AEC FOR STRICTLY STABLE SH1238

SAHARON SHELAH

Abstract

Good frames were suggested in [She09d] as the (bare-bones) parallel, in the context of AECs, to superstable (among elementary classes). Here we consider (μ, λ, κ)-frames as candidates for being (in the context of AECs) the correct parallel to the class of $|T|^{+}$-saturated models of a strictly stable theory (among elementary classes). One thing we lose compared to the superstable case is that going up by induction on cardinals is problematic (for stages of small cofinality). But this arises only when we try to lift such classes to higher cardinals. Also, we may use, as a replacement, the existence of prime models over unions of increasing chains. For this context we investigate the dimension.

Annotated Content

§0 Introduction pg. 2
§1 Axiomatize AEC without full continuity (label f) pg. 3[Smooth out: generalize [She09b, §1].]
§(1A) AEC pg. 3
$\S(1 \mathrm{~B}) \quad$ Basic Notions (1.18 on) pg. 9
$\S(1 \mathrm{C}) \quad$ Lifting such classes to higher cardinals (1.24 on) pg. 11
§2 PR frames (label g) pg. 16
§3 Thoughts on the main gap (label h) pg. 23

[^0]
§ 0. Introduction

In this part we try to deal with classes like " \aleph_{1}-saturated models of a first order theory T, and even strictly stable ones" rather than of "a model of T," in the AEC framework. The parallel problem for "model of T, even superstable one" is the subject of [She09d].

Now, some constructions go well by induction on cardinality (say, by dealing with a $(\lambda, \mathcal{P}(n))$-system of models) but not all. E.g., starting with \aleph_{0} we may consider $\lambda>\aleph_{0}$, so we can find $F:[\lambda]^{\aleph_{0}} \rightarrow \lambda$ such that there is no infinite decreasing sequence of F-closed subsets of λ such that $u \in[\lambda]^{<\aleph_{0}} \Rightarrow F(u)=\varnothing$, but maybe such that $u \in[\lambda]^{\leq \aleph_{0}} \Rightarrow\left|c \ell_{F}(u)\right| \leq \aleph_{0}$. Let $\left\langle u_{\alpha}: \alpha<\alpha_{*}\right\rangle$ list $\left\{c \ell_{F}(u): u \in[\lambda]^{\leq \aleph_{0}}\right\}$ such that $c \ell_{F}\left(u_{\alpha}\right) \subseteq c \ell_{F}\left(u_{\beta}\right) \Rightarrow \alpha \leq \beta$. We try to choose $M_{u_{\alpha}}$ by induction on α.

Another approach is to consider strictly stable theories with 'nice enough' type theory, like superstable. See [PS18] on so-called 'flat' first order theories.

This was the middle part of [Sheb] and was divided by editor request; the third part is [Shea]. The original full paper has existed (and to some extent, has circulated) since 2002.

Notation 0.1. Let $\lambda^{<\kappa}:=\sum\left\{\lambda^{\sigma}: \sigma<\kappa\right\}$; in subscripts we may use $\lambda[<\kappa]$.
We shall use the following freely.
Claim 0.2. If $\lambda=\lambda^{<\kappa}$ then $\chi \geq \lambda \Rightarrow\left(\chi^{<\kappa}\right)^{<\kappa}=\chi^{<\kappa}$.

§ 1. Axiomatizing AEC without full continuity

$\S 1(A)$ DAEC. Classes like "the \aleph_{1}-saturated models of a first order T which is not superstable", do not fall under AEC - still, they are close, and below we suggest a framework for them. So for increasing sequences of short length the union is not necessarily in the class, but we have weaker demands. In the main case, as 'compensation,' we have that prime models exist; in particular, over short increasing chains of models.

We shall lift a (μ, λ, κ)-AEC to $(\infty, \lambda, \kappa)$-AEC (see below), so actually \mathfrak{k}_{λ} will suffice. But for our main objects - good frames - this is more complicated, as their properties (e.g., the amalgamation property) are not necessarily preserved by the lifting.

This section generalizes [She09b, §1]; in some cases the differences are minor, whereas sometimes the differences are the whole point.

Convention 1.1. In this section, if not said otherwise, \mathfrak{k} will denote a 1-DAEC (i.e. a directed AEC; see Definition 1.2). We may write DAEC (the D stands for directed).

Definition 1.2. Assume $\lambda<\mu, \lambda^{<\kappa}=\lambda$ (for notational simplicity), $\alpha<\mu \Rightarrow|\alpha|^{<\kappa}<\mu$, and κ is regular.

We say that \mathfrak{k} is a (μ, λ, κ)-1-DAEC when \boxplus and all the axioms below hold.
(We may omit or add the ' 1 ' and/or the ' $(\mu, \lambda, \kappa$)' by \boxplus (a) below; similarly in similar definitions. Instead of $\mu=\mu_{1}^{+}$we may write $\leq \mu_{1}$.) We write pre-DAEC or 0 -DAEC when we omit Ax.III(b), IV(b).
$\boxplus(=\mathbf{A x . O}) \mathfrak{k}$ consists of the objects in clauses (a)-(d), having the properties listed in (e)-(g).
(a) The cardinals $\mu=\mu_{\mathfrak{k}}=\mu(\mathfrak{k}), \lambda=\lambda_{\mathfrak{k}}=\lambda(\mathfrak{k})$ and $\kappa=\kappa_{\mathfrak{k}}=\kappa(\mathfrak{k})$, satisfying $\mu>\lambda=\lambda^{<\kappa} \geq \kappa=\operatorname{cf}(\kappa)$ and $\alpha<\mu \Rightarrow|\alpha|^{<\kappa}<\mu$ (but possibly $\mu=\infty$).
(b) $\tau_{\mathfrak{k}}$, a vocabulary with each predicate and function symbol of arity $\leq \lambda$.
(c) K a class of τ-models.
(d) A two-place relation $\leq_{\mathfrak{k}}$ on K.
(e) If $M_{1} \cong M_{2}$ then $M_{1} \in K \Leftrightarrow M_{2} \in K$.
(f) if $\left(N_{1}, M_{1}\right) \cong\left(N_{2}, M_{2}\right)$ then $M_{1} \leq_{\mathfrak{k}} N_{1} \Rightarrow M_{2} \leq_{\mathfrak{k}} N_{2}$.
(g) Every $M \in K$ has cardinality $\lambda \leq\|M\|<\mu$.

Ax.I(a) $M \leq_{\mathfrak{k}} N \Rightarrow M \subseteq N$
$\operatorname{Ax.II}(\mathrm{a}) \leq_{\mathfrak{k}}$ is a partial order.
Ax.III Assume that $\left\langle M_{i}: i<\delta\right\rangle$ is a $\leq_{\mathfrak{k}}$-increasing sequence and $\left\|\bigcup\left\{M_{i}: i<\delta\right\}\right\|<\mu$. Then:
(a) Existence of unions

If $\operatorname{cf}(\delta) \geq \kappa$ then there is $M \in K$ such that $i<\delta \Rightarrow M_{i} \leq_{\mathfrak{k}} M$ and $|M|=\bigcup\left\{\left|M_{i}\right|: i<\delta\right\}$ (but not necessarily $M=\bigcup_{i<\delta} M_{i}$).
(b) Existence of limits

There is $M \in K$ such that $i<\delta \Rightarrow M_{i} \leq_{\mathfrak{k}} M$.
Ax.IV(a) Weak uniqueness of limit (= weak smoothness)
For $\left\langle M_{i}: i<\delta\right\rangle$ as above,
(a) If $\operatorname{cf}(\delta) \geq \kappa, M$ is as in Ax.III(a), and $i<\delta \Rightarrow M_{i} \leq_{\mathfrak{k}} N$, then $M \leq_{\mathfrak{k}} N$. (This implies the uniqueness of M.)
(b) If $N_{\ell} \in K$ and $i<\delta \Rightarrow M_{i} \leq_{\mathfrak{k}} N_{\ell}$ for $\ell=1,2$ then there are $N \in K$ and f_{1}, f_{2} such that f_{ℓ} is a $\leq_{\mathfrak{k}}$-embedding of N_{ℓ} into N for $\ell=1,2$ and $i<\delta \Rightarrow f_{1} \upharpoonright M_{i}=f_{2} \upharpoonright M_{i}$.
Ax.V If $N_{\ell} \leq_{\mathfrak{k}} M$ for $\ell=1,2$ and $N_{1} \subseteq N_{2}$ then $N_{1} \leq_{\mathfrak{k}} N_{2}$.

Ax.VI L.S.T. property

If $A \subseteq M \in K$ and $|A| \leq \lambda$ then there is $M \leq_{\mathfrak{k}} N$ of cardinality λ such that $A \subseteq M$.

Remark 1.3. There are some more axioms listed in $1.4(5)$, but we shall mention them in any claim in which they are used so no need to memorize. Note that 1.4(1)-(4) assumes some of them.

Definition 1.4. 1) We say \mathfrak{k} is a 4 -DAEC or DAEC ${ }^{+}$when it is a $(\lambda, \mu, \kappa)-1$-DAEC and satisfies Ax.III(d), Ax.IV(e) below.
2) We say \mathfrak{k} is a 2 -DAEC or $\mathrm{DAEC}^{ \pm}$when it is a $(\lambda, \mu, \kappa)-0-\mathrm{DAEC}$ and $\mathbf{A x} . I I I(\mathrm{~d})$, Ax.IV(d) below hold.
3) We say \mathfrak{k} is 5 -DAEC when it is 1-DAEC and $\mathbf{A x}$.III(d),(f) holds.
4) We say \mathfrak{k} is 6 -DAEC when it is a 1 -DAEC and $\mathbf{A x} . I I I(d),(f)+\mathbf{A x . I V}(f)$.
5) Concerning Definition 1.2, we consider the following axioms:

Ax.III (c) If I is κ-directed and $\bar{M}=\left\langle M_{s}: s \in I\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing (that is, $s \leq_{I} t \Rightarrow M_{s} \leq_{\mathfrak{k}} M_{s}$), and $\sum\left\{\left\|M_{s}\right\|: s \in I\right\}<\mu$ then \bar{M} has a $\leq_{\mathfrak{k}}$-upper bound M (i.e. $s \in I \Rightarrow M_{s} \leq_{\mathfrak{k}} M$).
(d) Union of directed systems

If I is κ-directed, $|I|<\mu,\left\langle M_{t}: t \in I\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing, and
$\left\|\bigcup\left\{M_{t}: t \in I\right\}\right\|<\mu$ then there is one and only one M with universe $\bigcup\left\{\left|M_{t}\right|: t \in I\right\}$ such that $M_{s} \leq_{\mathfrak{k}} M$ for every $s \in I$. (We call it the $\leq_{\mathfrak{k}}$-union of $\left\langle M_{t}: t \in I\right\rangle$.)
(e) Like Ax.III(c), but I is just directed.
(f) If $\bar{M}=\left\langle M_{i}: i<\delta\right\rangle$ is $\leq_{\mathfrak{e}}$-increasing, $\operatorname{cf}(\delta)<\kappa$, and

$$
\left|\bigcup\left\{M_{i}: i<\delta\right\}\right|<\mu
$$

then there is M which is $\leq_{\mathfrak{k}}$-prime over \bar{M}; i.e.

- If $N \in K_{\mathfrak{k}}$ and $i<\delta \Rightarrow M_{i} \leq_{\mathfrak{k}} N$ then there is a $\leq_{\mathfrak{k}}$-embedding of M into itself over $\bigcup\left\{\left|M_{i}\right|: i<\delta\right\}$.
Ax.IV (c) If I is κ-directed and $\bar{M}=\left\langle M_{s}: s \in I\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing and N_{1}, N_{2} are $\leq_{\mathfrak{k}}$-upper bounds of \bar{M} then for some $\left(N_{2}^{\prime}, f\right)$ we have $N_{2} \leq_{\mathfrak{k}} N_{2}^{\prime}$ and f is a $\leq_{\mathfrak{k}}$-embedding of N_{1} into N_{2} which is the identity on M_{s} for every $s \in I$. (This is a weak form of uniqueness.)
(d) If I is a κ-directed partial order, $\bar{M}=\left\langle M_{s}: s \in I\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing, $s \in I \Rightarrow M_{s} \leq_{\mathfrak{k}} M$ and $|M|=\bigcup\left\{\left|M_{s}\right|: s \in I\right\}$, then $\bigwedge_{s} M_{s} \leq_{\mathfrak{k}} N \Rightarrow$ $M \leq_{\mathfrak{k}} N$.
(e) Like Ax.IV(c), but I is just directed.
(f) If I is directed and $\bar{M}=\left\langle M_{s}: s \in I\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing then there is M which is a $\leq_{\mathfrak{k}}$-prime over \bar{M}, defined as in $\operatorname{Ax} . \operatorname{III}(f)$.
Claim 1.5. Assume ${ }^{1} \mathfrak{k}$ is a DAEC.

1) $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I}(d)$ implies $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I}(c)$. Also, $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I}(c)$ implies $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I}(a)$.
2) $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I I}(e)$ implies $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I}(c)$ and also $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I I}(b)$. Also, $\boldsymbol{A x} \boldsymbol{x} . \boldsymbol{I I I}(b)$ implies Ax.III(a).
3) $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I} \boldsymbol{V}(d)$ implies $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I V}(a)$.

[^1]4) $\boldsymbol{A x} \boldsymbol{I} \boldsymbol{I V}(e)$ implies $\boldsymbol{A x} \boldsymbol{I} \boldsymbol{I V}(c)$ and also $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I}(b)$.
5) In all the axioms in Definition 1.4 it is necessary that $\left|\bigcup\left\{M_{s}: s \in I\right\}\right|<\mu_{\mathfrak{k}}$.
6) $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I} \boldsymbol{V}(b)$ implies that \mathfrak{k} has amalgamation.

Proof. Easy.

Example 1.6. The first order case

Let T be a stable complete first order theory, and $\kappa=\kappa_{r}(T) \in\left[\aleph_{1},|T|^{+}\right]$. (Equivalently, κ is the minimal regular cardinal such that $\lambda=\lambda^{<\kappa} \geq 2^{|T|} \Rightarrow$ T stable in λ.) We shall define $\mathfrak{k}=\mathfrak{k}_{T}$:
\boxplus (a) $K=K_{\mathfrak{k}}$ is the class of κ-saturated models of T (equivalently, $\mathbf{F}_{\kappa^{-}}^{a}$ saturated).
(b) $\leq=\leq_{\mathfrak{k}}$ means "is an elementary submodel of."

Example 1.7. Existentially closed

Let T be a universal first order theory with the JEP, for transparency. ${ }^{2}$ We shall define \mathfrak{k} :
\boxplus (a) $K=K_{\mathfrak{k}}$ is the class of existentially closed models of T.
(b) $\leq=\leq_{\mathfrak{k}}$ means "is a submodel of."

See, in [She75], what was called the "kind III context"; recall that kind II was for such T with amalgamation and JEP. Much more was done by Hrushovski.

Example 1.8. Metric Spaces

1) (a) We say that τ is a metric vocabulary if if has the distinguished 2-place predicates R_{q} (q a positive rational) and nmet: ${ }^{3}$ let

$$
\operatorname{nmet}(\tau)=\tau \backslash\left\{R_{q}: q \in \mathbb{Q}^{+}\right\}
$$

and τ is finitary. That is, each predicate and function symbol has finitely many places.
(b) M is a metric model when its vocabulary τ_{M} is a metric vocabulary and there is a metric $\mathbf{d}_{M}(-,-)$ on M such that
${ }^{-} \mathbf{d}_{M}(a, b)=\inf \left\{q \in \mathbb{Q}^{+}:(a, b) \in R_{q}^{+}\right\}$
\bullet_{2} For any predicate $R \in \tau, R^{M}$ is closed.
\bullet_{3} For any function symbol F, F^{M} is a continuous function.
$\bullet_{4} M$ is complete as a metric space.
(c) Without clause \bullet_{4}, we say M is an almost metric model.
(d) We say that the metric models M_{1}, M_{2} are topologically isomorphic when there is a π such that

- 1π is an isomorphism from $M_{1} \upharpoonright \operatorname{nmet}(\tau)$ onto $M_{2} \upharpoonright \operatorname{nmet}(\tau)$.
$\bullet_{2} \operatorname{dist}_{\pi}\left(M_{1}, M_{2}\right):=$
$\sup \left\{\frac{\mathbf{d}_{M_{2}}(\pi(a), \pi(b))}{\mathbf{d}_{M_{1}}(a, b)}, \frac{\mathbf{d}_{M_{1}}(a, b)}{\mathbf{d}_{M_{2}}(\pi(a), \pi(b))}: a \neq b \in M_{1}\right\}$
is finite.
(Note that this is the meaning of isomorphism for Banach space theorists; what we call isomorphism they would call isometry.)

2) (a) We say \mathfrak{k} is a metric AEC (or MAEC) when:
$\bullet_{1} \tau_{\mathfrak{k}}$ is a metric vocabulary.
$\bullet_{2} \mathfrak{k}$ is a DAEC with $\mu_{\mathfrak{k}}=\infty, \kappa=\aleph_{1}$, and $\lambda=\lambda^{\aleph_{0}}$ (and for convenience $\left|\tau_{\mathfrak{k}}\right| \leq \lambda$).
\bullet_{3} Each $M \in K_{\mathfrak{t}}$ is a metric model.

[^2]\bullet_{4} If I is a directed partial order and $\bar{M}=\left\langle M_{s}: s \in I\right\rangle$ is $\leq_{\mathfrak{k}^{-}}$ increasing then the completion M of $\bigcup\left\{M_{s}: s \in I\right\}$, naturally defined, is a $\leq_{\mathfrak{k}}$-l.u.b. of \bar{M}.
(b) We say \mathfrak{k} is an almost metric AEC when we omit the completeness demand in (1)(b), and add

- If N is the completion of $M \in K_{\mathfrak{k}}$ (so necessarily $N \in K_{\mathfrak{k}}$, $\left.M \leq_{\mathfrak{k}} N\right)$ then $M \subseteq M^{\prime} \subseteq N \Rightarrow M \leq_{\mathfrak{k}} M^{\prime} \leq_{\mathfrak{k}} N$.

3) (a) If \mathfrak{k} is a metric AEC then all the axioms in Definitions 1.2, 1.4 hold.
(b) If \mathfrak{k} is an almost metric AEC then

$$
\operatorname{comp}(\mathfrak{k}):=\mathfrak{k} \upharpoonright\left\{M \in K_{\mathfrak{k}}:\left(|M|, \mathbf{d}_{M}\right) \text { is complete }\right\}
$$

is a metric AEC; also, \mathfrak{k} is an AEC. In this case, "the completion of $M \in K_{\mathfrak{k}}$ " is naturally defined.
(c) The representation theorem.

If \mathfrak{k} is a metric AEC then for some τ_{1}, T_{1}, Γ, we have:
${ }^{\bullet} \tau_{1} \supseteq \tau_{\mathfrak{k}}$ and $\left|\tau_{1}\right| \leq \lambda_{\mathfrak{k}}$.
$\bullet_{2} T_{1}$ is a universal f.o. theory in $\mathbb{L}\left(\tau_{1}\right)$.

- 3Γ is a set of $\mathbb{L}\left(\tau_{1}\right)$-types consisting of formulas (so they are m types for some m).
${ }^{-}{ }_{4}$ Every $M \in \mathrm{EC}\left(T_{1}, \Gamma\right)$ is a weak metric model.
$\bullet_{5} K_{\mathfrak{k}}=\left\{M: M\right.$ is the completion of $M_{1} \upharpoonright \tau_{\mathfrak{k}}$ for some $\left.M_{1} \in \mathrm{EC}\left(T_{1}, \Gamma\right)\right\}$
$\bullet_{6} \leq_{\mathfrak{k}}$ is defined as
$\left\{(M, N)\right.$: there are $M_{1} \subseteq N_{1}$ from $\mathrm{EC}\left(T_{1}, \Gamma\right)$ such that $M \subseteq N$ are the completions of $M_{1} \upharpoonright \tau_{\mathfrak{k}}, N_{1} \upharpoonright \tau_{\mathfrak{k}}$ resp. $\}$
[Why is this true? As in the AEC case.]
Regarding metric model theory and topological model theory, the field was started by Chang and Keisler in [CK66]; for an introduction see a recent survey [Kei20].

Definition 1.9. We say $\left\langle M_{i}: i<\alpha\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing $(\geq \kappa)$-continuous when it is $\leq_{\mathfrak{k}}$-increasing and $\delta<\alpha$ and $\operatorname{cf}(\delta) \geq \kappa \Rightarrow\left|M_{\delta}\right|=\bigcup\left\{\left|M_{j}\right|: j<\delta\right\}$.
As an exercise we consider directed systems with mappings.
Definition 1.10.1) We say that $\bar{M}=\left\langle M_{t}, h_{t, s}: s \leq_{I} t\right\rangle$ is a $\leq_{\mathfrak{k}}$-directed system when
(A) I is a directed partial order.
(B) If $s \leq_{I} t$ then $h_{t, s}$ is an isomorphism from M_{s} onto some $M^{\prime} \leq_{\mathfrak{k}} M_{t}$.
(C) If $t_{0} \leq_{I} t_{1} \leq_{I} t_{2}$ then $h_{t_{2}, t_{0}}=h_{t_{2}, t_{1}} \circ h_{t_{1}, t_{0}}$.

1A) We say that $\bar{M}=\left\langle M_{t}, h_{t, s}: s \leq_{I} t\right\rangle$ is a $\leq_{\mathfrak{k}}-\theta$-directed system when in addition I is θ-directed.
2) We may omit $h_{t, s}$ when $s \leq_{I} t \Rightarrow h_{t, s}=\operatorname{id}_{M_{s}}$ and write $\bar{M}=\left\langle M_{t}: t \in I\right\rangle$.
3) We say (M, \bar{h}) is a $\leq_{\mathfrak{k}}$-limit of \bar{M} when $\bar{h}=\left\langle h_{s}: s \in I\right\rangle, h_{s}$ is a $\leq_{\mathfrak{k}}$-embedding of M_{s} into M, and $s \leq_{I} t \Rightarrow h_{s}=h_{t} \circ h_{t, s}$.
4) We say $\bar{M}=\left\langle M_{\alpha}: \alpha<\alpha^{*}\right\rangle$ is $\leq_{\mathfrak{k}}$-semi-continuous when: (see $\mathbf{A x}$.III(f) in 1.4)
(A) \bar{M} is $\leq_{\mathfrak{k}}$-increasing.
(B) If $\alpha<\alpha^{*}$ has cofinality $\geq \kappa$ then $M_{\alpha}=\bigcup\left\{M_{\beta}: \beta<\alpha\right\}$.
(C) If $\alpha<\alpha^{*}$ has cofinality $<\kappa$ then M_{δ} is $\leq_{\mathfrak{k}}$-prime over $\bar{M} \upharpoonright \alpha$.

Observation 1.11. [\mathfrak{k} is a DAEC.]

1) If $\bar{M}=\left\langle M_{t}, h_{t, s}: s \leq_{I} t\right\rangle$ is $a \leq_{\mathfrak{k}}$-directed system, then we can find $a \leq_{\mathfrak{k}}$-directed system $\left\langle M_{t}^{\prime}: t \in I\right\rangle\left(\right.$ so $\left.s \leq_{I} t \Rightarrow M_{s}^{\prime} \leq_{\mathfrak{k}} M_{t}^{\prime}\right)$ and $\bar{g}=\left\langle g_{t}: t \in I\right\rangle$ such that:
(a) g_{t} is an isomorphism from M_{t} onto M_{t}^{\prime}.
(b) If $s \leq_{I} t$ then $g_{s}=g_{t} \circ h_{t, s}$.
2) So in the axioms $\operatorname{III}(a),(b), \boldsymbol{I V}(a)$ from Definition 1.2 as well as those of 1.4 we can use $\leq_{\mathfrak{e}}$-directed system $\left\langle M_{s}, h_{t, s}: s \leq_{I} t\right\rangle$ with I as there.
3) If \mathfrak{k} is an ess- $(\mu, \lambda)-A E C$ (see $[$ Sheb, $\S 1])$ then \mathfrak{k} is a $\left(\mu, \lambda, \aleph_{0}\right)$-DAEC and satisfies all the axioms from 1.4.
4) If (M, \bar{h}) is prime over $\bar{M}=\left\langle M_{t}, h_{t, s}: s \leq_{I} t\right\rangle$ and $\chi=\sum\left\{\left\|M_{t}\right\|: t \in I\right\}$ then $\|M\| \leq \chi^{<\kappa}$.

Proof. Straightforward; e.g. we can use "k has $\left(\chi^{<\kappa}\right)$-LST" (i.e. Observation 1.12 below).
More serious is proving the LST theorem in our context (recall that in the axioms, see $\mathbf{A x}$.VI, we demand it only down to λ).

Claim 1.12. 1) \mathfrak{k} is a (μ, λ, κ)-2-DAEC - see Definition 1.4(2).
If $\lambda_{\mathfrak{k}} \leq \chi=\chi^{<\kappa}<\mu_{\mathfrak{k}}, A \subseteq N \in \mathfrak{k}$, and $|A| \leq \chi \leq\|N\|$ then there is $M \leq_{\mathfrak{k}} N$ of cardinality χ such that $\|M\|=\chi$ and $A \subseteq M$.
2) If \mathfrak{k} satisfies $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I}(e), \boldsymbol{A x} \boldsymbol{x} \boldsymbol{I} \boldsymbol{V}(e)$ then in part (1) we do not need the assumption " $\chi=\chi^{<\kappa}$."

Proof. 1) As $\chi \leq\|N\|$,
$(*)_{0}$ Without loss of generality $|A|=\chi$.
Let $\left\langle u_{\alpha}: \alpha<\alpha(*)\right\rangle$ list $[A]^{<\kappa(\mathfrak{k})}$ and let I be the following partial order:
$(*)_{1}$ (a) The set of elements is $\left\{\alpha<\chi:\right.$ for no $\beta<\alpha$ do we have $\left.u_{\alpha} \subseteq u_{\beta}\right\}$.
(b) $\alpha \leq_{I} \beta$ iff $u_{\alpha} \subseteq u_{\beta}$ (hence $\alpha \leq \beta$).

Easily
$(*)_{2} \quad$ (a) I is κ-directed.
(b) For every $\alpha<\alpha(*)$, for some $\beta<\alpha(*)$, we have $u_{\alpha} \subseteq u_{\beta} \wedge \beta \in I$.
(c) $\bigcup\left\{u_{\alpha}: \alpha \in I\right\}=A$.

Now we choose M_{α} by induction on $\alpha<\chi$ such that
(*) $)_{3} \quad$ (a) $M_{\alpha} \leq_{\mathfrak{k}} N$
(b) $\left\|M_{\alpha}\right\|=\lambda_{\mathfrak{k}}$
(c) M_{α} includes $\bigcup\left\{M_{\beta}: \beta<_{I} \alpha\right\} \cup u_{\alpha}$.

Note that

$$
\left|\left\{\beta \in I: \beta<_{I} \alpha\right\}\right| \leq\left|\left\{u: u \subseteq u_{\alpha}\right\}\right|=2^{\left|u_{\alpha}\right|} \leq 2^{<\kappa(\mathfrak{k})} \leq \lambda_{\mathfrak{k}}
$$

and by the induction hypothesis $\beta<\alpha \Rightarrow\left\|M_{\beta}\right\| \leq \lambda_{\mathfrak{k}}$. Recall $\left|u_{\alpha}\right|<\kappa(\mathfrak{k}) \leq \lambda_{\mathfrak{k}}$ hence the set $\bigcup\left\{M_{\beta}: \beta<\alpha\right\} \cup u_{\alpha}$ is a subset of N of cardinality $\leq \lambda$, hence by Ax.VI there exists M_{α} as required.

Having chosen $\left\langle M_{\alpha}: \alpha \in I\right\rangle$, clearly by $\mathbf{A x} . \mathbf{V}$ it is a $\leq_{\mathfrak{k}}$-increasing $(<\kappa)$-directed system; hence by $\mathbf{A x} . \operatorname{III}(\mathrm{d}), M=\bigcup\left\{M_{\alpha}: \alpha \in I\right\}$ is well defined with universe $\bigcup\left\{\left|M_{\alpha}\right|: \alpha \in I\right\}$ and by Ax.IV(d) we have $M \leq_{\mathfrak{k}} N$.

Clearly $\|M\| \leq \sum\left\{\left\|M_{\alpha}\right\|: \alpha \in I\right\} \leq|I| \cdot \lambda_{\mathfrak{k}}=\chi$, and by $(*)_{2}(c)+(*)_{3}(c)$ we have

$$
A \subseteq \bigcup\left\{u_{\alpha}: \alpha<\chi\right\}=\bigcup\left\{u_{\alpha}: \alpha \in I\right\} \subseteq \bigcup\left\{\left|M_{\alpha}\right|: \alpha \in I\right\}=M
$$

and so M is as required.
2) Similarly.

Notation 1.13. 1) For $\chi \in\left[\lambda_{\mathfrak{k}}, \mu_{\mathfrak{k}}\right)$ let $K_{\chi}=K_{\chi}^{\mathfrak{k}}=\{M \in K:\|M\|=\chi\}$ and $K_{<\chi}=\bigcup_{\mu<\chi} K_{\mu}$.
2) $\mathfrak{k}_{\chi}=\left(K_{\chi}, \leq_{\mathfrak{k}} \upharpoonright K_{\chi}\right)$.
3) If $\lambda_{\mathfrak{k}} \leq \lambda_{1}<\mu_{1} \leq \mu_{\mathfrak{k}}, \lambda_{1}=\lambda_{1}^{<\kappa}$, and $\left(\forall \alpha<\mu_{1}\right)\left[|\alpha|^{<\kappa}<\mu_{1}\right]$ then we define $K_{\left[\lambda_{1}, \mu_{1}\right]}=K_{\left[\lambda_{1}, \mu_{1}\right]}^{\mathfrak{k}}$ and $\mathfrak{k}_{1}=\mathfrak{k}_{\left[\lambda_{1}, \mu_{1}\right]}$ similarly:
(A) $K_{\mathfrak{k}_{1}}=\left\{M \in K_{\mathfrak{k}}:\|M\| \in\left[\lambda_{1}, \mu_{1}\right)\right\}$
(B) $\leq_{\mathfrak{k}_{1}}=\leq_{\mathfrak{k}} \upharpoonright K_{\mathfrak{k}_{1}}$
(C) $\lambda_{\mathfrak{k}_{1}}=\lambda_{1}, \mu_{\mathfrak{k}_{1}}=\mu_{1}, \kappa_{\mathfrak{k}_{1}}=\kappa_{\mathfrak{k}}$.
4) Let $\mathfrak{k}_{\left[\lambda_{1}, \mu_{1}\right]}:=\mathfrak{k}_{\left[\lambda_{1}, \mu_{1}^{+}\right)}$.

Definition 1.14. The embedding $f: N \rightarrow M$ is a \mathfrak{k}-embedding or a $\leq_{\mathfrak{k}}$-embedding when its range is the universe of a model $N^{\prime} \leq_{\mathfrak{k}} M$ (so $f: N \rightarrow N^{\prime}$ is an isomorphism, hence it is onto).

Claim 1.15. [k is a 2-DAEC.]

1) For every $N \in K$ there is a $\kappa_{\mathfrak{k}}$-directed partial order I of cardinality $\leq\|N\|<\kappa$ and $\bar{M}=\left\langle M_{t}: t \in I\right\rangle$ such that $t \in I \Rightarrow M_{t} \leq_{\mathfrak{k}} N,\left\|M_{t}\right\| \leq \operatorname{LST}(\mathfrak{k})=\lambda_{\mathfrak{k}}$,

$$
I \models " s<t " \Rightarrow M_{s} \leq_{\mathfrak{k}} M_{t}
$$

and $N=\bigcup_{t \in I} M_{t}$.
1A) If \mathfrak{k} satisfies $\boldsymbol{A x} . \boldsymbol{I I I I}(e), \boldsymbol{A x} . \boldsymbol{I V}(e)$ then in part (1) we can add $|I| \leq\|M\|$.
2) For every $N_{1} \leq_{\mathfrak{k}} N_{2}$ we can find $\left\langle M_{t}^{\ell}: t \in I^{*}\right\rangle$ as in part (1) for N_{ℓ} such that $I_{1} \subseteq I_{2}$ and $t \in I_{1} \Rightarrow M_{t}^{2}=M_{t}^{1}$.
Proof. 1), 1A) As in the proof of 1.12.
2) Similarly.

Claim 1.16. Assume $\lambda_{\mathfrak{k}} \leq \lambda_{1}=\lambda_{1}^{<\kappa}<\mu_{1} \leq \mu_{\mathfrak{k}}$ and $\left(\forall \alpha<\mu_{1}\right)\left[|\alpha|^{<\kappa}<\mu_{1}\right]$.

1) Then $\mathfrak{k}_{1}^{*}:=\mathfrak{k}_{\left(\lambda_{1}, \mu_{1}\right)}$ as defined in 1.13(3) is a $\left(\lambda_{1}, \mu_{1}, \kappa_{\mathfrak{k}}\right)$-DAEC.
2) For each of the following axioms, if \mathfrak{k} satisfies it then so does \mathfrak{k}_{1} : $\boldsymbol{A x} \boldsymbol{x} \operatorname{IIII}(d)$, (e), Ax.IV(c), (d), (e).
3) In part (2), its conclusion also applies to $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I}(f), \boldsymbol{A x} \boldsymbol{I} \boldsymbol{I} \boldsymbol{V}(f)$.

Proof. Read the definitions.
Claim 1.17. 1) If \mathfrak{k} satisfies $\boldsymbol{A x}$.IV(e) then \mathfrak{k} satisfies $\boldsymbol{A x} \boldsymbol{x} \boldsymbol{I I I}(e)$ provided that $\mu_{\mathfrak{k}}$ is regular or at least the relevant I has cardinality $<\operatorname{cf}\left(\mu_{\mathfrak{k}}\right)$.
2) If $\boldsymbol{A x} . \boldsymbol{I I I I}(d), \boldsymbol{I V}(d)$ hold, we can waive ' $\mu_{\mathfrak{k}}$ is regular.'

Proof. Recall \mathfrak{k} is a DAEC. We prove this by induction on $\theta=|I|$.
Let $\chi=\lambda+\theta+\sum\left\{\left\|M_{s}\right\|: s \in I\right\}$, which is in $[\lambda, \mu)$.
Case 1: I is finite.
So there is $t^{*} \in I$ such that $t \in I \Rightarrow t \leq_{I} t^{*}$, so this is trivial.
Case 2: I is countable.
So we can find a sequence $\left\langle t_{n}: n<\omega\right\rangle$ such that $t_{n} \in I, t_{n} \leq_{I} t_{n+1}$, and $s \in I \Rightarrow \bigvee_{n<\omega} s \leq_{I} t_{n}$. Now we can apply Ax.III(b) to $\left\langle M_{t_{n}}: n<\omega\right\rangle$.
Case 3: I uncountable.
First, we can find an increasing continuous sequence $\left\langle I_{\alpha}: \alpha<\right| I\rangle$ such that $I_{\alpha} \subseteq I$ is directed of cardinality $\leq|\alpha|+\aleph_{0}$ and $I_{|I|}=I=\bigcup\left\{I_{\alpha}: \alpha<|I|\right\}$.

Second, by the induction hypothesis for each $\alpha<|I|$ we choose N_{α} and $\bar{h}^{\alpha}=$ $\left\langle h_{\alpha, t}: t \in I_{\alpha}\right\rangle$ such that:
(A) $N_{\alpha} \in \mathfrak{k}_{\leq \chi}^{\mathfrak{s}} \subseteq \mathfrak{k}$
(B) $h_{\alpha, t}$ is a $\leq_{\mathfrak{t}}$-embedding of M_{t} into N_{α}.
(C) If $s<_{I} t$ are in I_{α} then $h_{\alpha, s}=h_{\alpha, t} \circ h_{t, s}$.
(D) If $\beta<\alpha$ then $N_{\beta} \leq_{\mathfrak{k}} N_{\alpha}$ and $t \in I_{\beta} \Rightarrow h_{\alpha, t}=h_{\beta, t}$.

For $\alpha=0$ use the induction hypothesis.
For α a limit ordinal, by $\mathbf{A x} . I I I(\mathrm{a})$ there is N_{α} as required; as $I_{\alpha}=\bigcup_{\beta<\alpha} I_{\beta}$, there are no new h_{t}-s. (Well, we have to check $\sum\left\{\left\|N_{\beta}\right\|: \beta<\alpha\right\}<\mu_{\mathfrak{k}}$, but as we assume $\mu_{\mathfrak{k}}$ is regular this holds.)

For $\alpha=\beta+1$, by the induction hypothesis there is $\left(N_{\alpha}^{\prime}, \bar{g}^{\alpha}\right)$ which is a limit of $\left\langle M_{s}, h_{t, s}: s \leq_{I_{\alpha}} t\right\rangle$. Now apply Ax.IV(e): well, apply the directed system version with $\left\langle M_{s}, h_{t, s}: s \leq_{I_{\beta}} t\right\rangle,\left(N_{\alpha}^{\prime}, \bar{g}_{\alpha}\right),\left(N_{\beta},\left\langle h_{s}: s \in I_{\beta}\right\rangle\right)$ here standing for \bar{M}, N_{1}, N_{2} there.

So there are $N_{\alpha}, f_{s}^{\alpha}\left(\right.$ with $\left.s \in I_{\beta}\right)$ such that $N_{\beta} \leq_{\mathfrak{k}} N_{\alpha}$ and $s \in I_{\beta} \Rightarrow f_{s}^{\alpha} \circ g_{s}=h_{s}$. Lastly, for $s \in I_{\alpha} \backslash I_{\beta}$ we choose $h_{s}=f_{s}^{\alpha} \circ g_{s}$, so we are clearly done.
2) Similarly, noting that in the last case, the result has cardinality $\leq \chi$ by $1.12(2)$ or 1.16.

$\S 1(B)$. Basic Notions.

As in [She09b, §1], we now recall the definition of orbital types (note that it is natural to look at types only over models which are amalgamation bases recalling Ax.IV(b) implies every $M \in K_{\mathfrak{k}}$ is).

Definition 1.18. 1) For $\chi \in\left[\lambda_{\mathfrak{k}}, \mu_{\mathfrak{k}}\right)$ and $M \in K_{\chi}$ we define $\mathcal{S}(M)$ as

$$
\left\{\operatorname{ortp}(a, M, N): M \leq_{\mathfrak{k}} N \in K_{\leq \chi}{ }^{<\kappa} \text { and } a \in N\right\}
$$

where $\operatorname{ortp}(a, M, N)=(M, N, a) / \mathscr{E}_{M}$, where \mathscr{E}_{M} is the transitive closure of $\mathscr{E}_{M}^{\text {at }}$, and the two-place relation $\mathscr{E}_{M}^{\text {at }}$ is defined as follows.
$\circledast\left(M, N_{1}, a_{1}\right) \mathscr{E}_{M}^{\text {at }}\left(M, N_{2}, a_{2}\right)$ iff:
(a) $M \leq_{\mathfrak{k}} N_{\ell}$ and $a_{\ell} \in N_{\ell}$ for $\ell=1,2$.
(b) $\|M\| \leq\left\|N_{\ell}\right\| \leq \chi^{<\kappa}$ for $\ell=1,2$.
(c) There exists an $N \in K_{\leq \chi^{<\kappa}}$ and $\leq_{\mathfrak{k}}$-embeddings $f_{\ell}: N_{\ell} \rightarrow N$ for $\ell=1,2$ such that $f_{1} \upharpoonright M=\operatorname{id}_{M}=f_{2} \upharpoonright M$ and $f_{1}\left(a_{1}\right)=f_{2}\left(a_{2}\right)$.
2) We say " a realizes p in N " for $a \in N$ and $p \in \mathcal{S}(M)$ when (letting $\chi=\|M\|$) for some N^{\prime} we have $M \leq_{\mathfrak{k}} N^{\prime} \leq_{\mathfrak{k}} N, a \in N^{\prime}$, and $p=\operatorname{ortp}\left(a, M, N^{\prime}\right)$. So necessarily $M, N^{\prime} \in K_{\chi^{<\kappa}}$, but possibly $N \notin K_{\leq \chi<\kappa}$.
3) We say " a_{2} strongly ${ }^{4}$ realizes $\left(M, N^{1}, a_{1}\right) / \mathscr{E}_{M}^{\text {at }}$ in N " when for some N^{2} we have $M \leq_{\mathfrak{k}} N^{2} \leq_{\mathfrak{k}} N$ and $a_{2} \in N^{2}$ and $\left(M, N^{1}, a_{1}\right) \mathscr{E}_{M}^{\text {att }}\left(M, \overline{N^{2}, a_{2}}\right)$.
4) We say M_{0} is a $\leq_{\mathfrak{k}\left[\chi_{0}, \chi_{1}\right)}$-amalgamation base if this holds in $\mathfrak{k}_{\left[\chi_{0}, \chi_{1}\right)}$; see below. 4A) We say $M_{0} \in \mathfrak{k}$ is an amalgamation base or $\leq_{\mathfrak{k}}$-amalgamation base when: for every $M_{1}, M_{2} \in \mathfrak{k}$ and $\leq_{\mathfrak{k}}$-embeddings $f_{\ell}: M_{0} \rightarrow M_{\ell}$ (for $\ell=1,2$) there is $M_{3} \in \mathfrak{k}_{\lambda}$ and $\leq_{\mathfrak{k}}$-embeddings $g_{\ell}: M_{\ell} \rightarrow M_{3}($ for $\ell=1,2)$ such that $g_{1} \circ f_{1}=g_{2} \circ f_{2}$.
5) We say \mathfrak{k} is stable in χ when:
(a) $\lambda_{\mathfrak{E}} \leq \chi<\mu_{\mathfrak{e}}$
(b) $M \in K_{\chi} \Rightarrow|\mathcal{S}(M)| \leq \chi$
(c) $\chi=\chi^{<\kappa}$
(d) \mathfrak{k}_{χ} has amalgamation.

[^3]6) We say $p=q \upharpoonright M$ if $p \in \mathcal{S}(M), q \in \mathcal{S}(N), M \leq_{\mathfrak{k}} N$, and for some N^{+}such that $N \leq_{\mathfrak{k}} N^{+}$and $a \in N^{+}$we have $p=\operatorname{ortp}\left(a, M, N^{+}\right)$and $q=\operatorname{ortp}\left(a, N, N^{+}\right)$. Note that $p \upharpoonright M$ is well defined if $M \leq_{\mathfrak{k}} N$ and $p \in \mathcal{S}(N)$.
7) For finite m, for $M \leq_{\mathfrak{k}} N$ and $\bar{a} \in{ }^{m} N$, we can define $\operatorname{ortp}(\bar{a}, N, N)$ and $\mathcal{S}^{m}(M)$ similarly, and let $\mathcal{S}^{<\omega}(M)=\bigcup_{m<\omega} \mathcal{S}^{m}(M)$. (But we shall not use this in any essential way, hence we choose $\mathcal{S}(M)=\mathcal{S}^{1}(M)$.)
Remark 1.19. We may replace 1.18(5)(c) by
(c) $\quad \chi \in \operatorname{Car}_{\mathfrak{k}}$, which means $\chi=\chi^{<\kappa}$ or at least the conclusion of 1.12 holds.

In $1.20(1)$ we change the default value of χ to $\chi=\operatorname{rnd}_{\mathfrak{k}}(\|N\|)\left(\right.$ where $\operatorname{rnd}_{\mathfrak{k}}(\theta):=$ $\min \left(\operatorname{Car}_{\mathfrak{k}} \backslash \theta\right)$) so it is $\leq\|N\|^{<\kappa(\mathfrak{k})}$ (similarly in 1.21(1)).
Definition 1.20.1) We say N is χ-universal above or over M when $\chi \in\left[\lambda_{\mathfrak{k}}, \mu_{\mathfrak{k}}\right)$, $M \in K_{\leq \chi}$, and for every M^{\prime} with $M \leq_{\mathfrak{k}} M^{\prime} \in K_{\chi}^{\mathfrak{k}}$, there is a $\leq_{\mathfrak{k}}$-embedding of M^{\prime} into N over M. If we omit χ we mean $\|N\|^{<\kappa(\mathfrak{k})}$; clearly this implies that M is a $\leq_{\mathfrak{e}_{\left[\chi_{0}, \chi_{1}\right]}}$-amalgamation base, where $\chi_{0}=\|M\|$ and $\chi_{1}=\|N\|^{<\kappa}$.
2) $K_{\mathfrak{k}}^{3}=\left\{(M, N, a): M \leq_{\mathfrak{k}} N, a \in N \backslash M\right.$ and $\left.M, N \in K_{\mathfrak{k}}\right\}$, with the partial order $\leq=\leq_{\mathfrak{k}}$ defined by $(M, N, a) \leq\left(M^{\prime}, N^{\prime}, a^{\prime}\right)$ iff $a=a^{\prime}, M \leq_{\mathfrak{k}} M^{\prime}$ and $N \leq_{\mathfrak{k}} N^{\prime}$.
3) We say (M, N, a) is minimal if $(M, N, a) \leq\left(M^{\prime}, N_{\ell}, a\right) \in K_{\mathfrak{k}}^{3}$ for $\ell=1,2$ implies $\operatorname{ortp}\left(a, M^{\prime}, N_{1}\right)=\operatorname{ortp}\left(a, M^{\prime}, N_{2}\right)$ and moreover, $\left(M^{\prime}, N_{1}, a\right) \mathscr{E}_{\lambda}^{\text {at }}\left(M^{\prime}, N_{2}, a\right)$ (this is not needed if every $M^{\prime} \in K_{\lambda}$ is an amalgamation basis).
4) $K_{\lambda}^{3, \mathfrak{k}}$ is defined similarly using $\mathfrak{k}_{\left[\lambda, \operatorname{rnd}_{\mathfrak{k}}(\lambda)\right]}$.

Generalizing superlimit, we have more than one reasonable choice.
Definition 1.21. 1) For $\ell=1,2$ and $\chi=\chi^{<\kappa} \in\left[\lambda_{\mathfrak{k}}, \mu_{\mathfrak{k}}\right)$ we say $M^{*} \in K_{\chi}^{\mathfrak{k}}$ is superlimit $_{\ell}$ (or $\left(\chi, \geq \kappa\right.$)-superlimit ${ }_{\ell}$) when: (we may omit ℓ in the case $\ell=2$)
(a) it is universal, (i.e., every $M \in K_{\chi}^{\mathfrak{k}}$ can be properly $\leq_{\mathfrak{k}}$-embedded into M^{*}), and
(b) Case 1: $\ell=1$. If $\left\langle M_{i}: i \leq \delta\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing, $\operatorname{cf}(\delta) \geq \kappa, \delta<\chi^{+}$, and $i<\delta \Rightarrow M_{i} \cong M^{*}$ then $M_{\delta} \cong M^{*}$.
Case 2: $\ell=2$. If I is a $(<\kappa)$-directed partial order of cardinality $\leq \chi$, $\left\langle M_{t}: t \in I\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing, and $t \in I \Rightarrow M_{t} \cong M^{*}$ then $\bigcup\left\{M_{t}: t \in I\right\} \cong$ M^{*}.
2) M is χ-saturated above θ if $\|M\| \geq \chi>\theta \geq \operatorname{LST}(\mathfrak{k})$, and also $N \leq_{\mathfrak{k}} M$, $\theta \leq\|N\|<\chi, p \in \mathcal{S}_{\mathfrak{k}}(N)$ imply p is strongly realized in M. Let " M is $\chi^{+}{ }^{-}$ saturated" mean that " M is χ^{+}-saturated above χ." Let

$$
K\left(\chi^{+} \text {-saturated }\right)=\left\{M \in K: M \text { is } \chi^{+} \text {-saturated }\right\}
$$

and let " M is saturated" mean " M is $\|M\|$-saturated above some $\theta<\|M\|$ ".
Definition 1.22. 1) We say N is (χ, σ)-brimmed over M when we can find a sequence $\left\langle M_{i}: i<\sigma\right\rangle$ which is $\leq_{\mathfrak{k}}$-increasing semi-continuous, $M_{i} \in K_{\chi}, M_{0}=M$, M_{i+1} is $\leq_{\mathfrak{k}}$-universal over M_{i}, and $\bigcup_{i<\sigma} M_{i}=N$. We say N is (χ, σ)-brimmed over A if $A \subseteq N \in K_{\chi}$ and we can find $\left\langle M_{i}: i<\sigma\right\rangle$ as in part (1) such that $A \subseteq M_{0}$; if $A=\varnothing$ we may omit "over A ".
2) We say N is $(\chi, *)$-brimmed over M if for every $\sigma \in[\kappa, \chi), N$ is (χ, σ)-brimmed over M. We say N is $(\chi, *)$-brimmed if N is $(\chi, *)$-brimmed over M for some M.
3) If $\alpha<\chi^{+}$, let " N is (χ, α)-brimmed over M " mean $M \leq_{\mathfrak{k}} N$ are from K_{χ} and $\operatorname{cf}(\alpha) \geq \kappa \Rightarrow N$ is $(\chi, \operatorname{cf}(\alpha))$-brimmed over M.

Recall
Claim 1.23. 1) If \mathfrak{k} is a DAEC (or just 0-DAEC with amalgamation), stable in χ, and $\sigma=\operatorname{cf}(\sigma)\left(\right.$ so $\left.\chi \in\left[\lambda_{\mathfrak{k}}, \mu_{\mathfrak{k}}\right)\right)$ then for every $M \in K_{\chi}^{\mathfrak{k}}$ there is $N \in K_{\chi}^{\mathfrak{k}}$ universal over M which is (χ, σ)-brimmed over M (hence is S_{σ}^{χ}-limit: see [She09a], not used).
2) If N_{ℓ} is (χ, θ)-brimmed over M for $\ell=1,2$ and $\kappa \leq \theta=\operatorname{cf}(\theta) \leq \chi^{+}$then N_{1}, N_{2} are isomorphic over M.
3) If M_{2} is (χ, θ)-brimmed over M and $M_{0} \leq_{\mathfrak{s}} M_{1}$ then M_{2} is (χ, θ)-brimmed over M_{0}.

Proof. Straightforward for part (1): recall clause (c) of Definition 1.23(5). 2),3) As in [She09b].
$\S 1(\mathrm{C})$. Lifting such classes to higher cardinals. Here we deal with lifting; there are two aspects. First, if $\mathfrak{k}^{1}, \mathfrak{k}^{2}$ agree in λ they agree in every higher cardinal. Second, given \mathfrak{k} we can find \mathfrak{k}_{1} with $\mu_{\mathfrak{k}_{1}}=\infty$ and $\left(\mathfrak{k}_{1}\right)_{\lambda}=\mathfrak{k}_{\lambda}$.
Theorem 1.24. 1) If \mathfrak{k}^{ℓ} is a $(\mu, \lambda, \kappa)-A E C$ for $\ell=1,2$ and $\mathfrak{k}_{\lambda}^{1}=\mathfrak{k}_{\lambda}^{2}$ then $\mathfrak{k}^{1}=\mathfrak{k}^{2}$.
2) If \mathfrak{k}_{ℓ} is a $\left(\mu_{\ell}, \lambda, \kappa\right)-D A E C$ for $\ell=1,2$ and \mathfrak{k}^{1} satisfies $\boldsymbol{A x} . \boldsymbol{I V}(d), \mu_{1} \leq \mu_{2}$, and $\mathfrak{k}_{\lambda}^{1}=\mathfrak{k}_{\lambda}^{2} \underline{\text { then }} \mathfrak{k}_{1}=\mathfrak{k}_{2}\left[\lambda, \mu_{1}\right)$.
Proof. By 1.15.

Theorem 1.25. The lifting-up Theorem

1) If \mathfrak{k}_{λ} is a $\left(\lambda^{+}, \lambda, \kappa\right)-D A E C^{ \pm}$then the pair $\mathfrak{k}^{\prime}=\left(K^{\prime}, \leq_{\mathfrak{k}^{\prime}}\right)$ defined below is an $(\infty, \lambda, \kappa)-D A E C^{ \pm}$, where
(A) K^{\prime} is the class of M such that M is a $\tau_{\mathfrak{R}_{\lambda}}$-model, and for some I and \bar{M} we have:
(a) I is a κ-directed partial order,
(b) $\bar{M}=\left\langle M_{s}: s \in I\right\rangle$,
(c) $M_{s} \in K_{\lambda}$,
(d) $I \models " s<t " \Rightarrow M_{s} \leq_{\mathfrak{k}_{\lambda}} M_{t}$.
(e) If $J \subseteq I$ has cardinality $\leq \lambda$ and is κ-directed, and M_{J} is the union of $\left\langle M_{t}: t \in J\right\rangle$ (in the sense of $\boldsymbol{A x} . \boldsymbol{I I I I}(d)$ from Definition 1.4) then M_{J} is a submodel of M.
(f) $M=\bigcup\left\{M_{J}: J \subseteq I\right.$ is κ-directed of cardinality $\left.\leq \lambda\right\}$ (in the sense of $\boldsymbol{A x} \boldsymbol{I} \boldsymbol{I V}(d)$ of Definition 1.4).
$(A)^{\prime}$ We call such $\left\langle M_{s}: s \in I\right\rangle a$ witness for $M \in K^{\prime}$, and we call it reasonable if $|I| \leq\|M\|^{<\kappa}$.
(B) $M \leq_{\mathfrak{k}^{\prime}} N$ iff for some I, J, \bar{M} we have:
(a) J is $\overline{a \kappa}$-directed partial order,
(b) $I \subseteq J$ is κ-directed,
(c) $\bar{M}=\left\langle M_{s}: s \in J\right\rangle$ and is $\leq_{\mathfrak{k}_{\lambda}}$-increasing,
(d) $\left\langle M_{s}: s \in J\right\rangle$ is a witness for $N \in K^{\prime}$,
(e) $\left\langle M_{s}: s \in I\right\rangle$ is a witness for $M \in K^{\prime}$.
$(B)^{\prime}$ We call such $I,\left\langle M_{s}: s \in J\right\rangle$ witnesses for $M \leq_{\mathfrak{k}^{\prime}} N$, or say $\left(I, J,\left\langle M_{s}: s \in J\right\rangle\right)$ witnesses $M \leq \mathfrak{k}^{\prime} N$.
2) If \mathfrak{k}_{λ} satisfies $\boldsymbol{A x} \boldsymbol{x} \mathbf{I I I}(a)$ then so does \mathfrak{k}^{\prime}.

Proof. 1) Let us check the axioms one by one.
$\mathbf{A x . O (a) , (b) , (c)}$ and (d): K^{\prime} is a class of $\tau_{\mathfrak{k}_{\lambda}}$-models, $\leq_{\mathfrak{k}^{\prime}}$ a two-place relation on K, K^{\prime} and $\leq_{\mathfrak{k}^{\prime}}$ are closed under isomorphisms, and $M \in K^{\prime} \Rightarrow\|M\| \geq \lambda$, etc. [Why? trivially.]

Ax.I(a): If $M \leq_{\mathfrak{k}^{\prime}} N$ then $M \subseteq N$.
[Why? We use smoothness for κ-directed unions; i.e., Ax.IV(x).]
Ax.II(a): $M_{0} \leq_{\mathfrak{k}^{\prime}} M_{1} \leq_{\mathfrak{k}^{\prime}} M_{2}$ implies $M_{0} \leq_{\mathfrak{k}^{\prime}} M_{2}$ and $M \in K^{\prime} \Rightarrow M \leq \leq_{\mathfrak{k}^{\prime}} M$. Why? The second phrase is trivial. For the first phrase let for $\ell \in\{1,2\}$ the κ-directed partial orders $I_{\ell} \subseteq J_{\ell}$ and $\bar{M}^{\ell}=\left\langle M_{s}^{\ell}: s \in J_{\ell}\right\rangle$ witness $M_{\ell-1} \leq_{\mathfrak{k}^{\prime}} M_{\ell}$.

We first observe
\odot In clause $(\mathrm{A})(\mathrm{f})$ of this theorem, if $J_{\bullet} \subseteq J_{\bullet \bullet} \subseteq J$ are $(<\kappa)$-directed then $M_{J_{\bullet}} \leq_{\mathfrak{k}_{\lambda}} M_{J_{\bullet \bullet}}$.
[Why? By Ax.VI(d).]
\square If I is a κ-directed partial order, $\left\langle M_{t}^{\ell}: t \in I\right\rangle$ is a $\leq_{\mathfrak{k}_{\lambda}}$-increasing sequence witnessing $M_{\ell} \in K^{\prime}$ for $\ell=1,2$, and $t \in I \Rightarrow M_{t}^{1} \leq_{\mathfrak{t}_{\lambda}} M_{t}^{2}$ then $M_{1} \leq_{\mathfrak{k}} M_{2}$.
[Why? Let I_{1} be the partial order with set of elements $I \times\{1\}$ ordered by $(s, 1) \leq_{I_{1}}$ $(t, 1) \Leftrightarrow s \leq_{I} t$. Let I_{2} be the partial order with set of elements $I \times\{1,2\}$ ordered by $\left(s_{1}, \ell_{1}\right) \leq_{I_{2}}\left(s_{2}, \ell_{2}\right) \Leftrightarrow s_{1} \leq_{I} s_{2} \wedge \ell_{1} \leq \ell_{2}$. Clearly $I_{1} \subseteq I_{2}$ are both κ-directed.

Let $M_{(s, 1)}=M_{s}^{1}$ and $M_{(s, 2)}=M_{s}^{2}$, so clearly $\bar{M}=\left\langle M_{t}: t \in I_{2}\right\rangle$ is a $\leq_{\mathfrak{k}_{\lambda}}-$ increasing, I-directed sequence witnessing $M_{2} \in K^{\prime}$, and (I_{1}, I_{2}, \bar{M}) witnesses $M_{1} \leq \mathfrak{k}^{\prime} M_{2}$, so we have proved \square.]

Without loss of generality J_{1}, J_{2} are disjoint. Let $\chi=\left(\left|J_{1}\right|+\left|J_{2}\right|\right)^{<\kappa}$ so $\lambda \leq \chi<$ $\mu_{\mathfrak{k}}=\infty$, and let

$$
\begin{aligned}
\mathscr{U}:=\left\{u \subseteq J_{1} \cup J_{2}:\right. & |u| \leq \lambda, u \cap I_{\ell} \text { is } \kappa \text {-directed under } \leq_{I_{\ell}} \text { for } \ell=1,2, \\
& u \cap J_{\ell} \text { is } \kappa \text {-directed under } \leq_{I_{\ell}} \text { for } \ell=1,2, \\
& \text { and } \left.\bigcup\left\{\left|M_{t}^{2}\right|: t \in u \cap I_{2}\right\}=\bigcup\left\{\left|M_{t}^{1}\right|: t \in u \cap J_{1}\right\}\right\} .
\end{aligned}
$$

Let $\left\langle u_{\alpha}: \alpha<\alpha^{*}\right\rangle$ list \mathscr{U}, and we define a partial order I as follows:
(a) ${ }^{\prime}$ Its set of elements is $\left\{\alpha<\alpha^{*}\right.$: for no $\beta<\alpha$ do we have $\left.u_{\beta} \subseteq u_{\alpha}\right\}$.
(b) ${ }^{\prime}$ For $\alpha, \beta \in I, \alpha \leq_{I} \beta$ iff $u_{\alpha} \subseteq u_{\beta}$.

Note that the set I may have cardinality $\left(\sum_{i<\delta}\left\|M_{i}\right\|\right)^{<\kappa}$ which may be $>\lambda$.
As in the proof of $1.12, I$ is κ-directed.
For $\ell=0,1,2$ and $\alpha \in I$, let $M_{\ell, \alpha}$ be
(A) The $\leq_{\mathfrak{k}}$-union of $\left\langle M_{t}^{0}: t \in u_{\alpha} \cap I_{1}\right\rangle$ if $\ell=0$.
(B) The $\leq_{\mathfrak{k}}$-union of the $\leq_{\mathfrak{k}_{\lambda}}$-directed sequence $\left\langle M_{t}^{1}: t \in J_{1}\right\rangle$ when $\ell=1$.
(C) The $\leq_{\mathfrak{k}}$-union of the $\leq_{\mathfrak{k}_{\lambda}}$-directed sequence $\left\langle M_{t}^{2}: t \in J_{2}\right\rangle$ when $\ell=2$.

Now
$(*)_{1}$ If $\ell=0,1,2$ and $\alpha \leq_{I} \beta$ then $M_{\alpha}^{\ell} \leq_{\mathfrak{k}_{\lambda}} M_{\beta}^{\ell}$.
$(*)_{2}$ If $\alpha \in I$ then $M_{\alpha}^{0} \leq_{\mathfrak{k}_{\lambda}} M_{\alpha}^{1} \leq_{\mathfrak{k}_{\lambda}} M_{\alpha}^{2}$.
$(*)_{3}\left\langle M_{\ell, \alpha}: \alpha \in I\right\rangle$ is a witness for $M_{\ell} \in K^{\prime}$.
$(*)_{4} M_{0, \alpha} \leq_{\mathfrak{k}_{\lambda}} M_{2, \alpha}$ for $\alpha \in I$.
Together by \square we get that $M_{0} \leq \mathfrak{k}^{\prime} M_{2}$ as required.

Ax.III(a): In general.
Let $\left(I_{i, j}, J_{i, j}, \bar{M}^{i, j}\right)$ witness $M_{i} \leq_{\mathfrak{k}^{\prime}} M_{j}$ when $i \leq j<\delta$, and without loss of generality $\left\langle J_{i, j}: i<j<\delta\right\rangle$ are pairwise disjoint. Let \mathscr{U} be the family of sets u such that for some $v \in[\delta]^{\leq \lambda}$,
(A) $v \subseteq \delta$ has cardinality $\leq \lambda$ and has order type of cofinality $\geq \kappa$.
(B) $u \subseteq \bigcup\left\{J_{i, j}: i<j\right.$ are from $\left.v\right\}$ has cardinality $\leq \lambda$.
(C) For $i \leq j$ from v, the set $u \cap J_{i, j}$ is κ-directed under $\leq_{J_{i, j}}$ and $u \cap I_{i, j}$ is κ-directed under $\leq_{I_{i, j}}$.
(D) If $i(0) \leq i(1) \leq i(2)$ are from v then

$$
\bigcup\left\{M_{s}^{i(0), i(1)}: s \in u \cap J_{i(0), i(1)}\right\}=\bigcup\left\{M_{s}^{i(1), i(2)}: s \in u \cap I_{i(1), i(2)}\right\} .
$$

(E) If $i(0) \leq j(1)$ and $i(1) \leq j(1)$ are from v then

$$
\bigcup\left\{M_{s}^{i(0), j(1)}: s \in u \cap J_{i(0), j(1)}\right\}=\bigcup\left\{M_{s}^{i(1), j(1)}: s \in u \cap J_{i(1), j(1)}\right\} .
$$

Let the rest of the proof be as in the proof of $\mathbf{A x} . \mathbf{I I}(\mathrm{a})$.

Ax.IV(a):

Similar, but $\mathscr{U}=\{u \subseteq I: u$ has cardinality $\leq \lambda$ and is κ-directed $\}$.

Ax.III(d):

Recall that we are assuming \mathfrak{k} satisfies Ax.III(d). Similar proof.

Ax.IV(d):

Again, we are assuming \mathfrak{k} satisfies $\mathbf{A x} . \mathbf{I V}(\mathrm{d})$.

Ax.V: Assume $N_{0} \leq_{\mathfrak{k}^{\prime}} M$ and $N_{1} \leq_{\mathfrak{k}^{\prime}} M$.
If $N_{0} \subseteq N_{1}$, then $N_{0} \leq \mathfrak{k}^{\prime} N_{1}$.
[Why? Let $\left(I_{\ell}, J_{\ell},\left\langle M_{s}^{\ell}: s \in J_{\ell}\right\rangle\right)$ witness $N_{\ell} \leq_{\mathfrak{k}} M$ for $\ell=0,1$; without loss of generality J_{0}, J_{1} are disjoint.

Let
$\mathscr{U}:=\left\{u \subseteq J_{0} \cup J_{1}:|u| \leq \lambda, u \cap J_{\ell}\right.$ and $u \cap I_{\ell}$ are κ-directed for $\ell=0,1$,

$$
\text { and } \left.\bigcup\left\{\left|M_{s}^{0}\right|: s \in u \cap J_{0}\right\}=\bigcup\left\{\left|M_{s}^{0}\right|: s \in u \in J_{1}\right\}\right\} .
$$

For $u \in \mathscr{U}$ let

- $M_{u}=M \upharpoonright \bigcup\left\{M_{s}^{\ell}: s \in u \cap J_{\ell}\right\}$ for $i=0,1$.
- $N_{\ell, u}=N_{\ell} \upharpoonright\left\{M_{s}^{\ell}: s \in u \cap I_{\ell}\right\}$.

Let
(*) (a) (\mathscr{U}, \subseteq) is κ-directed.
(b) $N_{\ell, u} \leq_{\mathfrak{k}} M$
(c) $M_{\ell, u} \leq_{\mathfrak{k}} M_{\ell, v}$ when $u \subseteq v$ are from \mathscr{U} and $\ell=0,1$.
(d) $M_{0, u} \leq_{\mathfrak{k}} M_{1, u}$
(e) $N_{\ell}=\bigcup\left\{N_{\ell, u}: u \in \mathscr{U}\right\}$

Byabove we are done.

Ax.VI: $\operatorname{LST}\left(\mathfrak{k}^{\prime}\right)=\lambda$.
[Why? Let $M \in K^{\prime}, A \subseteq M,|A|+\lambda \leq \chi<\|M\|$, and let $\left\langle M_{s}: s \in I\right\rangle$ witness $M \in K^{\prime}$. Without loss of generality $|A|=\chi^{<\kappa}$. Now choose a directed $I \subseteq J$ of cardinality $\leq|A|=\chi^{<\kappa}$ such that $A \subseteq M^{\prime}:=\bigcup_{s \in I} M_{s}$ and so $\left(I, J,\left\langle M_{s}: s \in J\right\rangle\right)$ witnesses $M^{\prime} \leq_{\mathfrak{k}^{\prime}} M$. So as $A \subseteq M^{\prime}$ and $\left\|M^{\prime}\right\| \leq|A|+\mu$ we are done.]
2) $\mathbf{A x} . \operatorname{III}(\mathrm{b})$: Assume that $\left\langle M_{i}: i<\delta\right\rangle$ is a $\leq_{\mathfrak{k}}$-increasing sequence and

$$
\left\|\bigcup\left\{M_{i}: i<\delta\right\}\right\|<\mu
$$

We have to prove that there is $M \in K$ such that $i<\delta \Rightarrow M_{i} \leq_{\mathfrak{k}^{\prime}} M$ (as always, assuming that \mathfrak{k}_{λ} satisfies $\mathbf{A x . I I I (b)) . ~}$

If $\operatorname{cf}(\delta) \geq \kappa$, we use $\mathbf{A x}$.III(a) (which was proved above), so we may assume $\operatorname{cf}(\delta)<\kappa$. By renaming, without loss of generality $\delta<\kappa$, and we continue in the proof of Ax.II(a).

Also, if two such DAECs have some cardinal in common then we can put them together.

Claim 1.26. Let $\iota \in\{0,1,2,4\}$, assume $\lambda_{1}<\lambda_{2}<\lambda_{3}$, and
(a) \mathfrak{k}^{1} is an $\left(\lambda_{2}^{+}, \lambda_{1}, \kappa\right)-2-D A E C$ and $K^{1}=K_{\mathfrak{k}^{1}}$.
(b) \mathfrak{k}^{2} is a $\left(\lambda_{3}, \lambda_{2}, \kappa\right)-\iota-D A E C$.
(c) $K_{\lambda_{2}}^{\mathfrak{k}^{1}}=K_{\lambda_{2}}^{\mathfrak{t}^{2}}$ and $\leq_{\mathfrak{k}^{2}} \upharpoonright K_{\lambda_{2}}^{\mathfrak{k}^{2}}=\leq_{\mathfrak{k}^{1}} \upharpoonright K_{\lambda_{2}}^{\mathfrak{k}^{1}}$.
(d) We define \mathfrak{k} as follows: $K_{\mathfrak{k}}=K_{\mathfrak{k}^{1}} \cup K_{\mathfrak{k}^{2}}, M \leq_{\mathfrak{k}} N$ iff $M \leq_{\mathfrak{k}^{1}} N$ or $M \leq_{\mathfrak{k}^{2}} N$ or for some $M^{\prime}, M \leq_{\mathfrak{k}^{1}} M^{\prime} \leq_{\mathfrak{k}^{2}} N$.
Then \mathfrak{k} is an $\left(\lambda_{3}, \lambda_{1}, \kappa\right)-\iota-D A E C$.
Proof. Straightforward. E.g.:
Ax.III(d): $\left\langle M_{s}: s \in I\right\rangle$ is a $\leq_{\mathfrak{s}}-\kappa$-directed system.
If $\left\|M_{s}\right\| \geq \lambda_{2}$ for some s, use $\left\langle M_{t}: s \leq t \in I\right\rangle$ and clause (b) of the assumption. If $\bigcup\left\{M_{s}: s \in I\right\}$ has cardinality $\leq \lambda_{2}$ use clause (a) in the assumption. If neither one of them holds, recall $\lambda_{2}=\lambda_{2}^{<\kappa}$ by clause (b) of the assumption, and let $\mathscr{U}=\left\{u \subseteq I:|u| \leq \lambda_{2}, u\right.$ is κ-directed (in I), and $\bigcup\left\{M_{s}: s \in u\right\}$ has cardinality $\left.\lambda\right\}$.

Easily, (\mathscr{U}, \subseteq) is λ_{2}-directed. For $u \in J$, let M_{u} be the $\leq_{\mathfrak{s}}$-union of $\left\langle M_{s}: s \in u\right\rangle$. Now by clause (a) of the assumption
$(*)_{1} M_{u} \in K_{\lambda_{2}}^{\mathfrak{k}^{1}}=K_{\lambda_{2}}^{\mathfrak{t}^{2}}$
$(*)_{2}$ If $u_{1} \subseteq v$ are from \mathscr{U} then $M_{u} \leq_{\mathfrak{t}^{1}} M_{v}, M_{u} \leq_{\mathfrak{t}^{2}} M_{v}$.
Now use clause (b) of the assumption.
Axiom V: We shall freely use
$(*) \mathfrak{k}_{\lambda_{2}}^{2}=\mathfrak{k}_{\lambda_{2}}^{1}=\mathfrak{k}_{\lambda_{2}}$
So assume $N_{0} \leq_{\mathfrak{k}} M, N_{1} \leq_{\mathfrak{k}} M, N_{0} \subseteq N_{1}$.
Now if $\left\|N_{0}\right\| \geq \lambda_{2}$ use assumption (b), so we can assume $\left\|N_{0}\right\|<\lambda_{2}$. If $\|M\| \leq \lambda_{2}$ we can use assumption (a), so assume $\|M\|>\lambda_{2}$; by the definition of $\leq_{\mathfrak{k}}$ there is $M_{0}^{\prime} \in K_{\lambda_{2}}^{\mathfrak{k}^{1}}=K_{\lambda_{2}}^{\mathfrak{k}^{2}}$ such that $N_{0} \leq_{\mathfrak{k}^{1}} M_{0}^{\prime} \leq_{\mathfrak{k}^{2}} M$. First assume $\left\|N_{1}\right\| \leq \lambda_{2}$, so we can find $M_{1}^{\prime} \in K_{\lambda_{2}}^{\mathfrak{t}^{1}}$ such that $N_{1} \leq_{\mathfrak{k}^{1}} M_{1}^{\prime} \leq_{\mathfrak{k}^{2}} M$.
[Why? If $N_{1} \in K_{<\lambda_{2}}^{\mathfrak{k}^{1}}$ by the definition of $\leq_{\mathfrak{k}}$, and if $N_{1} \in K_{\lambda_{2}}^{\mathfrak{q}^{1}}$ just choose $M_{1}^{\prime}=N_{1}$.]

Now we can, by assumption (b), find $M^{\prime \prime} \in K_{\lambda_{2}}^{\mathfrak{k}^{1}}$ such that $M_{0}^{\prime} \cup M_{1}^{\prime} \subseteq M^{\prime \prime} \leq_{\mathfrak{k}} M$, hence by assumption (b) (i.e. Ax.V for \mathfrak{k}^{2}) we have $M_{0}^{\prime} \leq_{\mathfrak{k}} M^{\prime \prime}, M_{1}^{\prime} \leq_{\mathfrak{k}} M^{\prime \prime}$. As $N_{0} \leq_{\mathfrak{k}} M_{0}^{\prime} \leq_{\mathfrak{k}} M^{\prime \prime} \in K_{\leq \lambda_{2}}^{\mathfrak{k}}$ by assumption (a) we have $N_{0} \leq_{\mathfrak{k}} M^{\prime \prime}$, and similarly we have $N_{1} \leq_{\mathfrak{k}} M^{\prime \prime}$. So $\bar{N}_{0} \subseteq N_{1}, N_{0} \leq_{\mathfrak{k}} M^{\prime \prime}, N_{1} \leq_{\mathfrak{k}} M^{\prime}$, so by assumption (b) we have $N_{0} \leq_{\mathfrak{k}} N_{1}$.

We are left with the case $\left\|N_{1}\right\|>\lambda$. By assumption (b) there is $N_{1}^{\prime} \in K_{\lambda_{2}}$ such that $N_{0} \subseteq N_{1}^{\prime} \leq_{\mathfrak{k}^{2}} N_{2}$. Also by assumption (b), we have $N_{1}^{\prime} \leq_{\mathfrak{k}} M$, so by the previous paragraph we get $N_{0} \leq_{\mathfrak{k}} N_{1}^{\prime}$; together with the previous sentence we have $N_{0} \leq_{\mathfrak{k}^{1}} N_{1}^{\prime} \leq_{\mathfrak{k}^{2}} N_{1}$ so by the definition of $\leq_{\mathfrak{k}}$ we are done.

Definition 1.27. If $M \in K_{\chi}$ is $(\chi, \geq \kappa)$-superlimit ${ }_{1}$ let

$$
K_{\chi}^{[M]}=\left\{N \in K_{\chi}: N \cong M\right\}
$$

and $\mathfrak{k}_{\chi}^{[M]}=\left(K_{\chi}^{[M]}, \leq_{\mathfrak{k}} \upharpoonright K_{\chi}^{[M]}\right)$, and $\mathfrak{k}^{[M]}$ is the \mathfrak{k}^{\prime} we get in $1.25(1)$, with $\left(\mathfrak{k}^{[M]}, \mathfrak{k}\right)$ here standing in for $\left(\mathfrak{k}_{\lambda}, \mathfrak{k}^{\prime}\right)$ there.

Claim 1.28. 1) If \mathfrak{k} is an $(\mu, \lambda, \kappa)-A E C, \lambda \leq \chi<\mu, M \in K_{\chi}$ is $(\chi, \geq \kappa)$-superlimit $_{1}$ (see Definition 1.21) then $\mathfrak{E}_{\chi}^{[M]}$ is a $\left(\chi^{+}, \chi, \kappa\right)-D A E C$.
2) If in addition \mathfrak{k} is a $(\mu, \lambda, \kappa)-D A E C^{ \pm}$then $\mathfrak{k}_{\chi}^{[M]}$ is a $\left(\chi^{+}, \chi, \kappa\right)-D A E C^{ \pm}$.
3) $[\mathfrak{k}$ satisfies $\boldsymbol{A x} . \boldsymbol{I V}(d)$.]
M is $(\chi, \geq \kappa)$-superlimit ${ }_{1}$ iff M is $(\chi, \geq \kappa)$-superlimit ${ }_{2}$.
Proof. Easy.

§ 2. PR FRAMES

Below, the main case is $\iota=4$.
Definition 2.1. Here $\iota=0,1,2,3,4$. We say that \mathfrak{s} is a $\operatorname{good}(\mu, \lambda, \kappa)-\iota$-frame when \mathfrak{s} consists of the following objects satisfying the following condition: μ, λ, κ (so we should write $\mu_{\mathfrak{s}}, \lambda_{\mathfrak{s}}, \kappa_{\mathfrak{s}}$ but we may ignore them when defining \mathfrak{s}) and
(A) $\mathfrak{k}=\mathfrak{k}_{\mathfrak{s}}$ is a (μ, λ, κ)-4-DAEC (see 1.4(4)), so we may write \mathfrak{s} instead of \mathfrak{k}, e.g. $\leq_{\mathfrak{s}}$-increasing, etc., and $\chi \in[\lambda, \mu) \Rightarrow \operatorname{LST}\left(\chi^{<\kappa}\right)$.
(B) \mathfrak{k} has a $(\lambda, \geq \kappa)$-superlimit model M^{*} which ${ }^{5}$ is not $<_{\mathfrak{k}}$-maximal - i.e.:
(a) $M^{*} \in K_{\lambda}^{\mathfrak{5}}$
(b) If $M_{1} \in K_{\grave{\lambda}}^{\mathfrak{s}}$ then for some $M_{2}, M_{1}<_{\mathfrak{s}} M_{2} \in K_{\lambda}^{\mathfrak{s}}$ and M_{2} is isomorphic to M^{*}.
(c) If $\left\langle M_{i}: i<\delta\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing, $i<\delta \Rightarrow M_{i} \cong M$, and $\operatorname{cf}(\delta) \geq \kappa$, $\delta<\lambda^{+}$then $\bigcup\left\{M_{i}: i<\delta\right\}$ is isomorphic to M^{*}.
(C) \mathfrak{k} has the amalgamation property, the JEP (joint embedding property), and has no $\leq_{\mathfrak{k}}$-maximal member. If $\iota \geq 1$ then \mathfrak{k} has primes over chains (i.e. $\operatorname{Ax} . \operatorname{III}(\mathrm{f}))$, and if $\iota \geq 4, \mathfrak{k}$ has primes over $\leq_{\mathfrak{s}}$-directed sequences (i.e. Ax.IV(f)).
(D) (a) $\mathcal{S}^{\text {bs }}=\mathcal{S}_{\mathfrak{s}}^{\text {bs }}$ (the class of basic types for $\mathfrak{k}_{\mathfrak{s}}$) is included in $\bigcup\left\{\mathcal{S}(M): M \in K_{\mathfrak{s}}\right\}$ and is closed under isomorphisms including automorphisms. For $M \in K_{\lambda}$, let $\mathcal{S}_{\mathfrak{s}}^{\text {bs }}(M)=\mathcal{S}_{\mathfrak{s}}^{\text {bs }} \cap \mathcal{S}(M)$; no harm in allowing types of finite sequences.
(b) If $p \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}(M)$, then p is non-algebraic (i.e., not realized by any $a \in M$).
(c) Density:

If $M \leq_{\mathfrak{k}} N$ are from $K_{\mathfrak{s}}$ and $M \neq N$, then for some $a \in N \backslash M$ we have $\operatorname{ortp}(a, M, N) \in \mathcal{S}^{\mathrm{bs}}$. The intention is that examples are minimal types in [She01] (i.e. [She09c]) and regular types for superstable theories.
(d) bs-Stability: $\mathcal{S}^{\mathrm{bs}}(M)$ has cardinality $\leq\|M\|^{<\kappa}$ for $M \in K_{\mathfrak{s}}$.
(E) (a) $\bigcup=\bigcup_{\mathfrak{s}}$ is a four place relation called non-forking, with $\bigcup\left(M_{0}, M_{1}, a, M_{3}\right)$ implying $M_{0} \leq_{\mathfrak{k}} M_{1} \leq_{\mathfrak{k}} M_{3}$ are from $K_{\mathfrak{s}}, a \in M_{3} \backslash M_{1}, \operatorname{ortp}\left(a, M_{0}, M_{3}\right) \in$ $\mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(M_{0}\right)$, and $\operatorname{ortp}\left(a, M_{1}, M_{3}\right) \in \mathcal{S}^{\text {bs }}\left(M_{1}\right)$. Also, \bigcup is preserved under isomorphisms.
We may also write $M_{1} \bigcup_{M_{0}}^{M_{3}} a$ and demand that if $M_{0}=M_{1} \leq_{\mathfrak{k}} M_{3}$ are both in K_{λ} then $\bigcup\left(M_{0}, M_{1}, a, M_{3}\right)$ is equivalent to ${ }^{\circ} \operatorname{ortp}\left(a, M_{0}, M_{3}\right) \in$ $\mathcal{S}^{\mathrm{bs}}\left(M_{0}\right)$ ". We may state $M_{1} \bigcup_{M_{0}}^{M_{3}} a$ as "ortp $\left(a, M_{1}, M_{3}\right)$ does not fork over M_{0} (inside M_{3})." (This is justified by clause (b) below.)
[Explanation: The intention is to axiomatize non-forking of types, but we allow ourselves to deal only with basic types. Note that in [She01] (i.e. [She09c]) we know something on minimal types but other types are something else.]
(b) Monotonicity:

$$
\text { If } M_{0} \leq_{\mathfrak{k}} M_{0}^{\prime} \leq_{\mathfrak{k}} M_{1}^{\prime} \leq_{\mathfrak{k}} M_{1} \leq_{\mathfrak{k}} M_{3} \leq_{\mathfrak{k}} M_{3}^{\prime}
$$

[^4]and $M_{1} \cup\{a\} \subseteq M_{3}^{\prime \prime} \leq_{\mathfrak{k}} M_{3}^{\prime}$, with all of them in K_{λ}, then
$$
\bigcup\left(M_{0}, M_{1}, a, M_{3}\right) \Rightarrow \bigcup\left(M_{0}^{\prime}, M_{1}^{\prime}, a, M_{3}^{\prime}\right) \Leftrightarrow \bigcup\left(M_{0}^{\prime}, M_{1}^{\prime}, a, M_{3}^{\prime \prime}\right)
$$
so it is legitimate to just say " $\operatorname{ortp}\left(a, M_{1}, M_{3}\right)$ does not fork over M_{0} ". [Explanation: non-forking is preserved by decreasing the type, increasing the basis (i.e. the set over which it does not fork) and increasing or decreasing the model inside which all this occurs. The same holds for stable theories, only here we restrict ourselves to "legitimate" types.]
(c) Local Character:

Case 1: $\iota=1,2,3$.
If $\left\langle M_{i}: i \leq \delta\right\rangle$ is $\leq_{\mathfrak{s}}$-semi-continuous, $p \in \mathcal{S}^{\mathrm{bs}}\left(M_{\delta}\right)$, and $\operatorname{cf}(\delta) \geq \kappa$ then for every $\alpha<\delta$ large enough, p does not fork over M_{α}.
Case 2: $\iota=4$.
If I is a κ-directed partial order, $\bar{M}=\left\langle M_{t}: t \in I\right\rangle$ is a $\leq_{\mathfrak{s}}$-directed
 then for every $s \in I$ large enough $\operatorname{ortp}(a, M, N)$ does not fork over M_{s}.
Case 3: $\iota=0$.
Like Case 1, using ($\geq \kappa$)-continuity.
[Explanation: This is a replacement for $\kappa \geq \kappa_{r}(T)$: if $p \in \mathcal{S}(A)$ then there is a $B \subseteq A$ of cardinality $<\kappa$ such that p does not fork over A.]
(d) Transitivity:

If $M_{0} \leq_{\mathfrak{k}} M_{0}^{\prime} \leq_{\mathfrak{k}} M_{0}^{\prime \prime} \leq_{\mathfrak{k}} M_{3}$ and $a \in M_{3}$ and $\operatorname{ortp}\left(a, M_{0}^{\prime \prime}, M_{3}\right)$ does not fork over M_{0}^{\prime} and $\operatorname{ortp}\left(a, M_{0}^{\prime}, M_{3}\right)$ does not fork over M_{0} (all models are in K_{λ}, of course, and necessarily the three relevant types are in $\left.\mathcal{S}^{\mathrm{bs}}\right)$, then $\operatorname{ortp}\left(a, M_{0}^{\prime \prime}, M_{3}\right)$ does not fork over M_{0}.
(e) Uniqueness:

If $p, q \in \mathcal{S}^{\text {bs }}\left(M_{1}\right)$ do not fork over $M_{0} \leq_{\mathfrak{k}} M_{1}\left(\right.$ all in $\left.K_{\mathfrak{s}}\right)$ and $p \upharpoonright M_{0}=$ $q \upharpoonright M_{0}$ then $p=q$.
(f) symmetry:

Case 1: $\iota \geq 3$.
If $M_{0} \leq_{\mathfrak{s}} M_{\ell} \leq_{\mathfrak{s}} M_{3}$ and $\left(M_{0}, M_{\ell}, a_{\ell}\right) \in K_{\mathfrak{s}}^{3, \mathrm{pr}}$ (see clause (j) below) for $\ell=1,2$ then $\operatorname{ortp}_{\mathfrak{s}}\left(a_{2}, M_{1}, M_{3}\right)$ does not fork over M_{0} iff $\operatorname{ortp}_{\mathfrak{s}}\left(a_{1}, M_{2}, M_{3}\right)$ does not fork over M_{0}.
Case 2: $\iota=0,1,2$.
If $M_{0} \leq_{\mathfrak{k}} M_{3}$ are in \mathfrak{k}_{λ}, and for $\ell=1,2$ we have $a_{\ell} \in M_{3}$ and $\operatorname{ortp}\left(a_{\ell}, M_{0}, M_{3}\right) \in \mathcal{S}^{\mathrm{bs}}\left(M_{0}\right)$, then the following are equivalent:
(α) There are M_{1}, M_{3}^{\prime} in $K_{\mathfrak{s}}$ such that $M_{0} \leq_{\mathfrak{k}} M_{1} \leq_{\mathfrak{K}} M_{3}^{\prime}, a_{1} \in M_{1}$, $M_{3} \leq_{\mathfrak{k}} M_{3}^{\prime}$ and $\operatorname{ortp}\left(a_{2}, M_{1}, M_{3}^{\prime}\right)$ does not fork over M_{0}.
(β) There are M_{2}, M_{3}^{\prime} in K_{λ} such that $M_{0} \leq_{\mathfrak{k}} M_{2} \leq_{\mathfrak{k}} M_{3}^{\prime}, a_{2} \in M_{2}$, $M_{3} \leq_{\mathfrak{k}} M_{3}^{\prime}$ and $\operatorname{ortp}\left(a_{1}, M_{2}, M_{3}^{\prime}\right)$ does not fork over M_{0}.
[Explanation: this is a replacement to ${ }^{\operatorname{ortp}}\left(a_{1}, M_{0} \cup\left\{a_{2}\right\}, M_{3}\right)$ forks over M_{0} iff $\operatorname{ortp}\left(a_{2}, M_{0} \cup\left\{a_{1}\right\}, M_{3}\right)$ forks over M_{0}," which is not well defined in our context.]
(g) Existence:

If $M \leq_{\mathfrak{s}} N$ and $p \in \mathcal{S}^{\mathrm{bs}}(M)$ then there is $q \in \mathcal{S}^{\mathrm{bs}}(N)$ which is a non-forking extension of p.
(h) Continuity:

Case 1: $\iota=1,2,3$.

If $\left\langle M_{\alpha}: \alpha \leq \delta\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing and $\leq_{\mathfrak{s}}$-semi-continuous, $M_{\delta}=$ $\bigcup_{\alpha<\delta} M_{\alpha}$ (which holds if $\left.\operatorname{cf}(\delta) \geq \kappa\right), p \in \mathcal{S}_{\mathfrak{s}}\left(M_{\delta}\right)$, and $p \upharpoonright M_{\alpha}$ does not fork over M_{0} for $\alpha<\delta$ then $p \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(M_{\delta}\right)$ and it does not fork over M_{0}.
Case 2: $\iota=4$.
Similarly, but for $\bar{M}=\left\langle M_{t}: t \in I\right\rangle, I$ directed, and $M=\bigcup\left\{M_{t}: t \in I\right\}$ is a $\leq_{\mathfrak{s}}$-upper bound of \bar{M}.

Case 3: $\iota=0$.

Like Case 1 for $\bar{M}(\geq \kappa)$-continuous.
${ }^{-} 1$ If $\iota \geq 1, \mathfrak{s}$ has $K_{\mathfrak{s}}^{3, \mathrm{pr}}$-primes (see 2.7 below).
\bullet_{2} If $p \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}(N)$ then p does not fork over M for some $M \leq_{\mathfrak{s}} N$ from K_{λ}.

(i) Strong continuity:

Case 1: $\iota=1,2,3$.
We have that $\operatorname{ortp}\left(b, M_{\delta}, M_{\delta+1}\right)$ does not fork over M_{0}, where
$\bullet_{1} \bar{M}=\left\langle M_{i}: i \leq \delta+1\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing.
${ }^{\bullet}{ }_{2} M_{\delta}$ is prime over $\bar{M} \upharpoonright \delta$.
${ }^{\bullet}{ }_{3} b \in M_{\delta+1} \backslash M_{\delta}$
$\bullet_{4} \operatorname{ortp}\left(b, M_{i}, M_{\delta+1}\right)$ does not fork over M_{0} for $i<\delta$.
Case 2: $\iota=4,5$.
We have that $\operatorname{ortp}\left(b, M_{\delta}, M_{\delta+1}\right)$ does not fork over M_{0}, where
$\bullet_{1} \bar{M}=\left\langle M_{s}: s \in I\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing, I a partial order with $0 \in I$ minimal.
${ }^{\bullet}{ }_{2} N_{0}$ is prime over \bar{M}.
$\bullet_{3} b \in N_{1} \backslash N_{0}$, where $N_{0} \leq_{\mathfrak{s}} N_{1}$.
$\bullet_{4} \operatorname{ortp}\left(b, M_{s}, N_{1}\right)$ does not fork over M_{0} for all $s \in I$.
Claim 2.2. 1) If $\left\langle M_{i}: i<\delta\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing, $\left(\sum\left\{\left\|M_{i}\right\|: i<\delta\right\}\right)<\mu, p_{i} \in$ $\mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(M_{i}\right)$ does not fork over M_{0} for $i<\delta$, and $i<j \Rightarrow p_{j} \upharpoonright M_{i}=p_{i}$ then:
(a) We can find M_{δ} such that $i<\delta \Rightarrow M_{i} \leq_{\mathfrak{k}} M_{\delta}$.
(b) For any such M_{δ}, we can find $p_{\delta} \in \mathcal{S}_{\mathfrak{s}}\left(M_{\delta}\right)$ such that $\bigwedge_{i<\delta} p_{\delta} \upharpoonright M_{i}=p_{i}$ and p_{δ} does not fork over M_{0}.
(c) In clause (b), p_{δ} is unique.
(d) If $\ell \geq \kappa \wedge \operatorname{cf}(\delta) \geq \kappa$, we can add $M=\bigcup\left\{M_{\alpha}: \alpha<\delta\right\}$.
2) Similarly for $\bar{M}=\left\langle M_{t}: t \in I\right\rangle$, I directed.

Proof. 1) First, choose M_{δ} by 2.1, Clause (A). Second, choose $p_{\delta} \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(M_{\delta}\right)$, a nonforking extension of p_{0}, which exists by Axiom (g) of 2.1(E). Now $p_{\delta} \upharpoonright M_{i} \in \mathcal{S}_{\mathfrak{s}}^{\text {bs }}\left(M_{i}\right)$ does not fork over M_{0} by $2.1(\mathrm{E})(\mathrm{b})$ and it extends p_{0}, so it is equal to p_{i} by (E$)(\mathrm{e})$. Third, p_{δ} is unique by (E)(e).
2) Should be clear, too.

Definition 2.3. 1) Assume $M_{\ell} \leq_{\mathfrak{s}} N$ and $p_{\ell} \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(M_{\ell}\right)$ for $\ell=1,2$. We say that p_{1}, p_{2} are parallel when some $p \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}(N)$ is a non-forking extension of p_{ℓ} for $\ell=1,2$.
2) We say \mathfrak{s} is type-full when $\mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}(M)=\mathcal{S}_{\mathfrak{k}_{\mathfrak{s}}}^{\mathrm{na}}(M)$ for $M \in K_{\mathfrak{s}}$.
3) We say $p \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}(M)$ is based on $\overline{\mathbf{a}}$ when:
(A) $\overline{\mathbf{a}}$ is a sequence from M.
(B) If $M \leq_{\mathfrak{s}} N, q \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}(N)$ is a non-forking extension of p, and π is an automorphism of N over $\overline{\mathbf{a}}$ then $\pi(q)=q$. (See [Sheb] for how we can guarantee there is such $\overline{\mathbf{a}} \in{ }^{\lambda} M$, and even $\overline{\mathbf{a}} \in{ }^{1} M$.)
3A) Similarly for $p \in \mathcal{S}_{\mathfrak{5}}^{\varepsilon}(M)$; similarly for part (4).
4) We say \mathfrak{s} is $(<\theta)$-based when in clause $2.3(3)$ above there is such $\overline{\mathbf{a}} \in{ }^{\theta>} M$.

Definition 2.4. 1) We say that NF is a non-forking relation on a ($\mu, \lambda, \kappa)$-1-DAEC \mathfrak{k} when, in addition to 2.1(A)-(C):
(F) (a) NF is a four-place relation on $\mathfrak{k}_{\mathfrak{s}}$, and $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{1}, M_{2}, M_{3}\right)$ implies $M_{0} \leq_{\mathfrak{k}} M_{\ell} \leq_{\mathfrak{k}} M_{1}$ and $\mathrm{NF}_{\mathfrak{s}}$ is preserved by isomorphisms.
(b) ${ }_{1}$ Monotonicity:

If $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{1}, M_{2}, M_{3}\right), M_{0} \leq_{\mathfrak{s}} M_{\ell}^{\prime} \leq_{\mathfrak{s}} M_{\ell}$ for $\ell=1,2$, and $M_{1}^{\prime} \cup M_{2}^{\prime} \subseteq M_{3}^{\prime} \leq_{\mathfrak{s}} M$ then $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}\right)$.
(c) Symmetry:
$\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{1}, M_{2}, M_{3}\right)$ implies $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{2}, M_{1}, M_{3}\right)$.
(d) ${ }_{1}$ Transitivity:

If $\mathrm{NF}_{\mathfrak{s}}\left(M_{2 \ell}, M_{2 \ell+1}, M_{2 \ell+3}, M_{2 \ell+4}\right)$ for $\ell=0,1$ then $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{1}, M_{4}, M_{5}\right)$.
(d) ${ }_{2}$ Long transitivity:

If $\left\langle\left(N_{i}, M_{i}\right): i<\delta\right\rangle$ is an $\mathrm{NF}_{\mathfrak{s}}$-sequence (i.e. M_{i} is $\leq_{\mathfrak{s}}$-increasing, N_{i} is $\leq_{\mathfrak{s}}$-increasing, $M_{i} \leq_{\mathfrak{s}} N_{i}, i<j<\delta \Rightarrow \mathrm{NF}_{\mathfrak{s}}\left(M_{i}, N_{i}, M_{j}, N_{j}\right)$, and $\left.\sum\left\{\left\|N_{i}\right\|: i<\delta\right\}<\mu\right)$ then we can find $\left(N_{\delta}, M_{\delta}\right)$ such that $\left\langle\left(M_{i}, N_{i}\right): i \leq \delta\right\rangle$ is an NF-sequence.
$(\mathrm{d})_{2}^{+}$Like $(\mathrm{d})_{2}$, for directed systems.
$(\mathrm{d})_{3}$ Moreover, in $(\mathrm{d})_{2}$, if $\left\langle M_{i}: i<\delta\right\rangle$ and $\left\langle N_{i}: i<\delta\right\rangle$ are $(\geq \kappa)$-continuous and $\operatorname{cf}(\delta) \geq \kappa_{\mathfrak{s}}$ then we can demand $M_{\delta}=\bigcup\left\{M_{i}: i<\delta\right\}, N_{\delta}=$ $\bigcup\left\{N_{i}: i<\delta\right\}$.

Definition 2.5. 1) Let \mathfrak{s} be a good λ-frame and NF a non-forking relation on \mathfrak{k}. We say NF respects \mathfrak{s} when: if $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{1}, M_{2}, M_{3}\right)$ and $a \in M_{2}$, ortp $\mathfrak{s}^{(}\left(a, M_{0}, M_{3}\right) \in$ $\mathcal{S}_{\mathfrak{s}}^{\text {bs }}\left(M_{0}\right)$ then $\operatorname{ortp}_{\mathfrak{s}}\left(a, M_{1}, M_{3}\right)$ is a non-forking extension of $\operatorname{ortp}_{\mathfrak{s}}\left(a, M_{0}, M_{2}\right)$.
2) We say \mathfrak{s} is a $\operatorname{good}(\lambda, \mu, \kappa)$-NF-frame when it is a good (λ, μ, χ)-frame and $\mathrm{NF}_{\mathfrak{s}}$ is a non-forking relation on $\mathfrak{k}_{\mathfrak{s}}$ which respects \mathfrak{s}.

Definition 2.6. We say that \mathfrak{s} is a very $\operatorname{good}(\mu, \lambda, \kappa)$-NF-frame when it is a good (μ, λ, κ)-NF-frame and
(G) (a) If $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}, M_{1}, M_{2}, M_{3}\right)$ then there is $M_{3}^{*} \leq_{\mathfrak{s}} M_{3}$ which is prime over $M_{1} \cup M_{2}$. That is,

- If $\mathrm{NF}_{\mathfrak{s}}\left(M_{0}^{\prime}, M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}\right)$ and f_{ℓ} is an isomorphism from M_{ℓ} onto M_{ℓ}^{\prime} for $\ell=0,1,2$ such that $f_{0} \subseteq f_{1}$ and $f_{0} \subseteq f_{2}$ then there is a $\leq_{\mathfrak{s}}$-embedding f_{3} of M_{3}^{*} into M_{3}^{\prime} extending $f_{1} \cup f_{2}$.
(b) $\mathfrak{k}_{\mathfrak{s}}$ has $K_{\mathfrak{s}}^{3, \mathrm{pr}}$-primes (see $2.7(3)$ below).

Definition 2.7. 0) $K_{\mathfrak{s}}^{3, \text { bs }}=\left\{(M, N, a): M \leq_{\mathfrak{s}} N, a \in N, \operatorname{and}_{\operatorname{ortp}_{\mathfrak{s}}}(a, M, N) \in\right.$ $\left.\mathcal{S}_{\mathfrak{s}}^{\text {bs }}(M)\right\}$.

1) $K_{\mathfrak{s}}^{3, \mathrm{pr}}=\left\{(M, N, a) \in K_{\mathfrak{s}}^{3, \text { bs }}:\right.$ if $M \leq N^{\prime}, a^{\prime} \in N^{\prime}, \operatorname{ortp}_{\mathfrak{s}}\left(a^{\prime}, M, N^{\prime}\right)=\operatorname{ortp}(a, M, N)$ then there is a $\leq_{\mathfrak{k}}$-embedding of N into N^{\prime} extending id_{M} and mapping a to $\left.a^{\prime}\right\}$.
2) $\mathfrak{k}_{\mathfrak{s}}$ has $K_{\mathfrak{s}}^{3, \text { pr }}$-primes if, for every $M \in K_{\mathfrak{s}}$ and $p \in \mathcal{S}_{\mathfrak{s}}^{\text {bs }}(M)$, there are (N, a) such that $(M, N, a) \in K_{\mathfrak{s}}^{3, \text { pr }}$ and $\operatorname{ortp}_{\mathfrak{s}}(a, M, N)=p$.

Definition 2.8. $[\iota \geq 3]$

1) Assume $p_{1}, p_{2} \in \mathcal{S}^{\mathrm{bs}}(M)$. We say p_{1}, p_{2} are weakly orthogonal (and denote it $\left.p_{1} \underset{\mathrm{wk}}{\perp} p_{2}\right)$ when the following implication holds: if $M_{0} \leq_{\mathfrak{s}} M_{\ell} \leq_{\mathfrak{s}} M_{3},\left(M_{0}, M_{\ell}, a_{\ell}\right) \in$
$K_{\mathfrak{s}}^{3, \mathrm{pr}}$, and $\operatorname{ortp}_{\mathfrak{s}}\left(a_{\ell}, M_{0}, M_{\ell}\right)=p_{\ell}$ for $\ell=1,2$ then $\operatorname{ortp}_{\mathfrak{s}}\left(a_{2}, M_{1}, M_{3}\right)$ does not fork over M_{0} (this is symmetric by Axiom (f) of 2.1(E)).
2) We say p_{1}, p_{2} are orthogonal (denoted $p_{1} \perp p_{2}$) when: if $M \leq_{\mathfrak{s}} M_{2}, M_{1} \leq_{\mathfrak{s}} M_{2}$ and $q_{\ell} \in \mathcal{S}^{\mathrm{bs}}\left(M_{2}\right)$ is a non-forking extension of p_{ℓ} and q_{ℓ} does not fork over M_{1} then $q_{1} \underset{\mathrm{wk}}{\perp} q_{2}$.
3) We say that $\left\{a_{t}: t \in I\right\}$ is independent in $\left(M_{0}, M_{1}, M_{2}\right)$ when:
(A) $a_{t} \in M_{2} \backslash M_{1}$
(B) $\operatorname{ortp}_{\mathfrak{s}}\left(a_{t}, M_{1}, M_{2}\right)$ does not fork over M_{0}.
(C) There is a sequence $\langle t(\alpha): \alpha<\alpha(*)\rangle$ listing I with no repetitions, and $\mathrm{a} \leq_{\mathfrak{s}}$-increasing sequence $\left\langle M_{1, \alpha}: \alpha \leq \alpha(*)+1\right\rangle$ with $M_{1} \leq_{\mathfrak{s}} M_{1,0}$ and $M_{2} \leq M_{1, \alpha(*)+1}$ such that $a_{t(\alpha)} \in M_{1, \alpha+1}$ and $\operatorname{ortp}_{\mathfrak{s}}\left(a_{t(\alpha)}, M_{1, \alpha}, M_{1, \alpha+1}\right)$ does not fork over M_{0}.
4) Let $(M, N, \mathbf{J}) \in K_{\mathfrak{s}}^{3, \text { bs }}$ if $M \leq_{\mathfrak{s}} N$ and \mathbf{J} is independent in (M, N).
5) Let $(M, N, \mathbf{J}) \in K_{\mathfrak{s}}^{3, \mathrm{qr}}$ if:
(A) $M \leq_{\mathfrak{s}} N$
(B) \mathbf{J} is independent in (M, N).
(C) If $M \leq_{\mathfrak{s}} N^{\prime}$ and h is a one-to-one function from \mathbf{J} into N^{\prime} such that $\left(M, N^{\prime}, h^{\prime \prime}(\mathbf{J})\right) \in K_{\mathfrak{s}}^{3, \text { bs }}$ then there is a $\leq_{\mathfrak{s}}$-embedding g of N into N^{\prime} over M extending h.
Remark 2.9. We now can imitate relations of the axioms (as in [She09b, §2]), and basic properties of the notions introduced in 2.8.

Definition 2.10. 1) We say p is strongly dominated by $\left\{p_{t}: t \in I\right\}$ and write $p \leq_{\text {st }}\left\{p_{t}: t \in I\right\}$ (this set may contain repetitions ${ }^{6}$) when:
(A) $p \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}(N), p_{t} \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(N_{t}\right), N_{t} \leq_{\mathfrak{s}} N^{+} \in K_{\mathfrak{s}}, N \leq_{\mathfrak{s}} N^{+}$and
(B) If $N^{+} \leq_{\mathfrak{s}} N^{*}, a_{t} \in N^{*}$, ortp $\left(a_{t}, N^{+}, N^{*}\right) \in \mathcal{S}_{\mathfrak{s}}^{\text {bs }}\left(N^{+}\right)$is parallel to p_{t} and $p^{\prime} \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(N^{+}\right)$is parallel to p (see Definition 2.3), and $\left\{a_{t}: t \in I\right\}$ is independent in $\left(N^{+}, N^{*}\right)$ then some $a \in N^{*}$ realizes p^{\prime}.
2) We say p is weakly dominated by $\left\{p_{t}: t \in I\right\}$ and write $p \leq_{\mathrm{wk}}\left\{p_{t}: t \in I\right\}$ when for some set J and function h from J onto I we have $p \leq_{\text {st }}\left\{p_{h(t)}: t \in J\right\}$.
3) Let 'dominated' mean strongly dominated.
4) We say \mathfrak{s} is a strongly good ι-frame when
(A) It is a good ι-frame.
(B) If \mathbf{J} is the disjoint union of \mathbf{J}_{1} and $\mathbf{J}_{2},(M, N, \mathbf{J}) \in K_{\mathfrak{s}}^{3, \text { bs }}, M \leq_{\mathfrak{s}} M_{1} \leq_{\mathfrak{s}} N$, and $\left(M, M_{1}, \mathbf{J}\right) \in K_{\mathfrak{s}}^{3, \text { qr }}$ then $\left(M_{1}, N, \mathbf{J}_{2}\right) \in K_{\mathfrak{s}}^{3, \text { bs }}$ and $\operatorname{ortp}\left(a, M_{1}, N\right)$ does not fork over M for all $a \in \mathbf{J}_{2}$.

Claim 2.11. Assume \mathfrak{s} is strongly good.

1) If p is strongly dominated by $\left\{p_{t}: t \in I\right\}$ then p is weakly dominated by $\left\{p_{t}: t \in I\right\}$.
2) If p is strongly dominated by $\left\{p_{t}: t \in I\right\}$ then for some $J \subseteq I$ of cardinality $<\kappa_{\mathfrak{s}}, p$ is strongly dominated by $\left\{p_{t}: t \in J\right\}$.
3) p is weakly dominated by $\left\{p_{t}: t \in I\right\}$ iff for some $\left\langle i_{t}: t \in I\right\rangle$, p is strongly dominated by $\left\{p_{s}^{\prime}: s \in\left\{(t, i): t \in I, i<\overline{i_{t}}\right\}\right\}$, where $p_{(t, i)}^{\prime}=p_{t}$ and $i_{t}<\kappa_{\mathfrak{s}}$ for each $t \in I$.
4) In Definition 2.10(2) without loss of generality $(\forall s \in I)(\exists<\kappa t \in J)[h(t)=s]$.

[^5]5) Preservation by parallelism.
6) $(M, N, \mathbf{J}) \in K_{\mathfrak{s}}^{3, \mathrm{bs}}$ iff for every finite $\mathbf{I} \subseteq \mathbf{J}$ we have $(M, N, \mathbf{I}) \in K_{\mathfrak{s}}^{3, \mathrm{bs}}$.
7) If $\mathbf{J}=\left\{a_{s}: s \in \bar{I}\right\}$ is independent in (M, N) as witnessed by
$\left\langle M_{1, \alpha}: \alpha \leq \alpha(*)\right\rangle,\langle t(\alpha): \alpha<\alpha(*)\rangle\left(\right.$ see 2.8(5)) then $\left(M_{1,0}, M_{1, \alpha(*)}, \mathbf{J}\right) \in K_{\mathfrak{s}}^{3, \mathrm{qr}}$.
Proof. 1) Easy.
2) By 2.11(2), following some manipulation.
3) By 2.12 and clause (i) of Definition 2.1.
4),5) Easy.
6) The \Rightarrow direction follows from the definition; the \Leftarrow direction can be proved by induction on $\alpha(*)$.
7) By Definition 2.10(4).
Claim 2.12. If $(M, N, \mathbf{J}) \in K_{\mathfrak{s}}^{3, \text { bs }}$ and $b \in N$ then there exist $\mathbf{I} \subseteq \mathbf{J}$ and M_{1} such that:
(A) $M \leq_{\mathfrak{s}} M_{1} \leq_{\mathfrak{s}} N$
(B) $|\mathbf{I}|<\kappa_{\mathfrak{s}}$
(C) $b \in M_{1}$
(D) $\left(M, M_{1}, \mathbf{I}\right) \in K_{\mathfrak{s}}^{3, \text { bs }}$

Proof. Without loss of generality, $b \notin \mathbf{J}$. We try, by induction on $i \leq \kappa$, to choose N_{i} (and if possible, \mathbf{I}_{i}) such that
(*) (a) $N_{i} \leq_{\mathfrak{s}} N$ and $\mathbf{I}_{i} \subseteq \mathbf{J} \backslash \bigcup_{j<i} \mathbf{I}_{j}$, with $\left|\mathbf{I}_{i}\right|<\kappa$.
(b) If $j<i$ then $N_{j} \leq_{\mathfrak{s}} N_{i}$ and $\left(N_{j}, N_{j+1}, \mathbf{I}_{j}\right) \in K_{\mathfrak{s}}^{3, \mathrm{pr}}$.
(c) $N_{0}=M$
(d) If i is a limit ordinal then N_{i} is prime over $\left\langle N_{j}: j<i\right\rangle$.
(e) If $i=j+1$ and N_{j} has already been defined with $b \notin N_{j}$, and there is $\mathbf{I} \subseteq \mathbf{J} \backslash \bigcup_{\ell<j} \mathbf{I}_{\ell}$ of cardinality $<\kappa$ (or simply finite) such that

$$
\left(N_{j}, N, \mathbf{I} \cup\{b\}\right) \notin K_{\mathfrak{s}}^{3, \mathrm{bs}}
$$

then we can choose such \mathbf{I} as our \mathbf{I}_{j} and choose $N_{i} \leq_{\mathfrak{s}} N$ such that $\left(N_{j}, N_{i}, \mathbf{I}_{j}\right) \in K_{\mathfrak{s}}^{3, \mathrm{pr}}$.
If we carry the induction for all $i<\kappa$ we get a contradiction (see 2.1(E)(c)), so for some $i(*)<\kappa$ we will hit a point where $N_{i(*)}$ is well defined, but $\mathbf{I}_{i(*)}$ is not.

We prove, by induction on $\theta \leq|\mathbf{J}|$, that if $\mathbf{I} \subseteq \mathbf{J}^{\prime}=\mathbf{J} \backslash \bigcup_{j<i(*)} \mathbf{I}_{j}$ has cardinality θ then $\left(N_{i(*)}, N, \mathbf{I} \cup\{b\}\right) \in K_{\mathfrak{s}}^{3, \text { bs }}$. So, using Case 1 of Definition 2.1(E)(i), we are finished.

Claim 2.13. 1) If $p \leq_{\mathrm{wk}}\left\{p_{i}: i<i^{*}\right\}$ and $i<i^{*} \Rightarrow q \perp p_{i}$ then $q \perp p$ (see Definition 2.7(3)).
2) If $p \leq_{\mathrm{wk}}\left\{p_{i}: i<i^{*}\right\}$ and $p \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}(M)$ then $p \not \perp p_{i}$ for some $i<i^{*}$.
3) If $p \leq_{\text {st }}\left\{p_{i}: i<\alpha\right\}$ then $p \leq_{\text {st }}\left\{p_{i}: i<\alpha, p_{i} \not \perp p\right\}$ (see Definition 2.10).

Proof. 1) By induction on i^{*} : for i^{*} limit we use 2.1(E)(i), and for i^{*} successor use $q \perp p_{i^{*}-1}$.
2) By part (1) and 2.11(3).
3) Easy.

Claim 2.14. Assume \mathfrak{s} is type-full.
If $\chi=\chi^{<\kappa} \in[\lambda, \mu)$, the following is impossible:
(a) $\left\langle M_{i}: i<\chi^{+}\right\rangle$is $\leq_{\mathfrak{s}}$-increasing $\leq_{\mathfrak{s}}$-semi-continuous,
(b) $\left\langle N_{i}: i<\chi^{+}\right\rangle$is $\leq_{\mathfrak{s}}$-increasing, $\leq_{\mathfrak{s}}$-semi-continuous,
(c) $M_{i} \leq_{\mathfrak{s}} N_{i} \in K_{\leq \chi}$,
(d) for some stationary $S \subseteq\left\{\delta<\chi^{+}: \operatorname{cf}(\gamma) \geq \kappa\right\}$, for every $i \in S$,

- There is $a_{i} \in M_{i+1} \backslash M_{i}$ such that $\operatorname{ortp}\left(a_{i}, N_{i}, N_{i+1}\right)$ is not the nonforking extension of $\operatorname{ortp}\left(a_{i}, M_{i}, M_{i+1}\right) \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(M_{i}\right)$.
Proof. For some club E of χ^{+}, we have $i \in E \wedge j \in\left[i, \chi^{+}\right) \Rightarrow N_{i} \cap M_{j}=M_{i}$. For each $i \in S \cap E$, by $2.1(\mathrm{E})(\mathrm{c})$, there is a $j_{i}<i \operatorname{such}$ that $\operatorname{ortp}\left(a_{i}, M_{i}, M_{i+1}\right)$ does not fork over $M_{j_{i}}$. By clause (E)(i) of 2.1, for some $j \in\left[j_{i}, i\right)$, we have that $\operatorname{ortp}\left(a_{i}, N_{j}, N_{i+1}\right)$ is not the non-forking extension of $\operatorname{ortp}\left(a_{i}, M_{j_{i}}, M_{i+1}\right)$, so without loss of generality this holds for $j=j_{i}$.

By Fodor's Lemma, for some $j(*)<j$ the set $S^{\prime}=\left\{i \in S \cap E: j_{i}=j(*)\right\}$ is stationary. So $\left\{b_{i}: i \in S^{\prime}\right\}$ is independent in $\left(\bigcup_{j} M_{j}, M_{j+1}\right)$. By part (3) we are done.

Also, there is a sequence $\left\langle M_{j(*), \varepsilon}: \varepsilon \leq \varepsilon_{*} \leq \kappa\right\rangle$ which is $\varepsilon_{\mathfrak{s}}$-increasing continuous, with $M_{j(*), 0}=M_{j(*)}, M_{j(*), \varepsilon}=N_{j(*)}$, and $\left(M_{j(*), \varepsilon}, M_{j(*), \varepsilon+1}, c_{\varepsilon}\right) \in K_{\mathfrak{s}}^{3, \text { pr }}$. Now we can choose $\zeta_{\varepsilon}<\chi^{+}$by induction on $\varepsilon<\varepsilon *$, increasing continuous, such that $\left\{a_{i}: i \in\left[\zeta_{i}, \chi^{+}\right)\right\}$is independent in $\left(M_{j(*), \varepsilon}, \bigcup_{j} N_{j}\right)$ and $\operatorname{ortp}\left(a_{i}, M_{j(*), \varepsilon}, N_{i+1}\right)$ does not fork over $M_{j(*)}$ for $i \in\left[\zeta, \chi^{+}\right)$- an easy contradiction. The induction works for $\varepsilon=0$ trivially, for ε limit by 2.11(6), and for $\varepsilon=\xi+1$ we use 2.12 .
Example 2.15. 1) For a complete f.o. strictly stable T and $\kappa=\operatorname{cf}(\kappa)>\aleph_{0}$, we define \mathfrak{k} by
(A) $K_{\mathfrak{k}}$ is the class of κ-saturated (equivalently, \mathbf{F}_{κ}^{a}-saturated) models of T.
(B) $\leq_{\mathfrak{k}}$ is defined by $M \leq_{\mathfrak{k}} N$ iff $M, N \in K_{\mathfrak{k}}$ and $M \prec N$.

Claim 2.16. If $p, p_{i} \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}(M)$ for $i<\kappa_{\mathfrak{s}}$ and $i<j \Rightarrow p_{i} \perp p_{j}$ then $p \perp p_{i}$ for every $i<\kappa$ large enough.
Proof. Similar to the proof of [Shea, $1.6=\mathrm{Lj} 20]$. \qquad
Definition 2.17. 1) We say that a good frame \mathfrak{s} is θ-based ${ }_{1}$ when:
(A) If $p \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}(M)$ then for some $\overline{\mathbf{a}} \in{ }^{\theta>} M, p$ is based on $\overline{\mathbf{a}}$ (see Definition 2.3(4)).
2) We say that \mathfrak{s} is θ-based ${ }_{2}$ when:
(A) Is as in part (1).
(B) \mathfrak{s} is type-full.
(C) If $M_{1} \leq_{\mathfrak{s}} M_{2}$ and $p \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(M_{2}\right)$ then, for some $\bar{a}_{\ell} \in{ }^{\theta>}\left(M_{\ell}\right)$, the types p and $\operatorname{ortp}_{\mathfrak{s}}\left(\bar{a}_{2}, M_{1}, M_{2}\right)$ are based on $\overline{\mathbf{a}}_{2}, \overline{\mathbf{a}}_{1}$, respectively.

§ 3. Thoughts on the main gap

We address here two problems: type theory (i.e. dimension, orthogonality, etc.) for strictly stable classes, and the main gap concerning somewhat saturated models. The hope always was that advances in the first will help the second.

Concerning the first order case, work started in [She90, Ch.V] (particularly §5) and [She91] and was much advanced in Hernandes [Her92]; but this was not enough for the main gap for somewhat saturated models.

Here we are dealing with the type dimension in a general framework.

The main gap for \aleph_{1}-saturated models of a countable first order theory is open. A priori, it has looked easier than the one for models (which was preferred, being "the original question") because of the existence of prime models over any, but is still open. (The problem for uncountable first order $|T|^{+}$-saturated models is as well).

Why doesn't the proof in [She90, Ch.XII] work? What's missing is, in $\mathfrak{C}^{\text {eq }}$,
\circledast If $M_{0} \prec M_{1} \prec M_{2}$ are \aleph_{1}-saturated, $a \in M_{2} \backslash M_{1}$ and $\left(a / M_{1}\right) \not \perp M_{0}$ then for some $b \in M_{2} \backslash M_{1}$ we have $b \bigcup M_{1}$.

$$
\bar{M}_{0}
$$

The central case is when a / M_{1} is orthogonal to q if $q \perp M_{0}$.
Possible Approach 1: We use T being first order countable, stable NDOP (even shallow) to understand types. See [LS06].

Possible Approach 2: We use the context dealt with in this paper. We are poorer in knowledge on the class but we have a richer $\mathfrak{C}^{\text {eq }}$, so we may prove \circledast even if it fails for T in the elementary case (this is a connection between [Sheb] and this work).

Possible Approach 3: We start with the context here. If things are not OK, we define such a derived DAEC; this was done in [She09e] and [She09b]. It may have non-structure properties - enough to get the maximal number of models up to isomorphism. If not, we arrive to a finer \mathfrak{k}, but still a case of our context. Similarly in limit. If we succeed enough times we shall prove that all is OK.

Possible Approach 4: Now we have a maximal non-forking tree $\left\langle M_{\eta}, a_{\eta}: \eta \in \mathcal{T}\right\rangle$ inside a somewhat saturated model; for [She90], e.g. $\left\|M_{\eta}\right\| \leq \lambda$, the models are λ^{+}-saturated but we use models from here. If M is prime over $\bigcup\left\{M_{\eta}: \eta \in \mathcal{T}\right\}$ we are done, but maybe there is a residue. This appears in the following way: for $\eta \in \mathcal{T}$ and $p \in \mathcal{S}^{\mathrm{bs}}\left(M_{\eta}\right)$, the dimension of p is not exhausted by

$$
\left\{a_{\eta^{\wedge}\langle\alpha\rangle}: \eta^{\wedge}\langle\alpha\rangle \in \mathcal{T} \text { and }\left(a_{\eta^{\wedge}}\langle\alpha\rangle / M_{\eta}\right) \not \perp p\right\}
$$

but the lost part is not infinite! This imposes $\leq \lambda$ unary functions from \mathcal{T} to \mathcal{T}. Now it seems to us that the question of whether this possible non-exhaustion can arise ${ }^{7}$ is not a good dividing line, as though its negation is informative it is not clear whether it has any consequence. However, there are two candidates for dividing lines (actually, their disjunction seems to be what we want).
(A) (*) We can find $M,\left\langle M_{\eta}, a_{\eta}: \eta \in \mathcal{T}\right\rangle$ as above and $\eta_{*} \in \mathcal{T}, \ell g(\eta)=2$, $\nu_{*} \in \mathcal{T}, \ell g\left(\nu_{*}\right)=1, \eta_{*} \upharpoonright 1 \neq \nu_{*}$, and $p \in \mathcal{S}^{\mathrm{bs}}\left(M_{\eta_{*}}\right), p \perp M_{\eta \upharpoonright 1}$ with a residue as above such that we need $M_{\nu_{*}}$ to explicate it.

[^6]More explicitly,
$(*)^{\prime}$ If $M^{\prime} \leq_{\mathfrak{s}} M$ is prime over $\bigcup\left\{M_{\eta}: \eta \in \mathcal{T}\right\}$ and we can find $a_{\eta_{*}, \nu_{*}} \in M \backslash M^{\prime}$ such that $\operatorname{ortp}\left(\mathscr{C}\left(a_{\eta^{*}, \nu^{*}}, M^{\prime}\right), \bigcup\left\{M_{\eta}: \eta \in \mathcal{T}\right\}\right) \operatorname{mark}\left(M_{\eta_{*}}, M_{\nu_{*}}\right)$.
Even in $(*)^{\prime}$ we have to say more in order to succeed in using it.
From $(*)^{\prime}$ we can prove a non-structure result: on \mathcal{T} we can code any two-place relation R on $\left\{\eta \in \mathcal{T}: \ell g(\eta)=1, M_{\eta}, M_{\eta_{*} \upharpoonright 1}\right.$ isomorphic over $\left.M_{\langle \rangle}\right\}$which is of the form $\nu_{1} R \nu_{2} \Leftrightarrow(\exists \nu) \bigwedge_{\ell}\left[\right.$ there is $\eta^{\prime}, \eta_{\ell} \triangleleft \eta^{\prime} \in \mathcal{T}, \ell g\left(\eta^{\prime}\right)=2$ and $\nu \in T, \ell g(\nu)=1$ and there is $a_{\eta^{\prime}, \nu}$ as above].

More complicated is the case
(B) (**) We can fix $M,\left\langle M_{\eta}, a_{\eta}: \eta \in \mathcal{T}\right\rangle$ as above, $\eta_{*} \in T, \nu_{*}, \nu_{* *} \in \mathcal{T}$, $\ell g\left(\eta_{*}\right)=\ell g\left(\nu_{*}\right)=\ell g\left(\nu_{* *}\right)=1$ such that $\left(\eta_{*}, \nu_{*}\right),\left(\eta_{*}, \nu_{* *}\right)$ are as above.

But whereas for (A) we have to make both η_{*} and ν_{*} not redundant in (B), in order to get non-structure we have to use a case of (B) which is not "a faking;" e.g. we cannot replace ($M_{\eta_{*}}, a_{\eta_{*}}$) by two such pairs.

That is, the "faker" is a case where we can find $M_{\eta_{*}}^{\prime}, M_{\eta_{*}}^{\prime \prime}$ such that:

- $\mathrm{NF}\left(M_{\langle \rangle}, M_{\eta_{*}}^{\prime}, M_{\eta_{*}}^{\prime \prime}, M_{\eta_{*}}\right)$
- $M_{\eta_{*}}$ is prime over $M_{\eta_{*}}^{\prime} \cup M_{\eta_{*}}^{\prime \prime}$.
- Only $\left(M_{\eta_{*}}^{\prime}, M_{\nu_{*}}\right)$ and $\left(M_{\eta_{*}}^{\prime \prime}, M_{\nu_{* *}}\right)$ relate.
(C) If both (A) and (B), in the right formulation, do not appear then
(α) A good possibility
We can prove a structure theory: for $M,\left\langle M_{\eta}, a_{\eta}: \eta \in \mathcal{T}\right\rangle$ as above; that is, on each $\operatorname{suc}_{\mathcal{T}}(\eta)$ we have a two-place relation, but it is very simple: you have to glue some together or expand the set of successors by a tree structure.
If this fails we may fall back to approach (3).
We may consider (see [She08], [PS18]):
Question 3.1. 1) For an AEC \mathfrak{k}, when does the theory of a model in the logic $\mathscr{L}=\mathbb{L}_{\infty, \kappa}[\mathfrak{k}]$ enriched by dimension quantifiers, characterize models of \mathfrak{k} up to isomorphism? Similarly enriching also by game quantifiers of length $\leq \kappa$.

2) Prove the main gap theorem in the version: if \mathfrak{s} is n-beautiful [or $n+1$?] then for $K_{\lambda+n}$ the main gap holds. In particular, if \mathfrak{s} has NDOP, then every $M \in K_{\lambda+n}$ is prime over some non-forking tree of $\leq_{\mathfrak{R}[\mathfrak{s}]}$-submodels $\left\langle M_{\eta}: \eta \in \mathcal{T}\right\rangle$, each M_{η} of cardinality $\leq \lambda$, where $\mathcal{T} \subseteq{ }^{\omega>}\left(\lambda^{+n}\right)$. If \mathfrak{s} is shallow then the tree has depth $\leq \operatorname{Depth}(\mathfrak{s})<\lambda^{+}$and we can draw a conclusion on the number of models.

Discussion 3.2. Assume stability in $\lambda_{\mathfrak{s}}$.
Let $M_{0} \in K_{\mathfrak{s}}, \lambda_{\mathfrak{s}}^{+}$-saturated, at least for the time being.

1) Assume

$$
\boxplus_{1} N_{0} \leq_{\mathfrak{s}} N_{1} \leq_{\mathfrak{s}} M, N_{\ell} \in K_{\lambda}^{\mathfrak{s}}, a \in N_{0}, \text { and }\left(N_{0}, N_{1}, a\right) \in K_{\mathfrak{s}}^{3, \mathrm{pr}}
$$

We choose $\left(N_{1, i}^{+}, N_{1, i}, \mathbf{I}_{i}\right)$ and also, if possible, $\left(M_{1}, a_{i}\right)$ by induction on $i \leq \lambda_{\mathfrak{s}}^{+}$such that
(*) (a) $N_{0, i} \leq_{\mathfrak{s}} N_{1, i} \leq_{\mathfrak{s}} N_{1, i}^{+} \leq_{\mathfrak{s}} M$
(b) $\mathbf{I}_{i} \subseteq\left\{c \in M: \operatorname{ortp}\left(c, N_{1, i}, M_{0}\right) \perp N_{0}\right\}$ is independent in $\left(N_{1, i}, N_{1, i}^{+}, M\right)$ and minimal.
(c) $\left\langle N_{j}: j \leq i\right\rangle$ is $\leq_{\mathfrak{s}}$-semi-continuous; also, $\left\langle N_{j}^{+}: j \leq i\right\rangle$ is as well.
(d) If $i=j+1$ then $N_{1, i}^{+}$is $\leq_{\mathfrak{s}}$-universal over $N_{1, j}^{+}$and $\left(N_{0}, N_{1, i}, a\right) \in K_{\mathfrak{s}}^{3, \mathrm{pr}}$.
(e) If $j<i$ then $\mathbf{I}_{j} \backslash\left(N_{i} \cap \mathbf{I}_{j}\right) \subseteq \mathbf{I}_{i}$.
(f) If possible:
(α) $N_{i} \leq_{\mathfrak{s}} M_{i}^{+} \leq_{\mathfrak{s}} M$
(β) $\left(\mathbf{I}_{i} \backslash M_{i}\right)$ is independent in $\left(M_{i}, M\right)$.
$(\gamma) a_{i} \in M \backslash\left(\mathbf{I}_{i}\right)$
($\delta) \operatorname{ortp}\left(a_{i}, M_{1}^{*}, M\right) \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(N_{i}^{+}\right)$is $\perp N_{i}$.
(ε) $N_{i}^{*} \leq N_{1, i+1}$
(g) If $i=j+1$ and there are $\left(b, N_{*}^{+}, N_{* *}\right)$ such that $b \in N_{1, j}^{+} \backslash N_{1, j}$,

$$
N_{1, i} \leq_{\mathfrak{s}} N_{*} \leq_{\mathfrak{s}} N_{* *} \in K_{\lambda_{\mathfrak{s}}}^{\mathfrak{s}}
$$

$N_{1, i}^{+} \leq_{\mathfrak{s}} N_{* *}$, and $\operatorname{ortp}_{\mathfrak{s}}\left(b, N_{*}, N_{* *}\right)$ forks over $N_{1, j} \underline{\text { then, for some }}$ $b \in N_{1, j}^{+} \backslash N_{1, j}$, the type $\operatorname{ortp}_{\mathfrak{s}}\left(N_{1, i}, N_{1, i}^{+}\right)$forks over $N_{1, j}$.
There is no problem to carry the induction.
\boxplus_{2} The following subset of $\lambda_{\mathfrak{s}}^{+}$is not stationary - say, disjoint to the club C :

- $S=\left\{i<\lambda_{\mathfrak{s}}^{+}: \operatorname{cf}(i) \geq \kappa_{\mathfrak{s}}\right.$ and $\left(M_{i}, a_{i}\right)$ is well defined $\}$
- $S_{2}=\left\{i: \operatorname{cf}(i) \geq \kappa_{\mathfrak{s}}\right.$ and for some $\left.b \in N_{1, i}^{+}, \operatorname{tp}\left(b, N_{1, i}, N_{1, i}^{+}\right)=N_{0}\right\}$.

2) Similarly without (N_{0}, a) hence without " $\perp N_{0}$;" it's just simpler.

Definition 3.3. We say $(\bar{N}, \bar{a}, \bar{I})$ is a decreasing pair for M when for some n :
(A) $\bar{N}=\left\langle N_{\ell}: \ell \leq n\right\rangle$ is $\leq_{\mathfrak{s}}$-increasing.
(B) $N_{\ell} \leq_{\mathfrak{s}} M, N_{\ell} \in K_{\lambda_{\mathfrak{s}}}^{\mathfrak{s}}$
(C) $\bar{a}=\left\langle a_{\ell}: \ell<n\right\rangle$
(D) $\left(N_{\ell}, N_{i+1}, a_{\ell}\right) \in K_{\mathfrak{s}}^{3, \mathrm{pr}}$
(E) $\overline{\mathbf{I}}=\left\langle\mathbf{I}_{\ell}: \ell \leq n\right\rangle$
(F) \mathbf{I}_{ℓ} is independent in $\left(N_{\ell}, M\right)$.
(G) $\mathbf{I}_{\ell} \subseteq\left\{c \in M: \operatorname{ortp}\left(c, N_{\ell}, M\right) \in \mathcal{S}_{\mathfrak{s}}^{\mathrm{bs}}\left(N_{\ell}\right)\right.$ is $\perp N_{k}$ if $\left.k<\ell\right\}$
(H) If $N_{\ell} \leq_{\mathfrak{s}} N \leq_{\mathfrak{s}} M, b \in M \backslash N_{0} \backslash \mathbf{I}_{\ell}$, and $\operatorname{ortp}(b, N, M)$ is $\not \perp N_{\ell}$ but is orthogonal to N_{k} for $k<\ell$ then b depends on \mathbf{I}_{ℓ} in $\left(N_{\ell}, M\right)$.

Attempt to prove decomposition

We assume dimensional continuity to prove decomposition. If we would like to get rid of " M is $\lambda_{\mathfrak{s}}^{+}$-saturated", we must assume we have a somewhat weaker version \mathfrak{s}_{*} of \mathfrak{s} where $\lambda_{\mathfrak{s}_{*}}<\lambda_{\mathfrak{s}}$ and $\left\langle N_{0, i}: i<\lambda_{\mathfrak{s}}\right\rangle \leq_{\mathfrak{s}_{*}}$-represent N_{0}, and work with that. Assuming $\mathrm{CH},|T|=\aleph_{0}$ is fine. Without dimensional discontinuity we call 'nice' any $(\bar{N}, \bar{a}, \overline{\mathbf{I}})$ of length $\leq \kappa_{\mathfrak{s}}$!

Definition 3.4. We say $\mathbf{d}=(I, N, \bar{a}, \overline{\mathbf{I}})=\left(I_{\mathbf{d}}, \bar{N}_{d}, \bar{a}_{\mathbf{d}}, \overline{\mathbf{I}}_{\mathbf{d}}\right)$ is a partial decomposition of when:
\boxplus (a) $I \subseteq{ }^{\omega>}$ Ord is closed under initial segments.
(b) $\bar{N}=\left\langle N_{\eta}: \eta \in I\right\rangle$, so $N_{\eta}=N_{\mathbf{d}, \eta}$.
(c) $\bar{a}=\left\langle a_{\eta}: \eta \in I \backslash\{\langle \rangle\}\right\rangle$, so $a_{\eta}=a_{\mathbf{d}, \eta}$.
(d) $\overline{\mathbf{I}}=\left\langle\mathbf{I}_{\eta}: \eta \in I\right\rangle$, so $\mathbf{I}_{\eta}=\mathbf{I}_{\mathbf{d}, \eta}$.
(e) If $\eta \in I$ then

$$
\left(\left\langle N_{\eta \upharpoonright \ell}: \ell \leq \ell g(\eta)\right\rangle,\left\langle\bar{a}_{\eta \upharpoonright(\ell+1)}: \ell<\ell g(\eta)\right\rangle,\left\langle\mathbf{I}_{\eta \upharpoonright \ell}: \ell \leq \ell g(\eta)\right\rangle\right)
$$

is nice in M.
(f) If $\eta \in I$ then $\left\langle a_{\eta^{\wedge}}\langle\alpha\rangle: \eta^{\wedge}\langle\alpha\rangle \in I\right\rangle$ is a sequence of members of \mathbf{I}_{η} with no repetitions.
Definition 3.5. Let \leq_{μ} be the following two-place relation on the set of decompositions of M :
$\overline{\mathbf{d}}_{1} \leq_{M} \mathbf{d}_{2}$ iff
(A) $I_{\mathbf{d}_{1}} \subseteq \mathbf{I}_{d_{1}}$
(B) $\bar{N}_{\mathbf{d}_{1}}=\bar{N}_{\mathbf{d}_{2}} \upharpoonright I_{d_{1}}$
(C) $\bar{a}_{\mathbf{d}_{1}}=\bar{a}_{\mathbf{d}_{2}} \upharpoonright\left(I_{\mathbf{d}_{1}} \backslash\{<j\}\right)$
(D) $\overline{\mathbf{I}}_{\mathbf{d}_{1}}=\overline{\mathbf{I}}_{d_{2}} \upharpoonright I_{\mathbf{d}_{1}}$

References

[CK66] Chen-Chung Chang and H. Jerome Keisler, Continuous model theory, Annals of Mathematics Studies, vol. 58, Princeton University Press, Princeton, NJ, 1966.
[Her92] A. Hernandez, On ω_{1}-saturated models of stable theories, Ph.D. thesis, Univ. of Calif. Berkeley, 1992, Advisor: Leo Harrington.
[Kei20] H.J. Keisler, Model theory for real-valued structures, arXiv:2005.11851.
[LS06] Michael Chris Laskowski and Saharon Shelah, Decompositions of saturated models of stable theories, Fund. Math. 191 (2006), no. 2, 95-124. MR 2231058
[PS18] Daniel Palacín and Saharon Shelah, On the class of flat stable theories, Ann. Pure Appl. Logic 169 (2018), no. 8, 835-849, arXiv: 1801.01438. MR 3802227
[Shea] Saharon Shelah, AEC for strictly stable II.
[Sheb] , AEC: weight and p-simplicity.
[She75] _, The lazy model-theoretician's guide to stability, Logique et Analyse (N.S.) 18 (1975), no. 71-72, 241-308. MR 0539969
[She90] , Classification theory and the number of nonisomorphic models, 2nd ed., Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam, 1990, Revised edition of [Sh:a]. MR 1083551
[She91] , Multi-dimensionality, Israel J. Math. 74 (1991), no. 2-3, 281-288. MR 1135240
[She01] _, Categoricity of an abstract elementary class in two successive cardinals, Israel J. Math. 126 (2001), 29-128, arXiv: math/9805146. MR 1882033
[She08] _, Theories with Ehrenfeucht-Fraïssé equivalent non-isomorphic models, Tbil. Math. J. 1 (2008), 133-164, arXiv: math/0703477. MR 2563810
[She09a] , Abstract elementary classes near \aleph_{1}, Classification theory for abstract elementary classes, Studies in Logic (London), vol. 18, College Publications, London, 2009, arXiv: 0705.4137 Ch . I of [Sh:h], pp. vi+813.
[She09b] \qquad , Categoricity in abstract elementary classes: going up inductively, 2009, arXiv: math/0011215 Ch. II of [Sh:h].
[She09c] , Categoricity of an abstract elementary class in two successive cardinals, revisited, 2009, Ch. 6 of [Sh:i].
[She09d] , Classification theory for abstract elementary classes, Studies in Logic (London), vol. 18, College Publications, London, 2009. MR 2643267
[She09e] , Universal Classes: The heart of the matter, 2009, Ch. V (F) of [Sh:i].
Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel, and, Department of Mathematics, Hill Center - Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

Email address: shelah@math.huji.ac.il
URL: http://shelah.logic.at

[^0]: Date: April 23, 2023.
 2020 Mathematics Subject Classification. Primary 03C48; Secondary 03C45.
 Key words and phrases. model theory, classification theory, stability, AEC, orthogonality, weight, main gap.

 For earlier versions, the author thanks Alice Leonhardt for the beautiful typing up to 2019. The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 242/03). First typed 2002-Sept-10 as $\S 4-7$ of [Sheb]; $\S 8-11$ of the original paper can be found as [Shea].
 For later versions, the author would like to thank the NSF and BSF for partially supporting this research - NSF-BSF 2021: grant with M. Malliaris, NSF 2051825, BSF 3013005232 (2021/102026/09). The author is also grateful to an individual who wishes to remain anonymous for generously funding typing services, and thanks Matt Grimes for the careful and beautiful typing. References like [Sh:950, Th0.2=Ly5] mean that the internal label of Th0.2 is y5 in Sh:950. The reader should note that the version in my website is usually more up-to-date than the one in arXiv.

[^1]: ${ }^{1}$ By 1.1, it is not necessary to say this.

[^2]: ${ }^{2}$ Otherwise the class of existentially closed models of T is divided into $\leq 2^{|T|}$ subclasses, each of them of this form.
 3^{n} net stands for 'non-metric.'

[^3]: ${ }^{4}$ Note that \mathscr{E}_{M} at is not an equivalence relation, and \mathscr{E}_{M} certainly isn't, in general.

[^4]: ${ }^{5}$ Follows by (C), in fact.

[^5]: ${ }^{6}$ So pedantically, we should use a sequence and write $p \leq_{\mathrm{st}}\left\langle p_{t}: t \in I\right\rangle$.

[^6]: ${ }^{7}$ Essentially: there is a non-algebraic $p \in\left(M^{\perp}\right)^{\perp}$ which do not 1-dominate any $q \in \mathcal{S}(M)$.

