≤wnf (M2, N2) and M1 ≤s N

′
1 ≤s N1,M1 ≤s M

′
2 ≤s

M2 and N ′
1 ∪M ′

2 ⊆ N ′
2 ≤s N

′′
2 and N2 ≤s N

′′
2 then (M1, N

′
1) ≤wnf

(M ′
2, N

′
2).

6) Similarly to (1),(2),(4),(5) for (K3,bs
s ,≤wnf).

Proof. Easy by now. �7.24

The following is a “downward” version of “WNF respect s” which
was used in the proof of 7.19.

7.25 Claim. If WNF(M0, N0,M1, N1) and c ∈ N0 and (M1, N1, a) ∈

K3,bs
s then (M0, N0, c) ∈ K3,bs

s and tps(c,M1, N1) does not fork over
M0.

Proof. The second phrase in the conclusion (about “tps(a,M1, N1)
does not fork over M0”) follows from the first by “WNF respects t”;
so if s is type full (i.e. S bs

s (M) = S na
s (M)) this is easy. (So if s is

type-full the result is easy.)
Toward contradiction assume

(∗)0 (M0, N0,M1, N1, c) form a counterexample.

Also by monotonicity properties without loss of generality :

(∗)1 (a) N0 is brimmed over M0

(b) M1 is brimmed over M0

(c) N1 is brimmed over N0 ∪M1.

Let 〈Uε : ε < λs〉 be an increasing sequence of subsets of λs such
that |U0| = |Uε+1\Uε| = λs. We now by induction on ε ≤ λ choose
dε, āε such that dε = 〈Mi,j : i ≤ λj, j ≤ ε〉 and:

⊛ (a) dε is a WNF-free triangle

(b) Mi+1,j+1 is brimmed overMi+1,j∪Mi,j+1 when i < λ ∧ j < ε

(c) M0,j+1 is brimmed over M0,j
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(d) āε = 〈aα : α ∈ Uε〉 list the elements of Mελ,ε

(e) if ε = j + 1 and Wj ⊆ Uj defined below is 6= ∅ and γj =
min(Wj), then tps(aγj

,M0,ε,Mλj,ε) ∈ S bs
s (M0,ε) and

[tps(aγj
,M0,j,Mλj,j) ∈ S bs

s (M0,j) ⇒ tps(aγj
,M0,ε,Mλj,ε)

forks over M0,j] where Wj = {α ∈ Ui: we can find M ′, N ′

such that WNF(M0,j,Mλj,j,M
′, N ′) and tps(aα,M

′, N ′) ∈
S bs

s (M ′) but is not a non-forking extension of tps(a,M0,j,
Mλj,j), e.g. tps(a,M0,j,Mλj,j) /∈ S bs

s (M0,j)}.

There is no problem to carry the definition.
Now by 7.22

(∗)2 Mλλ,λ is brimmed over M0,λ.

So by (∗)1 + (∗)2 and s being categorical without loss of generality

(∗)3 (M0, N0) = (M0,λ,Mλλ,λ).

Clearly Mλλ,λ is the union of the ≤s-increasing continuous chain
〈Mλj,j : j ≤ λ〉 hence j1(∗) is well defined where:

(∗)4 j1(∗) = min{j < λ : c ∈Mλj,j}.

By clause (d) of ⊛ for some j(∗) we have

(∗)5 j(∗) ∈ [j1(∗), λ) and c ∈ {aα : α ∈ Uj(∗)}.

So by the choice of j(∗), γ(∗) is well defined where

(∗)6 γ(∗) = min{γ ∈ Uj(∗) : aγ = c} < λ.

Note that

(∗)7 (M0,j,Mλj,j) ≤wnf (M0,λ,Mλλ,λ) = (M0, N0) ≤wnf (M1, N1)
for j ∈ [j(∗), λ).

Also

(∗)8 if j ∈ [j(∗), λ) then tps(c,M0,j,Mλj,j) /∈ S bs
s (M0,j).

[Why? By (∗)7, we have WNFs(M0,j,Mλj,j,M0,λ,Mλλ,λ) hence if

(tps(c,M0,j,Mλj,j) ∈ S bs
s (M0,j) then (M0,j,Mλj,j, c) ∈ K3,bs

s but
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by (∗)7 we have WNF(M0,j,Mλj,j,M1, N1) and WNF respects s

hence tps(c,M1, N1) does not fork over M0,j, so by monotonicity
it does not fork over M0,λ = M0 and this contradicts (∗)0.]

(∗)9 if j ∈ [j(∗), λ) then min(Wj) ≤ γ(∗).

[Why? As γ(∗) ∈ Wj , i.e. satisfies the requirement which appear in
clause (e) of ⊛ that is (M1, N1) here can stand for (M ′, N ′) there.]

So by cardinality considerations for some j1 < j2 from [j(∗), λ)
we have min(Wj1) = min(Wj2) but this gives a contradiction as in
the proof of (∗)8. �7.25

7.26 Exercise: Show that in Hypothesis 7.20 we can omit “s is cate-
gorical (in λ)”.

[Hint: The only place it is used is in showing (∗)3 during the proof
of 7.25. To avoid it in ⊛ there waive clause (c) and add j ≤ λ ⇒
M0,j = M0.]

7.27 Exercise: Show that in this section we can replace clause (c) of
Hypothesis 7.1, i.e. “s is categorical in λ” by

(c)′ İ(Ks) ≤ λ
or just

(c)′′ ξs = sup{ξM : M ∈ Ks} < λ+ where for M ∈ Ks we let
ξN = min{αd: there is a u-free (αd, 0)-rectangle such that

Md
0,0 = M, (Md

i,0,M
d
i,0, a

d
i,0) ∈ K3,up

s and Md
α(d),0 is universal

over Md
0,0 = M}.

[Hint: The only place we use “s is categorical in λ” is in claim 7.14
more fully in 7.10(2) we would like to have a bound < λ+ on αd not
depending on M0, see 7.11 (and then quoting it). It is used to define
ξs. As (c)′ ⇒ (c)′′ without loss of generality we assume (c)′′.]

7.28 Exercise: (Brimmed lifting, compare with III.1.17(4).)
1) For any ≤s-increasing continuous sequence 〈Mα : α ≤ α(∗)〉 with
α(∗) < λ+

s we can find N̄ such that

⊛ (a) N̄ = 〈Nα : α ≤ α(∗)〉 is ≤s-increasing continuous
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(b) WNF(Mα, Nα,Mβ, Nβ) for α < β ≤ α(∗)

(c) Nα is brimmed over Mα for α = 0 and moreover for
every α ≤ α(∗)

(d) Nα+1 is brimmed over Mα+1 ∪Nα for α < α(∗).

2) In fact the moreover in clause (c) follows from (a),(b),(d); an
addition

(c)+ Nβ is brimmed over Nα ∪Mβ for α < β ≤ α(∗).

[Hint: Similar to 5.19 or 5.20 or note that by 7.19 we can quote
Chapter III.]

§8 Density of K3,uq
s for good λ-frames

We shall prove non-structure from failure of density for K3,uq
s in

two rounds. First, in 8.6 - 8.10 we prove the wnf-delayed version.
Second, in 8.14 - 8.17 - we use its conclusion to prove the general
case. Of course, by §6, we can assume as in §7:

8.1 Hypothesis. We assume (after 8.2)

(a) s is an almost28 good λ-frame

(b) WNF is a weak non-forking relation on Ks respecting s with
disjointness
(not necessarily the one from Definition 7.3, but Hypothesis
7.20 holds).

We can justify Hypothesis 8.1 by

8.2 Observation. Instead clause (b) of 8.1 we can assume

(b)′ s has existence for K3,up
s,λ+ (so we may use the consequences of

Conclusion 7.17)

(c) s is categorical in λ.

28by 7.17 clauses (b) + (c) implies that s is actually a good λ-frame but we
may ignore this
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Proof. Why? First note that Hypothesis 7.1 holds:

Part (1) there, s is an almost good λ-frame, is clause (a) of Hypoth-
esis 8.1.

Part (2) there is clause (b)′ assumed above.

Part (3), categoricity in λ, there is clause (c) above.

Part (4) there, disjointness of s, holds by 5.23.
So the results of §7 holds, in particular the relation WNF :=

WNFs defined in Definition 7.3 is a weak non-forking relation (on
Ks) respecting s, by Claim 7.17.

�8.2

We now use a relative of u1
s from Definition 4.29; this will be the

default value of u in this section so ∂ will be ∂u = λ+.

8.3 Definition. For s as in 8.1 we define u = u3
s as follows:

(a) ∂u = λ+(= λ+
s )

(b) Ku = Ks (or K′
s see 4.25, 4.26; but not necessary by (c) of

8.1)

(c) FRℓ = {(M,N,J) : M ≤s N and J = ∅ or J = {a} and

(M,N, a) ∈ K3,bs
s }

(d) ≤ℓ
u is defined by (M0, N0,J0) ≤

ℓ
u (M1, N1,J1) when

(α) WNF(M0, N0,M1, N1)

(β) J1 ⊆ J0

(γ) if J0 = {a} then J1 = {a} hence (M0, N0, a) ≤bs
s

(M1, N1, a) by “WNF respects s”, see Hypothesis 8.1
and Definition 7.18; if we use WNFs then we can quote
7.17(2), also by 7.5(1).

8.4 Remark. 0) The choice in 8.3 gives us symmetry, etc., i.e. u is
self-dual, this sometimes helps.
1) We could define FR1,≤1 as above but
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(e) FR2 = {(M,N,J) : M ≤s N and J = ∅ or J = {a}, (M,N, a) ∈

K3,bs
s }

(f) ≤2 is defined by:
(M0, N0,J0) ≤1 (M1, N1,J1) when (both are from FR1 and)

(α) M0 ≤s M1 and N0 ≤s N1

(β)′ J0 ⊆ J1

(β)′′ if J0 = {a} then J1 = {a} and
(M0, N0, a) ≤

bs
s (M1, N1, a).

2) We call it u
3,∗
s . However, then for proving 8.14 we have to use u

∗,3
s

which is defined similarly interchanging (FR1,≤1) with (FR2,≤2).
Thus we lose “self-dual”.

8.5 Claim. 1) u is a nice construction framework which is self-dual.

2) For almost2 every (M̄, J̄, f) ∈ Kqt
s the model M∂ is saturated above

λ.
3) u is monotonic (see 1.13(1)), hereditary (see 3.17(12)), hereditary
for =∗ if =∗ is a fake equality for s (see 4.25) and has interpolation
(see 3.21).

Proof. 1) As in earlier cases (see 4.30(1)), 5.11(1)).
2) As in 4.30(2) or 5.11(2).
3) check. �8.5

8.6 Theorem. We have İ(λ++, Ks(λ+-saturated)) ≥ µunif(λ
++, 2λ+

)

and even İ(Ku,h

λ++) ≥ µunif(λ
++, 2λ+

) for any u − {0, 2}-appropriate
function h when:

(a) 2λ < 2λ+

< 2λ++

(b) u fails wnf-delayed uniqueness for WNF see Definition 8.7
below.

Remark. Note that we have some versions of delayed uniqueness:
the straight one, the one with WNF and the one in §5 and more.

Before we prove Theorem 8.6

Paper Sh:300G, Chapter VII



VII.§8 DENSITY OF K3,UQ
S

FOR GOOD λ-FRAMES 635

8.7 Definition. We say that (the almost good λ-frame) s has wnf-
delayed uniqueness for WNF when: (if WNF is clear from the context
we may omit it)

⊠ for every (M0, N0, a) ∈ K3,bs
s we can find (M1, N1) such that

(a) (M0, N0, a) ≤1
u (M1, N1, a), i.e. (M0, N0, a) ≤bs (M1, N1, a)

and WNF(M0, N0,M1, N1), see clause (b) of Hypothesis 8.1
and

(b) if (M1, N1, a) ≤
1
u (Mℓ, Nℓ, a) hence WNF(M1, N1,Mℓ, Nℓ) for

ℓ = 2, 3 and M2 = M3 then N2, N3 are ≤s-compatible over
M2 ∪N0, that is we can find a pair (f,N ′) such that

(α) N3 ≤s N
′

(β) f is a ≤s-embedding of N2 ito N ′

(γ) f is the identity on N0 (not necessarily N1!) and on
M2 = M3.

Remark. A point of 8.7 is that we look for uniqueness among ≤1
u-

extensions (if 8.2 apply then ≤wnf-extensions) and, of course, it is
“delayed”, i.e. possibly M0 6= M1.

8.8 Observation. In Definition 8.7 we can without loss of generality
demand thatM1 is brimmed overM0. Hence M1 can be any pregiven
≤s-extension of M0 brimmed over it such that M1 ∩N0 = M0.

Proof. Read the definition. �8.8

8.9 Claim. If s (satisfies 8.1) and fails wnf-delayed uniqueness for
WNF (i.e. satisfies 8.6(b)) then u = u3

s has vertical coding, see
Definition 2.9.

Proof. Straight. �8.9
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Proof of 8.6. Straight by the above and Theorem 2.11. �8.9

8.10 Remark. Note that the assumption of 8.9, failure of wnf-delayed
uniqueness may suffice for a stronger version of 8.6 because given η ∈
∂+

2 and (M̄η, J̄η, fη) ∈ Kqt
s , we can find 2∂ extensions 〈(M̄η,ρ, J̄η,ρ,

fη,ρ) : ρ ∈ ω2〉 and α(∗) < ∂ such that Mη,ρ

α(0) = N∗ and 〈Mη,ρ
∂ : ρ ∈

∂2〉 are pairwise non-isomorphic over Mη
∂ ∪ N∗. Does this help to

omit the assumption 2λ < 2λ+

?

8.11 Definition. 1) We say s has uniqueness for WNF when:
if WNF(Mk

0 ,M
k
1 ,M

k
2 ,M

k
3 ) for k = 1, 2 and fℓ is an isomorphism

from M1
ℓ onto M2

ℓ for ℓ = 0, 1, 2 and f0 ⊆ f1, f0 ⊆ f2 then there is a
pair (N, f) such that M2

3 ≤s N and f is a ≤s-embedding of M1
3 into

N extending f1 ∪ f2.
2) We say (M0,M1, a) ∈ K3,bs

s has non-uniqueness for WNF when:
if (M0,M1, a) ≤1

u (M ′
0,M

′
1, a) then we can find 〈Mk

ℓ : ℓ ≤ 3, k =
1, 2〉, 〈fℓ : ℓ ≤ 2〉 such that

⊛ (a) (Mk
0 ,M

k
1 , a) ≤

1
u (Mk

2 ,M
k
3 , a) for k = 1, 2

(b) Mk
0 = M ′

0,M
k
1 = M ′

1 for k = 1, 2

(c) M1
2 = M2

2 and f2 is the identity on M2
1

(d) there is no pair (N, f) such that M2
3 ≤s N and f is a ≤s-

embedding of M1
3 into N extending idMk

1
∪ idMk

2
(which does

not depend on k).

3) We say that s has non-uniqueness for WNF when some triple

(M0,M1, a) ∈ K3,bs
s has it.

8.12 Observation. 1) Assume s is categorical (in λ). Then s has
non-uniqueness for WNF iff it does not have uniqueness for WNF iff
s fails existence for K3,ur

s,u , see below.

2) If s is categorical (in λ), has existence for K3,up
s = K3,up

s,λ+ and has

uniqueness for WNF and 7.9 holds for WNF (i.e. if (M1, N1, a) ∈

K3,up
s and (M1, N1, a) ≤bs (M2, N2, a) then29 WNF(M1,M1, N1, N2))

29so really WNF = WNFs
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then s has existence for K3,uq
s and K3,up

s ⊆ K3,uq
s .

3) K3,uq
s ⊆ K3,up

s .
4) If s has uniqueness for WNF then WNF is a non-forking relation
on Kλ respecting s.

Remark. Note that 8.12(3) is used in §4(F).

8.13 Definition. 1) Let K3,ur
s,u be the class of triples (M,N, a) ∈

K3,bs
s such that: if (M,N, a) ≤1

u (M ′, N ′
ℓ, a) for ℓ = 1, 2 then we can

find a pair (N∗, f) such that N ′
2 ≤s N

∗ and f is a ≤s-embedding of
N ′

1 into N∗ extending idN ∪ idM ′ .

2) s has existence for K3,ur
s when: if M ∈ Ks and p ∈ S bs

s (M) then

for some pair (N, a) the triple (M,N, a) ∈ K3,ur
s realizes p.

3) If WNF is WNFs and u is defined as in 8.7 above then we may
omit u.

Proof. 1) By the definition

(∗) if s has non-uniqueness for WNF then s does not have unique-
ness for s.

Now

Case 1: s fails existence for K3,ur
s .

We shall show that s has the non-uniqueness property; this suf-
fices by (∗). Let (M, p) exemplify it and let (N, a) be such that

(M,N, a) ∈ K3,bs
s realizes p and we shall prove that (M,N, a) is as

required in Definition 8.11(2).

Let (M ′, N ′, a) ∈ K3,bs
s be ≤1

u-above (M,N, a). We can find

(f∗, N∗, a∗) such that (M,N∗, a∗) ∈ K3,bs
s realizes p and f∗ is an

isomorphism from N ′ onto N∗ which maps M ′ onto M and a to a∗.
[Why it exists? See 5.20 recalling s is categorical.] So (M,N∗, a∗) ∈

K3,bs
s and tp(a∗,M,N∗) = p hence by the choice of M and p clearly

(M,N∗, a∗) /∈ K3,ur
s,u so by Definition 8.13(1) we can find M ′, N1, N2

as there such that there are no (N∗, f) as there. But this means
that for (M,N∗, a∗) we can find 〈Mk

ℓ : ℓ ≤ 3, k = 1, 2〉 as required
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in 8.11(2). By chasing maps this holds also for (M ′, N ′, a) so we are
done.

Case 2: s has existence for K3,ur
s .

We shall show that s has uniqueness for WNF. This suffices by
(∗).

First note

⊠ if (∗)1 and (∗)2 below then M1
3 ,M

2
3 are isomorphic for M2 ∪

M1 when:

(∗)1 (a) M̄ = 〈M0,α : α ≤ α(∗)〉 is <s-increasing continu-
ous

(b) (M0,α,M0,α+1, aα) ∈ K3,ur
s,u for α < α(∗)

(c) M0,α(∗) is brimmed over M0,0

(∗)2 (α) WNF(M0,M1,M2,M
k
3 ) for k = 1, 2

(β) M0 = M0,0 and M1 = M0,δ

(γ) Mk
3 is brimmed over M1 ∪M2.

[Why? As in previous arguments in §7, we lift M̄ by (∗)2(α) and
clause (g) of Definition 7.18 of “WNF is a weak non-forking relation
on Ks”, i.e. being as in the proof of 7.17 and then use (∗)1(b).]

Next

⊞ we can weaken (∗)2(β) to M0,0 = M0 ≤s M1 ≤s M0,α(∗).

[By the properties of WNF.]
Checking the definitions we are done recalling 7.10(2B), or pedan-

tically repeating its proof to get 〈M0,i : i ≤ α(∗)〉 as in (∗)1.

2) We are assuming that s has existence for K3,up
s so it suffices to

proveK3,up
s ⊆ K3,uq

s . So assume (M0, N0, a) ∈ K3,up
s and (M0, N0, a)

≤bs (Mℓ, Nℓ, a) for ℓ = 2, 3 and M2 = M3. By 7.9 it follows that
WNF(M0, N0,Mℓ, Nℓ) so by Definition 8.3 we have (M0, N0, a) ≤1

u

(Mℓ, Nℓ, a). Applying Definition 8.11(1) we are done.
3),4) Clear by the definitions. �8.12

∗ ∗ ∗
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8.14 Theorem.
İ(λ++, Ks) ≥ İ(λ++, Ks(λ+-saturated)) ≥ µunif(λ

++, 2λ+

) and even

İ(Ku,h

λ++) ≥ µunif(λ
++, 2λ+

) for any us − {0, 2}-appropriate h (so we
can restrict ourselves to models λ+-saturated above λ and if s = s′

also to τs-fuller ones) when:

(a) 2λ < 2λ+

< 2λ+

(b) s has non-uniqueness for WNF (for every M ∈ Ks)

(c) s has wnf-delayed uniqueness for WNF.

Proof. We first prove claim 8.16.

Note that proving them we can use freely 8.7, 8.3, 8.8 and that wnf-
delayed uniqueness replaces the use of 10.7.

8.15 Explanation: As FRu
1 = FRu

2 there is symmetry, i.e. u is self-
dual. The wnf-delayed uniqueness was gotten vertically, i.e. from
its failure we got a non-structure result (8.6) relying on vertical
coding, i.e. 2.11. But now we shall use it horizontally; we shall
construct over (M̄, J̄, f) with M∂ ∈ Ks

λ+ saturated above λ, a tree

〈(Mρ, J̄ρ, f ℓ) : ρ ∈ ∂≥2〉 as in weak coding but each is not as usual
but a sequence of length ℓg(ρ) such extensions. In fact we use the
λ-wide case of §10, i.e. 10.14, 10.15 without quoting. So the “non-
structure” is done in the “immediate successor” of (M̄, J̄, f). The
rest of the section is intended to make the rest of the construction,
in the ∂+-direction, irrelevant (well, mod D∂ , etc) using the wnf-
delayed uniqueness assumed in clause (c) of 8.14, justified by 8.6.
The net result is that we can find 〈(M̄ρ, J̄ρ, fρ) : ρ ∈ ∂2) which are

≤qt
u -above (M̄, J̄, f) and for ρ 6= ν ∈ ∂2, there is no ≤K-embedding

of Mρ
∂ into M ′

∂ if (M̄ν ,Jν , fν) ≤qs
u (M̄ ′, J̄′, f ′). That comes instead

of using F̄, the amalgamation choice functions in §10.

For constructing 〈(M̄ρ, J̄ρ, fρ) : ρ ∈ ∂2〉 as above, again we use
〈(M̄ρ,α, J̄ρ,α, fρ,α) : ρ ∈ i2, α < λ〉 for i ≤ ∂ such that for a club of
δ < ∂ the model ∪{Mρ,α

δ : α < δ} is brimmed over Mρ,β for β < γ.

Paper Sh:300G, Chapter VII



640 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

8.16 Claim. [Under the assumptions of 8.14] If ⊠ then ⊛, where

⊠ (a) (M,N, a) ∈ K3,bs
s has non-uniqueness for WNFs

(b) δ < λ+ is divisible by λ3

(c) d is a u-free (0, δ)-rectangle, let Mα = Md
0,α for α ≤ δ, aα =

ad0,α for α < δ and a = a0

(d) (M,N, a) ≤wnf (M0,M1, a) equivalently
(M,N, {a}) ≤1

u (M0,M1, I
d
0,0)

(e) Mδ is brimmed over Mα for α < δ

(f) δ ∈ correct(〈Mα : α ≤ δ〉), i.e. if Mδ <s N then some
p ∈ S bs

s (Mδ) is realized in N and does not fork over Mβ for
some β < δ (on correctness, see Definition 5.14)

(g) (M0,M
′, b) ∈ FR2 and M ′ ∩Mδ = M0 and M ′ is brimmed

over M0

⊛ there are d1,d2 such that

(α) dℓ is a u-free (1, δ + 1)-rectangle for ℓ = 1, 2

(β) bd0,0 = b

(γ) dℓ ↾ (0, δ) = d for ℓ = 1, 2

(δ) d1 ↾ (1, 0) = d2 ↾ (1, 0)

(ε) Md1
1,0 = Md2

1,0 = M ′ and bd1
0,0 = b = bd2

0,0

(ζ) Md1

α,δ,M
d2

α,δ are τs-incompatible over (Md1
1,0 = Md2

1,0) +M1

(η) if k,d1,d2, f satisfies •1−•4 below, then we can find a triple

(g,N1, N2) such that ℓ = 1, 2 ⇒ Mdℓ

1,α(dℓ)
≤s Nℓ and g is an

isomorphism from N1 onto N2 extending idM ′ ∪f where (for
ℓ = 1, 2):

•1 dℓ is a u-free rectangle

•2 β(dℓ) = 1

•3 α(dℓ) ≥ δ and dℓ ↾ (0, δ) = d

•4 f is an isomorphism from Md1

0,α(d1)
onto Md2

0,α(d2)
over

Md
0,δ.
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Remark. 1) In the proof we use wnf-delayed uniqueness.
2) This claim helps.

Proof. First, letting M∗ = M ′, we can choose M1
∗ ,M

2
∗ such that (for

ℓ = 1, 2)

⊛1 M∗ ≤s M
ℓ
∗

⊛2 M1 ≤s M
ℓ
∗

⊛3 M ℓ
∗ ∩Mδ = M1

⊛4 WNF(M0,M1,M∗,M
ℓ
∗) hence (M0,M∗, b) ≤bs (M1,M

ℓ
∗, b)

⊛5 M1
∗ ,M

2
∗ are τ -incompatible over M∗ +M1.

[Why? By ⊠(a) and ⊠(g) recalling Definition 8.11(2).]
Second, we choose N ℓ

∗ for ℓ = 1, 2 such that

⊛6 WNF(M1,Mδ,M
ℓ
∗, N

ℓ
∗) for ℓ = 1, 2

⊛7 wnf-delayed uniqueness: if ℓ ∈ {1, 2} and Mδ+1, N
1
δ+1, N

2
δ+1

satisfies WNF(Mδ,Mδ+1, N
ℓ
∗, N

k
δ+1) for k = 1, 2 then we can

find (f,N) such that N2
δ+1 ≤s N and f is a ≤s-embedding

of N1
δ+1 into N over M1

∗ (hence over M∗) and over Mδ+1.

[Why is this possible? As Mδ is brimmed over M1 by cluase (e) of ⊠

we are assuming, and s has wnf-delayed uniqueness by clause (c) of
Theorem 8.14 and we apply it (M1,M

ℓ
∗, b) ≤2 (Mδ, N

ℓ
∗, b) recalling u

is self-dual and 8.8.]
Note that in ⊛6 we can replace N ℓ

∗ by N ℓ
∗∗ if N ℓ

∗ ≤s N ℓ
∗∗ or

M ℓ
∗ ∪Mδ ⊆ N ℓ

∗∗ ≤s N
ℓ
∗.

Third, by the properties of WNF, for ℓ = 1, 2 we can choose

N ℓ
∗∗ and a u-free (1, δ)-rectangle d′

ℓ with M
d′

ℓ

1,0 = M ℓ
∗, b

dℓ

0,0 = b,d′
ℓ ↾

(0, δ) = d ↾ ([0, 0], [1, δ]) and M
d′

δ

1,δ ≤s N
ℓ
∗∗, N

ℓ
∗ ≤s N

ℓ
∗∗.

Now d′
1,d

′
2 are as required. �8.16

8.17 Proof of 8.14. In this case, for variety, instead of using a theorem
on u from §2 or §3, we do it directly (except quoting 9.1). We fix
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a stationary S ⊆ ∂ such that ∂\S /∈ WDmId(∂) and S is a set of
limit ordinals.

We choose g witnessing 8.5(2) for S so without loss of generality
Sg = S so g is u-2-appropriate. Let h be any u − {0, 2}-appropriate

function. We restrict ourselves to Kqt,∗
u := {(M̄, J̄, f) ∈ Kqt

u : M∂ ∈
Ks

λ+ is saturated (above λ), M∂ has universe an ordinal < ∂+ and
f ↾ (∂\S) is constantly 1 and (α ∈ ∂\S ⇒ Mα+1 is brimmed over
Mα}. We now choose 〈(M̄η, J̄η, fη) : η ∈ α(2∂)〉 by induction on
α < ∂+ such that

⊕α (a) (M̄η, J̄η, fη) ∈ Kqt,∗
u for η ∈ α(2∂)

(b) 〈(M̄η↾β, J̄η↾β, fη↾β) : β ≤ α〉 is ≤qt
u -increasing continuous

(c) if α = β + 1 and β is non-limit and η ∈ α(2∂) then the pair
((M̄η↾β, J̄η↾β, fη↾β), (M̄η, J̄η, fη)) obeys30 g if α is even and
obeys h if α is odd

(d) if α = β + 1, β is a limit ordinal, ν ∈ β(2∂) and ε1 6=
ε2 < 2∂ and so ηℓ = νˆ〈εℓ〉 is from α(2∂) for ℓ = 1, 2

then not only Mη1

∂ ,Mη2

∂ are not isomorphic over Mν
∂ , but

if (M̄ηℓ

, J̄ηℓ

, fηℓ

) ≤qt
u (M̄ ℓ, J̄ℓ, f ℓ) for ℓ = 1, 2 then M1

∂ ,M
2
∂

are not isomorphic over Mν
∂ .

By 9.1 this suffices. For α = 0 and α limit there are no problems
(well we have to show that the limit exists which hold by 1.19(4),

and belongs to Kqt,∗
u , but this is easy by 7.28(2)).

So assume α = β + 1, η ∈ β2 and we should choose 〈(M̄ηˆ<ε>,
J̄ηˆ<ε>, fηˆ<ε>) : ε < 2∂〉, let γ∗ be the universe of Mη

∂ .
Let E1 be a club of ∂ = λ+ such that if α < δ ∈ E1 then f(α) < δ

and Mη
δ is brimmed over Mη

α. Let E2 = E1 ∪ {[δ, δ + f(δ)] : δ ∈
S ∩ E1}, and without loss of generality Mη

0 is brimmed and if δ ∈
S ∩E1 then Mδ+1 is brimmed over Mδ (can use g to guarantee this,
or increase it inside Mη

γ with no harm). Let h be the increasing

continuous function from λ+ onto E2 and E = {δ < λ+ : δ a limit
ordinal and h(δ) = δ} a club of λ+ = ∂.

So

⊞ (a) (Mη
α,M

η
α+1,J

η
α) ∈ FR2

u = FR1
u

30we may combine

Paper Sh:300G, Chapter VII



VII.§8 DENSITY OF K3,UQ
S

FOR GOOD λ-FRAMES 643

(b) Mη
θ is brimmed

(c) Mη

h(α+1) is brimmed over Mη

h(α) if α ∈ E1 ∩ S

(d) if h(α) ∈ S then h(α+ 1) = h(α) + 1 (used?).

Now s has non-uniqueness for WNF hence we can find (N, a) such
that the triple (Mη

0 , N, a) has the non-uniqueness property for WNF;
without loss of generality N\Mη

0 is [γ∗, γ∗ + i<>) for some ordinal
i<> ≤ λ.

Now we choose dρ for ρ ∈ ε2 by induction on ε < λ+ such that
(recalling u is self-dual; note that d looks inverted letting ᾱε = 〈λ(1+
ζ) : ζ ≤ ε〉

⊙ for ρ ∈ ε2

(a) dρ is an u-free (ᾱε, ε)-triangle

(b) (Mη
0 , N, {a}) = (M

dρ

0,0,M
dρ

1,0,J
dρ

0,0)

(c) if ζ < ε then dρ↾ζ = dρ ↾ (ᾱζ , ζ)

(d) M
dρ

0,ζ = Mη

h(ζ) for ζ ≤ ε and I
dρ

0,ζ = Jη
ζ for ζ < ε

(e) M
dρ

i+1,ζ+1 is brimmed over M
dρ

i,ζ+1 ∪M
dρ

i,ζ+1 when ζ <

ε, i < λ(1 + ζ)

(f) if ε = ζ + 1 and i < λ then31 Mdε

λε+i+1,ε is brimmed

over M
dρ

λε+i,ε

(g) if ε = ζ + 1 and i < λ and p ∈ S bs
s (Mdε

λε+i,ε) then

for λ ordinals j ∈ [i, λ), the non-forking extension of

p in S bs
s (Mdε

λε+j,ε) is realized by the b ∈ Jdε

λε+1,ε in

Mdε

λε+j+1,ε

(h) if ε ∈ E!∩S so 1+ε = ε then clause (η) of ⊛ of 8.16 holds
with dual(dρ ↾ (λε, 0)), λε, (Mη

0 , N, a), (Mη
ε ,M

η
ε+1,J

η
ε),

dual(dρˆ<0> ↾ [0, λε], [ε, ε + 1]), dual(dρˆ<1> ↾ [0, λε],
[ε, ε+1)) here standing for d, δ, (M,N, a), (M0,M

′, {b}),
d1, d2 there

(i) the set M
dρ

λ(1+ε),ε\M
η
ε is [γ∗, γ∗ + λ(1 + ε)).

31actually can waive clause (f),(g)
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There is no problem to carry the definition.
Lastly for ρ ∈ ∂2 we define (M̄η,ρ, J̄η,ρ, fη,ρ) by: (let E ⊆ ∂ = λ+

be a thin enough club):

⊠ (a) Mη,ρ
ε = M

dρ↾ε

λ(1+ε),ε for ε < λ

(b) fη,ρ = fη

(c) Jη,ρ
ε = Jη

ε when ε ∈ ∪{[δ, δ + fη(δ)) : δ ∈ E}.

Now let 〈Sε : ε < ∂ = λ+〉 be a partition of λ+\S to (pairwise
disjoint) sets from (WDmIdλ+)+.

Now we define a function c:

(∗)1 its domain is the set of x = (ρ1, ρ2, f,d) such that: for some
ε ∈ S ∩ E ⊆ λ+

(a) ρ1, ρ2 ∈ ε2

(b) d is a u-free (ε, 1)-rectangle with Idζ,0 = ∅ for ζ ≤ ε

(c) Md
ζ,0 = M

dρ2

λ(1+ζ),ζ for ζ ≤ ε

(d) Jd
ζ,0 = I

dρ2

0,ζ for ζ ≤ ε

(e) Md
ε,1\M

dρ2

λ(1+ε),ε ⊆ [γ∗ + λ+, γ∗ + λ+ + λ+)

(f) f is a ≤s-embedding ofM
dρ1

λ(1+ε),ε intoMd
ε,1 overMη

h(ε) =

M
dρℓ

0,ε for ℓ = 1, 2

(∗)2 for x = (ρ1, ρ2, f,d) as above, say with ε = ℓg(ρ1) = ℓg(ρ2)
we have c(x) = 1 iff there are d+, f+, N∗ such that letting
νℓ = ρℓˆ〈0〉 for ℓ = 1, 2:

(a) d+ is a u-free (ε+ 1, 1)-rectangle

(b) d+ ↾ (ε, 1) = d

(c) M
dν2

λ(1+ε),ε+1 ≤s N
∗ and Md+

ε+1,1 ≤s N
∗

(d) f+ is a ≤s-embedding ofM
dν1

λ(1+ε),ε+1 into N∗ extending

f ∪ idM
η

h(ε)+1
.
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Note

⊛ if (M̄η,ρ, J̄η,ℓ, fη,ρ) ≤qt (M̄∗,J∗, f∗) and the universe of M∗
∂

is an ordinal < λ++ and π is a one-to-one mapping from M∗
∂

onto γ∗ + ∂ + ∂ over γ∗ + ∂, then we can find 〈eε : ε < λ+〉
such that for some club E of ∂

(a) eε is a u-free (ε, 1)-rectangle

(b) Meε

ζ,0 = M
dρ

λ(1+ζ),ζ for ζ ≤ ε

(c) Jeε

ζ,0 = I
dρ

ζ,ζ for ζ < ε

(d) Meε

ε,1\M
dρ

λ(1+ε),ε ⊆ [γ∗ + λ+, γ∗ + λ+ + λ+)

(e) if ε ∈ E then there is a u-free (ε + 1, 1)-rectangle e+
ε

such that e+
ε ↾ (ε+ 1) = eε+1

(f) 〈Meε

ε,1 : ε < ∂〉 is a ≤s-increasing continuous sequence

with union π(M∗
∂ ) which has universe γ∗ + λ+ + λ+.

For each ζ < λ+ as Sζ ⊆ λ+ does not belong to the weak dimaond

ideal, there is a sequence ̺ζ ∈ (Sζ)2 such that

(∗)3 for any ρ1, ρ2 ∈ ∂2 such that ρ1 ↾ Sζ = 0Sζ
and N∗ ∈

Ks
λ+ , (M̄

∗, J̄∗, f∗) ∈ Kqs
s which is ≤qt-above (M̄η,ρ2 , J̄η,ρ2 , fη,ρ2)

and |M∗
∂ | = γ∗∗ < ∂+ and ≤K[s]-embedding f of Mη,ρ1

∂ into
M∗

∂ over Mη
∂ , letting 〈eδ : δ < ∂〉, π be as in ⊛ for the pair

((M̄η, J̄η, fη), (M̄∗, J̄∗, f∗) the set {δ ∈ Sε : c(ρ1 ↾ δ, ρ2 ↾

δ, f ↾ δ, eδ) = ̺(δ)} is stationary.

Now for any u ⊆ ∂ we define ρu ∈ λ2 by

(∗)4 for ζ < ∂, ℓ < 2 let ρu ↾ S2ζ+ℓ be 02ζ+ℓ if [ζ /∈ u ↔ ℓ = 0]
and ̺ζ otherwise

(∗)5 let ρu ↾ S0 be constantly zero.

Let 〈u(α) : α < 2∂〉 list P(γ) and for α < 2∂ let (M̄ηˆ<α>,Jηˆ<α>,
fηˆ<α>) be (M̄η,ρu(α) ,Jη,ρu(α) , fη,ρu(α)).

Clearly they are as required. �8.14

∗ ∗ ∗
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8.18 Exercise: 1) Assume t is an almost good λ-frame, u = u1
t from

Definition 4.29 then for some u−{0, 2}-appropriate h, for every M ∈

Kt,h

λ++ we have

(a) M is λ+-saturated

(b) if M0 ∈ Kt is ≤K[t] M and p ∈ S bs
t (M0)

then dim(p,M) = λ++ that is, there is a sequence 〈aα : α < λ++〉
of members of M realizing p such that: if M0 ≤t M1 <K[t] M then

{α < λ++ : tpt(a,M1,M) does not fork over M0} is a co-bounded
subset of λ++.
2) Similarly if t has existence for K3,up

s and u = u3
t , see Definition

8.3.

8.19 Theorem.
İ(λ++, Ks) ≥ İ(λ++, Ks(λ+-saturated)) ≥ µunif(λ

++, 2λ+

) and even

İ(Ku,h

λ++) ≥ µunif(λ
++, 2λ+

) for any us − {0, 2}-appropriate h (so we
can restrict ourselves to models λ+-saturated above λ and if s = s′

also to τs-fuller ones) when:

(a) 2λ < 2λ+

< 2λ+

(b) s has non-uniqueness for WNF (for every M ∈ Ks)

(c) K is categorical in λ

(d) u has existence for K3,up
s,λ+ .

Proof. We shall use 8.6, 8.12, 8.14. So assume toward contradiction
that the conclusion fails. We try to apply Theorem 8.6, now its
conclusion fails by our assumption toward contradiction, and clause

(a) there which says “2λ < 2λ+

< 2λ++

” holds by clause (a) of the
present theorem. So necessarily clause (b) of Theorem 8.6 fails which
means that u has wnf-delayed uniqueness, see Definition 8.7.

Next we try to apply Theorem 8.14, again it assumption fails by
our assumption toward contradiction, and among its assumptions

clause (a) which says that “2λ < 2λ+

< 2λ++

” holds by clause (a) of
the present theorem, and clause (c) which says “s has wnf-delayed
uniqueness” has just been proved. So necessarily clause (b) of 8.14
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fails which means that s fails non-uniqueness for WNF, i.e. for some
M .

Now we apply Observation 8.12, noting that its assumption “s is
categorical in λ” holds by clause (c) of the present theorem, so by the
previous sentence one of the equivalent phrases the first fails, hence
all of them. In particular s has uniqueness for WNF. �8.19

§9 The combinatorial part

We deal here with the “relatively” pure-combinatorial parts. We
do just what is necessary. We can get results on İĖ(∂+,Ku), we
can weaken the cardinal arithmetic assumptions to ∅ /∈ DfWD∂ , see
[Sh:E45], we can weaken the demands on K; but not here.

Recall the obvious by the definitions:

9.1 Theorem. If 2∂ < 2∂+

then {Mη/ ∼=: η ∈ ∂+

(2∂) and ‖Mη‖ =
∂+} has cardinality ≥ µunif(∂

+, 2∂) when the following conditions
hold:

⊛ (a) M̄ = 〈Mη : η ∈ ∂+>(2∂)〉

(b) for η ∈ ∂+>(2∂) the model Mη has cardinality ≤ ∂ and for
notational simplicity has universe an ordinal < ∂+

(c) Mη ⊆Mν if η ⊳ ν ∈ ∂+>(2∂), so no a.e.c. appear here!

(d) 〈Mη↾α : α < ℓg(η)〉 is ⊆-increasing continuous for any η ∈
∂+>(2∂)

(e) Mη := ∪{Mη↾α : α < ∂+} for η ∈ ∂+

(2∂)

(f) if η ∈ ∂+>(2∂) and α1 < α2 < 2∂ and ηˆ〈αℓ〉 E νℓ ∈ δ2 for
ℓ = 1, 2 and δ < ∂+ then Mν2

,Mν1
are not isomorphic over

Mη or just

(f)−1 for η ∈ ∂+>2, there is Uη ⊆ 2∂ of cardinality 2∂ such that:
if α0 6= α1 are from Uη and ηˆ〈αℓ〉 E νℓ ∈ δ2 for ℓ < 2 and
δ < ∂+ then Mν0

,Mν1
are not isomorphic over Mη.

Paper Sh:300G, Chapter VII



648 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

Proof. Concerning clause (f)−1 we can by renaming get clause (f), so
in the rest of the proof of 9.1 we can ignore clause (f)−1 .

Note that Ξ0 := {η ∈ ∂+

(2∂) : ‖Mη‖ < ∂+} has cardinality ≤ 2∂

(because for each η ∈ Ξ0 there is αη < ∂+ such that Mη = Mη↾αη
;

and note that by clause (f) we have η1 ∈ Ξ0 ∧ η2 ∈ Ξ0 ∧ αη1
=

αη2
∧η1 ↾ αη1

= η2 ↾ αη2
⇒ η1 = η2). So by clause (b) of ⊛ it follows

that η ∈ ∂+

(2∂)\Ξ0 ⇒ |Mη| = ∂+.

It suffices to assume that Ξ ⊆ ∂+

(2∂) has cardinality< µunif(∂
+, 2∂)

and find η ∈ ∂+

(2∂) such that ν ∈ Ξ ⇒ Mη ≇ Mν , because without
loss of generality Ξ0 ⊆ Ξ.

Let 〈ηζ : ζ < |Ξ|〉 list Ξ and let Nζ := Mηζ
and toward contra-

diction for every ν ∈ ∂+

(2∂) we can choose ζν = ζ(ν) < |Ξ| and an
isomorphism fν from Mν onto Nζ(ν), so fν is a function from Mν

onto Mηζ(ν)
.

For ζ < |Ξ| let Wζ = {ν ∈ ∂+

(2∂) : ζν = ζ}, so clearly:

(∗)1
∂+

(2∂) is equal to ∪{Wζ : ζ < |Ξ|}.

[Why? Obvious by our assumption toward contradiction.]

(∗)2 if i < ∂+ and ρ ∈ i(2∂), then there are no ε1 6= ε2 < 2∂ such
that ρˆ〈εℓ〉 ⊳ νℓ ∈Wζ for ℓ = 1, 2 and fν1

↾ Mη = fν2
↾ Mη.

[Why? By Clause (f) of the assumption.]
Together we get a contradiction to the definition of µunif(∂

+, 2∂),
see Definition 0.4(7). �9.1

Similarly

9.2 Claim. 1) In 9.1 we can replace 2∂ by 〈χi : i < ∂〉 with χi ≤ 2∂ .
2) Also we can weaken clause (f) or (f)−1 there by demanding δ = ∂+.
3) Assume K is an a.e.c. and in 9.1 we demand Mν ≤K Mη ∈ K for

ν ⊳ η ∈ ∂+>(2∂). If we strengthen there clause (f)−1 by strengthening

the conclusion to “if ηˆ〈ℓ〉 ⊳ ηℓ ∈ ∂+

2 for ℓ = 1, 2 then Mν0
,Mν1

cannot be ≤K-amalgamated over Mη” then:

(∗) for every Ξ ⊆ ∂+

(2∂) of cardinality < µunif(∂
+, 2∂) for some

η ∈ ∂+

(2∂) the model Mη has cardinality ∂+ and cannot be
≤K-embedded in Mν for any ν ∈ Ξ
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(∗∗) if 2∂+

> (2∂)+ then there is Ξ ⊆ ∂+

2 of cardinality 2∂+

such
that if η 6= ν ∈ Ξ then Mη cannot be ≤K-embedded into Mν .

Proof. Left to the reader (easier than 9.7 below and will not be used
here). �9.2

Remark. Why do we prefer to state 9.1? As this is how it is used.

9.3 Lemma. Assuming 2θ = 2<∂ < 2∂ (and naturally but not used

2∂ < 2∂+

) and ⊛(a) − (e) of 9.1, a sufficient condition for clause
(f)−1 of 9.1 is:

(a)+ M̄ = 〈Mη : η ∈ ∂+>(2∂)〉 and 〈M∗
η,ζ : ζ < ∂〉 is ⊆-increasing

with union Mη such that ζ < ∂ ⇒ ‖Mη,ζ‖ < ∂

(f)−2 for each η ∈ ∂+>2 we can find 〈Mη,ρ : ρ ∈ ∂≥2〉 such that

(α) 〈Mη,ρ : ρ ∈ ∂2〉 is a subsequence of 〈Mηˆ<α> : α < 2∂〉
with no repetitions so Mη,ρ = Mηˆ<α(ρ)> for some one-

to-one function ρ 7→ α(ρ) from ∂2 to 2∂

(β) if ρ ∈ ∂>2 then Mη,ρ ∈ K<∂

(γ) if ρ ∈ ∂>2 then 〈Mη,ρ↾α : α ≤ ℓg(ρ)〉 is ⊆-increasing
continuous

(δ) ∪{Mη,ρ↾ε : ε < ∂} is equal to Mη,ρ = Mηˆ<α(ρ)> for

any ρ ∈ ∂2

(ε) ∂ is regular uncountable and for some sequence 〈Sε :
ε < ∂〉 of pairwise disjoint non-small stationary subsets
of ∂ (i.e. ε < ∂ ⇒ Sε ∈ (WDmId∂)+) we have

(∗) for every ε < ∂, there is a pair (ḡ, c) = (ḡε, cε), may
not depend on ε such that:

•1 ḡ = 〈gη,ρ : ρ ∈ ∂2〉

•2 gη,ρ is a function from ∂ to H<∂(∂+)

•3 if 2∂ > ∂+ and ρ0, ρ1 ∈ ∂2, ρ1 ↾ Sε is constantly
zero, δ < ∂+, ηˆ〈α(ρℓ)〉 E νℓ ∈ δ(2∂) for ℓ = 0, 1
and f is an isomorphism from Mν0

onto Mν1
then
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for some club E of ∂, if ζ ∈ E ∩ Sε we have ρ0(ζ) =
cε(ρ0 ↾ ζ, Mη,ρ0↾ζ , ρ1 ↾ ζ,Mη,ρ1↾ζ , gη,ρ0

↾ ζ, gη,ρ1
↾

ζ,Mν0,ζ ,Mνζ
, f ↾ Mη,ρ0↾ζ)

•4 if 2∂ = ∂+: as above but c is preserved by any partial
order preserving function from ∂+ to ∂+ extending
idM

η
∂
.

Remark. 1) We can imitate 9.7.
2) If 2∂ = ∂+ then it follows that ∂ = ∂<∂ , so they give us stronger
ways to construct.

Proof. First

⊠ for η ∈ ∂+>(2∂) and ε < ∂ there is ̺η,ε ∈ (Sε)2 such that:

(∗) if ρ0 6= ρ1 are from ∂2, ηˆ〈α(ρℓ)〉 ⊳ νℓ ∈ δ2, δ < ∂+

and f is an isomorphism from Mν0
onto Mν1

then for
stationary many ζ ∈ Sε we have:

̺η(ζ) =cε(ρ0 ↾ ζ,Mη,ρ0↾ζ , ρ1 ↾ ζ,Mη,ρ1↾ζ , gη,ρ0
↾ ζ, gη,ρ1

↾ ζ,

M∗
ν0,ζ ,M

∗
ν1,ζ , f ↾ Mη,ρ0↾ζ)

[Why? First if 2θ ≥ ∂+, use the definition of Sε /∈ WDmId(∂), (see
more in the proof of 9.6). If 2θ = ∂ ∧ 2∂ = ∂+, the proof is similar
using the invariance of cε, i.e. •4.

Lastly, if 2θ = ∂ ∧ 2∂ > ∂+, use µwd(∂) > ∂+, see 0.5(1A).]

Let η ∈ ∂+>(2∂). For any w ⊆ ∂ we define ρη,w ∈ ∂2 as follows:
ρη,w(i) is ̺η,ε if for some ε < ∂ and ℓ < 2 we have i ∈ S2ε+ℓ ∧ [ε ∈
w ≡ ℓ = 1] and is zero otherwise. So {αη(ρη,w) : w ⊂ ∂} is as
required in (f)−1 . �9.3
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9.4 Theorem. If 2∂ < 2∂+

and µ = µunif(∂
+, 2∂) then:

(A) ∅ /∈ UnfTIdµ(∂+)

(B) UnfTIdµ1
(∂+) is µ1-complete when ℵ0 ≤ µ1 = cf(µ1) < µ;

see 0.4(4),(5)

(C) µ = 2∂+

except maybe when (all the conditions below hold):

⊛(a) µ < iω

(b) µℵ0 = 2∂+

(c) there is a family A ⊆ [µ]∂
+

of cardinality ≥ 2∂+

such
that the intersection of any two distinct members of A

is finite.

Remark. So in the aleph sequence µ is much larger than 2∂ , when

µ 6= 2∂+

.

Proof. By [Sh:f, AP,1.16] we have clauses (b) + (c) of ⊛ and they
imply clause (a) by [Sh 460] (or see [Sh 829]). �9.4

9.5 Claim. Assume ∂ > θ ≥ ℵ0 is regular and 2θ = 2<∂ < 2∂ .
Then {Mη/ ∼=: η ∈ ∂2 and Mη has cardinality ∂} has cardinality 2∂

when the following condition holds:

⊛ (a) M̄ = 〈Mη : η ∈ ∂≥2〉 with Mη a τ -model

(b) for η ∈ ∂2, 〈Mη↾α : α ≤ ∂〉 is ⊆-increasing continuous

(c) if η ∈ ∂>2 and ηˆ〈ℓ〉 E νℓ ∈ α2 for ℓ = 0, 1 and α < ∂ then
Mν0

,Mν1
are not isomorphic over M<> or just for α = ∂

(d) M<> has cardinality < ∂

(e) Mη has cardinality ≤ ∂ for η ∈ ∂>2.

Proof. As in the proof of 9.1 we can ignore the η ∈ ∂2 for which Mη

has cardinality < ∂.
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As ∂‖M<>‖ ≤ 2<∂ < 2∂ this is obvious, see I.0.3 or see Case 1 in
the proof of 9.7 below. �9.5

The following is used in VI.3.9 (and can be used in VI.2.18; but
compare with 9.5!)

9.6 Claim. The set {Mη/ ∼=: η ∈ ∂2 and Mη has cardinality ∂} has
cardinality ≥ µ when

⊠1 ∂ = cf(∂) > ℵ0 and

(a) Mη is a τ -model of cardinality < ∂ for η ∈ ∂>2

(b) for each η ∈ ∂2, 〈Mη↾α : α < ∂〉 is ⊆-increasing contin-
uous with union, called Mη

(c) if η ∈ ∂>2, ηˆ〈ℓ〉 ⊳ ρℓ ∈ ∂2 for ℓ = 1, 2 then Mρ1
,Mρ2

are not isomorphic over Mη

⊠2 ∂ /∈ WDmId<µ(∂), e.g. µ = µwd(∂).

Proof. Let Ξ = {η ∈ ∂2 : Mη has cardinality < ∂} and for η ∈ Ξ let
αη = min{α ≤ ∂ : Mη = Mη↾α}, clearly

⊡1 (a) η ∈ Ξ implies αη < ∂

(b) if η ∈ Ξ and η ↾ α ⊳ ν ∈ Ξ\{η} then αν > αη.

For each ̺ ∈ ∂2 we define F̺ : ∂≥2 → ∂≥2 by: for η ∈ α2 let F̺(η) ∈
2ℓg(η)2 be defined by (F̺(η))(2i) = η(i), (F̺(η))(2i + 1) = ̺(i) for
i < α. Easily 〈Rang(F̺) : ̺ ∈ ∂2〉 are pairwise disjoint, hence for
some ̺ ∈ γ2, the sets Rang(F̺) is disjoint to Ξ so without loss of
generality (by renaming):

⊡2 Ξ = ∅.

Let {Nε : ε < ε∗} be a maximal subset of {Mρ : ρ ∈ ∂2} consisting
of pairwise non-isomorphic models.

Without loss of generality the universe of each Mη, η ∈ ∂>2 is
an ordinal γη < ∂ and so the universe of each Mη, η ∈ ∂2 is γη :=
∪{γη↾i : i < ∂} = ∂, in particular the universe of Nε is ∂ and
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η ∈ ∂2 ⇒ γη = ∂. For α < ∂ and η ∈ α2 let the function hη be
hη(i) = Mη↾(i+1) for i < ℓg(η). For each ε < ε∗ we define Ξε ⊆ ∂2

by Ξε = {η ∈ ∂2 : Mη is isomorphic to Nε}.
For η ∈ Ξε choose fε

η : Mη → Nε, an isomorphism, hence fε
η ∈ ∂∂.

By the assumption

⊡3 if ε < ε∗ and η ∈ ∂>2 and ηˆ〈ℓ〉 ⊳ νℓ ∈ Ξε for ℓ = 0, 1 then
fε

ν0
↾ γη 6= fε

ν1
↾ γη.

We also for each ε < ε∗ define a function (= colouring) cε from
⋃

α<∂

(α2 × α∂) to {0, 1} by:

⊡4 cε(η, f) is : 0 if there is ν such that η ⊳ ν ∈ Ξε and f ⊆ fε
ν

and ν(ℓg(η)) = 0
cε(η, f) is: 1 if otherwise.

Now for any η ∈ Ξε, the set

Eε
η = {δ < ∂ : γη↾δ = δ and fε

η ↾ δ is a function from δ to δ}

is clearly a club of ∂.
Now

⊡5 if ε < ε∗, η ∈ Ξε and δ ∈ Eε
η then cε(η ↾ δ, fε

η ↾ δ) = η(δ).

[Why? If η(δ) = 0 then η ↾ δ witness that cε(η ↾ δ, fε
η ↾ δ) = 0. If

η(δ) = 1 just recall ⊡3.]
Hence we have Ξε ∈ WDmTId(∂). To get a contradiction it is

enough to prove ∪{Ξε : ε < ε∗} 6= ∂2, but as ε∗ < µ clearly
⋃

ε<ε∗

Ξε

belongs to WDmId<µ(∂) hence is not ∂2, so we are done. �9.6

The following is used in VI.2.18, VI.3.11, VI.3.9 which repeat the
division to cases.

9.7 Claim. The set {Mη/ ∼=: η ∈ ∂2 and ‖Mη‖ = ∂} has cardinality
2∂ when:

⊠1 Mη is a τ -model of cardinality < ∂ for η ∈ ∂>2, 〈Mη↾α :
α ≤ ℓg(η)〉 is ⊆-increasing continuous, and: if δ < δ(1) < ∂
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are limit ordinals, η0, η1 ∈ δ2 and η0ˆ〈ℓ〉 ⊳ νℓ ∈ δ(1)2 and
η1ˆ〈0〉 ⊳ ν

′
ℓ ∈ δ(1)2 for ℓ = 0, 1 then there are no f0, f1 such

that

(α) fℓ is an isomorphism from Mνℓ
onto Mν′

ℓ
for ℓ = 0, 1

(β) f0 ↾ Mη0
= f1 ↾ Mη0

and Mη1
= f0(Mη0

)

(γ) for some ρ0, ρ1 ∈ ∂2 we have ν′ℓ ⊳ ρℓ for ℓ = 0, 1 and
Mρ0

,Mρ1
are isomorphic over Mη1

⊠2 ∂ = cf(∂) > ℵ0, ∂ /∈ WDmId<µ(∂) (hence 2<∂ < 2∂) and
moreover

⊠3 ∂ is a successor cardinal, or at least there is no ∂-saturated
normal ideal on ∂, or at least WDmId(∂) is not ∂-saturated
(which holds if for some θ < ∂, {δ < ∂ : cf(δ) = θ} /∈
WDmId(∂) because the ideal is normal).

9.8 Remark. 1) Compare with I.3.8 - which is quite closed but
speak on K rather than on a specific 〈Mη : η ∈ ∂>2〉. Can we

get İĖK(∂,K) = 2∂? Also λ+ there corresponds to ∂ here, a minor
change.
2) The parallel claim was inaccurate in the [Sh 576, §3].
3) Used in VI.2.18.

Proof of 9.7. Easily, as in the proof of 9.6 without loss of generality

⊡1 η ∈ ∂2 ⇒ ‖Mη‖ = ∂ while, of course, preserving ⊠1.

We divide the proof into cases according to the answer to the follow-
ing:

Question: Is there η∗ ∈ ∂>2 such that for every ν satisfying η∗ E

ν ∈ ∂>2 there are ρ0, ρ1 ∈ ∂>2 such that: ν ⊳ ρ0, ν E ρ1, and for any
ν0, ν1 ∈ ∂2 satisfying ρℓ ⊳ νℓ, (for ℓ = 0, 1) the models Mν0

,Mν1
are

not isomorphic over Mη∗?

But first we can find a function h : ∂>2 → ∂>2, such that:
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(∗) the function h is one-to-one, mapping ∂>2 to ∂>2, preserv-
ing ⊳, satisfying (h(ν))ˆ〈ℓ〉 E h(νˆ〈ℓ〉) and h is continuous,

for ν ∈ ∂2 we let h(ν) :=
⋃

α<∂

h(ν ↾ α), so ℓg(η) < ∂ ⇔

ℓg(h(η)) < ∂ and:

(b)yes when the answer to the question above is yes, it is exemplified
by η∗ = h(〈〉) and Mh(ρ0),Mh(ρ1) are not isomorphic over

Mh(<>) whenever ν ∈ ∂>2 and h(νˆ < ℓ >) ⊳ ρℓ ∈ ∂2 for
ℓ = 0, 1

(b)no when the answer to the question above is no, h(〈〉) = 〈〉 and
if α + 1 < β < ∂, η ∈ α+12 and h(η) ⊳ ρℓ ∈ β2 for ℓ = 1, 2
then we can find ν1, ν2 and g∗ such that ρℓ ⊳ νℓ ∈ ∂2 and g∗

is an isomorphism from Mν1
onto Mν2

over Mh(η↾α).

[Why can we get (b)no? We choose h(η) for η ∈ α2 by induction on
α such that h(η) = η for α = 0, h(η) = ∪{h(η ↾ β) : β < α} when α
is a limit ordinal, and if α = β+1, ℓ < 2 apply the assumption (“the
answer is no”) with h(η)ˆ < ℓ > standing for η∗ and let h(ηˆ < ℓ >)
be a counterexample to “for every ν”; so we get even more then the
promise; the isomorphism is over Mh(η↾α)ˆ〈ℓ〉 rather than Mh(η↾α),
and note that h(η)ˆ〈ℓ〉 ⊳ h(ηˆ〈ℓ〉).]

Case 1: The answer is yes.
We do not use the non-∂-saturation of WDmId(∂) in this case.

Without loss of generality h is the identity, by renaming.

For any η ∈ ∂2 and ⊆-embedding g of M〈〉 into Mη :=
⋃

α<∂

Mη↾α, let

Ξη,g := {ν ∈ ∂2 : there is an iso. from Mν onto Mη extending g}

Ξη := {ν ∈ ∂2 : there is an isomorphism from Mν onto Mη}.

So:

⊡2 |Ξη,g| ≤ 1 for any g and η ∈ ∂2.

[Why? As if ν0, ν1 ∈ Ξη,g are distinct then for some ordinal α < ∂
and ν ∈ α2 we have ν := ν0 ↾ α = ν1 ↾ α, ν0(α) 6= ν1(α) and use the
choice of h(νˆ〈ℓ〉)), see (b)yes above.]
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Since Ξη = ∪{Ξη,g : g is a ≤K -embedding of M〈〉 into Mη}, we
have

⊡3 |Ξη| ≤ ∂‖Mη∗‖ ≤ 2<∂ .

Hence we can by induction on ζ < 2∂ choose ηζ ∈ ∂2\
⋃

ξ<ζ

Ξηξ
, (exist

by cardinality considerations as 2<∂ < 2∂). Then ξ < ζ ⇒ Mηξ
≇

Mηζ
so we have proved the desired conclusion.

Case 2: The answer is no.
Without loss of generality Mη has as universe the ordinal γη < ∂

for η ∈ ∂>2.
Let 〈Si : i < ∂〉 be a partition of ∂ to sets, none of which is in
WDmId(∂), possible by the assumption ⊠3. For each i < ∂ we
define a function ci as follows:

⊡4 if δ ∈ Si and η, ν ∈ δ2 and γη = γν = δ = γh(η) = γh(ν), and
f : δ → δ then

(a) ci(η, ν, f) = 0 if we can find η1, η2 ∈ ∂2 satisfying h(η)ˆ〈0〉 ⊳
η1 and h(ν)ˆ〈0〉 ⊳ η2 such that f can be extended to an
isomorphism from Mη1

onto Mη2

(b) ci(η, ν, f) = 1 otherwise.

So for i < ∂, as Si /∈ WDmId(∂), for some ̺∗i ∈ ∂2 we have:

(∗)i for every η ∈ ∂2, ν ∈ ∂2 and f ∈ ∂∂ the following set of
ordinals is stationary:

{δ ∈ Si : ci(η ↾ δ, ν ↾ δ, f ↾ δ) = ̺∗i (δ)}.

Now for any X ⊆ ∂ let ηX ∈ ∂2 be defined by:

⊡5 if α ∈ Si then i ∈ X ⇒ ηX(α) = 1 − ̺∗i (α) and i /∈ X ⇒
ηX(α) = 0.

For X ⊆ ∂ let ρX := η{2i:i∈X}∪{2i+1:i∈∂\X} ∈ ∂2. Now we shall show

⊕ if X, Y ⊆ ∂, and X 6= Y then Mh(ρX) is not isomorphic to
Mh(ρY ).
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Clearly ⊕ will suffice for finishing the proof.
Assume toward a contradiction that f is an isomorphism ofMh(ρX)

onto Mh(ρY ); as X 6= Y there is i such that i ∈ X ⇔ i /∈ Y so there
is j ∈ {2i, 2i+ 1} such that

⊡6 ρX ↾ Sj = 〈1 − ̺∗j (α) : α ∈ Sj〉 and ρY ↾ Sj is identically
zero.

Clearly the set E = {δ : f maps δ onto δ and h(ρX ↾ δ), h(ρY ↾ δ) ∈
δ2 and the universes of Mh(ρX↾δ),Mh(ρY ↾δ) are δ} is a club of ∂ and
hence Sj ∩ E 6= ∅.

So if δ ∈ Sj ∩ E then f extends f ↾ Mh(ρX)↾δ and f is an isomor-
phism from Mh(ρX) onto Mh(ρY ); by the choice of ̺∗j we can choose
δ ∈ Sj ∩ E such that:

⊡7 cj(ρX ↾ δ, ρY ↾ δ, f ↾ δ) = ̺∗j (δ).

Also by the choice of j, i.e. ⊡6 we have

⊡8 ρX(δ) = 1 − ̺∗i (δ) and ρY (δ) = 0.

Subcase 2A: ρX(δ) = 0.
Now ρX ↾ δ ⊳ (ρX ↾ δ)ˆ〈ρX(δ)〉 = (ρX ↾ δ)ˆ<0> ⊳ ρX ∈ ∂2 and

(ρY ↾ δ) ⊳ (ρY ↾ δ)ˆ〈ρY (δ)〉 = ρY ˆ<0> ⊳ ρY ∈ ∂2 (as ρX(δ) = 0 by
the case and ρY (δ) = 0 as δ ∈ Sj and the choice of j, i.e. by ⊡6).
Hence f, ρX , ρY witness that by the definition of cj we get

⊗1 cj(ρX ↾ δ, ρY ↾ δ, f ↾ δ) = 0.

Also, by ⊡8

⊗2 0 = ρX(δ) = 1 − ̺∗j (δ) so ̺∗j (δ) = 1.

But ⊗1 +⊗2 contradict the choice of δ, (indirectly the choice of ̺∗j ),
i.e., contradicts ⊡7.

Subcase 2B: ρX(δ) = 1.
By ⊡7 and ⊡6 and the case assumption we have cj(ρX ↾ δ, ρY ↾

δ, f ↾ δ) = ̺∗j (δ) = 1 − ρX(δ) = 0 hence by the definition of cj there

are η1, η2 ∈ ∂2 such that h(ρX ↾ δ)ˆ<0> ⊳ η1, h(ρY ↾ δ)ˆ<0> ⊳ η2,
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and there is an isomorphism g from Mη1
onto Mη2

extending f ↾ δ.
There is δ1 ∈ (δ, ∂) such that: f maps Mh(ρX)↾δ1

onto Mh(ρY )↾δ1

and g maps Mη1↾δ1
onto Mη2↾δ2

. Now by the choice of h, i.e., clause
(b)no above, with h(ρY ↾ δ)ˆ<0>, η2 ↾ δ1, h(ρY ) ↾ δ1 here stand-
ing for ν, ρ1, ρ2 there and get ν1, ν2, g

∗ as there so η2 ↾ δ1 ⊳ ν1 ∈
∂2, h(ρY ) ↾ δ1 ⊳ ν2 ∈ ∂2 and g∗ is an isomorphism form Mν1

onto
Mν2

over Mh(ρY )↾δˆ<0>. So this contradicts ⊠1 in the assumption of
the claim with δ, δ1, h(ρX ↾ δ), h(ρY ↾ δ), η1 ↾ δ1, h(ρX ↾ δ1), η2 ↾

δ1, h(ρY ) ↾ δ1, f ↾ Mη1↾δ1
, g ↾ Mh(ρX↾δ1), ν1, ν2 here standing for

δ, δ(1), η0, η1, ν0, ν1, ν
′
0, ν

′
1, f0, f1, ρ0, ρ1 there. �9.7

§10 Proof of the non-structure
theorems with choice functions

When we try to apply several of the coding properties, we have
to use the weak diamond (as e.g. in 9.7), but in order to use it we
have to fix some quite arbitrary choices; this is the role of the F̄’s
here. Of course, we can weaken 10.1, but no need here.

10.1 Hypothesis. u is a nice ∂-construction framework (so ∂ is regular
uncountable) and τ is a u-sub-vocabulary.

10.2 Definition. We call a model M ∈ Ku standard if M ∈ K◦
u :=

{M ∈ Ku: every member of M is an ordinal < ∂+} and K◦
u =

(K◦
u ,≤K↾ Ko

u).

Convention: Models will be standard in this section if not said oth-
erwise.

10.3 Definition. 1) Let Krt
∂ = Krt

u be the class of quadruples
(M̄, J̄, f , F̄) such that:

(A) (M̄, J̄, f) ∈ Kqt
u recalling 1.15, and M∂ = ∪{Mα : α < ∂}

has universe some ordinal < ∂+ divisible by ∂ hence Mα is
standard for α < ∂
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(B) F̄ = 〈Fα : α < ∂〉 where Fα is a u-amalgamation choice
function, see part (2) below and32 if 2∂ = ∂+ then each Fα

has strong uniqueness, see Definition 10.4(2) below.

2) We say that F is a u-amalgamation function when:

(a) Dom(F) ⊆ {(M0,M1,M2,J1,J2, A) : Mℓ ∈ K◦
u for ℓ ≤ 2,M0 ≤K

Mℓ, (M0,Mℓ,Jℓ) ∈ FRℓ for ℓ = 1, 2 and M1 ∩M2 = M0 and
M1 ∪M2 ⊆ A ⊆ ∂+, and |A\M1\M2| < ∂}

(b) if F(M0,M1,M2,J1,J2, A) is well defined then it has the form
(M3,J

+
1 ,J

+
2 ) such that

(α) Mℓ ≤K M3 ∈ K◦
<∂ for ℓ = 1, 2

(β) |M3| = A

(γ) (M0,Mℓ,Jℓ) ≤
ℓ
u (M3−ℓ,M3,J

+
ℓ ) for ℓ = 1, 2.

(c) if (M0,M1,M2,J1,J2) are as in clause (a) then for some A
we have:
F(M0,M1,M2,J1,J2, A) is well defined and for any such A,
the set A\M1\M2 is disjoint to sup{γ+1 : γ ∈M1 or γ ∈M2}

(d) if33 F(M0,M1,M2,J1,J2, A
k) is well defined for k = 1, 2 then

|A1\M1\M2| = |A2\M1\M2|
moreover

(e) if F(M0,M1,M2,J1,J2, A
1) is well defined and M1 ∪M2 ⊆

A2 ⊆ ∂+ and otp(A2\M1\M2) = otp(A1\M1\M2) then also
F(M0,M1,M2,J1,J2, A

2) is well defined.

3) Let (M̄1, J̄1, f1, F̄1) <at
u (M̄2, J̄2, f2, F̄2) with at standing for atomic,

hold when both quadruples are from Krt
u and there are a club E of

∂ and sequence Ī = 〈Iα : α < ∂〉 witnessing it which means that we
have

(a) δ ∈ E ⇒ f1(δ) ≤ f2(δ) & Min(E\(δ + 1)) > f2(δ)

(b) for δ ∈ E, if i ≤ f1(δ) then M1
δ+i ≤K<∂

M2
δ+i and if i < f i(δ)

then F1
δ+i = F2

δ+i

32can demand this always
33Dropping clause (d) causes little change
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(c) 〈(M0
α,M

1
α, Iα) : α ∈ ∪{[δ, δ+f1(δ)] : δ ∈ E}〉 is ≤1

u-increasing
continuous.

(d) if δ ∈ E and i < f1(δ) and A is the universe of M2
δ+i+1 then

(M2
δ+i+1, I

2
δ+i+1,J

2
δ+i) =

= F1
δ+i(M

1
δ+i,M

1
δ+i+1,M

2
δ+i, Iδ+i,J

1
δ+i, A).

4) We say that (M̄ δ, J̄δ, f δ, F̄δ) is a canonical upper bound of 〈(M̄α,
J̄α, fα, F̄) : α < δ〉 as in Definition 1.15(4) adding: in clause (c), case
1 subclause (γ) to the conclusion Fδ

ζ+i = Fαξ

ζ+i (and similarly in case

2).
4A) We say (〈M̄α, J̄α, fα, F̄α) : α < α(∗)〉 is a <at

u -tower if:

(a) (M̄α, J̄α, fα, F̄α) <at
u (M̄α+1,Jα+1, F̄α+1) for when α + 1 <

α(∗)

(b) if δ < α(∗) is a limit ordinal, then (M̄ δ, J̄δ, f δ, F̄δ) ∈ Krt
u is

a canonical upper bound of the sequence 〈(M̄α, J̄α, fα,Fα) :
α < δ〉.

5) Let (M̄, J̄, f , F̄) ≤rs
u (M̄ ′, J̄′, f ′, F̄′) means that for some

<at
u -tower 〈(M̄α, J̄α, fα, F̄α) : α ≤ α(∗)〉 we have (M̄, J̄, f , F̄) =

(M̄0
α(∗), J̄

0, f0, F̄0) and (M̄ ′, J̄′, f ′, F̄′) = (M̄α(∗), J̄α(∗), f , F̄α(∗)).

6) We say that the sequence 〈(M̄α, J̄α, fα, F̄α) : α < α(∗))〉 is ≤rs
u -

increasing continuous if it is ≤rs
u -increasing and for any limit δ < α(∗)

the tuple (M̄ δ, J̄δ, f δ, F̄δ) is a canonical upper bound of the sequence
of 〈(M̄α, J̄α, fα, F̄α) : α < δ〉.

10.4 Definition. For F a u-amalgamation choice function, see Def-
inition 10.3(2):
1) F has uniqueness when:

⊛ if F(M ℓ
0 ,M

ℓ
1 ,M

ℓ
2 ,J

ℓ
1, I

ℓ
1, A

ℓ) = (M ℓ
3 ,J

ℓ
2, I

ℓ
2) for ℓ = 1, 2 (all

models standard) and f is a one to one function from A1

onto A2 preserving the order of the ordinals, f maps M1
i to

M2
i for i = 0, 1, 2 (i.e. f ↾ M1

i is an isomorphism from M1
i

onto M2
i ) and J1

1, I
1
1 onto J2

1, I
2
1, respectively, then f is an

isomorphism from M1
3 onto M2

3 mapping J1
2, I

1
2 onto J2

2, I
2
2

respectively.
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2) F has strong uniqueness when F has uniqueness and

⊛ if F(M ℓ
0 ,M

ℓ
1 ,M

ℓ
2 ,J

ℓ
1, I

ℓ
1, A

ℓ) = (M ℓ
3 ,J

ℓ
2, I

ℓ
2) for ℓ = 1, 2 and

f is a one to one mapping from M1
1 ∪ M1

2 onto M2
1 ∪M2

2

such that: f ↾ M1
i is an isomorphism from M1

i onto M2
i

for i = 0, 1, 2 and it maps J1
1, I

1
1 onto J2

1, I
2
1, respectively,

then |A1\M1
1 \M

1
2 | = |A2\M2

1 \M
2
2 |, and there is an isomor-

phism g from M1
3 onto M2

3 extending f and mapping J1
2, I

1
2

onto J2
2, I

2
2 respectively; and moreover, otp(A1\M1

1 ,M
1
2 ) =

otp(A2\M2
1 \M

2
2 ) and f ↾ (A\M1

1 \M
1
2 ) is order preserving.

10.5 Remark. 1) In Definition 10.3, in part (2) we can replace clause
(e) by demanding A is an interval of the form [γ∗, γ∗ + θ] where
i < ∂, γ∗ = ∪{γ + 1 : γ ∈M1 or γ ∈M2}. Then in part (3) we have
M1

∂ has universe δ for some δ < ∂+ and M2
γ has universe δ+∂. Also

the results in 10.7, 10.8 becomes somewhat more explicit.
2) We can fix F∗, i.e. demand Fα = F∗ in Definition 10.3.

10.6 Claim. 1) There is a u-amalgamation function with strong
uniqueness.
2) Krt

u is non-empty, moreover for any stationary S ⊆ ∂ and triple

(M̄, J̄, f) ∈ Kqt
u , there is F̄ such that (M̄, J̄, f , F̄) ∈ Krt

u with S =
{δ < ∂ : f(δ) > 0}.
3) If (M̄, J̄1, f1, F̄1) ∈ Krt

u then for some (M̄2, J̄2, f2, F̄2) ∈ Krt
u we

have (M̄1, J̄1, f1, F̄1) <at
u (M̄2, J̄2, f2, F̄2); moreover, if δ is the uni-

verse of M1
∂ then α < ∂ ⇒M2

α\δ ∈ {[δ, δ + i) : i < ∂}.
4) Canonical upper bound as in 10.3(4) exists.

Proof. 1) Let X be the set of quintuples x = (Mx
0 ,M

x
1 ,M

x
2 ,J

x
1 ,J

x
2 )

as in clause (a) of Definition 10.3(2). We define a two-place relation
E on X : xEy iff x,y ∈ X and there is a one-to-one function f from
My

1 ∪My
2 onto Mx

1 ∪Mx
2 such that f ↾ Mx

ℓ is an isomorphism from
Mx

ℓ onto My
ℓ for ℓ = 0, 1, 2 and f maps Jy

ℓ onto Jx
ℓ for ℓ = 1, 2.

Clearly E is an equivalence relation, and let Y ⊆ X be a set of
representatives and for every x ∈ X let y(x) be the unique y ∈ Y
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which is E-equivalent to it and let f = fx be a one-to-one function
from My

1 ∪My
2 onto Mx

1 ∪Mx
2 witnessing the equivalence.

For each y ∈ Y by clause (F) of Definitin 1.2 there is a triple

(My
3 ,J

+,y
1 ,J+,y

2 ) such that

(∗) (Mx
0 ,M

x
ℓ ,J

x
ℓ ) ≤ℓ

u (My
3−ℓ,M

y
3 ,J

+,y
ℓ ) for ℓ = 1, 2.

Without loss of generality My
3 has universe ⊆ ∂+, we can add has

universe My
1 ∪My

2 ∪ [γ, γ+ θ) where γ = sup{α+1 : α ∈My
1 ∪My

2 }
where θ is the cardinality of My

3 \M
y
1 \M

y
2 .

Lastly, let us define F as follows:

(a) ζx = otp(M
y(x)
3 \M

y(x)
1 \M

y(x)
2 ) < ∂

and
(b) Dom(F) = { (x, A) : x ∈ X, Mx

1 ∪ Mx
2 ⊆ A ⊆ ∂ and

otp(A\Mx
1 \M

x
2 ) = ζx},

where (x, A) means (Mx
0 ,M

x
1 ,M

x
2 ,J

x
2 ,J

x
2 , A)

(c) for (x, A) ∈ Dom(F) let fx,A be the unique one to one func-

tion from M
y(x)
3 onto A which extends fx and is order pre-

serving mapping from M
y(x)
3 \M

y(x)
1 \M

y(x)
2 onto A\Mx

1 \M
x
2

(d) for (x, A) ∈ Dom(F) let F(x, A) be the image under fx,A of

(M
y(x)
3 ,J

+,y(x)
1 ,J

+,y(x)
2 ).

Now check.
2) By part (1) and “Kqt

u 6= ∅”, see 1.19(1).
3) Put together the proof of 1.19(3) and part (2).
4) As in the proof of 1.19(4). �10.6.

10.7 Claim. 1) There is a function m satisfying:

⊛1 if (M̄, J̄, f , F̄) ≤rs
u (M̄ ′, J̄′, f ′, F̄′), recalling 10.3(5) then for

some function h : ∂ → H<∂(∂+), but if 2∂ = ∂+ then h :
∂ → H<∂(∂) we have:

⊙ for a club of δ < ∂ the object m(h ↾ δ, M̄, J̄, f , F̄,M ′
δ) is a

model N ∈ Ku such that

(a) Mδ+f(δ) ≤u N

(b) M ′
δ ≤u N

Paper Sh:300G, Chapter VII
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(c) there is N ′ ≤u M
′
∂ isomorphic to N over Mδ+f(δ) +M ′

δ

in fact N ′ = M ′
δ+f(δ)

⊛2 m is preserved by partial, order preserving functions from ∂+

to ∂+ compatible with idM∂

⊛3 in fact in ⊙ above, m(h ↾ δ, M̄ , J̄, f , F̄, M ′
δ) is actually

m(h↾δ, M̄↾[δ, δ + f(δ) + 1, J̄↾[δ, δ + f(δ)), F̄↾[δ, δ + f(δ)],M ′
δ).

Proof. By 10.8 we can define m explicitly. �10.7

10.8 Claim. (M̄ ′, J̄′, f ′, F̄′) ≤rs
u (M̄ ′′, J̄′′, f ′′, F̄′′) iff both are from

Krt
u and we can find a E, α(∗) = α∗, ū, d̄ such that:

⊛ (a) E is a club of ∂

(b) α∗ an ordinal < ∂+

(c) ū is a ⊆-increasing continuous sequence 〈ui : i < ∂〉

(d) i < ∂ ⇒ |ui| < ∂ and α∗ + 1 = ∪{αi : i < ∂} and α ∈ u0, 0 ∈
u0 and (∀β < α)(β ∈ ui ≡ β + 1 ∈ ui)

(e) d̄ = 〈dδ : δ ∈ E〉

(f) dδ is a u-free (f(δ), otp(uδ))-rectangle, see Definition 1.4

(g) there is a ≤at
u -tower 〈(M̄α, J̄α, fα, F̄α) : α ≤ α∗〉 as in 10.3(6)

witnessing the assumption and 〈Īα : α < α∗〉 with Iα wit-
nessing (M̄α, J̄α, fα, F̄α) <at

u∗
(M̄α+1, J̄α+1, fα+1, F̄α+1) (so

(M̄0, J̄0, f0, F̄0) = (M̄ ′, J̄′, f ′, F̄′), (M̄α(∗), J̄α(∗), fα(∗), F̄α(∗)) =
(M̄ ′′, J̄′′, f ′′, F̄′′)) such that

⊡ if β ∈ [0, α∗ +1), δ ∈ E and β ∈ uδ and j = otp(β∩uδ)
then for every i ≤ f(δ)

(α) Mdδ

i,j = Mβ
δ+i

(β) Jdδ

i,0 = J′
δ+i when i < f(δ)

(γ) Idδ

0,j = Iβ
δ when β < α∗

(δ) if i < f(δ) and β < α∗ (so otp(β ∩ uδ) < otp(uδ)) then

(Mdδ

i+1,j+1, I
dδ

i,j+1,J
dδ

i+1,j) =

= Fδ+i(M
dδ

i,j ,M
dδ

i+1,j,M
dδ

i,j+1, I
dδ

i,j ,J
dδ

i,j , |M
dδ

i+1,j+1|).
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Proof. Straight. �10.8

10.9 Remark. If we define the version of 10.3(3) with |M2| = |M1|+∂
then m(−) is O.K. not only up to isomorphism but really given the
value.

10.10 Claim. Theorem 2.3 holds.
That is, İτ (∂+, Ku,h

∂+ ) ≥ µunif(∂
+, 2∂) when:

⊛ (a) 2θ = 2<∂ < 2∂

(b) 2∂ < 2∂+

(c) the ideal WDmId(∂) is not ∂+-saturated

(d) u has the weak τ -coding, see Definition 2.2(5) (or just above

(M̄∗, J̄∗, f∗) ∈ Kqt
u with WDmId(∂) ↾ (f∗)−1{0} not ∂+-

saturated)

(e) h is u − {0, 2}-appropriate.

10.11 Remark. 1) Similarly 2.7 holds.
2) We can below (in ⊠) imitate the proof of 3.3.

Proof. Clearly when (M̄∗, J̄∗, f∗) as in clause (d) is not given, by
10.6(2) we can choose it, even with f∗ constantly zero, so without
loss of generality such a triple is given. By 1.25(4) and clauses (d)
+ (e), without loss of generality :

⊗ h = (h0, h2) witness that {0, 2}-almost every triple (M̄, J̄, f) ∈
Kqt

u above (M̄∗, J̄∗, f∗) has the weak coding property.

Let S̄ be such that

⊙ (a) S̄ = 〈S∗
ζ : ζ < ∂+〉

(b) S∗
ζ ⊆ ∂

(c) S∗
ζ is increasing modulo [∂]<∂

(d) S∗
0 and S∗

ζ+1\S
∗
ζ /∈ WDmId(∂)

(e) f∗ ↾ (∂\S∗
0) is constantly zero.
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Such sequence exists by clause (c) of the hypothesis. It suffices to deal
with the case h2 is a u − 2 − S∗

0 -appropriate function, see Definition
1.24(2A).

We choose 〈(M̄η, J̄η, fη, F̄η) : η ∈ γ(2∂)〉 by induction on γ < ∂+

such that:

⊞ (a) (M̄η, J̄η, fη, F̄η) ∈ Krt
u and if γ = 0 then

(M̄η, J̄η, fη) = (M̄∗, J̄∗, f∗)

(b) if i /∈ S∗
ℓg(η) then fη(i) = 0

(c) 〈(M̄η↾β, J̄η↾β, fη↾β, F̄η↾β : β ≤ γ〉 is ≤rs
u -increasing continuous,

(d) if η ∈ γ+1(2∂) and γ is a non-limit ordinal and α < 2∂ then
the pair ((M̄η, J̄η, fη), (M̄ηˆ<α>, J̄ηˆ<γ>, fηˆ<α>)) strictly
1−S∗

0 -obey h2 and 0-obey h0 (see Definition 1.22(1), 1.24(2)
so without loss of generality for all ηˆ〈α〉 we choose the same
value

(e) η ∈ γ(2∂) and α1 6= α2 < 2∂ , γ a limit ordinal (even ∂ divides
γ) and (M̄ηˆ<α2>, J̄ηˆ<α2>, F̄ηˆ<α2>) ≤rt

u (M ′, J̄′, f ′, F̄′) then

Mηˆ<α1>
∂ cannot be ≤K-embedded into M ′

∂ over Mη.

Why this is enough? By 9.1, noting that

(∗) if γ(∗) < ∂+ and ηˆ〈αi〉 E νi ∈ γ(∗)(2∂) for i = 0, 1 and
α0 < α1 < 2∂ and f is an isomorphism from Mν0

∂ onto Mν1

∂

over Mη
∂ , then η, f ↾ Mηˆ<α0>

∂ , (M̄ν1
, J̄ν1

, fν2
, F̄ν1

) form a
counterexample to clause (e) of ⊞.

For γ = 0 clause (a) of ⊞, i.e. choose (M̄∗, J̄∗, f∗) recallng our use
of 10.6(2).

For γ limit use 10.6(4).

So assume η ∈ γ(∗)(2∂) and (M̄η, J̄η, fη, F̄η) has been defined and
we should deal with Ξη := {ηˆ〈α〉 : α < 2∂}.

We choose (α(0), N0, I0) such that

⊕ (a) α(0) < ∂

(b) (Mη

α(0), N0, I0) ∈ FR1

(c) N0 ∩M
η
∂ = Mη

α(0)
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(d) if γ(∗) is a non-limit ordinal then (α(0), N, I) is as dictated
by h, i.e. h0, see Definition 1.24(1)(c)

(e) if γ(∗) is a limit ordinal and (M̄η, J̄η, fη) has the weak coding1

property (see Definition 2.2(3)) then for a club of α(1) ∈
(α(0), γ) we have:
(∗) if (Mα(0), N0, I0) ≤1

u (Mα(1), N
∗
1 , I

∗
1) and Mη

∂ ∩ N∗
1 =

Mη

α(1)

then there are α(2) ∈ (α(1), γ) and N ℓ
2 , I

ℓ
2 for ℓ = 1, 2

such that: (Mη

α(1), N1, I1) ≤1
u (Mη

α(2), N
ℓ
2 , I

ℓ
2) for ℓ =

1, 2 and N1
2 , N

2
2 are τ -incompatible amalgamations of

Mη

α(2), N1 over Mη

α(1).

Without loss of generality

(f) |N0|\M
η

α(0) is an initial segment of ∂+\|Mη
∂ |.

We shall use 9.3. Toward this we choose ui and if i ∈ ui also
Eη

ρ ,M
η
ρ , I

η
ρ,J

η
ρ (but Jη

ρ is chosen in the (i + 1)-th step) for ρ ∈ i2
induction on i ∈ [α(0), ∂) such that:

⊠1 (a) ui ⊆ [α(0), i] is closed

(b) if j < i then ui ∩ (j + 1) = uj

(c) Eη
ρ is a closed subset of i ∩ ui

(d) j < ℓg(ρ) = Eη
ρ↾j = Eη

ρ ∩ j

(e) if j ∈ Eη
ρ then fη(j) < min{(Eη

ρ\j) or Eη
ρ ⊆ j} and (j, j +

fη(j)] ⊆ ui

(f) Mη
ρ ∈ Ku

<∂ and Mη
ρ ∩Mη = Mη

ℓg(ρ)

(g) 〈Mη
ρ↾j : j ∈ ui〉 is ≤K<∂

-increasing continuous

(h) 〈(Mη
j ,M

η
ρ↾j, I

η
ρ) : j ∈ ui〉 is ≤1

u-increasing continuous

(i) (α) (Mη
j ,M

η
j+1,J

η
j ) ≤2

u (Mη
ρ↾j ,M

η

ρ↾(j+1),J
η
ρ↾j) when j ∈ i∩ui

(β) if j ∈ ∪{[ζ, ζ + fη(ζ)) : ζ ∈ Eη
ρ} then moreover we get

(Mη

ρ↾(j+1), I
η
ρ↾j ,J

η
ρ↾j) by applying Fη

j

(j) if i = ℓg(ρ) = j + 1, j is limit ∈ S∗
γ(∗)+1\S

∗
γ(∗) and ∪{Eρ↾j :

j < ℓg(ρ)} is unbounded in ℓg(ρ) and fη(ℓg(ρ)) = 0 and if we
can then ui = uj ∪ {i} and (Mη

ρˆ<ℓ>, I
η
ρˆ<ℓ>,J

η
ρˆ<ℓ>) for ℓ =
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0, 1 are gotten as in ⊕ above so in particularMη
ρˆ<0>,M

η
ρˆ<ℓ>

are τ -incompatible amalgamations of Mη
i ,M

η
ρ over Mη

j

(k) if i = j + 1, δ = max(Eη
ρ↾j) ≤ i, δ ∈ S∗

0 , j = δ + fη(δ), then
we act as dictated by h, i.e. h2; moreover this holds for all
the interval [δ+ fη(δ), δ+ fη(δ)+ i′] for an appropriate i′ < ∂
by the “dictation” of h2 (see Definition 1.22).

In clause (j) this is possible for enough times, if (M̄η, J̄η, fη) has the
weak coding1 property, i.e. for ρ ∈ ∂2, for a club of i ∈ f−1

η {0} by
the choice of h. Trace the Definitions.
Also (M̄η, J̄η, fη) has the weak coding property by the choice of h

and the induction hypothesis.
Clearly we can carry the induction on i < λ and by 9.3 carrying

the induction to γ(∗)+1, so we have finished carrying the induction.
So by 9.1 we are done.

�10.10

10.12 Claim. Theorem 2.11 holds.
That is, İτ (∂+, Ku

∂+) ≥ µunif(∂
+, 2∂), when:

⊛ (a) 2θ = 2<∂ < 2∂

(b) 2∂ < 2∂+

(c) u has the vertical τ -coding1 property above some triple

from Kqt
u .

Proof. Like the proof of 10.10 but:

Change (A): We omit S̄, i.e. ⊙, the choice of 〈S∗
ε : ε < ∂+〉, can

use S∗
0 = ∂, or more transparently, use S∗

ζ = S∗
0 stationary, ∂\S∗

ζ ∈

(WDmId(∂))+, on S∗
0 act as before on ∂\S∗

0 and act as on S∗
ζ+1\S

∗
ζ

before.

Change (B): We change clause ⊠(j) to fit the present coding so any
limit ordinal j. �10.12
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10.13 Claim. Theorem 2.15 holds.
That is İτ (∂+, Ku

∂+) ≥ 2∂+

when:

(a) 2θ = 2<∂ < 2∂

(b) 2∂ < 2∂+

(c) u has horizontal τ -coding property, say just above (M̄∗, J̄∗, f∗)

(d) the ideal WDmId(∂) is not ∂+-saturated.

Proof. Similar to the proof of 10.10 but:

Change (A): We omit ⊙, i.e. S̄∗ and use S∗
0 = ∂

Change (B): In ⊞ we use only η ∈ ∂+

2 and clause (e) is changed to:

(e)′′ if (M̄ηˆ<1>, J̄ηˆ<1>, fηˆ<1>, F̄ηˆ<1>) ≤rt
u (M̄ ′, J̄′, f ′, F̄′) then

Mηˆ<0>
∂ cannot be ≤K-embedded into M ′

∂ over M<>
∂ .

Change (C): We change ⊠ clause (j) to deal with the present coding.

Change (D): We use 9.5 rather than 9.1. �10.13

∗ ∗ ∗

10.14 Discussion: 1) Instead constructing ≤at
u -successors (M̄ηˆ〈α〉,

Jηˆ〈α〉, fηˆ〈α〉) of (M̄η, J̄η, fη), we may like to build, for each α < 2∂

an increasing sequence of length ζ, first with ζ < ∂ then even ζ < ∂+

but a sequence of approximations of height ∂.
We would like to have in quite many limit δ < ∂ a “real choice” as

the various coding properties says. How does this help? If arriving

to η ∈ δ(2∂), δ < ∂+, ηˆ〈α〉, the model Mηˆ<α>
δ is brimmed over

Mδ; this is certainly beneficial and having a tower arriving to δ help
toward this. But it has a price - we have to preserve it. In case we
have existence for K3,up

s this occurs, see the proof of Theorem 8.14
(but was proved in an ad-hoc way).
2) So we have a function ι such that; so during the construction,

for η ∈ ∂+

(2∂) letting Sη := {ξ < ℓg(η) : 〈(M̄ (η↾ξ)ˆ<α>, J̄(η↾ξ)ˆ<α>,

f (η↾ξ)ˆ<α>) : α < 2∂〉 is not constant} we have:
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(a) if ξ = ℓg(η) = sup(Sη) + 1 and ι = ι(M̄η ↾ (ξ + 1), J̄η↾(ξ+1),

fη↾(ξ+1)), F̄η↾(ξ+1)) and η ⊳ νℓ ∈ ℓg(η)+ι(2∂) for ℓ = 1, 2 then
(M̄ν1 , J̄ν1 , fν1 , F̄ν1) = (M̄ν2 , J̄ν2 , fν2 ,Fν2).

To formalize this we can use (see a concrete example in the proof in
8.17).

10.15 Definition. 1) We say i is a ∂-parameter when:

(a) i = (ι, ū)

(b) ι is an ordinal ≥ 1 but < ∂+

(c) ū = 〈uε : ε < ∂〉 is a ⊆-increasing sequence of subsets of ι of
cardinality < ∂ with union ι

(d) if δ is a limit ordinal < ∂ then uδ is the closure of ∪{uε : ε <
δ}.

2) We say d is a u-free ([ε1, ε2], i)-rectangle when:

(a) ε1 ≤ ε2 < ∂

(b) d is a u-free ([ε1, ε2], ι)-rectangle

(so ι may be ≥ ∂, but then not serious; in fact, it is an u-free
([ε1, ε2], uδ)-rectangle but we complete it in the obvious way.)
3) The short case is when i is short, i.e. ι = 1, uα = 1.

The long case is ι = ∂, uε = ε+ 1.

10.16 Discusssion: 1) Above we have concentrated on what we may
call the “short” case, the “long” case as described in 10.14, 10.15
allows more constructions by “consuming” more levels.
2) Above we can restrict ourselves to the case ∂ = λ+ so in 10.3 we
then demand on (A\M1\M2) is just “equal to λ” and the possible
variants of 10.3(2),(a) + (b)(B) are irrelevant.

§11 Remarks on pcf

This section will provide us two pcf claims we use. One is 11.1,

a set-theoretic division into cases when 2λ < 2λ+

(it is from pcf
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theory; note that the definition of WDmId(λ) is recalled in 0.3(4)(b)
= 0.3(4)(b) and of µwd(λ) is recalled in 0.3(8) = 0.3(8)), we can
replace λ+ by regular λ such that 2θ = 2<λ < 2λ for some θ). The
second deals with the existence of large independent subfamilies of
sets, 11.4. This is a revised version of a part of [Sh 603]. See on
history related to 11.1 in [Sh:g] particularly in [Sh:g, II,5.11] and [Sh
430].

Remark. Recall that

cov(χ, µ, θ, σ) = χ+ Min
{

|P| :P ⊆ [χ]<µ and every member of [χ]<θ

is included in the union

of < σ members of P
}

.

11.1 Claim. Assume 2λ < 2λ+

.
Then one of the following cases occurs: (clauses (α)− (λ) appear

later)

(A)λ χ∗ = 2λ+

and for some µ clauses (α) − (ε) hold

(B)λ for some χ∗ > 2λ and µ clauses (α) − (κ) hold (note: µ
appear only in (α) − (ε))

(C)λ χ∗ = 2λ and clauses (η) − (µ) hold
where

(α) λ+ < µ ≤ 2λ and cf(µ) = λ+

(β) pp(µ) = χ∗, moreover pp(µ) =+ χ∗

(γ) (∀µ′)(cf(µ′) ≤ λ+ < µ′ < µ⇒ pp(µ′) < µ) hence
cf(µ′) ≤ λ+ < µ′ < µ⇒ ppλ+(µ′) < µ

(δ) for every regular cardinal χ in the interval (µ, χ∗] there
is an increasing sequence 〈λi : i < λ+〉 of regular cardi-

nals > λ+ with limit µ such that χ = tcf

(

∏

i<λ+

λi/J
bd
λ+

)

,

and i < λ+ ⇒ max pcf{λj : j < i} < λi < µ

(ε) for some regular κ ≤ λ, for any µ′ < µ there is a tree
T with ≤ λ nodes, κ levels and |limκ(T )| ≥ µ′ (in fact
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e.g. κ = Min{θ : 2θ ≥ µ} is appropriate; without loss
of generality T ⊆ κ>λ)

(ζ) there is no normal λ++-saturated ideal on λ+

(η) there is 〈Tζ : ζ < χ∗〉 such that: Tζ ⊆ λ+>2, a subtree

of cardinality λ+ and λ+

2 = {limλ+(Tζ) : ζ < χ∗}

(θ) χ∗ < 2λ+

moreover χ∗ < µunif(λ
+, 2λ), but < µunif(λ

+, 2λ)
is not used here,

(ι) for some ζ < χ∗ we have limλ+(Tζ) /∈ UnfmTId(χ∗)+(λ+),
not used here

(κ) cov(χ∗, λ++, λ++,ℵ1) = χ∗ or χ∗ = λ+, equivalently
χ∗ = sup[{pp(χ) : χ ≤ 2λ,ℵ1 ≤ cf(χ) ≤ λ+ < χ} ∪
{λ+}] by [Sh:g, Ch.II,5.4]; note that clause (κ) trivially

follows from χ∗ = 2λ+

(λ) for no µ ∈ (λ+, 2λ] do we have cf(µ) ≤ λ+, pp(µ) > 2λ;

equivalently 2λ > λ+ ⇒ cf([2λ]λ
+

,⊆) = 2λ

(µ) if there is a normal λ++-saturated ideal on λ+, more-

over the ideal WDmId(λ+) is, then 2λ+

= λ++ (so as

2λ < 2λ+

clearly 2λ = λ+).

Proof. This is related to [Sh:g, II,5.11]; we assume basic knowledge
of pcf (or a readiness to believe quotations). Note that by their
definitions

⊛1 if 2λ > λ+ then for any θ ∈ [ℵ0, λ
+] we have cf([2λ]≤λ+

,⊆) =
2λ ⇔ cov(2λ, λ++, λ++, 2) = 2λ ⇔ cov(2λ, λ++, λ++, θ) =
2λ .

[Why? Because (2λ)<λ+

= 2λ and cf([2λ]≤λ+

,⊆) = cov(2λ, λ++,
λ++, 2) ≥ cov(2λ, λ++, λ++,ℵ0) ≥ cov(2λ, λ++, λ++, θ) ≥ 2λ for
θ ∈ [ℵ0, λ].]

Note also that

⊛2 λ+ /∈ WDmId(λ+) and λ+

2 /∈ WDmTId(λ+).
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[Why? Theorem 0.5(2) with θ, ∂ there standing for λ, λ+ here.]

Possibility 1: 2λ > λ+ and cov(2λ, λ++, λ++,ℵ1) = 2λ or 2λ = λ+;
and let χ∗ := 2λ.

We shall show that case (C) holds (for the cardinal λ), the first
assertion “χ∗ = 2λ” holds by our choice.
Now clause (κ) is obvious. As for clause (η), we have χ∗ = 2λ <

2λ+

. Now if 2λ = λ+ we let Tζ = λ+>2, for ζ < χ∗ so clause (η)

holds, otherwise as λ+>2 has cardinality 2λ, by the definitions of
cov(2λ, λ++, λ++,ℵ1) and the possibility assumption (and obvious

equivalence) there is P ⊆ [λ
+>2]λ

+

of cardinality χ∗ such that any

A ∈ [λ
+>2]λ

+

is included in the union of ≤ ℵ0 of them. So η ∈
λ+

2 ⇒ (∃A ∈ P)(∃λ+

α < λ+)(η ↾ α ∈ A) so let 〈Aζ : ζ < χ∗〉 list
P and let Tζ = {η ↾ α : η ∈ Aζ and α ≤ ℓg(η)}, now check that
they are as required in clause (η).

As on the one hand by [Sh:f, AP,1.16 + 1.19] or see 9.4 we

have
(

µunif(λ
+, 2λ)

)ℵ0
= 2λ+

> 2λ = χ∗ and on the other hand

(χ∗)ℵ0 = (2λ)ℵ0 = 2λ = χ∗ necessarily χ∗ < µunif(λ
+, 2λ) so clause

(θ) follows; next clause (ι) follows from clause (η) by the definition of
UnfTId(χ∗)+(λ+). In fact in our possibility for some ζ, limλ+(Tζ) /∈

WDmTId(λ+) because WDmTId(λ+) is (2λ)+-complete by 0.5(2),(4)
recalling ⊛2 and having chosen χ∗ = 2λ.

Now if 2λ+

> λ++, (so 2λ+

≥ λ+3), then for some ζ < χ∗,Tζ is
(a tree with ≤ λ+ nodes, λ+ levels and) at least λ+3 λ+-branches
which is well known (see e.g. [J]) to imply “no normal ideal on λ+

is λ++-saturated”; so we got clause (µ). Also if 2λ+

≤ λ++ then

2λ = λ+, 2λ+

= λ++.
As for clause (λ), by the definition of χ∗ and the assumption

χ∗ = 2λ we have the first two phrases. The “equivalently” holds as
(2λ)ℵ0 = 2λ.

Possibility 2: χ∗ := cov(2λ, λ++, λ++,ℵ1) > 2λ > λ+.
So (C)λ fails, and we have to show that (A)λ or (B)λ holds.
Let

(∗)0 µ := Min{µ : cf(µ) ≤ λ+, λ+ < µ ≤ 2λ and pp(µ) = χ∗}.

Paper Sh:300G, Chapter VII



VII.§11 REMARKS ON PCF 673

We know by [Sh:g, II,5.4] that µ exists and (by [Sh:g, II,2.3](2))
clause (γ) holds, also 2λ < pp(µ) ≤ µcf(µ) ≤ (2λ)cf(µ) = 2λ+cf(µ)

hence cf(µ) = λ+. So clauses (α), (β), (γ) hold (of course, for clause
(β) use [Sh:g, Ch.II,5.4](2)), and by (γ) + [Sh:g, VIII,§1] also clause
(δ) holds.

Toward trying to prove clause (ε) let

(∗)1 Υ := Min{θ : 2θ ≥ µ},
clearly34

(∗)2 α < Υ ⇒ 2|α| < µ and Υ ≤ λ (as 2λ ≥ µ) hence cf(Υ) ≤
Υ ≤ λ < λ+ = cf(µ) hence 2<Υ < µ.

Let

(∗)3 (a) u be a closed unbounded subset of Υ of order type cf(Υ)

(b) T ∗ = (
⋃

α∈u

α2, ⊳) is a tree with cf(Υ) levels and ≤ 2<Υ

nodes.

Now we shall prove clause (ε), i.e.

(∗)4 there is a tree with λ nodes, cf(Υ) levels and ≥ µΥ-branches.

Case A: Υ has cofinality ℵ0.

In the case Υ = ℵ0 or just 2<Υ ≤ λ clearly there is a tree as required,
i.e. T ∗ is a tree having ≤ 2<Υ ≤ λ nodes. So we can assume 2<Υ > λ
and Υ > cf(Υ) = ℵ0 hence 〈2θ : θ < Υ〉 is not eventually constant.

So necessarily (∃θ < Υ)(2θ ≥ λ)hence 2<Υ > λ+ (and even 2<Υ ≥
λ+ω) and for some θ < Υ we have λ++ < 2θ < 2<Υ < µ. Let
χ′ = cov(2<Υ, λ++, λ++,ℵ1), so χ′ ≥ 2<Υ and χ′ < µ by [Sh:g,
II,5.4] and clause (γ) of 11.1 which have been proved (in our present
possibility).

We try to apply claim 11.3 below with ℵ0, λ
+, 2<Υ, χ′ here stand-

ing for θ, κ, µ, χ there; we have to check the assumptions of 11.3
which means 2<Υ > λ+ > ℵ0 and χ′ = cov(2<Υ, λ++, λ++,ℵ1),

34Below we show that Υ > cf(Υ) ⇒ cf(Υ) > ℵ0.
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both clearly hold. So the conclusion of 11.3 holds which means
that (χ′)ℵ0 ≥ cov((2<Υ)ℵ0 , (λ++)ℵ0 , λ++, 2), now (χ′)ℵ0 ≤ µℵ0 ≤
(2λ)ℵ0 = 2λ and (2<Υ)ℵ0 = 2Υ ≥ µ because presently cf(Υ) = ℵ0

and the choice of Υ and (λ++)ℵ0 ≤ (2θ)ℵ0 = 2θ. So by monotonic-
ity 2λ ≥ cov(µ, 2θ, λ++,ℵ1). But cov(2θ, λ++, λ++,ℵ1) ≤ χ′ :=
cov(2<Υ, λ++, λ++,ℵ1) < µ ≤ 2λ by clause (γ) which we have

proved (and [Sh:g, ChII,5.4]) so by transitivity of cov, see 11.2(4),
also 2λ ≥ cov(µ, λ++, λ++,ℵ1) contradicting the present possibility.

Case B: cf(Υ) > ℵ0.
Let h : T ∗ → 2<Υ be one-to-one, see (∗)3(b). Let P ⊆ [2<Υ]≤λ

be such that every X ∈ [2<Υ]≤λ+

is included in the union of count-
ably members of P, exists by clause (γ) of 11.1 by [Sh:g, II.5.4].

Now for every ν̄ = 〈νε : ε < Υ〉 ∈ limcf(Υ)(T
∗), for some Aν̄ ∈ P

we have Υ = sup{ε ∈ u : h(νε) ∈ Aν̄}, so for every µ′ ∈ (2<Υ, µ) for
some A ∈ P we have µ′ ≤ |{ν̄ : ν̄ ∈ limcf(Υ)(T

∗) and Aν̄ = A}|.
Now let T ′ be the closure of A to initial segments of length ∈ u,

easily T ′ is as required.
So we have proved (∗)4 so in possibility (2) the demand (α)− (ε)

in (A)λ holds.

Sub-possibility 2α: χ∗ < 2λ+

.
We shall prove (B)λ, so by the above we are left with proving

clauses (ζ) − (κ) when χ∗ < 2λ+

. By the choice of χ∗, easily the
demand in clause (ζ) (in Case B of 11.1) holds; that is let {uζ : ζ <

χ∗} be a family of subsets of λ+>2, a set of cardinality 2λ, each of
cardinality λ+ such that any other such subset is included in the
union of ≤ ℵ0 < ℵ1 of them, exist by the choice of χ∗.

Let Tζ = {ν ↾ i : ν ∈ uζ and i ≤ ℓg(ν)}. Now 〈T ∗
ζ : ζ < χ∗〉 is as

required.
In clause (η), “2λ < χ∗” holds as we are in possibility 2α.

Also as pp(µ) = χ∗ and cf(µ) = λ+ by the choice of µ necessarily
(by transitivity of pcf, i.e., [Sh:g, Ch.II,2.3](2)) we have cf(χ∗) > λ+

but µ > λ+. Easily λ+ < χ ≤ χ∗∧ cf(χ) ≤ λ+ ⇒ pp(χ) ≤ χ∗ hence
cov(χ∗, λ++, λ++,ℵ1) = χ∗ by [Sh:g, Ch.II,5.4], which gives clause

(λ). Now let A ⊆ [χ∗]λ
+

exemplify cov(χ∗, λ++, λ++,ℵ1) = χ∗ and
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let A ′ = {B : B is an infinite countable subset of some A ∈ A }.

So A ′ ⊆ [χ∗]ℵ0 and easily A ∈ [χ∗]λ
+

⇒ (∃B ∈ A ′)(B ⊆ A) and
|A ′| ≤ χ∗ as (λ+)ℵ0 ≤ 2λ < χ∗ certainly there is no family of > χ∗

subsets of χ∗ each of cardinality λ+ with pairwise finite intersections.

But by 9.4 there is A ′ ⊆ [µunif(λ
++, 2λ+

)]λ
+

of cardinality 2λ++

such
that A 6= B ∈ A ′ ⇒ |A∩B| < ℵ0, hence we have χ∗ < µunif(λ

+, 2λ)
thus completing the proof of (θ).

Now clause (ι) follows by clauses (η)+(θ)+(κ) as ∅ /∈ UnfTId(χ∗)+

∈ (λ+) which is (χ∗)+-complete ideals, see 9.4. Note also that ∅ ∈
WDmTIdχ∗(λ+) by 0.5(2) and it is a (χ∗)+ complete ideal by 0.5(4).

Also by clause (α) which we have proved 2λ+

6= λ++ hence 2λ+

≥ λ+3

so by clause (η) (as χ∗ < 2λ+

), we have |limλ+(Tζ)| ≥ λ+3 for some
ζ which is well known (see [J]) to imply no normal ideal on λ+ is
λ++-saturated; i.e., clause (µ). So we have proved clauses (α) − (λ)
holds, i.e. that case (B)λ holds.

Sub-possibility 2β: χ∗ = 2λ+

(and χ∗ > 2λ > λ+).
We have proved that case (A)λ holds, as we already defined µ and

χ∗ and proved clauses (α), (β), (γ), (δ), (ε) so we are done. �11.1

It may be useful to recall (actually λ<κ>tr = λ suffice)

11.2 Fact. 1) Assume λ > θ ≥ κ = cf(κ) ≥ κ1. Then λ<κ>tr ≤
cov(λ, θ+, κ+, κ1) recalling µ<κ>tr = sup{limκ(T ) : T is a tree

with ≤ µ nodes and κ levels, e.g. T a subtree of κ>µ}.
2) If µ > ℵ0 is strong limit and λ > µ then for some κ < µ we have
cov(λ, µ, µ, κ).

3) If T ⊆ λ+>2 is a tree, |T | ≤ λ+ and λ ≥ iω then for every regular
κ < iω large enough, we can find 〈Yδ : δ < λ+, cf(δ) = κ〉, |Yδ| ≤ λ
such that:
for every η ∈ limλ+(T ) for a club of δ < λ+ we have cf(δ) = κ ⇒
η ↾ δ ∈ Yδ.
4) [Transitivity of cov] If µ3 ≥ µ2 ≥ µ1 ≥ θ ≥ σ = cf(σ) and
λ2 = cov(µ3, µ2, θ, σ) and µ < µ2 ⇒ λ1 ≥ cov(µ, µ1, θ, σ) then
λ1 + λ2 ≥ cov(µ3, µ1, θ, σ).

Proof. 1) E.g. proved inside 11.1.
2) By [Sh 460] or see [Sh 829].
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3) Should be clear from part (2).
4) Let P2 ⊆ [µ3]

<µ2 exemplify λ2 = cov(µ3, µ2, θ, σ) and for each
A ∈ P2 let fA be one to one function from |A| onto A and P1,A ⊆
[|A|]<µ1 exemplify λ1 ≥ cov(|A|, µ1, θ, σ). Lastly, let P = {fA(α) :
α ∈ u} : u ∈ P1,A, A ∈ P2} it exemplify λ1 + λ2 ≥ cov(µ3, µ1, θ, σ)
as required. �11.3

We have used in proving 11.1 also

11.3 Observation. Assume µ > κ > θ.
If χ = cov(µ, κ+, κ+, θ+) then χθ ≥ cov(µθ, (κθ)+, κ+, 2).

Proof. Let P ⊆ [µ]κ exemplify χ = cov(µ, κ+, κ+, θ+).
Let 〈ηα : α < µθ〉 list θµ. Now for U ∈ [µ]κ define U [∗] = {α <

µθ: if i < θ then ηα(i) ∈ U }, and let P1 = P,P2 = {
⋃

i<θ

Ai : Ai ∈

P for i < θ} and P3 = {U [∗] : U ∈ P2}.
So (of course χ ≥ µ as µ > κ, hence χ > κ)

(∗)1 (a) P1 ⊆ [µ]κ has cardinality χ

(b) P2 ⊆ [µ]κ
θ

has cardinality ≤ χθ

(c) P3 ⊆ [µθ]κ
θ

has cardinality ≤ χθ + κθ = χθ

and

(∗)2 if U ∈ [µθ]≤κ then

(a) U ′ := {ηα(i) : α ∈ U and i < θ} ∈ [µ]≤κ

(b) there are Ai ∈ P1 for i < θ such that U ′ ⊆
⋃

i<θ

Ai

(c)
⋃

i<θ

Ai ∈ P2

(d) U ⊆ (
⋃

i<θ

Ai)
[∗] ∈ P3 ⊆ [µθ]κ

θ

.

[Why? Clause (a) holds by cardinal arithmetic, clause (b)
holds by the choice of P = P1, clause (c) holds by the
definition of P2 and clause (d) holds by the definition of
(−)[∗] and of P3.]
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Together we are done. �11.3

The following is needed when we like to get in the model theory
not just many models but many models no one ≤K-embeddable into
another and even just for İ, (see VI.4.7).

11.4 Claim. Assume:

(a) cf(µ) ≤ κ < µ, κ+ < θ < χ∗ and ppκ(µ) = χ∗, moreover
ppκ(µ) =+ χ∗

(b) F is a function, with domain [µ]κ, such that: for a ∈ [µ]κ,F(a)
is a family of < θ members of [µ]κ

(c) F is a function with domain [µ]κ such that

a ∈ [µ]κ ⇒ a ⊆ F (a) ∈ F(a).

Then we can find pairwise distinct ai ∈ [µ]κ for i < χ∗ such that
I = {ai : i < χ∗} is (F,F)-independent which means

(∗)F,F,I a 6= b & a ∈ I & b ∈ I & c ∈ F(a) ⇒ ¬(F (b) ⊆ c).

11.5 Remark. 1) Clearly this is a relative to Hajnal’s free subset
theorem [Ha61].
2) Note that we can choose F (a) = a.
3) Also if µ1 ≤ µ, cf(µ1) ≤ κ ≤ κ+ θ < µ1 and ppκ(µ1) ≥ µ then by
[Sh:g, Ch.II,2.3] the Fact for µ1 implies the one for µ.
4) Note that if λ = cf([µ]κ,⊆) then for some F, F as in the Fact we
have

⊛ if ai ∈ [µ]κ for i < λ+ are pairwise distinct then not every
pair {ai, aj} is (F, F )-independent
[why? let P ⊆ [µ]κ be cofinal (under ⊆) of cardinality λ,
and let F,F be such that
F(a) ⊆ {b ∈ [µ]κ : a ⊆ b and b ∈ P} has a ⊆-maximal
member F (a);
obviously there are such F,F.

Paper Sh:300G, Chapter VII



678 VII. NON-STRUCTURE IN λ++ USING INSTANCES OF WGCH

Now clearly

(∗)1 if a 6= b are from [µ]κ and F (a) = F (b) then {a, b} is not
(F, F )-independent.

[Why? Just look at the definition of (F, F )-independent.]

(∗)2 if I ⊆ [µ]κ is of cardinality > λ (e.g. λ+) then I is not
(F, F )-independent.

[Why? As Rang(F ↾ I ) ⊆ Rang(F ) ⊆ P and P has cardinality λ
necessarily there are a 6= b from I such that F (a) = F (b) and use
(∗)1.]

Proof.

⊠1 it suffices to prove the variant with [µ]κ replaced by [µ]≤κ.

[Why? So we are given F, F as in the claim. We define g : [µ]≤κ →
[µ]κ and functions F ′,F′ with domain [µ]≤κ as follows:

g(a) = {κ+ α : α ∈ a} ∪ {α : α < κ}

F′(a) = {{α : κ+ α ∈ b} : b ∈ F(g(a))}

F ′(a) = {α : κ+ α ∈ F (g(a))}.

Now F′, F ′ are as in the claim only replacing everywhere [µ]κ by
[µ]≤κ, and if I ′ = {ai : i < χ} ⊆ [µ]≤κ with no repetitions satisfying
(∗)F ′,F′,I ′ then we shall show that I := {g(ai) : i < χ} is with no
repetitions and (∗)F,F,I holds.

This clearly suffices, but why it holds? Clearly g is a one-to-one
function so i 6= j < χ ⇒ g(ai) 6= g(aj) and Rang(g) ⊆ [µ]κ so
g(ai) ∈ [µ]κ. Let i 6= j and we should check that [c′ ∈ F(g(ai)) ⇒
F (g(aj)) * c′], so fix c′ such that c′ ∈ F(g(ai)).

By the definition of F′(ai) clearly c := {α : κ + α ∈ c′} belongs
to F′(ai). By the choice of I ′ = {ai : i < χ} we know that c ∈
F′(ai) ⇒ F ′(aj) * c, but by the previous sentence the antecedent
hold hence F ′(aj) * c hence we can choose α ∈ F ′(aj)\c. By the
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choice of F ′(aj) we have κ+ α ∈ F (g(aj)) and by the choice of c we
have κ+ α /∈ c′, so α witness F (g(aj)) * c′ as required.]

So we conclude that we can replace [µ]κ by [µ]≤κ. In fact we shall
find the ai in [µ]|a| where a chosen below.
As µ is a limit cardinal ∈ (κ, χ∗), if θ < µ then we can replace θ by
θ+ but κ++ < µ so without loss of generality κ++ < θ.

Now we prove

⊠2 for some unbounded subset w of χ we have 〈Rang(fα) : α ∈
w〉 is (F, F )-independent when:

⊕χ,a,f̄ θ < χ = cf(Πa/J) where a ⊆ µ ∩ Reg\κ+, |a| ≤

κ, sup(a) = µ, Jbd
a ⊆ J and for simplicity χ = max pcf(a)

and f̄ = 〈fα : α < χ〉 is a sequence of members of
Πa, <J -increasing, and cofinal in (Πa, <J), so, of course,
χ ≤ χ∗.

Without loss of generality fα(λ) > sup(a ∩ λ) for λ ∈ a.
Also for every a ∈ [µ]κ, define cha ∈ Πa by cha(λ) = sup(a ∩ λ)

for λ ∈ a so for some ζ(a) < χ we have cha <J fζ(a) (as 〈fα :
α < χ〉 is cofinal in (Πa, <J)). So for each a ∈ [µ]κ, as |F(a)| <
θ < χ = cf(χ) clearly ξ(a) := sup{ζ(b) : b ∈ F(a)} is < χ, and
clearly (∀b ∈ F(a))[chb <J fξ(a)]. So C := {γ < χ : for every β <
γ, ξ(Rang(fβ)) < γ} is a club of χ.

For each α < χ, Rang(fα) ∈ [µ]κ, hence F(Rang(fα)) has car-
dinality < θ, but θ < χ = cf(χ) hence for some θ1 < θ we have
θ1 > κ+ and χ = sup{α < χ : |F(Rang(fα)| ≤ θ1}, so without loss
of generality α < χ⇒ θ1 ≥ |F(Rang(fα))|.

As κ+ < θ1, by [Sh 420, §1] there are d̄, S such that

(∗)1(a) S ⊆ θ+
1 is a stationary

(b) S ⊆ {δ < θ+
1 : cf(δ) = κ+}

(c) S belongs to Ǐ[θ+
1 ],

(d) 〈di : i < θ+
1 〉 witness it, so otp(di) ≤ κ+, di ⊆ i, [j ∈ di ⇒

dj = di ∩ i] and i ∈ S ⇒ i = sup(di),
and for simplicity (see [Sh:g, III])
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(e) for every club E of θ+
1 for stationarily many δ ∈ S we have

(∀α ∈ dδ)[(∃β ∈ E)(sup(α ∩ dδ) < β < α)].

Now try to choose by induction on i < θ+
1 , a triple (gi, αi, wi)

such that:

(∗)2(a) gi ∈ Πa

(b) if j < i then35 gj <J gi

(c) (∀λ ∈ a)(sup
j∈di

gj(λ) < gi(λ))

(d) αi < χ and αi > sup(
⋃

j<i

wj)

(e) j < i⇒ αj < αi

(f) gi <J fαi

(g) β ∈
⋃

j<i

wj ⇒ ξ(Rang(fβ)) < αi & fβ <J gi

(h) wi is a maximal subset of (αi, χ) satisfying
(∗) β ∈ wi & γ ∈ wi & β 6= γ & a ∈ F(Rang(fβ)) ⇒

¬(F (Rang(fγ)) ⊆ a)
and moreover

(∗)+ β ∈ wi & γ ∈ wi & β 6= γ & a ∈ F(Rang(fβ)) ⇒
{λ ∈ a : fγ(λ) ∈ a} ∈ J .

Note that really (as indicated by the notation)

⊗ if w ⊆ (αi, χ) satisfies (∗)+ then it satisfies (∗).

[Why? let us check (∗), so let β ∈ w, γ ∈ w, β 6= γ and a ∈
F(Rang(fβ)); by (∗)+ we know that a′ = {λ ∈ a : fγ(λ) ∈ a} ∈ J .
Now as J is a proper ideal on a clearly for some λ ∈ a we have
λ /∈ a′, hence fγ(λ) /∈ a but fγ(λ) ∈ Rang(fγ) and by the assump-
tion on (F, F ) we have Rang(fγ) ⊆ F (Rang(fγ)) hence fγ(λ) ∈
F (Rang(fγ))\a so ¬(F (Rang(fγ)) ⊆ a), as required.]

We claim that we cannot carry the induction because if we suc-

ceed, then as cf(χ) = χ > θ ≥ θ+
1 there is α such that

⋃

i<θ
+
1

αi <

35in fact, without loss of generality min(a) > θ+
1 , so we can demand gj < gi

so clause (c) is redundant
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α < χ and let F(Rang(fα)) = {aα
ζ : ζ < θ1} (possible as 1 ≤

|F(Rang(fα))| ≤ θ1). Now for each i < θ+
1 , by the choice of wi

clearly wi∪{α} does not satisfy the demand in clause (h) and let it be
exemplified by some pair (βi, γi). Now {βi, γi} ⊆ wi is impossible by
the choice of wi, i.e. as wi satisfies clause (h). Also βi ∈ wi ∧ γi = α
is impossible as βi ∈ wi ⇒ ξ(Rang(fβi

)) < αi+1 < α, so necessarily
γi ∈ wi and βi = α, so for some a′ ∈ F(Rang(fβi

)) = F(Rang(fα))
the conclusion of (∗)+ fails, so as 〈aα

ζ : ζ < θ1〉 list F(Rang(fα)) it
follows that for some ζi < θ1 we have

ai = {λ ∈ a : fγi
(λ) ∈ aα

ζi
} /∈ J.

[why use the ideal? In order to show below that bε 6= ∅.] But
cf(θ+

1 ) = θ+
1 > θ1, so for some ζ(∗) < θ+

1 we have A := {i : ζi = ζ(∗)}
is unbounded in θ+

1 . Hence E = {α < θ+
1 : α a limit ordinal and

A ∩ α is unbounded in α} is a club of θ+
1 . So for some δ ∈ S we

have δ = sup(A ∩ δ), moreover letting {αε : ε < κ+} list dδ in
increasing order, we have (∀ε)[E ∩ (sup

ζ<ε

αζ , αε) 6= ∅] hence we can

find i(δ, ε) ∈ (sup
ζ<ε

αζ , αε) ∩A for each ε < κ+.

Clearly for each ε < κ+

bε =
{

λ ∈ a : gi(δ,ε)(λ) < fαi(δ,ε)
(λ) < fγi(δ,ε)

(λ)

< gi(δ,ε)+1(λ) < fαi(δ,ε)+1
(λ) < fα(λ)} = a mod J

hence bε ∩ ai(δ,ε) /∈ ∅. Moreover, bε ∩ ai(δ,ε) /∈ J . Now for each

λ ∈ a let ε(λ) be sup{ε < κ+ : λ ∈ bε ∩ ai(δ,ε)} and let ε(∗) =

sup{ε(λ) : λ ∈ a and ε(λ) < κ+} so as |a| ≤ κ clearly ε(∗) < κ+.
Let λ∗ ∈ bε(∗)+1 ∩ ai(δ,ε(∗)+1), so B := {ε < κ+ : λ∗ ∈ bε ∩ ai(δ,ε)}
is unbounded in κ+, 〈fβi(δ,ε)

(λ∗) : ε ∈ B〉 is strictly increasing (see

clause (c) above and the choice of bε) and ε ∈ B ⇒ fβi(δ,ε)
(λ∗) ∈ aα

ζ(∗)

(by the definition of ai(δ,ε), and ζ(∗) as ζi(δ,ε) = ζ(∗)). We get
contradiction to a ∈ F(Rang(fα)) ⇒ |a| ≤ κ.

So really we cannot carry the induction in (∗)2 so we are stuck
at some i < θ+

1 . If i = 0, or i limit, or i = j + 1 & sup(wj) < χ
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we can find gi and then αi and then wi as required. So necessarily
i = j + 1, sup(wj) = χ. So we have finished proving ⊠2.

⊠3 there is I ⊆ [µ]≤κ as required.

Now if χ∗ is regular, recalling that we assume ppκ(µ) =+ χ∗ there are
a, J as required in ⊕ above for χ = χ∗, hence also such f̄ . Applying
⊠2 to (χ, a, J, f̄) we get w as there. Now 〈Rang(fα) : α ∈ w〉 is as
required in the fact. So the only case left is when χ∗ is singular. Let
χ∗ = sup

ε< cf(χ∗)

χε and χε ∈ (µ, χ∗) ∩ Reg is (strictly) increasing with

ε. By [Sh:g, Ch.II,§3] we can find, for each ε < cf(χ∗), aε, Jε, f̄
ε =

〈fε
α : α < χε〉 satisfying the demands in ⊕ above, but in addition

⊙ f̄ε is µ+-free i.e. for every u ∈ [χε]
µ there is a sequence

〈bα : α ∈ u〉 such that bα ∈ Jε and for each λ ∈ aε, 〈f
ε
α(λ) :

α satisfies λ /∈ bα〉 is strictly increasing.

So for every a ∈ [µ]≤κ and ε < cf(χ∗) we have

{

α < χε : {λ ∈ aε : fα(λ) ∈ a} /∈ Jε

}

has cardinality ≤ κ.

Hence for each a ∈ [µ]≤κ

{

(ε, α) : ε < cf(χ∗) and α < χε and {λ ∈ aε : fα(λ) ∈ a} /∈ Jε

}

has cardinality ≤ κ+ cf(χ∗) = cf(χ∗) as for singular µ > κ ≥ cf(µ)
we have cf(ppκ(µ)) > κ.

Define: X = {(ε, α) : ε < cf(χ∗), α < χε}

F ′
(

(ε, α)
)

=
{

(ε′, α′) :(ε′, α′) ∈ X\{(ε, α)} and for some

d ∈ F(Rang(fε
α)) we have

{λ ∈ aε : fε′

α′(λ) ∈ d} /∈ Jε′

}

so F ′
(

(ε, α)
)

is a subset of X of cardinality < cf(χ∗)+ + θ < χ∗.
So by Hajnal’s free subset theorem [Ha61] we finish proving ⊠3

(we could alternatively, for χ∗ singular, have imitated his proof).
Recalling ⊠1 we are done. �11.4
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