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Abstract

We introduce a general framework of generalized tree forcings, GTF
for short, that includes the classical tree forcings like Sacks, Silver,
Laver or Miller forcing. Using this concept we study the cofinality
of the ideal I(Q) associated with a GTF Q. We show that if for
two GTF’s Q0 and Q1 the consistency of add(I(Q0)) < add(I(Q1))
holds, then we can obtain the consistency of cof(I(Q1)) < cof(I(Q0)).
We also show that cof(I(Q)) can consistently be any cardinal of cofi-
nality larger than the continuum.

1 Introduction

The classical tree forcings like Sacks, Silver, Laver or Miller forcing consist
of certain subtrees of 2<ω or ω<ω (see [2]). They will be denoted by Sa, Si,
Mi, La respectively. As usual, for given Q ∈ {Sa, Si, La,Mi} and p ∈ Q,
[p] denotes the set of branches of p, so a subset of R, where R stands for 2ω

or ωω appropriately. Then the tree ideal I(Q) consists of all X ⊆ R such
that for every p ∈ Q there exists q ∈ Q with q ⊆ p and [q]∩X = ∅. By using
standard fusion arguments, it is easily seen that I(Q) is a σ-ideal. Hence
we have ℵ1 ≤ add(I(Q)) ≤ 2ℵ0 , where add(I(Q)) denotes the additivity
of I(Q), i.e. the minimal cardinality of some X ⊆ I(Q) with

⋃
X 6∈ I(Q).

By cof(I(Q)) we denote the minimal cardinality of some X ⊆ I(Q) that is
cofinal in (I(Q),⊆). The same definitions make sense for many more tree
forcings that are studied in set theory. This is one reason for us to introduce in
Section 3 the general concept of generalized tree forcing. However, some
knowledge about the antichain structure of the concrete forcing is needed for
this framework to be applicable.

The original motivation for this paper was to gain insight into the cofinali-
ties of classical tree ideals, as very little has been known about them. To our
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knowledge, the only papers dealing with this topic are [8] and [3]. In [8] it has
been shown that 2ℵ0 < cf(cof(I(Sa))) holds in ZFC and that consistently
cof(I(Sa)) can be any cardinal with cofinality > 2ℵ0 . The same facts are true
for Si with essentially the same proofs. Similar results for La,Mi have been
obtained in [3]. Here we attack the question whether we can consistently
obtain cof(I(Q0)) 6= cof(I(Q1)) for different Q0, Q1 ∈ {Sa, Si, La,Mi}.
The main result of this paper implies that cof(I(Q1)) < cof(I(Q0)) is con-
sistent for any pair of Q0, Q1 ∈ {Sa, Si, La,Mi} for which add(I(Q0)) <
add(I(Q1)) is consistent.

Unfortunately, distinguishing the additivities of different tree ideals is also a
difficult matter. However there are some cases where this has been achieved,
as much more work has been done about additivities of tree ideals. Let us
mention [19], [8], [4], [10], [5], [6], [13], [14], [18], [15], [17] (chronological
order). In [8] for Q = Sa and in [4] for Q = Si it has been shown that
MA does not imply add(I(Q)) = 2ℵ0 , whereas on the other hand, [5] and [6]
show that this is true for Q = La or Q = Mi. So we can apply our theorem
for any choice of Q0 ∈ {Sa, Si} and Q1 ∈ {La,Mi}. Another such case is
when Q0 = Si and Q1 = Sa. Implicitly in [10], an amoeba for Sa with the
Laver property has been constructed. Iterating this with countable supports
ℵ2 times one obtains a model for cov(M) = ℵ1 and add(I(Sa)) = ℵ2. But
by [14], add(I(Si)) ≤ cov(M) holds in ZFC. (Here cov(M) is the minimal
number of meager sets needed to cover R.)

All the other cases are open. However, by the work of [13] and [15] soft
amoebas for Q ∈ {Mi,La} (with the Laver property) and for Si (with
the pure decision property) exist. We expect that using these for making
add(I(Q)) = ℵ2 we can produce more models where our main theorem can
be applied.

We expect that the methods and results presented in this paper will prove to
be applicable to other tree ideals or similarly defined ideals as, e.g., Mycielski
ideals. That is why we try to be as general as possible and, e.g., will introduce
two versions of generalized tree forcings, GTF0 and GTF1 (see Definition 3.1),
and associated amoebas A0 and A1 (see Definition 3.2) even though for the
four tree forcings mentioned above one version would be enough.

2 ∗d-Iterations

In [11], the first author introduced a general framework to iterate forcings
that are (< λ)-closed and have the λ+-c.c. with supports of size < λ, where
λ is some regular cardinal with λ<λ = λ. The main goal is to guarantee that
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also the iteration is λ+-c.c. For this the ∗d-property is introduced as follows:

Definition 2.1 Let λ be a regular cardinal with λ<λ = λ.

(1) A c.c.-parameter is a quintuple d = (λ,D, ε, σ,S) such that

(a) D is a normal filter on λ+ containing Sλ
+

λ and ε < λ is a limit
ordinal,

(b) σ is a cardinal with 2 ≤ σ ≤ λ and S ⊆ [Sλ
+

λ ]<(1+σ) has nonempty
intersection with [S]<(1+σ) for every stationary set S ⊆ Sλ

+

λ .

(2) Given a forcing notion Q and a c.c.-parameter d we define the game
G(Q,d) as follows: It lasts for ε moves. In his ζth move player I
plays (〈qζi : i < λ+〉, fζ) and player II plays 〈pζi : i < λ+〉, where

(a) ∀i < λ+∀ζ < ε (qζi , p
ζ
i ∈ Q ∧ q

ζ
0 = 1Q),

(b) for every 1 ≤ ζ < ε fζ : λ+ → λ+ is regressive, f0 : λ+ → λ+ is
constantly 0, and

(c) ∀ξ < ζ < ε∀Di < λ+ qζi ≤ pξi and ∀ζ < ε∀Di < λ+ pζi ≤ qζi .

(3) Player I wins a play 〈(〈qζi : i < λ+〉, fζ), 〈pζi : i < λ+〉 : ζ < ε〉
provided that there exists E ∈ D such that for every u ∈ [E]<(1+σ) ∩ S
with the property ∀i, j ∈ u∀ζ < ε fζ(i) = fζ(j) the set

{pζi : ζ < ε, i ∈ u}

has a lower bound in Q.

(4) Given a c.c.-parameter d, we say that forcing Q satisfies property ∗d if
player I has a winning strategy in the game G(Q,d).

Remark 2.1 (1) Let Q be a forcing notion satisfying ∗d, where d = (λ,D, ε,
σ,S) is a c.c.-parameter with D = CLUBλ+ and S = [Sλ

+

λ ]κ for some
cardinal κ with 2 ≤ κ < 1 + σ.

Note that given 〈pi : i < λ+〉, a sequence in Q, there exists a club E ⊆ λ+

such that for every stationary S ⊆ E ∩ Sλ+λ there is u ∈ P(S) ∩ S with the
property that the set {pi : i ∈ u} has a lower bound.

Indeed, let 〈(〈qζi : i < λ+〉, fζ), 〈pζi : i < λ+〉 : ζ < ε〉 be a play of G(Q,d)
where player I uses his winning strategy and player II plays 〈p0i : i < λ+〉 =
〈pi : i < λ+〉 and afterwards just repeats the moves of player I. By Definition
2.1(3) there exists a club E as there. Given any stationary set S ⊆ E ∩Sλ+λ ,
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for every i ∈ S we can find αi < i such that the sequence 〈fζ(i) : ζ < ε〉
is bounded by αi. By the Pressing-down-Lemma there exist a stationary set
S∗ ⊆ S and α∗ such that αi = α∗ for every i ∈ S∗. By our assumption λ<λ =
λ, there exists U ⊆ S∗ of size λ+ such that 〈fζ(i) : ζ < ε〉 = 〈fζ(j) : ζ < ε〉
for any i, j ∈ U . By construction and Definition 2.1(3), every u ∈ P(U)∩S
is as desired. By the choice of S, such u exist. In particular, Q is λ+-c.c.

(2) Suppose that Q is strongly λ-closed, i.e., every decreasing sequence of
length < λ has a largest lower bound (llb for short) and, moreover, strongly
λ-centered which means that Q =

⋃
µ<λQµ where every Qµ is λ-strongly

centered, i.e., every subset of Qµ of size < λ has a llb. Then Q satisfies ∗d
for every c.c.-parameter d = (λ,D, ε, σ,S).

Indeed, if such Q is given, in his ζth move player I plays (〈qζi : i < λ+〉, fζ)
such that qζi is a lower bound of player II’s moves 〈pξi : ξ < ζ〉 and fζ(i) = µ

such that qζi ∈ Qµ. We claim that this is a winning strategy for player I. We
apply normality of D to the (almost everywhere) regressive function

i 7→ 〈fζ(i) : ζ < ε〉 ∈ λ<λ = λ

to find E ∈ D and f̄ = 〈f(ζ) : ζ < ε〉 such that

∀i ∈ E∀ζ < ε f ζ(i) = f(ζ).

Given any u ⊆ E of size < λ and any ζ < ε we have

qζ,u :=
{
qζ(i) : i ∈ u

}
∈
[
Qf(ζ)

]<λ
,

and hence qζ,u has a llb, say rζ. Clearly 〈rζ : ζ < ε〉 is decreasing, hence has
a llb, say r. But then r is a lower bound of{

pζi : ζ < ε, i ∈ u
}
.

In [11], the first author has proved the following preservation theorem:

Theorem 2.1 Suppose that λ is a cardinal with λ<λ = λ, d = (λ,D, ε, σ,S)
is a c.c.-parameter and 〈Pα, Q̇β : α ≤ µ, β < µ〉 is a (< λ)-support iteration
such that for every β < µ, 
Pβ ”Q̇β satisfies ∗d ”. Then Pα satisfies ∗d.

3 Amoebas for generalized tree forcings

Definition 3.1 Let λ = 2ℵ0. (1) A GTF0 (here GTF stands for general-
ized tree forcing) is a quintupel Q = (Q, ζ̇, set, Q∗,⊥) such that
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(a) Q = (Q,<Q) is a forcing notion, Q ⊆ H(λ) and ζ̇ is a Q-name such
that 
Q ζ̇ ∈ R;

(b) Q∗ is a dense subset of Q;

(c) set is a function from Q∗ to Borel subsets of R such that

(α) if p 6 q then set(p) ⊆ set(q),

(β) p 
Q ζ̇ ∈ set(p),

(γ) 
Q {ζ̇} =
⋂
{set(p) : p ∈ Q∗ ∩ ĠQ}, (where ĠQ is the canonical

Q-name of the generic filter);

(d) for every A ∈ [R]<λ the set {p ∈ Q∗ : set(p) ∩ A = ∅} is dense in Q;

(e) ⊥ is a binary, symmetric relation on Q∗ such that

(α) if p ⊥ q, then p and q are incompatible in Q,

(β) if p ⊥ q, then set(p) ∩ set(q) = ∅,
(γ) if β < λ and 〈pα : α < β〉 is a sequence in Q∗, then there is q ∈ Q∗

such that ∀α < β pα ⊥ q,

(δ) if β < λ, 〈pα : α < β〉 is a sequence in Q∗ and p ∈ Q is incom-
patible with every pα, then there is q ∈ Q∗ such that q ≤ p and
∀α < β pα ⊥ q.

(2) If Q = (Q, ζ̇, set, Q∗,⊥) is as in (1) except that in (e), (γ) and (δ)
are replaced by the weaker (γ)1 and (δ)1 which ask the same thing as those,
but only for orthogonal sequences 〈pα : α < β〉, i.e. pα ⊥ pα′ for any
α < α′ < β, then we call Q a GTF1.

(3) If Q = (Q, ζ̇, set, Q∗,⊥) is a GTF1 we define

I(Q) = {X ⊆ R : ∀p ∈ Q∗ ∃q ∈ Q∗(q 6 p ∧ set(q) ∩X = ∅)}.

Clearly I(Q) is an ideal on R and hence we can define add(I) and cof(I) as
in the introduction.

Remark 3.1 (1) Clearly we have GTF0 ⊆ GTF1. By Theorem 6.1 below,
Sa and Si can be considered as GTF0’s provided d = 2ℵ0, and if b = 2ℵ0, La,
Mi can be considered as GTF1’s.

(2) Clearly in the definition of I(Q) we could replace Q∗ by Q, and by Defi-
nition 3.1(d) we have [R]<λ ⊆ I(Q).
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(3) Given I ⊆ Q∗ let

X(I) = R \
⋃
{set(p) : p ∈ I}.

Then clearly the following sets are bases of I(Q):

{X(I) : I ⊆ Q∗ is predense},

{X(I) : I ⊆ Q∗ is a maximal antichain }.

Note that by applying (d) and (e) of Definition 3.1(1) we can obtain the
following:

Claim 1 Let 2ℵ0 = λ = λ<λ. Given a GTF1 Q = (Q, ζ̇, set, Q∗,⊥) and a
dense open subset D ⊆ Q, there exists a maximal antichain (with respect to
(Q,<Q)) 〈qε : ε < λ〉 in Q∗ ∩D such that

(a) ∀ε < ξ < λ qε ⊥ qξ;

(b) ∀r ∈ Q∗(set(r) *
⋃
{set(qε) : ε < λ} ∨ ∃B ∈ [λ]<λ set(r) ⊆

⋃
{set(qε) :

ε ∈ B}).

For classical tree forcings this has been proved and applied first in [JMSh]
and later was applied frequently.

Definition 3.2 Let λ = 2ℵ0.

(1) Given a GTF0 Q = (Q, ζ̇, set, Q∗,⊥) we define an amoeba forcing for Q,
denoted by A0(Q), as follows:

Elements of A0(Q) are pairs p = (p,A) = (pp,Ap) such that p is a sequence
of length < λ of members of Q∗ and A ⊆ I(Q) is a set of size < λ. Sometimes
we write pp = 〈pp,ε : ε < lg (pp)〉.

The order on A0(Q) is defined by letting p ≤ q iff pq is an initial segment
of pp,Aq ⊆ Ap and for every B ∈ Aq and ε ∈ [lg (pq), lg (pp)) we have
set(pp,ε) ∩B = ∅.

(2) Letting Ġ denote the canonical A0(Q)-name for the generic filter, we let
ṗ = ṗĠ be a name for

⋃
{pp : p ∈ Ġ}, which we also denote by 〈ṗε : ε < µ̇〉,
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where µ̇ = µ̇Ġ = lg (ṗ), and for ε < µ̇ we let Ḃε be a name for R\
⋃
{set(ṗζ) :

ζ ∈ [ε, µ̇)}. Finally, Ḃ = 〈Ḃε : ε < µ̇〉.

(3) Given a GTF1 Q, we define A1(Q) as A0(Q) except that for its members
p = (p,A) we require that p is an antichain (in Q∗) with respect to ⊥. If Ġ
denotes the canonical A1(Q)-name for the generic filter and ṗ = ṗĠ = 〈ṗε :
ε < µ̇〉 is defined for it as in (2), we define Ḃ0 as R \

⋃
{set(ṗε) : ε < µ̇)}

and Ḃε = Ḃ0 for every ε < µ̇.

Remark 3.2 In definition 3.2 the notion “amoeba forcing” is somewhat
abused. In the context of some classical tree forcing P like Sa, Si, La or
Mi, an amoeba for P is a forcing A(P ) adding some tree in P such that
all its branches are P -generic. If A(P ) is reasonably nice, its countable sup-
port iteration will increase add(I(P )) to ℵ2, where I(P ) is the tree ideal
associated to P .

The amoebas A0(Q) or A1(Q) from Definition 3.2 will be applied in a model
where add(I(Q)) = 2ℵ0 = λ = λ<λ. Then they will will have the effect that, if
iterated with < λ supports, they increase cof(I(Q)) and preserve add(I(Q)),
i.e., won’t let it drop to some smaller cardinal.

Lemma 3.1 Suppose that λ = 2ℵ0 = λ<λ.

(A) Let Q be a GTF0 and add(I(Q)) = λ.

(1) A0(Q) is strongly λ-closed, i.e., every decreasing sequence of length < λ
has a llb; moreover, A0(Q) is strongly λ-centered. Hence it satisfies ∗d
for every c.c.-parameter d = (λ,D, ε, σ,S) (see Remark 2.1(2)).

(2) 
A0(Q) “µ̇ = λ ∧ ∀ε < ζ < λ (Ḃε ∈ I(Q) ∧ Ḃε ⊆ Ḃζ”, and for every

B ∈ I(Q) ∩ V , 
A0(Q) ∃ε < λ B ⊆ Ḃε.

(3) ∀B ∈ I(Q) ∩ V 
A0(Q) Ḃ0 * B.

(B) Let Q be a GTF1 and add(I(Q)) = λ. Then (A)(1), the first part of
(A)(2) and (A)(3) also hold for A1(Q), and, as for the second part of (A)(2),
for every A ∈ V such that A ⊆ I(Q) and |A| < λ we have (∅,A) 
A1(Q)⋃
A ⊆ Ḃ0.

Proof: (A)(1) Given 〈pα : α < γ〉 a descending chain in A0(Q) with γ < λ,
clearly we have that (

⋃
α<γ

ppα ,
⋃
α<γ

Apα) is its largest lower bound in A0(Q).

7

Paper Sh:1110, version 2023-01-12. See https://shelah.logic.at/papers/1110/ for possible updates.



Moreover, given A ⊆ A0(Q) of size < λ with pp = pq =: p for every p, q ∈ A,
clearly (p,

⋃
p∈AAp) is the llb of A. By λ<λ = λ we conclude that A0(Q) is

strongly λ-centered. By Remark 2.1(2) we conclude that A0(Q) satisfies ∗d.

(2) Given p ∈ A0(Q), γ < λ, p ∈ QQ∩V and B ∈ I(Q)∩V , by assumption
we have that X :=

⋃
Ap ∈ I(Q). By Definition 3.1(1)(b) we can find

〈pε : ε < γ〉 in Q∗ such that p0 6Q p and ∀ε < γ X ∩ set(pε) = ∅, and
hence, letting q := (pp

a〈pε : ε < γ〉,Ap ∪ {B}), we have q ∈ A0(Q), q 6 p
and q 
 “µ̇ > γ ∧ ∀ε < lg (pp)∃q ∈ Q∗(q 6 p ∧ Ḃε ∩ set(q) = ∅) ∧ ∀ε >
lg(pq)B ⊆ Ḃε ”.

Hence by genericity and as A0(Q) does not add new elements to H(λ), we
conclude that (2) holds.

(3) Given p ∈ A0(Q) and B ∈ I(Q) ∩ V , by Definition 3.1(1)(e) there is
q ∈ Q∗ such that ∀ε < lg (pp) pp,ε ⊥ q. By Definition 3.1 there exists some
singleton X ⊆ set (q) such that X ∩B = ∅, and hence q := (pp,Ap∪{X}) ∈
A0(Q), q 6 p and q 
 Ḃ0 * B (note that by Definition 3.1(1)(e)(β) we have
∀ε < lg(pp) set(pp,ε) ∩X = ∅) .

(B) The proof is almost the same as for A0(Q) in (A). �

Theorem 3.1 Suppose that Q is a GTF1, 2ℵ0 = λ = λ<λ < µ = cf(µ) <
χ = χ<χ and add (I(Q)) = λ. There exists a forcing P such that

(a) |P | = χ, P is λ-closed and λ+-c.c.

(b) V P � 2λ = χ ∧ cof(I(Q)) = µ.

Proof: Let us first assume that Q is even GTF0 (recall GTF0 ⊆ GTF1). Let
P be the limit of a (< λ)-support iteration 〈Pα, Q̇β : α < µ, β < µ〉 where
Q0 = Fn(χ, 2, λ) (which is the standard forcing for adding χ Cohen subsets
of λ with conditions of size < λ) and Q̇1+β denotes A0(Q) in V P1+β .

It is easy to check that Fn(χ, 2, λ) satisfies ∗d for every c.c.-parameter d =
(λ,D, ε, σ,S). Actually, a simplified version of the proof of Lemma 4.2 below
can be used. Hence by Lemma 3.1(A)(1) and Theorem 2.1, P satisfies ∗d and
hence, letting S = [Sλ

+

λ ]κ for κ = 2, by Remark 2.1(1) P is λ+-c.c. Clearly,
by Lemma 3.1(A)(1) and as we have (< λ)-supports, P is also λ-closed.

Let G be a P -generic filter over V . For 1 6 β < µ let 〈Bβ
ε : ε < λ〉

be the generic sequence in I(Q)V [Gβ+1] determined by G(β). Note that
by λ-closedness P does not add new elements to H(λ) and hence we have
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I(Q)V [Gβ ] = I(Q)V [G] ∩ V [Gβ] for every β < λ. By the λ+-c.c. of P and
the regularity of µ, every X ∈ V [G] of size < µ with X ⊂ V belongs
to V [Gβ] for some β < µ. Hence by Lemma 3.1(A)(2) we conclude that
{Bβ

ε : 1 6 β < µ, ε < λ} is cofinal in I(Q)V [G], thus cof (I(Q)) 6 µ in V [G].

For the same reason, given X ∈ V [G] such that V [G] � X ⊆ I(Q)∧|X | < µ,
there is β < µ such that X ⊂ V [Gβ] (and actually X ∈ V [Gβ]). By Lemma

3.1(A)(3) we conclude that no member of X contains Bβ
0 . Hence V [G] |=

cof (I(Q)) = µ.

If Q is only GTF1 we define the iteration P as above except that iterand
Q̇1+β denotes A1(Q) in VP1+β . The proof is almost the same as in the first

case, except that now we argue that {Bβ
0 : 1 6 β < µ} is cofinal in I(Q)V [G],

where Bβ
0 denotes “B0 defined by G(β)” (see Definition 3.2(3)). In fact,

given X ∈ I(Q)V [G], as X ∈ V [Gβ] for some β < µ, by genericity we have
(∅, {X}) ∈ G(γ) for some β < γ < µ, and hence X ⊆ Bγ

0 by Lemma 3.1(B).
�

Lemma 3.2 Suppose 2ℵ0 = λ = λ<λ, Q is a GTF1 and P is a λ-closed
forcing. If add(I(Q)) = µ, then V P |= add(I(Q)) = µ.

Proof: We assume µ = λ. The case µ < λ is similar. Let Q = (Q, ζ̇, set, Q∗,
⊥). Suppose p ∈ P, β < λ and 〈Ẋα : α < β〉 are P -names such that

p 
P ∀α < β Ẋα ∈ I(Q).

By Claim 1, wlog we may assume that there are İα = 〈q̇αε : ε < λ〉 for α < β
such that the following hold:

(1) p 
P ∀α < β (İα is a maximal antichain inQ∗ ∧ Ẋα = X(İα));

(2) for every α < β, p 
 ∀r ∈ Q∗(∃x ∈ set(r) x /∈
⋃
ε<λ

set(q̇αε ) ∨ ∃B ∈

[λ]<λ set(r) ⊆
⋃
ε∈B

set(q̇αε ));

(3) p 
 ∀ε < ξ < λ q̇αε ⊥ q̇αξ .

Note that as P does not add new reals nor elements of H(λ), by absoluteness
we have set(r)V = set(r)V

P
for every r ∈ Q∗. Moreover, for every r ∈ Q∗,

by strengthening p in (2) we can decide which alternative holds and also the
witness for this (so some x ∈ set(r) or B ∈ [λ]<λ).
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Let 〈rε : ε < λ〉 list Q∗. By the λ-closedness of P and the remark just
made we can easily construct a decreasing sequence 〈pε : ε < λ〉 in P and a
sequence 〈ζε : ε < λ〉 of ordinals in λ such that

(4) p0 = p, ζε > ε;

(5) for all α < β and ε < λ, pε+1 decides 〈q̇αξ : ξ < ζε〉, say as 〈qα,ξ : ξ < ζε〉;

(6) for all α < β and ε < λ there is ξ < ζε such that rε and qα,ξ are
compatible (in Q);

(7) for all α < β and ε < λ, pε+1 decides which alternative of (2) for r = rε
holds and also in either case the witness for this (so either xα,ε ∈ set(rε)
or Bα,ε ∈ [λ]<λ).

For α < β we let Aα = 〈qα,ξ : ξ < λ〉. Then by construction every Aα is
a maximal antichain (with respect to (Q,<Q)) in Q∗ and hence X(Aα) ∈
I(Q). By hypothesis,

⋃
α<β

X(Aα) ∈ I(Q). Choose r ∈ Q∗ such that set(r) ∩⋃
α<β

X(Aα) = ∅, thus

(8) set(r) ⊆
⋃
{set(qα,ξ) : ξ < λ} for every α < β. Let r = rε.

Note that by (7), we must have

(9) for every α < β, pε+1 
 set(r) ⊆
⋃

ξ∈Bα,ε
set(q̇αξ ).

Indeed, otherwise we had α < β and xα,ε ∈ set(rε) such that

pε+1 
 x
α,ε /∈

⋃
ξ<λ

set(q̇αξ ).

By (8) there is ξ0 < λ such that xα,ε ∈ set(qα,ξ0). Letting µ > max{ε, ξ0}
we have pµ 6 pε+1 and pµ 
 q̇αξ0 = qα,ξ0 , thus pµ 
 xα,ε ∈ set(q̇αξ0), which is a
contradiction.

As (9) holds for a dense set of r ∈ Q∗, we conclude that p 

⋃
α<β

Ẋα ∈ I(Q).

�
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4 Small additivity and large cofinality - the

antiamoeba

In this section we shall show that the assumption add(I(Q)) ≤ κ < 2ℵ0 =
κ+ < χ for some GTF1 Q enables us to define some forcing AA(Q), which
we call the antiamoeba for Q, that introduces some family 〈Xα : α < χ〉 in
I(Q) that is hard to cover, i.e., for many increasing sequences 〈βι : ι < κ〉 in
χ we have ⋃

ι<κ

Xβι 6∈ I(Q).

This will imply cof(I(Q)) ≥ χ.

Definition 4.1 Let 2ℵ0 = λ = λ<λ = κ+ and Q = (Q, ζ̇, set, Q∗,⊥) be a
GTF1. We say that Q has a strong witness W for add(I(Q)) 6 κ if
W = (q∗, 〈q∗ι,ε : ι < κ, ε < λ〉) such that the following hold: q∗ = 〈q∗ε : ε < λ〉
is an orthogonal maximal antichain (w.r.t. (Q,≤)) in Q∗ and for every ι < κ
and ε < λ q∗ι,ε = 〈q∗ι,ε,ζ : ζ < λ〉 is some family in Q∗ below q∗ε such that q∗ι,ε
is predense (w.r.t. (Q,≤)) below q∗ε , hence

Xι,ε := set(q∗ε) \
⋃
{set(q∗ι,ε,ζ) : ζ < λ}

belongs to I(Q), but Yε :=
⋃
ι<κ

Xι,ε /∈ I(Q).

Definition 4.2 (1) Let χ > 2ℵ0 = λ = λ<λ = κ+ and Q = (Q, ζ̇, set, Q∗,
⊥) a GTF1 with a strong witness W for add(I(Q)) 6 κ, and let W =
(q∗, 〈q∗ι,ε : ι < κ, ε < λ〉) be as in Definition 4.1. We define a forcing notion
AA(Q,W , χ) as follows (“AA” stands for “anti-amoeba”):

(A) (a) Conditions p ∈ AA(Q,W , χ) have the form p = (u, ζ, r, S, f) =
(up, ζp, rp, Sp, fp) where

(b) u ∈ [χ]6κ and ζ < λ,

(c) r = 〈rα,ε : α ∈ u, ε < ζ〉 and r[α] := 〈rα,ε : ε < ζ〉 (for α ∈ u) are
such that every rα,ε is a member of Q∗ below some q∗ξ (from the
strong witness)

(d) S ⊆ {α : α ∈ κu is increasing } and |S| 6 κ,

(e) f : S → λ is such that for every α1, α2 ∈ S
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(α) if f(α1) = f(α2) then (α1, α2) is a ∆-system pair, i.e.
∀i, j < κ(α1(i) = α2(j)⇒ i = j) and

(β) if f(α1) 6= f(α2), then |ran(α1) ∩ ran(α2)| 6 1.

(B) The order on AA(Q,W , χ) is defined as follows: For p1, p2 ∈ AA(Q,W , χ)
we declare p2 6 p1 iff

(a) up1 ⊆ up2 , ζp1 6 ζp2 , rp1 = rp2 � up1 × ζp1 , Sp1 ⊆ Sp2, fp1 ⊆ fp2
and

(b) if (α, ε) ∈ (up2 × ζp2) \ (up1 × ζp1), ξ(p2, α, ε) is the unique ξ such
that rp2α,ε 6 q∗ξ and β ∈ Sp1 , ι < κ are such that fp1(β) = ξ(p2, α, ε)

and βι := β̄(ι) = α (note that this implies α ∈ up1 by (A)(d), and
by (A)(e)(α) ι does not depend on β), then rp2α,ε 6 q∗

ι,fp1 (β),ζ
for

some ζ < λ.

(2) Letting ĠAA(Q,W,χ) the canonical name for the AA(Q,W , χ)-generic filter,
for α < χ we let ṗα = 〈ṙα,ε : ε < λ〉 be the AA(Q,W , χ)-name

⋃
{r[α]p : p ∈

ĠAA(Q,W,χ) ∧ α ∈ up} and Ẋα = R \
⋃
{set(ṙα,ε) : ε < λ}.

Lemma 4.1 With the notation of Definition 4.2 the following statements
are true:

(1) Every descending sequence in AA(Q,W , χ) of length < λ has a largest
lower bound.

(2) AA(Q,W , χ) is not empty and for every r∗ ∈ Q,α∗ < χ and p1 ∈
AA(Q,W , χ) there exists p2 ∈ AA(Q, χ) such that

(a) p2 6 p1,

(b) ζp1 < ζp2 and α∗ ∈ up2,

(c) for some ε < ζp2 we have that rp2α∗,ε and r∗ are compatible.

(d) ∀α < χ 
AA(Q,W,χ) ṗα lists a predense subset of Q.

(3) Suppose that p ∈ AA(Q,W , χ), ξ < λ, β ∈ κχ \ Sp are such that
ξ /∈ {ν < λ : ∃(α, ε) ∈ up × ζp rpα,ε 6 q∗ν} ∪ ran(fp) and, letting

q := (up, ζp, rp, Sp ∪ {β}, fp ∪ {(β, ξ)}),

we have q ∈ AA(Q,W , χ) and hence q 6 p. Then
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q 
AA(Q,W,χ)

⋃
ι<κ

(set(q∗ξ ) \
⋃
{set(ṙβι,ε) : ε < λ}) /∈ I(Q)

and hence q 
AA(Q,W,χ))

⋃
ι<κ

Ẋβι /∈ I(Q).

Remark 4.1 Note that in (3), for q ∈ AA(Q,W , χ)) to hold we only need
that β is increasing and for every α ∈ Sp we have |ran(α) ∩ ran(β)| 6 1.

Proof: (1) Given a descending chain 〈pα : α < µ < λ〉 in AA(Q,W , χ)) we
define q ∈ AA(Q,W , χ)) by letting uq =

⋃
{upα : α < µ}, ζq = sup{ζpα : α <

µ}, rq is such that for every β ∈ uq r[β]q =
⋃
{r[β]pα : α < µ ∧ β ∈ uα}, Sq =⋃

{Spα : α < µ} and fq =
⋃
{fpα : α < µ}. By our assumptions it is easily

checked that q ∈ AA(Q,W , χ)), ∀α < µ q 6 pα and q is the largest lower
bound.

(2) AA(Q,W , χ)) is not empty as (∅, ∅, ∅, ∅, ∅) is an element. Let us check
density. We do it in two steps. First we find p2 6 p1 with ζp1 < ζp2 . We can
choose ξ ∈ λ \ ran(fp1). We let up2 = up1 , ζp2 = ζp1 + 1, rp2 � up2 × ζp1 = rp1

and rp2α,ζp1
= q∗0,ξ,0 for every α ∈ up2 , Sp2 = Sp1 and fp1 = fp2 . Then clearly

p2 ∈ AA(Q,W , χ)) and p2 6 p1.

Next we construct p2 6 p1 with α∗ ∈ up2 . We may assume α∗ /∈ up1 . Let
up2 = up1 ∪ {α∗}, ζp2 = ζp1 , r

p2 � up1 × ζp2 = rp1 and rp2α∗,ε = q∗0,0,0 for every

ε < ζp2 . As α∗ /∈ ran(β) for every β ∈ Sp1 , (B)(b) of Definition 4.2 vacuously
holds, thus p2 6 p1.

Finally we construct p2 ∈ AA(Q,W , χ)), p2 6 p1 such that (c) holds. By
what we have just shown, we may assume α∗ ∈ up1 . We also assume that
rp1α∗,ε and r∗ are incompatible for every ε < ζp1 , as otherwise we let p2 = p1.
We fix ξ < λ such that q∗ξ and r∗ are compatible (recall that q∗ is a maximal
antichain), and fix r 6 q∗ξ , r∗.

Case 1 There exist β ∈ Sp1 and ι < κ such that fp1(β) = ξ and βι = α∗.

Note that by Definition 4.2 (A)(e) ι is uniquely determined. As q∗ι,ξ is a
maximal antichain below q∗ξ , there exists ζ < λ such that q∗ι,ξ,ζ and r are
compatible. We define p2 such that up2 = up1 , ζp2 = ζp1 + 1, rp2 � up2 × ζp1 =
rp1 , r

p2
α∗,ζp1

6 q∗ι,ξ,ζ , r, and rp2α∗,ζp1
is a member of Q∗. We can easily define

rp2α,ζp1
for α ∈ up2 \ {α∗} such that, letting Sp2 = Sp1 and fp2 = fp1 , p2 is as

desired.
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Case 2 There is no pair (β, ι) ∈ Sp1 × κ such that fp1(β) = ξ and βι = α∗.

We construct p2 as in Case 1 except that ι < κ can be chosen randomly.

(3) Given q′ 6 q and (α, ε) ∈ uq′ × ζq′ such that α = βι for some ι < κ
and rq

′
α,ε 6 q∗ξ , then, by Definition 4.2(1)(B)(b), for some ζ < λ we have

rq
′
α,ε 6 q∗ι,ξ,ζ . By (2)(c) we conclude

q 
AA(Q,W,χ) ∀ε < λ ((ṙβι,ε 6 q∗ξ → ∃ζ < λ ṙβι,ε 6 q∗ι,ξ,ζ) ∧ ∀ζ < λ
∃ε < λ ṙβι,ε 6 q∗ι,ξ,ζ).

As ι < κ was arbitrary, by Definition 4.1 we conclude that (3) is true. �

Lemma 4.2 Suppose χ > 2ℵ0 = λ = λ<λ = κ+, Q, strong witness W for
add(I(Q)) 6 κ and AA(Q,W , χ) are as in Definition 4.2. If 〈pα : α < λ+〉
is a family of conditions in AA(Q,W , χ) there exist a club E ⊆ λ+ and a
regressive function h : E ∩ Sλ+λ → λ+ such that for every w ⊆ E ∩ Sλ+λ of
cardinality at most κ, if h � w is constant then 〈pα : α ∈ w〉 has a largest
lower bound in AA(Q,W , χ).

Proof: Let 〈pα : α < λ+〉 be given. We write pα = (uα, ζα, rα, Sα, fα), rα =
〈rαγ,ε : γ ∈ uα, ε < ζα〉, r[γ]α = 〈rαγ,ε : ε < ζα〉. For every α < λ+ let
gα : otp(uα) → uα be the unique increasing surjection. We define a binary
relation R∗ on λ+ by letting αR∗β iff

(a) otp(uα) = otp(uβ), otp(α ∩ uα) = otp(β ∩ uβ), ζα = ζβ, and

(b) gβ ◦ g−1α is an isomorphism from pα onto pα, i.e.,

(α) if gβ ◦ g−1α (γ1) = γ2, then r[γ1]α = r
[γ2]
β and

(β) if γ = 〈γι : ι < κ〉 ∈ κ(λ+), then γ ∈ Sα iff gβ ◦ g−1α (γ) :=
〈gβ ◦ g−1α (γι) : ι < κ〉 ∈ Sβ and fα(γ) = fβ(gβ ◦ g−1α (γ)).

It is easy to check that R∗ is an equivalence relation and that (by our as-
sumption λ = λ<λ) E∗ has λ many equivalence classes.

For every α < λ+ we let U<α =
⋃
{uβ : β < α}, vα = {ι < otp(uα) : gα(ι) ∈

U<α}.

We define the function h1 : λ+ → λ+ by letting

h1(α) = min{β ∈ Ord : β > α ∧ ∀γ1 < λ+ (ran(gγ1 � vγ1) ⊆ U<α ⇒ ∃γ2 <
β (γ1R∗γ2 ∧ gγ2 � vγ2 = gγ1 � vγ1))}.
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Note that as R∗ has λ equivalence classes and |U<α|<λ 6 λ<λ, the function
h1 maps indeed into λ+.

Let E = {γ < λ+ : γ is a limit ordinal and ∀α < γ h1(α) < γ}. Thus E is
a club on λ+.

Finally we define our desired function h : E ∩ Sλ+λ → λ+ by letting

h(γ) = min{δ < λ+ : gδ � vδ = gγ � vγ ∧ γR∗δ}.

Then h(γ) 6 γ holds trivially. By construction even h(γ) < γ, hence h is
regressive. Indeed, by definition ran(gγ � vγ) ⊆ U<γ. As |ran(gγ � vγ)| < λ
and cf(γ) = λ we can find δ1 < γ such that ran(gγ � vγ) ⊆ U<δ1 . Since
h1(δ1) < γ there exists δ2 < γ such that gδ2 � vδ2 = gγ � vγ and δ2R∗γ, and
hence h(γ) 6 δ2 < γ.

Suppose now that w ⊆ E∩Sλ+λ , |w| 6 κ and h � w is constant. By definition
of h, gα � vα = gβ � vβ =: g∗ for any α, β ∈ w. By definition of vα we
conclude that 〈uα : α ∈ w〉 is a ∆-system with root ran(g∗) and gβ ◦ g−1α is
the identity on ran(g∗) for any α, β ∈ w.

Moreover, by definition of R∗ we have ζα = ζβ =: ζw, and if γ ∈ uα ∩ uβ,

hence γ ∈ ran(g∗) and gβ ◦ g−1α (γ) = γ then r[γ]α = r
[γ]
β .

Now we define q = qw ∈ AA(Q,W , χ) as follows:

(a) uq =
⋃
{uα : α ∈ w}.

Note that |uq| 6 κ as required, as |w| 6 κ.

(b) ζq = ζw.

(c) rq = 〈rαγ,ε : α ∈ w, γ ∈ uα, ε < ζq〉.

Note that by the remark above this is well defined (i.e. rαγ,ε = rβγ,ε if γ ∈
uα ∩ uβ).

(d) Sq =
⋃
{Sα : α ∈ w}.

Again |Sq| 6 κ as required, by |w| 6 κ.

(e) fq =
⋃
{fα : α ∈ w}.
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Note that fq is a function. Indeed, if γ ∈ Sα ∩Sβ for α, β ∈ w then ran(γ) ⊆
uα ∩ uβ = ran(g∗). Since gβ ◦ g−1α � ran(g∗) is the identity, by (b)(β) in the
definition of R∗ we have fα(γ) = fβ(γ).

Let us check (A)(e) from Definition 4.2(1). Let α, β ∈ w, α 6= β, and γ1 ∈
Sα, γ

2 ∈ Sβ. Let γ3 := gβ ◦ g−1α (γ1), thus γ3 ∈ Sβ, fα(γ1) = fβ(γ3), and
(γ1, γ3) is a ∆-system pair (see Definition 4.2(1)(e)(α)). If γ2 = γ3, hence
fq(γ

1) = fq(γ
2), we are done. Now suppose γ2 6= γ3. Note that

{(ι, ν) ∈ κ2 : γ1ι = γ2ν} ⊆ {(ι, ν) ∈ κ2 : γ3ι = γ2ν}.

If fα(γ1) = fβ(γ2), hence fβ(γ2) = fβ(γ3) and thus (γ2, γ3) is a ∆-system
pair, we are done. Otherwise fα(γ1) 6= fβ(γ2), hence fβ(γ2) 6= fβ(γ3) and
thus |ran(γ2) ∩ ran(γ3)| 6 1. But this implies |ran(γ1) ∩ (γ2)| 6 1.

Finally, it is straightforward to verify q 6 pα for every α ∈ w. That q actually
is the largest lower bound is also clear. �

5 Different cofinalities if amoeba and anti-

amoeba interact

Lemma 5.1 Suppose χ > 2ℵ0 = λ = λ<λ = κ+,Q, χ a cardinal, strong
witness W for add(I(Q)) 6 κ and AA(Q,W , χ) are as in Definition 4.2.
Moreover let d = (λ,CLUBλ+ , ε, κ, [S

λ+

λ ]κ) where ε < λ (so d is a c.c.-
parameter). If Ṗ is an AA(Q,W , χ)-name for a forcing such that 
AA(Q,W,χ)

“Ṗ satisfies ∗d”, then


AA(Q,W,χ)∗Ṗ cof(I(Q)) ≥ χ.

Proof: Towards a contradiction we assume that there are p∗ ∈ AA(Q,W , χ)∗
Ṗ , cardinal α∗ < χ and a family 〈Ḃα : α < α∗〉 of AA(Q,W , χ) ∗ Ṗ -names
such that

p∗ 
AA(Q,W,χ)∗Ṗ “〈Ḃα : α < α∗〉 is a cofinal sequence in I(Q).”

We must have α∗ > λ. For α < χ we can find pα ∈ AA(Q,W , χ) ∗ Ṗ below
p∗ and γ(α) < α∗ such that

(a) pα 
AA(Q,W,χ)∗Ṗ Ẋα ⊆ Ḃγ(α),

where Ẋα is the AA(Q,W , χ)-name as in Definition 4.2(2). We can find some
unbounded U ⊆ α+

∗ and γ∗ < α∗ such that γ(α) = γ∗ for every α ∈ U . By

16

Paper Sh:1110, version 2023-01-12. See https://shelah.logic.at/papers/1110/ for possible updates.



renumbering we may assume U = α+
∗ . In the sequel we only make use of 〈pα :

α < λ+〉 to get a contradiction. Let pα = (p1α, ṗ
2
α) where p1α ∈ AA(Q,W , χ)

and 
AA(Q,W,χ) ṗ
2
α ∈ Ṗ .

In V AA(Q,W,χ) we consider the game G(Ṗ ,d) (see Definition 2.1), for which,
by assumption, player I has a winning strategy. Let

〈(〈ṫζi : i < λ+〉, ḟζ), 〈ṡζi : i < λ+〉 : ζ < ε〉

be the play described in Remark 2.1(1) with 〈ṡ0i : i < λ+〉 = 〈ṗ2i : i < λ+〉.
As player I wins this play, there exists a AA(Q,W , χ)-name Ė2 for a club of
λ+ as in the winning rule for G(Ṗ ,d). As by Lemma 4.2 AA(Q,W , χ) has
the λ+-c.c., wlog we may assume Ė2 = E2 ∈ V .

By λ-closedness of AA(Q,W , χ), for every α < λ+ we can find p3α ∈ AA(Q,W , χ)
below p1α and gα : ε→ λ+ in V such that

(b) p3α 
AA(Q,W,χ) 〈ḟζ(α) : ζ < ε〉 = gα.

By Lemma 4.1(2)(b), we may assume that α ∈ up3α (see Definition 4.2(1)(A)(a)).
Applying Lemma 4.2 to 〈p3α : α ∈ λ+〉 we can find a club E1 ⊆ λ+ and a re-
gressive function f1 : E1∩Sλ

+

λ → λ+ as there. Note that by the construction
of f1 (denoted h in the proof of Lemma 4.2), for given δ < λ+ there is u∗

such that whenever f1(α) = f1(β) = δ for some α, β ∈ E1 ∩ Sλ
+

λ , then αR∗β
and uα ∩ uβ = u∗.

As in Remark 2.1(1) we have a regressive function f2 : Sλ
+

λ → λ+ such that
ran(gα) is bounded by f2(α) for every α ∈ Sλ+λ .

We shall use notation and proof of Lemma 4.2 below. As E1 ∩E2 ∩ Sλ
+

λ+ is a
stationary subset of λ+, there are ordinals γ1∗ , γ

2
∗ such that the set

S := {α < λ+ : α ∈ E1 ∩ E2 ∩ Sλ
+

λ ∧ f1(α) = γ1∗ ∧ f2(α) = γ2∗}

is stationary. By λ = λ<λ we can find some unbounded set V ⊆ S and g∗
such that gα = g∗ for every α ∈ V .

By the above remark about the construction of f1 in the proof of Lemma 4.2
we have that

(c) all α ∈ S are R∗-equivalent,

(d) 〈up3α : α ∈ S〉 is a ∆-system (hence α ∈ up3α \
⋃
{up3β : β ∈ S ∧ β 6= α}

for all α ∈ S).
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We choose w ⊆ V such that otp(w) = κ and let ᾱ∗ list w in increasing order.
By the proof of Lemma 4.2 we know that {p3α : α ∈ w} has a largest lower
bound, say pw. We define p1 ≤ pw in AA(Q,W , χ) as follows:

Let up1 = upw , ζp1 = ζpw , r̄p1 = r̄pw , Sp1 = Spw ∪ {ᾱ∗}, and fp1 = fpw ∪
{(ᾱ∗, ξ)}, where ξ < λ is chosen such that no member of r̄pw is below q∗ξ , and

hence ∀β ∈ upw∀ε < ζpw set(rp
w

β,ε)∩ set(q∗ξ ) = ∅, and moreover ξ 6∈ ran(fpw).

By construction (see (c)) we have |ran(ᾱ∗) ∩ ran(β̄)| 6 1 for every β̄ ∈ Spw
and hence p1 is as desired (see Remark 4.1).

Let ᾱ∗ = 〈αι : ι < κ〉. By Lemma 4.1(3) we conclude

p1 
AA(Q,W,χ)

⋃
ι<κ

Ẋαι /∈ I(Q).

By construction (especially the definition of p3α and gα in (b)), there exists
some AA(Q,W , χ)-name ṗ2 such that 
AA(Q,W,χ) ṗ

2 ∈ Ṗ and

p1 
AA(Q,W,χ) ṗ2 is a lower bound of {ṗ2α : α ∈ w}.

But now we have a contradiction, as (p1, ṗ2) ≤ p∗ and by (a)

(p1, ṗ2) 
AA(Q,W,χ)∗Ṗ

⋃
ι<κ

Ẋαι ⊆ Ḃγ∗ .

�

As a conclusion of what we proved so far we obtain the following main the-
orem of this paper:

Theorem 5.1 Suppose that 2ℵ0 = λ = λ<λ = κ+ < µ = cf(µ) < χ = χ<χ.
Moreover we assume the following:

(1) Q0 = (Q0, ζ̇0, set0, Q
∗
0,⊥0) is a GTF1 such that Q0 has a strong witness

W for add(I(Q0)) 6 κ,

(2) Q1 = (Q1, ζ̇1, set1, Q
∗
1,⊥1) is a GTF1 such that add(I(Q1)) = λ,

(3) Let Ṗ be the AA(Q0,W , χ)-name of the limit of a (< λ)-support itera-
tion 〈Ṗα, Q̇β : α < µ, β < µ〉 in V AA(Q0,W,χ), where Q̇β denotes A1(Q1)

in V AA(Q0,W,χ)∗Ṗβ .

Then the following hold:

(4) AA(Q0,W , χ) ∗ Ṗ is λ-closed and λ+-c.c.

(5) V AA(Q0,W,χ)∗Ṗ � 2ℵ0 = λ ∧ cof(I(Q0)) = 2λ = χ ∧ cof(I(Q1)) = µ.
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6 Application to classical tree forcings

Here we study the well-known classical tree forcings Sacks, Silver, Laver and
Miller. We abreviate them by Sa, Si, La and Mi, respectively. We shall show
that under certain assumptions they are GTF1 in the sense of Definition 3.1.
Then we shall explain for which pairs (Q0, Q1) of these the assumptions of
Theorem 5.1 are known to be consistent, hence we can get the consistency
of cof(I(Q0)) > cof(I(Q1)).

Theorem 6.1 (1) Suppose d = 2ℵ0. Then both, Sacks and Silver forcing,
can be considered as GTF1’s.

(2) Suppose b = 2ℵ0. Then both, Laver and Miller forcing, can be considered
as GTF0’s.

Proof: It is well-known that for every Q ∈ {Sa, Si, La,Mi}, every p ∈ Q
has continuum many extensions such that any two of them have no common
infinite branch.

(1) Let Q ∈ {Sa, Si}. Let ĠQ be the canonical Q-name for the generic
filter, let ζ̇Q =

⋂
ĠQ, i.e. ζ̇Q denotes the Sacks, Silver real, respectively. Let

setQ(p) = [p], let Q∗ be the set of all p ∈ Q such that [p] is nowhere dense,
and let p ⊥Q q mean [p] ∩ [q] = ∅. We claim that (Q, ζ̇Q, setQ, Q

∗,⊥Q) is
GTF1. In fact, (1)(a), (b), (c) and (e)(α), (β) are obvious, for (c)(γ) we use
the well-known fact that a Sacks or Silver real determines its generic filter.
(1)(d) follows from the remark at the beginning of this proof. Nontrivial are
(e)(γ)1 and (δ)1. For these we apply the results in [7] (for Sa) and [18] (for
Si) that every maximal antichain in Sa or Si that consists of nowhere dense
trees must have size at least d. Then (e)(γ)1 and (δ)1 follow easily from our
assumption, the remark at the beginning of this proof and the fact that if
p, q are incompatible Sacks or Silver trees, then [p] ∩ [q] is countable.

(2) For Q ∈ {La,Mi} we apply the base matrix tree from [1]. This is a
family 〈Aα : α < h〉 such that every Aα is a mad family in [ω]ω of size
continuum, Aβ refines Aα (i.e. ∀b ∈ Aβ∃a ∈ Aα b ⊆∗ a) for every α < β < h,
and

⋃
α<hAα is dense in ([ω]ω,⊆). Actually, by an easy modification of its

construction we can achieve the following:

(∗) for every sequence 〈an : n < ω〉 in [ω]ω there is α < h and a sequence
〈bn : n < ω〉 in Aα such that ∀n bn ⊆ an.

Note that here we ask for proper inclusion not just almost inclusion. Other-
wise (∗) would follow from ℵ0 < h.
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Now we let La∗ consist of all p ∈ La with the property that there exists
α < h such that for every σ ∈ p extending stem(p) we have succp(σ) ∈ Aα,
where succp(σ) = {n < ω : σan ∈ p}. If σ 6∈ p we define succp(σ) = ∅. As
for (1) we let ζ̇La denote the Laver real, setLa(p) = [p], and p ⊥La q mean
[p]∩ [q] = ∅. We claim that (La, ζ̇La, setLa, La

∗,⊥La) is GTF0. Let us check
Definition 3.1(1): (b) follows easily from property (∗) of the base tree matrix.
(c) is well-known. (d) holds by the remark at the beginning of this proof.
Nontrivial are (e)(γ) and (δ). Let β < 2ℵ0 and 〈pα : α < β〉 a sequence in
La∗. The set

S = {succpα(σ) : stempα ⊆ σ ∈ pα ∧ α < β}

has cardinality < 2ℵ0 and is contained in the base matrix tree. As A0 has
size 2ℵ0 and the base matrix is a tree with respect to ⊇∗, there exists a ∈ A0

such that a ∩ b is finite for every b ∈ S. Let p ∈ La∗ be the tree with empty
stem and succp(σ) = a for every σ ∈ p. Then clearly p is incompatible with
every pα. We need the following claim which is folklore wisdom:

Claim 2 Let 〈pα : α < β < b〉 be a sequence in La. If p ∈ La is such that
p is incompatible (w.r.t. (La,≤)) with pα for every α < β, then there exists
q ≤ p, q ∈ La, such that stem(p) = stem(q) and [pα] ∩ [q] = ∅ for every
α < β.

Proof: Fix α < β. We define a rank function rkα on p− := {σ ∈ p :
stem(p) ⊆ σ} as follows:

rkα(σ) = 0 iff succp(σ) ∩ succpα(σ) is finite, and

rkα(σ) = ν iff ν ∈ Ord is minimal such that for all except finitely many
n ∈ succp(σ) ∩ succpα(σ) rkα(σan) < ν.

If σ gets no ordinal rank we define rkα(σ) =∞.

It is clear that as p and pα are incompatible, every σ ∈ p− has an ordinal
rank. We define fα : p− → ω as follows: If rkα(σ) = 0 let n = sup(succp(σ)∩
succpα(σ)) and n = sup{m ∈ succp(σ) ∩ succpα(σ) : rkα(σam) ≥ rkα(σ)}
otherwise. Now let fα(σ) = n + 1. It can easily be checked that if g(σ) ≥
fα(σ) for almost all σ ∈ p−, then, if we prune p using g, i.e. for every σ ∈ p−
deleting everything above σam for m < g(σ), we obtain a Laver tree q ≤ p
with [pα] ∩ [q] = ∅. But by β < b we can get g like this for every α < β. �

Continuing with the proof of (e)(γ), by the claim and as La∗ is dense we can
find q ∈ La∗ with q ≤ p and [pα]∩ [q] = ∅ for every α < β, as desired. These
arguments also prove (e)(δ).
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For Mi, analogous arguments work. �

Theorem 6.2 (1) Suppose Q ∈ {Sa, Si}. Then add(I(Q)) ≤ b holds.

(2) Suppose 2ℵ0 = b and Q ∈ {La,Mi}. Then add(I(Q)) ≤ h.

Proof: Let κ(Q) the least cardinal κ such that forcing with Q changes the

cofinality of (2ℵ0)
V

to κ.

(1) Simon [12] has proved κ(Sa) ≤ b. In [8], add(I(Sa)) ≤ κ(Sa) is proved
under the assumption that 2ℵ0 is regular. In [7] it is proved that this as-
sumption is not needed.

In [18], add(I(Si)) ≤ b is proved directly. A stronger result has been proved
in [16] where it is shown that the nowhere Ramsey ideal is Tukey reducible
to the Silver ideal, and hence even add(I(Si)) ≤ h is true.

(2) In [6], κ(Q) ≤ h has been shown for Q ∈ {La,Mi}. Similarly as in [8]
for Sa, one can prove add(I(Q)) ≤ κ(Q) for Q ∈ {La,Mi}, provided that
2ℵ0 = b holds. Actually, for Q = Mi, d = 2ℵ0 suffices (see [9], Corollary 13).

�

Corollary 6.1 Suppose Q0 ∈ {Sa, Si, La,Mi} is such that add(I(Q0)) =
2ℵ0. Then the following are true:

(1) Every Q ∈ {Sa, Si, La,Mi} is GTF1 (La and Mi are even GTF0).

(2) If Q1 ∈ {Sa, Si, La,Mi} is such that add(I(Q1)) ≤ κ < 2ℵ0, then there
exists a strong witness for this (see Definition 4.1).

Proof: (1) follows from Theorems 6.1 and 6.2. (2) follows from (1) and the
homogeneity of the classical tree forcings. �

The following theorem collects all the cases for which the consistency of
add(I(Q0)) < add(I(Q1)) is known, where Q0, Q1 ∈ {Sa, Si, La,Mi}.

Theorem 6.3 If ZF is consistent, then the following statements are consis-
tent with ZFC + 2ℵ0 = ℵ2 = ℵℵ12 :

(1) add(I(Si)) < add(I(Sa)),

(2) ∀Q ∈ {La,Mi} add(I(Sa)) < add(I(Q)),

(3) ∀Q ∈ {La,Mi} add(I(Si)) < add(I(Q)).
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Proof: (1) Implicitly in [10], an amoeba forcing for Sa with the Laver prop-
erty has been constructed. See also [17] for detailed analysis and proofs.
If this forcing is iterated ℵ2 times with countable supports, a model for
cov(M) < add(I(Sa)) is obtained (where M is the meager ideal). In [14],
add(I(Si)) ≤ cov(M) has been proved in ZFC.

(2) In [6], it has been shown that MA implies add(I(Q)) = 2ℵ0 for both
Q ∈ {La,Mi}. In [8], and independently in [19], it has been shown that MA
does not imply add(I(Sa)) = 2ℵ0 , i.e. a model for MA + add(I(Sa)) = ℵ1 <
2ℵ0 = ℵ2 is constructed.

(3) In [4] it has been shown that MA does not imply add(I(Si)) = 2ℵ0 , i.e.
a model for MA + add(I(Si)) = ℵ1 < 2ℵ0 = ℵ2 is constructed.

Alternatively one can use the models in [13], where amoebas for La and Mi
with the Laver property have been constructed. In these, add(I(Si)) = ℵ1
holds by [14] as in (1). �

As an immediate consequence of Theorems 5.1, 6.1, 6.2 and 6.3 we obtain
the following:

Theorem 6.4 If ZF is consistent, then the following statements are consis-
tent with ZFC:

(1) cof(I(Sa)) < cof(I(Si)),

(2) cof(I(Q1)) < cof(I(Q0)), where Q0 ∈ {Sa, Si} and Q1 ∈ {La,Mi}.

7 Singular cofinality

In this section we shall show that consistently we can have cof(I(Q)) singular,
where Q is a GTF1. For this we apply the amoeba from Section 3, but we
have to use a more elaborate iteration. For Sacks forcing, this result has been
obtained in [8].

Theorem 7.1 Suppose that Q = (Q, ζ̇, set, Q∗,⊥) is a GTF1, 2ℵ0 = λ =
λ<λ < θ = cf(µ) < µ < χ = χ<χ and add (I(Q)) = λ. Moreover we assume
∀α < µ |α|λ < µ. There exists a forcing P such that

(a) P is λ-closed and λ+-c.c.

(b) V P � 2λ = χ ∧ cof(I(Q)) = µ.
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Proof: We fix an increasing sequence 〈λι : ι < θ〉 of regular cardinals λι < µ
with λ < λ0 and sup{λι : ι < θ} = λ. Let

F = {f ∈
∏
ι<θ

λι : |{ι < θ : f(ι) 6= 0}| < λ}.

For f ∈ F let supp(f) = {ι < θ : f(ι) 6= 0}. Let ≤F denote the natu-
ral partial order on F defined by f ≤F g iff supp(f) ⊆ supp(g) and ∀ι ∈
supp(f) f(ι) ≤ g(ι). By our assumptions, clearly |F| = µ and F is (< λ+)-
directed. Let 〈f ∗β : β < µ〉 list F such that f ∗0 is the constantly 0 function.

Definition 7.1 Let the assumptions of Theorem 7.1 hold.

(1) We call a family q = q(Q) = 〈Pα, Q̇β, uβ, η̇β, fβ : α ≤ αq, β < αq〉 a
(< λ)-support iteration of Q with memory if

(a) χ < αq is a limit ordinal, and 〈Pα, Q̇β : α ≤ αq, β < αq〉 is a (< λ)-
support iteration such that for every β < αq,


Pβ “Q̇β has a subset of P(H(λ)) as its set of elements and η̇β ⊆
Q̇β is the generic filter”.

(b) uβ ⊆ β such that ∀γ ∈ uβ uγ ⊆ uβ (transitivity of the memory
〈uβ : β < αq〉).

(c) ∀β < χ (uβ = ∅ ∧ 
Pβ “Q̇β = (<λλ,⊇)”).

(d) ∀β ∈ [χ, αq) 
Pβ “Q̇β = A1(Q)V [η̇[uβ ]]”, where η̇[u] denotes 〈η̇ν : ν ∈
u〉 for u ⊆ β.

(e) (α) fβ ∈ F and if β < µ then fβ = f ∗0 .

(β) If β ∈ uγ then fβ ≤F fγ.

(γ) If β ∈ uγ and β < µ then sup{λν : ν < ι} ≤ β < λι implies
β < fγ(ι).

(2) Let q be as in (1) and ū = 〈uβ : β < αq〉. A subset U ⊆ αq is called
ū-closed if ∀β ∈ U uβ ⊆ U .

Claim 3 Let q = q(Q) be as in Definition 7.1 and U ⊆ [χ, αq) such that

(1) ∀u ∈ [αq]≤λ ∃β ∈ U u ⊆ uβ.
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Let ˙̄pβ = 〈ṗβε : ε < λ〉 denote the generic maximal antichain in Q added by
Q̇β and Ẋβ = X( ˙̄pβ) the associated set in I(Q)V [η̇[0,β]].

Then V Pαq |= “〈Ẋβ : β ∈ U〉 is cofinal in I(Q), hence cof (I(Q)) ≤ |U |”.

Proof: Note that (1) implies cf(αq) > λ and hence

(1)’ ∀u ∈ [αq]≤λ ∃λβ ∈ U u ⊆ uβ.

Now suppose p 
Pαq τ̇ ∈ I(Q). Wlog we may assume that there exists a
familiy of Pαq -names 〈q̇ε : ε < λ〉 such that

p 
Pαq 〈q̇ε : ε < λ〉 is a maximal antichain of Q and τ̇ = X(〈q̇ε : ε < λ〉).

Each q̇ε can be viewed as a pair (Aε, hε) where Aε is a maximal antichain in
Pαq and hε : Aε → Q. As Pαq has the λ+-c.c., |Aε| ≤ λ. Note that by the

definition of the Q̇β, if 
Pβ “σ̇ ∈ Q̇β” then σ̇ can be coded in essentially
the same way as τ̇ , i.e. by λ may maximal antichains of Pβ. As q is a (< λ)-
support iteration, doing this for every p(β) where p ∈ Aε and β ∈ dom(p)
and then proceeding similarly, we obtain a wellfounded tree T on (αq, >)
such that every node has at most λ many immediate successors, T has no
infinite branch, and τ̇ can be evaluated from 〈η̇ν : ν ∈ T 〉. As |T | ≤ λ, by (1)’
there are λ many αι ∈ U such that T ⊆ uαι . By Lemma 3.1(B) we conclude
p 
Pαq ∃ι < λ τ̇ ⊆ Ẋαι . Note that for this argument no memory is needed.

�

Definition 7.2 Let q = q(Q) and ū be as in Definition 7.1. By induction
on α ≤ αq, for all ū-closed U ⊆ α, we define P ′U ⊆ Pα and prove

(a) P ′U consists of all p ∈ Pα such that dom(p) ⊆ U and for every β ∈
dom(p), p(β) is a P ′uβ -name for a subset of H(λ) (so either for an

element of <λλ or of A1(Q)V [η̇[uβ ]]).

(b) If α1 < α then P ′U∩α1
⊆ P ′U (clearly U ∩ α1 is ū-closed).

(c) P ′α is dense in Pα.

(d) P ′U is a dense subset of the limit of the (< λ)-support iteration of the
form 〈P ∗β , Q̇∗β : β ∈ U〉 such that for every β ∈ U ∩ χ, 
P ∗β “Q̇∗β =

(<λλ,⊇)”, and for every β ∈ U ∩ [χ, αq), 
P ∗β “Q̇∗β = A1(Q)V [η̇[uβ ]]”.

(Here η̇β and η̇[uβ] are defined as in Definition 7.1. Note again that
uβ ⊆ U as U is ū-closed.) Hence, letting U = α, we have (c).
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(e) P ′U is a complete suborder of Pα.

(f) For every q ∈ P ′α, q � U ∈ P ′U and q ≤P ′α q � U .

(g) For every q ∈ P ′α and p ∈ P ′U , if p ≤P ′U q � U , then p and q are
compatible in P ′α; in fact, p ∪ q � (dom(q) \ U) is a lower bound of p
and q.

(h) p ∈ P ′U iff p ∈ P ′α and dom(p) ⊆ U .

Proof: We won’t use (d), hence we omit its proof. The main point is (c), as
(f), (g), and (h) are clear, and hence (e) follows from (c). So let us prove (c)
by induction on α. The case α = 0 is trivial.

Let α = β + 1 and p ∈ Pα. Wlog we may assume that β ∈ dom(p), as
otherwise we can apply the induction hypothesis. For the same reason we
know that P ′uβ is a complete subforcing of Pβ and P ′β is dense in Pβ. Clearly
we have P ′uβ ⊆ P ′β. Hence by definition we have


P ′β “p(β) ∈ V [〈η̇γ : γ ∈ uβ〉]”.

As 〈η̇γ : γ ∈ uβ〉 is (forced to be) P ′uβ -generic, there exist a P ′uβ -name τ̇ and

p1 ≤Pβ p � β in P ′β such that p1 
P ′β p(β) = τ̇ . Let q = (p1, τ̇). Then q ∈ P ′α
and q ≤ p.

Now suppose that α is a limit ordinal and p ∈ Pα. As |dom(p)| < λ we may
assume that cf(α) < λ. Let 〈α∗ι : ι < cf(α)〉 be increasing and cofinal in
α. We choose 〈qι : ι ≤ cf(α)〉 such that qι ∈ P ′α∗ι , qι ≤Pα∗ι p � α

∗
ι and if

ι < ν ≤ cf(α) then qν ≤P ′
α∗ν
qι. For the successor step we apply the inductive

hypothesis. Suppose that ν ≤ cf(α) is a limit ordinal and 〈qι : ι < ν〉
have been chosen as desired. Let γ ∈

⋃
ι<ν dom(qι). Choose ι(γ) such that

γ ∈ qι(γ). Then in V , 〈qι(γ) : ι ∈ [ι(γ), ν)〉 is a sequence of P ′uγ -names for

members of Q̇γ such that this sequence is forced to be decreasing. But this
forcing is forced to be < λ-complete and can be evaluated in V Puγ . Hence
we can choose qν(γ) as a P ′uγ -name that is forced to be a lower bound of it.
Hence we have qcf(α) ∈ P ′α and qcf(α) ≤ p. �

In order to get V Pαq |= cof (I(Q)) ≥ µ we must make q more concrete as
follows: We let

(2) αq = χ+ µ · λ+,

(3) if β < χ, then uβ = ∅ and fβ = f ∗0 ,
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(4) if β = χ+ µ · ι+ ν for ι < λ+ and ν < µ, then fβ = f ∗ν and uβ = {α <
µ : sup{λν : ν < ι} ≤ α < λι ⇒ α < fβ(ι)} ∪ {α ∈ [µ, β) : fα ≤F fβ}.

Note that 〈uβ : β < αq〉 is transitive: Let β ∈ uγ and α ∈ uβ. We must have
χ ≤ β < γ and hence fβ ≤ fγ. If α < µ, hence sup{λν : ν < ι} ≤ α < λι for
some ι < θ, we have α < fβ(ι) ≤ fγ(ι). If µ ≤ α we have fα ≤ fβ ≤ fγ and
we are done.

Also note that (1)’ holds for U = [χ, αq): Let u ⊆ αq have size λ. As F is
(< λ+)-directed, we can easily find f ∈ F such that

(5) u ∩ [sup{λν : ν < ι}, λι) is bounded by f(ι) for every ι < θ, and

(6) fβ ≤F f holds for every β ∈ u ∩ [µ, αq).

It follows that for every γ ∈ [sup(u) + 1, αq) such that fγ = f , we have
u ⊆ uγ. As by construction there are at least λ+ such γ, we are done.

Now let us prove V Pαq |= cof (I(Q)) ≥ µ, where q is the iteration just

defined. By Definition 7.2(e) we have V Pαq = V P ′αq . By contradiction
suppose we had ι(∗) < θ, p ∈ P ′αq

and a family 〈Ẏα : α < λι(∗)〉 of P ′αq
-names

such that
p 
P ′αq 〈Ẏα : α < λι(∗)〉 is cofinal in I(Q).

Wlog we may assume that every Ẏα is forced to be of the form X(〈q̇α,ε :
ε < λ〉) (see Remark 3.1(3)), where 〈q̇α,ε : ε < λ〉 is forced to be a maximal
antichain of Q. Since Q ⊆ R and Pαq does not add reals, wlog we may
assume that every q̇α,ε is a nice P ′αq

-name, i.e. has the form (Aα,ε, fα,ε) where
Aα,ε is a maximal antichain of P ′αq

and fα,ε : Aα,ε → Q. Let vα =
⋃
{dom :

(p) : p ∈ Aα,ε}, thus vα ∈ [αq]≤λ and hence, by (1)’ for our memory ū, we
find γα < αq such that vα ⊆ uγα .

Let β∗ = sup{fγα(ι(∗) + 1) + 1 : α < ι(∗)} and u∗ =
⋃
{uγα : α < ι(∗)}.

Then clearly β∗ < λι(∗)+1, u
∗ is ū-closed and u∗ ∩ [λι(∗), λι(∗)+1) = [λι(∗), β

∗).
By Definition 7.2(e) we have that P ′u∗ is a complete subforcing of Pαq , and
hence every ηβ for β ∈ [β∗, λι(∗)+1) is λ-Cohen , i.e. generic for (<λλ,⊇), over

V Pu∗ . As 〈Ẏα : α < λι(∗)〉 is forced to belong to V Pu∗ , the following claim
will complete the proof of Theorem 7.1:

Claim 4 If Q is GTF1, 2ℵ0 = λ and η : λ→ λ is λ-Cohen, i.e. generic for
(<λλ,⊇), over V , then in V [η] there exists X ∈ I(Q) that is not contained
in any member of I(Q)V .
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Proof: Let 〈rε : ε < λ〉, 〈pε : ε < λ〉 list R, Q respectively. In V [η] we define
families 〈sε : ε < λ〉 in R and 〈qε : ε < λ〉 in Q as follows: Let s0 = rη(0) and
let q0 be the η(1)th pε that satisfies pε ≤ p0 and s0 6∈ [pε]. If 〈sε : ε < ν〉 and
〈qε : ε < ν〉 have been determined for some ν < λ, let sν be the η(ν · 2)th
rε such that rε 6∈

⋃
ε<ν [qε]. To define qν we distinguish two cases. If pν is

compatible with some qε for ε < ν we let qν = q0. Otherwise, let qν the
η(ν ·2 + 1)th pε such that pε ≤ pν and [pε]∩{sξ : ξ < ν} = ∅. As Q is GTF1,
this construction is possible. Now X = {sξ : ξ < λ} is as desired. �

�Theorem7.1
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[19] Boban Velicković. CCC poset of perfect trees. Compositio Mathematica,
79(3):279–294, 1991.

(Saharon Shelah) Einstein Institute of Mathematics, Edmond J. Safra cam-
pus, The Hebrew University of Jerusalem. Givat Ram, Jerusalem, 91904,
Israel.

Department of Mathematics, Hill Center - Busch Campus, Rutgers, The
State University of New Jersey. 110 Frelinghuysen road, Piscataway, NJ
08854-8019 USA

E-mail address: shelah@math.huji.ac.il

(Otmar Spinas) Mathematisches Seminar, Christian-Albrechts-Universität
zu Kiel. Ludewig-Meyn-Str. 4, 24118 Kiel, Germany

E-mail address: spinas@math.uni-kiel.de

28

Paper Sh:1110, version 2023-01-12. See https://shelah.logic.at/papers/1110/ for possible updates.


