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ABSTRACT. We investigate the existence of metric spaces which, for any coloring with a fixed number
of colors, contain monochromatic isomorphic copies of a fixed starting space K. In the main theorem we
construct such a space of size 2ℵ0 for colorings with ℵ0 colors and any metric space K of size ℵ0. We
also give a slightly weaker theorem for countable ultrametric K where, however, the resulting space has
size ℵ1.

1. INTRODUCTION

Recall that the standard Hungarian arrow notation

κ→ (λ)νµ
says that whenever we color ν-sized subsets of κ with µ-many colors there is a homogeneous subset
of κ of size λ. The question whether, for a given λ,ν,µ, there is a κ such that the arrow holds has
been well studied in Ramsey theory. If ν= 1 the coloring becomes a partition of κ and the question
reduces to a simple cardinality argument. However, if we add additional structure into the mix,
the question becomes nontrivial. The following definition makes precise what we mean by “adding
additional structure”:

Definition. Let K be a class of structures and κ,λ,µ be cardinals. The arrow

κ→K (λ)1µ,

is shorthand for the statement that for every K ∈K of size λ there is a Y ∈K of size κ such that for
any partition of Y into µ-many pieces one of the pieces contains an isomorphic copy of K .

Note that for a class of structures there are often several natural notions of contains an isomorphic
copy. So the above notation assumes that the choice of K includes choosing the notion of contains
an isomorphic copy. The basic question, given a class K , then becomes whether for every λ,µ there
is a κ such that κ→K (λ)1µ.

These types of questions have been considered before. For example, A. Hajnal and P. Komjáth (in
[HK88]; see also [She89]) consider the class G of well-ordered undirected graphs. The notion of “G
contains an isomorphic copy of H” is “G contains an induced subgraph graph-isomorphic to H via an
order-preserving bijection”. For this class they prove

Theorem (Hajnal, Komjáth).
2κ→G (κ)1κ.

J. Nešetřil and V. Rödl consider ([NR77]) the classes T0 and T1 of all T0 and T1 topological spaces
with homeomorphic embeddings. They prove

Theorem (Nešetřil and V. Rödl). If T =T0 or T =T1 then

κγ→T (κ)1γ
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In this paper we will be interested mainly in these questions for metric spaces. There have been
some results for metric spaces (see e.g. [Kom87], [Nes06], [WK87], [Wei90]). Most notably, W. Weiss
shows in [Wei90] that there is a limit to what one can prove:

Theorem (Weiss). Assume that there are no inner models with measurable cardinals. If X is a topo-
logical space then there is a coloring of X by two colours such that X doesn’t contain a monochromatic
homeomorphic copy of the Cantor set.

Also see [She00, 3.8(1), 3.9(3)]: it says that if 2ℵ0 > ℵω and some very weak statement holds (the
precise formulation is unimportant here, but it is weak enough that the consistency of its negation
is not known, even under any known large cardinal) then every Hausdorff space X can be divided
into 2ℵ0 many sets, none of which contain a homeomorphic copy of the Cantor set. In particular, this
holds in VP if P adds ≥iω Cohen reals. See more in [She04].

In particular, in the class of metric spaces, we can’t hope for positive results if κ>ω (but see [She04]
for a positive result from a supercompact cardinal; more history can be found there). The case κ=ω
is not ruled out, and in fact the main result of this paper, due to the first author, is a positive arrow
for this case.

1.1. Definition. Let M be the class of bounded metric spaces with “X contains an isomorphic copy
of Y ” being “X contains a subspace which is a scaled copy of Y ”. (K is a scaled copy of Y if there is a
bijection f : K →Y onto Y and a scaling factor c ∈R+ such that dK (x, y)= c ·dY ( f (x), f (y)).

1.2. Theorem.
2ω→M (ω)1ω.

In fact the theorem we prove is much stronger: for every countable metric space any ℵ1-saturated
metric space X works.

The original motivation of the second author for considering these arrows comes from a problem of
M. Hrušák stated in ([HZ12]):

Question. Does ZFC prove that there is a non σ-monotone metric space of size ℵ1?

If one could replace 2ω by ℵ1 in the above arrow, this would give a positive answer. In fact, for a
positive answer it would be sufficient to consider the class M with isomorphic copies being Lipschitz
images, which seems to be much weaker.

The paper is organized as follows. In the second section we prove the main result and in the third
section we discuss what can be proved for the restricted class of ultrametric spaces. We finish the
introduction by recalling some definitions and facts for the benefit of the reader.

1.3. Definition. 1) A metric space is a pair (X ,ρ) where ρ : X × X → R is a metric (on X ), i.e. it
satisfies, for all x, y, z ∈ X ,

(a) ρ(x, y)≥ 0 and ρ(x, y)= 0 ⇐⇒ x = y;
(b) ρ(x, y)= ρ(y, x); and
(c) ρ(x, z)≤ ρ(x, y)+ρ(y, z).

2) The third condition is called the triangle inequality. If it is strengthened to

∀x, y, z ∈ X , ρ(x, z)≤max{ρ(x, y),ρ(y, z)}

then we say that the space is ultrametric.

3) In the remainder of this paper, we may abuse notation slightly and refer to the metric space (X ,ρ)
as X .

1.4. Definition. A metric space (X ,ρ) is ℵ1-saturated if for any at most countable Y ⊆ X and any
function f : Y →R+ satisfying the triangle inequality

(∗) f (x)+ f (y)≥ ρ(x, y) & f (x)+ρ(x, y)≥ f (y) & f (y)+ρ(x, y)≥ f (x)

for all x, y ∈Y there is p ∈ X such that ρ(x, p)= f (x) for all x ∈Y .
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1.5. Note. There is a standard way to see X as a structure for a language with countably many
binary predicates {Rq : q ∈Q}: namely, interpret the predicate Rq(x, y) as ρ(x, y)≤ q. Then the space
X is ℵ1-saturated if

(1) it contains a copy of every finite metric space,
(2) given any finite metric spaces Y1 ⊆ Y2 with |Y2 \ Y1| = 1 and an isometry π : Y1 → X , the

isometry can be extended to Y2, and
(3) every bounded 1-type ⊆ {R(x,a), R(b, x) : a,b ∈ A}, for A a countable subset of X , is realized.

The following is standard and is included here for the convenience of the reader.

1.6. Observation. There is an ℵ1-saturated metric space of size 2ω.

Proof. Let {(Yα, fα) : α < 2ω} be an enumeration of all pairs such that Yα ∈ [2ω]≤ω and fα : Yα → R+
with each pair appearing cofinally often. By induction define a sequence 〈dα :α< 2ω〉 such that

(1) dα ⊆ dβ for all α<β< 2ω;
(2) dα is a metric on α; and
(3) if Yα ⊆α and (Yα, fα) satisfies (∗) of 1.4 and there is no β<α such that dα(y,β)= fα(y) for all

y ∈Yα then dα+1(y,α)= fα(y) for all y ∈Yα.
(4) If (Yα, fα) satisfies (∗) of 1.4 then dα+1(β,α)= 1+dα(β,0), for β<α.

The only nontrivial part is guaranteeing (3) for successors. So assume Yα ⊆α and that (∗) is satisfied
and for each β<α there is y ∈Yα such that dα(β, y) 6= fα(y). Extend dα to dα+1 by defining

dα+1(β,α)= inf
{
dα(β, y)+ fα(y) : y ∈Yα

}
, dα+1(α,α)= 0.

Then clearly both (1) and (3) are satisfied. To show that (2) is satisfied it is enough to show that
dα+1(β,α)> 0 for all β<α. Assume this is not the case for some β<α. By assumption there is y ∈Yα

such that 0< | fα(y)−dα(β, y)| = ε. Since dα+1(β,α)= 0 we can find z ∈Yα such that dα(β, z)+ fα(z)<
ε/2. There are two cases, both leading to a contradiction: if fα(y)> dα(β, y) then dα(z, y)< dα(β, y)+
ε/2 so dα(z, y)+ fα(z) < dα(β, y)+ ε = fα(y) contradicting (∗). On the other hand if fα(y) < dα(β, y)
then dα(z, y)≥ dα(β, y)−dα(β, z)= fα(y)+ε−dα(β, z)> fα(y)+ε/2> fα(y)+ fα(z) again contradicting
(∗). This completes the inductive definition. Finally we show that (2ω,d2ω ) is ℵ1-saturated. Fix an
at most countable Y ⊆ 2ω and an f : Y → R+. Find α< 2ω such that Y ⊆ α and (Y ,F) = (Yα, fα). But
then the existence of p in Definition 1.4 is guaranteed by (3) above. �

2. THE METRIC CASE

2.1. Proposition. Assume (K ,d) is a countable bounded metric space and (X ,ρ) = ⋃
n<ω Xn is a

countable partition of an ℵ1-saturated metric space. Then there is an n <ω such that Xn contains a
scaled copy of (K ,dK ).

Proof. First fix an enumeration {zk : k <ω} of K and, aiming towards a contradiction, assume there
is no scaled monochromatic copy of K in X . We shall use the following notation: given an (at most)
countable Y ⊆ X and a function f : Y →R+ as in Definition 1.4, let

B(Y , f )= {
p ∈ X : (∀y ∈Y )[d(p, y)= f (y)]

}
.

By our assumption B(Y , f ) 6= ;. We shall inductively construct an increasing sequence {Yn : n <ω} of
finite subsets of X and functions { fn : n <ω} such that

(1) fn ⊆ fn+1; and
(2) fn : Yn →R+ satisfies (∗) in Definition 1.4 ; and
(3) B(Yn, fn)∩ X i =; for each i < n.
(4) Yn is nonempty, and sup{d(x1, x2) : x1, x2 ∈Yn}≤ 2 ·sup{dK (x1, x2) : x1, x2 ∈ K}.

Let Y0 = f0 =;. Assume now that we have constructed Yn, fn and choose an arbitrary positive c ∈R+
such that

i, j <ω∧ y ∈YN ⇒ c ·dk(zi, z j)< fn(y) / 2n+1.
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This is possible because (K ,dK ) is bounded and Yn is finite. We try to choose z′i ∈ B(Yn, fn)∩ Xn by
induction on i <ω such that j < i ⇒ ρ(z′j, z′i)= c ·d(z j, zi). If we succeed then we are done. So without
loss of generality there is some k such that 〈z′i : i < k〉 is well defined but we cannot choose z′k. Let
K ′

n = {z′i : i < k} be this copy and let Yn+1 =Yn ∪K ′
n. Finally extend fn to Yn+1 by defining

fn+1(z′i)= c ·d(zi, zk).

We need to check that fn+1 satisfies (∗). Let x, y ∈ dom( fn+1). The condition is easily seen to be
satisfied separately on Yn (i.e. when x, y ∈ Yn) by the inductive hypothesis and on K ′

n (i.e. when
x, y ∈ K ′

n) because it is defined from a metric. So without loss of generality let y ∈ Yn and x ∈ K ′
n,

so x = z′i for some i < k. Since K ′
n ⊆ B(Yn, fn), by definition ρ(x, y) = ρ(z′i, y) = fn(y) = fn+1(y). But

then (∗) is clearly satisfied (the triangle is isosceles and the two legs are longer than the base by the
choice of c).

Finally, we show that the inductive construction has to stop at some point (thus there has to be a
scaled copy of K in some Xn). Let Y =⋃

n<ωYn and f =⋃
n<ω fn. Then B(Y , f ) is nonempty (because

X is ℵ1-saturated) and B(Y , f ) ⊆ B(Yn, fn) for each n < ω (since Yn ⊆ Y and fn = f � Yn). But then
B(Y , f )∩ Xn =; for each n <ω—a contradiction.

�

3. THE ULTRAMETRIC CASE

As noted in the introduction, the second author’s original motivation for studying these questions
was the special case

ℵ1 →M (ℵ0)1ℵ0

for the class of bounded metric spaces. Unfortunately, this arrow probably does not hold in ZFC.
However a modified version of this arrow holds for the class of rational ultrametric spaces.

3.1. Definition. 1) A metric space X is called rational if x, y ∈ X ⇒ ρ(x, y) ∈Q+.

2) Repeating 1.3, an ultrametric space is a metric space that satisfies the strong triangle inequality

ρ(x, z)≤max{ρ(x, y),ρ(y, z)}.

3) Given (X ,≤) a tree and x, y ∈ X , let ∆(x, y) be the ≤-maximal z such that z ≤ x∧ z ≤ y.

4) A tree T is θ-branching iff the set of immediate successors of each element of T is of size θ.

3.2. Theorem. There is a rational ultrametric space (M,d) of size ℵ1 such that for every coloring
of M by countably many colors M contains isometric monochromatic copies of every finite rational
ultrametric space.

This theorem is both a strengthening and a weakening of the above arrow. On the one hand we get
a universal space for all copies. The price we have to pay is to restrict the copies to size < ℵ0. The
proof of the theorem is split into two parts. We first prove that each finite ultrametric space can be
represented as a special kind of a tree. Then we use a standard rank-type argument to show that
whenever the tree <ωω1 is colored by countably many colors it contains monochromatic copies of all
finite trees.

Before continuing with the proof of the first part we recall the following basic observation about
ultrametric spaces.

3.3. Fact. Let (X ,ρ) be an ultrametric space. Then every triangle is isosceles. Moreover, the base is
never longer than the sides. Formally:

(∀T ∈ [X ]3)(∃{a,b}⊂ T, c ∈ T \{a,b})
(
ρ(a,b)≤ ρ(a, c)= ρ(b, c)

)
3.4. Definition. A metric space (X ,ρ) is a rational tree space if there is an ordering ≤ which makes
X a tree and a nonincreasing function h : X →Q such that, for distinct x 6= y ∈ X ,

ρ(x, y)= inf
{
h(z) : z ≤ x & z ≤ y

}
.
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We will also call the triple (X ,≤,h) a rational tree space. The metric space (X ,ρ) is a rational branch
space if it is a subspace of a rational tree space (T,ρ) with all nodes of X being branches (leaf nodes)
of (T,ρ). It is a regular rational branch space if, moreover, each node of X has the same height and
the function hT is constant on the levels of T.

3.5. Proposition. Each finite rational ultrametric space is a regular rational branch space.

Proof. Let (X ,ρ) be a finite rational ultrametric space. Define a relation ≤0 on X as follows:

x ≤0 y ⇐⇒ (∀z 6= x)(ρ(x, z)≥ ρ(y, z))

Clearly x ∈ X ⇒ x ≤0 x.

3.6. Claim. The relation ≤0 is transitive.

Proof of Claim. Let a ≤0 b & b ≤0 c. We need to show that a ≤0 c. We may assume a,b, c are
distinct, otherwise there is nothing to prove. So consider some z 6= a. We just need to show that
ρ(a, z) ≥ ρ(c, z). If z = c then ρ(c, z) = 0 ≤ ρ(a, z). If z = b, then the inequality follows directly from
b ≤0 c. Then ρ(b,a) ≥ ρ(c,a) because b ≤0 c and ρ(c,a) = ρ(a, c) ≥ ρ(b, c) = ρ(c,b) because a ≤0 b.
Together we are done.

So assume z 6= b. Then ρ(a, z)≥ ρ(b, z)≥ ρ(c, z), and so ρ(a, z)≥ ρ(c, z) as promised. The first inequal-
ity follows from a ≤0 b and the second from b ≤0 c. This finishes the proof of the claim. ■

3.7. Claim. For each y ∈ X the set {a : a ≤0 y} is linearly (quasi)-ordered by ≤0.

Proof of Claim. Assume a0,a1 ≤0 y and, aiming towards a contradiction, assume that a0 6≤0 a1 and
a1 6≤0 a0. So there must be z0, z1 such that εi = ρ(ai, zi) < ρ(zi,a1−i) for i = 0,1. Let δ = ρ(a0,a1).
Applying Fact 3.3 we get δ = ρ(a1,a0) = ρ(a1, z0) (reading the above inequality for i = 0) and δ =
ρ(a0,a1) = ρ(a0, z1) (for i = 1). Now consider the triangle a0, z0, z1. We have ρ(a0, z0) < δ = ρ(a0, z1)
hence by 3.3 we have ρ(z0, z1)= δ.

Since ai ≤0 y, we have δ > ρ(ai, zi) ≥ ρ(y, zi) for i = 0,1. But, again by 3.3, the triangle z0, z1, y is
impossible. This is a contradiction. ■

Consider now the equivalence relation a ' b ⇐⇒ a ≥ b & b ≥ a and refine the ≤0 order on each
equivalence class to an arbitrary linear order. Call the resulting order ≤. Since X is finite, it is clear
that (X ,≤) is a tree. For s ∈ X put

h(s)=max{ρ(s, t) : t ≥ s}
(=max{ρ(s, t) : t ≥0 s}

)
(The second equality follows from the fact that if a ' b and s 6= a, s 6= b then ρ(s,a)= ρ(s,b).) Let d be
the metric of the tree space (X ,≤,h).

3.8. Claim. d(x, y)≥ ρ(x, y), and if x ≤0 y then d(x, y)= ρ(x, y).

Proof of Claim. Assume first that x ≤0 y. Then d(x, y) = h(x) ≥ ρ(x, y) by definition. Moreover if
z ≥0 x then ρ(z, y)≤ ρ(x, y),ρ(x, z) (since x ≤0 z and x ≤0 y) and, since X is ultrametric, it follows that
ρ(x, y) = ρ(x, z). In particular, since the choice of z was arbitrary, h(x) = ρ(x, y), proving the second
part of the claim. To finish the proof assume now that x, y are incomparable in ≤0 and let s =∆(x, y).
Then h(s)≥ ρ(s, y)≥ ρ(x, y) since s ≤0 x. ■

Unfortunately, the inequality in the above claim can be strict (e.g. if we consider the subspace of a
tree space which results from deleting a level the resulting subspace cannot be a tree space). We
need to add a point to the tree for each pair x, y with ρ(x, y)< d(x, y). We will use the following claim

3.9. Claim. Suppose (Y ,≤,h) is a tree space extending (X ,≤,h) such that dY (x, y) ≥ ρ(x, y) for each
x, y ∈ X . Suppose that there are a,b ∈ X , incompatible in ≤ with ρ(a,b) < dY (a,b). Then there is a
tree space Y ′ extending Y such that dY ′ (x, y)≥ ρ(x, y) for each x, y ∈ X and ρ(a,b)= dY ′ (a,b).
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Proof of Claim. Let Y ′ =Y ∪ {p} and extend the order so that dY (a,b)≤ p ≤ a,b. Moreover let h(p)=
ρ(a,b). Notice that if x, y ∈ X and either x 6≥ a & x 6≥ b or y 6≥ a & y 6≥ b or x ≤ y or y≤ x then dY ′ (x, y)=
dY (x, y) and there is nothing to prove. So, without loss of generality, assume x ≥ a and y ≥ b. But
then ρ(a,b) ≥ ρ(x,b) (since a ≤ x) and ρ(b, x) ≥ ρ(x, y) (since b ≤ y). Since ∆(x, y) = dY ′ (a,b) = p we
have dY ′ (x, y)= h(p)= ρ(a,b) and this finishes the proof of the claim. ■

Using the above claim to iteratively add points we finally arrive at a tree space (Y ,≤,h) such that
dY � X = ρ which, moreover, has the same distance set as the original X . It is not hard to further
enlarge Y to make it a regular rational branch space.

So we are done proving Proposition 3.5. �

3.10. Proposition. Assume T is an ω1-branching tree1 of height n <ω and χ : T →ω is a coloring of
the tree by countably many colors. Then there is an ω1-branching subtree2 of T whose branches (i.e.
leaf nodes) have the same color.

Proof. Given a color c <ω and s ∈ T define

G(s, c,0) ⇐⇒ ∣∣{α : χ(saα)= c}
∣∣=ω1

and, inductively,

G(s, c,m+1) ⇐⇒ ∣∣{α : G(saα, c,m)}
∣∣=ω1.

To prove the proposition it is clearly enough to show that there is some c <ω such that G(;, c,ht(T)−
1). Suppose otherwise. Then we can build by induction αm for m < ht(T)−1 such that for m < ht(T)
we have

(∀c <ω)¬G
(〈αi : i < m〉, c,ht(T)−m

)
.

For m = 0 this is our assumption, working towards contradiction. For m+1 this is again easy. Hence

(∀c <ω)¬G
(〈
αi : i < ht(T)−1

〉
, c,0

)
which is impossible since if we let s = 〈αi : i < ht(T)−1〉 then, since T is ω1-branching, s must have
uncountably many successors of the same color. �

Proof of Theorem 3.2. Let M = <ωω1 and define hM : M → Q such that for each σ ∈ M and each
q ∈ [0,hM(σ)) the set {α : hM(σaα)= q} has size ℵ1. Let dM be the corresponding metric making M a
tree space. Let X be a finite rational metric space, h a decreasing enumeration of its distance set and
let (Y ,≤,hY ) be a tree space witnessing that X is a regular rational branch space. Let χ : T →ω be an
arbitrary coloring of M. Consider the subtree M′ = {s : h � s = dM � |s|}. Then M′ is ω1-branching. By
the previous proposition there is a color c and an ω1 branching subtree M′′ of M′ with all branches
of color c. We can now build an order-isomorphism of Y into M′′ which, by choice of M′, preserves h.
It follows that M′′ contains a monochromatic isometric copy of X . �
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