THERE MAY EXIST EXACTLY κP-POINT ULTRAFILTERS E79

SAHARON SHELAH

Abstract

This is a proof in the author's book on forcing. The point is proving the consistency of "there are exactly κ Ramsey ultrafilters" and more P-points. This was claimed but not proved there. Debt: preservation in $\S 2$.

[^0]
Paper Sh:E79, version 2023-02-02_2. See https://shelah.logic.at/papers/E79/ for possible updates.

Annotated Content

§0 Introduction, pg. 3
§1 Having exactly κ Ramsey ultrafilters, pg. 4
$\S 2 \quad$ There may be a unique P-point, pg 13

§ 0. Introduction

Here we prove prove the consistency of "there are exactly κP-point ultrafilters up to isomorphism". In [She98, Ch.VI, §5] the case $k=1$, and it had been stated that we can get, e.g. exactly two, or exactly κ and after a question of Fremlin, this is now explicitly proved. Halbeisen and Dzamonja ask in 2014 to clarify Lemma [She98, Ch.VI, 5.14], so its proof is expanded here.
Note that the numbers of the Definitions, Claims, etc., here are not the same as in [She98, Ch.VI, $\S 5]$, because Remark 5.9A there becomes 1.12.
Using [She98, Ch. XVIII, §4] we can make those κ ultrafilters the unique P-point.
We may use this $\left[S^{+} a\right]$.

§ 1. Having exactly κ Ramsey ultrafilters

Usually it is significantly harder to prove that there is a unique object than to prove there is none. The proof is similar to the one in the previous section [She98, Ch.VI,§4], but here we are destroying other Ramsey ultrafilter (in fact "almost" all other P-points) while preserving our precious Ramsey ultrafilter. By a similar proof we can construct a forcing notion \mathbb{P} such that e.g. in $\mathbf{V}^{\mathbb{P}}$ there are exactly two Ramsey ultrafilters (in both cases up to the equivalence induced by the RudinKeisler order) or any other number. In 2014 we rewrite the proof of Lemma 1.15 (after a request from Lorenz Halbeisen and Mirna Dzamonja) and write explicitly the case of κ Ramsey ultrafilters (following a question of David Fremlin).
More exactly we shall prove the consistency of "there is a unique Ramsey ultrafilter F_{0} on ω, up to permutation of ω, moreover for every P-point $F, F_{0} \leq_{\mathrm{RK}} F$ ".
Note that if there is a unique P-point it should be Ramsey; however, concerning the question of the existence of a unique P-point we return to it in Ch.XVIII, $\S 4$.
Our scheme is to start with a universe with a fixed Ramsey ultrafilter F_{0}, to preserve its being an ultrafilter and even a Ramsey ultrafilter. Our ultrafilter will be generated by \aleph_{1} sets. Now in each stage we shall try to destroy a given P-point F such that $F_{0} \leq_{\mathrm{RK}} F$. The forcing from $[$ She $98, \mathrm{Ch} . \mathrm{VI}, \S 4]$ does not work, but if we use a version of it in the direction of Sacks forcing it will work.

Claim 1.1. (1) If F is a P-point in \mathbf{V}, \mathbb{P} is a proper forcing notion and $\Vdash_{\mathbb{P}}$ " F generates an ultrafilter", then it (more exactly the one it generates) is a P-point in $\mathbf{V}^{\mathbb{P}}$.
(2) If the ultrafilter F is Ramsey in \mathbf{V}, and P is ${ }^{\omega} \omega$-bounding, proper and $\Vdash_{\mathbb{P}}$ " F generates an ultrafilter", then in $\mathbf{V}^{\mathbb{P}}, F$ still generates a Ramsey ultrafilter.

Proof. (1) As for being a P-filter, let $p \Vdash_{\mathbb{P}}$ " $\{\underset{\sim}{A}: n<\omega\}$ is included in the ultrafilter which F generates". So without loss of generality $p \Vdash_{\mathbb{P}}$ " $A_{n} \in F$ ", and by properness for some $q, p \leq q \in \mathbb{P}$, and $A_{n, m} \in F$ (for $n, m<\omega$) we have $q \Vdash_{\mathbb{P}}$ "for each $n, A_{n} \in\left\{A_{n, m}: m<\omega\right\}$ ". As F is a P-point in \mathbf{V} and $\left\{A_{n, m}: n, m<\omega\right\} \subseteq F$ belong to \mathbf{V}, there is $A \in F$ which is almost included in every $A_{n, m}$, hence in each ${\underset{\sim}{A}}_{n}$; (note: e.g., if F is generated by \aleph_{1} sets, then " P does not collapse \aleph_{1} " is sufficient instead of " P is proper").
(2) As by part (1), F generates a P-point in $\mathbf{V}^{\mathbb{P}}$, the following will suffice: let $0=n_{0}<{\underset{\sim}{c}}_{1}<{\underset{\sim}{2}}_{2} \ldots$ and $p \in \mathbb{P}$; then we can find $A \in F$ and $q \geq p$ such that $q \Vdash$ " $A \cap\left[{ }_{\sim} n_{i},{\underset{\sim}{n}}_{i+1}\right)$ has at most one element for each i " (i.e. F is a so called Q-point). Remember \mathbb{P} has the ${ }^{\omega} \omega$-bounding property. So there are $h \in{ }^{\omega} \omega \cap V$, and $q \geq p$ such that $q \Vdash_{P}$ " $(\forall i) n_{i}<h(i) "$. Without loss of generality h is strictly increasing.
Define n_{i}^{*} (in V by induction on i : $n_{0}^{*}=0, n_{i+1}^{*}=h\left(n_{i}^{*}+1\right)+1$. Now for no i, j we have ${\underset{\sim}{n}}_{i}[G] \leq n_{j}^{*}<n_{j+1}^{*}<\underset{\sim}{n} i+1[G]$.
[Why? Assume this holds and, of course, $i<j$; as $\underset{\sim}{n} n_{\ell}^{*}<{\underset{\sim}{l}}_{\ell+1}^{*}$, clearly $\ell \leq \underset{\sim}{n} \underset{\ell}{*}[G]$, hence

$$
n_{j+1}^{*}>h\left(n_{j}^{*}+1\right) \geq h(j+1) \geq h(i+1) \geq n_{i+1}[G]
$$

(remember h is strictly increasing), a contradiction].
Also F generates an ultrafilter in $\mathbf{V}[\mathbf{G}]$, by the assumption. As in \mathbf{V}, F is a Ramsey ultrafilter and $\left\langle n_{i}^{*}: i<\omega\right\rangle \in V$, there is $A \in F$ such that $A \cap\left[n_{i}^{*}, n_{i+1}^{*}\right)$ has at most
one element for each i. Let $\mathbf{G} \subseteq \mathbb{P}$ be generic over \mathbf{V} be such that $q \in \mathbf{G}$. Checking carefully in $\mathbf{V}[\mathbf{G}]$ we see that, for every i we have $A \cap\left[{ }_{\sim} i[\mathbf{G}], n_{\sim}{ }_{i+1}[\mathbf{G}]\right)$ has at most two elements and in this case they are necessarily successive members of A. Let $A_{0}=\{k \in A:|A \cap k|$ is even $\}$, so either A_{0} or $A \backslash A_{0}$ belong to the ultrafilter which F generates, and both are as required.

Lemma 1.2. (1) " F generates an ultrafilter in $\mathbf{V}^{\mathbb{Q}}$ which is a P-point, \mathbb{Q} is proper" is preserved by countable support iteration for F a P-point.
(2) " F generates an ultrafilter in $\mathbf{V}^{\mathbb{Q}}$ which is Ramsey $+Q$ is ${ }^{\omega} \omega$-bounding $+Q$ is proper" is preserved by countable support iteration for F a Ramsey ultrafilter.

Proof. (1) By [She98, Ch.VI,4.9] and see 1.1(1).
(2) Combine (1), 1.1(2) and [She98, Ch.VI,4.9].

Definition 1.3. For F a filter on ω, let $\mathrm{SP}(F)$ be $\left\{T: T\right.$ is a perfect tree $\subseteq{ }^{\omega>}{ }_{2}$ so closed under initial segments and for some $A \in F$, for every $n \in A, \eta \in T \cap{ }^{n} 2$ implies $\left.\eta^{\wedge}\langle 0\rangle \in T \wedge \eta^{\wedge}\langle 1\rangle \in T\right\}$. The order is the inverse inclusion. We denote the maximal such A by $\operatorname{spt}(T)$.

Remark 1.4. (1) So $\mathrm{SP}(F)$ is a "mixture" of $\mathbb{P}(F)$ and Sacks forcing and $\mathrm{SP}^{*}(F)$ (defined below) is half way between $\mathrm{SP}(F)$ and $\mathrm{SP}(F)^{\omega}$.
(2) Remember $T_{[\eta]}:=\{\nu \in T: \nu \unlhd \eta$ or $\eta \unlhd \nu\}$ for any $\eta \in T$ and $T^{[n]}:=\{\eta \in$ $T: \ell g(\eta)=n\}$ for any $n<\omega$.

Definition 1.5. (1) Let $T_{n}^{\otimes}:=\prod_{\ell<n}\left({ }^{\ell} 2\right)$ and $T^{\otimes}:=\bigcup_{n<\omega} T_{n}^{\otimes}$ ordered by the being "initial segment".
(2) For a filter F on ω, let $\mathrm{SP}^{*}(F)$ be
$\left\{T: \quad T\right.$ is a perfect tree $\subseteq T^{\otimes}$ (so closed under initial segments) and for every $k<\omega$ we have $\left.\operatorname{spt}_{k}(T) \in F\right\}$,
where,

$$
\begin{aligned}
\operatorname{spt}_{k}(T)=\{n<\omega: & \text { for every } \eta \in T^{[n]}\left(=T \cap T_{n}^{\otimes}\right) \text { and } \nu \in{ }^{k} 2 \text { there is } \\
& \left.\rho \in{ }^{n} 2 \text { such that } \eta^{\wedge}\langle\rho\rangle \in T_{n+1}^{\otimes} \cap T \text { and } \rho \upharpoonright k=\nu\right\} .
\end{aligned}
$$

(3) We say \mathbb{Q} is a finitarily closed subforcing of $\mathrm{SP}^{*}(F)$ where:
(a) $\mathbb{Q} \subseteq \mathrm{SP}^{*}(F)$ as a partial order (so $\left.\mathbb{Q} \neq \emptyset\right)$
(b) if $u \subseteq T_{n}^{\otimes}$ is non-empty and $\left(p_{\eta} \in \mathbb{Q}\right) \wedge\left(\nu_{\eta} \in p_{\eta} \cap T_{n}^{\otimes}\right)$ for $\eta \in u$, then $q \in \mathbb{Q}$ where $q=\cup\left\{\rho\right.$: for some $\eta \in u$ and ν we have $\nu_{\eta}{ }^{\wedge} \nu \in p_{\eta}$ and $\left.\rho \unlhd \eta^{\wedge} \nu\right\}$.

Remark 1.6. (1) Part 1.5(3) is intended for use in the $\left[\mathrm{S}^{+} \mathrm{a}\right]$ try to continue [She], i.e. for $\left[S^{+} b\right]$.
(2) We can replace $1.5(3)$ (b) by:
(b) ${ }_{1}$ if $p \in \mathbb{Q}$ and $\eta \in p \cap T_{n}^{\otimes}$ then $p^{[\geq \eta]}=\{\nu \in p: \nu \unlhd \eta$ or $\eta \unlhd \nu\} \in \mathbb{Q}$,
(b) $)_{2}$ if $p \in \mathbb{Q}, p \cap T_{n}^{\otimes}=\left\{\eta_{2}\right\}$ and $\eta_{2} \in T_{n}^{\otimes}$ then $p^{\left[\eta_{1}, \eta_{2}\right]}=\{\nu$: for some $\rho \in p$ we have $\eta_{1} \triangleleft \rho$ and $\left.\nu \triangleleft \eta_{2}{ }^{\wedge} \rho \upharpoonright[n, \ell g(\rho)]\right\}$,
(b) $)_{3}$ if $u \subseteq T_{n}^{\otimes}$ is non-empty and $p_{\eta} \in \mathbb{Q}$ for $\eta \in u$ and $p_{\eta} \cap T_{n}^{\otimes}=\{\eta\}$ then $\cup\left\{p_{\eta}: \eta \in u\right\} \in \mathbb{Q}$.

The order is the inverse inclusion.

Claim 1.7. Let F be a filter on ω and \mathbb{Q} be $\operatorname{SP}(F)$ or $\mathrm{SP}^{*}(F)$.
(1) If $T \in \mathbb{Q}, T^{[n]}=\left\{\eta_{1}, \ldots, \eta_{k}\right\}$ (with no repetition), $T_{\ell}=T_{\left[\eta_{\ell}\right]}, T_{\ell}^{\dagger} \in \mathbb{Q}, T_{\ell} \leq T_{\ell}^{\dagger}$
(i.e. $T_{\ell}^{\dagger} \subseteq T_{\ell}$) then $T \leq T^{\dagger}:=\bigcup_{\ell=1}^{k} T_{\ell}^{\dagger} \in \mathbb{Q}$ and $T^{\dagger} \Vdash$ "for some $\ell \in\{1, \ldots, k\}$ we have $T_{\ell}^{\dagger} \in \mathbf{G}_{\mathbb{Q}}$ " and $\left(T^{\dagger}\right)^{[m]}=T^{[m]}$ for every $m \leq n$.
(2) If t is a \mathbb{P}-name of an ordinal, $T \in \mathbb{Q}$ and $n<\omega$ then there are $T^{\dagger}, T \leq T^{\dagger} \in \mathbb{Q}$ and A such that $T^{\dagger} \Vdash_{\mathbb{Q}}$ " $\underset{\sim}{ } \in A$ " and $|A| \leq\left|T^{[n]}\right|$ and $\bigcup_{\ell \leq n} T^{[\ell]} \subseteq T^{\dagger}$. Moreover for each $\eta \in T^{[n]}, T_{[\eta]}^{\dagger}$ determines $\underset{\sim}{t}$.

Proof. (1) Observe that $\operatorname{spt}_{j}\left(T^{\dagger}\right) \supseteq \bigcap_{1 \leq \ell \leq k} \operatorname{spt}_{j}\left(T_{\ell}\right) \backslash(n+1)$.
(2) For each $\eta \in T^{[n]}$ there is $T^{\eta}, T_{[\eta]} \leq T^{\eta}$ such that T^{η} decides the value $\underset{\sim}{t}$. Now amalgamate the T^{η} together by applying part 1).

Lemma 1.8. Let F be a P-point ultrafilter on ω. Then
(1) $\mathrm{SP}(F)$ is proper, in fact α-proper for every $\alpha<\omega_{1}$, and has the strong PPproperty; and so is $\mathrm{SP}(F)^{\omega}$.
(2) $\mathrm{SP}^{*}(F)$ is also proper, α-proper for every $\alpha<\omega_{1}$ and has the strong PPproperty.

Proof. Similar to the proof of [She98, Ch.VI,4.4]. For its proof we shall use the following theorem, of Galvin and McKenzie, (but later we shall prove a similar theorem in detail (5.11)); note that we use only the "only if" direction.
Theorem 1.9. Let F be an ultrafilter on ω. Then F is a P-point [Ramsey ultrafilter] iff in the following game player I has no winning strategy:
In the n-th move:

- player I chooses $A_{n} \in F$,
- player II choose $w_{n} \subseteq A_{n}, w_{n}$ is finite [a singleton].

In the end, player II wins if $\bigcup_{n<\omega} w_{n} \in F$.
Next we are going to prove Lemma 1.8, using Theorem 1.9:
Proof. We just have to define a strategy for player I, (in the game from 1.9): playing on the side with the conditions in the forcing. From the two forcing listed in the lemma we concentrate on proving only the properness of $\mathrm{SP}^{*}(F)$ (the other have similar proofs and this is the only one we shall use). Let $N \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ be countable with $F \in N$, so $\mathrm{SP}^{*}(F) \in N$; and let $T \in \mathrm{SP}^{*}(F) \cap N$ and let $\left\langle\mathscr{I}_{n}: n<\omega\right\rangle$ be a list of the dense subsets of $\mathrm{SP}^{*}(F)$ which belong to N. We shall define now a strategy for player I. In the n 'th move player I chooses "on the side" a condition $T_{n} \in \mathrm{SP}^{*}(F) \cap N$ in addition to choosing $A_{n} \in F$ and player II chooses finite $w_{n} \subseteq A_{n}$. For $n=0$, player I chooses $T_{0}=T$ and $A_{0}=\omega$.
For $n>0$, for the n 'th step player I, using 1.7, chooses $T_{n} \in \mathrm{SP}^{*}(F) \cap N$ such that $T_{n-1} \leq T_{n}, T_{n-1}^{\left[k_{n}\right]}=T_{n}^{\left[k_{n}\right]}$, where $k_{n}:=\max \left[\bigcup\left\{w_{n^{\prime}}: n^{\prime}<n\right\} \cup\{n\}\right]+n+1$ and $\left(\forall \eta \in T_{n}^{\left[k_{n}\right]}\right)\left(\left(T_{n}\right)_{[\eta]} \in \mathscr{I}_{n-1}\right)$. Then player I plays $A_{n}=\operatorname{spt}_{n}\left(T_{n}\right)$. Note that
whatever are the choices of player II, we have $T_{n} \in N$ and we can let player I choose T_{n} as the first one which is as required by the well ordering $<_{\chi}^{*}$.
As F is a P-point, by 1.9 there is a play in which he uses the strategy described above and player II wins the play; this will give us the desired sequence of conditions. Indeed, $T=\bigcap_{n<\omega} T_{n} \in \mathrm{SP}^{*}(F)$ satisfies $\operatorname{spt}_{n}(T) \supseteq \bigcup\left\{w_{k}: k \in[n, \omega)\right\}$ (for each $n<\omega)$ and hence T belongs to $\mathrm{SP}^{*}(F)$.

Similar argument is carried out in more detail in the proof of 1.15.
Lemma 1.10. (1) If F is a P-point ultrafilter, $\operatorname{SP}(F)^{\omega} \lessdot \mathbb{Q}$ and \mathbb{Q} has the PPproperty then in $\mathbf{V}^{\mathbb{Q}}, F$ cannot be extended to a P-point ultrafilter.
(2) If F is a P-point ultrafilter, $\mathrm{SP}^{*}(F) \lessdot \mathbb{Q}, \mathbb{Q}$ has the PP -property then in $\mathbf{V}^{\mathbb{Q}}, F$ cannot be extended to a P-point ultrafilter.

Proof. The proof is almost identical with the proof of [She98, Ch.VI,4.7], so we do not carry out it in detail. (In fact we get the variant with weaker assumption as proved in [She98, Ch.VI,4.7]).
This is particularly true for part (1). For part (2) copy the proof of [She98, Ch.VI, 4.7], replacing $P(F)$ by $\mathrm{SP}^{*}(F)$ and defining ${\underset{\sim}{r}}_{n}$ as:

$$
\underset{\sim}{r}(i)=\ell \Leftrightarrow i \leq n \Rightarrow \ell=0,
$$

and

$$
i>n \Rightarrow\left(\exists T \in G_{\mathrm{SP}^{*}(F)}\right)\left(\exists \eta \in T_{i+1}^{\otimes}\right)\left[T=T_{[\eta]} \&(\eta(i))(n)=\ell\right] .
$$

This is done up to and including the choice of p_{2} (i.e. $(*)$ in the proof of [She98, Ch.VI,4.7]).
As $p_{2} \in \mathbb{P}$ and $\mathrm{SP}^{*}(F) \lessdot \mathbb{P}$ clearly there is $q \in \mathrm{SP}^{*}(F)$ such that p_{2} is compatible in \mathbb{P} with any q^{\prime} satisfying $q \leq q^{\prime} \in \mathrm{SP}^{*}(F)$. For $k<\omega$, as $q \in \mathrm{SP}^{*}(F)$ by Definition 1.5 we know that $\operatorname{spt}_{k}(q) \in F$, so as F is a P-point there is $B^{*} \in F$ such that $B^{*} \backslash \operatorname{spt}_{k}(q)$ is finite for every $k<\omega$. Choose by induction on $n<\omega, \alpha_{n}<\omega$ such that $\alpha_{n}<\alpha_{n+1}, \alpha_{n}>g(n)$ and $\alpha_{n}>j_{n}(k(n))$ and $B^{*} \backslash \operatorname{spt}_{j_{n}(k(n))+1}(q) \subseteq\left[0, \alpha_{n}\right)$. Define $q^{\prime}:=\left\{\eta: \eta \in q\right.$ and for every $m<\omega$ we have: if $\alpha_{n} \leq m<\ell g(\eta), m<\alpha_{n+1}$ and $m \in \operatorname{spt}_{j_{n}(k(n))+1}(q)$ then for each $\ell \leq k(n)$ we have $(\eta(m))\left(i_{n}(\ell)\right)=0$ and $\left.(\eta(m))\left(j_{n}(\ell)\right)=1\right\}$.
Now,
(a) $q^{\prime} \subseteq T^{\otimes}$ is closed under initial segments and $\left\rangle \in q^{\prime}\right.$.
[Why? Read the definition of q^{\prime}.]
(b) q^{\prime} has no \triangleleft-maximal element.
[Why? Assume $\eta \in q^{\prime} \cap T_{m}^{\otimes}$. If $m<\alpha_{0}$ then any $\nu \in \operatorname{Suc}_{q}(\eta)$ belongs to q^{\prime}. So let $\alpha_{n} \leq m<\alpha_{n+1}$; if $m \notin \operatorname{spt}_{j_{n}(k(n))+1}(q)$ again any $\nu \in \operatorname{Suc}_{q}(\eta)$ belongs to q^{\prime}, so assume $m \in \operatorname{spt}_{j_{n}(k(n))+1}(q)$, which means

$$
\left(\forall \eta^{\prime} \in q \cap T_{m}^{\otimes}\right)\left(\forall \rho \in{ }^{j_{n}(k(n))+1} 2\right)(\exists \nu)\left[\eta^{\prime \wedge}\langle\nu\rangle \in q \& \nu j_{n}(k(n))+1=\rho\right] .
$$

Apply this for η^{\prime} and for the $\rho^{*} \in{ }^{j_{n}((k(n))+1} 2$ defined by $\left\{\ell<j_{n}(k(n))+1: \rho^{*}(\ell)=\right.$ $1\}=\left\{j_{n}(\ell): \ell \leq k(n)\right\}$, and find ν satisfying $\rho^{*} \unlhd \nu$ and such that $\eta^{\wedge}\langle\nu\rangle \in \operatorname{Suc}_{q}(\eta)$ and even $\eta^{\wedge}\langle\nu\rangle \in \operatorname{Suc}_{q^{\prime}}(\eta)$.]
(c) If $\alpha_{n} \leq m<\alpha_{n+1}, m \in \operatorname{spt}_{j_{n}(k(n))+1}(q)$ then $m \in \operatorname{spt}_{i_{n}(0)}\left(q^{\prime}\right)$.
[Why? Same proof as of clause (b) noting that for any $\rho_{1} \in{ }^{i_{n}(0)} 2$ we can find ρ^{*} such that $\rho_{1} \triangleleft \rho^{*} \in{ }^{j_{n}(k(n))+1} 2$, such that for $m \in\left[i_{n}(0), j_{n}(k(n))+1\right)$, we have $\rho^{*}(m)=1 \Leftrightarrow m \in\left\{j_{n}(\ell): \ell \leq k(n)\right\}$.]
(d) Let $k<\omega$, then $\operatorname{spt}_{k}\left(q^{\prime}\right) \in F$.
[Why? Choose $n(*)$ such that $k<i_{n(*)}(0)$. Now if $m \in B^{*} \backslash \alpha_{n(*)}$ then for some $n, n(*) \leq n<\omega$ and $\alpha_{n} \leq m<\alpha_{n+1}$ hence $m \in \operatorname{spt}_{j_{n}(k(n))+1}(q)$ and so by clause (c) we have $m \in \operatorname{spt}_{i_{n}(0)}\left(q^{\prime}\right)$. But $\operatorname{spt}_{\ell}\left(q^{\prime}\right)$ decreases with ℓ and $k<i_{n(*)}(0) \leq i_{n}(0)$, so $m \in \operatorname{spt}_{k}\left(q^{\prime}\right)$. Together $B^{*} \backslash \alpha_{n(*)} \subseteq \operatorname{spt}_{k}\left(q^{\prime}\right)$, but the former belongs to F.]
(e) $q^{\prime} \Vdash_{\mathrm{SP}^{*}(F)} " \bigcap_{n<\omega}\left(A_{n} \cup[0, g(n))\right)$ is disjoint to $B^{*} \backslash \alpha_{0}$ ".
[Why? Because if $\alpha_{n} \leq m<\alpha_{n+1}$ and $m \in B^{*}$ then: by the definitions of ${\underset{r}{i_{n}(\ell)}}^{r_{j_{n}(\ell)}}(\ell \leq k(n))$ and ${\underset{n}{n}}$ (which is $\left\{\alpha<\omega\right.$: for some $\ell \leq k(n), r_{i_{n}(\ell)}(\alpha)=$ $\left.\left.r_{j_{n}(\ell)}(\alpha)\right\}\right)$ we know $m \notin{\underset{\sim}{A}}_{n}$, also $m \geq \alpha_{n}>g(n)$, together this suffices.]
Now q^{\prime}, p_{2} are compatible members of \mathbb{P} (see the choice of q and remember $q \leq q^{\prime} \in$ $\left.\mathrm{SP}^{*}(F)\right)$, so let $p_{3} \in P$ be such that $p_{2} \leq p_{3}, q^{\prime} \leq p_{3}$. So by clause (e) the condition p_{3}, being above q^{\prime}, forces that $\bigcap_{n<\omega}\left(A_{n} \cup[0, g(n))\right)$ is disjoint to a member of F. So as $p_{2} \leq p_{3}$ clearly p_{2} cannot force $\bigcap_{n<\omega}\left(A_{n} \cup[0, g(n))\right) \neq \emptyset \bmod F$. But this contradicts the choice of p_{2}.
$\square_{1.10}$
We now state some well known basic facts on the Rudin-Keisler order on ultrafilters.
Definition 1.11. (1) Let F_{1}, F_{2} be ultrafilters on I_{1}, I_{2}, respectively. We say $F_{1} \leq_{\mathrm{RK}} F_{2}$ iff there is a function f from I_{2} to I_{1} such that $f\left(I_{2}\right)=\{f(i): i \in$ $\left.I_{2}\right\} \in F_{1}$ and: $A \in F_{1}$ iff $f^{-1}(A) \in F_{2}$.
(2) In this case we say $F_{1}=f\left(F_{2}\right)$; if $\left|I_{1}\right| \leq\left|I_{2}\right|$ we can assume without loss of generality f is onto I_{1}.

Remark 1.12 . We shall use only ultrafilters on ω, which are not principal, i.e. in $\beta(\omega) \backslash \omega$ in topological notation.
It is known (see e.g. [Jec03]).
Theorem 1.13. (1) \leq_{RK} is a quasi-order.
(2) An ultrafilter F on ω is minimal iff it is Ramsey (minimal means $F^{\dagger} \leq_{\mathrm{RK}} F \Rightarrow$ $F \leq_{R K} F^{\dagger}$ (see part (4)).
(3) If F is a P-point, $F^{\dagger} \leq_{\text {RK }} F$ then F^{\dagger} is a P-point.
(4) If $F^{1} \leq_{\mathrm{RK}} F^{2} \leq_{\mathrm{RK}} F^{1}$, then there is a permutation f of ω such that $F_{2}=$ $f\left(F_{1}\right)$.

Proof. Well known.
Lemma 1.14. Suppose F_{0}, F_{1} are ultrafilters on ω (non-principal, of course). Then the condition (A) and condition (B) below are equivalent.
(A) F_{1} is a P-point, F_{0} is a Ramsey ultrafilter, and not $F_{0} \leq_{\mathrm{RK}} F_{1}$.
(B) In the following game, player I has no winning strategy:

In the n-th move, when n is even:

- player I chooses $A_{n} \in F_{0}$,
- player II chooses $k_{n} \in A_{n}$.

In the n-th move, when n is odd:

- player I chooses $A_{n} \in F_{1}$
- player II chooses a finite set $w_{n} \subseteq A_{n}$.

In the end, player II wins if

$$
\left\{k_{n}: n<\omega \text { even }\right\} \in F_{0} \text { and } \bigcup\left\{w_{n}: n<\omega \text { odd }\right\} \in F_{1} .
$$

Proof. $\neg(A) \Rightarrow \neg(B)$: If F_{1} is not a P-point or F_{0} is not Ramsey then player I can win by 1.9. (I.e., if F_{1} is not a P-point, then are $B_{n} \in F_{1}$ for $n<\omega$ such that for no $B \in F_{1}$ do we have $B \backslash B_{n}$ is finite for every n, now player I has a strategy guaranteeing: for n odd, $A_{n}=\bigcap_{\ell \leq(n-1) / 2} B_{\ell} \backslash\left(\sup \bigcup\left\{w_{\ell}: \ell<n\right.\right.$ odd $\left.)+1\right)$ or just $A_{n}=B_{(n-1) / 2}$, this is a winning strategy. If F_{0} is not a Ramsey ultrafilter there are $B_{n} \in F_{0}$ for $n<\omega$ such that for no $k_{n} \in B_{n}$ (for $n<\omega$) do we have $\left\{k_{n}: n<\omega\right\} \in F_{0}$, now player I has a strategy guaranteeing $A_{2 n}=B_{n}$, this is a winning strategy.) So we can assume F_{1} is a P-point and F_{0} is Ramsey, so by $\neg(A)$ necessarily $F_{0} \leq_{\mathrm{RK}} F_{1}$, hence some $h: \omega \rightarrow \omega$ witnesses $F_{0} \leq_{\mathrm{RK}} F_{1}$. Then player I can play such that $\bigcup\left\{h^{-1}\left(k_{n}\right): n \in \omega\right\}$ and $\bigcup\left\{w_{n}: n \in \omega\right\}$ will be disjoint. So one of them is not in F_{1}. Now if $\cup\left\{h^{-1}\left(k_{n}\right): n \in w\right\} \notin F_{1}$ then by the choice of h we have $\left\{k_{n}: n \in \omega\right\} \notin \in F_{0}$, thus player I wins.
$(A) \Rightarrow(B)$: Suppose toward contradiction H is a wining strategy of player I. Let λ be big enough, $N \prec(\mathscr{H}(\lambda), \in),\left\{F_{0}, F_{1}, H\right\} \in N$ and N is countable. For $\ell=0,1$ as F_{ℓ} is a P-point there is $A_{\ell}^{*} \in F_{\ell}$ such that $A_{\ell}^{*} \subseteq_{æ} B$ for every $B \in F_{\ell} \cap N$.
Now we can find an increasing sequence $\left\langle M_{n}: n<\omega\right\rangle$ of finite subsets of $N, N=$ $\bigcup_{n<\omega} M_{n}$ such that it increases rapidly enough; more exactly ${ }^{1}$:
(α) $H, F_{0}, F_{1} \in M_{0}, M_{n} \in M_{n+1}$; also can demand $x \in M_{n} \& x$ finite $\Rightarrow x \subseteq$ M_{n}; also $M_{n} \cap \omega$ is an initial segment of ω,
(β) if $\varphi\left(x, a_{0}, \ldots\right)$ is a formula of length $\leq 1000+\left|M_{n}\right|$ with parameters from $M_{n} \cup\left\{M_{n}\right\}$ satisfied by some $x \in N$, then it is satisfied by some $x \in M_{n+1}$,
(γ) for $\ell=0,1$ if $B \in F_{\ell} \cap N, B \in M_{n}$ then $B \cup M_{n+1} \supseteq A_{\ell}^{*}$,
($\delta) \quad M_{0} \cap \omega=\emptyset$.
Let $u_{n+1}=\left(M_{n+1} \backslash M_{n}\right) \cap \omega$. So $\left\langle u_{n}: n<\omega\right\rangle$ forms a partition of ω. As F_{ℓ} is an ultrafilter, there are $S_{\ell} \subseteq \omega$ such that $\bigcup\left\{u_{n}: n \in S_{\ell}\right\} \in F_{\ell}$, and $n<m \&\{n, m\} \subseteq$ $S_{\ell} \Rightarrow m-n \geq 10$.
(*) Without loss of generality $n \in S_{0}, m \in S_{1}$ implies the absolute value of $n-m$ is ≥ 5.
[Why? For the S_{0}, S_{1} we have, for each $n \in S_{0}$ there is at most one $m \in S_{1}$ such that $|n-m| \leq 4$ and vice versa. By the previous sentence $\left\{(n, m): n \in S_{0}, m \in S_{1}\right.$ and $(n-m) \leq 4\}$ is the graph of a function, call if f, and f is a partial one-to-one function from S_{0} into S_{1}.

[^1]Case 1: $\cup\left\{u_{n}: n \in \operatorname{dom}(f)\right\}$ belongs to F_{0} and for every $S \subseteq \operatorname{dom}(f)$, we have $\cup\left\{u_{n}: n \in S\right\} \in F_{0} \Leftrightarrow \cup\left\{u_{n}: n \in S\right\} \in F_{1}$.
For $\ell=0,1$ let $F_{\ell}^{\prime}=\left\{A \subseteq \omega: \cup\left\{u_{n}: n \in A\right\} \in F_{\ell}\right\}$, so $F_{\ell}^{\prime} \leq_{\mathrm{RK}} F_{\ell}$; as F_{0}^{*} is a Ramsey ultrafilter it follows that $F_{0} \leq_{\mathrm{RK}} F_{0}^{\prime}$. By the assumption of the case $F_{0}^{\prime}=F_{1}^{\prime}$, so we have $F_{0} \leq_{\mathrm{RK}} F_{0}^{\prime}=F_{1}^{\prime} \leq_{\mathrm{RK}} F_{1}$, hence $F_{0} \leq_{\mathrm{RK}} F_{1}$ contradicting the present assumption, clause (A) of the lemma.
Case 2: $\cup\left\{u_{n}: n \in \operatorname{dom}(f)\right\} \notin F_{0}$.
Let $S_{0}^{\dagger}=S_{0} \backslash \operatorname{dom}(f), S_{1}^{\dagger}=S_{1}$; now $\left(S_{0}^{\dagger}, S_{1}^{\dagger}\right)$ are as required on $\left(S_{0}, S_{1}\right)$ in $(*)$ and earlier.
Case 3: $\bigcup\left\{u_{n}: n \in \operatorname{dom}(f)\right\} \in F_{0}$, but there is $S^{\dagger} \subseteq \operatorname{dom}(f)$ such that $\cup\left\{u_{n}: n \in\right.$ $\left.S^{\dagger}\right\} \in F_{0}$ but $\bigcup\left\{u_{n}: n \in S^{\dagger}\right\} \notin F_{1}$.
Let $S_{0}^{\dagger}=S^{\dagger}, S_{1}^{\dagger}=S_{1} \backslash S^{\dagger}$ and continue as in case 2 .
Clearly exactly one of the three cases holds so we are done.]
$(* *)$ there are $k_{n}^{*} \in u_{n} \cap A_{0}^{*}\left(\right.$ for $\left.n \in S_{0}\right)$ such that $\left\{k_{n}^{*}: n \in S_{0}\right\} \in F_{0}$.
[Why? Because F_{0} is Ramsey.]
$(* * *)$ (a) Without loss of generality $\operatorname{Min}\left(S_{0} \cup S_{1}\right) \geq 2$,
(b) for $n \in S_{1}$ letting $v_{n}:=u_{n} \cap \bigcap\left\{A: A \in F_{1} \cap M_{n-2}\right\}$ we have

$$
\bigcup\left\{v_{n}: n \in S_{1}\right\} \in F_{1}
$$

(c) $k_{\ell}^{*} \in \bigcap\left\{A: A \in F_{0} \cap M_{n-2}\right\}$.
[Why? Clause (a) holds as $S_{0} \backslash\{0,1\}, S_{1} \backslash\{0,1\}$ satisfies the requirements on S_{0}, S_{1}. For clause (b) recall that $B \in F_{1}$ and clause (γ) above, i.e. it implies $\cup\{\cap\{A: A \in$ $\left.\left.F_{1} \cap M_{n-2}\right\} \cap M_{n}: n<\omega\right\}$ include A_{1}^{*} hence belongs to F_{1}. The proof of clause (c) is similar.]
Now there is no problem to define by induction on $\ell<\omega, n_{\ell}<\omega$ and an initial segment \bar{t}^{ℓ} of length ℓ of a play of the game (both increasing) such that: the initial segment belong to $M_{n_{\ell}}$; and every k_{n}^{*} will appear among the k 's which player II have chosen in the play if $n \leq n_{\ell}, n \in S_{0}$; and every v_{n} will appear among the w 's player II have chosen in the play if $n \leq n_{\ell}, n \in S_{1}$; and n_{ℓ} has the form $n^{*}+2$ with $n^{*} \in S_{0} \cup S_{1}$; and player I uses his strategy. But in the play we produce player II wins, contradiction.

Main Lemma 1.15. Suppose F_{0} is a Ramsey ultrafilter (on ω), F is a P-point, and $\mathbb{Q}=\operatorname{SP}^{*}(F)$, and for some $T \in \mathbb{Q}$ we have $T \Vdash_{\mathbb{Q}}$ " F_{0} is not an ultrafilter" then $F_{0} \leq_{\text {RK }} F$.

Proof. Let $T_{0} \in \mathbb{Q}, \underset{\sim}{A}$ be a \mathbb{Q}-name, $T_{0} \vdash_{\mathbb{Q}} " \underset{\sim}{A} \subseteq \omega$ and $\omega \backslash \underset{\sim}{A}, \underset{\sim}{A} \neq \emptyset \bmod F_{0} "$, and without loss of generality $\Vdash_{\mathbb{Q}}$ " $A \subseteq \omega$ ", (such $T_{0}, \underset{\sim}{A}$ exists as after forcing with \mathbb{Q}, F_{0} will no longer generate an ultrafilter). Note that by the choice of $T_{0}, \underset{\sim}{A}$ for any $T \geq T_{0}$, the set
$\left\{n<\omega\right.$: for some $T^{\dagger} \geq T, T^{\dagger} \Vdash_{\mathbb{Q}} " n \in \underset{\sim}{A}$ " and for some $T^{\dagger} \geq T, T^{\dagger} \vdash_{\mathbb{Q}}$ " $n \notin \underset{\sim}{A}$ " $\}$,
belongs to F_{0}.

Now we use the game defined in Lemma 1.14. We shall describe a winning strategy for player I. During the play, player I in his moves defines also $T_{n} \in \mathbb{Q}$ preserving the following:
(*) (a) $T_{n+1} \geq T_{n}$,
(b) $\quad T_{n} \Vdash_{\mathbb{Q}}$ " $k_{\ell} \in A$ " for ℓ even, $\ell<n$,
(c) $T_{n+1}^{[m(n)]}=T_{n}^{[m(n)]}$ where $m(n):=1+\max \left[\bigcup\left\{w_{\ell}: \ell\right.\right.$ odd, $\left.\left.\ell<n\right\} \cup\{n\}\right]$,
(d) for $\ell<n$ odd we have: $w_{\ell} \subseteq \operatorname{spt}_{\ell}\left(T_{n}\right)$ (see Definition 1.5),
(e) for n even, for the play from 1.14 player I chooses

$$
A_{n} \subseteq\left\{k: \text { if } \eta \in T_{n}^{[m(n)]} \text { then }\left(T_{n}\right)_{[\eta]} \nVdash " k \notin \underset{\sim}{A} "\right\},
$$

(f) for n odd, for the play from 1.14 player I chooses $A_{n}=\operatorname{spt}_{m(n)}\left(T_{n}\right)$.

More exactly, player I chooses T_{n+1} in the n-th move after player II's move (see below more).
If this is a well defined strategy, i.e. player I can make those choices, this is enough. Why? As if in the end $\bigcup\left\{w_{\ell}: \ell<\omega\right.$ odd $\} \in F$, then $T:=\bigcap_{n} T_{n} \in \mathbb{Q}$, because for each $\ell<\omega$, we have $n>\ell \Rightarrow \operatorname{spt}_{\ell}\left(T_{n+1}\right) \subseteq \operatorname{spt}_{\ell}\left(T_{n}\right)$ and $\operatorname{spt}_{\ell+1}\left(T_{n}\right) \subseteq \operatorname{spt}_{\ell}\left(T_{n}\right)$ so by clauses (c) $+(\mathrm{d})$
$(*) \ell<m \leq k \Rightarrow w_{k} \subseteq \operatorname{spt}_{\ell}\left(T_{m}\right)$.
Hence $\operatorname{spt}_{\ell}(T) \supseteq \bigcap_{m>\ell} \operatorname{spt}_{\ell}\left(T_{m}\right) \supseteq \bigcup_{m \geq \ell} w_{m} \in F$ (as all cofinite subsets of ω belong to F). Now T forces $\left\{k_{\ell}: \ell<\bar{\omega}\right.$ even $\} \subseteq \underset{\sim}{A}$ (remember clause (b)), so $\left\{k_{\ell}: \ell<\omega\right.$ even $\} \notin F_{0}$ by the hypothesis on T_{0}, A (as $\left\{k_{\ell}: \ell<\omega\right\} \in V$, and $T_{0} \leq T, T \Vdash_{P}$ " $\left\{k_{\ell}: \ell<\omega\right\} \subseteq \underset{\sim}{A}$ " so $\left\{k_{\ell}: \ell<\omega\right\} \in F_{0}$ implies: $T \Vdash_{\mathbb{Q}}$ " $\omega \backslash \underset{\sim}{A}=\emptyset$ $\bmod F "$, a contradiction). So the strategy defined above is a winning strategy for player I hence by Lemma $1.14, F_{0} \leq_{\mathrm{RK}} F$.
So it remains to show that player I can indeed carry out the strategy i.e. can preserve $(*)$. Note that T_{0} is defined.
Case 1: when $n>0$ is even.
Player I lets $m(n)<\omega$ be $\max \left[\bigcup\left\{w_{\ell}: \ell<n\right.\right.$ odd $\left.\} \cup\{n\}\right]+1$, and let $T_{n}^{[m(n)]}=$ $\left\{\eta_{0}, \ldots, \eta_{s(n)}\right\}$ with no repetition. For each $\eta_{\ell}(\ell \leq s(n))$ clearly $\left(T_{n}\right)_{\left[\eta_{\ell}\right]}$ is $\geq T_{0}$ and belongs to \mathbb{Q}, hence the set

$$
\begin{array}{cc}
A_{\ell}^{n}=\{k<\omega: & \text { there are } T_{\ell, k}^{\prime}, T_{\ell, k}^{\prime \prime} \geq\left(T_{n}\right)_{\left[\eta_{\ell}\right]} \text { such that } \\
& \left.T_{\ell, k}^{\prime} \Vdash_{\mathbb{Q}} " k \in \underset{\sim}{A} \text { ", and } T_{\ell, k}^{\prime \prime} \Vdash_{\mathbb{Q}} " k \notin \underset{\sim}{A} "\right\}
\end{array}
$$

belongs to F_{0}.
Now, player I plays $A_{n}=\bigcap_{\ell \leq s(n)} A_{\ell}^{n}$ which is clearly a legal move.
Player II chooses some $k_{n} \in A_{n}$.
Player I ("on the side") lets $T_{n+1}=\underset{\ell \leq s(n)}{ } T_{\ell, k_{n}}^{\prime}$ (it is as required in (*)).
Case 2: when n is odd.
Player I lets $A_{n}=\operatorname{spt}_{m(n)}\left(T_{n}\right)$ (note $\mathbb{Q}=\mathrm{SP}^{*}(F)$). Note T_{n} has just been chosen.
Player II chooses a finite $w_{n} \subseteq A_{n}$ and player I lets on the side $T_{n+1}=T_{n} . \quad \square_{1.15}$
Theorem 1.16. (1) It is consistent with $\mathrm{ZFC}+2^{\aleph_{0}}=\aleph_{2}$ that, up to a permutation on ω, there is a unique Ramsey ultrafilter on ω. Moreover any P-point is above it (in the Rudin-Keisler order).
(2) If $\kappa \in\left[1, \aleph_{2}\right]$ then in some forcing extension of V we have $2^{\aleph_{0}}=\aleph_{2}$, up to permutation of ω there are exactly κ Ramsey ultrafilters. Moreover any P-point is $\leq_{\mathrm{RK}}-$ above at least one Ramsey ultrafilter.

Proof. Without loss of generality we start with a universe satisfying $2^{\aleph_{0}}=\aleph_{1}+$ $2^{\aleph_{1}}=\aleph_{2}$ and $\diamond\left\{\delta<\aleph_{2}: \operatorname{cf}(\delta)=\aleph_{1}\right\}$. There is in \mathbf{V} a sequence $\left\langle F_{\varepsilon}^{*}: \varepsilon<\kappa\right\rangle$ of Ramsey ultrafilters such that $\varepsilon \neq \zeta \Rightarrow F_{\varepsilon}^{*} \not \mathbb{K}_{\mathrm{RK}} F_{\zeta}^{*}$; for part (1) we use $\kappa=1$.
We shall use a CS iterated forcing $\left\langle\mathbb{P}_{i}, \mathbb{Q}_{i}: i<\omega_{2}\right\rangle$ such that each \mathbb{Q}_{i} is proper, has the PP-property (hence is ${ }^{\omega} \omega$-bounding), has cardinality continuum and forces that F_{ε}^{*} still generates an ultrafilter. So by 1.1, 1.2, F_{ε}^{*} remains a Ramsey ultrafilter in $\mathbf{V}^{\mathbb{P}_{i}}$ for $i \leq \omega_{2}$ and also we can show by induction on $i<\omega_{2}$, that in $\mathbf{V}^{\mathbb{P}_{i}}$, CH holds and P_{i} has cardinality \aleph_{1}; so by [She98, Ch.VIII, $\left.\S 2\right]$ below, $P_{\omega_{2}}$ satisfies the \aleph_{2}-chain condition. If $F_{1} \in \mathbf{V}\left[\mathbf{G}_{\omega_{2}}\right]\left(\mathbf{G} \subseteq \mathbb{P}_{\omega_{2}}\right.$ generic) is a P-point, not above any F_{ε}^{*}, then there is a $p \in P_{\omega_{2}}$ forcing $\underset{\sim}{F}$ is a name of such ultrafilter, and for a closed unbounded set of $\delta<\aleph_{2}, \operatorname{cf}(\delta)=\aleph_{1}$ implies that $\underset{\sim}{\underset{\gamma}{r}}:=\underset{\sim}{F}{ }_{1} \cap \operatorname{SP}(\omega)^{\mathbf{V}^{\mathbb{P}} \delta} \in \mathbf{V}^{\mathbb{P}_{\delta}}$ and p forces that $\underset{\sim}{F}{ }_{\delta}^{1}$ is a P-point not above F_{ε}^{*} for $\varepsilon<\kappa\left(\right.$ in $\left.\mathbf{V}^{\mathbb{P}_{\delta}}\right)$.
Now, by the diamond $\diamond\left\{\delta<\aleph_{2}: \operatorname{cf}(\delta)=\aleph_{1}\right\}$ we can assume that for some such $\delta, \mathbb{Q}_{\delta}=$ $\mathrm{SP}^{*}\left(\underset{\sim}{F}{ }_{\delta}^{1}\right)$.
Now by 1.15 forcing with \mathbb{Q}_{δ} (over $\mathbf{V}^{\mathbb{P}_{\delta}}$) preserves " F_{ε}^{*} (generates) an ultrafilter", by $1.8(2) \mathbb{Q}_{\delta}$ has the PP-property hence (by [She98, Ch.VI]) \mathbb{Q}_{δ} is ${ }^{\omega} \omega$-bounding and trivially \mathbb{Q}_{δ} has cardinality continuum; so \mathbb{Q}_{δ} is as required. Now as each \mathbb{Q}_{j} $\left(i<j<\omega_{2}\right)$ has the PP-property, $\mathbb{P}_{\omega_{2}} / \mathbb{P}_{\delta}$ has the PP-property (by [She98, Ch.VI]). So by lemma 1.15 we know $\underset{\delta}{F}$ cannot be completed to a P-point in $\mathbf{V}^{\mathbb{P}_{\omega_{2}}}$. $\square_{1.16}$

§ 2. There may be a unique P-point

Theorem 2.1. Assume \mathbf{V} satisfies $2^{\aleph_{0}}=\aleph_{1}$ and $\lambda=\lambda_{1}^{\aleph_{0}}>\kappa \geq 1, F_{\alpha}$ for $\alpha<\kappa$ are Ramsey ultrafilters on ω pairwise non-isomorphic. Then for some \aleph_{2} c.c. proper, ${ }^{\omega} \omega$-bounding forcing notion \mathbb{P} of cardinality \aleph_{2} in $\mathbf{V}^{\mathbb{P}}$, there is a unique P-point, and it is F_{0} (i.e. the filter it generates in $\mathbf{V}^{\mathbb{P}}$).

Remark 2.2. In fact, in $\mathbf{V}^{\mathbb{P}}, F_{0}$ is a Ramsey ultrafilter (actually this follows).
Proof. By the proof of $\S 1$, it suffices to prove the following lemma: \square
Lemma 2.3. Suppose
$(*)_{0} F_{0}, F_{1}$ are ultrafilters on ω, F_{0} is a Ramsey ultrafilter, F_{1} is a P-point, $F_{0} \leq_{\mathrm{RK}} F_{1}$ but not $F_{1} \leq_{\mathrm{RK}} F_{0}$.

Then there is a forcing notion \mathbb{Q} such that:
(a) \mathbb{Q} has the PP-property, (hence it is ${ }^{\omega} \omega$-bounding) and it is of cardinality $2^{\aleph_{0}}$ and,
(b) $\vdash_{\mathbb{Q}}$ " F_{0} is an ultrafilter", but
(c) if $\mathbb{Q} \lessdot \mathbb{Q}^{\prime}$ and \mathbb{Q}^{\prime} has the PP-property then, in $\mathbf{V}^{\mathbb{Q}^{\prime}}$ we have: F_{1} cannot be extended with to a P-point (ultrafilter),
(d) if in \mathbf{V}, D_{*} is a Ramsey ultrafilter not isomorphic to F_{0} then $\Vdash_{\mathbb{Q}}$ " D_{*} is $(=$ generates) an ultrafilter".

Remark 2.4. During the proof of Theorem 2.1 we use the forcing notions $\mathrm{SP}^{*}(F)$ from Definition IV.5.4 to kill P-points with $F_{0} \not \mathbb{K}_{\mathrm{RK}} F$.

The rest of this section is dedicated to the proof of this Lemma.
Proof. Since $F_{0} \leq_{\mathrm{RK}} F_{1}$ and F_{1} is a P-point, there is a function $h: \omega \rightarrow \omega$ such that
$(*)_{1} h\left(F_{1}\right)=F_{0}$ and for each $\ell<\omega$ the set $I(\ell)=I_{\ell}:=h^{-1}(\{\ell\})$ is finite. Note that then $\left[A \subseteq \omega \wedge \bigwedge_{\ell} 1 \geq\left|I_{\ell} \cap A\right| \Rightarrow A \notin F_{1}\right]$ because $F_{1} \not \chi_{\mathrm{RK}} F_{0}$. Now, in Definition 2.7 below, we define a forcing notion $Q=\operatorname{SP}^{*}\left(F_{0}, F_{1}, h\right)$ and then prove in 2.5-2.12 that it has all the required properties thus finishing the proof of Lemma 2.3 and therefore, of Theorem 2.1.

Claim 2.5. In the following game, player I has no winning strategy: in the n-th move player I chooses $A_{n} \in F_{0}$ and $B_{n} \in F_{1}$; player II chooses $k_{n} \in A_{n}\left(k_{n}<k_{\ell}\right.$ for $\ell<n)$ and $w_{n} \subseteq B_{n} \cap I_{k_{n}}$. In the end, player II wins the play if $\left\{k_{n}: n<\omega\right\} \in F_{0}$ and $\bigcup\left\{w_{n}: n<\omega\right\} \in F_{1}$ (the first demand follows from the second).

Remark 2.6. Clearly player II has no better choice than $w_{n}=B_{n} \cap I_{k}$. Remember $I_{k_{n}}=h^{-1}\left(\left\{k_{n}\right\}\right)$ is finite.

Proof. Towards contradiction, suppose that H is a wining strategy of player I. Let λ be big enough, $N \prec\left(\mathscr{H}(\lambda), \in,<_{\lambda}^{*}\right)$ be such that $\left\{F_{0}, F_{1}, h, H\right\} \in N$ and N is countable. As F_{ℓ} is a P-point there are, for $\ell \in\{0,1\}$ sets $A_{\ell}^{*} \in F_{\ell}$ such that $A_{\ell}^{*} \subseteq_{a e} B$ (i.e. $A_{\ell}^{*} \backslash B$ finite) for every $B \in F_{\ell} \cap N$.

Now we can find an increasing sequence $\left\langle M_{n}: n<\omega\right\rangle$ of finite subsets of $N, N=$ $\bigcup_{n<\omega} M_{n}$ such that it increases rapidly enough; more exactly:
(α) $H, F_{0}, F_{1}, h \in M_{0}$ and $M_{n} \in M_{n+1}$,
(β) if $\varphi\left(x, a_{0}, \ldots\right)$ is a formula of length $\leq 1000+\left|M_{n}\right|$ with parameters from $M_{n} \cup\left\{M_{n}\right\}$ satisfied by some $x \in N$, then it is satisfied by some $x \in M_{n+1}$,
(γ) if $\ell \in\{0,1\}, B \in F_{\ell} \cap N, B \in M_{n}$ then $B \cup M_{n+1} \supseteq A_{\ell}^{*}$,
($\delta) M_{0} \cap \omega=\emptyset$,
(ε) if $\ell \in M_{n}$ then $I(\ell) \subseteq M_{n+1}$ and M_{n} is closed under h (we can demand $m \in M_{n} \Leftrightarrow h(m) \in M_{n}$ if we make the domains of F_{0}, F_{1} disjoint).
Let $u_{n+1}=\left(M_{n+1} \backslash M_{n}\right) \cap \omega$. So $\left\langle u_{n}: n<\omega\right\rangle$ forms a partition of ω into finite sets. As F_{0} is Ramsey, we can find $A \in F_{0}$ such that $\bigwedge_{n}\left|u_{n} \cap A\right| \leq 1$ and $A \subseteq A_{0}^{*}$ and

$$
u_{n} \cap A \neq \emptyset \& u_{m} \cap A \neq \emptyset \& n<m \Rightarrow m-n \geq 10
$$

Let $A=\left\{i_{\zeta}: \zeta<\omega\right\}$ (increasing), $i_{\zeta} \in u_{n_{\zeta}}$. Now we define by induction on ζ, A_{ζ}, $B_{\zeta}, k_{\zeta}, w_{\zeta}$ such that:
(a) $\left\langle A_{\xi}, B_{\xi}, k_{\xi}, w_{\xi}: \xi<\zeta\right\rangle$ is an initial segment of a play of the game in which Player I uses his winning strategy,
(b) $\left\langle A_{\xi}, B_{\xi}, k_{\xi}, w_{\xi}: \xi \leq \zeta\right\rangle$ belongs to $M_{n_{\zeta}+3}$,
(c) $k_{\zeta}=i_{\zeta}$ and $w_{\zeta}=B_{\zeta} \cap I\left(k_{\zeta}\right) \cap A_{1}^{*}$.

There is no problem to carry out the definition, and clearly Player II wins because not only $\left\{k_{\zeta}: \zeta<\omega\right\}=\left\{i_{\zeta}: \zeta<\omega\right\}=A \subseteq A_{0}^{*}$ but also

$$
\begin{aligned}
\bigcup_{\zeta<\omega} w_{\zeta}=A_{1}^{*} \cap \bigcup_{\zeta<\omega} w_{\zeta} & =A_{1}^{*} \cap\left\{j<\omega: h(j)=i_{\zeta} \text { for some } \zeta<\omega\right\} \\
& =A_{1}^{*} \cap\{j: h(j) \in A\} \in F_{1}
\end{aligned}
$$

[Why? As respectively: $w_{\zeta} \subseteq A_{1}^{*}$; as $A_{1}^{*} \backslash A_{\xi} \subseteq \bigcup\left\{w_{\zeta}: \zeta \leq i_{\xi}+4\right\}$ by clause (γ) above; as $A=\left\{i_{\zeta}: \zeta<\omega\right\} ;$ as $A_{1}^{*} \in F_{1}$ and $A \in F_{0}$ hence $\{j: h(j) \in A\} \in F_{1}$.]
Contradiction.
Definition 2.7. Let $T_{n}^{h}=\times_{\ell<n} I(\ell) \times \ell 2$ and let $T^{h}=\bigcup_{n<\omega} T_{n}^{h}$. Note that T^{h} is a perfect tree with finite branching ordered by \triangleleft (being initial segment). Let $\mathbb{Q}:=\mathrm{SP}^{*}\left(F_{0}, F_{1}, h\right)=\left\{T: T\right.$ is a perfect subtree of T^{h} and for each $k<\omega$ for some $A_{k} \in F_{0}$ and $B_{k} \in F_{1}$ we have: if $\ell \in A_{k}$ and $\eta \in T^{[\ell]}:=T \cap T_{\ell}^{h}$ and $\rho \in\left(B_{k} \cap I(\ell)\right) \times{ }^{k} 2$ then for some $\nu \in{ }^{I(\ell) \times \ell}$ 2 we have $\rho \subseteq \nu$ and $\left.\eta \frown\langle\nu\rangle \in T\right\}$ endowed with the inverse inclusion.

Claim 2.8. (1) If $T \in \mathbb{Q}, T^{[n]}=\left\{\eta_{1}, \ldots, \eta_{k}\right\}$ (with no repetition) $T_{\ell}=T_{\left[\eta_{\ell}\right]}:=$ $\left\{\nu \in T: \eta_{\ell} \unlhd \nu\right.$ or $\left.\nu \unlhd \eta_{\ell}\right\}, T_{\ell}^{\dagger} \in \mathbb{Q}, T_{\ell} \leq T_{\ell}^{\dagger} \quad$ (i.e. $T_{\ell}^{\dagger} \subseteq T_{\ell}$) then $T \leq T^{\dagger}:=$ $\bigcup_{\ell=1}^{k} T_{\ell} \in \mathbb{Q}$.
(2) If τ is a \mathbb{Q}-name of an ordinal and $n<\omega$ then there is $T^{\dagger}, T \leq T^{\dagger} \in \mathbb{Q}$ such that $T^{\dagger} \Vdash_{\mathbb{Q}}$ " $\sim \in A$ " for some A satisfying $\mid \overline{A\left|\leq\left|T^{[n]}\right| \text {, and } T \cap \bigcup_{\ell \leq n} T^{[\ell]}=\right.}$ $T^{\dagger} \cap \bigcup_{\ell \leq n} T^{[\ell]}$. Moreover for each $\eta \in T^{[n]}, T_{[\eta]}^{\dagger}$ determines $\underset{\sim}{\tau}$.

Proof. Same as in the proof of VI 5.5.
Claim 2.9. \mathbb{Q} is proper, in fact α-proper for every $\alpha<\omega_{1}$, and has the strong PP-property (see VI 2.12E(3)).

Proof. First we prove properness. Let λ be regular $>2^{\aleph_{1}}, N \prec\left(H(\lambda), \in,<_{\lambda}^{*}\right)$ be countable, $\left\{\mathbb{Q}, F_{0}, F_{1}, h\right\} \in N$ and $T \in N \cap \mathbb{Q}$.
Let $\left\{\tau_{\ell}: \ell<\omega\right\}$ list the \mathbb{Q}-names of ordinals from N. We now define a strategy for player I in the game from Claim 4.3. In the n-th move player I chooses $A_{n} \in F_{0} \cap N$, $B_{n} \in F_{1} \cap N$ and player II chooses $k_{n} \in A_{n}$ and $w_{n}:=B_{n} \cap I_{k_{n}}$ (remember 4.3A); on the side player I chooses $T_{n} \in N \cap \mathbb{Q}$ and m_{n} such that $T_{0}=T, T_{n} \leq T_{n+1}$, $T_{n}^{\left[m_{n+1}\right]}=T_{n+1}^{\left[m_{n+1}\right]}$ and $m_{n}>\max \left\{m_{n-1}, k_{n^{\prime}}: n^{\prime}<n\right\}$ and $m_{0}=1$.
In the $\left(n+1\right.$)'th move, player I first chooses m_{n+1} as above then he chooses $T_{n+1} \in$ $\mathbb{Q}, T_{n} \leq T_{n+1}, T_{n+1}^{\left[m_{n+1}\right]}=T_{n}^{\left[m_{n+1}\right]}$ such that for every $\eta \in T_{n}^{\left[m_{n+1}\right]},\left(T_{n+1}\right)_{[\eta]}$ forces a value to ${\underset{\sim}{l}}_{\ell}$ for $\ell \leq m_{n+1}$. This is possible by 4.5. Then as $T_{n+1} \in \mathbb{Q} \cap N$ there are sets $A_{n+1} \in F_{0} \cap N, B_{n+1} \in F_{1} \cap N$ such that for every $k \in A_{n+1}, \eta \in\left(T_{n+1}\right)^{[k]}$ and $\rho \in{ }^{\left(B_{n+1} \cap I(k)\right) \times n} 2$ for some $\nu \in{ }^{I(k) \times k}$, we have: $\rho \subseteq \nu$ and $\eta \frown\langle\nu\rangle \in T_{n+1}$ and for simplicity $A_{n+1} \cap m_{n}=A_{n} \cap m_{n}$. Note that the amount of free choice player II retains is in N.
So by 4.3 for some such play, player II wins. Now $T^{*}:=\bigcap_{n<\omega} T_{n} \in \mathbb{Q}$ as $\left\{k_{n}\right.$: $n<\omega\} \in F_{0}$ and $\bigcup_{n<\omega} B_{n} \cap I\left(k_{n}\right) \in F_{1}$ witness; of course $T_{n} \leq T^{*}$ for each n hence $T=T_{0} \leq T^{*}$ and $T^{*} \Vdash " \tau_{\ell}\left[G_{\mathbb{Q}}\right] \in N \cap \mathbb{Q}_{n} "$ (as $T_{\ell+1} \leq T^{*}$, see its choice).
So \mathbb{Q} is proper. The proof also shows that \mathbb{Q} has the strong $P P$-property (see VI 2.12: for more details see the proof of VI 4.4.). The proof of α-properness is as in VI 4.4 (and anyhow it is not used).

Lemma 2.10. Suppose $\left((*)_{0}\right.$ of Lemma 2.3, $\mathbb{Q}=\operatorname{SP}^{*}\left(F_{0}, F_{1}, h\right)$ as defined in Definition 2.7 of course and) $\mathbb{Q} \lessdot \mathbb{P}$ and P has the PP-property. Then in $\mathbf{V}^{\mathbb{P}}, F_{1}$ cannot be extended to a P-point.

Proof. Suppose $p \in P$ forces that $\underset{\sim}{E}$ is an extension of F_{1} to a P-point (in $\mathbf{V}^{\mathbb{P}}$). Let $\left\langle{\underset{\sim}{r}}_{n}: n<\omega\right\rangle$ be the sequence of reals which \mathbb{Q} introduces, i.e. $r_{n}(i)=\ell \in\{0,1\}$ is defined as follows: clearly for a unique $k<\omega, i \in I_{k}$; now ${\underset{\sim}{r}}_{n}(i)=\ell$ iff: $n \geq k$, $\ell=0$ or for some $T \in G_{\mathbb{Q}}, T^{[k+1]}=\{\eta\}$ and $(\eta(k))(i, n)=\ell$ (remember that $\eta(k)$ is a function from $I(k) \times k$ to $\{0,1\})$. Define a P-name $\underset{\sim}{h}$:

- $\underset{\sim}{h}(n)$ is 1 if $\{i<\omega: \underset{\sim}{r} n(i)=1\} \in \underset{\sim}{E}$ and,
- $\underset{\sim}{h}(n)$ is 0 if $\{i<\omega: \underset{\sim}{r} n(i)=0\} \in \underset{\sim}{E}$

So $p \Vdash$ " $h \underset{\sim}{ } \in{ }^{\omega} 2$ ". Now as P has the PP-property, by VI 2.12D, there are $p_{1} \geq p$, $\left(p_{1} \in P\right)$, and $\left\langle\left\langle\left\langle k(n),\left\langle i_{n}(\ell), j_{n}(\ell)\right\rangle: \ell \leq k(n)\right\rangle: n<\omega\right\rangle\right.$ in V such that $k(n)<\omega$, $i_{n}(0)<j_{n}(0)<i_{n}(1)<j_{n}(1)<\cdots<i_{n}(k(n))<j_{n}(k(n))$, and $j_{n}(k(n))<i_{n+1}(0)$ such that:
$p_{1} \Vdash_{P}$ " for every $n<\omega$ for some $\ell \leq k(n)$ we have $\underset{\sim}{h}\left(i_{n}(\ell)\right)=\underset{\sim}{h}\left(j_{n}(\ell)\right)$ "
Now define the following P-names:

$$
\underset{\sim}{A} A_{n}=\left\{m<\omega: \text { for some } \ell \leq \underset{\sim}{k}(n),{\underset{\sim}{r}}_{i_{n}(\ell)}(m)=\underset{\sim}{r_{n}(\ell)}(m)\right\} .
$$

We can conclude as in the proofs of VI 4.7,
Claim 2.11. In $\mathbf{V}^{\mathbb{Q}}, F_{0}$ still generates an ultrafilter.
Proof. If not, then for some $T_{0} \in \mathbb{Q}$, and \mathbb{Q}-name $\underset{\sim}{A}$ we have $T_{0} \vdash_{\mathbb{Q}}$ "A $A \subseteq \omega$ and $\underset{\sim}{A}, \omega \backslash \underset{\sim}{A}$ are $\neq \emptyset \bmod F_{0} "$.

By the proof of Claim 2.9 without loss of generality, for some $A_{0} \in F_{0}$ we have: for $k \in A_{0}$ and $\eta \in T_{0}^{[k+1]},\left(T_{0}\right)_{[\eta]}$ forces a truth value to " $k \in \underset{\sim}{A}$ " which we call $\mathbf{t}\left(T_{0}, \eta\right)$; without loss of generality for $\eta \in T_{0}^{[k]}, k \notin A_{0} \Rightarrow\left|\operatorname{suc}_{T_{0}}(\eta)\right|=1$.
Now for every $T \geq T_{0}$ and $\ell<\omega$ there are $A(T, \ell), B(T, \ell)$ as in Definition 2.7. For every $\ell<\omega, T \geq T_{0}$ and $k \in A(T, \ell)$ fix an arbitrary $\eta(T, \ell, k) \in T^{[k]}$.
Then, by Observation 2.12 below, there are $m_{T, \ell, k} \in I(k) \cap B(T, \ell)$ and a partition $\left\langle u_{i}(T, \ell, k): i<3\right\rangle$ of $I(k) \cap B(T, \ell)$ and a triple $\left\langle\mathbf{t}_{i}(T, \ell, k): i<3\right\rangle$ of truth values and $j_{k}(T, \ell) \in\{0,1\}$ and truth value $\mathrm{bs}_{k}(T, \ell)$ such that:
(*) (a) if $j_{k}(T, \ell)=0$ then for $i<3$, for every $\rho \in{ }^{u_{i}(T, \ell, k) \times \ell} 2$ there is $\nu \in$ $I(k) \times{ }^{k} 2$ such that $\rho \subseteq \nu$ and $\eta(T, \ell, k) \frown\langle\nu\rangle \in T$ and

$$
T_{[\eta-\langle\nu\rangle]} \Vdash_{\mathbb{Q}} " k \in \underset{\sim}{A} \text { iff } \mathbf{t}_{i}(T, \ell, k) " .
$$

$\left(\right.$ Clearly $\left.\mathbf{t}_{i}(T, \ell, k)=\mathbf{t}\left(T_{0}, \eta \frown\langle\nu\rangle\right)\right)$,
(b) if $j_{k}(T, \ell)=1$ then for every $\rho \in\left(I(k) \cap B(T, \ell) \backslash\left\{m_{T, \ell, k}\right\}\right) \times \ell 2$ there is $\nu \in$ $(I(k) \times k) 2$ such that: $\rho \subseteq \nu$ and $(\eta(T, \ell, k)) \frown\langle\nu\rangle \in T$ and $T_{[\eta \frown\langle\nu\rangle]} \Vdash_{\mathbb{Q}}$ " $k \in \underset{\sim}{A}$ iff $\operatorname{bs}_{k}(T, \ell)$ ".
So for some $j(T, \ell)<2$ and $i(T, \ell)<3$ and truth value $\mathbf{t}(T, \ell)$ we have:
(α) if $j(T, \ell)=0$, then

$$
\begin{gathered}
\bigcup\left\{u_{i(T, \ell)}(T, \ell, k): j_{k}(T, \ell)=0, k \in A(T, \ell), \mathbf{t}_{i(T, \ell)}(T, \ell, k)=\mathbf{t}(T, \ell) \in F_{1}\right. \\
(\beta) \text { if } j(T, \ell)=1 \text { then }\left\{k \in A(T, \ell): j_{k}(T, \ell)=1, \operatorname{bs}_{k}(T, \ell)=\mathbf{t}(T, \ell)\right\} \in F_{0}
\end{gathered}
$$

Note:

\otimes for (T, ℓ) as above there are $A=A^{*}(T, \ell) \in F_{0}, B=B^{*}(T, \ell) \in F_{1}$ satisfying: for every $k \in A$ there is $\eta \in T, \lg (\eta)=k$ such that: every $\rho \in{ }^{((I(k) \cap B) \times \ell)} 2$ can be extended to $\nu \in{ }^{I(k) \times k} 2$ satisfying: $\eta \frown\langle\nu\rangle \in T$, $T_{[\eta-\langle\nu\rangle]} \Vdash_{\mathbb{Q}} " k \in \underset{\sim}{A}$ iff $\mathbf{t}(T, \ell) "$.
[Why? If $j(T, \ell)=0$ let

$$
B=\bigcup\left\{u_{i(T, \ell)}(T, \ell, k): j_{k}(T, \ell)=0, k \in A(T, \ell), \mathbf{t}_{i(T, \ell)}(T, \ell, k)=\mathbf{t}(T, \ell)\right\}
$$

and $A=\{k: I(k) \cap B \neq \emptyset\}$. Check the demand by clauses $(*)(a)$ and (α) above. So assume $j(T, \ell)=1$ and let $B=\bigcup\left\{I(k) \cap B(T, \ell) \backslash\left\{m_{T, k, \ell}\right\}: k \in\right.$ $A(T, \ell)$ and $j_{k}(T, \ell)=1$, and $\left.\operatorname{bs}_{k}(T, \ell)=\mathbf{t}(T, \ell)\right\}$
[why $B \in F_{1}$? because $F_{1} \not Z_{\mathrm{RK}} F_{0}$!). Put $A=\left\{k: I_{k} \cap B \neq \emptyset\right\}$ and check the demand by clauses $(*)(\mathrm{b})$ and (β) above].
Note that we have been dealing with fixed T, ℓ.
As we can increase T_{0} without loss of generality: for some truth value \mathbf{t}^{*} for a dense set of $T^{\prime} \geq T_{0}$ for the F_{0}-majority of $\ell<\omega$ we have and $\mathbf{t}\left(T^{\prime}, \ell\right)=\mathbf{t}^{*}$.
Now we can define a strategy for player I in the game from 4.3. So in the n 'th move player I chooses A_{n}, B_{n} and player II chooses k_{n}, w_{n}; but we let player I play "on the side" also T_{n}, ℓ_{n} (chosen in the n 'th move) such that:
(A) $T \leq T_{n} \leq T_{n+1}, T_{n}^{\left[k_{n}+1\right]}=T_{n+1}^{\left[k_{n}+1\right]}, \omega>\ell_{n+1}>\ell_{n}$, and $\mathbf{t}^{*}=\mathbf{t}\left(\left(T_{n}\right)_{[\eta]}, \ell_{n}\right)$ for $n>0$ and $\eta \in T_{n}^{\left[k_{n}+1\right]}$.
(B) For every $k \in A_{n+1}$ and $\eta \in T_{n}^{\left[k_{n}+1\right]}$ there is $\eta_{1}, \eta \triangleleft e q \eta_{1} \in T_{n}^{[k]}$ such that for every $\rho \in{ }^{\left(B_{n+1} \cap I(k)\right) \times \ell_{n+1} 2}$ there is $\nu, \rho \subseteq \nu, \eta_{1} \frown\langle\nu\rangle \in T_{n}$, $\mathbf{t}\left(T_{n}, \ell_{n}, k_{n}\right)=\mathbf{t}\left(T_{n}, \ell_{n}\right)=\mathbf{t}^{*},\left(\right.$ note T_{n+1} is chosen only after k_{n+1}, w_{n+1} were chosen).
We should prove that player I can carry out his strategy. For stage $n+1$ let $\left\{\eta_{0}^{n}, \ldots, \eta_{m(n)}^{n}\right\}$ list $T_{n}^{\left[k_{n}+1\right]}$, so for some $\ell_{n+1}>\ell_{n}$, for each $\zeta \leq m(n)$ there is $T_{n, \zeta} \geq\left(T_{n}\right)_{\left[\eta_{\zeta}^{n}\right]}$ such that $\mathbf{t}\left(T_{n, \zeta}, \ell_{n+1}\right)=\mathbf{t}^{*}$. Let $B_{n+1}=\bigcap_{\zeta \leq m(n)} B^{*}\left(T_{n, \zeta}, \ell_{n+1}\right)$ and $A_{n+1}=\left\{k \in A_{n}: k>k_{n}\right.$ and $\left.I(k) \cap B_{n+1} \neq \emptyset\right\}$.
By clause (B) above, after player II moves, we can choose T_{n+1} as required. As this is a strategy, by Claim 2.5 for some play in which player I uses it he looses. For this play $\left\{k_{n}: n<\omega\right\} \in F_{0}, \bigcup_{n<\omega} w_{n} \in F_{1}$, so $T:=\bigcap_{n<\omega} T_{n} \in \mathbb{Q}$. By tracing the demands on the t's:

$$
\oplus \text { for } n<\omega, \eta \in T, \lg (\eta)=k_{n}+1 \text { we have } T_{[\eta]} \Vdash{ }^{\Vdash} k_{n} \in \underset{\sim}{A} \text { iff } \mathbf{t}^{*} " .
$$

We conclude: $T \Vdash$ " $\left\{k_{n}: n<\omega\right\} \cap \underset{\sim}{A}$ is \emptyset or is $\underset{\sim}{A}$ " as $\left\{k_{n}: n<\omega\right\} \in F_{0}$ we get the desired conclusion.

Observation 2.12. Suppose \mathbf{t} is a function from $X^{*}=\prod_{t \in u} A_{t}$ to $\{0,1\}$, u finite.
Then at least one of the following holds:
(α) we can find $u_{i}, X_{i}(i<3)$ such that:
(a) $\left\langle u_{i} i<3\right\rangle$ is a partition of u,
(b) $X_{i} \subseteq X^{*}$,
(c) $\mathbf{t} \upharpoonright X_{i}$ is constant,
(d) for every $i<3$ and $\rho \in \prod_{t \in u_{i}} A_{t}$ there is $\nu \in X_{i}, \rho \subseteq \nu$,
(β) for some $x \in u$, there is $X \subseteq X^{*}$ such that $\mathbf{t} \upharpoonright X$ is constant and for every $\rho \in \prod_{t \in u \backslash\{x\}} A_{t}$ there is $\nu \in X, \rho \subseteq \nu$.

Proof. Let for $j \in\{0,1\}, P_{j}=\left\{v: v \subseteq u\right.$ and there is $X \subseteq X^{*}$ such that $\mathbf{t} \upharpoonright X$ is constantly j and, for every $\rho \in \prod_{t \in v} A_{t}$ there is $\left.\nu \in X, \rho \subseteq \nu\right\}$. Clearly
(A) $u_{1} \in P_{j}, u_{0} \subseteq u_{1}$ implies $u_{0} \in P_{j}$.
[Why? Same X witnesses this.]
(B) $u_{1} \subseteq u \& u_{1} \notin P_{j}$ implies $u \backslash u_{1} \in P_{1-j}$
[Why? As $u_{1} \notin P_{j}$, for some $\rho \in \prod_{t \in u_{1}} A_{t}$ for no $\nu \in \prod_{t \in u \backslash u_{1}} A_{t}$ does $\mathbf{t}(\rho \cup \nu)=j$; let $X:=\left\{\nu \in \prod_{t \in u} A_{t}: \rho \subseteq \nu\right\}$, it is as required for $u \backslash u_{1}$.]
(C) $\emptyset \in P_{0} \cup P_{1}$.
[Why? Trivially.]
Case (i): $P_{0} \cup P_{1}$ is not an ideal.
So there are $u_{0}, u_{1} \in P_{0} \cup P_{1}$ with $v:=u_{0} \cup u_{1} \notin P_{0} \cup P_{1}$. By (A) without loss of generality $u_{0} \cap u_{1}=\emptyset$. Let $u_{2}=u \backslash v$, so $\left\langle u_{0}, u_{1}, u_{2}\right\rangle$ is a partition of u. Now by clause (B) we know that $u_{2} \in P_{0}$ (and to P_{1}) as $v=u \backslash u_{2}$ does not belong to P_{1} (and to P_{0}). Now we know $u_{0}, u_{1}, u_{2} \in P_{0} \cup P_{1}$, so for some $\left\langle j_{\ell}: \ell<3\right\rangle$ we have $u_{\ell} \in P_{j_{\ell}}$ for $\ell<3$, and let X_{ℓ} be a witness. Now check that clause (α) in the conclusion holds.
Case (ii): $P_{0} \cup P_{1}$ is an ideal.

If $u \in P_{0} \cup P_{1}$, then \mathbf{t} is constant so conclusion (α) is trivial, so assume not. By (B) above the ideal is a maximal ideal so it is principal (because u is finite), i.e. for some $x \in u, u \backslash\{x\} \in P_{0} \cup P_{1},\{x\} \notin P_{0} \cup P_{1}$ so we have finished. (Reflection shows we get more than required in (β) : reread the proof of (B)).

References

[Jec03] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, The third millennium edition, revised and expanded.
$\left[\mathrm{S}^{+} \mathrm{a}\right]$ S. Shelah et al., Tba, In preparation. Preliminary number: Sh:F2217.
$\left[\mathrm{S}^{+} \mathrm{b}\right]$, Tba, In preparation. Preliminary number: Sh:F1622.
[She] Saharon Shelah, Nice \aleph_{1} generated non-P-points, I, arXiv: 1112.0819.
[She98] , Proper and improper forcing, 2nd ed., Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1998. MR 1623206
[She20] , On $\operatorname{con}\left(\mathfrak{d}_{\lambda}>\operatorname{cov}_{\lambda}\right.$ (meagre)), Trans. Amer. Math. Soc. 373 (2020), no. 8, 53515369, arXiv: 0904.0817. MR 4127879

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA
Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Date: February 2, 2023.
 1991 Mathematics Subject Classification. Primary 03E05; Secondary: 03E35, 03E17.
 Key words and phrases. set theory, forcing, ultrafilters, P-point.
 First typed: September, 2014. Partially supported by National Science Foundation, Grant 0600940 and the US-Israel Binational Science Foundation, Grant 2010405, ISF 1838/19: The Israel Science Foundation (ISF) (2019-2023) and Rutgers 2018 DMS 1833363: NFS DMS Rutgers visitor program (PI S. Thomas) (2018-2022). Paper E79 on the Author's list. The author thanks Alice Leonhardt for the beautiful typing of earlier versions (up to 2019) and, in later versions, the author would like to thank the typist for his work and is also grateful for the generous funding of typing services donated by a person who wishes to remain anonymous. References like [She20, $2.7=\mathrm{La} 32]$ means the label of Th.2.7 is a32. The reader should note that the version in my website is usually more updated than the one in the mathematical arxiv.

[^1]: ${ }^{1}$ Do not try to understand the numbers 1000 and later 10,5 and clause (β) below: such demands in this direction are necessary, and no reason to check the exact demand. They are used in choosing a play of the game in the last paragraph of the proof.

