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Abstract. In the original version of this paper, we assume a theory T that the
logic Lκ,ℵ0 is categorical in a cardinal λ > κ, and κ is a measurable cardinal.

There we prove that the class of models of T of cardinality < λ (but ≥ |T |+κ)

has the amalgamation property under a natural order; this is a step toward
understanding the character of such classes of models.

In this revised version we replaced the class of models of T by k, an AEC
(abstract elementary class) which has LS-number <κ, or at least which behave

nicely for ultrapowers by D, a normal ultra-filter on κ.

Presently sub-section §1A deals with T ⊆ Lκ+,ℵ0 (and so does a large part

of the introduction and little in the rest of §1), but otherwise, all is done in

the context of AEC.
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2 S. SHELAH AND OREN KOLMAN

Annotated Content

§0 Introduction, pg. 4.

§1 Preliminaries, pg. 6.

[In §1A we review materials on fragments F of Lκ,ℵ0 (including the theory
T ) and basic model-theoretic properties (Tarski-Vaught property and L.S.),
and we define amalgamation. In §1B we move to AEC k = (K,≤k) which is
our main framework now and spell out the connection. In §1C, D we deal
with indiscernibles and E.M. models, then we deal with limit ultrapowers
which are suitable (for Lκ,ℵ0 and for our AECs) and in particular ultralim-
its. Next, we introduce a notion basic for this paper M �

nice
N if there is a

�k-embedding of N into suitable ultralimit of M extending the canonical
one.]

§2 The amalgamation property for regular categoricity, pg. 15.

[We get amalgamation in (Kλ,≤k) when one of the extensions is nice in
2.1. We prove that if k is categorical in the regular λ > LSTk + κ, then
(K<λ,≤k) has the amalgamation property. For this, we show that nice
extension (in K<λ) preserves being a non-amalgamation basis. We also
start investigating (in 2.6) the connection between extending the linear
order I and the model EM(I): I ⊆

nice
J ⇒ EM(I) ≤

nice
EM(J); and give

sufficient condition for I ⊆
nice

J (in 2.7). From this, we get in Kλ a model

such that any submodel of an expansion is a ≤
nice

-submodel (in 2.9, 2.12(2)),

and conclude the amalgamation properly in (K<λ,≤k) when λ is regular
(in 2.11) and something for singulars in 2.12.]

§3 Toward removing the assumption of regularity from the existence of universal
extensions, pg. 20.

[The problem is that EM(λ) has many sub-models which “sit” well in it
and we can prove that there are many amalgamation bases but we need
to get this simultaneously. First in 3.1 we show that, if 〈Mi : i < θ+〉 is
≤k-increasing continuous sequence of models from Kθ, then for a club of
i < θ+, Mi ≤

nice

⋃
{Mj : j < θ+}. In Definition 3.6, we define nice models

(essentially, every reasonable extension is nice). Next (in 3.4) we show that
nice models are dense in Kθ. Also (by 3.5) many embeddings are nice and
(in 3.6) we show that being nice implies being amalgamation base. Then
we define a universal extension of M ∈ Kθ in K∂ (Definition 3.7), we prove
existence over a model in 3.10 and after preparation prove existence (3.13,
3.14).]

§4 (θ, ∂)-saturated models, pg. 25.

[If Mi ∈ Kθ for i ≤ ∂ is increasing continuous, Mi+1 universal over Mi,
each Mi-nice, then M∂ is (θ, ∂)-saturated over M0. We show existence
(and uniqueness). We connect this to more usual saturation and prove that
(θ, ∂)-saturation implies niceness (in 4.10).]

§5 The amalgamation property for K<λ, pg. 30.

[After preliminaries we prove that for θ ≤ λ (and θ ≥ LST(k) +κ of course)
every member of Kθ can be extended to one with many nice submodels,
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CATEGORICITY AND AMALGAMATION FOR AEC, AND κ MEASURABLE 3

this is done by induction on θ using the niceness of (θ1, ∂1)-saturated mod-
els. Lastly, we conclude that every M ∈ K<λ is nice hence K<λ has the
amalgamation property.]
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4 S. SHELAH AND OREN KOLMAN

§ 0. Introduction

The main result of this paper is a proof of the following theorem:

Theorem 0.1. Suppose that T is a theory in a fragment of Lκ,ℵ0 where κ is a
measurable cardinal. If T is categorical in the cardinal λ > κ+ |T |, then K<λ, the
class of models of T of power strictly less than λ (but ≥ χ = κ + |T |), has the
amalgamation property (see Definition 1.11 (1)(2)).

The interest in this theorem stems in part from its connection with the study of cat-
egoricity spectra. For a theory T in a logic L let us define Cat(T ), the categoricity
spectrum of T , to be the collection of those cardinals λ in which T is categorical.
In the 1950’s  Los conjectured that if T is a countable theory in first-order logic,
then Cat(T ) contains every uncountable cardinal or no uncountable cardinal. This
conjecture, based on the example of algebraically closed fields of fixed character-
istic, was verified by Morley [Mor65], who proved that if a countable first-order
theory is categorical in some uncountable cardinal, then it is categorical in every
uncountable cardinal. Following advances made by Rowbottom [Row64], Ressayre
[Res69] and Shelah [She69], Shelah [She74] proved the  Los conjecture for uncount-
able first-order theories: if T is a first-order theory categorical in some cardinal
λ > |T |+ ℵ0, then T is categorical in every cardinal λ > |T |+ ℵ0. It is natural to
ask whether analogous results hold for theories in logics other than first-order logic.
Perhaps the best-known extensions of first-order logic are the infinitary logics Lλ,κ.
As regards theories in Lκ,ℵ0 , Shelah (see [She83a] and [She83b]) continuing work
begun in [She75] introduced the concept of excellent classes: these have models in
all cardinalities, have the amalgamation property and satisfy the  Los conjecture. In
particular, if ϕ is an excellent sentence of Lκ,ℵ0 , then the  Los conjecture holds for ϕ.
Furthermore, under some set-theoretic assumptions (weaker than the Generalized
Continuum Hypothesis) if ϕ is a sentence in Lκ,ℵ0 which is categorical in ℵn for
every natural number n (or even just if ϕ is a sentence in Lκ,ℵ0 with at least one
uncountable model not having too many models in each ℵn), then ϕ is excellent.
Now, [She87c], [She09c] try to develop classification theory in some non-elementary
classes. We cannot expect much for Lλ,κ for κ > ℵ0. Shelah conjectured that if ϕ
is a sentence in Lκ,ℵ0 categorical in some λ > iω1

, then ϕ is categorical in every
λ > iω1

. (Recall that the Hanf number of Lκ,ℵ0 is iω1
, so if ψ is a sentence in

Lκ,ℵ0 and ψ has a model of power λ ≥ iω1
, then ψ has a model in every power

λ ≥ iω1 , see [Kei71]) . There were some who asked why so tardy the beginning.
Recent work of Hart and Shelah [HS90] showed that for every natural number k
greater than 1 there is a sentence ψk in Lκ,ℵ0 which is categorical in the cardinals
ℵ0, . . . ,ℵk−1, but which has many models of power λ for every cardinal λ ≥ 2ℵk−1 .
The general conjecture for Lκ,ℵ0 remains open nevertheless. As regards theories in
Lκ,ℵ0 , progress has been recorded under the assumption that κ is a strongly com-
pact cardinal. Under this assumption Shelah and Makkai [MS90] have established
the following results for a λ-categorical theory T in a fragment F of Lκ,ℵ0 :

1) if λ is a successor cardinal and λ > ((κ′)κ)+ where κ′ = max(κ, |F|), then T is
categorical in every cardinal greater than or equal to min(λ,i(2κ′ )+),

2) if λ > iκ+1(κ′), then T is categorical in every cardinal of the form iδ with δ

divisible by (2κ
′
)+ (i.e. for some ordinal α > 0, δ = (2κ

′
)+ · α (ordinal multiplica-

tion)).

In proving theorems of this kind, one has recourse to the amalgamation property
which makes possible the construction of analogs of saturated models. In turn, these
are of major importance in categoricity arguments. The amalgamation property
holds for theories in first-order logic [CK73] and in Lκ,κ when κ is a strongly
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CATEGORICITY AND AMALGAMATION FOR AEC, AND κ MEASURABLE 5

compact cardinal (see [MS90]: although ≺Lκ,κ fails the Tarski-Vaught property
for unions of chains of length κ (whereas ≺Lκ,ℵ0 satisfies it), under a categoricity

assumption it can be shown that ≺Lκ,ℵ0 and ≺Lκ,κ coincide). However, it is not
known in general for theories in Lκ,ℵ0 or Lκ,κ when one weakens the assumption
on κ, in particular when κ is just a measurable cardinal. Nevertheless, categoricity
does imply the existence of reasonably saturated models in an appropriate sense,
and it is possible to begin classification theory. This is why the main theorem of
the present paper is of relevance regarding the categoricity spectra of theories in
Lκ,ℵ0 when κ is measurable.

A sequel to this paper under preparation (which is now [She01b]) tries to provide
a characterization of Cat(T ) at least parallel to that in [MS90] and we hope to
deal with the corresponding classification theory later. This division of labor both
respects historical precedent and is suggested by the increasing complexity of the
material. Another sequel deals with abstract elementary classes (in the sense of
[She87a]) (see [She01b], [She99] respectively). On more work see [She01a], [She09b].

The paper is divided into five sections. Section 1 is preliminary and notational. In
section 2 it is shown that if the theory T ⊆ Lκ,ℵ0 or just suitable AEC K is categor-
ical in the regular cardinal λ > κ+ |T |, then K<λ has the amalgamation property.
Section 3 deals with weakly universal models, section 4 with (θ, ∂)-saturated and
θ̄-saturated models. In section 5 the amalgamation property for K<λ is established.

All the results in this paper (other than those explicitly credited) are due to Saharon
Shelah.

∗ ∗ ∗

On a more recent survey see [Sheb] and a recent one see [SV], in particular on the
history of κ-compact AEC.

We had thought that clearly, the proof of [KS96] works for AEC, but the referee
of [SS05] asked to do it explicitly. Here we justify [SV, 4.7]. Note that, [KS96,
1.1, 1.2] essentially proves that (Mod(T ),≺T ) is an AEC omitting Ax IV.

Paper Sh:E102, version 2023-04-27 4. See https://shelah.logic.at/papers/E102/ for possible updates.



6 S. SHELAH AND OREN KOLMAN

§ 1. PRELIMINARIES

To start things off in this section, let us fix notation, provide basic definitions and
well-known facts, and formulate our working assumptions.

The working assumptions in force throughout the paper are these.

Assumption 1.1. The cardinal κ is an uncountable measurable cardinal, and so
there is a κ-complete non-principal ultrafilter on κ, we can fix such D.

Assumption 1.2.

(1) The theory T is a theory in the infinitary logic Lκ,ℵ0 and χ = κ+ |T |.
(2) k is an AEC which is D-compact (see Definition 1.16, 1.41 respectively).

Our main theorem for the logic Lκ,ℵ0 is:

Theorem 1.3. If T ⊆ Lκ,ℵ0 is categorical in λ > κ+|τT | then the class of models of
T of cardinality < λ but ≥ κ+ |τT | (under the so called ≺Fτ ) has the amalgamation
property.

Proof. Use Theorem 1.18 on AEC which is applicable by 1.20. �1.3

From these assumptions follow certain facts, of which the most important are these.

Fact 1.4. For each model M of T , κ-complete ultrafilter D over I and suitable
set G of equivalence relations on I × I (see Definition 1.32) the limit ultrapower
Op(M) = Op(M, I,D,G) is a model of T .

Fact 1.5. For each linear order I = (I,≤) there exists a generalized Ehrenfeucht-
Mostowski model EM(I) of T .

This section is divided into several subsections: in §1A we deal with a theory T in
Lκ,ℵ0 , in §1B we move to AEC k showing that the context in §1A is a special case.
Then in §1C we deal with EM models. Finally, in §1D we deal with ultra-powers,
ultra-limits, and nice sub-models.

§ 1(A). Frame for Lκ,ℵ0 .
Relevant set-theoretic and model-theoretic information on measurable cardinals
can be found in [Jec03], [CK73], and [Dic75]. τ denotes1 a vocabulary, i.e. a set of
finitary relation and function symbols, including equality. |τ | is the cardinality of
the vocabulary τ .

Definition 1.6.

(1) For cardinals κ ≤ λ,Lλ,κ is the smallest set of (infinitary) formulas in the
vocabulary τ which contains all first-order formulas and which is closed under:

(A) the formation of conjunctions (disjunctions) of any set of formulas of power
less than λ, provided that the set of free variables in the conjunctions
(disjunctions) has power less than κ,

(B) the formation of ∀x̄ϕ,∃x̄ϕ, where x̄ = 〈xα : α < α∗〉 is a sequence of vari-
ables of length α∗ < κ.

(2) Whenever we use the notation ϕ(x̄) to denote a formula in Lλ,κ, we mean that
x̄ is a sequence 〈xα : α < α∗〉. So if ϕ(x̄) is a formula in Lκ,ℵ0 , then x̄ is a finite
sequence of variables.

1In the old version it was called “language” and denoted by L.
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CATEGORICITY AND AMALGAMATION FOR AEC, AND κ MEASURABLE 7

Notation 1.7.

(1) F denotes a fragment of L(τ), i.e. a set of formulas of L(τ) which contains
all atomic formulas of τ , and which is closed under negations, finite conjunctions
(finite disjunctions), and the formation of subformulas. An F-formula is just an
element of F .

(2) T is a theory in L(τ), so there is a fragment F of Lκ,ℵ0 such that T ⊆ F and
|F| < |T |+ + κ. If not said otherwise, T and F are fixed.

(3) Models of T (invariably referred to as models) are τ -structures which satisfy
the sentences of T . They are generally denoted M,N, . . . , and |M | is the universe
of the τ -structure M ; ‖M‖ is the cardinality of |M |.
(4) For a set A, |A| is the cardinality of A. <ωA is the set of finite sequences
in A and for ā = 〈a1 . . . an〉 ∈ <ωA, lg(ā) = n is the length of ā. Similarly, if
ā = 〈aζ : ζ < δ〉, we write lg(ā) = δ, where δ is an ordinal.

(5) For an element R of τ let val(M,R), or RM , be the interpretation of R in the
τ -structure M .

(6) We ignore models of power less than κ. K is the class of all models of T ;

Kλ = {M ∈ K : ||M || = λ}, K<λ =
⋃
µ<λ

Kµ, K≤λ =
⋃
µ≤λ

Kµ, K[µ,λ) =
⋃

µ≤χ<λ

Kχ.

(7) We write f : M →
F

N (abbreviated f : M → N) to mean that f is an F-

elementary embedding (briefly, an embedding) of M into N , i.e. f is a function
with domain |M | into |N | such that for every F-formula ϕ(x̄), and ā ∈ <ω|M |
with lg(ā) = lg(x̄),M � ϕ[ā] iff N � ϕ[f(ā)], where if ā = 〈ai : i < n〉, then
f(ā) := 〈f(ai) : i < n〉.
(8) In the special case where an embedding f is a set-inclusion (so that |M | ⊆ |N |),
we write M ≺F N (briefly M ≺ N) instead of f : M →

F
N and we say that M is

an F-elementary submodel of N , or N is an F-elementary extension of M .

Notation 1.8.

(1) (I,≤I), (J,≤J) are partial orders; we will not bother to subscript the order
relation unless really necessary; we write I for (I,≤). We say (I,≤) is directed iff
for every i1 and i2 in I, there is i ∈ I such that i1 ≤ i and i2 ≤ i. (I,<)∗ is the
(reverse) linear order (I∗, <∗) where I∗ = I and s <∗ t iff t < s.

(2) A set 〈Mi : i ∈ I〉 of models indexed by I is a ≺F -directed system iff (I,≤) is
a directed partial order and for i ≤ j in I,Mi ≺F Mj .

Note that, the union ∪
i∈I
Mi of a ≺F -directed system 〈Mi : i ∈ I〉 of τ -structures is

an τ -structure. In fact, more is true.

Fact 1.9.

(1) (Tarski-Vaught property) The union of a ≺F -directed system 〈Mi : i ∈ I〉 of
models of T is a model of T , and for every j ∈ I,Mj ≺F ∪

i∈I
Mi.

(2) If M is a fixed model of T such that for every i ∈ I there is fi : Mi →
F
M and for

all i ≤ j in I, fi ⊆ fj , then ∪
i∈I
fi : ∪

i∈I
Mi →

F
M . In particular, if Mi ≺F M for every

i ∈ I, then ∪
i∈I
Mi ≺F M . Let α be an ordinal. A ≺F -chain of models of length α

is a sequence 〈Mβ : β < α〉 of models such that if β < γ < α, then Mβ ≺F Mγ .
The chain is continuous if for every limit ordinal β < α,Mβ = ∪

γ<β
Mγ .

Fact 1.10.
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8 S. SHELAH AND OREN KOLMAN

(1) (Downward Löwenheim-Skolem Property): Suppose that M is a model of T ,
A ⊆ |M | and max(κ + |T |, |A|) ≤ λ ≤ ||M ||. Then there is a model N such that
A ⊆ |N |, ||N || = λ and N ≺F M .

(2) If N and M1 ⊆ M2 are τ -models, F is a fragment of Lκ,ℵ0 , and M` ≺F N for
` = 1, 2 then M1 ≺F M2.

Now we turn from the rather standard model-theoretic background to the more
specific concepts which are central in our investigation.

Definition 1.11.

(1) Suppose that < is a binary relation on a class K of models (mainly (K,<) =
(Kk, <k), see below) K = 〈K,<〉 has the amalgamation property (AP) iff for every
M,M1,M2 ∈ K, if fi is an isomorphism from M onto rng(fi) and rng(fi) < Mi

for i = 1, 2, then there exist N ∈ K and isomorphisms gi from Mi onto rng(gi) for
i = 1, 2 such that rng(gi) < N and g1f1 = g2f2. The model N is called an amalgam
of M1,M2 over M with respect to f1, f2.

(2) An τ -structure M is an amalgamation base (a.b.) for K = 〈K,<〉 iff M ∈
K and whenever for i = 1, 2,Mi ∈ K and fi is an isomorphism from M onto
rng(fi), rng(fi) < Mi, then there exist N ∈ K and isomorphisms gi (i = 1, 2) from
Mi onto rng(gi) such that rng(gi) < N and g1f1 = g2f2.

So K = 〈K,<〉 has AP iff every model in K is an a.b. for K.

Example 1.12. Suppose that T is a theory in first-order logic having an infinite
model. Define, for M,N in the class K≤|T |+ℵ0 of models of T of power at most
|T | + ℵ0, M < N iff there is an embedding of M into an elementary submodel of
N . Then K≤|T |+ℵ0 = 〈K≤|T |+ℵ0 , <〉 has AP, (see [CK73]).

Example 1.13. Suppose that T is a theory in Lκ,ℵ0 and F is a fragment of Lκ,ℵ0
containing T with |F| < |T |+ + κ. Let < be the binary relation ≺F defined on the
class K of all models of T . M ∈ K is an a.b. for K iff whenever for i = 1, 2,Mi ∈ K
and fi is an ≺F -elementary embedding of M into Mi, there exist N ∈ K and F-
elementary embeddings gi(i = 1, 2) of Mi into N such that g1f1 = g2f2.

Definition 1.14. Suppose that < is a binary relation on a class K of models.
Let µ be a cardinal. M ∈ K≤µ is a µ-counter amalgamation basis (µ-c.a.b.) of
K = 〈K,<〉 iff there are M1,M2 ∈ K≤µ and isomorphisms fi from M into Mi such
that:

(a) rng(fi) < Mi(i = 1, 2),
(b) there is no amalgam N ∈ K≤µ of M1,M2 over M with respect to f1, f2.

Observation 1.15. Suppose that T,F and < are as in 1.13 and κ+ |T | ≤ µ < λ.
Note that if there is an amalgam N ′ of M1,M2 over M (for M1,M2,M in K≤µ),
then by Fact 1.10 there is an amalgam N ∈ K≤µ of M1,M2 over M .

§ 1(B). Replacing T by AEC.

On AEC see [She87a], [She09a] or [Bal09], recall:

Definition 1.16. We say k = (Kk,≤k) is a a.e.c. with L.S.T. number λ(k) = LSk =
LST(k) may write K for Kk, if it is a class of τk-models when:

• Ax 0: The holding of M ∈ K,N ≤k M depend on N,M only up to iso-
morphism, i.e. [M ∈ K,M ∼= N ⇒ N ∈ K] and [if N ≤k M and f is an
isomorphism from M onto the τ -model M ′, f � N is an isomorphism from
N onto N ′ then N ′ ≤k M

′.]
• Ax I: if M ≤k N then M ⊆ N (i.e. M is a submodel of N).
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CATEGORICITY AND AMALGAMATION FOR AEC, AND κ MEASURABLE 9

• Ax II: M0 ≤k M1 ≤k M2 implies M0 ≤k M2 and M ≤k M for M ∈ K.
• Ax III: If λ is a regular cardinal, Mi (i < λ) is a ≤k-increasing (i.e. i <
j < λ implies Mi ≤k Mj) and continuous (i.e. for every limit ordinal
δ < λ,Mδ =

⋃
i<δMi) then M0 ≤k

⋃
i<λMi.

• Ax IV: If λ is a regular cardinal and Mi (for i < λ) is ≤k-increasing con-
tinuous and Mi ≤k N for i < λ then

⋃
i<λMi ≤k N .

• Ax V: If N0 ⊆ N1 ≤k M and N0 ≤k M then N0 ≤k N1.
• Ax VI: If A ⊆ N ∈ K and |A| ≤ LST(k) then for some M ≤k N,A ⊆ |M |

and ‖M‖ ≤ LST(k) (and LST(k) is the minimal infinite cardinal satisfying
this axiom which is ≥ |τ |; the ≥ |τ | is for notational simplicity).

Definition 1.17. We define “k categorical in λ”, k<λ, “k has amalgamation” “M ∈
Kk is a.b.”, “M is c.a.b.” naturally (see Definition 1.11, 1.14).

So our main theorem is:

Theorem 1.18. If k is categorical in λ > LSk (and for transparency has no models
of cardinality < LSk + κ) then k<λ has amalgamation.

Claim 1.19. Assume k is an AEC and τ = τk. Then;

There are τ1 = τk,1 ⊇ τk of cardinality |τ |+ LSTk and a set P of qf 1-types in Lτ1
such that:

(A) a τ -structure M belongs to Kk iff it can be expanded to a τT -model M+

from K+ when:
• K+ = K+

k = {M : N a τT -structure omitting every p ∈P}.
(B) If M+ ∈ K+ and M+ � τ ≤k N then there is a N+ ∈ K+ expanding N such

that M+ ⊆ N+.
(C) (K+,⊆) is an AEC with LST(K+,⊆) = LST(k).
(D) There is a set τ ′1 ⊆ τ1 of cardinality LSTk such that A ⊆ M+ ∈ K+ ⇒

clτ ′1(A,M+) ⊆ M+.
(E) Some ψ ∈ Lλ,ℵ0 defines Kk,1 where λ = LSTk + |τk|.

Proof. By [She09a, 1.7]. �1.19

Definition 1.20.

Assume T is a theory in Lκ,ℵ0(τT ), τT determined by T (so |T | ≤ (|τT | + κ)<κ)
and recall FT is the set of formulas ϕ(x) such that ϕ(x̄) is a sub-formulas of some
sentence ψ ∈ T. We define k = kT as follows:

(A) Kk is the class of τT -models of T of cardinality ≥ κ+ |T |.
(B) M ≤k N iff:

(a) M,N ∈ Kk,
(b) M ⊆ N,
(c) M ≤F N i.e., if ϕ(x̄) ∈ FT (see below, so lg(x̄) is limit and ā ∈ lg(x̄)M)

then M |= ϕ[ā] iff N |= ϕ[ā].

Claim 1.21. If T is a theory in Lκ,ℵ0(τT ), then:

(A) kT is an AEC.
(B) LSTkT = LST(kT ) ≤ |T |+ κ (actually ≤ |FT |).
(C) If T ⊆ Lλ+,ℵ0(τT ) then LSTk ≤ |τ |+ λ.

Proof. This holds by 1.9 and Fact 1.10. �1.21

Conclusion 1.22. To prove our results for T it suffices to prove them for kT .

Proof. By 1.21 just check the definition. �1.22
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Definition 1.23. We say the AEC k is (µ, λ, κ)-representable when there are
(τ1, T1,Γ) such that:

(a) τ1 ⊇ τk has cardinality ≤ λ,
(b) T1 ⊆ L(τ1) is a first order logic universal theory, so |T1| ≤ λ,
(c) Γ is a set of ≤ µ qf-types in L(τ1), each of cardinality < κ,
(d) M ∈ Kk iff M is the τk-reduct of some M2 ∈ EC(T1,Γ), where

EC(T1,Γ) = {N : N a τ1-model of T1 omitting every p(x) ∈ Γ},
(e) M ≤k N iff for everyM1 ∈ EC(T1,Γ) expandingM , there isN1 ∈ EC(T1,Γ)

expanding N and extending M1.

Claim 1.24. Let k be an AEC. If λ ≥ LSk + |τk|, then k is (2λ, λ, λ+)-representable.

Proof. By 1.19, that is, by [She09a]. �1.24

§ 1(C). Indiscernibles and Ehrenfeucht-Mostowski structures.

The basic results on generalized Ehrenfeucht-Mostowski models can be found in
[She78] or [She90, VII].

Definition 1.25.

(1) We recall here some notation. Let I be a class of models which we call the index
models. Denote the members of I by I, J . . . , etc.

(2) For I ∈ I we say that 〈ās : s ∈ I〉 is indiscernible in M iff for every s̄, t̄ ∈ <ωI
realizing the same atomic type in I, ās̄ and āt̄ realize the same type in M (where
ā〈s0,...,sn〉 = ās0ˆ . . . ˆāsn).

(3) If τ ⊆ τ ′ are vocabularies and Φ is a function with domain including

{tpat(s̄, ∅, I) : s̄ ∈ <ωI}
and I ∈ I, we let GEM′(I,Φ) be an τ ′-model generated by

⋃
s∈I

ās such that tpat(ās̄, ∅,M) =

Φ
(
tpat(s̄, ∅, I)

)
; 〈ās : s ∈ I〉 is called the skeleton.

(4) We say that Φ is proper for I if for every I ∈ I, GEM′(I,Φ) is well-defined.

(5) Let GEM(I,Φ) be the τ -reduct of GEM′(I,Φ).

(6) For the purposes of this paper we’ll let I be the class LO of linear orders and
Φ will be proper for LO and then write EM (instead GEM). For I ∈ LO we
abbreviate EM′(I,Φ) by EM′(I) and EM(I,Φ) by EM(I).

We first deal with pairs (T,F ).

Claim 1.26. For each linear order I = (I,≤) there exists a generalized Ehrenfeucht-
Mostowski model EM(I) of T.

(See Nadel [Nad85] and Dickmann [Dic85] or [She90, VII, §5]).

Let F be a fragment of Lκ,ℵ0 . Recall that a theory T ⊆ F is called a universal
theory in Lκ,ℵ0 iff the axioms of T are sentences of the form ∀x̄ϕ(x̄), where ϕ(x̄) is
a quantifier-free formula in Lκ,ℵ0 .

Definition and Proposition 1.27. Suppose that T is a theory and T ⊆ F where F
is a fragment of Lκ,ℵ0 .

There are a (canonically constructed) finitary vocabulary τsk and a universal theory
Tsk in Lκ,ℵ0 such that:

(0) τ ⊆ τsk, |τsk| ≤ |F|+ ℵ0,

(1) The τ -reduct of any τsk-model of Tsk is a model of T,
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(2) Whenever Nsk is an τsk-model of Tsk and Msk is a substructure of Nsk, then
Msk � τ ≺F Nsk � τ ,

(3) Any τ -model of T can be expanded to an Lsk-model of τsk,

(4) If M ≺F N , then there are τsk-expansions Msk, Nsk of M,N respectively such
that Msk is a substructure of Nsk and Nsk is a model of Tsk,

(5) To any F-formula ϕ(x̄), those corresponds a quantifier-free formula ϕqf(x̄) of
Lκω(τsk) such that:

Tsk ` ∀x̄((ϕ(x̄)↔ ϕqf(x̄)).

But now we use the AEC framework.

Claim 1.28.

(1) Assume k is an AEC, µ = 2LST(k). If k has a model of cardinality ≥ iµ+ (or
just model of cardinality ≥ iα for every α < µ+) then there is Φ such that:

(a) Φ is as in the beginning of §1B,
(b) τΦ = τk,1,
(c) EM(I) has cardinality LSTk + |I|.

(2) In particular,

(a) EM′(I) is a τ1-model,
(b) EM(I) = EM′(I) � τ belongs to K,
(c) (follows) if I ⊆ J then EM(I) ≤k EM(J), both models from K of cardinality
|I|+ LST(k).

Proof. As in [She09a], i.e., by 1.24. �1.28

§ 1(D). Limit ultrapowers, iterated ultrapowers and nice extensions.

An important technique we shall use in studying the categoricity spectrum of a
theory in Lκ,ℵ0 or suitable AECs is the limit ultrapower. It is convenient to record
here the well-known definitions and properties of limit and iterated ultrapowers
(see Chang and Keisler [CK73], Hodges-Shelah [HS81]) and then to examine nice
extensions of models.

Definition 1.29. Suppose that M is an τ -structure, I is a non-empty set, D is an
ultrafilter on I, and G is a filter on I × I. For each g ∈ I |M |, let

(a) eq(g) := {〈i, j〉 ∈ I × I : g(i) = g(j)}, and
(b) g/D := {f ∈ I |M | : g = f Mod D} where

g = f Mod D iff {i ∈ I : g(i) = f(i)} ∈ D.

Let Π
D/G
|M | := {g/D : g ∈ I |M | and eq(g) ∈ G}. Note that Π

D/G
|M | is a non-

empty subset of ΠD|M | = {g/D : g ∈ I |M |} and is closed under the constants and
functions of the ultrapower ΠDM of M modulo D. The limit ultrapower Π

D/G
M

of the τ -structure M (with respect to I,D,G) is the substructure of ΠDM whose
universe is the set Π

D/G
|M |. The canonical map d from M into Π

D/G
M is defined by

d(a) = 〈ai : i ∈ I〉/D, where ai = a for every i ∈ I. Note that the limit ultrapower
Π
D/G

M depends only on the equivalence relations which are in G, i.e. if E is the set

of all equivalence relations on I and G∩ E = G′∩ E, where G′ is a filter on I × I,
then Π

D/G
M = Π

D/G′
M .
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Definition 1.30. Let M be an τ -structure, 〈Y,<〉 a linear order and, for each
y ∈ Y , let Dy be an ultrafilter on a non-empty set Iy and Ī = 〈Iy : y ∈ Y 〉, D̄ =
〈Dy : y ∈ Y 〉. Write H = Π

y∈Y
Iy.

(1) Let E = Π
y∈Y

Dy be the set of s ⊆ H such that there are y1 < · · · < yn in Y

satisfying:

(a) for all i, j ∈ H, if i � {y1, . . . , yn} = j � {y1, . . . , yn} then i ∈ s iff j ∈ s,
(b) {〈i(y1), . . . , i(yn)〉 : i ∈ s} ∈ Dy1 × · · · ×Dyn .

(2) The iterated ultrapower
∏
D̄ |M | or

∏
E |M | of the set |M |, noting E is a filter

on H, is the set {f/E : f : H → |M | and for some finite Zf ⊆ Y for all i, j ∈ H, if
i � Zf = j � Zf , then f(i) = f(j)}.
(3) The iterated ultrapower

∏
EM of the τ -structure M with respect to 〈Dy : y ∈

Y 〉 is the τ -structure whose universe is the set ΠE |M |; for each n-ary predicate sym-
bol R of L,RΠEM (f1/E, . . . , fn/E) iff {i ∈ H : RM (f1(i), . . . , fn(i))} ∈ E; for each
n-ary function symbol F of L, FΠEM (f1/E, . . . , fn/E) = 〈FM (f1(i), . . . , fn(i)) : i ∈
H〉/E.

(4) The canonical map d : M → ΠEM is defined as usual by:

d(a) = 〈a : i ∈ H〉/E.

Remark 1.31.

(1) Every ultrapower is a limit ultrapower: take G = P (I × I) and note that
ΠDM = Π

D/G
M .

(2) Every iterated ultrapower is a limit ultrapower.

[Why? let the iterated ultrapower be defined by 〈Y,<〉 and 〈(Iy, Dy) : y ∈ Y 〉 (see
Definition 1.30). For Z ∈ [Y ]<ω, let AZ = {(i, j) ∈ H × H : i � Z = j � Z}.
Note that {AZ : Z ∈ [Y ]<ω} has the finite intersection property and hence can be
extended to a filter G on H ×H. Now for any model M we have ΠEM ∼= Π

D/G
M

for every filter D over H extending E under the map f/E → f/D.]

Definition 1.32. Suppose that M is an τ -structure, D is an ultrafilter on a non-
empty set I, and G is a suitable set of equivalence relations on I, which means:

(i) if e ∈ G and e′ is an equivalence relation on I coarser than e, then e′ ∈ G,
(ii) G is closed under finite intersections,
(iii) if e ∈ G, then D/e = {A ⊆ I/e : ∪

x∈A
x ∈ D} is a κ-complete ultrafilter on

I/e which, for simplicity, has cardinality κ.

Then Op(M, I,D,G) is the limit ultrapower Π
D/Ĝ

M where Ĝ is the filter on I × I

generated by G. When clear from the context One abbreviates Op(M, I,D,G) by
Op(M), and one writes fOp for the canonical map d : M → Op(M).

Note that,

Observation / Convention 1.33.

(1) For any τ -structure N, fOp is an ≤k-elementary embedding of N into Op(N)
and in particular fOp : N →

k
Op(N).

(2) Since fOp is canonical, one very often identifies N with the τ -structure rng(fOp)
which is an k-elementary substructure of Op(N), and one writes N ≤k Op(N). In
particular for any model M ∈ K and Op, fOp : M →k Op(M) (briefly written
M ≤k Op(M)) so that Op(M) is a model from K too.
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(3) Remark that if D is a κ-complete ultrafilter on I and G is a filter on I× I, then
Op(M, I,D,G) is well defined.

(4) Suitable limit ultrapower means one using a suitable triple.

More information on limit and iterated ultrapowers can be found in [CK73] and
[HS81].

Observation 1.34. Given θ-complete ultrafilters D1 on I1, D2 on I2 and suitable
filters G1 on I1 × I1, G2 on I2 × I2 respectively, there exist a θ-complete ultrafilter
D on a set I and a filter G on I × I such that:

Op(M, I,D,G) = Op(Op(M, I1, D1, G1), I2, D2, G2)

and (D,G, I) is κ-complete. Also iterated ultrapower (along any linear order) which
each iterand being ultrapower by κ-complete ultrafilter, gives a suitable triple (in
fact, even iteration of suitable limit ultrapowers is a suitable ultrapower).

Definition 1.35. Suppose that K is a class of τ -structures and <=<K is a binary
relation on K (usually (K,<) = (Kk, <k)). For M,N ∈ K, write f : M ≤nice

K N to
mean (if < is clear from the context we may write f : M →

nice
N and, if f = idM we

may write M ≤
nice

N):

(a) f is an isomorphism from M into N and rng(f) < N. Which means f(M) <
N, where f(M) is the model M ′ with universe rng(f) such that f is an
isomorphism from M into M ′,

(b) there are a set I, an ultrafilter D on I, a suitable set G of equivalence rela-
tions on I (so Definition 1.32 clause (i), (ii), (iii) holds), and an isomorphism
g from N into Op(M, I,D,G) such that rng(g) < Op(M, I,D,G) and gf =
fOp, where fOp is the canonical embedding of M into Op(M, I,D,G). f is
called a <-nice embedding of M into N . Of course, one writes f : M →

nice
N

and says that f is a nice embedding of M into N when < is clear from the
context.

Example 1.36.

(1) Consider T,F and K = 〈K,<〉 = (K,<K) as set up in 1.13. In this case
f : M →

nice
N holds iff f : M →

F
N and for some suitable 〈I,D,G〉 and some g : N →

F
Op(M, I,D,G), gf = fOp.

Abusing notation one writes M →
nice

N to mean that there are f, g and Op such that

f : M →
nice

N using g and Op . IF NOT SAID OTHERWISE, < is <k. We may also

write M ≤
nice

N , and for linear orders we use I ⊆
nice

J .

Example 1.37. Let LO be the class of linear orders and let (I,≤I) < (J,≤J) mean
that (I,≤I) ⊆ (J,≤J), i.e. (I,≤I) is a suborder of (J,≤J). If f : (I,≤I) →

nice
(J,≤J),

then identifying isomorphic orders, one has (I,≤I) ⊆ (J,≤J) ⊆ Op(I,≤I) and we
may write (I,≤I) ⊆

nice
(I,≤J).

Observation 1.38. Assume that k is as in 1.20. Suppose further M ≤nice N and
M ≤k M

′ ≤k N where M,M ′, N ∈ K. Then M ≤k M
′.

Proof. For some f, g and Op, f : M →
k
N , g : N →

k
Op(M) and gf = fOp. Now

g : M ′ →
k

Op(M) (since M ′ ≤k N) and gf = fOp so that M ≤
nice

M ′. �1.38
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Observation 1.39. Suppose that 〈Mi : i ≤ δ〉 is a continuous increasing chain and
for each i < δ, Mi ≤

nice
Mi+1. Then for every i < δ, Mi ≤

nice
Mδ.

Proof. Like the proof of 1.31(2). For each i < δ, there is a (Ii, Di, Gi) as in

Definition 1.32 which witnesses Mi ≤
nice

Mi+1. Let I
def
=
∏
i<δ

Ii, G = {e : e ⊆ I × I

and for some n < ω and α1 < . . . < αn < δ, and e1 ∈ Gα1
, . . . , en ∈ Gαn

we have: for every x, y ∈ I, such that (x(α`), y(α`)) ∈ e` for ` = 1, . . . , n we have
(x, y) ∈ e}. D will be any ultrafilter on I such that: if n < ω and α1 < . . . < αn < δ,
e1 ∈ Gα1

, . . . , en ∈ Gαn , e` is an equivalence relation on Iα` for ` = 1, . . . , n and A ∈
(Dα1

/eα1
)×· · ·×(Dαn/eαn), then the set {x ∈ I : 〈x(α1)/eα1

, . . . , x(αn)/eαn〉 ∈ A}
belongs to D. We leave the rest to the reader. �1.39

Claim 1.40. For every model M and λ ≥ κ + LSk + ‖M‖ there is N such that
M ≤

nice
N , M 6= N and ‖N‖ = λ.

Proof. As κ is measurable. �1.40

Definition 1.41.

(1) Assume D is an ultra-filter on κ. For an AEC k = (Kk,≤k) we say k is D-compact
when:

(a) if M ∈ Kk then the ultra-power Mκ/D belongs to Kk,
(b) moreover, the canonical embedding of M into Mκ/D is a ≤k-embedding,
(c) if M ≤k N then the canonical embedding of Mκ/D into Nκ/D is a ≤k-

embedding,
(d) k has a model of cardinality ≥ κ (or at least of cardinality σ where D is not

σ-complete).

(2) Assume (Y, Ī, D̄,H,E) is as in 1.30. For an AEC k we say k is D-compact+

when:

(a) if M ∈ Kk and πEM ∈ Kk,
(b) moreover, the canonical embedding of M into πEM is a ≤k-embedding,
(c) if M ≤k N then the canonical embedding of πEM into πEN is a ≤k-

embedding.

Claim 1.42.

(1) If k is a AEC and |τk|+ LS(k) < κ then k is D-compact and even D-compact+.

(2) If k is (µ, λ, κ)-representable, then k is D-compact (recall D is a normal ultrafilter
on κ).

(3) Also the claim on Op generalizes.

Proof.

(1) By 1.24 and part (c).

(2), (3) Easy. �1.42

For the rest of this work,

Hypothesis 1.43. (1) k is a D-compact AEC with LSk = χ ≥ κ, D a κ-complete
ultra filter on κ and K = Kk.

(2) Φ, a = 〈ās : s ∈ I〉 are as in 1.41.

(3) Finally, λ > κ+ |T | usually denotes a power in which T is categorical.
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§ 2. The amalgamation property for regular categoricity

The main aim of this section is to show that if K is categorical in the regular
cardinal λ > LSk, then k<λ = 〈K<λ,≤k〉 has the amalgamation property (AP)
(Definition 1.11 (1)). Categoricity is not presumed if not required.

Recall 1.43 is assumed.

Lemma 2.1. Suppose that χ ≤ µ ≤ λ,M,M1,M2 ∈ K≤µ, f1 : M →
nice

M1, f2 : M →
k

M2. Then there is an amalgam N ∈ K≤µ of M1,M2 over M with respect to f1, f2.

Moreover, there are g` : M` →
k
N for ` = 1, 2 such that g1f1 = g2f2 hence rng(g2f2) =

rng(g1f1) and g1 : M1 →
nice

N.

Proof. There are g and Op such that g : M1 →
k

Op(M), gf1 = fOp. Now, f2 induces

an ≤k-elementary embedding f∗2 of Op(M) into Op(M2) such that f∗2 fOp = fOpf2.
Let g1 = f∗2 g and g2 = fOp � M2. By Fact 1.10 one finds N ∈ K≤µ such that
rng(g1) ∪ rng(g2) ⊆ N ≤k Op(M2). Now N is an amalgam of M1,M2 over M with
respect to f1, f2 since g1f1 = f∗2 gf1 = f∗2 f0p = fOpf2 = g2f2. The last phrase in
the lemma is easy by properties of Op. �2.1

Lemma 2.2. Suppose that M ∈ K≤µ is a µ-c.a.b., χ ≤ µ < λ. Then N ∈ K<λ is
a ‖N‖-c.a.b. whenever f : M →

nice
N .

Proof. Suppose that g : N →
k

Op(M), gf = fOp. M is a µ- c.a.b., so for some

Mi ∈ K≤µ and fi : M →
k
Mi(i = 1, 2) there is no amalgam of M1,M2 over M w.r.t.

f1, f2. Let f∗i be the ≤k-elementary embedding from Op(M) into Op(Mi) defined
by fi (note that f∗i fOp = fOpfi, i = 1, 2). Choose Ni of power ||N || such that
Mi ∪ rng(f∗i g) ⊆ Ni ≤k Op(Mi). Note that f∗i f : N →

k
Ni. It suffices to show that

there is no amalgam of N1, N2 over N w.r.t. f∗1 g, f
∗
2 g.

Well, suppose that one could find an amalgam N∗ and hi : Ni →
k
N∗, i = 1, 2, with

h1(f∗1 g) = h2(f∗2 g). Using Fact 1.10 choose M∗, ||M∗|| ≤ µ,M∗ ≤k N
∗, rng(h1fOp �

M1) ∪ rng(h2fOp �M2) ⊆ |M∗|. Set gi = hifOp �Mi, for i = 1, 2, and note that:

g1f1 = h1fOpf1 = h1f
∗
1 fOp = h1f

∗
1 gf = h2f

∗
2 gf = h2f

∗
2 fOp

= h2fOpf2 = g2f2

In other words, M∗ is an amalgam of M1,M2 over M w.r.t. f1, f2-contradiction.
It follows that N is a ‖N‖-c.a.b. �2.2

Corollary 2.3. Suppose that χ ≤ µ < λ. If M ∈ Kµ is a µ-c.a.b., then there exists
M∗ ∈ Kλ such that:

(∗) M ≤k M
∗ and for every M ′ ∈ K<λ, if M ≤k M

′ ≤k M
∗, then M ′ is a

||M ′||-c.a.b.

Proof. As ‖M‖ ≥ κ, for some appropriate Op one has ||Op(M)|| ≥ λ, and by Fact
1.10 one finds M∗ ∈ Kλ such that M ⊆M∗ ≤k Op(M). Let’s check that M∗ works
in (∗). Take M ′ ∈ K<λ,M ≤k M

′ ≤k M
∗; so M ≤

nice
M ′ since M∗ ≤k Op(M);

hence by 2.2, M ′ is a ||M ′||-c.a.b. �2.3

Theorem 2.4. Suppose that k is λ-categorical, λ = cf(λ) > χ. If K<λ fails AP,
then there is N∗ ∈ Kλ such that for some continuous increasing ≤k-chain 〈Ni ∈
K<λ : i < λ〉 of models,
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(1) N∗ = ∪
i<λ

Ni,

(2) for every i < λ,Ni �
nice

Ni+1 (and so Ni �
nice

N∗).

Proof. k<λ fails AP, so for some µ < λ and M ∈ K≤µ,M is a µ-c.a.b. By 2.2 and
1.40 Without loss of generality M ∈ Kµ. Choose by induction a continuous strictly
increasing ≤k-chain 〈Ni ∈ K<λ : i < λ〉 as follows:

N0 = M ; at a limit ordinal i, take the union; at a successor ordinal i = j+1, if there
is N ∈ K<λ such that Nj ≤k N and Nj �

nice

N , choose Ni = N , otherwise choose

for Ni any non-trivial ≤k-elementary extension of Nj of power less than λ. �2.4

Claim 2.5. (∃j0 < λ)(∀j ∈ (j0, λ))(Nj is a ||Nj ||-c.a.b.).

Proof. Suppose not. So one has a strictly increasing sequence 〈ji : i < λ〉 such that
for each i < λ,Nji is not a ‖Nji‖-c.a.b. Let N∗ = ∪

i<λ
Nji . So ‖N∗‖ = λ. Applying

2.3 one can find M∗ ∈ Kλ such that whenever M ′ ∈ K<λ and M ≤k M
′ ≤k M

∗,
then M ′ is a ‖M ′‖-c.a.b.

Since k is λ-categorical, there is an isomorphism g of N∗ onto M∗. Let N = g−1(M)
and Mi = g(Ni) for i < λ. ||N || = µ < cf(λ) = λ, so there is i0 < λ such that
N ⊆ Nji0 .

In fact Nji0 is a ||Nji0 ||-c.a.b. [Otherwise, consider Mji0
. Since M ≤k Mji0

≤k M
∗

and ‖Mji0
‖ < λ,Mji0

is a ‖Mji0
‖-c.a.b., so there are f` : Mji0

→
F
M ′`, (` = 1, 2),

with no amalgam of M ′1,M
′
2 over Mji0

w.r.t. f1, f2. If Nji0 is not a ||Nji0 ||-
c.a.b., then one can find an amalgam N+ ∈ K≤||Nji0 || of M ′1,M

′
2 over Nji0 w.r.t.

f1g, f2g such that h` : M ′` →
k
N+ and h1(f1g) = h2(f2g); so h1f1 = h2f2 and N+

is thus an amalgam of M ′1,M
′
2 over Mji0

w.r.t. f1, f2, ‖N+‖ ≤ ‖Nji0 ‖ = ||Mji0
||-

contradiction.] This contradicts the choice of Nji0 . So the claim is correct.

It follows that for each j ∈ (j0, λ) there are N1
j , N

2
j in K<λ and f` : Nj →k N

`
j

such that no amalgam of N1
j , N

2
j over Nj w.r.t. f1, f2 exists. By 2.2 for some ` ∈

{1, 2}, Nj �
nice

N `
j+1. So by the inductive choice of 〈Nj+1 : j < λ〉,∀j ∈ (j0, λ)(Nj �

nice

Nj+1). Taking N∗ = ∪
j0<j<λ

Nj , one completes the proof (of course for j0 < j <

λ,Nj �
nice

N∗: if Nj ≤k N
∗ ≤k Op(Nj), then by 1.38 Nj ≤

nice
Nj+1-contradiction).

�2.5

Theorem 2.6. Suppose that (I,<I), (J,<J) are linear orders and I is a suborder
of J . If (I,<I) ⊆

nice
(J,<J), then EM(I) �

nice
EM(J).

Proof. Without loss of generality for some cardinal µ, ultrafilter D on µ and suitable
set G, a filter on µ × µ, (I,<I) ⊆ (J,<J) ⊆ Op((I,<I), µ,D,G) = Op(I,<), and
|Op(I,<)| = {f/D : f ∈ µI, eq(f) ∈ G} where eq(f) = {(i, j) ∈ µ × µ : f(i) = f(j)}.
So for each t ∈ J , there exists ft ∈ µI such that t = ft/D. Note that if t ∈ I, then
ft/D = fOp(t) so that without loss of generality for all i < µ, ft(i) = t. Define a
map h from EM(J) into Op(EM(I)) as follows. An element of EM(J) has the form

σEM′(J)(xt1 , . . . , xtn)

where t1, . . . , tn ∈ J , σ an τ -term. Define, for t ∈ J, gt ∈ µ EM(I) by gt(i) = xft(i).
Note that ft(i) ∈ I, so that xft(i) ∈ EM(I) and so gt/D ∈ Op(EM(I)). Let

h(σEM′(J)(xt1 , . . . , xtn)) = σOp(EM′(I))(gt1/D, . . . , gtn/D) which is an element in
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CATEGORICITY AND AMALGAMATION FOR AEC, AND κ MEASURABLE 17

Op(EM(I)). The reader is invited to check that h is an ≤k-elementary embedding
of EM(J) into Op(EM(I)). So EM(I) ≤k EM(J).

Finally note that if a = σEM′(I)(xt1 , . . . , xtn) ∈ EM(I), t1, . . . , tn ∈ I, then h(a) =

σOp(EM′(I))(gt1/D, . . . , gtn/D) = σOp(EM′(I))(〈xt1 : i < µ〉/D, . . . , 〈xtn : i < µ〉/D) =

fOp(σEM′(I)(xt1 , . . . , xtn)) = fOp(a). Thus EM(I) ≤
nice

EM(J). �2.6

Criterion 2.7. Suppose that (I,<) is a suborder of the linear order (J,<). We have
(I,≤) ⊆

nice
(J,<) when:

(∗) for every t ∈ J \ I,

(ℵ) Op((I,<) � {s ∈ I : (J,<) |= s < t}) = κ,

or

(i) Op((I,<)∗ � {s ∈ I : (J,<)∗ |= s <∗ t}) = κ

Notation 2.8. (I,<)∗ is the (reverse) linear order (I∗, <∗) where I∗ = I and (I∗, <∗

) � s <∗ t iff (I,<) � t < s.

Proof. Let us list some general facts which facilitate the proof.

Fact (A): Let κ denote the linear order (κ,<) where < is the usual order ε � κ× κ.
If J1 = κ+ J0, then κ ⊆

nice
J1 (+ is addition of linear orders in which all elements in

the first order precede those in the second).

Fact (B): If κ ⊆ (I,<), κ is unbounded in (I,<) and J1 = I + J0, then I ⊆
nice

J1.

Fact (C): If I ⊆
nice

J , then I + J1 ⊆
nice

J + J1.

Fact (D): I ⊆
nice

J iff (J <)∗ ⊆
nice

(I,<)∗.

Fact (E): If 〈Iα : α ≤ δ〉 is a continuous increasing sequence of linear orders and for
α < δ, Iα ⊆

nice
Iα+1, then Iα ⊆

nice
Iδ.

Now using these facts, let us prove the criterion. Define an equivalence relation E
on J \ I as follows: tEs iff t and s define the same Dedekind cut in (I,<). Let
{tα : α < δ} be a set of representatives of the E-equivalence classes. For each β ≤ δ,
define

Iβ = J �

t : t ∈ I ∨ ∨
α<β

tEtα


so I0 = I, Iδ = J and 〈Iα : α ≤ δ〉 is a continuous increasing sequence of linear
orders. By Fact (E), to show that I ⊆

nice
J , it suffices to show that Iα ⊆

nice
Iα+1 for

each α < δ.

Fix α < δ. Now tα belongs to J \ I, so by (∗), (ℵ) or (i) holds. By Fact (D),
it is enough to treat the case (ℵ). So without loss of generality Op

(
(I,<) � {s ∈

I : (J,<) |= s < ts}
)

= κ.

Let

Iaα = {t ∈ Iα : t < tα}

Ibα = {t ∈ Iα+1 : t ∈ Iaα ∨ tEtα}

Icα = {t ∈ Iα : t > tα}.
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18 S. SHELAH AND OREN KOLMAN

Note that Iα = Iaα+Icα and Iα+1 = Ibα+Icα. Recalling Fact (C), it is now enough to
show that Iaα ⊆

nice
Ibα. Identifying isomorphic orders and using (ℵ), one has that κ is

unbounded in Iaα and Ibα = Iaα+(Ibα\Iaα) so by Fact (B), Iaα ⊆
nice

Ibα as required. �2.7

Of the five facts, we prove (A), (B), and (E) as (C) and (D) are obvious.

Proof of Fact (A). Since κ is measurable, there is a κ-complete uniform ultrafilter
D on κ [see J]. For every linear order J0 (or J∗0 ) there is OpI,D(−), the iteration of I
ultrapowers (−)κ/D, ordered in the order J0 (or J∗0 ), giving the required embedding
(use 1.34). �

Proof of Fact (B). Since κ ⊆ I and using Fact (A), we know that there is an oper-
ation Op such that the following diagram commutes:

I
↗ id ↖ Canonical

κ −→
Canonical

Op(κ) −→
Natural

Op(I)

↘ id
xFact(A)

x
κ+ J0 −→

id
I + J0

Chasing through the diagram, we obtain the required embedding. �

Proof of Fact (E). Apply 1.39 to the chain 〈Iα : α ≤ δ〉. �

Fact 2.9. Suppose that λ ≥ κ. There exist a linear order (I,<I) of power λ and
a sequence 〈Ai ⊆ I : i ≤ λ〉 of pairwise disjoint subsets of I, each of power κ such
that I = ∪

i≤λ
Ai and,

(∗) if λ ∈ X ⊆ λu 1, then I � ∪
i∈X

Ai ⊆
nice

I.

Proof. Let I = (λ u 1) × κ and define <I on I : (i1, α1) <I (i2, α2) iff i1 < i2 or
(i1 = i2 and α1 > α2). For each i ≤ λ, let Ai = {i} × κ. Check (∗) of 2.7: suppose
that λ ∈ X ⊆ λ + 1. Write IX = I �

(⋃
i∈X Ai

)
. To show that IX ⊆

nice
I, one

employs Criterion 2.7. Consider t ∈ I − IX , say t = (i, α) (note that α < κ and
i < λ, since λ ∈ X) and i /∈ X. Let j = min(X − i); note that j is well-defined,
since λ ∈ X − i, and j 6= i. For every β < κ, one has t <I (j, β) and (j, β) ∈ IX .
Also if s ∈ IX and t <I s, then for some β < κ(j, β) <I s. Thus 〈(j, β) : β < κ〉 is
a cofinal sequence in (IX � {s ∈ I : t <I s})∗. By the criterion, IX ⊆

nice
I. �2.9

Theorem 2.10. Suppose that κ = cf(δ) ≤ δ < λ. Then EM(δ) ≤
nice

EM(λ).

Proof. By Fact (B) of 2.7, one has that δ ⊆
nice

λ; so by 2.6, EM(δ) ≤
nice

EM(λ). �2.10

Now let’s turn to the main theorem of this section.

Theorem 2.11. Suppose that T is categorical in the regular cardinal λ > χ. Then
k<λ has the amalgamation property.

Proof. Suppose that k<λ fails AP. Note that ‖EM(λ)‖ = λ. Apply 2.4 to find
M∗ ∈ Kλ and 〈Mi : i < λ〉 satisfying 2.4 (1) and 2.4 (2). Since T is λ-categorical,
M∗ ∼= EM(λ), so without loss of generality EM(λ) = ∪

i<λ
Mi. C = {i < λ : Mi =
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EM(i)} is a club of λ. Choose δ ∈ C, cf(δ) = κ. By 2.10, EM(δ) ≤
nice

EM(λ), so

Mδ ≤
nice

M∗. But of course by 2.4(2) Mδ �
nice

M∗-contradiction. �2.11

Theorem 2.12. Suppose that K is categorical in λ > χ. Then:

(1) K has a model M of power λ such that if N ≤k M and ‖N‖ < λ, then there
exists N ′ such that:

(α) N ≤k N
′ ≤k M,

(β) ‖N ′‖ = ‖N‖+ χ,
(γ) N ′ ≤

nice
M.

(2) K has a model M of power λ and an expansion M+ of M by at most χ functions
such that if N+ ⊆M+, then N+ � τ ≤

nice
M .

Proof. Let 〈I, 〈Ai : i ≤ λ〉〉 be as in 2.9. Let M = EM(I). Suppose that N ≤k

M, ‖N‖ < λ. Then there exists J ⊆ I, |J | < λ such that N ⊆ EM(J) hence
N ≤

nice
EM(J) ≤

nice
EM(I) . So there is X ⊆ λ + 1, λ ∈ X, |X| < λ such that

J ⊆ ∪
i∈X

Ai. Note that | ∪
i∈X

Ai| ≤ |X|κ < λ. Now N ′ = EM(I � ∪
i∈X

Ai) is as

required, since I � ∪
i∈X

Ai ≤
nice

I and so by 2.6 EM(I �
(⋃

i∈X Ai
)
) ≤

nice
EM(I). This

proves (1).

(2) We expand M = EM(I) as follows:

(a) by all functions of EM′(I),
(b) by the unary functions f`(` < n) which are chosen as follows: we know that

for each b ∈ M there is σb an τ1-term (τ1-the vocabulary of EM′(I)) and
t(b, 0) < t(b, 1) < . . . < t(b, nσb − 1) from I such that

b = τb(xt(b,0), xt(b,1), . . . , xt(b,nτb−1))

(it is not unique, but we can choose one; really if we choose it with nb
minimal it is almost unique). We let

f`(b) =

{
xt((b,`)), if ` < nτb ,

b, if ` ≥ nτb .

(c) by unary functions gα, gα for α < κ such that if t < s are in I, α =
otp[(t, s)∗I ] then gα(xt) = xs,

∨
β<κ

gβ(xs) = xt (more formally gα(x(i,β)) =

x(i,β+α) and gα(x(i,β)) = x(i,α)) in the other cases gα(b) = b, gα(b) = b.
(d) by individual constants cα = x(λ,α) for α < κ.

Now suppose N+ is a submodel of M+ and N its τ -reduct. Let J
def
= {t ∈ I : xt ∈

N}, now J is a subset of I of cardinality ≤ ||N || as for t 6= s from J , xt 6= xs.
Also if b ∈ N by clause (b), xt(b,`) ∈ N hence b ∈ EM(J); on the other hand if
b ∈ EM(J) then by clause (b) we have b ∈ N ; so we can conclude N = EM(J). So
far this holds for any linear order I.

By clause (c) J =
⋃
i∈X

Ai for some X ⊆ λ+ 1, and by clause (d), λ ∈ X.

Now EM(J) ≤
nice

EM(I) 6= M by 2.9. �2.12
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§ 3. Towards removing the assumption of regularity from the
existence of universal extensions

In §2 we showed that k<λ has the amalgamation property when T is categorical in
the regular cardinal λ > χ. We now study the situation in which λ is not assumed
to be regular.

Our problem is that while we know that most submodels of N ∈ Kλ sit well in
N (see 2.12(2)) and that there are quite many N ∈ K<λ which are amalgamation
bases, our difficulty is to get those things together: constructing N ∈ Kλ as

⋃
i<λ

Ni,

Ni ∈ K<λ means N has ≤k-submodels not included in any Ni.

Theorem 3.1. Suppose that T is categorical in λ and χ ≤ θ < λ. If 〈Mi ∈ Kθ : i <
θ+〉 is an increasing continuous ≤k-chain, then:{

i < θ+ : Mi ≤
nice

(∪j<θ+Mj)

}
∈ Dθ+ .

Remark 3.2.

(1) We cannot use 2.12(1) as possibly λ has cofinality < χ.

(2) Recall that Dθ+ is the closed unbounded filter on θ+.

Proof. Write Mθ+ = ∪
i<θ+

Mi. Choose an operation Op such that for all i <

θ+, ‖Op(Mi)‖ ≥ λ. Let M∗i = Op(Mi). Applying Fact 1.10 for non-limit ordi-
nals, 1.9 for limit ordinals, one finds inductively an increasing continuous ≤k-chain
〈Ni : i ≤ θ+〉 such that for i < θ+,Mi ≤k Ni ≤k M

∗
i , ‖Ni‖ = λ, Nθ+ = ∪

i<θ+
Ni.

Note that ‖Nθ+‖ = θ+ · λ = λ.

Since T is λ-categorical, Nθ+ ∼= EM(I) where 2.9 furnishes I of power λ. By
2.12(2), there is an expansion N+

θ+ of Nθ+ by at most κ + |T | functions such that

if A ⊆ |N+
θ+ | is closed under the functions of N+

θ+ , then (N+
θ+ � τk) � A ≤

nice
Nθ+ .

Choose a set Ai and an ordinal ji, by induction on i < θ+, satisfying:

(1) Ai ⊆ |Nθ+ |, |Ai| ≤ θ; 〈Ai : i < θ+〉 is continuous increasing,

(2) 〈ji : i < θ+〉 is continuous increasing,

(3) Ai is closed under the functions of N+
θ+ ,

(4) Ai ⊆ |Nji+1
|,

(5) |Mi| ⊆ Ai+1.

This is possible: for zero or limit ordinals unions work; for i + 1 choose ji+1 to
satisfy (2) and (4), and Ai+1 to satisfy (1), (3) and (5).

By (2), C = {i < θ+ : i is a limit ordinal and ji = i} is a club of θ+ i.e. C ∈ Dθ+ .

Fix i ∈ C. Note that |Mi| ⊆ Ai and Ai ⊆ |Ni| (since |Mi| = ∪
j<i
|Mj | ⊆ ∪

j<i
Aj+1 =

Ai = ∪
i′<i

Ai′ ⊆ ∪
i′<i
|Nji′+1

| = Nji = Ni (using (5), (1), (4), (2) and ji = i)) and so

Mi ≤k (N+
θ+ � τk) � Ai ≤k Ni ≤k M

∗
i = Op(Mi), so that Mi ≤

nice
(N+

θ+ � τk) � Ai.

However by (3) and the choice of Nθ+ and N+
θ+ one has also that (N+

θ+ � τk) � Ai ≤
nice

Nθ+ . So by transitivity of ≤
nice

, one obtains Mi ≤
nice

Nθ+ .

Finally remark that Mθ+ ≤k Nθ+ since Mi ≤
nice

Ni ≤k Nθ+ for every i < θ+. Hence

C ⊆
{
i < θ+ : Mi ≤

nice
Mθ+

}
∈ Dθ+ . �3.1
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Definition 3.3. Suppose that θ ∈ [χ, λ) and M ∈ Kθ. M is nice iff whenever
M ≤k N ∈ Kθ, then M ≤

nice
N . (The analogous ≤k-elementary embedding definition

runs: M is nice iff whenever f : M →
k
N ∈ Kθ then f : M →

nice
N).

Theorem 3.4. Suppose that T is categorical in λ and M ∈ Kθ, θ ∈ [χ, λ). Then
there exists N ∈ Kθ such that M ≤k N and N is nice.

Proof. Suppose otherwise. We’ll define a continuous increasing ≤k-chain 〈Mi ∈
Kθ : i < θ+〉 such that for j < θ+:

(∗)j Mj �
nice

Mj+1.

For i = 0, put M0 = M ; if i is a limit ordinal, put Mi = ∪
j<i
Mj ; if i = j + 1,

then since 3.4 is assumed to fail, Mj+1 exists as required in (∗)j (otherwise Mi

works as N in 3.4). But now 〈Mi : i < θ+〉 yields a contradiction to 3.1, since
C = {i < θ+ : Mi ≤k ∪

j<θ+
Mj} ∈ Dθ+ by 3.1 so that choosing j from C one has

Mj ≤
nice

Mj+1 by 1.38, contradicting (∗)j . �3.4

Theorem 3.5. Suppose that k is categorical in λ and θ ∈ [χ, λ). If M ∈ Kθ is nice
and f : M →

k
N ∈ K≤λ, then f : M →

nice
N .

Proof. Choosing an appropriate Op and using Fact 1.10 one finds N1 such that
N ≤k N1 and ‖N1‖ = λ. Find M ′1 ≤

nice
N1 by 2.12(2) such that rng(f) ⊆

|M ′1|, ‖M ′1‖ = θ. So M ′1 ≤k N1 and therefore N1 � rng(f) ≤k M
′
1. M is nice, so

f : M →
nice

M ′1. Now M ′1 ≤
nice

N1, therefore f : M →
nice

N1. So there are Op and

g : N1 →
k

Op(M) satisfying gf = fOp. Since N ≤k N1 it follows that f : M →
nice

N

as required. �3.5

Corollary 3.6. Suppose that M ∈ Kθ is nice, θ ∈ [χ, λ). Then M is an a.b. in k≤λ
i.e. if fi : M →

k
Mi,Mi ∈ K≤λ(i = 1, 2), then there exists an amalgam N ∈ K≤λ

of M1,M2 over M w.r.t. f1, f2.

Proof. By 3.5 fi : M →
nice

Mi(i = 1, 2). Hence by 2.1 there is an amalgam N ∈ K≤λ
of M1,M2 over M w.r.t. f1, f2. �3.6

Definition 3.7. Suppose that θ ∈ [χ, λ) and ∂ is a cardinal.

(1) A model M ∈ Kθ is ∂-universal iff for every N ∈ K∂ , there exists an ≤k-
elementary embedding f : N →

k
M . M is universal iff M is ‖M‖-universal.

(2) A model M2 ∈ K∂ is ∂-universal over the modelM1 (and one writes M1 �
∂−univ

M2) iff M1 ≤k M2 and whenever M1 ≤k M ′2 ∈ K∂ , then there exists an ≤k-
elementary embedding f : M ′2 →

k
M2 such that f �M1 is the identity. (The embed-

ding version runs: there exists h : M1 →
k
M2 and whenever g : M1 →

k
M ′2 ∈ K∂ , then

there exists f : M ′2 →
k
M2 such that fg = h.) M2 is universal over M1 (M1 �

univ
M2)

iff M2 is ‖M2‖-universal over M1.

(3) M2 is ∂-universal over M1 in M iff M2 ≤k M1 ≤k M , ||M1|| ≤ ∂ and whenever
M ′2 ∈ K∂ and M1 ≤k M

′
2 ≤k M , then there exists an ≤k-elementary embedding

f : M ′2 →
k
M2 such that f � M1 is the identity. M2 is universal over M1 in M iff

M2 is ‖M2‖-universal over M1 in M .
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(4) M2 is weakly ∂-universal over M1 (written M1 ≺
∂−wu

M2) iff M1 ≤k M2 ∈ K∂

and whenever M2 ≤k M
′
2 ∈ K∂ , then there exists an ≤k-elementary embedding

f : M ′2 →
k
M2 such that f � M1 is the identity. (The embedding version is: there

exists h : M1 →
k
M2 and whenever g : M2 →

k
M ′2 ∈ K∂ , then there exists f : M ′2 →

k

M2 such that h = fgh (written h : M1 →
∂−wu

M2)). M2 is weakly universal over

M1(M1 �
wu
M2) iff M2 is ‖M2‖-weakly universal over M1.

(Note that “M2 is ∂-universal over M1” does not necessarily implies “M2 is weakly
∂-universal over M1” as possibly ‖M2‖ > ∂).

Remark 3.8. In k<λ, if M1 is an a.b., then weak universality over M1 is equivalent
to universality over M1.

Proof. Suppose that h : M1 →
wu
M2 and g : M1 →

k
M ′2 ∈ K‖M2‖. Since M1 is an a.b.

there exist a model N and h′ : M2 →
k
N, g′ : M ′2 →

k
N satisfying h′h = g′g. By

Fact 1.10 without loss of generality ‖N‖ = ‖M2‖. Since M2 is weakly universal

over M1, there exists h
′′

: N →
k
M2, h = h

′′
h′h. Let f = h

′′
g′ : M ′2 →M2, and note

that fg �M1 = h
′′
g′g = h

′′
h′h = h, so that M2 is universal over M1. �3.8

Remark 3.9. For any model M , universality over M implies weak universality over
M .

Lemma 3.10. Suppose that k is categorical in λ, θ ∈ [χ, λ). If M ∈ Kθ and
M ≤k N ∈ Kλ, then there exists M+ ∈ Kθ such that:

(a) M ≤k M
+ ≤k N,

(b) M+ is universal over M in N.

Proof. We choose I such that:

(∗) (a) I is a linear order of cardinality λ,
(b) if θ ∈ [ℵ0, λ), J0 ⊆ I, |J0| = θ then there is J1 satisfying J0 ⊆ J1 ⊆ I,
|J1| = θ, and for every J∗ ⊆ I of cardinality ≤ θ there is an order-
preserving (one to one) mapping from J0∪J∗ into J0∪J1 which is the
identity on J0.

Essentially the construction follows Laver [Lav71] and [She87b, Appendix], see more
in [Shea]; but for our present purpose let I = ( ω>λ,<`ex); given θ and J0 we can
increase J0 so without loss of generality J0 = ω>A, A ⊆ λ, |A| = θ. Define an
equivalence relation E on I \ J0: ηEν ⇔ (∀ρ ∈ J0)(ρ <`ex η ≡ ρ <`ex ν), easily it
has ≤ θ equivalence classes, so let {η∗i : i < i∗ ≤ θ} be a set of representatives each
of minimal length, so η∗i � (lg η∗i − 1) ∈ J0, η∗i (lg η∗i − 1) ∈ λ \A.

Let J1 = I ∪ {η∗i ˆν : ν ∈ ω>θ and i < i∗}, so clearly J0 ⊆ J1 ⊆ I, |J1| = θ.
Suppose J0 ⊆ J ⊆ I, |J | ≤ θ, and we should find the required embedding h. As
before without loss of generality J = ω>B, |B| = θ and A ⊆ B. Now h � J0 = idJ0

so it is enough to define h � (J1 ∩ (η∗i /E)), hence it is enough to embed J1 ∩ (η∗i /E)
into {η∗1 ˆν : ν ∈ ω>θ} (under <`ex).

Let γ = otp(B), so it is enough to show ( <ωγ,<`ex) can be embedded into ω>θ,
where of course |γ| ≤ θ. This is proved by induction on γ.

Since T is λ-categorical and EM(I) is a model of T of power λ, there is an iso-

morphism g from EM(I) onto N . It follows from (∗) that M+ = g
′′
(EM(J)) ∈ Kθ

satisfies (1) and (2). (Analogues of (1) and (2) are checked in more detail in the
course of the proof of 3.14.) �3.10
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Lemma 3.11. Suppose that k is categorical in λ, θ ∈ [χ, λ), and 〈Mi ∈ Kθ : i <
θ+〉, 〈Ni ∈ Kλ : i < θ+〉 are continuous ≤k-chains such that for every i < θ+ we
have Mi ≤k Ni. Then there exists i(∗) < θ+ such that (i(∗), θ+) ⊆ C = {i <
θ+ : Mi+1 can be ≤k-elementarily embedded into Ni over M0}.

Proof. Apply 3.10 for M0 ∈ Kθ and Nθ+ = ∪
i<θ+

Ni ∈ Kλ (noting that M0 ≤k N0 ≤k

Nθ+) to find M+ ∈ Kθ such that M0 ≤k M
+ ≤k Nθ+ and M+ is universal over M0

in Nθ+ .

For some i(∗) < θ+,M+ ⊆ Ni(∗) and so M+ ≤k Ni(∗). If i ∈ (i(∗), θ+), then
Mi+1 ∈ Kθ and M0 ≤k Mi+1 ≤k Ni+1 ≤k Nθ+ , so there is an ≤k-elementary
embedding f : Mi+1 →

k
M+ and f � M0 is the identity. Now M+ ≤k Ni(∗) ≤k Ni,

so f : Mi+1 →
k
Ni. Hence (i(∗), θ+) ⊆ C as required. �3.11

Theorem 3.12. Suppose that k is categorical in λ, θ ∈ [χ, λ),M ∈ Kθ. Then there
exists M+ ∈ Kθ such that:

(ℵ) M ≤k M
+ and M+ is nice,

(i) M+ is weakly universal over M.

Proof. Define by induction on i < θ+ continuous ≺F -chains 〈Mi ∈ Kθ : i <
θ+〉, 〈Ni ∈ Kλ : i < θ+〉 such that:

(0) M0 = M,

(1) Mi ≤k Ni,

(2) if (∗)i holds, then Mi+1 cannot be ≤k-elementarily embedded into Ni over M0,
where (∗)i is the statement:

(∗)i there are M ′ ∈ Kθ and N ′ ∈ Kλ such that Mi ≤k M
′, Ni ≤k N

′, M ′ ≤k N
′

and M ′ cannot be ≤k-elementarily embedded into Ni over M0,

(3) Mi+1 ≤
nice

Ni+1.

This is possible. N0 is obtained by an application of Fact 1.10 to an appropriate
Op(M0) of power at least λ. At limit stages, continuity dictates that one take
unions. Suppose that Mi has been defined. If (∗)i does not hold, by 2.12(2) there
is M ′′ ∈ Kθ, Mi ≤k M

′′ ≤
nice

Ni. Let Mi+1 = M ′′, Ni+1 = Ni. If (∗)i does hold for

M ′, N ′, let Ni+1 = N ′; note that by 2.10(2) there exists M
′′ ∈ Kθ,M

′ ≤k M
′′ ≤

nice

N ′; now let Mi+1 = M
′′
. Note that in each case, (3) is satisfied.

Find i(∗) < θ+ and C as in 3.11 and choose i ∈ C. By (1) Mi+1 ≤k Ni+1 so by 3.10
there existsM− ∈ Kθ such that Mi+1 ≤k M

− ≤k Ni+1 and M− is weakly universal
over Mi+1 in Ni+1. By 3.4 one can find M+ ∈ Kθ such that M− ≤k M

+ and M+

is nice. So M+ satisfies (ℵ). It remains to show that M+ is weakly universal over
M . Suppose not and let g : M+ →

k
M∗ ∈ Kθ where M∗ cannot be ≤k-elementarily

embedded in M+ over M hence cannot be ≤k-elementarily embedable in M− over
M , hence in Ni+1 over M . Mi+1 ≤k M

∗ ∈ Kθ and by (3) Mi+1 ≤
nice

Ni+1 ∈ Kλ, so

by 2.1 there is an amalgam N∗ ∈ Kλ of M∗, Ni+1. The existence of M∗, N∗ implies
that (∗)i+1 holds since M∗ cannot be ≤k-elementarily embedded into Ni+1 over M0,
hence Mi+2 cannot be ≤k-elementarily embedded into Ni+1 in contradiction to the
choice of i as by 3.10 i+ 1 is in C. �3.12

Corollary 3.13. If k is categorical in λ, θ ∈ [χ, λ) and M ∈ Kθ is an a.b. (e.g. M
is nice, see 2.1), then there exists M+ ∈ Kθ such that:

Paper Sh:E102, version 2023-04-27 4. See https://shelah.logic.at/papers/E102/ for possible updates.



24 S. SHELAH AND OREN KOLMAN

(ℵ) M ≤k M
+ and M+ is nice,

(i) M+ is universal over M .

Proof. 3.12 and 3.7 (5). �3.13

Corollary 3.14. Suppose that T is categorical in λ and θ ∈ [χ, λ). Then there is
a nice universal model M ∈ Kθ.

Proof. By 3.4 it suffices to find a universal model of power θ, noting that universality
is preserved under ≤k-elementary extensions in the same power. As in the proof of
3.10, there is a linear order (I,<I) of power λ and J ⊆ I, |J | = θ, such that:

(∗) (∀J ′ ⊆ I) (if |J ′| ≤ θ, then there is an order-preserving injective map g
from J ′ into J).

�3.14

Claim 3.15. EM(J) ∈ Kθ is universal.

Proof. EM(J) is a model of power θ since max(|J |, χ) ≤ θ and θ = |J | ≤ ‖EM(J)‖·
EM(J) is universal. Suppose that N ∈ Kθ. Applying Fact 1.10 to a suitably large
Op(N) find M ∈ Kλ, N ≤k M , so that by λ-categoricity of k,M ∼= EM(I). There
is a surjective ≤k-elementary embedding h : N →

k
N ′ ≤k EM(I) and there exists

J ′ ⊆ I, |J ′| ≤ ‖N ′‖ + χ = θ, such that N ′ ⊆ EM(J ′). So by (∗) there is an
order preserving injective map g from J ′ into J . Now g induces an ≤k-elementary
embedding ĝ from EM(J ′) into EM(J). Let f = ĝh, then f : N →

k
EM(J) is as

required. �3.15

Theorem 3.16. Suppose that k is categorical in λ, θ ∈ [κ + |T |, λ), N ∈ K<λ is
nice, M ∈ Kθ and M ≤

nice
N . Then M is nice.

Proof. Let B ∈ Kθ, M ≤k B. Show that M ≤
nice

B. Well, since M ≤
nice

N and

M ≤k B, by 2.1 there exists an amalgam M∗ ∈ K<λ of N,B over M . Without loss
of generality by 1.15 ‖M∗|| = ||N ||. N is nice, hence N ≤

nice
M∗. Since M ≤

nice
N ,

it follows by 1.34 that M ≤
nice

M∗. Since M ≤k B ≤k M
∗, it follows by 1.38 that

M ≤
nice

B. �3.16
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§ 4. (θ, ∂)-saturated models

In this section we define notions of saturation which will be of use in proving
amalgamation for kλ.

Definition 4.1. Suppose that ∂ is a limit ordinal, ℵ0 ≤ ∂ ≤ θ ∈ [χ, λ).

(1) An τ -structure M is (θ, ∂)-saturated iff:

(a) ‖M‖ = θ,
(b) there exists a continuous ≤k-chain 〈Mi ∈ Kθ : i < ∂〉 such that:

(i) M0 is nice and universal,
(ii) Mi+1 is universal over Mi,

(iii) Mi is nice, and,
(iv) M = ∪

i<∂
Mi.

(2) M is θ-saturated iff M is (θ, cf(θ))-saturated.

(3) M is (θ, ∂)-saturated over N iff M is (θ, ∂)-saturated as witnessed by a chain
〈Mi : i < ∂〉 such that N ⊆M0.

The principal facts established in this section connect the existence, uniqueness and
niceness of (θ, ∂)-saturated models.

Theorem 4.2. Suppose that k is categorical in λ and ∂ ≤ θ ∈ [χ, λ). Then:

(1) there exists a (θ, ∂)-saturated model M,

(2) M is unique up to isomorphism,

(3) M is nice.

Proof. One proves (1), (2) and (3) simultaneously by induction on ∂.

Ad (1). Choose a continuous ≤k-chain 〈Mi ∈ Kθ : i < ∂〉 of nice models by induc-
tion on i as follows. For i = 0, apply 3.14 to find a nice universal model M0 ∈ Kθ.
For i = j + 1, note that Mj is an a.b. by 3.6 (since Mj is nice), hence by 3.13
there exists a nice model Mi ∈ Kθ,Mj ≤k Mi,Mi universal over Mj . For limit i,
let Mi = ∪

j<i
Mj . Note that by the inductive hypothesis (3) on ∂ for i < ∂, since

Mi is (θ, i)-saturated, Mi is nice. Thus M = ∪
i<∂

Mi is (θ, ∂)-saturated (witnessed

by 〈Mi : i < ∂〉). Note that M is universal, since 〈Mi : i < ∂〉 is continuous and M0

is universal.

Ad (2). As ∂ is a limit ordinal standard back-and-forth argument shows that if M
and N are (θ, ∂)-saturated models, then M and N are isomorphic.

Ad (3). By the uniqueness (i.e. by Ad(2)) it suffice to prove that some (θ, ∂)
saturated model is nice. Suppose that M is (θ, ∂)-saturated. We’ll show that M is
nice.

If cf(∂) < ∂, then M is also (θ, cf(∂))-saturated and hence by the inductive hy-
pothesis (3) on ∂ for cf(∂),M is nice. So we’ll assume that cf(∂) = ∂. Choose
a continuous ≤k-chain 〈Mi ∈ Kθ : i < θ+〉 such that: M0 is nice and universal
(possible by 3.14); if Mi is nice, then Mi+1 ∈ Kθ is nice and universal over Mi

(possible by 3.6 and 3.13); if Mi is not nice (so necessarily i is a limit ordinal),
then Mi+1 ∈ Kθ,Mi ≤k Mi+1 and Mi �

nice

Mi+1. By 3.1 and 1.38 there is a club

C of θ+ such that if i ∈ C, then Mi ≤
nice

Mi+1. So by the choice of 〈Mi : i < θ+〉,

if i ∈ C, then Mi is nice. Choose i ∈ C, i = sup(i ∩ C), cf(i) = ∂. It suffices to
show that Mi is (θ, ∂)-saturated (for then by (2) Mi is isomorphic to M and so
M is nice). Choose a continuous increasing sequence 〈αζ : ζ < ∂〉 ⊆ C such that
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i =
⋃
{αζ : ζ < ∂} (recall that i = sup(i ∩ C), cf(i) = ∂). Now Mi = ∪

ζ<∂
Mαζ . Of

course Mα0
is universal (since M0 is universal and M0 ≤k Mα0

), Mαζ+1
is universal

over Mαζ since Mαζ+1 is universal over Mαζ (κ) and Mαζ ≤k Mαζ+1 ≤k Mαζ+1
.

Also Mαζ is nice for each ζ < ∂ since αζ ∈ C. Hence Mi is (θ, ∂)-saturated. �4.2

Remark 4.3. Remember that by 3.16, if T is categorical in λ, θ ∈ [χ, λ), N ∈ K<λ

is nice, M ∈ Kθ and M ≤
nice

N . Then M is nice.

Theorem 4.4. Suppose that k is categorical in λ, χ ≤ θ < θ+ < λ. If 〈Mi ∈
Kθ : i < θ+〉 is a continuous ≤k-chain of nice models such that Mi+1 is universal
over Mi for i < θ+, then

⋃
i<θ+

Mi is (θ+, θ+)-saturated.

Proof. Write M =
⋃
i<θ+

Mi. Note that if 〈M ′i ∈ Kθ : i < θ+〉 is any other continuous

≤k-chain of nice models such that M ′i+1 is universal over M ′i , then
⋃
i<θ+

M ′i
∼= M

(use again the back and forth argument).

By Theorem 4.2 there exists a (θ+, θ+)-saturated model N which is unique and nice.
In particular ||N || = θ+ and there exists a continuous ≤k-chain 〈Ni ∈ Kθ+ : i < θ+〉
such that:

(i) N0 is nice and universal,
(ii) Ni+1 is universal over Ni,
(iii) Ni is nice,
(iv) N =

⋃
i<θ+

Ni.

It suffices to prove that M and N are isomorphic models.

Without loss of generality |N | = θ+. By Fact 1.10 C1 = {δ < θ+ : N � δ ≤k N}
contains a club of θ+. By 3.1 there exists a club C2 of θ+ such that for every δ ∈ C2,
N � δ ≤

nice
N . Since {|Ni| : i < θ+} is a continuous increasing sequence of subsets

of θ+, it follows that C3 = {δ < θ+ : δ ⊆ |Nδ|} is a club of θ+. Hence there is a
club C4 of θ+ such that C4 ⊆ C1 ∩C2 ∩C3 ∩ [θ, θ+). Note that for δ ∈ C4 one has
N � δ ≤

nice
N , |N � δ| = δ ⊆ |Nδ| and Nδ ≤k N , so that N � δ ≤k Nδ ≤k N and so

by 1.38 N � δ ≤
nice

Nδ. 〈Nδ : δ ∈ C4〉 is a continuous increasing ≺F -chain, Nδ ∈ Kθ+

and N � δ ∈ Kθ.

By 3.16 N � δ is nice since Nδ is nice (by (iii)). So by 3.13 N � δ has a nice
≤k-extension Bδ ∈ Kθ which is universal over N � δ, without loss of generality
N � δ ≤k Bδ ≤k N .

[Why? since N � δ ≤k Bδ (in fact N � δ ≤
nice

Bδ) and N � δ ≤
nice

Nδ, by 2.1 there

exists an amalgam Aδ ∈ K≤θ+ of Bδ, Nδ over N � δ. Let fδ : Bδ →
k
Aδ be a witness.

But Nδ+1 is universal over Nδ (by (ii)), so Aδ can be ≤k-elementarily embedded
into Nδ+1 over Nδ (say by gδ), hence Bδ can be ≤k-elementarily embedded into N
(using gδfδ).]

Let C5 = {δ ∈ C4 : if α ∈ C4∩ δ, then |Bα| ⊆ δ}. Note that C5 is a club of θ+ since
||Bα|| = θ. [For α ∈ C4, let Eα = (sup |Bα|, θ+)∩C4, Eα = θ+ for α 6∈ C4 and let E
be the diagonal intersection of 〈Eα : α < θ+〉, i.e. E = {δ < θ+ : (∀α < δ)(δ ∈ Eα)}.
Note that E is a club of θ+ and C5 ⊇ E ∩ C4 which is a club of θ+.] Thus
〈N � δ : δ ∈ C5〉 is a continuous ≤k-chain of nice models, each of power θ. If δ1 ∈ C5

and δ2 = min(C5\(δ1+1)), then N � δ1 ≤k Bδ1 ≤k N � δ2. Hence N � δ2 is universal
over N � δ1 (since Bδ1 is universal over N � δ1). Let {δi : i < θ+} enumerate C5
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and set M ′i = N � δi. Note that N =
⋃
i<θ+

M ′i . Then 〈M ′i ∈ Kθ : i < θ+〉 is a

continuous ≤k-chain of nice models, M ′i+1 is universal over M ′i . Therefore N and
M are isomorphic (as said in the beginning of the proof), as required. �4.4

Notation 4.5. Θ = {θ : θ = 〈θi : i < δ〉 is a (strictly) continuous increasing se-
quence of cardinals, χ < θ0, δ < θ0 (a limit ordinal),

⋃
i≤δ

θi ≤ λ} and Θ− = {θ̄ ∈

Θ: sup θi < λ}.

Remark 4.6. Let θ = sup
i

(θ) for θ̄ ∈ Θ. Then θ is singular, since cf(θ) ≤ δ < θ0 ≤ θ.

Definition 4.7. Let θ̄ ∈ Θ. A model M is θ-saturated iff there is a continuous
≤k-chain 〈Mi ∈ Kθi : i < δ〉 such that M =

⋃
i<δ

Mi, Mi is nice and Mi+1 is θi+1-

universal over Mi.

Definition 4.8. Suppose that θ ∈ Θ. Pr(θ) holds iff every θ-saturated model is
nice.

Remark 4.9. (1) If θ̄1, θ̄2 ∈ Θ, rng(θ̄1) ⊆ rng(θ̄2), sup rng(θ̄1) = sup rng(θ̄2), and
M is θ̄2-saturated, then M is θ̄1-saturated.

(2) For θ̄ ∈ Θ− and Pr(θ̄′) whenever θ̄′ ∈ Θ is a proper initial segment of θ̄, there
is a θ̄-saturated model and it is unique.

Theorem 4.10. Suppose that θ ∈ Θ− and for every limit ordinal α < lg(θ),
Pr(θ � α). Then Pr(θ).

Proof. By 4.9(1) and the uniqueness of θ-saturated models (4.9.2), without loss of
generality one may assume that otp(θ) = cf(sup(θ)). Now by 4.6 (cf(θ))+ < θ, so
by [She93] 1.15 + Fact 1.10(1)] there exists 〈S, 〈Cα : α ∈ S〉〉 such that:

(α) S ⊆ θ+ is a set of ordinals; 0 /∈ S,
(β) S1 = {α ∈ S : cf(α) = cf(θ)} is a stationary subset of θ+,
(γ) if α (∈ S) is a limit ordinal then α = supCα and if α ∈ S then otp(Cα) ≤

cf(θ),
(δ) if β ∈ Cα, then β ∈ S and Cβ = Cα ∩ β,
(ε) Cα is a set of successor ordinals.

[Note that the existence of 〈S, 〈Cα : α ∈ S〉〉 is provable in ZFC.]

Without loss of generality S \S1 = ∪{Cα : α ∈ S1}. We shall construct the required
model by induction, using 〈Cα : α ∈ S〉. Remember θ̄ = 〈θζ : ζ < cf(θ)〉. Let us
start by defining by induction on α < θ+ the following entities: Mα, Mαξ (for
α < θ+, ξ < cf(θ)), and Nα (only when α ∈

⋃
β∈S

Cβ) such that:

(A1) Mα ∈ Kθ,

(A2) 〈Mα : α < θ+〉 is a continuous increasing ≤k-chain of models,

(A3) Mα+1 is nice, and if Mα is not nice, then Mα 6�
nice

Mα+1,

(A4) Mα 6= Mα+1,

(A5) Mα+1 is weakly universal over Mα,

(B1) Mα =
⋃

ξ<cf(θ)

Mαξ, ||Mαξ|| = θξ, if α ∈ S1 , β ∈ Cα , γ ∈ Cα , β < γ, then:

(B2) Nβ ≤k Mβ ,

(B3) ||Nβ || = θotp(Cβ),

(B4) (∀ξ < otp(Cβ))(Mβξ ⊆ Nγ),
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(B5) Nβ is nice,

(B6) Nγ is θotp(Cγ)-universal over Nβ .

There are now two tasks at hand. First of all, we shall explain how to construct
these entities (THE CONSTRUCTION, below). Then we shall use them to build
a nice θ-saturated model (PROVING Pr(θ), below). From the uniqueness of θ-
saturated models it will thus follow that Pr(θ) holds.

THE CONSTRUCTION: we consider several cases:

Case (i): β = 0. Choose M0 ∈ Kθ and 〈M0ξ ∈ Kθ : ξ < cf(θ)〉 with M0 =⋃
ξ<cf(θ)

M0ξ using Fact 1.10. There is no need to define N0 since 0 6∈ Cα.

Case(ii): β is a limit ordinal. Let Mβ =
⋃
γ<β

Mγ and choose 〈Mβξ : ξ < cf(θ)〉 using

Fact 1.10. Again there’s no call to define Nβ since Cα is always a set of successor
ordinals.

Case (iii): β is a successor ordinal, β = γ + 1. Choose M ′γ ∈ Kθ such that
Mγ ≤k M

′
γ and if possible Mγ 6�

nice
M ′γ ; without loss of generality M ′γ is weakly

universal over Mγ . If β 6∈ S, then define things as above, taking into account (A3).
The definitions of Mβ , Mβξ present no special difficulties. Now suppose that β ∈ S.
The problematic entity to define is Nβ .

If Cβ = ∅, choose for Nβ any nice submodel (of power θotp(Cβ)) of Mγ .

If Cβ 6= ∅, then first define N−β =
⋃

γ∈Cβ
Nγ . Note that N−β is nice. [If Cβ has

a last element β′, then N−β = Nβ′ which is nice; if Cβ has no last element, then

N−β =
⋃

γ∈Cβ
Nγ is θ � otp(Cβ)-saturated, and, by the hypothesis of the theorem,

Pr(θ � otp(Cβ)), so N−β is nice.] Also N−β �F Mγ . If otp(Cβ) is a limit ordinal we

let Nβ = N−β and Mβ = M ′γ , so we have finished, so assume otp(Cβ) is a successor

ordinal. To complete the definition of Nβ , one requires a Lemma (the proof of
which is similar to 3.12, 3.13):

(∗) if A ⊆M ∈ Kθ, |A| ≤ θj < θ, then there exist a nice M+ ∈ Kθ, M ≤k M
+,

and nice models N∗, N+ ∈ Kθj , A ⊆ N∗ ≤k N
+ ≤k M

+ and N+ is
universal over N∗.

Why is this enough? Use the Lemma with M = M ′β and A = N−β ∪
⋃

ξ<otp(Cβ)
γ∈Cβ

Mγξ

to find N∗, N+, M+ and choose N+, M+ as Nβ , Mβ respectively.

Now, why (∗) holds? The proof of (∗) is easy as M ′β is nice.

PROVING Pr(θ):

For α ∈ S1, consider 〈Nβ : β ∈ Cα〉. For β, γ ∈ Cα, β < γ, one has by (B4)⋃
ξ<otp(Cβ)

Mβξ ⊆ Nγ . Therefore Mβ ⊆
⋃

γ∈Cα
Nγ .

(Mβ =
⋃

ξ<cf(θ)

Mβξ =
⋃

ξ<cf(α)

Mβξ(α ∈ S1); for ξ < cf(α), choose γ ∈ Cα, ξ < γ, β <

γ; so Mβξ ⊆ Nγ and Mβ ⊆
⋃

γ∈Cα
Nγ).

Thus for every β ∈ Cα, Mβ ⊆
⋃

γ∈Cα
Nγ hence Mα =

⋃
β∈Cα

Mβ ⊆
⋃

γ∈Cα
Nγ (remember

α = sup(Cα) as α ∈ S1). If γ ∈ Cα, then Nγ ≤k Mγ (by (B2)), and so
⋃

γ∈Cα
Nγ ⊆
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β∈Cα

Mβ = Mα by continuity. So Mα =
⋃

β∈Cα
Nβ hence 〈Nβ : β ∈ Cα〉 exemplifies

Mα is θ̄-saturated (remember Pr(θ̄ � δ) for every limit δ < lg(θ̄)). So Mα is θ-
saturated for every α ∈ S1. In other words {α < θ+ : Mα is θ-saturated} ⊇ S1 and
is stationary, so, applying 3.1, there exists α < θ+ such that Mα is θ-saturated and
Mα ≤

nice

⋃
β<θ+

Mβ . Hence by 1.38 Mα ≤
nice

Mα+1 and so, since Mα+1 is nice (A3),

Mα is nice (by 3.16).

We conclude that Pr(θ) holds. �4.10

To round off this section of the paper, let us make the connection between θ-
saturation and (θ, cf(θ))-saturation (Notation follows 4.5–4.10).

Theorem 4.11. Let θ̄ ∈ Θ− and θ = sup
i

(θi). Every θ-saturated model is (θ, cf(θ))-

saturated.

Proof. Let 〈Mα : α < θ+〉 be as in the proof of 4.10. By 3.1 there exists a club C
of θ+ such that for every α ∈ C, Mα ≤

nice

⋃
β<θ+

Mβ hence by the construction Mα

is nice. So if α, β ∈ C and α < β, then Mβ is a universal extension of Mα and for
γ = sup(γ ∩C), γ ∈ C, one has that Mγ is (θ, cf(γ))-saturated. Choose γ ∈ S1 ∩C
and sup(γ ∩ C) = γ. So Mγ is (θ, cf(θ))-saturated and also θ̄-saturated (see proof
of 4.10). Together we finish. �4.11

Paper Sh:E102, version 2023-04-27 4. See https://shelah.logic.at/papers/E102/ for possible updates.



30 S. SHELAH AND OREN KOLMAN

§ 5. THE AMALGAMATION PROPERTY FOR k<λ

Corollaries 5.5 and 5.6 are the goal of this section, showing that every element of
k<λ is nice (5.4) and k<λ has the amalgamation property (5.5).

Lemma 5.1. Suppose that 〈µi : i < cf(µ)〉 is a continuous strictly increasing se-
quence of ordinals, µ = sup

i<cf(µ)

µi, and χ ≤ µ0 < µ ≤ λ. Then there exist a linear

order I of power µ and a continuous increasing sequence 〈Ii : i < cf(µ)〉 of linear
orders such that:

(a) χ ≤ |Ii| ≤ µi,
(b)

⋃
i<cf(µ)

Ii = I,

(c) every t ∈ Ii+1 \ Ii defines a Dedekind cut of Ii in which (at least) one side
of the cut has cofinality κ.

Proof. Let I = ({0} × µ) ∪ ({1} × κ), Ii = ({0} × µi) ∪ ({1} × κ) ordered by:

(i, α)<I (j, β) iff i < j or (0 = i = j and α < β) or (1 = i = j and α > β).

�5.1

Lemma 5.2. Suppose that T is categorical in λ > cf(λ), κ + LSk < µ ≤ λ. If
M ∈ Kλ, then there exists a continuous increasing ≺F -chain 〈Mi : i < cf(λ)〉 of
models such that:

(a) M ≤k

⋃
i<cf(λ)

Mi,

(b) ‖ ∪
i<cf(λ)

Mi‖ = λ,

(c) κ+ |T | ≤ ‖Mi‖ < ‖Mi+1‖ < λ,

(d) for each i < cf(λ),Mi ≤
nice

(
∪

j<cf(λ)
Mj

)
.

Proof. As λ is a limit cardinal, choose a continuous increasing sequence 〈µi : i <
cf(λ)〉, λ = sup

i<cf(λ)

µi, κ + |T | ≤ µ0 < λ. Let 〈I, 〈Ii : i < cf(λ)〉〉 be as in 5.1. By

λ-categoricity of T without loss of generality M = EM(λ). Let Mi = EM(Ii) for
i < cf(λ). Clearly (1), (2), and (3) hold. To obtain (4), observe that by 2.7 and 3.6
it suffices to remark that by demand (3) from 5.1 on 〈Ii : i < cf(λ)〉 clauses (ℵ) or
(i) in 2.7 holds for each t ∈ I \ Ii. �5.2

Theorem 5.3. For every µ ∈ [χ, λ] and M ∈ Kµ, there exists M ′ ∈ Kµ,M ≤k M
′

such that:

(∗)M ′ for every A ⊆ |M ′|, |A| < λ ∧ |A| ≤ µ, there is N ∈ Kχ+|A| such that
A ⊆ N ≤k M

′ and N is nice.

Proof. The proof is by induction on µ.

Case 1: µ = χ. By 3.4 there is M ′ ∈ Kµ, M ≤k M
′ and M ′ is nice. Given A ⊆ |M ′|

let N = M ′ and note that N is as required in (∗)M ′ .
Case 2: χ < µ. Without loss of generality, one can replace M by any ≤k-extension
in Kµ. Choose a continuous increasing sequence 〈µi : i < cf(µ)〉 such that if µ is a
limit cardinal it is a strictly increasing sequence with limit µ; if µ is a successor,
use µ+

i = µ and in both cases χ ≤ µi < µ. Find M̄ = 〈Mi : i < cf(µ)〉 such that:

(a) M ≤k

⋃
i<cf(µ)

Mi,
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(b) ||
⋃

i<cf(µ)

Mi|| = µ,

(c) ||Mi|| = µi,
(d) Mi ≤

nice

⋃
j<cf(µ)

Mj .

Why does M̄ exist? If µ = λ by 5.2, otherwise by 4.4 (µ regular) and 4.11 (µ
singular).

Choose by induction on i < cf(µ) models L0
i , L

1
i , L

2
i in that order such that:

(α) Mi ≤k L
0
i ≤k L

1
i ≤k L

2
i ∈ Kµi ,

(β) j < i⇒ L2
j ≤k L

0
i ,

(γ) (∗)L1
i

holds , i.e. for each A ⊆ |L1
i |, there is N ∈ K≤κ+|T |+|A| such that

A ⊆ N ≤k L
1
i and N is nice (so in particular L1

i is nice, letting A = |L1
i |),

(δ) L2
i is nice and µi-universal over L1

i ,
(ε) L0

i is ≤k-increasing continuous,
(ζ) L`i ∩

⋃
j<cf(µ)Mj = Mi (or use system of �k-embeddings).

For i = 0, let L0
i = M0. For i = j + 1, note that by 2.1 there is an amalgam

L0
i ∈ Kµi of Mi, L

2
j over Mj since Mj �

nice
Mi and Mj �k L

2
j (use last phrase

of Fact 1.10 for clause (ζ)); actually not really needed. For limit i, continuity
necessitates choosing L0

i =
⋃
j<i L

0
j (note that in this case L0

i =
⋃
j<i L

2
j ). To

choose L1
i apply the inductive hypothesis with respect to µi, L

0
i to find L1

i so that
L0
i �k L

1
i and (γ)(∗)(L1

i )
holds. To choose L2

i apply Lemma 3.10 to L1
i ∈ Kµi giving

L1
i �k L

1
i , L

2
i is nice and µi-universal over L1

i (so (δ) holds).

Let L =
⋃
i<cf(µ) L

0
i =

⋃
i<cf(µ) L

1
i =

⋃
i<cf(µ) L

2
i , and let Li = L0

i if i is a limit, L1
i

otherwise. Now show by induction on i < cf(µ) that Li is nice.

[Why? show by induction on i for i = 0 or i successor that Li = L1
i hence use

clause (γ), if i is limit then Li is (θ̄ � i)-saturated, hence Li is nice by 4.8, 4.10.]

Now 〈Li : i < cf(µ)〉 witnesses that if µ is regular, L is (µ, µ)-saturated by 4.4, if µ
is singular, L is µ̄-saturated; in all cases L is µ̄-saturated of power µ, hence by the
results of section 4 (i.e. 4.8, 4.10) if µ < λ then L is nice. �5.3

Claim 5.4. M ′ = L is as required.

Proof. M ≤k ∪
i<cf(µ)

Mi ≤k ∪
i<cf(µ)

L0
i = L ∈ Kµ. Suppose that A ⊆ |L|. If |A| = µ,

then necessarily µ < λ and we take N = L. So without loss of generality, |A| < µ.
If µ = cf(µ) or |A| < cf(µ), then there is i < cf(µ) such that A ⊆ L1

i and, by
(γ), (∗)L1

i
holds, so there is N ∈ Kκ+LS(K)+|A|, A ⊆ N ≤k L

1
i , N is nice and N ≤k L

as required. So suppose that cf(µ) ≤ |A| < µ. Choose by induction on i < cf(µ)
models N0

i , N
1
i , N

2
i in that order such that:

(α) N0
i ≤k N

1
i ≤k N

2
i ,

(β) N2
i ≤k N

0
i+1,

(γ) A ∩ L0
i ⊆ N0

i ≤k L
0
i ,

(δ) N1
i ≤k L

1
i and N1

i is nice,
(ε) N2

i ≤k L
2
i , N

2
i is nice and universal over N1

i ,
(ζ) N0

i , N
1
i , N

2
i have power at most min{χ+ |A|, µi}.

For i = 0, apply Fact 1.10 for A ∩ L0
0, L

0
0; for i = j + 1, apply Fact 1.10 to

find N0
i ∈ Kµi , (A ∩ L0

i ) ∪ N2
j ⊂ N0

i ≤k L
0
i (in particular N2

j ≤k N
0
i ); for limit

i,N0
i = ∪

j<i
N0
j . To choose N1

i , use (∗)L1
i

for the set Ai = N0
i to find a nice

N1
i ∈ K≤χ+|A|, N

0
i ≤k N

1
i ≤k L

1
i . Note that ‖N1

i ‖ ≤ µi. Finally to choose N2
i note
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that by Lemma 3.12 the model N1
i has a nice extension N+

i (of power ‖N1
i ‖) weakly

universal over N1
i . Now N1

i is nice, hence N2
i is universal over N1

i (by 3.7A(5)) and
by Lemma 2.1 there is an amalgam Ni of N+

i , L
1
i over N1

i such that ‖Ni‖ ≤ µi.
Since L2

i is universal over L1
i one can find an ≤k-elementary submodel N2

i of L2
i

isomorphic to Ni. Let Ni be N0
i if i is a limit, N1

i otherwise; prove by induction
on i that Ni is nice (by Theorem 4.2).

Now ∪
i<cf(µ)

N0
i is an ≤k-elementary submodel of L of power at most κ+ |T |+ |A|,

including A (by (γ)) and ∪
i<cf(µ)

N0
i is (χ+ |A|, cf(µ))-saturated, hence (by Theorem

4.2) nice, as required. �5.4

Corollary 5.5. If K is categorical in λ then every element of K<λ is nice.

Proof. Suppose otherwise and let N0 ∈ K<λ be a model which is not nice. Choose
a suitable Op such that ‖Op(N0)‖ ≥ λ and by Fact 1.10 find M0 ∈ Kλ, N0 ≤k

M0 ≤k Op(N0) i.e. N0 ≤
nice

M0. It follows that:

� if N0 ≤k N ≤k M0 and N ∈ K<λ then N is not nice.

[Why? By 4.3; alternatively, suppose contrariwise that N is nice. So there is
N1 ∈ K<λ, N0 ≤k N1, N0 ≤

nice
N1 · N0 ≤

nice
N since N0 ≤

nice
M0 and N ≤k M0, hence

there is an amalgam N ′ ∈ K<λ of N1, N over N0. N is nice, so N ≤
nice

N ′;N0 ≤
nice

N ,

so N0 ≤
nice

N ′ and so N0 ≤
nice

N1 contradiction.]

On the other hand, applying 5.3 for µ = λ there existsM ′ ∈ Kλ satisfying (∗)M ′ . By
λ-categoricity of T without loss of generality, (∗)M0

holds (see 5.3) and for A = |N0|
yields a nice model N ∈ Kκ+|T |+‖N0‖ such that N0 ≤k N ≤k M0 contradicting
�. �5.5

Corollary 5.6. If K is categorical in λ, then k<λ has the amalgamation property.

Proof. By 5.2 and the previous corollary. �5.6
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[Row64] Frederic Rowbottom, The  Loś Conjecture for uncountable theories, Notices of the AMS

64 (1964), no. 2, 248, 64T-197.

[Shea] Saharon Shelah, Combinatorial background for Non-structure, arXiv: 1512.04767 Ap-
pendix of [Sh:e].

[Sheb] , Density is at most the spread of the square, arXiv: 0708.1984.
[She69] , Note on a min-max problem of Leo Moser, J. Combinatorial Theory 6 (1969),

298–300. MR 241312

[She74] , Categoricity of uncountable theories, Proceedings of the Tarski Symposium,
Proc. Sympos. Pure Math., vol. XXV, Amer. Math. Soc., Providence, R.I., 1974, pp. 187–

203. MR 0373874

[She75] , Categoricity in ℵ1 of sentences in Lω1,ω(Q), Israel J. Math. 20 (1975), no. 2,
127–148. MR 0379177

[She78] , Classification theory and the number of nonisomorphic models, Studies in

Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co.,
Amsterdam-New York, 1978. MR 513226

[She83a] , Classification theory for nonelementary classes. I. The number of uncountable

models of ψ ∈ Lω1,ω. Part A, Israel J. Math. 46 (1983), no. 3, 212–240. MR 733351
[She83b] , Classification theory for nonelementary classes. I. The number of uncountable

models of ψ ∈ Lω1,ω. Part B, Israel J. Math. 46 (1983), no. 4, 241–273. MR 730343
[She87a] , Classification of nonelementary classes. II. Abstract elementary classes, Classi-

fication theory (Chicago, IL, 1985), Lecture Notes in Math., vol. 1292, Springer, Berlin,

1987, pp. 419–497. MR 1033034
[She87b] , Existence of many L∞,λ-equivalent, nonisomorphic models of T of power λ,

Ann. Pure Appl. Logic 34 (1987), no. 3, 291–310. MR 899084

[She87c] , Universal classes, Classification theory (Chicago, IL, 1985), Lecture Notes in
Math., vol. 1292, Springer, Berlin, 1987, pp. 264–418. MR 1033033

[She90] , Classification theory and the number of nonisomorphic models, 2nd ed., Studies

in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co.,
Amsterdam, 1990, Revised edition of [Sh:a]. MR 1083551

[She93] , Advances in cardinal arithmetic, Finite and infinite combinatorics in sets and
logic (Banff, AB, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 411, Kluwer

Acad. Publ., Dordrecht, 1993, arXiv: 0708.1979, pp. 355–383. MR 1261217

[She99] , Categoricity for abstract classes with amalgamation, Ann. Pure Appl. Logic 98
(1999), no. 1-3, 261–294, arXiv: math/9809197. MR 1696853

[She01a] , Categoricity of an abstract elementary class in two successive cardinals, Israel

J. Math. 126 (2001), 29–128, arXiv: math/9805146. MR 1882033
[She01b] , Categoricity of theories in Lκ∗,ω, when κ∗ is a measurable cardinal. II, Fund.

Math. 170 (2001), no. 1-2, 165–196, arXiv: math/9604241. MR 1881375

[She09a] , Abstract elementary classes near ℵ1, Classification theory for abstract elemen-
tary classes, Studies in Logic (London), vol. 18, College Publications, London, 2009,

arXiv: 0705.4137 Ch. I of [Sh:h], pp. vi+813.
[She09b] , Categoricity in abstract elementary classes: going up inductively, 2009, arXiv:

math/0011215 Ch. II of [Sh:h].

[She09c] , Classification theory for abstract elementary classes, Studies in Logic (London),
vol. 18, College Publications, London, 2009. MR 2643267
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