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We define a family of non-principal ultrafilters on ℕ which are, in a sense, very
far from P-points. We prove the existence of such ultrafilters under reasonable
conditions. In subsequent articles, we intend to prove that such ultrafilters may
exist while no P-point exists. Though our primarymotivations came from forcing
and independence results, the family of ultrafilters introduced here should be
interesting from combinatorial point of view too.

1 INTRODUCTION

One of the important notions in general topology and set theory of the reals is that of a P-point. Recall that a P-point is a
non-principal ultrafilter 𝐷 on ℕ with the property that for any countable family𝒜 ⊆ 𝐷 there is a 𝐵 ∈ 𝐷 almost (modulo
finite) included in all 𝐴 ∈ 𝒜 (cf. Definition 3.6). Concerning these and other special ultrafilters on ℕ, their history and
basic applications we refer the reader to the survey article by Blass [1].
One of the reasonswhyP-points are very important in set theory is that they behave very nicelywith respect to forcing. In

many applications it is important to preserve P-points by specific forcing notions and by an iterated forcing with countable
supports1 and, for P-points, these issues are very well understood and many results are known in the literature. The
following is a list of some of the nice properties of P-points:

(A) There are many forcing notions preserving P-points.
(B) A proper forcing notion preserving being an ultrafilter will also preserve being a P-point.
(C) The property of preserving P-points is preserved in limits of countable support iterations.
(D) We can destroy a P-point by forcing, i.e., ensure it has no extension to a P-point: this allows us to prove the consistency

of “there are no P-points”.

1 Here, an ultrafilter is preserved by forcing if the ground model ultrafilter generates an ultrafilter in the generic extension (cf. [7, Chapter VI]).
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(E) We can destroy some P-points by forcing while preserving others (this is known as “splitting hairs”): this allows us
to construct a unique P-point up to isomorphism.

Already the properties (A), (B), and (C) give a controlled way to have ultrafilters generated by ℵ1 < 2ℵ0 sets (for more
details, we refer the reader to [7, Chapters VI & XVIII, § 4]).
The motivating question of this paper and the sequence of papers it starts is whether the theory developed for P-points

can be developed for any other classes of ultrafilters. A paradigmatic question is whether property (C) can hold for other
classes of ultrafilters:

Question 1.1. Canwe find a type of ultrafilters that is preserved by countable support iterations of suitable forcing notions
(e.g., proper forcing)? In particular, we are interested in preservation of our ultrafilters at limit stages of countable support
iterations: i.e., in a countable support iteration of suitable forcing notions of length 𝛿 + 1where 𝛿 is a limit ordinal, if each
stage 𝛼 for 𝛼 < 𝛿 preserves the relevant property, then stage 𝛿 preserves the property.

We suggested this problem in [6, 3.13] and we speculated about it there. [Note that in the situation of Question 1.1,
ultrafilters are naturally generated by ℵ1 many sets, as we start with a ground model of 𝖢𝖧, and the question of preser-
vation of ultrafilters is only relevant if we add reals (usually, ℵ2 many).] We suspect that Question 1.1 is related to the
following question by van Douwen [3], but at present we know neither whether they are really related nor how to answer
Question 1.2.

Question 1.2 (van Douwen). Is it consistent that there is no ultrafilter 𝐷 onℚ such that every 𝐴 ∈ 𝐷 contains a member
of 𝐷 which is a closed set with no isolated points?

Other specific problems that we worked on are:

Question 1.3 (Nyikos). Is it consistent to have an non-principal ultrafilter of character ℵ1, but no P-point?

Question 1.4 (Dow). Is it consistent to have 𝔲 = ℵ1 and P-points, but no P-point of character ℵ1?

This paper starts a series of several papers motivated by these questions. The main points done here (items 1 to 4) and
intended in subsequent parts (items 5 to 7) are:

1. We shall define an involved family of sets (really well founded trees) to define a class of ultrafilters;
2. from this, we define ultrafilters analogous to P-points that have no P-point as a quotient (§§ 2 & 3);
3. the ultrafilters are related to a game;
4. such systems exists assuming, e.g., ♢ℵ1 ;
5. relevant forcing notions preserve such systems, in particular, we get property (C), i.e., we answerQuestion 1.1 positively;
6. we have a preservation theorem for the ultrafilters under countable support iterations;
7. as an application, we shall solve Nyikos’s Problem 1.3.

In § 4, we describe basic connections to forcing that we intend to use in the independence results in subsequent papers
of the series. In Part II of the series (still work in progress), we present these ultrafilters in a more general framework
and deal with sufficient conditions for such an ultrafilter to generate an ultrafilter in a suitable generic extension. For
the limit case, we intend to continue the proof of preservation theorems in [7], in particular [7, Chapter VI, 1.26, 1.27]
and Case A with transitivity of [7, Chapter XVIII, § 3]. For the successor case, we need that the relevant forcing preserves
our ultrafilters.
In Part III, we note that the ultrafilters are analogous to selective (i.e., Ramsey) ultrafilters and hope to give a more

general framework which also includes P-points.
We should like to note that while it is consistent to have P-points and 𝔡 > ℵ1 (cf. [2] and references there), the existence

of ultrafilters as discussed in this paper implies 𝔡 = ℵ1 [1]. However, note that these ultrafilters may be ℵ1-generated in
a different sense: they could be unions of ℵ1 families of the form f il(𝐵) ∩ ℘(max(𝐵)).2 Note that it may be harder (than

2We write f il(𝐵) for the filter generated by 𝐵 and the co-finite subsets; formax(𝐵), cf. § 2.
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in the P-point case) to build such ultrafilters which are 𝜇-generated for some 𝜇 > ℵ1 (instead of ℵ1-generated) because
of the unbounded countable depth involved. We have not considered this question, natural variants of our definition, or
generalisations to reasonable ultrafilters (cf. [4, 5, 9]).

2 SYSTEM OF FILTERS USINGWELL FOUNDED TREES

Let𝑀 = (𝑀,<𝑀) be a partial order and 𝐵 be a subset of𝑀 inheriting its order. For 𝜂 ∈ 𝐵 we let 𝐵≥𝜂 = {𝜈 ∈ 𝐵 ∶ 𝜂 ≤𝑀 𝜈}

and 𝐵>𝜂 = {𝜈 ∈ 𝐵 ∶ 𝜂 <𝑀 𝜈}. The set 𝐵 is called a branch of𝑀 if it is a maximal chain (linearly ordered subset). We also
define the immediate 𝐵-successors of an element and the set of maximal members of the set 𝐵 as usual:

suc𝐵(𝜂) = {𝜈 ∈ 𝐵 ∶ 𝜂 <𝑀 𝜈 but for no 𝜚 ∈ 𝐵 do we have 𝜂 <𝑀 𝜚 <𝑀 𝜈} and

max(𝐵) = {𝜈 ∈ 𝐵 ∶ 𝐵 ∩𝑀>𝜈 = ∅}.

Two elements 𝜂, 𝜈 ∈ 𝑀 are called <𝑀-incompatible, in symbols 𝜂 ∥𝑀 𝜈 if they have no common ≤𝑀-upper bound. We say
that 𝑌 is a front of 𝐵 ⊆ 𝑀 if 𝑌 ⊆ 𝐵 and every branch of 𝐵 meets 𝑌 and the members of 𝑌 are pairwise <𝑀-incomparable.
We write f rt(𝐵) for the set of all fronts of 𝐵.

Definition 2.1. Let 𝑀 = (𝑀,<𝑀) be a partial order. A countable set 𝐵 ⊆ 𝑀 is a countable well-founded sub-tree of𝑀 if
the following conditions (a) to (d) are satisfied.

(a) The structure (𝐵, <𝑀↾𝐵) is a tree with ≤ 𝜔 levels and no branch of order type 𝜔 (so all chains of 𝐵 are finite). In
particular, 𝐵 has a <𝑀 minimal element called its root, in symbols: rt(𝐵).

(b) For each 𝜈 ∈ 𝐵 the set suc𝐵(𝜈) is either empty or infinite.
(c) If 𝜂, 𝜈 ∈ 𝐵 have no common <𝑀-upper bound in 𝐵, then 𝜂 ∥𝑀 𝜈 (i.e., they are incompatible not only in 𝐵 but even in

𝑀).
(d) If 𝜈 is not maximal in 𝐵 and 𝐹 is a finite subset of 𝑀⧵𝑀≤𝜈, then there are infinitely 𝜎 ∈ suc𝐵(𝜈) such that 𝜎 is <𝑀-

incompatible with all elements of 𝐹.

The family of all countablewell-founded sub-trees of𝑀 is denoted byCWT(𝑀). For𝐵 ∈ CWT(𝑀), the depth of𝐵 is defined
recursively by Dp(𝐵) ∶= sup{Dp(𝐵≥𝜂) + 1 ∶ 𝜂 ∈ 𝐵⧵{rt(𝐵)}}.

Note that if 𝐵 ∈ CWT(𝑀), then f rt(𝐵) is the family of all maximal sets of pairwise incomparable members of 𝐵.
We shall define a natural filter on the set of maximal nodes of every countable well-founded tree 𝐵; this filter will natu-

rally induce Rudin-Keisler images on each front of 𝐵. First, we introduce two notions of largeness for subtrees: exhaustive
subtrees correspond to filter sets or “measure 1” sets; positive subtrees will correspond to the notion “positive modulo a
filter” or “not in the ideal dual to the filter”.

Definition 2.2. Let 𝐵 ∈ CWT(𝑀). We call 𝐵′ is an exhaustive subtree of 𝐵 if and only if 𝐵′ ∈ CWT(𝑀), 𝐵′ ⊆ 𝐵, rt(𝐵′) =
rt(𝐵), and for all 𝜈 ∈ 𝐵′ we have that suc𝐵′(𝜈) ⊆ suc𝐵(𝜈) and suc𝐵(𝜈)⧵suc𝐵′(𝜈) is finite. We let sb(𝐵) be the set of all
exhaustive subtrees 𝐵′ of 𝐵, and we say 𝑓 witnesses that 𝐵′ is an exhaustive subtree of 𝐵 if 𝑓 ∶ 𝐵′⧵max(𝐵)⟶ [𝐵]<ℵ0

satisfies that 𝜈 ∈ 𝐵′⧵max(𝐵) implies that suc𝐵(𝜈)∖suc𝐵′(𝜈) ⊆ 𝑓(𝜈). Note that for 𝑓 being a witness only 𝑓↾𝐵′ matters; in
fact, often, only the restriction 𝑓↾{𝜈 ∈ 𝐵′ ∣ ∃𝜂 ∈ 𝑌 ∶ 𝜈 ≤ 𝜂}matters.

Definition 2.3. For antichains 𝑌1, 𝑌2 of𝑀 we say that 𝑌2 is above 𝑌1 if and only if

(∀𝜂 ∈ 𝑌2)(∃𝜈 ∈ 𝑌1)[𝜈 ≤𝑀 𝜂].

If 𝑌2 is above 𝑌1, we let the projection ℎ𝑌1,𝑌2 be the unique function ℎ ∶ 𝑌2 ⟶ 𝑌1 such that ℎ(𝜂) ≤𝑀 𝜂 for 𝜂 ∈ 𝑌2.
If 𝑌1, 𝑌2 ∈ frt(𝐵), then 𝑌2 is almost above 𝑌1 if and only if for some 𝐵′ ∈ sb(𝐵), 𝐵′ ∩ 𝑌2 is above 𝐵′ ∩ 𝑌1. In this case,

we define the projection ℎ𝑌1,𝑌2 as above, but its domain is not 𝑌2 but the set {𝜂 ∈ 𝑌2 ∶ (∃𝜈 ∈ 𝑌1)(𝜈 ≤𝑀 𝜂)}.

Definition 2.3 will be used mainly for 𝑌1, 𝑌2 ∈ frt(𝐵) where 𝐵 ∈ CWT(𝑀).
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For 𝐵 ∈ CWT(𝑀) and 𝑌 ∈ frt(𝐵) let 𝐸𝐵,𝑌 be the filter on 𝑌 generated by the family {𝑌 ∩ 𝐵′ ∶ 𝐵′ ∈ sb(𝐵)}. For 𝐵 ∈
CWT(𝑀) let psb𝑀(𝐵) (“p” stands for positive) be the set of positive subtrees 𝐵

′ of 𝐵 which means that 𝐵′ ∈ CWT(𝑀),
𝐵′ ⊆ 𝐵, rt(𝐵′) = rt(𝐵), for all 𝜈 ∈ 𝐵′, we have that suc𝐵′(𝜈) ⊆ suc𝐵(𝜈), and if 𝜈 ∈ 𝐵′⧵max(𝐵), then suc𝐵′(𝜈) is an infinite
subset of suc𝐵(𝜈).

Definition 2.4. An antichain 𝑌 ⊆ 𝑀 is an almost front of 𝐵 if for some 𝐵′ ∈ sb(𝐵) the intersection 𝑌 ∩ 𝐵′ is a front of 𝐵′.
Let alm-frt(𝐵) = alm-frt𝑀(𝐵) denote the set of all almost fronts of 𝐵. For 𝑌 ∈ alm-frt𝑀(𝐵) let

f il𝑀(𝑌, 𝐵) ∶= {𝑋 ⊆ 𝑌 ∶ for some 𝐵′ ∈ sb(𝐵) we have 𝑋 ⊇ 𝐵′ ∩ 𝑌}.

The default value of 𝑌 ∈ frt(𝐵) ismax(𝐵) = {𝜈 ∈ 𝐵 ∶ 𝜈 is <𝑀-maximal in 𝐵}.

Definition 2.5. Let ≤∗𝑀 be the following binary relation on 𝐶𝑊𝑇(𝑀):

𝐵1 ≤
∗
𝑀 𝐵2 if and only if 𝐵1, 𝐵2 ∈ CWT(𝑀), rt(𝐵1) = rt(𝐵2), and

for some 𝐵′
2
∈ sb(𝐵2), we have that 𝐵′2 ∩ 𝐵1 ∈ psb𝑀(𝐵1)

and every almost front of 𝐵′
2
∩ 𝐵1 is an almost front of 𝐵2.

The tree 𝐵′
2
as above will be called a witness for 𝐵1 ≤∗𝑀 𝐵2.

Let us remark that if 𝐵, 𝐵′ ∈ CWT(𝑀), 𝐵′ ⊆ 𝐵 and 𝜈 ∈ 𝐵′, then suc𝐵(𝜈) ∩ 𝐵′ ⊆ suc𝐵′(𝜈), but the two sets do not have to
be equal. Note furthermore that in the definitions of both 𝐵′ ∈ sb(𝐵) and 𝐵′ ∈ psb𝑀(𝐵) we do require that for all 𝜈 ∈ 𝐵′,
we have that suc𝐵(𝜈) ∩ 𝐵′ = suc𝐵′(𝜈). This condition implies that if 𝑌 ⊆ 𝐵 is a front of 𝐵, then 𝑌 ∩ 𝐵′ is a front of 𝐵′.

Observation 2.6. Let𝑀 be a partial order and 𝐵, 𝐵1, 𝐵2 ∈ CWT(𝑀).

1. We have that 𝐵1 ≤∗𝑀 𝐵2 if and only if every almost front of 𝐵1 is an almost front of 𝐵2.
2. The relation ≤∗𝑀 is a partial order on CWT(𝑀).
3. If 𝐵2 ∈ psb𝑀(𝐵1), then 𝐵1 ≤

∗
𝑀 𝐵2 and psb𝑀(𝐵2) ⊆ psb𝑀(𝐵1).

4. If 𝐵2 ∈ sb(𝐵1), then 𝐵2 ∈ psb(𝐵1), sb(𝐵2) ⊆ sb(𝐵1) and 𝐵1 ≤∗𝑀 𝐵2 ≤
∗
𝑀 𝐵1.

5. For 𝐵 ∈ CWT(𝑀),max(𝐵) is a front of 𝐵 and also {rt(𝐵)} is. If 𝐵 ≠ {rt(𝐵)}, then suc𝐵(rt(𝐵)) is a front of 𝐵.
6. Every front of 𝐵 ∈ CWT(𝑀) is an almost front of 𝐵.
7. If 𝐵 ∈ CWT(𝑀) then Dp(𝐵) is a countable ordinal and 𝐵≥𝜂 ∈ CWT(𝑀) for all 𝜂 ∈ 𝐵.
8. If 𝑌 ⊆ 𝐵⧵{rt(𝐵)} is a front of 𝐵, and 𝜂 ∈ suc𝐵(rt(𝐵)), then 𝑌 ∩ 𝐵≥𝜂 is a front of 𝐵≥𝜂.
9. If 𝑌 is an almost front of 𝐵 and an antichain 𝑍 is an almost front of 𝐵≥𝜂 for every 𝜂 ∈ 𝑌 ∩ 𝐵, then 𝑍 is an almost front

of 𝐵.
10. If 𝐵1 ≤∗𝑀 𝐵2 and 𝑌 is a front of 𝐵1, then there is 𝐵′2 ∈ sb(𝐵2) such that 𝑌 ∩ 𝐵′

2
is a front of 𝐵′

2
and (𝐵1)≥𝜂 ≤∗𝑀 (𝐵′

2
)≥𝜂 for

all 𝜂 ∈ 𝑌 ∩ 𝐵′
2
.

Proof. Straightforward. □

Definition 2.7. Let𝐊 be the class of the objects 𝐱 = ⟨𝑀𝐱,<𝑀𝐱
, �̄�𝐱,𝒜𝐱,ℬ𝐱,≤𝐱⟩ satisfying the following properties:

(a) The structure (𝑀𝐱, <𝑀𝐱
) = (𝑀,<) is a partial order with the smallest element rt𝐱 = rt(𝐱). Let𝑀−

𝐱 = 𝑀𝐱⧵{rt𝐱},
(b) �̄�𝐱 = �̄� = ⟨𝒜𝜂 ∶ 𝜂 ∈ 𝑀⟩ = ⟨𝒜𝐱

𝜂 ∶ 𝜂 ∈ 𝑀𝐱⟩ and𝒜𝐱 =
⋃
{𝒜𝜂 ∶ 𝜂 ∈ 𝑀−

𝐱 },
(c) 𝒜𝜂 ⊆ CWT(𝑀), let𝒜−

𝜂 = 𝒜𝜂⧵{{𝜂}},
(d) rt(𝐵) = 𝜂 for every 𝐵 ∈ 𝒜𝜂,
(e) 𝒜𝜂 is not empty, in fact {𝜂} ∈ 𝒜𝜂,
(f) ℬ𝐱 = 𝒜𝐱

rt𝐱
⧵{{rt𝐱}} and ≤𝐱 is a directed partial order onℬ𝐱,

(g) 𝐵1 ≤𝐱 𝐵2 implies 𝐵1 ≤∗𝑀 𝐵2 and, of course, 𝐵1, 𝐵2 ∈ ℬ𝐱,
(h) if 𝜈 ∈ 𝐵 ∈ 𝒜𝜂 then 𝐵 ∩𝑀≥𝜈 ∈ 𝒜𝜈.

When dealing with𝑀𝐱, �̄�𝐱 etc we may omit 𝐱 when clear from the context.
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Definition 2.8. Let 𝐱 ∈ 𝐊 and 𝜂 ∈ 𝑀𝐱.

1. Let f rt𝐱(𝜂) ∶=
⋃
𝐵∈𝒜𝐱

𝜂
f rt(𝐵) and f rt−𝐱 (𝜂) ∶= {𝑌 ∈ frt(𝜂) ∶ 𝑌 ≠ {𝜂}}. We write f rt𝐱 ∶= frt𝐱(rt𝐱) and f rt

−
𝐱 ∶= frt

−
𝐱 (rt𝐱)

and define alm-frt𝐱(𝜂) and alm-frt𝐱 similarly (cf. Definition 2.4).
2. Let 𝐵 ∈ 𝒜𝐱

𝜂 . We define Fin(𝐵) to be the set {𝑓 ∶ 𝑓 is a function with domain 𝐵∖max(𝐵) such that 𝑓(𝜈) ∈ [suc𝐵(𝜈)]
<ℵ0

for all 𝜈 ∈ 𝐵⧵max(𝐵)} and for 𝑓 ∈ Fin(𝐵) we set 𝐴𝑓 ∶= 𝐴𝐵,𝑓 ∶= {𝜂 ∈ 𝐵 ∶ (∀𝜚 ∈ 𝐵⧵max(𝐵))(∀𝜎 ∈ suc𝐵(𝜚))(𝜎 ≤𝑀 𝜂

implies 𝜎 ∉ 𝑓(𝜚))}.
3. Assume that 𝑌 ∈ alm-frt𝐱. We let 𝐷𝐱

𝑌 be the family {𝑍 ⊆ 𝑌 ∶ for some 𝐵 ∈ ℬ𝐱 and 𝐵′ ∈ sb(𝐵)we have 𝑌 ∈ alm-frt(𝐵)
and 𝐵′ ∩ 𝑌 ⊆ 𝑍}.

4. If 𝐵 ∈ ℬ𝐱, then 𝐷𝐱(𝐵) = 𝐷𝐱
max(𝐵)

.
5. We let Dp𝐱(𝜂) = sup{Dp(𝐵) + 1 ∶ 𝐵 ∈ 𝒜𝐱

𝜂}.

If 𝐱 is clear from the context, then we may omit the subscript or superscript 𝐱 in the objects defined above.

Let us recall the definition of the Rudin-Keisler order on ultrafilters.

Definition 2.9. Let 𝐷𝓁 be an ultrafilter on 𝒰𝓁 for 𝓁 = 1, 2. We say 𝐷1 ≤RK 𝐷2 if and only if there is a function ℎ whose
domain and range are subsets of𝒰2,𝒰1, respectively, such that for all𝐴 ⊆ 𝒰1, wehave𝐴 ∈ 𝐷1 if and only if {𝑎 ∈ Dom(ℎ) ∶

ℎ(𝑎) ∈ 𝐴} ∈ 𝐷2.

Observation 2.10. Assume 𝐱 ∈ 𝐊 and let 𝐵, 𝐵1, 𝐵2 ∈ ℬ𝐱.

1. The singleton {rt𝐱} is in f rt𝐱 and 𝐷𝐱
{rt𝐱}

= {{rt𝐱}}.
2. If 𝐵1 ≤𝐱 𝐵2, 𝑓 ∈ Fin(𝐵1) and 𝑌 ∈ alm-frt(𝐵1), then 𝑌 ∈ alm-frt(𝐵2) and there is 𝑔 ∈ Fin(𝐵2) such that 𝑌 ∩ 𝐴𝐵2,𝑔 ⊆

𝑌 ∩ 𝐴𝐵1,𝑓 .
3. If𝑌 ∈ alm-frt(𝐵𝓁), 𝑓𝓁 ∈ Fin(𝐵𝓁) (for 𝓁 = 1, 2), then there are 𝐵∗ ∈ ℬ𝐱 and 𝑔 ∈ Fin(𝐵∗) such that 𝐵1 ≤𝐱 𝐵∗, 𝐵2 ≤𝐱 𝐵∗

and 𝑌 ∩ 𝐴𝐵∗,𝑔 ⊆ 𝑌 ∩ 𝐴𝐵1,𝑓1 ∩ 𝐴𝐵2,𝑓2 .
4. If 𝑌 ∈ alm-frt𝐱, then 𝐷𝐱

𝑌 is a filter on 𝑌.
5. If 𝐵1 ≤𝐱 𝐵2, 𝑌1 ∈ alm-frt(𝐵1), and 𝑌2 = 𝑌1 ∩ 𝐵2 (hence 𝑌2 ∈ alm-frt(𝐵2)), then 𝑌2 ∈ 𝐷𝐱

𝑌1
and 𝐷𝐱

𝑌2
= 𝐷𝐱

𝑌1
↾𝑌2.

6. Assume that 𝑌1, 𝑌2 ∈ frt(𝐵) and 𝑌2 is above 𝑌1. Let ℎ ∶ 𝑌2 → 𝑌1 be the (surjective) projection, i.e., ℎ(𝜈2) = 𝜈1 if
and only if 𝜈1 ∈ 𝑌1, 𝜈2 ∈ 𝑌2, and 𝜈1 ≤𝑀𝐱

𝜈2. Then ℎ(𝐷𝑌2) = 𝐷𝑌1 , i.e.,𝐷𝑌1 = {𝐴 ⊆ 𝑌1 ∶ ℎ
−1[𝐴] ∈ 𝐷𝑌2} (so ℎwitnesses

𝐷𝑌1 ≤RK 𝐷𝑌2).
7. If 𝐵1 ≤𝐱 𝐵2 and 𝑌𝓁 = suc𝐵𝓁(rt𝐱) for 𝓁 = 1, 2, then

(a) 𝑌𝓁 is a front of 𝐵𝓁 and 𝑌1 almost above 𝑌2, cf. Definition 2.3, and
(b) if 𝑌 is a front of 𝐵𝓁 and it is not {rt𝐱}, then 𝑌 is above 𝑌𝓁.

8. The setmax(𝐵) is the maximal front of 𝐵 which means that it is above any other.
9. If ℚ is an 𝜔𝜔-bounding forcing and 𝐵 ∈ ℬ𝐱, then for any 𝐵′ ∈ sb(𝐵)𝐕[ℚ] there is 𝐵′′ ∈ (sb(𝐵))𝐕 such that 𝐵′′ ⊆ 𝐵′.
10. If 𝐹 is a finite subset of𝑀−

𝐱 , 𝐵 ∈ ℬ𝐱, then there is a branch (i.e., a maximal chain) 𝐶 ⊆ 𝐵 such that for all 𝜚 ∈ 𝐹 and
𝜎 ∈ 𝐶, we have 𝜚 ≰𝑀 𝜎).

Proof. Straightforward. □

Definition 2.11. For an (infinite) cardinal 𝜅 let𝐊<𝜅 be the class of𝐱 ∈ 𝐊 such that ‖𝐱‖ ∶= |𝑀𝐱| +∑
{|𝒜𝐱

𝜂 | ∶ 𝜂 ∈ 𝑀𝐱} < 𝜅,
similarly𝐊≤𝜅. The relation ≤𝐊 is the following two-place relation on𝐊 (it is a partial order, cf. Observation 2.13 below):3

𝐱 ≤𝐊 𝐲 if and only if𝑀𝐱 ⊆ 𝑀𝐲 (as partial orders),

for any 𝜂, 𝜈 ∈ 𝑀𝐱 we have 𝜈 ∥𝑀𝐱
𝜂 if and only if 𝜈 ∥𝑀𝐲

𝜂,

𝜂 ∈ 𝑀𝐱 implies𝒜𝐱
𝜂 ⊆ 𝒜

𝐲
𝜂 , rt𝐲 = rt𝐱, and ≤𝐱 = ≤𝐲↾ℬ𝐱.

3 Note that ≤𝐱 = ≤𝐲↾ℬ𝐱 implies that rt𝐲 = rt𝐱.
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Definition 2.12. If ⟨𝐱𝛼 ∶ 𝛼 < 𝛿⟩ is a ≤𝐊-increasing sequence we define 𝐱𝛿 = ⋃
{𝐱𝛼 ∶ 𝛼 < 𝛿}, the union of the sequence,

by𝑀𝐱𝛿 =
⋃
{𝑀𝐱𝛼 ∶ 𝛼 < 𝛿} as partial orders and𝒜𝐱𝛿

𝜂 =
⋃
{𝒜

𝐱𝛼
𝜂 ∶ 𝛼 < 𝛿 satisfies 𝜂 ∈ 𝑀𝐱𝛼} and ≤𝐱𝛿=

⋃
{≤𝐱𝛼∶ 𝛼 < 𝛿}.

Observation 2.13. It is easy to see that the relation ≤𝐊 is a partial order and that this order is closed under chains, i.e.,
whenever ⟨𝐱𝛼 ∶ 𝛼 < 𝛿⟩ is≤𝐊-increasing, we can define 𝐱𝛿 as the union of the sequence. It is then clear that 𝐱𝛿 is a≤𝐊-lub
of the sequence and ‖𝐱𝛿‖ ≤

∑‖{‖𝐱𝛼‖ ∶ 𝛼 < 𝛿}.

Definition 2.14. Let 𝐱 ∈ 𝐊. We say that

(a) 𝐱 is fat if and only if whenever 𝐵 ∈ ℬ𝐱 and 𝐵′ ∈ sb(𝐵), then there is 𝐵′′ ∈ sb(𝐵′) such that 𝐵′′ ∈ ℬ𝐱 and 𝐵 ≤𝐱 𝐵
′′;

(b) 𝐱 is big if and only if whenever 𝐵 ∈ ℬ𝐱 and 𝐜 ∶ max(𝐵)⟶ {0, 1}, then for some 𝐵′ ∈ ℬ𝐱 we have that 𝐵′ ∈
psb𝑀𝐱

(𝐵) ∩ ℬ𝐱, 𝐵 ≤𝐱 𝐵
′ and 𝐜↾max(𝐵′) is constant;

(c) 𝐱 is large if and only if whenever 𝐵 ∈ ℬ𝐱 and 𝐜 is a function with domainmax(𝐵), then for some 𝐵′ ∈ psb𝑀𝐱
(𝐵) ∩ ℬ𝐱

and a front 𝑌 of 𝐵′ we have 𝐵 ≤𝐱 𝐵
′ and for all 𝜂, 𝜈 ∈ max(𝐵′), we have that 𝐜(𝜂) = 𝐜(𝜈) if and only if there is a 𝜚 ∈ 𝑌

such that 𝜚 ≤𝑀𝐱
𝜂 and 𝜚 ≤𝑀𝐱

𝜈;
(d) 𝐱 is full if and only if whenever 𝐵 ∈ 𝒜𝐱

𝜂 , 𝜂 ≠ rt𝐱 and 𝐵′ ∈ psb𝑀𝐱
(𝐵), then 𝐵′ ∈ 𝒜𝐱

𝜂 .

3 CONSTRUCTION OF ULTRA-SYSTEMS

Lemma 3.1. The set𝐊≤ℵ0 is non-empty.

Proof. Define 𝐱 so that𝑀𝐱 = {𝜂∗},𝒜𝐱
𝜂∗
= {{𝜂∗}}, rt𝐱 = 𝜂∗. Now it is easy to check. □

Lemma 3.2. If 𝐱 ∈ 𝐊 and 𝜂 ∈ 𝑀𝐱 satisfies |𝒜𝐱
𝜂 | = 1, i.e.,𝒜𝐱

𝜂 = {{𝜂}}, then for some 𝐲 ∈ 𝐊 we have 𝐱 ≤𝐊 𝐲, |𝒜𝐲
𝜂 | > 1 and

‖𝐲‖ ≤ ‖𝐱‖ + ℵ0.

Proof. Let ⟨𝜂𝑛 ∶ 𝑛 < 𝜔⟩ be pairwise distinct objects not belonging to𝑀𝐱. We define 𝐲 as follows: We let𝑀𝐲 ∶= 𝑀𝐱 ∪ {𝜂𝑛 ∶

𝑛 < 𝜔} and 𝜈 <𝑀𝐲
𝜚 if and only if 𝜈 <𝑀𝐱

𝜚 or 𝜈 ≤𝑀𝐱
𝜂 and there is an 𝑛 such that 𝜚 = 𝜂𝑛). The set 𝒜

𝐲
𝜈 is defined by the

following case distinction: If 𝜈 ∈ 𝑀𝐱⧵{𝜂}, then 𝒜
𝐲
𝜈 ∶= 𝒜𝐱

𝜈 ; if 𝜈 = 𝜂, then 𝒜𝐲
𝜈 ∶= {{𝜂}, {𝜂𝑛 ∶ 𝑛 < 𝜔} ∪ {𝜂}}; and if 𝜈 = 𝜂𝑛,

then𝒜𝐲
𝜈 ∶= {{𝜂𝑛}}. Finally, if 𝜂 ≠ rt𝐱, then ≤𝐲 ∶=≤𝐱; otherwise (i.e., if 𝜂 = rt𝐱), it is determined by {𝜂} ≤𝐲 {𝜂𝑛 ∶ 𝑛 < 𝜔} ∪

{𝜂}. Now check. □

Lemma 3.3. 1. If 𝐱 ∈ 𝐊≤ℵ0 , then for some 𝐲 ∈ 𝐊≤ℵ0 we have 𝐱 ≤𝐊 𝐲 and inℬ𝐲 there is a ≤𝐲-maximal member.
2. If 𝐱 ∈ 𝐊≤ℵ0 and some 𝐵 ∈ ℬ𝐱 is ≤𝐱-maximal, then for some 𝐲 ∈ 𝐊≤ℵ0 and 𝐵

′ ∈ ℬ𝐲 we have 𝐱 ≤𝐊 𝐲 and 𝐵 <𝐲 𝐵′.
3. If 𝐱 ∈ 𝐊≤ℵ0 , 𝜂 ∈ 𝑀𝐱, 𝐵1 ∈ 𝒜𝐱

𝜂 , 𝐵2 ∈ psb𝑀𝐱
(𝐵1) and if 𝜂 = rt𝐱 implies that 𝐵1 is ≤𝐱-maximal, then there is 𝐲 ∈ 𝐊≤ℵ0

such that 𝐱 ≤𝐊 𝐲 and 𝐵2 ∈ 𝒜
𝐲
𝜂 .

4. If 𝐱 ∈ 𝐊≤ℵ0 , 𝐵1 ∈ ℬ𝐱 and 𝐵2 ∈ sb(𝐵1), then there is 𝐲 ∈ 𝐊≤ℵ0 such that 𝐱 ≤𝐊 𝐲 and 𝐵2 ∈ ℬ𝐲 .

Proof. The proof of (2), (3), & (4) is straightforward; cf. also Lemmas 3.4 & 3.5 below. We therefore only need to prove (1).
If in (ℬ𝐱,≤𝐱) there is a maximal member, then we let 𝐲 = 𝐱. Otherwise, as it is directed (cf. clause (f) of Definition 2.7)

and ‖𝐱‖ ≤ ℵ0 (because 𝐱 ∈ 𝐊≤ℵ0), there is a strictly ≤𝐱-increasing cofinal sequence ⟨𝐵𝑛 ∶ 𝑛 < 𝜔⟩. Let 𝑌𝑛 = suc𝐵𝑛(rt𝐱).
Note that for each 𝑚1 < 𝑚2, the set 𝑌𝑚1

∩ 𝐵𝑚2
is an almost front of 𝐵𝑚2

(so also it is almost above 𝑌𝑚2
). Hence for

𝑚1 < 𝑚2 ≤ 𝑛 we have that 𝑌𝑚1
∩ 𝐵𝑛 is an almost front of 𝐵𝑛 which is almost above 𝑌𝑚2

∩ 𝐵𝑛. Consequently we may
choose 𝐵∗𝑛 ∈ sb(𝐵𝑛) such that each 𝑌𝓁 ∩ 𝐵∗𝑛 is a front of 𝐵∗𝑛 and 𝑌𝓁 ∩ 𝐵∗𝑛 is above 𝑌𝓁+1 ∩ 𝐵∗𝑛 (for all 𝓁 < 𝑛). Moreover, we
may also require that

for each 𝓁 < 𝑛 and 𝜂 ∈ 𝑌𝓁 ∩ 𝐵
∗
𝑛 we have (𝐵𝓁)≥𝜂 ≤∗𝑀𝐱

(𝐵∗𝑛)≥𝜂 (3.1)

(remember Observation 2.6 10).
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Fix a list ⟨𝜚𝓁 ∶ 𝓁 < 𝜔⟩ of all members of𝑀𝐱 (possibly with repetitions). By induction on 𝑛 < 𝜔, choose 𝜈𝑛 such that

𝜈𝑛 ∈ 𝑌𝑛 ∩ 𝐵
∗
𝑛 = suc𝐵∗𝑛 (rt𝐱) (3.2)

if 𝓁 < 𝑛, then 𝜈𝑛, 𝜈𝓁 are <𝑀𝐱
-incompatible (𝑖.𝑒., 𝜈𝓁 ∥𝑀𝐱

𝜈𝑛), (3.3)

if 𝓁 < 𝑛 and 𝜚𝓁 ≠ rt𝐱, then 𝜚𝓁 ∥𝑀𝐱
𝜈𝑛. (3.4)

[Why is the choice possible? By the demand (d) of Definition 2.1 applied to 𝜈 = rt𝐱 and 𝐹 = {𝜈𝓁, 𝜚𝓁 ∶ 𝓁 < 𝑛}⧵{rt𝐱}.]
We define

𝐵∗ = {rt𝐱} ∪
⋃

{𝐵∗𝑛 ∩ (𝑀𝐱)≥𝜈𝑛 ∶ 𝑛 < 𝜔}.

This set 𝐵∗ is clearly a countable well-founded tree, 𝐵∗ ∈ CWT(𝑀𝐱) with root rt𝐱 and suc𝐵∗(rt𝐱) = {𝜈𝑛 ∶ 𝑛 < 𝜔}.
[Why? It should be clear that conditions (a) and (b) of Definition 2.1 hold, rt(𝐵∗) = rt𝐱 and suc𝐵∗(rt𝐱) = {𝜈𝑛 ∶ 𝑛 < 𝜔}. To

verify clause (c) suppose 𝜂, 𝜈 ∈ 𝐵∗ are <𝑀𝐱
-incomparable. Then both 𝜂 ≠ rt𝐱 and 𝜈 ≠ rt𝐱, so 𝜂, 𝜈 ∈

⋃
𝑛<𝜔

(𝐵∗)𝜈𝑛 . If, for some

𝑛, we have 𝜂, 𝜈 ∈ 𝐵∗𝑛 ∩ (𝑀𝐱)≥𝜈𝑛 , then they are <𝑀𝐱
-incompatible as 𝐵∗𝑛 ⊆ 𝐵𝑛 and 𝐵𝑛 satisfies Definition 2.1(c). Otherwise,

for some distinct 𝓁, 𝑛 we have 𝜂 ∈ 𝐵∗
𝓁
∩ (𝑀𝐱)≥𝜈𝓁 and 𝜈 ∈ 𝐵∗𝑛 ∩ (𝑀𝐱)≥𝜈𝑛 . Now, if we could find 𝜚 ∈ 𝑀𝐱 such that 𝜚 ≥𝑀𝐱

𝜂

and 𝜚 ≥𝑀𝐱
𝜈, then 𝜈𝓁, 𝜈𝑛 would be compatible contradicting (3.3), so 𝐵∗ indeed satisfies clause (c) of Definition 2.1. Finally,

to verify (d) suppose 𝜈 ∈ 𝐵∗⧵max(𝐵∗) and𝐹 ⊆ 𝑀𝐱⧵(𝑀𝐱)≤𝜈 is finite. If 𝜈𝑛 ≤𝑀𝐱
𝜈 for some𝑛, then the properties of𝐵∗𝑛 apply.

So suppose 𝜈 = rt𝐱. Choose 𝑚 so that 𝐹 ⊆ {𝜚𝓁 ∶ 𝓁 < 𝑚} and use condition (3.4) to argue that for all 𝑛 ≥ 𝑚 and 𝜚 ∈ 𝐹 we
have 𝜈𝑛 ∥𝑀𝐱

𝜚.]
We also have that 𝐵 ≤∗𝑀𝐱

𝐵∗ for all 𝐵 ∈ ℬ𝐱.
[Why? Since≤∗𝑀𝐱

is a partial order and by the choice of 𝐵𝑛, it is enough to show that for each 𝑛 < 𝜔we have 𝐵𝑛 ≤∗𝑀𝐱
𝐵∗,

i.e., that every almost front of 𝐵𝑛 is an almost front of 𝐵∗. To this end suppose that 𝑍 ⊆ 𝐵𝑛 is an almost front of 𝐵𝑛 for
some 𝑛 < 𝜔. If 𝑍 = {rt𝐱}, then there is nothing to do, so suppose 𝑍 ⊆ 𝐵𝑛⧵{rt𝐱}, i.e., 𝑍 ⊆

⋃
{(𝐵𝑛)≥𝜚 ∶ 𝜚 ∈ 𝑌𝑛}. Plainly, the

set 𝑋 = {𝜚 ∈ 𝑌𝑛 ∶ 𝑍 is not an almost front of (𝐵𝑛)≥𝜚} is finite and hence for some𝑚 > 𝑛 we have 𝑋 ⊆ {𝜚𝓁 ∶ 𝓁 < 𝑚}. Then
for every 𝑘 > 𝑚 we have

(a) The element 𝜈𝑘 is incompatible with every 𝜈 ∈ 𝑋;
(b) The set 𝑌𝑛 ∩ (𝐵∗𝑘)≥𝜈𝑘 is a front of (𝐵

∗
𝑘
)≥𝜈𝑘 ;

(c) (𝐵𝑛)≥𝜂 ≤∗𝑀𝐱
(𝐵∗

𝑘
)≥𝜂 for every 𝜂 ∈ 𝑌𝑛 ∩ (𝐵

∗
𝑘
)≥𝜈𝑘 (by (3.1));

(d) the set 𝑍 ∩ (𝐵𝑛)≥𝜂 is an almost front of (𝐵𝑛)≥𝜂 for every 𝜂 ∈ 𝑌𝑛 ∩ (𝐵
∗
𝑘
)≥𝜈𝑘 , and thus

(e) the set 𝑍 ∩ (𝐵∗
𝑘
)≥𝜂 is an almost front of (𝐵∗𝑘)≥𝜂 for every 𝜂 ∈ 𝑌𝑛 ∩ (𝐵

∗
𝑘
)≥𝜈𝑘 .

(f) Finally, 𝑍 is an almost front of (𝐵∗
𝑘
)≥𝜈𝑘 (by Observation 2.6 9 and (b) & (e)).

Since suc𝐵∗(rt𝐱) = {𝜈𝑘 ∶ 𝑘 < 𝜔}, we know that {𝜈𝑘 ∶ 𝑚 < 𝑘 < 𝜔} is an almost front of 𝐵∗. Therefore, by Observation 2.6 9
and (f), we conclude that 𝑍 is an almost front of 𝐵∗.]
Lastly, we define 𝐲 by (𝑀𝐲, <𝑀𝐲

) ∶= (𝑀𝐱, <𝑀𝐱
),𝒜𝐲

𝜈 = 𝒜𝐱
𝜈 if and only if 𝜈 ∈ 𝑀𝐱⧵{rt𝐱}, and𝒜

𝐲
rt𝐱
= 𝒜𝐱

rt𝐱
∪ {𝐵∗}, and𝐵1 ≤𝐲

𝐵2 if and only if 𝐵1 ≤𝐱 𝐵2 or 𝐵1 ∈ 𝐴
𝐲
rt𝐱
∧ 𝐵2 = 𝐵∗. It should be clear that 𝐲 ∈ 𝐊≤ℵ0 is as required. □

Lemma 3.4. Assume that 𝐱 ∈ 𝐊≤ℵ0 and 𝐵 ∈ ℬ𝐱 is ≤𝐱-maximal. Then for some 𝐲 ∈ 𝐊≤ℵ0 and 𝐵
′ ∈ ℬ𝐲 we have 𝐱 ≤

𝐲, 𝑀𝐱 = 𝑀𝐲 = 𝑀, 𝐵′ ∈ ℬ𝐲 is ≤𝐲-maximal, and if 𝜈 ∈ 𝐵′⧵max(𝐵′) and 𝜚 ∈ 𝑀⧵𝑀≤𝜈, then for all but finitely many 𝜎 ∈
suc𝐵′(𝜈) we have 𝜚 ∥𝑀 𝜎.

Proof. Fix a list ⟨𝜚𝓁 ∶ 𝓁 < 𝜔⟩ of all members of𝑀𝐱 (possibly with repetitions). For each 𝜂 ∈ 𝐵⧵max(𝐵) by induction on
𝑛 < 𝜔we choose 𝜈𝜂,𝑛 such that 𝜈𝜂,𝑛 ∈ suc𝐵(𝜂), 𝜈𝜂,𝑛 ≠ 𝜈𝜂,𝑘 for 𝑘 < 𝑛 (and hence 𝜈𝜂,𝑛 ∥ 𝜈𝜂,𝑘 for 𝑘 < 𝑛), and if 𝑘 < 𝑛 and 𝜚𝑘 ∉
𝑀≤𝜂, then 𝜚𝑘 ∥ 𝜈𝜂,𝑛. Next, by downward induction on 𝜂 ∈ 𝐵 we define 𝐵𝜂 =

⋃
{𝐵𝜈𝜂,𝑛 ∶ 𝑛 < 𝜔} ∪ {𝜂}. Lastly we define 𝐲 by

(𝑀𝐲, <𝐲) ∶= (𝑀𝐱, <𝐱), 𝒜
𝐲
𝜂 ∶= 𝒜𝐱

𝜂 if 𝜂 ∈ 𝑀𝐱 but 𝜂 ∉ 𝐵⧵max(𝐵), and 𝒜𝐲
𝜂 ∶= 𝒜𝐱

𝜂 ∪ {𝐵𝜂} if 𝜂 ∈ 𝐵⧵max(𝐵), ℬ𝐲 ∶= ℬ𝐱 ∪

{𝐵rt𝐱 } and for 𝐵
′, 𝐵′′ ∈ ℬ𝐲 we let 𝐵′ ≤𝐲 𝐵′′ if and only if 𝐵′ ≤𝐱 𝐵′′ or 𝐵′′ = 𝐵rt𝐱 . □

Lemma3.5. If𝐱 ∈ 𝐊≤ℵ0 ,𝑌 ∈ alm-frt𝐱 and𝑍 ⊆ 𝑌, then for some𝐲 ∈ 𝐊≤ℵ0 wehave𝐱 ≤𝐊 𝐲 and either𝑍 ∈ 𝐷
𝐲
𝑌 or (𝑌⧵𝑍) ∈

𝐷
𝐲
𝑌 .
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Moreover, if ℎ is a function with domain 𝑌, then above we can demand that for some 𝐵 ∈ ℬ𝐲 , 𝑌 ∩ 𝐵 is a front of 𝐵 and
for some front 𝑌′ of 𝐵 which is below 𝑌 and a one-to-one function ℎ′ with domain 𝑌′ we have if 𝜚 ∈ 𝑌′, 𝜎 ∈ 𝑌 ∩ 𝐵, and
𝜚 ≤𝑀𝐲

𝜎, then ℎ(𝜚) = ℎ′(𝜎). (Note that possibly 𝑌′ = {rt𝐲} and then ℎ↾(𝑌 ∩ 𝐵) is constant.)

Proof. We first prove the first claim: by Lemma 3.3 1 without loss of generality there is 𝐵 ∈ ℬ𝐱 such that 𝐵 is ≤𝐱-maximal
in ℬ𝐱; clearly 𝑌 ∩ 𝐵 is an almost front of 𝐵 and so without loss of generality 𝑌 ⊆ 𝐵. We know that 𝐵[≤𝑌] ∶= {𝜚 ∈ 𝐵 ∶

(∃𝜈)[𝜚 ≤𝑀𝐱
𝜈 ∈ 𝑌]} has no 𝜔-branch, so by <𝑀𝐱

-downward induction on 𝜈 ∈ 𝐵[≤𝑌] we choose (𝐭𝜈, 𝑌𝜈) such that (where
𝑀 = 𝑀𝐱, of course):

(a) 𝐭𝜈 ∈ {0, 1} and if 𝐭𝜈 = 1, then 𝑌𝜈 ⊆ 𝑀≥𝜈 ∩ 𝑍; if 𝐭𝜈 = 0, then 𝑌𝜈 ⊆ 𝑀≥𝜈 ∩ (𝑌⧵𝑍),
(b) 𝑌𝜈 = 𝑍 ∩ 𝐵′𝜈 for some 𝐵′𝜈 ∈ psb𝑀(𝐵≥𝜈),
(c) if 𝜈 ∈ 𝑌, then 𝑌𝜈 = {𝜈} and 𝐭𝜈 is the truth value of 𝜈 ∈ 𝑍,
(d) if 𝜈 ∈ 𝐵[≤𝑌]⧵𝑌, then for every finite set 𝐹 ⊆ 𝑀⧵𝑀≤𝜈 there are infinitely many 𝜎 ∈ suc𝐵(𝜈) such that for all 𝜚 ∈ 𝐹 we

have that 𝜚 ∥ 𝜎) and 𝐭𝜎 = 𝐭𝜈, 𝑌𝜈 =
⋃
{𝑌𝜎 ∶ 𝜎 ∈ suc𝐵(𝜈) and 𝐭𝜎 = 𝐭𝜈}.

This is easily done and so 𝐭rt𝐱 is well defined. For 𝜈 ∈ 𝐵[≤𝑌] we let 𝐵∗𝜈 = {𝜌 ∈ 𝐵≥𝜈 ∶ By downward induction on 𝜎 ∈
𝑌𝜈, we have 𝜌 ∈ 𝐵∗𝜎 ∨ 𝜌 ≤𝑀 𝜎}. Now define 𝐲 by adding 𝐵∗𝜈 to𝒜𝐱

𝜈 for every 𝜈 ∈ 𝐵[≤𝑌], and check.
For the “moreover” part, first note that by Lemmas 3.3(1) & 3.4 we may assume that there is 𝐵 ∈ ℬ𝐱 such that 𝐵 is

≤𝐱-maximal, the set 𝑌 is a front of 𝐵, and if 𝜈 ∈ 𝐵⧵max(𝐵) and 𝜚 ∈ 𝑀⧵𝑀≤𝜈, then for all but finitely many 𝜎 ∈ suc𝐵(𝜈)

we have 𝜚 ∥𝑀 𝜎.
Now note that if ℎ′ ∶ 𝑌′ ⟶ 𝐴,𝑌′ ∈ frt(𝐵′), 𝑍 = {𝜂 ∈ 𝐵′ ∶ suc𝐵′(𝜂) ⊆ 𝑌′} is a front of 𝐵′ and ℎ′↾suc𝐵′(𝜂) is one-to-one

for all 𝜂 ∈ 𝑍, then we can find 𝐵′′ ∈ psb𝑀(𝐵) such that ℎ
′↾𝐵′′ ∩ 𝑌′ is one-to-one. So we may continue similarly as in the

first part of the proof. □

Let us recall the following definition.

Definition 3.6 (P-points and Q-points). Let 𝐷 be a nonprincipal ultrafilter on a countable set Dom(𝐷). We say 𝐷 is a
Q-point if whenever 𝑓 is a finite-to-one function with domain Dom(𝐷), then 𝑓↾𝐴 is one-to-one for some 𝐴 ∈ 𝐷. We say
that 𝐷 is a P-point if for each sequence ⟨𝐴𝑛 ∶ 𝑛 < 𝜔⟩ of sets from 𝐷 there is an 𝐴 ∈ 𝐷 such that 𝐴⧵𝐴𝑛 is finite for each
𝑛 < 𝜔.

We can conclude the main result of this section.

Theorem 3.7. Assume 𝖢𝖧. There is a 𝐱 ∈ 𝐊 such that:

(a) (𝛼) 𝒜𝐱
𝜂 ≠ {{𝜂}} for 𝜂 ∈ 𝑀𝐱,

(𝛽) ℬ𝐱 = 𝒜𝐱
rt(𝐱)

⧵{{rt𝐱}} is ℵ1-directed under ≤𝐱,
(b) if 𝑌 ∈ frt

−
𝐱 , then

(𝛼) 𝐷𝐱
𝑌 is a non-principal ultrafilter on 𝑌, and

(𝛽) 𝐷𝐱
𝑌 is a Q-point, cf. Definition 3.6,

(c) if 𝐵1 ∈ ℬ𝐱, then for some 𝐵2 ∈ ℬ𝐱 we have 𝐵1 ≤𝐱 𝐵2 and 𝐵1 ∩ suc𝐵2(rt𝐱) = ∅, moreover4

(∀𝜎 ∈ suc𝐵2(rt𝐱))(∃
∞𝜚 ∈ suc𝐵1(rt𝐱))[𝜎 ≤𝑀𝐱

𝜚].

(d) 𝐱 is fat, big, large, and full (cf. Definition 2.14).

Proof. We choose 𝐱𝛼 ∈ 𝐊≤ℵ0 by induction on 𝛼 < ℵ1 so that if 𝛽 < 𝛼 < ℵ1, then 𝐱𝛽 ≤𝐊 𝐱𝛼, and for each successor 𝛼,
there is a ≤𝐱𝛼 -maximal element inℬ𝐱𝛼 . We use a bookkeeping device to ensure largeness and bigness: for 𝛼 = 0 we use
Lemma 3.1; for 𝛼 limit we use Definition 2.12 & Observation 2.13; if 𝛼 = 𝛽 + 1, 𝛽 is limit, then we use the first part of
Lemma 3.5 (and the instructions from our bookkeeping device) to take care of the bigness; if 𝛼 = 𝛽 + 2, 𝛽 is limit, then we

4 This is not a serious addition: as always, the number of 𝜎 ∈ suc𝐵2 (rt𝐱) failing this condition is finite.

 15213870, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

alq.202200070 by C
ochrane Israel, W

iley O
nline L

ibrary on [08/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
Sh:980



S. SHELAH 125
M
L
Q

MATHEMATICAL LOGIC QUARTERLY

use the “moreover” part of Lemma 3.5 (and the instructions from our bookkeeping device) to take care of the largeness, if
𝛼 = 𝛽 + 3, 𝛽 is limit, then we use Lemma 3.3(3) & (4) (and the instructions from our bookkeeping device) to ensure that
at the end 𝐱 is fat and full; if 𝛼 = 𝛽 + 𝑘, 𝛽 is limit, 4 ≤ 𝑘 < 𝜔, then we ensure clause (c). In the end we let 𝐱 =

⋃
𝛼<ℵ1

𝐱𝛼.
Then 𝐱 is fat, big, large andℬ𝐱 is ℵ1-directed. Note that clause (b)(𝛽) follows from the largeness. □

Definition 3.8. We say that 𝐱 ∈ 𝐊 is nice if it satisfies conditions (a)–(d) of Theorem 3.7. The class of all nice 𝐱 is denoted
by 𝐊n; it is called reasonable if it satisfies (a), (c) of Theorem 3.7. Let 𝐊r be the set of all 𝐱 ∈ 𝐊 which are reasonable and
let𝐊u be the set of 𝐱 ∈ 𝐊r for which clause (b)(𝛼) of Theorem 3.7 holds.
For 𝐱 ∈ 𝐊 we say that ℐ ⊆ 𝒜𝐱 (cf. Definition 2.7(b)) is 𝐱-dense if and only if for every 𝐵1 ∈ ℬ𝐱 there is 𝐵2 such that

𝐵1 ≤𝐱 𝐵2 ∈ ℬ𝐱, and if 𝐴 ⊆ 𝑀𝐱⧵{rt𝐱} is finite, then for some 𝜈 we have 𝜈 ∈ suc𝐵2(rt𝐱), (𝐵2)≥𝜈 ∈ ℐ, and for all 𝜚 ∈ 𝐴, we
have 𝜚 ∥ 𝜈. For 𝐱 ∈ 𝐊 we sayℐ is 𝐱-open ifℐ ⊆ 𝒜𝐱 and if 𝐵1 ∈ ℐ, then sb(𝐵1) ∩ 𝒜𝐱 ⊆ ℐ.
We call 𝐱 ∈ 𝐊r good if whenever ℐ is 𝐱-dense, 𝐱-open, and 𝐵1 ∈ ℬ𝐱, then for some 𝐵2 ∈ ℬ𝐱 we have 𝐵1 ≤𝐱 𝐵2 and

(𝐵2)≥𝜂 ∈ ℐ for all but finitely many 𝜂 ∈ suc𝐵2(rt𝐱). Let𝐊g be the class of good elements of𝐊r.
Finally, we call 𝐱 ∈ 𝐊 is ultra if it is both nice and good, i.e., 𝐊ut ∶= 𝐊g ∩ 𝐊n is the set of elements that are ultra.

Theorem 3.9. Assume ♢ℵ1 . Then there exists an ultra 𝐱 ∈ 𝐊.

Proof. We repeat the proof of Theorem 3.7 but at limit stages 𝛿 < ℵ1 we use additionally ♢ℵ1 to take care of the additional
demand 𝐱 ∈ 𝐊g here. We are given a limit ordinal 𝛿 < ℵ1 and a set 𝒥 ⊆ 𝒜𝐱𝛿 such that for some 𝐲 ∈ 𝐊 with 𝐱𝛿 ≤ 𝐲 and
some ℐ ⊆ 𝒜𝐲 we have that the set ℐ is dense open in 𝒜𝐲 , satisfies 𝒥 = ℐ ∩𝒜𝐱𝛿 , and there is a countable elementary
submodel 𝑁 ≺ 𝐇ℵ2 with (𝐲,ℐ) ∈ 𝑁 and (𝐱𝛿, 𝒥) = (𝐲↾𝑁,ℐ ∩ 𝑁), so𝑀𝐱𝛿 = 𝑀𝐲↾𝑁, etc.
Let ⟨𝐵0

𝓁
∶ 𝓁 < 𝜔⟩ be an increasing cofinal subset of (ℬ𝐱𝛿 ,≤𝐱𝛿 ). For every 𝓁 there is 𝐵

1
𝓁
∈ ℬ𝐱𝛿 such that 𝐵

0
𝓁
≤𝐱𝛿 𝐵

1
𝓁
, and

for every finite𝐴 ⊆ 𝑀𝐱𝛿⧵{rt(𝐱𝛿)} there is 𝜈 ∈ suc𝐵1
𝓁
(rt(𝐱𝛿)) such that for all 𝜚 ∈ 𝐴, we have 𝜚 ∥ 𝜈 and (𝐵1

𝓁
)≥𝜈 ∈ ℐ. Clearly,

for every 𝓁 for some 𝑘(𝓁) > 𝓁 we have 𝐵1
𝓁
≤𝐱𝛿 𝐵

0
𝑘(𝓁)

. We can choose ⟨𝓁𝑛 ∶ 𝑛 < 𝜔⟩ so that 𝑘(𝓁𝑛) < 𝓁𝑛+1. Let 𝐵𝑛 = 𝐵1
𝓁𝑛
. We

continue as in Lemma 3.3 1 using the ⟨𝐵𝑛 ∶ 𝑛 < 𝜔⟩ and, when choosing 𝜈𝑛, demanding additionally that (𝐵𝑛)≥𝜈𝑛 ∈ ℐ.
(Note that (𝐵𝑛)≥𝜈𝑛 ∈ ℐ implies (𝐵∗𝑛)≥𝜈𝑛 ∈ ℐ for 𝐵∗𝑛 as there.) □

Proposition 3.10. Assume 𝐱 ∈ 𝐊n.

(i) If 𝐵 ∈ ℬ𝐱 and 𝑌1, 𝑌2 ∈ frt(𝐵) and 𝑌2 is above 𝑌1, then ℎ𝐱𝑌2,𝑌1 exemplifies 𝐷
𝐱
𝑌1

≤RK 𝐷
𝐱
𝑌2
.

(ii) The family {𝐷𝐱
𝑌 ∶ 𝑌 ∈ frt

−
𝐱 } is ≥RK-directed (even ℵ1 directed).

(iii) If 𝑌 ∈ alm-frt−𝐱 , then there is no P-point that is Rudin-Keisler reducible to 𝐷𝐱
𝑌 .

Proof. Claim (i) follows from Observation 2.10 6 and claim (ii) follows from (i) and the directedness of ℬ𝐱. We shall
prove (iii): Let 𝐵1 ∈ ℬ𝐱 be such that 𝐵1 ∩ 𝑌 is an almost front of 𝐵1. Suppose that ℎ ∶ 𝑌 ⟶ ℕ is such that ℎ−1[{𝑛}] = ∅

mod 𝐷𝐱
𝑌 for every 𝑛, hence there is𝐴𝑛 ∈ ℬ𝐱 which witnesses this. Assume towards contradiction that ℎ(𝐷𝐱

𝑌) is a P-point;
without loss of generality ℎ is onto ℕ. Asℬ𝐱 is ℵ1-directed we may pick 𝐵2 ∈ ℬ𝐱 such that 𝐴𝑛 ≤𝐱 𝐵2 (for all 𝑛 < 𝜔) and
𝐵1 ≤𝐱 𝐵2.
As 𝐱 is large, we may apply the Definition 2.14 of large to the pair (𝐵2, ℎ′) where ℎ′(𝜂) = ℎ(𝜈) when 𝜈 ≤𝑀𝐱

𝜂 ∈ max(𝐵)

and zero if there is no such 𝜈. So there are 𝐵3, 𝑌3 such that 𝐵2 ≤𝐱 𝐵3,𝑌3 is a front of 𝐵3 below𝑌 ∩ 𝐵3, and for 𝜂, 𝜈 ∈ 𝑌 ∩ 𝐵3
we have that ℎ(𝜂) = ℎ(𝜈) if and only if there is a 𝜚 ∈ 𝑌3 such that 𝜚 ≤𝑀𝐱

𝜂 ∧ 𝜚 ≤𝑀𝐱
𝜈). Let 𝑍 = suc𝐵3(rt𝐱). If 𝑌3 = {rt𝐱},

then for some 𝑛 we have ℎ−1[{𝑛}] ∈ 𝐷𝐱
𝑌 , a contradiction. Therefore 𝑌3 ≠ {rt𝐱} and thus rt𝐱 ∉ 𝑌3, so 𝑌3 is above 𝑍. Clearly,

𝐷𝐱
𝑍 ≤RK ℎ(𝐷

𝐱
𝑌) and hence 𝐷

𝐱
𝑍 is a P-point.

By clauses (c) and (d) of Theorem 3.7 there is 𝐵4 ∈ ℬ𝐱 such that 𝐵3 ≤𝐱 𝐵4, 𝐵4 ∩ 𝑍 is a front of 𝐵4 and

(∀𝜎 ∈ suc𝐵4(rt𝐱))(∃
∞𝜚 ∈ suc𝐵3(rt𝐱))[𝜎 ≤𝑀𝐱

𝜚].

For each 𝜎 ∈ suc𝐵4(rt𝐱) let 𝑍𝜎 = {𝜚 ∈ 𝑍 ∶ 𝜎 ≤𝑀𝐱
𝜚}, so ⟨𝑍𝜎 ∶ 𝜚 ∈ suc𝐵4(rt𝐱)⟩ is a partition of 𝑍, and 𝑍𝜎 = ∅ mod 𝐷𝐱

𝑍 for
each 𝜎. But clearly there is no 𝑍′ ∈ 𝐷𝐱

𝑍 such that 𝑍
′ ∩ 𝑍𝜎 is finite for every 𝜎 ∈ suc𝐵4(rt𝐱), contradiction to “𝐷

𝐱
𝑍 is a P-

point”. □
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4 BASIC CONNECTIONS TO FORCING

Definition 4.1. For a forcing notion ℚ and 𝑝 ∈ ℚ we define ⅁sb𝑝 = ⅁sb
ℚ,𝑝

, the strong bounding game between the null
player NU and the bounding player BND as follows:
A play last𝜔moves, and in the 𝑛thmove, the player NU gives a (non-empty) tree𝒯𝑛 with𝜔 levels and nomaximal node

and a ℚ-name 𝐹
̃
𝑛 of a function with domain 𝒯𝑛 such that 𝜂 ∈ 𝒯𝑛 implies 𝑝 ⊩ℚ “𝐹

̃
𝑛(𝜂) ∈ suc𝒯𝑛

(𝜂)”. After that, player
BND chooses 𝜂𝑛 ∈ 𝒯𝑛. In the end, the player BND wins the play ⟨𝒯𝑛, 𝜂𝑛 ∶ 𝑛 < 𝜔⟩ if and only if there is 𝑞 ∈ ℚ above 𝑝
forcing that

(∀𝑛 < 𝜔)(∃𝑘 < level(𝜂𝑛))
(
𝐹
̃
𝑛(𝜂𝑛↾𝑘) ≤𝒯𝑛

𝜂𝑛 ∧ 𝑘 is even
)
,

where 𝜂𝑛↾𝑘 is the unique 𝜈 ≤𝒯𝑛
𝜂𝑛 of level 𝑘.

The ⅁sb = ⅁sb
ℚ
is defined similarly, but player NU can choose the condition 𝑝 in their first move.

Definition 4.2. A forcing notion ℚ is strongly bounding if for every condition 𝑝 ∈ ℚ player BND has a winning strategy
in the game ⅁sb

ℚ,𝑝
.

Definition 4.3. Let 𝐵 ∈ CWT(𝜔>𝜔,⊲). We say  ⊆ [ℕ]ℵ0 is big if and only if for every 𝐜 ∶ ℕ → {0, 1} there is 𝐴 ∈  such
that 𝐜↾𝐴 is constant; we say that a family ℬ ⊆ psb(𝐵) is big in 𝐵 if and only if for every 𝐜 ∶ max(𝐵)⟶ {0, 1} there is
𝐵′ ∈ ℬ such that 𝐜↾max(𝐵′) is constant; we say that it is large in 𝐵 if and only if for every function 𝐜with domainmax(𝐵)
there is 𝐵′ ∈ ℬ and front 𝑌 of 𝐵′ such that for every 𝜂, 𝜈 ∈ max(𝐵′) we have 𝐜(𝜂) = 𝐜(𝜈) if and only if there is a 𝜚 ∈ 𝑌

such that 𝜚 ≤𝐵 𝜈 ∧ 𝜚 ≤𝐵 𝜂).

Theorem4.4. Let𝑀 = (𝜔>𝜔,⊲),ℚ be strongly bounding, and𝐵 ∈ CWT(𝑀). Ifℚ preserves somenon-principal ultrafilter
on ℕ and 𝑝 ⊩ “𝐴

̃
⊆ max(𝐵)”,5 then there are 𝐵′ ∈ psb(𝐵) and 𝑞 ∈ ℚ such that 𝑝 ≤ 𝑞 and 𝑞 ⊩ “max(𝐵′) ⊆ 𝜏

̃
” or 𝑞 ⊩

“max(𝐵′) ⊆ max(𝐵)⧵𝜏
̃
”.

Proof. We prove this by induction on Dp(𝐵) (cf. Definition 2.1), for all such 𝐵s. Let 𝜂 = rt(𝐵).
Case 1: Dp(𝐵) = 0. Trivial, as then 𝐵 = {𝜂}, i.e., 𝐵 is a singleton so 𝐵′ = 𝐵 can serve.
Case 2: Dp𝐱(𝐵) = 1. Then Dp(𝐵≥𝜈) = 0 for all 𝜈 ∈ 𝐵⧵{𝜂}. Now, |𝐵⧵{𝜂}| = ℵ0 and we just need to find 𝑝′ ∈ ℚ above 𝑝

such that {𝜈 ∈ 𝐵 ∶ 𝜈 ≠ 𝜂 and 𝑝′ forces 𝜈 ∈ 𝐴
̃
or forces 𝜈 ∉ 𝐴

̃
} is infinite. As⊩ℚ “([ℕ]ℵ0)𝐕 is big in𝐕ℚ” (cf. footnote ), this

is possible.
Case 3: 𝛼 = Dp(𝐵) > 1. Let 𝑌 = suc𝐵(𝜂). Then for 𝜈 ∈ 𝑌 we have Dp(𝐵≥𝜈) < 𝛼, hence the induction hypothesis applies

to 𝐵≥𝜈. We may assume that if 𝜚 is not below 𝜂, then for all but finitely many 𝜈 ∈ 𝑌 we have 𝜈 ∥ 𝜚 (cf. the proof of
Lemma 3.4). Let ⟨𝜈𝑛 ∶ 𝜈 ∈ ℕ⟩ list 𝑌.
We simulate a play of ⅁sb

ℚ,𝑝
in which the player BND uses a winning strategy and the player NU acts so that in the

𝑛th move, we have 𝒯𝑛 = {⟨𝐵0, … , 𝐵𝑘−1⟩ ∶ 𝑘 ∈ ℕ, 𝐵𝓁 ∈ psb(𝐵≥𝜈𝑛 ) for 𝓁 < 𝑘 and 𝐵𝓁+1 ⊆ 𝐵𝓁 if 𝓁 + 1 < 𝑘}, the relation
<𝒯𝑛

is being an initial segment, and 𝐹
̃
𝑛(⟨𝐵0, … , 𝐵𝑘−1⟩) is ⟨𝐵0, … , 𝐵𝑘−1, 𝐵′⟩ for some 𝐵′ ∈ psb(𝐵𝑘−1) ∩ 𝐕 such that either

max(𝐵′) ⊆ 𝐴
̃
or max(𝐵′) ∩ 𝐴

̃
= ∅. There is such a function 𝐹

̃
𝑛 because of the induction hypothesis. Clearly we can do

this. As the player BND has used a winning strategy, BND has won the play so there is 𝑞 ∈ ℚ stronger than 𝑝 and such
that 𝑞 ⊩ “for every 𝑛 for some even 𝑘 < level𝒯𝑛

(𝜂𝑛) we have 𝐹
̃
𝑛(𝜂𝑛↾𝑘) ≤𝒯𝑛

𝜂𝑛”.
Hence by the choice of (𝒯𝑛, 𝐹

̃
𝑛), letting 𝜂𝑛 = ⟨𝐵𝑛,0, … , 𝐵𝑛,𝑘(𝑛)⟩ we have for some ⟨𝐭

̃
𝑛 ∶ 𝑛 ∈ ℕ⟩ that 𝐵𝑛,𝑘(𝑛) ∈ psb(𝐵≥𝜈𝑛 ),

that 𝐭
̃
𝑛 is a ℚ-name of the truth value, that 𝑞 ⊩ “if 𝐭

̃
𝑛 = 1, thenmax(𝐵𝑛,𝑘(𝑛)) ⊆ 𝐴

̃
, and if 𝐭

̃
𝑛 = 0, thenmax(𝐵𝑛,𝑘(𝑛)) ∩ 𝐴

̃
=

∅”. Now becauseℚ preserves some ultrafilter, there is an infinite𝒰 ⊆ ℕ, a truth value 𝐭 and a condition 𝑟 such that 𝑞 ≤ℚ 𝑟

and 𝑟 ⊩ “𝐭
̃
𝑛 = 𝐭 for 𝑛 ∈ 𝒰”. Lastly, let 𝐵∗ =

⋃
{𝐵𝑛,𝑘(𝑛) ∶ 𝑛 ∈ 𝒰} ∪ {𝜂} and clearly 𝐵∗, 𝑟 are as required. □

Theorem 4.5. Let 𝐵 ∈ CWT(𝜔>𝜔,⊲) andℚ be an 𝜔𝜔-bounding proper forcing notion that preserves some P-point. Then
(psb(𝐵))𝐕 is big in 𝐕ℚ; cf. Definition 4.3.

5 The condition of being strongly bounded can be replaced by “the player NU has no winning strategy”; the condition of preserving an ultrafilter can be
replaced by “([ℕ]ℵ0 )𝐕 is big in 𝐕ℚ”.
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Proof. Let 𝐷 be a P-point ultrafilter such that ⊩ℚ “𝐷 generates an ultrafilter” and 𝑝 ∈ ℚ. Suppose that 𝑝 ⊩ “𝑐
̃
∶

max(𝐵
̃
)⟶ {0, 1}”. Let𝜒 be a large enough regular cardinal and𝑁 ≺ (ℋ𝜒,∈) be a countablemodel with𝐵,ℚ, 𝑝, 𝑐

̃
, … ∈ 𝑁.

Let 𝑞 ∈ ℚ be such that 𝑝 ≤ℚ 𝑞, 𝑞 is (𝑁,ℚ)-generic, for some 𝑔 ∈ (𝜔𝜔)𝐕 we have 𝑞 ⊩ “if 𝑓
̃
∈ 𝜔𝜔 ∩ 𝑁, then 𝑓

̃
<𝐽bd𝜔

𝑔”, and
for some 𝐴 ∈ 𝐷 we have 𝑞 ⊩ “if 𝐵

̃
∈ 𝐷 ∩ 𝑁, then 𝐴 ⊆∗ 𝐵

̃
”. From (𝑔, 𝐴) we can compute 𝐜 and 𝐵′ ∈ (psb(𝐵))𝐕 such that

𝑞 ⊩ “𝑐
̃
↾𝐵′ is constantly 𝐜”, so we are done. □

Theorem 4.6. Letℚ be a proper forcing notion and 𝐷∗ is a Ramsey ultrafilter in 𝐕 such that

⊩ℚ “f il(𝐷∗) is a Ramsey ultrafilter.” (†)

Assume that 𝐱 ∈ 𝐊 and 𝐵 ∈ ℬ𝐱. Then (psb(𝐵))𝐕 is large in 𝐕ℚ (cf. Definition 4.3).

Proof. We prove this by induction on Dp(𝐵) for 𝐵 ∈ ℬ𝐱. Let 𝐜 ∶ max(𝐵)⟶ ℕ be from 𝐕ℚ and we should find (𝐵′, 𝑌) as
promised. We shall work in 𝐕ℚ. If Dp(𝐵) = 0, i.e., |𝐵| = 1, this is trivial. If Dp(𝐵) = 1 let ⟨𝜂𝑛 ∶ 𝜂 ∈ ℕ⟩ ∈ 𝐕 list suc𝐵(rt𝐱):
by assumption † in 𝐕ℚ, for some 𝐴 ∈ f il(𝐷∗) the sequence ⟨𝐜(𝜂𝑛) ∶ 𝑛 ∈ 𝐴⟩ is constant or without repetitions. Without
loss of generality 𝐴 ∈ 𝐷∗ ⊆ 𝐕 and then {rt𝐱} ∪ {𝜂𝑛 ∶ 𝑛 ∈ 𝐴} is as required.
So assume Dp(𝐵) > 1. Without loss of generality 0 ∉ Rang(𝐜). For 𝜈 ∈ 𝐵⧵max(𝐵) let ⟨𝜂𝜈,𝑛 ∶ 𝑛 ∈ ℕ⟩ list suc𝐵(𝜈) so that

the function (𝜈, 𝑛) ↦ 𝜂𝜈,𝑛 belongs to 𝐕. In 𝐕ℚ, by downward induction on 𝜈 ∈ 𝐵, we choose 𝑘𝜈 = 𝑘(𝜈), 𝐴𝜈,𝐴𝜈,𝜚 and 𝐭𝜈,𝜚
so that the following requirements are satisfied: (a) 𝑘𝜈 ∈ ℕ, 𝐴𝜈 ∈ 𝐷∗, (b) if 𝜈 ∈ max(𝐵), then 𝑘𝑛 = 𝐜(𝜈), so > 0, (c) if
𝜈 ∉ max(𝐵), then either 𝑘𝜈 = 0 and ⟨𝑘(𝜂𝜈,𝑛) ∶ 𝑛 ∈ 𝐴𝜈⟩ is with no repetitions, all non-zero, or ⟨𝑘(𝜂𝜈,𝑛) ∶ 𝑛 ∈ 𝐴𝜈⟩ is con-
stantly 𝑘𝜈, (d) for 𝜈, 𝜚 ∈ 𝐵⧵max(𝐵)wehave𝐴𝜈,𝜚 ∈ 𝐷∗ and 𝐭𝜈,𝜚 ∈ {0, 1} and either 𝐭𝜈,𝜚 = 1 and 𝑛 ∈ 𝐴𝜈,𝜚 ⇒ 𝑘(𝜂𝜚,𝑛) = 𝑘(𝜂𝜈,𝑛)

or 𝐭𝜈,𝜚 = 0 and {𝑘(𝜂𝜚,𝑛) ∶ 𝑛 ∈ 𝐴𝜈,𝓁} is disjoint to {𝑘(𝜂𝜈,𝑛) ∶ 𝑛 ∈ 𝐴𝜈,𝜚}. This is possible by assumption †. By the same
assumption, there is 𝐴∗ ∈ 𝐷∗ such that if 𝜈 ∈ 𝐵⧵max(𝐵), then 𝐴∗ ⊆∗ 𝐴𝜈 and if 𝜈, 𝜚 ∈ 𝐵⧵max(𝐵), then 𝐴∗ ⊆∗ 𝐴𝜈,𝜚.
Let ⟨𝜈𝑛 ∶ 𝑛 ∈ ℕ⟩ list 𝐵⧵max(𝐵) and let 𝑓1 be the function with domain 𝐵⧵max(𝐵) such that

𝑓1(𝜈) = {𝜂𝜈,𝑛 ∶ 𝑛 ∈ 𝐴∗⧵𝐴𝜈 or for some 𝑘 < 𝓁 we have 𝜈 = 𝜈𝓁 ∧ 𝑛 ∈ 𝐴∗⧵𝐴𝜈𝑘,𝜈𝓁}

(so 𝑓1(𝜈) ∈ [suc𝐵(𝜈)]
<ℵ0).

As the forcing ℚ satisfies †, it is bounding, so there is a function 𝑓2 ∈ 𝐕 with domain 𝐵⧵max(𝐵) such that 𝑓1(𝜈) ⊆
𝑓2(𝜈) ∈ [suc𝐵(𝜈)]

<ℵ0 . Clearly, letting 𝐵1 ∶= 𝐴𝐵,𝑓 ∶= {𝜈 ∈ 𝐵 ∶ if 𝜚 ∈ 𝐵 satisfies rt𝐱 ≤𝐵 𝜚 <𝐵 𝜈 and 𝑛 is such that 𝜂𝜚,𝑛 ≤𝐵 𝜈,
then 𝑛 ∈ 𝐴∗ but 𝜂𝜚,𝑛 ∉ 𝑓2(𝜈)}, we have 𝐵1 ∈ psb(𝐵)𝐕 .
Define𝑌 ∶= { 𝜈 ∈ 𝐵1 ∶ if 𝑘𝜈 ≠ 0 and 𝜚 <𝐵 𝜈, then 𝑘𝜚 = 0 }. Plainly, the set𝑌 is a front of 𝐵1, and if 𝜈 ∈ 𝑌, then 𝐜↾(𝐵1)≥𝜈

is constantly 𝑘𝜈. Note that if 𝜈 ∈ 𝐵1 and 𝑘𝜈 = 0, then either 𝑘𝜂 = 0 for all 𝜂 ∈ suc𝐵1(𝜈), or 𝑘𝜂 > 0 for all 𝜂 ∈ suc𝐵1(𝜈).
Hence, if 𝜈 ∈ 𝐵1⧵max(𝐵1) and suc𝐵1(𝜈) is not disjoint to 𝑌, then suc𝐵1(𝜈) ⊆ 𝑌. If 𝑌 = {rt𝐱}, we are done, so assume not.
Let 𝑍 = {𝜂 ∈ 𝐵1 ∶ 𝜂 ∉ max(𝐵1) and suc𝐵1(𝜂) ⊆ 𝑌}. So both 𝑍 and 𝑌 are fronts of 𝐵1, both 𝑍 and 𝑌 belong to 𝐕, and if
𝜈 ∈ 𝑌, then ⟨𝑘𝜚 ∶ 𝜚 ∈ max((𝐵1)≥𝜈)⟩ is constantly 𝑘𝜈. Also if 𝑍 = {rt𝐱}we are done, so assume not. Let ⟨𝜈𝑛 ∶ 𝑛 ∈ ℕ⟩ list 𝑍.
As f il(𝐷∗) is a Ramsey ultrafilter we can find �̄� such that �̄� = ⟨𝑛(𝑖) ∶ 𝑖 ∈ ℕ⟩ is an increasing enumeration of a member
of 𝐷∗, hence �̄� ∈ 𝐕, if 𝓁 ≤ 𝑖, then 𝜂𝜈𝓁,𝑛(𝑖) ∈ 𝐵1, if 𝓁 < 𝑖, 𝐭𝜈𝓁,𝜈𝑖 = 0 and 𝜈𝓁, 𝜈𝑖 ∈ 𝐵1[≤𝑍], then {𝑘(𝜂𝜈𝑖,𝑛(𝑗)) ∶ 𝑖 ≤ 𝑗} is disjoint
from {𝑘(𝜂𝜈𝓁,𝑛(𝑗)) ∶ 𝑖 ≤ 𝑗}, moreover it is disjoint from {𝑘(𝜂𝜈𝓁,𝑛(𝑗) ∶ 𝑗 ∈ ℕ}. Lastly, as �̄� ∈ 𝐕 we can find in 𝐕 a partition
⟨𝐶𝓁 ∶ 𝓁 ∈ ℕ⟩ of ℕ to (pairwise disjoint) infinite sets and let 𝐵2 ∶= {𝜎 ∈ 𝐵1 ∶ if 𝜈𝓁 <𝐵1 𝜎 and 𝜈𝓁 ∈ 𝐵1[≤𝑍], then for some
𝑖 ∈ 𝐶𝓁 we have 𝑖 > 𝓁 and 𝜂𝜈𝓁,𝑛(𝑖) ≤𝐵2 𝜎}. Easily 𝐵2 ∈ 𝐕, 𝐵2 ∈ psb(𝐵1) and it is as required. □

Motivated by Definition 4.1 we introduce the following bounding games for a forcing notionℚ.

Definition 4.7. Let ℚ be a forcing notion and 𝑝 ∈ ℚ. We shall define three games: ⅁bd𝑝 = ⅁bd
ℚ,𝑝

, ⅁ufbd𝑝 = ⅁ufbd
ℚ,𝑝

, and
⅁vfbd𝑝 = ⅁vfbd

ℚ,𝑝
. Each of the games lasts 𝜔 rounds, and in each round player NU moves first, and player BND second. The

games ⅁bd, ⅁ufbd, ⅁vfbd are defined analogously, but here the condition 𝑝 will be chosen by player NU in his first move.
In the 𝑛th round of the game⅁bd𝑝 , first the player NU gives aℚ-name 𝜏

̃
𝑛 of amember of𝐕 and then the player BND gives

a finite set 𝑤𝑛 ⊆ 𝐕. After 𝜔 rounds, the player BND wins the play if and only if there is 𝑞 ∈ ℚ above 𝑝 forcing “𝜏
̃
𝑛 ∈ 𝑤𝑛”

for every 𝑛.
In the 𝑛th round of the game ⅁ufbd𝑝 , first the player NU chooses an ultrafilter 𝐸𝑛 on some set 𝐼𝑛 from 𝐕 and a ℚ-name

𝐸
̃
+
𝑛 of an ultrafilter on 𝐼𝑛 extending 𝐸𝑛 and aℚ-name 𝑋̃ 𝑛

of a member of 𝐸
̃
+
𝑛 ; then the player BND chooses 𝑡𝑛 ∈ 𝐼𝑛. In the

end of the play the player BND wins the play if and only if there is 𝑞 ∈ ℚ above 𝑝 forcing “𝑡𝑛 ∈ 𝑋
̃
𝑛” for every 𝑛.
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The game ⅁vfbd𝑝 is similar to ⅁ufbd𝑝 , but now we demand ⊩ℚ “𝑋
̃
𝑛 ∈ 𝐸𝑛 or just includes a member of 𝐸𝑛”, so 𝐸

̃
+
𝑛

is redundant.

Basic relations between the games introduced above are given by the following result.

Proposition 4.8. Letℚ be a forcing notion.

1. If BND wins in ⅁sb
ℚ,𝑝

, then BND wins in ⅁bd
ℚ,𝑝

which implies thatℚ is a bounding forcing.

2. The player BND wins in ⅁bd
ℚ,𝑝

iff BND wins in ⅁vfbd
ℚ,𝑝

.

3. If the player BND wins in ⅁vfbd
ℚ,𝑝

, then BND wins in ⅁ufbd
ℚ,𝑝

.
4. We can replace in 1–3 above “wins” by “does not lose”.

Proof. We start by observing that (3) is obvious and that our proofs all work with both “wins” and “does not lose” (which
shows (4)). Let us therefore start by showing (1). The second implication is obvious, so we concentrate on the first. For
every 𝜏

̃
, aℚ-name of an ordinal we define a pair (𝑇𝜏

̃
, 𝐹
̃
𝜏
̃
) as follows: let 𝑢 = {𝛼 ∶⊮ℚ “𝜏

̃
≠ 𝛼”}, it is a non-empty set of≤ |ℚ|

ordinals; let 𝑇𝜏
̃
be the tree {𝜂 ∶ 𝜂 ∈ 𝜔>𝑢}, i.e., ordered by ⊲ (being an initial segment), and let 𝐹

̃
𝜏
̃
(𝜂) = 𝜂⌢⟨𝜏

̃
⟩ for 𝜂 ∈ 𝑇𝜏

̃
.

Clearly, 𝑇𝜏
̃
is a tree with 𝜔 levels in 𝐕, 𝐹

̃
𝜏
̃
is a ℚ-name of a function with domain 𝑇𝜏

̃
such that ⊩ℚ “𝐹

̃
𝜏
̃
(𝜂) ∈ suc𝑇𝜏

̃

(𝜂)”.
Furthermore, if 𝑞 ∈ ℚ and 𝜂 ∈ 𝑇𝜏

̃
(so Rang(𝜂) is a finite subset of 𝑢), then we have that 𝑞 ⊩ “𝜏

̃
∈ Rang(𝜂)” if and only if

𝑞 ⊩ “for some 𝜈 ⊲ 𝜂 we have 𝜈⌢⟨𝐹
̃
𝜏
̃
(𝜈)⟩ ⊴ 𝜂”.

So playing the game ⅁bd
ℚ,𝑝

we can translate it to a play of ⅁sb
ℚ,𝑝

replacing the NU choice of 𝜏
̃
𝑛 by the choice of (𝑇𝜏

̃
, 𝐹
̃
𝜏
̃
).

Thus every strategy st1 of BND in ⅁sb
ℚ,𝑝

translates it to a strategy st2 of the player BND in ⅁bd
ℚ,𝑝

.
For (2), we need two translations as follows.

Translating ⅁vfbd
ℚ,𝑝

to ⅁bd
ℚ,𝑝

:
We are given a move 𝑦 = (𝐼, 𝐸, 𝑋

̃
) of NU in a play of⅁vfbd

ℚ,𝑝
as in Definition 4.7, i.e., 𝐼 ∈ 𝐕, 𝐸 is an ultrafilter on 𝐼, in𝐕, and

⊩ℚ “𝑋
̃
∈ 𝐸 or just includes a member 𝑋

̃
′ of 𝐸”. Now we have that if 𝑞 ⊩ “𝑋

̃
′ ∈ 𝒲” where𝒲 ⊆ 𝐸 is finite (𝒲 an object

in 𝐕 not a name), then
⋂
{𝐴 ∶ 𝐴 ∈ 𝒲} is non-empty and 𝑡 ∈

⋂
{𝐴 ∶ 𝐴 ∈ 𝒲} implies 𝑞 ⊩ “𝑡 ∈ 𝑋

̃
′ ⊆ 𝑋

̃
”.

Translating ⅁bd
ℚ,𝑝

to ⅁vfbd
ℚ,𝑝

:
Given 𝑦 = (𝐼, 𝜏

̃
), 𝜏
̃
a ℚ-name of a member 𝐼 of 𝐕 we define 𝐼𝑦 = [𝐼]<ℵ0 ∈ 𝐕 and choose 𝐸𝑦 ∈ 𝐕 an ultrafilter on 𝐼𝑦 such

that 𝑢∗ ∈ [𝐼]<ℵ0 implies {𝑢 ∈ [𝐼]<ℵ0 ∶ 𝑢∗ ⊆ 𝑢} ∈ 𝐸; lastly we choose 𝑋
̃
𝑦 = {𝑢 ∈ [𝐼]<ℵ0 ∶ 𝜏

̃
∈ 𝑢}. So, (𝐼𝑦, 𝐸𝑦, 𝑋

̃
𝑦) is a legal

move in ⅁vfbd
ℚ,𝑝

and for a finite subset 𝑡 of 𝐼, we have that if 𝑞 ⊩ “𝑡 ∈ 𝑋
̃
𝑦”, then 𝑞 ⊩ “𝜏

̃
∈ 𝑡”. □
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