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Abstract

We find new “reasons” for a class of models for not having a universal model in a cardinal
A. This work, though has consequences in model theory, is really in combinatorial (set
theory). We concentrate on a prototypical class which is a simply defined class of models,
of combinatorial character—models of Tceq (essentially another representation of Tteq which
was already considered but the proof with T¢eq is more transparent). Models of Tceq consist
essentially of an equivalence relation on one set and a family of choice functions for it.
This class is not simple (in the model theoretic sense) but seems to be very low among the
non-simple (first order complete countable) ones. We give sufficient conditions for the non-
existence of a universal model for it in A. This work may be continued in Shelah et al. (Tba,
In preparation. Preliminary number: Sh:F2150).
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theory
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0 Introduction

On a recent survey on the universality spectrum see [24], an earlier survey is [6]; there have
been several advances meanwhile (and this is one of the advances after [24]). See also [23],
noting the example there works also for .+ < 2# whenever u is a strong limit singular. The
problem for general first order theories is a model theoretic one, but specific examples are
combinatorial set theoretic ones (and serve as proto-types for suitable families of theories); so
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combinatorialists may ignore model theoretic notions like “7 is simple, has the tree property,
is TP,”, and consider only the concrete universal theories considered; so ignore 1.4 (1),(2)
and their proof. Here we concentrate on the theory T¢eq, which we considered as a proto-
typical ‘‘minimal” non-simple 7', so are expecting it (under <;ujy) to be low, so it is (like
Tteq, see below), NSOPy, see [2, 4, 7, 8, 19, 26]). True, there were non-existence results
near a strong limit singular cardinal (see on the Tteq in [19], generalizing it the oak property
[5], [22,Sect. 3]), but there were weak consistency results on existence (see [3, 19]). We had
considered Tteq, a prototypical example of such theories, now Teeq is essentially equivalent to
it for our aims, see 1.4(3),(4) but Tceq seem more transparent; we intend to deal with “to what
family of T"’s versions of our proof apply, in particular, NTP, and non-simple”’elsewhere.

We have hoped/expected that for the A > p = u<* but A = u™ < 2* we shall have
consistency results for theories like Tteq and the class of triangle free graphs, [9] and hopefull
[13].

We first give a case with stronger set theoretic assumptions, but more transparent proof in
Sect. 1. In Sect. 2 we give such proof under reasonable set theoretic assumptions, (close to
the so called club guessing) but then have to consider finer points in combinatorial set theory
on guessing clubs. Elsewhere we hope to have relevant complimentary consistency (see [9])
and families of theories.

A priory we think that Tifs, the theory of triangle free graphs, is “more complicated”’then
Tteq, Tceq, but now have doubts.

We thank Mark Po6r and an anonymous referee for doing much to improve the paper.

Question 0.1 (1) Does Sect. I apply to more theories than in Sect. 2?
(2) Can we characterize the dividing line? Simple/non-simple in our context.
(3) Does it help to have:

(%) forsome u, u < A < 2" there is no o C [A]* which is @ — AD of cardinality > \?

This would justify the use of i — AD family of C [A]* in some consistency results, see [16],
[9], see below.

Discussion 0.2 Note that:

Bif2<n<wd<p<i<2 x-» [ul;" and we let T, be the theory “{Py is an
irreflexive asymmetric k-place relation”: k < n,k > 2} and T, has a universal model
M, in X then there is a p-disjoint < < [A]* of cardinality 2°.

[Why? Without loss of generality the universe of My is A. Let ¢ : [A\]=" — 0 witness
A = [uly" and for u C 0 let M, = (A,...PkM“,...)kelgqn) where PkM“ ={nekr:
is with no repetitions and c(Rang(n)) € u}. So there is an embedding f, of M,, into M,;
now (A, = {pr(a, fu(®)) : @« < A} 1 u € 0) is a family as promised when pr is a
pairing function on A. Why? If A, N Ay, has cardinality > @ and uy # uy then (letting
B ={a <X: fy, (@) = fu,(x)}) without loss of generality u Q uy and ¢ B omits any
member of ui\uz. The rest is left to the reader.]

0.1 Preliminaries

Notation 0.3 (1) T is a theory with vocabulary tr = t(T) and is a first order, if not said
otherwise.

2) (a) ECr ={M : M a model of T},
(b) ECr(A) = {M € EC7 : M of cardinality 1},
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(¢) ECr(A) = {M € ECr : M has universe A},
(d) for a set A of ordinals and ordinal « let suc (o) be min{ € A : 8 > «a}.

(3) Let pr be be an (easily computable) pairing function on ordinals such that for a, B we
have pr(a, B) < max{w, « + |o|, B + |B1}.

Convention 0.4 (1) (A) If T is a f.o. theory not complete (like TC%q, ngq, usually universal),
then embedding are the usual ones, (on ECt) and C1 (on ECt) means C and we
assume ECt has amalgamation and JEP.

(B) If T is complete, then embeddings are elementary (on ECr) and Ct means < on
ECry.
(C) Wesay f isa T-embedding of M into N or f : M —> 1 N when M, N are models
of T, f embed M into N and f(M) Cr N.
(1A) In any case we always assume T has JEP (for Ct of course).
(2) If A € L(tr) (such that T has JEP under A—embedding) then univy a (L) is the minimal
X such that there is a sequence M whichis a (A, T, A)-universal sequence which means:

(@) M = (Mg :a < x) is a sequence of models of T,

(b) each My is of cardinality X,

(c) forevery model M of T of cardinality A there is a A-embedding of M into some M,
see below.

(3) For given T, A as above and models M, N of T, we say f is a A-embedding of M into
N when:

(a) f is afunction from M into N,
M) if o(x0,...,Xxp—1) € A and ag,...,an—1 € M and M = ¢lao, ..., an—1] then
N Eolf(ao), ..., flan-1]

(¢) so f is one-to-one when (x £ y) € A.
(4) For T, A as above in part (2) we may omit A when :

(a) T is complete, A = 1L(tr), all first order formulas,
(b) T not complete, A the set of quantifier free formulas in IL(tr).

(5) We may write at, ep for Ay(ry = {¢ € L(t7) : @ is atomic}, Aepry = {9 € L(t7) :
existential positive} respectively. We may write t instead of T. We may write ¢ instead
A = {¢} and t¢ instead A = {¢p, —¢}.

Notation 0.5 (1) Let«, B, v, 6, ¢, ¢, &, 1, j denote ordinals.

(2) Letk, X, i, x,0,0,7Y denote cardinals, infinite if not said otherwise.

(3) Letk, £, m, n denote natural numbers.

(4) Let @, ¥, ¥ denote formulas, f.o. if not said otherwise.

(5) For . > « regular cardinals let S,é = {6 < A :cf(d) = cf(x)} and SiK ={6 <A:
cf(8) < «}. -

Definition 0.6 (1) J2! = {A C 6 : sup(A) < 6}, bd stands for bounding, for 6 a regular
cardinal or just a limit ordinal.
(1A) For 0 regular uncountable let:

° Dgl“b = {A C 0: there is a club (= closed unbounded subset) E of 0 such that
E C A}.
e NSy is the non-stationary ideal on 6.

(2) For aregular 9 let:

@ Springer



Sh:1164

S.Shelah

(a) 9g = Min{|.7| :
(b) by = Min{|.Z| :

F C%is < pa-cofinal in T pu}
Z <% hasno < Jpa-upper bound}.

(3) Let Dglub be defined similarly using <ns, when 6 is regular uncountable.

(4) Foramodel M andasetu € M let M [u is defined naturally, allowing a function symbol
to be interpreted as a partial function (and so an individual constant to be not defined)
but M[u € M means u = cly;(u), see below.

(5) Foramodel M and A C M let ¢y (A) = c‘(A, M) be the minimal subset B of M
including A and closed under the functions of M; so M[c‘y(A) € M and if M has
Skolem functions then M [c‘y(A) < M.

Recall

Definition 0.7 (1) lfor a regular uncountable cardinal A let i[k] = {S C A: some pair (E, a)
witnesses S € I(1), see below}. 5
(2) We say that (E, u) is a witness for S € I[A] if:

(a) E is aclub of the regular cardinal A,

(b) u=(ug:a <i),uqg Caand B €uy = ug =B Nugy,

(c) forevery 6 € E NS, us is an unbounded subset of § of order-type < & (and 6 is a
limit ordinal, necessarily § is not a regular cardinal).

(3) Fork = cf(k) < A = cf()) let I, [A] be the ideal {S C A : S C S% . S € I[A]}

<«
By ([14, 15] and better) [11, 18] we have:

Claim 0.8 Let A be regular uncountable.

1) IfS e i[k] then we can find a witness (E, a) for S € i[k] such that (clauses (a), (b), (c)
from 0.7(2) and):

(d) § e SNE = otp(as) = cf(),
(e) ifa ¢ S then otp(ay) < cf(8) for some § € SN E.

2) Se i[k] i]j‘there is a pair (E, P) such that:

(a) E is a club of the regular uncountable A,

(b) P = (Py:a<A), where Py € {u : u C a} has cardinality < A,

© ifa<B<randa cu € PgthenuNa € Py,

(d) if 8§ € ENS then some u € Ps is an unbounded subset of § of order type < & (and &
is a limit ordinal).

(3) We say a stationary subset S has club guessing when some (Cs : § € S) witnesses it,
which means: Cs is a club of S and for every club E of A for some § € S we have Cs C A.

1 On Tceq for Mahlo cardinals

As here we consider Tceq the simplest, non-simple theory, we may consider how much does
it behave like the class of graphs (equivalently random graph)? We prove that not by a
non-existence result, but with quite specific set theoretic assumptions.

Teeq is very close to (and equivalent for our purposes to) the older Tteq which is a prime
example for a theory with the tree order property, equivalently non-simple (even TP, but
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having neither the strict order property nor even just the SOP}). For it we get here parallel
and better results than [19] where it is proved that there are limitations on the universality
spectrum for Tteq and in [5], which generalize the results for any T with the so called oak
property, see somewhat more in [22,Sect. 3]. The results in those papers are meaningful
when SCH fails, that is, consider a cardinal A such that: for some strong limit singular
w, T < A < 2Mif A s regular then “usually”7eq, has no universal in A.

But what about A € (u, 2*) when for transparency we assume u = u~*?. Here (in
Sect. 1) we get further such non-existence results for (weakly inaccessible) Mahlo cardinals.
In Sect. 2, we do better but the Mahlo case may cover more classes, comes first and the proofs
are more transparent. The proof here (in Sect. 1) can be axiomatized as in Sect. 2 using:

H PGC(x, S) where S is a stationary set of regular cardinals < A means that some U witness
PGC(A, S) where U = {{w(1 +¢):e <0):0 € S} (soU=09).
Recall that “U witness PGC(A, 8)” means PGC(A, 8) = min{|U| : U C U, g and U does P-
guess clubs}. See 2.1(5), Definition 2.1(3c) and 2.1(4).

First, recall (the reader can concentrate on the universal versions, ngq, Tcoeq, on Tfeq see
[19,2.1=Lb3,3.1=Lc3]):

Definition 1.1 Tyeq = Tf]eq is the model completion of the following (universal first order)
theory, ngq which is defined by:

0 ; .
(A) = r(Tfeq) consists of:

(a) predicates P, Q (unary),
(b) E (three place predicate written as x Ey instead E(x, y, 7)),

(B) a r-model M is a model of ngq iff:

(a) the universe of M is the disjoint union of PM and QM
(b) xE;y — P(2) A QM (x) A QM (y),
(c) for any fixed z € P¥, Eﬁ” is an equivalence relation on Q.

Observation 1.2 0) Tteq is well defined and univ(X, Tteq) = univ(A, ngq)
(1) Soif M |= Tteq then:

(a) in (B)(c) of Def. 1.1, for each x € PM, E)]C"’ is with infinitely many equivalence

classes,
(b) ifn < w,x1,...,x, € PM with no repetition and yy, . .., y, € QM then for some
n
M M
y e 0", N\ yEy ye
(=1
(©) ifn <wandyy,...,y, € QM and e is an equivalence relation on {1, ..., n} then

for some x € PM we have y; Ei‘/lyk & Lek,
(d) PM_ QM gre infinite.

(2) Hence Tteq has elimination of quantifiers and univrfeq A) = univao (A).
eq

We present a close relative, the main one we consider here (and, as proved below, equivalent
to Tteq for our purpose).

Definition 1.3 T¢oq = Tféq is the model completion of the following (universal first order)
theory, TC%q which is defined by:
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(A) T =1( Ceq) = 7(Tceq) consists of: P, Q unary predicates, £ a binary predicate and F
a binary function symbol,
(B) a r-model M is a model of the universal theory. T, iff:

ceq —

(a) PM, QM is a partition of M,

(b) EM isan equivalence relation on oM,

(c) FMisafunctionfrom QM x PM into Q™ suchthatforeveryc € PM, a — FM(a,c)
is choosing a representative for the a/ EM -equivalence class, that is, we have:

(@) ae QM = FM(a,¢) e a/EM,
(B) ifa,b e QM are EM-equivalent then F (a,c) = FM (b, ¢).
(y) ifc ¢ PM v a¢ QM then FM(a, ¢) is not defined (or, if you prefer, is equal to ¢).

Concerning X in the neighborhood of a strong limit singular we shall not give details as
we can just quote.

Claim 1.4 (0) Concerning 70

ceq

(a) For a model M of T2 ceq and A S M with n elements, the closure of A inside M has
at most n + n? elements, (even at most n + (n /2)2 elements),
(b) T Ceq has amalgamation and JEP,

© T Ceq has a model completion, that is Teeq is well defined,
(d) univ(d, Teeq) = univ(d, Tfeq) = univTc(;q A).

(1) Teeq is not simple, is NSOP2 and even NSOP| and has the oak property, in fact, by qf
(quantifier free) and even atomic formulas.
(2) We have (A) = (B) where:

A) (@ 0<pu<ir<iy,
(b) cf(A) =A,0 =cf(@) =cf(n), u™ < A,
(©) X:=PPr(p) (W) > A+ i*],
(d) thereis a set {(a;, b;) i < i*} witha; € [M\]<*, b; € [M\]? and |{b; 1 i < i*}| <
A such that: for every f X — Aforsomei, f(b;) C a,
(B) (a) Tieq equivalently TCeq has no universal model in X,

(b) Moreover; univ(X, Teeq) > X = PPr(p) (1L)-

(3) Tieq can be interpreted in Tceq hence univr, (&) < univy,, ().
(4) Also the inverse of part (3) holds.

Proof (0) Easy as clause (d) follows by parts (3), (4).
(1) By part (3), (4) quoting [S] where the oak property was introduced.
(2) Follows from parts (3) (4) and [19,Claim 2.2].
(3) For a model M of T_., we define a model N = N[M] of ngq as follows:
CON. M
(@ QY =pPM PN =QM/EM,
(b) EN ={(a,b,C): C e PN =QM/EM anda,b € QN and (Ve € C)[FM(c, a) =
FM(c, b)] equivalently, (3¢ € O)FM(c,a) = FM(c, b)]}. Now check that N |=
Tgand M = Teeq © N = Treq.

ceq

(4) For amodel N of Tfeq we define a model M = M[N] of TC%q as follows:
MmN
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(@) PM = QN and O ={(c,A):ce PN and A € QV/EV)

(b) EM ={((c1, A1), (2. A2)) :c1 =c2 € PMand Ay, Ay € QV/ED)

(c) FM . oM x pM — QM js defined by: If d € OM,b € PM hence for some
ce PN, A e QV/EY wehaved = (c, A) then we let F¥(d, b) = (c, b/EM).

Now check that N = ngq and M |= Teeq & N = Tteq.

We now point out a new reason involved “large 04’s” for not having a universal model
in A, even for many non-simple 7'’s. In this section we deal with a case where the proof is
simpler using T¢eq and A a Mahlo cardinal.

Claim 1.5 (1) Assume A is a (weakly inaccessible) Mahlo cardinal and S = {# < A : 0
regular (weakly inaccessible) and 09 > LA} is stationary in A and S has club guessing.
Then

(@) univ(A, Teeq) is > A,

(b) even, > sup{x " the set {§ € S : 09 > x} is stationary and has club guessing)}.
(2) We have x < univ(d, Teeq) when:

(a) A is a Mahlo weakly inaccessible cardinal,

®) 2 =<x

(¢c) S C {0 < A: 0 isweakly inaccessible cardinal} is stationary.

dy 2=(Py:0€08),

(e) if0 € S then Py is a set of < A clubs of 6,

(f) P guess clubs of A, that is, for every club E of A for some C € P4, 0 € S we have

CCE,
(g) 09 > x foreveryf € S.

Proof (1) Clearly
(*)o it suffices to:

(a) fix x > A suchthat S, = {0 € S : 09 > x} is stationary and has club guessing,
(b) prove univy(r) > x.

Let T = Teeq, without less of generality assume § = S and let:

(*%)1 (Cs:6 € S) witness “S has club-guessing”;
(x)2 if (A) below holds, then we define some objects in (B) where:

(A) (a) M € ECr(A)),
(b) [PM] =2,
(c) @ isregularand 0 € S,
(d) E aclubofé.

(B) we define:

(a) fora € PM hence a < A let 8a = &M E.q be the following function from 6 to 6:

e for @ < 6, g () is the minimal 8 € E such that: 8 € E\(x + 1) and (81 €
oM npy A (FM(Br,a) <6) = FM(B1,a) < B,

(b) gl?l,E ={gMEaq:ac€ PM) note that E determine 6,
(c) for6 € S let g;“, ={gmM.cpa:a € PMy.
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Now easily

(x)3 fora, M, 6, E as above, gy g4 is a well defined non-decreasing function from 6
into 0, in fact, into E C 6,

(x)4 if M, N € ECr(A!) and f embeds M into N then for some club E* of A: if
0eS,0=sup(E*NO), E C E*NOisacluboffanda € PM then 8M.E.a < &N,E, f(a)
(so, the only way E* influences is the demand “E C E*”).

Recall that, 8 € § = 09 > x > X and we shall prove that univ(x, T') > y; this suffices.
So assume (M, : @ < ) is a sequence of members of ECt (1!).

So foreach 0 € S the set % = U{4 1;",1&76 ta < x satisfies |QMe NG| = 0} has cardinality
< x recalling » < y.

For 6 € S, as |%| < 09, necessarily there is an increasing gg € 70 such that g € % =
g0 ﬁ g mod Jg’d and without loss of generality, gg € (Cy). Now we define a model

N € ECTc%q A with Ty = T(Teeq) = t(TCOeq) as follows:

(A) universe is A,
(B) (a) OV is the set of odd ordinals < A,
(b) EV is an equivalence relation on Q" such that for every « < B < A satisfying 8 is
divisible by |a|, @ € OV we have |a/EN N B| = |A],
(c) ifa =48 + 1 < A then a/EV is disjoint to ,
(d) if0 e Sando <O thend > FN(da + 1,0) > go(da 4+ 1).

This is easy to do.

To show that M does not witness univ(A, T) < x is suffice to show that N cannot be
embedded in M, for any o < x. Toward contradiction assume that « < x and f is an
embedding of N into M. Let E = {§ < A : § alimit ordinal such that (M [§, N[§, f 18, <
[8) < (Mg, N, f, < [A)}. Clearly E is a club of A hence for some 6 € S, we have Cy C E.
Leth € %0 be gum,.c,. f(0), 50 is well defined and belongs to gl?/la,ce hence to %;Ia’e hence to

%y hence gg # h mod Jebd. Now,

e choose o < 6 such that h(«) < gg(a),

elety =4a+1,

o3 FN(y,0) € (go(), ) by the choice of N i.e. (B)(d) above,

o4 go(a) € Cy by the choice of gg,

o5 Cy C E by the choice of 0,

o go(a) € E by e4 and es,

o7 every member of E is closed under f and f -

[Why? By the choice of E it is closed under f, as f is one-to-one similarly for f~!.]
o f(FN(7,0)) € [gs(a), 6),

[Why? By e3, e and e7.]

o f(FN(y,0) = FM(f (), f(6)),

[Why? As f embed N into M,.]

10 F¥(f(y), £(0)) € [g0(@), 0),

[Why? by eg and eg.]

o1 h(a) is a member of Cy, hence a limit ordinal and in E,

[Why? By the choice of 4.]

epa < h(w),y <h(a)and f(y) < h(w),

[Why? First, « < h(a) by the choice of h. Second, y < h(w): as h(x) is limit > o by
ejjand y =4a + 1 by e;. Third f(y) < h(x):as y < h(x) and h(«) € E by 11 and
so h(w) is closed under f by e7]
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o3 FMe(f(y), £8)) < h(@),

[Why? By the choice of & as gy, ¢y, r(0) and e12].

Now by the inequalities e, eg, e9 and e13 we get h(x) < go(a) < f(FN()/, 0)) =
FMa (f(y), f(0)) < h(a), contradiction.

(2) Similarly.
O

Remark 1.6 Under the assumption of 1.5(2), we can similarly prove that: for every sequence
((Ee, %) : § < x,0 € S) satisfying clause (A) below, there is a sequence (gg o : 0 €
S,a < A)with gg o € 9 satisfying clause (B) below, where:

(A) Egisaclubof A for§ < x and %: g C 0 has cardinality < A for§ < A, 0 € S.
(B) for every & < x and club E of A there are 6 € acc(Eg) N E N S and a < A such that
0=sup(EzNENO)and g € % g = goo £ g mod JESHEH@'

2 On successor Cardinals and club guessing

We first introduce the relevant notions (in 2.1); (we could add clause 2.1(2)(b) into the
definition of Uy ¢ in 2.1(1), but so far it does not matter!). We then investigate it and use it
for sufficient conditions for“no universal”.

Definition 2.1 Assume A > 6 are regular and D € () is upward closed non-empty
satisfying D C [9]6, omitting D means D = {#}; and ‘B is a model with universe A and
countable vocabulary but B is locally finite when 6 = 8. Saying “for D-most ¢ < 0” will
mean “for some X € D for every ¢ € X”. The main case? is 6 > R, this is necessary for
the “full” cases (see parts (2)), but not for the others; we may forget to assume 6 > Ro.

(1) LetUyp ={u:u = (u; :1 < 6)is C-increasing continuous, andi < 0 =1 Cu; €
[A1<? (hence & C Ufu; :i < 0} € [A]) and A u; N6 € 6).

<

(1A) We shall say that U € U, 4 obeys l%ewhen every u € U does, which means that
for every ¢ < 6 we have B | u, C ‘B, (if B has Skolem functions this is equivalent to
B | ug < B which implies 6 > R).

(2) We say U C U, ¢ fully D-guesses clubs when 6 > R and for every model M with
universe A and countable vocabulary there is iz € U which fully D-guesses M meaning’
(@) (a)if*e < O thencl(u,, M) C sup(u, ), moreover (actually follows using an expansion
of M) M| sup(us) < M,

(B) AZ € D)(Ve)le € " = cly(us) = u. € M], i.e. for D-most ¢ < 6 the set u, is
closed under the functions of M, (in an equivalent definition M, [u, < M as we can expand
M by Skolem functions).

(b) the sequence ord(u) = (sup(u;) : € < 0) is strictly increasing.

! Note that it is relevant to “fully D-guess clubs”implies “almost guess clubs”, see 2.15

2 We may omit clause (b) from the definition 2.1(3) of “fully D-guess clubs”, the only problem this cause is
for it implying the other versions, (see 2.15).

3 We may omit in 2.1(2) the clauses (a) (), (b) but then we have problems with “FGC = AGC and the gain
is doubtful.

4 This implies a case of club guessing.

@ Springer



Sh:1164

S.Shelah

(3) We say U C U, p almost D-guesses clubs when:

(a) for every model M with universe A and countable vocabulary and A € [A]* for some
u € U we have:

(o) ife < 6 then cl(ug, M) C sup(ug); as in (a) () of part (2) without the moreover,
(B) for D-most ¢ < 6 we have A N ugyg SZ sup(ug),
(y) c( U ug, M) = U ug, that is, M [( U ug) €M,

e<6 e<6 e<6

(b) if u € Uthen ord(u) = (sup(u.) : € < 6) is strictly increasing.

(3A) We say U medium D-guesses clubs when as in part (3) omitting clause (a)(y).
(3B) We say U C U, p semi-D-guesses clubs when:

(a) as (a) in part (3) but replacing (8) by:

(B) for D-most ¢ < 6 for some ¢ € [¢,0) and @ € A we® have « € (ueyr\ug) N
(sup(ue+1)\ sup(ue)),

(b) as in part (3).
(3C) We say U C U, pseudo-D-guess clubs when :

(@)" if M is as above and A € [A]* then for some i € U we have:
(o) asis part (3) clause (a)(«),
(B) for D-most ¢ < 6 for some ¢ € [¢,0) and @ € A we have o € (ugq1\ug) N
(sup(ue+1)\ sup(ue)),

(b) as above.

(3D) We say U is (%, 0)-reasonable (or just reasonable when (A, 0) are clear from the
context) when U C U, g satisfies clause (3)(b).
(4) We say U does X — D-guess clubs when:

U does fully D-guess clubs and X = F,

U does almost D-guess clubs and X = A,
U does semi-guess clubs and X = S,

U does medium D-guess clubs and X = M,
U does pseudo guess clubs and X = P.

(5) Let XGCp (A, 0) = min{|U| : U C U, 4 and U does X — D-guess clubs}.

(5A) Similarly XGCp (A, 6, B) when we restrict ourselves to U obeying B.

(6) We say U C U, g is bounded when there is an F' witnessing it which means: F is a
functionfrom{u[(¢+1) : u € U, { < @}intorsuchthat F(u;[(¢1+1)) = F(uz[(&2+1)) =
W1+ D) =@+ 1) and F@IE + 1) < sup(ug).

(7) We say “strongly bounded”when in addition F'(u[({ + 1)) € us4 forevery ¢ < 6.

(8) We say U C U, ¢ is weakly bounded, when there is a function F witnessing it which
means:

(a) Dom(F) = {ord(i[(¢ + 1)) : 4 € U and ¢ < 6} recalling ord(iz) = (sup(u,) : € < 0),

(b) Rang(F) € A and F(ord(it)[(¢ + 1)) < sup(us41) foru e Uand ¢ < 0,

(c) if ¢1, & < 6 are successor of successor ordinals and 1, u» € U and F(ord(u;)[¢1) =
F(ord(uz)[¢2) then ord(u;) [¢1 = ord(uz) [¢2.

5 The“a ¢ u;” follows, and “D -most” can be replaced by “all”.
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(9) Let

(a) ifit € Ujgand f : § — @ is <-increasing continuous with limit 6 then al/! =
ulfl:=(uye) e <0)],

(b) ifUC U, g and f : & — 0 is <-increasing continuous with limit 6 then uVl=U[f] =
{ulf1:u €U},

(c) if U € Uy p and .Z is a set of <-increasing continuous function from 6 into 6 with limit
OthenU[F] ={ulfl:ue .7, fe.ZF}

(d) if w € [6]° then f,, = flw]isthe g : & — O such that (g(¢) : &€ < 6 but the closure of
w in order. so is <-increasing continuous with limit 6.

(10) In (a),(b) of part (9) above we may write u[w], U[w] forw € [01° meaning u[ f], U[ f]
where f = fy,, writing U[W], W C [6]° mean U{U[w] : w € W}.
(11) Now for X € {F, A, S, M, P} we let (naturally and we can add 9B as in part (5A) ):

(a) AXGCp(a,6) =Min{|U| : U C U, ¢ does X — D-guess clubs and is strongly bounded},
(b) CXGCp(A, 0) is defined as in (a) but U is just bounded,
(¢) WXGCp(A, 0) is defined as in clause (a) but U is weakly bounded.

Some of the obvious implications are:

Observation 2.2 1) If U fully D-guesses clubs, then U almost D-guesses clubs,

2) If U almost D-guesses clubs then U semi-guess-club and medium D-guesses clubs.

3) If U semi-D-guesses-clubs or medium D-guesses clubs then U does pseudo D-guesses
clubs.

4)If Dy C D> C [01° then “U does X — Di-guess clubs” implies “U does X — D,-guess
clubs” for X € {F, A, M, S, P}, we may write {full, almost, medium, semi, pseudo}.

5) Assume U C U, g and B is as in 2.2. Then there is U’ such that:

(a) U CU,p

(b) |U'| < U

(c) ifUdoes X — D-guess clubs, for X € {F, A, M, S, P} as in part (4) then so does U’,
(d) U obeys B, (see 2.1(1)).

6)In 2.1(11) the number is > A.
7) We may replace “ countable vocabulary” by “vocabulary of cardinality < 0.

Proof 2.2 E.g.

5)LetU = {i’ € U :forsome it € Uforevery e < 6 we have c‘p (us) = ul C sup(ug)}, it
suffice to prove that U’ is as required. The main point is to verify the appropriate version of
clause (a) in Def 2.1. So let M be a model with universe A and countable vocabulary, we have
to find a suitable meber of U’. By renaming, without loss of generality the vocabulary of M
is disjoint to the one of B and let M’ be a common expansion of M and 8 with t(M') =
T(MYUT(B).Let E ={§: M|§ < M}.So (M, E, < ) is as required in clause (a) for U
hence there is a suitable &z € U. We can check that in all cases i’ = (c‘(u;) : ¢ <0) € U
is as required here, so we are done.

7) Recall 2.1(1), the statement “ue NG € 6”.

Definition 2.3 1) For the model theory: for a model M € ECr(A!), A C L(z7) and u C
X, A € M let M1} , u be the model M [u expanded by all the restriction to u of all relations
definable by a A-formula with parameters from A.

1A) If A = Lgf(tp) then we may omit A; writing a instead A means Rang(a).

2)For M € ECr(A!),u € U g and a € “” M let gz 5. m be the function from 6 to 6 such

that for ¢ < 0, ga,7,m(¢) is the minimal ¢ € (¢, 0) such that My, < M[‘ﬂ[ U ue.
£<0
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Claim 2.4 We assume that B is a model with universe A and countable vocabulary, (for the
case of full club guessing, we add locally finite when 6 = Rg.)
(1) We have

(A) CSGC(A, 0) = A, moreover .. = CSGC(A, 0, B) provided that:
e A=cf(\) =01 and 6 = cf(9)
(B) ASGC(%,8) = A provided® that

e A =01t 0 =cf(®),
e there is a stationary set S C Sg+ Sfrom Iy[67],

(C) AFGC(A, 0) = A even with a reasonable witness. provided that:
o A=A and 6 = cf(9) > N,

(D) MGCp(r, 0) = A when:

(%) 8 =cf(0) < A and there is .7 such that:

(a) 7 C{w:w C A,otp(w) =0},

(b) & has cardinality X,

(c) if A € [A]* then for some w € .7 the set w N A has cardinality 6,
(d) D =1[01°.

(E) AGC(A, 0) = X when

(%) we have:

(a),(b),(c),(d) asin (D) above,

(e) the cofinality of (A%, C) is equal to A.
(2) For regular . > 6 = cf(0) we have:
(A) if SGCp(r,0) = A and by < A then AGCp (A, 0) = X when D = [0,
(B) if SGC(X, 0)) = A and 09 < X\ then AGC(X, 0) = A recalling that the default value of
D is {6}.
(3) For » > 6 = cf(0) such tha’ » > 0% we have SGC(A, ) = A provided that (e.g.
X =607 for somen > 0):

B, cf(M?, ) = a

(4) If Uy C Uy, 9 medium guesses clubs, then there is U C U, g which medium guesses
clubs of cardinality < |Uq| and for u € U we have:

(a) ifu=Ulu; :i <0} thenu C § = sup(u) for some § < A of cofinality 0; (this actually
follows by 2.1(3)(b)),
(b) ifbg < Athenu =U{u; :i <0} andu € U, g then otp(u \ ) =6,
(5)Ifx >0 and § = cf(0) > Rgand S C {8 < A : cf(8) = 0} is stationary and some
C= (Cs : 8 € S) guesses clubs, then PGC(A, ) = A
(6)Ifcf([A]0, C) = A, 0 > Roanddg < A then FGC(A, 8) = A, moreover BEGC(L, ) =
A, (in fact, looking at [18] we get strongly bounding).

6 We can weaken the demand: if we weaken the demand in Definition 2.1(5) to “for stationary many ¢ < 6"
and 6 > ).

7 see footnote to part (2)
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Discussion 2.5 (1) In 2.4 we have ZFC results, we may get stronger results (on the full and
almost versions) in some forcing extensions see 2.14 and [10].

(2) We can look at the cases of Definition 2.1 for singular A, replacing (u;\ sup(ug)) by
ur \ug, but we have not arrive to it.

(3) When we have clause (a)(y) of the Definition 2.1(3) there is less need of clause (a)(w).
E.g. in2.4(1)(C) we do not need “\ regular”.

(4) Inclauses (D), (E) of 2.1(1) we may add bounded/weakly bounded under natural assump-
tion.

Proof Without loss of generality 9B has a pairing function pr® and its inverses as well as
a+1,a+ B and of. )

(1) Clause (A): First, choose S, S*, C such that (partial square guessing clubs):
(k)1

(@) SC {8 <A:cf(8) =6ands > 6T} is stationary,

(b) SCSTC{8§<A:cf(8) <hands > 6T}, moreoverif § € S then § = sup(ST N §),

() C=(Cy:aeST),

(d) Cyisaclosedsubsetofa of ordertype < 6,and otp(Cy) is alimitordinal iff « = sup(Cy),

(e) fora € ST wehavea € S & otp(Cy) =0,

(f) ifa € Cgthena € ST and C, = Cp Na,

(g) C | S guess clubs, i.e.: if E is a club of A then for stationarily many § € S we have
Cs CE,

(h) ifa € ST then @ > 0% and « is closed under B, that is B o C B,

(i) if € ST then 62 divides 8.

Why do they exist (provably in ZFC)? see [11,1.3=L1.3(b)], but we elaborate (for the case
6 > Ro); by [17,4.4(1), pg. 47] (with 6T, ) here standing for A, A there):
(%)1.1 there are W, S, C; (i < 67T) such that:

(A) W={8 < @) :cf(8) <6} henceisin I[(6T)T]. B
(B) W is the union of A sets which have the square property, i.e., there are sequences S =
(Si:i <X)and C; = (Cj : 6§ € ;) fori < A such that:

(a) WC LJ,'<)L Si',

(b) Foré € S;, C(’S_is a subset of § N S; of cardinality < X closed in §, and if ¢ is a limit
ordinal then Cj is unbounded in §,

(c) Forall 81,8, if 8 € S; and 8; € Cj, then §; € S; and Cj = C§, N 8;. (Notice that
81 may also be a successor ordinal.)

Easily (and as in [25,a. III] making 67 tries):

(¥)12 there are ¢ < T, i < A and a club E, of A such that: for every club E C E,
of A for some § we have § € S;, cf(§) =6, § = sup(Cé NE,), Cé NE =CsNE,and
otp(Cé NEy =¢.

(%)1.3 without loss of generality o € Ey, = (c'3 (@) = a) A (0T)2ja A > 67,

(%)1.4 let:

(a) e C ¢ is unbounded in ¢ and otp(e) = 6

(b) S={5€S;:cf(8) =0, otp(Cg NEy) =¢},

(¢) ST ={a:a € Sorforsomes € S wehave a € Cé and otp( N Cé) € e}.
(d) Cs ={o e Cl:otplanNCi)ee}fors es.

Now S, 8T, (Cs : § € ST) satisfies all the demands, proving ().
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(*)2 For § € S let <V5.,g : & < 0) list Cs in increasing order.
Second, fix f , & such that:
()3

@ f={fa:aclh, 1),

(b) fy is a one-to-one function from 8% onto «,
(©) g=(g:£€06,0M)),

(d) ge is a one-to-one function from 6 onto &.

()4

(a) for§ € Sletes = {€ < OT:if « € Cs then Rang(f, |€) = o N Rang(fs &) and this set
includes Cs N « and has cardinality 6}
(b) esisaclubof@™.

[Why clause (b) holds? As otp(Cs) = 6 and o € Cs U {8} = |a| = O, this should be clear.]
(%) ford € Sand & € es let:

(a) us ¢ = Rang(fs[§), it belongs to [81? and it includes Cj,

(b) we choose its s = (us e 16 <0)byuse, = cﬁ%({fysoyu(gg(;“)) v < w(l +¢)and
{<o(d+a}U{yy,1v<ol+e),

(c) forw € [0]? let ﬁgﬁ‘g be (u([slf)s]; & < 60) where u([slf;] = us, where: 1 € w is the minimal «
that satisfies otp(w N ¢) = ¢, this fits 2.1(9)(d).

Note that (recalling (x)2):
(%) Foré € S, & € es
we have:

(a) us ¢ is a C-increasing continuous sequence of subsets of us ¢,

(b) eachus g ¢ include C Vi o(ise) andis anunbounded subsetof y¢ . ., anditis of cardinality
<0,

(©) U{usee:e <0B}isequal tousg,

(d) us,g,¢ is computable from pr® (75 &) recalling that pr’ is a pairing function, using as

parameters £, g which were fixed in (x).

[Why? should be clear.]
Lastly, (x)7 let:

() U={iise:8¢€S.&eCs)
(b) Uy = {if} 16 € Sand £ € es} forw € [0]°.

We shall prove that (why the w? for the use in the proof of part (4) of the claim):

(x)g if w € [0]° then U,, witnesses WSGC(x, 0) < A.

Fix w now and we shall deal with all the demands:

(*)8.1 Uy has cardinality < A; in fact is equal to A.

[Why? As |Uy| < |{(8,&):8 € S, & ces COTY <A+ 60T = A. The other inequality is
also easy as U{us ¢ : 6 € S, & € es} = A and each us ¢ has cardinality 6 < A.]

(x)g.2 Uy € Uy g is reasonable.

[Why? By the choices above.]

(%)g.3 Uy, semi-guess clubs.

[Why? Let M and A be as in Definition 2.1(3B)(a)’; without loss of generality M expand
B and let M be the expansion of M by the relation <™ i , the order of the ordinals < A and
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PM" = A, and let E:={8 < A: M1t |8 < M7}, clearly E is a club of 1. By the choice of C
there is § € S such that Cs C E (hence § € E). Note that if « € Cg then A N« is unbounded
in o.

Now recall that M [6 < M, (us ¢ : & € es) is C-increasing continuous with union §, each
us g is of cardinality < 6 and es is a club of 6 hence e = {§ € e5 : M T Juse < MT}isa
club of 61. So if § € e then A Nus ¢ is unbounded in u;s z. Now choose & € e, 0 i = iis ¢
is as required.]

(*)8.4 U is weakly bounded.

[Why? Just think, recalling (x); and Definition 2.1(8), that is, note that (Cs N« : § € ST)
has cardinality < @ for each @ < A because 8 € Cs;, NCs, = C5, N B = Cs, N B and
8 > a = sup(Cs N«) € Cs, anyhow below we shall get more.]

(%)9 U is bounded hence CSGC(%, ) holds, in fact:

(a) lf up = M(Sl,él,&‘l U2 = u&z,ég,é‘z and pr(V,s.],gl ’ 51) = pr(yé.zqu’ 52) then:

(@) (v5 =€) =(V5 € =¢2)

(B) ur =un
(b) pr()/a.yg’ &) < )/3',5+]~

[Why? Clause (a) holds by (x)g(d) and clause (b) by ()1 (h).]

We have finished proving A = CSGC(2, 0), and even CSGC(2, 0, B), that is clause (A)
of part (1).

Clause (B): Fix a stationary § € Sg+ which belongs to ig [6F], see Def 0.7. By 0.8 we
can choose (¢t . : € < 0) for§ € S such that for any such & € §, (¢z . : € < 0) is increasing
continuous with limit & and ({g, e11 = {g.e41) A (U <€) = g0 = (5,0 (and more).
Without loss of generality this is C = (C, : & < A such thatif £ € S, & < 6 then for some
a < g wehave {¢g; : i < e} = Cy and for u € U such that { = sup(Us ug) We require
that o € u,.,| (and C definable in B).

Now in the proof of clause (A) of part (1) we choose f_ , & as in (x)3 but in addition
2 = (go 1 a € [0,07)) satisfies that: if « = ¢, € a limit ordinal then g, is computable
from (gg : B € {g¢, 1t < €}) e.g. as follows: for 1 < O let W, = {y < « : forsome B €
{Ce,e : e < €} we have gg(y) < (} and then define g;, by induction on ¢ < € such that:

()

(a) g, is a function from W} onto some ordinal < 6.
(b) g is increasing with ¢.
(c) g5 T(WEN U{WO{ : j < t}) is order preserving.

Also we can restrict ourselves to & € S such that us ¢ is closed under pr. Then we can restrict
ourselves to (w, §, &) suchthate; < & e w = pr(ya'_s1 vCee) EUSE .

Clause (C): Easy but we elaborate.

We are assuming A = 2o = cf(@); so U = U, g is trivially a subset of Uy ¢ of
cardinality X and let F be a one-to-one function from {ufe : u € U and € < 0}, clearly exist.
Let M be a model with universe A and we have to find i as promised. Toward this we choose
ug by induction on ¢ as follow:

(a) ug is a subset of A of cardinality < 6,

(b) ug = c*(ug, M) and has no last member,

(c) ife =¢ + 1 then some o € A\ sup(u;) belongs to u,
(d) if € is a limit ordinal then u, = U{u; : ¢ < &}
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(e) Ife =¢ + 1then F(ule) € uc.

There is no problem to carry the induction and (u, : € < 6) is as required.

Clause (D) Recall that . € {w € A : otp(w) = 0} and more by our assumption. For
eachw € & letu, be (uy:e <) wereuy, ={ac e W:otp(wNa) <w(l+¢e)}Ue.
Now let U = {uy, : w € .}, it suffice to prove that U witness MGC(4, 6) = A.

Clearly most demands hold: U is a subset of U,,_g of cardinality A, and for each # € U the
sequence (sup(ug) : € < ) is increasing. The main point is, to be given M, A as in clause
(a) of Def 2.1(3) and to prove that sub-clauses (&), () there hold.

Let M+ be an expansion of M by the order < " of the ordinals < A, RM T = A, pr and
let E=1{8 <A:M"|§ < M*},clearly it is a club of A. Now there is no harm in replacing
A by a smaller sub-set so let A’ = {@ € A : @ = min(A\B) for some B € E}. Clearly
A’ € [A] so by the choice of . there is w € . such that w N A has cardinality 6.

Now i, € U is as required.

Clause E:

By [18] there is a stationary .«f' C [A1% of cardinality X, see details in the proof of part (3).
Now for each w € .7 let &, = {v € &/ : w C v}, so it is non-empty. Now for each w € .%/
let (ot ¢ : € < 0) list the members of w in increasing order. Also for each such pair (w, v)
let ity v = (Uw e : € < @) be such that:

(a) Uy, v,e 1s a subset of v of cardinality < 6,

(b) uy,v,¢ 1s increasing continuous with ¢,

(©) Uy,v,e includes {ay,r : ¢ < w(l+¢)}if 0 > Vo andis {ay ¢ : ¢ < 1+¢€},
(d) uy,v,e is included in U{ary, ¢ : ¢ < w(1 + &)}

() Wuype:o0<8t=vNUlay.:e <0}

Lastly we define U as the set {1y, : w € , v € o,}; so it suffice to prove that U
witnesses MGCp (A, 6) = A; this is as in previous cases.

(2) As in [20,Ch.III], and anyhow not used .

(3) By [21] there is . such that:

(k)1

(a) .7 C [A]? has cardinality A

(b) .7 is stationary, i.e. for every model M, with universe A and vocabulary < 6 there is
w € . such that M, [w < M,.

Now as we can increase ., without loss of generality :

()2 . N[all isa stationary subset of [«]? for every o < A.

We continue as in the proof of part (1), maybe details will be given in [10] and anyhow
this will not be used here.

(4) Let U € U, p medium guess clubs,

Now clause (a) follows by 2.1(3)(b).

For clause (b), for u € Uy, let (e : € < 0) list Ug u, and for each u and increasing

g € 76 we define w . by induction on & < 6 as follows. For ¢ = 0 let wf = c'n (),
for € limit let w,, P U{wu;  <e€},s0lete =¢ 4+ 1. LetL < 0 be mlmmal > g(2), €,
such that sup(wfg) < sup{og, 1) : t(1) < i} and let wf = c'g({og, 1y : i(1) < }).

Lastly let # C {g € %0 :g is increasing} be < b —unbounded of cardinality by and let

= {(wﬁg € <0):ge.Zandu € Up}. Now check.
(5), (6) Combine things above. ]

Discussion 2.6 Assume . > 0 > o = cf(0), (2° > A in the interesting case). Let U; g9 o =
{it 1t = (ug : & < o) is C-increasing and u, € [A1°} and repeat the definition. Of doubtful
help, otherwise (0,07, 0) would have helped.
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Theorem 2.7 (1) Assume ). = cf(L) > 6 = cf(#), D = [0]°, AGCp(r,0) = x and
bg > L. Then A ¢ Univ(Tceq); moreover, univr,,, (1) > by.
(1A) In part (1) we can replace AGCp (X, 8) by MGC(2, ).
(2) If » = cf(L) > 0 = cf(0) and® FGC(A, 0) = A and x =0y > A or just c£(°0, <p)) >
X > A, then univTCeq A) > x.
(3) If D is a uniform filter on 8, (°0, <p) is (< x)-directed and x > », FGCp(*,0) = A
then univr,,, () > x.

Remark 2.8 (1) The Claim 2.11 below shows that we cannot weaken the assumption on T
too much.

(2) Note that the above works also for 6 = Ry.

(3) See more in [10].

Proof (1) Solet (T = Tceq and):
(*)o B is as in Definition 2.1, such that:

(a) ‘B has universe X,

(b) o3, the vocabulary of 9B, is countable,

(c) *B has a pairing function pr : A X A — X i.e., a one-to-one 2-place function from X
into A and pr; and pr, its inverses.

()1 assume oy < by and M} € ECr(A!) for @ < o it suffices to find N € ECTch (A
not embeddable into M} for every o < a

(x)2 let U € U, ¢ witness AGCp (X, 0, B) = A or just MGCp (4, 0,°B) = A.

[Why? Is there such U? by the assumption of the theorem and apply 2.2(5).]

(k)3 foru e U,a < ayandd € PMa we define the set Eji a4.; clearly is a club of 0, as
follows:

o Ejqq ={e < 6 :¢is alimit ordinal such that u, is closed inside U{u; : { < 0}

under the functions of M and the function FMa (—,d),orjustifa € ug,b € |J u;
<0

and M} = “«FMg (a,d) = b" then b € sup(u;)}.

So& ={Ejde u€Ua <ayandd e PMa} is a set of clubs of 6 of cardinality
< |U| + |ax| + | PM+] < bg. Hence,

(*)3.1 there is an increasing function g : & — 6 such that (VE € &)(V*®e < 0)(g(e) >
sucg(e)).

Now we can construct N = N, € ECy(A!) such that:

(%)

(@) PN =3B :B8 <x}hence QN =38+ 1,38+2:8 <A}
(b) ifa =38+ 1 < A (hence o« € Q) then & = min(a/E™N)
(c¢) if # € U then for some a(ii) = oz, € PV we have: if B € (ue1\ug) N OV
and (B/EM)Nu, = Wbutv < 0 = (B/EN) Nsup(|J us) ¢ sup(uy) then
;<6

FN(B, a(it)) € sup( Ugug)\sup(ug(s+1>)-
;<

Now toward contradiction assume that:
()5 f embeds N, into M and o < oy.

8 Recall that this means that D = {6}
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Let Ng"' = (Ng, <Ng+) where <& = {(a, B) : @ < B < XA} and let M, be a model with
universe A expanding M and (a renaming of) N;; (that is (M, ) contains also a disjoint
copy 7/ of T(N g' ) such that the restriction of M, to t’ is the suitable copy of N gj" ).

Also we have f = GM+ for some unary function symbol G € ©(M,) and M, has Skolem
functions and t(M,) is countable and expand ‘B.

()6

(@) Let E={5§ < X:Mq[5 < M,}, soaclubof 1,
(b) Let H : . — A be H(a) = sucg(«),
(c) Let M, = (M,, H).

(#)7Let A = (prB®GB+ 1, fFGB+ 1) : f < A).
As f is a one-to-one function from A to A necessarily A € [A]*. By the choice of U and
of D as [0]° there is & such that:

()8

(a) uel,

(b) if e < O then us = cl(u,, *B),

(¢) cl(ue, M) C sup(u,), and (essentially follows) M, [ sup(u.) < M,,

(d) thesetv ={e <0 : ANucy1\sup(us) # ¥} has cardinality 0,

(e) M| U ue < My, (not used when we assume only MGC(2, 0) = 1),
e<0

Now letd = f(ag,g), so it is a member of PMJ, and

(*)g if & € v then for some a = a; € ug41\ sup(ug) we have a, € A,

()10

(a) fore evleta, = prf‘B(,Bg, f(Be)),s0B: € 3y +1:y <A},
(b) Letvy ={e € v:g(e) > sucpm,d,a)(8)},
(c) Fore < 0 let & = sucg,d,a)(€),

)11 v € [v]?,
[Why? Because v € [6]? and the choice of f (here the use of by matters.)]
Now,

HH Assume € € vy,

®] d; € Ugy1\Ug,

[Why? by the choice of a;.]

e if { < 6 then sup(u;) is closed under x + 1 so a limit ordinal and f’l; that is,
VB < AlB < sup(ue) <= f(B) < sup(e:)],

[Why? As cl(sup(ue), Msx) C sup(ue) by (x)g(c).]

o3 B € ugr1\sup(u,) and f(Be) € ugyr \ sup(ue),

[Why? As B = pr(ac), f(Be) = pry (ac) and a; € ueq1 by e (and ueyy =
clop (uet1) by (¥)g(b)) we have B € uet1, f(Be) € ue+1. Now, Be < sup(uy) <=
f(Be) < sup(ug) by e and (8., f(B:) < sup(ug)) = a, = Pr%(ﬁ& f(Be)) <
sup(ug11). But, a; ¢ sup(u), together B., f(B:) ¢ sup(u,) and we are done proving
e3.]

oy FMa(f(Be). d) & [8e. sup (U, ue)),

[Why? by the definition of Eg 4 ¢ in ()3.]

o5 FMa(f(Be),d) = f(FNe(Be. o).

[Why? As f embed N, into M and the choice of d as f(az,,.)]
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0 FYe(Be,am) € [suplitg(o). sup(U; o)«
[Why? By the choice of Ng, az ¢ and e3.]

o7 F(FNe(Be, a ) € [supliugee)). sup(Uy 1))
[Why? By e, and e¢.]

og f(FNg (Be, az,g)) € [sup(u;(,;)), sup(U{ u;)) recalling ¢ (&) = Jg = SUCE@ d,a)(€),
[Why? By e7, the definition of E7 4, and the assumption on ¢ € V;.]

o FY(f(B).d) € [, (up(U, o))

[Why? By eg and es.]

But e4 and eg are contradictory, so we are done proving part (1).

(1A), (2), (3) Similarly to the proof of part (1) with some changes will be done in [10].
O

Conjecture 2.9 (1) Assume T (is countable complete first order) with the TP,. If A > 6 > R
are regular, 09 > A and 0, > FGC(A, 0) (maybe 0 inaccessible), then univy (A) > 0.

(2) Assume T (is countable complete first order) non-simple. If . > 0 > R are regular,
09 > A and o, > CEGC(A, 0), then univy (L) > 0.

Remark 2.10 See hopefully [13], [10].

Claim 2.11 Assume p = p~<* < 0 = cf(0) < » = cf(A) < x = x* A is strongly
inaccessible Mahlo and for transparency GCH holds in the interval [, x). For some P:

(a) Pis a (< p)-complete forcing of cardinality x neither collapsing any cardinal, nor
changing cofinalities

(b) (2)VIFI = x

(c) in VE we have vy = X for every inaccessible d € [, ),

(d) in VF there is & as in 1.5(2),

(e) Tceq has no universal member in A moreover univ(A, Teeq) > X

(f) the results of [16] holds, i.e. there is a universal random graph in A, and see [24]

Remark 2.12 Note that here the case “ Ug g ue N sup(u;) has cardinality " does not arrise.

Proof Our proof is based on the proof [16], but the quoted [1] has to be changed, see full
proof in a work by Mark Poér and the author in preparation.

That is, we choose:

(%) P = IP3, where (IPx, Q¢ : k < 3, £ < 3) is an iteration and:

(A) Qo is adding x A-Cohen, so it satisfies:

e is a (< A)-complete forcing notion of cardinality y,

#,Qy neither collapse some cardinal nor change any cofinality (in fact is A™-cc),

o3 in V0 there is a family 7 of x-many subsets of A each of cardinality A, the intersection
of any two having cardinality < A,

(B) in V@ = VPI the forcing notion Q; satisfies:

¢Qq is a (< u)-complete A-cc forcing notion of cardinality y, (yes, A-cc not AT-cc),

¢,Q; does neither collapses some cardinal nor changes any cofinality,

e3in VP2 thereis a family 7] of x-many subsets of A, each of cardinality A, the intersection
of any two having cardinality < u,

o, in VP2 we have 05 = x for every weakly inaccessible 9 € (u, A),

(C) in VP2 we have Q, which is (< w)-complete ut-cc forcing notion, forcing that there
is a universal graph of cardinality X.
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Now, why are there such Q¢-s? For clause (A) use the forcing of adding y A-Cohens.

For clause (B) we use Q; such that

(x»)Q = Q] x Qf: starting with (1, 2, x, ©%) as above:

(a) Q) is the product with Easton support of (Q,6 : 6 € S) where S = {0 : 6 € (u, 1) is
an inaccessible non-Mahlo} and for 6 € S, Q¢ is the forcing adding x many 6-Cohens,

(b) Q’z’ forces a refinement <] of <% to a family as required as in [1] but with Easton
support; so each condition has cardinality < A and has Easton support.

Now why clause (B)e1, e, @3 holds? As said above noting that [1,6.1] use full support
while use Easton support

Lastly for clause (C) we apply [16].

Having constructed P = [Pz we have to check that is is as required.

Now being (< w)-complete, of cardinality y, pedantically of density x, is obvious by
the properties of the Q,-s. Similarly concerning “no cardinal is collapsed and no cofinality
changed", so clause (a) of Claim 2.11 holds. Also forcing the existence of a universal graph
of cardinality A holds by the choice of @2, so clause (f) of 2.11 holds.

Next, clause (c) there saying 9y = x holds because it obviously holds in VF2 by the choice
of @’1 and the later forcing preserve it because it satisfies the ™ -cc. Now, lastly, why clause
(d) of 2.11 holds? First, in VP! we have GCH in the interval [, A) so there is such 22, and
P3 /Py satisfies the A-cc so the old clubs of A are dense. and this continue to holds in VP.
Hence the non-existence of a universal model of T¢eq in A, (holds by 1.5(2)). O

Question 2.13 (1) Can we for theories T satisfying NSOP| + TP, get similar results?
(2) Is Teeq in some sense minimal non-simple in a suitable family of theories?

Claim 2.14 Assume % > 0 = cf(0) > R and » = A? and P is a 6-cc forcing notion.

(1) In V¥ there is a reasonable strongly bounding U C U, ¢ of cardinality X witnessing
A =FGC(, 6, B)

(2) Assume U C U, g fully guess clubs then in VP, U still fully guess clubs.

(3) In part (2), if U is reasonable/bounding/strongly bounding/weakly bounding in V, then
soitisin VP,

Remark 2.15 (1) This showed help in consistency results.

(2) Similarly for the other versions of guessing clubs from 2.1, but take care of what is D.

(3) In 2.14(2) we can replace“fully guess clubs” by a slightly stronger version of*‘almost

guess clubs” specifically, instead of one set A we have o < 6 sets A.
(4) Also In 2.14(2) we can use versions with D-s.

Proof Part (1) follows by parts (2),(3) because in V there is such U by 2.4(1)(C). The point
is:

(%) (A) = (B) where:

(A)if x > Land {B, P, A}U{e 1 ¢ <0} C N < (J(x), €) and || N|| < A and PP satisfies
the 8" -cc where IFp “B a model with universe A and vocabulary of cardinality < 6”

B) IFp “N N A = cl(IN]|,B) and B[|N| is an elementary submodel of B”. O

Definition 2.16 Assuming 6 = cf(6) < A we let DZM be the cofinality of the partial order
(ﬂg’}\, 52’/\) where:
()1 fg’k is the family of subsets of 99 of cardinality < A

(%)7 let 5:52’/\ is the following partial order on .% { ;:
Fi<Rit(vVfie F))@f2 € B)f1 < f2]
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The following was part of 2.7, maybe we shall return to it.

Claim2.17 (1) If » > 6 > Rg are regular, FGC(A, 6) = A and 0g > A then univ(A, Teeq) >

09.

(2) Above we can replace 0g by D;A

Proof (1) Like the proof of part (1) of 2.7 so we mainly note the changes.

(%¥)1 as above.
(x)2 U C Uy p witness FGC(A, 0) = A.
(*¢)3 we let:
(a) M is an expansion of M} by a pairing function and Skolem functions,
(b) & = {(a,u,d) : @ < oy, Uggu, is closed under the function FMa and each Ug 18
closed under the functions of M(j 1,
(c) for (o, u,d) € Zlet Eyi.qa = {e <0 : ug is closed under FMs (—,d)},
(d) abovelet g4.i.4 € 6 be such that 8a,iid(€) =min(Ey ;4\ (e + 1)), 8 € 9
Next choose g € %9 not bounded by any well defined gy 7.« Now we choose N = N, as
follows:
(k)4 we let

(a), (b) as above,

(c) for every u € U for some o (it) = o,y € PN for every ¢ < 6 we have:
FN(—,d) maps Uy <gu, into itself

for ¢ < 6 we have: ¢ € viff thereisa € ug41 \ u, such that FN(a,d) ¢ Ugt].
The rest is as in the proof of part (1) of 2.7.
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