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BOREL SETS WITHOUT PERFECTLY MANY
OVERLAPPING TRANSLATIONS IV

ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH

ABSTRACT. We show that, consistently, there exists a Borel set B C “2
admitting a sequence (1, : @ < A) of distinct elements of “2 such that
(N + B) N (ng + B) is uncountable for all o, 8 < A but with no perfect
set P such that |(n + B) N (v + B)| > 6 for any distinct n,v € P. This
answers two questions from our previous works, [4, Problem 5.1], [6,
Problem 7.6].

1. INTRODUCTION

In the series of articles [4, 5, 6] we investigated the existence of Borel
sets with many, but not too many pairwise non-disjoint translations. For
instance, in [5], for a countable ordinal € < w; and an integer 2 < < w we
constructed a 39 set B C “2 with the following property.

In some ccc forcing notion there is a sequence (p, : a < X.)
of distinct elements of “2 such that

|(pa + B) N (pg + B)| = 20 for all o, B < A

but in no extension there is a perfect set of such p’s.

Similar resuts for the general case of perfect Abelian Polish groups were
presented in [6]. However, in all those cases when discussing nonempty in-
tersections we considered finite intersections only. It seemed that our argu-
ments really needed a finite enumeration of “witnesses for nondisjointness”.
So in [4, Problem 5.1] and [6, Problem 7.6] we asked if there is a ccc forcing
notion P adding a X9 subset B of the Cantor space “2 such that

for some H C “2 of size A, the intersections (B+h)N(B+h)
are infinite (uncountable, respectively) for all h,h' € H, but
for every perfect set P C “2 there are x,2’ € P with the
intersection (B+x) N (B+2a') finite (countable, respectively).

In the present paper we answer the above two questions positively. Our
forcing construction slightly generalizes and simplifies that of [4, 5]. This
allows us to show a stronger result:
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If X\ < M\, then some ccc forcing notion adds a X9 set B
which has \ translations with pairwise uncountable intersec-
tions, while for every perfect set P C “2 there are x,2’ € P
with |(B+z) N (B + 2')| < 6.

The article is organized as follows. First, in Section 2, we recall the splitting
rank from Shelah [7]. This rank was fundamental for the question of no per-
fect squares and it is fundamental for problems of nondisjoint translations
as well. Then, in the third section we introduce nice indexed bases O and we
define when translations of a X9 set have O-large intersection. This allows
us to put in the same framework sets with finite, infinite and uncountable
intersections. We also analyze when a 33 set may have a perfect set of trans-
lations with O-large intersections and we introduce a non-disjointness rank
on finite approximations. Our main consistency theorem is presented in the
fourth section. In the final part of the paper we summarize our results and
pose a few relevant problems.

Notation: Our notation is standard and compatible with that of classical
textbooks (like Jech [2] or Bartoszynski and Judah [1]). However, in forcing
we keep the older convention that a stronger condition is the larger one.

(1) For a set u we let u®® = {(z,y) €ux u:x #y}.

(2) The Cantor space “2 of all infinite sequences with values 0 and 1 is
equipped with the natural product topology and the group operation
of coordinate-wise addition + modulo 2.

(3) Ordinal numbers will be denoted be the lower case initial letters of
the Greek alphabet «, 3,7, 6, ¢,( as well as £. Finite ordinals (non-
negative integers) will be denoted by letters a, b, ¢, d, i, j, k, ¢, m,n, M
and ¢.

(4) The Greek letters x, A will stand for uncountable cardinals.

(5) For a forcing notion PP, all P-names for objects in the extension via
P will be denoted with a tilde below (e.g., 7, X ), and Gp will stand
for the canonical P-name for the generic filter in P.

We fully utilize the algebraic properties of (¥2,+), in particular the fact
that all elements of “2 are self-inverse.

2. THE SPLITTING RANK

In this section we remind some basic facts from [7, Section 1] concerning
a rank (on models with countable vocabulary) which will be used in the
construction of a forcing notion in the fourth section. This rank and relevant
proofs were also presented in [4, Section 2].

Let X be a cardinal and M be a model with the universe A and a countable
vocabulary 7.

Definition 2.1. (1) By induction on ordinals ¢, for finite non-empty
sets w C X\ we define when rk(w, M) > §. Let w = {ag, ..., a,} C A,
lw| =n+ 1.
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(a) rk(w) > 0 if and only if for every quantifier free formula ¢ €
L(7) and each k < n, if M | ¢lag, ..., Q, ..., q,] then the set

{046/\:M|:go[ozo,...,ak_l,a,ak+1,...,an]}

is uncountable;

(b) if ¢ is limit, then rk(w, M) > ¢ if and only if rk(w, M) > ~ for
all v < d;

(¢) rk(w,M) > § 4 1 if and only if for every quantifier free formula
¢ € L(7) and each k < n, if M = ¢lag, ..., q,...,q,) then
there is o* € A\ w such that

rtk(wU{a*},M) >3 and M= plag,...,a5_1,0" Qgir,- .., Q).

(2) The rank rk(w, M) of a finite non-empty set w C A is defined by:
o rk(w, M) = —1 if =(rk(w, M) > 0), and
o rk(w, M) = oo if rk(w, M) > § for all ordinals J, and
e for an ordinal §: rk(w, M) = ¢ if rk(w, M) > § but =(rk(w, M) >
6+ 1).

Definition 2.2. For an ordinal € and a cardinal A let NPr.(\) be the fol-
lowing statement: “there is a model M* with the universe A and a countable
vocabulary 7* such that sup{rk(w, M*) : ) # w € [A\]<¥} < e&.”

Pr.()) is the negation of NPr.(\).

Observation 2.3. If X is uncountable and NPr.(\), then there is a model
M* with the universe A and a countable vocabulary T* such that

o rk({a},M*) >0 for all « € X and
o rk(w,M*) < e for every finite non-empty set w C \.

Proposition 2.4 (See [7, Claim 1.7] and/or [4, Proposition 2.6]).

(1) NPry(wy).
(2) If NPr.()), then NProq(AT).
(3) If NPr.(u) for p < X\ and cf(\) = w, then NProy1()).

Proposition 2.5 (See [7, Conclusion 1.8] and/or [4, Proposition 2.7]). As-
sume f < a < wy, M is a model with a countable vocabulary T and the
universe p, myn < w, n >0, A C u and |A| > 3,.o. Then there isw C A
with |w| =n and rk(w,M) > w-B8+m .

Definition 2.6. Let \,, be the smallest cardinal A such that Pr,, ()).
Corollary 2.7. (1) If @ < wy, then NPr,, (R,).

(2) Pry,(3y,) holds true.
(3) N, <A, <3

Corollary 2.8 (See [4, Proposition 2.10 and Corollary 2.11}). Let u =
3o, < k. IfP s a cee forcing notion, then Ibp Pry, (). In particular, if C,
be the forcing notion adding k Cohen reals, then IF¢, A\, < p < c.

L« gtands for the ordinal multiplication
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3. SPECTRUM OF TRANSLATION NON-DISJOINTNESS

We want to analyze sets with many non-disjoint translations in more
detail, restricting ourselves to X9 subsets of “2. In this section we will keep
the following assumptions.

Assumptions 3.1. Let T = (T, : n < w), where each T,, C “>2 is a tree
with no maximal nodes (for n < w). Let B = |J lim(7},).
n<w
Definition 3.2. (1) Let £ consist of all non-empty sets u C “>2 such
that u C 2 for some ¢ = {(u) < w.
(2) A simple base is a (strict) partial order O = (O, <) such that O C L
and for u, v € O:
(a) if u < o/ then (u) < £(u') and u = {n[l(u) : n € v},
(b) there is a v € O such that u < v,
(c) if p € ™2 then u + p € O, and if p € “*)2 and u < u’ then
u+ pll(u) < u' + p.
(3) Let (O, <) be a simple base. An O—tower is a <—increasing sequence
= (up:n<w) CO (80 Uy, < Upyq for all n < w). The cover of an

O—tower u is the set C(u) o {ne“2: (Vn <w)(nlt(u,) € u,)}
(4) An indezed base is a sequence O = (O; : i < i*) where 0 < i* < w
and each O; is a simple base.

Definition 3.3. Let O = (O; : i < i*) be an indexed base.

(1) We say that two translations B + z and B + y of the set* B (for
z,y € “2) have O-large intersection if for some (i; : i < i*) for
every ¢ < ¢* we have:

e u; is an O,—tower,
e for some ny,ny < w,

C(w;) C (Um(Ty,) +2) N (Um(Ty,) + y),

e C(u;) NC(uj) = 0 whenever j < i*, j # i.
In the above situation we may also say that (B + z) N (B + y) is
O-large.

(2) We say that B is perfectly orthogonal to O—small (or a O-pots-set)
if there is a perfect set P C “2 such that the translations B + x,
B + y have a O-large intersection for all z,y € P.

The set B is an O npots-set if it is not O-pots.

(3) We say that B has A\ many pairwise O-nondisjoint translations if for
some set X C “2 of cardinality A, for all x,y € X the translations
B+ x, B + y have a O-large intersection.

(4) We define the spectrum of translation O-nondisjointness of B as

stndp(B) = {(z,y) € “2 x“2: the translations B +z, B +y
have a O-large intersection. }

Example 3.4. (1) Let 3<:<w. Put O ={u € L : |u| =1} and let
a relation <° be defined by:

2Remember Assumptions 3.1
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u <% v if and only if £(u) < £(v) A u={nll(u):n € v}.
Then (0% <°) is a simple base and O* = (0° : i < 1) is an indexed
base. Two translations B + z and B + y of the set B (for z,y € “2)
have O'-large intersection if and only if (B + x) N (B + y) has at
least « members.
(2) Let OP" = {u € L : |u| > 3} and let a relation <P be defined by
u <P v if and only if
u={nMl(u):nev} N (Wweu)({nev:van} >2).
Then (OP®, <P) is a simple base and OP*" = (OP®") is an indexed
base. Two translations B + x and B + y of the set B (for x,y €
“2) have OP—large intersection if and only if (B + x) N (B +y) is
uncountable.

Proposition 3.5. Let O be an indexed base and let T, B be as in Assump-
tions 3.1.
(1) The set B is a O-pots-set if and only if there is a perfect set P C “2
such that P x P C stndp(B).
(2) The set stndp(B) is 3.
(3) Let ¢ < A < p and let C, be the forcing notion adding pn Cohen reals.
Then, remembering Definition 3.3(2),

lFc, “if B has A many pairwise O-nondisjoint translations,
then B is a O-pots-—set .

(4) Assume Pr,, (). If B has X\ many pairwise O-nondisjoint transla-
tions, then it 1s an O -pots-set.

Proof. (1,2) Straightforward; in evaluation of the complexity of stnda(B)
note that for O;—towers u; = (v, : n < w), r € “2 and k < w:
C(u;) C lim(Ty) + z if and only if (Vn < w)(u!, C Ty + z), and
C(u;,)NC(u;,) = 0 if and only if (3¢ < w)(Vny, ny > £)(uil [€Nu?2 [ = 0).

(3) This is a consequence of (1,2) above and Shelah [7, Fact 1.16].
(4) By [7, Claim 1.12(1)]. O

To carry out our arguments we need to assume that our indexed base O
satisfies some additional properties.

Definition 3.6. An indexed base O = (O; : i < i*) is nice if it satisfies the
following demands (i)—(v).
(i) Either ¢* > 6 or for some i < ¢* we have
(Vu e 0;)(Fve O)(u=<v A |v| >6).
(i) If i < i* u <; v <; v <; 0", and £(v) < € < L(v'), then {n[l:n €
V'€ O;and u <; {nll:nev} <"
(iii) If i < i*, u <; v, £(v) < £ and v’ C *2 is such that for each v € v
the set {n € v/ : v < n} has exactly one element, then v" € O; and
u=<; v,
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(iv) Suppose u <; v and «' C w is such that v’ € O;. Let v' = {n € v :
nll(u) € v'}. Then v' € O; and v’ <; V'

(v) If i* = w, then for each ¢ < i* there are infinitely many j < i* such
that 07, = Oj.

Observation 3.7. The indexed bases O' and OP® introduced in Example
3.4 are nice.

Proposition 3.8. Suppose an indexed base O = (O; : i < i*) is nice. Then:
(®) If 2 < K < w and @* (for k < K) is an Oy —tower for some
i(k) < i*, then there are O;py—towers 0° = (V¥ : n < w) (for k < K)
such that
o C(vF) = C(u"), v& = uk and
o N {4(wF):n < w} is infinite.
keK
Proof. Induction on K. For K = 2 we proceed as follows. Let @° be an O;)—
tower and @' be an O;1)—tower. Choose inductively a sequence (ny : k < w)
so that
° 5<n0<n1<n2<n3<...,
o Llug) < Uuy,),
o if ((uj) < g( o) < Unjy), then €(nj,5) < L(njy,).
For k < w let j(k) be such that £(u; ) < Lu u) ) < é( Njgy41)- Put vp =
{77 0(up,) = n € ujpy i} By 3.6(i), vk € Ojny and wj,y | =) Uk <)

j(k )2 The rest should be clear. O

For the rest of this section we will be assuming the following.
Assumptions 3.9. (1) T = (T}, : n < w), B are as in Assumptions 3.1,

(2) O =(0; :i < i*) is a nice indexed base. Also, O; = (0}, <;),

(3) there are distinct z,y € “2 such that (B +xz) N (B +y) is O-large.
Definition 3.10. Let My 5 consist of all tuples

m = (€m7 Lm? um’ Bm’ gm) = (E’ L’ u? E7 g)
such that:

(a) 0 </l <w,uC*?and?2<|ul, and ¢ = i* if i* <w, and 3 < 1 < w

otherwise;

(b) g = {g; : i < 1), where? g; : u? — O; is such that g;(n,v) = g;(v,n)

and ¢(g;(n,v)) = { for each (n,v) € u'®;

(c) if (n,v) € u? and i < i’ < 1, then g;(n,v) N gy (n,v) = 0,

(d) h = (h; :i < 1), where h; : u'? — w;

(e) for each (n,v) € u'?, if o € gi(n,v) then n+ o € Th, ()
Definition 3.11. Assume m = (¢, ¢, v, h,g) € Mz 5 and p € ‘2. We define
m +p = (¢, ,u',h,7') by

o '=0 1=, u ={n+p:n€Eu},

3remember u? = {(n,v) euxu:n#uv}
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od = (g : i <), where ¢/ : (W)¥ — O; : (n+p,v+p) —
9:(n,v) + p,

o i/ = (R, :i <), where R} : (u')® — w are such that h}(n + p,v +
p) = hi(n,v) for (n,v) € u®.

Also if p € “2, then we set m + p =m + (p[f).

Observation 3.12. (1) If m € My and p € "2, thenm+p € Mz 5.
(2) For each p € “2 the mapping My o — Mg :m — m+p is a
bijection.

Definition 3.13. Assume m,n € Mt 5. We say that n strictly extends m
(m C n in short) if and only if:
o /M <™ = {nll™:n € u}, and
o for every (n,v) € (u®) such that n[f™ # v[/™ and each i < /™ we
have
= g (™, ve™) < gi(n,v), and
— WP (nle™, ve™) = hi}(n, v).

Definition 3.14. (1) By induction on ordinals a we define D7 (a) C
My 5. We declare that:
e D'(0) = Mz,
e if o is a limit ordinal, then DT(a) = () DT(3),
B<a
e if @ = B+ 1, then D7 (a) consists of all m € M7 5 such that
for each for each v € u™ there is an n € My » satisfying
—mCnandne DT(B), and if * = w then /™ < ™, and
— the set {n € u™ : ¥ < n} has at least two elements
(2) We define a function® ndrk; = ndrk : Mz — ON U {co} as
follows.
If m € DT(a) for all ordinals a, then we say that ndrk(m ) = 00.
Otherwise, ndrk(m) is the first ordinal o for which m ¢ DT (a +1).
(3) We also define

NDRKg(T') = NDRK(T) = sup{ndrk(m) + 1 : m € M; 5}

Lemma 3.15. (1) The relation C is a strict partial order on My 5.

(2) Ifm,n € M5 and m C n and n € D' (), then m € D” ().

(3) If a < 8 then D*(3) € D" (). Hence for m € Mz 5, m € D' («)
if and only if « < ndrk(m).

(4) If m € Mt 5 and p € 2 then ndrk(m) = ndrk(m + p).

(5) If m € Mt and ndrk(m) > w,, then there is an n € My o such
that m C n, {n € u™ : v <A n}| > 2 for each v € u™, if i* = w then
™ <™, and ndrk(n) > w;.

(6) If m € My p and oo > ndrk(m) = 3 > a, then there isn € My 5
such that m C n and ndrk(n) = «.

(7) If NDRK(T) > wy, then NDRK(T) = cc.

4ndrk stands for nondisjointness rank
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(8) Assume m € Mg and v’ C u™, |[u/| > 2. Put 0/ = (™, / = /™
and for i < ! let b} = ™[ (u')®? and g, = g™ (u)?. Let u
(0, u',i' 1, g'). Then m[u" € Mz 5 and ndrk(m) < ndrk(mfu’).

| | -

Proof. Exactly the same as for [4, Lemma 3.10]. O

Proposition 3.16. For a nice indexed base O the following conditions (a)
— (d) are equivalent.
(a) NDRKo(T) > w.
(b) NDRKy(T) = oo.
(¢) B is perfectly orthogonal to O-small (see 3.3(2)).
(d) In some ccc forcing extension, the set B has \,, many pairwise O—
nondisjoint translations (see 3.3(3)).

Proof. The proof follows closely the lines of [4, Proposition 3.11].

(c) = (d) Assume (c) and let P C “2 be a perfect set such that the
translations B + z, B + y have O-large intersection for all z,y € P. Let
k = 1,,. By Corollary 2.8, IF¢, Ay, < ¢. By Proposition 3.5(2), the formula
“Px P Cstnda(B)” is I3, so it holds in the forcing extension by C,. Now
we easily conclude (d).

(d) = (a) Assume (d) and let P be the ccc forcing notion witnessing this
assumption, G C PP be generic over V. Let us work in VI[G].
Let (n, : @ < A,) be a sequence of distinct elements of “2 such that

(Voo < B < Ay) (B +1a) N (B +1np) is O-large ).

Remember Definition 3.2(3): an O,~tower is an <;-increasing sequence u =
(u, :n < w) and its cover C(u) is the set {n € “2: (Vn < w)(n[l(u,) € u,)}.

Let 7 = {Rm : m € My} be a vocabulary where each Ry, is a [u™|-
ary relational symbol. Let M = ()\wl, {Rﬁ’{}meMT@) be the model in the

vocabulary 7, where for m = (¢, ¢,u, h, g) € Mt 5 the relation RM is defined
by

Ry = {(ao, 1) € ) g 14, - -1 1€} = w and
for each distinct ji,jo < |u| and every ¢ < ¢
there is an O;—tower 4'(j1, j2) = (u!,(j1, j2): n < w) such that
gi(naj1 10, Nary, [ﬁ) = uf](jl,jQ) and C(ﬂ’(jl,jg)) is included in

Y1

Claim 3.16.1. (1) If ag, 00, ..., 0051 < A, are distinct, j > 2, then
for infinitely many k < w there is m € My o such that

=k, ™ ={nalk, ... Na,_, [k} and ME Rylag,...,a;-1]

(2) Assume that m € Mz, j < |[u™|, ag,a1,...,Qum—1 < A, and
ot < A, are all pairwise distinct and such that
o M = Rnao,...,qj, ..., pm—1] and
o M = Rnao, ..., 01,0, a1, ... Qpym|—1].
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Then for infinitely many k < w there is an n € Mg o such that
m C nand (" =k, u™ = {Nao [k, Nam_, [k, Mo [k} and M =
Rulag, ..., 0qumi—1, *], and if i* = w then also ™ < (™.
(3) If m € My and M = Rylao, . . ., oum|—1], then
rk({ao, . .., Qum(_1 }, M) < ndrkD(m).

Proof of the Claim. (1) It is a simpler version of the proof below.

(2) By the definition of Ris, since Ml = Rm[aw, . . ., aj_1, &, i1, . . . ym)—1]
and M = R, ..., @), ..., oum|—1], We may choose a sequence

i . . m 2 . m

(@ (jr, j2) = Gy o) € (™[ + 1) A 6 <o)

satisfying the following demands. Letting aj,m| = o, for (ji, j2) € (|u™] +
1)<2> and ¢ < /™

’L_Li(jl,jg) = ﬂi(jg,jl) s a Oi*)'ﬁOWGI',

if {jlaj?} 7é {.]7 |um|}7 then u%(jlaj?) = g;n(najl r€m7naj2 Mm)a

if iy < iy <™, then C(@" (j1,j2)) NC(T2 (41, )2)) =0,

if {71,752} # {J, |u™|}, then C(I_Li(jl,jg)) is included in

[hm(Thzm(ﬂa]-l fﬂm,najz Mm)) + nah] N [hm(Th;n(nan Mmﬂ]a]-l me)) + nah]?

e for some N/, N" we have
C(ﬂz(j7 ’um|)) g [hm(TN2/> + naj] N [hm(TNZ”) + 77a*]~

Since O is nice (and ™ and u™ are finite), we may use 3.8(®) and modify
u'(j1,72) (without changing u}(ji, jo)) and demand that the set

A= ﬂ ﬂ {E(u;(]’l,jg)) :nEw}

<™ gy <jo<|um|

is infinite. Let ¢, € A\ (/™ + 1) be bigger than the second element of
A\ (/™ + 1) and such that Naym, €0 # Na, [lo, and z[ly # y[ly whenever
x € C(@ (j1, 52)), y € C(@2(j1, ), (s o) € (Ju™|+1)® and iy < i < 0™

Let t =™ =14"ifi* < wand let « = 1™+1 otherwise. In the latter case we
also have to choose O m—towers @*" (j1, j2), but to ensure the demand 3.10(c)
we will have to modify the already chosen towers @'(jy, j2) (for i < /™). Fix

(J1,J2) € (|um| + 1)<2> for a moment. Let

K:Z{‘Ui(ﬁ’]éﬂ Dl(ul(j1,d2) =Llo A i <i™ A n<w}

By 3.6(v) and the assumptions on (1, : a < A, ), there are infinitely many
O,m—towers 0¥ such that their covers are pairwise disjoint and included in
(Hm(T,) + 7oy, ) O (lim(Tk,) + 7a,,) for some ky, k.

Choose ((j1,72) € A\ ({p + 1) so large, that there are more than K + 1
many k’s for which the sets {n[€(ji,j2) : 7 € vF} are pairwise disjoint (for
large n) and £(vE) < £(j1,j2) for all those k’s. For i < i™ let n(i), m(i) be
such that £(uj, ;) (j1,72)) = Lo and L(u,,(j1,J2)) = £(j1, j2), and let v* C



Paper Sh:1240, version 2023-02-24_2. See https://shelah.logic.at/papers/1240/ for possible updates.

10 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH

ufn(i)(jl,jQ) be such that for each v € U;(i)(jl,j2> the set {n € v’ : v < n}
has exactly one element. By 3.6(iii) we have

vi e ©; and u;(i)_l(jl,jg) =<, v
Using repeatedly 3.6(iv) we may modify the towers u'(jy,j2) (for i < ™)
and demand that
e for each ¢ < /™, for some n*(i),
E(U;*(i)(jbh)) = ((j1,J2) and ‘U;*(i)(ﬁ:h)‘ = \{Wo /RS Ui*(i)(jl,]é)}!-

k k*

Looking back at the towers 0%, we may choose one, ©* = ¥(j1, j2), which

has the property that for all large n
{011, g2) = 1 € vn(in, 32) } O (il G, 2) 1 < ™ = 0.
Now unfix (jy, j2) and set £ = max{¢(j1, j2) : (j1,72) € (|u™| + 1)Z}.
Suppose j; < jo < |u™| and let n be such that £(v,_1(j1,72)) < £ <
l(v, (41, J2)). By 3.6(ii), we may let
i u6:<jl>]2) = U6:<j27]1) = {77[6 /RS vn(jlajZ)}7
o uy, (J1,72) = Up, (J2, 1) = Unym (1, J2) for m >0,
getting a O,m—tower 4" (j1, j2). We also fix k(j1, j2), k(j2, j1) such that

C(@Lm (j17j2)) - (lim(Tk(ﬁ,jz) + najl) N (hm(Tk(jz,ﬁ) + no‘]’z)’

If i* = /™ < w, then the procedure leading to the choice of @™ (j1, jo) is not
present and we just let £ = min(A \ (¢p + 1)).

Let u = {77@0 1, Moy 1€, o M}.

For each i < ¢ and (ji,j2) € (Ju™| + 1)@ put 9i(Nay, s My, 10) =
ul,(j1, j2), where n is such that £(uf,(j1, j»)) = ¢. This defines g; : u® — O;
for i < 1. For (v1,15) € u'® we also set

R (v [0 v [0™) if vy [0 # 0™ 4 < ™,
B ! if 1y <A Ng.y Vo <A Npr, 1< ™,
hiwr, v2) = N/ if 1y < nai, Vo A, &< L™,
k(j1,72) if 1 Aoy V2 DMy, 0 =07 <0
It should be clear that n = (¢,:,u,g,h) € M7 5 is as required.

(3) By induction on  we show that

Jor every m € My 5 and all o, . .., qpm—1 < Ay, such that

M ): Rm[ag, “o ,a|um|_1]:

B <rk({ao, ..., opm—1}, M) implies 8 < ndrk(m).

STEPS =0 AND [ IS LIMIT: Straightforward.
STEP 8 =+ 1: Suppose m € Mt 5 and ay, ..., qpm—1 < Ay, are such
that M = Rp[ao, .. ., aqum—1] and y+1 < tk({ao, ..., ajum—1 },M). Let v €
u™, 50 V = 1), [€™ for some j < [u™|. Since y+1 < rk({ap, ..., Qum—1}, M)
we may find a* € A, \ {ao, ..., ajum|—1} such that

M ’: Rm[ao, ce ,ozj_l,oz*,ozjﬂ, ce 7O{|um‘_1]
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and rk({aw, . .., aum|—1, 0 },M) > 7. By clause (2) we may find n € Mz 5
such that m C n and u™ = {1, [€", ..., Ny _, [(% M0 [7}, and if i* = w
then /™ <, and M = Ryay, ..., apm—1,a*]. Then also [{n € u™ : v
n}| > 2. By the inductive hypothesis we have also v < ndrk(n). Now we
may easily conclude that v + 1 < ndrk(m). O

By the definition of A, ,
(@) sup{rk(w, M) : § £ w € A,]) > wy

Now, suppose that § < wy. By (©®), there are distinct ag, ..., 01 < Ay,
j > 2, such that rk({ao,...,a;—1},M) > . By Claim 3.16.1(1) we may
find m € Mz 5 such that M = Ry[a, ..., o;_;1]. Then by Claim 3.16.1(3)
we also have ndrk}(m) > 3. Consequently, NDRK(T') > w;.

All the considerations above where carried out in V[G]. However, the
rank function ndrkg is absolute, so we may also claim that in V we have

NDRK(T) > w;. O

4. THE MAIN RESULT

In this section we construct a forcing notion adding a sequence T of sub-
trees of “>2 such that NDRKps(T) < w; and yet with many O-nondisjoint
translations (for a nice O). The sequence T will be added by finite approx-
imations, so we will need a finite version of Definition 3.10.

Definition 4.1. Assume that

(a) 0 <n,M < w, t = (t,, : m < M), and each t,, is a subtree of "=2 in
which all terminal branches are of length n, B
(b) T; € “=2 (for j < w) are trees with no maximal nodes, 7" = (T} :
j<w)andt, ="T,N""2form <M,
(¢) My g is defined as in Definition 3.10 for O° introduced in Example
3.4(1).
We let M? 56 consist of all tuples m = (™, 6,u™, ™, g™) € M7 6 such
that /™ < n and rng(h™) C M for each i < 6.
The extension relation C on MY 56 is inherited from Mg e (see Defini-
tion 3.13).
Observation 4.2. (1) The Definition of M} 5, does not depend on the
choice of T, as long as the clause 4.1(c) is satisfied.
(2) Ifm € M7 56 and p € 9, thenm+p € MY 56 (remember Definition
3.11).
Lemma 4.3 (See [3, Lemma 2.3].). Let 0 < ¢ < w and let B C *2 be a

linearly independent set of vectors (in (°2,+) over Zy). If A C *2, |A| > 5
and A+ A C B+ B, then for a unique x € *2 we have A+ x C B.

Theorem 4.4. Assume that an uncountable cardinal X satisfies NPr,, (X)
and suppose that O = (O, : i < i*) is a nice indezed base. Then there is a
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cce forcing notion P of size \ such that
ke “ for some X9 O%-npots-set B = |J lim(T,,) C “2 there is

n<w

a sequence (1 : o < \) of distinct elements of “2 such that
all intersections (n, + B) N (ns + B) are O-large for a, 5 < X 7.

Proof. Fix a countable vocabulary 7 = {R, ¢ : n,{ < w}, where R, ; is an
n—ary relational symbol (for n,( < w). By the assumption on A\, we may fix
a model M = (A, { R} }nc<.) in the vocabulary 7 with the universe A and
an ordinal a* < wy such that:

(®), for every n and a quantifier free formula p(zg,...,x,—1) € L(T)
there is ( < w such that for all ag,...,a,_1 € A,

M |: SO[GOa s aan—l] < Rn,([a(h s aa'n—l]v

(®)p sup{rk(v, M) : § # v € [A]*} < a7,

(®). the rank of every singleton is at least 0.
For a nonempty finite set v C A let rk(v) = rk(v, M), and let {(v) < w and
k(v) < |v| be such that Ry (), k(v) witness the rank of v. Thus letting
{ag,...,ax,...a,_1} be the increasing enumeration of v and k = k(v) and
¢ = ((v), we have

(®)q if tk(v) > 0, then M = R, ¢[ao,-..,ak,...,a,—1] but there is no

a € A\ v such that
rk(vU{a}) > rk(v) and M = R, ¢[ao, ..., 051, Qt1,-- -, An_1],
(®)e if rk(v) = —1, then M = R, ¢[ao, ..., ak, ..., a,—1] but the set

{a eXN:M [ Ryclag, ... a5-1,a, a1, . - . ,an_l]}
is countable.
Without loss of generality we may also require that (for ¢ = ((v), n = |v])
(®)¢ for every by, ..., b, 1 < A
if M= R, clbo,...,bn—1] then by < ... <b,1.

Now we will define a forcing notion P. A condition p in P is a tuple
(wp,np,bp,]\/[p P, &, 7P, hP, gP Mp) = (w,n,b,]\/[,ﬁ,f,f,ﬁ,g,/\/l)
such that the following demands (x);—(x);; are satisfied.

(%)1 we A, |w| >5,5<n,M<w,t<wand if i* < w then ¢ = i*.

(%)2 1= (Na : v € W) C"2.

(%)3 t = (ty, : m < M), where () # t,, C "22 for m < M is a tree in
which all terminal branches are of length n and ¢,, Nt,,, N"2 = () for
m<m' < M.

(%)g 7= (rm :m < M), where 0 < r,, <n for m < M.

(*)s h = (h; : i < 1), where h; : w'® — M are such that h;(a, ) =
hz(ﬁ, Oé).

(%) g = (gi : i <), where g; : w? — (’) are Such that E(gl( ,5))
gi(a, B) = g;(B, ) and, for each («, ‘ U gi(« } > 6

i<t
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(x)7 For each m < M,
tw N2 = J{na + gi(. B) : (o, 8) € w® and i < v and hi(av, B) = m}.
(%)s The family

{na:acw} U J{g(eB): (o, 8) € w® A i<}

is a linearly independent set of vectors in "2 (over the field Z5); in
particular there are no repetitions in the representation above and
all elements are non-zero vectors.
(%)9 M consists of all triples @ = (£°,v°, m®) = (¢, v, m) such that
(%) 0 <l <n,vCw,5 < |v], and n,[l # n|¢ for distinct a, § € v,
() m € M7 g, ™ =L, u™ = {na [l : a € v},
(x)§ for each (a, B) € (v)® and i < 6 we have Tm (. 1,10 < O,
(4 (7, 8) € v) (¥ < 6)(3) < &) (P 16,15 10) = (2, ).
(%)10 If 09,01 € M, 20 = > = (, p € 2, and m®> = m® + p, then
rk(v%) = rk(v®™), ((v%) = ((v*), k(v®) = k(v™) and if « € v%,
f € v® are such that |a N V%] = k(v%) = k(v®™) = |8 N o], then
(Mal€) +p = nglL.
(%)11 Suppose that
® 0,0, € M, m® C m® and v® C v**, and
e ap € V%, |ag Nv| = k(v%), rk(v®) = —1.
Then |{v € u™"" : (1, [£°) < v}| = 1.
To define the order < of P we declare for p,q € P that p < ¢ if and only if
o wP Cwil nP <ni MP< MI » <% and
th =14 N"™=22 and r2, = r? for all m < MP?, and
nh 4 nd for all o € wP, and
R{T(wP)@ = hY and ¢f(a, B) =i g¥(a, B) for i < ¥ and (a, ) €
(wP)@),

Claim 4.4.1. (1) (P, <) is a partial order of size \.
(2) For each B < A and ng, My < w the set

Dgo,Mo:{pep;nP>n0 A MP> My A B euw}

18 open dense in IP.
(3) If i* = w, then for each 1 < w the set D, = {p € P : " > 1} is open
dense in P.

Proof of the Claim. (1) First let us argue that P # (). Let « = ¢* if it is
finite, and ¢« = 6 if * = w. Let w = {ap, a1, a2, a3,a4} be any 5 element
subset of A. Using 3.2(2¢)+3.6(ii) we may find v(i,b) for i < ¢ and b < 2
such that for some ¢ < w for all © < ¢ and b < 2 we have

v(i,b) € 05, v(i,0) <;v(i,1), and  £(v(i,1)) = L.
By 3.6(i), we may also require that if i* < 6 then for some i < ¢ we have
|v(i,1)] > 6. Fix an enumeration

{(0aria,Jar ko) ra < A} ={(0,1,5,k): j <k <D ANi<i A oeuv(il)}.
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Choose n > ¢ + 5 and a sequence (p, : a < A+ 5) C "2 so that

e (p.][¢,n) : a < A+ 5) is linearly independent in ™)

® 0, < p, for each a < A.
Put

® 7o, = pasp (for b <5) and 7= (1, : b <5),
o gi(ay, ou) = gi(ag, aj) = {pa A< AN J=jJu N k=kqy N g :i}
(fori<cvand j <k <b)and g=(g;:i<u).
It follows from Definition 3.6(iii) that g;(o;, o) € O;.

We also let M = 10 - ¢ and we fix a bijection ¢ : [w]?> x © — M. Then
for j < k <5andi <. weset h(aj, o) = hi(oy, ;) = p({a;, ax}, 7). This
way we defined h = (h; 1 i < 1).

We put r,, = n for m < M and we let t,, C "Z2 be trees in which all
terminal branches are of length n and such that

tmN"2 = U {na+ gi(a, B) : (o, B) € w®? and i < ¢ and h(a, B) = m}.

Finally, M is defined by clause (x)q.

One easily verifies that (w,n,t, M, 7,t,7, h,g, M) € P.

We see from the arguments above that [P| > A and since there are only
countably many elements p of P with w? = w, we get |[P| = A.

Clearly, < is a partial order on PP.

(2) LetpelP, e\ uwr.
We will define a condition ¢ in a manner similar to the construction in
(1) above. Let o~ = min(w?) and at = max(w?).
Set w? = wP U{B}, 19 =/P.
For (g, 1) € (w?)® and i < 17 pick v(i, ag, a;) € O; so that: for some
¢, for all i < 19 and (g, 1) € (w9 we have
° é(v(i,ao,al)) =/,
o if ap, aq € wP then ¢¥(ap, 1) <; v(i, g, 1) = v(4, 1, ap),
o if oy € w? then ¢ (at,a™) <; v(i, g, B) = v(i, B, ap).

2 over Zs, and

Fix an enumeration
{(0%,i% 0, 01) s a < A} = {(0,4, 00, 1) : g < ay are from w? and
i< A o€v(i,an, o)}

Choose n > ¢ + |wP| + 1 and a sequence (p, : a < A+ |wP|) C "2 so that

e (p.l[t,n) : a < A+ |wP]) is linearly independent in ™)

e 0% < p, for each a < A, and
e if & € w? is such that |w? Na| =k then 2 < pay.

2 over Zs,

Put
® 15 = patjuwr|, and if a € w? is such that [w” Nal =k then nd = pax
and 77 = (0l : a € w9),
e gl(ag,a1) = gi(an,a0) ={pa:a < ANi=1i"Nag=af ANy = of}
(for 1 < 17 and ap < a; from w?) and g? = (gf : i < 1%).
It follows from Definition 3.6(iii) that g!(ag,a1) € O; and if (o, ) €
(wP)® then gF(ap, 1) < gf(ag, ap).
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We also let M9 = MP 419 - |wP| and we define mappings h? : (w?)? —
M1 so that:
o if (g, 1) € (wP)@ and i < 1%, then h?(ap, ay) = A (ag, o),
e if & € wP and i < 19, then hl(a, B) = hl(B,a) = MP+ |aNw?| -t +i.
This way we defined h? = (h{ : i < 19).
We put rd, = r2 for m < MP? and rl = n for MP < m < M?. We let
t9 C 22 be trees in which all terminal branches are of length n and such
that

tI N"2 = U {n2+g{(a,B) : (o, B) € (w")® and i < 1 and hf(a, B) = m}.

[Note that by our definitions above and by clause (x); for p we have t?, N
"2 =1 N""2 for all m < MP.] Naturally we also set n? = n and we define
M1 by clause (x)o. )

We claim that ¢ = (wq,nq,bq,Mq,ﬁq,fq,fq,hq,gq,/\/lq) € P. Demands
(%)1—(x)g are pretty straightforward.
RE ()10 : To justify clause ()10, suppose that 99,0, € M7, 20 = (*1 = ¢,
p €2 and m = m® = m® + p, and consider the following two cases.
CASE 1: (¢ v U™
If ¢ < nP then rpme, 1o, 10 < 1P, 80 B (Nag 1€, 00, [€) < MP for all
(g, 1) € (v°0)<2>. Hence also 09,01 € MP and clause (x)qo for p applies. If
¢ > nP then the sequence (nZ[¢: o € v U ) is linearly independent and

{1 +p:aev®}={niil:aecv™}.
Since [v*] > 5 we immediately conclude p = 0, and therefore also v = v
(remember ¢ > nP).

CASE 2: B ev U™
Say, 8 € v®. If a € v™ \ {8}, then hf(a,3) > MP for all j < «, and

q
hence rh?‘(na [¢mpl€)

sequence (n? : « € v®Uv™) is linearly independent, like before we get p = 0
and v% = v,

01

= n? (remember (x)3). Consequently, £ = n?. Since the

RE (x)1; : Assume towards contradiction that for some 9,0, € M? we
have:
e v} C v? and without loss of generality |0°| = |v%| + 1,
e ap €0, |agNo®| = k(v®), rk(v®) = —1, and m® C m®, and
o there is a; € v™ such that ng [€°° = n2 [ but nl [ # nd [0
Let EO = Ebo, 51 = (",
Suppose # € v* and take ' € v® \ {}. Then h{(B, ') > MP for all
J < t. Hence, for some j < ¢,
q _ Y A
" o 10) ACE O =t =4,
contradicting the last item in our assumptions.
If we had v®* = v® U {f}, then considering a ' € v% \ {ap} we will
immediately arrive to

MP > RS (10 1o, g 1o) = ™" (ng My, mpr 141) > M,
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a contradiction.

Therefore the only remaining possibility is that 8 ¢ v°!.

If ¢, < nP, then 0y,0; € MP and clause (x);; for p gives us a contradic-
tion. So assume £, > nP. Since {n[n? : v € v} are all pairwise distinct,

we conclude £y < n? and m® € MP. We define n € M? 56 by setting:

o % = (g ) = (g € ), = 6,
and for (v,v') € (v®)? and i < 6:
o if {777,} 7é {a07a1}7 then

GrmE, ) = {onP: o € g™ (6, 0% 1)}

and h?(77€7 775’) = hzr'nal (773 Ml; 773/ rgl)u
e if {7,7'} = {a, a1}, then we fix distinct 0y,...,05 € U g} (a0, a1)
g<u
(remember (x)g for p), and we let (0%, n%,) = g (5, mh,) = {oi}
and h?(ng(ﬁngl) - h;l(ngl?ngo) =m Where ng() + U’i?/r/Oél + Ui E tr]r)n
(for ¢ < 6).

Since m® [ m®, in the case when {v,~'} # {ap, @1} we have

g™ (1o, 7 Tho) <00 g™ (1 1, 11, 11)

and hence g}*(n?,n%,) N g} (0%, 7n%,) = 0 whenever i < j < 6. Hence 3.10(c)
is satisfied. Other cases and other conditions of 3.10 follow immediately by
our choices, and hence

n = (n,6,u", h*, g*) € M} 5.

Moreover, m® [ n and 0, = (n?,v%,n) € MP. However, then 0¢,0, con-
tradict clause (x)1; for p.

(3) Let p € P. Set w? = w? and 19 = » + 1. For (ap,a1) € (w?9)? and
i < 17 we use Proposition 3.8 to pick v(i, g, 1) € O; so that: for some /,
for all i < 4 and (g, 1) € (w?)? we have
° E(v(i,ao,al)) =/,
o if i <P then ¢’ (ap, n) <; v(i, ap, 1) = v(i, 01, ),
e for some v € Op, v < V(P a9, 1) = V(P aq, Q).
Fix an enumeration
{(o%,i*,08,08) s a < A} = {(0,1, 00, 1) : g < cy are from w and
i< A o€v(i,a, o)}

Choose n = n? > ¢ and a sequence (p, : a < A+ |wP|) C "2 so that

e (p.Ilt,n) : a < A+ |w?|) is linearly independent in ™2 over Z,,
and
e 0% A p, for each a < A, and
e if @ € w? is such that |[w?Na| =k then n2 < paig.
Put

e if & € w? is such that |w? N a| = k then N = payp and 77 = (4 :
a € wl),
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e g/, 1) = g¥ (a1, 0) = {pa ta<ANI=i"Nag=af Nay = oz‘f}
(for 1 < 17 and ap < a; from w?) and g7 = (gf : i < 1%).
It follows from Definition 3.6(iii) that g!(ag,a1) € O; and if (o, ) €
()@ then gP(ap, 1) < ¢'(p, ).
We also let M9 = MP + |[w??| and we fix a bijection ¢ : [w?]*> —
[MP, M7). Then we define mappings h? : (w?)®? — M so that for ag < oy
from w? we have

e if i <9, then hl(ap, ) = hi(a1, a0) = W (v, ),
° th(Oéo,Oél) = hip (o1, ap) = ({O'/Oaal})

This way we defined h? = (h? : i < 19).

We put rf, = 12 for m < M? and r, = n for MP < m < M?. We let
t49 C ™22 be trees in which all terminal branches are of length n and such
that

td N"2 = U {n?+g¥(e, B) : (a, B) € (w")* and i < 1 and h{(a, B) = m}.

[Note that by our definitions above and by clause (x); for p we have t2, N
"2 =4 N2 for all m < MP.] We define M7 by clause (x)g. Like previously,
one easily verifies that ¢ = (w? n?,.9, M, 79,197, h, g7, M?) € P. [The
crucial point is that if 0 € M9, n,v € v™ and h™ (n,v) > MP?, then
° =nt] O

Claim 4.4.2. The forcing notion P has the Knaster property.

Proof of the Claim. Suppose that (pe : & < wy) is a sequence of pairwise
distinct conditions from P and let

Pbe = (wg, Ng, Le, Mf? ’175, 2?5, fg, l_lg, g_]g, ,/\/lg)
where e = (0 : @ € we), te = (15, : m < M), 7e = (r, : m < M), and
he = (hf D1 < lg), e = <9§ ¢ < ). By a standard A-system cleaning
procedure we may find an uncountable set A C w; such that the following
demands (x)15-(%)15 are satisfied.
()12 {we : & € A} forms a A-system with the kernel w*.
(%)13 If &, 5 € A, then |we| = |we|, ne = n, te = te, Mg = M, and t5, = t5,
and 1§, = 1S, (for m < M;).
()14 If £ < ¢ are from A and 7 : wg — wc is the order isomorphism,
then
(a) m(a) = a for a € w* = we Nw,
(b) if 0 # v C we, then rk(v) = rk(nw[v]), ((v) = {(x[v]) and k(v) =
k(m[v]),
(c) m5 = 77;(&) (for o € we),
(@) 650, 8) = oS(n(a),m(8)) and hi(a,B) = K(n(a),w(8)) for
(o, B) € (we)® and i < 1¢, and
(%)15 M¢ = M, (this actually follows from the previous demands).
Note that then also
(¥)16 if £ € A, v C w* and § € we \ w* are such that rk(v U {5}) = —1,
then k(v U{d}) # |6 Nv|.
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[Why? Suppose tk(vU{d}) = —1 and k = k(vU{d}) = [6Nv], j = j(vU{d}).
For ¢ € A let m¢ : wg — wc be the order isomorphism and let §. = 7 (J).
By (*)14 we know that k = k(v U {6;}) = |6 Nv| and j = j(v U {6.}).

Therefore, letting v U {0} = {ao, ...,a,-1} be the increasing enumeration,
for every ¢ € A we have M = R, jlao, ..., ak-1,0, Qkt1, - .., 0n—1]. Hence
the set

{b< XM R, jlao, -, Gk, b, apg1, .. Gn1]}
is uncountable, contradicting (®), from the beginning of the proof of the
theorem.|

We will show that for distinct £, ¢ from A the conditions pg, p. are com-
patible. So let {,¢ € A, £ < ¢ and let 7 : wg — w, be the order iso-
morphism. We will define ¢ = (w,n, v, M, 7, t,7, l_z,g,./\/l) where 77 = (1, :
a€wy,t= "ty :m<M),7=(rp:m< M), and h = (h; : i < 1),
g="(g;:1<u).

We set

()17 ¢t = t¢ and w = we U w.

Similarly to the arguments in previous claims, we first pick

Wi, an, 1) : (ag, 1) € w? A i <)

(2

and an ¢ such that for all i < ¢ and (ap, ;) € w®? we have

e v(i, o, 1) = v(i, a1, ) € Oy, ﬁ(v(i,ao,al)) =/,

o if ap, a1 € we then gf(ag,al) < v(i, g, 1), and

o if g, aq € we then g5 (ap, aq) <; v(i, ap, aq).
(No other demands on v(i, a, 1) but symmetry if ag € we \ we and oy €
w; \ we.) Then we fix an enumeration

{(J“,i“,ag,off) ca < A} = {(a,i,ao,al) tap < aj are from w and
i<t A oeuvi,apar)}

and we choose n > ¢ and (p, : a < A+ |w|) C "2 so that
(palll,n) : a < A+ |w]|) is linearly independent in “™2 over Z,, and
e 0% < p, for each a < A, and

e if a € wy is such that |we N | =k then 75 < payr,
o if o € we \ we is such that |(w, \ we) Naf =k then 15, < payjuwg|+k-

(%)1s n is the one chosen right above,
(%)19 7= (N : @ € w), where

o if & € wy is such that |we N = k then 1, = payk,

o if v € we\wg is such that |(w, \we)Na| =k then 1y, = pajwg|
(%)20 g = (g; : © < ), where for i < ¢ and oy < o from w we put

gilao, 1) = gi(ar, a0) ={pa:a <A N i=i" N ag=0af N o =af}.
As before, by 3.6(iii), we know that g;(ag, a;) € O; and if (ag, ay) € (we)?

then ¢ (ap, a1) <; gi(a, o) and similarly for ¢ in place of €.
Let



Paper Sh:1240, version 2023-02-24_2. See https://shelah.logic.at/papers/1240/ for possible updates.

OVERLAPPING TRANSLATIONS IV 19

(#)ar M = Mg + [we \ wel?
and let ¢ @ (we \ we) X (we \ we) — [Mg, M) be a bijection. Then we define

(¥)a2 h = {(h; : i < ), where mappings h; : w® — M are such that for
distinct g, @3 € w and @ < ¢ we have
[ hi(Oéo,al) = hi(Oél,Oéo),
o if ap, a1 € we, then h;(ay, o) = hf(al,ao),
o if o,y € we, then h;(aq, ap) = h; (a1, ),
o if ap € we \ we and oy € we \ we, then h;(aq, ap) = P(v, ).
(%)o3 t = (t,, : m < M), where t,, C "22 are trees in which all terminal
branches are of length n and such that

tm 172 = [ J {10 + 9:(ev, ) : (@, ) € w® and i < v and hy(a, f) = m},

(%)2a T = (1, : m < M), where r,, = 75, for m < Mg, 1, = n if Mg <
m < M.
(%)25 M is defined by (x)g (for the objects introduced in (x)17—(*)a4).

In clauses (*);7—(%)25 we defined all the ingredients of
q = (wvna M?ﬁa£7777 B7Q7M)

We still need to argue that ¢ € P (after this it will be obvious that it is a
condition stronger than both pe and p.).
It is pretty straightforward that ¢ satisfies demands (x);—(x)o.

RE (*)10 : To justify clause (x)19, suppose that 99,0, € M, (%0 = (> =/
and p € 2 and m® = m® + p, and consider the following three cases.

CaSE 1: 0% C wyg

Then for each (6,¢) € (v°)? and i < ¢« we have hy(d,e) < M, and con-
sequently rng(h;-“oo) C M, (for j < 6). Hence also rng(h;»nol) C M (for
j < 6). But looking at ()2 (and remembering (*)J4) we now conclude
hi(6,€) < Mg for (8,¢) € (v*)® and i < . Consequently, either v** C wy
or v** C w,.

If v** C we and ¢ < ng, then 9,9, € M, and clause (x);o for pe can be
used to get the desired conclusion.

If v°* C we and € > ng, then {n,[¢ : o € v U} is linearly independent
and hence p = 0 and v% = v°1.

If v C w, and ¢ < ng, then consider v = 7 'v™] C we and 0 =
(¢,v,m"). Clearly, € M, and we may use (*);o for pe to conclude that
rk(v) = rk(v%), {(v) = ((v®), k(v) = k(v®), and if & € v, [ € v are such
that |aNv®| = k(v®) = k(v) = |BNv|, then (14 [€) + p = ns L. Now we use
the properties (x)14(b,c) of 7 to get a similar assertions with v° in place of
v.

If v C w, and ¢ > ng, then we consider v = 7 [v*'] C w, and use
the linear independence of {n,[¢ : a € v® Uwv} to conclude that p = 0 and
v® = v = 77! [v"]. Finally we use the properties (x)14(b,c) of 7 to get the
desired assertions.
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CASE 2: 0% C w,
Same as the previous case, just interchanging ¢ and .

CASE 3: 0%\ we # 0 # 0% \ w,

Then for some (4,¢) € (v*)? we have hi(d,e) > M, for all i < ¢, so
necessarily £ = n. Now, the linear independence of 7 implies p = 0 and
v% = ¢ and the desired conclusion follows.

RE (x)11: Let us prove clause (x);; now. Suppose that 99,01 € M, § € v,
|6 N v = k(v®), tk(v®) = —1, and v C »** and m® C m°. Assume
towards contradiction that there is an € € v° such that

(*)26 M [€7 # s [ but ne [0 = ns [€%.
Without loss of generality v** = v% U {e}. Since we must have £ < n,
for no o, 8 € v® we can have (Vi < ¢)(hi(a, 5) > Mg). Therefore either
0% C we or v C w.. By the symmetry, we may assume v C we. Note
that

()7 if (o, B) € (V*1) @\ {(5,6), (5,€)} then h;(a, B) < Mg for all i < ..
Now, if v** C we and £°* < ng, then 9y, 9; € M, and they contradict clause

(%)11 for pe. Let us consider the possibility that v® C we but €21 > neg.

Define n € M? 54 by:

o (™ =ng, u™ = {nyIneg : v € v™} (note n:[ng # nsing), ™ = 6, and
for (7,7') € (v°1)® and i < 6:
o if {7,7'} # {e, 0}, then

92 (1 Ime,ny Ing) = {ong s o € g™ (1, 16, 1y 1£7)}

and A (, ng, ny [ne) = W™ (n, 161, 7, 1€1), and
e for {v,7'} = {0, e} we fix any distinct oy, ...,05 € | g§(5, e) and we
g<t
let g7 (ns [ne, me[ne) = g7 (N Ing, 05 Ing) = {03} and b} (ns [ng, n:[ne) =
h2(nene, nsIne) = m where (n5[ng)+0i, (neIne)+0; € £, (fori < 6).
Since m® [ m® | in the case when {v,~'} # {0,e} we have

g™ (1 16 1 160) <0 g™ (my 1607 1),

and hence gi*(n%,75,) N g7 (nf,75,) = @ whenever i < j < 6. Hence 3.10(c)
is satisfied. Other cases and other conditions of 3.10 follow immediately by
our choices, and hence

n = ({*6,u", k", ") € M.

Moreover, m® C n and 9, = (ng, v*,n) € M,. However, then 9,0, con-
tradict clause (x)q; for pe.

Consequently, v°* \ we # ), so necessarily ¢ ¢ w*.

Suppose [vP\w*| > 2, say ag, a1 € v \w*. Then h;(e, ), hi(e, o) > M
for all ¢ < ¢. But m®  m® implies that for o € v® \ {6} we have

W™ (e 10, 1o 1) = W™ (s 1070, 1o [€70) < Me,

so we arrive to a contradiction.
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If we had v C w*, then v** C w. and we may repeat the earlier ar-
guments with ¢ in place of £ to get a contradiction. Thus the only pos-
sibility left is that [v% \ w*| = 1. Let {a} = 0% \ w*. If & # ¢, then
RS (o [0, 0 1021 = B (0o [0, me[£%) < M gives a contradiction like
before. Therefore, v*° = (v Nw*)U{J}. But now our assumptions on v*, ¢
contradict (k). d
Claim 4.4.3. Assume p = (w,n, v, M, 7,t, B,g,/\/l) eP Ifm e M? ~ S
such that ™ = n and |[u™| > 5, then for some p € "2 and v C w we have
(n,v, (m+p)) € M.

Proof of the Claim. Let m € MY 5, be such that (™ = n. Suppose (n,v) €
Let gi*(n,v) = {o;} for j < 6. Then o;s are pairwise distinct, and if
n+o0; = v+ oj then

n+op,v+or ¢ {n+o,v+o}t={n+o;,v+o;}
whenever k ¢ {i, j}. Hence we may pick jo < ji < jo < 6 such that
n+aj0?y+Ujmﬁ+Ujlvy+aj1777+0j2vy+aj2

are all pairwise distinct. Just to simplify notation let us assume that jo = 0,
jl =1 ad jg =2

For each j < 3 we have  + 0, v + 0; € |J,,c 5 tm- By clause ()7 there
are (ay, 8;), (a, ) € w® and p; € U gi(ey, 8;) and p; € U gi(a, B}) such

1<t 1<t
that n + 05 = 14, + pj and v + 05 = na;—i—p;- for j < 3. Then n +v =
Nay + Ny + p5 + p for all j < 3. We will consider 3 cases, the first two of

them will be shown to be impossible.

CASE 1: 74, = N for some 7 < 3.

Then, by the linear independence demanded in (*)7, 1, = o, for all j <
3 and {po,po} = {p1,0P1} = {p2,Ph}. But g;(c, B)’s are disjoint, so each
pE U{gi(a,ﬁ) (o, B) € WP A i< L} uniquely determines «, 5 such

that n, + p,ms +p € U tm. Therefore, [{ag, a1, a2} < 2 in the current
m<M

case. Since n + 0;, v + o; are all pairwise distinct (for j < 3), this gives an
immediate contradiction.

CASE 2: 1o, # Ny and p; # p; for some (equivalently: all) j < 3.

Then {1y, Moy } = {Mars Mt b = {Mans My, } and {po, oo} = {p1, 1} = {p2, P5}-

However, this again contradicts 1 + o, v + 0; being pairwise distinct.
Thus the only possible case is the following;:

CASE 3: 1o, 7 Ny and pj = P for all j < 3.

Then n+ v =14, + Ny

Consequently we have shown that

™ +u™ C{ne+ns o, f € w}.



Paper Sh:1240, version 2023-02-24_2. See https://shelah.logic.at/papers/1240/ for possible updates.

22 ANDRZEJ ROSLANOWSKI AND SAHARON SHELAH

By Lemma 4.3 for some p we have u™+p C {n, :a € w}. Let v={a € w:

o € W™+ p}. Let us argue that (n,v, (m+ p)) € M: demands (x)§—(x)§

are immediate consequences of our choices above. Let us verify (x)3.
Suppose that (a,8) € v/® and i < 6. Let n = 1o + p,v = 13 + p (50

they are in ™) and let {o;} = ¢™(n,v). Then n+ o, v+ o0, € U tm, so
m<M

we may choose (o, '), (", 8") € w'® and j, 5" < v and p' € g;(/, ') and

p" € gyn(a”,B") such that n + 0; = Ny + p’ and v + 0; = 1y + p”. Then

Na+M3=0+V="0w~+0ar+p +p".

By the linear independence stated in (x)s we get p = p” and {na, o} =
{Na,ns}. Consequently also {a, f} = {¢/, "} and {/, '} = {a”, 5"} and
j" = j". Since a # [ we get o # " and thus o = (", o = . Conse-
quently, {, 5"} = {/, '} ={d/, "} = {e, B}. Hence n + 0, = now + p' €
thj/(a,ﬁ) = thj/(ﬂ,a) and v+ 0; = ner + p € thj/(a,ﬁ) = thj/(ﬁ,a)- Therefore,

W (10, ms) = WP (0, v) = hy (o, B) = e (B, ). O

Define P-names T, and 7, (for m < w and o < A) by
”_IP"‘ Tm:U{tfanGP A m<Mp} ”,and
H_]p“ ya:U{T]g:pEGP A\ aewp} 77‘

Claim 4.4.4. (1) For eachm < w and o < A,
IFp “ Na € “2 and T,, C “>2 is a tree without terminal nodes
(2) For all a < 5 < X\ we have

e (na+ (J () 0 (s + [ lim(Z20)) is Olarge ”.

”»

m<w m<w
(3) IFp“ U lim(T,,) is a O° -npots set ”.
m<w
Proof of the Claim. (1,2) By Claim 4.4.1 (and the definition of the order

in P).

(3) Let G C P be a generic filter over V and let us work in V[G]. Let
T={(Tn)":m<w). )
Suppose towards contradiction that B = |J lim ((Z',)%) is an O%-pots

m<w

set. Then, by Proposition 3.16, NDRK@#s(71") = oo. Using Lemma 3.15(5),
by induction on j < w we choose m;, m; € My 6 and p; € G such that
(i) ndrkgs(m;) > wy, [u™] > 5 and m; C mj} C my,
(ii) for each v € u™ the set {n € w™+ : v < n} has at least two
elements, and
(it) p; < pj1, ™ < ™5 = nPi < ™+ and mg(h™) € M? for all
1 < 6, and
(iv) [{nln?s =g € wmssi}] = [ui| = [u™
To carry out the construction we proceed as follows. Suppose we have de-
termined m; so that ndrkses (m;) > w;. Using densities given in Claim 4.4.1,
we find p; € G with n?’ > (™ and rng(h;™”) C MP?i (for i < 6). Next we
choose n such that m; C n, ndrkss(n) > wy, and £™ > nPs. Using Lemma
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3.15(8) (for a v/ C u™ such that {n[™ :n € u'} = u™, || = [u™]) we
may also demand that |u™| = |[u™i|. Now we let
o (=nPi,u={nll:necu"},
e h=(h;:i<6), where for i < 6 and (n,v) € (u
hi(nll,v10) = hi(n,v) = by (™, v1ems),
e §=(gi:1<6), where for i <6 and (n,v) € (u®)
gt v10) = {pll: p € gi(n,v)}.
Clearly, m; = (£,6,u, h,g) € M7 ps and m; C m}. Finally use Lemma
3.15(5) to pick m;; T n such that ndrk(m;i;) > w; and condition (ii) is
satisfied. Note that m} C mj.

n) (2)

(2)

Then, by (iii)+(iv), m;, m} € M2 . It follows from Claim 4.4.3 that

tri, 08"
for some w; C wP and p; € "2 we have (n?s, w;, m’ + p;) € MPi.
Fix j for a moment and consider (n?/, w;, m} + p;) € MP7 C MPi+1 and
(nPitt wjg, My, + pjy1) € MPi+t. (Note that since (nPi,w;, m} + p;) €

MPi we know that rhm;( : < n¥ for all i < 6, (n,v) € u™.) Since
i LY

(m} + (pjy1[nP7)) C (M}, + pji1), we may choose wi C wjyq such that
(08w + (pyea[n9)) € M. Since (m5 + p5) + (py + pyoa ) =
m} + (pj1[nP7), we may use clause (x)io for p; 41 to conclude that rk(w}) =
rk(w;).

Condition (ii) of the choice of m; ; implies that

(Vy € w})(30 € wypa \ wi)(np ™ 7 = 15" 7).

Let () be the smallest § € wj;; \ w} with the above property and let
wi(y) = (wi\{y})WU{6(7)}. Then, for v € wj, (n™, wj(7), mj+(pj1[n")) €
MPi+1 and therefore, by clause (x)qo for p;;1, we get that for each v € w;:

rk(w (7)) = tk(w}), ((wj(y)) =¢(wj), and  k(wj(7)) = k(w]).
Let n = |wj], ( = ((w}), k = k(wj), and let w} = {ag,..., k..., Q0 1}

J
be the increasing enumeration. Let a = d(ax). Then clause (%) also gives

. o . ) . .
that wi (o) = {ag, ..., Qp_1, %, Qg1 - -, Q1 } s the increasing enumera-
tion. Now,
M E R, clao, ... 01, Oy Qg - -+, Q1] and
*
M ): Rn,{[a(h ey Q1,00 Oy 1, . - aan—l]a

and consequently if rk(w}) > 0, then
rk(wjy1) < rk(wj U{ag}) < rk(w)) = rk(w;)
(remember (®)q from the very beginning of the proof of the Theorem).
Now, unfixing j, it follows from the above considerations that for some
Jo < w we must have:
(a) rk(wj)) = —1, and
(b) (npjo ) w;oa m;O + (pjo—l—l [npjo ))7 (nijH’ Wio+1, m;o-i—l +pjo+1) S ij0+l7
(c) for each v € u™o the set {n € u™ o+ : v < n} has at least two
elements.
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However, this contradicts clause (x)1; (for pj,41)- 0

5. CONCLUSIONS AND (QUESTIONS

Corollary 5.1. Assume NPr,, () and X\ = \¥ < p = po.

(1) Let O be a nice indexed base. Then there is a ccc forcing notion Q
of size u forcing that:

o 2% = 4 and there is a X9 set B C “2 which has X many pairwise
O-nondisjoint translates but does not have \T many pairwise
O%-nondisjoint translates.

(2) In particular, there is a ccc forcing notion Q' of size y forcing that:

o 2% = and for some X set B C “2 there are pairwise distinct
(e = € < A) such that (B 4+ n¢) N (B + 1¢) is uncountable for
each &,¢ < A, but

o for any set A C “2 of size AT there are x,y € A such that
(B+z)N(B+y)| <6.

Proof. (1) Let PP be the forcing notion given by Theorem 4.4 and let Q =
P % C,. The set B added by P is a O°-npots-set in V¥, so by Proposition

3.16 we got NDRKgs(T') = oo. The rank ndrkp is absolute, so in V¢ we
still have NDRK g6 (T') = oo and thus B is a O%-npots-set in VO, By 3.5(3)
this set cannot have AT pairwise @%-nondisjoint translates, but it does have
A many pairwise O-nondisjoint translates (by absoluteness). Il

Corollary 5.2. Assume MA and R, < ¢, a < wy.

(1) Let O be a nice indexed base. Then there exists a ¥ O%-npots-set
B C “2 which has X, many pairwise O-nondisjoint translations.
(2) In particular, there exists a X9 set B C “2 such that
e for some pairwise distinct (ne : & < N,) C “2 the intersections
(B +n¢) N (B +1n¢) are uncountable for each &, < R, but
e for every perfect set P C “2 there are x,y € P such that |(B +
z)N(B+vy)| <6.

Proof. Standard consequence of the proof of Theorem 4.4, using the fact that
“Bis a O npots-set” is sufficiently absolute by Proposition 3.16. Il

Problem 5.3. (1) Can one differentiate between various nice O in the

context of our results? In particular:

(2) Is it consistent that for some nice O there is an %J O-npots-
set which has X, many pairwise O-nondisjoint translations, but
for some other nice O* every Y9 set with N, many pairwise O*-
nondisjoint translations is automatically O*-pots ?

(3) Is it consistent that there is an X9 set B C “2 which is has X, many
pairwise OP-nondisjoint translations, is OP*-npots, but is also
O% pots?

Problem 5.4. (1) Consider the forcing notion P given by Theorem 4.4
for OP". In the forcing extension by PP, the ranks NDRK#s(7') and
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NDRKgper (T) are both countable. Are they equal? What are their
values?

(2) Does there exist a sequence of trees T* (as in Assumptions 3.1) for
which the ranks NDRKgper (T') and NDRKp. (T) are different (for
some/all ¢)?

(3) Generalize the construction of [5] to arbitrary nice O.

(4) Generalize the result of the present paper to the context of arbitrary
perfect Abelian Polish groups.
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