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ABSTRACT. For A inaccessible, we may consider (< \)-support iteration of
some definable in fact specific (< A)-complete A*-c.c. forcing notions. But
do we have “preservation by restricting to a sub-sequence of the iterated forc-
ing”? To regain it we “correct” the iteration. We prove this for a characteristic
case for iterations which holds by “nice” for A = Xg. This is done generally in
a work H. Horowitz and the author.

For [She20] we use so called strongly (< AT )-directed m. We could here restrict
ourselves to so called reasonable m (see 2.13(3)).
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§ 0. INTRODUCTION

This work is dedicated to proving a theorem on (< A)-support iterations of (< \)-
complete “nicely” definable AT-c.c. forcing notions for )\ inaccessible. A nicely
definable forcing notion can be, for example, random reals forcing (when A = Ng).
Pedantically, at each stage it is a different forcing notion, but it has the same
definition at every step of the iteration. Assume Q is such a definition, (P,, Qs :
a < ay, B < au) is such an iteration, Qg = QVPs! has generic ng. A question is:
assuming (ng : f < ) is generic for P,,, and letting 8. be maximal such that
28, < a., does it follows that also the sequence (n2p : B satisfies 28 < ) is generic
for the iteration (Pn, Qs : a < Bi, B < B4)7 )

The point is that in the parallel case for A = X so for FS-iterated forcing such a
claim is true. In fact, by Judah-Shelah [JS88], if (P, Qg : o < (%), 8 < a(x))
is FS-iteration of Suslin-c.c.c. forcing notions, Qg with the generic 13 € “w and
for notational transparency, its definition is with no parameter and the function
¢ @ B(¥) = afx) is increasing and P = (P;,,Q5 : a < B(x),8 < B(x)) is FS
iteration, @23 defined exactly as Q¢(g) but now in VFs rather than VF<® then
e, ., “MNes) @ B < B(*)) is generic for P’ﬁ(*) over V”. For CS iteration of Suslin
proper forcing a weaker result holds, see [JS88, §2] and [She04a].

Now this has not been clear to us for (< \)-support iteration of (< A)-strategically
complete forcing notions. The solution is essentially to change the iteration to what
we call “corrected iteration”. We use a “quite generic” (< A)-support iteration
which “includes” the one we like and use the complete sub-forcing it generates.
Here we deal with a characteristic case (used in [She20]). A serious incomp is
that the proof applies also to partial memory iteration. On wide generalization
(including the case A = Xg) and application (for A = Ng) this is continued in a work
of H. Horowitz and the author [HS]; more fully [HS] generalizes §1,§2, §3A,83B, §3D
of the present work whereas §3C, §3E, §3F were added later, and §3C is inverse
engineering of [HS, 4.2,4.4]. Our main result is 2.12, proving that there is “corrected
iteration”, i.e. one satisfying the promised property or see 2.11 and more in 2.16,
2.17.

The problem arises as follows. In [She20] it is proved that for A inaccessible, con-
sistently cov(meagre), the covering number of the meagre ideal on X is strictly
smaller than 9, the dominating number. The result here is used there but the edi-
tor prefers to separate it. In §3F we have an alternative proof of the main theorem,
for this we noted in some earlier places what rely on what.

We have two extreme versions of our frameworks, one we call fat, that is, in Defi-
nition 1.10, P+ = [um,¢]=* (used in [She20]). The other is the lean one when the
Pm are restricted to the leaves (i.e. ¢/Ey,). This was the original version and is
the one continued in Horowitz-Shelah [HS].

The interest in having “m is strongly A*-directed” is that it implies IFp, “ns s €
M} cofinal in (HE<,\95, <J}\)d)”, by 1.29. Now using m € M., (being full and wide)

as constructed in §1C, does not give this, e.g. because there may be ¢ € Ly, above
all members of My,. This is circumvented in 2.6 by having, on the one hand for
cofinaly many ¢ € My,, m(< ¢) € M. and on the other hand having “m is strongly
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(< AT)-directed” (see 2.13(2)). An alternative approach is to restrict ourselves to
the fat context.

This work is continued in [HS| and lately in [ST], which in particular sort out
when corrected iteration is necessary; we have lecture on this in the Set Theoretic
Conference, in Jerusalem, July 2022.

We thank Shimoni Garti and Haim Horowitz for helpful comments. We thank
Johannes Schiirz and Martin Goldstern for pointing out several times problem with
the application to [She20], in particular in 2019 that an earlier version of the proof
of [She20, 2.7=La32] the statement ®) was insufficient; and later pointing out a
problem in earlier version of §3E. We thanks Mark Poér for pointing out many
points which need correction.

For a reader of [She20] we try to give exact references to the places here we rely on
there (pages refer to the 2022-08 version; there we assume that m is ordinary, that
is, Ly has set of elements an ordinal a(m) and 8 <p_, v implies § < v < a(m)).

(a) on [She20, 1.8=Lz32, page 6], the definition of Q = Q/\,@a(*), see here Def
1.10, Claim 1.11, page 10, so q there is (essentially) qm here, and so Pm |1,
here is dense in Pj , there when L = Ly, | a,

(b) on [She20, 1.9=Lz33, pag.7] where P , defined there, is Pp[Lm | a] here;
see 2.4(3), page 30,

(c) on [She20, 1.10=Lz35, pag.7], claim on the existence of generic; include
changing the generic in < A places see here 1.13, 1.16, page 12, 14 respec-
tively,

(d) on [She20, 1.11=Lz38, pag.8] see 2.12 page 33 or 2.14, page 34,
(e) in (x)1(A) in the proof of [She20, 2.7 = La32, page 15], see (a)-(d) above,
(f) in ()4 in the proof of [She20, 2.7 = La32, page 16],
See 2.14.
(g) after (x)7 in the proof of [She20, 2.7 = La32, page 17|
See 0.6(4).

(h) on H; inside the proof of Lemma [She20, 2.7=La32, pag. 17|, more details
are in 2.12, that is: B(a)(«) by 2.12(A)(c); B(a)(B) by 2.12(a)(h); B(b) by
2.12(C); HB(c) by 2.12(A)(b); B(d) by 2.12(B); H(e) by 2.12(A)(e),

(i) on ®) inside the proof of Lemma [She20, 2.7=La32, pag.18-19], see [Sheb,
4.12-4.27 = Leb3-LeT0],

(j) In [She20, 2.8 = La35, pg. 21] we use 4.26, page 70.

Note that even if s € My, = us N My, = 0 still: if m € M, then My, Es<t=
ns < n¢ mod JPd see 1.29.

Notation 0.1. We try to use standard notation. We use 0, k, A, i1, X, for cardinals and
a, 3,7, 90,¢e,(, & for ordinals. We use also ¢ and j as ordinals. We adopt the Cohen
convention that p < ¢ means that ¢ gives more information, in forcing notions. The
symbol < is preserved for “being a proper initial segment”. Also recall PA = {f : f
a function from B to A} and let > A = U{# A : 8 < a}, some prefer <*A, but *> A
is used systematically in the author’s papers. Lastly, J]{d denotes the ideal of the
bounded subsets of .

Recall from [She20]:

See https://shelah.logic.at/papers/1126/ for possible updates.
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Definition 0.2. Let A be inaccessible, § = (f. : ¢ < \) be a sequence of regular
cardinals < A satisfying 6. > €.

1) We define the forcing notion Q = Qg by:

(o) peQiff:
(a) p= (ny) = (npvfp)a
(b) m e I 8. for some € < A, (n is called the trunk of p),

(a) 7" dn?,
(b) f7 < f9 e (Ve <A)fP(e) < f(e),
(c) if Lg(nP) < & < Lg(n9) then ni(e) € [fP(e), N), actually follows.

2) The generic is n = U{n” : p € Gq, }-

The new forcing defined above is not A-complete anymore. By fixing a trunk 7 one
can define a short increasing sequence of conditions which goes up to some 6. at

the ¢-th coordinate and hence has no upper bound in [] .. However, this forcing
(<e
is (< \)-strategically complete since the COM (= completeness) player can increase

the trunk at each move.

Remark 0.3. 0) The forcing parallel to the creature forcing from [She92], [KS12]
but they are “w-bounding.

1) The forcing is parallel to the creature forcing from [She92, §1,§2], [KS12] though
they are “w-bounding and not to Hechler forcing, whose parallel for \ is Qo™ =
Qflechler — f(y f): f € A\, v < f}, ordered naturally. We can change the definition
of order, saying p < qiff p=qorp < gAtr(p) Ztr(q) sop<qiff p<qVp=gq)
and then all (strictly) increasing sequence of length < A have upper bound, but
the gain is doubtful as we shall use only strategic completeness for some derived
forcing notions.

2) Closer to [She92] we can use 6 = (01,6,60 : € < A) such that 61, > 6y, =
cf(fgc) > e and A > 0, ., and let Q be such that:

(a) b= (n,f) = (npvfp) S QQ ﬁ
o neEllecchi, ¢ <A,
o f €[] <%e.
(b) Q5 Fp < qiff:
® p,q € by,
o 1, 1y,
o c € [lg(ng), ) = fp(e) C fole),
o € [lg(np),lg(ng)) = ng(e) € fple).

Does not matter.

Notation 0.4. 1) L, M, N are linear orders and r, s,t are members.
2) If n € I.<c0, where ¢ < A then (I <20:)" will mean {v € TI. 6. : v satisfies
n v
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3) For a cardinal \ by induction on ordinal o we define J,()\) as A + S5.427 0
and 3, = J(a) = 3, (No).

Discussion 0.5. 1) Fat AT-directed m are helpful when we like to have IFp_ s
§ € Mm} is cofinal in (Ile<xf, <;va)” as in [She20], see Definition 1.5.

Recall,

Definition 0.6. 1) We say that a forcing notion P is a-strategically complete
when for each p € P in the following game O, (p, P) between the players COM and
INC, the player COM has a winning strategy.

A play lasts o moves; in the S-th move, first the player COM chooses pg € P such
that p <p pg and v < 8 = ¢y <p ps and second the player INC chooses gg € PP
such that pg <p g3.

The player COM wins a play if he has a legal move for every 5 < a.

2) We say that a forcing notion P is (< A)-strategically complete when it is a-
strategically complete for every a < A.

Basic properties of Qg are summarized and proved in [GS12, §2].
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§ 1. ITERATION PARAMETERS

§ 1(A). The frame.

Hypothesis 1.1. 1) A = A< is strongly inaccessible.
2) 0= (0.:e<N\).
3) 6. is an infinite regular cardinal > ¢ and < .

4) Assume Ay > A; > Ao = cf(Ag) > A are such that! Q\l)/\o = A1, so notations
should have the parameter A = (A2, A1, Ag, A) and even® X = (A2, A1, Ao, A, 0).

Notation 1.2. 1) L, M denote partial orders, well founded if not said otherwise.

2) Below m, n will be members of M; we may write e.g. L, q instead Ly, Qm when
m is clear from the context, see Def 1.5, 1.10.

3) We may not pedantically distinguish the subset L; of L and the sub-partial order
L1 of L.

Remark 1.3. Here there is no harm? in adding:

(a) 6. > JJ 2% + 2% for ¢ < A, and/or,
(<e
(b) for m € M demanding My, is a linear order, well founded (it suffices to

assume even M 2 (k, <), k regular from [Ag, A1)).
Definition 1.4. 1) For a partial order L (not necessarily well founded) let:

(o) dp(L) = U{dpy,(t) +1:t € L}, see below,

(8) dpi(t) = dp(t,L) € Ord U {oo} be defined by dp,(t) = U{dp.(s) + 1:
s <[, t}.

(v) Ley =Li{s € L:s<yt},

(0) Ly =L[{s€ L:s<pt}

2) Let Lt = L(+) be L U {occ} with the natural order (but we may write ¢ <z, 0o
instead of ¢ <p4y 00).

3) We say the set L is an initial segment of the partial order L,, when:

e LC L, ie. s€L=s¢€l,,
e s<p tANte L=selL.

The class M is central in this work, see explanation 1.9, in particular, My, is our
aim, the rest (L, first of all) are the scaffoldings.

Definition 1.5. 1) Let M be the class of objects m, called iteration parameters,

of the following form (so really M = M][)] and if we omit sub-clauses (), (¢) of
clause (e) we may write M[x]).

(a) L, a partial order, (but we may write e.g. a <p, t instead s <p, t).

(b) M C L, as partial orders, (in the main case M is linearly ordered),

(¢) (o) u=(u:t€L), P = (P :tc L), each P, is closed under subsets
and 2; C [u]=H,

1usually Ao = ()\2))‘ > A1 suffices but see 3.12, 3.22, however in §4A we add Ao > :l)\Jr,
1

2we mainly can use Ao = AT, but when we restrict ourselves to lean m-s, A\g = A\ seem to

suffice, see mainly 1.13(f)(7), §2, §3C but does not seem worthwhile to pursue.
3That is, this suffice for [She20].
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(B) w C{seL:s<pt},
(d) dp(L) < oo, that is L is well founded,
(e) (a) E’is a two-place relation (on L),
(B)
(")

E" := E'[(L\ M) is an equivalence relation on L\ M,
the order <y, is the transitive closure of | J{<p [(s/E'):s€ L\ M} U
{<r M} (using (0)-(n) below), equivalently:
o if s5;t € L\ M are not E"-equivalent, then s <, t iff for some
71 <m o, wehave s <,, r1, r1 € s/EL ,and ry <, t,79 € t/EL,,
e ifse L\ M and t € M, then s <y, ¢ iff for some r € (s/E')N M
we have s <r <t
e ifse M andte L\ M, then s <y, t iff for some r € (t/E') N M
we have s <r < t.
(0) if sE't then s ¢ M Vit &€ M,
() ist € L\ M then {s € L:sE't} = {se€ L:tE's}; wecall it t/E’; so
E’ is a symmetric relation,
Q) if s,t € L\ M are E"-equivalent then s/E’ =t/F’,
(n) if t € L\ M then u; C t/E’,
(0) if t € L\ M then t/E’ has cardinality < Ao,
() [[M]| <A,
(f) disjoint subsets Mt Mlean of My, such that:
o if s € M3 then P, 5 = [w]=H,
o if s € M then u € Py = u C My, V (3t)(u C t/EL)
o3 we let MDO" = My, \ (Mf2* U Mlean),
2) Saying m € M is lean means that My, = M. The lean context means that
we restrict ourselves to lean m: similarly for fat and neat, see below.
3) We say m € M is fat when My, = M2* and moreover t € Ly, = & = [uy]=*.
4) My, is neat when My, = Mlean y pfat,
Remark 1.6. 1) We may demand m is strongly (< A)-directed, see Definition 2.13(2)
or even reasonable, see Definition 2.13(3); is harmless here and help [She20].
2) It may seem reasonable to demand:
B iss€ Lm\ Mnand s € A€ P, then (s/E') Nuy € Py
However in the crucial claim 3.25, 3.26 this cause problems for ¢ € My, \ M.
Definition 1.7. For m € M.
0) In 1.5 we let m = (Lm, Mm, tm, Py Bl M MY iy = (umy @ t €
L), Pm = (Pmyt 1t € L), for t € Ly, \ My, let t/Ep = (t/EL,) U My, and for

t € M let t/Epm = Muy; so there is no relation Ey, but t/Ey, for t € Ly, is well
defined.

So Definition 1.5(f)(e3) can be phrased as:
o if s € M then u € P s = (3t)(u C t/Em).
1) In 1.5, let dp,,(t) = dpp_ (t),dpy = dp(Lm) and <y =<p..
2) For L C Lyy:
(a) let n = m[L mean n € M, L, = L,<,=<p, [Ln,E, = E_,IL, un; =

Umy N L and Py = Py N[LIS for t € L and My, = My, N L, M2 =
Ml L, M= ME N L,
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(b) let dp,,(L) = dp(Lm[L) and we may write dp(L) when m is clear from the
context.

3) For t € L, let m; = m(< t) = m[L; where Loy = Lyy(<) = Lim,<t = {s:
5 <m t} SO Um(<t),s = Um,s for s € Loy, ete.

3A) Also m¢; = m(< t) = m[L<; where L<y = Lin<y) = Ly U{t}; let Lo =
L, L<s =L, etc.

4) M, is the class of m € M such that L, has cardinality < p. Similarly
Mg;uM:/u M>/u MZ/L; let M/L = M:/L'

5) For m;n € M let m ~ n, and we may say m,n are equivalent meaning that
Ly = Ly (as partial orders) and t € Ly = Umt = Unt A Pmyt = Pny; note that
there are no demands on M and E'.

6) We say f is an isomorphism from m; € M onto my € M when:

(a) f is an isomorphism from the partial order Ly,, onto the partial order Ly,,,

(b) for s,}f € Lm?@we ha;ve 5 € Um,,t & f(5) € Umy, pr) and Pry, r) = {{f(5) :
SCUF:UEC Pty

(c) for s,t € L, we have sEy, t < f(s)Ep,, f(t),

(d) Mm2 = {f(s) RS Mml}'

7) We define weak isomorphisms as in part (6) omitting clauses (c),(d).

8) We say that m is ordinary when the set of elements of Ly, is an ordinal ay, =
a(m) satisfying 8 <, v= 08 <.

9) For a forcing notion P we say that ¢ € P is essentially above p € P (inside P)
when ¢q IFp € G.

10) We say m € Myq or m is bounded, when: if s € L \ M then for some t € M
we have s/E’ C L<y, or just® there is X € [M]<* such that s/E’' C J,cx L<:-

11) We say m € Mypq or m is weakly bounded when Ly = J{Lm(<¢) : t € Mm}.

Discussion 1.8. Concerning the aim of the choice to use u; (and Z%;) in 1.5, note
the following.

1) By the partial order we already can get partial memory, so why not simply use
only u; := {s : s <p t}? After all, the index set is only partially ordered, not
necessarily linearly, so these sets can be independent of each other. The reason is
that a partial order is transitive, so this simple definition would imply s € u; =
us C wuy which means (by definition) the memory is transitive, but we do not
want that to hold in general, (this is central in [She00]). Here @ is not necessarily
transitive, that is, s € uy # us; C u;. By a partial order we cannot get it.

2) In [She04b], [Shea] we use Z7;’s which are ideals, but here not necessarily: this
helps, but has a price; we are relying on “Qjg is close to being A-centered”, i.e. any
subset of {p € Qg : tr(p) = n} of cardinality < €y, has a lub in this forcing. But
for the fat context we get more than (< A)-complete ideal.

3) What is the point of “m being neat”? It tells us that in that case it is easy to
be an automorphism of m, see 1.16(2), we may forget to say we use it.

Explanation 1.9. For m € M:

41n the main case My, is At-directed, so this does not make a difference. Also no real difference
when we restrict ourselves to bounded m’s.
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(a) We shall use Ly, as the index set for the iteration; always a well founded
partial order.

(b) My, is the part of the index set we are really interested in, it may be (k, <)
as in [She20].

(¢) The other part in the interesting case is “generic enough m”, more accu-
rately existentially closed enough so that the iteration restricted to M will
be “stabilized” under further extensions. That is, for every m € M we de-
fine an iteration resulting in the forcing Py,, adding a generic i for s € Ly,
we are interested in the extension V[(n; : s € Mp,)], it is the generic exten-
sion for the forcing we call Py [My,]. But, in general, even if n € M extends
m (see Definition 1.19 below of <pp) maybe Py[Mpm] # Pm[Mm]. Our aim
is to define M, <p so that for a dense set of m’s this holds; (done in the
crucial claim 1.32). So our aim is having Py [Mm], hence the s € Ly \ M
serves as scaffolding, (but see 2.17).

Existentially closed structures are used in model theory, but this ap-
proach gives non-well founded structures, which is “undesirable” for us. So
an essential point here is to prove (under suitable definitions) that “generic,
existentially closed enough m” is well defined in spite of L, being required
to be well founded.

(d) of course, the aim of m € M is to be used to define the forcing, as in
Definition 1.10 below.

Definition 1.10. 1) In the fat context, for m € M let L = L,,, and we define the
iteration qm, to consist of:

(a) a forcing notion Py = Py, ¢ for ¢t € LT; we let Py = P,

(b) Q; a Pi-name of a sub-forcing of Qg in the universe V¥, even Q; <i. Qp
(i.e. Q: € Qg as quasi orders and incompatibility and compatibility are
preserved®),

(c) p ey ift:

(a) p is a function,
(8) dom(p) C L4 has cardinality < A,
() if s € dom(p) then p(s) consists of tr(p(s)) € [[ 0. for some (;, =
e<((s)
C(s) < Aand & = &) = &(p(s)) < Xand By and 7 = 7)) = (1(C) :
¢ < &ps)) = (Tps)(€) 1 € < &pis)) € ©(us) lists the coordinates used in
computing p(s) and are such that:

o1 B, is a A-Borel function®, B = By : $([] 6:) — [T 6-
e<A e<A

moreover into ( [] 6.)F*®G)]; and considering (d)(a) below less
e<A

pedantically p(s) = (tr(p(s)), fp(s)), Where

fots) = Bp(s) (- M (©)s - - -)¢<€,.y Which means: absolutely,
i.e. in every forcing extension V@ of V where Q is a (< \)-
strategically complete and is AT-c.c. forcing notion, still By
is such a (A-Borel) function; we may write £, s instead of &y,
etc.

7

5But maximal anti-chains - not necessarily. Recall that Qg is from 0.2, 0.3. What is Q¢? It is
implicitly defined in clause (¢) and explicitly in 1.18).
6that is, a definition of one.
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(d) (a) 7, is the Py-name, when t € Lif,s € L, defined by U{tr(p(s)) : p €
GPt}7
(8) For p € P, and s € dom(p) we interpret p(s) as a Ps-name
(tr(p(5)), Bp,s(- -3 1y () - - )<ty o)
() B p< g iff
(Oé) D, q S ]P)h
(8) dom(p) C dom(q),
() if t € dom(p) then (¢[L<¢) P <y “p(t) <q, q(t)”.

2) In the general context we replace clause (c¢)(y) by: (so part (1) is a special case
with lp(s) = 1, Tp(s),0 = fp(s))~
(7) if s € dom(p) then p(s) consists of tr(p(s)) € H.c¢(s)fe for some (5 =
C(s) <XAand € = g,(5) = (p(s)) < X and B,y and 7 = 75 = (r(¢) : ( <
Ep(s)) = (Tp(s)(€) : € < gps) € °(us) lists the coordinates used in computing
p(s) and’ (Bp(s),0: Tp(s),e : t < t(p(s)) are such that:

(3] Bp(s is a A-Borel functions, B = Bp(s : (H 0:) — [ 0. moreover
e<A e<A
into (J] 6.)*®&)]; and considering (d)(a) below less pedantically

e<A

p(s) = (tr(p(s)), fp(s))v where fp(s) = Bp(s)( .. ,17,_?(5)(0, .. .)<<£p(s)
which means: absolutely, i.e. in every forcing extension V@ of V where
Q is a (< \)-strategically complete and is AT-c.c. forcing notion, still
B,(s) is such a (A\-Borel) function; we may write &, s instead of ,(y),

etc.,
o Ly = L(p(s)) < A moreover? < Org(tr(p(s))s
o3 for. < lp(s)s fp(s),L = fp(s) rwp(s),b 80 Wp(s),, = w(p(s), L) = dom(Fp(s),L) c

Ep(s) and Tp(s),, is a subsequence of 7,4,
s, By, is a Borel function from () (TT 6.) into ( H 6, )[tr(p())]

S

e<A <A
*5 Byi) (0,0 1 € < &) = sup{By), (M, 0) < €
t < u(p(s))} and naturally f,) = sup{fp(s), : ¢t < L( (s
p(S << C € Wp(s),e >)
o for each + < t(p(s)) for some u € P s we have {r,(¢) : ¢ €
Wp(s),.} € u s0 is a subset of us,
o7 (follows) when m is lean, if ¢ < 1,5y and € € wy(s),0; Tp(s)(€) € Lin\Mm

then {Tp(s ( ) C € Wp(s), L} - T'p( s)( )/Em7

[Why? As Definition 1.5(2) together with eg implies {r,)(){ : ¢ € Wy(s),t} €
Tp(s)(a)/Ellrn}'

Wp(s) L>) :
N Fots)u

"What is the point of “. < u(p(s))”? As the support is not just us but also &, and Z, is a

family of suitable subsets of us, p(s) is (tr(p(s)), fs), fs is a name of a member of [] 6. such that
<

tr(p(s)) is a (proper) initial segment. But how is fs computed? As our memory 1<s Ps C P(us)
and not just us (or even a (< \)-complete ideal) f; is composed of ¢,(5) names each coming from
(ne 1t € u),u € P for v < u(p(s).

8that is, a definition of one

9This and the rest of (¢)(y) are used in the proof of 3.18. The aim is that defining B,(s) from

(Bp(s),. : t < t(p(s))), the sup will not give in & the value 0.
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o3 we let 7, 5) be the set {fy(s),, 1 ¢ < t(p(s))}, so we may write p(s) =
(tr(p(s)), <g\p(s)))

The following matters only for [She20].
Claim 1.11. Assume m € M is, (see 1.7(8)) ordinary'®, that is the set of elements
of L is an ordinal oy, = a(m) satisfying B <rp. 7= 5 <.
There is a unique object q = (u,P,Q,n) such that:

(a) 4@ = tUm S0 am = 1g(a),

(b) (PG4, QG 5 : @ < am, < am) , the (< \)-support iteration such that: Q,

is essentially the forcing notion form from 1.10,
(¢) q is as in [She20, 1.8=Lz32, page 32].

Proof. Follows from 1.18 below. Ui1a

Definition 1.12. 1) For p € Py, let,

(a) fsupp(p), the full support of p be U{{r,(s)(¢) : { < & s}U{{s} : s € dom(p)}
(b) wsupp(p), the wide support of p be the set of s € Ly, such that for some ¢
at least one of the following hold:
o, s=1¢€ fsupp(p),
o t € fsupp(p) \ M,s € t/EL,.

2) For m € M let Pi* = Py, ¢, etc., in Definition 1.10.
3) For L C Ly, let Ppy(L) = P [{p € Pm : fsupp(p) C L}, that is:
e pePy(L)iff p € Py, and fsupp(p) C L,
® p<p,r) qiff pE€Pm(L)AqEPm(L)Ap<p, ¢
4)Form € M and t € Ly, let!! Q¢ = Q¢ be the Pi-name of Qg [{(v, f[Gp
(v, f) as in Definition 1.10(c)(vy) with s there for ¢ here}.

m(<t)]) :

Claim 1.13. Form € M (so Py = Py, 4, etc.):

(a) the iteration qQm is well defined, i.e. exists and is unique,

(b) (a) ift € L, then Py is indeed a forcing notion and is equal to Puy(<yy,
(B) the Pi-name ns does not depend on t as long as s <r,, t € L,
(v) ne is a ]P’m(g,:) -name.

(c) if s <p t are from L}, then:
() pePys=peP AplLes =p,
(B) ifpa €Ps then Py |=“p<q” & Ps = “p<q”,
(v) if p € Py then p[L<s € Ps and Py = “(per(<s)) <p’,
(5) P, ': “p < q” = Py }: “pu—/m(<s) < qum(<s)”;

() Py <P, moreover

(C) pEPA (per(<s)) <q€ePs=qU (pr(Lm(<t)\Lm(<s)) cePisa
<-lub of p,q.

(d) if L is an initial segment of Ly, then Pmir, = Pm[{p € Pm : dom(p) C L,
equivalently fsupp(p) C L}; this holds in particular for Ly<y) and for
Lm(<t)-

— — —

10a¢ Lm is well founded, this is not a real restriction.
Hhot used, could have used it in 1.18
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(e) if Ly C Lo are initial segments of Ly, then the parallel of clause (b)
holds replacing Pm s,Pmt 0y Pmir,, Pmir,, respectively. Also the paral-
lel of clause (c) holds.

(o) dom(p) has cardinality < A,

(8) fsupp(p) has cardinality at most A,

(v) o1 wsupp(p) is included in the union of < X\ sets of the form t/Em,
or {1},

o if m is lean then the union is even of < A such sets.

Proof. Straightforward. For ¢t € LE | by induction on dp,,(t), define P; and prove
the relevant parts of (a),(b),(c),(d),(e). 0113

Note the following;:

Observation 1.14. If B is a A-Borel function from ¢(116) to P(\) or even A (\T)
where & < X then there is a A\-Borel function B’ from ¢(110) to Q4 (so absolutely'?
to Qg) such that for any 7j € $(110) we have, absolutely:

e if B(77) € Qg then B'(7)) = B(7),
e if B(77) ¢ Qg then B/(77) = (0,0,), the minimal member of Qg.

Proof. Just define B'(77) as B(7) if B(7j) € Q and the trivial condition ((),0,)
otherwise. Ui1a

Remark 1.15. 1) A reader may wonder, e.g.:

(%) if (B : @ < e < A) is a sequence of A\-Borel subsets of I, < »0. which form
a partition (in V), does they from a partition also in V.

In our case as P is A-strategically complete (see 1.16(3A)) the answer is obviously
yes.

2) Note that in (%) we cannot weaken the assumption too much because “if P add
a new subset to 6 < X this certainly faill”. Even (< \)-strategically complete is
not enough. Why? assume A is a Mahlo cardinal S C {6 < X : 6 inaccessible} is
stationary, such that (for transparency) ¢g holds. We can find .7 such that:

B (a) 7 a subtree of (*>2, <), so closed under initial segment,
(b) 7 with no <-maximal nodes, moreover (Vn € 7)(Ve < \)(Tv)(n<v €
T Ne <lg(v)),
(c) if € A\ S a limit ordinal, n € °2 and a < § = nla € 7, then n € 7,
(d) 7 has no A-branch.

Let Bo = {n€*2: A\, \nla € I} and By = *2.

In V those two A-Borel sets form a partition: the first is empty and the second
is all. The forcing notion .7 add a A-branch to .7, hence (Bg,B;1) are no longer
disjoint so fail to form a partition of *2. Lastly, for v < A the forcing notion .7 is
a-strategically complete (just COM choose pg € 7 of length > ).

12That is, for every forcing notion P which is A-strategically complete, this property continue
to hold in VT; here the property is that the range is as indicated; parallely below. We could
demand just preserving the regularity of A and the 6.-s,
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3) Alternatively, if it suffice to us to have “for @ < k, COM do not lose in the game
of length ” let A be inaccessible and S as above or just such that A\ S is fat i.e.
for every club E of A and a < A there is an increasing continuous h : « — F such
that S Nrang(h) = 0. Let Q = {n : n € >\ be increasing continuous with range
disjoint to S and sup(rang(n;)) is not in S}. Let the sequence (n; : i < A) of pairwise
<J-incomparable be such that 1g(n;) € S and (Vo < 1g(n;))[n: [ € Q] and it is dense
in Q. For i < A\, let Byy; be {v € *\:n; <v}, so closed and By = {v € *\ : v is
not increasing continuous}, now (B; : i < A) is as required.

4) Another avenue is to assume Ry < 0 = cf(f) < A\, Sy C {6 < A : cf(N) <
0},S C {6 < A : cf(d) = 0 and Sp NI is a stationary subset of d}. Now let
Q= {n:n€*2and for no § <lg(n) we have § € S and for some club E of § do
we have o € EN Sy = n(«) = 1}. Continue as in 1.15(3).

5) Note that if in 0.6(1) we let INC to choose first, then 1.15(a) does not work
whereas in 1.15(2), (3) this does no matters.

6) Anyhow in 1.14 this is not necessary; it is enough that being a member of Qg is
a A-Borel set.

Claim 1.16. Let m € M.
1) If L, E “s < t” then:

(@) IFp,., “ns € T] 027,
- e<A

(B) if G C Py is generic over V,n, = n.[G] for v € Lm <t, u € Pmy and
v € 00 is from V[(n, : v € u)] C V[G], then v <gba Ts-

2) P, satisfies the AT -c.c., and even the X™-Knaster (and more).

3) P, is (< \)-strategically complete (even \-strategically complete but not used'?).
34) If p = (p; =i < 0) is <p_, -increasing, 6 < A and i < j < I At € dom(p;) =
tr(p;(t)) < tr(p;(t)) then' P has a <p, -upper bound p. Moreover, dom(p) =
U{dom(p;) : @ < 0} and s € dom(p;) = tr(p(s)) = U{tr(p;(s)) : 7 € [5,0)};
in fact also fsupp(p) = U{fsupp(p;) : ¢ < d} and p is a lub of p. Also, we can
weaken the demand above to i < 6 As € dom(p;) = & < O(5) where we let e(s) =
sup{lg(tr(p;(s))) : j € [i,6)}-

3B) If ( < X and L |= “s < t”, then the following is a dense open subset of P;:
Fsic ={p € Py : s € dom(p) and tr(p(s)) has length > (}.

3C) If p € Py, and ¢ < A then for some q € Py, we have p < q and t € dom(p) =
tr(p(t)) <tr(q(t)) and t € dom(q) = £g(tr(q(t))) > .

4) If x is a Py -name of a member of 7 (\"), e.g. of Q5 (in V[Pm]) then for some
¢ < X and \-Borel function B : $(I1§) — S (\T) and a sequence (r¢ : ( < &) of
members of Ly we have lp,, “z=B(...,0pe, .. )c<e”

4A) Ift € L, u C Lin(<yy and lbp, “y is a member of Qg from V[(n, : s € u)]”,
then for some €, & < X and \-Borel functions as in 1.10(c) (), B; : $(If) — Qg
for i < e and sequence (r¢ : ( < &) of members of u we have lFp, “for some i < ¢
we have y = Bi(. .., 1, )e<e”

13Recall that being A-strategically complete means that a play of the game lasts A moves, and
the COM player to win needs to have a legal choice in each move. So COM needs just to have a
common upper bound to suitable increasing sequences of length < .

MBut tr(p(t)) < tr(p;(t)) does not suffice, but if e.g. cf(d) < g it suffice.
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5) If m,n are equivalent then Py, =Py and Py = Py fort € L, = L.
6) Assume that p,q € Py, are incompatible then there are g1 and s such that:
) ql E IEDI‘lfl,S}

s € dom(p) Ndom(q),

)
) (qum,<s) <p,. 01,
; (per,<s) ng q1,

tr(q(s)j, i.e. they are <-incomparable or (a) + (B8) + () where:

(a) Ly(tr(q(s))) # Lg(tr(p(s))),
(B) if £g(tr(q(s))) < Lg(tr(p(s))) then for some ordinal €,fg(tr(q(s))) <

(s))
e <ALg(tr(p(s))) and 1] Lm(<s) Fpa <., t1(0(3))(€) < fq(s) ()7,
(7) if Lg(tr(q(s))) > Lg(tr(p(s))) then for some ordinal e, Lg(tr(q(s))) >
e > Lg(tr(p(s))) and q1[Lm(<s) Fep., “tr(a(s))(e) < fps)(e)”-

7) e, “V[(Z]s : s € Lm)] = VI[G]”.
8) Fort € L, the sequence (1)s : 5 € L <) is generic for Pm; that is:

(*) if G C Pm, is generic over V and ns = 1[G] for s € L <¢ then V[G] =
VI[(ns: s € Lim<t)].

9) For m € M, 7 is an automorphism of m when:

(a) 7 is a permutation of Ly,

(b) w[Mpm is the identity,

(c) if for every s € Ly \ Mm, for some t € Ly \ My we have w[(s/Ep) is
an isomorphism from m[(s/Ey) onto m|(t/Ewm), and m maps us, Ps to

Ut,«@t

10) In part (8), moreover, in VIG]|, if 7’ = (0, : $ € Lym,) and 0, € .70 and
the set {(s,€) : 8 € L <t,€ < X and nl,(¢) # ns(€)} has cardinality < X then also
7’ is generic (for P(Lm <¢)) and V[ij'] = V[G].

Remark 1.17. What is the use of e.g. (6), (6A)7 See 2.12(A)(b) and 1.18.

Proof. We prove all parts simultaneously by induction on dp,,,.

1) For clause («) for each m, using the induction hypothesis and 1.13(e), the prob-
lem is only when dp,, () = dp,,, —1 and use part (5A) proved below (and 1.13(c)(()).
For clause (3) use also part (6A) for Py« proved below in 1.13(c)(¢). In both
cases the proof of the parts quoted does not rely on part (1), (but may depend on
the induction hypothesis).

2) Recall that A is strongly inaccessible. If p. € Py, for € < AT then we can find
by the A-system lemma a set v and unbounded S C A\* such that e #( € S =
dom(p.) Ndom(p;) = w and (tr(p:(B)) : 5 € u) is the same for all ¢ € S. Now p., p¢
has a common upper bound for every ¢,( € u, i.e. we define r by:

dom(r) = dom(p.) U dom(p,),

r(s) = pe(s) is s € dom(p)\dom(p¢),

r(s) = p¢(s) if s € dom(pc)\dom(pe),

if s € dom(p.) N dom(p¢) then r(s) = (tr(pg(s)),max{fps(s), fpc(S)})'

3) By (4), the second sentence + (4A) below which use only the induction hypoth-
esis.
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3A) We define p by:
e dom(p) = U{dom(p;) : i < &}
o tr(p(s)) = U{tr(pi(s)) : ¢ < I satisfies s € dom(p;)}
® fu(s) = sup{fp,(s) 1 @ < J satisfies s € dom(p;)}.

Note that here having to really start with (f,, (5. : ¢ < ¢(pi(s))) and get (f, ().
v < 1(p(s))), see 1.10(c)(ry) causes no problem, similarly in the proof of part (2) -
just take the union.

3B) Obvious by the definition of P, and 1.13(c), recalling that Pu,<4) is (< A)-
strategically complete, that is part (4) and (5B).

3C) The proof is by induction on dp,, and is splitted in cases:

Case 1: dp,, is zero:

So Ly, is empty.

Case 2: dp,, = o+ 1:

Hence Ly = {s € L : dp,,(s) = a} is non-empty and letting L1 = Ly,\Lq; clearly
s € L1 = dpy(s) < a, 50 dpyp, < a. Let ¢ = sup({fg(tr(p(s)) +1 : s €
dom(p)} U{¢+ 1}). Hence applying parts (3) and (5B) to m[Ly, i.e. the induction
hypothesis we can find ¢; such that Pmz, = “p[L1 < ¢1” and [s € dom(g1) =
lg(tr(q1(s)) > (] and g1 forces a value to fp(s)[Cs, call it ps for s € dom(p) N Lo.
Define ¢ € Py, by dom(gq) = dom(g;) U (Ls Ndom(p)),qlL1 = ¢1 and if s € Ly N
dom(p) then q(s) = (ps, ps” (fp(s)[[C, A)), Tully w(q(s)) = t(p(5)); Sq(s).c = Sp(s).e
and Bys), is like By, only restricting the range to (IT.<x0,)" ()

Easily q is as required.

Case 3: § = dp,, is a limit ordinal of cofinality > A:

So a = sup{dp,,(s) + 1 : s € dom(p)} is an ordinal < ¢ and let L = {s € Ly,
dp,,(s) < a}, so L is an initial segment of Ly, and applying the induction hypothesis
to m[L,p we get g as required in Py, hence in Py,

Case 4: § = dp,, is a limit ordinal of cofinality < A:

Let (a; : i < cf(d)) be increasing continuous with limit §, let a5y = 0 and for
i <cf(d) let L; :={s € Ly : dp,,(s) < 14 a;}.

Now we choose (p;, ;) by induction on i < cf(d) such that:

(a) pi € Pm

b) Pz, b “(plLi) < pr and p; < p;” when j < i,

c) 1f i is a limit ordinal then p; is gotten from (p; : j < %) as in part (4),

d) if s € dom(p;) then £g(tr(pi(s))) > G,

) (¢j : 7 < 1) is an increasing continuous sequence of ordinals < A and if 7 is
non—hmlt then ¢; is > ¢ and > |dom(p)| and > sup({€g(tr(p;(s))) : j < @

and s € p;} U {lg(tr(p(s))) : s € dom(p)}).

Using 1.13 and the induction hypothesis this is easy.

4) For transparency assume I “y € ] 6.7 or just € *V. By parts (4) + (4A),
- e<A
ie. part (3), for each ¢ < A the following subset of Py, is open and dense:
I ={p € Pmy: forsomev € [] 6. or € *V (from V!) we have p Ibp,, , “yI¢ =17
e<( -
Clearly there is a maximal antichain (p¢. : € < §¢) of Py, included in & and by
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part (2) without loss of generality & < A, the rest should be clear. In the general
case we can code y as a subset of A, etc.

4A) This too should be clear as P; satisfies the A*-c.c.

5) Look at the definitions.

6) Using parts (4) and (4A) and the definition this is easy.

7) Suppose toward contradiction that G; # Gg are generic subsets of Py, but
s € Lm = 15[G1] = 15 = 75[Ga].

Let p1 € G1\Ggz hence there is pa € Gy such that ps IFp_ “p1 ¢ Go” hence pq, pa
are incompatible. Let L, = {s € Ly : G1 NP<y = Ga NP<,} so L, is an initial
segment of Ly,. If L, = L, we can easily get a contradiction, so L, # Ly, and let
7 € Lm\ L, be such that Lm(<r) C L.. Now as in part (8) we can get a contradiction
having found a common upper bound to p1, ps.

Alternatively use part (6).

8), 9), 10) Easy too. Ui.16

Conclusion 1.18. Let m € M and for notational transparency is ordinary (see
1.7(8), which means that for some ordinal B(x),t € Ly < t € B(x) and s <m
t = s < t.) Then q is essentially'® a (< \)-support iteration of length B(x) with
Qo = (1) € @7y ap f = suplfy 1 < )}, i0) < Avafy and
{fi it <)} C U{Q;’M”:aeu” t U € Pmalt}t with the natural order, i.e. the

order of Q;/[IP’&} restricted to this set.
Proof. Should be clear by 1.16. 0118

Till now (E},, M) have played no role and we could have omitted them.

Definition 1.19. 1) We define the two-place relation <=<p; on M as follows:

m < n iff:
(a) Ly C Ly, as partial orders of course,
(b) My = My, (yes! equal), and Mt = pfat pplean — pylean
(¢) Umt=tn¢ N Lm and'® Py = {uN Ly 1 u € Py} for t € My,
(d
(

if t € Ly \Mm then t/E}, =t/E} hence Ey, = E} [Lm.
Hence,
o, ifte Ly, \ M, then ym,t = @nﬂg,
o if t € My, and s € Ly, \ My, then {u € P i u C s/Em} = {u €
Pat:uC s/En},
o3 if t € My then {u € P u CMm}={u€ Pns:uC Mn}

)
)
) Umyt = Un¢ and Py = Py for t € L\ Mm,
)
)

2) We define the two-place relation <,=<j; as in part (1) omitting clauses (b),(e)
and (f); natural but not used here.

3) We define the two-place relation Stl(/[d by m SR,Id n iff m <y n and both are
bounded, see 1.7(10).

151 particular - P o is a complete sub-forcing of the one we get by the iteration.
16T his is the parallel in clause (d) are covered by clause (f) but see part (2).
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Claim 1.20. 1) <y is a partial order or M and SR}} a partial order on Mypq in
fact 5 SM rMbd'

2) If (mg @« < 6) is <m-increasing, then its union ms (naturally defined) is a
<m-lub and |Lm;| < E{|Lm, | : a < 6}, so

o ift € My, \Mrfﬁ,ta, then Pyt = U{Pmpt: B € o, 0]},

o ifte Mfﬁi, then Pms.t = [tm.s.4)=.
2A) Similarly for Mygq.

2B) We can restrict ourselves to any of the context (see 1.5)(2) including the fat
context (there for t € Mpy,, P, should be [um; ]=*, which may be different then

U{[tm,, )= a < 6}).

3) Ifm <yn and L C Ly, then p € Py (L) < p € Pu(L) for every p.

4) If m <y n and Py, <Py, and L C Ly, then Py (L) =Py (L) as quasi orders.
5) if m <pp n then:

m is lean iff n is lean,

m s fal iff n is fat,

m is neat iff n is neat,

m is bounded if n is.

Proof. Easy.

1) Obvious.

2) Why is Ly, := U{Lm, : @ < 0} well founded? Toward contradiction assume
t=(t,:n<w)is< Lo, ~decreasing. We can replace t by any infinite sub-sequence.
So without loss of generality:

(x) either (a) or (), where:
(o) for every n < m there is sy, m € Mm, such that t,, <r, Sn.m <L, tn,
(8) for no n < m this holds.

If clause («) holds, then (recalling My, = Mm,) the sequence (s, n+1: 1 < w) is
a <p,,,-decreasing sequence contradiction. If clause () holds, then for n < w, let
a(n) = min{w : t, € Ly, }; without loss of generality the sequence (a(n) : n < w)
is monotonically increasing or constant; so as Mm, ) = Mm,, by 1.19(1)(e) we
get tn/Em, i1y = tnt1/Em, .., (recalling part (1)), hence ;11 € Lm,,, hence

a(n)
a(n+1) < a(n). So {t, :n <w} C My, hence as L., is well founded we are

«(0)

done.

The proofs of (2A) and (2B) are easy too.

Finally for (3), (4) and (5), see the proof of B, in the proof of 1.26. 0120

Claim 1.21. (M, <;,) has amalgamation. That is, if my <y mp,my <p; ms
and Ly, N Ly, = Lm, then there is m € M such that m; <y m, my <y m and
Ly = Lim, U Ly, In fact, m is unique, so we call it m; ®m, mo

Proof. Note that by clause (e)(y) of Definition 1.5 and clause (e) of Definition
1.19(1):

(%)1 assume (s1 € Lm; \Lmgy) A (83 € Lmy\Lm,) and Sz € Lym,;
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o if (51 <m, S2) A (S2 <m, S3), then for some s},s), € My, we have
sy € (s/EL) N Mm,s5 € t/EL, N Mm, 1 <m, $1 <m, S2 and sg <m,
$h <mjy S3,

o if 83 <m, S2 A S2 <m, S1, then for some s}, s, € My,, we have s| €
(s/EL) N Mm,s5 € (t/EL) N Mm, $3 <m, S5 <m; $2 and sz <pm,
8} <m, S1.

We now define m by:

(x)2 (@) (@) t€ Ly ifft € Ly, Vt € L,
(8) Mpm = My, and Mfat = Mt pplean — pplean,
(b) s <m t iff one of the following occurs:
(@) 8 <m, t,
(B) s <m, 1,
(7) 8 € Ly \Lm, and t € Lm,\Lm, and for some r € My, $ <m,
TAT <m, T,
(6) 8 € Lmy\Lm, and t € Ly, \Lm, and for some r € My, $ <m,
TAT <m, .
() Um, is:
) Umy,t U Umyt ifl" ¢t e Lm,,
(ﬁ) Um, ¢ ift e Lml\LmO‘
(’7) Um,,t ift e Lmz\Lmo'
m=Em UEL, .
) Pyt it t € Lun, \ Liny.,
) Pmats if t € Liny \ Ly,
) Pyt U Py, if t € Mlcan
)
)

mg

0 {u1 Uug :uj € gml’t,UQ c me,t} ifte ]\4fat

mog’

Clearly,
® m € M and m; <p m and my <pq m.

So we are done proving the existence of m, the uniqueness is obvious. (Jy.01

Observation 1.22. 1) Forp,q € Py we have: Py = “p < ¢” iff dom(p) € dom(q)
and q is essentially above p inside Py, (see Definition 1.7(9) or below).

2) For p,q € Py the following conditions are equivalent:

(a) glF “p e Gp,”, that is q is essentially above p, see 1.7(9),

(b) if s € dom(p) then either s € dom(q) and (¢[Lm,<s) IFp,. .. “P(s) < q(s)”
or s ¢ dom(q),tr(p(s)) = 0 and q[Lm,<s IFp,, ., “p(s) is trivial, i.e. fp(s
18 constantly zero”,

(€) Pm = “p < g where dom(q™) = dom(q) U dom(p) and ¢ (s) is:
(@) q(s) if 5 € dom(g),
(B) the trivial condition if s € dom(p)\dom(q); note that fsupp(qt) =

fsupp(q) U fsupp(p).
Remark 1.23. We shall use this freely.

Thut recall that for £ € {1,2} we have: t € Lmg\Mmg = Um,,t = Umg,t N Pmy,t = Pmo,t-
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Proof. 1) Easy but we shall elaborate.

Let p,q € Ppy. If p < g then clearly dom(p) C dom(q) and ¢ IFp,_ “p € G”, that is
q is essentially above p.

For the other direction assume dom(p) C dom(g) but Py, E —(p < ¢) and we shall
prove that g is not essentially above p, this suffices. By the present assumption
there is s € dom(p) (hence s € dom(q)) but q[Lm<s) I “p(s) < q(s)”.

Hence there is g1 € Puy(<s) above q[ Ly (<) such that ¢; Ibp_ (<) “=(p(s) < q(s))”.
By the properties of Qg (and Q’, 1.16(6)) there are g2, ¢ such that:

()1 (a) ¢' € Pm,dom(q) = {s},
(b) g1 < g2 in IP)m(<s)a
(€) g2 lFpm(s) “q(s) < ¢'(s) but ¢'(s), p(s) are incompatible”
Lastly, choose the function g3 by:

(¥)2 (a) dom(gs) = dom(gz) Udom(q),
(b) gsldom(gz) = g2,
(c) g3(s) =d'(s),
(d) q2(t) = q(t) if t € dom(p) \ (dom(gz) U {s}).
Clearly q3 € P, q < g3 and g3 IFp,, “p ¢ Qp,,” so we are done.
2) (a) implies (c):
By the choice of g% we have ¢ < ¢T, so clause (a) implies that g is essentially above
p hence by part (1) in Py, we have p < ¢+ so clearly clause (c) holds.
(c) implies (a):
Easy.
(c) iff (b):
Obvious recalling the properties of Qg. 01 .92

§ 1(B). Special sufficient conditions.
Claim 1.24. For m € M, recalling 1.12(3), we have Py, (L1) < Py (L3) when :
(%)

a) Lo C L3 are initial segments of L,
b) Ll Q L3 and LO = Ll ﬂLg,
c) Lo is an initial segment of Ly, (follows),
d) Pm(L()) < ]Pm(LQ),

) Li\Lg is disjoint to M,

) th S Ll\LO then (t/Em) n Lm,<t C L.

Remark 1.25. 1) We may phrase it differently. Recall that assuming P’ <P, we say
p’ € P is a reduction of p € P where every condition r € P’ stronger than p’ (in P’)
is still compatible (in P) with p. Let Py = Pp,(Ls). Now the statement is: to find
a reduction of ps from P3 to IP; first consider po = the reduction of p3 to Py, then
let po be a reduction of py from Py to Py and finally extend pg to a condition p; by
appending the information from p3 on (L; minus Lg).

2) Claim 1.24 is used only in the proof of 1.26 which is used only in the proof of
3.20 and 3.22.

Proof. As dp,,(L1) < oo it suffices to prove by induction on the ordinal v that:
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B, if (L : £ < 3) satisfies (*) of the claim and dp,,(L1) <~ then:
e; we have p; € Py (L1) and p1 < q1 € Pi(L1) = ps3,q1 are compatible
in Py, (Ls) when:
(a) ps € Pm(L3),
(b) po € Pm(Lo),
(¢) if po < qo € Pm(Lo) then py := p3|Ly and qo are compatible in
Pm(L2)7

(d) p1 =poU (p3[(L1\Lo)).

[ D] Pm(Ll) < ]P)m(Ld)

Why this holds? Assume we have arrived to 7.

Clause e1: (notice that here we do not use the induction hypothesis): Recalling
clause (f) of the assumption, indeed, p1 = po U (p3[(L1\Lo)) € Pm(L1) by the
definitions (clauses o1(a)), (b), (d) of H,), e.g. why fsupp(p:1) € L1? Note that if
s € dom(ps[(L1\Lo) then s € Li\Lo C Ly and {r},(5)(¢) : { < &)} is included in
L3 because p € Py, (L3) and in L. by Definition 1.10. As s € L1\ Lg by (x)(e) we
have s ¢ My, hence by Definition 1.10 we have {r,, () : ¢ < &p)} € us C 5/Em.
By (¥)(f) we have (s/Em) N Lm<¢ € L1 hence together {r,,(¢) : ¢ <&y} C L1,
and we are done proving fsupp(p;) C L;.

So the first statement in B, e; holds; what about the second? Toward contradiction
assume ¢; contradicts the desired conclusion. Then by 1.16(6) there are s and pé"

such that:
@ (a) s € dom(gr)Ndom(ps),
(b) p; € ]P)m(Lm,<s)a
(c) pd is above p3[Lm <5 and above q;[Lm <s,
(d) pd IFp,, -, “P3(s),q1(s) € Qg are incompatible (in Qg)”.

So s € dom(q1) C Ly and as Lo is an initial segment of Ly, and clause (c¢) of o5 (of
H,), clearly s € Ly is impossible, so s € dom(q1)\Lo € L1\Lg. As P, = “p1 < 17,
necessarily q1[Lm,<s IFp, . “p1(s) < q1(s)”, s0 as q1[Lm,<s < P [Lm,<s (by
®(c)), also p3 [Lm,<s IFen o, “p1(s) < q1(s)”. As s ¢ Lo clearly pi(s) = ps(s)
by clauses B, o (b), (d), s0 p3[Lm,<s IFp, -, “p3(s) < qi(s)” and again easy
contradiction to &(d).

Clause e5:

Clearly Py, (L1) C Py (L3) as quasi orders. Next we shall prove Py, (L1) <ic P (L3),
S0 assume q1, gz € Py, (L1) has a common upper bound p3 in Py, (L3), and we should
find one in Py, (L;). Hence (see 1.10(e)(8)) we have dom(g;) Udom(gz) C dom(ps).
As p3[La € Ppu(L2) by (x)(a) and we are assuming Py, (Lg) < Py (L2), see (x)(d)
there is pp € Py (Lo) such that py < ¢ € Pm(Lo) = ¢,p3[Lo are compatible in
Pm(L2) and let py = po U (p3[(Li\Lo)). By B,(b), which we have proved noting
that clauses (a)-(d) of H,ey holds, we know that p; € Pmn(Li) and p; < pj €
Pm(L1) = ps, p} are compatible in Py, (L3). It suffices to prove that p; is a common
upper bound of ¢1, go.

We could have replaced po by pf, whenever py < p{, € Pm(Lg). So without loss of

generality for £ = 1,2 we have dom(qs)NLg € dom(pg) hence C dom(py), also recall
dom(q¢)\Lo C dom(ps)NLi\Lg and by the choice of p; we have dom(pz)NLi\Lg C

dom(p1)\ Lo.
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So recalling dom(ge) C Ly together dom(ge) C dom(py).

As we are assuming Pp,(Lg) < Pm(L2) without loss of generality po is above!®

qelLo. If toward contradiction we assume that ¢ € {1,2} and g, £ p1 then for some
ENS dom(‘]é) we have ((M er,<s) < (pl er,<(9) but D1 [Lm,<s Jf}élP’m(Lr,,,Ks) “QE(S) <
p1(s)”. Clearly, s € Lg is impossible so s € L1\ Lo hence s ¢ My, by clause (x)(e).
Let L) = Lo, I, = Lo U (Ly N Lin <), Ly = Lo, Ly = Ly so (L}, L, L}, L) satisfies
the assumptions of the present claim and dp,,(L}) < 7, hence by the induction
hypothesis, Py (L)) < Pm(L5).

Recall s € L1\Lg hence ($/Em) N Lm,<s € L1 by clause (f) of the assumption of
the claim, so fupp(p: [{s})\ [}, fsupp(ge [ {s})\{s} are € L{ hence py(s). ge(s) are
P (L})-names. So recalling p1[Lm,<s ¥p, (L .) “qe(s) < pi(s)” and Py (L)) <
Pm(L3) and L <s € Lz = L3 we have p1 [L} ¥p_ (1) “qe(s) < p1(s)”. Hence there
is pf‘ such that py[L] < pf' € Py (L}) such that p; ey, () “qe(s) £ pi(s)” so
recalling Py, (L)) < P(L}) we have pi Fpw(zy) “ae(s) £ pi(s)”.

But by B, e for 71 = dp,,(L}), we know that p{ and p3[Lm,<s are compatible
(in Pp, equivalently Pp,(Lm <s)) so let pj € Pp(Lm <s) be a common upper
bound of p, p3[Lm,<s. Now p3 e (zy) “qe(s) < pi(s)” because: g < p3 by the
choice of p3; p1(s) = ps(s) by the choice of p; and p3 < pj, see above. However,
pa e (zy) “qe(s) % p1(s)” as pi < p3, see above.

So we have proved Py, (L1) <ic Pm(L3).

To finish proving clause H,e1, that is, Pm(L1) < Pm(L3) note that clause H, e
does this as for every ps € Pm(L3) there is py as in B, &1 (b), (¢) by clause (d) of
the claim’s assumption and let p; be as defined in B, ; (d). y.04

Claim 1.26. We have Py, (L1) = Pm,(L1) (i-e. as quasi orders) and P, (L1) <
P, for £ =1,2 when:

cg Ly is an initial segment of L,
d) Pﬂh (LO) = IEDﬂfl2 (LO);

) P, (Lo) <Py, for£=1,2,

) ift S Ll\LO then t ¢ Mmz and Lm1,<t N (t/Em1) = Lm2,<t N
(t/ Erny) C L.

Remark 1.27. Used only in the proof of H, 4 inside the proof of 3.20, so we could
have used Mg, & from there.

Proof. For £ € {1,2} let Ly = (Ly; : i < 4) be defined by:

@1 (a) Lo = Lo,
(b) Lgq =L,

18Why? It suffices to prove that there is p6 € Pm(Lo) above pp and above g¢[Lg. So toward
contradiction assume this fails hence there is pa' € Pm(Lo) above pg incompatible with g¢[Lg.
By the choice of pg we know that paL, (p3!L2) are compatible, so let p;r € Pm(L2) be a common
upper bound. Now L is an initial segment of Lm by (*)(a) and p3 is above g, hence p3[Ls is
above ¢¢[L2 and as qp € Pm(L1), Lo = L1 N L2 we have q;[L2 = q¢[Lo, p3[L2 is above ¢;[Lo but
pg' is above p3[L2 hence pg' is above gy [L2. Also pg' is above pa' which forces q¢|Lo ¢ Gpo (L)
equivalently q¢[Lo ¢ Gpm(Lz), contradiction.
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(¢) Lpop={3€ Lm,:5<m,tforsomete Ly},
(d) L¢3z = Lm,

Clearly,

@2 (a) (my, L) satisfies the assumptions of 1.24 hence,
() Pm,(Le1) < Pm,(Les) which means Py, (L1) < Pp,, for £ =1,2.

Why @57 Clearly it suffices to prove clause (a), so we just have to check clauses
(*)(a) — (f) of 1.24.

Clause (x)(a):

By ®1(d), Ly 3 = L, hence is an initial segment of Ly,, and by ®1(c), Lo is an
initial segment of Ly,, which is Ly 3 so Lgo C Ly 3.

Clause (x)(b):

For the first statement, Ly 1 C Ly g is trivial by @1(d)+@1(b)+(a), (b). The second
statement says Lyog = Lg1 N Lga. Now Lgo C Lgy by H(a), (b) of the claim and
®1(a), (b). Also Ly o C Ly holds by @1(c) (and @1(a)). Together Ly o C Lg1NLg,so;
to prove the inverse inclusion assume s € Ly o N Ly 1, s0 as s € Ly o by @1(c) there
is t € Lo such that s <um,, t. But s € Ly1 = Lq so by [d(c) of the claim we have
s € Lo = Ly as promised.

Clause (x)(c):

Holds by condition [(¢) of the claim.

Clause (x)(d):

By clause [(f) of the claim and @1(c), Ly is an initial segment of Lyy,,, hence
by 1.13(e) we have Pm,(Ls2) < Pm, = Pm,(Ls,3). By E(e) Pmy(Leo) < Pr,; so
together as Ly o C Ly 2, we have Py, (Lo) <P, (Le2).

Clauses (x)(e), (f):

Hold by condition [I(f) of the claim.

So @9 holds indeed. So now we deal with the other half.

Proof of: Py, (L1) = P, (L1).

Let (sq : @ < a(*)) list Ly1\Lg such that s, <r, sg = a < . This is possible as
Lm, is well founded.

Now,

@3 for £ =1,2 and o < a(x) let I_’Za = (L}, ;1 <4) be (but we can omit )

where:

(a) L a0 = Lo,

(b) Lian=LoU{ss: 8 <al,

(¢) Ly o= {s € L, : 8 <m, t for some t € Lo},

(d) LZ «, 3 mf’

@y (a) (mg, 7.) satisfies the assumption of 1.24,

(b) Pme (Le,a,1) < ]P)mz (Ll,a,S)

[Why? Note the my,(Lj,; : i < 4) satisfies the assumptions of 1.24, hence ©»
holds for my, Ly, for a < a(x).]

Now by induction on « < a(*) we prove that:



Paper Sh:1126, version 2022-11-12. See https://shelah.logic.at/papers/1126/ for possible updates.

24 SAHARON SHELAH

He P, (LZ,l) = Pm, (LZ,l)-

Case 1: a =0:
As Li .1 = Lo = L3, 1, clause [1(d) of the assumption gives B, as promised.
Case 2: « a limit ordinal:

Easy by the definition of the iteration. That is, first, if dom(p) € [Lm,]=* then we

know p € Pm, (L7, 1) < B/\ [pILs . € Pm,(L,)] 5/\ [PILs, € Pm,(Lj,)] <
<« <«
p € Pm,(L},1); second, for p,q € Py, (L, ;) by the definition of the order and

the induction hypothesis, Pm, (L3 1) F “p < ¢" it A [Pm,(Lj,) F “pILj,; <

B<a
qILj 7] iff B/\ (Pm, (L) = “plLsy < qILj 7] Pm, (L5 1) = P < ¢
<«

So H,, holds.

Case 3: a=p+1:
Clearly,

($)1 p € Pm, (L31) & p € Pm, (L7 1)
Next,

(¥)2 assume p,q € Py, (L}, ;) and we shall prove that Pp, (L}, ;) = “p < ¢”
implies P (L5, 1) F- P < 0.

[Why? If sg ¢ dom(p) this is obvious by the induction hypothesis. Hence we can as-
sume sg € dom(p), so as we are assuming P, (L}, ;) = “p < ¢”, clearly s € dom(q)
hence sg € dom(p) Ndom(g). First, similarly Py, (LEJ) = “(p[L,’gJ) < (qFL;;’l)”
and (q[LE,yl)H—plesﬁ) “p(sp) <q, q(sp)” by the definition of P, (L} ;). Second, as
qILG 1 € Py (Lf 1) = Pm, (L3 1) and Pm, (L ) <Pm, by ©4 and P, (L ;) <P,
by @4 and p(sg), q(ss) are Pm, (L} ;)-names (as fsupp(p(sp), fsupp(q(sp)) € Lj ;)
necessarily we have q[Lj, Irp,,  “p(sg) <q, q(sg)”. Third, as Pm, (L} ;) F
“pILs, < qlILj,”, by the induction hypothesis P, (szl) E “pILs, < qlLj;.
Fourth, by the last two sentence and the definition of the order in Py,, we have
Pm, E “p < ¢” so the conclusion of (x)s holds also in this case.

Note that if s3 € dom(p)\dom(q) then p £ ¢, so we are done proving (x).]
()3 i D, q € Pan, (L) and Pang (L) b= “p < g7 then Pan, (L) b= “p < 07

[Why? Similar to the proof of (x)2.]

By (%)1, (%)2, (x)3 clearly B, holds. So we carried the induction so B, holds for
every a < a(x) and for a = a(x) we get Py, (L1) = Pm, (L2). Together with @9 (b)
in the beginning of the proof we are done. (126

§ 1(C). On existentially closed m’s.
Definition 1.28. 0) For m € M let:

(a) dpy, (L) = U{dpy, (1) +1:t € LN Mm}, for L C Ly,
(b) L = {t € Ly : t € My, = dpy, () < v and t € Ly \ M =
sup{dpy;_(s) : s € My and s <p, t} <~}. So,
° Lf}r{”,y is an initial segment of Ly,
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o Ldp ', 18 C-increasing continuous with 7 and is equal to Ly, for v =
dpy (M), or for v = dpj, (M) +1 (if (3t € L\M)(Vs € Mp)(t > s)).
(c) Led ={t € L : t € My, dpyy, (t) < yort € L\ My and min{dp,,,_(s) :
s € My U{oo},t < s} <~}, note that (we mean):
o for v =0 thisis {t € Ly, : if (Is € M) (t < s) then for some s € My,
we have t < s and dp,,_(s) = 0},
e cach qu is an initial segment of Ly,
e the set qu is C-increasing with -+, but not necessarily continuous,
. (meamngful only if we do not assume m is bounded, see 1.7(10)) if
t € Ly, then we have: for no s € My, do we have ¢t < s iff tEqu,y\

U{L%}mﬁ 1B <~} for vy =dp;,(Mm) = U{dpy;_(s) + 1 :s € My }.

1) (a) For an ordinal v let MR“ (here bec stands for bounded existentially closed)
be the class of m € Mpq such that, recalling Definition 1.12(3):

(x) if m <pp my <y mgy and my, my are bounded, then Py, (Lfnlﬁ) <

P, (LSP ) hence L C L{P _ implies Py, (L) = Pm, (L) (by 1.20(4)).

ma,y miy,7y

(b) Let MY (where ueb stand for unbounded existentially closed) is defined
similarly omitting ”bounded”.

(c) Let MY (where wec stand for weakly bounded existential closed) is defined
similarly replacing “bounded” by “weakly bounded”.

(d) We may write M<¢ for M.

2) Let Mo, = M be the class of m which € MF for every ordinal v; similarly
e.g. Mype. = Mko’fjc.
3) Let MY, = {m € M5 : [Lp| < x}, similarly e.g. M$S, and for bec.

X ,00

Observation 1.29. 1) Of course, M5, C MSS and L%’% - Lﬂfﬁz are initial
segments of Ly, when y1 < .

2) In 1.28(1), the following are equivalent:
() Pany (L2, ) < Pony (L2 ) for cvery 7,

my,y ma,7y
(b) ]P)ml < sz
3) If m € Mec and My, =% < t7 (in particular, s,t € M) then g, “ns < ny
mod J;f‘d 7. Moreover, if My £ s; <t fori <i, <\ and B is an i.-place A-Borel
function from I1.0. into .56, then IFp_ “B(--- Msis e )i<i, <m; mod Jkd,
4) If for every L € [Ly]= for some t € My, we have L € Py, then (see 2.13(3))
ke, “{yt t € M} is cofinal in (I1.<x0:)”.

Remark 1.30. Recall if m is fat, then L € %, ; means L C um ¢.

Proof. 1) Easy.
2) First, concerning (a) = (b), note that for v large enough we have L3P v = Lm,

hence P, (L, ) = Pr,, so clear. Second, assume (b), note that L3P _ is an

initial segment of Ly,, hence Pp,, (LI ) < Py, for £ = 1,2 by 1.13(c), hence we

mye,y

have P, (LI ) < Py, < Ppy,, but < is transitive, hence P, (LI ) < Pp,,. Also

miy,7y miy,”y

P, (L ) < Py, and LI C LIP by the definition. Hence by the definition

ma,7y m;,y — Tm2,y
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P EPL (LY )= pecPpuy, (L ); butlastly (Q <PAQy <PA (Vp)(p € Q =

my,7y ma,7y
p € Qy) = Qp < Qy so we are done.
3) Easy, as m € M, its suffice to find n such that m <pg n and n satisfies the
conclusion (recalling M has amalgamation). So given iy, t, s; such that s; <u t (for
i < ix) we define n € M as follows:

(a) the set of elements of L,, are those of Ly, and 7., a new element,
(b) the order <y, is defined by: 71 <m 72 iff r1 <m 2 0r r1 <4y S ATo =Ty
for some i < iy, or r1 =y At <pn 7o,
(¢) My = My,
(d) B ={(r1,r2) : (r1,m2) € Bl orry =1 Arg € {s; 11 < iy U{t} or ry =
re A1 € {8; 11 < i }U{t}},
(€) Un, is:
® U, if 1€ Ly \ {t},
o Uy, U{r.}ifr=t,
o {s;:i<i}ifr=nr,
(f) Pn,r is:
L4 <@m,rﬁfreLm\{t}a
¢ Py U{{r.}} if r = t, except when t € M2 in which case it is
‘@(un,t)v
o P({si:i<iu})ifr=r,.
Now check.

4) Easy by 1.16(1)(8). U129

Definition 1.31. Let m € M.
1) We say m is p-wide!® when p > Ao and for every t € Lpy\My, there are
to € Lin\Mm for a < p such that:

(a) m[(ta/Em) is isomorphic to m[(¢/Ey,) over My,

(b) B<vy<p=tg/Emy #ty/Ep,.
1A) We say m is wide when it is Ap-wide, see 1.1. We say m is very wide when it
is |Lyn|-wide.

2) We say m is full when: if m[My, <p n and E. has exactly one equivalence
class then for some t € Ly \Mm, we have n is isomorphic to m[(t/Epm) over My,.
Similarly for Mypq.

3) We say m is p-wide or full inside Myq when we restrict ourselves to Mpq.
Crucial Claim 1.32. 1) If"® x = x* > 2*2 (see 1.1) and m € M<, then for some
n we have m <py n € My and n € Mec.

2) If in addition m is bounded, then for some n we have m <y n € M, and
n € Myc.

Proof. Let © = u for part (1) and x = b for part (2). Let 2" = Zm = {n:nis
bounded if z = b; and (m[My,) <p n and L, \ My, = t/E! for some ¢, hence
[Ln] < Az}

We define a two-place relation & on 2

19No real harm if we demand u > Ag and use AT. in part (1A).
2OActuaHy7 X = x> is not necessarily.
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(*)o n1ény iff (ny,ny € 2 and) there is an isomorphism A from n; onto ngy
over m|My,, that is: an isomorphism from L,, onto L,, over My, (as
partial orders) such that:

(a) t € L, = Uny n) = {R(S) 1 5 € Un, 1},
(b) t € Ln, = Pnynw) = 1H{h(s) s €uf rue Py 4},
(c) s,t € Ln, = (sE}, t < h(s)Ey, h(t)).

Clearly & is an equivalence relation.

By our assumptions y > 2** and n € 2" = |Ln| < A A (Vt € Ln)(Pn: C
[Ln,<t]=*), hence recalling Ay = (\2)* clearly & has < 2*2 equivalence classes and
let (n, : @ < 22) be a set of representatives (not necessary, but no harm in allowing
repetitions).

By 1.20(2) and 1.21 we can find n such that:

(#)1 (@) m<pmqneM,,
(b) for every a < 2?2 we can find (¢, : i < x) such that:
(O[) toz,i S Ln\Lma
(5) (Q#B)V(Z#J) :ta,i/En#tﬂ,j/En7
(v) n(ta,:/En) is &-equivalent to n,, see 1.7(0) on to ;/Ey.

We shall now prove that n is as required. Let n <y n; <y no, and ny,n, are
bounded when x = b and define .# as the set of functions f such that some L1, Lo
satisfy for £ =1,2:

()2 (@) Lt C Ly,

( My = My C Ly N Lo,

( L has cardinality < Ao,

(d) Lygis Ey,-closed, i.e. My, C Ly and t € Ly\My, = t/Ey, C Ly,
(e) f is an isomorphism from ny[L; onto ny[Le over My, i.e.:

e, [ is a one-to-one mapping from L; onto Lo,

e My, is the identity,

o3 [ maps <,, [L1 onto <y, [Lo,

o SELLS [(5)En (D)

o5 for s,t € Ly we have s € un, + < f(5) € Uny, f(1)-

o for t € Ly we have Py, ¢y = {{f(s) :s €u} :u€ P, ¢,uC L1}

Clearly,

(x)s3 if fe Fand L' C Ly,,L" C Ly, and |L'|+|L"| < Az then for some g € &
extending f we have:
(a) L' C dom(g),

(b) L" C rang(g),

(c) rang(g)\(L" Urang(f)) € Ln,,

(d) dom(g)\(L"Udom(f)) € Ln,.

We can finish as in the parallel of the Tarski-Vaught criterion for L A but we

shall elaborate. That is, first we can prove by induction on the ordinal v < |Ly,|™
(and in fact just v < || Mn,||T) that (x)4 — (x)s below holds:

(*)a letting L., = Lﬂgﬁ, if g € .7 then:

(a) g maps dom(g) N L, onto rang(g) N L.,
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(b) g induces an isomorphism § from Py, (dom(g)N L) onto Py, (rang(g)N
L.,), that is: §(p) = ¢ iff:

(@) p € Pay(dom(g) N L,),

(B) q € Px, (rang(g) N L),

(7) g maps dom(p) onto dom(q) and s € dom(p) = tr(p(s)) =
tr(q(g(s))),

(0) if s € dom(g), g(s) =t € rang(g) and fp,(s) = Bp(o) (- -+ 000 - <t
and fo(r) = Bo@n) (-3 lry( Q)5+ -)e<tyy then &gy = Ep(s)s Byry) =
Bp(s) and C < é-p(s) = Tq(t)(é) = g(Tp(s) (C))a

(¢) moreover in (0) we have ¢(s,p) = ¢(t,q) and if ¢ < ¢(s,p) then
Wp,s,. = Wq,t.) Bp(s),z, = Bq(t),L'

[Why? We use freely 1.16(9). Let y. be such that v,g,n,ny,n, € 5(x.). Let
2 < (4 (x+), €) be such that v,g,n,n;,ny € A, ||A|| = x, x+1 C A and [A]=* C 2,
(hence A <, . (J(xx), €))-

For £ = 1,2 let Ly = Ly, N%A and nj = n, [ L}, so by absoluteness Py (an) =
Py, (Ln;) hence Py: (Ln;) <Py, (Ln,). By the choice of n as very wide and full (see
Definition 1.31), also n [ (AN Ly,) is very wide and full of cardinality x. But we
haven | (ANLy) <ng | (AN Ly,) both of cardinality x hence also n} is very wide
and full (see Definition 1.5) of cardinality x. Now easily g can be extended to an
automorphism of nj. The promised statement now follows.]

Second,
(*)5 ]Pﬂ2 (L’Y n Ll’u) < IP)UQ (L’Y)

[Why? By?! the definitions and the induction hypothesis Py, (L, N Ly,) C Py, (L)
as quasi orders.

Also if p1,p2 € Pn,(Ly N Ly,) are compatible in Py, (Ly) let ¢ € Py, (Ly) be a
common upper bound there. We can find an Ey,-closed L' C Ly, of cardinality
< Ao (recalling n € 2" = |Ly| < A2) such that py,ps € Py, (L) and Ey,,-closed
L" C Ly, of cardinality < Ay such that L' C L” and g € Py,(L"). Now we
can find f; € & such that dom(f1) = U{t/En, : t € L'} U My, recalling that
t/Fm 2 Mm, see 1.7(0) and f; is the identity. Then by ()3 we can find fo € &
extending fi with dom(fz) = U{t/Epn, : t € L"”} and rang(f2)\rang(f1) C Ly,.
So recalling (x)4(b) applied to f we have Py, = “(p1 < fo(q)) A (p2 < f2(q))” and
f2(q) € Pay(LyN Ly, ) recalling (). So p1,ps are compatible also in Py, (Ly N Ly, ).
Obviously, if p1, p2 € Pn, (LyNLy, ) are compatible in Py, (L,NLy, ), say, ¢ witnesses,
then ¢ is a common upper bound of py,ps in Py, (L).

So every antichain of Py, (L, N Ly,) is an antichain of Py,(L,). Similarly to the
above every maximal antichain of Py, (L, N Ly,) is a maximal antichain of Py, (L~ );
similarly for the other direction. So we are done.]

(*)6 ]P)nl (L’Y n Lﬂl) = Pnz (L’Y n Lnl) < ]P)Ilz (L’)’)

[Why? We prove this by induction on ~, as in proving the Tarski-Vaught criterion
is sufficient (we shall elaborate later in the proof of 3.20, more specifically B4 proves
a similar statement in detail with weaker assumptions).]

Hence (using v = |Ly,|"),

2lcan repeat the proof of (x)4 but for variety we give another proof.
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(*)7 ]P)nl < PHQ .

Hence for every L C Ly, by 1.20(4) we have Py, (L) = Py,(L) as required for
n € Mg, see Definition 1.28. .39

Definition 1.33. 1) For m € M, let n = m[®Y be m[L5d, where Lbd = {s € L, :
for some ¢ € My, we have s/E}, C Ly(<y) or just for some 2~ € [Mp]<* we have
s/Ep © U{Lm(<t) 1t € X}

1A) For m € M, let n := mM be m[L¥P4, where L¥P4 := (J{Lm(<t) 1 t € M}
2) Assume n; <pp my,n; <pp ng and Ly, N Ly, = Ly,. Then let my = ny & my
be defined by: "

(a) the set of elements of Ly, i Lm, U Lm,,
) <m, is the transitive closure of <p, U <pm;,
(c) B, = B, UE}, , My, = My, and M3 = M7 for x € {fat,lean},
(d) Umy,: is:
® Uyt if £ € L, \ Lu,,
® Upm, it € L, \ Ln,
® Up, Ui, ¢ if t € Ly, (80 in up, ¢ if L € Ly, \ Mm,)-
(€) Pm,t is defined naturally, that is:
o Pyt ift € Lo, \ Ln,,
o Proyiift € Ly, \ Ln,,
¢ Pny U Pyt if t € Ly, except when t € MY (so in &y, if L €
Lml \ Mmo)’
. [Um2,t]g/\ ift € leﬁg

Claim 1.34. 1) In 1.33(1) indeed m®d € M and moreover it is bounded.

2) If m € M,m is bounded iff m = m[>d.

3) In 1.83(2) indeed my = ny & my belongs to M, m; <pg mo and ny = m[lbd] <M
n;

P o mfPd) — b,

4) In 1.33(1) we can add nlPd e M.

Proof. Easy, e.g.

For part (3) we are given m € M and let n be as constructed above for x = u.
Clearly nP is as constructed above for z = b, so we are done. 0134
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§ 2. THE CORRECTED Py,

Discussion 2.1. Here for L C L,y,, we define Py,[L], the complete subforcing of
the completion of P, generated by (1, : s € L), the central case is L = Mm, of
course.

Definition 2.2. Let P be a forcing notion and Y C P and x a regular cardinal.

1) Let L, (Y) be the set of sentences formed from {p : p € P} closing under the
operations —p and A p;, for o < x; so (infinitary) propositional logic.

i<a
2) For a directed G C P and ¢ € L, (Y') we define the truth value [G] naturally
(by induction on 4 starting with p[G] = true & p € G).
3) Let LT (Y, P), the L,-closure of Y for P, (where Y C PP; if Y = P we may omit
Y’) be the following partial order:

o set of elements {¢ € L, (Y,P) :Wp “¢[G] = false” },
o the order ¢ < 1) iff IFp “if ¥5[G] = true then ¢ [G] = true”.

4) The completion of P is the L,-closure of P which is Lt (P) = L} (P,P) where x
is minimal such that [P satisfies the x-c.c.

Claim 2.3. For a cardinal x and forcing notion P and Y C P we have:

a) LI(Y,P) is a forcing notion,
X
) P <L} (P) under the natural identification®?,
¢) LI(Y,P) <LI(P),
) LT (Y, P) < LY (Y, P) when x1 < x2 are regular,
) if P satisfies the x1-c.c. and x1 < X2 are reqular, then ]L;1 (Y,P) is essen-
tially equal to ]L;gQ (Y,P), i.e. up to the natural equivalence of elements in a

quasi order,
(f) if Y =P then P is a dense subset of L} (P).

Proof. Easy. Os .3

Definition 2.4. Let m € M.
1) For t € Lm,e < XA and n € [] 0; let p=p;, € Py be the function with domain
i<e
{t} such that p(t) = (1,1°0x), i.e. fou) € [] 0i is defined by f,(e) is n(e) if
i<X
e < £g(n) and is zero otherwise.
2) For L C Ly let Y, = Y = {pj, : t € L and n € [] 0. for some { < A}.
e<(

3) For L C Ly, let Pyu[L] be L;\ro (YL, Pm), see Definition 2.2(3) and Hypothesis
1.4(4) on Ag.
4) For L C Ly, let Ppy(L) = Py [{p € Pm : fsupp(p) C L}, see Definition 1.12(1),
recalling 1.12(2),(3).
5) P}, is the partial order with the same set of elements as Py, and <p, = {(p, q) :
p,q € Py, and no r above ¢ is incompatible with p} and P, (L) = PL,[{p € Pm :
fsupp(p) C L}, we may “forget” the distinction??.

22Pedantically P <’ lL;gl [P], see 2.4(8), because ]L;g PlE“9<q iff qlp “p € Gp”.

23Really the only difference is the possibility that dom(p) ¢ dom(g), see 1.22.
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6) For quasi orders Q1, Q2 let Q; €’ Q2 mean that:

(a) s€Q1=5€Q,
(b) s <g, t = s <, t.

7) For quasi orders Q1, Qs let @ C!. Q@2 means that Q; €’ Q, and

=ic
(c) if s,t € Qq are incompatible in Q; then they are incompatible in Qs.

8) We define <’ similarly, that is Q1 C}, Q2 and every maximal antichain of Q; is
a maximal antichain of Q.

9) Let Q1 <, Q2 means that Q; <’ Q2 and for every p € Qo there is ¢ € Q
equivalent to it which means l-g, “p € Gq, iff ¢ € Gg,.

Claim 2.5. Letm € M and L C Ly,.
1) P [Lm] is equivalent to Py, as forcing notions, in fact, Py = Pm(Lm) <Pm[Lm)
and is a dense subset of it under the natural identification (see 2.2(1)), but we should
pedantically use P, (L) or use <.
2) Pm[Lm] is (< \)-strategically complete and is AT -c.c.
3) P (L) C Pm[L] as sets and Py[L] < Pm[Lm] and Py (L) €' Py[L].
4) If G C Py is generic over V and n; = ny[G] for t € Ly and GT = {1 €
Lyt (Yi,,,Pm) : ¥[G] = true}, see 2.2(2)(3), then V[G] = V[GT] = V[(n; : t €
Lym)].
5) In part (4), moreover GT is a subset of Py[Lm] generic over V.
6) P (L1) C P (La) and Pa[L1] < Pm|Lo] when Ly C Ly C Lyn.
7) If m,n € M are equivalent then Pm[L] = Py[L] and Py (L) = Py(L) for L C
L.
8) [(> \)-continuity] Assume I, to be a A -directed partial order and L = (L, : r €
L) be such thatr € I, = L. C Ly, andr <j, s = L. C Ly and L = U{L, : r € L, }.
Then, as sets and moreover as partial orders Pm[L] = U{Pm[L,] : 7 € L.} and
Pm(L) = U{Pm(L,) : 7 € L.}.
9) If m € M. and m <pg m; <pg my then Py, [Lin] = Pmy [Lm]-
10) The sequence 1, = (ns : s € L) is a generic for Pmy[L], that is: if G C Ppy[L]
is generic over V. and vs = n5[G] for s € L then:

(a) VIG] = V[(v, : s € L)],

(b) 7= (vs:s € L) determines G uniquely.

Remark 2.6. What about Py, (L) Cl, Pm[L] and Py, (L) <’ Py [L]?

—I1cC
Concerning the second, there may be a maximal antichain (p; : i < i.) of P(L), but
some ¢ € Py, is incompatible with p; for ¢ < 4,. This witness (P (L) <Py, ) hence
“(Pm (L) < Pm[L]). Concerning the first (Pm(L) i, Pm[L]) easily it holds. Note

that (P (L) C Pm[L]) may fail as explained earlier as maybe ¢ IFp_ “p € G” but
£p,. ¢, see 1.7(9) and 1.22.

Proof. 1) Easy.
2) Follows by part (1) and 1.16.

3) The first statement by their definitions, the second statement by part (1).
For the third clause, “Py[L] C' Py (L)”, note that:
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(x)1 if p,q € Pm(L), then Py, (L) | “p < ¢" iff Py, E“p < ¢” which implies
Pm[L] E “p < ¢" by the definition of Py, [L].
()2 if p,q € Pm(L) and dom(p) C dom(q), then Py (L) E“p < ¢ iff Py E“p <
¢ it Py[L] E“p < q”.
[The first “iff” by the definition of Py, (L), the second “iff” by 1.22.]
4), 5), 6) Should be clear recalling 1.16(7).
7) Easy, recalling 1.16(5).
8), 9) Easy.
10) By the definition of Py, [L]. Oos

The Uniqueness Claim 2.7. There is an isomorphism from Py, [M1] onto Puy,, [Ma)]
which (recalling Definition 2.4(1)) maps pf, to py ., for t € My,n € U{]] 0. :

B e<(

¢ < A} when:
B (a) myeME forl=1,2,

(b) My = Mpm, fort=1,2,
(¢) h is an isomorphism from my|M; onto my|Ms.

Proof. By renaming without loss of generality M; = My call it M and h is the
identity and Ly, N Lm, = M. Let my = m;[M = my[M so mg <p my for
¢ =1,2 and without loss of generality Ly, = Lm; N Lm,-

By 1.21, there is m such that m; <p; m and ms <p m. As m;,my € M by
2.5(9) we have Py, [M] = Py[M] and Py, [M] = Py[M] so together we get the
desired conclusion. Os 7

Definition 2.8. 1) We call m € M reduced when Ly, = My,. We call m unary
when the equivalence relation EJ. has exactly one equivalence class.

2) For m € M let PSS be Py[Ly] and PS[L] be Py[L] for L C Ly, when m <pp
n € M.
Remark 2.9. 1) Why is P{'[L] well defined? see below.

2) Here “cor” stands for corrected.

The interest in the definition is because:

Claim 2.10. 1) Ifm € M and L C Ly, then PSF[L] is well defined.

2) PSO" [ My is well defined and depends only on m|My,.

3) Ifm <y n and Ly C Ly C Ly then PSO[Ly] = PEO[L] < PO L] < PLOT.

4) Assume m is bounded and m <pr n € Mygc. If L C Ly, then PS[L] = Py[L].
5) Assume m is weakly bounded and m <y n € Myee. If L C Ly, then PEM[L] =
Pa[L].

6) If n € Mye. then m € Mec.

Proof. 1) By 1.32, P{*[L] has at least one definition so it suffices to prove unique-

ness. So assume m <p my € M, for / = 1,2 and we should prove that
Pm,[L] = Pm,[L]. Without loss of generality Lm, N Lm, = Lm. Now by 1.21
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we can find n € M such that m; <p; n and my <pp n; as my € Mg, see Definition
1.28 we have Py,, <P, for £ =1,2. As in the end of the proof of 2.7 we are done.
2) By 2.7.

3) Follows from Definition 1.28(2) and 2.8(2).

4) On the one hand, we can find m; € My, such that m <p; m; by 1.32(2). On
the other hand, can find m3 € M, such that m; <pg mjs by Crucial Claim 1.32(1).
Let my = mgbd] and let mg = m so my <p; m; <p1 mo <p; ms. By the choice of

m; we have
o Py [L] =Py [L] < P,.

As Ly, is an initial segment of Ly,,, clearly,
o Py, <Py 50 Py [L] = P, [L].

Lastly as m3 € Mec, P, [L] = PEY"[L]. Together we are done.
5) Similarly to part (4).
6) Eaby DQJO

Discussion 2.11. 1) But we like to prove for reduced m € M and M C M,, that
Piaiar < P’ this is the whole point of the corrected iteration. This is delayed to
3.27. We now prove that this suffices.

2) Conclusion 2.12 below is the desired conclusion but it relies on §3, specifically
on 3.27 (alternatively §4A).

3) The reader may understand 2.12 without reading the rest of §2, §3 by ignoring
clause (A)(d), or reading 2.2, 2.3.

4) By 2.10(4) we may restrict ourselves to Mpq. We use it freely.

Conclusion 2.12. For every ordinal 6, there is q = (Pa,gﬁ s < by, B < bi) such
that:

(A) (a) (Py:a <d,) is <-increasing sequence of forcing notions,
(b) Ne i a Poy1-name of a member of [] 0. which dominates ( [] HE)V[PO“],
- e<A e<A
(¢) N is a generic for Poi1/Pa, moreover (ns : 8 < «) is a generic for
Po,
(d) Pa</L:\: (Yo, P,) in fact P, is dense in Lj\'o (Y, P,) where Yy, is defined
as in 2.4(2) with « here standing for L there and see 2.2,
(e) Py is (< \)-strategically complete and A\ -c.c.,
(f) if § < 6. has cofinality > X\ then Ps = U{P, : o < &}, if cf(d) = A
then the union is just a dense subset of P,
(g) Ps. has cardinality |6.|* when 6, > 2.
(B) if % C 0. then the complete sub-forcing generated by (n. : o € %) is
isomorphic to Potpar),
(C) if G C Py, is generic over V and 1o = 1a|G] for a < §. and 7, € ] 0
- e<A
for a < 4, and {(a,€) : @ < diye < A and 1), () # Na(€)} has cardinality

< A then also (nl, : o < d.) is a generic for Ps,, determining a possibly
different G’ but V|G'] = V[G],
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(D) in clause (B), moreover if % C 0. and {a; : i < otp(%)) list % in in-
creasing order then for some unique G" C Poy4) generic over V,i <
otp(%) = n;i = Ui[GN]'

Proof. Without loss of generality A1 > |d.|; we can use only m € Myq (by 2.10(4)).
We define m € M by:

(x) (a) Lm = s,
(b) My =6, and®* Mt =g,
(€) Um,a = a and Py o = [a]5* for a < 4.,
(d) E, =0.
It is easy to check that indeed m € M and let n € M. be such that m <pp n,
exists by the Crucial Claim 1.32 and let P, = Py[{i : i < a}] for a < d,.

Now clearly clause (A) holds and Ps = PE" by 2.8(2), 2.10(1) and e.g. clause (A)(b)
holds by 1.16(4A).

As for clause (B), first note that for every L C 4., the sequence 7y, = (o : a € L)
is generic for Py, [L] by Definition 2.4.

Second, for M C 6, let a = otp(M) and h : M — «a be h(i) = otp(i " M) so h is
an isomorphism from m[M onto m[a hence by 3.27(2) below, with m,m|a, M, «
here standing for m;, my, M7, Ms there we have h induces an isomorphism from
Pai[M] onto Pt [Lmpa). In particular, id, induces an isomorphism from Pt
onto P& [a].

Together we get clause (B). Also Clause (C) holds by 1.16(8) and clause (D) follows
so we are done. s 10

Definition 2.13. 1) We say m is essentially (< p)—directed (if 4 = Ry we may
omit it) when: if L C M,|L| < p then for some t € Myy,, we have:

e sEL=5<mtAsEu so My is directed®).

2) We say m is strongly p-directed (or (< p)-directed; if g = Ny we may omit it)
when: for every L C Ly, of cardinality < p there is ¢ € My, such that L € P, ¢
(the condition implies “m is weakly bounded” and “m is not lean, t ¢ M$*" when
E! has at least two equivalence classes”).

[Note that it follows My, is (< p)-directed and m is weakly bounded.]
3) We say m is reasonable when:
(a) m is strongly A*-directed and M2* is cofinal in My,,

(8) m(<t) € Mg, for every t € My,
(v) m is wide and bounded (see Definition 1.7(10) and Definition 1.31(1A)).

Similarly we can deal with such iterations with partial memory and spell out how
Peor[L] is defined from a (< A)-support iteration with partial memory. This is used
in [She20], but we need more: see §3.

Conclusion 2.14. Assume M is a well founded partial order and @ = (u} : t €

M), u, € Moy and P’ = (P} . t € M) with 2] C [u}]=* is closed under subsets.

240ther reasonable choice is Mfat = (), Mlean = §, and Mfat = § = Mlean,
25Why not add {s} € Pm,:? See 1.29(13).
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Then we can find 3(x),h,Ps =Py 5,Q5 = Qo s, P1 5,Q1,0, M0, s and Py, P, (for
B<B(*),a < B(x),s € M and v C B(x),u C M) and h,u, P such that:

(A) (a) (Ps,Qq : B < B(x),a < B(x)) is (< A)-support®® iteration,
(b) (o) u=(ug:pB < B(x)) such that ug C B,
(B) &P = (Ps: B < B(x)) such that Pg C [ug]=* is closed under
subsets,
) Na 18 a Pop1-name of a member of [] 6.,
e<
) (Na < B) is generic for Pg,
) Qu is defined as in Definition 1.12(4),
) IFes, “ng € [1 0- dominates every v € [] 0= from V[(1s : a € u)]
- e< e<A -
when u € Pg.

) h is a one-to-one function from M into®” B(x); stipulate h(oo) = B(x),
) s <m t= h(s) < h(t),
(c) up Nrang(h) = {h(s) : s € uj},

)

)

—~
P

Py N [rang(h)]=* = {{h(s) : s € u} : u € 2}},
a) P g = LT, (Ys,Pg) where we let Yz = i, ra< Bve ] 6 for
e<(
some ¢ < A}, see 2.2, 2.4(1),

(b) P, = }L;\FO (Yy,Pg), where Y, is defined similarly when u C B(x),

(c) P, is a forcing notion for w C M and 1) is a P ,-name for s € M,

(d) h induces an isomorphism from P, onto Py (n(s):seuy for u € M and

77(«; to 77h(s) fOT’ s € M;

e) <77h (s) : 8 € u) is generic for P, foru C M,

) P, <P, whenuCvC M,

) Pg, Py, P, are (< \)-strategically complete and AT -c.c.,

) if M1, My C M and f is an zsomorphzsm from My onto Mg as partial
orders such that t € My, = uf(t) NMy, ={f(s) :s €u,NM} and
te M = f@}(t)ﬂ[Mg]SA ={f(s) : s €eunNMi}:u € P} then
the mapping h(s) — h(f(s)) induces an isomorphism from the forcing
notion Py 5, onto P 5/ .

(E) if M is (< AT)-directed and the set Y C M is cofinal in M, then the set

{Nn(s) 1 s € Y} is cofinal in {ng : B < B(x)}and even in <0, in VFo
(see 1.29(3)).

(
(D) (a
(b
(

C

Proof. Easy. We can assume Ay > |M|. Similarly to the proof of 2.12, the proof of
clause (E) is easy by 3.22 O 14

Claim 2.15. Ifm; <pp my <y n and Py, <Py, for £ =1,2 then Py, < Ppy,
Proof. Easy. Co1s

The following will be used in 2.17.
Claim 2.16. 1) If (A) then (B), where:
(A) (a) mo,m;,my € M,

26This will be am, well up to equivalence, see §1.
27 general not onto!
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(b) L, is an initial segment of L, ,
(C) L.= Lml mLmz;
) mo =m;[L, <= my,
(B) there is m € M such that:
(a) m; <p m,
(b) my =m[Ly,.

2) If Ly C Lo are initial segments of Ly, and m[Ly € M. then m[L; € Mec.
3) In part (1) we may add (e) to clause (A) and (c), (d) to clause (B), where:

(A)(e) L« € L, (<t,), where t € My,
(B)(c) if s € Ly \ Lm, then s <m, tu,
(d) if s € M, \ M, and t, <m, s then tm s = tm, s U((Lm\ Lm,) N Lm(<s))-

Proof. 1) Easy but we elaborate. We define m as follows:
) Lm as a set is Ly, U Li,,

()1 (a
(b) <m is the transitive closure of {(s,t) : L, E s <t or Ly, E s <t},
(C) My = M Mlean — prlean Mfat M fat
17 m mp mi >
(d) wmz is:
() Um, ¢ when t € Ly, \ Ly, and,
(8) Umsy,t When t € Ly, \ Mm,,
(7) Umy t Utmyt if t € Mpm,.
(e) Pmy is:
(&) Py, whent € Ly, \ L, and,
B) m2fwhent€Lm2\Mm0,
(7) [ume]=* if ¢ € M2t
(0) Pyt U Pyt if £ € My \ MJE.
(f) We define Ey, by: for s,t € Ly, we have sE]t iff sE} t or sE] 1.
As L, is an initial segment of Ly,, we have:
(¥)2 L = “s <t" iff Ly, =“s <t or s € Lm,,t € Ly, \ L« and for some
r € L, we have Ly, F “s <17 and Ly, E “r <t".
(%) Lym, is an initial segment of Ly,
Now check that m is as required.
2) Follows.
3) Easy (changing (*); above naturally). Os.16

Sometime we would like to have in addition to being in M, that {gs 1 s € M} be
cofinal in (IT.<)0., < J;)d) in VFm. Toward this we use the following claim:

Claim 2.17. Assume m € M.
1) A sufficient condition for m € My is:

(*)m For some §, L, ¢ we have:
(a) E—( fa < 8) € 9(My,),
(b) L =(Ly:a <), each L, is an initial segment,
(¢) m[L, belongs to Me. for every a < 9,
(d) Lo € Lm,<cosLa € Umyc,, Mm(<cy) © La and ift € Lo \ My then
Lo N (t/Em) is an initial segment of t/Em,
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(e) & has cofinality > A,

(f) ¢ is increasing and cofinal in L,

(g) L is C-increasing with union Ly
2) A sufficient condition for m € My is:

(%), For some ¢, L we have:
(a)-(e) as above,
(f) if L C Ly has cardinality < X then for some a < § we have L C L,
3) For L, C Ly, we have (A)r, = (B)r,, where:

(A)r, if L C Ly has cardinality < A and m <pg n then Py [L] = Py, [L],
(B)r, if m <y n then Py[L.] = Pm[Ls],
4) If ¢ € L, Ly C Umy, m[L, € Mec, Moy € Ly and t € Ly \ My, implies
L.N(t/Em) is an initial segment of t/Ew then clause (B)r, above holds,
5) We have (a) = (b), when:
(a) we have:
(a) m is strongly (< A\T)-directed,
(B) for every t € My, (or just for cofinally many t € My, ) we have m(<
t) € M.
(b) m € Me..
5A) Similarly for Myec.

6) If M is a < AT-directed well founded partial order of cardinality < X1, for
example, M = (k,<),k = cf(k) € (A, \1], our main case, then there is a strongly
At-directed m € M such that My, = M and (x),, from part (2) holds, (hence

m € My and {?S 18 € M} is cofinal in (H5<)\05, <J§>d) in the universe VPm,

Proof. Straightforward (recalling 2.10(4)), i.e.

y (2).
2) By (3) and (4).

B
) B
3) Obvious, see 2.5(8).
4) Clear.
5) Easy.

6) Choose ¢ such that:

(¥)1 (a) €€ %(My,) for some ordinal 4,
(b) if & < 8 < 6 then cg L Ca,
(c) ¢ lists My,
(d) (follows), if L C Ly, has cardinality < X then for some o < § the
element ¢, is an upper bound of L, moreover L € P, <, .

Now we choose bounded m,, by induction on o < ¢ such that:

(¥)2 (a) (mg: B < ) is <m-increasing continuous,
(b) Lmy, = M and up, s = Mg, (hence P, s = [tm,.s]=" recalling mg
being fat) for s € M,
(c) for every s € Ly, \ M for some 5 < a we have Ly, = s < cg,
(d) if v € [, 9) then um, e, = Lm, <c.
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(e) if @« =/ +1 then my(< ¢g) € Me,
(f) Ly, has cardinality at most 2*2 or even Ay, but this does not matter,
(g) if t € Ly, then for some 3 < o we have t/E;, C L, \ Lm,-
There is no problem to carry the definition; as:
For ae = 0 we have defined my in clause (b) of (x)y above.
For o a limit ordinal use 1.20(1), so in particular Ly, = U{Lm, : 8 < a}.
For o = 8+ 1 by 1.32 there is ng € M. such that mg(< cg) <m ng, without loss
of generality we have Lm, N Ln, = Lm(<cy)-
By 3.22 below without loss of generality the cardinality of Ly, is at most A2. Now
apply 2.16(3) with mg, L, <c;,ng here standing for my, L., m; there.

So we have carried the induction. Now clearly m; is as promised, That is, ()m;,
from part (2) of the claim holds, hence m € M, by part (2) being cofinal holds by
1.29; so we are done. Ua.17
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§ 3. THE MAIN CONCLUSION

§ 3(A). Wider m’s.
Recall that in this section our main interest is in restricting ourselves to lean m, but

in §3C we do not assume this and in §3A, §3B, §3D we rely on §1, §2, in particular
§1B

In §3B, §3D we restrict ourselves to lean m, but not in §3A, 3C however the
projection defined in 3.1(1) are helpful only in the lean case.

Note that here we fulfil the promises from §2, Now in §4A we rely on §3A, §3C,
but we do not rely on §3B, §3D. Lastly, §4A gives alternative proof of the promises
from §2 proved in §3D, it relies on §3A, §3C but not on §3B, §3D (except Def 3.25).
In §4B and in 2.17 we fulfil additional promises from [She20].

We have a debt from §2, i.e. see discussion 2.11. Toward this we explicate what
appear in the proof of 1.32. We use mainly the notions of wide, full and “being in
M,.”.

Note that 3.1(1), (4) and 3.2(1)-(5) are of interest only for the lean (or at leas
non-fat) context.

(dealing with projections)
Definition 3.1. Let m € M.
1) For L C Ly, we say p € Py (L) is the projection (to L) of ¢ € Py (L) and write
p=¢q1 L when:
(a) dom(p) = dom(q) N L,
(b) if s € dom(p) then:
(a) tr(p(s)) = tr(q(s)), .
(8) {fp(s)’b o< i(p(s)} = {fq(s)’L 11 < t(q(s)) and 7p(s),, is a sequence of
members of L}, see Definition 1.10(2).
2) Let Fm,, be the set of the functions f such that for some Ly, Lo:

(a) f is an isomorphism from m[L; onto m[Lo,

(b) Ly is a subset of Ly, for £ =1,2,

(¢) Mm C Ly for £ =1,2 and f| My, is the identity,

(d) L¢ is Em-closed, i.e. My, C Ly and if ¢t € Lyy\Mpm and ¢ € Ly then
t/ By C Ly for £ = 1,2,

(e) {t/EU :t € Ly\Mm} has cardinality < pu.

2A) Let Fm = Fmoro-
3) If Ly, Ly C Ly, and f is an isomorphism from m|L; onto m[Ly then we let f

be the one-to-one mapping?® from Py, (L1) onto Py (L2) as in (*)4(b) of the proof
of 1.32.

4) Let P, (L) be {p € P (L) : fsupp(p) C L and ¢(p(«)) < 1 for every « € dom(p)}
with the order inherited from Py,.

Observation 3.2. Letm e M and L C Ly,.

1) The projection of q € Py to L is well defined and € Py, (L).

28We have not said “order preserving”! still it is a function from P, (L1) onto Pm(L1) by the
way we have defined the Pm (L)-s and because of 1.5(e)(x).
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2) Moreover, it is unique.

3) If p € P (L) is the projection of ¢ € P (L) to L then p < q in Pp,.

4) Each p € Py, is equivalent to .~ .= {(p[{t}) 1 L : t € dom(p) AL € P <:}U{p 1
Mmu}; the equivalence means Irp,, “p € Gp,, iff /p C Gg,,”. More specifically it
is equivalent to %, = {(p/{t}) 1 L : t € dom(p) AN L € %} when & satisfies: if
L < ip(s) then for some L € Z;, (recalling 1.10) we have rang(7p,,) € L.

5) For every p € P, p is equivalent to .7 = {pt : t € dom(p)} where plt! € Py,
has domain {t} and p(t) = (tr(pt), Bp(t)((r () * ¢ € Wps))); recall Definition
1.10 for the meaning of By, etc.

Remark 3.3. 1) Note that the choice in Definition 1.10(c)(v) to require such (fp ), :
¢ < (py)) exists, is necessary for 3.2(4), which is crucial in the proof of 3.27.

2) In Definition 1.31(1A) we choose “wide means A-wide” as when applying it, if
X = fsupp(p) then for some Y C Ly, of cardinality < A\, X CU{t/Em, : t € Y}.

Proof. Easy e.g.

4) Now if ¢ € ., then ¢ has the form (p[{t}) 1 L where L € &, hence IF “p € G
implies ¢ € G”, hence I-“p € G implies ./, C G”.

For the other direction assume g € Py, forces .}, € G C Py, and we shall prove
that ¢ is compatible with p, this suffices, so toward contradiction assume g, p are
incompatible.

Without loss of generality dom(p) C dom(g) and recalling ¢ € dom(p) = ¢ I+
“p 1 (t/Em) € G” clearly s € dom(p) = ¢ IF “tr(p(s)) C 75" so necessarily
s € dom(p) = tr(p(s)) < tr(q(s)). Recalling 1.16(6), as p,q are incompatible
there are s € dom(p) N dom(g) and g1 such that ¢[Lm <s < ¢1 € Pm(Lm,<s) and
q1 Ik “q(s), p(s) are incompatible in Qg”.

As tr(p(s)) < tr(q(s)) this implies ¢; IF “tr(q(s)), p(s) are incompatible, so recalling
q IF“tr(p(s)) € ns” this implies f,) [€g(tr(q(s))) £ tr(q(s))”. Recalling Definition
1.10(2)(c)(7); q1 IFp,, . “there is ¢ < u(s,p) such that fy),,tr(q(s)) are incompat-
ible”. Possibly increasing g;, we can fix . But letting u € Pp, s be such that
Tp(s), C w this implies that g1 I= “(p[{s}) 1 u ¢ G or tr(q(s)) £ n,”. However, q1,q
are compatible and this contradicts the choice of q. L3.0

Claim 3.4. 1) For x > 2X2 then € M,, constructed in 1.52 satisfies: if n <np 1y
then ny is full and wide, even Ay-wide and if ny € M, even very wide.

2) If n € M. and n <ppny then ny € M.

3) If m € M, is full and very wide (or just Ag-wide and even Ao-wide), then
m € M.

4) If m € M, then there is a very wide full m € M such that m <pp n.

Proof. 1) Holds by the proof of 1.32.
2) Holds by Definition 1.28(1),(2).
3),4) By the proof of 1.32. Os.4

Claim 3.5. Assume m is pu-wide where pu > Ag.
D)Iff € Pmyu and X C Ly, has cardinality < p1, then there is g such that:
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2)If g € Fmu and dom(g) = rang(g) then gt™ = gUidL, \dom(g) 5 an automor-
phism of m.

3) If [ is an automorphism of m then it naturally induces an automorphism f of
Pen (L) similarly to f from (x)4(b) of the proof of 1.82 and it induces an automor-
phism of Pm|[Lm] as well; abusing our notation we denote both by f

4)If f € Pn . then it induces an isomorphism f from Py[dom(f)] onto P [rang(f)]
hence (as above) from Py (dom(f)) onto P (rang(f)).

5) If p € Py then the set {t/Em : t € wsupp(p)} has cardinality < .

Proof. 1) Easy by the definition of wide in 1.31(1) and of %y, in 3.1(2), in particular
clause (e).

2) Just read the definition of m € M and of f € %, in particular:
(a) if t1,ta € L \Mm are not Ej -equivalent then (t1/Em) N (t2/Em) = Mm
and <u, [(t1/Em Uta/Ey) is determined by <, [(t1/Em); <m [(t2/Fm),
(b) ngm = id]\/[m.
3) Naturally by the definition.

4) Let g € Z be as in part (1) and let h = g™ so an automorphism of m
which extends g as in part (2). So h is an automorphism of Py, (L) and clearly
f = hPm(dom(f)) is as required.

5) Is clear, see 1.13(f). Os.5

Claim 3.6. Let m € M and p > \p.
If f1, fo € P,y then:

(a) i € fo=> f1A§ fz,A
b) i=fit= ="

Proof. Just consider the definition, see 3.1(3) and (x)4(b) of the proof of 1.32. 3¢

§ 3(B). Ordinal equivalence.

Context 3.7. All m-s are lean®®.

Observation 3.8. 1) P (L) C Py, (L), see Definition 3.1(4).

2) For every p € Py, there is a sequence (p; : i < i(*)) of < A members of Py, (see
8.1(6)) such that Fp_ (1) P € G <= {pi:i<i(x)} CG”".

Proof. 1) By their definitions.
2) Should be clear, see Definition 3.1(4) and 3.2(3). Os.s

2950 maybe we can use A\g = A.
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Remark 3.9. 1) Observation 3.8 is not used.

2) Probably we can avoid using “wide” and prove earlier the density of M., with
smaller cardinality but the present way seems more transparent.
Definition 3.10. Assume m € M.
1) Let %y be the set of pairs (¢,5) such that ¢t € Ly, \Mpy, and 5 € $(¢/EL) for
some ¢ < A\T; we may write § instead of (¢,35) as usually § determines t/E., but
this is the only information about ¢ that matter. We could have used instead pairs
(t/ B 5)-
2) By induction on the ordinal v we define when (t1,51), (t2, 32) are y-equivalent in
m or are (m, y)-equivalent:
(a) if v = 0, then letting Ly = (Mp, Urang(s,)) for £ = 1,2 there is h such
that:
() h is an isomorphism from m[L; onto m|Ls,
(8) h maps 51 to 3o,
(7) h[Mp, is the identity,
() h induces an isomorphism from Py, (L1) onto Py, (L2) (as defined in

1.5(x)4(b)),

() moreover, h induces an isomorphism from Pp,[Li] onto Py[Lo], as
defined in 2.7, so p;, — pz(t)m, see 2.4(3),
(b) if v = 8+ 1 then for every ¢ € {1,2} for every e < AT and 5, € “(t,/E,)
thereis 5,_, € “(t3_¢/Eyy,) such that (¢1,517°5)), (2, 52 55) are B-equivalent,
(c) if 7 is a limit ordinal then (¢1,31), (t2, 52) are S-equivalent for every 8 < ~.
Remark 3.11. 1) Note above that if 3y is the empty sequence then t;, would not be
determined by sy, still in those cases the equivalence just means §; = 5s.
2) We can use t/Ey, or t/E], instead of t/E]. as everything is over My,.

Claim 3.12. Form € M and ordinal o the number of equivalence classes of “being
(m, )-equivalent” is < Jy1a41(A1).

Proof. By induction on a.

Case 1: a =0:

Note that the set of elements of Py, (M, Urang(5)) has cardinality < 2% (and even
< (A1)?) and depends just on m[(My, Urang(5)) but there are Jy()\;) possibilities
for the quasi order on Py, (L) and even for Py, [L1].
Case 2: « is a limit ordinal:

By clause (c) of Definition 3.10, the number of a-equivalence classes is < []
B<a

(the number of B-equivalence classes) < [] Diipr1(M) < (Digpari(A))te =
B<Lla

Tivari(Ar).

Case 3: a =+ 1:

Clearly every a-equivalence class can be coded as a set of -equivalence classes hence
the number of a-equivalence classes is < 231+8+1(A) = 3 50 (A)) = Dy 1ar1 (M),
as promised. U312

Definition 3.13. For an ordinal 3, let ¥, g be the set of functions f such that for
some t¢,5¢ for i < i(x) and £ € {1,2} we have:

17
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(a) i(x) < AT,

(b) (tf : i < i(x)) is a sequence of pairwise non-E! -equivalent members of
Ly \Mm,

) 54 € SOt B! ) where (i) < AT,

) (t},5)), (#2,52) are B-equivalent (members of %y,),

) f is an isomorphism from m|L; onto m[Ly when L, = U{rang(s!) : i <
(%)} U My,

(f) fIMp = the identity,

(g) f maps 5} to 52 for i < i(x).

2) For f € Gm,o we define f as the mapping from Py, (dom(f)) onto Pu,(rang(f))
induced by f; see clause 3.10(2)(a)(¢); (clearly well defined 1-to-1 function, but
does it preserve the order? we shall return to this in 3.18).

§ 3(C). Representing p € Py, [My,].

Applying this subsection in §3D we may assume all m-s are lean and so maybe
Ao = A is O.K., but certainly not applying it in §4.

Claim 3.14. Assume m is p-wide and p > Ag.

1) The conditions p,q € Pm(Lm) are compatible when for some 1 the following
condition holds:

(stt)p,gp (@) o € Pm[Mn],
(d) p,q € Pm(Lm) and wsupp(p)Nwsupp(q) C My, see Definition 1.12(1)(b),
equivalently (s € fsupp(p)\Mm) A (¢ € fsupp(q)\Mm) = —~(sE/t),
() if < p€Pyu[Mm] then ¢,p are compatible in Py [Lm],
(d) 4, q are compatible in Puy[Lym], equivalently g Wp,_, “©|G] = false”.

2) For a dense set of 1) € Pp[My] there are L, p such that:

(a) p=(p-:e < p) € "(Pm),

mappmg (Laaps) to (Lﬂ(s)vpﬂ'(s)) fO’F €<,
(¢) if w C p has cardinality X then ¥, \/ pe are equivalent in Ppy[Luy], i.e.

EEU
P < Upeg"/)-

€U

3) Assume that L is a p-wide initial segment of Ly and 1o € Pp[Mm N L]. Then
there is a pair (¢, p) satisfying vo < ¢ € Puyu[Mm N L] and clauses (a)-(g) above
hold and:

(h) if e < p then pe € P (L).
Also we can add:

(i) the sequence (ns : s € LN Mp) is a generic for Pm[L N Mpy], that is it
determines Gp,, [L N Myy).

Remark 3.15. 1) In 3.14(1) instead of stt, 4, we can use the stronger statement:
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(stt)), 5., as there but omit clause (d) and add to clause (c): also ¢, ¢ are compatible

in Py [Lm],

But the present choice is more convenient in the proof of 3.14(1).

2) We use A > Ny in the proof, to eliminate it we can imitate the completeness
theorem?®° for Lix, -

Proof. 1) We choose (pn, qn, %) by induction on n such that:

B, (a) (a) (stt)p, .., holds if n is even,
(B) (stt)g,.pn.p, holds if n is odd,

(b) (p()aqmw()) - (Paq,¢)7
(c) if n =2m + 1 and s € dom(pam) N M, then s € dom(g2m+1), and

tr(pam(s)) <tr(g2m+1(s)),
(d) if n =2m + 2 and s € dom(gam+1) N M, then s € dom(pam,+42) and

tr(q2m+1 (3)) < tr(p27n+2(s))7
(e) if n =m + 1 then Pm < Pns Gm < qn.

Case 1: For n = 0 use clause (b).
Case 2: n=2m + 1.

So the triple (pam,gam, Yom) is well defined, let ugy,, = dom(pay,) N My, and let
U = (Vs : 8 € Ugm) be defined by vs = tr(pam(s)).

Clearly,

(%)1 Yom IF D, for s € ugpm.

30but we give details. First as a warm up notice that (for A = No):
() if r € P then we can find .7 and 7, § such that:

(a) (o) 7 is a sub-tree of “~w which is well founded,
(B) if n € 7, then sucz(n) is empty or is w.
) T={(rp:n€T)and ry =r,
c) rp €EPmandry Cr, forndve T,
d) 5= (sy:n€ T \max(7)) such that n Qv = s, £ sy,
) ifn=v"(k) € 7, then s, € dom(r,)NMm and r [(dom(rv)\ Liy(<s,)) = T (dom(ry)\
Lm(sy))’
(f) if n € max(7), then dom(ry) N Mm = {sy¢ : 0 < € <1g(n)},
(g) if n € 7\ max(7), then for some k we have:
e if £ >k, then tr(rnA<i>(sn)) has length ¢,
o if £ > ko = tr(rnAU)(sn)) for some p € Il.¢0., then for every p € Il . ,0¢
satisfying o < £ and tr(ry(sy)) < p for some j < w we have p = tr(r, ~;(sn)).
This can be proved by induction on sup{rk(Mm(s)) +1:s € dom(r) N Mm}.
Let (s; : i < ix) lists Mm such that s; <m s; = % < j, and let 5;, = oo. For i < s let
L; = U{Lm(gsj) 1 j < i}, it is as an initial segment of Lm. We prove by induction on i < i

b

—~ S~

o

that the statement holds when p,q € Pm(L;). For ¢ = 0 this is trivial and limit ¢ it is. So assume
i =j+ 1, now if s; ¢ dom(p) Udom(q) this is trivial and if s; € dom(p) \ dom(q) this is obvious.
Similarly if s; € dom(q) \ dom(p). So assume s; = dom(p) N dom(q). as in the proof of 3.14(1),
without loss of generality tr(q(s;)) < tr(p(s;)). As in the proof of 3.14(1), for some q1 € Pq, we
have (*)g, p,» and ¢ < g1 and Ig(tr(qi(s))) > Ig(tr(p(s))), hence tr(p(s)) < tr(q1(s))-

Clearly (*)q, ILj,pILj,% holds, therefore q1[Ls,p[Ls are compatible in P, hence in Pm(Lj),
and let 7 € Pm(L;) be a common upper bound. Now, r forces (i.e. Irp, (r;)) then

fa(s) I(lg(tr(q(s))),lg(tr(p(s)))) < tr(qi(s)), hence r Ihpm(Lj)“p(s),q(s) are compatible in Qs,;”,
therefore 7, p, g have a common upper bound. So we are done.
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[Why? Clearly pa, IFp,, D%, i-e. pi,. < pam in Pm(Lm), hence in Ppy[Ly] and
therefore, if Yo I p} , , then ¢ = o, A=ps . € Pm[Mm] is > 12,,, hence compat-
ible with pa,,, contradiction, see clause (c) in (stt), 4, which holds by Hap,(a)(a).]

(%)2 there is ¢b,, € Pm(Lm) which is above ga,, and above )9, and naturally
Uzm C dom(gh,,) hence s € ugy,, implies v; C tr(gs,,(s)).

[Why? By clause (d) of (stt)p,,,. qom e Which holds by Ba,,, (a)(a) recalling P (Lm)
is dense Py, [Lyy]; the “hence” by (x);.]

(%)3 there is ¢4, € Pm[M,,] such that:
(a) if b, < @ € Py[Myu] then ¢, ¢, are compatible in Puy[L],
(b) if s € ugy, then ¥4, I+ Dsu.s
(C) '(/JQm S wém
[Why? Obvious using the AT-c.c., i.e. ¥}, = Vo, A=(V{p: p € F}) where & is
a maximal anti-chain of members ¢ € Py, [My,] satislying ¢ L ¢5,, in Py[Lm]; see
more in 3.14.]

()4 without loss of generality wsupp(gb,,,) N wsupp(p2m) C Mm.

[Why? As m is pu- wide using an automorphism of m which is the identity on
wsupp(gam), i.e. by 3.5. Even if m is fat this is fine.]

Lastly, let pn = b,y @n = Qopmy Yn = b, and check.

Case 3: n=2m + 2.

Similar to case 2 with the roles of the p’s and the ¢’s interchanged.

Having carried the induction we can define p, as the upper bound of, in fact the
union of {p, : n < w} as in 1.16(3A), in particular:

(¥)7 (a) (dom(ps) = Jdom(p,); in fact, also fsupp(p«) = | fsupp(p,) and wsupp(p.) =
U wsupp(pn),

(b) if s € dom(ps) and n is minimal such that s € dom(p,) then tr(p.(s)

)
kL>Jn tr(pe(s)) and {fp. . : ¢ < e(ps)(s)} is equal to {tr(ps«(s))Ufp, . [lg(tr(p«(s))), A) :

t < t(px(s)) for some k € [n,w)}.

Similarly let ¢, be the upper bound of, in fact the union of {g, : n < w} as in
1.16(3A), so again, in particular:
(¥)s (a) dom(g.) = |Jdom(g,), and also fsupp(g.) = |Jfsupp(g,) and wsupp(g.) =

n

Un wsupp(gn ),
(b) if s € dom(p«) and n is minimal such that s € dom(g,) then:

o tr(g.(s)) = kL>J tr(qx(s)),

2 {fg.0 1t <) (5)} is equal to {tr(p.(s))U fiy. [[lg(tr(p«(s))); A) s ¢ <
1(gr(s)) for some k € [n,w)}.

Hence,

(*)o (a) Dx, Qs € P,
(b) dom(ps) Ndom(qs) € My, moreover, wsupp(ps) N wsupp(q«) € Mm,
(¢) dom(ps)NMpy = dom(qs) N My,
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(d) if s € dom(ps) N My, equivalently, s € dom(p,) N dom(q,) then:
tr(ps(s)) = tr(g.(s)).
[Why? Clause (a) by properties of Py, and p, < ppy1,qn < ¢nt1 see above, clause
(b) as dom(pam) N dom(gam) € Mm as (Stt)p,,..qem.wam- Clause (¢) by B, (c), (d),
the first conclusion and clause (d) by B, (c), (d), the second conclusion.]

It follows that p., g, are compatible in Py, but p = pg < ps«, ¢ = qo < g«, S0 p, q are
compatible as promised.

2) Let ¢g € Pm[Mm] be given. Let p € Py, be such that p lFp_ “i)o[G] = true”.
Let £ = {p : ¢ € Pm[Mm] and ¢, p are incompatible in Py[Lm]} and let # be
a maximal set of pairwise incompatible members of .#. As Py [Lm] satisfies the

At-c.c., clearly .#] has cardinality at most A and let ¢ = A{—¢ : p € #}. Clearly
we have:

(%)1 ¥ € Py[My] and:

(a) if Y < @ € Py[Mm], then p, ¢ are compatible in Py [Lm],

(b) % < ¢ in HDm[]\4m],

(¢) ¥ <pinPy[L].
Let Lo = U{t/Em : t € fsupp(p)} U Mm, so (Lo \ Mm)/E}, has cardinality < Ag
and as m is p-wide, we can find L., (¢ € [1,u)) as required, that is, choose an
automorphism 7. of m for £ < p such that . [ My, is the identity, (m(Lo)\Mm :
g < p) are pairwise disjoint where we let 7y be the identity and so L. = m.(L), and
let p. = 7(p) for € < u. Note:

()2 if 1 € Pm[Lm], and Pm[L] = “¢b < 1”7 then for for all but < A ordinals
€ < u, the conditions p., ¢, are compatible.

[Why? Let ¢ € Py (L) be above 1 in Py, [Lpm], so the set {t/Ep, : t € fsupp(q)}
has cardinality < Ag.
So for every € < p except < A\g many, the sets wsupp(q) = U{t/Em : t € fsupp(q)}
and L.\ My, are disjoint. Now for every such ¢, the triple (pe,q,%) satisfies the
assumptions of part (1), hence p., g are compatible hence p., ¢ are compatible, so
(%)2 holds indeed].
Now clearly ((pe, Le) : € < p) satisfies clauses (a)-(f) of part (2), so we are left with
clause (g), that is:

e if u € [u]* then v, \/ p. are equivalent in P [Luy], i.e. ¥ < \/ p- <.

geu geu

Why this holds? First by the choice of ¢, that is by (*); clearly p IFp_ (1, “¢ € G”
hence for e < 1 by the choice of p. also p. g (1,.] “¢ € G” hence ¢ < p. in Ppy L]
hence ¥ < Vecupe Pm[Lm].
Second, for the other inequality, just note that:
(%)3 if ¢ € Pm[Lm] and Pm[Lm] E “¢ < ¢” then ¢ is compatible with p. for every
€ < p except < A many.
[Why does (x)3 holds? as in the proof of (x)s.]
3) We use part (2) on n = m [ L; so find ¢ € P,[Ly] above 9y satisfying clauses
(a)-(g), but Py[Ly] = Pm[Ln] = Pm[L], and so clause (h) is obvious and clause (i)
holds by the definition of Py [Lm]. O3 14
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Claim 3.16. The set {¢; : i < i(x)}U{¥.} has a common upper bound in Puy[Lyy]

when:
(%) () m € M is p-wide and p > Ao,
(b) i(x) < A or just ix < Ao,
(¢) Li C Ly fori <i(x),
(d) LiNLj = My fori# j <i(x),
(e) ¥u € ]P [Mim],
(f)y te Li= (t/Em) C L,
(8) Vi € Pm[Ly],
(h) if Pm[Mm] E “Yu < ¢ and i < i(x) then v;, ¢ are compatible in Ppy|[Lm],

equivalently in Pwy[L;].

Proof. We can for i < i(*) replace L; by L} when My, C L; C L; and the parallel
of clauses (f), (g) of () hold. Hence without loss of generality:

()1 the set {t/EL

As 1. € Py[Mp], there is p € Py
m is pu-wide, by 3.5 there is an automorphism f of m over My,

:t € L; \ Mm} has cardinality < Ag.

“h|Gp,,| = true”. As

such that i <

such that p IFp_

i(x) = f"(wsupp(p)) N L; C My, hence without loss of generality i < i(x) =
wsupp(p) N L; € My,. Now we choose p; by induction on i < i(x) such that:

fz—j—l—lthenpzll—“w [Gp,.| =

17 < < i) is increasing,
6 dom(p;),i < i(*) then Lg(tr(piyi1(s)) > i(x),

=D
true”,

(f) wsupp(p;) hence also fsupp(p;) is disjoint to U{L;\Mm : j € [1,i(x))}.

This is sufficient for the claim as p;(,) is as required. So let us carry the induction.

For i = 0 use clause (d), for ¢ limit by 1.16(3A) we know that (p,
a <p_-upper bound p; with domain U{dom(p;)

1 j < i) has
: j < i} satisfying wsupp(p;) C

U{wsupp(p;) : j < i} by 1.16(3A), hence p; is as required, in particular as in clause

(f).

Recall p; is above py = p hence above v, (in Pm[Lm]).

As in the proof of (*)3

inside 3.14(1) (or see 4.11(1) below) there is ¢; € Pmy[Mmy] such that:

o P, <y,
o, if ¢; < ¢ € Pry[Mu] then p;, ¢ are compatible.

Lastly, assume ¢ = j + 1, by (*)(h) there is ¢; € Py above ¢; A 9;. Because m is

p-wide there is an automorphism 7 of m over My,

satisfying 7[L; is the identity,

so 7"’ (dom(g;) \ M is disjoint to wsupp(p;) and to L. for € € i, \ {j}. So without
loss of generality:

(%)2 g; itself satisfies this.

Now the statement (stt),, q,,,, holds.

[Why? because wsupp(p;) N wsupp(g;)

above.|

Hence by 3.14 p;,q; has a common upper bound called p;.
some automorphism 7 of m over My,

C M by (%)2, the choice of ¢; and g,

As m is wide, for
such that 7[wsupp(p;) is the identity and
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7" wsupp(p;) is disjoint to U{L. : € € [i,4,)}, hence by renaming without loss of
generality:

(x)3 wsupp(p;) \ M, is disjoint to U{L; : € € [i,i4)},

Clearly p; is as required so we have finished proving (x)s.
So we have finished proving the last case in the the induction.

So we are done. Us.16

§ 3(D). The main result.

Here we continue §3A, §3B, and in particular prove the main result, it does not rely
on 3(C). Concerning §1B, we rely on it only in one point: quoting 1.26 while proving
By 4 and the beginning of Case 3 inside the proof of 3.20, this can be avoided using
§4A. We have not work out if e.g. §3D works for the fat context.

Hypothesis 3.17. We are in the lean context (for this subsection).

Conclusion 3.18. If 8 > 0 and m is wide and f € % g and L1, Ly its domain and
range respectively then f induces an isomorphism f from Py (L) onto Py (La).

Remark 3.19. 1) See Definition 3.1(3); note that this claim is not covered by Defi-
nition 3.1(2).

2) Here we use 3.2(4), so the choice in Definition 1.10(c)(7) is justified (see Remark
3.3(1) used below in the proof).

3) We could have below separate the definition of “analyze” and its properties.

4) Note that in Definition 3.10, we deal only with L; C t/Ey, for some t.

5) How come even 8 = 0 is suitable for 3.187? The point is clause (a)(¢) of Definition
3.10(2). But there is no real harm using larger S.

Proof. By the definitions, clearly f is a one-to-one function from Pm(L1) onto
Pm(L2). Next assume p1,q1 € Pp(L1),dom(pr) C dom(qq) and let ps := f(p1),q2 :=
f(q1); clearly they belong to Py, (Ls2). We shall prove that P, E “p1 < ¢1” iff
Pm | “p2 < q2".
Let i(x) < X and #; = (t} : i < i(x)) be such that:

@1 (a) t} € fsupp(q1)\Mm C L; such that fsupp(q) is included in U{t}/Ey, :

i <)}
(b) (t! :i < i(x)) are pairwise non-E/, -equivalent.

Next let and we have:

@2 (c) let t2 = f(t}) for i < i(x) and let to = (t7 : i < i(x)),
(d) fsupp(pe) C U{tE/EY i < j(%)} U M, so j(*) < i(x), for £ =1,2.

For i < i(x) let 7, € Pm[Mm] be such that: ¥ € Py[Mm] is compatible with
q1i = q1 1 (tj/Em) (the projection!) iff ¥ A ¢}, € Pp[Mmp]; clearly exists as
P satisfies the AT-c.c. Clearly Py, [Lm] “Pi; < qui < q for i < i(x) and let
91 =Mt i <)}

Now 1f € Po[Mm] as q1 IF “¢F[Gp,. ] = true”. We will say “¢f,F = (Wl a1
i < i(x)) analyze q or (q1,t1)” when the above holds.
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Next choose ¢F, (¢} ;,p1,i = @ < j(*)) which analyze pi, (t] : i < j()) where without
loss of generality j(x) < i(x). Why possible? As above recalling p1 < ¢1 =
fsupp(p1) € fsupp(qy).

Lastly, let 93 ; = F(47 ), p2i = (010,93 = F(07), 9035 = F(91 1), a2 = fla1), 05 =
f (1) where f is the function from Ly, (Yz,,Pm) onto Ly, (YL,, Pm) induced by f,
i.e. where f is the one-to-one function with domain L+ [Y7 ] defined by p;,
pf(t) . Now,

( ) for £ = 1 2 the sequence (Ph%awzﬂ%a@g, ) where u)é - <11Z)£ i qeit
ie(*)), §p = (PrisPeyi =1 < i(x)) satisfy the same demands as listed above
for ¢=1,2, that is
(a) (¥},v;) analyze (go,te) for £ =1,2
(b) (¥}, @) analyze (pe,telj(x)) for ( =1,2.
[Why? Think, recalling f[(t}/Fm) is an isomorphism from m/((t}/FEm) N L)
onto m[((t?/Em) N Lg), inducing an isomorphism between Py, [(t}/FEm) N L1 and
P [(t7/Em)NLa] by 3.10(a)(6) and 15 = A{t5 ; : i < i(x)} is because each function
f1(t}/Em) induces the identity mapping on Py, [Mp,).]
Next,

B for £ = 1,2 we have (A); < (B); where:

(A)e Pm = “pe < q0”,

(B)¢ for every i < j(x) we have P [t{/Em] = “(0) Apei) < (¥ Aqei)”.
Why? First, assume that the condition (B), fails, say for 4, hence there is ¥ €
Punt;/Em] such that Pim[t{/Bm] F “(¥] Aqei) <97, and 0 ApeiNY & Pr[t]/ Em].
So by claim 3.16 there is qz’ € Py, such that qé” € Pm[Lm] is above ¢, hence above
¢; and above qg; = q¢ | (t5/Em) for j <'i(x). That is, first get ¢ € Prm[Mm] such
that ¢ > ¢} and [ < ¢’ € Pm[Mm] = ¢/, 9 are compatible] (using ¥ > ¢7). Then
apply 3.16 to ({qe,; : j <i(x),7 # i}U{9})U{e} to get ¢ . We have used i(x) < A.

Hence by 3.2(4) the condition qZ is above ¢y, but q[ IF “@} Apei[G] = false” as qj
is above ¥. However, py IFp, (1., “Pei € G and p; € G”. By the last two sentences
q;, pe are incompatible in Py, [Lm] equivalently in Py,. So indeed —(B), = —(A),.
For the other direction assume condition (B), holds, but condition (A), fails and
we shall get a contradiction. So there is q[ € Py, above ¢ incompatible with p,.

For each i < i(x) as (wz,wz’j,qm 1 j < i(x))) analyze qq, clearly Pm[Lm] &
“(7 N gei) < q” but g < g hence Pm[Lm] = “(¥] A qe;) < g7, and as we are
assuming clause (B), we have j < j(*) and P [Lm] = “(¢; Ape,1) < g, Hence by
3.2(4), qf is above p; in Puy[Ly,] hence they are compatible in Pp,, contradiction.
So indeed (B)¢ = (A). Together, B holds].

Now clearly (B)1 < (B)a2, see Definition 3.10, 3.13; so by H we have (4); < (A)2
which is the desired conclusion. Us.18

Claim 3.20. We have Py, <P when:

(a) my <p m,

(b) ift € Lyn\Mm, and 5 € $(t/EX),¢ < A\t then we can find t;,5; fori < A\t
such that:
(a) l; € Lml\Mml’
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(B) ti/EL, #t;/Ef, when i # j < AT,
() 3 € (ti/Em,),
(8) (ti,5;) is E-equivalent to (t,5) in m where3! € = 1.
(c) m is wide.
Remark 3.21. In the proof we use conclusion 3.18 but not clause (a)(¢) of Definition
3.10(2).

Proof. B for 8> 0 and f € %m 5,

(a) f preserves “ps is above p; in Py,”, and its negations,

(b) if 8> 0 then f preserves also incompatibility in Py,.
[Why? Clause (a) holds by 3.18. For clause (b) use clause (a) and Definitions 3.10
and 3.13 or see the proof of Ha.]

My if p; € Pm, for i < i(x) < AT and p € Py, then there is p* such that:
(a) p* € Ppm,, equivalently p* € Py (L, ),
(b) P, | “pi <p*” iff Py = “pi < p7,
(¢) Pm, = “ps,p* are compatible” iff Py, = “p;, p are compatible”.

[Why? Let ¢; € Py, be such that: if p;, p are compatible in Py, then p; < ¢; Ap < ¢;.
We can find Ly C Ly such that

L4 Mm g Ll g Lmla |L1\Mm| S )\7
o {pi:i<i(+)} CPm(L),
L4 Ll g L2 g Lm7 |L2\Mm| S A and D¢ € Pm(LQ) for i < Z(*)

By the assumption of the claim there is f € %y 1 such that:

o dom(f) CU{(¢t/EL)NLy:t€ Lo} U My,

e tc L= fl((t/Em)N L2) =id(t/Bm)nLss

eifge{g:i<i(x)}U{ptU{p; :i < i(x)} and t € dom(q)\Muy then
fsupp(q(t)) < dom(f),

o rang(f) C Lm,.

Let p* = f(p): by Hi(a) clearly clauses (a),(b) of By holds; and the choice of the

g;’s (and as p < g2 = f(p) < f(g;)) also the implication “if” of clause (¢). The
“only if” of clause (c¢) holds by H;(b) so we are done.]

Hs if p € Py, then p € Py, iff fsupp(p) C Ly, -
[Why? Obvious.]
Recalling Definition 1.28(0)(c):

My for every ordinal v, we have Pr, (Lad ) < P (L3L.).

my,y
[Why? We shall prove this by induction on v using Hy + Hs.
Note that:

Ba1 (a) LI N Ly, = L3

my,7y’

(b) if f € %m p,s € dom(f) and 8 is an ordinal then:
e sc Ll & f(s)e Lda

miy,y m,7y?
(c) the parallel of Hy holds replacing the pair (Pm,,Pm) by the pair
(P, (L5, ), Pra (Lt ))s 50 e.8. p* € Pra(Li, ),

my,y miy,7y

3116 real harm in using larger &.
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(d) qu is an initial segment of Ly,

(e) Lﬁ?l ~ is an initial segment of Ly, ,

(f) P, (L3 ~) <Pm, (L, ), similarly for m.
We shall use this freely. The inductive proof on v splits to three cases.
Case 1: v =0.
So,

E=E! [qu is an equivalence relation on Ldd e
° Erqu _ E// rqu

my,y miy,y’?

e ifte LY then ¢ ¢ M, t/EL, = t/EL, (t/En ) VLA - = (t/Em,) N
Lyt = (t/Ep)NLad | initial segment of Ly, and of Ly and Pey ((t/ Em, )N
L(Ill’?l ’\/) = ml((t/Eml) N L(l’il’?l ’y)

. ]P’d (Lfr‘}’,y) is the product with (< A)-support of {Ppm ((t/Em, ) N LI S)itE
Lda

m,y /S

e similarly for m;.

So the result should be clear.

Case 2: y=0+1

Let Mg = {s € M, : dp,,(s) = B}, clearly:
Hio (a) Mg is a set of pairwise incomparable elements7

(b) 5 € Mg = Lin,.<s € L 5 AL <s € Lyd

(c) Mﬁ is disjoint to L9 qu

(d) M
)

my,[3?

B my,3’ ~“m,3>
d C L3l

mj,7y’

(e quﬁ U Mg is an initial segment of Ly,
() L?:}LB U Mg is an initial segment of Lyy,.

As first half we prove:
d d
H4 3 P, (er?lﬁ U Mg) < Pm(Ln?ﬁ U Mﬁ).
Why? Recalling B, 1 (a), note
(a)t for p,q € ]P)ml(Lfr?l,g U Mpg) we have Pp,, (Lifhﬁ UMg) E “p < ¢ iff
P (L3, UMg) | “p < ¢".
[Why? Immediate by the definition of the order and the induction hypothesis.]
(b)T if p1,p2 € P, (L d BUMfB) then pq,ps are compatible in Py, (Ld s BUMﬁ)
iff they are compatible in ]P’m(Ln‘iB U Mp).
[Why? The implication = holds by clause (a)'.

So assume ps3 € Py, (Ld s U M3g) is a common upper bound of p;,ps in Py, (Li?ﬁ U
Mpg) equivalently in Py,

Now (by clause (b) of the claim assumption) there is f € %m1 (actually %mo
suffices here) such that:

e f[(fsupp(p1) U fsupp(p2)) is the identity, moreover

e s € wsupp(p1) Uwsupp(pz) A s € dom(f) = f(s) = s,
o dom(f) = U{fsupp(pe) : £ = 1,2, 3}
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o rang(f) C Lum,.
PAIence clearlydf[Mﬁ = idp, so by H4.1(b) we have rang(f) C Li?l,/a U Mg so
f(p3) € Pm(Ly) 5 U Mp).

A~

By H; the condition f(ps) is a common upper bound of p;,ps in Py, and by the
previous sentence also in IP’m(Lifl 5 U Mpg), so by clause (a)' the conclusion of (b)T
holds.]

(e) If .7 is a maximal antichain in Pp,, (L?r?l 5 U Mpg) then .# is a maximal
antichain of ]P’m(Li'fﬂ U Mp).

[Why? As in the proof of clause (b)' and of H,.]
So we are done proving Hy 3.

Now we return to proving H,, note

BHig let & = {(s1,52) : 81,82 € L. and $1/Epm = s2/FEm} where L, = Lfr‘}_’,y\(Li?ﬁU
Mpg)}, then:
(a) & is an equivalence relation on L,
(b) if 1,89 € L, and s1 <p_, $o then s18s9,
c) if 51,82 € L, and s18sy then s; € Lfr‘}m S 59 € Lf;ll’,y (and both
¢ Mﬁ)a
(d) if s € L, then Ly <y € Lyt ;U Mg U (s/&),
. d
(e) if s € Ly M Ly, then L, <s C L) s UMgU(s/&).

1

Hence let Ly = L(rfl,ﬁ UMg and Ly = L3 . = L34 U Mg they satisfy all the
assumptions of 1.26 hence its conclusion, so we are done easily proving Case 2 of
H,.

Case 3: -« is a limit ordinal

Note that in this case the set Lad_ "\ U{Lfr'iﬁ : B < v} consist of s € Lol \ My,

dq

which are not below any elements from L = L,I{Lf];Jl 51 B <~} hence as in case

m, <7y
2 we can treat them as in the proof of Hy 4, citing 1.26, so we shall ignore them
below.
Clearly p € P, (Lf‘l?17<,y) iff p € Pm(Li(fle); also each of them implies p €

Pm(Li?KW). Also for p,q € Py, (Li(l11,<'y) we have Pp,, (Lﬂ?l,<,y) E “p < ¢ iff

Pm(L?& <) E “p < ¢” by the definition of the order and the induction hypothesis.

Together Py, (Li?hcy) - IP’m(Li?,<7), (as partial orders).

Next assume that g1, s € P, (L2

my,<7y
in P (Lo ).

We shall find p; € P, (L

my, <7y

) and p3 is a common upper bound of g1, g2

) such that:

(¥)1 (a) p1is above q1,¢2 (in Pml(LtdI;11,<"/) or equivalently in IP’m(Lfr?le)),
(b) ifpr < g € P(L30

my,<~) then p},p3 are compatible in ]P)m(L;il?,<'y)'

This clearly suffices; why? e.g. if {r; : i <i(x)} C Pml(Li‘fle) is a maximal an-
tichain of Py, (L5Y

<) but not of Pm(Lfny), let ¢ = qo = 0 and p3 € Pm(L?fKﬂ

be incompatible with every r;; let p; be as in (x)1, it gives a contradiction.
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If cf(y) > A then for some 7; < v we have q1,q2 € Pm(L39 ) and fsupp(ps) N

my,y1
LY C L9 and use the induction hypothesis on v, for clause (a) of (x

m,<vy = m,yq )
clause (b) of (x); we also recall 1.16(6); (alternatively imitate the case cf(y) <
choosing “changing our minds” 7. < v with the induction). So assume Ry < cf(y )

A and let (7. : € < cf(v)) be increasing continuous with limit .

1; for

Now we choose p1 . by induction on e < cf(+y) such that:

()2 (a) pre € Pm(Lgd, 5,),
(b) (’757 q1 {er?'yia q2 er ’yg7p3 er Ve y D1 E) are like (’YJ q1, QQ»pB,pl) m ( )1
(¢) prc <piefor ¢ <e,
(d) ife=¢+ 1 and s € dom(p1,¢) then Lg(tr(p:(s)) > cf(y).
So we are done proving Hy.]
B5 Pm, <Pm
[Why? By H, for v large enough.]

So we are done. Us.20

Claim 3.22. If m € M is reduced or just Ly, has cardinality < Ao then there is
n € M. of cardinality < Ay such that m <y n.

Remark 3.23. By this we may restrict ourselves to M<, (but then similarly in the
end of §2).

Proof. We choose x large enough and m, € M, which is wide, belongs to M. and
m <pp m,; moreover is full and very wide (see 3.1(1), as constructed in 1.32).

We can choose n such that:

(*) (a) n € M and n is wide and |Ly,| = A,
(b) m <y n <ppmy,
(¢) (n,m,) satisfies the criterion from 3.20, with m;, m there standing for
n, m, here.

[Why? Let £ = 1 and recalling Definition 3.10(1) choose ((ta,54) : @ < A2)) such
that (ta,54) € Zm,sta € Lm,\Mm,, {ta/Em : & < A2) are pairwise distinct and
for every (t,5) € %m, there are AT ordinals @ < Ay such that (¢, 35), (ta, 54) are
&-equivalent, possible by 3.12 recalling As > J3(A1). Let L' = U{tq/Em, : a <
A2}ULm and for each t € L'\ M, let (s¢ o : a < AT) be such that s; o € L, \Mm,
and m, [(S;,o/Em,) is isomorphic to m, [(t/Em,) over My,. Let L = L' U {544 :
a < ATt € '\Mpy, } and n = m, L. Now it is easy to check that n is as required.]
It suffices to prove that n belongs to M., let n <p1 n; <pp no.

Without loss of generality Ly, has cardinality < 2*2, by the LST argument; (what
is the LST argument here? let y. be large enough such that A\, m, m,, ny,n, all
belong to J#(x.) and let A < (5 (x.), €) be of cardinality 23 such that all the
above belong to it and v C A A |u] < Ay = u € 2. Now replace nj,ny by their
restriction to 2A).

Now as m, is very wide and full without loss of generality n, <p m,. Now
(n,m,) satisfies the criterion from 3.20 hence Py, < Pp, .

Also the pair (ng,m,) satisfies the criterion from 3.20 looking at the criterion.
Hence by 3.20 we have Py, < Py, .
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As n; <pp np <pp m, from the last two sentences it easily follows that Py, < Py,
so we are done. Os.22

Discussion 3.24. In what way does this proof help? Will it not be simpler to

omit in Definition 1.10 clause (c) the ¢p(s), Bp(s),., etc.?

In this case in 3.1 we cannot define the projection directly hence we should look
for projection as in general forcing, but then we run into problems of absoluteness.
More specifically, 3.20 seems to be problematic; anyhow this does not matter.

Definition 3.25. For m € M and M is a subset of M, so of cardinality < \; we
define n := m(M) € M as follows:

(a) Ly = Ly even as a partial order,
(b) Un = Um and Py, = P,
(¢) My = M; yes M not My,!
(d) B, ={(s,t) : 5,t € Ly, and {s,t} € M}.
Claim 3.26. Assume m € Mc,, and M is a subset of My,.
1) n := m(M) indeed belongs to M and is equivalent to m hence Pom (L) = Pn(Lm)

i.e. Py = Py.
2) If n = m(M) <y nj then for some m; we have m <p; m; and my,n; are
equivalent.

3) If m € M. and n = m(M) then n € M,..
4) If m € My and n = m(M) then n € Myec.

Proof. 1) Check, noting that t € Ly\My =t € Lyn\M = [t/E}| < |Ln| = |Lm| <
Ao and |My,| = | M| < [Mm| < A, (in fact, here M C M, is not necessary, only
“M has cardinality < A1”).

2) Given such n; we now define m; € M by:

(*)1 (a) Lml = Lnl’ -~ _
(b) Um, = Un, and Py, = Pn,,
(¢) My, = M,
(d) B, ={(s.t) : sEpt or {s,t} € Ly but {s,t} C Ly, and sE}, t}.

Clearly:

()2 (a) (Mm) (s/Ey, : 5 € L, \Mm) (t/E} :t € Ly, \Lyn) is a partition of
Lml = Ln17
(b) B, = E H{(s,t) € By, and s,t ¢ My} is an equivalence relation,
its equivalence classes being the sets listed in clause (a) except Mpm,
(¢) m; satisfies clause (e)(vy) of Definition 1.5.
(¥)3 (a) if s € L\ M then:
(O() ERS Lml \Mml’
(8) /B, = 5/Ein,
(’Y) Um;,s = Un;,s = Un,s = Um,s,
(6) cgzml,s = ym,s = f@nl,s = yn,&
(b) if s € Ly, \Lm then:
(o) s € L, \Ln,
(8) 5/Eim, = 5/ Ep
(7) Um,,s = tUn,, 5,
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(0) Pmis = Pny s
(c) if s € Mp,, equivalently s € My, then

(OZ) Um;,s = Un;,s

(ﬁ) '@mhs = f@nhs = f@n,s U (gznl,s \ fgzn,s)
and easily,

(¥)4 (a) indeed m; € M,

(b) m <ppmy,
(¢) mi,n; are equivalent.

So we are done.

3) Assume n <pp n; <pp Ny, as in the proof of part (2) there are m;, my such that
m <y m; <y ms and my, ny are equivalent for £ = 1,2. As m € M. we have
P, < Pm, but this means Py, < Py,, as required.

4) Similarly because m € Mg = m(M) € Mypq (see 1.33(14)). Os5.96
Conclusion 3.27. 1) If m € M, M is a subset of My, and n = m[M then PS* <
Pt

2) If my € M and My is a subset of M, for € = 1,2 and h is an isomorphism from
m; [M; onto my[ My then h induces an isomorphism from P [Mi] onto Pgat [Ma].

Proof. 1) Without loss of generality m € Mc,,; (why? because trivially n €
M), and letting m; = m[My we have m; <y m and P = Pio"[Mpy,] and
n = m,|[My). By 3.22 there is m, € MY such that m <p; m. hence by 2.10(2)
PO = Py, [Mm]-

Let n. = m, (M), see Definition 3.25, so n.[M = n and by 3.26(3) we have n, €
M., hence P, [M,] = P*. But n.,m, are equivalent, hence P,, = Py,, hence
Pn,[L] = Pm, [L] for every L C Ly,, hence by 2.10(3) P = Py, [My] <Py, [Mm] =
Pm, [Mm] = P$3*. So the conclusion holds.

2) Easy, too. Us.27
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§ 4. GENERAL m’S
This section depend on §1A, §1C, §2, §3A, §3C but not on §1B, §3B, §3D.

§ 4(A). Alternative proof.
Hypothesis 4.1. We are in the general context.

This sub-section plays a double role. First, we give an alternative proof of the main
results, they may be simpler but we lose some information and we are assuming
Ag > :AT' Second, it give proof which works also for the fat context and even the

neat and general contexts not just the lean context (as in §3D). Specifically,

H in this version:

(a) we ignore §1B, that is 1.24, 1.26,

(b) we ignore §3B that is 3.8-3.13

(¢) we ignore or replace almost all §3D, that is:
() we ignore Claims 3.18, 3.19, 3.20,
(B) we replace Claim 3.22 by 4.2(2),
(v) Def 3.25, 3.26(1),(2), (3) remains,
(6) Claim 3.27 is replaced by 4.9 (whose proof just say “repeat the

proof of 3.27”).

Definition 4.2. 1) Let Qp,, := [J{Q,; : t € L}, where for t € Ly, , ; is the
set of objects b = (t,B, ¢, d, ¢, ¢, g) such that:

(a) c={c; 11 < ip <N,

(b) dCe=U{c;i:i<ip} CA,

(c) B is a Borel function from ¢ () into #5(1) (%), so if p € (< (\)VIE],
then B(p) belongs to (#(\))VI® but not necessarily to V,

(d) L < ip,

(e) g is a function from ¢, into L such that ¢ € ¢, = [g(e) € Mm = (¢ € d)]
and rang(g) is included in some L € Z,.

2) Let Q2, := | U{Q%,, : t € L}, where for t € Ly, Q2 , is the set of b such that:

(a) b= (b;:j <lg(b) <\),
(b) bj € Qll‘n,tv
) _

(c) to, =t 1, = j for j <lg(b),
(d) tb,;,Cp;,dp,) is the same for all j < 1g(b),

2A) For t € Ly, we say b € Qfmt strictly represent p(t) when:

(a) p=p[{t} € Pm and in Definition 1.10(2) we have ¢,(s) = 1,

(b) p(s) 8 B(-- -, gb;()s -+ - )jetg(B).cecup.i-
2B) We let Q3 := U{Q3,; : t € L}, where for t € Ly, we let Q, ; be the family
of b such that b is a subset of Q2, ; of cardinality < A.

2C) We say b € Q2 represents p(s) when:

(a) peP,
(b) s € dom(p), B B
(c) p(s) =sup..., (n, f<), where b = {b. : £ < e,}, each b, € QZ, , and (7, f)

is strictly represented by b..
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3) For m € M we shall define a model md(m), pedantically it is mdz(m), where3?
t=(ta =tma: @ < am = a(m)),tym) is a fix member of My, t[am is a maximal
sequence of pairwise non- EJJ,-equivalent members of L\ M, (so below Af = A%
for o < oy ) and stipulate My, = ta(m)/E;’(m) ignoring the case My, = 0:

(A) The set of elements of md(m) is the disjoint union of the following sets;
below a < a(m):
(a) Ay ={(1,ta,5) : s € ta/Ep,}, see 1.5(e)(e), (C),
(b) A2 = {(2,ta,p) : p € Pm(ta/Em)}U{(2,ta,p,q) : Pm[(ta/Em)] Ep <
q}, see Definition 1.12, central for the lean context,
(c) A2 ={(3,ta,5,b) s €to/EL, be QL and rang(gp) C to/EL},
(d) A3 ={(4ta;¥) ¥ € Pm[ta/Em]}U{(4,ta, ¥, 9) : Pmlta/Em] E ¢ <
¢},
(e) Aé(m) ={(1l,am,s,0) :s€E Mppand { =1 = s € Mlan (=2 = s¢
Mt ¢ =0=se Mny,
(f) Ai(m) = {(2atam7p) 'p € ]P)m(Lm)} U {(Q,OZm,p, q) : IEDm(Lm) ’: p §
a},
(2) Ai(m) ={(3,ta,,,5,b) s € My, b€ QL and rang(gp) C M},
(h) Ag(m) = {(4,0,9) : ¥ € Pra[ta/Em] and o = am} U {(4, 0m, ¥, ) :
Pn[Mm] =19 < ¢},
(i) notation: for a < a(m), A, = AL UAZ U A2 UAL U Ai(m) U Ai(m) U
3 4
A ) Y A (m)-
(B) The relations of md(m) are the relations R on md(m) such that:
(a) R=U{RlAq :a < am},
(b) (an overkill) R is first order definable in (' (xm), €, <}
<} I8 a well ordering of 7 (xm).

(C) Also, there is an individual constant for each ¢ € A(lx(m) U Ai(m) U Az(m) U

m]> M), where

Ai(m), or code them by unary relations.

4) For s € Ly \ Mm, the model md(m)[(s/Ewm) is naturally defined as (when
sE! t,) the restriction of the model md(m) to [J{A% : £ =1,2,3,4} U {Ai(m) =
1,2,3,4}.

Definition 4.3. 1) We say that @ € *(md(m)) represents p € Py, when for some
a we have:

(a) @ is an sequence of ordinals < a(m) of length (, < A,

(b) we let & = (a(e) = (aec 1 € < (p),

(c) wsupp(p) is equal t0 | U{tm,a./Em : € < (p} U Mm,

(d) if s € dom(p), then the following set b represents p(s), where b is the set
of b € Q2 _ such that for each i < lg(b) we have tp, = s and there is an
€ < (p such that:

e ax. = (1,tn.,5) € AL and a. < am,
o ag. = (1,%q4,,5,¢) € Ai(m) and o, = apm,
® (.11 = (3,ta5,s,bi,€) S Aie

(e) if € < ¢, then one of the cases above occurs.

3280 instead we can use (to|EY, : a0 < o).
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(f) if € € [2¢,, A) then a. is the triple (2, am, ) € Ai(m) where ¢ € Py [ M)
is witnessed by p.

2) We say a is a formal representative for Py, when for some @ the demands above
holds (ignoring the existence of p).

3) We say @ € *(md(m)) is a formal representation of a member of Py, [My,] similarly
using A% Ai(m).

Claim 4.4. Here,

(a) every p € P is represented by some @ € *md(m),

(b) every formal representative represent some member of Py,

(c) there is a formula 1rep(Z(y)) in the logic L+ xs in the vocabulary of md(m)
defining the set of formal representative,

(d) similarly for p € Ppm[Lm| more accurately 1 € Ly+[Ym] not excluding con-
tradictory ones.

Proof. Easy. Uga

Definition 4.5. We say L is good when:

(a) L is a initial segment of Ly,
(b) Lis L+ »s-definable in mdz(m) (without parameters),
(¢) the following are definable in mdz(m) by a formula (without parameters)
in }L)‘T’AT:
e G represent some p € Py, [L],
e a represent some p € Py, (L),
® Ga1,az represent pi,p2 € Pm(L) respectively, and p1 <p,, ., P2,
e ay,ay represent py,pa € Pr[L] respectively and p1 <p,_ (1] p2-

Claim 4.6. 1) The set L ={s € Ly : for not € My do we have t <; s} is good.
2) If L is good and t. € My \ L but Lyy(<¢,y € L, then LU {t.} is good.

8) If (Lo, = @ < 6) is an C-increasing sequence of good sets and § < X[ then so is

Ua<6 La.
4) If L is good then L™ = {s: there is no t € My, \ L such that t <p, s} is good.

Proof. Notice that 1), 2) and 3) are straightforward. Concerning part (2) the reader
may wonder: how do you define Py, (L) not using parameters if, say, multiple such
t.’s exists?. The answer is by 4.2(3) clause (c); that is, each ¢ € My, is definable
without parameters.

4) The point is that we do not like to induct on dp(s, Ly, ) just on dp(t, M,y,). Note
that the clauses on Pp,[L™] follows by those on Py, (LT). What we do is noting:

@ for p,q € P (L), p < ¢ iff:
(a) pIL <p_ (1) qIL,
(b) if s € dom(p) \ L then necessarily s € Lt \ L and s/E}, appears in
(ta/FElL : o < am) and,
o P[LU(s/Em)] EpI(LU(LTNs/Em)) C ql(LU(LTNS/Em)).
[Why? Just think.]
Recalling 4.2(3)(A)(d) it suffice to prove that:
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(x) Assume s € LT\ L,p,q € Py, and dom(p) C dom(q) C LU (s/E.,) then
Pm = “p <qiff (a) + (b)”, where:
(a) (PIL) <pn(r) (aIL),
(b) for some v € Ly+[Y, g1 nr] we have:
o1 Pm[Lm] =9 Cq
> YAGA D EPm [L+ﬂ(S/E' )]
[Why (%) holds? As in §3C.] Os6

Claim 4.7. 1) Py, is L\t ay -interpretable in md(m).
2) We have Py, < Py, when:
(a) m <y n,
(b) for every ¢ < A\] andt € Ly\Lm there are at least \| elements s € Ly \Mm

such that, recalling 4.2(3), the models md(n)[(t/Ey), md(n)[(s/E,) are
L:lzr at -equivalent.

3) If n € M. is wide and full, AC {t € Ly: |t/Eyn| < :l/\;r} has cardinality < :l)\ir
then there is m such that:

(a‘) m SM n,

(b) Lm has cardinality < jAf’

(c) m € Meg.

4) Similarly to part (3) for Mpec.

Proof. 1) Let (s¢ : ¢ < () lists the elements of My, such that s, <z, sc = e <(:
exists as Ly, is a (possibly partial) well order. Clearly ¢, < [|[Mml||T < A. We
define L¢ for ¢ < 2¢, + 1 as follows:

o if e < (., then Lo, = {t € Ly, : for some ¢ < & we have t <p_ s¢},
o for ¢ < (, we let Lo.y1 = LQEU{t € Ly : if ( € [e,¢,) then s¢ £ ¢ or for
some & < & we have (V¢ € [£,¢.))(s¢c £ ©)}-

Pedantically, the models (md(m)[Am o : & < am) are not pairwise disjoint but the
common part consists of < A; individual constants hence this does not matter.

Clearly La¢,+1 = Lm, Lc is a definable initial segment of Ly,. By Definition 4.5 it
suffice to prove that L, is good.

Now we prove by induction on € that L. is good, so for ¢ = 2(, + 1 we get the
desired conclusion.

For ¢ = 0, this holds by 4.6(1).

For { = 2¢+1 we have L¢ \ Ly = {s.} and Ly (<s,) € Lac; hence by 4.6(2) we are
done.

For ¢ = 2e 4+ 2 we apply 4.6(4).

Lastly, for ¢ limit we apply 4.6(3). Together we are done.

2) By part (1) and the addition theorem, (best formulated for the intermediate
logic L y+ ( for ¢ < A1), see [Dic85]).

3), 4) As in the proof of 4.8 below. Oy

Claim 4.8. Assume \g > :l/\;r.
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1) If n € M satisfy Ly = My (e.g. it is isomorphic to (v,<),y < A\]) then there
is m € M. of cardinality Ao above n.

14) Similarly for Mpec.

1B) Moreover if n is strongly (< \T)-directed (see 2.13(2), if Ln = My = (7,<)
for some v < AT, this mean cf(y) = \) then (in part (1A)) m is strongly (< A%1)-
directed, so {n, : 7 € Mm} is cofinal in Ilc<\0c in VPm 5o m € Mypec.

2) If m; € M has cardinality < Ao then we can demand in part (1) m; <pg m.

2A) If m; € Mygq has cardinality < Ay, then in part (1A) we can demand m; <pp
m.

Proof. 1) Let n, be very wide full of cardinality 2*2 such that n <n; n, and let
n, = n[.bd]. We can find m <p n, of cardinality Ay as in 4.7(2), because for
every ¢ < A] there are < :AT theories in the relevant vocabulary and logic. So
Ly has cardinality < Ay and n <p; m but why does it belong to Mye.? Toward
contradiction let m;, my € My, be such that m <y m; <pp mo but Py, < Py,
fail. By the L.S.T. argument, (see the proof of 3.22 third paragraph), without loss
of generality mjy has cardinality < 2*2, Hence by the choice of m,n without loss
of generality my <pp n,. Now for £ = 1,2, by 4.7(2) applied to (my,n,) we have
P, <Py, . But this implies Pp,, < P, so we are done.

1A) Similarly.

1B) In the proof of part (1) we restrict ourselves to strongly (< A™)-directed m-s (see
1.7(10)) so we use the relevant criterion for being in My, see 2.17(7) i.e. consider
bounded m-s only: m < m; < mg, m;, my strongly AT-directed = Py, < Ppy,.
The cofinality is by 1.29(3).

2), 2A) Similarly. Cig

Conclusion 4.9. 1) Ifm € M, M C My, and n = m[M then PP <P,

2) If my € M and My C My, for £ = 1,2 and h is an isomorphism from my | M,
onto ma[ My then h induces an isomorphism from PR [M;] onto P’ [Ma].

3) If m € My is strongly At -directed, M C My, is cofinal in My, then IFp “{gs :
s € M} is cofinal in (TIle<xf, < jva)”.

Proof. For 1) and 2) it suffices to proceed exactly as the proof 3.27, replacing
quoting 3.22 by quoting 4.8(2). Also, 3) is easy by now. Oao

§ 4(B). General m’s.

See Discussion 4.17 for our aim and 4.24 on the connection to [She20].

Definition 4.10. Assume m is A\g-wide. Let PI =PI [M,,] be the forcing notion
Pm[Mm] restricted to the set of ¢ € Puy[Mm] such that there is p € Pm(Lm)
witnessing it, which means that (it is the projection of p into Puy,[Mp,], that is):

e, the condition ¢ is smaller or equal to p in the forcing notion Py, [Lym],
o if Poy[Mm] E “ < ¢” then ¢,p are compatible in the forcing notion
Pm[Lm]-
Claim 4.11. Assume m to be \g-wide.
1) Pl is a dense subset of Pm[My], hence Pl < Py [Lm).
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2) If L is an initial segment of Ly, and n = ml[L, then Pi =PI NP,[M,].
3) If L is a Ag-wide initial segment of Ly, and n =m | L, then:

(a) Po[Man] < Pa[Ln] and Pa[My] = P [My] < Poo[ M),

(b) if pr € Pn(Ln) then there is ¢ € Py[My] satisfying:
(a) Y <p1€ ]P)n[Ln]:
(B) if v < p € Py[My] then p1,¢ are compatible in Py[Ly],
(7) ¥ being witnessed by p1, (see Definition 4.10 this follows).

Proof. 1) Let ¢ € Pp[Mpy] and we should find ¢ € P! above it, this suffice.
Clearly there is p; € Py such that ¢ < py, that is py IF4p € Gp_ (1,.)”- Now let
(1; i < i.) be a maximal anti-chain of members of Py,[My] which are incompatible
with p; in Ppy[Li]. Clearly i, < AT hence without loss of generality i, < A and let
Y = A, i Clearly p; witnesses ¢ € Pi, hence o < v, see more details in the
proof of 4.11(3).

2) Trivially P C P,[M,], so it suffice assume 1 € P,[M,] and prove ¢ € P}, <
Y € Pl

First assume 1 € P! is witnessed by p € P, and we shall prove that p witness
1 € PI_; we have to check the two conditions e; + e5 of Definition 4.10. Now clearly
p € Py and ¢ € Puyy[Mm] (the second because ¢ € Py, [My,] and P, < Py, and
My, € My, hence Py [My] < P [Myn]). Also Py[Ly] E ¢ < p but Py[Ly] <Py [Lm]
hence Pm[Lm] E ¥ < p. So in Definition 4.10 condition e; holds; for proving
condition ey, assume that Pp,[My] E“ < ¢” hence, by part (1), we can find
q € Py and ¢ € Py [My,] which is witnessed by ¢ such that ¢ is above . Without
loss of generality, dom(g)Ndom(p) C My, and let ¢; = ¢ L, now ¢, are compatible
in P [Lm], hence in Py[Ly], also dom(g;) N dom(p) is included in L = L, and is
included in dom(gq)Ndom(p) which is included in My,; together dom(g; ) Ndom(p) C
Ly, N My, = M,. Therefore by 3.14(1), p, g1 are compatible in Py, (Ly,), hence in
Pn(Ln), so let € P, be a common upper bound. As ¢[L <p_ r, clearly r,q has a
common upper bound r; (in Py,) and so r; is a common upper bound of ¢, p.

So we are done proving one implication (the “first” above) and the second is easier:
if p € Py, witness ¢ € IP’In, then p[L witness ¢ € JP’II.

3) Why?

Clause (a):

The first clause is obvious, the second recalling P, < Py, it is clear.

Clause (b):

In Py, [My,] let b = (3; : i < i.),% be as in the proof of part (1) for p; (and n).

Now,

(*) 1 is maximal also for m, p;.

Why (*) holds? It means: if ¢ € Puy[Mm] is incompatible with p; in Py[Lm] then
9 is compatible with some 9; (i < i,) in Pyy[Lm]. But if ¢ is a counterexample then
there is ps € Pm(Lm) above 9, so py is incompatible with ¢; for i < i, and with
p1- Let g2 € Py(Ln) be above pa[Ly, and decide “does ¥ € Gp, (1., AS g2, P2
are compatible necessarily g2 -0 € Gp,,(1,]” hence g2 IFp (1,1“Y € Gp,[L,)"-
Let 9. € Pn[My] be witnessed by g2 (exists by part (1)) so Py[Ln] E“Y < 9.7.
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Also without loss of generality dom(gs) N dom(p;) C My, (by 3.12) and pyq, g2 are

incompatible in Py, [Ly,], (otherwise p1,¢1 would be compatible).

So by 3.12, 9., p1 are incompatible in Py[Ly] so ¥, contradicts the maximality of
. Og.11

Definition 4.12. 1) Let R be the class of objects r consisting of (so N = N,,m =
m;, but we may omit the subscript r when its identity is clear from the context,
also in other parts):

(a) m € M which is A\j -wide (actually A" suffices),

(b) a cardinal x such that m € 2 (y) and 2/ZmI+22 <

(¢) N < (#(x),€) such that m € N, and NN Ord = N Ny has order type xr
(a cardinal < M),

(d) NN Ais an inaccessible cardinal < A called Ay = A(r) = Ay = A(N),

(€) V] < ey and®® [N]X0) C N,

(f) My, is listed in non-decreasing order 5, = (s; = s(i) : i < i(mM) = 4,y ) and
let s;(m) be 0o(€ L), (50 sy = sm,i = i); let Uy := {j <'im : 5; € N}
and Uy, :={j <i:s; € N}, and U} = U, U {im},

(g) for i € Ut let Ly i = U{Lm(<s;) : j < i} NN, and Ly = Ly j(m) € N so if
8i 18 <m-increasing, then ¢ =j + 1= Ly ; = Ln(<s;) NN,

(h) Ef # 0, see (2B) below.

2) Forr € R and i € U} let EI = :I’i be* the set of sequences 7 such that:

(a) = (v; :j € Upy),
(b) vj € HE</\(!‘)087
(¢) there is G weakly witnessing 7 which means:
() GC NN PLILr.i is generic over NN;
(B) if j € Uy, then v; = ns(j)[G], that is for every £ < A, for some ¢ € G
we have ¥ kg o Mncoi] “(s() 1€) = (v51€)7.
Note that, if My NN is not linearly ordered, then maybe j < i and 5(j) ¢ Lm(<s(i))
but s(j) € Ly ; so these two may not coincide.

2A) We have:
(a) Forr € R,i € U} and v € Elyi, let GI, = GI,,; weakly witness 7, see
4.12(2)(c) above, so (by 4.14 below) uniquely determined (by 7 and r),
unlike in (2B) below.

(b) let EF = =i be &f . 35,

r,i(m)
2B) For r € R and i € U let Ef = 5, be® the set of sequences v such that:

(a) 7= (v 5 < 1),
(b) vj € H€<>\(l‘)987
(c) there is G strongly witnessing 7 which means:

33we shall use just Pm[Mm] has cardinality < A1 because A1 = /\1<A° in the proof (x)3 in
1.32(1).

34 Justified when r is clear from the context.

35 Justified when r is clear from the context.

36 Justified when r is clear from the context.
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() G € NNPy(Ly,;) is generic over N; (but G C Py [My] is not suffi-
cient),
(B) if j < then v; = n4;)[G], that is for every £ < A, for some ¢ € G

we have ¥ 1Fp, (0] (s 16) = (v51€)7,
(v) N|G] is isomorphic to (') for some x in fact x’ = xy; see clause
(c) of part (1).
2C) We have:
(a) for 7 € B, let G} = G/, strongly witness 7, see 4.12(2B)(c) above, so
not necessarily uniquely determined,
(b) let =F = EF be =f,,,°".

Remark 4.13. Assume m is A\-wide. The following Claim 4.14 justifies 4.12(2A)(a).
Claim 4.14. Letr € R and i € U}, and N = N;,.

1) If G C Py[Ly; N M) NN is generic over N then there is one and only one
v € Y(ecx,0:) such that for every j € Uy, we have v; = U{p : there is ¢ € G
satisfying ¢ forces 0 I 1)}

1A) We can use P}, instead of Pm|[Mum).

2) If G1, Go C Py [Lyi N Mm] NN are generic over N, i € Ul and v = (v; : j < i),
and the pair (Gy, 7) is as above for £ = 1,2 then Gy = Ga, (not essentially used).

_ _ ot

3) In part (1), we have G NP}, = G(uj:jeU,,‘i,} = Gr7<yj:j6U”>, see 4.12(24)(a).
4) Similarly for Pm[Lm), <le 8 € Lyy N N) instead Py [Mp], (1]5 18 € My N N).

Proof. 1) For ¢ € Pm[Ly; N Mm] NN and j < i let gy ; be the <-maximal p such
that 9 IFp, (M ] “0 L s)”
Clearly,
()1 for 1,7 as above, gy ;is well defined and belongs to U{II.<¢0: : £ < A}
[Easy, e.g. why lg(0y ;) < Ar? because IF “ny ;) ¢ V7 and ¢ € Ny
(x)2 for j <iand & < A, for some ¢ € Gy we have 1g(vy ;) > €.
[Why? by genericity and the definition of Py [Ly; N Mm]]-
(¥)3 if j < and 11 < 1Po are from Ppy[Lyr; N M) then gy, ; < oy, ;-
[Why? Obvious].
(x)4 if j < i and ¢1,12 € G where G is a subset of Py [Ly; N M| generic over
N then oy, j, 0y,,; are J-comparable.
[Why? as G is directed and (x)3].
Together we are done proving part (1).
1A) Easy.
2) Toward contradiction G; # Ga so we can assume 11 € G; \ Gz, hence there is
1y € Go which is incompatible with ;. Without loss of generality 1, 12 € PT[My,].

So there is p; € Py, witnessing ¢; (for | = 1,2), and without loss of generality
dom(p;) Ndom(pz) € M.

37Justified when r is clear from the context.
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Now by induction on n we choose (1.5, P1,n,¥2.n,P2,n) such that:

(%) forl=1,2:
(a) Pin € IEDm N Nr and m <n = b S Pim § Pin,
(b) 1., € Gy is witnessed by pn,
(¢) m <n=P[Muy] = im < Vi,
(d) dom(p1,n) Ndom(ps,y,) C M,
(e) ifn =m+1,s € dom(py ) Ndom(ps ,,) then max{lg(tr(p1,m(s))),lg(tr(p2,m(s)))} <
min{lg(tr(p1,n(s))), lg(tr(p2,n(s)))},
(f) if s € dom(p; ) N M then 77p2="(5) < V.

Why it is enough to carry the induction? Because for [ = 1,2 we can let p; be the
lub of the increasing sequence (p;, : n < w), and now pp,pe are compatible (as
s € dom(p1) N dom(ps)) implies s € dom(p; ,,) N dom(pa,,) N My, for some n € w
which implies tr(p1(s)) = tr(pz2(s)).

Now if ¢ is a common upper bound p1,ps in Py,, then it is a common upper bound
of 11,19 in Py[Lm], contradicting the choice of ts.

Why can we carry the induction?

In the induction step we use having enough automorphisms and (reflecting to N,).

(%) if g1 € Py N Ny witnesses d € G; and ¢ < A, then there are g2 € Py, and
Y9 € PI such that ¥; < ¥2,q1 < go,q2 Witnesses ¥ and s € dom(g;) N

My, = 1g(tr(g2)) = C.
[Why? let . = {¢ € P}, : either o, 1, are incompatible in Py, [Mpy] or Pum[Mm] =
“pg < ¢” and there is g2 € Py, above ¢1,s € dom(gqy) N My = lg(tr(gae(s))) >

¢ and gowitnessing ¢}. By 3.14(1), .# is a dense subset of Py, [Mp,] and it belongs
to N, so necessary .# N G; # () and we can finish.]

3) Follows.
4) Similarly. 0414

We may note:

Definition 4.15. Assume that p = (p; : i < i,) where p; € Py, for i < i, and
ix < 0o (or just i, < X and ix < Oig(te(p,(s))) for every i < i.,s € dom(p;)).

We define ¢ = ®(p) as the following function g:

(A) ¢ is a function with domain U{dom(p;) : i < i},
(B) if s € dom(q) then g(s) is defined as in Definition 1.10, as follows (see (c)
on js):
(a) tr(q(s)) = U{tr(p;(s) : i < js satisfies s € dom(p;)), on js see below,
(b) for e € [lg(tr(g(s)), A) we let fo(e) = sup{pi(s)(e) : i < j, satisfies
s € dom(p;))}; pedantically we consider each of the ‘“‘components” of
fq; see Definition. 1.10; where:
(¢) js =sup{j : j < i, and the set {tr(p;(s)) : i < j and s € dom(p;)} is
a set of pairwise <-comparable sequences}.

Claim 4.16. 1) If (A) then (B) where:

(A) (a) pi € Py fori <y,
(b) i < Bo at least i, < Oig(ie(pi(s))) Whenever i <iy,s € dom(p;).
(B) (a) ¢ =®(p) is a member of Pp,,
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(b) if r € Py is a common upper bound of {p; : i <.} then ¢ <1 € Ppy,
(c) q is a common upper bound of {p; : i < i.} when in addition to (A)
and (B)(a):
(*) if 41,42 < i, s € dom(p;,) N dom(ps,) and lg(tr(p;,)) < e <
lg(tr(pi,)) then for some iz < i, we have p;, < p;y for £ =1,2.
2) If (A)* then (B)" where:
(A)* as in (A) above adding:
(c) p; witnesses 1; € PI [Mp],
(d) v = /\i<i* Vi € PIn[Mm]y
(B)T as in (B) above adding:
(d) if g is a common upper bound of {p; : i < i.} then q witnesses 1) €
Pl (M.

Proof. 1) Clearly q € Pp,. Also if r € Py, is a common upper bound of {p; : i < i.}
clearly ¢ < r € Pp,.
2) Easy and will not be used. U116

§ 4(C). Nicely existentially closed.

Discussion 4.17. 1) In the main case we have M C My, cofinal in My, and
m[M = m[My,. In §4A we proved that if m € M. then Py [M] = Py, [My,] even
in the general case.

Our main aim is to prove more; e.g.

(*) (a) for m, M as above, there is n € M such that n = m|L,, M,, = M and
Pn < P,
(b) moreover there is n such that M, = M, L, C Ly, Pa[M]| = Py, [M]
and Py, [Lyy,] is isomorphic to Py, [Ly] over Py, [M].

2) In the main case (m € M, is strongly by A*-directed even in the general case),
o Irp,, “{ns : s € M} is cofinal in (Iecxfe, <jpa)”.

From Definition 4.18 we shall use L’ = |Jemp(M, m) defined below.

Earlier in §3D we doctored m € Mc,, to an equivalent n such that M, = My, E}.
has one equivalent class “glueing” together all t/Ey,t € Ly \ M. Here things are
more elaborated. First, in 4.18 we define the set cmp(M, m) of the ¢t/E!, for which
M is enough and then in 4.19 doctor m to an equivalent n with M, = M, but
glueing together all ¢/FE; not in cmp(M, m). Later we can treat n as earlier.

Definition 4.18. Assume m € M and M C M,,.
1) Let cmp(M, m) be the set of L such that for some ¢ € Ly, \ M, we have:
(a) L=t/El, ={s € Ly : sE_ t},
(b) LN Mpm C M.
2) Let cmp™ (M, m) = cmp(M, m) U {M}.
3) For t, € M let cmp(t., M, m) be the set of L € cmp(M, m) such that L C Ly, (<4,
and similarly cmp™ (t,, M, m) = cmp(ts«, M, m) U (M (<t,) " M).
Definition 4.19. Assume m € M, M C M, and £ C cmp(M, m).
1) We define rest(.Z, M, m) as the object n consisting of (intended to be in M):
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(a) the set of elements of L, is | J{L: L € L} UM,
(b) the order on Ly, is <m [Ln,
(¢) My, =M,
(d) By = EpnlLn,
( ) Up,s = Um,s [ Ly,

e
(f) f@n,s = c@m,s N [un,s]g)\'

2) Further assume m € Mc,,. We define Rest(.Z, M, m) as the object n consisting
of (intended to be in M):

(a) Ly = Ly,
(b) My =M,
(c) B, ={(s1,82) : for some L € £, (s1,52) € E,ILor (VL € £)(s1,s2 ¢ L\ M),
{s1,82} C Ln, {51,852} € Mn},
(d) un,s = Um,s for s € Ly,
(€) Pns = Pm.s-
3) We may omit . when . = cmp(M, m).
4) For r € R, let =2 be the set of 7 such that some G® witness it, which means:
(a) G* C Py, N N, is generic over Ny,
(b) = (vs:8€ MmN Ny,
(c) vs = 1s[G®] for s € M N Ny.
(So compared to Definition 4.12(2B) clause (c)(7y) is not required here).
5) For r € R, M’ C My, such that M’ € Ny and M = M’ N Ny, let 2%, = E  be
the set of 7 = (vg : s € M) such that some pair (n, G) witnesses 7 which means:
(@) n <prest(M’,m) and n € N, and P,, < Pp,,
(8) G is a subset of P, N N, generic over Ny,
(v) vs = 15[G] for s € M.
Claim 4.20. Assume m € M, M C My,, £ C cmp(M, m), ny := Rest(.Z, M, m)
(see 4.19(2)) and ny = rest(Z, M, m), (see 4.19(1)):
1) ny; <m ng,
2) Lpy, = L, Pny, = Py and cmp(M, ;) = £ C cmp(M, n3) and cmp(M, ny) \ &
is empty or a singleton; note that this is the single Iy, -class that is not in 2y, .
3) If M = My, and £ = cmmp(M, m) then n; = ny = m.
4)if1€{1,2} and n, <y n, and Ly, N Ly = Ly,, then we can find m, such that:
) m <ppmy and Ly, = Ly, U Ly,
) £ C cmp(M, m.,),
) if t =2 then n, = Rest(Z, M, m,),
) if v =1 letting £ = cmp(M, n..) we have n, = rest(%, M, m,),
) (choosing minimal u) if t € My \ M and ¢ = 1, then um, 1 = Um U {s:
$€Ln, \Lm 8 € Uny}.

Proof. Straightforward, as in earlier proofs (in particular 2.16) in particular for
part (1), check the clause (e)(vy) of 3.1. Oa.20

Claim 4.21. Assume m € M.
1) Ift € My and n =m(< t) then t = max(My) = max(Ly).
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2) If for every t € Mm,rest(Mpy (<), m) € Mee then m € M. provided that is
strongly AT -directed.

3) If my <pv my and t € My, then rest(Mm(<t)m) <m rest(Mpm(<y), m).

Proof. Easy. 0401

Observation 4.22. 1) If Ly, = My, then m is essentially \*-directed (see Def-
inition 2.13(1)) if U{us : s € Mm} = Mm = Mm and ({us : s € Mm},C) is
AT —directed.

2) Assume m is strongly p-directed and my < m, then m; is strongly u-directed.

3) if my <y m and m is essentially p-directed then so is mj.

Claim 4.23. 1) Assume m € Mcy, is strongly A\t -directed (hence bounded). There
are n and £ such that:

H (a) m<pyne M,\Q,

(b) nec MbEC7

(¢) L =Ly : M € P (My)), recalling that for a set X, 2(X)™ =
{YCX:v#0}

(d) %y Cemp(M,n) for M € P~ (My,) and Ly, = cmp(Mp,, m),

(e) nyr = n[M] :=rest(L, M,m) € My for M € &~ (M), sony,, =
m7

(f) Py, <Py for M € &~ (Mm),

(8) ifta <m ts are from My, andt; € Ly\Lm and (Vs € t1/E.) (s <m t2)
then t1/E C un 4, (yes! nott1/E})

(h) n is strongly A" -directed (see 2.13(2)),

(i) if My C My are from P~ (Mm) then Ly, C Lo, .-

2) We can add:

() if My, My C My, and h is an isomorphism from m[M; onto m|M,
then h can be extended to ﬁ, an isomorphism from ny;, onto nyy,,
(k) if M € P~ (Mm) and L € Ly then LN Ly C My,.
) If M € 2~ (M) and h is an isomorphism from m[M onto m|My,,
then:
e there is an isomorphism h from npr onto nyy, = m embedding
h7
e if GT is a subset of Py, generic over V, then there is G €
VIGT], a generic subset of Py over V such that s € M =
ﬂS[Gﬂ = 1(s)[G].

3) Above n is reasonable (see Definition 3.21).

Proof. 1) Let (M, : a < a, < AT) list 227 (M) 0 a < Ag such that t, <m tg =
a < p.

We choose by induction on a < ., m,, and if @ < ax, also n%,n}, %, such that:

(*)0 (a) m, < MS)\2>
(b) m,, is <pp-increasing continuous,
(c) mg =m,
(d) if « = 8+ 1, then:
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)
)
) nj € Mcy, and Ly N Ly, = Ly,
) nj = rest(Zs, Mg, m,),

)

5¢ Lmg,s/Ey, C Lma(gt)}.
Why can we carry the induction?

First, arriving to a we choose m,, as follows:

e if @ =0let my, =m (so (x)(c) holds).
o if o is a limit ordinal then m, = U{mg : § < a}, see §1A, noting m, €
Mc,, because a < a, < Asg.
eifa=p3+1so0 n%,né have been chosen then choose m, by 4.20(4) and
()(d)(e).-
Second assuming o < a,, and m, has been defined we choose n as rest(M,, m,)
so n), € Mc, by 4.20(1), so (+)(d)(«) holds. Then choose n}, € M<y, such that
ny, <y n/, € M. (by claim 3.22), without loss of generality Lyi N L, = Lyo s0
clause (x)(d)(8), () holds.

So we have carried the induction.
(#*)1 Let n=m,, son € Mc,, and m =ny <y n.

So clause H(a) holds. Why n € Mye.? (i.e. clause B(b)). As clearly M, is strongly
(< At)-directed, by 2.17(5) it suffices to prove that My (<) € Mpec for every t €
M. But My(<py € {Mq : o < o} and if M = My, <4,y then rest(M,n) <p m(<
ta) so this follows if we prove clauses H(d), (e).

Why clauses B(d), (e) holds? So assume M € &~ (My,) then for some a = a(M) <
. we have M = M, and let £y = cmp(M,n}) (so U{L : L € Ly} = Ln1).
Assume rest(Zy, M,n) = ny <y n; <y ng and we shall prove that Py,, < Py,,
this suffices for H(e).

Let a < a, be such that M, = M, so clearly.

(¥)2 o1 rest(Au, M,n) =nl,

e, n! = rest(M,, m,),

o3 rest(My, m,) <y rest(M,,n),

o4 rest(My, n) <pp Rest(M,,n) <pp Rest(M,, n1) <a Rest(M,, no).

As nl, € My, it follows that Rest(M,, n;) < Rest(M,, nz), but by 4.20(1),
(*)3 Pnl = ]PRest(Ma,nl) fOI’ l = 1,2
So we are done proving H(e).

Now H(c) is just a choice, so we are left with H(f) which says Py,, < P, but it
follows by (x)2 and (x)s.

2) We can find n™ such that:

(x) (a) n<pmn' € Mc,,, (nis from part (1)),
(b) if My,Ms € &~ (My,) and h is an isomorphism from m[M; onto
m[M; and L € cmp(My, n) then there is ((L;, h;) : i < A3) such that:
(OZ) Ll € Cmp(MQ,m)v
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(8) h; is an isomorphism from m|L onto m|L; which extends A[(LN
Mi)a
(v) LiNLy C M.
(c) ift € Ln(t)\Ln then for some s € Ln\Mm we have n[(t/En) ), n[(s/En )
are isomorphic,
(d) if s € Ln \ Mn, My = s/E',My € & (Mp,) and h is an isomor-
phism from m[M; onto m|M,, then there is a sequence (t. : € <
A2) of pairwise non—Eg(t)—equivalent members of Ly, \ My, such that
(te/Epy) N Mm = My and there is an isomorphism from n[(s/E}) onto

nT (tC/En(+ )

Now we can easily find the isomorphism promised in clause (j). Lastly, clause (k)
holds because n®, = m[M, above. So n* is as required recalling t € Ly+ \ My+ =
t/El, =U{L: L € cmp(Mp,m)} as m is bounded.

3) Easy. Ua.2s

Remark 4.24. How does this subsection help [She20]?

1) Note in the family R of r’s see Definition 4.12 we demand that there is GT C
Ny NPy, generic over N such that: (so N < (J(x),€),(n,A,---) € N and jy is
the Mostowski collapse)

(%) IN(N)[GT] = H(xe), Xe = otp(N N x).

You can think of it as: in the preliminary forcing to get Laver diamond, in stage
AN = N N A we force by jo(Pm N N).

2) The present 4.26 tells us to use =8 (defined in 4.19(4)) that instead of using =i, =
{G:G C N,NnP}, is generic over N such that v, = 1,[G] for a € M} which gives

too may candidates or Z7 = {G : G C NNPy, is generic over N such that j”(N)[j% (G)] =
H(xn) and vy = 14 [G]} which seems too restrictive.

Enough to use the middle ground =28, = {G : G C NNPy, is generic over N and v, =
Na|G] for o € M}.

3) Now the original idea was that G € =0 is enough in [She20] but not so, however

G c =2 is sufficient.

4) Also we need that m is reasonable (see 3.21(3)) so if M C M, is cofinal then
(Vo : @« € M) is cofinal for m

5) The point is that for M ¢ My, (or with M NN, My NN the reflection) we need
stronger homogeneity of Py,, which is the aim of 4.17-4.25 relying on 4.23.

Conclusion 4.25. If mg € M is strongly AT -directed, (so bounded) of cardinality
< Ag, then there is m such that:

(a) m € M of cardinality Ao,

(b) mp <y m,

(C) m € Mbcca

(d) () = (B), where:

(o) ey reR andmy=m and (ns: s € My,) € EF.
o M' C My, (in the main case is My, = (k,<),Mi a cofinal

subset of My, ), My = M’ N\ Ny, M’ € Ny,

o3 h is an isomorphism from m[M, onto m|My,,
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o4 s0 there is GT C Py, NN, generic over Ny such that s € My, =
s = 1s[GT] and A (xx) = j% (Ne)[JN[GT]] (by the definition of
R).
(B) thereis G C NNPwy, generic over N such that s € My = ny(5)[G] = 1.

Proof. Let (n,.#) be as in 4.23 for mg and we shall show that n can serve as m.
Clauses (a), (b) of 4.25 holds by clause (a) of 4.23(1).

Clause (c) of 4.25 holds by clause (b) of 4.23(1).

To prove clause (d) of 4.25 assume («) there. Let n = njs from 4.23(1)(e) and use
4.23(1),(2).

2) Use 4.23(2). Ua.2s

Claim 4.26. 1) Assume m is as in 4.25, r € R (and m =my). If M G My NN,
M=M NNy, M € Ny and v = 7j|M and h € N is an isomorphism from m/|M’
onto m[ My, then there is G witnessing M = (Np-1(5) : § € M) belongs to Zp (see
Definition 4.19(4)).

2) Above, G has (in Py, ) an upper bound p™ which satisfies s € My = tr(p(s)) =

ns[G].

3) If pt € Py, is as above then p™ is also an upper bound of G' = G NPy[M] in

Prn[Lm]

4) If m is strongly (< \T)-directed, then 7, is cofinal in <H<<)\r9<, <Jba

)V[IP’n] .

5) If m is strongly (< \T)-directed (or just essentially directed, see 3.20) then for
every p € Py, and s € dom(p) N My, for every large enough t € My, we have
p |hpm “‘_fp(s) < Z]t mod J}\)d 7

Proof. 1) Let n from 4.25(1)(d)(5) for our M.

2) This is because || Na|| < 8¢y 4.12(1)(e) and 4.16.

3) As Py [My] = Py [M] because Py, < Py

4) Easy recalling 4.23(2)(j) and 4.22(4)).

5) Just check the definition (and) or see 1.29. U406
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