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Abstract
This paper contains portions of Baldwin’s talk at the Set Theory and Model Theory
Conference (Institute for Research in Fundamental Sciences, Tehran, October 2015)
and a detailed proof that in a suitable extension of ZFC, there is a complete sentence
of Lω1,ω that has maximal models in cardinals cofinal in the first measurable cardinal
and, of course, never again.

Keywords Hanf numbers ·Maximal models · Lω1,ω ·Measurable cardinals ·
Amalgamation

In this paper we discuss two theorems whose proofs depend on extensions of the
Fraïssé method. We prove here the Hanf number for the property that every model of a
(complete) sentence of Lω1,ω with cardinality κ is extendible1 is (modulo some mild
set theoretic hypotheses that we remove in [10]) the first measurable cardinal. And we
outline the description of an explicit Lω1,ω-sentence φn characterizing ℵn for each n.
We provide some context for these developments as outlined in the lectures at IPM.2

The phrase ‘Fraïssé construction’ has taken many meanings in the over 60 years
since the notion was born [13] (and earlier in an unpublished thesis). There are two
major streams. We focus here on variants in the original construction, which usually
use the standard notion of substructure. We don’t deal here directly with ‘Hrushovski
constructions’ where a specialized notion of strong submodel varying with the case
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plays a central role. An annotated bibliography of developments of the Hrushovski
variant until 2009 appears at [2].

The first variant we want to consider is the vocabulary. Fraïssé worked with a finite,
relational vocabulary. While model theory routinely translates between functions and
their graphs and there is usually little distinction between finite and countable vocabu-
laries; in the infinite vocabulary case such extensions for the Fraïssé construction yield
weaker but still very useful consequences. The second is a distinction in goal: the con-
struction of complete sentences of Lω1,ω (equivalently studying the atomicmodels of
a complete first order theory) rather than constructing ℵ0-categorical theories. This
second shift raises new questions about the cardinality of the resulting models. The
result in Sect. 4 pins downmore precisely the existence spectra for complete sentences
of Lω1,ω. Section 3 expresses the role of large cardinal axioms inmore algebraic terms.
Rephrased, it says that, consistently with the existence of a measurable cardinal, there
is a nicely defined (by a complete sentence of Lω1,ω) class of models that has non-
extendible (maximal) models cofinally below the first measurable. The previous upper
bound for such behavior was ℵω1. We proved the result in ZFC in [10].

We acknowledge helpful comments by the referee and by Joel Berman, Sakai
Fuchino, Menachim Magidor, Ioannis Souldatos and especially Will Boney.

1 Hanf numbers and spectrum functions in infinitary logic

Recent years have brought a number of investigations of the spectrum (cardinals
in which a propery occurs) for various phenomena and various sorts of infinitary
definable classes. Some of the relevant phenomena are existence, amalgamation, joint
embedding, maximal models etc. The class might be defined as an abstract elementary
class, the models of a (complete) sentence of Lω1,ω, etc.

Hanf observed [16] that for any property P(K , λ), where K ranges over a set of
classes of models, there is a cardinal κ = H(P) such that κ is the least cardinal
satisfying: if P(K , λ) holds for some λ ≥ κ then P(K , λ) holds for arbitrarily large
λ. H(P) is called the Hanf number of P . e.g. P(K , λ) might be the property that K
has a model of power λ.

Morley [26] showed for an arbitrary sentence of Lω1,ω(τ ) the Hanf number for
existence is �ω1 when τ is countable (More generally, it is �(2|τ |)+ . [28]); the situation
for complete sentences ismuchmore complicated. Knight [21] found the first complete
sentence characterizing ω1 (i.e. has a model in ω1 but no larger) by building on the
construction of many non-isomorphic ℵ1-like linear orderings. Hjorth found, by a
procedure generalizing the Fraïssé -construction, for each α < ω1, a set Sα (finite for
finite α) of complete Lω1,ω-sentences

3 such that some φα ∈ Sα characterizes ℵα . It is
conjectured [30] that itmay be impossible to decide inZFCwhich sentenceworks. This
conjecture is verified in https://arxiv.org/abs/2109.07310 by Luecke and Souldatos.
Baldwin, Koerwien, and Laskowski [6] show a modification of the Laskowski–Shelah
example (see [5,22]) gives a family of Lω1,ω-sentences φr , which characterize ℵr for

3 Inductively, Hjorth shows at each α and each member φ of Sα one of two sentences, χφ, χ ′
φ , works as

φα+1 for ℵα+1.
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r < ω. In Sect. 4 we sketch the new notion of n-disjoint amalgamation that plays a
central role in [6].

Further results by [7,8,20], where the hypothesis are weakened to allow incomplete
sentences of Lω1,ω or even AEC (Abstract Elementary Classes (K ,≤) where the
properties of strong substructure, ≤ are defined axiomatically) are placed in context
in [4]. Analogous results were proved earlier for incomplete sentences by [8] who
code certain bipartite graphs in way that determine specific inequalities between the
cardinalities of the two parts of the graph; in this case all models have cardinality less
than �ω1 .

All the exotica mentioned here and described in more detail in [4] occurs below
�ω1 . Baldwin and Boney [4] have shown that the Hanf number for amalgamation is no
more than the first strongly compact cardinal. This immense gap motivated the current
paper. We show that for the case of universally extendable (every model has a proper
extension), there is a smaller gap. There is a complete sentence of Lω1,ω which has
a maximal model in cardinals cofinal in the first measurable (if such exists), but no
larger maximal model. Is the same true of amalgamation? That is, can amalgamation
eventually behave very differently than it does in small cardinalities? At the end of
this paper we point to the only known example where amalgamation (for a complete
Lω1,ω-sentence) holds on an initial segment then fails, then holds again; then there are
no larger models.

2 Disjoint amalgamation

2.1 Classes determined by finitely generated structures

The original Fraïssé construction took place in a finite relational vocabulary and the
resulting infinite structure was ℵ0-categorical for a first order theory. We explore here
several ways to construct a countable atomic model for a first order theory and thus a
complete sentence in Lω1,ω.

Recall (e.g. chapter 7 of [3]) that the models of a complete sentence of Lω1,ω(τ )

are the reducts to τ of the atomic (every finite sequence realizes a principal type)
models of a complete first order theory in a vocabulary τ ′ extending τ . We discuss
classes determined by a countable set of finitely generated models. In Sects. 3 and 4,
we describe the examples of such classes used to prove our main results.

Definition 2.1.1 Fix a countable vocabulary τ (possibly with function symbols). Let
(K0,⊆) denote a countable collection of finite τ -structures and let (̂K ,⊆) denote the
abstract elementary class containing all structures M such that every finitely generated
substructure of M is in K0.

These classes have syntactic characterizations.

Lemma 2.1.2 1. ̂K is defined by an Lω1,ω-sentence φ.
2. If K0 is closed under substructure then φ may be taken universal [25].
3. (K0,⊂) satisfies the axioms for AEC (except for unions under chains.)

While traditional Fraïssé classes are closed under substructure and produce ℵ0-
categorical first order structures, which are uniformly locally finite, the search for
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atomic models [5,6,9,18] does not always require closure under substructure and pro-
duces a generic structure which is locally finite but not uniformly so. In Sect. 3, we
expand the subject further by using countable collections of finitely generated rather
than finite structures as the ‘Fraïssé class’.

Definition 2.1.3 Fix a countable vocabulary τ (possibly with function symbols). Let
(K0,≤) denote a countable collection of finite τ -structures with (̂K ,≤) as in Defini-
tion 2.1.1.

1. A model M ∈ ̂K is rich or K0-homogeneous if for all A and B in K0 with A ≤ B,
every embedding f : A → M extends to an embedding g : B → M . We denote
the class of rich models in ̂K as R.

2. The model M ∈ ̂K is generic if M is rich and M is an increasing union of a
countable chain of finitely generated substructures, each of which is in K0.

3. We let R denote the subclass of ̂K consisting of rich models.

In the examples considered here the generic models will always be countable.

Definition 2.1.4 An AEC (K ,≤) has (< λ, 2)-disjoint amalgamation if for any
A, B,C ∈ K with cardinality < λ and A strongly embedded in B,C , there is a
D and strong embedding of B,C into D that agree on A and such that the intersection
of their ranges is their image of A.

K has 2-amalgamation if the ranges of the embedding are allowed to intersect
outside of f (A).

K has the joint embedding property (JEP) if any two models can be embedded in
some larger D.

Fraïssé’s theorem asserted that if a class of finite models in a finite relational lan-
guage is closed under substructure and satisfies AP and JEP then there is a generic
model whose theory is ℵ0-categorical and quantifier eliminable. The following exten-
sion of Fraïssé’s theorem is well-known [19] and the proof is essentially the same.

Lemma 2.1.5 Suppose τ is countable and K0 is a countable class of finite or countable
τ -structures that

satisfies 2- amalgamation, in particular (≤ ℵ0, 2)-disjoint amalgamation, and JEP,
then

1. A K0-generic (and so rich) τ -structure M exists.
2. if K0 is closed under substructure, the generic is ultra-homogeneous (every

isomorphismbetween arbitrary finitely generated substructures extends to an auto-
morphism).

A key distinction from the Fraïssé situation is that in the first order case ̂K doesn’t
really play a role while in the infinitary case it is an important intermediary between
the finitely generated structures and R. Fraïssé passes to the first order theory of the
generic since it is ℵ0-categorical in first order logic. In our more general situation the
generic may be ℵ0-categorical only in Lω1,ω. The Scott sentence of the rich model
gives the Lω1,ω sentence we study. As noted at the beginning of this section we may
regard the models as reducts of atomic models of a first order theory. Thus ̂K may have
arbitrarily large models while R does not; this holds of some examples in [5,6,18].
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Corollary 2.1.6 Suppose (K0,≤) satisfies the hypotheses of Lemma 2.1.5. Fix λ ≥ ℵ0.
If ̂K has (≤ λ, 2)-amalgamation and has at most countably many isomorphism types
of countable structures, then every M ∈ ̂K of power λ can be extended to a rich model
N ∈ ̂K, which is also of power λ.

Proof.GivenM ∈ ̂K of powerλ, construct a continuous chain 〈Mi : i < λ〉of elements
of ̂K , each of size λ. At a given stage i < λ, focus on a specific finite substructure
A ⊆ Mi and a particular finite extension B ∈ ̂K of A. If there is an embedding of B
into Mi over A, Mi+1 = Mi . If not, we may assume B ∩ Mi = A. Let Mi+1 be the
disjoint amalgamation of Mi and B over A. As there are only λ-possible extensions,
we can, by iterating, organize this construction so that N = ⋃{Mi : i < λ} is rich.

��2.1.6
Crucially, in Sect. 3.2.22 the class K̂ under consideration will not satisfy two-

amalgamation even with finite models; but there will be amalgamation of free
structures with finite.

2.2 Atomic models of first order theories

We discuss here classes generated by finite (not finitely generated) structures. Suppose
a generic τ -modelM exists.When isM an atomicmodel of its first-order τ -theory?As
remarked in Section 2 of [6] this second condition has nothing to do with the choice of
embeddings on the class K0, but rather with the choice of vocabulary. The following
condition is needed when, for some values of n, K0 has infinitely many isomorphism
types of structures of size n

We denote the class of atomic models of a complete first order theory by At.

Definition 2.2.1 A class K0 of finite structures in a countable vocabulary is separable
if, for each A ∈ K0 and enumeration a of A, there is a quantifier-free first order
formula φa(x) such that:

• A |� φa(a) and
• for all B ∈ K0 and all tuples b from B, B |� φA(b) if and only if b enumerates a
substructure B ′ of B and the map a �→ b is an isomorphism.

In practice, we will apply the observation that if for each A ∈ K0 and enumeration
a of A, there is a quantifier-free formula φ′

a(x) such that there are only finitely many
B ∈ K0 with cardinality |A| that under some enumeration b satisfy φ′

a(b), then K0 is
separable.

Lemma 2.2.2 [6] Suppose τ is countable and K0 is a class of finite τ -structures
that is closed under substructure, satisfies amalgamation, and JEP, then a K0-generic
(and so rich) model M exists. Moreover, if K0 is separable, M is an atomic model of
T h(M). Further, R = At, i.e., every rich model N is an atomic model of T h(M).

Proof: Since the class K0 of finite structures is separable it has countably many
isomorphism types, and thus a K0-generic M exists by the usual Fraïssé construction.
To show that M is an atomic model of Th(M), it suffices to show that any finite tuple a
from M can be extended to a larger finite tuple bwhose type is isolated by a complete
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formula. Coupled with the fact that M is K0-locally finite, we need only show that
for any finite substructure A ≤ M , any enumeration a of A realizes an isolated type.
Since every isomorphism of finite substructures of M extends to an automorphism of
M , the formula φa(x) isolates tp(a) in M .

The final sentence follows since any two rich models are L∞,ω-equivalent. ��2.2.2

3 Hanf number for all models extendible

We say an abstract elementary class (the models of a complete sentence in Lω1,ω) is
universally extendible in κ if everymodel of cardinality κ has a proper strong extension
(L∞,ω-elementary extension). In this section we prove the following theorem.

Theorem 3.0.1 There is a complete sentence φ of Lω1,ω that has arbitrarily large
models. But under reasonable set theoretic conditions (specified below), we show that
for arbitrarily large λ < μ, whereμ is the first measurable cardinal, and unboundedly
many λ if there is no measurable cardinal, φ has a maximal model(with respect to
substructure, which in this case means ≺∞,ω) with cardinality between λ and 2λ.

We remove in [10] the set theoretic hypotheses by adapting techniques from [15,27]
but at the cost of weakening the freeness of the P0-maximal model; see Remark 3.3.13.

If |M | is at least the first measurable μ, then for any ℵ1-complete non-principal
ultrafilter D on μ, Mμ/D is a proper extension of M . This holds because we can find
an f ∈ Mμ which hits each element a ∈ M at most once. Thus the equivalence class
of f cannot be that of any constant map on M (since D is non-principal). On the
other hand, by the Łos theorem for Lω1,ω, sinceD is ℵ1-complete, the ultrapower is a
proper Lω1,ω-elementary extension of M . Thus, we have shown the Hanf number for
extendability is at most μ:

Lemma 3.0.2 If μ is measurable, for any φ ∈ Lμ,μ, in particular in Lω1,ω, no model
of cardinality ≥ μ is maximal.

The proof of the converse (Theorem 3.0.1) fills the remainder of this section. If we
only demand the result for an arbitrary sentence of Lω1,ω there are easy examples. We
learned an example in terms of ω-models (which is easily reinterpreted into Lω1,ω)
from Magidor [23].

The following sketch of such an example will suggest some of the key points of the
main argument. Note that we write P(X) for the powerset of X .

Example 3.0.3 Consider a class K of 3-sorted structures where: P0 is a set, P1 is a
boolean algebra of subsets of P0 (given by an extensional binary E) and P2 is just
a set; {Fn : n < ω} is a family of unary functions which assigns to each c ∈ P2, a
sequence Fn(c) ∈ P1. Demand:

∧

n Fn(c) = Fn(d) implies d = c. Let ψ ∈ Lω1,ω

axiomatize K . We claim M is a maximal model of mod (ψ) with cardinality λ if
λ < first measurable, |PM

0 | = λ, PM
1 = P(PM

0 ), and PM
2 codes each sequence in

ω(PM
1 ) via the Fn .
Suppose for contradiction that N with M �ω1,ω N witnesses non-maximality, then

the choice of M and the demand imply that there must be an element a∗ ∈ PN
0 − PM

0 .
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Then D = {b ∈ PM
1 : E(a∗, b)} is a non-principal ultrafilter on λ = PM

0 . To see that
D is non-principal, note that if some b′ ∈ PM

1 generated D, then b′ � a∗, contrary
(by elementary extension) to their both being atoms.

Since D is ℵ1-incomplete (as λ is not measurable) there exists a sequence 〈bn :
n < ω〉 of elements of PM

1 with empty intersection. Since each countable sequence
of subsets of PM

0 is coded as 〈FM
n (c) : n < ω〉 for some c ∈ PM

2 , there is a d ∈
PM
2 with Fn(d) = bn for each n. Thus, M |� ¬(∃x)∧

E(x, Fn(d)), while N |�
∧

E(a∗, Fn(d)). This contradicts M ≺ω1,ω N .
There are 2ℵ0 2-types over the empty set, given, for each X ⊂ ω, via (c, d) realizes

pX iff X = {n : Fn(c) ∩ Fn(d) �= ∅}. This implies no sentence satisfied by M can be
complete, since a minor variant of Scott’s characterization of countable models shows
that a sentence ψ is complete if and only if only countably many Lω1,ω-types over ∅
are realized in models of ψ . In Sect. 3.2 we modify this example to obtain a complete
sentence.

3.1 Some preliminaries on boolean algebras

There are a number of slightly different jargons among set theorists, model theorists,
category theorists, and Boolean algebraists. In this section we will spell some of them
out, indicate some translations, specify our notation, and prove some properties of
Boolean algebras that will be used in the proof.

An ultrafilter of a Boolean algebra B is a maximal filter (i.e. a subset of B that is
closed up, under intersection and contains either a or a− – the complement of a). An
ultrafilter on a set X is a subset of its power set and so is an ultrafilter of the Boolean
algebra P(X).

We begin with some basic properties of independence in Boolean algebras. A key
fact is an equivalence of two notions of independence on countably infinite Boolean
algebras that disappears in the uncountable. That is, a countable Boolean algebra is
ℵ0-categorical if and only it is free on countably many generators in the sense of 3.1.1
if and only if it is generated by an independent set in the sense of 3.1.3. But this
equivalence fails in the uncountable.

Definition 3.1.1 1. For X ⊆ B and B a Boolean algebra, X = XB = 〈X〉B be the
subalgebra of B generated by X .

2. A set Y is independent (or free) from X modulo an ideal � (with domain I ) in a
Boolean algebra B if and only if for anyBoolean-polynomial p(v0, . . . , vk) (that is
not identically 0), and any a ∈ 〈X〉B−�, and distinct yi ∈ Y , p(y0, . . . , yk)∧a /∈
�.

3. Such an independent Y is called a basis for 〈X ∪ Y ∪ I 〉 over 〈X ∪ I 〉.
There is no requirement that � be contained in X . Observe the following:

Observation 3.1.2 1. If � is the 0 ideal, (i.e., Y is independent from X), the condition
becomes: for any a ∈ 〈X〉B − {0}, B |� p(y0, . . . , yk) ∧ a > 0. That is, every
finite Boolean combination of elements of Y meets each non-zero a ∈ 〈X〉B.

2. Let π map B to B/�. If ‘Y is independent from X over �’ then the image of Y is
free from the image of X (over ∅) in B/�. Conversely, if π(Y ) is independent over
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π(X) in B/�, for any Y ′ mapping by π to π(Y ), Y ′ is independent from X over
�. So, if X is empty, the condition ‘Y is independent over �’ implies the image of
Y is an independent subset of B/�.

3. If a set Y is independent (or free) from X over an ideal � in a Boolean algebra
B and Y0 is a subset of Y , then Y − Y0 is independent (or free) from X ∪ Y0
(〈X ∪ Y0〉B) over the ideal � in the Boolean algebra B.

From left to right in item 2), note that if for any nontrivial term4 σ(v), and any
y ∈ Y there is an a with σ(y) ∧ a /∈ I then π(σ(y) ∧ a) is not 0 in B/I . Conversely,
if some σ(π(y)) �= 0 then if y′ is in π−1(π(y)), then σ(y′) /∈ I .

The notion of independence above corresponds to the closure system generated by
subalgebra [14, chapter 12]; it does not satisfy the axioms for a matroid (combinatorial
geometry); exchange fails. It is an independence system (the empty set can be consid-
ered independent and subsets of independent sets are independent.). But given X and
Y independent with |Y | > |X |, in general there is no guarantee that some element of
Y − X can be added to X and maintain independence. But, see Lemma 3.1.9.

The contrast between the notion of independence above and the following is crucial
for the construction here.

Definition 3.1.3 Let X ,Y be sets of elements from a Boolean algebra of sets. X is
independent over Y if for any infinite A that is a non-trivial finite Boolean combination
of elements of X and any B which is a non-empty finite Boolean combination of
elements of Y , A ∩ B and Ac ∩ B are each infinite.

Both kinds of independence will occur in the models in Sect. 3.3. There are models
in K1, Definition 3.2.2, that are constructed in Construction 3.3.9 with a homomor-
phism from PM

1 intoP(PM
0 ) that does not transfer from ‘independence in the boolean

algebra sense’ (Definition 3.1.1.2 to ’set independence’ (Definition 3.1.3. In K2, there
is an isomorphism from PM

1 intoP(PM
0 ) that correctly transfers ‘independence’. (See

Lemma 3.2.21.)

Definition 3.1.4 A pushout consists of an object P along with two morphisms i1 :
X → P and i2 : Y → P which complete a commutative square with two given
morphisms f and g mapping an object Z to X and Y respectively such that any
morphisms j1, j2 from X and Y to a Q must factor through P .

In [12], it is shown by a category theoretic argument that for distributive lattices the
abstract embeddings into the pushout (Notation 3.1.6) are 1-1 and if A is a Boolean
algebra, the images of the embedding intersect in image of A. Thus the variety of
Boolean algebras has disjoint5 amalgamation.

We now connect this notion with our version of independence in Definition 3.1.1.

Lemma 3.1.5 Let D = A ⊗C B be the Boolean algebra obtained as the pushout
(Definition 3.1.4) of A and B over C. Suppose � is an ideal of D and I2 ⊂ A − C
such that 〈I2〉D ∩ � = ∅ and B − � �= ∅. Then I2 is independent from B over �.
4 A trivial term (or polynomial) is one which is identically 0.
5 Called strong in [12].

123

Sh:1092



Hanf numbers for extendibility and related phenomena 445

Proof. Fix a Boolean-polynomial p(v0, . . . , vk) (that is not identically 0), and suppose
for contradiction there is a d ∈ B − � and distinct yi ∈ I2 with p(y0, . . . , yk)∧d ∈ �.

Any morphisms f1, f2 from A, B to any D′ must factor through D. In particular,
we can extend � ∩ A and � ∩ B to maximal ideals omitting p(y0, . . . yk) ∈ A and
d ∈ B; the resulting map from D that commutes with the induced fi to the 2-element
algebra sends all of � and so p(y0, . . . , yk) ∧ d, but not d or p(y0, . . . yk) to 0. But
there is no such homomorphism. ��3.1.5

There are several sets of confusing terminology arising from various perspectives
in the study of Boolean algebra and misleading analogies with, for example, the study
of groups. For example, consider the notion of the product of two Boolean algebras,
A, B. That is, the structure on the Cartesian (direct) product of A and B, obtained by
defining the operations coordinate-wise. Note that, while there are isomorphic copies
of A and B in the product, the natural injections into A×{0}, {0}× {B}, map to ideals
not sub-Boolean algebras.

A generalization of the dual of the direct product operation is often called the ‘free
product with amalgamation’; we will call the free amalgamation of Boolean algebras
B and A over C the one that is obtained by the pushout/free product construction of
Notation 3.1.6; it is the coproduct in the category-theoretic language.

Notation 3.1.6 Let C ⊆ A, B be Boolean algebras. The disjoint amalgamation D =
A ⊗C B is the Boolean algebra obtained as the pushout [1] of A and B over C. It
is characterized internally by the following condition. For a ∈ A − C, b ∈ B − C:
a ≤ b in D if and only if there is a c ∈ C with a < c < b (and symmetrically). D is
generated as a Boolean algebra by A ∪ B where A and B are sub-Boolean algebras
of D.

We will distinguish certain subsets of our models in terms of atoms.

Notation 3.1.7 An atom is an element a of a Boolean algebra such that for every c
either c ∧ a = a or c ∧ a = 0. The element a is a non-trivial atom if it is neither 0
nor 1. For any Boolean algebra B, At(B) denotes the set of atoms of B.

We work in a Boolean algebra PM
1 and use PM

4,1 forAt(P
M
1 ). We will denote by PM

4

the set of finite joins of atoms and PM
4,n for those elements that are the join of exactly

n atoms. PM
4 is always an ideal of PM

1 but it is only a Boolean algebra if it is finite,
and even then it will not be a sub-Boolean algebra. A Boolean algebra is atomic, or
in anachronistic terminology, atomistic if every element is an arbitrary join of atoms.6

For M in the class of finitely generated structures K0, below, the ideal PM
4 will

be atomistic when viewed as a Boolean algebra (with b∗ = 1 and complement as
relative compement below b∗.) and the maximal such. For M in the class K2 the entire
Boolean algebra PM

1 will be atomistic but this will be false for all M in K−1
<ℵ0

(since

it has only finitely many atoms) and for some M in K 1 which are not in K−1
<ℵ0

. We
will use the next remark in proving Lemma 3.2.12.

Lemma 3.1.8 Let B0 ⊆ B1 ⊆ B2 be Boolean algebras. Suppose Ii for i < 3 form a
sequence of ideals in the respective Bi with I1 ∩ B0 = I0 and I2 ∩ B1 = I1. If, for

6 Equivalently for Boolean algebras, if every non-zero element is above at least one atom.The conditions
are not equivalent on an arbitrary distributive lattice.
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i = 0, 1, Ji ⊂ Bi+1 is independent from Bi modulo Ii in Bi+1, then J = J0 ∪ J1 is
independent from B0 modulo the ideal I2.

Proof. Let b be a finite sequence of distinct elements from J . Suppose σ(y) is a non-
zero term in the same number of variables as the length of b. For any d ∈ B0− I2, we
must showσ(b)∧d /∈ I2.Writingσ in disjunctive normal form it suffices to show some
disjunct τ (which is just a conjunction of literals yi and y−i ) satisfies τ(b) ∧ d /∈ I2.
Decompose τ(b) as τ0(b0) ∧ τ1(b1) where bi ∈ Ji . Since J0 is independent from
B0 modulo I1, τ0(b0) ∧ d /∈ I1 and clearly it is some d1 ∈ B1. Similarly, since J1 is
independent from B1 modulo I2, τ1(b1)∧d1 /∈ I2. So τ(b)∧d1 = τ0(b0)∧τ1(b1)∧d /∈
I2 as required. ��3.1.8

Although our notion of independence does not satisfy exchange, we are able to
show that under certain conditions each suitable element is a member of a basis.

Lemma 3.1.9 If B is a countable atomless Boolean algebra, then for any b �= 0, 1 ∈ B,
there is a basis J of B that contains b.

Proof. Observe that by quantifier elimination all non-constant elements of B realize
the same 1-type. But then if A = 〈ai : i < ω〉 is a basis for B, the automorphism α

of B (guaranteed by ℵ0-categoricity) which takes a1 to b takes A to α(A) which is a
basis containing b. ��3.1.9.

The next result is used in step 2 of the proof of Claim 3.3.5.

Lemma 3.1.10 Let B1 ⊆ B2 be countable Boolean algebras and suppose I2 is an
ideal of B2 and J1 is a countable subset of B2 such that J1 is independent from B1
modulo I2. If b is also independent from B1 modulo I2 and b ∈ 〈J1∪ I2〉B2 , then there
is a J ′1 such that b ∈ J ′1, J ′1 is independent from B1 modulo I2 and each of J1 and J ′1
generates (with I2) the same subalgebra of B2.

Proof. Let b∗ be the image of b when π projects B2 onto B2/I2 and B3 denote the
image of π(〈J1 ∪ I2〉B2). By Lemma 3.1.9, there is a J ′′1 ⊂ B2/I2 with b∗ ∈ J ∗1 that
freely generates B3. Now choose J ′1 by choosing a preimage for each element of J ′′1
and the result follows by Observation 3.1.2. ��3.1.10

3.2 Defining the complete sentence

In this subsection we construct a complete Lω1,ω-sentence φ, essentially the
‘existential-completion’ of Example 3.0.3. We show in Sect. 3.3 in an extension of
ZFC , that φ has maximal models in λ for arbitrarily large λ less than the first mea-
surable cardinal.

Each model is a member of the class K of Example 3.0.3; but Definition 3.2.2
describes the finitely generated models. This section is devoted to the construction
of a countable generic structure for that class; the details of the construction will be
essential for the main argument in the next section. Our goal is to build this generic
structure as a Fraïssé-style limit of finitely generated structures; in each of these
structures PM

0 and PM
4 will be finite.

Definition 3.2.1 τ is a vocabulary with unary predicates P0, P1, P2, P4, binary R, E ,
∧,∨, unary functions −,G1, constants 0,1 and unary (partial) functions Fn , for n < ω.
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We originally introduced the properties of K1, in two stages (K−1 and K1) simply
to allow the reader to absorb the definition more slowly. It turned out in [10], that the
class K−1 plays an independent role.

We will study several classes K with various subscripts and subscripts. In general
for a class Ki

<ℵ0
denotes a class of finitely generated structures and either K̂ i or Ki

denotes the class of all direct limits of models from Ki
<ℵ0

.
We use the word finitely generated in the usual sense. We have a vocabulary with

function symbols; each element of a model is given by a term in the finite set of
generators. Thus, if M in K−1

<ℵ0
is finitely generated PM

0 and PM
2 must be finite and

PM
1 is countable

Definition 3.2.2 K−1
<ℵ0

is the class of finitely generated structures M satisfying.

1. PM
0 , PM

1 , PM
2 partition M .

2. (PM
1 , 0, 1,∧,∨,<,− ) is a Boolean algebra (− is complement).

3. R ⊂ PM
0 × PM

1 with R(M, b) = {a : RM (a, b)} and the set of {R(M, b) : b ∈
PM
1 } is a Boolean algebra. f M : PM

1 �→ P(PM
0 ) by f M (b) = R(M, b) is a

Boolean algebra homomorphism intoP(PM
0 ). Note that f is not7 in τ ; it is simply

a convenient abbreviation for the relation between the Boolean algebra PM
1 and

the set algebra on P0 by the map b �→ R(M, b).
4. PM

4,n ⊆ PM
1 is the set containing each join of n distinct atoms from M ; PM

4 is

the union of the PM
4,n ; P

M
4 has a maximum element often denoted8 by b∗. That

is, PM
4 is the set of all finite joins of atoms (in PM

1 ). If b1 �= b2 are in PM
4 then

R(M, b1) �= R(M, b2).
5. GM

1 is a bijection from PM
0 onto PM

4,1, which by 4)is the non-trivial atoms of PM
1 ,

such that R(M,GM
1 (a)) = {a}.

6. PM
2 is finite (andmay be empty). Further, for each c ∈ PM

2 the FM
n (c) are functions

from PM
2 into PM

1 .
7. If a ∈ PM

4,1 and c ∈ PM
2 then for all but finitely many n, a �M FM

n (c). This

implies for each x ∈ PM
0 ,

⋂

n{x : (G1(x) ∈ FM
n (c)} = ∅.

8. PM
1 is generated as a Boolean algebra by PM

4 ∪ {FM
n (c) : c ∈ PM

2 , n ∈ ω} ∪ X
where X is a finite subset of PM

1 .

We denote by K−1 the class of direct limits of models in K−1
<ℵ0

.

We now add requirements to Definition 3.2.2, to ensure that no elements of PM
1

are needed as generators and to lay the ground for the study of free extensions. (See
Definition 3.2.11.) We refine the class K−1

<ℵ0
from Definition 3.2.2 to a class K 1

<ℵ0
;

here the structure is witnessed by a family of witnesses 〈n∗, B, b∗〉. The class of direct
limits of these finitely generated structures generate will be denoted K 1. From K 1 we
will derive the rich class K2 = R in Definition 3.2.19.

Definition 3.2.3 M is in the class of structures K 1
<ℵ0

if M ∈ K−1
<ℵ0

and there is a
witness 〈n∗, B, b∗〉 such that:

7 The subsets of PM
0 are not elements of M .

8 But b∗ is not constant in the vocabulary; as the models are extended, b∗ changes.
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1. b∗ ∈ PM
1 is the supremum of the finite joins of atoms in PM

1 . Further, for some k,
⋃

j≤k PM
4, j = {c : c ≤ b∗} and for all n > k, PM

4,n = ∅.
2. B = 〈Bn : n ≥ n∗〉 is an increasing sequence of finite Boolean subalgebras of

PM
1 .

3. Bn∗ � {b ∈ PM
1 : b ≤ b∗} = PM

4 ; it is generated by the subset PM
4 ∪{FM

n (c) : n <

n∗, c ∈ PM
2 }. Moreover, the Boolean algebra Bn∗ is free over the ideal P

M
4 (equiv-

alently, Bn∗/P
M
4 is a free Boolean algebra.9)

4.
⋃

n≥n∗ Bn = PM
1 .

5. For each c ∈ PM
2 the FM

n (c) for n < ω are distinct and independent over {0}.
6. The set {Fm(c) : m ≥ n∗, c ∈ PM

2 } (the enumeration is without repetition) is
free from Bn∗ over10 {0}. Bn∗ � PM

4 and Fm(c) ∧ b∗ = 0 for m ≥ n∗. (In this

definition, 0 = 0P
M
1 .) In detail, let σ(. . . xci . . .) be a Boolean algebra term in the

variables xci (where the ci are in PM
2 ) which is not identically 0. Then, for finitely

many ni ≥ n∗ and a finite sequence of ci ∈ PM
2 :

σ(. . . Fni (ci ) . . .) > 0

and some n < ω. Further, for any non-zero d ∈ Bn∗ with d ∧ b∗ = 0, (i.e.
d ∈ Bn − P4

M ),

σ(. . . Fn(c) . . .) ∧ d > 0.

7. For every n ≥ n∗, Bn , is generated by Bn∗ ∪ {Fm(c) : n > m ≥ n∗, c ∈ PM
2 }.

Thus PM
1 and so M is generated by Bn∗ ∪ PM

2 .

Remark 3.2.4 The first part of Condition 6 of Definition 3.2.3 implies condition 8 of
Definition 3.2.2. The second part of condition 6 implies, in particular, that if b ∈
PM
1 − PM

4 , there are infinitely many elements below b in PM
1 . Note that the free

generation condition of 6) is not preserved by arbitrary direct limits; in particular it
will fail in the P0-maximal model of cardinality λ. However, our construction in an
extension of ZFC of K1-free extensions (Definition 3.2.11) will guarantee the K1-
freeness of submodels that are less than λ-generated.

Note that if 〈n∗, B, b∗〉 witnesses M ∈ K 1
<ℵ0

then for any m ≥ n∗, so does
〈m, B, b∗〉.

The following lemma shows the prototypical models in K 1
<ℵ0

in fact exhaust the

class. Note that each PM
1 is an atomic Boolean algebra.

Lemma 3.2.5 For any M ∈ K 1
<ℵ0

, PM
1 has a natural decomposition as a product of

an atomic and an atomless Boolean algebra.

Proof. Let M ∈ K 1
<ℵ0

, witnessed by 〈n∗, B, b∗〉. Then the atomic part, PM
4 , is the

collection of elements of PM
1 that are ≤ b∗. And the independent generation by the

FM
n (ci ) for n ≥ n∗ and ci ∈ PM

2 shows the quotient PM
1 /PM

4 is atomless. ��3.2.5
Condition Definition 3.2.3 guarantees:

9 A further equivalence: |Atom(Bn∗ )| − |PM
4,1| is a power of two.

10 As in Definition 3.1.1 with X = ∅.
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Lemma 3.2.6 Each structure in K 1
<ℵ0

is finitely generated by PM
0 ∪ PM

2 .

Lemma 3.2.7 K 1
<ℵ0

is countable.

Proof. Let M be in K 1
<ℵ0

, witnessed by 〈n∗, B, b∗〉. The isomorphism type of M is

determined by the structure on PM
4 induced by the Fn(ci )

and ci ∈ PM
2 . If m ≥ n∗, Fm(ci ) ∧ b∗ = 0 so they leave no trace on PM

4 . Since
this tail, {Fm(ci ) : m ≥ n∗} generates an atomless boolean algebra in the sense of
PM
1 , that boolean algebra is ℵ0 categorical. But there can be only countably many

structures induced on the finite PM
4 by the countable set Fn(ci ) through the formulas

x < Fn(ci )which determine the values of R on PM
4 since only the Fm(ci ) form < n∗

have non-empty intersection with PM
4 (i.e. are above atoms) and PM

2 is finite. ��3.2.7
Definition 3.2.8 The class K1 = K̂ 1

<ℵ0
is the collection of all direct limits of models

in K 1
<ℵ0

.

Lemma 3.2.9 There is a minimal model Mmin of K 1
<ℵ0

, that can be embedded in any
model of K1.

Proof. Let PMmin
0 be empty, so PMmin

4 = {0}. Also, let PMmin
2 be empty.

Lemma 3.2.10 If M0 ⊆ M1 are both in K 1
<ℵ0

, witnessed by 〈ni∗, Bi , bi∗〉, for i = 0, 1,

then for sufficiently large n, B0
n = B1

n ∩ PM0
1 .

Proof. Recall Bi = 〈Bi
n : n < ω〉. Since the B1

n exhaust PM1
1 , B0

n∗ is finite, and for

c ∈ PM0
2 and all r , FM1

r (c) = FM0
r (c), for all sufficiently large n, B1

n contains the

FM0
r (c) for r < n and thus B0

n . But if some b ∈ B1
n ∩ PM0

1 , but is not in B0
n then for

some k, b ∈ B0
k+1− B0

k . But then B0
k+1 is not generated by B0

n∗ along with the F
M0
r (c)

for r < k. ��3.2.10
Note that if the conclusion of Lemma 3.2.10 holds for n, it holds for all m ≥ n.
We now introduce some special notation for this paper by defining K1-free over

(K1-free extension of) for models in K1. M2 is a K1-free extension of M1 if not only
is the image of PM2

1 in the Boolean algebra PM2
1 /PM2

4 a free extension of the image

of PM1
1 but the Fn(c) satisfy technical conditions which allow the preservation of this

condition under unions of chains.

Definition 3.2.11 When M1 ⊆ M2 are both in K1, we say M2 is K1-free over or is a
K1-free extension of M1 and write M1 ⊆ f r M2, witnessed by (I , H) when

1. I ⊂ PM2
1 − (PM1

1 ∪ PM2
4 ) satisfies i) I ∪ PM1

1 ∪ PM2
4 generates PM2

1 and ii) I is

independent from PM1
1 modulo PM2

4 in PM2
1 . (Definition 3.1.1)

2. There is a function H from PM2
2 \PM1

2 to N such that the Fn(c) for n ≥ H(c) are
distinct and

{FM
n (c) : c ∈ PM2

2 \PM1
2 and n ≥ H(c)} ⊂ I

and for every c �= d ∈ PM2
2 , {n : (∃m)FM2

m (c) = FM2
n (d)} is finite.

123

Sh:1092



450 J. T. Baldwin, S. Shelah

We say M is K1-free over the empty set or simply K1-free if M is a K1-free
extension of Mmin .

Lemma 3.2.12 1. If M1 ⊆ f r M2 by (I1, H1) and M2 ⊆ f r M3 by (I2, H2) then
M1 ⊆ f r M3 by (I1 ∪ I2, H1 ∪ H2). Thus, ⊆ f r is a partial order.

2. More generally, if Mα with α < δ is a continuous ⊆ f r -increasing sequence then
M = ⋃

Mα satisfies Mα ⊆ f r M witnessed by (
⋃

α<β<δ Iβ,
⋃

α<β<δ Hβ).

Proof. By Lemma 3.1.8 (taking the ideals as PM2
4 and PM3

4 ), I1 ∪ I2 is free from PM1
1

over PM3
4 . H1 ∪ H2 is well-defined since the Hi are defined on disjoint sets.

Part 2 follows by induction. Successors are similar, while limits are automatic.
��3.2.12

Remark 3.2.13 In an increasing chain such as that of Lemma 3.2.12.2, if some b ∈
PMα+1
1 is free from PMα

1 modulo PMα+1
4 then b is also free from PMα

1 over P
Mβ

4 for

any β > α since P
Mβ

4 ∩ PMα+1
1 = PMα+1

4 .

The next lemma uses the requirement that the Bn in the witnessing sequence are
free Boolean algebras.

Lemma 3.2.14 If M0 ⊂ M1 are both in K 1
<ℵ0

then M0 ⊂ f r M1.

Proof. We can assume by Lemma 3.2.10 that the ni∗ for i < 2 are equal and that
B1
n1∗
∩PM0

1 = B0
n0∗
. Since the Bi,n∗ are free from PMi

4 over ∅, we can choose bases I0, I1
for B0,n0∗ and B1,n1∗ respectively. Now I0 ∪ I1 ∪ {FMi

n (c) : i < 2, n ≥ ni
ni∗

, c ∈ PMi
2 }

is a free basis of PMi
1 over PMi

4 . Hence (I2\I1) ∪ {FMi
n (c) : i < 2, n ≥ ni∗, c ∈ PMi

2 }
is the required I from Definition 3.2.11 with H(c) = n∗ for all c. ��3.2.14

Crucially, Lemma 3.2.14 fails in general if K 1
<ℵ0

is replaced by K1. Lemma 3.2.14
immediately yields.

Corollary 3.2.15 Each model N in K 1
<ℵ0

is K1-free over the empty set.

To find large K1-free models we apply Lemma 3.2.12.2 to construct a sequence
of K1-free extensions. We now show that if M1 is K1-free, N1 ⊆ M1 and N1 ⊆ N2
with N2 a finitely generated extension of the finitely generated substructure N1, then
M1 and N2 can be amalgamated over N1. Note that by Lemma 3.2.14, on K 1

<ℵ0
, ⊆ is

the same as ⊆ f r . There are three key ingredients in the amalgamation proof: N1 and
N2 must be finitely generated; this is reflected positively in the ability to employ the
witnessing sequences Bi in the proof but also by the key role in the proof of the finite set
PN2
4,1 − PN1

4,1 . Secondly, M1 must be K1-free. Thirdly, we must ensure that ‘atomicity’
is preserved in constructing extensions of Boolean algebra so the definitions of P4
and P4,1 are ‘absolute’ between models. It is this third condition which drives the
complexity of steps 1 to 3 in the following proof. The free amalgam D = A ⊗C B,
where either of A, B has only finitely many atoms must destroy the atomicity of some
elements. (If a is an atom of A and b1, . . . bn are the atoms of B, for at least one i ,
A ⊗C B |� 0 < a ∧ bi < a.) Thus we will have to construct a quotient algebra of
the free amalgam in step 3 below in order to find an amalgam which does not destroy
atoms.
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Theorem 3.2.16 Suppose M1 ∈ ̂K = K1 is K1-free and N1 ⊂ M1. Let N1 ⊂ N2 with
both in K 1

<ℵ0
.

Then there are an M2 and an f such that:

1. M2 ∈ K1, M1 ⊆ f r M2 and so M2 is K1-free.
2. f maps N2 into M2 over N1. Moreover, the image in M2 of N2 is K1-free over N1.

Proof. We lay out the situation in more detail. M1 is K1-free means that M1 is K1-
free over Mmin by (I1, H1). For i = 1, 2, let 〈ni∗, Bi , bi∗〉 witness that Ni ∈ K 1

<ℵ0
.

Suppose N1 ⊆ f r N2 is witnessed by (I2, H2). Invoking Lemmas 3.2.10 and 3.2.4,
we can rename ni∗ and rechoose n∗ for N2 so that n1∗ = n2∗ = n∗ and B1

n = B2
n ∩ N1

for n ≥ n∗, and (since PN2
2 is finite) for each c ∈ PN1

2 , H1(c) ≤ n∗. Let J1 ⊂ B1
n∗

be the pre-image of the basis of B1
n∗/P

N1
4 . Then, since J1/P

N1
4 is a generating set of

B1
n∗/P

N1
4 , for each b ∈ B1

n∗ , there is a Boolean combination b′ of elements of J1 such

that b′�b ∈ PN1
4 . Note also, that by our choice of n∗ (Definition 3.2.3.6), if b ∈ PN1

1

is above an atom of PN2
1 , b ∈ B1

n∗ . Let k = |PN2
4,1 − PN1

4,1 |, fix a0 . . . ak−1 listing a new

set A, and let f be 1-1 function from PN2
4,1 − PN1

4,1 onto A; A contains an image of each
new atom in N2.

Step 1: Construct a Boolean algebra B1 that is generated by PM1
1 ∪ A and so that the

atoms ofB1 are P
M1
4,1 ∪A. For this demand, letD�, for each � < k, be an ultrafilter of the

Boolean algebra PM1
1 , disjoint from I1− J1 such that for b ∈ PN1

1 , b ∈ D� if and only

if N2 |� f −1(a�) ≤ b. (Such an ultrafilter exists as the set {b ∈ PN1
1 : f −1(a�) ≤ b},

as noted in last paragraph, contains no element of I1 − J1 and is a filter on PN1
1 that

can be extended to an ultrafilter on the Boolean algebra PM1
1 .)

Now let X be the union of the Stone space of PM1
1 , denoted S(PM1

1 ) with A. For

b ∈ PM1
1 , let

Xb = {d ∈ S(PM1
1 ) : b ∈ d} ∪ {a� : b ∈ D�}.

Now let B1 be the subalgebra of P(X) generated by the {Xb : b ∈ PM1
1 }∪ A. Now,

generalizing the Stone representation theorem, we embed PM1
1 ∪ A into B1 by a map

g; let g(b) = Xb for b ∈ PM1
1 and g(a) = {a} for a ∈ A.

Since PN2
4,k ∩ PN1

1 = PN1
4,k , there can be no non-zero b ∈ PN1

4 and so no non-

zero b ∈ PN2
4 with N2 |� b < f −1(ai ). Note i) that for b ∈ PM1

1 , b ∈ D� iff

B1 |� f −1(ai ) ≤ b and ii) that e is an atom of PM1
1 if and only if Xe is a principal

ultrafilter in B1. Thus, the atoms of B1 are exactly PM1
4,1 ∪ A.

Step 2: Find a sub-Boolean algebra B∗ of B1 that is a suitable base for amalgamating
B1 with PN2

1 . For this, denote by B∗ the sub-Boolean algebra of B1 generated by

g(PN1
1 ∪A).Denote by B̌∗ the sub-Boolean algebra of PN2

1 generatedby PN1
1 ∪ f −1(A).

Compose g with the union of the identity on PN1
1 with the map f given in the first

paragraphof the proof using the operations of N2 to give amap from PN1
1 ∪(PN2

4,1−PN1
4,1)

into B1 that takes B̌∗ to B∗. We also denote this map by f .
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To ease notation,wewill suppress g and pretend that PN1
1 ∪A is actually11 contained

in B1.

Step 3: Construct a Boolean algebra B2 that is an amalgam of PM1
1 and PN2

1 over

f (B̌∗) = B∗ such that the atoms of B2 are PB1
4,1 ∪ A. B2 is a quotient of the pushout

B′
2 of B1 and PN2

1 over the sub-Boolean algebra B∗ of B1 generated by PN1
1 and A.

The crux of the proof is the specification of the atoms of B2; it allows us to extend the
amalgam of Boolean algebras to an amalgam in K1.

By standard properties of the coproduct (Lemma 3.1.6), B1 and PN2
1 are disjointly

embedded over B∗ into their coproduct B′
2. We will regard the embedding of B1 as

the identity and denote by f the embedding of PN2
1 extending our earlier f mapping

the sub-Boolean algebra B̌∗ of PN2
1 into B1. Crucially, while B1 and f (PN2

1 ) are
sub-Boolean algebras of B′

2; they are not ideals.
The atoms of the amalgamation base B∗ remain atoms in B′

2 as: if a is an atom
of B∗ then every b1 ∈ B1 satisfies b1 ∧ a = 0 or b1 ∧ a = a and similarly for
b2 ∈ PN2

1 and therefore also for b1 ∧ b2; using disjunctive normal form, no element
of B′

2 contradicts the atomicity of an atom of B∗. Recall N1 ⊆ f r N2 is witnessed

by (I2, H2). To guarantee the atoms of B1\B∗ (i.e. PM1
4,1 − PN1

4,1 ) are atoms of B2, we
divide B′

2 by the ideal,12 �, generated by

�0 = {a ∧ f (b) : a ∈ PB1
4,1\PN1

4,1 , b ∈ I2, a ∧ f (b) < a}.

(*) Since each element of � is strictly below a finite join of atoms in B′
2 (actually in

B1), � is a proper ideal of B1 bounded by elements of PB1
4 ; but �∩ PB1

4 = ∅. Indeed,
by freeness of the coproduct, � ∩ B1 = ∅. Note that the subalgebra of B′

2 generated
by f (I2) is a subset of B1 so it is disjoint from �.

Let π map B′
2 onto B2 =de f B′

2/�. By (*), no element of B1 ∪ f (I2) is collapsed

by the map π : B′
2 → B2. Thus, π is 1-1 on B1 ∪ f (PN2

1 ) and B2 is a disjoint

amalgamation of the Boolean algebras π(B1) and π( f (PN2
1 )). Since B′

2 is generated

byB1∪ f (PN2
1 ), without loss of generality, we can assume the preimage of a potential

atomofB2 has the form a∧ f (b)where a ∈ B1−B∗ is an atomofB1 and b ∈ PN2
1 −B∗.

By the freeness property of coproducts,13 B′
2 |� a ∧ f (b) < a, so π(a ∧ f (b)) = 0

and π(a) = a is an atom.

Step 4: The actual τ -amalgam. Now to define the extension M2, let P
M2
1 = B2,

PM2
4,1 = PM1

4,1 ∪ A; PM2
4 is the set of finite joins of these atoms. Then, let PM2

2 =
PM1
2 ∪ PN2

2 and the FM2
n (c) be as in whichever of Ml , N2 in which c lies. Define PM2

0

to be a set in 1-1 correspondence with PM2
4 and call the correspondence GM2

1 . Finally,

we must define RM2 : for each b ∈ PM2
1 , let R(M2, b) = {a ∈ PM2

0 : GM2
1 (a) ≤M2 b}.

11 Clearly, this could be achieved by choosing a new copy of B1.
12 Abusing notation, since B1 is not a τ -structure, we write P

B1
4,1 for the set of atoms of B1 and P

B1
4 for

their finite joins.
13 B′

2 is freely generated as a Boolean algebra by (isomorphic copies of) B1 and P
N2
1 over B∗.
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By Lemma 3.1.5, I2 is independent from B1 over � in B′
2 and so, by (*), π( f (I2))

is independent from PM2
1 = B2 over P

M2
4 in M2. So M1 ⊂fr M2 with HM2(c) = n∗

for c ∈ PM2
2 . ��3.2.16

Note theM0, M1, M2, M3 in thenext argument are N0, M1, N2, M2 inLemma3.2.16.

Corollary 3.2.17 (K 1
<ℵ0

,⊆) has the disjoint amalgamation property.

Proof. We know every member of K 1
<ℵ0

is K1-free over the empty set. So the amalga-
mation becomes a special case of Lemma 3.2.15whenwe add a proof that the amalgam
is in K 1

<ℵ0
. We have the following situation. M0 is K1-free over the minimal model

Mmin . That is, there are J0, I0, H0 such that J0 generates B0,n0∗ and (J0 ∪ I0, H0)

witness that M0 is a K1-free extension of the minimal model Mmin . Similarly there
are for i = 1, 2, Ji , Ii , Hi such that Ji generates Bi,ni∗ and (Ji ∪ Ii , Hi ) that witness
that Mi is a K1-free extension of the minimal model M0.

Choose n∗ as the maximum of ni∗ for i < 3; we can assume the ni∗ for i < 3 are
equal and that B2,ni∗ ∩ B0,n0∗ = B0,n0∗ for i = 1, 2. Rechoosing n∗ by Lemma 3.2.10

we can assume for all n ≥ n∗, B1
n ∩ PM0

1 = B0
n = B2

n ∩ PM0
1 .

ChooseM3 by Lemma 3.2.16. Let b3n∗ = b1n∗ ∧b1n∗ . Now let B3,n∗ be the subboolean
algebra ofM3 generated by J0∪J1∪J3 and forn ≥ n∗, B3,n begenerated by B1,n∪B2,n .
This is the required witnessing sequence. ��3.2.17

Since K 1
<ℵ0

has joint embedding, amalgamation and only countably many finitely
generated models, we construct in the usual way a generic model. This construction
can be rearranged in order typeω so by Theorem 3.2.16 and Lemma 3.2.12 the generic
is K1-free.

Corollary 3.2.18 There is a countable generic model M for K0. We denote its Scott
sentence by φM. Moreover M is K1-free.

Aligning our notation with earlier sections of the paper we note the models of φM

are rich in the sense defined there.

Definition 3.2.19 We say a model N in K1 is rich if for any N1, N2 ∈ K 1
<ℵ0

with
N1 ⊆ N2 and N1 ⊆ M , there is an embedding of N2 into N over N1. We denote the
class of rich models in K1 as K2 or R.

Lemma 3.2.16 finds a K1-free extension of each K1-free model in K1; more
strongly:

Corollary 3.2.20 Let M1 be K1-free. There exists an M2 ∈ K2 which is a proper
K1-free extension of M1.

Proof. Iterate Corollary 3.2.16 as in Corollary 2.1.6 to obtain a rich model; note that
K1-freeness is preserved at each stage. ��3.2.20

The crucial distinction from Corollary 2.1.6 is that here we extend only ‘K1-free
models’ in K1 to K2. While this construction applied to models in K2 will necessarily
increase P0 (case 2 of Construction 3.3.9), we can find extensions in K1 which do not
extend P0 or P1 but only P2 (case 4 of Construction 3.3.9).

For the construction in Sect. 3.3 we require two crucial properties of the generic
model.
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Lemma 3.2.21 If M is the generic model then

(i) if b1 �= b2 are in PM
1 − PM

4 then R(M, b1) �= R(M, b2), i.e. the map f from
Definition 3.2.2.3 is injective.

(ii) For any a ∈ PM
0 , b ∈ PM

1 , M |� R(a, b) ∨ R(a, b−). Indeed, PM
1 is an atomic

Boolean algebra.
(ii) For each b ∈ PM

1 − PM
4 , RM (M, b) is infinite and coinfinite.

Proof. For (i) fix a finitely generated model M0 containing b1, b2; there is a finitely
generated extension M1 in K 1

<ℵ0
by adding a ∈ PM1

0 with RM1(a, b1)∧¬RM1(a, b2).
This shows the injectivity; the other conditions are similar. ��3.2.21
Lemma 3.2.22 If M, N ∈ K2, M ≡∞,ω N so they satisfy the Scott sentence �M.
Moreover, if M ⊂ N and are both in K2, M ≺∞,ω N.

Proof: Suppose M and N are in K2. We define a back-and-forth between M and
N for a ∈ Mn , b ∈ Nn by a ≡ b if they realize the same first order type over the ∅
with respect to T . Fix such a ≡ b and choose c ∈ M . The interest is when c is not in
A = acl(a), If c ∈ PM

1 − A, let A1 = 〈A ∪ {c}〉M . Since M ∈ K1, A1 ∈ K1. Now let
B = 〈b〉N that is equivalent to A. By richness there exists B1 isomorphic to A1 with
B ⊂ B1 ⊂ N .

If M ⊂ N and both are in K2, then aclM (a) = aclN (a) for a ∈ M ; this yields the
moreover. ��3.2.22

This completes our description of the class K2 of richmodels and its Scott sentence.
At this point we show any K1-free-member of K2 has a proper K1-free-extension in
K1. In case 2 of Construction 3.3.9, we apply Corollary 3.2.20 to regain a member of
K2.

Lemma 3.2.23 If M ∈ K2, there is an N such that M ⊂ f r N , both are in K1,
PN
2 = PM

2 , PN
0 = PM

0 , and PN
1 is generated by PM

1 ∪ {b} and b ∈ N ′ with N ≺ N ′.
Moreover given u ⊆ PM

0 , we can require R(N , b) = u and b is free from PM
1 over

PN
4 . Finally, if M is K1-free then so is N .

Proof: Let p(x) be the type of an element satisfying P1(x) ∧ ¬P4(x):

{x ≥ G1(a) : a ∈ u} ∪ {G1(a) ∧ x = 0 : a ∈ PN
4 \u}

∪{b ∧ σ(x) �= a : b ∈ PM
1 \PM

4 , a ∈ PM
4 },

where σ(x) ranges over nontrivial Boolean polynomials. Each finite subset q of p
is satisfied in M because M ∈ K2. Thus there is an elementary extension N ′ of M
where p is realized by some b. Let B be the boolean subalgebra of PN ′

1 generated by
PM
1 ∪{b}. Since N ′ satisfies the first order properties of K2, the atoms of M are atoms

of B.
Define a τ -structure N with PN

1 = B. Interpret P2 and the Fn in N as in M . Extend
GM

1 and PM
0 so that PN

0 = (GN
1 )−1(Y ). The structure N is well-defined; we must

prove it is in K1.
Let 〈(Mi , Zi ) : i < |M |, Zi ⊂ω Y 〉 list the pairs of finitely generated Mi ⊂ M

in K 1
<ℵ0

and finite subsets Zi of Y . (The Mi will be repeated.) Let Ni ⊂ N with
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PNi
0 = PM1

0 ∪ Zi , P
Ni
2 = PM1

2 , and PNi
1 be the universe of the Boolean subalgebra

of N τ -generated by PN1
2 ∪ {b} ∪ Zi . It is easy to check each Ni ∈ K 1

<ℵ0
. Now N is

the direct limit of the finitely generated {Ni : i < |M |} so it is in K1.
Finally b is free from from PM

1 over PN
4 since no nontrivial unary polynomial

σ satisfies maps σ(b) ∧ a ∈ PN
4 with a ∈ PM

1 − PM
4 . The moreover follows by

Definition 3.2.11 from the independence of b. ��3.2.23

3.3 Constructingmaximal models in an extension of ZFC

We show that for arbitrarily large cardinals below a measurable cardinal κ , assuming
a mild set theoretic hypothesis described below, K2 has a maximal model in κ https://
arxiv.org/abs/2109.07310. We begin by defining a pair of set theoretic notions and
some specific notions of maximal model.

Definition 3.3.1 ( S) Given a cardinal κ and a stationary set S ⊆ κ ,  S is the statement
that there is a sequence 〈Aα : α ∈ S〉 such that

1. each Aα ⊆ α;
2. for every A ⊆ κ, {α ∈ S : A ∩ α = Aα} is stationary in κ .

Definition 3.3.2 (S reflects) Let κ be a regular uncountable cardinal and let S be a
stationary subset of κ . For α < κ with uncountable cofinality, S reflects at α if S ∩ α

is stationary in α. S reflects if it reflects at some α < κ .

Definition 3.3.3 1. A model M ∈ K2 = R is P0-maximal (for K1) if M ⊆ N and
N ∈ K2 (∈ K1) implies PM

0 = PN
0 .

2. A model M ∈ K2 is maximal for K2 if M ⊆ N and N ∈ K2 implies M = N .

Let Sλℵ0
denote the stationary set {δ < λ : cf(δ) = ℵ0, δ is divisible by |δ|}.

We now define a crucial notion.

Definition 3.3.4 (A-good defined) Suppose that Nn ⊂fr Nn+1 for n < ω, is sequence
of models, N , in K1. We say a sequence b = 〈bn : n < ω〉 is
1. good for N if

(a) PNn+1
2 − PNn

2 is infinite;

(b) for each n, bn ∈ PNn+1
1 and {bn} is free from PNn

1 over PNn+1
4 ;

(c) if a ∈ PNi
0 , then for all but finitely many n ≥ i , a /∈ R(Nn+1, bn).

2. for A ⊂ ⋃

N , b is A-good if each bn ∈ A,
3. and labeled if there is a pair (Nb, cb) with Nb ∈ K1 and Nb ⊇ Nω = ⋃

Nn such
that for each n, FNb

n (cb) = bn . By the definition of K1,
⋂

n R(Nb, FN
n (cb)) = ∅.

Note that for every c ∈ Nm � Nω, at most finitely many of any good sequence
〈bk : k < ω〉 occur in the sequence FNm

n (c) for n < ω (as FNm
n (c) ∈ Nm and for

k > m, bk /∈ Nm).
Any proper P0-extension of a model M induces a non-principal ultrafilter A on

PM
1 . Claim 3.3.5 is instrumental via case 5 in constructing, for the particular M under
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consideration, an ostensibly non-principal ℵ1-complete ultrafilter on P(PM
0 ) which

contradicts that λ is not measurable. See 3.3.11.

Claim 3.3.5 Suppose that for n < ω, N = 〈Nn ⊂fr Nn+1〉 are in K1. For A ⊆ Nω, if
Condition (A) holds then so does condition (B).

(A) There is an A-good sequence for N.
(B) There is a labeled A-good sequence for N.

Proof. The following construction is for the fixed A-good sequence b. Let N = Nω =
⋃

n<ω Nn . Note that each PNb

1 = PN
1 ; the extension Nb only adds an element c to

PNω

2 and interprets the FNb

m (c). The difficulty is that while we know each Nn+1 is
K1-free over Nn , witnessed by some (In, Hn), we don’t know bn ∈ In . We need to
find I ′n which witnesses both Nn ⊂fr Nn+1 and bn ∈ I ′n . After this construction we
will choose an Nb extending N witnessing goodness.

To find I ′n , we first find (Xn, Jn) such that:

1. Xn ⊆ PNn
1 is finite.

2. Jn ⊂ In is countable.
3. If c ∈ PNn+1

2 − PNn
2 then for sufficiently large m, FNn+1

m (c) /∈ Jn .

4. bn ∈ BA(Xn ∪ Jn), the Boolean algebra generated by Xn ∪ Jn in PMn+1
1 .

First step: First, we construct such an (Xn, Jn). Note that bn is in a subalgebra
generated by a finite subset Xn of P

Nn
1 and a finite subset J ′n of In .

Now, by 1a) of Definition 3.3.4 , fix a sequence 〈ci : i < ω〉 of distinct elements
of PNn+1

2 − PNn
2 . Note that for i, j < ω if ni > Hn(ci ) and n j > Hn(c j ) then

FNn+1
ni (ci ) �= FNn+1

ni (ci ). Now we can construct a J ′′n = {dn,k : k < ω} from In − J ′n
by dn,k = FNn+1

m (ck) for some m > Hn(ck). We now have a countably infinite J ′′n
contained in In − J ′n such that for each c ∈ PNn+1

2 − PNn
2 all but finitely many of the

FNn+1
m (c) are in In − (J ′n ∪ J ′′n ). Set Jn = J ′n ∪ J ′′n .
Second step: Now apply Lemma 3.1.1014 to find J ∗n with J ∗n independent from PMn

1

over PMn+1
4 such that 〈J ∗n ∪ PMn+1

4 〉
P
Mn+1
1

= 〈Jn ∪ PMn+1
4 〉

P
Mn+1
1

but bn ∈ J ∗n . Now,
I ′n can be taken as (In − Jn)∪ J ∗n . To ensure that Nn ⊆ f r Nn+1 with basis I ′n , replace
HN (cn) by HNn (cn) + rn where (by Definition 3.2.3) some rn bounds the number of
m such that FNn

m (cn) ∈ 〈Jn〉PMn+1
1

.

Having found an appropriate basis for N = ⋃

Nn , we extend N to Nb by adding
an element cb to PN2

2 and defining FNb

n (cb) = bn . The sentence immediately before

Claim 3.3.5 guarantees that Nb is K1-free; set HNb
(c∗) = 0; thus, Nb ∈ K1. Since

the same bn were used, it is clear the labeled sequence is A-good. (Note that there is
no requirement thatm, n < ω, c ∈ PM0

2 , d ∈ PM1
2 imply FM1

n (c) �= FM1
m (d); we only

require that there be only finitely many such conflicts.) ��3.3.5
We now state precisely the main theorem.

14 This is the crucial application of Lemma 3.1.10which stengthened our notion of independence by getting
a standard consequence of exchange, even though exchange fails here.
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Theorem 3.3.6 Fix K 1
<ℵ0

, K1 = K̂ 1
<ℵ0

, and K2 = R as in Definitions 3.2.3, 3.2.8
and 3.2.19. There is a P0-maximal for K2 model M ∈ K2 of card λ if there is no
measurable cardinal ρ with ρ ≤ λ, λ = λ<λ, and there is an S ⊆ Sλℵ0

, that is
stationary non-reflecting, and  S holds.

Under V = L , the hypotheses are clearly consistent and imply there are arbitrarily
large maximal models of R in L . When a measurable cardinal exists, the consistency
of the conditions can be established by forcing; see the article by Cummings in the
Handbook of Set Theory [11] or by considering the inner model of a measurable L[D]
where is D is a normal ultrafilter on μ.

The argument for Theorem3.3.6will have three parts. First, we describe the require-
ments on a construction of a rich model; then we carry out the construction. Finally,
we show the model constructed is P0-maximal when λ is below the first measurable
and satisfies the other conditions of Theorem 3.3.6.

Construction 3.3.7 (Requirements) Fix λ satisfying the cardinal requirements in The-
orem 3.3.6. List [λ]<λ, the subsets of λ with less than λ elements, as 〈Uα : α < λ〉 so
that each subset is enumerated λ times and Uα ⊆ α. Since the set of ordinals α < κ

such that |α| divides α is a cub for any κ , without loss of generality, each α ∈ S is a
limit ordinal and is divided by |α|. Let A∗ = 〈A∗δ : δ ∈ S〉 be a  S-sequence.

We will choose Mα for α < λ by induction to satisfy the following conditions.
(Since the universe of M is a subset of λ, its elements are ordinals so we may talk
about their order although the order relation is not in τ .)

1. M0 is isomorphic to the minimal model of K1. For α > 1, Mα ∈ K2 has universe
an ordinal between α and λ.

2. 〈Mβ : β < α〉 is ⊆- continuous.
3. If β ∈ α − S then Mα is K1-free over Mβ , and Mα ∈ K2 = R.

4. If α = β + 2 and Uβ ⊆ P
Mβ

0 then there is a bβ ∈ PMα

1 such that R(Mα, bβ) ∩
Mβ+1 = Uβ and in the Boolean algebra PMα

1 , {bβ} is free from P
Mβ+1
1 modulo

PMα

4 . Moreover PMα

2 − P
Mβ

2 is infinite.
5. If δ ∈ S and α = δ + 1 then (A) implies (B), where:

(A) there is an A-good sequence γ = 〈γδ,n, bδ,n : n < ω〉, where the γδ,n are
increasing with n and not in S such that the 〈bδ,n : n < ω〉 are good for the
Mγδ,n .

(B) there is a labeled A-good sequence γ̂ = 〈γ̂δ,n, b̂δ,n : n < ω〉, for 〈Mγδ,n : n <

ω〉 with c ∈ Mδ+1.

Remark 3.3.8 Condition 5 asserts that for any A ⊆ ⋃

n<ω Mγδ,n : if there is an A-good
sequence then there is a labeled A-good sequence. In the proof of Claim 3.3.5 we,
in fact, took the same sequence so the ‘A’ is preserved automatically. But for each δ

we construct only one pair of a c labeling a sequence bδ,n . We fix the relevant A for
application in the first paragraph of 3.3.11; it will be an ultrafilter on PM

1 induced by
a proper extension.

We now carry out the inductive construction.
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Construction 3.3.9 Details Case 1: α = 0. Let M0 be the minimal model from
Lemma 3.2.9. The generic can be taken as M1.

Case 2: α = β+1 and β /∈ S. If β is a limit we only have to choose, by Lemma 3.2.20,
Mα to be a K1-free extension of Mβ in K2. If β is a successor, there is an additional

difficulty. If Uβ ⊂ P
Mβ

0 ; we must choose bβ to satisfy condition 4) and with Mα ∈ K2.
For this, apply Lemma 3.2.23 with Uβ as U and Mβ+1 as M to construct N and bβ .
Now iterate Corollary 3.2.20 |Mβ+1| times to obtain Mα ∈ K2. This iteration also

ensures PMα

2 − P
Mβ

2 is infinite.

Case 3: α = δ, a limit ordinal that is not in S. Set Mδ = ⋃

γ<δ Mγ . We must prove
that if β ∈ δ\S then Mδ is K1-free over Mβ . Since S does not reflect there exists
an increasing continuous sequence 〈αi : i < cf(δ)〉 of ordinals less than δ, which
are not in S and with α0 = β. By the induction hypothesis, since α j /∈ S, for each
i < j < cf(δ), Mα j is K1-free over Mαi . And by Lemma 3.2.12, Mδ is K1-free over
Mβ as required.

Case 4a: α = δ + 1, δ ∈ S, and clause 5A fails. This is just as in case 2.

Case 4b: α = δ + 1, δ ∈ S, but clause 5A holds.
So, suppose 〈Mβ, bβ〉 for β < δ have been defined. If there exists γ as in condition

5A) of Construction 3.3.7 we must construct γ̂ = 〈γ̂δ,n, b̂δ
n : n < ω〉 and ĉδ to satisfy

condition 5B). Take any 〈γδ,n, bδ,n : n < ω〉 satisfying 5A. Let the Mγn be the Nn from
Claim 3.3.5 and by that claim,

choose Mδ+1, ĉδ ∈ PMδ+1
2 such that for each n, FMδ+1

n (ĉδ) = b̂δ,n.

Case 5: Recall that δ is divisible by |δ| so we can choose the γn so that γn+1 ≥ γn +ω

and each γn is not in S. So, by iterating as in Corollary 3.2.20, P
Mγn+1
2 − P

Mγn+1
2 is

infinite. Moreover, again since each γn is not in S, Mγn+1 is K1-free over Mγn so by
Lemma 3.2.12, Mδ is K1-free.

This completes the construction. We fix the domain of M as the λ chosen for Con-
struction 3.3.7.

Claim 3.3.10 The structure M = ⋃

i<λ Mi ∈ K2.

Proof. Since we required the extension to be in K2 = R in requirement 3 of Construc-
tion 3.3.7, for cofinallymany i ,Mi ∈ K2. ByLemma3.2.22, they are∞, ω-elementary
extensions. Hence M ∈ K2. ��3.3.10
Construction 3.3.11 Verification that the construction suffices Now we show that M
is P0-maximal for K2. Suppose for contradiction there exists N in K2 extending M
such that PN

0 � PM
0 . Choose a∗ ∈ PN

0 − PM
0 . Let

A = {b ∈ PM
1 : RN (a∗, b)}.

Then, by Lemma 3.2.21.ii, for every a ∈ PN
0 , in particular a∗ and every b ∈ PN

1
(and so every b ∈ PM

1 ) either RN (a∗, b) or RN (a∗, b−). Thus, the subset A of PM
1

is a non-principal ultrafilter of the Boolean algebra PM
1 . For, if A is principal, it is

123

Sh:1092



Hanf numbers for extendibility and related phenomena 459

generated by some atom b0 ∈ PM1
4 . Then b0 must be in P4,1 and so ¬RN (a∗, b0),

contrary to the hypothesis that a ∈ P0. We will show that A induces an ℵ1-complete
ultrafilter on P(PMα∗

0 ) for some α∗ < λ. But this contradicts that λ is below the first
measurable.

Recall that the Aδ are the diamond sequence fixed in requirement 3.3.7 and that
S ⊆ Sλℵ0

. Note

SA = {δ ∈ S : Mδ has universe δ & Aδ = A ∩ δ}

is a stationary subset of λ. In the construction, we chose bα for α < λ which satisfied
requirement 4 of Construction 3.3.7. Note

C = {δ < λ : δ limit & α < δ → bα < δ}

is a club on λ.
There are two cases. We will show the first is impossible and the second implies λ

is measurable, contrary to hypothesis. So the construction yields a P0-maximal model
in K2.

Case i): For every α < λ there is a b ∈ PM
1 ∩ A such that R(M, b) is disjoint from α

and {b} is independent from PMα

1 over PM
4 .

Choose δ∗ ∈ SA ∩ C . Since δ∗ has cofinality ω we can choose a sequence
〈γ̂ δ∗n : n < ω〉 such that each is a successor (so not in S), and, as we are in case
i), with bγ̂ δ∗

n
< γ̂ δ∗

n+1. Since condition 5B) holds there are ĉδ ∈ PMδ+1
2 such that

for each n, FMδ+1
n (ĉδ) = bγ̂ δ∗

n
. Since Mδ+1 ∈ K1, by clause 8 of Definition 3.2.2,

Mδ+1 |� ¬(∃x)∧

n R(x, Fn(c∗δ )). This contradicts that we chose bγ̂ δ∗
n

∈ A, since by

the definition of A, for each n < ω, RN (a∗, bγ̂ δ∗
n

) holds.

case ii) For some α∗, there is no such b. That is, if b ∈ PM
1 is independent from PMα∗

1
over PM

4 and R(M, b) is disjoint from α∗ then¬R(a∗, b). From the list of elements of
[λ]<λ at the beginningofConstruction3.3.7,we consider the subsequence 〈vγ : γ < λ〉
enumerating P(PMα∗

0 ); recall each element appears λ times in the list.
Wenowchoose inductively by requirement 4ofConstruction3.3.7 andLemma3.2.23

a subsequence15 bγ of the bα ∈ PM
1 and Mγ such that bγ ∈ P

Mγ+1
1 and

R(Mγ , bγ ) ∩ PMα∗
0 = vγ = R(M, bγ )

and 〈bβ : β ≤ γ 〉 is independent from PMα∗
1 over PM

4 . In particular, bβ is indepen-

dent from P
Mβ

1 over P
Mβ+1
4 and so by Remark 3.2.13 over PM

4 .
We claim that if γ1 < γ2 ∧ vγ1 = vγ2 then RN (a∗, bγ1) ↔ RN (a∗, bγ2). For this,

let b′ = bγ1�bγ2 . Then R(M, b′)∩ PMα∗
0 = ∅ so by the case choice,¬R(a∗, b′). But,

as required, ¬R(a∗, b′) implies RN (a∗, bγ1) ↔ RN (a∗, bγ2).

15 For local intelligibility (and at the risk of global confusion) we use indices bγ and Mγ rather than bαγ

and Mαγ that would keep more precise track of the subsequence fact.
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Continuing the proof of case ii) we define an ultrafilterD on P(PMα∗
0 ) by v ∈ D if

for some (and hence any) bγ fromour chosen subsequencewith R(M, bγ )∩PMα∗
0 = v,

RN (a∗, bγ ). (This is an ultrafilter as each u ⊂ PMα∗
0 is R(M, bγ ) ∩ PMα∗

0 for some
γ by requirement 4 of Construction 3.3.7.)

Now we show the coding of the elements of D extends to the entire original
sequence.

Claim 3.3.12 For any b ∈ PM
1 , which is one of the original sequence of independent

bα , if v = R(M, b) ∩ PMα∗
0 and v ∈ D then N |� R(a∗, b).

Proof. We can choose β, β1 so that α∗ < β < λ, b ∈ P
Mβ

1 and β1 > β such

that vβ1 = v. Now b̌ = b�bβ1 ∈ PM
1 and R(M, b̌) ∩ PMα∗

0 = ∅. Note that since

〈bβ : β < λ〉 is independent from PMα∗
1 over PM

4 in PM
1 , in particular b and bβ1 are

independent so the singleton b�bβ1 is independent from PMα∗
1 over PM

4 in PM
1 . So by

the choice of α∗, N |� ¬R(a∗, b̌). So, N |� ¬R(a∗, b) if and only N |� ¬R(a∗, bβ1).

But, we have v ∈ D and R(M, bβ1) ∩ P
Mα∗
0 = v, so N |� R(a∗, bβ1) and thus

N |� R(a∗, b) as required. ��3.3.12
There is noℵ1-complete ultrafilter onP(PMα∗

0 ) since |PMα∗
0 | < λ is notmeasurable.

So there are 〈wn ⊆ PMα∗
0 : n < ω〉, each in D, that are decreasing and intersect in

∅. Now we can find δ∗ > α∗ such that δ∗ ∈ SA ∩ C , the universe of Mδ∗ is δ∗,
Aδ∗ ∩δ∗ = A∩δ∗, and there is an increasing sequence 〈γ δ∗

n : n < ω〉with limit at most
δ∗ and each γ δ∗

n /∈ S. Further, by requirement 4 on the construction, we can choose γ δ∗
n

so that bγ δ∗
n

(another subsequence of the orginal sequence) satisfies a ∈ R(Mγn , bγn )

if and only if a ∈ wn , bγ δ∗
n

∈ M
γ δ∗
n+1

, and the sequence {bγ δ∗
n
} is independent from

PMδ∗
1 over PM

4 . Since the wn are decreasing with empty intersection, no a ∈ Mα∗ is
in more than finitely many of the wn . Thus, Definition 3.3.4 1c is satisfied.

So by clause 5) of the Requirements 3.3.7, there is a labeled A-good sequence b̂δ∗,n
for Mδ∗+1, ĉ∗δ ∈ P

Mδ∗+1
2 such that for each n, F

Mδ∗+1
n (ĉ∗δ ) = b̂δ∗,n . And by clause 8 of

Definition 3.2.2, this contradicts Claim 3.3.12; the intersection of R(N , FN
n (c)) for

n < ω must be empty but it contains a∗. So we finish case ii) and thus Lemma 3.3.6.
��3.3.6

Remark 3.3.13 In the construction we showed for limit δ that Mδ is K1-free using S
does not reflect if δ /∈ S and that cf(δ) = ω for δ ∈ S. We have no such tools to show
the P0-maximal model, M = Mλ built in Theorem 3.3.14 is K1-free. In fact, by the
contrapositive of Corollary 3.2.20 the final P0-maximal model, which might be M , is
not K1-free.

Note that every subset of M with cardinality< λ is contained in a K1-free substruc-
ture; this fails in the ZFC proof [10] of maximal models of K2 cofinal in a measurable.

Recall that a P0-maximal model in a class K is one that cannot be extended in K
without extending P0. While a maximal model has no extension K . We have con-
structed a P0-maximal model in K2; we show that it has a K2-maximal extension that
is only slightly larger.
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Corollary 3.3.14 Under the hypotheses of Theorem 3.3.6, there is a maximal model of
K2 of cardinality at most 2λ.

Proof. Fix a P0-maximal model N0 of cardinality λ from Theorem 3.3.6. Build for
as long as possible a continuous ⊆-increasing chain of Nα ∈ K2 such that each
PNα

1 � PNα+1
1 . But, necessarily, PNα

0 = PNα+1
0 . Recall that by Lemma 3.2.21.1 the

relation R is injective. So, each |PNα

1 | ≤ 2|P
N0
0 | = 2λ. So this construction must stop

and the final, maximal in K2, model has cardinality at most 2λ. ��3.3.14

4 Hanf number for existence

As mentioned in the introduction, we improved in [6] Hjorth’s result [17] by exhibit-
ing for each n < ω a complete sentence ψn such that ψn characterizes ℵn . This
improvement is achieved by combining the combinatorial idea of Laskowski–Shelah
in [22] with a new notion of n-dimensional amalgamation. We explain the main defi-
nition and theorem here (as in the Tehran lectures) and refer to [6] for the proofs. The
combinatorial fact is:

Fact 4.0.1 [22] For every k ∈ ω, if cl is a locally finite closure relation on a set X of
size ℵk , then there is an independent subset of size k + 1.

Fix a vocabulary τr with infinitely many r -ary relations Rn and infinitely many
r + 1-ary functions fn . We consider the class Kr

0 of finite τr -structures (including
the empty structure) that satisfy the following three conditions; closure just means
subalgebra closure with respect to the functions.

• The relations {Rn : n ∈ ω} partition the (r + 1)-tuples;
• For every (r + 1)-tuple a = (a0, . . . , ar ), if Rn(a) holds, then fm(a) = a0 for
every m ≥ n;

• There is no independent subset of size r + 2.

It is easy to see from Fact 4.0.1 that every model in ℵr is maximal. The main
effort is to show there is a complete sentence φr satisfying those conditions which has
model in ℵr . For this we introduce a notion patterned on excellence16 but weaker. We
pass from a class Kr

0 of, now, locally finite structures to the associated class ̂K as in
Definition 2.1.1.

Definition 4.0.2 For k ≥ 1, a k-configuration is a sequence M = 〈Mi : i < k〉 of
models (not isomorphism types) from K . We say M has power λ if ‖⋃

i<k Mi‖ = λ.
An extension of M is any N ∈ K such that every Mi is a substructure of N .

Informally, (λ, k)-disjoint amalgamation holds when for any sequence of k models,
at least one with λ elements, there is common extension, which properly extends each
model in the sequence. Crucially, there is no prior assumption of a universal model.
Here is the precise formulation.

16 Shelah’s theory of excellence concerns unique free disjoint amalgamations of infinite structures in ω-
stable classes of models of complete sentences in Lω1,ω .
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Definition 4.0.3 Fix a cardinal λ = ℵα for α ≥ −1. We define the notion of a class
(K ,≤) having (λ, k)-disjoint amalgamation in two steps:

1. (K ,≤) has (λ, 0)-disjoint amalgamation if there is N ∈ K of power λ;
2. For k ≥ 1, (K ,≤) has (≤ λ, k)-disjoint amalgamation if it has (λ, 0)-disjoint

amalgamation and every k-configuration M of cardinality ≤ λ has an extension
N ∈ K such that every Mi is a proper substructure of N .

For λ ≥ ℵ0, we define (< λ, k)-disjoint amalgamation by: has (≤ μ, k)-disjoint
amalgamation for each μ < λ.

Whether or not a given k-configurationM has an extensiondepends onmore than the
sequence of isomorphism types of the constituentMi ’s, as the pattern of intersections is
relevant as well. For example, when (as here) strong substructure is just substructure),
a 2-configuration 〈M0, M1〉with neither contained in the other has an extension if and
only if the triple of structures 〈M0 ∩ M1, M0, M1〉 has an extension amalgamating
them disjointly. Thus we abuse notation a bit and write (< λ, 2) amalgamation for
both the notion defined here and the one in Definition 2.1.4. But there is no existing
analog of our disjoint (< λ, k)-amalgamation for k > 2.

Now we modify a theme familiar from the theory of excellence. If the cardinality
increases by one, the number of models that can be amalgamated drops by one. In
Shelah’s context [29] (chapter 21 of [3]) there is a reliance on Fodor’s lemma to obtain
compatible filtrations of the models in κ+ to prove the version of Proposition 4.0.4. A
very different approach was needed to go from the finite to the countable. Instead of
the kth level concerning finding an embedding into an upper corner for a given 2k−1

vertices of a k-cube, we consider actual containment for k-models and do not worry
about their intersections.

Lemma 4.0.4 (Proposition 2.20 of [6]) Fix a locally finite (K ,≤) with JEP. For all
cardinals λ ≥ ℵ0 and for all k ∈ ω, if K has (< λ, k + 1)-disjoint amalgamation,
then it also has (≤ λ, k)-disjoint amalgamation.

Together, these propositions yield 1)-3) of the next result. Recall from Def-
inition 2.1.4, that by 2-amalgamation, we mean the usual notion that allows
identifications. We say 2-amalgamation is trivially true in a cardinal κ if all mod-
els in κ are maximal.

Theorem 4.0.5 (Theorem 3.2.4 of [6]) For every r ≥ 1, the class Atr satisfies:

1. there is a model of size ℵr , but no larger models;
2. every model of size ℵr is maximal, and so 2-amalgamation is trivially true in ℵr ;
3. disjoint 2-amalgamation holds up to ℵr−2;
4. 2-amalgamation fails in ℵr−1.
5. Each of the classes K̂ r and Atr have 2ℵs models in ℵs for 1 ≤ s ≤ r . In addition,

K̂ r has 2ℵ0 models in ℵ0.

Parts 4) and 5) require a further refinement of the notion of disjoint amalgamation.

Definition 4.0.6 Given a cardinal λ and k ∈ ω, we say that K has frugal (≤ λ, k)-
disjoint amalgamation if it has (≤ λ, k)-disjoint amalgamation and, when k ≥ 2,
every k-configuration 〈Mi : i < k〉 of cardinality ≤ λ has an extension N ∈ K with
universe

⋃

i<k Mi .
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Thus the domain of a frugal amalgamation is just the union of the models amalga-
mated. It is easy to see that this property holds for the example in [6]. It is essential
for the intricate constructions to verify the last two parts of Theorem 4.0.5 and for the
work in [8,9].

The finite amalgamation spectrum of an abstract elementary class K with LS(K ) =
ℵ0 is the set XK of n < ω such that K satisfies amalgamation17 in ℵn . There are many
examples18 where the finite amalgamation spectrum of a complete sentence of Lω1,ω

is either ∅ or ω.
Theorem 4.0.5 gave the first example of such a sentencewith a non-trivial spectrum:

for each 1 ≤ r < ω amalagmation holds up toℵr−2, but fails inℵr−1. It holds (trivially)
in ℵr (since all models are maximal); there is no model in ℵr+1.

This result leaves open whether the property, AP in λ, can be true or false in various
patterns as λ increases? Is there even an AEC (and more interestingly a complete
sentence of Lω1,ω) and cardinals κ < λ such that amalgamation holds non-trivially in
both κ and λ but fails at some cardinal between them?

Relying on the construction in [6], Baldwin and Souldatos [9] show there exist
complete sentences of Lω1,ω that variously have maximal models a) in two successive
cardinals, b) in κ and κω and c) in countably many cardinals. In each case all maximal
models of the sentence have cardinality less than ℵω1 . That proof includes an intricate
construction of a complete sentence that has a model in each successor cardinal κ+
with a definable subset of power κ . The [9] result is distinguished from the one here
in several ways. It constructs maximal models in designated cardinals rather than an
initial segment. The crucial amalgamation properties are quite different. The example
in [6] satisfies (< λ, 2) amalgamation in all cardinals.
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