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Abstract. There is a Turing functional Φ taking A′ to a theory TA whose

complexity is exactly that of the jump of A, and which has the property that

A ≤T B if and only if TA E TB in Keisler’s order. In fact, by more elaborate
means and related theories, we may keep the complexity at the level of A

without using the jump.

Keisler’s order (Definition 1.1 below) is a pre-order on complete countable first-
order theories introduced by Keisler in 1967 [6], often thought of as a partial order
on the equivalence classes. Informally, this order puts T1 E T2 if it is “harder” for
the regular ultrapowers of T2 to be saturated than those of T1. Sorting out the
structure of this order has long been an important test problem for model theory.
For orientation, we note the following. A minimum and maximum class exist [6].
The union of the smallest two classes is precisely the stable theories [13]. The
maximum class includes clearly complicated theories like Peano arithmetic [6], but
also any theory with linear order (with the strict order property) [13], and indeed
with SOP2 [9]. In between, no classes have yet been characterized, but we know
that the random graph is in the minimum unstable class [8], [10].

A recent breakthrough in [11] has shown that Keisler’s order has the maximum
number of classes, continuum many, and that this is already witnessed by theories
which look like “filtered random graphs” – indeed, so-called simple unstable rank
1 theories. Recall that by [13], all NIP theories (informally, those without any
randomness) fall into three classes. The recent work shows that near the random
graph, things are very different, due in part to interactions of model theory and finite
combinatorics (see [11], §3). Indeed, [11, §12] shows that Keisler’s order embeds
P(ω)/fin, in this region. At this point it was natural to ask (as was recorded in [11,
13.7], and noticed by readers of that paper, who encouraged us) whether Keisler’s
order embeds the “gold standard” for complexity, the Turing degrees.

The aim of this paper is to answer this question positively, hopefully as ground-
work for future theorems. First we give an embedding, with no information about
complexity, of an arbitrary partial order with the countable predecessor property
into Keisler’s order (Theorem 1.2). Then we show that in the case of the Turing
degrees the complexity can be meaningfully calibrated: Theorem 3.11 shows that
there is a Turing machine Φ, which on input A′ produces a theory TA, which is
uniform in the jump and degree invariant, and which has the property that A ≤T B
if and only if TA E TB in Keisler’s order. As will be discussed below, this can be
seen as a best possible effective version of Theorem 1.2 on the Turing degrees. In
the last section, we show (surprisingly) that for related theories we may stay at the
level of the complexity of A, avoiding the jump.

Thanks: Research partially supported by NSF-BSF (NSF 2051825, BSF 3013005232). This is
paper 1222 in Shelah’s list.
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2 M. MALLIARIS AND S. SHELAH

Are there substantive connections between the structure of Turing degrees and
classes of simple unstable theories? We do not assert this, but a priori, it may seem
no less likely than the connections to cardinal invariants of the continuum [9].

We are very grateful to D. Hirschfeldt, I. Scott, and the anonymous referee
for comments and questions which significantly improved the presentation, and
encouraging us to solve the problem of avoiding the jump.

1. A baseline proof

Definition 1.1 (Keisler’s order, [6]). Let T1, T2 be complete countable first-order
theories. We say T1 E T2 if for every infinite λ, every regular ultrafilter D on λ,
every model M1 |= T1, and every model M2 |= T2, if (M2)λ/D is λ+-saturated, then
(M1)λ/D is λ+-saturated.

Regular ultrafilters are easy to find (all nonprincipal ultrafilters on ω are regular;
consistently all ultrafilters are regular), see [3] Chapter 4.3. Their significance here
is that they make Keisler’s order about theories, not models, since by a lemma of
Keisler, if M ≡ N in a countable language and D is a regular ultrafilter on λ, then
either both Mλ/D and Nλ/D are λ+-saturated, or neither is. See [6] 2.1a. For
more on Keisler’s order, see e.g. [6], [13, Ch. VI], [7, Ch. 1], [10, §1], or [1, §§2-3].

For our first proof, we will need the following theorem of [11], which establishes
the surprising fact that Keisler’s order has continuum many classes. (For orienta-
tion, note that up to to renaming of symbols in the language, there are really only
continuum many complete countable theories, and of course each class must contain
at least one theory; so there could not be more than continuum many classes.)

Theorem A (see Theorem 11.3 of [11]). There exist continuum many complete
countable simple theories 〈Tα : α < 2ℵ0〉 such that for any countable u, v ⊆ 2ℵ0 ,
Tu E Tv if and only if u ⊆ v, where Tu denotes the disjoint union of the theories
{Tα : α ∈ u}, and similarly for Tv.

From Theorem A we may now easily derive:

Theorem 1.2. Let (T ,≤) be a partial order which satisfies:

(1) |T | ≤ 2ℵ0

(2) for every b ∈ T , the set {a ∈ T : a ≤ b} is at most countable.

Then (T ,≤) embeds in Keisler’s order. That is, there is a map f from T to the set
of complete countable first order theories such that for any two a, b ∈ T , a ≤ b in
T if and only if f(a) E f(b).

Proof. Start with the family of theories from Theorem A above. Fix an injection
g from T to this family, notation a 7→ Tα(a), possible by condition (1). Note that
any two elements in the range of g are E-incomparable. Now define Ta to be the
disjoint union of {Tα(b) : b ≤ a}. This remains a countable theory by condition (2).
By construction, b ≤ a if and only if Tb E Ta. �

Conclusion 1.3. There is an embedding of the partial order of Turing degrees into
Keisler’s order.

Proof. The Turing degrees as a partial order satisfy the hypotheses of 1.2. �

Observe that Theorem 1.2 (or 1.3) tells us nothing a priori about the complexity
of the embedding f . It is natural to hope that restricting the embedding to the
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THE TURING DEGREES AND KEISLER’S ORDER 3

Turing degrees, which come equipped with natural notions of complexity, it may
be possible to determine the complexity of the map in a meaningful way.

2. Discussion

One reason to hope for more than 1.3 on the Turing degrees is that the theories
Tα in Theorem A are themselves parametrized by subsets of ω. Briefly, each theory
involves two key ingredients: a fast-growing sequence of sparse finite graphs Ē =
〈En : n < ω〉, and a subset A ⊆ ω. The set A represents the “active levels”
n ∈ ω where constraints coming from En apply; at “lazy levels” n ∈ ω \ A, En is
replaced by a complete graph on the same set of vertices, which corresponds to no
constraints. (In [11], instead of a set A we often write its characteristic function
ξ, and there we list separately the sequence m̄ of integers giving the sizes of the
vertex sets of the E’s.) The data of Ē and A (or ξ), and implicitly m̄, is part of
a “parameter,” denoted m, which then determines a theory Tm. In [11], we used a
fixed sequence Ē and continuum many sets A which were “suitably independent”
(in the sense of Engelking-Karlowicz [4], see [11] 6.20-6.22) to produce the many
different theories. This is a compact way of simulating many independent growth
rates of graph sequences. So we can consider the parameters (thus, the theories)
as given by certain subsets of ω.

Convention 2.4. For the rest of the paper, we fix a sequence of graphs Ē as in
[11] §6, so a parameter in the sense of [11] is specified by the additional data of the
set of active levels, and it makes sense to write “m[A]” and “Tm[A]”.

However, consider the following theorem.1

Theorem B (translation of [11] Conclusion 10.25). Let λ ≥ ℵ1. Let I be an ideal
on ω and A a set which is almost disjoint from every B ∈ I. Then there exists a
regular ultrafilter D on λ which handles every Tm[B] for B ∈ I and does not handle
Tm[A]. (In the notation of Keisler’s order, Tm[A] 6E Tm[B] for every such Tm[B].)

Note that in the language of Theorem B, if I is countable and T is the theory
corresponding to the “disjoint union” of the theories Tm[B] for B ∈ I, then a regular
ultrafilter D handles every Tm[B] if and only if it handles T . Theorem B suggests
that in order for Keisler’s order to separate theories, their sets of active levels should
be quite different in the sense of the ideals they generate. Here is a theorem which
says, in a certain case, this is a characterization: condition (1) says, informally,
“some ultrafilter picks out precisely these theories from our family to saturate.”

Theorem C (Theorem 11.10 from [11]). There is a family of parameters {m[A] :
A ⊆ ω} such that each Tm[A] is countable, complete, and simple2 and the following

are equivalent for any λ ≥ 2ℵ0 and any set X ⊆ P(ω):

(1) There exists a regular ultrafilter D on λ such that X = {A ⊆ ω : D is
(λ+, Tm[A])-good }.

(2) X ⊇ [ω]<ℵ0 is an ideal.

1“Almost” means “mod finite,” and “handles” means “produces λ+-saturated ultrapowers of”

in the sense of Keisler’s order.
2indeed with the only dividing coming from equality. “Simple” in the model theoretic sense

means: there is κ = κ(T ) so that every type does not fork over a set of size < κ. See e.g. [5].
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4 M. MALLIARIS AND S. SHELAH

So, before connecting the Keisler complexity of (the theory arising from) a set of
active levels to the Turing complexity of a set of natural numbers, we should deal
with the fact that Turing degrees are rarely ideals. This motivates the opening
move of the next section.

3. Second proof

Observation 3.5. There is an injection h : P(ω) → P(ω) which is computable
and has computable inverse, so that writing H for the range of h we have:

(1) the elements of H are almost disjoint, i.e. if A,B ⊆ ω are disjoint then
h(A) ∩ h(B) is finite.

(2) for any two disjoint nonempty X,Y ⊆ H and for I,J the ideals of subsets
of N generated by X,Y respectively, and for every A ∈ I, A is almost
disjoint from every element of J .

(3) if in (2) we replace disjoint by “X \Y 6= ∅” then there exists A ∈ I such
that A is almost disjoint from every element of J .

Proof. Fix a computable bijection between N and the internal nodes of a binary
tree of countable height. Identify each A ⊆ ω with its characteristic function, which
uniquely determines a branch, and let h send A to the set of integers assigned to
nodes on that branch. �

For the rest of the paper, fix h : P(ω)→ H as in 3.5. Recall that X ≤1 Y means
there is a total computable 1 : 1 function such that x ∈ X iff f(x) ∈ Y .

Remark 3.6. A and h(A) are clearly Turing-equivalent, even ≡1. Thus any Turing
degree a ⊆ P(ω) naturally corresponds computably to a countably infinite aH =
{h(A) : A ∈ a} ⊆ H.

Convention 3.7. For the rest of the paper, we fix an enumeration {ψe : e < ω} of
Turing machines, so that the program ψe is computable from the index e and vice
versa, and as usual let ψAe denote ψe with A on the input tape.

Notation 3.8. Let Xh,e,A = h( {n < ω : ψAe (n) halts and outputs 1} ), and let
HA = 〈Xh,e,A : e < ω〉.

Observation 3.9. Suppose A,B ⊆ ω.

(1) The complexity of HA is exactly that of A′, the jump of A.
(2) If A is not Turing-reducible to B, then HA \HB 6= ∅.

Proof. (1) On one hand, A′ = {n : ϕAn (n) halts} can be read off from HA, since
there is a computable function f which takes an index n to an index f(n) such that
for any m, ψf(n)(m) halts and outputs 1 if and only if ψn(m) halts. On the other,
each Xh,e,A is c.e. in A so is ≤1 A

′ by the Jump Theorem [14, 3.4.3].
(2) There is a set which is c.e. relative to A and not c.e. relative to B. (By the

Jump Theorem, X is c.e. in Y if and only if X ≤1 Y
′, and X ≤T Y if and only if

X ′ ≤1 Y
′. Now A′ is c.e. in A, but ¬(A ≤T B) thus ¬(A′ ≤1 B

′).) �

Corollary 3.10. If A,B ⊆ ω and A is not Turing-reducible to B then in the
notation of 3.5, letting X = HA and Y = HB, and letting I,J be the ideals of
subsets of N generated by X, Y respectively, there is X ∈ I which is almost disjoint
from every element of J .
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THE TURING DEGREES AND KEISLER’S ORDER 5

Theorem 3.11. There is a Turing functional Φ taking A′ to a theory TA which
satisfies:

(a) each TA is a set of axioms for a complete, countable, simple unstable theory.
(b) Φ is uniform in the jump: the complexity of TA is exactly A′.
(c) if A, B are Turing-equivalent then TA and TB are model-theoretically the

same (i.e., up to renaming of symbols) and computable from each other.
(d) thus Φ is degree-invariant.
(e) A ≤T B if and only if TA E TB in Keisler’s order.

Discussion 3.12. Theorem 3.11 can be seen as a best possible effective version of
Theorem 1.2 on the Turing degrees, in the sense that we are getting degree invariance
with no more power beyond what already accrues from the downward closure in 1.2.

Proof sketch. The work of Φ is described explicitly in §4 below, but we give the
punchline here. Fix in advance the computable signature given in §4, which observe
is the union of the partial signatures τψe for e < ω. When Φ receives a set A ⊆ ω,
it divides its computation among {ψAe }e and proceeds to list the axioms as in the
§4, with Xh,e,A (Notation 3.8) determining the rules for predicates in the partial
signature τψe . There is no nontrivial interaction of predicates across the partial
signatures. For each ψe, items (0), (1), (3), (4) (5) from §4 are computable and
for (2), (6), (7) it suffices to know Xh,e,A. Also from e.g. (2), one can read off the
characteristic function of Xh,e,A from the axioms restricted to τψe .

As for the claims of the Theorem:
(a) This is the work of the earlier paper, see [11] 2.20 and 2.21.
(b) The uniformity follows from the description in §4. The set of axioms TA has

exactly the complexity of the jump of A, since to determine TA it is both necessary
and sufficient to know the characteristic functions of all sets computed by all the
ψA’s.

(c) Suppose B ≤T A and we are given TA. In the notation of §4, in order to
generate TB � τψi it is sufficient to know what ψi computes with B on its input
tape. Fixing a given means of computing B from A we can computably produce
an index e = e(i) so that ψe simulates ψBi , and then we just copy the axioms of
TA � τψe replacing each predicate superscripted ψe with the corresponding one
superscripted ψi.

(d) Follows from (c).
(e) If A is Turing-reducible to B, then TA is interpretable in TB so TA E TB .

If A is not Turing-reducible to B, apply 3.10 with X = {Xh,e,A : e < ω} and
Y = {Xh,e,B : e < ω}, followed by Theorem B. �

Discussion 3.13. We thank Hirschfeldt for pointing out that this proof also gives
an embedding of the enumeration degrees, [2] Definition 1.1 (and thus, the Turing
degrees) into Keisler’s order, replacing the ψe’s by enumeration operators.

4. The operation of Φ

To justify Theorem 3.11 we look more carefully at the theories constructed in [11]
§2, clarifying the computable content. (A motivated model theoretic exposition of
these theories is in [11] §3.) Here is a high-level summary of what to look for below.
The theories have three kinds of ingredients: a fast-growing sequence of natural
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6 M. MALLIARIS AND S. SHELAH

numbers, an associated sequence of graphs, and at least one and no more than
countably many subsets of ω. The signature involves unary and binary predicates.
We will fix in advance the sequence of natural numbers and the sequence of graphs.
We then observe that everything about these two sequences, and about the unary
predicates, may be computably axiomatized. The only remaining ingredient is to
list the axioms relating to the subsets of ω, which control the binary predicates.
Formally, our operator will take in A ⊆ ω and produce the remaining axioms based
on the countably many subsets Xh,e,A. To determine TA it will be necessary and
sufficient to know the characteristic functions of each of these subsets.

Background step and fixing notation. We choose and fix (a) a rapidly growing se-
quence 〈mn : n < ω〉 of natural numbers3, and (b) a sequence 〈En : n < ω〉 of graphs
where En has mn vertices which we identify with [0, . . . ,mn−1]. A technical point:
in En, each vertex is connected to itself.

(a) About m̄: the required lower bounds on its growth rate are given in [11]
Definition 6.1. We can easily choose this sequence to be computable, for
instance by using the formula in [11] 6.1, with equality.

(b) About Ē: the requirements on Ē are given in [11] Definition 6.2, expressing
that in each En any small set of vertices has a common neighbor, and no
large set of vertices does. For our purposes here, [11] 6.7 (which proves
such sequences exist, via finite random graphs) should be understood as an
existence result. Knowing that for each n, some graph En on mn vertices
exists which satisfies the requirements, we may generate the sequence com-
putably, for instance at stage n lexicographically ordering the graphs on
mn vertices and checking in order until we find the first one which works.

In sum, the data of m̄ and Ē can be chosen to be computable, even if perhaps not
very efficiently.

Notation: For each n, let T1,n = T2,n be the set of sequences η of length n such
that η(i) < mi for i ≤ n. (There are two such: a “left tree” and a “right tree,”
distinct but symmetric.) Let T1,≤n, or T2,≤n mean all such sequences of length ≤ n.
(So these are the nodes of a finite tree of height n with mi-branching at level i.)
Let T1 =

⋃
n T1,≤n = T2 =

⋃
n T2,≤n be the sets of all such finite sequences.

We now describe a set of axioms for a complete, countable theory TA, for any
A ⊆ ω. The computable signature is

τ = {Qψe ,Pψe , Qψeη , Pψeν : η ∈ T1, ν ∈ T2, e < ω} ∪ {Rψe : e < ω}

where each Rψ is a binary predicate and the rest are unary. As a reminder, Xh,e,A

denotes the image under h of the set computed by ψ with A on the input tape.
The axioms we will need to enumerate are the following. Observe in these con-

ditions that writing τψ for the restriction of τ to predicates superscripted by a
specific Turing machine ψ, the only nontrivial interactions between predicates are
among those in the same τψ, and indeed and one can think of the resulting theory
as the disjoint union of its restriction to each τψ.

(0) For each ψi, ψj a universal axiom stating that (Qψi∪Pψi)∩(Qψj ∪Pψj ) = ∅
whenever i 6= j.

3Caution to the reader: the idea is not that the mn’s give a subset of N or otherwise relate to
B. It just records that our trees at level n ∈ N have branching mn.

Paper Sh:1222, version 2022-09-01. See https://shelah.logic.at/papers/1222/ for possible updates.



THE TURING DEGREES AND KEISLER’S ORDER 7

(1) For every n < ω and each ψ, universal axioms stating that:4

• Qψ and Pψ are disjoint. Identify Qψ and Qψ〈〉, P
ψ and Pψ〈〉 .

• 〈Qψη : η ∈ T1,m〉 partitions Qψ for each m ≤ n and this partition

satisfies η′ E η ∈ T1,≤k implies Qψη′ ⊇ Qψη . (Concentric predicates

represent advancing along a branch.)
• 〈Pψν : ν ∈ T2,m〉 partitions Pψ for each m ≤ n and this partition

satisfies ν′ E ν ∈ T2,≤k implies Pψν′ ⊇ Pψν . (Same on the other side.)
• Rψ ⊆ Qψ × Pψ. (Rψ holds between elements of Qψ and of Pψ.)

(2) If n ∈ Xh,e,A, add a universal axiom saying “n is an active level,” meaning:
• Rψe(x, y) only if for some η1 ∈ T1,n and η2 ∈ T2,n, we have Qψeη1 (x)

and Pψeη2 (y) and in the graph En there is an edge between η1(n − 1)

and η2(n− 1). 5

Informally, at “active levels” we put new constraints on the behavior of
Rψe , and at non-active (“lazy”) levels there are no new constraints.

The axioms so far enumerate a universal theory; we would like to axiom-
atize its model completion. [11] Corollary 2.20 and Conclusion 2.21 show
this model completion exists and is quite simple, for instance it eliminates
quantifiers. The remaining axioms give the necessary information.

(3) For each k, and each η ∈ T1,≤k an axiom saying: whether there exists x
in Qψeη which is Rψe -connected to y1, . . . , yk and not to z1, . . . , zk, all in

Pψe , depends on the quantifier-free type of y1, . . . , yk, z1, . . . , zk restricted
to the finite signature {Qψeη : η ∈ T1,≤k} ∪ {Pψeη : η ∈ T2,≤k}. [This can
be expressed in terms of complete formulas in the variables yi, zj which
specify the unary predicates for each variable, along with equalities and
inequalities.]

(4) Parallel to (3), swapping Q/P , T1,k/T2,k, and changing the direction of R.

(5) For each k, an axiom saying: there exists x in Qψe which is Rψe -connected
to y1, . . . , yk and not to z1, . . . , zk, all in Pψe , if and only if ({y1, . . . , yk} ∩
{z1, . . . , zk} = ∅ and there exists x Rψe-connected to y1, . . . , yk). [If the
formula is not inconsistent, it reduces to the positive part. Since Rψe is
not symmetric, we have two copies of any such axiom, swapping Pψe(x) for
Qψe(x).]

(6) For each choice of
• k,
• ρ ∈ T1,k and ν1, . . . , νk ∈ T2,k, such that for all t ≤ k,

if t ∈ Xh,e,A then (ρ(t− 1), νi(t− 1)) ∈ Et,

4Informally, the signature has finitely many unary predicates which hard-code the structure

of two finite height, finitely branching trees, and a binary predicate which may hold between
elements of the left tree and elements of the right tree. This translates [11], Definition 2.15.

5Recall η1, η2 have domain {0, . . . , n − 1}, so ηi(n − 1) ∈ [0, . . . ,mn − 1] for i = 1, 2. The
condition amounts to writing down a formula which does not refer to En or T1 or T2 directly but

simply disjuncts over the pairs Qψeη1 , Pψeη2 (of which there are finitely many) whose indices satisfy

the condition. Informally, the pattern of “allowed connections” between the successors of a given
node in the left tree and a given node in the right tree, both at level i, is given by Ei at active
levels, and by a complete graph at non-active levels.
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8 M. MALLIARIS AND S. SHELAH

• complete quantifier-free formula θ(y1, . . . , yk) in the free variables
y1, . . . , yk such that θ(y1, . . . , yk) implies Pψeν1 (y1) ∧ · · · ∧ Pψeνk (yk),

an axiom saying:

(∃y1, . . . , yn)(∃x)

θ(y1, . . . , yn) ∧Qψeρ (x) ∧
∧

1≤i≤k

Rψe(x, yi)

 .

(The fact that these are the only cases where such x’s will exist follows
from the list in (2), and notice that it’s enough to say this works for some
such y1, . . . , yn because of (3).)

(7) Parallel to (6), swapping Qψe ’s and Pψe ’s, T1 and T2, and changing the
direction of Rψe .

From the above axioms, it should be clear that for each A ⊆ ω and for each ψe, the
theory TA restricted to the signature τψe is determined by the subset Xh,e,A, and
in turn determines it.

Remark 4.14. As it is now clear how the theories depend on subsets of ω, we note
that the “m” notation of Section 2 records this also. That is, each theory TA � τψe

here is model-theoretically the same as Tm[Xh,e,A] there, under the interpretation
corresponding to erasing the superscript ψe from each of the predicates. Moreover,
in model theoretic language, our theory TA and the theory which is the disjoint
union of the theories {Tm[Xh,e,A] : e < ω} can each be interpreted in the other.

5. On avoiding the jump

As noted above, Theorem 3.11 is very natural because of its relation to Theorem
1.2. However, we thank the referee for encouraging us to consider whether some
other operator may be found which is uniform in A rather than A′. A priori, this
may seem unlikely, and indeed, a priori, the above theories do not seem adapted
to answer this question; they can even be seen as orthogonal to it, since they were
built to interact with each other in some sense as freely as possible. Already in [11]
some kind of disjoint union was needed whenever a dependence was called for. This
is related to the fact that Keisler’s order quantifies over all regular ultrafilters.

In this concluding section we prove, perhaps quite suprisingly, that the answer is
yes. The construction will build on what was done above, essentially by modifying
the previous section in ways which are important for computability and unimpor-
tant for model theory. It is best read with an understanding of the proof of 3.11.

We fix as before an enumeration {ψe : e < ω} of Turing machines, and working
towards Theorem 5.16 below, we shall now describe the operation of Ψ which takes
in A ⊆ ω and outputs a set of axioms T ∗A. Similarly to the earlier case, T ∗A will be
the disjoint union of axioms T ∗e,A for e < ω. We shall fix A and e and describe T ∗e,A.

Let Xh,e,A be as in 3.8 and let χh,e,A denote the partial characteristic function
of the h-image of the set computed by ψAe , that is, for t ∈ {0, 1}, χh,e,A(n) = t
if and only if ψAe halts on input h−1(n) and outputs t. Let χh,e,A(n, k) = t mean
that ψAe halts after exactly k steps on input h−1(n) and outputs t.

The computable signature for T ∗e,A will be (note here e is fixed):

τe,A = {Qψeρ ,Pψeρ } ∪ {Qψeη,ρ, Pψeν,ρ : η ∈ T1,n, ν ∈ T2,n, ρ ∈ n+1ω, n < ω} ∪ {Rψe}
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THE TURING DEGREES AND KEISLER’S ORDER 9

where Rψe is a binary predicate and the rest are unary.

Discussion 5.15 (Informal explanation/intention). We start at level 0 with count-
ably many copies of the predicate Q〈〉, indexed as Q〈〉,〈k〉 for k < ω. We start

running ψAe on input h−1(0), where observe 0 = lg(〈〉). If after exactly k steps the
computation halts, specify that Q〈〉,〈k〉 is nonempty, else specify it is empty. Do
the same on the other side for the P〈〉,〈k〉’s. In this case ρ is a sequence of integers
of length one. So for all but at most one ρ on each side (and if one exists, it is the
same ρ), these predicates will be empty, and all these decisions are clearly com-
putable. If this computation does halt after exactly k0 steps, then: if the output is
1, add axioms saying that 0 is an active level (i.e., for Q〈〉,〈k0〉 and P〈〉,〈k0〉), if not,
just add an axiom saying R ⊆ Q〈〉,〈k0〉 × P〈〉,〈k0〉. Now we deal with level 1. For
each predicate of the form Q〈a〉,ρ where ρ = 〈i0, i1〉, we have an axiom saying that
Q〈a〉,〈i0,i1〉 ⊆ Q〈〉,〈i0〉 so most of these are immediately empty, unless k0 from level

0 exists and i0 = k0. In this case, we run ψAe on input h−1(1) and if after exactly
k steps the computation halts, specify that Q〈a〉,〈k0,k〉 6= ∅, else specify it is empty.
Do the same on the other side for the P〈a〉,〈k0,k〉’s. If the computation does halt
after exactly k1 steps, then if the output is 1, add axioms saying that 1 is an active
level, if not, just specify that R ⊆

⋃
aQ〈a〉,〈k0,k1〉×

⋃
b P〈b〉,〈k0,k1〉. And so forth. In

some sense, we are choosing an “isomorphic copy” of the theory from the previous
section which exists as a choice of a computable branch in a tree of computations.

The axioms are as follows. We will temporarily drop the superscript ψe, and
writing “Qη,ρ” assumes the two subscripts have appropriate and compatible lengths.

(1) Q〈〉,ρ ∩ P〈〉,ρ = ∅.
(2) Qη1,ρ1 ⊇ Qη2,ρ2 if η1 E η2, ρ1 E ρ2, and likewise for P .
(3) The predicates Qηa〈`〉,ρ partition Qη,ρ�lg(η)+1

, and likewise for P .

(4) Consider Qη,ρ where lg(η) = n. If ψAe on input h−1(n) halts after exactly
ρ(n) steps, after having completed the previous computation, then add an
axiom saying Qη,ρ is nonempty, otherwise add an axiom saying Qη,ρ is
empty. Furthermore, if ψAe on input h−1(n) halts after exactly ρ(n) steps
and outputs 1, add an axiom saying “n is an active level,” i.e. R(x, y) if
and only if for some η1 ∈ T1,n and η2 ∈ T2,n we have Qη1,ρ(x) and Pη2,ρ(y)
and in En there is an edge between η1(n− 1) and η2(n− 1).

(5) Add the analogues of the computable axioms (3), (4), (5) above, quantifying
over ρ of the appropriate length.

(6) For each choice of
• m,
• η ∈ T1,m and ν1, . . . , νm ∈ T2,m, such that for all ` ≤ m, ψAe on input
h−1(`) halts after exactly ρ(`) steps, and if it halts and outputs 1 then
(η(`− 1), νi(`− 1)) ∈ E` for 1 ≤ i ≤ m,

• complete quantifier-free formula θ(y1, . . . , ym) in the free variables
y1, . . . , ym such that θ(y1, . . . , ym) implies Pν1,ρ(y1) ∧ · · · ∧ Pνm,ρ(ym),

an axiom saying:

(∃y1, . . . , yn)(∃x)

θ(y1, . . . , yn) ∧Qη,ρ(x) ∧
∧

1≤i≤m

R(x, yi)

 .
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(7) Parallel to (6), swapping Q’s and P ’s, T1 and T2, and changing the direction
of R.

Observe the following:
(a) The axioms are computable in A.
(b) There is at most one ρ∗ ∈ ωω such that for all n, for some (in fact, all) η ∈ T1,n

and ν ∈ T2,n, we have that Qη,ρ∗�n+1 is nonempty and Pν,ρ∗�n+1 is nonempty.

(c) If ψAe is not a total function then all but finitely many of the predicates are
empty, and thus by the earlier paper [11], T ∗A is Keisler-equivalent to the random
graph, which is the minimum simple unstable theory in Keisler’s order.

(d) Not only is T ∗A is computable from A, but also we can read off A from T ∗A
(for instance, if we choose in advance one of the ψ’s which we know computes the
identity). So its complexity is exactly that of A.

(e) Using the notation of the previous section, T ∗A is model-theoretically equiva-
lent to the disjoint union of theories whose active levels are those Xh,e,A for which
ψAe is a total function. Thus, the analysis of the previous section goes through
and T ∗A E T ∗B in Keisler’s order if and only if A ≤T B. However, T ∗A is not
computability-theoretically more complicated than A, because we have distributed
the information of the jump across infinitely many copies of the predicates.

So we may conclude:

Theorem 5.16. There is a Turing machine Ψ sending sets A ⊆ ω to theories T ∗A
which satisfies:

(a) each T ∗A is a set of axioms for a complete, countable, simple unstable theory.
(b) Ψ is uniform in A: the complexity of T ∗A is exactly that of A.
(c) if A, B are Turing-equivalent then T ∗A and T ∗B are model-theoretically the

same (i.e., up to renaming of symbols).
(d) thus Ψ is degree-invariant.
(e) A ≤T B if and only if T ∗A E T

∗
B in Keisler’s order.
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