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Abstract. In this paper, we show that large subsets of pcf(a) behave nicely,
provided that they have no inaccessibles as accumulation points.

§ 0. Introduction

A set a of regular cardinals is called progressive iff |a| < min(a). This concept is
central in pcf theory, and it appears as a needed assumption in may pcf theorems.
Moreover, counterexamples of basic pcf properties are known to exist if a is not
progressive (see [blank]).

Suppose that a is progressive. If |pcf(a)| = |a| then pcf(a) is progressive as well.
However, [in general / in most cases] we do not know whether |pcf(a)| = |a|. If
one considers the possibility that |pcf(a)| > |a|, then there might be a set b ⊆ pcf(a)
for which |b| > min(b); that is, a non-progressive subset of pcf(a).

It turns out that subsets of pcf(a) behave nicely even when they are not pro-
gressive, provided that they do not possess inaccessible accumulation points. That
is, if b ⊆ pcf(a) and µ ∈ pcf(a), then µ > sup(b ∩ µ). This assumption is not
far-fetched. In fact, we do not know whether an inaccessible accumulation point is
possible at all.

The content of this paper comes from [She94b, VIII,§3]. However, the presenta-
tion there is not complete. We thank E. Weitz for asking us to give more details.
Our notation is consistent with [She94b].

§ 1. On pcf

Definition 1.1 ([She94b, VIII 3.1]). (A) Let

J∗[a] =
{
b ⊆ a : for every inaccessible µ, we have µ > sup(b ∩ µ)

}
.

(B) pcf∗(a) =
{

tcf(
∏

a/D) : D is an ultrafilter on a, D ∩ J∗[a] 6= ∅
}

.
(C) If b ⊆ a [and b ∈ D], then b compels

∏
a to have cofinality <µ iff

tcf(
∏

a/D) < µ. The ideal J<µ(a) is the collection of b ⊆ a which compel∏
a to have cofinality <µ.

(D) If |a| < min(a), for µ ∈ pcf(a) let bµ[a] be a subset of a such that J≤µ[a] =
J<µ[a] + bµ[a].

(Note that bµ[a] exists by [She94b, VIII 2.6]; also, a is a finite union of
bµ[a]-s).

(E) If |a| < min(a), let Jpcf
<λ [a] be the ideal of subsets of pcf(a) generated by

{pcf(bµ[a]) : µ ∈ λ ∩ pcf(a)}.
Let Jpcf

≤λ [a] = Jpcf
<λ+ [a].

Claim 1.2 ([She94b, VIII 3.1A]). (1) The ideal Jpcf
<λ [a] depends on a and λ

only (and not on the choice of the bµ[a]-s).

(2) If b ⊆ a then Jpcf
<λ [b] = P(b) ∩ Jpcf

<λ [a] and J∗[b] = P(b) ∩ J∗[a].
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Proof. (1) Let
〈
b′µ[a] : µ ∈ λ ∩ pcf(a)

〉
,
〈
b′′µ[a] : µ ∈ λ ∩ pcf(a)

〉
both be as in

1.1(D). So for each θ, b′θ[a] ⊆ b′′θ [a] ∪
⋃
`<n

b′′θ` [a] for some n < ω, θ0, . . . , θn − 1 < θ.

[Is this good, or is it supposed to be θn−1? Either option is believable.]
Hence, if θ < λ,

pcf(b′θ[a]) ⊆ pcf(b′′θ [a]) ∪
⋃
`<n

pcf(b′′θ` [a]),

and each is in Jpcf
<λ [a], as defined by

〈
b′′σ[a] : σ ∈ λ∩pcf(a)

〉
(as θ` < θ < λ). As this

holds for every θ < λ, all generators of Jpcf
<λ [a] as defined by

〈
b′σ[a] : σ ∈ λ∩pcf(a)

〉
are in Jpcf

<λ [a] as defined by 〈b′′σ[a] : σ ∈ λ ∩ pcf(a)〉. As the situation is symmetric
we are done.

(2) Similar proof. The first phrase follows from part (1), and the reader may check
the second. �

Lemma 1.3 ([She94b, VIII 3.2]). Suppose |a|+ < min(a), a ⊆ b ∈ J∗[pcf(a)],

b /∈ J ..= Jpcf
<λ [a], and λ = max pcf(a). Then tcf(

∏
b/J) is λ.

Proof. Remember that (by [She94b, VIII 2.6]) there is
〈
bθ[a] : θ ∈ pcf(a)

〉
, a

generating sequence for a. For µ ∈ pcf(a), let 〈fµα : α < µ〉 exemplify µ =
tcf(

∏
bµ[a], J<µ[a]), with fµα ∈

∏
a. By [She94a, 3.1], without loss of generality

(∗)0
(
∀f ∈

∏
a
)[∨

α
f � bµ[a] ≤ fµα

]
Without loss of generality, for θ ∈ a, [we can fix the following values]: fθα(θ) = α
if α < θ and fθα(θ′) = 0 if α < θ < θ′ ∈ a. For each α ∈ λ, we define fλ,bα ∈

∏
b by:

fλ,bα � a = fλα ,

and for θ ∈ b \ a:

fλ,bα (θ) = min
{
β : fλα � bθ[a] ≤ fθβ mod J<θ[a]

}
.

Clearly

(∗)1 fλα ≤ fλβ ⇒ fλ,bα ≤ fλ,bβ .

Sub-fact 1.4 ([She94b, VIII 3.2A]).

α < β < λ ⇒ fλ,bα ≤ fλ,bβ mod J.

Proof of the subfact. Let c =
{
θ ∈ a : fλα(θ) > fλβ (θ)

}
, so c ∈ J<λ[a], and hence for

some n < ω and σ1 < . . . < σn from λ∩ pcf(a) (hence < λ), we have c ⊆
n⋃
`=1

bσ` [a].

So by the definition of the fλ,bα -s we have:

(∗)2 If µ ∈ b and bµ[a] ∩
n⋂
`=1

bσ` [a] ∈ J<µ[a] then fλ,bα (µ) ≤ fλ,bβ (µ).

However,

(∗)3 d ..=
{
µ ∈ pcf(a) : bµ[a] ∩

n⋃
`=1

bσ` [a] 6= ∅ mod J<µ[a]
}

(for our fixed σ1, . . . , σn ∈ λ ∩ pcf(a)) belongs to J .

[Why? As µ ∈ d implies µ ∈
n⋃
`=1

pcf(bσ` [a]) which is in J .]

Together we get subfact 1.4. �

Sub-fact 1.5 ([She94b, VIII 3.2B]). For any f ∈
∏

b, for some α, f ≤ fλ,bα .

Proof of the subfact. The family J1 of sets c ⊆ b for which this holds (i.e., for each
f ∈

∏
c there is α < λ such that f ≤ fλ,bα � c) will satisfy the following conditions:
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(A) {θ} ∈ J1 for θ ∈ λ ∩ pcf(a).
(B) J1 is an ideal of subsets of pcf(a).
(C) If {ci : i < κ} ⊆ J1 and min(ci) > κ+ for all i < κ, then

⋃
i<κ

ci is in J1.

We shall show their satisfaction below.
This suffices for 1.5, as b ∈ J∗[pcf(a)]. Why? just prove that

c ⊆ b & c ∈ J∗[pcf(a)] ⇒ c ∈ J1
by induction on sup{µ+ : µ ∈ c}. For successor use (A)+(B). For singular, let
〈µi : i < κ〉 be such that µ0 > κ+ and µi is strictly increasing continuous with limit
sup c = sup{µ+ : µ ∈ c}; by the induction hypothesis c∩µ0 and c∩ [µi, µi+1] are in
the ideal. By (C) we know that⋃

i<κ

(
c ∩ [µi, µi+1)

)
= c ∩ [µ0, sup c)

is in the ideal, and by the induction hypothesis, c ∩ µ0 ∈ J1. So by (B)

c =
(
c ∩ µ0

)
∪
(
c ∩ [µ0, sup c)

)
is in J1; note sup(c) /∈ c as sup c is singular. As b ∈ J∗[pcf(a)], we have covered all
cases.

Now, why do (A),(B),(C) hold? We shall use (∗)1 from above freely.

For (A): If θ ∈ a [this follows from] fλ,bα � a = fλα and (∗)0; if θ ∈ b \ a (a subset

of pcf(a)) and α < θ then for some β < λ, fθα+1 ≤ fλβ , hence fλ,bβ (θ) > α.

This shows {θ} ∈ J1.

For (B): Trivially, c ⊆ c′ ∈ J1 ⇒ c ∈ J1. If c1, c2 ∈ J1, c = c1 ∪ c2, and f ∈
∏

c,
then choose (for ` = 1, 2) α` < λ such that f � c` ≤ fλ,bα`

. Now let f ′ ∈
∏

a be

defined by f ′(θ) = max
{
fλα1

(θ), fλα2
(θ)
}

, so by [our] assumption on 〈fλα : α < λ〉
and (∗)0, f ′ ≤ fλα for some α.
Now fλ,bα is as required by (∗)1.

For (3): Let f ∈
∏

c. By assumption, for each i < κ, for some α(i) < λ, we have

f � ci ≤ fλ,bα(i). Now
(∏

a, <J≤κ[a]
)

is κ+-directed, hence for some f ′ ∈
∏

a,∧
i<κ

fλα(i) <J≤κ[a] f
′.

By (∗)0, for some β < λ we have f ′ ≤ fλβ and f � (a ∩ c) ≤ fλβ . (Necessarily,∧
i<κ

α(i) < β.) Let θ ∈
⋃
i<κ

ci. If θ ∈ a then trivially f(θ) ≤ fλβ (θ), so assume θ /∈ a.

Now θ ∈ ci for some i, so θ > κ and fλα(i) <J≤κ[a] f
λ
β , hence fλα(i) <J<θ[a] f

λ
β , hence

by their definitions fλ,bα(i)(θ) ≤ f
λ,b
β (θ).

So β is as required; i.e. we have proved subfact 1.5. �

Now 1.3 follows from 1.4, 1.5.
[Using 1.5 for f + 1 we can get there f < fλ,bα , so (by 1.4) for some club C of λ,

α < β ∈ C ⇒ fλ,bα < fλ,bβ mod J.

Together 〈fλ,bα : α ∈ C〉 witness that tcf(
∏

b, <J) is λ, as required]. �

Theorem 1.6 ([She94b, VIII 3.3]). Assume min(a) > |a|.
(1) For an ultrafilter D on pcf(a) not disjoint to J∗[pcf(a)],

tcf
(∏

pcf(a)/D
)

= min {λ ∈ pcf(a) : pcf(bλ[a]) ∈ D}
= min

{
λ ∈ pcf(a) : D ∩ Jpcf

≤λ [a] 6= ∅
}
.

(2) For c ∈ J∗[pcf(a)], pcf(c) is a subset of pcf(a) and has a maximal element.
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(3) For b ∈ J∗[pcf(a)],
∏

b/Jpcf
<λ [a] is λ-directed.

(4) pcf∗(a) = pcf(a) = pcf∗(pcf(a)).

(5) If c ∈ J∗[pcf(a)] and c ∈ Jpcf
≤λ [a] then

∏
c has cofinality ≤ λ.

(6) If c ∈ J∗[pcf(a)] and c ∈ Jpcf
≤λ [a] \ Jpcf

<λ [a] then λ = tcf
(∏

c, <Jpcf
<λ

)
.

Proof. (1) Trivially, the second and third terms are equal (see Definition 1.1(5)).

Let λ be defined as in the second term, so pcf(bλ[a]) ∈ D ∩ Jpcf
≤λ [a]. So by 1.2(2)

without loss of generality a = bλ[a], so λ = max pcf(a). Using 1.3’s notation,
〈fλ,bα : α < λ〉 exemplifies λ = tcf(

∏
a/D).

(2) By (1).

(3) This follows by the proof of Lemma 1.3, but as I was asked, we repeat the
proof of 1.3 with the required changes. Without loss of generality, λ ∈ pcf(a).

[Why? If λ > max pcf(a) then Jpcf
<λ [a] = P(pcf(a)), so the conclusion is trivial. If

not, let λ′ = min(pcf(a) \ λ), so λ′ ∈ pcf(a) and Jpcf
<λ [a] = Jpcf

<λ′ [a].]

We let J = Jpcf
<λ [a]. Remember that (by [She94b, VIII, 2.6]) there is〈

bθ[a] : θ ∈ pcf(a)
〉
,

a generating sequence for a. For µ ∈ pcf(a), let 〈fµα : α < µ〉 exemplify µ =
tcf(

∏
bµ[a], J<µ[a]), fµα ∈

∏
a. By [She94a, 3.1], without loss of generality

(∗)0
(
∀f ∈

∏
a
)[∨

α
f � bµ[a] ≤ fµα

]
.

Without loss of generality, for θ ∈ a, we can fix the following values of fθα: fθα(θ) = α
if α < θ and fθα(θ′) = 0 if α < θ < θ′ ∈ a. For any f ∈

∏
a we define a function

fb ∈
∏

b by:
fb � a = f

and for θ ∈ b \ a:

fb(θ) = min
{
β : f � bθ[a] ≤ fθβ mod J<θ[a]

}
.

Let f vary on
∏

a. Clearly

(∗)1 f1 ≤ f2 ⇒ fb1 ≤ fb2 .

Sub-fact 1.7. If f1 ≤ f2 mod J<λ[a] (both in
∏

a of course) then fb1 ≤ fb2
mod J .

Proof of the subfact. Let c = {θ ∈ a : f1(θ) ≥ f2(θ)}, so c ∈ J<λ[a]. Hence for some

n < ω and σ1 < . . . < σn from λ ∩ pcf(a), (hence < λ) we have c ⊆
n⋃
`=1

bσ` [a]. So

by the definition of the fbi -s we have:

(∗)2 If µ ∈ b and bµ[a] ∩
n⋂
`=1

bσ` [a] ∈ J<µ[a], then fb1 (µ) ≤ fb2 (µ).

However

(∗)3 d ..=
{
µ ∈ pcf(a) : bµ[a] ∩

n⋃
`=1

bσ` [a] 6= ∅ mod J<µ[a]
}

(for our fixed σ1, . . . , σn ∈ λ ∩ pcf(a)) belongs to J .

[As µ ∈ d implies µ ∈ pcf(
n⋃
`=1

bσ` [a]) =
n⋃
`=1

pcf(bσ` [a]), which is in J .]

Together we get subfact 1.7. �

Sub-fact 1.8. For any g ∈
∏

b, for some f ∈
∏

a, we have g ≤ fλ,bα .

Proof of the subfact. The family J1 of sets c ⊆ b for which this holds (i.e., for each
g ∈

∏
c there is f ∈

∏
a such that g ≤ f � c) satisfies the same three properties as

in 1.5:
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(A) {θ} ∈ J1 for θ ∈ λ ∩ pcf(a).
(B) J1 is an ideal of subsets of pcf(a).
(C) If {ci : i < κ} ⊆ J1 and min(ci) > κ+ for all i < κ, then

⋃
i<κ

ci is in J1.

We shall show their satisfaction below.
Why do (A)+(B)+(C) suffice for 1.8?

As b ∈ J∗[pcf(a)].
Why? Just prove that

(∗)4 c ⊆ b & c ∈ J∗[pcf(a)] ⇒ c ∈ J1
by induction on sup{µ+ : µ ∈ c}. For successor use (A)+(B). For singular, let
〈µi : i < κ〉 be such that µi is strictly increasing continuous with limit sup(c) =
sup{µ+ : µ ∈ c}, and κ+ < µ0; by the induction hypothesis c∩ µ0 and c∩ [µi, µi+1]
are in the ideal, by (C) we know that⋃

i<κ

(
c ∩ [µi, µi+1)

)
= c ∩ [µ0, sup c)

is in the ideal and, as said above, c ∩ µ0 ∈ J1 so by (B)

c =
(
c ∩ µ0

)
∪
(
c ∩ [µ0, sup c)

)
is in J1; note sup(c) /∈ c as sup(c) is singular. As c ∈ J∗[pcf(a)] implies c has
no inaccessible accumulation point, we have covered all cases in the induction, so
(∗)4 holds. Now note that b ∈ J∗[pcf(a)], so from (∗)4 we get b ∈ J1 and by the
definition of J1 we are done.

Next, why do (A), (B), (C) hold?
We shall use (∗)1 from above freely.

For (1): Let g ∈
∏

b. If θ ∈ a, it follows from fb � a = f and (∗)0. If θ ∈ b \ a
(⊆ pcf(a)), then g(θ) < θ. Let f = fθg(θ)+1, hence(

∀γ ≤ g(0)
)[
f 6≤ fθγ mod J<θ[a]

]
.

Hence g(θ) < fb(θ); this shows {θ} ∈ J1.

For (2): Trivially, c ⊆ c′ ∈ J1 ⇒ c ∈ J1. If c1, c2 ∈ J1, c = c1 ∪ c2, and g ∈
∏

c
then choose (for ` = 1, 2) f` ∈

∏
a such that g � c` ≤ fb` . Now let f ∈

∏
a

be defined by f(θ) = max{f1(θ), f2(θ)}, so f ∈
∏

a and g � c1 ≤ fb1 ≤ fb and
g � c2 ≤ fb2 ≤ fb hence g � (c1 ∪ c2) ≤ fb.

For (3): Let g ∈
∏

c. By assumption, for each i < κ, for some fi ∈
∏

a, g � ci ≤ fbi .
Now

(∏
a, <J≤κ[a]

)
is κ+-directed, hence for some f ∈

∏
a,∧

i<κ

fi <J≤κ[a] f.

Without loss of generality, g � a ≤ f � c. Let θ ∈
⋃
i<κ

ci. If θ ∈ a trivially

g(θ) ≤ f(θ), so assume θ /∈ a. Now, for some i, θ ∈ ci, so θ > κ and fi <J≤κ[a] f ,

hence fi <J<θ[a] f . Hence by their definitions fbi (θ) ≤ fb(θ).

So (A), (B), (C) hold and hence b is as required, i.e., we have proved subfact
1.8. �

We finish by

Sub-fact 1.9.
∏

b/J is λ-directed.
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Proof of the subfact. Assume gi ∈
∏

b for i < i∗ < λ. By 1.8, for each i < i∗, for
some fi ∈

∏
a, we have gi ≤ fbi . But

∏
a/J<λ[a] is λ-directed, hence for some

f ∈
∏

a we have ∧
i<i∗

fi < f mod J<λ[a].

By 1.7 we have ∧
i<i∗

fbi ≤ fb mod J,

hence by the previous sentence i < i∗ ⇒ gi ≤ fbi ≤J fb, so fb + 1 is a <J -upper
bound of {gi : i < i∗}, as required. �

�
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