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§ 0. INTRODUCTION

The paper’s main explicit result is proving Theorem 0.1 below. It is done axiomat-
ically, in a “superstable” abstract framework with the set of “axioms” of the frame,
verified by applying earlier works, so it suggests this frame as the, or at least a
major, non-elementary parallel of superstable.

A major case to which this is applied, is the one from [She01] represented in
[She09c]; we continue this work in several ways but the use of [She01] is only in
verifying the basic framework; we refer the reader to the book’s introduction or
[She01, §0] for background and some further claims but all the definitions and basic
properties appear here. Otherwise, the heavy use of earlier works is in proving that
our abstract framework applies in those contexts. If A = Ny is O.K. for you, you
may use [She09a] or [She75] instead of [She01] as a starting point.

Naturally, our deeper aim is to develop stability theory (actually a parallel of
the theory of superstable elementary classes) for non-elementary classes. We use
the number of non-isomorphic models as test problem. Our main conclusion is
0.1 below. As a concession to supposedly general opinion, we restrict ourselves
here to the A-good framework and delay dealing with weak relatives (see [She09d],
Jarden-Shelah [JS13], hopefully [S*]. Also, we assume that the (normal) weak-
diamond ideal on the A** is not saturated (for £ =1,...,n — 1). We had intended
to rely on [She01, §3], but actually in the end we prefer to rely on the lean version
of [She09d], see “reading plan A” in [She09d, §0]. Relying on the full version of
[She09d], we can eliminate this extra assumption “not A\*¢*l-saturated! (ideal)”.

On panit (AT, 22™) see, e.g. [She09a, 88r-0.wD](3)).

theorem 0.1. Assume 2* <28 < ... < 22" and the (so called weak diamond)
normal ! ideal WDmIA(A1?) is not A\ -saturated ® for £ = 1,...,n.

1) Let £ be an abstract elementary class (see §1 below) categorical in A and A\
with LS(¢) < X (e.g. the class of models of ¢ € Liy+ ,, with <¢ defined naturally).
IfF1<I\P28) and 2 <0 <n= I\ ) < uunif(/\H,QAHfl), then € has a model
of cardinality A\t7+1.

2) Assume A = R, and 1 € Ly, »(Q). If 1 < T, ) < pranir (AT, 227N for
¢=1,...,n—1 then ¥ has a model in \™" (see [SheT5]).

Note that if n = 3, then 0.1(1) is already proved in [She01] ~ [She09c]. If ¢ is
the class of models of some ¢ € L, . this is proved in [She83a], [She83b], but
the proof here does not generalize the proofs there. It is a different one (of course,
they are related). There, for proving the theorem for n, we have to consider a few
statements on (XN,,, P~ (n — m))-systems for all m < n, (going up and down). A
major point (there) is that for n = 0, as A = Ry we have the omitting type theorem
and the types are “classical”, that is, are sets of formulas. This helps in proving
strong dichotomies; so the analysis of what occurs in A™ = N, is helped by those
dichotomies. Whereas here we deal with A\, AT, AT2, A*3 and then “forget” X\ and
deal with AT, A*2, A3, AT4, etc. So having started with poor assumptions there is
less reason to go back from AT to A. However, there are some further theorems
proved in [She83al, [She83b], whose parallels are not proved here, mainly that if
for every n, in AT we get the “structure” side, then the class has models in every
© > A, and theorems about categoricity. We shall deal with them in subsequent

IRecall that as 2M—1 < 2*¢ this ideal is not trivial (i.e. A*¢ is not in the ideal).
2Actually, the statement “some normal ideal on pt is pt+-saturated” is “expensive” (i.e. of
large consistency strength, etc.), so it is “hard” for this assumption to fail.
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works, mainly [She09e]. Also in [She75], [She87a] = [She09a] we started to deal
with ¢ € Ly, »(Q) dealing with 8;,Rs. Of course, we integrate them too into
our present context. In the axiomatic framework (introduced in §2) we are able to
present a lemma, speaking only on 4 cardinals, and which implies the theorem 0.1.
(Why? Because in §3 by [She01] ~ [She09c] we can get a so-called good A*-frame
s with K* C ¢, and then we prove a similar theorem on good frames by induction
on n, with the induction step done by the lemma mentioned above). For this, parts
of the proof are a generalization of the proof of [She0l, §8,89,§10]. A major theme

here (and even more so in [She09¢]) is:

Thesis 0.2. It is worthwhile to develop model theory (and superstability in particu-
lar) in the context of €y or Ky+e,£ € {0,...,n}, i.e., restrict ourselves to one, few,
or an nterval of cardinals. We may have good understanding of the class in this
context, while in general cardinals we are lost.

As in [She90] for first order classes

Thesis 0.3. It is reasonable first to develop the theory for the class of (quite)
saturated enough models as it is smoother and even if you prefer to investigate the
non-restricted case, the saturated case will clarify it and you will e able to rely on it.
In our case this will mean investigating s for each n and then (\{€ " :n < w}.

Thesis 0.4. [The Better to be poor Thesis] Better to know what is essential. e.g.,
you may have better closure properties (here a major point of poverty is having no
formaulas, this is even more noticeable in [She09e] ).

I thank John Baldwin, Alex Usvyatsov, Andres Villaveces and Adi Yarden for many
complaints and corrections.

§1 gives a self-contained introduction to AEC (abstract elementary classes), in-
cluding definitions of types, “Ms is (A, k)-brimmed over M;,” and saturativity =
universality + model homogeneity. An interesting point is observing that any \-
AEC £, can be lifted to £>, uniquely; so it does not matter if we deal with €,
or £>) (unlike the situation for good A-frames, which if we lift, we in general, lose
some essential properties).

The good A-frames introduced in §2 are a very central notion here. It concen-
trates on one cardinal A, in ) we have amalgamation and more, hence types, in the
orbital sense, not in the classical sense of set of formulas, for models of cardinality
A can be reasonably defined and “behave” reasonably (we concentrate on so-called
basic types) and we axiomatically have a non-forking relation for them.

In §3 we show that starting with classes belonging to reasonably large families,
from assumptions on categoricity (or few models), good A-frames arise. In §4 we
deduce some things on good A-frames; mainly: stability in A, existence and (full)
uniqueness of (A, *)-brimmed extensions of M € K.

Concerning §5 we know that if M € K and p € SP3(M) then there is (M, N, a) €
Ki’bs such that ortp(a, M,N) = p. But can we find a special (“minimal” or
“prime”) triple in some sense? Note that if (My, N1,a) <ps (Ma, No,a) then Ny is
an amalgamation of Ny, My over M (restricting ourselves to the case “ortp(a, Ma, Na)
does not fork over M;”) and we may wonder is this amalgamation unique (i.e., al-
lowing to increase or decrease Ns). If this holds for any such (Ms, No,a) we say
(M7, N1,a) has uniqueness (= belongs to Ki’uq = K2M9). Specifically we ask: is
Ki’uq dense in (Ki’bs, <ps)? If no, we get a non-structure result; if yes, we shall
(assuming categoricity) deduce the “existence for K23" and this is used later as
a building block for non-forking amalgamation of models.
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So our next aim is to find “non-forking” amalgamation of models (in §6). We
first note that there is at most one such notion which fulfills our expectations
(and “respect” s). Now if ([J(My, M1,a,M3), My <¢ M2 <y Ms (equivalently,

(Mo, My, a) <ps (My, Ms,a) and (Mg, Ms,a) € Ki’uq), by our demands we have
to say that Mj, Ms are in non-forking amalgamation over My inside Mj. Closing
this family under the closure demands we expect to arrive to a notion NF, = NF,
which should be the right one (if a solution exists at all). But then we have to work
on proving that it has all the properties it hopefully has.

A major aim in advancing to At is having a superlimit model in €,+. So in §7
we find out who it should be: the saturated model of £,+, but is it superlimit?
We use our NF to define a “nice” order <}, on £+, investigate it and prove the
existence of a superlimit model under this partial order. To advance the move to
AT we would like to have that the class of AT-saturated model with the partial
order <}, is a AT-AEC Well, we do not prove it but rather use it as a dividing
line: if it fails we eventually get many models in €y++ (coding a stationary subset
of? AT); see §8.

Lastly, we pay our debts: prove the theorems which were the motivation of this
work, in §9.

Reading Plans: As usual, these are instructions on what you can avoid reading.

Note that §3 contains the examples, i.e., it shows how “good A-frame”, our main
object of study here, arise in previous works. This, on the one hand, may help the
reader to understand what is a good frame and, on the other hand, helps us in the
end to draw conclusions continuing those works. However, it is not necessary here
otherwise, so you may ignore it.

Note that we treat the subject axiomatically, in a general enough way to treat
the cases which exist without trying too much to eliminate axioms as long as the
cases are covered (and probably most potential readers will feel they are more than
general enough).

We shall assume

(x)o 22 <22 <22 < <22 and n > 2.

In the beginning of §1 there are some basic definitions.

Reading Plan 0: We accept the good frames as interesting per se, so ignore
83 (which gives “examples”) and: §1 tells you all you need to know on abstract
elementary classes; §2 presents frames, etc.

Reading Plan 1: The reader decides to understand why we reprove the main
theorem of [She83a], [She83b] so

(¥)1 K is the class of models of some 1) € Ly+ , (with a natural notion of
elementary embedding < ¢ for £ a fragment of L+ ,, of cardinality < A
to which v belongs).

So in fact (as we can replace, for this result, K by any class with fewer models still
satisfying the assumptions) without loss of generality

()] if A = Ng then K is the class of atomic models of some complete first order
theory, <; is being elementary submodel.

The theorems we are seeking are of the form

SReally, any S C {6 < AT : cf(8) = AT}
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(%) if K has few models in A 4+ Ry, A", ... AT" then it has a model in AT+,

[Why “A+ 877 If A > Ry this means A whereas if A = R this means

that we do not require “few model in A = Ry”. The reason is that for the

class or models of ¢ € Ly, ., (or € Ly, ,,(Q) or an AEC which is PCy,,

see Definition 3.4) we have considerable knowledge of general methods of

building models of cardinality N, for general A we are very poor in such
knowedge (probably as there is much less).]

But, of course, what we would really like to have are rudiments of stability theory
(non-forking amalgamation, superlimit models, etc.). Now reading plan 1 is to
follow reading plan 2 below but replacing the use of Claim 3.10 and [She01] by the
use of a simplified version of 3.5 and [She83a]. Reading Plan 2: The reader would

like to understand the proof of (%), for arbitrary € and A. The reader

(a) knows at least the main definitions and results of [She01] ~ [She09c]|,
or just
(b) reads the main definitions of §1 here (in 1.1 - 1.7) and is willing to believe
some quotations of results of [She01] ~ [She09c].

We start assuming € is an abstract elementary class, LS(¢) < A (or read §1 here until
1.17) and € is categorical in A, AT and 1 < I(AT, K) < prame(ATT,2*7) and more-
over, 1 < I\, K) < pranis(ATT, 2’\+). As an appetizer and to understand types
and the definition of types and saturated (in the present context) and brimmed,
read from §1 until 1.18.

He should read in §2 Definition 2.1 of A-good frame, an axiomatic framework
and then read the following two Definitions 2.4, 2.5 and Claim 2.6. In §3, 3.10 show
how by [She01] = [She09c] the context there gives a AT-good frame; of course the
reader may just believe instead of reading proofs, and he may remember that our
basic types are minimal in this case.

In §4 he should read some consequences of the axioms.

Then in §5 we show some amount of unique amalgamation. Then §6,§7,88 do a
parallel to [She01, §8,§9,810] in our context; still there are differences, in particular
our context is not necessarily uni-dimensional which complicates matters. But if we
restrict ourselves to continuing [She01] ~ [She09c], our frame is “uni-dimensional”,
we could have simplified the proofs by using SP3(M) as the set of minimal types.

Reading Plan 3: ¢ € L, ,(Q), so A = R and 1 < I(Ry,¢) < 2% recalling Q
denotes the quantifier “there are uncountably many”.

For this, [She01] ~ [She09c] is irrelevant (except if we quote the “black boz”
use of the combinatorial section §3 of [She01] when using the weak diamond to get
many non-isomorphic models in §5, but we prefer to use [She09d]).

Now reading plan 3 is to follow reading plan 2 but 3.10 is replaced by 3.8 which
relies on [She75], i.e., it proves that we get an Nj-good frame investigating ¢ €
Lwlvw(Q)'

Note that our class may well be such that £ is the parallel of “superstable non-
multidimensional complete first order theory”; e.g.

U1 = (Qz)[P(x)] A (Qu)[~P(z)],
Ty = {P}, P a unary predicate; this is categorical in X; and has no model in
No and ¢ has 3 models in Ry. But if we use ¢ = (V2)[P(z) = P(x)] we have
T(Nq,10) = Ng; however, even starting with ¢, the derived AEC ¢ has exactly three
non-isomorphic models in X;. In general we derived an AEC ¢ from 1 such that:

¢t is an AEC with LS number R, categorical in Rg, and the number of somewhat
“saturated” models of € in A is < I(\,4)) for A > Ry. The relationship of ¢ and
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¢ is not comfortable; as it means that, for general results to be applied, they have
to be somewhat stronger, e.g. “¢ has A" non-isomorphic A "-saturated models
of cardinality A™*”. The reason is that LS(¢) = A\ = Ng; we have to find many
somewhat \T-saturated models as we have first in a sense eliminate the quantifier
Q = 3™, (i.e., the choice of the class of models and of the order guaranteed that
what has to be countable is countable, and AT-saturation guarantees that what
should be uncountable is uncountable). This is the role of K¥ in [She09a, §3].

Reading Plan 4: ¢ an abstract elementary class which is PC,, (= Rg-presentable,
see Definition 3.4); see [She09a] or [Mak85] which includes a friendly presentation
of [She87a, §1-83] so of [She09a, §1-§3]).

Like plan 3 but we have to use 3.5 instead of 3.8 and fortunately the reader is
encouraged to read [She09a, §4,85] to understand why we get a A\-good quadruple.
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§ 1. ABSTRACT ELEMENTARY CLASSES

First we present the basic material on AEC ¢, that is types, saturativity and (A, k)-
brimmness (so most is repeating some things from [She09a, §1] and from [She09f]).

Second we show that the situation in A = LS(¥) determine the situation above
A, moreover such lifting always exists; so a A-AEC can be lifted to a (> \)-AEC in
one and only one way.

Convention 1.1. Here ¢ = (K, <), where K is a class of 7-models for a fixed
vocabulary 7 = 7 = 7 and <; is a two-place relation on the models in K. We
do not always strictly distinguish between £, K and (K, <g). We shall assume
that K, <, are fixed, and M < N = M,N € K; and we assume that it is an
abstract elementary class, see Definition 1.4 below. When we use <; in the < sense
(elementary submodel for first order logic), we write <r, as L is first order logic.

Definition 1.2. For a class of 7x-models we let
INK)=|{M/=: M e K, |M|| =)}

Definition 1.3. 1) We say M = (M; : i < p) is a representation or filtration of a
model M of cardinality p if Tps, = Tar, M; is C-increasing continuous, || M;|| < || M|
and M = U{M; :i < p}, and p=x* = | M| = x.

2) We say M is a <g-representation or <g-filtration of M if in addition M; <, M
for i < ||M]| (hence M;, M € K and (M; : i < p) is <g-increasing continuous, by
Ax.V from Definition 1.4).

Definition 1.4. We say t = (K, <) is an abstract elementary class, AEC in short,
if (7 is as in 1.1, Az0 holds and) AxI-VI hold, where:

Az0: The holding of M € K, N <; M depends on N, M only up to isomorphism,
ie, [Me K,M =N = N € K], and [if N <¢ M and f is an isomorphism from
M onto the 7-model M’ mapping N onto N’ then N’ <, M’], and of course 1.1.

AzI: f M <¢ N then M C N (i.e. M is a submodel of N).
AxIlI: M() Se M1 Sg M2 implies M() Sg Mg and M Se M for M € K.

AzIII: If A is a regular cardinal, M; (for i < \) is <g-increasing (i.e. i < j < A
implies M; < M;) and continuous (i.e. for limit ordinal 6 < A we have
Ms = U M;) then My <¢ U M;.

1<6 i<\

AzIV: If X is a regular cardinal, M; (for ¢ < A) is <g-increasing continuous and

M; <¢ N for i < A then |J M; <¢ N.
i<A
AzV: If MO g Ml and Mg St N for 4 = O, 1, m MO Sg Ml.

AxVI: LS(¢) exists %, where LS(£) is the minimal cardinal \ such that: if
A C N and |A4| < A then for some M <; N we have A C |M| and | M| < A.

Notation 1.5. : 1) Ky ={M € K : |M|| = A} and K.y = |J K, etc.
pn<A

4We normally assume M € £ = ||M|| > LS(£) so may forget to write ||M||“ + LS(£)” instead
[[M]|, here there is no loss in it. It is also natural to assume |7(¢)] < LS(¢) which means just
increasing LS(¢), but no real need here; dealing with Hanf numbers it is natural.
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Definition 1.6. 1) The function f : N — M is <g-embedding when f is an
isomorphism from N onto N’ where N’ <, M, (so f: N — N’ is an isomorphism
onto).

2) We say f is a <g-embedding of M; into My over My when for some M/ we
have: My <¢ My, My <¢ M| <¢ M5 and f is an isomorphism from M; onto M;
extending the mapping idyy,.

Recall

Observation 1.7. Let I be a directed set (i.e., I is partially ordered by < = <!
such that any two elements have a common upper bound).
1) If My is defined fort € I, and t < s € I implies My <¢ M then for every t € I
we have My <¢ |J M.
sel
2) If in addition t € I implies My <¢ N then |J M, <¢ N.
sel

Proof. Easy; or see [She09a, 88r-1.6], which does not rely on anything else. ;7

Claim 1.8. 1) For every N € K there is a directed partial order I of cardinality

< ||N|| and sequence M = (M; : t € I) such thatt € I = M; <; N, || M| <

LS(t), I s <t = My <¢ My and N = |J M. If |N| > LS(¢) we can add
tel

| M| = LS(¢) fortel.

2) For every N1 <y Na we can find (M} : t € I,) as in part (1) for £ = 1,2 such
that Iy C Iy and t € I = MtQ = Mtl.

3) Any A > LS(¥) satisfies the requirement in the definition of LS(t).

Proof. Easy or see [She09a, 88r-1.7] which does not require anything else. Uhig

We now (in 1.9) recall the (non-classical) definition of type (note that it is natural
to look at types only over models which are amalgamation bases, see part (4) of 1.9
below and consider only extensions of the models of the same cardinality). Note
that though the choice of the name indicates that they are supposed to behave
like complete types over models as in classical model theory (on which we are not
relying), this does not guarantee most of the basic properties. E.g., when cf(d) = Ry,
uniqueness of ps € S(Ms) such that i < § = ps | M; = p; is not guaranteed even if
pi € S(M;), M; is <¢-increasing continuous for i < Jand i < j < 6 = p; = p; | M;.
Still we have existence: if for i < §,p; € S(M;) increasing with ¢, then there is
ps € S(U{M; : i < 6}) such that i < 6 = p; = ps | M;. But when cf(§) > Ny even
existence is not guaranteed.

Definition 1.9. 1) For M € K,,, M <¢ N € K,, and a € N, let ortp(a, M,N) =
ortpg(a, M, N) = (M, N,a)/En, where £y is the transitive closure of £3f, and the
two-place relation €3} is defined by:

(M, Ny,a1) 3% (M, Ny, as) iff M <¢ Ny, ay € Ny, ||Ng|| = = |M]|| for £ =1,2
and there is N € K, and <g-embeddings
fe: Ng — N for £ = 1,2 such that
fi I M =idy = fo [ M and fi(a1) = fa(a2).
We may say p = ortp(a, M, N) is the type which a realizes over M in N. Of course,



Paper Sh:600, version 2023-06-18. See https://shelah.logic.at/papers/600/ for possible updates.

CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES 9

all those notions depend on ¢ so we may write ortpy(a, M, N) and Ex[€], E35 (€]

(If in Definition 1.4 we do not require M € K = ||M|| > LS(t), here we should
allow any N such that | M| < ||[N|| < M + LS(¢).) The restriction to N € K, is
essential, and pedantically (M, N,a)/En should be replaced by ((M,N,a)/E,) N
H(X(Mm,N,0)) Where X(ar,n,q) = min{x : (M, N,a)/En) N H(x) # D} so that the
equivalence class is a set.
1A) For M € &, let® Se(M) = {ortp(a, M,N) : M <¢ N and N € K, (or just
N € K<(uiisey) and a € N} and Sp*(M) = {ortp(a, M,N) : M <¢ N and
N € K<(uyrse) and a € N\ M} (na stands for non-algebraic). We may write
S§"*(M) omitting € when ¢ is clear from the context; so omitting na means a € N
rather than a € N \ M.

2) Let M € K, and M <; N. We say “a realizes p in N” and “p = ortp(a, M, N)”
when: if a € N,p € S(M) and N € K<(,q15(¢)) satisfies M <p N’ <¢ N and
a € N’ then p = ortp(a, M, N’) and there is at least one such N'; so M,N' € K,
(or just M < ||N'|| < p+ LS(¥)) but possibly N ¢ K,,.
3) We say “ag strongly © realizes (M, N' a;)/E3 in N” when for some N? of
cardinality < ||M]| + LS(€) we have M <; N? <; N, a3 € N? and

(M,N',a1) &3} (M, N?, ag)
hence p = ||NY|.
4) We say My € K is an amalgamation base (in £, but normally ¢ is understood
from the context) if: for every My, My € K and <g-embeddings f; : My — M,
(for £ = 1,2) there is M3 € K and <g-embeddings gy : My — M3 (for £ = 1,2)
such that g1 o fi = g2 o fo. Similarly for <.

4A) ¢ has amalgamation in A (or A-amalgamation or £, has amalgamation) when
every M € K is an amalgamation base.

4B) ¢ has the A-JEP or JEP, (or €, has the JEP) when any My, Ms € K, can be
<g-embedded into some M € K.

5) We say £ is stable in A if (LS(¢) < A and) M € K, = |S(M)| < A, and moreover
there are no A1 pairwise non—é’ff—equivalent triples (M, N,a), M <; N € Kj,
a € N.

6) Wesayp=¢q | Mifpe S(M),qe S(N), M <¢ N, and for some NT, N <, Nt
and a € N we have p = ortp(a, M, NT) and q = ortp(a, N, NT); see 1.11(1),(2).
We may express this also as “q extends p” or “p is the restriction of g to M”.

7) For finite m, for M <¢ N, @ € ™N we can define ortp(a, M, N) and S (M)
similarly and Sg“(M) = |J Sy"(M); similarly for S*(M) (but we shall not use

m<w
this in any essential way, so we agree S(M) = S'(M).) Again we may omit € when
clear from the context.

8) We say that p € S¢(M) is algebraic when some a € M realizes it.

9) We say that p € S¢(M) is minimal when it is not algebraic and, for every N € K
of cardinality < ||M] + LS(¢) which <g-extends M, the type p has at most one
non-algebraic extension in S¢(M).

Remark 1.10. 1) Note that here “amalgamation base” means only for extensions
of the same cardinality!

5If we omit M € K = ||M| > LS(¢) in 1.4, still we can insist that N € K,,, the difference is
not serious.
6Note that &£ ?b} is not necessarily an equivalence relation, and hence in general it is not Eps.
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2) The notion “minimal type” is important (for categoricity) but not used much
in this chapter.

Observation 1.11. 0) Assume M € K, and M <¢ N, a € N then ortp(a, M, N)
is well defined and is p if for some M' € K, we have M U {a} C M’ <¢ N and
p = ortp(a, M, M").

1) If M <¢ Ny <¢ No, M € K,,, and a € Ny then ortp(a, M, N1) is well defined
and equal to ortp(a, M, Na). (More transparent if € has the u-amalgamation, which
is the real case anyhow.)

2) If M <¢ N and q € S(N) then for one and only one p we have p=gq | M.

3) If Mo <¢ My <¢ M and p € S(Mz) thenp | Mo = (p | My) [ Mo.

4) If M € ¢, is an amalgamation base then E3} is a transitive relation hence is
equal to Epy.

5) If M <¢ N are from €\, M is an amalgamation base and p € S(M) then there
is ¢ € S(N) extending p, so the mapping ¢ — q | M is a function from S(N) onto
S(M).

Proof. Easy. Ui

Definition 1.12. 1) We say N is A-universal over M when X > || N|| and for every

M’ with M <y M' € K, there is a <g-embedding of M’ into N over M. If we
omit A we mean ||N||; clearly if N is universal over M and both are from K then

M is an amalgamation base.

2) Ki™ = {(M,N,a) : M <¢ N,a € N\ M and M, N € ¢}, with the partial
order < defined by (M, N,a) < (M',N',a')iff a=a',M <; M' and N <; N'.

3) Wesay (M, N,a) € K5™ is minimal when: if (M, N, a) < (M’, Ny,a) € K3 for

¢ = 1,2 implies ortp(a, M', N1) = ortp(a, M', N3). Moreover, (M’', N1,a) E* (M', N3, a)
(this strengthening is not needed if every M’ € K is an amalgamation bases).

4) N € tis A-universal if every M € £, can be <g-embedded into it.

5) We say N € £ is universal for K/ C € when every M € K’ can be <g-embedded
into N.

Remark 1.13. Why do we use < on Ki’naf? Because those triples serve us as a
representation of types for which direct limit exists.

Definition 1.14. 1) M* € K is superlimit if clauses (a) + (b) + (c¢) below hold,
locally superlimit if clauses (a)~ + (b) 4 (¢) below hold, and is pseudo superlimit if
clauses (b) + (c) below hold, where:
(a) It is universal (i.e. every M € K can be <g-embedded into M*).
(b) If (M; : i < §) is <g-increasing continuous, 6 < AT and i < § = M; = M*
then My = M*.
(a)” If M* <¢ M; € K, then there is My € K5 which <g-extends M; and is
isomorphic to M*.
(¢) There is M** isomorphic to M* such that M* <, M**.
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2) M is A-saturated above p when |[M|| > A > p > LS(¢) and if N <, M,
w <IN <A, N <¢ Ny, || N1|| < [|V|[+LS(¥), and a € Ny then some b € M strongly
realizes (N, N1, a)/EX in M (see Definition 1.9(3)). Omitting “above u” means “for
some p < A,” hence “M is AT-saturated” means that “M is A*-saturated above
A7 and K (A\T-saturated) = {M € K : M is AT-saturated} and “M is saturated”
means “M is || M|-saturated”.

In the following lemma note that amalgamation in €. is not assumed: it is even
deduced. For variety we allow K_yg(¢) # 9.

Lemma 1.15. [The Model-homogeneity = Saturativity Lemma] Let X > p+ LS(¥)
and M € K.

1) M is \-saturated above p iff M is (D, ,, A)-homogeneous above p1, which means:
for every N1 <¢ No € K such that pn < ||[N1]| < || N2|| < A and N1 <¢ M, there is a
<g-embedding f of Ns into M over Nj.

2) If My, My € Ky are A-saturated above p < X and for some N1 <g¢ My, Ny <,
My, both of cardinality € [u,\), we have Ny = Ny then My = Ms; in fact, any
isomorphism f from Ny onto Na can be extended to an isomorphism from My onto
M.

3) If in (2) we demand only “Ms is A-saturated” and My € K< then f can be
extended to a <g-embedding from My into Ms.

4) In part (2) instead of N1 = Ny it suffices to assume that N1 and Na can be
<¢-embedded into some N € K, which holds if € has the JEP or just -JEP for
some 0 < X\, 0 > p. Similarly for part (3).

5) If N is X-universal over M € K, and ¢ has u-JEP then N is A-universal (where
A > LS(8) for simplicity).

6) Assume M is A-saturated above p. If N <¢ M and p < ||N|| < X then N is an
amalgamation base (in K< n|+Ls(e)) and even in €<y) and |S(N)| < [|M]||. So if
every N € K, can be <¢-embedded into M then € has u-amalgamation.

Proof. 1) The “if” direction is easy as A > pu + LS(E). Let us prove the other
direction.

We prove this by induction on || N2||. Now first consider the case || Na|| > || N1| +
LS(¥) then we can find a <g-increasing continuous sequence (Nj . : ¢ < | Nz||)
with union Ny with Ny g = Ny and |[N1¢]| < ||V1]] + |e]- Now we choose f., a
<¢-embedding of N; . into M, increasing continuous with e such that fo = idp;,.
For ¢ = 0 this is trivial for ¢ limit take unions and for € successor use the induction
hypothesis. So without loss of generality ||Na|| < ||N1]| + LS(¥).

Let |[N2| = {a; : i < K}, and we know pu < " := |[N1|| < k== | No|| < K =
[IN1]|+LS(€) < A; so if, as usual, || N1|| > LS(€) then &' = k. We define by induction
on i < k, N¥, N4, f; such that:

) Ni <¢ Nj and [[Nj]| < N3] < #’

) N is <g-increasing continuous with 4
(c) N3 is <p-increasing continuous with i
(d) f; is a <g-embedding of N} into M

) fi is increasing continuous with i

) a; € fi(N™)

) N{ = N1, N = Ny, fo = idy,.
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For i = 0, clause (9) gives the definition. For 4 limit let:
Ni= U N and Nj= U Nj and fi = U fj.
j<i j<i j<i
Now (a)-(f) continues to hold by continuity (and | Ni|| < &’ easily).

For i successor we use our assumption; more elaborately, let Mlif1 <¢ M be
fi_l(Nli_l) and let Mé_l,gi_l be such that g;_; is an isomorphism from Né_l
onto Mi~! extending f;_1, so Mi~' <¢ Mi~' (but without loss of generality
MY N M = Mi™'). Now apply the saturation assumption” with
M, (M= Mi™), g;_1(a)) here standing for M, (N, Ny, a) there (note: a;_, € Ny =
NY € Ni~t and

A> R 2N = M7 2 M = N 2 IV = IV =R >
so the requirements — including the requirements on the cardinalities in Definition
1.14(2) — hold). So there is b € M such that

ortp(b, Mi™', M) = ortp(gi_1(a;—1), Mi~t, Mi™ ).
Moreover,” remembering the end of the first sentence in 1.14(2) which speaks about
“strongly realizes”, b strongly realizes (Mffl, Mt gi,l(ai,l))/é';},l in M. This
means (see Definition 1.9(3)) that for some M;™* we have b € M, and M}~ ' <,
Mi7* <¢ M and

(M{:_lv M§_17gi—1(ai—1)) g]?/;{'_l (Mli_la va*’ b)

8

This means (see Definition 1.9(1)) that M} also has cardinality < s’ and there
is My* € K<, such that Mi~' <¢ My* and there are <g-embeddings hb, h} of
MY MP* into My™* over Mi~! respectively, such that b3 (gi_1(a;_1)) = hi (D).
Now changing names, without loss of generality A} is the identity.
Let NZ, h; be such that N~ <y Ni and h; an isomorphism from N onto M™
extending g;_1. Let Ni = h;Y(M}™*) and f; = (h; | NY).

We have carried the induction. Now f, is a <¢-embedding of N7 into M over
Ny, but |No| = {a; : i < K} C Ny. Hence by Ax.V of Definition 1.4, Na <¢ Ny, so
fr [ No: Ny — M is as required.

2), 3) By the hence and forth argument (or see [She09a, 88r-2.3|, [She09a, 88r-2.4]
or see [She87b, I1,§3] = [She09f, §3]).
4),5),6) Easy, too. U5

Definition 1.16. 1) For 9 = cf(9) < AT, we say N is (), d)-brimmed over M
it (M <¢ N are in K and) we can find a sequence (M; : i < 0) which is <,-
increasing,9 M; € Ky,My = M, M,;, is <¢-universal'® over M; and U M; =N.
<9
We say N is (A, 0)-brimmed over A if A C N € K, and we can find (M; : i < 0)
as above such that A C My but My | A < My = My = A; if A = @ we may
omit “over A”. We say continuously (A, d)-brimmed (over M) when the sequence
(M; i < 9) is <g-increasing continuous; if €, has amalgamation, the two notions
coincide.

"See Definition 1.14(21).

8If £ has amalgamation in p the proof is slightly shorter

9We have not asked continuity; because in the direction we are going, it makes no difference
if we add “continuous”. Then we have in general fewer cases of existence, uniqueness (of being
(A, 9)-brimmed over M € K ) does not need extra assumptions, and existence is harder.

10Hence M; is an amalgamation base.
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2) We say N is (), *)-brimmed over M if for some 9 < A\, N is (A, 9)-brimmed over
M. We say N is (A, %)-brimmed if for some M, N is (), *)-brimmed over M.

3) If @ < AT let “N is (A, a)-brimmed over M” mean M <; N are from K, and
cf(a) > Vg = N is (), cf(«))-brimmed over M.

On the meaning of (A, d)-brimmed for elementary classes, see 3.1(2) below. Recall

Claim 1.17. Assume A > LS(¢).
1) If € has amalgamation in A, is stable in A and O = cf(9) < A, then
(a) for every M € &y there is N, M <¢ N € K, universal over M
(b) for every M € ¢, there is N € € which is (A, 0)-brimmed over M
(¢) if N is (A, 0)-brimmed over M then N is universal over M.
2) If Ny is (A, Rg)-brimmed over M for £ = 1,2, then Ny, No are isomorphic over
M.
3) Assume 0 = cf(9) < AT, and for every Ry < 6 = cf(0) < & any (X, 0)-brimmed
model is an amalgamation base (in t). Then:
(a) if Ng is (N, 0)-brimmed over M for £ = 1,2 then Ny, N are isomorphic
over M
(b) if € has A\-JEP (i.e., the joint embedding property in ) and Ny, N are
(A, 0)-brimmed then N1, N2 are isomorphic.
3A) There is a (X, 0)-brimmed model N over M € Ky when: M is an amalgamation
base, and for every <g, -extension My of M there is a <g, -extension My of My which
is an amalgamation base and there is a A-universal extension Mz € Ky of Ms.
4) Assume € has A-amalgamation and the A\-JEP and M = (M; : i < A) is
<e-increasing continuous and M; € Ky for i < \.
(a) If X is regular and for every i < \,p € S(M;) for some j € (i,\), some
a € M; realizes p, then M) is universal over My and is (A, \)-brimmed over
My
(b) if for everyi < X every p € S(M;) is realized in M;11 then M)y is (A, cf(N))-
brimmed over M.
5) Assume 0 = cf(0) < X and M € ¢ is continuous (X, 0)-brimmed. Then M is a
locally (X, {0})-strongly limit model in €5 (see Definition [She09a, 88r-3.1](2),(7),
not used,).
6) If N is (XA, 0)-brimmed over M and A C N,|A| < 9, e.g. A = {a} then for
some M'" we have M UA C M' <y M and M is (X, d)-brimmed over M'.

Proof. 1) Clause (c) holds by Definition 1.16.

As for clause (a), for any given M € K, easily there is an <g-increasing contin-
uous sequence (M; : i < A) of models from K, My = M such that p € S(M;) = p
is realized in M1, this by stability + amalgamation. So (M; : ¢ < ) is as in part
(4) below hence by clause (b) of part (4) below, we get that My is <;-universal over
My = M so we are done. Clause (b) follows by (a).

2) By (3)(a) because the extra assumption in part (3) is empty when 9 = Rg.

3) Clause (a) holds by the hence and forth argument, that is assume (Ny; : i < 9)
is <¢-increasing with union Ny g, Ngo = M, N¢ ;41 is universal over Ny ; and Ny =
Ny o so Ny €ty

Now for each limit 6 < 0 the model Ny ; := U{N; : i <} is an amalgamation
base (and is <¢ Nps41) hence without loss of generality (Ng; : i < 9) is <p-
increasing continuous. We now choose f; by induction on i < 9 such that:
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) if ¢ is odd, f; is a <g-embedding of N; ; into N ;.
(#) if 4 is even, fi_1 is a <g-embedding of Nj ; into Ny ;.

) if ¢ is limit then f; is an isomorphism from N; ; onto N ;.

) fi is increasing continuous with 4.

(v) if i =0 then fy =iday.

For i = 0 let fo = ida. If i = 25 + 2 use “Ny; is a universal extension of Ny 2541
(in €x) and foj41 is a <g-embedding of Ny 9541 into Na 2i41 (by clause (i) applied
to 25 + 1) and Ni2j41 is an amalgamation base”. That is, Ny ; is a <g-extension
of faj4+1(N2j4+1) which is an amalgamation base so f2_j}|—1 can be extended to a <g-
embedding of f[l of Ny,; into Ny ;. For i = 2j+1 use “Ny; is a universal extension
(in €5) of Nog; and f{jl is a <g-embedding of Njo; into Ny o; and Nag; is an
amalgamation base (in £)”.

For ¢ limit let f; = U{f; : j < i}. Clearly f5 is an isomorphism from Ny = Ny
onto Ny o = N so we are done, i.e. clause (a) holds.

As for clause (b), for £ = 1,2 we can assume that (Ny; : ¢ < 9) exemplifies “N,
is (A, 0)-brimmed” so Ny = Ny g and without loss of generality as above (Ng; : ¢ <
0) is <g,-increasing continuous. By the A-JEP there is a pair (g1, N) such that
Nio <¢ N € K, and g¢; is a <g-embedding of N2 into N. As above there is a
<¢-embedding go of N into Ny over Ny . Let fo = (g2 0 gl)_l and continue as in
the proof of clause (a).
3A) Easy, too.

4) We first proved weaker version of (a) and of (b) called (a)~,(b)™ respectively.
Clause (a): Like (a) but we conclude only: M, is universal over M.
So let N satisfy My < N € K and we shall prove that N is <g-embeddable into
M) over My. Let (S; : i < ) be a partition of A such that |S;| = A, min(S;) > ¢
for i < A. We choose a quadruple (N;, f;,a;,j;) by induction on ¢ < A such that:

® (a) N; € KA is <g-increasing continuous.
(b

(¢
(d

) N
)
)
e)
) [
)
)

éz ( ca € 5;) lists the members of IV;.
Ji < A is increasing continuous.

( f, is a <g-embedding of M; into M;.
(f ld]W0

(g fZ is C-increasing continuous.
(h) If i = @ + 1 then a, € rang(f;).

There is no problem to carry the definition (below, proving (a) we give more details)
and necessarily f = U{f; : ¢ < A} is an isomorphism from M), onto Ny := U{N; :
i <A}, s0 f71 ] N is a <g-embedding of N into My over My (as f~1 | N D idyy,),
so we are done.

Clause (b)~: Like clause (b) but we conclude only: M) is universal over M.

Similar to the proof of (a)~ except that we demand j; = 1.

Clause (a): Let My <¢ N € K, and we let (S; : ¢ < A) be a partition of A to
A sets each with A members, ¢ < min(S;). Let My ; = M; for i < X and we choose
(Ms,; : 1 < 0) which is <g-increasing such that My, € &, My o = M7 0, N <¢ M3
and My ;41 € K is <¢-universal over Ms;, possible as we have already proved
clause (a)~ recalling £ has A-amalgamation and the A-JEP.

We shall prove that My, M ) are isomorphic over My = M, o, this clearly
suffices. We choose a quintuple (j;, M3, f1.4, f2.i,a;) by induction on ¢ < X such
that

® (a) j; < A is increasing continuous.
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(b) Ms,; € K, is <¢-increasing continuous.

(¢) feiis a <g-embedding of M, ;, into M, for £ =1,2.

(d) fe, is increasing continuous with i, for £ =1,2.

(e) a; = (a’ : e € 5;) lists the members of Ms ;.

(f) Ife € SZ- then al € rang(fi 2.+1) and al € rang(fs 2:42)-

If we succeed then fp := U{fr; : i < A} is a <¢-embedding of M, » into Ms » :=
Mg = U{M3,; : ¢ < A} and this embedding is onto because a € Mz = for some
i < \a€ Ms,; = forsome i< \ande € Sj,a=a’=a=a. €rang(fret1) =
a € rang(fe). So ffl o fo is an isomorphism from My » onto M; y = M) so as said
above we are done.

Carrying the induction; for i = 0 use “¢ has the A-JEP” for M o, M2 g.

For 4 limit take unions.

Fori = 2¢+1 let Ji = HllIl{j <\ 1] > Joe and (les)’l(ortp(aé, f215(M17i)7 Mgﬂ')) S
Se (M, Z) is realized in M; and continue as in the proof of 1.15(1), so can avoid using
“(fH=2 of a type.

For i = 2e+2, the proof is similar. So My y is (A, c¢f(XA))-brimmed over My o = M
hence also M) being isomorphic to My x over My is (A, c¢f(A))-brimmed over My,
as required.

Clause (b): As in the proof of clause (a) but now j; = i.

5) Easy and not used. (Let (M; : i < 9) witness “M is (A, d)-brimmed”, so M can
be <g-embedded into M;, hence without loss of generality My = M;. Now use F
such that F(M') is a <, -extension of M’ which is <, -universal over it and is an
amalgamation base.)

6) Easy. Ui.a7

Claim 1.18. 1) Assume that t is an AEC, LS(t) < A, £ has A-amalgamation and
is stable in A\, and no M € K is <g-maximal. Then there is a saturated N € Ky+.
Also for every saturated N € Ky+ (in €, above A of course) we can find a <g-
representation N = (N; 1 i < A\T), with N;y1 being (X, cf(N))-brimmed over N; and
Ny being (A, X)-brimmed.

2) If for £ = 1,2 we have N = (Nf :i < AT) as in part (1), then there is an
isomorphism f from N1 onto N? mapping N} onto N? for each i < \*. Moreover,

for any i < AT and isomorphism g from N} onto N? we can find an isomorphism
f from N onto N? extending g and mapping le onto NJ2 for each j € [i, A 7).

3) If N° <; N are both saturated (above \) and are in Ky+ (hence LS(€) < \), then
we can find <g-representation N* of N* as in (1) for £ = 1,2 with N) = N°N N},
(so N? <¢ N}) fori < A*.

4) If M € Ky+ and € has A-amalgamation and is stable in A (and LS(t) < A\),
then for some N € Ky+ saturated (above \) we have M <g N.

Proof. Easy (for (2),(3) using 1.15(6)), e.g.

4) There is a <g-increasing continuous sequence (M; : i < AT) with union M such
that M; € K. Now we choose N; by induction on i < A

(¥) (a) N; € Ky is <g-increasing continuous
(b) Nij1 is (A cf(N))-brimmed over N;
(C) NQ = Mo.
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This is possible by 1.17(1). Then by induction on i < A* we choose a <g-embedding
fi of M; into N;, increasing continuous with 4. For ¢ = 0 let f; = idys,. For ¢ limit
use union.

Lastly, for i = j 4+ 1 use “€ has A-amalgamation” and “N; is universal over IV;”.
Now by renaming without loss of generality fy+ = idy,, and we are done. (Of
course, we have assumed less). 18

You may wonder why in this work we have not restricted ourselves £ to “abstract
elementary class in A” say in §2 below (or in [She01]); by the following facts (mainly
1.24) this is immaterial.

Definition 1.19. 1) We say that £, is a A-abstract elementary class or A-AEC in
short, when:
(a) b= (KN <e, )
(b) Ky is a class of 7-models of cardinality A closed under isomorphism for
some vocabulary 7 = ¢,
(¢) <, a partial order of K}, closed under isomorphisms
(d) axioms (0 and) LILIIL,IV,V of abstract elementary classes (see 1.4) hold

except that in Ax.III we demand § < AT (you can demand this also in
Ax.IV).

2) For an abstract elementary class € let €y = (K, <¢[ K) and similarly £, €<y, €[x
and define (< A\)-AEC and [, p]-AEC, etc.

3) Definitions 1.9, 1.12, 1.14, 1.16 apply to \-AEC ¢,.

2]

Observation 1.20. If ¢! is an AEC with K} # @ then
(A) & is a \-AEC.
(B) if € is a \-AEC and €\ = € then Definitions 1.9, 1.12, 1.14, 1.16, when
applied to &1 (but restricting ourselves to models of cardinality \) and when
applied to €3, are equivalent.

Proof. Just read the definitions. Ui.20

We may wonder

Problem 1.21. : Suppose £! €2 are AEC such that for some A > pu > LS(€!),
LS(#?) and €} = £3. Can we bound the first such X above u? (Well, better bound

than the Lowenheim number of L+ ,+ (second order)).

Observation 1.22. 1) Let ¢ be an AEC with A\ = LS(®) and 1 > A and we define
E>, by: M€ by iff M € K and [[M|| > poand M <e., N if M <¢ N and
| M], | N|| > . Then >, is an AEC with LS(t>,) = u.

2) If &y is a A\-AEC then Observation 1.7 holds when |I| < A.

3) Claims 1.11, 1.17 apply to \-AEC.

Proof. Easy. 0120
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Remark 1.23. Recall if £ is an AEC with Lowenheim-Skolem number A, then every
model of € can be written as a direct limit (by <g) of members of €5 (see 1.8(1)).
Alternating we prove below that given a A-abstract elementary class £y, the class
of direct limits of members of £, is an AEC £"P. We show below (£,)"P = £, hence
€\ determines £> 5.

Lemma 1.24. Suppose £y is a A\-abstract elementary class.
1) The pair (K',<g) is an abstract elementary class with Lowenheim-Skolem
number X\ which we denote also by €"P where we define

K = {M :M is a T¢, -model, and for some directed partial order
I and M = (M : s € I) we have

M:UMS
sel
sel= M, e K,

I):3<t:>M5§EAMt}.

We call such (My : s € I) a witness for M € K', we call it reasonable if |I| < || M]|

M < N iff for some directed partial order J, and
directed I C J and (M, : s € J) we have

M =|JM,N =) M, M, cK, and
sel teJ
J’:S<t:>M5 SE/\ Mt.

We call such I,(My : s € J) witnesses for M <¢ N or say (I,J,(Ms : s € J))

witness M <g N.

2) Moreover, K\ = Ky and <y (which means <¢| K}) is equal to <g, so
(E)x =ty

3) If ¥ is an abstract elementary class satisfying (see 1.22) KY = Ky, <gr|
Ky =<e, and LS(¥") < \ then 1 ¢, =¥

4) If € is an AEC, K C K{ and <¢,=<p/| Ky, then K’ C K" and <p C<p/|
K’ and if LS(¥") < X then equality holds..

Proof. The proof of part (2) is straightforward (recalling 1.7) and part (3) follows
from 1.8 and part (4) is also straightforward hence we concentrate on part (1). So
let us check the axioms one by one.

Ax 0: K’ is a class of T-models, < a two-place relation on K’, both closed under
isomorphisms.
[Why? Trivially by their definitions.]
AxT: If M <& N then M C N.
[Why? trivial.] AxII: My <¢ M; <¢ Ms implies My <p¢ My and M € K' =

M <u M. B
[Why? The second phrase is trivial (as if M = (M, : t € I) witness M € K’

L1 we assume in addition that M € &/ = ||M|| > X then we can show that equality holds.
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then (I,1, M) witness M <y M above). For the first phrase let for £ € {1,2} the
directed partial orders I, C J, and M= (M! : s € Jp) witness My 1 <¢ M, and
let " = (M? : s € I) witness My € K’. Now without loss of generality " is
reasonable, i.e. |[Iy| < || Mo]|, why? by
X, every M € K' has a reasonable witness, in fact, if M = (M, : t € I) is a
witness for M then for some I’ C I of cardinality < ||M|| we have M | I’
is a reasonable witness for M.

[Why? If M = (M, : t € I) is a witness, for each a € M choose t, € T
such that a € My, and let F : [I]<¥ — [ be such that F({t1,...,t,}) is an
upper bound of {t1,...,t,} and let J be the closure of {t, : a € M} under
F;now M | J is a reasonable witness of M € K]

Similarly
Ko if (I,J, (M, : s € J) witness M <y N then for some directed I’ C I,|I'| <
| M| we have (I’, J, (M, : s € J)) witness M <+ N
X3 if I, M = (M : t € J) witness M <y N then for some directed J’ C J we
have ||J'|| < |I| + | N|,I € J' and I, M | J' witness M <p N.
Clearly X; (and KXo, X3) are cases of the LS-argument. We shall find a witness
(I,J,(Ms : s € J)) for My <p My such that (M, : s € I) = (M? : s € Iy) so
I = Iy and |J| < ||Mz]]. This is needed for the proof of Ax III below. Without
loss of generality I7,I> has cardinality < || M|, ||M1]| respectively, by K. Also
without loss of generality M 1, M I I, M 2, M | I are reasonable as by the same
argument we can have |Ji| < ||My|],|J2] < || Mz]| by K.

As (M? : s € Iy) is reasonable, there is a one-to-one function h from Iy into My
(and even Mj); the function h will be used to get that J defined below is directed.
We choose by induction on m < w, for every ¢ € ™(Mas), sets Ioz, I1 ¢, Ioz, J1.z, Jo.z
such that:

®1(a) Iz is a directed subset of I, of cardinality < A for £ € {0,1,2}
(b) Jiz is a directed subset of J; of cardinality < A for ¢ € {1,2}

(0 U MA=( U MFA)NM, for =01

s€lot1e s€Jet1,e
d U M)=(U Mj)nM
s€lo,z s€li z
() U M;= U M
s€Jie s€lz ¢z
(f)ec U mg
seJa e

(g) if d is a permutation of ¢ (i.e., letting m = fg(¢) for some one to one g :
{0,...,m—=1} = {0,...,m—1} we have dy = cy(y)) then Iy = I, g, J;m,c =
Jin.d

(for £ € {0,1,2},m € {1,2})

(h) if d is a subsequence of ¢ (equivalently: an initial segment of some per-

mutation of ¢) then I, ;7 C Ioe, J, g © Jme for £ € {0,1,2},m € {1,2}

(1) if h(s) =cso s € Iy then s € Iy <c>.
There is no problem to carry the definition by LS-argument recalling clauses (a) +
(b) and ||Mf|| =X when f =0As€lpor{ =1As€ Jyor { =2As € Jo. Without
loss of generality I, N“~ (M) = @.
Now let J have as set of elements Ip U {¢ : ¢ a finite sequence from M} ordered
by: JEx<yiff [ Fa<yorazelyyecJ\ly,3Izelyylzr < z]orz,yeJ\I
and z is an initial segment of a permutation of y (or you may identify ¢ with its
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set of permutations). Let I = Ij.

Let M,

Now

()1

be M2 if x € Iy and |J M2 ifxz € J\ I.
s€EJ2

J is a partial order

[Clearly z <; y <; x = x = y, hence it is enough to prove transitivity.
Assume x <; y <; z; if all three are in Iy use “Iy is a partial order”, if
all three are not in J \ Iy, use the definition of the order. As ' <; ¢’ €
Iy = 2/ € Iy without loss of generality = € I,z € J\ Iy. If y € I then (as
y <y z) for some ¢,y <;, ¢y € Iy, but x <;, y (as z,y € Ip,z <; y) hence
r<py €lp,sox<yz Ifyé¢lthen Iy, C I, (by clause (h)) so we
can finish similarly. So we have covered all cases.]

J is directed and I C J is directed

[Let z,y € J and we shall find a common upper bound. If z,y ¢ Iy
their concatenation x"y can serve. If x,y € Iy use “Ij is directed”. If
x € Ip,y € J\ Io, then (h(z)) € J\ Iy and z = y"(h(z)) € J\ Iy is <;
above y (by the choice of <;) and is <j-above z as & € Iy (h(2)) € o= by
clause (i) of ®; so we are done. If x € J\ Iy,y € Jy the dual proof works.
Lastly, I C J as a partial order by the definition of I,J, and I is directed
as Iy is and I = Ip.]
if v € J\ Iy then M, N M, <¢, M, for £=0,1

[Why? Clearly M, N My = (U{M? : t € Ji,})N My = (U{M? : t €
J27w) n Ml) N My = (U{Z\ft2 it e 12)93}) NMy= (U{Mtl it e le}) N My =
U{M} : ¢t € I, ,} by the choice of M2, as My C M, by clause (c) for
¢ =1, by clause (e) and by clause (c) for £ = 0, respectively. Similarly
M, N M; =U{M} :t e Jy,}. Now the sets I . C J; .(C J;) are directed
by <, so by the assumption on (M} : ¢t € J;) and Lemma 1.7 we have
My N My <¢, My N M;. Using Jy we can similarly prove M, N M; <g,
M, N My and trivially M, N My = M,,. As <g, is transitive we are done.]
if x <y y then M, <y, M,

[Why? If 2,y € Iy use the choice of (M? : s € I). If z,y € J\ Iy the
proof is similar to that of (x)3 using Jo. If z € Iy, y € J\ Iy thereis s € I,
such that @ <y, s, hence M, = M? <y, M? and as (M? : t € Iy,) is <e,-
directed clearly M2 <g, U{MP : t € I, } = M,N My and M, N My <¢, M,
by (x)3. By the transitivity of <g, we are done.]
U{MIZIEGI}:U{MSI%EI()}:MO

[Why? Trivially recalling Iy = I and z € I = M, = M?]

My =U{M, :xz € J}

[Why? Trivially as ¢ € M2 C M, for ¢ € “>(My) and t € Iy = M C

My C My C M,]

By (%)1 + (%)2 + ()4 + (*)5 + (*)g we have checked that I, (M, : x € J) witness

My <o
X2

Ax III:

Ms. This completes the proof of AxII, but we also have proved

if M = (M : t € I) is a reasonable witness to M € K’ and M <¢ N € K/,
then there is a witness I’,M’ = (M, :t € J)toM <p N such that
I'=1,M | I =M and M is reasonable and 2 <; yAy € I' = z € I';
canadd M =N =1 =1]

If 6 is a regular cardinal, M; (for i < 0) is <g-increasing and continuous,

then My <¢ |J M; (in particular |J M; € /).

[Why?

i< <0
Let My = |J M;, without loss of generality (M; : i < 6) is not eventually
i<
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constant and so without loss of generality ¢ < 6 = M; # M; 1 hence | M;|| > |il;
(this helps below to get “reasonable”, i.e. |Ip| = ||M;|| for limit 7). We choose by
induction on 7 < 6, a directed partial order I; and My for s € I; such that:
®3(a) (M : s € I;) witness M; € K’

(b) for j <i,I; C I, and (I;,I;, (M, : s € I;)) witness M; <¢ M;

(¢) I; is of cardinality < ||M;]|

(d) f I, Es<tandj<i,tel;thens eI,
For 7 = 0 use the definition of My € K’.
For ¢ limit let I; :== |J I; (and the already defined M,’s) are as required because
M; = U M; and thje<iznduction hypothesis (and [I;| < ||M;]| as we have assumed
above fc;;‘c Jj<i=>M;# M) .
For i = j 4+ 1 use the proof of Ax.II above with M;, M;, M;,(Ms : s € I;) here
serving as Mo, My, My, (M) : s € Ip) there, that is, we use ®; from there. Now for
1=0,(M:s € Ip) witness My € K’ and (I;, Iy, (M : s € Iy)) witness M; <¢ My
for each i < 6.] Axiom IV: Assume 6 is regular and (M; : i < 0) is <g-increasingly

continuous, M € K’ and i < 0 = M; <¢ M and My = |J M; (so My C M). Then

<6
My <e M.

[Why? By the proof of Ax.III there are (M, : s € I,) for i < 0 satisfying clauses
(a),(b),(c) and (d) of ®3 there and without loss of generality I; N0 = &. For each
1 < 0 as M; <p M there are J; and M, for s € J;\ I; such that (I;, J;, (Ms : s € J;))
witnesses it; without loss of generality with (|J I;)"(J; \ I; : i < 0) a sequence

i<0
of pairwise disjoint sets; exist by ®9 above. Let I := |JI;, leti: 1 — 0 be
i<
i(s) = min{i : s € I;} and recall |I| < ||Mpy]|| hence by clause (d) of ®3 we have
s <yt =-1i(s) <i(t) and let h be a one-to-one function from I into My. Without
loss of generality the union below is disjoint and let

(¥)7 J:=1U{(A,S) : A a finite subset of M and S a finite subset of I with a maximal element }.
ordered by: JEz <yiffz,ye [ IExz<yorxzely=(AS) e J\Iand
reSorax=(AYSYH e J\I,y=(A%8%) € J\I,A C A% S C 52 We choose
Ny for y € J as follows: If y € I we let N, = M,. By induction on n < w, if
y = (A,8) € J\ I satisfies n = |A| 4 |S|, we choose the objects N, I, s, J, s for
s € S such that:

®4(a) I, is a directed subset of I, of cardinality < A and s € I,
(b)
(c) s € Ij(s) for s € S (follows from the definition of i(s))
)

I, C Jy, for s € §and for s <; ¢ from S we have I, , C I, and J, s C
Jy’t

(e) if y1 = (A1,51) € J\I,(A41,51) <y (A, S) and s € Sy then

Iy, s ClysyJy, s © Jys
(f) Ny= U M, forany s€ S
tedy,s

(9) A C M, for some t € J, ; for any s € S, hence A C N,,.
No problem to carry the induction and check that (I,J,(N, : y € J)) witness
My <¢ M. Axiom V: Assume Ny <¢ M and N; <¢ M.

Jy,s is a directed subset of Jj(4) of cardinality < A

If NO g Nl, then NO SE’ N]_.
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[Why? Let (Io, Jo, (M? : s € Jo)) witness Ny < M and without loss of general-
ity |Io| < || No|| and hg : Iy — Ng be one-to-one. Let (M} : s € I}) witness Ny € ¢
and without loss of generality I is isomorphic to ([N;]<®°,C) and let h; be an
isomorphism from I; onto ([N;]<®¢, C). Now by induction on n, for s € I, satisfy-
ing n = |[{t : t <y, s}| we choose directed subsets Fy(s), Fi(s) of Iy, I; respectively,
each of cardinality < A such that:

(1) sel; = se Fi(s)and t <j, s = Fy(t) C Fy(s) and Fi(t) C Fi(s)
(1) if s € I then
(o) U{M? :t € Fy(s)} = U{M} : t € Fi(s)} N Ny
(B) r€Ipand t € I and ho(r) € M} = r € Fy(s).
Now letting M2 = U{M} : t € F1(s)} and letting F = F we get:
(iii) t€ L As € F(t)(C Iy) = M? CME
(i

v) F is a function from I; to [Io]=*
(v) for s € I, F(s) is a directed subset of Iy of cardinality < A
(vi) for s € I1, M2 N Ng = U{M? : t € F(s)}
(vig) Iy ):s<t:>F( YC F(t)
(vigi) (MZ:s € I;) witness N1 € K.
As Ny <g M by the proof of Ax.II, i.e., by ®5 above we can find J; extending Iy
and M2 for s € J; \ I; such that (I, J1,(M2 : s € J;)) witnesses N1 <¢ M. We

now prove
X, if r € I,s € Iy and s € F(r) then M? <y, M?.
[Why? As (M :t € Jo), (M2 : t € J1) are both witnesses for M € K’, clearly
for r € I;(C J1) we can find directed J|(r) C Jy of cardinality < A and directed
Ji(r) C Jy of cardinality < A such that r € Jj(r),F(r) C Ji(r) and |J M =
teJi(r)

U M2, call it M.
teJi(r)

Now M; € K} = K, (by part (2) and 1.7) and t € J|(r) = M? <¢, M} (as
£, is a A-abstract elementary class applying the parallel to Observation 1.7, i.e.,
1.22(2)) and similarly t € J{(r) = M? <, M}. Now the s from X, satisfied
s € F(r) C Ji(r) hence M2 C M}! (why? by clause (iii) above s € F(r) is as
required in ;). But above we got MY <¢ M}, M? <¢ M}, so by Ax.V for €5 we
have M? <y M} as required in ;.|

Without loss of generality Ip N [; = @ and define the partial order J with set
of elements [yUT} by J Eax <y iff 2,y € Iy, lo Ex <yorz € ly,y € I and
xeF(y)orx,yeh, Fx<y.

X5 J is a partial order and = <;j yinly = x € Iy (hence z <; y and z € I, =

(VRS Il)

[Why? The second phrase holds by the definition of <;. For J being a partial
order obviously z <;y <jr = x =y, so assume x <; y <; z and we shall prove
x <y z. If z € I then y,z € I; and we use “I; is a partial order”, and if z € I
then z,y € Iy and we can use “Ij is a partial order”. So assume x € Iy, z € I;. If
y € Iy use “F(z) = Fi(z) satisfies clause (i) above. If y € I, use clause (vii) above
with (y, z) here standing for (s,t) there.]

K J is directed.
[Why? Note that Iy, I; are directed, z <; y € Ip = x € Iy and (Vx € Iy)(Jy €
I)[x <, y] because given r € Iy, ho(r) € No hence ho(r) belongs to M} for some
t € I, and so by clause (i) we have ¢ € F(t) hence by clause (i¢)(3) above r € Fy(t).

Together this is easy.]
Define M, for s € J as M? if s € Iy and as M2 if s € I
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X, M, € K, for s € J.
[Why? Obvious.]
g if 2 <y y then M, <, M,.
[Why? If y € Iy (hence x € I) use (M : t € Iy) is a witness for Ng € K'. If z € Iy
(hence y € I) use clause (viii) above; i.e. (M2 :s € I1) is a witness for N; € K'.]
Ky U{M,:z€J}=N.
[Why? As (Vx € Ip)(3y € ©I)[z < y], see the proof of Ky recalling X we have
U{M, : 2 € J} = U{M, : x € I} but the latter is | J{M2 : x € I} which is equal
to NQ]
X0 Io C J is directed and | J{M, : x € J} = Nj.
[Why? Obvious.]
Together (Ip, J, (M : s € J)) witnesses Ny <y N; are as required.]

Axiom VI: LS(¥') = A.
[Why? Let M € K’ and A C M with |A| + XA < p < ||M||, and let (M, : s € J)
witness M € K'. As ||M]| > p we can choose a directed I C J of cardinality <

such that A C M’ := |J M, and so (I, J, (M, : s € J)) witnesses M’ <y M, so as
sel
A C M’ and ||M’|| <|A| + p; this is more than enough.] O1.24

We may like to use €<, instead of £5; no need as essentially £ consists of two parts
€<, and €5, which have just to agree in A. That is,

Claim 1.25. Assume
(a) €' ds an abstract elementary class with A = LS(¢'), K* = K1,

(b) €2, is a (< A)-abstract elementary class (defined as in 1.19(1) with the
obvious changes so M € 2, = ||M|| < X and in Aziom III, ||JM;| < X

is required)
(c) K/Q\ = K)l\ and <g2| KE\ =<p| K)l\
(d) we define € as follows: K = K*UK? M <¢g N iff M <¢2 N or M <g N
or for some M', M <g M’ <@ N.
Then t is an abstract elementary class and LS(€) = LS(€2) which trivially is < \.

Proof. Straight. E.g.
Axiom V: We shall use freely
(*) ES/\ =2 and EZA = ¢l
So assume Ny <¢ M, Ny <¢ M, Ny C Ny.

Now if || Np|| > A use assumption (a), so we can assume || Ng|| < A. If || M| < A
we can use assumption (b) so we can assume | M|| > A and by the definition of <,
there is M}, € K} = K3 such that Ny <g M} <@ M. First assume |[Ni| < A,
so we can find M{ € K} such that Ny < M| <a M (why? if Ny € K.y, by
the definition of <, and if N; € K just choose M] = N;). Now by assumption
(a) we can find M” € K} such that MU M{ C M"” <u M, hence by assumption
(a) (i.e. Ax.V for ') we have M} <¢p M, M; <u M, so by assumption (c) we
have M{ <ex M", M] <e2 M". As Ny <p2 M} <42 M" € K<, by assumption
(b) we have Ny <gz M”, and similarly we have N1 <y M"”. So Ny C Ny, Ny <z
M" Ny <g2 M’ so by assumption (b) we have Ny <gz Nj hence Ny <¢ Nj.

We are left with the case |[N1]| > A; by assumption (a) there is Ni € K
such that Ng € N{ <u N;. By assumption (a) we have Ni <z M, so by the
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previous paragraph we get Ny <g2 N7, together with the previous sentence we have
No <g2 N{ <1 N; so by the definition of <, we are done. .05

Recall

Definition 1.26. If M € K, is locally superlimit or just pseudo superlimit let
Koy = KM = (N € Ky : N 2= MY}, ey = €M = (K, <el KM and let ¢
be the £ we get in 1.24(1) for € = £ = {’,[)\M]. We may write £,[M], ¢[M].

Trivially but still important is showing that assuming categoricity in one A is a not
so strong assumption.

Claim 1.27. 1) If ¢t is an A\-AEC, M € K, is locally superlimit or just pseudo
superlimit then €y is a \-AEC which is categorical (i.e. categorical in \).

2) Assume € is an AEC and M € ) is not <¢- maximal. M is pseudo superlimit (in
€, i.e., in ) iff Eag is a \-AEC which is categorical zﬁ{?[M] is an AEC, categorical
in A and <gann=<g] KM,

3) In (1) and (2), LS(¢M) = X\ = min{||N|| : N € €M},

Proof. Straightforward. 0107

Exercise 1.28. Assume ¢ is a A-AEC with amalgamation and stability in A. Then
for every My € Ky, p1 € Se(M7) we can find My € K and minimal py € Sg(Ms)
such that My <¢ Ms, p1 = p2 | M;.
[Hint: See [She09c, 2b.4](2).]
Ezercise 1.29. 1) Any <, -embedding fo of M{} into MZ can be extended to an
isomorphism f from M} onto M? such that f(Ms,) <e, M3, f~H (M3, 1) <e,
M3, for every a < 4, provided that
® (a) £y is a A-AEC with amalgamation and J is a limit ordinal < A\*.

(b) (MY : a <§) is <g,-increasing continuous for £ =1, 2.

(c) M! is an amalgamation base in £y (for @ < § and ¢ = 1,2).

(d) M
2) Write the axioms of “a A-AEC” which are used.
3) For 5,0 as in (a) above, for any M € K, there is N € K which is (A, cf(d))-
brimmed over it.
[Hint: Should be easy; is similar to 1.17 (or 1.18).]

41 is <g,-universal extension of M{ for a <4, £ =1,2.
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§ 2. GOOD FRAMES

We first present our central definition: good A-frame (in Definition 2.1). We are
given the relation “p € S(N) does not fork over M <, N when p is basic” (by
the basic relations and axioms) so it is natural to look at how well we can “lift”
the definition of non-forking to models of cardinality A and later to non-forking of
models (and types over them) in cardinalities > A. Unlike the lifting of »-AEC
in Lemma 1.24, life is not so easy. We define in 2.4, 2.5, 2.7 and we prove basic
properties in 2.6, 2.8, 2.10 and less obvious ones in 2.9, 2.11, 2.12. This should
serve as a reasonable exercise in the meaning of good frames; however, the lifting,
in general, does not give good p-frames for y > A. There may be no M € K, at all
and/or amalgamation may fail. Also the existence and uniqueness of non-forking
types is problematic. We do not give up and will return to the lifting problem,
under additional assumptions in [She09e, §12] and [SV].

In 2.16 (recalling 1.27) we show that the case “€° categorical in A” is not so rare
among good A-frames; in fact if there is a superlimit model in A\ we can restrict €y
to it. So in a sense superstability and categoricity are close, a point which does not
appear in first order model theory, but if T is a complete first order superstable
theory and X > 2!7! then the class ¢ = €7\ of A-saturated models of T is in general
not an elementary class (though is a PC) class) but is an AEC categorical in A
though in general not in A™ and for some good A-frame s, K, = €7 ,. How justified
is our restriction here to something like “the A-saturated model”? It is O.K. for
our test problems but more so it is justified as our approach is to first analyze the
quite saturated models.

Last but not least in 2.18 we show that one of the axioms from 2.1, i.e., (E)(i),
follows from the rest in our present definition; additional implications are in Claims
2.19, 2.21. Later “Ax(X)(y)” will mean (X)(y) from Definition 2.1.

Recall that good A-frame is intended to be a parallel to (bare bones) superstable
elementary class stable in \; here we restrict ourselves to models of cardinality \.

Definition 2.1. We say s = (&, (|J,S¥) = (&, ), SP*) is a good frame in A or a
by 5

good A-frame (A may be omitted when its value is clear, note that A = A; = A(s)
is determined by s and we may write Ss(M) instead of Ses (M) and ortp, (a, M, N)
instead of ortpys (a, M, N) when M € K5, N € K*; we may write ortp(a, M, N) for
ortpgs (a, M, N)) when the following conditions hold:

(A) t= (K, <) is an abstract elementary class also denoted by ¢[s], the Lowenheim
Skolem number of ¢, being < A (see Definition 1.4); there is no harm in
assuming M € K = ||[M| > A; let & = € and <,=<;[ K, and let
£, = (K, <s) and £[s] = €° so we may write s = (£, [|J, S>)

5

(B) € has a superlimit model in A which '? is not <-maximal.
(C) t, has the amalgamation property, the JEP (joint embedding property),
and has no <g-maximal member.

(D)(a) 8P = 8P (the class of basic types for £)) is included in
U{S(M) : M € K»} and is closed under isomorphisms including automor-
phisms; for M € K let SP*(M) = 8> N S(M); no harm in allowing types
of finite sequences, i.e., replacing S(M) by S<¥(M), (8¥(M)) is different
as being new (= non-algebraic) is not preserved under increasing unions).

(b) if p € SP5(M), then p is non-algebraic (i.e. not realized by any a € M).

12in fact, the “is not <g-maximal” follows by (C)
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(density)
if M <y N are from K, and M # N, then for some a € N \ M we have
ortp(a, M,N) € 8"
[intention: examples are: minimal types in [She01], i.e. [She09¢],
regular types for superstable first order (= elementary) classes].

bs-stability
SP$(M) has cardinality < A for M € K.

\J denoted also by |J or just ||J, is a four place relation !
5

3 called non-
A
forking with ||J(Mo, M1, a, M3) implying My <¢ M; <¢ M3 are from Ky, a €

M3\ M; and ortp(a, My, M3) € S”(Mj) and
ortp(a, My, M3) € SP$(M;). Also (|J is preserved under isomorphisms and

we demand: if My = M; <¢ M3 both in K and a € M3, then:
(Mo, My, a, M3) is equivalent to “ortp(a, My, M3) € SP$(My)”. The asser-

M-
tion (|J(Mo, My, a, M3) is also written as M, UJS a and also as “ortp(a, My, M3)
My
does not fork over My (inside M3)” (this is justified by clause (b) below).
So ortp(a, My, M3) forks over My (where My <; My <; M3,a € Ms) is just
the negation
[Explanation: The intention is to axiomatize non-forking of types, but
we already commit ourselves to dealing with basic types only. Note that in
[She01], i.e. [She09c] we know something on minimal types but other types
are something else.]

(monotonicity):
if My <e M(/) <e M{ <p My <¢ M3 <; Mé,M{ @] {a} - Mé/ <e Mé all of
them in Ky, then (|J(Mo, My, a, M3) = \J(M{, M, a, M%) and ([J(M{), M7, a, M) =

WM, M{,a, M¥), so it is legitimate to just say “ortp(a, My, M3) does not

fork over My”.

[Explanation: non-forking is preserved by decreasing the type, increasing
the basis (= the set over which it does not fork) and increasing or decreasing
the model inside which all this occurs, i.e. where the type is computed. The
same holds for stable theories only here we restrict ourselves to “legitimate”,
i.e., basic types. But note that here the “restriction of ortp(a, M7, M3) to
M is basic” is a worthwhile information.]

(local character):
if (M;:i<6+ 1) is <g-increasing continuous in €y,a € Ms,1 and
ortp(a, Ms, Ms,1) € S”(Ms) then for every i < 6 large enough ortp(a, M, Ms1)
does not fork over M;.
[Explanation: This is a replacement for superstability which says that:
if p € S(A) then there is a finite B C A such that p does not fork over B.]
(transitivity):
if My <¢ M) <s M} <s M5 are from Ky and a € M3 and ortp(a, M{/, M3)
does not fork over M) and ortp(a, M}, M3) does not fork over My (all models

are in K, of course, and necessarily the three relevant types are in SP®),
then ortp(a, M/, M3) does not fork over My

Bwe tend to forget to write the X, this is justified by 2.6(2), and see Definition 2.5
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(e) uniqueness:
if p,q € SP*(M;) do not fork over My <¢ M; (all in K)) and
p | My=gq| My then p=gq
(f) symmetry:
if My <g M3 are in £, and for £ = 1,2 we have
ag € Mz and ortp(ag, My, M3) € SP5(M), then the following are equivalent:

() there are My, M4 in K such that My <¢ My <, Mj,
a1 € My, M3 <y M} and ortp(ag, M1, M3) does not fork over My
(8) there are My, M} in K such that My <, My <, Mj,
as € Mo, M3 <¢ M4 and ortp(ai, Ma, M}) does not fork over M.
[Explanation: this is a replacement to “ortp(ai, MoU{az}, M3) forks over
My iff ortp(az, Mo U {a1}, M3) forks over My” which is not well defined in
our context.]

(g9) extension existence:
if M <¢ N are from K, and p € S"(M) then some q € S"(N) does not
fork over M and extends p

(h) continuity:
if (M; ;i < §) is <p-increasing continuous, all in K (recall § is always a
limit ordinal), p € S(Ms) and i < § = p | M; € SP*(M;) does not fork over
My then p € SP5(M;) and moreover p does not fork over M.

[Explanation: This is a replacement to: for an increasing sequence of

types which do not fork over A, the union does not fork over A; equivalently
if p forks over A then some finite subtype does.]

(7) non-forking amalgamation:
if for £ = 1,2, My <, My are from Ky,ap € M, \ My, ortp(ag, Mo, My) €
Sb(My), then we can find f, fo, M3 satisfying My < M3z € K such that
for £ = 1,2 we have f; is a <g-embedding of M, into M3 over My and
ortp(fe(ae), fs—e(Ms—g), M3) does not fork over My for £ =1,2.
[Explanation: This strengthens clause (g), (existence) saying we can do
it twice so close to (f), symmetry, but see 2.18.]

Discussion 2.2. : 0) On connections between the axioms see 2.18, 2.19, 2.21.

1) What justifies the choice of the good A-frame as a parallel to (bare bones)
superstability? Mostly starting from assumptions on few models around A in the
AEC ¢ and reasonable, “semi ZFC” set theoretic assumptions (e.g. involving cate-
goricity and weak cases of G.C.H., see §3) we can prove that, essentially, for some
\JJ, S the demands in Definition 2.1 hold. So here we shall get (i.e., applying our

general theorem to the case of 3.5) an alternative proof of the main theorem of
[She83al, [She83b] in a local version, i.e., dealing with few cardinals rather than
having to deal with all the cardinals A\, AT}, A2, ... AT" as in [She83a], [She83b]
in an inductive proof. That is, in [She83b], we get dichotomies by the omitting type
theorem for countable models (and theories). So problems on X,, are “translated”
down to N, _; (increasing the complexity) till we arrive to Ry and then “translated”
back. Hence it is important there to deal with Ny, ..., X, together. Here our A may
not have special helpful properties, so if we succeed to prove the relevant claims
then they apply to AT, too. There are advantages to being poor.
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2) Of course, we may just point out that the axioms seem reasonable and that
eventually we can say much more.

3) We may consider weakening bs-stability (i.e., Ax(D)(d) in Definition 2.1) to
M € Ky = |SP(M)| < A, we have not looked into it here; Jarden-Shelah [JS13]
will; actually [She09a] deals in a limited way with this in a considerably more
restricted framework.

4) On stability in A and existence of (A, 9)-brimmed extensions see 4.2.

From the rest of this section we shall use mainly the defintion of Ki’bs in Def-
inition 2.4(3), also 2.23 (restricting ourselves to a superlimit). We sometimes use
implications among the axioms (in 2.18 - 2.21). The rest is, for now an exercise to
familiarize the reader with A-frames, in particular (2.3-2.16) to see what occurs to
non-forking and basic types in cardinals > A. This is easy (but see below). For this
we first present the basic definitions.

Convention 2.3. 1) We fix 5, a good A-frame so K = K%, 8P = SPs.
2) By M € K we mean M € K>, if not said otherwise.

We lift the properties to £>, by reflecting to the situation in K. But do not
be too excited: the good properties do not lift automatically, we shall be working
on that later (under additional assumptions). Of course, from the definition below

later we shall use mainly K> = Ki’bs.

Definition 2.4. 1)
K3bs = K;fs = {(M7 N,a) :M <¢ N,a € N\ M and there is M’ <; M

satisfying M’ € K, such that for every M" € K, we have:
[M' <¢ M" <¢ M = ortp(a, M",N) € S**(M")

does not fork over M']; equivalently [M' <, M" <y M

and M"” <, N” <¢ N and N" € K, and a € N”

:UJ(M/,M",a,N”)]}.
A

2) K25 = K2 o= {(M,N,a) € K3° : M,N € £}

3) K™ = Ki’fz; and let K3 = K3 used mainly for 4 = X; and ngbﬂ is

defined naturally.

Definition 2.5. We define ||J (Mo, M1, a, M3) (rather than (|J) as follows: it holds
< 00 A
iff My <¢ My <¢ M3 are from K (not necessarily K), a € M3\ M; and there is
M, <¢ My which belongs to K satisfying: if M{j <¢ M, <, My, M| € K,
M U{a} C M} <¢ M3 and M} € K then ([J(M{, M1, a, M}).
A

We now check that |]J behaves correctly when restricted to K.
< 00

Claim 2.6. 1) Assume M <¢ N are from Ky and a € N. Then (M,N,a) € K2
iff ortp(a, M, N) € SP*(M).
2) Assume My, My, M5 € Ky and a € M3. Then ) (Mo, M1,a, M3) iff

< 00 o
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WMo, My, a, Ms).

A
3) Assume M <¢ Ny <¢ Ny and a € Ny. Then
(M,Ni,a) € K3 & (M, Na,a) € K3°.
4) Assume My <¢ My <¢ M3 <¢ M5 and a € M3 then: ||J (Mo, My,a, M3) iff
< 00 o
LU (M07M1aa7M§<)'

< 00

Proof. 1) First assume ortp(a, M, N) € SP*(M) and check the definition of (M, N, a) €
K3Ps, Clearly M <¢ N,a € N and a € N \ M; we have to find M’ as required in
Definition 2.4(1); we let M’ = M, so M’ <, M, M’ € K and

M < M'<¢gMand M" € Kx= M"=M
= ortpy, (a, M", N) = ortp,, (a, M,N) € SX*(M) = S>*(M")
so we are done.

Second, assume (M, N,a) € K% so there is M’ <¢ M as asserted in the defini-
tion 2.4(1) of K38 so (VM")[M' <¢ M" <¢ M and M" € Ky = ortp(a, M",N) €
SP5(M")] in particular this holds for M” = M and we get ortp(a, M, N) € S(M)
as required.

2) First assume ||J (Mo, M1, a, M3).
< 00
So there is M|, as required in Definition 2.5; this means

Mé € K/\,Mé <¢ My and

(VM| € Ky) (VM4 € Kx)[M} <¢ M} < My and M U {a} C M} <¢ Ms
— (Mg, My, a, M3)].
A

In particular, we can choose M| = My, M} = Mj so the antecedent holds hence
(J(Mg, M, a, M5) which means ||J(M{, M1, a, M3) and by clause (E)(b) of Definition
A

A
2.1, (Mo, My, a, M3) holds, as required.
A
Second assume ||J(My, M1,a, M3). So in Definition 2.5 the demands M, <
A

M; <¢ Ms,a € M3\ M; hold by clause (E)(a) of Definition 2.1; and we choose
M| as My; clearly M) € Ky and M| <¢ My. Now suppose M} <¢ M| <
My and M| € Ky,M; U {a} <¢ Mj < Ms; by clause (E)(b) of Definition 2.1
we have (|J(M{, M7, a, M}); so M, is as required so really ||J (Mo, M1,a, Ms).
A < o0

3) We prove something stronger: for any M’ € € which is <5 M, M’ witnesses
(M, Ny,a) € Kb iff M’ witnesses (M, No,a) € K*P® (of course, witness means:
as required in Definition 2.4). So we have to check the statement there for every
M" € K, such that M’ <, M"” < M. The equivalence holds because for every
M" <, M, M" € K, we have ortp(a, M, Ny1) = ortp(a, M", N3), by 1.11(2), more
transparent as €, has the amalgamation property (by clause (C) of Definition 2.1)
and so one is “basic” iff the other is by clause (E)(b) of Definition 2.1.

4) The direction < is because if M{) witness ||J (Mo, M1, a, M]) (see Definition

< o0
2.5), then it witnesses ||J (Mo, M1, a, M3) as there are just fewer pairs (M7, M3)
< o0
to consider. For the direction = the demands My < My <¢ M3,a € M3\ My, of

course, hold and let M/ be as required in the definition of ||J (Mg, My, a, Ms); let
< o0
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M} <e¢ M{ <¢ My, M{U{a} C M} < Mj, M} € K). As A > LS(£) we can find

My <¢ Mj such that M{ U {a} C My € K, and then find M3’ <, M3 such that

M5 UMy C My € K. So by the choice of M| and M4 clearly (J(M{, M1, a, M)
A

and by clause (E)(b) of Definition 2.1 we have
WMo, My, a, M) < (Mg, My, a, My") < (Mg, My, a, M)
A A A

(note that we know the left statement and need the right statement) so M is as

required to complete the checking of ||J (Mo, M1,a, M3). Os6
< o0

We extend the definition of SP*(M) from M € K to arbitrary M € K.
Definition 2.7. 1) For M € K we let

SP(M) = 8%, (M) = {p € S(M) : for some N and a,

p = ortp(a, M, N) and (M, N,a) € Kifs}

(for M € K, we get the old definition by 2.6(1); note that as we do not have

amalgamation (in general) the meaning of types is more delicate. Not so in €, as
in a good A-frame we have amalgamation in €5 but not necessarily in £-).

2) We say that p € Sgsﬁ(Ml) does not fork over My <g M if for some Ms,a we

have p = ortpy(a, M1, M3) and U (Mo, M1,a,Ms). (Again, for M € K, this is
< o0

equivalent to the old definition by 2.6).

3) For M € K let £3; be the following two-place relation on S(M) : p1E3p2 iff

D1,p2 € SbS(M) and lfpg = Ortp(a€7M7 M*)?N <¢ MaN S K)x then b1 { N = D2 r

N. Let £, = £2°) | 8bs(M).

4) tis (A, p)-local if every M € ¢, is A-local which means that €3, is equality;
let (s, p)-local means (As, p)-local. Though we will prove below some nice things,

having the extension property is more problematic. We may define “the extension”
in a formal way, for M € K< but then it is not clear if it is realized in any <g-
extension of M. Similarly for the uniqueness property. That is, assume My <g
M <¢ Ny and ay € Ny \ M, and M, € ¢; and ortp(as, M, Ny) does not fork over
My for £ = 1,2 and ortp(ay, My, N1) = ortp(az, My, N1). Now does it follow that
ortp(ai, M, N1) = ortp(az, M, N3)? This requires the existence of some form of
amalgamation in £, which we are not justified in assuming. So we may prefer to
define SP*(M) “formally”, the set of stationarization of p € SP$(My), My € &, see
[SV]. We now note that in definition 2.7 “some” can be replaced by “every”.

Fact 2.8. 1) For M € K
SESS(M) = {p € S (M) : for every N, a
we have: if M <; N,a € N\ M and

p = ortpg(a, M, N) then (M, N,a) € K;ES}.
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2) The type p € S¢s(M1) does not fork over My <¢ M; iff for every a, M3

satisfying M; <¢ M3 € K,a € M3\ M; and p = ortpe[s](li,Mg) we have
U (Mo, My, a, Ms).

< o0

3) (M,N,a) € Ki’ss is preserved by isomorphisms.

4) If M <¢ Ny, ag_e N¢\ M for ¢ = 1,2 and ortp(ai, M, N1)E3 0rtp(as, M, N2) then

(M, N1, a1) € K30° & (M, Ny, a2) € K3,

5) €3, is an equivalence relation on SEZ(M) and if p,q € Sgsﬁ (M) do not fork over

N e Kyso N <¢ M then p€3,q< (p | N=¢q [ N).

Proof. 1) By 2.6(3) and the definition of type.

2) By 2.6(4) and the definition of type.

3) Easy.

4) Enough to deal with the case (M, Ny, a1)E3}, (M, Na,as) or (by (3)) even a3 =
as, N1 <¢ Ns. This is easy.

5) Easy, too. Ua.s

We can also get that there are enough basic types, as follows:

Claim 2.9. If M <y N and M # N, then for some a € N \ M we have
ortpg(a, M, N) € S"(M).

Proof. Suppose not. So as we are assuming K = K>, by clause (D)(c) of Definition
2.1, necessarily ||N|| > A. If |M|| = A < || N|| choose N’ satisfying M <¢ N' <¢ N,
N’ € K and by clause (D)(c) of Definition 2.1 choose a* € N’ \ M such that
ortp,(a*, M, N') € SP*(M). So we can assume | M| > ); choose a* € N\ M. We
choose M;, N;, M; . by induction on i < w (for ¢ € N; \ M;) such that:

(a) M; <¢ M is <g-increasing.

) M; € K

) N; <¢ N is <g-increasing.

) N; € K,

e) a* € Ny

) M; <¢ N;

) If ¢ € N; \ M, ortp,(c, M;, N) € SP*(M;) and there is M’ € K such that
M; <¢ M' <¢ M and ortp,(c, M’, N) forks over M; then M, . satisfies this,
otherwise M; . = M;

(h) M;y4q includes the set |J M, .U (N; N M).
c€EN;\M
There is no problem to carry the definition; in stage 7 4+ 1 first choose M; . for
¢ € N; \ M then choose M, ; and lastly choose N;;1. Let M* = |J M; and
N* = |J N;. Tt is easy to check that: )
i<w
(1) M; <¢ M* <¢ M fori <w
(by clause (a))
(i) M* € K,
(by clause (i) we have M* € K and ||M*|| = X by the choice of M* and
clause (b))
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(iii) N; <¢ N* <¢ N
(by clause (c))
(iv) N* € Ky
(by clause (iii) we have N* € K and |[N*|| = X by the choice of N* and
clause (d))
(v) M; <e¢ M* <¢g N* <¢ N
(by clauses (a) + (f) + (iii) we have M; <¢ N* hence by clause (a) and the
choice of M* we have M* <; N* and N* <; N by clause (iii))
(vi) M*=N*NM
(by clauses (f) + (h) and the choices of M*, N*)
(vii) M* £ N*
(asa* € N\ M and a* € Ny < N* <¢; N and M* = N* N M,
they hold by the choice of a*, clause (e), clause (iii), clause (iii) and clause
(vi) respectively)
(viii) there is b* € N* \ M* such that ortp(b*, M*, N*) € SP(M*)
[why? by clause (v) and (viii) recalling Definition 2.1 clause (D)(c) (den-
sity)]
(iz) for some i < w we have ([J(M;, M*,b*, N*), so

ortp(b*, M*, N*) € Sbs(M*) and ortp,(b*, M;, N*) € S5(M;) for j €
[i,w)

[why? by Definition 2.1 clause (E)(c) (local character) applied to the
sequence (M, : n < w)"(M*, N*) and the element b*, using of course
(E)(a) of Definition 2.1 and clause (viii)]

(x) W(M;, M p-, b, N¥)
[why? by clause (ix) and Definition 2.1(F)(b) (monotonicity) as
M; <¢ My <¢ Mi+1 <¢ M* by clause (g) in the construction]
(z1) if M; <¢ M <¢ M and M'U{b*} C N’ <¢ N and M’ € K\, N’ € K then
W(M;, M’ b*, N")
[why? by clause (x) and clause (g) in the construction.]
So we are done. oo

Claim 2.10. If M <{ N,a € N\ M, and ortp(a, M,N) € SESE(M) then for some
My <¢ M we have

(A) My € Ky
(B) ortp(a, My, N) € Sb(My)
(C) If Mg <¢ M’ <¢ M, then ortp(a, M', N) € SP3(M") does not fork over M.

Proof. Easy by now. Oa.10

Claim 2.11. 1) Assume My <; My and p € Sg(Ms). Then p € SEZ(MQ) and p
does not fork over My iff for some N1 <y My, N1 € K\ and p does not fork over
Ny iff for some Ny <¢ ]TL,Nl € K and we have (VN)[N1 <¢ N <y M3 and N €
Ky =p| N € S*(N)and (p | N does not fork over Ny)|; we call such Ny a
witness, so every Ni € Ky, N1 <¢ Nj < M is a witness, too.

2) Assume M* € K and p € Se(M™).

Then: p € S (M*) iff for some N* <¢ M* we have N* € Kx,p | N* € S"(N*)
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and (VN € Ky)(N* <¢ N <¢ M* = p | N € S"*(N) and does not fork over N*)
(we say such N* is a witness, so any N' € Ky, N* <¢ N’ <¢; M is a witness, too).
3) (Monotonicity)

If My <¢ M{ <¢ M}, <¢ My and p € Sgsﬁ(Mg) does not fork over My, then

p| Me Sgi(Mé) and it does not fork over Mj.

4) (Transitivity)

If My <¢ My <¢ My and p € Sgss(Mg) does not fork over My and p [ My does not
fork over My, then p does not fork over My.

5) (Local character) If (M; : i < 6+ 1) is <g-increasing continuous and a € Mgy
and ortpg(a, Mg, Msy1) € S5, (Ms) then for some i < § we have ortpy(a, My, Msi1)
does not fork over M;. -

6) Assume that (M; : i < §+ 1) is <g-increasing, p € S(Ms), and for every i <
we have that p [ M; € SESS(MZ) does not fork over My. Then p € Sgss(Mg) and p
does not fork over Mjy.

Proof. 1), 2) Check the definitions.

3)Aspe Sgss (Ms) does not fork over My, there is Ny € K which witnesses it.
This same N; witnesses that p | M) does not fork over M.

4) Let Ny <¢ M witness that p [ M; does not fork over My (in particular Ny € K));
let N1 <¢ M; witness that p does not fork over M; (so in particular Ny € Ky). Let
us show that Ny witnesses p does not fork over My, so let N € K be such that
Ny <¢ N <¢ M5 and we should just prove that p | N does not fork over Ny. We
can find N’ < M;, N’ € K such that Nyg U N; C N’, we can also find N” <; M,
satisfying N” € K such that N'UN C N”. As N; witnesses that p does not fork
over My, clearly p | N” € SP(N"") does not fork over Ny, hence by monotonicity
does not fork over N’. As Ny witnesses p | M; does not fork over My, clearly p [ N’
belongs to SP*(N’) and does not fork over Ny, so by transitivity (in €5) we know
that p [ N” does not fork over Ny; hence by monotonicity p | N does not fork over
No.

5) Let p = ortpy(a, Ms, Msy1) and let N* <; Ms witness p € S*(M;s). Assume
toward contradiction that the conclusion fails. Without loss of generality cf(d) = 4.

Case 0: ||M;s|| < M= As).
Trivial.

Case 1: 6 < AT, || Ms|| > A
As || Ms]|| > A, for some 4, | M;|| > A so without loss of generality i < 6 = ||M;]| >
A. We choose by induction on i < ¢, models N;, N/ such that:

N; € K,
N; <¢ M; (hence N; <¢ M; for j € [i,0))
) N; is <g-increasing continuous
N/ € K),N* <¢ N},
N; <¢ Nj <¢ Ms,
7 is <g-increasing continuous
I N/ forks over NV; when ¢ # 0 for simplicity
N;i UU;j<;i(Nj N Mit1) € Niya.
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No problem to carry the induction, but we give details.

First, if ¢« = 0 trivial. Second let ¢ be a limit ordinal.

Let N; = U{N; : j < i}, now N; <¢ M; by clauses (8) + (v) and ¢ being AEC
and ||N;|| = X by clause (), as i < § < AT; so clauses («), (3), () hold. Next, let
N; = U{N} : j < i} and similarly clauses (), (¢), () hold. Lastly, we shall prove
clause () and assume toward contradiction that it fails; so p [ N/ does not fork
over N; in particular p | N; € SP%(V;) hence for some j < i the type p | N/ does
not fork over N; <¢ N;, (by (E)(c) of Definition 2.1) hence by transitivity (for £,),
p | Ni does not fork over N; hence by monotonicity p [ N;j does not fork over N;
(see (E)(b) of Definition 2.1) contradicting the induction hypothesis.

Lastly, clause (6) is vacuous.

Third assume ¢ = j + 1, so first choose N; satisfying clause (6) (with j,i here
standing for 4,7 + 1 there), and («), (8), (7); this is possible by the L.S. property.
Now N; cannot witness “p does not fork over M;” hence for some N; € K we have
N; <¢ Nf <¢ Ms and p | N} forks over N;; again by L.S. choose N/ € K such
that N <¢ Ms and N* U N; U N U N/ C N/, easily (N;, N) are as required.

Let N5 = |J N, so by clause (), (y) we have N5 <; Ms and by clause (),

<8

as § < AT we have N5 € K and by clauses (§) + () in the construction we have
i<0= N =U{N/NM;ji,:j€li,6)} €N so by clause (§), N* <¢ Ny <¢ N;.
Hence by the choice of N*,p [ N5 € S?*(Ns) and it does not fork over N*. Now as
p | Ns € SP5(Ns) by local character, i.e., clause (E)(c) of Definition 2.1, for some
i < &,p | Ns does not fork over N; (so p [ N; € SP5(NV;)). Now N; <¢ N/ <¢ M
and by clause (#) of the construction N/ C Ns hence N; <¢ N! <¢ N; hence by
monotonicity of non-forking (i.e. clause (E)(b) of Definition 2.1), p | N} € S*(N;)
does not fork over N;. But this contradicts the choice of N/ (i.e., clause (n) of the
construction).

Case 2: § = cf(d) > A

Recall that N* < Ms, N* is from Ky and N* < N <¢ Ms and N € K =

p | N € SH(N). Now as § = cf(6) > A > |[N*| clearly for some i < § we
have N* C M; hence N* <y M; (hence i < j <& = p | M; € 8%,(M;)), and N*
witnesses that p € S (Mjs) does not fork over M; so we are clearly done.

6) Let No € Ky, No <¢ My witness p [ My € S (Mp). By the proof of part (4)
clearly i < § and Ny <¢ N € K and N <¢ M; = p | N does not fork over Ny. If
cf(d) > A we are done, so assume cf(d) < A. Let Ny < N* € K and N* <; Ms,
and we shall prove that p [ N* does not fork over Ny, this clearly suffices. As
in Case 1 in the proof of part (5) we can find N; <; M; for ¢ € (0,6) such that
(N; : i < §) is <g-increasing with 4, each N; belongs to €y and N* N M; C N4,
hence N* C N5 := |J N;. Now N; <¢ Ms and as said as i < & = p | N; € S2.(V;)
i< =
does not fork over 7\f0 hence p [ Ns does not fork over Ny and by monotonicity
p [ N* does not fork over Ny, as required. s 11

Lemma 2.12. If p = cf(pu) > X and M <¢ N are in K, then we can find <,-
representations M, N of M, N respectively such that:

(1) NyNM = M; fori<p
(i) ifi <j < u and a € N; then
(a) ortp(a, My, N) € 8% (M;) < ortp(a, M;, N) € S%5,(M;)
& ortp(a, M, N) does not fork over M;
< ortp(a, M;, N) is a non-forking extension of ortp(a, M;, N)
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(b) M; <¢ N; <¢ N; and M; <¢ M; <¢ N;
(and obviously M; <¢ N; and M; <¢ M, M; <¢ N,N; <¢ N ).

Remark 2.13. In fact for any representations M, N of M, N respectively, for some
club E of p the sequences M [ E, N | E are as above.

Proof. Let M be a <g-representation of M. For a € N we define S, = {a < p :
ortp(a, My, N) € S (M,)}. Clearly if § € S, is a limit ordinal then for some
i(a,8) < & we have i(a,d) < i < § = i € S, and (ortp(a, M;, N) does not fork
over M, ) by 2.11(5). So if S, is stationary, then for some i(a) < p the set
Sl ={0€ 8, :i(a,d) =i(a)} is a stationary subset of A hence by monotonicity we
have i(a) <i < pu = ortp(a, M;, N) does not fork over M;,). Let E, be a club of
u such that: if S, is not stationary (subset of u) then E, NS, = & and if S, is not
stationary then S, N E, = @.
Let N be a representation of N, and let

E*={5<M:N50M=M5 and Mg <¢ M, N5 <; N
and for every a € N5 we have 0 € E,}.

Clearly it is a club of u and M | E*, N | E* are as required. Os.10

* * *

We may treat the lifting of Ki’bs as a special case of the “lifting” of €\ to
£ = (€,)"P in Claim 1.24; this may be considered a good exercise.

Claim 2.14. 1) (K5 <) is a \-AEC.
2) (K§7§S7Sbs) 18 (Kf\”bs7gbs)up.

Remark 2.15. What is the class in 2.14(1)? Formally, let 77 = {Rjy : R a predicate
of 7rc, £ = 1,2} U{Fyy : F a function symbol from 7x and ¢ = 1,2} U {c} where
Ry is an n-place predicate when R € 7 is an n-place predicate and similarly Flg
and c¢ is an individual constant. A triple (M, N, a) is identified with the following
7 -model N defined as follows:

(A) Its universe is the universe of N.

B) N =a

(C) RY = RN
(D) Fy" =F~N
(B) RN = RM
(F) FY" =FM

(if you do not like partial functions, extend them to functions with full domain by
F(ag,...) = ap when not defined if F' has arity > 0, if F' has arity zero it is an
individual constant, FN "= FN sono problem).

Proof. Left to the reader (in particular, this means that Ki’bs is closed under <j-
increasing chains of length < A™). Oo14
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Continuing 1.24, 1.27 (and see more in 2.23), note that:

Lemma 2.16. Assume
(a) ¢ is an abstract elementary class with LS(¥) < p.

(b) K<, is a class of Tc-model, K., C K<, is non-empty and closed under
<g-increasing unions of length < p+ and isomorphisms (e.g. the class of
p-superlimit models of £, if there is one).

(¢) K'=={M € K : M is a <¢-directed union of members of K, } UK,

(d) Lot ¥ = (K', <4l K') s0 <p is <ol K, s0 ¥, o= (KL, <el KL,): or <y
is as in 1.24(1) (see 1.24(4)).

Then

(A) ¥ is an abstract elementary class, LS(€) < LS(¥') < p.

(B) If n < X\ and (&), S™) is a good \-frame, ¥\ has amalgamation and JEP,
and M € €, = Spy(M) = Se(M), then (¢,|),SP®) (with ||J, S®® restricted
to ¥') is a good A-frame.

(C) In clause (B), instead of “M € ¥\ = Sp(M) = Se(M),” it suffices to
require: if M € €\, M <¢ N € ¥y, p € S’*(N), p does not fork over M,
and p | M is realized in some M’ with M <u M’ then p is realized in some
N’ with N <¢ N' € ¥,.

Remark 2.17. If in 2.16, K L is not closed under <g-increasing unions, we can close

it but then the “so t., =...” in clause (d) may fail.
Proof. Clause (A): As in 1.24. Clauses (B),(C): Check. O2.16
* * *

Next we deal with some implications between the axioms in 2.1.

Claim 2.18. 1) In Definition 2.1 clause (E)(i) is redundant, i.e., follows from the
rest, recalling

(E)(i) non-forking amalgamation:
if for £ = 1,2, My <¢ My are in Kx,ap € My \ My,ortp(as, Mo, My) €
SP5(My), then we can find fi, fo, M3 satisfying Mo <¢ Mz € Ky such that
for £ = 1,2 we have f; is a <g-embedding of My into Mz over My and
ortp(fe(ae), fs—e(Ms_g), M3) does not fork over M.
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N]
MI
al o
.7 Il
M,
) M,
2) In fact, proving part (1) we use Azioms (A),(C),(E)(b),(d),(f),(g) ondy. N 1_______

Proof. By Axiom (E)(g) (existence) applied with ortp(az, Mo, Ms), My, M here
standing for p, M, N there; there is ¢; such that:

(a) g1 € 8™ (M)

(b) ¢1 does not fork over M

(¢) @1 | Mo = ortp(az, Mo, M>).
By the definition of types and as £, has amalgamation (by Axiom (C)) there are
N1, f1 such that

(d) M, <¢ N1 € K,

(e) f1is a <g-embedding of Ms into Ny over My

(f) fi(ag) realizes g; inside Nj.
Now consider Axiom (E)(f) (symmetry) applied with My, N1, a1, fi(a2) here stand-
ing for My, M3, a1,as there; now as clause () of (E)(f) holds (use M;, Ny for
My, M) we get that clause (3) of (E)(f) holds which means that there are Ny, N
(standing for M}, M5 in clause (8) of (E)(f)) such that:

(8) N1 <¢e N2 € K
(h) Mo U {fi(az2)} € N3 <¢ No
(i) ortp(ai, N5, No) € SP(N3) does not fork over My.

As £, has amalgamation (see Axiom (C)) and the definition of type and as

ortp(fi(a2), Mo, f1(Ms)) = ortp(fi(az), My, No) = ortp(f1(az), Mo, N5y), we can
find N3, fo such that

() N3 <e N3 € K
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(k) fo is a <g-embedding '* of f;(M>) into N3 over My U {fi(a2)}.
As by clause (i) above ortp(ai, N3, No) € SP5(N3), so by Axiom (E)(g) (extension
existence) there are N3, f3 such that

(1) Ny <¢ N3 € K

(m) fsis a <g-embedding of N3 into N3 over Nj

(n) ortp(ay, f3(N3), N3) € SP5(N3) does not fork over Nj.
By Axiom (E)(d) (transitivity) using clauses (i) + (n) above we have

(0) ortp(ai, f3(N3), N3) € SP5(N3) does not fork over M.
Letting f = fso fao f1 as f(Ma) C f3(N3) by clauses (e), (k), (m) we have

(p) fis a <g-embedding of M into N3 over M.
By (E)(b) (monotonicity) and clause (o) and clause (p)

(q) ortp(ay, f(Mz), N3) € SP5(f(Ma)) does not fork over M.
As ortp(fi(az), My, N3) = ortp(fi(az), M1,N1) = ¢1 does not fork over My by
clauses (b) + (f), and fa(f1(az2)) = fi(az2) by clause (k) and f3(f1(az2)) = fi1(az2) by
clauses (m) + (h), we get

(r) ortp(f(a2), My, N3) € S”*(M;) does not fork over M.

So by clauses (o) and (r) we have idyy,, f, N3 are as required on f1, fa, M3 in our
desired conclusion. Os 15

Claim 2.19. 1) In the local character Aziom (E)(c) of Definition 2.1 if S = St
recalling S¢*(M) = {ortp(a, M, N) : M <; N and a € N\ M} then it suffices to
restrict ourselves to the case that § has cofinality No (i.e., the general case follows
from this special case and the other azioms).

2) In fact in part (1) we need only Azioms (E)(b),(h) and you may say (A),(D)(a),(E)(a).
3) If S = 8" then the continuity Aziom (E)(h) follows from the rest.

4) In (3) actually we need only Azioms (E)(c), (local character) (d), (transitivity)
and you may say (A),(D)(a),(E)(a).

Proof. 1), 2) Let (M; : i < 6+ 1) be <g, -increasing, a € Msy; \ M;s and without
loss of generality g < § = cf(d), so for every a € S = {& < § : cf(a) = No},
ortp(a, My, Msi1) € S*5(M,) by the assumption “SP* = Sp# hence there is 4 <
such that ortp(a, My, Msi1) does not fork over Mg, so for some 8 < ¢ the set
S1 ={a €S : B, =p) is a stationary subset of §. By Axiom (E)(b) (monotonicity)
it follows that for any v; < 2 from [3,8) the type ortp(a, M,,, Ms41) € SP5(M.,,)
does not fork over M.,,. Now for any v € [5,d) the type ortp(a, Ms, Msi1) does
not fork over M., by applying (E)(h) (continuity) to (M, : @ € [y, + 1] so we have
finished.
3),4) So assume (M, : i < J) is <g-increasing continuous, all in K and § is a limit
ordinal, p € S(Mj;) and p; == p | M; € S*(M;) does not fork over My for each
i < &; we should prove that p € SP3(M;) and p does not fork over M.

First, for each i < §,p; € SP(M;) hence p; is not realized in M;. As M; =
U{M; : i < &} clearly p is not realized in M;s so p € S"*(Ms) = S*(Ms).

Second, by Ax(E)(c) the type p does not fork over M; for some j < 6. As
pj = p | M; does not fork over My (by assumption) by the transitivity Axiom
(E)(d), we get that p does not fork over My, as required. Os.19

e could have chosen N3 = N2, fo =idg, ()



Paper Sh:600, version 2023-06-18. See https://shelah.logic.at/papers/600/ for possible updates.

38 S. SHELAH

Remark 2.20. So in some sense by 2.19 we can omit in 2.1, the local character Axiom
(E)(c) or the continuity Axiom (F)(h) but not both. In fact (under reasonable
assumptions) they are equivalent.

Claim 2.21. In Definition 2.1, Clause (E)(d), i.e., transitivity of non-forking fol-
lows from (A),(C),(D)(a),(b).(E)(a).(b).(e),(g).

Proof. As £ is an A-AEC with amalgamation, types as well as restriction of types
are not only well defined but are “reasonable”.

So assume My <, M} <; M} <, Ms,a € Ms and p"” := ortp,(a, M}/, M)
does not fork over M} and p’ := ortp,(a, M{), M3) does not fork over My. Let
p=p' | My. As p’ does not fork over My, by Axiom (E)(a) we have p’ € SP5(MY)
and p = ortp(a, My, M3) = p' | My belongs to SP5(Mj). As p” does not fork over
MY clearly p” € SP$(M{) and recall p” | M} = p'. By the existence axiom (E)(g)
the type p has an extension ¢” € SP*(M{) which does not fork over My. By the
monotonicity Axiom (E)(b) the type ¢’ does not fork over Mj and ¢’ = ¢’ | M|
does not fork over My. As p/,q" € SP5(M}) do not fork over My and p’ | My =
p=4q" | My =¢q | My, by the uniqueness Axiom Ax(E)(e), we have p’ = ¢'.
Similarly p” = ¢, but ¢” does not fork over My hence p” does not fork over My as
required. s 91

Claim 2.22. 1) The symmetry aziom (E)(f) is equivalent to (E)(f) below if we
assume (A),(B),(C),(D)(a),(b),(E)(a),(b),(g) in Definition 2.1
(E)(f) there are no My(£ < 3) and ag(¢ < 2) such that

(a) My <s My <s My <s M3

(b) ortp(ag, My, My11) does not fork over My for £ =0,1,2

(¢) ortp,(ag, My, My) = ortp, (a2, My, M3)

(d) ortpg({ag,a1), My, My) # ortp,({az, a1), Mo, My).

Proof. Easy. s 99

* * *

A most interesting case of 2.16 is the following. In particular it tells us that the
categoricity assumption is not so rare and it will have essential uses here.

Claim 2.23. Ifs = (& ), S®) is a good \-frame and M € K, is a superlimit model
A

in tx and we define s' = ™) = s[M] = (e[s!™], ([J[s!M]], S*[sM]) by
A

e[sM)]) = ¢M | see Definition 1.26 so ) =t {N:N=M}

U)\J[ﬁ[]\/[]] = {(M07MlaaaM3) € U}\J : MO7M13M3 € K)[\I\/I]}

8™ [sM) = {ortpypy (a, Mo, My) :My <¢ My, My € KM N e K[
and ortpy(a, Mo, My) € S**(Mo)}.
Then
(A) s is a good \-frame
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(B) t[s'] C txxls]
(C) <¢e==<el K[s']
(D) K\[s'] is categorical.

Proof. Straight by 1.24, 1.27, 2.16. Uz.23
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§ 3. EXAMPLES

We show here that the context from §2 occurs in earlier investigation: in [She87a]
= [She09a], [She01] that is [She09c], [She75] (and [She83a], [She83b]). Of course,
also the class K of models of a superstable (first order) theory T' (working in €°9),
with <=~ and SP*(M) being the set of regular types (when we work in €°9) or just
“the set non-algebraic types” works, with (|J(Mo, M1, a, M3) iff My <¢ My <¢ M3

are in K,a € Mz and ortp(a, My, M3) € S"(M;) does not fork over My, (in the
sense of [She90, IT1], of course). The reader may concentrate on 3.10 (or 3.5) below
for easy life.

Note that 3.5 (or 3.8) will be used to continue [She87a] = [She09a] and also to
give an alternative proof to the theorem of [She83al, [She83b] + (deducing “there
is a model in R,,” if there are not too many models in ¥, for £ < n) and note that
3.8 will be used to continue [She75], i.e., on ¢ € Ly, ,(Q) and 3.10 will be used to
continue [She01]. Many of the axioms from 2.1 are easy.

§ 3(A). The superstable prototype.

Claim 3.1. Assume T is a first order complete theory and X be a cardinal > |T|+Ro;
let ¢ =1\ = (K7 <ep,) be defined by:
(a) Kt is the class of models of T of cardinality > A
(b) <g,., is “being an elementary submodel”.
0) ¢t is an AEC with LS(€) = .
1) If T is superstable, stable in X\, then s = s 5 is a good A-frame when § =
(b 2\SP5, ) is defined by:

(c) peS*™(M) iffp= ortpy, , (a, M, N) for some a, N such that tpy ., (a, M, N),
see Definition 3.3 is a non-algebraic complete 1-type over M, so M < N,a €
N\ M

(d) WYMo, M1,a,Ms) iff My < My < Ms are in Kr ) and a € Ms and

tpL(TT)(a,Ml,Mg) s a type that does mot fork over My in the sense of
[She90, T1].
2) Let k = cf(k) < X. The model M is a (X, k)-brimmed model for tr x iff (i)+ (i)
or (i)+ (i) where
(i) T is stable in A
(i) k=cf(k) > k(T) and M is a saturated model of T of cardinality A
(#i1) k = cf(k) < K(T) and there is a <-increasing continuous sequence (M; :
i < k) (by <, equivalently by <) such that M = M, and (M;11,¢)cen; 1S
saturated for i < k.
2A) So there is a (A, k)-brimmed model for 1 x iff T is stable in \.

3) M is (A, k)-brimmed over My in tr y iff (M, c)cem, is (A, K)-brimmed.

4) Assume T is superstable first order complete theory stable in A and we define
sp5 as above only SPS(M) is the set of reqular types p € Se,. (M) and we work in
T4, Then s;* is a good A-frame.

5) For k < X or k= V. (abusing notation), sf. , is defined similarly restricting
ourselves to F¢-saturated models. (Let 52>\ =sp.) If T is superstable, stable in A
then s is a good \ frame.

Remark 3.2. We can replace (c) of 3.1 by:
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(c) p € S™(M)iff p=ortp,,  (a, M, N) for some a, N such that tPL(rp) (@, M, N)
is a complete 1-type over M

except that clause (D)(b) of Definition 2.1 fail. In fact the proofs are easier in this
case; of course, the two meaning of types essentially agree.

Proof. 0),1),2),2A),3) Obvious (see [She90]).
4) As in (1), except density of regular types which holds by [HS89].
5) Also by [She90]. Uz

Recall

Definition 3.3. 1) For a logic .Z and vocabulary 7, £(7) is the set of £-formulas
in this vocabulary.

2) L =L, is first order logic.

3) A theory in .Z(7) is a set of sentences from .Z(7) which we assume has a model
if not said otherwise. Similarly in a language L(C £(7))

Very central in [She09a] (and [She09b]) but peripheral here (except when in (parts
of) §3 we continue [She09a] in our framework) is:

Definition 3.4. Let T} be a theory in L(7),7 C 71 vocabularies, T" a set of types
in IL(m); (i.e. for some m, a set of formulas ¢(xg,...,Tm—1) € L(11)).

1) EC(T1,T) = {M : M a 1-model of T; which omits every p € T'}.
(So without loss of generality 7 is reconstructible from 77,T") and

PC,(T1,T) =PC(Th,T',7) = {M : M is a 7-reduct of some M; € EC(T1,I')}.
2) We say that ¢ is PC’; or PC, , if for some T7,75,1'1,I'; and 7 and 75 we

have: (T} a first order theory in the vocabulary 74, Ty a set of types in L(7) and)
K =PC(T1,Ty,7) and {(M,N) : M <¢ N and M,N € K} = PC(T3,T'3,7’) where
7" = 1 U{P}, (P a new one place predicate and (M, N) means the 7/-model N*
expanding N where PN = |M|) and |Ty| < A, [T¢| < p for £ =1,2.

3) If u = A\, we may omit u.

§ 3(B). An abstract elementary class which is PCy,.
theorem 3.5. Assume 2% < 2%t and consider the statements
(a) € is an abstract elementary class with LS(¢) = Nq (the last phrase follows
by clause (B)) and T = 7(8) is countable

(B) tis PCy,, equivalently for some sentences 1,2 € Ly, o (T1) where 1 is a
countable vocabulary extending T we have

K ={M; | 7: My a model of {1}
{(N,M): M <¢ N} ={(N1 [ 7, My | 7) : (N1, M1) a model of 12}
(7) 1< IRy, 8) <2

(&) t s categorical in Ny, has the amalgamation property in Rg and is stable in
No
0)~ like (8) but “stable in No” is weakened to: M € ty, = |S(M)]| < Ny
0
(¢) all models of € are Lo o, -equivalent and M <¢ N = M <p__ N.
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For M € ty, we define ), as follows: the class of members is
{N cK:N Fleo w M} and Ny SE/M Ny 7,ﬁcN1 <¢ No and Ny {]LOCM No.

1) Assume (o) 4+ (B) + (), then for some M € by, the class &y, satisfies (o) + (8) +
() + (6)~ + (¢); in fact any M € ty, such that (&,)x, # @ will do and there are
such M € Ky,. Moreover, if € satisfies (§) then also &, satisfies it; also trivially
Ky C K and <y C<,.

1A) Also there is ¥ such that: ¥ satisfies (o) + (8) + () + (8) + (¢), and for every
p we have K, C K,. In fact, in the notation of [She09a, 88r-5.6] for every a < wi
we can choose ¥ = tp_ .

2) Assume (o) + (B) + (7) + (8). Then (&), S®) is a good Ry-frame for some ||J

and S".
3) In fact, in part (2) we can choose S**(M) = {p € S(M) : p not algebraic} and
\JJ is defined by [She09a, 88r-5.11] (the definable extensions).

Remark 3.6. 1) In [She09a, 88r-5.23] we use the additional assumption (g, K) <
Punif (N2, 281). But this Theorem is not used here!

2) Note that ), is related to K™ from Definition 1.26 but is different.

3) In the proof we relate the types in the sense of S¢(M), and those in [She(9a,
§5]. Now in [She09a, §5] we have lift types, from &y, to any £,, i.e., define D(NN) for
N e t,. In p > Rg, in general we do not know how to relate them to types Se_ (V).
But when s7 is defined (in the “successful” cases, see §8 here and [She09e, §1]) we
can get the parallel claim.

Discussion 3.7. 1) What occurs if we do not pass in 3.5 to the case “D(V)
countable for every N € Ky,”? If we still assume “€ categorical in Ny” then as
ID(Np)| < Ry, if we assume “there is a superlimit model in £x,” we can find a good
N;-frame s; this assumption is justified by [She09a, 88r-5.23], [She09a, 88r-5.24].

Proof. 1) Note that for any M € Ky,, the class ¥, satisfies (), (8), (¢) and it
is categorical in Ry and (K},), C K, hence I(u, K};) < I(1, K). By Theorem
[She09a, 88r-3.6], (note: if you use the original version (i.e., [She87a]) by its proof
or use it and get a less specified class with the desired properties) for some M € Ky,
we have (¢,,)x, # @. By [She09a, 88r-3.5] we get that ), has amalgamation in
Ry and by [She09a] almost we get that in ¥, the set S(M) is of small cardinality
(< Ny); be careful - the types there are defined differently than here, but by the
amalgamation (in ®g) and the omitting types theorem in this case they are the
same, see more in the proof of part (3) below. So by [She09a, 88r-5.1], [She09a,
88r-5.2] we have M € (¥),)x, = [Se, (M) < Ny.

Also the second sentence in (1) is easy.

1A) Use [She09a, 88r-5.18], [She09a, 88r-5.19)].

In more detail, (but not much point in reading without some understanding
of [She09a, §5], however we should not use [She09a, 88r-5.23] as long as we do not
strengthen our assumptions) by part (1) we can assume that clauses (§)~ +(¢) hold.
(Looking at the old version [She87a] of [She09a] remember that there < means <y.)
We can find D, = D, o < wy, which is a good countable diagram (see Definition
[She09a, 88r-5.6.1] and Fact [She09a, 88r-5.6] or [She09a, 88r-5.16], [She09a, 88r-
5.17]. So in particular (give the non-maximality of models below) such that for
some countable My <¢ My <¢ Ma we have M, is (D*(Mp), Xg)-homogeneous for
¢ < m < 2. In [She09a, 88r-5.18] we define (Kp,,<p,). By [She09a, 88r-5.19]
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the pair (Kp,,<p,) is an abstract elementary class (the choice of D, a part, e.g.
transitivity = Axiom IT which holds by the existence of the M,’s above and [She09a,
88r-5.16]) categorical in Rg and no maximal countable model (by <p,, see [She09a,
88r-5.6](2). Now Ry-stability holds by [She09a, 88r-5.19](2) and the equality of the
three definitions of types in the proof of parts (2),(3) and Kp, C K so we are done
by part 3) below.

2),3) The first part of the proof serves also part (1) of the theorem so we assume
(6)~ instead of (). We should be careful: the notion of type has three relevant
meanings here. For N € Ky, the three definitions for S<“(N) and of tp(a, N, M)
when a € M, N <y M € Ky, (of course we can use just 1-types) are:

(«) the one we use here (recall 1.9) which uses elementary mappings; for the
present proof we call them S5 (M), tpy(a, M, N)

(8) S1(N) which is (recall that materialize is close to but different from realize)
D(N) = {p:p a complete LY, , (IV)-type over N
(so in each formula only finitely many parameters from N appear)
such that for some M, a € “~ M, a materializes p in (M, N)}
(“materializing a type” is defined in [She09a, 88r-4.2](2)) so
S1(N) = {tp,(a,N,M):a€“” M and N < M € Ky, }
where
9y (@, N, M) = {(2) € LY, o, (V) : M IR (@)}
(see [She09a, 88r-4.2](1) on the meaning of this forcing relation).
(v)  S2(N) which is
D*(N) = {p :p a complete ]Lgh% (N; N)-type over N
(so in each formula all members of N may appear)
such that for some M € Ky, and
a € > M satisfying N <; M the sequence
a materializes p in (M, N)}

SO
So(N) = {tpy(a, N, M) : ac€“ M and N < MEKNO}

tp2(a, N, M) = {p(z) € LY, n, (N, N) : M I o(a)}.
As we have amalgamation in Ky, it is enough to prove for ¢, m < 3 that
(¥)em if k<w,N <¢ M € Ky, and @,b € *M, then

tpg(a, N, M) = tp,(b, N, M) = tp,,(a, N, M) = tp,, (b, N, M).
Now ()21 holds trivially (more formulas) and (*);,2 holds by [She09a, 88r-5.5].
By amalgamation in £y, if tpy(a@, N, M) = tp,(b, N, M), then for some M’, M <
M’ € Ky, there is an automorphism f of M’ over N such that f(a) = b, so trivially
(%)0,1, (*)0,2 hold (we use the facts that tp,(a, N, M) is preserved by isomorphism
and by replacing M by M; if M <y My € Ky, and NUa C My <¢ M>). Lastly we
prove (¥)2 0.

So N < M € Ky,, hence tp,(¢, N,M) : ¢ € “>M} C D*(N) is countable so
by [She09a, 88r-5.6](b),(c) for some countable ov < w; we have {tp,(¢, N, M) : ¢ €
“>M} C DE(N). Now there is M € Ky, such that M <, M', M’ is (D}, No)*-
homogeneous (by [She09a, 88r-5.6](e) see Definition [She09a, 88r-5.7]) hence M’ is
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(D (N), Rg)*- homogeneous (by [She09a, 88r-5.6](f)), and tpy(a, N, M) = tpy(b, N, M’)
by [She09a, 88r-5.4.1](3), (IV here means Ny there, that is increasing the model pre-
serve the type).

Lastly by Definition [She09a, 88r-5.7] there is an automorphism f of M’ over
N mapping @ to b, so we have proved (x)2 0, so the three definitions of type are
equivalent.

Now we define for M € Ky,:

(a) S™(M) = {p € Se(M) : p not algebraic}

or My, M1, Ms € Ky, and an element a € M3 we define:
b) for My, My, M3 € Ky, and 1 M. defi
UJ(Mo,Ml,a,M3) iff My <¢ M1 <¢ M3 and a € M3\M1 and

tp; (a, My, M3)(= gtp(a, M1, M3) in [She09a]’s notation)

is definable over some finite b € “> M (equivalently is preserved by every
automorphism of M; over b (see [She09a, 88r-5.11])

equivalently gtp(a, M;, M3) is the stationarization of gtp(a, My, M3).

Now we should check the axioms from Definition 2.1.
Clause (A): By clause («) of the assumption.
Clauses (B),(C): By clause (d) or ()~ of the assumption except “the superlimit
M € Ky, is not <g-maximal” which holds by clause () + (d) or (y) + (0)~.
Clause (D): By the definition (note that about clause (d), bs-stability, that it
holds by assumption (§), and about clause (¢), i.e., the density is trivial by the way
we have defined S").
Subclause (E)(a): By the definition.
Subclause (E)(b)(monotonicity):
Let My <¢ M} <¢ M{ <¢ M7 <¢ M3 < M} be all in €y, and assume (|J(Moy, M1, a, M3).

So My <¢ Mj <¢ M3 < M3 and a € M3\ My C M3\ M{. Now by the assumption
and the definition of ||J, for some b € ¥~ (My), gtp(a, My, Ms) is definable over b. So

the same holds for gtp(a, M7, M3) by [She09a, 88r-5.13], in fact (with the same def-
inition) and hence for gtp(a, My, M3) = gtp(a, M7, M3) by [She09a, 88r-5.4.1](3),
so as b € “”(My) C “>(M]) we have gotten (J(M{, M7, a, M}).

For the additional clause in the monotoncity Axiom, assume in addition M U
{a} C MY <, M} again by [She09a, 88r-5.4.1](3) clearly gtp(a, M7, M%) = gtp(a, M1, M}),
so (recalling the beginning of the proof) we are done.

Sublcause (E)(c)(local character):

So let (M; : i < § + 1) be <g-increasing continuous in Ky, and a € Ms41 and
ortp(a, Ms, Ms,1) € SP5(M;), so a ¢ Ms and gtp(a, Ms, M, 1) is definable over
some b € “>(Mjs) by [She09a, 88r-5.4].

As b is finite, for some o < § we have b C M,,, hence we have (ortp(a, Mg, Msi1) €
SP$(Mp) trivially and) ortp(a, Ms, Ms41) does not fork over Mg.

Sublcause (E)(d)(transitivity):

By [She09a, 88r-5.13](2) or even better [She09a, 88r-5.16].

Subclause (E)(e)(uniqueness):

Holds by the Definition [She09a, 88r-5.11].

Subclause (E)(f)(symmetry):

By [She09a, 88r-5.20] + uniqueness we get (E)(f). Actually [She09a, 88r-5.20]
gives this more directly.

Subclause (E)(g)(extension existence):

By [She09a, 88r-5.11] (i.e., by [She09a, 88r-5.4] + all M € Ky, are Xp-homogeneous).

Alternatively, see [She09a, 88r-5.15].

Subclause (E)(h)(continuity):
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Suppose (M, : a < §) is <p- increasingly continuous, M, € Ky,,0 < wi,p €
S(Ms) and o < § = p | M, does not fork over My. Now we shall use (E)(c)+(E)(d).
Asp | M, € S*(M,) clearly p | M, is not realized in M,, hence p is not realized in

M,; as Ms = |J M, necessarily p is not realized in My, hence p is not algebraic.
a<d

So p € SP$(Mj). For some finite b € “> (Mj), p is definable over b, let o < & be
such that b € “>(M,), so as in the proof of (E)(c), (or use it directly) the type p
does not fork over M,,. As p [ M, does not fork over My, by (E)(d) we get that p
does not fork over My as required. Actually we can derive (E)(h) by 2.19.

Subclause (E)(i)(non-forking amalgamation):

One way is by [She09a, 88r-5.20]; (note that in [She09a, 88r-5.23] we get more,
but assuming, by our present notation I(Ng, K) < fiwa(R2)); but another way is
just to use 2.18. O35

§ 3(C). The uncountable cardinality quantifier case, L,,, ,,(Q). Now we turn
to sentences in L, ., (Q).

Conclusion 3.8. Assume ¢ € Ly, ,(Q) and 1 < I(Ry,9)) < 2% and 2% < 281,
Then for some abstract elementary classes €, €7 (note Ty C Te = Te+ ) we have:
(a) € satisfies (a),(B), (9), (¢) from 3.5 with 7¢ O Ty, countable (for (), (b) is a
replacement)

b) for ever > No I(p,t Ny -saturated)) < I V), where ' Ny -saturated”
( Y 1 A, f,1),
is well defined as tx, has amalgamation, see 1.15

(¢) for some ||J, S (and X\ = g ), the triple (& ), SP®) is as in 3.5(2) so is a

good Rg-frame

(d) every Ri-saturated member of € belongs to € and there is an Vi-saturated
member of ¢ (and naturally it is uncountable, even of cardinality N1)

(e) ¢" is an AEC, has LS number Xy and {M | 17, : M € ¢} C {M :
M = 4} and every T-model M of ¢ has a unique expansion in € hence
>Ry = I(p,0) = I(p, ) and & is the class of models of some complete
Y € Ly, u(Q).

Proof. Essentially by [She75] and 3.5.

I feel that upon reading [She75] the proof should not be inherently difficult, much
more so having read 3.5, but will give full details.

Recall Mod(%)) is the class of 7,-models of 1. We can find a countable fragment
Z of Ly, ., (Q)(7y) to which 1 belongs and a sentence ¢ € £ C L, ,(Q)(7y)
such that ; is “nice” for [She75, Definition 3.1,3.2], [She75, Lemma 3.1]

@1 (a) 1 has uncountable models
(b) W1 F 4, ie., every model of ¢; is a model of ¢
(¢) 41 is Ly, w(Q)-complete
(d) every model M = 4 realizes just countably many complete
Lo, w(Q)(Ty)-types (of any finite arity, over the empty set),
each isolated by a formula in .Z.
The proof of ®;(d) is sketched in Theorem 2.5 of [She75]. The reference to Keisler
[Kei71] is to the generalization of theorems 12 and 28 of Keisler’s book from Ly, .,
to Ly, w(Q), see [She09a, 88r-0.1].
Let

15much less than saturation suffice, like “obeying” <**
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&2 (’L) £y = (Mod(z/J), -{g),
(i) & = (Mod(¥1), <2)
®3 €y is an AEC with L.S. number R; for £ =0, 1.

Toward defining &, let 7¢ = 7y U {Ry(z) : ¢(T) € £}, Ry(z) a new {g(7)-predicate
and let ¥ = 1 A {(VY)(Ryz)(7) = ¢(¥) : ¢(z) € L}. For every M € Mod(v) we

define M+ by
®4 MT is M expanded to a Te-model by letting Rgf(;) ={acW@M: Mk
plal}

®s (a) € =({M*: M€ Mod(x)}, <L) is an AEC with LS(¢f) = Ny
(b) & ={M*:M e Mod(¢)}, <) is an AEC with LS(¢+) = X;.
Clearly

®g if M =11 then M is an atomic model of the complete first-order theory
Ty, where Ty, is the set of first order consequences in L(7¢) of .

So it is natural to define €:
@7 (a) N etiff
(o) N is a Tg-model which is an atomic model of Ty,
(B) if by (VZ)[p1(T) = (Qy)p2(y, )] and 1, 02 € L and N |= =Ry, (z)[a]
then {bc€ N : N |= R,z (b,a)} is countable

(b) Ny <¢ Ny iff (N1, N2 € K, N7 <1, Na equivalently Ny C Ny and) for
©1(Z),v2(y,Z) as in subclause (5) of clause (a) above, if a €

4@ (Ny),

Ny |:—|R%(j)[&] andbGNg\Nl then No ':_|R b,C_L].

Wz(y@)[
Observe
®g N € tiff N is an atomic 7e-model of the first order L(7¢)-consequences 1o
(i.e. of ¢ and every 1 sentence of the form VZ[R,(Z) = ¢(Z)]) and clause
(B) of ®7(a) holds
@9 tis an AEC with LS(£) = X and is PCy,, £ is categorical in Ny (and <g is
called <* in [She75, Definition 3.3]).
Note that El,{%f has the same number of models, but £ has “more models” than
Ef, in particular, it has countable members and £, has at least as many models as
. For N € £to be in & = {M* : M € Mod(¢);)} what is missing is the other
implications in ®7(a)(f).
This is very close to 3.5, but ¢ may have many models in X; (as Q is not
necessarily interpreted as expected). However,

®10 constructing M € Ky, by the union as <i-increasing continuous chain
(M; : i < wy), to make sure M € & it is enough that for unboundedly
many o < wy, My <** My41 and (VM € ty,)(3N € ty,)(M <** N)
where
®11 for M, N € ¢, M <** N iff
(i) M <¢ N
(#4) in ®7(b) also the inverse direction holds.

Does ¢ have amalgamation in Rg? Now [She75, Lemma 3.4], almost says this but
it assumed {y, instead of 2% < 281: and [She09a, 88r-3.5] almost says this, but
the models are from £y, rather than E;{l but [She09a, 88r-3.8.4] fully says this
using the so called Kgl, see Definition [She09a, 88r-3.8.1] and using F such that
M € ty, = M <** F(N) € ty,; or pedantically F = {(M,N) : M <** N are from
£}. So

®12 t has the amalgamation property in Ng.
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It should be clear by now that we have proved clauses (a),(b),(d),(e) of 3.8 using .
We have to prove clause (¢); we cannot quote 3.5 as clause () there is only almost
true. The proof is similar to (but simpler than) that of 3.5 quoting [She75] instead
of [She09a]; a marked difference is that in the present case the number of types over
a countable model is countable (in €) whereas in [She09a] it seemingly could be Xy,
generally [She75] situation is more similar to the first order logic case.

Recall that all models from ¢ are atomic (in the first order sense) and we shall
use below tpy .

As t has Rg-amalgamation (by ®12), clearly [She75, §4] applies; now by [She75,
Lemma 2.1](B) + Definition 3.5, being (Rg, 1)-stable as defined in [She75, Definition
3.5](A) holds. Hence all clauses of [She75, Lemma 4.2] hold, in particular ((D)(3)
there and clause (A), i.e., [She75, Def.3.5](B)), so

@13 (i) if M <¢ N and a € N then tpy(a, M, N) is definable over a finite
subset of M

(i) if M € ey, then {tpy (@, M,N):a € “> N and M <, N} is countable.
By [She75, Lemma 4.4] it follows that
@14 if M < N are countable and @ € M then tp; (a, M, N) determine tpy(a, M, N).
Now we define s = (£x,,S", |J) by

®15 SP(M) = {ortpg(a, M,N) : M <y N are countable and @ € “>N but
a¢“M}
®16 ortpg(a, My, Ms) does not fork over My where My <, My <¢ M; € ty, iff
tpp (@, My, M3) is definable over some finite subset of M.
Now we check “s is a good frame”, i.e., all clauses of Definition 2.1.

Clause (A): By ®g above.

Clause (B): As t is categorical in Ry, has an uncountable model and LS(£) = Ng
this should be clear.

Clause (C): ¢y, has amalgamation by ®;2 and has the JEP by categoricity in Ng
and tx, has no maximal model by (categoricity and) having uncountable models
(and LS(t) = Ny).

Clause (D): Obvious; stability, i.e., (D)(d) holds by ®13(ii) + ®14.

Subclause (E)(a),(b): By the definition.

Subclause (E)(c): (Local character).

If (M; : i <+ 1) is <-increasing continuous M; € Ky,,a € “~(Ms41) and
a € “7(Ms) then for some finite A C My, tpy (a, Ms, Ms+1) is definable over A,
so for some i < §, A C M; hence j € [i,0) = tpy(a, M;, Ms+1) is definable over
A = J(M;, Ms, a, Ms;).

Subclause (E)(d): (Transitivity).

Asif M' <y M" € ty,, two definitions in M’ of complete types, which give the
same result in M’ give the same result in M".
Sublause (E)(e)(uniqueness): By ®14 and the justification of transitivity.

Subclause (E)(f)(symmetry): By [She75, Theorem 5.4], we have the symmetry
property see [She75, Definition 5.2]. By [She75, 5.5] + the uniqueness proved above
we can finish easily.

Subclause (E)(g): Extension existence.
Easy, included in [She75, 5.5].

Subclause (E)(h): Continuity.
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As SPs(M) is the set of non-algebraic types this follows from “finite character”,
that is by 2.19(3)(4).

Subclause (E)(i): non-forking amalgamation
By 2.18. Uss

Remark 3.9. So if ¢ € L, ,(Q) and 1 < f(Nl,qp) < 2% we essentially can apply
Theorem 0.1, exactly see 9.5.

§ 3(D). Starting at A > Ng. The next theorem puts the results of [She01] in our
context hence rely on it heavily.

(Alternatively, even eliminating “WDmId(AT) is AT T-saturated” we can deduce
3.10 by [She09c], [She09d], i.e. by [She09c, 0z.1](2) there is a so called almost good
A-frame s and by [She09d, e.6A] it is even a good A-frame, and by §9 here, also 5T
is a good AT-frame and easily it is the frame described in 3.10(2).)

We use K™ as in [She09¢] called K73 is [She01]. Note that while the material
does not [She01, §1,§2,84,87] appears in [She09c], the material in [She01, §8,§9,§10]
similar to §6 - §9 here, so we still need some parts of [She01], though as said above
we can avoid it.

theorem 3.10. Assume 2> < 22" < 22" and

(o) tis an abstract elementary class with LS(¥) < A

(B) tis categorical in X and in At

() € has a model in AT+

() T2, K) < pramie(AT2,22") and WDmId(AT) is not At -saturated or just
some consequences: density of minimal types (see by [She09c, 4d.19,4d.23])

and ®, i.e. Ki’uq #+ & of [She01, 6.4,pg.99] = [She09c¢, 61.5] proved by the
conclusion of [She01, Th.6.7](pg.101) or [She09¢, 6f.13].

Then 1) Letting p = AT we can choose ||J, S*® such that (&>, ), S*®) is a p-good
1 i

frame.
2) Moreover, we can let

(a) SP5(M) := {ortpg(a, M, N) : for some M, N,a we have (M, N,a) € Kifa
and for some M' <g M we have M' € K,
and ortpg(a, M',N) € S¢(M’) is minimal}

(see Definition [She01, 2.3](4),pg.56 and [She01, 2.5](1),(13),pg9.57-58 or ([She09c,
12.19,1a.34])
(b) U = U be defined by: \J(Mo, M1, a, M3) iff My <¢ My <¢ M3 are from
1 Y

K,,a € Ms\M, and for some N <¢ My of cardinality A, the type ortp,(a, N, M) €
Se(N) is minimal.

Proof. 1), 2). Note that € has amalgamation in A and in AT, see [She09a, 88r-3.5].
By clause () of the assumption, we can use the “positive” results of [She01] in
particular [She01] freely. Now (see Definition 1.12(2))
(x) if (M,N,a) € K™ and M’ <¢ M, M’ € K and p = ortpy(a, M',N) is
minimal (see Definition 1.9(0)) then
(a) if ¢ € Se(M) is not algebraic and ¢ | M’ = p then q = ortpg(a, M, N)
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(b) if (Mg, : o < p), (N4 : @ < ) are <g-representations of M, N respec-
tively then for a club of 6 < p we have ortp,(a, Ms, Ns) € Se(Ms) is
minimal and reduced

[Why? For clause (b) let a* = min{a : M" <¢ M, }, so a* is well defined
and as M is saturated (for ¢), for a club of § < p = AT, the model M is
(A, cf(8))-brimmed over M’ hence by [She01, 7.5](2)(pg.106) we are done.

For clause (a) let M° = M, M! = N and o' = a and M?a® = a
be such that (MY, M?, a%) € K™ = Kifa and ¢ = ortpe(a?, M°, M).
Now we repeat the proof of [She01, 9.5](pg.120) but instead f(a?) ¢ M?!
we require f(a?) = a'; we are using [She01, 10.5](1)(pg.125) which says
<§+:<B r K)\+ ]

In particular we have used

(xx) if My <¢, My, My is (A, k)-brimmed over My, p € Sg(M7) is not algebraic
and p [ My is minimal, then p is minimal and reduced.

Clause (A):
This is by assumption («).

Clause (B):
As K is categorical in p = A, the existence of superlimit M € K, follows; the
superlimit is not maximal as LS(¢) < A and K+ = Ky++ # @ by assumption (7).

Clause (C):
K+ has the amalgamation property by [She09a, 88r-3.5] or [She01, 1.4](pg.46),1.6(pg.48)
and €, has the JEP in AT by categoricity in AT.

Clause (D):

Subclause (D)(a),(b):
By the definition of SP*(M) and of minimal types (in S¢(N), N € K,
[She01, 2.5](1)+(3)(pg.57),2.3(4)+(6)](pg-56)), this is clear.

Subclause (D)(c):

Suppose M <¢ N are from K, and M # N; let (M; : i < AT),(N; : i < AT)
be a <g-representation of M, N respectively, choose b€ N\ M so E = {§ < AT :
Ns N M = Ms and b € N5} is a club of A*. Now for § = min(E) we have M; #
Ns, Ms <¢ Ns and there is a minimal inevitable p € Sg(Ms) by [She01, 5.3,pg.94]
and categoricity of K in A; so for some a € N5 \ M;s we have p = ortp,(a, Ms, N5).
So ortpg(a, M, N) is non-algebraic as a € M = a € M N Ns = M, a contradiction,
so ortpg(a, M, N) € S*(M) as required.
Subclause (D)(d): If M € K, let (M, : i < A") be a <g-representation of M, so by
(%)(a) above p € SP*(M) is determined by p | M, if p | M, is minimal and reduced.
But for every such p there is such a(p) < A* by the definition of S”*(M) and for
each a < AT there are < X possible such p | M, as ¢ is stable in A by [She01,
5.7)(a)(pg.97), so the conclusion follows. Alternatively, M € K, = |S™(M)| <
i as by [She01, 10.5](pg.125), we have <}, =<¢[ K+, so we can apply [She0l,
9.7](pg.121); or use () above.
Clause (E):
Subclause (E)(a):

Follows by the definition.
Subclause (E)(b): (Monotonicity)

Obvious properties of minimal types in S(M) for M € K.

Subclause (E)(c): (Local character)




Paper Sh:600, version 2023-06-18. See https://shelah.logic.at/papers/600/ for possible updates.

50 S. SHELAH

Let 6 < ut = ATt and M; € K, be <g-increasing continuous for ¢ < § and
p € S"(Ms;), so for some N <p Ms we have N € K, and p | N € S¢(N) is
minimal. Without loss of generality § = c¢f(d) and if § = A*, there is i < § such
that N C M; and easily we are done. So assume § = cf(d) < A™.

Let <Mz : ¢ < A7) be a <g-representation of M; for i < §, hence E is a club of
AT where:

E = {C < AT :¢ a limit ordinal and for j < i < § we have
MéﬂMj :Mg and for £ < (,i < d we have :
Mé is (A, cf(¢))-brimmed over Mé and N <, Mg}

Let ¢; be the i-th member of E for ¢ < ¢, so (¢; : i < ) is increasing continuous,
<MZ7 : 1 < 0) is <g-increasingly continuous in K and ng;ll is (A, cf({i41))-brimmed
over M é“ hence also over M, ZZ Alsop | M, 555 is non-algebraic (as p is) and extends
pI N (as N <¢ M as (5 € E) hence p | M is minimal.

Also MC‘SS is (A, cf(¢s))-brimmed over Mgo hence over N, hence by (xx) above
we get that p | Mg is not only minimal but also reduced. Hence by [She0l,
7.3)(2)(pg-103) applied to (M{ :i < &),p | Mgé we know that for some i < 4
the type p | Mé =(p| M 55) [ Mé is minimal and reduced, so it witnesses that
p | M; € SP(M;) for every j € [i,d), as required.

Subclause (E)(d): (Transitivity)
Easy by the definition of minimal.

Subclause (E)(e): (Uniqueness)
By (x)(a) above.

Subclause (E)(f): (Symmetry)
By the symmetry in the situation assume My <¢ M; <¢ M3 are from K,
a1 € Ml\Mo, as € Mg\Ml and ortpe(al, My, Mg) S Sbs(Mo) and ortpk(ag,Ml, M3) S
SPS(My) does not fork over My; hence for £ = 1,2 we have ortp(as, Mg, M3) €
SPS(My). By the existence of disjoint amalgamation (by [She01, 9.11](pg.122),10.5(1)(pg.125))
there are My, M3, f such that My <¢ My <¢ M5 € K,, M3 <¢ M}, f is an isomor-
phism from M3z onto My over My, and M35 N My = My. By ortpy(as, My, M3) €
SP (M) and as f(a2) ¢ My being in My \ My = My \ M3 and as ¢ M; by assump-
tion and as ag, f(az) realize the same type from Sg(Mp) clearly by (x)(a) we have
ortpg(ag, My, M3) = ortp,(f(az), My, M}).

Using amalgamation in £, (and equality of types) there is M3 such that:
M; < Mi € K,, and there is an <g-embedding g of M4 into M4 such that
g | My =idy, and g(f(az)) = az. Note that as a1 ¢ g(Ma), My <¢ g(Ma2) € K,
and ortpg(aq, My, M) is minimal then necessarily ortpg(a1, g(Ma), M¥) is its non-
forking extension. So g(Ms), MY are models as required.

Subclause (E)(g): (Extension existence)
Claims [She01, 9.11](pg.122),10.5(1)(pg.125) do even more.

Subclause (E)(h): (Continuity)
Easy.

Subclause (E)(i): (Non-forking amalgamation)
Like (E)(f) or use 2.18. Os.10
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Question 3.11. If £ is categorical in A and in p and g > A > LS(£), can we conclude
categoricity in x € (u, \)?

Fact 3.12. In 3.10:

1) If p e SP(M) and M € K, then for some N < M,N € K, and p [ N is
minimal and reduced.

2) If M <¢ N,M € K, and p € S"(M), then some a € N \ M realizes p, (i.e.,
“a strong version of uni-dimensionality” holds).

Proof. The proof is included in the proof of 3.10.

(E) An Example:
A trivial example (of an approximation to good A-frame) is:

Definition/Claim 3.13. 1) Assume that ¢ is an AEC and A > LS() or ¢ is a
A-AEC We define s = 5,[€] as the triple s = (&5, 8™, ||J) where:

na

(a) S™*(M) = {ortpg(a, M,N),M <¢ N and a € N\ M}
(b) UJ(M[),M17(],,M3) iff My <k, M, <k, Ms3 and a € Mj3 \M1

2) Then s satisfies Definition 2.1 of good A-frame except possibly: (B), existence
of superlimits, (C) amalgamation and JEP, (D)(d) stability and (E)(e),(f),(g),(1)
uniqueness, symmetry, extension existence and non-forking amalgamation.
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§ 4. INSIDE THE FRAME

We investigate good A-frames. We prove stability in A (we have assumed in
Definition 2.1 only stability for basic types), hence the existence of a (A, 9)-brimmed
<g-extension in K over My € K (see 4.2), and we give a sufficient condition for
“Ms is (A, cf(8))-brimmed over My” (in 4.3). We define again Ki’bs (like K3 from
1.12(2) but the type is basic) and the natural order <y on them as well as “reduced”
(Definition 4.5), and indicate their basic properties (4.7).

We may like to construct sometimes pairs N; <g, M; such that M;, N; are
increasing continuous with i and we would like to guarantee that M, is (A, cf(7))-
brimmed over N, of course we need to carry more inductive assumptions. Toward
this we may give a sufficient condition for building a (X, c¢f(y))-brimmed extension
over IV, where (N; : i <) is <g, -increasing continuous, by a triangle of extensions
of the N,;’s, with non-forking demands of course (see 4.8). We also give conditions
on a rectangle of models to get such pairs in both directions (4.12), for this we use
nice extensions of chains (4.10, 4.11).

Then we can deduce that if “M; is (A, d)-brimmed over My” then the isomor-
phism type of M; over My does not depend on 9 (see 4.9), so the brimmed N
over My is unique up to isomorphism (i.e. being (A, 9)-brimmed over My does not
depend on 0). We finish giving conclusion about K+, Ky++.

Hypothesis 4.1. 5 = (£ |J, S) is a good M-frame.

Claim 4.2. 1) ¢ is stable in X, i.e., M € £\ = |[S(M)| < A.
2) For every My € Ky and 0 < X there is My such that My <¢ M, € K, and
M is (X, )-brimmed over My (see Definition 1.16) and it is universal ¢ over My.

Proof. 1) Let My € K and we choose by induction on « € [1,\], M, € K, such
that:
(1) M, is <g-increasing continuous
(i1) if p € SP$(M,,) then this type is realized in My 1.
No problem to carry this: for clause (i) use Axiom(A), for clause (ii) use Axiom
(D)(d) and amalgamation in £y, i.e., Axiom (C). If every ¢ € S(Mp) is realized in
M, we are done. So let ¢ be a counterexample, so let My <¢ N € K be such that ¢
is realized in N. We now try to choose by induction on o < A a triple (Nq, fo,a4)
such that:
(A) N, € K is <g-increasingly continuous
(B) fais a <g-embedding of M, into N,
(C) fa is increasing continuous
(D) fo = id]y[o and N() =N
(E) an = (aq,; : i < A) lists the elements of N,
(F) if there are B < a,i < X such that ortp(ag.i, fo(Ma), No) € SP(fa(M,))
then for some such pair (84,1,) we have:
(1) the pair (B4,14) is minimal in an appropriate sense, that is: if (8,14) is
another such pair then 544 > B, +iq or B+1 = (4 + 1o and B > [,
or B+1 =By +1i, and 8 = B, and i > i,
(1) ag, i, € rang(fo+1)-

16ip fact, this follows
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This is easy: for successor « we use the definition of type and let Ny := U{N, :
a < A}. Clearly fy = U{fy : @ < A} is a <;-embedding of M) into Ny over M.
Asin N, the type g is realized and it is not realized in M) necessarily N ¢ fi(M))
hence Ny # fa(My) but easily f(My) <¢ Ni. So by Axiom (D)(c) for some
¢ € Nx\ fa(My) we have p = ortp(c, fr(My), Na) € S™(fr(My)). As (f,(M,) :
v < A) is <p-increasing continuous, by Axiom (E)(c) for some v < A we have

ortp(c, fa(My), Ny) does not fork over f,(M,), also as ¢ € Ny = |J Np clearly
B<A
¢ € N for some § < Xand let i < A besuch that ¢ = ag ;. Nowif a € [max{y, 5}, A)

then (f,7) is a legitimate candidate for (8a,iq) that is ortp(ag, fo(Ma), No) €
SP*(f.(M,)) by monotonicity of non-forking, i.e., Axiom (E)(b). So (Ba,ia) is
well defined for any such o and Sy + iq < 8+ by clause (F)(i). But oy < agz =
Ao, vie;, T APy .in, (&S One belongs to fo,11(Ma,) and the other not), contradiction
by cardinality consideration.

2) So ¢, is stable in A and has amalgamation, hence (see 1.17) the conclusion
holds; alternatively use 4.3 below. Cyo

Claim 4.3. Assume
(a) & < AT is a limit ordinal divisible by X
(b) M = (M, : a < 6) is <g-increasing continuous sequence in £y
(¢) ifi < & and p € SP5(M;), then for A ordinals j € (i,0) there is ¢ € M1
realizing the non-forking extension of p in S*(M;).

Then Ms is (A, cf(9))-brimmed over My and universal over it.

Remark 4.4. 1) See end of proof of 6.31.

2) Of course, by renaming, My is (A, cf(d))-brimmed over M, for any o < .

3) Why in clause (c) of 4.3 we ask for “A ordinals j € (4,6)” rather than “for
unboundedly many j € (4,6)”? For A regular there is no difference but for A singular
not so. Think of € the class of (A4, R), R an equivalence relation on A; (so it is not
categorical) but for some A-good frames s, &, = £, and exemplifies a problem; some
equivalence class of Ms may be of cardinality < .

Proof. Like 4.2, but we give details.
Let g : § — X be a one to one and choose by induction on a < ¢ a triple
(N, fa,aq) such that

(A) N, € K is <p-increasing continuous

(B) fais a <g-embedding of M, into N,

(C) fo is increasing continuous

(D) fo =1idag,, No = My

(E) an = (aq, i < A) list the elements of N,

(F) Ng41 is universal over N,

(G) if a < § and there is a pair (8,7) = (Ba, i) satisfying the condition (*)?j,Na

stated }oglow and it is minimal in the sense that
(*)?;Na = (**)glvi/ﬁ’i, see below, then ag; € rang(fo+1),
~ where 4
()7 n. (@) B<aandi<)\

(a) (b) Ortp(aﬁ,ia fa(Ma)vNa) S Sbs(foz(Ma))
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(b) (¢) some c € M1 realizes f, *(ortp(as.i, fa(Ma), Na), so by clause
(b) it follows that ¢ € Myq1 \ M,

(o) 25 [g(B) +i < g(B') + 'V
[9(B)+i = g(8)+i" and g(8) < g(B")]V[g(B)+i = g(8')+i" and
9(B) = g(8') and i <i'].
There is no problem to choose f, Ny. Now in the end, by clauses (A),(F) clearly
Ny is (A, ¢f(§))-brimmed over Ny, i.e., over My, so it suffices to prove that f5 is onto
Ns. If not, then by Axiom (D)(c), the density, there is d € N5\ fs(Ms) such that
p = ortp(d, f5(Ms), Ns) € S”*(fs5(Mj)) hence for some B(x) < § we have d € Ny,
so for some i(x) < A, d = ag(s),i(+)- Also by Axiom (E)(c), (the local character) for
every 5 < ¢ large enough say > (4 the type p does not fork over f5(Mpg), without
loss of generality 84 = B(x). Let ¢ = fgl(ortp(d, f5(Ms), Ns), so it € SPs(Ms).
Let u = {a: B(x) <a < §and g | M, € S*(M,) (note B(x) < a) is realized
in My11}. By clause (c) of the assumption clearly |u| = A. Also by the definition
of v for every a € u the condition (*)’i,(:)fl(*) holds, hence in clause (F) the pair
(Basia) is well defined and is “below” (B(*),i(x)) in the sense of clause (G). But
there are only < |g(B(x)) x i(*)| < A such pairs hence for some oy < ag in u we
have (Ba;,%01) = (Bassia,), a contradiction: ag, i, € rang(fa,+1) C rang(fa,) =
fa2 (Maz) hence Ortp(aﬁal,ial ’ fOé2 (Maz)v NOQ) ¢ Sbs(fafz (Maz))v contradiction. SO
we are done. Cas

* * *
The following is helpful for constructions so that we can amalgamate disjointly

preserving non-forking of a type; we first repeat the definition of Ki’bs, <ps-

Definition 4.5. 1) Let (M, N, a) € Ki’bs if M <¢ N are models from Ky,a € N\M
and ortp(a, M, N) € SP5(M). Let (M, N1,a) <ps (M2, Na,a) or write <{_, when:
both triples are in Ki’bS,Ml <¢ M3, N7 <¢ Ny and ortp(a, Ma, No) does not fork
over Mj.

2) We say (M, N, a) is bs-reduced when if it belongs to Ki’bs and (M, N,a) <ps
(M',N',a) € K3 = NnM' = M.

3) We say p € SP5(IV) is a (really the) stationarization of ¢ € SPS(M) if M <¢ N
and p is an extension of ¢ which does not fork over M.

Remark 4.6. 1) The definition of K> is compatible with the one in 2.4 by 2.6(1).

2) We could have strengthened the definition of bs-reduced (4.5), e.g., add: for
no b€ N\ M’, do we have ortp(b, M’, N') € SP*(M’) and there are M", N” such
that (M', N’ a) <ps (M",N",a) and ortp(b, M, N"") forks over M'.

Claim 4.7. For parts (3),(4),(5) assume s is categorical (in \).

1) Ifk <X\ (M,N,a) € Ki’bs, then we can find M', N’ such that: (M, N,a) <ps
(M',N',a) € Ki’bs, M’ is (A, k)-brimmed over M, N’ is (\, k)-brimmed over N and
(M’, N’ a) is bs-reduced.

1A) If (M,Ny,ap) € Ki’bs for £ = 1,2, then we can find M™, f1, fo such
that: M <¢ M+ € Ky and for £ € {1,2}, f¢ is a <g-embedding of N, into
M™* over M and (M, fo(Ny), fo(ae)) <vs (fs—e(N3_¢), M, fias)), equivalently
ortp(fe(ar), fa—e(Ns—g), M+) does not fork over M.



Paper Sh:600, version 2023-06-18. See https://shelah.logic.at/papers/600/ for possible updates.

CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES 55

2) If (My, Ny, a) € Ki’bs is <ps-increasing for a < § and § < AT is a limit

ordinal then their union (|J My, U Na,a) is a <ps-lub. If each (My, Ny, a) is
a<d a<d
bs-reduced then so is their union.

3) Let A divide 6,6 < X*. We can find (Nj,a; : j < 8,i < §) such that:
N; € Ky is <g-increasing continuous, (Nj, Njy1,a;) € Ki’bs is bs-reduced and if
i < 6,p € SP(N;) then for X ordinals j € (i,i + \) the type ortp(a;, Nj, Nji1) is
a non-forking extension of p; so Nj is (A, cf(9))-brimmed over each N;,i < 6. We
can add “Ny is brimmed”.

4) For any (My, My,a) € Ki’bs and My € Ky such that My <¢ My there are
No, N1 such that (Mo, My, a) <ps (No, N1,a), My = M1 N Ny and Ma, Ny are iso-
morphic over My. (In fact, if (My, M3,b) € Ki’bs we can add that for some isomor-
phism f from My onto Ny over My we have (Mg, No, f(a)) <ps (M1, N1, f(a)).)

5) If My € Ky is brimmed and My <s My for £ = 1,2 and there is a disjoint
<s-amalgamation of My, My over My.

Proof. 1) We choose M;, N;,b%(¢ = 1,2),¢; by induction on i < § := A such that
(a)
(b)
()1 bf € M1\ M; and ortp(b}, M, Miy1) € S*(M;),
)2 b? € Niy1 \ N; and ortp(b?, N;, Ni11) € SP(IV;)
)1 ifi < A and p € SP%(M;) then the set {5 :4 < j < X and ortp(bj, Mj, M 1)
is a non-forking extension of p} has order type A
(d)2 if i < X and p € SP*(N;) then the set {j : i < j < X and ortp(b?, Nj, Nj41)
is the non-forking extension of p} has order type A
(6) C; = <Ci,j 17 < /\> list NV;
(f) fa<Xi<aj<Ac;¢ M,butforsome (M”, N")wehave (Mqy+1, Not1,a) <ps
(M",N",a) and ¢;; € M" then for some i1,j1 < max{s,j} we have
Ciy g1 € May1 \ M.
Lastly, let M’ = U{M; : i < A},N' = U{N; : i < A}, by 4.3 M is (A, cf(N))-
brimmed over M (using (d)1), and N’ is (A, cf()))-brimmed over N (using (d)s2).
Lastly, being bs-reduced holds by clauses (e)+(f).
1A) Easy.
2) Recall Ax(E)(h).
3) For proving part (3) use part (1) and the “so” is by using 4.3.
4) For proving part (4), without loss of generality Ms is (A, cf(A))-brimmed over
My, as we can replace My by M} if My <, M} € K. By part (3) there is a sequence
(a; : 1 < 0) and an <g-increasing continuous (V; : i < d) with Nog = My, Ns = M>
and (N;, Niy1,a;) € Ki’bs is reduced. Then use (1A) successively.
5) By part (3) as in the proof of part (4). i

(M;, Ni,a) € K3 is <ps-increasing continuous
(MO7N0) = (Ma N)

Claim 4.8. Assume
(@) v < AT is a limit ordinal
(b) 8; < AT is divisible by X for i < ,{(8; 1 i <) is increasing continuous
(¢) (N;:i<~) is <g-increasing continuous in Ky
(d) (M; :i<7) is <g-increasing continuous in Ky
(e) N; <¢ M; fori<-~
(f) (M;; :j <6;) is <g-increasing continuous in Ky for each i <~y
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(9) Mio = Ni,M;s, = Mj,aj € M; 41\ M and ortp(aj, M;j, M; 1) €
S(M; ;) when i < 7,7 <

(h) if 5 < diga),i(x) <y then (M;; i € [i(x),7)) is <e-increasing continuous

(¢) ortp(a;, Mg j, Mg ji1) does not fork over M; ; wheni < y,j < 6;,1 < 3 <~

(j) if i < v,j < &i,p € S"(M, ;) then for \ ordinals j1 € [4,8;) we have
ortp(aj,, M; j,, M; j,+1) € S**(M, j,) is a non-forking extension of p
or we can ask less
()~ ifi<v,j <8 and p € S*5(M; ;) then for X\ ordinals ji € [j,8,) for some
i1 € [Z.”Y) we have Ortp(aj17Mihjl’Milajl"Fl) € SbS(Milajl) is a non-forking
extension of p.
Then My == U{M;; : i < 7,5 < &} ={M; : i <~} is (A cf(y))-brimmed over
N, :=U{N; i <~}

Proof. For j < 0, let M, ; =U{M;;:i <~} andlet M, 5 = M, be | J{M,;:j<
d+}. Easily (M, ; : j < d,) is <g-increasing continuous, M, ; € Ky andi < yAj <
0; = Mi,j <e M%j. Also if i < v, 7 < d; then Ortp(aj,M%j,M%jJrl) S Sbs(M%j>
does not fork over M, ; by Axiom (E)(h), continuity.

Now if j < 6, and p € Sbs(M%j) then for some 7 < vy, p does not fork over M; ;
(by Ax(E)(c)) and without loss of generality j < ¢;.

Hence if clause (j) holds we have u := {e : j < ¢ < §; and ortp(a., M; o, M, -11) is
a non-forking extension of p [ M, ;} has A members. But for € € u, ortp(ac, My o, My c11)
does not fork over M; . (by clause (i) of the assumption) hence does not fork over
M; ; and by monotonicity it does not fork over M., ; and by uniqueness it extends p.
If clause (j)~ holds the proof is similar. By 4.3 the model M., is (X, cf(7y))-brimmed
over ny. D4.8

Lemma 4.9. 1) If M € K and the models My, My € K are (A, x)-brimmed over
M (see Definition 1.16(2)), then My, My are isomorphic over M.
2) If My, My € Ky are (A, *)-brimmed then they are isomorphic.

We prove some claims before proving 4.9; we will not much use the lemma, but it
is of obvious interest and its proof is crucial in one point of §6.

Claim 4.10. 1)

(E)(i)" long non-forking amalgamation for o < \*:
if (N; @1 < ) is <g-increasing continuous sequence of members of
Kx,a; € Niy1 \ N; for i < a,p; = ortp(a;, Ni, Niy1) € SP(N;) and q €
SP(Ny), then we can find a <g-increasing continuous sequence (N! : i < a)
of members of Ky such that: i < o = N; <¢ N/; some b € Nj\ Ny re-
alizes q,ortp(b, No, N,) does not fork over Ny and ortp(a;, N, N{,,) does
not fork over N; fori < a.
2) Above assume in addition that there are M,b* such that Nog <¢ M € K),b* € M
and ortp(b*, No, M) = q. Then we can add: there is a <g-embedding of M into N|
over Ny mapping b* to b.
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Proof. Straight (remembering Axiom (E)(i) on non-forking amalgamation of Defi-
nition 2.1). In details

1) Let My, b* be such that Ny <g;) Mo and g = ortp(b*, No, My) and apply part

(2).

2) We choose (M;, f;) by induction on i < « such that

® (a) M; € &, is <g-increasing continuous.

(b) fi is a <g-embedding of N; into M;.

(¢) f; is increasing continuous with i < .

(d) My = M and fy =idy,.
)
)

]

(e) ortp(b*, f;(N;), M;) does not fork over Nj.
(f) ortp(fit1(a;), M;, M;11) does not fork over f;(N;).
For ¢ = 0 there is nothing to do. For 4 limit take unions; clause (e) holds by
Ax(E)(h). Lastly, for ¢ = j + 1, we can find (M, f!) such that f; C f/ and f/ is
an isomorphism from N; onto M. Hence f;(N;) <) N;. Now use Ax(E)(i) for
fj(Nj)’Mz‘/7Ni7fz'/(aj)vb*'
Having carried the induction, we rename to finish. 410

In the claim below, we are given a <g,-increasing continuous (M; : ¢ < ¢) and
ug, u1, Uz C § such that: wug is where we are already given a; € M; 11 \ M;,u1 C 6
is where we shall choose a;(€ M/, \ M]) and up C § is the place which we “leave
for future use”; main case is u; = d;ug = us = J.

Claim 4.11. 1) Assume
(a) 6 < AT is divisible by A
(b) ug,u1,us are disjoint subsets of 6
(c
(d) (M; :i < d) is <g-increasing continuous in €
(e) a=(a;:i€ug),a; € Mip1 \ My, ortp(a;, M;, M;y1) € SP(M;).
Then we can find M = (M! :i<0) and @' = (a; : i € uy) such that

(

)
) § = sup(uy) and otp(uy) is divisible by A
)

.7\7/ is <g-increasing continuous in K
B) M; <¢ M
(v) ifi € ug then ortp(a;, M], M/, ) is a non-forking extension of ortp(a;, M;, My 1)

2

~~

(6) ifi € ug then M; = M;11 = Mz/ = Mil-',-l

(¢) ifi € uy then ortp(a;, M, M/, ;) € S*(M])
() ifi < 6,p € SPS(M]) then for X ordinals j € uiN(i,d) the type ortp(a;, M, Mj )
s a non-forking extension of p.
2) If we add in part (1) the assumption
(9) Mo <¢ N € K,
then we can add to the conclusion
(n) there is an <g-embedding f of N into M|, over My and moreover f is onto.
3) If we add in part (1) the assumption
(h)T My <¢ N € Ky and b€ N \ My, ortp(b, My, N) € SP5(My)
then we can add to the conclusion
(m* as in (n) and ortp(f(b), Ms, M}) does not fork over M.
4) We can strengthen clause () in part (1) to
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(O)F ifi <3 and p € SP(M]) then for X ordinals j we have j € [i,6) Nuy and
ortp(a;, M}, M}, ) is a non-forking extension of p and otp(ui N j\ i) < A.

Proof. Straight like 4.10(2). Note that we can find a sequence (uj ;. : i < d,&6 < A)
such that: this is a sequence of pairwise disjoint subsets of u; each of cardinality A
satisfying w1 ;. C {j 14 < j,j € w1 and |us N (4,5)] < A} (or we can demand that

7 S il < i2 S O N |U1 N (il,i2)| == |’U,17i’5 n (il,i2)| = )\) D4,11

Toward building our rectangles of models with sides of difference lengths (and then
we shall use 4.8) we show (to understand the aim of the clauses in the conclusion
of 4.12 see the proof of 4.9 below):

Claim 4.12. Assume
(a) 60 < AT is divisible by X for £ =1,2
(b) M= (MY a < 8y) is <g-increasing continuous for £ = 1,2
(¢) ub,ul, ub are disjoint subsets of d;,otp(u) is divisible by A and 6 = sup(u¥)
fort=1,2
(d) a* = (a, : a € uf) and ortp(al, ML, ME ) € SP(ME) for £ =1,2,a € uf
(e) My = Mg

(f) aeutUul = M;E=M, | fort=1,2.

Then we can find f* = (f 1 a < 6),b" = (b, : a € u§ Uut) for £ = 1,2 and
M= (Myp:a<d,B<68) and functions ¢ : u} — d and € : u} — 61 such that

(a)1 for each o < 61, (Myg : 5 < d2) is <g-increasing continuous

(a)2 for each B < 02, (Mag : oo < 81) is <g-increasing continuous

(B)1 for a € ud, bl belongs to My 11,0 and ortp(bl, Mo 5,, Mat1.5,) € S**(Ma,s,)
does not fork over M, o

(B)2 for B € ug, b3 belongs to Mo 41 and ortp(b3, Ms, 5, M5, py1) € S*(Mj, )
does not fork over My g

(7)1 fora € ut,{(a) < 82 and we have b}, € Mo ,¢(a)+1 and ortp(bl, Mo s,y Mot1.5,)
does not fork over My, ¢(a)+1

()2 for B € u3,e(B) < 61 and we have b% € M. (gy4+1,8+1 andortp(b%,M5175,M51’5+1)
does not fork over M.(g) 41,5

(6)1 if @ < 81,8 < 82 and p € S*5 (M, ) or just p € S*5(My g41) then for
A ordinals ' o/ € [, 61) Nul, the type ortp(bl,, My i1, Mat1,p41) 45 a
(well defined) non-forking extension of p and 8 = {(&)

(8)2 if @ < 81,8 < 82 and p € S5 (M, ) or just p € SP5(Myy1,3) then for
X ordinals 18 B' € [B,682) N2, the type ortp(b%,,Ma“ﬁ/,MaHﬁrH) 5 a
non-forking extension of p and o = e(8’)

(e) Moo = Mg = M¢
()1 fL is an isomorphism from M} onto M, o such that o € ul = fl(al) = b},
fl= idy2 and fL is increasing continuous with o
(Q)2 f3 is an isomorphism from Mj onto Mo g such that § € ug = f3(a3) = b3
f2=id Mz and f2 is increasing continuous with o

()1 if o € ul then My g = Myi1,5 for every B < &,

7we can add “and otp(a/ N ul \ ag) < A7
18we can add “and otp(8’ N u\ B2) < A
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(n)2 if B € u3 then My g = My 41 for every a < dy.

Proof. Straight, divide u{ to d3_, subsets large enough), in fact, we can first choose
the function ((—),e(—). Now choose (M, 5 : a < 81,8 < B8*),(fL : a < 41), <f§ :
B < B%) and (b, : ((a) € 5*), (b3 : B < B*) by induction on 5* using 4.11.  Oy1o

Proof. [Proof of 4.9] By 1.17(3), i.e., uniqueness of the (]}, 6y)-brimmed model over
M, it is enough to show for any regular 61,6 < X that there is a model N € K
which is (A, 8p)-brimmed over M for ¢ =1,2. Let §; = A X 61,02 = A X 03 (ordinal
multiplication, of course), M} = ME =M for a < 61,8 < dg,ul = ud = 9,ui =
d1,ui = dg,uy = u3 = &. So there are (My 5 : a < 61,8 < ), (by, : @ < 01), (b3 :
B < dz) and (f) : o < 61),(f3 : B < d2) as in Claim 4.12. Without loss of generality
folé . fg S ldM Now
(#)1 (Ma,s, @ @ < 01) is <g-increasing continuous in K (by clause («)1, of 4.12).
Also
(¥)2 if @ < 07 and p € S(M,5,) then for A ordinals o’ € (a,d1) Nui the type
01rtp(b(1l,’527 Moy 55, Mor11,5,) is a non-forking extension of p.

(Easy, by Axiom (E)(c) for some 8 < da, p does not fork over M, g+1 and use clause
((5)1 of 4.12).

So by 4.8, Ms, 5, is (A, c¢f(41))-brimmed over Mg 5, which is M.

Similarly Ms, s, is (A, cf(d2))-brimmed over Mjs, o which is M; so together we
are done. ag

Claim 4.13. 1) If M € Ky+ and p € S*(My), My <¢ M (so My € K ), then we
can find b, (N9 : a < AT) and (N} : a < \T) such that

(a) (N :a <A is a <g-representation of Ny, = M

(b) (N}L:a < AT) is a <e-representation of Ny, € K+

(¢) Niyy is (X X)-brimmed over N (hence Ny, is saturated over X in €)

(d) My < N§ and Ny <¢ N,

(€) ortp,(b, N2, N}) is a non-forking extension of p for every a < A\T.
2) We can add

(f) for a < B < AT, N is (A %)-brimmed over N§ U NJ.

Proof. 1) Easy by long non-forking amalgamation 4.10 (see 1.18).
2) Use 4.8. Uaas

Conclusion 4.14. 1) Ky++ # .
2) K+ # 2.
3) No M € K+ is <g-mazimal.

Proof. 1) By (2) + (3).
2) By (B) of 2.1.
3) By 4.13. Ua1a
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Ezercise 4.15. : 1) Let M € K be superlimit and t = s[], so Ky is categorical. If
(M, N,a) € KP is reduced for t, then it is reduced for s.
2) In 4.7(3),(4),(5), we can omit the assumption “s is categorical” if:
(a) we add in part (3), each N; is superlimit (equivalently brimmed)
(b) in parts (4),(5) add the assumption “Mj is superlimit”.
2) Some extra assumption in 4.7(5) is needed.
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§ 5. NON-STRUCTURE OR SOME UNIQUE AMALGAMATION

We shall assuming 2* < 227 < 2277 get from essentially J(ATH, K) < 227
pedantically < frmie (AT, 227) or just J(ATF, K (At -saturated)) < panis(ATT,227),
many cases of uniqueness of amalgamation assuming in addition WDmId(A™) is not
AtT-saturated, a weak assumption. The proof is similar to [She], [She01, §3] but
now we rely on [She09d], the “lean” version; and by the “full version” without we
can eliminate the additional assumption.

We define Ki’bt, it is a brimmed relative of Ki’bs hence the choice of bt; it
guarantees much brimness (see Definition 5.2) hence it guarantees some uniqueness,
that is, if (M, N,a) € Ki’bt, M is unique (recalling the uniqueness of the brimmed
model) and more crucially, we consider Ki”uq, (the family of members of Ki’bs for
which we have uniqueness in relevant extensions). Having enough such triples is
the main conclusion of this section (in 5.9 under “not too many non-isomorphic
models” assumptions). In 5.4 we give some properties of Ki’bt, Ki’uq.

To construct models in AT we use approximations of cardianlity in AT with
“obligation” on the further construction, which are presented as pairs (M,a) € K 3
ordered by <., see Definition 5.5, Claims 5.6, 5.7. We need more: the triples
(M,a,f) € K¢ K" in Definition 5.12, Claim 5.13. All this enables us to quote
results of [She01, §3] or better [She09d, §2], but apart from believing the reader do
not need to know non of them.

Hypothesis 5.1. (a) 5= (&), S™) is a good A\-frame.

Definition 5.2. 1) Let Ki’bt = K2 be the set of triples (M, N, a) such that for
some 0 = cf(9) < A\, M <; N are both (A, d)-brimmed members of Kx,a € N\ M
and ortp(a, M, N) € S"(M).

2) For (Mg, N¢,ae) € Ki’bt for £ = 1,2 let (M, N1,a1) <pt (Ma, No,as) mean
a; = ag, ortp(ay, Ma, No) does not fork over M; and for some 9y = cf(9;) < A, the
model My is (A, O2)-brimmed over M; and the model Ny is (X, O2)-brimmed over
N;. Finally (M1, N1,a2) <pt (Mz, Na, az) means (My, N1,a1) <pt (Ma, Na,ag) or
(Ml, ]\717 0,1) = (Mg, N27 (12).

Definition 5.3. 1) Let “(My, My, a) € K39 mean: (Mo, Ma,a) € Ky and: for
every M, satisfying My <¢ My € K), the amalgamation M of My, My over My,
with ortp(a, My, M) not forking over My, is unique, that is:

() if for £ = 1,2 we have My <¢ M; <¢ M* € K, and f; is a <g-embedding
of My into M* over My (so f1 | My = fo | My = idypy,) such that
ortp(fe(a), My, M*) does not fork over My, then

(a) [uniqueness]:
for some M’, g1, g2 we have: M7 <¢ M' € K, and
ge is a <g-embedding of M* into M’ over M, for ¢ = 1,2 such that
grofi | Ma=gz0 fo| M
(b) [being reduced] fo(Ma) N My = My
[this is “for free” in the proofs; and is not really necessary so the
decision if to include it is not important but simplify notation, but see
5.4(3)].
2) K2 is dense (or s has density for K¥"%) when K™% is dense in (K3, <),
i.e., for every (M1, M3, a) € K/S\’bs there is (M7, Na,a) € Ki’uq such that (M7, Ms,a) <pg
(N1, Na,a) € K39,
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3) K i’uq has existence or s has existence for K i’uq when for every My € K and
p € SP5(My) for some My, a we have (Mg, My, a) € Ki’“q and p = ortp(a, Mo, M1).
4) K3 = K,

Claim 5.4. 1) The relation <y is a partial order on Ki’bt that is transitive and
reflexive (but not necessarily satisfying the parallel of Ax V of AEC see Definition
1.4).

2) If (My, Ny, a) € Ki’bt is <pg-increasing continuous for a < § where § is
a limit ordinal < \* then (M,N,a) = (|J Ma, U Na,a) belongs to Ki’bt and

a<d a<d

a < 6= (My,No,a) <pt (M,N,a) and so (M,N,a) is a <p-upper bound of
(My, Nyya) : o < 9).

3) In () of 5.3(1), clause (b) follows from (a).

Proof. Easy; e.g. (3) by the uniqueness (i.e., clause (a)) and 4.7(4). Os.4

We now define K3%, a family of <e-increasing continuous sequences (the reason
for sq) in Ky of length A%, will be used to approximate stages in constructing
models in Ky++.

Definition 5.5. 1) Let K}% = K% be the set of pairs (M, a) such that (sq stands
for sequence):
(a) M = (M, :a < \*)is a <p-increasing continuous sequence of models from
K
(b) a=(an:a € S), where S C AT is stationary in AT and a, € Myi1 \ M,
(¢) for some club E of AT for every o € SN E we have ortp(aq, My, Mot1) €
Sbs(Ma)
(d) if p € SP3(M,,) then for stationarily many § € S we have: ortp(as, Ms, Ms,1) €
SPS(M;) does not fork over M, and extends p.

In such cases we let M = |J M,.
a<At
2) When for £ = 1,2 we are given (]\7@,2’1@) € K34 we say (]\71,51) <ct (Mg,éz)
if for some club E of AT, letting a’ = <a§ 16 € S* for £ = 1,2, of course, we have
(a) S'!NECS*NE
(b) if 6 € ST N E then
(@) My <e M

Observation 5.6. 1) If (M,a) € K\ then M := |J M, € K+ is saturated.
a<At

2) K3 is partially ordered by <. Os6

Claim 5.7. Assume <(]\7[C75C) 1 ( < (%) is <c-increasing in K33, and (* is a limit
ordinal < A\t then the sequence has a <.-Lu.b. (M,a).

See https://shelah.logic.at/papers/600/ for possible updates.
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Proof. Let a¢ = (ag 10 € S¢) for ¢ < ¢* and without loss of generality ¢* = cf({*)
and for ¢ < £ < (* let E¢ ¢ be a club of AT consisting of limit ordinals witnessing

(M, %) <o (M°,&5), ie. as in 5.5(2).

Case 1: (* < \™T.
LetE:ﬂ{E%:C<§<C*}andforéeEletM(;:U{Mg:C<C*}

and Msiq = U{M(;CJrl : ¢ < ¢*} and for any other a, My, = Mpin(p\a)- Let S =

U S¢NE and for 6 € Slet as = ag for every ( for which 6 € S¢. Clearly M, € K,

¢<¢*

is <g-increasing continuous and { < (*AJ € F = Méc <¢ Ms and M§+1 <¢ Msq1.
Now if 6 € ENS¢ then ¢ € [¢, ¢*) implies ortp(as, M§,M5+1) = ortp(ag,Mf, M§+1)

does not fork over Mé (and <M§ €€ [¢,9)), <M§+1 : € €[¢,0)) are <g-increasing

continuous); hence by Axiom (E)(h) we know that ortp(as, Ms, Ms,1) does not

fork over Mg and in particular € S”(Ms). Also if N <y M = U+ M,,N € K,
a<A
and p € SP5(N) then for some 6(x) € E, N < My, let p1 € SbS(M5(*)) be a

non-forking extension of p, so for some ( < (*,p does not fork over Mg(*) hence
for stationarily many § € S¢,q) = ortp(a(g,Mg,MgH) is a non-forking exten-
sion of py | Méc(*)7 hence this holds for stationarily many 6 € S N E and for
each such 6,q5 = ortp(as, Ms, Ms11) is a non-forking extension of p; | Mg(*),

hence of p; hence of p. Looking at the definitions, clearly (M,a) € K% and
(<= (M a%) < (M, a).
Lastly, it is easy to check the <. -l.u.b.

Case 2: (* = \T.
Similarly using diagonal union, i.e., E = {6 < AT : § is a limit ordinal such that

(< &< d=6¢€ B} and we choose M, = U{M§ : ( < a} when a € E and
Ma = Mmin(E\(a—i—l)) otherwise. |:|5_7

. . . bs . . bs
Observation 5.8. Assume Ki’uq is dense in Ki’ ° i.e., in (Ki ® <bs) and even
in (Ki’bt, <pt). Then

(a) if M € K is superlimit and p € S"*(M) then there are N,a such that
(M,N,a) € Ki’uq and p = ortp(a, M, N)

(b) if in addition K, is categorical (in \) then s has existence for K3 (recall
that this means that for every M € K, and p € S**(M) for some pair
(N,a) we have (M, N,a) € K¥"* and p = ortp(a, M, N)).

Proof. Should be clear. Us.s

Now the assumptions of 5.8 are justified by the following theorem (and the
categoricity in (b) is justified by Claim 1.27).

Claim 5.9. [First Main Claim] Assume that
(a) asin 5.1
(b) WDmId(A1) is not AT -saturated and'® 2* < 227 < 227

19alternaﬁ;ively the parallel versions for the definitional weak diamond, but not here
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IFINTT, K) < panie (AT, 22" or just TN, K\t -saturated)) < pranie (AT, 2’\+),
then for every (M, N,a) € Ki’bs there is (M*,N*,a) € Ki’bt such that (M, N, a) <pt
(M*,N*,a) and (M*,N*,a) € K3"9.

Explanation 5.10. The reader who agrees to believe in 5.9 can ignore the rest of
this section (though it can still serve as a good exercise).

Let (S, : @ < ATT) be a sequence of subsets of AT such that o < 8 = |5,\ 55| <
Aand Soi1\ Sy # @ mod WDmId(AT), exists by assumption.

Why having (M, N, a) failing the conclusion of 5.9 helps us to construct many
models in K,++? The point is that we can choose (M~ ,a%) € K34 with Dom(a®) =
S, for a < AT < ¢-increasing continuous (see 5.7).

Now for a = 841, having (M ’6, a?), without loss of generality MZB 41 is brimmed
over Mf and we shall choose M by induction on i < A" (for simplicity we assume
Mg ﬁU{Mf cj <At} =My and MP <y M® € K and ortp(af,Mf,Mﬁ_l) does
not fork over Mf and M7, is brimmed over M{).

Given (Mﬂ,éﬁ),]\?'g = <Mf cio< Ah)af = <af 11 € Sp) we work toward
building (M",a%), agy1.

We start with choosing (Mg, b) such that no member of Ki’bs which is <ps-above
(M§, Mg, b) € K2 belongs to K3 and will choose M/ by induction on i such
that (Mf ,M>)b) € Ki’bs is <ps-increasing continuous and even <pi-increasing
hence in particular that ortp(b, MZ’B , M) does not fork over M§. Now in each
stage i =7+1, as Mf is universal over M f , and the choice of M, b we have some

freedom. So it makes sense that we will have many possible outcomes, i.e., models
M = U{M? : o < AtT,i < AT} which are in Ky++. The combination of what
we have above and [She01, §3] better [She09d, §2] gives that 2 < 227 < 22" is
enough to materialize this intuition. If in addition 2* = At and moreover {,+ it
is considerably easier. In the end we still have to define a® | (S, \ Sg) as required
in Definition 5.5, [GSar|. An alternative is to force a model in A**. Now below we
replace Kifq by K37, Kg* but actually Kifq is enough. So we need a somewhat
more complicated relative as elaborated below which anyhow seems to me more
natural.

Claim 5.11. [Second Main Claim] Assume 2> < 2X° < 227 (or the paral-
lel versions for the definitional weak diamond). If I(A\tT, K (A\t-saturated)) <
fanit (AT, 227), then for every (M, N,a) € K3 there is (M*,N*,a) € K™
such that (M, N,a) <u;, (M*,N*,a) and (M*,N*,a) € K5"9.

We shall not prove here 5.11 and shall not use it, it is proved in the full version of
[She09d]; toward proving 5.9 (by quoting) let

Definition 5.12. Let S C A" be a stationary subset of A*.
1) Let Kg'" or K\"[S] be the set of triples (M, a, f) such that:

(@) M = (M, : a < \*") is <g-increasing continuous, M, € K
(we denote |J M, by M) and demand M € K+
a<At
(b) a=(aq:a <) with aq € My
(¢) fis a function from A" to AT such that for some club E of A" for every § €
ENS and ordinal i < f(§) we have ortp(ass, Msyi, Msiir1) € SP$(Msy;)
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(d) for every a < At and p € SP%(M,,), stationarily many § € S satisfies: for
some € < f(9) we have ortp(asie, Msie, Msier1) is a non-forking extension
of p.

1A) Ky ([S] = K3 is the set of triples (M, a,f) € Kg'"" such that:

(e) for a club of § < AT, if § € S then f(d) is divisible by A and 2 for ev-
ery i < £(8) if ¢ € S”(Mjs;) then for X ordinals ¢ € [i,f(5)) the type
ortp(asre, Msie, Msicy1) € SP5(Ms..) is a stationarization of ¢ (= non-
forking extension of ¢, see Definition 4.5).

2) Assume (Mé,ég,fz) € K for £ = 1,2; we say (Ml,él,fl) <% (M
for some club E of A", for every § € EN .S we have:

(a) M}, <e M}, for ?' i < f£1(5)

(b) £1(3) < £%(9)

(¢) for i < f1(8) we have aj,; = aj,; and
ortp(ag,;, M3, ;, M3, ;. ) does not fork over My ,.

3) We define the relation <§ on Kg'%" as in part (2) adding
(d) if 6 € E and i < £(0) then M7 ;. is (A, *)-brimmed over My, ;. UMZ ..

’ a2 £2) iff

Claim 5.13. 0) If (M,a,f) € K¢V then |J M, € Ky+ is saturated.
a<At

1) The relation <% is a quasi-order 22 0n<K;\“qr; also <% is.

2) K¢ D K¢ # & for any stationary S C A*.

3) For every (M, a,f) € K™[S] for some (M ,a,f') € K2 [S] we have (M, a, ) <}
(M ,a,f).

4) For every (Ml,él,fl) € K andq € S™(M}), o0 < AT, there is (M?,a% ?) €
K3 such that (.7\71751,f1) <% (1\72752,f2) € K¢V and b € M2 realizing q such
that for every € [a, \) we have ortp(b, M}, M3) € S**(M}) does not fork over

5) If <(]\7C,éc,f4) : ¢ < &(x)) is <%-increasing continuous in Kg% and £(x) <
AT a limit ordering, then the sequence has a <%-Lu.b..

Proof. 0, 1) Easy.
2) The inclusion K" D K¢* is obvious, so let us prove Kg¥ # @&. We choose by
induction on o < A1, an, My, pe such that

(a) M, € K, is a super limit model,

(b) M, is <g-increasingly continuous,

(¢) if a« = B+ 1, then ag € M, \ Mpg realizes ps € S**(Mp),

(d) if p € S”(M,,), then for some i < A, for every j € [i,\) for at least one
ordinal € € [j,j + 1), pate | Mo = p and po+e does not fork over M,,.
For a = 0 choose My € K. For o limit, M, = |J Ms is as required. Then
use Axiom(E)(g) to take care of clause (d) (with cari?ul bookkeeping). Lastly, let

f: AT — AT be constantly \, M = (M,, : @ < A\),a = (a, : @ < \); now for any
stationary S C A*, the triple (M,a | S,f | S) belong to K.

20if we have an a priori bound f* : AT — A+ which is a <p, | -upper bound of the “first” AtT

functions in >‘+(>\+)/D, we can use bookkeeping for u;’s as in the proof of 4.11
21¢ould have used (systematically) i < £1(5)
22quasi order < is a transitive relation, so we waive t <y <z =z =1y
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3) Let E be a club witnessing (Ml,él,fl) € KJ" such that § € E = § + f1(0) <
min(E\(6+1)). Choose £2 : AT — AT such that o < A" implies f(a) < f2(a) < AT
and f2(«) is divisible by A. We choose by induction on @ < A", fo, M2, p,,a? such
that:

(a), (b), (c) as in the proof of part (2)

(d) fo is a <g-embedding of M} into M?2

(e) fa is increasing continuous

(f) if 6 € ENS and i < £(6) hence ortp(af,;, My, ,, M, ;) € S(M,,),
ﬂlﬂf5+i+1(az15+i) = a§+i and pey; = Ortp(a<2s+ia M62+i’ M52+i+1) € SbS(M(?H)
is a stationarization of ortp(fstiv1(ad,), fori(Mi ), fori1(My 1)) =
0rtp(a§+i7 f5+i(Mél+i)7 M62+i+1)
(9) if 6 € Eand i < £2(0),q € SP(M},,) then for some A ordinals ¢ € (i, f2(d))

the type ps4c is a stationarization of ¢

(h) if6 € E,i < £2(J) then My, ;11 is (), *)-brimmed over M§+iuf5+i+1(M51+i+1).

The proof is as in part (2) only the bookkeeping is different. At the end without loss

of generality |J fa is the identity and we are done. 4) Similar proof but in some
a<A*

cases we have to use Axiom (E)(i), the non-forking amalgamation of Definition 2.1,

in the appropriate cases.

5) Without loss of generality cf(£(x)) = £(x). First assume that £(x) < X. For

£ < ¢ < &(*) let E.¢ be a club of AT witnessing M~ < M°. Let

E*= (1 E.cN{d <A :for every a < § we have — supfe(a) < 6},
e<(<E(x) e<g(x

it is a club of AT. Let £6¢) : At — A+ be £ (4) = - — sup £(4) now define
e<E(*

ME™) as follows: Case 1: If § € E* and € < £() and i < £(5) and i > J £6(5)
(<e
then
(@) M3\ = U{MS,, : C € [e,6(0)}
(B) i < fe(9) = agf:i) = a5,

(Note: we may define Mf_(;) twice if 4 = £¢(0), but the two values are the same).

Case 2: If § € E*,i = £¢()(§) is a limit ordinal let

£(x) _ £(%)
Mgy = U M-
j<i

Case 3: If Mf(*) has not been defined yet, let it be Mé}(i;)(E*\i). Case 4: If af(*)

has not been defined yet, let af(*) € Mf_i(_y;) be arbitrary.

Note that Case 3,4 deal with the “unimportant” cases.

Let & < £(x), why (M°,a%,£°) <% (M*"”, a¢™) ££)) € K™ Enough to check
that the club E* witnesses it.

Why ortp(asii, Mg:;), Mgfzrl) € Sbs(MfJ(:;)) and when ¢ € E*,i < £6()(4), and
does not fork over Mg, ; when i < £°(5) ? by Axiom (E)(h) of Definition 2.1.

Why clause (e) of Definition 5.12(1A)? By Axiom (E)(c), local character of non-
forking.

The case £(x) = AT is similar using diagonal intersections. Us.13
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Remark 5.14. If we use weaker versions of “good A-frames”, we should systemati-
cally concentrate on successor i < f(9).

Proof. [Proof of 5.9] We can use [She09d, 2b.3] or more explicitly [She09d, e.4]: the
older version runs as follows. The use of AT™ ¢ WDmId(A*™T) is as in the proof of
[She01, 3.19](pg.79)=3.12t. But now we need to preserve saturation in limit stages
§ < AT of cofinality < AT, we use <}, otherwise we act as in [She01, §3]. s

Let us elaborate.

Definition 5.15. We define C = (¢, Seq, <*) as follows:
(a) 77 = T U{P,<},t" is the set of (M,PM <M) where M € €.\, PM C
M, <M a linear ordering of PM (but =M may be as in [She01, 3.1](2) and
M1 SE‘*’ M2 lﬁ(Ml FT) Sg (MQ [T) and M1 QMQ
(b) Seq, = {M : M = (M; : i < «) is an increasing continuous sequence of
members of €7 and (M; | 7:i < a) is <g-increasing, and for
i < j < a:PM isa proper initial segment of (PMi, <™i) and there is a
first element in the difference}
we denote the <Mi+1first element of PMi+1 \ PMi by q;[M] and we
demand ortp(a;(M), M;T [,M;y1 | 7) € S(M; | 7) and if a = \, M =
U{M; | 7:i < AT} is saturated
() M <} N iff
M = (M;:i<a*),N=(N;:i<a**) are from Seq,t is a set of pairwise
disjoint closed intervals of o* and for any [a, 8] € ¢t we have (8 < a* and):

v € [a, B) = M, <¢ N, and a,[M] ¢ N, moreover

a[M] = a,[N] and ortp(a;[M], N, | 7, Ny11,7) does not fork over M, | 7.

Claim 5.16. 1) C is a A" -construction framework (see [She01, 3.3](pg.68).
2) C is weakly nice (see Definition [She01, 3.14](2)(pg.76).
4) C has the weakening AT -coding property.

Discussion 5.17. Is it better to use (see [She01, 3.14](1)(pg.75)) stronger axiom-
atization in [She01, §3] to cover this?
But at present this will be the only case.

Proof. Straight. Us.16

Now 5.11 follows by [She01, 3.19](pg.79).
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§ 6. NON-FORKING AMALGAMATION IN £

We deal in this section only with €.

We would like to, at least, approximate “non-forking amalgamation of models”
using as a starting point the conclusion of 5.9, i.e., K i’“q is dense. We use what looks
like a stronger hypothesis: the existence for K i’uq (also called “weakly successful”);
but in our application we can assume categoricity in \; the point being that as we
have a superlimit M € K, this assumption is reasonable when we restrict ourselves
to ¢M] recalling that we believe in first analyzing the saturated enough models; see
5.8. By 4.9, the “(\, cf(d))-brimmed over” is the same for all limit ordinals § < A™,
(but not for § = 1 or just § non-limit); nevertheless for possible generalizations we
do not use this.

It may help the reader to note, that (assuming 6.9 below, of course), if there is
a 4-place relation NFy (Mg, My, My, M3) on K, satisfying the expected properties
of “M;, Ms are amalgamated in a non-forking = free way over M, inside M3”, i.e.,
is a £y-non-forking relation from Definition 6.1 below then Definition 6.13 below
(of NF,) gives it (provably!). So we have “a definition” of NF, satisfying that: if
desirable non-forking relation exists, our definition gives it (assuming the hypothesis
6.9). So during this section we are trying to get better and better approximations
to the desirable properties; have the feeling of going up on a spiral, as usual.

For the readers who know on non-forking in stable first order theory we note
that in such context NF (Mo, M7, Ms, M3) says that ortp(Ma, My, Ms), the type
of M5 over M inside M3, does not fork over My. It is natural to say that there are
<N17a,N27a ta < a*),N&a is increasing continuous. Ny g = My, No g = Mo, My C
Mo, M3 C M5 Noo C M4, Npoyo is prime over Nyo + ao for £ = 1,2 and
ortp(aq, N2 ) does not fork over Ny, but this is not available. The Ki’“q is a
substitute.

Definition 6.1. 1) Assume that ¢ = ¢, is a A-AEC We say NF is a non-forking
relation on 4(£,) or just a £y-non-forking relation when:
Knr(a) NF is a 4-place relation on K and NF is preserved under isomorphisms

(b) NF(M(),Ml,M27M3) implies MO SE Mg SE M3 for ¢ = 1, 2

(€)1 (monotonicity): if NF(My, My, My, Ms) and My <¢ M; <¢ M, for £ = 1,2
then NF (Mo, M7, M}, M3)

(C)Q (monotonicity): if NF(Mo,Ml,MQ,Mg) and Mg SE Mé € K)\,Ml U Mg g
My <¢ M5 then NF (Mo, My, M, My)

(d) (symmetry) NF(M(), ]\417 MQ, Mg) lff l\IF(]\fo7 MQ, ]\417 M3)

(e) ((long) transitivity) if NF(M;, Ny, M1, Nijq) for i < o, (M; : @ < «) is
<¢-increasing continuous and (V; : i < @) is <g-increasing continuous then

NF(M07 N(]7 Mav Na)

(f) (existence) if My <¢ M, for £ = 1,2 (all in K) then for some M3 €
Ky, f1, f2 we have My <¢ M3, fo is a <g-embedding of My into M3 over M
for £ =1,2 and NF(Mo, f1(M1), f(M2), M3)

(g9) (uniqueness) if NF(M¢, M{, M5, M%) and for £ = 1,2 and f; is an isomor-
phism from M} onto M? for i = 0,1,2 and fo C fi, fo C fo then f; U fo
can be extended to an embedding f3 of M3 into some M3, M2 <, M?2.

2) We say that NF is a pseudo non-forking relation on 4(K)) or a weak £y-non-
forking relation if clauses (a)-(f) of XnF above holds but not necessarily clause

(2)-
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3) Assume s is a good A-frame and NF is a non-forking relation on € or just a weak
one. We say that NF respects s or NF is an s-non-forking relation when:
(h) if NF(Mo, My, My, M3) and a € My \ My, ortp,(a, My, Ms) € SP3(Mp) then
ortp,(a, My, M3) does not fork over My in the sense of s.

Observation 6.2. Assume ) is a \-AEC and NF is a non-forking relation on
).

1) Assume t is stable in \. If in clause (g) of 6.1(1) above we assume in addition
that M% is (), 0)-brimmed over M{ U M, then in the conclusion of (g) we can add
M2 = M2, i.e., fi U fa can be extended to an isomorphism from Mz onto M3.
This version of (g) is equivalent to it (assuming stability in A; note that “tx has
amalgamation” follows by clause (f) of Definition 6.1).

2) If Mo <¢ My <¢ M3 are from K then NF(My, My, M1, Ms).

3) In Definition 6.1(1), clause (d), symmetry, it is enough to demand “if”

Proof. 1) Chase arrows and the uniqueness from 1.17.

2) By clause (f) of Bxp of 6.1(1) and clause (c)q, i.e., first apply existence with
(Mo, My, Ms) here standing for (Mo, M7, Ms) there, then chase arrows and use the
monotonicity as in (c)s.

3) Easy. Og o

The main point of the following claim shows that there is at most one non-forking
relation respecting s; so it justifies the definition of NF, later. The assumption “NF
respects 5”7 is not so strong by 6.7.

Claim 6.3. 1) If s is a good A-frame and NF is a non-forking relation on *(€s) re-
specting s and (Mo, No,a) € Ky and (My, No, a) <ps (My, Ny, a) then NF(My, No, My, Ny ).

2) If s is a good A-frame, weakly successful (which means K319 has existence in
K3 e, s satisfies hypothesis 6.9 below) and NF is a non-forking relation on

N3

4(s) respecting s then the relation NFy = NFy, i.e., Ny ||J No defined in Definition
No

6.13 below is equivalent to NF(Ny, N1, No, N3). [Recalling 6.36, but see 6.37(2),

6.38.]

3) If s is a weakly successful good \-frame and for £ = 1,2, the relation NFy is a
non-forking relation on *(&) respecting s, then NF; = NFj.

Proof. Straightforward, but we elaborate.

1) We can find (M7, N7) such that NF(My, No, M1, N7) and M;, M] are isomorphic
over My, say f1 is such an isomorphism from M; onto M over Mp; why such
(M7, N1, f1) exists? by clause (f) of Knp of Definition 6.1.

As NF respects s, see Definition 6.1(2), recalling ortp(a, My, No) € SP5(My) we
know that ortp(a, M{, N{) does not fork over My, so by the definition of <ps we
have (My, Ny, a) <ps (M7, N7, a).

As (My, No,a) € K", by the definition of K" (and chasing arrows) we
conclude that there are Na, fo such that:

(*) N1 <¢s] N2 € Ky and f is a <¢-embedding of Nj into Ny extending ffl
and id .
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As NF(My, No, M{, N{) and NF is preserved under isomorphisms (see clause (a)
in 6.1(1)) it follows that NF(Mj, No, M1, f2(N7)). By the monotonicity of NF (see
clause (¢)2 of Definition 6.1) it follows that NF (Mg, No, M1, N2). Again by the
same monotonicity we have NF(My, No, M7, N1), as required.

2) First we prove that NF 5(No, N1, Na, N3), which is defined in Definition 6.12 be-
low implies NF(Ny, N1, N2, N3). By definition 6.12, clause (f) there are ((Ny 4, No, :
i < AXd1)),(c; 1 i < Axdy) as there. Now we prove by induction on j < A x §; that
i <j = NF(N1, N2, N1, Naj). For j =0 or more generally when ¢ = j this is
trivial by 6.2(2). For j a limit ordinal use the induction hypothesis and transitivity
of NF (see clause (e) of 6.1(1)).

Lastly, for j successor by the demands in Definition 6.12 we know that N ;1 <¢
Nl’j Sg NQ’j,Nl,j,1 Sg Ng’j,1 Sg Ng’j are all in ‘K—,\7 Ortp(Cj717N2’j71,N2’j) does
not fork over Ny ;_q and (N j_1,N1 j,¢—1) € Ki’uq. By part (1) of this claim we
deduce that NF(Ny j_1, Ny, N2 j_1, N2 ;) hence by symmetry (i.e., clause (d) of
Definition 61(1)) we deduce NF(Nl,j—la N27j_1, NLj, NQ’]‘).

So we have gotten 1 < j = 1\”.:‘(]\7171'7 N27i7 vaj,NQ’j).

[Why? If i = j — 1 by the previous sentence and for ¢ < j — 1 note that by the
induction hypothesis NF(Ny ;, Na;, N1 j_1, N1 ;—1) so by transitivity (clause (e) of
61(1) of Definition 61) we get NF(NLi, N27i’ N17j7N27j)].

We have carried the induction so in particular for ¢ = 0, j = a we get NF(N1 9, N2.0, N1,y No.o),
which means NF(No, N1, N2, N3) as promised. So we have proved NF, 5(No, N1, N2, N3) =
NF(No, N1, Na, N3).

Second, if NFj(Ng, N1, N2, N3) as defined in Definition 6.13 then there are
My, My, My, M3 € Ky such that NF)\’<)\’)\>(MO,M1,MQ,M?))’N,@ <y My for £ < 4
and Ny = Mjy. By what we have proved above we can conclude NF (Mg, My, My, M3).
As Ny = My <¢ Ny <¢ My for £ = 1,2 by clause (c); of Definition 6.1(1) we get
NF(My, N1, Na, M3) and by clause (c)2 of Definition 6.1(1) we get NF(Ny, N1, N3, N3).
So we have proved the implication NF (N, N1, No, N3) = NF(Ny, N1, Na, N3).

For the other implication assume NF(Ny, N1, Na, M3). Now as we have exis-
tence for NF, (as proved below, see 6.23), we can find N, for £ = 0,1,2,3 and f,
for £ =0, 1,2 such that NFy (N}, N7, N5, N3), f¢ is an isomorphism from N, onto N
for £ =0,1,2 and fy C f1, fo C fo. But what we have already proved it follows that
NF(N{, Ny, N}, N}). As we have uniqueness for NF by clause (g) of Definition 6.1 we
can find (f3, N§') such that N§ <,, Ni and f3 is a <g-embedding of N3 into Nf ex-
tending f1 U fo. As NF) satisfies clause (c)q of 6.1, recalling NF(N{, N7, N5, N) it
follows that NF\(N{§, N1, N5, f3(N3)) holds. As NF ) is preserved by isomorphisms,
it follows that NF(Ng, N1, No, N3) holds as required.

3) By the rest of this section, i.e., the main conclusion 6.36, the relation NF defined
in 6.13 is a non-forking relation on *(Kj) respecting s. Hence by part (2) of the
present claim we have NF; = NF) = NF5. U3

Example 6.4. : Do we need s in 6.3(3)? Yes.

Let ¢ be the class of graphs and M <, N iff M C N; so tis an AEC with LS(¢) =
R¢. For cardinal A and £ = 1,2 we define NF* = {(My, My, My, M3) : My <¢ My <¢
M3 and My <¢ My <¢ M3 and My N My = My and if a € M \Mo,b S MQ\MO
then {a,b} is an edge of Mj iff £ = 2} and NF{ = {(Mo, My, M2, M3) € NF :
My, My, Ma, M3 € K,}. Then NFY is a non-forking relation on 4(¢y) but NF} #
NF2.

Remark 6.5. 1) So the assumption on £, that for some good A-frame s we have
t; = £, is quite a strong demand on £,.
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2) However, the assumption “respect” essentially is not necessary as it can be
deduced when s is good enough.
3) Below on “good™” see [She09e, §1] in particular Definition [She09e, 705-stg.1].

Ezercise 6.6. : 1) Assume NF;,NF5 are non-forking relations on *(£,).

If NF; C NF, then NF; = NF,.

2) In part (1) write down the clauses from 6.1. We need to assume on NFy,
and those we need assume on NFo. [Hint: Read the last paragraph of the proof of

6.3(3).]

Claim 6.7. Assume that 5 is a good™ A-frame and NF is a non-forking relation on
4(t5). Then NF respects 5.

Remark 6.8. The construction in the proof is similar to the ones in 4.10, 6.15.

Proof. Assume NF (M, My, My, M3) and a € My \ My, ortp(a, My, My) € SP(My).
We define (Ng i, N1, fi) for i < A\ as follows:
®1 (a) Np, is <s-increasing continuous and Ny o = Mj.
(b) N1, is <,-increasing continuous and Ny o = M.
(c) NF(Noi, N1i, Noiv1; N1iv1)
(d) fi is a <g-embedding of My into Ny 11 over My = Ny such that
ortp(fi(a), No.i, No,i+1) does not fork over My = Ny .
We shall choose f; together with No 41, N1 it1.

Why can we define? For ¢ = 0 there is nothing to do. For ¢ limit take unions.
For i = j + 1 choose f;, Ny ; satisfying clause (d) and Ny ; <, Np;, this is possible
for s as we have the existence of non-forking extensions of ortp(a, My, M) (and
amalgamation).

Lastly, we take care of the rest (mainly clause (c¢) of ®; by clause (f) of Definition
6.1(1), existence). Now

®9 Fori < j < AT we have NF(NOJ‘, Nl,z'a JV()J'7 Nl,j)-
[why? by transitivity for NF, i.e., clause (e) of Definition 6.1(1), transi-
tivity]
@3 For some 1, ortp(fi(a), N1,;, N1,i+1) does not fork over M.
[why? by the definition of good™].
So for this i, My <¢ fi(M2) <s No,+1 by clause (d) of ®1, hence by clause (c);
of Definition 6.1, monotonicity we have NF (Mo, My, fi(M2), N1,;+1). Now again
by the choice of i, i.e., by ®3 we have ortp(fi(a), My, Ny ;+1) does not fork over
M. By clause (g) of Definition 6.1(1), i.e., uniqueness of NF (and preservation by
isomorphisms) we get ortp(a, My, M3) does not fork over M as required. Og 3

We turn to our main task in this section proving that such NF exist; till 6.36 we
assume:

Hypothesis 6.9. 1) s = (¢,|]J, S™) is a good A-frame.

2) s is weakly successful which just means that it has existence for K i’uq: for every
M € Ky and p € S"(M) there are N, a such that (M, N,a) € K59 (see Definition
5.3) and p = ortp(a, M, N). (This follows by K29 is dense in K2°; when s is
categorical, see 5.8.)

In this section we deal with models from K only.
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Claim 6.10. If M € Ky and N is (A &)-brimmed over M, then we can find
M = (M; : i < §), <g-increasing continuous, (M;, M; 1,c;) € Ki’uq, My =M, and
Ms = N for § any pre-given limit ordinal < AT of cofinality x divisible by .

Proof. Let § be given (e.g. 6 = A X k). By 6.9(2) we can find a <-increasing
sequence (M; : i < 6) of members of K and (a; : i < d) such that My = M and
1< 6= (M;,M;y1,a;) € Ki’uq and for every i < § and p € SP3(M;) for A ordinals
j € (i,9+ A) we have that ortp(a;, M;, M;41) is a non-forking extension of p. So
the demands in 4.3 hold, hence M; is (A, k)-brimmed over My = M. Now we are
done by the uniqueness of N being (A, x)-brimmed over My, see 1.17(3). Os.10

Claim 6.11. If M{ <y MY <y MY and ME <y ME <y MY, cp € MY and (M, MY, c)) €
K3 and ortp(cg, M5, M5) € SP(MS) does not fork over M§ and MY is (), 8)-
brimmed over M{U M} all this for £ = 1,2 and f; is an isomorphism from M} onto
M? for i =0,1,2 such that fo C f1, fo C fa and fi(c1) = ca, then f1 U fa can be
extended to an isomorphism from Mi onto M3.

Proof. Chase arrows (and recall definition of K i’uq)7 that is by 6.1(1) and Definition
6.2(1) and 1.17(3). Ue.11

Definition 6.12. Assume § = (J1, d2,83), 61, d2, d3 are ordinals < AT, maybe 1. We
say that NF, 5(No, N1, N2, N3) or, in other words Ny, No are brimmedly smoothly amalgamated
in N3 over Ny for 6 when:

(a) Ny € K, for £ € {0,1,2,3}
(b) N() Se Ng Sg Ng for £ = 1,2
(¢) Ni1NNy = Ny (i.e. in disjoint amalgamation, actually follows by clause (f))

(d) Ny is (A,cf(61))-brimmed over Ny; recall that if c¢f(d1) = 1 this just means
No <¢ V7

(e) Ny is (A\cf(d2))-brimmed over Np; so that if cf(d2) = 1 this just means
N() Se N2 and

(f) there are Ny ;, N2, for i < A x 47 and ¢; for i < A x §; (called witnesses and
(N1,i, Nos,cj 11 < Ax 81, < XX ) is called a witness sequence as well
as (N1; 11 < XX d1),(No; 14 <X Xdy)) such that:

(a) N1 = No,Nijxs, =N

(B) N2,0 = N2

) (Ngi i < Axd1)is a <g-increasing continuous sequence of models for

(=12

(8) (Niiy Niig1,c) € K39

(¢) ortp(ci, Naj, Noiy1) € S”(Na;) does not fork over Ny; and Na; N
Ny = Ny, for i < X x ¢; (follows by Definition 5.3)

() N3 is (A,cf(d3))-brimmed over Na xxs,; so for cf(d3) = 1 this means
just Noxxs, <¢ N3

=)
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N3

Definition 6.13. 1) We say Ny ||J N2 (or N7, N2 are smoothly amalgamated over
Ny

Ny inside N3 or NFy(Ny, N1, Na, N3) or NF.(Ng, N1, No, N3)) when we can find
My € Ky (for ¢ < 4) such that:
(@) NFx xan (Mo, My, Mo, M)

(b) Ny <¢ My for ¥ < 4

(c) No =My

(d) My, My are (A, cf(\))-brimmed over Ny (follows by (a) see clauses (d), (e)
of 6.12).

2) We call (M, N, a) strongly bs-reduced if (M, N,a) € Ki’bs and (M, N,a) <ps

(M',N’,a) € K3 = NF\(M, N, M’, N"); not used.

Clearly we expect “strongly bs-reduced” to be equivalent to “c Ki’”q”, e.g. as
this occurs in the first order case. We start by proving existence for NF, 5 from
Definition 6.12.

Claim 6.14. 1) Assume § = (01, 62,03), 8¢ an ordinal < AT and N, € Ky for £ < 3
and Ny is (A, cf(d1))-brimmed over Ny and Ny is (X, cf(d2) )-brimmed over Ny and
Ny <¢ Ny and Ny <¢ Ny and for simplicity Ny N No = Ngy. Then we can find N3
such that NFAj(N(),Nl, NQ,Ng).
2) Moreover, we can choose any (N1,; : ¢ < A X d1),{(¢c; 4 < XA x 1) as in 6.12
subclauses (f)(a), (7), (8) as part of the witness.

3) IfNF)\(No,Nl,N%N;;) then N1 N Ny = Ny.

Proof. 1) We can find (N1, : 4 < A x d1) and (¢; : 4 < A X 1) as required in part
(2) by Claim 6.10, the (A, cf(A x d1))-brimmedness holds by 4.3 and apply part (2).
2) We choose the Ny ; (by induction on ) by 4.10 preserving No ; N N1 axs, = N1;
in the successor case use Definition 5.3 + Claim 5.4(3). We then choose N3 using
4.2(2).

3) By the definitions of NF, NF, 5. Og.14

The following claim tells us that if we have “(\, c¢f(d3))-brimmed” in the end, then
we can have it in all successor stages.

Claim 6.15. In Definition 6.12, if d3 is a limit ordinal and k = cf(k) > Vg, then
without loss of generality (even without changing (N1 ; : i < Axd1),{c; 11 < Ax 1))

(9) Nait1 is (A k)-brimmed over Ny,;4+1 U Na,; (which means that it is
(A, k)-brimmed over some N, where Ny ;41 UNo; C N <g Noi1).

Proof. So assume NF, 5(No, N1, N2, N3) holds as being witnessed by (Ngi + i <
A X 01),{c; 11 < Ax ) for £ =1,2. Now we choose by induction on i < XA x d; a
model M ; € Ky and f; such that:

(1) fiis a <g-embedding of Ny ; into Ms ;

(ii) Mago = fi(Na)
(i13) My ; is <e-increasing continuous and also f; is increasing continuous
(tw) Mz ;N fi(N1;) = fi(Ny;) for j <1

(v) Ma,i+1 is (A, k)-brimmed over My ; U f;(N2 ;11)
(vi) ortp(fita(ci), Ma i, M i11) € SP5(Ma ;) does not fork over fi(Ny ;).
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There is no problem to carry the induction. Using in the successor case i = j + 1
the existence Axiom (E)(g) of Definition 2.1, there is a model M; ; € K such that
My j <¢ M3, and f; 2 f; as required in clauses (i), (iv), (vi) and then use Claim
4.2 to find a model My ; € K which is (A, k)-brimmed over My ; U f;(Na ;).
Having carried the induction, without loss of generality f; = idn,,. Let M3
be such that Ms yxs, <¢ M3 € Ky and Mj is (\,cf(d3))-brimmed over Ms xxs,, it
exists by 4.2(2) but Na axs, <t M2 xxs,, hence it follows that M3 is (A, k)-brimmed
over N1 axgs,. S0 both M3 and N3 are (A,cf(d3))-brimmed over No xxs, , hence they
are isomorphic over Ny xxs, (by 1.17(1)) so let f be an isomorphism from M3 onto
N3 which is the identity over N3 xxs, -
Clearly (Ny;:4 <X x01),(f(Mz2;):i <X Xxd1) are also witnesses for
NF, 5(No, N1, No, N3) satisfying the extra demand (g) from 6.15. Og.15

The point of the following claim is that having uniqueness in every atomic step we
have uniqueness in the end (using the same “ladder” Nj; for now).

Claim 6.16. (Weak Uniqueness).

Assume that for x € {a,b}, we have NF) 5.(N§, N{, N§, N3) holds as witnessed
by (NT; : i S AXOT), (cF 10 < AXOT), (N5, 10 < Ax6T) and 6y = 8f = 8}, cf(65) =
cf(88) and cf(6%) = cf(88) > N.

(Note that cf(\ x 6%) > Ng by the definition of NF).

Suppose further that fo is an isomorphism from Ng onto Né’ for £ = 0,1,2,
moreover: fo C f1, fo C fa and fi(Nf;) = N{),w fi(ed) = cb.

Then we can find an isomorphism f from N§ onto N extending f1 U fa.

Proof. Without loss of generality for each i < A x d1, the model N3, ; is (A, A)-
brimmed over N{',,; U N3, (by 6.15, note there the statement “without changing
the N7,;’s”). Now we choose by induction on ¢ < X x ¢; an isomorphism g; from
N3 ; onto N§7 such that: g; is increasing with i and g; extends (f1 [ N{;) U fa.
For i = 0 choose go = f» and for ¢ limit let g, be |J g; and for ¢ = j + 1
j<i
it exists by 6.11, whose assumptions hold by (N¥;, Nf,, i, c¥) € Ky"9 (see 6.12,
clause (f)(9)) and the extra brimmedness clause from 6.15. Now by 1.17(3) we can
extend gyxs, to an isomorphism from N$ onto N2 as N¥ is (A, cf(d3))-brimmed
over N3 .5 (for z € {a,b}). Os.16

Note that even knowing 6.16 the choice of (Nq; : ¢ < XA x d1),{(c; : i < A X 1)
still possibly matters. Now we prove an “inverted” uniqueness, using our ability to
construct a “rectangle” of models which is a witness for NF, 5 in two ways.

Claim 6.17. Suppose that
(a) for x € {a,b} we have NF, 5. (N§, N{, N5, N)
(b) 0% = (6%, 0%, 0%),0¢ = 05, 68 = 8%, cf(6%) = cf(88), all limit ordinals
(¢) fo is an isomorphism from N§ onto N§

(€) fo is an isomorphism from N§ onto N}
fo € f1 and fo C fa.

)
)
(d) f1 is an isomorphism from N{ onto NJ
)
)
there is an isomorphism from N$ onto N extending fi1 U fa.

Before proving we shall construct a third “rectangle” of models such that we
shall be able to construct appropriate isomorphisms each of N§, Ng
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Subclaim 6.18. Assume
(a) 6¢,65,8% < AT are limit ordinals
(b)1 M= (ML :a <\ x6%) is <g-increasing continuous in K
and (ML, ML, co) € K™
(b)2 M= (M2 : o < Ax69) is <g-increasing continuous in Ky and (M2, M2, d) €
K/Z\i,bs
(¢) Mg = Mg we call it M andMéﬁMg =M fora < XAxdf,8 < Axd5.
Then we can find M; ; (fori < A x 8¢ and j < X\ x %) and Ms such that:
(A) Mi,j S K)\ and M070 =M and Mi,O = Mil,MOJ = sz
i1 <2 and j1 < jo = My, 5, <e M, 4,

if i <A x 0y is a limit ordinal and j < X x 6§ then M; ; = |J M, ;
¢<i

if i < XX 0y and j < X x5 is a limit ordinal then M; ; = |J M, ¢
£<J

Mixsg j+1 s (A, cf(07))-brimmed over MY, sa ; for j < A x &5

M1 axsg is (A, cf(69))-brimmed over M; xxsg for i < A x 6

CICECIICIIGIC

My xss 2x53 <e M3 € Ky moreover
M3 is (A, cf(65))-brimmed over Mxxse Axsg
(H) fori< Ax6%,j < Xx 65 we have ortp(c;, M; j, Mit1,;) does not fork over
M; o
(I) forj < A x 89,1 < Xx 0y we have ortp(d;, M; j, M; j11) does not fork over
M07j.
We can add
(J) fori < Ax8%,j < Ax 35 the model My i1 j1 is (A, *)-brimmed over M; j1U
M1,

Remark 6.19. 1) We can replace in 6.18 the ordinals A x 67 (¢ = 1,2,3) by any
ordinal of < A* (for £ = 1,2,3) we use the present notation just to conform with
its use in the proof of 6.17.

2) Why do we need v in the proof below? This is used to get the brimmedness
demands in 6.18.

Proof. We first change our towers, repeating models to give space for bookkeeping.
That is we define *M} for o < X\ x A x §¢ as follows:

if/\><5<a§/\><ﬁ+)\and,8<)\><5fthen*MéZMéJrl
if o = Ax 3, then *M,, = Mj. Let uy = {\3: B < 0f},uf = AxXAxf\up, up = @

and for a = A3 € u} let al, = cg.
Similarly let us define *M?2 (for o < X\ x A x §%),u, u?,u3 and (a2 : « € ud).
Now apply 4.12 (check) and get *M;;,(i < A x A x 67,5 < A X X x 49).
Lastly, for ¢ < 6¢,7 < 05 let M; ; = *Mxxiax;. By 4.3 clearly *Mxyxiyaaxj+a
is (A, cf(A))-brimmed over *Mxy;y1,ax;j+1 hence M1 j41 is (A, cf(A))-brimmed
over M1 ;UM; jy1. And, by 4.2(1) choose M3 € K which is (A, cf(64))-brimmed
over Myxss axog- Us.18
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Proof. [Proof of 6.17] We shall let M; ;, M3 be as in 6.18 for 6% and Ml,Mz de-
termined below. For x € {a,b} as NF, 5.(Ng, N{, N3, N§), we know that there
are witnesses (N7, : i < A X 07), (¢f 11 < A xd7), (Ny,; : i < A x df) for this. So
(NT; i < XA x df) is <p-increasing continuous and (N7, N¥,,,¢f) € K39 for
i < A x 0. Hence by the freedom we have in choosing M and (i1 < Ax01)
without loss of generality there is an isomorphism g; from NY 5o onto My xsq
mapping Ny'; onto M} = M, and ¢ to ¢;; remember that N axsa = Ni'. Let

go=g1 | Ng =g1 [ Nitg so goo f(;l is an isomorphism from N onto M .

Similarly as 6% = §¢, and using the freedom we have in choosing M ? and (d; :
i < A x 8%) without loss of generality there is an isomorphism go from N f, Axagg onto
MJZ = Mo xxsg mapping ij onto My ; (for j < X\ x 6%) and mapping & to d; and
g2 extends gg o fgl.
Now would like to use the weak uniqueness 6.16 and for this note:
() NF, 54(Ng, Nit, N&, Ng') is witnessed by the sequences (N{'; 17 < A x df),
and (Ng'; 11 < A x 0f)
[why? an assumption]
(B) NF, 50a(Mo,0, Maxse 0, Mo axsg, M3) is witnessed by the sequences
(Mo 1 < XX 67), (Miaxsg 11 < A X 6Y)
[why? check]
(7) go is an isomorphism from N§ onto My o
[why? see its choice]
(6) g1 is an isomorphism from N{ onto My o mapping N{, onto M; o for
i < A x 6% and ¢f to ¢; for i < A x 8¢ and extending go
[why? see the choice of g1 and of gg]
(€) g2 0 f2 is an isomorphism from N3 onto My xxsg extending go
[why? fy is an isomorphism from N$ onto N? and g, is an isomorphism
from Nf onto Mo, axsy extending go o f(;l and fo C fa].

So there is by 6.16 an isomorphism g§ from N§ onto M3 extending both g; and
g2 © [

We next would like to apply 6.16 to the Nib’s, SO note:

(a) NF, 5 (N§, NP, N3, NJ) is witnessed by the sequences (N{, :i < X X 6%),
(NS, i <A x69)

(B)" NFy 5o(Mo,0, Mo, xxsg, Maxsg 0, M3) is witnessed by the sequences
(Mo,j 5 < Ax68), (Mxxsaj:j < AXx35)

(7)" goo (fo)~! is an isomorphism from N¢ onto Mg o
[why? Check.]

(8)" go is an isomorphism from N{’ onto Mo,Axag mapping Nf,j onto My ; and
¢ to dj for j < X x 8§ and extending go o (f2) ™"
[why? see the choice of go: it maps Nf)j onto My ;]

()" g1o(f1)~" is an isomorphism from N§ onto Myyss extending go

[why? remember f; is an isomorphism from N{ onto N} extending fy and
the choice of gi: it maps N onto Myxse o).

So there is an isomorphism g} form N onto Mj extending g, and gy o (f1)7'.
Lastly, (g5)~! o g4 is an isomorphism from N§ onto N (chase arrows). Also
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((g5) " og8) I N{ = (g5) " (g5 | NT)
=(93) "1 = ((93) 7" I Maxsg0) 091
= (g5 1 Nz) ogi=(gro(f1))™) Hom
=(fio(g) Nogi=f1.

Similarly ((¢3) "' 0 g§) | N§ = fo.
So we have finished. Ue.17

But if we invert twice we get straight; so

Claim 6.20. [Uniqueness]. Assume for x € {a,b} we have
NF, 5. (N§, Nf, N3, N§) and cf(6]) = cf(6}),cf(65) = cf(05),cf(05) = cf(85), all
67 limit ordinals < AT,

If fo is an isomorphism from Ng onto N} for ¢ < 3 and fo C f1, fo C fa then
there is an isomorphism f from N§ onto NY extending fi, fo.

Proof. Let 6 = (6§,685,85) = (6%,6¢,8%); by 6.14(1) there are N§ (for ¢ < 3) such
that NF, 5.(Ng, NT, N5, N§) and N§ = Ng. There is for x € {a,b} an isomorphism
g8 from NF onto N§ and without loss of generality g§ = g§ o fo. Similarly for
x € {a,b} there is an isomorphism g7 from Ny onto N§ extending g¢¥ (as NY
is (A, cf(67))-brimmed over N§ and also N§ is (A, cf(d5))-brimmed over N§ and
cf(65) = cf(6§) = cf(6%)) and without loss of generality ¢ = g§ o f1. Similarly
for © € {a,b} there is an isomorphism ¢ from NJ onto N{ extending ¢ (as NF
s (A, cf(63))-brimmed over N§ and also N is (A, cf(6¢))-brimmed over N§ and
cf(05) = cf(6%) = cf(6%)) and without loss of generality g¢ = g4 o fa.

So by 6.17 for « € {a,b} there is an isomorphism g3 from N onto N$ extending
g% and g&. Now (g5)~! o g4 is an isomorphism from N§ onto N? extending fi, f2
as required. Us.20

So we have proved the uniqueness for NF 5 when all §, are limit ordinals; this
means that the arbitrary choice of (N1; : 4 < A x 1) and (¢; : i < A X d7)
is immaterial; it figures in the definition and, e.g. existence proof but does not
influence the net result. The power of this result is illustrated in the following
conclusion.

Conclusion 6.21. [Symmetry].

If NFA7(51,52,53)(N07NlaN2aN3) where 01,02,d5 are limit ordinals < AT then
NF>\7(52,51,53)(N07N23N1,N3)-

Proof. By 6.18 we can find N;(¢ < 3) such that: Nj = Ny, N7 is (A, cf(d1))-brimmed
over Nj, Nj is (A, cf(d2))-brimmed over Nj and N} is (A, cf(d3))-brimmed over N U
Né and NF/\7<51752,53> (Né, N{, Né, Né) and NFA7<52751753) (Né, NQI, N{, Né) Let fl; f2
be an isomorphism from Ny, N2 onto Ny, N4 over Ny, respectively. By 6.20 (or 6.17)
there is an isomorphism f} form N3 onto N} extending fi U fo. As isomorphisms
preserve NF, we are done. Og.21

Now we turn to smooth amalgamation (not necessarily brimmed, see Definition
6.13). If we use Lemma 4.9, of course, we do not really need 6.22.
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Claim 6.22. 1) If NF, 5(No, N1, N2, N3) and 01,02,03 are limit ordinals, then
NF\(Ng, N1, Na, N3) (see Definition 6.13).
2) In Definition 6.13(1) we can add:
(d)™ My is (X, cf(N))-brimmed over Ny and moreover over Ny,
(e) M3 is (A, cf(N))-brimmed over My U My (actually this is given by clause
(/)(C) of Definition 6.12).

3) If No <¢ Ny for £ = 1,2 and N1y N Ny = Ny, then we can find N3 such that
NF(Nog, N1, Na, N3).

Proof. 1) Note that even if every d; is limit and we waive the “moreover” in clause
(d)*, the problem is in the case that e.g. (cf(6%),cf(6%), cf(6¢)) # (cf(N),cf(N), cf(N)).
For ¢ = 1,2 we can find M= (Mf:i <A (5+A) and (¢! 1 i < A x (6 +N))
such that M¢ = Ny, M s <e-increasing continuous (Mf, Mf, |, ¢;) € K31 and if
p € SP(M/f) and i < X x (6 + ) then for X ordinals j < A, ortp(c;, Miﬂj, Mfﬂ.“)
is a non-forking extension of p. So foéz is (\,cf(6))-brimmed over M = Ny
and fo(éﬁ/\) is (A, cf(X))-brimmed over My, ; so without loss of generality
MfXél = Ny for 0 =1,2.

By 6.18 we can find M, ; for i < Ax (61 +X),j < Ax(d2+A) for ' == (d1+ A, d2+
A, 83) such that they are as in 6.18 for ]\71, M so Mo,0 = No; then choose M} € K
which is (A, c¢f(d3))-brimmed over Myxs, xxs,- S0 NF 5(Mo 0, Mxxs,,0, Mo axs,> M3),
hence by 6.20 without loss of generality Moo = No, Mxxs,,0 = N1, Mo xxs, = Na,
and N3 = Mj. Lastly, let M3 be (X, cf()))-brimmed over M5. Now clearly also
NEX (5, 42,8047,85+2) (M0,0, Mxx (5,42),00 Mo, xx (5,+2), M3) and
No = Mo,0, N1 = Mxxs,,0 e Mas(o42),00 V2 = Mo axs, <e Mo ax (8240
and My (5,41),0 is (A, cf(A))-brimmed over Myyxs,,0 and M xx (5,42 18
(A, cf(X))-brimmed over My xxs, and N3 = Mj; <, Ms. So we get all the require-
ments for NF\ (No, N1, N2, N3) (as witnessed by (Moo, M (5,41),00 Mo, xx (5547)> M3)).
2) Similar proof.
3) By 6.14 and the proof above. Og 29

Now we turn to NF; existence is easy.

Claim 6.23. NF, has existence, i.e., clause (f) of 6.1(1).

Proof. By 6.22(3). Us.23
Next we deal with real uniqueness

Claim 6.24. [Uniqueness of smooth amalgamation)]:

1) If NF\(N§, N¥, N5, N¥) for x € {a,b}, fo an isomorphism from N{ onto N}
for £ < 3 and fo C f1, fo C f2 then f1 U fo can be extended to a <g-embedding of
N§ into some <g-extension of Né’.

2) So if above N3 is (A, k)-brimmed over N¥ U N3 for x = a,b, we can extend
f1U fa to an isomorphism from N§ onto N&.

Proof. 1) For = € {a,b} let the sequence (M} : £ < 4) be a witness to

NF\(N§, NF, N3, N§) as in 6.13, 6.22(2), so in particular

NFE (a0 (M§, M, M5, M5). By chasing arrows (disjointness) and uniqueness,
i.e. 6.20 without loss of generality M; = Mé’ for £ < 4 and fo = idyg. As M7
is (A, cf(\))-brimmed over N{ and also over N? (by clause (d)* of 6.22(2)) and f;
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is an isomorphism from N{ onto N?, clearly by 1.17 there is an automorphism g,
of M{ such that f; C g1, hence also idnyg = fo C f1 C g1. Similarly there is an
automorphism go of M§ extending f> hence fy. So gr € Aut(My) for £ =1,2 and
g1 | M§ = fo = go | M. By the uniqueness of NF () » ) (i.e. Claim 6.20) there
is an automorphism g3 of M extending g; Ugs. This proves the desired conclusion.

2) Should be clear. Ue.24

We now show that in the cases the two notions of non-forking amalgamations
are meaningful then they coincide, one implication already is a case of 6.22.

Claim 6.25. Assume
(a) 6 = (1, 09,63), 60 < AT is a limit ordinal for £ =1,2,3;
Ny <¢ Ny <¢ N3 are in Ky for{=1,2
(b) Ny is (A cf(d;))-brimmed over Ny for £ =1,2
(c) Ns is cf(d3)-brimmed over Ny U Nj.
Then NF(No, Ny, Na, Ny) iff NF, 5(No, N1, Na, Na).

Proof. The “if” direction holds by 6.22(1). As for the “only if” direction, basically
it follows from the existence for NF) 5 and uniqueness for NF; in details by the
proof of 6.22(1) (and Definition 6.12, 6.13) we can find M,(¢ < 3) such that My =
No and NF, 5(Mo, My, Mz, M3) and clauses (b), (c), (d) of Definition 6.13 and
(d)* of 6.22(2) hold so by 6.22 also NF, (Mg, My, My, M3). Easily there are for
¢ < 3, isomorphisms f, from M, onto N, such that fo = f; | My where fy =
idy,. By the uniqueness of smooth amalgamations (i.e., 6.24(2)) we can find an
isomorphism f3 from M3 onto N3 extending f1 U fa. So as NF, 5(Mo, My, Ma, Ms3)
holds also NF)\’S, (fo(M()), f3(M1), fg(Mg), fg(Mg)), that is NF)\’g(No, va NQ, Ng)
is as required. .05

Claim 6.26. [Monotonicity]: ]f NF)\(NO,N17N2,N3) and NO SE N{ SE N1 and
No <¢ Nj <¢ Ny and N{ U NS C N} <y N§, N3 <¢ N§ then NF(No, N7, N4, N5).

Proof. Read Definition 6.13(1). Us.26

Claim 6.27. [Symmetry]: NF(Ng, N1, Na, N3) holds if and only if
NF)\(N(), NQ, Nl, Ng) holds.

Proof. By Claim 6.21 (and Definition 6.13). Og.27
We observe
Conclusion 6.28. If NF,(Ny, N1, No, N3), N3 is (A, 9)-brimmed over Ny UNy and
A >0,k > N, then there is N;r such that
(A) NF,\(NO,Nl,N;,Ng)
(B) N2 <¢ N
(C) Ny is (X, k)-brimmed over Ny and even over No.
(D) N3 is (\,0)-brimmed over Ny U N, .
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Proof. Let N5 be (), k)-brimmed over Ny be such that N;” N N3 = Ny. So by exis-
tence 6.23 there is N; such that NFy(No, N1, No5, N;7) and N5 is (A, 9)-brimmed
over N1 UN,. By monotonicity 6.26 we have NF(No, N1, N2, N57). So by unique-
ness (i.e., 6.24(2)) without loss of generality N3 = N, , so we are done. Og.08

The following claim is a step toward proving transitivity for NFy; so we first deal
with NF, 5. Note below: if we ignore N we have problem showing NF, 5(Ng, N, NE ND).
Note that it is not clear at this stage whether, e.g. N? is even universal over N2,
but NJ is; note that the N are <g-increasing with ¢ but not necessarily continuous.
However once we finish proving that NF is a non-forking relation on £ respecting
s this claim will lose its relevance.

Claim 6.29. Assume o < AT is an ordinal and for x € {a,b,c} the sequence
N* = (NF i < a) is a <g-increasing sequence of members of Ky, and for x = a,b
the sequence N is <g-increasing continuous, NPANE = N2, NFNN& = N* N& <;
N? <¢ N¢ and N§ is (X, 62)-brimmed over N§ and NFy 5: (N N2, N, NEy) (s0
necessarily i < o = Nf <¢ N} ,) where
8t = (6%,05,06%) with 6%,8%,0% are ordinals < AT and 83 < AV is limit, NS is
(A, cf(83))-brimmed over N2, 6, = 5{3 and §3 = 6§ and 6o = 09,8 = (01, 62, 93).
B<a
Then NFA,S(N(?,Nng(l)?vNé)'

Proof. For i < a let (N{_,Nj_,di : e < XA xd},( < A xdj) be a witness to
NF, 5 (N#, N& o, N, NP ). Now we define a sequence (Nie,Noc,di:e < Ax 8y
and ¢ < A X d1) where

(a) Nio= N Nag=N¢and

(b) if Ax (32 67) < ¢ < Ax (X 6]) then we let Ny = Nj_.,Nae = Nj

j<i Y
where e = ¢ — A x (Y 47) and
j<i
(¢) if 0 <¢=Ax Y & welet Nic = N* Ny = NP = o (if 7 is non-limit

j<a
we should note that this is compatible with clause (b), note that by this if
i =athen Ni¢ = Ng,No¢c=U{Ny 4 i <a}
(d) if A x (32 67) < ¢ < Ax (X 6]) then we let d¢ = di, where e¢ = ¢ — A x
J<i J<i
(Zéﬁ) =U{N3 (< Ax (X 87).
J<t j<a
Clearly (N1,¢ : ¢ < Axd) is <¢-increasing continuous, and also (Na ¢ : ¢ < AXdq) is.
Obviously (Ny.¢, Ny cy1,dc) € Ky as this just means (Nisc, Nf76<+1, i) e KM
when A x 326715 < ¢ <Ax Y. 6] and e¢ as above.
J<i J<i
Why ortp(de, No,¢, Nao.¢41) does not fork over Ny ¢ for ¢, such that Ax (>~ §7)¢ <
j<i
A% (3067)7 I X x 37 81 < ( this holds as it means ortp(d. , N3 . , N3 1) does
j<i j<i
not fork over Ni .. Tf A x ; 61 = ¢ this is not the case but N{ 5 = Ny ¢ <¢ Na¢ <¢
<
Nf = Nj and we know that ortp(d¢, N3 o, N3 ;) does not fork over N{, = Ny
hence by monotonicity of non-forking ortp(dc, Na,¢, Na,¢+1) does not fork over Ny ¢
is as required. B
Note that we have not demanded or used “N° continuous”; the N¢ is really
needed for 7 limit as we do not know that Nib is brimmed over N/ Ug.29
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Claim 6.30. [transitivity] 1) Assume that « < A\t and for z € {a,b} we have
(NF i <) is a <g-increasing continuous sequence of members of K.
IfNFA(Ng, N2 NP NP for each i < o then NFA(N§, NS, Nb, NE).
2) Assume that an < AT, an < AT and M, ; € Ky (fori < a1,j < az) satisfy
clauses (B), (C), (D), from 6.18, and for each i < aq,j < ag we have:
Mit1,41
Mijv1 U Mg
1,7
Mal»a2
Then Mi,O UJ MOJ‘ fOTi < al,j < aa.
Moo

Proof. 1) We first prove special cases and use them to prove more general cases.

Case A: N, is (A, k;)-brimmed over N¢ and N/, is (X, 9;)-brimmed over N, , U
NP for i < o (0; infinite, of course).

In essence the problem is that we do not know “N? is brimmed over N#” (i
limit) so we shall use 6.29; for this we introduce appropriate Nf.

Let 6% = Ky, 08 = Ky, 5§ = 0; where we stipulate d, = A. For i < a we can choose
N{ € K such that

(a) N} <e¢ Nf <¢ NPy, Nfis (A, k;)-brimmed over N7, and
NF st 01,60y (Nfs Ny, NE, NP
(b) NS € Ky is (A, 05)-brimmed over N
(¢) (Nf:i< a)is <g-increasing (in fact follows)
(Possible by 6.28). Now we can use 6.29. Case B: For each i < o we have: N/,
is (A, K;)-brimmed over NP

In essence our problem is that we do not know anything about brimmedness of
the NP, so we shall “correct it”.

Let Sl = (Iii,>\, /\)

We can find a <g-increasing sequence (M? : i < «a) of models in Ky for z €
{a,b,c}, continuous for x = a,b such that i < a = M < M? <¢ Mf <,
MPp,, and M} <y MS and Mf is (A, k;)-brimmed over M? (hence over M) and
NFy 5 (Mg, Mg, Mg, M) by choosing M, M?, M¢ by induction on i, M§ = N§
and M is universal over Mg recalling that the NF A,5¢ implies some brimmedness
condition, e.g. M, is (A, cf(83))-brimmed over M, U M?. By Case A we know
that NFy (Mg, M2, Mb, M¢) holds.

We can now choose an isomorphism f§ from N§ onto M, as the identity (exists
as M§ = N§) and then a <g-embedding f& of N¢ into MY extending f§. Next
we choose by induction on ¢ < «, f{* an isomorphism from N2 onto M{ such that:
Jj<i= f?C f# possible by “uniqueness of the (A, x;)-brimmed model over M#”
so here we are using the assumption of this case.

Now we choose by induction on i < «, a <g-embedding f? of N} into M}
extending f{* and fjl-’ for j < i. For i = 0 we have done it, for ¢ limit use |J fjl?,
Jj<i
lastly for ¢ a successor ordinal let ¢ = j 4+ 1, now we have
(*)2 NF}\(MJl‘la M;Jrla fjb(NJb)7 MJI’)Jrl)
[why? because NF 5; (M, M, 1, M, MJI?_H) by the choice of the
M¢’s hence by 6.25 we have NFA(M]‘-’,M;I+17MJ¢,M]’?+1) and as
M = fj(N}') <e f}(N}) < M} <¢ My by 6.26 we get («)2.]
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By ()2 and the uniqueness of smooth amalgamation 6.24 and as M?, | is (X, cf(67))-
brimmed over M7, ; U M hence over M, U f b(N b) clearly there is f as required.
So without loss of goncrahty fa is thc 1d0nt1ty, so we have N§ = Mg,N& =
M2 N} <¢ ME,Nb < M?; also as said above NF (Mg, M2, M}, M?) holds (using
Case A) so by monotonlclty, ie., 6.26 we get NF\(Ng, N, Nb, N) as required.
Case C: General case.

We can find MY for £ < 3,i < a such that (note that M = M{):

(a) Mé € Ky

(b) for each ¢ < 3, M/ is <g-increasing in i (but for £ = 1,2 they are not
required to be contlnuous)

(¢) M? = Ng

(d) Mffll is (A, A)-brimmed over Mf,; UM/ t! for £ < 2,i < a

(e) NFa(M{, Mf ., M MEH) for £ < 2,i < a

(f) M} = M§ and M@ is (X, cf()))-brimmed over Mg

(g) for £ <2 and ¢ < o limit we have

Mt is (A, \)-brimmed over U Mf‘H UM
§<i
(h) for i < « limit we have
1l 2 g2
NFA(| M), M} | M7, w7y
j<t 7<i
[How? As in the proof of 6.18 or just do by hand.]
Now note:
(¥)3 Mt is (A, cf(A x (1 4 4)))-brimmed over M{ if £ =1V i#0
[why? If ¢ = 0 by clause (f), if ¢ a successor ordinal by clause (d) and if 4
is a limit ordinal then by clause (g)]
()4 for i < o, NFx(MP, M, M2, M?,).
[Why? If i = 0 by clause (e) for £ = 1,i = 0 we get NF (Mg, M}, M2, M?)
so by clause (f) (i.e., M} = MJ) and monotonicity (i.e., Claim 6.26) we have
NF\ (MY, M}, M3, M?) as required. If i > 0 we use Case B for a = 2 with
MY MZO_H,]W1 M}_H,M2 i2+1 here standing for N¢, N¢, N¢, NY N§ N&
there (and symmetry).]
Let us define Nf for £ < 3,i < a by: Nf is M/ if i is non-limit and N} = U{Nf :
j <} if ¢ is limit.
(%)5(i) (Nf :i < a) is <g-increasing continuous, N = N and N} <¢ M}
(i) for i < a, NFA(N?, N, |, N2 N2 )
[why? by (x)4+ monotonicity of NF,]
(#ii) for i < a, N2y is (X, cf(X))-brimmed over N ; UN? and even over N}, | U
N?
[why? by clause (d)]

()6 NFx (a0 (Ng, No, N, N3).

[Why? As we have proved case A (or, if you prefer, by 6.29; easily the
assumption there holds).]
Choose f# =idya for i < a and let f& be a <¢-embedding of N into Ng.

Now we continue as in Case B defining by induction on i a <g-embedding f? of
N} into N2, the successor case is possible by (x)5(4i) + (¥)5(i4). In the end by (*)g
and monotonicity of NF) (i.e., Claim 6.26) we are done.

2) Apply for each i < ay part (1) to the sequences (Ma; : 8 < aq), (Mg it1 :
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M, it1
B < a1) so we get My, ; ) Mo,it1 hence by symmetry (i.e., 6.24) we have
Mo,
My, it1
Moit1 U M,, . Applying part (1) to the sequences (Mo : j < ag), (M, ; :
Moy ;
M(X17a2 Mal7a2
Jj<as)weget Moo, IJ Ma,o0hencebysymmetry (i.e. 6.24) wehave My, 0 U Mo as;
Moo Moo
so we get the desired conclusion. .30

Claim 6.31. Assume oo < AT, (Nf 21 < @) is <g-increasing continuous sequence
of models for ¢ = 0,1 where Nf € Ky and N}, is (\, k;)-brimmed over N, ; UN}
and NFy(N?, N}, Ni0+1’ Ni1+1)'
Then N} is (A, cf( Y ki))-brimmed over N U N¢.
<o

Remark 6.32. 1) If our framework is uni-dimensional (see [She09e, §2]; as for ex-
ample when it comes from [She01]) we can simplify the proof.

2) Assuming only “N} ; is universal over N, ; U N/} suffices when o is a limit
ordinal, i.e., we get N} is (), cf(a))-brimmed over N2. Why? We choose sz for
j < such that N7 = N} if j = 0 or j a limit ordinal and N7 is a model <; N
and (A, k1)-brimmed over NY U N} when j =i+ 1. Now (N7 : j < «) satisfies all
the requirements in (N} : j < a) in 6.31.

3) We could have proved this earlier and used it, e.g. in 6.30.

Proof. The case « not a limit ordinal is trivial so assume « is a limit ordinal. We
choose by induction on ¢ < «, an ordinal (i) and a sequence (M, . : € < (4)) and
(ce : € < g(7) non-limit) such that:

(b) N? <¢ M;. <¢ N}
(¢) N? =M, and N} = M; ;).
(d) e(7) is (strictly) increasing continuous in ¢ and £(7) is divisible by A.

j<iande <e(j) = M. NN} = Mj_..
For j <iand e < e(j + 1), the sequence (Mg : 8 € (j,1]) is <¢-increasing
continuous.
(g) Forj <iande < £(j) non-limit, the type ortp(c, M; -, M; . 41) € S**(M; )
does not fork over M .. (Actually, allowing all € here is OK as well.)
(h) Miy1,.eq1 s (A cf(N))-brimmed over M;yq . U M; c41.
(i) If & < (i) and p € SP3(M; ) then, for A successor ordinals £ € [g,£(4)), the
type ortp(ce, M; ¢, M; ¢4+1) is a non-forking extension of p.
If we succeed, then (M, . : ¢ < e(a)) is a (strictly) <g-increasing continuous se-
quence of models from Ky, M, = N2, and Myea) = N}. We can apply 4.3
and we conclude that N} = My e(a) is (A, cf(a))-brimmed over M, .(;) hence over
Ng U N& (bOth SE Ma,l)-

Carrying the induction is easy. For ¢ = 0, there is not much to do. For ¢
successor we use “Nin is brimmed over N, ; U N}” the existence of non-forking
amalgamations and 4.2, bookkeeping and the extension property (E)(g). For ¢ limit
we have no problem. .31
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Conclusion 6.33. 1) If NF\(Ny, N1, Na, N3) and (Mo : & < g(x)) is an <g-
increasing continuous sequence of models from Ky, Ny <¢ My <¢ Ny then we can
find (M : € <e(x)) and Nj such that:

(a) N3 <¢ N} € K

(b) (Mye:e <e(x)) is <g-increasing continuous

(¢) My NNy =My,

(d) N1 <¢ My <¢ N

(e) if Moo = Ny then Mio= Ny

(f) NFx\(Mo e, My o, Noy N§), for every e < e(x).
2) If N3 is universal over N1 U Na, then without loss of generality Ny = N3.
3) In part (1) we can add

(9) M cy1 is brimmed over Mo e11 U M ..

Proof. 1) Define My ; for i < e* = 1+¢e(x) +1 by Mgg = No, Mg, = Mo,
for e < e(x) and Mg, (. = N2. By existence (6.23) we can find an <e-
increasing continuous sequence (Mj . : e < ¢*) with M] ; = N; and <;-embedding
[ of Ny into Mj .. such that e < &* = NFX(f(M.), M g, f(Mgei1), My o1q)-
By transitivity we have NFx(f(Mg ), M7 o, f(M} ), M] .-). By disjointness (i.e.,
F(Mg )N M o = Mg g, see 6.14(3)) without loss of generality f is the identity. By
uniqueness for NF there are N3, N3 <¢ N3 € K and <g-embedding of Mj _. onto
N3 over Ny U Ny = Mjj .. UMj 4 so we are done.

2) Follows by (1).

3) Similar to (1). Ue.33

Claim 6.34. NF) respects s; that is assume NF (Mo, My, M2, M3) and a € My \
My satisfies ortp(a, Mo, M3) € S*(My), then ortp(a, My, M3) € SP3(Ms) does not
fork over M.

Proof. Without loss of generality M is (), *)-brimmed over My. [Why? By the ex-
istence we can find M;" which is a (), ¥)-brimmed extension of M;. By the existence
for NF), without loss of generality we can find M; such that NF (M, M;", M3, M),
hence by transitivity for NF, we have NF (M, M;", Ma, M;).] By the hypothesis
of the section there are M7, a’ such that My U {a’'} C M| and ortp(a’, My, M]) =
ortp(a, Mo, My) and (Mo, M}, a) € Ky as My is (), *)-brimmed over My with-
out loss of generality M’ <¢ M;" and @’ = a and M; is (\,*)-brimmed over Mj.
We can apply 6.10 to M/, M, getting (M}, a; : i < & < At) as there. Let M]
be: My if i = 0, M7 if 1+ j =i so M{ = Mg = Mj and let a; be a if i = 0,a; if
1+ = i. So we can find M} and f such that My <¢ M}, f is a <e-embedding of M;"
into M3 extending idjz, such that NFy (55 x) (Mo, F(MT), My, M}) and M}, this is
witnessed by (f(M]) : i < 0), (M} i < d),(f(a;) : i <) and M = Mo; this is
possible by 6.14(2). Hence NF (Mo, f(M;"), Ma, N) = NF\(f(M}), f(M}), M/, N)
hence by the uniqueness for NF, without loss of generality f = id My and M3 <
N. By the choice of f,N we have that ortp(a, M2, M3) = ortp(ag, M2, N) =
ortp(ag, MY, M]) € S™(M}) = S"(M,) does not fork over M} = M, as re-
quired. D6_34
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Conclusion 6.35. If My <, My <¢ M3 for £ =1,2 and (My, M;,a) € Ki,uq and
ortp(a, Mo, M3) € S”*(My) does not fork over My then NF (Mg, My, Mo, M3).

Proof. By the definition of K3 and existence for NFy and 6.34 (or use 6.3 +
6.36. Us.35

We can sum up our work by

Conclusion 6.36. [Main Conclusion] NF is a non-forking relation on *(€y) which
respects §.

Proof. We have to check clauses (a)-(g)+(h) from 6.1. Clauses (a),(b) hold by the
Definition 6.13 of NF. Clauses (¢)1, (¢)2, i.e., monotonicity hold by 6.26. Clause
(d), i.e., symmetry holds by 6.27. Clause (e), i.e., transitivity holds by 6.30. Clause
(f), i.e., existence hold by 6.23. Clause (g), i.e., uniqueness holds by 6.24.

Lastly, clause (h), i.e., NF respecting s by 6.34. Os.36

The following definition is not needed for now but is natural (of course, we can
omit “there is superlimit” from the assumption and the conclusion). For the rest
of the section we stop assuming Hypothesis 6.9.

Definition 6.37. 1) A good A-frame s is type-full when for M € &, S™(M) =
2) Assume ¢, is a A-AEC and NF is a 4-place relation on K. We define t =
te, nF = (K, ), SP%) as follows:

t

(A) ¢ is the \-AEC ¢t

(B) SPs(M) is Se2(M) for M € &)

(C) | is defined by: (Mo, My, a, M3) € || when we can find My, M} such that
t

t
MO SEA Mg SEA Mé,Mg SEA Mé,a S MQ\MO and NF(Mo,Ml,MQ,Mé).

Claim 6.38. 1) Assume that

(A) &y is a A\-AEC with amalgamation (actually follows by (c¢)) and a superlimit
model

(B) t, is stable

(C) NF is a ty-non-forking relation, see Definition 6.1(1).
Then t = tg, NF @5 a type-full good \-frame.

2) Assume that s is a good \-frame which has existence for Ki’uq (see 6.9(2))
and NF = NFy. Then t is very close to s, i.e.:

(A) &, =&
(B) if p € SP5(My) and My <¢, M, then p € SP*(My) and p forks over My for
s iff p forks over My for t.

Proof. For the time being, left to the reader (but before it is really used, it is proved
in [She09e, 705—911A]) D6.38

Remark 6.39. Note that this actually says that from now on we could have used
type-full s, but it is not necessary for a long time.
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Definition 6.40. 1) Let s be a good A-frame. We say that NF is a weak s-non-
forking relation when

(a) NF is a pseudo £s-non-forking relation, see Definition 6.1(2), i.e., uniqueness
is omitted

(b) NF respects s, see Definition 6.1(3)

(¢) NF satisfies 6.33, (NF-lifting of an <;-increasing sequence).
1A) If in part (1) we replace “s-non-forking” by “non-forking”, we mean that we
omit clause (c).

1B) In part (1) we omit “weak” when we omit the “pseudo” in clause (a), so clause
(¢) becomes redundant.

2) We say s is pseudo-successful if some NF is a weak s-non-forking relation wit-
nesses it.

Observation 6.41. 1) If s is a good \-frame which is weakly successful (i.e., has
ezistence for Ki’uq, i.e., 6.9) then NFy = NF; is a s-non-forking relation.
2) If s is a good A-frame and NF is a weak s-non-forking relation then 6.35 holds.

3) If s is a good A-frame and NF is an s-non-forking relation then NF is a weak
s-non-forking relation which implies NF is a pseudo non-forking relation.

Proof. Straight.

1) Follows by 6.36, NF' satisfies clauses (a)+(b) and by 6.33 it satisfies also clause
(¢) of Definition 6.1(1).

2) Also easy.

3) We have just to check the proof of 6.33 still works. Ue.41

Remark 6.42. 1) In [She09e, §1-§11] we can use “s is pseudo successful as witnessed
by NF” so has lifting of decompositions instead of “s is weakly successful”. We
shall return to this elsewhere: see [She09d], [SV].
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§ 7. NICE EXTENSIONS IN K+
Hypothesis 7.1. Assume the hypothesis 6.9.

So by §6 we have reasonable control on smooth amalgamation in K. We use this
to define “nice” extensions in K+ and prove some basic properties. This will be
treated again in §8.

Definition 7.2. 1) K}i® is the class of saturated M € K+.
2) Let My <%, M; mean:

My <¢ M7 and they are from K+ and we can find M= (Mf:i<At), a

<e-representation of M, for £ = 0,1 such that:

NF, (MO, M2, |, M}, ML) for i < A*.
3) Let My <;+,;< M; mean 23 that (Mo, M; € Ky+ and) M, <+ M; by some
witnesses M} (for i < A", < 2) such that NFy (1 . (M2, M2, M}, M}, ) for
i < AT; of course My <¢ M, in this case. Let M S;ﬁ M; mean (My = M; €

Ky+)V (Mg <j\r+,,.€ My). If kK =\, we may omit it.

4) Let Kifs = {(M,N,a) : M <}, N are from Ky+ and a € N\ M and for

some My <y M,My € K, we have [My <¢ M; <; M and M; € K, implies

ortp(a, My, N) € SP*(M;) and does not fork over My]}. We call My or ortp(a, My, N)
a witness for (M, N,a) € Kifs. (In fact this definition on Kifs is compatible with

the definition in §2 for triples such that M <}, N but we do not know now whether

even (K}ie, <3.)is a AT-AEC.)

Claim 7.3. 0) K;Efe has one and only one model up to isomorphism and M & K;\life
implies M <}, M and M Sj\; M ; moreover, M € Ky+ = M <}, M. Also <i+
is a partial order and if My € Ky+ for £ = 0,1,2 and My <¢ My <¢ M> and
MO §§+ M2 then MO §;+ Ml.
1) If My <3}, My and M= (M} :i < X\t) is a representation of My for £ = 0,1
then
(x) For some club E of AT,
(a) for every a < B from E we have NFA(MS,ME,MO{,ME).
(b) if £ < 2 and My € K then for a < B from E the model Mg is
(X, %)-brimmed over MY,

— —
2) Similarly for <, : if My <, Mi,M = (M; : i < \") a representation

of My for £ = 0,1 then for some club E of AT for every a < 8 from E we have
NFA’<1’L,€>(M2,M8,Mé,Mé), moreoverNF/\’<1,Cf(>\X(1+5)),N>(Mg,Mg,Mé,Mé) and
if(Ma,Mg, M;,Mﬁl),Mo € K;ﬂfe then we can add NF,\7<>\7Cf()\><(1_,_5))7,@)(]\42, Mg, My, Mg).
3) The k in Definition 7.2(3) does not matter.

4) If My <:’\'+,,€ My, then My € Kyice.

5) If M € K+ is saturated, equivalently M € K;\life then M has a <g-representation

M = (M, : a < AT such that M; 11 is (A, \)-brimmed over M; for i < \* and also
the inverse is true.

23Note that My <;\r+ﬁ M, implies M7 € K;\‘ife but in general My € K/r\‘ife does not follow.
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6) If M <%, N and Ny <¢ N, Ny € Ky then we can find My <¢ Ny from K such
that My <¢ M, Ny <¢ N1 <¢ N and: for every My € K satisfying My <g My <¢ M
there is No <¢ N such that NF(My, My, N1, N3).

Proof. 0) Obvious by now (for the second sentence use part (1) and NF; being a
non-forking relation on &); in particular transitivity and monotonicity.

1) Straight by 6.30 as any two representations agree on a club.

2) Up to “moreover” quite straight. For the “moreover” use 6.31 to show that
Mé is (A, cf(B))-brimmed over Mg. Lastly, for the “we can add” just use part (5),
choosing thin enough club E of AT then use {« € F : otp(a N E) is divisible by A}.
3) By 6.31.

4) By 6.31.

5) Trivial.

6) Easy. O3

Claim 7.4. 0) For every My € K+ for some M; € K;\“fe we have My <g¢ M;.

1) For every My € Ky+ and k = cf(k) < X\ for some My € Ky+ we have
Mo <3: . My so My € K}¥ce.
1A) Moreover, if Ny <¢ My € Ky+, Ny € Kx,p € S*(Ny) then in (1) we can add
that for some a,(My, Mi,a) € Ki’bs as witnessed by p.

2) <\+ and <;\"+7N are transitive.
8) If Mo <¢ My <¢ My are in Ky+ and Mo <%, Ms, then My <}, M;.
4) If My <3, . Mo, then My <}, M.

5) IfMO <§\+ My <1_,n M then My, <;\~_,m M.

Proof. 0) Easy, and follows from the proof of part (1) below.

1), 1A) Let (M? : i < A\T) be a <g-representation of My with M brimmed and
brimmed over MJO for j < i and for part (1A) we have M = Ny, and for part (1)
let p be any member of Sbs(Mg). We choose by induction on i a model M} € K
and a € M{ such that M} is (X, cf(A x (1 +4)))-brimmed over M2, (M} :i < AT)
is <g-increasing continuous, M} N My = MY and ortp(a, M§, M) = p and M}, is
(A, k)-brimmed over M?, | UM} and NFy 1 ce(xx (144)),0) (M, MY, M}, M}, ) for
i < AT. Note that for limit 4, by 6.31, M;" is (A, cf(i))-brimmed over M U M} for
any j < 1.

Note that for i < AT, the type ortp(a, M2, M}) does not fork over MY = Ny and
extends p by 6.34 (saying NF respects s) 6.27 (symmetry) and 6.25. So clearly we
are done.

2) Concerning <, ,_ use 7.3 and 6.30 (i.e. transitivity for smooth amalgamations).
The proof for <3, is the same.

3) By monotonicity for smooth amalgamations in £,; i.e., 6.26.

4), 5) Check. |:|7.4

Claim 7.5. 1) If (Mo, My, a) € K and My <§. My € Ky then
(M(],Mg,a) € Kifs
2) If My <5, My, then for some a, (Mo, M, a) € Kif’s.
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Proof. 1) By the transitivity of <}, which holds by 7.4(2).
2) As in the proof of 2.9; in fact, it follows from it. Or 5

Remark 7.6. Note that the parallel to 7.4(1A) is problematic in §2 as, e.g. locality
may fail; i.e. (M, N;,a;) € Kif’s and M' <¢ M ANM' € Ky = ortp,(a;, M', Ny) =
ortp, (a2, M’, N2) but ortpes (a1, M,Ny) # Ortpyes (@2, M, N3).

A A

Claim 7.7. 1) [Amalgamation of <%, and toward extending types] If My <%, M,
for € = 1,2,k = cf(k) < X and a € My \ My is such that (Mo, M2,a) € Kif’s
is witnessed by p, then for some M3z and f we have: M; <;\~'+7,$ Ms and f is an
<g¢-embedding of My into Mz over My with f(a) & My, moreover, f(My) <}, Ms
and (My, M3, f(a)) € Kifs is witnessed by p.

2) [uniqueness] Assume My <;\"+,K My for ¢ = 1,2 then there is an isomorphism f
from My onto Ms over M.

3) [locality] Moreover,®* in (2), if ay € My\ My for £ = 1,2 and [N <¢ My and N €
Ky = ortp(ai, N, M) = ortp(az, N, Ms)], then we can demand f(a1) = as (so in
particular ortp(a1, My, M1) = ortp(as, My, My) where the types are as defined in
Ex+ and even in (K, <)

4) Moreover in (2), assume further that for £ = 1,2, the following hold: Ny <g
N <¢ My, No € Kx,No <¢ Ng,Ne € Ky and (VN € K))[No <¢ N <¢ My —
(IN" € K))(NU Ny C N’ <¢ My ANF\(No, Ng, N,N")|. If fo is an isomorphism
from Ny onto Ny over Ny then we can add f 2 fo.

Proof. We first prove part (2).

2) By 7.3(1) + (2) there are representations M= (Mf i < \t) of My for £ < 3
such that for £ = 1,2 we have: M{NMy = M§ and NFy (11 0 (M, M?,,, M{, M}, )
and without loss of generality M is (), x)-brimmed over M{ for ¢ = 1,2.

Now we choose by induction on i < A" an isomorphism f; from M} onto M2,
increasing with i and being the identity over M. For i = 0 use “Mé is (A K)-
brimmed over M{ for £ = 1,2” which we assume above. For i limit take unions, for
i successor ordinal use uniqueness (Claim 6.20).

[Proof of part (1)] By 7.4(1) there are for £ = 1,2 models N; € K,+ such
that M, <}, . N;. Now let M= (M} :i < AT) be a representation of M, for

¢ =0,1,2 and let N = (Nf i < A*) be a representation of N; for £ = 1,2.
By 7.4(4) and 7.3(2) without loss of generality N¢ is (), x)-brimmed over M{ and
NFA(MP, M, Mf, ML, ) and NFy, (1 1 (Mf, Mf, |, Nf, N£, ) respectively for i <
AT, = 1,2. Let Mg be such that p € SPS(Mg), Mg € Ky, M§ <¢ Mp; without
loss of generality Mg <¢ MJ and a € MZ <, NZ. Now N{ is (A, k)-brimmed
over M¢ hence over MY (for £ = 1,2) so there is an isomorphism f from NZ onto
Nj extending idyz. There is a’ € Ny such that ortp(a’, Mg, Ng) is a non-forking
extension of p and without loss of generality fy(a) = a’ hence ortp(fo(a), Mg, Ng) €
SPs(M{) does not fork over MJ.

24The meaning of this will be that types over M € K;“fe for (K;\’ife, §§\+) can be reduced to
basic types over a model in K}, i.e., locality.
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We continue as in the proof of part (2). In the end f = |J f; is an iso-
<At

morphism of N onto Nj over My and as fy(a) is well defined and in N} \ Mg

clearly ortp(f(a), M}, N}') does not fork over M} and extends p hence the pair

(N, f I M) is as required.

[Proof of part (3), (4)] Like part (2). 077

Claim 7.8. 1) If 6 is a limit ordinal < A™? and (M; : i < 6) is a <}, -increasing
continuous (in Ky+) and Ms = |J M; (so Ms € Ky+), then M; <\, Ms for each
<0

i <.
2) If § is a limit ordinal < A\*? and (M; : i < 8) is a <}, -increasing sequence, each
M; is in KYi®, then |J M; is in KYice.

<0
38) If 6 is a limit ordinal < X™2 and (M; : i < §) is a <{, -increasing continuous (or
Just <. -increasing continuous, and Ma;i1 <; Mosiyo fori < §), theni < 6 =
M; <3, U M.

j<é

Proof. 1) We prove it by induction on 6. Now if C' is a club of §, (as <}, is
transitive) then we can replace (M; : j < &) by (M; : j € C) so without loss of
generality 6 = cf(d), so § < AT; similarly it is enough to prove My <}, Ms =
U M;. For each i < 4§ let (M{: ¢ < AT) be a <j-representation of M;.

j<é

Case A: §j < AT

Without loss of generality (see 7.3(1)) for every i < j < ¢ and ¢ < AT we have:

MZ 0 M; = M} and NFx(M{, M{,, M2, MY, ). Let M = \J M, so
<o

(MéS : ¢ < AT) is <,-increasing continuous sequence of members of K, with
limit Mg, and for i < 5,Mg N M; = M}. By symmetry (see 6.27) we have
NFA(Mé,MZH,ME_i_NMZﬁ) SO as <Mg 11 < 5>,<Mé+1 11 <) are <g-increasing
continuous, by 6.30, the transitivity of NF,, we know NF,\(MS,Mg, M, MgH)
hence by symmetry (6.27) we have NFx(MQ, M, , M, M{, ).
So (M : ¢ < AT), (Més : ¢ < AT) are witnesses to Mo <}, Ms.

Case B: § = \T.

By 7.3(1) (using normality of the club filter, restricting to a club of AT and
renaming), without loss of generality for i« < j < 1+ (¢ < 1+ & < At we have
M} 0 M; = M, and NFx(M¢, M, M}, M]). Let us define M2‘+ = j<L1J+< M. So
(]\45\+ : ¢ < A1) is a <g-representation of My+ = My and continue as before.

2) Again without loss of generality 6 = cf(d) call it k. Let (MCZ : ¢ < AT) be a
<g-representation of M; for i < 6.

Case A: § =Kk < A\T.

Easy by now, yet we give details, noting 7.9. So without loss of generality
(see 7.3(1)) for every i < j < & and ¢ < & < AT we have: M! N M; = M,
NFx(M¢, M, M, M]) and M, is (A, A)-brimmed over M{. Let Mg = ﬁLgéMf.
Let £ < A*. Now if p € S*(M) then by the local character Axiom (E)(c) + the
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uniqueness Axiom (E)(e), for some i < §,p does not fork over Mg As M; is \*t-

saturated above A, the type p | Mg is realized in M;. So let b € M; realize p | Mg

and by Axiom (E)(h), continuity, it suffices to prove that for every j € (i,0),b

realizes p | Mg in M; which holds by 6.34 (note that b € M; <¢ M; as j € [i,0)).

So p is realized in Ms = |J M;. As this holds for every £ < AT and p € SbS(Mg),
<0

the model Mj is saturated.

Case B: cf(§) = AT.

Straight: in fact true for ¢ AEC with the A-amalgamation property.
3) Similar. D7.8

Remark 7.9. Note that in Ax(E)(c),Ax(E)(h) the continuity of the sequences is not
required.

Claim 7.10. 1) If My € K+ then there is My such that My <j\r+ M, € K;\lﬂfe, and

any such My is universal over My in (Ky+, <}, ).

2) Assume &Nl,ﬁg7M1,M2 below holds. Then My <;\"+ Ms iff for every a < AT for

stationarily many B < AT there is N such that Né U Ng C N < Ng and NE 18

(A, x)-brimmed over N where

&N1N?7M17M2 M, <3, My is being witnessed by N1, Ny that is Ny = (Nf:a < A1) is a

<¢-representation of My for ¢ = 1,2 and a < \T = NF\(N},N),, N2, N2 )
(hence o < 8 < AT = NFA(N3, N, N2, N3)).

Proof. 1) The existence by 7.4(1). Why “any such My, ...?” if My <}, M then
for some M, € K}ic® we have My < My € K¥® so My <}, My <!, M hence
by 7.4(5) we have My <¥ My so by 7.7(2) the models M, M; are isomorphic
over My, so My can be <3 -embedded into M; over My, so we are done.

2) Not hard. Uz.10
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§ 8. Is K} witH <}, AN AEC?

Hypothesis 8.1. The hypothesis 6.9.

An important issue is whether (K}, <% ) satisfies Ax IV of AEC. So a model
M € K,++ may be the union of a <}, -increasing chain of length A**, but we still
do not know if there is a continuous such sequence.

E.g. let (M, : a < AT1) be <}, -increasing with union M € Ky++ let M), =
My, M}, i1 = Mytq and M§ = U{Mg : B < &} for ¢ limit. So (M), : o« < ATT)
is <g-increasing continuous, (M, : a < AT1) is <}, -increasing, but we do not
know whether Mg <{, Mj_ , for limit § < AT,

Definition 8.2. Let M € £\++ be the union of an <-increasing continuous chain
from (K}, <3.) or just (Ky+, <31), M = (M; : i < \TT) such that (M; : i < ATT
non-limit) is <}, -increasing.

1) Let S(M) = {& : Mseq; Ms41 (see 8.3(3) below)}, so S(M) C AT+,

2) For such M let S(M) be S(M)/Dy++ where M is a <g-representation of M and
Dy++ is the club filter on ATT; it is well defined by 8.3 below.

3) We say (M; : i < 0) is non-limit <7, -increasing if for non-limit i < j < 0 we
have M; <}, M;.

Claim 8.3. 1) If M= (Mf i < Xt for £ € {1,2} is <g-increasing continuous
and i < 7 < AT = My S§\+ Mi—i—l S§\+ M]’+1 and M = U Mil = U ]\412 has
<At T<ATF

cardinality \*+ then S(M') = S(M") mod D+ .

2) If M, M are as in 8.2 hence M = |J M, then S(M)/Dy++ depends just on
i < N

M/ ~ <A

3) If M is as in 8.2 or, equivalently as in part (1), and i < j < AT+, then M; <},

M1 & M; <, M;.

4) If M € &1+ is the union of a <}, -increasing chain from (Kice, <%,), not

necessarily continuous, then there is M as in Definition 8.2, that is M = (M, : i <

MY, a <g-representation of M with M; <+ Mj for non-limit i < j.

Proof. 1) We can find a club E of A™" consisting of limit ordinals such that i €
E = M} = M?. Now if §; < 0y are from E then §; € S(Ml) & Méll <+ M§1+1 =
M611 §§+ M512 A M521 S;Jr M522 A M621 S;:\* M§1+1 A 61 € S(Mz)

[Why? By the definition of S(Ml), by part (3), by “d1,d2 € E”, by part (3), by
the definition of S(M 2)7 respectively.] So we are done.

2) Follows by parts (1) and (3).

3) The implication < is by 7.4(3); for the implication =, note that assuming
M; <3, My, as <3, is a partial order, noting that by the assumption on M we
have M1 <}, M; 1, and by 7.4(3) we are done.

4) Trivial. D8_3

Claim 8.4. If (x) below holds then for every stationary S C Siﬁﬁ(z {6 < ATT

cf(8) = AT}) for some AT -saturated M € Ky++ we have S(M) is well defined and
equal to S/Dy++, where
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(x) we can find (M; : i < A\t + 1) which is <g-increasing continuous sequence
of members of K¢ such that i < j < At +1 and (i,7) # (AT, AT +1) =
M; <i_+ M; but —(My+ Sj{_'. My+11).

ATt

Proof. Fix S € S{y  and (M; : i < AT +1) as in (x).
Without loss of generality |My+ 1 \ My+| = A™.
We choose by induction on v < A™? a model M7 such that:
(a) MZ € K has universe an ordinal < AT+
(b) for B < a we have Mg <¢ M%
(¢) ifa:B—&—l,BgéSthenME < ME
(d) ifa=p+1,6 € S then (MﬂS,M(f) = (My+, My+.11)
(e) if B<,B ¢S then Mg §:\~'+ M5
(f) if @ is a limit ordinal, then M, = |J{Mp : 8 < a}.
We use freely the transitivity and continuity of <3 and of <j\’.
For a@ = 0 no problem.

For « limit no problem; choose an increasing continuous sequence (v; : i < cf(«))
of ordinals with limit « each of cofinality < \,v; ¢ S, and use 7.8(3) for clause (e).

For a« = 4+ 1, ¢ S no problem.

For a = B+ 1,8 € S so cf(8) = AT, let (y; : i < AT) be increasing continuous
with limit 8 and cf(v;) < A, hence v; ¢ S and each 7,11 a successor ordinal. By
clause (e) above and 7.4(5) we have M2 <7, M~i+17 hence (M,, : i < AT) is
<j\r+—increasing continuous. Now there is an isomorphism fg from M+ onto M BS
mapping M; onto Mf for i < A (why? choose fg [ M; by induction on 4, for i =0
by 7.3(0), for i successor M3 <} Mfi+1 by 7.4(3) as MS <% M:Z_Jrl <t M:Z+1 S0
we can use 7.7(2)). So we can choose a one-to-one function f, from My+,; onto
some ordinal < AT extending fz and let M, = fo(My+41).

Finally having carried the induction, let Mg = |J MJ,
a2

that Mg € Ky++ is AT-saturated and M = (M2 : a < ATT) witnesses that

S(Mg)/Dy++ is well defined and S(Mg)/Dy++ = S((M7 : a < ATH))/Dy+v =

S/Dy++ as required. Og.a

it is easy to check

Below we prove that some versions of non-smoothness are equivalent.

Claim 8.5. 1) We have (x*)a my = (% % %) (see below).

2) If (%) then (x%)nrr aap for some My, M3 and trivially (x * x) = (*).

3) In part (1) we get (M; : i < At + 1) as in (x * x), see below, such that
My+ = My, My+ 1 = M3 if we waive i < AT = M; <{ M1 or assume M; <p
M* <§ M3 for some M*.

4) If M} <5, M3 and M} € Ky and Ny <¢ Ny € Kx, N, < M} for { = 1,2
and p € SP5(Ny) does not fork over Ny then some ¢ € M realizes p

where

(%) there are limit § < XYT, N and M = (M; : i < §) a <}, -increasing

continuous sequence with M;, N € K¢ such that: M; <}, N & i <0

(**)M{‘,Mff (1) My GK;Efe,Mz* € K;\"ﬂfe

() M <e M;
(i) Mieqy, M;
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(i) if Ny <¢ Na are from Ky,
Ny <¢ M} for £ =1,2 and p € S**(N2) does not
fork over N1, then some a € M7 realizes p in M3
(x % %) there is M = (M; : i < AT + 1), <g-increasing continuous, every
M; € K;\‘ife and My+eqy, My+yq but
i<j<AT+1andi#N = M; <}, M;;
note that this is (x) of 8.4.

Proof. 1),3) Let (af : i < AT) list the elements of M for £ = 1,2. Let (N3, : i < AT)
be a <¢-representation of MJ.

Let ((pC,Ng,’yg) : ¢ < AT) list the triples (p, N,7) such that v < AT,p €
SPS(N), N € {N3,; i < AT} with each such triple appearing A* times. By induc-
tion on a < At we choose (N : i < a), N, such that:

N& € Ky and N® <¢ M}

—
=2
Na?

(b) Ny <¢ M3 and N, € K,
(¢) (Nf :i < ) is <g-increasing continuous
(d) N2 < No, No () M = N2
(e) if i < « then <Nzﬁ : B € [i,a]) is <g-increasing continuous
(f) (Ng: B < a) is <g-increasing continuous
(g) if « = B+ 1,i < 8 then NFA\(N”, Ng, N*, N,)
(h) if @ =25 +1 then a% € Noy1
)

if « =28+ 2 and i < o then N7 is brimmed over N{* U fo;rl and N§'
is brimmed over Ngﬁ .

—~
—

Why is this enough?
Welet My+ = M{, My+1 = M5 and let M/’\Jr+l € K;’ife be such that My+ 4, <;\r+
M{, ,, and for i < AT we let M; = U{N{* : a € [i,AT)}; now
(@ Mif= U No= | Miand M = | Na
a<At i<t a<At
[why? the second by clause (h) (and (b) of course), the first as N,NM; =
N2.

(B) (M; :i < AT +1) is <p-increasing continuous
[trivial by clauses (c) + (e) if i < AT and (d) if i = AT]
(v) for i < AT, M; is saturated, i.e., € K}
[Why? Clearly (N : a € (i, AT)) is a <g-representation of M; by clause
(e) and the choice of M;. If i = 0 this follows by clauses (i) + (e). If
i = j + 1 this follows by clauses (e) + (i). If ¢ is a limit ordinal use 7.8(2)
and clause (g)]
(8) for i < A*,i<j <At 41 wehave M; <}, M;.
[Why? Let N, := N§, Ny, = No for @ < A" and let y be i if
Jj = AT AT +1 and be j if j < AT; so in any case v < AT. Now as
(N a € [y,A)) is a <g-representation of M; and (Nf* : a € [y,AT)) is
a <g-representation of M; and if v < 8 < A then by clause (g) we have
NF\ (NP, Ng, NPT Ny, 1) hence by symmetry NFy (N2, NPT Ny Ngi o)
hence by monotonicity
NFA(NS, N/HY NP NOTY); this suffices]
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(e) if i < j < AT then M; <I, M;
[why? by 7.8(3) it suffices to prove this in the cases j = i+ 1. Now claim
7.10(2), clause (i) guaranteed this.]
Clearly (M; : i < At + 1) is as required for part (1) and for part (3) for first
possibility (with waiving) obviously. For the second possibility in part (2), easily
(M; =4 < XF)" (M}, ) is as required but My, M3 are isomorphic over M*, so
also (M; : i <At +1)is O.K.
So we are done.

So let us carry the construction.
For a = 0 trivially.
For « limit: straightforward.

For a = 26 + 1 we let Ni* = Nfﬂ for ¢ < 28 and N, € K is chosen such that
Nop U{a3} € No <¢ My and N, | My <¢ My, easy by the properties of abstract
elementary class and we let Nyg., = No | M. For a = 28 + 2 we choose by

induction on & < A?, a triple (N$_, N, aq,c) such that:

a,e) o

(A) N&. <¢ Mj belongs to K and is <e-increasing continuous with e

(B) N2 = Noge and NE_ | Mj <; Mj

(C Nﬁa <¢ M7 belongs to K and is <g-increasing continuous with e
D _ ar28+1

(D Nyo= N2ﬂ+1

o) a,5+17a0ﬁ€) € Ki)uq

ortp(aa,e, NS, M3) does not fork over N _

Ngjs <t Ng}js

for every p € Sbs(Nga) for some odd ¢ € [g,e+A) the type ortp(aa,c, Nfic, N(;?CH)
is a non-forking extension of p.

)
)
)
E) (N®_, N®
)
)
)

No problem to carry this. [Why? For e = 0 and € limit there are no problems. In
stage e+1 by bookkeeping gives you a type p. € S”*(N.) and let . € S*5(NZ.) be
a non-forking extension of p.. By assumption (iv) of (+*)as az; there is an element
Qq,e € M7 realizing g.. Now M7 is saturated hence there is a model N(?EH € K,
such that N, <¢ Mi and (NE_,NE_,,,a..) € K3

Lastly, choose NSE_H satisfying clauses (A),(B),(G) so we have carried the in-
duction on €.

Note that NFA(N$., NS, N .1, NZ_ ) for each ¢ < A? by clauses (E),(F)

and 6.35, hence NF(N;5 !, Nogo1, U{NE, 1 e < A2} U{NE, 1 e < A2}) by 6.30 as
(N$o, N2 o) = (Nggill,NggH) and the sequences (NY, :e < AT), (N&, e < A¥)
are increasing continuous.

Now let No = [H{NZ. : € < A2}, N§ = N, N M recalling clauses (A)+(B).

Now [J{N&, : & < A} <¢ MY is (), %)-brimmed over N22/§I11 by 4.3 (and clause
(H) above). Hence there is no problem to choose N <; N& for i < 28 +1 as
required, that is NEBH <¢g N, (Nf i < 28+ 1) is <g-increasing continuous,
NF, (NPT N2PF Ne Ngy) and Ngy s (A, #)-brimmed over N2 U N and
Ng is (A, %)-brimmed over NZ#T!
28+ 2.

Having carried the induction we are done.

. So we have finished the induction step on o =

2) So assume (*) and let Msq := N from (x). It is enough to prove that (+)az; a5,
holds. Clearly clauses (i), (ii), (iii) hold, so we should prove (iv). Without loss of
generality 6 = cf(d) so § = AT or 6 < A\. Fori < d+11let (M;, : a < AT)
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be a <e-representation of M; and for i < 4,5 € (i,0 + 1] let E; ; be a club of AT
witnessing M; <3, M; for M',M’. First assume 6 < \. Let E = N{E;;:i<d,j¢€
(1,8 + 1]}, it is a club of AT. So assume Ny <; My, 1, N1 <¢ Na, Ny <¢ M5 and
Ni,Ny € Ky and p € SbS(NQ) does not fork over N;. We can choose ¢ € E such
that Ny C Msi1,¢, let pi € SbS(M(;H’C) be a non-forking extension of p, so p; does
not fork over Ni hence (by monotonicity) over Ms ¢ so pa :==p1 | Ms¢ € SbS(M(;,C).
By Axiom (E)(c) for some a < 4,ps does not fork over M, ¢ hence py [ My €
S™(My.c). As M, € Kf\lﬁfe, i.e., M, is AT-saturated (above \), clearly for some & €
(¢, \T) N E some ¢ € M, ¢ realizes py | My ¢ but NFx(Ma, ¢, Msy1,c, Mo e, Msii¢)
hence by 6.34 we know that ortp(c, Msi1.c, Msi1,¢) belongs to SP5(Msy1 ) and
does not fork over M, ¢ hence c realizes p» and even p; hence p and we are done.
Second, assume § = A", then for some §* < § we have Ny <; Mjs-, and use the
proof above for (M; : 4 < 0%), M5y (or use Ms- <3, Msy1).
4) Straight, in fact included the proof of 7.8(2). Os.5

The definition below has affinity to “blowing £y to £\"” in §1.

Definition 8.6. 0) Kifs = {(M,N,a) € Kifs : M, N are from K}i}; we say
N’ € K, (or p') witness (M, N, a) € Ki’fs if it witnesses (M, N,a) € Ky
1) 855 = {ortp(a, M,N) : M <}, N are in K}, a € N and (M, N,a) € K3},
the type being for £}ic° = (K}, <3, ), see below * so the notation is justified by
8.7(1).
2) We define ¥ = (K®, <%) as follows
(a) K® =¢ | {M € K: M =U{M, :s €I} where M, € K}i°, I is a directed
partial order and s <yt = M, <}, M}
(b) Let M, S® M, if Ml,Mg S K®,M1 <¢ M, and:
($)aay ,m, if No € Ky, Ny <¢ My, for £ =1,2,p € SP(N3) does not fork over Ny
and N1 <¢ N> then some a € M; realizes p in Ms
(c) let §§+:§®[ K%.
3) U = {(Mo, My, a,Ms) : My <}, My <5, Ms are in K}i¢® and (Mi, Ms,a) €
A
Kifs as witnessed by some N <; M from K, }.
1) e = Ry, <35, that is (K, <3, | K3°).
5) We say that M’ or p’ witness p = Ortpenice (a, M, N) when M’ <, M, M’ € K
A
and [M' <¢, M" <¢ M = ortp,(a, M",N) does not fork over M’ and p’ =
ortp,(a, M’', N).

Conclusion 8.7. Assume 25 (recalling 8.4):

X not for every S C Sifr is there A\ -saturated M € Ky++ such that S(M) =
S/DA++ .
0) On K;\‘if", the relations <}, ,<® agree.
1) gyice = (Kjice, <%.) is a AT-abstract elementary class and is categorical in A\*
and has no mazximal member and has amalgamation.
2) K® is included in the class of AT -saturated models in € and K3, = K}ice.

3) £® is an AEC with LS(K®) = AT and is the lifting of €.

25actually to define ortpy, (a, M, N) where M <¢, N,a € N we need less that “¢y is a »-AEC”,

and we know on (K;‘ife, <%) more than enough

26¢his is like (%) 0y, Mo, from 8.5, particularly see clause (iv) there
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4) On Kyice (S, ) are equal to (8P 1 KYiee, ) | KYi©) where they are
At < 0
defined in 2.4, 2.5.

5) (B3 S5 ) is a good AT -frame.
A

6) For My <5, M, from K, and a € My \ My, the type ortpye(a, My, My) is
determined by ortpy, (a, N1, Mz) for all Ny <¢ My, N1 € K.

Proof. 0) By 8.4 and our assumption X, we have My, My € K;‘ife and M; <®
My = My <}, M, (otherwise (xx)s,,as, of 8.5 holds hence (x  x) of 8.5 holds and
by 8.4 we get =X, contradiction). The other direction is easier just see 8.5(4).

1) We check the axioms for being a AT-AEC: Ax 0: (Preservation under isomor-

phisms) Obviously. Ax I: Trivially. Ax II: By 7.4(2). Ax III: By 7.8(2) the union

belongs to K;\‘fe and it <}, -extends each member of the union by 7.8(1). Ax IV:

Otherwise () of 8.5 holds, hence by 8.5 also (x * %) of 8.5 holds. So by 8.4 our
assumption X fail, contradiction; this is the only place we use K in the proof of (1).
Ax V: By 7.4(3) and Ax V for ¢.

Also Egife is categorical by the uniqueness of the saturated model in A* for £ has
no maximal model by 7.4(1). £} has amalgamation by 7.7(1).

2) Every member of K® is AT-saturated in € by 7.8(2) (prove by induction on
the cardinality of the directed family in Definition 8.6(2), i.e. by the LS-argument
it is enough to deal with the index family of < AT models each of cardinality A*,
which holds by part (0) + (1)). If M € K+ is AT-saturated, clearly € K}ice.

3),4) Easy by now (or see §1).

5) We have to check all the clauses in Definition 2.1. We shall use parts (0)-(3)
freely. Axiom (A):

By part (3) (of 8.7). Axiom (B):

There is a superlimit model in Kf\% = K;\lfe by part (1) and uniqueness of the

saturated model. Axiom (C):

nice

By part (1), i.e., 7.7(1) we have amalgamation; JEP holds as K}* is categorical

in A*. “No maximal member in £5,” holds by 7.4(1). Axiom (D)(a),(b):

By the definition 8.6(1). Axiom (D)(c):
By 2.9 (and Definition 8.6(1)). Clearly K?\fs = K*Ps | KV, Axiom (D)(d):

For M € E% let M = (M; : i < A\t) <p-represent M, so if M <® N € K%,
(hence M <}, N € K, = K}i®) and a € N, ortpE:sie(a,M,N) € SE(M), we
let a(a, N, M) = min{a : ortp(a, M,, N) € S*(M,) and for every 8 € (a, AT),
ortp(a, Mg, N) € SP%(Mp) is a non-forking extension of ortp(a, M, N)}.

Now

(a) ala, N, M) is well defined for a, N as above
[Why? By Defintion 2.7 4+ 8.6(1)]
(b) if agz, Ny are above for ¢ = 1,2 and a(ay, Ny, M) = a(ag, No, M) call it «
and ortp,(ai, My, N) = ortp,(az, My, Na) then
(¥) for B < AT we have ortp, (a1, Mg, N1) = ortp,(ai, Mg, N2) € SP5(Mp)
[Why? By the non-forking uniqueness (Ax(E)(e)) when 5 > a by
monotonicity if 5 < a]
(¢) if ag, Ny are as above for £ = 1,2 and (%) above holds then
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(xx) ortpk(@+ (a1, M,Ny) = Ortpt®+ (ag, M, N3)
A A
[Why? Use 7.7(3) or by part (6) below].
Asa < A= [SP(M,)| < A (by the stability Axiom (D)(d) for s), clearly [S55 (M)| <
S |SP(M,)| < AT = ||M|| as required.

a<At
The reader may ask why do we not just quote the parallel result from §2: The

answer is that the equality of types there is “a formal, not the true one”. The crux
of the matter is that we prove locality (in clause (c) above). Axiom (E)(a):

By 2.4 - 2.7. Axiom (E)(b); monotonicity:

Follows by Axiom (E)(b) for s and the definition. Axiom (E)(c); local character:

By 2.11(5) or directly by translating it to the s-case. Axiom (E)(d); (transitivity):

By 2.11(4). Axiom (E)(e); uniqueness:

By 7.7(3) or by part (6) below. Axiom (E)(f); symmetry:

So assume Mo <} M1 <}, M are from Kf& and for £ = 1,2 we have ay € My,
ortpéiiic(ag,Mo,Mg) € S35 (My) as witnessed by py € SPS(N}), N} € Ky, N} <;
My and ortpeig+ (a2, M1, Ms) does not fork (in the sense of H) over My (note that

My, My, Ms here stand for My, My, M} in clause (i) of Ax(E)(f) from Definition
2.1). As we know by monotonicity without loss of generality M; <:\~'+ Ms. We can
finish by 7.7(4) (and Axiom (E)(e) for s).

In more details, we can find Ny, N1, No such that: Ny, <; M, and N, € K, for
¢ =0,1,2 and Nl* UNQ* C Nyg <¢ N1 <¢ Ny and a; € Ni,a2 € Ny and Ns is
(A, *)-brimmed over N7 hence over Ny, and (VN € K))[Ng <¢ N <¢ My — (IM €
K\)(M <¢ My and NF)\(No, N, N2, M))].

By Axiom (E)(f) for 5 = (& 8", (J) we can find N’ such that Ny <¢ N’ <¢ Ny

A

such that a; € N’ and ortp, (a1, N', N2) does not fork over Ny. Now we can find
fo, M{ such that My <7, M, f} is a <g-embedding of N’ into M{ and (VN €
K\)[No <¢ N <¢ My = (3M € K»\)(M <¢ M/ and NFx(No, N, f}(N"), M))].
Next we can find fi, M} such that M <:\~'+ M, fil 2 fl and f{ is a <¢-embedding
of N into M} and (YN € K»)[No <¢e N <¢ Mo — (3M € K»)(M <¢ M}, and NF(No, N, f1/(Ny), M)].
Lastly, by 7.7(4) there is an isomorphism f from M, onto MY, over M extending
', Now f~1(Mj]) is a model as required. Axiom (E)(g); extension existence:

Assume My <}, M; are from K;\lifem S S§\S+(MO)7 hence there is Ny <g
My, Ng € Ky such that (VN € K))(Ng <¢ N <¢ My — p | N does not fork
over Ny). By 7.4(1A) there are My € Kf\i and a € My such that M; <{, M,
and ortpesice (a, My, My) € S53% (M) is witnessed by p [ Ny and by part (6) we have

A
OrtPgnice (a, My, M3) = p. Checking the definition of does not fork, i.e., ||J we are
A
A

done. Axiom (E)(h), (continuity):

By 2.11(6). Axiom (E)(i):

It follows from the rest by 2.18.

6) So assume M <3}, My,ap € Mg\ M for £ = 1,2 and N <¢ M AN € Ky =
ortpg(ar, N, M) = ortpg(az, N, Mz). By 7.4(1) there are M;", M;" € K3 such
that M, <I+ M/ for £ =1,2. By 7.7(2),(3) there is an isomorphism f from M;"
onto M;r over M which maps a; to as. This clearly suffices. Us.7
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§ 9. 89 FINAL CONCLUSIONS

We now show that we have actually solved our specific test questions about
categoricity and few models. First we deal with good A-frames.

Lemma 9.1. Main Lemma
1) Assume
(a) (@) 22 <22 <2 <22 andn > 2
( ) and WDmId(/\M) is not N1 _saturated (normal ideal on \**) for
=1,....,n—1
(b) s = (&, Sbh ,W) is a good \-frame

>\++

(¢) T(AFE e(AF-saturated)) < pumc(AH, 22 for € =2,....n
Then

(a) K has a member of cardinality A\*"+!

(B) fort < n there is a good NT*-frame 5, = (£, SP*

Sp)

\U) such that K%, C K+«
Sy

and <gpC<g
(7) so =5 and if £ <m < n then K§+m DK, and <pl K™ D<gm.

2) Like part (1) omitting (8) of clause (a).

Proof. 1) We prove this by induction on n.
For n = m + 1 > 2, by the induction hypothesis for £ = 0,...,m — 1, there is
a frame s, = EZ LU Sbs which is AM*¢-good and Ks, C K3, and <peC<ef ¢, By

5.9 and clause (c ) of the assumption we know that s has density for Ko"9. Now
without loss of generality K™ ! is categorical in At(m—1) (by 2.23 really necessary
only for ¢ = 0) and by Observation 5.8 we get the assumption 6.9 of §6 hence the
results of §6, §7, §8 apply. Now apply 8.7 to (¢#™~1, Sbs U ) and get a AT™-

Sm—1"
m—1
frame s, as required in clause (§). By 4.14 we have K{%,.,, # @ which is clause
(a) in the conclusion. Clause () has already been proved and clause () should
be clear.
2) Similarly but we use 5.11 instead of 5.9, i.e. we use the full version. Oo 1

Second (this fulfills the aim of [She01] — equivalently, [She09c¢]).

theorem 9.2. 1) Assume AT ATy fort=0,. —1 and the normal ideal

WDmId(A+) is not )\M*l—satumted fort=1,...,n— 1.

If t is an abstract elementary class with LS(¥) < X\ which is categorical in
M and 1 < I(AT2,K) and T(AT™,8) < uunif()\"’m,?\ﬂmfl)), see [She09a, 88r-
0.wD](8). Form € [2,n) (or just [(\T™, ¢(\T-saturated)) < fanie (AT, 22T,
then ty+n # @ (and there are 5¢(¢ < n) as in (y) of 9.1).

2) We can omit the assumption “not Nt _saturated”.

Proof. 1) By 3.10 and 9.1(1).
2) See by 3.10 and 9.1(2), i.e. using the full version of [She09d]. Og .o

Next we fulfill an aim of [She09a].
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theorem 9.3. 1) Assume 2% < 28%«» for £ = 0,...,n — 1 and n > 2 and
WDmId(AH) is not A\ -saturated for £ =1,...,n — 1.

If € is an abstract elementary class which is PCyx, and 1 < j(Nl,‘E) < 2% and
j(N@,E) < fanit(Ng, 28¢-1), for £ = 2,...,n, then € has a model of cardinality N, 1
(and there are s¢(£ < n) as in 9.2.

2) We can omit the assumption “not \***1-saturated”.

Remark 9.4. Compared with Theorem 9.2 our gains are no assumption on I(\, K)
and weaker assumption on (AT, K), i.e., < 2% (and > 1) rather than = 1. The
price is A = R and being PCy,.

Proof. 1) By 3.5 and 9.1(1).
2) See by 3.5 and 9.1(2), i.e. using the full version of [She09d]. Og 3

Lastly, we fulfill an aim of [She75].

theorem 9.5. 1) Assume 2% < 2%+1 for ¢ < n — 1 and WDmId(AT*) is not
M saturated for £ = 1,...,n — 1,9 € Ly, o(Q), I(Ry, 1) > 1 and I(Rg,1p) <
Pranit(Ng, 28%¢-1), for £ = 1,...,n. Then v has a model in N, 1 and there are
51,...,5,—1 as in 9.8 with K;, C Mody and appropriate <.

2) We can omit the assumption “not \***1-saturated”.

Proof. 1) By 3.8 mainly clauses (c)-(d) and 9.1(1). Note that this time in 9.1 we
use the I(A1E B(AT-saturated)) < prumir(Ne, 2¥¢-1).
2) As in part (1) using 9.1(2). o 5
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