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§ 0. Introduction

Here we prove prove the consistency of “there are exactly κ P -point ultrafilters up
to isomorphism”. In [She98, Ch.VI, §5] the case k = 1, and it had been stated
that we can get, e.g. exactly two, or exactly κ and after a question of Fremlin, this
is now explicitly proved. Halbeisen and Dzamonja ask in 2014 to clarify Lemma
[She98, Ch.VI, 5.14], so its proof is expanded here.

Note that the numbers of the Definitions, Claims, etc., here are not the same as in
[She98, Ch.VI,§5], because Remark 5.9A there becomes 1.12.

Using [She98, Ch. XVIII, §4] we can make those κ ultrafilters the unique P -point.

We may use this [S+a].
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4 SAHARON SHELAH

§ 1. Having exactly κ Ramsey ultrafilters

Usually it is significantly harder to prove that there is a unique object than to
prove there is none. The proof is similar to the one in the previous section [She98,
Ch.VI,§4], but here we are destroying other Ramsey ultrafilter (in fact “almost”
all other P -points) while preserving our precious Ramsey ultrafilter. By a similar
proof we can construct a forcing notion P such that e.g. in VP there are exactly
two Ramsey ultrafilters (in both cases up to the equivalence induced by the Rudin-
Keisler order) or any other number. In 2014 we rewrite the proof of Lemma 1.15
(after a request from Lorenz Halbeisen and Mirna Dzamonja) and write explicitly
the case of κ Ramsey ultrafilters (following a question of David Fremlin).

More exactly we shall prove the consistency of “there is a unique Ramsey ultrafilter
F0 on ω, up to permutation of ω, moreover for every P -point F, F0 ≤RK F”.

Note that if there is a unique P -point it should be Ramsey; however, concerning
the question of the existence of a unique P -point we return to it in Ch.XVIII, §4.

Our scheme is to start with a universe with a fixed Ramsey ultrafilter F0, to pre-
serve its being an ultrafilter and even a Ramsey ultrafilter. Our ultrafilter will be
generated by ℵ1 sets. Now in each stage we shall try to destroy a given P -point F
such that F0 ≤RK F . The forcing from [She98, Ch.VI,§4] does not work, but if we
use a version of it in the direction of Sacks forcing it will work.

Claim 1.1. (1) If F is a P -point in V,P is a proper forcing notion and 
P “F
generates an ultrafilter”, then it (more exactly the one it generates) is a P -point in
VP.

(2) If the ultrafilter F is Ramsey in V, and P is ωω-bounding, proper and 
P “F
generates an ultrafilter”, then in VP, F still generates a Ramsey ultrafilter.

Proof. (1) As for being a P -filter, let p 
P “{A
˜
n : n < ω} is included in the ultra-

filter which F generates”. So without loss of generality p 
P “A
˜
n ∈ F”, and by

properness for some q, p ≤ q ∈ P, and An,m ∈ F (for n,m < ω) we have q 
P “for
each n,A

˜
n ∈ {An,m : m < ω}”. As F is a P -point in V and {An,m : n,m < ω} ⊆ F

belong to V, there is A ∈ F which is almost included in every An,m, hence in
each A

˜
n; (note: e.g., if F is generated by ℵ1 sets, then “P does not collapse ℵ1” is

sufficient instead of “P is proper”).

(2) As by part (1), F generates a P -point in VP, the following will suffice: let
0 = n

˜
0 < n

˜
1 < n

˜
2 . . . and p ∈ P; then we can find A ∈ F and q ≥ p such that

q 
 “A∩[n
˜
i, n

˜
i+1) has at most one element for each i” (i.e. F is a so called Q-point).

Remember P has the ωω-bounding property. So there are h ∈ ωω ∩ V , and q ≥ p
such that q 
P “(∀i)n

˜
i < h(i)”. Without loss of generality h is strictly increasing.

Define n∗i (in V by induction on i): n∗0 = 0, n∗i+1 = h(n∗i + 1) + 1. Now for no i, j
we have n

˜
i[G] ≤ n∗j < n∗j+1 < n

˜
i+1[G].

[Why? Assume this holds and, of course, i < j; as n
˜
∗
` < n

˜
∗
`+1, clearly ` ≤ n

˜
∗
` [G],

hence

n∗j+1 > h(n∗j + 1) ≥ h(j + 1) ≥ h(i+ 1) ≥ n
˜
i+1[G]

(remember h is strictly increasing), a contradiction].

Also F generates an ultrafilter in V[G], by the assumption. As in V, F is a Ramsey
ultrafilter and 〈n∗i : i < ω〉 ∈ V , there is A ∈ F such that A∩ [n∗i , n

∗
i+1) has at most
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one element for each i. Let G ⊆ P be generic over V be such that q ∈ G. Checking
carefully in V[G] we see that, for every i we have A∩ [n

˜
i[G], n

˜
i+1[G]) has at most

two elements and in this case they are necessarily successive members of A. Let
A0 = {k ∈ A : |A∩k| is even}, so either A0 or A\A0 belong to the ultrafilter which
F generates, and both are as required. �1.1

Lemma 1.2. (1) “F generates an ultrafilter in VQ which is a P -point, Q is proper”
is preserved by countable support iteration for F a P -point.

(2) “F generates an ultrafilter in VQ which is Ramsey +Q is ωω-bounding +Q is
proper” is preserved by countable support iteration for F a Ramsey ultrafilter.

Proof. (1) By [She98, Ch.VI,4.9] and see 1.1(1).

(2) Combine (1), 1.1(2) and [She98, Ch.VI,4.9]. �1.2

Definition 1.3. For F a filter on ω, let SP(F ) be {T : T is a perfect tree ⊆ ω>2
so closed under initial segments and for some A ∈ F , for every n ∈ A, η ∈ T ∩ n2
implies ηˆ〈0〉 ∈ T ∧ ηˆ〈1〉 ∈ T}. The order is the inverse inclusion. We denote the
maximal such A by spt(T ).

Remark 1.4. (1) So SP(F ) is a “mixture” of P(F ) and Sacks forcing and SP∗(F )
(defined below) is half way between SP(F ) and SP(F )ω.

(2) Remember T[η] := {ν ∈ T : ν E η or η E ν} for any η ∈ T and T [n] := {η ∈
T : `g(η) = n} for any n < ω.

Definition 1.5. (1) Let T⊗n :=
∏
`<n(`2) and T⊗ :=

⋃
n<ω

T⊗n ordered by the being

“initial segment”.

(2) For a filter F on ω, let SP∗(F ) be

{T : T is a perfect tree ⊆ T⊗ (so closed under initial segments)
and for every k < ω we have sptk(T ) ∈ F},

where,

sptk(T ) = {n < ω : for every η ∈ T [n](= T ∩ T⊗n ) and ν ∈ k2 there is
ρ ∈ n2 such that ηˆ〈ρ〉 ∈ T⊗n+1 ∩ T and ρ�k = ν}.

(3) We say Q is a finitarily closed subforcing of SP∗(F ) where:

(a) Q ⊆ SP∗(F ) as a partial order (so Q 6= ∅)
(b) if u ⊆ T⊗n is non-empty and (pη ∈ Q)∧(νη ∈ pη∩T⊗n ) for η ∈ u, then q ∈ Q

where q = ∪{ρ: for some η ∈ u and ν we have νηˆν ∈ pη and ρ E ηˆν}.

Remark 1.6. (1) Part 1.5(3) is intended for use in the [S+a] try to continue [She],
i.e. for [S+b].

(2) We can replace 1.5(3)(b) by:

(b)1 if p ∈ Q and η ∈ p ∩ T⊗n then p[≥η] = {ν ∈ p : ν E η or η E ν} ∈ Q,
(b)2 if p ∈ Q, p ∩ T⊗n = {η2} and η2 ∈ T⊗n then p[η1,η2] = {ν : for some ρ ∈ p we

have η1 / ρ and ν / η2ˆρ�[n, `g(ρ)]},
(b)3 if u ⊆ T⊗n is non-empty and pη ∈ Q for η ∈ u and pη ∩ T⊗n = {η} then

∪{pη : η ∈ u} ∈ Q.

The order is the inverse inclusion.
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6 SAHARON SHELAH

Claim 1.7. Let F be a filter on ω and Q be SP(F ) or SP∗(F ).

(1) If T ∈ Q, T [n] = {η1, . . . , ηk} (with no repetition), T` = T[η`], T
†
` ∈ Q, T` ≤ T †`

(i.e. T †` ⊆ T`) then T ≤ T † :=
k⋃
`=1

T †` ∈ Q and T † 
 “for some ` ∈ {1, . . . , k} we

have T †` ∈ G
˜

Q” and (T †)[m] = T [m] for every m ≤ n.

(2) If t
˜

is a P-name of an ordinal, T ∈ Q and n < ω then there are T †, T ≤ T † ∈ Q
and A such that T † 
Q “t

˜
∈ A” and |A| ≤ |T [n]| and

⋃
`≤n

T [`] ⊆ T †. Moreover for

each η ∈ T [n], T †[η] determines t
˜

.

Proof. (1) Observe that sptj(T
†) ⊇

⋂
1≤`≤k

sptj(T`) \ (n+ 1).

(2) For each η ∈ T [n] there is T η, T[η] ≤ T η such that T η decides the value t
˜
. Now

amalgamate the T η together by applying part 1). �1.7

Lemma 1.8. Let F be a P -point ultrafilter on ω. Then

(1) SP(F ) is proper, in fact α-proper for every α < ω1, and has the strong PP-
property; and so is SP(F )ω.

(2) SP∗(F ) is also proper, α-proper for every α < ω1 and has the strong PP-
property.

Proof. Similar to the proof of [She98, Ch.VI,4.4]. For its proof we shall use the
following theorem, of Galvin and McKenzie, (but later we shall prove a similar
theorem in detail (5.11)); note that we use only the “only if” direction. �1.8

Theorem 1.9. Let F be an ultrafilter on ω. Then F is a P -point [Ramsey ultra-
filter] iff in the following game player I has no winning strategy:

In the n-th move:

• player I chooses An ∈ F,
• player II choose wn ⊆ An, wn is finite [a singleton].

In the end, player II wins if
⋃
n<ω

wn ∈ F .

Next we are going to prove Lemma 1.8, using Theorem 1.9:

Proof. We just have to define a strategy for player I, (in the game from 1.9): playing
on the side with the conditions in the forcing. From the two forcing listed in the
lemma we concentrate on proving only the properness of SP∗(F ) (the other have
similar proofs and this is the only one we shall use). Let N ≺ (H (χ),∈, <∗χ)
be countable with F ∈ N , so SP∗(F ) ∈ N ; and let T ∈ SP∗(F ) ∩ N and let
〈In : n < ω〉 be a list of the dense subsets of SP∗(F ) which belong to N . We shall
define now a strategy for player I. In the n’th move player I chooses “on the side”
a condition Tn ∈ SP∗(F )∩N in addition to choosing An ∈ F and player II chooses
finite wn ⊆ An. For n = 0, player I chooses T0 = T and A0 = ω.

For n > 0, for the n’th step player I, using 1.7, chooses Tn ∈ SP∗(F ) ∩ N such

that Tn−1 ≤ Tn, T
[kn]
n−1 = T

[kn]
n , where kn := max[

⋃
{wn′ : n′ < n} ∪ {n}] + n + 1

and (∀η ∈ T [kn]
n ) ((Tn)[η] ∈ In−1). Then player I plays An = sptn(Tn). Note that
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whatever are the choices of player II, we have Tn ∈ N and we can let player I choose
Tn as the first one which is as required by the well ordering <∗χ.

As F is a P -point, by 1.9 there is a play in which he uses the strategy described
above and player II wins the play; this will give us the desired sequence of conditions.
Indeed, T =

⋂
n<ω

Tn ∈ SP∗(F ) satisfies sptn(T ) ⊇
⋃
{wk : k ∈ [n, ω)} (for each

n < ω) and hence T belongs to SP∗(F ). �1.8

Similar argument is carried out in more detail in the proof of 1.15.

Lemma 1.10. (1) If F is a P -point ultrafilter, SP(F )ω l Q and Q has the PP-
property then in VQ, F cannot be extended to a P -point ultrafilter.

(2) If F is a P -point ultrafilter, SP∗(F )lQ, Q has the PP-property then in VQ, F
cannot be extended to a P -point ultrafilter.

Proof. The proof is almost identical with the proof of [She98, Ch.VI,4.7], so we do
not carry out it in detail. (In fact we get the variant with weaker assumption as
proved in [She98, Ch.VI,4.7]).

This is particularly true for part (1). For part (2) copy the proof of [She98,
Ch.VI,4.7], replacing P (F ) by SP∗(F ) and defining r

˜
n as:

r
˜
n(i) = `⇔ i ≤ n⇒ ` = 0,

and

i > n⇒ (∃T ∈ G
˜

SP∗(F ))(∃η ∈ T⊗i+1)[T = T[η] & (η(i))(n) = `].

This is done up to and including the choice of p2 (i.e. (∗) in the proof of [She98,
Ch.VI,4.7]).

As p2 ∈ P and SP∗(F )lP clearly there is q ∈ SP∗(F ) such that p2 is compatible in
P with any q′ satisfying q ≤ q′ ∈ SP∗(F ). For k < ω, as q ∈ SP∗(F ) by Definition
1.5 we know that sptk(q) ∈ F , so as F is a P -point there is B∗ ∈ F such that
B∗ \ sptk(q) is finite for every k < ω. Choose by induction on n < ω, αn < ω such
that αn < αn+1, αn > g(n) and αn > jn(k(n)) and B∗ \ sptjn(k(n))+1(q) ⊆ [0, αn).

Define q′ := {η : η ∈ q and for every m < ω we have: if αn ≤ m < `g(η), m < αn+1

and m ∈ sptjn(k(n))+1(q) then for each ` ≤ k(n) we have (η(m))(in(`)) = 0 and

(η(m))(jn(`)) = 1}.
Now,

(a) q′ ⊆ T⊗ is closed under initial segments and 〈〉 ∈ q′.

[Why? Read the definition of q′.]

(b) q′ has no /-maximal element.

[Why? Assume η ∈ q′ ∩ T⊗m . If m < α0 then any ν ∈ Sucq(η) belongs to q′. So let
αn ≤ m < αn+1; if m /∈ sptjn(k(n))+1(q) again any ν ∈ Sucq(η) belongs to q′, so

assume m ∈ sptjn(k(n))+1(q), which means

(∀η′ ∈ q ∩ T⊗m)(∀ρ ∈ jn(k(n))+12)(∃ν)[η′ˆ〈ν〉 ∈ q & νjn(k(n)) + 1 = ρ].

Apply this for η′ and for the ρ∗ ∈ jn((k(n))+12 defined by {` < jn(k(n))+1: ρ∗(`) =
1} = {jn(`) : ` ≤ k(n)}, and find ν satisfying ρ∗ E ν and such that ηˆ〈ν〉 ∈ Sucq(η)
and even ηˆ〈ν〉 ∈ Sucq′(η).]
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(c) If αn ≤ m < αn+1,m ∈ sptjn(k(n))+1(q) then m ∈ sptin(0)(q
′).

[Why? Same proof as of clause (b) noting that for any ρ1 ∈ in(0)2 we can find ρ∗

such that ρ1 / ρ
∗ ∈ jn(k(n))+12, such that for m ∈ [in(0), jn(k(n)) + 1), we have

ρ∗(m) = 1⇔ m ∈ {jn(`) : ` ≤ k(n)}.]

(d) Let k < ω, then sptk(q′) ∈ F .

[Why? Choose n(∗) such that k < in(∗)(0). Now if m ∈ B∗ \ αn(∗) then for some
n, n(∗) ≤ n < ω and αn ≤ m < αn+1 hence m ∈ sptjn(k(n))+1(q) and so by clause

(c) we have m ∈ sptin(0)(q
′). But spt`(q

′) decreases with ` and k < in(∗)(0) ≤ in(0),

so m ∈ sptk(q′). Together B∗ \ αn(∗) ⊆ sptk(q′), but the former belongs to F .]

(e) q′ 
SP∗(F ) “
⋂
n<ω

(A
˜
n ∪ [0, g(n))) is disjoint to B∗ \ α0”.

[Why? Because if αn ≤ m < αn+1 and m ∈ B∗ then: by the definitions of
r
˜
in(`), r

˜
jn(`) (` ≤ k(n)) and A

˜
n (which is {α < ω : for some ` ≤ k(n), rin(`)(α) =

rjn(`)(α)}) we know m /∈ A
˜
n, also m ≥ αn > g(n), together this suffices.]

Now q′, p2 are compatible members of P (see the choice of q and remember q ≤ q′ ∈
SP∗(F )), so let p3 ∈ P be such that p2 ≤ p3, q

′ ≤ p3. So by clause (e) the condition
p3, being above q′, forces that

⋂
n<ω

(A
˜
n ∪ [0, g(n))) is disjoint to a member of F .

So as p2 ≤ p3 clearly p2 cannot force
⋂
n<ω

(A
˜
n ∪ [0, g(n))) 6= ∅ mod F . But this

contradicts the choice of p2. �1.10

We now state some well known basic facts on the Rudin-Keisler order on ultrafilters.

Definition 1.11. (1) Let F1, F2 be ultrafilters on I1, I2, respectively. We say
F1 ≤RK F2 iff there is a function f from I2 to I1 such that f(I2) = {f(i) : i ∈
I2} ∈ F1 and: A ∈ F1 iff f−1(A) ∈ F2.

(2) In this case we say F1 = f(F2); if |I1| ≤ |I2| we can assume without loss of
generality f is onto I1.

Remark 1.12. We shall use only ultrafilters on ω, which are not principal, i.e. in
β(ω) \ ω in topological notation.

It is known (see e.g. [Jec03]).

Theorem 1.13. (1) ≤RK is a quasi-order.

(2) An ultrafilter F on ω is minimal iff it is Ramsey (minimal means F † ≤RK F ⇒
F ≤RK F † (see part (4)).

(3) If F is a P -point, F † ≤RK F then F † is a P -point.

(4) If F 1 ≤RK F 2 ≤RK F 1, then there is a permutation f of ω such that F2 =
f(F1).

Proof. Well known. �1.12

Lemma 1.14. Suppose F0, F1 are ultrafilters on ω (non-principal, of course). Then
the condition (A) and condition (B) below are equivalent.

(A) F1 is a P -point, F0 is a Ramsey ultrafilter, and not F0 ≤RK F1.
(B) In the following game, player I has no winning strategy:

In the n-th move, when n is even:
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• player I chooses An ∈ F0,
• player II chooses kn ∈ An.

In the n-th move, when n is odd:
• player I chooses An ∈ F1

• player II chooses a finite set wn ⊆ An.
In the end, player II wins if

{kn : n < ω even} ∈ F0 and
⋃
{wn : n < ω odd } ∈ F1.

Proof. ¬(A)⇒ ¬(B): If F1 is not a P -point or F0 is not Ramsey then player I

can win by 1.9. (I.e., if F1 is not a P -point, then are Bn ∈ F1 for n < ω such
that for no B ∈ F1 do we have B \ Bn is finite for every n, now player I has a
strategy guaranteeing: for n odd, An =

⋂
`≤(n−1)/2

B` \ (sup
⋃
{w` : ` < n odd) + 1)

or just An = B(n−1)/2, this is a winning strategy. If F0 is not a Ramsey ultrafilter
there are Bn ∈ F0 for n < ω such that for no kn ∈ Bn (for n < ω) do we have
{kn : n < ω} ∈ F0, now player I has a strategy guaranteeing A2n = Bn, this is a
winning strategy.) So we can assume F1 is a P -point and F0 is Ramsey, so by ¬(A)
necessarily F0 ≤RK F1, hence some h : ω → ω witnesses F0 ≤RK F1. Then player I
can play such that

⋃
{h−1(kn) : n ∈ ω} and

⋃
{wn : n ∈ ω} will be disjoint. So one

of them is not in F1. Now if ∪{h−1(kn) : n ∈ w} /∈ F1 then by the choice of h we
have {kn : n ∈ ω} /∈∈ F0, thus player I wins.

(A)⇒ (B): Suppose toward contradiction H is a wining strategy of player I. Let λ

be big enough, N ≺ (H (λ),∈), {F0, F1, H} ∈ N and N is countable. For ` = 0, 1
as F` is a P -point there is A∗` ∈ F` such that A∗` ⊆æ B for every B ∈ F` ∩N .

Now we can find an increasing sequence 〈Mn : n < ω〉 of finite subsets of N,N =⋃
n<ω

Mn such that it increases rapidly enough; more exactly1:

(α) H,F0, F1 ∈ M0,Mn ∈ Mn+1; also can demand x ∈ Mn & x finite ⇒ x ⊆
Mn; also Mn ∩ ω is an initial segment of ω,

(β) if ϕ(x, a0, . . .) is a formula of length ≤ 1000 + |Mn| with parameters from
Mn∪{Mn} satisfied by some x ∈ N , then it is satisfied by some x ∈Mn+1,

(γ) for ` = 0, 1 if B ∈ F` ∩N,B ∈Mn then B ∪Mn+1 ⊇ A∗` ,
(δ) M0 ∩ ω = ∅.

Let un+1 = (Mn+1 \Mn) ∩ ω. So 〈un : n < ω〉 forms a partition of ω. As F` is an
ultrafilter, there are S` ⊆ ω such that

⋃
{un : n ∈ S`} ∈ F`, and n < m & {n,m} ⊆

S` ⇒ m− n ≥ 10.

(∗) Without loss of generality n ∈ S0,m ∈ S1 implies the absolute value of
n−m is ≥ 5.

[Why? For the S0, S1 we have, for each n ∈ S0 there is at most one m ∈ S1 such
that |n−m| ≤ 4 and vice versa. By the previous sentence {(n,m) : n ∈ S0,m ∈ S1

and (n−m) ≤ 4} is the graph of a function, call if f , and f is a partial one-to-one
function from S0 into S1.

1Do not try to understand the numbers 1000 and later 10,5 and clause (β) below: such demands
in this direction are necessary, and no reason to check the exact demand. They are used in choosing

a play of the game in the last paragraph of the proof.
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Case 1: ∪{un : n ∈ dom(f)} belongs to F0 and for every S ⊆ dom(f), we have
∪{un : n ∈ S} ∈ F0 ⇔ ∪{un : n ∈ S} ∈ F1.

For ` = 0, 1 let F ′` = {A ⊆ ω : ∪{un : n ∈ A} ∈ F`}, so F ′` ≤RK F`; as F ∗0 is
a Ramsey ultrafilter it follows that F0 ≤RK F ′0. By the assumption of the case
F ′0 = F ′1, so we have F0 ≤RK F ′0 = F ′1 ≤RK F1, hence F0 ≤RK F1 contradicting the
present assumption, clause (A) of the lemma.

Case 2: ∪{un : n ∈ dom(f)} /∈ F0.

Let S†0 = S0\dom(f), S†1 = S1; now (S†0, S
†
1) are as required on (S0, S1) in (∗) and

earlier.

Case 3:
⋃
{un : n ∈ dom(f)} ∈ F0, but there is S† ⊆ dom(f) such that ∪{un : n ∈

S†} ∈ F0 but
⋃
{un : n ∈ S†} /∈ F1.

Let S†0 = S†, S†1 = S1\S† and continue as in case 2.

Clearly exactly one of the three cases holds so we are done.]

(∗∗) there are k∗n ∈ un ∩A∗0 (for n ∈ S0) such that {k∗n : n ∈ S0} ∈ F0.

[Why? Because F0 is Ramsey.]

(∗ ∗ ∗) (a) Without loss of generality Min(S0 ∪ S1) ≥ 2,
(b) for n ∈ S1 letting vn := un ∩

⋂
{A : A ∈ F1 ∩Mn−2} we have⋃

{vn : n ∈ S1} ∈ F1,

(c) k∗` ∈
⋂
{A : A ∈ F0 ∩Mn−2}.

[Why? Clause (a) holds as S0\{0, 1}, S1\{0, 1} satisfies the requirements on S0, S1.

For clause (b) recall that B ∈ F1 and clause (γ) above, i.e. it implies ∪{∩{A : A ∈
F1 ∩Mn−2} ∩Mn : n < ω} include A∗1 hence belongs to F1. The proof of clause (c)
is similar.]

Now there is no problem to define by induction on ` < ω, n` < ω and an initial
segment t̄` of length ` of a play of the game (both increasing) such that: the initial
segment belong to Mn` ; and every k∗n will appear among the k’s which player II
have chosen in the play if n ≤ n`, n ∈ S0; and every vn will appear among the w’s
player II have chosen in the play if n ≤ n`, n ∈ S1; and n` has the form n∗+ 2 with
n∗ ∈ S0 ∪ S1; and player I uses his strategy. But in the play we produce player II
wins, contradiction. �1.14

Main Lemma 1.15. Suppose F0 is a Ramsey ultrafilter (on ω), F is a P -point,
and Q = SP∗(F ), and for some T ∈ Q we have T 
Q “F0 is not an ultrafilter” then
F0 ≤RK F.

Proof. Let T0 ∈ Q, A
˜

be a Q-name, T0 
Q “A
˜
⊆ ω and ω \ A

˜
, A
˜
6= ∅ mod F0”,

and without loss of generality 
Q “A
˜
⊆ ω”, (such T0, A

˜
exists as after forcing with

Q, F0 will no longer generate an ultrafilter). Note that by the choice of T0, A
˜

for
any T ≥ T0, the set

{n < ω : for some T † ≥ T, T † 
Q “n ∈ A
˜

” and for someT † ≥ T, T † 
Q “n /∈ A
˜

”},

belongs to F0.
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Now we use the game defined in Lemma 1.14. We shall describe a winning strategy
for player I. During the play, player I in his moves defines also Tn ∈ Q preserving
the following:

(∗) (a) Tn+1 ≥ Tn,
(b) Tn 
Q “k` ∈ A

˜
” for ` even, ` < n,

(c) T
[m(n)]
n+1 = T

[m(n)]
n where m(n) := 1+max[

⋃
{w` : ` odd, ` < n}∪{n}],

(d) for ` < n odd we have: w` ⊆ spt`(Tn) (see Definition 1.5),
(e) for n even, for the play from 1.14 player I chooses

An ⊆ {k : if η ∈ T [m(n)]
n then (Tn)[η] 1 “k /∈ A

˜
”},

(f) for n odd, for the play from 1.14 player I chooses An = sptm(n)(Tn).

More exactly, player I chooses Tn+1 in the n-th move after player II’s move (see
below more).

If this is a well defined strategy, i.e. player I can make those choices, this is enough.
Why? As if in the end

⋃
{w` : ` < ω odd} ∈ F , then T :=

⋂
n Tn ∈ Q, because for

each ` < ω, we have n > ` ⇒ spt`(Tn+1) ⊆ spt`(Tn) and spt`+1(Tn) ⊆ spt`(Tn) so
by clauses (c)+(d)

(∗) ` < m ≤ k ⇒ wk ⊆ spt`(Tm).

Hence spt`(T ) ⊇
⋂
m>` spt`(Tm) ⊇

⋃
m≥` wm ∈ F (as all cofinite subsets of ω

belong to F ). Now T forces {k` : ` < ω even} ⊆ A
˜

(remember clause (b)), so
{k` : ` < ω even} /∈ F0 by the hypothesis on T0, A

˜
(as {k` : ` < ω} ∈ V , and

T0 ≤ T, T 
P “{k` : ` < ω} ⊆ A
˜

” so {k` : ` < ω} ∈ F0 implies: T 
Q “ω \ A
˜

= ∅
mod F”, a contradiction). So the strategy defined above is a winning strategy for
player I hence by Lemma 1.14, F0 ≤RK F .

So it remains to show that player I can indeed carry out the strategy i.e. can
preserve (∗). Note that T0 is defined.

Case 1: when n > 0 is even.

Player I lets m(n) < ω be max[
⋃
{w` : ` < n odd} ∪ {n}] + 1, and let T

[m(n)]
n =

{η0, . . . , ηs(n)} with no repetition. For each η` (` ≤ s(n)) clearly (Tn)[η`] is ≥ T0

and belongs to Q, hence the set

An` = {k < ω : there are T ′`,k, T
′′
`,k ≥ (Tn)[η`] such that

T ′`,k 
Q “k ∈ A
˜

”, and T ′′`,k 
Q “k /∈ A
˜

”}

belongs to F0.

Now, player I plays An =
⋂
`≤s(n)A

n
` which is clearly a legal move.

Player II chooses some kn ∈ An.

Player I (“on the side”) lets Tn+1 =
⋃

`≤s(n)

T ′`,kn (it is as required in (∗)).

Case 2: when n is odd.

Player I lets An = sptm(n)(Tn) (note Q = SP∗(F )). Note Tn has just been chosen.

Player II chooses a finite wn ⊆ An and player I lets on the side Tn+1 = Tn. �1.15

Theorem 1.16. (1) It is consistent with ZFC+2ℵ0 = ℵ2 that, up to a permutation
on ω, there is a unique Ramsey ultrafilter on ω. Moreover any P -point is above it
(in the Rudin-Keisler order).
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(2) If κ ∈ [1,ℵ2] then in some forcing extension of V we have 2ℵ0 = ℵ2, up to
permutation of ω there are exactly κ Ramsey ultrafilters. Moreover any P -point is
≤RK-above at least one Ramsey ultrafilter.

Proof. Without loss of generality we start with a universe satisfying 2ℵ0 = ℵ1 +
2ℵ1 = ℵ2 and ♦{δ<ℵ2 : cf(δ)=ℵ1}. There is in V a sequence 〈F ∗ε : ε < κ〉 of Ramsey
ultrafilters such that ε 6= ζ ⇒ F ∗ε �RK F ∗ζ ; for part (1) we use κ = 1.

We shall use a CS iterated forcing 〈Pi,Q
˜
i : i < ω2〉 such that each Qi is proper, has

the PP-property (hence is ωω-bounding), has cardinality continuum and forces that
F ∗ε still generates an ultrafilter. So by 1.1, 1.2, F ∗ε remains a Ramsey ultrafilter
in VPi for i ≤ ω2 and also we can show by induction on i < ω2, that in VPi , CH
holds and Pi has cardinality ℵ1; so by [She98, Ch.VIII,§2] below, Pω2 satisfies the
ℵ2-chain condition. If F1 ∈ V[Gω2 ] (G ⊆ Pω2 generic) is a P -point, not above any
F ∗ε , then there is a p ∈ Pω2

forcing F
˜

1 is a name of such ultrafilter, and for a closed

unbounded set of δ < ℵ2, cf(δ) = ℵ1 implies that F
˜

1
δ := F

˜
1 ∩ SP(ω)V

Pδ ∈ VPδ and
p forces that F

˜
1
δ is a P -point not above F ∗ε for ε < κ (in VPδ).

Now, by the diamond ♦{δ<ℵ2 : cf(δ)=ℵ1} we can assume that for some such δ,Q
˜
δ =

SP∗(F
˜

1
δ).

Now by 1.15 forcing with Qδ (over VPδ) preserves “F ∗ε (generates) an ultrafilter”,
by 1.8(2) Qδ has the PP-property hence (by [She98, Ch.VI]) Qδ is ωω-bounding
and trivially Qδ has cardinality continuum; so Qδ is as required. Now as each Qj
(i < j < ω2) has the PP-property, Pω2/Pδ has the PP-property (by [She98, Ch.VI]).
So by lemma 1.15 we know F

˜
1
δ cannot be completed to a P -point in VPω2 . �1.16
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§ 2. There may be a unique P -point

Theorem 2.1. Assume V satisfies 2ℵ0 = ℵ1 and λ = λℵ01 > κ ≥ 1, Fα for
α < κ are Ramsey ultrafilters on ω pairwise non-isomorphic. Then for some ℵ2-
c.c. proper, ωω-bounding forcing notion P of cardinality ℵ2 in VP, there is a unique
P -point, and it is F0 (i.e. the filter it generates in VP).

Remark 2.2. In fact, in VP, F0 is a Ramsey ultrafilter (actually this follows).

Proof. By the proof of §1, it suffices to prove the following lemma: �2.1

Lemma 2.3. Suppose

(∗)0 F0, F1 are ultrafilters on ω, F0 is a Ramsey ultrafilter, F1 is a P -point,
F0 ≤RK F1 but not F1 ≤RK F0.

Then there is a forcing notion Q such that:

(a) Q has the PP-property, (hence it is ωω-bounding) and it is of cardinality
2ℵ0 and,

(b) 
Q“F0 is an ultrafilter”, but

(c) if QlQ′ and Q′ has the PP-property then, in VQ′ we have: F1 cannot be
extended with to a P -point (ultrafilter),

(d) if in V, D∗ is a Ramsey ultrafilter not isomorphic to F0 then 
Q“D∗ is (=
generates) an ultrafilter”.

Remark 2.4. During the proof of Theorem 2.1 we use the forcing notions SP∗(F )
from Definition IV.5.4 to kill P -points with F0 �RK F.

The rest of this section is dedicated to the proof of this Lemma.

Proof. Since F0 ≤RK F1 and F1 is a P -point, there is a function h : ω → ω such
that

(∗)1 h(F1) = F0 and for each ` < ω the set I(`) = I` := h−1({`}) is finite. Note
that then [A ⊆ ω ∧

∧
` 1 ≥ |I` ∩ A| ⇒ A /∈ F1] because F1 �RK F0. Now,

in Definition 2.7 below, we define a forcing notion Q = SP∗(F0, F1, h) and
then prove in 2.5-2.12 that it has all the required properties thus finishing
the proof of Lemma 2.3 and therefore, of Theorem 2.1.

�

Claim 2.5. In the following game, player I has no winning strategy: in the n-th
move player I chooses An ∈ F0 and Bn ∈ F1; player II chooses kn ∈ An (kn < k` for
` < n) and wn ⊆ Bn ∩ Ikn . In the end, player II wins the play if {kn : n < ω} ∈ F0

and
⋃
{wn : n < ω} ∈ F1 (the first demand follows from the second).

Remark 2.6. Clearly player II has no better choice than wn = Bn ∩ Ik. Remember
Ikn = h−1({kn}) is finite.

Proof. Towards contradiction, suppose that H is a wining strategy of player I. Let
λ be big enough, N ≺ (H (λ), ∈, <∗λ) be such that {F0, F1, h,H} ∈ N and N is
countable. As F` is a P -point there are, for ` ∈ {0, 1} sets A∗` ∈ F` such that
A∗` ⊆ae B (i.e. A∗` \B finite) for every B ∈ F` ∩N .
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Now we can find an increasing sequence 〈Mn : n < ω〉 of finite subsets of N , N =⋃
n<ωMn such that it increases rapidly enough; more exactly:

(α) H,F0, F1, h ∈M0 and Mn ∈Mn+1,
(β) if ϕ(x, a0, . . .) is a formula of length ≤ 1000 + |Mn| with parameters from

Mn∪{Mn} satisfied by some x ∈ N , then it is satisfied by some x ∈Mn+1,
(γ) if ` ∈ {0, 1}, B ∈ F` ∩N , B ∈Mn then B ∪Mn+1 ⊇ A∗` ,
(δ) M0 ∩ ω = ∅,
(ε) if ` ∈ Mn then I(`) ⊆ Mn+1 and Mn is closed under h (we can demand

m ∈Mn ⇔ h(m) ∈Mn if we make the domains of F0, F1 disjoint).

Let un+1 = (Mn+1 \Mn)∩ω. So 〈un : n < ω〉 forms a partition of ω into finite sets.
As F0 is Ramsey, we can find A ∈ F0 such that

∧
n |un ∩A| ≤ 1 and A ⊆ A∗0 and

un ∩A 6= ∅ & um ∩A 6= ∅ & n < m ⇒ m− n ≥ 10.

Let A = {iζ : ζ < ω} (increasing), iζ ∈ unζ . Now we define by induction on ζ, Aζ ,
Bζ , kζ , wζ such that:

(a) 〈Aξ, Bξ, kξ, wξ : ξ < ζ〉 is an initial segment of a play of the game in which
Player I uses his winning strategy,

(b) 〈Aξ, Bξ, kξ, wξ : ξ ≤ ζ〉 belongs to Mnζ+3,
(c) kζ = iζ and wζ = Bζ ∩ I(kζ) ∩A∗1.

There is no problem to carry out the definition, and clearly Player II wins because
not only {kζ : ζ < ω} = {iζ : ζ < ω} = A ⊆ A∗0 but also⋃

ζ<ω

wζ = A∗1 ∩
⋃
ζ<ω

wζ = A∗1 ∩ {j < ω : h(j) = iζ for some ζ < ω}

= A∗1 ∩ {j : h(j) ∈ A} ∈ F1.

[Why? As respectively: wζ ⊆ A∗1; as A∗1 \ Aξ ⊆
⋃
{wζ : ζ ≤ iξ + 4} by clause (γ)

above; as A = {iζ : ζ < ω}; as A∗1 ∈ F1 and A ∈ F0 hence {j : h(j) ∈ A} ∈ F1.]

Contradiction. �2.5

Definition 2.7. Let Thn =×`<n I(`)×`2 and let Th =
⋃
n<ω T

h
n . Note that Th

is a perfect tree with finite branching ordered by C (being initial segment). Let
Q := SP∗(F0, F1, h) = {T : T is a perfect subtree of Th and for each k < ω for some
Ak ∈ F0 and Bk ∈ F1 we have: if ` ∈ Ak and η ∈ T [`] := T∩Th` and ρ ∈ (Bk∩I(`))×k2

then for some ν ∈ I(`)×`2 we have ρ ⊆ ν and η_〈ν〉 ∈ T} endowed with the inverse
inclusion.

Claim 2.8. (1) If T ∈ Q, T [n] = {η1, . . . , ηk} (with no repetition) T` = T[η`] :=

{ν ∈ T : η` E ν or ν E η`}, T †` ∈ Q, T` ≤ T †` (i.e. T †` ⊆ T`) then T ≤ T † :=⋃k
`=1 T` ∈ Q.

(2) If τ
˜

is a Q-name of an ordinal and n < ω then there is T †, T ≤ T † ∈ Q
such that T † 
Q “τ

˜
∈ A” for some A satisfying |A| ≤ |T [n]|, and T ∩

⋃
`≤n T

[`] =

T † ∩
⋃
`≤n T

[`]. Moreover for each η ∈ T [n], T †[η] determines τ
˜

.

Proof. Same as in the proof of VI 5.5. �2.8

Claim 2.9. Q is proper, in fact α-proper for every α < ω1, and has the strong
PP-property (see VI 2.12E(3)).
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Proof. First we prove properness. Let λ be regular > 2ℵ1 , N ≺ (H(λ),∈, <∗λ) be
countable, {Q, F0, F1, h} ∈ N and T ∈ N ∩Q.

Let {τ
˜
` : ` < ω} list the Q-names of ordinals from N . We now define a strategy for

player I in the game from Claim 4.3. In the n-th move player I chooses An ∈ F0∩N ,
Bn ∈ F1 ∩N and player II chooses kn ∈ An and wn := Bn ∩ Ikn (remember 4.3A);
on the side player I chooses Tn ∈ N ∩ Q and mn such that T0 = T , Tn ≤ Tn+1,

T
[mn+1]
n = T

[mn+1]
n+1 and mn > max{mn−1, kn′ : n

′ < n} and m0 = 1.

In the (n+1)’th move, player I first chooses mn+1 as above then he chooses Tn+1 ∈
Q, Tn ≤ Tn+1, T

[mn+1]
n+1 = T

[mn+1]
n such that for every η ∈ T [mn+1]

n , (Tn+1)[η] forces
a value to τ

˜
` for ` ≤ mn+1. This is possible by 4.5. Then as Tn+1 ∈ Q ∩N there

are sets An+1 ∈ F0∩N , Bn+1 ∈ F1∩N such that for every k ∈ An+1, η ∈ (Tn+1)[k]

and ρ ∈ (Bn+1∩I(k))×n2 for some ν ∈ I(k)×k2, we have: ρ ⊆ ν and η_〈ν〉 ∈ Tn+1

and for simplicity An+1 ∩ mn = An ∩ mn. Note that the amount of free choice
player II retains is in N .

So by 4.3 for some such play, player II wins. Now T ∗ :=
⋂
n<ω Tn ∈ Q as {kn :

n < ω} ∈ F0 and
⋃
n<ω

Bn ∩ I(kn) ∈ F1 witness; of course Tn ≤ T ∗ for each n hence

T = T0 ≤ T ∗ and T ∗ 
 “τ
˜
`[G

˜
Q] ∈ N ∩Qn” (as T`+1 ≤ T ∗, see its choice).

So Q is proper. The proof also shows that Q has the strong PP -property (see VI
2.12: for more details see the proof of VI 4.4.). The proof of α-properness is as in
VI 4.4 (and anyhow it is not used). �2.9

Lemma 2.10. Suppose ((∗)0 of Lemma 2.3, Q = SP∗(F0, F1, h) as defined in
Definition 2.7 of course and) Ql P and P has the PP -property. Then in VP, F1

cannot be extended to a P -point.

Proof. Suppose p ∈ P forces that E
˜

is an extension of F1 to a P -point (in VP).
Let 〈r

˜
n : n < ω〉 be the sequence of reals which Q introduces, i.e. rn(i) = ` ∈ {0, 1}

is defined as follows: clearly for a unique k < ω, i ∈ Ik; now r
˜
n(i) = ` iff: n ≥ k,

` = 0 or for some T ∈ G
˜

Q, T [k+1] = {η} and (η(k))(i, n) = ` (remember that η(k)
is a function from I(k)× k to {0, 1}). Define a P -name h

˜
:

• h
˜

(n) is 1 if {i < ω : r
˜
n(i) = 1} ∈ E

˜
and,

• h
˜

(n) is 0 if {i < ω : r
˜
n(i) = 0} ∈ E

˜
So p 
 “h

˜
∈ ω2”. Now as P has the PP-property, by VI 2.12D, there are p1 ≥ p,

(p1 ∈ P ), and 〈〈〈k(n), 〈in(`), jn(`)〉 : ` ≤ k(n)〉 : n < ω〉 in V such that k(n) < ω,
in(0) < jn(0) < in(1) < jn(1) < · · · < in(k(n)) < jn(k(n)), and jn(k(n)) < in+1(0)
such that:

p1 
P “ for every n < ω for some` ≤ k(n) we have h
˜

(in(`)) = h
˜

(jn(`))”

Now define the following P -names:

A
˜
n = {m < ω : for some ` ≤ k

˜
(n), r

˜
in(`)(m) = r

˜
jn(`)(m)}.

We can conclude as in the proofs of VI 4.7, �2.10

Claim 2.11. In VQ, F0 still generates an ultrafilter.

Proof. If not, then for some T0 ∈ Q, and Q-name A
˜

we have T0 
Q “A
˜
⊆ ω and

A
˜
, ω \A

˜
are 6= ∅ mod F0”.
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By the proof of Claim 2.9 without loss of generality, for some A0 ∈ F0 we have:

for k ∈ A0 and η ∈ T [k+1]
0 , (T0)[η] forces a truth value to “k ∈ A

˜
” which we call

t(T0, η); without loss of generality for η ∈ T [k]
0 , k /∈ A0 ⇒ |sucT0

(η)| = 1.

Now for every T ≥ T0 and ` < ω there are A(T, `), B(T, `) as in Definition 2.7. For
every ` < ω, T ≥ T0 and k ∈ A(T, `) fix an arbitrary η(T, `, k) ∈ T [k].

Then, by Observation 2.12 below, there are mT,`,k ∈ I(k)∩B(T, `) and a partition
〈ui(T, `, k) : i < 3〉 of I(k) ∩ B(T, `) and a triple 〈ti(T, `, k) : i < 3〉 of truth values
and jk(T, `) ∈ {0, 1} and truth value bsk(T, `) such that:

(∗) (a) if jk(T, `) = 0 then for i < 3, for every ρ ∈ ui(T,`,k)×`2 there is ν ∈
I(k)×k2 such that ρ ⊆ ν and η(T, `, k)_〈ν〉 ∈ T and

T[η_〈ν〉] 
Q “k ∈ A
˜

iff ti(T, `, k)”.

(Clearly ti(T, `, k) = t(T0, η
_〈ν〉)),

(b) if jk(T, `) = 1 then for every ρ ∈ (I(k)∩B(T,`)\{mT,`,k})×`2 there is ν ∈
(I(k)×k)2 such that: ρ ⊆ ν and (η(T, `, k))_〈ν〉 ∈ T and T[η_〈ν〉] 
Q “k ∈ A

˜iff bsk(T, `)”.

So for some j(T, `) < 2 and i(T, `) < 3 and truth value t(T, `) we have:

(α) if j(T, `) = 0, then⋃
{ui(T,`)(T, `, k) : jk(T, `) = 0, k ∈ A(T, `), ti(T,`)(T, `, k) = t(T, `) ∈ F1.

(β) if j(T, `) = 1 then {k ∈ A(T, `) : jk(T, `) = 1,bsk(T, `) = t(T, `)} ∈ F0.

Note:

⊗ for (T, `) as above there are A = A∗(T, `) ∈ F0, B = B∗(T, `) ∈ F1

satisfying: for every k ∈ A there is η ∈ T , lg(η) = k such that: every
ρ ∈ ((I(k)∩B)×`)2 can be extended to ν ∈ I(k)×k2 satisfying: η_〈ν〉 ∈ T ,
T[η_〈ν〉] 
Q “k ∈ A

˜
iff t(T, `)”.

[Why? If j(T, `) = 0 let

B =
⋃
{ui(T,`)(T, `, k) : jk(T, `) = 0, k ∈ A(T, `), ti(T,`)(T, `, k) = t(T, `)},

and A = {k : I(k) ∩ B 6= ∅}. Check the demand by clauses (∗)(a) and (α)
above. So assume j(T, `) = 1 and let B =

⋃
{I(k) ∩ B(T, `) \ {mT,k,`} : k ∈

A(T, `) and jk(T, `) = 1, and bsk(T, `) = t(T, `)}
[why B ∈ F1? because F1 6≤RK F0!). Put A = {k : Ik ∩ B 6= ∅} and check the
demand by clauses (∗)(b) and (β) above].

Note that we have been dealing with fixed T, `.

As we can increase T0 without loss of generality: for some truth value t∗ for a dense
set of T ′ ≥ T0 for the F0-majority of ` < ω we have and t(T ′, `) = t∗.

Now we can define a strategy for player I in the game from 4.3. So in the n’th move
player I chooses An, Bn and player II chooses kn, wn; but we let player I play “on
the side” also Tn, `n (chosen in the n’th move) such that:

(A) T ≤ Tn ≤ Tn+1, T
[kn+1]
n = T

[kn+1]
n+1 , ω > `n+1 > `n, and t∗ = t((Tn)[η], `n)

for n > 0 and η ∈ T [kn+1]
n .
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(B) For every k ∈ An+1 and η ∈ T
[kn+1]
n there is η1, η C eqη1 ∈ T

[k]
n such

that for every ρ ∈ (Bn+1∩I(k))×`n+12 there is ν, ρ ⊆ ν, η1
_〈ν〉 ∈ Tn,

t(Tn, `n, kn) = t(Tn, `n) = t∗, (note Tn+1 is chosen only after kn+1, wn+1

were chosen).

We should prove that player I can carry out his strategy. For stage n + 1 let

{ηn0 , . . . , ηnm(n)} list T
[kn+1]
n , so for some `n+1 > `n, for each ζ ≤ m(n) there is

Tn,ζ ≥ (Tn)[ηnζ ] such that t(Tn,ζ , `n+1) = t∗. Let Bn+1 =
⋂
ζ≤m(n)B

∗(Tn,ζ , `n+1)

and An+1 = {k ∈ An : k > kn and I(k) ∩Bn+1 6= ∅}.
By clause (B) above, after player II moves, we can choose Tn+1 as required. As
this is a strategy, by Claim 2.5 for some play in which player I uses it he looses.
For this play {kn : n < ω} ∈ F0,

⋃
n<ω wn ∈ F1, so T :=

⋂
n<ω Tn ∈ Q. By tracing

the demands on the t’s:

⊕ for n < ω, η ∈ T , lg(η) = kn + 1 we have T[η] 
 “kn ∈ A
˜

iff t∗”.

We conclude: T 
 “{kn : n < ω} ∩ A
˜

is ∅ or is A
˜

” as {kn : n < ω} ∈ F0 we get the
desired conclusion. �2.11

Observation 2.12. Suppose t is a function from X∗ =
∏
t∈uAt to {0, 1}, u finite.

Then at least one of the following holds:

(α) we can find ui, Xi (i < 3) such that:
(a) 〈uii < 3〉 is a partition of u,
(b) Xi ⊆ X∗,
(c) t �Xi is constant,
(d) for every i < 3 and ρ ∈

∏
t∈ui At there is ν ∈ Xi, ρ ⊆ ν,

(β) for some x ∈ u, there is X ⊆ X∗ such that t �X is constant and for every
ρ ∈

∏
t∈u\{x}At there is ν ∈ X, ρ ⊆ ν.

Proof. Let for j ∈ {0, 1}, Pj = {v : v ⊆ u and there is X ⊆ X∗ such that t �X is
constantly j and, for every ρ ∈

∏
t∈v At there is ν ∈ X, ρ ⊆ ν}. Clearly

(A) u1 ∈ Pj , u0 ⊆ u1 implies u0 ∈ Pj .

[Why? Same X witnesses this.]

(B) u1 ⊆ u & u1 /∈ Pj implies u \ u1 ∈ P1−j

[Why? As u1 /∈ Pj , for some ρ ∈
∏
t∈u1

At for no ν ∈
∏
t∈u\u1

At does t(ρ∪ ν) = j;

let X := {ν ∈
∏
t∈uAt : ρ ⊆ ν}, it is as required for u \ u1.]

(C) ∅ ∈ P0 ∪ P1.

[Why? Trivially.]

Case (i): P0 ∪ P1 is not an ideal.

So there are u0, u1 ∈ P0 ∪ P1 with v := u0 ∪ u1 /∈ P0 ∪ P1. By (A) without loss
of generality u0 ∩ u1 = ∅. Let u2 = u \ v, so 〈u0, u1, u2〉 is a partition of u. Now
by clause (B) we know that u2 ∈ P0 (and to P1) as v = u \ u2 does not belong
to P1 (and to P0). Now we know u0, u1, u2 ∈ P0 ∪ P1, so for some 〈j` : ` < 3〉 we
have u` ∈ Pj` for ` < 3, and let X` be a witness. Now check that clause (α) in the
conclusion holds.

Case (ii): P0 ∪ P1 is an ideal.
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If u ∈ P0 ∪ P1, then t is constant so conclusion (α) is trivial, so assume not. By
(B) above the ideal is a maximal ideal so it is principal (because u is finite), i.e.
for some x ∈ u , u \ {x} ∈ P0 ∪ P1, {x} /∈ P0 ∪ P1 so we have finished. (Reflection
shows we get more than required in (β): reread the proof of (B)). �2.12
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