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Abstract. For a given cardinal λ and a torsion abelian group K of cardinality

less than λ, we present, under some mild conditions (for example λ = λℵ0 ),

boundedly endo-rigid abelian group G of cardinality λ with Tor(G) = K. Es-

sentially, we give a complete characterization of such pairs (K,λ). Among

other things, we use a twofold version of the black box. We present an appli-

cation of the construction of boundedly endo-rigid abelian groups. Namely, we

turn to the existing problem of co-Hopfian abelian groups of a given size, and

present some new classes of them, mainly in the case of mixed abelian groups.

In particular, we give useful criteria to detect when a boundedly endo-rigid

abelian group is co-Hopfian and completely determine cardinals λ > 2ℵ0 for

which there is a co-Hopfian abelian group of size λ.
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§ 1. Introduction

By a torsion (resp. torsion-free) group we mean an abelian group such that all

its non-zero elements are of finite (resp. infinite) order. A mixed group G contains

both non-zero elements of finite order and elements of infinite order, and these are

connected via the celebrated short exact sequence

(∗) 0 −→ Tor(G) −→ G −→ G

Tor(G)
−→ 0.

Despite the importances of (∗), there are series of questions concerning how to glue

the issues from torsion and torsion-free parts and put them together to check the

desired properties for mixed groups.

Reinhold Baer was interested to find an interplay between abelian groups and

rings, see [1] and [2]. In this regard, he raised the following general problem:

Problem 1.1. Which rings can be the endomorphism ring of a given abelian group

G?

There are a lot of interesting research papers and books that study this problem,

see for example the books [11] and [17]. According to the recent book of Fuchs [15],

for mixed groups, only very little can be said. As an achievement, we cite the works

of Corner-Göbel [7] and Franzen-Goldsmith [12].

For any groupG, by Ef (G) we mean the ideal of End(G) consisting of all elements

of End(G) whose image is finitely-generated. In [8], Corner has constructed an

abelian group G := (M,+), for some ring R and R-module M , such that any of its

endomorphisms is of the form multiplication by some r ∈ R plus a distinguished

function from Ef (G). One can allow such a distinguished function ranges over

other classes such as finite-range, countable-range, inessential range or even small

homomorphism, and there are a lot of work trying to clarify such situations. As a

short list, we may mention the papers Corner-Göbel [7], Dugas-Göbel [10], Corner

[8], Thome [33] and Pirece [18].
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Here, by a bounded group, we mean a group G such that nG = 0 for some fixed

0 < n ∈ N. By a theorem of Baer and Prüfer a bounded group is a direct sum of

cyclic groups. The converse is not true. However, there is a partial converse for

countable p-groups. For more details see the book of Fuchs [15]. A homomorphism

h ∈ G1 → G2 of abelian groups is called bounded if Rang(h) is bounded.

Definition 1.2. An abelian group G is boundedly rigid when every endomorphism

of it has the form µn + h, where µn is multiplication by n ∈ Z and h has bounded

range. By Eb(G) we mean the ideal of End(G) consisting of all elements of End(G)

whose image is bounded.

Let us explain some motivation. The concept of a rigid system of torsion-free

groups has a natural analogue for the class of separable p-primary groups: a family

{Gi : i ∈ I} of separable p-primary groups is called rigid-like if for all i 6= j ∈ I

every homomorphism Gi → Gj is small, and also for all i ∈ I, every endomorphism

of Gi is the sum of a small endomorphism and multiplication by a p-adic integer. In

his paper [25], Shelah confirmed a conjecture of Pierce [18] by showing that if µ is

an uncountable strong limit cardinal, then there is a rigid-like system {Gi : i ∈ I}

of separable p-primary groups such that |Gi| = µ and |I| = 2µ, see also [23] for

more results in this direction.

Let us now turn to the paper and state our main results. Section 2 contains the

preliminaries and basic definitions and notations that we need. The reader may

skip it, and come back to it when needed later. In Section 3, and as one of the

main results, we prove the following.

Theorem 1.3. Given a cardinal λ such that λ = λℵ0 > 2ℵ0 and a torsion group K

of cardinality less than λ, there is a boundedly rigid abelian group G of cardinality

λ with Tor(G) = K.

To prove this, we introduce a series of definitions and claims. The first one is

the rigidity context, denoted by k, see Definition 3.1. Also, the main technical

tool is a variation of “Shelah’s black box”, and we refer to it as twofold λ-Black

Box. For more details, see Definition 3.13. It may be worth to note that the
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black boxes were introduced by Shelah in [28] and [29], where he showed that they

follow from ZFC. We can consider them as a general method to generate a class

of diamond-like principles provable in ZFC. Then, we continue by introducing the

approximation blocks, denoted by APk,λ, more precisely, see Definition 3.18. There

is a distinguished object c in APk,λ that we call them full. The twofold λ-Black

Box, helps us to find such distinguished objects, see Lemma 3.28. Here, one may

define the group G := Gc. Let h ∈ End(G). In order to show h is boundedly rigid,

we apply a couple of reductions (see Lemmas 3.33–3.41), to reduce to the case that

h factors throughout G→ Tor(G). Finally, in Lemma 3.29 we handle this case, by

showing that any map G→ Tor(G) is boundedly rigid.

In the course of the proof of Theorem 1.3, we develop a general method that

allows us to prove 0→ Z→ End(G)→ End(G)
Eb(G) → 0 is exact, and also enables us to

present a connection to Problem 1.1. In order to display the connection, let R be a

ring coming from the rigidity context. For the propose of the introduction, we may

assume that (R,+) is cotorsion-free, see Definition 2.8 (with the convenience that

the argument becomes easier if we work with R := Z, or even (R,+) is ℵ1-free).

Following our construction, every endomorphism of G has the form µr + h, where

µr is multiplication by r ∈ R and h has bounded range, i.e., the sequence

0 −→ R −→ End(G) −→ End(G)

Eb(G)
−→ 0

is exact.

Essentially, we give complete characterization of the pairs (K,λ) by relating our

work with the recent works of Paolini and Shelah, see [20], [21] and [22]. To this

end, first we recall the following folklore problem:

Problem 1.4. Construct co-Hopfian groups of a given size.

Baer [3] was the first to investigate Problem 1.4 for abelian groups. A torsion-

free abelian group is co-Hopfian if and only if it is divisible of finite rank, hence the

problem naturally reduces to the torsion and mixed cases. In their important paper

[4], Beaumont and Pierce proved that if G is co-Hopfian, then Tor(G) is of size at

most continuum, and further that G cannot be a p-groups of size ℵ0. This naturally

Paper Sh:1232, version 2022-10-31. See https://shelah.logic.at/papers/1232/ for possible updates.



CO-HOPFIAN AND BOUNDEDLY ENDO-RIGID GROUPS 5

left open the problem of the existence of co-Hopfian p-groups of uncountable size

≤ 2ℵ0 , which was later solved by Crawley [6] who proved that there exist p-groups

of size 2ℵ0 . Braun and Strüngmann [5] showed that the existence of three types of

infinite abelian p-groups of size ℵ0 < |G| < 2ℵ0 are independent of ZFC:

(a) both Hopfian and co-Hopfian,

(b) Hopfian but not co-Hopfian,

(c) co-Hopfian but not Hopfian.

Also, they proved that the above three types of groups of size 2ℵ0 exist in ZFC. So,

in the light of Theorem 1.3, the remaining part is 2ℵ0 < λ < λℵ0 . Very recently,

and among other things, Paolini and Shelah [21] proved that there is no co-Hopfian

group of size λ for such a λ. As an application, in Section 4, we completely determine

cardinals λ > 2ℵ0 for which there is a co-Hopfian group of size λ. For the precise

statement, see Corollary 4.12.

Let us recall a connection between the concepts boundedly endo-rigid groups

and Hopfian and co-Hopfian groups. First, recall from the seminal paper [24], for

any λ less than the first beautiful cardinal, Shelah proved that there is an endo-

rigid torsion-free group of cardinality λ. By definition, for any f ∈ End(G) there

is mf ∈ Z such that f(x) = mfx. So, f is onto iff mf = ±1. In other words, G

is Hopfian. This naturally motives us to detect co-Hopfian property by the help of

some boundedly endo-rigid groups. This is what we want to do in §4. Namely, our

first result on co-Hopfian groups is stated as follows:

Theorem 1.5. Let K =
⊕
{ Z
pnZ : p ∈ P and 1 ≤ n < ω}, where P is the set of

prime numbers. If G is a boundedly endo-rigid abelian group and K = Tor(G),

then G is co-Hopfian.

In fact, we prove a little more, see Observation 4.9. Let h be a natural number.

One of the tools that we use is the h-power torsion subgroup of G, denoted by

Torh(G), which is defined as

Torh(G) = {g ∈ G : ∃n ∈ N such that hng = 0}.
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It may be worth to mention that, in the style of Grothendieck, this is called section

functor and he denoted this by Γh(G), and also by H0
h(G). In our study of the

co-Hopfian property of G, the following subset of prime numbers appears:

SG := {p ∈ P : G/Torp(G) is not p-divisible}.

The set SG helps us to present a useful criteria to detect when a boundedly endo-

rigid abelian group is co-Hopfian:

Theorem 1.6. Assume λ > 2ℵ0 and G is a boundedly endo-rigid abelian group of

size λ. Then G is co-Hopfian if and only if:

(a): SG is a non-empty set of primes,

(b): (b1) Tor(G) 6= G,

(b2) if p ∈ SG, then Torp(G) is not bounded,

(b3) if Torp(G) is bounded, then it is finite.

Let G be an abelian group. In order to show that G is (not) co-Hopfian, and also

to see a connection to bounded morphisms, we introduce a useful set NQr(m,n)(G)

consisting of those bounded h ∈ End(Torn(G)) such that:

(1) h′ := m · idTorn(G) + h ∈ End(Torn(G)) is 1-to-1,

(2) h′ is not onto or m > 1 and G/Torn(G) is not m-divisible.

In a series of nontrivial cases we check NQr(m,n)(G) and its negation. This enables

us to present some new classes of co-Hopfian and non co-Hopfian groups (see items

4.3–4.7).

For all unexplained definitions from set theoretic algebra see the books by Eklof-

Mekler [11] and Göbel-Trlifaj [17]. Also, for unexplained definitions from the group

theory see the books of Fuchs [15], [14] and [13].

§ 2. Preliminaries

In this section we recall some basic definitions and facts that will be used for

later sections of the paper.
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Definition 2.1. An abelian group G is called ℵ1-free if every countable subgroup

of G is free. More generally, an abelian group G is called λ-free if every subgroup

of G of cardinality < λ is free.

Definition 2.2. Let κ be a regular cardinal. An abelian group G is said to be

strongly κ-free if there is a set S of < κ-generated free subgroups of G containing

0 such that for any subset S of G of cardinality < κ and any N ∈ S, there is L ∈ S

such that S ∪N ⊂ L and L/N is free.

The abelian group G is pure in H if G ⊆ H and nG = nH ∩G for every n ∈ Z.

The common notation for this notion is G ⊆∗ H.

Fact 2.3. Suppose G is a torsion-free group. Then the intersection of pure sub-

groups of G is again pure. In particular, for every S ⊂ G, there exists a minimal

pure subgroup of G containing S. The common notation for this subgroup is 〈S〉∗G.

Fact 2.4 ([16, Theorem 7]). Let G be an abelian group and H a pure subgroup of

G of bounded exponent. Then H is a direct summand of G.

Fact 2.5 ([16, Theorem 8]). Let G be an abelian group and T ⊆∗ Tor(G). If T

is the direct sum of a divisible group and a group of bounded exponent, then T is a

direct summand of G. The same result holds if T ⊆∗ G.

Fact 2.6 ([4]). (i) Let G be a countable p-group. Then G is co-Hopfian if and

only if G is finite.

(ii) If a group G is co-Hopfian, then Tor(G) is of size at most continuum, and

further that G cannot be a p-groups of size ℵ0.

Fact 2.7 ([14, Theorem 17.2]). If G is a p-group of bounded exponent, then G is a

direct sum of (finitely many, up to isomorphism) finite cyclic groups.

Definition 2.8. i) An abelian group G is called cotorsion if Ext(J,G) = 0 for all

torsion-free abelian groups J . In other words, G is cotorsion provided that it is

a direct summand of every abelian group H containing G with the property that

H/G is torsion-free.
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ii) An abelian group G is called cotorsion-free if it has no nonzero co-torsion

subgroup.

Fact 2.9. ([11, Corollary 2.10(ii)]) Any ℵ1-free group is cotorsion-free.

The p-torsion parts of a group G are important sources to produce pure sub-

groups.

Notation 2.10. Let P denote the set of all prime numbers.

(i) Let p ∈ P. The p-power torsion subgroup of G is

Torp(G) = {g ∈ G : ∃n ∈ N such that png = 0}.

(ii) For 1 ≤ m < ω we let Torm(G) =
⊕
{Torp(G) : p |m}.

(iii) The notation Tor(G) stands for the full torsion subgroup of G.

Suppose G is torsion. Then

G =
⊕
p∈P

Torp(G).

Notation 2.11. In this paper,by End(−) we mean EndZ(−) where (−) is at least an

abelian group, otherwise we specify it.

The following notion of boundness plays an important role in establishing the

main theorems:

Definition 2.12. Let G be an abelian group of size λ. We say G is boundedly endo-

rigid when for every f ∈ End(G) there is m ∈ Z such that the map x 7→ f(x)−mx

has bounded range.

The next fact follows from the definition.

Fact 2.13. G is boundedly endo-rigid if and only if for every f ∈ End(G) there is

m ∈ Z and bounded h ∈ End(G) such that f(x) = mx+ h(x).
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Fact 2.14. Let K be a bounded torsion abelian group and let G ⊆∗ H. If g ∈

Hom(G,K), then there is h ∈ Hom(H,K) extending g. This property is conveniently

summarized by the subjoined diagram:

0 // G
⊆∗ //

g

��

H

∃h~~}}
}}

}}
}

K

Fact 2.15. Let G be abelian group and suppose that G is not bounded, then the

bounded endomorphisms of G (i.e., those f ∈ End(G) with bounded range) form

an ideal of the ring End(G), we denote this ideal by Eb(G). With respect to this

terminology, G is boundedly rigid if and only if the quotient ring End(G)/Eb(G) ∼=

Z.

Remark 2.16. Recall that torsion subgroups are pure. Let f be a bounded endo-

morphism of Tor(G). By Fact 2.14, we have

0 // Tor(G)
⊆∗ //

f

��

G

∃h||yy
yy

yy
yy

y

Tor(G)

Let f̂ : G
h−→ Tor(G)

⊆−→ G. In sum, f extends to an endomorphisms f̂ of G with

the same range:

Tor(G)

⊆
��

f
// Tor(G)

⊆
��

G
f̂

// G

Hence, the notion of boundedly rigid is really the right notion of endo-rigidity for

mixed groups (for G torsion-free abelian group, we say that G is endo-rigid when

End(G) ∼= Z). For instance, we look at K =
⊕
{ Z
p`+1Z : ` < ω}, and recall that this

has many bounded endomorphisms. The same will happen for any G extending it.
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In what follows we will use the concept of reduced group several times. Let us

recall its definition.

Definition 2.17. Let G be an abelian group.

(a) G is called reduced if it contains no divisible subgroup other than 0.

(b) G is called injective if for any inclusion G1 ⊆ G2 of abelian groups, any

morphism f : G1 → G can be extended into G2:

0 // G1

⊆
//

f

��

G2

∃h}}||
||

||
||

G

One can show that an abelian group G is reduced if and only if it is injective,

see [15].

§ 3. The ZFC construction of boundedly rigid mixed groups

In this section we show that for any cardinal λ = λℵ0 > 2ℵ0 and any torsion

abelian group K of size less than λ, there exists a boundedly rigid abelian group G

with Tor(G) = K, see Theorem 3.11.

To this end, we define the notion of rigidity context k which in particular codes

a torsion group K, and assign to it a collection of objects m, which among other

things have a groupG with Tor(G) = K.We show that under the above assumptions

on λ and K, we can always find such an m such that the associated group G is

boundedly rigid.

Definition 3.1. (1) We say a tuple k is a rigidity context when

k =
(
Kk, Rk, φ

k
r ,Ψ

k
r,s,Ψ

k
(r,s), Sk

)
r,s∈Rk

=
(
K,R, φr,Ψr,s,Ψ(r,s), S

)
r,s∈R

where

(a) K is a reduced torsion abelian group,

(b) R is a ring,

(c) S is a set of prime numbers, S⊥k = P \ S is its complement, and R is

S⊥k -divisible. This means that R is divisible for any p ∈ S⊥k .
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(d) for r ∈ R,φr ∈ End(K) has bounded range,

(e) if r, s ∈ R, then Ψr,s = φr + φs − φr+s ∈ End(K),

(f) if r, s ∈ R, then Ψ(r,s) ∈ End(K) has bounded range and, letting

t = rs, for x ∈ K we have

Ψ(r,s)(x) = φr(φs(x))− φt(x).

(2) We say k is nontrivial when for some prime p ∈ Sk the p-torsion Torp(K)

is infinite, or the set

{p ∈ Sk : Torp(K) 6= 0}

is infinite.

(3) By Zk we mean the subring of Q generated by {1} ∪ { 1
p : p ∈ S⊥k }.

Observation 3.2. Suppose (Rk,+) is cotorsion-free as an abelian group. Then

Sk 6= ∅.

Proof. Suppose Sk = ∅. In other words, S⊥k is the set of prime numbers. By

definition, R is S⊥k -divisible. This means that Q ⊆ Rk. It turns out that (Rk,+)

is not cotorsion-free, a contradiction. �

Definition 3.3. Let k be a rigidity context. By Mk we mean the family of all

tuples

m =
(
km, Gm, F

m
r , F

m
r,s, F

m
(r,s)

)
r,s∈Rkm

=
(
k, G, Fr, Fr,s, F(r,s)

)
r,s∈Rk

where

(a) G is an abelain group,

(b) Tor(G) = Kk,

(c) for r ∈ Rk, Fr is an endomorphism of G extending φkr :

K

⊆
��

φr // K

⊆
��

G
Fr

// G
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(d) for r, s ∈ Rk, Fr,s ∈ End(G) extends Ψr, s

K

⊆
��

Ψr,s
// K

⊆
��

G
Fr,s

// G

and they have the same range Fr,s[G] = Ψr,s[K].

(e) for r, s ∈ Rk, F(r,s) ∈ End(G) extends Ψk
(r,s):

K

⊆
��

Ψ(r,s)
// K

⊆
��

G
F(r,s)

// G

and thereby they have the same range F(r,s)[G] = Ψ(r,s)[K].

(f) if r, s, t ∈ R and t = r + s, then for x ∈ G,

Fr,s(x) = Fr(x) + Fs(x)− Ft(x),

(g) if r, s, t ∈ R and t = rs, then for x ∈ G,

F(r,s)(x) = Fr(Fs(x))− Ft(x).

Definition 3.4. Adopt the previous notation, and let

M =
⋃{

Mk : k is a rigidity context
}
.

(1) We define ≤M as the following partial order on M. Namely, m ≤M n iff

(a) m,n ∈M,

(b) km = kn,

(c) Gm ⊆ Gn,

(d) Fm
r ⊆ Fn

r .

(2) By ≤Mk
we mean ≤M �Mk.

Notation 3.5. Let r ∈ R and x ∈ Gm. By rx we mean rx := Fm
r (x) ∈ Gm.
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Definition 3.6. Suppose k is a rigidity context and m ∈Mk.

(1) We say m is boundedly rigid when for every f ∈ End(Gm) there are r ∈ R

and h ∈ Endb(Gm)1 and

x ∈ Gm =⇒ f(x) = rx+ h(x).

(2) We say m is free when it has a base B which means that the set {x+Kk :

x ∈ B} is a free base of the abelian group Gm/K.

(3) We say m is λ-free when Gm/K is.

(4) We say m is strongly λ-free when Gm/K is.

(5) Let Mm be the R-module obtained by expanding Gm/K such that for

x, y ∈ Gm and r ∈ R

rx+K = y +K ⇐⇒ Fm
r (x) = y.

The next easy lemma shows that Mm as defined above is well-defined.

Lemma 3.7. Mm is an R-module structure.

Proof. Since Mm is an expansion for Gm/K, it is an abelian group. Let r ∈ R and

m := g +K ∈Mm where g ∈ G. The assignment

(r,m) 7→ rm := Fm
r (g) +K ∈ Gm/K = Mm,

defines the desired module structure on Mm. �

Lemma 3.8. Suppose k is a rigidity context and m ∈Mk. The following assertions

hold.

(1) Suppose Rk = Z (so, S⊥k = ∅). Then m is boundedly rigid iff Gm is

boundedly rigid.

(2) Let Rk = Zk (see Definition 3.1(3)). Then m is boundedly rigid iff Gm is

boundedly rigid.

(3) if φkr is zero for every r ∈ R, then Gm is an R-module.

1so, h has a bounded range.
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14 M. ASGHARZADEH, M. GOLSHANI, AND S. SHELAH

Proof. (1) and (2) are trivial and follow from the definitions.

(3): For each x ∈ Gm and r ∈ R, we set rx := Fm
r (x). It is straightforward to

furnish the following three properties:

• the identity r(x+ y) = rx+ ry follows from Definition 3.1(2)(c),

• the equality (r + s)x = rx+ sx follows from Definition 3.1(2)(d),

• the equality r(sm) = (rs)m follows from items (e) and (f) from Definition

3.1(2).

From these, Gm is equipped with an R-module structure. �

In what follows, the notation lg(−) stands for the length function.

Definition 3.9. Let α ∈ Ord.

(1) By Λω[α] we mean

{
η : lg(η) = ω and η(n) = (η(n, 1), η(n, 2)) where η(n, 1) ≤ η(n, 2) < η(n+1, 1) < α

}
.

(2) For each η ∈ Λω[α], we let j(η) =
⋃
{η(n, 1) : n < ω}.

(3) Λ<ω[α] := {〈〉} ∪
⋃
k<ω

Λk[α], where Λk[α] is the set of all η furnished with

the following four properties:

(a) lg(η) = k + 1,

(b) η(k) < α,

(c) Suppose ` < k. Then

(c1) η(`) = (η(`, 1), η(`, 2)), where η(`, 1) ≤ η(`, 2) < α, and

(c2) If in addition `+ 1 < k, then η(`, 2) < η(`+ 1, 1),

(d) if ` < k, then η(`, 1) = η(`, 2) iff ` = 0.

(4) Λ[α] := Λω[α] ∪ Λ<ω[α].

(5) If η ∈ Λ[α] and k + 1 < lg(η), then we set

(5.1) η �L k :=
〈
(η(`, 1), η(`, 2)) : ` < k

〉_〈η(k, 1)〉, and

(5.2) η �R k :=
〈
(η(`, 1), η(`, 2)) : ` < k

〉_〈η(k, 2)〉.

Note that η �L k and η �R k belong to Λk+1[α].

(6) We say Λ ⊆ Λ[α] is downward closed while for each η ∈ Λ and k+1 < lg(η)

we have η �L k, η �R k ∈ Λ.
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We next define when a subset of Λω[α] is free.

Definition 3.10. Suppose α ∈ Ord and Λ ⊆ Λω[α].

(1) We say Λ is free whenever there is a function h : λ → ω such that the

sequence 〈
{η�Ln, η�Rn : h(η) ≤ n < ω} : η ∈ Λ

〉
is a sequence of pairwise disjoint sets.

(2) We say Λ is µ-free when every Λ′ ⊆ Λ of cardinality < µ is free.

We can now state the main result of this section as follows.

Theorem 3.11. Let λ = λℵ0 > 2ℵ0 . Let k be a nontrivial rigidity context such

that Kk and Rk are of cardinality ≤ λ. Then there exists an abelian group G such

that Tor(G) = Kk and G is boundedly rigid. In particular, the sequence

0 −→ Rc −→ End(G) −→ End(G)

Eb(G)
−→ 0

is exact.

The rest of this section is devoted to the proof of above theorem.

Definition 3.12. Suppose γ is an ordinal, η ∈ Λ[λ] and Λ ⊆ Λ[λ]. Then

(1) Sγ is the closure of ω ∪ γ under taking finite subsets, so including finite

sequences.

(2) γ(η) = η(0, 1).

(3) Λγ = {η ∈ Λ : γ(η) < γ}.

(4) We set

(4.1) Λ<ω = Λ ∩ Λ<ω[α], and

(4.2) Λω = Λ ∩ Λω[α].

In order to prove Theorem 3.11, we need a twofold version of Black Box, that

we now introduce. On simple Black Boxes see [27], [30] and [31]. The presentation

here is a special case of the n-fold λ-Black Box from [32], when n = 2.

Definition 3.13. We say b is a twofold λ-Black Box when it consists of:
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16 M. ASGHARZADEH, M. GOLSHANI, AND S. SHELAH

(1) ḡ = 〈gη : η ∈ Λb〉, where Λb ⊆ Λω[λ],

(2) gη is a function from ω into Sγ(η),

(3) Suppose 〈Λb,ε : ε < λ〉 is a partition of Λb, g : Λ<ω[λ] → Sλ is a function,

ε < λ and f : Λ<ω[λ] → γ where γ < λ. Then for some η ∈ Λb,ε the

following holds:

(a) γ(η) > γ,

(b) gη(0) = g(〈〉),

(c) gη(n+ 1) =
(
g(η �L n), g(η �R n)

)
,

(d) η(n, 1) < η(n, 2) and f(η �L n) = f(η �R n) for all 1 ≤ n < ω.

The following theorem is proved in [32].

Theorem 3.14. Assume λ = λℵ0 . Then there exists an ℵ1-free twofold λ-Black

Box.

Assuming hypotheses beyond ZFC, we can get stronger versions of twofold λ-

Black Box (see again [32]).

Observation 3.15. Assume λ = cf(λ) ≥ ℵ1. Let

S ⊆ {α < λ : cf(α) = ℵ0}

be a stationary and non-reflecting subset of λ such that the principle ♦S holds. Then

there is a λ-free twofold λ-Black Box b such that Λb = {ηδ : δ ∈ S} and j(ηδ) = δ

for every δ ∈ S.

Recall that Jensen’s diamond principle ♦S is a kind of prediction principle whose

truth is independent of ZFC. The point in the above proof is that if Λb = {ηδ : δ ∈

S} and j(ηδ) = δ for every δ ∈ S, then as S does not reflect, the set Λb is λ-free.

Hypothesis 3.16. For the rest of this section we adopt the following hypotheses,

otherwise specializes:

• λ = λℵ0 > 2ℵ0 .

• k is a rigidity context as in Definition 3.1.
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• K = Kk, R = Rk are of cardinality < λ. Without loss of generality the set

of elements of K and R are subsets of λ.

• (R,+) is cotorsion-free.

• b is a twofold λ-Black Box.

Remark 3.17. Recall from [5] that co-Hopfian (resp. Hopfian) abelian group of size

λ = 2ℵ0 exist in ZFC. We can also deal with the case of λ = 2ℵ0 , but all is known

in this case, so we just concentrate on the case λ = λℵ0 > 2ℵ0 .

Definition 3.18. Let AP = APk,λ be the set of all quintuples

c =
(
Λc,mc,Γc, Xc, 〈acη,n : η ∈ Λc, n < ω〉

)
such that:

(a) Λc ⊆ Λ[λ] is downward closed.

(b) mc ∈Mk. We may write Gc,Mc instead of Gmc ,Mmc respectively, etc.

(c) Xc is the following set:

{rxν : r ∈ R, ν ∈ Λc,<ω} ∪ {ryη,n : r ∈ R, η ∈ Λc,ω, n < ω}.

(d) Gc is generated, as an abelian group, by the sets K and Xc. The relations

presented in item (f), see below.

(e) for any ordinal α, let Gc,α be the subgroup of Gc generated by the set K

and

{rxν : r ∈ R, ν ∈ Λc,<ω ∩ Λ[α]} ∪ {ryρ,n : r ∈ R, ρ ∈ Λc,ω ∩ Λ[α], n < ω}.

(f) Mc, as an R-module, is generated by Xc ∪K, freely except the following

set Γc of equations:

• yη,n = acη,n + (n!)yη,n+1 + (xη�Ln − xη�Rn),

where acη,n ∈ Gc,η(0,1).

Definition 3.19. Suppose c ∈ APk,λ.

(1) γc = min{γ ≤ λ : Λc ⊆ Λ[γ]}.

(2) Let Ωc := Λc,<ω ∪
(
Λc,ω ×ω

)
and define 〈xρ : ρ ∈ Ωc〉 by the following rule

(2.1) If ρ ∈ Λc,<ω, then xρ is defined as in Definition 3.18(c).
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18 M. ASGHARZADEH, M. GOLSHANI, AND S. SHELAH

(2.2) If ρ = (η, n) ∈ Λc,ω × ω , we define xρ := yη,n.

(3) For b ∈ Gc choose the sequence〈
rb,`, ηb,`,mb,` : ` < nb

〉
such that

b−
∑
`<nb

rb,`yηb,`,mb,` ∈
∑

ρ∈Λc,<ω

Rxρ +K,

where rb,` ∈ R \ {0} and (ηb,`,mb,`) ∈ Λc,ω × ω.

(4) By supp◦(b) we mean {ηb,` : ` < nb}.

Definition 3.20. Suppose c ∈ APk,λ and let a ∈ Gc.

(a) There is a finite set Λa ⊆ Λc, a sequence S := 〈rρ : ρ ∈ Λa〉 of non-zero

elements of R, an n(a) < ω and da ∈ K such that

a =
∑

η∈Λa,<ω

rηxη +
∑

ν∈Λa,ω

rνyν,n(a) + da,

where Λa,<ω = Λa ∩ Λc,<ω and Λa,ω = Λa ∩ Λc,ω.

(b) Let suppc(a) = supp(a) be the minimal set Λ ⊆ Λc minimal with respect

to the following two properties:

(b.1) Λa ⊆ Λ.

(b.2) If ν ∈ Λa ∩ Λc,ω and n < ω then Λacν,n ⊂ Λ and η�Ln, η�Rn ∈ Λ.

for a ∈ Gc let suppc(a) = supp(a) be the minimal set Λ ⊆ Λc such

that

a ∈
〈
{xη, yν,n : η ∈ Λ(L,R), ν ∈ Λ, n < ω} ∪K

〉∗
Gc
.

Remark 3.21. Adopt the previous notation. The following holds.

(1) The set suppc(a) is countable.

(2) If a = xν for some ν ∈ Λc, then

supp(a) \ Sη(ν,1) = {ν} ∪ {ν�L, n, ν�R, n : n < ω}.

Definition 3.22. Let ≤AP be the following partial order on AP = APk,λ . For any

c,d ∈ AP we say c ≤AP d when the following holds:

(a) Λc ⊆ Λd,
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(b) mc ≤M md, hence Gc ⊆ Gd, etc.

(c) acη,` = adη,` for η ∈ Λc, ` < ω,

(d) xcη = xdη for η ∈ Λc,<ω,

(e) ycη,` = ydη,` for η ∈ Λc,ω and ` < ω.

Lemma 3.23. The following two assertions are valid:

(1) ≤AP is indeed a partial order,

(2) If c̄ = 〈cα : α < δ〉 is ≤AP-increasing, then there exists cδ =
⋃
α<δ

cα in AP

which is the ≤AP-least upper bound of the sequence c̄.

Proof. Clause (1) is clear, for clause (2), let

cδ =
(
Λ,m,Γ, X, 〈aη,n : η ∈ Λ, n < ω〉

)
,

where:

• Λ =
⋃
α<δ

Λcα ,

• m = (G,Fr, Fr,s, F(r,s)), where

– G =
⋃
α<δ

Gcα ,

– Fr =
⋃
α<δ

F cα
r , and similarly for Fr,s and F(r,s).

• Γ =
⋃
α<δ

Γcα ,

• X =
⋃
α<δ

Xcα ,

• for η ∈ Λω and n < ω, we have aη,n = acαη,n, for some and hence any α < δ

such that η ∈ Λcα,ω.

It is easily seen that cδ is as required. �

An R-module M is called ℵ1-free, if every countably generated submodule of M

is contained in a free submodule of M . Similarly, µ-free can be defined. For more

details, see [11, IV. Definition 1.1].

Lemma 3.24. Let c ∈ AP. The following claims hold:

(1) Tor[Gc] = K,

(2) The group

Gc/
〈
K ∪ {rxν : r ∈ R, ν ∈ Λc,<ω}

〉
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is divisible and torsion-free. Also, the parallel result holds for the R-module:

Mc/
〈
K ∪ {rxν : r ∈ R, ν ∈ Λc,<ω}

〉
(3) the following hold:

(a) Λc is ℵ1-free.

(b) If Λc is µ-free, then Mc is µ-free.

(c) If Λc is µ-free and (R,+) is µ-free, then Gc/K is a µ-free abelian

group.

(4) If γ ≤ γc and Λ ⊆ Λc, then there exists a unique d ∈ AP such that

(a) Λd = Λ ∩ Λ[γ],

(b) Gd ⊆ Gc.

Such a unique object is denoted by d := c � (γ,Λ).

(5) Assume η ∈ Λω[λ] \ Λc, ` < ω and a` ∈ Gc are such that a` ∈ Gc,η(0,1) for

each `. Then there is d ∈ AP equipped with the following three properties:

(a) Λd = Λc ∪ {η} ∪ {η�Ln, η�Rn : n < ω},

(b) c ≤AP d and so Gc ⊆ Gd,

(c) adη,` = a` for ` < ω.

Proof. (1)-(2): These are easy.

(3): (a) : Let Λ ⊆ Λc,ω be countable, and let {ηn : n < ω} be an enumeration of

it. Define the maps h1 and h2 from Λ to ω as follows:

h1(ηn) := min

{
k : ∀j < n, ∀`, r ∈ {L,R} we have ηj �` k 6= ηn �r k

}
,

and

h2(ηn) := min

{
k : ηn�Lk 6= ηn �R k

}
.

Finally, we set

h(ηm) := max{h1(ηn), h2(ηn)}+ 1.

Having Definition 3.10 in mind, we are going to show h is as required. Let j < i < ω

and let

• h(ηj) ≤ nj < ω

• h(ηi) ≤ ni < ω.
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We will show that ηj �` ni 6= ηi �r nj , where `, r ∈ {L,R}. To see this, we note that

there is nothing to prove if ni 6= nj . So, we may and do assume that n := ni = nj .

Thus, h(ηj), h(ηi) ≤ n. W look at m := h1(ηi). According to the definition of h1,

we know that ηj �` m 6= ηi �r m. As m ≤ n one has

ηi �` n 6= ηj �r n.

Also given any i < ω, if n ≥ h(ηi), then by the definition of h2 and as n ≥ h2(ηi),

we have

ηi�Ln 6= ηi �R n.

It follows that the sequence

〈
{η�Ln, η�Rn : h(η) ≤ n < ω} : η ∈ Λ

〉
is a sequence of pairwise disjoint sets. By definition, Λc is ℵ1-free.

(b) : For simplicity, we present the proof when µ := ℵ1. Let X ⊆ Mc be

countable. We are going to show that it is included into a countably generated free

R-submodule of Mc. As X countable,

• ∃Λ ⊆ Λc,ω countable,

• ∃Λ∗ ⊆ Λc,<ω countable

such that

X ⊆
∑
{Ryη,n : η ∈ Λ and n < ω}+

∑
{Rxρ : ρ ∈ Λ∗}.

As Λc is ℵ1-free and Λ is countable, there is a function h : Λ → ω such that the

sequence 〈
{η�Ln, η�Rn : h(η) ≤ n < ω} : η ∈ Λ

〉
is a sequence of pairwise disjoint sets. Now, we note the following two properties:

(b)1: the R-module

MΛ :=
〈
xη�Ln, xη�Rn, yη,n : η ∈ Λ : h(η) ≤ n < ω

〉
is free;

(b)2: Set MΛ∪Λ∗ :=
〈
MΛ ∪ {xν : ν ∈ Λ∗}

〉
. Then the R-module

MΛ∪Λ∗
MΛ∗

is free.
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In view of (b)2 the short exact sequence

0 −→MΛ −→MΛ∪Λ∗ −→MΛ∪Λ∗/MΛ −→ 0,

splits. Combining this along with (b)1, we observe that MΛ∪Λ∗ is free. Since it

includes X, we get the desired claim.

(c) : Now, suppose (R,+) is µ-free. Let H be a subset of (Gc/K,+) of size < µ.

There is a free R-module F such that H ⊂ F . There is a subset S of R of size < µ

such that any element of H can be written from a linear combination from F with

coefficients taken from S. As (R,+) is µ-free, there is a free subgroup (T,+) of it

containing S. Then,

H ⊆ T ∗ F :=

〈∑
{tifi : ti ∈ T, fi ∈ F}

〉
.

Since (T ∗ F,+) is free as an abelian group, we get the desired claim.

(4): Let d be such that:

4.1) Λd = Λ ∩ Λ[γ],

4.2) Xd is defined using Λd naturally,

4.3) for ν ∈ Λd,ω and n < ω, adν,n = acν,n,

4.4) Γd is defined naturally as the set of equations in (1), but only for η ∈ Λd,ω.

This is straightforward to check that d is as required.

(5): Let d be defined in the natural way, so that:

5.1) Λd = Λc ∪ {η} ∪ {η�Ln, η�Rn : n < ω},

5.2) Xd = Xc ∪ {xη�Ln, xη�Rn : n < ω} ∪ {yη,n : n < ω},

5.3) for ν ∈ Λc,ω and n < ω, adν,n = acν,n,

5.4) adη,n = an for n < ω,

5.5) in addition to the equations displayed in Γc, Γd contains equations of the

following forms

yη,n = an + (n!)yη,n+1 + (xη�Ln − xη�Rn),

where n < ω.

The assertion is now obvious by the above definition of d. �
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Lemma 3.25. Let c ∈ AP. Then the abelian group Gc/K is reduced.

Proof. Suppose on the way of contradiction that Gc/K is not reduced. Then it

has divisible direct summand I. Since Gc/K is torsion-free, I is both injective (see

Discussion 2.17) and torsion-free. This yields that (Q,+) is a directed summand of

Gc/K. Recall from Lemma 3.24 that Mc is ℵ1-free as an R-module. We have two

possibilities: 1) k is trivial, and 2) k is nontrivial.

1) k is trivial: Then R := Z. Recall that Mc = Gc/K is ℵ1-free. Since (Q,+) is

countable, it should be free, a contradiction.

2) k is nontrivial: Recall that R is S⊥k -divisible. Since the context is nontrivial,

there is p ∈ S⊥k such that {1/pn : n � 0} ⊆ R. For simplicity, we assume that

{1/pn : n > 0} ⊆ R. Since Mc is ℵ1-free and that {1/pn : n > 0} ⊆ Q ⊆Mc, there

is a free R-module F ⊆Mc such that {1/pn : n > 0} ⊆ F . Let F =
⊕
R. So,

{r/pn : n > 0, r ∈ R} =
⋂
`>0 p

`{r/pn : n > 0, r ∈ R}

⊆
⋂
`>0 p

`F

=
⊕

(
⋂
`>0 p

`R)

⊆
⊕

(
⋂
`>0 `R)

= 0,

where we the last equality comes from the fact that (R,+) is cotorsion-free. This

is the contradiction that we searched for it. �

The following easy lemma will be used later at several places.

Lemma 3.26. For any n < ω,

ycη,0 =
n∑
i=0

(∏
j<i j!

)
acη,i + (

∏n
i=1 i!)y

c
η,n+1 +

n∑
i=0

(∏
j<i j!

)
(xcη�Li − x

c
η�Ri).

Proof. It clearly holds for n = 0. Suppose it holds for n. Apply the induction

assumption along with the relation

ycη,n+1 = acη,n+1 + (n+ 1)!ycη,n+2 + (xcη�Ln+1 − xcη�Rn+1)
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to deduce

ycη,0 =
n∑
i=0

(∏
j<i j!

)
acη,i +

(∏n
i=1 i!

)
ycη,n+1 +

n+1∑
i=0

(xcη�Li − x
c
η�Ri)

=
n∑
i=0

(∏
j<i j!

)
acη,i +

(∏n
i=0 i!

)
acη,n+1 +

(∏n
i=1 i!

)
(n+ 1)!ycη,n+2

+
(∏n

i=0 i!
)
(xcη�Ln+1 − xcη�Rn+1) +

n∑
i=0

(∏
j<i j!

)
(xcη�Li − x

c
η�Ri)

=
n+1∑
i=0

(∏
j<i j!

)
acη,i +

(∏n+1
i=1 i!)y

c
η,n+2 +

n+1∑
i=0

(∏
j<i j!

)
(xcη�Li − x

c
η�Ri).

Thus the claim holds for n+ 1 as well. �

There are some distinguished and useful objects in APk,λ:

Definition 3.27. We say c ∈ APk,λ is full when:

(a) Λc ⊇ Λ<ω[λ],

(b) if an ∈ Gc for n < ω and f : Λ<ω[λ] → γ, where γ < λ, then for some

η ∈ Λc and all n < ω we have acη,n = an and f(η �L n) = f(η �R n).

Now, we study the existence problem for fullness in AP :

Lemma 3.28. There are some full c ∈ APk,λ .

Proof. Let b be a twofold λ-Black Box, which exists by Theorem 3.14. Let Ω :=

Λ<ω[λ] ∪
(
Λω[λ]× ω

)
, and for each ordinal α < λ set Ωα = Λ<ω[α] ∪

(
Λω[α]× ω

)
.

Fix a bijection map

h : Sλ
∼=−→ (

⊕
ρ∈Ω

Rxρ)⊕K

such that for each ordinal α < λ one has

h′′[Sα] ⊆ (
⊕
ρ∈Ωα

Rxρ)⊕K (∗),

This is possible, as for each α,

|Sα| ≤ ℵ0 + |α| ≤ |(
⊕
ρ∈Ωα

Rxρ)⊕K| < λ.

Let c be defined as

(1) Λc = Λb ∪ Λ<ω[λ].

(2) Xc is the following set:

{rxν : r ∈ R, ν ∈ Λc,<ω} ∪ {ryη,n : r ∈ R, η ∈ Λc,ω, n < ω}.
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(3) acη,n = h(gbη (n+ 1)), where gbη is given by the twofold λ-Black Box.

(4) Gc is generated, as an abelian group, freely by the sets K and Xc except

the following set of relations:

yη,n = acη,n + (n!)yη,n+1 + (xη�Ln − xη�Rn),

with the convenience that acη,n is regarded as an element of Gc via the

quotient map

(
⊕
ρ∈Ω

Rxρ)⊕K � Gc.

From this identification and (*), acη,n ∈ Gc,η(0,1).

(5) Γc is defined naturally as in Definition 3.18.

Let us show that c is as required. It clearly satisfies clause (a) of Definition 3.27.

To show that clause (b) of Definition 3.27 is satisfied, let 〈an : n < ω〉 ∈ ωGc and

f : Λ<ω[λ] → γ, where γ < λ. Let g : Λ<ω[λ] → Sλ be defined such that for all

ν ∈ Λ<ω[λ] \ {〈〉},

h(g(ν)) = alg(ν)−1 (+).

We are going to apply the twofold λ-Black Box b. According to its properties, there

is an η ∈ Λb such that:

(6) γ(η) > γ,

(7) gbη (0) = g(〈〉),

(8) gbη (n+ 1) = g(η �L n)2,

(9) η(n, 1) < η(n, 2) and f(η �L n) = f(η �R n) for all 1 ≤ n < ω.

Applying h to the both sides of (8), one has

acη,n
(∗∗)
= h(gbη (n+ 1)) = h(g(η�Ln))

(+)
= an,

thereby completing the proof. �

2Here we are using a modified version of the twofold λ-Black Box b, which can be easily

obtained from the original one.
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Lemma 3.29. Assume c ∈ AP is full and let h ∈ Hom(Gc,K) be unbounded.

Then there is a sequence

〈an : n < ω〉 ∈ ωRang(h)

such that the following set of equations Γ has no solution, not only in Gc, but in

any Gd with c ≤ d ∈ AP, where

Γ := {zn = an + n!zn+1 : n < ω}.

Proof. If for some prime number p, Torp[Rang(h)] is infinite, let p be the first such

prime number and let pn = p for all n < ω. Otherwise let

pn ∈ {p : Torp[Rang(h)] 6= 0}

be a strictly increasing sequence of prime numbers. As h is not bounded, we can

find by induction on n, the pair (Hn, an) such that:

(+) (a) H0 = Rang(h),

(b) Hn = anZ⊕Hn+1,

(c) an has order plnn , where for n = m+ 1 we assume

ln > lm +

(
n+1∏
i=0

i!

)
.

To see this, let H0 = Rang(h) and let a0 ∈ Torp0
[Rang(h)]. Now suppose that

n > 0 and we have defined 〈Hi : i ≤ n〉 and 〈ai : i < n〉. We shall now define an

and Hn+1. By our induction assumption,

Rang(h) = (
⊕
i<n

aiZ)⊕Hn.

In particular, Hn is torsion. Using facts 2.5 and 2.7, we can find for some `n

and an element an such that an has order plnn and anZ is a direct summand of

Hn. We may further suppose that ln > lm +
(∏n+1

i=0 i!
)

. Let Hn+1 be such that

Hn = anZ⊕Hn+1.

To prove that the sequence 〈an : n < ω〉 is as required, assume towards a

contradiction that there is c ≤ d ∈ AP such that 〈cn : n < ω〉 is a solution of Γ in
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Gd. So

Gd |=
∧
n<ω

(
cn = an + n!cn+1

)
(∗)

Since for each n, an ∈ K, it follows that

Gd/K |=
∧
n<ω

(
cn +K = n!cn+1 +K

)
.

By Lemma 3.25, Gc/K is reduced, hence necessarily,

∧
n<ω

(
cn +K = 0 +K

)
.

In other words, cn ∈ K for all n < ω.

We now show that for each n,(∏
i<n

i!

)
cn ∈ Hn (∗∗)

This is true for n = 0, because c0 ∈ K = H0. Suppose it holds for n. Then

multiplying both sides of (∗) into
∏
i<n i! we get(∏

i<n

i!

)
cn =

(∏
i<n

i!

)
an +

( ∏
i<n+1

i!

)
cn+1.

Using the induction hypothesis and (?)(b) we get( ∏
i<n+1

i!

)
cn+1 ∈ Hn+1,

as requested.

By an easy induction, for each n we have

c0 = a0 +
∑
`≤n

(∏̀
i=1

i!

)
a` +

(
n∏
i=1

i!

)
cn+1 (∗ ∗ ∗)n

Indeed this is true for n = 0, as c0 = a0 + c1. Suppose it holds for n, then using

(∗) and the induction hypothesis

c0 = a0 +
∑
`≤n

(∏`
i=1 i!

)
a` + (

∏n
i=1 i!) cn+1

= a0 +
∑
`≤n

(∏`
i=1 i!

)
a` + (

∏n
i=1 i!) (an+1 + (n+ 1)!cn+2)

= a0 +
∑

`≤n+1

(∏`
i=1 i!

)
a` +

(∏n+1
i=1 i!

)
cn+2.
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We are now ready to complete the proof. Let m(∗) be the order of c0. We consider

two cases.

Case 1. pn = p for all n: Let t be an integer such that

m(∗) = tp`(∗) > 1

where `(∗) ≥ 0 and (p, t) = 1, i.e., p does not divide t. Let k be the least natural

number such that lk > `(∗). By multiplying both sides of (∗ ∗ ∗)k+1 into tplk we

get

tplkc0 = tplka0 + tplk
∑
`≤k+1

(∏̀
i=1

i!

)
a` + tplk

(
k+1∏
i=1

i!

)
ck+2.

As the sequence 〈l` : ` ≤ k〉 is increasing, plka` = 0 for all ` ≤ k, so

0 = tplk

(
k+1∏
i=1

i!

)
ak+1 + tplk

(
k+1∏
i=1

i!

)
ck+2 (†)

According to (+)b, we know ak+1Z ∩Hk+2 = 0, and by using (∗∗) along with (†)

we get that

tplk

(
k+1∏
i=1

i!

)
ak+1 = 0.

As the order of ak+1 is a power of p and (p, t) = 1, we get that

plk

(
k+1∏
i=1

i!

)
ak+1 = 0.

So,

plk+1 = ord(ak+1) ≤ plk
(
k+1∏
i=1

i!

)
≤ plk+(

∏k+1
i=1 i!).

But, this contradicts the choice of lk+1 (see (+)c). The result follows.

Thereby, without loss of generality we deal with:

Case 2. Otherwise: Then the sequence 〈pn : n < ω〉 is strictly increasing. Let

k be the least integer such that

pk+1 > m(∗)×

(
k+1∏
i=1

i!

)
(††)

By multiplying both sides of (∗ ∗ ∗)k+1 into m(∗)×
(∏k

i=1 p
li
i

)
we get
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0 = m(∗)×
(∏k

i=1 p
li
i

)
c0

= m(∗)×
(∏k

i=1 p
li
i

)
a0 +m(∗)×

(∏k
i=1 p

li
i

) ∑
`≤k+1

(∏`
i=1 i!

)
a`

+m(∗)×
(∏k

i=1 p
li
i

)(∏k+1
i=1 i!

)
ck+2.

We have that m(∗)×
(∏k

i=1 p
li
i

)
a0 = 0 and

m(∗)×

(
k∏
i=1

plii

)(∏̀
i=1

i!

)
a` = 0,

for all ` ≤ k, thus

0 = m(∗)×

(
k∏
i=1

plii

)(
k+1∏
i=1

i!

)
ak+1 +m(∗)×

(
k∏
i=1

plii

)(
k+1∏
i=1

i!

)
ck+2.

Again, according to (+)b, we know ak+1Z∩Hk+2 = 0, and by using (∗∗) along with

the previous formula, we lead to the following vanishing formula

m(∗)×

(
k∏
i=1

plii

)(
k+1∏
i=1

i!

)
ak+1 = 0.

As the order of ak+1 is a power of pk+1 and it is different from all p`’s, for ` ≤ k,

we have

m(∗)×

(
k+1∏
i=1

i!

)
ak+1 = 0.

So,

pk+1 < p
lk+1

k+1 = ord(ak+1) ≤ m(∗)×

(
k+1∏
i=1

i!

)
.

But this contradicts (††). The result follows. �

To prove the endo-rigidity property, we first deal with the following special case,

and then we reduce things to this situation:

Lemma 3.30. Let c ∈ AP be full. Then every h ∈ Hom(Gc,K) is bounded.

Proof. Towards a contradiction assume h ∈ Hom(Gc,K) is not bounded. In view

of Lemma 3.29, this implies that there is a sequence

〈an : n < ω〉 ∈ ωRang(h)
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such that the set of equations

Γ = {zn = an + n!zn+1 : n < ω}

has no solutions in Gc. Let γ = |K|, and define f : Λ<ω[λ]→ γ such that

f(η) = f(ν)⇐⇒ h(xη) = h(xν) (∗)

Since an ∈ Rang(h) there is bn such that

∀n < ω, an = h(bn) (+)

As c is full, we can find some η such that

(1) f(η�Ln) = f(η�Rn),

(2) acη,n = bn for each n.

Combning (∗) and (1) yields that

∀n < ω, h(xη�Ln) = h(xη�Rn) (†).

By applying h to the both sides of the equation

yη,n = acη,n + (n!)yη,n+1 + (xη�Ln − xη�Rn),

we get

h(yη,n) = h(acη,n) + n!h(yη,n+1) +
(
h(xη�Ln)− h(xη�Rn)

)
(2)
= h(bn) + n!h(yη,n+1) +

(
h(xη�Ln)− h(xη�Rn)

)
(†)
= h(bn) + (n!)h(yη,n+1)

(+)
= an + (n!)h(yη,n+1).

In other words, h(yη,n) is a solution for

Γ = {zn = an + n!zn+1 : n < ω}.

This is a contradiction with the choice of the sequence 〈an : n < ω〉. �

Notation 3.31. Suppose c ∈ AP. For each n < ω, we define

Gn :=
Gc

K +
(∏n

i=1 i!
)
Gc

.

Also, the notation πn stands for the natural projection Gc � Gn.
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Fact 3.32. Adopt the above notation, let n < ω and g ∈ Gc.

(a) The abelian group Gn is a torsion abelian group with the following minimal

generating set

{xρ : ρ ∈ Λc,<ω} ∪ {yη,k : η ∈ Λc,ω and k ≥ n+ 2}.

(b) Similar to Definition 3.19, we can define supp◦(πn(g)) with respect to gen-

erating set presented in clause (a).

(c) According to its definition, it is easy to see that supp◦(πn(g)) ⊆ supp◦(g).

(d) Recall from Lemma 3.25 that Gc/K is reduced. This in turns gives us an

integer mn > n such that supp◦(g) ⊆ supp◦(πmn(g)).

Proof. This is straightforward. �

Lemma 3.33. Suppose c ∈ AP is full and h ∈ End(Gc). Then for some countable

Λh ⊆ Ωc we have:

r ∈ R, ν ∈ Ωc \ Λh =⇒ supp◦(h(rxν)) ⊆ {ν} ∪ Λh.

Proof. Towards contradiction assume h ∈ End(Gc) but there is no Λh as promised.

We define a sequence 〈
(ηi, Yi, νi, ri) : i < ω1

〉
,

by induction on i < ω1, such that

(∗) (a) ηi ∈ Ωc and ri ∈ R \ {0},

(b) Yi =
⋃
{supp◦(h(rjxηj )) : j < i} ∪ {ηj : j < i},

(c) νi ∈ supp◦(h(rixηi)) but νi 6= ηi, νi /∈ Yi.

To this end, suppose that i < ω1 and we have defined 〈(ηj , Yj , νj , rj) : j < i〉. Set

Yi =
⋃
{supp◦(h(rjxηj )) : j < i} ∪ {ηj : j < i}.

Following its definition, we know Yi is at most countable. Thus, due to our assump-

tion, we can find some ηi ∈ Ωc \ Yi and ri ∈ R \ {0} such that

supp◦(h(rixηi)) * ({ηi} ∪ Yi).

This allow us to define νi, namely, it is enough to take νi be any element of

supp◦(h(rixηi)) \ ({ηi} ∪ Yi). This completes the definition of (ηi, Yi, νi, ri).
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As νi ∈ supp◦(h(rixηi)) νi /∈ (Yi ∪ {ηi}) and that supp◦(h(xηi)) is finite, there

is W ⊆ ω1 of cardinality ω1 such that

(∗) If i 6= j ∈W then νj /∈ supp◦(h(rixηi)).

Without loss of generality we may and do assume that W = ω1. Let ai = rixηi .

We can find f : Λc,<ω → |R|+ ℵ0 < λ such that if b ∈ Gc
3, then from f(b) we can

compute 〈
nb, {(`,mb,`, rb,`) : ` < nb}

〉
.

As c is full, and that Rang(f) has size less than λ, there is some η ∈ Λc,ω such

that

(1) f(η �L n) = f(η �R n), for n < ω,

(2) acη,n = an for all n < ω.

Now, we show that

νi ∈ supp0(h(yη0
)) ∀i < ω (�)

This will be a contradiction, as supp0(h(yη0
)) is finite. By Lemma 3.26 we first

observe that:

yη,0 =
n∑
i=0

(∏
j<i j!

)
rixηi +

(∏n
i=1 i!

)
yη,n+1 +

n∑
i=0

(∏
j<i j!

)
(xη�Li − xη�Ri).

Let ` be any integer. We are going to use the notation presented in Notation

3.31 for n = m`. Applying πnh(−) to it, yields that

(3) πn(h(yη,0)) =
n∑
i=0

(∏
j<i j!

)
πnh(rixηi) + (

∏n
i=1 i!)πnh(yη,n+1)

+
n∑
i=0

(∏
j<i j!

)
πnh(xη�Li − xη�Ri)

=
n∑
i=0

(∏
j<i j!

)
πnh(rixηi) +

n∑
i=0

(∏
j<i j!

)
πnh(xη�Li − xη�Ri),

where the last equality follows by Definition 3.31. Now, we recall from the con-

struction (∗) that:

3Recall we have chosen

b−
∑
`<nb

rb,`yηb,`,mb,` ∈
∑

ρ∈Λc,<ω

Rxρ +K.
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(3.1) νi ∈ supp◦(h(rixηi)),

(3.2) νi 6= ηi and νi /∈ Yi.

Thanks to Fact 3.32(d) we have

(4) νi ∈ supp◦(πnh(rixηi)).

By clause (1) above, supp◦(h(xη�Li−xη�Ri)) = ∅. In view of Fact 3.32(c), we deduce

that

(5) supp◦
(
πn(h(xη�Li − xη�Ri))

)
= ∅.

First, we plug items (4) and (5) in the clause (3), then we use (∗). These enable us

to observe that

νi ∈ supp◦

(
n∑
i=0

(∏
j<i j!

)
πnh(rixηi) +

n∑
i=0

(∏
j<i j!

)
πnh(xη�Li − xη�Ri)

)
= supp◦(πnh(yη,0)).

Another use of Fact 3.32(c), shows that νi ∈ supp◦(h(yη,0)). So, the proof of �

is now completed, and the lemma follows. �

The following lemma can be proved easily.

Lemma 3.34. Let c ∈ AP be full and h ∈ End(Gc). Let Y0 ⊆ Ωc be the downward

closure of Λh, where Λh is as in Lemma 3.33 and set

K+ := K +
∑

ρ∈Y0∩Λc,<ω

Rxρ +
∑

ρ∈Y0∩Λc,ωn<ω

Ryρ,n.

If b ∈ Gc, then there are choices

• r̄b := 〈r2
b,ρ : ρ ∈ Λb〉, and

• Λb ⊆ Λc,<ω \ Y0 finite

such that

b−
∑
ρ∈Λb

r2
b,ρxρ ∈ K+.

Proof. This is straightforward. �

Hypothesis 3.35. For the rest of this section, we fix a well-ordering ≺ of the large

enough part of the universe, and for each:
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• c ∈ AP which is full,

• h ∈ End(Gc), and

• b ∈ Gc,

we let r̄b := 〈r2
b,ρ : ρ ∈ Λb〉 be the ≺-least sequence satisfying the conclusions of

Lemma 3.34.

Notation 3.36. Suppose c ∈ AP and Λ ⊆ Λc. By Gc,Λ we mean

Gc,Λ := GΛ :=

〈{
rxν , ryη,n : r ∈ R, ν ∈ Λ<ω, η ∈ Λω and n < ω

}〉
.

We have the following lemma, but as we do not use it, we leave its proof.

Lemma 3.37. Suppose Λ ⊆ Λ[λ] is downward closed. Then Gc,Λ is a pure subgroup

of Gc.

Lemma 3.38. Let c ∈ AP be full, and h ∈ End(Gc). Then for some countable

Λh ⊆ Λ[λ] we have:

r ∈ R, ν ∈ Ωc \ Λh =⇒ h(rxν) ∈ Gc,Λh∪{ν} +K.

Proof. Suppose on the way of contradiction that the lemma fails. Let Y0 be as

Lemma 3.34. We define a sequence

〈(Yi, νi, ρi, ri) : i < ω1〉,

by induction on i < ω1, such that

(\) (a) ri ∈ R \ {0},

(b) Yi =
⋃
{supp(h(rjxνj )) : j < i} ∪ {ρj : j < i} ∪ Y0,

(c) νi ∈ Ωc \ Yi,

(d) h(riνi) /∈ Gc,Yi∪{νi} +K,

(e) let bi := h(riνi), and let r̄bi := 〈r2
bi,ρ

: ρ ∈ Λi〉 be as Lemma 3.34

applied to bi. Then ρi ∈ Λi \ (Yi ∪ {νi}), and even

r2
bi,ρixρi /∈ Gc,Yi∪{νi} +K.
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To construct this, suppose i < ω and we have constructed the sequence up to i.

Now, (\)b gives the definition of Yi. Since we assume that the lemma fails, there

is an ri ∈ R and νi ∈ Ωc \ Yi such that h(rixνi) /∈ Gc,Λh∪{ν} + K. Now, we define

bi := h(riνi). Thanks to Lemma 3.34, there is a finite set Λi ⊆ Λc,<ω \ Yi and a

sequence 〈r2
bi,ρ

: ρ ∈ Λi〉 such that

bi −
∑
ρ∈Λi

r2
bi,ρxρ ∈ K

+.

As bi /∈ Gc,Yi∪{νi} +K and due to the following containment

bi −
∑
ρ∈Λi

r2
bi,ρxρ ∈ K

+ ⊆ Gc,Yi∪{νi} +K,

there is ρi ∈ Λi such that ρi /∈ (Yi ∪ {νi}), and indeed r2
bi,ρi

xρi /∈ Gc,Yi∪{νi} + K.

This completes the proof of construction. By shrinking the sequence, we may

assume that

• for all i 6= j < ω1, ρj /∈ Λi.

Let an := rnxνn and define

f : Λc,<ω →| R | + | K | +ℵ0 < λ

be such that for any ρ ∈ Λc,<ω, f(ρ) codes

• 〈r2
b,ρ : ρ ∈ Λb〉, and

• b−
∑
ν∈Λi

r2
b,νxν ,

where b := h(xρ). To see such a function f exists, first we define:

• f1 : R<ω ×K+ →| R | + | K | +ℵ0 is a bijection, and

• f2 : Λc,<ω → R<ω ×K+ is defined as

f2(b) =
(
〈r2
b,ρ : ρ ∈ Λb〉, b−

∑
ν∈Λi

r2
b,νxν

)
.

Then, we set f := f1 ◦ f2. Suppose ρ1, ρ2 ∈ Λc,<ω are such that f(ρ1) = f(ρ2). We

claim that h(xρ1
) = h(xρ2

). To see this, it is enough to apply f(ρ1) = f(ρ2), and

conclude that

1) 〈r2
b1,ν

: ν ∈ Λb1〉 = 〈r2
b2,ν

: ν ∈ Λb2〉

2) b1 −
∑
ν∈Λb1

r2
b,νxν = b2 −

∑
ν∈Λb2

r2
b,νxν ,
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where bi = h(xρi). But, then we have

b1 = b1 −
∑
ν∈Λb1

r2
b,νxν + (

∑
ν∈Λb1

r2
b,νxν)

(2)
= b2 −

∑
ν∈Λb2

r2
b,νxν + (

∑
ν∈Λb2

r2
b,νxν)

= b2,

i.e., h(xρ1
) = h(xρ2

).

Since c is full, there is an η ∈ Λc,ω such that for all n < ω

(3) an = acη,n, and

(4) f(η�Ln) = f(η�Rn).

Thanks to the previous paragraph and clause (4) we deduce

h(xη�Ln) = h(xη�Rn) (])

By applying h to the both sides of the following equation

yη,0 =
n∑
i=0

(∏
j<i j!

)
rixνi +

(∏n
i=1 i!

)
yη,n+1 +

n∑
i=0

(∏
j<i j!

)
(xη�Li − xη�Ri),

we get

h(yη,0) =
n∑
i=0

(∏
j<i j!

)
h(rixνi) +

(∏n
i=1 i!

)
h(yη,n+1)

+
(∏

j<i j!
)(
h(xη�Ln)− h(xη�Rn)

)
(])
=

n∑
i=0

(∏
j<i j!

)
h(rixνi) +

(∏n
i=1 i!

)
h(yη,n+1) (+)

For each i < ω1 let bi = h(rixνi). Let also b = h(yη,0) and let Λb be as in Lemma

3.34. As Λb is finite, for some large enough n, we have

{ρi : i < n} \ Λb 6= ∅.

Let i < n be such that ρi /∈ Λb. Here, we apply the argument presented in items

(3)-(5) from Lemma 3.33 to the displayed formula (+). So, on the one hand, it

turns out that

ρi ∈ Λi ⊆ Λb.

On the other hand by the choice of i, ρi /∈ Λb. This is a contraction that we searched

for it. �
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Lemma 3.39. Let c ∈ AP be full, and h ∈ End(Gc). Then for some m∗ ∈ R and

some countable Λh = cl(Λh) ⊆ Λ[λ] we have:

r ∈ R, ν ∈ Ωc \ Λh =⇒ h(rxν)−m∗xν ∈ GΛh +K.

Proof. In view of Lemma 3.38, there is some countable downward closed subset Λ

of Λc such that for every r ∈ R and η ∈ Ωc \ Λ, we have h(rxη) ∈ GΛ∪{ν} + K.

Thus, for such r and η, there are mr
η ∈ R and brη satisfying the following two bold

properties:

• h(rxη) = mr
ηxη + brη,

• brη ∈ GΛ +K.

Suppose on the way of contradiction that the desired conclusion fails. By induction

on i < ω1 we define a sequence

〈
Yi, ri,1, ri,2, ηi,1, ηi,2 : i < ω1

〉
such that:

(†) (a) Yi = Λ ∪ {ηj,` : j < i, ` ∈ {1, 2}},

(b) ri,1, ri,2 ∈ R \ {0},

(c) ηi,` ∈ Ωc \ Yi, for ` ∈ {1, 2},

(d) m
ri,1
ηi,1 6= m

ri,2
ηi,2 .

The construction is easy, but we elaborate. Let us start with the case i = 0. We set

Y0 = Λ and then choose r0,1, r0,2 ∈ R \ {0} and η0,1, η0,2 ∈ Λ<ω[λ] \ Λh such that

m
r0,1
η0,1 6= m

r0,2
η0,2 . Now suppose i < ω1 and we have define the sequence for all j < i.

Define Yi as in clause (†)(a). By our assumption, we can find ri,1, ri,2 ∈ R \ {0}

and ηi,1, ηi,2 ∈ Ωc \ Yi such that m
ri,1
ηi,1 6= m

ri,2
ηi,2 . This completes the induction

construction.

Let

f : Λc,<ω →| R | + | K | +ℵ0 < λ

be such that if r ∈ R and η ∈ Ωc, then f(rxη) is defined in a way that one can

compute mr
η and brη. Again we can define f as

f = f1 ◦ f2 ◦ f3,
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where:

• f1 : R× (GΛ +K)→| R | + | K | +ℵ0 is a bijection,

• f2 : R× Λc,<ω → R× (GΛ +K) is defined as f2(r, η) = (mr
η, b

r
η),

• f3 : Λc,<ω → R× Λc,<ω is a bijection.

For each n < ω, we set an = rn,1xηn,1 − rn,2xηn,2 . Applying h to it yields:

h(an) = mrn,1
ηn,1xηn,1 −m

rn,2
ηn,2xηn,2 + bn (+),

where bn := b
rn,1
ηn,1 − b

rn,1
ηn,1 . Since c is full, there is an η ∈ Λc,ω such that

1) an = acη,n, and

2) f(η�Ln) = f(η�Rn)

for all n < ω. By clause (2)

3) supp◦(h(xη�Ln − xη�Rn)) = ∅ for all n < ω.

Applying h to

yη,0 =

n∑
i=0

ai +
( n∏
i=1

i!
)
yη,n+1 +

n∑
i=0

(∏
j<i

j!
)
(xη�Li − xη�Ri),

yields that

(\) h(yη,0) =
n∑
i=0

h(ai) +
(∏n

i=1 i!
)
h(yη,n+1) +

(∏
j<i j!

)(
h(xη�Ln)− h(xη�Rn)

)
(3)
=

n∑
i=0

h(ai) +
(∏n

i=1 i!
)
h(yη,n+1)

(+)
=

n∑
i=0

(
m
rn,1
ηn,1xηn,1 −m

rn,2
ηn,2xηn,2 + bn

)
+
(∏n

i=1 i!
)
h(yη,n+1).

Let n < ω be large enough. Here, we are going to apply the arguments taken from

(3)-(5) in Lemma 3.33 to the displayed formula (\). Then, it turns out that

4) supp◦(h(yη,0)) ⊇ supp◦(h(an)), and

5) supp◦(h(an)) ∩ {ηn,1, ηn,2} 6= ∅.

Without loss of generality, let us assume that for each n < ω, ηn,1 ∈ supp◦((h(an)).

So,

{ηn,1 : n < ω} ⊆ supp◦(h(yη,0)),

which is infinite. This is a contraction. �
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Lemma 3.40. Assume Λ = cl(Λ) ⊆ Λc is countable and h ∈ Hom(Gc, GΛ + K).

Then h is bounded.

Proof. Towards contradiction assume that h is unbounded. It follows from Lemma

3.30 that Rang(h) * K. Let b∗ ∈ Rang(h) \ K. Then, for some d∗ ∈ K, a finite

set Λ∗ and two sequences 〈rη ∈ R \ {0} : η ∈ Λ∗〉 and 〈mη ∈ ω : η ∈ Λ∗〉, we can

represent b∗ as

b∗ =
∑
{rηxη : η ∈ Λ∗ ∩ Λ<ω}+

∑
{rηyη,m(η) : η ∈ Λ∗ ∩ Λω}+ d∗.

Let

(1) J0 = GΛ +K,

(2) J1 = J0/K, which is torsion free.

So, b∗ ∈ J0. Let π : J0 → J1 be the natural map π(b) = b + K. Since b∗ ∈

Rang(h) \K, we have π(b∗) 6= 0. Suppose on the way of contradiction that for any

sequence 〈en : n < ω〉 ∈ ωZ the following equations

Γ = {yn = n!yn+1 + enb∗ : n < ω}

is solvable in J1. Say for example, {yn}. Recall Mc is ℵ1-free as R-module. Since

J1 is countably generated, we can find a solution to

Γ = {yn = n!yn+1 + enb̄∗ : n < ω}

in R. Since R is cotorsion-free, a such system of equations has no solution the ring.

So, there is a sequence 〈en : n < ω〉 ∈ ωZ the following equations

Γ = {yn = n!yn+1 + enb∗ : n < ω}

is not solvable in J1.

Let a∗ ∈ Gc be such that b∗ = h(a∗). Let also f : Λc,<ω → ω be such that for

all ν, ρ ∈ Λc,<ω,

f(ν) = f(ρ)⇔ π ◦ h(xν) = π ◦ h(xρ).

As c is full, there is some η ∈ Λc,ω such that:

(3) acη,n = ena∗, for all n < ω, and

(4) f(η �L n) = f(η �R n), for n < ω.
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Thanks to (4), one has

∀n < ω, π ◦ h(xη�Ln) = π ◦ h(xη�Rn) (+)

By applying π ◦ h into the equation

yη,n = acη,n + n!yη,n+1 + (xη�Ln − xη�Rn),

and using clause (3) and (+) we get

π ◦ h(yη,n) = enπ(b∗) + n!π ◦ h(yη,n+1).

This clearly gives a contradiction, as then

J1 |=
(
yn = n!yn+1 + enb∗

)
,

where yn = π ◦ h(yη,n). �

Lemma 3.41. Let c be full and h ∈ End(Gc). Then Rang(h) is bounded.

Proof. Suppose not, it follows that for some countable Λ = cl(Λ) ⊆ Λc,

h � G ∈ Hom(G,GΛ +K)

is unbounded, where G is the subgroup of Gc generated by h−1[GΛ + K]. This

contradicts Lemma 3.40. �

Now, we are ready to prove:

Theorem 3.42. There is some c such that the abelian group Gc is boundedly rigid.

In particular, there is an abelian group G equipped with the following properties

(1) Tor(G) = K,

(2) G is of size λ,

(3) the sequence

0 −→ Rc −→ End(G) −→ End(G)

Eb(G)
−→ 0

is exact.

Paper Sh:1232, version 2022-10-31. See https://shelah.logic.at/papers/1232/ for possible updates.



CO-HOPFIAN AND BOUNDEDLY ENDO-RIGID GROUPS 41

Proof. According to Lemma 3.28, there is a full c ∈ AP . This allow us to apply

Lemma 3.41 to deduce G := Gc is boundedly rigid. By definition, this completes

the proof. �

§ 4. Co-Hopfian and boundedly endo-rigid abelian groups

As stated in [15], it is difficult to construct an infinite Hopfian–co-Hopfian p-

group. What about mixed groups? In this section, we answer the question. We

start by recalling the definition of (co)-Hopfian groups.

Definition 4.1. Suppose G is a group.

(i) G is called Hopfian if its surjective endomorphisms are automorphisms.

(ii) G is called co-Hopfian if its injective endomorphisms are automorphisms.

Here, we introduce a useful criteria:

Definition 4.2. Let G be an abelian group of size λ and m,n ≥ 1 be such that

m | n. Then:

(1) NQr(m,n)(G) means that there is an (m,n)-anti-witness h, which means:

(a) h ∈ End(Torn(G)),

(b) Rang(h) is a bounded group,

(c) h′ := m · idTorn(G) + h ∈ End(Torn(G)) is 1-to-1,

(d) h′ is not onto or m > 1 and G/Torn(G) is not m-divisible.

(2) NQrm(G) means NQr(m,n)(G) for some n ≥ 1.

(3) NQr(G) means NQrm(G) for some m ≥ 1.

(4) Qr(G) means the negation of NQr(G).

(5) Qr∗(G) means Qr(G) and in addition:

(e) Torp(G) is unbounded, for at least one p ∈ P.

In items 4.3–4.7 we check NQr(m,n)(G) and its negation. This enables us to

present some new classes of co-Hopfian and non co-Hopfian groups.

Lemma 4.3. Let G be an abelian group such that the property NQr(G) holds.

Then G is not co-Hopfian. Furthermore, let h ∈ Hom(G,Torn(G)) be such that
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h � Torn(G) is an (m,n)-anti-witness. Then m · idG + h witnesses that G is not

co-Hopfian.

Proof. Suppose that G admits an (m,n)-anti-witness h0 ∈ End(Torn(G)) as in Defi-

nition 4.2. As h0 is bounded, by Fact 2.14 we can extend h0 to h1 ∈ Hom(G,Torn(G)).

So, the following diagram commutes:

0 // Torn(G)
⊆∗ //

h0

��

G

∃h1||xxxxxxxxx

Torn(G)

We claim that f = m · idG + h1 ∈ End(G) is 1-to-1 but not onto.

(∗)1 f is one-to-one.

To see this, suppose x ∈ G in non-zero and we show that f(x) 6= 0. If x ∈ Torn(G)\

{0}, then by clause (c) of Definition 4.2(1) we have

f(x) = mx+ h1(x) = m · idTorn(G)(x) + h0(x)⇒ f(x) 6= 0.

Now, suppose that x ∈ G \ Torn(G). As m | n, we have mx ∈ G \ Torn(G). If

f(x) = 0, we have mx+ h1(x) = 0, thus

h1(x) = −mx ∈ G \ Torn(G).

But, Rang(h1) ⊆ Torn(G), which is impossible. Thus f is 1-to-1, as wanted.

(∗)2 f is not onto.

For this, we consider two cases:

Case 1) h0 is not onto:

By the case assumption, there is

y ∈ Torn(G) \ Rang
(
idTorn(G) + (h0 � Torn(G))

)
and it is easy to see that such a y is also a witness for f to be not onto.

Case 2) h0 is onto:

By Definition 4.2(1)(d), we must have m > 1 and G/Torn(G) is not m-divisible.
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Let z ∈ G be such that z + Torn(G) is not divisible by m in G/Torm(G). Clearly,

z does not belong to Rang(f).

The lemma follows. �

Lemma 4.4. Let K be an abelian p-group of size λ. The following claims are valid:

(i) If NQr(K) holds, then K is infinite.

ii) If K is unbounded, then K is not co-Hopfian.

Proof. (i) By definition, there are m and n such that m | n and that NQr(m,n)(K)

holds. Thanks to Definition 4.2(1), there is h ∈ End(Torn(G)) satisfying the fol-

lowing properties:

(a) Rang(h) is a bounded group,

(b) h′ := m · (idTorn(K)) + h ∈ End(Torn(K)) is 1-to-1,

(c) h′ is not onto or m > 1 and K/Torn(K) is not m-divisible.

We have two possibilities: 1) p - n and 2) p | n.

(1) Suppose first that p - n. As K is a p-group, Torn(K) = {0}. This means

that h is constantly zero and is onto, as well as h′. Thanks to clause (c)

it follows that m > 1 and K is not m-divisible. Since m | n we deduce

that p - m. Now, we consider the map m · idK : K → K. Since K is not

m-divisible, this map is not surjective. Let us show that it is 1-to-1. To

this end, let x ∈ K be such that mx = 0. Let ` be the order of x so that

p`x = 0. As (p`,m) = 1, we can find r, s such that rp` + sm = 1. By

multiplying both sides with x, we obtain

x = rp`x+ smx = 0 + 0 = 0.

It follows that m · idK : K → K is 1-to-1 and not onto, hence K is infinite.

(2) Suppose p | n. As K is a p-group, this implies that Torn(K) = K. There-

fore, in the above item (c), the case “K/Torn(K) is not m-divisible” does

not occur. This is in turn implies that h′ is not onto K. We proved that

the map h′ ∈ End(K) is 1-to-1 and not onto. Hence K is infinite.

The argument of clause (i) is now complete.
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(ii) Suppose K is unbounded. We want to show that K is not co-Hopfian. Let

K2 be the maximal divisble subgroup of K. Since it is injective, we know K2 is a

directed summand. Let us write K as K = K1 ⊕ K2. Due to the maximality of

K2 one may know that K1 is reduced. We show that K1 is not co-Hopfian, and

hence by [22, Claim 2.15(1)], K is not co-Hopfian. Thus by replacing K by K1 if

necessary, we may assume without loss of generality that K is reduced. For ` < ω,

we choose by induction H`, y` and z` such that:

(a) H0 = K,

(b) if ` = k + 1, then Hk = H` ⊕ Zz`,

(c) z` ∈ (Zy`)∗ recall that (Zy`)∗ denotes the pure closure of Zy`,

(d) y`+1 ∈ H`,

(e) The order of zi is ≥ p`.

[Why? For ` = 0, we set H0 = K and let y0 ∈ K be arbitrary. Then (Zy0)∗ is a

pure subgroup of K of bounded exponent. Thanks to Fact 2.5 we know (Zy0)∗ is a

direct summand of K. In view of Fact 2.7 we can find z0 such that Zz0 is a direct

summand of (Zy0)∗. In other words, Zz0 is a direct summand of H0 = K as well.

Consequently, we have H0 = H1 ⊕ Zz0 for some H1. Having defined inductively

{H`, y`, z`}, let y`+1 ∈ H`. Let χ be a regular cardinal, large enough, so that

H` ∈ H (χ). The notation B stands for (H (χ),∈). Let B` be countable such

that H` ∈ B`. Also, let L` := B` ∩H`. So, easily L` is an unbounded countable

abelian p-group. Hence it is of the form ⊕iZz`,i where z`,i is of order pm(`,i). As L`

is unbounded, we may and do assume that m(`, i) > `. This implies that Zz`,i is

a pure subgroup of L`, and hence H`. Consequently, Zz`,i is a direct summand of

H` as well. By definition, we have H` = H`+1 ⊕ Zz`+1 for some abelian subgroup

H`+1 of H`.]

For each i < ω, we let `(i) > 1 be such that zi is of order p`(i). Following clause

(e), e.g. K is unbounded, clearly we can find some infinite u ⊆ ω such that the

sequence 〈`(i) : i ∈ u〉 is increasing. For any j < ω, we clearly have

⊕
i∈u∩j

Zzi ⊆∗ K,
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and hence ⊕
i∈u

Zzi ⊆∗ K.

In the light of [16, Theorem 7],
⊕

i∈u Zzi is a direct summand of K, thus there is

some K1 such that

K =
⊕
i∈u

Zzi ⊕K1.

Let 〈j(k) : k < ω〉 be lists u in an increasing order, and define h ∈ End(K) be such

that

• h�K1 = idK1 ,

• h(zj(k)) = p`(k+1)−1zj(`+1).

It is easy to check that h is a well-defined endomorphism of K and it satisfies the

following properties:

• h is injective,

• h is not surjective.

In sum, h witnesses that K is not co-Hopfian. �

Lemma 4.5. Let G be an abelian group of size λ and m ≥ 1. Suppose there is a

bounded h ∈ End(G) such that f := m · idG + h ∈ End(G) is 1-to-1 not onto 4.

Then for some n ≥ 1 we have:

(i) NQr(m,n)(G),

(ii) Letting h0 = h � Torn(G), h0 is an (m,n)-anti-witness for Torn(G).

Proof. Let f and h be as above. As Rang(h) is bounded, for some n ≥ 1 we have

Rang(h) ≤ Torn(G) and without loss of generality m |n (possibly replacing n with

nm, which is possible as n1|n2 implies that Torn1(G) ≤ Torn2(G)). Notice now

that:

(∗)1 (a) f maps Torn(G) into itself.

(b) if x ∈ G \ Torn(G), then f(x) /∈ Torn(G).

Clause (a) clearly holds as by the choice of n we have Rang(h) ≤ Torn(G). To

see clause (b) holds, suppose by contradiction that f(x) = mx + h(x) ∈ Torn(G).

4Thus f witnesses non co-Hopfianity of G.
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It follows that mx = f(x) − h(x) ∈ Torn(G), and hence as m |n, x ∈ Torn(G), a

contradiction.

Let now h0 = h � Torn(G). Then we have:

(∗)2 (a) h0 ∈ End(Torn(G)),

(b) h0 is bounded,

(c) Since f is 1-to-1, so is f0 = m · idTorn(G) + h0 ∈ End(Torn(G)).

We are left to show that h0 is an (m,n)-anti-witness. By (∗)2 it suffices show that

f0 is not onto or G/Torn(G) is not m-divisible. Suppose on the contrary that

f0 is onto and G/Torn(G) is m-divisible. We are going to show that f is onto,

which contradicts our assumption. To this end, let x ∈ G. Then as G/Torn(G) is

m-divisible, we can find some y ∈ G such that

x−my ∈ Torn(G).

We look at

w := x−my − h0(y) ∈ Torn(G).

As f0 is onto, we can find some z ∈ Torn(G) such that f0(z) = w. So,

x−my − h0(y) = w = f0(z) = mz + h0(z).

Thus

x = m(y + z) + h0(y + z) = f(y + z).

In other words, f is onto. This is a contradiction. �

Lemma 4.6. Let G be a reduced abelian group of size λ such that

(1) λ > 2ℵ0 ,

(2) G is co-Hopfian.

Then the following claims hold:

i) Qr∗(G),

ii) G has no infinite bounded pure subgroup.
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Proof. (i). Thanks to Lemma 4.3, Qr(G) is satisfied, so it is enough to show that

for some prime p, Torp(G) is not bounded. Towards contradiction suppose that for

every prime p ∈ P we have that Torp(G) is bounded.

Here, we are going to show the pure subgroup Torp(G) is finite. Suppose on the

way of contradiction that Torp(G) is infinite. Recall that p-torsion subgroups are

pure. According to Fact 2.4 Torp(G) is a direct summand of G. Also, following

Fact 2.7 we know that Torp(G) is a direct summand of cyclic groups. In sum,

Torp(G) has a direct summand K which is a countably infinite p-group. In view of

Fact 2.6(i), we observe that K is not co-Hopfian. Recall that any direct summand

of co-Hopfian, is co-Hopfian. This means that G is not co-Hopfian as well, which

contradicts our assumption. Thus, it follows that for every p ∈ P, Torp(G) is finite

and therefore a direct summand of G, hence there is a projection hp from G onto

Torp(G).

Let p ∈ P. Then hp � Torp(G) ∈ End(Torp(G)) is essentially equal to the identity

map, so is one-to-one, and hence onto, as Torp(G) is fine. Since Qr(G) is satisfied,

it follows from Definition 4.2(1)(d) that G/Torp(G) is p-divisible.

Now, we take χ be a regular cardinal, large enough, such that G ∈ H (χ) and

let

M ≺Lℵ1,ℵ1
(H (χ),∈)

be such that:

• M has cardinality 2ℵ0 ,

• G,Tor(G) ∈M ,

• 2ℵ0 + 1 ⊆M .

In the light of Fact 2.6(ii), we may and do assume that |Tor(G)| = µ ≤ 2ℵ0 . Recall

that 2ℵ0 + 1 ⊆ M and Tor(G) ∈ M . These imply that Tor(G) ⊆ M . Now, as

G/Torp(G) is p-divisible, then so is

G/Torp(G)

(G ∩M)/Torp(G)
,
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which by the Third Isomorphism Theorem, is canonically isomorphic to G/G∩M .

As Tor(G) ⊆ M , G/(G ∩M) is torsion-free, it is divisible. Let x ∈ G \M and

define the sequence (xn : n < ω) such that:

• x0 = x,

• If n = m+ 1 then

G/(G ∩M) |=
(
n!xn + (G ∩M) = xm + (G ∩M)

)
.

So, letting a0 = 0 and for n = m+ 1 < ω,

an = n!xn − xm ∈ G ∩M,

we have that (an : n < ω) ∈Mω ⊆M and so, as

M ≺Lℵ1,ℵ1
(H (χ),∈),

we can find

ȳ = (yn : n < ω) ∈ (G ∩M)ω

such that an = n!yn − ym, but then for every m < ω:

G |=
(
m!(xm+1 − ym+1) = xm − ym

)
.

Hence, ⋃
{Z(xm − ym) : m < ω}

is a non-trivial divisible subgroup of G, contradicting the assumption that G is

reduced. So we have proved item (i).

(ii). According to the first item we know the property Qr∗(G) is valid. In view

of Definition 4.2(5), there are some p0 ∈ P such that Torp0(G) is unbounded. Since

Torp0
(G) is an unbounded p0-group, then it has pure cyclic subgroups of arbitrary

large finite order. For such a p0, without loss of generality, we may and do assume

that

Gp0
:=
⊕
n>n0

Z
p0
nZ
⊆∗ Torp0

(G)

for some n0. We apply this along with

Torp0
(G) ⊆∗ Tor(G) ⊆∗ G,
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and deduce that Gp0
⊆∗ G. Now, suppose on the way of contradiction that G has an

infinite bounded pure subgroup K. In the light of Fact 2.4, K is a direct summand

of G. Let

T := K ⊕Gp0
⊆∗ G,

which is pure in G. Thanks to Fact 2.5, T is a direct summand of G. Consequently,

Gp0
is a direct summand of G. Recall that direct summand of co-Hopfian is again

co-Hopfian. From this, we deduce that Gp0 is co-Hopfian. Since Gp0 is a countable

p0-group, and in the light of Fact 2.6(i), we conclude that Gp0
is finite. This

contradiction shows that G has no infinite bounded pure subgroup. �

Proposition 4.7. Let G ∈ be a boundedly endo-rigid abelian group. The following

assertions are valid:

(1) G is co-Hopfian iff Qr(G),

(2) If |G| > 2ℵ0 , then G is co-Hopfian iff Qr∗(G).

Proof. (1). If G is co-Hopfian, then by Claim 4.3, Qr(G) holds. For the other

direction, suppose that G is boundedly rigid and Qr(G) holds. Let f ∈ End(G) be

1-to-1, we want to show that f is onto. As G is boundedly rigid we have m, h and

L such that the following items hold:

(a) m ∈ Z, h ∈ End(G),

(b) f(x) = mx+ h(x),

(c) L = Rang(h) is a bounded subgroup of G (and so of Tor(G)).

If f is not onto, then by Lemma 4.5, there is n ≥ 1 such that NQr(m,n)(G) holds,

which is not possible (as we are assuming Qr(G)). Thus f is onto as required.

(2). It follows from clause (1) and Lemma 4.6(i). �

Theorem 4.8. Let K =
⊕
{ Z
pnZ : p ∈ P and 1 ≤ n < ω}. If G is a boundedly

endo-rigid abelian group of size λ and K = Tor(G), then G is co-Hopfian.

Proof. For any p1 ∈ P and n1 < ω, let us define

(x(p1,n1))(p,n) =

 1 + pnZ if (p, n) = (p1, n1)

0 otherwise
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For simplicity, we abbreviate it by x(p1,n1) ∈ K. Assume towards a contradiction

that there exists f ∈ End(G) such that f is 1-to-1 and not onto. As G is boundedly

endo-rigid, there are m ∈ Z and h ∈ Eb(G) such that f = m · idG + h. As f is

1-to-1 and K has no infinite bounded subgroup, we can conclude that m 6= 0.

(∗)1 m ∈ {1,−1}.

To see (∗)1, suppose on the contrary that there is p ∈ P such that p|m and let m1

be such that m = m1p. Now, as Rang(h) is bounded, there is k ≥ 1 such that

pk(Rang(h)) ∩ Torp(G) = {0}.

Let n ≥ k + 1, then:

f(pn−1x(p,n)) = mpn−1x(p,n) + h(pn−1x(p,n))

= m1pp
n−1x(p,n) + pkh(pn−1−kx(p,n))

= 0,

which contradicts the fact that f is 1-to-1. This completes the argument of m ∈

{1,−1} and without loss of generality we may assume thatm = 1. Thus f = idG+h.

(∗)2 f maps G \ Tor(G) into itself.

This is because f is 1-to-1. Indeed let x ∈ G \ Tor(G). If f(x) ∈ Tor(G), then

for some k, f(kx) = kf(x) = 0, thus kx = 0, i.e., x ∈ Tor(G) which contradicts

x ∈ G \ Tor(G).

(∗)3 f � Tor(G) ∈ End(Tor(G)) is 1-to-1 not onto.

Clearly f � Tor(G) ∈ End(Tor(G)), and since f is 1-to-1, f � Tor(G) is 1-to-1 as

well. Now, suppose by contradiction that f � Tor(G) is onto. Then

(1) Tor(G) ⊆ Rang(f),

(2) x ∈ G⇒ f(x) = x+ h(x) ∈ Tor(G).

Recall that h(x) ∈ Tor(G). Apply this along with (1), we deduce that h(x) ∈

Rang(f). Also, recall that Rang(f) is a group. Now, let x ∈ G. Thanks to (2), we

observe that

x = f(x)− h(x) ∈ Rang(f).

In other words, f is onto, a contradiction. So, f�Tor(G) is not onto.
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(∗)4 (a) for every p ∈ P, f maps Torp(G) into itself and so f � Torp(G) is

1-to-1,

(b) for some p ∈ P, f � Torp(G) is not onto.

Item (a) above is simply because f is 1-to-1. To see (b) holds, note that if f �

Torp(G) is onto for all prime number p, then so is f � Tor(G), which contradicts

(∗)3.

Thus, let us fix some prime p ∈ P such that f � Torp(G) is not onto and let

hp = h � Torp(G). Then by the above observations, it equipped with the following

properties:

(∗)5 (a) hp ∈ End(Torp(G)),

(b) Rang(hp) is bounded,

(c) h′p = m · idTorp(G) + hp = idTorp(G) + hp is 1-to-1,

(d) h′p is not onto.

In the light of Definition 4.2 and (∗)5 we observe that

(∗)6 hp is a (1, p)-anti-witness for Torp(G) and so NQr(Torp(G)).

Thanks to Lemma 4.4, Torp(G) is finite. But,

Torp(G) =
⊕
{ Z
pnZ : n ≥ 1}.

In particular, Torp(G) is infinite. Thus we get a contradiction, and hence f is onto.

It follows that G is co-Hopfian and the lemma follows. �

By the same method one can prove the following variation of Theorem 4.8.

Observation 4.9. Let K =
⊕
{ zp,nZpnZ : p ∈ P and 1 ≤ n < ω} where zp,n ∈ Z is

chosen so that zp,nZ 6= pnZ. If G is a boundedly endo-rigid abelian group of size λ

and K = Tor(G), then G is co-Hopfian.

Notation 4.10. For each group G, we set

S := SG := {p ∈ P : G/Torp(G) is not p-divisible}.

Now, we are ready to present the following promised criteria:
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Theorem 4.11. Let λ > 2ℵ0 , and suppose G is a boundedly endo-rigid abelian

group of size λ. Then G is co-Hopfian if and only if:

(a): SG is a non-empty set of primes,

(b): (b1) Tor(G) 6= G,

(b2) if p ∈ S, then Torp(G) is not bounded,

(b3) if Torp(G) is bounded, then it is finite (and p /∈ SG).

Proof. Let K = Tor(G) and for each prime number p set Kp = Torp(G).

First, we assume that G is co-Hopfian, and we are going to show items (a) and

(b) are valid. As G is co-Hopfian, and according to [4] we know |Tor(G)| ≤ 2ℵ0 .

Recall that |G| = λ > 2ℵ0 , so K = Tor(G) 6= G, as claimed by (b1).

To prove (b2), let p ∈ S and suppose by contradiction that Kp is bounded. As Kp

is pure in G, and following Fact 2.4, the boundedness assumption guarantees that

KP is a direct summand of G. By definition, there is Gp such that G = Kp ⊕Gp.

Now, we look at idKp + p · idGp ∈ End(G). Let

(k, g) ∈ Ker(idKp + p · idGp).

Following definition,

(0, 0) = (idKp + p · idGp)(k, g) = (k, pg).

In other words, k = 0 and as Gp is p-torsion-free, g = 0. This means that

Ker(idKp + p · idGp) = 0,

and hence idKp +p · idGp is 1-to-1. Since p ∈ S, Gp = G/Torp(G) is not p-divisible,

thus there is g in Gp such that g /∈ Rang(p · idGp). Consequently, idKp + p · idGp is

1-to-1 not onto. This is in contradiction with the co-Hopfian assumption, so Kp is

not bounded and (b2) follows.

In order to check (b3), suppose Kp = Torp(G) is bounded. Then it is a direct

summand of G, say G = Kp ⊕ Gp. Since G is co-Hopfian, so is Kp. Thanks to

Lemma 4.4 Kp is finite.
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Lastly, we check clause (a). Suppose on the way of contradiction that S is empty.

Let G1 ≺Lℵ1,ℵ1
G be of cardinality 2ℵ0 containing Tor(G), recalling |Tor(G)| ≤ 2ℵ0 ,

so G/G1 is divisible of cardinality λ.

As G1 6= G, there is x0 ∈ G \G1, and note that x /∈ Tor(G). Now as G/Tor(G)

is divisible, we can choose the sequence 〈xn : n ≥ 1〉 of elements of G, by induction

on n, such that x0 = x and for each n,

G/Tor(G) |=
(
n!xn+1 + Tor(G) = xn + Tor(G)

)
.

Set an = n!xn+1−xn ∈ Tor(G). Note that 〈an : n < ω〉 ∈ G1, thus as G1 ≺Lℵ1,ℵ1
G,

we can find elements yn ∈ G1 for n < ω such that

n!yn+1 = yn + an.

Subtracting the last two displayed formulas, shows that the group

L =
⋃
{Z(xn − yn) : n < ω}

is a non-zero divisible subgroup of G. Since L is an injective group, the sequence

0 −→ L
g−→ G −→ Coker(g) −→ 0,

splits. As the property of boundedly endo-rigid behaves well with respect to direct

sum, it obviously implies G is not boundedly endo-rigid. This contradiction implies

that S is not empty. So clause (a) holds. Together we are done proving the left-right

implication.

For the right-left implication, assume items (a) and (b) hold, and we show that

G is co-Hopfian. Suppose on the way of contradiction that there exists f ∈ End(G)

such that f is 1-to-1 and not onto. As G is boundedly endo-rigid, there are m ∈ Z

and h ∈ Eb(G) such that f = m · idG + h.

(∗)1 m 6= 0.

To see (∗)1, suppose m = 0. Then f = h, and since Rang(h) is bounded and f is 1-

to-1, we can conclude that G is bounded and therefor G = Tor(G). This contradicts

clause (b1).

(∗)2 If Torp(G) is infinite, then p - m.
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In order to see (∗)2, first note that Tor(G) is unbounded, as otherwise Torp(G) is

also bounded, hence by (b3) it is finite, contradicting our assumption. Suppose on

the way of contradiction that p | m. Then there is m1 such that m = m1p. Now,

as Rang(h) is bounded, there exists k ≥ 1 such that

pk
(

Rang(h)�Torp(G)

)
= {0}.

Recall that Kp is unbounded. This gives us an element x ∈ Torp(G) of order pn for

some n ≥ k + 1. But then

f(pn−1x) = mpn−1x+ h(pn−1x)

= m1pp
n−1x+ pkh(pn−1−kx)

= 0,

which contradicts the fact that f is 1-to1. As before, we have the following

property:

(∗)3 f maps G \ Tor(G) into itself.

(∗)4 f�Tor(G) ∈ End(Tor(G)) is 1-to-1 not onto.

(∗)5 (a) for every p ∈ P, f maps Torp(G) into itself and so f � Torp(G) is

1-to-1,

(b) for some p ∈ P, f � Torp(G) is not onto.

Fix p ∈ P such that f � Torp(G) is not onto. Then hp := h � Torp(G) is equipped

with the following properties:

(∗)6 (a) hp ∈ End(Torp(G)),

(b) Rang(hp) is bounded,

(c) h′p = m · idTorp(G) + hp = idTorp(G) + hp is 1-to-1,

(d) h′p is not onto.

In the light of its definition, hp is a (1, p)-anti-witness and so NQr(Torp(G)) holds.

Thanks to Lemma 4.4:

(∗)7 Torp(G) is finite.

But now h′p = hp � Torp(G) : Torp(G) → Torp(G) is one-to-one and since Torp(G)

is finite, we have h′p is onto, which contradicts (∗)6(d). �
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Combining the previous results with the mentioned theorem of Paolini-Shelah

[21], we observe the following:

Corollary 4.12. For any cardinals λ > 2ℵ0 , there is a co-Hopfian group of size λ

iff λ = λℵ0 .

References

[1] Reinhold Baer, Types of elements and characteristic subgroups of abelian groups, Proc. London

Math. Soc. 39 (1935), 481-514.

[2] Reinhold Baer, Automorphism rings of primary abelian operator groups, Ann. Math. 44

(1943), 192-227.

[3] Reinhold Baer, Groups without proper isomorphic quotient groups. Bull. Amer. Math. Soc. 50

(1944), 267-278.

[4] R. A. Beaumont and R. S. Pierce, Partly transitive modules and modules with proper isomor-

phic submodules. Trans. Amer. Math. Soc. 91 (1959), 209-219.
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