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Abstract Corrected Iterations

Haim Horowitz and Saharon Shelah
Abstract

We consider (< \)-support iterations of (< \)-strategically complete AT-c.c. definable
forcing notions along partial orders. We show that such iterations can be corrected to
yield an analog of a result by Judah and Shelah for finite support iterations of Suslin ccc
forcing, namely that if (Po, Qs : o« < 9,5 < 9) is a FS iteration of Suslin ccc forcing and

U C ¢ is sufficiently closed, then letting Py be the iteration along U, we have Py < Ps.t

Introduction
Our motivation is the following result by Judah and Shelah:
Theorem ([JuSh292]): Let (P,,Qp : o < §,8 < ) be a finite support iteration

of Suslin ccc forcing notions (assume for simplicity that the definitions are without
parameters). For a given U C 4, let Py be the induced iteration along U, then
Py < Ps.

Recent years have witnessed a proliferation of results in generalized descriptive set
theory and set theory of the A-reals, and so an adequate analog of the above-
mentioned result for the higher setting is naturally desirable. Such an analog was
crucial for proving the consistency of cov(meagrey) < by in [Sh:945]. It is not clear
that the straightforward analogous statement holds in the A-context, however, it
turns out that the desirable result can be obtained by passing to an appropriate
“correction” of the original iteration. This was obtained in [Sh:1126] for the specific
forcing that was relevant for the result in [Sh:945]. Our main goal in this paper is
to extend the result for a large class of definable (< \)-support iterations of A*-c.c.
forcing. Namely, our mail result will be a more concrete form of the following:

Theorem (Informal): There is an operation (a “correction”) P +— P on (< \)-
support iterations of (< \)-strategically complete reasonably definable A*-c.c. forc-
ing notions along well-founded partial orders, such that P“" adds the same generics
as P, and if U is an adequate subset of the set of indices for the iteration, then
P < P,

We shall start by defining our building blocks, namely forcing templates and iteration
templates. These will allow for a much larger variety of examples than what appears
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in [Sh:1126] (in particular, an iteration may involve forcing notions with different
definitions). One of the differences between the current work and [Sh:1126] is that
our forcing notions might be definable using parameters that don’t belong to V', and
so this will require the introduction of a new type of memory (“weak memory”) that
will allow the computation of the relevant parameters.

We then continue by introducing the class M of iteration parameters, from which
we shall practically construct our iterations. We shall then consider the notion of
an existentially closed iteration parameter, and we shall isolate a property of iter-
ation parameters that guarantee the existence of an existentially closed erxtension.
We shall then obtain our desired corrected iteration from those existentially closed
extensions by taking an appropriate closure under Ly+.

Preliminary definitions, assumptions and facts

Forcing templates

In this section we shall define the templates from which individual forcing notions in
the iteration shall be constructed. As we don’t have a general preservation theorem
for AT-c.c. in (< A)-support iterations, we shall use the notion of (A, D)-chain
condition for a filter D (to be defined later) for which we have a preservation result,
and so the templates will include an appropriate filter to witness this. Similarly to
[Sh;630], the forcing templates will consist of a model B, and formulas that will
define the forcing inside it. The forcing will be defined using a parameter, which shall
be a function whose domain is denoted Ig. The generic element will be a function
whose domain is the set Irl,. Additional formulas will provide winning strategies for
strategic completeness and will provide a compatibility relation on the forcing that
will satisfy the (A, D)-chain condition.

Hypothesis 0: Throughout this paper, we assume that:

a. \is a cardinal satisying A = A<

b. D is a A-complete filter on A" x A* satisfying the following:

L {(o,B):a< <At} eD.

2. If uy € [Ord]~* (a < A1), g : KLJMua — D and f, : u, = Ord has range C \

(a < A1), then the following set belongs to D: {(c,8) : @ < 5 < AT, (fa, f5) is a
A—system pair (see Definition 1.2 below), & € u, Nug — (o, B) € g(§)}-

Definition 1.1: Given a cardinal k > \. we call p = (Ap, kp, Up, I, By, I3, I, @, Dy, By)
a (A, D)-forcing template if:

A) A=), < k= Kp.
B) DUI, € Ho)(Up UTL) where U = Uy, and I = I, are disjoint sets of atoms.
Remark: See definition 1.16 for H<,(X).

C) B, the expansion of (H<x(Up UT,), €) by adding the relations |83 and P%e
for every P € 7(%BY) for a model B with universe IU U.
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D) ¢ = (¢i(z,9) : | < 6) is a sequence of first order formulas from L(7y,) and
lg(x;) = ky where kg = 1, ky = 2, kg = 3, k3 = 3, ky = 2, ks = 2. We allow the y;
to include a second order symbol F' (over which we shall not quantify) that will be
interpreted as a function h : I) — A.

E) D, = D is a A\-complete filter as in Hypothesis 0 above.

Remark: We may omit the index p whenever the identity of p is clear from the
context.

Definition 1.2: Suppose that u; € [Ord]<* (I = 1,2). A pair of functions f; :
w — Ord (I = 1,2) is called a A-system pair if otp(u;) = otp(us), and for every
a € uy Nug, otp(ur Na) = otp(us Na) and fi(a) = fola).

Claim/Example 1.3: Let DY be the collection of subsets X C AT x AT such that
for some club £ C At and regressive function ¢ : S/)\‘+ = A {(o,8) ra< <
M ae S NE, e S NE, gla)=g(f)} C X, then DY is as required in definition
1.1(E).

Proof: Clearly, ) ¢ DS. Let (uq : a < AT), (fo: a < AT) and g be as in definition
1.1(E), then for every ¢ € Uﬁua there is a club Ee C AT and a regressive function
a<

he : S3° — AT such that X¢ C g(€) where: X¢ := {(a,) : @ < § < AF,a €
Sy N Ee,B € Sy N Ee, he(a) = he(B)}y. For every a < At let S, := BL<J ug,

Ef ={E : £ € S,} and let E, = a<A/\+E;, so EX (« < AT) and E, C AT are
clubs. For every § € E, NSy define:

1. uy :=us N Ss.

2. h} : uj — ¢ is defined by hj(§) := he(0) (recaling that he(9) is well-defined and is
< 0).

3. 55 = {(otp(us N ¢), f5(¢)) : ¢ € us}-

4. S2 := {(hs,y.) : h, is a function with domain € [S;]<* and range C 4, y. C
A x (A + 1)<

Note that o < 8 — S2
S? = ﬁgaSg when cf (o) =

C 53 and that |S2| < X for every a. Note also that
A

Now define a regressive function g, on Sy NE, such that g,(6,) = g.(d,) iff h;, = h;,
and y; = y;, (this can be done as in the proof of the A-completeness of DY, see
below). Let X = {(61,05) : 61 < 65 € SY" N E, A g(61) = g.(2)}, then X € DY
as witnessed by F, and g.. Therefore it’s enough to prove that every (d1,d2) € X,
(f5,, [s,) is a A-system pair and & € ugs, N ug, implies (d1,d2) € g(£). Indeed, as
9+(61) = g«(d2), it follows that hj = hj, and y;, = y;,, hence uj, = Dom(h} ) =
Dom(h;,) = u;,. Note also that if ¢ € Dom(fs,) N Dom(fs,) = us, N us,, then as
01 < 0y, it follows that ¢ € uy, = Dom(hy, ). Therefore Dom(fs,) N Dom(fs,) =
Dom(h;,), and it follows that (fs, fs,) is a A-system pair. If { € us, Nus, =
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Dom(fs,) " Dom(fs,) = Dom(hy ) = Dom(hj;,), then as hj = hj , it follows that

he(61) = hy, (§) = Ry, (&) = he(02). Therefore, (d1,02) € X C g(&) and we're done.

Remark: It remains to show that 0,0, € E¢: 0, € E,, hence 6; € ﬂ(; E.«. We have
a<o]

to show that £ € S, for some o < ;.

Note that § € us, Nus, = uj,, hence £ € S5, and as d; is a limit ordinal, it follows
that £ € S, for some o < §; (and similarly for ds).

In order to show that DY is A-complete, let ¢ < A and let {X¢ : € < ¢} C DY, we shall
prove that gﬁcXg € DY. For each &, , there are E¢ and g¢ as in the definition of DY
<
witnessing that E¢ € DY. Fix a bijection f: (AT)<* = AT and let E={§ < AT:§
is a limit ordinal, and for every a < 6 and n € a<*, f(n) < 6}, then E C \*
is a club. Let § € ENS)', then f(n) < & for every n € §<*. Define a function
g: 8" — AT as follows: if § € S} NE, welet g(6) = f((ge(8) : € < ¢)). Otherwise,
we let g(§) = 0. g is a well-defined regressive function. Let £ = EN (QCE&), then
E' CMisaclub. Let X = {(a,8) :a < B < A, a,6€ E'NSY,g(a) = g(B)},
then as X € DY, it suffices to show that X C X for every £ < (. As E' C E; for
every € < ¢, if a,8 € E'NSY" and g(a) = g(3), then ge(a) = g¢(B). This implies
that X C X, as required. This completes the proof of the claim. [
Definition 1.4: Given a (A, D)—forcing template p and a funtion h : Ig — A\, we
say that the pair (p, h) is active if:
A) (Qp.n, <pp) is a forcing notion where Qp,, = {a € H<\(UUI) : B, = wo(a, h)},
SQp,h: {(a7 b) : %p ): Qpl(av b, h)}
B) For every v < X and p € Qp, the formula po(—, v, p, h) defines a winning strategy
for player I in the game G.(p, Qp ) (see definition 1.14 below).

Remark: The strategy may not provide a unique move and we shall allow the com-
pleteness player to extend the condition given by the strategy.

C) @4(—,—, h) defines a function tr such that Dom(tr) = Qp ), and for every p €
Qp.n, tr(p) is a function with domain X for some X € [Irl,]<)‘ and range C \, such
that tr satisfies the following conditions:

1) p<q—tr(p) Ctr(q).

2) T, is a set consisting of all possible trunks, each is a function from some u €
[13]<* to A

3) The formula ¢5(—, —, h) defines a binary compatibility relation com C Tp; x Ty,
(see (6) below).

4) If com(p,n) then:

a. There is ¢ such that p < ¢ such that tr(q) = 7.

b. If ¢ < p then con(q,n).

5) <p is a partial ordering of Tp, such that 7, < ny — n C no.
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6) Rp 5, is a reflexive binary relation on T such that if py, ps € Qp, and tr(p1)Rp ptr(p2)
then py, p2 € Qp , have a common upper bound ¢, and tr(q) = tr(p;) Utr(pe). This
is defined by ¢5(—, —, h).

7)If j < A and é\,tr(pi) = 7 then:
i<j
a. There is ¢ such that /<\(pZ <q) and tr(q) = n.
i<j

b. There is a A-Borel function Cy, . ; such that ¢ = Cp (..., Di - )icy-

8) Qp.n satisfies the (A, D)-chain condition: if p, € Qpp (o < A7) then {(a, ) :
tr(pa)Rpatr(ps)} € D.

9) (Relevant for A > Xg) For every 6 < A and a play (p;,q; : i < ) of length < A
chosen according to the winning strategy for the game in clause (B), there is a bound
ps given by the strategy such that tr(ps) = }Ugtr(pi).

1<

E) 1. Ikq,, "Dom(n,) = I” where 1, = 1, is the Qp p-name of U{tr(q) : ¢ € G, }-

2. For every b € Irl, and p € Qp then there is n € T, such that b € Dom(n) A
com(p, n).

F) np is generic for Qp 5, i.e. there is a A-Borel function B defined in V' such that
- "p € G iff B(p,np) = true” for every p € Qp .

G) If p and g are incompatible and tr(p) C tr(q), then p lq, , "tr(q) ¢ np”. In this

~

case we shall say that p and tr(q) are incomatible.

H) If i(x) < A\, pi € Qp (i < i(x)) and g are as in 1.4(C)(7) and p is a condition
such that tr(q) C tr(p) and such that ¢ and ¢r(p) are incompatible, then there is
i < i(x) such that {p;,tr(p)} are incompatible.

Remark: Clauses (G)+(H) will be used later, for example, in claim 4.1.

I) Each element of Qy is a function of size A with domain C I, and range C H(\).

Iteration templates

Similarly to forcing templates, iteration templates will contain the information from
which we shall construct our iterations. This information will include a well-founded
partial order along which we shall define the iteration. For every element in the
partial order, we shall assign a forcing template and two types of memory: a strong
memory which will be used for the construction of the forcing conditions, and a
weak memory which will be used to define the necessary parameter for the forcing
at the current stage. The parameters will then be computed in a A\-Borel way from
the previous generics.

Definition 1.5: A (A, D)-iteration template q consists of the objects {Lq, (p: : t €

Lq), ((u}, @) : t € Lq), (0}, @;) : t € Lq), Da, (Bes, (5:(b,C), arpc) = ¢ < &(1,0)) -
bel)):te Lq))} such that:
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A) Dy = D, L is a well-founded partial order with elements from U.

B) For every t € Ly, p; = Pq: is & (A, D) forcing template.

C) ForeverytELq,u =u) CLy={se€L:s<pthanduy, =1u = (uj,:s€
up) where uf, C I} =1 15 We shall refer to ug, as strong memory.

D) For every t € Ly, w) C u and w; = (w;, : s € wy) where wi, C uj, € I}. We
shall refer to w) as weak memory.

Remark: In many interesting cases, w? = () for all ¢ (this will correspond to an
iteration where the definitions of the forcing notions are without parameters).

E) For every t € Lq and b € IJ,, By, is a A—Borel £(t, b)—place function (£(¢,0) <
AT from AP to X, For every ¢ < £(t,b) we have s,(b,¢) € w} and apc € w} -
F) D, is a A\-complete filter as in Hypothesis 0 such that Dy, = Dy for every t € Lg.

Definition 1.6(A): Given an iteration template q and L C Lg, let cl(L) = clq(L)
be the minimal L' such that L C L' C Ly and t € L' — wg’t Cc L.

Definition 1.7: 1. Let P be a set of forcing templates, we shall denote by Kp the
collection of iteration templates q with forcing templates from P (i.e. pq; € P for
every t € Lq).

2. For q1,q2 € Kp we write q; <k, q if the following conditions hold:
a. L‘h g LQQ
b. For every t € Lq,, Pqyt = Pqo and ud, = ud, N Lq,

C. (wglta @t tE Lq1) = (wgztv Qo,t

sequences appearing in definition 1.4.

1t € Lg,) | Lg, and similarly for the other

Definition 1.8: Let q be an iteration template and let L C L, we shall say that
L is a closed sub-partial order (or “L is closed with respect to weak memory”) if
w) C L for every t € L.

Definition 1.9: 1. Given L C Lg, let cl(L) = clq(L) be the minimal set L C L' C
L such that w) C L' for every t € L'. Note that |cI(L)] = |L| + \.

Convention 1.9(A): Throughout this paper, whenever q is an iteration template,
L C Ly and q | L is defined (see definition 1.11), we shall assume that L is closed
w.r.t. weak memory.

Definition 1.10: Let q be an iteration template, we shall define for every t €
Ly U {oo} a forcing notion P, = Pg;, a forcing notion P, = Pq; for any initial
segment L C Ly and names Q; = Qq, 7¢ by induction on dp(t) (see definition 3.3):
A)peP, (Pp) iff

1) p is a function with domain C L., (or C L in the case of Py) of cardinality < A.

2) For every s € Dom(p), p(s) = By (.M (ac), - )c<e (we may write p(s) =
(tr(p(s)), Bpgs) (-, mec (ag), --.))) for a A-Borel function By into H<x(U UT) and an
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object tr(p(s)) such that tr(p(s)) is computable from B, (i.e. the range of By
consists of conditions with trunk tr(p(s))), € = &) < A, {tc : ¢ <&} C ! and for
every ¢, ac € uj,.

3) For every s € Dom(p), p | L<sIFp, "p(s) € Q,”.

B) P, = p < q iff Dom(p) € Dom(q) and for every s € Dom(p), q | L IFp,
p(s) <q. q(s)-
C) 1. Let hy : Igt — A be the name of a function defined by hy(b) = By (..., s, (6,0) (Qt,bc)s ) c<e(t.b)-

~

2. a. If (pg, hy) is active in VE* (see Definition 1.4), we shall define Q; as the P;-name

V[’%:séu?]

of Q.

b. If (ps, hy) is not active in V¥t we shall define Q; as the trivial forcing.

D) n; will be defined as the P; x Q; name 7y, 4,

Definition 1.11: Given a forcing template q and a sub partial order L C L, we
shall define the iteration template q | L as follows:

A) Ly = L.

B) For every t € L, pqit = Pqy-

C) For every t € L, ud;;, = uy, N L and ul;, = ul, [ udp-

D) For every t € L, wy,, = wq, and W, = W,

E) For every t € L the other objects in the definition of q are not changed.
Observation 1.12: q [ L is an iteration template.

Definition 1.13: Let A be a regular cardinal, P a forcing notion and Y C P.
A) Ly+(Y) will be defined as the closure of Y under the operations =, A for o < AT.

<o

B) For a generic set G C P and ¢ € Ly+(Y") the truth value of ¢[G] will be defined
naturally by induction on the depth of ¢ (for example, for p € P, p|G| = true iff
p € Q).

C) The forcing Ly+ (Y, P) will be defined as follows:

1) ¢ € Ly+(Y,P) iff b € Ly+(Y) and ¥p "P[G] = false”.
2) 1 < g iff Ibp "[G] = true — 1 [G] = true”.
More definitions and assumptions
Strategic completeness

Definition 1.14: A) Let IP be a forcing notion, « € Ord and p € P. The two player
game G, (p,P) will be defined as follows:
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The game consists of & moves. In the Sth move player I chooses pg € P such that
p<psA( /\ng < pg), player II responds with a condition gs such that pg < gs.
<

Winning condition: Player I wins the play iff for each 5 < «a there is a legal move
for him.

B) Let P be a forcing notion and a € Ord, PP is called a-strategically complete if for
each p € P player I has a winning strategy for G,(p,P).

C) We say that P is (< A)-strategically complete if it’s a-strategically complete for
every a < \.

We shall freely use the following fact:

Fact 1.15: (< \)-strategic completeness is preserved under (< \)-support itera-
tions.

Models with atoms

Definition 1.16: A) Given two sets X and x, trely(x) = trel(z, X) will be defined
as the minimal set u such that:

1. z €.
2. y Cuforevery y € u\ X.

B) For a cardinal x and a set X we define H<(X) as the collection of sets x such
that [trcl(z, X)| < k and 0 ¢ trcl(z, X).

C) X is called r-flat if x ¢ He (X \ {x}) for every z € X.
Absoluteness

The following requirements will be assumed throughout the paper for all (A, D)-
forcing templates p:

Requirement 1.17: A (A, D)—cc forcing template p is called (A, D)-absolute when:
If P; and Py are (< \)-strategically complete forcing notions satisfying (A, D) — cc
such that P; <Py, V; = V¥ (I = 1,2) and p € V4, then we shall require that:

A) "p <q,, q” is absolute between Vi and V5.
B) "p € Qp” is absolute between V; and V5.
C) ”"p and ¢ are incompatible in Q5" is absolute between V; and V5.

D) Similarly for the other formulas involved in the definition of p (see definition
1.1).

Definition 1.18: Let p € V] be a forcing template and let B be a A-Borel function.
We say that B is a A-Borel function into p if for every V3 C V; as above, the range
of B is in @g?h and the trunk of the members in the range depends only on B.

Requirement 1.19: A) All A\-Borel functions will be assumed to be into a relevant
forcing template p.
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B) D, is fixed and is absolute, i.e. "X € D,” is absolute (in the sense of 1.17) as
well as the requirements in definition 1.1(E).

We shall also use the following well-known fact:

Fact: If Pis (< A)-strategically complete and B is a A-Borel function, then "B(x) =
y” is absolute between V and V.

Iteration parameters and the corrected iteration

Iteration parameters

We will be interested in iterations along a prescribed partial order M. However, we
will also have to consider iterations along a larger partial order that L that contains
M. Therefore, we shall define a binary relation £E” on L such that L\ M will consist
of equivalence classes that are only related via M. We shall require that those
equivalence classes will be preserved when we extend the iteration, so extensions
will be obtained by adding new equivalence classes.

Hypothesis 2.1: We shall assume in this section that:
A) A= A<"is a cardinal and D is a filter as in Hypothesis 0.
B) A < \; < Ay are cardinals such that J3(A) < Ag.

C) P is a set of (A, D)-forcing templates that are (A, D)-absolute and absolutely
active, i.e. in V@ for every (< \)-strategically complete (), D)-c.c. forcing notion

Q.

D) I and U are disjoint sets such that <y is a fixed well ordering of U and IU U
is AT.

E) |P| < 2%.

Definition 2.2.A: Let M = M[A;, A2] be the collection of triples m = (qum, Mm, F7,)
such that the following conditions hold (we may replace the index m by qy, or omit
it completely when the context is clear):

A quKP.

C) For every t € M, w) C M.
D
1. " = F' | (L\ M) is an equivalence relation on L\ M.

2. For every non E"-equivalent s,t € L\ M, s <, t iff there is r € M such that
s<r<t.

3. If sE"t then s ¢ M ort ¢ M.

)

B) My, C L, is a sub partial order.
)
)

E' = E] is a relation on Lg,, satisfying the following properties:
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4. Ift € L\ M then {s € L : sE't} = {s € L :tE's}. We shall denote this set by
t/FE'.

5. If s,t € L\ M are E"-equivalent, then s/E' =t/FE'.
6. If t € L\ M then u) Ct/E".

7. Ift € L\ M then [t/E'| < )o.

8. |IM]| < Ar.

9. |w?| < A for every t.

E) In addition to the objects mentioned in definition 1.5, qy, includes a sequence
Um = (Vgmt :t € Lim) = (vt : t € Ly,) such that for every t € Ly, we have:

L. vy C [uf]=*, w? € vy and for every u € vy, u Uw? € v; (recall that the uf and w!
are part of the definition of q,, mentioned in 1.5).

2. vy 18 closed under subsets.

3. Ift € Ly \ My then |v,| < Xy, If t € My, and s € L\ M then |[{u € v, :
un(s/Ey) # 0} < Ao

4. For every u € v, if u &€ My, then there is s € Ly, \ My, such that u C s/E’.
We shall now supply the final definition of the forcing (recalling definition 1.8).

Definition 2.2. B For m € M and the corresponding iteration template q,, we
shall define P; = Py, 4, Qt and ! in the same way as in 1.10, except that we replace

(A)(2) and (C) with the followmg definition (so Py # Pg,ut):

For every s € Dom(p) there is ¢(p(s)) < A, a collection of sets Wy(s), € &ps) < A
(¢ < t(p(s))), a collection of A\-Borel functions By, (¢ < ¢(p(s))), A-Borel functions
C,(s) and Bys) and an object tr(p(s)) such that the following conditions hold:

AV €= = o Moo

B) Bp(s)(..., ntg (CLC), ...)<<§ = Cps,b(p(S))(-'-7 Bp(s)7b(..., 77,5C (CLC), "‘)ﬁewp(s),n ...)L<L(p(s)) such
that ¢ € u) and a¢ € u;,_ for every ¢ € Wiy,
C) For every ¢« < (p(s)) there is u € v, such that {t; : ( € Wy, } C u.

D) p(s) = BP(S)(“'WE(“C)’ .)c<e. Wemay write p(s) = (tr(p(s)), Bp(s)(...ﬂyic(ag), e )e<e)-

E) Q; will be defined as the P;-name of the subforcing of Qp, », with elements of

Vns:s€u]
the form Cp, ,(p(s))(--s Di, ---)i<i(x) such that each p; belongs to Qp, 1, for some
U € Umy and A-Borel function C = Cp_ ,(p(s)) (-5 Dis ---)i<i(s) int0 Qp, p, -

F) For each gy, = By(s),.(-s M (ac), - )cew,,,, there is an object tr(gs,) such that

the range of B, consists of conditions with trunk t¢r(gs,).
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G. For the time being, tr(p(s)) = tr(qs,) for every ¢ < «(p(s)), and the objects of
the form tr(qs,) are pairwise strongly compatible.

H) tr(p(s)) = Utr(gs,)-
I) IbFp’ Cp(s ( Bp(s)7b(..., Nt (CLC), "')CGWp(s),ﬂ ...)L<L(p(5)) S g < (Vb < L(p(S)))Bp(S),L(..., e, (CLC), "')CGWP(S),
G and similarly for C from (E).

Definition 2.3: Let L be a well founded partial order, we shall define the depth of
an element of L and the depth of L by induction as follows:

A) dp(t) = dpp(t) = U{dpr(s) +1:s <y t}.
B) dp(L) = U{dp(t)+1:t € L}.

Definition 2.4: Let m € M and let L C L, be a sub-partial order, we shall define
n=m | L as follows:

A) q I L.
B)M MmN L.
C) E N L x L.

D) For every t € L we define vq, + as {uN L :u € vg,, +}-
Remark: If My, C L then n € M|\, \y].

Definition 2.5: Let n,m € M, a function f : L, — L, is an isomorphism of m
and n if the following conditions hold:

A) f is an isomorphism of the partial orders Ly, and L.
B) For every t € Lm, Pqm,t = Pan.f(1)-

C) For every t € Ly, f(ul, i) = ug, F(@®) and al = U, f(t)'
D) For every t € Ly, f(w mt) = wnf( and wmt = nf()
E) My = f(Mxm).

F) For every s,t € Ly, sE, t if and only if f(s)EL, f(t).

G) For every t € Ly, if (Bm,tp, (5:(0,C), arpe = ¢ <&(4,0) b e Ip )it € Lg,)
is as in 1.4(F) for m, then ((Bum.tp, (f(5:(0,0)), arpc : ¢ < &(t,D)) : b € IO it e
L,.) is as in 1.4(F) for n at f(t).

H) For every t € Ly, u € vg,, if and only if f(u) € vg, 4.

)

Definition 2.6: We say that m,n € M are equivalent if q,, = qy-
Remark: P, depends only on qy,.

Definition 2.7: A) Let L be a partial order, we shall denote by L the partial
order obtained from L by adding a new element oo such that ¢t < oo for every t € L.

B) Given m € M we shall denote by Py, the limit of (P, Q; : t € Ly,) with support
< A, de. Pyo. We shall denote P, by Py, ; and similarly for Q.

11
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C) p,q € Py, are strongly compatible if tr(p(s))Rptr(q(s)) for every s € Dom(p) N
Dom(q).

D) Given an initial segment L C Ly, let Py =Py | {p € P : Dom(p) C L}.
Claim 2.8: Let m € M and s <t € L}.

A)If pePsthenpePyandp | Les =p

B)If p,g e Py then Py = p <qiff P, =p <gq.

C)IfpeP,thenp | Loy ePsand P, |="p | Ly < p”.
D)IfP,Ep<qthenP,=p[ Loy <q Les.

E)IfpeP,gePyand p | Lo, <g€P,thenpg<qU(pl (L) L)) €P
F) If s <t e Lf then Py <P

Proof: Should be clear. [

Claim 2.8’: Suppose that m € M and Ly C Ly C L,, are initial segments.
A)Ifpe Py, thenp e Py, and p | Ly = p.

B)IfpgePr, then P, Ep<qiff P, Ep<gq.

C)IfpePr, thenp | L € Py,.

D)Ifp,ge P, and P, Ep<qgthen P, =Ep| L1 <q | L.

E)Ifpe Py, qe Py and Py, ="p | Ly < ¢ thenPp, |="p,q < qU(p | (L2\L1))".
F) P, <Pp,.

Proof: Should be clear. [

Claim 2.9: If m € M, p € P, and s € Dom(p), then there is a A-Borel name
of the form By (..., TV (ns (a¢c) = j¢), - )c<e(ps) such that By (..., TV (s (ac) =

Je)s - Je<ews) [Gap] = true iff p(s) € G,

Proof: Follows from the definition of forcing templates and the assumptions of the
previous chapter using the A\*-c.c..

Claim 2.10: Let m € M and let L C L, be an initial segment.

A) If s € L then IFp, s € Teflll X, where X, = {z € A :HAQLS 715(7") # x} C A (we may
take A'ps instead of this prodict).

B) Pm = (A, D) — cc (hence Py, = AT — c.c).

C) Pz is (< A)-strategically complete.

D) Let t € Ly, if IFp, "y € @Q,” then there is a A-Borel function B, £ < A and a
sequence (r¢ : ¢ < &) of members of uy such that Ikp, "y = B(...,r (a¢), ...)c<e” for

suitable a¢ € ;. .
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E) Irp,, Vim i t € L] = V[G].

~

F) If Ikp, "n € V¢ for some ¢ < A, then there is a A-Borel function B, £ < X and a
sequence (r¢ : ¢ < &) of members of uf such that Ikp, "n = B(..., . (ac), ...)c<e” for

1

suitable a¢c € uy, .

Proof: The proof is by induction on dp(L).
A) Let pe Py and a € I} and let p; = p [ L., then p; € Pp__.

Case 1: s ¢ Dom(p). There is f € Ty, such that a € Dom(f), and by absoluteness
(and parts (D)(2) and (E)(1) of Definition 1.4), IFp, _ "There is p € Qp, n, such that
f =tr(p)”. By the induction hypothesis for clause (D), there are p; < py € P, _g, a
A-Borel function B, £ < X and a sequence (r¢ : ¢ < £) of members of u? such that
palbp,_ "f =tr(B(..;mr(ac), - )¢c<¢)”. Now define a condition ps € Pr, as follows:

Dom(ps) = Dom(pg)UDNom(p)U{s}, ps | Dom(pz) = pa, p3 | (Dom(p)\Dom(py)) =
p I (Dom(p) \ Dom(pz)) and ps(s) = (f,B(-... hc(ac), )e<e)- p,p2 < ps by 2.8 and

the definition of the partial order.
Case 2: s € Dom(p). p(s) has the form Cps) (..., Bp(s),o (-5 e, (a¢), --')Cewp(s),n ) i<u(p(s))
as in definition 2.2(B). In V<o, V[ my, .. Jc<e,,, (see definition 2.2(B) for &)

is a subuniverse, Q = QPS’hSV[”"ntC 7le<60) s well-defined (recall Definitions 1.5(E)
and 1.10(C)) and p(s)[..., M., ---Jc<e,(,, 18 a condition in Q with trunk ¢r(p(s). We

now continue as in case 1, recalling definition 1.2(E).

B) First we shall introduce a new definition: Let L C L, be an initial segment, ¢
an ordinal, v < X and let L[< (] ={t € L : dp(t) < (}.

Now suppose that {p, : @ < AT} C Py.q. Fix an enumeration (s : € < ¢,) of
L[< ¢]. For every a < AT, let uo, = {€ : sc € Dom(p,)}. For s € Dom(p,),
let hso = tr(pa(s)). By 1.2(D)(10), there is Xy € D such that (a,f) € X; —
hsaRp.1hss. For every a < AT, |u,| < |Dom(ps)| < A. For every oo < A*, define
fa 1 ua = A by fo(€) = otp(u, N C), and define g : O(<U)\+ua — D by g(§) = X,,. Let
X € D be the set described in 1.1(E)(2) for (g, (fa, ta : @ < AT)), we shall prove
that for (o, 8) € X, s € Dom(pa) N Dom(pg) — tr(pa(s))Rp.1tr(ps(s)). Given
s € Dom(pa) N Dom(pg), s = s¢ for some § € uq Nug, so (a, B) € g(§) = X, It
follows that tr(pa(s))Rp.1t7r(ps(s)). For such a and 3, it now suffices to define p as
follows:

1. Dom(p) = Dom(p,) U Dom(pg).

2. If s € Dom(pa) N Dom(pg), let tr(p(s)) = tr(pa(s)) Utr(ps(s)).
3.1t 5 € Dom(pa) \ Dom(pg), let tr(p(s)) = tr(pa(s)).

4. If s € Dom(pg) \ Dom(pa), let tr(p(s)) = tr(ps(s)).

13



Paper Sh:1204, version 2023-02-16. See https://shelah.logic.at/papers/1204/ for possible updates.

5. p(s) will be defined accordingly.

C) See, e.g., [Sh:587] for the preservation of (< \)-strategic completeness under
(< A)-support iterations.

D) In order to avoid awkward notation, we shall write B(..., 7, ...)c<¢ instead of
B(...,nc(ac), ...)c<e for suitable a¢ € uf. )

The proof of the claim is by induction on dp(t). Given t € Ly,, we shall prove the
following claim by induction on ¢ < A™:

1. For every p € P, and ¢ < A%t such that p lFp, "y € Hox(IUU) Ark(y) < ¢” there
is a A-Borel function B, such that p IFp, "y = BpN(..., Nres - )c<em) WiﬂNl re € uf.

By a standard argument of definition by cases, this claim is equivalent to:

2. For every antichain I = {p; : i < i(x) < A} such that p; IFp, "y € H<x(IUU) A
rk(y) < ¢” for every i, there is a A-Borel function B; such that Eor every i < i(%),
i “:V[pt ”g =By(..., 775, L)<t

Clause I: ( = 0.
There is nothing to prove in this case.
Clause II: ( is a limit ordinal.

We shall prove the second version of the claim. For every i < i(x), let {p;; : 7 < j(i)}
be a maximal antichain above p; such that every p; ; forces a value ¢; ; to 7k(y). As

p Ik rk(y) < ¢, for every 4, j we have (;; < (. Hence, by the indction, for every
i,] therg is Bij(.oos Mrei s+ )e<e(iy) as required. For every i < i(x) define a name
B, such that B~[G] :NBZ»j( LTS e<ep|G) iff pi; € G and p; ; ¢ G for every
j7 < j. Finally define a name B such that B[G] = Bi[G] iff p, € G and for

every j < i, pj ¢ G. Now let ¢ < i(x), let G be a generic set such that p, € G,
then there is a unique j < j(i) such that p;; € G. Therefore, B|G] = B;[G] =

Bi (s e s )e<eli) G] = g[G], hence p; IFp, ”g = ]NB”.

Clause III: ( =€+ 1.

We shall prove the first version of the claim. Let {p; : i < i(*)} be a aximal antichain
above p such that for every i, p; IFp, ”]y| = ;" for some pu;. Therefore for every

i < i(x) there is a sequence (ym < ,uz) such that p; IFp, ” y= {ym s < )7, By
the assumption, p; IFp, ’ 7“/f(yZ a) < €” for every 7 and . By the mductlon hypothesis,
for every such i and « there is Bia(..s Mr(ciia)s - )c<elia) s required for y; o and

p;. Hence for every ¢ there is a name B, as required such that p; IFp, "y = B;”.
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Now define a name B such that B[G]| = B,[G] iff p; € G and as before we have

~

p ”_]P)t ’7y — 577'
Remark: For ¢ =1, let {p; : i < i(*)} be a maximal antichain above p of elements
that force a value for y from TUU. Let Y C TU U be the set of all such values (so

Y| < A) and denote by a; the value that p; forces to p;. For every generic G that
conatians p, y[G] = a; iff p; € G. Therefore it’s enough to show that for every p;

~

there is a name B of the right form such that B |G] = true iff p; € G. Therefore

it’s enough to show that the truth value of "p € G” can be computed by a A—Borel
function as above, so it’s enough to compute the truth value p [ Py, € G NP, for
every s < t, which follows from the induction hypothesis.

E) By the assumption, for every p € P, and ¢t € Dom(p) there is a A—Borel

function B,; and a sequence (s; : ¢ < &(p,t)) of members of u such that for every

generic G C Py, we have By, (..., TV (s (a¢) = j¢), - )c<e) [G] = true if and only if

p(t) € Gg, (for suitable a; and j¢). Therefore p € G iff ( A ( )Bp,t(..., TV (ns (ac) =
< teDom(p ~

Jc), - )e<e(pi)) [G] = true, hence we can compute G from (1, : t € Ly,).

F) Similar to the proof of (D). O

Properties of the LLy+—closure

Definition 2.11: A) Let p € Py, the full support of p will be defined as follows:

for every s € Dom(p), if p(s) = (tr(p(s)), Bps) (- Mes,c) (@), ---)c<e(s)), then the full

support of p will be defined as fsupp(p) := DU ( ){t(s, ¢): ¢ <&(s)yU{s}.
seDom(p

B) For L C Ly, define Poy(L) := Py [ {p € P : fsupp(p) € L} with the order
inherited from P,,.

C) Let L C Ly, for every s € L, j < XA and a € ]Il)s let psq.; € Pm be the condition
that represents 7,(a) = j such that Dom(p;, ;) = s and let X}, :={psq;:s€ L,a €

IL.,j <A}
D) For L C Ly, define Py, [L] := L+ (X1, Pm) (see definition 1.13).

Remark: For m € M we may define the partial order <* on P, by p <* ¢ if and
only if ¢ Irp,,, "p € G7. As (P, <*) is equivalent to (Pm, <), it’s (< A)-strategically
complete and satisfies (A, D) — cc and we may replace (Pp,, <) by (P, <*).

Claim 2.12: Let me M and L C L,.

A) Py € Ppy[Lyy] is dense and Py, < Py [Lyy], therefore they're equivalent.
) Pm[Lm] is (< A) strategically complete and satisfies AT — cc.

C) Pm(L) C Py, and Py, [L] < Py [ L]
)

8
h

] is (< A)-strategically complete and satisfies AT — cc.
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E) Let G C Py, be generic, for each t € L let 1, := n;[G] and let Gf = {¢ € Py[L] :
Y|G] = true}, then G} is Py [L]-generic over V and V[Gf] = V[n; : t € L].

F) For L; C Ly C Ly, we have Py, (L) C Py(Ls) (as partial orders) and Py, [L;] <

P [Ls).
G) If m,n € M are equivalent (recall Definition 2.6), then Py, (L) = P,(L) and
Pm[L] = Py[L].

H) Let I be a A\ -directed partial order and let {L; : t € I} be a collection of subsets
of Ly, such that s <;t— L, C L;. Let L := tLEJILt, then Py, [L] = tLGJ]]P’m [Ly].

Proof: A) By claim 2.9, there is a natural embedding of Py, in Py [Ly]. For p € Py,
denote by p* its image under the embedding. Now let ¢ € Py,[Lym], there is p € Py,
such that p Ibp,, 1¥[G] = true, therefore for every generic G C P, if p*[G] = true

then p € G and ¢[G] = true, hence Py [Lm] | ¢ < p* and Py, is dense in Py [ L.
B) By 2.10 (B+C), Py, has these properties, and by the clause (A), Pp[Ly] has

these properties too.

C) The first part is by the definition of Py, (L). For the second part, first note that,
by definition, Py, [L] C Py, [Lm] as partial orders. Now note that if i, ¢ € Py,[L] are
compatible in Pu,[Ly], then ¥ A ¢ € Py[L] is a common upper bound, so ¢ and 1
are compatible in Py, [L] iff they’re compatible in Ppy,[Ly,]. Therefore if I C Pp,[L]
is a maximal antichain, then I remains an antichain in Pp,[Ly,]. Furthermore, it’s
a maximal antichain in Py,[Ly,): Suppose towards contradiction that ¢ € Py [Lyy]

is incompatible with all members of [. Let ¢ = 9/\I—|0. As I is an antichain in
€

Pm[Lm] which satisfies the AT — c.c., we have that [I| < A\. As ¢ € Py,[Ly|, there is
a generic G C Py, such that ¢[G] = true. As ¢ is incompatible with all elements of
I, it follows that 0[G]| = false for all § € I. Therefore, ¢ € Py,[L]. But v is clearly
incompatible with all members of I, a contradiction. Therefore, Py, [L] < Puy[Lm].
D) By (B) and (C).
E) We shall first show that G7,_ is Py [Ly)-generic. GF_ is downward-closed, by the
definition of G} and of the order of Pp[Ly|. If ¢, ¢ € G} then (¥ A ¢)[G] = true,
hence ¥ A ¢ € G, so G} is directed. Now let I = {¢; : i < i(%)} C Piy[Lyn) be
a maximal antichain and let J = {p € Pr, : (Fi < i(x))(p IF "Y[G] = true”)}. 1f J
is predense in Pp,, then there is ¢ € JNG. Let i < i(x) such that g IFp,, ";[G] =
true”, then v;[G] = true hence ¢; € G} N I. Suppose towards contradiction
that J is not predense and let ¢ € Py, be incompatible with all members of J, so
q IFe,, "ilG] = false” for every i < i(x). i(x) < A (as Pm = AT — c.c.), hence
Py = /\( )(ﬂwi) € L\(X.,) and ¥, € Ly(X1,,,Pm). Obviously, 1, is incompatible
<2 *
with the members of I, contradicting our maximality assumption. Therefore we
proved that G is Py, [Ly,]-generic.

Now let L C Ly, then Gf_ NPy [L] is Pm[L]-generic and G} NPw[L] = G7.
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We shall now prove that V[GF] = V[, : t € L]. We need to show that G} can be
computed from {n; : t € L}. Let ps,; € X, then py.; € Gf iff ps o [G] = true iff
ns[G](a) = j. Therefore we can compute G} N Xy, and G} from {n,[G] : s € L}.
As 15[G)(a) = j iff psq; € G, we can compute {ns[G] : s € L} in V[G]], therefore
VG =Vns:s € L.

F) If fsupp(p) € Ly then fsupp(p) C Lo, hence p € Pi(L1) — p € Pm(L2), and by
the definition of the order, Py, (L1) C Py,(Lo) as partial orders. For the second claim,
first note that Pp,[L;] C Py, [Ls] as partial orders. Now assume that [ C Py, [L;] is a

maximal antichain. By (C), [ is a maximal antichain in Py,[L.y], hence in Py, [Ls].
Therefore Py [L1] < Pp[Lo).

G) If m and n are equivalent, then q,, = qm, hence Py, = Py, Py(L) = Py, (L) and
Pm[L] = Py[L] for every L.

H) For every t € I, L, C L, therefore Py,[L;] C Pp,[L], so U]P’ [Li] C Pp[L]. In

the other direction, suppose that ¢ € Py,[L] is generated by the atoms {Ps(i)a(i,j(i) :
s(i) € L,a(i) € I, ,j(i),1 < A} Recallthat)\</\2§/\2,hencetherelsz( )E]

such that {s(i) : i < A} C Ly, therefore 1) € Py[L;y)], so Py [L] C igI]P)m[Li}. O
Operations on members of M

We shall define a partial order <;;=< on M as follows:

Definition 2.13: Let m,n € M, we shall write m < n if:

A) Ly C Ly,.

B

Q

) M,
) Qm <KP Qn-
) g,

O

, for every t € Ly, \ M.

E) t/E’ —t/E’ for every t € Ly \ Mm.

F)If t € My, then vg,: = {uN Lyt u € Vgt }, if t € Ly \ M then vg, + = vg
G) If t € My, then {u € vy u C My} = {t € vnyg : u C My}

H)Ift € My and s € Ly, \ M, then {u € v :u C s/EL} = {u € vny:u C s/EL}.

m,t*

Definition 2.14: Let (m, : a < §) be an increasing sequence of elements of M

with respect to <y, we shall define the union n = Uéma as follows:
a<

A) My = My, (o < 6).
B) E, = UE!

a<s M’

C) gn will be defined as follows:
1. Ln= U Ly, .
a<d
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2. For every t € Lq,, Pqn,t = Pqm,.t (for @ < 0 such that t € Lyy,,).

0 _(f.,0 . 1 il
3. For every t € Ly, ug, , = U{ug, ;@ <IAtE Ly, }and tg, , = U, 1
0 _ o . 1 _ !
4. For every t € Ly, wq, ; = U{wy, 1@ <At E Ly, } and wg, , = Y gt

5. ((Buw,, (56(b,Q)sarpe) 1 ¢ <E(t,b)) :be D) : t € Lg,)) will be defined naturally
as the union of the sequences corresponding to the sequence of the m,’s.

6. Vgnt = a%vqma + for every t € Ly,.

It’s easy to see that the union is a well defined member of M.

Claim 2.15: Let (m, : @ < d) and n be as above, then n € M and m, < n for
every a < 0.

Proof: It’s straightforward to verify that m, < n for every a < §. [
Defintion and claim 2.16 (Amalgamation): Suppose that

A) my, m;, my € M.

B)m,<m; (I =1,2).

C) Ly, N Ly = Lim,-

We shall define the amalgamation m of m; and my over my as follows:
L. E,=E, UE, .

2. My = My,

dm Wwill be defined as follows:

3. Ly, is the minimal partial order containing Ly,, and Lyy,,.

4. For every t € Lm, Pqm,t = Pqm,,t Provided that ¢ € Ly,

5. ugmt = ugml WU ugmz + (where ugmpt =0ift ¢ Ly,).

6. Wa, ¢ = Wa,,, + UWa,,, + (Where wgml,t =0ift ¢ Ly,).

T gy = Ugy ¢ Ul o Wo,, = Wg, UWg, ., ie coordinatewise union

—

similarly to 5+6, if ¢ ¢ Ly, the corresponding sequence will be defined as the
empty sequence).

8. For t € Ly, U Lpy,, the A\-Borel functions from 1.5(E) will be defined in the same
way as in the case of m; and ms.

9. If t € L, then vg,: = Vg, t U Vg, - 1 € Ly \ L, (I = 1,2) then
UClm,t = qu17t'
Claim 2.16: m is well defined, m € M and m;, my; < m.

Proof: Straightforward. [

Remark: The amalgamation of a set {m; : 1 < i < i(*)} over my can be defined
naturally as in 2.16.
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Existentially closed iteration parameters

Given m € M, we would like to construct extensions m < n which are, in a sense,
existentially closed.

Definition and Observation 2.17 A) Let m € M, L C L,,, we shall define the
relative depth of L as follows: dpf (L) := U{dpp,, (t) +1:t € LN My}

B) For v € Ord we shall define M as the set of elements m € M satisfying the
following property: Let m < m; < my, Lffl’m = {t € L, : sup{dpn,(s) : s <
t,s € My} <~} (1 =1,2), then P, (L® ) < Pp, (L% ), hence Py, (L) = P, (L)

d mj,y ma,7y
p
for every L C LiF .

C) M., will be defined as the collection of elements m € M such that m € Mi‘i for
every v € Ord.

Observation: m € M, if and only if P,, <P, for every m < n; < n,.

Proof: Suppose that m € M<° for every v and m < m; < my. Choose some v/
such that 7' > dpa,, (s) for every s € My, (I =1,2) and let v =" + 1. Obviously
Lm, = L% (1 =1,2), 50 Ppy, = P, (L% ) < Py (L, ) = Pr,. In the other

direction, suppose that Py, < Py,, for every m < m; < my and let v € Ord. As
Py (L ) <P, (I =1,2), we have Py, (L¥# ) <Py, <Py, and Pr, (L ) < Py,

ma,y

Note that L&  C L¥ . so P, (LE ) C P, (L% ) and it follows that every

ma,y’ mj,y ma,7y

. . . . dp . . . . . dp ec
maximal antichain in Pp, (L ) is a maximal antichain in Py, (LgZ, ), so m € M<°.
U

Definition 2.18: Let y be a cardinal, we shall denote by M, (M, ) the collection
of members m € M such that |Ly,| = x (|Lm| < X).

Claim 2.19: Let 2" < y and m € Mc,, then there is m < n € M, such that
n € M,..

Proof: Denote by C' = ()}, the collection of elements n € M such that:
1. m[ My, <n.
2. Ly \ My, =t/EY for some t.

Definition: Let ny,ny € C| a function h : L,, — Ly, is called a strong isomorphism
of ny; onto ny If:

1. h is an isomorophism of n; onto ns.

2. h is the identity on My,.

Definition: Let R = R,, be the following equivalence relation on Cy,:
n; Rn; iff there is a strong isomorphism of n; onto ns.

We shall now estimate the number of R-equivalence relations:

1. As |Ly| < )\ for every n € C, once we fix M, there are at most 2** possible
isomorphism types of (Ly, <r,.) over M.
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2. Given such Ly, there are at most 2’2 possible forcing templates from P.

3. For every n € C there is t such that |Ly| = |Ly\ M|+ |Mm| = |t/ EL|+|Mmn| < X2
(recalling definition 2.2.A), hence |P(Ly,)| < 22 and for every t € L, there are at

most 2*? possible values for u$_, and wg_,.
n; Qn,

4. For every t, ﬂ}lmt is a function assigning for each s a member of P(I}), so we have
at most (211Eal < 2(+X2) possible functions. Similar argument applies to w}lmt as

well.

Therefore there are at most 2*2 R—equivalence classes. Let (n, : o < 2*2) list all
such classes. For every a < 2*2 we shall choose the sequence (n’, : i < x) such that
each n’, is obtained from n, by the changing the names of the elements in Ly, \ Mpy
such that the new sets are pairwise disjoint and also disjoint to Ly, (for i < x). For
every ¢ there is ¢, ; such that ta,i/Eﬁg = Ly \ My, and tw-/Egé ﬂta,j/Eﬁj = (. Now

let n be the amalgamation of {m}U{n! :i < x,a < 2’2} over m | M,,. Obviously,
necM,.

Suppose now that n < n; < ny. Let F be the collection of functions f such that
for some Ly, Ly C Ly,:

a. Dom(f) = L1, Ran(f) = Ls.

b. My = My C Ly N Lo.

L\ M| < X2 (1=1,2).

d. t/FEy, C L; for every t € L; \ My,.
e. f is the identity on My,.

o

f. f is an isomorphism of ny [ Ly onto ny [ L.

Claim 1: Let f € F, L' C Ly,, L” C Ly, such that |L'| + |L"| < Ay, then there is
g € F such that f C g, L' C Dom(g) and L"” C Ran(g).

Proof: WLOG L' N Dom(f) = 0 = L”" N Ran(f) and |L'| = |L"| = Xa. Let
(a; 11 < Xg) and (b; : j < Ag) list L’ and L”, respectively. We shall construct by
induction on i < Ay an increasing continuous sequence of functions f; € F such that
g = Uf; will give the desired function of the claim.

Li=0: fo:=Ff.

II. 7 is a limit ordinal: f; := 4L<J'fj.
7<t

III. i = 25 +1: WLOG b; ¢ Ran(fs;). By the assumption, L” N My,, hence
bj € Ln, \ M. Since m < ny and M,, C b;/E,,, it follows that m [ My, <
ny [ (bj/En,), hence ny [ (b;/Ey,) € C. Let n, be the representative of the R-
equivalence class of ny [ (bj/En,). By F’s definition, [Dom(fa;)] < Ag. Since n is
the result of an amalgamation that includes n’, (i < x), each n!, is R-equivalent

to n, and Ay < x, it follows that for some i < x, Lpni \ Mm N Dom(fa;) = 0.
Since ny | (b;/En,)Rnl, there is a strong isomorphism A from ny | L, = n!, onto
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ny [ (b;/Ey,). Therefore f; := fo; Uh is a well defined function, b; € Ran(f;) and
f2; € fi. We shall now show that f; € F: conditions a, b, ¢ and e are obviously
satisfied. If ¢ € Lyi \ Mm, then t/E, = t/Ey, (as n < ny) and t/Ey = t/E,; .
Therefore t/Eyn, = t/Eyi € Ly € Dom(f;). Similarly, if ¢ € b;/Ey then t/Ey,, =
b;/En, € Ran(f;), hence condition d is satisfied. It remains to show that f; is an
isomorphism of ny | Dom(f;) onto ny [ Ran(f;). Note that b;/E] N Ran(fo;) =0
(by the assumption that b; ¢ Ran(fs;)), hence f; is an order preserving bijection,
as a union of two such functions (that are identified on My,). It’s easy to check that
fi is as required.

IV. i =2j+2: Similar to the previous case, ensuring that a; € Dom(fa;11).

As F is closed to increasing unions of length Ay, g := UA fi € F is as required,
1<A2

hence we're done proving claim 1.
Denote L, := {s € Ln, : dpn,(s) <7} (80 Ln, = L1, |+)-

Claim 1(+): Let f € F, L' C Ly, such that |L'| < Ay and Ran(f) C Ly, , then there
exists g € F such that f C g, L' C Dom(g) and Ran(g) C Ly,.

Proof: Repeat the proof of claim 1 (in particular, stage 2j + 2). Note that at
each stage we add a set of the form L; to the range. As Ly, C L, C Ly, and
Ran(f) C Ly,, it follows that Ran(g) C Ly,.

Claim 2: Let g € F, then g(Dom(g) N L) = Ran(g) N L.
Proof: By induction on 7.

Claim 3: Given g € F and 7y < |Lyn,|™, the map § is an isomorphism of Py, (Dom(g)N
L.,) onto Py, (Ran(g)NL,) where g is defined as follows: Given p € Py, (Dom(g)NL.),
d(p) = q has the domain g(Dom(p)), and for every g(s) € Dom(q), q(g(s)) =

(tr(p(s)), Bp(s)("'> ng(tg)(aC)v "')C<£) where p(S) = (tr(p(s)), Bp(s)("'v U (aC)v "')C<§)'

Proof: Given g € F, by the previous claim g is a bijection from Dom(g) N L., onto
Ran(g)NL,. As g € F, it’s order preserving and the information of qn, [ (Dom(g)N
L,) is preserved. Hence clearly § is an isomorphism from P,,(Dom(g) N L,) onto
Puy(Ran(g) 1 L),

Claim 4: Py, (L, N Ly,) <Py, (L,).

Proof: By induction on «y. Arriving at stage 7, note that Py, (L, N Ly,) € Py, (L)
(as partial orders). Suppose that pq,ps € Py,(L, N Ly,) are compatible in Py, (L),
and let ¢ € Py, (L) be a common uppper bound. Since | fsupp(p1)|, | fsupp(p2)| < A,
there is L’ such that fsupp(pi) U fsupp(p2) € L' C (Ly U Ly,), |L'| < Ay and L'
is Eyn,-closed. Therefore py,ps € Py, (L'). Similarly, there is L” C L, such that
|IL"] < Xg, fsupp(q) UL C L" and L" is Ey,-closed, hence ¢ € Py, (L"”). Let f be
the identity function on Ly = Ly = U{t/Ey, : t € L' \ My, }. Note that |L;] < Ay
(1t = 1,2) and f € F. Let L} := U{t/En, : t € L"\ My}, then |L]| < Ao,
hence by claim 1(+), there is ¢ € F such that f C g such that L} C Dom(g)
and Ran(g) C Ln,. As fsupp(q) U fsupp(pi) U fsupp(pas) € Dom(g) N L,, we
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have pi1, p2, ¢ € Pny(Dom(g) N L,), hence §(p1), §(p2), §(q) € Pn,(Ran(g) N L,) (in
particular, §(q), §(p1), §(p2) are well defined). By the choice of g, §(p1) = p; and

G(p2) = pe. By claim 3, Py, (Ran(g) N L,) = p1,p2 < §(¢). As Ran(g) C Ly,,
G(q) € Py, (L, N Ly,), hence p; and p, are compatible in Py, (L, N Ly, ). Therefore,
if I CPy,(LyN Ly,), then I remains an antichaim in Py, (L-).

Suppose now that I C Py, (L, N Ly, ) is a maximal antichain, and suppose towards
contradiction that ¢ € Py, (L,) is incompatible with all members of /. By claim 5
below, Py, (Ly N Ly, ) = Pny(Ly N Ly, ). Since L, N Ly, is an initial segment of Ly, ,
Po, (LyNLny) = Poyj(2ynLn, ) <Py, hence P, (LyNLy,) F AT —c.c.and [I| <A < ).
Let (p; : ¢ < Ag) enumerate I’s members, then there is L' C L, N Ly, such that
|L'| < Ay and i<LJ/\2fsupp(pi) C L, hence I C Py, (L'). Define L"” and choose f and
g as before. Again, § : Py, (L, N Dom(g)) — Pn,(L, N Ran(g)) is an isomorphism,
I'U{q} € Dom(g) and § is thee identity on I. Hence §(¢) is incompatible in
Py, (L, N Ran(g)) with all members of I. As before, §(q) € Pp,(Ly N Ly, ), therefore,
in order to get a contradiction, it’s enough to show that §(q) is incompatible in
Py, (LN Ly, ) with all members of I. Suppose that for some p € I, 7 € Py, (LN Ly,)
we have p, §(q) < r. Since g~! € F, as in previous arguments, there is g=' C h € F
such that A(r), h(§(q)) are well-defined and h(p) = p, h(4(¢q)) = ¢. Hence p and
q are compatible in Py, (L, N Ran(h)) and therefore in Py, (L), contradicting the
assumption. This proves claim 4.

Claim 5: Py, < Py,.

Proof: By the previous claim, for v = |Ly,|" we get Ppn,(Ln,) = Pny(Ly N Ly,) <
Py, (L) = Pn,. We can show by induction on ¢ that Py, (Ls N Ly, ) = Pn,(Ls N Ly, ),
hence for 6 = v we get P, < P,,. This proves claim 2.19. [

The following observation will be useful throughout the rest of this paper:

Observation 2.20: Let n € M,. and n < n; < ny, then for every L C L,,,
Pnl [L] - IP>1f12 [L]

Proof: n; < ny, hence for L C L,,,, the set X in definition 2.11(c) is the same for
n; and ny. Let ¢ € Ly(X}), since P,, < Py, there is a generic set G C P, such
that ¢ [G] = true iff there is a generic set H C Py, such that ¢)[H] = true. Similarly,
if "Y[G] = true — ¢[G] = true” for every generic G C Py,, then it’s true for every
generic H C IP,,, and vice versa. Therefore, Py, [L] = Py, [L]. O

Claim 2.21: Suppose that

A) m;, my; € M,..

B) M; = My, (I=1,2).

C) h: My — M, is an isomorphism from m; [ M; onto my | Ms.
then Py, [M;] is isomorphic to Py, [Ms].

Proof: WLOG M; = M, (denote this sset by M), Ly, N Ly, = M and h is the
identity. Let mp :=m; | M = my [ M, then myp < m;,my and Ly, = Ly, N L,
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therefore, by 2.16, there is m € M such that m is the amalgamation of m; and m,
over my and my, my < m. By the definition of M,., as m; € M., m; < m; < m
and M C Ly, (I =1,2), it follows that Py, [M] = Pp[M] = Py, [M]. O

The Corrected Iteration

We shall now describe how to correct an iteration Py, in order to obtain the desired
iteration for the main result.

Definition 2.22: Let m € M, we shall define the corrected iteration P& as Py [ Ly
for m < n € M,. (we’ll show that P¢ is indeed well-defined). For L C L,,, define
P L] := Py[L] for n as above.

Claim 2.23 A) P¢[L] is well-defined for every m € M and L C Ly,.

B) P{ [ M) is well-defined for every m € M and depends only on m [ My,.

C) If m < n then P, < PY.

D)If m <nand L C Ly, then PZ[L] = P¢[L].

Proof: A) By claim 2.19, there is m < n € M., so it’s enough to show that the
definition does not depend on the choice of n. Given ny, ny, € M., such that m < n,,
we have to show that Py, [Lm| = Pny[Lm]. WLOG Ly, N Ly, = Ly,. Let n be the
amalgamation of n;,ny, over m. Since n; € M., ny <n; <nand L, C L,,, we

get Py, [Lm] = Pu[Lm]. Similarly, Py,[Lm| = Pn[Lm], therefore, Py, [Lm| = Puy[Lm)-
The argument for P¢[L] is similar.

B) Suppose that m; [ My, is isomorphic to my | My, and choose n; (I = 1,2) such
that m; < n; € M... Now, m; [ My,, = ny [ My, is isomorphic to ny [ My, =
my | My, hence by claim 2.21, Py, [My,,] is isomorphic to Py, [Mm,]. Moreover,
the proof of 2.21 shows that if m; [ My, = my | My, then Py, [Muy,] = Puy [Mm,),
therefore P, [Mpy,] = P, [Mm,].

C) Choose n < n, such that n, € M., then P& = P, [L,]. As m < n,, it follows
that P = Py [Lu]. By 2.12(F), P = Py [Lm] < Pa. [La] = P<".

D) Choose (m <)n < n, € M., then by definition we get P& [L] = Py, [L] = P [L].
U
The main result

Definition 2.24: Let q be a (A, D)-iteration template such that |Lq| < A; and
|w?| < X for every ¢ € Lg.

We call m = mq € M the iteration parameter derived from q if:

a. dm = (.
b. My = Lg.
c. B, =0.

d. For every t € Lq, v, = [uf]=*.
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Definition 2.25: Given m € M, we define the forcing notions (P} : t € Ly,,U{oo}) =
(P it € Lim U{oc}) as follows: Fix m < n € M. and let P} := Pyp[{s € L, :
s <t} (soP, =P&[{s € L : s < t}] for t € Ly, and P, = P¢). Similarly, let
P} :=Pu[{s € Lm : s < t}].

Main conclusion 2.26: Let q be a (A, D)-iteration template. The sequence of
forcing notions (P, : ¢t € Ly U {o0}) from 2.24 has the following properties:

A) (P} :t € LqU{o0}) is <-increasing, and s <t € LY = P, <P, <P}.

B) 7 is a P/-name of a function from I}, to A.
C) (ns : s < t) is generic for P;.

D) Py is (< \)-strategically complete and satisfies (A, D)-cc.

E) If t € Ly U {oo} and every set of < A elements below ¢ has a common upper
bound s < t, then P} = %Pls'

F) P < (2 (1] +2)*

Dy
€lq
G) If U1,Uy C Lq and n | Uy is isomorphic to n [ Us, then P [U;] = Pu[Uy] is
isomorphic to P& [Us] = Py[Us]. Moreover, if U C Lg is closed under weak memory
(as is always the case), then Pg; is isomorphic to Pg[U]. It follows that for every
t € Lq, Pg1_, is isomorphic to Pg[L] = P;.

Proof: A) By 2.12(F).

B) By the definition of 7,,.

C) By the definition of P,[{i : i < a}]. More generally, this is true by the definition
of the Ly+-closure, as (7, : @ € L) is generic for P,[L] for every L C d,.

D) By 2.12(D).

E) By 2.12(F), L<JtIP”S C IP,. In the other direction, suppose that ¢ € P, = P,[{s :

s < t}] and let {ps@iyag) o) - ¢ < A} € Xi_, be the set that L,+-generates ¢». By
our assumption, the set {s(i) : ¢ < A\} has a common upper bound s’ < t. Hence
{Pstiyatyge 1 <A} S Xp_,, 850 % € Py[{s:s <s'}] =P, and equality follows.

F) As P = Py[Lq] = Lo+ (X1, Pn) (recall definition 2.11), the claim follows by the
definition of X and the definition of the Ly+-closure.

G) Choose n > m such that n € M, and M,, = L, therefore, by claim 3.12 in
the next section,P,[U] is isomorphic to Py, [Us] where (n,n, Uy, Us) here stands for
(my, mg, My, Ms) there. For the second part of the claim, choose m [ U < n’ € M.,
thenn' [ U =m | U = n | U, and as before, PZ[U] = P,[U] is isomorphic to
Py (U] =Pgp-

Proving the main claim
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Existence of an existentially closed extension of adequate car-
dinality for a given m €¢ M

Our goal will be to show that for every m € M, if L, = M, and n = m [ M where
M C My, then PJ < P&, In particular, in Conclusion 3.13 we get that for every
U C 4. closed under weak memory, PI; < P = Ps, .

Definition 3.1: A) m € M is wide if for every t € Ly, \ My, there are t, € Ly, \ My
(v < AT) such that:

1. m | (to/Em) is isomorphic to m [ (t/Em) over My,.
2. to/EL # tg/EL for every a < 8 < AT.

B) m € M is very wide if m satisfies the abve requirements with \™ replaced by
| Lin|-

C) m € M is full if for every m | My, < n such that E! consists of one equivalence
class, there is t € Ly, \ My such that n is isomorphic to m [ (t/Ey,) over Mp,.

Remark: In the proof of theorem 2.19, we constructeed n € M., by amalgamating
(n! ;i <y, < 2*). Therefore, for every t € Ly \ M, there are i and « such that

t belongs to n [ t/E, = n’,. As n includes (n’, : i < x), by choosing representatives
ti € L \ My (i < x) we get that n [ (£/Ey) is isomorphic to n [ (¢;/Ey) for every
i < x. Since t;/Ey # tj/Ey for every ¢ < j < x and |L,| = ¥, it follows that n is
very wide. By the construction of n, it’s also easy to see that n is full.

Definition 3.2: Let L C L,, and ¢ € Py, we say that p is the projection of ¢ to L
and write p = 7. (q) if the following conditions hold:

a. Dom(p) = Dom(q) N L.

b. If s € Dom(p) then:

L By (00), - Jeew, < 151} = (B a), ey, ¢ <
t(q(s)) ANt : € € Wy} C L}

2. tr(p(s)) = Lthr(Bq(s)7L(...,77tC(a<), -'-)C€Wq<5>,L) for ¢ < u(q(s)) and {t, : ¢ €
Wy} C L. :

Observation 3.3: Let m € M, L C L, and q € Py,.

a. The projection p = 7 (q) exists and p € Py, (L).

b. m.(q) < q.

Definition 3.4: Let m € M, denote by F,, the collection of functions f having
the following properties:

a. There are L1, Ly C Ly, such that f is an isomorphism of m [ L; onto m | Ls.
b. My, € Ly N Ls.
c. Forevery t € Ly \ M, if t € L; (I =1,2) then t/Ey, C L.
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d. {t/EL, :t€ L\ M} <A\
e. f is the identity on My,.

Claim 3.5: A. Let m € M be wide. For every f € Fy and X C Ly, if | X| < A
then there is g € F, such that:

L. fCuy.
2. Dom(g) = Ran(g).
3. X € Domf(g).

B. If g € Fi satisfies Dom(g) = Ran(g), then ¢* := gUidp,\pom(g) s an automor-
phim of m.

Proof: A. By the proof of claim 1 in 2.19, f can be extended to a function f' € Fi,
such that X C Dom(f’). It’s enough to show that for every f' € F, there is
f' € g € Fum such that Dom(g) = Ran(g). The argument is simiar to claim 1
in 2.19. Obviously, Dom(f’) and Ran(f’) are each a union of M,, with pairwise
disjoint sets of the form ¢/E! | and for each such t/E} exactly one of the following
holds:

a. t/E} C Dom(f") N Ran(f").

b. t/E C Dom(f') is disjoint to Ran(f’).

c. t/El C Ran(f') is disjoint to Dom(f").

As m is wide, for every t/E” as in (b) there are AT t, € Ly, \ My, as in definition
3.1. Therefore there is f' C f; € Fy, such that Dom(f") C Ran(f;) and Ran(f’) C
Dom(f1). Proceed by induction to get a sequence " C f; C ...f, C ... of functions

in Fp such that Dom(f,) € Ran(f,4+1) and Ran(f,) C Dom(f,41) for every n.
Obviously, g := ) fn € Fum 18 as required.

B. This is easy to check. [

Remark: By the last claim, given f € F,,, we may extend it to g € Fy, such
that Dom(g) = Ran(g), and g may be extended to automorphism h := g of
m. As in claim 3 of 2.19, h induces an automorphism h of P, and obviously
f = h | Pm(Dom(f)) is an isomorphism of Py (Dom(f)) to Pm(Ran(f)).
Definition 3.6: Given m € M, ( < A", ¢; € Ly, \ My, (I = 1,2) and sequences 5
of length ¢ of elements of ¢;/El . we shall define by induction on v when (¢, 51) and
(t9, 52) are y-equivalent in m. We may write s; instead of (¢, 5;), as the choice of ¢,
doesn’t matter as long as it’s E -equivalent to the elements of §; (and 5, # ()).

A v =0:Let L; = cl(Mm U Ran(s;)) (recalling definition 1.4(A)) for [ = 1,2.
(t1,51) is O—equivalent to (ts, So) if there is a function h : L; — Ly such that the
following hold:

1. h is an isomorhism from m [ L; to m [ Ls.

2. h maps s; onto Ss.
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3. h is the identity on My,.
4. h induces an isomorphism from Py, (L;) to Py, (Ls).

B. v is a limit ordinal: s; is v-equivalent to s, iff they're S-equivalent for every
B <.

C.~v = (0+1: s is y-equivalent to s, if for every e < AT, [ € {1,2} and a sequence s,
of length € of elements of ¢;/E! | there exists a sequence §;_, of length € of elements
of t3_;/EY such that s;5] and 555, are [S-equivalent.

Definition 3.7: Let [ be a limit ordinal, Fy, s is the collection of functions f
l .

such that there is a sequence (t!, 5l : 1 <[ < 2,i < i(x)) satisfying the following
conditions:

A () < AT

B. For I = 1,2, (£ : i < i(%)) is a sequence of elements of Ly, \ My, such that for
every i < j <i(x), t\ and té are not E! -equivalent.

C. 5t is a sequence of length ((i) < A™ of elements of t./E/ .
D. 5! and 5% are -equivalent.

E. f is an isomorphism from m [ L; to m | Ly where L; = KLiJ(*)Rcm(Eﬁ) U Mm
(1=1,2).

F. For every i < i(*), f maps 5} onto 5.

G. f is the identity on My,.

Claim 3.8: Let m € M be wide and suppose that:

A.m; <m.

B. For every t € Ly, \ L, ¢ < AT and a sequence s of length ( of elements of t/E |
there is a sequence (t;,S; : i < AT) such that:

1. ¢; € Lm1 \Mm1

3. 5; is a sequence of length ¢ of elements of ¢;/Ey, .
4. (t;,8;) is 1—equivalent to (¢,5) in m.

Then Py, < Pp,.

Proof: We shall freely use the results from Section 4. Specifically, we shall use the
fact that a function f € F, g induces an isomorphism f from Py, (L1) to Py (Ls) for
L, and Ly as in definition 3.7 (see Claim 4.3). Now, note that if f € Fp 5 for 0 < g
and L C Ly, such that |L| < A, then by the definition of 1—equivalence, f can be
extended to a function g € Fp, such that L C Dom(g). Hence § is an isomorphism

with domain Py, (L; U L) such that f C g.

Claim 1: If 0 < § then f preserves compatibility and incompatibility.
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A,

Proof: Assume that p,q € Dom(f) and r is a common upper bound in Py,. If
r € Dom(f), then since f is order preserving, then f(p) and f(q) have a common
upper bound.. If r ¢ Dom(f), then use the definition of Fp, s to extend f to
a function § such that g(r) is defined (and g € Fmyo), and repeat the previous
argument. The proof in the other direction repeats the same arguments for f—1.

Claim 2: Suppose that i(x) < AT, p; € Py, (¢ < i(%)) and p € Py,, then there is
p* € Py, such that:

LPnEp<piff P Fp <p

2. For every ¢ < i(x), p and p; are incompatible in Py, iff p* and p; are incompatible
in P,.

Proof: Note that if p € Py, then p € Py, iff fsupp(p) C Ly, , therefore we need to

find p* € Py, satisfying the requirements of the claim such that fsupp(p*) C Ly,.

Let Ly C Ly, be a set containing ( Lg : fsupp(p;)) U My, and closed under weak
<a(*

memory, such that |L; \ My| < A (such L exists, recalling that i(x) < AT and
[w?| < A), then {p; : i < i(x)} C Pn(Ly). For every p; that is compatible with p
in Py, let ¢; be a common upper bound. As before, there is Ly C Ly, containing
LU (Ufsupp(q:))U fsupp(p) and closed uner weak memory such that |Lg\ Mp,| < A
and Py, (Ly) contains p and all of the ¢;. We shall prove that it’s enough to show
that there is f € Fy 1 such that Ly € Dom(f), Ran(f) C L, and f is the identity
on Ly. For such f define p* := f(p) Now f is the identity on {pi + i < i(x)} and
f (p) € Pu,. By a previous claim, f preserves order and incompatibility, hence p* is
as required. It remains to find f as above. WLOG LyNLy,, € Ly. Let (¢ : j < j(*))
be a sequence of representatives of pairwise E! -inequivalent members of Ly, \ Mp
such that every t € Ly \ Ly is B} -equivalent to some ¢;. For every such t;, let 5,
be the sequence of members of ¢;/E} in L, \ L;. By the assumption, for every pair
(55,t;) as above there exist A* pairs ((5;,,t;;) : ¢ < AT) which are 1—equivalent as
in the assumption of the above claim. By induction on j < j(x) < AT choose the
pair (5;(;),tj,i(;)) such that t;;;)/Ey, are with no repetitions (this is possible as
j(x) < AT). Now define f € Fp1 as the function extending id | L; witnessing the
equivalence of the pairs we chose. Obviously, f is as required.

Claim 3: P, <Py,.
Remark: We shall use Section 4 in the following proof.

Proof: We shall prove by induction on + that P, (L ) <Pm(L¥_ ). For 7 large
enough we’ll get Py, < Pp,.

First case: v = 0.

Denote £ = E] | Lf}l’ﬁ. E is an equivalence relation and E | L¥ = EJ | L& .

Now the claim follows by the fact that Pp (L% ) (and similarly IP’r;,l (L ) can be
represented as a product with < X support of {Pm(t/E) : t € L% _}.

Second case: 7= [+ 1.
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Denote Mg := {t € My, : dp},(t) = B}, then Mp’s members are pairwise incompa-
rable.

Claim: Pp, (L? ;U Mg) < Pe(LE 5 U Mp).

Proof: We shall prove the claim by a series of subclaims.

Subc(liaim: Given p,q € Pml(Lf;’jMB U Mp), IP’ml(Lff:lﬂ UMj) = p < ¢ if and only if
P(LmgUMg) Ep<gq.

Proof: Note that Lfﬁlﬁ U Mp and L pﬁ U Mp are initial segments of L, and Ly,
respectively. Note also that if n € M and Ly C Ly C Ly, then Py, < Py,, and
if L C L, is an initial segment then P,(L) = Py;. Obviously, Lfﬁlﬂ and Lflfl’ﬁ are
initial segments of L,y,, and Ly,, respectively. Now the claim follows by the definition
of the forcing’s partial order (definition 1.8) and the induction hypothesis.
Subclaim: Given py,ps € P, (Li’l’lﬂuMg), p1 and po are compatible in Py, (Lm1 s
Mg if and only if theey're compatible in Pm(Lffl’ﬁ U Mag).

Proof: By the previous subclaim, if p; and py are compatible in Pml(Lfﬁlﬁ U Mp)
then they’re compatible in Pm(Lifﬁ U Mpg). Let us now prove the other direction.

Suppose that p € ]P’m(Li’l’ﬂUMﬁ) is a common upper bound of p; and p, in IF’m(LﬁfﬁU
Mp). As in the proof of claim 2 above, find f € Fy, 1 such that fsupp(p)Ufsupp(p;)U

fsupp(p2) € Dom(f), f I (fsupp(p1)Ufsupp(p2)UMp) is the identity and Ran(f) €
Ly, . Note that if t € Dom(f)N Ldpﬂ then f(t) € Lﬁ’lﬁ. Since f((Dom(f)ﬂLfgﬁ)U

Mpg) C Lfﬁlﬁ U Mg, it follows that f(p) € ]P’ml(Lffil”B U Mpg), and as before, it’s a
common upper bound as required.
Claim: Py, (L pl 5 UMgp) <Py(L pﬁ U Mp).

Proof: Let I C Py, (L% my.3 U Mpg) be a maximal antichain and suppose towards
contradiction that p € Py, (L pﬁ U Mp) contradicts in Py, (L pﬁ U Mp) all elements
of I. As before, choose f € Fy,1 which is the identity on Mz and on fsupp( )
for every ¢ € I, such that Ran(f) C Lu, (hence f(Dom(f) N Lm7 ) C Lmlﬁ)
Now f(p) € IP’ml(Ldp 5 U Mpg) and f is order preserving, hence f(p) contradicts all
members of I in Py, (L% .53 U Mg), contradicting our assumption. Therefore I is a
maximal antichain in Py, (L pﬁ U Mp) and IP’ml(Lm1 5) <P (Lde U Mp).

We shall now continue with the proof of the induction.

Denote L, = L% \(Ldpﬁ U Mjg) and denote by & the collection of pairs (s1, s9) such

that s1, 5, € L% \( b sUMg) and s1/Ey, = 55/ E},, so £ is an equivalence relation.
Note also that 1f S1 and so are not E-equivalent, the they’'re incomparable.Now
observe that the following are true:

1. Suppose that s € L,,t € Ly, andt < s. Ift ¢ Lmﬁ, then there is € Mg such that
r < t. Therefore, either t € Mg ort € L, and t€s, hence Ly, <5 C L pBUMBU(S/S)

2. Similarly, if s € L, N Ly, then Ly, s € L ;U Mz U (s/€).
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Let {X. : € < ¢(x)} be the collection of £-equivalence classes and let U; = {e : X, C
L V. Z=LT,U{X. et Ui} UMs, Y =LY, U{Xeeer, } U M;.

mij,7y

It’s easy to see that:
L L#  =U{X.:e€ Uy ULE ,UM;.

my,7y

d d,
2. ZNLE  =L7¥ ;U Ms.

mj,7y

3. ZULE = L% UM;.

mij,y
4. ZNY =L¥ ;U M;.
5. ZUY =L% .

By observation (1) (the first one), Y and Z are initial segments of Ly,, and if s € Z\Y
and t € Y\ Z, then ¢ and s are incomparable. Note also that P, (YUZ) = P (L& ).
Since Y is an initial segment, Pp(Y) < Pp(Y U Z). Let Yy = L® U Mg, Yy =

mi,y

L% m,3U Mg, obviously Y2 and Y1 UY; are initial segments of Ly,. Let Yy = Y1NY5, then
Prny (Yo) = Prny (LE 5 U Mpg) < Pp(LE 5 U Mj) = Py (Y2). Since Pry, (Yp) = P (Yo),
we get Pporam (Y0) < P (Y2). Note also that Y3 \ Yy is disjoint to My,, Yy is an initial
segment of Yy and if ¢ € Y \ My, then (t/E0) N Ly <s C Y.

Finally, the desired conclusion will be derived from the following two claims:

Claim 3 (1) Suppose that Y7, Y5, Y3 C Ly, and Yy = Y1 NY5, then P, (V1) <Py (Y3)
if the following conditions hold:

Y, C Y3 are initial seegments of L.

Y: C Y5 and Yj is an initial segment of Y.

Pra(Y0) < P (Y2).

Y\ Yo N My, = 0.

Ift €Y, \ My, then t/E) N Ly <t C Y.

Claim 3 (2): Py, (L1) = P, (L) < Py, if the following conditions hold:

A e

1. m; <m,.

2. Ly C Ly C Lyy,.

3. Ly is an initial segment of L.

4. P, (Lo) = P, (Lo).

5. P, (Lo) < Py, for I =1,2.

6. if t € Ly \ Lo then t ¢ My, and Ly, <t N (t/Em;) = Ly <t N (t/Em) C L.

By claim 3(2 ), with (my, m, Yy, Y)) standing for (mj, my, Lo, L) in the claim, we

get P, (Y1) =P (Y1) < IP . By claim 3(1), it follows that Pp (L% ) = P (Y1) <
Pn(YIUY,) = Py(Y) < (Y UZ) = Pw(L¥.). Together we get Py, (L ) =
Pun, (Y1) = Pun (V1) < Pra (L ).
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Proof of claim 3 (1): We shall prove by induction on v that if (Yp, Y], Y2, Ys) are
as in the claim’s assumptions and dp(Y7) < v then:

L P (Y1) < Pm(Y3).

2. If A) then B) where:

A) 1. ps € P(Y)

2. po € Pm(Y)).

3. If pp < qo € P (Yp) then py = p3 | Y2 and ¢o are compatible.

4. pr=poU(ps | (Y1\Y0)).
B) If py < ¢1 € P(Y7) then ¢; and p3 are compatible in Py, (Y3).
Suppose we arrived at stage ~:

For part 2 of the induction claim: By assumption 5 and the definition of the condi-
tions in the iteration, fsupp(ps | (Y1 \ Yo)) C Y3, hence p; € P, (Y7). Suppose to-
wards contradiction that A) does not hold for some p; < ¢; € P, (Y7), then there are
s € Dom(ql) N DOm(p3) and p;’)r S ]P)m(Lm,<s) such that p3 f Lm,<57 0 f Lm,<s < pgr
and p3 | Lm<s IF "qi(s) and p3(s) are incompatible”. Since s € Dom(q) C Y3
and Y5 is an initial segment, then necessarily s ¢ Y, (otherwise we get a contradic-
tion to assumption A)(3)). Pm = p1 < q1, hence ¢ [ Lm<s IF pi(s) < qi(s). As
q1 | Lm,<s < py, it follows that pf | Lm<s IF p1(s) < qi1(s). Now s € Y7 \ Y, hence
p1(s) = pa(s), hence p3 | Lm<s IF p3(s) < qi(s), contradicting the choice of p3.
This proves part 2.

For part 1 of the induction claim: Obviously, Py, (Y1) C Py (Y3) and Py, (Y1) Ep < ¢
iff Pr(Y3) = p < ¢. Suppose now that ¢1,q2 € Pm(Y1) and p3 € Pp(Y3) is a
common upper bound, we shall prove the existence of a common upper bound in
Pm(Y1). Since Y3 is an initial segment, it follows that fsupp(ps [ Y2) C Y3, hence
ps | Ya € Pp(Ya). Since P, (Yy) < P (Y2), it follows that there exists py € Pm(Y0)
such that if pg < g € m(Yp), then ¢ and ps | Y are compatible. Let p; := po U (ps3 |
Y1\ Yp). As in the proof of part (2), p1 € Pm(Y1). If p1 < p} € P(Y1), then by
part (2) of the induction claim, p) is compatible with p3. We shall prove that p; is
a common upper bound of ¢; and g,. As we may replace py by po < p, € Pm(Y0),
we may assume WLOG that Dom(q;) NYy € Dom(py) € Dom(p:) (I = 1,2). Also
Dom(q) \ Yo € Dom(ps) \ Yp. As Y3 is an initial segment, it follows from our
assumptions that Pp, (Yy) <P (Y2) < Py,. Since pg is compatible with ps [ Y in Py,
they’re compatible in Py, (Yy), hence there is a common upper bound for pg, ¢; | Yo
and gy [ Yp. Therefore WLOG ¢; [ Yo < po (I = 1,2). Assume towards contradiction
that ¢ < p; doesn’t hold, then there is s € Dom(q) such that ¢ | Lm<s < p1 |
L <s but py [ L <s ¥ q(s) < pi(s). If s € Yo, then as Y is an initial segment
of Y7, it follows that po | Lm<s = P1 | Lm<s and po(s) = pi(s), contradicting the
fact that ¢; < po. Therefore s € Y7 \ Y. Let Yj = Y, V) = Yo U (Y1 N Lin<s),
Y] = Ys and Yy = Y;, then (Y], Y/, Y], Ys) satisfy the assumptions of claim 3 (1)
and dpm,(Y]) = dpm(s) < 7. By the induction hypothesis, Py, (Y{) < Pp(Yy). As
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s € Y1\ Yy (and by the assumption, s ¢ M,y), it follows from the assumption that
(s/Em) N L <s C Y]. Therefore by the definition of the conditions in the iteration,
fsupp(p1 T {s}), fsupp(q | {s}) € Y{. Therefore pi(s) and q(s) are Pr,(Y{)-names.
Recalll that p1 [ Lm<s ¥ ¢i(s) < pi(s), Lm<s C Y3 = Y] are initial segments
and P, (YY) <Py (Yy). Therefore Py (Y{ N Lin <s) < Pm(Y3 N L <5) and fsupp(pr |
L <s) €Y1 N Ly <s. Therefore py [ (Y{ N L <s) Wb (Y/NLon, <) qi(s) < p1(s), hence
there exists p1 [ (Y{ N L,<s) < pi7 € Pim(Y] N Lin,<s) such that pi e, v/aLm, <)
—qi(s) < pi(s), hence py Ibp, (vinLm <) ~@(s) < pi(s). By part (2) of the induction
hypothesis with v, = dpm(s) as v and (p; | (Y{ N Lim<s),pT,p3 | Lm.<s) standing
for (p1,q1,p3) there, pf is compatible with p3 | L <s in Pm(Lm<s). Let p3 be a
common upper bound. As ¢ < ps, p3 e, (vinLm<.) @(s) < ps(s) = pi(s) (vecalling
that s ¢ Y5). As p by (vinim.<.) ~(s) < pi(s), we get py Irp, (vinLm <) —@i(s) <
p1(s). Together we got a contradiction, hence p; is the desired common upper
bound and Pp, (Y1) Cie Pr(Y3). In order to show that P, (Y;) < P (Y3), note that
for every p3 € P, (Y3) we can repeat the argument in the beginning of the proof and
get po € P(Yp) and p; € P, (Y1) that satisfy the requirements in part (2) of the
induction. Hence, part (2) holds for (pg, p1, ps) hence Py (Y1) < P (Y5).

Proof of claim 3 (2): Forl = 1,2 define the sequence L; = (L, : i < 4) as follows:
Lo =Ly, Liy = L1, L3 = Ly, and L; o will be defined as the set of s € Ly, such
that s <t for some t € Ly. It’s easy to see that (my, El) satisfies the assumptions of
claim 3 (1), therefore P, (L1) = P, (Li1) < P, (Li3) = Pm,, 80 Py (L1) < Py, as
required. We shall now prove the remaining part of the claim. Let (s, : a < a(x))
be an enumeration of the elements of L; \ Lo such that if s, < sz then a < /5. For
every a < o) define Ly, = Lo U {sg : f < a}. We shall prove by induction on
a < a(x) that Pm, (Low) = Pmy(Loa). For a = a(x) we'll have Py, (L1) = P, (L1)
as required.

First case (o« = 0): In this case Ly = Ly, and the claim follows from assumption
(4).

Second case (« is a limit ordinal): Obviously Pm, (Loa) = Pm,(Loa) as sets.
By the definition of the partial order and the induction hypothesis, it follows that
P, (Loa) = Pmy(Loo) as partial orders.

Thirs case (a = 4+ 1): Obiously P, (Lo.a) = Pm,(Loa) as sets. Suppose that
P, (Loo) Ep < q. If s3 ¢ Dom(q), then p,q € Py, (Log) and the claim follows
from the induction hypothesis. If sg € Dom(p) N Dom(q), then by the definition of
the iteration, Pm, (Log) Fp [ Log < q [ Log and q [ Log IFp,, (L5 P(55) < q(sp).

Now note that fsupp(p | {sg}), fsupp(q | {sg}) C Lo g, hence p(sg) and q(sz) are
P, (Lo g)-names. In addition, p [ Log,q | Log € Pm,(Log) = Pm,(Log), therefore

by the induction hypothesis Pm,(Los) = p [ Lop<qizos and q [ Log IFpn, (Los)
p(s3) < q(sp). Therefore Py, (Lo o) = p < q. The other direction is proved similarly.
This concludes the proof of the induction and claim 3 (2).

We shall now return to the original induction proof.

Third case: 7 is a limit ordinal.
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By claim 2, P, (L, ) < Pm. Apply that claim to (m; | Lfgm, m | Lffl’y) instead of

(my, m) and get P (L% ) <P (L% ). Note that P, (L¥ ) = P (L% ) as sets,

mij,7y my,?y miy,y
and the definition of the order depends only on IP’ml(Lffflﬁ) for § < 7, therefore

by the induction hypothesis P, (L# ) = Pm(L% ). Therefore P, (L¥ ) <
P (L), O

Definition 3.9: Let m € Mc,, and M C M, such that, as always, w? C M for
every t € M. Define n = m(M) € Mc,, as follows:

1. qn = 9m-
2. My, =M.
3. B, ={(s,t) : s £t N{s,t} £ M}.
4. Uy = Um.

It’s easy to check that n satifies all of the requirements in Definition 2.2 and is
equivalent to m, therefore P, = P,.

Claim 3.10: Let m € Mc,, and M C M, such that, as always, w? C M for every
te M.

A. If n := m(M) < n; then there exists m; € M such that m < m; and m; is
equivalent to nj.

B. If m € M, then m(M) = n € M,..
Proof: A) Define m; € M, as follows:

1. dm; = Qn,-
2. My, := Mp,.
3. E;nl = EL U{(s,t): sEl’ﬂlt A{s,t} C (Ln, \ Ln) U M}.

We shall show that m; € M. E] is an equivalence relation on Ly, \ Mm,: Suppose
that s,¢,7 € L, \ Mm, such that sE ¢t A tEy r. If sE[t ANLE,r or sE] t A
tEy r AN{s,t,r} € (Ln, \ Ln), then sEy, r, therefore we may assume WLOG that
sELt NtEL v A{t,r} C Ly, \ Ly, but this is impossible as sEy,t hence t € Ly, =
Ly. Therefore E is a transitive relation on Ly, \ Mmy, and obviously it’s an
equivalence relation. Suppose now that s,t € Ly, \ My, are not E} -equivalent.
If 5,6 € L, \ Ly then s,t are not E], -equivalent, therefore s <y, t iff there exists
r € My, such that s <,, r <y, t. Therefore s <;,, t iff there exists r € My,
such that s <, 7 <m, t. Suppose that s,t € L, \ Mpy,, theen they're not E! -
equivalent, therefore syt iff there is r € My, such that s <, r <u t. Therefore
Sm,t iff there exists r € My,, between them. Finally, suppose WLOG that s €
Ly, \ Ln Nt € Ly \ My, and s < t. If s and ¢ are not Ey,-equivalent, then as
before, s <, t iff there is r € My, between them. If sE] ¢, then s € t/E}, =t/E},
hence s € Ly, contradicting the choice of s. This proves that m; satsifies the
requirement in defiition 2.2(A)(D)(2). It is easy to verify that m; satisfies the rest
of the requirements in definition 2.2. For example, 2.2(A)(6) : Let t € Ly, \ Mm,,
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if t € Ly = L then ug = ug, , =ug , =ug , Ct/E, Ct/E,, . Suppose that
t € Lin, \ L, then ug, =g, , Ct/Ey hence similarly ug, , € ¢/Ey,

Suppose that ¢t € Ly, U € vm, ¢ and u € My, then u € vy, ; and u € My, hence
there is s € Ly, \ M such that u C s/E], . There are now two possibilities:

1. t ¢ Mm,. In this case, for every t € Ly, \ Mm,, u C udy, , € t/E}

2. t € My,,. Suppose that s ¢ L. If there is r € u such that r € Ly, \ M,, then
s € r/E,, = r/E}, hence s € Ly, which is a contradiction. Therefore u U {s} C
(Ln, \ Ln) UM hence u C s/E;, . Suppose that s € Ly, then u C s/E, = s/E;, C
L, therefore u € vy = Umy, hence there is r € Ly, \ My, such that u C r/E].
Therefore v C r/E;, . The other requirements of definition 2.2 are easy to verify,
therefore m; € M and obviously m < m; and m; is equivalent to n;.

B) Suppose that n < n; < ny and let m < mj, my be as in part A) for n; and
my. We shall prove that m < m; < ms. First note that qm, = dn; < Gny = Am,
and My, = My = Muy,. Let t € Ly, \ My, and suppose that s € t/E, . By the
definition of my, if t € Ly, then s € t/E, Ct/E],. Ift € Ly, \ Ly then sE] t,
hence sE t and it follows that sE;, t. Therefore t/E;, C t/E;, . Suppose now
that s € t/E,, . If t € Ly then s € t/E, =t/E, Ct/E, . Ift € Ly, \ Ln
then s t, hence sk} t and sk t. Therefore t/E}, Ct/E;], . Similiarly it’s easy
to verify the rest of the requirements for "m; < my”, therefore m < m; < ms.
Now m € M,,, therefore Pp,, < Py,,. Since my; is equivalent to n; (I = 1,2), we get
P,, < P,,, hence n € M., as required. [

Claim 3.11: Let m € M,,, then there exists n € M., such that m < n and
|Ln| < Ao

Proof: Use claim 2.19 to pick n € M, for x large enough, such that n € M, is
very wide and full and m < n. We shall try to choose m, € M by induction on
a < A§ such that the following conditions hold:

1. my = m.

2. (mp: B < a)En) is <p-increasing and continuous.

3. |Lm,| < Ao

4. If a = 4 1 then one of the following conditions holds:
A) mg is not wide and m,, is wide.

B) There is t; € Ly, \ M, and a sequence §; of elements of t;/E} such that for every

ty € L, \ Mn and a sequence 5 of elements of ¢,/ Eﬁlﬂ, (t2, S2) is not 1-equivalent
to (t1, 1) in n, but there is a 1-equivalent pair (3, S2) in Ly, .

We shall later prove that since Jy(\1) < Ay, there exists a < A§ for which we

won’t be able to choose an appropriate m,. If § is a limit ordinal, then we can

we can define mgs = Ugmﬂ,, hence necessarily a has the form o = g+ 1. We shall
<

prove that mg is as required. First we shall prove that the pair (mg, n) satisfies the
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assumptions of claim 3.8 where (mg,n) here stands for (m;, m) in 3.8. Obviously,
My, < 0. Suppose that t € Ly \ Ly, and 5 is a sequence of < AT members of
t/EY. Let m, € M be wide such that mg < m, < n, |Ly, | < Ay and s,¢ are
from L,,,. As m, does not satisfy the induction’s requirements, necessarily there
are ty € Ly, \ Mm and a sequence sy of elements of ¢,/ Eﬁlﬁ that are l-equivalent
to (t1,51) in n. If mg is wide, then there exists sequence (1, : @ < AT) of elements
of L, \ M such that ro/Ey,, # ry/Ey,, for every a < v, and mg | (ra/Em,)
is isomorphic to mg [ (t2/Em,) for every e < A*. For every o < A*, denote that
isomorphism by f, and denote by s/, the image of sy under f,. Now obviously the
sequence ((rq,s,) : a < A7) is as required. If mg is not wide, then since m,, is wide,
wwe get a contradiction to the fact the that induction terminated at mg. Therefore
(mg, n) satisfies the assumptions of claim 3.8.

Now suppose that mg < n; < ny. First assume that ny, < n and |Ly,| < Xs.
Suppose that t € Ly, \ Ly, and § is a sequence of length ¢ < A" of elements of ¢/E}.
Since (mg, n) satisfies the assumptions of claim 3.8, there are A* #; € Ly, \ Mm, C
Ln, \ My, and sequences 5; from ¢;/Ey, = t;/E}, as in the assumptions of claim
3.8. By claim 3.8, P,,, < P,,. Similarly, P,,, <P, therefore P,, <P,,.

Why can we assume WLOG that |Ly,| < Ao?

Let x be a cardinal large enough such that mg, n;,ny,n € H(x), and let N be an
elementary submodel of (H(x), €) such that:

1. mg,n;,ny,n,m e N.

2. [N]s* C N.
3. [INJ| < o
4. X +1CN.

Let ' =Ly, NN, n,=mny [ L’ and n} =ny [ (L'N Ly,). Now we may work in N
and replace (ny,nz) by (n1,n5), as |Ly,| < Ay, we get the desired result.

Why can we assume WLOG that ny, < n?

As n is very wide and full, for every t € Ly, \ My, there exist |L,| members ¢; €
Ly \ My, such that n [ (¢;/E,) is isomorphic to ng | (t/E,,) over M, (and remember
that |Ln,| < |Lgn|). Therefore ny is isomorphic to an ng that satisfies ng < n, so
WLOG no S n.

It remains to show that there exists a < Aj such that we can’t choose m, as
required by the induction. Suppose towards contradiction that for every o < A
there is m, as required, then necessarily there exist A\J ordinals o < A\ such that
m,, satisfies 4(B). Therefore, there exist \; distinct 1-equivalence classes in n. We
shall prove that the number of l-equivalence classes in n is at most Jz(A;), and
since J3(A\1) < Ay < A5, we'll get a contradiction.

Let m € M. First note that the number of distinct 0-equivalence classes in m is at
most Ja(A1), as there exist at most J; (\;) isomorphism types of m | L for L as in the
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definition of 0-equivalence, so by adding the number of possible orderings of Py, (L),
we get the desired bound. Now given S5, 55 as in the definition of 1-equivalence,
denote by C7,C5 the 0-equivalence classes of sequences of the form Efs’l, 5;8/2, re-
spectively, for §|, 5, as in the definition of 1-equivalence. 5; is l-equivalent to so
iff they’re 0-equivalent and C; = (5. Given s as in the definition of 1-equivalence,
if C' is the collection of 0-equivalence classes of sequences of the form 55’ as in the
definition of l-equivalence, then C' is contained in the set of 0-equivalence classes
over m, which has at most Jy(\;) members. Therefore, there are at most J3(\;)
different choices for C, hence there are at most J3(\;) distinct 1-equivalence classes
over m. [

Concluding the proof of the main claim

Conclusion 3.12: A) Suppose that

0. m; € M., (I =1,2) and

1. M; € My, (I =1,2) (and as always we assume that ) is closed under weak
memory).

2. my | M is isomorphic to my [ Ms.

3. | Ly |y [ Ly | < Ao

Then there exists an isomorphism from Py,, [M;] onto Py, [Ms].

B) Suppose that m € Mc,,, M C My, = Ly, and n =m [ M, then P& < P&,

Proof: A) Define n; := my(M;) for | = 1,2. By claim 3.10, n;,ny € M,.. ny |
M,, = my [ M, is isomorphic to ny [ My, = my [ M, hence by claim 2.20,
Py, [My,] is isomorphic to Py, [My,]. Therefore, Py, [M;] is isomorphic to Ppy, [Ms].

B) Let m; € M, such that m < m; and |Ly,| < Ag. Let n; := m; (M), then
by our previous claims, n; € M... Obviously, n < n;, therefore P = P, [M] =
Po, [M] < Prn, [Lin] = P O

Conclusion 3.13: In conclusion 2.25 we can add: Suppose that Uy, Us C 6, are
closed under weak memory, (a; : i < otp(Uy)) and (5, : j < otp(Us)) are increasing
enumerations of U; and Us, respectively, and h : U; — U, is an isomorphism of
m | U; onto m [ Us, then there exists a unique generic set G” C P¢ [Us] such that
Na; = Np,|G"] for every i < otp(Uy).

Proof: In the construction that appears in 2.24 we can take m < n € M,. such
that |L,| < Ag. By 2.25(G 4+ H) and 3.12(B), it follows that there exists a generic
set G C P9 [Us] such that n,, = ns,[G"] for every i < otp(Uy). O

Appendix: The properties of the projection and an addition
to the proof of claim 3.8

Claim 4.1: Let p € Py, and denote S, = {m.(p) :there exists t € fsupp(p) such
that L = t/Ew}, then ks, "p € G iff S, C G”.
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Proof: If fsupp(p) C Mm, then for every t € fsupp(p), mi/p.,(p) = p, hence
S, = {p} and there is nothing to prove. Therefore assume that fsupp(p) € Mm.
By the properties of the projection, for every t € fsupp(p), mi/g,,(p) < p, therefore
Fp,, "p € G — 5, C G”. In the other direction, suppose that ¢ IFp,, 75, € G, it’s
eough to show that ¢ is compatible with p. Assume towards contradiction that p
and ¢ are incompatible. WLOG Dom(p) € Dom(q). By the assumption, ¢ IFp_,
"Ti/Em(p) € G” for every t € fsupp(p) an we may assume that tr(p(s)) C tr(q(s))

for every s € Dom(p). Since p contradicts ¢, there are s € Dom(p) N Dom(q) and
¢ Lm<s < @1 € Pr(Lm,<s) such that ¢, IF "p(s) contradicts ¢(s)”. By the definition
of forcing templates, ¢; IF "tr(q(s)) contradicts p(s)”. Therefore, by the definition
of forcing templates and by the definition of the iteration, there is ¢ < ¢(p(s)) such
that q1 Ik "tr(q(s)) contradicts Bys) (..., m (ac), - )cew,,,,” By the definition of

the iteration (definition 2.2), there is u € v, such that {t; : { € Wy} € u. By the
same definition, there is ¢ € fsupp(p) such that {t. : ¢ € Wy, } € t/Em. Therefore

q1 I+ 777Tt/Em(p) g_ﬁ g or tT(CI(SD {q 773”~ Now deﬁne g2 = q1 U (q f (Lm \ Lm,<s))‘
q < g2, hence ¢y IF "my/p,(p) € G. On the other hand, g(s) = ga(s), hence g IF

tr(q(s)) € ns. q1 < qo, therefore, every generic set G that contains ¢ contains ¢;
and also tr(q(s)) C ns|G] and 1/, (p) € G, contradicting our observation about ¢;.
Therefore, p and g are compatible. [

Claim 4.2: Let m € M be wide and suppose that
1.d(x) < A

2. t; € Ly \ My, for every i < i(x).

3. t; is not Bl -equivalent for every i < j < i(%).

4 X, =t;/Em.

5. 1y € Py [Mp].

6. ¢; € Ppy[X;] for ¢ <i(x).

7. If Py [Mm] E . < ¢, then ¢ is compatible with ¢; in Py, [Ly,] for every i < i(x).
then there exists a common upper bound for {1; : i < i(%)} U {1} in Puy[Lym].

Proof: In this proof we shall use the notion of projection that appears in the next
section. Let p € Py, such that p lFp,, "1.[G] = true”. Since m is wide, there is an

automorphism f of m (over M,y,) that maps the members of fsupp(p)\ M to a set
that is disjoint to U X (recall that | fsupp(p)| < AT). Therefore, we may assume

1<5(x)
WLOG that fsupp(p) N X; C My, for every i < i(x). By induction on i < i(x) we’ll
choose conditions p; such that:

2. (p; : j <) is increasing,.
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3. po=Dp.
4. If i = j + 1 then p; lFp,, ";[G] = true”.

5. fsupp(p;) is disjoint to U{X; \ Mm i < j <i(x)}.

6. p; is chosen by the winning strategy st that is guaranteed by the (< \)-strategic
completeness of Py,.

If we succeed to construct the above sequence, then for every i < i(x), pi) IFpp,
”wi[g] = true”. In addition, p;u) IFp,, ”w*[g] = true” (recalling that p < p;),
therefore, pic ke, ".[G] = true/\(Ké\(*)z/)i [G] = true)”. Therefore, w*/\(K/i\(*)@/)i) €
Pm[Lm] is the desired common upper bound.

We shall now carry the induction:

First stage (i = 0): Choose py = p (note that (5) holds by the assumption on
fsupp(p)).

Second stage (i is a limit ordinal): Let p} be an upper bound to (p; : j < i) that
is chosen according to st. Since m is wide, as before we can find an automorphism
f of m such that f(fsupp(p}) \ Mm) is disjoint to U{X; \ My, : ¢ < j < i(*)} and f
is the identity on jL<Ji fsupp(p;) (this is possible by (5) in the induction hypothesis).

Let p; = f (pi). By the definition of f, p: satisfies requirements 1-5, and as st is
preserved by f, p; satsifies (6) as well.

Third stage (i = j+1): Let ¢; € Py[My] be the projection of p; to P, [Mp]. We
shall first prove that ¢, < ¢;. If it’s not true, then there exists ¢; < 0 € Py [L]
contradicting ¢.. Let 7 € Py, such that r Ibp,, "0[G] = true”, then r g, "9.[G] =
false”. Since r Ikp,, "0[G] = true”, it follows that ¢; < 6 < r, hence by the
definition of ¢;,  is compatible with p;. By the density of Py, in P [Ly], 7 and p;
have a common upper bound p € Py,. py < p; < p, hence p IFp,, ", [CNJ] = true”,
which is a contradiction. Therefore, 1, < ¢;, hence ¢; is compatible with ;. By
the density of P,, they have a common upper bound q} € P,,. As before, since m is
wide, we may assume WLOG that fsupp(qjl»)\Mm is disjoint to fsupp(p;)\ Mm and
U{X; :j+1 <4 <i(x)}. By claim 4.4 (with (p;, ¢}, ¢;) here standing for (p, ¢, 1))
there), p; and q} are compatible in Py,. Let p; be a common upper bound chosen by
the strategy. By our choice, v; < p;, hence p; IFmatnpbrn ") [CN}] = true”. As before,

use thee fact that m is wide to assume WLOG that fsupp(p;) \ Mm N X = set for
every i < j' <i(x). As in the previous case, we conclude that p; is as required. O

Claim 4.3: Suppose that m € M is wide. Let f € Fup (see definition 3.7)
and denote its domain and range by L; and Lo, respectively, then f induces an
isomorphism from Py, (L) onto Py, (Ls).

Proof: Obvivously, f is bijective. Now let pi,q1 € Pm(L1) and let py = f(pl), G =

f(q1) € Pm(Ly). We shall prove that Py, = p1 < ¢ iff Py = p2 < ¢o. Let
(t! 1 < i(*)) be a sequence such that:
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1.t} € fsupp(qr) \ M for every i.
2. t; and t} are not EJ,-equivalent for every i < j < i(x).
3. Every t € fsuppp(q1) \ M is El-equivalent to some t}.

For every i < i(x), define t? = f(t}) and let t; = (¢! : i < i(x)) (I = 1,2). Assume
WLOG that fsupp(p1) € U{t}/E" i < j(x)} U My, for some j(x) < i(*). For
every i < i(x), let ¢1; = thl/Em(ql) and let 97 ; € Pyu[Mmp] be the projection of ¢
t0 Py [Mym] (in the sense of section 5). Let 9] = Z-<é\(*)wii' By the properties of the

projection, ¥7; < q1; < ¢ for every i < i(x), therefore q Ibp,, "7[G] = true” and
U} € Pm[Lm]. For every i < i(x) define ¥1% = ¢} ; A q1; € Pw[t;/Em]. When the
above conditions hold, we say that 1% and ¢} = (V1415 qua + 1 < i(*)) analyze ¢
(or (g1,11)). Now similarly choose ¢} and ¢f = (¢}, @75, p1, : @ < j(*)) that analyze
(p1, (t} 1 i < j(*))). The function f naturally induces a function on Pum[L1], which

A

we shall also denote by f. Now define: ¢35 = f(¢7), ¥5,; = f(wii), oy = ( i)

A A

o5 = f((bf)a ¢§,i = f<(ﬂ,i)7 3*1 = f( T*z)7 P2 = f(pl,i>7 q2,i = f(ﬁh,z')-
It’s easy to see that (1y,1)5) analyze gy and (¢, $5) analyze ps.

Claim: Let A; (I = 1,2) be the claim Py, = p; < ¢ and let B; (I = 1,2) be the
claim “Pp[t!/ Em] = ¢ Aprs < 0F Aqu for every i < i(x)”, then for [ € {1,2}, 4; is
equivalent to Bj.

Proof: Suppose that B; doesn’t hold for some i, then there exists 6 € Py [t!/Em)
such that P [tl/Em] E Y7 Aqi; < 0 and 6 is incompatible with ¢f Ap;; in Puy[th/ Em),
hence 0 A ¢} Api ¢ Puml[tl/Fm]. For every j define Y5 as follows: If j = i define
Y5 = 0. Otherwise, define ¢ = 9y A qi;. Now let ¢' € Pp[Mp] be the projection
of 0 to Puyu[Mpy], so if ¢/ < ¢ € Py[Mmy] then ¢ is compatible with §. Note also
that ¢ < ¢': If it wasn’t true, then for some ¢/ < x € Py[My], x contradicts ;.
By the choice of ¢', x is compatible with 6 in Py,[Ly,]. Let ' be a common upper
bound, then ¢ < 6 < x/, hence x is compatible with ], which is a contradiction.
Therefore, 9] < ¢'.

For every j # i, if ¢' < ¢ € Py[My), then ¢f; < ¢ < ¢' < ¢, hence ¢ is
compatible with ¢; ;. Since ¢; < ¢, ¢ is also compatible with ¥; A ¢; ;. By claim
4.2, there is a common upper bound ¢ for ¢’ and all of the ;. By the density
of P, we may assume that ¢ € Pp,. As q; < ¢ for every j, it follows from
from claim 4.1 that ¢ < ¢;". Since 6 < ¢;" and 0 contradicts ¢} A p;;, necessarilly
q ke, "(oF A pi)|G] = false”. By the properties of the projection, p;; < p;, and
as we saw before, ¢ < p;, hence p; Ibp,, (] A p1i)[G] = true. Now if G C Py, is
generic such that ¢;” € G, then ¢, € G and p; ¢ G, therefore “p; < ¢;” doesn’t hold.

In the other direction, suppose that B, is true. Suppose towards contradiction that
A; doesn’t hold. By the assumption, there is ¢ < ¢;" € Py, contradicting p;. For 1}
and 17 that analyze ¢, we have Pu[Lum] | ¥F A qi < q < g for every i. By B,
P[Lm] E 0] Api < g for every i. By claim 4.1, p; < ¢;", contradicting the choice
of ¢".
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Therefore, A; (I = 1,2) is equivalent to B; (I = 1,2). Obviously, B; is equivalent to
B,, therefore, A; is equivalent to A,. [

Claim 4.4: Let p,q € Py, then p and ¢ are compatible in Py, if there exists ¢ such
that the following conditions hold (we shall denote this collection of statements by

Dp,q,w):
1. ¢ € Py [Mp).

2. fsupp(p) N fsupp(q) € My, and for every t € fsupp(q) \ Mm and s € fsupp(p) \
My, s/E! #t/E".

3. If p < ¢ € Ppy[Mm], then ¢ is compatible with p in Pp,[Luy].
4. g and ¢ are compatible in Pp,[Lyy,].

Proof: We choose (p,,qn,1,) by induction on n < w such that the following
conditions hold:

1. If n is even then U, , . holds.

2. If n is odd then O, ;. v, holds.

3. (po, g0, %0) = (P, q, ).

4. If n =2m + 1 and s € Dom(pay) N My, then s € Dom(qom+1) and tr(pa,(s)) C
tr(Gsm+1(5)).

5. If n = 2m+2 and s € Dom(qam+1)N My then s € Dom(pay,.2) and tr(gam11(s)) C
t7(pam+2(5))-

6. If m < n then p,, < p, and g, < q,.

For n = 0 there is no probem. Suppose that n = 2m+1 and (pam, ¢am, Y2m ) has been
chosen. Let uy,, = Dom(pay,) N My, and for every s € ugy, let vy = tr(pam(s)) and
denote by ps,, € Pm the condition N Dsaps(a) Obviously, Pp[Lm]| = psp, <

a€Dom(vs)
Dom. Let s € ug,, and suppose towards contradiction that p;, < 19, doesn’t hold,

then v, is compatible with —ps,.. Let ¢ be a common upper bound in Pp,[My,].
By the induction hypothesis and [, 4. v, @ is compatible with py,,. Therefore,
Pam is compatible with —p,,, contradicting the fact that Pu[Lm| = Dsy. < Dom-
Therefore, ps,, < Yon,.

By the induction hypothesis and condition (4) of 0, 4240, there is a common
upper bound ¢b,, for ga,, and s, and by the density of P,,, we may suppose that
QG € Pm. For every s € ugy, since ps,, < 1o, it follows that v, C tr(g,,)
and s € Dom(q,,). Let ¢ € Pn[Mpy] be the projection of ¢b,, to Py[Mp).
So if ¢h,, < ¢ € Pm[Mp)], then ¢ and ¢5,, are compatible in Py,[Ly,|. Note also
that 1o, < ¥,.: Otherwise, there is ¢}, < ¢Ppy[Mm] contradicting vs,,. Let
X € Pm|[Lm] be a common upper bound for ¢}, and ¢, so 1, < x, therefore
¢ is compatible with t)y,,, which is a contradiction. Therefore, v, < 5, ., so

Dswe < Yo < Y, for every s € ugy,.
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Since m is wide, we may assume WLOG that fsupp(qb,,) N fsupp(pem) C Mm
and similarly for the second part of condition (2). By the induction hypothesis
and Oy, gomtboms SiDCE oy, < 905 there is a common upper bound p),, € Py,
for po,, and ), . Since fsupp(gh,,) N fsuppp(pam) C My and m is wide, WLOG
fsupp(pl,,) N fsupp(dh,,) € Mm and similarly with the second part of condition (2).
Now define p,, = ph,,, ¢n = Qs Un = V). Obviously O, . », holds, pay, < pamis
and gom < Goms1- If s € Dom(pam) N My, then s € Dom(q),,) = Dom(gq,) and
tr(pam(s)) = vs C tr(gh,,(s)) = tr(g.(s)). This completes the induction step for odd
stages. If n = 2m + 2, the proof is the same, alternating the roles of the p’s and the
¢’s. Now choose p, and ¢, as the upper bounds of (p, : n < w) and (g, : n < w),

repsectively, such that:

1. Dom(p.) = nngom(pn).
2. Dom(q.) = nL<JwD0m(qn .

U tr(oe(s)).

)
3. If s € Dom(py,) then tr(p.(s)) =
4. If s € Dom(q,) then tr(q.(s)) = ﬂgktr(qk(s)).

Claim: py, ¢, € Py, satisfy the following conditions:
1. Dom(p.) N Dom(q.) C M.
2. Dom(p.) N My = Dom(q.) N M.

3. If s € Dom(p) N My, then tr(p.(s)) = tr(q.(s)) (so p. and ¢, are strongly
compatible).

Proof: 1. Since (p, : n < w) and (g, : nw) are increasing, then so are (Dom(p,,) :
n < w) and (Dom(gy,) : n < w). Since fsupp(p,) N fsupp(q,) C Mp, it follows that
Dom(p.) N Dom(q.) C M.

2. If t € Dom(p.) € My, then t € Dom(p,) for some even n. By the inductive
construction, t € Dom(g,+1) € Dom(qy), therefore Dom(p.)\Mp, C Dom(q.)N My,
and the other direction is proved similarly.

3. Suppose that s € Dom(p.) N My, then by the previous claim, s € Dom(p,) N
Dom(q.). Let n < wsuch that s € Dom(p,)NDom(qy), then tr(p.(s)) = gktr(pk(s))

and tr(g.(s)) = gkt'r(qk(s)). By conditions 4+5 of the induction, it follows that

tr(p.(s)) = tr(g.(s)).

By the above claim, p, and ¢, are compatible in P,,. Asp =py < p, and g = ¢p < ¢,
it follows that p and ¢ are compatible in Py, as well. [

Appendix: The existence of projections for P[]

Remark: Note that the notion of projection to be introduced in the next definition
is not the same as the one previously used.

Definition 5.1: Let ¢ € Py[Lu]. ¥ € Pp[L] will be called the projection of ¢ to
Pm[L] if the following conditions hold:
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1. If Pm[L] =9 <0, then 6 and ¢ are compatible in Py, [Lyy,).
2. If ¢* € Ppy[L] satisfies (1), then P [L] = ¢ < 9"

Claim 5.2: Let L C Ly,. For every ¢ € Py,[L] there exists ¢ € Py,[L] which is the
projection of ¢.

Proof: Given 91,1, € Py[L], obviously they’re compatibe in Py, [L] iff they're
compatible in Py, [Ly|. Let Ay be the set of ¢ € Py, [L] that contradict ¢ and let A,
be the set of ¢ € Py,[L] such that ¢ contradicts all members of A;. Let ¢ € Py, [L].
If ¢ is compatible with some 17 € Ay, let 13 be a common upper bound, so ¥y € A;.
If ¢ contradicts all members of Ay, then ¥ € Ay, so Aj U Ay is dense in P, [L]. Note
that if ¢, € Ay and 15 € Ay, then )y contradicts ¥,. Let {¢); : i < i(x)} be a maximal
antichain of elements of Ay. By AT —c.c., i(x) < AT. Define ¢, = _‘(B<7(*)¢i) € Pn[L].

We shall prove that v, is thee desired projection. Suppoe that ¢, < 6 € P,[L] and
suppose towards contradiction that 6 is incompatible with ¢, then 8 € A;. Let
G C P, be a generic set such that 0|G| = true, then for some i, ;[G] = true,
hence v; and 6 are compatible. Now recall that v, € Ay and 6 € A, so we got a
contradiction. Therefore v, satisfies the requirement in (1).

Suppose now that x € Py,[L] satisfies part (1) in definition 4.1. Suppose towards
contradiction that v, < x does not hold, then for some y < x4, xx contradicts .
Since A; U A, is dense in Py, [L], there is 6 € A; U Ay such that x, < 6. Since y < 6,
necessarily 6 € Ay. Therefore, for some i < i(x), 0 is compatible with v;, hence this
Y; is compatible with .. Recall that ¢, < 1, hence y. and v, are compatible,
contradicting the choice of .. Therefore, ¥, < x.

Observation 5.3: If ¢,y € Py,[L] are projections of ¢ € Py [Luy], then Py [L] =
Y1 <o A < 4py. U

Observation 5.4: If ) € P,[L] is the projection of ¢ € Ppy[Ly,], then ¢ < ¢. O
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