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Abstract. We investigate in ZFC what can be the family of large enough
cardinals µ in which an AEC K is categorical or even just solvable. We show

that for not few cardinals λ < µ there is a superlimit model in Kλ. Moreover,

our main result is that we can find a good λ-frame s, categorical in λ, such
that Ks ⊆ Kλ. We then show how to use [She09e] to get categoricity in every

large enough cardinality if K has cases of µ-amalgamation for enough µ and

2µ < 2µ
+1

< . . . < 2µ
+n

. . . for enough µ.

§ 0. Introduction

The hope which motivates this work is:

Conjecture 0.1. If K is an AEC then either for every large enough cardinal µ, K
is categorical in µ or for every large enough cardinal µ, K is not categorical in µ.

Why do we consider this a good dream? See [S+a].
Our main result is 4.10, it says that if K is categorical in µ (ignoring few excep-

tional µ-s) and λ ∈ [LST(K), µ) has countable cofinality and is a fix point of the
sequence of the iα-s, (moreover a limit of such cardinals) then there is a superlimit
M ∈ Kλ for which K[M ] = Kλ � {M ′ : M ′ ∼= M} has the amalgamation property
(and a good λ-frame s with Ks = K[M ]). Note that [She09e] seems to give a strong
indication that finding good λ-frames is a significant advance. This may be con-
sidered an unsatisfactory evidence of an advance, being too much phrased in the
work’s own terms. So we prove in §5 - §7 that for a restrictive context we make

a clear cut advance: assuming amalgamation and enough instances of 2λ < 2λ
+

occurs, much more than the conjecture holds, see [She] on background.
Note that as we try to get results on λ = iλ > LST(K), clearly it does not

particularly matter if for κ ∈ (LST(K), λ) we use, e.g. κ1 = κ+ or κ1 = i(2κ)+

(= i1,1(κ)) or even i1,7(κ).
After 4.10 the next natural step is to show that sλ has the better properties dealt

with in [She09c], [She09e], see [S+b]. Note that if we strengthen the assumption
on µ in §4 (to µ = µ<λ), then it relies on §1 only. Without this we need §2 (hence
5.1(1),(4)).

Originally we have used here categoricity assumptions but lately it seems de-
sirable to use a weaker one: (variants of) solvability. About being solvable, see
[She, §4(B)], [SV]. This seems better as it is a candidate for being an “outside”
generalization of being superstable (rather than of being categorical).

Here we use solvable when it does not require much change; for more on it see
[SV], [S+c] and on material delayed from here see [S+b].
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2 S. SHELAH

Note we can systematically use Ksc(θ)-lin, say with θ = ℵ0 or θ = LST(K) instead
of K lin; see Definition 0.14(8). In several respects this is better, but not enough to
make us use it. Also working more it seemed we can get rid of “wide”, “wide over”,
see Definition 0.14(1),(2),(3). If instead proving the existence of a good λ-frame it
suffices for us to prove the existence of almost good λ-frame, then the assumption
on λ can be somewhat weaker (fixed point instead limit of fix points of the sequence
of the iα’s). In §7 we sometimes give alternative quotations in [She99a] but do not
rely on it.

We thank Mor Doron, Esther Gruenhut, Haim Horowitz, Aviv Tatarski and Alex
Usvyatsov for their help in proofreading.

We thank Will Boney and Sebastien Vasey for pointing out (in 10.2016) a gap
in §2: in the proof of; we quote 2.9, however 2.9 speaks about L∞,θ-types whereas
we speak on generic such types. However, we can use 5.1 is a stronger way: though
the theorem is stated using λ × θ2 (in EM(I lim

θ2,λ×θ2 , ψ)) really we prove it for any

ζ ∈ [λ, λ+) of cofinality θ2 as stated explicitly in the beginning of the proof; see
details in the proof of 2.15 (also other minor changes were introduced).

Basic knowledge on infinitary logics is assumed, see e.g. [Dic85]; though the
reader may just read the definition here in [She, §5] and believe some quoted results.

Notation 0.2. Let i0,α(λ) = iα(λ) ..= λ +
∑
{iβ(λ) : β < α}. Let i1,α(λ) be

defined by induction on α: i1,0(λ) = λ, for limit β we let i1,β =
∑
γ<β

i1,γ and

i1,β+1(λ) = iµ where µ = (2i1,β(λ))+.

Remark 0.3. 1) For our purpose, usually i1,β+1(λ) = iδ(µ) where µ = i1,β(λ)

suffice, see e.g. [She09g, §1] in particular on δ(−). Generally µ = (i1,β(λ))+ is a
more natural definition, but:

(A) the difference is not significant, e.g. for α limit we get the same value

(B) our use of omitting types makes our choice more natural.

2) We do not use but it is natural to define iγ+1,0(λ) = λ, iγ+1,β+1(λ) = iγ,µ(λ)

with µ = (2iγ+1,β(λ))+, iγ+1,δ(λ) =
∑
β<δ

iγ+1,β(λ) and

iδ,0(λ) = sup{iγ,0(λ) : γ < δ} = λ,

iδ,β+1(λ) = iδ,β(iδ,β(λ)), iδ,δ1 = sup{iδ,α(λ) : α < δ1}; this is used, e.g. in
[She94, Ch.V].

Definition 0.4. Assume M is a model, τ = τM is its vocabulary and ∆ is a
language (or just a set of formulas) in some logic, in the vocabulary τ .

For any set A ⊆M and set ∆ of formulas in the vocabulary τM , let Sfrα∆(A,M)
(which we call the set of formal (∆, α)-types over A in M)1 be the set of p such
that

(A) p a set of formulas of the form ϕ(x̄, ā) where ϕ(x̄, ȳ) ∈ ∆, x̄ = 〈xi : i < α〉
and ā ∈ `g(ȳ)A

(B) if ∆ is closed under negation (which is the case we use here) then for
any ϕ(x̄, ȳ) ∈ ∆ with x̄ as above and ā ∈ `g(ȳ)A we have ϕ(x̄, ā) ∈ p or
¬ϕ(x̄, ā) ∈ p.

Recall

1And we may omit A if A = M .
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CATEGORICITY AND SOLVABILITY OF AEC, QUITE HIGHLY SH734 3

Definition 0.5. 1) For K an AEC we say M ∈ Kθ is a superlimit (model in K or
in Kθ) when:

(a) M is universal

(b) if δ is a limit ordinal < θ+ and 〈Mα : α ≤ δ〉 is ≤Kθ -increasing continuous
and α < δ ⇒Mα

∼= M then Mδ
∼= M (equivalently,

K
[M ]
θ = K � {N : N ∼= M}

is a θ-AEC)

(c) there is N such that M <K N ∈ Kθ and N is isomorphic to M .

2) We say M ∈ Kθ is locally superlimit when we weaken clause (a) to

(a)− if N ∈ Kθ is a ≤K-extension of M then N can be ≤K-embedded into M .

3) We say that M is pseudo superlimit when in part (1) clauses (b),(c) hold (but
we omit clause (a)); see 0.6(7) below.

3A) For M ∈ Kλ let K[M ] = K
[M ]
λ be K � {N : N ∼= M}.

4) In (1) we may say ‘globally superlimit’.

Observation 0.6. Assume (K is an AEC and) Kλ 6= ∅.
1) If K is categorical in λ and there are M <Kλ N then every M ∈ Kλ is

superlimit.
2) If every/some M ∈ Kλ is superlimit then every/some M ∈ Kλ is locally

superlimit.
3) If every/some M ∈ Kλ is locally superlimit then every/some M ∈ Kλ is pseudo

superlimit.
4) If some M ∈ Kλ is superlimit then every locally superlimit M ′ ∈ Kλ is iso-

morphic to M .
5) If M is superlimit in K then M is locally superlimit in K. If M is locally

superlimit in K, then M is pseudo superlimit in K. If M is locally superlimit in Kθ
then Kθ has the joint embedding property iff M is superlimit.

6) In Definition 0.5(1), clause (c) follows from

(c)− LST(K) ≤ θ and K≥θ+ 6= ∅.

7) M ∈ Kλ is pseudo-superlimit iff K[M ] is a λ-AEC and ≤K[M]
is not the equality.

Also Definition 0.5(3A) is compatible with [She09c, 0.33].

Definition 0.7. For an AEC K, let Ksl
µ ,K

ls
µ ,K

pl
µ be the class of M ∈ Kµ which

are superlimit, locally superlimit, pseudo superlimit respectively with the partial
orders ≤Ksl

µ
,≤Kls

µ
,≤Kpl

µ
being ≤K� Ksl

µ ,≤K� Kpl
µ respectively.

Definition 0.8. 1) Φ is proper for linear orders when:

(A) for some vocabulary τ = τΦ = τ(Φ),Φ is an ω-sequence, the nth element a
complete quantifier free n-type in the vocabulary τ

(B) for every linear order I there is a τ -model M denoted by EM(I,Φ), gen-
erated by {at : t ∈ I} such that s 6= t ⇒ as 6= at for s, t ∈ I and
〈at0 , . . . , atn−1〉 realizes the quantifier free n-type from clause (a) whenever
n < ω and t0 <I . . . <I tn−1; so really M is determined only up to isomor-
phism but we may ignore this and use I1 ⊆ J1 ⇒ EM(I1,Φ) ⊆ EM(I2,Φ).
We call 〈at : t ∈ I〉 “the” skeleton of M ; of course again “the” is an abuse
of notation as it is not necessarily unique.
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4 S. SHELAH

1A) If τ ⊆ τ(Φ) then we let EMτ (I,Φ) be the τ -reduct of EM(I,Φ).
2) Υor

κ [K] is the class of Φ proper for linear orders satisfying clauses (a)(α), (b), (c)
of Claim 0.9(1) below and |τ(Φ)| ≤ κ. The default value of κ is LST(K) and then
we may write Υor

K or Υor[K] and for simplicity always κ ≥ LST(K) (and so κ ≥ |τK|).
3) We define “Φ proper for K” similarly when in clause (b) of part (1) we demand

I ∈ K, so K is a class of τK-models, i.e.

(a) Φ is a function, giving for a quantifier free n-type in τK , a quantifier free
n-type in τΦ

(b)′ in clause (b) of part (1), the quantifier free type which 〈at0 , . . . , atn−1
〉

realizes in M is Φ(tpqf(〈t0, . . . , tn−1〉,∅,M)) for n < ω, t0, . . . , tn−1 ∈ I.

Claim 0.9. 1) Let K be an AEC and M ∈ K be of cardinality ≥ i1,1(LST(K))
recalling we naturally assume |τK| ≤ LST(K) as usual.

Then there is a Φ such that Φ is proper for linear orders and:

(a) (α) τK ⊆ τΦ,
(β) |τΦ| = LST(K) + |τK|

(b) for any linear order I the model EM(I,Φ) has cardinality |τ(Φ)|+ |I| and
we have EMτ(K)(I,Φ) ∈ K

(c) for any linear orders I ⊆ J we have EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ)

(d) for every finite linear order I, the model EMτ(K)(I,Φ) can be ≤K-embedded
into M .

2) If we allow LST(K) < |τK| and there is M ∈ K of cardinality ≥ i1,1(LST(K) +
|τK|), then there is Φ ∈ Υor

LST(K)+|τ(Φ)|[K] such that EM(I,Φ) has cardinality ≤
LST(K) for I finite. Hence E has ≤ 2LST(K) equivalence classes where E = {(P1, P2) :

P1, P2 ∈ τΦ and P
EM(I,Φ)
1 = P

EM(I,Φ)
2 for every linear order I}.

3) Actually having a model of cardinality ≥ iα for every α < (2LST(K)+|τ(K)|)+

suffice (in part (2)).

Proof. Follows from the existence of a representation of K as a PCµ,2µ -class when
µ = LST(K) + |τ(K)| in [She09a, 1.4(3),(4),(5)] and [She09a, 1.8] (or see [She99a,
0.6]). �0.9

Remark 0.10. Note that some of the definitions and claims below will be used
only in remarks: K

sc(κ)
θ from 0.14(8), in 1.7; and some only in §6,§7 (and part

of §5 needed for it): Υlin
κ [2] from 0.11(5) (and even less Υlin

κ [α(∗)] from Definition
0.14(9)). Also, the use of ≤⊗κ ,≤ie

κ ,≤⊕κ is marginal.

Definition 0.11. We define partial orders ≤⊕κ ,≤ie
κ and ≤⊗κ on Υ or

κ [K] (for κ ≥
LST(K)) as follows:
1) Ψ1 ≤⊕κ Ψ2 if τ(Ψ1) ⊆ τ(Ψ2) and EMτ(K)(I,Ψ1) ≤K EMτ(K)(I,Ψ2) and EM(I,Ψ1) =
EMτ(Ψ1)(I,Ψ1) ⊆ EMτ(Ψ1)(I,Ψ2) for any linear order I.
Again for κ = LST(K) we may drop the κ.
2) For Φ1,Φ2 ∈ Υor

κ [K], we say Φ2 is an inessential extension of Φ1 and write
Φ1 ≤ie

κ Φ2 if Φ1 ≤⊕κ Φ2 and for every linear order I, we have (note: there may be
more function symbols in τ(Φ2)!)

EMτ(K)(I,Φ1) = EMτ(K)(I,Φ2).

3) Let Υlin
κ be the class of Ψ proper for linear order and (producing a linear order
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extending the original one, i.e.) such that:

(A) τ(Ψ) has cardinality ≤ κ and the two-place predicate < belongs to τ(Ψ)

(B) EM{<}(I,Ψ) is a linear order which is an extension of I in the sense that
EM(I,Φ) |= “as < at” iff I |= “s < t”; in fact we usually stipulate [t ∈ I ⇒
at = t].

4) Φ1 ≤⊗κ Φ2 iff there is Ψ such that

(A) Ψ ∈ Υlin
κ

(B) Φ` ∈ Υor
κ [K] for ` = 1, 2

(C) Φ′2 ≤ie
κ Φ2 where Φ′2 = Ψ ◦ Φ1, i.e. for every linear order I we have

EM(I,Φ′2) = EM(EM{<}(I,Ψ),Φ1).

5) Υlin
κ [2] is the class of Ψ proper for K lin

τ∗2
and producing structures from K lin

τ∗2
extending the originals, i.e.

(A) τ∗2 = {<,P0, P1} where P0, P1 are unary predicates, < a binary predicate

(B) K lin
τ∗2

= {M : M a τ∗2 -model, <M a linear order, 〈PM0 , PM1 〉 a partition of M}

(C) the two-place predicate < and the one place predicates P0, P1 belong to
τ(Ψ)

(D) if I ∈ K lin
τ∗2

then M = EMτ∗2
(I,Φ) belongs to K lin

τ∗2
, <M is a linear order,

I |= s < t⇒M |= as < at, and t ∈ P I` ⇒ a` ∈ PM` .

6) Similarly Υlin
κ [α(∗)] using K lin

τ∗
α(∗)

(see below in 0.14(9)).

Claim 0.12. Assume Φ ∈ Υor
K .

1) If π is an isomorphism from the linear order I1 onto the linear order I2 then
it induces a unique isomorphism π̂ from M1 = EM(I1,Φ) onto M2 = EM(I2,Φ)
such that:

(A) π̂(at) = aπ(t) for t ∈ I
(B) π̂(σM1(at0 , . . . , atn−1

)) = σM2(aπ(t0), . . . , aπ(tn−1)) where σ(x0, . . . , xn−1) is
a τΦ-term and t0, . . . , tn−1 ∈ I1.

2) If π is an automorphism of the linear order I then it induces a unique automor-
phism π̂ of EM(I,Φ) (as above with I1 = I = I2).

Remark 0.13. 1) So in 0.11(2) we allow further expansion by functions definable
from earlier ones (composition or even definition by cases), as long as the number
is ≤ κ.

2) Of course, in 0.12 is true for trivial K.

So we may be interested in some classes of linear orders; below 0.14(1) is used much
more than the others and also 0.14(5),(6) are used not so few times, in particular
parts (8),(9) are not used till §5.

Definition 0.14. 1) A linear order I is κ-wide when for every θ < κ there is a
monotonic sequence of length θ+ in I.

2) A linear order I is κ-wider if |I| ≥ i1,1(κ).
3) I2 is κ-wide over I1 if I1 ⊆ I2 and for every θ < κ there is a convex subset of

I2 disjoint to I1 which is θ+-wide. We say “I2 is wide over I1” if “I2 is |I1|-wide
over I2”.

4) K lin[K lin
λ ] is the class of linear orders [of cardinality λ].
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6 S. SHELAH

5) Let Kflin be the class of infinite linear order I such that every interval has
cardinality |I| and is with neither first nor last elements.

6) Let the two-place relation ≤Kflin on Kflin be defined by: I ≤Kflin J iff I, J ∈
Kflin and I ⊆ J and either I = J or J \ I is a dense subset of J and for every
t ∈ J \ I, I can be embedded into J � {s ∈ J \ I : (∀r ∈ I)(s <J r ≡ t <J r)}.

6A) Let the two-place relation ≤∗Kflin on K lin be defined similarly omitting “I ∈
Kflin” (but not J ∈ Kflin).

7) Kflin
θ = {I ∈ Kflin : |I| = θ} and ≤Kflin

θ
= ≤Kflin � Kflin

θ .

8) K
sc(κ)−lin
θ is the class of linear orders of cardinality θ which are the union

of ≤ κ scattered linear orders (recalling I is scattered when there is no J ⊆ I

isomorphic to the rationals). If κ = ℵ0 we may omit it (i.e. write Ksc−lin
θ ).

9) Let τ∗α(∗) = {<} ∪ {Pi : i < α(∗)}, Pi a monadic predicate, K lin
τ∗
α(∗)

= {I : I a

τ∗α(∗)-model, <I a linear order and 〈P Ii : i < α(∗)〉 a partition of I}. If α(∗) = 1 we

may omit P I0 , so I is a linear order, so any ordinal can be treated as a member of
K lin
τ∗1

.

Observation 0.15. 1) If |I| > 2θ then I is θ+-wide.
2) If |I| ≥ λ and λ is a strong limit cardinal then I is λ-wide.
3) (Kflin

θ ,≤Kflin
θ

) almost is a θ-AEC, only smoothness may fail.

4) If I1 ∈ K lin then for some I2 ∈ Kflin we have: |I2| = |I1|+ℵ0 and I1 ≤∗Kflin I2;

and (∀I0)[I0 ⊆ I1 ∧ I0 ∈ Kflin ⇒ I0 ≤Kflin I2].
5) If I1 is κ-wide and I1 <Kflin I2 then I2 is κ-wide over I2.

Remark 0.16. If in the definition of ≤Kflin in 0.14(6) we can add

“(∀t ∈ I)(∃t′ ∈ J)
[
t′ <J t ∧ (∀s ∈ I)(s <I t⇒ s <J t

′)
]
”

(and its dual, i.e. inverting the order). So we can strengthen 0.14(6) by the demand
above.

Proof. 1) By Erdős-Rado Theorem, i.e., by (2θ)+ → (θ+)2
2.

2) Follows by part (1).
3),4),5) Easy. �0.15

Claim 0.17. 1) (Υ or
κ[K],≤

⊗
κ ), (Υor

κ [K], <ie
κ ) and (Υ or

κ[K],≤
⊕) are partial orders (and

≤⊗κ ,≤ie
κ⊆≤⊕κ ).

2) If Φi ∈ Υor
κ [K] and the sequence 〈Φi : i < δ〉 is a ≤⊗κ -increasing sequence,

δ < κ+, then it has a <⊗κ -l.u.b. Φ ∈ Υor
κ [K], and EM(I,Φ) =

⋃
i<δ

EM(I,Φi) for

every linear order I, i.e. τ(Φ) =
⋃
{τ(Φi) : i < δ} and for every j < δ we have

EMτ(Φj)(I,Φ) =
⋃{

EMτ(Φi)(I,Φ) : i ∈ [j, δ)
}

.

3) Similarly for <⊕κ and ≤ie
κ .

4) If Φ ∈ Υlin
κ and I ∈ K lin then I ⊆ EM{<}(I,Φ) as linear orders stipulating

(as in 0.11(3)) that at = t.

Proof. Easy. �0.17

Recall various well known facts on L∞,θ.
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Claim 0.18. 1) If M,N are τ -models of cardinality λ, cf(λ) = ℵ0 and M ≡L∞,λ N
then M ∼= N .

2) If M,N are τ -models then M ≡L∞,θ N iff there is F such that

~ (a) (α) each f ∈ F is a partial isomorphism from M to N
(β) F 6= ∅
(γ) if f ∈ F and A ⊆ dom(f) then f � A ∈ F

(b) if f ∈ F , A ∈ [M ]<θ and B ∈ [N ]<θ then for some g ∈ F we have
f ⊆ g, A ⊆ dom(g), B ⊆ rang(g).

2A) If M ⊆ N are τ -models, then M ≺L∞,θ N iff for some F clauses ~(a), (b) hold
together with

(c) if A ∈ [M ]<θ then for some f ∈ F we have idA ⊆ f .

2B) In part (2) (and part (2A)), we can omit subclause (γ) of clause (a), and
if F satisfies (a)(α), (β) + (b) (and (c)), then also F ′ = {f � A : f ∈ F and
A ⊆ dom(f)} satisfies the demands.

2C) Let M,N be τ -models and define F = {f : for some ā ∈ θ>M , f is a function
from rang(ā) to N such that (M, ā) ≡L∞,θ (N, f(ā))} then M ≡L∞,θ N iff F 6= ∅
iff F satisfies clauses (a),(b) of ~.

3) If M is a τ -model, θ = cf(θ) and µ = ‖M‖<θ then for some γ < µ+ and
∆ ⊆ Lµ+,θ(τ) of cardinality ≤ µ such that each ϕ(x̄) ∈ ∆ is of quantifier depth
< γ, we have

(A) for ā, b̄ ∈ θ>M we have (M, ā) ≡L∞,θ (M, b̄) iff tp∆(ā,∅,M) = tp∆(ā,∅,M)

(B) for any τ -model N we have N ≡L∞,θ M iff {tp∆(ā,∅, N) : ā ∈ θ>N} =

{tp∆(ā,∅,M) : ā ∈ θ>M}.
4) Assume χ > µ = µ<κ and x ∈ H(χ). There is B such that (in fact clauses
(d)-(g) follow from clauses (a),(b),(c))

(a) B ≺ (H(χ),∈) has cardinality µ,

(b) µ+ 1 ⊆ B and [B]<κ ⊆ B and x ∈ B

(c) B ≺Lκ,κ (H(χ),∈)

(d) if K is an AEC with LST(K) + |τ(K)| ≤ µ and K ∈ B (which means
{(M,N) : M ≤K N has universes ⊆ LST(K)} ∈ B) then
(α) M ∈ K ∩B⇒M � B ..= M � (B ∩M) ≤K M

(β) if M ≤K N belongs to B then M � B ≤K N � B
(e) if K is as in (d), Φ ∈ Υor

≤µ[K] ∩ B and I ∈ B is a linear order and so

M = EM(I,Φ) ∈ B then I ′ = I � B ⊆ I and M � B = EM(I ′,Φ) so
(M � τ(K)) � B = EMτ(K)(I

′,Φ) ≤K M � τ(K)

(f) if |τ | ≤ µ, τ ∈ B and M,N ∈ B are τ -models, then
(α) M � B ≺Lκ,κ[τ ] M

(β) M 6≡L∞,κ[τ ] N iff (M � B) 6≡L∞,κ[τ ] (N � B)

(γ) if M ⊆ N then (M ≺L∞,κ(τ) N) iff (M � B) ≺L∞,κ(τ) (N � B); this
applies also to (M, ā), (N, ā) for ā ∈ κ>M

(g) if I ∈ Kflin then I1 ∩ B ∈ Kflin and if I1 <
∗
Kflin I2 then (I1 ∩ B) <∗Kflin

(I2 ∩B).

Proof. 1)-3) and 4)(a),(b),(c) Well known, e.g. see [Dic85].
4) Clauses (d),(e),(f): as in 0.9(1), i.e. by absoluteness. Also clause (g) should

be clear. �0.18

Remark 0.19. 1) We will be able to add, in 0.18(4):

Paper Sh:734, version 2023-02-03. See https://shelah.logic.at/papers/734/ for possible updates.



8 S. SHELAH

(h) if K is as in clause (d) and τ = τK then in clause (f) we can replace L∞,κ(τ)
by L∞,κ[K] and Lκ,κ(τ) by Lκ,κ[K], see Definition 1.10 and Fact 1.11(5).

2) We use part (4) in 1.27(3).

Definition 0.20. For a model M and for a set ∆ of formulas in the vocabulary of
M , x̄ = 〈xi : i < α〉, A ⊆M and ā ∈ αM , let the ∆-type of ā over A in M be

tp∆(ā, A,M) = {ϕ(x̄, b̄) : M |= ϕ[ā, b̄] where ϕ = ϕ(x̄, ȳ) ∈ ∆ and b̄ ∈ `g(ȳ)A}.
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§ 1. §1 Amalgamation in K∗λ

Our aim is to investigate what is implied by 1.3 below but instead of assuming
it we shall shortly assume only some of its consequences. For our purpose here,
for θ ∈ [LST(K), λ), λ = iλ it does not really matter if we use κ = i1,1(θ) or
κ = i1,1(in(θ)) or i1,n(θ), as we are trying to analyze models in Kλ.

Remark 1.1. 1) We can in our claims use only Φ ∈ Υor
K = Υor

LST(K)[K] because for

every θ ≥ LST(K) we can replace K by K≥θ as LST(K≥θ) = θ when K≥θ 6= ∅, of
course.

2) As usual we assume |τK| ≤ LST(K) just for convenience, otherwise we should
just replace LST(K) by LST(K) + |τK|.

Hypothesis 1.2. (A) K = (K,≤K) is an AEC with vocabulary τ = τ(K) (and
we can assume |τ | ≤ LST(K) for notational simplicity)

(B) K has arbitrarily large models (equivalently has a model of cardinality ≥
i1,1(LST(K))), not used, e.g. in 1.11, 1.12 but from 1.13 on it is used
extensively.

Definition 1.3. We say (µ, λ) or really (µ, λ,Φ) is a weak/strong/pseudo K-
candidate when (weak is the default value):

(a) µ > λ = iλ > LST(K) (e.g. the first beth fix point > LST(K), see 3.4; in
the main case λ has cofinality ℵ0)

(b) K categorical in µ and Φ ∈ Υor
K

or just

(b)− K is weakly/strongly/pseudo solvable in µ and Φ ∈ Υor
K witnesses it; see

below.

Definition 1.4. 1) We say K is weakly (µ, κ)-solvable when µ ≥ κ ≥ LST(K) and
there is Φ ∈ Υor

κ [K] witnessing it, which means that Φ ∈ Υor
κ [K] and EMτ(K)(I,Φ)

is a locally superlimit member of Kµ for every linear order I of cardinality µ. We
may say (K,Φ) is weakly (µ, κ)-solvable and we may say Φ witness that K is weakly
(µ, κ)-solvable.

If κ = LST(K) we may omit it, saying K or (K,Φ) is weakly µ-solvable in µ.
2) K is strongly (µ, κ)-solvable when µ ≥ κ ≥ LST(K) and some Φ ∈ Υor

κ [K]
witness it which means that if I ∈ K lin

µ then EMτ [K](I,Φ) is superlimit (for Kµ).
We use the conventions from part (1).

3) We say K is pseudo (µ, κ)-solvable when µ ≥ κ ≥ LST(K) and there is Φ ∈
Υor
κ [K] witnessing it which means that for some µ-AEC K′ with no ≤K′-maximal

member, we have M ∈ K′ iff M ∼= EMτ(K)(I,Φ) for some I ∈ K lin
µ iff M ∼=

EMτ(K)(I,Φ) for every I ∈ K lin
µ . We use the conventions from part (1).

4) Let (µ, κ)-solvable mean weakly (µ, κ)-solvable, etc., (including 1.3)

Claim 1.5. 1) In Definition 1.3, clause (b) implies clause (b)−. Also in Definition
1.4 “K is strongly (µ, κ)-solvable” implies “K is weakly (µ, κ)-solvable” which implies
“K is pseudo (µ, κ)-solvable”. Similarly for (K,Φ).

2) Assume Φ ∈ Υor
κ [K]; if clause (b)− of 1.3 or just İ(µ,K) < 2µ, or just 2µ >

İ(µ, {EMτ(K)(I,Φ) : I ∈ K lin
µ }) for some µ satisfying LST(K) < κ+ < µ then we

can deduce that
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(∗) Φ (really (K,Φ)) has the κ-non-order property, where the κ-non-order prop-
erty means that:

if I is a linear order of cardinality κ, t̄1, t̄2 ∈ κI form a ∆-system pair
(see below) and 〈σi(x̄) : i < κ〉 lists the τ(Φ)-terms (with the sequence
x̄ of variables being 〈xi : i < κ〉) and 〈at : t ∈ I〉 is “the” indiscernible
sequence generating EM(I,Φ) (i.e. as usual 〈at : t ∈ I〉 is “the” skeleton of
EM(I,Φ), so generating it, see Definition 0.8) then for some J ⊇ I there
is an automorphism of EMτ(K)(J,Φ) which exchanges 〈σi(〈at1i : i < κ〉) :

i < κ〉 and 〈σi(〈at2i : i < κ〉) : i < κ〉.
where
� t̄1, t̄2 ∈ αI is a ∆-system pair when for some J ⊇ I there are t̄ζ ∈ αJ

for ζ ∈ κ \ {1, 2} such that 〈t̄α : α < κ〉 is an indiscernible sequence
for quantifier free formulas in the linear order J .

Proof. 1) The first sentence holds by Claim 0.9(1) and Definition 0.8 (and Claim
0.6). The second and third sentences follows by 0.6.

2) Otherwise we get a contradiction by [She87b, Ch.III] or better [Shear, III].
�1.4

Definition 1.6. 1) If M′ is a class of linear orders and Φ ∈ Υor
κ [K] then we let

K[M′,Φ] = {EMτ(K)(I,Φ) : I ∈M′}.
2) Let K

u(κ)-lin
θ be the class of linear orders I of cardinality θ such that for

some scattered2 linear order J and Φ proper for K lin such that < belongs to τΦ
and |τΦ| ≤ κ we have I is embeddable into EM{<}(J,Φ). If we omit κ we mean
LST(K). If κ = ℵ0 we may omit it.

Remark 1.7. 1) Note that in Definition 1.4(1) we can restrict ourselves to I ∈
K

sc(θ)-lin
λ , see 0.14(8) and even I ∈ Ku(θ)-lin see 1.6(2), i.e., assume 2µ > İ(µ,K[M′,Φ]),

for M′ = K
sc(θ)-lin
λ or M′ = K

u(θ)-lin
λ and restrict the conclusion (∗) to I ∈

Ksc(θ)-lin. A gain is that, if λ > θ, every I ∈ Ksc(θ)-lin
λ is λ-wide so later K∗ = K∗∗,

and being solvable is a weaker demand. But it is less natural. Anyhow we presently
do not deal with this.

1A) Note that K
sc(θ)-lin
λ ⊆ Ku(θ)-lin

λ .
2) An aim of 1.8 below is to show that: by changing Φ instead of assuming

I1 ⊂ I2 ∧ (I2 is κ-wide over I1) it suffices to assume I1 ⊂ I2 ∧ (I2 is κ-wide).

Claim 1.8. For every Φ1 ∈ Υor
κ [K] there is Φ2 such that

(A) Φ2 ∈ Υor
κ [K] and if Φ1 witnesses K is weakly/strongly/pseudo (λ, κ)-solvable

then so does Φ2

(B) τΦ1
⊆ τΦ2

and |τΦ2
| = |τΦ1

|+ ℵ0

(C) for any I2 ∈ K lin there are I1 and h such that:
(α) I1 ∈ K lin and even I1 ∈ Kflin, see 0.14(5)

(β) h is an embedding of I2 into I1

(γ) there is an isomorphism f from EMτ(Φ1)(I2,Φ2) onto EM(I1,Φ1) such
that f(at) = ah(t) for t ∈ I2

2i.e. one into which the rational order cannot be embedded
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(δ) if J1 = I1 � rang(h) and we let

E = {(t1, t2) : t1, t2 ∈ I1 \ J1 and (∀s ∈ J1)(s < t1 ≡ s < t2)}

then E is an equivalence relation, each equivalence class has ≥ |I2|
members, and J1 ≤Kflin I1 (see 0.14(6)).

(ε) [Not used] if ∅ 6= J2 ⊆ I2,

J1 =
{
t ∈ I1 : for some τ(Φ2)-term σ(x0, . . . , xn−1)

and t0, . . . , tn−1 ∈ J2 we have

f−1(at) = σEM(I2,Φ2)(at0 , . . . , atn−1
)
}

and J ′1 ⊆ rang(h) \ J1 and t ∈ J ′1 then {s ∈ t/E : f−1(as) belongs to
the Skolem hull of {f−1(ar) : r ∈ J ′1} in EM(I2,Φ)} has cardinality
≥ |J ′1| and J ′1 and its inverse can be embedded into it; in fact, I1 and
its inverse are embeddable into any interval of I2.

Remark 1.9. 1) We can express it by ≤⊗κ , see 0.11(4). So for some Ψ proper for
linear orders such that τΨ is countable, the two-place predicate < belongs to τΨ
and above EM{<}(I2,Ψ) is I1.

2) In fact, J2 ⊂ I2 ⇒ EM{<}(J2,Ψ) <Kflin EM{<}(I2,Ψ) and I2 <
∗
Kflin EM{<}(I2,Φ)

when we identify t ∈ I2 with at.

Proof. For I2 ∈ K lin let the set of elements of I1 be {η : η is a finite sequence of
elements from (Z \ {0})× I2}. For η ∈ I1 let (`η,k, tη,k) be η(k) for k < `g(η).

Lastly, I1 is ordered by: η1 < η2 iff for some n one of the following occurs

~ (a) η1 � n = η2 � n, `g(η1) > n, `g(η2) > n, and `η1,n < `η2,n

(b) η1 � n = η2 � n, `g(η1) > n, `g(η2) > n, `η1,n = `η2,n > 0, and
tη1,n <I2 tη2,n

(c) η1 � n = η2 � n, `g(η1) > n, `g(η2) > n, `η1,n = `η2,n < 0, and
tη2,n <I2 tη1,n

(d) η1 � n = η2 � n, `g(η1) = n, `g(η2) > n, and `η2,n > 0

(e) η1 � n = η2 � n, `g(η1) > n, `g(η2) = n, and `η1,n < 0.

We identify t ∈ I1 with the pair (1, t). Now check. �1.8

Definition 1.10. 1) Let the language Lθ,∂ [K] or Lθ,∂,K where θ ≥ ∂ ≥ ℵ0 and θ is
possibly ∞, be defined like the infinitary logic Lθ,∂(τK), except that we deal only
with models from K and we add for i∗ < ∂ the atomic formula “{xi : i < i∗} is the
universe of a ≤K-submodel”, with obvious syntax and semantics. Of course, it is
interesting normally only for ∂ > LST(K) and recall that any formula has < ∂ free
variables.

2) For M a τK-model and N ∈ K let M ≺Lθ,∂ [K] N means that M ⊆ N and if

ϕ(x̄, ȳ) is a formula from Lθ,∂ [K] and N |= (∃x̄)ϕ(x̄, b̄) where b̄ ∈ `g(ȳ)M , then for

some ā ∈ `g(x̄)M we have N |= ϕ[ā, b̄].

Fact 1.11. 1) If θ ≥ ∂ > LST(K) and M,N are τK-models and N ∈ K and
M ≺Lθ,∂ [K] N , then M ≤K N and M ∈ K.

2) The relation ≺Lθ,∂ [K] can also be defined as usual: M ≺Lθ,∂ [K] N iff M,N ∈
K,M ⊆ N and for every ϕ(x̄) ∈ Lθ,∂ [K] and ā ∈ `g(x̄)M we have M |= ϕ[ā] iff
N |= ϕ[ā].
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3) If N ∈ K and M is a τK-model satisfying M ≺L∞,κ N and κ > LST(K) then
M ∈ K,M ≤K N and M ≺L∞,κ[K] N .

4) If N ∈ K,M a τK-model and M ≡L∞,κ N where κ > LST(K) then M ∈ K
and M ≡L∞,κ[K] N .

5) The parallel of 0.18(2) holds for L∞,κ[K], i.e. M ≡L∞,κ[K] N iff there is F
satisfying clauses (a),(b) there and

(d) if f ∈ F then
(α) M � dom(f) ≤K M

(β) N � rang(f) ≤K M .

6) Also the parallel of 0.18(2A) holds for L∞,κ[K].
7) The parallel of 0.18(4) holds for L∞,κ[K].

Proof. Part (1) is straight (knowing [She09a, §1] or [She87a, §1]). Part (2) is proved
as in the Tarski-Vaught criterion and parts (5),(6),(7) are proved as in 0.18.

Toward proving parts (3),(4) we first assume just

�1 M,N are τK-models, N ∈ K and M ≡L∞,κ N and κ > LST(K) and
λ ∈ [LST(K), κ)

and we define:

� (a) I = Iλ ={
(f,M ′, N ′) : M ′ ⊆M, N ′ ⊆ N, ‖M ′‖ ≤ λ,

f : M ′ → N ′ is an isomorphism, and

(M, ā) ≡L∞,κ (N, f(ā)), where ā lists M ′.
}

(Note that we do not require M ′, N ′ ∈ K.)
(b) for t ∈ I let t = (ft,Mt, Nt)
(c) for ` = 0, 1, 2 we define the two-place relation ≤`I on I as follows. Let

s ≤`I t hold iff:
(α) ` = 0 and Ms ⊆Mt ∧Ns ⊆ Nt
(β) ` = 1 and (Ms ≤K Mt ∨Ms = Mt) ∧ (Ns ≤K Nt ∨Ns = Nt)

(γ) ` = 2 and fs ⊆ ft
(d) I1 = I1

λ
..= {t ∈ I : Nt ≤K N} and let ≤`I1=≤`I� I1 for ` = 0, 1, 2.

Now easily

(∗)0 (α) I 6= ∅ is partially ordered by ≤`I for ` = 0, 1, 2
(β) s ≤1

I t⇒ s ≤0
I t

(γ) s ≤2
I t⇒ s ≤0

I t.

[Why? Straightforward; e.g. I 6= ∅ by 0.18(2).]

(∗)1 if t ∈ I1 then Mt ∈ K≤λ and Nt ∈ K≤λ hence for r, s ∈ I2 we have r1 ≤1
Is
s

iff Mr ≤K Ms ∧Nr ≤K Ns).

[Why? As t ∈ I1 by the definition of I we have Nt ∈ K≤λ (because Nt ≤K N) and
Mt ∈ K≤λ as ft is an isomorphism from Mt onto Nt.]

(∗)2 if s ∈ I, A ∈ [M ]≤λ and B ∈ [N ]≤λ then for some t we have s ≤2
I t and

A ⊆Mt and B ⊆ Nt.
[Why? By the properties of ≡L∞,κ , see 0.18(2C) as κ > λ,M ≡L∞,κ N and the
definition of I.]

(∗)3 if s ≤2
I1
t then s ≤1

I t, i.e. Ms ≤K Mt and Ns ≤K Nt.

[Why? As s, t ∈ I1 we know that Ns ≤K N and Nt ≤K N and as s ≤2
I t we have

fs ⊆ ft hence Ns ⊆ Nt. By axiom V of AEC it follows that Ns ≤K Nt. Now
Ms ≤K Mt as ft is an isomorphism from Mt onto Nt mapping Ms onto Ns (as it
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extends fs by the definition of ≤2
I) and ≤K is preserved by any isomorphism. So

by the definition of ≤1
I we are done.]

(∗)4 if s ∈ I then for some t ∈ I1 we have s ≤2
I t (hence I1 6= ∅).

[Why? First, choose N ′ ≤K N of cardinality ≤ λ such that Ns ⊆ N ′, (possibly by
the basic properties of AEC (see [She09a, §1] or [She09f])). Second, we can find
t ∈ I such that Nt = N ′ ∧ fs ⊆ ft by the characterization of ≡L∞,κ as in the proof

of (∗)2. So s ≤2
I t by the definition of ≤2

I and Nt = N ′ ≤K N hence t ∈ I1 as
required. Lastly, I1 6= ∅ as by (∗)0(α) we know that I 6= ∅ and apply what we
have just proved.]

(∗)5 if s ≤0
I1
t then Ns ≤K Nt.

[Why? As in the proof of (∗)3 by Ax.V of AEC we have Ns ≤K Nt (not the part
on the M ’s!)]

(∗)6 if s ∈ I1, A ∈ [M ]≤λ and B ∈ [N ]≤λ then for some t we have s ≤2
I1
t and

A ⊆Mt, B ⊆ Nt.
[Why? By (∗)2 there is t1 such that s ≤2

I t1, A ⊆Mt1 and B ⊆ Nt1 . By (∗)4 there
is t ∈ I1 such that t1 ≤2

I t hence by (∗)0(α) we have s ≤2
I t. As s, t ∈ I1 this implies

s ≤2
I1
t.]

Note that it is unreasonable to have “(I1,≤2
I1

) is directed” but

(∗)7 (I1,≤1
I1

) is directed.

[Why? Let s1, s2 ∈ I1. We now choose tn by induction on n < ω such that

(a) tn ∈ I1
(b) Mtn includes ∪{Mtk : k < n} ∪Ms1 ∪Ms2 if n ≥ 2

(c) Ntn includes ∪{Ntk : k < n} ∪Ns1 ∪Ns2 if n ≥ 2

(d) t0 = s1

(e) t1 = s2

(f) if n = m+ 1 ≥ 2 then tm ≤0
I1
tn

(g) if n = m+ 2 then tm ≤2
I tn hence tm ≤2

I1
tn.

For n = 0, 1 this is trivial. For n = m+ 2 ≥ 2, apply (∗)6 with

tm,
⋃
{Mtk : k ≤ m+ 1},

⋃
{Ntk : k ≤ m+ 1}

here standing for s,A,B there, getting tn so we get tn ∈ I1. In particular, tm ≤2
I1
tn,

so clause (a) is satisfied by tn. By the choice of tn and as s1 = t0, s2 = t1, clauses
(b) + (c) hold for tn. By the choice of tn, obviously also clause (g) holds. Now why
does clause (f) holds (i.e. tm+1 ≤0

I tn)? It follows from clauses (a),(b),(c), so tn is
as required. Hence we have carried the induction. Let N∗ =

⋃
{Ntn : 2 ≤ n < ω},

so clearly by (∗)5 and clause (f) we have Ntn ≤K Ntn+1
for n ≥ 1, and clearly

Mtn ⊆ Mtn+1 for n ≥ 1. Let M∗ =
⋃
{Mtn : 2 ≤ n < ω}. Note that by (∗)3 and

clause (g) we have Mtn ≤K Mtn+2 , so 〈Mtn+2 : n < ω〉 is ⊆-increasing, and for
` = 0, 1 the sequence 〈Mt2n+`

: n < ω〉 is ≤K-increasing with union M∗, hence by
the basic properties of AEC we have Mt2n+`

≤K M∗. So Ms1 = Mt0 ≤K M∗ and
Ms2 = Mt1 ≤K M

∗. Now Ms1 ,Ms2 ⊆Mt2 ≤K M
∗ hence Ms1 ,Ms2 ≤K Mt2 . Recall

that Ns1 = Nt0 ≤K Nt2 was proved above and Ns2 = Nt1 ≤K Nt2 was also proved
above so t2 is a common ≤1

I -upper bound of s1, s2 as required.]

(∗)8 if s ≤0
I1
t then s ≤1

I1
t.

[Why? By (∗)7 there is t1 ∈ I1 which is a common ≤1
I1

-upper bound of s, t. So

Ms ⊆ Mt (as s ≤0
I1
t) and Ms ≤K Mt1 (as s ≤1

I1
t1) and Mt ≤K Mt1 (as t ≤1

I1
t1).

Together by axiom V of AEC we get Ms ≤K Mt and by (∗)5 we have Ns ≤K Nt.
Together s ≤1

I1
t as required.]
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(∗)9

〈
Ms : s ∈ (I1,≤1

I1
)
〉

is ≤K-increasing, (I1,≤1
I1

) is directed and⋃
{Ms : s ∈ I1} = M.

[Why? The first phrase by the definition of ≤1
I1

in clause (c)(β) of �, the second
by (∗)7 and the third by (∗)6 + (∗)4.]

By the basic properties of AEC (see [She09a, 1.6]) from (∗)9 we deduce

� (a) M ∈ K
(b) t ∈ I1 ⇒Mt ≤K M .

Now we strengthen the assumption �1 to

�2 The demands in �1 and M ≺L∞,κ[τK] N .

We note

~1 (a) If ā ∈ αM , |α|+ LST(K) ≤ λ < κ then for some t ∈ Iλ, ft(ā) = ā.
(b) If M ′ ⊆M and ‖M ′‖ ≤ λ then (idM ′ ,M

′,M ′) ∈ Iλ.
(c) If M1 ⊆ N1 ⊆ N and M1 ⊆ M and ‖N1‖ ≤ λ then for some t ∈ I we

have Nt = N1 and idM1
⊆ ft.

[Why? Clause (a) is a special case of clause (b) and clause (b) is a special case
of clause (c). Lastly, clause (c) follows from the assumption M ≺L∞,κ[τK] N and
0.18(2A),(2B).]

We next shall prove

~2 M ≤K N .

By [She09a, 1.6] and (∗)9 above for proving ~2 it suffices to prove:

~3 if s ∈ I1 then Ms ≤K N .

[Why ~3 holds? As M ⊆ N there is N∗ ≤K N of cardinality ≤ λ such that
Ms ∪ Ns ⊆ N∗. By ~1(c) there is t ∈ I such that Nt = N∗ and idMs

⊆ ft. As
N∗ ≤K N it follows that t ∈ I1. So by�1 ⇒ �(b) applied to s and to t we can deduce
Ms ≤K M and Mt ≤K M . But as idMs

⊆ ft it follows that Ms ⊆ dom(ft) = Mt

hence by Ax.V of AEC we know that Ms ≤K Mt. But as t ∈ I clearly ft is an
isomorphism from Mt onto Nt hence ft(Ms) ≤K ft(Mt) = Nt, and as idMs ⊆ ft
this means that Ms = ft(Ms) ≤K Nt. Recalling Nt ≤K N because t ∈ I1 and ≤K is
transitive it follows that Ms ≤K N as required.]

Let us check parts (3) and (4) of the Fact. Having proved �1 ⇒ �(a), clearly in
part (4) of the fact the first conclusion there, M ∈ K, holds. The second conclusion,
M ≡L∞,κ[K] N holds by

~4 If ϕ(x̄) ∈ L∞,κ[K], |`g(x̄)|+ LST(K) ≤ λ < κ, t ∈ I, and ā ∈ `g(x̄)(Mt) then
M |= ϕ[ā]⇔ N |= ϕ[ft(ā)].

[Why? We prove this by induction on the depth of ϕ for all λ simultaneously.
For α = 0, first for the usual atomic formulas this should be clear. Second, by (∗)4

there is t1 such that t ≤2
I t1 ∈ I1 hence by ~3+ clause (d) of �+ clause (b) of �

we have Mt1 ≤K N ∧ Nt1 ≤K N ∧Mt1 ≤K M respectively. So if u ⊆ `g(x̄) then
M � rang(ā � u) ≤K M ⇔ M � rang(ā � u) ≤K Mt1 ⇔ N � rang(f(ā) � u) ≤K

Nt1 ⇔ N � rang(f(ā) � u) ≤K N . So we have finished the case of atomic formulas,
i.e. α = 0. For ϕ(x̄) = (∃ȳ)ψ(x̄, ȳ) use (∗)2, the other cases are obvious.] So part

(4) holds. As for part (3), the first statement, “M ∈ K” holds by part (4), the
second statement, M ≤K N , holds by ~2 and the third statement, M ≺L∞,κ[K] N
follows by ~1(b) +~4. As we have already noted parts (1),(2),(5),(6) and part (7)
is proved as ~4 is proved, we are done. �1.11

Claim 1.12. For a limit cardinal κ > LST(K):
1) M ≺L∞,κ[K] N provided that
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(a) if θ < κ and θ ∈ (LST(K), κ) then M ≺L∞,θ[K] N

(b) for every ∂ < κ for some θ ∈ (∂, κ) we have: if ā, b̄ ∈ ∂M and (M, ā) ≡L∞,θ[K]

(M, b̄) then (M, ā) ≡L∞,θ1 [K] (M, b̄) for every θ1 ∈ [θ, κ).

1A) M ≡L∞,κ[K] N provided that

(a) if LST(K) < θ < κ then M ≡L∞,θ[K] N

(b) as in part (1).

2) In parts (1) and (1A) we can conclude

(b)+ for every ∂ < κ for some θ ∈ (∂, κ) we have: if ā, b̄ ∈ ∂M and

(M, ā) ≡L∞,θ[K] (M, b̄) then (M, ā) ≡L∞,κ[K] (M, b̄).

3) If cf(κ) = ℵ0 then M ∼= N when

(a) if θ < κ and θ ∈ (LST(K), κ) then M ≡L∞,θ[K] N

(b) as in part (1), i.e., for every ∂ ∈ (LST(K), κ), for some θ ∈ (∂, κ), we have:
if ā ∈ ∂M and b̄ ∈ ∂N and (M, ā) ≡L∞,θ[K] (N, b̄) then (M, ā) ≡L∞,θ1 [K]

(N, b̄) for every θ1 ∈ (θ, κ).

(c) M,N have cardinality κ.

Proof. 1) By 1.11(3) it suffices to prove M ≺L∞,κ N , for this it suffices to apply
the criterion from 0.18(2A).

Let F be the set of functions f such that:

� (α) dom(f) ⊆M has cardinality < κ.
(β) rang(f) ⊆ N .
(γ) If ā lists dom(f) then for every θ ∈ (`g(ā), κ) we have tpL∞,θ[K](ā,∅,M) =

tpL∞,θ[K](f(ā),∅, N).

1A) Similarly.
2) Similarly to part (1) using 1.11(4) and 0.18(2) instead 1.11(3),0.18(2A).
3) Recall 0.18(1). �1.12

Claim 1.13. 1) Assume 1.3(a) + (b), i.e. K is categorical in µ > LST(K). If
µ = µ<κ and κ > LST(K) then for every M ≤K N from Kµ we have M ≺L∞,κ[K] N
(and there are such M <Kµ N).

2) Assume K is weakly or just pseudo µ-solvable as witnessed by Φ (see Definition
1.4 and Claim 1.5) and M∗ = EMτ(K)(µ,Φ) and µ = µ<κ and κ > |τΦ|. If M ≤K N
are both isomorphic to M∗ then M ≺L∞,κ[K] N .

Proof. 1) We prove by induction on γ that for any formula ϕ(x̄) from L∞,κ[K] of
quantifier depth ≤ γ (and necessarily `g(x̄) < κ) we have

(∗) if M ≤K N are from Kµ and ā ∈ `g(x̄)M then M |= ϕ[ā]⇔ N |= ϕ[ā].

If ϕ(x̄) is atomic this is clear (for the “{xi : i < i∗} is the universe of a ≤K-
submodel”, the implication ⇒ holds as ≤K is transitive and the implication ⇐
as K satisfies Ax.V of AEC). If ϕ(x̄) is a Boolean combination of formulas for
which the assertion was proved, clearly it holds for ϕ(x̄). So we are left with
the case ϕ(x̄) = (∃ȳ)ψ(ȳ, x̄), so `g(ȳ) < κ. The implication ⇒ is trivial by the
induction hypothesis and so suppose that the other fails, say N |= ψ[b̄, ā] and
M |= ¬(∃ȳ)ψ(ȳ, ā). We choose by induction on i < µ+ a model Mi ∈ Kµ, ≤K-
increasing continuous, and for each i in addition we choose an isomorphism fi from
M onto Mi and if i = j + 1 we shall choose an isomorphism gj from N onto Mj+1
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extending fj . For i = 0, let M0 = M . For i limit let Mi =
⋃
j<i

Mj . For any i, if Mi

was chosen, fi exists as K is categorical in µ. Now if i = j + 1 then Mj , fj are well
defined and clearly we can choose Mi = Mj+1, gj as required.

By Fodor lemma, as µ = µ<κ and the set {δ < µ+ : cf(δ) ≥ κ} is stationary,
clearly for some α < β < µ+ we have fα(ā) = fβ(ā). Now (by the choice of
gα) we have Mα+1 |= ψ[gα(b̄), gα(ā)], hence by the induction hypothesis applied
to the pair (Mα+1,Mβ) we have Mβ |= ψ[gα(b̄), gα(ā)] so Mβ |= ϕ[gα(ā)]. But
gα(ā) = fα(ā) = fβ(ā), in contradiction to M |= ¬ϕ[ā].

2) The same proof but we restrict ourselves to models in K[M∗] so, e.g. in (∗)
we have M,N ∈ K[M∗] recalling that K[M∗] is a µ-AEC, see Definition 0.5(3A) and
Claim 0.6(7). �1.13

Exercise: 1) For the proof (of 1.13(1)) it suffices to assume “S ⊆ {δ < µ+ :
cf(δ) ≥ κ} is a stationary subset of µ+ and M∗ ∈ Kµ is locally S-weakly limit.”
(See [She09a, 3.1(5)].)

2) Similarly we can weaken the demands “M∗ = EMτ(K)(µ,Φ) and (K,Φ) is
pseudo solvable” to: ‘for every M ≤K N isomorphic to M∗ (which ∈ Kµ) there is
a ≤K-increasing sequence 〈Mα : α < µ+〉 such that{

δ < µ+ : cf(δ) ≥ κ, (Mδ,Mδ+1) ∼= (M,N), and Mδ =
⋃
{Mα : α < δ}

}
is a stationary subset of µ+.’

Claim 1.14. Assume Φ ∈ Υor
<κ[K] satisfies the conclusion of 1.13(2) for (µ, κ) and

LST(K) < κ ≤ µ and J, I1, I2 are linear orders and I1, I2 are κ-wide, see Definition
0.14(1). Then

(a) If I1 ⊆ I2 then EMτ(K)(I1,Φ) ≺L∞,κ[K] EMτ(K)(I2,Φ)

(b) Assume J ⊆ I1, J ⊆ I2; if ϕ(x̄) ∈ L∞,κ[K] so `g(x̄) < κ and ā ∈ `g(x̄)(EM(J,Φ)),
then EMτ(K)(I1,Φ) |= ϕ[ā]⇔ EMτ(K)(I2,Φ) |= ϕ[ā]

(c) Assume σ̄ = 〈σi(. . . , xα(i,`), . . .)`<`(i) : i < i(∗)〉 where i(∗) < κ, each σi is

a τ(Φ)-term, α(i, `) < α(∗) < κ. If t̄` = 〈t`α : α < α(∗)〉 is a sequence of
members of I` for ` = 1, 2 and t̄1, t̄2 realizes the same quantifier free type in
I1, I2 respectively and ā` = 〈σi(. . . , at`

α(i,j)
, . . .)j<j(i) : i < i(∗)〉 for ` = 1, 2

then ā1, ā2 realize the same L∞,κ[K] -type in EMτ(K)(I1,Φ), EMτ(K)(I2,Φ)
respectively.

Proof. Clause (a): We prove that for ϕ(x̄) ∈ L∞,κ[K] we have

(∗)ϕ(x̄) if I1 ⊆ I2 are κ-wide linear orders of cardinality≤ µ and ā ∈ `g(x̄)(EMτ(K)(I1,Φ))
then EMτ(K)(I1,Φ) |= ϕ[ā]⇔ EMτ(K)(I2,Φ) |= ϕ[ā].

This easily suffices as for any I ∈ K lin, the model EMτ(K)(I,Φ) is the direct limit

of
〈
EM(I ′,Φ) : I ′ ⊆ I, |I ′| ≤ µ

〉
, which is ≤K-increasing and µ+-directed and as

we have:

� M1 ≺L∞,κ[K] M
2 when:

(a) I is a κ-directed partial order

(b) M = 〈Mt : t ∈ I〉
(c) s <I t→Ms ≺L∞,κ[K] Mt

(d) M2 =
⋃
{Mt : t ∈ I}

(e) M1 ∈ {Mt : t ∈ I} or for some κ-directed I ′ ⊆ I we have M1 =⋃
{Mt : t ∈ I ′}.
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We prove (∗)ϕ(x̄) by induction on ϕ (as in the proof of 1.13 above). The only
non-obvious case is ϕ(x̄) = (∃ȳ)ψ(ȳ, x̄), so let I1 ⊆ I2 be κ-wide linear orders of
cardinality ≤ µ and ā ∈ `g(x̄)(EMτ(K)(I1,Φ)). Now if EMτ(K)(I1,Φ) |= ϕ[ā] then

for some b̄ ∈ `g(ȳ)(EMτ(K)(I1,Φ)) we have EMτ(K)(I1,Φ) |= ψ[b̄, ā]. Hence by the

induction hypothesis EMτ(K)(I2,Φ) |= ψ[b̄, ā] hence by the satisfaction definition
EMτ(K)(I2,Φ) |= ϕ[ā], so we have proved the implication ⇒.

For the other implication assume that b̄ ∈ `g(ȳ)(EMτ(K)(I2,Φ)) and EMτ(K)(I2,Φ) |=
ψ[b̄, ā]. Let θ = |`g(āˆb̄)| + ℵ0, so θ < κ and without loss of generality if κ is sin-
gular then θ ≥ cf(κ). Hence there is in I1 a monotonic sequence c̄ = 〈ci : i < θ+〉:
without loss of generality, it is increasing. Clearly there is I∗ such that āˆb̄ ∈
`g(x̄ˆȳ)(EM(I∗,Φ)), I∗ ⊆ I2, |I∗| ≤ θ and ā ∈ `g(x̄)(EM(I∗ ∩ I1,Φ)) and without
loss of generality i < θ+ ⇒ [c0, ci]I2 ∩ I∗ = ∅.

Similarly without loss of generality

(∗) I1 \
⋃
{[c0, ci)I1 : i < θ+} is κ-wide or κ = θ+.

Let J0 = I2; we can find J1 such that J0 = I2 ⊆ J1 and J1 \ I2 = {dα : α < µ× θ+}
with dα being <J1 -increasing with α and

(∀x ∈ I2)
(
x <J1 dα ≡

∨
i<θ+

x <J1 ci

)
.

As EMτ(K)(I2,Φ) |= ψ[b̄, ā] and I2 = J0 ⊆ J1, |J1| ≤ µ and I2 is κ-wide (and

trivially J1 is κ-wide). By the induction hypothesis EMτ(K)(J1,Φ) |= ψ[b̄, ā] hence
EMτ(K)(J1,Φ) |= ϕ[ā]. Let

J2 = J1 �
{
x : x ∈ J1 \ J0 or x ∈ I1 \

⋃{
[c0, ci]I1 : i < θ+

}}
.

So J1 ⊇ J2, both linear orders have cardinality µ and are κ-wide as witnessed by
〈dα : α < µ×θ+〉 for both hence the conclusion of 1.13 holds, i.e. EM(J2,Φ) ≺L∞,κ[K]

EM(J1,Φ). Also, I∗ ∩ I1 ⊆ J2, and recall that ā ∈ `g(x̄)(EM(I∗ ∩ I1,Φ)) hence
ā ∈ `g(x̄)(EM(J2,Φ)). However, EMτ(K)(J1,Φ) |= ϕ[ā], see above, hence by the last
two sentences EMτ(K)(J2,Φ) |= ϕ[ā].

So there is b̄∗ ∈ `g(ȳ)(EMτ(K)(J2,Φ)) such that EMτ(K)(J2,Φ) |= ψ[b̄∗, ā]. Let

J∗ ⊆ J2 be of cardinality θ such that b̄∗ ∈ `g(ȳ)(EMτ(K)(J
∗,Φ)) and I∗ ∩ I1 ⊆ J∗

recalling I∗ ∩ [c0, ci)I2 = ∅ for i < θ+. Now let u ⊆ µ× θ+ be such that J∗ \ I1 =
{dα : α ∈ u} so |u| < θ+. Let

J3 = J2 �
{
t : t ∈ J2 ∩ I1, or t = dα for α > sup(u) or α ∈ u

}
.

[I might be getting distracted from the main goal, but isn’t this liter-
ally J2 � (J2 ∩ I1 ∪ J∗ \ I1 ∪ {dα : α > supu}) = J2 � (I1 ∪ {dα : α > supu})?]

As cf(µ×θ+) = θ+ > |u|, clearly sup(u) < µ×θ+ hence |J3| = µ and J3 is κ-wide.
So by the conclusion of 1.13 (or by the induction hypothesis) also EMτ(K)(J3,Φ) |=
ψ[b̄∗, ā]. Let w = {α < µ × θ+ : α ∈ u or α > sup(u) ∧ (α − sup(u) < θ+)}, so
otp(w) = θ+.

Let J4 = (J3 ∩ I1) ∪ {dα : α ∈ w}, so J4 is κ-wide as witnessed by

I1 \
⋃{

[c0, ci) : i < θ+
}

or by {dα : α ∈ w} recalling (∗) above and J4 ⊆ J3 and J∗ ⊆ J4 hence ā, b̄∗ ⊆
κ>(EM(J4,Φ)) hence by the induction hypothesis EMτ(K)(J4,Φ) |= ψ[b̄∗, ā].

Let J5 = J4 ∪ {ci : i < θ+} \ {dα : α ∈ w}; equivalently,

J5 = (J3 ∩ I1) ∪ {cα : α < θ+} =
(
I1 \

⋃{
[c0, ci)I1 : i < θ+

})
∪ {ci : i < θ+}

so J5 ⊆ I1. Let h : J4 → J5 be such that h(dα) = cotp(w∩α) for α ∈ w and h(t) = t
for others, i.e. for t ∈ J3 ∩ I1. So h is an isomorphism from J4 onto J5. Recalling
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0.12 let ĥ be the isomorphism from EM(J4,Φ) onto EM(J5,Φ) which h induces, so

clearly ĥ(ā) = ā. Hence for some b̄∗∗ we have b̄∗∗ = ĥ(b̄∗) ∈ `g(ȳ)(EMτ(K)(J5,Φ))

and EMτ(K)(J5,Φ) |= ψ[b̄∗∗, ā]. Note that by the choice of 〈ci : i < θ+〉, (see (∗)
above), we know that J5 is κ-wide. Also J5 ⊆ I1 so by the induction hypothesis
applied to ψ(ȳ, x̄), J5, I1 we have EMτ(K)(I1,Φ) |= ψ[b̄∗∗, ā] hence by the definition
of satisfaction EMτ(K)(I1,Φ) |= ϕ[ā], so we have finished proving the implication
⇐ hence clause (a).

Clause (b): Without loss of generality for some linear order I we have I1 ⊆ I,
I2 ⊆ I and EM(I`,Φ) ⊆ EM(I,Φ) for ` = 1, 2 and use clause (a) twice.

Clause (c): Easy by now, e.g. using a linear order I ′ extending I1, I2 which has
an automorphism h such that h(t1α) = t2α for α < α(∗). �1.14 �1.14

Definition 1.15. Fixing Φ ∈ Υor
K .

1) For θ ≥ LST(K) let K∗θ , [let K∗∗θ ] [let K∗,∗θ ] be the family of M ∈ Kθ iso-
morphic to some EMτ(K)(I,Φ) where I is a linear order of cardinality θ [which is

θ-wide][which ∈ Kflin
θ ]. More accurately we should write K∗Φ,θ,K

∗∗
Φ,θ,K

∗,∗
Φ,θ; similarly

below.
2) Let K∗ is the class

⋃
{K∗θ : θ a cardinal ≥ LST(K)}, similarly K∗,∗,K∗≥λ,K

∗∗
≥λ,

etc.
3) Let K∗ = K∗Φ = (K∗,≤K� K∗).
4) Let K∗λ = K∗Φ,λ be (K∗Φ,λ,≤K� K∗Φ,λ).

Claim 1.16. 1) K∗∗θ is categorical in θ if LST(K) < θ ≤ µ, cf(θ) = ℵ0 and the
conclusion of 1.13(2) hence of 1.14 holds for ∂ = θ (and Φ), e.g. K is pseudo
solvable in µ as witnessed by Φ and µ = µ<θ.

2) K∗,∗θ ,K∗∗θ ⊆ K∗θ .
3) If θ is strong limit > LST(K) then K∗∗θ = K∗θ .

Proof. 1) By 1.14 and 0.18(1).
2) Read the definitions.
3) Recall 0.15(2). �1.16

Remark 1.17. 1) We will be specially interested in 1.16 in the case (µ, λ) is a
K-candidate (see Definition [She09b, 11.0.3]) and θ = λ.

2) Note that K∗θ , in general, is not a θ-AEC.
3) If we strengthen 1.18(2) below, replacing (µ, λ) by (µ, λ+) then categoricity

of K∗λ and in fact Claim 1.19(4) follows immediately from (or as in) Claim 1.16(1).

For the rest of this section we assume that the triple (µ, λ,Φ) is a pseudo K-
candidate (see Definition 1.3) and rather than µ = µλ we assume just the conclusion
of 1.13, that is:

Hypothesis 1.18. 1) The pair (µ, λ) is a pseudo K-candidate and Φ witnesses
this, so |τΦ| ≤ LST(K) < λ = iλ < µ and Φ ∈ Υor

K is as in Definition 1.4 so
I ∈ K lin

µ ⇒ EMτ(K)(I,Φ) ∈ Kpl
µ .

2) For every κ ∈ (LST(K), λ) the conclusion of 1.13(2) holds hence also of 1.14
(if µ = µ<λ this follows from (1) even for κ = λ+ as µ<κ = µλ = µ by cardinal
arithmetic).
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Claim 1.19. 1) If M1 ≤K M2 are from K∗λ or just K∗≥λ and LST(K) < θ < λ then
M1 ≺L∞,θ[K] M2; moreover M1 ≺L∞,λ[K] M2.

2) If M1 ≤K M2 are from K∗ and ‖M1‖ ≥ κ ..= i1,1(θ) (recall that this is i(2θ)+)
and λ > θ ≥ LST(K) then M1 ≺L∞,θ+ [K] M2.

3) Assume LST(K) < θ < κ = i1,1(θ) ≤ χ < λ, χ1 = i1,1(χ) and M ∈ K∗≥χ1

and ā, b̄ ∈ γM where γ < θ+ and (M, ā) ≡L∞,κ[K] (M, b̄); i.e.

ϕ
(
〈xβ : β < γ〉

)
∈ L∞,κ+ [K]⇒

(
M |= ϕ[ā]⇔M |= ϕ[b̄]

)
.

Then (M, ā) ≡L∞,χ[K] (M, b̄).
4) K∗λ is categorical in λ provided that cf(λ) = ℵ0.

Remark 1.20. 1) What is the difference between say 1.19(3) and clause (a) of
1.14? Here there is no connection between the additional τ(Φ)-structures expanding
M1,M2.

2) Note that Φ has the κ-non-order property (see 1.5(2)(*)) when κ ≥ LST(K),
κ+ < µ using 1.19(4).

3) Concerning 1.19(2), note that if ‖M1‖ ≥ µ it is easy to deduce this from
1.18(2), i.e, 1.13(2). But the whole point in this stage is to deduce something on
cardinals < µ.

4) Note that the proof of 1.19(2) gives:

~ assume LST(K) ≤ θ and δ(∗) = min{(2θ)+, δ(2LST(K) + θ)}.3 If iδ(∗) ≤ µ
then for some α(∗) < δ(∗) we have:
� if M1 ≤K M2 are from K∗ and ‖M1‖ ≥ iα(∗) then M1 ≺L∞,θ+ [K] M2.

5) Similarly for 1.19(3) so we can weaken the demand M ∈ K∗≥χ1

6) We use “λ has countable cofinality, i.e. cf(λ) = ℵ0” in the proof of part (4)
of 1.19, but not in the proof of the other parts.

7) Recall that for notational simplicity we assume LST(K) ≥ |τK| hence θ ≥ |τΦ|.
8) Note that for 1.19(2),(3) we can omit λ from Hypothesis 1.18, i.e. we need it

only for κ.
9) Note that we shall use not only 1.19 but also its proof.

Proof. 1) The first phrase holds by part (2) noting that κ < λ if θ < λ as θ < λ =
iλ. The second phrase holds by 1.12 as its assumption holds by parts (1) and (3).

2) We prove by induction on the ordinal γ that:

(∗) if M1 ≤K M2 are from K∗≥κ and the formula ϕ(x̄) ∈ L∞,θ+ [K] has depth

≤ γ (so necessarily `g(x̄) < θ+) and ā ∈ `g(x̄)(M1) then

M1 |= ϕ[ā]⇔M2 |= ϕ[ā].

As in 1.13, the non-trivial case is to assume ϕ(x̄) = (∃ȳ)ψ(ȳ, x̄) where ā ∈ `g(x̄)(M1)
and M2 |= ϕ[ā]. We shall prove M1 |= ϕ[ā], so necessarily `g(x̄) + `g(ȳ) < θ+ and
we can choose b̄ ∈ `g(ȳ)(M2) such that M2 |= ψ[b̄, ā]. For ` = 1, 2 as M` ∈ K∗≥κ
there is an isomorphism f` from EMτ(K)(I`,Φ) onto M` for some linear order I` of
cardinality ≥ κ.

So we can find J` ⊆ I` of cardinality θ for ` = 1, 2 such that ā ⊆ M−1 where
M−1 = f1(EMτ(K)(J1,Φ)), and āˆb̄ ⊆ M−2 where M−2 = f2(EMτ(K)(J2,Φ)) and

without loss of generality M−1 = M−2 ∩ M1. By 1.18(1), i.e. 0.9(1), clause (c)
clearly M−` ≤K M` and so by Ax.V of AEC (see Definition [She09c, 0.2]), we have

M−1 ≤K M−2 . First assume θ ≥ 2LST(K); in fact it is not a real loss to assume

3On the function δ(−), see [She09g, 1.2.3,1.2].
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this. By renaming without loss of generality there is a transitive set B (in the set
theoretic sense) of cardinality ≤ θ such that the following objects belong to it:

⊕(a) J1, J2

(b) Φ (i.e. τΦ and 〈(EM(n,Φ), a`)`<n : n < ω〉)
(c) K, i.e., τK and {(M,N) : M ≤K N have universes included in LST(K)}
(d) EM(J`,Φ) and 〈at : t ∈ J`〉 for ` = 1, 2.

Let χ be large enough, B = (H(χ),∈, <∗χ) and B+ be B expanded by the individual

constants M+
` = EM(I`,Φ), 〈a`t : t ∈ I`〉 the skeleton, M`,M

−
` and f` (all for

` = 1, 2), κ, B and x for each x ∈ B. By the assumption ‖M1‖ ≥ κ = i1,1(θ),
hence (see here [She09g, 1.2]) there is C such that

� (a) C is a τ(B+)-model elementarily equivalent to B+ (that is, in first
order logic)

(b) C omits the type {x 6= b and x ∈ B : b ∈ B} but
(c)

∣∣{b : C |= “b ∈ κC”}
∣∣ = µ = ‖C‖.

Without loss of generality b ∈ B ⇒ bC = b.
Now

~1 if C |= “M ∈ K”, so M is just a member of the model C then we can define
a τK-model MC = M [C] as follows:
(a) the set of elements ofMC is {a : C |= “a is a member of the model M”}
(b) if R ∈ τK is an n-place predicate then

RM [C] =
{
〈a` : ` < n〉 : C |= “〈a` : ` < n〉 ∈ RM”

}
(c) if F ∈ τK is an n-place function symbol, FM [C] is defined similarly.

~2 (a) if C |= “I is a linear order” then we define IC similarly
(b) similarly if C |= “M is a τ(Φ)-model”

~3 if C |= “I is a directed partial order, M = 〈Ms : s ∈ I〉 satisfies Ms ∈ K
has cardinality LST(K) and s ≤I t⇒Ms ≤K Mt” then also 〈MC

s : s ∈ IC〉
satisfies this.

By easy absoluteness (for clauses (a)1, (a)2 we use [She09a, 1.6-1.7] and ~3):

� (a)1 if C |= “M ∈ K” then MC ∈ K
(a)2 if C |= “M ≤K N” then MC ≤K N

C

(b)1 if C |= “I is a linear order” then IC = I[C] is a linear order
(b)2 if C |= “I ⊆ J as linear orders” then IC ⊆ JC

(c) similarly for τΦ-models
(d)1 if C |= “M = EM(I,Φ)” then there is a canonical isomorphism fCI from

EM(IC,Φ) ontoMC (hence it is also an isomorphism from EMτ(K)(I
C,Φ)

onto MC � τ(K))
(d)2 if C |= “I ⊆ J as linear orders” then fCJ extends fCI .

Now clearly JC
` = J` and IC` is a linear order of cardinality µ extending J` for

` = 1, 2. Let M∗` = (M−` )C for ` = 1, 2.
So recalling clause (c) of � we have: MC

1 ,M
C
2 ∈ K∗µ, MC

1 ≤K MC
2 , M∗` ≤K MC

` ,

M∗1 ≤K M∗2 and fC0

` , fCI` are isomorphisms from EMτ(K)(I
C
` ,Φ) onto MC

` , in fact,

fCI` is the identity on EMτ(K)(J
C
` ,Φ) = EMτ(K)(J`,Φ) and fC` maps it onto M∗` for

` = 1, 2.
Now M2 |= ψ[ā, b̄], (why? assumed above) hence MC

2 |= ψ[ā, b̄]
(why? By 1.14, clause (b) or (c) and the situation recalling 1.18(2), of course

noting that I2, I
C
2 are of cardinality ≥ κ = i1,1(θ) hence are θ+-wide), hence MC

2 |=
ϕ[ā] (by definition of satisfaction), hence MC

1 |= ϕ[ā]. (Why? As MC
1 ,M

C
2 ∈ K∗µ

hence MC
1 ≺L∞,θ+ [K] M

C
2 by � and 1.18(2) and recalling 1.13(2).) Hence M1 |= ϕ[ā]

as required in 1.19(2). (Why? By clause (b) of 1.14 recalling 1.18(2))
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So we are done except for a small debt: the case θ < 2LST(K) and fC` is an
isomorphism from EMτ(K)(I

C
` ,Φ).

In this case choose two sets B1, B2 such that |B1| = θ, |B2| = 2LST(K), B1 ⊆ B2

and concerning the demands in ⊕ above the objects from (a),(b),(d) and τK belong
to B1, the objects from (c) belong to B2.

Again, without loss of generality B1, B2 are transitive sets and B1, B2 serve as
individual constants of B+ as well as each member of B1. Now concerning C we
demand that it is elementarily equivalent to B+; omit {x ∈ B1∧x 6= b : b ∈ B1} and
for some B+

1 ≺ B+ of cardinality θ we have B+
1 ≺ C and {b : C |= b ∈ B2} ⊆ B+.

This influences just the proof of ~3.
3) Without loss of generality M = EMτ(K)(I,Φ) and I ∈ K lin

≥χ1
. As γ < θ+

and ā, b̄ ∈ γM there is I1 ⊆ I of cardinality θ such that ā, b̄ ∈ γM1 where M1 =
EMτ(K)(I1,Φ). As (M, ā) ≡L∞,κ+ [K] (M, b̄) necessarily there is I2 ⊆ I of cardinality

κ and automorphism f of M2 = EMτ(K)(I2,Φ) mapping ā to b̄ such that I1 ⊆ I2.
Why? Recalling 0.18(2), by the hence and forth argument as in the second part of
the proof of 1.11(3).

Now as in the proof of part (2) there is a linear order I3 extending I1 of cardinality
χ1 and an automorphism g of M3 = EMτ(K)(I3,Φ) mapping ā to b̄. Without loss
of generality for some linear order I4 we have I ⊆ I4 and I3 ⊆ I4.

Let M4 = EMτ(K)(I4,Φ), now M ≺L∞,χ+ [K] M4 by part (2), M3 ≺L∞,χ+ [K] M4

by part (3) and (M3, ā) ≡L∞,χ+ [K] (M3, b̄) by using the automorphism g of M3 so

together we are done.
4) So let M,N ∈ K∗λ (in fact, hence ∈ K∗∗λ recalling K∗λ = K∗∗λ by 1.16(3) but

not used). By parts (1),(3) the assumptions of 1.12(3) hold with λ here standing
for κ there, hence its conclusion, i.e. M ∼= N . �1.19

Note: here the types below are sets of formulas.

Definition 1.21. Assume M ∈ K, I ⊆ γM and L ,L1,L2 are languages in the
vocabulary τK.

1) We say that I is (L , ∂,<κ)-convergent in M , when: |I| ≥ ∂ and for every
b̄ ∈ κ>M , for some J ⊆ I of cardinality < ∂, for some4 p we have:

(∗) for every c̄ ∈ I \ J, the L -type of c̄ˆb̄ in M is p.

2) Let

AvL ,∂,<κ(I,M) =
{
ϕ(x̄, b̄) : ϕ(x̄, ȳ) is an L -formula, `g(ȳ) < κ,

ā ∈ I⇒ `g(ā) = `g(x̄), b̄ ∈ `g(ȳ)M, and

for all but < ∂-many sequences c̄ ∈ I

c̄ satisfies ϕ(x̄, b̄) in M
}

If ∂ is missing, we mean ∂ = κ. In parts (1) and (2) we may write “κ” instead of
< κ+; similarly below. (κ+, κ)-convergent means (L∞,κ+(K), κ+, < κ+)-convergent.

3) We say that I is (L1,L2, ∂,< κ)-based5 on A in M when:

(a) A ⊆M
(b) I is (L1, ∂,< κ)-convergent,

(c) AvL1,∂,<κ(I,M) does not (L1,L2, < κ)-split over A, see below.

4) We say that p(x̄) ∈ SfrαL (B,M) does not (L1,L2, < κ)-split over A when: if
ϕ(x̄, ȳ) ∈ L1, α = `g(x̄) < κ, `g(ȳ) < κ and b̄, c̄ ∈ `g(ȳ)B realize the same L2-type

4We could have demanded it for every single formula, here this distinction is not important
5If L1 = L = L2 we may write only L .
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in M over A then ϕ(x̄, b̄) ∈ p ⇔ ϕ(x̄, c̄) ∈ p; recalling that SfrαL (A,M) is defined
in 0.4 and normally L1 = L2 or at least L1 ⊆ L2.

5) Let Av<κ(I,M) be AvL∞,κ[K],κ,κ(I,M) and Avκ(I,M) be AvL∞,κ+ [K],κ+,κ+(I,M).

Remark 1.22. 1) See definition of Savα(M) in 1.37(2) below.
2) An alternative for clause (c) of 1.21(3) is:

(c)′ the set {AvL ,∂,<κ(f(I),M) : f an automorphism of M over A} has cardi-
nality ≤ i1,1(LST(K) + θ + |A|) < ‖M‖.

Claim 1.23. 1) Assume that M ∈ K, A ⊆ M , I ⊆ θM , |I| ≥ ∂ = cf(∂) > κ ≥
θ+LST(K) and I is (L , ∂, κ)-convergent. Then the type p = AvL ,∂,κ(I,M) belongs

to SfrθL (M) = SfrθL (M,M); i.e., it is complete, recalling Definition 0.4 (no demand
that it is realized in some N ≥K M !).

2) Also, I is (L , ∂, κ)-based on some set of cardinality ≤ ∂, even on
⋃

J, for
any J ⊆ I of cardinality ≥ ∂.

Proof. 1) By the definition.

2) By the definitions: if b̄ ∈ κ+>M , ϕ = ϕ(x̄, ȳ) ∈ L and `g(b̄) = `g(ȳ),
`g(x̄) = θ, then by the convergence

ϕ(x̄, b̄) ∈ p⇔ for all but < ∂ members ā of I, M |= ϕ[ā, b̄]⇔
for all but < ∂ members of J, M |= ϕ[ā, b̄].

So only tpL (b̄,
⋃

J,M) matters, hence the non-splitting required in clause (c) of

Definition 1.21(3). �1.23

As in [She09g, 1.7], we deduce non-splitting over a small set from non-order.

Claim 1.24. Assume M = EMτ(K)(I,Φ), θ + LST(K) ≤ κ < λ, and i1,1(∂) ≤ |I|
where ∂ = (22κ)+ or I is well ordered and ∂ = (2κ)+. If M ≺L∞,∂ [K] N then for

every ā ∈ θ≥N there is B ⊆ M of cardinality < ∂ such that tpL∞,κ+ [K](ā,M,N)

does not (L∞,κ+ [K],L∞,κ+ [K])-split over B.

Proof. Let x̄ = 〈xi : i < `g(ā)〉.
We try to choose Bα, γα, āα, b̄α, c̄α, ϕα(x̄, ȳα) ∈ L∞,κ+ [K] by induction on α < ∂

such that

~ (a) Bα =
⋃
{āβ : β < α}

(b) b̄α, c̄α ∈ γαM and γα < κ+

(c) ϕα(x̄, ȳα) ∈ L∞,κ+ [K] such that `g(ȳα) = γα
(d) N |= “ϕα[ā, b̄α] ≡ ¬ϕα[ā, c̄α]”
(e) āα ∈ `g(ā)M realizes {ϕβ(x̄, b̄β) ≡ ¬ϕβ(x̄, c̄β) : β < α} in M
(f) M |= “ϕα[āβ , b̄α] ≡ ϕα[āβ , c̄α]” for β ≤ α.

If we are stuck at α(∗) < ∂ then we cannot choose γα, b̄α, c̄α, ϕα(x̄, ȳα) clauses
(b),(c),(d), because then āα as required in clauses (e),(f) exists because M ≺L∞,∂ [K]

N . Hence B ..=
⋃
{āα : α < α(∗)} is as required. So assume that we have carried

the induction. As γα < κ+ < ∂ = cf(∂), without loss of generality, γα = γ < κ+

for every α < ∂.
Let ∂1 = (2κ)+.
Now by 1.25(5) below when I is not well ordered and by 1.25(4) below when I is

well ordered (and part (1) of 1.25(1), recalling I is κ+-wide as κ < ∂ and i1,1(∂) ≤
|I|) clearly for some S ⊆ ∂ of order type ∂1, the sequence 〈āαˆb̄αˆc̄α : α ∈ S〉 is
(L∞,κ+ [K], κ+, κ)-convergent and (L∞,κ+ [K], < ω)-indiscernible in M hence without
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loss of generality α ∈ S ⇒ ϕα = ϕ. But as ∂1 > κ+ this contradicts (e) + (f) of
~ (if we use ∂1 = κ+, we can use a further conclusion of 1.25(1) stated in 1.25(2),
i.e., 〈āαˆb̄αˆc̄α : α ∈ S〉 is a (L∞,κ[K], < ω)-indiscernible set – not just a sequence,
in contradiction to (e) + (f) of ~). �1.24

Claim 1.25. Assume M = EMτ(K)(I,Φ), I is κ+-wide, κ < λ and LST(K) + θ ≤
κ < ∂.

1) Assume that L = L∞,κ+ [K] and āα = 〈σi(. . . , at(α,i,`), . . .)`<ni : i < θ〉
for α < ∂ so σi is a τ(Φ)-term, and cf(∂) > κ. Assume further that letting
t̄α = 〈t(α, i, `) : i < θ, ` < ni〉, the sequence 〈t̄α : α < ∂〉 is indiscernible in I for
quantifier free formulas (i.e. the truth values of t(α1, i1, `1) < t(α2, i2, `2) depend
only on i1, `1, i2, `2 and the truth value of α1 < α2, α1 = α2, α1 > α2). Then
〈āα : α < ∂〉 is (L , ∂, κ)-convergent in the model M .

2) In part (1), even dropping the assumption cf(∂) > κ, moreover, the sequence
〈āα : α < ∂〉 is (L , κ+, κ)-convergent and (L , < ω)-indiscernible in M .

3) In part (1) and in part (2), letting

J0 = {t(0, i, `) : t(0, i, `) = t(1, i, `) and i < θ, ` < ni}
assume J0 ⊆ J ⊆ I, J is κ+-wide (e.g. J = {t(α, i, `) : α < κ+, i < θ, ` < ni}), B
is the universe of EMτ(K)(J,Φ), i1, i2 < θ, `1 < n`1 , `2 < ni2 , and[

α, β < ∂ ⇒ t(α, i1, `1) <I t(β, i2, `2)
]
⇒

(∃s ∈ J0)
[
α, β < ∂ ⇒ t(α, i1, `1) <I s <I t(β, i2, `2)

]
then B is a (∂, κ)-base of {āα : α < ∂}.

[The conclusion did not depend on s anywhere, so I changed it.]
4) If I is well ordered (or just is EM{<}(J,Ψ), Ψ ∈ Υor, J well ordered),

LST(K) + θ ≤ κ, 2κ < ∂, (∀α < ∂)
[
|α|θ < ∂ = cf(∂)

]
and b̄α ∈ θM for

α < ∂, then for some stationary S ⊆ {δ < ∂ : cf(δ) ≥ θ+}, the sequence
〈āα : α ∈ S〉 is as in part (1); hence it is (κ+, κ)-convergent in M . Moreover,
if S0 ⊆ {δ < ∂ : cf(δ) ≥ θ+} is stationary we can demand S ⊆ S0.

5) If in (4) we omit the assumption “I is well ordered”, and add ∂ → (∂1)2
2κ , e.g.

∂1 = (2κ)+, ∂ = (22κ)+ then we can find S ⊆ ∂, |S| = ∂1 such that 〈āα : α ∈ S〉 is
as in (1).

Remark 1.26. In fact the well order case always applies at least if ∂ < µ.

Proof. 1) Let b̄ ∈ κM , so b̄ = 〈σ∗j (. . . , as(j,`), . . .)`<mj : j < κ〉 where σ∗i is a
τ(Φ)-term, s(j, `) ∈ I and let s̄ = 〈s(j, `) : ` < mj , j < κ〉.

Now for each i1 < θ, `1 < ni1 and j1 < κ, k1 < mj1 the sequence 〈t(α, i1, `1) :
α < ∂〉 is monotonic (in I) hence there is α(i1, `1, j1, k1) < ∂ such that

(∗)1 if β, γ ∈ ∂ \ {α(i1, `1, j1, k1)} and β < α(i1, `1, j1, k1) ≡ γ < α(i1, `1, j1, k1)
then (

t(β, i1, `1) <I s(j1, k1)
)
≡
(
t(γ, i1, `1) <I s(j1, k1)

)
and (

t(β, i1, `1) >I s(j1, k1)
)
≡
(
t(γ, i1, `1) >I s(j1, k1)

)
.

Let
u ..= {α(i1, `1, j1, k1) : i1 < θ, `1 < ni1 , j1 < κ, k1 < mj1}.

It is a subset of ∂ of cardinality ≤ θ + κ = κ.
Hence
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(∗)2 if β, γ ∈ ∂ \ u and β Eu γ (which is defined by (∀α ∈ u)
[
α < β ≡ α < γ

]
)

then t̄βˆs̄, t̄γˆs̄ realize the same quantifier free type in I.

Now by clause (c) of 1.14 recalling I is κ+-wide we have

(∗)3 if β, γ ∈ ∂ \ u and β Eu γ then āβˆb̄, āγˆb̄ realize the same L∞,κ+ [K]-type
in M .

As b̄ was any member of κM we have gotten

(∗)4 if b̄ ∈ κ≥M , then for some u = ub̄ ⊆ ∂ of cardinality ≤ κ we have:
if β, γ ∈ ∂ \ u and β Eu γ then āβˆb̄, āγˆb̄ realize the same L∞,κ+ [K]-type
in M .

As we are assuming cf(∂) > κ(≥ θ + LST(K) ≥ |τΦ|) we can conclude that

(∗)5 〈āα : α < ∂〉 is (L , ∂, κ)-convergent in M .

So we have proved 1.25(1).
2) We start as in the proof of part (1). However, after (∗)3 above letting for

simplicity u+ = {α < ∂ : for some β ∈ u ∩ α we have α+ κ = β + κ} we have

(∗)6 if β, γ ∈ ∂ \ u+ and β < γ,¬(βEu+γ) then we can find (µ+, I+, s̄′, b̄′) such
that
(α) I ⊆ I+ ∈ K lin

(β) M+ = EMτ(K)(I
+,Φ) hence M ≺L∞,κ+ [K] M

+

(γ) s̄′ = 〈s′(j, k) : k < mj , j < κ〉 a sequence of elements of I+

(δ) b̄′ = 〈σ∗j (. . . , as′(j,`), . . .)`<mj : j < κ〉 ∈ κ(M+)

(ε) b̄ˆāγ , b̄′ˆāβ realize the same L∞,κ+ [K]-types in M+ as b̄ˆāγ , b̄ˆāβ re-
spectively

(ζ) s̄ˆt̄β , s̄′ˆt̄β form a ∆-system pair, i.e. they are as in � from 1.5(2).

Why?
Let w+ =

{
(j, k) : k < mj , j < κ, (∃` < ni1 , i1 < θ)

[
α(i1, `1, j, k) ∈ (β, γ)

]}
w− ..=

{
(j, k) : j < κ, k < mj and (j, κ) /∈ w+

}
.

We choose I+ extending I and s̄ε = 〈sε(j, k) : k < mj , j < κ〉 for ε < κ such that

(a) the set of elements of I+ is the disjoint union

I ∪ {sε(j, k) : (j, k) ∈ w, ε ∈ (0, κ)}

(b) s̄ε, s̄ realize the same quantifier-free type in I+

(c) if ε, ζ < κ then t̄γ+εˆs̄ζ realizes in I+ the quantifier-free type tpqf(t̄βˆs̄,∅, I)
if ε < ζ and tpq(t̄γˆs̄,∅, I) if ε ≥ ζ

(d) 〈t̄γ+εˆs̄ε : ε < κ〉 is indiscernible for quantifier-free formulas on I+

(e) s̄0 = s̄.

This is straight. Using s̄′ = s̄1 we are done.
Now as Φ has the κ-non-order property (by Claim 1.5(2) which contains a defini-

tion, noting that the assumption of 1.5 holds by 1.18(1) and also 1.18(2)), repeating
(∗)4, (∗)5 we get

(∗)7 for every b̄ ∈ κ≥M , for some u = u+
b̄
∈ [∂]≤κ if β, γ ∈ ∂ \ u+ then āβˆb̄,

āγˆb̄ realize the same L∞,κ+ [K]-type in M .

In other words

(∗)8 the sequence 〈āα : α < ∂〉 is (L∞,κ+ [K], κ+)-convergent.

The proof that it is a (L∞,κ+ [K], < ω)-indiscernible set is similar.
3) Not used; easy by 1.23(2) and convergence. [That is, note that we can find

I+ and ā′α = 〈σi(. . . , at′(α,i,`), . . .)`i<ni : i < θ〉 for α < ∂ + γ such that:
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(a) I+ ∈ K lin extend I

(b) t′(α, i, `) ∈ I+

(c) t̄′α = 〈t′(α, i, `) : i < θ, ` < ni〉
(d) 〈t̄′α : α < ∂ + γ〉 is indiscernible for quantifier-free formulas in I+

(e)
〈
t̄α : α < ∂

〉
ˆ
〈
t̄′α : α ∈ [∂, ∂+∂)

〉
is indiscernible for quantifier-free formulas

in I ′

(f) for each i < θ, ` < ni such that t(0, i, `) = (j, i, t), the convex hull I∗ of
{t′(α, i, `) : α < ∂} in I+ is disjoint to I, and if s1 <I s2 and
(s1, s2)I∗ ∩ I∗ = ∅ then [s1, s2]I∗ ∩ J0 6= ∅.

So we can average over 〈ā′α : α < ∂〉 instead [of ] averaging over 〈āα : α < ∂〉, and
this implies the result. In fact we can weaken the assumption.]

4) Should be clear. [Still, let t̄α = 〈tα,i : i < θ〉 be such that

b̄α = 〈σα,j(. . . , atα,i(j,α,`) , . . .)`<n(α,j) : j < θ〉.

So as (LST(K) + |τΦ|)θ < ∂ = cf(∂) for some stationary S1 ⊆ {δ < ∂: cf(δ) ≥ θ+}
we have α ∈ S1 ∧ j < θ ⇒ σα,j = σj (hence j < θ ⇒ n(α, j) = n(j)) and

α ∈ S1 ∧ j < θ ∧ ` < n(j)⇒ i(j, α, `) = i(j, `)

and for every i1, i2 < θ we have tα,i1 <I tα,i2 ≡ (i1, i2) ∈W for some sequence σ̄ =
〈σj : j < θ〉 of τΦ-terms and W ⊆ κ× κ and sequence

〈
〈i(j, `) : ` < n(j)〉 : j < θ

〉
.

If I is well ordered, for δ ∈ S1 let

γδ = min{γ : if i < θ and there are β < δ, j < θ such that tδ,i <I tβ,j and then
letting (βδ,i, jδ,i) be such a pair with tβδ,i,jδ,i being <I -minimal, we have βδ,i < γ}.

[I tried to reformat this into {align*}, but I couldn’t follow what was
written. It’d be more readable if we broke up the definition over two
sets. Even if you never use it anywhere else, define a dummy set like
Dδ,i = {tβ,j : β < δ, j < θ, tδ,i <I tβ,j}. Then the real definition is a lot
more digestible: γδ = min{γ : tβ,j ∈ Dδ,i is <I-minimal ⇒ β < γ}. Not
only that, but now you can specify exactly how β depends on i, which
seems to be a sticking point both in the definition and in the following
paragraph.]

Clearly γδ is well defined and < δ so by Fodor lemma, for some γ∗ < ∂, the
set S1

..= {δ ∈ S2 : γδ = γ∗} is stationary. As |γ∗|θ < ∂, for some u ⊆ θ and
stationary S3 ⊆ S2 we have: if δ ∈ S3 then j ∈ u ⇔ (βδ,i, jδ,i) well defined and
j ∈ u ∧ α ∈ S3 ⇒ (βδ,i, jδ,i) = (βi, ji) and for each i ∈ u the truth value of
“tδ,i = tβi,ji” is the same for all δ ∈ S3.

Now apply part (1) to 〈b̄α : α ∈ S3〉.]
5) By (1) and the definition of ∂ → (∂1)2

2κ . �1.25

Claim 1.27. 1) If M ≤K N are from K∗λ, κ ∈ [LST(K), λ), κ+ < ∂ = cf(∂) < λ
and moreover θ ≤ κ and ā ∈ θN then there is a (κ+, κ)-convergent set I ⊆ θM of
cardinality ∂ such that Avκ(I,M) is realized in N by ā.

2) In fact we can weaken M,N ∈ K∗λ to M,N ∈ K∗≥i1,1(∂′) where, e.g. ∂′ =

i5(κ)+.
3) Assume θ ≤ κ, κ ∈ [LST(K), λ), ∂′ = i5(κ)+ and M1 ∈ K∗≥i1,1(∂′). Assume

further M1 ≤K M2 = EMτ(K)(I2,Φ), |ξ| = θ, and I ⊆ ξ(M1) is a (κ+, κ)-convergent

set6 of cardinality ∂′. If I2 <
∗
Kflin I3 (or just I3 is κ+-wide over I2, which follows

as |I2| ≥ |I| = ∂′) and M3 = EMτ(K)(I3,Φ) then

6in M1, see 1.12
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(a) We can find d̄ ∈ ξ(M3) realizing Avκ(I,M2), so [it is] well defined.

(b) If M1 ≤K N ∈ K∗ and d̄∗ ∈ ξN , |ξ| ≤ θ then we can find d̄ ∈ ξ(M3)
realizing tpL∞,κ+ [K](d̄

∗,M1, N), and tpL∞,κ+ [K](d̄,M2,M3) is the average of

some (κ+, κ)-convergent I′ ⊆ α(M1) of cardinality ∂′.

Remark 1.28. The exact value of ∂′ has no influences for our purpose.

Proof. 1) Without loss of generality M = EMτ(K)(I,Φ). Let ∂0 = ∂ and ∂`+1 =

i2(∂`)
+ for ` = 0, 1 so ∂` < λ and

` ∈ {1, 2} ⇒ (∀α < ∂`)
[
|α|κ+θ < ∂` = cf(∂`) < λ

]
.

If I is well ordered (which is O.K. by 1.19(4)) and (∀α < ∂)
[
|α|κ < ∂

]
then we can

use ∂` = ∂.
By 1.24 there is B∗ ⊆ M of cardinality < ∂2 (or just ≤ 22κ < ∂2) such that

tpL∞,κ+ [K](ā,M,N) does not (L∞,κ+ [K],L∞,κ+ [K])-split over B∗.

Now by 1.19(1) for every B ⊆ M , |B| < ∂2 there is ā′ ∈ θM realizing in M ,
equivalently in N (with `g(x̄) = θ, of course), the type

tpL∞,κ+ [K](ā, B,N) =
{
ϕ(x̄, b̄) : b̄ ∈ κ≥B, ϕ(x̄, ȳ) ∈ L∞,κ+ [K], N |= ϕ[ā, b̄]

}
.

We can choose Jα, Bα, āα by induction on α < ∂2 such that

Bα ⊇
⋃
{āβ : β < α} ∪B∗

Bα is the universe of EM(Jα,Φ), Jα ⊆ I, |Jα| < ∂2, Jα increasing with α and Jα is
quite closed (e.g. is Bα ∩ I where Bα ≺Lκ+,κ+ (H(χ),∈, <∗χ) with

M,N,EM(I,Φ),K, 〈āβ : β < α〉,K, κ, θ
belonging to Bα, Bα has cardinality < ∂2, and Bα∩∂2 ∈ ∂2). Then choose ā′ = āα
as above, i.e. āα ∈ θM realizes the same L∞,κ+ [K]-type as ā over Bα = M ∩Bα =
EMτ(K)(Jα,Φ) in N ; such āα exists by 1.19(1). So for some set S1 ⊆ ∂2 of order

type ∂1 the sequence I = 〈āβ : β ∈ S1〉 is (κ+, κ)-convergent (by 1.25(4),(5)).
It is enough to show that I is as required, toward contradiction assume that not.

Then there is an appropriate formula ϕ(x̄, ȳ) with `g(x̄) = θ, `g(ȳ) = κ and b̄ ∈ κM
such that N |= ϕ[ā, b̄] but u ..= {α ∈ S1 : M |= ϕ[āα, b̄]} has cardinality < κ+. Now
for α ∈ S1 as Jα was chosen “closed enough”, there is

b̄α ∈ κ(EMτ(K)(Jα,Φ)) ⊆ κM

realizing tpL∞,κ+ [K](b̄, B∗,M) such that

β ∈ S1 ∩ α⇒M |= “ϕ[āβ , b̄] ≡ ϕ[āβ , b̄α]”

(possible, e.g. as |Bα||S∩α| ≤ (2<∂1)<∂1 < ∂2).
So, again by 1.25(4),(5), for some S0 ⊆ S1 of order type ∂ = ∂0, the se-

quence 〈āαˆb̄α : α ∈ S0〉 is (L∞,κ+ , κ+, κ)-convergent in M and (L∞,κ+[K], < ω)-

indiscernible. Let α ∈ S0 be such that |S0 ∩ α| > κ, possible as |S0| = ∂0 > κ+.
So the set {β ∈ S1 ∩ α : M |= ϕ[āβ , b̄α]} has cardinality ≤ κ (being equal to
{β ∈ S1 ∩ α : N |= ϕ[āβ , b̄]}) but α ∈ S0 ⊆ S1 and |S0 ∩ α| > κ, so for some β < α
from S0, M |= ¬ϕ[aβ , b̄α] hence by the indiscernibility M |= ¬ϕ[āβ , b̄γ ] for every
β < γ from S0.

On the other hand, if α < β are from S0 then by the choice of b̄α the sequences
b̄, b̄α realize the same L∞,κ+ [K]-type over B∗. Now tpL∞,κ+ [K](ā,M,N) does not

split over B∗, by the choice of B∗, so we have N |= “ϕ[ā, b̄] ≡ ϕ[ā, b̄α]”. But by the
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choice of b̄ we have N |= ϕ[ā, b̄] hence N |= ϕ[ā, b̄α] hence M |= ϕ[āβ , b̄α] by the
choice of āβ . Together this contradicts 1.5, i.e., 1.18(1).

2) Similarly (using 1.19(2) instead of 1.19(1).
3) Clause (a):
By 1.14 and the LST argument (i.e. by 0.18(4)) without loss of generality M1 ∈

K∗<λ and also M2 ∈ K∗<λ. Let ∂` = i`(κ)+ for ` ≤ 5, so ∂′ = ∂5, and for notational
simplicity assume θ ≥ ℵ0.

Let {āα : α < ∂′} list the members of I, so for each α < ∂′ there is I2,α ⊆ I2 of
cardinality θ such that āα is from EMτ(K)(I2,α,Φ).

For each α < ∂′ let t̄α = 〈tαi : i < θ〉 list I2,α and so āα = 〈σα,ζ(t̄α) : ζ < ξ〉 for
some sequence 〈σα,ζ(x̄) : ζ < ξ〉 of τΦ-terms. We can find S ⊆ ∂′ of order type ∂4

such that ζ < ξ ∧ α ∈ S ⇒ σα,ζ = σζ and 〈t̄α : α ∈ S〉 is an indiscernible sequence
(for quantifier free formulas, in I2, of course).

By renaming κ+ ⊆ S. We define a partition 〈u−1, u0, u1〉 of ξ by

u0 = {i < θ : tαi = tβi for α, β ∈ S}
u1 = {i < θ : tαi <I2 t

β
i for α < β from S}

u−1 = {i < θ : tβi <I2 t
α
i for α < β from S}.

We define an equivalence relation e on u−1 ∪ u1

� i1 e i2 iff for some ` ∈ {1,−1}, i1, i2 ∈ u` and (tαi1 <I t
β
i2

) ≡ (tαi2 <I t
β
i1

) for
every (equivalently, ‘some’) α < β from S.

There is a natural set of representatives:

W = {ζ < θ : ζ ∈ u−1 ∪ u1 and ζ = min(ζ/e)}.
We now define a linear order I+

2 ; its set of elements is

{t : t ∈ I2} ∪ {t∗i : i ∈ u−1 ∪ u1}
where, of course, t∗i ∈ I

+
2 are pairwise distinct and /∈ I2. The order is defined by

the following: (or see ~2 and think about what conditions are necessary)

~1 s1 <I+2
s2 iff

(a) s1, s2 ∈ I2 and s1 <I2 s2

(b) s1 ∈ I2, s2 = t∗i and s1 <I2 t
α
i for every α < κ+ large enough

(c) s1 = t∗i , s2 ∈ I2 and tαi <I2 s2 for every α < κ+ large enough

(d) s1 = t∗i , s2 = t∗j and tαi <I2 t
α
j for every α < κ+.

Let t∗i = tαi for i ∈ u0 and any α < κ+. Let M+
2 = EMτ(K)(I

+
2 ,Φ).

It is easy to check (by 1.14(a),(c)) that

~2 (a) I2 ⊆ I+
2

(b) t̄∗ ∈ θ(I+
2 )

(c) If J ⊆ I2 has cardinality ≤ κ then for every α < κ+ large enough, the
sequences t̄∗, t̄α realizes the same quantifier free type over J inside I+

2 .

Let

~3 d̄ ..= 〈σζ(t̄∗) : ζ < ξ〉 ∈ ξ(M+
2 ).

Recall that ‖M2‖ < λ hence |I2| < λ and I2 is κ+-wide having cardinality≥ ∂′ > 2κ.
Note

~4 t̄∗ realizes Avqf({t̄α : α ∈ S}, I2) in the linear order I+
2 .

Without loss of generality I+
2 ∩I3 = I2, so we can find a linear order I4 of cardinality

λ such that I+
2 ⊆ I4 ∧ I3 ⊆ I4. As I3 is κ+-wide over I2 (see the assumption

and Definition 0.14(6)+(3)), there is a convex subset I ′3 of I3 disjoint to I2 which
contains a monotonic sequence 〈sα : α < κ+〉. Without loss of generality there are
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elements sα (with α ∈ [κ+, λ×κ+)) in I4 such that 〈sα : α < λ×κ+〉 is monotonic
(in I4), and its convex hull is disjoint to I2. Let I−3 = I2 ∪ {sα : α < κ+} and
I±3 = I2 ∪ {sα : α < λ× κ+}.

Now we use 1.14 several times. First,

EMτ(K)(I2,Φ) ≺L∞,κ+ [K] EMτ(K)(I
+
2 ,Φ) ≺L∞,κ+ [K] EMτ(K)(I4,Φ)

as I2 ⊆ I+
2 ⊆ I4 are κ+-wide, hence by ~4 the sequence d̄ realizes

q ..= Avκ
({
〈σζ(t̄α) : ζ < θ〉 : α < κ+

}
,M2

)
= Avκ

(
{āα : α < κ+},M2

)
= Avκ

(
I,M2

)
in M+

2 and also in EMτ(K)(I4,Φ). Second, as |I2| < λ, I2 ⊆ I±3 ⊆ I4 and |I±3 | =

|I4| = λ, by 1.19(1) we have EMτ(K)(I
±
3 ,Φ) ≺L∞,λ[K] EMτ(K)(I4,Φ), so some d̄′ ∈

ξ(EMτ(K)(I
±
3 ,Φ)) realizes the type q in EMτ(K)(I

±
3 ,Φ). Let w1 ⊆ λ × κ+ be of

cardinality ≤ θ ≤ κ such that d̄′ belongs to EMτ(K)(I2 ∪ {sα : α ∈ w1},Φ). Choose

w2 ⊆ λ× κ+ of order type κ+ including w1, so

EMτ((K)(I2 ∪ {sα : α ∈ w2},Φ) ≺L∞,κ+ [K] EMτ(K)(I
±
3 ,Φ)

and d̄′ belongs to the former hence realizes q in it. But there is an isomorphism

h from I2 ∪ {sα : α ∈ w2} onto I−3 over I2, hence it induces an isomorphism ĥ

from EMτ(K)(I2 ∪ {sα : α ∈ w2},Φ) onto EMτ(K)(I
−
3 ,Φ) so ĥ,(d̄′) realizes q in the

latter. But I−3 ⊆ I3 are both κ+-wide hence by 1.14 the sequence ĥ(d̄′) realizes q
in M3 = EMτ(K)(I3,Φ) as required.

Clause (b):
By part (2) we can find appropriate I and then apply clause (a). �1.27

Remark 1.29. 1) In fact, in 1.24 we can choose B of cardinality κ, hence similarly
in the proof of 1.27(1).

2) Also using solvability to get well ordered I we can prove: if A ⊆ M =
EMτ(K)(λ,Φ) and |A| < λ then the set of L∞,κ+ [K]-types realized in M over A is
≤ (|A|+ 2)κ.

Claim 1.30. 1) If M ∈ K∗∗≥κ and LST(K) ≤ θ and ∂ = i1,1(θ) ≤ κ ≤ λ, then for

ā, b̄ ∈ θM the following are equivalent: (the difference is using ∂ or κ)

(a) ā, b̄ realize the same L∞,∂ [K]-type in M

(b) ā, b̄ realize the same L∞,κ[K]-type in M .

2) For M, θ, ∂, κ as above, the number of L∞,∂ [K]-types of ā ∈ θM where M =
EMτ(K)(I,Φ), |I| ≥ ∂ is ≤ 2θ.

[Can we say ∂ ≤ |I| ≤ 2θ?]

Remark 1.31. Part (1) improves 1.19(3).

Proof. 1) Clearly (b)⇒ (a), so assume clause (a) holds. As M ∈ K∗∗≥κ, without loss

of generality there is a κ-wide linear order I such that M = EMτ(K)(I,Φ); hence

for some J ⊆ I, |J | = θ we have ā, b̄ ∈ θ(EMτ(K)(J,Φ)). So for every α < (2θ)+, by
the hence and forth argument for L∞,i+

α
[K] there are Jα, fα such that J ⊆ Jα ⊆ I,

|Jα| = iα and fα is an automorphism of EMτ(K)(Jα,Φ) which maps ā to b̄. Hence,

as in the proof of 1.19, there is a linear order J+ of cardinality µ extending J and
an automorphism f of M+ = EMτ(K)(J

+,M) mapping ā to b̄. By clause (b) of
Claim 1.14 we are done.
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2) Easy by clause (c) of 1.14, i.e., by 1.18. �1.30

Claim 1.32. Assume:

(a) I1 ⊆ I2, I1 6= I2. Moreover, I1 <Kflin I2, see Definition 0.14(6)

(b) M` = EMτ(K)(I`,Φ) for ` = 1, 2

(c) b̄, c̄ ∈ α(M2)

(d) θ ≥ |α|+ LST(K)

(e) κ = i1,1(θ2) ≤ λ where θ1 = 2θ, θ2 = (2θ1)+

(f) |I1| ≥ κ
(g) M1 ≤K M2 (follows from (a) + (b))

1) Assume that for every ā ∈ κ>(M1) the sequences āˆb̄, āˆc̄ realize the same
L∞,κ[K]-type in M2. Then there are I3,M3 and f such that I2 ≤Kflin I3 ∈ Kflin

λ ,
M3 = EMτ(K)(I3,Φ), and f an automorphism of M3 over M1 mapping b̄ to c̄.

2) Assume that for every ā ∈ κ>(M1) the sequences āˆb̄, āˆc̄ realize the same
L∞,κ[K]-type in M2 (as in part (a)) and i1,1(∂) ≤ |I1| and ∂ < λ. Then for every
ā ∈ κ>(M1), the sequences āˆb̄, āˆc̄ realize the same L∞,∂ [K]-type in M2.

3) Assume that cf(λ) = ℵ0 and |I1| = λ, and recall λ = iλ > LST(K). If
M1 ≤K M∗2 ∈ K∗λ then for some I3, a linear order ≤Kflin

λ
-extending I2 the model

M∗2 can be ≤K-embedded into M3
..= EMτ(K)(I3,Φ) over M1.

Remark 1.33. 1) Under mild assumptions with somewhat more work in 1.32(1),(3)
we can choose I3 = I2 (but for this has to be more careful with the linear orders).
Recall that for I ∈ K lin

λ like I2 in 1.8(c) we have α < λ+ ⇒ I ×α can be embedded
into I and 1.4(1)(d).

Proof. 1) There is J2 ⊆ I2 of cardinality ≤ θ such that b̄, c̄ ∈ α(EMτ(K)(J2,Φ)).
Let J1 = I1 ∩ J2.

We define a two-place relation E on I2\J2: s E t iff (∀x ∈ J2)
[
x <I2 s ≡ x <I2 t

]
.

Clearly E is an equivalence relation. As I1 <Kflin I2 clearly

�1 (α) any interval of I1 has cardinality |I1| ≥ κ
(β) for every t ∈ I2 \ J2 the equivalence class t/E is a singleton or has
|I2| ≥ κ members,

(γ) for every t ∈ I1 \ J1, (t/E)∩ I1 is a singleton or has |I1| ≥ κ members

(δ) I1 \ J2 has at least κ elements

(ε) E has ≤ 2|J2| ≤ 2θ equivalence classes

(ζ) we may ≤Kflin -increase I2, so without loss of generality
(∗)1 t ∈ I2 \ J2 ⇒ |t/E| = |I2|
(∗)2 For every t ∈ I1 for some s1, s2 ∈ I2 we have s1 <I2 t <I2 s2 and

(s1, t2)I2 , (t, s2)I2 are disjoint to I1.

Let
〈
Ui : i < i(∗)

〉
list the equivalence classes of E , so without loss of generality

i(∗) ≤ 2θ. For ` = 0, 1 let u` = {i < i(∗) : Ui ∩ I1 has exactly ` members} and let
u2 = i(∗) \ u0 \ u1, so by clause �1(γ) (i.e. the definition of I1 ∈ Kflin) we have
i ∈ u2 ⇒ |Ui ∩ I1| = |I1| ≥ κ. For i ∈ u1 let t∗i be the unique member of Ui ∩ I1.

Without loss of generality u1 = {i : i ∈ [j∗0 , j
∗
1 )}

[Is there a type-theoretic reason why I can’t just say u1 = [j∗0 , j
∗
1 )?]

for some j∗0 ≤ j∗1 ≤ i(∗) and let i′(∗) = i(∗) + (j∗1 − j∗0 ) and u′1 = [i(∗), i′(∗)) and
define U ′i for i < i′(∗) by
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�2 (a) U ′i = Ui if i ∈ u0 ∪ u2

(b) U ′i = {t ∈ Ui : t <I2 t
∗
i } if i ∈ u1 and

(c) U ′i = {t ∈ Uk : t∗ι <I2 t} if i ∈ [i(∗), i′(∗)], k ∈ (j∗0 , j
∗
1 ) and i − i(∗) =

k − j∗0 .

[Mixing i-s and iotas in the same paper is never a good idea, much
less in the same line. I’m changing them all to k.]

For i < i′(∗) let 〈ti,α : α < κ〉 be a sequence of pairwise distinct members of U ′i
such that i ∈ u2 ⇒ ti,α ∈ I1 and i ∈ u0 ⇒ ti,α /∈ I1, this actually follows. By �1(ζ)
and �1(β), (γ) we can find such ti,α-s.

For ζ < θ2 (see clause (e) of the assumption so iζ < κ) let

J1,ζ = {ti,α : i ∈ u2, α < iζ} ∪ J1 ∪ {t∗i : i ∈ u1}.

Now by the hence and forth argument (or see 0.18(2)) for each ζ < θ2, there are
J2,ζ and fζ such that J2,ζ ⊆ I2 is of cardinality iζ , it includes J1,ζ ∪ J2 and also
{ti,α : i < i′(∗) and α < iζ} and fζ is an automorphism of EMτ(K)(J2,ζ ,Φ) over

EMτ(K)(J1,ζ ,Φ) mapping b̄ to c̄.

(Why? Let ā0 list EM(J1,ζ ,Φ) so ā0ˆb̄, ā0ˆc̄ realize the same L∞,i+
ζ

[K]-type in

M2, and f be the mapping taking ā0ˆb̄ to ā0ˆc̄, etc.)
Now we shall imitate the proof of 1.19. By renaming without loss of generality

there is a transitive set B (in the set theoretic sense) of cardinality ≤ θ1 = 2θ which
includes

⊕(a) J1, J2

(b) Φ (i.e. τΦ and
〈
(EM(n,Φ), a`)`<n : n < ω

〉
)

(c) K, i.e., τK and {(M,N) : M ≤K N have universe included in LST(K)}
(d) 〈t∗i : i ∈ u1〉 so each t∗i for i ∈ u1

(e) the ordinal i(∗).
Let χ be large enough, let B = (H(χ),∈, <∗χ) and let B+

ζ be B expanded by

~1 (a) QBζ = {α : α < iζ}
(b) P

Bζ

i = J2,ζ ∩ U ′i for i < i′(∗)
(c) F

Bζ

2 (t) = at for t ∈ I2
(d) HBζ = fζ and Q

Bζ

1 = J1,ζ , Q
Bζ

2 = J2,ζ

(e) for i < i′(∗), HBζ

i is the function mapping α < iζ to ti,α
(f) individual constants for B and for each x ∈ B, hence, e.g. for t∗i (with

i ∈ u1), J1, J2, t for t ∈ J2

(g) individual constants J1,∗, J2,∗ interpreted as the linear orders J1,ζ , J2,ζ ,
respectively, and individual constants for M+

` = EM(J`,ζ ,Φ) and
〈at : t ∈ I`〉 for ` = 1, 2.

Clearly the vocabulary τ(B+
ζ ) does not depend on ζ, so we call it τ+. As in the

proof of 1.19 there is a τ+-model C, such that

� (a) for some unbounded S ⊆ θ2,
(α) C is a first order elementarily equivalent to B+

ζ for every ζ ∈ S

(β) C omits every type omitted by B+
ζ for every ζ ∈ S. In particular

this gives

(γ) C omits the type {x 6= b ∧ x ∈ B : b ∈ B} so

(δ) without loss of generality b ∈ B ⇒ bC = b
(b) C is the Skolem hull of some infinite indiscernible sequence 〈yr : r ∈ I〉,

where I an infinite linear order and yr ∈ QC for r ∈ I.
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Without loss of generality I ∈ Kflin and I2 can be ≤Kflin-embedded into I, say by
the function g such that

(∀t ∈ I2)(∃s1, s2 ∈ I)
[
s1 <I g(t) <I s2 ∧

(∀t′ ∈ I2)[t′ <I2 t→ g(t′) <I s1] ∧

(∀t′ ∈ I2)
[
t <I2 t

′ → s2 <I g(t′)
]]

and also ‖C‖ = |I|. Hence for each i < i′(∗) there is an embedding hi of the linear
order U ′i : i.e., I2 � U ′i into (PC

i , (<I2)C) such that

t ∈ U ′i ⇒
[
t ∈ I1 ⇔ hi(t) ∈ QC

1

]
.

Why?

Case 0: i ∈ u0.
Trivial.

Case 1: i ∈ u1 ∪ u′1.
Similar to Case 0 as U ′i ∩ I1 = ∅, of course, we take care that

a = hi(t) ∧ t ∈ U ′i ∧ i ∈ u1 ⇒ C |= “a <I2 t
∗
i ”

and similarly for u−1.

Case 2: i ∈ u2.
First approximation is h′i = HC

i ◦ (g � Ui), so t ∈ Ui ⇒ h′i(t) ∈ QC
1 . However by

the choice of g we can find 〈(s−t , s+
t ) : t ∈ Ui〉 such that:

(α) s−t , s
+
t ∈ QC

2

(β) (s−t , s
+
t )IC2 ∩Q

C
2 = {h′i(t)}.

As I2 is dense with no extremal members (being from Kflin) clearly

t1 <I2�U ′i t2 ⇒ s+
t1 <(I2)C s

−
t2 .

Now choose hi by: hi(t) = h′i(t) if t ∈ I1 and is s+
t1 if t ∈ I1 \ I2.

Hence there is an embedding h of the linear order I2 into JC
1,∗ such that:

~2 h(t) is:
(a) t if t ∈ J2 ∪ {t∗i : i ∈ u1}
(b) hi(t) if t ∈ U ′i and i < i′(∗).

Note

~3 for every t ∈ I2 \ J2 for some i < i(∗) ≤ θ1 we have

(∀s ∈ J2)
[
s <I2 t ≡ s <I2 hi(ti,0)

]
hence by the omitting type demand in �(a)(β):

~′3 for t ∈ IC2 \ J2, for some i < i(∗), we have

(∀s ∈ J2)
[
s <IC2 t ≡ s <IC2 hi(ti,0)

]
.

We can find a linear order I3, I2 ⊆ I3 and an isomorphism h∗ from I3 onto QC
2

extending h, so clearly I3 ∈ Kflin and without loss of generality h(I2) <Kflin

I3. Now let ĥ∗ be the isomorphism which h∗ induces from EMτ(K)(I3,Φ) onto

(EMτ(K)(J
C
2,∗,Φ))C, so e.g., it maps for each t ∈ I2, the member at of the skeleton

to FC
2 (h∗(t)).

Note that h∗ maps Ui ∩ I1 into QC
1 ⊆ IC1 when Ui ⊆ I1 and is the identity on

J1 ∪ {t∗i : i ∈ u1}, so recalling

QBζ = J1,ζ = {ti,α : i ∈ u2, α < iζ} ∪ J1 ∪ {t∗i : i ∈ u1}
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hence it maps I1 into QC
1 . However, Bζ |= “H is a unary function, an automorphism

of EMτ(K)(J
C
2,∗,Φ) mapping b̄ to c̄ and is the identity on EMτ(K)(J

C
1,∗,Φ)”. Now

(ĥ∗)
−1HC(ĥ∗) is an automorphism of EMτ(K)(I3,Φ) as required.

2) By part (1), i.e. choose I3,M3, f3 as there; so as f is an automorphism of M3

over M1 mapping b̄ to c̄, clearly b̄, c̄ realize the same L∞,∂ [K]-type over M1 inside
M3. The desired result (the type inside M2 rather than inside M3) follows because

M1 ≺L∞,∂ [K] M2 ≺L∞,∂ [K] M3

by 1.14(a).
3) Let M∗2 =

⋃
n<ω

M∗2,n be such that n < ω ⇒M∗2,n ≤K M
∗
2,n+1 and ‖M∗2,n‖ < λ.

Let c̄n list M∗2,n for n < ω (with no repetitions) and be such that c̄n C c̄n+1. Let
θn = ‖M∗2,n‖+LST(K) so without loss of generality θn = `g(c̄n) and let θ′n = i3(θn),
κn = i1,1(θ′n), without loss of generality κn < θn+1 and we choose, for each n < ω,

a sequence b̄n ∈ `g(c̄n)(M2) realizing tpL
∞,κ+n

[K](c̄n,M1,M
∗
2 ) in M2. This is possible

by 1.27(3), possibly after <Kflin -increasing I2.
Now we choose (I3,n, fn,M3,n, b̄

′
n) by induction on n such that

(∗) (a) I3,0 = I2 and I3,n ∈ K lin
λ

(b) n = m+ 1⇒ I3,m <Kflin I3,n
(c) M3,n = EMτ(K)(I3,n,Φ) (hence n = m+ 1⇒M3,m ≤Kλ M3,n)
(d) fn is an automorphism of M3,n over M1

(e) b̄′n ∈ `g(b̄n)(M3,n) realizes tpL
∞,κ+n

[K](c̄n,M1,M
∗
2 )

(f) if n = m+ 1 then b̄′m E b̄
′
n

(g) if n = m+ 1 then fn maps b̄n+1 � `g(b̄n) to b̄′n and f0 maps b̄0 to b̄′0.

For n = 0, I3,0,M3,0 are defined in clauses (a),(c) of (∗) and we let f0 = idM2
=

idM3,n , b̄
′
0 = b̄0 this is trivially as required. For n = m+ 1 we apply part (1) with

� I1, I3,m,M1,M3,m, b̄n+1 � `g(c̄m), b̄′m, θm, κm here standing for
I1, I2,M1,M2, b̄, c̄, θ, κ there.

Why does its assumptions hold? The main point is to check that for every ā ∈
κm>(M1) the sequences āˆ(b̄n+1 � θm), āˆb̄′m realize the same L∞,κm [K]-type in
M3,m. Now āˆ(b̄m+1 � θm), āˆb̄′m realize the same L∞,κm [K]-type in M3,m by
the induction hypothesis. Also, the sequences b̄n+1 � θm, b̄m+1 � θm satisfy for
any ā ∈ κm>(M1) the sequences āˆ(b̄n+1 � θm), āˆ(b̄m+1 � θm) realize the same
L∞,κm [K]-type in M3,m because the L∞,κm [K]-type which āˆ(b̄n+1 � θm) realizes
in M3,m is the same as the L∞,κm [K]-type it realizes in M2 = M3,0 which (by the
choice of b̄n+1) is equal to the L∞,κm [K]-type which āˆ(c̄n+1 � θm) realizes in M∗2
which is the same as the L∞,κm [K]-type which āˆ(c̄m+1 � θm) realizes in M∗2 which
is equal to the L∞,κm [K]-type which āˆ(b̄m+1 � θm) realizes in M3,m.

By the last two sentences for every ā ∈ κm>(M1) the sequences āˆ(b̄n+1 � θm),
āˆb̄′m realize the same L∞,κm [K]-type in M3,m, so indeed the assumptions of part
(1) holds for the case we are trying to apply it (see � above).

So we get the conclusion of part (1), i.e. we get I3,n, fn here standing for I3, f
there so I3,m <Kflin

λ
I3,n and fn is an automorphism of M3,n = EMτ(K)(I3,n,Φ)

over M1 mapping b̄n+1 � θm to b̄′m. Now we let b̄′n = fn(b̄n+1 � θn) and can check
all the clauses in (∗). Hence we have carried the induction. So we can satisfy (∗).

So b̄′n satisfies the requirements on b̄n and b̄′n C b̄
′
n+1. Let I3 =

⋃
{I3,n : n < ω}

and let M3 = EMτ(K)(I3,Φ) and let g : M∗2 → M3 map cn,i to b′n,i for i < `g(c̄n),
n < ω, easily it is as required. That is, g(cn,i) is well defined as cn,i 7→ b′n,i (for
i < `g(c̄n)) is a well defined mapping for each n and

i < `g(c̄n)⇒ cn,i = cn+1,i ∧ b′n,i = b′n+1,i.
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Also g � {cn,i : i < `g(c̄n)} is a ≤K-embedding of M∗2,n into M3 and is the identity
on M∗2,n ∩M1 as c̄n list the elements of M2,i and

tpL
∞,κ+n

[K](c̄n,M1,M
∗
2 ) = tpL

∞,κ+n
[K](b̄

′
n,M1,M3)

by clause (e) of (∗). But 〈g � M∗2,n : n < ω〉 is ⊆-increasing with union g so by
Ax.V of AEC g is a ≤K-embedding of M∗2 into M3. Lastly, obviously

g ⊇
⋃
{idM∗2,n∩M1

: n < ω} = idM1

so we are done. �1.32

We arrive to the crucial advance:

Theorem 1.34. The Amalgamation Theorem:
If cf(λ) = ℵ0, then K∗λ (i.e. (K∗λ,≤K� K∗λ)) has amalgamation, even disjoint

one.

Proof. Assume M0 ≤K∗λ
M` for ` = 1, 2. Choose I0 ∈ Kflin

λ so

M ′0
..= EMτ(K)(I0,Φ) ∈ K∗λ

but K∗λ is categorical (see 1.16 or 1.19(4)) hence M ′0
∼= M0, so without loss of

generality M ′0 = M0. Choose I1 ∈ Kflin
λ such that I0 <Kflin I1 and let M ′1 =

EMτ(K)(I1,Φ) so M0 ≤K M ′1. By applying 1.32(3) with I0, I1,M0,M
′
1,M1 here

standing for I1, I2,M1,M2,M
∗
2 there, we can find a pair (I2, f1) such that I1 <Kflin

λ

I2 and f1 is a ≤K-embedding of M1 into M ′2
..= EMτ(K)(I2,Φ) over M0. Apply

1.32(3) again with I0, I2,M0,EMτ(K)(I2,Φ),M2 here standing for I1, I2,M1,M2,M
∗
2

there. So there is a pair (I3, f2) such that I2 <Kflin
λ

I3 and f2 is ≤K-embedding M2

into M3
..= EMτ(K)(I3,Φ) over M0 = EMτ(K)(I0,Φ). Of course, M3 ∈ K∗λ and we

are done proving the “has amalgamation.”
Why disjoint? Let (I4, h) be such that I3 <Kflin

λ
I4 and h is a ≤Kflin -embedding

of I3 into I4 over I0 such that h(I3) ∩ I3 = I0. Now h induces an isomorphism ĥ
from EMτ(K)(I3,Φ) onto EMτ(K)(h(I3),Φ) ≤K EMτ(K)(I4,Φ).

Lastly, by our assumptions on Φ if J1, J2 ⊆ J are linear orders and J1 ∩ J2 is a
dense linear order (in particular with neither first nor last member, e.g. are from
Kflin
λ as in our case) then

EMτ(K)(J1,Φ) ∩ EMτ(K)(J2,Φ) = EMτ(K)(J1 ∩ J2,Φ).

So in particular, above

EMτ(K)(I3,Φ) ∩ EMτ(K)(ĥ(I3,Φ) = EMτ(K)(I0,Φ)

and f1, ĥ ◦ f2 are ≤K-embeddings of M1,M2 respectively over M0 = EMτ(K)(I0,Φ)
into EMτ(K)(I3,Φ) ≤K EMτ(K)(I4,Φ) and EMτ(K)(h(I3),Φ) ≤K EMτ(K)(I4,Φ), re-
spectively, so we are done. �1.34

Claim 1.35. Assume cf(λ) = ℵ0. If δ < λ+, the sequence 〈Mi : i < δ〉 is ≤K-
increasing continuous and Mi ∈ K∗λ for i < δ, then Mδ

..=
⋃
{Mi : i < δ} can be

≤K-embedded into some member of K∗λ.

Proof. We choose Ii ∈ Kflin
λ by induction on i ≤ δ, which is <Kflin

λ
-increasing con-

tinuous with i, and a ≤K-embedding fi of Mi into Ni ..= EMτ(K)(Ii,Φ), increasing

continuous with i. For i = 0 choose I0 ∈ Kflin
λ , so N0

..= EMτ(K)(I0,M) is isomor-
phic toM0 hence f0 exists; for i limit use Ii ..=

⋃
{Ij : j < i} and fi ..=

⋃
{fj : j < i}.

So assume i = j + 1. Now we can find M ′i , f
′
i satisfying: f ′i is an isomorphism from

Mi onto M ′i extending fj such that fj(Mj) ≤K M
′
i (actually this trivially follows)
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and M ′i ∩Nj = fj(Mj); so also M ′i belongs to K∗λ. Now fj(Mj), EMτ(K)(Ij ,Φ), M ′i
can be disjointly amalgamated (by 1.34) in (K∗λ,≤K), so there is M∗i ∈ K∗λ such
that Nj = EMτ(K)(Ij ,Φ) ≤K M∗i and M ′i ≤K M∗i . Now by 1.32(3) there are Ii, gi
such that Ij <Kflin

λ
Ii and gi is a ≤K-embedding of M∗i into Ni ..= EMτ(K)(Ii,Φ)

over EMτ (Ij ,Φ). Let fi = gi ◦ f ′i , clearly it is as required. Having carried the
induction, fδ is a ≤K-embedding of Mδ into EMτ(K)(

⋃
j<δ

Ij ,Φ), as promised. �1.35

Claim 1.36. 1) Assume cf(λ) = ℵ0. For every M0 ∈ K∗λ there is a ≤K-extension
M1 ∈ K∗λ of M0 such that: if M0 ≤Kλ M2 ∈ K∗λ and ā ∈ λ>(M2) then for some
(M3, f) we have:

M1 ≤K M3 ∈ K∗λ, f is a ≤K-embedding of M2 into M3 over M0 and f(ā) ∈ λ>(M2).

2) Assume cf(λ) = ℵ0. For every M0 ∈ K∗λ there is a ≤K-extension M1 ∈ K∗λ
which is universal over M0 for ≤Kλ-extensions.

3) If (A) then (B), where

(A) I0 ≤Kflin
λ

I ′1 <Kflin
λ

I1

(B) If I0 ⊆ I2 ∈ Kflin
λ , β ≤ γ < λ, b̄1 ∈ β(EMτ(K)(I

′
1,Φ)), c̄2 ∈ γ(EMτ(K)(I2,Φ)),

b̄2 = c̄2 � β, and for every κ < λ we have

tpL∞,κ[K](b̄1,EMτ(K)(I0,Φ),EMτ(K)(I1,Φ)) = tpL∞,κ[K](b̄2,EMτ(K)(I0,Φ),EMτ(K)(I2,Φ))

then for some (I+
1 , f) we have I1 ≤Kflin I+

1 ∈ Kflin
λ and f is a ≤K-embedding

of EMτ(K)(I2,Φ) into EMτ(K)(I
+
1 ,Φ) over EMτ(K)(I0,Φ) mapping b̄2 to b̄1

and c̄2 into EMτ(K)(I1,Φ).

4) Assume cf(λ) = ℵ0. If (C) then (D) (and moreover (D)+) when

(C) 〈Jα : α ≤ ω〉 is <Kflin
λ

-increasing, I0 = J0, I1 = Jω.

(D) If I0 ⊆ I2 ∈ Kflin
λ then some f is a ≤K-embedding of EMτ(K)(I2,Φ) into

EMτ(K)(I1,Φ) over EMτ(K)(I0,Φ).

(D)+ EMτ(K)(I1,Φ) is ≤K∗λ
-universal over EMτ(K)(I0,Φ).

Proof. Note that by 1.32(3) clearly (3) ⇒ (1) and (4) ⇒ (2). So we shall prove (3)
and (4).

3) First assume β = 0, γ = 1 so c̄2 = 〈c〉. Toward contradiction assume I0 ⊆
I2 ∈ K lin

λ , a ∈ M2
..= EMτ(K)(I2,Φ) but there is no pair (I+

1 , f) as required in
clause (b). Without loss of generality for some I3 we have I0 ≤Kflin

λ
I2 ≤Kflin

λ
I3

and I0 ≤Kflin
λ

I1 ≤Kflin
λ

I3.

Let EM(I2,Φ) |= “c2 = σ(at20 , . . . , at2n−1
)” where σ(x0, . . . , xn−1) a τΦ-term,

n < ω and I2 |= “t20 < . . . < t2n−1”. Let u = {` < n : t2` ∈ I0}. As I0 <Kflin
λ

I1, we

can find 〈t10, . . . , t1n1
〉 such that:

~ (a) t1` ∈ I1 for ` < n
(b) t10 <I1 . . . <I1 t

1
n−1

(c) if ` ∈ u then t2` = t1`(∈ I0)
(d) if ` < n ∧ ` /∈ u then t1` ∈ I1 \ I0
(e) if `1 ≤ `2 < n and [`1, `2] ∩ u = ∅ then t2`2 <I3 t

1
`1

.

Let M` = EMτ(K)(I`,Φ) for ` = 0, 1, 2, 3 and let

c2 = c, c1 = σEM(I1,Φ)(at10 , . . . , at1n−1
).
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Let κ < λ be large enough such that tpL∞,κ+ [K](c`,M0,M`) for ` = 1, 2 be distinct

(exists by 1.32(1) because its conclusion fails by the “toward contradiction”). We
easily get contradiction to the non-order property (see (∗) of 1.5(2)).

Note that if in addition 〈I1,α : α ≤ λ〉 is <Kflin
λ

-increasing continuous, I1,0 = I ′1,

I1,λ = I1 then by what we have just proved and the proof of [She09c, 4.2a] we can
prove the general case (and part (4)). But we also give a direct proof.

In the general case, let θ = |β|+ℵ0, so we assume clause (a) and the assumptions
of clause (b) and without loss of generality I1 ∩ I2 = I0 hence there is I3 such that
I` <Kflin

λ
I3 for ` = 1, 2. Let κ ∈ (θ, λ) be large enough.

Hence

EMτ(K)(I0,Φ) ≺L∞,λ[K] EMτ(K)(I`,Φ) ≺L∞,λ[K] EMτ(K)(I3,Φ)

for ` = 1, 2. Applying 1.32(1) with I1, I2, b̄, c̄ there standing for I0, I3, b̄1, b̄2 here
we can find a pair (I4, f4) such that I3 <Kflin

λ
I4 and f4 is an automorphism of

M4
..= EMτ(K)(I4,Φ) over EMτ(K)(I0,Φ) mapping b̄2 to b̄1. Clearly

M3
..= EMτ(K)(I3,Φ) ≺L∞,λ[K] EMτ(K)(I4,Φ).

So f4(c̄2) ∈ γ(M4), hence we can apply clause (b) of Claim 1.27(3) with

M1,M2, I2, N, ξ, d̄
∗

there standing for

EMτ(K)(I
′
1,Φ),EMτ(K)(I1,Φ), I1,EMτ(K)(I4,Φ), γ, f4(c̄2)

here. Hence we can find c̄′2 ∈ γ(M1) realizing in M1 the type

tpL∞,κ[K]

(
f4(c̄2),EMτ(K)(I

′
1,Φ),EMτ(K)(I1,Φ)

)
Lastly, applying Claim 1.32(1) with I1, I2, b̄, c̄ there standing for I ′1, I4, f4(c̄2), c̄′2

here, clearly there is a pair (I5, f5) such that I4 <Kflin
λ

I5 and f5 is an automorphism

of EMτ(K)(I5,Φ) over EM(I ′1,Φ) mapping to f4(c̄2) to c̄′2.

Let I+
1

..= I5, f = f ′5 ◦ f ′4 where f ′5 = f5 � EMτ(K)(I4,Φ)) and f ′4 = f4 �
EMτ(K)(I2,Φ). Now I+

1 , f are as required because f4(b̄2) = b̄1 while f5(b̄1) = b̄1.

4) Easy by part (3). First note that (d)+ follows by (d) by 1.32(3), so we shall
ignore clause (d)+. Let EMτ(K)(I2,Φ) be

⋃
{M2,n : n < ω} where M2,n ∈ K<λ and

n < ω ⇒M2,n ≤K M2,n+1.
Let ān list the elements of M2,n with no repetitions such that ān C ān+1 for

n < ω. By induction on n, we choose b̄n such that

~ (a) b̄n ∈ `g(ān)(EMτ(K)(Jn+1,Φ))

(b) If n = m+ 1 then b̄m C b̄n
(c) For every κ < λ, the type tpL∞,κ[K]

(
b̄n,EMτ(K)(I0,Φ),EMτ(K)(In+1,Φ)

)
is equal to the type tpL∞,κ[K]

(
ān,EMτ(K)(I0,Φ),EMτ(K)(I2,Φ)

)
.

The induction step is by part (3). Let fn be the unique function mapping ān to
b̄n (with domain rang(ān)). So fn ⊆ fn+1 and fn is a ≤K-embedding of M2,n into
EMτ(K)(Jn+1,Φ) but Jn+1 ⊆ I1 hence into EMτ(K)(I1,Φ). So f ..=

⋃
{fn : n < ω}

is a ≤K-embedding of EMτ(K)(I2,Φ) into EMτ(K)(I1,Φ). Also, fn is the identity on
rang(ān) ∩ EMτ(K)(I0,Φ) hence f is the identity on⋃

n

rang(ān) ∩ EMτ(K)(I0,Φ) = EMτ(K)(I0,Φ)

so f is as required. �1.36
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Exercise: 1) Assume Kλ = (Kλ,≤Kλ) satisfies axioms I, II (and 0, presented below)
and amalgamation. Then tp(a,M,N) for M ≤Kλ N and a ∈ N and SKλ(M) are
well defined and has the basic properties of types from [She09c, §1].

2) If in addition Kλ satisfies Ax.III� below and Kλ is stable (i.e. |SKλ(M)| ≤ λ
for M ∈ Kλ) then every M ∈ Kλ has a ≤K-universal extension N which means
M ≤Kλ N and

(∀N ′)
(
M ≤Kλ N

′ ⇒ (∃f)
[
f is a ≤Kλ -embedding of N ′ into N over M

])
.

3) Ax.III (see [She09c, 0.2]) implies Ax.III�

where:

Ax.0: K is a class of τK-models, ≤K a two place relation of Kλ, both preserved
under isomorphisms

Ax.I: if M ≤Kλ N then M ⊆ N (are τ(Kλ)-models of cardinality λ
Ax.II: ≤Kλ is a partial order (so M ≤Kλ M for M ∈ Kλ)

Ax.III�: In following game the player COM has a winning strategy. A play lasts λ
moves, and the players take turns to construct a ≤Kλ -increasing continuous
sequence 〈Mα : α ≤ λ〉. In the αth move, Mα is chosen by INC if α is even
or by COM is α is odd. Now COM wins if INC always has a legal move.

Ax.IV�: For each M ∈ Kλ, in the following game, INC has no winning strategy: a
play lasts λ + 1 moves; in the αth move fα,Mα, Nα are chosen such that
fα is a ≤K-embedding of Mα into Nα, both are ≤Kλ -increasing continuous,
fα is ⊆-increasing continuous, M0 = M and in the αth move, Mα is chosen
by INC, and the pair is chosen by the player INC if α is even and by the
player COM if α is odd. The player COM wins if INC has always a legal
move (the player COM always has: he can choose Nα = Mα)

Definition 1.37. 1) Let <∗λ = <∗K∗λ
be the following two-place relation on K∗λ (so

M ≤∗K∗λ N mean M = N ∈ K∗λ or M <∗K∗λ
N):

M1 <
∗
λ M2 iff M1 ≤Kλ M2 are from K∗λ and M2 is ≤Kλ -universal over M1.

2) For α < λ, κ = i1,1(|α| + LST(K)) and M ∈ K∗λ let Savbs,α(M) be the set of
{Avκ(I,M) : I is a ((2κ)+, κ)-convergent subset of αM}. We define tp∗(ā,M,N)

when M ≤K N are from K∗λ and ā ∈ αN , as tpL∞,κ[K](ā,M,N) ∈ Savbs,α(M)
naturally.

3) Let K∗λ = (K∗λ,≤K� K∗λ,≤∗K∗λ) (see 1.38 below) but if (K∗λ,≤K� K∗λ) is a λ-AEC

then we omit ≤∗K∗λ .

Remark 1.38. 1) Note that the relation <∗λ = <∗Kλ seemingly depends on the choice
of Φ. However, assuming µ-solvability, by 1.40(2) below it does not depend.

2) The proof of 1.40 is like [She09c, 0.22(3)].
3) So K∗λ is a semi-λ-AEC (see [She]) but we do not use this notion here.

Claim 1.39. Assume cf(λ) = ℵ0.
0) If M ∈ K∗λ then for some N ∈ K∗λ, M <∗K∗λ

N .

1) If M ≤K N are from K∗λ, α < λ and ā ∈ αN \ αM then ā realizes some

p ∈ Savbs,α(M).
2) If M0 ≤K M1 <

∗
K∗λ

M2 ≤K M3 and M` ∈ K∗λ for ` < 4, then M0 <
∗
K∗λ

M3.
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Proof. 0) As K∗λ is categorical (by 1.16(1)) this follows by 1.36(2).
1) A proof of this is included in the proof of 1.32(2), i.e. by 1.27(1).
2) Easy, recalling amalgamation. �1.39

Claim 1.40. Assume cf(λ) = ℵ0.
1) Assume 〈Mi : i ≤ δ〉 is ≤Kλ-increasing continuous and M2i+1 <

∗
K∗λ

M2i+2 for

i < δ. Then Mδ ∈ K∗λ.
2) Assume that 〈M `

i : i ≤ δ〉 is an ≤K∗λ
-increasing continuous sequence such that

M `
2i+1 <

∗
K∗λ

M `
2i+2 for i < δ all for ` = 1, 2. Any isomorphism f from M1

0 onto M2
0

(or just a ≤Kλ-embedding) can be extended to an isomorphism from M1
δ onto M2

δ .

Proof. 1) We prove this by induction on δ, hence without loss of generality i < δ ⇒
Mi ∈ K∗λ.

Let M1
α = Mα for α ≤ δ and let 〈Iα : α ≤ δ〉 be <Kflin

λ
-increasing. Let

M2
α = EMτ(K)(Iα,Φ). Now there is an isomorphism f from M1

0 onto M2
0 as K∗λ

is categorical, so by part (2) there is an isomorphism g from M1
α onto M2

α, but
M2
α ∈ K∗λ so we are done.
2) Note

�2 without loss of generality
� M2

i <
∗
λ M

2
i+1.

[Why? We can find 〈M3
i : i ≤ δ〉 which is ≤∗K∗λ -increasing continuous and M3

0 = M2
0

and M3
i <

∗
λ M

3
i+1. Now apply the restricted version (i.e., with the assumption �)

twice.]
By induction on i ≤ δ we choose (fi, N

1
i , N

2
i ) such that

~ (a) N1
i , N

2
i belong to K∗λ

(b) fi is an isomorphism from N1
i onto N2

i

(c) N1
i , N

2
i , fi are increasing continuous with i

(d) For i = 0, N1
i = M1

i , fi = f and N2
i is f(M1

i ) = M2
i

(e) If i > 0 is a limit ordinal then N1
i = M1

i and N2
i = M2

i

(f) When i = ωα+ 2n < δ we have
(α) N1

ωα+2n+1 = M1
ωα+2n+1

(β) N2
ωα+2n+1 ≤K M

2
ωα+2n+1

(γ) N1
ωα+2n+2 ≤K M

1
ωα+2n+2

(δ) N2
ωα+2n+2 = M2

ωα+2n+2.

Case 1: i = 0.
This is trivial by clause (d) and the assumption of the claim on f .

Case 2: i = ωα+ 2n+ 1.
Note that N2

ωα+2n = M2
ωα+2n. [Why? If i = 0 (i.e. α = 0 = n) by ~(d), and if

i is a limit ordinal (i.e. α > 0 ∧ n = 0) by clause (e) of ~, and if n > 0 by clause
(f)(δ) of ~.]

Now we let N1
i = N1

ωα+2n+1
..= M1

ωα+2n+1 and hence satisfying clause (f)(α) of
~. So

N1
i−1 = N1

ωα+2n ≤K M
1
ωα+2n ≤K M

1
ωα+2n+1 = N1

ωα+2n+1 = N1
i .

Note that N2
i−1 = N2

ωα+2n <
∗
λ M

2
ωα+2n by � above hence we can apply Definition

1.37(1) and find an extension fi of fi−1 to ≤K-embedding of N1
i = M1

ωα+2n+1 into
M2
ωα+2n+1 and let N2

i
..= fi(N

1
i ).

Case 3: i = ωα+ 2n+ 2.
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Note that N1
ωα+2n+1 = M1

ωα+2n+1 by clause (f)(α) of ~ hence by the assumption
of the claim N1

ωα+2n+1 <
∗
K∗λ

M1
ωα+2n+2. We choose N2

ωα+2n+2
..= M2

ωα+2n+2 hence

N2
i−1 = N2

ωα+2n+1 ≤K M
2
ωα+2n+1 ≤K M

2
ωα+2n+2 = N2

ωα+2n+2 = N2
i .

Now we apply Definition 1.37(1) to find a ≤K-embedding gi of N2
ωα+2n+2 into

M1
ωα+2n+2 extending f−1

i−1.

Lastly, let fi = g−1
i and N1

i = M1
i � dom(fi). So we can carry the induction,

hence we can prove the claim. �1.40

Note that now we use more than in Hypothesis 1.18.

Claim 1.41. Assume

� (a) 〈λn : n < ω〉 is increasing, λ = λω =
∑
n<ω

λn satisfying λn = iλn >

LST(K) and cf(λn) = ℵ0 for n < ω.
(b) Φ ∈ Υor

K , and each λn and λ = λω is as in Hypothesis 1.18, or just
satisfies all its conclusions so far.

1) K∗λ is closed under unions ≤K-increasing chains (of length < λ+).

2) If Mn ∈ K∗λn ,Mn ≤K Mn+1 and M =
⋃
n<ω

Mn then M ∈ K∗λ.

3) If M ∈ Kλ and θ < λ⇒M ≡L∞,θ[K] EMτ(K)(λ,Φ) then M ∈ K∗λ.

4) K∗λ is categorical.

Proof. 1) We rely on part (2) which is proven below.
So let 〈Mi : i < δ〉 be ≤K-increasing in K∗λ with δ < λ+. Without loss of

generality δ = cf(δ), hence δ < λ. Call it θ, and we prove this by induction on
θ. Without loss of generality 〈Mi : i < θ〉 is ≤K-increasing continuous such that
Mi ∈ K∗λ for i < θ, and let Mθ =

⋃
i<θ

Mi. By renaming, without loss of generality

θ < λ0.
Let In, I

′
n be such that:

�1 (a) In is a linear order of cardinality λn from Kflin

(b) I ′n is a linear order of cardinality 2λn from Kflin

(c) I ′n is λ+
n -saturated. (This means that its cofinality is > λn, the cofi-

nality of its inverse is > λn and if I ′n |= “sα1
< sβ1

< tβ2
< tα2

” where
α1 < β1 < γ1, α1 < β2 < γ2 and |γ1| + |γ2| < λ+

n then for some r we
have I ′n |= “sα1 < r < tα2” for α1 < γ1, α2 < γ2.)

(d) In <Kflin I ′n <Kflin In+1 for n < ω.

Let I =
⋃
{In : n < ω}, so I is a universal member of K lin

λ . Let M∗ = EMτ(K)(I,Φ),
so for every i < θ there is an isomorphism fi from M∗ onto Mi, which exists as K∗λ
is categorical by 1.19(4) as cf(λ) = ℵ0.

Now

�2 (a) Every interval of I is universal in K lin
λ .

(b) If n < ω, J ⊆ I, χ = |J | < λ, and

EJ,I =
{

(t1, t2) ∈ (I \ J)2 : s ∈ J ⇒ [s <I t1 ≡ s <J t2]
}

then for at most χ elements t of J \ I the set t/EJ,I is a singleton.

[Why? Clause (a) is obvious. For clause (b) assume 〈tα : α < χ+〉 are pairwise
distinct members of J \I such that tα/EJ,I is a singleton for each α < χ+. Without
loss of generality for some k < ω we have α < χ+ ⇒ tα ∈ Ik hence χ ≤ λk. For
each α < χ+ we can choose sα ∈ I ′k such that sα <I′k tα and (sα, tα)I′k ∩ J = ∅.
Clearly

α < β < χ+ ⇒ (tα <I sβ ∨ tβ <I sα)
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hence
〈
(sα, tα)I : α < χ+

〉
are pairwise disjoint intervals of I, so for every α < χ+

large enough, (sα, tα)I ∩ J = ∅, but then (sα, tα)I ⊆ tα/EJ,I : a contradiction.]
Now by induction on n < ω and for each n by induction on ε ≤ θ and for each

n < ω and ε ≤ θ for i ≤ θ, we choose Jn,ε,i ∈ Kflin
λn

such that:

�3 (a) Jn,ε,i ⊆ I
(b) Jn,ε,i has cardinality λn
(c) In <Kflin Jn,0,i
(d) If ζ < ε ≤ θ and i ≤ θ then Jn,ζ,i ⊆ Jn,ε,i. Moreover, if for some ξ,

ζ = 2ξ+ 1 and ε = 2ξ+ 2, then there is a <Kflin
λn

-increasing continuous

sequence of length ω with first member Jn,ζ,i and union Jn,ε,i.
(e) For ε limit, Jn,ε,i =

⋃
ζ<ε

Jn,ζ,i.

(f) If ε is odd and i < j < θ then

fi
(
EMτ(K)(Jn,ε,i,Φ)

)
= Mi ∩ fj

(
EMτ(K)(Jn,ε,j ,Φ)

)
.

(g) Jn,θ,i ⊆ Jn+1,0,i

(h) For every k < ω and s <I t from Jn,ε,i, if [s, t]I ∩ I ′k 6= ∅ then

[s, t]I ∩ I ′k ∩ Jn,ε,i 6= ∅.

(i) If ζ is odd and ε = ζ+1, then EMτ(K)(Jn,ζ,i,Φ) <∗K∗λn
EMτ(K)(Jn,ε,i,Φ).

There is no problem to carry the definition, for ε = 2ξ + 2 recalling �2 above; the
only non-trivial point is clause (i), which follows by 1.36(4) and clause (d) of �3.
Clearly 〈Jn,ε,i : ε ≤ θ〉 is ⊆-increasing continuous by �3(d) + (e).

Let M∗n,ε,i = fi
(
EMτ(K)(Jn,ε,i,Φ)

)
and M∗n,ε = M∗n,2ε,ε. So clearly M∗n,ε,i ∈ K∗λn

by �3(b) and the choice of M∗n,ε,i the sequence 〈M∗n,ε : ε < θ〉 is ≤K-increasing
continuous with all of its members in K∗λn .

Now

�4 〈M∗n,ε : ε < θ〉 is <∗K∗λn
-increasing.

[Why? As

ζ < ε < θ ⇒M∗n,ζ = Mn,2ζ,ζ ≤K∗λn
Mn,2ζ+1,ζ ≤K∗λn

Mn,2ζ+1,ε

<∗K∗λn
Mn,2ζ+2,ε ≤K∗λn

Mn,2ε,ε = M∗n,ε

by the choice of M∗n,ζ , by �3(d) and Ax.V of AEC, by �3(f) and Ax.V of AEC, by

�3(i), by �3(d) + Ax.V of AEC(e), by the choice of M∗n,ε respectively). Now by
1.39(2) this argument shows that ζ < ε < θ ⇒M∗n,ζ <

∗
K∗λn

M∗n,ε.]

We can conclude, by using 1.40(1) for K∗λn , that M∗n
..=
⋃
ε<θ

M∗n,ε belongs to K∗λn .

Also as M∗n,ε ≤K Mε ≤K Mδ for ε < θ = δ by Ax.IV of AEC, we have M∗n ≤K Mδ

and similarly M∗n ≤K M
∗
n+1, and obviously for each i < θ we have

⋃
n<ω

M∗n ⊇
⋃
{M∗n,ε : n < ω, ε < θ} =

⋃
{M∗n,2,ε,ε : n < ω, ε < θ} =⋃

{M∗n,2ε,i : n < ω, i < θ, ε < θ} =
⋃
n<ω

M∗n,0,i

which recalling the choice of M∗n,0,i includes⋃
n

fi(EMτ(K)(Jn,0,i,Φ)) ⊇
⋃
n<ω

fi(EMτ(K)(In,Φ)) = fi(EMτ(K)(I,Φ)) = Mi.

As this holds for every i < θ we get
⋃
n<ω

M∗n = Mδ. So by part (2) we are done.

2) We choose In by induction on n such that:
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�5 (a) In ∈ Kflin
λn

(b) Im <Kflin In if n = m+ 1.

Let Nn = EMτ(K)(In,Φ).
We now choose (gn, I

′
n, I
′′
n ,M

′
n,M

′′
n , N

′
n, N

′′
n ) by induction on n < ω such that:

�6 (a) gn is an isomorphism from N ′′n onto M ′′n
(b) In ⊆ I ′n ⊆ I ′′n ⊆ In+2 and |I ′n| = λn, |I ′′n | = λn+1, and In+1 ⊆ I ′′n
(c) N ′n = EMτ(K)(I

′
n,Φ) and N ′′n = EMτ(K)(I

′′
n ,Φ)

(d) Mn ≤K∗λn
M ′n ≤K∗ M

′′
n ≤K∗ Mn+2 and Mn+1 ≤K∗λn+1

M ′′n
(e) gn maps N ′n = EMτ(K)(I

′
n,Φ) onto M ′n

(f) gn extends gm � N ′m if n = m+ 1
(g) I ′n ⊆ I ′n+1.

Case 1: For n = 0.
First, let M ′′n = M1, I ′′n = I1 so also N ′′n is defined. Second, choose gn satisfying

�6(a) by 1.16(1), i.e. 1.19(4), categoricity in K∗λn . Third, choose I∗n ⊆ I ′′n = I1 of
cardinality λn such that gn(EMτ(K)(I

∗
n,Φ)) includes M0. Fourth, let I ′n = I∗n ∪ In

and N ′n = EMτ(K)(I
′
n,Φ) and let M ′n = gn(N ′n).

Case 2: For n = m+ 1.
Let k = n+ 2, let ā ∈ λm(M ′m) list M ′m (with no repetitions).
Now

(∗)1 If θ < λn then tpL∞,θ[K](ā,∅, Nk) = tpL∞,θ[K](ā,∅, N ′′m).

[Why? As EMτ(K)(I
′′
m,Φ) ≺L∞,θ[K] EMτ(K)(Ik,Φ) by 1.14(a) as I ′′m ⊆ Ik.]

(∗)2 if θ < λn = λm+1 then tpL∞,θ (ā,∅, N
′′
m) = tpL∞,θ (gm(ā),∅,M ′′m).

[Why? As gm is an isomorphism from N ′′m onto M ′′m by �6(a), i.e. the induction
hypothesis.]

(∗)3 if θ < λn then tpL∞,θ[K](gm(ā),∅,M ′′m) = tpL∞,θ[K](gm(ā),∅,Mk).

[Why? This follows from M ′m ≺L∞,θ[K] Mk which we can deduce from 1.19(1), as
M ′′m ∈ K∗λm+1

= K∗λn by clause (d) of �6, Mk ∈ K∗k by an assumption of the claim,

M ′′m ≤Kλ Mk by clause (d) of �6.]

(∗)4 if θ < λn then tpL∞,θ[K](ā,∅, Nk) = tpL∞,θ[K](gm(ā),∅,Mk).

[Why? By (∗)1 + (∗)2 + (∗)3.]

(∗)5 tpL
∞,λ+

n+1
[K](ā,∅, Nk) = tpL

∞,λ+
n+1

[K](gm(ā),∅,Mk).

[Why? Clearly Nk,Mk ∈ K∗λk , hence by 1.19(4) there is an isomorphism fn from
Nk onto Mk, so obviously tpL∞,θ[K](ā,∅, Nk) = tpL∞,θ[K](fn(ā),∅, Nk), so by (∗)4

we have

tpL∞,θ[K](gm(ā),∅,Mk) = tpL∞,θ[K](ā,∅, Nk) = tpL∞,θ[K](fn(ā),∅,Mk)

so by 1.19(3) we have tpL
∞,λ+

n+1
[K](gn(ā),∅,Mk) = tpL

∞,λ+
n+1

[K](fn(ā),∅,Mk). But

as fn is an isomorphism from Nk onto Mk and the previous sentence we get
tpL∞,λn+1

[K](ā,∅, Nk) = tpL
∞,λ+

n+1
[K](fn(ā),∅,Mk) = tpL∞,λ(gn(ā),∅,Mk) as re-

quired.]

(∗)6 there are gn, I
′′
n , N

′′
n ,M

′′
n as required in the relevant parts of �6 (ignoring

I ′n, N
′
n,M

′
n), i.e. clauses (a),(f) and the relevant parts of (b),(c),(d):

(b)′ In ⊆ I ′′n ⊆ In+2 = Ik and |I ′′n | = λn+1 and In+1 ⊆ I ′n
(c)′ N ′′n = EMτ(K)(I

′′
n ,Φ)

(d)′ Mn ≤K∗ M
′′
n ≤K∗ Mn+2 and Mn+1 ≤K∗λn+2

M ′′n .
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[Why? By the hence and forth argument, but let us elaborate.
First, let ā′ be a sequence of length λn+1 listing (without repetitions) the set of

elements of Mn+1 and without loss of generality g(ā) C ā′. Note that rang(gm) ⊆
Mm+2 = Mn+1.

Second, let g′ be a function from rang(ā′) into Nk extending (gm � N ′m)−1 =
(gm � rang(ā))−1 such that tpL

∞,λ+
n+1

[K](g
′(ā′),∅, Nk) = tpL

∞,λ+
n+1

[K](ā
′,∅,Mk);

this exists by (∗)5. Let I ′′n ⊆ Ik of cardinality λn+1 be such that rang(g′) ⊆
EM(I ′′n ,Φ) and In+1 ⊆ I ′′n . Let ā′′ list the elements of EMτ(K)(I

′′
n ,Φ) ⊆ Nk and

without loss of generality g′(ā′)C ā′′. Let gn be a function from EMτ(K)(I
′′
n ,Φ) to

Mk extending (g′)−1 such that

tpL
∞,λ+

n+1
[K](ā

′′,∅, Nk) = tpL
∞,λ+

n+1
[K](gn(ā′′),∅,Mk).

Lastly, let N ′′n = EMτ(K)(I
′′
n ,Φ) and M ′′n = gn(N ′n) so we are done.]

(∗)7 there are I ′n, N
′
n,M

′
n as required.

[Why? By the LST argument we can choose I ′n and define N ′n,M
′
n accordingly.]

So we can carry the induction. Now N ′n ≤K N ′n+1 (by clauses (g),(c) of �6) and
gn � N ′n ⊆ gn+1 � N ′n+1 (by clause (f) + the previous statement). Hence g =⋃
{gn � N ′n : n < ω} is an isomorphism from

⋃
{N ′n : n < ω} onto

⋃
{M ′n : n < ω}.

But
N =

⋃
{Nn : n < ω} ⊆

⋃
{N ′n : n < ω} ⊆ dom(g) ⊆ N

and
M =

⋃
{Mn : n < ω} ⊆

⋃
{M ′n : n < ω} ⊆ rang(g) ⊆M.

Together g is an isomorphism from N onto M but obviously N ∈ K∗λ hence M ∈ K∗λ
is as required.

3), 4) Should be clear; just depends on 1.19(4). �1.41

Conclusion 1.42. Let λ be as in � of 1.41. 1) K∗λ is a λ-AEC (with ≤K� K∗λ) and
it has amalgamation and is categorical.

2) K⊕≥λ is an AEC, LST(K⊕≥λ) = λ and (K∗λ)up = K⊕≥λ and (K⊕≥λ)λ = K∗λ, see
Definition 1.43 below.

Definition 1.43. Let K⊕≥λ = K � K⊕≥λ where

K⊕≥λ = {M ∈ Kλ : M ≡L∞,λ[K] EMτ(K)(λ,Φ)}.

Proof. 1) It was clear defining (K∗λ,≤K� K∗λ) that it is of the right form and “M ∈
K∗λ”, “M ≤K∗λ

N” are preserved by isomorphisms. Obviously “≤K� K∗λ is a partial
order”, so Ax.I, Ax.II hold, and obviously Ax.V holds (see [She09c, 0.2]). The
missing point was Ax.III (about ≤K-increasing union) and it holds by 1.41(1).
Then Ax.IV becomes easy by the definition of ≤K∗λ

= ≤K� K∗λ, and lastly the
amalgamation holds by 1.34.

2) By [She09c, §1] we can “lift K∗λ up”, the result is K⊕≥λ (see [She09c, 0.31,0.32]).
�1.42

Let us formulate a major conclusion in ways less buried inside our notation.

Conclusion 1.44. Assume (K,Φ) is pseudo solvable in µ. Then (K,Φ) is pseudo
solvable in λ provided that LST(K) < λ, µ = µ<λ (or just the hypothesis 1.18
holds), cf(λ) = ℵ0, and λ is an accumulation point of the class of the fixed points
of the sequence of the i-s.
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Proof. By 1.42(1). �1.44

Remark 1.45. About [weak] solvability, see [S+b].
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§ 2. §2 Trying to Eliminate µ = µ<λ

There was one point in §1 where we use µ = µλ (i.e. in 1.13; more accurately, in
justifying hypothesis 1.18(1)). In this section we try to eliminate it. So we try to
prove M1 ≤Kµ M2 ⇒ M1 ≺L∞,θ[K] M2 for θ < λ, hence we fix K, µ, θ. We succeed
to do it with “few exceptions”.

Hypothesis 2.1. (We shall mention (b)µ or (b)−µ , (c), (d) when used! but not clause
(a).)

(a) K is an AEC and Φ ∈ Υor
K

(b)µ K categorical in µ and Φ ∈ Υor
K , or at least

(b)−µ K is pseudo µ-solvable as witnessed by Φ ∈ Υor
K (see Definition 1.4). In

particular, EMτ(K)(I, µ) is pseudo superlimit for I ∈ K lin
λ ,

(c) µ ≥ i1,1(LST(K))

(d) µ > LST(K).

Convention 2.2. K∗λ = K∗Φ,λ, etc., see Definition 1.15.

Definition 2.3. Assume

� µ ≥ χ ≥ θ > LST(K)

1) We let

K1
µ,χ =

{
(M,N) : N ≤K M, N ∈ Kχ, M ∈ Kµ and µ = χ⇒M = N

}
and let ≤K = ≤K,µ,χ be the following partial order on Kµ,χ:

(M0, N0) ≤K (M1, N1) iff M0 ≤K M1, N0 ≤K N1

(formally we should have written ≤K,µ,χ). Note that each pair (M,N) ∈ Kµ,χ

determine µ, χ. So if χ = µ, Kµ,χ is essentially Kµ. Let K1
µ = Kµ and let⋃

{(Mi, Ni) : i < δ} =
(⋃
{Mi : i < δ},

⋃
{Ni : i < δ}

)
for any ≤K-increasing

sequence
〈
(Mi, Ni) : i < δ

〉
.

1A) Let Kµ,χ = K2
µ,χ =

{
(M,N) ∈ K1

µ,χ : M ∈ K∗µ
}

and K2
µ = K∗µ but we use

them only when Φ witnesses K is pseudo µ-solvable: i.e. (b)−µ from Hypothesis 2.1
holds.

2) For k ∈ {1, 2}, a formula ϕ(x̄) ∈ L∞,θ[K] (so `g(x̄) < θ), cardinal κ ≥ θ (the

main case being κ = µ), and M ∈ Kk
κ , ā ∈ `g(x̄)M we define when M k ϕ[ā] by

induction on the depth of ϕ(x̄) ∈ L∞,θ[K], so the least obvious case is:

(∗) M k (∃ȳ)ψ(ȳ, ā) when for every M1 ∈ Kk
κ such that M ≤K M1 there is

M2 ∈ Kk
κ satisfying M1 ≤K M2 and b̄ ∈ `g(ȳ)M2 such that M2 k ψ[b̄, ā].

(We may omit k if k = 2.)

Of course

(α) for ϕ atomic, M k ϕ[ā] iff M |= ϕ[ā]

(β) for ϕ(x̄) =
∧
i<α

ϕi(x̄) let M k ϕ[ā] iff M k ϕi[ā] for each i < α

(γ) M k ¬ϕ[ā] iff for no N do we have M ≤K N ∈ Kk
κ and N k ϕ[ā].

3) Let k ∈ {1, 2}, Λ ⊆ L∞,θ[K] (each formula with < θ free variables, of course):

(a) Λ is downward closed if it is closed under subformulas

(b) Λ is (µ, χ)-modelk complete (when µ is clear from the context we may write
χ-modelk complete) if |Λ| < µ, and for every (M0, N0) ∈ Kk

µ,χ we can find

(M,N) ∈ K2
µ,χ above (M0, N0) which is Λ-generic, where:
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(c) (M,N) ∈ Kk
µ,χ is Λ-generick when: if ϕ(x̄) ∈ Λ and ā ∈ `g(x̄)N then

M k ϕ[ā] ⇔ N |= ϕ[ā]. (Yes! Neither (M,N) k ϕ[ā], which was not
defined, nor “M |= ϕ[ā]”!)

(d) Λ is called (µ,< µ)-modelk complete when |Λ|+ θΛ < µ and for every χ: if
|Λ|+ θΛ ≤ χ < µ then Λ is χ-modelk complete, where

θΛ
..= min

{
∂ > LST(K) : Λ ⊆ L∞,∂ [K]

}
.

We say Λ is modelk complete if it is (µ,< µ)-modelk complete and µ is
understood from the context.

(e) Above, if Φ or (K,Φ) is not clear from the context, we may replace Λ by
(Λ,Φ) or by (Λ,Φ,K).

4) For M ∈ Kk
κ , ā ∈ θ>M and Λ ⊆ L∞,θ[K], let

gtpkΛ(ā,∅,M) =
{
ϕ[ā] : M k ϕ[ā]

}
.

If we write θ instead of Λ we mean L∞,θ[K]. (Note: this type is not a priori complete!)

and we say that āmaterializes this type inM . To stress κ we may write gtpκ,kΛ (ā,∅,M)

or gtpκ,kθ (ā,∅,M), even though M determines κ.

5) We say M ∈ Kκ is Λ-generick when for every ϕ(x̄) ∈ Λ and ā ∈ `g(x̄)M we
have M k ϕ[ā] ⇔ M |= ϕ[ā]. So M ∈ Kk

µ is Λ-generick iff (M,M) ∈ Kk
µ,µ is

Λ-generick. We say Λ is κ-modelk complete when every M ∈ Kk
κ has a Λ-generic

≤K-extension in Kk
κ (so depend on K and if k = 2 also on Φ).

6) In all cases above, if k = 2 we may omit it.

Claim 2.4. Assume that LST(K) < θ ≤ χ < µ, κ > θ, and k ∈ {1, 2} (so if k = 2
then 2.1(b)−µ holds; see 2.3(1A)).

1) (Kk
µ,χ,≤K) is a partial order and chains of length δ < χ+ have a ≤K-l.u.b: this

is the union, see 2.3(1). If EMτ(K)(µ,Φ) is superlimit (not just pseudo superlimit)

then K2
µ,χ is a dense subclass of K1

µ,χ under ≤K.

2) If M1 k ϕ(ā) and M1 ≤K M2 are from Kk
κ then M2 k ϕ[ā].

3) If (M`, N`) ∈ Kk
µ,χ are Λ-generick for ` = 1, 2 and (M1, N1) ≤K (M2, N2)

then N1 ≺Λ N2.
4) If Mi ∈ Kk

κ for i < δ is ≤K-increasing, δ < κ+, cf(δ) ≥ θ, Λ ⊆ L∞,θ[K], and
each Mi is Λ-generick, then Mδ

..=
⋃
i<δ

Mi is Λ-generick and i < δ ⇒Mi ≺Λ Mδ.

5) If (Mi, Ni) ∈ Kk
µ,χ for i < δ is ≤K-increasing, δ < χ+, cf(δ) ≥ θ, Λ ⊆

L∞,θ[K] and each (Mi, Ni) is Λ-generick, then
( ⋃
i<δ

Mi,
⋃
i<δ

Ni
)

is Λ-generick and

Nj ≺Λ

⋃
i<δ

Ni for each j < δ.

Proof. Should be clear; in part (1), for k = 2, we use clause (b)−µ of 2.1. In part (5)

note that
⋃
{Mi : i < δ} ∈ K∗µ by Clause (b)−µ of 2.1. �2.4

Exercise: If (M,N) is Λ-generick and (M,N) ≤K (M ′, N) ∈ Kk
µ,χ then (M ′, N) is

Λ-generick.

Claim 2.5. Assume that µ ≥ χ ≥ θ > LST(K) and k ∈ {1, 2}.
1) The set of quantifier free formulas in L∞,θ[K] is (µ, χ)-modelk complete.
2) If Λε ⊆ L∞,θ(τK) is downward closed, (µ, χ)-modelk complete for ε < ε∗, and

Λ ..=
⋃
ε<ε∗

Λε, θ = cf(θ) ≤ χ∨ θ < χ, and ε∗ < χ+ (and µ > θ∨µ = θ = cf(θ)) then

Λ is (µ, χ)-modelk complete.
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Proof. 1) Easy.
2) Given (M,N) ∈ Kk

µ,χ let θr be min{∂ : ∂ ≥ θ is regular}. Clearly θr ≤ χ, and

we choose (Mi, Ni) ∈ Kk
µ,χ for i ≤ ε∗ × θr such that

~ (a) 〈Mi : i ≤ ε∗ × θr〉 is ≤K-increasing continuous
(b) 〈Ni : i ≤ ε∗ × θr〉 is ≤K-increasing continuous
(c) If i = ε∗ × γ + ε and ε < ε∗ then (Mi+1, Ni+1) is Λε-generick.
(d) (M0, N0) = (M,N).

There is no problem to do this.
Now for each ε < ε∗ the sequence

〈
(Mε∗×γ+ε+1, Nε∗×γ+ε+1) : γ < θr

〉
is ≤K,µ,χ-

increasing with union (Mε∗×θr , Nε∗×θr ), and each member of the sequence is Λε-
generick; hence by 2.4(5) we know that the pair (Mε∗×θr , Nε∗×θr ) is Λε-generick.
As this holds for each Λε it holds for Λ, so (Mε∗×θr , Nε∗×θr ) is as required. �2.5

From now on in this section

Hypothesis 2.6. We assume (a) + (b)−µ +(d) of 2.1 and we omit k using Definition
2.3 meaning k = 2.

Claim 2.7. 1) For M ∈ K∗µ and LST(K) < θ < µ the number of complete L∞,θ[K]-

types realized by sequences from θ>M is ≤ 2<θ. Moreover, the relation

E<θM ..=
{

(ā, b̄) : ā, b̄ ∈ θ>M and some automorphism of M maps ā to b̄
}

is an equivalence relation with ≤ 2<θ equivalence classes.
2) Hence there is a set Λ∗ = Λ∗θ = Λ∗K,Φ,µ,θ ⊆ L∞,θ[K] such that:

(a) |Λ∗| ≤ 2<θ and Λ∗ ⊆ L(2<θ)+,θ[K]

(b) Λ∗ is closed under sub-formulas and finitary operations

(c) Each ϕ(x̄) ∈ Λ∗ has quantifier depth < γ∗ for some γ∗ < (2<θ)+.

(d) For α < θ, M ∈ K∗µ, and ā ∈ αM , the Λ∗-type which ā realizes in M
determines the L∞,θ[K]-type which ā realizes in M . Moreover, one formula
in the type determines it.

(e) Similarly for materialize in M ∈ K∗µ; see Definition 2.3(4).

(f) If LST(K) < θ ≤ χ < µ and (M,N) ∈ Kµ,χ is Λ∗-generic then it is
L∞,θ[K]-generic.

(g) if M ∈ K2
µ is Λ∗-generic then it is L∞,θ[K]-generic.

Remark 2.8. Part (1) can also be proved using just (λ+1)×I∗ with I∗ a θ-saturated
dense linear order with neither first nor last element, but this is not clear for 2.11(1).

Proof. 1) By 5.1(1) and categoricity of K∗λ.
2) Follows, but we elaborate.
Let {āα : α < α∗ ≤ 2<θ} be a set of representatives of the E<θM -equivalence

classes. For each α 6= β such that `g(ān) = `g(āβ), let x̄α =
〈
xi : i < `g(āα)

〉
and

choose ϕα,β(x̄α), ψα,β(x̄α) ∈ L(2<θ)+,θ[K] such that, if possible, we have

M |= ϕα,β [āα] ∧ ¬ϕα,β [āβ ]

and under this, if possible,

M  “ψα,β(āα) ∧ ¬ψα,β(āβ).
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But in any case, M |= ϕα,β [āα] and M  ψα,β [āα]. Let

ϕα(x̄) =
∧
{ϕα,β(x̄α) : β < α∗, β 6= α and `g(āβ) = `g(āα)}

and similarly define ψα(x̄α). Let Λ∗ be the closure of {ϕα,β , ψα,β , ϕα, ψα : α 6=
β < α∗} under subformulas and finitary operations. Obviously, clauses (a),(b) hold
hence the existence of γ∗ < (2<θ)+, as required in clause (c), follows. Clause (d)
holds as

ā E<θM b̄⇒ tpL∞,θ[K](ā,∅,M) = tpL∞,θ[K](b̄,∅,M)

using the automorphisms. For α, β < α∗ such that `g(āα) = `g(āβ) we have

M |= (∀x̄α)
[
ϕα(x̄α) = ϕβ(x̄β)

]
implies tpL

(2<θ)+,θ
[K](āα,∅,M) = tpL

(2<θ)+,θ
[K](āβ ,∅,M) and even

tpL∞,θ[K](āα,∅,M) = tpL∞,θ[K](āβ ,∅,M)

recalling the choice of the ϕα,β-s.
Clause (e) holds similarly by the choice of the ψα,β-s. Clauses (f),(g) should also

be clear. (The proof is similar to the proof of the classical 0.18(3).) �2.7

Observation 2.9. Assume 2.1(b)−µ of course, Λ ⊆ L∞,θ[K], µ > 2<θ, and θ >
LST(K).

1) The number of complete L∞,θ[K]-types realized in some M ∈ K∗µ, by a sequence

of length < θ of course, is ≤ 2<θ. Hence every formula in L∞,θ[K] is equivalent,
for models from K∗µ to a formula of quantifier depth < (2<θ)+, even from Λ∗ ⊆
L(2<θ)+,θ[K] where Λ∗ is in 2.7(2).

2) Assume that I1 ⊆ I2 are well ordered, cf(I1), cf(I2) > 2<θ,

t ∈ I2 \ I1 ⇒ 2<θ < cf(I1 �
{
s ∈ I1 : s <I2 t

}
)

and

t ∈ I2 \ I1 ⇒ 2<θ < cf
(
I2 �

{
s ∈ I2 : (∀r ∈ I1)[r <I2 t ≡ r <I2 s]

})
.

Then EMτ(K)(I1,Φ) ≺L∞,θ[K] EMτ(K)(I2,Φ).

3) If M = EMτ(K)(I,Φ), |I| = µ, I well ordered of cofinality > 2<θ, ā ∈ αM
where α < θ and ai = σi(. . . , ati,` , . . .)`<n(i) for i < α then tpΛ∗(ā,∅,M) is deter-

mined by
〈
σi(x0, . . . , xn(`)−1) : i < `g(ā)

〉
and the essential θ-type of

〈ti,` : i < `g(ā), ` < n(i)〉; see Definition 2.10 below.

Before proving 2.9:

Definition 2.10. 1) For t̄ = 〈ti : i < α〉 ∈ αI, I well ordered, let the essential
θ-type of t̄ in I be shorthand for the essential (θ, (2<θ)+)-type.

By this we mean: for an ordinal γ, let the essential (θ, γ)-type of t̄ in I, estpθ,γ(t̄,∅, I),
be the following information stipulating tα =∞:

(a) The truth value of ti < tj (for i, j < α).

(b) otp([ri, ti)I) for i < α, where for i ≤ α we let ri be the minimal member r
of I such that otp([r, ti)I) < θ × γ and r ≤I ti and

(j < α ∧ tj < ti)⇒ tj ≤ r.

(c) min{θ × γ, otp[si, ri)I} for i ≤ α, where we let si be the minimal member
of I such that (∀j < α)[tj <I ti ⇒ tj <I si].

(d) min
{
θ, cf(I � {s : s <I ri})

}
for i ≤ α, which may be zero.
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2) Let the function implicit in 2.9(3) be called tµΛ = tµK,Λ = tµK,Φ,Λ, i.e., tµΛ(s, σ̄) =

tpΛ(ā,∅,M) when

ā =
〈
σi(. . . , atβ(i,`) , . . .)`<ni : i < `g(ā)

〉
,

σ̄ =
〈
σi(. . . , xβ(i,`), . . .)`<n : i < `g(ā)

〉
,

and s is the essential θ-type of 〈ti,` : i < `g(ā), ` < ni〉 in I.
If Λ = L∞,θ[K] we may write just θ.

Proof. 1) By 2.7(1) this holds for each M ∈ K∗µ.
2) It is known by Kino [Kin66] that I1 ≺L I2 if

L ⊆
{
ϕ ∈ L∞,θ({<}) : ϕ has quantifier depth < (2<θ)+

}
.

From this the result follows by part (1).
More fully, let θr be the first regular cardinal ≥ θ, and we say that the pair

(I1, I2) is γ-suitable when we replace the assumption “of cofinality > 2<θ” by “of
cofinality ≥ θ and of order type divisible by θ× γ”. Now we prove by induction on
γ that:

�1 Assume that for α < θ and for ` = 1, 2 we have that I` is a well ordering,
t̄` = 〈t`i : i < α〉 is <I`-increasing, and t`0 is the first element of I`. We
stipulate t`α =∞ and otp([t`i , t

`
i+1)I0) = θrγα

`
i + βi where βi < θγ and(

cf(α1
i ) = cf(α1

i )
)
∨
(

cf(α1
i ) ≥ θ ∧ cf(α2

i ) ≥ θ
)
.

Then for any formula ϕ(〈xi : i < α〉) ∈ L∞,θ({<}) of quantifier depth
≤ γ we have I1 |= ϕ[t̄1]⇔ I2 |= ϕ[t̄2].

Hence

�2 if ϑ(x̄) ∈ L∞,θ({<}) has quantifier depth < γ and (I1, I2) is γ-suitable and

t̄ ∈ `g(x̄)(I1) then I1 |= ϕ[t̄]⇔ I2 |= θ[t̄].

3) Follows by part (2). �2.9

Claim 2.11. Assume

� (a) M ∈ K∗µ
(b) Λ ⊆ L∞,θ[K] is downward closed, |Λ| ≤ χ, LST(K) < θ ≤ χ < µ and

2<θ ≤ χ and θ = cf(θ) ∨ θ < χ so Λ = Λ∗ from 2.7 is O.K.
(c) In part (3),(4),(5) we assume (χ<θ ≤ µ) ∨ (cf(µ) ≥ θ).
(d) For part (6) we assume cf(µ) ≥ θ (hence the demand in clause (c)

holds).

1) If M ∈ K∗µ then {gtpΛ(ā,∅,M) : ā ∈ θ>M} has cardinality ≤ 2<θ.
2) If (M,N) ∈ Kµ,χ then we can find N ′, (M,N) ≤K (M,N ′) ∈ Kµ,χ such that

(∗) if α < θ and b̄ ∈ αM and Λ ⊆ L∞,θ[K] then for some b̄′ ∈ α(N ′) we have:
for every ā ∈ θ>N , gtpΛ(āˆb̄,∅,M) = gtpΛ(āˆb̄′,∅,M).

3) If (M,N) ∈ Kµ,χ, then we can find (M1, N1) such that (M,N) ≤K (M1, N1) ∈
Kµ,χ and: (note that ȳ may be the empty sequence)

(∗) if (∃ȳ)ϕ(ȳ, x̄) ∈ Λ and ā ∈ `g(x̄)N then M1  ¬∃ȳϕ(ȳ, x̄) or for some
b̄ ∈ `g(ȳ)(N1) we have M1  ϕ[b̄, ā].

4) In part (3) we can demand

(∗)+ if (∃ȳ)ϕ(ȳ, x̄) ∈ Λ and ā ∈ `g(x̄)(N1) then M1  ¬(∃ȳ)ϕ(ȳ, x̄) or for some
b̄ ∈ `g(ȳ)(N1) we have M1 |= ϕ[b̄, ā].

5) In part (4) it follows that the pair (M1, N1) is Λ-generic (most interesting for
Λ∗; see 2.7).

6) If M1 ∈ K∗µ then it is Λ-generic.
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Proof. 1) Proved just like 2.7(1).
2) First assume θ is a successor cardinal.7 As M ∈ K∗µ, without loss of generality

M = EMτ(K)(I,Φ) for some linear order I of cardinality µ as in 5.1(1),(4) with

θ−, θ, χ+, µ here standing for µ, θ1, θ2, λ there. It follows that for some J ⊆ I of
cardinality χ we have N ⊆ EMτ(K)(J,Φ), and let J+ ⊆ I be such that J ⊆ J+,

|J+ \ J | = χ and for every t̄ ∈ θ>I there is an automorphism f of I over J which
maps t̄ to some member of `g(t̄)(J+).

Lastly, let N ′ = EMτ(K)(J
+,Φ). It is easy to check (see 1.4) that (∗) holds.

If θ is a limit ordinal it is enough to prove for each ∂ < θ, a version of (∗) with
α < ∂; and this gives N ′∂ . Now we choose N ′ such that ∂ < θ ⇒ N ′∂ ≤K N ′ and
(M,N ′) ∈ Kµ,χ.

3),4),5),6) We prove by induction on γ that if we let

Λγ = {ϕ(x̄) ∈ Λ : ϕ(x̄) has quantifier depth < 1 + γ}
then parts (3),(4),(5),(6) hold for Λγ . For all four parts, |Λ| ≤ χ hence |Λγ | ≤ χ
and it suffices to consider γ < χ+. For γ = 0 they are trivial and for γ limit also
easy (let θr be the first regular ≥ θ and extend |γ|+ × θr times taking care of Λβ
in stage γ × ζ + β for each β < γ). So let γ = β + 1.

We first prove (3), but we have two cases (see clause (c)) of the assumption. If
χ<θ ≤ µ this is straight by bookkeeping. So assume cf(µ) ≥ θ. Given (M,N) ∈
Kµ,χ we try to choose, by induction on i < χ+, a pair (Mi, Ni) and also ψi(ȳi, x̄i), āi, b̄i
for i odd such that

~1 (a) (M0, N0) = (M,N)
(b) (Mi, Ni) ∈ Kµ,χ is ≤K-increasing continuous
(c) Mi+1 is Λβ-generic for i even
(d) for i odd ψi(ȳi, x̄i) ∈ Λβ and āi ∈ θ>N and b̄i ∈ θ>(Ni+1) are such

that `g(āi) = `g(x̄i), `g(b̄i) = `g(ȳi) and
(α) b̄ ∈ `g(ȳi)(Mi)⇒Mi 1 ψi[b̄i, ā] but

(β) Mi+1  ψi[b̄i, āi].

(γ) For every b̄ ∈ θ>(Mi+1) there is an automorphism of Mi+1 over
Ni mapping b̄ into Ni+1.

If we succeed, by part (2) applied to the pair of models
( ⋃
i<χ+

Mi, N
)

as χ+ ≤ µ,

this pair belongs to Kµ,χ we get N ′ as there, hence for some odd i < χ+, N ′ ⊆Mi.
Let ζ = i+ 2, and this gives a contradiction to the choice of (ψζ , āζ , b̄ζ).

[Why? There is an automorphism f of M ..=
⋃
{Mj : j < χ+} over N mapping

b̄ζ into N ′ hence into Mi hence f(b̄ζ) ∈ θ>(Mζ). We know (by clause (d)(β) above)
that Mζ+1  ψζ [b̄ζ , āζ ] but Mζ+1 ≤Kµ M , hence M  ψζ [f(b̄ζ), āζ ]. Recall that

f is an automorphism of M over N hence M  ψζ [f(b̄ζ), f(āζ)], but āζ ∈ θ>N
so f(āζ) = āζ hence M  ψζ [b̄ζ , f(āζ)]. But Mζ ≤Kµ M and ā, f(b̄ζ) are from

Mζ hence Mζ 1 ¬ψζ [f(b̄ζ), āζ ]. However by clause (d)(α) of ~1 we have Mζ 1
ψζ [f(b̄ζ), āζ ]. But as i (hence ζ) is an odd ordinal the last two sentences contradict
clause (c) of ~1 applied to i+ 1.]

Hence we are stuck for some i < χ+. Now for i = 0 clause ~(a) gives a permis-
sible value and for i limit take unions noting that clauses (c),(d) required nothing.
So i = j + 1; if j is even we apply the induction hypothesis for the pair (Mi, Ni).
Hence j is odd so we cannot choose ψj(ȳ, x̄), āj , b̄j , recalling part (2) so the pair
(Mj , Nj) is as required thus proving the induction step for part (3), i.e. (3) for Λγ .

Second, we prove part (4) still for γ = β + 1. We can now again try to choose
by induction on i < χ+ a pair (Mi, Ni) satisfying

7Not a real loss to assume this, as it suffices to deal with arbitrary large θ < i1,1(LST(K)).
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~2 (a) (M0, N0) = (M,N)
(b) (Mi, Ni) ∈ Kµ,χ is ≤K-increasing continuous
(c) If i = 2j + 1, then (Mi+1, Ni+1) is as in part (3) for Λγ with (Mi, Ni),

(Mi+1, Ni+1) here standing for (M,N), (M1, N1) there.
(d) if i = 2j then for some ψi(ȳi, x̄i) ∈ Λβ and āi ∈ `g(x̄i)(Ni) and

b̄i ∈ `g(ȳi)(Ni+1) we have Mi+1  ψi(b̄i, āi) but

b̄ ∈ `g(ȳi)(Mi)⇒Mi 1 ψi[b̄, āi].
If we succeed, let S0 = {δ < χ+ : cf(δ) ≥ θ}, so by an assumption S is a stationary
subset of χ+, i.e. as by clause �(b) we have θ = cf(θ) ≤ χ ∨ θ < χ. Also, for
δ ∈ S0, as 〈Ni : i < δ〉 is increasing with union Nδ and δ = 2δ, clearly āδ is well
defined, so for some i(δ) < δ we have āδ ∈ θ>(Ni(δ)) and without loss of generality
i(δ) = 2j(δ) + 1 for some j(δ) hence by clause (c) of ~2 the pair (Mi(δ)+1, Ni(δ)+1)
is as required there: contradiction, as in the proof for part (3). Hence for some i
we cannot choose (Mi, Ni).

For i = 0 let (Mi, Ni) = (M,N) so only clauses (a) + (b) of ~2 apply and are
satisfied. For i limit take unions. So i = j + 1. If j = 1 mod 2, clause (d) of ~2 is
relevant and we use part (3) for Λβ which holds as we have just proved it.

Lastly, if j = 2 mod 2 and we are stuck then the pair (Mj , Nj) is as required.
Third, Part (5) should be clear but we elaborate.
We prove by induction on γ′ that if ϕ(x̄) ∈ Λγ has quantifier depth < 1 + γ′

then for every ā ∈ `g(x̄)(N1) we have M1 |= ϕ[ā]⇔ N1 |= ϕ[ā]. For atomic ϕ this is
obvious and for ϕ =

∧
i<α

ϕi should be clear. If ϕ(x̄) = ¬ψ(x̄) note that in (∗)+ of

part (4) we can use empty ȳ so ¬(∃ȳ)ψ(x̄) = ¬ψ(x̄). Also for ϕ(x̄) = (∃ȳ)ϕ′(ȳ, x̄)
we apply part (4).

Fourth, we deal with part (6), so (see clause (d) of the assumption) we have
cf(µ) ≥ θ. Let χ = 〈χi : i < cf(µ)〉 be constantly µ− (so µ = χ+

i ) if µ is a successor
cardinal, and be increasing continuous with limit µ. 2<θ < χi < µ if µ is a limit
cardinal recalling 2<θ < µ by �(b). Consider

Kµ,χ̄ =
{
M =

〈
Mi : i ≤ cf(µ)

〉
: M is ≤K-increasing continuous,

Mi ∈ Kχi for i < cf(µ), Mcf(µ) ∈ K∗µ
}

ordered by M
1 ≤K M

2
iff i ≤ cf(µ)⇒M1

i ≤K M
2
i .

By 2.11 and part (5) for Λγ which we proved we can easily find M ∈ Kµ,χ̄ such

that i < cf(µ)⇒ ‘(Mcf(µ),Mi+1) is Λγ-generic’. Such M we call Λ∗-generic.
Next

� if ϕ(x̄) ∈ Λγ and M is Λγ-generic, ā ∈ θ>(Mi), i successor, ϕ(x̄) ∈ L∞,θ[K]
and `g(x̄) = `g(ā) then Mcf(µ) |= ϕ[ā]⇔Mcf(µ)  ϕ[ā].

[Why? Recalling cf(µ) ≥ θ, we prove this by induction on the quantifier depth of
ϕ.]

By the definition of “M is Λ-generic” and categoricity of K∗µ we are done. �2.11

Conclusion 2.12. If µ ≥ (2<θ)+, θ > LST(K) and cf(µ) ≥ θ > LST(K) then every
M ∈ K∗µ is L∞,θ[K]-generic, hence if M1 ≤K M2 are from K∗µ then M1 ≺L∞,θ[K] M2.

Remark 2.13. 1) With a little more care, if µ = µ+
0 also θ = µ is O.K. but here this

is peripheral.
2) θ ≤ LST(K) is not problematic, so we just ignore it.
3) So 2.12 improves 1.13; i.e., we need cf(µ) ≥ λ (> LST(K)) instead of µ = µ<λ,

but still there is a class of µ which are not covered.
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Proof. Let Λ∗ be as in 2.7(2), so in particular |Λ∗| ≤ 2<θ. Now 2.11(6) and clause
(g) of 2.7 proves the first assertion in 2.12. For the second assume that M1 ≤Kµ M2

and we shall prove that M1 ≺L∞,θ[K] M2.

By the categoricity of K in µ, or clause (b)−µ of Hypothesis 2.1, K∗ is categorical

in µ hence M1,M2 ∈ K∗µ are Λ∗-generic. Suppose ā ∈ `g(x̄)(M1), ϕ(x̄) ∈ Λ∗, so by

M ′1 being Λ∗-generic (or � from the end of the proof of 2.11 applied to M
2
) we

have

(∗)1 M1 |= ϕ[ā]⇒M1  ϕ[ā]⇒M1 |= ϕ[ā]

and by M2 being Λ∗-generic (or � from the end of the proof of 2.11 applied to M
2
)

we have

(∗)2 M2 |= ϕ[ā]⇒M2  ϕ[ā]⇒M2 |= ϕ[ā]

and by the definition of “M  ϕ[ā]” recalling M1 ≤Kµ M2,

(∗)3 if M1  ϕ′[ā] then M2  ϕ′[ā] for ϕ′(x̄) ∈
{
ϕ(x̄),¬ϕ(x̄)

}
.

So both M1 and M2 satisfy ϕ[ā] if M1 satisfies it, but this applies to ¬ϕ[ā] too; so
we are done. �2.12

Claim 2.14. If K is also categorical in µ∗ (or just Hypothesis 2.6 applies also to
µ∗, with the same Φ) and µ∗ ≥ µ<θ > µ > θ > LST(K) and (∗) below, then every
M ∈ K∗µ is L∞,θ[K]-generic and

M1 ∈ K∗µ ∧M2 ∈ K∗µ ∧M1 ≤Kµ M2 ⇒M1 ≺L∞,θ[K] M2,

i.e. the conclusions of 1.13, 2.12 hold where

(∗) if M ∈ K∗µ∗ and A ∈ [M ]µ then we can find N ≤K M such that A ⊆ N ∈ K∗µ
and for every ϕ(x̄) ∈ L∞,θ[K] and ā ∈ `g(x̄)N we have

M  ϕ[ā]⇔ N  ϕ[ā].

Proof. We shall choose (Mi, Ni) ∈ Kµ∗,µ by induction on i ≤ θ+ such that not only
Mi ∈ K∗µ∗ (see the definition of Kµ∗,µ) but also Ni ∈ K∗µ and this sequence of pairs
is ≤K-increasing continuous. For i = 0 use any pair; e.g. M0 = EMτ(K)(µ

∗,Φ) and
N0 = EMτ(K)(µ,Φ).

For i limit take unions, recalling Mj , Nj are pseudo superlimit for j < i.
For i = j + 1, let N+

j ≤K Mj be such that Nj ⊆ N+
j ∈ Kµ and (Mj , N

+
j )

satisfies (∗) of the claim (standing for (M,N)). Let Λ∗ be as in 2.7 for µ∗. Then by
2.11(5) with (µ∗, µ, θ) here standing for (µ, χ, θ) there (noting that in �(c) there
we use the case χ<θ ≤ µ which here means µ∗ = µ<θ) we can choose a Λ∗-generic
pair (Mi, Ni) ∈ Kµ∗,µ above (Mj , N

+
j ). Hence by 2.7(2)(g) it is also a L∞,θ[K]-

generic pair. Now for j < θ+, for ā ∈ θ>(Nj), we can read gtpµ
∗

θ (ā,∅,Mj+1)

and it is complete, but as by our use of (∗) it is the same as gtpµθ (ā,∅, N+
j+1).

So gtpµθ (ā,∅, N+
j+1) is complete for every ā ∈ θ>(Nj), so also gtpµ(ā,∅, Nθ+) is

complete by monotonicity.
Now if ā ∈ θ>(Nθ+) then for some j < θ+ we have ā ∈ θ>(Nj), so by the above

pā ..= gtpµ
∗

θ (ā,∅,Mj+1) = gtpµθ (ā,∅, N+
j+1) = gtpµθ (ā,∅, Nθ+) is complete and does

not depend on j as long as j is large enough.
Now we prove that if ā ∈ θ>(Nθ+) then ϕ(x̄) ∈ pā ⇒ Nθ+ |= ϕ[ā], and we

prove this by induction on the quantifier depth of ϕ(x̄). As usual, the real case is

ϕ(x̄) = (∃ȳ)ϕ(ȳ, x̄). Let j < θ+ be such that ā ∈ `g(x̄)(Nj), so pā = gtpµ
∗

θ (ā,Mj+1)
so Mj+1  ϕ[ā] and by the choice of (Mj+1, Nj+1) it follows that Nj+1 |= ϕ[ā].

Hence for some b̄ ∈ `g(ȳ)(Nj+1) we have Nj+1 |= ψ[b̄, ā] hence Mj+1  ψ(b̄, ā),
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hence ψ(ȳ, x̄) ∈ pb̄ˆā hence by the induction hypothesis Nθ+ |= ψ[b̄, ā] hence Nθ+ |=
ϕ[ā]. �2.14

Conclusion 2.15. 1) For each θ ≥ LST(K), the family of µ > 2<θ in which K
is categorical but some (equivalently, every) M ∈ Kµ is not L∞,θ[K]-generic is

⊆
{

[µi, µ
<θ
i ] : i < 22θ

}
for some sequence 〈µi : i < 22θ 〉 of cardinals.

2) Similarly for pseudo solvable: i.e. for each θ ≥ LST(K) and Φ ∈ Υor
θ , for

at most i2(θ) cardinals µ > 2<θ, we have (∀α < µ)
[
|α|<θ < µ

]
and for some

µ∗ ∈ [µ, µ<θ] the pair (K,Φ) is pseudo µ∗-solvable but some (equivalently, every)
M ∈ K∗Φ,µ∗ is not L∞,θ+ [K]-generic.

Proof. Straightforward. Note that it is enough to prove this for each Φ separately.

Toward contradiction, assume
〈
µε : ε <

(
i2(θ)

)+〉
is an increasing sequence of

such cardinals, satisfying (µε)
<θ < µε+1.

(∗)1 for a linear order I let
(a) ΩI,θ =

{
(t̄, σ̄) : t̄ ∈ θ>I, σ̄ = 〈σi(at̄ηi ) : i < i∗〉

}
, where ηi ∈ ω>`g(t̄),

t̄ηi = 〈tηi(`) : ` < `g(ηi)〉, and σ is a τ(Φ)-term.

(b) EI,θ is the following equivalence relation on ΩI,θ: (t̄1, σ̄1) EI,θ (t̄2, σ̄2)
iff

(α) `g(t̄1) = `g(t̄2)
(β) σ̄1 = σ̄2

(γ) {(t1i : t2i ) : i} is a partial automorphism of I.
[No idea what this means; I’ve been fixing typos freely,
but I can’t even guess at the intention.]

For transparency assume θ is regular. Let Ψ be as in 5.1(3) so for a linear order I ′,
EM{<}(I, ψ) is a linear ordinal (of cardinality (I)).

[I assume |I|?]
Now for each ε and

ζ ∈ wε =
{
ζ ∈ [µε, µε+1) : ζ has cofinality θ and is divisible by µε

}
let Iµ = EM{<}(I

lim
θ,ζ , ψ), hence (in the statement of 5.1), instead of ζ we have λ×θ2

which here will be µε × θ; but in the proof of 5.1 we start it for any ζ ∈ [λ, λ] [of ]
cofinality θ2, we have

(∗)3 (a) Iε,ζ = Iζ is a linear order of cardinality µε.
(b) Iε,ζ is increasing with ε and for a fixed ε increasing with ζ.
(c) let Mε,ζ = Mζ , EMτ(K)(Iε,ζ ,Φ), so ≤K-increasing

(d) If h is a partial automorphism of (ζ,<) of cardinality < θ then ĥ,
the partial automorphism of Iε,ζ which induces an automorphism of
EM(Iε,ζ ,Φ)
[Sentence ends here. Does this bleed into (∗)4?]

(∗)4 we define8 an equivalence relation on Eε,ζ = Eζ on θ>(Mε,ζ) as follows:
ā Eε,ζ b̄ iff there is a partial automorphism h of (ζ,<) such that the partial

automorphism ĥ it induces on Iε,ζ satisfies that the partial automorphism

ĥ it induces on Mε,ζ maps ā to b̄.

[ĥ is used twice. “. . . such that the induced partial automor-
phism on Mε,ζ maps ā to b̄?”]

8For being an equivalence relation it is better to assume the following on Φ: if t̄1, t̄2 ∈ ω>I,
EM(I,Φ) |= σ1(āt̄1 ) = σ2(āt̄2 ), t̄ ∈ ω>I, rang(t̄) = rang(t̄1) ∩ rang(t̄2), then for some σ,

EM(I,Φ) |= σ(āt̄) = σ`(āt̄` ) for ` = 1, 2.
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(∗)5 If ζ1 < ζ2 then any equivalence class of θ>(Mζ2) is represented in Mζ1 .
(Recall ζ` ≥ µ0 > θ > |τ(Φ)|.)

(∗)6 for any (t̄, σ̄) ∈ ΩIζ ,θ, the generic type gps(〈σi(ātηi ) : i < i∗〉,∅,Mζ) is

determined by ζ and (t̄, σ̄)/EIζ ,θ.
As Eε,ζ has ≤ i2(θ) ≤ µε (even ≤ 2<θ ≤ µε) equivalence classes, for each ε there is
w∗ε ⊆ wε, unbounded in µ+

ε , such that the function implicit in (∗)6 is constant for
ζ ∈Wε.

Similarly there is S ⊆ i2(θ), unbounded in it, such that the above function is
constant on

⋃
{W ∗ε : ε ∈ S}. For any ε1 < ε2 in S and ζ2 ∈ W ∗ε , let (µ∗, µ) ..=

(µε2 , µε1) and we verify condition (∗) in 2.14. Let M ∈ Kµ∗ , so without loss of
generality M = Mε2,ε2 and suppose A ∈ [M ]µ, then there is J0 ⊆ ζ1 of cardinality
µ such that A ⊆ EM(J0,Φ ◦Ψ).

Let ζ1 ∈ wε1 be > otp(J0). We can find J1 ⊆ ζ2 extending J0 of order type ζ1
(because cf(ζ1) = cf(ζ2) = θ and µε2 divides ζ2). So there is an isomorphism f
from Mε1,ζ1 onto EMτ(K)(J1,Φ ◦Ψ). Choosing the choices / With the appropriate
choices of S,Wε1 ,Wε2 we are done. �2.15

∗ ∗ ∗

For the rest of this section we note some basic facts on the dependency on Φ (not
used here).

Definition 2.16. 1) We define a two-place relation Eκ = Eor
κ [K] on Υor

κ [K], so
κ ≥ LST(K): Φ1 Eκ Φ2 iff for every linear orders I1, I2 there are linear orders J1, J2

extending I1, I2 respectively such that EMτ(K)(J1,Φ), EMτ(K)(J2,Φ) are isomor-
phic.

2) We define ≤or
κ = ≤or

κ,[K], a two-place relation on Υor
κ [K] as in part (1); only in

the end, EMτ(K)(J1,Φ1) can be ≤K-embedded into EMτ(K)(J2,Φ2).
[The highlighted relation was originally typeset as ≤or

κ [K] throughout;
it and Eor

κ [K] look horrific when actually used in an expression.]

Claim 2.17. 1) The following conditions on Φ1,Φ2 ∈ Υor
κ [K] are equivalent:

(a) Φ1 Eκ Φ2

(b) There are I1, I2 ∈ K lin of cardinality ≥ i1,1(κ) such that EMτ(K)(I1,Φ1),
EMτ(K)(I2,Φ) are isomorphic.

(c) there are Φ′1,Φ
′
2 satisfying Φ` ≤⊗ Φ′` ∈ Υor

κ [K] for ` = 1, 2 such that Φ′1,Φ
′
2

are essentially equal (see Definition 2.18 below).

2) The following conditions are equivalent

(a) Φ1 ≤or
κ Φ2 (recall ≤κ = ≤or

κ [K]).

(b) There are I1, I2 ∈ K lin of cardinality ≥ i1,1(κ) such that EMτ(K)(I1,Φ1)
can be ≤K-embedded into EMτ(K)(I2,Φ2).

(c) for every I1 ∈ K lin there is I2 ∈ K lin such that EMτ(K)(I1,Φ1) can be
≤K-embedded into EMτ(K)(I2,Φ2).

Definition 2.18. Φ1,Φ2 ∈ Υor
κ [K] are essentially equal when for every linear order

I there is an isomorphism f from EMτ(K)(I,Φ1) onto EMτ(K)(I,Φ2) such that
for any τΦ1

-term σ1(x0, . . . , xn−1) there is a τΦ2
-term σ2(x0, . . . , xn−1) such that:

t0 <I . . . <I tn−1 ⇒ f(a1) = a2, where a` is σ`(at0 , . . . , atn−1) as computed in
EM(I,Φ`) for ` = 1, 2.
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Proof. Straightforward (particularly recalling such proof in 1.32(1)). �2.17

Claim 2.19. 1) Eκ = Eor
κ [K] is an equivalence relation and

Φ1Eor
κ [K]Φ2 ⇒ Φ1 ≤or

κ [K]Φ2.

[See what I mean?]
1A) In fact, if 〈Φε : ε < ε(∗)〉 are pairwise Eκ-equivalent and ε(∗) ≤ κ then we

can find 〈Φ′ε : ε < κ〉 satisfying Φ′ε ≤⊗ Φ′ε for ε < ε(∗) such that the Φ′ε for ε < ε(∗)
are pairwise essentially equal.

2) ≤or
κ is a partial order.

3) If Φ1,Φ2 ∈ Υor
κ [K] are essentially equal then (K,Φ1) is pseudo/weakly/strongly

(µ, κ)-solvable iff (K,Φ2) is pseudo/weakly/strongly (µ, κ)-solvable.
4) If Φ1 ∈ Υor

κ [K] is strongly (µ, κ)-solvable and Φ2 exemplifies K is (µ, κ)-solvable
then Φ1 Eκ Φ2.

5) If K is categorical in µ and µ > κ ≥ LST(K) then every Φ ∈ Υor
κ [K] is strongly

(µ, κ)-solvable.
6) Assume (K,Φ`) is pseudo (µ, κ)-solvable and µ ≥ i1,1(κ) for ` = 1, 2. Then

Φ1 Eκ Φ2 iff Φ1 ≤or
κ Φ2 ∧ Φ2 ≤or

κ Φ1.
7) If Φ1 ≤or

κ Φ2 and Φ1 is strongly (µ, κ)-solvable or just pseudo (µ, κ)-solvable
then Φ1,Φ2 are Eor

κ [K]-equivalent.

Proof. Easy, use 1.32(1) and its proof. �2.19
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§ 3. §3 Categoricity for cardinals on a club

We draw here an easy conclusion from §2, getting that, on a closed unbounded
class of cardinals which is ℵ0-closed, we get a constant answer to being categorical.
This is, of course, considerably weaker than conjecture 0.1 but is still progress; e.g.
it shows that the categoricity spectrum is not totally chaotic.

We concentrate on the case the results of §1 hold (e.g. µ = µλ) for the λ-s with
which we deal. To eliminate this extra assumption we need §2. This section is not
used later. Note that 3.3 is continued (and improved) in [S+c] and Exercise 3, [S+b]
improve 3.5; similarly 3.6.

In the claims below we concentrate on fixed points of the sequence of iα-s.

Hypothesis 3.1. As in Hypothesis 1.2, (i.e. K is an AEC with models of arbitrarily
large cardinality).

Definition 3.2. 1) Let CatK be the class of cardinals in which K is categorical.
1A) Let Sol = SolK,Φ = Sol1K,Φ be the class of µ > LST[K] such that (K,Φ) is

pseudo µ-solvable. Let Sol2K,Φ [Sol3K,Φ] be the class of µ > LST(K) such that (K,Φ)
is weakly [strongly] µ-solvable.

2) Let mod−comK,Φ be the class of pairs (µ, θ) such that: µ > θ ≥ LST(K) and
L∞,θ+ [K] is µ-model complete. (On K∗Φ,µ see Definition 2.3(3)(b), 2.3(5).)

3) Let Cat′K be the class of µ ∈ CatK such that: µ ≥ i1,1(LST(K)) and if
LST(K) ≤ θ and i1,1(θ) ≤ µ then L∞,θ+ [K] is µ-model complete.

3A) For Φ ∈ Υor
K let Solk,∗K,Φ be the class of µ ∈ SolkK,Φ such that µ ≥ i1,1(LST(K))

and: if LST(K) ≤ θ and i1,1(θ) ≤ µ then the pair (L∞,θ+ [K],Φ) is µ-model com-
plete.

Let Sol`,<θK,Φ be the class of λ ∈ Sol`K,Φ such that L∞,θ[K] is µ-model complete (see

[She09b, §2]).

Let Sol′K,Φ = Sol1,∗K,Φ. Instead of k, ∗ we may write 3 + k.

4) Let C = {λ : λ = iλ and cf(λ) = ℵ0}.

Exercise: 1) The conclusion of 1.13(1) (equivalently, 1.13(2)) means that θ ≤ λ⇒
(µ, θ) ∈ mod−comK,Φ.

2) Write down the obvious implications.

Claim 3.3. If µ > λ = iλ > κ ≥ LST(K) and Φ ∈ Υor
κ [K], cf(λ) = ℵ0 then

µ = µ<λ ⇒ µ ∈ Sol′K,Φ ⇒ λ ∈ Sol′K,Φ.

Proof. The first implication holds by 1.13(2) and 3. The assumption of the second
implication implies Hypothesis 1.18 (see 3(1)) hence its conclusion holds by 1.44.

�3.3

Observation 3.4. Kλ is categorical in λ (hence Hypothesis 1.18 holds), if:

~λ λ = iλ = sup(λ ∩ Cat′K) > LST(K) and ℵ0 = cf(λ).

Proof. Fix Φ ∈ Υor
K ; now clearly Sol′K,Φ ⊇ Cat′K by their definitions.

By the assumptions we can find 〈µn : n < ω〉 such that λ =
∑
{µn : n < ω},

LST(K) < µn ∈ Cat′K, and i1,1(µ′n) < µn+1 where µ′n = i1,1(µn). As every
M ∈ Kµn+1

is L∞,µ′n [K]-generic (as Kµn+1
⊆ KΦ,µn+1

and µn+1 ∈ Cat′K), easily

(∗)0 if M ≤K N are from K∗Φ,≥µn+1
then M ≺L∞,µ′n [K] N .
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Let M ` ∈ Kλ for ` ∈ {1, 2}, so we can find a ≤K-increasing sequence 〈M `
n : n < ω〉

such that M `
n ∈ Kµn , M `

n ≤K M
`
n+1 ≤K M

`, and M ` =
⋃
{M `

n : n < ω}. Now

(∗)1 M `
n ∈ K∗Φ,µn .

[Why? As K is categorical in µn = ‖M `
n‖.]

(∗)2 if α ≤ µn, n < m < k, and ā, b̄ ∈ α(M `
m) then:

(a) tpL∞,µ′n [K](ā,∅,M `
m) = tpL∞,µ′n

(b̄,∅,M `
m) iff

tpL∞,µ′n [K](ā,∅,M `
k) = tpL∞,µ′n

(b̄,∅,M `
k).

(b) If tpL∞,µ′n [K](ā,∅,M `
k) = tpL∞,µ′n [K](b̄,∅,M `

k) then

tpL∞,µ′m [K](ā,∅,M `
k) = tpL∞,µ′m [K](b̄,∅,M `

k).

[Why? Clause (a) by (∗)0, clause (b) by 1.19(3).]

(∗)3 M1
n
∼= M2

n.

[Why? As K is categorical in µn.]
We now proceed as in the proof of 1.41. Let

Fn =
{
f : for some ā1, ā2 and α < µn we have ā` ∈ α(M `

n+2) for ` = 1, 2,

tpL∞,µn+1[K](ā1,∅,M1
n+2) = tpL∞,µn+1[K](ā2,∅,M2

n+1),

and f is the function which maps ā1 into ā2

}
(Actually, we can use α = µn.) By the hence and forth argument we can find

fn ∈ Fn by induction on n < ω such that M1
n ⊆ dom(f2n+2), M2

n ⊆ rang(f2n+2),
and fn ⊆ fn+1; hence

⋃
{fn : n < ω} is an isomorphism from M1 onto M1. �3.3

Claim 3.5. K is categorical in λ when:

~+
λ λ = iλ > LST(K) and λ = otp(CatK ∩ λ ∩C) and cf(λ) = ℵ0.

Proof. Fix Φ as in the proof of 3.3. Let 〈θn : n < ω〉 be increasing such that
λ = Σ{θn : n < ω} and LST(K) < θ0. For each n, by 2.15 we know

{µ ∈ CatK : µ > θn and the M ∈ Kµ is not L∞,θ+n -generic}

is “not too large”; i.e. it is included in the union of at most i2(θn) intervals of the
form [χ, χθn ]. Now we choose (n(`), µ`) by induction on ` < ω such that

~ (a) n(`) < ω and µ` ∈ CatK ∩ λ
(b) If ` = k+ 1 then n(`) > n(k), θn(`) > µk, µ` ∈ CatK ∩λ \ θ+

n(`) and the

M ∈ Kµ` is L∞,θn(`)
[K]-generic (hence L∞,µ+

k
[K]-generic).

This is easy and then continue as in 3.4. �3.5

We have essentially proved

Theorem 3.6. In 3.4, 3.5 we can use SolK,Φ, Sol′K,Φ instead of CatK, Cat′K.

Exercise: For Claim 1.41(2), Hypothesis 1.18 suffices.
[Hint: The proof is similar to the existing one using 1.19.]
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§ 4. §4 Good Frames

Here comes the main result of [She09b]: from categoricity (or solvability) as-
sumptions we derive the existence of good λ-frames.

Our assumption is such that we can apply §1.

Hypothesis 4.1. 1)

(a) K is an AEC.

(b) µ > λ = iλ > LST(K) and cf(λ) = ℵ0.

(c) Φ ∈ Υor
K

(d) K is categorical in µ or just
(d)− (K,Φ) is pseudo superlimit in µ (this means Φ ∈ Sol1K,Φ; so 1.18(1)

holds)

(e) Also, 1.18(2)(a) holds; i.e. the conclusion of 1.13(2) holds.

2) In addition we may use some of the following, but then we mention them and
we add superscript * when used. (Note that (g) ⇒ (f) by 1.42.)

(f) K∗λ is closed under ≤K-increasing unions (justified by 1.41)

(g) 〈λn : n < ω〉 is increasing, λ0 > LST(K), λ = Σ{λn : n < ω} and the
assumptions of 1.41 hold.

Observation 4.2. 1) K∗λ is categorical.
2) K∗λ has amalgamation.
3)∗ (We assume (f) of 4.1(2)). Kλ is a λ-AEC.

Proof. 1) By 1.16(1) or 1.19(4) as cf(λ) = ℵ0.
2) By 1.34(1).
3) As in 1.42, (i.e. as ≤K∗λ

= ≤K� K, closure under unions of ≤K-increasing chains
is the only problematic point and it holds by (f) of 4.1(2)). �4.2

Remark 4.3. 1) Why do we not assume 4.1(1),(2) all the time? The main reason is
that for proving some of the results assuming 4.1(1),(2) we use some such results
on smaller cardinals on which we use 4.1(1) only.

2) Note that it is not clear whether improvement by using 4.1(1) only will have
any affect when (or should we say if) we succeed to have the parallel of [She09e,
§12].

Claim 4.4. 1) Assume M0 ≤K∗λ
M`, α < λ, ā` ∈ α(M`) for ` = 1, 2, and κ ..=

i1,1(i2(θ)+) where θ ..= |α|+ LST(K) (so κ < λ). If

tpL∞,κ[K](ā1,M0,M1) = tpL∞,κ[K](ā2,M0,M2)

then

tpK∗λ
(ā1,M0,M1) = tpK∗λ

(ā2,M0,M2).

2) If M1 ≤K∗λ
M2 then M1 ≺L∞,θ[K] M2 for every θ < λ, and moreover

M1 ≺L∞,λ[K] M2.

2A) If M0 ≤K∗λ
M` for ` = 1, 2 and tpK∗λ

(ā1,M0,M1) = tpK∗λ
(ā2,M0,M2) and

ā` ∈ α(M0), α < κ ≤ λ then tpL∞,κ[K](ā1,M0,M1) = tpL∞,κ[K](ā2,M0,M2).
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2B) In part (1), if M` ≤K∗λ
M ′` for ` = 1, 2 then

tpL∞,κ[K](ā1,M,M ′1) = tpL∞,κ[K](ā2,M,M ′2).

3) Assume that M0 ≤K∗λ
M1 ≤K∗λ

M2 ≤K∗λ
M3, ā ∈ α(M2), α < λ and κ =

i1,1(|α|+ LST(K)) < θ < λ. Then

(a) From tpL∞,κ[K](ā,M1,M2) we can compute tpL∞,θ[K](ā,M1,M2)

and tpL∞,λ[K](ā,M0,M3).

(b) From tpL∞,κ[K](ā,∅,M2) we can compute tpL∞,θ[K](ā,∅,M2)

and even tpL∞,λ[K](ā,∅,M2).

(c) From tpK∗λ
(ā,M1,M2) we can compute tpL∞,λ[K](ā,M1,M2)

and tpK∗λ
(ā,M0,M3).

4) If M1 ≤K∗λ
M2 and α < κ∗ < λ, I` ⊆ α(M1), |I`| > κ, I` is (L∞,θ[K], κ∗)-

convergent in M1 for ` = 1, 2 and Av<κ(I1,M1) = Av<κ(I1,M1) then I` is
(L∞,κ[K], κ∗)-convergent in M` for ` = 1, 2 and Av<κ(I1,M`) = Av<κ(I1,M2).

Proof. 1) Without loss of generality M0 = EMτ(K)(I0,Φ) and I0 ∈ Kflin
λ . By 1.32(3)

for ` = 1, 2 there is a pair (I`, f`) such that I0 ≤Kflin I` ∈ Kflin
λ and f` is a ≤K-

embedding of M` into M ′` = EMτ(K)(I`,Φ) over M0. By renaming, without loss
of generality f` is the identity on M` hence M` ≤K M ′`. By 1.19(1) we know that
M` ≺L∞,κ[K] M

′
` hence

tpL∞,κ[K](ā1,M0,M
′
1) = tpL∞,κ[K](ā1,M0,M1) =

tpL∞,κ[K](ā2,M0,M2) = tpL∞,κ[K](ā2,M0,M
′
2).

By 1.32(1) we can find (I3, g1, g2, h) such that I0 ≤Kflin I3 ∈ Kflin
λ , g` is a

≤K-embedding of M ′` into M4
..= EMτ(K)(I3,Φ) over M0 for ` = 1, 2, and h is an

automorphism of M4 over M0 mapping g1(ā1) to g2(ā2). By the definition of orbital
types, this gives tpK∗λ

(ā1,M0,M1) = tpK∗λ
(ā2,M0,M2) as required.

2) This holds by 1.19(1) for θ ∈ (LST(K), λ), hence by 1.12(1) also for θ = λ
(the assumptions of 1.12 hold as clause (a) there holds by the case above θ < λ and
clause (b) there holds by 1.30(1)).

2A) Should be clear:

(a) By part (2), this holds if ā1 = ā2 and M1 ≤K M2.

(b) Trivially, it holds if there is an isomorphism from M1 onto M2 over M0

mapping ā1 to ā2.

(c) by the definition of tp we are done.

2B) Should be clear by part (2).
3) Clause (a):
By parts (1) + (2).

Clause (b): By 1.30(1).

Clause (c): By part (2A) and the definition of tp.
4) Easy, too. �4.4

Definition 4.5. Assume M0 ≤K∗λ
M1 ≤K∗λ

M2, α < λ, ā ∈ α(M2), and p =
tpK∗λ

(ā,M1,M2). We say that p does not fork over M0 (for K∗λ) when, letting

θ0 = |α|+ LST(K), θ1 = i1,1(i2(θ0)+), θ2 = 2θ1 , θ2 = i2(θ1), we have:

(∗) for some N ≤K∗ M0 satisfying ‖N‖ ≤ θ2 we have tpL∞,θ1 [K](ā,M1,M2)

does not split over N .
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We now would like to show that there is sλ which fits [She09c] and [She09e] and
Ksλ = K∗λ.

Observation 4.6. Assume that M0 ≤K∗λ
M1 ≤K∗λ

M2, ā ∈ α(M2), α < λ, λ >

κ0 ≥ |α| + LST(K), κ1 = i1,1(i2(κ0)+), and κ2 = i2(κ1). Then the following
conditions are equivalent

(a) tpK∗λ
(ā,M1,M2) does not fork over M0

(b) For some (κ+
1 , κ1)-convergent I ⊆ α(M0) of cardinality > κ2 we have

tpL∞,κ1 [K](ā,M1,M2) = Av<κ1(I,M1) hence this type does not split over⋃
I′ for any I′ ⊆ I of cardinality > κ1.

(c) for every N ≤K M0 of cardinality ≤ κ2, if tpL∞,κ1 [K](ā,M0,M2) does not

split over N then the type tpL∞,κ1 [K](ā,M1,M2) does not split over N .

Remark 4.7. 1) See verification of axiom (E)(c) in the proof of Theorem 4.10.
2) Note that have we used i7(κ1)+ instead of κ1 in 4.5, 4.6: the difference would

be small.
3) We could in clause (c) of 4.6 use “for some N ≤K M0 of cardinality < κ1,

tpL∞,κ1 [K] . . .” The proof is the same.

4) We can allow [something] below M0 ≤K M1 if M0 ∈ K≥κ2
.

Proof. (a)⇒ (b)
Let θ0, θ1, θ2 be as in Definition 4.5. By Definition 4.5 there is N ≤K M0 of

cardinality ≤ θ2 such that

(∗)1 the type tpL∞,θ1 [K](ā,M1,M2) does not split over N .

By Claim 1.27(1) there is a (κ+
1 , κ1)-convergent set I ⊆ α(M0) of cardinality κ+

2

(convergence in M0, of course) such that tpL∞,κ1 [K](ā,M0,M2) = Av<κ1(I,M0). So

as M0 ≺L∞,λ[K] M1 ≺L∞,λ[K] M2, by Claim 4.4(2), clearly I is (κ+
1 , κ1)-convergent

also in M1 and in M2, hence Av<κ1(I,M1) is well defined. Hence, by Claims 1.23(2),
1.21(3) the type Av<κ1

(I,M1) does not split over
⋃

I but θ2 ≤ κ2 and
⋃

I ⊆
⋃

I∪N
hence

(∗)2 Av<θ1(I,M1) does not split over
⋃

I ∪N .

But also

(∗)3 tpL∞,θ1 [K](ā,M1,M2) does not split over N (by the choice of N) hence over⋃
I ∪N .

As M0 ≺L∞,λ[K] M1 and |
⋃

I ∪ N | < λ and tpL∞,θ1 [K](ā,M0,M2) = Av<θ1(I,M0)

clearly, by (∗)2 + (∗)3 we have tpL∞,θ1 [K](ā,M1,M2) = Av<θ1(I,M1). Now there

is a pair (M ′2, ā
′) satisfying that M1 ≤K M ′2 ∈ K∗λ and ā′ ∈ α(M ′2) such that

tpL∞,θ1 [K](ā
′,M1,M

′
2) = Av<θ1(I,M1) hence by the previous sentence

tpL∞,θ1 [K](ā
′,M1,M

′
2) = tpL∞,θ1 [K](ā,M1,M2).

Now by 4.4(1) and then 4.4(2A) it follows that tpL∞,κ1 [K](ā,M1,M0) = Av<κ1
(I,M1)

as required.

(b)⇒ (c)
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Let I be as in clause (b), so I is (κ+
1 , κ1)-convergent in M0 and is of cardinality

> κ1. We know that M0 ≺L∞,λ[K] M1, so by the previous sentence, I is (κ+
1 , κ1)-

convergent in M1. To prove clause (c), assume that N ≤K M0 is of cardinality κ2

and tpL∞,κ1 [K](ā,M0,M2) does not split over N . Hence

Av<κ1
(I,M0) = tpL∞,κ1 [K](ā,M0,M2)

does not split over N . Again, as M0 ≺L∞,λ[K] M1, we can deduce that Av<κ1(I,M1)
does not split over N but by the choice of I it is equal to tpL∞,κ1 [K](ā,M1,M2), so

we are done.

(c)⇒ (a)

By Claim 1.24 there isB ⊆M0 of cardinality≤ κ2 such that tpL∞,κ1 [K](ā,M0,M2)

does not split over B.
As we can increase B as long as we preserve “of cardinality ≤ κ2”, without

loss of generality B = |N | where N ≤K M0. So the antecedent of clause (c)
holds, but we are assuming clause (c) so the conclusion of clause (c) holds, that is
tpL∞,κ1 [K](ā,M1,M2) does not split over N .

Also by 1.27(1) there is I1 ⊆ α(M0) of cardinality κ+
2 which is (κ+

1 , κ1)-convergent
and Av<κ1

(I1,M0) = tpL∞,κ1 [K](ā,M0,M1). Clearly κ1 ≥ θ1 hence κ2 = (κ2)θ1 .

Now as K∗λ is categorical clearly M0
∼= EMτ(K)(λ,Φ) hence applying 1.25(4) we can

find I2 ⊆ I1 of cardinality κ+
2 which is (θ+

1 , θ1)-convergent. As above M0 ≺L∞,κ1 [K]

M1 so we deduce that I2 is (θ+
1 , θ1)-convergent and (κ+

1 , κ1)-convergent also in M1.
As above we have M0 ≺L∞,κ1 [K] M1 by 1.19(1) hence Av<κ1

(I2,M1) is well

defined and does not split over N hence is equal to tpL∞,κ1 [K](ā,M1,M2). This

implies that Av<θ1(I2,M1) = tpL∞,θ1 [K](ā,M1,M2).

Now choose I3 ⊆ I2 ⊆M0 of cardinality θ2 and N3 ≤K M0 of cardinality θ2 such
that I3 ⊆ α(N3). Now by 1.23(2) we know that tpL∞,θ1 [K](ā,M1,M2) does not split

over I3 hence it does not split over N3, so N3 witnesses clause (a). �4.6

Definition 4.8. We define a pre-frame sλ = (Ksλ ,
⋃
sλ
,Sbs

sλ
) as follows:

(a) Ksλ = K∗λ
(b) Sbs

sλ
is defined by Sbs

s,λ(M) ..= {tpK∗λ
(a,M,N) : M ≤K∗λ

N, a ∈ N \M},
(c)

⋃
sλ

= {(M0,M1, a,M3) : M0 ≤K∗λ
M1 ≤K∗λ

M2 and tpK∗λ
(a,M1,M3) does

not fork over M0} (see Definition 4.5).

Remark 4.9. 1) Recall ≤sλ = ≤K� Ksλ = ≤K∗λ
.

2) Concerning the proof of 4.10 below, we mention a variant which the reader
may ignore. This variant, from weaker assumptions gets weaker conclusions. In
detail, define the weak version (f)− of 4.1(2)(f); see Definition 1.37 and Claim
1.40(1).

(f)− if 〈Mα : α ≤ δ〉 is ≤K-increasing continuous and

α < δ ⇒M2α+1 <
∗
K∗λ

M2α+2

(e.g. M2α+2 is ≤K∗λ
-universal over M2α+1) hence both are from K∗λ then

Mδ ∈ K∗λ.

Assuming only 4.1(1) + (f)− we do not know whether K∗λ is a λ-AEC but still
(K∗λ,≤K� K∗λ, <

∗
K∗λ

), see Definition 1.37, is a so-called semi λ-AEC, see [She].

If clause (f) from 4.1(2) holds (i.e., Ksλ is closed under unions), we can omit
“<∗sλ”.

Paper Sh:734, version 2023-02-03. See https://shelah.logic.at/papers/734/ for possible updates.



60 S. SHELAH

3) It will be less good but not a disaster if we have assumed below

λ = sup(Cat′K ∩ λ).

4) It will be better to have Ksλ = Kλ; of courses, this follows from categoricity
so by §3 is not unreasonable for conjecture 0.1.

5) But we can ask only for M ∈ Ksλ to be universal in Kλ,
6) We can ask that for every µ > λ large enough, for every M ∈ Kµ, for a club

of N ∈ Kλ satisfying N ≤K M , we have N ∈ Ksλ .

Theorem 4.10. (Assume 4.1(2)(g), hence (f)).
sλ is a good λ-frame categorical in λ and is full.

Proof. We check the clauses in the definition [She09c, 1.1].

Clause (A):
By observation 4.2(3), [in the weak version using (f)− from 4.9(1)].

Clause (B):
Categoricity holds by 1.16 (or 4.2(1)) and this implies “there is a superlimit

model”, the non-maximality by ≤K∗λ
holds by the choice of Φ.

Clause (C):
Observation 4.2(2) guarantee amalgamation, categoricity (of K∗λ by 4.2(1)) im-

plies the JEP and “no-maximal model” holds by clause (B).

Clause (D)(a),(b):
Obvious by the definition.

(D)(c) (density).

Assume M <K∗λ
N , then there are a ∈ N \ M and for any such a the type

tpK∗λ
(a,M,N) belongs to Sbs

sλ
(M). In fact

~ sλ is type-full

(D)(d) (bs-stability).

The demand means M ∈ K∗λ ⇒ |S1
K∗λ

(M)| ≤ λ.

This holds by 1.36(2) (and amalgamation).

(E)(a),(b). By the definition.

(E)(c) (local character)
This says that if 〈Mi : i ≤ δ + 1〉 is ≤sλ -increasing continuous and

p = tpsλ
(a,Mδ,Mδ+1) ∈ Sbs

sλ
(Mδ)

then for some i < δ the type p does not fork over Mi (for sλ).
From now on (in the remainder of this proof) we use 4.6 freely and let (noting

cf(δ) < λ as λ is singular)

� κ0 = LST(K) + cf(δ), κ1 = i1,1(i2(κ0))+, κ2 = i2(κ1).

Now by 4.6 there is a (κ+
1 , κ1)-convergent I ⊆Mδ with

Av<κ1
(I,Mδ) = tpL∞,κ1 [K](a,Mδ,Mδ+1)

such that I is of cardinality > κ2. For some i(∗) < δ, |I ∩Mi(∗)| > κ2, so without
loss of generality I ⊆Mi(∗), so by 4.6 we are done.

(E)(d) Transitivity of non-forking.
We are givenM0 ≤sλ M1 ≤sλ M2 ≤Ks

M3 and a ∈M3 such that tpsλ
(a,M`+1,M3)

does not fork over M` for ` = 0, 1. So for ` = 0, 1 there is I` ⊆ M` which
is (κ+

1 , κ1)-convergent in M`+1 of cardinality κ+
2 such that Av<κ1(I`,M`+1) =
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tpL∞,κ1 [K](a,M`+1,M3). As Av<κ1
(I0,M1) = Av<κ1

(I1,M1) (being both realized

by a) because M1 ≺L∞,λ[K] M2 by 4.4(4) clearly we have

Av<κ1(I0,M2) = Av<κ1(I1,M2) = tpL∞,κ1 [K](a,M2,M3)

all well defined. So I0 witnesses (by 4.6) that tpL∞,κ1 [K](a,M2,M3) does not fork

over M0, which means that tpK∗λ
(a,M2,M3) does not fork over M0 as required.

(E)(e) Uniqueness.
Recalling 4.4(1), the proof is similar to (E)(d); the two witnesses are now in M0.

(E)(f) Symmetry.
Toward contradiction, recalling [She09c, 1.16E] assume

M0 ≤K∗λ
M1 ≤K∗λ

M2 ≤K∗λ
M3

and a` ∈ M`+1 \M` for ` = 0, 1, 2 are such that p` = tpK∗λ
(a`,M`,M`+1) does

not fork over M0 for ` = 0, 1, 2 and tpK∗λ
(a0,M0,M1) = tpK∗λ

(a2,M0,M3) but

tpK∗λ
(〈a0, a1〉,M0,M3) 6= tpK∗λ

(〈a2, a1〉,M0,M3).

By 4.6 we can deal with p` = tpL∞,κ1 [K](a`,M`,M`+1) for ` = 0, 1, 2. For each

` ≤ 2, we can find a convergent I` = {a`α : α < κ+
2 } ⊆ M0 which is (κ+

1 , κ1)-
convergent such that Av<κ1

(I`,M`) = p`.
So as M0 ≺L∞,κ1 [K] Mk we deduce the set I` is (κ+

1 , κ1)-convergent in Mk

for `, k = 0, 1, 2. Also, Av<κ1(I0,M0) = Av<κ1(I2,M0) hence Av<κ1(I0,M2) =
Av<κ1

(I2,M2) so without loss of generality I0 = I2.
Now use the non-order property to get symmetry.

(E)(g) Existence.
Assume M ≤sλ N and p ∈ Sbs

sλ
(M). So we can find a pair (M ′, a) such that

M ≤sλ M ′, a ∈ M1, and p = tpsλ
(a,M,M ′). By 1.27(1) there is a (κ+

1 , κ1)-

convergent I ⊆M of cardinality κ+
2 such that Av<κ1(M, I) = tpL∞,κ1 [K](a,M,M ′).

By 1.27(3) + 4.6 there is a pair (N ′, a′) such that N ≤sλ N
′, a′ ∈ N ′, and

tpL∞,κ1
(a′, N,N ′) = Av<κ1

(I, N).

So by 4.6 the type tpsλ
(a′, N,N ′) is easily ∈ Sbs

sλ
(N), does not fork over N , and

extends p, as required.

(E)(h) Continuity.
Follows by [She09c, 1.16A]. Alternatively, assume 〈Mi : i ≤ δ + 1〉 is ≤sλ -

increasing continuous, a ∈ Mδ+1 \Mδ, and tpsλ
(a,Mi,Mδ+1) does not fork over

M0 for i < δ. So there is a convergent Ii ⊆M0 such that

i < δ ⇒ tpL∞,κ[K](a,Mi,Mδ+1) = Avκ(I,Mi).

As above, without loss of generality Ii = I0. We can find a convergent I ⊆ Mδ

of cardinality > cf(δ) + κ (recall cf(δ) < λ!) such that tpL∞,κ[K](a,M0,Mδ+1) =

Avκ(I,Mδ). So for some i(∗) < δ we have |I ∩ Mi(∗)| > κ, so without loss of
generality (by equivalence) I ⊆Mi(∗). We finish as in (E)(f).

Axiom (E)(i):
Follows by [She09c, 1.15]. �4.10

Exercise: Replace Av<κ1
(I,M) above by

⋃
{Aviζ(κ0)(I,M) : ζ < (2κ0)+}.
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§ 5. Homogeneous enough linear orders

Claim 5.1. Assume µ+ = θ1 = cf(θ1) < θ2 = cf(θ2) < λ.
1) Then there is a linear order I of cardinality λ such that the following equiva-

lence relation E = Eaut
I,µ on µI has ≤ 2µ equivalence classes, where η1 E η2 iff there

is an automorphism of I mapping η1 to η2.
2) Moreover, if I ′ ⊆ I has cardinality < θ2, and n < ω then the following

equivalence relation E on nI has ≤ µ+ |I ′| equivalence classes:

• s̄ E t̄ iff there is an automorphism h of I over I ′ mapping s̄ to t̄.

3) Moreover, there is Ψ proper for K lin
τ∗2

(i.e. Ψ ∈ Υlin
ℵ0 [2]; see Definitions

0.11(5), 0.14(9)) with τ(Ψ) countable such that I = EM{<}(I
lin
θ2,λ×θ2 ,Φ) where

I lin
θ2,ζ

= (ζ,<, P0, P1), P` = {α < ζ : “cf(α) < θ2” ≡ “` = 0”}.
4) If I∗0 ⊆ I has cardinality < θ2 then for some I∗1 ⊆ I of cardinality ≤ µ+ + |I∗0 |,

for every J ⊆ I of cardinality ≤ µ, there is an automorphism of I over I∗0 mapping
J into I∗1 .

5) If I∗1 , I
∗
2 ⊆ I lin

µ,λ×µ+ have cardinality ≤ µ and h is an isomorphism from I∗1

onto I∗2 then there is an automorphism ĥ of the linear order I = EM{<}(I
lin
θ,λ,Ψ)

extending the natural isomorphism ȟ from EM{<}(I
∗
1 ,Ψ) onto EM{<}(I

∗
2 ,Ψ).

Remark 5.2. 1) Of course, if λ = λ<θ2 and I is a dense linear order of cardinality
λ which is θ-strongly saturated (hence θ-homogeneous) then the demand in 5.1(1)
is satisfied (and in part (2) of 5.1 the number of E-equivalence classes is ≤ 2χ for

every χ ∈ [ℵ0, θ2)). Also, if λ =
∑
i<δ

λi, δ < θ2, and i < δ ⇒ λ<θ2i = λ then we have

such an order.

2) Laver [Lav71, §2] deals with related linear orders, but for his aims I1, I2 are
equivalent if each is embeddable into the other; see more in [Shear, AP,§2]. For a
cardinal ∂ and linear order I let

ΘI,∂ =
{

cf(J) : for some <I -decreasing sequence 〈ti : i < ∂〉
we have J = I � {t ∈ I : t <I ti for every i < ∂}

}
.

So if ∂ ≤ µ then (µI)/Eaut
I,µ has ≥ |ΘI,∂ |. So we have to be careful to make ΘI,∂

small. We chose a very concrete construction, which leads quickly to defining I and
the checking is straight. We thought it would be easy, but a posteriori the checking
is lengthy; [Shear, AP,§2] is an antithetical approach.

3) We can replace θ1 = µ+ by θ1 = cf(θ1) > ℵ0 and “of cardinality ≤ µ” by “of
cardinality < θ1”.

4) In 2.7(1), 2.11(2) we use parts (1),(1)+(4) respectively. Also, we use 5.1 in the
proof of 7.9.

5) The case 2µ ≥ λ in 5.1(1) says nothing; in fact, if 2µ ≥ λ then 2µ = λµ =
(µM)/Eaut

I,µ for any model M of cardinality ≥ 2 and ≤ 2µ, for any vocabulary τM .

6) Claim 5.1(1),(2) holds also if we replace µ by χ ∈ [µ, θ2).

[We got an fifteen-page proof coming up. Of these five distinct claims,
(3) and (5) are one-liners that don’t reference anything else in 5.1, (2)
is a one-page addendum to (1), and (4) is a half-page that references (1)
four times.]

[(1) is ‘organized’ by five categories of bullets (~, (∗),�,�, and �), each
with their own independent numbering system. � seems to be reserved
for high-level lemmas, but other than that I don’t see any rhyme or
reason regarding how or why these guys are used.]
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[The longest multi-case proofs need to be moved to an appendix, as
proofs to independent, labeled lemmas that can be cited with \ref{}s.
�3 is 2.5 pages, and �4, (∗)7 are three full pages each.]

Proof. 5.1(1)
Fix an ordinal ζ, λ ≤ ζ < λ+ such that cf(ζ) = θ2: e.g., ζ = λ × θ2. (Almost

always, cf(ζ) ≥ θ2 will suffice.)
Let I1 be the following linear order. Its set of elements is{

(`, α) : ` ∈ {−2,−1, 1, 2}, α < ζ + ω
}

ordered by (`1, α1) <I1 (`2, α2) iff `1 < `2 or `1 = `2 ∈ {−1, 2} ∧ α1 < α2 or
`1 = `2 ∈ {−2, 1} ∧ α1 > α2.

For t ∈ I1 let t = (`t, αt).
Let I∗2 be the set {η : η is a finite sequence of members of I1} ordered by

η1 <I2 η2 iff (∃n)
[
n < `g(η1) ∧ n < `g(η2) ∧ η1 � n = η2 � n and η1(n) <I1 η2(n)

]
or η1 C η2 ∧ `η2(`g(η1)) ∈ {1, 2} or η2 C η1 ∧ `η1(`g(η2)) ∈ {−2,−1}.

Let I2 be I∗2 restricted to the set of η ∈ I∗2 satisfying ~ where

~ For no n < ω do we have:
(a) `g(η) > n + 1 [Read literally, this is identical to ‘`g(η) = 0,’

correct?]

(b) αη(n) is a limit ordinal of cofinality ≥ θ1

(c) αη(n+1) ≥ ζ
(d) `η(n) ∈ {−1, 2}, `η(n+1) = −2 or `η(n) ∈ {−2, 1}, `η(n+1) = 2.

Let M0 be the following ordered field:

(∗)1 (a) M0, as a field, is Q(at : t ∈ I2), the field of rational functions with
{at : t ∈ I2} algebraically independent.

(b) The order of M0 is determined by
(α) If t ∈ I2, n < ω then M0 |= “n < at”.
(β) If s <I2 t and n < ω then M0 |= “(as)

n < at”.
(c) let M be the real9 (algebraic) closure of M0 (i.e. the elements algebraic

over M0 in the closure by adding elements realizing any Dedekind cut
of M0).

Now we shall prove that I, which is M as a linear order, is as requested.

�1 each of I1, I
∗
2 , and I2 is anti-isomorphic to itself.

[Why? Let g : I1 → I1 be g(t) = (−`t, αt). Clearly it is an anti-isomorphism of
I1. Let ĝ : I∗2 → I∗2 be defined by ĝ(η) =

〈
g(η(m)) : m < `g(η)

〉
; it is an anti-

isomorphism of I∗2 . Lastly, ĝ maps I2 onto itself: in particular by the character of
clause (d) of ~, i.e. the two cases are interchanged by ĝ.]

�2 (a) I1, I
∗
2 , I2 have cofinality ℵ0.

(b) if t ∈ I2 then I2,<t ..= I2 � {s : s <I2 t} has cofinality ℵ0.

[Why? For clause (a), {(2, λ + n) : n < ω} is a cofinal subset of I1 of order type
ω and {〈t〉 : t ∈ I1} is a cofinal subset of I∗2 (and of I2) of order type the same as
I1. For clause (b) for η ∈ I2 the set {ηˆ〈(−1, λ+ n)〉 : n < ω} is a cofinal subset of
I2,<η of order type ω by � below.]

Now

� If η satisfies ~ and ` ∈ {1,−1} then also ηˆ〈(`, α)〉 satisfies ~ for any
α < λ+ ω.

9In fact, we could just use M0.
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[Why? By clause (d) of ~ as the only value of n there which is not obvious is
n = `g(η) − 1, but to be problematic we should have `(ηˆ〈(`,α)〉)(n+1) ∈ {−2, 2}
whereas ` = −1.]

�3 If ∂ = cf(∂) (so ∂ is 0, 1, or an infinite regular cardinal), η̄ = 〈ηi : i < ∂〉
is a <I2 -decreasing sequence, and we let Jη̄ =

{
s ∈ I2 : (∀i < ∂)[s <I2 ηi]

}
then (clearly) exactly one of the following clauses applies:
(a) If Jη̄ = ∅ then ∂ = ℵ0.

(b) If cf(Jη̄) = 1 then ∂ = ℵ0.

(c) If cf(Jη̄) = ℵ0 then ∂ < θ1.

(d) If ℵ1 ≤ cf(Jη̄) < θ1 then ∂ = ℵ0, and for some ` ∈ {−1, 2}, ν ∈ I2,
and ordinal δ < ζ of cofinality cf(Jη̄), the set 〈νˆ〈(`, α)〉 : α < δ〉 is an
unbounded subset of Jη̄.

(e) If θ1 ≤ cf(Jη̄) then ∂ ≥ θ1 and moreover ∂ = θ2 ∨ cf(Jη̄) = θ2.

[Why does �3 hold? The proof is split into cases, and finishing a case we can then
assume it does not occur.

Clearly we can replace η̄ by 〈ηi : i ∈ u〉 for any unbounded subset u of ∂, and
modify it further to 〈νi : i ∈ u〉 provided ηζ2i+1 ≤I2 νi ≤I2 ηζ2i and 〈ζi : i < ∂〉 is
an increasing sequence of ordinals < ∂. We shall use this freely.

Case 0: ∂ = 0 or ∂ = 1.
By �2 clearly clause (c) of �3 holds.

Case 1: ∂ = ℵ0 and there is ν ∈ ω(I1) such that (∀n < ω)(∃i < ∂)
[
ηi � nC ν

]
.

Let ni = `g(ηi ∩ ν). It is impossible that {i : ni = k} is infinite for any k, so
without loss of generality 〈ni : i < ω〉 is an increasing sequence and n0 > 0.

For every i < ω we have ν � (ni + 1)E ηi+1 and ηi+1 <I2 ηi, so by the definition
of <I2 also ν � (ni + 1) <I2 ηi. We choose βni < ζ + ω so that (−2, βni) <I1 ν(ni),
hence letting ρi = ν � niˆ〈(−2, βni)〉 we have ρi ∈ I2. This can be done, e.g.
because we can choose βni such that βni = αν(ni) + 1 if `ν(ni) = −2 and βni = 0
otherwise.

For every i, j < ω we have ρi <I2 ρi+1 <I2 ηi+1 <I2 ηi, so if i ≤ j then
ρi <I2 ρj <I2< ηj , and if i > j then ρi <I2 ηi <I2 ηj , so ρi ∈ Jη̄.

Now 〈ρi : i < ω〉 is <I2-increasing; also, it is cofinal in Jη̄, for if ρ ∈ Jη̄ let
n = `g(ρ ∩ ν), so for i < ω such that ni ≤ n < ni+1 we have ρ <I2 ηi+1 so
ρ(n) <I1 ηi+1(n) = ρi+1(n) and as ρ � n = ν � n = ρi+1 � n we have ρ <I2 ρi+1.

As 〈ρi : i < ω〉 is of order type ω, clearly cf(Jη̄) = ℵ0 = ∂, hence clause (c) of
�3 applies and we are done.

So from now on assume that Case 1 fails.
As `g(ηi) < ω and Case 1 fails, without loss of generality, for some n we have

i < ∂ ⇒ `g(ηi) = n. Similarly, without loss of generality for some m and ν ∈ I2
we have i < ∂ ⇒ ηi � m = ν and 〈ηi(m) : i < ∂〉 with no repetitions so m < n.
Without loss of generality i < ∂ ⇒ `ηi(m) = `∗ and so 〈αηi(m) : i < ∂〉 has no
repetitions; without loss of generality it is monotonic as ∂ ≥ ℵ0 is an increasing
sequence of ordinals. As η̄ is <I2-decreasing, necessarily `∗ ∈ {−2, 1}. Let δ =⋃
{αηi(m) : i < ∂}, so clearly cf(δ) = ∂ and δ is a limit ordinal ≤ ζ + ω. Now those

`∗, δ will be used until the end of the proof of �3. For the rest of the proof we are
assuming

� (a) i < ∂ ⇒ ηi � m = ν
(b) 〈ηi(m) : i < ∂〉 is (strictly) increasing with limit δ.
(c) `ηi(m) = `∗ ∈ {−2, 1}
(d) cf(δ) = ∂ and δ ≤ ζ + ω.
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Also note by ~ that νˆ 〈(`∗, δ)〉 /∈ I2 ⇒ δ ∈ {ζ+ω, ζ} and if δ = ζ ∧νˆ〈(`∗, δ)〉 /∈ I2
then `g(ν) > 0 and the ordinal αν(`g(ν)−1) is limit of cofinality ≥ θ1 (and more).

Case 2: Jη̄ = ∅.
Clearly m = 0 ∧ `∗ = −2 ∧ δ = ζ + ω hence ∂ = ℵ0 so clause (a) of �3 holds.

Case 3: `∗ = 1 and νˆ〈(`∗, δ)〉 /∈ I2.
As `∗ = 1, clearly we cannot have δ = ζ by clause (d) of ~, so δ = ζ + ω and

recalling ∂ = cf(δ) we have ∂ = ℵ0. Now clearly Jη̄ has a last element, ν, so case
(b) of �3 applies.

Case 4: `∗ = −2, ∂ = ℵ0 and νˆ〈(`∗, δ)〉 /∈ I2.
Again δ = ζ + ω as ℵ0 = ∂ = cf(δ) and cf(ζ) = θ2 > µ ≥ ℵ0 making δ = ζ

impossible; now `g(ν) > 0 (as we have discarded the case Jη̄ = ∅, i.e. Case 2); and
let k = `g(ν)− 1. Now we prove case 4 by splitting to several subcases.

Subcase 4A: `ν(k) ∈ {−2, 1}.
Let ν1 = (ν � k)ˆ〈(`ν(k), αν(k) + 1)〉. Note that ν1 ∈ I2 as ν ∈ I2 ∧ (αν(k) < ζ ≡

αν(k) +1 < ζ) and (as `ν(k) ∈ {−2, 1}) clearly {ρ : ν1Eρ ∈ I2} is a cofinal subset of
Jη̄ even an end segment. Now for n < ω we have ν1ˆ〈(2, ζ+n)〉 ∈ I∗2 and it satisfies

~. (Why? As ν1 ∈ I2, only n = k may be problematic, but αν(k) + 1 = αν1(k) here
stands for αη(n) there hence clause (b) of ~ does not apply), so by the definition
of I2, clearly {ν1ˆ〈(2, ζ + n)〉 : n < ω} is ⊆ I2 and is a cofinal subset of Jη̄ so
∂ = ℵ0 = cf(Jη̄) and clause (c) of �3 holds.

Subcase 4B: `ν(k) ∈ {−1, 2} and αν(k) is a successor ordinal.
Let ν1 = (ν � k)ˆ〈(`ν(k), αν(k) − 1)〉, of course ν1 ∈ I∗2 and as ν ∈ I2 clearly

ν1 ∈ I2 so the set {ρ : ν1 E ρ ∈ I2} is an end segment of Jη̄ and has cofinality ℵ0

because n < ω ⇒ ν1ˆ〈(2, ζ + n)〉 ∈ I2. (Why? It ∈ I∗2 and as ν1 ∈ I2 checking ~
only n = k may be problematic, but (`ν(k), 2) here stand for (`η(n), `η(n+1)) there
but presently `ν(k) ∈ {−1, 2} contradicting clause (d) of ~). So clause (c) of �3.

Subcase 4C: `ν(k) ∈ {−1, 2} and αν(k) = 0.
Then let ν1 = (ν � k)ˆ〈(`ν(k)−1, 0)〉. Now ν1 ∈ I2 as ν � k ∈ I2 and for n = k−1

clause (c) of ~ fails and ν1ˆ〈(2, ζ + n)〉 ∈ I2 because of ν1 ∈ I2 and for n = k the
failure of clause (b) of ~ so continue as in Subcase 4B above.

Lastly,

Subcase 4D: `ν(k) ∈ {−1, 2} and αν(k) is a limit ordinal.
Then {(ν � k)ˆ〈(`ν(k), α)〉 : α < αν(k)} is ⊆ I2 and is an unbounded subset of

Jη̄ hence cf(Jη̄) = cf(αν(k)). If cf(αν(k)) = ℵ0, then clause (c) in �3 holds, and

if cf(αν(k)) ∈ [ℵ1, θ1) then necessarily αν(k) 6= ζ so being a limit ordinal < ζ + ω
clearly αν(k) < ζ so clause (d) from �3 holds. To finish this subcase note that
cf(αν(k)) ≥ θ1 is impossible.

[Why “impossible”? Clearly for large enough i < ∂ we have ηi(m) ≥ ζ (because
δ = ζ +ω as said in the beginning of the case) and recall νC ηi ∈ I2. We now show
that clauses (a)-(d) of ~ hold with ηi, k here standing for η, n there. For clause (a)
recall `g(ηi) ≥ `g(ν) + 1 and m = `g(ν) = k + 1. Now `ηi(k+1) = `ηi(m) = `∗ = −2
as `∗ = −2 is part of the case, `ηi(k) = `ν(k) ∈ {−1, 2} in this subcase, so clause (d)
of ~ holds. Also αηi(k+1) = αηi(m) ≥ ζ as said above so clause (c) of ~ holds and
cf(αηi(k)) = cf(αν(k)) ≥ θ1 (as we are trying to prove “impossible”), so clause (b)
of ~ holds. Together we have proved (a)-(d) of ~. But ηi ∈ I2, contradiction.]

Now subcases 4A,4B,4C,4D cover all the possibilities, hence we are done with
case 4.
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Case 5: `∗ = −2, ∂ > ℵ0, and νˆ〈(`∗, δ)〉 /∈ I2.
Recalling δ is the limit of the increasing sequence 〈αηi(m) : i < ∂〉 hence cf(δ) =

∂ > ℵ0 and νˆ〈(−2, δ)〉 /∈ I2, necessarily δ = ζ so ∂ = θ2. As νˆ〈(−2, δ)〉 /∈ I2
necessarily clauses (a) - (d) of ~ hold for some n and as ν ∈ I2, clearly n = `g(ν)−1
(see clause (a) of ~) so we have `g(ν) > 0, and letting k = `g(ν)− 1, by clause (d)
of ~ the `η(n+1) there stands for `∗ = −2 here so we have `ν(k) ∈ {−1, 2} and by
clause (b) of ~ we have cf(αν(k)) ≥ θ1. Hence {(ν � k)ˆ〈(`ν(k), β)〉 : β < αν(k)} is
cofinal in Jη̄ and its cofinality is cf(αν(k)) as (ν � k)ˆ〈(`ν(k), β)〉 increase (by ≤I2)

with β as `ν(k) ∈ {−1, 2}. But cf(αν(k)) ≥ θ1 and ∂ = θ2 (see first sentence of the
present case), so clause (e) of �3 holds.

Case 6: νˆ〈(`∗, δ)〉 ∈ I2.

Subcase 6A: νˆ〈(`∗, δ), (2, ζ)〉 ∈ I2.
Note that for m = `g(ν) and the pair (νˆ〈(`∗, δ), (2, ζ)〉,m) standing for (η, n)

in ~, clauses (a),(c),(d) of ~ hold (recall `∗ ∈ {−2, 1}, see the discussion after case
1) so necessarily clause (b) of ~ fails hence cf(δ) < θ1 but ∂ = cf(δ) so ∂ < θ1.
Now as νˆ〈(`∗, δ), (2, ζ)〉 ∈ I2 clearly if ` < ω, then νˆ〈(`∗, δ), (2, ζ + `)〉 belongs to
I2 hence {νˆ〈(`∗, δ), (2, ζ + `)〉 : ` < ω} is a cofinal subset of Jη̄ by the choice of I2
hence cf(Jη̄) = ℵ0 so clause (c) of �3 applies.

Subcase 6B: νˆ〈(`∗, δ), (2, ζ)〉 /∈ I2.
As νˆ〈(`∗, δ)〉 ∈ I2, necessarily clauses (a)-(d) of~ hold with (νˆ〈(`∗, δ), (2, ζ)〉,m)

here standing for (η, n) there, recalling m = `g(ν) so by clause (b) of ~ we know
that cf(δ) ≥ θ1 but ∂ = cf(δ) hence ∂ ≥ θ1. Also {νˆ〈(`∗, δ), (2, α)〉 : α < ζ} is a
subset of I2 and cofinal in Jη̄ and is increasing with α so cf(Jη̄) = θ2 so clause (e)
of �3 applies.

As the two subcases 6A,6B are complimentary case 6 is done.

Finishing the proof of �3:
It is easy to check that our cases cover all the possibilities (as after discarding

cases 0,1, if not case (6) then νˆ〈(`∗, δ)〉 /∈ I2, as not case (3), `∗ 6= 1 but (see clause
�(c) before case 2), `∗ ∈ {−2, 1} so necessarily `∗ = −2, so case (4),(5) cover the
rest). Together we have proved �3.]

�4 Recall ℵ0 ≤ µ < θ1 < θ2; if X ⊆ I2 with |X| < θ2 then we can find Y
such that X ⊆ Y ⊆ I2, |Y | = µ + |X|, Y is unbounded in I2 from below
and from above, and for every ν ∈ I2 \ Y the following linear orders have
cofinality ℵ0:
(a) J2

Y,ν
..= I2 �

{
η ∈ I2 \ Y : (∀ρ ∈ Y )[ρ <I2 ν ≡ ρ <I2 η]

}
(b) The inverse of J2

Y,ν .

(c) J−Y,ν = I2 �
{
η ∈ I2 : (∀ρ ∈ J2

Y,ν)[η <I2 ρ]
}

(d) The inverse of J+
Y,ν

..= I2 �
{
η ∈ I2 : (∀ρ ∈ J2

Y,ν)[ρ <I2 η]
}

.

[Why? Let U = {αη(`) : η ∈ X and ` < `g(η)}.
We choose Wn by induction on n < ω such that

�1 (a) U ⊆Wn ⊆ ζ + ω
(b) Wn has cardinality µ+ |U| = µ+ |X| and m < n⇒Wm ⊆Wn.
(c) µ ⊆W0 and ζ + n ∈W0 for n < ω.
(d) α ∈Wn ⇒ α+ 1 ∈Wn+1

(e) α+ 1 ∈Wn ⇒ α ∈Wn+1

(f) If δ ∈Wn is a limit ordinal of cofinality < θ1 then δ = sup(δ ∩Wn+1).
(g) if δ ∈Wn and cf(δ) ≥ θ1 (or just cf(δ) ≤ µ+|X|) then sup(δ∩Wn)+1 ∈

Wn+1.
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This is straight. Let W =
⋃
{Wn : n < ω}, so

�2 U ⊆W and |W | = µ+ |X| and W satisfies
(a) W ⊆ ζ + ω

(b) |W | < θ2

(c) 0 ∈W and {ζ +m : m < ω} ⊆W
(d) α ∈W ⇔ α+ 1 ∈W
(e) If δ ∈W and ℵ0 < cf(δ) ≤ µ then δ = sup(W ∩ δ)
(f) If δ ∈W and cf(δ) ≥ θ1 or cf(δ) = ℵ0 then cf(otp(W ∩ δ)) = ℵ0.

Let Y = {η ∈ I2 : αη(`) ∈ W for every ` < `g(η)}. Clearly X ⊆ Y and |Y | =
ℵ0 + |W | = µ+ |U| < θ2. It suffices to check that Y is as required in �4. From now
on we shall use only the choice of Y and clauses (a)-(f) of �2. By �2(c) and the
choice of Y clearly Y is unbounded in I2 from above and from below.

So let ν ∈ I2 \ Y ; as ν � 0 ∈ Y there is n < `g(ν) such that ν � n ∈ Y and
ν � (n+ 1) /∈ Y , so αν(n) < ζ + ω and αν(n) /∈W . But by clause (c) of �2 we have
{ζ +m : m < ω} ⊆W hence αν(n) < ζ and so α1

..= min(W \αν(n)) is well defined
and is found in the interval (αν(n), ζ]. As clearly 0 ∈ W and β ∈ W ⇔ β + 1 ∈ W
by the choice of W , obviously α1 is a limit ordinal. By clause (e) of �2 clearly α1

is of cofinality ℵ0 or ≥ θ1 = µ+. So clearly

α0
..= sup(W ∩ αν(n)) = sup(W ∩ α1) = min{α : W ∩ α = W ∩ αν(n)}

is a limit ordinal ≤ αν(n) and α0 /∈W so cf(α0) ≤ |W | < θ2. But by the assumption
on W , (see clause (f) of �2) we have cf(α0) = ℵ0. So (ν � n)ˆ〈(`ν(n), α0)〉 ∈ J2

Y,ν ;
moreover

�3 ρ ∈ J2
Y,ν iff ρ ∈ I2 satisfies one of the following:

(a) •1 ν � n = ρ � n and `ν(n) = `ρ(n).
•2 αρ(n) ∈ [α0, α1)

(b) •1 ν � n = ρ � n and `ν(n) = `ρ(n).
•2 αρ(n) = α1 and αρ(n+1) ∈ [sup(W ∩ ζ), ζ).
•3 (`ρ(n+1), `ρ(n)) = (`ρ(n1), `ν(n)) ∈

{
(2,−2), (2, 1), (−2,−1), (−2, 2)

}
(c) •1 α1 = ζ and n > θ and (ν � n)ˆ(`ν(n), α1) /∈ I2.

•2 (`ν(n), `ν(n−1)) ∈
{

(2,−2), (2, 1), (−2, 2), (−2,−1)
}

•3 cf(ν(n)) ≥ θ1 and ν(n) > sup(W ∩ ν(n)).
•4 ρ � (n− 1) = ν � (n− 1), `ρ(n−1) = `ν(n−1)

•5 αρ(n−1) ∈
[

sup(ν(n− 1) ∩W ), ν(n− 1)
)

[Why? First note that if ρ ∈ J2
Y,ν , ρ � k = ν � k, ρ(k) 6= ν(k), and k ≤ n, then

necessarily k = n ∧ `ρ(k) = `ν(k). We now proceed to check “if”.
Let f : {−2,−1, 1, 2} → {2,−2} be such that f−1[2] = {−2, 1} and f−1[−2] =

{−1, 2}. Case (a) is obvious. In case (b), in order for η ∈ Y to separate between ν
and ρ, it is necessary that η � (n + 1) = ρ � (n + 1), `η(n+1) = `ρ(n+1) = f(`ρ(n))
and αη(n+1) ≥ ζ, but then η /∈ I2. In case (c), in order to separate between ρ and
ν by η ∈ Y , there are two possibilities. Either η � n = ν � n and then

`η(n) = `ν(n) = f(`ν(n−1))

(recall that ν � nˆ
〈
(`ν(n), α1)

〉
/∈ I2), and αη(n) ≥ ζ, but then also η /∈ I2. The

other possibility is that η � (n − 1) = ν � (n − 1), `η(n−1) = `ν(n−1), α = αη(n−1)

is such that α ∈ W , and αρ(n−1) < α < αν(n−1), which is also impossible by the
choice of αρ(n−1). Showing that these are the only cases (the “only if” direction) is
similar and is actually done below.]

Now we proceed to check that clauses of �4 hold.
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Clause (a):
First assume `ν(n) ∈ {−2, 1}, and let

J =
{
ν � nˆ

〈
(`ν(n), α0), (2, ζ +m)

〉
: m < ω

}
.

Now J ⊆ I2.

[Why? clearly if ρ ∈ J then ρ � (n+1) ∈ I2 so we only need to check ~ for n, recall
that cf(α0) = ℵ0 < θ1, hence clause (b) of ~ fails].

Now by clause (a) of �3 we have that J ⊆ J2
Y,ν , and we claim that it is also

cofinal in it.

[Why? Note that as `ν(n) ∈ {−2, 1} then ν � nˆ〈(`ν(n), α0)〉 <I2 ν � (n+ 1), and if
ρ ∈ J2

Y,ν is as in clauses (a) or (b) of �3 then for every m large enough

ρ <I2 ν � nˆ
〈
(`ν(n), α0), (2, ζ +m)

〉
.

If ρ ∈ J2
Y,ν is as in clause (c) of �3 then `ν(n) ∈ {−2, 2} by (ii) there, and as in

this case `ν(n) ∈ {−2, 1}, necessarily `ν(n) = −2 and so by (ii) of (c) of �3 we have
`ν(n−1) ∈ {−1, 2}, but then ρ <I2 ν and so it is below every element in J .]

Second, assume `ν(n) ∈ {−1, 2} and ν � nˆ〈(`ν(n), α1)〉 ∈ I2; let δ∗ = sup(W ∩ζ),
so as above δ∗ /∈ W and has cofinality ℵ0 (which is less than θ1). Recall also that
cf(α1) ≥ θ1. So (for ` ∈ {−2,−1, 1, 2}) by ~ we have

(ν � n)ˆ
〈
(`ν(n), α1), (`, β)

〉
∈ I2

iff (
β < ζ and ` ∈ {−2,−1, 1, 2}

)
or
(
ζ ≤ β < ζ + ω and ` 6= −2

)
.

Hence we have (ν � n)ˆ
〈
(`ν(n), α1), (−2, β)

〉
∈ I2 ⇔ β < ζ. Also

(ν � n)ˆ
〈
(`ν(n), α1), (−2, β)

〉
∈ Y ⇔ β ∈W,

and as ν(n) < α1 ∧ `ν(n) ∈ {−1, 2} clearly ν <I2 (ν � n)ˆ〈(`ν(n), α1), (−2, β)〉.
Easily

{
(ν � n)ˆ

〈
(`ν(n), α1), (−2, ε)

〉
: ε ∈ W ∩ ζ)

}
is a subset of {η ∈ Y : ν <I2 η}

unbounded from below in it.
So
{

(ν � n)ˆ
〈
(`ν(n), α1), (−2, δ∗), (2, α)

〉
: ζ < α < ζ + ω

}
is included in I2

(recalling clause (b) of ~ as cf(δ∗) = ℵ0) and moreover is a cofinal subset of J2
Y,ν

of order type ω, so cf(J2
Y,ν) = ℵ0 as required.

Third, assume ρν(n) ∈ {−1, 2} and (ν � n)ˆ〈(`ν(n), α1)〉 ∈ I2 and cf(α1) < θ1,
equivalently cf(α1) = ℵ0 by clause (e) of �2. In this case{

(ν � n)ˆ
〈
(`ν(n), α), (−2, β)

〉
: ζ ≤ β < ζ + ω

}
is included in I2 (recalling clause (b) of ~) and in Y . Hence, recalling �3(a), the set{

(ν � n)ˆ
〈
(`ν(n), α)

〉
: α ∈ [α0, α1)

}
is a cofinal subset of J2

Y,ν hence its cofinality is

cf(α1) = ℵ0 as required.
Fourth, we are left with the case `ν(n) ∈ {−1, 2} and (ν � n)ˆ〈(`ν(n), α1)〉 /∈ I2 so

necessarily n > 0 and clauses (a)-(d) of ~ hold for it for n−1; then by clause (c) of
~ (recalling α1 ≤ ζ as shown before �3) necessarily α1 = ζ. Clearly k ..= n− 1 ≥ 0
and as clause (d) of ~ holds and it says there “`η(n+1) ∈ {2,−2}” which means
here `ν(n) ∈ {2,−2} but we are assuming presently `ν(n) ∈ {−1, 2} hence `ν(n) =
`ν(k+1) = 2 so using clause (d) of ~, see above, it follows that `ν(k) ∈ {−2, 1}
and by clause (b) of ~ we have cf(αν(k)) ≥ θ1. Let δ∗ = sup(W ∩ αν(k)). Now if
δ∗ < αν(k) then by clause (f) of �2 we know cf(δ∗) = ℵ0 and{

(ν � k)ˆ
〈
(`ν(k), δ∗), (2, ζ +m)

〉
: m < ω

}
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is included in I2 (as ν ∈ I2 and δ∗ ≤ αν(k) we have only to check ~, with k + 1
here standing for n there, but cf(δ∗) = ℵ0 so clause (b) there fails) and so recalling
�3(c) this set is a cofinal subset of J2

Y,ν exemplifying that its cofinality is ℵ0.

Lastly, if δ∗ = αν(k) then
〈
(ν � n)ˆ〈(`ν(n), α)〉 : α ∈ W ∩ ζ

〉
is <I2-increasing

with α, all members in Y , and in J2
Y,ν , cofinal in it and has order type otp(W ∩ ζ)

which has cofinality ℵ0 so also J2
Y,ν has cofinality ℵ0 as required.

Clause (b): What about the cofinality of the inverse? Recall that I2 is isomorphic
to its inverse by the mapping (`, β) 7→ (−`, β), but this isomorphism maps Y onto
itself hence it maps J2

Y,ν onto J2
Y,ν′ for some ν′ ∈ I2 \ Y , but clause (a) was proved

also for ν′, so this follows.

Clause (c): As Y is unbounded from below in I2 (containing
{
〈(−2, ζ + n)〉 : n <

ω
}

) it follows that J−Y,ν is non-empty, hence cf(J−Y,ν) 6= 0, but what is cf(J−Y,ν)?

First, if `ν(n) ∈ {−1, 2} then {(ν � n)ˆ〈(`ν(n), α)〉 : α < α0} is an unbounded
subset of J−Y,ν of order type α0 hence cf(J−Y,ν) = cf(α0) = ℵ0 (see the assumption

on W and the choice of α0).
Second, if `ν(n) = {−2, 1} and (ν � n)ˆ〈(`ν(n), α1)〉 ∈ I2 and cf(α1) ≥ θ1 then as

in the proof of clause (a) we have {(ν � n)ˆ〈(`ν(n), α1), (2, ζ + m)〉 /∈ I2 for m < ω
and again letting δ∗ = sup(W ∩ζ) we have {(ν � n)ˆ〈(`ν(n), α1), (2, β)〉 : β ∈W ∩ζ}
is included in I2 and in J−Y,ν and even is an unbounded subset of J−Y,ν of order type

otp(W ∩ δ∗) which has the same cofinality as δ∗ which is ℵ0.
Third, if `ν(n) ∈ {−2, 1} and (ν � n)ˆ〈(`ν(n), α1)〉 ∈ I2 and cf(α1) < θ1 (equiva-

lently cf(α1) = ℵ0) then {(ν � n)ˆ〈(`ν(n), α1), (2, ζ +m)〉 : m < ω} is a subset of I2
(as cf(α1) = ℵ0) is included in J−Y,ν , unbounded in it and has cofinality ℵ0, so we
are done.

Fourth and lastly, if `ν(n) ∈ {−2, 1} and (ν � n)ˆ〈(`ν(n), α1)〉 /∈ I2 then as in
the proof of clause (a) we have α1 = ζ. Again letting δ∗ = sup(W ∩ ζ) we have
cf(δ∗) = ℵ0, (ν � n)ˆ〈(`ν(n), δ∗)〉 ∈ I2, and{

(ν � n)ˆ
〈
(`ν(n), δ∗), (2, ζ +m)

〉
: m < ω

}
is a subset of I2; moreover, it is a subset of J−Y,ν unbounded in it, and

(ν � n)ˆ
〈
(`ν(n), δ∗), (2, ζ +m)

〉
is <I2–increasing with m. So indeed J−Y,ν has cofinality ℵ0.

Clause (d): As in clause (b) we use the anti-isomorphism.
So �4 holds.]

�5 if I ′ ⊆ I2 then the number of cuts of I ′ induced by members of I2 \ I ′ (that
is,
{
{s ∈ I ′ : s <I2 t} : t ∈ I2 \ I ′

}
) is ≤ |I ′|+ 1.

[Why? Let U ..= {αη(`) : ` < `g(η) and η ∈ I ′}. It belongs to [ζ + ω]≤µ.
Now (by inspection) η1, η2 ∈ I2 \ I ′ realizes the same cut of I ′ when:
(a) `g(η1) = `g(η2)

(b) `η1(n) = `η2(n) for n < `g(η1).

(c) αη1(n) ∈ U ⇔ αη2(n) ∈ U ⇒ αη1(n) = αη2(n) for n < ω.

(d) β < αη1(n) ≡ β < αη2(n) for β ∈ U and n < ω.

[Why? Clauses (a)-(d) define an equivalence relation on I2 \ I ′ which refines “in-
ducing the same cut” and has ≤ |U| + ℵ0 = |I ′| + ℵ0 equivalence classes. As the
case ‘I ′ is finite’ is trivial, we are done proving �5.]
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�6 if ∂ is regular uncountable, n∗ < ω, tε,` ∈ I2 for ε < ∂, ` < n∗, and
tε,0 <I2 . . . <I2 tε,n∗−1 for ε < ∂ then for some unbounded (and even
stationary) set S ⊆ ∂, m ≤ n∗, 0 = k0 < k1 < . . . < km = n∗ stipulating
tε,km =∞, and letting ε(∗) = min(S), we have:
(a) for each i < m [exactly one / at least one] of the following hold:

•1 If ε < ξ are from S and `1, `2 ∈ [ki, ki+1) then tε,`1 <I2 tξ,`2 .
•2 if ε < ξ are from S and `1, `2 ∈ [ki, ki+1) then tξ,`2 <I2 tε,`1 .
•3 ki+1 = ki + 1 and for every ε ∈ S we have tε,ki = tε(∗),ki .

(b) There is a sequence 〈s−i , s
+
i : i < m〉 such that

•1 i < m⇒ s−i <I2 s
+
i

•2 If i < m−1 then s+
i < s−i+1 (except possibly when 〈tε,ki : ε < ∂〉

is <I2-decreasing and there is no t ∈ I2 such that ε < ∂ ⇒
tε,ki <I2 t <I2 tε,ki+1 , hence (by �3) we have ∂ ≥ θ2).

•3 For each i < m the set
{
tε,` : ε ∈ S, ` ∈ [ki, ki+1)

}
is included

in the interval (s−i , s
+
i )I2 .

[Why? Straight. For some stationary S1 ⊆ ∂ and 〈nk : k < n∗〉 we have

ε ∈ S1 ∧ k < n∗ ⇒ `g(tε,k) = nk.

Also, without loss of generality 〈`tε,k(i) : i < nk〉 does not depend on ε ∈ S1. By∑
k<n∗

nk application of ∂ → (∂, ω)2, without loss of generality for each k < n∗ and

i < nk the sequence 〈αtε,k(i) : ε ∈ S1〉 is constant or increasing. Cleaning a little
more we are done. So �6 holds.]

Lastly, recall that we chose I to be (|M |, <M ), where M was the real closure of M0

(see (∗)1), M0 the ordered field generated over Q by {at : t ∈ I2} as described in
(∗)1 above, and for every u ⊆ ζ let:

(∗)2 (a) I1
u = {(`, β) ∈ I1 : β ∈ u or β ∈ [ζ, ζ + ω)}

(b) I∗,2u = {η ∈ I∗2 : αη(`) ∈ I1
u for every ` < `g(η)}

(c) I2
u = {η ∈ I2 : αη(`) ∈ I1

u for every ` < `g(η)}
(d) Iu is the real closure of Q(at : t ∈ I2

u) in M
(e) For t ∈ I2 \ I2

u, let I2
u,t = I2 � {s ∈ I2 : s /∈ I2

u and for every r ∈ I2
u we

have r <I2 t ≡ r <I2 s}.
(f) For x ∈ I \ Iu let

Iu,x = I �
{
y ∈ I \ Iu : (∀a ∈ Iu)[a <I y ≡ a <I x]

}
.

(g) Let Îu be the set Iu ∪ {Iu,a : a ∈ I \ Iu} ordered by: x <Îu y iff one of
the following holds:
•1 x, y ∈ Iu and x <Iu y
•2 x ∈ Iu, y = Iu,b and x <Iu b
•3 x = Iu,a, y ∈ Iu and a <Iu y
•4 x = Iu,a, y = Iu,b and a <Iu b (can use it more!)

(Note that by �5, |u| ≤ µ⇒ |Îu| ≤ µ.)

Now observe

(∗)3 for u ⊆ ζ, I2
u is unbounded in I2 from below and from above.

We define [the following property.]

(∗)4 We say10 that u is µ-reasonable if:
(a) u ⊆ ζ, |u| < θ2, and µ ⊆ u.

(b) α ∈ u ≡ α+ 1 ∈ u for every α.

10We may in clauses (e) + (c) replace µ by µ + |U|; there’s no harm and it makes (c)(β) of
(∗)1 redundant.
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(c) If δ ∈ u and ℵ0 ≤ cf(δ) ≤ µ then δ = sup(u ∩ δ),
(d) If δ ≤ ζ and cf(δ) > µ then cf(otp(δ ∩ u)) = ℵ0.

Now we note

(∗)5 if X ⊆ I has cardinality < θ2 and u∗ ⊆ ζ has cardinality < θ2 then we can
find a µ-reasonable u such that X ⊆ Iu, u∗ ⊆ u, and |u| = µ+ |X|+ |u∗|.

[Why? By the proof of �4.]

(∗)6 if u is µ-reasonable then Y ..= I2
u satisfies the conclusions of �4.

[Why? By the proof of �4. That is, if u+ ..= u∪{ζ+n : n < ω} then Y as defined in
the proof there using u+ for W , is I2

u from (∗)2(c), and it satisfies demands (a)-(f)
from �2 so the proof there applies.]

(∗)7 if u is µ-reasonable and x ∈ I \ Iu then cf(Iu,x) ≤ ℵ0.

Why? The proof takes awhile. Toward contradiction assume ∂ = cf(Iu,x) is > ℵ0

and let 〈bε : ε < ∂〉 be an increasing sequence of members of Iu,x unbounded in it.
So for each ε < ∂ there is a definable11 function fε(x0, . . . , xn(ε)−1) and
tε,0 <I2 tε,1 <I2 . . . <I2 tε,n(ε)−1 from I2 such thatM |= “bε = fε(atε,0 , . . . , atε,n(ε)−1

)”

and n(ε) is minimal. As Th(R) is countable and ℵ0 < ∂ = cf(∂), without loss of
generality ε < ∂ ⇒ fε = f∗ so ε < ∂ ⇒ n(ε) = n(∗).

Apply �6 to
〈
t̄ε = 〈tε,` : ` < n(∗)〉 : ε < ∂

〉
, and get S ⊆ ∂, 0 = k0 < k1 <

. . . < km = n(∗), 〈(s−i , s
+
i ) : i < m〉, and ε(∗) = min(S) as there. Without loss

of generality the truth value of “tε,` ∈ I2
u”, for ε ∈ S, depends only on `. Let

w1 =
{
i < m : (∀ε ∈ S)[tε,ki = tε(∗),ki ]

}
and w2 = {` < n(∗) : tε(∗),` ∈ I2

u}; clearly
for every ` < n(∗) we have

(∀ε ∈ S)[tε,` = tε(∗),`]⇔ ` ∈ {ki : i ∈ w1}

and i ∈ w1 ⇒ ki + 1 = ki+1.
Let t∗ki = tε,ki for (ε < ∂ and i ∈ w1). [By] renaming, without loss of generality

S = ∂ and ε(∗) = 0.
We have some free choice in choosing 〈bε : ε < ∂〉 (as long as it is cofinal in Iu,x),

so without loss of generality we choose it such that n(∗) is minimal and then |w1|
is maximal and then |w2| is maximal.

Now does the exceptional case in (b)•2 of �6 occur? This is an easier case and
we delay it to the end.

As I2 (and I2,<t for t ∈ I2) have cofinality ℵ0 (see �2(a), (b)) and �3 and this
holds for the inverse of I2, too, while ∂ = cf(∂) > ℵ0 and we can replace 〈bε : ε < ∂〉
by 〈bn(∗)+ε : ε < ∂〉 we can find t∂,` for ` < n(∗) such that

� (a) t∂,0 <I2 t∂,1 <I2 . . . <I2 t∂,n(∗)−1

(b) If ε < ξ < ∂ and `1, `2 < n(∗) then (tε,`1 <I2 t∂,`2) ≡ (tε,`1 <I2 tξ,`2)
and (t∂,`1 <I2 tε,`2) ≡ (tξ,`1 < tε,`2).

(c) If ` ∈ [ki, ki+1) then t∂,` ∈ (s−i , s
+
i )I2 .

Case 0: {0, . . . ,m− 1} = w1.
This implies i < m ⇒ ki + 1 = ki+1 hence m = n hence ` < n ⇒ tξ,` = t∗` and

so contradicts “〈bε : ε < ∂〉 is increasing” (as it becomes constant).

Case 1: [0,m) \ w1 is not a singleton.
It cannot be empty by Case 0. Choose i(∗) ∈ {0, . . . ,m−1}\w1 and for ε, ξ < ∂

let t̄ε,ξ = 〈tε,ξ` : ` < n(∗)〉 be defined by: tε,ξ` is tε,` if ` ∈ [ki(∗), ki(∗)+1) and tξ,`
otherwise. Let bε,ξ = f∗(atε,ξ0

, . . . , atε,ξ
n(∗)−1

) ∈M . Clearly

11where ‘definable,’ of course, means “in the theory of real closed fields”
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~0 for any ε1, ε2, ξ1, ξ2 ≤ ∂ the truth value of bε1,ξ1 < bε2,ξ2 depends just on the
inequalities which 〈ε1, ε2, ξ1, ξ2〉 satisfies, and even just on the inequalities
which the tε1,`, tε2,`, tξ1,`, tξ2,` (for ` < n(∗)) satisfy.

[Why? Recall
〈
〈tε,` : ` < n(∗)〉 : ε ∈ S

〉
is an indiscernible sequence in the linear

order I2 (for quantifier free formulas) and M has elimination of quantifiers.]

~1

∧
`=1,2

ε(0) < ε` < ε(1) < ∂ ⇒ bε(0) <I bε1,ε2 <I bε(1).

[Why? By ~0, the desired statement bε(0) <I bε1,ε2 <I bε(1) is equivalent to
bε(0) < bε1,ε1 < bε(1), which means bε(0) < bε1 < bε(1), which holds.]

~2 b0,2 <I b1.

[Why? Otherwise b1 ≤I b0,2 hence ε ∈ (0, ∂)⇒ bε <I b0,ε+1 <I bε+2 (by ~0 +~1)
so 〈b0,ε : ε ∈ (1, ∂)〉 is also an increasing sequence unbounded in Iu,x contradicting
“w1 maximal”.]

~3 b0,2 < b1,2.

[Why? By ~0 + ~2 we have b0,4 < b1 and by ~1 we have b1 < b2,4 together
b0,4 < b2,4 so by ~0 we have b0,2 < b1,2.]

But then 〈bε,∂ : ε < ∂〉 increases (by ~3 +~0) and ε < ∂ ⇒ bε = bε,ε < bε+1,∂ <
bε+2 (by ~1 and ~2 respectively) hence is an unbounded subset of Iu,x contradiction
to the maximality of |w1|.

Case 2: m \ w1 = {0, . . . ,m− 1} \ w1 is {i(∗)}.
Subcase 2A: For some i < m, i 6= i(∗) and j ..= ki /∈ w2.

Choose such i with |i− i(∗)| maximal. For any s let tε,`,s be tε,` if ` 6= j and be
s if ` = j.

Let

I ′ =
{
s ∈ I2

u,tε(∗),j
: s and tε(∗),j realize the same cut of {tε,` : ε < ∂, ` 6= j}

}
.

Note that kj+1 = kj + 1. Recalling �2(b), the cofinality of I2,<tε(∗),j is ℵ0 and also

the cofinality of the inverse of I2,>tε(∗),j is ℵ0. Recalling the choice of
〈
(s−ι , s

+
ι ) :

ι < m
〉
, there is an open interval12 of I2 around tε(∗),j which is ⊆ I ′. Note that I ′

is dense in itself and has neither a first nor last member by �2 +�4(a), (b).
As f∗ is definable, by the choice of M0, M , and of I ′ ⊆ I2

u,tε(∗),j
we have: if ε < ∂

and s ∈ I ′ then tε(∗),j and s realize the same cut of

I2
u ∪ {tε,` : ε < ∂, j 6= `}

hence fM∗ (. . . , atε,`,s , . . .)`<n and bε realize the same cut of Iu, which means that
f∗(. . . , atε,`,s , . . .)`<n ∈ Iu,x, hence by the choice of 〈bε : ε < ∂〉 we have

(∃ξ < ∂)
[
f∗(. . . , atε,`,s , . . .) < bξ

]
.

So again by the definability (and indiscernibility)

~4 ε < ∂ ∧ s ∈ I ′ ⇒ fM∗ (. . . , atε,`,s , . . .) < bε+1.

As I ′ is dense in itself, what we say on the pair (s, tε(∗),j) when s ∈ I ′∧s <I2 tε(∗),j
holds for the pair (tε(∗),j , s) when s ∈ I ′ ∧ tε(∗),j <I s, so

~5 ε < ∂ ∧ s ∈ I ′ ⇒ bε < fM∗ (. . . , atε+1,`,s
, . . .)

More fully, let s1 <I2 tε(∗),j <I2 s2 and s1, s2 ∈ I ′. Then the sequences〈
tε,` : ` 6= j, ` < n(∗)

〉
ˆ
〈
s1

〉
ˆ
〈
tε+1,` : ` 6= j, ` < n(∗)

〉
ˆ
〈
tε(∗),j

〉
and 〈tε,` : ` 6= j, ` < n(∗)〉ˆ〈tε(∗),j〉ˆ〈tε+1,` : ` 6= j, ` < n(∗)〉ˆ〈s2〉 realize the same
quantifier free type in I2 (recalling tε,j = tε(∗),j).

12if we allow +∞,−∞ as end points
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By ~4 + ~5 and indiscernibility we can replace tε(∗),j by any t′ ∈ I ′ which
realizes the same cut as tε(∗),j of {tε,` : ε < ∂, ` 6= j}. But if j > i(∗) then

{t∗j+1, . . . , t
∗
n(∗)−1} ⊆ I

2
u by the choice of j, and the set

I ′′ = {t ∈ I2 : if ε < ∂, ` 6= j then t 6= tε,` and tε,` <I2 t ≡ tε,` <I2 t∗j}

includes an initial segment of J+
I2u,tε(∗),j

(see �4(d)) i.e. (∗)6, so its inverse has

cofinality ℵ0. Say 〈s∗n : n < ω〉 exemplifies this, so n < ω ⇒ s∗n+1 <I2 s∗n. So

for every ε < ∂ for some n < ω, fM∗ (. . . , atε+1,`,s∗n
, . . .) ∈ (bε, bε+1)I . So for some

n∗ < ω this holds for unboundedly many ε < ∂, contradictory to “|w2| is maximal”.
Similarly if j < i(∗).
Subcase 2B: For every ε < ∂, for some ξ ∈ (ε, ∂), the interval of I2 which is
defined by tε,ki(∗) , tξ,ki(∗) is not disjoint to I2

u (so without loss of generality it has

≥ ki(∗)+1 − ki(∗) members of I2
u).

In this case, as in case 1, without loss of generality {ki(∗), . . . , ki(∗)+1} ⊆ w2 so
as |w2| is maximal this holds. Because subcase 2A is ruled out, {tε,` : ε < ∂, ` <
n} ⊆ I2

u hence {bε : ε < ∂} ⊆ Iu, a contradiction.

Subcase 2C: None of the above.
As subcase 2B is ruled out, without loss of generality{

tε,` : ε < ∂` ∈ [ki(∗), ki(∗)+1)
}
⊆ I2

u,tε(∗),ki(∗)
.

Then, as in subcase 2A, the sequence 〈tε,ki(∗) : ε < ∂〉 is increasing/decreasing and

is unbounded from above/below in I2
u,tε(∗),ki(∗)

contradiction to (∗)6.

In more detail, I ′ ..= I2
u,t0,ki(∗)

includes all {tε,` : ε < ∂ and ` ∈ [ki(∗), ki(∗)+1)}.
Also I ′ and its inverse are of cofinality ℵ0 by (∗)6, hence without loss of generality
we can find (new)

〈
t∂,` : ` ∈ [ki(∗), ki(∗)+1)

〉
such that t∂,` <I2 t∂,`+1, t∂,` ∈

(s−i(∗), s
+
i(∗))I2 , ε < ∂ ⇒ tε,`1 <I2 t∂,` ≡ tε,`1 < tε+1,`2 , and the convex hull in

I2 of
{
tζ,` : ζ ≤ ∂ and ` ∈ [ki(∗), ki(∗)+1]

}
is disjoint to I2

u. Let t∂,` = t∂,` for
` /∈ [ki(∗), ki(∗)+1], ` < m, b∂ = f∗(at∂,0 , . . . , at∂,n−1

).
Easily ε < ∂ ⇒ bε <I b∂ . As ε < ξ < ∂ ⇒ (bε, bξ)I2 ∩ u = ∅, easily ε < ∂ ⇒

(bε, b∂)I2 ∩ u = 0, in contradiction to 〈bε : ε < ∂〉 being cofinal in Iu,x.
To finish proving (∗)7, we have to consider the possibility that when applying

�6, the exceptional case in (b)•2 of �6 occurs for some i < m; say, for i(∗) (see �).
Also, without loss of generality ∂ ≥ θ2 and so without loss of generality ` ∈

w2 ⇒ tε,` = tε(∗),` and for each ` < n(∗) we have

(∀ε, ζ < ∂)(∀s ∈ I2
u)
[
s <I2 tε,` ≡ s <I2 tζ,`

]
.

Now we can define t̄ε,ξ = 〈tε,ξ` : ` < n(∗)〉 as in case 1 and prove ~0 - ~3 there.

Clearly all members of
{
tε,` : ε < ∂, ` ∈ [ki(∗), ki(∗)+2)

}
realize the same cut of

I2
u and we get an easy contradiction.

As we can use only 〈tn(∗),ε : ε < ∂〉 and add dummy variables to f∗, without
loss of generality ki(∗)+1 − ki(∗) = ki(∗)+2 − ki(∗)+1. Let J be {1,−1} × ∂ ordered
by (`1, ε1) <J (`2, ε2) iff `1 = 1 ∧ `2 = −1 or `1 = 1 = `2 ∧ ε1 < ε2 or `1 = −1 =
`2 ∧ ε1 > ε2.

For ι ∈ J let ι = (`ι, ει) = (`[ι], ε[ι]). For ζ < ∂ and ι1, ι2 ∈ J we define
t̄ζ,ι1,ι2 = 〈tζ,ι1,ι2,n : n < n(∗)〉 by tζ,ι1,ι2,n is tε[ι1],n if n ∈ [ki(∗), ki(∗)+1), tε[ι2],n if
n ∈ [ki(∗)+1, ki(∗)+2), and tζ,n otherwise. Now, letting bζ,ι1,ι2 = f∗(t̄ζ,ι1,ι2),

~6 All bζ,ι1,ι2 realize the same cut of I2
u.

Now

~7 Indiscernibility as in ~0 holds.
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~8 ¬(bζ,(1,ε),(1,ε+1) ≤I∗ bζ,(1,ε+2),(1+ε+3)).

[Why? Otherwise by indiscernibility, if ζ ∈ (6, ∂) then bζ,(1,ζ),(−1,3) <I bζ,(−1,5),(−1,4).
Hence 〈bζ,(−1,5),(−1,4) : ζ ∈ (6, ∂)〉 is monotonic in I∗, all members realizing the

fixed cut of I2
u and is unbounded in it (by the inequality above), contradicting the

maximality of |wj |.]
~9 ¬(bζ,(1,ε+2),(1,ε+3) <I bζ,(1,ε),(1,ε+1)).

[Similarly, as otherwise if ζ ∈ (6, ∂) then bζ,(1,ζ),(−1,ζ) <I bζ,(1,4),(1,5). Hence
〈bζ,(1,4),(1,5) : ζ ∈ (6, ∂)〉 contradicts the maximality of (w1).]

So we have proved (∗)7.

(∗)8 if u is µ-reasonable, x ∈ I \ Iu then cf(Iu,x) = ℵ0.

[Otherwise by (∗)7 it has a last element; say b = f∗(at0 , . . . , atn−1), where t0, . . . , tn−1 ∈
I2 and f∗ a definable function (without loss of generality, with n minimal). Hence
{at0 , . . . , atn−1

} is transcendentally independent with no repetitions and b is not
algebraic over {at0 , . . . , atn−1

} \ {at`} for ` < n. So {t0, . . . , tn−1} * I2
u, and let

` < n be such that t` /∈ I2
u, hence there are s0 <I2 s1 such that t` ∈ (s0, s1)I2 and

(s0, s1)I2 ∩ I2
u = ∅. (Recall �4(a),(b) and (∗)6 about cofinality ℵ0 and I2 being

dense.) Also without loss of generality {t0, . . . , tn−1} ∩ (s0, s1)I2 = {t`}; now the
function c 7→ fM∗ (at0 , . . . , at`−1

, c, at`+1
, . . . , atn−1

) for c ∈ (as0 , as1)I is increasing or
decreasing (cannot be constant by the minimality on n and the elimination of quan-
tifiers for real closed fields and the transcendental independence of {t0, . . . , tn−1}).
So we can find s′0, s

′
1 such that s0 <I2 s

′
0 <I2 t` <I2 s

′
1 <I2 s1 such that

X ..=
{
fM∗ (at0 , . . . , at`−1

, c, at`+1
, . . . , atn−1

) : c ∈ (as′0 , as′1)I
}

is included in Iu,x. Again as the function defined above is monotonic on (as′0 , as′1)I
so for some value b′ ∈ (as′0 , as′1) we have b <I b

′. But b is last in Iu,x by our
assumption toward contradiction hence (b, b′)Iu ∩ Iu = ∅. But this is impossible
as all members of {f(at0 , . . . , at`−1

, c, at`+1
, . . . , atn−1) : c ∈ (as′1 , as′2)I} realize the

same cut of Iu so (∗)8 holds.]

(∗)9 if u is µ-reasonable, x ∈ I \ Iu then also the inverse of Iu,x has cofinality
ℵ0.

[Why? Similarly to the proof of (∗)7 + (∗)8, or note that the mapping y 7→ −y
(defined in M) maps Iu onto itself and is an isomorphism from I onto its inverse.]

(∗)10 if u is µ-reasonable, then Iu is unbounded in I from below and from above.

[Why? Easy.]

(∗)11 if h, u1, u2 are as in clauses (a),(b),(c) below then the function h4 defined
below is (well defined and) is, recalling (∗)2(g), an order preserving function

from Îu1
onto Îu2

mapping u1 onto u2. Also, the functions h0, h1, h
∗
2, h2, h3

are as stated, where:
(a) u1, u2 ⊆ ζ are µ-reasonable

(b) h is an order preserving function from u1 onto u2

(c) (α) For α ∈ u1, we have cf(α) ≥ θ1 ⇔ cf(h(α)) ≥ θ1.
(β) If γ ∈ u1 then (∀α < γ)(∃β ∈ u1)[α ≤ β < γ] iff (∀α <

h(γ))(∃β ∈ u2)[α ≤ β < h(γ)]
(d) (α) h1 is the [induced-order preserving / induced order-preserving]

function from I1
u1

onto I1
u2

, i.e., h1((`, β′)) = (`, β′′) when h(β′) =
β′′ < ζ or β′ = β′′ ∈ [ζ, ζ + ω).

(β) Let h0 be the partial function from ζ + ω into ζ + ω such that
h0(α) = β ⇔ (∃`)[h1((`, α)) = (`, β)]
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(e) h∗2 is the order preserving function from I∗,2u1
onto I∗,2u2

defined by:

for η ∈ I∗,2η1 ,

h∗2(η) =
〈
h1(η(`)) : ` < `g(η)

〉
=
〈
(`η(`), h0(αη(`))) : ` < `g(η)

〉
,

recalling (d).

(f) h2 = h∗2 � I
2
u1

is an order preserving function from I2
u1

onto I2
u2

.

(g) h3 is the unique isomorphism from the real closed field MI2u1
onto the

real closed field MI2u2
mapping at to ah2(t) for t ∈ I2

u1
, where for I ′ ⊆ I2

we let MI′ ⊆M be the real closure of {at : t ∈ I ′} inside M .

(h) h4 is the map defined by: h4(x) = y iff (α) ∨ (β), where
(α) x ∈ Iu1

∧ y = h3(x)
(β) For some a ∈ I \ Iu1

, b ∈ I \ Iu2
we have x = Iu,a, y ∈ Iu,b, and

(∀c ∈ Iu)[c <I a ≡ h3(c) <I b].

(i) Îu1
= dom(h4) and Îu2

= rang(h4) ordered naturally.

[Why? Trivially, h1 is an order preserving function from I1
u1

onto I1
u2

. Recall

I2,∗
u`

= {η ∈ I∗2 : η(`) ∈ I1
u`

for ` < `g(η)}. So obviously h∗2 is an order preserving

function from I∗,2u1
onto I∗,2u2

. Now h2 = h∗2 � I
2
u1

, but does it map I2
u1

onto I2
u2

? We

have excluded some members of I∗,2u2
by ~ above.

But by clauses (c) and (d)(α) of the assumption being excluded/not excluded is
preserved by the natural mapping, i.e., h∗2 maps I2

u1
onto I2

u2
hence h2 = h∗2 � I

1
u1

is

an isomorphism from I1
u1

onto I1
u2

. Also by (∗)1 being the real closure of the ordered
field M0, and the uniqueness of “the real closure” h3 is the unique isomorphism
from the real closed field MI2u1

onto MI2u2
mapping at to ah2(t) for t ∈ I2

u1
.

Let 〈(U1
ε ,U2

ε ) : ε < ε∗〉 list the pairs (U1,U2) such that:

~10 (a) U` has the form Iu`,x for some x ∈ I \ Iu` for ` = 1, 2
(b) for every a ∈ Iu1

, (∃y ∈ U1)[a <I y]⇔ (∃y ∈ U2)[h2(a) <I y].

Now

~11 〈U`ε : ε < ε∗〉 is a partition of I \ Iu` for ` = 1, 2.

[Why? First, note the parallel claim for I1. For this, note that h1((`, 0)) = (`, 0)
as 0 ∈ u1 ∩ u2 as u1, u2 are µ-reasonable (see clause (e) of (∗)4) and h1((`, α)) =
(`, β)⇔ h1((`, α+1)) = (`, β+1), by clause (b) of (∗)4 and if h((`, δ1)) = (`, δ2), δ1
is a limit (equivalently δ2 is limit) then

δ1 = sup{α < δ : (`, α) ∈ I1
u1
} ⇔ δ2 = sup{α < δ : (`, α) ∈ I1

u2
}.

Second, note the parallel claim for h2, I
∗,2
u`
, h∗2.

Third, note the parallel claim for I2
u`
, h2.

Fourth, note the parallel claim for Iu` , h3 (which is the required one).]
So it follows that

~12 h4 is as promised.

So we are done proving (∗)11.
[Why? By clauses (b),(c) of (∗)11.]

(∗)12 If u1, u2 are µ-reasonable, h is an order preserving mapping from Îu1 onto

Îu2
which maps Iu1

onto Iu2
then there is an automorphism h+ of the linear

order I extending h � Iu1 .

[Why? Let 〈U1
ε : ε < ε∗〉 list Îu1

\ Iu1
and U2

ε = h(U1
ε ). Now for every ε we choose

〈a`ε,n : n ∈ Z〉 such that

~13 (a) a`ε,n ∈ U`ε
(b) a`ε,n <I a

`
ε,n+1 for n ∈ Z.

(c) {a`ε,n : n ∈ Z, n ≥ 0} is unbounded from above in U`ε .
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(d) {a`ε,n : n ∈ Z, n < 0} is unbounded from below in U`ε .

This is justified by u` being µ-reasonable by (∗)6, �4. Now define h5 : I → I by:
h5(x) = h4(x) if x ∈ Iu1 and otherwise
h5(x) = a2

ε,n + (a2
ε,n+1 − a2

ε,n)(x − a1
ε,n)/(a1

ε,n+1 − a1
ε,n) if a1

ε,n ≤I2 x < a1
ε,n+1

and n ∈ Z. Now check using linear algebra.]

(∗)13 (µI)/Eaut
I,µ has ≤ 2µ members, recalling that f1Eaut

I,h f2 iff f1, f2 are functions
from µ into I and for some automorphism h of I we have

(∀α < µ)[h ◦ f1(α) = f2(α)].

[Why? Should be clear recalling |I1
u| ≤ µ, recalling (∗)5, (∗)11, (∗)12.]

So we have finished proving part (1) of 5.1. �5.1(1)

Paper Sh:734, version 2023-02-03. See https://shelah.logic.at/papers/734/ for possible updates.



CATEGORICITY AND SOLVABILITY OF AEC, QUITE HIGHLY SH734 77

Proof. 5.1(2)
Really the proof is included in the proof of part (1). That is, given I ′ ⊆ I

of cardinality < θ2 by (∗)5 there is a µ-reasonable u ⊆ ζ such that I ′ ⊆ Iu and
|u| = µ+ |I ′|. Now clearly

(∗)14 For µ-reasonable u ⊆ ζ, the family {I2
u,x : x ∈ I2 \ I2

u} has ≤ µ + |u|
members.

[Why? By �5.]

(∗)15 for a µ-reasonable u ⊆ ζ, the family {Iu,x : x ∈ I \ Iu} has ≤ µ members.

[Why? By (∗)16 below.]

(∗)16 if u is µ-reasonable then Iu,b1 = Iu,b2 when
(a) bk = f(atk,0 , . . . , atk,n−1

) for k = 1, 2.

(b) f a definable function in M .

(c) tk,0 <I2 . . . <I2 tk,n−1 for k = 1, 2.

(d) t1,` ∈ I2
u ∨ t2,` ∈ I2

u ⇒ t1,` = t2,`

(e) if t1,` /∈ I2
u then I2

u,t1,`
= I2

u,t2,`
for ` = 0, . . . , n− 1.

[Why? Use the proof of (∗)11, for u1 = u = u2, h = idu2
so U1

ε = U2
ε for ε < ε∗.

By the assumptions, for each ` there is ε such that atε,1,` , at2,` ∈ U1
ε = U2

ε . Now

for each ε < ε∗ there is an automorphism πε of U1
ε as a linear order mapping t1,`

to t2,` if t1,` ∈ U1
ε . Let π =

⋃
{πε : ε < ε∗} ∪ idIu .]

(∗)17 If n < ω, t`0 <I t`1 <I . . . <I t`n−1 for ` = 1, 2, and Iu,t1k = Iu,t2k for

k = 0, 1, . . . , n − 1 then for some automorphism g of I over Iu we have
k < n⇒ g(t1k) = t2k.

[Why? We shall use g such that g � Iu = idIu and g � Iu,x is an automorphism of
Iu,x for each x ∈ I \ Iu. Clearly it suffices to deal with the case{

t`k : ` < n and ` ∈ {1, n}
}
⊆ Iu,x

for one x ∈ I \ Iu.
[Obviously one of those is supposed to be a k.]
We choose s1 < s2 from Iu,x such that s1 <I t

`
k < s2 for ` = 1, 2. We choose

g � Iu,x such that it is the identity on {s ∈ Iu,x : s ≤I s1 or s2 ≤I s}. Now
stipulate t−1 = s1, tn = s2 and [g � Iu,x] maps (t1k, t

1
k+1)I onto (t2k, t

2
k+1)I for

k = −1, 0, . . . , n− 1 as in the definition above.]
So we have completed the proof of part (2) of 5.1. �5.1(2)
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Proof. 5.1(3) Obvious from the Definition (0.14(9)) and the construction.

5.1(4) First

�1 There is J∗1 ⊆ I of cardinality µ+ such that for every J∗2 ⊆ I of cardinality
≤ µ, there is an automorphism π of I which maps J∗2 into J∗1 .

[Why? Let u = µ+ × µ+ ⊆ ζ and let J∗1 = Iu. Clearly u has cardinality µ+ and
so does J∗1 = Iu. So suppose J∗2 ⊆ I has cardinality ≤ µ. There is u2 ⊆ ζ of
cardinality µ such that J∗2 ⊆ Iu2 and without loss of generality u2 is reasonable.
We define an increasing function h from u2 into u1, by defining h(α) by induction
on α:

(∗)17 If cf(α) ≤ µ then h(α) =
⋃
{h(β) + 1 : β ∈ u2 ∩ α}.

(∗)18 If cf(α) > µ then h(α) =
⋃
{h(β) + 1 : β ∈ u2 ∩ α}+ µ+.

Let u1
..= {h(α) : α ∈ u2} so u1 ⊆ u. Now h, u1, u2 satisfies clauses (a),(b),(c) of

(∗)11 hence h1, h
∗
2, h2, h3, h4, Îu1 , Îu2 are as there.

By (∗)12 there is an isomorphism h+ of I which extends h4; now does h+ map
J∗2 into J∗1 ? Yes, as J∗2 ⊆ Iu2

and h+ � Iu2
is an isomorphism from Iu2

onto Iu1
but

Iu1
⊆ Iu and Iu = J∗1 , so we are done proving �1.]

Finally

�2 Part (4) of 5.1 holds. I.e., if I∗0 ⊆ I with |I∗0 | < θ2 then for some I∗1 ⊆ I
of cardinality ≤ µ+ + |I∗0 |, for every J ⊆ I of cardinality ≤ µ, there is an
automorphism of I over I∗0 mapping J into I∗1 .

Why? Given I∗0 ⊆ I of cardinality < θ2 we can find u1 ⊆ ζ of cardinality µ + |I∗0 |
such that I∗0 ⊆ Iu1 . By (∗)5 we can find a µ-reasonable set u2 ⊆ ζ of cardinality
µ+ |u1| such that u1 ⊆ u2.

Let 〈Uε : ε < ε∗〉 list the sets of the form Iu2,x, x ∈ I2\Iu1
, so by �5, ε∗ ≤ µ+|I∗0 |.

For each ε we choose 〈aε,n : n ∈ Z〉 as in ~13 from the proof of (∗)12. For each
ε < ε∗ and n ∈ Z let πε,n be an isomorphism from I onto (aε,n, aε,n+1)I ; it exists
by the properties of ordered fields. Let J∗1 ⊆ I be as in �1 above and let

I∗2 = I∗1 ∪ {aε,n : ε < ε∗ and n < ω} ∪ {πε,n(J∗1 ) : ε < ε∗ and n ∈ Z}.
Easily, I∗2 is as required.

5.1(5) By 0.12. �5.1(3)−(5)

Remark 5.3. Concerning (∗)11, we could have used more time.

(∗)′11 h2 : I2
u1
→ I2

u2
is an order preserving function and onto, h3 : Iu1

→ Iu2
is

an isomorphism, and h1 : Îu2 → Îu2 is order preserving and onto.
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§ 6. Linear orders and equivalence relations

This section deals with a relative of the stability spectrum. We ask: what can
be the number of equivalence classes in µI for an equivalence relation on µI which
is so called “invariant”: in fact definable (essentially by a quantifier free infinitary
formula, mainly for well ordered I).

It is done in a very restricted context, but via EM-models has useful conclusions,
for AEC and also for AEC with amalgamation; i.e. it is used in 7.9.

There are two versions; one for well ordering and one for the class of linear orders
both expanded by unary relations.

On τ∗α(∗),K
lin
τ∗
α(∗)

see 0.14(4). We may replace sequences, i.e. incJ(I), by subsets

of I of cardinality |J |, this may help to eliminate 2|J| later, but at present it seems
not to help in the final bounds in §7. We do here only enough for §7.

Context 6.1. We fix α(∗), ū∗ = (u−, u+) such that

(a) α(∗) is an ordinal ≥ 1

(b) u− ⊆ α(∗)
(c) u+ ⊆ α(∗).

Remark 6.2. 1) The main cases are

(A) α(∗) = 1, so K lin
τ∗
α(∗)

is the class of linear orders

(B) α(∗) = 2, u+ = ∅, u− = {0}.
2) Usually the choice of the parameters does not matter.

Definition 6.3. 1) For I, J ∈ K lin
τ∗
α(∗)

, i.e. both linear orders expanded by a partition

Pα(α < α(∗)), pedantically the interpretation of the Pα’s, let inc′J(I) be the set of
embedding of J into I; see below, we denote members by h.

2) Recalling ū∗ = (u−, u+) where u− ∪ u+ ⊆ α(∗) let incū
∗

J (I) be the set of h
such that

(a) h is an embedding of J into I, i.e. a one-to-one, order preserving function
mapping P Jα into P Iα for α < α(∗).

(b) If α ∈ u−, t ∈ P Jα , and s <I h(t) then for some t1 <J t we have s ≤I h(t1).

(c) If α ∈ u+, t ∈ P Jα , and h(t) <I s then for some t1 we have t <J t1 and
h(t1) ≤I s.

Concerning ū∗

Observation 6.4. 1) For any h ∈ incū
∗

J (I):

(A) If t is the successor of s in J (i.e. s <J t and (s, t)J = ∅) and t ∈ P Jα ,
α ∈ u− then h(t) is the successor of h(s) in I.

(B) if 〈ti : i < δ〉 is <J -increasing with limit tδ ∈ J (i.e. i < δ ⇒ ti <J tδ
and ∅ =

⋂
{(ti, tδ)J : i < δ}) and tδ ∈ P Jα , α ∈ u− then 〈h(ti) : i < δ〉 is

<I-increasing with limit h(tδ) in I.

(C) If t is the first member of J and t ∈ P Jα , α ∈ u− then h(t) is the first
member of I.

2) If h1, h2 ∈ incū
∗

J (I) then

(A) If t is the successor of s in J and t ∈ P Jα , α ∈ u− then h1(s) = h2(s) ⇔
h1(t) = h2(t) and h1(s) <I h2(s) ⇔ h1(t) <I h2(t) and h1(s) >I h2(s) ⇔
h1(t) >I h2(t).
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(B) If 〈ti : i < δ〉 is <J -increasing with limit tδ and tδ ∈ P Jα , α ∈ u−, then

(∀i < δ)[h1(ti) = h2(ti)]⇒ h1(tδ) = h2(tδ).

Moreover,

(∀i < δ)(∃j < δ)
[
h1(ti) <I h2(tj) ∧ h2(ti) <I h1(tj)

]
⇒ h1(tδ) = h2(tδ)

and also (∃j < δ)(∀i < δ)(h1(ti) <I h2(tj))⇒ h1(tδ) <I h2(tδ).

3) Similar to parts (1) + (2) for α ∈ u+ (inverting the orders of course).

4) inc′I(J) = inc
(∅,∅)
I (J).

Proof. Straight (and see the proof of 6.7). �6.4

Convention 6.5. 1) α(∗), ū∗ will be constant, so usually we shall not mention

them (e.g. we will write incJ(I) for incū
∗

I (I)). Pedantically, below we should have
written eū

∗
(J, I) and eū

∗

∗ (J), and also in notions like ‘reasonable’ and ‘wide’ in
Definition 6.10 which mention ū∗.

2) I, J will denote members of K lin
τ∗
α(∗)

.

Below we use mainly “e-pairs” (and weak e-pairs and the reasonable case).

Definition 6.6. 1) let e(J) be the set of equivalence relations on some subset of
J such that each equivalence class is a convex subset of J .

2) For h1, h2 ∈ incJ(I) we say that (h1, h2) is a strict e-pair (for (I, J)) when
e ∈ e(J) and (h1, h2) satisfies

(a) s ∈ J \ dom(e) iff h1(s) = h2(s).

(b) If s <J t and s/e 6= t/e (so s, t ∈ dom(e)) then h1(s) <I h2(t) and h2(s) <I
h1(t).

(c) If s <J t and s/e = t/e (so s, t ∈ dom(e)) then h1(t) <I h2(s).

2A) We say that (h1, h2) is a strict (e,Y)-pair, where e ∈ e(J) and Y ⊆ dom(e)/e,
when clauses (a)+(b) from part (2) hold and

(c)′ if s <J t and s/e = t/e (so s, t ∈ dom(e)) then

[(h1(t) <I h2(s)] ≡ [s/e ∈ Y] ≡ [h1(s) < h2(t)].

2B) We say that (h1, h2) is an e-pair when (h1, h2) is a strict (e,Y)-pair for some
Y. (This relation is symmetric, see below.)

3) We say that (h1, h2) is a weak e-pair where h1, h2 ∈ incJ(I) when clauses
(a),(b) hold. (This, too, is symmetric!)

4) For h1, h2 ∈ incJ(I), let e = e(h1, h2) be the (unique) e ∈ e(J) such that (see
6.8(1) below)

(a) dom(e) = {s ∈ J : h1(s) 6= h2(s)}
(b) (h1, h2) is a weak e-pair.

(c) If e′ ∈ e(J) and (h1, h2) is a weak e′-pair then dom(e) ⊆ dom(e′) and e
refines e′ � dom(e).

5) If e ∈ e(J) and Y ⊆ dom(e)/e then we let set(Y) = {s ∈ J : s/e ∈ Y} and
e � Y = e � set(Y).

6) Let e(J, I) be the set of e ∈ e(J) such that there is an e-pair.
7) Let e∗(J) =

⋃
{e(J, I) : I ∈ K lin

τ∗
α(∗)
}.

Concerning ū∗

Observation 6.7. Assume that e ∈ e(J, I).

0) (a) If t is the first member of J and t ∈ P Jα , α ∈ u− then t /∈ dom(e).

(b) If t ∈ dom(e) and t is the first member of t/e and t ∈ P Jα then α /∈ u−.
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1) If t is the <J -successor of s and t ∈ P Jα , α ∈ u− then s ∈ dom(e) ⇔ t ∈
dom(e) and s ∈ dom(e)⇒ s ∈ t/e.

2) If 〈ti : i < δ〉 is <J -increasing with limit tδ and tδ ∈ P Jα and α ∈ u− then:
(a) If (∀i < δ)[ti /∈ dom(e)] then tδ /∈ dom(e).

(b) If (∀i < δ)(¬ti e ti+1) or just (∀i < δ)(∃j < δ)[i < j ∧ ¬ti e tj ] then
tδ /∈ dom(e).

(c) If (∀i < δ)(ti ∈ t0/e) then tδ ∈ t0/e.
3) Similar to parts (0),(1),(2) when α ∈ u+ (inverting the order, of course).
4) e∗(J) is the family of e ∈ e(J) satisfying the requirements in parts (0),(1),(2),(3)

above so if ū∗ = (∅,∅) then e∗(J) = e(J).

Proof. Easy by 6.4, e.g.

Part (1): We are assuming e ∈ e(J, I) hence by Definition 6.6 there is an e-pair
(h1, h2) where h1, h2 ∈ incJ(I). Now for ` = 1, 2, clearly h`(s), h`(t) ∈ I and as
s <J t we have h`(s) < h`(t). Now if h`(t) is not the<I -successor of h`(s) then there
is s′` ∈ (h`(s), h`(t))I hence by clause (b) of Definition 6.3(2) there is s∗` ∈ [s, t)J
such that s′` ≤I h`(s∗` ) <I h`(t) so as h`(s) <I s

′
` we have h`(s) <I h`(s

∗
` ) <I h`(t)

hence s <I s
∗
` <J t, contradiction to the assumption “t is the successor of s in J”.

So indeed h`(t) is the successor of h`(s) in I.
As this holds for ` = 1, 2, clearly h1(s) = h2(s)⇔ h1(t) = h2(t) but by Definition

6.3(2) we know s ∈ dom(e) ⇔ [h1(s) 6= h2(s)] and similarly for t hence s ∈
dom(e) ⇔ t ∈ dom(e). Lastly, assume s, t ∈ dom(e), but s, t are nor e-equivalent
so by Definition 6.6(2) clause (b) we have h1(s) <I h2(t) ∧ h2(s) <I h1(t) clear
contradiction.

Part (2): We leave clauses (a),(b) to the reader.

For clause (c) of part (2), if tδ /∈ t0/e then choose h1, h2 ∈ incū
∗

J (I) such that
(h1, h2) is an e-pair, hence an (e,Y)-pair for some Y ⊆ dom(e)/e. If (t0/e) ∈ Y then
h2(t0) is above {h1(ti) : i < δ} by <I so we have h1(tδ) ≤I h2(t0) but if tδ /∈ t0/e
this contradicts clause (b) in Definition 6.6(2),(2A). The proof when t0/e /∈ Y is
similar. �6.7

Observation 6.8. Let h1, h2 ∈ incJ(I) and e ∈ e(J).
1) e(h1, h2) is well defined.
2) (h1, h2) is a strict (e,Y1)-pair iff (h2, h1) is a strict (e,Y2)-pair when (Y1,Y2)

is a partition of dom(e)/e.
3) (h1, h2) is a strict e-pair iff (h2, h1) is a strict (e,∅)-pair.
4) (h1, h2) is an e-pair iff (h2, h1) is an e-pair.
5) (h1, h2) is a weak e-pair iff (h2, h1) is a weak e-pair.
6) If (h1, h2) is a strict e-pair then (h1, h2) is an e-pair which implies (h1, h2)

being a weak e-pair.
7) If eα ∈ e(J) for α < α∗, then

e ..=
⋂
{eα : α < α∗} = {(s, t) : s, t are eα-equivalent for every α < α∗}

belongs to e(J) with dom(e) =
⋂
{dom(eα) : α < α∗}.

8) If e ∈ e(J, I) then for every Y ⊆ dom(e)/e also e � set(Y) belongs to e(J, I)
and there is a strict (e � set(Y))-pair (h′1, h

′
2); moreover, for every Y1 ⊆ Y there is

a strict (e � set(Y),Y1)-pair.

Proof. Easy, e.g.:
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1) Let

e =
{

(s1, s2) : h1(s`) 6= h2(s`) for ` = 1, 2 and if s1 6= s2 then

for some t1 <J t2 we have {s1, s2} = {t1, t2}
and there is no initial segment J ′ of J such that

J ′ ∩ {t1, t2} = {t1} and

(∀t′ ∈ J ′)(∀t′′ ∈ J \ J ′)
[
h1(t′) <I h2(t′′) ∧ h2(t′) <I h1(t′′)

]}
.

Clearly e is an equivalence relation on {t ∈ J : h1(t) 6= h2(t)} and each equivalence
class is convex hence e1 ∈ e(J), so clauses (a),(b) of 6.6(1),(4) holds. Easily e is as
required.

8) Let (h1, h2) be an e-pair and Y1,Y2,Y3 be a partition of dom(e)/e. We define
h′1, h

′
2 ∈ incJ(I) as follows, for ` ∈ {1, 2}

(a) If t ∈ J \ dom(e) then h′`(t) = h1(t) (= h2(t)).

(b) If t ∈ set(Y1) then h′`(t) = h1(t).

(c) If t ∈ set(Y2) then h′`(t) is min{h1(t), h2(t)} if ` = 1, and is max{h1(t), h2(t)}
if ` = 2.

(d) If t ∈ set(Y3) then h′`(t) is max{h1(t), h2(t)} if ` = 1 and is min{h1(t), h2(t)}
if ` = 2.

Now (h′1, h
′
2) is a strict (e � (set(Y2) ∪ set(Y3)),Y2)-pair, so we are done. �6.8

Definition 6.9. 1) For a subset u of J ∈ K lin
τ∗
α(∗)

we define e = eJ,u ∈ e(J) on J \ u
as follows:

s1 e s2 ⇔ (∀t ∈ u)[t <J s1 ≡ t <J s2].

2) For I, J ∈ K lin
α(∗), we say that the pair (I, J) is non-trivial when e(J, I) 6= ∅.

Definition 6.10. 1) For h0, . . . , hn−1 ∈ incJ(I) let

tpJqf

(
〈h0, . . . , hn−1〉, I

)
=
{

(`,m, s, t) : s, t ∈ J and h`(s) < hm(t)
}
.

We may write tpJqf(h0, . . . , hn−1; I) and we usually omit J as it is clear from the
context.

2) For h1, h2 ∈ incJ(I) let eq(h1, h2) = {s ∈ J : h1(s) = h2(s)}.
3) We say that the pair (I, J) is a reasonable (µ, α(∗))-base when:

(a) I, J ∈ K lin
τ∗
α(∗)

, |J | ≤ µ, and the pair (I, J) is non-trivial.

(b) If e ∈ e(J, I), h1, h2 ∈ incJ(I), and (h1, h2) is an e-pair then we can find
h′1, h

′
2, h
′
3 ∈ incJ(I) and Y ⊆ dom(e)/e such that

(α) tpqf((h
′
1, h
′
2), I) = tpqf((h1, h2), I)

(β) (h′1, h
′
3) and (h′2, h

′
3) are strict (e,Y)-pairs.

4) We say that the pair (I, J) is a wide (λ, µ, α(∗))-base when:

(a) I, J ∈ K lin
τ∗
α(∗)

, |J | ≤ µ, and the pair (I, J) is non-trivial.

(b) for every e ∈ e(J, I) there is a sequence h̄ = 〈hα : α < λ〉 such that
(α) hα is an embedding of J into I.

(β) If α < β < λ then (hα, hβ) is an e-pair.

5) We say that the pair (I, J) is a strongly wide (λ, µ, α(∗))-base when:

(a) I, J ∈ K lin
τ∗
α(∗)

, the pair (I, J) is non-trivial, and J has cardinality ≤ µ.

(b) For every e ∈ e(J, I) and Y ⊆ dom(e)/e there is h̄ = 〈hα : α < λ〉 such that
(α) hα ∈ incJ(I)

(β) If α < β then (hα, hβ) is a strict (e,Y)-pair.
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6) Above we may omit µ (meaning µ = |J |) and we may omit α(∗), as it is deter-
mined by J (and by I), and then may omit “base.” So in part (3) we say (I, J) is
reasonable, in part (4) we say λ-wide, and in part (5) say strongly λ-wide.

Observation 6.11. 1) If (I, J) is a reasonable (µ, α(∗))-base then (I, J) is a rea-
sonable (µ′, α(∗))-base for µ′ ≥ µ.

2) If (I, J) is a wide (λ, µ, α(∗))-base and λ′ ≤ λ, µ′ ≥ µ then (I, J) is a wide
(λ′, µ′, α(∗))-base.

3) If (I, J) is a strongly wide (λ, µ, α(∗))-base, then (I, J) is a wide (λ, µ, α(∗))-
base.

Proof. Obvious. �6.11

Claim 6.12. 1) If α(∗) = 1 and µ ≤ ζ(∗) < µ+ ≤ λ, then the pair (λ× ζ(∗), ζ(∗))
is a reasonable (µ, α(∗))-based which is a wide (λ, µ, α(∗))-base.

2) If α(∗) = 2, ū∗ = ({0},∅) as in 6.2, µ ≤ ζ(∗) < µ+ < λ, ζ ′(∗) = ζ(∗)×3, and
w ⊆ ζ(∗), w 6= ζ(∗) then the pair (I lin

µ,λ×ζ(∗), I
lin
µ,ζ(∗),w) is a reasonable (µ, α(∗))-base

[and] a wide (λ, µ, α(∗))-base where

(∗) For any ordinal β and w ⊆ β we define I = I lin
µ,β,w, a τ∗α(∗)-model. (If

w = ∅ we may omit it.)
(α) Its universe is β.

(β) The order is the usual one.

(γ) P I1 = {α < β : cf(α) > µ or α ∈ w}.
(If we write I lin

≥µ,β,w we mean here cf(α) ≥ µ.)

Proof. 1) First: (I, J) = (λ× ζ(∗), ζ(∗)) is a wide (λ, µ, α(∗))-base

Easily, e(J, I) 6= ∅, |J | ≤ µ and I, J ∈ K lin
τ∗
α(∗)

, so clause (a) of Definition 6.10(4)

holds (recalling Definition 6.9(2)), so it suffices to deal with clause (b).
Let e ∈ e(J, I) and define

u =
{
ζ < ζ(∗) : ζ ∈ dom(e) is minimal in ζ/e

or ζ ∈ ζ(∗) \ dom(e)
}
.

Now for every α < λ we define hα ∈ incJ(I) as follows:

(a) If ζ ∈ ζ(∗) \ dom(e) then hα(ζ) = λ× ζ.

(b) If ζ ∈ dom(e) and ε = min(ζ/e) then hα(ζ) = λ× ε+ ζ(∗)× α+ ζ.

Second: (I, J) = (λ× ζ(∗), ζ(∗)) is a reasonable (µ, α(∗))-base

Again, clause (a) of Definition 6.10(3) holds so we deal with clause (b).
So assume e ∈ e(J, I), h1, h2 ∈ incJ(I), (h1, h2) is just a weak e-pair, and

Y ⊆ dom(e)/e. Let u = rang(h1) ∪ rang(h2). For ` = 1, 2 let h∗` ∈ incJ(I) be
h∗` (ζ) = otp(u ∩ h`(ζ)), so rang(h∗` ) ⊆ ξ(∗) ..= otp(u) ≤ ζ(∗)× 3.

[Why? If ζ(∗) is finite this is trivial, so assume ζ(∗) ≥ ω. Let n < ω and α
be such that ωαn ≤ ζ(∗) < ωα(n + 1), so α ≥ 1 and n ≥ 1. As ωα is additively
indecomposable, otp(u) ≤ ωα(2n+1): alternatively, use natural sums [MR65] which
give a better bound ζ(∗)⊕ ζ(∗). [Actually, < µ+ suffices using ζ(∗) < µ+ large
enough below, still.]]

For ` = 1, 2, 3 we define h′` ∈ incJ(I) as follows:

(a) If ζ ∈ ζ(∗) \ dom(e) then h′`(ζ) = (ζ(∗)× 4)× ζ.

(b) If ζ ∈ dom(e) and ε = min(ζ/e) and ζ/e ∈ Y then:
(α) If ` = 3 then h′`(ζ) = (ζ(∗)× 4)× ε+ ζ(∗)× 3 + ζ.

(β) If ` = 1, 2 then h′`(ζ) = (ζ(∗)× 4)× ε+ h∗` (ζ).
(c) If ζ ∈ dom(e) and ε = min(ζ/e) and ζ/e /∈ Y then:
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(α) If ` = 3 then h′`(ζ) = (ζ(∗)× 4)× ε+ ζ.

(β) If ` = 1, 2 then h′`(ζ) = (ζ(∗)× 4)× ε+ ζ(∗) + h∗` (ζ).

Now check.

2) First: (I, J) = (I lin
µ,λ×ζ(∗), I

lin
µ,ζ(∗),w) is a wide (λ, µ, α(∗))-base.

Note that P J1 = w because ζ(∗) < µ+ and P I1 = {α ∈ I : cf(α) > µ}. As above,
clause (a) of the Definition 6.10 holds so we deal with clause (b).

Let

u =
{
ζ < ζ(∗) : ζ ∈ dom(e) is minimal in ζ/e or ζ ∈ ζ(∗) \ dom(e)

}
.

Clearly u is a closed subset of ζ(∗) and 0 ∈ u.
Given ζ < ζ(∗), let εζ ..= max(u ∩ (ζ + 1)); clearly this is well defined by the

choice of u and εζ ≤ ζ.
For every α < λ we define hα ∈ incJ(I) as follows:
We define hα(ζ) by induction on ζ < ζ(∗) such that hα(ζ) < λ× (εζ + 1).

Case A: for ζ ∈ ζ(∗) \ dom(e).
Subcase A1: ζ ∈ P J1

Let hα(ζ) be λ× εζ + µ+.
Subcase A2: ζ ∈ P J0 and ζ = 0.

Let hα(ζ) = 0.
Subcase A3: ζ ∈ P J0 , ζ = ξ + 1.

Let hα(ζ) = hα(ξ) + 1.
Subcase A4: ζ ∈ P J0 , ζ is a limit ordinal, ζ = sup(u ∩ ζ).

Let hα(ζ) = λ× εζ which is equal to
⋃
{hα(ζ ′) : ζ ′ < ζ}.

Subcase A5: ζ ∈ P J0 , ζ is a limit ordinal, and ξ = sup(u ∩ ζ) < ζ.
So (ξ+1)/e is an end-segment of ζ, but this is impossible by 6.7(2)(c).

Case B: ζ ∈ dom(e).
Subcase B1: ζ = min(ζ/e) hence ζ ∈ P J1 (see 6.7(0)(b)).

Let hα(ζ) = λ× εζ + µ+ × ζ(∗)× α+ µ+.
Subcase B2: ζ ∈ P J0 hence ζ > min(ζ/e).

Let hα(ζ) =
⋃
{hα(ζ ′) + 1 : ζ ′ < ζ}.

Subcase B3: ζ ∈ P J1 and ζ > min(ζ/e).
Let hα(ζ) =

⋃
{hα(ζ ′) : ζ ′ < ζ}+ µ+.

So clearly we can show by induction on ζ < ζ(∗) that

hα(ζ) < λ× εζ + µ+ × ζ(∗)× (α2 + 2).

Also, recalling µ+ < λ, clearly for α < λ and ζ < ζ(∗) we have hα(ζ) < λ×εζ+λ.
Now check.

Second: (I lin
µ,λ×ζ(∗), I

lin
µ,ζ(∗),w) is a reasonable (µ, α(∗))-base.

Combine the proof of “First” with the parallel proof in part (1). �6.12

Definition 6.13. 1) Let I, J ∈ K lin
τ∗
α(∗)

. We say that E is an invariant (I, J)-

equivalence relation when:

(a) E is an equivalence relation on incJ(I), so E determines I and J ,

(b) If h1, h2, h3, h4 ∈ incJ(I) and tpqf(h1, h2; I) = tpqf(h3, h4; I) then

h1 E h2 ⇔ h3 E h4.

2) We say it is also non-trivial when:

(c) If eq(h1, h2) = {t ∈ J : h1(t) = h2(t)} is co-finite then h1 E h2.

(d) There are h1, h2 ∈ incJ(I) such that ¬(h1 E h2).

3) Let J, I1, I2 ∈ K lin
τ∗
α(∗)

. Then I1 ≤1
J I2 means that:
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(a) I1 ⊆ I2
(b) For every h1, h2, h3 ∈ incJ(I2) we can find h′1, h

′
2, h
′
3 ∈ incJ(I1) such that

tpqf(h
′
1, h
′
2, h
′
3; I1) = tpqf(h1, h2, h3; I2).

Claim 6.14. Assume J, I1, I2 ∈ K lin
τ∗
α(∗)

.

1) If I1 ⊆ I2, E is an invariant (I2, J)-equivalence relation then E � incJ(I1) is
an invariant (I1, J)-equivalence relation.

2) If I1 <
1
J I2 and E1 is an invariant (I1, J)-equivalence relation then there is one

and only one invariant (I2, J)-equivalence relation E2 such that E2 � incJ(I1) = E1.
3) Assume e ∈ e(J) and Y ⊆ dom(e)/e. If (h′1, h

′
2) is a strict (e,Y)-pair for

(I1, J) and (h′′1 , h
′′
2) is a strict (e,Y)-pair for (I2, J) then

tpqf(h
′
1, h
′
2; I1) = tpqf(h

′′
1 , h
′′
2 ; I2).

4) Assume α(∗) = 1, J = ζ(∗), I` = β` with the usual order (for ` = 1, 2),
µ ≤ ζ(∗) < µ+, and µ+ ≤ β1 ≤ β2. Then I1 <

1
J I2 (see Definition 6.13(3)).

5) Assume α(∗) = 2, J = I lin
µ,ζ(∗),w, I` = I lin

µ,β`
for ` = 1, 2, and µ++ ≤ β1 ≤ β2.

Then I1 <
1
J I2 (see Definition 6.13(3)).

Proof. 1) Obvious.
2) We define

E∗2 =
{

(h1, h2) : h1, h2 ∈ incJ(I2), and for some

h′1, h
′
2 ∈ incJ(I1) we have

tpqf(h
′
1, h
′
2; I1) = tpqf(h1, h2; I2)

and h′1 E1 h′2
}
.

Now

(∗)1 E∗2 is a set of pairs of members of incJ(I2).

[Why? By its definition.]

(∗)2 h1 E∗2 h1 if h1 ∈ incJ(I2).

[Why? Let h′ ∈ incJ(I1) so clearly h′ E1 h′ and tpqf(h
′, h′; I1) = tpqf(h, h; I2)]

(∗)3 E∗2 is symmetric.

[Why? As E1 is.]

(∗)4 E∗2 is transitive.

[Why? Assume h1 E∗2 h2 and h2 E∗2 h3; let h′1, h
′
2 ∈ incJ(I1) witness h1 E∗2 h2 and

h′′2 , h
′′
3 ∈ incJ(I1) witness h2 E∗2 h3.

Apply clause (b) of part (3) of Definition 6.13 to (h1, h2, h3) so there are g1, g2, g3 ∈
incJ(I1) such that tpqf(g1, g2, g3; I1) = tpqf(h1, h2, h3; I2). Now h′1 E1 h′2 by the
choice of (h′1, h

′
2) and tpqf(g1, g2; I1) = tpqf(h1, h2; I2) = tpqf(h

′
1, h
′
2; I1) so as E1 is

invariant we get g1 E1 g2. Similarly, g2 E1 g3, so as E1 is transitive we have g1 E1 g3.
But clearly tpqf(g1, g3; I1) = tpqf(h1, h3; I2) hence g1, g2 witness that h1 E2 h3 is as
required.]

(∗)5 E∗2 is invariant.

[Why? See its definition.]

(∗)6 E∗2 � incI(I1) = E1.

[Why? By the way E∗2 is defined and by E1 being invariant.]
So together E∗2 is as required. The uniqueness (i.e. if E2 is an invariant equiva-

lence relation on incJ(I) such that E2 � incJ(I1) = E1 then E2 = E∗2 ) is also easy.
3) Straight.
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4) See13 the proof of “Second” in the proof of 6.12(1).
5) Combine14 the proof of part (4) and of “First” in the proof of 6.12(2). �6.14

Below mostly it suffices to consider DE,e.

Definition 6.15. 1) Let E be an invariant (I, J)-equivalence relation: we define

DE = {u ⊆ J : if h1, h2 ∈ incJ(I) satisfies

eq(h1, h2) ⊇ u then h1 E h2}

recalling

eq(h1, h2) ..= {t ∈ J : h1(t) = h2(t)}.
2) If, in addition, e ∈ e(J, I) then we let

DE,e =
{
u ⊆ dom(e)/e : if h1, h2 ∈ incJ(I) and (h1, h2) is an(

e � (dom(e) \ set(u))
)
-pair then h1 E h2

}
.

Claim 6.16. Assume I, J ∈ K lin
τ∗
α(∗)

, (I, J) is reasonable (see Definition 6.10(3),(6)),

and E is an invariant (I, J)-equivalence relation.
1) For u ⊆ J such that eJ,u ∈ e(J, I) we have: u ∈ DE iff h1 E h2 for every

eJ,u-pair (h1, h2) iff h1 E h2 for some eJ,u-pair (h1, h2); see Definition 6.9(1).
2) Assume e ∈ e(J, I). Then, for any u ⊆ dom(e)/e we have u ∈ DE,e iff h1 E h2

for any (e � set(u))-pair iff h1 E h2 for some (e � set(u))-pair.
3) If e ∈ e(J, I) and u1, u2 ⊆ dom(e)/e then we can find h1, h2, h3 ∈ incJ(t) such

that (h1, h2) is a strict (e � set(u1))-pair, (h2, h3) is a strict (e � set(u2)) pair, and
(h1, h3) is a strict (e � (set(u1 ∪ u2))-pair.

4) Assume e ∈ e(J, I) and that in clause (b) of Definition 6.10(3) we allow
(h1, h2) to be a weak e-pair. Then, for any u ⊆ dom(e)/e we have dom(e)\u ∈ DE,e
iff h1 E h2 for every weak e-pair (h1, h2).

Proof. 1) Like part (2).
2) In short, this follows by transitivity of equivalence and the definitions +

mixing, but we elaborate.
The “first implies the second” holds by Definition 6.15(2) and “the second implies

the third” holds trivially as there is such a pair (h1, h2) by the assumption e ∈
e(J, I). So it is enough to prove “the third implies the first”; hence suppose that
g1 E g2 where (g1, g2) is an e1

..= e � set(u)-pair (recalling that e1 ∈ e(J, I) by
6.8(8)), and let (h1, h2) be an e1-pair, we need to show that h1 E e2. By Definition
6.6(2B), for some sets Yg,Yh ⊆ dom(e1)/e1, the pair (g1, g2) is a strict (e1,Yg)-pair
and the pair (h1, h2) is a strict (e1,Yh)-pair. Recalling clause (b) of 6.10(3) there
are g′1, g

′
2, g
′
3 and Y such that:

(∗)1 (a) g′` ∈ incJ(I) for ` = 1, 2, 3.
(b) tpqf(g1, g2) = tpqf(g

′
1, g
′
2)

(c) Y ⊆ dom(e1)/e1

(d) (g′1, g
′
3) and (g′2, g

′
3) are strict (e1,Y)-pairs.

13Actually, instead of “µ+ ≤ β1” it suffices to have ζ(∗) × 4 ≤ β1, because if ζ(∗) =
∑
i<γ

ζi

then
∑
i<γ

ζi × 4 ≤ ζ(∗)× 4 or just the natural sum ζ(∗)⊕ ζ(∗)⊕ ζ(∗).
14Here (µ+ + 1)× (ζ(∗)× 4) will suffice.
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Now for each s ∈ dom(e1), we can find a permutation ¯̀
s = (`s,1, `s,2, `s,3) of

{1, 2, 3} such that I |= ‘g′`s,1(s) < g′`s,2(s) < g′`s,3(s)’. By (∗)1(d) and (∗)1(b) and

(g1, g) being an e1-pair, ¯̀
s clearly depends only on s/e1, and every member of

{(g′`s,1(t) : t ∈ s/e1} is below every member of {g′`s,2(t) : t ∈ s/e1} (and similarly

for the pair (g′`s,2 , g
′
`s,3

)). Now we can find (g′′1 , g
′′
2 , g
′′
3 ) such that:

(∗)2 (a) g′′` ∈ incJ(I) for ` = 1, 2, 3.
(b) (g′′1 , g

′′
2 ) is a strict (e1,Yh)[-pair.]

(c) (g′′1 , g
′′
3 ) and (g′′2 , g

′′
3 ) are strict (e1,Yg)-pairs.

[Why? We do the choice for each s/e1 separately such that{
g′′1 � (s/e1), g′′2 � (s/e1), g′′3 � (s/e1)

}
=
{
g′1 � (s/e1), g′2 � (s/e1), g′3 � (s/e1)

}
.]

Clearly tpqf(g
′′
1 , g
′′
3 ; I) = tpqf(g1, g2; I) = tpqf(g

′′
2 , g
′′
3 ; I), so as E is invariant and

g1 E g2 clearly g′′1 E g′′3 ∧ g′′2 E g′′3 , which implies g′′1 E g′′2 . For Y ′ = Yh, by clause
(b) of (∗)2 we conclude that tpqf(g

′′
1 , g
′′
2 ; I) = tpqf(h1, h2; I), so as E is invariant we

are done.
3),4) Similarly. �6.16

Claim 6.17. Assume I, J ∈ K lin
τ∗
α(∗)

and E is an invariant (I, J)-equivalence rela-

tion.

0) If e ∈ e(J, I) and E is non-trivial then DE,e contains all co-finite subsets of
dom(e)/e.

1) If the pair (I, J) is reasonable and e ∈ e(I, J) then DE,e is a filter on
dom(e)/e (but possibly ∅ ∈ DE,e).

2) (a) DE is a filter on J .
(b) If E is non-trivial, then all cofinite subsets of J belong to DE

but ∅ /∈ DE .

Proof. 0) Easy, see Definition 6.13(2).
1) By 6.16(2) and 6.16(3).
2) Trivial by Definition 6.15(1). �6.17

Claim 6.18. Assume

(a) I, J ∈ K lin
τ∗
α(∗)

(b) E is an invariant (I, J)-equivalence relation.

(c) (I, J) is a reasonable (µ, α(∗))-base which is a wide (λ, µ, α(∗))-base.

(d) e ∈ e(J, I)

(e) g is a function from dom(e)/e into some cardinal θ.

(f) D∗ = {Y ⊆ θ : g−1(Y ) ∈ DE,e} is a filter; i.e. ∅ /∈ D∗.
Then E has at least χ ..= λθ/D∗ equivalence classes.

Proof. Let 〈fα : α < χ〉 be a set of functions from θ to λ exemplifying χ ..= λθ/D∗,
so α 6= β ⇒ {i < θ : fα(i) = fβ(i)} /∈ D∗.

Let 〈hζ : ζ < λ〉 exemplify the pair (I, J) being a wide (λ, µ, α(∗))-base (see
Definition 6.10(4)), so hζ ∈ incJ(I).

Lastly, for each α < χ we define hα ∈ incJ(I) as follows:

hα(t) =

{
h0(t) if t ∈ J \ dom(e)

hfα(g(t/e))(t) if t ∈ dom(e)

Now

(∗)1 hα is a function from J to I.

[Why? Trivially; recalling each hζ is as well.]
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(∗)2 hα is increasing.

[Why? Let s <J t, and we split the proof to cases.

If s, t ∈ J \ dom(e) use “h0 ∈ incJ(I)”.

If s ∈ J \ dom(e) and t ∈ dom(e), then hα(t) = hfα(g(t/e))(t) and hα(s) = h0(s) =

hfα(g(t/e))(s) because
〈
hα � (J \ dom(e)) : α < λ

〉
is constant (recalling (h0, hα) is

an e-pair for α > 0), so as hfα(g(t/e)) ∈ incJ(I) we are done.

If s ∈ dom(e), t ∈ J \ dom(e), the proof is similar.

If s, t ∈ dom(e), s/e 6= t/e, we again use Definition 6.6(2B) and clause (b)(β) of
Definition 6.10(4).

Lastly, if s, t ∈ dom(e), s/e = t/e then we get g(s/e) = g(t/e), hence fα(g(s/e)) =
fα(g(t/e)) (call this γ). So hα(s) = hγ(s), hα(t) = hγ(t), and of course hγ ∈ incJ(I)
hence hγ(s) <I hγ(t) so necessarily hα(s) <I h

α(t) as required. So (∗)2 holds.]

(∗)3 hα ∈ incJ(I).

[Why? Clearly if i < α(∗) and t ∈ P Ji then (∀β < λ)[hβ(t) ∈ P Ji ] hence

α < χ⇒ hfα(g(t/e))(t) ∈ P Ji
which means α < χ⇒ hα(t) ∈ P Ji ; so recalling (∗)2, clause (a) of Definition 6.3(2)
holds. We should check clauses (b),(c) of Definition 6.3(2) which is done as in the
proof of 6.7 and of (∗)2 above.]

(∗)4 if α < β and we let

u = uα,β ..=
⋃{

g−1(ζ) : ζ < θ and fα(ζ) 6= fβ(ζ)
}

so u ⊆ dom(e)/e then (hα, hβ) is a (e � set(u))-pair.

[Why?

Case 1: If s ∈ J \ dom(e) then hα(s) = h0(s) = hβ(s).
Case 2: If s ∈ dom(e) \ set(u) then hα(s) = hfα(g(s/e))(s) = hfβ(g(s/e))(s) = hβ(s).

Case 3: If s, t ∈ set(u), s/e 6= t/e, and s <J t then hα(s) <I h
β(t)∧ hβ(s) <I h

α(t)
because

Subcase 3A: If fα(g(s/e)) = fβ(g(t/e)) we use hfα(g(t/e)) ∈ incJ(I) hence

hα(s) = hfα(g(s/e))(s) <I hfα(g(s/e))(t) = hfβ(g(t/e))(t) = hβ(t)

and similarly hβ(s) <I h
α(t).

Subcase 3B: If fα(g(s/e)) 6= fβ(g(t/e)) we use “(hfα(g(s/e)), hfβ(g(t/e))) is an e-
pair”.

Case 4: And lastly, if s, t ∈ set(u), s/e = t/e and s <J t then

hα(t) <I h
β(s) ≡ (s/e ∈ u) ≡ hα(s) <I h

β(t).

Why? Recalling fα(g(s/e)) 6= fβ(g(t/e)) as s, t ∈ set(u) by the definition of u,
see (∗)4 and we just use “(hfα(g(s/e)), hfβ(g(s/e))) is an e-pair” and clause (c)′ of
Definition 6.6.]

(∗)5 If α < β then uα,β 6= ∅ mod DE,e.
[Why? By the choice of 〈fα : α < λ〉.]

(∗)6 if α < β then hα, hβ are not E-equivalent.

[Why? By (∗)4 + (∗)5 and 6.16(2).]
Together we are done. �6.18

Claim 6.19. Assume E is an invariant (I, J)-equivalence relation, I, J are well
ordered and |incJ(I)/E| ≥ λ = cf(λ) > µ = |I| > |2 + α(∗)||J|. Then for some e ∈
e(I, J) there is an ultrafilter D on dom(e)/e extending DE,e which is not principal.
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Remark 6.20. This is close to [She99b, §7].

Proof. Without loss of generality, as linear orders J is ζ(∗) and I is ξ(∗) ∈ [µ, µ+).
Toward contradiction assume the conclusion fails. Let g be a one-to-one function

from µ onto [ξ(∗)]<ℵ0 , χ be large enough, κ = |J |, and ∂ = |2 + α(∗)||J| so ∂κ = ∂.
We now choose 〈Nη : η ∈ nµ〉 by induction on n < ω such that

~1 (a) Nη ≺ (H(χ),∈)
(b) ‖Nη‖ = ∂ and ∂ + 1 ⊆ Nη.
(c) A ⊆ Nη ∧ |A| ≤ κ⇒ A ∈ Nη
(d) I, J and g as well as η belong to Nη.
(e) ν C η ⇒ Nν ∈ Nη (hence Nν ⊆ Nη so Nν ≺ Nη).

There is no problem to do this. Now it suffices to prove that for every h ∈ incJ(I),
for some h′ ∈

⋃
{Nη : η ∈ ω>µ} ∩ incJ(I), we have h E h′.

Fix h∗ ∈ incJ(I) such that h∗ /∈
⋃
{h/E : h ∈ incJ(I) ∩ Nη for some η ∈ ω>µ}

and for each η ∈ ω>µ we define ᾱη, eη as follows:

~2 (a) ᾱη = 〈αη,t : t ∈ J〉
(b) αη,t = min

(
(ξ(∗) + 1) ∩Nη \ h∗(t)

)
(c) eη ..=

{
(s, t) : s, t ∈ J , αη,s = αη,t, αη,s > h∗(s), and αη,t > h∗(t)

}
.

(d) For α ∈ Nη let Xη,α
..=
{
t ∈ J : αη,t = α > h∗(t)

}
.

Note

(∗)1 ᾱη ∈ Nη.

[Why? As [Nη]≤κ ⊆ Nη, |J | = κ, and αη,t ∈ Nη for every t ∈ J .]

(∗)2 (a) eη ∈ e(J); i.e. eη is an equivalence relation on some subset of J , with
each equivalence class a convex subset of J (see Definition 6.6(1)).

(b) (b)
〈
Xη,α : α ∈ {αη,t : t ∈ dom(e)}

〉
list the eη-equivalence classes.

(Note that Xη,α 6= ∅.)

[Why? Think.]

(∗)3 hη ..= h∗ � (J \ dom(eη)) ∈ Nη.

[Why? By the definition of eη we have t ∈ J ∧ t /∈ dom(eη) ⇒ h∗(t) ∈ Nη, and
recall [Nη]≤κ ⊆ Nη.]

(∗)4 If t ∈ dom(eη) then cf(αη,t) > ∂.

[Why? As αη,t ∈ Nη ≺ (H(χ),∈) if cf(αη,t) = θ ≤ ∂ then there is a cofinal set B
of αη,t of cardinality θ in Nη but θ ≤ ∂ + 1 ⊆ Nη therefore B ⊆ Nη. In particular,
as h∗(t) < αη,t, there is β ∈ B so that h∗(t) < β, but this contradicts the choice of
αη,t.]

(∗)5 eη ∈ e(J, I).

[Why? Choose h′ ∈ incJ(I) ∩Nη similar enough to h∗. Specifically,

t ∈ J \ dom(eη)⇒ h′(t) = h∗(t)

and

t ∈ dom(eη)⇒ sup{αη,s : s ∈ J, s <J t and s /∈ t/eη} < h′(t) < αη,t

(the point being that sup{αη,s : s ∈ J, s <J t and s /∈ t/en} ∈ Nη). Now (h′, h∗) is
a strict e-pair.]

(∗)6 There is `η < ω and a finite sequence 〈βη,` : ` < `η〉 of members of rang(ᾱη �
dom(eη)) [with] Xη,βη,` ∈ dom(eη)/eη for ` < `η such that⋃

`<`η

Xη,βη,` ∈ DE,eη .
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[Why? Otherwise there is an ultrafilter as desired, but toward contradiction we
have assumed this does not occur; in trying to get generalizations we should act
differently.]

Now we choose (ηn, hn) by induction on n < ω such that

� (a) ηn ∈ nµ
(b) If n = m+ 1 then ηm = ηn � m.
(c) hn ∈ incJ(I)
(d) h0 = h∗
(e) If n = m+ 1 then:

(α) hn E hm hence hn E h∗ and dom(eηn) ⊆ dom(eηm).
(β) hm � (J \ dom(eηm)) ⊆ hn
(γ) (hm �

⋃
{Xηm,βηm,`

: ` < `ηm}) ⊆ hn
(δ) hn �

(
dom(eηm) \

⋃
{Xηm,βηm,`

: ` < `ηm}
)

belongs to Nηm .
(ε) Moreover, t ∈ dom(eηm) \

⋃
{Xηm,βηm,`

: ` < `ηm} implies
hn(t) < hm(t).

(ζ) `ηm > 0
(f) Ym+1 ⊆ Ym, where Ym ..=

⋃
{Xηm,βηm,`

: ` < `η}.
Why can we carry out the construction? For n = 0 we obviously can: choose

h0 = h∗. For n = m + 1, first choose h′m ∈ Nηm as in the proof of (∗)5. Now,
recalling 〈Xηm , βηm,` : ` < `ηm〉 was chosen in (∗)6, define hn by

hn �
(

dom(eηm)\
⋃
{Xηm,βηm,`

: ` < `ηm}
)

= h′m �
(

dom(eηm)\
⋃
{Xηm,βηm,`

: ` < `η}
)
,

hn � (J \ dom(eηm)) = hm � (J \ dom(eηm),

and

hn �
(⋃
{Xηm,βηm,`

: ` < nηm}
)

= hm �
(⋃
{Xηm,βηm,`

: ` < `ηm}
)
.

Why hn E hm? Because

(i) as in the proof of (∗)5, (hn, hm) form a strict `η-pair,

(ii) they agree on
⋃
{Xηm,βηm,`

: ` < `η},
(iii) and {Xηm,βηm ,`

: ` < n} ∈ DE,eη .

Lastly, choose ηn = ηmˆ〈γm〉 where γm is chosen such that

g(γm) =
{

sup
(
βηm,` \ sup{hm(t) : t ∈ Xβηm,`

}
)

: ` < `ηm

}
recalling that g is a function from µ onto [ξ(∗)]<ℵ0 = [I]<ℵ0 .

Now check that ηn, hn are as required.
Note that this induction never stops (in the sense that hn /∈ Nηn) recalling the

choice of h∗ and hn E h∗. Now Un ..= {βηm,` : ` < nη} is a finite non-empty set of
ordinals, and if n = m+ 1, then easily

(∀` < `ηn)(∃k < `ηm)[βηn,` < βηm,k]

because for ` < `ηn letting t ∈ Xηn,` we know that for some k ≤ `ηm we have
t ∈ Xηm,k and ηn(m) was chosen above such that as γm, now h∗(t) ≤ γn ∈ Nηn ,
γm ≤ αηm,t and the inequality is strict as cf(αηm,t) > 0. So 〈max(Un) : n < ω〉 is a
decreasing sequence of ordinals, a contradiction, so we are done. �6.19

Example: For e ∈ e(J, I), J ∈ K lin
τ∗
α(∗)

and I ∈ K lin
τ∗
α(∗)

we define E∗e = E∗e,I , an

invariant equivalent relation on incJ(I), by the following.
h1 E∗e,I h2 iff:

(a) If t ∈ J \ dom(e) then h1(t) = h2(t).
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(b) If t ∈ dom(e) then cnvI,h1
(t) = cnvI,h2

(t), where cnvI,h(s) is the convex
hull (in I) of the set{

h1(s)
}
∪
⋃{

[h1(s), h1(t)]I : s <J t and t ∈ s/e
}
∪⋃{

[h(t), h(s)]I : t <J s and t ∈ s/e
}
.

1) If J, I ∈ K lin
τ∗
α(∗)

are well ordered and e = J × J then E∗e,I from part (1) has

≤ |I|+ ℵ0 equivalence classes.
2) If J ∈ K lin

τ∗
α(∗)

and e as in part (2), θ = cf(J) and |J | < λ = λ<θ < λθ then

there is I ∈ K lin
τ∗
α(∗)

of cardinality λ such that E∗e,I has λθ equivalence classes.

Remark 6.21. We can define the stability spectrum for some classes; essentially this
is done in §7, and generally we intend to look at it in [S+b].
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§ 7. Categoricity for AEC with bounded amalgamation

Recall that 4.10 is the main result of this chapter; we think that it will lead
to understanding the categoricity spectrum of an AEC. In particular, we hope to
eventually prove that this spectrum contains, or is disjoint to, some end segments
of the class of cardinals. Still, here we would like to show that we at least have
enough for sufficiently restricted families of AEC K-s: those definable by Lκ,ω for κ a
measurable cardinal, or with enough amalgamation. (Concerning them and earlier
results, see [She].) We could have relied on15 [She99a], but though we mention
connections we do not rely on it, preferring self-containment.

We can say much even if we replace categoricity by strong solvability, but do
this only when it is cheap; we can work with weak and even pseudo-solvability, but
will not do so here.

Hypothesis 7.1. 1) K is an AEC, so S(M) = SKλ(M) for M ∈ Kλ; see [She09c,
0.12].

2) Let Kx
µ be the class Kµ if K is categorical in µ, and be the class of superlimit

models in Kµ if there is one. (The two definitions are compatible.)

The following is a crucial claim because lack of locality is the problem in [She99a].

Claim 7.2. Assume

(a) cf(µ) > κ ≥ LST(K)

(b) K<µ has amalgamation

(c) Φ ∈ Υor
κ [K] satisfies: if I is θ-wide and θ ∈ (κ, µ) then EMτ(K)(I,M) is

θ-saturated (see 0.14(1), [She09c, 0.15(2)] and [She09c, 0.19]).

Then

(α) For some µ∗ < µ, the class {M ∈ K<µ : M is saturated} is [µ∗, µ)-local
(see Definition 7.4(3) below).

(α)+ This applies not only to S(M) = S1(M) but also for S∂(M) if cf(µ) > κ∂ .

Recall

Definition 7.3. K is µ-stable if µ ≥ LST(K) and M ∈ K≤µ ⇒ |S(M)| ≤ µ.

Recall [She99a, Def.1.8=1.6tex(1),(2)].

Definition 7.4. 1) For M ∈ K, µ ≥ LST(K) satisfying µ ≤ ‖M‖ and α [what
about α?], let EM,µ,α be the following equivalence relation on Sα(M):
p1 EM,µ,α p2 iff for every N ≤K M of cardinality µ we have p1 � N = p2 � N .

We may suppress α if it is 1, similarly below; let Eµ,α be
⋃
{EM,µ,α : M ∈ K} and

so Eµ = Eµ,1.
2) We say that M ∈ K is µ − α-local when EM,µ,α is the equality; we say that

p ∈ Sα(M) is µ-local if p/EM,µ,α is a singleton and we say, e.g., K ′ ⊆ K is µ−α-local
(in K, if not clear from the context) when every M ∈ K ′ is.

[Is this supposed to be (µ− α)-local, µ-α-local, or (µ, α)-local?]
3) We say K ′ ⊆ K is [µ∗, µ)− α-local if every M ∈ K ′ ∩ K[µ∗,µ) is µ∗ − α-local.
4) We say that ā ∈ N realizes p ∈ SαK(M)/Eµ,α if M ≤K N and for every

M ′ ≤K N of cardinality µ the sequence ā realizes p � M ′ in N (or pedantically, it
realizes q �M ′ for some – equivalently, every – q ∈ p).

15In the references to [She99a], e.g. 1.6tex is the definition labelled 1.6 in the published version
and 1.8 in the e-version.
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Remark 7.5. If M ∈ Kµ, then M is µ− α-local.

Proof. Recall Φ ∈ Υor
κ [K]; see Definition 0.8(2) and Claim 0.9. Easily, there exists〈

Iθ : θ ∈ [κ, µ)
〉

an increasing sequence of wide linear orders which are strongly ℵ0-
homogeneous (that is dense with neither first nor last element such that if n < ω
and s̄, t̄ ∈ n(Iθ) are <I -increasing then some automorphism of Iθ maps s̄ to t̄; e.g.
the order of any real closed field, or just [of any] ordered field) satisfying |Iθ| = θ.

Recalling Q here is the rational order, we let Jθ = Q+ Iθ, Mθ = EMτ(K)(Iθ,Φ),
and Nθ = EMτ(K)(Jθ,Φ). So

~ (a) Mθ ≤Kθ Nθ
(b) Mθ1 ≤K Mθ2 and Nθ1 ≤K Nθ2 when κ ≤ θ1 < θ2 < µ.
(c) Mθ is saturated (for K, of course) when θ > κ.
(d) Every type from S(Mθ) is realized in Nθ.
(e) if n < ω, ā ∈ n(Nθ) then for some ā′ ∈ n(Nκ) and automorphism π of

Nθ, π(ā) = ā′ and π maps Mθ onto itself.

[Why? Clauses (a),(b) hold by clause (c) of Claim 0.9(1), recalling Definition 0.8(2).
Clause (c) holds by Clause (c) of the assumption of 7.2; you may note [She99a,

6.7=6.4tex(2)].
Clause (d) holds as EMτ(K)(θ

++Jθ,Φ) ∈ Kθ+ is saturated, and use the definition
of a type (or, like the proof of clause (e) below, using appropriate I ′ + Iθ instead
of θ+ + Jθ); you may note [She99a, 6.8=6.5tex].

Clause (e) holds as for every finite sequence t̄ from Jθ there is an automorphism
π of Jθ such that: π is the identity on Q, it maps Iθ onto itself and it maps t̄ to a
sequence from Jκ = Q + Iκ. Such π exists as Iθ is strongly ℵ0-homogeneous and
Iκ ⊆ Iθ is infinite.]

For any a 6= b from Nκ let

µ(a, b) = min
{
θ : θ ≥ κ and if θ < µ then

tpK(a,Mθ, Nθ) 6= tpK(b,Mθ, Nθ)
}
.

So µ(a, b) ≤ µ. Let

µ∗ = sup{µ(a, b) : a, b ∈ Nκ and µ(a, b) < µ}.

So µ∗ is defined as the supremum on a set of ≤ κ × κ cardinals < µ, which is
a cardinal of cofinality cf(µ) > κ, hence clearly µ∗ < µ. Also µ∗ ≥ κ as there
are a 6= b from Mκ hence µ(a, b) = κ. Now suppose that θ ∈ [µ∗, µ), M ∈ Kθ is
saturated, and p1 6= p2 ∈ S(M), and we shall find M ′ ≤K M and M ′ ∈ Kµ∗ such
that p1 �M ′ 6= p2 �M ′: this will suffice.

Clearly Mθ ∈ Kθ is saturated (by clause (c) of ~) hence the models M,Mθ are
isomorphic, so without loss of generality M = Mθ. But by clause (d) of ~ every
type from S(Mθ) is realized in Nθ, so let b` be such that p` = tpK(b`,Mθ, Nθ) for
` = 1, 2. Now there is an automorphism π of Nθ which maps Mθ onto itself and
maps b1, b2 into Nκ (by clause (e) of ~). Let a` = π(b`) for ` = 1, 2, so a1, a2 ∈ Nκ.

Now

tp(a1,Mθ, Nθ) = tp(π(b1), π(Mθ), π(Nθ)) = π(tp(b1,Mθ, Nθ))

6= π(tp(b2,Mθ, Nθ)) = tp(π(b2), π(Mθ), π(Nθ)) = tp(a2,Mθ, Nθ).

Hence by the definition of µ(a1, a2) we have µ(a1, a2) ≤ θ < µ. Hence by the
definition of µ∗ we have µ(a1, a2) ≤ µ∗ which implies that

tpK(a1,Mµ∗ , Nµ∗) 6= tpK(a2,Mµ∗ , Nµ∗).
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As π is an automorphism of Nθ and Mµ∗ ≤K Mθ it follows that

tpK

(
π−1(a1), π−1(Mµ∗), π

−1(Nθ)
)
6= tpK

(
π−1(a2), π−1(Mµ∗), π

−1(Nθ)
)

which means

tpK(b1, π
−1(Mµ∗), Nθ) 6= tpK(b2, π

−1(Mµ∗), Nθ)

but π−1(Mµ∗) ≤K Mθ, as π maps Mθ onto itself. Recall that p` = tpK(b`,Mθ, Nθ)
so p` � π−1(Mµ∗) is well defined for ` = 1, 2. Hence p1 � π−1(Mµ∗) 6= p2 � π−1(Mµ∗)
and clearly π−1(Mµ∗) has cardinality µ∗ and is ≤K Mθ, so we are done proving
clause (α). The proof of clause (α)+ is the same except that

(∗)1 if θ ∈ [κ, µ), t̄ ∈ ∂(Iθ) then some automorphism π of Iθ maps t̄ to some
t̄′ ∈ ∂(Iκ); this is justified by 5.1.

(∗)2 We replace Q by ∂+.

(∗)3
∂(Nκ) has cardinality ≤ (∂+ + κ)∂ ≤ κ∂ < cf(µ). �7.2

Implicit in non-µ-splitting is

Definition 7.6. Assume α < µ+, N ∈ K≤µ, N ≤K M , and p ∈ Sα(M) does not
µ-split over N (see Definition [She09e, gr.1(1)]). The scheme of the non-µ-splitting,
p = schµ(p,N), is{

(N ′′, c, b̄)c∈N/∼= : N ≤K N
′ ≤K M and N ′ ≤K N

′′, {N ′, N ′′} ⊆ Kµ,

and the sequence b̄ realizes p � N ′ in the model N ′′
}
.

Definition 7.7. For a cardinal µ and model M let
1)

ps-Sµ(M) = SK,µ(M) =
{
p : p is a function with domain {N ∈ Kµ : N ≤K M}

such that p(N) ∈ S(N) and

N1 ≤K N2 ∈ dom(p)⇒ p(N1) = p(N2) � N1

}
.

2) For p ∈ S(M) let p � (≤ µ) be the function p with domain
{N ∈ Kµ : N ≤K M} such that p(N) = p � N .

Observation 7.8. 1) The function p 7→ p � (≤ µ) is a function from S(M) into
ps-Sµ(M) such that for p1, p2 ∈ S(M) we have p1 � (≤ µ) = p2 � (≤ µ)⇔ p1 Eµ p2.

2) The subset {p � (≤ µ) : p ∈ S(M)} of ps-Sµ(M) has cardinality |S(M)/Eµ|.

Proof. Should be clear. �7.8

Claim 7.9. Every (equivalently, some) M ∈ Kx
µ is λ+-saturated when:

(a) (α) K is categorical in µ, or just
(β) K is strongly solvable in µ.

(b) LST(K) ≤ λ < χ ≤ µ and 22λ ≤ µ (actually, 2λ ≤ µ will suffice).

(c) (α) ℵλ+4 = λ+λ+4 ≤ χ, or at least
(β) If θ = cf(θ) ≤ λ is ℵ0 or a measurable cardinal then for some ∂ ∈ (λ, χ)

we have ∂ = ∂<θ < ∂θ or at least ∂〈θ〉tr > ∂. (I.e. there is a tree T
with θ levels, ∂ nodes and the number of θ-branches of T is > χ; see
[She00].)

(d) K≥∂ 6= ∅ for every ∂. Equivalently, K≥θ 6= ∅ for arbitrarily large θ <
i1,1(LST(K)).

(e) (α) K<µ has amalgamation and JEP, or just
(β) If LST(K) ≤ ∂ < χ then

(i) K∂ has amalgamation and JEP, and
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(ii) K has (∂,≤ ∂+, µ)-amalgamation16 (see [She09a, 2.5(2)]) hence17

(iii) Every M ∈ K∂+ has a ≤K-extension in Kx
µ. (Actually, (i) +

(iii) suffices.)

Remark 7.10. 1) M is λ+-saturated is well defined as K≤λ has amalgamation.

2) We assume 22λ ≤ µ because the proof is simpler with not much loss (at least
as long as other parts of the analysis are not much tighter).

3) We can weaken the assumptions. In particular using solvability instead cate-
goricity, but for non-essential reasons this is delayed; similarly in 7.13.

4) If µ = µλ the claim is easy (as in §1).

Proof. Note that by [She94, IX,§2], [She94, II,3.1] if clause (c)(α) holds then clause
(c)(β) holds, hence we can assume (c)(β).

Let Φ ∈ Υor
K (see Definition 0.8(2)); [it exists] by 0.9 and clause (d) of the

assumption and I ∈ K lin
µ ⇒ EMτ(K)(I,Φ) ∈ Kx

µ (trivially if K is categorical in µ,
otherwise by the definition of solvable).

Clearly

(∗)0 If ∂ ∈ [LST(K), χ) then K is stable in ∂.

[Why? We prove assuming clause (e)(β), as the case of clause (e)(α) is easier.
Otherwise, as K∂ has amalgamation, there are M0 ≤K M1 such that M0 ∈ K∂ ,
M1 ∈ K∂+ and {tpK(a,M0,M1) : a ∈ M1} has cardinality ∂+. By assumption
(e)(β)(iii) there is N1 such that M1 ≤K N1 ∈ Kµ and without loss of generality
N1 ∈ Kx

µ . Let I be as in 5.1 with (λ, θ2, θ1, µ) there standing for (µ, ∂++, ∂+, ∂) here

and N2
..= EMτ(K)(I,Φ). Now by 5.1(2), N1 � N2, contradicting “K categorical in

µ”. Or you may see [She99a, 1.7=1.5tex].]

The proof now splits to two cases.

Case 1: For every M ∈ Kx
µ we have µ ≥ |S(M)/Eλ|.

For every M ∈ Kx
µ there is M ′ such that: M ≤K M ′ ∈ Kµ and for every

p ∈ S(M)/Eλ either p is realized in M ′ or there are no M ′′ or a such that M ′ ≤K

M ′′ ∈ Kµ and a ∈M ′′ realizes p in M ′′.
[Why? Let 〈pi/Eλ : i < µ〉 list S(M)/Eλ ( this exists by the assumptions)

and choose Mi for i ≤ µ, ≤Kµ-increasing continuous, such that Mi+1 satisfies the
demand for p = pi/Eλ, possibly no p ∈ pi/Eλ has an extension in S(Mi+1) (hence
is not realized in it), so then the desired demand holds trivially; note that it is not
unreasonable to assume Kµ has amalgamation and it clarifies matters, but it is not
necessary.]

Also without loss of generality M ′ ∈ Kx
µ as any model M from Kµ has a ≤K-

extension in Kx
µ (at least if M does ≤K-extend some M ′ ∈ Kx

µ).

Now we can choose by induction on i ≤ λ+ a model Mi ∈ Kx
µ , ≤K-increasing

continuous with i, such that for every p ∈ S(Mi) either there is q ∈ S(Mi) realized
in Mi+1 which is Eλ-equivalent to p or there is no ≤K-extension of Mi+1 satisfying
this. Now we shall prove that Mλ+ is λ+-saturated, recalling Definition [She09c,
0.15]. Now if N ≤K Mλ+ , ‖N‖ ≤ λ, and p ∈ S(N) then there is i < λ+ such
that N ≤K Mi and we can find p′ ∈ S(Mλ+) extending p. (Why? If clause

16It suffices to have: if M0 ≤K M1 ∈ K∂+ , M1 ≤K M2 ∈ Kx
µ , and M0 ∈ K∂ then M1 can be

≤K-embedded into some M3 ∈ Kx
µ . Similarly in 7.13.

17Why? Assume M ∈ K∂+ . Let M2 ∈ Kx
µ , let M0 ≤K M2 be of cardinality ∂, let M1 ∈ K∂+

be a ≤K-extension of M0 which there is an ≤K-embedding f of M into M1 (exists as K∂ has

amalgamation and JEP). Lastly, use “K has (∂,≤ ∂+, µ)-amalgamation
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(e)(α) holds then this follows by K<µ having amalgamation; see [She09a, 2.8]. If
clause (e)(β) holds, use “K has the (λ,≤ λ+, µ)-amalgamation property,” recalling
LST(K) ≤ λ < χ.) Hence there is a ∈Mi+1 such that tp(a,Mi,Mi+1) Eλ (p′ �Mi),
hence a realizes p in Mi+1, hence in Mλ+ .

Case 2: Not Case 1.
Let I be as in 5.1 with (λ, θ2, θ1, µ) there standing for (µ, λ++, λ+, λ) here, so

|I| = µ. Let M = EMτ(K)(I,Φ), so by ‘not Case 1’ we can find pi ∈ S(M) for

i < µ+ pairwise non-Eλ-equivalent. As Kλ is a λ-AEC with amalgamation and
is stable in λ (by (∗)0) we can deduce (see [She09e, gr.6(2)]) that: if p ∈ S(M)
then for some N ≤K M of cardinality λ the type p does not λ-split over N (or see
[She99a, 3.2 = 3.2tex(1)]). For each i choose Ni ≤K M of cardinality λ such that
pi does not µ-split over Ni. As there is no loss in increasing Ni (as long as it is
≤K M and has cardinality λ) without loss of generality,

(∗)1 Ni = EMτ(K)(Ii,Φ) where Ii ⊆ I and |Ii| = λ, and let t̄i = 〈tiε : ε < λ〉 list
Ii with no repetitions.

As 2λ ≤ µ, without loss of generality the Ii-s are pairwise isomorphic, so without
loss of generality for i, j < µ+, the mapping tiε 7→ tjε is such an isomorphism.
Moreover, without loss of generality

(∗)2 For every i, j < µ+ there is an automorphism πi,j of I mapping tiε to tjε for
ε < λ.

[Why? By 5.1(1) as we can replace 〈pi : i < µ+〉 by 〈pi : i ∈ U〉 for every unbounded
U ⊆ µ+.]

Let pi be the non-λ-splitting scheme of p over Ni (see Definition 7.6). Without
loss of generality:

(∗)3 For i, j < µ+, the isomorphism hi,j from Nj = EMτ(K)(Ij ,Φ) onto Ni =

EMτ(K)(Ii,Φ) induced by the mapping tjζ 7→ tiζ (for ζ < λ) satisfies

(i) It is an isomorphism from Nj onto Ni.

(ii) It maps pj to pi.

[Why? For (i) this holds by the definition of EM(Ii,Φ). For (ii) let hi,0 map

pi to p′i. The number of schemes is ≤ 22λ , so if µ ≥ 22λ then without loss of
generality i < µ+ ⇒ p′i = p′1 hence we are done (with no real loss). If we weaken

the assumption µ ≥ 22λ to µ ≥ 2λ (or even µ > λ, so waive (∗)2) using 5.1(4) we
can find I+

i such that Ii ⊆ I+
i ⊆ I, |I+

i | ≤ λ+, and for every J ⊆ I of cardinality
≤ λ there is an automorphism of I over Ii mapping J into I+

i . So only〈
p′i
(
(EMτ(K)(I

+
0 ,Φ), c, b̄)c∈EMτ(K)(I0,Φ)/∼=

)
: b̄ ∈ λ

(
EMτ(K)(I

+
0 ,Φ)

)〉
matters (an overkill) but this is determined by pi � EMτ(K)(I

+
0 ,Φ)) which ∈

S(EMτ(K)(I
+
0 ,Φ)) by (∗)0, and as K is stable in λ+, without loss of generality

p′1+i = p′1 and we are done.]
Now we translate our problem to one on expanded (by unary predicates) linear

orders which was treated in §6. Recall that by 5.1(3), we can use I = EM{<}(I
∗,Ψ)

where Ψ ∈ Υlin
ℵ0 [2] (see Definition 0.11(5)) and I∗ = I lin

λ,µ×λ+ from 6.12(2) with

α(∗) = 2. Recall that I∗ = I lin
λ,µ×λ++ is µ× λ++ expanded by

P1 = {α ∈ I∗ : cf(α) ≥ λ+},
P0 = I∗ \ P0 so I∗ is a well ordered τ∗2 -model, i.e. ∈ K lin

τ∗2
, see Definition 0.11(5).

Without loss of generality Ii = EM{<}(I
∗
i ,Ψ) where I∗i ⊆ I∗ has cardinality λ and

the pair (I∗, I∗i ) is a reasonable (λ, α(∗))-base which is a wide (µ, λ, α(∗))-base; see
Definition 6.10(3)(4), Claim 6.12(2). Without loss of generality, for every i < µ+
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there is hi an isomorphism from I∗0 onto I∗i such that (see below) the induced

function h
[1]
1 maps t̄0 to t̄i. Let J∗ = I∗0 and J = I0. We would like to apply §6 for

J∗, I∗ fixing α(∗) = 2, ū∗ = (u−, u+) = ({0},∅). So, recalling Definition 6.3(2),

for every h ∈ incū
∗

J∗(I
∗) we can naturally define the function h[1] by

h[1]
(
σEM(J∗,Ψ)(t0, . . . , tn−1)

)
= σEM(J∗,Ψ)(ah(t0), . . . , ah(tn−1))

whenever σ(x0, . . . , xn−1) is a τ(Ψ)-term and J∗ |= “t0 < . . . < tn−1”. It is an
isomorphism from EM{<}(J

∗,Ψ) onto EM{<}(I
∗ � rang(h),Ψ) so, as J∗ ⊆ I∗,

by 5.1(5) there is an automorphism h[2] of I extending h[1] and so there is an
automorphism h[3] of EM(I,Φ) such that h[3](at) = ah[2](t) for t ∈ I and

h[3]
(
σEM(I,Φ)(at0 , . . . , atn−1

)
)

= σEM(I,Φ)(ah[2](t0), . . . , ah[2](tn))

where t0 <I . . . <I tn−1 and σ(x0, . . . , xn−1) is a τ(Φ)-term.
Note that

(∗)4 If h′, h′′ are automorphisms of EMτ [K](I,Φ) extending h[3] � EMτ [K](I0)
then h′(p0/Eλ) = h′′(p0/Eλ).

[Why? Because p0 does not λ-split over EMτ [K](I0,Φ).]
We define a two-place relation E on incJ∗(I

∗) by

h1 E h2 if h
[3]
1 (p0/Eλ) = h

[3]
2 (p0/Eλ).

(Note that h 7→ h[3] is a function, so this is well defined, and h[3] is an automorphism

of EMτ(K)(I,Φ).) By (∗)4 clearly E is an invariant equivalence relation on incū
∗

J∗(I
∗)

with > µ equivalence classes as exemplified by 〈hi : i < µ+〉.
By 6.19 there is e ∈ e(J∗, I∗) such that (recalling Definition 6.16) the filter DE,e

has an extension to a non-principal ultrafilter D; so for some regular θ ≤ λ there is
a function g from dom(e)/e onto θ which maps D to a uniform ultrafilter g(D) on
θ, so ∂〈θ〉tr ≤ ∂dom(e)/e/DE,e for every cardinal ∂. Choose such a pair (g, θ) with
minimal θ so D is θ-complete hence θ = ℵ0 or θ is a measurable cardinal ≤ λ. By
clause (c)(β) of our assumption (justified in the beginning of the proof) there is
∂ ∈ (λ+, χ) such that ∂ < ∂〈θ〉tr hence ∂+ ≤ ∂〈θ〉tr ≤ ∂dom(e)/e/DE,e. So, letting
I0
∂ = I lin

λ,∂×λ++ ⊆ I∗, the set
{
t̄/E : t̄ ∈ incJ∗(I

∗) and rang(t̄) ⊆ I0
∂

}
has cardinality

> ∂. Now for each t̄ ∈ incJ∗
ū∗(I∗) let πt̄ ∈ Aut(I) be such that πt̄(t̄0) = t̄ and let π̂t̄

be the automorphism of EMτ(K)(I,Φ) induced by πt̄, and let pt = π̂t̄(p0) ∈ S(M).
Hence{

π̂t̄(p0) � EMτ(K)(I
lin
λ,∂×λ+ ,Φ) : t̄ ∈ incJ∗

ū∗(I∗) and rang(t̄) ⊆ I lin
λ,∂×λ++

}
is of cardinality > ∂, contradicting “K stable in ∂” from (∗)0. �7.9

We note, but we shall not use

Conclusion 7.11. 1) Under the assumptions of 7.9 we have κ(Kµ) = ℵ0, see below.
2) Moreover, κst(Kµ) = ∅.

Recall

Definition 7.12. If Kµ is an µ-AEC with amalgamation which is stable, then:

(a) κ(Kµ) = ℵ0 + sup{κ+ : κ regular ≤ µ and there is an ≤Kµ-increasing
continuous sequence 〈Mi : i ≤ κ〉 and p ∈ S(Mκ) such that M2i+2 is
universal over M2i+1 and p �M2i+2 does µ-split over M2i+1}

(b) κsp(Kµ) ..= {κ ≤ µ : κ regular and there is an ≤Kµ-increasing continuous
sequence 〈Mi : i ≤ κ〉 and p ∈ S(Mκ) which µ-splits over Mi for each i < κ
and M2i+2 is universal over M2i+1}.
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Proof. By playing with EM(I,Φ), (or see Claim [She99a, 5.7=5.7tex] and Definition
[She99a, 4.9=4.4tex]). �7.11

Question: Can we omit assumption 7.9(c) (see below so χ = LST(K))?

Theorem 7.13. For some cardinal λ∗ < χ and a cardinal λ∗∗ < i1,1(λ+ω
∗ ) above

λ∗, K is categorical in every cardinal λ ≥ λ∗∗ but in no λ ∈ (λ∗, λ∗∗), provided that:

~µ,χK (a) K is an AEC categorical in µ.
(b) K has amalgamation and JEP in every λ < ℵχ, λ ≥ LST(K).
(c) χ is a limit cardinal, cf(χ) > LST(K), and for arbitrarily large λ < χ

the sequence 〈2λ+n

: n < ω〉 is increasing.
(d) µ > i1,1(λ) for every λ < χ hence µ ≥ ℵχ.
(e) Every M ∈ K<ℵχ has a ≤K-extension in Kµ.

Remark 7.14. 1) Concerning [She99a] note

(a) There the central case was K with full amalgamation (not just below χ�
µ!), trying to concentrate on the difficulty of lack of localness,

(b) When we use clause (e), this is just to get the “M ∈ Kµ is λ-saturated”;
this is where we use 7.9.

(c) We demand “cf(χ) > LST(K)” to prove locality.

2) We rely on [She09c] and [She09e] in the end.
3) The assumption (e) of 7.13 follows if K has amalgamation in every λ′ ≤ i1,1(λ)

for λ < χ, which is a reasonable assumption.
4) Most of the proof works even if we weaken assumption (a) to “K is strongly

solvable in µ” and even to weakly solvable; i.e. up to �7. We continue in [S+b];
see more there.

5) Theorem 7.13 also continues Kolman-Shelah [KS96], [She01], as its assump-
tions are proved there.

Proof. Let κ = LST(K), and let Φ ∈ Υor
κ [K] be as guaranteed by 0.9(1), hence

(∗)1 If I ∈ K lin
λ then EMτ(K)(I,Φ) belongs to Kλ for λ ≥ LST(K) (and in the

strongly solvable case, I ∈ K lin
µ ⇒ EMτ(K)(I,Φ) ∈ Kx

µ).

and

(∗)2 If I ⊆ J are from K lin then EMτ(K)(I,Φ) ≤K EMτ(K)(J,Φ).

Also

(∗)3 〈SK(M) : M ∈ K<ℵχ〉 has the reasonable basic properties.

[Why? See [She09c, 0.12] and [She09c, 0.12A]; because K<ℵχ has the amalgamation
property by clause (b) of the assumption ~µ,χK .]

(∗)4 If M ∈ Kµ then M is χ-saturated (hence χ-model homogeneous).

[Why? We shall prove that if LST(K) ≤ λ < χ and M ∈ Kx
µ then M is λ+-

saturated. We shall show that all the assumptions of 7.9, with (µ, χ, λ) there
standing for (µ,ℵχ, λ) here, hold. Let us check: clause (a) of 7.9 means “K is
categorical in µ” (or is strongly solvable) which holds by clause (a) of ~µ,χK . Clause

(b) of 7.9 says that LST(K) ≤ λ < ℵχ ≤ µ and 22λ ≤ µ; the first holds because of
the way λ was chosen above and the second holds as clause (d) of ~µ,χK says that

µ > i1,1(λ) and µ ≥ ℵχ. Clause (c)(α) of 7.9 holds as λ+λ+4

< ℵλ+5 which is < ℵχ
as χ is a limit cardinal and ℵχ here plays the role of χ there. Clause (d) of 7.9
says K≥∂ 6= ∅ for every cardinal ∂, holds by (∗)1 above. Lastly, clause (e) of 7.9
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holds: more exactly, clauses (e)(β)(i)+(iii) hold by clauses (b) + (e) of ~µ,χK and
they suffice.

We have shown that all the assumptions of 7.9 hold, hence its conclusion, which
says (as M ∈ Kµ) that M is λ+-saturated. The “χ-model homogeneous” holds by
[She09c, 0.19].]

(∗)5 If M ≤K N are from Kx
µ then M ≺L∞,χ[K] N .

[Why? Obvious by (∗)4.]

(∗)6 If λ ∈ (κ, χ) and I ∈ K lin
≥λ is λ-wide then EMτ(K)(I,Φ) is λ-saturated;

moreover, if I+ ∈ K lin
λ is wide over I then every p ∈ S(EMτ(K)(I,Φ)) is

realized in EMτ(K)(I
+,Φ).

[Why? By 1.14, its assumption “Φ satisfies the conclusion of 1.13” holds by (∗)5,
(or as in [She99a, 6.8=6.5tex]). The “moreover” is immediate by (∗)4 as in the
proof of ~(d) inside the proof of 7.2 above, or see the proof of (∗)10 below.]

(∗)7 K is stable in λ when κ ≤ λ < χ.

[Why? Recalling clause (e) of the assumption of 7.13, by Claim 7.9 (or more
accurately, (∗)0 in its proof) as we have proved (in the proof of (∗)4) that the
assumptions of 7.9 hold with (µ, χ, λ) there standing for (µ,ℵχ, λ) here.]

(∗)8 If λ ∈ [κ, χ) and M ∈ Kx
λ then there is N ∈ Kλ which is (λ,ℵ0)-brimmed

over M .

[Why? By (∗)7 and [She09c, 0.22(1)(b)] remembering the amalgamation, clause (b)
of the assumption of the theorem.]

(∗)9 If 〈Mα : α ≤ λ〉 is ≤K-increasing continuous, κ ≤ ‖Mλ‖ ≤ λ < χ, then no
p ∈ SK(Mλ) satisfies “p �Mi+1 does λ-split over Mi for every i < λ.”

[Why? Otherwise we get a contradiction to stability in λ, i.e. (∗)7, see in [She09e,
gr.6](1B), using amalgamation (using the tree θ>2 when θ = min{∂ : 2∂ > λ}; also
we can prove it as in the proof of case 2 inside the proof of 7.9.]

We could use more

(∗)10 If I1, I2 are wide linear orders of cardinality λ ∈ (κ, χ) and I2 is wide over
I1 (so I1 ⊆ I2) and M` = EMτ(K)(I`,Φ),then M2 is universal over M1 and
even brimmed over I1, even (λ, ∂)-brimmed for any regular ∂ < λ.

[Why? As I2 is wide over I1, we can find a sequence 〈Jγ : γ < λ〉 of pairwise disjoint
subsets of I2 \ I1 such that each Jγ is a convex subset of I2 and in Jγ there is a
monotonic sequence 〈tγ,n : n < ω〉 of members. Let 〈γε : ε < λ× ∂〉 list λ, and let
I2,0 = I1, I2,1+ε = I2 \

⋃{
Jγζ : ζ ∈ [1 + ε, λ× ∂)

}
, and M ′ζ = EMτ(K)(I2,ε,Φ). So

〈M ′ζ : ζ ≤ λ× ∂〉 is ≤K-increasing continuous sequence of members of Kλ; the first
member is M1, the last member M2.

By [She09c, 0.22(4)(b)] it is enough to prove that if ε < λ × ∂ and p ∈ S(Mε)
then p is realized in Mε+1. As I1 is wide of cardinality λ, so is I2,ε, hence M ′ε is
saturated. Also, for each ε we can find a linear order I+

2,ε of cardinality λ such

that I2,ε+1 ⊆ I+
2,ε and J+

ε = I+
2,ε+1 \ I2,ε is a convex subset of I+

2,ε+1 and is a wide

linear order of cardinality λ which is strongly ℵ0-homogeneous. (Recall Jγε ⊆ J+
γε

is infinite.) So in M+
ε+1 = EMτ(K)(I

+
2,ε+2,Φ) every p ∈ S(M1

ε ) is realized (as I+
2,ε+1

is wide over I2,ε, as J+
ε is wide of cardinality λ); moreover, [they are] realized in

M ′ε+1.
(Why? By the strong ℵ0-homogeneous [linear order] every element, and even

finite sequence, from M+
ε+1 can be mapped by some automorphism of M+

ε+1 over
Mε into Mε+1.) As said above, this suffices.]
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~1 χ∗ is well defined and exists in the interval (κ, χ), where

χ∗ = min{θ : κ < θ < χ, and for every saturated M ∈ K,

if θ ≤ ‖M‖ < χ, every p ∈ S(M) is θ-local}.

(see Definition 7.4(2)).

[Why? By 7.2, which we apply with (µ, κ) there standing for (χ, κ) here, recalling
κ = LST(K). This is OK as: clause (a) in 7.2 holds by clause (c) of the assumption
here, and clause (b) in 7.2 holds by clause (b) of the assumption here, as χ ≤ ℵχ.
Lastly, clause (c) in 7.2 easily follows by (∗)6 above.]

~2 If λ ∈ (κ, χ) and 〈Mi : i ≤ δ〉 is ≤Kλ -increasing continuous and Mi+1 is
≤K-universal over Mi for i < δ then Mδ is saturated and moreover every
p ∈ S(Mδ) does not λ-split over Mα for some α < δ.

[Why? For i ≤ δ let Ii be the linear order λ× λ× (1 + i) and M ′i = EMτ(K)(Ii,Φ).
So 〈M ′i : i ≤ δ〉 is ≤Kλ -increasing continuous. Also, for i ≤ δ, ζ ≤ λ let

Ii,ζ = λ× λ× (1 + i) + λ× ζ

and M ′i,ζ = EMτ(K)(Ii,ζ ,Φ), so for each i < δ the sequence 〈M ′i,ζ : ζ ≤ λ〉 is ≤Kλ -

increasing continuous, M ′i,0 = M ′i , and M ′i,λ = M ′i+1. Now for i < δ, ζ < λ every

p ∈ S(Mi,ζ) is realized in M ′i,ζ+1 by (∗)6 and the definition of type, varying the

linear order. By [She09c, 0.22(4)(b)] the model M ′i+1 is ≤Kλ -universal over M ′i and
by Definition [She09c, 0.21] the models M ′δ and Mδ are (λ, cf(δ))-brimmed, hence
by [She09c, 0.22(3)] they are isomorphic. But M ′δ is saturated by (∗)6, hence Mδ

must be as well.
What about the “moreover”? (Note that if λ = λcf(δ) then (∗)9 does not cover

it.) We can easily find 〈I ′′α : α ≤ λ× δ + 1〉 such that:

(a) I ′′α is a linear order of cardinality λ into which λ can be embedded.

(b) I ′′α is increasing continuous with α.

(c) I ′′α is an initial segment of I ′′β for α < β ≤ δ + 1.

(d) I ′′α+1 has a subset of order types λ× λ whose convex hull is disjoint to I ′′α.

(e) If α ≤ β < λ × δ and s ∈ I ′′λ×δ+1 \ I ′′λ×δ then there is an automorphism
πα,β,s of I ′′λ×δ+1 mapping I ′′β+1 onto I ′′λ×δ and is over

I ′′α ∪
{
t ∈ I ′′λ×δ+1 : s ≤I′′λ×δ+1

t
}
.

Let M ′′α = EMτ(K)(I
′′
α,Φ), so 〈M ′′λ×α : α ≤ δ〉 has the properties of 〈M ′α : α ≤ δ〉,

i.e. every p ∈ S(M ′′α) is realized in M ′′α+1, hence M ′′α+λ is ≤Kλ -universal over M ′′α .
So (easily, or see [She09c, 0.22,0.21]) there is an isomorphism f from Mδ onto M ′′λ×δ
such that M ′′λα ≤K f(Mα+1) ≤ M ′′λα+2. So it suffices to prove the “moreover” for
〈M ′′λ×α : α ≤ δ〉, equivalently for 〈M ′′α : α ≤ λ × δ〉. Let p ∈ S(M ′′λ×δ), so some
a ∈ M ′′λ×δ+1 realizes it, hence for some t0 < . . . < tn−1 from I ′′λ×δ+1 and τΦ-term

σ(x0, . . . , xn−1) we have a = σEM(I′′λ×δ+1,Φ)(at0 , . . . , atn−1). It follows that for some
m ≤ n we have t` ∈ I ′′λ×δ ⇔ ` < m. Let α < λ×δ be such that {t` : ` < m} ⊆ I ′′α; if
m = n choose any tn ∈ I ′′λ×δ+1 \ I ′′λ×δ. If β ∈ (α, λ× δ) and tpK(a,M ′′δ ,M

′′
δ+1) does

λ-split over M ′′β then π′ ..= πβ,β,tm is an automorphism of I ′′λ×δ+1 mapping I ′′β+1

onto I ′′λ×δ and is over I ′′β ∪ {s ∈ I ′′λ×δ+1 : tm ≤I′′λ×δ+1
s} hence it is the identity on

{t` : ` < n}. Now π′ induces an automorphism π̂′ of EMτ(K)(I
′′
λ×δ+1,Φ), so clearly

it maps a to itself, maps tpK(a,M ′′β+1,M
′′
λ×δ+1) to tpK(a,M ′′λ×δ,M

′′
λ×δ+1), and it

maps M ′′β onto itself, hence also tpK(a,M ′′β+1,M
′′
δ+1) does λ-split over M ′′β . So if

for some β ∈ (α, λ × δ), the type tpK(a,M ′′δ ,M
′′
δ+1) does not λ-split over M ′′β we

get the desired conclusion, but otherwise this contradicts (∗)9.]
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~3 If λ ∈ [χ∗, χ), M ∈ Kλ is saturated, and p ∈ S(M) then for some N we
have:
(a) N ≤K M

(b) N ∈ Kχ∗ is saturated.

(c) p does not χ∗-split over N .

(d) p does not λ-split over N (follows by (a),(b),(c)).

[Why does ~3 hold? For clauses (a),(b),(c) use ~2 or just (∗)9; for clause (d) use
localness, i.e. recall ~1 and Definition 7.4.]

~4 Assume λ ∈ [κ, χ) and M1 ≤K M2 ≤K M3 are members of K, M2 is λ+-
saturated and p ∈ S(M3). If N` ≤K M` is from K≤λ and p � M`+1 does
not λ-split over N` for ` = 1, 2 then p does not λ-split over N1.

[Why? Easy manipulations. Without loss of generality, N1 ≤K N2 as we can
increase N2. So for some pair (M4, a) we have M3 ≤K M4, a ∈ M4, and p =
tpK(a,M3,M4). Assume α < λ+ and let b̄, c̄ ∈ α(M3) be such that tpK(b̄, N1,M3) =
tpK(c̄, N1,M3). As M2 is λ+-saturated and N2 ≤K M2 ≤K M3 we can find
b̄′, c̄′ ∈ α(M2) such that tpK(b̄′ˆc̄′, N2,M3) = tpK(b̄ˆc̄, N2,M3) using [She09c, 0.19].
Hence

tpK(b̄′, N1,M3) = tpK(b̄, N1,M3) = tpK(c̄, N1,M3) = tpK(c̄′, N1,M3).

By the choice of (M4, a), and the assumption on N1 that p �M2 does not λ-split
over N1, we get

tpK

(
〈a〉ˆb̄′, N1,M4

)
= tpK

(
〈a〉ˆc̄′, N1,M4

)
.

Clearly tpK(b̄′, N2,M3) = tpK(b̄, N2,M3) hence by the choice of (M4, a) and the
assumption on N2 that p does not λ-split over N2 we have tpK(〈a〉ˆb̄′, N2,M4) =
tp(〈a〉ˆb̄, N2,M4) hence by monotonicity

tpK(〈a〉ˆb̄′, N1,M4) = tpK(〈a〉ˆb̄, N1,M4).

Similarly
tpK(〈a〉ˆc̄′, N1,M4) = tpK(〈a〉ˆc̄, N1,M4).

As equality of types is transitive

tpK(〈a〉ˆc̄, N1,M4) = tpK(〈a〉ˆc̄′, N1,M4) = tpK(〈a〉ˆb̄′, N1,M4) = tpK(〈a〉ˆb̄, N1,M4)

as required.]

~5 Assume I3 = I0 + I ′1 + I ′2 are wide linear orders of cardinality λ, where
χ > λ > κ, and let I` = I0 + I ′` for ` = 1, 2 and M` = EMτ(K)(I`,Φ) for

` = 0, 1, 2, 3. If ` ∈ {1, 2} and ā ∈ λ>(M`) then tpKλ
(ā,M3−`,M3) does

not λ-split over M0. (Moreover, if tpKλ
(ā,M0,M3) does not λ-split over

N ∈ K≤λ then also tpKλ
(ā,M3−`,M3) does not λ-split over N).

[Why? For ` = 2, if the desired conclusion fails we get a contradiction as in the
proof of ~2, so for ` = 2 we get the conclusion. For ` = 1 if the desired conclusion
fails (but it holds for ` = 2) we get a contradiction to categoricity in µ by the order
property (by 1.5).]

~6 If λ ∈ (χ∗, χ), δ < λ+, 〈Mi : i ≤ δ〉 is ≤Kλ -increasing continuous, and
i < δ ⇒Mi saturated then Mδ is saturated.

[Why? Let N ≤K Mδ, ‖N‖ < λ, and p ∈ S(N). If cf(δ) > ‖N‖ this is easy so
assume cf(δ) ≤ ‖N‖, hence cf(δ) < λ and without loss of generality δ = cf(δ).
Choose a cardinal θ such that

LST(K) < χ∗ + |cf(δ)|+ ‖N‖ ≤ θ < λ

and ‖N‖+ < λ ⇒ ‖N‖ < θ, and let q ∈ S(Mδ) extend p; this exists as K≤λ has
amalgamation.
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Now for every X ⊆Mδ of cardinality ≤ θ, we can choose Ni ≤K Mi by induction
on i ≤ δ such that Ni ∈ Kθ is saturated, is ≤K-increasing continuous with i, Ni is
≤K-universal over Nj , and includes (X ∪ N) ∩Mi when i = j + 1. So by ~2 (we
justify the choice of Ni for limit i and) the model Nδ is saturated, so if ‖N‖+ < λ
then N ≤K Nδ, Nδ is saturated of cardinality θ > ‖N‖ so we are done as Nδ ≤K Mδ.
So without loss of generality λ = ‖N‖+ hence λ = θ+.

Also, for some α∗ < δ and N∗ ≤K Mα∗ of cardinality θ, the type q does not
θ-split over N∗.

[Why? Otherwise we choose (Ni, N
+
i ) by induction on i ≤ δ such that Ni ≤K N

+
i

are from Kθ, Ni ≤K Mi, N
+
i ≤K Mδ, Ni is ≤K-increasing continuous, Ni is ≤K-

universal over Nj if i = j + 1, q � N+
i does θ-split over Ni, and⋃

{N+
j ∩Mi : j < i} ⊆ Ni.

In the end we get a contradiction to ~2.]
We can find N ′ ≤K Mα∗ from Kχ∗ such that q � Mα∗ does not θ-split over N ′,

(why? by ~3) and without loss of generality N ′ ≤K N∗ and N ′ ≤K N . Also, q does
not θ-split over N ′ (why? by applying ~4, with θ,N∗,Mα∗ ,Mδ here standing for
λ,M1,M2,M3, N1, N2 there; or use N ′ = N∗).

By (∗)6 as Mα∗ is saturated without loss of generality Mα∗ = EMτ(K)(λ,Φ) and
for ε < λ let Mα∗,ε = EMτ(K)(θ× θ× (1 + ε),Φ), so Mα∗,ε ∈ Kθ is saturated and is
brimmed overMα∗,ζ when ε = ζ+1 by (∗)10. So for each ε < λ there is aε ∈Mα∗,ε+1

realizing q �Mα∗,ε. Also without loss of generality, Mδ ≤K EMτ(K)(λ+ λ,Φ) as in
the proof of ~2 or by (∗)10, now for some ε(∗) < λ we have N ≤K EMτ(K)(I2,Φ)
and N∗ ≤K EMτ(K)(I0,Φ) where

I0 = θ × θ × (1 + ε(∗)) and I2 = [λ, λ+ ε(∗)) ∪ I0.
Let I1 = θ × θ × ζ(∗), where ζ(∗) ∈ (ε(∗), λ) is large enough such that aε(∗) ∈
EMτ(K)(I1,Φ), e.g. ζ(∗) = 1 + ε(∗) + 1 and let I3 = I1 ∪ I2 ⊆ λ + λ. Let M ′` =
EMτ(K)(I`,Φ) for ` = 0, 1, 2, 3.

Now we apply ~5, the “moreover” with θ, I0, I1, I2, I1 \ I0, I2 \ I0, aε(∗), N ′ here
standing for λ, I0, I1, I2, I

′
1, I
′
2, ā, N there, and we conclude that tpKλ

(aε(∗),M
′
2,M

′
3)

does not θ-split over N ′.
As N ′ ≤K M ′0 ≤K M ′2 also the type q′ ..= tpKλ

(aε(∗),M
′
2,M

′
3) does not θ-split

over N ′. Let us sum up: q �M ′2 and q′ belong to SKλ(M ′2), [something] does not
θ-split over N ′, N ′ ∈ Kχ∗ and χ∗ ≤ θ. Also N ′ ≤K∗ M

′
0 ≤K∗ M

′
2, the model M ′0 is

θ-saturated, and q � Mα∗ = q′ � Mα∗ . By the last two sentences obviously q = q′

(it may be more transparent to consider q � (≤ χ∗) = q′ � (≤ χ∗)), so we are done
proving ~6.]

~7 If λ ∈ (χ∗, χ) then the saturated M ∈ Kλ is superlimit.

[Why? By ~6 (existence by (∗)6, the non-maximality by (∗)6 + uniqueness; you
may look at [She99a, 6.7=6.4tex(1)].]

Now we have arrived to the main point:

�1 If λ ∈ (χ∗, χ) then sλ is a full good λ-frame, Ksλ categorical, where sλ is
defined by
(a) Ksλ = Kλ � {M ∈ Kλ : M saturated}
(b) Sbs

sλ
(M) = Sna

sλ
(M) ..= {tps(a,M,N) : M ≤Kλ N and a ∈ N \M} for

M ∈ Ksλ .

(c) p ∈ Sbs
sλ

(M2) does not fork over M1 when M1 ≤sλ M2 and for some
M ≤K M1 of cardinality χ∗, the type p does not χ∗-split over N .

[Why? We check the clauses of Definition [She09c, 1.1].

Ksλ is categorical:
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By [She09c, 0.34](1) and ~7.

Clause (A),Clause (B):
By ~7, recalling that there is a saturated M ∈ Ksλ (and it is not <sλ -maximal)

by (∗)6 and trivially recalling [She09c, 0.34], of course.

Clause (C):
By categoricity and (∗)6 clearly no M ∈ Ksλ is maximal; amalgamation and

JEP holds by clause (b) of the assumption of the claim.

Clause (D)(a),(b): By the definition.

Clause (D)(c): Density is obvious; in fact sλ is full.

Clause (D)(d): (bs - stability).
Easily Ssλ(M) = SKλ(M) which has cardinality ≤ λ by the moreover in (∗)6.

Clause (E)(a): By the definition.

Clause (E)(b): Monotonicity (of non-forking).
By the definition of “does not χ∗-split”.

Clause (E)(c): Local character.
Why? Let 〈Mα : α ≤ δ〉 be ≤sλ -increasing continuous, δ < λ+ and q ∈ Sbs

sλ
(Mδ).

Using the third paragraph of the proof of ~6 for θ = χ∗, for some α∗ < δ and
N∗ ≤sλ Mα∗ of cardinality θ the type q does not θ-split over N∗. So clearly q does
not fork over Mα∗ (for sλ), as required.

Clause (E)(d): Transitivity of non-forking.
By ~4.

Clause (E)(e): Uniqueness.
Holds by the choice of χ∗, i.e. by ~1.

Clause (E)(f): Symmetry.
Why? Let M` for ` ≤ 3 and a0, a1, a2 be as in (E)(f)′ in [She09c, 1.16E]. We

can find a ≤K-increasing continuous sequence 〈M0,α : α ≤ λ+〉 such that M0,0 =
M0, M0,α+1 is ≤sλ -universal over M0,α, and without loss of generality M0,α =
EMτ(K)(γα,Φ) so it is ≤K-increasing continuous, and λ divides γα.

By (E)(g) proved below we can find a`α ∈ M0,α+1 realizing tpsλ
(a`,M0,M`+1)

such that tpsλ
(a`α,M0,α,M0,α+1) does not fork over M0 = M0,0 for ` = 1, 2. We

can find N∗ ≤K M0 of cardinality χ∗ such that tpsλ
(〈a1, a2〉,M0,M3) does not

χ∗-split over N∗ so N∗ ≤K M0,0.
Then as in 1.5 we get a contradiction (recalling [She09c, 1.16E]).

Clause (E)(g): Extension existence.
If M ≤sλ N and p ∈ Sbs

sλ
(M) = Sna

K (M), then p does not χ∗-split over M∗ for
some M∗ ≤K M of cardinality χ∗ by ~3. Let M∗ ∈ Kχ∗ be such that M∗ ≤K

M∗ ≤K M and M∗ is ≤K-universal over M∗. As M,N ∈ Ksλ ⊆ Kλ are saturated
there is an isomorphism π from M onto N over M∗ and let q = π(p)+.

Now q �M = p by ~1 as both are from Sna
K (M), does not χ∗-split over M∗ and

has the same restriction to M∗.

Clause (E)(h): Follows by [She09c, 1.16A(3),(4)] recalling sλ is full.

Clause (E)(i): Follows by [She09c, 1.15].
So we have finished proving “sλ is a good λ-frame.]

�2 If λ ∈ (χ∗, χ) then Ksλ is K � {M : M is λ-saturated}.
[Why? Should be clear.]
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�3 λ∗ is well defined, where

λ∗ = min{λ ∈ (χ∗, χ) : 2λ
+n

< 2λ
+n+1

for every n < ω}.
[Why? By clause (c) of the assumption.]

Let Θ = {λ+n
∗ : n < ω}.

�4 sλ is weakly successful for λ ∈ Θ.

[Why? Recalling that sλ is categorical by Definition [She09e, stg.0A], Definition

[She09c, nu.1] and Observation [She09c, nu.13.1(b)], if (M,N, a) ∈ K3,bs
sλ then

for some (M1, N1, a) ∈ K3,uq
sλ we have (M,N, a) ≤bs

sλ
(M1, N1, a) (see Definition

[She09c, nu.1A]). Toward contradiction, assume that this fails. Let 〈Mα : α < λ+〉
be ≤sλ -increasing continuous, Mα+1 is brimmed over Mα for α < λ+ such that
M0 = M . Now directly by the definitions (as in [She09c, §5], see more in [She09d])

we can find 〈Mη, fη : η ∈ λ+>2〉 such that:

(a) If η C ν ∈ λ+>2 then Mη ≤sλ Mν .

(b) If η ∈ λ+>2 then fη is a one-to-one function from M`g(η) to Mη over M0 =
M such that ρ C η ⇒ fρ ⊆ fη and fη(M`g(η)) ≤sλ Mη. In fact, f0 = idM
and

(M,N, a) ≤bs
sλ

(fη(M`g(η)),Mη, a) ∈ Kbs
s .

(c) If ν = ηˆ〈`〉 ∈ λ>2 then Mν is brimmed over Mη.

(d) If η ∈ λ+>2 then fηˆ〈0〉(M`g(η)+1) = fηˆ〈1〉(M`g(η)+1).

(e) If η ∈ λ>2 then there is no triple (N, f0, f1) such that fηˆ〈1〉(M`g(η)+1) ≤s

N , and f` is a ≤sλ -embedding of Mηˆ〈`〉 into N over fηˆ〈`〉(M`g(η)+1) for
` = 0, 1 and f0 �Mη = f1 �Mη.

Having carried the induction by renaming, without loss of generality η ∈ λ+>2 ⇒
fη = idM`g(η)

. Now M∗ ..=
⋃
{Mα : α < λ+}; it belongs to sλ+ and is saturated.

For η ∈ λ+

2 let Mη
..=
⋃
{Mη�α : α < λ+} so M∗ ≤sλ+

Mη ∈ Ksλ+
. But χ is a limit

cardinal so also λ+ ∈ (κ, χ) so let N∗ ∈ Ksλ+
be ≤sλ+

-universal over M∗, so for

every η ∈ λ+

2 there is an ≤s+ -embedding hη of Mη into N∗ over M∗. But 2λ < 2λ
+

by the choice of λ∗, so by [She09a, 0.wD] we get a contradiction to clause (e).]

�5 For λ ∈ Θ, if M ∈ Ksλ
λ+ is saturated above λ for Ksλ , then M is saturated

for K.

[Why? Should be clear and implicitly was proved above.]

�1 NFsλ is well defined and is a non-forking relation on Ksλ respecting sλ (for
λ ∈ Θ).

[Why? By [She09c, §6] as sλ is a weakly successful good λ frame.]

�2 sλ is a good+ λ-frame (for λ ∈ Θ).

[Recalling Definition [She09e, stg.1], assume that this fails, so there are

〈Mi, Ni : i < λ+〉 and 〈ai+1 : i < λ+〉
as there; i.e. ai+1 ∈ Mi+2 \Mi+1, tpsλ

(ai+1,Mi+1,Mi+2) does not fork over M0

for sλ, but tpsλ
(ai+1, N0,Mi+1) forks over M0. Also, recalling Definition [She09e,

stg.1] the model M =
⋃
{Mi : i < λ+} is saturated for Ksλ

λ+ hence by �5 for K, so
it belongs to Ksλ+

.

We can find an isomorphism f0 from M onto EMτ(K)(λ
+,Φ), by (∗)6. By the

“moreover” from (∗)6 (more exactly, by (∗)10) we can find a ≤K-embedding f1 of
N ..=

⋃
{Ni : i < λ+} into EMτ(K)(λ × λ,Φ) extending f0. As we can increase the

Ni-s, without loss of generality f1 is onto EMτ(K)(λ × λ,Φ). We can find δ < λ+
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such that Nδ = EMτ(K)(u,Φ), where u = {λα + β : α, β < δ}. By aδ+1 we get a
contradiction to ~5.]

�3 Let λ ∈ Θ.
(α) ≤∗sλ is a partial order on Knice

λ+ [sλ] = Ksλ+
, and (Ksλ+

,≤∗sλ) satisfies
the demands on AEC, except possibly smoothness. (See [She09c, §7]).

(β) If M ∈ Kλ+ is saturated and p ∈ SK(M) then for some pair (N, a) we
have M ≤∗sλ N and a ∈ N realizes p.

(γ) If M ∈ Kλ+ is saturated then some N satisfies:
(a) N ∈ Kλ+ is saturated.
(b) N is ≤K-universal over M .
(c) M ≤∗sλ N

(δ) sλ is successful.

[Why? Clause (α):
We know that both Knice

λ+ [sλ] and Ksλ+
are the class of saturated M ∈ Kλ. The

rest holds by [She09c, §7,§8].

Clause (β):
By ~3 we can find M∗ ≤K M of cardinality χ∗ such that p does not χ∗-split over

it (equivalently, does not λ+-split over it).
Let 〈Mα : α < λ+〉 be ≤sλ -increasing continuous such that Mα+1 is brimmed

over Mα for sλ for every α < λ+ and M∗ ≤K M0 (so ‖M∗‖ < ‖M0‖; otherwise we
would require that M0 is brimmed over M∗). Hence

⋃
{Mα : α < λ+} ∈ Kλ+ is

saturated (by �5) so without loss of generality it is equal to M . We can choose
a∗, Nα(α < λ) such that 〈Nα : α < λ+〉 is ≤sλ -increasing continuous, Mα ≤sλ Mα,
NFsλ(Mα, Nα,Mβ ,Mβ) for α < β < λ+, Nα+1 is brimmed over Mα+1 ∪ Nα, and
tpsλ

(a,N0,M0) = p �M0 so a ∈ N0. Let N =
⋃
{Nα : α < λ+} so again N ∈ Kλ+

is saturated (equivalently N ∈ Knice
λ+ [sλ]) and M ≤K N and even M ≤∗sλ N (by

the definition of ≤∗sλ). For each α < λ+ we have NFsλ(M0, N0,Mα, Nα) but NFsλ

respects sλ, hence tpsλ
(a,Mα, Nα) does not fork over M0. Hence by the definition

of sλ, the type tpsλ
(a,Mα, Nα) does not λ-split over M∗, hence tpsλ

(a,Mα, Nα) =
p � Mα. As this holds for every α < λ+, by the choice of χ∗ (i.e. by ~1) clearly a
realizes p.

Clause (γ):
By clause (β) as in the proofs in [She09c, §4]; that is, we choose N ∈ Kλ+ which is

≤Kλ -universal over M . We now try to choose (Mα, fα, Nα) by induction on α < λ+

such that: M0 = M , N0 = N , f0 = idM , Mα is ≤∗sλ -increasing continuous, Nα is
≤K-increasing continuous, fα is a ≤K-embedding of Mα into Nα, fα is ⊆-increasing
continuous with α, and α = β + 1⇒ fα(Mα) ∩Nβ 6= fβ(Mβ).

For α = 0, α limit there are no problems. If α = β + 1 and fα(Mα) = Nα we
are done, and otherwise we use clause (β). But by Fodor lemma we cannot carry
the induction for every α < λ+, so we are done proving (γ).

Clause (δ):
We should verify the conditions in Definition [She09e, stg.0A]. Now clause (a)

there, being weakly successful, holds by �4. As for clause (b) there, it suffices to
prove that if M1,M2 ∈ Knice

λ+ [sλ] = Ks+λ
and M1 ≤K M2 then M1 ≤∗sλ M2, which

means: if 〈M `
α : α < λ+〉 is ≤sλ -increasing continuous, M `

α+1 is brimmed over M `
α

with M` =
⋃
{M `

α : α < λ+}, then for some club E of λ+, for every α < β from E,
NFsλ(M1

α,M
2
α,M

1
β ,M

2
δ ).
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By clause (γ) there is N ∈ Ks+λ
such that M1 ≤∗sλ+ N (hence M1 ≤K N) and N

is ≤Ksλ -universal over M1. So without loss of generality M2 ≤K N , but by [She09c,
ne.3](3) all of this implies M1 ≤∗λ+ M2. So we are done proving �3.

�4 sλ+ is the successor of sλ for λ ∈ Θ.

[Why? Now by �3 the good frame sλ is successful; by [She09e, stg.3] we know
that s+

λ is a well defined good λ+-frame. Clearly Ksλ(+) is the class of saturated
M ∈ Kλ+ (by �5; see the definitions in [She09c, ne.1], [She09c, rg.7(5)]). But
sλ is good+ by �2, so by [She09e, stg.3B] we know that ≤sλ(+) = <∗λ+,[sλ] is

equal to ≤K� Ksλ(+), so Ksλ(+) = Ksλ+
. As both sλ(+) and sλ+ are full, clearly

Sbs
sλ(+) = Sbs

sλ+
. For M1 ≤sλ(+) M2 ≤sλ(+) M3 and a ∈ M3 \M2, comparing the

two definitions of “tpKsλ(+)
(a,M2,M1) does not fork over M1,” they are the same.

So we are done.]

�5 sλ+ω
∗

is the limit of 〈s+n
λ∗

: n < ω〉.
[Why? Should be clear.]

�6 sλ satisfies the hypothesis [She09e, 12.1] of [She09e, §12] if λ ∈ Θ \ λ+3
∗

holds.

[Why? By �2,�3,�4 and [She09e, 12D.1].]
Hence

�7 sλ∗ is beautiful λ+ω
∗ -frame.

[Why? By [She09e, 12b.14] and [She09e, 12f.16A].]

�8 K[sλ+ω
∗

] is categorical in one χ > λ+ω
∗ iff it is categorical in every χ > λ+ω.

[Why? By [She09e, 12f.16A(d),(e)].]

�9 If λ ≥ i1,1(λ+ω
∗ ) then Kλ = Kλ[sλ+ω

∗
].

[Why? The conclusion ⊇ is obvious. For the other inclusion let M ∈ Kλ, now by
the definition of class in the left, it is enough to prove that M is (λ+ω

∗ )+-saturated.
But otherwise, by the omitting type theorem for AEC (i.e. by 0.9(1)(d), or see
[She99a, 8.6=X1.3A]) there is such a model M ′ ∈ Kµ, in contradiction to (∗)4.]

By �8 +�9 we are done. �7.13
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