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Abstract
We find new “reasons” for a class of models for not having a universal model in a cardinal
λ. This work, though has consequences in model theory, is really in combinatorial (set
theory). We concentrate on a prototypical class which is a simply defined class of models,
of combinatorial character—models of Tceq (essentially another representation of Tfeq which
was already considered but the proof with Tceq is more transparent). Models of Tceq consist
essentially of an equivalence relation on one set and a family of choice functions for it.
This class is not simple (in the model theoretic sense) but seems to be very low among the
non-simple (first order complete countable) ones. We give sufficient conditions for the non-
existence of a universal model for it in λ. This work may be continued in Shelah et al. (Tba,
In preparation. Preliminary number: Sh:F2150).
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theory
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0 Introduction

On a recent survey on the universality spectrum see [24], an earlier survey is [6]; there have
been several advances meanwhile (and this is one of the advances after [24]). See also [23],
noting the example there works also for μ+ < 2μ whenever μ is a strong limit singular. The
problem for general first order theories is a model theoretic one, but specific examples are
combinatorial set theoretic ones (and serve as proto-types for suitable families of theories); so
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S. Shelah

combinatorialists may ignore model theoretic notions like “T is simple, has the tree property,
is TP2”, and consider only the concrete universal theories considered; so ignore 1.4 (1),(2)
and their proof. Here we concentrate on the theory Tceq, which we considered as a proto-
typical ‘‘minimal” non-simple T , so are expecting it (under ≤univ) to be low, so it is (like
Tfeq, see below), NSOP1, see [2, 4, 7, 8, 19, 26]). True, there were non-existence results
near a strong limit singular cardinal (see on the Tfeq in [19], generalizing it the oak property
[5], [22,Sect. 3]), but there were weak consistency results on existence (see [3, 19]). We had
considered Tfeq, a prototypical example of such theories, now Tceq is essentially equivalent to
it for our aims, see 1.4(3),(4) but Tceq seemmore transparent; we intend to deal with “to what
family of T ’s versions of our proof apply, in particular, NTP2 and non-simple”elsewhere.

We have hoped/expected that for the λ > μ = μ<μ but λ = μ+ < 2μ we shall have
consistency results for theories like Tfeq and the class of triangle free graphs, [9] and hopefull
[13].

We first give a case with stronger set theoretic assumptions, but more transparent proof in
Sect. 1. In Sect. 2 we give such proof under reasonable set theoretic assumptions, (close to
the so called club guessing) but then have to consider finer points in combinatorial set theory
on guessing clubs. Elsewhere we hope to have relevant complimentary consistency (see [9])
and families of theories.

A priory we think that Ttfg, the theory of triangle free graphs, is “more complicated”then
Tfeq, Tceq, but now have doubts.

We thank Mark Poór and an anonymous referee for doing much to improve the paper.

Question 0.1 (1) Does Sect. 1 apply to more theories than in Sect. 2?
(2) Can we characterize the dividing line? Simple/non-simple in our context.
(3) Does it help to have:

(∗) for some μ,μ < λ < 2μ there is no A ⊆ [λ]λ which is μ −AD of cardinality > λ?

This would justify the use of μ −AD family A ⊆ [λ]λ in some consistency results, see [16],
[9], see below.

Discussion 0.2 Note that:

� if 2 < n ≤ ω, θ ≤ μ ≤ λ < 2θ , λ � [μ]<n
θ and we let Tn be the theory “{Pk is an

irreflexive asymmetric k-place relation”: k < n, k ≥ 2} and Tn has a universal model
M∗ in λ then there is a μ-disjoint A ⊆ [λ]λ of cardinality 2θ .

[Why? Without loss of generality the universe of M∗ is λ. Let c : [λ]<n → θ witness
λ � [μ]<n

θ and for u ⊆ θ let Mu = (λ, . . . P Mu
k , . . .)k∈[2,n) where P Mu

k = {η ∈ kλ : η

is with no repetitions and c(Rang(η)) ∈ u}. So there is an embedding fu of Mu into M∗;
now 〈Au = {pr(α, fu(α)) : α < λ} : u ⊆ θ〉 is a family as promised when pr is a
pairing function on λ. Why? If Au1 ∩ Au2 has cardinality ≥ μ and u1 �= u2 then (letting
B = {α < λ : fu1(α) = fu2(α)}) without loss of generality u1 � u2 and c�B omits any
member of u1\u2. The rest is left to the reader.]

0.1 Preliminaries

Notation 0.3 (1) T is a theory with vocabulary τT = τ(T ) and is a first order, if not said
otherwise.

(2) (a) ECT = {M : M a model of T },
(b) ECT (λ) = {M ∈ ECT : M of cardinality λ},
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(c) ECT (λ!) = {M ∈ ECT : M has universe λ},
(d) for a set A of ordinals and ordinal α let sucA(α) be min{β ∈ A : β > α}.

(3) Let pr be be an (easily computable) pairing function on ordinals such that for α, β we
have pr(α, β) < max{ω, α + |α|, β + |β|}.

Convention 0.4 (1) (A) If T is a f.o. theory not complete (like T 0
ceq, T 0

feq, usually universal),
then embedding are the usual ones, (on ECT ) and ⊆T (on ECT ) means ⊆ and we
assume ECT has amalgamation and JEP.

(B) If T is complete, then embeddings are elementary (on ECT ) and ⊆T means ≺ on
ECT .

(C) We say f is a T -embedding of M into N or f : M −→T N when M, N are models
of T , f embed M into N and f (M) ⊆T N.

(1A) In any case we always assume T has JEP (for ⊆T of course).
(2) If 	 ⊆ L(τT ) (such that T has JEP under 	−embedding) then univT ,	(λ) is the minimal

χ such that there is a sequence M̄ which is a (λ, T ,	)-universal sequence which means:

(a) M̄ = 〈Mα : α < χ〉 is a sequence of models of T ,
(b) each Mα is of cardinality λ,
(c) for every model M of T of cardinality λ there is a 	-embedding of M into some Mα ,

see below.

(3) For given T ,	 as above and models M, N of T , we say f is a 	-embedding of M into
N when:

(a) f is a function from M into N,
(b) if ϕ(x0, . . . , xn−1) ∈ 	 and a0, . . . , an−1 ∈ M and M | ϕ[a0, . . . , an−1] then

N | ϕ[ f (a0), . . . , f (an−1)],
(c) so f is one-to-one when (x �= y) ∈ 	.

(4) For T ,	 as above in part (2) we may omit 	 when:

(a) T is complete, 	 = L(τT ), all first order formulas,
(b) T not complete, 	 the set of quantifier free formulas in L(τT ).

(5) We may write at, ep for 	at(T ) = {ϕ ∈ L(τT ) : ϕ is atomic},	ep(T ) = {ϕ ∈ L(τT ) : ϕ

existential positive} respectively. We may write τ instead of T . We may write ϕ instead
	 = {ϕ} and ±ϕ instead 	 = {ϕ,¬ϕ}.

Notation 0.5 (1) Let α, β, γ, δ, ε, ζ, ξ, i, j denote ordinals.
(2) Let κ, λ, μ, χ, ∂, θ,ϒ denote cardinals, infinite if not said otherwise.
(3) Let k, �, m, n denote natural numbers.
(4) Let ϕ,ψ, ϑ denote formulas, f.o. if not said otherwise.
(5) For λ > κ regular cardinals let Sλ

κ = {δ < λ : cf(δ) = cf(κ)} and Sλ≤κ = {δ < λ :
cf(δ) ≤ κ}.

Definition 0.6 (1) J bd
θ = {A ⊆ θ : sup(A) < θ}, bd stands for bounding, for θ a regular

cardinal or just a limit ordinal.
(1A) For θ regular uncountable let:

• Dclub
θ = {A ⊆ θ : there is a club (= closed unbounded subset) E of θ such that

E ⊆ A}.
• NSθ is the non-stationary ideal on θ .

(2) For a regular θ let:
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(a) dθ = Min{|F | : F ⊆ θ θ is <J bd
θ
-cofinal in μT μ}

(b) bθ = Min{|F | : F ⊆ θ θ has no <J bd
θ
-upper bound}.

(3) Let dclubθ be defined similarly using <NSθ when θ is regular uncountable.
(4) For a model M and a set u ⊆ M let M�u is defined naturally, allowing a function symbol

to be interpreted as a partial function (and so an individual constant to be not defined)
but M�u ⊆ M means u = c�M (u), see below.

(5) For a model M and A ⊆ M let c‘M (A) = c‘(A, M) be the minimal subset B of M
including A and closed under the functions of M; so M�c‘M (A) ⊆ M and if M has
Skolem functions then M�c‘M (A) ≺ M .

Recall

Definition 0.7 (1) For a regular uncountable cardinal λ let Ǐ [λ] = {S ⊆ λ: some pair (E, ā)

witnesses S ∈ Ǐ (λ), see below}.
(2) We say that (E, u) is a witness for S ∈ Ǐ [λ] if:

(a) E is a club of the regular cardinal λ,
(b) u = 〈uα : α < λ〉, uα ⊆ α and β ∈ uα ⇒ uβ = β ∩ uα ,
(c) for every δ ∈ E ∩ S, uδ is an unbounded subset of δ of order-type < δ (and δ is a

limit ordinal, necessarily δ is not a regular cardinal).

(3) For κ = cf(κ) < λ = cf(λ) let Ǐ≤κ [λ] be the ideal {S ⊆ λ : S ⊆ Sλ≤κ , S ∈ Ǐ [λ]}
By ([14, 15] and better) [11, 18] we have:

Claim 0.8 Let λ be regular uncountable.

(1) If S ∈ Ǐ [λ] then we can find a witness (E, ā) for S ∈ Ǐ [λ] such that (clauses (a), (b), (c)
from 0.7(2) and):

(d ) δ ∈ S ∩ E ⇒ otp(aδ) = cf(δ),
(e) if α /∈ S then otp(aα) < cf(δ) for some δ ∈ S ∩ E.

(2) S ∈ Ǐ [λ] iff there is a pair (E, P̄) such that:

(a) E is a club of the regular uncountable λ,
(b) P̄ = 〈Pα : α < λ〉, where Pα ⊆ {u : u ⊆ α} has cardinality < λ,
(c) if α < β < λ and α ∈ u ∈ Pβ then u ∩ α ∈ Pα ,
(d) if δ ∈ E ∩ S then some u ∈ Pδ is an unbounded subset of δ of order type < δ (and δ

is a limit ordinal).

(3) We say a stationary subset S has club guessing when some 〈Cδ : δ ∈ S〉 witnesses it,
which means: Cδ is a club of S and for every club E of λ for some δ ∈ S we have Cδ ⊆ λ.

1 On Tceq for Mahlo cardinals

As here we consider Tceq the simplest, non-simple theory, we may consider how much does
it behave like the class of graphs (equivalently random graph)? We prove that not by a
non-existence result, but with quite specific set theoretic assumptions.

Tceq is very close to (and equivalent for our purposes to) the older Tfeq which is a prime
example for a theory with the tree order property, equivalently non-simple (even TP2 but
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having neither the strict order property nor even just the SOP1). For it we get here parallel
and better results than [19] where it is proved that there are limitations on the universality
spectrum for Tfeq and in [5], which generalize the results for any T with the so called oak
property, see somewhat more in [22,Sect. 3]. The results in those papers are meaningful
when SCH fails, that is, consider a cardinal λ such that: for some strong limit singular
μ,μ+ < λ < 2μ if λ is regular then “usually”Tfeq, has no universal in λ.

But what about λ ∈ (μ, 2μ) when for transparency we assume μ = μ<μ?. Here (in
Sect. 1) we get further such non-existence results for (weakly inaccessible) Mahlo cardinals.
In Sect. 2, we do better but theMahlo case may cover more classes, comes first and the proofs
are more transparent. The proof here (in Sect. 1) can be axiomatized as in Sect. 2 using:

� PGC(λ, S)where S is a stationary set of regular cardinals< λmeans that someUwitness
PGC(λ, S) where U = {〈ω(1 + ε) : ε < θ〉 : θ ∈ S} (so U = S).
Recall that “UwitnessPGC(λ, θ)”meansPGC(λ, θ) = min{|U| : U ⊆ Uλ,θ andU doesP-
guess clubs}. See 2.1(5), Definition 2.1(3c) and 2.1(4).

First, recall (the reader can concentrate on the universal versions, T 0
feq, T 0

ceq, on Tfeq see
[19,2.1=Lb3,3.1=Lc3]):

Definition 1.1 Tfeq = T 1
feq is the model completion of the following (universal first order)

theory, T 0
feq which is defined by:

(A) τ = τ(T 0
feq) consists of:

(a) predicates P, Q (unary),
(b) E (three place predicate written as x Ez y instead E(x, y, z)),

(B) a τ -model M is a model of T 0
feq iff :

(a) the universe of M is the disjoint union of P M and QM ,
(b) x Ez y → P(z) ∧ QM (x) ∧ QM (y),
(c) for any fixed z ∈ P M , E M

z is an equivalence relation on QM .

Observation 1.2 0) Tfeq is well defined and univ(λ, Tfeq) = univ(λ, T 0
feq)

(1) So if M | Tfeq then :

(a) in (B)(c) of Def. 1.1, for each x ∈ P M , E M
x is with infinitely many equivalence

classes,
(b) if n < ω, x1, . . . , xn ∈ P M with no repetition and y1, . . . , yn ∈ QM then for some

y ∈ QM ,
n∧

�=1
yE M

x�
y�,

(c) if n < ω and y1, . . . , yn ∈ QM and e is an equivalence relation on {1, . . . , n} then
for some x ∈ P M we have y�E M

x yk ⇔ �ek,
(d) P M , QM are infinite.

(2) Hence Tfeq has elimination of quantifiers and univTfeq (λ) = univT 0
feq

(λ).

Wepresent a close relative, themain onewe consider here (and, as provedbelow, equivalent
to Tfeq for our purpose).

Definition 1.3 Tceq = T 1
feq is the model completion of the following (universal first order)

theory, T 0
ceq which is defined by:
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(A) τ = τ(T 0
ceq) = τ(Tceq) consists of: P, Q unary predicates, E a binary predicate and F

a binary function symbol,
(B) a τ -model M is a model of the universal theory. T 0

ceq iff :

(a) P M , QM is a partition of M ,
(b) E M is an equivalence relation on QM ,
(c) F M is a function from QM×P M into QM such that for every c ∈ P M , a �→ F M (a, c)

is choosing a representative for the a/E M -equivalence class, that is, we have:

(α) a ∈ QM ⇒ F M (a, c) ∈ a/E M ,
(β) if a, b ∈ QM are E M -equivalent then F M (a, c) = F M (b, c).
(γ ) if c /∈ P M ∨ a /∈ QM then F M (a, c) is not defined (or, if you prefer, is equal to c).

Concerning λ in the neighborhood of a strong limit singular we shall not give details as
we can just quote.

Claim 1.4 (0) Concerning T 0
ceq

(a) For a model M of T 0
ceq and A ⊆ M with n elements, the closure of A inside M has

at most n + n2 elements, (even at most n + (n/2)2 elements),
(b) T 0

ceq has amalgamation and JEP,

(c) T 0
ceq has a model completion, that is Tceq is well defined,

(d) univ(λ, Tceq) = univ(λ, Tfeq) = univT 0
ceq

(λ).

(1) Tceq is not simple, is NSOP2 and even NSOP1 and has the oak property, in fact, by qf
(quantifier free) and even atomic formulas.

(2) We have (A) ⇒ (B) where :

(A) (a) θ < μ < λ < χ ,
(b) cf(λ) = λ, θ = cf(θ) = cf(μ), μ+ < λ,
(c) χ :=pp�(θ)(μ) > λ + |i∗|,
(d) there is a set {(ai , bi ) : i < i∗} with ai ∈ [λ]<μ, bi ∈ [λ]θ and |{bi : i < i∗}| ≤

λ such that: for every f : λ → λ for some i, f (bi ) ⊆ ai ,
(B) (a) Tceq equivalently T 0

ceq has no universal model in λ,
(b) Moreover, univ(λ, Tceq) ≥ χ = pp�(θ)(μ).

(3) Tfeq can be interpreted in Tceq hence univTfeq (λ) ≤ univTceq (λ).
(4) Also the inverse of part (3) holds.

Proof (0) Easy as clause (d) follows by parts (3), (4).
(1) By part (3), (4) quoting [5] where the oak property was introduced.
(2) Follows from parts (3), (4) and [19,Claim 2.2].
(3) For a model M of T 0

ceq we define a model N = N [M] of T 0
feq as follows:

(∗)N ,M

(a) QN = P M , P N = QM/E M ,
(b) E N = {(a, b, C) : C ∈ P N = QM/E M and a, b ∈ QN and (∀c ∈ C)[F M (c, a) =

F M (c, b)] equivalently, (∃c ∈ C)[F M (c, a) = F M (c, b)]}. Now check that N |
T 0
feq and M | Tceq ⇔ N | T f eq .

(4) For a model N of T 0
feq we define a model M = M[N ] of T 0

ceq as follows:
(∗)M,N
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(a) P M = QN and QM = {(c, A) : c ∈ P N and A ∈ QN /E N
c }

(b) E M = {((c1, A1), (c2, A2)) : c1 = c2 ∈ P M and A1, A2 ∈ QN /E N
c2 }

(c) F M : QM × P M → QM is defined by: If d ∈ QM , b ∈ P M hence for some
c ∈ P N , A ∈ QN /E N

c we have d = (c, A) then we let F M (d, b) = (c, b/E M
c ).

Now check that N | T 0
feq and M | Tceq ⇔ N | Tfeq.

��
We now point out a new reason involved “large dθ ’s” for not having a universal model

in λ, even for many non-simple T ’s. In this section we deal with a case where the proof is
simpler using Tceq and λ a Mahlo cardinal.

Claim 1.5 (1) Assume λ is a (weakly inaccessible) Mahlo cardinal and S = {θ < λ : θ

regular (weakly inaccessible) and dθ > λ} is stationary in λ and S has club guessing.
Then

(a) univ(λ, Tceq) is > λ,
(b) even, ≥ sup{χ+: the set {θ ∈ S : dθ > χ} is stationary and has club guessing}.

(2) We have χ < univ(λ, Tceq) when:

(a) λ is a Mahlo weakly inaccessible cardinal,
(b) λ ≤ χ ,
(c) S ⊆ {θ < λ : θ is weakly inaccessible cardinal} is stationary.
(d) P̄ = 〈Pθ : θ ∈ S〉,
(e) if θ ∈ S then Pθ is a set of ≤ λ clubs of θ ,
(f) P̄ guess clubs of λ, that is, for every club E of λ for some C ∈ Pθ , θ ∈ S we have

C ⊆ E,
(g) dθ > χ for every θ ∈ S.

Proof (1) Clearly
(∗)0 it suffices to:

(a) fix χ ≥ λ such that Sχ = {θ ∈ S : dθ > χ} is stationary and has club guessing,
(b) prove univT (λ) > χ .

Let T = Tceq, without less of generality assume S = Sχ and let:

(∗)1 〈Cδ : δ ∈ S〉 witness “S has club-guessing”;
(∗)2 if (A) below holds, then we define some objects in (B) where:

(A) (a) M ∈ ECT (λ!),
(b) |P M | = λ,
(c) θ is regular and θ ∈ S,
(d) E a club of θ .

(B) we define:

(a) for a ∈ P M hence a < λ let ga = gM,E,a be the following function from θ to θ :

• for α < θ, ga(α) is the minimal β ∈ E such that: β ∈ E\(α + 1) and (β1 ∈
QM ∩ β) ∧ (F M (β1, a) < θ) ⇒ F M (β1, a) < β,

(b) G 0
M,E = {gM,E,a : a ∈ P M }, note that E determine θ ,

(c) for θ ∈ S let G ∗
M,θ = {gM,Cθ ,a : a ∈ P M }.
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Now easily

(∗)3 for a, M, θ, E as above, gM,E,a is a well defined non-decreasing function from θ

into θ , in fact, into E ⊆ θ,

(∗)4 if M, N ∈ ECT (λ!) and f embeds M into N then for some club E∗ of λ: if
θ ∈ S, θ = sup(E∗∩θ), E ⊆ E∗∩θ is a club of θ and a ∈ P M then gM,E,a ≤ gN ,E, f (a)

(so, the only way E∗ influences is the demand “E ⊆ E∗”).

Recall that, θ ∈ S ⇒ dθ > χ ≥ λ and we shall prove that univ(λ, T ) > χ ; this suffices.
So assume 〈Mα : α < χ〉 is a sequence of members of ECT (λ!).

So for each θ ∈ S the set Gθ = ∪{G ∗
Mα,θ : α < χ satisfies |QMα ∩ θ | = θ} has cardinality

≤ χ recalling λ ≤ χ .
For θ ∈ S, as |Gθ | < dθ , necessarily there is an increasing gθ ∈ θ θ such that g ∈ Gθ ⇒

gθ � g mod J bd
θ and without loss of generality, gθ ∈ θ (Cθ ). Now we define a model

N ∈ ECT 0
ceq

(λ!) with τN = τ(Tceq) = τ(T 0
ceq) as follows:

(A) universe is λ,
(B) (a) QN is the set of odd ordinals < λ,

(b) E N is an equivalence relation on QN such that for every α < β < λ satisfying β is
divisible by |α|, α ∈ QN we have |α/E N ∩ β| = |β|,

(c) if α = 4β + 1 < λ then α/E N is disjoint to α,
(d) if θ ∈ S and α < θ then θ > F N (4α + 1, θ) > gθ (4α + 1).

This is easy to do.
To show that M̄ does not witness univ(λ, T ) ≤ χ is suffice to show that N cannot be

embedded in Mα for any α < χ . Toward contradiction assume that α < χ and f is an
embedding of N into Mα . Let E = {δ < λ : δ a limit ordinal such that ((Mα�δ, N�δ, f �δ,<
�δ) ≺ (Mα, N , f ,< �λ))}. Clearly E is a club of λ hence for some θ ∈ Sχ we have Cθ ⊆ E .
Let h ∈ θ θ be gMα,Cθ , f (θ), so is well defined and belongs to G 0

Mα,Cθ
hence to G ∗

Mα,θ hence to

Gθ hence gθ �< h mod J bd
θ . Now,

•1 choose α < θ such that h(α) < gθ (α),

•2 let γ = 4α + 1,
•3 F N (γ, θ) ∈ (gθ (α), θ) by the choice of N i.e. (B)(d) above,
•4 gθ (α) ∈ Cθ by the choice of gθ ,

•5 Cθ ⊆ E by the choice of θ,

•6 gθ (α) ∈ E by •4 and •5,
•7 every member of E is closed under f and f −1,

[Why? By the choice of E it is closed under f , as f is one-to-one similarly for f −1.]
•8 f (F N (γ, θ)) ∈ [gθ (α), θ),

[Why? By •3, •6 and •7.]
•9 f (F N (γ, θ)) = F Mα ( f (γ ), f (θ)),

[Why? As f embed N into Mα.]
•10 F Mα ( f (γ ), f (θ)) ∈ [gθ (α), θ),

[Why? by •8 and •9.]
•11 h(α) is a member of Cθ , hence a limit ordinal and in E,

[Why? By the choice of h.]
•12 α < h(α), γ < h(α) and f (γ ) < h(α),

[Why? First, α < h(α) by the choice of h. Second, γ < h(α): as h(α) is limit > α by
•11 and γ = 4α + 1 by •1. Third f (γ ) < h(α): as γ < h(α) and h(α) ∈ E by •11 and
so h(α) is closed under f by •7]
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•13 F Mα ( f (γ ), f (θ)) < h(α),

[Why? By the choice of h as gMα,Cθ , f (θ) and •12].
Now by the inequalities •1, •8, •9 and •13 we get h(α) < gθ (α) ≤ f (F N (γ, θ)) =
F Mα ( f (γ ), f (θ)) < h(α), contradiction.

(2) Similarly.

��
Remark 1.6 Under the assumption of 1.5(2), we can similarly prove that: for every sequence
〈(Eξ ,Gξ,θ ) : ξ < χ, θ ∈ S〉 satisfying clause (A) below, there is a sequence 〈gθ,α : θ ∈
S, α < λ〉 with gθ,α ∈ θ θ satisfying clause (B) below, where:

(A) Eξ is a club of λ for ξ < χ and Gξ,θ ⊆ θ θ has cardinality ≤ λ for ξ < λ, θ ∈ S.
(B) for every ξ < χ and club E of λ there are θ ∈ acc(Eξ ) ∩ E ∩ S and α < λ such that

θ = sup(Eξ ∩ E ∩ θ) and g ∈ Gξ,θ ⇒ gθ,α � g mod J bd
Eξ ∩E∩θ .

2 On successor Cardinals and club guessing

We first introduce the relevant notions (in 2.1); (we could add clause 2.1(2)(b) into the
definition of Uλ,θ in 2.1(1), but so far it does not matter1). We then investigate it and use it
for sufficient conditions for“no universal”.

Definition 2.1 Assume λ > θ are regular and D ⊆ P(θ) is upward closed non-empty
satisfying D ⊆ [θ ]θ , omitting D means D = {θ}; and B is a model with universe λ and
countable vocabulary but B is locally finite when θ = ℵ0. Saying “for D-most ε < θ” will
mean “for some X ∈ D for every ε ∈ X”. The main case2 is θ > ℵ0, this is necessary for
the “full” cases (see parts (2)), but not for the others; we may forget to assume θ > ℵ0.

(1) Let Uλ,θ = {ū : ū = 〈ui : i < θ〉 is ⊆-increasing continuous, and i < θ ⇒ i ⊆ ui ∈
[λ]<θ (hence θ ⊆ ∪{ui : i < θ} ∈ [λ]θ ) and ∧

i<θ

ui ∩ θ ∈ θ}.
(1A) We shall say that U ⊆ Uλ,θ obeys B when every ū ∈ U does, which means that

for every ε < θ we have B � uε ⊆ B, (if B has Skolem functions this is equivalent to
B � uε ≺ B which implies θ > ℵ0).

(2) We say U ⊆ Uλ,θ fully D-guesses clubs when θ > ℵ0 and for every model M with
universe λ and countable vocabulary there is ū ∈ U which fully D-guesses M meaning3

(a) (α) if4 ε < θ then c�(uε, M) ⊆ sup(uε), moreover (actually follows using an expansion
of M) M� sup(uε) ≺ M,

(β) (∃X ∈ D)(∀ε)[ε ∈ X ⇒ c�M (uε) = uε ⊆ M], i.e. for D-most ε < θ the set uε is
closed under the functions of M , (in an equivalent definition Mε�uε ≺ M as we can expand
M by Skolem functions).

(b) the sequence ord(ū) = 〈sup(uε) : ε < θ〉 is strictly increasing.

1 Note that it is relevant to “fully D-guess clubs”implies “almost guess clubs”, see 2.15
2 We may omit clause (b) from the definition 2.1(3) of “fully D-guess clubs”, the only problem this cause is
for it implying the other versions, (see 2.15).
3 We may omit in 2.1(2) the clauses (a)(α), (b) but then we have problems with “FGC ⇒ AGC and the gain
is doubtful.
4 This implies a case of club guessing.
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(3) We say U ⊆ Uλ,θ almost D-guesses clubs when :

(a) for every model M with universe λ and countable vocabulary and A ∈ [λ]λ for some
ū ∈ U we have:

(α) if ε < θ then c�(uε, M) ⊆ sup(uε); as in (a)(α) of part (2) without the moreover,
(β) for D-most ε < θ we have A ∩ uε+1 � sup(uε),
(γ ) c�(

⋃

ε<θ

uε, M) = ⋃

ε<θ

uε, that is, M�(
⋃

ε<θ

uε) ⊆ M ,

(b) if ū ∈ U then ord(ū) = 〈sup(uε) : ε < θ〉 is strictly increasing.

(3A) We say U medium D-guesses clubs when as in part (3) omitting clause (a)(γ ).
(3B) We say U ⊆ Uλ,θ semi-D-guesses clubs when :

(a)′ as (a) in part (3) but replacing (β) by:

(β)′ for D-most ε < θ for some ζ ∈ [ε, θ) and α ∈ A we5 have α ∈ (uζ+1\uζ ) ∩
(sup(uε+1)\ sup(uε)),

(b) as in part (3).

(3C) We say U ⊆ Uλ,θ pseudo-D-guess clubs when :

(a)′′ if M is as above and A ∈ [λ]λ then for some ū ∈ U we have:
(α) as is part (3) clause (a)(α),
(β) for D-most ε < θ for some ζ ∈ [ε, θ) and α ∈ A we have α ∈ (uζ+1\uζ ) ∩

(sup(uε+1)\ sup(uε)),

(b) as above.

(3D) We say U is (λ, θ)-reasonable (or just reasonable when (λ, θ) are clear from the
context) when U ⊆ Uλ,θ satisfies clause (3)(b).

(4) We say U does X − D-guess clubs when :

• U does fully D-guess clubs and X = F ,
• U does almost D-guess clubs and X = A,
• U does semi-guess clubs and X = S,
• U does medium D-guess clubs and X = M ,
• U does pseudo guess clubs and X = P .

(5) Let XGCD(λ, θ) = min{|U| : U ⊆ Uλ,θ and U does X − D-guess clubs}.
(5A) Similarly XGCD(λ, θ,B) when we restrict ourselves to U obeyingB.
(6) We say U ⊆ Uλ,θ is bounded when there is an F witnessing it which means: F is a

function from {ū�(ζ+1) : ū ∈ U, ζ < θ} intoλ such that F(ū1�(ζ1+1)) = F(ū2�(ζ2+1)) ⇒
ū1�(ζ1 + 1) = ū2�(ζ2 + 1) and F(ū�(ζ + 1)) < sup(uζ+1).

(7) We say “strongly bounded”when in addition F(ū�(ζ + 1)) ∈ uζ+1 for every ζ < θ .
(8) We say U ⊆ Uλ,θ is weakly bounded, when there is a function F witnessing it which

means:

(a) Dom(F) = {ord(ū�(ζ + 1)) : ū ∈ U and ζ < θ} recalling ord(ū) = 〈sup(uε) : ε < θ〉,
(b) Rang(F) ⊆ λ and F(ord(ū)�(ζ + 1)) < sup(uζ+1) for ū ∈ U and ζ < θ ,
(c) if ζ1, ζ2 < θ are successor of successor ordinals and ū1, ū2 ∈ U and F(ord(ū1)�ζ1) =

F(ord(ū2)�ζ2) then ord(ū1)�ζ1 = ord(ū2)�ζ2.

5 The“α /∈ uζ ” follows, and “D -most” can be replaced by “all”.
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(9) Let

(a) if ū ∈ Uλ,θ and f : θ → θ is ≤-increasing continuous with limit θ then ū[ f ] =
ū[ f ]:=〈u f (ε) : ε < θ〉],

(b) if U ⊆ Uλ,θ and f : θ → θ is ≤-increasing continuous with limit θ then U[ f ]:=U[ f ] =
{ū[ f ] : ū ∈ U},

(c) if U ⊆ Uλ,θ andF is a set of ≤-increasing continuous function from θ into θ with limit
θ then U[F ] = {ū[ f ] : ū ∈ F , f ∈ F },

(d) if w ∈ [θ ]θ then fw = f [w] is the g : θ → θ such that 〈g(ε) : ε < θ but the closure of
w in order. so is ≤-increasing continuous with limit θ .

(10) In (a),(b) of part (9) abovewemaywrite ū[w],U[w] forw ∈ [θ ]θ meaning ū[ f ],U[ f ]
where f = fw, writing U[W ], W ⊆ [θ ]θ mean ∪{U[w] : w ∈ W }.

(11) Now for X ∈ {F, A, S, M, P} we let (naturally and we can addB as in part (5A) ):

(a) AXGCD(λ, θ) = Min{|U| : U ⊆ Uλ,θ does X −D-guess clubs and is strongly bounded},
(b) CXGCD(λ, θ) is defined as in (a) but U is just bounded,
(c) WXGCD(λ, θ) is defined as in clause (a) but U is weakly bounded.

Some of the obvious implications are:

Observation 2.2 1) If U fully D-guesses clubs, then U almost D-guesses clubs,
2) If U almost D-guesses clubs then U semi-guess-club and medium D-guesses clubs.
3) If U semi-D-guesses-clubs or medium D-guesses clubs then U does pseudo D-guesses
clubs.
4) If D1 ⊆ D2 ⊆ [θ ]θ then “U does X − D1-guess clubs” implies “U does X − D2-guess
clubs” for X ∈ {F, A, M, S, P}, we may write {full, almost,medium, semi, pseudo}.
5) Assume U ⊆ Uλ,θ and B is as in 2.2. Then there is U′ such that:

(a) U′ ⊆ Uλ,θ

(b) |U′| ≤ |U|
(c) if U does X − D-guess clubs, for X ∈ {F, A, M, S, P} as in part (4) then so does U′,
(d) U obeys B, (see 2.1(1)).

6) In 2.1(11) the number is ≥ λ.
7) We may replace “ countable vocabulary” by “vocabulary of cardinality < θ”.

Proof 2.2 E.g.
5) LetU′ = {ū′ ∈ U : for some ū ∈ U for every ε < θ we have c‘B(uε) = u′

ε ⊆ sup(uε)}, it
suffice to prove that U′ is as required. The main point is to verify the appropriate version of
clause (a) in Def 2.1. So let M be a model with universe λ and countable vocabulary, we have
to find a suitable meber of U′. By renaming, without loss of generality the vocabulary of M
is disjoint to the one of B and let M ′ be a common expansion of M and B with τ(M ′) =
τ(M) ∪ τ(B). Let E = {δ : M�δ ≺ M}. So (M ′, E,< �λ) is as required in clause (a) for U
hence there is a suitable ū ∈ U. We can check that in all cases ū′ = 〈c‘B(uε) : ε < θ〉 ∈ U
is as required here, so we are done.
7) Recall 2.1(1), the statement “uε ∩ θ ∈ θ”.

Definition 2.3 1) For the model theory: for a model M ∈ ECT (λ!),	 ⊆ L(τT ) and u ⊆
λ, A ⊆ M let M [A]�	u be the model M�u expanded by all the restriction to u of all relations
definable by a 	-formula with parameters from A.
1A) If 	 = Lqf (τM ) then we may omit 	; writing ā instead A means Rang(ā).
2) For M ∈ ECT (λ!), ū ∈ Uλ,θ and ā ∈ ω>M let gā,ū,M be the function from θ to θ such
that for ζ < θ, gā,ū,M (ζ ) is the minimal ε ∈ (ζ, θ) such that M [ā]�uε ≺ M [ā]�

⋃

ξ<θ

uξ .
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Claim 2.4 We assume that B is a model with universe λ and countable vocabulary, (for the
case of full club guessing, we add locally finite when θ = ℵ0.)

(1) We have

(A) CSGC(λ, θ) = λ, moreover λ = CSGC(λ, θ,B) provided that:

• λ = cf(λ) = θ++ and θ = cf(θ)

(B) ASGC(λ, θ) = λ provided6 that

• λ = θ++, θ = cf(θ),
• there is a stationary set S ⊆ Sθ+

θ from Ǐθ [θ+],
(C) AFGC(λ, θ) = λ even with a reasonable witness. provided that:

• λ = λθ and θ = cf(θ) > ℵ0,

(D) MGCD(λ, θ) = λ when:

(∗) θ = cf(θ) < λ and there is S such that:

(a) S ⊆ {w : w ⊆ λ, otp(w) = θ},
(b) S has cardinality λ,
(c) if A ∈ [λ]λ then for some w ∈ S the set w ∩ A has cardinality θ ,
(d) D = [θ ]θ .

(E) AGC(λ, θ) = λ when

(∗) we have:

(a),(b),(c),(d) as in (D) above,
(e) the cofinality of ([λ]θ ,⊆) is equal to λ.

(2) For regular λ > θ = cf(θ) we have:

(A) if SGCD(λ, θ) = λ and bθ ≤ λ then AGCD(λ, θ) = λ when D = [θ ]θ ,
(B) if SGC(λ, θ)) = λ and dθ ≤ λ then AGC(λ, θ) = λ recalling that the default value of

D is {θ}.
(3) For λ > θ = cf(θ) such that7 λ > θ+ we have SGC(λ, θ) = λ provided that (e.g.

λ = θ+n for some n > 0):

�3
λ,θ cf([λ]θ ,⊆) = λ.

(4) If U1 ⊆ Uλ,θ medium guesses clubs, then there is U ⊆ Uλ,θ which medium guesses
clubs of cardinality ≤ |U1| and for ū ∈ U we have:

(a) if u = ∪{ui : i < θ} then u ⊆ δ = sup(u) for some δ < λ of cofinality θ ; (this actually
follows by 2.1(3)(b)),

(b) if bθ ≤ λ then u = ∪{ui : i < θ} and ū ∈ Uλ,θ then otp(u \ θ) = θ ,

(5) If λ ≥ θ+ and θ = cf(θ) > ℵ0 and S ⊆ {δ < λ : cf(δ) = θ} is stationary and some
C̄ = 〈Cδ : δ ∈ S〉 guesses clubs, then PGC(λ, θ) = λ.

(6) If cf([λ]θ ,⊆) = λ, θ > ℵ0 and dθ ≤ λ then FGC(λ, θ) = λ, moreoverBFGC(λ, θ) =
λ, (in fact, looking at [18] we get strongly bounding).

6 We can weaken the demand: if we weaken the demand in Definition 2.1(5) to “for stationary many ε < θ"
and θ ≥ ℵ2.
7 see footnote to part (2)
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Discussion 2.5 (1) In 2.4 we have ZFC results, we may get stronger results (on the full and
almost versions) in some forcing extensions see 2.14 and [10].

(2) We can look at the cases of Definition 2.1 for singular λ, replacing (uζ \ sup(uε)) by
uζ \uε, but we have not arrive to it.

(3) When we have clause (a)(γ ) of the Definition 2.1(3) there is less need of clause (a)(α).
E.g. in 2.4(1)(C) we do not need “λ regular".

(4) In clauses (D), (E) of 2.1(1) we may add bounded/weakly bounded under natural assump-
tion.

Proof Without loss of generality B has a pairing function prB and its inverses as well as
α + 1, α + β and αβ.

(1) Clause (A): First, choose S, S+, C̄ such that (partial square guessing clubs):
(∗)1

(a) S ⊆ {δ < λ : cf(δ) = θ and δ > θ+} is stationary,
(b) S ⊆ S+ ⊆ {δ < λ : cf(δ) ≤ θ and δ > θ+}, moreover if δ ∈ S then δ = sup(S+ ∩ δ) ,
(c) C̄ = 〈Cα : α ∈ S+〉,
(d) Cα is a closed subset ofα of order type≤ θ , andotp(Cα) is a limit ordinal iff α = sup(Cα),
(e) for α ∈ S+ we have α ∈ S ⇔ otp(Cα) = θ ,
(f) if α ∈ Cβ then α ∈ S+ and Cα = Cβ ∩ α,
(g) C̄ � S guess clubs, i.e.: if E is a club of λ then for stationarily many δ ∈ S we have

Cδ ⊆ E ,
(h) if α ∈ S+ then α > θ+ and α is closed underB, that isB�α ⊆ B,
(i) if α ∈ S+ then θ2 divides δ.

Why do they exist (provably in ZFC)? see [11,1.3=L1.3(b)], but we elaborate (for the case
θ > ℵ0); by [17,4.4(1), pg. 47] (with θ+, λ here standing for λ, λ+ there):

(∗)1.1 there are W , S, Ci (i < θ+) such that:

(A) W = {δ < (θ+)+ : cf(δ) < θ+} hence is in Ǐ [(θ+)+].
(B) W is the union of λ sets which have the square property, i.e., there are sequences S =

〈Si : i < λ〉 and Ci = 〈Ci
δ : δ ∈ Si 〉 for i < λ such that:

(a) W ⊆ ⋃
i<λ Si ,

(b) For δ ∈ Si , Ci
δ is a subset of δ ∩ Si of cardinality < λ closed in δ, and if δ is a limit

ordinal then Ci
δ is unbounded in δ,

(c) For all δ1, δ2 if δ2 ∈ Si and δ1 ∈ Ci
δ2
then δ1 ∈ Si and Ci

δ1
= Ci

δ2
∩ δ1. (Notice that

δ1 may also be a successor ordinal.)

Easily (and as in [25,a. III] making θ+ tries):
(∗)1.2 there are ζ < θ+, i < λ and a club E∗ of λ such that: for every club E ⊆ E∗

of λ for some δ we have δ ∈ Si , cf(δ) = θ, δ = sup(Ci
δ ∩ E∗), Ci

ζ ∩ E = Cδ ∩ E∗ and

otp(Ci
δ ∩ E∗) = ζ.

(∗)1.3 without loss of generality α ∈ E∗ ⇒ (c‘B(α) = α) ∧ (θ+)2|α ∧ α ≥ θ+,

(∗)1.4 let:

(a) e ⊆ ζ is unbounded in ζ and otp(e) = θ

(b) S = {δ ∈ Si : cf(δ) = θ, otp(Ci
δ ∩ E∗) = ζ },

(c) S+ = {α : α ∈ S or for some δ ∈ S we have α ∈ Ci
δ and otp(α ∩ Ci

δ) ∈ e}.
(d) Cδ = {α ∈ Ci

δ : otp(α ∩ Ci
δ) ∈ e} for δ ∈ S.

Now S, δ+, 〈Cδ : δ ∈ S+〉 satisfies all the demands, proving (∗)1.
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(∗)2 For δ ∈ S let 〈γ •
δ,ε : ε < θ〉 list Cδ in increasing order.

Second, fix f̄ , ḡ such that:
(∗)3

(a) f̄ = 〈 fα : α ∈ [θ+, λ)〉,
(b) fα is a one-to-one function from θ+ onto α,
(c) ḡ = 〈gξ : ξ ∈ [θ, θ+)〉,
(d) gξ is a one-to-one function from θ onto ξ .

(∗)4

(a) for δ ∈ S let eδ = {ξ < θ+: if α ∈ Cδ then Rang( fα�ξ) = α ∩ Rang( fδ�ξ) and this set
includes Cδ ∩ α and has cardinality θ}

(b) eδ is a club of θ+.

[Why clause (b) holds? As otp(Cδ) = θ and α ∈ Cδ ∪{δ} ⇒ |α| = θ+, this should be clear.]
(∗)5 for δ ∈ S and ξ ∈ eδ let:

(a) uδ,ξ = Rang( fδ�ξ), it belongs to [δ]θ and it includes Cδ ,
(b) we choose ūδ,ξ = 〈uδ,ξ,ε : ε < θ〉 by uδ,ξ,ε = c�B({ fγ •

δ,υ
(gξ (ζ )) : υ < ω(1 + ε) and

ζ < ω(1 + ε)} ∪ {γ •
δ,υ : υ < ω(1 + ε)}),

(c) for w ∈ [θ ]θ let ū[w]
δ,ξ be 〈u[w]

δ,ε ; ε < θ〉 where u[w]
δ,ε = uδ,ι where: ι ∈ w is the minimal ι

that satisfies otp(w ∩ ι) = ε, this fits 2.1(9)(d).

Note that (recalling (∗)2):
(∗)6 For δ ∈ S, ξ ∈ eδ

we have:

(a) ūδ,ξ is a ⊆-increasing continuous sequence of subsets of uδ,ε,
(b) eachuδ,ξ,ε includeCγ •

δ,ω(1+ε)
and is anunbounded subset ofγ •

δ,ω(1+ε) and it is of cardinality
< θ ,

(c) ∪{uδ,ξ,ε : ε < θ} is equal to uδ,ξ ,

(d) uδ,ξ,ε is computable from prB(γ •
δ,ε, ξ) recalling that prB is a pairing function, using as

parameters f̄ , ḡ which were fixed in (∗)2.

[Why? should be clear.]
Lastly, (∗)7 let:

(a) U = {ūδ,ξ : δ ∈ S, ξ ∈ Cδ}
(b) Uw = {ū[w]

δ,ξ : δ ∈ S and ξ ∈ eδ} for w ∈ [θ ]θ .
We shall prove that (why the w? for the use in the proof of part (4) of the claim):
(∗)8 if w ∈ [θ ]θ then Uw witnesses WSGC(λ, θ) ≤ λ.
Fix w now and we shall deal with all the demands:
(∗)8.1 Uw has cardinality ≤ λ; in fact is equal to λ.
[Why? As |Uw| ≤ |{(δ, ξ) : δ ∈ S, ξ ∈ eδ ⊆ θ+}| ≤ λ + θ+ = λ. The other inequality is

also easy as ∪{uδ,ξ : δ ∈ S, ξ ∈ eδ} = λ and each uδ,ξ has cardinality θ < λ.]
(∗)8.2 Uw ⊆ Uλ,θ is reasonable.
[Why? By the choices above.]
(∗)8.3 Uw semi-guess clubs.
[Why? Let M and A be as in Definition 2.1(3B)(a)′; without loss of generality M expand

B and let M+ be the expansion of M by the relation <M+
, the order of the ordinals < λ and
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P M+ = A, and let E :={δ < λ : M+�δ ≺ M+}, clearly E is a club of λ. By the choice of C̄
there is δ ∈ S such that Cδ ⊆ E (hence δ ∈ E). Note that if α ∈ Cδ then A ∩α is unbounded
in α.

Now recall that M�δ ≺ M , 〈uδ,ξ : ξ ∈ eδ〉 is ⊆-increasing continuous with union δ, each
uδ,ξ is of cardinality ≤ θ and eδ is a club of θ+ hence e = {ξ ∈ eδ : M+�uδ,ξ ≺ M+} is a
club of θ+. So if ξ ∈ e then A ∩ uδ,ξ is unbounded in uδ,ξ . Now choose ξ ∈ e, so ū = ūδ,ξ

is as required.]
(∗)8.4 U is weakly bounded.
[Why? Just think, recalling (∗)1 and Definition 2.1(8), that is, note that 〈Cδ ∩α : δ ∈ S+〉

has cardinality ≤ θ+ for each α < λ because β ∈ Cδ1 ∩ Cδ2 ⇒ Cδ1 ∩ β = Cδ2 ∩ β and
δ > α ⇒ sup(Cδ ∩ α) ∈ Cδ, anyhow below we shall get more.]

(∗)9 U is bounded hence CSGC(λ, θ) holds, in fact:

(a) if u1 = uδ1,ξ1,ε1 , u2 = uδ2,ξ2,ε2 and pr(γ •
δ1,ε1

, ξ1) = pr(γ •
δ2,ε2

, ξ2) then:

(α) 〈γ •
δ1,ε

: ε ≤ ε1〉 = 〈γ •
δ2,ε

: ε ≤ ε2〉
(β) u1 = u2

(b) pr(γ •
δ,ε, ξ1) < γ •

δ,ε+1.

[Why? Clause (a) holds by (∗)6(d) and clause (b) by (∗)1(h).]
We have finished proving λ = CSGC(λ, θ), and even CSGC(λ, θ,B), that is clause (A)

of part (1).
Clause (B): Fix a stationary S ⊆ Sθ+

θ which belongs to Ǐθ [θ+], see Def 0.7. By 0.8 we
can choose 〈ζξ,ε : ε < θ〉 for ξ ∈ S such that for any such ξ ∈ S, 〈ζξ,ε : ε < θ〉 is increasing
continuous with limit ξ and (ζξ1,ε+1 = ζξ2,ε+1) ∧ (υ ≤ ε) ⇒ ζξ1,υ = ζξ2,υ (and more).
Without loss of generality this is C = 〈Cα : α < λ such that if ξ ∈ S, ε < θ then for some
α < ζξ,ε we have {ζξ,i : i ≤ ε} = Cα and for u ∈ U such that ζ = sup(

⋃
ε uε) we require

that α ∈ uε+1 (and C definable in B).
Now in the proof of clause (A) of part (1) we choose f̄ , ḡ as in (∗)3 but in addition

ḡ = 〈gα : α ∈ [θ, θ+〉) satisfies that: if α = ζξ,ε, ε a limit ordinal then gα is computable
from 〈gβ : β ∈ {ζξ,ι : ι < ε}〉 e.g. as follows: for ι < θ let W ι

α = {γ < α : for some β ∈
{ζξ,e : e < ε} we have gβ(γ ) < ι} and then define gι

α by induction on ι < θ such that:
(∗)

(a) gι
α is a function from W ι

α onto some ordinal < θ.

(b) gι
α is increasing with ι.

(c) gι
α�(W ι

α\⋃{W j
α : j < ι}) is order preserving.

Also we can restrict ourselves to ξ ∈ S such that uδ,ξ is closed under pr. Then we can restrict
ourselves to (w, δ, ξ) such that ε1 < ε2 ∈ w ⇒ pr(γ •

δ,ε1
, ζξ,ε1) ∈ uδ,ξ,ε2 .

Clause (C): Easy but we elaborate.
We are assuming λ = λθ , θ = cf(θ); so U = Uλ,θ is trivially a subset of Uλ,θ of

cardinality λ and let F be a one-to-one function from {u�ε : u ∈ U and ε < θ}, clearly exist.
Let M be a model with universe λ and we have to find ū as promised. Toward this we choose
uε by induction on ε as follow:

(a) uε is a subset of λ of cardinality < θ ,
(b) uε = c‘(uε, M) and has no last member,
(c) if ε = ζ + 1 then some α ∈ A\ sup(uζ ) belongs to uε ,
(d) if ε is a limit ordinal then uε = ∪{uζ : ζ < ε}
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(e) If ε = ζ + 1 then F(u�ε) ∈ uε .

There is no problem to carry the induction and 〈uε : ε < θ〉 is as required.
Clause (D) Recall that S ⊆ {w ⊆ λ : otp(w) = θ} and more by our assumption. For

each w ∈ S let ūw be 〈uw,ε : ε < θ〉 were uw,ε = {α ∈ W : otp(w ∩ α) < ω(1 + ε)} ∪ ε.
Now let U = {ūw : w ∈ S }, it suffice to prove that U witness MGC(λ, θ) = λ.

Clearly most demands hold: U is a subset of Uλ,θ of cardinality λ, and for each ū ∈ U the
sequence 〈sup(uε) : ε < θ〉 is increasing. The main point is, to be given M, A as in clause
(a) of Def 2.1(3) and to prove that sub-clauses (α), (β) there hold.

Let M+ be an expansion of M by the order <M+
of the ordinals < λ, RM+ = A, pr and

let E = {δ < λ : M+�δ ≺ M+}, clearly it is a club of λ. Now there is no harm in replacing
A by a smaller sub-set so let A′ = {α ∈ A : α = min(A\β) for some β ∈ E}. Clearly
A′ ∈ [λ]λ so by the choice of S there is w ∈ S such that w ∩ A has cardinality θ .

Now ūw ∈ U is as required.
Clause E:
By [18] there is a stationaryA ⊆ [λ]θ of cardinality λ, see details in the proof of part (3).

Now for each w ∈ S let Aw = {v ∈ A : w ⊆ v}, so it is non-empty. Now for each w ∈ S
let 〈αw,ε : ε < θ〉 list the members of w in increasing order. Also for each such pair (w, v)

let ūw,v = 〈uw,v,ε : ε < θ〉 be such that:
(a) uw,v,ε is a subset of v of cardinality < θ ,
(b) uw,v,ε is increasing continuous with ε,
(c) uw,v,ε includes {αw,ζ : ζ < ω(1 + ε)} if θ > ℵ0 and is {αw,ζ : ζ < 1 + ε},
(d) uw,v,ε is included in ∪{αw,ζ : ζ < ω(1 + ε)}
(e) ∪{uw,v,ε : σ < θ} = v ∩ ∪{αw,ε : ε < θ}

Lastly we define U as the set {ūw,v : w ∈ S , v ∈ Aw}; so it suffice to prove that U
witnesses MGCD(λ, θ) = λ; this is as in previous cases.

(2) As in [20,Ch.III], and anyhow not used .
(3) By [21] there is S such that:

(∗)1

(a) S ⊆ [λ]θ has cardinality λ

(b) S is stationary, i.e. for every model M∗ with universe λ and vocabulary ≤ θ there is
w ∈ S such that M∗�w ≺ M∗.

Now as we can increase S , without loss of generality :
(∗)2 S ∩ [α]θ is a stationary subset of [α]θ for every α ≤ λ.
We continue as in the proof of part (1), maybe details will be given in [10] and anyhow

this will not be used here.
(4) Let U ⊆ Uλ,θ medium guess clubs,
Now clause (a) follows by 2.1(3)(b).
For clause (b), for u ∈ U1, let 〈αu,ε : ε < θ〉 list ⋃

ε uε and for each u and increasing
g ∈ θ θ we define w

g
u,ε by induction on ε < θ as follows. For ε = 0 let w

g
u,ε = c‘B(∅),

for ε limit let wu,ε =
⋃{wu,ζ : ζ < ε}, so let ε = ζ + 1. Let ι < θ be minimal ≥ g(ζ ), ε,

such that sup(wg
u,ζ ) < sup{αu,ι(1) : ι(1) < i} and let w

g
u,ε = c‘B({αu,ι(1) : i(1) < ι}).

Lastly let F ⊆ {g ∈ θ θ :g is increasing} be <J bd
θ

−unbounded of cardinality bθ and let

U = {〈wg
u,ε : ε < θ〉 : g ∈ F and u ∈ U1}. Now check.

(5), (6) Combine things above. ��
Discussion 2.6 Assume λ > θ ≥ σ = cf(σ ), (2σ > λ in the interesting case). Let Uλ,θ,σ =
{ū : ū = 〈uε : ε < σ 〉 is ⊆-increasing and uε ∈ [λ]θ } and repeat the definition. Of doubtful
help, otherwise (θ++, θ+, θ) would have helped.
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Theorem 2.7 (1) Assume λ = cf(λ) > θ = cf(θ), D = [θ ]θ , AGCD(λ, θ) = λ and
bθ > λ. Then λ /∈ Univ(Tceq); moreover, univTceq (λ) ≥ bθ .

(1A) In part (1) we can replace AGCD(λ, θ) by MGC(λ, θ).
(2) If λ = cf(λ) > θ = cf(θ) and8 FGC(λ, θ) = λ and χ = dθ > λ or just cf(θ θ,≤D)) ≥

χ > λ, then univTceq (λ) ≥ χ .
(3) If D is a uniform filter on θ, (θ θ,<D) is (< χ)-directed and χ > λ,FGCD(λ, θ) = λ

then univTceq (λ) ≥ χ .

Remark 2.8 (1) The Claim 2.11 below shows that we cannot weaken the assumption on T
too much.

(2) Note that the above works also for θ = ℵ0.
(3) See more in [10].

Proof (1) So let (T = Tceq and):
(∗)0 B is as in Definition 2.1, such that:

(a) B has universe λ,

(b) τB, the vocabulary ofB, is countable,
(c) B has a pairing function pr : λ × λ → λ i.e., a one-to-one 2-place function from λ

into λ and pr1 and pr2 its inverses.

(∗)1 assume α∗ < bθ and M∗
α ∈ ECT (λ!) for α < α∗; it suffices to find N ∈ ECTceq (λ!)

not embeddable into M∗
α for every α < α∗

(∗)2 let U ⊆ Uλ,θ witness AGCD(λ, θ,B) = λ or just MGCD(λ, θ,B) = λ.
[Why? Is there such U? by the assumption of the theorem and apply 2.2(5).]
(∗)3 for ū ∈ U, α < α∗ and d ∈ P M∗

α we define the set Eū,d,α; clearly is a club of θ , as
follows:

• Eū,d,α = {ε < θ : ε is a limit ordinal such that uε is closed inside ∪{uζ : ζ < θ}
under the functions of M∗

α and the function F M∗
α (−, d), or just if a ∈ uε, b ∈ ⋃

ζ<θ

uζ

and M∗
α | “F M∗

α (a, d) = b" then b ∈ sup(uε)}.
So E = {Eū,d,α, : ū ∈ U, α < α∗ and d ∈ P M∗

α } is a set of clubs of θ of cardinality
≤ |U| + |α∗| + |P M• | < bθ . Hence,
(∗)3.1 there is an increasing function g : θ → θ such that (∀E ∈ E )(∀∞ε < θ)(g(ε) >

sucE (ε)).
Now we can construct N = Ng ∈ ECT (λ!) such that:
(∗)4

(a) P N = {3β : β < λ} hence QN = {3β + 1, 3β + 2 : β < λ}
(b) if α = 3β + 1 < λ (hence α ∈ QN ) then α = min(α/E N )

(c) if ū ∈ U then for some α(ū) = αū,g ∈ P N we have: if β ∈ (uε+1\uε) ∩ QN

and (β/E N ) ∩ uε = ∅ but υ < θ ⇒ (β/E N ) ∩ sup(
⋃

ζ<θ

uζ ) � sup(uυ) then

F N (β, α(ū)) ∈ sup(
⋃

ζ<θ

uζ )\ sup(ug(ε+1)).

Now toward contradiction assume that:
(∗)5 f embeds Ng into M∗

α and α < α∗.

8 Recall that this means that D = {θ}
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Let N+
g = (Ng,<

N+
g ) where <N+

g = {(α, β) : α < β < λ} and let M• be a model with
universe λ expanding M∗

α and (a renaming of) N+
g ; (that is τ(M•) contains also a disjoint

copy τ ′ of τ(N+
g ) such that the restriction of M• to τ ′ is the suitable copy of N+

g ).

Also we have f = G M∗ for some unary function symbol G ∈ τ(M•) and M• has Skolem
functions and τ(M•) is countable and expandB.

(∗)6

(a) Let E = {δ < λ : M•�δ ≺ M•}, so a club of λ,

(b) Let H : λ → λ be H(α) = sucE (α),

(c) Let M∗ = (M•, H).

(∗)7 Let A = {prB(3β + 1, f (3β + 1)) : β < λ}.
As f is a one-to-one function from λ to λ necessarily A ∈ [λ]λ. By the choice of U and
of D as [θ ]θ there is u such that:
(∗)8

(a) ū ∈ U,
(b) if ε < θ then uδ = c�(uε,B),

(c) c�(uε, M∗) ⊆ sup(uε), and (essentially follows) M•� sup(uε) ≺ M•,
(d) the set v = {ε < θ : A ∩ uε+1\ sup(uε) �= ∅} has cardinality θ ,
(e) M∗�

⋃

ε<θ

uε ≺ M∗, (not used when we assume only MGC(λ, θ) = λ),

Now let d = f (αū,g), so it is a member of P M∗
α , and

(∗)9 if ε ∈ v then for some a = aε ∈ uε+1\ sup(uε) we have aε ∈ A,
(∗)10

(a) for ε ∈ v let aε = prB(βε, f (βε)), so βε ∈ {3γ + 1 : γ < λ},
(b) Let v1 = {ε ∈ v : g(ε) > sucE(u,d,α)(ε)},
(c) For ε < θ let ζε = sucE(u,d,α)(ε),

(∗)11 v1 ∈ [v]θ ,
[Why? Because v ∈ [θ ]θ and the choice of f (here the use of bθ matters.)]
Now,

� Assume ε ∈ v1,

•1 aε ∈ uε+1\uε,

[Why? by the choice of aε.]
•2 if ζ < θ then sup(uζ ) is closed under x + 1 so a limit ordinal and f −1; that is,
∀β < λ[β < sup(uε) ⇐⇒ f (β) < sup(eε)],
[Why? As c�(sup(uε), M∗) ⊆ sup(uε) by (∗)8(c).]
•3 βε ∈ uε+1\ sup(uε) and f (βε) ∈ uε+1 \ sup(uε),

[Why? As βε = prB1 (aε), f (βε) = prB2 (aε) and aε ∈ uε+1 by •1 (and uε+1 =
c�B(uε+1) by (∗)8(b)) we have βε ∈ uε+1, f (βε) ∈ uε+1. Now, βε < sup(uε) ⇐⇒
f (βε) < sup(uε) by •2 and (βε, f (βε) < sup(uε)) ⇒ aε = prB(βε, f (βε)) ⊆
sup(uε+1). But, aε /∈ sup(uε), together βε, f (βε) /∈ sup(uε) and we are done proving
•3.]
•4 F M∗

α ( f (βε), d) /∈ [ζε, sup
(⋃

ε uε

)
),

[Why? by the definition of Eu,d,α in (∗)3.]
•5 F M∗

α ( f (βε), d) = f (F Ng (βε, αu,g)),

[Why? As f embed Ng into M∗
α and the choice of d as f (αu,g.)]

123

Sh:1164



Universality: new...

•6 F Ng (βε, αu,g) ∈
[
sup(ug(ε)), sup(

⋃
ζ uζ )

)
,

[Why? By the choice of Ng, αu,g and •3.]
•7 f (F Ng (βε, αu,g)) ∈

[
sup(ug(ε)), sup(

⋃
ζ uζ )

)
,

[Why? By •2 and •6.]
•8 f (F Ng (βε, αu,g)) ∈

[
sup(uζ(ε)), sup(

⋃
ζ uζ )

)
recalling ζ(ε) = Jε = sucE(u,d,α)(ε),

[Why? By •7, the definition of Eu,d,α and the assumption on ε ∈ V1.]

•9 F M∗
α ( f (β∗), d) ∈

[
ζε, (sup(

⋃
ζ uζ )

)
,

[Why? By •8 and •5.]
But •4 and •9 are contradictory, so we are done proving part (1).
(1A), (2), (3) Similarly to the proof of part (1) with some changes will be done in [10].

��
Conjecture 2.9 (1) Assume T (is countable complete first order) with theTP2. If λ > θ > ℵ0

are regular, dθ > λ and dκ > FGC(λ, θ) (maybe θ inaccessible), then univT (λ) ≥ dκ .
(2) Assume T (is countable complete first order) non-simple. If λ > θ > ℵ0 are regular,

dθ > λ and dκ > CFGC(λ, θ), then univT (λ) ≥ dκ .

Remark 2.10 See hopefully [13], [10].

Claim 2.11 Assume μ = μ<μ ≤ θ = cf(θ) < λ = cf(λ) < χ = χλ, λ is strongly
inaccessible Mahlo and for transparency GCH holds in the interval [μ, χ). For some P:

(a) P is a (< μ)-complete forcing of cardinality χ neither collapsing any cardinal, nor
changing cofinalities

(b) (2μ)V[P] = χ

(c) in VP we have d∂ = χ for every inaccessible ∂ ∈ [μ, λ),
(d) in VP there is P̄ as in 1.5(2),
(e) Tceq has no universal member in λ moreover univ(λ, Tceq) ≥ χ

(f) the results of [16] holds, i.e. there is a universal random graph in λ, and see [24]

Remark 2.12 Note that here the case “ ∪ε<θ uε ∩ sup(uζ ) has cardinality θ" does not arrise.

Proof Our proof is based on the proof [16], but the quoted [1] has to be changed, see full
proof in a work by Mark Poór and the author in preparation.

That is, we choose:
(∗) P = P3, where 〈Pk, Q

˜ � : k ≤ 3, � < 3〉 is an iteration and:
(A) Q0 is adding χ λ-Cohen, so it satisfies:
•1Q0 is a (< λ)-complete forcing notion of cardinality χ ,
•2Q0 neither collapse some cardinal nor change any cofinality (in fact is λ+-cc),
•3 inVQ0 there is a familyA0 ofχ-many subsets of λ each of cardinality λ, the intersection

of any two having cardinality < λ,
(B) in VQ0 = VP1 the forcing notion Q1 satisfies:
•1Q1 is a (< μ)-complete λ-cc forcing notion of cardinality χ , (yes, λ-cc not λ+-cc),
•2Q1 does neither collapses some cardinal nor changes any cofinality,
•3 inVP2 there is a familyA1 ofχ-many subsets ofλ, each of cardinalityλ, the intersection

of any two having cardinality < μ,
•4 in VP2 we have d∂ = χ for every weakly inaccessible ∂ ∈ (μ, λ),
(C) in VP2 we have Q2 which is (< μ)-complete μ+-cc forcing notion, forcing that there

is a universal graph of cardinality λ.
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Now, why are there such Q�-s? For clause (A) use the forcing of adding χ λ-Cohens.
For clause (B) we use Q1 such that
(∗)Q = Q

′
1 × Q

′
1: starting with (μ, λ, χ,A0) as above:

(a) Q
′
1 is the product with Easton support of 〈Q1,θ : θ ∈ S〉 where S = {θ : θ ∈ (μ, λ) is

an inaccessible non-Mahlo} and for θ ∈ S, Q1.θ is the forcing adding χ many θ -Cohens,
(b) Q

′′
2 forces a refinement A1 of A0 to a family as required as in [1] but with Easton

support; so each condition has cardinality < λ and has Easton support.
Now why clause (B)•1, •2, •3 holds? As said above noting that [1,6.1] use full support

while use Easton support
Lastly for clause (C) we apply [16].
Having constructed P = P3 we have to check that is is as required.
Now being (< μ)-complete, of cardinality χ , pedantically of density χ , is obvious by

the properties of the Q

˜ �-s. Similarly concerning “no cardinal is collapsed and no cofinality
changed", so clause (a) of Claim 2.11 holds. Also forcing the existence of a universal graph
of cardinality λ holds by the choice of Q

˜ 2, so clause (f) of 2.11 holds.
Next, clause (c) there saying d∂ = χ holds because it obviously holds inVP2 by the choice

of Q

˜
′
1 and the later forcing preserve it because it satisfies the μ+-cc. Now, lastly, why clause

(d) of 2.11 holds? First, in VP1 we have GCH in the interval [μ, λ) so there is such P̄ , and
P3/P1 satisfies the λ-cc so the old clubs of λ are dense. and this continue to holds in VP.
Hence the non-existence of a universal model of Tceq in λ, (holds by 1.5(2)). ��
Question 2.13 (1) Can we for theories T satisfying NSOP1 + TP2 get similar results?
(2) Is Tceq in some sense minimal non-simple in a suitable family of theories?

Claim 2.14 Assume λ > θ = cf(θ) > ℵ0 and λ = λθ and P is a θ -cc forcing notion.

(1) In VP there is a reasonable strongly bounding U ⊆ Uλ,θ of cardinality λ witnessing
λ = FGC(λ, θ,B)

(2) Assume U ⊆ Uλ,θ fully guess clubs then in VP,U still fully guess clubs.
(3) In part (2), if U is reasonable/bounding/strongly bounding/weakly bounding in V, then

so it is in VP.

Remark 2.15 (1) This showed help in consistency results.
(2) Similarly for the other versions of guessing clubs from 2.1, but take care of what is D.
(3) In 2.14(2) we can replace“fully guess clubs” by a slightly stronger version of“almost

guess clubs” specifically, instead of one set A we have σ < θ sets A.
(4) Also In 2.14(2) we can use versions with D-s.

Proof Part (1) follows by parts (2),(3) because in V there is such U by 2.4(1)(C). The point
is:

(∗) (A) ⇒ (B) where:
(A) if χ > λ and {B˜ , P, λ}∪{ε : ε ≤ θ} ⊆ N ≺ (H (χ),∈) and ‖N‖ < λ and P satisfies

the θ+-cc where �P “B˜ a model with universe λ and vocabulary of cardinality < θ”
(B) �P “N˜ ∩ λ = c�(|N |,B˜ ) and B˜ �|N | is an elementary submodel ofB˜

′′. ��
Definition 2.16 Assuming θ = cf(θ) ≤ λ we let d†θλ be the cofinality of the partial order

(F †
θ,λ,≤†

θ,λ) where:

(∗)1 F
†
θ,λ is the family of subsets of θ θ of cardinality ≤ λ

(∗)2 let ≤=≤†
θ,λ is the following partial order on F†θ,λ:

F1 ≤ F2 if (∀ f1 ∈ F1)(∃ f2 ∈ F2)[ f1 ≤ f2]
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The following was part of 2.7, maybe we shall return to it.

Claim 2.17 (1) If λ > θ > ℵ0 are regular, FGC(λ, θ) = λ and dθ > λ then univ(λ, Tceq) ≥
dθ .

(2) Above we can replace dθ by d†θ,λ

Proof (1) Like the proof of part (1) of 2.7 so we mainly note the changes.

(∗)1 as above.
(∗)2 U ⊆ Uλ,θ witness FGC(λ, θ) = λ.
(∗)3 we let:

(a) M+
α is an expansion of M∗

α by a pairing function and Skolem functions,
(b) Z = {(α, ū, d) : α < α∗,∪ε<θ uε is closed under the function F M+

α and each uε is
closed under the functions of M+

α },
(c) for (α, ū, d) ∈ Z let Eα,ū,d = {ε < θ : uε is closed under F M∗

α (−, d)},
(d) above let gα,ū,d ∈ θ θ be such that gα,ū,d(ε) = min(Eα,ū,d \ (ε + 1)), g ∈ θ θ

Next choose g ∈ θ θ not bounded by any well defined gα,ū,d Now we choose N = Ng as
follows:

(∗)4 we let
(a), (b) as above,
(c) for every ū ∈ U for some α(ū) = αū,v ∈ P N for every ε < θ we have:
F N (−, d) maps ∪ε<θ uε into itself
for ε < θ we have: ε ∈ v iff there is a ∈ uε+1 \ uε such that F N (a, d) /∈ uε+1.
The rest is as in the proof of part (1) of 2.7.

��
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