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Abstract. We investigate the existence of metric spaces which, for any
coloring with a fixed number of colors, contain monochromatic isomorphic copies
of a fixed starting space K. In the main theorem we construct such a space of
size 2ℵ0 for colorings with ℵ0 colors and any metric space K of size ℵ0. We also
give a slightly weaker theorem for countable ultrametric K where, however, the
resulting space has size ℵ1.

1. Introduction

Recall that the standard Hungarian arrow notation

κ → (λ)νμ

says that whenever we color ν-sized subsets of κ with μ-many colors there
is a homogeneous subset of κ of size λ. The question whether, for a given λ,
ν, μ, there is a κ such that the arrow holds has been well studied in Ram-
sey theory. If ν = 1 the coloring becomes a partition of κ and the question
reduces to a simple cardinality argument. However, if we add additional
structure into the mix, the question becomes nontrivial. The following defi-
nition makes precise what we mean by “adding additional structure”:
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Definition. Let K be a class of structures and κ, λ, μ be cardinals.
The arrow

κ →K (λ)1μ,

is shorthand for the statement that for every K ∈ K of size λ there is a
Y ∈ K of size κ such that for any partition of Y into μ-many pieces one of
the pieces contains an isomorphic copy of K.

Note that for a class of structures there are often several natural notions
of contains an isomorphic copy. So the above notation assumes that the
choice of K includes choosing the notion of contains an isomorphic copy.
The basic question, given a class K, then becomes whether for every λ, μ
there is a κ such that κ →K (λ)1μ.

These types of questions have been considered before. For example
A. Hajnal and P. Komjáth in [1] and [6] consider the class G of well-ordered
undirected graphs. The notion of “G contains an isomorphic copy of H”
is “G contains an induced subgraph graph-isomorphic to H via an order-
preserving bijection”. For this class they prove

Theorem (Hajnal and Komjáth [1]).

2κ →G (κ)1κ.

J. Nešetřil and V. Rödl consider ([5]) the classes T0 and T1 of all T0
and T1 topological spaces with homeomorphic embeddings. They prove

Theorem (Nešetřil and V. Rödl [5]). If T = T0 or T = T1 then

κγ →T (κ)1γ

In this paper we will be interested mainly in these questions for metric
spaces. There have been some results for metric spaces (see e.g. [3], [4], [10],
[9]). Most notably, W. Weiss shows in [9] that there is a limit to what one
can prove:

Theorem (Weiss [9]). Assume that there are no inner models with mea-

surable cardinals. If X is a topological space then there is a coloring of X
by two colours such that X doesn’t contain a monochromatic homeomorphic

copy of the Cantor set.

Also see [7, 3.8(1), 3.9(3)]: it says that if 2ℵ0 > ℵω and some very weak
statement holds (the precise formulation is unimportant here, but it is weak
enough that the consistency of its negation is not known) then every Haus-
dorff space X can be divided into 2ℵ0 many sets such that none of which
contain a homeomorphic copy of the Cantor set. In particular, this holds
in VP if P adds ≥ �ω Cohen reals. See more in [8].
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In particular in the class of metric spaces, we can’t hope for positive re-
sults if κ > ω (but see [8] for a positive result from a supercompact cardinal;
more history can be found there). The case κ = ω is not ruled out and, in
fact, the main result of this paper, due to the first author, is a positive arrow
for this case.

Definition 1.1. Let M be the class of bounded metric spaces with
“X contains an isomorphic copy of Y ” being “X contains a subspace which is
a scaled copy of Y ”. (K is a scaled copy of Y if there is a bijection f : K → Y
onto Y and a scaling factor c ∈ R+ such that dK(x, y) = c · dY (f(x), f(y)).

Theorem 1.2. 2ω →M (ω)1ω.

In fact the theorem we prove is much stronger: for every countable metric
space any ℵ1-saturated metric space X works.

The original motivation of the second author for considering these arrows
comes from a problem of M. Hrušák stated in ([2]):

Question. Does ZFC prove that there is a non σ-monotone metric space
of size ℵ1?

If one could replace 2ω by ℵ1 in the above arrow, this would give a pos-
itive answer. In fact, for a positive answer it would be sufficient to consider
the class M with isomorphic copies being Lipschitz images, which seems to
be much weaker.

The paper is organized as follows. In the second section we prove the
main result and in the third section we discuss what can be proved for the
restricted class of ultrametric spaces. We finish the introduction by recalling
some definitions and facts for the benefit of the reader.

Definition 1.3. 1) A metric space is a pair (X,ρ) where ρ : X ×X → R
is a metric (on X), i.e. it satisfies, for all x, y, z ∈ X ,

(a) ρ(x, y) ≥ 0 and ρ(x, y) = 0 ⇐⇒ x = y;
(b) ρ(x, y) = ρ(y, x); and
(c) ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

2) The third condition is called the triangle inequality. If it is strength-
ened to

∀x, y, z ∈ X, ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)}

then we say that the space is ultrametric.
3) In the remainder of this paper, we may abuse notation slightly and

refer to the metric space (X, ρ) as X .

Definition 1.4. A metric space (X, ρ) is ℵ1-saturated if for any at
most countable Y ⊆ X and any function f : Y → R+ satisfying the triangle
inequality

(∗) f(x) + f(y) ≥ ρ(x, y) & f(x) + ρ(x, y) ≥ f(y) & f(y) + ρ(x, y) ≥ f(x)
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for all x, y ∈ Y there is p ∈ X such that ρ(x, p) = f(x) for all x ∈ Y .

Note 1.5. There is a standard way to seeX as a structure for a language
with countably many binary predicates {Rq : q ∈ Q}: namely, interpret the
predicate Rq(x, y) as ρ(x, y) ≤ q. Then the space X is ℵ1-saturated if

(1) it contains a copy of every finite metric space,
(2) given any finite metric spaces Y1 ⊆ Y2 with |Y2 \ Y1| = 1 and an isom-

etry π : Y1 → X , the isometry can be extended to Y2, and
(3) every bounded 1-type ⊆ {R(x,a),R(b, x) : a, b ∈ A}, for A a countable

subset of X is realized.

The following is standard and is included here for the convenience of the
reader.

Observation 1.6. There is an ℵ1-saturated metric space of size 2ω.

Proof. Let {(Yα, fα) : α < 2ω} be an enumeration of all pairs such that
Yα ∈ [2ω]≤ω and fα : Yα → R+ with each pair appearing cofinally often. By
induction define a sequence 〈dα : α < 2ω〉 such that

(1) dα ⊆ dβ for all α < β < 2ω;
(2) dα is a metric on α; and
(3) if Yα ⊆ α and (Yα, fα) satisfies (∗) of Definition 1.4 and there is no

β < α such that dα(y, β) = fα(y) for all y ∈ Yα then dα+1(y, α) = fα(y) for
all y ∈ Yα.

The only nontrivial part is guaranteeing (3) for successors. So assume
Yα ⊆ α and that (∗) is satisfied and for each β < α there is y ∈ Yα such that
dα(β, y) �= fα(y). Extend dα to dα+1 by defining

dα+1(β, α) = inf
{
dα(β, y) + fα(y) : y ∈ Yα

}
, dα+1(α,α) = 0.

Then clearly both (1) and (3) are satisfied. To show that (2) is satisfied it
is enough to show that dα+1(β, α) > 0 for all β < α. Assume this is not the
case for some β < α. By assumption there is y ∈ Yα such that

0 < |fα(y)− dα(β, y)| = ε.

Since dα+1(β, α) = 0 we can find z ∈ Yα such that dα(β, z) + fα(z) < ε/2.
There are two cases, both leading to a contradiction: if fα(y) > dα(β, y)
then dα(z, y) < dα(β, y) + ε/2 so

dα(z, y) + fα(z) < dα(β, y) + ε = fα(y)

contradicting (∗). On the other hand if fα(y) < dα(β, y) then dα(z, y) ≥
dα(β, y)−dα(β, z) = fα(y)+ε−dα(β, z) > fα(y)+ε/2 ≥ fα(y)+fα(z) again
contradicting (∗). This completes the inductive definition. Finally we show
that (2ω, d2ω) is ℵ1-saturated. Fix an at most countable Y ⊆ 2ω and an
f : Y → R+. Find α < 2ω such that Y ⊆ α and (Y, F ) = (Yα, fα). But then
the existence of p in 1.4 is guaranteed by (3) above. �
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2. The metric case

Proposition 2.1. Assume (K,d) is a countable bounded metric space
and (X, ρ) =

⋃
n<ω Xn is a countable partition of an ℵ1-saturated metric

space. Then there is an n < ω such that Xn contains a scaled copy of (K,d).

Proof. First fix an enumeration {zk : k < ω} of K and, aiming towards
a contradiction, assume there is no scaled monochromatic copy of K in X .
We shall use the following notation: given an (at most) countable Y ⊆ X
and a function f : Y → R+ as in Definition 1.4, let

B(Y, f) =
{
p ∈ X : (∀y ∈ Y )[d(p, y) = f(y)]

}
.

By our assumption B(Y, f) �= ∅. We shall inductively construct an increasing
sequence {Yn : n < ω} of finite subsets of X and functions {fn : n < ω} such
that

(1) fn ⊆ fn+1; and
(2) fn : Yn → R+ satisfies (∗); and
(3) B(Yn, fn) ∩Xi = ∅ for each i < n.
(4) Yn is nonempty, and sup{d(x1, x2) : x1, x2 ∈ Yn} ≤ 2 · sup{dK(x1, x2) :

x1, x2 ∈ K}.
Let Y0 = f0 = ∅. Assume now that we have constructed Yn, fn and choose

an arbitrary positive c ∈ R+ such that i, j < ω ∧ y ∈ YN ⇒ c · d(zi, zj) <
fn(y)/2n+1. (We can choose c because (K,dK) is bounded and Yn is fi-
nite.) We try to choose z′i ∈ B(Yn, fn)∩Xn by induction on i < ω such that
j < i ⇒ ρ(z′j , z

′
i) = c · d(zj, zi). If we succeed then we are done. So without

loss of generality there is some k such that 〈z′i : i < k〉 is well defined but we
cannot choose z′k. Let K

′
n = {z′i : i < k} be this copy and let Yn+1 = Yn∪K ′

n.
Finally extend fn to Yn+1 by defining

fn+1(z′i) = c · d(zi, zk).

We need to check that fn+1 satisfies (∗). Let x, y ∈ dom(fn+1). The con-
dition is easily seen to be satisfied separately on Yn (i.e. when x, y ∈ Y ′

n)
by the inductive hypothesis and on K ′

n (i.e. when x, y ∈ Kn) because it
is defined from a metric. So without loss of generality let y ∈ Yn and
x ∈ K ′

n, so x = z′i for some i < k. Since K ′
n ⊆ B(Yn, fn), by definition

ρ(x, y) = ρ(z′i, y) = fn(y). But then (∗) is clearly satisfied (the triangle is
isosceles and the two legs are longer than the base by the choice of c).

Finally, we show that the inductive construction has to stop at some
point (thus there has to be a scaled copy ofK in someXn). Let Y =

⋃
n<ω Yn

and f =
⋃

n<ω fn. Then B(Y, f) is nonempty (because X is ℵ1-saturated)
and B(Y, f) ⊆ B(Yn, fn) for each n < ω (since Yn ⊆ Y and fn = f � Yn). But
then B(Y, f) ∩Xn = ∅ for each n < ω—a contradiction. �
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3. The ultrametric case

As noted in the introduction, the second author’s original motivation for
studying these questions was the special case

ℵ1 →M (ℵ0)1ℵ0

for the class of bounded metric spaces. Unfortunately, this arrow probably
does not hold in ZFC. However a modified version of this arrow holds for
the class of rational ultrametric spaces.

Definition 3.1. 1) A metric space X is called rational if x, y ∈ X ⇒
ρ(x, y) ∈ Q.

2) Repeating Definition 1.3, an ultrametric space is a metric space that
satisfies the strong triangle inequality

ρ(x, z) ≤ max{ρ(x, y), ρ(y, z)}.

3) Given (X,≤) a tree and x, y ∈ X , let Δ(x, y) be the ≤-maximal z
such that z ≤ x ∧ z ≤ y.

4) A tree T is θ-branching iff the set of immediate successors of each
element of T is of size θ.

Theorem 3.2. There is a rational ultrametric space (M,d) of size ℵ1
such that for every coloring of M by countably many colors M contains iso-
metric monochromatic copies of every finite rational ultrametric space.

This theorem is both a strengthening and a weakening of the above ar-
row. On the one hand we get a universal space for all copies. The price we
have to pay is to restrict the copies to size < ℵ0. The proof of the theorem
is split into two parts. We first prove that each finite ultrametric space can
be represented as a special kind of a tree. Then we use a standard rank-
type argument to show that whenever the tree <ωω1 is colored by countably
many colors it contains monochromatic copies of all finite trees.

Before continuing with the proof of the first part we recall the following
basic observation about ultrametric spaces.

Fact 3.3. Let (X, ρ) be an ultrametric space. Then every triangle is
isosceles. Moreover, the base is never longer than the sides. Formally:

(∀T ∈ [X]3)(∃{a, b} ⊂ T, c ∈ T \ {a, b})
(
ρ(a, b) ≤ ρ(a, c) = ρ(b, c)

)

Definition. A metric space (X, ρ) is a rational tree space if there is an
ordering ≤ which makes X a tree and a nonincreasing function h : X → Q+

such that, for distinct x �= y ∈ X ,

ρ(x, y) = inf
{
h(z) : z ≤ x & z ≤ y

}
.
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We will also call the triple (X,≤, h) a rational tree space. The metric space
(X, ρ) is a rational branch space if it is a subspace of a rational tree space
(T, ρ) with all nodes of X being branches (leaf nodes) of (T, ρ). It is a regular
rational branch space if, moreover, each node of X has the same height and
the function hT is constant on the levels of T .

Proposition. Each finite rational ultrametric space is a regular rational
branch space.

Proof. Let (X, ρ) be a finite rational ultrametric space. Define a rela-
tion ≤0 on X as follows:

x ≤0 y ⇐⇒ (∀z �= x)(ρ(x, z) ≥ ρ(y, z))

Claim. The relation ≤0 is transitive.

Proof of Claim. Let a ≤0 b & b ≤0 c. We need to show that a ≤0 c.
We may assume a, b, c are distinct, otherwise there is nothing to prove.
So consider some z �= a. We just need to show that ρ(a, z) ≥ ρ(c, z). If
z = c then ρ(c, z) = 0 ≤ ρ(a, z). If z = b, then the inequality follows directly
from b ≤0 c. Then, ρ(b, a) ≥ ρ(c, a) because b ≤0 c, and ρ(c, a) = ρ(a, c)
≥ ρ(b, c) = ρ(c, b) because a ≤0 b. Together we are done. So assume z �= b.
Then ρ(a, z) ≥ ρ(b, z) ≥ ρ(c, z), and so ρ(a, z) ≥ ρ(c, z) as promised. The
first inequality follows from a ≤0 b and the second from b ≤0 c. This finishes
the proof of the claim. �

Claim. For each y ∈ X the set {a : a ≤0 y} is linearly (quasi)-ordered
by ≤0.

Proof of Claim. Assume a0, a1 ≤0 y and, aiming towards a contradic-
tion, assume that a0 �≤0 a1 and a1 �≤0 a0. So there must be z0, z1 such that
εi = ρ(ai, zi) < ρ(zi, a1−i) for i = 0, 1. Let δ = ρ(a0, a1). Applying Fact 3.3
we get δ = ρ(a1, a0) = ρ(a1, z0) (reading the above inequality for i = 0) and
δ = ρ(a0, a1) = ρ(a0, z1) (for i = 1). Now consider the triangle a0, z0, z1. We
have ρ(a0, z0) < δ = ρ(a0, z1) hence by 3.3 we have ρ(z0, z1) = δ.

Since ai ≤0 y, we have δ > ρ(ai, zi) ≥ ρ(y, zi) for i = 0, 1. But, again by
Fact 3.3, the triangle z0, z1, y is impossible. This is a contradiction. �

Consider now the equivalence relation a � b ⇐⇒ a ≥ b & b ≥ a and re-
fine the ≤0 order on each equivalence class to an arbitrary linear order. Call
the resulting order ≤. Since X is finite, it is clear that (X,≤) is a tree. For
s ∈ X put

h(s) = max{ρ(s, t) : t ≥ s}
(
= max{ρ(s, t) : t ≥0 s}

)

(The second equality follows from the fact that if a � b and s �= a, s �= b then
ρ(s, a) = ρ(s, b).) Let d be the metric of the tree space (X,≤, h).
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Claim. d(x, y) ≥ ρ(x, y) and, if x ≤0 y, then d(x, y) = ρ(x, y).

Proof of Claim. Assume first that x ≤0 y. Then d(x, y) = h(x) ≥
ρ(x, y) by definition. Moreover if z ≥0 x then ρ(z, y) ≤ ρ(x, y), ρ(x, z) (since x
≤0 z and x ≤0 y) and, since X is ultrametric, it follows that ρ(x, y) = ρ(x, z).
In particular, since the choice of z was arbitrary, h(x) = ρ(x, y), proving the
second part of the claim. To finish the proof assume now that x, y are in-
comparable in ≤0 and let s = Δ(x, y). Then h(s) ≥ ρ(s, y) ≥ ρ(x, y) since
s ≤0 x. �

Unfortunately, the inequality in the above claim can be strict (e.g. if we
consider the subspace of a tree space which results from deleting a level the
resulting subspace cannot be a tree space). We need to add a point to the
tree for each pair x, y with ρ(x, y) < d(x, y). We will use the following claim:

Claim. Suppose (Y,≤, h) is a tree space extending (X,≤, h) such that
dY (x, y) ≥ ρ(x, y) for each x, y ∈ X . Suppose that there are a, b ∈ X , incom-
patible in ≤ with ρ(a, b) < dY (a, b). Then there is a tree space Y ′ extending Y
such that dY ′(x, y) ≥ ρ(x, y) for each x, y ∈ X and ρ(a, b) = dY ′(a, b).

Proof of Claim. Let Y ′ = Y ∪{p} and extend the order so that Δ(a, b)
≤ p ≤ a, b. Moreover let h(p) = ρ(a, b). Notice that if x, y ∈ X and either
x �≥ a & x �≥ b or y �≥ a & y �≥ b or x ≤ y or y ≤ x then dY ′(x, y) = dY (x, y)
and there is nothing to prove. So, without loss of generality, assume x ≥ a
and y ≥ b. But then ρ(a, b) ≥ ρ(x, b) (since a ≤ x) and ρ(b, x) ≥ ρ(x, y) (since
b ≤ y). Since Δ(x, y) = Δ(a, b) = p we have dY ′(x, y) = h(p) = ρ(a, b) and
this finishes the proof of the claim. �

Using the above claim to iteratively add points we finally arrive at a tree
space (Y,≤, h) such that dY � X = ρ which, moreover, has the same distance
set as the original X . It is not hard to further enlarge Y to make it a regular
rational branch space. The Proposition is proved. �

Proposition. Assume T is an ω1-branching tree1 of height n < ω and
χ : T → ω is a coloring of the tree by countably many colors. Then there is
an ω1-branching subtree2 of T whose branches (i.e. leaf nodes) have the same
color.

Proof. Given a color c < ω and s ∈ T define

G(s, c, 0) ⇐⇒
∣
∣{α : χ(s�α) = c}

∣
∣ = ω1

and, inductively,

G(s, c,m+ 1) ⇐⇒
∣
∣{α : G(s�α, c,m)}

∣
∣ = ω1.

1 see Definition 3.1(4)
2 meaning the subtree is downward, and all its maximal nodes are maximal nodes of T .
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To prove the proposition it is clearly enough to show that there is some
c < ω such that G(∅, c,ht(T )− 1). Suppose otherwise. Then we can build
by induction αm for m < ht(T )− 1 such that for m < ht(T ) we have

(∀c < ω)¬G
(
〈αi : i < m〉, c,ht(T )−m

)
.

For m = 0 this is our assumption, working towards contradiction. For m+1
this is again easy. Hence

(∀c < ω)¬G
(〈

αi : i < ht(T )− 1
〉
, c, 0

)

which is impossible since if we let s = 〈αi : i < ht(T )− 1〉 then, since T is
ω1-branching, s must have uncountably many successors of the same color.
�

Proof of Theorem 3.2. Let M = <ωω1 and define hM : M → Q such
that for each σ ∈ M and each q ∈ [0, hM (σ)) the set {α : hM (σ�α) = q} has
size ℵ1. Let dM be the corresponding metric making M a tree space. Let X
be a finite rational metric space, h a decreasing enumeration of its distance
set and let (Y,≤, hY ) be a tree space witnessing that X is a regular rational
branch space. Let χ : T → ω be an arbitrary coloring of M . Consider the
subtreeM ′ = {s : h � s = d � |s|}. ThenM ′ is ω1-branching. By the previous
proposition there is a color c and an ω1 branching subtree M ′′ of M ′ with
all branches of color c. We can now build an order-isomorphism of Y into
M ′′ which, by choice of M ′, preserves h. It follows that M ′′ contains a
monochromatic isometric copy of X . �
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