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Abstract. We show how to force distinct values to m, p and h and the values in
Cichoń’s diagram, using the Boolean Ultrapower method. In our recent paper [J. Math.
Logic 21 (2021)] the same was done for a newer Cichoń’s Maximum construction which
does not require large cardinals. The present version does need large cardinals, but allows
one more value, in addition to the continuum, to be singular (either cov(M) or d).

We also show the following: Given a forcing notion P that forces certain values to
several classical cardinal characteristics of the reals, we can compose P with a collapse (of
a cardinal λ > κ to κ) such that the composition still forces the previous values to these
characteristics.

Introduction. Cichoń’s diagram (see Figure 1) lists ten cardinal char-
acteristics of the continuum, which we will call Cichoń characteristics (where
we ignore the two “dependent” characteristics add(M) = min {cov(M), b}
and cof(M) = max {non(M), d}).

In many constructions that force given values to such characteristics we
actually get something stronger, which we call “strong witnesses” (the objects
f̄ and ḡ in Definition 1.8).

In this paper, we show how to collapse cardinals while preserving the
strongly witnessed values for Cichoń characteristics (and certain other types
of characteristics).

We also continue the investigation of forcing constructions that result in
Cichoń’s Maximum, i.e., in “all Cichoń characteristics (including ℵ1 and the
continuum) are pairwise different”.

This investigation was started in [GKS19] with a construction using large
cardinals, and continued in [GKMS21b] (without using large cardinals). Based
on the latter construction (and accordingly also avoiding large cardinals),
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116 M. GOLDSTERN ET AL.

in [GKMS21a] we investigated how to preserve and how to change classical
cardinal characteristics of the continuum in NNR extensions, i.e., extensions
that do not add reals; and we showed how this gives 13 pairwise different
ones: ten from Cichoń’s Maximum, plus m, p and h (see Definition 1.1).

It turns out that it is possible to add m, p and h to the original (large
cardinal) construction of [GKS19] as well (see Figure 2) and this is what we
do in Section 3 of this paper. This result is weaker than the one in [GKMS21a]
in the sense that we need large cardinals here; the advantage of the current
result is that we can obtain singular values for cov(M) or d (in addition
to the singularity of c, which is easy to get in all constructions), something
which does not seem to be possible with the elementary submodel method
of [GKMS21b]. (As remarked in Fact 1.2, most of the Cichoń characteristics
can “individually” be singular; but it seems hard to get them in Cichoń’s
Maximum setting, see Subsection 1.3.)

cov(N ) // non(M) // // cof(N ) // 2ℵ0

b //

OO

d

OO

ℵ1 // add(N ) //

OO

//

OO

cov(M) //

OO

non(N )

OO

Fig. 1. Cichoń’s diagram with the two “dependent” values removed, which are add(M) =
min {b, cov(M)} and cof(M) = max {non(M), d}. An arrow x→ ymeans that ZFC proves
x ≤ y.

h

��

cov(N )

��

non(M)

�� ��

cof(N ) // 2ℵ0

p

OO

b

OO

d

ℵ1 // m

OO

add(N )

OO

cov(M)

OO

non(N )

OO

Fig. 2. The model we construct in this paper; here x → y means that x < y. When h is
omitted, any number of the < signs can be replaced by = as desired (and in each such
constellation we can get p = h; see Remark 4.3 for details). This model corresponds to
“Constellation A” (cA*, Fig. 3). We also realise another ordering of the Cichoń values,
called “Constellation B” (cB*, Fig. 4).

Annotated contents. We will briefly review the Boolean ultrapower
constructions in Section 1. We describe how we can start with several “initial
forcings” (for the left hand side of Cichoń’s diagram) and then extend each
of them to a Cichoń’s Maximum construction using three (or four) strongly
compact cardinals.
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CONTROLLING CHARACTERISTICS UNDER COLLAPSES 117

Parts of the following sections are parallel to [GKMS21a], and we will
regularly refer to that paper; this applies in particular to Section 2 (and parts
of Subsection 1.4), where we describe some classes of cardinal characteristics,
and their behaviour under no-new-reals extensions.

In Section 3 we show how to add m, p and h to the Boolean ultrapower
construction.

Section 4: The Boolean ultrapower method produces large gaps between
the Cichoń values of the left hand side: The κi in Figure 3 are strongly
compact (in the ground model; so as cofinalities are preserved they are still
weakly inaccessible in the extension). We can get rid of these gaps using the
results of this section: We show how we can collapse cardinals while keeping
values for characteristics that are either strongly witnessed or small.

In Section 5 we show how the known method of (simultaneously) adding
many randoms at the end gives us models with several singular values.

We usually assume GCH in the ground model in our constructions. In
Section 6 we observe that full GCH is usually not required, and give weaker
sufficient conditions.

1. Preliminaries

1.1. The characteristics. In addition to the Cichoń characteristics we
will consider the following ones, whose definitions are well known.

Definition 1.1. Let P be a class of forcing notions.

(1) m(P) denotes the minimal cardinal where Martin’s axiom for the posets
in P fails. More explicitly, it is the minimal κ such that, for some poset
Q ∈ P, there is a collection D of size κ of dense subsets of Q such that
there is no filter in Q intersecting all the members of D.

(2) m := m(ccc).
(3) Write a ⊆∗ b iff ar b is finite. Say that a ∈ [ω]ℵ0 is a pseudo-intersection

of F ⊆ [ω]ℵ0 if a ⊆∗ b for all b ∈ F .
(4) The pseudo-intersection number p is the smallest size of a filter base of

a free filter on ω that has no pseudo-intersection in [ω]ℵ0 .
(5) The tower number t is the smallest order type of a ⊆∗-decreasing se-

quence in [ω]ℵ0 without pseudo-intersection.
(6) The distributivity number h is the smallest size of a collection of open

dense subsets of ([ω]ℵ0 ,⊆∗) whose intersection is empty.
(7) A family D ⊆ [ω]ℵ0 is groupwise dense if

(i) a ⊆∗ b and b ∈ D implies a ∈ D, and
(ii) whenever (In : n < ω) is an interval partition of ω, there is some

a ∈ [ω]ℵ0 such that
⋃
n∈a In ∈ D.
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118 M. GOLDSTERN ET AL.

The groupwise density number g is the smallest size of a collection of
groupwise dense sets whose intersection is empty.

The following is well known (for references see [GKMS21a]):

Fact 1.2. ZFC proves

m ≤ p = t ≤ h ≤ g, m ≤ add(N ), t ≤ add(M), h ≤ b,

max {b, g} ≤ cof(d), 2<t = c, cof(c) ≥ g,

and all these cardinals are regular, with the possible exception of m, d and
c (which are consistently singular). In addition, all cardinals in Cichoń’s
diagram are consistently singular except ℵ1, b and the additivities.

1.2. The old constructions. In this paper, we will build on two exist-
ing constructions of posets forcing different values to several (or all) entries
of Cichoń’s diagram. We will call them the “old constructions” and refer to
them as “Constellation A” (in the variants cA and cA*) and “Constellation B”
(cB and cB*). Here, cA and cB refer to the constructions for the left hand
side (which do not require large cardinals), and cA* and cB* refer to Cichoń’s
Maximum.

Constellation A was introduced in [GKS19], and [BCM21] gives an im-
provement (requiring only three compacts and allowing d to be singular
instead of cov(M)). Constellation B is from [KST19], and [Mej19b] notes
that weaker assumptions on cardinal arithmetic in the ground model are
sufficient.

We will not describe the old constructions in detail, but only state the
results.

Note that in the following, we initially state the theorems about the
existence of certain forcing notions assuming GCH (in the ground model).
The only reason is that the theorems are better readable in this form. But
only some very weak consequences of GCH are actually required, and we
summarize the sufficient cardinal arithmetic assumptions in Section 6.

Theorem 1.3. Assume GCH and that ℵ1 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5
are cardinals, with λi regular for i 6= 5.

Constellation A: Assume additionally (1) that either

(i) λ5 is regular, and µ ≥ λ5 is a cardinal with cof(µ) ≥ λ3, or
(ii) cof(λ5) ≥ λ4, and we set µ := λ5.

Then there is a f.s. iteration P cA of length of size µ with cofinality λ4, using
iterands that are (σ, k)-linked for every k ∈ ω, which forces the values of

(1) Assumptions (i) and (ii) are optimal in the sense that (i) ZFC proves cof(d) ≥ b
and (ii) for any ideal I, if cov(I) = cof(I) then non(I) ≤ cof(cov(I)) (see e.g. [BJ95,
Lemma 5.1.16]).
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CONTROLLING CHARACTERISTICS UNDER COLLAPSES 119

λ1–λ5 in Constellation A (Figure 3):

(cA)
add(N ) = λ1, cov(N ) = λ2, b = λ3,

non(M) = λ4, cov(M) = λ5, d = c = µ.

Constellation B: Alternatively, assume additionally that cof(λ5) ≥ λ4
and either λ2 = λ3, or λ3 is ℵ1-inaccessible (2). Then there is a f.s. iteration
P cB of length of size λ5 with cofinality λ4, using iterands that are (σ, k)-
linked for every k ∈ ω, which forces the values of λ1–λ5 in Constellation B
(Figure 4):

(cB)
add(N ) = λ1, b = λ2, cov(N ) = λ3,

non(M) = λ4, cov(M) = c = λ5.

All these constructions can then be extended with Boolean ultrapowers
(more precisely: compositions of finitely many successive Boolean ultrapow-
ers), to make all values simultaneously different:

λ2 //

κ7

λ4 // // λ8 // λ9

λ3 //
(κ6)

OO

λ6

OO

ℵ1 κ9
// λ1 //

κ8

OO

//

OO

λ5 //

OO

λ7

OO

Fig. 3. Constellation A

λ3
κ6 // λ4 // // λ8 // λ9

λ2 //

OO
κ7

λ7

OO

ℵ1 κ9
// λ1 //

OO

κ8

//

OO

λ5 //

OO

λ6

OO

Fig. 4. Constellation B

Theorem 1.4. Assume GCH and ℵ1 < κ9 < λ1 < κ8 < λ2 < κ7 < λ3 ≤
λ4 ≤ λ5 ≤ λ6 ≤ λ7 ≤ λ8 ≤ λ9, λi is regular for i 6= 5, 6, and κj is strongly
compact for j = 7, 8, 9.

Constellation A: Assume additionally that either

(i) λ5 is regular and cof(λ6) ≥ λ3, or
(ii) λ6 is regular, cof(λ5) ≥ λ4, and there is a strongly compact κ6 such that

λ3 < κ6 < λ4.

Then there is a f.s. ccc iteration P cA∗ (a Boolean ultrapower of P cA) that
forces Constellation A (Figure 3):

(cA*)
add(N ) = λ1, cov(N ) = λ2, b = λ3, non(M) = λ4,

cov(M) = λ5, d = λ6, non(N ) = λ7, cof(N ) = λ8, c = λ9.

(2) A cardinal λ is κ-inaccessible if µν < λ for any µ < λ and ν < κ. Under GCH, this
is equivalent to “λ ≥ κ and λ is not the (cardinal) successor of a cardinal with cofinality
< κ”.
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120 M. GOLDSTERN ET AL.

Constellation B: Alternatively, assume additionally λ3 is ℵ1-inaccessible
and (ii) (of Constellation A) holds. Then there is a f.s. ccc iteration P cB∗

(a Boolean ultrapower of P cB) that forces Constellation B (Figure 4):

(cB*)
add(N ) = λ1, b = λ2, cov(N ) = λ3, non(M) = λ4,

cov(M) = λ5, non(N ) = λ6, d = λ7, cof(N ) = λ8, c = λ9.

Sketch of proof of Theorems 1.3 and 1.4. In all versions, that is, A(i),
A(ii) and B, we first construct a forcing for separating the characteristics on
the left hand side, i.e., for Theorems 1.3. This initial forcing will be different
for the different versions. To get the “full” result of Theorems 1.4, we always
do the same: We apply Boolean ultrapowers to the initial forcing notion, as
introduced in [GKS19].

For Constellation A(i) this result can be found explicitly in [BCM21,
Thm. 5.3] (for the left hand side) and in [BCM21, Thm. 5.7] (for the full
version); and for Constellation B in [Mej19b, Thms. A, B].

Constellation A(ii) is not explicitly described in the literature so far;
[GKS19, Thm. 1.35] gives the result with a slightly stronger Assumptions 1.12
there. But these assumptions can be relaxed without too much work. This can
be found in [Mej19b], which basically shows that you can relax the stronger
assumptions of [KST19] to weaker ones for Constellation B; and exactly the
same modification works for Constellation A(i) as well.

In particular, it shows:

• We can replace “λ5 regular” with cof(λ5) ≥ λ4. (This is trivial as it requires
no change in the proof whatsoever.)
Alternatively we could first use a regular λ′5 and then use our Lemma 3.6
to get a (singular) λ5 as value for the continuum.
(Note that singular λ5 allows us to get both cov(M) and c singular in
Theorem 3.10.)

• (For the left hand side only:) How each λi < λj can be replaced by ≤.
(This is rather obvious.)

• How to get rid of the assumption that λ3 is successor of a regular, and that
all λi are ℵ1-inaccessible. (This requires some change in the construction
and proof.)

We now give a very superficial overview of the Boolean ultrapower con-
struction. We start with a suitable left hand side forcing P , forcing (cA)
or (cB). For i = 7, 8, 9 (and also i = 6 in all versions apart from A(i)), we
let ji be a complete embedding associated with some suitable Boolean ultra-
power of the complete Boolean algebra generated by Fn<κi(λi, κi) (partial
functions of cardinality <κi from λi to κi), which yields cr(ji) = κi and
cof(ji(κi)) = |ji(κi)| = λi. Then P ∗ = j9(j8(j7(P ))) (in Constellation A(i))
is as required, and in the other versions we use P ∗ = j9(j8(j7(j6(P )))). At the
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CONTROLLING CHARACTERISTICS UNDER COLLAPSES 121

end of Subsection 1.4 we give the argument why the Cichoń characteristics
are forced to have the desired values.

Remark 1.5. Whenever we change in Theorem 1.4 some strict inequal-
ities on the right side to equalities, we may weaken the assumption by re-
quiring fewer strongly compact cardinals.

For example, in Constellation A(i), if we want to end up with non(N ) =
λ7 = λ8 = cof(N ), we can omit the compact κ8, and it is enough to assume
ℵ1 < κ9 < λ1 ≤ λ2 < κ7 < λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7 = λ8 ≤ λ9 (with
the other requirements unchanged). The same construction and proof will
work (where we omit the ultrapower corresponding to κ8): After the first
ultrapower (corresponding to κ7), we know that the resulting forcing will
force λ7 = non(N ) = cof(N ) = 2ℵ0 . And all the following ultrapowers (in
this case there is only one, with critical point κ9) will have critical point
below λ1 (the value for add(N )), as we omit κ8. Therefore these ultrapowers
will keep the value forced to both non(N ) and cof(N ) (while increasing the
value forced to the continuum).

See [GKMS21a, Subsec. 2.3] for details on the history of the results of
this section (and more).

1.3. Singular values and Cichoń’s Maximum. In the theorems in
the previous section, we can force either d (in Constellation A(i) only) or
cov(M) singular (in the others).

Note that typically only the value of c can be forced to be singular
in forcing extensions produced by “usual” f.s. iterations of ccc posets (see
e.g. [Bre91, Mej13]). Here, we start with such a “usual” left hand forc-
ing P that (potentially) makes the continuum singular (which is equal to
cov(M) = d, or just to d). After applying the Boolean ultrapowers, the
resulting forcing P ∗ will still force the same (potentially singular) value to
cov(M) or d, while increasing the values for the larger entries in Cichoń’s
diagram, including c, to regular values. We will see in Lemma 3.6 that we
can further modify this P ∗ to force a singular value to the continuum as
well; thus we can get two different singular entries in the diagram together
with Cichoń Maximum (see e.g. Theorem 3.10).

We are aware of the following previously known examples of more than
one singular value in Cichoń’s diagram:

(1) Forcing with κ many Cohen reals, followed by simultaneously adding λ
many randoms for κ < λ both possibly singular, yields the consistency
of ℵ1 = non(N ) = b < d = κ < cov(N ) = c = λ.

(2) First adding κmany Cohens followed by λ < κmany (simultaneous) ran-
doms, where λ = λℵ0 , we get ℵ1 = non(N ) = b < cov(N ) = non(M) =
λ < d = κ = c. See Section 5 for details.
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122 M. GOLDSTERN ET AL.

(3) With non-ccc techniques, in [FGKS17] it can be forced that ℵ1 = cov(N )
= d < non(M) < non(N ) < cof(N ) < c where all the values larger than
ℵ1 can be singular.

(4) Several examples of Cichoń’s diagram constellations (not maximum
though) with two different singular values are forced in [Mej19a] using
matrix iterations with vertical support restrictions.

The first two examples are expanded in Section 5.

1.4. Blass-uniform cardinal characteristics, LCU and COB.
A more detailed discussion on the concepts reviewed in the rest of this

section can be found in [GKMS21a, Sec. 2.1].

Definition 1.6 ([GKMS21a, Def. 2.1]). A Blass-uniform cardinal char-
acteristic is a characteristic of the form

dR := min {|D| : D ⊆ ωω and (∀x ∈ ωω) (∃y ∈ D) xRy}

for some Borel (3) R.

Its dual cardinal

bR := min {|F | : F ⊆ ωω and (∀y ∈ ωω) (∃x ∈ F ) ¬xRy}

is also Blass-uniform because bR = dR⊥ where xR⊥y iff ¬(yRx).
In practice, Blass-uniform cardinal characteristics are defined from a re-

lation R ⊆ X × Y where X and Y are Polish spaces, but since we can
translate such a relation to ωω using Borel isomorphisms, it is enough to
discuss relations on ωω.

Systematic research on such cardinal characteristics started in the 1980s
or possibly even earlier: see e.g. Fremlin [Fre84], Blass [Bla93, Bla10] and
Vojtáš [Voj93].

Example 1.7. The following are pairs of dual Blass-uniform cardinals
(bR, dR) for natural Borel relations R:

(1) A cardinal on the left hand side of Cichoń’s diagram and its dual on
the right hand side: (b, d) and (add(N ), cof(N )), (cov(N ), non(N )),
(add(M), cof(M)), (non(M), cov(M)).

(2) (s, r) = (bR, dR) where s is the splitting number, r is the reaping number,
and R is the relation on [ω]ℵ0 defined by xRy iff “x does not split y”.

Definition 1.8 ([GKMS21a, Def. 2.3]). Fix a Borel relation R, λ a
regular cardinal and µ an arbitrary cardinal. We define two properties:

(3) More generally, it is just enough to assume that R is absolute between the exten-
sions we consider.
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CONTROLLING CHARACTERISTICS UNDER COLLAPSES 123

Linearly cofinally unbounded : LCUR(λ) means: There is a family f̄ =
(fα : α < λ) of reals such that

(1.1) (∀g ∈ ωω) (∃α ∈ λ) (∀β ∈ λr α) ¬fβRg.

Cone of bounds: COBR(λ, µ) means: There is a <λ-directed partial order
E on µ (4) and a family ḡ = (gs : s ∈ µ) of reals such that

(1.2) (∀f ∈ ωω) (∃s ∈ µ) (∀t D s) fRgt.

Fact 1.9. LCUR(λ) implies bR ≤ λ ≤ dR.
COBR(λ, µ) implies bR ≥ λ and dR ≤ µ.

We often call the objects f̄ in the definition of LCU and (E, ḡ) for COB
“strong witnesses”, and we say that the corresponding cardinal inequalities
(or equalities) are “strongly witnessed”. For example, “(b, d) = (λb, λd) is
strongly witnessed” means: for the natural relation R (namely, the rela-
tion ≤∗ of eventual dominance), we have COBR(λb, λd), LCUR(λb) and there
is some regular λ0 ≤ λd such that LCUR(λ) for all regular λ ∈ [λ0, λd] (this
is to allow λd to be singular as in case (i) of cA and cA* of Theorems 1.3
and 1.4).

Remark 1.10. The old constructions ((cA), (cB) in Theorem 1.3) use that
we can first force strong witnesses to the left hand side, and then preserve
strong witnesses in Boolean ultrapowers, so that in the final model all Cichoń
characteristics are strongly witnessed. In more detail, for each dual pair
(x, y) in Cichoń’s diagram, there is a natural relation Rx such that (x, y) =
(bRx , dRx). We use these natural relations (with one exception (5)) as follows:
The initial forcing (without Boolean ultrapowers) is a f.s. iteration P of
length δ and forces LCURx(µ) for all regular λx ≤ µ ≤ |δ|, and COBRx(λx, |δ|),
where we either have λadd(N ) < λcov(N ) < λb < λnon(M) (cA, excluding
λnon(M) for case (i)), or λadd(N ) < λb < λcov(N ) < λnon(M) (cB), as in
Theorem 1.3.

Once we know that the initial forcing P gives strong witnesses for the
desired values λx for all “left-hand” values x in Cichoń’s diagram and con-

(4) That is, every subset of µ of cardinality <λ has a E-upper bound.
(5) The exception is the following: In case (i) of cA, for the pair (x, y) =

(non(M), cov(M)) it is forced LCU6=∗(λ4), LCU 6=∗(λ5) and COB 6=∗(λ4, λ5) (here x 6=∗ y
iff x(i) 6= y(i) for all but finitely many i); in cB, for x = cov(N ), we use the natural
relation Rcov(N ) (defined as the set of all pairs (x, y) where the real y is in the Fσ set of
full measure coded by x) only for COB. In this constellation, we do not know whether P
forces LCURcov(N)

(λ3) (as we do not have sufficient preservation results for Rcov(N )). In-
stead, we use another relation R′ (which defines different, anti-localization characteristics
(bR′ , dR′)), for which ZFC proves cov(N ) ≤ bR′ and non(N ) ≥ dR′ . We can then show
that P forces LCUR′(µ) for all regular λ3 ≤ µ ≤ |δ|.
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124 M. GOLDSTERN ET AL.

tinuum for the right hand side values (6), we use the following theorem to
separate all the entries.

Theorem 1.11 ([KTT18, GKS19]). Let ν < κ and λ 6= κ be uncountable
regular cardinals, R a Borel relation, and let P be a ν-cc poset forcing that
λ is regular. Assume that j : V → M is an elementary embedding into a
transitive class M satisfying:

(i) The critical point of j is κ.
(ii) M is <κ-closed (7).
(iii) For any cardinal θ > κ and any <θ-directed partial order I, j′′I is

cofinal in j(I).

Then:

(a) j(P ) is a ν-cc forcing.
(b) If P 
 LCUR(λ), then j(P ) 
 LCUR(λ).
(c) If λ < κ and P 
 COBR(λ, µ), then j(P ) 
 COBR(λ, |j(µ)|).
(d) If λ > κ and P 
 COBR(λ, µ), then j(P ) 
 COBR(λ, µ).

Proof. We include the proof for completeness. Property (a) is immediate
by (ii). First note that j satisfies the following additional properties:

(iv) Whenever a is a set of size <κ, j(a) = j′′a.
(v) If cof(α) 6= κ then cof(j(α)) = cof(α).
(vi) If θ > κ, L is a set and P 
 “(L, Ė) is <θ-directed” then j(P ) 
 “j′′L

is cofinal in (j(L), j(Ė)), and it is <θ-directed”.
(vii) j(P ) 
 “cof(j(λ)) = λ”.

Item (iv) follows from (i), and (v) follows from (iii). We show (vi). Let L∗ be
the set of nice P -names of members of L, and order it by ẋ ≤ ẏ iff P 
 ẋĖẏ.
It is clear that ≤ is <θ-directed on L∗. On the other hand, since any nice
j(P )-name of a member of j(L) is already inM by (ii) and (a), j(L∗) is equal
to the set of nice j(P )-names of members of j(L). Therefore, by (iii), j′′L∗
is cofinal in j(L∗). Note that j′′L∗ is equal to the set of nice j(P )-names of
members of j′′L. Thus, (vi) follows.

For (vii), the case λ < κ is immediate by (i) and (ii); when λ > κ, apply
(vi) to (L, Ė) = (λ,≤) (the usual order) and θ = λ.

To see (b), note that M � “j(P ) 
 LCUR(j(λ))” and, by (a) and (ii),
the same holds inside V (because any nice name of an ordinal, represented
by a maximal antichain on P , belongs to M , hence any nice name of a real),
which in fact means that j(P ) 
 LCUR(cof(j(λ))). By (vii) we are done.

(6) More specifically: for the cardinals ≥ d, non(N ) in case (i) of cA or ≥ cov(M) in
case (ii) of cA and in cB.

(7) I.e., M<κ ⊆M .
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CONTROLLING CHARACTERISTICS UNDER COLLAPSES 125

Now assume P 
 COBR(λ, µ) witnessed by (Ė, ˙̄g). This implies that
M thinks “j(P ) 
 (j(Ė), j( ˙̄g)) witnesses COBR(j(λ), j(µ))”. If λ < κ then
j(λ) = λ and it follows that V |= “j(P ) 
 COBR(λ, |j(µ)|)”. In the case
λ > κ apply (vi) to conclude that j(P ) forces that (j( ˙̄g(β)) : β < µ), with
j(Ė) restricted to j′′µ, witnesses COBR(λ, µ).

If κ is a strongly compact cardinal and θκ = θ, then there is an elemen-
tary embedding j associated with a Boolean ultrapower of the completion
of Fn<κ(θ, κ) such that j satisfies (i)–(iii) of the preceding theorem and, in
addition, for any cardinal λ ≥ κ such that either λ ≤ θ or λκ = λ holds,
we have max {λ, θ} ≤ j(λ) < max {λ, θ}+ (see details in [KTT18, GKS19]).
Therefore, using only Theorem 1.11, it is easy to see how to get from the
old constructions (Theorem 1.3) to the Boolean ultrapowers (Theorem 1.4),
as described in Remark 1.10 (see details in [BCM21, Thm. 5.7] and [GKS19,
Thm. 3.1] for cA* and in [KST19, Thm. 3.1] for cB*). Note that also a poten-
tial singular left-hand value for cov(M) or d is preserved by the ultrapowers:
Theorem 1.11(d) does not require µ to be regular.

2. Cardinal characteristics in extensions without new <κ-se-
quences. This section summarizes the technical results introduced in
[GKMS21a, Sect. 3].

Lemma 2.1 ([GKMS21a, Lemma 3.1]). Assume that Q is θ-cc and <κ-
distributive for κ regular uncountable, and let λ be a regular cardinal and R
a Borel relation.

(1) If LCUR(λ), then Q 
 LCUR(cof(λ)). So if additionally λ ≤ κ or θ ≤ λ,
then Q 
 LCUR(λ).

(2) If COBR(λ, µ) and either λ ≤ κ or θ ≤ λ, then Q 
 COBR(λ, |µ|). So
for any λ, COBR(λ, µ) implies Q 
 COBR(min {|λ|, κ}, |µ|).
Lemma 2.2 ([GKMS21a, Lemma 3.2]). Assume that R is a Borel relation,

P ′ is a complete subforcing of P , λ regular and µ is a cardinal, both preserved
in the P -extension.

(a) If P 
 LCUR(λ) witnessed by some ˙̄f , and ˙̄f is actually a P ′-name,
then P ′ 
 LCUR(λ).

(b) If P 
 COBR(λ, µ) witnessed by some (Ė, ˙̄g), and (Ė, ˙̄g) is actually a
P ′-name, then P ′ 
 COBR(λ, µ).

We now review three properties of cardinal characteristics.

Definition 2.3 ([GKMS21a, Def. 3.3]). Let x be a cardinal characteris-
tic.

(1) x is t-like if it has the following form: There is a formula ψ(x) (possibly
with, e.g., real parameters) absolute between universe extensions that
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do not add reals (8), such that x is the smallest cardinality λ of a set A
of reals such that ψ(A).

All Blass-uniform characteristics are t-like; other examples are p, t,
u, a and i.

(2) x is called h-like if it satisfies the same, but with A being a family of sets
of reals (instead of just a set of reals).
Note that t-like implies h-like, as we can include “the family of sets of
reals is a family of singletons” in ψ. Other examples are h and g.

(3) x is called m-like if it has the following form: There is a sentence ϕ (pos-
sibly with, e.g., real parameters) such that x is the smallest cardinality
λ such that H(≤λ) � ϕ.

Any infinite t-like characteristic is m-like: If ψ witnesses t-like, then
we can use ϕ = (∃A) [ψ(A)&(∀a ∈ A) a is a real] to get m-like (since
H(≤λ) contains all reals). Other examples are (9) m, m(Knaster), etc.

Lemma 2.4 ([GKMS21a, Lemma 3.4]). Let V1 ⊆ V2 be models (possibly
classes) of set theory (or a sufficient fragment), with V2 transitive and V1
either transitive or an elementary submodel of HV2(χ) for some large enough
regular χ, such that V1 ∩ ωω = V2 ∩ ωω.
(a) If x is h-like, then V1 � x = λ implies V2 � x ≤ |λ|.
In addition, whenever κ is uncountable regular in V1 and V <κ

1 ∩ V2 ⊆ V1:

(b) If x is m-like, then V1 � x ≥ κ iff V2 � x ≥ κ.
(c) If x is m-like and λ < κ, then V1 � x = λ iff V2 � x = λ.
(d) If x is t-like and λ = κ, then V1 � x = λ implies V2 � x = λ.

We apply this to three situations: Boolean ultrapowers, extensions by
distributive forcings, and complete subforcings:

Corollary 2.5 ([GKMS21a, Cor. 3.5]). Assume that κ is uncountable
regular, P 
 x = λ, and either

(i) Q is a P -name for a <κ-distributive forcing, and we set P+ := P ∗ Q
and j(λ) := λ; or

(ii) P is ν-cc for some ν < κ, j : V → M is a complete embedding into a
transitive <κ-closed model M , cr(j) ≥ κ, and we set P+ := j(P ); or

(iii) P is κ-cc, M � H(χ) is <κ-closed, and we set P+ := P ∩ M and
j(λ) := |λ∩M |. (So P+ is a complete subposet of P ; and if λ ≤ κ then
j(λ) = λ.)

(8) Concretely, if M1 ⊆ M2 are transitive (possibly class) models of a fixed, large
fragment of ZFC, with the same reals, then ψ is absolute between M1 and M2.

(9) m can be characterized as the smallest λ such that there is in H(≤λ) a ccc forcing
Q and a family D̄ of dense subsets of Q such that “there is no filter F ⊆ Q meeting all
Di” holds.
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Then

(a) If x is m-like and λ ≥ κ, then P+ 
 x ≥ κ.
(b) If x is m-like and λ < κ, then P+ 
 x = λ.
(c) If x is h-like then P+ 
 x ≤ |j(λ)|. Concretely,

for (i): P+ 
 x ≤ |λ|;
for (ii): P+ 
 x ≤ |j(λ)|;
for (iii): P+ 
 x ≤ |λ ∩M |.

(d) So if x is t-like and λ = κ, then for (i) and (iii) we get P+ 
 x = κ.

2.1. On the role of large cardinals in our constructions. It is
known that NNR (no-new-reals) extensions of proper classes (such as forcing
extensions) will preserve Blass-uniform characteristics in the absence of at
least some large cardinals. More specifically:

Lemma 2.6. Assume that 0# does not exist. Let V1 ⊆ V2 be transitive
class models with the same reals, and assume V1 |= x = λ for some Blass-
uniform x. Then V2 |= x = |λ|.

(This is inspired by the deeper observation [Mil98, Prop. 2.1] of Milden-
berger, who uses the Covering Lemma [DJ82] for the Dodd–Jensen core
model to show that in cardinality preserving NNR extensions, a measur-
able in an inner model is required to change the value of a Blass-uniform
characteristic.)

Proof of Lemma 2.6. Fix a bijection in V1 between the reals and some
ordinal α. Assume that in V2,X ⊆ ωω witnesses that ℵ1 ≤ x ≤ µ < |λ|. Using
the bijection, we can interpret X as a subset of α. According to Jensen’s
covering lemma in V2, there is in L (and thus in V1) some X ′ ⊇ X such that
|X ′| = |X| in V2, in particular |X ′|V2 < λ. Therefore, |X ′|V1 < λ as well;
and, by absoluteness, V1 thinks that X ′ witnesses x < λ, a contradiction.

Recall the “old” Boolean ultrapower construction cA* case (i): Assume
that we start with a forcing notion P forcing d = 2ℵ0 = λ6. We now use
the elementary embedding j = j7 : V → M with critical point κ7, and set
P ′ := j(P ). As we have seen, P ′ still forces d = λ6, but 2ℵ0 = λ7 = |j(κ7)|.

So let G be a P ′-generic filter over V (which is also M -generic). Set
V1 := M [G] and V2 := V [G]. Then V1 is a <κ7-complete submodel of V2.
By elementaricity, M |= j(P ) 
 d = j(λ6). So V1 |= d = j(λ6), whereas
V2 |= d = λ6 < |j(λ6)|.

Hence, for this specific constellation of models, some large cardinals (at
least 0#) are required (for our construction we actually use strongly compact
cardinals).
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3. Applications

Notation 3.1. (1) Whenever we are investigating a characteristic x,
we write λx for the specific value we plan to force to it. For example, in
Constellation A of any “old construction”, λcov(N ) would be λ2, whereas
in Constellation B it would be λ3. We remark that we do not implicitly
assume that P 
 x = λx for the P under investigation; it is just an (implicit)
declaration of intent.

(2) Whenever we base an argument on one of the old constructions, and
say “we can modify the construction to additionally force . . . ”, we implicitly
assume that the desired values λx for the “old” characteristics satisfy the
assumptions we made in the “old” constructions (such as “λx is regular”).

Recall the following properties of posets.

Definition 3.2. Let 2 ≤ k < ω and let Q be a poset.

(1) The poset Q is k-Knaster if for any uncountable B ⊆ Q there is some
uncountable k-linked A ⊆ B, i.e. any subset of A of size ≤k has a lower
bound in Q.

(2) The poset Q has precaliber ℵ1 if for any uncountable B ⊆ Q there is
some uncountable centered A ⊆ B, i.e. any finite subset of A has a lower
bound in Q.

For notational convenience, we declare that “1-Knaster” means “ccc”, and
“ω-Knaster” means “precaliber ℵ1”.

Corollary 2.5 gives us 11 characteristics:

Lemma 3.3. Given ℵ1 ≤ λm < κ9 regular and 1 ≤ k0 ≤ ω, we can modify
P cA∗ (and also P cB∗) so that we additionally force:

(1) m(k-Knaster) = ℵ1 for 1 ≤ k < k0,
(2) m(k-Knaster) = λm for k ≥ k0,
(3) p ≥ κ9.

Proof. Start with an appropriate left hand side forcing P . We can modify
it to construct a ccc poset P ′ as in [GKMS21a, Lemma 4.7] when k0 < ω,
or as in [GKMS21a, Lemma 5.5] when k0 = ω, forcing the same as P and,
in addition, p = b, and both (1) and (2) (10). Apply Boolean ultrapowers
to P ′ just as in the “old” construction, resulting in P ∗. We can apply Corol-
lary 2.5(ii), more specifically the consequences (a) and (b): (b) implies that
P ∗ forces (1) and (2), while (a) implies that P ∗ forces p ≥ κ9. And just as
in the “old” construction, we can use Theorem 1.11 to show that P ∗ forces
the desired values to the Cichoń characteristics.

(10) For Constellation A(i), P = P cA is constructed by a matrix iteration, so the small
posets in the modification P ′ should be inserted in a different way, specifically, as in the
proof of [BCM21, Thm. 5.4].
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If we use λm = κ9, we already lose control of the Knaster number and
only get the following (with the same construction):

Lemma 3.4. For 1 ≤ k0 ≤ ω, we can modify P cA∗ (and also P cB∗) so
that we additionally force

(1) m(k-Knaster) = ℵ1 for 1 ≤ k < k0,
(2) m(k0-Knaster) ≥ κ9.

The following will be used to control g in our construction:

Lemma 3.5 (Blass [Bla89, Thm. 2]). Let ν be an uncountable regular
cardinal and let (Vα)α≤ν be an increasing sequence of transitive models of
ZFC such that

(i) ωω ∩ (Vα+1 r Vα) 6= ∅,
(ii) (ωω ∩ Vα)α<ν ∈ Vν , and
(iii) ωω ∩ Vν =

⋃
α<ν ω

ω ∩ Vα.
Then, in Vν , g ≤ ν.

We now slightly expand (11) [GKMS21a, Lemma 6.3]. This lemma will
be used to change the values forced to g and c, while preserving the values
for Blass-uniform characteristics.

Lemma 3.6. Assume the following:

(1) ℵ1 ≤ κ ≤ ν ≤ µ, where κ and ν are regular and µ = µ<κ.
(2) P is a κ-cc poset forcing c > µ.
(3) For some Borel relations R1

i (i ∈ I1) on ωω and some regular cardi-
nals λ1i , P forces LCUR1

i
(λ1i ).

(4) For some Borel relations R2
i (i ∈ I2) on ωω, λ2i regular and cardinals ϑ2i :

P forces COBR2
i
(λ2i , ϑ

2
i ).

(5) For some m-like characteristics yj (j ∈ J) and λj < κ, P 
 yj = λj.
(6) For some m-like characteristics y′k (k ∈ K), P 
 y′k ≥ κ.
(7) |I1 ∪ I2 ∪ J ∪K| ≤ µ.
Then there is a complete subforcing P ′ of P of size µ that forces

(a) LCUR1
i
(λ1i ) and COBR2

i′
(λ2i′ , ϑ

2
i′) for all i ∈ I1 and i′ ∈ I2 such that

λ1i , λ
2
i′ , ϑ

2
i′ ≤ µ;

(b) LCUR1
i
(ν) and COBR2

i′
(ν, ν) for all i ∈ I1 and i′ ∈ I2 such that λ1i , λ

2
i′

> µ;
(c) COBR2

i′
(λ2i′ , µ) for all i′ ∈ I2 such that λ2i′ ≤ ν, µ

<λ2
i′ = µ and ϑ2i′ > µ;

(11) Compared to [GKMS21a, Lemma 6.3], we just added consequences (b) and (c).
These are actually not used explicitly in the rest of the paper; but (c) is used implicitly
in the sketch of proof of Theorem 1.3, where we claim that in Constellation A(ii) we can
get c = λ5 singular by applying Lemma 3.6.
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(d) yj = λj and y′k ≥ κ for all j ∈ J and k ∈ K;
(e) c = µ and g ≤ ν.

Proof. As in the proof of [GKMS21a, Lemma 6.3], construct an increasing
sequence (Mα : α < ν) of <κ-closed elementary submodels of H(χ) (for χ
regular large enough) of size µ such that

(i) µ ∪ {µ} ⊆ M0 and M0 contains (as elements) all the objects men-
tioned in the hypothesis of the lemma (i.e., in the case of an m-like
characteristic, M0 contains the parameters of the definition);

(ii) (Mξ : ξ ≤ α) ∈Mα+1;
(iii) when λ1i > µ (i ∈ I1), λ1i ∩Mα+1 contains an upper bound of λ1i ∩Mα;
(iv) when λ2i > µ (i ∈ I2), Mα+1 contains a P -name ζ̇iα of a member of ϑ2i

that is forced to be a Ėi-upper bound of ϑ2i ∩Mα, where (Ė
i
, ˙̄gi) ∈M0

is a witness of COBR2
i
(λ2i , ϑ

2
i );

(v) when λ2i ≤ ν, µ<λ2i = µ and ϑ2i > µ (i ∈ I2): for any C ⊆ ϑ2i ∩Mα

of size <λ2i there is some P -name in Mα+1 of a member of ϑ2i that is
forced to be a Ėi-upper bound of C;

(vi) Mα+1 contains a P -name of a real that is forced not to be in the P∩Mα-
extension. (This is possible as P forces c > µ.)

Set M := Mν =
⋃
α<νMα, which is also a <κ-closed elementary submodel

of H(χ) of size µ. As P is κ-cc, Pα := P ∩Mα is a complete subposet of P for
any α ≤ ν, and it is clear that P ′ := Pν is the direct limit of (Pα : α < ν).

We show that P ′ is as required.
Item (a) follows from Lemma 2.2, and (d) follows from Corollary 2.5

(case (iii)).
For (b), note that by (iv), P ′ forces that (ḣiα : α < ν) is a witness

of COBR2
i
(ν, ν) where ν has its usual order and ḣiα := ġi

ζ̇iα
; and by (iii)

LCUR1
i
(ν) is obtained “dually” (12).

For (c), by (v), P ′ forces that ϑ2i ∩M (of size µ) with the partial order
Ė
i ∩M (which is a P ′-name) is <λ2i -directed and (ġiξ : ξ ∈ ϑ2i ∩M) is a

witness of COBR2
i
(λ2i , µ).

For (e), let Vν be a P ′-generic extension and, for each α < ν, let Vα be
its intermediate Pα-extension. By (vi) the sequence (Vα : α ≤ ν) satisfies
the hypothesis of Lemma 3.5, so Vν |= g ≤ ν. On the other hand, it is clear
that Vν |= c = µ.

Remark 3.7. We cannot preserve COBR(λ, θ) when λ > µ. For example,
if λ > µ, then COBR(λ, θ) will fail in the P ′-extension as it would imply
bR ≥ λ > µ = c.

(12) This argument comes from [GKMS21b, Lemma 1.6].
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The following two results deal with p.

Lemma 3.8 ([GKMS21a, Lemma 7.2]). Assume ξ<ξ = ξ, P is ξ-cc, and
set Q := ξ<ξ (ordered by extension). Then P forces that QV preserves all
cardinals and cofinalities. Assume P 
 x = λ (in particular λ is a cardinal),
and let R be a Borel relation.

(a) If x is m-like, then λ < ξ implies P × Q 
 x = λ, while λ ≥ ξ implies
P ×Q 
 x ≥ ξ.

(b) If x is h-like, then P ×Q 
 x ≤ λ.
(c) P 
 LCUR(λ) implies P ×Q 
 LCUR(λ).
(d) P 
 COBR(λ, µ) implies P ×Q 
 COBR(λ, µ).

Lemma 3.9 ([DS], [GKMS21a, Lemma 7.3]). Assume that ξ = ξ<ξ and
P is a ξ-cc poset that forces ξ ≤ p. In the P -extension V ′, let Q = (ξ<ξ)V .
Then:

(a) P ×Q = P ∗Q forces p = ξ;
(b) if in addition P forces ξ ≤ p = h = κ, then P ×Q forces h = κ.

We are now ready to prove the consistency of 13 pairwise different clas-
sical characteristics. Note that the following result allows both c and either
cov(M) or d to be singular.

Theorem 3.10. Assume GCH and ℵ1 ≤ λm ≤ λp ≤ λh ≤ κ9 < λ1 <
κ8 < λ2 < κ7 < λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7 ≤ λ8 ≤ λ9 are such that
the assumptions of Theorem 1.4 (Constellation A or B) are met, except for
the regularity requirement on λ9, and additionally λm, λp and λh are regular
and (13) cof(λ9) ≥ λh. Then there is a λ+p -cc poset P (if λp = λh we even get
ccc) which preserves cofinalities and forces (1) and (2) of Lemma 3.3, and

p = λp, h = g = λh,

as well as the old values for the Cichoń characteristics, that is, (cA*) or
(cB*).

For the convenience of the reader, we repeat here “the assumptions of
Theorem 1.4 without λ9 regular”: λi regular for i 6= 5, 6, 9, and κj is strongly
compact for j = 7, 8, 9, and additionally

Constellation A: either

(a) λ5 is regular and cof(λ6) ≥ λ3, or
(b) λ6 is regular, cof(λ5) ≥ λ4, and there is a strongly compact κ6 such that

λ3 < κ6 < λ4.

Constellation B: λ3 is ℵ1-inaccessible and (ii) holds.

(13) The cof(λ9) ≥ λh is optimal in our situation g = λh, as cof(c) ≥ g.
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Proof of Theorem 3.10. Let P ∗ be the suitable ccc poset obtained in the
proof of Lemma 3.3 (or Lemma 3.4 if λm = κ9), but not for the given λ9 as
value for the continuum, but ξ := (λκ99 )+ instead.

This is a ccc poset of size ξ that forces strong witnesses for the desired
values of the Cichoń characteristics (but c = ξ), and gives the results of
Lemma 3.3 (or Lemma 3.4) on the Knaster numbers (and p).

We now apply Lemma 3.6 with κ = ν = λh and µ = λ9. This gives us a
complete subposet P ′ of P ∗.

If λm < λh (and so in particular λm < κ9), we still get (1) and (2)
of Lemma 3.3, and p (which was forced by P ∗ to be ≥ κ9) is forced to
be ≥ κ = λh; also g is forced to be ≤ ν = λh, and so it is forced that
p = h = g = λh.

If λm = λh, then we only get m(k0-Knaster) ≥ κ = λh = λm, so we get
λm ≤ m(k0-Knaster) ≤ p ≤ g = ν = λh = λm.

In any case c = λ9 and the values forced by P ′ of the other cardinals
in Cichoń’s diagram are the same values forced by P ∗, again with strong
witnesses.

If λp = λh, then we are done. So assume that λp < λh. Hence, by
Lemmas 3.8 and 3.9, P := P ′ × (λ

<λp
p ) is as required. It is clear that P

forces m(k0-Knaster) = m(precaliber) = λm when λm < λp, but the same
happens when λm = λp because P would force λm ≤ m(k0-Knaster) ≤
m(precaliber) ≤ p ≤ λm.

4. Reducing gaps (or getting rid of them). As mentioned in Re-
mark 1.5, we can choose right side Cichoń characteristics rather arbitrarily
or even choose them to be equal (equality allows a construction from fewer
compact cardinals). However, large gaps were required between some left
side cardinals. We deal with this problem now, and show that we can assign
reasonably arbitrary regular values to all characteristics (such as λi = ℵi+1),
and in particular set any “reasonable selection” of them equal.

Let us introduce notation to describe this effect:

Definition 4.1. Let x̄ = (xi : i < n) be a finite sequence of cardinal
characteristics (i.e., of definitions). Say that x̄ is a <-consistent sequence if
the statement x0 < · · · < xn−1 is consistent with ZFC (perhaps modulo large
cardinals).

A consistent sequence x̄ is≤-consistent if, in the previous chain of inequal-
ities, it is consistent to replace any desired instance or instances of < with =.
More formally, for any interval partition (Ik : k < m) of {0, . . . , n− 1}, it is
consistent that xi = xj for any i, j ∈ Ik, and xi < xj whenever i ∈ Ik, j ∈ Ik′
and k < k′ < m.
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For example, the sequence

(ℵ1, add(N ), cov(N ), b, non(M), cov(M), d)

is ≤-consistent, as also is

(ℵ1, add(N ), b, cov(N ), non(M), cov(M))

(see Theorem 1.3). Previously, it had not been known whether the sequences
of ten Cichoń characteristics from [GKS19, BCM21, KST19] are≤-consistent:
It is not immediate that cardinals on the left side can be equal while separating
everything on the right side. As described in Remark 1.5, the reason is that to
separate cardinals on the right side, it is necessary to have a strongly compact
cardinal between the dual pair of cardinals on the left, thus the left side gets
separated as well. But thanks to the collapsing method of this section, we can
equalize cardinals on the left as well. As a result, we obtain the following (14):

Lemma 4.2. The sequences

(ℵ1,m, p, add(N ), cov(N ), b,non(M), cov(M), d, non(N ), cof(N ), c) and
(ℵ1,m, p, add(N ), b, cov(N ),non(M), cov(M),non(N ), d, cof(N ), c)

are ≤-consistent (modulo large cardinals).

Remark 4.3. Note that we do not claim (nor conjecture) that the col-
lapse forcings we use for this result will preserve the value of h (which is
neither m-like nor t-like).

We only know, by Lemma 2.4(a), that the collapse will not increase h.
Accordingly, if we start out with p = h, then the resulting model will satisfy
this as well (as p ≤ h in ZFC). So for any constellation of the characteristics
in Lemma 4.2 we can additionally get p = h.

In contrast, using the methods of this paper we do not know how to get
p < h (and in particular p < h = add(N )) in these constellations (apart
of course from the constellations we already dealt with in the preceding
section). Note that we cannot just apply Lemma 3.9 after collapsing to get
the desired Cichoń values, as the collapses are not ξ-cc (where ξ is the desired
value for p).

We start with the following well-known result:

Lemma 4.4 (Easton’s lemma). Let κ be an uncountable cardinal, P a κ-cc
poset and Q a <κ-closed poset. Then P forces that Q is <κ-distributive.

Proof. For successor cardinals, this is proved in [Jec03, Lemma 15.19],
but the same argument is valid for any regular cardinal. Singular cardinals
are also fine because, for κ singular, <κ-closed implies <κ+-closed.

(14) Each sequence yields 211 many consistency results (not all of them new, obviously;
CH is one of them).
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To prove Lemma 4.2, we use the following:

Assumption 4.5.

(1) κ is regular uncountable.
(2) θ ≥ κ, θ = θ<κ.
(3) P is κ-cc and forces that x = λ for some characteristic x (so in particular

λ is a cardinal in the P -extension).
(4) Q is <κ-closed.
(5) P 
 Q is θ+-cc (15).
(6) We set P+ := P × Q = P ∗ Q. We call the P+-extension V ′′ and the

intermediate P -extension V ′. (We will actually have |Q| = θ, which
implies (5)).

Let us list a few simple facts:

(P1) In V ′, all V -cardinals ≥κ are still cardinals, and Q is a <κ-distribu-
tive forcing (due to Easton’s lemma). So we can apply Lemma 2.1 and
Corollary 2.5.

(P2) Let µ be the successor (in V or equivalently in V ′) of θ. So in V ′, Q is
µ-cc and preserves all cardinals ≤ κ as well as all cardinals ≥ µ.

(P3) So if V |= “κ ≤ ν ≤ θ”, then in V ′′, κ ≤ |ν| < µ. The V ′′ successor of κ
is ≤ µ.

We now apply it to a collapse:

Lemma 4.6. Let R be a Borel relation, κ be regular, θ > κ, θ<κ = θ, P
κ-cc, and set Q := Coll(κ, θ), i.e., the set of partial functions f : κ → θ of
size < κ. Then:

(a) P ×Q forces |θ| = κ.
(b) If P forces that λ is a cardinal then

P ×Q 
 |λ| =

{
κ if (in V ) κ ≤ λ ≤ θ,
λ otherwise.

(c) If x is m-like, λ < κ and P 
 x = λ, then P × Q 
 x = λ. In the case
when x is t-like, it is enough to assume λ ≤ κ.

(d) If x is m-like and P 
 x ≥ κ, then P ×Q 
 x ≥ κ.
(e) If R is a Borel relation then

(i) P 
 “λ regular and LCUR(λ)” implies P ×Q 
 LCUR(|λ|).
(ii) P 
 “λ is regular and COBR(λ, µ)” implies P×Q 
 COBR(|λ|, |µ|).

Proof. As mentioned, Assumption 4.5 is met; in particular, P forces that
Q̌ is < κ-distributive (by 4.5(P1)), so we can use Lemma 2.1 and Corol-

(15) That is, P forces that all antichains of Q have size ≤θ.
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lary 2.5. Also note that whenever κ < λ ≤ θ and P 
 “λ is regular”, P ×Q
forces cof(λ) = κ = |λ|.

So we can start, e.g., with a forcing P0 as in Theorem 3.10: As we can
just set h := p, we can assume P0 is ccc, and P0 forces strictly increasing
values to the characteristics in the first, say, sequence of Lemma 4.2.

We now pick some κ0 < θ0, satisfying λp < κ0 and the assumptions of
the previous lemma, i.e., κ0 is regular and θ<κ00 = θ0. Let Q0 be the collapse
of θ0 to κ0, a forcing of size θ0. So P1 := P0 × Q0 is θ+0 -cc and, according
to the previous lemma, still forces the “same” values (and in fact strong
witnesses) to the Cichoń characteristics (including the case that any value
λi with κ0 < λi ≤ θ0 is collapsed to |λi| = κ0). The m-like characteristics
below κ0, that is, p and, e.g., m, are also unchanged.

We now pick another pair θ0 < κ1 < θ1 (with the same requirements)
and take the product of P1 with the collapse Q1 of θ1 to κ1, etc.

In the end, we get P0×Q0×· · ·×Pn×Qn. Each characteristic which by
P was forced to have value λ is now forced to have value |λ|, which is κm if
κm ≤ λ ≤ θm for some m, and λ otherwise. This immediately gives

Proof of Lemma 4.2. We start with GCH, and construct an initial ccc
forcing P0, according to Theorem 3.10, to already result in the desired
(in)equalities between ℵ1,m, p = h, such that we get pairwise different regu-
lar Cichoń values λi, and p < add(N ).

Let (Im)m∈M be the interval partition of the sequence (p, add(N ), . . . , c)
indicating which characteristics we want to identify, and let S := {m ∈M :
|Im| > 1}. For each m ∈M , let κm be the value of the smallest characteristic
in Im, and θm the largest. Note that κm ≤ θm < κm+1, and κm < θm iff
m ∈ S. Then P0 ×

∏
m∈S Qm forces that all characteristics in Im (for all

m < M) have value κm, as desired.
The only case that might require some elaboration is that one of the in-

tervals contains p; i.e., we desire p = add(N ) = · · · = x, where x is the largest
Cichoń characteristic in the interval, which gets assigned some value λi by
the initial forcing; whereas p is assigned some value λp. So we use the col-
lapse from θ = λi to κ = λp. This collapse results in p = λp by Lemma 4.6(c)
(recall that p is t-like), and in add(N ) = x = λp by Lemma 4.6(e).

We can use the same method to assign specific values to the characteris-
tics. We start with a simple example, and then give a more general theorem.

Example 4.7. We can assign the values ℵ1, . . . ,ℵ12 to the first sequence
of Lemma 4.2 (as in Figure 5). We can do the same for the second sequence.

Proof. Again, start with GCH and P0 forcing the desired values for m
and p (now ℵ2 and ℵ3) and pairwise distinct regular Cichoń values λi. Then
pick κ0 = λ+p = ℵ4 and θ0 = λ1 (which then becomes ℵ4 after the collapse).
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Then set κ1 = λ+1 (which would be ℵ5 after the first collapse), and θ1 = λ2,
etc.

We can of course just as well assign the values (ℵω·m+1)1≤m≤12 instead
of (ℵm)1≤m≤12, and also get certain singular values for d and c. It is a bit
awkward to make precise the (not entirely correct) claim “we can assign
whatever reasonable value we want”; nevertheless we will try to do just that in
the following (at first for the case α1 < α2 < α3; as explained in Remark 4.10,
there are variants of the theorem which allow α1 = α2 and/or α2 = α3).

ℵ5

��

ℵ7

�� ��

ℵ11 // ℵ12

ℵ6

OO

ℵ9

ℵ1 // ℵ2 // ℵ3 ℵ3 // ℵ4

OO

ℵ8

OO

ℵ10

OO

Fig. 5. A possible assignment for Figure 2: m = ℵ2, p = h = ℵ3, λi = ℵ3+i for i = 1, . . . , 9.
(Note that with the method of this section we cannot get p < h.)

We first give the result for Constellation A(i). See below (Theorems 4.14,
4.15) for the other constellations.

Theorem 4.8. Assume GCH and 1 ≤ k0 ≤ ω. Let 1 ≤ αm ≤ αp ≤ α1 <
α2 < α3 ≤ α4 ≤ · · · ≤ α9 be ordinals and assume that there are strongly
compact cardinals κ9 < κ8 < κ7 such that

(i) ℵαp ≤ κ9, ℵα1 < κ8 and ℵα2 < κ7;
(ii) for i = 1, 2, 3, ℵβi−1+(αi−αi−1) is regular (16), where

βi := max {αi, κ10−i + 1} and α0 = β0 = 0;

(iii) for i ≥ 4, i 6= 6, 9, ℵβ3+(αi−α3) is regular;
(iv) cof(ℵβ3+(α6−α3)) ≥ ℵβ3;
(v) ℵαm and ℵαp are regular; and
(vi) cof(ℵβ3+(α9−α3)) ≥ ℵαp .

Then we get a poset P which forces (1) and (2) of Lemma 3.3 for λm = ℵαm,
and

p = g = ℵαp , add(N ) = ℵα1 , cov(N ) = ℵα2 , b = ℵα3 , non(M) = ℵα4 ,

cov(M) = ℵα5 , d = ℵα6 , non(N ) = ℵα7 , cof(N ) = ℵα8 , c = ℵα9 ,

as well as

(16) See Discussion 4.9 for an analysis of this assumption.

Sh:E87



CONTROLLING CHARACTERISTICS UNDER COLLAPSES 137

ℵξ =


(ℵξ)V if ξ ≤ α1,

(ℵβ1+(ξ−α1))
V if α1 < ξ ≤ α2,

(ℵβ2+(ξ−α2))
V if α2 < ξ ≤ α3,

(ℵβ3+(ξ−α3))
V if α3 < ξ.

Before giving the proof, we more verbosely describe some aspects of the
hypotheses:

Discussion 4.9. (1) In (ii), for i = 1, 2, 3, “ℵβi−1+(αi−αi−1) is regular”
is equivalent to saying that αi is either a successor ordinal or a weakly
inaccessible larger than βi−1. In this case βi is either a successor ordinal or
weakly inaccessible, so ℵβi is regular.

(2) In (iii), “ℵβ3+(αi−α3) is regular” is equivalent to saying that one of the
following cases holds:
• αi > α3 and αi is either a successor ordinal or a weakly inaccessible larger

than β3; or
• αi = α3 (since then ℵβ3 is regular due to (1)).

(3) In relation to (iv) and (vi), whenever ℵβ3 ≥ κ, cof(ℵβ3+(αi−α3)) ≥ κ
is equivalent to saying that one of the following cases holds:
• αi > α3 and αi is either a successor ordinal or a limit ordinal with cofinality
≥ κ; or

• αi = α3.
Proof of Theorem 4.8. For 4 ≤ i ≤ 9 put βi := β3 + (αi − α3). Also

set λm := ℵαm , λp := ℵαp and λi := ℵβi for 1 ≤ i ≤ 9. Note that λi is
regular for i 6= 6, 9 (see (1) and (2) above), cof(λ6) ≥ λ3, cof(λ9) ≥ λp and
λm ≤ λp ≤ κ9 < λ1 < κ8 < λ2 < κ7 < λ3 ≤ λ4 ≤ · · · ≤ λ9. Let P be
the ccc poset corresponding to Theorem 3.10 (the modification of P cA∗ with
λh = λp).

Step 1. In the case κ9 < α1 we have β1 = α1, so let P1 := P ; in the
case α1 ≤ κ9 we have β1 = κ9 + 1 and λ1 = κ+9 . Put κ1 := ℵα1 and
P1 := P × Coll(κ1, λ1). It is clear that κ1 is regular and κ1 < λ1, so, by
Lemma 4.6, P1 forces add(N ) = ℵα1 and that the values of the other cardinal
characteristics are the same as in the P -extension (also note that P1 forces
g ≤ |λp| = λp by Corollary 2.5(i)(c), so equality holds since p ≤ g in ZFC).
Moreover, P1 forces

ℵξ =

{
(ℵξ)V if ξ ≤ α1,

(ℵβ1+(ξ−α1))
V if α1 < ξ.

Note that this is also valid in the case κ9 < α1 (where β1 = α1). In particular,
for any ξ ≥ κ8, P1 forces ℵξ = ℵVξ because, in the ground model, κ8 is an
ℵ-fixed point larger than β1.
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Step 2. In the case κ8 < α2 put P2 := P1; otherwise, we have β2 = κ8+1
and λ2 = κ+8 . Set κ2 := (ℵβ1+(α2−α1))

V and P2 := P1×Coll(κ2, λ2). It is clear
that κ2 < λ2, so Lemma 4.6 applies, i.e., P2 forces cov(N ) = κ2 and that
the values of the other characteristics are the same as in the P1-extension.
Also note that P1 forces κ2 = ℵα2 , and this value remains unaltered in the
P2-extension. Furthermore P2 forces

ℵξ =

{
(ℵξ)V

P1 if ξ ≤ α2,

(ℵβ2+(ξ−α2))
V P1 if α2 < ξ,

hence it forces

ℵξ =


(ℵξ)V if ξ ≤ α1,

(ℵβ1+(ξ−α1))
V if α1 < ξ ≤ α2,

(ℵβ1+((β2+(ξ−α2))−α1))
V if α2 < ξ.

This is also valid in the case κ8 < α2. In fact, since α1 < κ8 we find in V that
β2−α1 = β2 and β1 + β2 = β2, so β1 + (β2 + (ξ−α2))−α1 = β2 + (ξ−α2).
Hence, in the case ξ > α2, P2 forces ℵξ = (ℵβ2+(ξ−α2))

V . In particular,
P2 forces ℵξ = ℵVξ for any ξ ≥ κ7.

Step 3. In the case κ7 < α3, set P3 := P2. Otherwise, set κ3 :=
(ℵβ2+(α3−α2))

V and P3 := P2 × Coll(κ3, λ3).
Note that P3 forces b = κ3 = ℵα3 and that the other values are the same

as the ones forced by P2. Hence, P3 is as desired, e.g., non(M) = λ4 = ℵVβ4 =
ℵα4 . Moreover, P3 forces

ℵξ =

{
(ℵξ)V

P2 if ξ ≤ α3,

(ℵβ3+(ξ−α3))
V P2 if α3 < ξ,

and therefore

ℵξ =


(ℵξ)V if ξ ≤ α1,

(ℵβ1+(ξ−α1))
V if α1 < ξ ≤ α2,

(ℵβ2+(ξ−α2))
V if α2 < ξ ≤ α3,

(ℵ(β2+((β3+(ξ−α3))−α2))
V if α3 < ξ.

Note that this is also valid in the case κ7 < α3. Since α2 < κ7 we have
in V that β3 − α2 = β3 and β2 + β3 = β3, so whenever ξ > α3, P3 forces
ℵξ = (ℵβ3+(ξ−α3))

V .

Remark 4.10. Theorem 4.8 also holds when α1 ≤ α2 ≤ α3, but de-
pending on the equalities the proof changes a bit. For example, in the case
α1 = α2 < α3, the idea is first to collapse λ2 := ℵβ2 to κ1 := ℵα1 (as in
Step 1) and then (possibly) collapse λ3 := ℵβ3 to κ3 (as in Step 3).

Sh:E87



CONTROLLING CHARACTERISTICS UNDER COLLAPSES 139

For successor cardinals, the assumptions of this theorem are trivially met,
so we get the following simpler form:

Corollary 4.11. Assume GCH. Let 1 ≤ k0 ≤ ω, let 1 ≤ αm ≤ αp ≤
α1 ≤ · · · ≤ α9 be a sequence of successor ordinals, and κ9 < κ8 < κ7 compact
cardinals with κ9 ≥ α3. Then there is a poset P forcing values to the various
characteristics as in the previous theorem.

(Note that in this case, βi = κ10−i + 1 for i = 1, 2, 3.)
Let us give some concrete examples, where we give concrete values for

the diagram of Figure 2. The simple corollary shows that, e.g., the following
is consistent:

ℵ53

��

ℵ77

�� ��

ℵω+1
// ℵω·2+17

ℵ63

OO

ℵ198

ℵ1 // ℵ12 // ℵ31 ℵ31 // ℵ45

OO

ℵ87

OO

ℵ2021

OO

Using the more general theorem, we also get examples with singular d
and c:

Example 4.12. The following is consistent:

ℵ5

��

ℵ7

�� ��

ℵω7+2
// ℵω7+ω3

ℵ6

OO

ℵω7

ℵ1 // ℵ2 // ℵ3 ℵ3 // ℵ4

OO

ℵ8

OO

ℵω7+1

OO

Instead of ω7, we could also use, e.g., any ωn for n ≥ 7, n ∈ ω, and ωn + ωk
instead of ω7 + ω3 for k ≥ 3.

Proof. We show the general case assuming 7 ≤ n < ω and 3 ≤ k < ω.
We use the following parameters for the theorem:

• αm := 2, αp := 3, αj := 3 + j for 1 ≤ j ≤ 5.
• From these values we already know that in the extension we will get (ac-

cording to the last part of the theorem, and as α3 = 6 and β3 = κ7 + 1)

ℵn = ℵVκ7+1+(n−6) = (ℵκ7+(n−5))
V =: α6,

therefore

ℵωn = ℵα6 = (ℵκ7+1+(α6−6))
V = (ℵα6−6)

V = (ℵα6)V .

Note that this satisfies the condition cof(α6) = α6 ≥ ℵβ3 = κ+7 (in the
ground model); and in the extension we get d = ℵα6 = ℵωn .

• α7 := α6 + 1 and α8 := α7 + 1.
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• Calculate the ordinal ℵk of the extension and call it β (which has cofinality
≥ ℵ3 in V , as the cofinality in the extension is ≥ ℵ3), and set α9 := α6+β,
which is equal to ωn + ωk in the final extension.

Remark 4.13. In this example, ℵωn for n < 6 is impossible as value
for d, as cof(d) ≥ b in ZFC.

This leaves the case d = ℵω6 , which is probably consistent but which
we cannot get with the theorem: Using calculations as above we find that
the ℵω6 in the extension is (ℵγ)V for γ = (κ++

8 )V , which does not satisfy
cof(γ) > κ7 (in the ground model).

We could set α6 := ℵγ for γ = κ+7 (this has sufficient cofinality), but note
that this γ is collapsed in the extension, so in the extension d will have the
form ℵγ with γ of cofinality and cardinality ω6, but γ 6= ω6 = (κ++

8 )V .

We now add the variants of the theorem for Constellations cA* (ii)
and cB* (the same remarks about ≤-consistency apply).

Theorem 4.14. Assume GCH and 1 ≤ k0 ≤ ω. Let 1 ≤ αm ≤ αp ≤
α1 < α2 < α3 ≤ α4 ≤ · · · ≤ α9 be ordinals and assume that there are
strongly compact cardinals κ9 < κ8 < κ7 < κ6 such that

(i) αp ≤ κ9, α1 < κ8, α2 < κ7 and α3 < κ6;
(ii) for i = 1, 2, 3, 4, ℵβi−1+(αi−αi−1) is regular,

where βi := max {αi, κ10−i + 1} and α0 = β0 = 0;
(iii) for i = 6, 7, 8, ℵβ4+(αi−α4) is regular;
(iv) cof(ℵβ4+(α5−α4)) ≥ ℵβ4;
(v) ℵαm and ℵαp are regular; and
(vi) cof(ℵβ4+(α9−α4)) ≥ ℵαp .

Then we get a poset P as in the previous theorem, which also forces

ℵξ =



(ℵξ)V if ξ ≤ α1,

(ℵβ1+(ξ−α1))
V if α1 < ξ ≤ α2,

(ℵβ2+(ξ−α2))
V if α2 < ξ ≤ α3,

(ℵβ3+(ξ−α3))
V if α3 < ξ ≤ α4,

(ℵβ4+(ξ−α4))
V if α4 < ξ.

Theorem 4.15. With the same assumptions as in Theorem 4.14, if in
addition β3 is not the successor of an ordinal with countable cofinality then
there is a poset that forces (1) and (2) of Lemma 3.3 for λm = ℵαm and

p = g = ℵαp , add(N ) = ℵα1 , b = ℵα2 , cov(N ) = ℵα3 , non(M) = ℵα4 ,

cov(M) = ℵα5 , non(N ) = ℵα6 , d = ℵα7 , cof(N ) = ℵα8 , c = ℵα9 .

Moreover, this poset forces that ℵξ (for any ordinal ξ) is evaluated as in the
conclusion of Theorem 4.14.
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5. Getting singular values by adding randoms. We can now come
back to examples (1) and (2) of Subsection 1.3.

Brendle (private communication) proved: If λ is uncountable then adding
λ-many random reals forces cov(N ) ≥ cof([λ]≤ℵ0) := cof([λ]≤ℵ0 ,⊆) (17), and
thus (using results from [Paw86, BRS96])

(i) non(N ) = ℵ1;
(ii) b = bV and d = dV ;
(iii) cov(N ) ≥ max {cof([λ]≤ℵ0), cov(N )V }; and
(iv) non(M) = max {cof([λ]≤ℵ0),non(M)V }, and similarly for cof(M),

cof(N ) and c.

Assume that V is a model of Cichoń’s Maximum as in the final extension of
Theorem 4.8, where αp := 1, µi := ℵαi for 1 ≤ i ≤ 9, with µ6 and µ9 possibly
singular and satisfying cof(µ6) ≥ µ3 and cof(µ9) ≥ ℵ1. Now, if λℵ0 = λ
then, after adding λ many random reals, depending on the position of λ
with respect to the µi’s, we obtain the following constellations of Cichoń’s
diagram:

(1) non(N ) = ℵ1 ≤ b = µ3 ≤ d = µ6 ≤ cov(N ) = c = λ when λ ≥ µ9;
(2) non(N ) = ℵ1 ≤ b = µ3 ≤ d = µ6 ≤ cov(N ) = cof(N ) = λ < c = µ9

when µ8 ≤ λ < µ9;
(3) non(N ) = ℵ1 ≤ b = µ3 ≤ d = µ6 ≤ cov(N ) = cof(M) = λ < cof(N ) =

µ8 ≤ c = µ9 when µ6 ≤ λ < µ8;
(4) non(N ) = ℵ1 ≤ b = µ3 ≤ cov(N ) = non(M) = λ < d = cof(M) =

µ6 ≤ cof(N ) = µ8 ≤ c = µ9 when µ4 ≤ λ < µ6; and
(5) when λ < µ4, we have non(N ) = ℵ1 ≤ b = µ3 ≤ non(M) = µ4 ≤ d =

cof(M) = µ6 ≤ cof(N ) = µ8 ≤ c = µ9, but the best we can say about
cov(N ) is cov(N ) ≥ max {λ, µ2}.

(2)–(4) are examples of constellations of Cichoń’s diagram with three possible
singular values, namely cov(N ), d and c.

6. Relaxing the GCH requirement. So far, we often assumed GCH
in the ground model to make the theorems easier to read. But the full power
of this assumption is not required. In fact, finitely many assumptions about
the cardinals at hand are enough, without requiring any changes in the proof.

In the following, we list the relevant theorems with the weaker assump-
tions. While this does not immediately give any new independence results,
we still think that it can be useful, as it allows us to, e.g., construct and
use forcings such as in Theorem 1.4 after a preparatory forcing that does
something useful, e.g., on cardinals much smaller than λ1, and by doing so

(17) When λℵ0 = λ it is clear that cof([λ]≤ℵ0) = λ and cov(N ) ≥ λ.
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destroys GCH below λ1. (It is easy to see that cardinal arithmetic below λ1
is irrelevant for Theorem 1.4.)

Theorem 1.3+. The conclusion of Theorem 1.3 holds under the follow-
ing assumptions: ℵ1 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 are cardinals, with λi regular
for i 6= λ5, and

Constellation A: either

(i) λ5 is regular and there is some µ ≥ λ5 with µ<λ3 = µ; or
(ii) λ5 = λ<λ45 , λ3 = λ<λ33 , λℵ04 = λ4, and we set µ := λ5.

Constellation B: λ5 = λ<λ45 and either

(iii) λ2 = λ3; or
(iv) λ3 is ℵ1-inaccessible, λ2 = λ<λ22 and λℵ04 = λ4.

Proof. For Constellation B, note that [Mej19b, Thm. A] does not assume
GCH, and the same holds for Constellation A(i) by [BCM21, Thm. 5.3]. For
Constellation A(ii), the assumptions can be weakened in the same way as
in [Mej19b] for Constellation B.

Theorem 1.4+. The conclusion of Theorem 1.4 holds under the follow-
ing assumptions: ℵ1 < κ9 < λ1 < κ8 < λ2 < κ7 < λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤
λ7 ≤ λ8 ≤ λ9, λi regular for i 6= 5, 6, κj strongly compact for j = 7, 8, 9,
λ
κj
j = λj for all 7 ≤ j ≤ 9, and

Constellation A: either

(i) λ5 is regular and λ<λ36 = λ6; or
(ii) λ3 = λ<λ33 , λℵ04 = λ4 and

λ6 is regular, there is a strongly compact κ6 with λ3 < κ6 < λ4,(∗)
λκ66 = λ6 and λ5 = λ<λ45 .

Constellation B: (∗) holds, and λ3 is ℵ1-inaccessible, λ2 = λ<λ22 and
λℵ04 = λ4.

Proof. Again, for Constellation A(i) this can be found in [BCM21, Thm.
5.7], for Constellation B in [Mej19b, Thm. B]; and again apply the modifi-
cations of [Mej19b] to [GKS19].

The constructions in this paper then also give Theorem 3.10 under these
weaker conditions (with the same proofs):

Theorem 3.10+. The conclusion of Theorem 3.10 holds under the same
assumptions as in Theorem 1.4+ with the exception that λ9 may be singular,
and additionally ℵ1 ≤ λm ≤ λp ≤ λh ≤ κ9, λ

<λp
p = λp, λm and λh are regular,

and λ<λh9 = λ9.
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