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Abstract. For a group G with trivial center there is a natural embedding of
G into its automorphism group, so we can look at the latter as an extension of

the group. So an increasing continuous sequence of groups, the automorphism

tower, is defined, the height is the ordinal where this becomes fixed, arriving
to a complete group. We show that for many such κ there is such a group

of cardinality κ which is of height > 2κ, so proving that the upper bound

essentially cannot be improved.

§ 0. Introduction

For a group G with trivial center there is a natural embedding of G into its
automorphism group Aut(G) where g ∈ G is mapped to the inner automorphism
x 7→ gxg−1 which is defined and is not the identity for g 6= eG as G has a trivial
center, so we can view Aut(G) as a group extending G. Also the extension Aut(G)
is a group with trivial center, so we can continue defining G〈α〉 increasing with α for
every ordinal α; let τG be when we stop, i.e., the first α such that G〈α+1〉 = G〈α〉

(or α = ∞ but see below) hence β > α ⇒ G〈β〉 = G〈α〉 (see Definition 0.2). How
large can τG be?

Weilandt [Wie39] proves that for finite G, τG is finite. Thomas’ [Tho85] cele-
brated work proves for infinite G that τG ≤ (2|G|)+, in fact as noted by Felgner
and Thomas τG < (2|G|)+. Thomas shows also that τκ ≥ κ+. Later he ([Tho98])
showed that if κ = κ<κ, 2κ = κ+ (hence τκ ≤ κ++ in V) and λ ≥ κ++ and we
force by P, the forcing of adding λ Cohen subsets to κ, then in VP we still have
τκ ≤ κ++ though 2κ is ≥ λ (and V,VP has the same cardinals).

Just, Shelah and Thomas [JST99] proved that when κ = κ<κ < λ, in some
forcing extension (by a specially constructed κ-complete κ+-c.c. forcing notion)
we have τκ ≥ λ, so consistently τκ > 2κ > κ+ for some κ. An important lemma
there which we shall use (see 0.6 below) is that if G is the automorphism group of
a structure of cardinality κ, H ⊆ G, and |H| ≤ κ then τ ′G,H , the normalizer length

of H in G (see Definition 0.3(2)), is < τκ. Concerning groups with center, Hamkins
shows that τG < the first strongly inaccessible cardinal above |G|. On the subject
see the forthcoming book of Thomas.

Theorem 0.1. If κ is strong limit singular of uncountable cofinality then τκ > 2κ.

It would have been nice if the lower bound for τκ, κ+, would (consistently) be
the correct one for all κ simultaneously, but Theorem 0.1 shows that this is not so.

Date: 2022-06-12.
2020 Mathematics Subject Classification. FILL.
First typed 2022-05-24. I would like to thank Alice Leonhardt for the beautiful typing. Later

versions were created using typing services generously funded by an individual who wishes to

remain anonymous. Research partially supported by NSF Grant No. NSF-DMS 0100794. Refer-
ences like [Sh:950, Th0.2=Ly5] mean that the internal label of Th0.2 is y5 in Sh:950. The reader

should note that the version in my website is usually more up-to-date than the one in arXiv. This
is publication number 810 in Saharon Shelah’s list.

1

Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.



2 S. SHELAH

Note that Theorem 0.1 shows that provably in ZFC, in general the upper bound
(2κ)+ cannot be improved. See Conclusion 3.13 for proof of the theorem, quoting
results from pcf theory. We thank Simon Thomas, the referee, Itay Kaplan and
Daniel Herden for many valuable complaints detecting serious problems in earlier
versions.

The program, described in a simplified way, is that for each so called “κ-parameter
p” which includes a partial order I = Ip, we define a group Gp and a two element
subgroup Hp such that 〈norαGp

(Hp) : α ≤ rkp〉 “reflects” rkp = rk<∞(Ip), the nat-

ural rank on I (see Definition 1.2), so in particular τ ′Gp,Hp
= rk<∞(Ip). (Actually

in the end we shall get only “H of cardinality ≤ κ”).
We use an inverse system s = 〈J,pu, πu,v : u ≤J v〉 of κ-parameters where

πu,v maps Ipv to Ipu ; however, in general the πu,v-s do not preserve order (but do
preserve it in some weak global sense) where J is an ℵ1-directed partial order. Now
for each u ∈ J , we can define the group Gpu ; and we can take inverse limit in two
ways.

Way 1: The inverse limit ps (with πu,s for u ∈ J of s) is a κ-parameter and so the
group Gps

is well defined.

Way 2: The inverse system 〈Gpu , π̂u,v : u ≤J v〉 of groups, where π̂u,v is the
(partial) homomorphism from Gpv to Gpu induced by πu,v, has an inverse limit
Gs.

Now

(A) concerning Gps
, we normally have good control over rkps

hence on the
normalizer length of Hps

inside Gps

(B) Gs is (more exactly can be represented good enough as) inverse limit of
groups of cardinality ≤ κ hence is isomorphic to Aut(A) for some structure
A of cardinality ≤ κ

(C) in the good case Gps
= Gs so we are done (by 0.6).

In §3 we work to get the main result.
There are obvious possible improvement of the results here, say trying to prove

δκ ≤ τκ (see Definition 0.5) for every κ. But more importantly, a natural conjecture,
at least for me was τκ = δκ because all the results so far on τκ have a parallel for
δκ (though not inversely). In particular it seemed reasonable that for κ = ℵ0 the
lower bound was right, i.e., τκ = ω1. See more in Kaplan-Shelah [KS09].

Definition 0.2. 1) For a group G with trivial center, define the group G〈α〉 with
trivial center for an ordinal α, increasing continuous with α such that G〈0〉 = G
and G〈α+1〉 is the group of automorphisms of G〈α〉 identifying g ∈ G〈α〉 with the
inner automorphisms it defines. We may stipulate G〈−1〉 = {eG}.

[We know that G〈α〉 is a group with trivial center increasing continuous with α
and for some α < (2|G|+ℵ0)+ we have β > α⇒ G〈β〉 = G〈α〉.]

2) The automorphism tower height of the group G is

τG = τatw
G = min

{
α : G〈α〉 = G〈α+1〉}

Clearly β ≥ α ≥ τG ⇒ G〈β〉 = G〈α〉. (Here ‘atw’ stands for automorphism tower.)
3) Let τκ = τatw

κ be the least ordinal τ such that τG < τ for every group G of
cardinality ≤ κ; we call it the group tower ordinal of κ.

Now we define the normalizer (group theorists write NG(H), but probably for
others norG(H) will be clearer: at least this is so for the author).

Definition 0.3. 1) Let H be a subgroup of G.
We define norαG(H), a subgroup of G, by induction on the ordinal α, increasing

continuous with α. We may add nor−1
G (H) = {eG}.
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THE HEIGHT OF THE AUTOMORPHISM TOWER OF A GROUP 3

Case 1: α = 0.
nor0

G(H) = H.
Case 2: α = β + 1.

norαG(H) = norG(norβG(H)), see below.
Case 3: α a limit ordinal

norαG(H) =
⋃
{norβG(H) : β < α}

where norG(H) = {g ∈ G : gHg−1 = H}. (Equivalently,
(∀x ∈ H)[gxg−1 ∈ H, g−1xg ∈ H].)

2) Let τ ′G,H = τnlg
G,H , the normalizer length of H in G, be

min{α : norαG(H) = norα+1
G (H)}

so β ≥ α ≥ τ ′G,H ⇒ norβG(H) = norαG(H). (nlg stands for ‘normalizer length.’)

3) Let τ ′κ = τnlg
κ be the least ordinal τ such that τ > τ ′G,H whenever G = Aut(A)

for some structure A on κ and H ⊆ G is a subgroup satisfying |H| ≤ κ.

4) τ ′′κ = τnlf
κ is the least ordinal τ such that τ > τnlg

G,H wherever G = Aut(A), A
a structure of cardinality ≤ κ, H a subgroup of G of cardinality ≤ κ and

nor∞G (H) =
⋃
{norαG(H) : α an ordinal} = G.

Definition 0.4. We say that G is a κ-automorphism group if G is the automor-
phism group of some structure of cardinality ≤ κ.

Definition 0.5. Let δκ = δ(κ) be the first ordinal α such that there is no sentence
ψ ∈ Lκ+,ω satisfying:

(A) ψ ` “< is a linear order”
(B) for every β < α there is a model M of ψ such that (|M |, <M ) has order

type ≥ β.
(C) for every model M of ψ, (|M |, <M ) is a well ordering.

See on this, e.g. [She90, VII,§5].

Our proof of better lower bounds relies on the following result from [JST99].

Lemma 0.6. τ ′κ ≤ τκ.

Question 0.7. 1) Is it consistent that for some κ, τ ′κ < τκ? Is this provable in ZFC?
Is the negation consistent?
2) Similarly for the inequalities δκ < τ ′κ, (and δκ < τ ′κ < τκ).

Observation 0.8. For every κ ≥ ℵ0 we have τatw
κ ≥ τnlg

κ ≥ τnlf
κ .

Proof. By 0.6 and checking the definitions of τnlg
κ , τnlf

κ . In fact we mostly work on
proving that in 0.1, τnlf

κ > 2κ. �

Notation: For a group G and A ⊆ G, let 〈A〉G be the subgroup of G generated by
A.

∗ ∗ ∗
A more detailed explanation of the proof :

We would like to derive the desired group from a partial order I representing the
ordinal desired as τ ′G,H in some way and the tower of normalizers of an appropriate
subgroup of this length. It seems natural to say that if t ∈ I represent the ordinal
α then the s <I t will represent ordinals < α so we use the depth in I

dpI(t) =
⋃
{dpI(s) + 1 : s <I t}.

For each t ∈ I we would like to have a generator gt of the group (we denote the
group by KI and gt is really denoted by g(〈t〉,〈 〉)) exemplifying that the normalizer
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4 S. SHELAH

tower does not stop at α = dpI(t), say gt will be in the (α + 1)-th normalizer but
not in the α-th normalizer. But we need a witness for gt not being in the earlier
(β + 1)-th normalizer, β < α.

Now β is represented by some s <I t, so we have witnesses g(〈t,s〉,〈0〉), g(〈t,s〉,〈1〉),
the first in the first member of the normalizer sequence, the second in the (β+1)-th
normalizer not in the β-th normalizer. So we have a long normalizer tower of the
subgroup G<0

I , the one generated by

{g(t̄,η) : η(`) = 0 for some ` < `g(η) = `g(t̄)− 1, t̄ ∈ `g(t̄)I is <I -decreasing}.

Now §1 is dedicated to defining and investigating those groups.
However G<0

I = 〈g(t̄,η) : t̄ ends with a <I -minimal member〉 (which by this
scheme will be the first in the normalizer tower described above) is too big. So in 2.1
we use a semi-direct product KI = GI∗hLI , where LI is an abelian group with every
element of order two, generated by {hgG<0

I
: g ∈ GI} with (h(g1))hgG<0

I
= h(g1g)G

<0
I

and try to show that the normalizer tower of the subgroup HI = {e, heG<0
I
} of KI

has the same height.
But we have to make KI a κ-automorphism group. We only almost have it: (and

under the present description necessarily fail) we will represent it as Aut(M)/N for
some structure M of cardinality ≤ κ and normal subgroup N of it of cardinality
≤ κ; this suffices.

From where will M come from? We will represent I as an inverse limit of some
kind of t = 〈Iu, πu,v : u ≤J v〉 where Iu is a partial order of cardinality ≤ κ, πu,v a
mapping from Iv to Iu (commuting). It seemed natural, a priori, to demand that
πu,v is order preserving but it seemingly does not work out. It seemed natural, a
priori, to prove that whenever t is as above there is an inverse limit, etc. We find
it more transparent to treat the matter axiomatically: the limit is given inside, i.e.
as s which is t + a limit v∗; and J t = Js \ {v∗} is directed.

Also, we demand that J t is ℵ1-directed (otherwise in the limit of the groups we
have elements represented as infinite products of limits of the generators).
We shall derive the structure M from t so its automorphisms come from members
of KIu (for u ∈ J t). Well, not exactly by formal terms for it, to enable us to project
to u′ ≤J[t] u; recalling that πu,v does not necessarily preserve order. To make things

smooth we demand that J t is a linear order (say, cf(κ)) when, as in the main case,
κ is singular strong limit of uncountable cofinality.

More specifically, if s, t ∈ I then for every large enough u ∈ J t,

s <Iv∗ t⇔ πu,v∗(s) <Iu πu,v∗(t)

(note the order of the quantifiers). Then we define a structure M derived from t. So
the automorphism group of M is the inverse limit of groups which comes from the
formal definitions of elements of KIu -s. Each depend on finitely many generators,
which in different u-s give different reduced forms.

Now they are defined from some t̄ ∈ k(Iu) using “Iv∗ is the inverse limit . .
.” The “important” tu-s, those which really affect, will form an inverse system.
(Without loss of generality, the length k is constant on an end segment. Here we
use “J t is ℵ1-directed.”) So for those `-s, the sequence 〈tu,` : u ∈ J t〉 has limit tv∗,`
(say, for ` < k∗).

So 〈tu∗,` : ` < k∗〉 has the same quantifier type in Iu whenever u∗ ≤ u ≤ v∗ for
some u∗ < v∗. The other t-s still has influence, so it is enough to find for them a
pseudo limit: tv∗,` such that they will have the same affect on how the “important”
tu,` are used (this is the essential limit).

All this gives an approximation to Aut(M) ∼= KIv∗ . The “almost” means that
we divide by the subgroup of the automorphism of M which are idKu for every
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THE HEIGHT OF THE AUTOMORPHISM TOWER OF A GROUP 5

u ∈ J t large enough. This is a normal subgroup of cardinality ≤ κ so we are done
except constructing such systems.

§ 1. Constructing groups from partial orders and long normalizer
sequences

Discussion 1.1. Our aim is, for a partial order I, to define a group G = GI and a
subgroup H = HI such that the normalizer length of H inside G reflects the depth
of the well founded part of I. Eventually we would like to use I of large depth such
that |HI | ≤ κ and the normalizer length of H inside GI is > 2κ, even equal to the
depth of I.

For clarity we first define an approximation. In particular, H appears only in
§2. How do we define the group G = GI from the partial order I? For each
t ∈ I we would like to have an element associated with it (it is g(〈t〉,〈 〉)) such
that it will “enter” norαG(H) exactly for α = rkI(t) + 1. We intend that among
the generators of the group commuting is the normal case, and we need witnesses

that g(〈t〉,〈 〉) /∈ norβ+1
G (H) wherever β < rkI(t) and β > 0. It is natural that if

rkI(t1) = β and t1 <I t0 ..= t then we use t1 to represent β, as witness; more
specifically, we construct the group such that conjugation by g(〈t〉,〈 〉) interchanges

g(〈t0,t1〉,〈0〉) and g(〈t0,t1〉,〈1〉) and one of them, say g(〈t0,t1〉,〈1〉), belongs to norβ+1
G (H)\

norβG(H) whereas the other one, g(〈t0,t1〉,〈0〉), belongs to nor1
G(H). Iterating we get

the elements x ∈ XI defined below.
To “start the induction,” we add to G an element g∗ of order 2 getting KI ,

commuting with g ∈ G iff g is intended to be in the low level (e.g. g(t̄,η), tn ∈ I
is minimal, see notation below). We could have in this section considered only a
partial order I, and the groups GI (and later KI) derived from it. But as anyhow
we shall use it in the context of κ-p.o.w.i.s., we do it in this frame (of course if
Js = {u}, then s is essentially just Iu).

Note that for our main result it suffices to deal with the case rk(I) <∞.

Definition 1.2. Let I be a partial order (so 6= ∅).
1) rkI : I → Ord ∪ {∞} is defined by rkI(t) ≥ α iff (∀β < α)(∃s <I t)[rkI(s) ≥ β].
2) rk<∞I (t) is defined as rkI(t) if rkI(t) <∞ and is defined as⋃

{rkI(s) + 1 : s <I t, rkI(s) <∞}

in general.
3) Let rk(I) =

⋃
{rkI(t) + 1 : t ∈ I} stipulating α <∞ =∞+ 1.

4) rk<∞(I) =
⋃
{rkI(t) + 1 : t ∈ I and rkI(t) <∞}.

5) Let I[α] = {t ∈ I : rkI(t) = α}.
6) I is non-trivial when {s : s ≤I t and rkI(s) ≥ β} is infinite for every t ∈ I
satisfying rk<∞I (t) > β (used in the proof of 1.10(1); if rk(I) < ∞ then it is
equivalent to demand “rkI(s) = β”).
7) I is explicitly non-trivial when each EI -equivalence class is infinite, where

EI =
{

(t1, t2) ∈ I × I : (∀s ∈ I)[s <I t1 ⇔ s <I t2 ∧ t1 <I s⇔ t2 <I s]
}
.

Definition 1.3. 1) s is a κ-p.o.w.i.s. (partial order weak inverse system) when:

(A) s = (J, Ī, π̄), so J = Js = J [s], Ī = Īs, π̄ = π̄s.

(B) J is a directed partial order of cardinality ≤ κ.

(C) Ī = 〈Iu : u ∈ J〉 = 〈Isu : u ∈ J〉
(D) Iu = Isu is a partial order of cardinality ≤ κ.

(E) π̄ = 〈πu,v : u ≤J v〉
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6 S. SHELAH

(F) πu,v is a partial mapping from Iv into Iu. (No preservation of order is
required!)

(G) If u ≤J v ≤J w then πu,w = πu,v ◦ πv,w.

2) s is a p.o.w.i.s. means κ-p.o.w.i.s. for some κ.
3) For u ∈ J let Xu = Xs

u be the set of x such that for some n < ω:

(A) x = (t̄, η) = (t̄x, ηx)

(B) ηx is a function from {0, . . . , n− 1} to {0, 1}.
(C) t̄ = 〈t` : ` ≤ n〉 = 〈tx` : ` ≤ n〉, where t` ∈ Isu is <Isu -decreasing: i.e.

tn <Isu tn−1 <Isu . . . <Isu t0.

3A) In fact, we define XI similarly for every partial order I, so Xs
u = XIsu

.
4) In part (3), for x ∈ Xs

u, let n(x) = `g(t̄x)− 1 and so txn(x) is the last element in

the sequence t̄.
5) For x ∈ Xs

u and n ≤ n(x) let y = x � n ∈ Xs
u (with n(y) = n) be defined by:

t̄y ..= t̄x � (n+ 1) = 〈tx0 , . . . , txn〉

ηy ..= ηx � n = ηx � {0, . . . , n− 1}.
6) We define rk2

u = rk2,s
u to be the function from Xu to {−1}∪Ord∪{∞} as follows:

(A) If x ∈ Xu and {ηx(`) : ` < n(x)} ⊆ {1} (e.g., n(x) = 0) then let rk2
u(x) ..=

rkIu(txn(x)).

(B) If x ∈ Xu and {ηx(`) : ` < n(x)} * {1} then let rk2,s
u (x) = −1. (Yes, −1!)

7) We say that s is nice when every Isu is non-trivial and πu,v is a function from Iv
into Iu, i.e., the domain of πs

u,v is Iv.

8) X<α
u

..= {x ∈ Xs
u : rk2

u(x) < α} and X≤αu
..= {x ∈ Xs

u : rk2
u(x) ≤ α}. Note that

X≤αu = X<α+1
u when α <∞. Of course, we may write X<α,s

u , X≤α,su and note that
X<0
u = {x ∈ Xs

u : 0 ∈ Rang(ηx)}.

Definition 1.4. Assume s is a κ-p.o.w.i.s. and u ∈ Js.
1) Let Gu = Gs

u be the group generated by {gx : x ∈ Xs
u} freely except the equations

in Γu = Γs
u where Γu consists of

(A) g−1
x = gx; that is, gx has order 2 for each x ∈ Xu.

(B) gy1
gy2

= gy2
gy1

when y1, y2 ∈ Xu and n(y1) = n(y2).

(C) gxgy1
g−1
x = gy2

when ~u,sx,y1,y2
holds (see below).

1A) Let ~x,y = ~ux,y = ~u,sx,y mean that ~x,y1,y2
for some y1, y2 such that y ∈

{y1, y2}, see below.
1B) Let ~x,y1,y2

= ~ux,y1,y2
= ~u,sx,y1,y2

mean that:

(A) x, y1, y2 ∈ Xu

(B) n(x) < n(y1) = n(y2)

(C) y1 � n(x) = y2 � n(x)

(D) t̄y1 = t̄y2

(E) For ` < n(y1) we have: ηy1(`) 6= ηy2(`) iff ` = n(x) ∧ x = y1 � n(x).

2) Let G<αu = G<α,su be defined similarly to Gs
u except that it is generated only by

{gx : x ∈ X<α
u }, freely except the equations from Γ<αu = Γ<α,su , where Γ<αu is the

set of equations from Γu among {gx : x ∈ X<α
u }.

Similarly G≤αu ,Γ≤αu ; note that G≤αu = G<α+1
u ,Γ≤αu = Γ<α+1

u if α <∞.
3) For X ⊆ Xu let Gu,X = Gs

u,X be the group generated by {gy : y ∈ X} freely ex-
cept the equations in Γu,X = Γs

u,X which is the set of equations from Γu mentioning

only generators among {gy : y ∈ X}.
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THE HEIGHT OF THE AUTOMORPHISM TOWER OF A GROUP 7

Observation 1.5. 1) The sequence 〈X<α
u : α ≤ rk(Isu)〉 is ⊆-increasing continuous.

2) If x, y ∈ Xu are such that x 6= y = x � n then rk2
u(y) ≥ rk2

u(x) and if equality
holds then rk2

u(x) =∞ = rk2
u(y) or both are −1.

3) If a partial order I is explicitly non-trivial then I is non-trivial.

Proof. Check. �

Observation 1.6. For a κ-p.o.w.i.s. s.
1) ~u,sx,y holds iff:

(A) x, y ∈ Xu and

(B) n(y) ≥ n(x) + 1.

2) If x ∈ Xs
u then {(y1, y2) : ~u,sx,y1,y2

holds} is a permutation of order two of
{y ∈ Xs

u : n(y) > n(x)}.
3) Moreover, the permutation in part (2) maps each {y ∈ Xs

u : n(y) = k} onto itself
when k ∈ (n(x), ω) and it maps Γu{y∈Xs

u:n(y)>k} onto itself when n(x) ≤ k < ω.
4) ~u,sx,y1,y2

iff ~u,sx,y2,y1
.

5) For x, y ∈ Xs
u, in the group Gs

u the elements gx, gy commute except when x 6=
y ∧ (x = y � n(x) ∨ y = x � n(y)). In this case, if n(x) < n(y) there is y′ 6= y such

that ~x,y,y′ and ηy(`) = ηy
′
(`)⇔ ` 6= n(x).

Proof. (details on (2),(3) see the proof of 1.7). �

We first sort out how elements in Gs
u and various subgroups can be (uniquely)

represented as products of the generators.

Claim 1.7. Assume that s is a κ-p.o.w.i.s., u ∈ Js and <∗ is any linear order of
Xu such that

� if x ∈ Xu, y ∈ Xu and n(x) > n(y) then x <∗ y.

1) Any member of Gu is equal to a product of the form gx1
. . . gxm(x` ∈ Xu) where

x` <
∗ x`+1 for ` = 1, . . . ,m− 1. Moreover, this representation is unique.

2) Similarly for G≤αu , G<αu (using X≤αu , X<α
u respectively instead Xu) hence G≤αu , G<αu

are subgroups of Gu.
3) In part (1) we can replace Gu and Xu by G = Gu,X and X respectively when
X ⊆ Xu is such that [{x, y1, y2} ⊆ Xu ∧~u,sx,y1,y2

∧ {x, y1} ⊆ X ⇒ y2 ∈ X]. Hence
Gu,X is equal to 〈gx : x ∈ X〉Gu .
4) If g = gy1

. . . gym where y1, . . . , ym ∈ Xu and g = gx1
. . . gxn ∈ Gu and x1 <

∗

. . . <∗ xn then n ≤ m.
5) 〈G<αu : α ≤ rk(Isu), α an ordinal〉 is an increasing continuous sequence of groups
with last element G<∞u .
6) {gG<0

u : g ∈ Gu} is a partition of Gu (to right cosets of Gu over G<0
u ).

7) If <1, <2 are two linear orders of Xu as in � above and Gu |= “gx1
. . . gxk =

gy1
. . . gym” and x1 <1 . . . <1 xk and y1 <2 . . . <2 ym (or just x1 <1 . . . <1

xk, n(y1) ≥ n(y2) ≥ . . . ≥ n(ym) and 〈y` : ` = 1, . . . ,m〉 is with no repetitions),
then:

(A) k = m

(B) for every i we have {` : n(x`) = i} = {` : n(y`) = i} and this set is a convex
subset of {1, . . . ,m}.

(So the only difference is permuting gx`(1)
, gx`(2)

when n(x`(1)) = n(x`(2)).

8) If I ⊆ Iu and X = XI then Gu,X ∩G<0
u is the subgroup of Gu,X generated by

{gx : x ∈ X,Rang(ηx) * {1}}
i.e., the (naturally defined) G<0

I , (GI ..= Gu,XI , G
<0
I

..= G<0
u,XI

).

9) If I` ⊆ Isu for ` = 1, 2, 3 (so ≤I`=≤I� I`) and I1 ∩ I2 = I3 then GI1 ∩GI2 = GI3
and G<0

I1
∩G<0

I2
= G<0

I3
.
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8 S. SHELAH

Proof. 1),2),3) Recall that each generator has order two. We can use standard
combinatorial group theory (but in the rewriting process below we do not assume
knowledge of it); the point is that in the rewriting the number of generators in the
word does not increase (so no need of <∗ being a well ordering).
We now give a full self-contained proof reducing everything to (3). For part of (2)
we consider G = G<αu , X = X<α

u ⊆ Xu,Γ = Γ<αu for α an ordinal or infinity and
for part (1) and the rest of part (2) consider G = G≤βu , X = X≤βu ⊆ Xu,Γ = Γ≤βu
for β an ordinal or infinity (recall that Gu, Xu is the case β = ∞). Now in parts
(1),(2) for the set X, the condition from part (3) holds by 1.5(2).

[Why? So assume ~ux,y1,y2
and e.g. x, y1 ∈ X<α

u and we should prove that y2 ∈
X<α
u . If y1 = y2 this is trivial so assume y1 6= y2, hence necessarily y1 � n(x) = x =

y2 � n(x) and n(x) < n(y1) = n(y2) and t̄y1 = t̄y2 and ηy1(`) = ηy2(`)⇔ ` 6= n(x).
If ηx is not constantly one then also ηy2 is not constantly one hence y2 ∈ X<0

u

so fine. If ηx is constantly one then α > rk2
u(x) = rkIu(txn(x)) ≥ rkIu(ty1

n(y1)) =

rkIu(ty2

n(y2)) ≥ rk2
u(y2) hence y2 ∈ X≤αu so fine.]

So it is enough to prove part (3). Now recall that G = Gu,X and

(A) ”~1” every member of G can be written as a product gx1 . . . gxn for some
n < ω, x` ∈ X

[Why? As the set {gx : x ∈ X} generates G and G |= “g−1
x = gx”.]

(B) ”~2” if in g = gx1 . . . gxn we have x` = x`+1 then we can omit both
[Why? As gxgx = eG for every x ∈ X by clause (a) of Definition 1.4(1)]

(C) ”~3” if 1 ≤ ` < n and g = gx1
. . . gxn and we have x`+1 <∗ x` and

[m ∈ {1, . . . , n} \ {`, `+ 1} ⇒ ym = xm] then we can find y`, y`+1 ∈ X such
that g = gy1 . . . gyn and y` <

∗ y`+1 and, in fact, y`+1 = x`.

[Why does ~3 hold? By Definition 1.4(1) and Observation 1.6(5) one of the
following cases occurs. Case 1: gx` , gx`+1

commutes.

Let y` = x`+1, y`+1 = x`. Case 2: Not Case 1 but ~u,sx`+1,x`
, see Definition

1.4(1A).
By clause (b) of Definition 1.4(1B) we have n(x`+1) < n(x`). So by � of the

assumption of the present claim we have x` <
∗ x`+1, contradiction. Case 3: Not

Case 1 but ~u,sx`,x`+1
, see Definition 1.4(1A).

By 1.6(5) there is y` ∈ X such that n(y`) = n(x`+1) > n(x`), t̄
y` = t̄x`+1 , [i <

n(x`+1)⇒ (ηy`(i) = ηx`+1(i)⇔ i 6= n(x`))] and ~x`,x`+1,y` .

Let y`+1 = x`, clearly y`+1, y` ∈ X. By Definition 1.4(1), we have gx`gx`+1
g−1
x`

=
gy` hence gx`gx`+1

= gy`gx` = gy`gy`+1
and clearly n(y`+1) = n(x`) < n(y`) hence

y` <
∗ x` = y`+1, so we are done.

The three cases exhaust all possibilities (according to whether n(x`) = n(x`+1), n(x`) >
n(x`+1) or n(x`) < n(x`+1) hence ~3 is proved.]

~4 every g ∈ G can be represented as gx1
. . . gxn with x1 <

∗ x2 <
∗ . . . <∗ xn.

[Why? Really the proofs below of ~4 and ~5 are incredibly detailed, but try to
serve complaints about the proof being only implicit, not to mention errors in earlier
versions; so a reader who “sees” those assertions (or parts) can jump ahead.

Without loss of generality g is not the unit of G. By ~1 we can find x1, . . . , xn ∈
X such that g = gx1 . . . gxn and n ≥ 1. Choose such a representation satisfying

⊗ (a) with minimal n and

(b) for this n, with minimal m ∈ {1, . . . , n+1} such that xm <∗ . . . <∗ xn

and 1 ≤ ` < m ≤ n⇒ x` ≤∗ xm, and
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(c) for this pair (n,m) if m > 2 then with maximal ` where ` ∈

{1, . . . ,m− 1} satisfies x` is <∗-maximal among {x1, . . . , xm−1}
that is k ∈ {1, . . . ,m− 1} ⇒ xk ≤∗ x`.

Easily there is such a sequence (x1, . . . , xn), noting that m = n+ 1 is O.K. for (b)
and there is ` as in ⊗(c).

By ~2 and clause (a) of ⊗ we have x` 6= x`+1 when ` from ⊗(c) is well defined
(i.e., if m > 2).
Now m = 2 is impossible (as then m = 1 can serve), if m = 1 we are done, and
if m > 2 then ` is well defined and ` = m − 1 is impossible (as then m − 1 can
serve instead m). Lastly by ~3 applied to this `, we could have improved ` to `+1,
contradiction.]

~5 the representation in ~4 is unique.

[Why does ~5 hold? Assume toward contradiction that gx′1 . . . gx′n1
= gy′1 . . . gy′n2

where x′1 <
∗ . . . <∗ x′n1

and y′1 <
∗ . . . <∗ y′n2

and (x′1, . . . , x
′
n1

) 6= (y′1, . . . , y
′
n2

).

For k ≤ m < ω let X<k,m> = {x ∈ X : k ≤ n(x) < m} and let G<k,m> =
Gs
u,X〈k,m〉

, i.e. be the group generated by {gx : x ∈ X<k,m>} freely except the

equations in Γ<k,m>, i.e., the equations from Γu,X<k,m> , i.e., the equations from
Definition 1.4(1) mentioning only its generators, i.e. generators from {gx : x ∈
X<k,m>}. Now clearly if ~u,sx,y1,y2

, see Definition 1.4(1B) then n(y1) = n(y2) ⇒
[y1 ∈ X<k,m> ⇔ y2 ∈ X<k,m>] so the set X<k,m> ⊆ X satisfies the requirement
in part (3) of 1.7 which we are proving; so what we have proved for X holds for
X<k,m>. In particular ~1 −~4 above gives that for every g ∈ G<k,m> there are n
and x1 <

∗ . . . <∗ xn from X<k,m> such that G<k,m> |= “g = gx1 . . . g
′′
xn . Also it

is enough to prove the uniqueness for G<k,m> (for every k ≤ m < ω), i.e., we can
assume x′1, . . . , x

′
n1
, y′1, . . . , y

′
n2
∈ X as if the equality holds (though (x′1, . . . , x

′
n1

) 6=
(y′1, . . . , y

′
n2

)), finitely many equations of Γu,X imply the undesirable equation and

for some k ≤ m < ω they are all from Γ<k,m> and {x′1, . . . , x′n1
, y′1, . . . , y

′
n2
} ⊆

X<k,m>, hence already in G〈k,m〉 we get this undesirable equation.
Now for k < m < ω and x ∈ X<k,k+1> let πk,mx be the following permutation of

X〈k+1,m〉:

�0 πk,mx maps y1 ∈ X〈k+1,m〉 to y2 if ~u,sx,y1,y2
.

It is easy but we shall check that

�1 For k,m, x as above,
(a) πk,mx is a permutation of order 2 of X〈k+1,m〉 which maps Γ〈k+1,m〉

onto itself

(b) πk,mx induces an automorphism π̂k,mx of G〈k+1,m〉: the one mapping
gy1 to gy2 when πk,mx (y1) = y2

(c) the automorphisms π̂k,mx of G〈k+1,m〉 for x ∈ X<k,k+1> pairwise com-
mute

(d) the automorphism π̂k,mx of G〈k+1,m〉 is of order two.

Why �1? By Definition 1.4(1B) we have ~x,y,y1
∧ ~x,y,y2

⇒ y1 = y2 hence πk,mx
is a partial function. Next if y ∈ X<k+1,m> then n(y) ≥ k + 1 > k = n(x)
hence by 1.6(1) we have ~x,y, which by Definition 1.4(1A) there is y1 ∈ X such
that ~x,y,y1

, this implies n(y1) = n(y) so as y ∈ X<k+1,m> also y1 ∈ X<k+1,m>,
so [y ∈ X<k+1,m> ⇒ πk,mx (y) = y1 ∈ X<k+1,m>]. So πk,mx is a function from
X<k+1,m> onto itself. By 1.6(4) we have πk,mx (y1) = y2 ⇒ πk,mx (y2) = y1 hence
πk,mx is one to one (so is a permutation) and has order two, so the first phrase
of (i) holds. For the second phrase it suffices to show that every equation from
Γ<k+1,m> is mapped to an equation from the same set. If the equation is from
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Definition 1.4(1)(a), i.e. g−1
y = gy it follows from “πk,mx is a permutation of order

2 of X<k+1,m>”. If the equation is from Definition 1.4(1)(b), i.e. gy1gy2 = gy2gy1

where y1, y2 ∈ X<k+1,m> and n(y1) = n(y2) then it suffices to note n(πk,mx (y1)) =
n(y1) = n(y2) = n(πk,mx (y2)).

Lastly, if the equation is from Definition 1.4(1)(c), i.e. has the form gygy1
g−1
y =

gy2 where y, y1, y2 ∈ X<k+1,m> and~y,y1,y2 holds, let y′ = πk,mx (y), y′1 = πk,mx (y1), y′2 =
πk,mx (y2), and it suffices to show that y′, y′1, y

′
2 ∈ X<k+1,m> and ~y′,y′1,y′2 . First,

y′, y′1, y
′
2 ∈ X<k+1,m> as πk,mx is a permutation of X<k+1,m>.

Now, recalling n(y) ≥ k+1 > n(x), if y � n(x) 6= x, y` � n(y) = y then for ` = 1, 2,
as ~y,y1,y2

we have n(y`) > n(y) > n(x) and y` � n(x) = y � n(x) 6= x hence by
Definition 1.4(1B), ~x,y,y,~x,y1,y1

,~x,y2,y2
hence πk,mx maps y, y1, y2 to y, y1, y2

respectively, so the desired conclusion is trivial. If (y � n(x) 6= x) ∧ (y` � n(y) 6= y)
or (y � n(x) = x) ∧ (y` � n(y) 6= y) we can also get the result. So we can assume
y � n(x) = x and y` � n(y) = y and as above y` � n(x) = x for ` = 1, 2. So by

Definition 1.4(1B) as ~x,y,y′ we have t̄y = t̄y
′
, ηy(i) = ηy

′
(i)⇔ i < n(y) ∧ i 6= n(x)

and as ~x,y`,y′` we have t̄y
′
` = t̄y` , ηy`(i) = ηy

′
`(i)⇔ i < n(y`)∧ i 6= n(x) for ` = 1, 2

and as ~y,y1,y2
we have t̄y = t̄y` � (n(y) + 1), ηy1 � n(y) = ηy2 � n(y) = ηy, t̄y1 = t̄y2

and ηy1(i) = ηy2(i)⇔ i < n(y1) ∧ i 6= n(y).

Hence t̄y
′

= t̄y
′
` � (n(y′) + 1), t̄y

′
1 = t̄y

′
2 , ηy

′
1 � n(y′) = ηy

′
2 � n(y′) = ηy

′
, and

ηy
′
1(i) = ηy

′
2(i) ⇔ i < n(y′1) ∧ i 6= n(y′) recalling ηy

′
1(i) 6= 1 ⇔ ηy

′
1(i) = 0. So we

have finished proving clause (i).
Clause (ii) of �1 follows from clause (i).
As for clause (iii) note that for x1 6= x2 ∈ X such that n(x1) = k = n(x2) and

y ∈ X<k+1,m> we have πk,mx1
(y) 6= y ⇒ y � n(x1) = x1 ⇒ y � n(x2) = y � n(x1) =

x1 6= x2 ⇒ πk,mx2
(y) = y, so “πk,mx1

, πk,mx2
commute” follows, hence by (ii) it follows

that “π̂k,mx1
, π̂k,mx2

commute” as required.

Lastly, clause (iv) follows from “πk,mx is a permutation of order two of X<k+1,m>”.
We prove this revised formulation of the uniqueness, the one on Gu,X<k,m> by

induction on m− k.
Note that (recalling assumption � of 1.7)

(∗) if x ∈ X<k,k+1>, y ∈ X<`,`+1> and x <∗ y then ` ≤ k.

If m− k = 0, then G<k,m> is the trivial group so the uniqueness is trivial.
Also the case k = m − 1 is trivial too as in this case G〈k,m〉 is generated by

{gx : x ∈ X<k,m>, i.e. x ∈ X and n(x) = k} freely except that they pairwise
commute (i.e. clause (b) of Definition 1.4(1)) and each has order 2 (i.e. clause (a)
of Definition 1.4(1)) because clause (c) there is empty in the present case.

So

� G<k,k+1> is actually a vector space over Z/2Z with basis {gx : x ∈ X<k,k+1>},
well in additive notation, so the uniqueness is clear.

So assume that m− k ≥ 2, now we need

�2
k,m if x′1, . . . , x

′
n1
, y′1, . . . , y

′
n2

fromX〈k,m〉 are as above inG<k,m> then (x′1, . . . , x
′
n1

) =

(y′1, . . . , y
′
n2

).

We can prove the induction step.
Now we define a mapping π from {gx : x ∈ X<k,k+1>} to Aut(G<k+1,m>) by

x 7→ π̂k,mx . Now � above describes G<k,k+1> and by �1 the mapping π maps
Γ<k,k+1> to equations which are satisfied by Aut(G<k+1,m>), hence there is a
homomorphism π̂ from G<k,k+1> into Aut(G<k+1,m>).

Hence by 1.9 the twisted product Ĝ = G<k,k+1> ∗π̂ G<k+1,m> is well defined.
Let κ be the following mapping from {gx : x ∈ X<k,m>} to Ĝ: if x ∈ X<k,k+1>
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then κ(gx) ..= (gx, eG<k+1,m>) ∈ G<k,k+1> ×G<k+1,m> and if x ∈ X<k+1,m> then
κ(gx) ..= (eG<k,k+1> , gx) ∈ G<k,k+1> ×G<k+1,m>.

Now easily every equation from Γ<k,m> is mapped by κ to an equation satisfied
in Ĝ (if it is from Γ<k+1,m> then we use the definition of G<k+1,m> = Gu,X<k+1,m> ,

if it is from Γ<k,m> \Γ<k+1,m>, then we check by cases according to the clauses of
Definition 1.4(1), if it is clause (a) the equation has the form g2

x = e, x ∈ X<k,k+1>

and use G<k,k+1> |= “g2
x = e”. If the equation is from clause (b) then it has the

form gxgy = gygx where x, y ∈ X<k,k+1> and use “G<k,k+1> is abelian”.
Lastly, if the equation is from clause (c) then the equation has the form gxgy1

g−1
x =

gy2
where x ∈ X<k,k+1>, y1, y2 ∈ X<k+1,m> and ~x,y1,y2

holds; then we use (e) of
1.9(2).

So as G<k,m> is generated by {gx : x ∈ X<k,m>} freely except the equations
from Γ<k,m> it follows that κ can be (uniquely) extended to a homomorphism from

G<k,m> into Ĝ. Let us return to the statment in ~5. So assume x′1 <
∗ . . . <∗ x′n1

and y′1 <
∗ . . . <∗ y′n2

are from X<k,m> and G<k,m> |= “gx′1 . . . gx′n1
= gy′1 . . . gy′n2

”.

If {x′i, y′j : i = 1, . . . , n1 and j = 1, . . . , n2} ⊆ X<k+1,m> using κ and recalling

1.9(2)(d) and that G2 there stands for G<k+1,m> here we get a counterexample to
~5 for G<k+1,m> but m−(k+1) < m−k so we are done by the induction hypothesis.
So by the demand on <∗, we have x′n1

∈ X<k,k+1> ∨ y′n2
∈ X<k,k+1>. Now let

n̂1, n̂2 be such that gxi ∈ G<k+1,m> ⇔ i < n̂1 and gyj ∈ G<k+1,m> ⇔ j < n̂2.

Let κ̂1 : G<k,m> → G<k,k+1> and κ̂2 : G<k,m> → G<k+1,m> be such that
g ∈ G<k,m> ⇒ κ(g) = (κ̂1(g), κ̂2(g)). Applying κ̂1 clearly gxn̂1

gxn̂1+1
. . . gxn1

=

gyn̂2
gyn̂2+1

. . . gyn2
and (xn̂1

, xn̂1+1, . . . , xn1
) = (yn̂2

, yn̂2+1, . . . , yn2
) with �, “divid-

ing” G<k,m> |= “gx1 . . . gxn̂1−1
= gy1 . . . gyn̂2−1

” and we have dealt with this above.

So 1),2),3) holds.
4) Included in the proof of ~4 inside the proof of parts (1),(2),(3).
5) For α < β ≤ ∞, clearly X<α

u ⊆ X<β
u and Γ<αu ⊆ Γ<βu hence there is a ho-

momorphism from G<αu into G<βu . This homomorphism is one-to-one (because of
the uniqueness clause in part (2)) hence the homomorphism is the identity. So
the sequence is ⊆-increasing, the continuity follows by rk2

u(x) = α < ∞ ⇔ gx ∈
G<α+1
u \G<αu .

6),7),8),9) Easy. �

Observation 1.8. Assume that n is a natural number > 1, G a group and J a set
with:

(A) ft is an automorphism of G of order n for t ∈ J (i.e. fnt = idG)

(B) ft, fs ∈ Aut(G) commute for any s, t ∈ J .

Then there are K and 〈gt : t ∈ J〉 such that

(α) K is a group

(β) G is a normal subgroup of K

(γ) K is generated by G ∪ {gt : t ∈ J}
(δ) if a ∈ G and t ∈ J then g−1

t agt = ft(a)

(ε) if <∗ is a linear order of J then every member of K has a one and only

one representation as gb1t1 g
b2
t2 . . . g

bn
tn x where x ∈ G,n < ω, t1 <∗ . . . <∗ tn

are from J and b1, . . . , bn ∈ {1, . . . ,n− 1}
(ζ) gnt = eG.

Proof. A case of twisted product, see below. (Compare also with the proof of 1.7(3),
�2
k,m). Set K =

⊕
t∈J

Z/nZgt ∗π G, where π(gt) = ft ∈ Aut(G). �
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Claim 1.9. 1) Assume G1, G2 are groups and π is a homomorphism from G1 into
Aut(G2), we define the twisted product G = G1 ∗π G2 as follows:

(A) the set of elements is G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2}
(B) the product operation is (g1, g2) ∗ (h1, h2) = (g1h1, g

π(h1)
2 h2) where

(α) g
π(h1)
2 is the image of g2 by the automorphism π(h1) of G2

(β) g1h1 is a G1-product

(γ) g
π(h1)
2 h2 is a G2-product.

2)

(A) such group G exists

(B) in G every member has one and only one representation as g′1g
′
2 where

g′1 ∈ G1 × {eG2}, g′2 ∈ {eG1} ×G2

(C) the mapping g1 7→ (g1, e) embeds G1 into G

(D) the mapping g2 7→ (e, g2) embeds G2 into G

(E) so up to renaming, for each h1 ∈ G1 conjugating by it (i.e. g 7→ h−1
1 gh1)

inside G acts on G2 as the automorphism π(h1) of G2.

3) If H1, H2 are subgroups of G1, G2 respectively, and g1 ∈ H1 ⇒ π(g1) maps H2

onto itself and π′ : H1 → Aut(H2) is π′(x) = π(x) � H2 then {(h1, h2) : h1 ∈
H1, h2 ∈ H2} is a subgroup of G1 ∗π G2 and is in fact H1 ∗π′ H2; we denote π′ by
π[H1, H2].
4) If the pairs (Ha

1 , H
a
2 ) and (Hb

1 , H
b
2) are as in part (3) and Hc

1
..= Ha

1 ∩Hb
1 , H

c
2

..=
Ha

2 ∩Hb
2 then the pair (Hc

1 , H
c
2) is as in part (3) and (Ha

1 ∗π[Ha1 ,H
a
2 ]H

a
2 )∩(Hb

1∗[Hb1 ,Hb2 ]

Hb
2) = (Hc

1 ∗π[Hc1 ,H
c
2 ] H

c
2).

Proof. Known and straight. �

Claim 1.10. Let s be a κ-p.o.w.i.s., u ∈ Js and Iu = Isu be non-trivial, see Defini-
tion 1.2(6).
1) If 0 ≤ α <∞ then the normalizer of G<αu in Gu is G<α+1

u .
2) If α = rk<∞(Iu) then the normalizer of G<αu in Gu is G<∞u = G<αu .

Proof. 1) First

(∗)1 if x ∈ Xu and rk2
u(x) = α then conjugation by gx in Gu maps {gy : y ∈

X<α
u } = {gy : y ∈ Xu and rk2

u(y) < α} onto itself.

[Why? As gx = g−1
x it is enough to prove that conjugation by gx maps the set

into itself, i.e. to prove for every y ∈ X<α
u that: gxgyg

−1
x ∈ {gz : z ∈ X<α

u }. As

rk2
u(x) = α and α ≥ 0 by the assumptions of the claim it follows that Rang(ηx) ⊆
{1}.

Now for each such y, one of the following cases occurs. Case (i): gx, gy commutes

so gxgyg
−1
x = gy ∈ {gz : z ∈ X<α

u }.
In this case the desired conclusion holds trivially. Case (ii): n(y) ≤ n(x) and

not case (i).
As case (i) does not occur, necessarily n(y) < n(x) and y = x � n(y) by 1.6(5).

Also it follows that txn(x) <Isu t
y
n(y), so as rkIu(txn(x)) = rku(x) = α < ∞ (recalling

Rang(ηx) ⊆ {1}) we have rkIu(tyn(y)) > α. Now Rang(ηy) ⊆ Rang(ηx) ⊆ {1}, so

necessarily rk2
u(y) > α, contradiction. Case (iii): n(y) > n(x) and not case (i).
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As in case (ii) by 1.6(5) we have x = y � n(x).
Clearly tyn(y) <Isu t

y
n(x) = txn(x) so as rk2

u(x) ≥ 0 necessarily rkIu(txn(x)) = rk2
u(x) =

α ∈ [0,∞) hence rkIu(tyn(y)) < rkIu(txn(x)) = α and so rk2
u(y) ≤ rkIu(tyn(y)) < α.

Let y1 = y and by 1.6(1),(5) and Definition 1.4(1A) there is y2 such that ~u,sx,y1,y2

hence Gu |= “gxgyg
−1
x = gy2” and t̄y = t̄y1 = t̄y2 , so rk2

u(y2) ≤ rkIu(ty2

n(y2)) =

rkIu(ty1

n(y1)) < α hence y2 ∈ X<α
u and so gy2 ∈ G<αu so we are done.

So (∗)1 holds.] Now by (∗)1 it follows that gx normalizes G<αu for every member

gx of {gx : rk2
u(x) = α}, hence clearly norGu(G<αu ) ⊇ (G<αu )∪ {gx : rk2

u(x) = α and
x ∈ Xu} but the latter generates G<α+1

u hence

(∗)2 norGu(G<αu ) ⊇ G<α+1
u .

Second assume g ∈ Gu \ G<α+1
u , let <∗ be a linear ordering of Xu as in � of 1.7.

We can find k < ω and x1, . . . , xk from Xu such that g = gx1gx2 . . . gxk and so
it suffices to prove by induction on k that: if g = gx1 . . . gxk ∈ Gu \ G<α+1

u then
g /∈ norGu(G<αu ). By 1.7(1),(4) without loss of generality x1 <∗ . . . <∗ xk. As
g /∈ G<α+1

u necessarily not all the xm-s are from X<α+1
u hence for some m, gxm /∈

G<α+1
u .

(∗)3 Without loss of generality gx1
, gxk /∈ G<α+1

u .
[Why? So assume gxk ∈ G<α+1

u hence
(a) (a) gxk ∈ norGu(G<αu ) (as we have already provedG<α+1

u ⊆ norGu(G<αu ))

(b) (b) norGu(G<αu ) is a subgroup of Gu hence

(c) (c) g = gx1
. . . gxk−1

gxk ∈ norGu(G<αu ) iff gx1
. . . gxk−1

∈ norGu(G<αu ).

By the induction hypothesis on k we are done. Similarly if gx1 ∈ G<α+1
u

then derive g ∈ norGu(G<αu ) iff gx2 . . . gxk ∈ norGu(G<αu ) to finish.]

As rk2
u(x1) ≥ α+1 and Iu is non-trivial (recall Definition 1.2(6)) we can find t∗ ∈ Iu

such that

(∗)4 (a) t∗ <Iu t
x1

n(x1)

(b) rkIu(t∗) ≥ α
(c) t∗ /∈ {tx` : x ∈ {x1, . . . , xk} and ` ∈ {0, . . . , n(x)}}.

Let m(∗) be maximal such that 1 ≤ m(∗) ≤ k and (∃i)(xm(∗) = x1 � i).
Now we choose y ∈ Xs

u as follows:

(∗)5 (a) t̄y = t̄xm(∗)ˆ〈t∗〉
(b) ηy � n(xm(∗)) = ηxm(∗)

(c) ηy(n(xm(∗))) = 0.

Note that

(∗)6 xm(∗) = y � n(xm(∗)) and y ∈ X<0
u and n(y) = n(xm(∗)) + 1 and

(∗)7 n(x1) ≥ . . . ≥ n(xm(∗)) ≥ n(xm(∗)+1) ≥ . . . ≥ n(xk).

[Why? Recall that the sequence 〈x` : 1 ≤ ` ≤ k〉 is <∗-increasing hence by property
� of <∗ the sequence 〈n(x`) : 1 ≤ ` ≤ k〉 is non-increasing.]

We now try to define 〈y` : ` = 1, . . . , k + 1〉 by induction on ` as follows :

(∗)8 y1 = y and Gu |= “g−1
x`
gy`gx` = gy`+1

” if well defined.

So

(∗)9 y` = y for ` = 1, . . . ,m(∗) and so is well defined.
[Why? We prove it by induction on `. For ` = 1 this is given. So assume

that this holds for ` and we shall prove it for `+ 1 when `+ 1 ≤ m(∗). Now
¬(t̄y = t̄x` � (n(y) + 1)), i.e. t̄y is not an initial segment of t̄x` by the choice
of t∗ (and y) and hence y 6= x` � n(y) hence ¬(y = x` � n(y)∧n(y) < n(x`))
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14 S. SHELAH

and we also have ¬(x` = y � n(x`)∧n(x`) < n(y)) as otherwise x` = xm(∗) �
n(x`) but n(x`) ≥ n(xm(∗)) as x` <

∗ xm(∗) hence x` = xm(∗), but ` 6= m(∗)
hence x` 6= xm(∗), contradiction. Together by 1.6(5) the elements gy, gx`
commute so as by the induction hypothesis y` = y it follows that y`+1 = y
so we are done.]

Now:

(∗)10 ym(∗)+1 is well defined and satisfies (∗)5(a), (b) and also (∗)5(c) when we
replace 0 by 1.

[Why? By the definition of Gu in 1.4(1),(1B).]

(∗)11 ym(∗)+1 /∈ X<α
u .

[Why? By (∗)3, x1 /∈ X<α+1
u hence ηx1 is constantly one; but xm(∗) =

x1 � n(xm(∗)) hence ηxm(∗) is constantly one. Now ηym(∗)+1 = ηxm(∗)ˆ〈1〉 by

(∗)10 hence ηym(∗)+1 is constantly one. So rk2
u(ym(∗)+1) = rkIu(t

ym(∗)+1

n(ym(∗)+1)
) =

rkIu(t∗) ≥ α recalling (∗)4, so we are done.]

(∗)12 if ` ∈ {m(∗) + 1, . . . , k + 1} then y` = ym(∗)+1 and y` is well defined.
[Why? We prove this by induction on `. For ` = m(∗)+1 this is trivial by

(∗)10. For `+1 ∈ {m(∗)+2, . . . , k+1}, it is enough to prove that ym(∗)+1, x`
commute. Now ¬(t̄ym(∗)+1 = t̄x` � (n(y) + 1)) because n(ym(∗)+1) = n(y) =

n(xm(∗)) + 1 ≥ n(x`) + 1 > n(x`) hence ¬
(
ym(∗)+1 = x` � n(ym(∗)+1) ∧

n(ym(∗)+1) < n(x`)
)
; also ¬

(
x` = ym(∗)+1 � n(x`) ∧ n(x`) < n(ym(∗)+1)

)
as

otherwise this contradicts the choice of m(∗). So by 1.6(5) they commute
indeed.]

(∗)13 g−1gyg = gyk+1
.

[Why? We can prove by induction on ` = 1, . . . , k+1 that (gx1 . . . gx`−1
)−1gy(gx1 . . . gx`−1

) =
gy` , by the definition of the y`-s, i.e., by (∗)8 and they are well defined by
(∗)9 + (∗)10 + (∗)12.]

(∗)14 g−1gyg = gm(∗)+1.
[Why? By (∗)12 and (∗)13.]

(∗)15 g−1gyg /∈ G<αu .
[Why? By (∗)14 + (∗)11.]

So by (∗)6 we have gy ∈ G<0
u ⊆ G<αu and by (∗)15 we have g−1gyg /∈ G<αu hence

g does not normalize G<αu , so we have carried the induction on k. As g was any
member of Gu \G<α+1

u we get norGu(G<αu ) ⊆ G<α+1
u .

Together with (∗)2 we are done.
2) Follows. �

§ 2. Correcting the group

The Gs
u-s from §1 have long towers of normalizers but the “base”, G<0,s

u is in
general of large cardinality. Hence we replace below Gs

u by Ks
u and G<0,s

u by Hs
u.

Definition 2.1. Let s be a κ-p.o.w.i.s.
1) For u ∈ Js:

(A) recall 1.7(6): Au = As
u

..= {gG<0
u : g ∈ Gu} is a partition of G (to right

cosets of G<0
u inside Gu);

(B) for every f ∈ Gu a permutation ∂f of Au is defined by ∂f (g1G
<0
u ) =

(fg1)G<0
u , we may write it also as f(g1G

<0
u )

(C) let Lu = Ls
u be the group generated by {ha : a ∈ Au} freely except hahb =

hbha and h−1
a = ha for a,b ∈ Au; for g ∈ Gu let hg = hgG<0

u

(D) let hu = hs
u be the homomorphism from Gu into the automorphism group

of Lu such that f ∈ Gu ∧ a ∈ Au ⇒ (hu(f))(ha) = hfa
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(E) let Ku = Ks
u be Gu ∗hu Lu, the twisted product of Gu, Lu with respect to

the homomorphism hu, see 1.9, and we identify Gu with Gu × {eLu} and
Lu with {eGu} × Lu

(F) let Hu = {(eGu , heGuG<0
u

), (eGu , eLu)} a subgroup of Ku and let h∗ ..=

heGu = heGuG<0
u
∈ Lu, i.e. the pair (eGu , h∗) is the unique member of Hu

which is not the unit.

2) For α ≤ ∞ let K<α
u = K<α,s

u be the subgroup {(g, h) : g ∈ G<αu and h ∈ Lu} of
Ku. Similarly K≤αu = K≤α,su .
3) For u ∈ Js let

(A) Du = Ds
u = {(v, g) : v ≤J[s] u and g ∈ Ks

v}
(B) Z0

u = Z0,s
u

..= {(t̄, η) : t̄ = 〈t` : ` ≤ n〉, n < ω, t` ∈ Iu for each ` ≤ n and
η ∈ n2} and let z = (t̄z, ηz) = (〈tz` : ` ≤ n〉, ηz) and n(z) = n for z ∈ Z0

u;
this is compatible with Definition 1.3(3); note that here t̄ is not necessarily
decreasing

(C) Z1
u = Z1,s

u
..= {〈x` : ` < k〉 : k < ω, each x` is from Z0

u} and let z = (〈xz` :
` < k(z)〉) if z ∈ Z1

u

(D) Zu ..= Z0
u ∪ Z1

u

(E) for z ∈ Zu we define his(z), a finite subset of Iu by
(a) (α) if z = (〈t` : ` ≤ n〉, η) ∈ Z0

u then his(z) = {t` : ` ≤ n}
(b) (β) if z ∈ Z1

u say z = 〈(〈tk` : ` ≤ `k〉, ηk) : k < k∗〉 ∈ Z1
u then

his(z) = {tk` : k < k∗ and ` ≤ `k}
(F) for z ∈ Zu let n(z) = Σ{`k : k < k∗} if z = 〈(〈tk` : ` ≤ `k〉, ηk) : k < k∗〉 ∈

Z1
u and n(z) is already defined if z ∈ Z0

u in clause (b).

Observation 2.2. In Definition 2.1:
1) For u ∈ Js,Ku is well defined and Gu, Lu are subgroups of Ku (after the iden-
tification).
2) For I ⊆ Isu let Ls

u,I be the subgroup of Ls
u generated by {hgG<0

u
: g ∈ Gs

u,XI
}.

If I1, I2 ⊆ Isu then Ls
u,I1
∩ Ls

u,I2
= Ls

u,I1∩I2 . (Saharon says: The latter should be

wrong!)
3) For I ⊆ Isu let Ks

u,I be the subgroup of Ks
u generated by Gs

u,XI
∪ Ls

u,I . Then

(A) Ks
u,I normalizes Ls

u,I inside Ks
u

(B) Ks
u,I is Gs

u,XI
∗π Ls

u,I for the natural π, i.e. π = hs
u � G

s
u,XI

.

Also

(A) if I1, I2 ⊆ Isu then Ks
u,I1
∩Ks

u,I2
= Ks

u,I1∩I2 .

Proof. Easy (recall 1.7(8),(9), 1.9(2),(3)).
We want to point out that in the proof of clause (2) the following theorem is

needed:
If I` ⊆ Isu for ` = 1, 2, g` ∈ Gu,XI` with hg1

= hg2
, I3 = I1 ∩ I2 then there exists

some g3 ∈ Gu,XI3 with hg1 = hg2 = hg3 .

Its proof is similar to 1.7(3) and is left to the reader.
SAHARON FILL! (Daniel)
Please observe: 2.2.2) “If I1, I2 ⊆ Isu then Ls

n,I1
∩Ls

n,I2
= Ls

n,I1∩I2” being wrong

implies that also the following is wrong:
2.2.3)(c)
2.6.3)(c)(β)
2.7.2) and (2.7.3) – (otherwise add/give proof!)
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�9 on p.38, proof 3.4 (uses 2.7.3)!
3.4 GAME OVER! Saharon, please break the above chain of conclusions!! �

Definition 2.3. 1) If I is a partial order then kI is the set of t̄ = 〈t` : ` < k〉 where
t` ∈ I.
2) If t̄ ∈ kI then tpqf(t̄,∅, I) = {(ι, `1, `2) : ι = 0 and I |= “t`1 < t`2” or ι = 1 and
t`1 = t`2 or ι = 2 and I |= “t`1 > t`2” and ι = 3 if none of the previous cases}.
2A) Let Sk = {tpqf(t̄,∅, I) : t̄ ∈ kI and I is a partial order}.
3) We say t̄ ∈ kI realizes p ∈ Sk when p = tpqf(t̄,∅, I).

4) If k1 < k2 and p2 ∈ Sk2 then p1
..= p2 � k1 is the unique p1 ∈ Sk1 such that if

p2 = tpqf(t̄,∅, I) then p1 = tpqf(t̄ � k1,∅, I).

Remark 2.4. Below each member of Λ0
k,Λ

1
k,Λ

2
k will be a description of an element

of Gs
u,As

u,K
s
u respectively from a k-tuple of members of Isu. Of course, a member

of Zs
u is a description of a generator of Ks

u.

Definition 2.5. 1) For k < ω let Λ0
k = ∪{Λ0

k,p : p ∈ Sk} where for p ∈ Sk we let

Λ0
k,p be the set of sequences of the form 〈(¯̀

j , ηj) : j < j(∗)〉 such that:

(A) for each j for some n = n(¯̀
j , ηj) we have ¯̀

j = 〈`j,i : i ≤ n(¯̀
j , ηj)〉 is a

sequence of numbers < k of length n + 1 such that p = tpqf(t̄,∅, I) ⇒
〈t`j,i : i ≤ n(¯̀

j , ηj)〉 is <I -decreasing

(B) for each j, ηj ∈ n2 where n = n(¯̀
j , ηj).

2) For any p.o.w.i.s. s, u ∈ Js, t̄ ∈ k(Iu) and ρ = 〈(¯̀
j , ηj) : j < j(∗)〉 ∈ Λ0

k, let
gut̄,ρ = gu,st̄,ρ = (. . . g(t̄j ,ηj) . . .)j<j(∗), the product taken in Gu ⊆ Ku (so if j(∗) = 0 it

is eGu = eKu) where

(A) t̄j = seqρ,j(t̄)
..= 〈t`j,i : i ≤ n(¯̀

j , ηj)〉
(B) if t̄j is decreasing (in Iu) then g(t̄j ,ηj) ∈ Gu ⊆ Ku is already well defined, if

not then g(t̄j ,ηj)
..= eKu .

2A) For a p.o.w.i.s. s, u ∈ Js, t̄ ∈ k(Isu) and ρ = 〈(¯̀
j , ηj) : j < j(∗)〉 ∈ Λ0

k

let zut̄,ρ = zu,st̄,ρ be the following member of Z1,s
u : it is 〈xt̄,ρ,j : j < j(∗)〉 where

xt̄,ρ,j = xt̄,(¯̀
j ,ηj) = (〈t`j,i : i ≤ n(¯̀

j , ηj)〉, ηj). For p ∈ Sk and ρ = 〈(¯̀
j , ηj) :

j < j(∗)〉 ∈ Λ0
k,p let supp(ρ) = ∪{Rang(¯̀

j) : j < j(∗)} and if t̄ ∈ k(Isu) let

sup(t̄, ρ) = {t` : ` ∈ supp(ρ)}.
2B) We say ρ ∈ Λ0

k,p is p-reduced when: p ∈ Sk and for every p.o.w.i.s. s, u ∈ Js

and t̄ ∈ k(Isu) realizing p (in Isu), for no ρ′ ∈ Λ0
k,p do we have supp(ρ′) ⊂ supp(ρ)

and gu,st̄,ρ′ = gu,st̄,ρ .

2C) We say that ρ ∈ Λ0
k,p is explicitly p-reduced when the sequence is with no

repetitions and 〈n(¯̀
j , ηj) : j < j(∗)〉 is non-increasing (the length can be zero).

3) For k < ω let Λ1
k = ∪{Λ1

k,p : p ∈ Sk} where for p ∈ Sk we let Λ1
k,p be the

set of ρ = 〈(¯̀
j , ηj) : j < j(∗)〉 ∈ Λ0

k,p such that: for every s and u ∈ Js if

t̄ ∈ k(Isu) realizes p then there is no ρ′ ∈ Λ0
k,p with supp(ρ′) ⊂ supp(ρ) and satisfying

gu,st̄,ρG
<0
u = gu,st̄,ρ′G

<0
u .

4) For k < ω and p ∈ Sk let Λ2
k,p be the set of finite sequences % of length ≥ 1 such

that %(0) ∈ Λ0
k,p and 0 < i⇒ %(i) ∈ Λ1

k,p. Let Λ2
k = ∪{Λ2

k,p : p ∈ Sk}.
5) For any s, if u ∈ Js, t̄ ∈ k(Iu) and % = 〈ρi : i < i(∗)〉 ∈ Λ2

k then gt̄,% ∈ Ku

(recalling i(∗) ≥ 1) is gt̄,ρ0
hgt̄,ρ1hgt̄,ρ2 . . . hgt̄,ρi(∗)−1

(product in Ku) where gt̄,ρ` is

Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.



THE HEIGHT OF THE AUTOMORPHISM TOWER OF A GROUP 17

from clause (2), recalling that hg = hgG<0
u

is from clause (c) of Definition 2.1(1).

5A) For any p.o.w.i.s. s, u ∈ Js, t̄ ∈ k(Isu) and % = 〈ρi : i < i(∗)〉 ∈ Λ2
k, let

zut̄,% = zu,st̄,% be 〈zut̄,ρi : i < i(∗)〉.
5B) For p ∈ Sk and % ∈ Λ2

k,p let supp(%) = ∪{supp(%(i)) : i < i(∗)}.
5C) We say % ∈ Λ2

k,p is p-reduced when for every p.o.w.i.s. s, u ∈ Js and t̄ ∈ k(Isu)

realizing p, for no %′ ∈ Λ2
k,p do we have (in Ks

u) gu,st̄,%′ = gu,st̄,% and supp(%′) ⊂ supp(%).

Definition 2.6. 1) For ρ1, ρ2 ∈ Λ0
k,p we say ρ1E 0

k,pρ2 or ρ1, ρ2 are 0-p-equivalent

when: for every p.o.w.i.s. s and u ∈ Js and t̄ ∈ k(Isu) realizing p the elements
gu,st̄,ρ1

, gu,st̄,ρ2
of Gs

u are equal.

2) For ρ1, ρ2 ∈ Λ1
k,p we say ρ1E 1

k,pρ2 or ρ1, ρ2 are 1-p-equivalent when: for every

p.o.w.i.s. s and u ∈ Js and t̄ ∈ k(Iu) realizing p we have gu,st̄,ρ1
G<0
u = gu,st̄,ρ2

G<0
u .

3) For %1, %2 ∈ Λ2
k,p we say that %1E 2

k,p%2 or %1, %2 are 2-p-equivalent, when: for

every p.o.w.i.s. s and u ∈ Js and t̄ ∈ k(Iu) realizing p the element gu,st̄,%1
and gu,st̄,%2

of

Ks
u are equal.

Claim 2.7. Claim 1) In Definition 2.5 parts (2B),(3),(5C) saying “for every
p.o.w.i.s. s, u ∈ Js and t̄ ∈ k(Iu) realizing p” is equivalent to saying “for some
...”.
2) In Definition 2.6, E ι

k,p is an equivalence relation on Λιk,p for ι = 0, 1, 2. For
ι = 0, 2 every E ι

k,p-equivalence class contains a p-reduced member and for ι = 0
even an explicitly p-reduced one. Explicitly p-reduced implies p-reduced.
3) For every p.o.w.i.s. s, if u ∈ Js and t̄ ∈ k(Isu) realizes p ∈ Sk then

(A) for ρ1, ρ2 ∈ Λ0
k,p we have

(α) gu,st̄,ρ1
= gu,st̄,ρ2

iff ρ1E 0
k,pρ2

(β) if t̄ is with no repetition and ρ1, ρ2 are explicitly p-reduced, then they
are ρ1E 0

k,pρ2 iff letting ρi = 〈(¯̀i
j , η

i
j) : j < ji〉 for i = 1, 2 we have

(i) j1 = j2

(ii) for some permutation π of {0, . . . , j1 − 1} we have

(¯̀2
j , η

2
j ) = (¯̀1

π(j), η
1
π(j)) (so ρ2 is a permutation of ρ1, com-

pare 1.7(7))
(B) for ρ1, ρ2 ∈ Λ1

k,p we have

(α) gu,st̄,ρ1
G<0
u = gu,st̄,ρ2

G<0
u iff ρ1E 1

k,pρ2

(C) for %1, %2 ∈ Λ2
k,p we have

(α) gu,st̄,%1
= gu,st̄,%2

iff %1E 2
k,p%2

(β) if t̄ is with no repetition, %1E 2
k,p%2 and %1, %2 are p-reduced then supp(%1) =

supp(%2).

Proof. Straight, (recalling Claim 1.7(3),(7), Observation 2.2(2) and note that (3)
elaborates (1)). �

Claim 2.8. Assume k < ω, p ∈ Sk, s is a p.o.w.i.s., u ∈ Js and t̄1, t̄2 ∈ kI satisfy
p = tpqf(t̄`,∅, Isu) for ` = 1, 2.

1) If ρ ∈ Λ0
k,p and ρ is p-reduced and gt̄1,ρ = gt̄2,ρ ∈ Gs

u, then t̄2 � supp(ρ) is a

permutation of t̄1 � supp(ρ).
2) If ρ ∈ Λ1

k,p and gu,st̄1,ρG
<0
u = gu,st̄2,ρG

<0
u then t̄1 � supp(ρ) is a permutation of t̄2 �
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supp(ρ).
3) If % ∈ Λ2

k,p is p-reduced and gu,st̄1,% = gu,st̄2,% then similarly t̄1 � supp(%) is a permu-

tation of t̄2 � supp(%) and both are with no repetition.
4) For every %1 ∈ Λ2

k,p there is a p-reduced %2 such that for every p.o.w.i.s., u ∈ Js

and t̄ ∈ k(Isu) realizing p we have gu,st̄,%1
= gu,st̄,%2

. (Similarly for Λ0
k,p,Λ

1
k,p).

Proof. Straight. �

Definition 2.9. Let s be a κ-p.o.w.i.s.
1) For u ≤J[s] v let π̂0

u,v be the following partial mapping from Z0,s
v to Z0,s

u , recalling
Definition 2.1(3)(b):
x ∈ Dom(π̂0

u,v) iff x ∈ Z0,s
v and πu,v(t

x
` ) is well defined for ` ≤ n(x) and then

π̂u,v(x) = (〈πu,v(tx` ) : ` ≤ n(x)〉, ηx).
2) For u ≤J[s] v let π̂1

u,v = π̂1,s
u,v be the following partial mapping from Z1

v to Z1
u: if

z ∈ Z1
v so z = 〈(t̄k, ηk) : k < k∗〉 and t̄k = 〈tk` : ` ≤ `k〉, tk` ∈ Iv for k < k∗, ` ≤ `k

then π̂1
u,v(z) = 〈(〈πu,v(tk` ) : ` ≤ `k〉, ηk) : k < k∗〉 when each πu,v(t

k
` ) is well defined.

3) For u ≤J[s] v let π̂u,v be π̂0
u,v ∪ π̂1

u,v.
4) For u ∈ Js and z ∈ Zu let ∂u,z be the following permutation of Du = Ds

u where
Du is from Definition 2.1(3)(a). For each (v, g) ∈ Du we define ∂u,z((v, g)) as

follows: Case 1: z ∈ Dom(π̂0
v,u) ⊆ Z0

u and π̂v,u(z) ∈ Xs
v , i.e., 〈πv,u(tz` ) : ` ≤ n(z)〉

is <Iu -decreasing.
Then let ∂u,z((v, g)) = (v, gπ̂v,u(z)g) noting gπ̂v,u(z) ∈ Gv ⊆ Kv. Case 2: z ∈

Dom(π̂1
v,u) ⊆ Z1

u so z = 〈x` : ` < k〉 and x` ∈ Dom(π̂0
v,u) for ` < k and let

x′`
..= π̂0

v,u(x`) ∈ Xs
v for ` < k.

Then let ∂u,z((v, g)) = (v, g′) where g′ ∈ Kv is defined by hgx′0 ...gx′k−1

g, as prod-

uct in Kv noting gx′` ∈ Gv ⊆ Kv for ` < k. Case 3: Neither Case 1 nor Case

2.
Then let ∂u,z((v, g)) = (v, g).

Observation 2.10. In Definitions 2.1, 2.9:
1) If u ≤J[s] v then π̂u,v is a partial mapping from Zv to Zu.

2) In part (1), π̂u,v maps Z0
v , Z

1
v to Z0

u, Z
1
u respectively, that is it maps Z`v ∩

Dom(π̂u,v) into Z`u for ` = 0, 1.
3) If u ≤J[s] v and s is nice or just Dom(πu,v) = Iv then Dom(π̂u,v) = Zv.

Proof. 1),2),3) Check. �

Claim 2.11. 1) norKu(Hu) is K<0
u where Hu is from Definition 2.1(1)(f).

2) nor1+α
Ku

(Hu) is K<α
u for α ≥ 0 if Iu is non-trivial.
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Proof. 1) As Hu has two elements eKu and (eGu , h∗) clearly an element of Ku

normalizes Hu iff it commutes with h∗ ∈ Lu ⊆ Ku. Now when does (g, h) ∈
Gu ∗hu Lu commute with (eGu , heGuG<0

u
). Note that

(g, h)(eGu , heGuG<0
u

) = (g, h+ heGuG<0
u

)

(eGu , heGuG<0
u

)(g, h) = (g, (hu(g))(heGuG<0
u

) + h).

As Lu is commutative, “h∗ and (g, h) commute in Ku” iff in Lu

(hu(g))(heGuG<0
u

) = heGuG<0
u
.

By the definition of hu ∈ Hom(Gu,Aut(Lu)) in 2.1(1)(d),(e) this means

(geGu)G<0
u = eGuG

<0
u .

i.e.

g ∈ G<0
u .

We can sum that: (g, h) ∈ Gu ∗hu Lu belongs to norKu(Hu) iff (g, h) commutes

with h∗ iff g ∈ G<0
u iff (g, h) ∈ K<0

u , as required.
2) Let fu : Ku → Gu be defined by fu((g, h)) = g. Clearly

(∗)1 fu is a homomorphism from Ku onto Gu and for every ordinal α ≥ 0, it
maps K<α

u onto G<αu so fu(K<α
u ) = G<αu and moreover f−1

u (G<αu ) = K<α
u

(see the definition of K<α
u in 2.1(2)).

Also

(∗)2 Ker(fu) = {eGu} × Lu ⊆ K<0
u .

Now we prove by induction on the ordinal α ≥ 0 that nor1+α
Ku

(Hu) = K<α
u . For

α = 0 this holds by part (1). For α limit this holds as both 〈norβKu(Hu) : β ≤ α〉
and 〈K<β

u : β ≤ α〉 are increasing continuous.
Lastly, for α = β + 1 > 0 we have for any f ∈ Ku

f ∈ nor1+α
Ku

(Hu)⇔ f ∈ norKu(nor1+β
Ku

(Hu))

⇔ f ∈ norKu(f−1
u (G<βu ))

⇔ f(f−1
u (G<βu ))f−1 = f−1

u (G<βu )

⇔ fu(f)G<βu fu(f)−1 = G<βu

⇔ fu(f) ∈ norGu(G<βu )

⇔ fu(f) ∈ G<αu ⇔ f ∈ K<α
u .

[Why? The first ⇔ by the definition of nor1+α
Ku

(−), the second ⇔ by the induction

hypothesis, the third ⇔ by the definition of norKu(−), the fourth ⇔ by (∗)1, the
fifth ⇔ by the definition of norGu(−), the sixth ⇔ by 1.10(1), the seventh ⇔ by
(∗)1.] �

Observation 2.12. Let s be a p.o.w.i.s.
1) For u ∈ Js and x ∈ Zs

u we have: ∂u,x is a well defined function and is a
permutation of Ds

u.
2) If u ≤J[s] v then Ds

u ⊆ Ds
v.

3) If u ≤J[s] v and y ∈ Zs
v and x = π̂u,v(y) then ∂u,x = ∂v,y � Du.

Proof. Straight. �
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Definition 2.13. Definition Let s be a κ-p.o.w.i.s.
1) Let Sk = {q : q is a function with domain Sk and for p ∈ Sk,q(p) ∈ Λ2

k,p}, on

Λ2
k,p, see Definition 2.5(4) above.

2) We say that q ∈ Sk is disjoint when 〈supp(q(p)) : p ∈ Sk〉 is a sequence of
pairwise disjoint sets. We say that q is reduced when q(p) is p-reduced for every
p ∈ Sk.
3) Let Z2

u = Z2,s
u be ∪{Z2,k

u : k < ω}, where Z2,k
u = Z2,k,s

u is the set of pairs (t̄,q)
where t̄ ∈ k(Isu) and q ∈ Sk.
4) For z = (t̄,q) ∈ Z2

u let ∂u,z = ∂su,z be the following permutation of Du: if

v ≤J[s] u and (v, g) ∈ {v} ×Kv then ∂su,z((v, g)) = (v, g′g) where g′ = gv,sπv,u(t̄),q(p)

where p = tpqf(πv,u(t̄),∅, Isv), and, of course, πv,u(〈t` : ` < k〉) = 〈πv,u(t`) : ` < k〉.
If πv,u(t̄) is not well-defined set g′ = 1 trivially again.
5) For (t̄,q) ∈ Z2

u let gt̄,q = gut̄,q = gu,st̄,q = gt̄,q(p) where p = tpqf(t̄,∅, Iu). Let

gvt̄,q = gv,st̄,q = gvπv,u(t̄),q when v ≤J[s] u and πv,u(t̄) is well-defined.

Remark 2.14. We can add {∂su,z : z ∈ Z2,s
u } to the generators of F s

u defined in 2.16
below.

Observation 2.15. In Definition 2.13(4), ∂su,z is a well defined permutation of
Ds
u.

Proof. Easy. �

Definition 2.16. Let s be a p.o.w.i.s.
1) Let Fu = F s

u be the subgroup of the group of permutations of Ds
u generated by

{∂u,z : z ∈ Zs
u}.

2) For a p.o.w.i.s. s let Ms be the following model: set of elements: {(u, g) : u ∈ Js

and g ∈ Ks
u} ∪ {(1, u, f) : u ∈ Js and f ∈ F s

u}. relations: PMs
1,u , a unary relation, is

{(u, g) : g ∈ Ku} for u ∈ Js,

PMs
2,u , a unary relation is {(1, u, f) : f ∈ Fu} for u ∈ Js

RMs

u,v,h, a binary relation, is {((v, g), (1, u, f)) : f ∈ Fu, g ∈ Kv and f((v, h)) =

(v, g)} for u ∈ Js and v ≤J[s] u and h ∈ Kv.

Observation 2.17. If s is a κ-p.o.w.i.s. and v ≤J[s] u and f ∈ Fu then f maps

{v} ×Kv = PMs
1,v onto itself.

Remark 2.18. Remark If π ∈ F s
u and v ≤J[s] u then π � ({v} ×Kv) comes directly

from Ks
v , but the relation between the 〈π � ({v} ×Kv) : v ≤J[s] u〉 are less clear.

Claim 2.19. Let s be a p.o.w.i.s.
1) κ is an automorphism of Ms iff:

~ (a) κ is a function with domain Ms

(b) for every u ∈ Js we have:
(α) κ � Du ∈ F s

u
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(β) letting fu = κ � Du we have (1, u, f) ∈ PMs
2,u ⇒ κ((1, u, f))

= (1, u, fuf) where fuf is the product in Fu.

2) If fu ∈ Fu for u ∈ Js and fu ⊆ fv for u ≤J[s] v then there is one and only one
automorphism κ of Ms such that u ∈ Js ⇒ fu ⊆ κ.

Proof. First assume that f̄ = 〈fu : u ∈ Js〉 is as in part (2). We define κf̄ , a
function with domain Ms by:

~1 (a) if a = (u, g) ∈ PMs
1,u and u ∈ Js then κf̄ (a) = fu(a)

(b) if a = (1, u, f) ∈ PMs
2,u then κf̄ (a) = (1, u, fuf).

So

~2 (a) κf̄ is a well defined function

(b) κf̄ is one to one

(c) κf̄ is onto Ms

(d) κf̄ maps PMs
1,u onto PMs

1,u and PMs
2,u onto PMs

2,u for u ∈ Js

(e) also f̄ ′ = 〈f−1
u : u ∈ Js〉 satisfies the condition of part (2) and

κf̄ ′ is the inverse of κf̄
(f) κf̄ maps RMs

u,v,h onto itself.

[Why? The only non-trivial one is clause (f) and in it by clause (e) it is enough

to prove that κf̄ maps RMs

u,v,h into RMs

u,v,h. So assume v ≤J[s] u, h ∈ Kv and

((v, g), (1, u, f)) ∈ RMs

u,v,h hence f ∈ Fu, g ∈ Kv and f((v, h)) = (v, g). So κf̄ ((v, g)) =

fv((v, g)) and κf̄ (1, u, f) = (1, u, fuf) and we would like to show that (fv((v, g)), (1, u, fuf)) ∈
RMs

u,v,h.

This means that (fuf)((v, h)) = fv((v, g)). We know that f((v, h)) = (v, g) hence
(fuf)((v, h)) = fu(f((v, h))) = fu((v, g)) so we have to show that fu((v, g)) =
fv((v, g)). But v ≤J[s] u hence (by the assumption on f̄) we have fv ⊆ fu hence
fu((v, g)) = fv((v, g)) so we are done.]

So we have shown that

~3 if f̄ = 〈fu : u ∈ Js〉 is as in part (2) then κf̄ is an automorphism of Ms.

Next

~4 if κ ∈ Aut(Ms) and κ � Du is the identity for each u ∈ Js then κ = idMs
.

[Why? By the PMs
2,u -s, RMs

u,v,h-s and F s
u being a group of permutations of Du.]

~5 the mapping κ 7→ 〈κ � Du : u ∈ Js〉 is a homomorphism from Aut(Ms) into
{f̄ : f̄ as above} with coordinatewise product, with kernel {κ ∈ Aut(Ms) :
κ � Du = idDu for every u ∈ Js}.

[Why? Easy. Observe that κ � Du ∈ Fu for every u ∈ Js.]

~6 the mapping above is onto.

[Why? Easy by ~3.
Given κ ∈ Aut(Ms), let fu = κ � Du. Clearly fu ∈ Fu and u ≤J[s] v ⇒ fu ⊆ fv

so f̄ = 〈fu : u ∈ Js〉 is as above so by ~3 we know κf̄ is an automorphism of Ms

and κf̄κ−1 is an automorphism of Ms which is the identity on each Du hence by
~4 is idMs

. So κ = κf̄ , is as required.]

~7 the mapping above is one to one.

[Why? Easy by ~4.]
Together both parts should be clear. �
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Definition 2.20. Definition 1) We say that q1,q2 ∈ Sk are S-equivalent where
S ⊆ Sk when p ∈ S ⇒ q1(p)E 2

k,pq2(p).

2) Omitting S means S = Sk.

Claim 2.21. Claim Let s be a nice κ-p.o.w.i.s. (or just Dom(πu,v) = Iv for all
u ≤J[s]).

1) If u ∈ Js and f ∈ F s
u then for some k and t̄ = 〈t̄` : ` < k〉 ∈ k(Isu) and q ∈ Sk

we have:

(∗) f = ∂u,(t̄,q) (so if v ≤J[s] u then f � ({v}×Ks
v) is moving by multiplication

by gvπv,u(t̄),q, e.g. g ∈ Kv ⇒ f((v, g)) = (v, gvπv,u(t̄),qg).

2) {∂u,(t̄,q) : (t̄,q) ∈ Z2
u} is a group of permutations of Ds

u which includes F s
u .

3) For every q ∈ Sk there is a reduced q′ ∈ Sk which is equivalent to it (see
Definition 2.13(2)).

Proof. 2),3) Straight.
1) We use freely Definition 2.13. Recall that F s

u is the group of permutations of Ds
u

generated by {∂u,z : z ∈ Zs
u}. Hence it is enough to prove that f ∈ F s

u satisfies the
conclusion of the claim in the following cases. Case 0: f is the identity.

It is enough to let k = 0 so t̄ = ∅, Sk is a singleton {∅} and q(∅) is the empty
sequence

〈
〈 〉
〉
∈ Λ2

k of length 1, i.e. we use in Definition 2.13(3) the case k = 0 and

in Definition 2.5(1) the case j(∗) = 0. Case 1: f = ∂u,z where z ∈ Z0
u.

So z = (t̄z, ηz). We set k = n(z) + 1, t̄ = t̄z ∈ k(Isu) and define q as follows:

(A) if p ∈ Sk describes a decreasing sequence then

q(p) = 〈(〈0, 1, 2, . . . , k − 1〉, ηz)〉 ∈ Λ2
k

as sequence of length 1

(B) if not, then q(p) =
〈
〈 〉
〉

as in Case 0.

Case 2: f = ∂u,z where z ∈ Z1
u.

Also clear. Case 3: f = f1f2 (product in F s
u) where f1, f2 ∈ F s

u satisfy the

conclusion of the claim.
Just combine the definitions. Here we make use of s being a nice κ-p.o.w.i.s. and

2.10(3) to avoid those cases where it is impossible to choose t̄ ∈ Domπv,u, meaning
that f = ∂u,(t̄,q) always acts trivially on {v} ×Ks

v while f1, f2 may not be trivial

themselves. Case 4: f = f−1 where f ∈ F s
u satisfies the conclusion of the claim.

Easy, too. �

Remark 2.22. If q ∈ Sk and q1,q2 ∈ Sk and v ≤J[s] u, t̄ ∈ k(Iu) and q =

tpqf(π
s
v,u(t̄),∅, Iv) and q1(q),q2(q) are not E 2

k,q-equivalent, then gvt̄,q1
6= gvt̄,q2

.

Proof. This is by Claim 2.7(3C). �
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§ 3. The main result

We can prove that every κ-p.o.w.i.s has a limit, but for our application it is more
transparent to consider κ-p.o.w.i.s s which is the κ-p.o.w.i.s. t + its limit.

Definition 3.1. We say that s is the limit of t as witnessed by v∗ when (both are
p.o.w.i.s. and)

(A) J t ⊆ Js and Js = J t ∪ {v∗}, v∗ /∈ J t and u ∈ Js ⇒ u ≤J[s] v∗

(B) Isu = Itu and πs
u,v = πt

u,v when u ≤J[s] v <J[s] v∗

(C) if t ∈ Isv∗ then for some u = ut ∈ J t we have t ∈ Dom(πs
ut,v∗)

(D) if s, t ∈ Isv∗ then for some u = us,t ∈ J t for every v satisfying u ≤J[s] v ≤J[s]

v∗ we have Isv∗ |= “s ≤ t”⇔ πs
v,v∗(s) ≤Isv π

s
v,v∗(t)

(E) if 〈tu : u ∈ J t
≥w〉 is a sequence satisfying w ∈ J t, J t

≥w = {u : w ≤ u ∈
J t}; tu ∈ Isu and w ≤ u1 ≤ u2 ∈ J t ⇒ πu1,u2

(tu2
) = tu1

, then there is a
unique t ∈ Isv∗ such that u ∈ J t

≥w ⇒ πu,v∗(t) = tu.

Definition 3.2. We say that s is an existential limit of t when: clauses (a)-(e) of
Definition 3.1 hold and

(A) assume that
(α) u∗ ∈ J t

(β) k1, k2 < ω and k = k1 + k2

(γ) E is an equivalence relation on Sk

(δ) ē = 〈eu : u ∈ J t
≥u∗〉, where eu is an E -equivalence class

(ε) t̄ ∈ k1(Isv∗)

(ζ) for every v ∈ J t
≥u∗ there is s̄v ∈ k2(Itv) such that:

if u∗ ≤J[t] u ≤J[t] v then eu is the E -equivalence class of

tpqf(t̄
uˆs̄u,v,∅, Itu) where t̄u = πs

u,v∗(t̄) and s̄u,v = πt
u,v(s̄v).

Then there are u∗ ≤ u∗ ∈ J t, s̄ ∈ k2(Isv∗) such that for every u ∈ J t
≥u∗ , tpqf(π

s
u,v∗(t̄ˆs̄),∅, I

t
u)

belongs to eu (and is constantly p∗ for some p∗ ∈ Sk).

Remark 3.3. We may say “s is semi-limit of t” when in clause (d) we replace ⇔ by
⇒. We may consider using this weaker version and/or omit linearity in our main
theorem, but the present version suffices.

Claim 3.4. Main Ks
v∗ is an almost κ-automorphism group (see below) when:

� (a) s, t are both p.o.w.i.s.

(b) s is an existential limit of t as witnessed by v∗

(c) J t is ℵ1-directed, linear (i.e., for every u, v ∈ J t we have

u ≤J[t] v or v ≤J[t] u) and unbounded

(d) t is a κ-p.o.w.i.s. (so κ ≥ |J t| and κ ≥ |Itu| for u ∈ J t)

(e) t is nice (see Definition 1.3(7)).

Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.



24 S. SHELAH

Definition 3.5. G is an almost κ-automorphism group when: there is a κ-automorphism
group G+ and a normal subgroup G− of G+ of cardinality ≤ κ such that G is iso-
morphic to G+/G−, i.e., there is a homomorphism from G+ onto G with kernel
G−.

Before proving 3.4 we explain: why will being almost κ-automorphism group help
us in proving our intended result? Recalling Definition 0.3 and Observation 0.8:

Claim 3.6. For any ordinal α, if there is an almost κ-automorphism group G with
a subgroup H of cardinality ≤ κ such that τ ′G,H = α [such that norαG(H) = G ∧
(∀β < α)(norβG(H) 6= G)] then there is a κ-automorphism group G′ with a subgroup
H ′ of cardinality ≤ κ such that τ ′G′,H′ = α [such that norαG′(H

′) = G′ ∧ (∀β <

α)(norβG′(H
′) 6= G′)].

Proof. Easy.
Let G+, G− be as in Definition 3.5 and h be a homomorphism from G+ onto G

with kernel G− and let H+ = {x ∈ G+ : h(x) ∈ H}.
So it is easy to check each of the following statements:

~ (a) H+ is a subgroup of G+

(b) |H+| ≤ |H| × |G−| ≤ κκ = κ

(c) G+ is a κ-automorphism group

(d) norβG+(H+) = {x ∈ G+ : h(x) ∈ norβG(H)} for every β ≤ ∞
(e) τ ′G,H = τ ′G+,H+

(f) norβG(H) = G then norβG+(H+) = G+ for every β ≤ ∞.

Together (G+, H+) exemplifies the desired conclusion. �

Proof. 3.4 Let G+ be the automorphism group of Mt and let G− be the following
subgroup of G+

{κ ∈ G+ : for some u ∈ J t we have

u ≤J v ∧ g ∈ Kv ⇒ κ((v, g)) = (v, g)}.
Easily

~1 G− is a subgroup of G+

[Why? As J t is linear.]

~2 for every κ ∈ G+ we can find f̄κ = 〈fκu : u ∈ J t〉 such that
(a) fκu ∈ F t

u

(b) κ � Dt
u = fκu

(c) κ � PMt
2,u is (1, u, f) 7→ (1, u, fκu , f).

[Why? By Claim 2.19.]
~3 G− (and also Mt) has cardinality ≤ κ.

[Why? As |J t| ≤ κ, it suffices to prove that for each u ∈ J t, the subgroup

G−u
..= {κ ∈ G+ : κ � PMt

1,v is the identity when u ≤J[t] v} has cardinality

≤ κ, but this has not more elements as F t
u because κ 7→ κ � Dt

u is an
injective function from G−u into F t

u and J t is linear. As |F t
u| ≤ ℵ0 + |Zt

u| =
ℵ0 + |Itu| ≤ κ we are done.]

~4 G− is a normal subgroup of G+.
[Why? By its definition, more elaborately
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(a) each G−u is a normal subgroup of G+.
[Why? As all members of Aut(Mt) map each {v} ×Kv onto itself.]

(b) u ≤J[t] v ⇒ G−u ⊆ G−v .
[Why? Check the definitions.]

(c) G− = ∪{G−u : u ∈ J t}.
[Why? Trivially.]

Together we are done proving ~4.]

~5 For x ∈ Zs
v∗ let κx be the following automorphism of Mt, it is defined as in

~2 by 〈fxu : u ∈ J t〉 where fxu = ∂sv∗,x � D
t
u is from Definition 2.9(4).

~6 For every x ∈ Zs
v∗ ,κx is a well defined automorphism of Mt.

[Why? Look at the definitions and 2.19.]

The main point is

~7 G+ is generated by {κx : x ∈ Zs
v∗} ∪G

−.

Why? Clearly the set is a set of elements of G+. So assume κ ∈ G+ and let
f̄κ = 〈fκu : u ∈ J t〉 be as in ~2, they are fixed for awhile.

By 2.21 for each u ∈ J t there are k = ku and t̄ = t̄u ∈ ku(Itu) and q = qu ∈ Sk
u

such that (the “disjoint” as we can replace t̄ by t̄ˆt̄ or even t̄ˆt̄ˆ . . . ˆt̄ with |Sku |
copies, the “reduced” by 2.21(3)):

�1 fκu = ∂u,(t̄u,qu), i.e., if v ≤J[t] u then (κ ≡)fκu � ({v} ×Kt
v) is a multiplica-

tion from the left (of the Kt
v-coordinate) by gvπt

v,u(t̄u),qu , and qu is reduced

and disjoint, see Definition 2.13(2),(5).

The choices are not necessarily unique, in particular

�2 if u1 ≤J[t] u
2 then (ku

2

, πu1,u2(t̄u
2

),qu
2

) can serve as (ku
1

, t̄u
1

,qu
1

).

Also

�3 the set of possible (ku,qu) is countable.

As J t is ℵ1-directed and linear

�4 for some pair (k∗,q∗) the set {u ∈ J t : ku = k∗ and qu = q∗} is cofinal in
J t.

Together, without loss of generality for some k∗,q

�5 ku = k∗ and qu = q for every u ∈ J t.

Let E be an ultrafilter on J t such that u ∈ J t ⇒ {v : u ≤J[t] v} ∈ E. Such an E

exists as J t is linear. For each u ∈ J t there are Au, pu, w(u) such that

�6 (a) Au ∈ E and

(b) pu ∈ Sk
∗

(c) if v ∈ Au then u ≤J[t] v and pu = tpqf(π
t
u,v(t̄

v),∅, Iu)

(d) w(u) ∈ Au.

For p ∈ Sk∗ let

�7 (a) Yp = {u ∈ J t : pu = p}
(b) s̄u,v = πt

u,v(t̄
v) � supp(q(pu)) for u ∈ J t, v ∈ Au

(c) s̄u = s̄u,w(u).

So

�8 〈Yp : p ∈ Sk∗〉 is a partition of J t.

Fix p ∈ Sk∗ for awhile so for each u ∈ Yp and v ∈ Au by �1, κ � ({u} × Kt
u) is

multiplication from the left by guπt
u,v(t̄v),q (it was qv but we have already agreed

that qv = q). But p = tpqf(π
t
u,v(t̄

v),∅, Iu) as u ∈ Yp, v ∈ Au and so by Definition
2.13(5) we know that guπt

u,v(t̄v),q is guπt
u,v(t̄v),q(p).
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Now q(p) ∈ Λ2
k∗ so q(p) = 〈ρp0, ρ

p
1, . . . , ρ

p
i(p)−1〉 and recall

guπt
u,v(t̄v),q(p) is gt̄,ρp0hgt̄,ρp1G

<0
u
. . . with t̄ = πt

u,v(t̄
v);

so it depends only on πt
u,v(t̄

v) � supp(q(p)) only.

Now consider any two members v1, v2 of Au (so they are above u) comparing
the two expressions for κ � ({u} ×Kt

u) one coming from v1 the second from v2 we
conclude that guπt

u,v1
(t̄v1 ),q(p) = guπt

u,v2
(t̄v2 ),q(p). As q is reduced also q(p) is p-reduced

hence by 2.8(3) we conclude that

�9 if (p ∈ Sk∗ , u ∈ Yp ⊆ J t and) v1, v2 ∈ Au then πt
u,v1

(t̄v1) � supp(q(p)) is a

permutation of πt
u,v2

(t̄v2) � supp(q(p))
this means

�10 if u ∈ J t and v1, v2 ∈ Au then s̄u,v1 is a permutation of s̄u,v2 .

Hence for each u ∈ J t

�11 if v ∈ Au then s̄u,v is a permutation of s̄u = s̄u,w(u).

As there are only finitely many permutations of s̄u, there are ω(u), A′u such that

�12 for u ∈ J t:
(a) A′u ∈ E
(b) A′u ⊆ Au
(c) s̄u = s̄u,v for every v ∈ A′u.

Now

�13 if p ∈ Sk∗ and u1 ≤J[t] u2 are from Yp then πt
u1,u2

(s̄u2) = s̄u1 .

[Why? As E is an ultrafilter on J t and A′u1
, A′u2

∈ E we can find v ∈ A′u1
∩ A′u2

.
So for ` = 1, 2 we have s̄u` = πt

u`,v
(t̄v) � supp(q(p)) = πt

u`,v
(t̄v � supp(q(p))).

As πt
u1,v = πt

u1,u2
◦ πt

u2,v we conclude s̄u1 = πt
u1,u2

(s̄u2) is as required.]

Let S ′ = {p ∈ Sk∗ : Yp is an unbound subset of J t}, so for some u∗ ∈ J t we have

�14 J t
≥u∗ ⊆ ∪{Yp : p ∈ S ′}.

Also without lose of generality

�15 k∗ = k∗1 + k∗2 and {0, . . . , k∗1 − 1} = ∪{supp(q(p)) : p ∈ S ′}
�16 for p ∈ S ′ and ` ∈ supp(q(p)), so su` = (s̄u)` is well defined for u ∈ Yp,

there is a unique t` ∈ Isv∗ such that:

u ∈ Yp ⇒ πs
u,v∗(t`) = su` .

[Why? By clause (e) of Definition 3.1, �13 and the linearity of J t.]
Next we can find t̄ such that

�17 (a) t̄ = 〈t` : ` < k∗1〉
(b) if p ∈ S ′ and ` ∈ supp(q(p)) then t` ∈ Isv∗ is as in �16.

[Why? For ` ∈ ∪{supp(q(p)) : p ∈ S ′} use �16. As q is disjoint (see Definition
2.13(2)) there is no case of “double definition”.]

By clause (d) of Definition 3.1, possibly increasing u∗,

�18 p∗ = tpqf(π
s
u,v∗(t̄),∅, Iu) for every u ∈ J t

≥u∗ .

�19 let E be the following equivalence relation on Sk∗ , p1E p2 ⇔ q(p1)E 1
k∗1 ,p�k

∗
1
q(p2);

note they are actually from Sk∗1 and so “E 1
k∗1 ,p�k

∗
1
-equivalent” is meaningful,

see Definition 2.3(4)

�20 let ē = 〈eu : u ∈ J t
≥u∗〉 be defined by eu = pu/E

�21 E, t̄, ē, 〈πt
u,w(u)(t̄

w(u)) : u ∈ J t
≥u∗〉 satisfies the demands (f)(α) − (ζ) from

Definition 3.2.
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[Why? Check.]
Recall p∗ = tp(t̄,∅, Isv∗) here so let s̄ ∈ (k∗2 )(Isv∗) be as guaranteed to exist by

Definition 3.2. Let t̄v
∗ ..= t̄ˆs̄. So possibly increasing u∗ ∈ J t for some p∗ we have

�22 if u ∈ J t
≥u∗ then p∗ = tp(πs

u,v∗(t̄ˆs̄),∅, I
s
u) = tp(t̄ˆs̄,∅, Isv∗).

Let

�23 (a) %∗ = q(p∗) so %∗ ∈ Λ2
k∗1 ,p

∗ and let %∗ = 〈ρ` : ` < `(∗)〉
(b) t̄u = πs

u,v∗(t̄) for u ∈ J t

(c) let zu = zu,st̄u,% ∈ Z
1,s
u (see Definition 2.5(5A))

(d) let fu = ∂su,zu ∈ F
s
u ; (this is not the same as fκu !).

Now

�24 for u1 ≤J[t] u2 we have fu1
⊆ fu2

.

[Why? Check.]

�25 κf̄ is a finite product of members of {κx : x ∈ Zs
v∗}.

[Why? Recall κx for x ∈ Zs
v∗ is from ~5. Now use �23.] Lastly

�26 (κ−1
f̄

)κ ∈ G+ = Aut(Mt) is the identity on PMt
u whenever u ∈ J t

≥u∗ .

[Why? By �24 and our choices.]

�25 (κf̄ ) ∈ (G−u∗ ⊆)G−.

[Why? By �25 and the definition of (Gu∗ and) G−.]

�28 κ is the product (in G+) of κf̄ ∈ G− and (κ−1
f )κ ∈ 〈{κx : x ∈ Zs

v∗}〉.
[Why? �25 +�27 this is clear.]

As κ was any a member of G+ we are done proving ~7.

~8 there is a homomorphism h from Ks
v∗ onto G+/G− which maps gx to κxG−

for x ∈ Zs
v∗ .

[Why? By ~7 there is at most one such homomorphism and if it exists it is onto.
So it is enough to show that for any group term, σ if Ks

v∗ satisfies Kv∗ |=
“σ(gx1 , . . . , gxk−1

) = e” then σ(κx0 , . . . ,κxk−1
) ∈ G−. Let 〈t` : ` < `∗〉 list

∪{his(x`) : ` < k} ⊆ Isv∗ and let u∗ ∈ J t be such that: if u∗ ≤J[t] u and

`(1), `(2) < `∗ we have Isv∗ |= t`(1) <I t`(2) iff Itu |= πu,v∗(t`(1)) < πu,v∗(t`(2))
and similarly for equality, see clause (d) of Definition 3.1.

Let tu,` = πu,v∗(t`), xu,` = π̂u,v∗(x`). By the definition of G− it is enough to
show that: if u∗ ≤J[t] u then Ku |= “σ(gxu,0 , . . . , gxu,k1

) = eKu”. By the analysis

in 1.7 and §2 (i.e., twisted product) this should be clear.]

~9 κ∗ is one to one.

[Why? By part of the analysis as for ~7.]
By ~8 +~9 we are done.

The problem is in verifying clause (ζ) of (f) of Definition 3.2. Now if u ∈ J t
≥u∗

we can find wp[u] ∈ t ≥ v for each p ∈ S ′ such that

� (α) v ≤J[t] wp[u] ∈ Yp
(β) t̄wp[u] � supp(q(p)) = πs

wp[u](t̄ � supp(q(p)).

Let w[p] ∈ ∩{A′wp[u] : p ∈ S ′} be a ≤J[t]-common upper bound of {wp[u] : p ∈
S′} ∪ {u}.

Lastly, let s̄u = (πt
u,w[u](t̄

w[u])) � [k∗1 , k
∗). �

Main Claim 3.4, p.40 Once more on �21:

I do not see why the definition of E and s̄u,v given on pg.40A has property 3.2(ζ).
Even worse: I momentarily have some doubts that this works. Try on a counter-example:
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Let pj ∈ S ′, j ∈ {1, 2} with p1 6= p2. Thus, in particular, sup(q(p1))∩ supp(q(p2)) =
∅. let i(j) ∈ supp(q(pj)) be chosen.

There seems to be no argument preventing the following to happen: for every
p ∈ S ′ and every t̄′ realizing p the elements t̄′(i(1)) and t̄′(i(2)) are comparable, i.e.
(see Definition 2.3)

∀p ∈ S ′ : {(0, i(1), i(2)), (2, i(1), i(2))} ∩ p 6= ∅,
while for the constructed limit t̄ in �17 holds

(3, i(1), i(2)) ∈ p∗

(see �18), i.e. t̄(i(1)) and t̄(i(2)) are incomparable.

The consequence for 3.2(ζ) is

tpqf(t̄
uˆs̄u,v,∅, Itu) = tpqf(π

s
u,v∗(t̄)ˆπ

t
u,v(s̄v,∅, Itu)

⇒ p∗ =�18
tpqf(π

s
u,v∗(t̄),∅, Itu)

= tpqf(t̄
uˆs̄u,v,∅, Itu)

⇒(1)<(2) tpqf(t̄
uˆs̄u,v,∅, Itu) /∈ S ′

while pu ∈�14
S ′.

In particular tpqf(t̄
uˆs̄u,v,∅, Itu) /∈40A eu =�20

pu/E ⊆ S ′ (Contradiction!) [For

me the main obstacle here seems to be Yp1
∩ Yp2

=�8
∅.] Saharon please: make

me see and give the missing argument! Otherwise FIX! (Maybe 3.1 and 3.2 need

additional properties?)

Theorem 3.7. Assume

(A) ℵ0 < cf(θ) = θ ≤ κ
(B) Fα ⊆ ακ for α < θ has cardinality ≤ κ (also Fα ⊆ αβ for some β < κ+ is

O.K.)

(C) F = {f ∈ θκ : f � α ∈ Fα for every α < θ}
(D) γ = rk(F , <Jbd

θ
), necessarily <∞ so < (κθ)+

(E) if f1, f2 ∈ F , then f1 <Jbd
θ
f2 or f2 <Jbd

θ
f1 or f2 =Jbd

θ
f1 (follows from

(f))

(F) for stationarily many δ < θ we have: if f1, f2 ∈ Fδ, then for some α < δ
we have β ∈ (α, δ)⇒ (f1(β) < f2(β)⇔ f1(α) < f2(α)).

Then τatw
κ ≥ τnlg

κ ≥ τnlf
κ > γ (on τnlf

κ see Definition 0.3(4)).

Theorem 3.8. We can in Theorem 3.7 weaken clause (f) to

(f)′ (α) S ⊆ θ is a stationary set consisting of limit ordinals

(β) D is a normal filter on θ

(γ) S ∈ D
(δ) J̄ = 〈Jδ : δ ∈ S〉
(ε) Jδ is an ideal on δ extending Jbd

δ for δ ∈ S
(ζ) if S′ ⊆ S is stationary, S′ ∈ D+ and wδ ∈ Jδ for δ ∈ S′, then

∪{δ \ wδ : δ ∈ S′} contains an end segment of θ
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(η) if δ ∈ S and f1, f2 ∈ F , then f1 � δ <Jδ f2 � δ or

f2 � δ <Jδ f1 � δ or f1 � δ =Jδ f2 � δ

Remark 3.9. 1) We can justify (f)′ by pcf theory quotation, see below.
2) We should prove that the p.o.w.i.s. being existential holds.

Note that in proving 3.7, 3.8 the main point is the “existential limit”. This proof
has affinity to the first step in the elimination of quantifiers in the theory of (ω,<).
For this it is better if Iθ = (F , <Jbd

θ
) has many cases of existence. Toward this we

“padded it” in (∗)0 of the proof - take care of successors (f ∈ F ⇒ f + 1 ∈ F),
have zero (0θ ∈ F) without losing the properties we have.
2) The demand of 3.7 may seem very strong, but by pcf theory it is natural.

Observation 3.10. 1) Theorem 3.8 implies Theorem 3.7.
2) If (a)− (d) of 3.7 holds, then (f)⇒ (f)′.
3) If (a)− (d) of 3.7 holds, then (f)′ ⇒ (e).

Proof. 1) By 2).
2) Let

S ..= {δ < θ :δ is a limit ordinal and if f1, f2 ∈ Fδ,
then for some α < δ we have β ∈ (α, δ)⇒

(f1(β) < f2(β)⇔ f1(α) < f2(α))}.
By (f) we know that S is a stationary subset of θ. Let Dθ be the club filter on θ

and D ..= Dθ + S, it is a normal filter on θ and S ∈ D. So sub-clauses (α), (β), (γ)
of (f)′ hold.

Let Jδ = Jbd
δ for δ ∈ S so J̄ = 〈Jδ : δ ∈ S〉 satisfies sub-clauses (δ), (ε) of (f)′.

To prove (ζ) assume S′ ⊆ S stationary, S′ ∈ D+ and wδ ∈ Jδ for δ ∈ S′. Then
sup(wδ) < δ and S′ is a stationary subset of θ hence by Fodor’s lemma for some
β(∗) < θ the set S′′ = {δ ∈ S′ : sup(wδ) = β(∗)} is a stationary subset of θ and
so [β(∗), θ) is an end segment of θ and is equal to ∪{[β(∗), δ) : δ ∈ S′′} which is
included in ∪{δ \wδ : δ ∈ S′}, as required in (ζ) from (f)′, so sub-clause (ζ) really
holds.

To prove sub-clause (η) of clause (f)′ note that what it says is what is said in
(f).
3) Should be clear. Given f1, f2 ∈ F ; by sub-clause (η) of (f)′ for each δ ∈ S there
are wδ ∈ Jδ and `δ < 3 such that (`δ = 0 ∧ α ∈ δ \ wδ) ⇒ f1(α) < f2(α) and
(`δ = 1 ∧ α ∈ δ \ wδ)⇒ f1(α) = f2(α) and (`δ = 2 ∧ α ∈ δ \ wδ)⇒ f1(α) > f2(α).
So for some ` < 3 the set S′ ..= {δ ∈ S : `δ = `} is stationary (S′ ∈ D+ without
loss of generality), hence ∪{δ \ wδ : δ ∈ S′} includes an end segment of θ and we
are easily done. �

Proof. 3.8 Without loss of generality

(∗)0 (a) (∀f ∈ F)(∃∞g ∈ F)
(
f � [1, θ) = g � [1, θ)

)
;

moreover for f ∈ F we have

ω = {g(0) : g ∈ F and g � [1, θ) = f � [1, θ)}
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(b) α < β < θ ⇒ Fα = {f � α : f ∈ Fβ}; moreover α < θ ⇒ Fα =

{f � α : f ∈ F}
(c) if f ∈ F , then f + 1 ∈ F
(d) the f ∈ θ{0}, the constantly zero function, belongs to F .

[Why? Let F ′ = {f ∈ θκ: for some n < ω we have (∀0 < α < θ)(f(α) =
u) ∧ f(0) < ω or for some f ′ ∈ F and n < ω we have (∀0 < α < θ)(f(α) =
ω(1 + f ′(α)) + n)∧ f(0) < ω} and for α < θ, replace Fα by F ′α = {f � α : f ∈ F ′}.
Now check that (a)− (e), (f)′ of the assumption still holds.]

We define s = (J, Ī, π̄) as follows:

(∗)1 (a) J = (θ + 1, <)

(b)(α) let Iθ = (F , <Jbd
θ

) and

(β) Iα = (F1+α+1, <α+1) for α < θ where

f1 <α+1 f2 ⇔ f1(1 + α) < f2(1 + α)

(c) for α ≤ β < θ + 1 let πα,β : Iβ → Iα be

πα,β(f) = f � (1 + α+ 1).

Note that

(∗)2 Iα is explicitly non-trivial for all α ∈ J (see Definition 1.2(7)).

[Why? By (∗)0(a) and the choice of <Iα in (∗)1(b).]

(∗)3 s = (J, Ī, π̄) is a p.o.w.i.s. even nice.

(∗)4 s is a limit of t ..= s � θ = ((θ,<), Ī � θ, π̄ � θ).
[Why? Note that clause (d) of Definition 3.1 holds by clause (e) of

Theorem 3.7. Easy to check the other clauses.]

(∗)5 t is a nice κ-p.o.w.i.s.
[Why? This follows from clause (a),(b) of Theorem 3.7.]

Now Ks
θ is an almost κ-automorphism group by Claim 3.4, the “existential limit”

holds by (∗)6 below (note: J is linear). Now rk<∞(Isθ ) = rk(Isθ ) = γ and Hs
θ is a

subgroup of Ks
θ of cardinality 2 ≤ κ.

Combining Claim 1.10 and Claim 2.11 we have

τnlg
Ks
θ ,H

s
θ

= rk<∞(Isθ ) = γ

with nor∞Ks
θ
(Hs

θ ) = Ks
θ and thus τatw

κ ≥ τnlg
κ ≥ τnlf

κ > τnlg
Ks
θ ,H

s
θ

= γ by 0.8 and Claim

3.6.
We still have to check

(∗)6 “s is an existential limit of t”, see Definition 3.2.

That is we have to prove clause (f) of 3.2, so we should prove its conclusion,
assuming its assumption which means in our case

~1 (a) k = k1 + k2,E is an equivalence relation on Sk

(b) f̄ ∈ k1F and α(∗) < θ

(c) ē = 〈eα : α ∈ [α(∗), θ)〉 is such that eα ∈ Sk/E
(d) 〈ḡα : α ∈ [α(∗), θ)〉 is such that ḡα ∈ k2(F1+α+1)

(e) if α(∗) ≤ α ≤ β < θ then:

eα is the E -equivalence class of tpqf(〈f` � (1+α+1) : ` < k1〉ˆ〈gβ` � (1+α+1) : ` < k2〉,∅, Iα).

Without loss of generality [recalling clause (e) of Theorem 3.7 and (∗)0(c)]
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~2 (f) 〈f` : ` < k1〉 is ≤Jbd
θ

-increasing

(g) f0 is constantly zero

(h) for each ` < k1 − 1 we have: f`+1 = f` mod Jbd
θ or f`+1 = f` + 1

mod Jbd
θ or f` + ω ≤ f`+1 mod Jbd

θ

(i) 〈f` : ` < k1〉 is without repetition

(j) 〈f`(0) : ` < k1〉 is without repetition.

Possibly increasing α(∗) < θ, without loss of generality

~3 if α ∈ [α(∗), θ) and `1, `2 < k1 then f`1(α) ≤ f`2(α) ⇔ f`1(α(∗)) ≤
f`2(α(∗)).

Hence by clause (f) of ~2

~4 〈f`(α(∗)) : ` < k1〉 is non-decreasing.

For notational simplicity

~5 (a) replace ḡδ(δ ∈ [α(∗), θ)) by 〈gδ` : ` < k〉 ..= 〈f` � (1+δ+1) : ` < k1〉ˆḡδ

(b) for `1, `2 < k let gδ`1 = gδ`2 ⇔ gδ`1(0) = gδ`2(0) without loss of generality.

Next for some p∗

~6 p∗ ∈ Sk and for some stationary S′ ⊆ S from D+, for every δ ∈ S′ for the
Jδ-majority of α < δ, say α ∈ δ \ wδ, wδ ∈ Jδ, we have p∗ = tpqf(〈gδ` �
(1 + α + 1) : ` < k1〉,∅, Iα). Without loss of generality S′ ⊆ (α(∗), θ) and
(0, α(∗)) ⊆ ωδ.

[Why? By sub-clause (η) of clause (f)′, as Jbd
δ ⊆ Jδ is an ideal (applied to (gδ`1 , g

δ
`2

)
for every `1, `2 < k) for each δ ∈ S (S ⊆ (α(∗), θ) without loss of generality) we
can choose wδ ∈ Jδ and qδ ∈ Sk such that for every α ∈ δ \ wδ we have tpqf(〈gδ` �
(1 +α+ 1) : ` < k〉,∅, Iα) is equal to qδ. For each p ∈ Sk let Sp = {δ ∈ S : qδ = p}.
So S = ∪{Sp : p ∈ Sk}, hence for some p we have Sp stationary (Sp ∈ D+ without
loss of generality). So let S′ = Sp, p

∗ = p.]
So considering the way ḡδ was defined by ~5

~7 there are E ∗1 ,E
∗
2 , <∗ such that

(a) E ∗1 is an equivalence relation on k = {0, . . . , k − 1}
(b) E ∗2 is an equivalence relation on k refining E ∗1
(c) <∗ linearly orders k/E ∗1
(d) if δ ∈ S′, α ∈ δ \ wδ so p∗ = tpqf(〈gδ` � (1 + α+ 1) : ` < k〉,∅, Iα)
then:

(α) `1E ∗1 `2 iff gδ`1(1 + α) = gδ`2(1 + α)

(β) `1E ∗2 `2 iff gδ`1 � (1 + α+ 1) = gδ`2 � (1 + α+ 1)

(γ) (`1/E ∗1 ) <∗ (`2/E ∗1 ) iff gδ`1(1 + α) < gδ`2(1 + α).

Let 〈u0, . . . , um−1〉 list the E ∗1 -equivalence classes in <∗-increasing order. Necessary
0 ∈ u0.

Using (f ′)(ζ) on ~6 let be α∗ ∈ S′ with [α∗, θ) ⊆ ∪{δ \ ωδ : δ ∈ S′}. Thus in
particular p∗ ∈ eα for all α ∈ [α∗, θ) by ~1(e). We now define g` ∈ θκ for ` < k as
follows: necessarily for a unique i = i(`), ` ∈ ui and let i1 = i1(`) ≤ i be maximal
such that ui1 ∩ {0, . . . , k1 − 1} 6= ∅, j2 = j2(`) = min({ui1 ∩ {0, . . . , k1 − 1}). It is
well defined as necessary 0 ∈ u0 because f0 is constantly zero. Now we let

�0 g` = (gα∗` � {0}) ∪ ((fj2 + (i− i1)) � [1, θ)).

Now
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�1 if ` < k1 then g` = f`
[Why? Check the definition gα∗` (0) = f`(0) as gα∗` = f`.]

�2 g` ∈ F for ` < k
[Why? As fj2 ∈ F and clauses (a)+(c) of (∗)0.]

�3 if `1E ∗2 `2 then g`1 = g`2
[Why? First, as `1E ∗2 `2 we have g`1(0) = gα∗`1 (0) = gα∗`2 (0) = g`2(0).

Second, clearly i(`1) = i(`2), i1(`1) = i1(`2) and j2(`1) = j2(`2) hence for
α ∈ [1, θ) we have

g`1(α) =fj2(`1)(α) + (i(`1)− i1(`1)) =

fj2(`2)(α) + (i(`2)− i1(`2)) = g`2(α).

So we are done.]

�4 if `1, `2 < k but ¬(`1E ∗2 `2) then g`1 6= g`2
[Why? As ¬(`1E ∗2 `2) by ~5(b) we have gα∗`1 (0) 6= gα∗`2 (0), hence g`1(0) =

gα∗`1 (0) 6= gα∗`2 (0) = g`2(0) hence g`1 6= g`2 .

�5 if `1, `2 < k, `1E ∗1 `2 then ¬(g`1 <Jbd
θ
g`2)

[Why? As g`1 � [1, θ) = g`2 � [1, θ), so g`1 = g`2 mod Jbd
θ , so ¬(g`1 <Jbd

θ

g`2).]

�6 if `1, `2 < k and (`1/E ∗1 ) <∗ (`2/E ∗1 ) then g`1 <Jbd
θ
g`2 .

[Why? Obviously i(`1) < i(`2), i1(`1) ≤ i1(`2) and j2(`1) ≤ j2(`2) by ~4.
But by ~2(h) we have fj2(`1) + (i1(`2) − i1(`1)) ≤Jbd

θ
fj2(`2) thus fj2(`1) +

(i(`1)− i1(`1)) <Jbd
θ
fj2(`1) + (i(`2)− i1(`1)) ≤Jbd

θ
fj2(`2) + (i(`2)− i1(`2))

and g`1 <Jbd
θ
g`2 .]

Together p∗ = tpqf(〈g` : ` < k〉,∅, Iθ) ∈ eα for all α ∈ [α∗, θ) proving the conclusion
of Definition 3.2, the definition of existential limit, i.e. (∗)6. �

Theorem 3.8, p.48 Question concerning �1: �1 seems to be wrong! Why: Let

`1, `2 < k1 with f`1 =Jbd
θ
f`2 (but f`1 6= f`2 !)

Then ~7(d)(α) implies

i(`1) = i(`2), i1(`1) = i1(`2) and j2(`1) = j2(`2).

Thus g`1 � [1, θ) = g`2 � [1, θ) follows by �0 and �1 would imply

f`1 � [1, θ) = f`2 � [1, θ)!

That does not hold in general.

Thus only

�′1 if ` < k1 then g` =Jbd
θ
f`.

A possible solution: Theorem 3.8 remains true if weakening the conclusion of Defi-

nition 3.2 to: Then there are t̄′ ∈ k1(Isv∗) and s̄ ∈ k2(Isv∗ such that for every u ∈ J t
≥u∗

large enough tpqf(π
s
u,v∗(t̄

′ˆs̄),∅, Itu) = p∗ ∈ eu (for some constant p∗ ∈ Sk).
Saharon, please check: is that enough to prove 3.4? Otherwise improve (∗)0 of

3.8,p.44. pg.43 in (∗)0, change (c) to:

if f ∈ F and α < θ then f ′ = f + 1[α,θ) ∈ F , i.e.
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f ′(β) =

{
f(β) if β < α

f(β) + 1 if β ∈ [α, θ)

pg.46: Let m` < k1 be maximal m < k1 such that (m/E0) ≤∗ (`/E0) exists as

g0 = f0 = 0θ by ~2(g); let n` = {ι/E1 : ι < k2, (m/E0) ≤∗ (ι/E0) < (`/E0)}. So
n` = 0 if ` < k1 or just u` ∩ {0, . . . , k1} 6= 0

�1 we define g` ∈ θκ as follows:
(a) g` � δ∗ = gδ

∗

` � δ
∗

(b) g` � [δ∗, θ) = gm` + n`, i.e. gm` + 1[δ∗,θ).

The rest should be clear (but we give details?). Main Claim 3.8, pg.48:

Dear Saharon!
In 46A you gave a revised proposal for �0. It is conform to replacing �0 by

�′0 g` = (gα∗` � α∗) ∪ ((fj2 + (i− i1)) � [α∗, θ)).

This most certainly solves �1, but now �2 is violated. This can/must be fixed by
enhancing (∗)0, pg.44 once more:

(c)1 if f ∈ F , then f + 1 ∈ F
(c)2 if f1, f2 ∈ F , α ∈ θ, then (f1 � α) ∪ (f2 � [α, θ)) ∈ F .

This again seems to force replacement of (b),(c) in Theorem 3.7 + 3.8 as follows:

(b)′ Fα ⊆
⋃
β≤α

[β,α)κ for α < θ has cardinality ≤ κ

(c)′ F = {f ∈ θκ|∃β ∈ θ with f � [β, α) ∈ Fα for all β ≤ α < θ}.
Question:

1) Does the pcf-argument with these changes still hold?
2) Does this (hopefully) fix all gaps around 3.7 and 3.8?

Saharon: I can do 2), but 1) needs YOU!!!
We quote

Claim 3.11. Assume cf(κ) = θ > ℵ0, α < κ ⇒ (α)θ < κ and λ = κθ. Then we can
find 〈Fi : i < θ〉, S,D, Jδ satisfying the conditions from 3.8 with γ = λ (and more).

Proof. By 3.12 and [She94]. �

Claim 3.12. Assume

~ (a) λ̄ = 〈λi : i < θ〉 is an increasing sequence of regular cardinals with

limit κ

(b) λ = tcf(
∏
i<θ

λi, <Jbd
θ

)

(c) max pcf{λi : i < j} < κ for every j < θ.

1) Then there are D,S∗, u such that

(α) u ∈ [θ]θ, S∗ ⊆ θ is stationary

(β) there are no uε ∈ [u]θ for ε < θ such that for some club E of θ, δ ∈ E∩S∗ for
at least one ε < δ we have max pcf{λi : i ∈ δ∩uε} < maxpcf{λi : i ∈ δ∩u}
hence

(γ) D is a normal filter on θ where: D is {S ⊆ θ: for every sequence 〈uε :
ε < θ〉 of subsets of u each of cardinality θ and for every club E of θ, if
δ ∈ E ∩ S ∩ S∗ then for every ε < δ we have max pcf{λi : i ∈ δ ∩ uε} =
maxpcf{λi : i ∈ δ ∩ u}}
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(δ) for δ ∈ S∗ let Jδ = {u′ ⊆ δ : maxpcf{λi : i ∈ δ \ u′ < maxpcf{λi : i < δ}}.
2) We can choose Fi ⊆

∏
j<i

λj for i < θ such that all the conditions in ?? hold.

Proof. By [She94, II,3.5], see on this [She, §18]. �

Conclusion 3.13. If κ is strong limit singular of uncountable cofinality then τatw
κ ≥

τnlg
κ ≥ τnlf

κ > 2κ.

Proof. By 3.8 and Claim 3.11. �

Remark 3.14. 1) If κ = κℵ0 do we have τatw
κ ≥ τnlg

κ ≥ τnlf
κ > κ+? But if κ = κ<κ >

ℵ0 then quite easily yes.
2) In 3.13 we can weaken “κ is strong limit”. E.g. if κ has uncountable cofinality
and α < κ⇒ |α|cf(κ) < κ, then τnlf

κ > κcf(κ); see more in [She, §18].
3) We elsewhere will weaken the assumption in 3.7, 3.8 but deduce only that τnlg

κ

is large.

§ 3(A). Private appendix.

Definition 3.15. We say that s is an almost limit of t when the demands from
Definition 3.1 holds except that we weaken clause (d) to

(d)− (α) if Isv∗ |= “s < t” then for some u∗ ∈ J t we have v ∈ J t
≥u∗ ⇒ Isv |=

(πs
v,u∗(s) < πs

v,v∗(t)

(β) if n < ω and t0, . . . , tn−1 ∈ Isv∗ and u ∈ J t then for some v we have
(a) u ≤J[t] v

(b) for `, k < n we have tsv∗ |= t` < tk iff

Isv |= πs
v,v∗(t`) < πs

v,v∗(tk) (similarly for equality but

this follows)

(c) if we use Definition 4.1 also for ` < n we have t` ∈ P Iv∗ ⇔

πs
v,v∗(t`) ∈ P Iv .

∗ ∗ ∗

Claim 3.16. Assume that κ = κ<κ > ℵ0. Then τnlf > κ+.

Proof. Let T be the set of t such that

(α) t = (αt, <t)

(β) αt is an ordinal ≤ κ
(γ) <t is a well ordering on αt.
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We define a two-place relation <I on T :

t1 <T t2 iff αt1 < αt2∧ <t1=<t2� αt1 .

Let Tα = {t ∈ T : αt = α}.

We define s = (J, Ī, π̄) as follows:

(∗)1 (a) J = (κ+ 1, <)

(b) for α ≤ κ we define Iα as follows
(α) its set of elements is {(t, β, n) : t ∈ T1+γ , β < 1 +α and n < ω}
(β) I` is ordered by; (t1, β1, n1) < (t2, β2, n2) iff t1 = t2 ∧ β1 <t β2

(c) for α1 < α2 ≤ κ let πα1,α2
: Iβ → Iα be defined by: for (t, β, n) ∈

Iα2
, t = (α2, <t) let πα1,h2

((t, β, n)) = ((α1, <t� α1, β, n)) if β < α1.

So Dom(πα1,α2
) have domain ⊂ Iα2

but it is onto I2.
The rest is like the proof of 3.8 but easier. �

§ 4. More cardinals

We would like to weaken the demand in Definition 3.1(d), i.e. using only s
is a semi-limit of t and avoid using “existential limit”. That is we would like
to strengthen Theorem 3.7 omitting clause (f). There is a price: we weaken the
conclusion from “τnlf

κ ≥ γ” to “τnlg
κ ≥ γ”. We mention only the places we change

(and use bold face (or gothic) versions of the latter for the new version).

Definition 4.1. (0) I denotes (I,<I , P
I), <I a partial order on I, P I ⊆ {t ∈ I : t is

<I -minimal} (needed? for finite??]

Definition 4.2. We define Xs
u as we have defined Xs

u except replacing clause (c) by

(c)′ t̄ = 〈t` : ` ≤ n〉 = 〈tx` : ` ≤ n〉 where t` ∈ Isu

X<0
u = {x : txn(x) ∈ P

Isu and t̄x is <Iu -decreasing (nec?)}

X<1+α
u = X<0

u ∪ {x : rk(txn(∗)) < 1 + α}.

Definition 4.3. We define Gs
u as we have defined Gs

u in 1.4, but it is generated by
{gx : x ∈ Xs

u} however the set of equations is the same.

Claim 4.4. Gs
u is freely generated by Gs

u ∪ {gx : x ∈ Xs
u \Xs

u} except the equations
which hold in Gs

u and

gx = y−1
x

for

x ∈ Xs
u \Xs

u.

Claim 4.5. Let s be a nice κ-p.o.w.i.s.
1) If 0 ≤ α <∞ then the normalizer of G<αu in Gu is G<α+1

u ⊆ Gu ⊆ Gu.
2) If α = rk(Iu) then the normalizer of G<αu in Gu is G<∞u = Gαu .

Proof. By 4.4 and 1.10. �
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Definition 4.6. Let s be a κ-p.o.w.i.s.
1) For u ∈ Js let Lu = Ls

u be the group generated by {hg : g ∈ Gu} freely except
the equations

(A) h−1
g = hg

(B) hg1hg2 = hg2hg1

(C) hg1
= hg2

when g1G
<0
u = g2G

<0
u .

1A) Let hu = hsu be the homomorphism from Gu into the automoorphism group of
Lu such that

f ∈ Gu ∧ g ∈ Gu ⇒ (hu(f))(hg) = hfg .

2) Let Ku be Gu∗huLu the semi-direct product of Gu with Lu over the homorphism

hu.

Claim 4.7. Main Like 3.4 but

(b)′ s is an almost limit or at least (?) semi-limit of t as witnessed by v∗.

Theorem 4.8. Like 3.7 but we omit clauses (f),(g) from the assumption and weaken
the conclusion to τnlg

κ > γ.

Conclusion 4.9. Rephrase Saharon.

Definition 4.10. In part (3) clause (b): now g[t̄j ,ηj ] is well defined for every j.

∗ ∗ ∗

Claim 4.11. [?] In the main claim 3.4 we can weaken assumption (b) to

(b)− s is an almost limit of t as witnessed by v∗.

Proof. Similar to the proof of 3.4. But G+ is not exactly. A possibility is to redo
§1 (and §2) in which we have “various kinds of “s
eqt”. Further for every n-type we have a set of partial order on it (those which in
4.11) will appear unboundedly in the reflection. �

Claim 4.12. In Claim 3.7 we can omit assumption (e).

Proof. Without loss of generality (∗)0 from the proof of 3.7 holds.
However, we define s = (J, Ī, π̄) somewhat differently

(∗)1 (a) J = (θ + 1, <)

(b) (α) Iθ = (F , <Jbd
θ

)
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(β) Iα = (F1+α, <α+1) for α < θ where:

(i) if 1 + α is a successor ordinal, say β + 1 and f1, f2 ∈ F1+α

then f1 <α f2 ⇔ f1(β) < f2(β)

(ii) if α is a limit ordinal and f1, f2 ∈ F1+α then f1 <α f2 ⇔

(∀∗β < α)(f1(β) < f2(β)) where (∀∗β < α)

means for every large enough β < α

(γ) for α < β < θ + 1 let πα,β : Iβ → Iα be πα,β(f) = f � (1 + α).

The new point is checking clause (d)− in Definition 3.15 of almost limit. Now if
n < ω and f0, . . . , fn−1 ∈ F then for some club C of θ we have for `, k < n and
α ∈ C : f` <θ fk ⇔ (f` � α) <α (fk � α). �

How to revise §1:
Best is if: if on I we have orders <1⊆≤2 then from the group for (I,<1) there

is a projection for the one for (I,<2). This tends to press for a group with “all
is free except some conjugations”. [Alternatively] The “toward free” approach: 0)

Also non-decreasing sequences in (〈t` : ` ≤ n〉, η).
1) Definition 1.4(1)(c) omit (b)

(b) Gu,3<α think how to define
2) Definition 1.2(1B): add y1 � n(x) = x = y2 � n(∗).
3) Observation 1.6(1) and x = y � n(∗)
4) Omit 1.6(2),(3),(6).
5) Claim 1.7: replace:(a) each g ∈ Gs

u we can canonically represent as gx1 . . . gxn
such that g` 6= g`+1 and ¬~x`,x`+1

; (b) the order disappears.
SAHARON!
6) 1.7(4),(7) use canonical instead increase

Proof. Immediate by G<k,`> and HNN extension.
7) Claim 1.10: represent?
8) Definition 2.1: (a) we demand Πu,v maps {t : rks

I[v](t) = 0} onto {` : rks
I[u](t) =

0}.
(b) and what about x ∈ XI with t̄x non <I -decreasing? �

∗ ∗ ∗
Question: J t = ω, the limit is too large still can we commute?
Alternative to clause (f) of the Theorem 3.7

Question: Can we replace equality on {u : u∗ ≤J[t] u} by equality on {u : u
eqJ[t]u∗} for some u∗?

Moved from 3.8(f)′(γ),pg.36:

(γ) if k < ω and f̄δ ∈ k(Fδ) for δ ∈ S then we can find α(∗) < δ and

p̄ = 〈pα : α ∈ [α(∗), δ)〉 such that pα ∈ Sk and for every

β ∈ [α(∗), δ) for some δ ∈ S \ β we have

α ∈ [α(∗), β)→ pα = tpqf(〈fδ` (α) : ` < k〉,∅, (θ,<)).
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Remark 4.13. Assume

(A) F is closed under min{f, g}, f + 1, 0θ.

Old proof of 3.13,pg.39: Let θ = cf(κ) so ℵ0 < θ = cf(θ) < κ, and let F = θκ =

{f : f a function from θ to κ} and Fα = {f � α : f ∈ F} for α < θ. Clearly
the assumption of 3.7 hence its conclusion: τnf

κ > γ where γ = rk(F , <Jbd
θ

). But

rk(F , <Jbd
θ

) > 2κ as: κθ = 2κ (by cardinal arithmetic) and rk(F , <Jbd
θ

) = rkJbd
θ

(〈κ :

i < θ〉), see [She94] (as there is a sequence 〈fα : α < 2κ〉 in θκ which is <Jbd
θ

-increase

by [She94, §1,VII] because there is a sequence 〈λi : i < θ〉 of cardinals < κ with
tcf(

∏
i<θ

λi, <Jbd
θ

) = λ for any regular λ ∈ (κ, 2κ]). Still we do not have clause (e) of

3.7. By a variant of [She94, II,3.5], from [She, Part C,§18=k.1tex,pg.56]; there is
F as required (well, if 2κ is regular, if it is singular we have to combine, see more
there).

§ 5. Looks like old stuff

§ 5(A). Old §1: The Groups.

Discussion 5.1. How do we define the group G = Gp from the parameter p which is
a partial order I (as the first try to be refined by additional information)? For each
t ∈ I we would like to have an element associated with it (g(〈t〉,〈 〉)) such that it will
“enter” norαG(H) exactly for α = rkI(t) + 1. We intend that among the generators
of the group commuting is the normal case so we need witnesses that g(〈t〉,〈 〉) /∈
norβ+1

G (H) wherever β < α = rkI(t), β > 0. It is natural that if rkI(t1) = β
and t1 <I t0 =: t then we use t1 to represent β, as witness; more specifically, we
construct the group such that conjugation by g(〈t〉,〈 〉) interchange g(〈t0,t1〉,〈0〉) and

g(<t0,s0>,<1>) and one of them, say g(〈t0,t1〉,〈0〉) belongs to norβ+1
G (H) \ norβG(H)

whereas the other one, g(<t0,0>,<1>), belongs to nor1
G(H). Iterating we get the

elements x ∈ XI defined below. To “start the induction”, some of the elements
g(α,`)(α ∈ ZP, ` < 2) are used to generate H and not using all of them will help

to make nor1
GI

(HI) having the desired value. However, we have to decide for
each g(t̄,ν) for (t̄, ν) as above, for which g(α,`)(α ∈ Zp, ` < 2) does conjugation by
g(t̄,ν) maps g(α,`) to itself and for which it does not. For this we choose subsets

A(t̄,ν) ⊆ ZP to code our decisions when (t̄, ν) is as above and well defined, and make

the conjugation with the generators intended to generate nor1
G(H) appropriately.

Note that the exact use of rk<∞I (and later its role in rk2,<∞
P hence X<α

P , G<αP )

is necessarily for the fine determination of τnlg
G,H , if your, e.g. mind only |τnlg

G,H | it
does not matter.

Definition 5.2. Let I be a partial order (so 6= ∅).
1a) rkI : I → Ord∪{∞} is defined by rkI(t) ≥ α iff (∀β < α)(∃s <I t)[rkI(s) ≥ β].
1b) rk<∞I (t) is defined as rkI(t) if rkI(t) < ∞ and is defined as ∪{rkI(s) + 1 : s
satisfies s <I t and rkI(s) <∞} in general.
1c) Let rk(I) = ∪{rkI(t) + 1 : t ∈ I} stipulating α <∞ =∞+ 1.
1d) rk<∞I = rk<∞(I) = ∪{rk<∞I (t) + 1 : t ∈ I}.
1e) Let I[α] = {t ∈ I : rk(t) = α}.
2) Let XI be the set of objects x satisfying:

(∗) x is a pair, x = (t̄, η) = (t̄x, ηx) such that for some n = n(x)
(b) t̄ = 〈t` : ` ≤ n〉 is a <I -decreasing sequence of members of I

(c) η ∈ n2.
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[note that t̄ has length n+ 1 whereas η has length n.]
2A) For x ∈ XI let n = n(x), t` = t`(x), η = ηx, t̄x = 〈t`(x) : ` ≤ n(x)〉 and let
t(x) = tn(x)(x).

2B) For x = (t̄, η) ∈ XI let rk<∞I (x) = rk<∞I (t(x)) and rkI(x) = rkI(t(x)).
2C) For x ∈ XI and n ≤ n(x) let x � n = (〈tx` : ` ≤ n〉, ηx � n).
3) I is non-trivial if {s : s ≤I t and rkI(s) = β} is infinite for every t ∈ I satisfying
rk<∞I (t) > β (used in the proof of 5.16(1)).
4) I is explicitly non-trivial if each EI -equivalence class is infinite where EI =
{(t1, t2) : t2 ∈ I, t2 ∈ I and (∀s ∈ I)(s <I t1 ≡ s <I t2)}.

Definition 5.3. 1) Let Λ∗m =df {η, %) : η ∈ m2, % is a function from m≥2 to {0, 1}}.
2) Let Λ∗<m =df ∪{Λ∗k : k < m} and Λ∗≤m =df Λ∗m+1 and Λ∗ =df ∪{Λ∗m : m < ω}.
3) For any pair (η, %) let k((η, %)) be the k such that (η, %) ∈ Λ∗k.
4) If k < m and (η, %) ∈ Λ∗m then we define (η, %) � k =df (η � k, % � k≥2).
5) For υ ∈ Λ∗m let υ = (ηυ, %υ).
6) Let Λ−m = P({υ ∈ Λ∗m : 0 ∈ Rang(ηυ)}.

Definition 5.4. 1) For k,m < ω and (η, %) ∈ Λ∗k let κ = κm,(η,%) be the following
permutation of Λ∗m. (Note that if k ≥ m then this permutation is the identity).
For (η1, %1) ∈ Λ∗m we define (η2, %2) = κm,((η,%))(η1, %1) ∈ Λ∗m such that k =df

k((η2, %2)) = k(η1, %1)) as follows: Case 1: (η1, %1) � k 6= (η, %).

In this case we have (η2, %2) = (η1, %1). Case 2 : Not case 1.

First η2(i) = η1(i) iff i 6= k (and i < m )
Second for ρ2 ∈ m2 the value of %2(ρ2) is : %1(ρ1) when ρ1 ∈ m2 has the same

length as ρ2 and ρ1(i) 6= ρ2(i) iff i = lg(η) ∧ ρ / ρ2 for i < m
2) Let κ = κ2 − m,υ be the permutation of P(Λ∗m) induced by κ1

υ that is, for
Λ ⊆ Λ∗m,κ(Λ) = {κ((υ) : υ ∈ Λ}; we may omit the 2.

Definition 5.5. 1) Let m be the following function: for an ordinal β = ωα+m we let
m(β) = m (here as κ is always > ℵ0 this is fine, but if it is equal we better change
the values of m on the natural numbers such that each has ℵ0 natural numbers as
pre-images).
2) For a set Z of ordinals let Z ∗ 2 =df ∪{{α} × Λ∗m(α) : α ∈ Z}.
3) For a set Z of ordinals let Z∗′2 =df ∪{(α, (η, %)) : α ∈ Z, (η, %) ∈ Λ∗m(α),¬[Rang(η) ⊆
{1}]}.
4) We say that �(η,%),(η1,%1),(η2,%2) when:

(A) k =df k((η, %)) < k((η1, %1)) = k((η2, %2))

(B) (η1, %1) � k = (η, %) = (η2, %2) � k

(C) η1(i) 6= η2(i)⇒ i = `g(η1) for i < `g(η1) = `g(η2), of course

(D) %1(ρ) 6= %2(ρ)⇔ ρ = η for ρ ∈ m≤2 of course.

Definition 5.6. [ USED??] 1) Let Hm be the subgroup of per(Λ∗m) generated by
{gm,(η,%) : (η, %) ∈ Λ∗<m.

2) For k ≤ m let Hk
m be the subgroup of Hm generated by {κm,(η,%) : (η, %) ∈ Λ∗<m

and 0 ∈ Rang(η) or `g(η) ≥ m− k}.
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Observation 5.7. 1) For (η, %) ∈ Λ∗<m we have: κ1
m,(η,%) is a permutation of Λ∗m of

order two and κ2
m,(η,%) is a permutation of P(Λ∗m) of order two.

2) If i ∈ {1, 2}, k < mω and (η1, %1), (η2, %2) belongs to Λ∗k and (η`, %`) 6= (η3−`, %3−`) �
k((η`, %`)) for ` = 1, 2 then κim,(η1,%1),κ

i
m,(η2,%2) commute.

3) If (η`, %`) ∈ Λ∗<m and k` =df k((η`, %`) for ` = 0, 1 and (η0, %0) = (η1, %1) � k0

then for one and only one (η2, %2) ∈ Λ∗k1
we have �(η0,%0),(η1,%1),(η2,%2) holds.

4)If �m(η,%),(η1,%1),(η2,%2) and k((η1, %1)) ≤ m then in the permutation group of Λ∗m
we have κm,(η,%)κm,(η1,%1)κ−1

m,(η,%) = κm,(η2,%2).

5) If υ ∈ Λ∗<m then κ1
m,υ maps Λ∗m onto (equivalently into) itself iff υ ∈ Λ∗<m;

similarly κ2
m,υ maps P(Λ∗m) onto (equivalently into) itself iff υ ∈ Λ∗<m.

Proof. Easy. �

Definition 5.8. 1) We say that p is a κ-parameter when:

(A) p = (I, Ā, Z, Y ) = (Ip, Āp, Zp) but let I[p] = Ip

(B) I is a partial order

(C) Ā = 〈Ax : x ∈ XI〉 and Ax ⊆ Z so Ax = Ap
x

(D) Z ⊆ κ (and we assume that XI ∩ (κ ∗ 2) = ∅, of course).

2) For a κ-parameter p

(A) let Xp be XI[p] and X+
p = Xp ∪ (Zp × 2) and for x ∈ Zp × 2 = X+

p \Xp

let n(x) = ω; let X`
p be X+

p if ` = 1, Xp if ` = 2

(B) let rk1
p : X+

p → {−1} ∪ Ord ∪ {∞} be defined by x ∈ Xp ⇒ rk1
p(x) =

rkI[p](x) and x ∈ Zp × 2⇒ rk1
p(x) = −1

(C) let rk2
p : X+

p → {−1} ∪Ord ∪ {∞} and ` : Xp → ω ∪ {∞} be defined by

(α) if x ∈ Zp × 2 then rk2
p(x) = −1

(β) if x ∈ Xp and Rang(ηx) ⊆ {1} (e.g., n(x) = 0) then rk2
p(x) =

rkI[p](x)(= rkI[p](t(x))) and we let `(x) =∞
(γ) if x ∈ Xp and Rang(ηx) * {1} let `(x) = min{` : ηx(`) = 0} and

rk2
I[p](x) = 0 (yes, zero)

(D) rk1,<∞
I[p] (x), rk2,<∞

p (x) are defined similarly using rk<∞I[p](−) instead rkI[p](−)

(E) rk2(p) = rk2
I[p], etc.

(F) for x ∈ XI let %px,α be the function from n(x)≥2 to the set {0, 1} defined as
follows:

for ρ ∈ k2, k ≤ n(x) we have %px,α(ρ) = 1 iff α ∈ A(t̄x�k,ρ)

(G) For x ∈ Xp let ηpx be ηx if rk2,<inf
p (x) > 0 and let it be (ηx) � n(x)) ∼= 〈0〉

otherwise

(H) for x ∈ Xp let υpx = (ηpυ , %
p
x,α) and κp

x,α = κ2
m(α), υpx,α

(I) κ̄p
x =df 〈κp

x,α : α ∈ Zp〉.
3) We say p is a nice κ-parameter when:

(A) p is a κ-parameter

(B) if x ∈ Xp and rk2
p(x) = 0 then Ax ⊆ Y , (used in the proof of 5.16(2))
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(C) if k,m < ω and x0, x1, . . . , xk ∈ XI[p] are with no repetitions and rk2
p(x0) >

0 then Ax0
* ∪{Ax` : ` = 1, . . . , k} ∪ {α ∈ Zp : m(α) ≤ m}, (used in the

proof of ??(1))

(D) if x 6= y ∈ XIp then Ax 6= Ay.

Definition 5.9. Assume p is a κ-parameter. Below if we omit the superscript ` we
mean 2.
1) Let G1

p = G1[p] be the group generated by {gx : x ∈ X+
p } freely except the

equations in Γ1
p where Γ1

p consists of

(A) g−1
x = gx, that is gx has order 2, for each x ∈ X+

p

(B) gy1gy2 = gy2gy1 when y1, y2 ∈ Zp ∗ 2

(C) gxgy1
g−1
x = gy2

when ~x,y1,y2
, see below.

1A) Let G2
p = G2[p] be the group generated by {gx : x ∈ Xp} freely except the

equations in Γ2
p where Γ2

p consists of

(A) g−1
x = gx, that is gx has order 2, for each x ∈ Xp

(B) gy1
gy2

= gy2
gy1

, i.e., gy1
, gy2

commute when ¬~2
x,y and ¬~2

y,x see below

(C) gxgy1
g−1
x = gy2

when ~2
x,y1,y2

, see below

this includes “x, y commute if x ∈ Xp, y = (α, `) ∈ Zp × 2 and α ∈ Zp \Ap”.
1B) Let ~x,y1,y2 means that ~1

x,y1,y2
or ~2

x,y1,y2
, see below. Let ~x,y mean that

~x,y1,y2 for some y1, y2 such that y ∈ {y1, y2} and ~1
x,y1

,~2
x,y1

are defined similarly.

1C) Let ~1
x,y1,y2

means that x ∈ Xp and for some α ∈ Zp we have y` ∈ {α}×Λm(α)

for ` = 1, 2 and �Υ[x],Υ[y1],υ[y2].

1D) Let ~2
x,y1,y2

means that:

(A) x, y1, y2 ∈ Xp

(B) n(x) < n(y1) = n(y2)

(C) y1 � n(x) = x = y2 � n(x)

(D) t̄y1 = t̄y2

(E) ηy1(`) = ηy2(`) for every ` < n(y1) which is 6= n(x)

(F) ηy1(n(x)) 6= ηy2(n(x)).

2) For ` ∈ {1, 2} let G1,≤α
p is defined similarly to G`p except that it is generated

only by X`,<α
p =: {gx : x ∈ X`

p ∧ rk2,<∞
p (x) < α} freely except the equations from

Γ`,<αp , where Γ`,<αp is the set of equations from Γ`p among {gx : x ∈ X`,<α
p }.

Similarly G1,≤α
p , X`,≤α

p so X`,≤∞
p = X`,<∞

p = X`
p and G`,≤∞p = G`,<∞p = G`p;

note that G1,≤α
p = G1,<α+1

p , X`,≤α
p = X`,<α+1

p if α <∞.

3) Let H`
p be the subgroup of G`p generated by {gy : y ∈ Zp ∗` 2}.

4) For X ⊆ Xp, Z ⊆ Zp let G1
p,X,Z be the group generated by {gy : y ∈ X ∪ (Z ∗

2)} freely except the equations in Γ1
p,X,Z which is the set of equations from Γ1

p

mentioning only generators among {gy : y ∈ X ∪ (Z ∗ 2)}.
4A) For X ⊆ Xp we define G2

p,X similarly.

Observation 5.10. 1) The sequence 〈X`,<α
p : α ≤ rk<∞(p)〉 is ⊆-increasing.

2) If ` ∈ {1, 2} and x, y ∈ Xp and y = x � n 6= y and ` ∈ {1, 2} then rk`p(y) ≤ rk`p(x)

and if equality holds then rk1
p(x) =∞ = rk1

p(y) or both are zero and ` = 2.
3) If a partial order I is explicitly non-trivial then I is non-trivial.

Proof. Check. �

Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.



42 S. SHELAH

Observation 5.11. For a κ-parameter p:
1) ~1

x,y holds iff x ∈ Xp and y ∈ Zp ∗ 2 ⊆ X+
p \Xp.

2) ~2
x,y holds iff:

(α) x, y ∈ X+
p and n(y) ≥ n(x) + 1

(β) y � n = x.

4) If ~2
x,y1,y2

then y1 � n(x) = x = y2 � n(x) and n(y1) = n(y2).

5) ~`x,y1,y2
iff ~`x,y2,y1

for ` = 1, 2.

Proof. Easy. �

We first sort out how elements in Gp and various subgroups can be (uniquely)
represented as products of the generators.

Claim 5.12. Assume that p is a κ-parameter and <∗ is any linear order of Xp such
that

� if x ∈ Xp, y ∈ Xp and n(x) > n(y) (we could have demanded just

(∃n < n(x))[y = x � n]) then x <∗ y.

1) Any member of Gp is equal to a product of the form gx1
. . . gxm where x` <

∗ x`+1

for ` = 1, . . . ,m− 1. Moreover, this representation is unique.
2) Similarly for G≤αp , G<αp (using X≤αp , X<α

p respectively instead Xp) hence G≤αp , G<αp

are subgroups of Gp.
3) If y <∗ x are from Xp and gx, gy do not commute (in Gp) then ~x,y of Defi-
nition ??(1)(b) holds hence (y, n(x)) determines x uniquely, in fact, x = y � n(x),
see 5.2(2B).
4) If g = gy1 . . . gym where y1, . . . , ym ∈ XI and g = gx1 . . . gxn ∈ Gp and x1 <

∗

. . . <∗ xn then n ≤ m.
5) 〈G<αp : α ≤ rk<∞(Ip)〉 is an increasing continuous sequence of groups with last

element G2
p.

6) Hp ⊆ G<0
p is a subgroup of cardinality ≤ κ.

7) In part (1) we can replace Gp, Xp by G = Gp,X , X when X ⊆ Xp is such that
[{x, y1, y2} ⊆ X ∧ ~2

x,y1,y2
∧ {x, y1} ⊆ X ⇒ y2 ∈ X]. Hence Gp,X is equal to

〈{gx : x ∈ X}〉Gp .

Proof. 1),2),7) Recall that each generator has order two. We can use standard
combinatorial group theory (the rewriting process but below we do not assume
knowledge of it); the point is that in the rewriting the number of generators in the
word do not increase (so no need of <∗ being a well ordering).
For a full self-contained proof, for part of (2) we consider G = G<αp , X = X<α

p ∩
Xp,Γ = Γ<αp for α an ordinal or infinity and for part (1) and the rest of part (2)

consider G = G≤βp , X = X≤βp ∩Xp,Γ = Γ≤βp for β an ordinal or infinity (recall that
Gp, Xp is the case β =∞ CHECK!!). The condition from part (7) holds by ??(2)
so it is enough to prove part (7). Now recall that G2 = G2

p,X and

~1 every member of G can be written as a product gx1 . . . gxn for some n <
ω, x` ∈ X

[Why? As the set {gx;x ∈ X} generates G.]

~2 if in g = gx1
. . . gxn we have x` = x`+1 then we can omit both

[Why? As gxgx = eG for every x ∈ X by clause (a) of Definition ??(1)]
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~3 if 1 ≤ ` < n and g = gx1
. . . gxn and we have x`+1 <∗ x` and m ∈

{1, . . . , n} \ {`, ` + 1} ⇒ ym = xm then we can find y`, y`+1 ∈ X+ such
that g = gy1 . . . gyn and y` <

∗ y`+1 and, in fact, y`+1 = x`.

[Why does ~3 hold? By Definition 5.9(1) one of the following cases occurs. Case 1:

gx` , gx`+1
commutes.

Let y` = x`+1, y`+1 = x`. Case 2: ~2
x`+1,x`

, see Definition 5.9(1B).

By clause (b) of Definition 5.9(1) we have n(x`+1) < n(x`). So by � of the
assumption we have x` <

∗ x`+1, contradiction. Case 3: ~2
x`,x`+1

, see Definition

5.9(1D).
Clearly there is y` ∈ X such that n(y`) = n(x`+1) > n(x`), t̄

y` = t̄x`+1 and
i < n(x`+1)⇒ (ηy`(i) = ηx`+1(i)) ≡ (i 6= n(x`)).

Let y`+1 = x`, clearly y`+1, y` ∈ X. By Definition 5.9(1), gx`gx`+1
g−1
x`

= gy`
hence gx`gx`+1

= gy`gx` = gy`gy`+1
and clearly y` <

∗ x` = y`+1, so we are done.
The three cases exhaust all possibilities ~3 is proved.]

~4 every g ∈ G can be represented as gx1
. . . gxn with x1 <

∗ x2 <
∗ . . . <∗ xn.

[Why? Without loss of generality g is not the unit of G. By ~1 we can find
x1, . . . , xn ∈ X1 such that g = gx1

. . . gxn and n ≥ 1. Choose such representation⊗
(a) with minimal n and

(b) for this n, with minimal m ∈ {1, . . . , n+1} such that xm <∗ . . . <∗ xn

and 1 < m ≤ n⇒
m−1∧
`=1

x` <
∗ xm, and

(c) for this pair (n,m) if m > 2 then with maximal ` where ` ∈

{1, . . . ,m− 1} satisfies x` is <∗-maximal among {x1, . . . , xm−1}.
Easily there is such a sequence (x1, . . . , xn), noting that m = n+ 1 is O.K. for (b)
and there is x` as in

⊗
(c) by

⊗
(a).

By ~2 and clause (a) of ⊗ we have x` 6= x`+1 (when ` (from ⊗(c)) is well defined,
i.e., if m > 2).
Now m = 2 is impossible (as then m = 1 can serve), if m = 1 we are done, and if
m > 2 then ` = m − 1 is impossible (as then m − 1 can serve instead m). Lastly
by ~3 applied to this `, we could have improved ` to `+ 1.]

~5 the representation in ~4 is unique.

[Why does ~5 hold? Assume toward contradiction that gx′1 . . . gx′n1
= gy′1 . . . gy′n2

where x′1 <
∗ . . . <∗ x′n1

and y′1 <
∗ . . . <∗ y′n2

and (x′1, . . . , x
′
n1

) 6= (y′1, . . . , y
′
n2

).

Without loss of generality among all such examples, (n1 +n2 + 1)2 +n1 is minimal.
Let Yn =: {x ∈ X : n(x) = n}.
So 〈Yn : n < ω〉 is a partition of X+.
For k ≤ m < ω let X<k,m> = {x ∈ X+ : x ∈

⋃
{Y` : k ≤ ` < m}} and let

G<k,m> be the group generated freely by {gx : x ∈ X<k,m>} except the equations
in Γ<k,n>, i.e., from the equations from Γp,X<k,m> , i.e., from Definition ??(4)

mentioning only its generators, {yx : x ∈ X<k,m>}. Now clearly if ~2
x,y1,y2

, see
Definition ??(1A) then n ≤ ω ⇒ [y2 ∈ Yn ≡ y2 ∈ Yn]. Hence the proof of
~1 − ~4 above gives that for every g ∈ G<k,m> there are n and x1 <∗ . . . <∗

xn from X<k,m> such that G<n,m> |= “g = gx1 . . . gxn”. Also it is enough to
prove the uniqueness for G<k,m> (for every k ≤ m < ω), i.e., we can assume
x′1, . . . , x

′
n1
, y′1, . . . , y

′
n2
∈ X<k,m> as if it fail , finitely many equations implies the

undesirable equation and for some k ≥ m < ω they are from Γ〈,k,m,〉, hence already
in G〈k,m〉 we get this undesirable equation.
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Now for k ≥ m < ω and x ∈ Yk let πk,mx be the following permutation of
X〈k+1,m〉: it maps y1 ∈ X〈k+1,m〉 to y2 if ~2

x,y1,y2
and it maps y ∈ X〈k+1,m〉 to y if

¬~2
x,y.
It is easy to check that

�1 For k,m, x as above,
(i) πk,mx is a permutation of X〈k+1,m〉 which maps Γ〈k+1,m〉 onto itself

(ii) so πk,mx induce an automorphism π̂k,mx of G〈k,m〉: the one mapping
gy1

to gy2
when πk,mx (y1) = y2

(iii) the automorphisms π̂k,mx of G〈k,m〉 for x ∈ Yk pairwise commute

(iv) the automorphism π̂k,mx of G〈k,m〉 is of order two by induction on
m− k.

Note that

(∗) if x ∈ Yk, y ∈ Y` and x <∗ y then ` ≤ k.

If m− k = 0, then G<k,m> is the trivial group so the uniqueness is trivial.
Also the case k = m− 1 is trivial , G〈k,m〉 is actually a vector space over Z/2Z

with basis {gx : x ∈ Yk}, well in additive notation so the uniqueness is clear.
So assume that m− k ≥ 2, now

�2
k,m k ≥ m < ω and if x′1, . . . , x

′
n1
, y′1, . . . , y

′
n2

from X〈k,m〉 are as above in

G2
X〈k,m〉

then 〈x′1, . . . , x′n1
〉 = 〈y′1, . . . , y′n2

〉.
We prove this.
So 1),2),7) holds.
3) Check (by (1) and the definition of Gp).
4) Included in the proof of ~4 inside the proof of parts (1),(2),(7).
5) For α < β ≤ ∞, as clearly X<α

p ⊆ X<β
p and Γ<αp ⊆ Γ<βp hence there is a ho-

momorphism from G<αp into G<βp . This homomorphism is the one-to-one (because
of the uniqueness clause in part (2)) hence the homomorphism is the identity. So
the sequence is ⊆-increasing, the ⊂ follows by part (1), the uniqueness we have
rk∞I (t) = α⇒ g(〈t〉,〈s〉) ∈ G≤α+1

p \G<αp .
6) Hp is generated by ≤ |Zp ∗ 2| = κ× 2 = κ generators. �

Observation 5.13. Assume that

(A) G is a group

(B) ft is an automorphism of G for t ∈ J
(C) ft, fs ∈ Aut(G) commute for any s, t ∈ J .

Then there are K and 〈gt : t ∈ J〉 such that

(α) K is a group

(β) G is a normal subgroup of K

(γ) H is generated by G ∪ {gt : t ∈ J}
(δ) if a ∈ G and t ∈ G then gtag

−1
t = ft(a)

(ε) if <∗ is a linear orer of J then every member of K has a one and only one

representation as xgb1t1 g
b2
t2 . . . g

bn
tn when x ∈ G,n < ω, t1 <∗ . . . <∗ tn are

from J and b1, . . . , bn ∈ Z \ {0}.

Proof. A case of twisted product see below. (It is also a case of repeated HNN
extensions). �
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Definition 5.14. Definition/ 1) Assume G1, G2 are groups and π is a homomorphism
from G2 into Aut(G1), we define the twisted product G = G1 ∗π G2 as follows:

(A) the set of elements is G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2}
(B) the product operation is (g1, g2) ∗ (h1, h2) = (g1, h

π(g2)
1 , g2h2) where

(α) h
π(g2)
1 is the image of h1 by the automorphism π(g2) of G1

(β) g1h
π(g2)
1 is a G1-product

(γ) g2h2 is a G2-product.

2)

(A) such group G exists

(B) in G every member has one and only one representation as g′1, g
′
2 when

g′1 ∈ G1 × {eG2
}, g′2 ∈ {eG1

} ×G2

(C) the mapping g1 7→ (g1, e) embeds G1 into G

(D) the mapping g2 7→ (e, g2) embeds G2 into G

(E) so up to renaming, each g2 ∈ G2 conjugating by it inside G acts on G1 as
the automorphism π(g2) of G1.

Observation 5.15. [?] Let p be a nice κ-parameter.
1) If a ∈ Zp,m < 2 and g ∈ Gp then gg(a,υ)g

−1 ∈ {g(a,υ) : υ ∈ Λ∗m(a)}.
2) If Gp |= “gx1 . . . gxn = gy1 . . . gym” where {x1, . . . , xn} ∪ {y1, . . . , ym} ∈ X+

I and
Z ⊆ Zp and we omit gx` if x` ∈ Z ∗ 2 and we omit gy if y ∈ Z ∗ 2 then the equation
still holds.

Proof. By 5.12 and its proof. �

Claim 5.16. Let p be a nice κ-parameter and I = Ip be non-trivial.
1) If 0 < α < rk<∞I[p] then the normalizer of G<αp in Gp is G<α+1

p .

2) If α = rk<∞I[p] then the normalizers of G<αp in Gp is G<∞p = G<αp .

Proof. 1) First if x ∈ Xp and rk2,<∞
p (x) = α then conjugation by gx in G2

p maps

X<α
p = {gy : y ∈ Xp and rk2,<∞

p (y) < α} onto itself.

[Why? It is enough to prove for every y ∈ X<α
p that: if y ∈ Xp, rk2,<∞

p (y) < α

then gxgyg
−1
x ∈ X<α

p . Now for each such gy, one of the following two cases occurs:

(iii)
(A) gx, gy commutes so gxgyg

−1
x = gy ∈ X2,<α

p

(ii) (i) fails.

In case (i) the desired statement trivially holds, so assume that (ii) holds.
As z ∈ {x � n : n ≤ n(x)} ⇒ rk2,<∞

p (z) ≥ rk2,<∞
p (x) ≥ α ⇒ gz /∈ X<α

p and
gx, gy does not commute, by 5.12(3) we get that x = y � n(x), n(x) < n(y). (As

rk2,<∞
p (x) ≥ α > 0 by Definition ??(2)(c)(γ) necessarily ηx is constantly 1, but

not used.) Hence gxgyg
−1
x = gy′ where t̄y

′
= t̄y (and ηy

′
(`) = ηy

′
(`)) ≡ (` = n(x)),

hence gy′ ∈ X<α
p as required.]

So really gx normalize G<αp .

As this holds for every member of {gx : rk2,<∞
p (x) = α}, clearly norGp(G<αp ) ⊇

(G<αp ) ∪ {gx : rk2,<∞
p (x) = α and x ∈ Xp} but the latter generates G<α+1

p hence

norGp(G<αp ) ⊇ G<α+1
p .
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Second assume g ∈ Gp \ G<α+1
p , let <∗ be a linear ordering of Xp as in �

of 5.12; so by 5.12 we can find k < ω and x1 <∗ . . . <∗ xk from Xp such that
g = gx1gx2 . . . gxk . As g /∈ G<α+1

p necessarily not all the gxm are from X<α+1
p hence

for some m, gxm /∈ G<α+1
p ; and by the definition of G<α+1

p , rk2,<∞
p (xm) ≥ α + 1

hence ηxm is constantly 1 and without loss of generality m is the minimal such m.
Let m(∗) ∈ [m, k] be such that

(A) xm(∗) = xm � n(xm(∗))

(ii) under (i), n(xm(∗)) is minimal;

there is suchm(∗) asm satisfied the condition in clause (i). Of course, rk2,<∞
p (xm(∗)) ≥

rk2,<∞
p (xm) ≥ α+ 1. Hence we can find t∗ such that (recalling I is non-trivial, see

Definition 5.2(3)):

(A) t∗ <I t(xm(∗))

(B) rkI(t
∗) = α

(C) t∗ /∈ {t`(x) : x ∈ {x1, . . . , xk} and ` ∈ {0, . . . , n(x)}}.
We can let n = n(xm(∗)) and choose

y1 = (〈t0(xm(∗)), . . . , tn(xm(∗)), t
∗〉, ηxm(∗)_〈0〉)

y2 = (〈t0(xm(∗)), . . . , tn(xm(∗)), t
∗〉, ηxm(∗)_〈1〉).

So y1, y2 ∈ Xp, rk2
p(y1) = 0, rk2,<∞

p (y2) = α but 0 < α by the assumption of part

(1) hence gy1
∈ G<1

p ⊆ G<αp and by 5.12 gy2
∈ G<α+1

p ∧ gy2
/∈ G<αp . Now

(A) conjugating by gxm(∗) maps gy1
to gy2

.
Moreover,

(B) y1, y2 commutes with gxm , . . . , gxk except gxm(∗) .

[Why? Assume toward contradiction that this fails for ` ∈ {m, . . . , k} \
{m(∗)} and yi, i ∈ {1, 2}; clearly by 5.12(3) we get yi = x` � n(yi) 6= x` or
x` = yi � n(x`) 6= yi. By the choice of t∗ (i.e., see clause (c) above) the first
case does not occur hence the second one occurs. As ` ∈ [m, k] by the choice
of m(∗) the second case implies that n(x`) ≤ n(yi) − 1 = n(xm(∗)) and it
also implies x` = yi � n(x`) = xm(∗) � n(x`) = xm � n(x`). As ` ∈ [m, k]
by the choice of m(∗) we necessarily have n(x`) = n(xm(∗)) hence by the
previous equality x` = xm(∗), but ` 6= m(∗) ⇒ (x` <

∗ xm(∗)) ∨ (xm(∗) <
∗

x`)⇒ xm(∗) 6= x` hence ` = m(∗), contradiction.]

By clauses (d) + (e) we have ggy1
g−1 = g1 . . . gm−1((gm . . . gk)gy1

(g−1
k . . . g−1

m ))g−1
m−1 . . . g

−1
1 =

(g1 . . . gm−1)gy2
(gm−1 . . . g1)−1. But g1, . . . , gm−1 ∈ G<α+1

p by the choice of m

and G<αp is a normal subgroup of G<α+1
p (as we have proved that G<α+1

p ⊆
norGp(G<αp )). So conjugation by (g1 . . . gm−1) maps G<αp onto G<αp and so nec-

essarily it maps G<α+1
p \ G<αp onto G<α+1

p \ G<αp but gy2
∈ G<α+1

p \ G<αp . Hence

together ggy1
g−1 = (g1 . . . gm−1)gy2

(gm−1 . . . g1)−1 ∈ G<α+1
p \ G<αI . But as said

above gy1
∈ G<αp , so g /∈ norGp(G<αp ).

As g was any member of Gp \G1,<α+1
p we deduce that norGp(G1,<α

p ) ⊆ G<α+1
p .

As we have shown the other inclusion earlier we are done.
2) Similar (and is not really needed). �

Definition 5.17. 1) Let H ′p be the abelian group generated freely by {gy : y ∈ Zp∗2}
freely except that each generator has order two.
1) The mapping κp from {gx : x ∈ Xp} into the group per(Zp ∗ 2) of permutations
of Zp ∗ 2 is defined by: κp(gx)((α, υ′)) = (α,κm(α),υp

x,α
(υ′).

2) We can above replace Zp ∗ 2 by H ′p and we call it κp
∗ , so κp

∗ (gy) = gκp(y).
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3) We call κ̂p the extension of the the mapping κp
∗ to a homomorphism from the

group G2
p into the group of automorphism of H ′p.

4) Let π1
p is the homomorphism from G1

p into the twisted product H ′p ∗G2
p defined

by:

(A) for x ∈ Xp , we let π1
p(gx) = gx, i.e., (e, gx)

(ii) for y ∈ Zp ∗ 2 we let π1
p(gy) = gy, i.e, (gy, e).

Claim 5.18. 1) The mapping in Definition 5.17 is well defined, i.e, κp(gx) is really
a permutation of Zp ∗ 2.
2) κp

∗ is well defined and the images are automorphisms of H ′p.

3) Moreover, this mapping respect the equations from Γ1
p hence κ̂p is a homomor-

phism from G2
p into the group of automorphism of H ′p.

4) In Definition 5.17(4), the mapping π1 is a well defined homomorphism from G1
p

into the twisted product.

Proof. Check. �

Claim 5.19. 1) The normalizer of H1
p in G1

p is G1,<1
p .

2) If 1 ≤ α ≤ rk<∞(p) then the α-th normalizer of H1
p in G1

p is G1,<α
p .

3) τnlg
Gp,Hp

= rk<∞p .

4) First, G1,<0
p is abelian (as it is generated by 〈gy : y ∈ Zp ∗ 2〉 which pairwise

commutes); as H1
p ⊆ G1,<0

p it follows that G1,<0
p ⊆ norG1

p
(H1

p)).

Second, if x ∈ Xp, rk2
p(x) = 0 then α ∈ Zp ⇒ upκ,α ∈ Γ− (as p is a nice

κ-parameter, see clause (b) of Definition ??(3) + ADD). Now for any g(α,υ) ∈ H1
p

(i.e., (α, υ) ∈ (Zp ∗ 2) conjugation by gx inside Gp maps g(α,υ) to g(α,υ′) with

u′ ∈ Λ′ iff u′ ∈ Λ− such that

(A) if m(α) > n(x) then υ′ ∈ Λ−n(x)

(B) if m(α) ≤ n(x) then υ′ = u hence ∈ Λ−n(x) so in both cases to a member of

Hp. Together G<1
p ⊆ norGp(Hp).

Third, if g ∈ Gp \ G<1
p then let <∗ be as in 5.12(1) and g = gx1 . . . gxk for some

x1 <∗ . . . <∗ xk from X+
p and necessarily for some m ∈ {1, . . . , k} we have

rk2,<∞
p (xm) ≥ 1. As p is a nice κ-parameter (see Definition ??(3), clause (c))

there in α ∈ Axm \ ∪
⋃
{Ax` : ` ∈ {1, . . . , k} \ {m} and x` ∈ Xp} such that

m(α) > n(xm). So gx` commute with g(α,0) and g(α,1) if ` ∈ {1, . . . , k} \ {m} and

Gp |= gxm(g(α,0))g
−1
xm = g(α,1).

So if ` ∈ {1, . . . , k} ∪ {m}, conjugation by gx` maps the sets {g(α,υ) : υ ∈
Λ−m(α)} and {g(α,υ) : υ ∈ Λ∗m \ Λ−m} onto themselves. By conjugation gxm maps

their union onto itself by mix then. As Λ−m ⊆ Λn, {g(α,υ) : υ ∈ Λ−m} = H ∩
{g(α,υ) : υ ∈ Λ∗n} clearly for some υ1 ∈ Λ−m, u2 ∈ Λ∗m \ Λ−m we have G1

p |=
“(g1, . . . , gk)−1g(α,u1)(gi, . . . , gk) = g(α,u2)” but g(α,υ1) ∈ Hp, g(α,υ2) /∈ Hp so g /∈
norGp(Hp).

As this holds for every g ∈ GI \ G<1
p , clearly norGp(H) ⊆ G<1

p . As we have
proved above the other inclusion, together we get equality.
5) It follows by 5.16(1) + part (2), as 〈G<αp : α ≤ ∞〉 is an increasing continuous
sequence.
6) Follows by part (2) and the definitions (0.4(2)) and the non-triviality of Ip

implies the rank is ≥ 1.

Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.



48 S. SHELAH

§ 5(B). Private Appendix
§2 Easier group.

Definition 5.20. For a κ-parameter p.
1) Let Fp = F [p] be the group generated by {gx : x ∈ X+

p } freely except the
equations in Γ∗p which are

(A) gx = g−1
x for x ∈ Zp ∗ 2

(B) gxgy = gygx for x, y ∈ Zp ∗ 2

(C) gxgy1g
−1
x = gy2 when ~1

x,y1,y2
, see Definition 5.9(1c).

2) We define F<0
p =: 〈{gx : x ∈ Zp ∗ 2}〉F [p] (identify it with G1,<0

p ) and Hp =

〈{gx : x ∈ Zp ∗ 2}〉F [p] (and identify it with H1
p ⇒ H2

p), justification by 5.21(1)
below).
3) Let π2

p be the unique homomorphism from Fp onto G1
p satisfying

πp(gx) = gx for x ∈ X+
p .

3A) Let πp be π2
p ◦ π1

p ∈ Hom(Fp, F
2
p).

4) Let F1
p = F1[p] be the subgroup of Fp generated by {gx : x ∈ Xp}.

5) Let F<αp be {g ∈ Fp : πp(g) ∈ G<αp }.
6) For X ⊆ Xp and Z ⊆ Zp let Fp,X,Z be the group generated by {gx : x ∈ X ∪
(Z ∗ 2)} freely except Γ∗p,X,Z = the equations of Γ∗p mentioning only the generators
we have listed.

Claim 5.21. 0) The identification of H1
p, H

2
p and H ′p (from 5.17, 5.18) is justified.

1) π2
p is really a homomorphism from Fp onto G1

p which is the identity on Hp.
2) The subgroup of Fp generated by {gy : y ∈ Zp ∗ 2} satisfies:

(A) it is abelian

(B) every element has order 2

(C) it can be considered as a vector space over Z/2Z with basis {gy : y ∈ Zp×2}.
3) F 1

p is a gree group generated freely by {gx : x ∈ Xp}.
4) F<0

p is a normal subgroup of Fp and for x ∈ Xp, conjugation by gx in Fp acts on
Hp as the following permutation per(gx) of {gy : y ∈ Zp ∗ 2} (its basis as a vector
space): gxg(α,υ)g

−1
x is (α,κp

x (υ)). The permutations 〈per(gx) : x ∈ Xp〉 pairwise
commute.
5) Fp is the twisted product of Hp and F 1

p.
6) For α ∈ Zp, Hp ∩ {gy : y ∈ {α} ∗ Λ∗m(α)} is equal to {gy : y ∈ {α} ∗ Λ∗m(α)}.
7) If X ⊆ Xp and Z ⊆ Zp then F ∗p,X,Z is essentially 〈{gx : x ∈ X ∪ (Z ∗ 2)}〉Fp .

Proof. Straight. �

Claim 5.22. 1) F<1
p = norF[p](Hp) and πp maps norFp(Hp) onto G2,<1

p and Ker(π) ⊆
norF [p](Hp).

2) πp maps nor1+α
Fp

(Hp) onto norαGp
(G2,<1

p ) for α <∞ so F<αp = norαFp
(Hp).

3) τnlg
Fp,Hp

is equal to τnlg
Gp,Hp

and nor∞Fp
(Hp) = Fp iff nor∞Gp

(Hp) = Gp.
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Proof. 1) For every x ∈ X+
p and α < κ clearly in Fp conjugating by gx maps

{α} × Λ∗m(α) onto itself.

(Why? If x ∈ Zp ∗ 2, gx commutes with them and if x ∈ Xp also.)
Hence this holds for every g ∈ Fp hence it follows that gg(α,υ)g

−1 = g−1g(α,υ)g
and so by the choice of Hp:

(∗)1 for g ∈ Fp we have g ∈ norFp(Hp) iff for every α ∈ Zp, we have conjugation
by g maps {gy : y ∈ {α} ∗ Λ∗m(α)} onto itself.

Similarly

(∗)2 for g ∈ Gp we have g ∈ norGp(Hp) iff for every α ∈ Zp we have conjugation
by g maps {gy : y ∈ {α} ∗ Λ∗m(α)} onto itself.

As πp maps Fp onto Gp and is the identity on Hp (which includes {g(α,υ) : α ∈ Zp},
clearly πp maps norFp(Hp) onto norGp(Hp) and Ker(πp) ⊆ norF [p](Hp).

2) So by 5.16(1) we have norGp(Hp) = G<1
p but (by Definition 5.20), F<1 = {g ∈

Fp, πp(g) ∈ G<1
p } so together we get norFp(Hp) = F<1

p .
3) We prove this by induction on α.
For α = 0 we have nor0

Fp
(Hp) = Hp, nor0

Gp
(Hp) and πp is the identity on Hp.

For α = 1 use part (1).
For α limit this is trivial.
For α = β + 1 note that Ker(πp) is ⊆ nor1

Fp
(Hp) ⊆ norβFp

(Hp) = F<βp and πp

maps F<βp onto G2,<β
p hence it follows that norGp(πp(F<βp )) = πp(norFp(G2,<β

β )).
Hence

norαGp
(Hp) = norGp(norβG2

p
(Hp)

= norGp(G2,<β
p ) = norGp(πp(F<βp ))

= πp(norFp(F<βp )) = πp(norFp(norβFp
(Hp))

= πp(norαFp
(Hp)).

So we are done. �

We can below use simplified κ-parameters, does not matter.

Definition 5.23. 1) s is a κ-p.o.w.i.s. (partial order weak inverse system) when:

(A) s = (J, p̄, π̄) so J = Js = J [s], p̄ = p̄s, π̄ = π̄s

(B) J is a directed partial order of cardinality ≤ κ
(C) p̄ = 〈pu : u ∈ J〉
(D) pu is a κ-parameter, Iu = Ipu is a partial order of cardinality ≤ κ and let

Isu = Ip
s
u , Xs

u = Xps
u
, Zs

u = Zps
u , As

u,x = A
psu
x when the latter is defined

(E) π̄ = 〈πu,v : u ≤J v〉
(F) πu,v is a partial mapping from Iv into Iu

(G) if u ≤J v ≤J w then πu,w = πu,v ◦ πv,w (may use ⊆)

(H) u ≤J v ⇒ Zpu ⊆ Zpv and use idZpu ∪ πu,v) hence %px = %pπu,v (x), υpπ(u,v(x))

(I) if x ∈ Dom(πu,v) then As
v,x ∩ Zs

u = As
u,πu,v(x).

2) We define π+
u,v = π+,s

u,v when u ≤J[s] v as follows:

(A) π+
u,v is a partial mapping from X+

pv into X+
pu

(B) for x ∈ Xpv ,
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(α) x ∈ Dom(π+
u,v) iff: for every w satisfying u ≤J[s] w ≤J[s] v and

` < n(x) we have
[πw,v(t`+1(x)) <Iw πw,v(t`(x))]

(β) π+
u,v(x) = (〈πu,v(t0(x), . . . , πu,v(tn(x)(x))〉, ηx)

(C) for y ∈ X+
pv \Xpv = Zpv ∗ 2 we have:

(α) y ∈ Dom(π+
u,v) iff y ∈ Zpu ∗ 2

(β) π+
u,v(y) = y for y ∈ Zpu ∗ 2.

3) If u ≤J[s] v, then π̌u,v = π̌s
u,v is the partial homomorphism from Fp2 into Fp1

with domain the subgroup of F+
p2

generated by {gx : x ∈ Dom(π+
u,v)} mapping gx

to gπ+
u,v(x) ∈ Fp1 ; see justification below.

4)[?] We say s is linear if Js is a linear (= total) order. [USED?]
5) We say s is nice when every psu is nice.[?]

Claim 5.24. If s is a κ-p.o.w.i.s and Js |= “v ≤ u ≤ w” then

(A) π̌s
u,v are well defined (homomorphisms)

(B) π+
w,v ⊆ π+

w,u ◦ π+
u,v and π̌w,v ⊆ π̌w,u ◦ π̌u,v

(C) if Js is a linear order then in clause (b) we get equalities.

Proof. Clause (a): It is enough to prove that (when u ≤J[s] v): π+,s
u,s maps the set

of equations Γp,Dom(π+
u,v),Zs

u
onto the set of equations Γp,Rang(π+

u,v),Zs
u
.

Looking as the definitions this is obvious.
Clause (b): Easy.

Clause (c): Easy, in fact we have chosen Definition 6.10(2)(b) such that those
equalities will hold. �

§ 5(C). old §4.

Definition 5.25. 1) We say that k is a simplified κ-parameter when

(A) k = (S, Ā, Z) = (Sk, ῡk, Zk)

(B) S a set

(C) Z ⊆ κ
(D) κ̄ = 〈κx,α : x ∈ S, α ∈ Z〉 and κx,α ∈ per(P(Λ∗m(α))).

2) S+
k = Sk ∪ (Zk ∗ 2) and we always assume that this is a disjoint union.

3) For a simplified κ-parameter let Fk be the group generated by {gx : x ∈ S+
k }

freely except the equations in Γk which are

(A) gx = g−1
x for x ∈ Zk ∗ 2

(B) gxgy = gygx for x, y ∈ Zk ∗ 2

(C) gxgy1
g−1
x = gy2

when for some α ∈ Zk we have x ∈ Sk, {y1, y2} ⊆ {α} ∗ 2
and κx,u(υy1) = υy2 .

4) Let Hk be the subgroup of Fk generated by {gx : x ∈ Sk or for some α ∈ Zk we
have x ∈ {α} ∗ Λ−m.
5) For a κ-parameter p let k(p) be (XI[p], κ̄p, Zp) where 〈κp

x,α : x ∈ Xp, α ∈ Zp〉.
6) We say k is one to one if Āk is with no repetitions.

Claim 5.26. Assume p is a κ-parameter.
1) k(p) is a simplified κ-parameter.
2) If p is nice then k(p) is one to one.
3) The mapping gx 7→ gx(x ∈ X+

p ) induces an isomorphism from Fp onto Fk(p).
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Proof. Easy. �

Claim 5.27. For k a simplified κ-parameter, the parallel to 5.21 holds.

Proof. Easy. �

∗ ∗ ∗
We can below use simplified κ-parameters, does not matter.

Definition 5.28. 1) s is a κ-p.o.w.i.s. (partial order weak inverse system) when:

(A) s = (J, p̄, π̄) so J = Js = J [s], p̄ = p̄s, π̄ = π̄s

(B) J is a directed partial order of cardinality ≤ κ
(C) p̄ = 〈pu : u ∈ J〉
(D) pu is a κ-parameter, Iu = Ipu is a partial order of cardinality ≤ κ and let

Isu = Ip
s
u , Xs

u = Xps
u
, Zs

u = Zps
u , As

u,x = A
psu
x when the latter is defined

(E) π̄ = 〈πu,v : u ≤J v〉
(F) πu,v is a partial mapping from Iv into Iu

(G) if u ≤J v ≤J w then πu,w = πu,v ◦ πv,w (may use ⊆)

(H) u ≤J v ⇒ Zpu ⊆ Zpv and use idZpu ∪ πu,v) hence %px = %pπu,v (x), υpπ(u,v(x))

(I) if x ∈ Dom(πu,v) then As
v,x ∩ Zs

u = As
u,πu,v(x).

2) We define π+
u,v = π+,s

u,v when u ≤J[s] v as follows:

(A) π+
u,v is a partial mapping from X+

pv into X+
pu

(B) for x ∈ Xpv ,
(α) x ∈ Dom(π+

u,v) iff: for every w satisfying u ≤J[s] w ≤J[s] v and
` < n(x) we have
[πw,v(t`+1(x)) <Iw πw,v(t`(x))]

(β) π+
u,v(x) = (〈πu,v(t0(x), . . . , πu,v(tn(x)(x))〉, ηx)

(C) for y ∈ X+
pv \Xpv = Zpv ∗ 2 we have:

(α) y ∈ Dom(π+
u,v) iff y ∈ Zpu ∗ 2

(β) π+
u,v(y) = y for y ∈ Zpu ∗ 2.

3) If u ≤J[s] v, then π̌u,v = π̌s
u,v is the partial homomorphism from Fp2

into Fp1

with domain the subgroup of F+
p2

generated by {gx : x ∈ Dom(π+
u,v)} mapping gx

to gπ+
u,v(x) ∈ Fp1

; see justification below.

4)[?] We say s is linear if Js is a linear (= total) order. [USED?]
5) We say s is nice when every psu is nice.[?]

Claim 5.29. If s is a κ-p.o.w.i.s and Js |= “v ≤ u ≤ w” then

(A) π̌s
u,v are well defined (homomorphisms)

(B) π+
w,v ⊆ π+

w,u ◦ π+
u,v and π̌w,v ⊆ π̌w,u ◦ π̌u,v

(C) if Js is a linear order then in clause (b) we get equalities.
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Proof. Clause (a): It is enough to prove that (when u ≤J[s] v): π+,s
u,s maps the set

of equations Γp,Dom(π+
u,v),Zs

u
onto the set of equations Γp,Rang(π+

u,v),Zs
u
.

Looking as the definitions this is obvious.
Clause (b): Easy.

Clause (c): Easy, in fact we have chosen Definition 6.10(2)(b) such that those
equalities will hold. �

§ 5(D). old? §3.

Definition 5.30. We say that s is the limit of t, both κ-p.o.w.i.s. as witnessed by
v∗ when

(A) J t ⊆ Js = Js = J t ∪ {v∗}, v∗ /∈ J t and u ∈ Js ⇒ u ≤J[s] v∗

(B) ps
u = pt

u, π
s
u,v = πt

u,v when u ≤J[s] v <J[s] v∗

(C) J t is directed

(D) if t ∈ Isv∗ then for some u = ut ∈ J we have t ∈ Dom(πs
ut,v∗), moreover

Js |= “ut ≤ v < v∗”⇒ t ∈ Dom(πs
v,v∗)

(E) if Isv∗ |= “s < t” then for some u = us,t ∈ J t we have u ≤J[s] v <J[s] v∗ ⇒
πs
v,v∗(s) <Isv π

s
v,v∗(t)

(F) if s, t ∈ Isv∗ and the conclusion of clause (e) holds then Isv∗ |= s <t t

(G) if 〈tu : u ∈ J≥w〉 is a sequence satisfying w ∈ J, J≥w = {u : w ≤ u ∈
J}; tu ∈ Isu and w ≤ u1 ≤ u2 ∈ J we have πu1,u2

(tu2
) = tu1

, then there is a
unique t ∈ Isv∗ such that u ∈ J≥w ⇒ πu,v∗(t) = tu.

Claim 5.31. Gs
v∗ is a κ-automorphism group when:

� (a) s, t are both nice κ-p.o.w.i.s

(b) s is the limit of t as witnessed by v∗

(c) J t is ℵ1-directed

(d) κ ≥ |J t| and κ ≥ |Itu| for u ∈ J t.

Proof. Let pu = pu] = ps
u for u ∈ Js, etc. First Presentation:

For u ∈ J t let

(A) Su = Xpu ∪ {(2, v, x): we have u ≤J [t] v, x ∈ X+
p[v], x /∈ Dom(π+,s

u,v )

(B) for s ∈ Su let κ̄us = 〈κus,α : α ∈ Zp[u]〉 satisfying κus,α ∈ per(P(Λ∗m(α))) be

defined as follows:
(α) if s ∈ Xpu then κus,α = κ

p[u]
s,α

(β) if s = (2, v, x) then κs,α = κ
p[v]
x,α

(γ) s ∈ Zp[u]∗2 then κus,α is the identity on P(Λ∗m(α)) or any {κm(α),u :

υ ∈ Λm(α)}
(C) Ku is the group generated by {gx : x ∈ Su} freely except

(α) gx = g−1
x when x ∈ Zp[u] ∗ 2

(β) gy1
gy2

= gy2
gy1

when y1, y2 ∈ Zp[u] ∗ 2

(γ) gxgy1
g−1
x = gy2

, if for some α ∈ Zp[u], {y1, y2} ⊆ {α} ∗ 2 and
κux,α(υy1) = υy2 .

Note

(∗)1 in Ku:
(α) gy1

, gy2
commute if y1, y2 ∈ Zp[u] ∗ 2

Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.



THE HEIGHT OF THE AUTOMORPHISM TOWER OF A GROUP 53

(β) gxgy1
g−1
x = gy2

if ~1
x,y1,y2

[pu]

(γ) conjugating by gx maps H onto itself when x ∈ Su \ X+
pu so

x = (2, v, x), u ≤J v, x ∈ Ip[v]
v \Dom(π+

u,v)

(∗)2 (a) 〈{gy : y ∈ Zp[u] ∗ 2〉Ku is, essentially, G<0
p[u]

(b) the subgroup of Ku which 〈gy : y ∈ Su \ Zp[u] ∗ 2〉 generates,

it generates it freely call it K1
u

(c) Ku is the twisted product of K1
u and G<0

p[u].

So as in the proof of 5.21

(∗)3 Fpu ⊆ Ku.

Now for u <J[t] v let π∗u,v be the following mapping from Sv to Su: for x ∈ S.

Case 1: If x ∈ Dom(πt,+
u,v ) then π∗u,v(x) = πt,+

u,v (x). Case 2: x ∈ X+
pv \ Dom(πt,+

u,v )

then πb
u,v(x) = (2, v, κ̄vx � Zp[u]). Case 3: x ∈ Sv \X+

pv .

So x = (r, v, x) and let π∗u,v(x) = (2, v, x).
Now

(∗)4 (a) for u <J[t] v, π
∗
u,v is a function from Sv into Su (could have arranged

onto, if J t is linear this holds)

(b) for u0 <J[t] u1 <J[t]
u2 we have π∗u0,u2

= π∗u0,u1
◦ πu1,u2

(c) for u1 <J[t] u2, π
∗
u0,u2

induce a mappng π+,b
u1,u2

from {gx : x ∈ Su2}

into {gx : x ∈ Su1
} which has one and only one extension

π̂t
u1,u2

which is a homomorphism from Ku2
into Ku1

(d) Fpv∗ is the inverse limit of 〈Ku, π
b
u1,u2

: u ∈ J t, u1 ≤J[t] u2〉.
Why? Check.

Now it follows that Fpv∗ is a κ-automorphism group. Now we can improve the
conclusion. Can we waive the ℵ1-directed? See in the continuation. �

Alternative presentation:

For each u ∈ J t we define ku = k[u] = (Su, κ̄u, Zu) by

(∗)0 (a) Su as in (a) above

(b) κ̄u = 〈κ̄us : s ∈ Su〉, κ̄us for u ∈ J t, s ∈ Xpu as in (b) above

(c) Zu = Zp[u].

(∗)1 ku is a simplified kappa-parameter
[Why? Just check.]

[So ku is in general not one to one; this helps to make the inverse limit right]

(∗)2 let Fu = Fku

(∗)3 if u ≤J[t] v then we define a mapping π∗u,v from Sv to Su as follows:

(a) if x ∈ Dom(πt,+
u,v ) ⊆ Xp[v] then π∗u,v(x) = π+,t

u,v (x)

(b) if x ∈ Xp[v] \Dom(πt,+
u,v ) then π∗u,v(x) = (2, v, x)

(c) assume x = (2, v1, x1) ∈ Sv \Xp[v]

(hence v ≤J[t] v1 and x1 ∈ Xp[v1] \Dom(π+,t
v,v1

));

(α) x1 /∈ Dom(π+,t
u,v1

) then π∗u,v(x) = (2, v1, x1)

(β) if x1 ∈ Dom(π+,t
u,v1

) then π∗u,v(x) = πu,v1
(x1)
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(∗)4 for u ≤J[t] v we have
(a) π∗u,v is a well defined function

(b) π∗u,v extend πt,+
u,v

(c) Dom(π∗u,v) = Sk[v] = Sv and Rang(π∗u,v) ⊆ Sk[v] = Sv

(d) if u1 ≤J[t] u2 ≤J[t] u2 then π∗u1,u3
= π∗u2,u2

◦ π∗u2,u3

(e) if x ∈ Sv then κ̄vx ∩ Zu = κ̄uπ∗u,v(x).

[Why? Check.]
(∗)5 for u ≤J[t] v let π̌∗u,v be the homomorphism from Fk[v] into Fk[u] such that

(a) it maps gx to gπ∗u,v(x) for x ∈ Sv
(b) it maps gx to gx for x ∈ Zu ∗ 2

(c) it maps gx to eFk[u]
for x ∈ (Zv \ Zu)× 2

(∗)6 π̌∗u,v is a well defined homomorphism from Fk[v] into Fk[u]

[Why? As Fk[u], Fk[v] are twisted products]

(∗)7 π̌∗u,v extends π̂s
u,v

[why? check]

(∗)8 Fp[v∗] is the inverse limit of 〈Fk[u], π̌
∗
u,v : u ≤J[t] v〉.

Claim 5.32. Assume

(A) ℵ0 < θ = cf(θ) ≤ κ
(B) Tα ⊆ ακ for α < θ has cardinality ≤ κ
(C) F = {f ∈ θκ : f � α ∈ Tα for α < θ}
(D) γ = rk(F , <Jbd

θ
), necessarily <∞ so < (κθ)+

(E) for every n− α ≤ θ and n, the function from α+ 1 to {n} belongs to Tα.

Then τatw
κ ≥ τnlg

κ ≥ τnlf
κ > γ (on τnlf

κ see below).

Definition 5.33. τnlf
κ is the least ordinal τ such that τ > τnlf

G,H wherever G =

Aut(A),A a structure of cardinality ≤ κ,H a subgroup of G of cardinality ≤ κ and
nor<∞G (H) = G.

Proof. We define s = (J, p̄, π̄) as follows:

(A) J = (θ + 1;<)

(B) Iα = (Tα+1, <α+1) for α < θ + 1 where

f1 <α+1 f2 ⇔ f1(α) < f2(α)

(C) for α < β < θ + 1 let πα,β : Iβ → Iα be

πα,β(f) = f � (α+ 1).

(D) let 〈Uα : α < θ〉 be a partition of κ to sets, each of cardinality κ

(E) for α < θ, ` < 2 let 〈Aα,`x : x ∈ XIα〉 be an independent sequence of subsets
of U2α+`

(F) for α < θ and x ∈ XIα let

Ax = ∪{Aβ,`
π+
β,α(x)

: β ≤ α, x ∈ Dom(π+
β,α(x), see Definition xxx and

rk2,<∞
Iβ

(x) = 0⇒ ` = 0}
(G) for α ≤ θ let Zα = ∪{A2β+` : β ≤ α, β < θ, ` < 2}.
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Lastly, for α ≤ θ let pα = (Iα, 〈Ax : x ∈ XIα , Z
α)

(∗)2 pα is a nice κ-parameter

(∗)3 s = (J, p̄, π̄) is a κ-p.o.w.i.s.

(∗)4 s is a limit of t =: s � θ = ((θ,<), p̄ � θ, π̄ � θ).

Easy to finish. �

Now we can conclude 6.16

Conclusion 5.34. If κ = κℵ0 then τatw
κ ≥ τnlg

κ > τnlf
κ > κ+.

Proof. θ is regular Fα = ακ for α ≤ θ.
Let

(A) J = ([κ]ℵ0 ,⊆)

(B) for u ∈ J, Iu = {R : R a well ordering of u}
(C) for u ≤J v let πu,v(R) = R � U for f ∈ Iv.

We continue on as above (imitating §3). FILL �

Definition 5.35. 1) Assume that I1, I2 are partial orders; we say that π : I1 → I2 is a
homomorphism, if it is a function from I1 into I2 such that s <I1 t⇒ π(s) <I2 π(t).
1A) For x = (〈t0, . . . , tn〉, η) ∈ XI1 and a function π from I1 to I2 define

π+(x) = (〈π(t0), . . . , π(tn)〉, η〉).
2) For κ-parameter that p,q we say π is a partial homomorphism from p to q if

(A) π is a function, Dom(π) ⊆ Ip ∪ Zp,

(B) π � Ip is a homomorphism from Ip � Dom(π) into Iq and

(C) π � Zp is a partial one-to-one function from Zp into Zq and x ∈ XDom(π)∩I[p] ⇒
Aq
π+(x) ∩ π(Zp) = {π(y) : y ∈ Ap

x}
(D) π maps Y p ∩Dom(π) onto Y q ∩ π(Zp ∩Dom(π)).

2A) We define π+ : X+
p → X+

q by: if x ∈ Xp, π
+(x) is defined as in part (1A) and

if y = (α, `) if α ∈ Dom(π) and ` < 2 then π+(y) = (π(α), `).
2B) We may omit “partial” when Ip = Dom(π).
3) We say that π is a partial isomorphism from I1 to I2 when π is a one-to-one
function from some A′1 ⊆ I1 onto A′2 ⊆ I2 such that π is an isomorphism from
I1 � A′1 onto I2 � A2.
4) Similarly “π is a partial isomorphism from p1 to p2” if it is a partial homomor-
phism from p1 to p2, π � I1 is a partial isomorphism from I1 to I2 (so π � Zp1 is
one to one).
5) Let p ⊆ q for κ-parameters mean that idI[p] ∪ idZ[p] is a partial isomorphism
from p to q.
6) If Zq ⊆ Zp then when we treat π : Ip → Iq as π : p→ q we mean π ∪ idZ[q].

Of course

Claim 5.36. In Definition 5.35, if π is a partial homomorphism from p1 to p2 then:

(A) π+ is a partial mapping from X+
p1

into X+
p2

, see Definition 5.35(1A)

(B) if x, y1, y2 ∈ X+
p1

and x ∈ Dom(π+) and ~{0,1}x,y1,y2 then y1 ∈ Dom(π+) ⇔
y2 ∈ Dom(π+)

(C) (p1, Xp1
∩ Dom(π+), Zp1 ∩ Dom(π)) is as in Definition ??(4) and Claim

5.12(7)
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(D) (p2, Xp2
∩Rang(π+) = Rang(π+ � Xp1

), Zp2 ∩Rang(π)) is as in Definition
??(4) and Claim 5.12(7)

(E) π+ maps Γ∗p1,Xp1∩Dom(π+,Zp1∩Dom(π) onto Γ∗p2,Xp2∩Rang(π+),Zp2∩Rang(π)

(see Definition 5.20(6))

(F) there is a unique homomorphism π̂ from the subgroup 〈{gx : x ∈ Dom(π+)}〉F [p1]

of Fp1
onto the subgroup 〈{gx : x ∈ Rang(π+)〉F [p2] of Fp2

mapping gx to

gπ+(x) for x ∈ Dom(π+).

Proof. Check (or see the proof of 5.42(2); see 6.6). �

Claim 5.37. If p1 ⊆ p2 are κ-parameters, then Xp1
⊆ Xp2

, Zp1×2 ⊆ Zp2×2, X+
p1
⊆

X+
p2
,Γp1

⊆ Γp2
and Gp1

is a subgroup of Gp2
and Fp1

is a subgroup of Fp2
.

Proof. The only non-trivial part are Gp1
is a subgroup of Gp2

which holds by
5.12(7) and “Fp1

is a subgroup of Fp2
q” which holds by the properties of twisted

products (see Claim 5.22(3) and Definition 5.14. �

Claim 5.38. 1) If π is a partial homomorphism from p1 to p2 (see Definition
5.35(2)), then π̂ from clause (f) of 5.35 is well defined and π̂ � F<0

p1
is a par-

tial isomorphism from 〈{gy : y ∈ Zp1 × 2}〉F [p1] into 〈{yy : y ∈ Zp2 × 2〉F [p2]

preserving “g ∈ H”, “g /∈ H”; if π is onto Zp2 then π̂ is onto F<0
p2

.

2) In Definition 5.35 and Clause (f) of 5.36, if π is one to one then π+ is one to
one and also π̂ is one to one.

Proof. Follows from clause (d) of 5.35(2) and 5.37. �

Claim 5.39. Assume that p` is a κ-parameter for ` < 3 and π` : p` → p`+1 is a
partial homomorphism for ` = 0, 1 and π = π1 ◦ π0 : p0 → p2. Then π is a partial
homomorphism from p0 into p2 and π̂ = π̂1 ◦ π̂0 (and π+ = π+

1 ◦ π
+
0 ).

Proof. Easy. �
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§ 5(E). §5 Inverse limits.

Definition 5.40. 1) We say s is a κ-p.o.i.s. (partial order inverse system, and p.o.i.s.
means κ-p.o.i.s. for some κ) when:

(A) s = (J, p̄, π̄)

(B) J is a directed partial order of cardinality ≤ κ
(C) p̄ = 〈pu : u ∈ J〉
(D) pu is a κ-parameter, Iu = Ipu is of cardinality ≤ κ and u ≤J v ⇒ Y pu ⊆

Y pv ∧ (Zpu \ Y pu) ⊆ (Zpv \ Y pv )

(E) π̄ = 〈πu,v : u ≤J v〉
(F) each πu,v is a homomorphism from Iv into Iu (so Zpu ⊆ Zpu and we pretend

that πu,v � Zpv = idZ[pu]; see 5.35(6)) and πu,u = idIu (so Dom(πu,v) may
be a proper subset of Iv) and x ∈ Dom(πu,v)⇒ Apu

π(x) ∩ Z
pv = Apv

x

(G) if u0 ≤J u1 ≤J u2 then πu0,u2 = πu0,u1 ◦ πu1,u2

(in particular the domains of the two sides are equal).

It follows that

(A) u ≤J v implies that Hpu ⊆ Hpv and F<0
pu ⊆ F

<0
pv and Hpu = Hpv ∩G<0

pu .

1A) Let s = (Js, p̄s, π̄s), p̄s = 〈ps
u : u ∈ Js〉,ps

u = (Isu, Ā
s
u, Z

s
u, Y

s
u ), Ās

u = 〈As
u,x :

x ∈ X+
ps
u
〉, π̄s = 〈πs

u,v : u ≤J v〉, Js = J [s],pu[s] = ps
u, I

s
u = Iu[s] and F s

u = Fpu[s]

and, of course, π̂s
u,v = π̂u,v (see Definition 5.36).

2) We define I+ = I+[s] = Inv-limor(s), a partial order (easy to check) as follows:

(A) t̄ ∈ inv − limor(s) iff
(α) t̄ has the form 〈tu : u ∈ J≥w〉 for some w ∈ J where J≥w = {v ∈
J : w ≤J v} and u ∈ J≥w ⇒ tu ∈ Iu, and let w[t̄] = w, we may use
J≥∅ = Jmin(J) = J even when J has no minimal member

(β) if u1 ≤J u2 are in J≥w then πu1,u2(tu2) = tu2

(B) for s̄, t̄ ∈ inv − limor(s) let s̄ <I+ t̄ iff there is w ∈ J such that w[s̄] ≤J
w ∧ w[t̄] ≤J w ∧ (∀u)(w ≤J u⇒ su <Iu tu)

(C) For s̄, t̄ ∈ inv − limor(s) let s̄ ≤I+ t̄ be defined similarly

3) Let Is = I[s] = inv − limor(s) be the partial order I+/ ≈ where ≈ is the following
two place relation:
s̄ ≈ t̄ iff for some w ∈ J we have

w[s̄] ≤I w ∧ w[t̄] ≤J w ∧ (∀u)(u ≤J u⇒ su = tu)

clearly

(A) ≈ is an equivalence relation on I+ and

(B) s̄ ≈ s̄′ ∧ t̄ ≈ t′ ⇒ (s̄ <I+ t̄⇔ s̄′ <I+ t̄′) and

(C) s̄ ≤I+ t̄ and ¬(s̄ ≈ t̄)⇒ s̄ <I+ t̄.

3A) We define p = ps = p[s] = inv − limsy(s) as (I, Ā, Z, Y ) where

(A) I = inv − limor(s)

(B) Ā = 〈As̄/≈ : (s̄/ ≈) ∈ inv − limor(s)〉 and As̄/≈ = ∪{Asu : u ∈ J≥w[s̄]}
(C) Z = ∪{Zpu : u ∈ J} and Y = ∪{Y pu : u ∈ J}.

4) We define πs
u for u ∈ I, a partial map from I = inv − limu(s) to Iu by πs

u(t̄/ ≈
) = s iff t̄ ∈ I+, u ∈ J and (∃s̄)(s̄ ≈ t̄ ∧ su = s).
5) We define F+

s , a set and Fs, a group, (where F s
u = Fpu[s] is as defined in

Definition 5.9(1))

(A) F+
s = inv − limgr(s) = inv − limgr〈Fpu , π̂u,v : u ≤J v〉
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that is, G+
s is (just) the set of ḡ of the form 〈gu : u ∈ J≥w〉 where w ∈ J, gu ∈ Gu

and π̂u,v(gv) = gu when w ≤J u ≤J v
(A) ≈ is defined on F+

s as in part (3).

5A)

(A) the group Fs = inv − limgr〈FIu , π̂u,v : u ≤J v〉 is defined parallely to part
(3), with co-ordinatewise multiplication

(B) πs
u is the partial homomorphism from the group Fs (i.e., from a subgroup)

into F s
u defined by πs

u(ḡ) = g′u when ḡ ≈ ḡ′ ∧ u ∈ J≥w[ḡ′].

So for ḡ ∈ F+
s we have ḡ = 〈gu : u ∈ J≥w[ḡ]〉.

6) Let H+
s be ∪{Hpu : u ∈ J}.

7) We naturally define j = js = j[s], an embedding of Fp[s] into Fs as follows:

(A) j(gy) = 〈gyu : u ∈ J≥v〉/ ≈ if v ∈ J, y ∈ X+
pu \Xpv so it is the identity on

Hp[s] and even G<0
p[s]

(B) if x ∈ Xp[s] let t`(x) = 〈t`,u : u ∈ J≥w1,`
〉/ ≈ for ` = 0, . . . , n(x) where

t`,u ∈ Iu and let w ∈ J be a common upper bound of {w1,0, . . . , w1,n(x)}
and we let xu = (〈t`,u : ` ≤ n(x)〉, ηxu) for u ∈ J≥w
then

j(gx) = 〈gxu : u ∈ J≥w〉/ ≈ .
8) We say that s is locally nice when for each u ∈ Js,ps

u is nice and I[ps
u] is non-

trivial.
9) We say that s is nice if ps = inv − limsy(s) is nice and I[ps] is non-trivial.

Claim 5.41. 1) The inverse limits in 5.40 are well defined in particular:

(A) if s̄1 ≈ s̄2 where s̄` = 〈s`u : u ∈ J≥w`〉 for ` = 1, 2 then u ∈ J≥w1
∩ J≥w2

⇒
s1
u = s2

u

(B) if we define t by Jt = J ∪ {s}, so

pt
u = ps

u if u ∈ J and is ps if u = s, Itu = Ip[u]

πt
u,v is πs

u,v if v ∈ J
is πs

u if u ∈ Js and
is idpu if u = v ∈ J t \ Js

then
(α) t is a κ-p.o.i.s.

(β) Hp[s] = ∪{Hpsu[s] : u ∈ J}.
2) The mapping js from Definition 5.40(7) is really a well defined embedding of the
group Gp[s] into the group Gs.
3) In part (2) if Js is ℵ1-directed then

(A) equality holds, that is js maps Fp[s] onto Fs

(B)
∧

u∈J[s]

rk2(pu) <∞⇒ rk2(ps) <∞.

Proof. 1),2) Easy.
3) We leave clause (b) to the reader and prove clause (a). Let ḡ ∈ inv − limgr(s) so
ḡ = 〈gu : u ∈ J≥w[ḡ]〉. Now for each u ∈ J≥w[ḡ], gu ∈ F s

u and let nu = min{n : gu
is the product of n of the generators {gx : x ∈ X+

pu}} and let n1
u = min{n : g is
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the product of nu of the generators from {gx : x ∈ X+
pu,n}} where X+

pu,n = {x ∈
X+

pu,n : x ∈ Xpu ⇒ |n(x)| ≤ n}. Clearly:

(∗)1 if u ≤ v are in J≥w[t] then nu ≤ nv and nu = nv ⇒ n1
u ≤ n1

v.

Case 1: for every n < ω there is u ∈ J≥w[t̄] such that nu ≥ n.
Let u(n) exemplify this. As J is ℵ1-directed there is u ∈ J such that n <

ω ⇒ u(n) ≤J u, so u ∈ J≥w[ḡ] and ` < ω ⇒ u(`) ≤J u ⇒ ` ≤ nu[t] ≤ nu < ω,
contradiction.

So assume that not case (1) hence for some u∗, n(∗)
(∗)2 u∗ ∈ J and u ∈ J≥u∗ ⇒ u ∈ J≥w[ḡ] ∧ nu = n(∗).

Case 2: For every n < ω, some v, u∗ ≤ v ∈ J hence nv = n(∗) satisfies n1
v ≥ n. We

get a contradiction similar to Case 1. Case 3: Neither Case 1 nor Case 2.

Hence for some n(∗) < ω and n1(∗) < ω and u∗ ∈ J we have u ∈ J≥u∗ ⇒
u ∈ J≥w[ḡ] ∧ nu = n(∗) and n1

u = n1(∗). So for some v we have w[ḡ] ≤J v and

(∀u)(v ≤J u ⇒ nu = n(∗) and n1
u = n1(∗) ∧ w[ḡ] ≤ u). For each u ∈ J≥v let

gu = gxu,1 . . . gxu,n where n = n(u) = n(∗) and xu,` ∈ X+
p,n1(∗) be as in 5.12

for some appropriate linear order <∗u of Xpu , recalling 5.12(4) and the generators
having order 2. We now define a set B`u ⊆ X+

ps
u

by induction on ` ≤ n(∗)×n(∗). Let

B0
u be {xu,1, . . . , xu,n(∗)}. Let B`+1

u be B`u ∪ {y1 : x, y2 ∈ B`u, and gxgy2g
−1
x = gy1

is one of the equations in Γpu}.
So |B`u| ≤ n(∗)2` and 1

~ if v ≤J u1 ≤J2
u2 then {πu1,u2

(gxu2,`
) : ` = 1, . . . , n(∗)} ⊆ Bn(∗)×n(∗)

u1

[Why? By the proof of 5.12(1),(7) applied to 〈gπ+
u1,u2

(xu2,`
) : ` = 1, . . . , n(∗)〉;

by the uniqueness from there, in the end of the process we necessarily get
〈gxu1,`

: ` = 1, . . . , n(∗)〉 in ≤ n(∗) × n(∗) steps, each step being exchang-
ing two generators and in the `-th step before the end all the generators
appearing are from B`u1

.]

Let m(∗) = n(∗)2n(x)×n(∗)
. Let D be an ultrafilter on J such that u∗ ∈ J ⇒ {u ∈

J : u∗ ≤J u} ∈ D so we have {u : nu = n(∗), n1
u = n1(∗)} ∈ D. For u ∈ J≥v let

〈xu` : ` < m(∗)〉 list B
n(∗)×n(∗)
u possibly with repetitions (we could have avoided

this). Without loss of generality xu,` = xu` for ` = 1, . . . , n(∗). For each u ∈ J≥v we
can find η = ηu, a function from {1, . . . , n(∗)} into {0, 1, . . . ,m(∗) − 1} such that
the set

Au,η = {u′ ∈ J : u ≤J u′ and 1 ≤ ` ≤ n(∗)⇒ π+(xu′,`) = xuη(`)}

belong to D. So for some η∗ and A ∈ D we have u ∈ A⇒ v ≤J u and ηu = η∗ and

moreover, for some set S we have

u ∈ A⇒ S = {(`1, `2, `3) :gxu,`1gxu,`2g
−1
xu,`1

= gxu,`3 ∈ Γpu

and `1, `2, `3 < m(∗)}.
Let u1 ≤J u2 be from A so we can find u3 ∈ Au1

∩ Au2
. We know that ` ∈

{1, . . . , n(∗)} ⇒ π+
u1,u2

π+
u2,u3

(gxu3,`
) = π+

u1,u3
(gxu3,`

) so π+
u1,u2

(xu2

η(`)) = xu1

η(`). Now

let t̄` = 〈tu` : u ∈ J≥v〉 be: tu` = πu,u1
(tu1,η∗(`)) for the D-majority of u1 ∈ J . So we

are done. �

1alternatively let Bu = {y ∈ X+
pu : for some (α,m) ∈ (Z × 2) ∩ {xu,1, . . . , xu,m} we have

y ∈ {(α, 0), (α, 1} or g ∈ Xpu and t̄y ∈ {t̄xu,1 , . . . , t̄xu,n}.
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To connect the κ-p.o.i.s. to τ ′κ we need to know that Gp[s] is a κ-automorphic
group.

Claim 5.42. Let s be a κ-p.o.i.s. with Dom(πs
u,v) = F s

v for v ∈ Js. The group
F = Fs is isomorphic to a κ-automorphism group, i.e., the automorphism group of
some structure A of cardinality κ.

Proof. So in Definition 5.40(5)

~ for every ḡ ∈ F+
s there is ḡ′ = 〈g′u : u ∈ J〉 ∈ F+

s such that J≥w[ḡ′] = J = Js

and ḡ′ ≈ ḡ.

Hence

(∗) J = Js is a directed p.o. of cardinality ≤ κ, Fu a group of cardinality
≤ κ, 〈Gu, π̂u,v : u ≤J v〉 is an inversely directed system of groups with
inverse limit Gs.

As is well known there is A as required:

(A) the universe of A be ∪{Au : u ∈ J} where

Au = Gu × {u}

(B) the relations of A are
(α) for u1 ≤I u2,

RA
u1,u2

= {((g1, u1), (g2, u2)) : π̂u1,u2
(g2) = g1 ∈ Fu1

, g2 ∈ Fu2
}

(β) for u ∈ J, g ∈ Gu
RA
u,g = {((g1, u1), (g2, u1)) : g1, g2 ∈ Fu, Fu |= “g2 = gg1”}

�

We would like to relax the assumptions in 5.42.

Definition 5.43. 1) A partial inverse system of groups g = 〈Gu, πu,v : u ≤J
v from J〉 means:

(A) J is a directed partial order

(B) Gu a group

(C) πu,v is a partial homomorphism from Gv to Gu, i.e. from a subgroup of Gv
onto Gu

(D) if u0 ≤J u1 ≤J u2 then πu0,u2
= πu0,u1

◦ πu1,u2
(including the domain).

2) We say that g is smooth which means:

(A) for every v ∈ J and x ∈ Xs
pv there is u = us

v(x) (necessarily unique) such
that:

(α) u ≤J v
(β) if w ≤J v then g ∈ Dom(πs

w,v)⇔ u ≤ w.

3) We say that g is good when:

(α) Rang(πg
u,v) = Gu

(β) the normal subgroup of Gv which {g ∈ Dom(πu,v) : πu,v(g) = eGu} gener-
ates is disjoint to {g ∈ Dom(πu,v) : πu,v(g) 6= eGu} whenever u ≤J v.

4) Let inv-lim(g) be the usual inverse limit (i.e., using only members of the form
〈gu : u ∈ J〉) and let Inv-limgr(g) and inv-limgr(g) be defined as in Definition
5.40(5),(5A) respectively, and πg

u are the mapping from it into Gg
u.

5) We say that a κ-p.o.i.s. is smooth [or good] when the partial inverse system
〈Gs

u, π
s
u,w : u ≤∗J[s] v〉 is smooth [or good].
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Observation 5.44. 1) If g is a partial inverse system of groups then u0 ≤J u1 ≤J
u2 ⇒ Dom(πu0,u2

) ⊆ Dom(πu1,u2
).

2) If w ∈ J and 〈(vu, gu) : u ∈ J≥w〉 satisfy the statement (∗) below then for some
u∗ ∈ J≥w we have u ∈ J≥u∗ ⇒ gu ∈ Dom(πu,vu), where

(∗) (i) u ∈ J≥w ⇒ u ≤J vu ∧ gu ∈ Gg
vu

(ii) if w ≤J u1 ≤J u2 then πv,vu1
(gu1) = πv,vu2

(gu2) are well defined for

some v which satisfies u1 ≤J v ≤J vu1
∧ v ≤J vu2

Proof. 1) So let u0 <J u1 <J u2 hence πu0,u2
= πu0,u1

◦ πu1,u2
by clause (d) of

Definition ??(2), hence Dom(πu0,u2
) ⊆ Dom(πu1,u2

).
2) Let u1 ∈ J≥w and if vu1

fails the demand on u∗ then there is u2 such that
vu1 ≤J u2∧gu2 /∈ Dom(πu2,vu2

). Let v be as guaranteed in cluase (ii) of (∗) so u1 ≤J
v ≤J vu1

∧ v ≤J vu2
and πv,vu1

(gu2
) = πv,vu1

(gu1
). Hence gu2

∈ Dom(πv,vu2
) and

u1 ≤J v ≤J vu1
≤J u2 ≤J vu2

, so by part (1) we have Dom(πv,vu2
) ⊆ Dom(πu2,vu2

)

hence gu2 ∈ Dom(πu2,vu2
), contradiction to the choice of u2. �

Claim 5.45. If J is an ℵ1-directed partial order, g = 〈Gu, πu,v : u ≤J v〉 is a
smooth good partial inverse system of groups and

∑
u∈J
|Gu| ≤ κ then inv-Lim(g) is

a κ-automorphism group.

Proof. For u ∈ J let Su be {(v, g) : u ≤J v and g ∈ Gg
v} so u ≤J v ⇒ Sv ⊆ Su.

We define an inverse group system h = 〈Gy
u, π

y
u,v : u ≤J v〉 as follows:

(A) Gh
u = Gu[h] is the group generated by Sg

u
..= {z(v,g) : (v, g) ∈ Sg

u} freely
(as different members can become equal we should pedantically denote by
z′(v,g) ∈ Gh

u its image but we are not so careful) except the equations in

Γu = Γg
u, which consists of:

(α) z(v1,g1) = z(v2,g2) if for some v, u ≤J v, v ≤J v1, v ≤J v2 and
πg
v,v1

(g1) = πg
v,v2

(g2)

(β) z(u1,g1) . . . z(un,gn) = e if n < ω, (u`, g`) ∈ Sg
u for ` = 1, . . . , n

and for some v, (∀`)[u ≤ v ≤ u`] and letting g′` = πg
v,u`

(g`) we have
Gg
v |= “g1 . . . gn = eGu[g]”

(B) if u ≤J v then πh
u,v : Sh

v → Sg
u is defined as follows:

(γ) if (w, g) ∈ Sg
v (hence (w, g) ∈ Sg

u) then πh
u,v(z(w,g)) = z(w,g).

Now we investigate this object

(A) if u ≤J v then πy
u,v can be extended to one and only one homomorphism

called π̂u,v from Gh
v into Gh

u.

[Why? As {z(w,g) : (w, g) ∈ Sv} generates Gv and Sg
v ⊆ Sg

u clearly there is at most

one such mapping π̂h
u,v, but to show that it is a well defined homomorphism from

the group Gh
v into the group Gh

u it suffices to show clause (d) below]

(A) πh
u,v maps every equation in Γh

v to an equation from Γh
u.

[Why clause (d) holds? First we deal with “z(w1,g1) = z(w2,g2)” ∈ Γv as in (α)
of clause (a), so the same w which witnesses the membership in Γv witnesses its
membership in Γu. Second we deal with “z(u1,g1) . . . z(un,gn) = e”, as in clause (β)
so by clause (α), without loss of generality u` = w for ` = 1, . . . , n so (w, g`) ∈ Sg

u

and Gw |= “g1 . . . gn = e”, again the same equation appears in (β) for u.]
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(A) for u0 ≤J u1 ≤J u2 we have πh
u0,u2

= πh
u0,u1

◦πh
u1,u2

hence π̂h
u0,u2

= π̂h
u0,u1

◦
πh
u1,u2

.

[Why? Check the definition of Gh
u and πh

u,v.]

(A) ℵ0 +
∑
u∈J
|Gh

u| = ℵ0 +
∑
u∈J
|Gg

u|

[Why? Check by (h) below the ≥ holds and directly ≤ holds.]

(A) inv-lim(h) = inv − limgr(h), see Definition ??(4).

[Why? As Dom(πh
u,v) = Gh

v when u ≤J v.]

(A) the mapping ju : Gg
u → Gh

u defined by g 7→ z(u,g) from Gg
u to Gh

u is an
embedding

[Why? It is a homomorphism asGg
u |= “g1g2g3 = eGu[g]” implies that “z(u,g1)z(u,g2)z(u,g3) =

e” ∈ Γg
u. For proving it an embedding, by the local character it is enough to con-

sider the case J is finite, in this case “directed” means “having a member which
is ≤J -above any other”. Call it v∗ - now by clause (α) of Definition ??(3), as
g is assumed to be good the set {z(v∗,g) : g ∈ Gg

v∗} generates Gy
u and with-

out loss of generality we can replace Sg
v by Sg

v∗ for v ∈ J , i.e., Sg
v∗ ⊆ Sg

v and
(∀s1 ∈ Sg

v )(∃s2 ∈ Sg
v∗)[gs1 = gs2 ∈ Γv]. In addition the v mentioned in clause (α)

and the v mentioned in clause (β) of the definition of Γu (see clause (a)) can be
chosen as u, hence without loss of generality J = {u, v∗}. By clause (β) of the
definition of “good” and the theory of free amalgamation of two groups, (that is
after we divide Gg

v∗ by the normal subgroup which Ker(πu,v∗) generates) extending
a third one we are done.]

(A) j̄ = 〈ju : u ∈ J〉 embed g into h, i.e.,
(α) ju ∈ Hom(Gg

u, G
h
u)

(β) u ≤J v ⇒ ju ◦ πg
u,v = πh

u,v ◦ jv

[Why? Check.]
So

(A) j̄ induces an embedding j of inv-limgr(g) into inv-limgr(y) = inv − lim(h) so
u ∈ J ⇒ ju ◦ πg

u = πh
u ◦ j

[note that if g ∈ inv − limg1
(g) then a = 〈gu : u ∈ J≥w〉/ ≈ where

〈gu : u ∈ J≥w〉 for each v ∈ J we can choose uv ∈ J≥w such that v ≤J uv
and let g′u = z(vu,guv ) ∈ Gh

u (really z′(uv,guv )) and j(a) = 〈g′u : u ∈ J〉/ ≈]

(B) for every y ∈ Gh
u there is (v, g) such that

(α) (v, g) ∈ Sg
u

(β) Gh
u |= “y = z(v,g)”

(γ) if v 6= u then g /∈ Dom(πu,v).

[Why? y can be presented as a product z(v1,y1), . . . , z(vn,yn) where (v`, y`) ∈ Sg
u

(for ` = 1, . . . , n) noting that Gy
u |= “z−1

(v,y`)
= z(v,y−1

` )”. Let w ∈ J be such that

u ≤J w and ` ∈ {1, . . . , n} ⇒ v` ≤J w. By clause (α) of the definition ??(3)
of “g is good” there are g′` ∈ Gw such that πu`,w(g′`) = g` for ` = 1, . . . , n. So
Gy
u |= “z(v`,g`) = z(w,g′`)

” so y is the product of 〈z(w,g`) : ` = 1, . . . , n〉 hence is

z(w,g) where Gg
w |= “g = g′1 . . . g

′
n”. If g ∈ Dom(πu,v) then use (u, πu,v(g)) and if

g /∈ Dom(πu,v) uses (w, g).]

(l) j is onto inv-lim(h).

[Why? Now let ȳ = 〈yu : u ∈ J〉 ∈ inv − lim(h), and we should prove that
ȳ ∈ Rang(j), by clauses (h) + (i) above equivalently we should prove that for some
u∗ ∈ J we have: u∗ ≤J , u ∈ J ⇒ yu ∈ Rang(ju). For each u ∈ J we can find a pair
(vu, gu) ∈ Sg

uα and Gh
u |= “z(vu,gu) = yu” and it is as in clause (k).

Let w ∈ J , so 〈(vu, gu) : u ∈ J≥w〉 is as in (∗) of 5.44.
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[Why? Clause (i) of (∗) there holds, as u ≤J vu and (vu, gu) ∈ Sg
vu (by (α) of

(k)) and the definition of Sg
u. The main point is, assuming w ≤J u1 ≤J u2 to prove

that there is v such that u ≤J v ≤J vu1 ∧ v ≤J vu2 ∧ (πv,vu1
(gu1), πv,vu2

(gu2) are

well defined and equal). By clause (b) of Definition 5.40, J is directed hence there
is v∗ ∈ J such that vu1

≤J v∗∩vu2
≤J v∗. By clause (α) of Definition 5.43(3), there

are g∗1 , g
∗
2 from Gv∗ such that πvu1,v

∗ (g∗1) = gu1
and πvu1 ,v

∗(g∗2) = gu2
. So Gh

u2
|=

“z(v∗,g∗2 ) = z(vu2
,g2) hence as ȳ ∈ inv-lim(h) we get Gh

u1
|= “z(v∗,g∗2 ) = z(vu1

,g1)”.

As g is smooth (see Definition ??(2)) there is v ∈ J as required there for (v∗, g∗2).
It is also as required in ??(3)(β)(∗)(ii).]

Hence by the conclusion of 5.44(2) when applied to 〈(vu, gu) : u ∈ J≥w〉 we get
that for some u∗ ∈ J≥w we have u ∈ J≥u∗ ⇒ gu ∈ Dom(πg

vu) hence by (γ) of clause
(k) we have vu = u. This is enough for clause (`)

(m) lim-inv(g) is a κ-automorphism group.

[Why? By clauses (f) + (j) + (l) this group is inv-lim(y) which (see the proof of
5.42) is a κ-automorphism.] �

Claim 5.46. If s is a smooth κ-p.o.i.s. (see Definition ??(2),(5)) and s is good (see
Definition ??(3),(5)), then Gs is isomorphic to a κ-automorphism group.

Proof. By ??. �

Conclusion 5.47. If s is a smooth good nice κ-p.o.i.s with ℵ1-directed Js recalling
Gs = inv − lim〈Gs

u, πu,v : u ≤Js v〉 we have

(A) there is a structure A of cardinality κ and a (≤ κ)-element subgroup Hs of
the automorphism group Aut(A) ∼= Gs such that τ ′G,H , the normalizer-depth

of H in Gs is rk<∞(Is)

(B) there is a group G′ of cardinality κ such that its automorphism tower height,
τG′ is rk∞(Is)

(C) τatw
κ ≥ τnlg

κ > rk<∞(Is)

Proof. By 5.41(1), js is an embedding of Gp[s] into Gs, and by 5.41(3) it is onto.
By ?? there is a structure A of cardinality κ such that Aut(A), the automorphism
group of A, is isomorphic to Gs hence by the previous sentence to Gp[s]. By 5.16(4)

we have τnlg
Gp[s],Hp[s]

= rk<∞(Is) and Hp[s] is a subgroup of Gp[s] with ≤ κ elements

hence we have τnlg
κ > rk<∞(Is) (recalling Definition 0.4(3)) hence by 0.6 we get

also τatw
κ ≥ τnlg

κ ≥ rk<∞(Is).
�5.47 �

Claim 5.48. If κ = κℵ0 then

(A) there is a good smooth nice κ-p.o.i.s. s with rk<∞(Is) ≥ κ+ hence

(B) τatw
κ ≥ τnlg

κ > κ+.

Proof. Clause (b) follows from clause (a) by 5.47. For proving clause (a), for each
u ∈ [κ]≤ℵ0 we define the partial order (Iu, <Iu) as follows (the n is to enable us to
quote §1, i.e., to simplify §1)

~1 for u ∈ [κ]≤κ we define Iu by
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(i) Iu = {t : t is a triple (<t, α
t, εt) such that <t is a well ordering of u and αt ∈

u and εt < κ}
(ii) t1 <Iu t2 iff <t1=<t2 and αt1 <t1 α

t2 .

For u ⊆ v ∈ [κ]≤ℵ0 let πu,v : Iv → Iu be defined as follows: πu,v(t2) = t1 iff

(<t1=<t2� u) and αt1 = αt2 and εt1 = εt2 . For u ⊆ κ let W+
u = {(%, ν, ε̄) : % ∈ [0,n]u

and ν ∈ [1,n]2 for some n and ε̄ is a finite sequence of ordinals ∈ u of length
`g(%)[[second nec.22]]} and H ∗

u = {h : h is a function from some finite subset of
W+
u into {0, 1}}. Clearly |W+

u | = |H ∗
u | = |u| + ℵ0 when u 6= ∅. Let c be a

one-to-one function from H ∗
κ onto κ.

Let 〈fε : ε < κ〉 be a sequence of functions from κ to {0, 1} such that for every
finite function f from κ to {0, 1}, for κ ordinals ε the function fε extends f .

Let 〈hε : ε < κ〉 be such that hε is the unique member of H ∗
κ such that c(h) = ε.

Let J be {u : u ⊆ κ is countable infinite such that w ⊆ u and u is closed under
c, i.e., if h ∈ H ∗

u then c(h) ∈ u} ordered by ⊆; clearly J is a cofinal subset of
([κ]≤ℵ0 ,⊆).

For u ∈ J we define pu = ((Iu, <u), Āu, Zu, Yu) as follows

~3 (a) (Iu, <u) is as defined above

(b) Āu = 〈Aux : x ∈ Iu〉

where

(c) Aux = {ζ ∈ u: some y is a witness for (x, h)} ∪ {ζ < κ: no y witness

(x, ζ) and fεt(x)(ζ) = 1}, [[second, necessary?]]

where: y witness (x, ζ) means that y = (%, ν, ζ) ∈ Dom(h) and

1 = hζ(y) and x satisfies y which means that `g(ζ̄) = n(x) + 1,

ν = ηx, `g(%) = n(x) + 1 and for each ` ≤ n(∗) we have

%(`) = αt`(x) and ζ` = εt`(x)

(d) Zu = u

(e) Yu = {c(h) : h ∈ Dom(c) and for some y ∈ Dom(h) we have 1 = h(y)

and y = (%, ν, m̄) ∈ Dom(h) satisfying Rang(ν) * {1} ∨ %(`g(%)−

1) = 0}
~4 for u ≤J v we define πu,v as follows: πu,v(t2) = t2 iff (t1 ∈ Iu, t2 ∈ Iv and)

<t1=<t1� u and εt1 = εt2 so Dom(πu,v) = {t2 ∈ Iv : αt2 ∈ v}.
Now

�1 s =: (J, 〈pu : u ∈ J〉, 〈πu,v : u ≤J v〉) is a κ-p.o.i.s.
[Why? Check.]

�2 if u ≤J v then πu,v is a strict homomorphism from Dom(πu,v) ⊆ Iv onto Iu
[Why? Check.]

�3 s is smooth
[Why? See Definition ??(2), so let v ∈ I and g ∈ Gv be given so let Gv |=

“g = gx1
. . . gxn” where x1, . . . , xn ∈ X+

I[v]. Let T = {tx`m : ` ∈ {1, . . . , n}
and m ≤ n(x`)}, this is a finite subset of Iv and let w = the closure under
c of {0} ∪ {αt : t ∈ T}. It is as required.]
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�4 s is nice (see Definition ??(3) + 5.40(8))
[Why? We should check Definition ??(3), clause (a)-(c), for p∗ = ps.

The partial order Is is non-trivial:
This is because by ??(3) as it is explicitly non-trivial (by the third coordinate

in members of Iu). Clause (a) of Definition ??(3): ps is a κ-parameter:

Why? By �1. Clause (b) of Definition ??(3):

Assume x ∈ Xp and rk2
p(x) = 0 and we have to prove that A

p[s]
x ⊆ Y . As

rk2
p(x) = 0, one of the following cases occurs: 0 ∈ Rang(ηx) or rkI[p](t(x)) = 0

which means that ¬(∃s)(s <I[p] t(x)). In the first case the inclusion holds by
the definition of Y . In the second case we use our demand u ∈ J ⇒ 0 ∈ u, to
show: letting t`(x) = 〈t`n : u ∈ J≥w`〉/ ≈, for ` ≤ n(x), without loss of gen-

erality w` = w and so w ≤J v1 ≤J u ⇒ ((α(tn(x)) = 0) ≡ (α(tn(x)
u ) = 0)) ⇒

((rkI[v](t
n(x)
v ) = 0) ≡ ((rkI[u](t

n(x)
u ) = 0) hence rkI[p](t(x)) = 0 ⇔ (∀u)(w ≤J u ⇒

rkI[u](t
n(x)
u ) = 0) hence rkp(x) = 0⇒ (∀u)(w ≤J u⇒ Apu

π+
u,s(x)

⊆ Y pu)⇒ Ap
x ⊆ Y .

Clause (c) of Definition ??(3):

If k < ω and x0, . . . , xk ∈ Xp are with no repetitions and rk2
p(x0) > 0 then

Ax0 * ∪{Ax` : ` = 1, . . . , k} ∪ Y .
Easy by our choices.]

�5 s is very nice.
[Why? In Definition ??(4) we have to check clauses (d),(e). We use here

the freedom in choosing εt(x) and εs for (d),(e) respectively. DETAILS?]

�6 s is good (see Definition ??(3),(5))
[Why? Clause (α) of the definition of good holds by �2.

Why Clause (β) of the Definition of good holds? Assume that 〈(vu, gu) :
u ∈ J≥w〉 is as there. We choose un ∈ J≥w by induction on n such that
vun ⊂ un+1 (hence un ⊂ un+1) and gun+1 /∈ Dom(πs

un+1,vun+1
) and let

uω =
⋃
{un : n < ω}. Now for each n as πs

un,vuω
(guω ) = πs

un,un+1
(gun)

we have πs
un,vuω

(guω ) is well defined. So guω ∈
⋂
{Dom(πs

un,vuω
) : n < ω}

but easily this is equal to Dom(πs
uω,vuω

) but this implies that for some

n < ω,m ∈ [n, ω)⇒ vum = um, contradiction.
Lastly, Clause (β) of the Definition of good holds by ??.]

How does the partial order Is = inv − lim(s) look like? essentially as the disjoint
sum of the well orders of κ. So any ordinal α ∈ [κ, κ+) occurs as order type so
rk<∞(I) = κ+. �

Remark 5.49. Of course, we can replace κ+ by some higher ordinals < κ++; the
family of such ordinals is closed, e.g., under products and under sums of ≤ κ
ordinals; but of doubtful interest.

§ 6. Less good inverse limits

We may think of the partial order (
∏
α<θ

f(α), <Jbd
θ

), where f : θ → Ord.

It is close to being the inverse limit of the 〈Iα = (f(α), <) : α < θ〉 but only
“in the long run (in θ)”. To deal with this we deal with the case the πu,v-s are
not strict homomorphisms (i.e., preserving <), but the order on the inverse limit is
determined by what occurs “late enough”. We use this to prove that τκ > 2κ for
many cardinals κ (e.g. any strong limit singular κ).
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We get here a better lower bound to τ ′κ.
For this we have to redo §1 + §2 with various changes, in particular slightly

changing the definition of XI , Xp. We formulate our main result and then state
the changes in the earlier definitions, claims and proofs.

Claim 6.1. Assume

(A) ℵ0 < θ = cf(θ) ≤ κ
(B) Tα ⊆ ακ for α < θ has cardinality ≤ κ
(C) F = Tκ = {f ∈ θκ : f � α ∈ Tα for every α < θ}
(D) γ = rk(F , <Jbd

θ
), necessarily <∞ so < (κθ)+.

Then

(α) there is a good smooth very nice κ-p.o.w.i.s. s (see Definition 6.10 below)
with rk(Is) = γ (see Definition 6.10(1))

(β) in (α), Gp[s] is a κ-automorphism group with the subgroup Hp[s], a κ-

element subgroup, satisfying τ ′Gp[s],Hp[s]
= γ and nor<∞Gp[s]

(Hp[s]) = Gp[s]

(γ) τκ ≥ τ ′κ > γ.

Below we redefine p ≤ q

Definition 6.2. 1) π is a partial function from the κ-parameter p2 to the κ-parameter
p1 if:

(A) π is a function

(B) Dom(π) ⊆ Ip2 ∪ Zp2

(C) π maps Ip2 ∩Dom(π) into Ip1

(D) π maps Y p2 ∩Dom(π) into Y p1

(E) π maps Zp2 \ Y p2 into Zp1 \ Y p1 .

2) For κ-parameters p,q let p ≤ q mean that idXp ∪ idZp is a partial mapping from
p to q.
3) If Dom(π) ⊆ Ip2 we use π for π ∪ idZp1 (so we assume Zp1 ⊆ Zp2 and Y p1 =
Y p2 ∩ Zp1).

Remark 6.3. 1) We are mainly interested in cases then in that rkI[p1]
(t) = n < ω ⇒

rkI[p2](π(t)) = n.

Definition 6.4. [Replacing Definition 5.35] 1) If π is a partial function from a partial
order I2 into a partial order I1, we define the mapping π+ (really π+

I1,I2
) as follows:

(A) π+ is a partial mapping from XI2 into XI1 (note that even if Dom(π) = I2,
still Dom(π+) may be a proper subset of XI2)

(B) for x ∈ XI2

(α) x ∈ Dom(π+) iff x ∈ XI2 , {t0(x), . . . , tn(x)(x)} ⊆ Dom(π)

and (〈π(t0(x), . . . , π(tn(x)(x))〉, ηx) belongs to XI1

(β) π+(x) = (〈π(t0(x), . . . , π(tn(x)(x))〉, ηx)

1A) We say that π is a partial mapping from p2 into p, if

(a)− (e) is as in Definition ??

(A) if x ∈ Dom(π+) then α ∈ Dom(π) ∩ Zp2 ⇒ α ∈ Ap2
x ⇔ π(α) ∈ Ap1

π+(x).
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2) For π a partial mapping from p2 to p1 (both are κ-parameters) we define

(A) π+ or really π+
p1,p2

is the following function

(a) π+ is a partial mapping from X+
p2

to X+
p1

(b) for x ∈ Xp2
we behave as in (b) of part (1) (so x ∈ Xp1

, π+(x) ∈
Xp2

)

(c) if a ∈ Zp2 ,m < 2 then: π+((a,m)) is well defined iff a ∈ Dom(π)
and then its value is (π(a),m)

(B) π̂ or really π̂p1,p2
is the partial homomorphism from F+

p2
into F+

p1
with

domain the subgroup of F+
p2

generated by {gx : x ∈ Dom(π+)} mapping gx
to gπ+(x) ∈ Fp1

; see justification below.

Remark 6.5. Note that the parts of Definition 6.20 (and claim 6.7) while not actually
used, they serve as a warm-up for their variants which will be used. The difference is
in 6.10(2), the motivation is, at least, in the case J is linear to have commutations.

Claim 6.6. In Definition 6.20(2), if π is a partial mapping from p1 to p2 then:

(A) π+ is a well defined partial mapping from X+
p1

into X+
p2

(B) if π+(x1) = x2 then (x1 ∈ Xp1
⇔ x2 ∈ Xp2

) and (x1 ∈ X+
p1
\ Xp1

) ⇔
(x2 ∈ X+

p2
\Xp2).

Proof. Check. �

Claim 6.7. 1) In Definition 6.20(1), π+ = π+
I1,I2

and in Definition 6.20(2), π+
p1,p2

and π̂p1,p2
are well defined, in particular, π̂ is really a partial homomorphism from

F+
p2

into F+
p1

. (Compare with ??)
2) If I1, I2, I3 are partial orders and π` is a partial mapping from I`+1 into I` for
` = 1, 2 and π = π2 ◦ π1 then π+ ⊇ π+

1 ◦ π
+
2 .

3) If p1,p2,p3 are parameters and π` is a partial isomorphism from p`+1 into p`
for ` = 1, 2 and π = π2◦π1 then π+

p1,p3
⊇ π+

p1,p2
◦π+

p2,p3
and π̂p1,p3

= π̂p1,p2
◦π̂p2,p3

.

Remark 6.8. 1) In 6.7(2) possibly π+ ⊃ π+
2 ◦ π

+
1 and π = π2 ◦ π1 even when π` is

one to one from I` onto I`+1 for ` = 1, 2.
2) If π′`,m : p` → pm for (`,m) ∈ {(1, 2), (1, 3), (2, 4), (3, 4)} and the diagram
commute, this does not necessarily hold for the π̂(`,m)-s.

Proof. 1) The main point is why πp1,p2 is a homomorphism.
Let Z1 = Dom(π � Zp1), Z2 = Rang(π � Zp1), X1 = Dom(π+ � Xp2) and

X2 = Rang(π+ � Xp2
), so clearly for ` = 1, 2

(∗)` (a) if x, y ∈ XI` , t̄
x = t̄y and x ∈ X` then y ∈ X`

(b) if x ∈ X` and n < n(x) then x � n ∈ X`

hence

�` (a) if gxḡy1
g−1
x = gy2

is one of the equations of Γ∗p` then

y1 ∈ X` ⇔ y2 ∈ X`

Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.



68 S. SHELAH

(b) Gp`,X`,Z` is a subgroup of Fp` generated by

{gy : y ∈ X` ∪ (Z` × 2)} freely except the equations from Γ∗p,X`,Z` .

⊗ (a) π � X1 is a mapping from X1 onto X2

(b) π � Z1 is a mapping from Z1 onto Z2

(c) π maps the set of equations Γ∗p1,X1,Z1
onto the set of equations Γ∗p2,X2,Z2

.

Hence π̂p1,p2 is a well defined homomorphism from Fp1,X1,Z1 onto Fp2,X2,Z2 as
required.
2),3) Check. �6.7 �

Remark 6.9. Below we are mainly interested in the case J is linear.

Definition 6.10. 1) s is a κ-p.o.w.i.s. (partial order weak inverse system) when: in
Definition 5.40 we replace (f) by (f)′ below, i.e., (retaining clauses (a)-(e) and (g))

(A) s = (J, p̄, π̄) so J = Js = J [s], p̄ = p̄s, π̄ = π̄s

(B) J is a directed partial order of cardinality ≤ κ
(C) p̄ = 〈pu : u ∈ J〉
(D) pu is a κ-parameter, Iu = Ipu is a partial order of cardinality ≤ κ and let

Isu = Ip
s
u , Xs

u = Xps
u
, Zs

u = Zps
u

(E) π̄ = 〈πu,v : u ≤J v〉
(f)′ πu,v is a partial mapping from Iv into Iu (so we assume u ≤J v ⇒ Zpu ⊆

Zpv and use idZpu ∪ πu,v)
(F) if u ≤J v ≤J w then πu,w = πu,v ◦ πv,w (may use ⊆).

2) In Definition 6.10(1) we define π+
u,v = π+,s

u,v (when u ≤J[s] v) not by the general
definition of 6.20 but as follows:

(A) π+
u,v is a partial mapping from X+

pv into X+
pu

(B) for x ∈ X+
pv ,

(α) x ∈ Dom(π+
u,v) iff: for every w satisfying u ≤J[s] w ≤J[s] v and

` < n(x) we have
[πw,v(t`+1(x)) <Iw πw,v(t`(x))]

(β) π+
u,v(x) = (〈πu,v(t0(x), . . . , πu,v(tn(x)(x))〉, ηx)

3) If u ≤J[s] v, then π̌u,v = π̌s
u,v is the partial homomorphism from Fp2

into Fp1

with domain the subgroup of F+
p2

generated by {gx : x ∈ Dom(π+
u,v)} mapping gx

to gπ+
u,v(x) ∈ Fp1

; see justification below.

4) We say s is linear if Js is a linear (= total) order.
5) We say s is nice when every psu is nice.

Claim 6.11. If s is a κ-p.o.w.i.s and Js |= “v ≤ u ≤ w” then

(A) π̌s
u,v are well defined (homomorphisms)

(B) π+
w,v ⊆ π+

w,u ◦ π+
u,v and π̌w,v ⊆ π̌w,u ◦ π̌u,v

(C) if Js is a linear order then in clause (b) we get equalities.
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Proof. Clause (a): Similar to 5.42(2); it is enough to prove this for π̌, for this it

suffices to show that π̌ maps the equations in Γ+
I1

into Γ+
I2

and this is proved as in
the proof of clause (A) in the proof of 5.42(2).
Clause (b): Easy.

Clause (c): Easy, in fact we have chosen Definition 6.10(2)(b) such that those
equalities will hold. �

We now repeat Definition 5.40(1A)-(7).

Definition 6.12. Let s be a κ-p.o.w.i.s.
1) Let s = (Js, p̄s, π̄s),ps = 〈ps

u : u ∈ Js〉, π̄s = 〈πs
u,v : u ≤J v〉, Js = J̄ [s], Isu =

I[ps
u] and F s

u = Fps
u
.

2) We define I+ = I+[s] = inv − limor(s), a partial order (easy to check) as follows:

(A) t̄ ∈ inv − limor(s) iff
(α) t̄ has the form 〈tu : u ∈ J≥w〉 for some w ∈ J where J≥w = {v ∈
J : w ≤J v} and u ∈ J≥w ⇒ tu ∈ Iu and let w[t̄] = w

(β) if u1 ≤J u2 are in J≥w then πu1,u2(tu2) = tu1

(B) for t̄, s̄ ∈ inv − limor(s) let s̄ <I+ t̄ iff there is w ∈ J such that w[s̄] ≤J
w ∧ w[t̄] ≤J w ∧ (∀u)(w ≤J u⇒ su <Iu tu).

3) Let I = Is = I[s] = inv − limor(s) be I+/ ≈ where ≈ is the following two place
relation on I+ : s̄ ≈ t̄ iff for some w ∈ J we have

w[s̄] ≤I w ∧ w[t̄] ≤J w ∧ (∀u)(u ≤J u⇒ su = tu)

clearly s̄ ≈ s̄′∧ t̄ ∼= t′ ⇒ (s̄ <I+ t̄⇔ s̄′ <I+ t̄′) and s̄ ≤I+ t̄ and ¬(s̄ ≈ t̄)⇒ s̄ <I+ t̄.

3A) We define p = p[s] = inv − lim(s) in (p, Ā, Z, Y ) where

(A) I = inv − limor(s)

(B) Ā = 〈As̄/≈ : s̄/ ≈) belongs to inv-limor(s)〉 and As̄/≈ = ∪{Asκ : u ∈ w[s̄]}
(C) Z = ∪{Zpu : u ∈ J} and Y = ∪{Y pu : u ∈ J}.

4) We define πs
u for u ∈ I, a partial map from I = inv − limor(s) to Iu by πu,s(t̄/ ≈

) = s̄/ ≈ iff t̄ ∈ I+, u ∈ J and (∃s̄)(s̄ ≈ t̄ ∧ su = s); it is well defined.
5) We define F+

s , a set and Fs, a group, (where F s
u = Fpu [s] is as defined in

Definition 5.9(1)) 2

(A) F+
s = inv − limgr〈Fpu , π̌u,v : u ≤J v in J〉

that is, F+
s is (just) the set of ḡ of the form 〈gu : u ∈ J≥w〉 such that w ∈ J, gu ∈ Fu

and π̌u,v(gv) = gu when w ≤J u ≤J v
(A) ≈ is defined on F+

s as in part (3)

(B) Fs = inv − limgr〈Fpu , π̌u,v : u ≤J v in J〉 is the inverse limit of the groups
defined similarly,

(C) π̌s
u is the partial homomorphism from the group Fs (i.e., from a subgroup)

into F s
u defined by πs

u(ḡ) = g′u if ḡ ≈ ḡ′ ∧ u ∈ J≥w[ḡ′].

So for ḡ ∈ F+
s we have ḡ = 〈gu : u ∈ J≥w[ḡ]〉.

6) Let H+
s be ∪{Hpu : u ∈ I}.

7) We naturally define j = js = j[s], an embedding of Fp[s] into Fs as follows:

(A) j(gy) = 〈gy : u ∈ J ≥ v〉/ ≈ if v ∈ J, y ∈ X+
pv \Xpv

2by this definition there may be no maximal member in t̄/ ≈, but any two members are

compatible functions, so if we replace J≥w by upward closed non-empty sets we have a maximal

member
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(B) if x ∈ Zp[s] let t`(x) = 〈t`,u : u ∈ J≥w1,`
〉/ ≈ for ` = 0, . . . , n(x) where

t`,u ∈ Iu and let w ∈ J be a common upper bound of {w1,0, . . . , w1,n(x)} ∪
{w2,1, . . . , w2,n(∗)} and we let xu = (〈t`,u : ` ≤ n(∗)〉, ηx) for u ∈ J≥w
then

j(gx) = 〈gxu : u ∈ J≥w〉/ ≈ .

Claim 6.13. 1) Those inverse limits are well defined, in particular: if we define t
by Jt = J ∪ {s}, (so Itu = Isu if u ∈ J and is Is if u = s; πt

u,v is πs
u,v if v ∈ J and

is πu,s if u ∈ Js and is idIu if u = v ∈ J t \ Js) then

(α) t is a p.o.w.i.s

(β) Hp[s] = ∪{Hpu[s] : u ∈ J}.
2) The mapping js from Definition 6.12(7) is really a well defined embedding of the
group FI[s] into the group Fs.
3) In part (2) if Js

1 is ℵ1-directed then

(A) equality holds, that is js maps GI[s] onto Gs

(B)
∧
u∈J

rk(Iu) <∞⇒ rk(Is) <∞, etc.

Proof. 1),2) Easy.
3) As in 5.41(3).

[Saharon: recheck for the non-linear case!!] �6.13 �

Claim 6.14. Assume

(A) ℵ0 < θ = cf(θ) ≤ κ
(B) Tα ⊆ ακ for α < θ has cardinality ≤ κ
(C) F = {f ∈ θκ : f � α ∈ Tα for α < θ}
(D) γ = rk(F , <Jbd

θ
), necessarily <∞ so < (κθ)+.

Then τatw
κ ≥ τnlg

κ ≥ τnlf
κ > γ (on τnlf

κ see below).

Where

Definition 6.15. τnlf
κ is the least ordinal τ such that τ > τnlf

G,H wherever G =

Aut(A),A a structure of cardinality ≤ κ,H a subgroup of G of cardinality ≤ κ and
nor<∞G (H) = G.

Proof. We define s = (J, p̄, π̄) as follows:

(A) J = (θ;<)

(B) Iα = (Tα+1, <α+1) for α < θ where

f1 <α+1 f2 ⇔ f1(α) < f2(α)

(C) for α < β < θ let πα,β : Iβ → Iα be

πα,β(f) = f � (α+ 1).

Now

(∗)1 s is a κ-p.o.w.i.s.

(∗)2 s is linear and very nice
[Why? As in the proof of 5.48.]
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(∗)3 s is good
[Why? Assume α < θ and x ∈ YIα . Let β ≤ α be minimal such that

〈t`(x) � β : ` ≤ n(x)〉 are pairwise distinct s`(x) � β /∈ {tm(x) � β : m ≤ `}
for ` ∈ {1, . . . , n(x)}. Now β is well defined (as β = α is O.K. by the
definition of x ∈ Y and J is well ordered. Also β 6= 0 (as {f � 0 : f ∈ Tα+1}
is a singleton (as n(x) > 0 is assumed). Lastly, β cannot be a limit ordinal
so β′ = β − 1, y = (〈t`(x) � β : ` ≤ n(x)〉, 〈s`(x) � β : 1 ≤ ` ≤ n(x)〉) are as
required.]

(∗)4 Is is (isomorphic to) (F , <Jbd
x

)

[Why? This is how we define Is (note the difference compared to §1.]

(∗)5 Fs is isomorphic to FI[s]

[Why? By 6.13(3).]

(∗)6 FI[s] is a κ-automorphism group
[Why? By 5.45.]

Recalling §1, together clauses (α), (β), (γ) of 6.1 holds so we are done. �

Conclusion 6.16. 1) If κ is strong limit singular of uncountable cofinality, then
τatw
κ ≥ τnlg

κ ≥ τnlf
κ > 2κ (on τnlf

κ , see Definition 6.15).
2) If 2ℵ0 < 2θ < κ = κ<θ < κθ then τnlf

κ > κθ.

Proof. 6.16 Let θ = cf(κ).
By [Shear, II,5.4,VIII,§1] for every regular λ ≤ 2κ there is an increasing sequence

〈λi : i < θ〉 of regular cardinals < κ with (
∏
i<κ

λi, <Jbd
θ

) having true cofinality λ.

Clearly for any such 〈λi : i < θ〉 we can find fα ∈
∏
i<θ

λi for α < 2κ such that

α < β ⇒ fα <Jbd
θ
fβ . Now we can prove by induction on α then rkI(fα) ≥ α where

I = (F , <Jbd
θ

). Now F as in 6.1 and we know f ∈ F ⇒ rkI(f) < ∞, so we are

done. �6.16 �

§ 6(A). §5 Alternative presentation of §3,§4. We try to give the shortest way:
from §2,§3,§4 we use only 5.20, 5.21,5.22. (5.1) Definition ??,pg.35 [natural but not

used: Definition 6.20, Claim 6.6, Claim 6.7 (5.2) Definition 6.10 κ-p.o.w.i.s.,pg.37

(5.3) Claim ??,pg.38 [clause (a) fill proof]
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§ 6(B). Private Appendix
§5. A different way to represent §1 is

Definition 6.17. 1) We say Y ⊆ YI is closed when: if x ∈ Y and m ≤ n(x) then
(〈t0(x), t1(x), . . . , tm−1(x), tm(x)〉, 〈s1(x), . . . , sm−1(x), sm(x)〉 and
(〈t0(x), t1(x), . . . , tm−1(x), sm(x)〉, 〈s1(x), . . . , sm−1(x), tm(x)〉 belongs to Y .
2) G∗Y is the subgroup of XI generated by {gx : x ∈ Y }.

Claim 6.18. 1) If y ⊆ XI is finite then there is a finite closed y+ ⊇ Y .
2) If y ⊆ XI is closed and <∗ is a linear order of X+

I as in 5.12 and g ∈ G∗Y then
we can find n and x1 <

∗ . . . <∗ xn from Y such that g = gx1 . . . gxn (hence G∗Y has

≤ 2|Y | elements).

Moved from §1, Feb 2004:

Definition 6.19. 1) Let YI = XI ∪K+
I , we are assuming XI ∩KI = ∅ = 0.

1A) Y ≤αI = X≤αI ∪KI , Y
<α
I = X<α

I ∪ (XI ×KI).
2) GI is the group generated by {gx : x ∈ Yp} freely except the equations in ∆p,
where ∆I is defined below.
2A) G≤αp is the group generated by {gx : x ∈ Y ≤αp } freely except the equations in

∆≤αI where ∆≤αI is defined below; similarly G<αI ,∆<α
I .

3) ∆I = ∆≤∞I where ∆≤αI is the set of the following equations

(A) f−1
x = gx for x ∈ YI

(B) gxgy = gygx for
(i) x, y ∈ XI ,¬~x,y,¬~y,x or

(ii) x, y ∈ YI \XI

(C) gxgy1
g−1
x = gy2

if x, y1y2 ∈ XI are as in (c) of 5.8(2)

(D) gxgy1g
−1
x = gy2 if x ∈ XI and y1, y2 ∈ KI and KI |= “y1gx = g2”.

Now we first analyze the group KI .
4) For y ∈ YI define rk∗(y) as in Definition ?? if y ∈ Xp and as −1 otherwise (e.g.,
y ∈ KI).
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§ 6(C). Private Appendix. What about s with Js not ℵ1-directed? Even if
every Is is well founded the inverse limit to be well founded. Still we can have large
rk(I ′s), but the group we get Gs may be “bigger” than GI[s], see 5.40(7). However,
we shall show that they are similar enough.

Claim 6.20. [?] Assume s is a κ-p.o.i.s so (GI[s], HI[s]), (Gs, Hs) are well defined
as well as the natural embedding js = j[s] from Gs into GI[s] mapping Hs onto
HI(s) (see ??)

(A) for every ordinal α, js maps norαGs
(Hs) onto norαGI[s]

(HI[s])

(B) the normatizer length of Hs in Gs is equal to rk<∞(Is).

Proof. FILL! �

Conclusion 6.21. 1) For every κ there is a structure A of cardinality κ such that for
some two element subgroups H of Aut(A′) has normalizer length ≥ κ+ in Aut(A).
2?

Remark 6.22. Of course, we can get length somewhat > κ+.

Moved 2003/7 from the proof of 5.41: Let

B1
u = XI ∩ {xu,1, . . . , xu,n(u)}, a finite subset of XI

B2
u =

{
y :for some x ∈ B1

u and m ≤ n(x)we have

y = (〈t0(x), t1(x), . . . , tm(x)〉, 〈s1(x), . . . , sm(x)〉) or

y = (〈t0(x), t1(x), . . . , tm−1(x), sm(x)〉, 〈s1(x), . . . , sm−1(x), tm(x)〉)
}

again a finite subset of XI .

Let B3
u = {y ∈ XI : for some ` ∈ {1, . . . , n(u)} we have y ∈ xu,` ∈ X+

I \XI}∪B2
u.
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§ 6(D). Private Appendix 2. Assignments: 1) (2002/9/15) - get A such that

Aug(A) = Gs for §3 for κ-p.o.w.i.s. s, [seem O.K.]
2) Complete 6.7 [details]
3) Try Con(τ ′ℵ0

> 2ℵ0 > ℵ1) start with Σ′1-pre-relation with high length.
4) (2002/9/16)- about the normalizer problem for, e.g., κ = iω, try to say deter-
minacy by clubs of X ∈ [P(κ)]ℵ0 , “X ∩W1 ∈ S” is undetermined. So is there a
phrase modulo then?
5) (2002/9/28) - can we directly get G = inv − lim〈GIu , π̂u,v : u ≤J v〉 is κ-aut?
Moved from §0,p.2: [Fill! we can show δ(κ) ≤ τ∗κ? But τ ′κ ≤ δ(κ)? Question: A

connection between τ ′G,H when nor∞G (H) = G and auto tower. Moved from Definition 6.34(3), clause (B):

(A) if u ≤J v we define fsu,v : Mu →Mv as follows
fu,v(z) = z′ if:

(α) π+
u,v(x

z) = xz
′

(β) one of the following occurs

(i) n(z′) = n(z) and ` < n(z)⇒ (uz` , x
z
` ) = (uz

′

` , x
z′

` ) and

π+
u,v(x

z
n(z)) = xz

′

n(z′) and (∀w)(u ≤J w ≤J v ⇒

π+
w,v(x

z′

n(z′)) ∈ XIw

(ii) not (i) and n(z′) = n(z) + 1, π+
u,v(x

z′) = xz and

u <J u
z′

n(z) ≤J u
z
n(z), x

z′

n(z) = π+

uz
′
n(z)

,uz
n(z)

(xzn(z))

Moved from Claim 6.35: Definition 6.31(4), clause (g)(α)(ii) we add

• and for no v1 <J do we have r(x) ≤ v1 and (∀w)[v1 ≤J v → πw,v(x) ∈ XI).

Moved from pg.17:

Claim 6.23. Assume s is a κ-p.o.w.i.s. Then 〈∗Gu, ∗πu,v : u ≤J v〉 is an inverse
system of groups (so with ∗πu,v a homomorphism from ∗Gv into ∗Gu) with inverse
limit ∗Gs very similar to Gs, in particular for some 2-element subgroup ∗H such
that τ ′

∗Gs,∗Hs
= τ ′Gs,Hs

and nor∞
∗Gs

(∗Hs) = ∗Gs ⇔ nor∞Gs
(Hs) = Gs.
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§ 6(E). §k. Juris note: 1) Some points as in Tuesday notes:

(A) lim sup norm

(B) cs product of forks and though they look just for the future not a necessity

(C) no bigness (which is a remnant) of ideal

(D) we use in the i-th norm that we use first εi−1 then εi−2, etc., and use they
decrease

(E) i still think that finding a line not covered by 〈I0, . . . ,In〉 as witnessed by
p′ ≥ p with norms dropping down by ≤ 1 its O.K., i.e., the closure inherent
is using Koning is O.K. by inflating the I`-s, see below.
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A try of lines/point: Choice: n`i < ω, i < w, ` ≤ (0), n`i << n`+1
i <<<

n0
i+1, εi = 1

n1
i
,0 < ζ∗ << 1 constant. Notation: 1) SQn = {( i

2n ,
j

2n ) : i, j ∈

{0, . . . , 2n}, x ∈ SQn ⇒ x = (x[1]x[2]).
2) LNn = a line L determined by two distinct points among
CRn = {( `

2n ,
k
2n ) : `, k ∈ {0, 2n}.

3) If L ∈ LNn let

nb(L ) = {x ∈ SQn : the distance of x from L is ≤
√

2

2n
}.

4) A SQn-square is a square of the form

{(x, y) :
`

2n
≤ x ≤ `+ 1

2n
,
k

2n
< y ≤ k + 1

2n

denoted by s, t.

Definition 6.24. (A) Let Σ(ci) = P({A : A ⊆ n8
i 2, |A|/2n8

i = 2−i−1})
Σ(ci) = P(ci) \ {0}

(B) for d ∈ Σ(ci) we define by induction on j ≤ i when nori(d) ≥ j; this defines
the norm which is always ≤ i
j = 0: always (i.e., non empty) j = 1: nor(d) ≥ 1 iff n8

i 2 = ∪{A : A ∈ d}

j + 1 > 1: if

(α) m > n0
i

(β) F is a function with domain d into

{S : S in the union of ≤ ζ∗ · (2mi )2 SQm-squares}
(γ) g: is a function from the set of SQn8

j
-squares to numbers no!

∈ { 0

2n
g
y
, 1

2
n
g
j
}

(δ) Σ{g(t) : t ∈ Domg} ≤ ζ∗

(ε) F obeys g which means: for every SQn8
j
-square t and A ∈ D.

(C) Leb(t∩F (A)) < 1

2
n10
j

or g(t) ≥ Leb(t∩F (A)) (equivalently g(t) > 0) then

we can find an SQm-line L such that j ≤ nori{A ∈ d : L * F (A)} or
even an SQm′ -line L for some m′ ≥ m - no real difference (certainly after
m′ = 22m).

Claim 6.25. nori(ci) ≥ i for i > 2.

Proof. Note that in the definition 6(E) we can always increase m and it is not really
used. We need some m such that the range of F is appropriate. Will we have more
lines? But we make the difference to make this null.

Assume toward contradiction that nori(ci) < i.
So as before we can choose by downward induction on j < i funtions Fj , gj such
that:

~(α) Fj is 〈Fj,L̄ : L ∈ Lj〉 where

(β) Lj = {j + 1, . . . , i− 1}(LNm), i.e., a sequence of lines
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(γ) gj = 〈gj,L̄ : L ∈ Lj〉
(δ) for each L̄ ∈ Lj , (Fj,L̄ , gj,L̄ ) are as in Definition 6.24

(ε) j > nori({A ∈ Ci: for every appropriate j′ = j, j + 1, i − 1,Lj′ *
FL̄ �(j′,i)(A)}) wherever L̄ = 〈Lj′ : j′′ = j, j + 1, . . . , i− 1〉 ∈ Lj .

For j = i the demand on A ∈ d is empty so

ε says α > nori(ci) which holds.

The induction hypothesis is by the definition.
So we have (Fi−1, gi1 , . . . , F1, g1). So for each L̄ ∈ L1 we have 1 > nor1{A ∈ ci :

as above} hence there is f(L̄ ) ∈ n8
iZ such that

~ f(L̄ ) /∈ A if
� A ∈ ci and for j = 1, . . . , i− 1 we have Lj′ * FL �{j+1,...,i−1}(A).

NOW COMES the main point.
We have two many points.
We choose by downward induction on j ≤ i, L−j and S̄j =< S. �

Alternative 1

Definition 6.26. 1) For a partial order I, let

(a) YI = {(〈t0, . . . , tn〉, 〈s1, . . . , sn〉) :(a) t` ∈ I and s` ∈ I and

(b) t0, . . . , tn is without repetitions and

(c) s` /∈ {t0, . . . , t`} for ` ∈ {1, . . . , n}}

(b) Y +
I = YI ∪ [YI ]

<ℵ0 . 2) G+
I is defined as in Definition 5.2(4) using

Y +
I instead of X+

I .

Definition 6.27. If π is a partial function from a p.o. I2 into a p.o. I2 we define the
mapping π+, π̂, π̌ (really π+

I1,I2
, π̂I1,I2 , π̌I1,I2 , the π̌ is not connected to the π̌ from

Claim 5.42 and π+, π̂ are not as in Definition 5.35, 6.44) as follows:

(A)(a) π+ is a partial mapping from Y +
I2

into Y +
I1

(every Dom(π) = I2, Dom(π+)

is a proper subset of Y +
I2

)

(A) for x ∈ YI2
(α) x ∈ Dom(π+) iff {t0(x), . . . , tn(x)(x), s1(x), . . . , sn(x)(x)} ⊆ Dom(π)
and ` < n(x) ⇒ (t`+1(x) <I2 s`+1(x) <I2 t`(x)) ∨ (s`+1(x) <I2
t`+1(x) <I2 t`(x))

(β) π+(x) = (〈π(t0(x), . . . , π(tn(x)(x))〉, 〈π(s1(x)), . . . , π(sn(x)(x))〉
(B) for any finite y ∈ YI2 we have y ∈ Dom(π+) and π+(y) = {π(x) : x ∈

y ∧ x ∈ Dom(π+)}
(C) in particular 〈 〉 ∈ Dom(π+), π+(〈 〉) = 〈 〉

(B) π̌ is the partial homomorphism fromG+
I2

intoG+
I1

with domain the subgroup

of G+
I2

generated by {gx : x ∈ Dom(π+)} mapping gx to gπ+(x) ∈ GI1 ; see
justification below

(C) π̂ is the homomorphism from G+
I2

into G+
I1

mapping for x ∈ Y +
I2
, gx to gπ+(x)

if x ∈ Dom(π+) and to eGI2 if x ∈ Y +
I2
\Dom(π+).
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Claim 6.28. 1) In Definition 6.27, π̂, π̌ are well defined, in particular, π̂ is really a
homomorphism from G+

I2
into G+

I1
.

2) If I1, I2, I3 are partial orders and π` is a partial mapping from I`+1 into I` for
` = 1, 2 and π3 = π2 ◦ π1 then π+ ⊇ π+

2 ◦ π
+
1 .

Remark 6.29. But the π̌u,v may fail to commute and possibly π+ ⊃ π+
2 ◦ π

+
1 .

Proof. As in 5.42(2). �

Definition 6.30. 1) We define “s is a κ-p.o.w.i.s. (w for weakly) similarly to κ-p.o.i.s.
in 5.40(1) except that we replace clauses (f), (g) there by:

(f)′ for u ≤J v, πu,v is a partial function from Iv to Iu, πu,u = idIu

(g)′ u ≤J≤ v ≤J w implies only πs
u,w ⊇ πs

u,v ◦ πs
v,w.

discussion: Let s be a κ-p.o.w.i.s, with ℵ1-directed Js, we would like to show that
Gs is a κ-automorphism group. We are thinking on the case Js is a (linear) well
ordering. E.g., θ = cf(θ) > ℵ0, fα ∈ θκ for α < α∗ form a tree, i.e., fα(i) = fβ(j)⇒
i = j and fα � i = fβ � j and fα is <Jbd

θ
-increasing with α where J bd

θ is the ideal

of bounded subsets of θ.
So we choose J = θ, Ii = {fα(i) : α < α∗} where J ordered by the order

of the ordinals and for i < j we have πj,i(fα(j)) = fα(i) for α < α∗. Now in
Definition 6.35, 6.36, 6.37 below we replace the Gs

u-s by bigger groups and extend
the homomorphism π̂u,v such that their cardinalities are still ≤ κ but the inverse
limit is, essentially, the same, by adding many copies forming a tree with few
branches. So instead we have many gm,m = 〈x, z0, . . . , zn(∗)), z` ∈ Zproj`(x).

Definition 6.31. Let s be a κ-p.o.w.i.s and J = Js, etc.
0) s is linear if Js is a linear order.
1) We say s is smooth if

(A) Rang(πs
u,v) = Iu

(B) if w ∈ J and x ∈ YIw (see below), n(x) > 0 then for some y, u (we may write
u = u(x), y = y(x)) we have: u ≤J w and x ∈ YIu and ∗π

+
u,w(x) = y ∈ YIu

and
(∗)u,y if u ≤J v, x′ ∈ YIv and u′ ≤J v, ∗π+

u,v(x
′) = y then ∗π

+
u′,v(x

′) is

well defined iff u ≤J u′.
we define n(x), t`(x), s`(x) for x ∈ YI as we have defined in 5.40 for x ∈ XI and let

Y +
I = {x : x ∈ YI} ∪ [YI ]

<ℵ0 .

3) For u ≤J v let ∗π
+
u,v : Y +

Iw
→ Y +

Iv
be defined as in clause (A) of 6.27. For u ∈ J

let ∗Yu = {y ∈ Yv : u, y are as in clause (b) of part (1),i.e., (∗)u,y holds}.

So our aim in this section is (proved in 6.36)

Claim 6.32. If a κ-p.o.w.i.s. s is linear (see Definition 6.31 below) then Gs is a
κ-automorphism group.
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discussion: To define the bigger groups we shall have to define various things.
The idea is that we allow ourselves to use Y +

Iu
instead of X+

Iu
but we add “freely”

many copies to make the mapping having full domain and range, but add no more
than necessary so that no more branches are added. The ones we really need are
x̄ = 〈xv : v ∈ J≥w〉 such that ∗π

+
v1,v2

(xv2
) = xv2

, in the interesting cases to allow
it comes Zo,u,2 in clause (g) of 6.33 but there is no need for the parallel statement
in clause (h) of Definition 6.33. The set {(`,m, i) : ` < m ≤ n(x) and i = 1 and
t`(xv) <Iv tm(xv) or 1 ≤ ` < m ≤ n(x) and i = 2 and s`(xv) <Iu sm(xv)} is
essentially constant.

Definition 6.33. Let s be a linear κ-p.o.w.i.s. and J = Js.
1) By induction on n we define xn, Z̄n = 〈Zn,u : u ∈ J〉 and f̄n = 〈fn,u,v : u ≤J v〉
such that

(A) Z̄n is a sequence of pairwise disjoint sets each of cardinality ≤ κ
(B) xn is a function from {Zn,u : u ∈ J} onto ∪{YIu : u ∈ J} mapping Zn,u

onto YIu for each u ∈ J and let Zn,u,x = {z ∈ Zn,u : xn(z) = x} and for
r ≤J u let rZn,u = {z ∈ Zn,u : r(xn(z)) ≤J r} and rZn,u,x = {z ∈ rZn,u :
xn(z) = x}

(C) fn,u,v is a function from uZn,v into Zn,u and the fn,u,v-s commute and
fn,u,v(y) = x⇒ r(xn(y)) = r(xn(x))

(D) if u ≤J v and fn,u,v(z2) = z1 then ∗π
+
u,v(xn(z2)) = xn(z1)

(E) if m < n then Zm,u,x ⊆ Zn,u,x, Zm,u ⊆ Zn,u, fm,v,u ⊆ fn,v,m
(F) if n = m+ 1 and u ≤J v then Z0,n,u ⊆ Rang(fn,u,v)

(G) for n = 0 and u ∈ J we have
(α) Zn,u = Zn,u,1 ∪ Zn,u,2 where

(i) Zn,u,1 = {〈n, u, v, x, y, 1〉 : x ∈ YIv , y ∈ YIu , ∗π+
u,v(x) = y,

r(x) ≤J u ≤J v}
(ii) Zn,u,2 = ∪{〈n, u, v, x, y, 2〉 : x ∈ XIv , y ∈ XIu , r(x) ≤J v ≤J u

and ∗π
+
u,v(y) = x and

(∀w)(u ≤J w ≤J v ⇒ π+
w,v(y) ∈ XIw)}

(β) x0(〈n, u, v, x, y, 1〉) = y and x0(〈n, u, v, x, y, 2〉) = y if 〈n, u, v, x, 1〉, 〈n, u, v, x, y, 2〉
are as above

(γ) fn,u1,u2(z2) = z1 iff z2 ∈ Zn,u1 , z1 ∈ Zn,u2 and one of the following
occurs

(i) for some v for x ∈ XIu we have z` = 〈n, u`, v, x, y, 1〉 ∈ Zn,u`,1

for ` = 1, 2

(ii) for some v, y1, y2 we have z` = 〈n, u`, v, x, y`, 2〉 ∈ Zn,u`,2 for

` = 1, 2 and π+
u1,u2

(y2) = y1

(iii) for some v, y1 we have z1 = 〈n, u, v, x, y1, 1〉 ∈ Zn,u1,1,

z2 = 〈n, u2, v, x, y2, 2〉 and π+
v,u2

(y2) = x
(H) for n = m+ 1

(α) Zn,u = Z1
n,u,1 ∪ Z2

n,u,2 where

(i) Zn,u,1 = Zm,u
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(ii) Zn,u,2 = {(n, u, v, w, z, y, y′) : y ∈ YIw , z ∈ Zm,v,

π+
v,w(y) = xm(z), π+

u,w(y) = y′, r(y) ≤J v, r(y) ≤J u,

¬(u ≤J v), v ≤J w, u ≤J w}
(β) xn(z′) = x′ iff z′ ∈ Zn,u,xm(z′) = x′ or z′ = (n, u, v, w, z, y, y′)
and xm(z) = x′

(γ) for u1 ≤J u2, fn,u1,u2(z2) = z1 iff one of the following cases occurs

(i) fm,u1,u2(z2) = z1

(ii) for some v, w, z, y we have z` = (n, u`, v, w, z, y) ∈ Zn,u`,2 for

i = 1, 2

(iii) for some v, w, z, y we have z2 = (n, u2, v, w, z, y) ∈ Zn,u2,2

and r(y) ≤J u1 ≤J v and z1 = fm,u1,v(z).

Definition 6.34. Let s be a κ-p.o.i.s.
1) Let Zω,u = ∪{Zn,n : n < ω}, fω,u,v = ∪{fn,u,v : n < ω} and xω = ∪{xn : n < ω}.
2) Let Mu = {m : m has the form (x, z0, . . . , zn(x)) such that x ∈ Yu, z` ∈ Zu,pr`(x)

where pr`(x) = (〈ti(x) : i ≤ `〉, 〈s`(x) : i = 1, . . . , `〉)},
M+

u = {m : m ∈Mu} ∪ [Mu]<ℵ0 . For m ∈Mu let m = (xm, zm0 , . . . , z
m
n(m)) where

n(m) = n(xm).
3) We define 〈∗Gu, ∗π̂u,v : u ≤J v〉 as follows

(A) ∗Gu is generated by {gm : m ∈ Mu} ∪ {gn : n ∈ [Mu]<ℵ0} freely except
the equations

(a) g−1
m = gm, g

−1
<m> = g−1

n = gn

(b) gmgng
−1
m = gn/{m}

(c) if n + 1 = n(m1) = n(m2),m = prn(m1) = prn(m2), zm1
n+1 =

zm2
n+1, (s

m1
n+1, t

m1
n+1) = (tm2

n+1, s
m2
n+1) then gmgm1

g−1
m = gm2

(d) in all other cases the generators commute
(B) if u ≤J v we define ∗π

+
u,v : Mu → Mv by: ∗π

+
u,v(m2) = m1 iff m2 ∈

Zw,u,m1 ∈ Zw,u and ` ≤ n(m2) ⇒ fw,u,v(z
m2

` ) = zm1

` and ∗πu,v(x
m2) =

xm1

(C) if u ≤J v then we define a homomorphism ∗π̂u,v from ∗Gv to ∗Gv as follows:
it maps g〈 〉 to g〈 〉

it maps gm2
to gm1

[and gn1
to gm1

] if
~(a) m1 ∈Mu,m2 ∈Mv

(b) ∗π
+
u,v(m2) = m1

(c) n1 ∈ [Mu]<ℵ0 ,n2 ∈ [Mv]
<ℵ0

(d) n1 = {∗π+
u,v(m2) : m2 ∈ n2 ∧m2 ∈ Dom(∗π

+
u,v)}.

Claim 6.35. Assume s is a κ-p.o.w.i.s. with Js a linear ordering of uncountable
cofinality.
Then
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(A) 〈∗Gu, ∗π̂u,v : u ≤J v〉 is an inverse system of groups (so with ∗πu,v a
homomorphism from ∗Gv into ∗Gu) with inverse limit isomorphic to Gs

(B) hence Gs is a κ-automorphism group.

Claim 6.36. In 5.47 we can replace κ-p.o.i.s by κ-p.o.w.i.s., that is ?

Proof. The same proof replacing FILL. �

The following claim works, e.g. for strongly inaccessible cardinals, but is most
interesting for κ strong limit singular of uncountable cofinality.

Conclusion 6.37. Assume

(A) ℵ0 < θ = cf(θ) ≤ κ
(B) Tα ⊆ ακ for α < θ has cardinality ≤ κ
(C) F = {f ∈ θκ : f � α ∈ Tα for α < θ}
(D) γ = rk(F , <Jbd

θ
), necessarily <∞ so < (κθ)+.

Then

(α) there is a κ-p.o.w.i.s. s with rk(Is) = γ

(β) in (α), GI[s] is a κ-automorphism group with HI[s], a two element subgroup,

τ ′GI[s],HI[s]
= γ and nor<∞GI[s]

(HI[s]) = GI[s]

(γ) τκ ≥ τ ′κ > γ.

Proof. We define s = (J, Ī, π̄) as follows:

(A) J = (θ;<)

(B) Iα = (Tα+1, <α+1) for α < θ where

f1 <α+1 f2 ⇔ f1(α0) < f2(α)

(C) for α < β < θ let πα,β : Iβ → Iα be

πα,β(f) = f � (α+ 1).

Now

(∗)1 s is a κ-p.o.w.i.s.

(∗)2 s is linear

(∗)3 s is smooth
[Why? Assume α < θ and x ∈ YIα . Let β ≤ α be minimal such that

〈t`(x) � β : ` ≤ n(x)〉 are pairwise distinct s`(x) � β /∈ {tm(x) � β : m ≤ `}
for ` ∈ {1, . . . , n(x)}. Now β is well defined (as β = α is O.K. by the
definition of x ∈ Y and J is well ordered. Also β 6= 0 (as {f � 0 : f ∈ Tα+1}
is a singleton (as n(x) > 0 is assumed). Lastly, β cannot be a limit ordinal
so β′ = β − 1, y = (〈t`(x) � β : ` ≤ n(x)〉, 〈s`(x) � β : 1 ≤ ` ≤ n(x)〉) are as
required.]

(∗)4 Is is (isomorphic to) (F , <Jbd
x

)

[Why? This is how we define Is (note the difference compared to §1.]

(∗)5 Gs is isomorphic to GI[s]

[Why? By 6.13(3).]
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(∗)6 GI[s] is a κ-automorphic group
[Why? By 5.45.]

Recalling §1, together clauses (α), (β), (γ) of 6.37 holds so we are done. �

Conclusion 6.38. 1) If κ is strong limit singular of uncountable cofinality, then
τκ ≥ τ ′κ ≥ τ ′′κ > 2κ.
2) If κ = κ<κ > ℵ0 then τκ ≥ δ(κ).

Proof. 1) Let θ = cf(κ).
By [Shear, II,5.4,VIII,§1] for every regular λ ≤ 2κ there is an increasing sequence

〈λi : i < θ〉 of regular cardinals < κ with (
∏
i<κ

λi, <Jbd
θ

) having true cofinality λ,

hence for some such 〈λi : i < θ〉 we can find fα ∈
∏
i<θ

λi for α < 2κ such that

α < β ⇒ fα <Jbd
θ
fβ . Now we can prove by induction on α then rkI(fα) ≥ α where

I = (F , <Jbd
θ

). F as in clause (c) of 6.37 and we know f ∈ F ⇒ rkI(f) < ∞, so

we are done. �

§ 6(F). §4 Reconstructing §3. discussion: We may try to make §2 more similar
to §2. We still have to use Y +

I and π not order preserving: but we demand

(g)′′ πu,v ◦ πv,w = πu,v for u ≤J v ≤J≤J w.

0) 6.26, 6.28 as before but
1) In clause (A), Definition 6.27(b)(α):

~ and ` < n(x)⇒ [π(t`+1(x)) <I1 π(s`+1(x)) <I2 π(t`(x))] ∨ [π(s`+1(x)) <I1
π(s`(x)) <I2 π(t`(x))].

2) Instead 6.30.
3) In Definition 6.31 we define π̂u,v a partial homomorphism from Gv into Gu by:
π̂u,v(gx) = gπu,v(x) when x ∈ YIv and x ∈ Dom(πu,v)
π̂u,v(gx) = eGu if x ∈ YIv \Dom(πu,v)
π̂u,v(gy) = g{πu,v(x):x∈y∩Dom(πu,v)}.

4) 6.32 disappears but we need 5.40(2) with GIu replaced by G+
Iu

notational prob-

lem: +G+
s of 5.40(5).

5) Repeat 5.41.
6) Repeat 5.42, now easy.
7) Repeat 5.47. SAHARON: From here on: copied part. Old proof of ??, moved 3/2004, pgs.16-17:

Proof. ?? So toward contradiction assume

(∗)1 h1 ∈ G, h2 ∈ G \ K,h3 ∈ Gp and h3h1h
−1
3 = h2 but for no h ∈ G do we

have hh1h
−1 = h2.

Let ≤∗ be as in � of Claim 5.12. By 5.12(1) we can find 〈x`,k : k = 1, . . . , k∗` 〉 for
` = 1, 2, 3 such that

(∗)2 x1,k ∈ X+
p , x2,k ∈ XI , x3,k ∈ XI[p]

(∗)3 x`,1 <
∗ x1,2 <

∗ . . . <∗ x`,k∗`
(∗)4 h` = gx`,1 . . . gx`,k∗

`
.

Without loss of generality
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(∗)′4 x`,k /∈ (Zp \ Z)× 2
[why? By 5.15(1) if we define h′` = (. . . gx`,k . . .)k∈w(`) where w(`) = {k :

x`,k /∈ (Zp \ Zq) × 2} then Gp |= h′3h
′
1(h′3)−1 = h′2, but h′1 = h1, h

′
2 = h2

(as they belong to Gq), so without lose of generality (∗)4 holds.]

Without loss of generality

(∗)5 G<0
q h1 = G<0

q h2; moreover for some k∗∗1 , k∗∗2 we have 〈x1,k : k ∈ (k∗∗, k∗2 ]〉 =
〈x2,k : k ∈ (k∗∗2 , k∗2 ]〉 and x1,k (k = 1, k∗∗1 )x2,k(k = 1, . . . , k∗∗2 ) ∈ Zq × 2

[Why? By 5.15(1) if we define h′` = (. . . , g`,k, . . .)k∈w(`) where w(`) =

{k : x`,k /∈ Zp} then we have h′3h
′
1(h′3)−1 = h′′2 hence by 5.15(2) h′3 ∈ Gq.

So h′1, h
′
2 ∈ Gq are conjugate in Gq and letting h′′2 = h2, h

′′
1 = h′3h1(h′3)−1,

the pair (h′′1 , h
′′
2) satisfies the demands in (∗)2 and in (∗)5 (and (∗)4).]

(∗)6 if a ∈ Zq then the number |{k : x1,k ∈ {a} × 2}|, |{k : x1,k ∈ {a} × 2}|
(both are ∈ {0, 1, 2}) are equal or one is zero and the other is 2 and |{k :
k∗∗1,3 < k ≤ k∗3 and a ∈ Aq

a}| is odd.
[Why? By the proof of 5.12(1).]

Now easily h1, h2 are conjugate in Gq so we are done. �

Moved from pg.34,2004/2 from Def. ??: we define n(x), t`(x), s`(x) for x ∈ YI as we have defined in

5.40 for x ∈ XI and let

Y +
I = {x : x ∈ YI} ∪ [YI ]

<ℵ0 .

3) For u ≤J v let ∗π
+
u,v : Y +

Iw
→ Y +

Iv
be defined as in clause (A) of ??. For

u ∈ J let ∗Yu = {y ∈ Yv : u, y are as in clause (b) of part (1),i.e., (∗)u,y holds}.
Moved from pg.36,2004/2 from Conclusion 6.16: 2) If κ = κ<κ > ℵ0 then τκ ≥

δ(κ). [?] Moved from Definition 6.10, part (4): [?] If u ≤J[s] v then π̂u,v = π̂s
u,v is

the homomorphism from Gp2
into Gp1

mapping gx to gπ+(x) if x ∈ Dom(π+) and

to eGI2 if x ∈ Y +
I2
\Dom(π+) (hence X ∈ YI2).

Moved from Definition ??: 1) [used?] We say s is smooth if: J ′ ⊆ J is finite

then we can find a directed system 〈G′u, π′u,v : u ≤J v are from J ′〉 such that
Gu ⊆ G′u, πu,v ⊆ π′u,v.
2) [used?] We say s is strongly smooth if

(A) Rang(πs
u,v) = Iu

(B) if w ∈ J and x ∈ YIw (see below), n(x) > 0 then for some y, u (we may
write u = u(x) = us

w(x), y = yw(x) = ysw(x)) we have: u ≤J w and x ∈ YIu
and ∗π

+
u,w(x) = y ∈ YIu and

(∗)u,y if u ≤J v, x′ ∈ YIv and u′ ≤J v, ∗π+
u,v(x

′) = y then ∗π
+
u′,v(x

′) is

well defined iff u ≤J u′.

*************************************************** Moved from pg.37: (and

??) The following was circumvented by using the linear case (and Definition 6.10(2).

The main missing point for §3 is the parallel of ?? replacing “good”.

Claim 6.39. The group inv-lim(g) is a κ-automorphism group such that

(A) J is ℵ1-directed partial order

(B) g = 〈Gu, πu,v : u ≤J v〉 is a weak inverse limit of groups, i.e.

Paper Sh:810, version 2023-04-03. See https://shelah.logic.at/papers/810/ for possible updates.



84 S. SHELAH

(α) πu,v ∈ Hom(Gv, Gu)

(β) if u ≤J v ≤J w then πu,w ⊇ πu,v ◦ πv,w
(C) κ ≥ |J |+ Σ{‖Gu‖ : u ∈ J}.

Proof. Fill. [used?] �

Claim 6.40. [used?] 1) If 3 s is a smooth κ-p.o.w.i.s. then 〈Gs
u, π̂

s
u,v : u ≤J[s] v〉 is

a smooth inverse system of groups.
2) If s is linear κ-p.o.w.i.s then s is a strongly smooth κ-p.o.w.i.s.
3) If s is strongly smooth then s is smooth.

Proof. 1) Easy.
2),3) Not used and implicit in the proof of ??. �

Moved from the proof of ??,pg.16,17: We define a function π from {gx : x ∈ Xp} ⊆
Gp into Gp as follows:

~ (a) if x ∈ X then π(gx) = gx

(b) if x ∈ X+
p \X then π(gx) = eGp .

Part A: This mapping π respects the equations from Γp hence can be extended to
a homomorphism π̌ from Gp into Gp, in fact into G which is a subgroup of Gp.

Now towards contradiction suppose h ∈ G \ K belongs to N`−1 to the normal
subgroup of Gp which K generates. Clearly h is equal to a product of conjugates
of members of K, i.e., for some n < ω and h` ∈ K, g` ∈ Gp, for ` < n we have

Gp |= h = (g0hg
−1
0 )(g1h1g

−1
1 ) . . . (gn−1hn−1g

−1
n−1). This implies that

π̌(h) =(π̌(g0)π̌(h0)(π̌(g0))−1)((π̌(g1)

(π̌(h1)(π̌(g1))−1) . . . (π̌(gn−1)(π̌(hn−1)(π̌(gn−1)−1).

Now there are g′` ∈ G such that π(g`) = π(g′`) for ` < n.

[Why? We apply 5.12. Let <∗ be as there, we can find x`,1 <
∗ . . . <∗ x`,k(`)

from X+
p such that Gp |= g` = gx`,1 . . . gx`,k(`)

, so by the choice of <∗ for some

k1(`) ≤ k(`) we have x`,i ∈ Zp × 2⇔ i ≤ k1(`), let w` =: {i : i ∈ {1, . . . , k(`)} and
x`,i ∈ X ∪ (Z × 2) and g′` = (. . . gx`,i . . .)i∈w` . Now check.]

Hence π̌(h) is equal to
(π̌(g′0)π̌(h0)(π̌(g′0)−1)(π̌(g′1)π̌(h1)(π̌(g′1)−1) . . . (π̌(g′n−2)(π̌hn−1)π̌(gn−1)−1) =
π̌((g′0h0(g′0)−1)(g′1h1(g′1)−1) . . . (g′n−1hn−1(g′n−1)−1). As h` ∈ K, g′` ∈ G and K / G
clearly (g′0h0(g′0)−1)(g′1h1(g′1)−1) . . . (g′n−1hn−1(g′n−1)−1) belongs to K call it h′, so
π̌(h) = π(h′), h′ ∈ K. So h∗ = h(h′)−1 ∈ Ker(π̌), now h ∈ G \K,h′ ∈ K hence also
h∗ ∈ G \K and π̌(h∗) = π̌(h)(π(h′))−1 = eG and h∗ is the product of conjugates
of members of members K in Gp.

As h∗ ∈ G, by 5.12(1) apply to G let h∗ = gx1 . . . gxm where x1, . . . , xm from
X ∪ (Z × 2), x1 <

∗ . . . <∗ xm where <∗ is as in 5.12. By the demands on <∗ there
for some m(∗) ≤ m we have x1, . . . , xm(∗) ∈ Z × 2 while xm(∗)+1, . . . , xm ∈ X,
hence eGp = π̌(h∗) = gxm(∗)+1

. . . gxm , so h∗ = gx1 . . . gxm(∗) and let x` = (α`, i`), so
α` ∈ Z,m` < 2. Clearly

(∗)1 for every g ∈ Gp the element gh∗g−1 belongs to 〈{g(α`,i0 : i < 2 and
` = m(∗), . . . ,m}〉Gp .

3in fact, π̂s
u,v was defined such that this holds
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So we shall be done if we prove (∗)2. Part B: Moved from 6.1,pg.30-31:

Proof. We define s = (J, p̄, π̄) as follows:

(A) J = (θ;<)

(B) Iα = (Tα+1, <α+1) for α < θ where

f1 <α+1 f2 ⇔ f1(α) < f2(α)

(C) for α < β < θ let πα,β : Iβ → Iα be

πα,β(f) = f � (α+ 1).

(compare with 6.14)! �

Moved from proof of 6.7,pg.32: Hence, letting Zp2 ∩Dom(π)

(∗∗) G = 〈{gx : x ∈ X ∪ (Z × 2)}〉G[p2] is generated by {gx : x ∈ X ∪ (Z × 2)}
freely except the equation is Γ = {ϕ ∈ Γp2

: ϕ mention only gx with
x ∈ X ∪ (Z × 2)}.

Moved from before 6.13,pg.33: Now the proof is similar to 5.42(2); it is enough to

prove this for π̂, for this it suffices to show that π̂ maps the equations in Γ into Γ+
I2

and this is proved as in the proof of clause (A) in the proof of 5.42(2).

Claim 6.41. If p1 ≤ p2 are κ-parameters, then Xp1
⊆ Xp2

, X+
p1
⊆ X+

p2
,Γp1

⊆ Γp2

and Gp1
is a subgroup of Gp2

. [???]

Moved from pg.36:

Definition 6.42. Let s be a κ-p.o.w.i.s and J = Js, etc.
1) s is linear if Js is a linear order.

§ 6(G). alternative 2. Moved from Definition ??,pg.7: 4) We say that p is a very

nice parameter if in addition

(A) if x1, . . . , xk ∈ Xp and s ∈ Zp then there is x ∈ Xp such that s ∈ Ap
x and

` ∈ {1, . . . , k} ∧ n < ω ⇒ x 6= x` � n ∧ x` 6= x � n; note even t(x` � 0) is a
well defined member of I (not used presently)[used? so we shall ignore]

(B) if x ∈ X ∪ {〈 〉}, rkI[p](t
x
m(x)) > 0, ` < ω,m < ω, z0, . . . , zm−1 ∈ Zp are

pairwise distinct, uν ⊆ [0,m) for ν ∈ n(x)+12 then there are infinitely many
s ∈ Ip such that

(∗) (α) if rkI[p](t
x
n(∗)) ≥ ω or x = 〈 〉 then rkI[p](t) ≥ `

(β) if 0 < rkI[p](t
x
n(∗)) < ω then rkI[p](t) = rkI[p](t

x
n(∗))− 1

(γ) for some yν ∈ XI(ν ∈ n(x)+12) we have: ηyν = ν, [x = 〈 〉 ⇒
n(yν) = 1], [x 6= 〈 〉 ⇒ t̄yν � n(x) = t̄x], tyνn(x) = s and k < m ∧ (ν ∈
n(x)+12) ∧ (rk2

p(yν) = 0 ⇒ zk ∈ Y ) ⇒ [(zk ∈ Ap
yν ) ≡ (k ∈ uν)] (this

will serve us in the proof of ??).

Moved from Definition 5.36,p.16:
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(A) if π+(x1) = x2 and π is a strict homomorphism and x1 ∈ Zp1 × Z or x1 =
(〈t` : ` ≤ n〉, η), t` ∈ Dom(π) and η ∈ nZ then (x1 ∈ Xp1

⇔ x2 ∈ Xp2
) and

(x1 ∈ X+
p1
\Xp1)⇔ (x2 ∈ X+

p2
\Xp2)

(B) if π+(x1) = x2 and π+(y1) = y2 and π is a partial isomorphism or strict
homomorphism then ~x1,y1 in Definition 5.2(4)(b) holds (for p1) iff ~x2,y2

in Definition 5.2(4)(b) holds (for p2); in fact, this holds for each of clauses
(i), (ii) there separately; for the only if part (i.e., the ⇒ implication) we do
not need the “π a partial isomorphism”

(C) if π is a strict homomorphism then the mapping gx 7→ gπ+(x) for x ∈ X+
p1

maps every equation from Γp1
to an equation from Γp2

is not used.

2) If π is a partial isomorphism from p1 to p2 then the mapping gx 7→ gπ+(x) maps
Γp1,XI1�Dom(π),Z∩Dom(π) onto Γp2,XI2�Rang(π),Z∩Rang(π) [not used]. Moved from pgs.17-19:

Claim 6.43. 4 1) The normal subgroup N of Gp which K generates satisfies N∩G =
K when

~ (a) p is a κ-parameter

(b) q is a very nice κ-parameter, q ≤ p and t ∈ Iq ⇒ min{ω, rkI[q](t)} =
min{ω, rkI[p](t)} and G ≡ Gq

(c) K is a normal subgroup of G.

2) We can replace clause (b) by

(b)′ (α) G = Gp,X,Z , see Definition ??(4)) where Z ⊆ Zp and X ⊆ XI is

closed under restriction (i.e., y = x � n, x ∈ X ⇒ y ∈ X) and:

if x ∈ X, y ∈ Xp and t̄y = t̄x then y ∈ X
(β) if x ∈ X ∪ {〈 〉}, n < ω, z0, . . . , zm−1 ∈ Z are pairwise distinct and

uη ⊆ [0,m) for η ∈ n(x)+12 then there are infinitely many

s ∈ Ip such that (∃y ∈ Xp)(t̄
y = t̄xˆ < s > inX) and (∗) from

??(4)(e) holds.

Proof. 1) Let X = Xq, Z = Zq, X+ = X ∪ (Z × 2) and apply (2), possible: by
clause (e) of ??(4); (note that in (β) we even get t ∈ Iq.
2) By 5.12(7), G is a subgroup of Gp and is generated by gx : x ∈ X ∪ (Z × 2)
freely except the equations Γp,X,Z .

Assume h ∈ G is a product of conjugates of members of K in Gp. Let <∗

be as in � of 5.12. So assume Gp |= “h = (g0h0g
−1
0 ) . . . (gn−1hn−1g

−1
n−1)” where

h0, . . . , hn−1 ∈ K, g0, . . . , gn−1 ∈ Gp. By 5.12(7) we can find a sequence 〈x`,k : k =
1, . . . , k(`)〉 which is <∗-increasing in X+

p such that g` = gx`,1 . . . gx`,k(`)
. We can

find 〈y`,m : m = 1, . . . ,m(`)〉 in X ∪ (Z × 2) such that G |= “h` = gy`,1 . . . gy`,m(`)
”

(exists as h` ∈ K ⊆ G), let h = gz0 . . . gzi−1 where j < i⇒ zj ∈ X ∪ (Z × 2); exists
as h ∈ G.

Now we apply clause (β) of (b)′ in the assumption of part (2) of the claim (use it
inductively to choose replacements). In detail let Z∗ ⊆ Z be the set of s ∈ Z such
that for some m < 2 we have (s,m) ∈ {x`,k : ` < n, k = 1, . . . , k(`)} ∪ {y`,m : ` <
n,m = 1, . . . ,m(`)} ∪ {zj : j < i}. Let X∗∗ ⊆ Xp be the minimal set such that

4used in the end of 5.48
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~ (a) each x`,k, zi and y`,m belongs to it or to Z∗ × 2,

(b) [x ∈ X∗∗ ∧ n ≤ n(x)⇒ x � n ∈ X∗∗]
(c) [y′, y′′ ∈ Xp ∧ t̄y

′
= t̄y

′′ ⇒ y′ ∈ X∗∗ ≡ y′′ ∈ X∗∗].
Let X∗ = X∗∗ ∩X; clearly X∗∗ too is finite; clearly x ∈ X∗ ∧m ≤ n(x)⇒ x � n ∈
X∗, see 9α) of (b)′. Let 〈t̄i : i < i(∗)〉 list {t̄y : y ∈ X∗∗} with no repetitions such
that t̄i / t̄j ⇒ i < j. Let ni = `g(t̄i)− 1 so t̄i = 〈ti` : ` ≤ ni〉. Now we choose s̄i by
induction on i < i(∗) such that

� (i) `g(s̄i) = ni + 1(= `g(t̄i)) so s̄i = 〈si` : ` ≤ ni〉
(ii) if x ∈ X∗ then t̄x E t̄i ≡ s̄x E s̄j and t̄i E t̄x ≡ s̄j E s̄x

(iii) Ap
(t̄i,ν) ∩ (Z∗ × 2) = Ap

(s̄i,ν) ∩ (Z∗ ∩ 2) for ν ∈ ni−12

(iv) Min{rkp(sini), i(∗) + |X∗∗| − i} = min{rkp(tini), i(∗) + |X∗∗| − i}
(v) s̄i ∈ {t̄x : x ∈ X}.

The induction step is possible by assumption (b)′(β) for ` < n let g′` = g′`,1 . . . g
′
`,k(`)

where:

~ (a) g′`,k is gy′`,k if y`,k ∈ Xp and y′`,k is defined by: t̄y`,k = t̄i ⇒ y′`,k =

(s̄i, η
y`,k),

(b) g′`,k = eGp if y`,k ∈ (Zp \ Z∗)× 2

(c) g′`,k = g`,k if y`,k ∈ Z∗ × 2.

We define h′ by

(∗) G |= “h′ = (g′0h0(g′0)−1) . . . (g′n−1hn−1(g′n−1)−1)”.

So

� g′`,k ∈ G, g′` ∈ G and h′ ∈ K.

[Why? First, g′`,k ∈ G as can be checked by cases in �.

Second, g′` ∈ G as the product of 〈g′`,k : k = 1, . . . , k(`)〉.
Third, h′ is a product of conjugates by members of G of the members of K but K
is a normal subgroup of G hence h′ ∈ K.]
So it is enough to prove that h′ = h.

Let f be the function with domain X∗∗ such that f(t̄i, η) = (s̄i, η) when i <

i(∗), η ∈ `g(t̄i)−12.
Clearly

(∗)1 f is a one to one function from X∗∗ into X

(∗)2 the subgroup Gp,X∗∗,Z∗ = 〈{gy : y ∈ X∗∗ ∪ (Z∗ × 2)〉Gp is generated freely
by {gy : y ∈ X∗∗ ∪ (Z∗ × 2)} except the equations in Γp,X∗∗,Z∗ .

[Why? As the demand in 5.12(7) holds.]

(∗)3 the subgroup Gp,f(X∗∗),Z∗ = 〈{gy : y ∈ f(X∗∗) ∪ (Z∗ × 2)}〉Gp is generated
freely by {gy : y ∈ f(X∗∗)∪ (Z∗ × 2)} except the equations in Γp,f(X∗∗),Z∗ .

[Why? Similarly.]

(∗)4 f maps Γp,X∗∗,Z∗ onto Γp,f(X∗∗),Z∗ ,

[Why? By the choice of s̄i-s.]
hence

(∗)5 f induces an isomorphism f̂ from Gp,X∗∗,Z∗ onto Gp,f(x∗∗),Z∗

(∗)6 f is the identity on X∗ hence f̂ is the identity on Gp,X∗,Z∗

but

(∗)7 h, h0, . . . , hn−1, g0, . . . , gn−1 belongs to 〈{gy : y ∈ X∗ ∪ (Z∗ × 2)}〉Gp hence

f̂ maps each of them to itself and
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(∗)8 f̂ maps g` to g′`, hence recalling G |= “h = (g0h0g
−1
0 ) . . . (gn−1, hn−1, g

−1
n−1)

we deduce by (∗), f̂(h) = h′.

But h ∈ Gp,X∗,Z∗ so by (∗)6 f(h) = h′ implies h = h′ and h′ ∈ G so we are done.
�?? �

Moved from Claim 6.6, pg.35:

(A) if π+(x1) = x2 and π+(y1) = y2 then ~x1,y1
in Definition 5.2(4)(b) holds

(for p1) iff ~x2,y2
in Definition 5.2(4)(b) holds (for p2); in fact, this holds

for each of clauses (i), (ii) there separately.

Moved from pg.19:

Definition 6.44. [Here?] 1) For π a homomorphism from p1 to p2, let π̂ be the
partial homomorphism from Fp1

into Fp2
induced by the mapping gx 7→ gπ+(x) for

x ∈ X+
p1

, if there is one.
2) Similarly for π a partial homomorphism.

Moved 2005/8 from the proof of 3.6,pgs.31,32: For p ∈ Sk∗ let 〈k`(p) : ` < `(p)〉 list

supp(p), see Definition 2.5(9),(10), in increasing order, let s̄ = 〈tk̄`(pu) : ` < `(pu)〉,
and let Bp = {k`(p) : ` < `(p)} and let B ..= {Bp : p ∈ S∗}
�7 if p ∈ Sk∗ and u1 ≤J[t] u2 are from Yp then πs

u1,u2
(s̄u2) is a permutation of

s̄u2

�8 for p ∈ Sk∗ and u1 ≤J[t] u2 from Yp, let h = {(`1, `2) : `1, `2 < k∗ and
πs
u1,u2

(tu2

`2
) = tu2

`1
.

[Why? By a claim 2.7.]
Let Ep be an ultrafilter on J t such that Yp ∈ Ep and u ∈ J t = {v : u ≤J[t] v} ∈

Ep, exists as J t is directed (actually one E suffice). So for each p ∈ S∗ and u ∈ Yp
thee are Ap,u ∈ Ep and h∗p,u such that v ∈ Ap,u ⇒ u ≤J[t] v and hu,v = h∗p,u. So
without lose of generality

�9 if p ∈ S∗ and u1 ≤J[t] u2 are from Yp then k ∈ Bp ⇒ πs
u1,u2

(tu2

k ) = tu1

k .

[Why? We replace t̄u � Bp by 〈πu,v(tvk) : k ∈ Ap〉 for the Ep-majority of v-s.]
Let S ′ = {p ∈ Sk : u ∈ Yp for some u ∈ J t}. Without loss of generality

�10 k∗ =
⋃
{Ap : p ∈ S ′}.

By clause (f) of Definition 3.1 for each ` ∈ B there is a tv
∗

` such that

�11 tv
∗

` ∈ Js
v∗ and u∗ ≤J[t] u ∈ J t ⇒ πs

u,v∗(t
v∗

` ) = tv` .

By clause (d) of Definition 2.1(1) for some u∗ ∈ J
�12 u∗ ≤J[t] u∗ and if u∗ ≤J[t] u then pu = p∗ ..= tpqf(〈tv

∗

` : ` < k∗〉,∅, Isv∗).
Let f̄ = 〈fu : u ∈ J t〉 be defined as f∗u = gu

t̄u′ ,q∗(p∗)
, see Definition 2.5. So
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