HIGHER DIMENSIONAL UNIVERSAL FUNCTIONS FROM LOWER DIMENSIONAL ONES

SAHARON SHELAH AND JURIS STEPRĀNS

ABSTRACT. It is shown that the existence of a universal function on pairs implies the existence of a universal function for triples.

1. INTRODUCTION

Following Sierpiński, in [1] a very general definition of higher dimensional universal functions is given which, in the case of triples on ω_1 would say that $U: \omega_1^3 \to \lambda$ is universal if for every $H: \omega_1^3 \to \lambda$ there are are embedding $e_i: \omega_1 \to \omega_1$ for $i \in 3$ such that

$$H(\alpha_0, \alpha_1, \alpha_2) = U(e_0(\alpha_0), e_1(\alpha_1), e_2(\alpha_2))$$

for each $(\alpha_0, \alpha_1, \alpha_2) \in \omega_1^3$. However, in this brief note the stronger and, perhaps, more natural definition of universal function will be based on the definition of a universal graph introduced by Rado in [3].

Definition 1.1 (Rado). For $k \in \omega$ define $U \subseteq [\omega_1]^k$ to be a universal hypergraph if for every hypergraph $H \subseteq [\omega_1]^k$ there is a one-to-one function $e : \omega_1 \to \omega_1$ such that

$$(\forall a \in [\omega_1]^k) \ a \in H \text{ if and only if } e[a] \in U$$

where e[a] denotes the image of a under e.

Definition 1.2. For $k \in \omega$ define a function $U \subseteq [\omega_1]^k \to \lambda$ to be universal if for every function $G : [\omega_1]^k$ there is a single $e : \omega_1 \to \omega_1$ such that

$$(\forall a \in [\omega_1]^k) \ H(a) = U(e[a]).$$

In Proposition 6.2 of [1] it is shown that if there is a universal function from ω_1^2 to ω_1 in the sense of Sierpiński then there is also a universal function from ω_1^3 to ω_1 , also in the sense of Sierpiński. In this note, the companion result for universality in the sense of Rado will be established.

Theorem 1.1. If there is a universal function from $[\omega_1]^2$ to ω as in Definition 1.2 then there is a universal function from $[\omega_1]^3$ to ω as well.

However, the results in thois note do not answer rhe following question.

Question 1.1. If there is a universal graph $U \subseteq [\omega_1]^2$ — in other words, U can be considered as a universal function from $[\omega_1]^2$ to 2 — then is there a subset of $[\omega_1]^3$ that is a universal hypergraph for triples?

The interest in universal functions is based largely on the result of [4] that shows that universality can hold for graphs even in the absence of saturated graphs. While [4] did not address the question of universal functions from $[\omega_1]^2$ to ω explicitly, the methods will also yield such universal functions. However, this does follow explicitly from the results of [2] which modified the methods of [4] to apply to a larger class of structures of cardinality \aleph_1 , including functions from $[\omega_1]^2$ to ω . It should also be

The first author's research for this paper was partially supported by the United States-Israel Binational Science Foundation (grant no. 2006108), and by the National Science Foundation (grant no. NSF-DMS 1833363). This is article has been assigned number 1088 in the first author's list of publications that can be found at http://shelah.logic.at. The second author's research for this paper was partially supported by NSERC of Canada.

 $\mathbf{2}$

SAHARON SHELAH AND J. STEPRĀNS

noted that it is shown in [5] that it is consistent that there is a universal graph on ω_1 in the sense of Rado, yet no universal function from $[\omega_1]^2$ to ω . Hence, the hypothesis used in this note is significant and one cannot expect the results here to directly solve Question 1.1.

2. Universal 3-dimensional functions from 2-dimensional ones

Definition 2.1. Suppose that $U : [\omega_1]^2 \to H(\aleph_0)$ is a universal function. Let $U^* : [\omega_1]^3 \to \omega$ be defined by letting $U^*(\{\alpha, \beta, \gamma\}) = U(\{\beta, \gamma\})(U(\{\alpha, \gamma\}))$ if $\{\alpha, \beta, \gamma\} \in [\omega_1]^3$ and

- $\max(\{\alpha, \beta\}) = \gamma$
- $|U(\{\alpha,\gamma\})| \leq |U(\{\beta,\gamma\})|$
- $U(\{\beta,\gamma\})$ is a function with $U(\{\alpha,\gamma\})$ in its domain

and letting $U^*(\{\alpha, \beta, \gamma\}) = 0$ otherwise.

Lemma 2.1. If $U : [\omega_1]^2 \to \omega$ is a universal function and $F : [\omega_1]^2 \to \omega$ then there is a strictly increasing function $e : \omega_1 \to \omega_1$ such that $F(\{\alpha, \beta\}) = U(\{e(\alpha), e(\beta)\})$ for each $\{\alpha, \beta\} \in [\omega_1]^2$.

Proof. Let $\{Z_{\xi}\}_{\xi\in\omega_1}$ partition ω_1 into uncountable sets and define $F^*: [\omega_1]^2 \to \omega$ by

$$F^*(\{\alpha,\beta\}) = \begin{cases} F(\{\xi,\eta\}) & \text{if } \alpha \in Z_{\xi} \& \beta \in Z_{\eta} \\ 0 & \text{otherwise.} \end{cases}$$

There is then a one-to-one function $e : \omega_1 \to \omega_1$ such that $F^*(\{\alpha, \beta\}) = U(\{e(\alpha), e(\beta)\})$ for each $\{\alpha, \beta\} \in [\omega_1]^2$. Since each Z_{ξ} is uncountable it is possible to select $\zeta_{\xi} \in Z_{\xi}$ such that $e(\zeta_{\xi}) < e(\zeta_{\mu})$ whenever $\xi < \mu$. Now define $e^*(\alpha) = e(\zeta_{\alpha})$ and note that e^* is strictly increasing and, moreover, $F(\{\alpha, \beta\}) = F^*(\{\zeta_{\alpha}, \zeta_{\beta}\})$ because $\zeta_{\alpha} \in Z_{\alpha}$ and $\zeta_{\beta} \in Z_{\beta}$. Then

$$U(\{e^*(\alpha), e^*(\beta)\}) = U(\{e(\zeta_{\alpha}), e(\zeta_{\beta})\}) = F^*(\{\zeta_{\alpha}, \zeta_{\beta}\}) = F(\{\alpha, \beta\})$$

as required.

Lemma 2.2. Suppose that for every $D: [\omega_1]^3 \to \omega$ is there are $\{C_a\}_{a \in [\omega_1]^2}$ such that:

- (1) $C_a \in H(\aleph_0)$ is a function for each $a \in [\omega_1]^2$
- $\begin{array}{l} (2) \ D(\{\alpha,\beta,\gamma\}) = C_{\{\beta,\gamma\}}(C_{\{\alpha,\gamma\}}) \ for \ each \ \{\alpha,\beta,\gamma\} \in [\omega_1]^3 \ provided \ that \ \gamma > \max(\{\alpha,\beta\}) \ and \\ |C_{\{\alpha,\gamma\}}| \leq |C_{\{\beta,\gamma\}}|. \end{array}$

If $U: [\omega_1]^2 \to H(\aleph_0)$ is a universal function then $U^*: [\omega_1]^3 \to \omega$ is also a universal function.

Proof. Given $D : [\omega_1]^3 \to \omega$ let $\{C_a\}_{a \in [\omega_1]^2}$ satisfy Requirements (1) and (2). Using that U is universal and Lemma 2.1 it is possible to find a strictly increasing function $e : \omega_1 \to \omega_1$ such that $U(\{e(\alpha), e(\beta)\}) = C_{\{\alpha, \beta\}}$ for all $\{\alpha, \beta\} \in [\omega_1]^2$. It suffices to show that

$$U^*(\{e(\alpha), e(\beta), e(\gamma)\}) = D(\{\alpha, \beta, \gamma\})$$

for all $\{\alpha, \beta, \gamma\} \in [\omega_1]^3$.

To see that this is so let $\{\alpha, \beta, \gamma\} \in [\omega_1]^3$ and suppose that $\gamma > \max(\{\alpha, \beta\})$ and $|C_{\{\alpha, \gamma\}}| \leq |C_{\{\beta, \gamma\}}|$. It follows that

$$|U(\{e(\alpha), e(\gamma)\})| = |C_{\{\alpha, \gamma\}}| \leq |C_{\{\beta, \gamma\}}| = |U(\{e(\beta), e(\gamma)\})|$$

and, hence, that

$$U^{*}(\{e(\alpha), e(\beta), e(\gamma)\}) = U(\{e(\beta), e(\gamma)\})(U(\{e(\alpha), e(\gamma)\}) = C_{\{\beta, \gamma\}}(C_{\{\alpha, \gamma\}}) = D(\{\alpha, \beta, \gamma\}).$$

Lemma 2.3. Given $D : [\omega_1]^3 \to \omega$ there are $\{C_a\}_{a \in [\omega_1]^2}$ such that:

(1) $C_a \in H(\aleph_0)$ is a function for each $a \in [\omega_1]^2$

UNIVERSAL FUNCTIONS

(2) $D(\{\alpha,\beta,\gamma\}) = C_{\{\beta,\gamma\}}(C_{\{\alpha,\gamma\}})$ for each $\{\alpha,\beta,\gamma\} \in [\omega_1]^3$ provided that $\gamma > \max(\{\alpha,\beta\})$ and $|C_{\{\alpha,\gamma\}}| \leq |C_{\{\beta,\gamma\}}|.$

Proof. Let $B_{\xi} : \omega \to \xi$ be a bijection if ξ is infinite and let B_k be the identity if $k \in \omega$. It will be shown that for each infinite $\xi \in \omega_1$ there are $C_{\{\xi, B_{\xi}(k)\}} \in H(\aleph_0)$ for $k \in \omega$ such that:

- (1) each $C_{\{\xi,B_{\xi}(k)\}}$ is a function
- (2) domain $(C_{\{\xi, B_{\xi}(k)\}}) = \{C_{\{\xi, B_{\xi}(j)\}}\}_{j \in k}$ (3) $C_{\{\xi, B_{\xi}(k)\}}(C_{\{\xi, B_{\xi}(j)\}}) = D(\{B_{\xi}(j), B_{\xi}(k), \xi\})$

and for each $k \in \omega$ there are $C_{\{k,j\}} \in H(\aleph_0)$ for $j \in k$ such that:

- (4) each $C_{\{k,j\}}$ is a function
- (5) **domain** $(C_{\{k,j\}}) = \{C_{\{k,\ell\}}\}_{\ell \in j}$
- (6) $C_{\{k,j\}}(C_{k,\ell\}}) = D(\{\ell, j, k\}).$

To see that this suffices note that Conclusion (1) is immediate. To see that Conclusion (2) holds suppose that $\{\alpha, \beta, \gamma\} \in [\omega_1]^3$ and $\gamma > \max(\{\alpha, \beta\})$ and $|C_{\{\alpha, \gamma\}}| \leq |C_{\{\beta, \gamma\}}|$. If γ is infinite then let $j = |C_{\{\alpha, \gamma\}}| \leq |C_{\{\beta, \gamma\}}| = k$. It follows from Condition (2) that $B_{\gamma}(j) = \alpha$ and $B_{\gamma}(k) = \beta$. It is therefore possible to use Condition (3) to conclude that

$$C_{\{\gamma,\beta\}}(C_{\{\gamma,\alpha\}}) = C_{\{\gamma,B_{\gamma}(k)\}}(C_{\{\gamma,B_{\gamma}(j)\}}) = D(\{B_{\gamma}(j), B_{\gamma}(k), \gamma\}) = D(\alpha, \beta, \gamma).$$

On the other hand, if $\gamma = k \in \omega$ then then let $\ell = |C_{\{\alpha,k\}}| \leq |C_{\{\beta,k\}}| = j$. It follows from Condition (5) that $\ell = \alpha$ and $j = \beta$. It is therefore possible to use Condition (6) to conclude that

$$C_{\{\gamma,\beta\}}(C_{\{\gamma,\alpha\}}) = C_{\{k,j\}}(C_{\{k,\ell\}}) = D(\{\ell,j,k\}) = D(\alpha,\beta,\gamma)$$

as required.

For each $\xi \in \omega_1$ define the functions $C_{\{\xi, B_{\xi}(k)\}}$ by induction on $k \in \omega \cap \xi$. Start by letting $C_{\{\xi, B_{\xi}(0)\}} = \emptyset$. Given $C_{\{\xi,B_{\varepsilon}(j)\}}$ for $j \in k$ satisfying Condition (2) or Condition (5) note that the $C_{\{\xi,B_{\varepsilon}(j)\}}$ are all distinct since they have different cardinalities. It is therefore easy to define a function $C_{\{\xi,B_{\xi}(k)\}} \in H(\aleph_0)$ satisfying that $C_{\{\xi,B_{\xi}(k)\}}(C_{\{\xi,B_{\xi}(j)\}}) = D(\{B_{\xi}(j),B_{\xi}(k),\xi\})$ for all $j \in k$ as required.

Theorem 1.1 now follows immediately from Lemma 2.2 and Lemma 2.3.

References

- [1] Paul B. Larson, Arnold W. Miller, Juris Steprāns, and William A. R. Weiss. Universal functions. Fund. Math., 227(3):197-246, 2014.
- Alan H. Mekler. Universal structures in power \aleph_1 . J. Symbolic Logic, 55(2):466–477, 1990.
- [3] R. Rado. Universal graphs and universal functions. Acta Arith., 9:331–340, 1964.
- [4] Saharon Shelah. On universal graphs without instances of CH. Ann. Pure Appl. Logic, 26(1):75–87, 1984.
- [5] Saharon Shelah and Juris Steprāns. Universal graphs and functions on ω_1 . Ann. Pure Appl. Logic, 172(8):Paper No. 102986, 43, 2021.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, HILL CENTER, PISCATAWAY, NEW JERSEY, U.S.A. 08854-8019, AND, INSTITUTE OF MATHEMATICS, HEBREW UNIVERSITY, GIVAT RAM, JERUSALEM 91904, ISRAEL Email address: shelah@math.rutgers.edu

Department of Mathematics, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

Email address: steprans@yorku.ca