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§ 0. INTRODUCTION

We continue [Shei], [Sheara], and [Sheb] (improving [She87, III]) on the one
hand, and [She83] on the other. A starting idea was that the “many pairwise non-
isomorphic models” proofs in Chapters VII and VIII of [She78], [She90] (and earlier
[She71], [She74], [SheT5]) can be generalized to many contexts — in particular, to
building Boolean algebras (as in [She75], [She83]).

In [Shei], [Sheb] we build the so-called “strongly unembeddable sequence of index
models” (I, : a < A), and from there build ‘many models’ or ‘models with few
automorphisms’ (or endomorphisms: e.g. for abelian groups and — our central
point here — Boolean algebras) as was done earlier in [She83].

The index models were mainly linear orders and trees with w + 1 levels. In this
paper, we deal with generalizations. (See also [She08].)

We begin with an example that motivates our need to pass beyond the framework
of trees with w + 1 levels. Suppose that we are asked to construct a rigid Boolean
algebra of cardinality A. We can take a sequence (I, : @ < \) exemplifying that
K has the so-called full (A, A, Rg, Rg)-bigness property (see [Shei, 2.5=12.3]). (It
says that each I, is so-called “strongly unembeddable” into > {Is : 3 € A\ {a}}.
These exist: e.g. A is regular and I, codes S, a stationary subset of
{6 < A:cf(d) =R}, with (S, : @ < A) pairwise disjoint.)

Now build a Boolean algebra BA(I,) for each a. We then construct a rigid
Boolean algebra By by choosing an increasing continuous sequence (B, : a < \),
where By is trivial and B, is obtained from B, by “planting” a copy of BA(I,)
below a, € B, and our bookkeeping will ensure that By \ {0} = {a, : a < A}
This seems to be a reasonable strategy, and it works (see a little more below). Now
suppose, moreover, that we are asked to construct a complete Boolean algebra B of
cardinality A with no non-trivial one-to-one endomorphism. We should assume that
ARo = X (as the cardinality of any complete Boolean algebra satisfies this equality)
and it is natural to demand in addition that B satisfies the ccc. It is not hard to
modify the construction above so that B has the ccc, so let B be its completion.

Assume toward a contradiction that f : B — B is a non-trivial, one-to-one
endomorphism. We can find a € B\ {0} with a N f(a) = 0 and o < X such
that @ = ao. Then I, is embedded in B | a, in some sense, say by n — ay.
Hence n + f(ap) is a similar embedding into B [ f(a) that is constructed from
(Ig : B # ) alone. It seems reasonable that the demand “I,, strongly unembeddable
into > {Ip : B # «a}” in the sense of Definition [Shei, 2.5=L2.3] can be used to
deduce a contradiction; this works in the case above (i.e. without the completion
demand). However in the present case f (ag) is not in general a member of By,

but rather is a countable union |J b5, of members of By. We would like to
n<w

find an appropriate unembeddability condition of I, into > Iz to handle this

o
complication. At some price, our original notion can be m(ﬂ)éiﬁed to handle this
complication when 7 has finite length, but not when 7 has length w. Instead, in
this latter case, we replace it by an “approximation” b?z,n(a,n) > 0: this was part of
the motivation of having the definition “strongly finitary on P.” in [Shei, 2.5=12.3].
Previously, we could use demands like “a%[ ¢ > ap” but now we have to use demands
like ag Najy =0, fg(n) = w, fg(r) < w, but such demands tend to contradict the
ccce.

Our solution is to replace subtrees of “Z\ by index sets I of the form

I=T"U{(nIn){ag):n<w, nel, n(n) = (ao,o)and €€ {0,1}},
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where I' C ‘“{(ao,al) tap < ap < )\}, and choose BA(I) to be generated by
{al : n € I} freely except that

I I I
nel'An(n) = (a0, 1) = ayiestag) = Tnta ()

(Actually, to ensure the ccc it is better to use a more complicated variant.) But
now the bigness properties have to be proved in this context. For other aims, we
use subtrees of “Z2 of cardinality x € [Ny, 2%0), originally to deal with number of
non-isomorphic models.

In this work we deal with more complicated index sets as motivated above.

In §1 we introduce classes like K¢’ (n)’ which are close to being trees with w + 1
levels, together with bigness properties (related to 9, ()) for them. We prove some
existence theorems of the form “for many A there is a sequence (I, : a < A),
where each I, € Ké‘;(n) has cardinality A and is strongly ¢, (,)-unembeddable into
> I3.” We also define “super” versions of these bigness properties related to the
BFa
ones in [Shea, 1.1=L7.1,1.5=L7.3].

In §2 we construct Boolean algebras with few appropriate morphisms for several
versions.

In §3 we construct a ccc Boolean algebra of cardinality 2% of pre-given length
(see Definition 3.3) such that any infinite homomorphic image has cardinality 2%°.
We use a Boolean algebra constructed from a single I € Kt“;(n) as in §2. As it
happens, the complicated I € Kt“;(h) are not needed, just non-trivial ones. Our
point is that K:jr(h) is not good just for the constructions in §2, it is a quite versatile
way to build structures with pre-assumed properties (not to speak of varying the
index model).

The main result is (3.6):

(¥) For p € [Rg,2%0), there is a ccc Boolean algebra B with length 1 (see
Definition 3.2 below) such that every infinite homomorphic image of B is
of cardinality 2%°.

If p is a limit cardinal and cf(p) > Ny we can demand the length is not obtained
(see Definition 3.2): if cf(u) = Ry this is impossible.

Also, we can replace Ry here by any strong limit cardinal & of cofinality Ng (see
3.14).

In §4 we deal with trees of the form S U%>2, where S C “2 is of cardinality \.

Note that §1, §2 are revised versions of parts of [She83] and parallel to [Shea],
and §4 is a revised version of parts of [She89]. The results in §2 answer problems
of Monk (presented in Oberwolfach 1980).

In §3, we solve a problem of Boolean algebras of Monk on which the author
earlier gave a consistency result, using ideas from §2.

84 supersedes [She78, VIII 1.8] and repeats [She89, 1.2,1.3]. Baldwin [Bal89] has
continued [She89, 1.2-1.3]. We can apply this to models of ¢ € Ly, r,, probably
using [She99].

Recall that in [She78, Ch.VIII,1.841.7(2)], we proved that for pairs of first order
complete theories (T, T) satisfying the hypothesis of Theorem 4.1 below

I(\, Ty, T) > min{2*, 3y}

We shall improve the result replacing I(\, 71, T) by IE(X, Ty, T). We improve the
proof from [She78, VIII 1.8]; in particular, we use the trees U,, defined in Fact 4.9.
They are subtrees of “~2 as close to disjoint as we can manage.

We can use trees similar to (¥*=2, <1) with finite or countable levels and heavier
structure (i.e., like pure conditions in forcing notions as in [She92, §2]). Asin 1.4(3),
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we use here a weak form of representation: the amount of similarity depends on
the terms and formulas.

We can use such trees as in §2 to build “complicated,” rigid-like structures. In
[She80, 1.2,1.1(3)] (more in [She79, 1.4, 1.1]) this was done for abelian groups:
one step is getting Z C G such that G is Nj-free of cardinality Ny, Z not a direct
summand of G). This was continued in Gobel and Shelah [GS95] and Gobel-Shelah-
Strongmann [GSS03].

Definition 0.1. 1) We say a structure M is atomically (<u)-stable when: if

A C M and |A] < p then the set {tp,(a, A, M) : a € “”M} of possible types has
cardinality < p.

2) We may write p-stable instead of ‘(< u™)-stable.’
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§ 1. TREES WITH STRUCTURE

We deal here with “relatives” of K} which are more complicated, strengthening
our ability to carry out our constructions. The existence proofs still work, at least
partially.

In this section (and the next) we define and see what we can do for K%, ¢pir,
Kt“;(n), Ptr(n) K:;(*), @ir(x) (which were introduced in [She83]) getting the parallel
of [Shea, 2.15=L7.11]. The reason for their introduction was for constructing certain
Boolean algebras; we shall deal with these constructions later.

More specifically, [Shei, 2.2=L{5] defines versions of “I is strongly ¢(Z, §)-unembeddable
into J” and “K has [full and/or strong] (x, A, p, £)-bigness,” so we can apply it to
(K, ¢) = (K Yptr), OF (Kt”r(h), Vir(ny) Or (Kt"”"r(h),wér(h)), as defined in Definitions
1.1,1.2 below. But below, essentially we choose more general ¢-s represented by e.

The relevant results are obtained by the existence of the super version, as in
[Shea] (see Definitions 1.4,1.6).

§ 1(A). The frame.

Definition 1.1. 1) K*

per 18 the class of I such that:

(A) The set of elements of I is, for some linear order J, a subset of
setie(n)[J] = {77 : 77 is a sequence of length < k, such that if
i+ 1 < fg(n) then n(i) has the form (s,t) with s <; t,
and if ¢ = fg(n) — 1 then n(i) € J}.
Also, if n € I, i +1 < {yg(n), and n(i) = (s,t) then (n [ i)"(s) € I and

(n I 9)°(t) € I. Furthermore, the empty sequence belongs to I, and if
0 < 4g(n) is a limit ordinal then n [ § € I.

(B) The relations of I are:
() n < v, meaning ‘n is an initial segment of v’ (i.e. n = v | lg(n)).
B) Pi={n:ty(n) =i}

) <1={(m,v):lg(n) = lg(v)
(0) Bq; ={m,v):nli=vli}
() Sucy, = {(n,v) 1 li=v]idit+l=14n) <b), vi =
(s,t) and n(i) = s for some i < k and s <j t}

() Sucg = {{n,v) :npli=v i i+l =4 <), v@i) =
(s,t) and n(i) =t for some ¢ < k and s <; t}

~~

=i+1, n(i) <sv(i), nli=v]i}

(n) An individual constant ( ).

(6) Functions Res%, Res® such that Res%(n) = (n | )" (s) and Res () =
(n | a)"(t) when n(a) = (s,t) and o + 1 < fg(n), and Res= () =
Res% (1) = n otherwise.

2) Let
Uptr (o, 13 Yo, Y1) = \/ [Piv1(21) A Pip1(y1) A Palwo) A (0 = yo)
i+1<k
A Suer,(x1,29) A Sucg(y1, yo) A (21 <o yo)}.
This depends on k, but we usually suppress this parameter.

3) I € K}, is standard iff in (1)(A), J is a set of ordinals with the natural order,
or at least a well ordering (usually we shall use those).
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Definition 1.2. 1) For h: £ — w\ {0}, the class K, n) is defined like K

ptrs but
replacing pairs by increasing h(i)-tuples at level i. That is,

(A) the set of elements of I is, for some linear order .J, a subset of
{77 : 1 is a sequence of length < k,
for i +1 < fg(n), n(i) has the form (so, ..., sp)-1)
such that sg < 51 <y ... <y sp@)—1 and
for i + 1 =4g(n), n(i) € J}.
Also, if n € I, i +1 < {g(n), m < h(i) and n(i) = (s0,...,5k@)—1) then

(n 1 4)"(sm) € I. Furthermore, the empty sequence belongs to I, and if
0 < 4g(n) is a limit ordinal then n [ § € I.

(B) The relations of I are:

(o) m < v, which holds iff n = v | lg(n).

(B8) Pi={n:tg(n) =i}

() <v={(mv) 1 lg(n) =Llg(v) =i+1, n(i) <;v(i), nli=v]i}
(0) Bq; = {(n,v):nli=v]i}
(e) For m < h(i) and i < k:

Sucim ={(mv):nli=vli lgn) =i+1,
v(i) = (505 - Sh(i)—1), (1) = Sm}

(¢) An individual constant ().
() Functions Resy' such that Res))'(n) = (n [ «) (sp,) when

n(a) = (50, -+, 5n(@)=1); @ <{g(n) and m < h(a).
If ¢g(n) < « then we stipulate Res['(n) = n. If n > h(4(n(a))) or
lg(n) = a+ 1 An(a) = sg we stipulate
Res, () = (n [ @)™ (s0)-
2) Yee(ny (T3 7)), where T = (20, 71), § = (yo,41), is"
(o =vo) N Pu(yo) A \/ [Piti(z1) A Pipa(y1) A (21 <191) A
1<K

Suc; 0 (0, 21) A Suc; neiy—1(y1,0)]

3) We define w‘ér(h) as follows:

h(i)—
\/(xo—yo/\P Yo) /\ Top1 = Yr)
<K =1

h(i)
/\ w+1(20) A Pig1(ye) A Rest (o) = x¢ A Rest (yo) = ye])
/=1

so if o = sup(rang(h)) then z = (¢ : £ < 14+ a), § = (y¢ : £ < 1+ ) (noting

a<w).

4) If A h(i) = n we may write K{ (> s0 for n = 2 we get KT, up to some
<K

renaming.

IBelow, the intention is yo | 4 = zy | i and yo(1) = (z0(3), - - -, Tp(s)—1(n))-
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If A\ h(i) =i mod w we may write K ). We say “I € K}, is standard” in
1<K
case the underlying set J is well ordered (usually a set of ordinals). When we write

n(a)(f), we mean n(a) if fg(n) = a + 1 and Res,(n) if o + 1 < lg(n).
(or Kg(n), Kt“;(*)v
parallel cases), we introduce the “super*” version, parallel to Definitions [Shea,
1.1=L7.1, 1.4=L7.2].2 So the easy case [Shea, 1.6=L7.5] has to be redone, hence
claim [Shea, 1.8(2)=L7.5(2)] is no longer of any help and we should prove a parallel.
The role of € here corresponds in the role ), in [Shei, §2], [Shea, §1].

Remark 1.3. Here, when dealing with K

ptr Ktﬁ(h); those are

Definition 1.4. Let h : w — w \ {0}, and € be a function with domain w, with
e(n) an equivalence relation on P(h(n)) satisfying

uy €(n) ug = |u| = |usl.

For this definition we identify a set (of natural numbers or ordinals) with an increas-
ing sequence enumerating it. Defining € we may ignore classes which are singleton;
see clause (5) on default values.
1) For I € Kg;(h), J € Kt“;(h,) and cardinals p,x we say I is (u,k)-super-e-

unembeddable into J (for K (h)) when:

(*)iié For every large enough regular cardinal x, x € H(yx), for a fixed well order-
ing <} of the set H(x) and fy : I — "~J, there are (M,,, N,, : n < w) such
that:

(1) My < Ny < Myi1 < (H(x), €,<%)
) M,Np=N,Nuand k C M.

(#3t) I,J, p, K, h,z belong to M.

) There is n € P such that for every n we have n [ n € M,. Also, for

n large enough, for £ < h(n), we have Res’,(n) € N, \ M, and they

realize the same Dedekind cut by <! on

{veINM, :v,Res’(n) are <i-comparable}.

This is equivalent to “Res’ (1), Res!(n),...,Res"(™~1(y) realize the

same Dedekind cut on {(n [ n)"(s) € [ : s € M, }.”
(Recall that <! linearly orders {(n | n)"(s) : s} N 1.)
(v) For n as above: if h(n) > 1 and u; €(n) ug then
(o) If by € ug Ao € ug A Jug NLy| = |ug N &y| then fy (Resle (n)) and
f1(Res2(n)) have the same length.
(B) The sequences vy p u, , Vynu, € " J realize the same atomic type
over J N M, in J, where for v C h(n) we let v, . be the
concatenation of the sequences f; (Res’, (1)) for £ € w.
(vi) For every v € PJ,
( U Mn) N U{Resﬁ(l/) 20 < h(n), n <w}
n<w
is included in some M,,.
2)ForI,J € K4 1,y and cardinals p1, 5, we say® that I is (y, k)-super-e-unembeddable’
into J (for Kt“;(h)) when:

2And see more versions in [Shea, 1.5=L7.3, 1.6=L7.3A].
3This is helpful in constructing Boolean algebras as in §2 in more cardinals without using
Definition 1.4(1) (or even d’;t(h))’ but this is the minor variant and the reader can ignore it.
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(*>II,J7#7NO For every large enough x and x € H(x), for a fixed well ordering <} of
H(x), there exists M such that:
(1) M < (H(x), €, <))
(ii) xe M
(#i7) M is countable.
(iv) There is n € P such that
m <wAl<h(n)= Res' (n) e M

and for every function f € M from “>I to pu, for infinitely many n, we
have:
@ Ifly < ... < l_y < hn), ty <...<{l,_y < h(n), and

{56, te aag—l} é(n) {gé)lv e 76271} thﬂ
F(Rest (n) i < k) = F((Res’ () i < k).

(v) If v € P/ then either v € M or, for some k < w, we have v | k € M
and v | (k+1) ¢ M.

3) Let g be defined by
eo(n) = {({¢},{k}) : €,k < h(n)}.
Let €; be defined by {({0,...,h(n) —2},{1,...,h(n) —1}) }. Let & be defined by
&x(n) = {({0,... [A(n)/2] — 1}, {[h(n)/2],....2[h(n)/2] = 1}) }.
If e = ey we may omit the subscript.
4) For (I : £ € W), W a set of ordinals, I¢ € K ),
C() =sup(W U {n(0)() :n € U{Le : £ € W}}) +1

we define > I € Ky ;) as {OHu{© ((59)77 :&eWandne I} (On ®, see
LewW q¢

standard for simplicity, letting

below.)

Remark 1.5. 1) We can also define this for trees with more than w levels (as in
Definitions 1.1, 1.2) but we feel we have enough parameters anyhow.

2) Recall & %@)n is ()ifn= (), and is (¢(x) x £ +n(0),n(1),n(2),...) otherwise.
C(*

Definition 1.6. 1) Kt“;(h) has the (x, A, i, k)-super-e-bigness property when there
are standard I¢c € K, for ¢ < x with |Ic| = A such that I¢ is (y, k)-super-e-
unembeddable into I, for each ¢ # ¢ < x.
2) Ké’i(h) has the full (x, A, u, k)-super-e-bigness property when there are standard
Ie € K,y for ¢ < x, |Ic| = X such that I is (p, k)-super-e-unembeddable into
Je= > I foreach ¢ < x.
e<x,e#C

3) We may also add superscripts to distinguish slightly different super-bigness prop-
erties: super™ will with be used for the properties defined in parts (1) and (2) above;
super*” will be almost identical, but we replace unembeddable by unembeddable’
(i.e. in Definition 1.4 we replace (¥)i3 by ()7 dcpm0)-

We may replace A by A = (Ao, A1) if | I¢| = A" is replaced by

el =X, [{ne€le:lyg(n) <w} =M.

4) Whenever we state a theorem, definition, or claim which does not depend on the
specific version of bigness, we will write ‘super®.’
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Remark 1.7. Also, K% can be brought into the framework above as a specific case
(i.e. h is constantly 1).

Claim 1.8 (Monotonicity). For every given h we have:

1) If Kﬁ(h) has the [full] (x1, A1, i, K)-sSuper €-bigness properties, x2 < X1 and
Ao > Ai, then K;’r(h) has the [full] (x2, A2, 1, K, 0)-super €-bigness property; similarly
for super.

2) If Ky has the full (X, A, ity k) -super €-bigness property and x1 = min{x, \}
then Kt“;(h) has the (2X1, A\, u, k)-super &-bigness. Similarly for super.

Proof. 1) Straightforward.
2) Similar to [Shea, 1.8(2)=L7.5], but we elaborate.

If (I, : @ < x) exemplifies “K{ () has the full (X5 A, 1, K, 0)-super” &-bigness
property,” x1 = min{x, A} and h(0) = n(x), then we let J4 = > {I, : a € A} for
A C x1 (see Definition 1.4(4)).

Let (Aq : o < 2X1) be such that A, C A, and a# 8 = A, € Ag. Now
(Ja, @ a < 2X1) exemplifies “Kt‘*;(h) has the (2X1, A\, u, k, 0)-super® e-bigness prop-
erty.” Dl.g

On the [full] strong (x, A, i, x)-bigness property (and strongly finitary version)
see [Shei, 2.5=L12.3]; by 1.9 below, for 9;,(5) from Definition 1.2(2) it is a conse-
quence of the super version and as in [Shei], [Shea] it is useful.

Claim 1.9. IfK,:‘;(h) has the [full] (x, A, u<", 2<%)-super-bigness property and x < A

then K:;(h) has the [full] strong (x, A, i, k)-bigness property for . (py for functions

f which are strongly finitary on P,,.

Proof. The result follows by the definitions and 1.10 below. g
Analogously to [Shea, 1.9=L7.5A], we have:

Claim 1.10. If (*)%7  (where py = p<*~, k1 = 2<%, {I, J} C Ky are stan-

H1,K1

dard*) and h € “w, then I is strongly (i, k, Yrr(ny)-unembeddable into J for embed-
dings which are strongly finitary on PL.

Proof. Recalling 1.4(3) we have € = ¢y. Without loss of generality I, J are subsets
of “Z( U (")) for some cardinal 6, and let <* be a well ordering of ., ,.[.J] (which

n<w
respects being a subterm). Suppose f is a function from I into .#), .(J), so for

nel,
f(n) = O—TI(VTJ,Oa s Uniy e -)1’<o¢,7

for some term o, ordinal o, < K, vy ; € J and f is strongly finitary on F,, i.e.,

n€ P! = a, <wAlo, has finitely many subterms|.

Let x be regular large enough, and define for n € P!,
g(n) = { : the a-th element by <* is a subterm of f(n)}

(so we use “the strongly finitary” only so that g(n) is finite).

Let (M,,, N,, : n < w) be as in the conclusion of Definition 1.4(1) and let n € PZ
be as in clause (iv) of Definition 1.4(1). Let m = «, and vy, = v,y € J. Apply
clause (v) of Definition 1.4(1) to each v,. For £ < m define

k¢ =min {k <w: if k < max(w, lg(vy)) then vy | (k+1) ¢ | M,}.

n<w

4See Definition 1.4(1).
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If k¢ = w then by clause (v), for some n(f) < w, we have {v; [ k: k <w} C Myy.
If ky < w clearly for some n(f) < w we have:

(%) ve | ke € My and lg(ve) > ke = ve [ (ke +1) ¢ U My, and if vy(ke) =
nw
<a€,k5,i < h(kg)> and i < h(kg), QY kp i ¢ Mn(g) then:
(1) aupei 8 U My, hence n < w = oy, ¢ Ny

n<w

(Z’L) 2o = Hiifn{y S U M, : (1/ [ke)A<y> € J and (V [k‘g)A(ozg’k“) <{ y}

n<w
belongs to M,,(;). (We can arrange that there are such y-s or allow oo
as a value.)

Let n, be such that max{n(0),...,n(m —1)} < n, < w and

lg(vg) <w = U {Rang(ve(k)) : k < lg(ve)} N U My C M.
k<w

Let yo = n (for £ < w) and zy = (n | n.) {ay) for £ < h(n.), where n(n.) =
(g : £ < h(n)) (and Ty, )4¢ = 7o) and the rest should be clear. 0110

Lemma 1.11. 1) K%, and Ko (when h € “(w\{0,1})) have the full (A, \, p, K)-

ptr
super—bigness property when:

@Bo A regular, A > p > kK, and A > p”.
2) Ky has the full (A, A, 1, K)-super—bigness property when:
@1 A>p >k and AN = ).
3) Above, we can deduce that Ktﬁ(h) has the full (X, A, p, &)Uy n)-bigness property.

Proof. Similar to [Shea, §1], but we shall prove it in §1B. (In fact, we can prove
more as in [Shea].) Ui1a

Claim 1.12. 1) Let I € Kt‘*;(h). Then I is atomically pi-stable iff

(A) Forn <w and n € PL ,, the linear order ({v € P, :v | n=nln},<i)
is atomically p-stable (i.e., for every subset of cardinality < p only < u
many Dedekind cuts are realized).

(B) For any I' C I with |I'| < u, the set
{(nePl:n<wAl<h(n) = Res(n) el'}
has cardinality < p.

2) For p = cf(p) > No, “atomically (< p)-stable” is characterized similarly (for
w=x", this means “atomically x-stable”).

3)If I € Ky is standard, p = cf(u), and [a < p = |a|¥ < u] then I is
atomically (< p)-stable.

4) The family of “atomically (< p)-stable I € K;(h) ”4s closed under well ordered
sums.

Proof. 1) Let J C I be of cardinality < u. Without loss of generality

X1 neJAn<lg(n)Al<h(n) = Res,(n)=(nln)((nn)e)eJ,
X, if n € PL and
(V&,n)[¢ < h(n) An <w = Resh(n) € J]
then n € J (see clause (b) of the assumption).
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Let J'={nlt:neJ £<ly(n)}, and for v € J' let
Jo=A{n:nel, n¢J ly(n) = Lg(v) +1and v <4n}.
So
(%) (J} :v e J') is a partition of I\ J.
Forp € I'\ J let k(n) = max{k : n [ k € J}. It is well defined (and < w) by Ky

above, and clearly n € J;Fk(n)'
We now observe:

@Ifn<w 7 =@m:L<n),q7" = :¢<n), and n), n/ € I, then a
sufficient condition for tp. (7', J, I) = tpy (7", J, I) is:
(a) If gy € J or ) € J then n), = 7).
(b) Lg(nz) = Lg(n7)
(c) If n; ¢ J (equivalently, n; ¢ J) then k(n;) = k(n;) — call it k, — and
mp I ke =my 1 ke
(d) for ¢1,¢5 <n <w and k < w, we have
() mp, Th=mp, [ k< nf [k=ng [k
(8) If both conditions in () hold, k < Lg(ny) Ak < Lg(ny,), m1,ma <
h(k), and for i = 1,2 we have

k41 < tg(ng,) At; = (g, (k) (ma) At] = (7 (k) ()
or
B 1= () A= i (6) A8 = o (B)
then
Oy TR (1) <1 oy TR)(85) & Gy 1R (1) <1 (a1 )" (22)
(e) If () then (3), where:
() mpeli,m | ked,and n, | (k+1) ¢ J (hence similarly for
ny)-
Second, v <1 p € J and my,ma < h(lg(v)).
Third, we have o1 or e, where

o1 k+1 < ALyg(np) At" = (m(ke))(ma) A" = (1 (e)) ()
o k+1="Lg(ny) Nt" = my(k) Nt" = ny (k)
Lastly, k4+1 < lg(p)As = (p(k))(mz) or k+1 = lg(p)As = p(k).

(B) o1 vi(s) <{ v (t)) & v{(s) <{ v (t")
o s=tss=t"
It is easy to check that this is true. Also, ® defines the equivalence relation (equality
of q.f. types in I over J) as various pieces of information being the same. Now

in all cases we have < p choices (for clauses (d), (e) in ®, recall clause (A) in the
assumption) so we are done.

2) Similarly.
3) Follows, as well orders are atomically u-stable.
4) Straight. Uy 12

Claim 1.13. If I € K{,;,) is standard and X satisfies (Va < N)[|al® < A] then I
is (< A)-atomically stable.

Proof. Obvious by 1.12(1) for A successor and by 1.12(2) for A a limit cardinal.
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§ 1(B). Existence Proofs.

Lemma 1.14. The h-fold simple B.B. Lemma.
Assume Ak > Ny, J = (\,<), h: x > w\ {0}, I € Ky as in Definition
1.2 for J, and let P! = {n : lg(n) = s}, PL, = U P!, n(i) € incy;(J), and

1<K
S =Heny(A).
1) There are functions f, forn € P! and pairwise disjoint Y. C P! for e < k such
that:

(i) dom(fy,) = {(Resf)l(n) 1i <k, L<h(i)}. That is,
dom(f,) = {n [ 7:7 <1 not successor} U {(n Fj)%n(j)(f)) gt l<i 4< h(])}
(1) rang(f,) €S
(iii) If f is a function from PL, into S and g is a function from PL, into some
v < K, and € < X, then for some n € Y. C P!, we have:

® fn g f
o g [ {(Res?)T(n) : € < h(i)} is constant for each i < k.

2) In clause (iii), assume further that we are also given ((h;,0;,9;) : i < k) such
that k; < h(i), g; : PL.y — 0;, and X — (h(z))gz Then we can add

o3 g [{(Resf)l(n) 0 < h(i)}] " s constant for each i < k.

Remark 1.15. 1) Quoting 1.14 in [AGSa, Th 3.14, Def 3.13], note that:
(a) K, there correspond to R and A here.
(b) A<y, A, there correspond to PZL,, P! here.
(¢) gn, 9, f, A there correspond to f,, f, g, here.

2) We can allow finite A, but then we would have to add the condition
(h(i) —1) -y < A

Proof. 1) Let (W, :s €S, € < A) be a partition of A into |S x A|-many sets, each
of cardinality \. For i < &, let A; = {n [ i:n € P!} and choose, by induction on i:
(*); fy, for n € A;, such that:

(a) dom(f,) = {nIj:j <inotsuccessor} U{(n 1) (n()0)):j+1<
i, £ < h(j)}

(b) rang(f,) C §

(c) If v < then f, C f.

(d) If j+1 < i and £ < h(j) then f,((n I ) (n(4)(€))) is s(¢) provided
that n(j + 1)(0) € W, where s is a sequence of length h(j), and is
zero otherwise.

(e) If j =0 or j is limit < 4, and 1(j)(0) € W for some s, then that s
will be f,(n 1 7).

So (f, : m € Pl) is well defined for i < k, and it obviously satisfies clauses (4), (i)
of the desired conclusion. What about clause (i4i)?

Fix e. Assume f: PL_ — Sand g: P, — ~ for some v < A\. We choose n; € A;
by induction on 1.

If i = 0 or 7 is limit, we have no freedom.

If i = 7+ 1 and j is not a successor ordinal, then let s
5 € Heno (M), and choose p € incy,(j) (Wi ) and let n; = n; " (p).

Lastly, if i = j 4+ 1 and j is a successor ordinal, then let

5= (Resi_y(n) - £ < h(j — 1))

and choose p € incpj—1)(Ws ) and let n; = n;"(p).
Now it is easy to check the 7 satisfies clause (7).

= (f(n 1 j)) (so
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2) Similarly. U114

Proof. Proof of Lemma 1.11

1,2) Case 1: A regular, A > >k, A = A* > p and (VO < \) [0 < Al
K = K}, s a special case of Kt“;(h) with h € “{2}, so we will restrict ourselves
to the case K = Kt";(h).

Let S = {0 < X:cf(0) =w}, and (S¢ : ¢ < A) be a sequence of pairwise disjoint
stationary subsets of S. Recalling A > N, for each ¢ we can find C = (Cs : 6 € S¢)
such that:

(*)1 (a) Cs is a club of é.

(b) otp(Cs) = w
(c) C guesses clubs.
()2 For ¢ € S¢, let n5,vs € “A be defined by:
(a) ns5(n) is the (2n)™ member of Cj.
(b) vs(n) is the (2n + 1)t member of Cj.
(¥)3 (a) Let As = {n € “8:n(n) € incpm([ns(n),vs(n))}.
(b) A n € Ky be as in 1.2(1), with its set of elements denoted
setr(n) (J)
(c) Let I be the submodel of Ié(h) with set of elements

A
UfAs:6 € Sy uPL™.

(¥)2 We will show that I = (I : ( < A) exemplifies the conclusion.
Solet ((x) <A, I == I¢,and J:= 3 Ic. Note
C#C(*)
(¥)5 Assume x,z,((M,,N,) : n < w) are as in clauses (i)-(iii) of (*)f\im in
Definition 1.4(1).
(a) f M,NnAeAforalln <wandd =J{M,NA:n<w} € S then
clause (iv) there holds.
(Le. f v e PJand {v [ n:n <w} C UM, then {v [n:n <w} C

M, for some m.)
(b) If we add the demand (V0 < \)[#%° < )], then we can add \/[v € M,,]

(intended for stronger versions of super).
Now if indeed (V& < M)[@"0 < )], we can continue as in the proof of [Shea,
1.11(1)=L7.6]. In particular, we find M,,, N,, as in (*)5. Otherwise, we find M,,, N,
as above and choose M, < (H(x),€) of cardinality p such that [M,]" C M,,
(My,Ny) :n <w) € My, and p+1 C M,. Now use (M, NM,, N,NM,):n < w).

Case 2: A > x = x" and 2X > \.

We prove the full (2%, \, x, k)-super bigness property, getting M,,-s such that
(VO) [k’ = k = 9(M,) C M,].

Without loss of generality x > p. As in the proof of [Shea, 1.11(2)=L7.6] until
the end: the choice of p is natural, as in 1.14.

Case 3: \ = 2%, 0 strong limit singular, 0 > u, cf(6) = No.
Let A, € (u, A) be increasing with n. Let (MZ : o < A) list the elements of
M = {M : M has universe H(f) and expands (H(6), €)
such that 7y € Hop+ (0) and {\, : n <w} C M}

such that each model of M appears A times in the sequence.
Now choose sq = ((Ma,n, Na.n) : 7 < w) by induction on a < 22
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(*) (3‘) Mam = Na,n = Ma,n+1 < M;
(b) [Ma,n}<ﬁ g MOC,TH [Na,n]<ﬁ g Ma,n-
(c) p+1C My,
(d) [Manll = p

(e) If B < e then |JMp,, NU Mo, = My for some k.
n n
Why? in the induction step we use the A-system lemma for trees.

Case 4: ) strong limit singular, cf(\) > k.
As in [Shea, 1.11(3)=L7.6].

We are done now; why?

Assume, in the proof of 1.11(1), that none of the cases above hold. Let § =
min{¢’ : 20" >\, 0 > p}. As Case 2 does not hold, necessarily 8% > X and x > p.
If o < 6 and 29 > 0 then 29 = (29)? > 6" > A, so having 6’ = 6 + u contradicts the
choice of 6. Therefore o < 6 = 27 < 0, so 0 is strong limit. As 6 > A, necessarily
cf(f) < k. Also, p" = pu, hence p < 6.

3) Follows by part (1) and Claim 1.10. 01 11
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§ 2. APPLICATIONS TO BOOLEAN ALGEBRAS

Here we construct some Boolean algebras with “no non-trivial morphism.”

We shall mainly use BA¢,(I), I € K¢ for constructing mono-rigid ccc Boolean
algebras; BAypy(I), I € K;‘;(h), h € “w\ {0,1,2}) for constructing complete
mono-rigid ccc Boolean algebras; and BAy,, (1), I € K for constructing Bonnet—
rigid Boolean algebras. In each case, for every I from a relevant family (which
exemplifies full bigness in the relevant case), we derive a Boolean algebra BA (1),
chosen to fit the proof of the case of rigidity we are interested in (this is Definition
2.1). We then build a Boolean algebra B of cardinality A, planting a copy of BA,(I,,)
below enough elements a € B such that a # b = I, # Ij (see 2.4). We mainly show
that BA ) ([) satisfies a strong version of the ccc hence the ccc is preserved (see
2.6), hence the outcome of the construction 2.4 is as required with respect to the ccc,
completeness, and cardinality. We then observe the relevant weak representability
results (see 2.12). Note that if we consider the completion of a ccc Boolean algebra B
and B is weakly represented in .4y, x,(J) then its completion is weakly represented
in My, x,(J). Next (in 2.14) we deal with deducing unembeddability of BA, (1)
into a Boolean algebra B which is weakly represented in .#), .(J), the main case is
part (2). We deduce as conclusions that there are mono-rigid [complete] Boolean
algebras (2.16, 2.17). We then deal with Bonnet rigid Boolean algebras (2.18 till
the end).

Definition 2.1. 1) For I € K let BA,(I) be the Boolean algebra generated freely
by {z, : n € I}, except that:

()1 n<vePl= z,>uz,.
2) For I € K3, let BA, () be the Boolean algebra freely generated by {x, : n € I},
except that for n € I with ly(n) = w, letting n = <<a0,50>, oy {am, Bn) - >, the
following holds:

(¥)2 For all n < w, &, < Tyin-(a,) and zy N 2pp,-(5,) = 0.

3) For h € “(w\{0}) and I € Ky, let BAys)(I) be the Boolean algebra
generated freely by {x, : n € I}, except that for n € Pl and n < w, letting
n(n) = (s0,--.,8n(n)—1)) We have:
h(n)—1
(%)3 Ty < Ty (so) and xy N eﬂl Tyin(sey = 0.
The second equality is trivial if h(n) = 1, so usually h € “(w\{0,1}). If (Vn)[h(n) =
1] this is like the case of I € K, and if (¥n)[h(n) = 2] this is like the case of

I e K% "
ptr-

4) For I € Ky (or just I is a set of sequences of ordinals closed under initial
segments) let BA¢,(I) be the Boolean algebra freely generated by {z, : n € I},
except that:
(A) ) () Ny () = 0 for® a # B.
(B) z, <z, for v <.
(C) If n has finitely many immediate successors {n"(ay) : ¢ < k,} and k,, > 2
then @, = (J{Zy"(ay) : £ < kp}.

(D) If n<iv and every p satisfying n<p<v has a unique successor, then z,, = z,,.

5We are, of course, assuming 1" {a),n (B) € I; similarly in other cases.
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5) For I € K, and g € “w, h € “(w\ {0,1}) satisfying® g < h, we define
BAii(h,g)(I) as the Boolean algebra generated freely by x, (1 € I), except that:

(%)s fnel, g(n) =w, £ <w, and n(¢) = (oo, ..., ax_1) where k = h({),then
g(6)—1
(@) 2y = U 20 o)

h(£)—1
(B) If g(¢) < h(£) — 1 then z, N () )x(nw)A(am) =0.

m=g(¢

(Usually we assume 0 < g < h.)

6) Assume that h € “(w \ {0,1}), € an w-sequence with €(n) = {{u1n,uznlt},
where uj p, g2, are subsets of h(n) which are not both singletons. For I € Kfﬁ(h)a
we define BA,(1)s(1) as the Boolean algebra freely generated by {z, : n € I},
except that for n € P! and n < w, letting n(n) = (s, ..., Sh(n)—1), we have

()3 2n < U 2y (s and 2,0 U 2im)~(s) = 0-

€Ul n LEuz n
(We have much freedom in this case).

Notation 2.2. 1) Let K n.g) = Kion) for g, hoasin 2.1(3). Note that for I € K
if g = 1 then BA,(s,,4)(1) is essentially BA¢.()(I). Also, if h = 1 then Kt“;(h)
and BAtr(h) (I) = BAtr(I).

2) When we state a result that holds for tr, ptr, trr, tr(h), or tr(h,g), we will
replace the corresponding subscripts with an x. Naturally we define K¢, = Ky

(h)’
= K¥

and Kg‘;(hm = K:;(h).
3) Note that when we say “a Boolean algebra is freely generated by X =
{z; : i € U}, except the set equations . . .,” we have 0 and 1 in the Boolean algebra.

4) For a Boolean algebra B and a € B, B | a is the naturally defined Boolean
algebra, but 1}, = a. Essentially, we do not consider 1g as an individual constant
of B.

Definition 2.3. For Boolean algebras B, By and a* € By \ {Og, }, we define the
“B-surgery of By at a*” or “surgery of By at a* by B”, called Bs, as a Boolean
algebra extending B; such that By = [B1 | (—a*)] x [(B1 [ a*) * B], where X is a
direct product and * free product. Alternatively, Bs can be generated as follows:
first make B disjoint to By (by taking an isomorphic copy) and then By is freely
generated by B; U B, except the relations

O, =0 =0,

anb=c (for a,b,c € By such that aNb = ¢ in By),

aUb=c (for a,b,c € By such that aNb = c in By)

1g, —b=c¢ (for b,c € By such that 1g, — b= c in By),
anNb=c (for a,b,c € B such that aNb = ¢ in B),
aUb=c (for a,b,c € B such that aUb = ¢ in B),
lg—b=c (for b,c € B such that 1g —b =)

and
1B = CL*.

bie. (Vn)[g(n) < h(n)].
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Construction 2.4. Let x be one of {tr, ptr, tr(h), trr, tr(h, g)} and let A be a cardi-
nal with a < A% (usually o = X\, always o > 0). The idea is to construct a Boolean
algebra by defining an increasing continuous sequence B; (i < a), By trivial, and
we get Biy1 by a surgery of B; at af € B; by Bf = BA,(I;) (see Definition 2.1 and
2.2(2)), where |I;| = X\, I; € KY and I; is strongly 1, -unembeddable into 3 I,
j<anii

(or, e.g., supery-e-unembeddable into it, y € {nr,vr}).

We denote B = B, by Sur,(l;,af : i < «). Usually we would like to have
B, \ {0} = {a} :i < a}. If there are (I; : i < a) as above and « is divisible by A
then this is clearly possible.

Definition 2.5. 1) A Boolean algebra satisfies the A-chain condition (or the A-cc)
iff there are no A elements which form an antichain (i.e., they are # 0 and the
intersection of any two is zero).

2) A Boolean algebra satisfies the strong A-chain condition or the A-Knaster con-
dition iff among any A elements there are A which are pairwise not disjoint.

Claim 2.6. Let x € {tr, ptr, tr(n), tr(h),tr(x)}, I € K¢, X uncountable regular.

1) If x = tr then BA,(I) satisfies the strong A-chain condition.
2) If © = ptr then BA,(I) satisfies the strong (2N°)+—chain condition.
3) If e =tr(k), k>3, and I € Kt";(k) is standard, then B = BAy. ) (1) satisfies
the strong A-chain condition; similarly for K ), for Ky ) with h € “w\3), and
K h.o) (for h € “(w\ 3) and g € “w such that g < h).

Instead of h € “(w\ 3), we can demand h € ¥(w\1) and h(n) > 3 for every large
enough n.
4) If © = ptr, BA,(I) satisfies the strong A-chain condition provided that I is
atomically (< X)-stable; for example, if (Voo < X)[|a|™ < A].
5) If h,e are as in 2.1(6) and for every n large enough, (x)2 below holds, X\ is
regular uncountable, and I € Kg(h) then BAy(n),s(I) satisfies the strong A-chain
condition, where:

(%)2 e(n) = {(uy,ul)}, where ul,uy C {0,...h(n) — 1} are non-empty and not

of the same cardinality.

Remark 2.7. Clearly we can similarly phrase sufficient condition for “any family of
A non-zero elements there is an uncountable subfamily such that any & members of
the subfamily have non-zero intersection”.

Before we prove 2.6, recall the well known fact: (Here By = {0, 1} is the two-element
Boolean algebra.)

Fact 2.8. 1) If B is the Boolean algebra freely generated by {z; : t € I} except
for a set A of equations in {z; : t € I}, (so each member of A has the form
o(xty,y ... 2, _,) = 0, where o(yo,...,Yn—1) is a Boolean term, tg,...,tn—1 € I)
then, for a Boolean term o*(zg,,...,%s,_,), we have («) < (8), where:

() BEo*(Tsyy---,2s,_,) >0
(8) For some function f: I — {0,1}, we have:
(a) f respects A; i.e.

O'($t0, . 7xtm,1) cA = Bo ': “0= O'(f(to), ey .f(tm—l))”-
(b) Bo = 0" (F(s0)s- -+ f(sn 1)) =

2) In fact, if f: I — {0, 1} satisfies clause (a) then there is a unique homomorphism
f from B into By such that s € I = f(z;) = f(s).
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Now we return to proving 2.6.

Proof. 1) We take x = tr and check the strong A-chain conditions. Note that by
2.8 and the definition of BAy,(I), we have:

($)1 Ty, NNy, N (=2p) NN (=y,,) =0 iff
(3i,5)[vi <my € PV vi = p5].

[Why? The ‘if” implication is trivial, recalling Definition 2.1(1). For proving the
“only if” implication, assume that the second statement holds. Define f : I — {0,1}
by f(n) = 1iff (3¢)[n = n, V1 < ne € PL]; clearly it respects the equations in the
definition of BAy,(I) and f maps z,, N...Nz,, N(=z,,)N...N0(=z,,) to 1, so by
2.8 we are done.]

Now for v € [I|<%, let 2, = () @, and z_, = () (—a,). Clearly, if a €
new neu

BA,(I)\ {0} then for some u,v € [I]<®, we have 0 < z, Nz_, < a (hence u and
v are disjoint). In fact, a is a finite union of such elements. To check the strong
A-chain condition it suffices to take {(u;,v;) 14 < A} C [I]<R0 x [I]<®° such that
(Vi < N)[xy, NT_y, # 0], and to find A € [A\]* such that

(Vi,j € A)[wy, Ny, N Ty N Ty # 0].

We may assume that (u; : i € A) and (v; : i € A) are A-systems (say, with hearts
u*, v* respectively) so as u; Nv; = &, necessarily
w, NV =u* Ny, =u" Nov* =a.

We may assume ¢ # j € A implies u;Nv; = &, u; # uj, and v; # v;. We may assume
that for some non-zero m,n < w, for every i € A, we have |u;| = m A |v;| = n.
Say u; = {mie : £ < m}, v; = {v;e : £ < n} (without repetitions) and for each
¢ < m the sequence (n; ¢ : i € A) is constant or is without repetitions, and similarly
(vig i€ A). We may assume

(¥)2 (lg(nie) - £ <m), (lg(vie) : £ < n) is the same for all i € A.
Clearly then, using the A-system assumption,
()3 Fori e A, £ < m,k < nthereis at most one j € A such that v; ;<\n; ; € Pj.

[Why? If we have v, n; ¢ € P! note that =(v; x <m;¢) by ()1, hence Vjk # Vik
so ¢ # j and hence v ¢ v*, and vy =10 [ lg(vjk). Thus j#j1 € A= v, 1 #
vir and hence j # j1 € A = v # Mg [ Lg(vjk) = mie | Lg(vj, ). Hence
j# 5 € A= =(vjr <In) and we have finished.]

So for i € A, the set

w; == {j : for some £ < m, k <n we have v, <n; s € Pl

has at most mn < Ry members. So by (*); it suffices to find A’ € [A]* such that
[i#j€ A = j¢w]. By Hajnal free subset theorem [Haj62]” there is® such A’.

2) The case x = ptr is similar, but more complicated. First note

(¥)a Assume I € Ky, and B = BAy,(I). If m,n < w, and vg,me € I for
t<m,k<nthen Bz, N...Nz,, ,N(—2,)N...N(-z,, ,)=0iff
at least one of the following conditions holds:

(a) (3¢, k <m)ly(ne) = w A Sucr(nk,n0)]

(b) (3¢ <m)(3k < n)[lg(ne) = w A Sucr (vg,ne)]

7Or see [Shed, 3.14=L4.Ha).
8Note that (=2vj, 0, ) N (=Tvy, ,,) > 0 always holds.
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(c) Btk <m)(3Fj <w)Ba, B,7) [lg(ne) = lg(m) = w A
nelg=me 1j A ne(q) = (e 8) A (i) = (8,7)]
(d) (3 <m)(EFk <n)lne=wl.
[Why? If (a) or (b) or (c) or (d) holds then the intersection is zero by the equations
we have imposed defining BA,(I) in Definition 2.1(2), so the “if” implication

holds. Next we prove the other implication, so we assume (a), (b), (c¢), and (d) fail,
and we shall use 2.8. We have to define f(p) for p € I; we do it by cases.

Case 1: lg(p) = w, p € {no, -, N}

Let f(p) = 1.

Case 2: lg(p) = w, Case 1 does not hold.
Let f(p) = 0.

Case 3: ly(p) = k < w and for some £ < m, lg(n;) = w and Sucy,(p, ne).
Let f(p) = 1.

Case 4: ly(p) = k < w and for some ¢ < m, lg(n;) = w and Sucg(p, ne)-
Let f(p) = 0.

Case 5: ly(p) <w, pe{ne: L <m}.
Let f(p) = 1.

Case 6: No previous case applies.
Let f(p) = 0.

First, f is well defined. (L.e. there are no contradictions between cases 3+4, cases
345, cases 445, as clauses (c), (b), and then (a) of ()4 fail, respectively.?) Second,
we show that f respects the equations from Definition 2.1(2); that is, from (x)o
there. If x,, < 2,,-(a,) is an instance of (*)2 of 2.1(2) and f fails it (that is,
f(n) =1, f(n I n"{a,)) = 0) then necessarily by g(n) = w Case 1 occurs for 7,
hence Case 3 occurs for (n [ n)"{ay). So f((n [ n)"{(a,)) = 1, hence f has to
satisfy the equation. Similarly for the other equation in (x)y of 2.1(2), using Case
4 instead Case 3. Third: f(z,,) = 1 for £ < m by Cases 1, 5, and f(vx) = 0 for
k < n as by failure of clause (d), Case 2 occur if g(v;) = w, and Case 6 occurs if
lg(v,) < w. So by 2.8 we are done proving (x)4]

Let a, € BA,(I)\ {0} for a < A = (2%0)*, 50 as before without loss of generality
Ao = Ty o NNy, N (=xy, )N ... 0 (=2y, ) # 0. Without loss of
generality n, = n*, mq = m* and P N {n,, : £ < m*} # @ (for notational
simplicity below). We can define 7, ¢ (for m* < ¢ < w) such that

Sucr (p, Na,e) V Sucr(p, Nae) = p € {Nak 1 k <w}
Without loss of generality the atomic type of (4 : ¢ < w) in I does not depend
on «, and they form a A-system: i.e.
(*) Na,ty, = Mg, N Q 7é B = (vahﬂl < )‘)[77(11751 = Noy b = NB1,e1 = 77[31762]-

Now we apply ()4: check that each case fails.
3) Without loss of generality we deal with K Let an # 0 (o < A) be non-zero

tr(h,g)’
pairwise disjoint elements, let a, = 04 (Z5, ), 0o a Boolean term, 7, a finite sequence
from I, (i.e. we write T, o . o _,) instead of (zy, o, ... 2y, . _,)). Without loss
of generality o, = 0 and 7o = (N0 - - -, N, k—1) is without repetition, and
Ao = m Tna.e N ﬂ (_xﬂa,z) .
£<k(0) k(0)<t<k

9Actually, cases 3+5 cannot contradict.
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So there is n(a) < w such that fg(na,r) <w = g(Na,e) < n(a), and lg(na o)) =
g(Nap(2)) = w, (1) # £(2) implies

Nae(ry | (@) # Nae(ry | 1)

and (Vn)[n >n(a) —1 = h(n) > 3].

Without loss of generality, if m < n(a), g(1a,:) > m+ 1, na:(m) = (Y0, 71, - )
then (na,i [ m)"(y;) belongs to {Na.0,7a,1,...} (for we can change 7, and o4, and
then uniformize o, k again).

Now without loss of generality n(a) = n* for every «, lg(na:) = ¢; < w, and
the truth value of (N, | ™M) (Naiy (M)(M')) = N, does not depend on a. Also
(by the theorem on A-systems) for every m < k, (fa,m : @ < A) is constant or
is without repetition. Also there is j,, < n* such that 1o m [ jm is constant, but
(No,m (Jm) © @ < A) is an indiscernible sequence in I satisfying either o1 or 5, where

o1 The 7o,m(jm) are pairwise distinct tuples of length h(j,,), and j,, +1 < £p,.
oy The 7, m(jm) are singletons and j,, + 1 = £p,.
(Recall that <{ is a well ordering; that is, we use “I is standard.”) It follows that:
i1,90 < K, o, B,y < A £ <n*, and na4, | € =g, | £ implies
Nevin Fg = Na,io FZ = M,y M = N,iz K2

Let o« < B < A, and we shall prove a, Nag # 0. For notational simplicity let
a =0 and § = 1. Now we shall define a function f from I to the trivial Boolean
algebra Bg = {0, 1}.
Let
B (a) u={l<k(0):Lg(noe) =w, noe [ n* =meln*}
(b) For ¢ € u, let ny = min{n < w : g e(n) # ne(n)} > n*.
(¢) For £ € w and n > ny, let
® py =mnoeln
e (af; 11 < h(n)) is equal to mg¢(n).
e (B} 11 < h(n)) is equal to 11 ¢(n).
o A} = {p?A<aZi>7P?A<BZ¢> 1i < h(n)}.
Now

@ For ¢ € w and n > ny, there is a function f; : A} — {0,1} such that:
(a) If g(n) > 0 then

o1 (Ji < gm) [ (p2 (ai,)) = 1]
o2 (3i < g(n))[f7 (g (Br)) = 1]

(b) If f(n) > g(n) then
o1 (F)[(g(n) <i< fn)AfP (o7 () = 0]
o> (3)[(g(n) <i < F() A f7 (7 (BR)) = 0]

Why? The proof is by splitting into cases.

o If g(n) =0 let f;' be constantly 0.
[Why is this OK? Now @(a) is empty and @(b) is trivial, as f(n) > 0.]
e If g(n) = 1let f;' map pj"(af) and pj "(B7) to 1 and everything else in
A} to zero.
[Why is this OK? Because h(n) > 3 so h(n) — g(n) > 2.]
o If g(n) = 2 let fi map pj"(aj ,,)) and pi " (B} ,,)) to 1 and everything
else to zero.
[Why is this OK? Similar to the previous case.]
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Obviously exactly one of the cases hold, so we are done proving .

We define f so that f(n) = 1 iff one of the following cases occurs:

©® (a) n=mn;, where j < 2 and ¢ < k(0).
(b) For some ¢ € uw and n > ny, we have n € A} and f;*(n) = 1.
(c) £ <k(x),£¢un>n*j<2 andn= (9 n) (n;e(n)0)).
Clearly f is well defined. Also,

(*) If £ € [k(0), k) and j € {0,1} then f(n;,) = 0.

[Why? Let n = n;, and assume toward contradiction that (x) fails. There are
three possible reasons for f(n;,) = 1. The first is clause (a) of © above; that is,
N = Nj(1),e(1), where j(1) € {0, 1} and £(1) < k(0), but for j # j(1) this is impossible
by the “cleaning” above, and if j = j(1) this is impossible as a; # 0.

The second is clause ®(b); so for some ¢ € w and n > ny, we have n; , € A}, but
this implies £g(n;,¢) < w. But we have assumed fg(n;¢) <w = Lg(n;1),e1)) < n*
while

i)y 19 {ag M)
appears in the sequence (1;() ¢ : £ < k), so we have an easy contradiction.

The third is clause ®(c), which is easy as well.

It is enough to prove that there is a homomorphism f from BAy,, 4)[{] to {0,1}
such that f(xn) = f(n) as then we are done because clearly (by (x), and f’s

definition) f(ao) = f(a1) = 1. To prove this we have to show that the identities
appearing in the definition of BA,[I] are respected by f. Such an identity looks
like
g(1) h(i)—1
D zp < U Tty tam) O To N () Z(p1i)(an) = 0, where p € Pl and
m=0 m=g(i)+1

p(Z) = <C¥0, N ah(i),ﬁ.

If f(p) = 0 they hold trivially, so we should consider only the case f(p) = 1. As
lg(p) = w, necessarily p = 1,44+ for some j(x) < 2 and £(x) < k(0). (In the
other cases in the definition of f where f(x,) = 1, the sequence p is finite.) If
i < n* then (p [ 1) (am) € {Nj),e : £ < k} for every m < h(i); so as a; > 0, by
clause (a) of the definition of f and by (%) we can finish. So assume i > n*. Now
if D_jye) 14 # p 1 ithen f((p [ i) (am)) is 1if m =0, and is 0 if m # 0, so
clearly the two equations in (@) hold. We are left with case

M—jee) Ti=p T (=500 [9)
and i > n*. So we just use the definition of f}.
4) Like part 2).
5) Like part (3). Lo
Claim 2.9. 1) If By, B satisfy the strong A-chain condition, a* € B1\ {0B, }, and
B is the result of a B-surgery of By at a*, then Bs satisfies the strong A-chain

condition. If one of B1, B satisfies the strong A-chain condition, and the other only
the A-chain condition, then Bo satisfies the A-chain condition.

2) If By is the result of a B-surgery of By at a*, then By < By (ie., By is a
subalgebra of Bo, and every mazximal antichain of By is a maximal antichain of
B,. This is also called “By is a regular extension of By”).

Proof. Well known (and easy). Lo
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Claim 2.10. The relation < between Boolean algebras is a partial order, and if a
sequence (B; : i < «) is <-increasing continuous then Bg < |J B;, and if each B;
<o
satisfies the strong x-chain condition (for a regular x ), then so does |J B;.
<o
Proof. Well known: Solovay-Tenenbaum [ST71] for the y-chain condition, and
Kunen-Tall [KT79, p.179] for the strong y-chain condition. Oao

Claim 2.11. 1) In Construction 2.4, if |I;| = X (hence |BA(L;)] = X fori < a)
then ||B;|| = A for 0 <i < a.

2) In 2.4, if each BA,(I;) satisfies the strong x-chain condition and x is regular
then B = Sur,(I;,af : i < ) satisfies the (strong) x-chain condition.

3) Assume that in 2.4 we use non-trivial Bg and |I;| = X. Then |B|| = X+ ||Bo||.
If in addition By satisfies the A-cc, and each BA,(I;) satisfies the strong A-chain
condition, then B satisfies the A-cc; if in addition By satisfies the strong A-cc, then
so does B.

Proof. 1) Trivial.
2) By 2.5, 2.6, 2.9, 2.10.
3) Similar. U211

Lemma 2.12. 1) For the construction in 2.4, B, is weakly representable in
%§07N0( > I,) (see Definition [Shei, 2.4=L2.2(c),(d)]).
<o

2) Moreover, By, | (1 — a}) is weakly representable in A5 (> I;).
T i<agj#i
3) If B, satisfies the 0-chain condition then B (the completion of B, ) can be
weakly represented in My (Y I;). This representation can extend the one from
T j<a

2.12(1).
4) Similarly for 2.12(2).

5) If in 2.4 we use a non-trivial Bo, we have to adapt. For example, assume By is
weakly representable in a relevant way (e.g., for (1) assume By is weakly represented
in My, x, (J+ Z I;)).
<o
Proof. 1) Define f(0) =0, f(1) = 1. Given b € B, not equal to 0 or 1, say that b
first appears in B; 4.
Say
b= (b/7 U (Cj N d]))
j<m
with b’ € B; | (—a}) and ¢; € B, [ a},d; € BA,(I;). Say (by induction hypothesis)

f) =2, f(¢;) = xj, flaf) =z, dj = 0j(2y,,..., %y, _,) where o is a Boolean
term, and g, ..., Mm-1 € I;.
Then we set

f(b) = Fk(I7I’/,I0, ooy Tm—1,1705 - - 777m—1),
k codes (m,n,o0,...,0m—1),

where F, is a suitable function symbol. Thus, f(b) codes all the relevant information
about b.

2) We may assume that a} # 0,1. We go exactly as in (1) up to B;. For a > i, we
use (—af) in place of 1, and working always with B,, | (—a}). Note that no terms
involving I; appear then.
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3) For each a € B¢, we can fix x < 6 and a sequence (b, : v < k) of elements of B,

such that a = |J b,. Thenlet f, = F (o, : v < k), where f(b,) = o for all v < k.
Y<K

4),5) Similarly. U212

Remark 2.13. 1) In 2.15-2.16 below we can omit the ‘weak’ from representation
and the ‘strong’ from unembeddability.

2) Why weakly represented? As the order of the construction and the choice of the
a; play a role in the definition, we can overcome this in various ways but there is
no real reason for doing this

Lemma 2.14. 1) Suppose I € K is strongly (No, Ro, ¥t ) -unembeddable into J €
K, and B is a Boolean algebra weakly representable in My, x,(J). Then BAy(I)
is not embeddable into B.

2) Suppose I € K& is strongly (u, &, Ve, ) -unembeddable into J for embeddings which
are strongly finitary on PL, and B a Boolean algebra weakly represented in My (J).

w?

Then BA.(I) is not embeddable into B.

Proof. 1) Let g : B — My, x,(J) be a weak representation of B into .#xy, x,(J)
(with the well ordering <*), and h be an embedding of BA¢,(I) into B. For n € T
define f(n) = g(h(z,)). As I is strongly (Rg,Ro, 24 )-unembeddable into J, there
are vy, va, 1, nsuch that n € PL vy =n [ (n+1), vy [ n=uvy [ n, 1a(n) <{ v1(n),
lg(v1) = lg(vy) =n+1, and

(), f(n) = (f(v2), f(n)) mod (A, x,(7),<").

Hence (because g is a weak representation)

h(zy) < h(zy,) < h(z,) < h(z,,) (in B).

But % is an embedding, hence z, < z,, < x, < x,, in BA(I), contradicting the
definition of BAy,(I).

2) Similar. U214

Lemma 2.15. 1) Suppose I, J € Ky, and I is standard, strongly (i, k, ¥per)-
unembeddable into J by f strongly finitary on PL. If B is a Boolean algebra weakly
representable in My, x,(J) (say, by g), B C By dense'® in By, and g, extends g
and is a weak representation of By in M, .(J), then BAy, (1) is not embeddable
into By.

2) Analogously for Kt";(h), VYir(ny, BAgn) (=) (for h € “(w\2)) and Kg(h), Ytr(h,g)s
BAtr(h,g)(_)'

3)If I € K;;;(h) is standard, (Ng,Ro)-super’” unembeddable into J € K;‘;(h), B is
weakly represented in My, x,(J) and satisfies the ccc (for example Rang(h) C [3,w))
then BA¢, ) (I) is not embeddable into the completion of B.

Proof. 1) Suppose f is an embedding of BAp.(I) into By. For n € I, define f(n)
as follows: if lg(n) < w then f(n) = g1(f(xy)), whereas if lg(n) = w, choose a, € B,
0 < ap < f(x,) (possible as B is dense in B;) and let f(n) = g(a,). As I is
strongly (i, k, ¥ptr)-unembeddable into J by a function f which is strongly finitary
on PL there are vy, vo, 1, n such that n € PL vy =n [ n™(a), vra =1 | n*(B),

(fr), f() = (f(ve), f(n)) mod (My.(J), <).

10E.g. B is the completion of B — the case that interests us.
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Hence, as g7 is a weak representation

(%) B, = f(a,) <f(z,,) < BiFf(a) <f(z,),
B, =f(a,)Nf(z,,) =0 & BiE=f(a,) Nf(z,,)=0.

But in BAyi: (1), v, > 2y, Tu, N2, = 0. Hence, as f is an embedding,

B, = “f(z,,) > f(zy) A f(zy,) Nf(z,) =07,

But 0 < a,, < f(y), so f(z,,) > a,, f(z,,) Na, =0, a contradiction to (x) above.

We have proved that BA,,(I) is not embeddable into B;.

2) Similar proof (the extra details appear in the proof of part (3)).

3) Note that this is not used. Assume toward contradiction that f is an embedding
of BA(n)(1) into By, the completion of B. Let g : B — .y, x,(J) be a weak rep-
resentation (say, for the well ordering <*) of .#y, x,(J) which respects subterms.
So by 2.4(3) there is g1 : By — Ay, x,(J) which extends g and is a weak represen-
tation of By in (M, n, (J), <*). Choose a function f : I — .y, x,(J) as in the
proof of part (1). Let x = (h,g,¢, f,I,J,B,B1) and let x be large enough.

As it is assumed in part (3) that “I is (Rg, Rg)-super*” unembeddable into J,”
there are M, 7 as in (x)' of Definition 1.4(2). Let f(n) = oy(zu, o, Ty 1)
where v, € J are pairwise distinct for & < k(n). For each k let ni < w be
maximal such that v, 1, [ ny € M: it exists by clause (v) in (x)" of Definition 1.4(2).
If ny < lg(vk,e) then for each m < h(ny) let Vim = (Unk T k)" (Sk,m) € M be <{-
minimal such that Res] (k) <{ Vi m- Clearly it exists, except when Res;,: (vx)
is <{-above every {(vnk i) " (s) : s € M}; in that case we let sy, = co with the
obvious conventions.

Let 7 := (v, : k < k(n)). We define

Y* = {D : v is similar in J to (¥,0,- -, Vyk(n)—1) OVer Z*}
where Z* = {vy 1, : vy € M} U {l/;;’m k< k(n), m < h(k(n))}. Clearly Z* is a
finite subset of M. We define a filter D on Y*: Y € D iff there are Z/;C’m <1J l/;;m for
all relevant k,m such that if (v : k < k(n)) satisfies v} ,, <{ v}/, for all relevant
k and m then (v : k < k(n)) € Y.

Clearly (Y*,D) € M, and by weak representability the following function f;
belongs to M:

dom(f1) ={e € l:ly(o) <w}, rang(fi)<{0,1},

1 {17 € Y* : BAtr(h)(‘]) ': f(xg) Z aﬂ(xvov e 717%(7,)71)} € D
fi(o) = iff that set is # @ mod D
0 otherwise.

Recall that o, is a Ty, x,-term, hence it is € M. So by the choice of M and
7, for infinitely many n, (as 7 = 7p; see Definition 1.4), we have that the truth
values of BAyn)(J) B f(TRest () = 09(Tu, 05+ -3 Tu, 4(,—,) are the same for all
¢ < h(n). Asf is an embedding, B = f(z;) > oy (70, 4,70, 4 (y_,) > 0, and
BAtr(h)(I) ’: LRes? (1) > Ty, We have

B, ': “f(zRes(ng(n))) > f(zn) > f(n) = Gn(zun,oa <Ly, k(n)—1 > 0.7

So f1(Res’ (n)) = 1, hence by the choice of n we have £ < h(n) = fi(Res,(n)) = 1.

SoBi E“ 1 f(Zrest ()N f(xy) > 07, but f is an embedding and BAy, ) (J) =
£<h(n)
“0 < f(n) < f(xy)” hence BAgn)(I) F ) Trest (py Ny > 0, contradicting the
<n )

definition of BAg.n)(1). Oa.15
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Conclusion 2.16. Suppose A > Ng. Then:

(A) There is a rigid Boolean algebra B satisfying the Ryi-chain condition .

(B) Moreover, if a,b € B are # 0, a — b # 0, then B | a cannot be embedded
into B [ b (hence B has no one-to one endomorphism # id).

(C) Moreover, we can find such B; (for i < 2*) with |B;| = \; and if a € B,
beBj withi# j ora—b#0 then B; [ a cannot be embedded into B; | b.

Proof. We leave it to the reader as the next proof is similar (but here we should
use (A, A, Ng, Ng)-1)¢,-bigness, Theorem [Shea, 2.20=L7.11], and = = tr instead of
()\,)\,2N0,Nl)—z/Jtr(h)—bigness7 [Shea, 1.11=L7.6], and 2 = tr(h) there respectively.
(Also, we have dealt with it in [Shei, 2.16=L2.7]). Os.16

Conclusion 2.17. 1) There is a complete Boolean algebra B satisfying the ccc,
having density A

(in fact, a € B\ {0} = B | a has density \, so |B| = A™0)

and monorigid (i.e., every one-to-one endomorphism is the identity) provided that:
(¥)1 K, has the full strong (A, A, 280 Ry )= i, -bigness property for f strong

finitary on P,, by standard atomically (< R1)-stable I € Ky, .

2) We can replace (x)1 by (%)2 V (x)3 V (%)4, where for some h € “(w\ 3):

(%)2 Aisasin 1.11(1) or
(%)3 Kg;(h) has the full strong (A, X, 2%, N1)-hie(n) -bigness property or
(%)4 Kt“;(h) has the full super’™ (X, \, 280 Ry)-bigness propertsy.

3) Moreover, we can find such B; (for i < 2*) satisfying the following: if a €
B, \ {0}, be B;\{0}, [i #jV (@i =j Aa—0b# 0g,)], then B, | a cannot be
embedded into B; | b.

Proof. We first prove parts (1) and (2). For part (1) let h € “w be constantly 2.
First note that if f is a one-to-one endomorphism # id of any Boolean algebra B,
then there is an element a # 0 with a N f(a) = 0. First, choose = with = # f(z).
If 2N —f(z) # 0 we can take a = z N —f(x); if —x N f(z) # 0 we can take
a = —xN f(z). Hence for (1) and (2) we only need to find B of power A such that
if a,b € B are non-zero and a — b # 0 (and even a N'b = 0), then B | a cannot be
embedded in B | b.

Now let (I, : @ < A) exemplify the full strong (A, A, 2N07N1)—@[Jtr(h)—bigness prop-
erty for f strongly finitary on F,; such a sequence exists by (x)1 or ()2 or (x)s or
()4 by 1.11(1), 1.9 for any h € “(w\ 3). Let B = Sur, (I, a¥ : a < A) be as in the
construction 2.4 for x = tr(h), such that B\ {0} = {a}, : @ < A}. Then by 2.11(1),
|B| = \. By 2.6(3), 2.6(4), each BAy,(5) (/) satisfies the strong N;-cc, hence by 2.11
the Boolean algebra B satisfies the N;-chain condition. Let B* be its completion.
Now let a,b € B* be non-zero, with ¢ = a — b # 0. Toward contradiction, suppose
f is an embedding of B* | a into B* [ b. Then f(¢)Nec¢=0,and f | (B | ¢) is an
embedding of B* [ ¢ into B* | f(c¢). But B is dense in B* hence a, < ¢ for some
@, hence BA,; () (l») is embeddable into B* | ¢, hence into B* | f(c), hence into
B* | (—¢) = B* | (—a). But by 2.12(3), B | (—a}) is weakly representable in
My (B#% /\1,3). This contradicts 2.15 when we assume ().

a,B<
For part (3) let (Ing : o, 8 < A) rename (I, : @ < A). We shall choose, for

¢ < 2, functions fe, ge from A to A and A¢ € [A* such that g is one-to-one,

Rang(fe) = Ag, (Va € A)(FB < N[fe(B) = 1], and & # & = Ay € Ag,.
For ¢ < 2*, let B¢ be constructed as Surz<If€(a)yg£(a), ag : a < A). For simplicity,
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assume that for some &, for every a € B¢\ {0} and ¢ € Ag¢, we have af, = a
and fe(a) = (. Let B&* be the completion of BE. As ge is one-to-one clearly B¢
satisfies the demand in (2), and as £ # ¢ < 2* = A¢ € A the demands in (3)
also hold. Oy 17

Conclusion 2.18. 1) For A > R, there is a Boolean algebra B of cardinality A
with no non-trivial endomorphism onto itself. Moreover, it is Bonnet rigid (defined

below).

2) We can find such B; (fori < 2*) such that fori, j < 2*, a € B;\{0}, b € B;\{0}
there is no embedding of B; | a into a homomorphic image of B; | b except when
i=j7Na<hb.

We prove it later.

Remark 2.19. We shall use Boolean algebras built from cases of BAg,(I) (see
Definition 2.1(4)) hence they have no long chains. We can go in the inverse direction
using Boolean algebras built from orders — using, for example, LO(I) the linear
order with elements {x,,y, : 7 € I} such that:

(A) g(n) < w implies x, < Yy, Yp~(a) < Typ~() for a < B, and 1, <y <
Yn < Ynin for n < lg(n).
(B) lg(n) = w implies 1, < Ty = Yy < Yyn for n < w.

In such cases we need a parallel to Lemma 2.23, which is true.
We make some preparations to the proof of 2.18.

Definition 2.20. A Boolean algebra B is called Bonnet-rigid iff there are no
Boolean algebra B’ and homomorphisms f; : B — B’ (for £ = 0, 1) such that fj is
one-to-one and f; is onto B’, except when fy = f;.

Observation 2.21. 1) If B is Bonnet-rigid then it has no onto endomorphism
# idp.
2) A Boolean algebra B is Bonnet-rigid if:

(%) For no disjoint non-zero a,b € B is there an embedding of B | a into a
homeomorphic image of B [ b.

Proof. 1) Otherwise choose B’ = B, f; the identity, and f; the given endomorphism.
2) Towards contradiction, assume f; : B — B’ (for £ = 0,1) contradict Bonnet—
rigidity. First, suppose fj is not one-to-one, so for some a € B, a # 0, f;(a) = 0.

For any b € B, f1(b —a) = £1(b) — f1(a) = £1(b). So B’ is a homomorphic image
of B | (1—a)and B | a can be embedded into it, so we are finished.

Second, assume f; is one-to-one. Then f; is an isomorphism from B onto B’
hence f; 'fy : B — B is an embedding (well defined as f; is one to one and onto).
It is not the identity (otherwise fy = f;) so for some a € B, the elements a, f; ' fy(a)
are disjoint and non-zero; choose b = fl_lfo(a). Os 91

To prove 2.18, we shall use BA¢,,(I) (see Definition 2.1(4)). Note:

Claim 2.22. 1) The only atoms of BAy(I) are x,), wheren (€ I) has no immediate
successor, or at least

(%) For all vy,vy € I, we have n <y An<lvg = v,y are <-comparable.

2) The set {xy, :n € I} is a dense subset of BAy..(I).
Proof. Check. (s .09



Paper Sh:511, version 2023-05-23_3. See https://shelah.logic.at/papers/511/ for possible updates.

COMPLICATED INDEX MODELS AND BOOLEAN ALGEBRAS 27

Lemma 2.23. If B is a homomorphic image of By = BA(I), then B is iso-
morphic to some BAy,,(J), J weakly representable in My, x,(I) hence B is weakly
representable in My, x, ().

Proof. So let J be an ideal of By such that B is isomorphic to Bg/J. Let
L={nel:xz,¢J};

I, is an approximation to J. (Clearly I; is closed under initial segments by
2.1(4)(b).) Let

Ay = {77 € I; : n has < Ny immediate successors in I, say

1" {ay) for £ <m, and (xn — erf(oug)) € J},
7

Al = {77 € I; : n has < Ny immediate successors in I, say
" {ag) for £ <m, and (x5 —Uzy(a,)) ¢ I},
?

Az = {(n,u) :n € Ag, n<v € I, lg(v) is limit, z, —x,p; € J,
when {g(n) < i < {g(v) and for no ' <tn does (1, v)

have those properties} ,

and let A4 = {(n,u) €Ay xy—x, ¢ J}.
Now for n € I let a;; = min{a : " (o) ¢ I}.
Put
J=LU {n (o) :n€ A} U {n (o, +1) : (n,v) € Ay}.

Now BA;(J) is isomorphic to B, and the lemma should be clear. s.03
Now we can turn to

Proof. Proof of 2.18:
1) Let (I, : a < A) exemplify that K has the full strong (A, A, Rg, Rg)-bigness
property, I, standard.

Without loss of generality:

(K a# B = laNlz={()}

(x)2 If v € I, then for some n we have v < n € I, and g(n) = w.

We construct as in 2.4, using BAy,, (I, ) (i-e., © = trr there) but making the surgeries
on atoms only, getting B = Sur(l,,a’, : @ < A). Looking at the construction, it is
clear that B = BA,,(I*), where

I ={m n" ... np:n <w, n € I, for some oy < A, and for £ < n
we have lg(n;) = w and al;, | is x,, }.
By 2.21(2), it suffices to prove:

(%) If a,b are disjoint non-zero and B’ is a homomorphic image of B | b then
B | a cannot be embedded into B’.

Suppose (xx) fails and a,b, B’ exemplify this. By Claim 2.22 and (x), there is
n € I* with x,, < a and fg(n) limit, and let « be such that a}, = z,. Clearly B’ is
also a homomorphic image of B | (1 — ), hence by 2.23 it is weakly representable
in A5 (X 1) and B’ = BAy,(I) for some I weakly representable in
<A jFa
Mo xo (1),
J<NJ#Fo
We can conclude:
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(% % %) BA¢(lo) is weakly representable in Ay x, (>, Ij).
J<AjF#a
But from this the contradiction is trivial (we could avoid the “weakly”).
2) No new point. Ua.1s
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§ 3. ARBITRARY LENGTH OF A BOOLEAN ALGEBRA WITH NO SMALL INFINITE
HOMOMORPHIC IMAGE

We recall the definition of the length (and length™) of a Boolean algebra (Defini-
tion 3.2). Our aim is to construct a Boolean algebra of cardinality continuum with
no infinite homomorphic image of smaller cardinality. Toward this, for a Boolean
algebra B, an w-sequence (a, : n < w) of pairwise disjoint members of B \ {0g}
and I € Ky ), we define in Definition 3.3 an extension B’ = ba[B, a,I] of B. We
shall use it for h with (h(n) : n < w) going to infinity. The properties we need are
that B < B/, |B’|| < 2%, and B’ satisfies the ccc.!’ Moreover, a stronger version
of B < B’ holds (see 3.4(5)).

Also, if f is a homomorphism from B’ into any Boolean algebra B’ satisfying
n < w = f(a,) >0 (in B”) then B’ has at least 2% elements (see inside the proof
of 3.6). Theorem 3.6 is the main result: if u € [Ny, 2%0] then some ccc Boolean
algebra B of cardinality 280 and length p has no infinite homomorphic image of
cardinality < 280, For this we take care of every antichain (a, : n < w) by an
extension ba|—,a, I|. We start with a ccc Boolean algebra of length and cardinality
. In this framework we need to show that the length has not increased by the
construction. For this we prove, by induction on the length of the construction,
that for any family of pu™ finite sequences from the Boolean algebra and m < w,
there is a subfamily of u™ finite sequences which is an indiscernible set. We may
like to consider a limit u € [Ny,2%0) and ask above that its length is p but the
supremum is not obtained; by a similar construction (of length 2% x 1) we get such
a Boolean algebra, provided that cf(u) is uncountable (see 3.10). If c¢f (u) = Rq this
is impossible (see 3.12). We then generalize the results, replacing Rg by any strong
limit k of cofinality Ng.

Convention 3.1. h will be from “(w\{0}) and for simplicity “(w\{0, 1}). Actually
h = 2 suffices,'? but if we like to have the ccc we’d better use h > 3.

Definition 3.2. For a Boolean algebra B let
length(B) = sup{]4]: A C B, A is linearly ordered by <},
length™(B) = sup{|A|": A C B, A is linearly ordered by <g}.

Definition 3.3. For a Boolean Algebra B*, a = (a, : n < w) C B*\ {0~} such
that A a,Na, =0,and I € Ktﬁ(h), we define a Boolean Algebra ba[B*,a, I] as

n<m
follows.

It is freely generated by B* U{xz, : n € I}, except for the following equalities:
(a) All the equalities which B* satisfies, and z,, < 1g-.
(b) f n < wiseven, k = h(n) —1, n € P, v = n | n, and n(n) =
(oo, 1,9, ..., ap—1), then

an — U (("IJVA<O¢2[> - mUA<a22+1>) S Sﬁ'n.
(<k/2

(c) Ifn <wisodd, k = h(n)—1,n € P!, v=mn|n,andn(n) = (ag, a1, 9, ...,ar_1)
then

(a" N ﬁ (1 - (xVAsz) - JUVA(QzeJrl))) ) Nay =0.
0<k/2

(d) x(y, =0 (()r is the root of I).

HlSee 3.4(1),(3), 3.5, and inside the proof of 3.6.
121 6. (Vn)[h(n) = 2], so using K
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Claim 3.4. 1) For B*,a, I as in Definition 3.5, ba|B*,a, I] is an extension of B*
(so the equalities do not cause members of B* to become identified, and of course
LpaB*a,1) = 1B*)-

2) For I,I5 € Kt“;(h), B*,a as in Definition 3.5, if I C Iy then ba[B*,a, 1] is a
subalgebra of ba[B*, a, I1].

3) In (1), B* <ba[B*,a,I].

4) In (2), if also I; C* Iy (which means that Iy C Iy and

ne€P2\I, = \/ Res(n) ¢ I,) then ba[B*,a, I;] < ba[B*,a, I»).

n,f
5) In (4), for every non-zero ¢ € ba[B*,a, I5] there is d* such that:
(1) ¢ <d* € ba[B*,a, I]
(#9) If 0 <b < d* and b € ba[B*,a, I;] then cNb # 0.

Proof. 1) Tt is a particular case of (2) for Iy = {( )}, I =1.

2) Let d* € ba[B*,a, I;] \ {0}. We would like to prove that ba[B*, a, I1] = d* # 0;
by the definition of these two Boolean algebras (see 3.3), this suffices. Clearly,
without loss of generality, for some a(x) < w we have:

a(*) <wAd" < agy or alx) =w A (Yn)[d* Na, = 0].

Now we shall define a function f : B*U{z, : n € Io} — ba[B*,a, I1] [ d*, which will
map all the equations appearing in the definition of ba[B*, a, I5] to ones satisfied
in ba[B*,a, I] | d* and maps d* to itself; this suffices.

Now we define f = ¢ as follows:

(A) For b € B*, f(b) = bNd* (or more exactly, the interpretation of b N d* in
ba[B*, a, I1]).

(B) For n e I, f(z,) =z, Nd*.

(C) Itne Pk n¢ I, let

f(a) = d*  if a(x) is even (including a(x) = w),
10 if a(x) is odd (and < w).

(D) For n € I\ I such that (C) does not apply, let f(z,) = 0.

Now check: the main point being that the equations in clauses (b)+(c) of Definition
3.3 hold trivially by the present choice in clause (C).

3) Again, it suffices to prove this for the context of (2); i.e. to prove (4).

4) The proof of part (2) above will suffice, provided that we are given

¢ € ba[B*,a, I \ {0} and we then find d* € ba[B*,a, 1], d* # 0, such that we
can construct a function f as there satisfying that the homomorphism f which f
induces from ba[B*,a, Is] into ba[B*,a, I] [ d* (which is the identity on the latter

by its definition) will satisfy f(¢) > d*. Now as we can decrease ¢, without loss of
generality ¢ ¢ ba[B*,a, I] and ¢ has the form

(*) c=dn ﬂ Ty N ﬂ (1_xﬂz)v

£<mg Le[mo,m)

with mg < m, d € ba[B*,a, I;] \ {0}, n; € I \ I for £ < m. We shall show more
than is necessary here (but it will be used in part (5)):

O If0 < d <dandd € ba[B* a, ;] then some d* satisfying 0 < d* < d',
d* € ba[B*,a, 1] is as required. (L.e. there is f as in the previous proof.)
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Choose d* and a(*) < w satisfying:

(i) ba[B*,a, 1] =0 < d* < d

(i) d* < agey ANa(x) <w or A, _ . d*Na,=0ANa(*) =w.

n<w
For k < m let

I, =LU{m}U {Res! () : Rest(ny) is well defined}
and for k <mlet I = U{I;)g 4 < k}UI. Easily

Li=5oC I C...C" Iy, C Iy

Clearly c € ba[B, @, I ,,,] and it suffices to prove that B*<ba[B*, a, I2 ,,], so without
loss of generality Iy = Iz . If lg(nr) < w, we can add the Resf(nk) to I one by
one.

As < is transitive, and by part (2) without loss of generality m = 1, and one of
the following occurs:

(A) L\ Iy = {no} and lg(no) < w.

(B) I, \ I C {no,Res’,(no) : o <n < w, £ < h(n)} and ly(ny) = w.
In case (A), let f(x,,) be d* if mg = 1, and let f(z,,) be 0 if my = 0 (and
f(b) =bnd* if b € ba[B*,a.l1]). In case (B), if a(x) = w then act similarly; i.e.
define f(z,) =d* forv e I, \I; if my =1, and 0 if mg =0 for n € I \ I. In case
(B), if a(*) < w, by repeated use of case (A), without loss of generality!?

(Vn < a(x)) (V0 < h(n)) [Res (no) € Ih].

Let
f(b)y=bnd* for b € ba[B*, a, I1],
f(z,,) = d if a(x) is even,
f(zy,,) = if a(x) is odd,
f(TRest (,70)) 0 whenever n < w, £ < h(n) and Res’, (o) ¢ I,.
Now check.

5) Again without loss of generality I, I3 satisfy (A) or (B) from the proof of (4)
(use 3.4(2) and the transitivity of the conclusion) and even c is in the subalgebra
of ba[B*, a, I5] generated by {z,,} Uba[B*,a,l;]. Note also that if ¢ = ¢; U ¢y it
suffices to prove the conclusion for ¢; and for co.

So without loss of generality () in the proof of part (4) holds, so ¢ < d, and by
the proof of part (4), d is as required. O34

Claim 3.5. Assume h > 3 or just h(n) > 3 for n large enough. If B* a,I are as
in Definition 3.3, I standard, A = cf(\) > Rg and B* satisfies the [strong] A-cc,
then ba[B*,a, I] satisfies the [strong] A-cc.

Proof. Let ¢; € ba[B*,a, I] for i < A, ¢; # 0. Without loss of generality ¢; has the
form
ci=d; N ﬂ Ty, N ﬂ (1= wy,,),
£<my,o Le[mio,mi 1)

where n, o € I, d; € B* \ {0}. Without loss of generality d; < a,, for some n; < w

orn; =wA A d;Na, = 0. Without loss of generality m; o = mo, m;1 = ma,
n<w

bg(mie) = ng, ny =n*, and (n; ¢ : £ < mq) is without repetition for every 1.

Also letting k; < w be the minimal k such that

13But we do not have to use it.
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() (a) lg(nie) <w = Lg(mie) <k
(b) n* <w=n*<k
(c) by <lo<mai =i [ k#nig, Ik
(d) (Vn)[n >k = h(n) > 3]
and without loss of generality k; = k*; if lg(ni¢) = w, k < k*, £ < h(k) then
Res} (1i,6) € {Nim = m < M1}
By the A-system argument, without loss of generality
() Ifi £ <\ k<k*+1, and m',m” < my, ',0" < h(k) and Res, (1; /) =
Resgl (nj,m».j), then for every o, 8 < A we have
Resﬁ: (Ma,m’) = Resi: (Ma,m) = Resi (ng,m') = Resf; (1g,m)-
We can now check, (similarly to 2.6). Os 5
Theorem 3.6. Let N; < p < 2% There is a Boolean Algebra B such that:
(A) B has cardinality 2%° and satisfies the ccc (and even the strong A-cc if
A=cf(A) > Ng).
(B) B has length u (i.e. there is in B a chain of length p but no chain of length
).
Moreover:

(B)* Ifn,m <w and e € ™B for { < p*then for someY € [T+ (i.e. Y C put
of cardinality ut ), the sequence (¢5 : ( € Y) is a (qf,n)-indiscernible set in
the Boolean algebra B (see 3.7(2) below).

(C) Ewvery infinite homomorphic image of B has cardinality 2%°.
Remark 3.7. 1) Note that (B)T = (B); for it m = 1 suffices, for this constant h
is OK below, but the proof here is simpler.

2) Let ¢ = (¢° : ¢ € Y) be a sequence of m-tuples from a model M (for example,
a Boolean algebra) and A a set of formulas in L(7yp,). We say € is an (A, n)-
indiscernible set iff for any (o, ..., (,—1 from Y with no repetitions and &, ..., &,—1
from Y with no repetitions, the A-type of °" ... &»-1 in M is equal to the A-type
of ¢ ... "&»=1in M. For A the set of quantifier free formulas we write f.

Proof. Let h:w — w be, for example, h(n) = 2n + 2.
Let Ig € Kt"i(h) be standard for B < 2%, have cardinality continuum, and be
such that:

(%)1, Forevery f:1Iz—0,0< 280 for some 7 € P“I,B, for every n < w,

(V€ < h(n)) [f(Res)(n)) = f(Resy,(n))]
(i.e. n(m) = (og : £ < h(n)) = |{f(77 I'n™{ag)) : €< h(n)}‘ =1.)

[Why do such I-s exist? The full tree will serve; that is, we let

L

Ig = {<@e 0 <7):v<w, @ an increasing sequence of length h(¢)

from 2%, except in the case 0 <y < w Al =~ — 1;

then we demand @’ is just an ordinal < 2%° }
This is as required, as for any f : Ig — 6 we can choose a sequence &y =
(Be.os -+ Beneey—1) by induction on £ < w, where B < ... < B pe)—1 < 2% and

f(@% ...,a"t Bs;)) does not depend on 4. This is possible as 2% > |rang(f)|. So
I3-s as required in (*);, indeed exist.]
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We shall now construct B, (for a < 2%) and a® = (a% : n < w) such that:

(I) (a) By is a subalgebra of P(w) of cardinality & with a chain of cardinality
w satisfying the ccc (even the strong Ri-cc).
[E.g. let Abe aset of preals, let h be a one to one function from w onto
the rationals and B is the Boolean algebra of subset of w generated
by {{n: h(n) <a}:a € A}. Clearly B has a linearly ordered subset
of cardinality u, e.g. its set of generators. Of course, its length is not
> p as its cardinality is pu.]

(b) B, is increasing continuous, of cardinality 2% if a > 0.
a® is an w-sequence of pairwise disjoint non-zero elements of B,.

If a < 2% a, € B,\{0B,}, and A a,Na, =0 then for 2% many

n#m

—
o
~

—
&

ordinals o, we have A a, = a2.
n<w
[You can demand that {a% : n < w} is a maximal antichain; it does

not matter.]
(e) Bay1 = ha[Bg,a%, I,] (We denote the z,, by xy for n € I,.)

There is no problem to do the bookkeeping, and B, C B,41 by 3.4(1). We shall
show that B := By, is as required. Obviously B has cardinality 2%°.

By 3.4(3) clearly B, < B,+1, so we can prove by induction on « that § <
a = Bg <B,, by 2.9, 2.10. We can also prove by induction on o that B,
satisfies the Rj-cc (even the strong A-cc when A = cf(A) > Np): the successor stage
is proved by 3.5, the limits steps by 2.10. So demand (A) from 3.6 holds. If f
is a homomorphism from B onto some B’ with Xy < ||B’|| < 2%° then there are
b, € B\ {0} pairwise disjoint. Now for some a,, € B, f(a,,) = b,, and without loss

of generality A an, Na, =0 (otherwise use a, = a, \ |J am). Hence for every
n#Em m<n
infinite co-infinite Y C w. for some o = avy:

{a3, :n<w}={a,:neY} and {a3,,;:n<w}={a,:new\Y}

Now define g : I, — B’ by g(n) = f(z5), so by the choice of the I,-s (i.e. by (%)15)

for some n = ny € Pl for every n, letting n(n) = (g, o, . - - , QU (n)—1), We have
/\ F@hin(an) = F(@hin"(a0))-
£<h(n)

Hence f(a:;’, = 0p’ for £ < h(n) — 1 and hence

(o) ~ Tin (arsn))

f(ag n ﬂ (]‘ - (xg“f(aze) - ng"A<aze+1>))) = f(ag)

o< h(nz)—l

and
f(af; o U (‘T%rn‘(azw o xf‘lf"“(OLzHl))) = f(ap).

r< h(n2)—1

Hence (see Definition 3.3)

Therefore,

meY = forsomeevenn,ay =a, = B [Fb,<f(z)),
mew\Y = forsomeoddn,a; =a, = B Eb,Nf(z))=0.
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As this occurs for every infinite co-infinite ¥ C w, for some o = ay, and n = ny,
clearly we get 2% many distinct members of B’ (simply, the f(z,, )), a contradic-
tion. So demand (C) of 3.6 holds.

What about the length, i.e, clauses (B) and (B)*? For (B), first note that By
has a chain of cardinality u and hence so does B. If J C B is a chain, |J| = ut, then
(B)T gives a contradiction and even the “weakly indiscernible sequence” version
does because as B = ccc, it has no subset of order type u™ or (1)*; but the variant
of (B)T implies just this (m = 1 suffices).

So it suffices to prove that clause (B)" holds for B, by induction on a.

Case 1: a=0.

Trivial (can get & constant on Y € [pt]#").
Case 2: « is limit, cf(a) # p™.

For some 8 < a,

Vi={¢<ut & CBg}e ],

(note that if cf (o) < p™, then we can get Y7 = ™) and use the induction hypoth-
esis.
Case 3: cf(a) = pt.

Let (8. : € < p*) be an increasing continuous sequence with limit «. Let
n,m, (e : ¢ < pT) be given. Without loss of generality ¢¢ = <c§ : 4 < m)isa

partition of 1g_ (i.e., {1 # {3 = cgl N c§2 =0and 1, = | cg). For each ¢ < u™,
{<m

we can find ag, bg € Bj, such that:

(a) af < cf < b
(b) (0<x§b§—a§)/\x€Bgc:(xﬁcg—ag#O)/\(x—cg#O).

[Why? By use of 3.4(5)). If ¢ is limit then for some f(¢) < ¢ we have {ag, bg U<
m} C Byg,). By Fodor lemma for some ¢(x) < u* and a stationary set S C u™,

we have A f(¢) = e(x).
ces
So

(c) e€ S ={aj,b;: L <m} CBg,,,.
Also without loss of generality
(d) Ife < ¢ € S then {cj: £} C Bg,.

Now apply the induction hypothesis on Bg, , and (@b : ¢ < pT), where a¢ =
(a§ - € < m), b := (b5 : £ < m).

So there is Y € [S]*" such that (b : ¢ € Y) is an (n, qf)-indiscernible set. So let
Co < ...< (-1 be from S and for k < n let B} be the subalgebra of B generated
by Xy, = {Egi,bgi ti<n, £ <m}uU{e’ i<k, £<m}. We understand By, by the
choice of Y and we can understand B!, by clauses (c¢) 4+ (d) above.
Case 4: a =+ 1.

Let n,m < w and ¢ € ™(Bgy1) for ¢ < pT be given, ¢¢ = (cg 0 < m).

So there are kco = k((,0) < w, ka1 = k(1) < w and bg,...,bico_l € Bg,

776, e 77154,1—1 € Ig and Boolean terms O'g (for £ < m) such that

¢ _ C(16 ¢
¢, =0, (bo7 .. "bkc,rl’xné""’mni@,l))'
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Without loss of generality <77¢§ il < ke1) is a A-system.
Without loss of generality k¢ o = ko, kc1 = k1, 05 = a¢ and g(ns) = my < w for
every ¢ < ut.
Also, there is k¢ 2 < w such that:
(A1) (o) g(nf) <w = Lyrg) < ke
(B) 7751 # 7752 = 7751 [ ke # 7752 [ ke,2
(’)/) n+2< kC’Q.
Without loss of generality A k¢ 2 = k.
¢

Without loss of generality the statement (%) (with ko here for k* there and is
> n) from the proof of 3.5 holds (essentially being a A-system), i.e.
(x) Ifi#j <A k<ko+1, and m/,m” < my, £',0" < h(k) and Resy (1 ;) =
Resi” (Mme 5), then for every a, § < A we have:
Resi (M ,a) = Resi (M ,a) = Resé (Mm,8) = Resi (1m,)-
Let ¢ = <bg : ¢ < ko). By the induction hypothesis, without loss of generality
<5<A<af : 0 < kg) : ¢ < p') is (af, n)-indiscernible and without loss of generality

the sequence <(77§ (ko +1): € < ky): ¢ < p™) is indiscernible (sequence of finite
sequences of ordinals).

To finish the proof of 3.6 it suffices to observe 3.8 below. Os6

Observation 3.8. If B* = bay[B,a,I], n* < w, I = {n € I : lg(n) < n*},
Z C P and for every v € Z and n > n* the set

WV in+1):VeZ vVin=vn}
has < |h(n)/2] elements, then {x, : n € Z} is independent in B* over B :=
bay[B, a, I°], except the equations c$ <xyAcy Nay =0 forn € Z, where
= U {agn — H{&Reszt () — TRes2t+(y) ¢ < h(n)/2}:2n < n*},
204+ 1< h(2n+1)}:
2n+1< n*}

C

C

SRINC W

= U {a2n+1 B U{xResgfwl(”) ~ TResi (n)

(Note: my [ n* =mp [ n* = (¢, cp) = (ch,c,)-)

Proof. Let fy be any function with domain X = {x, : n € Z} such that fo(z,) €
{ch, 18 — ¢, }, and let

JP=T°UX U{Res’(v):v e Z, £ <h(n), n<w}.

Clearly, by 3.4(2) it suffices to find a homomorphism from B; := ba[B, a, J!] into
BY extending idgoUfy. For this it suffices to find a mapping f from BU{z,, : n € J*}
into B? extending idgo, fy, and id¢z, .peroy, and preserving the equations defining
ba[B,a,J']. Asf | B, f | {z, € I :{(n) <n*}, and f | {x(,, : n € Z} are
defined, and
J' = U {eg:neZ,}UXUZ
nen*,w)

where Z,, = {n € J' : lg(n) = n+ 1}, it will suffice to choose f | {z, : n € Z,} for
each n € [n*,w) to finish the definition of f.

Let Y, ={v In:veZ,} andforneY,let X,, ={vez,:v|n=n}
Clearly (X, , : 1 €Y,) is a partition of Z,.
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ForneY,let Z,,={v|i(n+1):veZ v|n=n}and

Sny = 1(p 1) (p(n)(€)) : £ < k(n)}.
By the assumption on Z, for every n € Y,, the set &, , has < h(n)/2 elements.
Now:

(¥) For n €Y, there is a function f, : S, , = {0+, -} such that if v € &, ,,
is equal to 7" (ao,...,Qp(m)—1) then for some £ < (h(n) — 1)/4 we have
fn(xTIA<a22>> = lp- and fn(xTIA(azeﬂ)) = 0p-.

[Why is this possible? By finite cardinality considerations.]
Now define f [ Z,, as follows: if v € Z,, then v € &, ,, for some 7 € Y,,, and so
we let f(z,) = fy(x,).

Now check. Osg

Discussion 3.9. 1) In the proof of clause (B)™T, the successor case we use the fact
that h(n) converges to 0o, as when the level increases we need more 7 € P to see
non-freeness.

2) The proof there for limit a uses just “(B; : i < 2%0) is <-increasing continuous
with projections” (i.e. 3.4(5)), and the induction hypothesis.

3) We can vary the construction in some ways. We can demand that each a® is
a maximal antichain — no difference so far. We may like to use (I : 8 < 2%0)

such that I3 is not super unembeddable into ) I,. We can construct our Boolean
v#B

algebra to be monorigid (i.e., with no one-to-one endomorphism), and even get 92"
such Boolean algebras, no one embeddable to another: even restricting to non-zero
elements, even not embeddable into the completion of another. To carry this out
we need the following for A = 2%0: there is I = (I, : a < )\) exemplifying that
Kt“;(h) has the full (A, A\, Ry, R;)-super bigness property, such that for at least one
B, 15 satisfies ()7, from the beginning of the proof of 3.6. Now such a I does exist
(with (*)r, for every 3); this may be elaborated elsewhere.

4) Of course the proof works for p = 2%0.
5) We can separate some parts of the proof to independent claims. We can ask for

“B has length u, but no chain of cardinality ¢ (i.e. the supremum is not obtained)
for p limit. It is natural to demand cf(u) > Ry. Next, we address this.

Claim 3.10. 1) Assume 2% > 1 and R < k = cf (1) < p. Then there is a Boolean
algebra B such that |B| = 2%, B has no homomorphic image of cardinality €
[Rg, 2%0), and length(B) = p, but the supremum is not obtained (i.e. length™ (B) =
w and every infinite homomorphic image B’ of B has length > ).

2) Similarly, but slightly modifying the assumption to Rg < k = cf(u) = .

Proof. Like 3.6.

1) Let p = > p; with (u; : ¢ < k) be increasing continuous and £ < p; < p.
1<K

For ¢ < K, let B® be a subalgebra of P(w) of cardinality p. and length p.. Let

(I, : a < 2% x k) be as in the proof of 3.6. We define B,, (for a < 2% x k) similarly

to the proof of 3.6. Specifically:

By = B, the trivial Boolean algebra,
Borg w41 is the free product Boxg . * B,
B,, is increasing continuous in «,
Bot1 =ba[Bg,a% 1] for a <280 x k, a ¢ {2% xe:e <k},
where Gq 18 (Gan : 1 < W), Gan € Ba,an >0, N1 # N2 = aqn, NGan, =0. The

choice of the a,-s (i.e. the bookkeeping) is as in the proof of 3.6 above.
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So, by the proof of 3.6:

(%) If 0 < a < 2% x & then
(o) B, satisfies the strong A-cc if A = cf(X) > R.
(B) Biyq has length pig + > {pe : 2% x e < a} < p.

() If @ = 2% x ¢ with ¢ a successor ordinal, then B,, has no homomorphic
image of cardinality € R, 2%0).

(6) for < B < 2% x k and b € Bg \ {0, } then for some a € B, we have
BsEb<aandif B, F0<a <athena Nb>0g,.

[Note: for clause () we use the proof of (B)T of 3.6. For a = 2% x ¢ + 1 for clause
() we have a new clause, but easy one].
It follows that

(#x) B = Bgx,y, has length p.
Now we just need to show
(%% x) For J C B (with |J| = ) a chain we get a contradiction.

Let BX = Boxg y.- Let ¢, € J (for a < p) be pairwise distinct.
By clause (x)(d), for each € < k and o < uf we can find bS, € B? such that:

(a) Ca <O,
b)) 0<z<Bi,ANzeB! = zNcy #0

Note:

(c) bg is unique, and
(d) co <cg = b < b.

As B! has length < . and J is a chain, necessarily for some Y. C pt with |Yz| = pt
we have

(e) bg =b° for a € Ys.

We can apply clause (x)(0) to —c, (for o € Y. and B}, and possibly shrinking Y;)
to get af, € B? such that:

(f) (—ca) <aiand 0<z<aS Az €B:=xzN(—c,) #0.
As above, without loss of generality, shrinking Y. further we get
(g) a5 =af for a € Y..
As the length of B} is < u. < put = |Y;|, for some a € Y. we have ¢, ¢ B; as

as, > —cq, b5, >c, b0, €Bl and df € B,

necessarily af, N g, # 0.
Hence:

(h) b5 Na #0.
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Let g(e) = min{¢ < e : a®,b° € B{}, so for limit ¢, g(¢) < e. Hence on some
stationary S C k and ((x) < k the function g | S is constantly ((x), and without
loss of generality

(<eeS=[{aeY:coeB}| =uf.

As B satisfies the ccc we can find €1 < g5 in S such that
b Nat Nb2 Na® #£0.

Choose « € Yz, such that ¢, € B, and 8 € Y.,. Now {cq,cs} is independent: a
contradiction.

2) Similarly. Us.10

Remark 3.11. We may further ask: is the restriction “cf(u) > Ro” in (3.10) neces-
sary?

Observation 3.12. Assume that the infinite Boolean algebra B has the length u,
cf(u) = Ng. Then the length is obtained.

Proof. Let T = {b € B :length(B [ b) < u}.
Easily ) _
by <byANbyeT=b €T

Also clearly 7 is closed under unions. [Why? If by,bs € Z,b=0b Ubsy ¢ 7 then
there is a chain (¢; : t € J), J a linear order of cardinality p, (s <;t = ¢5 < ¢t)
and ¢; < b.
Let
E ={(t,s)e JxJ:ctNb =cs N}

Then E; is a convex equivalence relation on J; if |J/E;| = p then {c;Nb; : ¢t € J}
exemplifies b; ¢ Z, a contradiction. So |J/E;| < p. Hence E = E; N E; is a convex
equivalence relation with < |J/E;| x |J/Ez| < p classes, but as b = by Ubs it is the
equality.]

If B/Z is infinite then we can find (a,/Z : n < w) pairwise disjoint non-zero.

Now b, := a, — |J a¢ are pairwise disjoint members of B not in 7. Let =Y ln,
<n n<w
tn < p. Let (¢} : t € J,) be an increasing chain in B [ by, |J,| > pn (note that we

can invert J,). Let J = Y J, (without loss of generality, n < m = J,NJ,, = @)
n<w

and for t € J,, let ¢ =byU...Uby,_1 Uc}. Now (cf : t € J) exemplifies that the
length is obtained. So B/Z is finite, so without loss of generality Z is a maximal

ideal. Try to choose a,, € T satisfying A a,Na; = 0 such that length(B [ a,) > fin.
l<n

If we succeed, then we may repeat the proof for the case “B/i' is infinite,” hence
we necessarily fail. Hence for some n (replacing B by B | —(ag U ... Ua,_1)) we
have
beZ = length(B [ b) < piy.
Let J C B be linearly ordered, |J| > ;. Possibly shrinking .J, without loss of
generality J CZVJ C B \I As we can replace J by {1g —b: b € J} without loss
of generality J C Z, so for some b € J we have |{c € J : ¢ < b}| > put, and hence

no

length(B | b) > pt, a contradiction. Osz12

Remark 3.13. We may wonder if we can replace ¥y in 3.10 by another cardinals.
Most natural are x strong limit of cofinality w.

Claim 3.14. Assume £ < p < 2", k strong limit and cf(k) = Ro. Then there is a
Boolean algebra B such that:
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a) Bl =2"

B8) B cce

v) B has length p (and satisfies clause (B)t of 3.6)

(0) B has no homomorphic image B" with |B’| € [k, 2").

(
(
(

Proof. Let h € “w be h(n) = 2(n + 1). Let By C P(k) have cardinality p and

length p,
I° = {n : 7 is an w-sequence, 7N(n) is an increasing
sequence of ordinals < 2% of length h(n)},
and
I, =I°U{Res’ () :n <w, £ <h(n), ne IS}
so [Io| = 2%. Let Bat1 = ba[Ba, a, o], B, increasing continuous for a < 2.

(Again, a, is an w-sequence of pairwise disjoint non-zero elements of B, such that
each sequence appears 2” times.)

Again, for a < 8, B, <Bpg (and even the conclusion of 3.4(5) holds). The proof
that B := B2~ satisfies 3.14(a), (8), (7) is as in the proof of 3.6.
For (6) we need 3.15 below. Os.14

Observation 3.15. Assume that  is a strong limit cardinal of countable cofinality.
1) If B’ is a Boolean Algebra of cardinality > k but < 2% then:

(a) There are pairwise disjoint non-zero by, (for n < w) in B’ such that
(%) fornoceB', A (ban <c)A A (bapy1 Ne=0).
n<w n<w
2) For a Boolean algebra B', a sufficient condition for B’ to satisfy (a) (i.e., the
existence of a sequence (b, : n < w) of pairwise disjoint elements of B’ satisfying
(x) above) is:

(b) B’ has cardinality < 2% and there are b, € B’ such that N b, Nb, =0
n<<m
and k = liminf |B [ b,|.

We first prove that 3.15 suffices (for finishing the proof of 3.14). Toward contra-
diction assume that B’ is a Boolean algebra of cardinality < 2* but > k, and B’ is
a homomorphic image of B. If clause (a) is satisfied by B’, then the proof is very
similar to the earlier proof of 3.6: for a homomorphism f : B — B’ from B onto
B’ we can find pairwise disjoint a, € B (for n < w) such that f(a,) = b,. So, for
some « we have @, = (a, : n < w), and we repeat the relevant part of 3.6. Using
clauses (b),(c) of Definition 3.3 we get a contradiction. We are left with proving
3.15. First, the second part.

Proof. Proof of Observation 3.15(2):
We can find & = (¢, : n < w), ¢, € B, ¢, < b, for ( < 2% such that the
sequences (c§ : n < w) are pairwise distinct for ¢ < 2%. For each ¢ let b5, = ¢,

bgn+1 = b, — c§, so if clause (a) fails then for every ( < 2% there is yo € B’ such

no

that for every n < w we have
bgn S Ye¢s bgn—&-l N Y¢ = 0.

So Aye Nby, = & and hence ¢ < £ < 2% = y¢ # ye, which contradicts |B’| < 2~.
n

Proof of Observation 3.15(1):
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Assume that the conclusion fails. For a cardinal p, let
7, =T,[B'] := {b€ B’ : B’ | b has cardinality < u}.
Clearly it is an ideal of B’ increasing with p and 1g: € ju & p > |B|. If B'/Z,.[B']

is infinite then we can easily get condition (B) of part (2), and we are done. If it
is finite, but Z,[B] # Z,[B’] for every p < k, then let Kk = 3 pn, fin < fn+1, and

n<w
choose b, € Z,[B']| \ Z,, [B']. But Z,[B'] = U Z.[B], so AV b, € Z,.,.[B']. So
p<kK n m
without loss of generality b, € Z,,, ., [B'] \ Z,, [B'] and hence (b, — J b : n < w)

I<n
are as required. We are left with the case that for some p(x) < x,

1 =1T,[B'] = Z.[B/]

and without loss of generality 7 = 7, () [B’] is a maximal ideal.

Without loss of generality 240) < p1,, < ping1 for n < w. Let b; € 7 (for ¢ < k)
be distinct (these exist as |B’| > « and Z is a maximal ideal of B’). By the proof of
Erdds—Tarski theorem, without loss of generality (b; : i < k) are non-zero pairwise
disjoint.

[Why? For example, apply the A-system lemma to
H{z iz <b} i< (27},

and get Y, C (2#")F of cardinality (2#~)T and a set A,, of cardinality < 2#(*) such
that
LieYoni#j = {z:x<bin{e:z<bj}=A4,.

So |An| < p(x). Pick Y] C Y, of cardinality (2#~)% such that
LWiEY Ni#] = {z:x<b}n U Ap ={z:2<bj}In U Al

m<n m<n

where A}, = {x: (3i € Y;})[z < b;]}. Let i(n) = min(Y;)). Then
Xn ={xi —xi(n) 11 €Yy, i >1i(n)} € B\ {0}

is an antichain, and | J X,, is as required.]

Let !
= {Y €[] : there is b € T such that (Vi € Y)[b; < b]}.

This is a subset of []™ of cardinality < |Z] - u(*)¥ < |B/| + x = |[B/|, but [k]®0 =
> |B/|, so there is Yy € [k]%0 \ Z.
Let
={Y e :Y Cr\Yyand (3be I)(VieY)b <b}.

By cardinality considerations as above there is Y7 € [k]¥ \ &2, disjoint to Y. By
assumption above (i.e., clause (a) fails) there is b € B’ such that A b; < b and
€Yy
N b < (1—-10). If b €T we get contradiction to the choice of Yp, if not then
€Y
lg—be 7 contradicts the choice of Y;. Hence the observation holds and hence the
Observation 3.15 is proven. Hence Claim 3.14 is proven. Us.1s

Remark 3.16. In other words 3.15 says

() If x is strong limit, cf(k) = Ny and B is a Boolean algebra of cardinality
> k with Nj-separation (i.e., (a) of the observation fails) then |B| > 2%.
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§ 4. USING SUBTREES OF (“Z2, <) AND THEORIES UNSTABLE IN N

Theorem 4.1. Suppose T C Ty are first order theories, Ty is countable, T is
complete, superstable but Rg-unstable. Then for A > Ry we have

TE\,Ty,T) > min{2*,3,}.

Remark 4.2. The reader is not required to know anything on superstable theories,
just to believe a result quoted below. So we can just assume (x) from the proof.

Proof. The assumption that the theory is superstable and not totally transcendental
(= Rg-stable) is used to obtain m,, my < w and a countable set of definable (without
parameters) equivalence relations {¢,(Z;¢) : n < w} C L(77) such that:1*

() (i) 9@ = @) = ma +my o
(42) If M is amodel of T and @ € ™=|M| then the set {a"b/p, : b € ™| M|}
is finite. - - B
(#31) If for £ = 1,2, lg(ap) = ma, lg(be) = myp, and (@1 "b1) @n (G2 ba) then
a; = as.
(1v) ppa1 refines @,: ie. for every n < w, T @,41 § implies T @, 7.
(v) There are (in some model M of T) ¢, for n € “>2 such that:
[lg(n) >n Alg(v) >n implies &, ¢, ¢ < nln=v]n],
Cp [ ma =¢ [ Ma, lg(Ey) = mq + my,.
The existence of this set of equivalence relations was proved in Chapter I1II, 5.1-5.3
of both [She78] and [She90].
Clearly, without loss of generality we may expand the theory T7. Let
{co: € <mi}U{cye:l € [myi,mi +my) and n € 72}
be new constants in 7. We let ¢, = (¢c/ : £ < mq) " (cy : £ € [Mq, mg +my)). and
suppose
Ty 2 {(@y pn &) lgn), lg(v) >n, nIn=vn}U

n
{=(y en ) lg(n) lg(v) = m, n T n#vin}.

Also without loss of generality, suppose that 77 has Skolem functions (so the axioms

saying it has Skolem functions belong to T7).

We will use the following fact. [For a sequence 77 let 77 = (7[¢] : £ < {g(77)) and
Qg = anfo) Qg1 anf) - - - Oaa
Fact 4.3. 1) Suppose

(A) T C Ty are first order theories, T' complete and superstable, unstable in

|T1|, 7= 7(T) and 71 = 7(T1), and 77 has Skolem functions.
(B) 71 is countable, or at least MA,, holds for pu = |T7].
(C) ¢n (for n < w), mqy, my are as in (x) above, and my := mg + My,
(D) ¢, € 7 is a (2m.)-place predicate,
A={pp:n<w}l, 7 =nU{d,:n<w},
7 C 7, and |7p| < p < 280,
Then there are M, @, (n € “2) such that:

(o) My is a model of Ty and ¢ is an equivalence relation such that cp,ﬂﬁl
refines 1.

Lywe may write T ¢y, § instead of ¢n (Z,7)).
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(B) 7(My) =7, {@, : n € “2} C ™| M|, and
lg(n) >nAlgv)>n = [17 In=v|n&(a, ¢n dl,)].
For 7€ ™(¥2), let a5 =Gy," ... "Gy, ,-
B @y | mq = @y | mqg = (céwl Z,< mq), Lg(a,) = my, and if n < w,
lg(a@) = mq < my then |[{@"b/@m : b€ ™ (M) }| < k.
(v) For every formula ¢(Z) from L(r) such that m, divides ¢g(Z), there is 7,
such that for n € [1,,w):

(K M7, 7 € ™(¥2), fg(n) = lg(v) = m = ———— (so0 {g(az) = lg(z)),
and
<77g In:tl< Eg(f])) = <Vg In:l< Eg(ﬁ)>
is without repetitions, then M; = plaz] = plas).
(0) (dn : n < w) is an indiscernible sequence over {a, : n € “2} in M; | 7.
(0)t dp # dp, for n #m.

2) If My, 7,71, 7, Ma, ma, (pn : 1 < w) are as in (a), (8), (B)1, (7), (), (§)T above
and p = Ny (or at least MA,) then, replacing “2 by a subtree, replacing (¢, : n < w)
by a sub-sequence and renaming, decreasing M7, we can add to part (1):

(7)* For every sequence of terms a( ) from mr i mox (me + mp) = g(3),
me + mp = lg(a), a(z) | = (G | ma)(T [ mq), me < Mg, Mg =
me X (Mg + myp), [ie. a(an) [ma = (5’ [ma)(a,, .) for 7 € ™(¥2)], then
there exists ns; < w such that:

(a) For n > ns and 7,7 € ™(¥2) with no repetitions, 7 [ m. = v | m,, we
have:
$I0A ko Al n ol o (v <Al ool [ ]
then for every p € ™(“2), p | me =7 | m, implies
( ( ) Yn O ) ( (ap))
(b) For n > nz and 7,7 € ™("2) each with no repetition and

nfmezﬁfmm

we have:
o Ifthere are k > nand 71,71 € ™(*2) such that ~¢r(5(as, ), 5(as)),
for £ < m, m[l] | n =7, 1[f] | n = 0[f], and

(V60 <m)[mu[0) = 7 [i] < q[€) = o[i],

then for every 7%, 0% € ™(¥2) satisfying 7*[¢] [ n = 7[¢], 7*[¢] |
n = p[f] (for each ¢ < m) and

(Ve,i < m)[7°[f] = 7" (i) & 7le] = v[i]]

we have =[5 (ag-) ¢n 0(as)].
Remark 4.4. 1) This is the only place where countability (or MA|,,|) is used.

2) For alternative proof see 4.13.

Proof. 1) If we ignore (§)" (so can have d,, = dp) use Theorem [She78, Ch.VIL,3.7].
In general, use [She78, Ch.VII,Ex.3.1]. What if T} is uncountable but MA,? (The
reader may ignore this proof or see the proof of 4.13.)
Let P be the forcing notion of adding A = J(gu)+ Cohen reals, (n; : i < A),
€ “2. Let x = (2*)" and let

IFp “M is a model of Ty, the Skolem hull of {z; : i < A}, T; vm Cn, tm”
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By the Omitting Type Theorem!® there are B; < B, with B; < (H(x), €, <}) and
|%B1]| = p such that T, P, M, (x; : i < \) belong to B;. Also in B, (a,: p € “2)
is an indiscernible sequence over B1, and B | “g; is an ordinal = \”.

Note that any set which By considers a maximal antichain of P32 really is so.
Now we can naturally apply MA,,.
2) Satisfy requirement (a) by letting ¢% (2" 2) == E, (2" z, Fy(2)"z) for £ < £}, < w,
where F;, € 71 are such that {F,(Z) : £ < £}} is a complete set of representatives
for {Z"z/¢n : T}, possibly with repetitions. (Remember T7 has Skolem functions
and there is £ which does not depend on Z by compactness). Requirement (b) is
fulfilled by trimming the perfect tree and renaming. O3

Claim 4.5. For M, a, (n € “2), ¢, as in the conclusion of 4.8 we can conclude:
® Ifv# p are from 2, 0, = (e : £ <L(*)), Tp = (1p,e : £ < L(x)),
T={(xs: L <L(x)), () =(om(@):m<m(x), v k=plk,
Me T k=050 k, (Me: € <U(x)) with no repetitions, k > ns, and
/\ [du $n dp < 6((_]“7711) Pn 5’(677/))]
n<w
(moreover, the A-type of a, a, and o(ay,) o(agz,) (in M) are equal for
every n) then lg(v N p) € {Lg(nu,e Nmpe) : £ < L(x)}.
Proof. Assume not.
Let n = lg(pnv). Then ¢, (@,, G, ) A—@nt1(a,, a,). We suppose first (for didactic
reasons) for the sake of contradiction that for every £ < ny we have

mll] # Mpll] = Lg(,[6] N 7,[E]) < n.

By the equality of types —~¢n11(5(as,),(as,)), now we can deduce by Fact 4.3(2)
and the assumption that the conclusion of (®) fails, that —,41(5(a@s,),5(as,))-
Again, by the equality of types -, (a,,a,), a contradiction to ¢, (a,, al,)

Now we deal with the general case, i.e., we assume

() (V¢ < no) [lg(77,[€) N7, [0]) # n].

We shall derive a contradiction.
Define 77 € ™0 (“2):

I 77 U A R S P
i = {ny [(] otherwise.

Clearly o(ay,) [ mq = 0(ay,) [ mq = 0(ay,) [ mq and 7 [ me =7, [ me =17, | me,
and also 7 is with no repetition and (7[¢] [ n : £ < ng) are pairwise distinct.
Since, by the definition of 7, for which 7[¢] [ n = 7j,[¢] | n, using (%) we obtain

ne] T (n+1) =n,[] [ (n+1).
Let b = &(a;). By reflexivity of the equivalence relation we have
o(aq,) Pn+1 0(ag,)-
By Fact 4.3(1), 5(@5) ¢n+1 0(as,); ie. b pni1 6(ay,). Finally,'® using transitivity

of the equivalence relation we have -, 1 (b o a,,p))
By the definition of 7, for every ¢ < ny we have

qll] = n,[€] or Lyg(All] N, [€]) < n.

155ee, e.g., [She90, Ch.VIL,§5].
6As ~(3(an,) pn+1 5(ag,)).
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But since n > kg, clearly
{0 T ko= € <mo}| = |{m[€] I ko : € < ng}| = no.
So by Fact 4.3(2), as =(b @nt1 5(ag,)) (see above), we have =(b ¢, 5(ag,)).
But b ¢, d(az,) (see above) and &(az,) pn (as,), a contradiction. Oas
So for proving theorem 4.1 we can assume

Hypothesis 4.6. M, (p, : n < w), and a, (for n € “2) are as in (8) + () of
4.3(1) and (®) of 4.5.

Lemma 4.7. Assume p < A < 2%, We can find Se €2 for £ < 280 pairwise
disjoint, each of cardinality X\, such that

® IfE <20, f: 8 — > (J//mw( U SC)) and n is a function,
(€23

n:{c:(3x)[c = (0,(z) : £ < )], 00 aterm of Lyx,(T)} = w
and T is the vocabulary of M, ., (|J Se), then we can find m* (see below)
C#E

S* C S¢, ko <w, ng =mg+my <w, asequence 6(z) = (0¢(Z) : £ < ly(a)),
with lg(Z) = ng, (G, : v € S*) and fjp € "0 (¥2) with the following properties.
Letting n,.¢ = 7, [¢]:

(A) n#veS* = nnv) >k

(B) Forv e S* we have ly(7j,) = no, (V¢ < no) [ue | ko = 7loe [ ko], and
{Tve 1 ko : £ <notU{v [ ko} are pairwise distinct.

(C) ko >n(a)

(D) For each £ < ng, either {7, ¢:v € S*} = {fjo,e} or {7e: v € S*} are
pairwise distinct.

(E) The sets {lg(v1 Nwo) : 11 # va from S*} and

g (Muser N Muses) 2 v1,v2 € ™ and £y, by < no}
are disjoint.

(F) For everyv € S*, f(v) =a(7,) (i.e. equal to
(oe((Myn :m < mg)) : 1 <m*)).

(G) For vy # vs € 5%, we have

Mur b = Mgt & £ < Ma & 1y 0 = 10,

(H) S* is uT-large. (We say that S C “2 is x-large iff for every n < w
and v € S we have [{p € S: p [ n=v | n} Z;} We can replace
wut-large by A-large if cf(X\) > Nq.

(I) v1,v2 € S* Ay, 0y = Moy p, implies €1 = Lo

(J) Form € |USe, let £&(n) be the unique & such that n € Se. Now, if

£

EMuyoy) = EMuy p,) with 1,0y < ng and v # vo € S*, then
vES = EMe) =EMue) = EMue)-

Remark 4.8. 1) This claim is a version of the “unembeddability” results;'” well,
they are necessarily somewhat weaker than in §1 here.
2) Of course, we can replace |J S¢ by > Se.

C#E C#E
For proving 4.7 we will use the following combinatorial fact, which is slightly
stronger than Sierpinski’s lemma on almost disjoint sets of integers:

17See Definitions in [Shea, §2], results (for example) in VI, and here in §1 for the tree ¥=2.
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Fact 4.9. There are W(x), {W, : n € “2}, and {U, : n € “2} such that for all
n e Y2
(A) W(x), W, are infinite subsets of w.
(B) U, is a perfect tree; i.e. U, C “~2 is downward closed, ( ) € U,, and
(VpeU,)BveU,)[pdvAv{0) e U, Av (1) € Uy,].

(C) If p,v € Uy, p # v, and ly(p) = L(v) then lg(p Nv) € W, where p N v is
the largest common initial segment of p and v; i.e.

lg(pnv)=max{n <w:p|[n=v|n}
(D) Forallm # no € “2and every p € U,,,, v € U,,, there are three possibilities:
(a) lg(pnv) e Wy, NW,y,
(b) lg(pnv) € W(x) and (V< lg(pNv))[L € Wy, =L W,,].
(c) pQvorv<p.
(E) WEp)NnW, =2
(F) For distinct 0, v from “2, we have:
(a) W, N W, is finite (in fact, an initial segment of both).

(b) If £ € W(x) is above W,y N W, then U, N U, is finite, contained in ¢>2
if ¢ < ¢ € W,, UW,, and has no splitting of level > ¢; i.e.
=(3p e “>2)[lg(p) = LA {p*(0), p" (1)} S U, NT,].
(c) If £ € W(x) and ¢ < sup(W,, N W,,) then U, N %22 = U, N*=2.

Proof. By induction on n, define k(n) = k, < w, the set W,,(x) C k(n) and the sets
U, C k=2 W, C k(n), such that in the end (this imposes natural restrictions on
them):

neY2 = WyNky =Wy, U,N*FMZ22=0, . W) Nk(n)=W,(+).

For n = 0, let kg = 0, W,,(*) = @ and W,, = @, U, = @ for n € "2. For the
induction step, choose k'(n) = k(n) +n + 1 and for n € "2 let

U% =U,U{v"(n1€):vet,nk™2 ¢ <n}.
Thus )
(vve*M2nu,)(Fper ™M2nu))[vdp].

Define Wiy (+) = Wa(¢) U [k(n), b (n)). Fix an enumeration {n : k < 2°+1} of
"9 Let k(n + 1) := k(n) + 2"F1. For n € 12, there is a unique k < 2" such
that n = . Let

Uy = U%km u{re kD29 .y 1 kY (n) € Unlk tn, and for £ < 2™ we have
k'(n) +€ < lg(v) A (L # 2k + 1) = v(k'(n) + £) = 0}
and W,,, = W, U{k*(n)+2k+1}. It is easy to verify that the construction provides
a family of sets as required. Oag
Proof of Lemma 4.7: Let W(x), U,, W, be as in 4.9. Fix an enumeration
{ne : € < 2%} =“2 and let W& :=W,,. Let
Se Clim(Uy,) (={pe“2: (Vn<w)lp|neUp,l})

be of cardinality A. Fix {pf © 1 < A} =S¢, and without loss of generality Se is
x-large.!®

18Recall that we say S C “2 is x-large if for every n < w and v € S,
HpeS:pin=vin}>x Ifx>(r|+Ro)" we may omit it.
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Note that for every S C “2 of cardinality > p, for some S; C S, |S1] < p and
S\ S1is pt-large. Let US = U,.; note that by 4.9(B)+(D), the sets S¢ \ S are
pairwise disjoint.

So let &, f,n be as in the assumption of 4.7®.

For v € S¢ let f(v) = 7,(7,), where &, is a finite sequence of terms and 7, is

a finite sequence of members of |J S¢ with no repetitions. So there are S* C S
C#E
which is p*-large, and &, and an integer ng such that

veS" = o, = 5/\@(7?1/) = Ny,
and without loss of generality, for some m, < my < w, we have 5(7,) | mq = 7*
and
{nj £<metU{n,,:veS” and € € [mg,mp)}

is without repetition (this is possible by the A-system argument).
As Sen U S¢ = @, clearly the sequence (v) "7y is without repetitions for any
C#E
v € S*. So for some k = k, < w large enough, we have:
(@) (W1 k) (el k:l<{(x)is without repetitions.
(i) Letting 7,0 € S¢(,0), we have Wenwelwe C {0,...,k, — 1}. Moreover,
k, > min(Wé\ Wé¢0:9) (remember clause (F) of 4.7).

As we can shrink S* as long as it is u™-large, without loss of generality for some k:
(#i1) 1 v € S* = L(rnNwr) >k
(lv) vesS* = k, <k<w.

So for vy # v € 5%, on the one hand fg(v1Nvy) € WE\k (as v1, 12 € Se C lim(Uy, );
see clause (iii) above and 4.9(C)) and on the other hand

(s s 0) € W () UUCCHO YU elad

which is disjoint to W& \ k. So we have proved clause (E) of 4.7; the other clauses

can be checked. Uias
Claim 4.10. If clauses (8), (7), (0) of 4.3(1) hold, and 4.5(®) does as well, then
for A < 2%o;

(x)x There is a family &P of subsets of “2 each of cardinality \ (even their union
has cardinality \) with | 2| = 2*, such that (letting N& be the Skolem Hull
of {a, :n € S} for S € P) we have:

e ForYy #Y5 from &, N51’1 has no A-embedding into N%—z.
o |[NL|=XforY € 2.
Proof. For X C \, let M be the Skolem Hull of {a, :n € |J Se¢} and
ex
MX = M)l( r TT-

In order to prove the theorem it is enough to assume X, Y C A and X € Y,
and show there does not exist an elementary embedding f from My into My . Let
&€ X\ Y. For the sake of contradiction suppose f : Mx — My is an elementary
embedding, or just one preserving the satisfaction of ¢,,, ~@,.

We can represent My in .#,.,(|J S¢), and let us define f: S¢ — 4., (U S¢)

€53 C#E

by f'(v) = f(a@,), let n be essentially as in 4.3, but translated. Apply lemma 4.7
to f/ and n, and get S*, ko, ng, mq, myp, 7, (7, : v € S*) as there. Of course ny,
Mg, My are predetermined as in 4.3.

So we are done proving 4.10. U410
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Proof. Proof of Theorem 4.1:

When A < 280 the result follows from 4.10 by 4.5.

So the proof of Theorem 4.1 for the case A < 280 is completed. How to deal with
the case A > 2%0? We just need to use (§); i.e. use 4.12 (and Definition 4.11)
below. Ogq

Definition 4.11. For any cardinal x and M; as in 4.3(1)(5)-(6)", we define a
model M, ,; as follows: it is a 71-model generated by {a, : n € “2} U{d; : i < K}
such that for every n < w, i1 < ...%, < K, and 11, ...,My, € “2, the quantifier-free
type of @, " ... ay,,, “(di,...,d;,) in My, is equal to the quantifier-free type of
ay, " ... Gy, (d1,...,d,) in M;. (So if My has Skolem functions then M; = M, ,
and they realize the same types.)

Claim 4.12. If clauses (83), (7), (8),(0)T of 4.3(1) hold, and 4.5(®) does as well,
then for X\ > 2%0:

(¥)x There is a family P of subsets of “2 each of cardinality 280 with | 2| = D,
such that, letting N3 be the Skolem Hull of {@, :m € S}U{d; : i < K} in
M\ with S € 2 (so |[N3| = \), we have:

(x) For Y1 # Ya from &, Ny, has no A-embedding into Ny, (i.e. no
function from Ny. into Ny, preserves all the relations £pn,).

We may consider using relations ¢, which are not equivalence relations, and we
may like to give another proof when ;1 > Ng but still MA,, holds.

Claim 4.13. [Assume MA,,.]

Suppose M1, 11, (G : 1 € Y2), ¢y, (forn <w), (d, : n < w) satisfy clauses (a),
), (B), (v), (0) of 4.8, and My is a T1-model of the complete first order theory Ty .
Also suppose a, € F(My) for p € “>2 are such that if n < m < w and n,v € ™2
thenn In=v|n& M = a, ¢, a,. (So ¢, is not necessarily an equivalence
relation and |T1| = p is not necessary countable).

1) If we replaced “Z2 by a perfect subtree (splitting determined by level only) and
replaced (p, : n < w) by a subsequence, then we could add the statement of 4.5(®)
to the assumptions.

2) So the conclusion of 4.10 holds, and if we further assume ()% of 4.3, the con-
clusion of 4.12 also holds.

Proof. We use Carlson and Simpson [CS84].
Let W* be the set of w-sequences n from {0,1} U {x; : ¢ < w} such that each z;
appears infinitely often. For n € W*, let

W, ={veWw:n{)e{0,1} = vl) =n), n(t) =nl2) = v(l) =v(l)}.
As a set, W C W* is large if it contains some W,,. Let
Iy = {1/ € “>2: for some n € W, for every £,{1,0s < lg(v),

n(0) € {0,1} = v(€) = n(0) An(tr) = n(tz2) = v(l1) = v(l2) }.
Let
lev(W) = {¢ : for some n € W, n(¢) ¢ {0,1} but n(0),...,n(¢ —1) € {0,1}}.
We say W1 C* Wy if for some n, {v | [n,w) :v e Wi} D {v | (n,w) : v € Wa}.
By MA,,, if (W; 14 < < p) is C*-decreasing sequence then there is W such that
/\Wi WL

(]
By the partition theorem there, if n < w, n1,...,m, € ™2 are pairwise distinct

and 7', 52 are ;" -terms then we can find large W; C W such that W, [n=W [ n
and:
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W.o Hn<me lev(Wh), pj € Twy,N™2fort =1,...,k,and vy =1, p2 | [n,w),
then the truth value of 61 (dy,, ..., ay,) ©n 72(Gy,,- .-, Gy, ) is constant.

Repeating it, we can get W, such that ®7y,  for every n.

(7) Either g is constant < min(lev(W) \ n) or
n €lev(Wy) = [g(n),n) Nlev(W;) = 2.
(15) In<melev(Wy) and ny < vg € Ty, N™2 then
min{i : ﬁ[al(&yl,. s y,) i 02y, @Vk)]} = g(m).

We apply such reasoning to the following statement: “Given n,...,nr € Tw, N "2
pairwise distinct and n < m € lev(W;), and assuming n, < v € Ty, N ™2 for
¢e{0,1,...,k} and i € {0, 1}, we have

(@0, --,8,0) 90 0(ay1, ..., a,)."
We get that this depends only on (v Nv}) and v} (€g(1/2 N V})). 0413

Discussion 4.14. The parallel (for a module M) concerning “a surgery at” is
extending the ring R to R*; e.g. by {z; : t € I} freely except some equation
involving = and the z;-s and “below z” is replaced by the ideal generated by those
equations.
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