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Abstract. We continue the investigation started in [2] about the relation between the

Keilser–Shelah isomorphism theorem and the continuum hypothesis. In particular, we

show it is consistent that the continuum hypothesis fails and for any given sequence

m = 〈(M1
n,M2

n) : n < ω〉 of models of size at most ℵ1 in a countable language, if

the sequence satisfies a mild extra property, then for every non-principal ultrafilter D

on ω, if the ultraproducts
∏
D
M1

n and
∏
D
M2

n are elementarily equivalent, then they are

isomorphic.

1. Introduction

Ultraproducts arise naturally in model theory and many other areas of mathematics,

see [6, Chapter VI]. An ultraproduct is a way to connect the notions of elementary

equivalence and isomorphism. By a result of Keisler [4], the continuum hypothesis, CH,

implies that in a countable language L, two L-models M,N of size≤ 2ℵ0 , are elementarily

equivalent if and only if they have isomorphic ultrapowers with respect to an ultrafilter

on ω. Recently the authors of this paper [2] have shown that Keisler’s theorem is indeed

equivalent to the CH, by showing that there are two elementary equivalent dense linear

orders M and N of size ≤ ℵ2 which do not have isomorphic ultrapowers with respect
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2 M. GOLSHANI AND S. SHELAH

to any ultrafilter on ω. Much earlier but after Keisler, Shelah [5] removed the CH from

Keisler’s theorem by weakening the conclusion and showed that if L is a countable

language and M,N are countable L-models, then M ≡ N if and only if they have

isomorphic ultrapowers with respect to an ultrafilter on 2ω. Shelah [7] has shown that

the CH is an essential assumption for Keisler’s theorem, even for countable models, by

constructing a model of ZFC in which 2ℵ0 = ℵ2 and there are countable graphs ∆ ≡ Γ

such that for no ultrafilter U on ω, ∆ω/U ' Γω/U . See also [3], where some further

connections between several variants of Keilser’s theorem and cardinal invariants are

found.

In this paper, we continue the investigations started in [2]. In Section 2, we consider

some further extensions of Keisler’s isomorphism theorem. To this end, we define the

notion of an ultraproduct problem m = 〈(Mm,1
n ,Mm,2

n , τm,n) : n < ω〉 and show the con-

sistency of the failure of the CH with the assertion that for any non-principal ultrafilter

D on ω, if the ultraproducts
∏
D
Mm,1

n and
∏
D
Mm,2

n are elementarily equivalent, then they

are indeed isomorphic. In Section 3 we show that the above conclusion fails if b > ℵ1,

where b denotes the bounding number.

2. Extending the Keisler isomorphism theorem

Recall from [2] that there exists a dense linear order N of size ℵ2 which is elementary

equivalent to M = (Q, <), but for no ultrafilter U on ω, ωM/U ' ωN/U . We also proved

several consistent extensions of the Keisler’s theorem for models of size at most ℵ1 in the

absence of the continuum hypothesis. In this section, we continue the work started in

[2] and give a further extension of Keisler’s isomorphism theorem. To this end, we start

by making some definitions.

Definition 2.1. A pseudo ultraproduct problem is a sequence

m = 〈(Mm,1
n ,Mm,2

n , τm,n) : n < ω〉

where
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(1) 〈τm,n : n < ω〉 is a ⊆-increasing sequence of finite vocabularies, with τm,0 = ∅.

Set τm =
⋃
n

τm,n,
1

(2) each Mm,`
n is a τm-model,

(3) κ(m) ≤ ℵ1, where κ(m) = sup{||Mm,`
n || : ` = 1, 2, and n < ω} and ||Mm,`

n ||

denotes the size of the universe of the model Mm,`
n .

Definition 2.2. Suppose m is a pseudo ultraproduct problem and k ≤ n < ω.

(1) The Ehrenfeucht–Fraïssé game ank(m) = aτm,k,k(Mm,1
n ,Mm,2

n ) is defined as a game

between two players protagonist and antagonist where

(a) it has 2(k + 1) moves,

(b) protagonist plays at even stages and antagonist plays at odd stages,

(c) in the (2l + 1)-th move, the antagonist chooses Al ⊆ Mm,1
n , Bl ⊆ Mm,2

n such

that |Al|+ |Bl| ≤ k,

(d) in the (2l + 2)-th move, the protagonist chooses fl, a partial one-to-one

function from Mm,1
n � τm,k into Mm,2

n , which preserves φ and ¬φ, for φ a

strictly atomic formula (i.e., φ is of the form x = y or P (x0, · · · , xm−1) or

F (x0, · · · , xm−1) = y, where P is a predicate symbol and F is a function

symbol or an individual constant) from τm,k,

(e) the protagonist has to satisfy Al ⊆ dom(fl), Bl ⊆ range(fl) and fl ⊇ fl−1,

(2) We say that the protagonist looses the game ank(m), when there is no legal move

for him to do.

The following easy lemma will be useful later.

Lemma 2.3. Suppose m is a pseudo ultraproduct problem and k ≤ n < ω. Let f be the

last move of protagonist in the game ank(m). If φ(ν0, · · · , νl−1) is a τm,k-formula and

x0, · · · , xl−1 ∈ dom(f), then

Mm,1
n |= φdom(f)(x0, · · · , xl−1)⇔Mm,2

n |= φrange(f)(f(x0), · · · , f(xl−1)),

1Thus we allow that τm to be finite.
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4 M. GOLSHANI AND S. SHELAH

where for any set D, φD is obtained from φ by replacing all quantifiers ∃x and ∀x by the

restricted quantifiers ∃x ∈ D and ∀x ∈ D respectively.

Proof. By induction on the complexity of the formula φ. This is true for strictly atomic

formulas by the assumption and it is easy to see that if it holds for φ, φ0 and φ1, then it

also holds for ¬φ and φ0 ∧ φ1. Now suppose that φ(ν0, · · · , νl−1) = ∃νψ(ν, ν0, · · · , νl−1)

and let x0, · · · , xl−1 ∈ dom(f). If x ∈ dom(f) is such thatMm,1
n |= ψdom(f)(x, x0, · · · , xl−1),

then by the induction hypothesis Mm,2
n |= ψrange(f)(f(x), f(x0), · · · , f(xl−1)) and hence

Mm,2
n |= ∃ν ∈ range(f)ψrange(f)(ν, f(x0), · · · , f(xl−1)). It then follows that Mm,2

n |=

φrange(f)(f(x0), · · · , f(xl−1)). Conversely suppose that for some y ∈ range(f), Mm,2
n |=

ψrange(f)(y, f(x0), · · · , f(xl−1)). Let x ∈ dom(f) be such that y = f(x). Then by

the induction hypothesis Mm,1
n |= ψdom(f)(x, x0, · · · , xl−1) and hence Mm,1

n |= ∃ν ∈

dom(f)ψdom(f)(ν, x0, · · · , xl−1). Thus Mm,1
n |= φdom(f)(x0, · · · , xl−1). �

Definition 2.4. Suppose m is a pseudo ultraproduct problem and n < ω. Then km,n

is the maximal k ≤ n such that the protagonist has a winning strategy in the Ehren-

feucht–Fraïssé game ank(m) = aτm,k,k(Mm,1
n ,Mm,2

n ). Set also km = 〈km,n : n < ω〉.

We now define the notion of an ultraproduct problem.

Definition 2.5. An ultraproduct problem is a pseudo ultraproduct problem m such that

lim sup
n<ω

km,n =∞.

To each pseudo ultraproduct problem we assign a natural countably generated filter

on ω and a cardinal invariant, which play an important role for the rest of the paper. We

start by defining such notions in a more general context. Let us first fix some notation.

Notation 2.6. (1) For a filter D on ω, let ∀Dxφ(x) mean “∃A ∈ D ∀n ∈ A φ(n)”.

(2) The notation ∀∗xφ(x) means “for all but finitely many x, φ(x) holds”.

Definition 2.7. (1) Given a sequence k = 〈kn : n < ω〉 ∈ ωω, let Dk be the filter on

ω generated by co-bounded subsets of ω and the sets

{n < ω : kn > k},
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where k < ω.

(2) Suppose k = 〈kn : n < ω〉 ∈ ωω is such that lim sup
n<ω

kn =∞, then set

dk = min

{
|F| : F ⊆

∏
n<ω

[ω]kn and (∀η ∈ ωω) (∃f ∈ F)
(
∀Dk

n (η(n) ∈ f(n))
)}

.

Remark 2.8. Suppose k = 〈kn : n < ω〉 ∈ ωω. If lim sup
n<ω

kn =∞, then Dk is a countably

generated non-principal proper filter on ω. Otherwise, Dk = P(ω).

Definition 2.9. If m is a pseudo ultraproduct problem, then set Dm = Dkm . Further-

more, if it is an ultraproduct problem, then set dm = dkm .

The next simple lemma will be very useful.

Lemma 2.10. Suppose m in an ultraproduct problem.

(1) If D ⊇ Dm is a non-principal ultrafiler on ω. Then the ultraproducts
∏
D
Mm,1

n and∏
D
Mm,2

n are elementary equivalent.

(2) If D is a non-principal ultrafiler on ω and
∏
D
Mm,1

n ≡
∏
D
Mm,2

n , then D ⊇ Dm.

Proof. (1) Suppose m is an ultraproduct problem and D ⊇ Dm is a non-principal ultra-

filer on ω. Let φ be a τm-statement. Then, for some k < ω, it is a τm,k-statement. We

prove by induction on the complexity of φ that

(∗)φ :
∏
D

Mm,1
n |= φ ⇐⇒

∏
D

Mm,2
n |= φ.

If φ is a strictly atomic formula, then E = {n < ω : km,n > k} ∈ Dm ⊆ D, and for

each n ∈ E we have Mm,1
n |= φ if and only if Mm,2

n |= φ, from which the result follows.

It is also clear that if (∗)φ holds then (∗)¬φ holds and that if (∗)φ0 and (∗)φ1 hold, then

(∗)φ0∧φ1 holds. Now suppose that φ = ∃xψ(x) and (∗)ψ is true. Suppose
∏
D
Mm,1

n |= φ.

Then for some x̄ = 〈xn : n < ω〉 ∈
∏

n<ωMm,1
n ,

∏
D
Mm,1

n |= ψ([x̄]D), and hence

A = {n < ω : Mm,1
n |= ψ(xn)} ∈ D.

We may further suppose that for any n ∈ A,km,n > k. For n ∈ A let gn be the last move

of the protagonist in the game ankm,n
(m), in which antagonist always chooses A` = {xn}
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6 M. GOLSHANI AND S. SHELAH

and B` = ∅. Thus for any such n, by the induction hypothesis and Lemma 2.3 we have

Mm,2
n |= ψ(gn(xn))). Let ȳ = 〈gn(xn) : n < ω〉. Then

∏
D
Mm,2

n |= ψ([ȳ]D) and hence∏
D
Mm,2

n |= φ. Conversely, suppose that
∏
D
Mm,2

n |= φ. Then for some ȳ = 〈yn : n < ω〉 ∈∏
n<ωMm,2

n ,
∏
D
Mm,2

n |= ψ([ȳ]D), and hence

B = {n < ω : Mm,2
n |= ψ(yn)} ∈ D.

We again assume that km,n > k for every n ∈ B. For n ∈ B, let hn be the last move of

the protagonist in the game ankm,n
(m), in which antagonist always chooses A` = ∅ and

B` = {yn}. Thus for any such n, yn ∈ range(hn) and hence for some xn, yn = hn(xn). By

the induction hypothesis and Lemma 2.3 we have Mm,1
n |= ψ(xn). Let x̄ = 〈xn : n < ω〉.

Then
∏
D
Mm,1

n |= ψ([x̄]D) and hence
∏
D
Mm,1

n |= φ. We are done.

(2) Suppose by the way of contradiction that D + Dm. Let k < ω be such that

{n < ω : km,n > k} ∈ Dm \D. It then follows that

A = {n < ω : km,n ≤ k} ∈ D.

Thus for any n ∈ A with n > k, as km,n < k + 1, the protagonist loses the game

ank+1(m), and hence antagonist has a winning strategy. In particular, by enlarging k if

necessary, we can find some formula φn(ν0, · · · , νln−1), which is a boolean combination

of strict atomic formulas of τm,k+1, and some a0, · · · , aln−1 ∈ Mm,1
n such that Mm,1

n |=

φn(a0, · · · , aln−1), but for no b0, · · · , bln−1 ∈ Mm,2
n we have Mm,2

n |= φn(b0, · · · , bln−1). It

thus follows that Mm,1
n |= ∃x0 · · ·xln−1φn but Mm,2

n |= ¬∃x0 · · ·xln−1φn. As τm,k+1 is

finite and D is an ultrafiler, for some set B ⊆ A in D we have φn = φ for some fixed

formula φ. But then
∏
D
Mm,1

n |= ∃x0 · · ·xln−1φ while
∏
D
Mm,1

n |= ¬∃x0 · · ·xln−1φ, which

contradicts our assumption
∏
D
Mm,1

n ≡
∏
D
Mm,2

n . �

We would like to construct a model of ZFC in which the continuum is large and for

every pseudo ultraproduct problem m, if D is a non-principal ultrafilter on ω and if the

structures
∏
D
Mm,1

n and
∏
D
Mm,2

n are elementarily equivalent, then
∏
D
Mm,1

n
∼=
∏
D
Mm,2

n .
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We may assume that m is an ultraproduct problem, as otherwise Dm = P(ω), and

everything becomes trivial.

The next lemma reduces the construction of such a model to controlling the size of

dm’s.

Proposition 2.11. Suppose m is an ultraproduct problem, dm = ℵ1 and D is a non-

principal ultrafilter on ω such that
∏
D
Mm,1

n and
∏
D
Mm,2

n are elementarily equivalent. Then

these ultraproducts are isomorphic, i.e.,
∏
D
Mm,1

n
∼=
∏
D
Mm,2

n .

Remark 2.12. By [7], it is consistent that d = ℵ1 < dm, where d is the dominating

number. It also follows from [7] that in Lemma 2.11, we can not replace dm = ℵ1 by

d = ℵ1.

The following definition plays a key role in the proof of Lemma 2.11.

Definition 2.13. Suppose m is an ultraproduct problem.

(1) We say that s ∈ APm iff

(a) s = 〈gs,n : n < ω〉,

(b) gs,n is an initial segment of a play of ankm,n
(m) of length ls,n with the last

function fs,n, where the protagonist plays with a winning strategy,

(c) limDm〈km,n − ls,n : n < ω〉 =∞.

(2) Define the partial order ≤APm on APm by s ≤APm t iff

{n : gs,n is an initial segment of gt,n} ∈ Dm.

We are now ready to complete the proof of Lemma 2.11.

Proof of Lemma 2.11. Assume the hypotheses in the lemma hold. The proof of the next

claim is evident.

Claim 2.14. (1) APm 6= ∅.

(2) If 〈s` : ` < ω〉 is a ≤APm-increasing sequence from APm, then it has a ≤APm-upper

bound.
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8 M. GOLSHANI AND S. SHELAH

(3) Suppose s ∈ APm, ` ∈ {1, 2}, and w̄ = 〈wn : n < ω〉 ∈
∏
n

[Mm,`
n ]km,n . Then for

some t ∈ APm, we have

(a) s ≤APm t,

(b) if ls,n < km,n, then

(i) ` = 1 =⇒ wn ⊆ dom(ft,n),

(ii) ` = 2 =⇒ wn ⊆ range(ft,n).

Proof. Clause (1) is clear. Clause (2) follows by an easy diagonalization argument, but

let us elaborate a proof. For each ` < ω set

η` = 〈km,n − ls`,n : n < ω〉 ∈ ωω.

Then limDm η`(n) =∞, and for all i < ω,

(ω,<)ω/Dm |= idi/Dm < η`/Dm,

where idi is the constant sequence i on ω. As the structure (ω,<)ω/Dm is ℵ1-saturated,

we can find some η ∈ ωω such that for all `, i < ω,

(ω,<)ω/Dm |= idi/Dm < η/Dm < η`/Dm.

For n < ω let `n be the maximal natural number ` such that:

(a) ` ≤ η(n),

(b) 〈gsi,n : i ≤ `+ 1〉 is E-increasing,

(c) km,n − lsi,n ≥ η(n) for every i ≤ `.

Note that each `n is well-defined as on the one hand, `n ≤ η(n), and on the other hand,

` = 0 satisfies the above requirements.

Let `∗ < ω. Then

D`∗ = {n < ω : `n ≥ `∗, km,n − ls`(n),n ≥ η(n)} ∈ Dm.
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To see this, note that the set

{n < ω : ∀j ≤ `∗
(
η(n) > `∗,gsj ,n E gsj+1,n and km,n − lsj ,n ≥ η(n)

)
}

belongs to Dm and is included in D`∗ , so D`∗ ∈ Dm as well.

Now set s = 〈gs,n : n < ω〉, where gs,n = gs`n ,n
for each n < ω. We show that s is as

required.

In order to show that s ∈ APm, it only suffices to show that

lim
Dm

km,n − ls,n =∞.

This follows easily from the following inequalities

km,n − ls,n = km,n − ls`n ,n ≥ η`n(n) ≥ η(n),

and the fact that limDm η(n) =∞.

Now fix `∗ < ω. Then for all n with `n > `∗ we have

gs`∗ ,n
E gs`n ,n

= gs,n,

hence

D`∗ ⊆ {n < ω : gs`,n E gs,n},

where D`∗ is as defined above. As D`∗ ∈ Dm, we have {n < ω : gs`,n E gs,n} ∈ Dm, and

hence s` ≤AP s.

Finally (3) follows from the way we defined the game ank(m), noting that protagonist

plays with a winning strategy. �

Definition 2.15. For each s ∈ APm, we define Hs as the set

Hs =

{
(h1, h2) : h1 ∈

∏
n

Mm,1
n , h2 ∈

∏
n

Mm,2
n and {n < ω : fs,n(h1(n)) = h2(n)} ∈ Dm

}
.
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10 M. GOLSHANI AND S. SHELAH

The proof of the next claim follows from the way that we defined the game ank(m) 2.4

and the fact that by Lemma 2.10 we have D ⊇ Dm (see also the proof of lemmas 2.3 and

2.10).

Claim 2.16. Let s ∈ APm . Then

hD,s = {(h1/D, h2/D) : (h1, h2) ∈ Hs}

defines a partial elementary mapping from
∏
D
Mm,1

n into
∏
D
Mm,2

n .

Let F ⊆
∏
n

[ω]km,n witness dm = ℵ1.

For each ` ∈ {1, 2} let 〈Mm,`
n,i : i < ω1〉 be a ≺-increasing and continuous chain of

countable elementary submodels of Mm,`
n whose union is Mm,`

n . For each i < ω1 and

` ∈ {1, 2}, as ||Mm,`
n,i || ≤ ℵ0, there is some F `i ⊆

∏
n

[Mm,`
n,i ]km,n of cardinality ℵ1 such that

(
∀η ∈

∏
n

Mm,`
n,i

)(
∃f ∈ F `i

)
∀Dmn (η(n) ∈ f(n)) .

Let 〈f `j : j < ω1〉 enumerate
⋃
i<ω1

F `i . By induction on i < ω1, and using Claim 2.14, we

choose si such that:

(1) si ∈ APm,

(2) i < j =⇒ si ≤APm sj,

(3) if i = 2j + 1, then

n < ω and ls2j < km,n =⇒ f 1
j (n) ⊆ dom(fsi,n),

(4) if i = 2j + 2, then

n < ω and ls2j+1
< km,n =⇒ f 2

j (n) ⊆ range(fsi,n).

Now let D be a non-principal ultrafilter on ω which extends Dm. Let

h =
⋃
{hD,si : i < ω1}.
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Claim 2.17. h is an isomorphism from
∏
D
Mm,1

n onto
∏
D
Mm,2

n .

Proof. By Claim 2.16, each hD,si is a partial elementary embedding from
∏
D
Mm,1

n into∏
D
Mm,2

n , and furthermore, for i < j < ω1 we have hD,si ⊆ hD,sj . By the construction of

the sequence 〈si : i < ω1〉, we clearly have dom(h) =
∏
D
Mm,1

n and range(h) =
∏
D
Mm,2

n .

So we are done. �

Lemma 2.11 follows. �

The following is an immediate corollary of Lemma 2.11.

Corollary 2.18. Suppose m is an ultraproduct problem, dm = ℵ1 and for each n < ω,

Mm,1
n ≡Mm,2

n . If D is a non-principal ultrafilter on ω, then
∏
D
Mm,1

n
∼=
∏
D
Mm,2

n .

We now turn to the problem of controlling the size of dm’s. We again prove a slightly

stronger result. We first start with the following simple lemma.

Lemma 2.19. Assume MAκ, and let k = 〈kn : n < ω〉 ∈ ωω be such that limDk
kn =∞.

Let A ⊆ ωω be of size ≤ κ. Then there exists f ∈
∏
n<ω

[ω]≤kn such that for each η ∈ A,

we have ∀Dk
n (η(n) ∈ f(n)).

Proof. Let P be the following covering forcing notion. The conditions are pairs p =

(kp, fp), where

(α) kp < ω,

(β) fp ∈
∏
n<ω

[ω]≤kn and {|fp(n)| : n < ω} is bounded.

Given conditions p, q ∈ P, let p ≤ q (q is stronger than p) if

(γ) kq ≥ kp,

(δ) fq � kp = fp � kp,

(ε) ∀Dk
n, fq(n) ⊇ fp(n).

It is easily seen that the forcing notion P is c.c.c. Indeed let A ⊆ P be of size ℵ1. By

shrinking A if necessary, we can assume that kp = k∗ for some fixed k∗ < ω and all p ∈ A.
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12 M. GOLSHANI AND S. SHELAH

Furthermore, we can assume that fp(n) = fq(n) for all p, q ∈ A and all n < k∗. We show

that any two conditions in A are compatible. Thus let p, q ∈ A. Let l < ω be such that

∀n < ω
(
|fp(n)|, |fq(n)| < l

)
.

Let E = {n < ω : kn > 2l}. Then E ∈ Dk. Define r ∈ P as r = (kr, fr), where:

(1) kr = k∗,

(2) for all n < k∗, fr(n) = fp(n) = fq(n),

(3) for all n ∈ E \ k∗, fr(n) = fp(n) ∪ fq(n).

(4) for all n ∈ ω \ (E ∪ k∗), fr(n) = fp(n).

The condition r is easily seen to be an extension of both of p and q.

For each η ∈ A, the set

Dη = {p ∈ P : ∀Dk
n, η(n) ∈ fp(n)}

is clearly dense in P. Thus by MAκ we can find a filter G such that G ∩Dη 6= ∅ for all

η ∈ A. Then the function f , defined as f(n) =
⋃
p∈G

fp(n), has the required properties. �

Proposition 2.20. Suppose the GCH holds and λ > cf(λ) = ℵ1. Then there exists a

c.c.c. forcing notion P of size λ such that in V P, we have:

(1) 2ℵ0 = λ,

(2) if k ∈ ωω is such that lim sup
n<ω

kn =∞, then dk = ℵ1.

Proof. Let 〈λi : i < ω1〉 be an increasing sequence of regular cardinals cofinal in λ. Let

P = 〈〈Pi : i ≤ ω1〉, 〈Q̇i : i < ω1〉〉 be a finite support iteration of c.c.c. forcing notions

such that:

• for each i < ω1, |Pi| = λi,

• for each i < ω1, V [GPi ] |=“Martin’s axiom”,

• (2ℵ0)V [GPi ] = λi.

It is easily seen, using Lemma 2.19, that P = Pω1 is as required. Indeed, suppose that k

is as in clause (2). Pick i∗ < ω1 such that k ∈ V [GPi∗ ]. For each i∗ ≤ i < ω1, pick, using
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Lemma 2.19, some fi ∈
∏
n<ω

[ω]kn ∩ V [GPi+1
] such that:

(∀η ∈ ωω ∩ V [GPi ]) (∀Dk
n) (η(n) ∈ fi(n)) .

Then the family F = {fi : i∗ ≤ i < ω1} witnesses dk = ℵ1. �

Remark 2.21. By [8], the conclusion of Lemma 2.20 also holds in the Sacks model.

Putting the above results together we get the following theorem, which extends [2,

Theorem 1.2].

Theorem 2.22. Assume the GCH holds and λ > cf(λ) = ℵ1. Then there exists a c.c.c.

forcing notion P of size λ such that in V P:

(1) 2ℵ0 = λ,

(2) for every ultraproduct problem m, if D is a non-principal ultrafilter on ω and if∏
D
Mm,1

n ≡
∏
D
Mm,2

n , then
∏
D
Mm,1

n
∼=
∏
D
Mm,2

n .

Proof. By Lemmas 2.10, 2.18 and 2.20. �

The models appearing in a pseudo ultraproduct problem that we have considered so

far were of size ℵ0 or ℵ1. We now consider the same situation where the models can be

finite as well.

Definition 2.23. (see [1] and [8, Chapter V]) Suppose f, g ∈ ω(ω+1\{0, 1}) and g ≤ f.

Then

df,g = min

{
|F| : F ⊆

∏
n<ω

[f(n)]<1+g(n) and (∀η ∈
∏
n<ω

f(n))(∃a ∈ F)(∀n, η(n) ∈ a(n))

}
.

Given f ∈ ω(ω+1\{0, 1}), we define the notion of a (pseudo) f -ultraproduct problem

as follows.

Definition 2.24. Suppose f ∈ ω(ω+1\{0, 1}). Then a (pseudo) f -ultraproduct problem

m = 〈(Mm,1
n ,Mm,2

n , τm,n) : n < ω〉 is defined as in the notion of a (pseudo) ultraproduct

problem (see definitions 2.1 and 2.5), but we require for each n < ω and ` = 1, 2,

||Mm,`
n || ≤ f(n).
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Given an f -ultraproduct problem m, the sequence km and the filter Dm are defined

as before. The proof of the next lemma is essentially the same as in the proof of Lemma

2.11.

Lemma 2.25. Suppose f ∈ ω(ω + 1 \ {0, 1}), m is an f -ultraproduct problem, f ≥ km,

df,km = ℵ1 and D ⊇ Dm is a non-principal ultrafilter on ω. Then
∏
D
Mm,1

n
∼=
∏
D
Mm,2

n .

The following is analogous to Theorem 2.22 for f -ultraproduct problems.

Theorem 2.26. Assume the GCH holds. Then there exists a cardinal and cofinality

preserving forcing notion P such that in V P:

(1) 2ℵ0 ≥ ℵ2,

(2) for every f ∈ ω(ω+ 1 \ {0, 1}) and every f -ultraproduct problem m with km ≤ f ,

if D is a non-principal ultrafilter on ω and if
∏
D
Mm,1

n ≡
∏
D
Mm,2

n , then
∏
D
Mm,1

n
∼=∏

D
Mm,2

n .

Proof. By [1], there exists a cardinal and cofinality preserving forcing notion P which

forces the failure of the continuum and such that in V P, for each f ∈ ω(ω + 1 \ {0, 1})

and each f -ultraproduct problem m with km ≤ f , we have df,km = ℵ1. Now the result

follows from Lemmas 2.10 and 2.25. �

3. An impossibility result

In this section, we show that we cannot extend Theorem 2.22 to get a model of MA+

2ℵ0 > ℵ1 in which for every ultraproduct problem m and every non-principal ultrafilter

D on ω if
∏
D
Mm,1

n ≡
∏
D
Mm,2

n , then
∏
D
Mm,1

n
∼=
∏
D
Mm,2

n . Indeed we prove the following

stronger result. Recall that the bounding number is defined as

b = min{|F| : F ⊆ ωω and ∀f ∈ ωω∃g ∈ F , g �∗ f},

where ≤∗ is the eventual domination order.

Theorem 3.1. Assume b > ℵ1. Then there exists an ultraproduct problem m such that:
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(1) Mm,1
n ≡Mm,2

n for every n < ω,

(2) For every non-principal ultrafilter D on ω,
∏
D
Mm,1

n �
∏
D
Mm,2

n .

Proof. We follow [2]. For every n < ω, let Mm,1
n = (Q, <) be the dense linear order of

rational numbers and Mm,2
n = (N,<N) be a dense linear order of size ℵ1 which has a

point a with cf(Na, <N) = ℵ1, where Na = {d ∈ N : d <N a}.

Suppose by the way of contradiction that
∏
D
Mm,1

n
∼=
∏
D
Mm,2

n , for some non-principal

ultrafilter D on ω and let π :
∏
D
Mm,1

n
∼=
∏
D
Mm,2

n witness such an isomorphism.

For notational simplicity set M∗ =
∏
D
Mm,1

n = (Q, <)ω/D and N∗ =
∏
D
Mm,2

n = Nω/D.

Let a∗ = [〈a : n < ω〉]D ∈ N∗. By [2, Claim 2.2], cf((N∗)a∗) = ℵ1, and hence cf((M∗)a†) =

ℵ1 where a† ∈ M∗ is such that π(a†) = a∗. By [2, Claim 2.4], cf((M∗)b†) = ℵ1 for every

b† ∈M∗, in particular cf((M∗)0†) = ℵ1 where 0† = [〈0 : n < ω〉]D ∈M∗.

Claim 3.2. cf((M∗)0†) ≥ b.

Proof. Suppose κ < b and let 〈[fi]D : i < κ〉 be an increasing sequence in M∗ where for

each i < κ, [fi]D <M∗ 0†. We may assume that −1 < fi(n) < 0 for every n < ω. For each

i < κ set

gi(n) = min{k < ω : fi(n) < −1

k
}

Then G = {gi : i < κ} ⊆ ωω and |G| ≤ κ. Thus we can find some g : ω → ω such that

for all i < κ, gi ≤∗ g. Define f : ω → Q by

f(n) = − 1

g(n)
.

For any i < κ we can find some `i < ω such that g(n) > gi(n) for all n > `i and hence

for any such n,

f(n) = − 1

g(n)
> − 1

gi(n)
> fi(n).

It follows that the sequence 〈[fi]D : i < κ〉 is bounded from above by [f ]D < 0†. Thus

cf((M∗)0†) > κ. As κ < b was arbitrary, cf((M∗)0†) ≥ b and we are done. �
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But this implies that cf((M∗)0†) ≥ b > ℵ1 which contradicts cf((M∗)0†) = ℵ1. The

theorem follows. �

Remark 3.3. Martin’s axiom implies b = 2ℵ0 , and hence the conclusion of Theorem 3.1

holds under MA + 2ℵ0 > ℵ1.

References

[1] Goldstern, Martin; Shelah, Saharon; Many simple cardinal invariants. Arch. Math. Logic 32 (1993),

no. 3, 203–221.

[2] Golshani, Mohammad; Shelah, Saharon, The Keisler-Shelah isomorphism theorem and the contin-

uum hypothesis, Fund. Math., accepted.

[3] Goto, Tatsuya; Keisler’s Theorem and Cardinal Invariants, https://arxiv.org/abs/2109.04438.

[4] Keisler, H. Jerome; Ultraproducts and elementary classes. Nederl. Akad. Wetensch. Proc. Ser. A

64 = Indag. Math. 23 1961 477-495.

[5] Shelah, Saharon; Every two elementarily equivalent models have isomorphic ultrapowers. Israel J.

Math. 10 (1971), 224-233.

[6] Shelah, S.; Classification theory and the number of nonisomorphic models. Second edition. Studies

in Logic and the Foundations of Mathematics, 92. North-Holland Publishing Co., Amsterdam, 1990.

xxxiv+705 pp. ISBN: 0-444-70260-1

[7] Shelah, Saharon Vive la différence. I. Nonisomorphism of ultrapowers of countable models. Set

theory of the continuum (Berkeley, CA, 1989), 357–405, Math. Sci. Res. Inst. Publ., 26, Springer,

New York, 1992.

[8] Shelah, Saharon; Proper and improper forcing. Second edition. Perspectives in Mathematical Logic.

Springer-Verlag, Berlin, 1998. xlviii+1020 pp. ISBN: 3-540-51700-6

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.

Box: 19395-5746, Tehran-Iran.

E-mail address: golshani.m@gmail.com

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem,

91904, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ

08854, USA.

E-mail address: shelah@math.huji.ac.il

Paper Sh:1223, version 2022-08-30 2. See https://shelah.logic.at/papers/1223/ for possible updates.


	1. Introduction
	2. Extending the Keisler isomorphism theorem
	3. An impossibility result
	References

