Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.

THE HEIGHT OF THE AUTOMORPHISM TOWER OF A
GROUP

SAHARON SHELAH

ABSTRACT. For a group G with trivial center there is a natural embedding of
G into its automorphism group, so we can look at the latter as an extension of
the group. So an increasing continuous sequence of groups, the automorphism
tower, is defined, the height is the ordinal where this becomes fixed, arriving
to a complete group. We show that for many such x there is such a group
of cardinality k which is of height > 2%, so proving that the upper bound
essentially cannot be improved.

§ 0. INTRODUCTION

For a group G with trivial center there is a natural embedding of G into its
automorphism group Aut(G) where g € G is mapped to the inner automorphism
x — grg~' which is defined and is not the identity for g # eg as G has a trivial
center, so we can view Aut(G) as a group extending G. Also the extension Aut(G)
is a group with trivial center, so we can continue defining G¢* increasing with o for
every ordinal a; let 7¢ be when we stop, i.e., the first a such that Gt = Gt
(or @ = 0o but see below) hence 8 > a = G = G{*) (see Definition 0.2). How
large can 7 be?

Weilandt [Wie39] proves that for finite G, 7¢ is finite. Thomas’ [Tho85] cele-
brated work proves for infinite G that 7¢ < (2/¢N)*, in fact as noted by Felgner
and Thomas 7¢ < (2/¢1)*. Thomas shows also that 7,, > xT. Later he ([Tho98])
showed that if Kk = k<%, 2 = k* (hence 7, < kT in V) and A > k™ and we
force by P, the forcing of adding A Cohen subsets to x, then in VF we still have
7. < kTF though 2% is > X (and V, VF has the same cardinals).

Just, Shelah and Thomas [JST99] proved that when x = <% < A, in some
forcing extension (by a specially constructed k-complete xk-c.c. forcing notion)
we have 7, > ), so consistently 7, > 2% > x* for some x. An important lemma
there which we shall use (see 0.6 below) is that if G is the automorphism group of
a structure of cardinality s, H C G, and [H| < s then 75 5, the normalizer length
of H in G (see Definition 0.3(2)), is < 7,,. Concerning groups with center, Hamkins
shows that 7¢ < the first strongly inaccessible cardinal above |G|. On the subject
see the forthcoming book of Thomas.

Theorem 0.1. If k is strong limit singular of uncountable cofinality then 7, > 2~.

It would have been nice if the lower bound for 7, ™, would (consistently) be
the correct one for all k simultaneously, but Theorem 0.1 shows that this is not so.
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Note that Theorem 0.1 shows that provably in ZFC, in general the upper bound
(2%)T cannot be improved. See Conclusion 3.13 for proof of the theorem, quoting
results from pcf theory. We thank Simon Thomas, the referee, Itay Kaplan and
Daniel Herden for many valuable complaints detecting serious problems in earlier
versions.

The program, described in a simplified way, is that for each so called “k-parameter
p” which includes a partial order I = I, we define a group G, and a two element
subgroup Hp such that (norg; (Hp) : o <rtkp) “reflects” rkp = 1k<*°(I,), the nat-
ural rank on I (see Definition 1.2), so in particular 7¢; ;= rk<>°(Ip). (Actually
in the end we shall get only “H of cardinality < x”).

We use an inverse system § = (J,py, Ty @ 4 <y v) of k-parameters where
Tu,» maps Iy, to I, ; however, in general the 7, ,-s do not preserve order (but do
preserve it in some weak global sense) where J is an 8;-directed partial order. Now
for each u € J, we can define the group Gp,; and we can take inverse limit in two
ways.

Way 1: The inverse limit p, (with 7, s for u € J of 5) is a k-parameter and so the
group Gp, is well defined.
Way 2: The inverse system (Gp,,Tu» : u <j v) of groups, where 7, is the
(partial) homomorphism from Gp, to Gp, induced by m, ., has an inverse limit
Gs.
Now
(A) concerning Gp,, we normally have good control over rkp, hence on the
normalizer length of Hy_ inside Gp,
(B) Gs is (more exactly can be represented good enough as) inverse limit of
groups of cardinality <  hence is isomorphic to Aut(2) for some structure
2 of cardinality < &
(C) in the good case Gp, = G4 so we are done (by 0.6).

In §3 we work to get the main result.

There are obvious possible improvement of the results here, say trying to prove
0x < T (see Definition 0.5) for every x. But more importantly, a natural conjecture,
at least for me was 7, = d, because all the results so far on 7, have a parallel for
. (though not inversely). In particular it seemed reasonable that for k = Ry the
lower bound was right, i.e., 7, = w;. See more in Kaplan-Shelah [KS09].

Definition 0.2. 1) For a group G with trivial center, define the group G‘* with
trivial center for an ordinal «, increasing continuous with « such that G\ = @
and G'“t1) is the group of automorphisms of G{* identifying ¢ € G{* with the
inner automorphisms it defines. We may stipulate G~V = {eg}.

[We know that G{?) is a group with trivial center increasing continuous with o
and for some o < (2!¢1TR0)+ we have 8 > a = G¥) = G{) ]

2) The automorphism tower height of the group G is

TG = Tgtw = min{a c Gl = G<a+1>}

Clearly 8> a > 7¢ = G¥) = G, (Here ‘atw’ stands for automorphism tower.)
3) Let 7, = 72" be the least ordinal T such that 7 < 7 for every group G of

K
cardinality < k; we call it the group tower ordinal of .

Now we define the normalizer (group theorists write Ng(H), but probably for
others norg(H) will be clearer: at least this is so for the author).

Definition 0.3. 1) Let H be a subgroup of G.
We define nor& (H), a subgroup of G, by induction on the ordinal «, increasing
continuous with a. We may add norg;'(H) = {eg}.
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Case 1: a=0.

nory,(H) = H.
Case 2: a=+1.

nord(H) = norg(norg(H)), see below.
Case 3: « a limit ordinal

norgy(H) = | J{norg,(H) : B < a}
where norg(H) = {g € G: gHg~! = H}. (Equivalently,
(Vo € H)[gzg~' € H, g~ 'zg € H].)

2) Let 7 = Tgl,%q, the normalizer length of H in G, be

min{a : nor®(H) = nor& ™ (H)}

sof>a>15y= nor’g (H) =nor(H). (nlg stands for ‘normalizer length.”)

3) Let 7/, = 728 be the least ordinal 7 such that 7 > 7(, ;; whenever G = Aut(2)
for some structure 20 on k and H C G is a subgroup satisfying |H| < k.

4) 7/ = 78U i5 the least ordinal 7 such that 7 > Tg{%;] wherever G = Aut(2), A
a structure of cardinality < x, H a subgroup of G of cardinality < x and

nory (H) = U{norg(H) : v an ordinal} = G.

Definition 0.4. We say that G is a k-automorphism group if G is the automor-
phism group of some structure of cardinality < k.

Definition 0.5. Let 0, = §(x) be the first ordinal « such that there is no sentence
Y € L+, satisfying:
(A) ¥ F “<is a linear order”
(B) for every 8 < « there is a model M of ¢ such that (|M|, <) has order
type > f.
(C) for every model M of 1, (|M|,<M) is a well ordering.
See on this, e.g. [She90, VII,§5].

Our proof of better lower bounds relies on the following result from [JST99).
Lemma 0.6. 7/, < 7.

Question 0.7. 1) Is it consistent that for some x, 7/, < 7,7 Is this provable in ZFC?
Is the negation consistent?
2) Similarly for the inequalities 6, < 7/, (and d§,, < 7, < 73).

Observation 0.8. For every k > Ng we have 2% > hls > rnlf,

Proof. By 0.6 and checking the definitions of 72& 712 In fact we mostly work on
proving that in 0.1, 721 > 2%, O

Notation: For a group G and A C G, let (A)s be the subgroup of G generated by
A.

* * *

A more detailed explanation of the proof:

We would like to derive the desired group from a partial order I representing the
ordinal desired as Té, g in some way and the tower of normalizers of an appropriate
subgroup of this length. It seems natural to say that if ¢ € I represent the ordinal
« then the s < t will represent ordinals < « so we use the depth in 1

dp;(t) = U{dpl(s) +1:s<gt}

For each t € I we would like to have a generator g; of the group (we denote the
group by K and g; is really denoted by g(«y,( y)) exemplifying that the normalizer
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tower does not stop at a = dp;(¢), say g: will be in the (« + 1)-th normalizer but
not in the a-th normalizer. But we need a witness for ¢g; not being in the earlier
(8 + 1)-th normalizer, § < «.

Now 3 is represented by some s <; t, so we have witnesses g s).(0)), 9((t,s),(1))s
the first in the first member of the normalizer sequence, the second in the (84 1)-th
normalizer not in the S-th normalizer. So we have a long normalizer tower of the
subgroup GI<O7 the one generated by

{9y :n(£) =0 for some £ < Lg(n) = Lg(t) — 1, t € 9@ T is <;-decreasing}.

Now §1 is dedicated to defining and investigating those groups.

However G7° = (g, : ¢ ends with a <;-minimal member) (which by this
scheme will be the first in the normalizer tower described above) is too big. Soin 2.1
we use a semi-direct product K; = Gy Ly, where Ly is an abelian group with every
element of order two, generated by {thI<0 : g € Gr} with (h(g1))thI<o =g, gaso
and try to show that the normalizer tower of the subgroup H; = {e, her"} of K;
has the same height.

But we have to make K a k-automorphism group. We only almost have it: (and
under the present description necessarily fail) we will represent it as Aut(M)/N for
some structure M of cardinality < x and normal subgroup N of it of cardinality
< k; this suffices.

From where will M come from? We will represent I as an inverse limit of some
kind of t = (I,,, Ty : w <j v) where I, is a partial order of cardinality < k,m,, a
mapping from I, to I,, (commuting). It seemed natural, a priori, to demand that
Ty, 1S order preserving but it seemingly does not work out. It seemed natural, a
priori, to prove that whenever t is as above there is an inverse limit, etc. We find
it more transparent to treat the matter axiomatically: the limit is given inside, i.e.
as § which is t + a limit v*; and J' = J* \ {v*} is directed.

Also, we demand that J* is N;-directed (otherwise in the limit of the groups we
have elements represented as infinite products of limits of the generators).
We shall derive the structure M from t so its automorphisms come from members
of Kp, (for u € J*). Well, not exactly by formal terms for it, to enable us to project
tou’ < J[y u; recalling that m, ,, does not necessarily preserve order. To make things
smooth we demand that J' is a linear order (say, cf(x)) when, as in the main case,
K is singular strong limit of uncountable cofinality.

More specifically, if s,t € I then for every large enough u € Jt,

§ <« t& Ty, v* (8) <I, Tu,o* (t)

(note the order of the quantifiers). Then we define a structure M derived from t. So
the automorphism group of M is the inverse limit of groups which comes from the
formal definitions of elements of K, -s. Each depend on finitely many generators,
which in different u-s give different reduced forms.

Now they are defined from some ¢ € ¥(I,) using “I,~ is the inverse limit .

7 The “important” t,-s, those which really affect, will form an inverse system.
(Without loss of generality, the length k is constant on an end segment. Here we
use “J*is Nj-directed.”) So for those ¢-s, the sequence (t, ¢ : u € J*) has limit ¢,
(say, for ¢ < k).

So (ty..e: ¢ < ki) has the same quantifier type in I,, whenever u, < u < v* for
some u, < v*. The other t-s still has influence, so it is enough to find for them a
pseudo limit: ¢,+ ¢ such that they will have the same affect on how the “important”
ty,¢ are used (this is the essential limit).

All this gives an approximation to Aut(M) = K; .. The “almost” means that
we divide by the subgroup of the automorphism of M which are idg, for every
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u € J* large enough. This is a normal subgroup of cardinality < » so we are done
except constructing such systems.

§ 1. CONSTRUCTING GROUPS FROM PARTIAL ORDERS AND LONG NORMALIZER
SEQUENCES

Discussion 1.1. Our aim is, for a partial order I, to define a group G = G and a
subgroup H = Hj such that the normalizer length of H inside G reflects the depth
of the well founded part of I. Eventually we would like to use I of large depth such
that |H;| < k and the normalizer length of H inside G is > 2%, even equal to the
depth of I.

For clarity we first define an approximation. In particular, H appears only in
§2. How do we define the group G = G from the partial order I? For each
t € I we would like to have an element associated with it (it is gy ¢ y)) such
that it will “enter” nor@&(H) exactly for a = rky(¢) + 1. We intend that among
the generators of the group commuting is the normal case, and we need witnesses
that g,y ¢ norGH(H) wherever 8 < rky(¢) and f > 0. It is natural that if
rky(t1) = ﬁ and t; <; to := t then we use t; to represent (3, as witness; more
specifically, we construct the group such that conjugation by g, ( ) interchanges
9((to,t1),(0y) AN G((t0.4,),(1)) and one of them, say g(,.¢,),(1)), belongs to norg+1(H)\
nor’g (H) whereas the other one, g((.+,),(0)), belongs to noré(H). Tterating we get
the elements x € X defined below.

To “start the induction,” we add to G an element g, of order 2 getting K7,
commuting with g € G iff g is intended to be in the low level (e.g. gy, tn € I
is minimal, see notation below). We could have in this section considered only a
partial order I, and the groups Gy (and later K7) derived from it. But as anyhow
we shall use it in the context of k-p.o.w.i.s., we do it in this frame (of course if
J® = {u}, then s is essentially just I,,).

Note that for our main result it suffices to deal with the case rk(I) < oco.

Definition 1.2. Let I be a partial order (so # &).
1) ky : I — Ord U {oo} is defined by rk;(t) > a iff (V8 < «)(3s <1 t)[rkr(s) > S].
2) tk7>°(t) is defined as rky(t) if rk;(¢) < co and is defined as

U{rk;(s) +1:s<st rki(s) < oo}

in general.

3) Let tk(I) = U{rks(¢) + 1: ¢t € I} stipulating o < oo = 00 + 1.

4) tk<°(I) = U{rks(t) + 1 : t € I and rk;(t) < oo}.

5) Let I[a] ={tel:rk;(t) = a}.

6) I is non-trivial when {s : s <; t and rk;(s) > S} is infinite for every ¢t € I
satisfying rk;°°(¢) > B (used in the proof of 1.10(1); if rk(I) < oo then it is
equivalent to demand “rk;(s) = 57).

7) I is explicitly non-trivial when each Ej-equivalence class is infinite, where

E]:{(tl,tQ) GIXI:(VSEI)[S <gt1 & s<ptaNt1 < st <g S]}

Definition 1.3. 1) s is a x-p.o.w.i.s. (partial order weak inverse system) when:
(A) s=(J,I,7),80 J=J°=Js|, [ =I°, & =7°.

(B) J is a directed partial order of cardinality < x.

C) I=(I,:uedy=I5:ueld)

(D) I, = I{ is a partial order of cardinality < k.

()

:}l

<7Tuv -U§J U>
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(F) my, is a partial mapping from I, into I,. (No preservation of order is
required!)
(G) Ifu<jv<;wthen myw = Ty © Ty w-
2) s is a p.0.w.l.s. means k-p.o.w.i.s. for some k.
3) For u € J let X,, = X be the set of x such that for some n < w:

(A) z=(tn) = (E,71")
(B) n* is a function from {0,...,n — 1} to {0,1}.
(C)t = (ty: £ <n) = (t} : £ < n), where t;, € I is <ys-decreasing: i.e.
tn <rs tn—1 <rs ---<Is to.
3A) In fact, we define X; similarly for every partial order I, so X = X7s.
4) In part (3), for z € X3, let n(z) = £g(¢*) — 1 and so by (z) 18 the last element in

the sequence t.
5) For x € X and n < n(x) let y =2 [ n € X (with n(y) = n) be defined by:

= ) (n+ 1) = (t2, .. 1%)

n=n"In=n"1{0,...,n—1}
6) We define rk? = rk>* to be the function from X, to {—1}UOrdU{occ} as follows:

(A) If z € X, and {n*(¢) : £ < n(z)} C {1} (e.g., n(x) = 0) then let 1k (z) =
I‘k]u (t;cz(w))
(B) If € X, and {n®(£) : £ < n(x)} € {1} then let rk>*(z) = —1. (Yes, —1!)

7) We say that s is nice when every I7 is non-trivial and 7, , is a function from I,
into Iy, i.e., the domain of 7, , is I,.

8) XS = {CL‘ € X5 :1k%(z) < a} and X5 := {z € X5 : 1k?(z) < a}. Note that
X=o = X<+ when a < oo. Of course, we may write X,~®*, X=%° and note that
X0 ={zr e X2:0¢€ Rang(n®)}.

Definition 1.4. Assume s is a k-p.o.w.i.s. and u € J*.
1) Let G, = G%, be the group generated by {g, : © € X3} freely except the equations
in I, =I'}, where I',, consists of

(A) g;! = gu; that is, g, has order 2 for each z € X,.

(B) 94,942 = 9y29y, When y1,y2 € Xy and n(y1) = n(y2).
(C) 929,95 " = gy, when ®%5  holds (see below).

Z,Y1,Y2

1A) Let ®,, = ®5, = ®,,; mean that ®,,, ,, for some y;,y2 such that y €
{v1,y2}, see below.
1B) Let ®4,y,,y, = ®
A) z,p1,y2 € X
B) n(x ) <n(y1) = n(y2)
C) w1 [ n(z) =y2 [ n(x)
D) t”l — {Y2

(E) For £ < n(y1) we have: n¥(¢) # n¥2 (L) iff £ =n(z) Az =y | n(x).
2) Let G5 = G5™*° be defined similarly to G% except that it is generated only by
{9z : © € X5}, freely except the equations from I'S® = T's®*% where 'S is the
set of equations from T, among {g, : © € X~}.

Similarly G5, T'=%; note that Gg® = GootL I's* =Tt if a < 0.
3) For X C X, let Gy, x = G}, x be the group generated by {g, : y € X} freely ex-
cept the equations in I'y x = I'j y which is the set of equations from I', mentioning
only generators among {g, : y € X}.

= @S mean that:

u
Z,Y1,Y2 Z,Y1,Y2

(
(
(
(
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Observation 1.5. 1) The sequence (X% : a < tk(I3)) is C-increasing continuous.
2) If z,y € X, are such that © # y = = | n then tk2(y) > k2 (x) and if equality
holds then k2 (z) = co = rk%(y) or both are —1.

3) If a partial order I is explicitly non-trivial then I is non-trivial.

Proof. Check. (]

Observation 1.6. For a k-p.o.w.i.s. S.
1) ®y7y holds iff:

(A) z,y € Xy and

(B) n(y) > n(z) + 1.
2) If v € X5 then {(y1,y2) : ®5, ,, holds} is a permutation of order two of
{y € X3 :n(y) > n(z)}.
3) Moreover, the permutation in part (2) maps each {y € X3 : n(y) = k} onto itself
when k € (n(x),w) and it maps Uy yexsm(y)>ky onto itself when n(z) <k < w.
4) ®g:217y2 Zﬁ[ ®33227y1'
5) For z,y € X, in the group G the elements g, g, commute except when x #
yAN(x =y | nl@)Vy==z]|n(y)). In this case, if n(z) < n(y) there is y’' # y such
that @4, and 7Y (£) =¥ (0) & £ # n(z).

Proof. (details on (2),(3) see the proof of 1.7). O

We first sort out how elements in G, and various subgroups can be (uniquely)
represented as products of the generators.

Claim 1.7. Assume that s is a k-p.o.w.i.s., u € J° and <* is any linear order of
X, such that

O ifz e Xy,y € Xy and n(x) > n(y) then x <* y.
1) Any member of G, is equal to a product of the form g, ... g, (x¢ € X,) where
Ty <* xp41 for=1,...,m — 1. Moreover, this representation is unique.
2) Similarly for G=, G (using X =%, X% respectively instead X,,) hence G=, G
are subgroups of G.,,.
3) In part (1) we can replace G,, and X, by G = G, x and X respectively when
X C X, is such that [{z,y1,y2} C Xu A®57 . AMz,y1} C X = yo € X|. Hence
Gy x is equal to (g, : z € X)q, .
4) If g = gy, - - 9y,, Where y1,...,Ym € Xy and g = gz, ... Gz, € Gy and x1 <*
. <*x, thenn <m.
5) (G2 a < 1k(IZ), @ an ordinal) is an increasing continuous sequence of groups
with last element G°.
6) {gGY: g € G} is a partition of Gy, (to right cosets of G, over G0).
7) If <!, <2 are two linear orders of X, as in [J above and Gy = “Guy - Gu), =

Gyr - Gy, and X1 <t o<t apoand yp <20 <2 oy (or gust mp <ULl <!
xp,n(y1) = n(y2) > ... > nlym) and (ye : £ = 1,...,m) is with no repetitions),
then:

(A) k=m

(B) for every i we have {£: n(xy) =i} = {€: n(ys) =i} and this set is a convex
subset of {1,...,m}.
(So the only difference is permuting gu, ., 9z, When n(Te)) = n(ze(2))-
8) If I C I, and X = X; then Gy, x N G0 is the subgroup of G, x generated by
{9 : x € X,Rang(n®) € {1}}
i.e., the (naturally defined) G7°, (G = Gux,,G7% = G3%).

.9) [fIg g IZ fO’I“éZ 1,2,3 (SO §IZ:§1F14) and Il ﬂ]g = [3 then Gh ﬁG[z = G[B
and G50 N G70 = G0
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Proof. 1),2),3) Recall that each generator has order two. We can use standard
combinatorial group theory (but in the rewriting process below we do not assume
knowledge of it); the point is that in the rewriting the number of generators in the
word does not increase (so no need of <* being a well ordering).

We now give a full self-contained proof reducing everything to (3). For part of (2)
we consider G = G, X = X% C X,,,I' = I's® for o an ordinal or infinity and
for part (1) and the rest of part (2) consider G = G=#, X = X=F C X,,, T =TSP
for 8 an ordinal or infinity (recall that G, X, is the case § = oc0). Now in parts
(1),(2) for the set X, the condition from part (3) holds by 1.5(2).

[Why? So assume ® , . and e.g. ,y; € X5 and we should prove that y, €
XS If yy = yo this is trivial so assume y; # ya, hence necessarily y; | n(z) =z =
y2 | n(z) and n(z) < n(y1) = n(y2) and t¥* = Y2 and p¥1 (¢) = n¥2(¢) & £ # n(z).
If »* is not constantly one then also 1?2 is not constantly one hence y, € X0

1

so fine. If * is constantly one then a > rk(z) = rky, (thi) = kI, (ti(yl)) =

rky, (tff(w)) > 1k (y2) hence yo € X% so fine.]

So it is enough to prove part (3). Now recall that G = G, x and
(A) ”®,” every member of G can be written as a product g, ...g,, for some
n<w,xg X
[Why? As the set {g, : € X} generates G and G | “g; ' = g,”.]
(B) "®2” if in g = gx, ... gx, We have xp = xo41 then we can omit both
[Why? As g,9, = eq for every x € X by clause (a) of Definition 1.4(1)]
(C)7’®@3” if 1 < ¢ < nand g = gz ...92, and we have xp11 <* zp and
[me{l,...,n}\{{,{+1} = Yy, = ;] then we can find yp, ye+1 € X such
that g = gy, ... gy, and y, <* ye41 and, in fact, y,11 = x¢.
[Why does ®3 hold? By Definition 1.4(1) and Observation 1.6(5) one of the
following cases occurs. Case 1: gs,, ga,,, commutes.

Let y¢ = @o41,Ye41 = x¢. Case 2: Not Case 1 but ®@»° see Definition

Te41,Le?
1.4(1A).
By clause (b) of Definition 1.4(1B) we have n(xey1) < n(zg). So by [ of the
assumption of the present claim we have z, <* x,41, contradiction. Case 3: Not

Case 1 but ®;%, , see Definition 1.4(1A).
By 1.6(5) there is y, € X such that n(ye) = n(wer1) > nlxe), 90 = %41 [1 <
n(zepr) = (07 (i) = ™+ (i) & i # n(ze))] and @zy 2y, ;-
Let ypr1 = w4, clearly yor1,ye € X. By Definition 1.4(1), we have gugm“gg;1 =
9y, hence Jze9ze1 = JyeYze = Jyeyesa and clearly n(ye+1) = n(z¢) < n(ye) hence
Yo <* Ty = Yp41, SO we are done.
The three cases exhaust all possibilities (according to whether n(x¢) = n(zet1), n(ze) >
n(zey1) or n(ze) < n(rer1) hence @3 is proved.

®4 every g € G can be represented as gy, ... gy, With 1 <* zo <* ... <* x,,.

[Why? Really the proofs below of @, and ®5 are incredibly detailed, but try to
serve complaints about the proof being only implicit, not to mention errors in earlier
versions; so a reader who “sees” those assertions (or parts) can jump ahead.
Without loss of generality g is not the unit of G. By ®; we can find x1,...,x, €
X such that g = g4, ... ¢z, and n > 1. Choose such a representation satisfying
® (a) with minimal n and

(b)  for this n, with minimal m € {1,...,n+1} such that z,,, <* ... <* z,

and 1 </l<m<n=xz <"z, and
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(¢) for this pair (n,m) if m > 2 then with maximal ¢ where ¢ €

{1,...,m — 1} satisfies z; is <*-maximal among {x1,...,Zm_1}
that is k € {1,...,m — 1} = zp <* .
Easily there is such a sequence (z1,...,,), noting that m =n + 1 is O.K. for (b)
and there is £ as in ®(c).
By @2 and clause (a) of ® we have x; # x¢41 when £ from ®(c) is well defined
(i.e., if m > 2).
Now m = 2 is impossible (as then m = 1 can serve), if m = 1 we are done, and
if m > 2 then ¢ is well defined and ¢ = m — 1 is impossible (as then m — 1 can
serve instead m). Lastly by ®3 applied to this ¢, we could have improved ¢ to £+ 1,
contradiction.

®5 the representation in ®,4 is unique.
[Why does ®;5 hold? Assume toward contradiction that Yol -Gty = Gyl - Gyl
where 27 <* ... <* 27 and y; <* ... <"y, and (2},...,2;, ) # (WY1, Yn,)-

s ng

For k <m < wlet X<Fm> = {z € X : k < n(z) < m} and let GF™> =
G*® i.e. be the group generated by {g, : * € X<F™>} freely except the

w, X (km)
equations in I'<*™> ie. the equations from Iy x<km>, i.e., the equations from
Definition 1.4(1) mentioning only its generators, i.e. generators from {g, : « €
X<km>1. Now clearly if @5 . see Definition 1.4(1B) then n(y1) = n(y2) =
[y € X<Fm> oy € X<F™m>] 50 the set X <F™> C X satisfies the requirement
in part (3) of 1.7 which we are proving; so what we have proved for X holds for
X <km>_Tn particular ®; — ®, above gives that for every g € G<¥™> there are n
and z1 <* ... <* @, from X<F™> such that G<F™> |= “g =g, ... g/ . Also it
is enough to prove the uniqueness for G<¥™> (for every k < m < w), i.e., we can
assume ', ...,x, ,Yi,--.,Yn, € X as if the equality holds (though (z1,... 2], ) #
(Y15, Yn,)), finitely many equations of I', x imply the undesirable equation and
<km> and {&},...,2}, ,y0, ..., Yh,} C
X <km> hence already in G we get this undesirable equation.

Now for k < m < w and 2 € X <F:F+1> Jet 75 be the following permutation of
X(kJrl,m):

for some k < m < w they are all from T’

o ﬂ.l;,m maps y; € x (k+1m) ¢4 yo if @S .
It is easy but we shall check that
[y For k,m,x as above,
(a) 7™ is a permutation of order 2 of X 1™ which maps T'{k+1.m)
onto itself

(b) 7F™ induces an automorphism #%™ of G +1.7): the one mapping
Gy, 10 gy, when 75 (y1) = yo

(c) the automorphisms #%™ of G+ for x € X <F*+1> pairwise com-
mute

(d) the automorphism #%™ of G +1m) is of order two.

Why [;? By Definition 1.4(1B) we have ®, 44, A ®4y4, = Y1 = Yo hence 7h™
is a partial function. Next if y € X<FFLm> then n(y) > k+1 > k = n(2)
hence by 1.6(1) we have ®,,, which by Definition 1.4(1A) there is y; € X such
that ®,,, ,,, this implies n(y1) = n(y) so as y € X<FFbm> also y; € X <kFLm>
so [y € X<ktlm> — ghm(y)y — ¢ € X<F+Lm>]" Go 7km™ is a function from
X<k+Lm> onto itself. By 1.6(4) we have 7™ (y;) = ya = 5™ (y2) = y1 hence
7F™ is one to one (so is a permutation) and has order two, so the first phrase
of (i) holds. For the second phrase it suffices to show that every equation from
[<k+lLm> ig mapped to an equation from the same set. If the equation is from
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Definition 1.4(1)(a), i.e. g, = gy it follows from “7f™ is a permutation of order

2 of X <k+Lm>" "If the equation is from Definition 1.4(1)(b), i.e. gylgy2 Gy Gy

where y1,y2 € X<k+1 ™> and n(y;) = n(yz) then it suffices to note n(r%™(y;)) =
n(y1) = n(y2) = n(f" (y2)).

Lastly, if the equatlon is from Definition 1.4(1)(c), i.e. has the form gygylgy_1 =
Gy where Y, Y1,Y2 € X<k+1’m> and ®y7y1,y2 hOldS, let y/ = ’/T.];’m(y)a yl - ’/T (yl)a y2

™(y2), and it suffices to show that y',y},y4 € X<F1m> and &, iy First,
vy, yh € X<FHLm> a9 ghm g 4 permutation of X <F+lLm>,

Now, recalling n(y) > k+1 > n(x), ify [ n(x) # z,ye | n(y) = y then for £ = 1,2,
as ®y.y, .y, We have n(yy) > n(y) > n(z) and y, | n( ) =y | n(x) # z hence by
Definition 1.4(1B), ®4 4.y, ®uy1.01> Pz ya.ye hence 75™ maps y,y1,y2 to y,y1,92
respectively, so the desired conclusion is trivial. If (y | n(z) # x) A (ye | n(y) # y)
or (y [ n(z) =) A (ye | n(y) # y) we can also get the result. So we can assume
y | n(z) =2 and yp | n(y) = y and as above y; | n(:c) =z for £ = 1,2. So by
Definition 1.4(1B) as ®,,,, we have ¥ =¥, 1¥(i) = n¥ (i) < i < n(y) Ai # n(z)
and as @, ,» we have Ve = v mye (i) = ¥e(i) < i < n(ye) Ni # n(x) for £=1,2
and as @y, y, we have & = ¢ | (n(y) + 1), | n(y) = 1 | n(y) =¥, @ = 2
and 9" (i) = 1% (i) < @ <n(y) Ni 7 n(y).

Hence t¥ = ¥ | (n(y') + 1),#1 = t%2, g% | n(y) =
WA(E) = 1a(3) & i < n(yh) A i # nly') recalling 7% (5) £
have finished proving clause (i).

Clause (ii) of [J; follows from clause (i).

As for clause (iii) note that for &1 # x9 € X such that n(z1) = k = n(xs2) and
y € XM= we have 75" (y) # y = y [ n(x1) = 21 = y [ n(z2) =y [ n(a1) =
Ty # z9 = TEM(y) =y, so “W’élm, Tk commute” follows, hence by (i ) it follows

that “7 ’;1’”7 k ™ commute” as required.

s 1 n(y') = 7Y, and
1 < n¥1(i) = 0. So we

=~

Lastly, clause (iv) follows from “7%™ is a permutation of order two of X <k+l.m>7
We prove this revised formulation of the uniqueness, the one on G,, x<km> by
induction on m — k.
Note that (recalling assumption [J of 1.7)

(%) if z € X<BkH1> oy c X<b6H1> and o <* y then £ < k.

If m — k = 0, then G<F™> is the trivial group so the uniqueness is trivial.

Also the case k = m — 1 is trivial too as in this case G*™ is generated by
{gz : ® € X<F™> je. 7 € X and n(z) = k} freely except that they pairwise
commute (i.e. clause (b) of Definition 1.4(1)) and each has order 2 (i.e. clause (a)
of Definition 1.4(1)) because clause (c) there is empty in the present case.

So

© G<kF+1> g actually a vector space over Z/27 with basis {g, : © € X <kF+1>1
well in additive notation, so the uniqueness is clear.

So assume that m — k > 2, now we need

[ 20, YL s Y, from X kM) are as above in G<F™> then (2},...,2, ) =

W un,)-

We can prove the induction step.

Now we define a mapping 7 from {g, : © € X<FF+1>} to Aut(G<F+17m>) by
r + 7™ Now ® above describes G<F**1> and by [J; the mapping = maps
p<khtl> ¢ equations which are satisfied by Aut(G<F¥1™>)  hence there is a
homomorphism # from G<F*+1> into Aut(G<F+Lm>).

Hence by 1.9 the twisted product G = G<FA+1> 4. G<k+Lm> g well defined.
Let 3 be the following mapping from {g, : € X<F™>} to G: if x € X<kk+1>
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then »(g.) = (gu, egertim>) € GFHFFL> 5 G<k+Lm> and if x € X <F+1m> then
%(gx) = (eg<k,k+1>,gx) S G<k’k+1> X G<k+1’m>.

Now easily every equation from I'<¥™> is mapped by s to an equation satisfied
in G (if it is from T<F+1.7> then we use the definition of G<F+1.m> — Gy x<itim>,
if it is from D <k:m>\ [ <k+1m>"then we check by cases according to the clauses of
Definition 1.4(1), if it is clause (a) the equation has the form g2 = e,z € X <k:F+1>
and use G<FHF+1> |= “g2 — ¢”  If the equation is from clause (b) then it has the
form g,g, = gy9, where z,y € X <FFF1> and use “G<F*+1> is abelian”.

Lastly, if the equation is from clause (c) then the equation has the form g, g,,g; ' =
gy, Where x € X <Fk+1> 0y o € X<kFLm> and ®, 4, 4, holds; then we use (e) of
1.9(2).

So as G<F™m> is generated by {g, : + € X<F™>} freely except the equations
from I'<F™> it follows that s can be (uniquely) extended to a homomorphism from

G<Fm> into G. Let us return to the statment in ®5. So assume ) <* ... <* ),
and yi <* ... <*y,_ are from X <F™> and G<Fm> |= “Guy oo Gur = Gy -y
If {zj,y;:i=1,...,npand j = 1,...,na} C X <k+Lm> ysing s and recalling

1.9(2)(d) and that Gy there stands for G<F¥+1"™> here we get a counterexample to
®5 for G<F+Lm> but m—(k+1) < m—k so we are done by the induction hypothesis.
So by the demand on <*, we have z], € X<FF1> vy X<kk+1> " Now let
f1, Mz be such that g,, € G<FTE™> & i < 7y and g, € GFTLM> & j <.

Let 34 : G<Fm> o G<FE+1> and s : G<Em> 5 G<ktLm> he guch that
g € G<Fm> = 5(g) = (3a(9), #2(9)). Applying 2 clearly go, Guy o1 -+ Go,, =
Gyny Gyng i1 -+ - Jymy AN (Tirg, Tivy 415 -+« Ty ) = (Vg Yia+15 - - - 5 Yny) With ©, “divid-
ing” G<F"> \= “gu . gan = Gy -+ Gya,—, and we have dealt with this above.
So 1),2),3) holds.
4) Included in the proof of ®, inside the proof of parts (1),(2),(3).
5) For a < < oo, clearly X% C X< and T'g® C I'S# hence there is a ho-
momorphism from G5 into G<?. This homomorphism is one-to-one (because of
the uniqueness clause in part (2)) hence the homomorphism is the identity. So
the sequence is C-increasing, the continuity follows by rki(m) =a<o00 &g, €
G;a—i—l \ G,Ea.
6),7),8),9) Easy. O
Observation 1.8. Assume that n is a natural number > 1, G a group and J a set
with:

(A) fi is an automorphism of G of order n fort € J (i.e. ff* =idg)

(B) fi, fs € Aut(G) commute for any s,t € J.
Then there are K and (g; : t € J) such that

(o) K is a group

)

(v) K is generated by GU{g; : t € J}
)
)

(6) ifa € G and t € J then g; 'ag; = fi(a)

(€) if <4« is a linear order of J then every member of K has a one and only
one representation as gi’llgfj ...gf:x where x € G,n < w,t] <4 ... <4 ty
are from J and by,...,b, € {1,...,n—1}

(€) g9t =eq-

Proof. A case of twisted product, see below. (Compare also with the proof of 1.7(3),

[} ). Set K = @ Z/nZg; *x G, where n(g;) = fr € Aut(G). O
teJ
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Claim 1.9. 1) Assume G1,Gs are groups and  is a homomorphism from Gy into
Aut(Gs), we define the twisted product G = G1 . Ga as follows:

(A) the set of elements is G1 X Go = {(g1,92) : g1 € G1,92 € G2}

(B) the product operation is (g1, g2) * (h1, he) = (91h1,gg(h1)h2) where
(@) g;r(hl) is the image of g2 by the automorphism ww(hy) of G
(8) gi1h1 is a Gy-product

() g;r(hl)hg is a Ga-product.
2)
(A) such group G ezists
(B) in G every member has one and only one representation as gjgs where
gll € G x {602}7gé € {eGl} x G2
(C) the mapping g1 — (g1,¢e) embeds Gy into G
(D) the mapping go — (e, 92) embeds Go into G
(E) so up to renaming, for each hy € Gy conjugating by it (i.e. g+ hy‘ghi)
inside G acts on Go as the automorphism w(h1) of Gs.
3) If Hy, Hy are subgroups of G1,Ga respectively, and g1 € Hy = m(g1) maps Ho
onto itself and ©' : Hy — Aut(Hs) is «'(x) = w(x) | Hy then {(hi,hs) : by €
Hy,hy € Hy} is a subgroup of G1 *r Go and is in fact Hy . Hy; we denote 1’ by
7T[H1, Hg]
4) If the pairs (H{, HS) and (H?, HS) are as in part (3) and Hf := HfNH?, HS =
H$NHY then the pair (H{, HS) is as in part (3) and (H{ (e e HS)O(H{’*[H?,HS]
Hg) = (Hf *r[HE, HS) HS).

Proof. Known and straight. O

Claim 1.10. Lets be a k-p.o.w.i.s., w € J* and I, = I, be non-trivial, see Defini-
tion 1.2(6).

1) If 0 < a < oo then the normalizer of G2 in G, is Goott.

2) If a = tk~*°(I,,) then the normalizer of G=% in G, is Ge>= = G°.

Proof. 1) First
(¥)1 if € X, and rk?(z) = « then conjugation by g, in G, maps {9y 1y €
X5} ={g, 'y € X, and 1k (y) < a} onto itself.
[Why? As g, = g, ! it is enough to prove that conjugation by g, maps the set
into itself, i.e. to prove for every y € X% that: g,9,9," € {g. : z € X *}. As
rk?(z) = a and @ > 0 by the assumptions of the claim it follows that Rang(n®) C
{1}.

Now for each such y, one of the following cases occurs. Case (): g, g, commutes

SO G2Gy9s ' = gy € {9-: 2 € X7}
In this case the desired conclusion holds trivially. Case (ii): n(y) < n(x) and

not case (i).

As case (i) does not occur, necessarily n(y) < n(z) and y = z [ n(y) by 1.6(5).
Also it follows that ¢y ) <rs ti(y)’ so as 1k, (t),)) = rky(2z) = a < oo (recalling
Rang(n®) C {1}) we have rky, (tz(y)) > a. Now Rang(n¥) C Rang(n®) C {1}, so

necessarily k2 (y) > «, contradiction. Case (iii): n(y) > n(z) and not case (i).
u S
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As in case (ii) by 1.6(5) we have x =y | n(x).
Clearly ) .\ <rs t},y =t s0as rk? () > 0 necessarily rk;, (tr ) = rk? ()

a € [0,00) hence rky, (tZ(y)) <rky, (8} ,)) = a and so k2 (y) <1k, (ti@)) <a.
Let y1 = y and by 1.6(1),(5) and Definition 1.4(1A) there is y» such that ®37
« — 9 Iy Y1 I ., 2 _
hence Gy = “g29y9; " = gy, and 1V = 1 = 192, s0 1k (y2) < vk, (£)7,,)) =
rky, (ti,,)) < o hence y» € X5 and so gy, € G5 so we are done.
So (x)1 holds.] Now by (x); it follows that g, normalizes G® for every member
ge of {g : 1k2(x) = a}, hence clearly norg, (G=*) D (G=*) U{g, : 1k (z) = o and
x € X, } but the latter generates Go**! hence
(#)2 norg, (G5*) 2 Gt
Second assume g € G, \ GS%T1 let <* be a linear ordering of X, as in [J of 1.7.
We can find k¥ < w and z1,...,2, from X, such that g = ¢4,9z, - .- 9z, and so
it suffices to prove by induction on k that: if g = gy, ... s, € Gy \ Gt then
g & norg, (G®). By 1.7(1),(4) without loss of generality =1 <* ... <* zp. As
g & Gt necessarily not all the z,,,-s are from X T hence for some m, g,, ¢
GEaJrl.
(x)3 Without loss of generality g.,, g, ¢ Goo™.
[Why? So assume g, € G=*T! hence
(a) (a) gx, € norg, (G%) (as we have already proved Go*+! C norg, (G5?))

(b) (b) mnorg,(Gg®) is a subgroup of G, hence

(¢) () 9= gu, - Gux 1uy € mOrG, (G5) il g, - - g, € morg, (GF2).
By the induction hypothesis on k we are done. Similarly if g,, € G
then derive g € norg, (G5®) iff gu, . .. gz, € norg, (G5®) to finish.]
Astk2(x1) > a+1 and I, is non-trivial (recall Definition 1.2(6)) we can find t* € I,
such that
(¥)a (a) "<y, i,
() k() > a
(¢) t*¢{tj :xe{ar,...,xx} and £ €{0,...,n(x)}}.
Let m(*) be maximal such that 1 < m(x) <k and (3i)(2p, () = 21 [ 7).
Now we choose y € X} as follows:
()5 a) B = (1)
B) 1 1 nlen) = oo
(C) ny(n(xm(*))) =0.
Note that
()6 Tm(x) =Y [ 2(Tp(s)) and y € X570 and n(y) = n(wm(x)) + 1 and
()7 n(w1) > oo 2 (Tin(x)) 2 P(Tn()41) = - -0 > n(Tk).
[Why? Recall that the sequence (xy : 1 < £ < k) is <*-increasing hence by property
[ of <* the sequence (n(xy) : 1 < ¢ < k) is non-increasing.]
We now try to define (y,: £ =1,...,k+ 1) by induction on ¢ as follows :
(*)s y1 =y and Gu = “92,' 9ye9we = Gyoy,” if well defined.
So
(%)g ye =y for £ =1,...,m(x) and so is well defined.
[Why? We prove it by induction on £. For £ = 1 this is given. So assume
that this holds for ¢ and we shall prove it for £+ 1 when ¢+ 1 < m(x). Now
(Y =" | (n(y)+1)), i.e. t¥ is not an initial segment of t*¢ by the choice
of t* (and y) and hence y # x, | n(y) hence ~(y = z¢ | n(y) An(y) < n(zy))
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and we also have ~(x; = y [ n(x,) An(x,) < n(y)) as otherwise 27 = Ty (4 |
n(xg) but n(xg) > n(Tpys)) a8 Tp <* Ty sy hence Tp = Ty (4, but £ # m(x)
hence 2y # Xy, (4, contradiction. Together by 1.6(5) the elements gy, g,
commute so as by the induction hypothesis y, = y it follows that y,11 =y
so we are done.]
Now:
()10 Ym(s)41 is well defined and satisfies (*)s5(a), (b) and also (*)s5(c) when we
replace 0 by 1.
[Why? By the definition of G, in 1.4(1),(1B).]
(*)11 Ym(x)+1 ¢ Xu<a-
[Why? By (%), 21 ¢ X;%"! hence n™* is constantly one; but @,y =
1 [ n(Zpm(«)) hence n®m is constantly one. Now n¥m(+1 = n®m() (1) by

Ym(x)+1 )
n(ym,(x)+l)

(*)10 hence n¥m(-+1 is constantly one. So rk’ (Y (x)11) = rk, (¢
rky, (t*) > « recalling ()4, so we are done.]
(¥)12 if £ € {m(*) +1,...,k+ 1} then y; = Y ()41 and y, is well defined.
[Why? We prove this by induction on £. For £ = m(*)+1 this is trivial by
(*)10- For £41 € {m(*)+2,...,k+1}, it is enough to prove that y, )41, Te
commute. Now = (t¥mt0+1 = £% [ (n(y) + 1)) because n(ym()4+1) = n(y) =
M(Tn() + 1 > n(ze) +1 > n(z) hence = (Ymoy11 = 20 | 1Y 41) A
N(Ym(s)41) < n(mz)); also —|((Ee = Ym()+1 | n(xe) Anfag) < n(ym(*)H)) as
otherwise this contradicts the choice of m(x). So by 1.6(5) they commute
indeed.]
()3 97999 = Gues-
[Why? We can prove by inductionon ¢ = 1,..., k41 that (gz; --- 9z, 1) "9y (Gar -+ Gzpy) =
Gy, by the definition of the y,-s, i.e., by (*)s and they are well defined by
(%)9 + ()10 + (¥)12.]
()14 9 gy9 = Im(+)+1-
[VVhy7 By (*)12 and (*)13.]
(*)15 97 gyg & G5°.
[Why? By (*)14 + (*)11.]
So by ()¢ we have g, € G2° C G5 and by ()15 we have g7'g,g ¢ G<* hence

g does not normalize Go%, so we have carried the induction on k. As g was any

member of G, \ Gt we get norg, (Go®) C Goatl.
Together with (x)y we are done.
2) Follows. d

§ 2. CORRECTING THE GROUP

The G2-s from §1 have long towers of normalizers but the “base”, G2%* is in
general of large cardinality. Hence we replace below G2 by K2 and G5%° by HE.

Definition 2.1. Let s be a k-p.o.w.1i.s.
1) For u € J*:
(A) recall 1.7(6): A, = A5 = {gGY : g € G,} is a partition of G (to right
cosets of G20 inside G,,);
(B) for every f € G, a permutation 9; of A, is defined by 9f(g1G:0) =
(fg1)G20, we may write it also as f(g1G20)
(C) let L, = LZ be the group generated by {ha : a € A, } freely except hahp =
hpha and hy' = hg for a,b € Ay; for g € G, let hy = h,g<o
(D) let h, = h{ be the homomorphism from G, into the automorphism group
of L, such that f € Gy, Nae€ A, = (hy(f))(ha) = hya



Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.

THE HEIGHT OF THE AUTOMORPHISM TOWER OF A GROUP 15

(E) let K, = K be Gy, #n, Ly, the twisted product of G, L,, with respect to
the homomorphism h,,, see 1.9, and we identify G,, with G, x {er,} and
L, with {eg,} x Ly,

(F) let Hy = {(ec,:hey cs0), (€c,-€L,)} a subgroup of K, and let h, =
heg, = hecuGi" € Ly, i.e. the pair (eg,, h«) is the unique member of H,
which is not the unit.

2) For a < oo let K2 = K=%* be the subgroup {(g,h): g € Go* and h € L,} of
K,. Similarly K% = K=%*.
3) For u € J* let

(A) Dy =D; ={(v,9) :v <5 uand g € K}

(B) 20 = Z%% .= {(t,n) : t = (ty : £ < n),n < w,ty € I, for each £ < n and
n € "2} and let z = (£*,n?) = ((t7 : £ < n),n?) and n(z) = n for z € Z3;
this is compatible with Definition 1.3(3); note that here ¢ is not necessarily
decreasing

(C) zt =2l = {{xy : £ < k) : k <w, each z, is from Z2} and let z = ((z :
(< k(z)ifze Z]

(D) Z, =20 2}

(E) for z € Z, we define his(z), a finite subset of I,, by

(a) (a) if 2= ({tg: £ <n),n) € Z) then his(z) = {t,: £ < n}
(b) (B) if z € ZL say 2 = (((¢tF : ¢ < &), n*) : k < k*) € Z! then
his(z) = {t§ : k < k* and £ < {;}

(F) for z € Z, let n(z) = S{l : k < k*}if 2 = (((th - € < b)), nk) 1 k < k*) €
Z! and n(z) is already defined if z € Z? in clause (b).

Observation 2.2. In Definition 2.1:
1) Foru € J*, K, is well defined and G, L,, are subgroups of K, (after the iden-
tification,).
2) For I C I let L ; be the subgroup of Lj, generated by {h,g<o : g € G}, x, }.
If i, Iz C I then L ; N L3 = L% 1 np,- (Saharon says: The latter should be
wrong!)
8) For I C I}; let K7, | be the subgroup of K;, generated by G}, x, U L;, ;. Then
(A) K3 ; normalizes Ly, ; inside K,
(B) K 1 is Gy, x, *x L, 1 for the natural 7, i.e. m=hj | G} v, .
Also
(A) if I, Is C I}, then K, | N K, 1, = K,

u,[iNIz*

Proof. Easy (recall 1.7(8),(9), 1.9(2),(3)).

We want to point out that in the proof of clause (2) the following theorem is
needed:

It I, C I for £ = 1,2, 9, € Gu,x,, With hg, = hg,, I3 = I N I5 then there exists
some g3 € Gy x,, with hg, = hg, = hy,.

Its proof is similar to 1.7(3) and is left to the reader.

SAHARON FILL! (Daniel)

Please observe: 2.2.2) “If I;, I, C I then Ly, NL; 1, = L3 ,~1,” being wrong
implies that also the following is wrong:
2.2.3)(c)
2.6.3)(<)(3)
2.7.2) and (2.7.3) — (otherwise add/give proof!)
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[y on p.38, proof 3.4 (uses 2.7.3)!
3.4 GAME OVER! Saharon, please break the above chain of conclusions!! O

Definition 2.3. 1) If ] is a partial order then T is the set of f = (¢, : £ < k) where
tpel.

2) If £ € *T then tpye(f, @, 1) = {(1,01,¢2) : t =0 and I = “t;, < ty,” or ¢ =1 and
te, =ts, or v =2and I | “ty, > tg,” and ¢ = 3 if none of the previous cases}.

2A) Let 8* = {tp(t,@,1) : T € *I and I is a partial order}.

3) We say t € "I realizes p € S when p = tpy(f, @, I).

4) If ky < ko and py € S*2 then py = py | ky is the unique p; € S** such that if
p2 = tpys(t, @, I) then p1 = tpe(t [ k1,2, 1).

Remark 2.4. Below each member of A% Al A? will be a description of an element
of G, AS, K. respectively from a k-tuple of members of I7. Of course, a member
of Z; is a description of a generator of K.

Definition 2.5. 1) For k < w let A) = U{A] , : p € "} where for p € §* we let
AP, be the set of sequences of the form ((£;,m;) : § < j(x)) such that:
(A) for each j for some n = n(f;,n;) we have £; = (£;; : i < n({;,n;)) is a
sequence of numbers < k of length n + 1 Such that p = tp(t,2,1) =
(te,, 11 < n(lj,n;)) is <;-decreasing
(B) for each j,n; € "2 where n = n(f;,n;).
2) For any p.o.w.is. s,u € J*t € ¥(I,) and p = ((¢;,n;) : § < j(x)) € AY, let
9%, = g;’; = (.- 9@ ;) -+ -)j<j(»), the product taken in G, C K, (so if j(x) =0 it
is eq, = ek, ) where
(A) # = seq,;() = (te,, 11 < n(lj,n;))
(B) if # is decreasing (in I,,) then g ,,) € Gy C K, is already well defined, if
not then g ;) = ek,

2A) For a p.o.w.is. s,u € J5t € *(I2) and p = (({j,m;) : j < j(*)) € AY
let 2, =z be the following member of Z;%: it is (zf,; : j < j(*)) where
Lipj = Ti,(l;,m;) = (<tfj,i HEAAS n(@ﬂh)%ﬁj)- For p € §¥ and p = <(£J777J) :
J < j(x) € A, let supp(p) = U{Rang(f;) : j < j(+)} and if £ € *(I3) let

sup(t, p) = {t¢ : £ € supp(p)}.
2B) We say p € Ag,p is p-reduced when: p € S* and for every p.o.w.i.s. 5,u € J®

and t E k(IE) realizing p (in I3), for no p’ € A , do we have supp(p’) C supp(p)
and gt = gt e
2C) We say that p € A%p is explicitly p-reduced when the sequence is with no
repetitions and (n(€;,7;) : j < j(*)) is non-increasing (the length can be zero).
3) For k < wlet Aj = U{A}, : p € 8"} where for p € S* we let A}, be the
set of p = ((lj,m;) : j < j(x)) € A%p such that: for every s and u € J* if
€ k(%) realizes p then there is no p’ € A, with supp(p’) C supp(p) and satisfying

9; va<O — gt " G<O

4) For k < w and p € S* let Ai’p be the set of finite sequences g of length > 1 such
that 0(0) € A} , and 0 <E' = o(i) € A}, Let A7 =U{A]  :pe SFY.
5) For any s, if uw € J*,t € ¥(I,) and o = (p; : i < i(x)) € A} then g;, € K,
(recalling i(x) > 1) is g7, h (product in K,) where g; ,, is

9,01 hgz,pz s hgz,pi(*)fl
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from clause (2), recalling that hy = h ;<o is from clause (c) of Definition 2.1(1).
5A) For any pow.is. su € J°t € F(I%) and o = (p; : i < i(x)) € A2, let
z¢, =%, ° be (2 2, 18 <i(x)).

5B) For p €S*and g€ Ai’p let supp(g) = U{supp(o(?)) : i < i(*)}. )

5C) We say p € A%p is p-reduced when for every p.o.w.i.s. 5,u € J® and t € *(I%)
realizing p, for no ¢ € A , do we have (in K;) g%‘;, = g%L; and supp(¢’) C supp(o).

Definition 2.6. 1) For p;,ps € Ag)p we say pl_zg”}gppg or p1, p2 are 0-p-equivalent
when: for every p.o.w.i.s. s and u € J® and £ € *(I?) realizing p the elements

U,s 5
9 pl’gt ., of G}, are equal.
2) For p1,p2 € Allc,p we say pléak,l,pPQ or pi1,p2 are 1-p-equivalent when: for every
p.o.w.i.s. s and u € J® and £ € ¥(I,) realizing p we have g“ 5 G<0 g p2G<0

3) For ¢1,00 € Ai’p we say that Qlé@k’pgg or p1,02 are 2-p- equ1valent when: for
every p.o.w.i.s. 5 and u € J® and t € ¥(I,) realizing p the element ng’;l and ng’;? of
K are equal.

Claim 2.7. Claim 1) In Definition 2.5 parts (2B),(3),(5C) saying “for every
p.o.w.i.s. s,u € J* and t € *(I,) realizing p” is equivalent to saying “for some
2) In Definition 2.6, éakb’p is an equivalence relation on Afw for v = 0,1,2. For
L= 0,2 every é’,ém—equivalence class contains a p-reduced member and for « = 0
even an explicitly p-reduced one. FExplicitly p-reduced implies p-reduced.
38) For every p.o.w.i.s. s, if u € J* and t € *(I3) realizes p € S* then
(A) for p1,p2 € Ag’p we have
w,s __ u,5 - 0
(@) 9501 = 9z,p0 if plgk,pp?
(B) if t is with no repetition and p1, ps are explicitly p-reduced, then they
are plé",?,pm iff letting p; = <(€Z,17j) 2 J < i) fori=1,2 we have
(i) j1 = J2
(i) for some permutation w of {0,...,j1 — 1} we have

(E?,n?-) = (lzlr(j),n}r(j)) (so pa is a permutation of p1, com-
pare 1.7(7))
(B) for p1,p2 € A}, we have
(@) g7 G50 = gt P Gl iff p18y P
(C) for gl,gg € Akp we have
(@) g o1 =9, e WS 0167 22
(B) ift is with no repetition, Qlég]inQ and o1, 02 are p-reduced then supp(g1) =
supp(g2)-

Proof. Straight, (recalling Claim 1.7(3),(7), Observation 2.2(2) and note that (3)
elaborates (1)). O

Claim 2.8. Assume k < w,p € S¥, 5 is a p.o.w.i.s., u € J° and t1,to € *I satisfy
p = tpy(te, @, I5) for £ =1,2.

1) Ifpe A%p c}nd p is p-reduced and gz, , = gi,, € G5, then ty | supp(p) is a
permutation of t1 | supp(p).

2)Ifp e A,lc,p and gfl“'pG<0 = g;fz’prfo then t1 | supp(p) is a permutation of ta |



Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.

18 S. SHELAH

supp(p). )

3)Ifoe A%,p 18 p-reduced and gtyfg = g%’sg then similarly t; | supp(o) is a permu-
tation of ta | supp(o0) and both are with no repetition.

4) For every o1 € A%m there is a p-reduced g2 such that for every p.o.w.i.s., u € J*

and t € ¥(I2) realizing p we have g;—f’;l = g;’;z. (Similarly for A} A} ).
Proof. Straight. O

Definition 2.9. Let s be a k-p.o.w.i.s.
1) For u <[5 v let ﬁg’v be the following partial mapping from Z2° to Z2:%, recalling
Definition 2.1(3)(b):

x € Dom(7) ) iff € Z0*° and m,,(t§) is well defined for £ < n(x) and then
R (@) = (M) : € < @), 7).

2) For u <5 v let 7l = #L% be the following partial mapping from Z} to Zl: if
2 € Z} 5027((#“,77) k<l<:*> andtk7<z < U, th e T, for k < k¥, 0 < 4y,
then 77, ,,(2) = (((Tuw(tf) : £ < k), n") : k < k*) when each m, ,(t}) is well defined.
3) For u < g v let 7y be 710 , UTL .

4) For v € J® and z € Z,, let 8%2 be the following permutation of D,, = D;, where
D, is from Definition 2.1(3)(a). For each (v,g) € D, we define 9, .((v,g)) as

follows: Case 1: z € Dom(7) ) C Z) and 7y u(2) € X3, e, (myu(tf) : £ < n(2))

is <j,-decreasing.
Then let 0,..((v,9)) = (v, g#, .(-)9) noting gz, () € G, € K,. Case2: z €

Dom(A}) w) S Zisoz = (xg: 0 <k)and z, € Dom(z),) for £ < k and let
z) =70 (x) € X5 for £ < k.
Then let Ou,2((v,9)) = (v,¢') where ¢’ € K, is defined by hy , .4, ¢, as prod-
o T¥k—1

uct in K, noting 9z, € G, C K, for £ < k. Case 3: Neither Case 1 nor Case

2.
Then let 9, ,((v,9)) = (v,9).

Observation 2.10. In Definitions 2.1, 2.9:

1) If u <j[s) v then Ty, is a partial mapping from Z, to Z,.

2) In part (1), ., maps Z°,Z} to 20, Z1 respectively, that is it maps Z N
Dom(y, ) into ZE for £ =0,1.

3) If u <jp5) v and s is nice or just Dom(my ) = I, then Dom(7ty ) = Z,.

Proof. 1),2),3) Check. O

Claim 2.11. 1) norg, (H,) is K=° where H, is from Definition 2.1(1)(f).
2) nor}juo‘(Hu) is K= for a > 0 if I, is non-trivial.
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Proof. 1) As H, has two elements ex, and (eg,,h«) clearly an element of K,
normalizes H, iff it commutes with h, € L, C K,. Now when does (g,h) €
Gy *n, L, commute with (eg,,h. . g<o). Note that

(9, h)(eGuvheGuGEO) =(g,h+ heGquo)

(€Gus ey, a0)(9: 1) = (9, (hu(9)) (hey, <o) + h).
As L, is commutative, “h, and (g, h) commute in K,” iff in L,

(0 (9))(heg, c50) = P, a50-
By the definition of h,, € Hom(G,,, Aut(L,)) in 2.1(1)(d),(e) this means

(9ec,)G3° = e, G’
ie.
g€ G,
We can sum that: (g,h) € Gy *n, L, belongs to norg, (H,) iff (g,h) commutes
with h, iff g € GZ0iff (g, h) € K20, as required.
2) Let £, : K,, = G, be defined by f,((g,h)) = g. Clearly

(%)1 f, is a homomorphism from K, onto G, and for every ordinal o >
maps K% onto G® so f,(K: %) = GS% and moreover f, }(GS%) =
(see the definition of K% in 2.1(2)).

0, it
K<a
u

Also

(x)2 Ker(f,) = {eq,} x L, € K3V.
Now we prove by induction on the ordinal o« > 0 that nor}ju”‘(Hu) = K% For
a = 0 this holds by part (1). For « limit this holds as both (norf(u (Hy): < )
and (K# : B < a) are increasing continuous.

Lastly, for o« = g+ 1 > 0 we have for any f € K,

fe nor}(ta(Hu) & f € norg, (nor}(tB(Hu))
& f €norg, (£71(GSP))
& fE NGNS =£1(G0)
& (NG RN =G5
& f,(f) € norg, (G57)
s f,(f)eCGi e fe Koo
[Why? The first < by the definition of nor}&o‘(—), the second < by the induction

hypothesis, the third < by the definition of norg, (—), the fourth < by ()1, the
fifth < by the definition of norg, (—), the sixth < by 1.10(1), the seventh < by
(*)1.] O

Observation 2.12. Let s be a p.o.w.i.s.

1) For w € J° and v € Z; we have: 0y, is a well defined function and is a
permutation of D7

2) If u < jps) v then DS C Dj.

3) If u <y v and y € Z; and x = 1y (y) then Oy gz = Oy [ D

Proof. Straight. O
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Definition 2.13. Definition Let s be a k-p.o.w.i.s.

1) Let S* = {q : q is a function with domain S* and for p € S, q(p) € Ai’p}, on
A7, see Definition 2.5(4) above.

2) We say that q € S* is disjoint when (supp(q(p)) : p € S¥) is a sequence of
pairwise disjoint sets. We say that q is reduced when q(p) is p-reduced for every
p e Sk

3) Let Z2 = Z2® be U{Z2* : k < w}, where Z2F = Z2%% is the set of pairs (Z,q)
where £ € *(I2) and q € S*.

4) For z = (t,q) € Z. let 8,,. = 0. be the following permutation of D,: if
v <5 u and (v,9) € {v} x K, then 95 .((v, 9)) = (v, g'g) where g' = g° )
where p = tpy¢(my,u(t), @, I}), and, of course, 7, ({te : £ < k) = (myu(te) : £ < k).
If 7, (t) is not well-defined set ¢’ = 1 trivially again.

5) For (t,q) € Z2 let giq = 9iq = gg’; = Giq(p) Where p = tpy(t, @, 1,). Let
Jiq = gf’: = g;wu@) q when v <[5 u and 7, (f) is well-defined.

Remark 2.14. We can add {85 , : z € Z2*°} to the generators of Fjj defined in 2.16
below.

Observation 2.15. In Definition 2.13(4), 0;, , is a well defined permutation of
Ds.

Proof. Easy. O

Definition 2.16. Let s be a p.o.w.i.s.
1) Let F,, = F? be the subgroup of the group of permutations of D? generated by
{Our:2€Z3}.
2) For a p.o.w.i.s. s let M be the following model: set of elements: {(u, g) : u € J*
and g € K} U{(1,u, f):u e J® and f € FJ}. relations: Pft/[uﬁ, a unary relation, is
{(u,9) : g € K} for u € J*,

sz\ﬁf, a unary relation is {(1,u, f) : f € F,} for u € J*

RM:= " a binary relation, is {((v,g), (1,u, f)) : f € Fu,g € K, and f((v,h)) =

u,v,h?

(v,9)} for u € J* and v <) v and h € K.

Observation 2.17. If s is a k-p.o.w.i.5. and v <jg w and f € F, then f maps
{v} x K, = Pljjvff onto itself.

Remark 2.18. Remark If 7 € F; and v <j5) u then 7 [ ({v} x K,,) comes directly
from K7, but the relation between the (7 | ({v} x K) : v <jj5) u) are less clear.

Claim 2.19. Let s be a p.o.w.i.s.
1) » is an automorphism of Ms iff:
® (a) s 1s a function with domain Mj

(b)  for every u € J* we have:
(o) | Dy €FS
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: M,
(B)  letting fu = » | Dy we have (1,u, f) € Py’ = »((1,u, f))

= (1,u, fu.f) where f,f is the product in F,.

2) If fu € Fy foruw € J* and f, C f, for u <;j5 v then there is one and only one
automorphism s of My such that u € J° = f, C s.

Proof. First assume that f = (f, : u € J®) is as in part (2). We define »f, a
function with domain M, by:

@ (a) ifa=(u,9)€ Pf\ﬂ and u € J* then x7(a) = fu(a)
(b) ifa=(lu f)€ Py then sz(a) = (1,u, fuf).
So

S
Na?

xf is a well defined function

=
-~ =

x5 is one to one

» is onto M,

S

>F maps PMs onto Plhfj and PQJ% onto PQMLE for u € J*

U u

also f' = (f; ! :u € J*) satisfies the condition of part (2) and

(8]
~

x is the inverse of >

M,

w.p ONbO itself.

(f) s maps R
[Why? The only non-trivial one is clause (f) and in it by clause (e) it is enough
to prove that sy maps Riv’[;h into Rﬁ/{;,h. So assume v <5 u,h € K, and

((v.9), (1,u, f)) € RY , hence f € F,, g € K, and f((v,h)) = (v, g). Sosx;((v,9)) =

u,v,h

Jo((v,9)) and 55 (1, u, f) = (1,u, f. f) and we would like to show that (f,((v,g)), (1,u, fuf)) €
R

u,v,h"

This means that (f,f)((v,h)) = fu((v,g9)). We know that f((v,h)) = (v, g) hence
(fuf)(v,h)) = fu(f((v,h))) = fu((v,g)) so we have to show that f,((v,g)) =

fo((v,9)). But v <jp5 u hence (by the assumption on f) we have f, C f, hence
ful(v,9)) = fu((v,g)) so we are done.]
So we have shown that
®3 if f = (fu:u € J%) is as in part (2) then »f is an automorphism of M.
Next
@4 if 5 € Aut(M;) and 3 [ D, is the identity for each u € J* then s = idyy, .
[Why? By the P% -s, Rfyﬁ ,-s and F? being a group of permutations of D,,.|

®5 the mapping » — (3¢ | Dy, : u € J®) is a homomorphism from Aut(M,) into
{f : f as above} with coordinatewise product, with kernel {5 € Aut(M,) :
» | D, =idp, for every u € J%}.
[Why? Easy. Observe that » [ D, € F, for every u € J*.]
®¢ the mapping above is onto.
[Why? Easy by ®3.

Given s € Aut(Ms), let fi, = s [ Dy. Clearly f, € F\, and u <ji5) v = fu C f,
so f = (fu:u € J?) is as above so by ®3 we know 5 is an automorphism of M,
and %f%’l is an automorphism of M, which is the identity on each D, hence by
®4 is idps, . So 3 = s, is as required.]

®7 the mapping above is one to one.
[Why? Easy by ®4.]
Together both parts should be clear. U
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Definition 2.20. Definition 1) We say that qi,q2 € S* are S-equivalent where

SCS*whenpeS= a1 (p)& ,a2(p)-
2) Omitting S means S = S*.

Claim 2.21. Claim Let s be a nice k-p.o.w.i.s. (or just Dom(m,,) = I, for all

U SJ[s])
1) If u € J® and f € F? then for some k and t = (t; : £ < k) € *(I?) and q € S*
we have:

(*) f = Ougq) (0 if v <5 u then f [ ({v} x K) is moving by multiplication
by gy . ¢9 9 € K= [((v,9) = (0,97 (5).q9)
2) {0y t.q) : (t,9) € Z2} is a group of permutations of D, which includes F.
3) For every q € S* there is a reduced ' € S¥ which is equivalent to it (see
Definition 2.13(2)).

Proof. 2),3) Straight.

1) We use freely Definition 2.13. Recall that F? is the group of permutations of D
generated by {0, . : z € Z3}. Hence it is enough to prove that f € F; satisfies the
conclusion of the claim in the following cases. Case 0: f is the identity.

It is enough to let k = 0 so £ = &, S¥ is a singleton {@} and q(2) is the empty
sequence {()) € A7 of length 1, i.e. we use in Definition 2.13(3) the case k = 0 and
in Definition 2.5(1) the case j(*) = 0. Case 1: f =9, , where z € Z{.

So z = (t*,7%). We set k =n(z) + 1,t = t* € ¥(I2) and define q as follows:

(A) if p € S* describes a decreasing sequence then

q(p) :<(<0’ 1727"'7k_1>7,'7z)> EA%
as sequence of length 1
(B) if not, then q(p) = (()) as in Case 0.

Case 2: f =0, , where z € Z}.
Also clear. Case 3: f = fife (product in F7) where fi, fo € F satisfy the

conclusion of the claim.

Just combine the definitions. Here we make use of s being a nice x-p.o.w.i.s. and
2.10(3) to avoid those cases where it is impossible to choose ¢ € Domm, ,,, meaning
that f = 0,,(,q) always acts trivially on {v} x K while fi, fo may not be trivial
themselves. Case 4: f = f~! where f € F? satisfies the conclusion of the claim.

Easy, too. O

Remark 2.22. If ¢ € S* and q1,q2 € S* and v <Jls] Ut € k(I,) and ¢ =

tpyr (75 (1), @, I,) and q1(q), q2(q) are not & -equivalent, then Iy 7 I qu

Proof. This is by Claim 2.7(3C). O
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§ 3. THE MAIN RESULT

We can prove that every x-p.o.w.i.s has a limit, but for our application it is more
transparent to consider k-p.o.w.i.s § which is the k-p.o.w.i.s. t + its limit.

Definition 3.1. We say that s is the limit of t as witnessed by v. when (both are
p.o.w.i.s. and)

(A) J*C J® and J® = J' U {v.}, v*¢Jtandu€J5:>u§J[5] Vs

(B) I: =1 and o, :Wuv when u <5} v <j[s] v
(C) if t € I then for some u = u; € J* we have t € Dom( T v.)
(D) if s,t € I} then for some u = uy,; € J* for every v satisfying u < ji5) v <[4

v, we have I§ |= “s <t” < my , (s) <15 75, (t)

(E) if (t, : uw € JY,) is a sequence satisfying w € JL,JL, ={u:w <u €
JYit, € IS and w < uy < up € JY = 7wy, (tu,) = tu,, then there is a
unique t € I3 such that u € JL, = my . (t) = L.

Definition 3.2. We say that s is an existential limit of t when: clauses (a)-(e) of
Definition 3.1 hold and

(A) assume that
(@) u, e J*

k1 ko <w and k = k1 + ko

v) & is an equivalence relation on S*

@I

) ( ew s u € JS, ), where e, is an £-equivalence class
e) te®(ly)
) for every v € JY, thereis 5, € ¥2(I}) such that:

if uy <y u <jpg v then e, is the &-equivalence class of

tpqe(t°5“", @, 1)) where t* = 77, , (t) and 5" =7} (5,).
Then there are u, < u* € J',5 € k(I3 ) such that for every u € J5 ., tpgs(m}
belongs to e, (and is constantly p* for some p* € S*).

(t°5),2,1')

u'u*

Remark 3.3. We may say “s is semi-limit of t” when in clause (d) we replace < by
=. We may consider using this weaker version and/or omit linearity in our main
theorem, but the present version suffices.

Claim 3.4. Main K;_is an almost k-automorphism group (see below) when:
X (a) s,tare both p.o.w.i.s.
(b) s is an existential limit of t as witnessed by v,

(c) J' is Wy-directed, linear (i.e., for every u,v € J* we have

u <jiq v orv <jq u) and unbounded
(d) tisak-p.o.wis. (sok>|JY and k> |I}| forue J)
(e) tis nice (see Definition 1.3(7)).
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Definition 3.5. G is an almost k-automorphism group when: there is a k-automorphism
group G and a normal subgroup G~ of GT of cardinality < x such that G is iso-
morphic to G /G™, i.e., there is a homomorphism from GT onto G with kernel

G~.

Before proving 3.4 we explain: why will being almost x-automorphism group help
us in proving our intended result? Recalling Definition 0.3 and Observation 0.8:

Claim 3.6. For any ordinal «, if there is an almost k-automorphism group G with
a subgroup H of cardinality < k such that 74 = a [such that norg(H) = G A

(VB < ) (norg(H) # Q)] then there is a k-automorphism group G' with a subgroup
H' of cardinality < k such that 76, g, = a [such that norg,(H') = G' A (VB <

a)(norl, (H') # G")].

Proof. Easy.

Let G, G~ be as in Definition 3.5 and h be a homomorphism from G+ onto G
with kernel G~ and let Ht = {z € G : h(z) € H}.

So it is easy to check each of the following statements:

® (a) HT is a subgroup of G*
() |H*| < |H| x G-| < =
(¢) Gt is a k-automorphism group
(d) norg+ (HY)={z € Gt : h(z) € norg(H)} for every 8 < oo
(e) T/G,H = Té:+,H+
(f) norg(H) = G then norg+(H+) = G for every 8 < .
Together (G+, HT) exemplifies the desired conclusion. O

Proof. 3.4 Let G be the automorphism group of My and let G~ be the following
subgroup of G*

{32 € G : for some u € J* we have

uljuvAg e K, = %((Uag)) = (U7g)}'

®1 G~ is a subgroup of GT
[Why? As J* is linear.]
®q for every » € G we can find f* = (f* : u € J*) such that
(a) fi €F,
(b) x| D, = f7
(¢) | Pyitis (Lu, f) = (Lu, £, f).
[Why? By Claim 2.19.]
@3 G~ (and also M) has cardinality < x.
[Why? As |J!| < &, it suffices to prove that for each u € J*, the subgroup
G, ={»>eGt x| Pf\fj is the identity when u <;;q v} has cardinality
< K, but this has not more elements as F\ because » — 3 | D} is an
injective function from G into F} and J*is linear. As |F}| < Vo +|Z}| =
N + |IL| < k we are done.]
®4 G~ is a normal subgroup of GT.
[Why? By its definition, more elaborately
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(a) each G, is a normal subgroup of G™.
[Why? As all members of Aut(M) map each {v} x K, onto itself.]
(b) u<ygv=G, CGy.
[Why? Check the deﬁnltlons ]
(¢) G- =U{G, :ue J}.
[Why? Trivially.]
Together we are done proving ®y.]

®s For w € Z7 let s, be the following automorphism of My, it is defined as in
®2 by (f7 :ue J') where f& =95 , | Df is from Definition 2.9(4).

®¢ For every x € Z; , 7, is a well defined automorphism of M.

[Why? Look at the definitions and 2.19.]
The main point is

®7 GT is generated by {3, :x € Z5 JUG™.

Why? Clearly the set is a set of elements of GT. So assume » € G and let
[7={f7:u € J' be as in ®2, they are fixed for awhile.

By 2.21 for each u € J* there are k = k* and = t* € *" (I
such that (the “disjoint” as we can replace ¢ by ¢"¢ or even
copies, the “reduced” by 2.21(3)):

Bl [ = O (iu,qu), 1-€., if v <jpg u then (3¢ =)f2 | ({v} x Kf) is a multiplica-
tion from the left (of the K}-coordinate) by g;;5 NOrs and q* is reduced
and disjoint, see Definition 2.13(2),(5).

The choices are not necessarily unique, in particular

and q = q* € S¥*

t
’LL
£ ... with |S*"|

Co if u' <;pg u? then (k:“Q,ﬁu17u2 (), q*) can serve as (k* , ", q*').
Also
s the set of possible (k*,q") is countable.
As Jtis Ny -directed and linear
Ly fotr some pair (k*,q*) the set {u € J': k* = k* and q“ = q*} is cofinal in
Jt
Together, without loss of generality for some £*, q
Os k% = k* and q* = q for every u € J*.
Let E be an ultrafilter on J* such that u € J' = {v : u <;g v} € E. Such an E
exists as J! is linear. For each u € J* there are A, p,,w(u) such that
s (a) A, € F and
(b) p.eSH
() ifve Ay, then u <;g v and p, = tpy(my, (1Y), D, L)
(d) wu) € A,.
For p € S let
Or (@) Y,={ueJ:p, = p}
(b) s“v =nx. ()] supp(a(p.)) for u e J' v € A,
(¢) s*=3" w(“)
So
s (Y, :p € S*) is a partition of J*.
Fix p € S for awhile so for each u € Y, and v € A, by Oy, s | ({u} x K!) is
multiplication from the left by g;"; L()a (it was q” but we have already agreed
that q” = q). But p = tpy(m, ,(t), 2, L,) as u € Yy, v € A, and so by Definition

2.13(5) we know that g;‘ﬁ (#)a is g#i (E)al)
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Now q(p) € A7. so q(p) = (o, pf,... 7pf(p)_1> and recall

Ire (@),a(p) 1 gwghg PGS0 with £ =, (£");

u,v

so it depends only on 7! (") | supp(q(p)) only.

Now consider any two members vy,vy of A, (so they are above u) comparing
the two expressions for s | ({u} x K}) one coming from v; the second from vy we

conclude that g;i,vl 1)) = gmﬂ o (2).a(0)" As q is reduced also q(p) is p-reduced
hence by 2.8(3) we conclude that

Clo if (p € S¥ ,u e Y, C J' and) v1,v2 € A, then 7, o, (1) [ supp(q(p)) is a
permutation of 7}, , ("2) | supp(q(p))
this means
Mg if w € Jt and vy, v9 € A, then 5! is a permutation of 542,
Hence for each u € J*
[y if v € A, then §? is a permutation of 5% = g% (),
As there are only finitely many permutations of 5%, there are w(u), A], such that
[y for u e J4
(a) A, € E
(b) A, C Ay
(¢) 3*=3"" for every v € Al,.
Now
[y if pe SF and uy <Jpy ug are from Y, then 7}, . (5%2) = 35"
[Why? As F is an ultrafilter on Jtand A}, , A, € E we can find v € A], NA] .
So for £ =1,2 we have §* =m,, , (") | supp(a(p)) = (8 1 supp(a(p))).
As T}, = T4, u, © Ty, We conclude 51 = mp . (5%2) is as required.]
Let S’ = {p € S*" : Y, is an unbound subset of .J'}, so for some u, € J* we have
Gy JS, CU{Y,:pe S’}
Also without lose of generality
s k* =k} + k3 and {0,..., k7 — 1} = U{supp(q(p)) : p € S’}
Che for p € &' and £ € supp(q(p)), so sy = (5%)¢ is well defined for u € Y,
there is a unique ¢, € I}, such that:
ueY,=m,, (t)=s;.
[Why? By clause (e) of Definition 3.1, [J;3 and the linearity of J*.]
Next we can find ¢ such that
Oz (@) t=(tg: L <k}
(b) ifpeS and £ € supp(q(p)) then t, € I3 is as in [lie.

[Why? For ¢ € U{supp(q(p)) : p € S8’} use [J15. As q is disjoint (see Definition
2.13(2)) there is no case of “double definition”.]
By clause (d) of Definition 3.1, possibly increasing u.,

[hg p* = tpge(my o (1), @, 1) for every w e J4,, .

Clig let & be the followmg equivalence relation on ¥, py&ps < q(pl)é"klT ks a(p2);
note they are actually from S*1 and so “é’)kl* iz -equivalent” is meaningful,
see Definition 2.3(4)

By let €= (e, :u € J§u> be defined by e, = p,/E

Bo1 E,,€,(T), y(u) (t») : u € J, ) satisfies the demands (f)(e) — (¢) from
Definition 3.2.
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[Why? Check.]
Recall p* = tp(t,@,I:.) here so let 5 € *¥2)(I3 ) be as guaranteed to exist by

Definition 3.2. Let t* :=#"5. So possibly increasing u, € J* for some p* we have
Cop if w € JS, then p* =tp(ny, , (£75),,15) = tp(t"5,2,I; ).

Let
[os (a) o* =q(p*) so o* € Ai{,p* and let o* = (pg : £ < £(x))
(b) tu=my, (t) forue J*
(c) letz,=2z"° € Z1® (see Definition 2.5(5A))
(d) let fi, =0y , € Fy; (this is not the same as f7!).
Now

Loy for uy < ;g ug we have fu, C fu,.
[Why? Check.]

[las s is a finite product of members of {s, : x € Z; }.
[Why? Recall s, for x € Z5. is from ®5. Now use [Ja3.] Lastly

Lo (%ffl)% € Gt = Aut(M,) is the identity on PM¢ whenever u € JL

[Why? By [y and our choices.]

[os (%f‘) S (G;* Q)G_

[Why? By [a5 and the definition of (G,» and) G~ ]

[ag 2 is the product (in GT) of »7 € G~ and (%;1)% € ({sw:x€Z}).
[Why? [as 4 [o7 this is clear.]

As s was any a member of G we are done proving ®7.

®g there is a homomorphism h from K3 onto G+/G_ which maps g, to »,G~
for x € Z3 .
[Why? By ®; there is at most one such homomorphism and if it exists it is onto.

So it is enough to show that for any group term, o if K satisfies K, =
“O(Guys---1Gnp_,) = € then o(seyy,...,54,_,) € G—. Let (t; : £ < £*) list
Ufhis(z¢) : £ < k} C I3 and let u, € J' be such that: if u, <; u and
6(1)76(2) < {* we have Ig* ': tg(l) <7 tg(g) iff I& ': 7Tu71,*(tg(1)) < ﬁqLﬁv*(tg(g))
and similarly for equality, see clause (d) of Definition 3.1.

Let ty s = Ty, (te), Tue = Tuw, (x¢). By the definition of G~ it is enough to
show that: if u. <jig u then Ky, | “0(gu, o1+ 9u.,,) = €x,”. By the analysis
in 1.7 and §2 (i.e., twisted product) this should be clear.]

®9 2* is one to one.

[Why? By part of the analysis as for ®-.]

By ®s + ®9 we are done.

The problem is in verifying clause (¢) of (f) of Definition 3.2. Now if u € J%,
we can find wy[u] € t > v for each p € S’ such that

© (@) v <y wplu] €Y
(8) et} supp(a(p)) = =5, (T 1 supp(a(p)).

Let w(p] € O{Agup[
S u{u}.

Lastly, let 5, = (7, (Ewly) 1 [kt k*). O

:p € 8’} be a < pg-common upper bound of {wpy[u] : p €

ul

Main Claim 3.4, p.40 Once more on [aq:

I do not see why the definition of & and 5V given on pg.40A has property 3.2(().
Even worse: I momentarily have some doubts that this works. Try on a counter-example:
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Letp; € 8,5 € {1,2} with p; # po. Thus, in particular, sup(q(p1))N supp(q(p2)) =
@. let i(j) € supp(da(p;)) be chosen.

There seems to be no argument preventing the following to happen: for every
p € 8" and every ¢ realizing p the elements #'(i(1)) and ¢ (¢(2)) are comparable, i.e.
(see Definition 2.3)

Vp e 8" {(0,i(1),i(2)), (2,i(1),i(2))} Np # &,
while for the constructed limit ¢ in ;7 holds

(3,i(1),i(2)) € p*
(see [ig), ie. £(i(1)) and #(i(2)) are incomparable.
The consequence for 3.2(¢) is

tpge(t°5"", @, 1) = tpge (s, o, (0) 7y, (50, D, 1)
= " =04, (7 4- (), 9, 1,)
= tpy (875", 2, 1))
=)< thg(f" 54", 2, 1,) ¢ S
while p, €g,, S’
In particular tp(t*"5%", @, I}) ¢404 €u =0,, Pu/é € S’ (Contradiction!) [For

me the main obstacle here seems to be Y,, NY,, =g, @.] Saharon please: make

me see and give the missing argument! Otherwise FIX! (Maybe 3.1 and 3.2 need
additional properties?)

Theorem 3.7. Assume

(A) Rog <cf(f)=0<k

(B) Fuo C %k for a < 0 has cardinality < k (also F,, C “B for some B < kT is
0.K.)

(C) F={fe%: flacF, foreverya <8}

(D) v =rk(F, <jpa), necessarily < oo so < (k)F

(E) if f1.f2 € F, then fi <jpa f2 or fo <gwa f1 or fo =jpa f1 (follows from
(f))

(F) for stationarily many § < 0 we have: if fi, fo € Fs, then for some o < §
we have B € (o, 0) = (f1(B) < f2(8) & fi(a) < f2(a)).

Then 722 > rile > 7olf 5 o (on 701 see Definition 0.3(4)).

Theorem 3.8. We can in Theorem 3.7 weaken clause (f) to
(f) (a) S C 0 is a stationary set consisting of limit ordinals

(8) D is a normal filter on 0

(v) SeD

(0) J={(Js:0€8)

(e) Js is an ideal on § extending JPY for 6 € S

(¢) if S' C S is stationary, S' € DT and ws € J5 for 6 € S', then

U{d \ ws : 6 € S’} contains an end segment of 0
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(n) ifoeS and fi,fo € F, then fi [ 0 <y5 fo |0 or

folo<ys fildorfild=y fal0

Remark 3.9. 1) We can justify (f)’ by pcf theory quotation, see below.
2) We should prove that the p.o.w.i.s. being existential holds.

Note that in proving 3.7, 3.8 the main point is the “existential limit”. This proof
has affinity to the first step in the elimination of quantifiers in the theory of (w, <).
For this it is better if Iy = (F, < Jgd) has many cases of existence. Toward this we
“padded it” in (x)o of the proof - take care of successors (f € F = f+1 € F),
have zero (0g € F) without losing the properties we have.

2) The demand of 3.7 may seem very strong, but by pcf theory it is natural.

Observation 3.10. 1) Theorem 3.8 implies Theorem 3.7.
2) If (a) — (d) of 3.7 holds, then (f) = (f)’.
3) If (a) — (d) of 3.7 holds, then (f) = (e).

Proof. 1) By 2).
2) Let

S :={0 < 0:4 is a limit ordinal and if f1, fo € Fs,
then for some a < § we have 5 € (o, ) =

(f1(8) < f2(B) & fi(a) < fa(a))}.
By (f) we know that S is a stationary subset of §. Let %y be the club filter on

and D = Py + S, it is a normal filter on # and S € D. So sub-clauses («), (5), (7)
of (f)" hold.

Let Js = JPd for 6 € S so J = (Js: § € S) satisfies sub-clauses (), (¢) of (f)’.
To prove (¢) assume S’ C S stationary, S’ € DV and ws € Js for § € S’. Then
sup(ws) < 6 and S’ is a stationary subset of 6 hence by Fodor’s lemma for some
B(x) < 0 the set S” = {6 € S’ : sup(ws) = B(x)} is a stationary subset of 6 and
so [B(x),0) is an end segment of 6 and is equal to U{[B(x),d) : § € S”} which is
included in U{0 \ ws : § € 5"}, as required in (¢) from (f)’, so sub-clause (¢) really
holds.

To prove sub-clause (1) of clause (f)
().

3) Should be clear. Given fi, fo € F; by sub-clause (1) of (f)’ for each § € S there
are wy € Js and £5 < 3 such that ({s = 0A @ € § \ ws) = fi(a) < fa(a) and
(ls=1Na€d\ws)= fi(a) = fa(a) and (s =2ANa € 6\ ws) = fi(a) > fala).
So for some £ < 3 the set S’ := {§ € S : {5 = {} is stationary (S’ € DT without
loss of generality), hence U{¢ \ ws : § € S’} includes an end segment of § and we
are easily done. O

" note that what it says is what is said in

Proof. 3.8 Without loss of generality
()0 (a) (VfeF)3F*geF)(fI[1,0)=g1[L0);

moreover for f € F we have

w=1{9(0):g€ Fandgl[l,0)=f][1,0)}
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() a<p<bO=F,={fla:feFs}; moreover a < 0 = F, =

{fla:feF}
(¢ iffeF,then f+1eF
(d) the f € 9{0}, the constantly zero function, belongs to F.

[Why? Let F' = {f € x: for some n < w we have (VO < a < 0)(f
u) A f(0) < w or for some f' € F and n < w we have (VO < a < 0)(f(a) =
w1+ f'(a))+n)A f(0) < w} and for a < 6, replace F, by F, ={f [ a: f € F'}.
Now check that (a) — (e), (f)" of the assumption still holds.]

We define s = (J, I, 7) as follows:

(#)1 (@) J=(0+1,<)
(b)(a) let Iy = (.7:, <Jgd) and
(B) In = (Fitat1,<a+1) for a < 6 where
fi <at1 fo& fill+a) < fo(1+ @)

() fora<pB<O+1letmgp:Ig— I, be

Tag(f)=fT(1+a+1).
Note that
()2 I, is explicitly non-trivial for all o € J (see Definition 1.2(7)).
[Why? By (*)o(a) and the choice of <y in (*)1(b).]
(¥)3 s = (J,I,7) is a p.o.w.i.s. even nice.
()4 sisalimitof t:=5 [0 =((0,<),I]0,710).
[Why? Note that clause (d) of Definition 3.1 holds by clause (e) of
Theorem 3.7. Easy to check the other clauses.]
(%)5 tis a nice k-p.o.w.i.s.
[Why? This follows from clause (a),(b) of Theorem 3.7.]

Now Kj is an almost x-automorphism group by Claim 3.4, the “existential limit”
holds by (x)¢ below (note: J is linear). Now rk<*>°(I5) = rk(I3) = v and H} is a
subgroup of Kj of cardinality 2 < &.

Combining Claim 1.10 and Claim 2.11 we have

1
T?(gg,H; =1k=* () =~
with nor3, (Hg) = Kj and thus 72™ > rhlg > rolf > T;](lggﬂg = by 0.8 and Claim
3.6.
We still have to check
(¥)g “s is an existential limit of t”, see Definition 3.2.

That is we have to prove clause (f) of 3.2, so we should prove its conclusion,
assuming its assumption which means in our case

®1 (a) k=ky + ko, & is an equivalence relation on S¥
(b) ferFanda(x) <0
() &= {eq:a € [a(x),0)) is such that e, € S¥/&
(d) (§“:a € [a(x),0)) is such that g* € *2(Fi1at1)
(e) ifa(x) <a< <0 then:
€q 18 the &-equivalence class of tp((fe [ (14+a+1): £ < /4:1>A<gf [ (14a+1) 1 £ < k2), @, 1,).
Without loss of generality [recalling clause (e) of Theorem 3.7 and (x)o(c)]
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®2 (f) (fe:€<ki)is < pa-increasing
(9) fo is constantly zero
(h)  for each £ < ky — 1 we have: fri1 = fr mod JE4 or fri1 = fo+1

mod Jg’d or fr+w < fey1 mod Jgd
(1) (fe: ¥ < k) is without repetition
()  (fe(0) : £ < kq) is without repetition.
Possibly increasing a(x) < 6, without loss of generality
@3 if a € [a(x),0) and ¢1,0s < ki then fo, () < fo, () & fo,(a(x) <
feo(a(%)).
Hence by clause (f) of ®o
@41 (fe(a(x)): € < k1) is non-decreasing.
For notational simplicity
@5 (a) replace 3°(3 € [a(),0)) by (g : £ < k) = (fo | (146+1): € < h1)"g°
(b) forty,ly < klet ggl = ggz & ggl (0) = ggz (0) without loss of generality.
Next for some p*
®6 p* € S* and for some stationary S’ C S from D™, for every § € S’ for the
Js-majority of o < ¢, say @ € § \ ws,ws € J5, we have p* = tqu((g‘g i
(I4+a+1):L<k),2,1,). Without loss of generality S’ C (a(x),0) and
(0, a(*)) C ws.
[Why? By sub-clause (1) of clause (f)’, as JP C Js is an ideal (applied to (g3 , g3,)
for every ¢1,0y < k) for each 6 € S (S C (a(x),0) without loss of generality) we
can choose ws € Js and ¢; € S* such that for every o € § \ ws we have tqu(<gg i
(1+a+1):£<k),@,1,) is equal to gs. For each p € S¥let S, = {§ € S : ¢5 = p}.
So § =U{S, : p € S¥}, hence for some p we have S, stationary (S, € DT without
loss of generality). So let S" = S, p* = p.]
So considering the way §° was defined by ®s;
®7 there are &7, &5, <, such that
(a) & is an equivalence relation on k = {0,...,k — 1}
(b) &5 is an equivalence relation on k refining &7
(¢) <. linearly orders k/&}
(d) if6eS aed\wssop =tpy({g0 | 1+a+1):0<k),o 1)
then:
(
(
(

a) L& i gf (1+a) =g),(1+a)

)
B) L&l iff g 1 (1+a+1)=g) [ (1+a+1)
v) ()67 <i (2/E]) iff g7, (1 + @) < g7, (1 + av).
Let (ug, . . ., um—1) list the &*-equivalence classes in <,-increasing order. Necessary
0 € ug.

Using (f')(¢) on ®¢ let be a* € S” with [a*,0) C U{d \ ws : 6 € S’}. Thus in
particular p* € e, for all a € [a*,6) by ®,(e). We now define g, € %k for £ < k as
follows: necessarily for a unique i = i(¢), ¢ € u; and let i1 = i1(£) < % be maximal
such that u;, N{0,..., k1 — 1} # @, j2 = j2(€) = min({u;, N{0,..., k1 —1}). It is
well defined as necessary 0 € ug because fj is constantly zero. Now we let

Bo ge = (g5 T{0}) U ((fy, + (0 = in)) [ [1,0)).

Now
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[ly if £ < kp then ge = fg
[Why? Check the definition gy (0) = f,(0) as g, = f.]
Mo go€ Ffor £ <k
[Why? As f;, € F and clauses (a)+(c) of (¥)o.]
Lls if €15 05 then go, = go,
[Why? First, as £185¢2 we have go, (0) = g;7(0) = g5, (0) = g4, (0).
Second, clearly (¢1) = i({2),i1(¢1) = i1(¢2) and ja(€1) = j2(¢2) hence for
a € [1,0) we have
9, (@) =Fio(00)(@) + (i(€1) = ia(€1)) =
Fiate) (@) 4 (i(€2) — i1 (£2)) = g, ().
So we are done.]
Cy if El,fg < k but —'(615)2*62) then ge, 7& 9o,
[Why? As —(£1852) by ®5(b) we have g (0) # g;."(0), hence ge, (0) =
gy (0) # g7 (0) = ge, (0) hence go, # g,
s if 41,05 < k, 0,87 €5 then _‘(921 <J;)d 952)
[Why? As ge, | [1,0) = gs, | [1,0), s0 gs, = ge, mod JP4, so —(ge, <gpa
942)']
Cg if 41,02 < k and (£1/67) <. (€2/67) then g, <jva ge,.
[Why? Obviously i(€1) < i(f2),i1(41) < i1(f2) and j2(£1) < j2(£2) by @4.
But by ®2(h) we have fj,(0,) + (i1(€2) = i1(€1)) <jpa fio(e0) thus fi,ce) +
(i(l1) = i1(61)) <gva fiaqen) + (i(l2) = i1 (€1)) Sjpa fio(e) + (i(l2) — i1 (£2))
and ge, <Jé>d 932.]
Together p* = tps({ge : £ < k), D, Ig) € e, for all a € [a*, ) proving the conclusion
of Definition 3.2, the definition of existential limit, i.e. (x)g. O

Theorem 3.8, p.48 Question concerning [J;: [y seems to be wrong! Why: Let

£1,0y < k1 with fgl =pa f42 (but fgl #* f[z!)
Then ®7(d)(«) implies

i(ly) = i(l2),11(£1) = i1(f2) and ja(£1) = ja(L2).
Thus g, [ [1,0) = gs, | [1,6) follows by [y and [y would imply

f@l [ [170) = f22 f [1,9)'
That does not hold in general.

Thus only
|:|/1 if £ < k; then ge =Jbd fg.

A possible solution: Theorem 3.8 remains true if weakening the conclusion of Defi-
nition 3.2 to: Then there are ¢’ € * (I3, ) and § € ** (I3, such that for every u € J,,_

large enough tpgs(7s . (£'75),2,1}) = p. € ey (for some constant p, € S¥).
Saharon, please check: is that enough to prove 3.47 Otherwise improve (x)o of

3.8,p.44. pg.43 in (x)o, change (c) to:

if feFand a <6 then f'= f+ 149 € F, ie.



Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.

THE HEIGHT OF THE AUTOMORPHISM TOWER OF A GROUP 33
if 6<a
f(B)+1 if 8 € la,0)

pg.46: Let m; < k1 be maximal m < k; such that (m/&) <. ({/&) exists as

go = fo = 0g by ®2(g); let ng = {¢/& : v < ka, (m/&p) <« (t/Ep) < (£/Ep)}. So
ng=01if £ < ky or just ugN{0,...,k1} #0

[, we define g; € Y% as follows:
(a) ge 10" =g} |6*
(0) go 11[0%,0) = gm, + ne, 1€ gm, + L5+ 0)-
The rest should be clear (but we give details?). Main Claim 3.8, pg.48:

Dear Saharon!
In 46A you gave a revised proposal for [g. It is conform to replacing [y by
o ge = (g7 T o) U (S, + (0 = 1)) | o, 0)).

This most certainly solves [y, but now [Js is violated. This can/must be fixed by
enhancing (x)g, pg.44 once more:

(¢); if fe F,then f+1€eF

(c)2 if f1, fo € F,a €0, then (fi [ @)U (fa | [a,0)) € F.
This again seems to force replacement of (b),(c) in Theorem 3.7 4+ 3.8 as follows:

(b) Fo € U P¥g for a < 6 has cardinality < &
B<a

() F={fec%|38 €0 with f|[B,a) € F, forall B<a< 6}
Question:
1) Does the pcf-argument with these changes still hold?
2) Does this (hopefully) fix all gaps around 3.7 and 3.87
Saharon: I can do 2), but 1) needs YOU!!!
We quote

Claim 3.11. Assume cf(k) = 0 > Rg,a < k = (a)? < k and X = k?. Then we can
find (F; 11 < 0),8,D, Js satisfying the conditions from 3.8 with v = X\ (and more).

Proof. By 3.12 and [She94]. O
Claim 3.12. Assume

® (a) A= (N :i<0)is an increasing sequence of regular cardinals with

limit K
(b)) A=tcf([] Ai, <gva)
i<0 0

(¢) max pcf{); i< j} <k for every j < 0.
1) Then there are D, S*,u such that

() ue [0 S* C 0 is stationary

(B) there are nou. € [u]’ fore < 0 such that for some club E of 0,5 € ENS* for
at least one € < 0 we have max pcf{; : 4 € dNu.} < maxpcf{); : ¢ € dNu}
hence

(v) D is a normal filter on 6 where: D is {S C 6: for every sequence {(u. :
e < 0) of subsets of u each of cardinality 0 and for every club E of 0, if
d € ENSNS* then for every e < § we have max pef{A; 17 € dNu.} =
maxpcf{\; : i € dNu}}
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(&) ford e S* let Js = {u' C §: maxpef{); :i €0\ v < maxpcf{\;:i<d}}.

2) We can choose F; C [] A; for i < 6 such that all the conditions in 77 hold.
J<i

Proof. By [She94, I1,3.5], see on this [She, §18]. O

Conclusion 3.13. If K is strong limit singular of uncountable cofinality then 73" >
Thlg > ol > 9,

Proof. By 3.8 and Claim 3.11. O

Remark 3.14. 1) If k = x™° do we have 78tV > 7018 > 70lf 5 442 Byt if k = k<% >
Ny then quite easily yes.

2) In 3.13 we can weaken “k is strong limit”. E.g. if x has uncountable cofinality
and a < & = |a|¥) <k, then 72 > £°(%); see more in [She, §18].

3) We elsewhere will weaken the assumption in 3.7, 3.8 but deduce only that 72!

is large.
§ 3(A). Private appendix.
Definition 3.15. We say that s is an almost limit of t when the demands from

Definition 3.1 holds except that we weaken clause (d) to
(d)~ (a) if I5. = “s < t” then for some u, € J* we have v € J%,. = I3 |=

(Wf),u* (S) < ﬂ—fz,v* (t)

(B) ifn<wandtg,...,tn—1 € I3. and u € J* then for some v we have
(@) u<ygv

(b) for £,k < n we have 3.

=ty <ty iff
I3 =7 - (te) < 7y o (tk) (similarly for equality but

this follows)
(¢) if we use Definition 4.1 also for £ < n we have t, € Pl»* <

7Tf;7v* (te) € plv,

Claim 3.16. Assume that k = k<" > Xy. Then ™% > xt.

Proof. Let T be the set of t such that
(O() = (Oét, <t)
(B) oy is an ordinal < k

(7) <t is a well ordering on «.
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We define a two-place relation <; on 7T

t1 <7 t2 iff ap, < O N\ <y, =<y, r Qi -
Let To ={t €T o = a}.
We define s = (J, I,7) as follows:
(*)1 (@) J=(k+1,<)
(b) for a < k we define I, as follows
(a)  its set of elements is {(¢,6,n) : t € Ti4y, f <1+ aand n < w}
(B) I is ordered by; ({1, B1,m1) < (t2, B2,n2) i t1 =t2 A B <¢ B2
(¢) for oy < ag < Kk let may,a, : I3 = Io be defined by: for (¢,5,n) €
Ia27t = (OZQ, <t) let 7Ta1,h2((t7ﬁ>n)) = ((Oél, <t[ al?ﬁ?”)) lf ﬁ < aq.
So Dom(7q, a,) have domain C I,,, but it is onto Is.
The rest is like the proof of 3.8 but easier. O

§ 4. MORE CARDINALS

We would like to weaken the demand in Definition 3.1(d), i.e. using only s
is a semi-limit of t and avoid using “existential limit”. That is we would like
to strengthen Theorem 3.7 omitting clause (f). There is a price: we weaken the
conclusion from “72f > 47 to “7018 > 47 We mention only the places we change
(and use bold face (or gothic) versions of the latter for the new version).

Definition 4.1. (0) I denotes (I, <, P'),<; a partial order on I, P1 C {t € I : tis
<r-minimal} (needed? for finite??]

Definition 4.2. We define X? as we have defined X except replacing clause (c¢) by
() t={(tg: £ <n)=(t} : £ <n) where t, € I]

X0 ={z:" ) € Pli and # is <1, -decreasing (nec?)}

n(xz

Xt = X0 Uu{w rk(ty ) <1+ a}.

Definition 4.3. We define G, as we have defined G7, in 1.4, but it is generated by
{gs : © € X5} however the set of equations is the same.

Claim 4.4. G, is freely generated by G5, U {g, : © € X5\ X5} except the equations
which hold in G, and
9z = yz_l

for
xeXy\X..

Claim 4.5. Let s be a nice k-p.o.w.i.s.
1) If 0 < a < oo then the normalizer of G2 in Gy, is Go*t C G, C Gy,.
2) If a = 1k(I,,) then the normalizer of Go® in G, is Go>® = G2.

Proof. By 4.4 and 1.10. O
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Definition 4.6. Let s be a k-p.o.w.i.s.
1) For u € J* let L,, = L, be the group generated by {h, : g € G, } freely except
the equations

(A) byt = hy

(B) hg,hg, = hg,hg,

(C) hg, = hy, when g1G0 = goGY.
1A) Let b, = b2 be the homomorphism from G, into the automoorphism group of
L, such that

feGuhngeG, = (hu(f))(hg) = hfg'
2) Let K,, be G, *p,, L,, the semi-direct product of G,, with L,, over the homorphism

Du-

Claim 4.7. Main Like 3.4 but

(b)" s is an almost limit or at least (?) semi-limit of t as witnessed by v,.

Theorem 4.8. Like 3.7 but we omit clauses (f),(g) from the assumption and weaken
the conclusion to TH8 > ~.

Conclusion 4.9. Rephrase Saharon.

Definition 4.10. In part (3) clause (b): now g ;.1 is well defined for every j.

Claim 4.11. [?] In the main claim 3.4 we can weaken assumption (b) to

(b)~ s is an almost limit of t as witnessed by v*.

Proof. Similar to the proof of 3.4. But G is not exactly. A possibility is to redo
§1 (and §2) in which we have “various kinds of “s

eqt”. Further for every n-type we have a set of partial order on it (those which in
4.11) will appear unboundedly in the reflection. O

Claim 4.12. In Claim 3.7 we can omit assumption (e).

Proof. Without loss of generality (x)o from the proof of 3.7 holds.
However, we define s = (J, I, T) somewhat differently

(#)1 (a) J=(0+41,<)
0 (@) o= (F, <)
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(8) In = (Fitas<at1) for a < 6 where:

() if 14+ « is a successor ordinal, say 841 and fi, fo € Fita

then f1 <, fa < f1(B8) < f2(B)

(#4) if « is a limit ordinal and f1, fa € Fi4q then fi <, fo &

(V"8 < ) (f1(B) < f2(B)) where (V' < a)

means for every large enough f < «
() fora<B<O+1let map:Isg— Iy bemapg(f)=f11+a).
The new point is checking clause (d)~ in Definition 3.15 of almost limit. Now if
n < w and fg,..., fn_1 € F then for some club C' of § we have for £,k < n and
OzEC:fg<9fk<:>(fngé)<a(fk[Oz). O

How to revise §1:

Best is if: if on I we have orders <;C<s then from the group for (I, <;) there
is a projection for the one for (I,<s3). This tends to press for a group with “all
is free except some conjugations”. [Alternatively] The “toward free” approach: 0)

Also non-decreasing sequences in ((t; : £ < n),n).
1) Definition 1.4(1)(c) omit (b)
(b) G“2 think how to define
2) Definition 1.2(1B): add y; | n(z) = 2 = ya [ n(x).
3) Observation 1.6(1) and x = y [ n(x)
4) Omit 1.6(2),(3),(6).
5) Claim 1.7: replace:(a) each g € G, we can canonically represent as g, - .. gz,
such that gy # gey1 and —®y, 4, ,; (b) the order disappears.
SAHARON!
6) 1.7(4),(7) use canonical instead increase

Proof. Immediate by G<F*> and HNN extension.
7) Claim 1.10: represent?
S% Definition 2.1: (a) we demand II,, maps {t : tkj,(¢) = 0} onto {€: rkj,(t) =

(b) and what about x € X; with * non <;-decreasing? O

* * *
Question: J' = w, the limit is too large still can we commute?
Alternative to clause (f) of the Theorem 3.7
Question: Can we replace equality on {u : u. <;pq u} by equality on {u : u
eqqus} for some u,?
Moved from 3.8(f)'(7),pg.36:

(v) if k<wand f° € ¥(Fs) for § € S then we can find a(x) < § and

= (po : @ € [a(*),0)) such that p, € S¥ and for every

i1

B € a(x),d) for some 6 € S\ B we have

a € [a(x), B) = pa = tqu((fg(a) < k),2,(0,<)).
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Remark 4.13. Assume
(A) F is closed under min{f, g}, f + 1, 0p.

Old proof of 3.13,pg.39: Let 6 = cf(x) so Ry < 0 = cf() < k, and let F = % =

{f : f a function from 6 to k} and F, = {f | a: f € F} for a < . Clearly
the assumption of 3.7 hence its conclusion: 72! > v where v = rk(F, < Jgd). But
rk(F, <jpa) > 2" as: k% = 2% (by cardinal arithmetic) and rk(F, <gpa) =tk ypa((k:
i < 0)), see [She94] (as there is a sequence (f, : @ < 2%) in %% which is < jpa-increase

by [She94, §1,VII] because there is a sequence (\; : i < 0) of cardinals < k with

tef ([T Ai, <jpa) = A for any regular A € (x,2]). Still we do not have clause (e) of
i<6

3.7. By a variant of [She94, 11,3.5], from [She, Part C,§18=k.1tex,pg.56]; there is

F as required (well, if 2% is regular, if it is singular we have to combine, see more

there).

§ 5. LOOKS LIKE OLD STUFF
§ 5(A). Old §1: The Groups.

Discussion 5.1. How do we define the group G' = Gy, from the parameter p which is
a partial order I (as the first try to be refined by additional information)? For each
t € I we would like to have an element associated with it (g((s),( y)) such that it will
“enter” nor@(H) exactly for o = rky(t) + 1. We intend that among the generators

of the group commuting is the normal case so we need witnesses that g¢u,(y) ¢

norgH(H) wherever f < a = rk;(¢t),8 > 0. It is natural that if rk;(t1) = 8

and t; <j to =: t then we use 1 to represent 3, as witness; more specifically, we
construct the group such that conjugation by g, ) interchange g((,.:,),(0)) and
9(<to,s0>,<1>) and one of them, say g((sy.+,),(0)) belongs to norg+1(H) \ norg(H)
whereas the other one, gi<t,,0>,<1>), belongs to norg,(H). Iterating we get the
elements z € X; defined below. To “start the induction”, some of the elements
Y(a,0)(a € Z® ¢ < 2) are used to generate H and not using all of them will help
to make norg, (H) having the desired value. However, we have to decide for
each gz, for (f,v) as above, for which g(, ¢ (o € ZP, ¢ < 2) does conjugation by
9(i,y) MAPS J(a,¢) to itself and for which it does not. For this we choose subsets
Ay €7 P to code our decisions when (£, v) is as above and well defined, and make
the conjugation with the generators intended to generate nor,(H) appropriately.

Note that the exact use of k7> (and later its role in rk%<°° hence X5, Gs%)
is necessarily for the fine determination of Tg{%, if your, e.g. mind only |TglgH| it
does not matter.

Definition 5.2. Let I be a partial order (so # @).
la) rky : I — Ord U {oo} is defined by rk;(¢) > a iff (V8 < «)(3s <1 t)[rks(s) > B].
1b) tk7>°(t) is defined as rk;(t) if rk;(t) < oo and is defined as U{rk;(s) +1 : s
satisfies s <; t and rk;(s) < oo} in general.
1c) Let rk(I) = U{rk;(t) + 1 : t € I} stipulating o < oo = 00 + 1.
1d) rk;>° = rk<>(I) = U{rk;>(t) + 1 : t € I}.
le) Let Ijo) = {t € I : 1k(t) = a}.
2) Let X1 be the set of objects x satisfying:

(x) z is a pair, z = (£,1) = (*,n*) such that for some n = n(z)

(b) &= (t¢: £ <n)isa <;-decreasing sequence of members of I

(¢) nem2.



Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.

THE HEIGHT OF THE AUTOMORPHISM TOWER OF A GROUP 39

[note that ¢ has length n + 1 whereas 7 has length n.]
2A) For # € X; let n = n(x),t, = to(x),n = n*,t* = (t*(z) : £ < n(x)) and let
2B) For = = (t,1) € X let 1k;7>°(z) = rk;*°(¢t(x)) and rk;(z) = rk;(¢(x)).
2C) For z € Xy and n < n(z) let [ n=({t] : £ < n),n" [ n).
3) I is non-trivial if {s : s <; t and rk;(s) = 8} is infinite for every t € I satisfying
k7 °°(t) > B (used in the proof of 5.16(1)).

) I is explicitly non-trivial if each Ej-equivalence class is infinite where Fy =
{(tl,tg) ity € I,tg € I and (VS S I)(S <rti=s<;g tg)}.

Definition 5.3. 1) Let A%, =4/ {n, 0) : n € ™2, ¢ is a function from ™=2 to {0,1}}.
2) Let AL, =Y U{A} : k <m} and A%, =47 A7 and A* =4 U{A], - m <w}.

3) For any pair (1, 0) let k((n, 0)) be the k such that (1, o) € A}.

4) If k < m and (1, o) € A%, then we define (9, o) [ k=% (n | k, 0] *22).

5) For v € AX, let v = (nY, o¥).

6) Let A, = P({v € A}, : 0 € Rang(n")}.

Definition 5.4. 1) For k,m < w and (1, ) € A} let 2 = s, (, ,) be the following
permutation of A% . (Note that if k¥ > m then this permutation is the identity).
For (n1,01) € A}, we define (12,02) = %, ((n,0)) (M1, 01) € A}, such that k =df
k((n2, 02)) = k(1 01)) as follows: Case 1: (11, 01) [ k # (1, 0).

In this case we have (12, 02) = (11, 01). Case 2 : Not case 1.

First na(i) = m (i) iff ¢ # k (and i < m )
Second for py € ™2 the value of g2(p2) is : 1(p1) when p; € ™2 has the same
length as po and p1 () # p2(3) iff i =lg(n) A p<ps for i <m
2) Let » = »% — m,v be the permutation of P(A},) induced by ». that is, for
A C AL (A) = {5((v) : v € A}; we may omit the 2.

Definition 5.5. 1) Let m be the following function: for an ordinal = wa+m we let
m(B) = m (here as k is always > N this is fine, but if it is equal we better change
the values of m on the natural numbers such that each has Ng natural numbers as
pre-images).

2) For a set Z of ordinals let Z x 2 =% U{{a} x A* . :a € Z}.

m(a)

3) For aset Z of ordinals let Z+'2 =4 U{(a, (n,0)) : a € Z,(n, 0) € AG o) ~[Rang(n) C
{1y,
4) We say that O, ), (n1,01),(n2,00) When:

(A) k=Yk((n,0) <k((m,e1)) = k((??z, 02))

(B) (m,01) [k =(n,0) = (n2,00) |

(C) m (i) # n2(i) = i = Lg(m) for i < Lg(m) = Lg(nz), of course

(D) o01(p) # 02(p) & p =1 for p € ™=2 of course.

Definition 5.6. [ USED??] 1) Let H,, be the subgroup of per(A’,) generated by

{gm,(n,g) : (77, Q) € A>k<m
2) For k < m let HE, be the subgroup of H,, generated by {56, .0 : (1,0) € A%,
and 0 € Rang(n) or £g(n) > m — k}.
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Observation 5.7. 1) For (n,0) € A%, we have: !

m,(n,0)
order two and %21 (m.0) is a permutation of P(AX,) of order two.

2) Ifi € {1,2},k < mw and (11, 01), (12, 02) belongs to A and (e, 0¢) # (113—e,03-2) |
k((ne, 0¢)) for £ =1,2 then s, (,01)? P (n2,09) COMVTLE.

3) If (ne, 00) € ALy, and ky = iy k((me, 0¢) for £ = 0,1 and (no, 00) = (11,01) | ko
then for one and only one (12, 02) € AL we have Oy, 00),(m1,01),(n2,02) POldS.
4)If 6%79)7(171791),(772,92) and k((n1, Ql)) < m then in the permutation group of A¥,

m is a permutation of Ay, of

we have s, (n.0) #m. (n1.01) % 1(17,@) m,(n2,02) "
5) If v e A m then %}nv maps A* onto (equivalently into) itself iff v € AL ,;

similarly s, ., maps P(AL,) onto (equivalently into) itself iff v € AL, ,
Proof. Easy. O

Definition 5.8. 1) We say that p is a k-parameter when:
(A) =(I,A,Z,Y) = (IP, AP, ZP) but let I[p] = IP
(B) I is a partial order
(C) A=(Ay:x e Xy)and Ay, C Zso A, = AP
(D) Z C k (and we assume that X; N (k * 2) = &, of course).
2) For a k-parameter p
(A) let Xp be Xpp) and Xf = X U (ZP x 2) and for z € ZP x 2 = X f\ X,
let n(z) = w; let X§ be XJif £ =1, X, if £ =2
(B) let rky, : X — {—1} U Ord U {oc} be defined by = € Xp = 1k}, (z) =
rkyp)(z) and @ € ZP x 2 = rky(z) = —1
(C) let rki : X5 = {1} UOrd U {oo} and £: X, — wU {oo} be defined by
(o) if x € ZP x 2 then rkf)(x) =-1
(8) if z € X, and Rang(n®) C {1} (e.g., n(z) = 0) then rki(m) =
rkr(p) (2) (= rkyp) (t(x))) and we let £(z) = oo
(7) if 2 € Xp and Rang(n®™) € {1} let ¢(z) = min{¢ : n*(¢) = 0} and
rki[p] (z) = 0 (yes, zero)

(D) rk}[:]oo( x), rkf)’<°°(x) are defined similarly using rkf[gj(—) instead rkypp) (—)

(E) 1k*(p) = rki[p}, ete.

(F) for x € X7 let oP , be the function from ™@)29 to the set {0,1} defined as
follows:

for p € "2,k < n(x) we have ¢P (p) = 1 iff o € A(zre
(G) For z € Xp, let nP be n if rki’<i“f(a:) > 0 and let it be (n*) | n(x)) = (0)
otherwise
(H) for z € Xp let vP = (9B, 0P ) and »P , = »2 (a),vR
({) 22 =Y (& o€ ZP).
3) We say p is a nice k-parameter when:
(A) pis a k-parameter
(B) if 2 € Xp and 1k} (z) = 0 then A, C Y, (used in the proof of 5.16(2))
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(C) if k,m < wand xg,21,...,2, € Xyp) are with no repetitions and rki(xo) >
0 then A,y € U{A,, : £=1,...,k} U{a € ZP : m(«) < m}, (used in the
proof of ?77(1))

(D) if x # y € Xy, then A, # A,.

Definition 5.9. Assume p is a k-parameter. Below if we omit the superscript £ we
mean 2.

1) Let G%, = G![p] be the group generated by {g, : = € Xg} freely except the
equations in F%, where I‘é consists of

(A) g;' = g, that is g, has order 2, for each z € X}

(B) 9y19y> = Gy29y1 when Y1,Y2 € ZP x 2
(C) 9294195 " = gy, When ®y 4, 4., see below.
1A) Let G3 = G?[p] be the group generated by {g, : € Xp} freely except the
equations in Ff, where 1"12) consists of
(A) g, = gu, that is g, has order 2, for each z € X}
(B) 949y, = 9ya9ys» 1€, Gy, gy, commute when —®2 , and —@2 , see below
(C) 9294595 " = Gy, when &2, . see below
this includes “x,y commute if x € X,y = (a l) € ZP x 2 and o € ZP \ AP”.
1B) Let ®;.,, 4, means that ®2 s OF ®2 y1.yae See below. Let ®; , mean that
® .y, .y, fOr some y1, o such that y € {y1,y2} and ®} , ,®2 ,  are defined similarly.
1C) Let ®} ,,, ,,, means that = € X}, and for some a € ZP we have y; € {a} X Apy(a)
for £=1,2 and Ov(a) v, vl
2 .
1D) Let ® ,, ,, means that:
(A) z,y1,92 € Xp
(B) n(z ) <n(y1) = n(y2)
(©) w1 In(z) =2 =y2 [ n(z)
(D) t¥r = tv2
(E) n¥1(£) = n¥2(¢) for every £ < n(yy) which is # n(x)
(F) n¥(n(x)) # n*2(n(x)).
2) For ¢ € {1,2} let G%;SO‘ is defined similarly to Gf, except that it is generated
<o _. . ¢ 2,<00 .
only by X5 =: {g, : € X, Ark;y~™(x) < o} freely except the equations from
Fffa, where Fffo‘ is the set of equations from Ff; among {g, : « € X£’<O‘}.
Similarly G%;SO‘,Xf;SO‘ SO Xé’goo = Xf;<°° = Xf, and Gf;foo = Gf;<°° = Gf,;
note that GL=<* = GL=ot xhse = XL<otl if o < o0.
3) Let Hf) be the subgroup of Gf, generated by {g, : y € ZP x* 2}.
4) For X C X,,Z C ZP let G x,z be the group generated by {gy ;ye XU(Z =«
2)} freely except the equatlons in T p.x,z which is the set of equations from I‘l
mentioning only generators among {gy ye XU(Zx2)}.
4A) For X C X, we define G, y similarly.

Observation 5.10. 1) The sequence (X5 : a <1k=>(p)) is C-increasing.

2)Ift e {1,2} andx,y € Xp andy =z [ n # y and { € {1,2} then rké(y) < rkf,(a:)
and if equality holds then rk%_,(x) =00 = rkll)(y) or both are zero and { = 2.

3) If a partial order I is explicitly non-trivial then I is non-trivial.

Proof. Check. O
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Observation 5.11. For a k-parameter p:
1) @}, holds zﬁx € Xpandy c ZP x2 C X1\ Xp.
2) @2, holds iff:
(o) z,y € X and n(y) > n(zx) +1
B) yIn==.
4) If ®§,’y1,y2 then y1 [ n(z) = =ya | n(x) and n(y1) = n(y2).
5) ®¢ iff ®¢ for £ =1,2.

Z,Y1,Y2 z,Y2,Y1

Proof. Easy. O

We first sort out how elements in G and various subgroups can be (uniquely)
represented as products of the generators.

Claim 5.12. Assume that p is a k-parameter and <* is any linear order of Xp such
that

O ifz € Xp,y € Xp and n(z) > n(y) (we could have demanded just

(n < n(z))ly =z | n]) then v <* y.
1) Any member of Gy, is equal to a product of the form gy, ... gs,, where xy <* Ty4q
for£=1,...,m —1. Moreover, this representation is unique.
2) Similarly for G5*, G5 (using X5, X5* respectively instead Xp ) hence G5*, G5
are subgroups of Gp.
3) If y <* = are from Xy and gy, g, do not commute (in Gp) then ®,, of Defi-
nition 77 (1)(b) holds hence (y,n(x)) determines x uniquely, in fact, v =y | n(x),
see 5.2(2B).
4) If g = gy, - - 9y,, where y1,...,ym € X1 and g = ga, ... g, € Gp and x1 <*
.. <*x, thenn < m.
5) (G5 : a <1k=°(IP)) is an increasing continuous sequence of groups with last
element G%.
6) Hy C G;O is a subgroup of cardinality < k.
7) In part (1) we can replace Gp, Xp by G = Gp x, X when X C X, is such that
{z,y1,92} € X A ®3c,y17y2 Nz, 1} € X = yo € X]. Hence Gp x is equal to
({o : 7 € XD,

Proof. 1),2),7) Recall that each generator has order two. We can use standard
combinatorial group theory (the rewriting process but below we do not assume
knowledge of it); the point is that in the rewriting the number of generators in the
word do not increase (so no need of <* being a well ordering).
For a full self-contained proof, for part of (2) we consider G = G;O‘,X = X;O‘ N
Xp,I'=T5* for a an ordinal or infinity and for part (1) and the rest of part (2)
consider G = G;ﬂ, X = X;ﬁ NXp,I' = I‘gﬁ for £ an ordinal or infinity (recall that
Gp, Xp is the case f = oo CHECK!!). The condition from part (7) holds by ??(2)
so it is enough to prove part (7). Now recall that G2 = Gf,’ y and
®1 every member of G can be written as a product g, ... g, for some n <
w,xp € X
[Why? As the set {g,;z € X} generates G.]
®9 if in g = gy, ... gs, We have xy = 441 then we can omit both
[Why? As ¢,9. = eq for every x € X by clause (a) of Definition ?7(1)]
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@3 if 1 < ¢ < nand g = gz, -.-9¢z, and we have x4 <* 2z, and m €
{1,...;n}\ {{,{ + 1} = y,, = z,,, then we can find yp,yrr1 € X such
that g = gy, ... gy, and y, <* ye41 and, in fact, yo11 = x¢.

[Why does ®3 hold? By Definition 5.9(1) one of the following cases occurs. Case 1:

9z¢s 9oy, cOmMmutes.
Let y¢ = To41, Yey1 = 2¢. Case 2: @7 see Definition 5.9(1B).

Te41,Te?
By clause (b) of Definition 5.9(1) we have n(zsy1) < n(z¢). So by [ of the
assumption we have z, <* w1, contradiction. Case 3: ®>2 see Definition

T, To417
5.9(1D).
Clearly there is y, € X such that n(y,) = n(xe1) > n(we),t¥¢ = ¥+ and
i < nlwest) = (17(5) = 741 (i) = (i # n(e))-
Let ypr1 = xy, clearly ypi1,y¢ € X. By Definition 5.9(1), gwgm“g;é1 = Gy,
hence gz,9z,.1 = 9y, 9ze = 9y 9y.,, and clearly yo <* x¢ = yey1, so we are done.
The three cases exhaust all possibilities ®3 is proved.]

®4 every g € G can be represented as g, ... gy, With 1 <* zo <* ... <* z,,.

[Why? Without loss of generality g is not the unit of G. By ®; we can find
Z1,...,%n € X1 such that g = g4, ... gs, and n > 1. Choose such representation

® (a) with minimal n and
(b)  for this n, with minimal m € {1,...,n+1} such that z,,, <* ... <* z,

m—1
andl<m<n= A xy<*z,, and
(=1

(¢) for this pair (n,m) if m > 2 then with maximal ¢ where ¢ €

{1,...,m — 1} satisfies 2y is <*-maximal among {z1,...,Zm—1}.

Easily there is such a sequence (z1,...,2,), noting that m = n+ 1 is O.K. for (b)
and there is z, as in @(c) by Q(a).

By ®2 and clause (a) of ® we have xy # x¢41 (when ¢ (from ®(c)) is well defined,
ie., if m > 2).
Now m = 2 is impossible (as then m = 1 can serve), if m = 1 we are done, and if
m > 2 then ¢/ = m — 1 is impossible (as then m — 1 can serve instead m). Lastly
by @3 applied to this ¢, we could have improved ¢ to ¢ + 1.]

®5 the representation in ®,4 is unique.
[Why does ®;5 hold? Assume toward contradiction that Yol -Gty = Gyl - Gyl
where 27 <* ... <* 27 and 3} <* ... <"y, and (2},...,2;, ) # (Y1, YUp,)-

y by
Without loss of generality among all such examples, (n1 +mno +1)% +n; is minimal.
Let Y, =: {x € X : n(z) = n}.
So (Y, : n < w) is a partition of XT.
For k <m <wlet X<km> ={z e Xt:zxecU{Vo:k << m}} and let
G<Fm> be the group generated freely by {g, : * € X <¥™>} except the equations
in I<k"> ie., from the equations from Iy x<km>, ie., from Definition ??(4)

mentioning only its generators, {y, : + € X<F¥™>}. Now clearly if ®i,y1,y27 see
Definition ??(1A) then n < w = [y2 € Y, = y2 € Y,]. Hence the proof of
®1 — ®4 above gives that for every g € G<F™> there are n and z; <* ... <*

r, from X<F7™> such that G<"™> |= “g = g4, ... 9, . Also it is enough to
prove the uniqueness for G<F¥™> (for every k < m < w), i.e., we can assume
Tyl Y Y, € X<F™> asif it fail | finitely many equations implies the
undesirable equation and for some k > m < w they are from I'*") hence already
in G*™) we get this undesirable equation.
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Now for k > m < w and = € Y} let 7%™ be the following permutation of
X B+Lm) it maps g € XFHLm) to gy if @2 and it maps y € XF+Lm) o 4 if
ﬁ®?c,y'

It is easy to check that

T,Y1,Y2

[y For k,m,x as above,
(i) 7™ is a permutation of X *+1™) which maps I'*+1™) onto itself

(ii) so mkm induce an automorphism 75 of G*™): the one mapping

gy, t0 gy, when TR (Y1) = Yo

i11) the automorphisms #5™ of G+ for z € Y}, pairwise commute
p z p

(iv) the automorphism 7% of G{¥) is of order two by induction on
m — k.
Note that
() if x € Y,y € Yy and z <* y then ¢ < k.

If m — k = 0, then G<F™> is the trivial group so the uniqueness is trivial.

Also the case k = m — 1 is trivial , G*"™ is actually a vector space over Z7)27
with basis {g, : © € Y3}, well in additive notation so the uniqueness is clear.

So assume that m — k > 2, now

Di,m E>m < wandif 29,...,27, ,v1,...,Y,, from X (Em) are as above in

G_2X<k1m,> then (zf,... ,a:%) =(yi,... ,y;w).

We prove this.
So 1),2),7) holds.
3) Check (by (1) and the definition of Gp).
4) Included in the proof of ®, inside the proof of parts (1),(2),(7).
5) For a < 8 < o0, as clearly X5 C X5# and I'y® C I'5” hence there is a ho-
momorphism from G5 into G5?. This homomorphism is the one-to-one (because
of the uniqueness clause in part (2)) hence the homomorphism is the identity. So
the sequence is C- increasing, the C follows by part (1), the uniqueness we have
rkCI)o( ) = = (), G<O‘+1 \ G<a
6) Hp is generated by < |Zp * 2| = Kk X 2 = K generators. O

Observation 5.13. Assume that
(A) G is a group
(B) fi is an automorphism of G fort € J
(C) fi, fs € Aut(G) commute for any s,t € J.
Then there are K and (g : t € J) such that
(o) K is a group
(8) G is a normal subgroup of K
(v) H is generated by GU{g: : ¢ 6 J}
(6) ifa € G and t € G then grag; * = fi(a)
()

€) if <. is a linear orer of J then every member of K has a one and only one

representation as xgtllgf; ...gtn/ when © € G,n < w,t; <4 ... <4 t, are
from J and by,...,b, € Z\ {0}.

Proof. A case of twisted product see below. (It is also a case of repeated HNN
extensions). O
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Definition 5.14. Definition/ 1) Assume G1, G5 are groups and 7 is a homomorphism
from G5 into Aut(G1), we define the twisted product G = G1 *, G2 as follows:

(A) the set of elements is G1 x G2 = {(91,92) : ¢1 € G1,92 € G2}

(B) the product operation is (g1, g2) * (h1,h2) = (91, hf(”),gghg) where
(a) A7) is the image of h; by the automorphism (gs) of Gy

(B) glh;r(‘%) is a Gq-product
(7) ga2hs is a Ga-product.

(A) such group G exists

B) in G every member has one and only one representation as gj, g5 when
91 € G1 x{ec, }, 95 € {ec, } x G2

(C) the mapping g1 — (g1, e) embeds G into G

(D) the mapping gs — (e, g2) embeds G2 into G

(E) so up to renaming, each go € G2 conjugating by it inside G acts on G; as
the automorphism m(g2) of G;.

Observation 5.15. [?] Let p be a nice k-parameter.

1) Ifae ZP,m <2 and g € Gp then g9(,,0)9~ " € {g(a,) 1 v € Afn(a)}.

2) If Go & “Guy -+ Gar = Gyr - - - Gy, " where {x1, .., 2} U{Y1, ..., Ym} € X[ and
Z C ZP and we omit gy, if x¢ € Z x2 and we omit g, if y € Z *2 then the equation

still holds.
Proof. By 5.12 and its proof. O

Claim 5.16. Let p be a nice k-parameter and I = IP be non-trivial.
1Ifo<ac< rkf[g]) then the normalizer of G5 in Gp is G5+t

2) If a = rkf[f:]’ then the normalizers of G5 in Gy is G5>° = G5,

Proof. 1) First if z € X, and rki’<°°(x) = «a then conjugation by g, in G maps
X5*=1{gy:y € Xp and rkf,’<°°(y) < a} onto itself.

[Why? Tt is enough to prove for every y € X5 that: if y € Xy, rki’<°°(y) <«
then g,g,9, ' € X;a. Now for each such g,, one of the following two cases occurs:

(i47)

(A) ga, gy commutes 80 gyg,9, " = gy € X2 <"

(1) (1) fails.
In case (i) the desired statement trivially holds, so assume that (¢7) holds.

Asze{zn:n<n(x)}=> rkf)’<°°(z) > rki’<°°(x) >a =g, ¢ X5 and
9z, gy does not commute, by 5.12(3) we get that = y [ n(z),n(z) < n(y). (As
rkf;<°°(x) > « > 0 by Definition ??(2)(c)(y) necessarily n* is constantly 1, but
not used.) Hence g,g,9; " = g,» where #¥ = # (and n¥' (£) = n¥ (¢)) = (£ = n(z)),
hence g,» € X5 as required.]
So really g, normalize G5°.

As this holds for every member of {g, : rki’<°°(33) = a}, clearly norg, (G5*) 2
(G5*)U{gs : rki’<°°(x) = a and x € X} but the latter generates G5! hence
norg, (G5*) 2 Ggoth.
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Second assume g € Gp \ G5*T', let <* be a linear ordering of Xy as in [J
of 5.12; so by 5.12 we can find k¥ < w and z; <* ... <* x;, from X, such that
9= 9a192s - - - Gur- As g ¢ G5! necessarily not all the g, are from X5**! hence
for some m, g,,, ¢ G5°*1; and by the definition of G5!, 1k <™ (z,) > a + 1
hence 7*™ is constantly 1 and without loss of generality m is the minimal such m.

Let m(x) € [m, k] be such that

(i) under (i), n(2p(+)) is minimal;

there is such m(x) as m satisfied the condition in clause (i). Of course, rky <> (2,()) >

rki’<°°(xm) > a+ 1. Hence we can find ¢* such that (recalling I is non-trivial, see
Definition 5.2(3)):

(A) t* < t(xm(*))

(B) tk;(t*) =«

(C) t* ¢ {te(x) : x € {m1,..., 25} and £ € {0,...,n(x)}}.
We can let n = n(2,,(s)) and choose

y1.= ((to(@m(n)s -+ ta(Zm(a)), 1), 7 7(0)

Y2 = (<t0($m(*))7 R 7tn(xm(*))7 t*>7 77$m(*)ﬂ<1>)~
So y1,y2 € Xp, rki(yl) =0, rki"<°°(y2) = a but 0 < a by the assumption of part

(1) hence g,, € G5! € G5* and by 5.12 g,, € G5! A gy, ¢ G5*. Now

(A) conjugating by g;,, ,, maps g,, to gy,.

Moreover,

(B) v1,y2 commutes with g, ..., gz, except g, .-

[Why? Assume toward contradiction that this fails for £ € {m,..., k}\
{m(*)} and y;,i € {1,2}; clearly by 5.12(3) we get y; = z¢ | n(y;) # x¢ or
x¢ = y; | n(x¢) # yi. By the choice of t* (i.e., see clause (c) above) the first
case does not occur hence the second one occurs. As ¢ € [m, k] by the choice
of m(*) the second case implies that n(ze) < n(y;) — 1 = n(y, () and it
also implies z¢ = y; [ n(x¢) = Tpyey [ n(24) = Ton [ n(20). As £ € [m, k]
by the choice of m(*) we necessarily have n(xz¢) = n(x,,()) hence by the
previous equality x¢ = @p,(x), but £ # m(*) = (27 <* Tpys)) V (Tne) <
Tp) = Ty (s) 7 T¢ hence £ = m(x), contradiction.]

By clauses (d) + (e) we have ggylg_1 =091 - Im-1(9m - 9%) 9y (g,;1 .. .g;l))g;lil .

(91 9m-1)9y2(gm-1--.g1)"". But g1,...,9m-1 € G5! by the choice of m

and G5 is a normal subgroup of G5**! (as we have proved that Gg*t! C
norg, (G5®)). So conjugation by (g1...9gm—1) maps G5 onto G5 and so nec-
essarily it maps G5\ G5 onto G5+ \ G5 but g,, € G5+ \ G5 Hence
together g9y, 97" = (91 gm—1)9ys (gm-1-..91)"" € G5\ GT®. But as said
above g,, € G5, s0 g ¢ norg, (G5“).

As g was any member of Gy, \ G<*"! we deduce that norg, (G5 <) € G5!
As we have shown the other inclusion earlier we are done.
2) Similar (and is not really needed). O

Definition 5.17. 1) Let H}, be the abelian group generated freely by {g, : y € ZP*2}
freely except that each generator has order two.

1) The mapping 3P from {g, : ¢ € X} into the group per(ZP *2) of permutations
of ZP x 2 is defined by: »P(g.)((a,v")) = (@, sm(a),0p , (V')-

2) We can above replace ZP x 2 by H}, and we call it 3 , 50 32 (gy) = Guep(y)-

See https://shelah.logic.at/papers/810/ for possible updates.
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3) We call %P the extension of the the mapping »% to a homomorphism from the
group Gf, into the group of automorphism of H;,.
4) Let m}, is the homomorphism from G}, into the twisted product H}, * G3 defined
by:

(A) for z € Xy, , we let w(g2) = ga), L€, (€,92)

(i) for y € ZP x 2 we let 7} (gy) = gy, i€, (gy,€).

Claim 5.18. 1) The mapping in Definition 5.17 is well defined, i.e, #P(g,) is really
a permutation of ZP x 2.

2) % is well defined and the images are automorphisms of H.

3) Moreover, this mapping respect the equations from Fll, hence 3P is a homomor-
phism from Gl?_, into the group of automorphism of HJ.

4) In Definition 5.17(4), the mapping 7' is a well defined homomorphism from G11)
into the twisted product.

Proof. Check. O

Claim 5.19. 1) The normalizer of Hll) n G%) 18 G};<1.

2) If 1 < a < 1tk<*°(p) then the a-th normalizer of Hrl, m Gil) 18 G‘l;<°‘.

3) 48 b, = k5.

4) First, GL<0 is abelian (as it is generated by (g, : y € ZP  2) which pairwise
commutes); as HY C Gy=Y it follows that GL<° C norgy (H})).

Second, if x € Xp, 1k (x) = 0 then o € ZP = uP , € T (as p is a nice
r-parameter, see clause (b) of Definition ??(3) + ADD). Now for any g(a,.) € H,
(i.e., (,v) € (ZP % 2) conjugation by g, inside Gp Maps ga,v) t0 Gia,vy With
u €N iff ' € A= such that

(A) if m(a) > n(x) then v’ € AL

(B) if m(a) < n(x) then v' = u hence € ALy s0 in both cases to a member of

Hy. Together G;l C norg, (Hp).
Third, if g € Gp \ G5 then let <* be as in 5.12(1) and g = gq, ... ga, for some
rp <* ... <" xK from X;‘ and necessarily for some m € {1,...,k} we have
Thy<®(2m) > 1. As p is a nice k-parameter (see Definition ??(3), clause (c))
there in a € Ay, \UU{Asz, : € € {1,....k} \ {m} and z;, € Xp} such that
m(a) > n(z,). So ge, commute with g0y and g1y if £ € {1,...,k} \ {m} and
Gp F Gz, (g(a,O))g;nlz = 9(a,1)-

So if £ € {1,...,k} U {m}, conjugation by g., maps the sets {gau) : v €
A;(a)} and {g(a,v) : v € A, \ AL} onto themselves. By conjugation g.,, maps
their union onto itself by miz then. As A C Ap,{g@,) : v € A} = HN
{9(aw) + v € AL} clearly for some vi € A, up € Ay, \ A, we have Gy, |=
“(g15- - 7gk)7lg(a7m)(gi7 ces ) = I(a,u2) 7 but Y(av) € Hp, 9(a,ws) ¢ Hp sog ¢
norg, (Hp).

As this holds for every g € Gp \ G5!, clearly norg,(H) C G5'. As we have
proved above the other inclusion, together we get equality.

5) It follows by 5.16(1) + part (2), as (G5 : a < 00) is an increasing continuous
sequence.

6) Follows by part (2) and the definitions (0.4(2)) and the non-triviality of IP
implies the rank is > 1.
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§ 5(B). Private Appendix
82 Easier group.

Definition 5.20. For a k-parameter p.
1) Let F, = F[p] be the group generated by {g, : + € X} freely except the
equations in I'; which are

(A) g, =gt forz € ZP %2

(B) 929y = gygs for x,y € ZP %2

(C) 929495 " = gy, when @} . see Definition 5.9(1c).
2) We define F50 =: ({g, : © € ZP x 2})ppp) (identify it with Gy<") and HP =
({92 - © € ZP % 2}) pp) (and identify it with H} = HJ), justification by 5.21(1)

below).
3) Let w2 be the unique homomorphism from FP onto G}, satisfying

Tp(ga) = ga for z € X
3A) Let mp be 73 o 7}, € Hom(Fy, F3).

4) Let F}, = Fi1[p] be the subgroup of F}, generated by {g, : € Xp}.

5) Let F5* be {g € F}, : mP(g) € G5}

6) For X C X, and Z C ZP let F}, x .z be the group generated by {g, : € X U
(Z %2)} freely except I'}, x » = the equations of I'; mentioning only the generators
we have listed.

Claim 5.21. 0) The identification of Hrl,,Hg and Hy, (from 5.17, 5.18) is justified.
1) 7r12) is really a homomorphism from Fy onto G%) which is the identity on Hp.
2) The subgroup of Fy, generated by {g, : y € ZP x 2} satisfies:

(A) it is abelian

(B) every element has order 2

(C) it can be considered as a vector space over Z /27 with basis {g, : y € ZP x2}.

3) Fé is a gree group generated freely by {g, : © € Xp}.

4) Fp<0 is a normal subgroup of Fp and for x € Xy, conjugation by g, in F'P acts on
Hy, as the following permutation per(g.) of {gy : y € ZP 2} (its basis as a vector
$pace): guG(a,m)9s s (o, 22 (v)). The permutations (per(gs) : @ € Xp) pairwise
commute.

5) Fp is the twisted product of Hp and F];,

6) For o€ ZP, HP N{gy 1y € {a} x Ay, )} is equal to {gy 1y € {a} x AL, )}

7) If X C Xy and Z C ZP then Iy x 5 is essentially ({g, : x € X U(Z *2)})F,.

Proof. Straight. O

Claim 5.22. 1) F5' = norpp)(Hp) and m, maps norg, (Hp) onto G&<' and Ker(r) C
nor g (p) (Hp).
2) mp maps nor},‘:a(Hp) onto norg, (GE<1) for a < o0 so F5™ = norg, (Hp).

3) T;i,g,Hp is equal to Tgf’Hp and nory (Hp) = FP iff norg (Hp) = Gp.
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Proof. 1) For every x € X;‘ and a < k clearly in F}, conjugating by g, maps
{a} x AL ) onto itself.
(Why? If x € ZP % 2, g, commutes with them and if z € X, also.)

Hence this holds for every g € F}, hence it follows that gg(aﬂ,)g_1 = g_lg(a’v)g
and so by the choice of Hp:

(¥)1 for g € I, we have g € norp, (Hp) iff for every a € ZP, we have conjugation

by g maps {gy : y € {a} x A}, )} onto itself.

Similarly

(¥)2 for g € G, we have g € norg, (Hp) iff for every o € ZP we have conjugation

by g maps {gy : y € {a} *x A}, )} onto itself.

As mp maps F}, onto G, and is the identity on Hy (which includes {g(q,.) : @ € ZP},
clearly 7, maps norg, (Hp) onto norg, (Hp) and Ker(mp) C nor pp) (H,
2) So by 5.16(1) we have norg, (Hp) = G5' but (by Definition 5.20), F<! = {g €
Fp,mp(g) € G5'} so together we get norp, (Hp) = Fi5'.
3) We prove this by induction on .
For a = 0 we have nor(}:p (Hp) = Hp, norG (Hp) and 7p is the identity on Hp.

For a = 1 use part (1).

For « limit this is trivial.

For oo = 8 + 1 note that Ker(mp) is C nor},p (Hp) C norgp (Hp) = Fp<ﬁ and mp
maps F5# onto G%<# hence it follows that norg, (mp(F5?)) = mp(norp, (G2’<B)).

Hence
norg; (Hp) = norg, (norG2 (Hp)
= norg, (G? o ) =norg, (TFP(F<B))
= mp(norg, (Fy Ay = Tp(norg, (norf,p(Hp))
= mp(norg, (Hp)).
So we are done. O

We can below use simplified k-parameters, does not matter.

Definition 5.23. 1) s is a k-p.o.w.i.s. (partial order weak inverse system) when:
(A) s=(J,p,7)soJ =J° = J[s|,p=p° 7 =7"
(B) J is a directed partial order of cardinality < s
(C) p=(pu:ucl)
(D) p. is a k-parameter, I,, = IP is a partial order of cardinality < k and let
IS = IPL, X5 = Xpo, Z5 = ZP4, A5, = AD* when the latter is defined

)

=

(
(F

) T= Ty :u<y0)
)

(G) if u<jyv<;wthen myw = Ty,p © Ty (may use C)
)
)

Ty,» 18 a partial mapping from I, into I,

u <jv= ZP+ C ZP> and use idze. Uy ,) hence of = 0P (:n),vf:(u (@)

s

(

—_

if x € Dom(m, ) then A , N Z5 = AS

( V,T U, Ty, (2)
2) We define 7;f , = 717 when u <) v as follows:
(A) mfF, isa partlal mapping from X7 into X
(

B) for z € Xp,,
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¢ < n(z) we have
Tw,w(tes1(2)) <1, Tww(te(z))]
(B) 7io(@) = (Fuw(to(@), - Tuw(tai@)(@))),n")
(C) fory € X \ Xp, = ZPv x 2 we have:
() y € Dom(m;f,) iff y € ZP+ % 2
(8) mio(y) =y fory € ZPx2.
3) If u <jjg) v, then 7, = 7}, is the partial homomorphism from Fy,, into Fp,
with domain the subgroup of Ft generated by {g, : € Dom(x )} mapping g,
to It o(2) € F,; see justification below.
4)[?] We say s is linear if J* is a linear (= total) order. [USED?]
5) We say s is nice when every p?, is nice.[?]

() z € Dom(rm;,) iff: for every w satisfying u <) w <;;) v and
[

Claim 5.24. If s is a k-p.o.w.i.s and J° = “v < u < w” then
(A) 7, are well defined (homomorphisms)
(B) =t , Cwh

+
w,v — w,u o

ww N Ty C T © T

(C) if J® is a linear order then in clause (b) we get equalities.

Proof. Clause (a): It is enough to prove that (when u <5 v): 7} ¢ maps the set
of equations Fp,Dom(w;v),Zg onto the set of equations I

Looking as the definitions this is obvious.
Clause (b): Easy.
Clause (c): Easy, in fact we have chosen Definition 6.10(2)(b) such that those
equalities will hold. O

§ 5(C). old §4.

pvRa‘ng(ﬂ—u,v)?Zu

Definition 5.25. 1) We say that k is a simplified s-parameter when
(A) = (S, A, Z) = (5%, vk, Z%)
(B) S a set
(C) ZCxk
(D) k= (a2 €S a€cZ)and s,q € per(P(A}, )
2) S;F = Sk U (Z% x2) and we always assume that this is a disjoint union.
3) For a simplified k-parameter let F be the group generated by {g, : = € S;}
freely except the equations in I'y which are
(A) gr =g; ! forx € ZX %2
(B) 929y = gyg for z,y € Z¥ %2
(C) 9294195 = gy, when for some o € Z¥ we have z € S, {y1,y2} C {a} *2
and sy o, (VY1) = VY2,
4) Let Hy be the subgroup of Fy generated by {g, : € Sy or for some o € Z¥ we
have z € {a} * A,,.
5) For a s-parameter p let k(p) be (Xjpp), 2P, ZP) where <%Ix),a cx € Xp, a0 € ZP).
6) We say k is one to one if A¥ is with no repetitions.

Claim 5.26. Assume p is a k-parameter.

1) k(p) is a simplified k-parameter.

2) If p is nice then k(p) is one to one.

3) The mapping go — go(x € X)) induces an isomorphism from Fy onto Fip).
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Proof. Easy. O
Claim 5.27. For k a simplified k-parameter, the parallel to 5.21 holds.

Proof. Easy. O

X X X
We can below use simplified k-parameters, does not matter.

Definition 5.28. 1) s is a k-p.o.w.i.s. (partial order weak inverse system) when:
(A) s=(J,p,m)soJ =J° = J[s|,p=p° 7 =nx*
(B) J is a directed partial order of cardinality < s
(C) p=(pu:ucl)
(D) p. is a k-parameter, I, = IP is a partial order of cardinality < k and let
IS =IPu, X3 = Xps, Zy = ZPu, AL = AP when the latter is defined

)

=

(
(F

) T = (Typ:u<y0)
)

(G) if u <jv<ywthen myw = Typ 0 Ty (Mmay use C)
)
)

Ty,» 18 a partial mapping from I, into I,

(H) u<jv= 2P+ C ZP» and use idze. Umy) hence of = oR  (z ),vf:(u (@)
(I) if z € Dom(m, ) then Aj N Z; = A7 ()"
2) We define 7}, = 2 when u < <J[s) v as follows:

A) nf isa partlal mapping from X*} into Xp“
B) for z € Xp,,
(o) x € Dom(m )U) iff: for every w satisfying u <, w <;[s v and
¢ < n(z) we have
[Tw,o(te1(2)) <1, Tw,o(te())]
(B) (@) = (Tu0(to(@), - Tuw (o) (@), 17)
(C) for y € X \ Xp, = ZPv x 2 we have:
() y € Dom(m;},) iff y € ZP+ x 2

(6) W:Lrv(y) =Y for AS ZPu % 2,

3) If u <jjg) v, then 7, = 7}, is the partial homomorphism from Fy,, into Fp,
with domain the subgroup of F]j2 generated by {g, : © € Dom(x,},)} mapping g,
to It o(2) € Fy,; see justification below.

4)[?] We say s is linear if J* is a linear (= total) order. [USED?]

5) We say s is nice when every p?, is nice.[?]

(
(

Claim 5.29. If s is a k-p.o.w.i.s and J° = “v < u < w” then
(A) 73, are well defined (homomorphisms)
(B) 7}, Cmb o, omt, and @y C T © Fuw

(C) if J* is a linear order then in clause (b) we get equalities.
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Proof. Clause (a): It is enough to prove that (when u <5 v): 7} F maps the set
of equations T', o, rt ) zs onto the set of equations T

Looking as the definitions this is obvious.
Clause (b): Easy.
Clause (c): Easy, in fact we have chosen Definition 6.10(2)(b) such that those
equalities will hold. O

§ 5(D). old? §3.

p.Rang(7 ), 23"

Definition 5.30. We say that s is the limit of t, both k-p.o.w.i.s. as witnessed by
v, when

(A) JtCJs—Jﬁ—J"U{U*} v, ¢ Jtand uw e J¥ = u < g v

(B) Pl = Pu o0 = Ty When u < g v <jfg] s

(C) J'is directed

(D) if t € I} then for some v = u; € J we have t € Dom(7;,

J* = fup <v <, =t € Dom(nmy, )

(E) if Ij = “s < t” then for some u = us; € J* we have u <) v <j[s] Vs« =
Wi,v (s) <rs Ty . (1)

(F) if s,t € I and the conclusion of clause (e) holds then I} |=s <t

(G) if (t, : v € J>y) is a sequence satisfying w € J, J>y = {u:w < u €
J}it, € IT and w < uqy < ug € J we have my, y, (ty,) = tu,, then there is a
unique t € I such that u € J>u = Ty, (t) = tu.

Ty, .0, ) MOTEOVET

Claim 5.31. G5 is a k-automorphism group when:
(a) s,t are both nice k-p.o.w.i.s
(b) s is the limit of t as witnessed by v,
(c) J* is Ny-directed
(d) wk>|JY and k > |I}] foru e J*.

Proof. Let p, = p* = pS for u € J*, etc. First Presentation:
For u € J* let
(A) S, = Xp, U{(2,v,2): we have u <1y vxeX o2 @ & Dom(m )
(B) for s € S, let =" = (", : a € ZPM) satlsfymg %3701 € per(P(Af, ) be

67

defined as follows:
(o) if s € Xp, then s, = I@'E[f.f]
)

(8

(7) s€ Zp[“] *2 then r , is the identity on P(Afn(a)) or any {m(a),u
(NS Am(a)}
(C) K, is the group generated by {g, : ¢ € S, } freely except
(@) gz = g;l when z € ZPH 9
(ﬂ) gylgyg = gy29y1 when Y1, Y2 c Zp[u] * 2
Y 9294,95 " = gy, if for some a € ZPM {y; yp} C {a} * 2 and
Yi1dzx Y2
sl o () = .
Note
(%) in K:
(Oé) gylagy2 commute if Y1, Y2 e Zp[u] * 2

if s = (2,v,x) then s, , = /@p[v]
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(ﬁ) gzgy1g;1 = Gyo if ®910,y1,y2 [pu]
(v) conjugating by g, maps H onto itself when z € S, \ X so
z=(2,v,2),u<jv,x € P \ Dom(m; )

(¥)2 (@) ({gy:y € ZPM x2) [ is, essentially, G;[O

ul

(b)  the subgroup of K, which (g, : y € Sy \ ZPl4 « 2) generates,

it generates it freely call it K}
(¢) K, is the twisted product of K} and G;[?L].
So as in the proof of 5.21
(%) Fp, C K.
Now for u <jpq v let m , be the following mapping from S, to S,: for z € S.
Case 1: If x € Dom(ny;}) then 7} ,(x) = 77 (x). Case 2: x € X \ Dom(my?)

then 7§ () = (2,v, %Y | zpPl), Case 3: z € S, \ X7

So x = (7“7’[)7.’,17) and let T:’U(.’IJ) = (27’0737)'
Now

(¥)a (a) for u <;pq v, , is a function from S, into S, (could have arranged

onto, if J* is linear this holds)

(b)  for ug <y ur <jy uz we have my; =T O Tuy u,
* : +,b .
(e) for uy <jpq u2,m,, 4, induce a mappng 7%, from {g, : v € Sy, }

into {g, : * € Sy, } which has one and only one extension

7t 1., Which is a homomorphism from K, into K.,
(d) Fp,, is the inverse limit of (K, 7} ., :u € J u <y ug).
Why? Check.
Now it follows that [y, is a k-automorphism group. Now we can improve the
conclusion. Can we waive the N;-directed? See in the continuation. [l

Alternative presentation:
For each u € J* we define k,, = k[u] = (S, #*, Z*) by
(%)o (a) Sy, asin (a) above
(b) "= (%":s€8"), %" forue J' s Xp, as in (b) above
(c) z* = zPl,
(*)1 ky is a simplified kappa-parameter
[Why? Just check.]
[So k,, is in general not one to one; this helps to make the inverse limit right]
()2 let F, = Fy,
(¥)3 if u < ;g v then we define a mapping 7; , from S, to S, as follows:
(a) if z € Dom(myT) C Xy then 7} (2) = 7} (x)
(b) if x € Xpp) \ Dom(ay ) then 7}, (z) = (2,0, )
(c) assume z = (2,v1,71) € Sy \ Xp[y
(hence v <jpg v1 and 1 € Xpp,,) \ Dom(7f)));
(a) z1 ¢ Dom(wl‘t’;‘l) then 7, (z) = (2,v1, 1)
(B) ifz € Dom(wi;}l) then 7} () = Tu,0, (1)
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(%)a for u <;jq v we have

(a) m ., is a well defined function

(b) m, extend wyf

(¢) Dom(m; )= Sk[”] = S, and Rang(}, ) C S =3,
( s = Tz s © oo us

(

d) 1fu1 <J[] U2 <J[] (5 then 7*

e) if x € S, then ¥ NZ" = .
[Why? Check]

(¥)5 for u <jg v let 7, be the homomorphism from Fy[,) into Fi,) such that
(a) it maps g, to Irs (@) for z € S,

(@)

(b) it maps g, to g, for x € Z% %2
(c) it maps g, to ep,, forz € (ZV\ Z%) x 2
()6 Ty 18 a well defined homomorphlsm from Fy[) into Fipy
[Why? As Fypu), Fi[o) are twisted products]
(x)7 7, extends 7y
[why? check]
(*)8 Fplv,] is the inverse limit of (Fy(y), 7y, , : u <y v)-

Claim 5.32. Assume

(A) g <O =cf(d) <k

(B) To € %k for a < 0 has cardinality < k

(C) F={fe: flaeT, fora<?b}

(D) v =1k(F, <jpa), necessarily < oo so < (k)+

(E) for every n —a < 0 and n, the function from o+ 1 to {n} belongs to T.
Then 72 > 7018 > 701 > ~ (o 70U see below).

Definition 5.33. 72 is the least ordinal 7 such that 7 > TglfH wherever G =

Aut (1), 2 a structure of cardinality < x, H a subgroup of G of cardinality < s and
norg™(H) = G.

Proof. We define s = (J,p, ) as follows:
(A) J=(0+1<)
(B) In = (Tat1, <a41) for a < 6 + 1 where

i <at1 f2 & fila) < fa(@)

(C) fora< B <O+1let mqp: Iz — I, be
Tap(f) = [T (a+1).

(D) let (U, : @ < 0) be a partition of x to sets, each of cardinality «
(E) for a < 0,0 < 2 let (A% : x € X1 ) be an independent sequence of subsets

of U20¢+€
(F) for a« < and = € Xla let
A, = {Aﬁf @ B < a,x € Dom(w%‘va(x), see Definition xxx and

rk7 < (x) = 0 0= 0}
(G) for a < @let Z* = U{Agp+s: B <, < 0,{ <2}
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Lastly, for a < 0 let po = (I, (Ay 12 € X, Z%)
(*)2 Pa is a nice k-parameter
(¥)3 § = (J,p,T) is a K-p.o.w.1.s.
(%) sisalimitof t=:s 0= ((0,<),p | 6,7 ]9).
Easy to finish. O

Now we can conclude 6.16

Conclusion 5.34. If k = k™0 then T8 > 7018 > T,’Ejlf > kT,

Proof. 0 is regular F, = %k for o < 6.
Let
(&) J = ([s]*, )
(B) for w € J, I, = {R: R a well ordering of u}
(C) for u <jwvlet my(R)=R U for f € I,.
We continue on as above (imitating §3). FILL O

Definition 5.35. 1) Assume that I1, I are partial orders; we say that 7 : [; — Iy is a
homomorphism, if it is a function from I; into I such that s <, t = 7 (s) <z, 7(t).
1A) For z = ({to,...,tn),n) € X5, and a function 7 from I; to I define

7T+($) = (<7T(t0)7 s 77‘—(tn)>777>)'

2) For k-parameter that p,q we say 7 is a partial homomorphism from p to q if

(A) 7 is a function, Dom(7) C IP U ZP,

(B) | IP is a homomorphism from IP [ Dom(7) into /9 and

(C) 7 | ZP is a partial one-to-one function from ZP into Z9 and & € Xpom(r)ni[p] =

A2+($) Nm(ZP) ={n(y) 1y € AR}

(D) m maps YP N Dom(7) onto Y4 N 7(ZP N Dom(n)).
2A) We define nt : X7 — X by: if z € Xp, 77 (2) is defined as in part (1A) and
if y = (a,£) if @ € Dom(w) and £ < 2 then 71 (y) = (7(), £).
2B) We may omit “partial” when IP = Dom(r).
3) We say that 7 is a partial isomorphism from I; to I> when 7 is a one-to-one
function from some A} C I onto A% C I such that 7 is an isomorphism from
I | A} onto I | As.
4) Similarly “r is a partial isomorphism from p; to ps” if it is a partial homomor-
phism from p; to pa,m | I is a partial isomorphism from Iy to I (so 7w [ ZP! is
one to one).
5) Let p C q for x-parameters mean that id;p) U idz[p) is a partial isomorphism
from p to q.
6) If Z9 C ZP then when we treat 7 : [P — [9as m: p — q we mean 7 Uidyq).

»

Of course

Claim 5.36. In Definition 5.35, if ™ is a partial homomorphism from p; to po then:
see Definition 5.35(14)

(B) if x,y1,y2 € X, and x € Dom(n") and ®g{g?£7}y2 then y; € Dom(nt) <
yo € Dom(7T)

(C) (p1,Xp, NDom(n "), ZP* N Dom(m)) is as in Definition ?7?(4) and Claim
5.12(7)

(A) 7" is a partial mapping from X7 into X ,
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(D) (p2, Xp, NRang(r") = Rang(nt | X}, ), ZP2NRang(n)) is as in Definition
??(4) and Claim 5.12(7)

(E) 7+ maps F;I,XplnDom(w+,ZPmDom(n) onto F;;Q,Xp2ﬂRang(ﬂ+),Zp2ﬁRang(7r)
(see Definition 5.20(6))

(F) there is a unique homomorphism & from the subgroup ({g, : © € Dom(77)}) pip,)
of Fp, onto the subgroup ({g, : v € Rang(n™)) pp,) of Fp, mapping g, to
Gt (a) for x € Dom(r ).

Proof. Check (or see the proof of 5.42(2); see 6.6). O

Claim 5.37. If p1 C p2 are s-parameters, then Xy, C Xp,, ZP1x2 C ZP? ><2,XI‘,"1 -

X1, Tp, CTyp, and Gy, is a subgroup of Gy, and Fy, is a subgroup of Fy,.

Proof. The only non-trivial part are Gp, is a subgroup of Gp, which holds by
5.12(7) and “Fp, is a subgroup of Fp,q” which holds by the properties of twisted
products (see Claim 5.22(3) and Definition 5.14. O

Claim 5.38. 1) If 7 is a partial homomorphism from pi1 to pa (see Definition
5.85(2)), then #t from clause (f) of 5.85 is well defined and 7 | Fp<10 is a par-
tial isomorphism from ({g, : y € ZP* X 2})ppp,) into ({y, : y € ZP2 X 2)pip,]
preserving “g € H”,“g ¢ H”; if w is onto Z®* then  is onto F3.

2) In Definition 5.35 and Clause (f) of 5.36, if 7w is one to one then wF is one to
one and also 7 is one to one.

Proof. Follows from clause (d) of 5.35(2) and 5.37. O

Claim 5.39. Assume that py is a k-parameter for £ < 3 and mp : Py — Pe+1 S a
partial homomorphism for £ = 0,1 and ™ = m o my : pg — P2- LThen 7w is a partial

homomorphism from pg into ps and # = 71 o 7tg (and 7+ =7 o).

Proof. Easy. O
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§ 5(E). §5 Inverse limits.

Definition 5.40. 1) We say s is a k-p.o.i.s. (partial order inverse system, and p.o.i.s.
means k-p.o.i.s. for some x) when:

(A) s =(J,p,7)

(B) J is a directed partial order of cardinality < x

(C) p=(pu:uecl)

(D) py is a k-parameter, I,, = IP+ is of cardinality < k and v <j v = YP» C

YPo A (ZPu\ YPu) C (ZPv \ YPv)

(E) T = (Typ:u<y0)

(F) each my, is a homomorphism from I, into I,, (so ZP+ C ZP+ and we pretend
that 7, [ ZPv = idgp,); see 5.35(6)) and m, , = id;, (so Dom(m, ) may
be a proper subset of I,,) and z € Dom(7m, ) = Aﬁ“(‘m) N ZPv = APv

(G) if ug <y w1 <y ug then Tyy uy = Tug,uy © Tuyus
(in particular the domains of the two sides are equal).

It follows that

(A) u <; v implies that H,, C Hp, and Fp<u0 - Fp<vO and Hp, = Hp, N Glfuo.
1A) Let s = (ngf)saﬁ's)vf)ﬁ = <pZ IS J5>,pi = (IZ7AZ’ZZ’Y£)7AZ = <A75,L,:13 :
x € X;’i>,7?5 = (my, tu <y ), J* = J[s],puls] = p5, [ = Lu[s] and F} = Fy g
and, of course, 7y, , = 7, (see Definition 5.36).
2) We define I't = I't[s] = Inv-lim,,(s), a partial order (easy to check) as follows:

(A) t € inv — lim,,(s) iff

() t has the form (¢, : u € J>,,) for some w € J where J>,, = {v €
J:w <;jv}and u € Jsy = t, € I,, and let wlt] = w, we may use
J>z = Jnin(y) = J even when .J has no minimal member

(B) if ur <j ug are in J>,, then my, 4, (tuy) = tu,

(B) for 5, € inv — lim,,(s) let § <7+ ¢ iff there is w € J such that w[s] <;
wAw[t] <jwA Vu)(w <ju= s, <y, tu)

(C) For §,t € inv — limy, (s) let § <;+ ¢ be defined similarly

3) Let I, = I[s] = inv — lim,,(s) be the partial order I/ ~ where = is the following
two place relation:
5 ~ t iff for some w € J we have

wls] <rwAw[t] <jwA (Vu)(u <jgu=> s, =ty)

clearly

(A) =~ is an equivalence relation on I+ and
B) seiANtxt = (§<;+t< 5 <+ t') and
(C) s<r+tand =(5~1) =5 <r+ 1.
3A) We define p = ps = p[s] = inv — limyy(s) as (I, A, Z,Y) where
(A) I =inv —limy(s)
(B) A= (As/n @ (3/ =) € inv — limg,(s)) and Az/x = U{As, 1u € JZw[g]}
(C) Z=U{ZP»:ue J}and Y =U{YP:u € J}.
4) We define 7% for u € I, a partial map from I = inv — lim,(s) to I, by 75 (¢/ =~
y=siff teIt,ue Jand (35)(S=tAs, =s).
5) We define Ff, a set and F, a group, (where F = Fp |4 is as defined in

5

Definition 5.9(1))

(A) Fif =inv — limg,(s) = inv — limg, (Fp., , Ty : u <j v)
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that is, GI is (just) the set of g of the form (g, : u € J>,) where w € J, g, € G,
and 7y, »(gy) = gu when w <ju <jv
(A) = is defined on F" as in part (3).
5A)
(A) the group Fs = inv — limg, (Fr,, Ty : w <j v) is defined parallely to part
(3), with co-ordinatewise multiplication
(B) 7 is the partial homomorphism from the group Fj (i.e., from a subgroup)
into F; defined by 77 (g) = g, when g~ g’ Au € J>[51-
So for g € F;" we have g = (gu : u € J>yg))-
6) Let H} be U{Hp, : u € J}.
7) We naturally define j = j; = j[s], an embedding of Fy[, into F; as follows:
(A) j(gy) = (gy, 1 u € Jxp)/ =ifv e Jyy € XI \ Xp, so it is the identity on

Hpyq) and even G;[g]

(B) if # € X let te(w) = (tru 2 v € J>u,,)/ =~ for £ =0,...,n(z) where
te € I, and let w € J be a common upper bound of {wi,0,..., w1 ne)}
and we let z,, = ((tr 2 € < n(x)),n) for u € J>y
then

3(92) = (9o, 1w € T>uw)/ ~.
8) We say that s is locally nice when for each w € J®, pg is nice and I[p{] is non-
trivial.
9) We say that s is nice if ps = inv — limgy(s) is nice and I[ps] is non-trivial.

Claim 5.41. 1) The inverse limits in 5.40 are well defined in particular:

(A) z]i 5t %252 where §¢ = <5ﬁ FUE T>y,) for £ =1,2 then u € Jsy, N J>yp, =
sL =82

(B) if we define t by J, = J U {s}, so

P, =p} ifueJ andis ps if u=s,I; = Iy
Ty, i T, ifvEJ
s if u € J® and

is idp, ifu=wveJ'\ J*

then
(@) tis ak-p.o.i.s.
(ﬂ) Hp[s] = U{Hp;[s] Tu e J}
2) The mapping js from Definition 5.40(7) is really a well defined embedding of the
group Gps) into the group Gs.
3) In part (2) if J° is Ny-directed then
(A) equality holds, that is js maps Fy[s) onto Fy

(B) A rkz(pu) < 00 = rkz(pﬁ) < 00.
u€J[s]

Proof. 1),2) Easy.

3) We leave clause (b) to the reader and prove clause (a). Let g € inv — limg,(s) so
G = (gu 1 u € J>yg). Now for each u € J>[5, 9. € F; and let n, = min{n : g,
is the product of n of the generators {g, : € X }} and let n;, = min{n : g is
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the product of n, of the generators from {g, : = € X;‘u,n}} where X;u,n ={z ¢
X rweXp, = |n(x)] <n}. Clearly:

(%) if u <o arein J>wp) then ny, < n, and n, = n, = nl <nl.

Case 1: for every n < w there is u € J>,[5 such that n, > n.

Let u(n) exemplify this. As J is Wj-directed there is v € J such that n <
w=u(n) <y u,s0u € Jsyg and £ < w = u(l) <ju =L < nyy < ny < w,
contradiction.

So assume that not case (1) hence for some u*, n(x)

()2 w* € Jand u € J>yr = U € Jxy[g) ANy = n(*).

Case 2: For every n < w, some v,u* < v € J hence n, = n(x) satisfies n}} >n. We
get a contradiction similar to Case 1. Case 3: Neither Case 1 nor Case 2.

Hence for some n(x) < w and n'(x) < w and u* € J we have u € Js,» =
U € Jsuig) Au = n(x) and nl, = n'(x). So for some v we have w[g] <; v and
(Vu)(v <j u = n, = n(x) and nl, = n'(x) Aw[g] < u). For each u € Js, let
Gu = Yzu, -+ Yoa, Where n = n(u) = n(x) and z,, € X:;nl(*) be as in 5.12
for some appropriate linear order <} of X, , recalling 5.12(4) and the generators
having order 2. We now define a set B!, C X;Z by induction on £ < n(x) x n(x). Let
B be {@y1,...,Tyn}. Let BET be BE U {yy : 2,42 € B, and gu9y,95 " = gy,
is one of the equations in I'p, }.

So |BY| < n(x)% and !

® if v <jur <y, up then {7y, u,(9e,, ) 1 €=1,...,n(x)} C Bxn()

[Why? By the proof of 5.12(1),(7) applied to <g7rffl,u2(wu2,z) l=1,...,n(x));
by the uniqueness from there, in the end of the process we necessarily get
(9zu, e £ =1,...,n(x)) in < n(x) x n(x) steps, each step being exchang-
ing two generators and in the /-th step before the end all the generators
appearing are from B N

Let m(x) = n(x)2"""". Let D be an ultrafilter on J such that u, € J = {u €
J :u, <ju} € D so we have {u: n, = n(x),n, = nl(x)} € D. For u € Js, let

u

(@} + 0 < m(x)) list B bogsibly with repetitions (we could have avoided

this). Without loss of generality x, , =  for £ =1,...,n(x). For each u € J>, we
can find n = n,, a function from {1,...,n(x)} into {0,1,...,m(x) — 1} such that
the set

Aup={w €J:u<;u and 1 <l <n(x) = 7t (20 ) = To )
belong to D. So for some n* and A € D we have u € A = v <; v and 0, = n* and

moreover, for some set S we have

u e A = S = {([1762,63) :gx"‘,l1gz“,£29;u17el = ga)u,fzg € Fpu
and £, 02,05 < m(x*)}.
Let u1y <j ug be from A so we can find ug € A,, N A,,. We know that ¢ €
{17 A 7”(*)} = ﬂ?;i,uzﬂ-;»z,u‘g (grug,f) = ﬂ-?jl,u:; (grug.é) SO ﬂ-?j:l,uz (IZ?Z)) = xzz[) NOW

let £y = (t} : u € J>y) be: t}f = Ty, (tu, 4+ (p)) for the D-majority of u; € J. So we
are done. d

Lalternatively let B, = {y € Xg,: for some (a,m) € (Z x 2) N {Zyu,1,--,Tu,m} we have
y € {(@,0),(a,1} or g € Xp,, and t¥ € {t%w:1,... TFun}
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To connect the x-p.o.i.s. to 7/ we need to know that Gpps is a k-automorphic
group.
Claim 5.42. Let s be a k-p.o.i.s. with Dom(ny, ) = Fj for v € J°. The group

F = F; is isomorphic to a k-automorphism group, i.e., the automorphism group of
some structure A of cardinality k.

Proof. So in Definition 5.40(5)
® for every g € F; thereis g’ = (g, : u € J) € F;" such that Js 51 = J = J°
and §’' =~ g.
Hence
(x) J = J® is a directed p.o. of cardinality < k, F, a group of cardinality
< Ky (Guy Ty @ u <y v) is an inversely directed system of groups with
inverse limit Gj.

As is well known there is 2 as required:
(A) the universe of A be U{A,, : v € J} where

A, =Gy x {u}

(B) the relations of 2 are
(o) for uy <g g,

R’L%,Ll,uz = {((glvul)v (927u2)) :ﬁ-ulyu2(92) =01 € Fun g2 € FUQ}

(B) forue JgeqG,
Ri[,g ={((g1,u1),(92,u1)) : 91,92 € Fu, Fuu = “g2 = g”}

We would like to relax the assumptions in 5.42.
Definition 5.43. 1) A partial inverse system of groups g = (G, Ty @ u <y
v from J) means:
(A) J is a directed partial order
(B) G, a group
(C) my,v is a partial homomorphism from G, to Gy, i.e. from a subgroup of G,
onto Gy
(D) if up <j w1 <j ug then my uy = Tug.uy © Tuy,ue (including the domain).
2) We say that g is smooth which means:
(A) for every v € J and z € X} there is u = uj(z) (necessarily unique) such
that:
() u<yw
(B) if w <j v then g € Dom(7;, ) < u < w.
3) We say that g is good when:
() Rang(r§ ) = Gy
(8) the normal subgroup of G, which {g € Dom(my ) : mun(g) = eg, } gener-
ates is disjoint to {g € Dom(7y, v) : Ty v(g) # eq, } Whenever u <;j v.
4) Let inv-lim(g) be the usual inverse limit (i.e., using only members of the form
(gu * u € J)) and let Inv-limg (g) and inv-limg(g) be defined as in Definition
5.40(5),(5A) respectively, and 78 are the mapping from it into GS.
5) We say that a k-p.o.i.s. is smooth [or good] when the partial inverse system
(Ghs T 1 U <Jp) v) is smooth [or good].



Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.

THE HEIGHT OF THE AUTOMORPHISM TOWER OF A GROUP 61

Observation 5.44. 1) If g is a partial inverse system of groups then ug <j uy <;
ug = Dom(myy u,) C Dom(my, uy)-

2) If we J and ((vy, gu) : u € J>u) satisfy the statement (x) below then for some
Uy € > we have u € J>,, = g, € Dom(my, v, ), where

(%) (1) u€ Jsw=>u<yvuNgy €GY,
(@) if w <jur <y ug then Ty u, (Guy) = Tow,, (Gu,) are well defined for

some v which satisfies u1 <jv <j vy, AV < Uy,

Proof. 1) So let ug <j w1 <;j uz hence Ty, .y, = Tyguy © Tus,u, Dy clause (d) of
Definition ??(2), hence Dom(7y,,u,) € Dom(my, v, )-

2) Let uy € Jsy and if v,, fails the demand on u, then there is ug such that
Vuy <J U2A\Gu, & Dom(my,,,, ). Let v be as guaranteed in cluase (ii) of (*) so u; <
v < Vuy AV g Uy, and Ty, (guy) = To,00, (gu, ). Hence gy, € Dom(wvmuz) and
up <jv <y vy, <jug <Jj vy,, S0 by part (1) we have Dom(mmuz) C Dom(ﬂ'ubvw)
hence g,, € Dom(my, v, ), contradiction to the choice of us. O

Claim 5.45. If J is an Nq-directed partial order, § = (Gy, Ty @ v <j v) is a

smooth good partial inverse system of groups and > |Gy| < k then inv-Lim(g) is
ucJ
a Kk-automorphism group.

Proof. For u € J let Sy, be {(v,g9):u<jvand g€ G¥} sou<;v=.25,CS,.
We define an inverse group system h = (G}, 7)) , : u < v) as follows:
(A) Gl = G,[b] is the group generated by S8 := {z(,4) : (v,g) € S8} freely
(as different members can become equal we should pedantically denote by
ZE vg) € GY its image but we are not so careful) except the equations in
I', =T'8, which consists of:
o) z =z if for some v,u <; v,v <y vi,v <y vg and
(@) 2(ig1) = Z0,02) , : :
Tr'g,vl (gl) = ﬂ-g,vg (92)
(B) Z(ur,g1) -+ Zlunogn) = € if 1 < w,(ug,g¢) € S for £ = 1,...,n
and for some v, (V/)[u < v < w] and letting g; = 7§, (g¢) we have
GIFE“91-.-9n =ea,lg)”
(B) if u <; v then ], : S — S% is defined as follows:
(v) if (w,g) € S? (hence (w,g) € S%) then 71'271)(2(11,’9)) = Z(w,g)-
Now we investigate this object

(A) if u <j v then «)) , can be extended to one and only one homomorphism

U
called 7, , from GY into GY.
[Why? As {z(w,q) : (w,g) € Sy} generates G, and S§ C S§ clearly there is at most
one such mapping 7%2’”, but to show that it is a well defined homomorphism from
the group GY into the group GV it suffices to show clause (d) below]
(A) Wgﬂ) maps every equation in I'? to an equation from T'Y.

[Why clause (d) holds? First we deal with “z(y, g,) = Z(ws,g.)” € T'v as in ()
of clause (a), so the same w which witnesses the membership in I, witnesses its
membership in I',. Second we deal with “z(y, ) - Z(u,,g,) = €, as in clause (53)
so by clause («), without loss of generality uy = w for £ =1,...,n so (w,ge) € S?
and Gy, = “g1...gn = €”, again the same equation appears in () for u.]
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(A) for ug <; uy <y up we have 7}, == , oxd . hence#)) ., = ., o
b
Ty ug

[Why? Check the definition of GY) and 7} ]
(A) Ro+ 3 |Gl =Ro + X |G
ueJ u€J
[Why? Check by (h) below the > holds and directly < holds.]

(A) inv-lim(h) = inv — limg, (h), see Definition ?77(4).
[Why? As Dom(w)) ,) = G) when u <; v.]
(A) the mapping j, : G& — GY defined by g — 2(,4) from GY to G is an
embedding
[Why? It is a homomorphism as G = “919293 = eq, [g)” implies that “2(y. g,)2(u,g2) 2(u,gs) =
e’ € I'S. For proving it an embedding, by the local character it is enough to con-
sider the case J is finite, in this case “directed” means “having a member which
is < -above any other”. Call it v, - now by clause («) of Definition ??(3), as
g is assumed to be good the set {z(,, 4 : g € G§ } generates G}, and with-
out loss of generality we can replace S§ by S5. for v € J, ie., Si. C S% and
(Vs1 € S8)(Js2 € S%)[gs, = gs, € T'y]. In addition the v mentioned in clause ()
and the v mentioned in clause (8) of the definition of T, (see clause (a)) can be
chosen as u, hence without loss of generality J = {u,v.}. By clause (8) of the
definition of “good” and the theory of free amalgamation of two groups, (that is
after we divide G§_ by the normal subgroup which Ker(m, ., ) generates) extending
a third one we are done.]
(A) j= (ju:u € J) embed g into b, i.e.,
(a) ju € Hom(GS,Gh)
(B) u<jv=juond,=m,0J
[Why? Check.]
So
(A) j induces an embedding j of inv-limg,(g) into inv-limg, () = inv — lim(h) so
we J = juoml=moj
[note that if g € inv —limg, (g) then a = (g, : u € J>y)/ =~ where
(gu : U € J>y) for each v € J we can choose u, € J>, such that v <; u,
and let g}, = (v, g, ) € G (really oy gu,)) a0d j(a) = (g, 1 u € J)/ =]
(B) for every y € GY there is (v, g) such that
(a) (v,9) € S8
(B) GoE“y=23ug"
(v) if v # u then g ¢ Dom(7my, ).

[Why? y can be presented as a product z(y, y,),-- -5 Z(v,.y,) Where (ve,ye) € S
(for £ = 1,...,n) noting that GY = “z(jjyé) = z(v,yl;l)”. Let w € J be such that
u <y wand € {l,...,n} = v, <; w. By clause («) of the definition ?7?(3)

of “g is good” there are g, € G, such that my, .,(g;) = g¢ for £ =1,...,n. So
G) F “Zvg) = Z(w.gy)” S0 y is the product of (Z(w,ge) + £ = 1,...,n) hence is
Z(w,q) Where G8 = “g =gy ...g,”. If g € Dom(my,,) then use (u, Ty .(g)) and if
g ¢ Dom(my, ) uses (w,g).]

(1) j is onto inv-lim(h).
[Why? Now let § = (y, : u € J) € inv—1lim(h), and we should prove that
7 € Rang(j), by clauses (h) + (i) above equivalently we should prove that for some
ux € J we have: u, <j,u € J = y, € Rang(j,). For each u € J we can find a pair
(Vu, gu) € S and G k= “2(y, 4.) = yu” and it is as in clause (k).

Let w € J, 80 {((Vy, gu) : U € J>y) is as in (x) of 5.44.
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[Why? Clause (i) of (*) there holds, as u <; v, and (vu,gu) € S§, (by (@) of
(k)) and the definition of Sg. The main point is, assuming w <j uy <;j ug to prove
that there is v such that u <j; v <j vy, AV <J Uy, A (mwu1 (gul),ﬂ'm)u2 (gu,) are
well defined and equal). By clause (b) of Definition 5.40, J is directed hence there
is v* € J such that v,, <;v*Nuv,, <; v*. By clause («) of Definition 5.43(3), there
are g7, gs from G,- such that T, e (97) = gu, and Wvul’v*(gg) = Gu,- S0 G22 E
“Z(v*7g§) = Z(vuy,92) hence as § € inv-lim(h) we get G21 E “Z(U*yg;) = Z(vu17g1)”'
As g is smooth (see Definition ??(2)) there is v € J as required there for (v*, g3).
It is also as required in ?7?(3)(8)(x)(i7).]

Hence by the conclusion of 5.44(2) when applied to ((vy, gu) : ¥ € J>u) We get
that for some u, € J>,, we have u € J>,, = g, € Dom(n} ) hence by () of clause
(k) we have v,, = u. This is enough for clause (¢)

(m) lim-inv(g) is a k-automorphism group.

[Why? By clauses (f) + (j) + (1) this group is inv-lim(t) which (see the proof of
5.42) is a k-automorphism.] O

Claim 5.46. If s is a smooth k-p.o.i.s. (see Definition 77 (2),(5)) and s is good (see
Definition ?7?(3),(5)), then Gs is isomorphic to a k-automorphism group.

Proof. By 77. O

Conclusion 5.47. If s is a smooth good nice k-p.o.i.s with Ry-directed J* recalling
Gs = inv — lim(G%, myp : u <js v) we have
(A) there is a structure A of cardinality k and a (< k)-element subgroup Hg of
the automorphism group Aut(A) = G such that 7, ;, the normalizer-depth
of H in Gy is tk<>°(I*)
(B) there is a group G’ of cardinality k such that its automorphism tower height,
T 1s Tk (1)
(C) 724w > rilg > 1|k <>°([*)

Proof. By 5.41(1), js is an embedding of Gy, into G, and by 5.41(3) it is onto.
By ?? there is a structure 2 of cardinality x such that Aut(2(), the automorphism

group of 2, is isomorphic to G hence by the previous sentence to Gys. By 5.16(4)

we have Tglpg[s],Hp[s] =1k~>(I;) and Hpg is a subgroup of Gps) with < k elements

hence we have 728 > 1k<*°(I,) (recalling Definition 0.4(3)) hence by 0.6 we get
also 72 > 7018 > pk<([).
Us.a7 O

Claim 5.48. If k = kX0 then
(A) there is a good smooth nice k-p.o.i.s. s with tk<>°(I,) > kT hence
(B) 7AW > T,?lg > kT,

Proof. Clause (b) follows from clause (a) by 5.47. For proving clause (a), for each
u € [K]=%0 we define the partial order (I,,<;,) as follows (the n is to enable us to
quote §1, i.e., to simplify §1)

®; for u € [k|<" we define I,, by
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(i) I, = {t: t is a triple (<, a’, ") such that <, is a well ordering of u and o' €
wand ' < K}
(ZZ) t1 <p, t2 iff <, =<t and aft <, at?,
For u C v € [k]=N0 let Tuw : Ly — I, be defined as follows: m,,(t2) = t1 iff
(<t, =<, u) and o't = a2 and et = ’2. Foru C s let W, = {(0,1,&) : 0 € Oy
and v € 12 for some n and & is a finite sequence of ordinals € u of length
Lg(o)[[second nec.22]]} and £ = {h : h is a function from some finite subset of
W into {0,1}}. Clearly |W, | = |7 = |u| + Xo when u # &. Let ¢ be a
one-to-one function from JZ* onto k.
Let (f. : € < k) be a sequence of functions from x to {0,1} such that for every
finite function f from x to {0,1}, for x ordinals £ the function f. extends f.
Let (h. : € < k) be such that h. is the unique member of £ such that c(h) = .
Let J be {u: u C k is countable infinite such that w C u and u is closed under
c, ie., if h € S then c(h) € u} ordered by C; clearly J is a cofinal subset of
([£]=%, ©). )
For u € J we define p,, = (I, <u), Au, Zu, Ys) as follows
®3 (a) (I, <y) is as defined above

(b) A, =(A":z€1,)

where

(¢) AY¥ ={( € u: some y is a witness for (z,h)} U{¢ < k: no y witness
(z,¢) and f.ue (¢) = 1}, [[second, necessary?]]

where: y witness (z, () means that y = (o,v,¢) € Dom(h) and

1 = h¢(y) and x satisfies y which means that £g(¢) = n(z) + 1,
v =n%4g(0) = n(z) + 1 and for each £ < n(x) we have

o(0) = @ and ¢, = t(®)

(e) Y, ={c(h):h e Dom(c) and for some y € Dom(h) we have 1 = h(y)
and y = (o,v,m) € Dom(h) satisfying Rang(v) Z {1} V o(¢g(0)—

1) = 0}
@4 for u <; v we define m,, as follows: m, ,(t2) = to iff (t1 € I, t2 € I, and)
<t,=<g, | v and et = &' so Dom(m, ,) = {t2 € I, : a'* € v}.
Now
Ky s =:(J,(pu:u€J),(Tyy:u<;yv))isak-p.o.ls.
[Why? Check.]
Xy if uw <; v then m,, is a strict homomorphism from Dom(m, ,) C I, onto I,
[Why? Check.]
X3 s is smooth
[Why? See Definition ??(2), solet v € I and g € G, be given so let G, =
“g = Ggy -9z, where x1,...,2, € X;r[v]. Let T = {trt : L € {1,...,n}
and m < n(xy)}, this is a finite subset of I,, and let w = the closure under
cof {0} U{al:teT}. It is as required.]
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X, s is nice (see Definition ??(3) + 5.40(8))
[Why? We should check Definition ?7?(3), clause (a)-(c), for p* = ps.
The partial order I is non-trivial:
This is because by ?7?(3) as it is explicitly non-trivial (by the third coordinate
in members of I,,). Clause (a) of Definition ?7?(3): ps is a k-parameter:

Why? By K. Clause (b) of Definition ?7(3):

Assume z € X and rkf)(x) = 0 and we have to prove that Ag[s] CY. As
rki(x) = 0, one of the following cases occurs: 0 € Rang(n®) or rkjp(t(z)) = 0
which means that —(3s)(s <jip t(z)). In the first case the inclusion holds by
the definition of Y. In the second case we use our demand v € J = 0 € u, to
show: letting t,(z) = (t!, : u € J>u,)/ =, for £ < n(z), without loss of gen-
erality wy = w and so w <; v1 <; u = (@) = 0) = (@t = 0)) =
(ckppy (857)) = 0) = ((tkypy (£21)) = 0) hence kg (H(z)) = 0 & (Vu)(w <; u =
k() (tu™) = 0) hence rkp(2) =0 = (Vu)(w <j u= APL  CYPu)= AR CY.

s (2)
Clause (c) of Definition ??(3):

If kK < wand zop,...,2r € Xp are with no repetitions and rki(xg) > 0 then
Agy CU{A,, :=1,...,k}UY.
Easy by our choices.]
X5
[Why? In Definition ??(4) we have to check clauses (d),(e). We use here
the freedom in choosing £*) and &* for (d),(e) respectively. DETAILS?]
Kg s is good (see Definition ?7(3),(5))
[Why? Clause («) of the definition of good holds by K.
Assume that ((vy, gu) :
u € J>y) is as there. We choose u,, € J>,, by induction on n such that
Uy, C Upy1 (hence u, C upq1) and gy,,, ¢ Dom(ﬂ'inﬂﬂ,unﬂ) and let
uy, = U{un : n < w}. Now for each n as 73, (9u.) = 75, u,sy (Gun)
we have 75, (gu,,) is well defined. So gy, € ([{Dom(ry, ., ):n <w}
but easily this is equal to Dom(wimvuw) but this implies that for some
n<w,m € [n,w) = v, = Unp, contradiction.
Lastly, Clause (3) of the Definition of good holds by ?7?.]
How does the partial order I, = inv — lim(s) look like? essentially as the disjoint
sum of the well orders of k. So any ordinal « € [k,xT) occurs as order type so
tk<>(I) = kt. O

Remark 5.49. Of course, we can replace k¥ by some higher ordinals < «™T; the
family of such ordinals is closed, e.g., under products and under sums of < k
ordinals; but of doubtful interest.

§ 6. LESS GOOD INVERSE LIMITS

We may think of the partial order ( [T f(«), <J§:d), where f: 6 — Ord.
a<f
It is close to being the inverse limit of the (I, = (f(a),<) : a < 0) but only

“in the long run (in #)”. To deal with this we deal with the case the m, ,-s are
not strict homomorphisms (i.e., preserving <), but the order on the inverse limit is
determined by what occurs “late enough”. We use this to prove that 7, > 2" for
many cardinals  (e.g. any strong limit singular k).
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We get here a better lower bound to 7.

For this we have to redo §1 4 §2 with various changes, in particular slightly
changing the definition of X7, X;,. We formulate our main result and then state
the changes in the earlier definitions, claims and proofs.

Claim 6.1. Assume
(A) Rg <0 =cf(d) <k
(B) To. € %k for a < 8 has cardinality < k
(C) F=T.={f€%: flacT, for every a < 6}
(D) v = rk(F, <Jgd), necessarily < oo so < (k%)7.
Then

(a) there is a good smooth very nice K-p.o.w.i.s. s (see Definition 6.10 below)
with vk(Is) = 7 (see Definition 6.10(1))
(B) in (a),Gpls) is a k-automorphism group with the subgroup Hpyg),

element subgroup, satisfying Tévp[s = v and noréz?f](Hp[s])

a K-
1 Hp(s) Gplsl

(V) T =T, >

Below we redefine p < q

Definition 6.2. 1) 7 is a partial function from the k-parameter ps to the k-parameter
p: if:

(A) = is a function

(B) Dom(rw) C IP2 U ZP2

(C) 7 maps IP2 N Dom(x) into IP?

(D) 7 maps YP2 N Dom(n) into YP!

(E) m maps ZP2\ YP2 into ZP* \ YP1.
2) For k-parameters p,q let p < q mean that idx_ Uidze is a partial mapping from
p to q.
3) If Dom(w) C IP2 we use 7 for m Uidze: (so we assume ZP* C ZP2 and YP! =
YP2n ZP1),

Remark 6.3. 1) We are mainly interested in cases then in that rky (t) =n <w =
K yp, (7(1)) = .

Definition 6.4. [Replacing Definition 5.35] 1) If 7 is a partial function from a partial
order I into a partial order I1, we define the mapping 7+ (really 7T}’_1, 12) as follows:
(A) 7T is a partial mapping from X7, into X7, (note that even if Dom(r) = I,
still Dom(7 1) may be a proper subset of Xy,)
(B) for x € Xy,
(o) € Dom(nt) iff # € Xp,,{to(x),...,tn)(x)} S Dom(m)

and ({(m(to(), ..., 7(tnm)(z))),n") belongs to Xy,
(8) () = (w(to(@). ... 7(tuga) (). 77)
1A) We say that 7 is a partial mapping from ps into p, if
(a) — (e) is as in Definition 77

(A) if z € Dom(7) then « € Dom(7w) N ZP? = a € AP? & 71(a) € Agi(z).
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2) For 7 a partial mapping from ps to p; (both are k-parameters) we define
(A) 7t or really 7}, , is the following function
(a) 7t is a partial mapping from X7 to X1
(b) for x € Xp, we behave as in (b) of part (1) (so z € Xp,, 7" (x) €
sz)

(¢) if a € ZP2,m < 2 then: 7+ ((a,m)) is well defined iff a € Dom(r)
and then its value is (7(a), m)

(B) 7 or really 7p, p, is the partial homomorphism from F into F with
domain the subgroup of Fjj, generated by {g, : # € Dom(7*)} mapping g,
t0 grt(a) € Fp,; see justification below.

Remark 6.5. Note that the parts of Definition 6.20 (and claim 6.7) while not actually
used, they serve as a warm-up for their variants which will be used. The difference is
in 6.10(2), the motivation is, at least, in the case J is linear to have commutations.

Claim 6.6. In Definition 6.20(2), if w is a partial mapping from py to po then:
(A) 7% is a well defined partial mapping from X} into X7,
(B) if 7t (x1) = xo then (z1 € Xp, & x2 € Xp,) and (z1 € X}, \ Xp,) &
(z2 € X;‘Q \ Xp,)-

Proof. Check. O

Claim 6.7. 1) In Definition 6.20(1), 7™ = 7} , and in Definition 6.20(2), 7
1,42 P1,P2

and 7p, p, are well defined, in particular, 7 is really a partial homomorphism from

Ef into Fj, . (Compare with ?7)

2) If I, I, Is are partial orders and m; is a partial mapping from Iy q into I, for

(=1,2 and T = maom then ™ D om.

3) If p1,p2, P3 are parameters and 7 is a partial isomorphism from pey1 into py

_ _ + + + A — A A
fort=1,2 andm = maomy thenmy . D7y o oMy o and Tp, py = Tp, ps Ofpy ps-

Remark 6.8. 1) In 6.7(2) possibly 7t D 73 o7l and 7 = 73 o 71 even when 7y is
one to one from Iy onto Ipy; for £ =1,2.

2) If 7, + Pe = Pm for ({,m) € {(1,2),(1,3),(2,4),(3,4)} and the diagram
commute, this does not necessarily hold for the 7, ,)-s.

Proof. 1) The main point is why mp, p, is a homomorphism.
Let Z; = Dom(w | ZP'),Zy = Rang(w | ZP'),X; = Dom(s" | Xp,) and
X5 = Rang(nt | Xp,), so clearly for £ =1,2
(*)¢ (a) ifx,y€ X, * =1 and z € X’ then y € X,
(b) ifzxeXyandn <n(z)thenz |[neX,
hence

[ (a)  if 929y,9; " = gy, is one of the equations of '}, then

y1 € Xp & y2 € Xy
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(b) Gop,.x,,2z, is a subgroup of F},, generated by

{9y :y € X¢eU(Zy x 2)} freely except the equations from UL x,.2,

® (a) m [ X1 is a mapping from X; onto Xo
(b) w | Zy is a mapping from Z; onto Z,
(c) mmaps the set of equations I';, v » onto the set of equations I';,, v, 7.

Hence 7p, p, is a well defined homomorphism from Fp, x,,z, onto Fp, x,,z, as
required.
2),3) Check. Oe.7 u

Remark 6.9. Below we are mainly interested in the case J is linear.

Definition 6.10. 1) s is a x-p.o.w.i.s. (partial order weak inverse system) when: in
Definition 5.40 we replace (f) by (f)’ below, i.e., (retaining clauses (a)-(e) and (g))

(A) s=(J,p,T)so J=J=Js],p=p°, 7 =7"°

(B) J is a directed partial order of cardinality < x
(C) p=(pu:uel)
(D) p. is a k-parameter, I,, = IP is a partial order of cardinality < k and let
I =IPu X5 = Xps, 2y = ZPu
(E) T = (Typ:u<y0)
I

(f) my is a partial mapping from I, into I,, (so we assume u <; v = ZP» C
ZPv and use idzpu U 7y )
(F) if u <j v <jwthen my . = My 0 Ty (may use C).
2) In Definition 6.10(1) we define 7}, = 7,7 (when u <[5 v) not by the general
definition of 6.20 but as follows:

(A) m}, is a partial mapping from X7 into X

u,v

(B) for z € X,
() x € Dom(m,,) iff: for every w satisfying u <) w <[5 v and

¢ < n(x) we have

(w0 (ter1(2)) <1, Tw o (te(2))]

(B) miw(@) = (Tuw(to(@), - Tuw(ta@) (@), 0")
3) If u <[5 v, then 7, , = 7 , is the partial homomorphism from Fy,, into Fp,
with domain the subgroup of F“‘2 generated by {g, : z € Dom(w;} )} mapping g,
t0 9.+ () € Fpy; see justification below.
4) We say s is linear if J* is a linear (= total) order.
5) We say s is nice when every p? is nice.

Claim 6.11. Ifs is a k-p.o.w.i.s and J° = “v < u < w” then
(A) 75, are well defined (homomorphisms)
(B) mf , Cmh omt, and fyy C Twu © Tuw

(C) if J* is a lmear order then in clause (b) we get equalities.
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Proof. Clause (a): Similar to 5.42(2); it is enough to prove this for 7, for this it
suffices to show that @ maps the equations in F}'l into F}Z and this is proved as in
the proof of clause (A) in the proof of 5.42(2).

Clause (b): Easy.

Clause (c): Easy, in fact we have chosen Definition 6.10(2)(b) such that those
equalities will hold. O

We now repeat Definition 5.40(1A)-(7).

Definition 6.12. Let s be a k-p.o.w.i.s.
1) Let s = (J*,p*,7°),p* = (P}, t w € J®),7° = (my, 1 u <y v),J° = Js), Iz =
I[p;] and F} = Fps.
2) We define It = I't[s] = inv — lim,,(s), a partial order (easy to check) as follows:
(A) t €inv — lim,(s) iff
() t has the form (t, : u € J>,,) for some w € J where J>,, = {v €
J:w<jv}and u € J>y = t, € I, and let wlt] =w
(B) if ur <j ug are in Jx,, then my, u, (ty,) = tu,
(B) for ¢,5 € inv — lim,,(s) let § <y+ ¢ iff there is w € J such that w[s] <;
wAw[t] <jwA Yu)(w <y u= s, <q, tu)
3) Let I = I, = I[s] = inv — lim,(s) be I/ ~ where = is the following two place
relation on It : 5= ¢ iff for some w € J we have

w[s] <rwAwlt] <gwA (Vu)(u <ju= s, =ty)

clearly s Nt =2t = (5<+ t o § <+ ') and 5 <;+ tand (S = t) = 5 <+ L.
3A) We define p = p[s] = inv — lim(s) in (p, A, Z,Y) where

(A) I =inv — lim,(s)

(B) A= (A5~ :5/~) belongs to inv-lime,(s)) and Ag/~ = U{A,, : u € w[s]}

(C) Z=U{ZP+:ue J}and Y = U{YP+:u € J}.
4) We define 7%, for u € I, a partial map from I = inv — lim,(s) to I,, by my s(t/ ~
y=3/~iffte It ,ue Jand (35) (S~ tAs, =s);it is well defined.
5) We define F.", a set and Fy, a group, (where F? = F, [s] is as defined in
Definition 5.9(1)) 2

(A) Ff =inv — limg, (Fp,, Tyt u <jvin J)
that is, ;" is (just) the set of g of the form (g, : u € J>,,) such that w € J, g, € F,
and 7y »(gy) = gu when w < u <j v

(A) = is defined on F; as in part (3)

(B) Fs = inv — limg, (Fp,,, Tu,w : u <j v in J) is the inverse limit of the groups

defined similarly,
(C) 72 is the partial homomorphism from the group Fs (i.e., from a subgroup)
into F] defined by 73 (g) = g, if g = g’ ANu € J>y[g-

So for g € F;" we have g = (gu : u € J>yg))-
6) Let H} be U{Hp, : u € I}.
7) We naturally define j = j; = j[s], an embedding of Fy[, into F; as follows:

(A) j(gy) =(gy:ued>v)/=ifvedy GX;FU \ Xp,

2by this definition there may be no maximal member in ¢/ =, but any two members are
compatible functions, so if we replace J>,, by upward closed non-empty sets we have a maximal

member
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(B) if z € ZPB) let ty(x) = (tgu : u € J>u,,)/ ~ for £ = 0,...,n(z) where

ten € I, and let w € J be a common upper bound of {wy,0, ..., w1 )} U
{wa,1,. .., wan} and we let zy, = ((teu : £ < n(*)),n") for u € J>y
then

3(92) = (gu, 10 € Jow)/ ~ .

Claim 6.13. 1) Those inverse limits are well defined, in particular: if we define t
by Jo = JU{s}, (so I\ = I ifu € J and is I, if u=s; 7, is 7, , ifv € J and
i Tus if u € J® and isidy, if u=wv € J'\ J°) then

() tis a p.ow.is

(8) Hp[g] = U{Hpu[s] Tu € J}
2) The mapping js from Definition 6.12(7) is really a well defined embedding of the
group Fp) into the group Fs.
3) In part (2) if J; is Ny-directed then

(A) equality holds, that is js maps Gps) onto G

(B) A rk(I,) < oo = rk(ls) < o0, ete.
ueJ

Proof. 1),2) Easy.
3) As in 5.41(3).
[Saharon: recheck for the non-linear case!! Oe.13 O

Claim 6.14. Assume
(A) Rg <O =cf(f) <k
(B) To € %k for a < 8 has cardinality < k
(C) F={fe% : flacT, fora<b}
(D) v =1k(F, <jpa), necessarily < oo so < (k).

Then 72 > r8le > 70lf 5 o (on 701F see below).

Where

Definition 6.15. 72 is the least ordinal 7 such that 7 > TglfH wherever G =
Aut(20), A a structure of cardinality < k, H a subgroup of G of cardinality < s and
norg™(H) = G.

Proof. We define s = (J,p, ) as follows:
(A) J=(6;<)
(B) I, = (Ta+1, <a+1) for a < 6 where
f1 <av1 f2 & fila) < fo(a)

(C) fora< B <Olet mop:Ig— I, be
Tap(f) = f 1 (a+1).

Now
(¥)1 §is a k-p.o.w.i.s.

(%)2 s is linear and very nice

[Why? As in the proof of 5.48.]
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()3 s is good
[Why? Assume o < 6 and « € Y7_. Let 5 < a be minimal such that
(te(z) | B : € < n(x)) are pairwise distinct s¢(x) [ 8 & {tm(z) | B:m < £}
for £ € {1,...,n(z)}. Now f is well defined (as § = « is O.K. by the
definition of z € Y and J is well ordered. Also 8 £ 0 (as{f [0: f € Toy1}
is a singleton (as n(z) > 0 is assumed). Lastly, 8 cannot be a limit ordinal
50 ' = f— 1,y = ((te(z) 1 8: €< n(@)), 50(2) [ B:1 < € < n(x))) are as
required. ]
(*)a Is is (isomorphic to) (F, < jva)
[Why? This is how we define I, (note the difference compared to §1.]
(¥)5 Fs is isomorphic to Fig
[Why? By 6.13(3).]
(*)6 Fr[s) is a k-automorphism group
[Why? By 5.45.]
Recalling §1, together clauses (), (8), (v) of 6.1 holds so we are done. O

Conclusion 6.16. 1) If k is strong limit singular of uncountable cofinality, then
Tatw > pilg > pulf 5 98 (on 70 see Definition 6.15).
2) If 2% < 29 < g = k<9 < kY then 721 > K.

K

Proof. 6.16 Let 6 = cf(k).
By [Shear, I1,5.4,VIIL,§1] for every regular A < 2" there is an increasing sequence

(A; 1 < 0) of regular cardinals < x with (] A, <jpa) having true cofinality A.
<K
Clearly for any such (\; : i < ) we can find f, € [] A for a < 2 such that
i<0
a< fB= fa <gpa f3. Now we can prove by induction on « then rky(f,) > a where
I= (.7:,<J‘g>d). Now F as in 6.1 and we know f € F = rk;(f) < oo, so we are

done. DG.lG O

§ 6(A). §5 Alternative presentation of §3,§4. We try to give the shortest way:
from §2,§3,84 we use only 5.20, 5.21,5.22. (5.1) Definition ??,pg.35 [natural but not

used: Definition 6.20, Claim 6.6, Claim 6.7 (5.2) Definition 6.10 x-p.o.w.i.s.,pg.37
(5.3) Claim ??,pg.38 [clause (a) fill proof]
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§ 6(B). Private Appendix
§5. A different way to represent §1 is

Definition 6.17. 1) We say Y C Y7 is closed when: if € Y and m < n(z) then
(<t0(1’), tl(x)a s atmfl(‘r)’ tm(‘r»v <81(.’E), AR Smfl(x)a Sm(x» and

({to(x), t1(x), ..« tm—1(x), Sm(x)), (s1(x), ..., Sm—1(x),tm(x)) belongs to Y.

2) G% is the subgroup of X generated by {g, : * € Y}.

Claim 6.18. 1) If y C Xy is finite then there is a finite closed y* DY

2) If y C X is closed and <* is a linear order of X1+ as in 5.12 and g € G5, then
we can findn and x1 <* ... <* x, from'Y such that g = gy, ... g, (hence G} has
<21 elements).

Moved from §1, Feb 2004:

Definition 6.19. 1) Let Y7 = X; U K}', we are assuming X; N Ky =@ = 0.
1A) V5% = XFYU K, Y% = XU (X x KJ).
2) Gy is the group generated by {g, : © € Y} freely except the equations in Ap,
where A; is defined below.
2A) Gg“ is the group generated by {g. : = € nga} freely except the equations in
AISQ where AISO‘ is defined below; similarly G7, AT?.
3) Ar = AISOO where AISO‘ is the set of the following equations
(A) frl=g,forzey;
(B) 929y = gyga for
(i) »y€ Xy, @ g,y, @y o OF
(ZZ) X,y € Y[\X[
(C) 929,95 " = gy if 7, 9192 € X1 are as in (c) of 5.8(2)
(D) 9294,9: " = gy, if v € X7 and y1,y2 € Ky and K7 | “y19, = 927
Now we first analyze the group Kj.
4) For y € Y7 define rk,(y) as in Definition ?7 if y € X, and as —1 otherwise (e.g.,
y € Ky).
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§ 6(C). Private Appendix. What about s with J° not Wj-directed? Even if
every I® is well founded the inverse limit to be well founded. Still we can have large
rk(I), but the group we get G5 may be “bigger” than G, see 5.40(7). However,
we shall show that they are similar enough.

Claim 6.20. [?] Assume s is a k-p.o.i.s so (Gis), Hyjg)), (Gs, Hs) are well defined
as well as the natural embedding j° = j[s] from Gs into G mapping Hs onto
Hysy (see 77)

(A) for every ordinal o, j* maps nor¢, (Hs) onto noraGI[E] (Hrs))

(B) the normatizer length of Hs in Gs is equal to tk<>°(I5).
Proof. FILL! O

Conclusion 6.21. 1) For every k there is a structure A of cardinality k such that for
some two element subgroups H of Aut(2') has normalizer length > k™ in Aut(2l).
27

Remark 6.22. Of course, we can get length somewhat > k.

Moved 2003/7 from the proof of 5.41: Let
Bl =X n{zyua,... s Tuon(u) ) @ finite subset of X7

B2 = {y for some x € B} and m < n(x)we have
y = ({to(x),t1(z), ..., tm(x)), (s1(x),...,sm(x))) or
g = ({tol@), (), st (@), 5 (2, (512, - 51 (), tn()))}
again a finite subset of X7.
Let B3 = {y € Xy : for some ¢ € {1,...,n(u)} we havey € z,, € X; \X;}UBZ.
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§ 6(D). Private Appendix 2. Assignments: 1) (2002/9/15) - get 2 such that
Aug(2) = G, for §3 for k-p.o.w.is. s, [seem O.K|]

2) Complete 6.7 [details]

3) Try Con(ry, > 2%0 > W) start with ¥}-pre-relation with high length.

4) (2002/9/16)- about the normalizer problem for, e.g., x = 3, try to say deter-
minacy by clubs of X € [P(x)|Y, “X N Wy € S” is undetermined. So is there a
phrase modulo then?

5) (2002/9/28) - can we directly get G = inv — lim(Gy,, Ty : u <j v) is k-aut?
Moved from §0,p.2: [Filll we can show d(k) < 77 But 7, < §(k)? Question: A

connection between 74 when norgy (H) = G and auto tower. Moved from Definition 6.34(3), clause (B):

(A) if u <j v we define fav My — M, as follows
fuw(z) =2 if:

() 7t (z%) = 2%

U,v

(8) one of the following occurs
(i

i) n(2') =n(z) and £ < n(z) = (uf, ) = (uf ,x7 ) and

o (2 ) = @5 and (Vo) (u <y w <5 v =

n(z

7T’l—1~;,v(x:7,l(z’)) € Xy,
(i) ot (i) and n(z') = n(z) + 1,7} (%) = z* and

s Nuv

u <y ufll(z) <J “'Z(z)’xf;(z) =" (@52))

’
z z
un(z)7un(z)

Moved from Claim 6.35: Definition 6.31(4), clause (g)(a)(it) we add
<

e and for no v; <; do we have r(z) < vy and (Yw)[vy <j v = Ty o(z) € X1).

Moved from pg.17:

Claim 6.23. Assume 5 is a k-p.0.w.i.s. Then (+Gu, Ty @ uw <j v) is an inverse
system of groups (so with .m, ., a homomorphism from .G, into .G, ) with inverse
limit «Gs very similar to Gs, in particular for some 2-element subgroup H such
that T*/GSMHS = Tésst and nor®g (+Hs) = .Gs & norgy. (Hs) = Gs.
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§ 6(E). §k. Juris note: 1) Some points as in Tuesday notes:

lim sup norm

==

cs product of forks and though they look just for the future not a necessity

no bigness (which is a remnant) of ideal

Eie

we use in the i-th norm that we use first €;_; then ;_o, etc., and use they
decrease

(E) 1istill think that finding a line not covered by (%, ..., .#,) as witnessed by
p' > p with norms dropping down by < 1 its O.K., i.e., the closure inherent
is using Koning is O.K. by inflating the .#;-s, see below.
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£+1

A try of lines/point: Choice: nf < w, i < w, £ < (0), nf << nith <<<

nd q, & = 41,0 < ¢* << 1 constant. Notation: 1) SQ, = {(o5, %) 1 4,j €

{0,...,2"},x € SQ, = = = (1122,
2) LN,, = a line £ determined by two distinct points among
CR, ={(&, &) : ¢,k {0,2"}.

on s o

3) If £ € LN, let

nb(Z) = {x € SQ, : the distance of x from .Z is < g}

4) A SQ,-square is a square of the form

(1 k _ _k+1
gn ton SY=Ton

() o <o
denoted by s, t.

Definition 6.24.  (A) Let ©(¢;) = P({A: A C ™2, |A|/2m = 27-1})
5(ei) = P(ei) \ {0}
(B) for d € X(¢;) we define by induction on j < ¢ when nor;(d) > j; this defines
the norm which is always < i
J = 0: always (i.e., non empty) j = 1: nor(d) > 1 iff ni2 = U{A: A € d}

j+1>1:if

(@) m>n?

(8) F is a function with domain d into

{S : S in the union of < ¢* - (27)% SQ,,-squares}

(v) g: is a function from the set of SQ,s-squares to numbers no!

e{o 1 ’

Qn'g ? 271?

(6) S{g(t) :t € Domg} < ¢*

(¢) F obeys g which means: for every SQnés—square tand A€ D.
(C) Leb(tNF(A)) < —4v or g(t) > Leb(tNF(A)) (equivalently g(t) > 0) then

27

we can find an SQp,-line .2 such that j < nor;i{A € d: Z ¢ F(A)} or
even an SQ,/-line £ for some m’ > m - no real difference (certainly after
m' = 22").

Claim 6.25. nor;(c;) > i fori > 2.

Proof. Note that in the definition 6(E) we can always increase m and it is not really
used. We need some m such that the range of F' is appropriate. Will we have more
lines? But we make the difference to make this null.

Assume toward contradiction that nor;(¢;) < 1.
So as before we can choose by downward induction on j < 4 funtions F}, g; such
that:

®(a) Fjis (F; o : £ € Lj) where

(B) Ly={j+1,...,i—1}(LNy), i.e., a sequence of lines
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(V) 95 =92 : Z € Ly)
(8) for each £ € Ly, (F; 2,9; ) are as in Definition 6.24
(6) j > mnor;({A € C;: for every appropriate j' = j j +1,i-1,% ¢
Fz 0 (A)}) wherever & = (&) 1 j" =4,j+1,. —-1) eL;.
For j = i the demand on A € d is empty so
€ says a > nor;(c;) which holds.
The induction hypothesis is by the definition.

So we have (F;_1, gi,, - - Fl,gl) So for each . € L; we have 1 > nor; {A € ¢; :
as above} hence there is f ( 7) € "' Z such that
® f(Z) ¢ Aif

L0 Ae C; and fOI'j = 17 SN ,’i — 1 we have ogj/ g_ Ff[{j+1,...,i71}(‘4)'

NOW COMES the main point.
We have two many points. B
We choose by downward induction on j < i, L7 and S; =< 5. O

Alternative 1

Definition 6.26. 1) For a partial order I, let

(a) Y ={({to,...,tn),{(s1,...,8n)) :(a) ty €I and sy € I and
(b) to,...,t, is without repetitions and

(¢) s¢é{to,...,te} for L€ {1,...,n}}

(b) Y;m =Y U[Y;]<No. 2) GT is defined as in Definition 5.2(4) using
Y;" instead of X .

Definition 6.27. If « is a partial function from a p.o. I3 into a p.o. I we define the
mapping 71, &, % (really 7r}“17]2,fr11712, 71,,1,, the 7 is not connected to the 7 from
Claim 5.42 and 7+, 7 are not as in Definition 5.35, 6.44) as follows:
(A)(a) 7 is a partial mapping from Y;" into Y;" (every Dom(w) = I, Dom(n™)
is a proper subset of Ylj)
(A) for z € Yy,
() x € Dom(nt) iff {to(x), ..., tnw)(2), 51(2),. .., 5@ ()} € Dom(n)

and £ < n(z) = (tea(®) < se1(2) <p (@) V (se1(x) <1
top1(z) <1, te(x))
(B) 7 (x) = ((7(to(@), ..., T (tn() (@), (m(s1()), - ., T (S () (2)))

(B) for any finite y € Yz, we have y € Dom(n™) and 7t (y) = {n(x) : = €
y Az € Dom(r)}
(C) in particular ( ) € Dom(z™), 7T ({)) = ()
(B)  #is the partial homomorphism from G into G} with domain the subgroup
I I
of G}; generated by {g, : © € Dom(n")} mapping g, to g+ () € Gr,; see
justification below
(C) 7 is the homomorphism from G}*‘2 into GZ mapping for z € YI’:, Gz £0 Grt (2)
if z € Dom(7 ") and to eq,, if z € Y7 \ Dom(n ™).
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Claim 6.28. 1) In Definition 6.27, 7,7 are well defined, in particular, & is really a
homomorphism from GZ into G}rl.
2) If I, I, Is are partial orders and m; is a partial mapping from Iy 1 into I, for

(=1,2 and 73 = my oy then 7t D j omy.

Remark 6.29. But the 7, , may fail to commute and possibly 7+ D 775r o Wf.

Proof. As in 5.42(2). O

Definition 6.30. 1) We define “s is a k-p.o.w.i.s. (w for weakly) similarly to x-p.o.i.s.
in 5.40(1) except that we replace clauses (f), (g) there by:
(f) for u <jv,m,, is a partial function from I, to I, m, . = idz,

5
v,w*

(9) v <;<wv<;wimplies only 75, 2 Ty, OT

u,w =

discussion: Let s be a x-p.o.w.i.s, with X;-directed J*°, we would like to show that
G, is a k-automorphism group. We are thinking on the case J® is a (linear) well
ordering. E.g., 6 = cf(0) > No, fo € %k for a < a* form a tree, i.e., fo(i) = f5(j) =
t=jand fo [i= fg [jand f, is <J§,d—increasing with o where jabd is the ideal
of bounded subsets of 6.

So we choose J = 6,I; = {f.(i) : @« < a*} where J ordered by the order
of the ordinals and for i < j we have 7;;(fa(j)) = fa(i) for < a*. Now in
Definition 6.35, 6.36, 6.37 below we replace the G%-s by bigger groups and extend
the homomorphism 7, , such that their cardinalities are still < x but the inverse
limit is, essentially, the same, by adding many copies forming a tree with few
branches. So instead we have many gm, m = (¥, 20, - - -, Zn(x)), 2¢ € Zproj, (x)-

Definition 6.31. Let s be a k-p.o.w.i.s and J = J*, etc.
0) s is linear if J* is a linear order.
1) We say s is smooth if

(A) Rang(rs,) = I,

(B) ifw € Jand z € Y7, (see below), n(x) > 0 then for some y, u (we may write
u=u(z),y = y(r)) we have: u <; w and x € Y, and .7} ,(z) =y €Y,
and

(Fuy ifu<jv,2’ €Yy, and o' <jv,.7m}, (z') =y then *WTJ[,,U(QU’) is
well defined iff u <; /.
we define n(z), t¢(x), se(x) for z € Y7 as we have defined in 5.40 for € X; and let

Y ={x: 2 e Y} Uy <.
3) For u <j v let ,m, : YII — YIJUr be defined as in clause (A) of 6.27. For v € J

u,v

let .Y, ={y €Y, : u,y are as in clause (b) of part (1),i.e., (%), holds}.

So our aim in this section is (proved in 6.36)

Claim 6.32. If a k-p.o.w.i.s. s is linear (see Definition 6.31 below) then G is a
K-automorphism group.
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discussion: To define the bigger groups we shall have to define various things.
The idea is that we allow ourselves to use Y+ instead of X7 + but we add “freely”

many copies to make the mapping having full domain and range but add no more
than necessary so that no more branches are added. The ones we really need are
T = (2, : v € Jsy) such that .m}  (2y,) = Z,, in the interesting cases to allow
it comes Z, ,, 2 in clause (g) of 6.33 but there is no need for the parallel statement
in clause (h) of Definition 6.33. The set {(¢,m,i) : £ < m < n(z) and ¢ = 1 and
te(xy) <r, tm(zy) or 1 < £ < m < n(z) and i = 2 and se(xy) <1, Sm(xy)} is
essentially constant.

Definition 6.33. Let s be a linear x-p.o.w.is. and J = J%.
1) By induction on n we define x,,, Z, = (Z, o, : u € J) and f, = (fr,uw 1 u <j )
such that
(A) Z, is a sequence of pairwise disjoint sets each of cardinality < x
(B) x,, is a function from {Z, , : u € J} onto U{Y;, : v € J} mapping Z, ,
onto Yy, for each u € J and let Z,, 4 = {2z € Zpu : Xn(2) = 2} and for
r<julet Z,,={2€Z,, v(x,(2) <syr}and ;Zpus ={2 €+ Zpnu:
Xn(2) =z}
(C) fawuw is a function from ,Z,, into Z,, and the f,,,-s commute and
fruw(y) =2 = r(xn(y)) = r(xn(2))
(D) if u <jvand fpuu(22) = 21 then .mf  (xn(22)) = x5 (21)
(E) if m < n then Zm,u,x - Zn,u,xa Zm,u c Zn,u» fm,v,u c fn,v,m
(F) if n=m+1and v <; v then Zy ., C Rang(fn )
(G) for n =0 and u € J we have
() Zpu = ZnuiUZyu2 where
(1) Znwy={(nu,v,z,y,1):x €Y,y €Yy, .mt (z) =y,

r(z) <ju<jv}
(11) Zpuz=U{{n,u,v,2,y,2) rz € X1,y € Xy,,v(x) <;jv<;5u

and .7, (y) = = and

(Vw)(u <y w <yv=mf,(y) € Xp,)}
(6) X0(<TL7’U,,U,.’E, Y, 1>) =Y and x0(<n,u7v,x,y, 2>) = ny <TL,U,U,$, 1>7 <n7ua’Ua z,y, 2>
are as above

(V) fruus(z2) =21 iff 20 € Z, 4y, 21 € Zp u, and one of the following
occurs

(i) for some v for x € X, we have zp = (n,us, v, 2,y,1) € Zp 4,1

for ¢ =1,2

(i7)  for some v, y1,y2 we have zp = (n,us, v, 2, Yo, 2) € Zyp y, 2 for

t=1,2 and m}, ., (y2) = v

(193)  for some v,y; we have z1 = (n,u,v,z,y1,1) € Zp 4 1,

2 = (n,ug,v,x,92,2) and 7,7, (y2) =
(H) forn=m+1
(@) Znw=2Zp 1 U 25, o Where

(Z) Zn,u,l - Zm,u
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(”) Z’ﬂ,uﬂ = {(nvuavvwazv:‘ﬁy/) ‘Y € YvaZ € Zm,v,
T w(¥) = Xm(2), T, (y) = s x(y) <so,r(y) < u,

— k) — ) —
=(u <yv),v <jw,u<;w}

B) xp,(7) =2 il 2/ € Zpyyxm(2') = 2" or 2/ = (n,u,v,w,2,y,y")
and x,,(z) = 2’

(v) for uy <j ug, frusus(22) = z1 iff one of the following cases occurs

(Z) fm,ul,ug (22) =z

(13)  for some v, w, z,y we have z; = (n, up, v, w, 2,yY) € Zy 4, 2 for

i=1,2

(19)  for some v, w, z,y we have 2o = (n,u2, v, W, 2,Y) € Zp uy 2

and r(y) <y w1 <y vand z1 = fiu 0 (2).

34. Let s be a k-p.o.i.s.

D) Let Z, o = H{Zppn:n < w}, fouw =H{fouw 7 <wlandx, = U{x, :n <w}.

2) Let M, =
where pr(x)

{m: m has: the form (z, 20, Zn(z)) such that x € Yy, 20 € Zy, ()
= ((ti(x) 19 < 0), (se(@) 1i=1,....0)},

M} ={m:m € M,}U[M,]<®. For m € M,, let m = (z™, 2%, .. ©> Zn(m)) Where
n(m) = n(z™).

3) We define
(A) G

<*Gua *ﬁ-u,v U SJ U> as follows

is generated by {gm : m € M} U {gn : n € [M,]<%0} freely except

the equations

(B) if u
Zw,u

™

(@) 9m' = 9m:9cm> = 9n' = n

(b) gmgngr_nl = 9na{m}

() if n+1 = n(m;) = n(mz),m = pr,(m;) = pr,(mg), 2}, =
Znitrs (Spitrs tte) = (8081, Snt1) then gmgm, gm' = gm,

(d) in all other cases the generators commute

<; v we define *71'“_"71) : M, - M, by: *7Tu+7v(m2) =m; iff my, €

,My € Zy o and £ < n(ms) = fuue(2772) = 2,7 and my  (2™2)

(C) if u <j v then we define a homomorphism .7, , from .G, to .G, as follows:
it maps g¢y to gy

it

Claim 6.35.
cofinality.
Then

maps gm, t0 gm, [and gn, t0 gm,] if
®(a) my; € M, my € M,

) *Wu,v(mQ) =m
) n; € [Mu]<N0,n2 S [MU]<NO

d) ng = {im,(m2) : my € ny Amy € Dom(,7f )}

Assume s is a k-p.o.w.i.s. with J° a linear ordering of uncountable
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(A) («Gy,sTruw = u <y v) is an inverse system of groups (so with .m,, a
homomorphism from G, into .G, ) with inverse limit isomorphic to Gs

(B) hence Gs is a k-automorphism group.
Claim 6.36. In 5.47 we can replace k-p.0.i.8 by Kk-p.o.w.i.s., that is ?

Proof. The same proof replacing FILL. O

The following claim works, e.g. for strongly inaccessible cardinals, but is most
interesting for k strong limit singular of uncountable cofinality.

Conclusion 6.37. Assume
(A) Rg <0 =cf(d) <k
(B) T, C “k for a < 0 has cardinality < k
(C) F={fe :flaecT, fora<?b}
(D) v =1k(F, <jpa), necessarily < oo so < (k).
Then
(o) there is a k-p.o.w.i.s. 5 with rk(ls) =~
(B) in (a),Grlg is a k-automorphism group with Hyjs), a two element subgroup,

TG Hypy =7 and noré‘l’i](HI[ﬁ]) =Gy

(V) 7w 2T >

Proof. We define s = (J,I,7) as follows:
(A) J=(0;<)
(B) I, = (Tot1,<at1) for a < 6 where

f1 <at1 fo & filao) < fo(a@)

(C) fora< B <Olet myp:Ig— I, be
Tap(f) = f 1 (a+1).

(¥)1 s is a k-p.o.w.i.s.
(*)2 s is linear
(%)3 s is smooth
[Why? Assume o < 6 and « € Y7 . Let f < a be minimal such that
(te(z) | B: £ < n(x)) are pairwise distinct s¢(x) | 8 & {tm(z) | B:m < £}
for £ € {1,...,n(z)}. Now f is well defined (as 8 = « is O.K. by the
definition of z € Y and J is well ordered. Also 5 #0 (as {f [0: f € Toy1}
is a singleton (as n(z) > 0 is assumed). Lastly, § cannot be a limit ordinal
508 = f—Ly=((tex) | B: €< n(@)), (se(z) | B:1< L < n(z)) are as
required.]
(¥)a Is is (isomorphic to) (F, < va)
[Why? This is how we define I (note the difference compared to §1.]
(¥)5 Gy is isomorphic to Gy
[Why? By 6.13(3).]
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(x)6 Grps) is a k-automorphic group
[Why? By 5.45.]

Recalling §1, together clauses (o), (8), () of 6.37 holds so we are done. O

Conclusion 6.38. 1) If k is strong limit singular of uncountable cofinality, then
Te > T > Tl > 28,
2) If kK = k<" > Ng then 1, > (k).

Proof. 1) Let 0 = cf(k).

By [Shear, I1,5.4,VIIL§1] for every regular A < 2% there is an increasing sequence
(Ai i < 0) of regular cardinals < x with ([] Ai, <jpa) having true cofinality A,

1<K
hence for some such (\; : ¢ < 6) we can find f, € [[ \; for @ < 2% such that
<0

a< fB= fa <gpe /3. Now we can prove by induction on « then rk;(f,) > o where
I = (f,<J§d). F as in clause (c) of 6.37 and we know f € F = rk;(f) < o0, so

we are done. U

§ 6(F). §4 Reconstructing §3. discussion: We may try to make §2 more similar
to §2. We still have to use YI+ and 7 not order preserving: but we demand

(Q)H Ty,w © My = Tyw for u <; v <;<; w.

0) 6.26, 6.28 as before but
1) In clause (A), Definition 6.27(b)(«):

® and £ < n(z) = [r(tess (2)) <p, w5041 () <t wE@)]V Ir(se (@) <1,
m(s¢(x)) <1, m(te(x))]-

2) Instead 6.30.
3) In Definition 6.31 we define 7, , a partial homomorphism from G, into G, by:

Tuw(9z) = G, o (x) When € Y7, and z € Dom(m, o)

T (gw) =eq, ifz ey, \Dom(ﬂ-u,v)

ﬁum (gy) = 9{mu,v(z):z€EYNDom(my,y)} -
4) 6.32 disappears but we need 5.40(2) with G, replaced by Glt notational prob-
lem: +G7 of 5.40(5).
5) Repeat 5.41.
6) Repeat 5.42, now easy.
7) Repeat 5.47. SAHARON: From here on: copied part. Old proof of ??, moved 3/2004, pgs.16-17:

Proof. 77 So toward contradiction assume

(¥)1 h1 € G,hy € G\ K,h3 € G and hzhihy' = hy but for no h € G do we
have hhih~1' = hs.

Let <* be as in [ of Claim 5.12. By 5.12(1) we can find (z¢ : k =1,...,k;) for
¢ =1,2,3 such that

(¥)2 z1h € X, w20 € X1, 238 € Xppp]
(%)3 Tp1 < w12 <* ... <" Ty
()a Dt =Gy s - Gry s

Without loss of generality
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(s w0 & (ZP\ 2) % 2
[why? By 5.15(1) if we define hj = (... gz, .- )kew(ry Where w(f) = {k:
Tog ¢ (ZP\ Z9) x 2} then Gp = hihi (%)~ = kb, but by = hy,hy = ho
(as they belong to Gq), so without lose of generality ()4 holds.]
Without loss of generality

(¥)5 Gg°h1 = G§%hg; moreover for some ki*, k3* we have (x1x : k € (K, k3]) =

(o k € (k3 k3]) and 214 (k = 1, k1) zon(k = 1,.... k") € Z9 x 2

[Why? By 5.15(1) if we define hy = (..., ek, - )hew(e) Where w(f) =
{k : wo s, ¢ ZP} then we have h4h/(h5)~! = hY hence by 5.15(2) h} € Gq.
So hl, hl € Gq are conjugate in Gq and letting hY = ho, by = hihy(h%)1,
the pair (hY, hY)) satisfies the demands in (x)s and in (x)5 (and (x)4).]

(%) if a € Z9 then the number {k : x1x € {a} x 2}, [{k : z1 1 € {a} x 2}|
(both are € {0,1,2}) are equal or one is zero and the other is 2 and [{k :
ki <k <kj and a € A3}| is odd.

[Why? By the proof of 5.12(1).]
Now easily hi, ho are conjugate in G4 so we are done. O

Moved from pg.34,2004/2 from Def. ?77?: we define n(z), to(z), s¢(x) for x € Y7 as we have defined in
5.40 for z € X; and let

Vi ={x: 2 e Y} Uy <.
3) For u <; v let .}, : Ylt — YIJ[ be defined as in clause (A) of ??. For

uwe Jlet Y, ={y €Y, :uy are as in clause (b) of part (1),i.e., (%), holds}.
Moved from pg.36,2004/2 from Conclusion 6.16: 2) If K = k<% > Ry then 7, >

6(x). [?] Moved from Definition 6.10, part (4): [?] If u <;p5 v then 7y, = 77, is

the homomorphism from Gy, into G, mapping g, to gr+(,) if z € Dom(r*) and
to eq,, if z € Y7 \ Dom(x ") (hence X € Y7,).
Moved from Definition ??: 1) [used?] We say s is smooth if: J' C J is finite

then we can find a directed system (G, m,, : u <; v are from J') such that
Gy C Gy C
2) [used?] We say 5 is strongly smooth if

(A) Rang(m; ) = L.

(B) if w € J and = € Y7, (see below), n(x) > 0 then for some y,u (we may
write u = u(z) = ul,(x),y = yw(x) = y5,(x)) we have: u <j; w and z € Y7,
and .7, (z) =y € Y], and

(Fuy ifu<yv,a’ €Yy, and o' <jv,.7m}, (z') =y then *WI,,U(J:’) is
well defined iff u <; u/'.

>k 3k 3k 3k Sk ok Sk Sk sk Sk ok sk sk Sk Sk sk sk sk ko kSRR K K R R R R R 3R R sk sk sk sk sk sk sk sk sk sk sk sk sk skoskoskoskoskok ok Moved from pg 37: (and

?7) The following was circumvented by using the linear case (and Definition 6.10(2).

The main missing point for §3 is the parallel of 7?7 replacing “good”.

Claim 6.39. The group inv-lim(g) is a k-automorphism group such that
(A) J is Wy -directed partial order
(B) 9 =(Guy, Ty :u <y v) is a weak inverse limit of groups, i.e.
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(o) 7y € Hom(G,,Gy,)
(B) ifu<yv<jwthen Tyy 2D Tyy © Tyw
(C) &> |J|+S{||Gull s u € J}.

Proof. Fill. [used?] O

Claim 6.40. [used?] 1) If® s is a smooth k-p.o.w.is. then (G5, 75, u < ;g v) is
a smooth inverse system of groups.

2) If s is linear k-p.o.w.i.s then s is a strongly smooth K-p.o.w.i.s.

3) If s is strongly smooth then s is smooth.

Proof. 1) Easy.
2),3) Not used and implicit in the proof of ?7?. O

Moved from the proof of ??,pg.16,17: We define a function 7 from {g, : € Xp} C
Gp into G as follows:
® (a) ifze€ X then 7(gs) = gu
(b) ifze XS\ X then n(g,) = eq,,.

Part A: This mapping 7 respects the equations from I', hence can be extended to
a homomorphism 7 from Gp into Gp, in fact into G which is a subgroup of Gp.

Now towards contradiction suppose h € G\ K belongs to Ny_; to the normal
subgroup of G, which K generates. Clearly h is equal to a product of conjugates
of members of K, i.e., for some n < w and hy € K, g, € Gp, for £ < n we have

Gp Eh= (gohgal)(glhlgfl) . (gn_lhn_lggil). This implies that
#(h) =(#(go) 7 (ho) (%(g0)) ~ ") ((#(g1)

(7 (h1)(7(91)) ™) -+ (7 (gn—1) (7 (Prn—1) (7 (gn—1) ")
Now there are g; € G such that w(g,) = 7(g;) for £ < n.

[Why? We apply 5.12. Let <* be as there, we can find 2,1 <* ... <* @y ()
from X} such that Gp = g = guy, -+ - Guy 0> 50 by the choice of <* for some
k1(€) < k(f) we have zp; € ZP x 2 < i < ky(£), let we =: {i : i € {1,...,k({)} and
g€ XU(Zx2)and gy = (... 9ay, - -)icw,- Now check.]

Hence 7(h) is equal to
(7(g0)7 (ho) (7 (g5) ~) (7 (g1) 7 (ha)(7(91) 1) - - - (7 (g7, o) (Fhn—1) 7 (gn—1) ") =
#((gh0(g) ) (G1(91) ") - (9hson1(gy1) D). As s € K, g} € G and K <G
clearly (gbho(g96) ™) (gih1(g))™Y) ... (gl 1hn_1(g,_1)~ ") belongs to K call it h’, so
#(h) =n(h'),n € K. So h* = h(h')~! € Ker(7), now h € G\ K,h' € K hence also
h* € G\ K and 7(h*) = 7(h)(w(h'))~! = eq and h* is the product of conjugates
of members of members K in Gp.

As h* € G, by 5.12(1) apply to G let h* = g¢,, ... 9., where z1,...,z,, from
XU(Z x2),z1 <*...<*x, where <* is as in 5.12. By the demands on <* there
for some m(x) < m we have x1,..., 2, € Z x 2 while Zp41,. ., Tm € X,
hence eq, = T(h*) = Gu,,y41 -+ Jzrms SO B* = Gay - G, (., and let 1y = (u,ig), s0
oy € Z,my < 2. Clearly

(¥)1 for every g € Gp the element gh*g~! belongs to ({g(a,,i, : ¢ < 2 and

C=m(x),...,m})q,.

3in fact, 75, , was defined such that this holds
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So we shall be done if we prove (x)2. Part B: Moved from 6.1,pg.30-31:

Proof. We define s = (J,p, ) as follows:
(A) J=(6;<)
(B) I, = (Tat1, <a+1) for a < 6 where

1 <atr1 f2 & fila) < fa(@)

(C) fora< B <Olet mop:Ig— I, be
Tas(f) = f I (a+1).

(compare with 6.14)! O

Moved from proof of 6.7,pg.32: Hence, letting ZP2 N Dom()

(%) G = ({ge:® € X U(Z X 2)})g[p,) Is generated by {g, : v € X U (Z x 2)}
freely except the equation is I' = {¢ € I'p, : ¢ mention only g, with
reXU(Zx2)}.

Moved from before 6.13,pg.33: Now the proof is similar to 5.42(2); it is enough to

prove this for 7, for this it suffices to show that & maps the equations in I' into 1"};
and this is proved as in the proof of clause (A) in the proof of 5.42(2).

Claim 6.41. If p1 < p2 are k-parameters, then Xp, C Xp2,X C sz,l“ C Ty,
and Gp, is a subgroup of Gp,. [?77]

Moved from pg.36:

Definition 6.42. Let s be a k-p.o.w.i.s and J = J*, etc
1) s is linear if J* is a linear order.

§ 6(G). alternative 2. Moved from Definition ??,pg.7: 4) We say that p is a very

nice parameter if in addition
(A) if z1,...,2, € Xp and s € ZP then there is © € X, such that s € AP and
te{l,...;k} An<w=x#xp [ nAzy# x| n;note even t(z, | 0) is a
well defined member of I (not used presently)[used? so we shall ignore]
B) if 2 € X U{()}, tkyp(t7,) > 0,4 <w,m < w,20,...,2m-1 € Zp are
pairwise distinct, u,, C [0,m) for v € "(®)+12 then there are infinitely many
s € IP such that
(#) (@) if rkyp)(ty ) = wor @ = () then rkyp(t) = ¢
(ﬁ) if 0 < I‘k[[p] (ti( )) < w then I‘k[[p] (t) = I‘k[[p] (ti( )) -1
(y) for some y, € X;(v € "@*12) we have: n¥ = v, [z = () =
) LI 2 () P Lo = Py = s k< s
n(@)+19) A (rkf)(y,,) =0=2z,€Y)= [(z € AP ) = (k € u,)] (thlb
will serve us in the proof of 77?).

Moved from Definition 5.36,p.16:
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(A) if 71 (z1) = 22 and 7 is a strict homomorphism and z; € ZP* x Z or z; =
((te: £ <n),m),t; € Dom(w) and n € "Z then (z1 € Xp, © x2 € Xp,) and
(21 € X3, \ Xp,) & (22 € XT, \ Xp,)

(B) if 77 (21) = 22 and 7+ (y1) = y2 and 7 is a partial isomorphism or strict
homomorphism then &, ,, in Definition 5.2(4)(b) holds (for p1) iff ®, 4,
in Definition 5.2(4)(b) holds (for p2); in fact, this holds for each of clauses
(i), (ii) there separately; for the only if part (i.e., the = implication) we do
not need the “m a partial isomorphism”

(C) if 7 is a strict homomorphism then the mapping g, + g+ () for = € X;;l
maps every equation from I'y, to an equation from I'p, is not used.

2) If 7 is a partial isomorphism from p; to pz then the mapping g, > gr+(») maps
FPhXIl 'Dom(n),ZNDom () onto sz’X12 IRang(w),ZNRang () [not used]. Moved from pgSl?—lg

Claim 6.43. * 1) The normal subgroup N of Gy, which K generates satisfies NNG =
K when
® (a) p is a k-parameter
(b) q is a very nice k-parameter, < p and t € I = min{w, rkyq(t)} =
min{w, tk;p) (1)} and G = Gq
(¢) K is a normal subgroup of G.
2) We can replace clause (b) by
(0) (@) G = Gp x,z, see Definition ?7(4)) where Z C ZP and X C X is

closed under restriction (i.e., y=x [n,x € X =y € X) and:

ifre X,ye Xp and t¥ =1* theny € X
(B8) fxeXU{{)},n<w,z0,...,2m-1 € Z are pairwise distinct and

u, C [0,m) for n € "+ then there are infinitely many

s € IP such that (3y € X,)(tY = t*" < s > inX) and (x) from
??7(4)(e) holds.

Proof. 1) Let X = Xq,Z = Z9, X" = X U (Z x 2) and apply (2), possible: by
clause (e) of ??(4); (note that in (8) we even get t € I9.

2) By 5.12(7), G is a subgroup of G and is generated by g, : * € X U (Z x 2)
freely except the equations I'p x 7.

Assume h € G is a product of conjugates of members of K in Gp. Let <*
be as in [J of 5.12. So assume Gp = “h = (gohogal) . (gn,lhn,lg;il)” where
ho,... hn_1 € K,g0,...,9n—1 € Gp. By 5.12(7) we can find a sequence (zyy : k =
1,...,k(¢)) which is <*-increasing in XI‘)“ such that g = guy, -+ gz, - We can
find (ye,m :m=1,...,m(f)) in X U(Z x 2) such that G = “he = gy, , - Gyy ey
(exists as hy € K C G),let h =g, ...9-,_, where j < i = 2z; € X U(Z x 2); exists
as h € G.

Now we apply clause (3) of (b)" in the assumption of part (2) of the claim (use it
inductively to choose replacements). In detail let Z* C Z be the set of s € Z such
that for some m < 2 we have (s,m) € {zy: { <nk=1,..., k(O)} U{yem : £ <
n,m=1,...,m{)}U{z; : j <i}. Let X** C XP be the minimal set such that

4used in the end of 5.48
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® (a) each xog, 2 and yg., belongs to it or to Z* x 2,
) [reX*An<n(z)=2z[neX*
(¢) W,y € Xp AtV =t =y € X* =y" € X*|.
Let X* = X™ N X; clearly X™* too is finite; clearly x € X* Am <n(z) =z [n €
X*, see 9a) of (b)'. Let (¢ : 4 < i(x)) list {¢¥ : y € X**} with no repetitions such
that ' <t/ =i < j. Let n; = £g(t;) — 1 so t' = (t} : £ < n;). Now we choose 5 by
induction on ¢ < i(*) such that
O (i) £g(5") =n;+ 1(=Lg(t)) so 8 = (s} : £ < n;)
(i) ifze X*thent* < =5" <5 and ' A t* =5 <5
(744) A?t’i,v) N(Z*x2)= A?’gi’y) N(Z*N2) for v e =12
(iv)  Min{rkp(sy, ), i(+) + [ X — i} = min{rkp(t},,),i(x) + |X**] — i}
(v) se{t®:ze X}
The induction step is possible by assumption (b)'(3) for £ <nlet gy =g , .- .g@km
where:

Si) nyf’k)7
) gé,k:egp ify[’k S (ZP\Z*) X 2
() gop=9ek fyer € 2 x2.
We define h' by

(*) G I “h" = (g6ho(90) ") - - (gn_1hn—1(g5 1) 1)"-
So

© gr€G g eGandh € K.

[Why? First, gé, x € G as can be checked by cases in [l.
Second, g; € G as the product of (g; ;1 k= 1,...,k(()).
Third, A’ is a product of conjugates by members of G of the members of K but K
is a normal subgroup of G hence h' € K|

So it is enough to prove that h' = h.
Let f be the function with domain X** such that f(#',n) = (5°,n) when i <

i(x),n € o)1,
Clearly

® (a) gy is gy, if yor € Xp and yy is defined by: Ve =1, = y;, =
(
(

=

()1 f is a one to one function from X** into X
(¥)2 the subgroup Gp x++ z- = ({gy : y € X*™* U (Z* x 2))q,, is generated freely
by {gy : y € X*™* U (Z* x 2)} except the equations in I'p x+= z«.
[Why? As the demand in 5.12(7) holds.]
(¥)3 the subgroup Gp ¢(x++),z+ = ({gy : ¥y € £(X™) U (Z* x 2)})g, is generated
freely by {g, : y € £(X*™*) U (Z* x 2)} except the equations in I'y g(x«=) 7=
[Why? Similarly.]
(*)4 f maps Fp,X**,Z* onto Fp’f(X**)’Z*’
[Why? By the choice of §'-s.]
hence
()5 f induces an isomorphism f from Gp,x+,z= onto Gp g(ze+), 2+
() f is the identity on X* hence f is the identity on Gp x+ 2+
but
()7 hyhoy ... hn—1,90,- .-, 9n—1 belongs to ({g, : y € X* U(Z* x 2)})q, hence
f maps each of them to itself and
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(%)s f maps g, to gy, hence recalling G |= “h = (gohogal) .. (gn,l,hn,l,g;il)

we deduce by (x), f(h) = 1.

But h € Gp x+,z+ so by ()¢ f(h) = I/ implies h = b’ and I’ € G so we are done.
oo O

Moved from Claim 6.6, pg.35:

(A) if 77 (21) = 22 and 7t (y1) = yo then ®,, ,, in Definition 5.2(4)(b) holds
(for p1) iff ®;, 4, in Definition 5.2(4)(b) holds (for p2); in fact, this holds
for each of clauses (i), (ii) there separately.

Moved from pg.19:

Definition 6.44. [Here?] 1) For m a homomorphism from p; to pa, let @ be the
partial homomorphism from Fy,, into Fp, induced by the mapping g, + gr+(s) for
x € X, if there is one.

2) Similarly for 7 a partial homomorphism.

Moved 2005/8 from the proof of 3.6,pgs.31,32: Forp € S* let (k(p) : £ < £(p)) list
supp(p), see Definition 2.5(9),(10), in increasing order, let 5 = (ty,,.) : £ < £(pu)),
and let B, = {ke(p) : £ < {(p)} and let B :={B, : p e S*}

31
Ui,u2

Cr if p e S* and u, <Jpy uz2 are from Y, then 7 (82) is a permutation of

542
O for p € S and uy <ypg uz from Yy, let h = {(¢1,42) : €1, < k* and
ﬂ—fbl,UQ (tzf) = tzf'
[Why? By a claim 2.7.]
Let E, be an ultrafilter on J* such that Y, € E, and u € J* = {v:u < g v} €
E,, exists as J*' is directed (actually one E suffice). So for each p € S* and u € Y,
thee are A, € E, and hy, ,, such that v € A, = u <;y v and hy, = hy,. So

pu
without lose of generality

By if p € S* and uy <jpy ug are from Y, then k € B, = w7, (6,°) =t

[Why? We replace t“ | By, by (7, (t}) : k € A,) for the Ejp-majority of v-s.]
Let S’ = {p € S¥ : u €Y, for some u € J'}. Without loss of generality
Cho k*=U{4,:pe S’}
By clause (f) of Definition 3.1 for each ¢ € B there is a ¢§ such that
Oy tf € J5 and u* <jque J =7 . (t]) =1}.
By clause (d) of Definition 2.1(1) for some u, € J
Gl u* <jpg us and if u, <jpg v then p, = p* = tqu(<t}’* < k*),2,15.).
Let f = (f., :u € J') be defined as f = G7r e (. Se€ Definition 2.5. So
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