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Abstract. We deal with beginning stability theory for “reasonable” non-
elementary classes without any remnants of compactness like dealing with

models above Hanf number or by the class being definable by Lω1,ω . We
introduce and investigate good λ-frame, show that they can be found under

reasonable assumptions and prove we can advance from λ to λ+ when non-

structure fail. That is, assume 2λ
+n

< 2λ
+n+1

for n < ω. So if an AEC

is cateogorical in λ, λ+ and has intermediate number of models in λ++ and

2λ < 2λ
+
< 2λ

++
, LS(k) ≤ λ). Then there is a good λ-frame s and if s

fails non-structure in λ++ then s has a successor s+, a good λ+-frame hence
Ks
λ+3 6= ∅, and we can continue.
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2 S. SHELAH

§ 0. Introduction

The paper’s main explicit result is proving Theorem 0.1 below. It is done axiomat-
ically, in a “superstable” abstract framework with the set of “axioms” of the frame,
verified by applying earlier works, so it suggests this frame as the, or at least a
major, non-elementary parallel of superstable.

A major case to which this is applied, is the one from [She01] represented in
[She09c]; we continue this work in several ways but the use of [She01] is only in
verifying the basic framework; we refer the reader to the book’s introduction or
[She01, §0] for background and some further claims but all the definitions and basic
properties appear here. Otherwise, the heavy use of earlier works is in proving that
our abstract framework applies in those contexts. If λ = ℵ0 is O.K. for you, you
may use [She09a] or [She75] instead of [She01] as a starting point.

Naturally, our deeper aim is to develop stability theory (actually a parallel of
the theory of superstable elementary classes) for non-elementary classes. We use
the number of non-isomorphic models as test problem. Our main conclusion is
0.1 below. As a concession to supposedly general opinion, we restrict ourselves
here to the λ-good framework and delay dealing with weak relatives (see [She09d],
Jarden-Shelah [JS13], hopefully [S+]. Also, we assume that the (normal) weak-
diamond ideal on the λ+` is not saturated (for ` = 1, . . . , n− 1). We had intended
to rely on [She01, §3], but actually in the end we prefer to rely on the lean version
of [She09d], see “reading plan A” in [She09d, §0]. Relying on the full version of
[She09d], we can eliminate this extra assumption “not λ+`+1-saturated1 (ideal)”.

On µunif(λ
+`+1, 2λ

+`

), see, e.g. [She09a, 88r-0.wD](3)).

theorem 0.1. Assume 2λ < 2λ
+1

< · · · < 2λ
+n+1

and the (so called weak diamond)
normal 1 ideal WDmId(λ+`) is not λ+`+1-saturated 2 for ` = 1, . . . , n.

1) Let k be an abstract elementary class (see §1 below) categorical in λ and λ+

with LS(k) ≤ λ (e.g. the class of models of ψ ∈ Lλ+,ω with ≤k defined naturally).

If 1 ≤ İ(λ+2, k) and 2 ≤ ` ≤ n⇒ İ(λ+`, k) < µunif(λ
+`, 2λ

+`−1

), then k has a model
of cardinality λ+n+1.

2) Assume λ = ℵ0, and ψ ∈ Lω1,ω(Q). If 1 ≤ İ(λ+`, ψ) < µunif(λ
+`, 2λ

+`−1

) for
` = 1, . . . , n− 1 then ψ has a model in λ+n (see [She75]).

Note that if n = 3, then 0.1(1) is already proved in [She01] ≈ [She09c]. If k is
the class of models of some ψ ∈ Lω1,ω this is proved in [She83a], [She83b], but
the proof here does not generalize the proofs there. It is a different one (of course,
they are related). There, for proving the theorem for n, we have to consider a few
statements on (ℵm,P−(n − m))-systems for all m ≤ n, (going up and down). A
major point (there) is that for n = 0, as λ = ℵ0 we have the omitting type theorem
and the types are “classical”, that is, are sets of formulas. This helps in proving
strong dichotomies; so the analysis of what occurs in λ+n = ℵn is helped by those
dichotomies. Whereas here we deal with λ, λ+, λ+2, λ+3 and then “forget” λ and
deal with λ+, λ+2, λ+3, λ+4, etc. So having started with poor assumptions there is
less reason to go back from λ+n to λ. However, there are some further theorems
proved in [She83a], [She83b], whose parallels are not proved here, mainly that if
for every n, in λ+n we get the “structure” side, then the class has models in every
µ ≥ λ, and theorems about categoricity. We shall deal with them in subsequent

1Recall that as 2λ`−1 < 2λ` this ideal is not trivial (i.e. λ+` is not in the ideal).
2Actually, the statement “some normal ideal on µ+ is µ++-saturated” is “expensive” (i.e. of

large consistency strength, etc.), so it is “hard” for this assumption to fail.
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CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES 3

works, mainly [She09e]. Also in [She75], [She87a] = [She09a] we started to deal
with ψ ∈ Lω1,ω(Q) dealing with ℵ1,ℵ2. Of course, we integrate them too into
our present context. In the axiomatic framework (introduced in §2) we are able to
present a lemma, speaking only on 4 cardinals, and which implies the theorem 0.1.
(Why? Because in §3 by [She01] ≈ [She09c] we can get a so-called good λ+-frame
s with Ks ⊆ k, and then we prove a similar theorem on good frames by induction
on n, with the induction step done by the lemma mentioned above). For this, parts
of the proof are a generalization of the proof of [She01, §8,§9,§10]. A major theme

here (and even more so in [She09e]) is:

Thesis 0.2. It is worthwhile to develop model theory (and superstability in particu-
lar) in the context of kλ or Kλ+` , ` ∈ {0, . . . , n}, i.e., restrict ourselves to one, few,
or an interval of cardinals. We may have good understanding of the class in this
context, while in general cardinals we are lost.

As in [She90] for first order classes

Thesis 0.3. It is reasonable first to develop the theory for the class of (quite)
saturated enough models as it is smoother and even if you prefer to investigate the
non-restricted case, the saturated case will clarify it and you will e able to rely on it.

In our case this will mean investigating s+n for each n and then
⋂
{ks+n

: n < ω}.

Thesis 0.4. [The Better to be poor Thesis] Better to know what is essential. e.g.,
you may have better closure properties (here a major point of poverty is having no
formulas, this is even more noticeable in [She09e]).

I thank John Baldwin, Alex Usvyatsov, Andres Villaveces and Adi Yarden for many
complaints and corrections.
§1 gives a self-contained introduction to AEC (abstract elementary classes), in-

cluding definitions of types, “M2 is (λ, κ)-brimmed over M1,” and saturativity =
universality + model homogeneity. An interesting point is observing that any λ-
AEC kλ can be lifted to k≥λ, uniquely; so it does not matter if we deal with kλ
or k≥λ (unlike the situation for good λ-frames, which if we lift, we in general, lose
some essential properties).

The good λ-frames introduced in §2 are a very central notion here. It concen-
trates on one cardinal λ, in kλ we have amalgamation and more, hence types, in the
orbital sense, not in the classical sense of set of formulas, for models of cardinality
λ can be reasonably defined and “behave” reasonably (we concentrate on so-called
basic types) and we axiomatically have a non-forking relation for them.

In §3 we show that starting with classes belonging to reasonably large families,
from assumptions on categoricity (or few models), good λ-frames arise. In §4 we
deduce some things on good λ-frames; mainly: stability in λ, existence and (full)
uniqueness of (λ, ∗)-brimmed extensions of M ∈ Kλ.

Concerning §5 we know that if M ∈ Kλ and p ∈ Sbs(M) then there is (M,N, a) ∈
K3,bs
λ such that ortp(a,M,N) = p. But can we find a special (“minimal” or

“prime”) triple in some sense? Note that if (M1, N1, a) ≤bs (M2, N2, a) then N2 is
an amalgamation ofN1,M2 overM1 (restricting ourselves to the case “ortp(a,M2, N2)
does not fork over M1”) and we may wonder is this amalgamation unique (i.e., al-
lowing to increase or decrease N2). If this holds for any such (M2, N2, a) we say

(M1, N1, a) has uniqueness (= belongs to K3,uq
λ = K3,uq

s ). Specifically we ask: is

K3,uq
λ dense in (K3,bs

λ ,≤bs)? If no, we get a non-structure result; if yes, we shall

(assuming categoricity) deduce the “existence for K3,uq
s ” and this is used later as

a building block for non-forking amalgamation of models.
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4 S. SHELAH

So our next aim is to find “non-forking” amalgamation of models (in §6). We
first note that there is at most one such notion which fulfills our expectations
(and “respect” s). Now if

⋃
(M0,M1, a,M3), M0 ≤k M2 ≤k M3 (equivalently,

(M0,M2, a) ≤bs (M1,M3, a) and (M0,M2, a) ∈ K3,uq
λ ), by our demands we have

to say that M1,M2 are in non-forking amalgamation over M0 inside M3. Closing
this family under the closure demands we expect to arrive to a notion NFλ = NFs

which should be the right one (if a solution exists at all). But then we have to work
on proving that it has all the properties it hopefully has.

A major aim in advancing to λ+ is having a superlimit model in kλ+ . So in §7
we find out who it should be: the saturated model of kλ+ , but is it superlimit?
We use our NFλ to define a “nice” order ≤∗λ+ on kλ+ , investigate it and prove the
existence of a superlimit model under this partial order. To advance the move to
λ+ we would like to have that the class of λ+-saturated model with the partial
order ≤∗λ+ is a λ+-AEC Well, we do not prove it but rather use it as a dividing
line: if it fails we eventually get many models in kλ++ (coding a stationary subset
of3 λ++); see §8.

Lastly, we pay our debts: prove the theorems which were the motivation of this
work, in §9.

∗ ∗ ∗

Reading Plans: As usual, these are instructions on what you can avoid reading.
Note that §3 contains the examples, i.e., it shows how “good λ-frame”, our main

object of study here, arise in previous works. This, on the one hand, may help the
reader to understand what is a good frame and, on the other hand, helps us in the
end to draw conclusions continuing those works. However, it is not necessary here
otherwise, so you may ignore it.

Note that we treat the subject axiomatically, in a general enough way to treat
the cases which exist without trying too much to eliminate axioms as long as the
cases are covered (and probably most potential readers will feel they are more than
general enough).

We shall assume

(∗)0 2λ < 2λ
+

< 2λ
+2

< . . . < 2λ
+n

and n ≥ 2.

In the beginning of §1 there are some basic definitions.

Reading Plan 0: We accept the good frames as interesting per se, so ignore
§3 (which gives “examples”) and: §1 tells you all you need to know on abstract
elementary classes; §2 presents frames, etc.

Reading Plan 1: The reader decides to understand why we reprove the main
theorem of [She83a], [She83b] so

(∗)1 K is the class of models of some ψ ∈ Lλ+,ω (with a natural notion of
elementary embedding ≺L for L a fragment of Lλ+,ω of cardinality ≤ λ
to which ψ belongs).

So in fact (as we can replace, for this result, K by any class with fewer models still
satisfying the assumptions) without loss of generality

(∗)′1 if λ = ℵ0 then K is the class of atomic models of some complete first order
theory, ≤k is being elementary submodel.

The theorems we are seeking are of the form

3Really, any S ⊆ {δ < λ++ : cf(δ) = λ+}
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CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES 5

(∗)2 if K has few models in λ+ ℵ1, λ
+, . . . , λ+n then it has a model in λ+n+1.

[Why “λ + ℵ1”? If λ > ℵ0 this means λ whereas if λ = ℵ0 this means
that we do not require “few model in λ = ℵ0”. The reason is that for the
class or models of ψ ∈ Lω1,ω (or ∈ Lω1,ω(Q) or an AEC which is PCℵ0 ,
see Definition 3.4) we have considerable knowledge of general methods of
building models of cardinality ℵ1, for general λ we are very poor in such
knowedge (probably as there is much less).]

But, of course, what we would really like to have are rudiments of stability theory
(non-forking amalgamation, superlimit models, etc.). Now reading plan 1 is to
follow reading plan 2 below but replacing the use of Claim 3.10 and [She01] by the
use of a simplified version of 3.5 and [She83a]. Reading Plan 2: The reader would

like to understand the proof of (∗)2 for arbitrary k and λ. The reader

(a) knows at least the main definitions and results of [She01] ≈ [She09c],
or just

(b) reads the main definitions of §1 here (in 1.1 - 1.7) and is willing to believe
some quotations of results of [She01] ≈ [She09c].

We start assuming k is an abstract elementary class, LS(k) ≤ λ (or read §1 here until

1.17) and k is categorical in λ, λ+ and 1 ≤ İ(λ++,K) < µunif(λ
++, 2λ

+

) and more-

over, 1 ≤ İ(λ++,K) < µunif(λ
++, 2λ

+

). As an appetizer and to understand types
and the definition of types and saturated (in the present context) and brimmed,
read from §1 until 1.18.

He should read in §2 Definition 2.1 of λ-good frame, an axiomatic framework
and then read the following two Definitions 2.4, 2.5 and Claim 2.6. In §3, 3.10 show
how by [She01] ≈ [She09c] the context there gives a λ+-good frame; of course the
reader may just believe instead of reading proofs, and he may remember that our
basic types are minimal in this case.

In §4 he should read some consequences of the axioms.
Then in §5 we show some amount of unique amalgamation. Then §6,§7,§8 do a

parallel to [She01, §8,§9,§10] in our context; still there are differences, in particular
our context is not necessarily uni-dimensional which complicates matters. But if we
restrict ourselves to continuing [She01] ≈ [She09c], our frame is “uni-dimensional”,
we could have simplified the proofs by using Sbs(M) as the set of minimal types.

Reading Plan 3: ψ ∈ Lω1,ω(Q), so λ = ℵ0 and 1 ≤ İ(ℵ1, ψ) < 2ℵ1 , recalling Q
denotes the quantifier “there are uncountably many”.

For this, [She01] ≈ [She09c] is irrelevant (except if we quote the “black box”
use of the combinatorial section §3 of [She01] when using the weak diamond to get
many non-isomorphic models in §5, but we prefer to use [She09d]).

Now reading plan 3 is to follow reading plan 2 but 3.10 is replaced by 3.8 which
relies on [She75], i.e., it proves that we get an ℵ1-good frame investigating ψ ∈
Lω1,ω(Q).

Note that our class may well be such that k is the parallel of “superstable non-
multidimensional complete first order theory”; e.g.

ψ1 = (Qx)[P (x)] ∧ (Qx)[¬P (x)],

τψ = {P}, P a unary predicate; this is categorical in ℵ1 and has no model in
ℵ0 and ψ1 has 3 models in ℵ2. But if we use ψ0 = (∀x)[P (x) ≡ P (x)] we have

İ(ℵ1, ψ0) = ℵ0; however, even starting with ψ1, the derived AEC k has exactly three
non-isomorphic models in ℵ1. In general we derived an AEC k from ψ such that:
k is an AEC with LS number ℵ0, categorical in ℵ0, and the number of somewhat
“saturated” models of k in λ is ≤ İ(λ, ψ) for λ ≥ ℵ1. The relationship of ψ and
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6 S. SHELAH

k is not comfortable; as it means that, for general results to be applied, they have

to be somewhat stronger, e.g. “k has 2λ
++

non-isomorphic λ+-saturated models
of cardinality λ++”. The reason is that LS(k) = λ = ℵ0; we have to find many
somewhat λ+-saturated models as we have first in a sense eliminate the quantifier
Q = ∃≥ℵ1 , (i.e., the choice of the class of models and of the order guaranteed that
what has to be countable is countable, and λ+-saturation guarantees that what
should be uncountable is uncountable). This is the role of KF

ℵ1
in [She09a, §3].

Reading Plan 4: k an abstract elementary class which is PCω (= ℵ0-presentable,
see Definition 3.4); see [She09a] or [Mak85] which includes a friendly presentation
of [She87a, §1-§3] so of [She09a, §1-§3]).

Like plan 3 but we have to use 3.5 instead of 3.8 and fortunately the reader is
encouraged to read [She09a, §4,§5] to understand why we get a λ-good quadruple.
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CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES 7

§ 1. Abstract elementary classes

First we present the basic material on AEC k, that is types, saturativity and (λ, κ)-
brimmness (so most is repeating some things from [She09a, §1] and from [She09f]).

Second we show that the situation in λ = LS(k) determine the situation above
λ, moreover such lifting always exists; so a λ-AEC can be lifted to a (≥ λ)-AEC in
one and only one way.

Convention 1.1. Here k = (K,≤k), where K is a class of τ -models for a fixed
vocabulary τ = τK = τk and ≤k is a two-place relation on the models in K. We
do not always strictly distinguish between k,K and (K,≤k). We shall assume
that K,≤k are fixed, and M ≤k N ⇒ M,N ∈ K; and we assume that it is an
abstract elementary class, see Definition 1.4 below. When we use ≤k in the ≺ sense
(elementary submodel for first order logic), we write ≺L as L is first order logic.

Definition 1.2. For a class of τK-models we let

İ(λ,K) =
∣∣{M/∼= : M ∈ K, ‖M‖ = λ}

∣∣.
Definition 1.3. 1) We say M = 〈Mi : i < µ〉 is a representation or filtration of a
model M of cardinality µ if τMi = τM , Mi is ⊆-increasing continuous, ‖Mi‖ < ‖M‖
and M =

⋃
{Mi : i < µ}, and µ = χ+ ⇒ ‖Mi‖ = χ.

2) We say M is a ≤k-representation or ≤k-filtration of M if in addition Mi ≤k M
for i < ‖M‖ (hence Mi,M ∈ K and 〈Mi : i < µ〉 is ≤k-increasing continuous, by
Ax.V from Definition 1.4).

Definition 1.4. We say k = (K,≤k) is an abstract elementary class, AEC in short,
if (τ is as in 1.1, Ax0 holds and) AxI-VI hold, where:
Ax0: The holding of M ∈ K,N ≤k M depends on N,M only up to isomorphism,

i.e., [M ∈ K,M ∼= N ⇒ N ∈ K], and [if N ≤k M and f is an isomorphism from
M onto the τ -model M ′ mapping N onto N ′ then N ′ ≤k M

′], and of course 1.1.

AxI: If M ≤k N then M ⊆ N (i.e. M is a submodel of N).

AxII: M0 ≤k M1 ≤k M2 implies M0 ≤k M2 and M ≤k M for M ∈ K.

AxIII: If λ is a regular cardinal, Mi (for i < λ) is ≤k-increasing (i.e. i < j < λ
implies Mi ≤k Mj) and continuous (i.e. for limit ordinal δ < λ we have
Mδ =

⋃
i<δ

Mi) then M0 ≤k

⋃
i<λ

Mi.

AxIV : If λ is a regular cardinal, Mi (for i < λ) is ≤k-increasing continuous and
Mi ≤k N for i < λ then

⋃
i<λ

Mi ≤k N .

AxV : If M0 ⊆M1 and M` ≤k N for ` = 0, 1, then M0 ≤k M1.

AxV I: LS(k) exists 4, where LS(k) is the minimal cardinal λ such that: if
A ⊆ N and |A| ≤ λ then for some M ≤k N we have A ⊆ |M | and ‖M‖ ≤ λ.

Notation 1.5. : 1) Kλ = {M ∈ K : ‖M‖ = λ} and K<λ =
⋃
µ<λ

Kµ, etc.

4We normally assume M ∈ k ⇒ ‖M‖ ≥ LS(k) so may forget to write ‖M‖“ + LS(k)” instead
‖M‖, here there is no loss in it. It is also natural to assume |τ(k)| ≤ LS(k) which means just
increasing LS(k), but no real need here; dealing with Hanf numbers it is natural.
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8 S. SHELAH

Definition 1.6. 1) The function f : N → M is ≤k-embedding when f is an
isomorphism from N onto N ′ where N ′ ≤k M , (so f : N → N ′ is an isomorphism
onto).

2) We say f is a ≤k-embedding of M1 into M2 over M0 when for some M ′1 we
have: M0 ≤k M1,M0 ≤k M

′
1 ≤k M2 and f is an isomorphism from M1 onto M ′1

extending the mapping idM0
.

Recall

Observation 1.7. Let I be a directed set (i.e., I is partially ordered by ≤ = ≤I
such that any two elements have a common upper bound).
1) If Mt is defined for t ∈ I, and t ≤ s ∈ I implies Mt ≤k Ms then for every t ∈ I
we have Mt ≤k

⋃
s∈I

Ms.

2) If in addition t ∈ I implies Mt ≤k N then
⋃
s∈I

Ms ≤k N .

Proof. Easy; or see [She09a, 88r-1.6], which does not rely on anything else. �1.7

Claim 1.8. 1) For every N ∈ K there is a directed partial order I of cardinality
≤ ‖N‖ and sequence M = 〈Mt : t ∈ I〉 such that t ∈ I ⇒ Mt ≤k N, ‖Mt‖ ≤
LS(k), I |= s < t ⇒ Ms ≤k Mt and N =

⋃
t∈I

Mt. If ‖N‖ ≥ LS(k) we can add

‖Mt‖ = LS(k) for t ∈ I.

2) For every N1 ≤k N2 we can find 〈M `
t : t ∈ I`〉 as in part (1) for ` = 1, 2 such

that I1 ⊆ I2 and t ∈ I1 ⇒M2
t = M1

t .

3) Any λ ≥ LS(k) satisfies the requirement in the definition of LS(k).

Proof. Easy or see [She09a, 88r-1.7] which does not require anything else. �1.8

We now (in 1.9) recall the (non-classical) definition of type (note that it is natural
to look at types only over models which are amalgamation bases, see part (4) of 1.9
below and consider only extensions of the models of the same cardinality). Note
that though the choice of the name indicates that they are supposed to behave
like complete types over models as in classical model theory (on which we are not
relying), this does not guarantee most of the basic properties. E.g., when cf(δ) = ℵ0,
uniqueness of pδ ∈ S(Mδ) such that i < δ ⇒ pδ �Mi = pi is not guaranteed even if
pi ∈ S(Mi),Mi is ≤k-increasing continuous for i ≤ δ and i < j < δ ⇒ pi = pj �Mi.
Still we have existence: if for i < δ, pi ∈ S(Mi) increasing with i, then there is
pδ ∈ S(

⋃
{Mi : i < δ}) such that i < δ ⇒ pi = pδ � Mi. But when cf(δ) > ℵ0 even

existence is not guaranteed.

Definition 1.9. 1) For M ∈ Kµ, M ≤k N ∈ Kµ, and a ∈ N , let ortp(a,M,N) =
ortpk(a,M,N) = (M,N, a)/EM , where EM is the transitive closure of Eat

M , and the
two-place relation Eat

M is defined by:

(M,N1, a1) Eat
M (M,N2, a2) iff M ≤k N`, a` ∈ N`, ‖N`‖ = µ = ‖M‖ for ` = 1, 2

and there is N ∈ Kµ and ≤k-embeddings

f` : N` → N for ` = 1, 2 such that

f1 �M = idM = f2 �M and f1(a1) = f2(a2).

We may say p = ortp(a,M,N) is the type which a realizes over M in N . Of course,
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CATEGORICITY IN ABSTRACT ELEMENTARY CLASSES 9

all those notions depend on k so we may write ortpk(a,M,N) and EM [k], Eat
M [k].

(If in Definition 1.4 we do not require M ∈ K ⇒ ‖M‖ ≥ LS(k), here we should
allow any N such that ‖M‖ ≤ ‖N‖ ≤ M + LS(k).) The restriction to N ∈ Kµ is
essential, and pedantically (M,N, a)/EM should be replaced by ((M,N, a)/Eµ) ∩
H(χ(M,N,a)) where χ(M,N,a) = min{χ : ((M,N, a)/EM ) ∩ H(χ) 6= ∅} so that the
equivalence class is a set.

1A) For M ∈ kµ let5 Sk(M) = {ortp(a,M,N) : M ≤k N and N ∈ Kµ (or just
N ∈ K≤(µ+LS(k))) and a ∈ N} and Sna

k (M) = {ortp(a,M,N) : M ≤k N and
N ∈ K≤(µ+LS(k)) and a ∈ N \M} (na stands for non-algebraic). We may write
Sna(M) omitting k when k is clear from the context; so omitting na means a ∈ N
rather than a ∈ N \M .

2) Let M ∈ Kµ and M ≤k N . We say “a realizes p in N” and “p = ortp(a,M,N)”
when: if a ∈ N, p ∈ S(M) and N ′ ∈ K≤(µ+LS(k)) satisfies M ≤k N

′ ≤k N and
a ∈ N ′ then p = ortp(a,M,N ′) and there is at least one such N ′; so M,N ′ ∈ Kµ

(or just M ≤ ‖N ′‖ ≤ µ+ LS(k)) but possibly N /∈ Kµ.

3) We say “a2 strongly 6 realizes (M,N1, a1)/Eat
M in N” when for some N2 of

cardinality ≤ ‖M‖+ LS(k) we have M ≤k N
2 ≤k N , a2 ∈ N2, and

(M,N1, a1) Eat
M (M,N2, a2)

hence µ = ‖N1‖.
4) We say M0 ∈ Kλ is an amalgamation base (in k, but normally k is understood
from the context) if: for every M1,M2 ∈ Kλ and ≤k-embeddings f` : M0 → M`

(for ` = 1, 2) there is M3 ∈ Kλ and ≤k-embeddings g` : M` → M3 (for ` = 1, 2)
such that g1 ◦ f1 = g2 ◦ f2. Similarly for k≤λ.

4A) k has amalgamation in λ (or λ-amalgamation or kλ has amalgamation) when
every M ∈ Kλ is an amalgamation base.

4B) k has the λ-JEP or JEPλ (or kλ has the JEP) when any M1,M2 ∈ Kλ can be
≤k-embedded into some M ∈ Kλ.

5) We say k is stable in λ if (LS(k) ≤ λ and) M ∈ Kλ ⇒ |S(M)| ≤ λ, and moreover
there are no λ+ pairwise non-Eat

µ -equivalent triples (M,N, a), M ≤k N ∈ Kλ,
a ∈ N .

6) We say p = q �M if p ∈ S(M), q ∈ S(N), M ≤k N , and for some N+, N ≤k N
+,

and a ∈ N+ we have p = ortp(a,M,N+) and q = ortp(a,N,N+); see 1.11(1),(2).
We may express this also as “q extends p” or “p is the restriction of q to M”.

7) For finite m, for M ≤k N , ā ∈ mN we can define ortp(ā,M,N) and Smk (M)
similarly and S<ωk (M) =

⋃
m<ω

Smk (M); similarly for Sα(M) (but we shall not use

this in any essential way, so we agree S(M) = S1(M).) Again we may omit k when
clear from the context.

8) We say that p ∈ Sk(M) is algebraic when some a ∈M realizes it.

9) We say that p ∈ Sk(M) is minimal when it is not algebraic and, for every N ∈ K
of cardinality ≤ ‖M‖ + LS(k) which ≤k-extends M , the type p has at most one
non-algebraic extension in Sk(M).

Remark 1.10. 1) Note that here “amalgamation base” means only for extensions
of the same cardinality!

5If we omit M ∈ K ⇒ ‖M‖ ≥ LS(k) in 1.4, still we can insist that N ∈ Kµ, the difference is

not serious.
6Note that EatM is not necessarily an equivalence relation, and hence in general it is not EM .
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10 S. SHELAH

2) The notion “minimal type” is important (for categoricity) but not used much
in this chapter.

Observation 1.11. 0) Assume M ∈ Kµ and M ≤k N , a ∈ N then ortp(a,M,N)
is well defined and is p if for some M ′ ∈ Kµ we have M ∪ {a} ⊆ M ′ ≤k N and
p = ortp(a,M,M ′).

1) If M ≤k N1 ≤k N2, M ∈ Kµ, and a ∈ N1 then ortp(a,M,N1) is well defined
and equal to ortp(a,M,N2). (More transparent if k has the µ-amalgamation, which
is the real case anyhow.)

2) If M ≤k N and q ∈ S(N) then for one and only one p we have p = q �M .

3) If M0 ≤k M1 ≤k M2 and p ∈ S(M2) then p �M0 = (p �M1) �M0.

4) If M ∈ kµ is an amalgamation base then Eat
M is a transitive relation hence is

equal to EM .

5) If M ≤k N are from kλ,M is an amalgamation base and p ∈ S(M) then there
is q ∈ S(N) extending p, so the mapping q 7→ q �M is a function from S(N) onto
S(M).

Proof. Easy. �1.11

Definition 1.12. 1) We say N is λ-universal over M when λ ≥ ‖N‖ and for every
M ′ with M ≤k M

′ ∈ Kλ, there is a ≤k-embedding of M ′ into N over M . If we
omit λ we mean ‖N‖; clearly if N is universal over M and both are from Kλ then
M is an amalgamation base.

2) K3,na
λ = {(M,N, a) : M ≤k N, a ∈ N \M and M,N ∈ kλ}, with the partial

order ≤ defined by (M,N, a) ≤ (M ′, N ′, a′) iff a = a′,M ≤k M
′ and N ≤k N

′.

3) We say (M,N, a) ∈ K3,na
λ is minimal when: if (M,N, a) ≤ (M ′, N`, a) ∈ K3,na

λ for
` = 1, 2 implies ortp(a,M ′, N1) = ortp(a,M ′, N2). Moreover, (M ′, N1, a) Eat

λ (M ′, N2, a)
(this strengthening is not needed if every M ′ ∈ Kλ is an amalgamation bases).

4) N ∈ k is λ-universal if every M ∈ kλ can be ≤k-embedded into it.

5) We say N ∈ k is universal for K ′ ⊆ k when every M ∈ K ′ can be ≤k-embedded
into N .

Remark 1.13. Why do we use ≤ on K3,na
λ ? Because those triples serve us as a

representation of types for which direct limit exists.

Definition 1.14. 1) M∗ ∈ Kλ is superlimit if clauses (a) + (b) + (c) below hold,
locally superlimit if clauses (a)− + (b) + (c) below hold, and is pseudo superlimit if
clauses (b) + (c) below hold, where:

(a) It is universal (i.e. every M ∈ Kλ can be ≤k-embedded into M∗).

(b) If 〈Mi : i ≤ δ〉 is ≤k-increasing continuous, δ < λ+ and i < δ ⇒ Mi
∼= M∗

then Mδ
∼= M∗.

(a) – If M∗ ≤k M1 ∈ Kλ then there is M2 ∈ K2 which ≤k-extends M1 and is
isomorphic to M∗.

(c) There is M∗∗ isomorphic to M∗ such that M∗ <k M
∗∗.
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2) M is λ-saturated above µ when ‖M‖ ≥ λ > µ ≥ LS(k) and if N ≤k M ,
µ ≤ ‖N‖ < λ, N ≤k N1, ‖N1‖ ≤ ‖N‖+LS(k), and a ∈ N1 then some b ∈M strongly
realizes (N,N1, a)/Eat

N in M (see Definition 1.9(3)). Omitting “above µ” means “for
some µ < λ,” hence “M is λ+-saturated” means that “M is λ+-saturated above
λ” and K(λ+-saturated) = {M ∈ K : M is λ+-saturated} and “M is saturated”
means “M is ‖M‖-saturated”.

In the following lemma note that amalgamation in k<λ is not assumed: it is even
deduced. For variety we allow K<LS(k) 6= ∅.

Lemma 1.15. [The Model-homogeneity = Saturativity Lemma] Let λ > µ+ LS(k)
and M ∈ K.

1) M is λ-saturated above µ iff M is (Dk≥µ , λ)-homogeneous above µ, which means:
for every N1 ≤k N2 ∈ K such that µ ≤ ‖N1‖ ≤ ‖N2‖ < λ and N1 ≤k M , there is a
≤k-embedding f of N2 into M over N1.

2) If M1,M2 ∈ Kλ are λ-saturated above µ < λ and for some N1 ≤k M1, N2 ≤k

M2, both of cardinality ∈ [µ, λ), we have N1
∼= N2 then M1

∼= M2; in fact, any
isomorphism f from N1 onto N2 can be extended to an isomorphism from M1 onto
M2.

3) If in (2) we demand only “M2 is λ-saturated” and M1 ∈ K≤λ then f can be
extended to a ≤k-embedding from M1 into M2.

4) In part (2) instead of N1
∼= N2 it suffices to assume that N1 and N2 can be

≤k-embedded into some N ∈ K, which holds if k has the JEP or just θ-JEP for
some θ < λ, θ ≥ µ. Similarly for part (3).

5) If N is λ-universal over M ∈ Kµ and k has µ-JEP then N is λ-universal (where
λ ≥ LS(k) for simplicity).

6) Assume M is λ-saturated above µ. If N ≤k M and µ ≤ ‖N‖ < λ then N is an
amalgamation base (in K≤(‖N‖+LS(k)) and even in k≤λ) and |S(N)| ≤ ‖M‖. So if
every N ∈ Kµ can be ≤k-embedded into M then k has µ-amalgamation.

Proof. 1) The “if” direction is easy as λ > µ + LS(k). Let us prove the other
direction.

We prove this by induction on ‖N2‖. Now first consider the case ‖N2‖ > ‖N1‖+
LS(k) then we can find a ≤k-increasing continuous sequence 〈N1,ε : ε < ‖N2‖〉
with union N2 with N1,0 = N1 and ‖N1,ε‖ ≤ ‖N1‖ + |ε|. Now we choose fε, a
≤k-embedding of N1,ε into M , increasing continuous with ε such that f0 = idN1

.
For ε = 0 this is trivial for ε limit take unions and for ε successor use the induction
hypothesis. So without loss of generality ‖N2‖ ≤ ‖N1‖+ LS(k).

Let |N2| = {ai : i < κ}, and we know µ ≤ κ′′ := ‖N1‖ ≤ κ ..= ‖N2‖ ≤ κ′ ..=
‖N1‖+LS(k) < λ; so if, as usual, ‖N1‖ ≥ LS(k) then κ′ = κ. We define by induction
on i ≤ κ,N i

1, N
i
2, fi such that:

(a) N i
1 ≤k N

i
2 and ‖N i

1‖ ≤ ‖N i
2‖ ≤ κ′

(b) N i
1 is ≤k-increasing continuous with i

(c) N i
2 is ≤k-increasing continuous with i

(d) fi is a ≤k-embedding of N i
1 into M

(e) fi is increasing continuous with i

(f) ai ∈ fi(N i+1
1 )

(g) N0
1 = N1, N

0
2 = N2, f0 = idN1 .
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12 S. SHELAH

For i = 0, clause (g) gives the definition. For i limit let:

N i
1 =

⋃
j<i

N j
1 and N i

2 =
⋃
j<i

N j
2 and fi =

⋃
j<i

fj .

Now (a)-(f) continues to hold by continuity (and ‖N i
2‖ ≤ κ′ easily).

For i successor we use our assumption; more elaborately, let M i−1
1 ≤k M be

fi−1(N i−1
1 ) and let M i−1

2 , gi−1 be such that gi−1 is an isomorphism from N i−1
2

onto M i−1
2 extending fi−1, so M i−1

1 ≤k M
i−1
2 (but without loss of generality

M i−1
2 ∩M = M i−1

1 ). Now apply the saturation assumption7 with

M, (M i−1
1 ,M i−1

2 ), gi−1(a)) here standing forM, (N,N1, a) there (note: ai−1 ∈ N2 =

N0
2 ⊆ N i−1

2 and

λ > κ′ ≥ ‖N i−1
2 ‖ = ‖M i−1

2 ‖ ≥ ‖M i−1
1 ‖ = ‖N i−1

1 ‖ ≥ ‖N0
1 ‖ = ‖N1‖ = κ′′ ≥ µ,

so the requirements — including the requirements on the cardinalities in Definition
1.14(2) — hold). So there is b ∈M such that

ortp(b,M i−1
1 ,M) = ortp(gi−1(ai−1),M i−1

1 ,M i−1
2 ).

Moreover,8 remembering the end of the first sentence in 1.14(2) which speaks about
“strongly realizes”, b strongly realizes (M i−1

1 ,M i−1
3 , gi−1(ai−1))/Eat

Mi−1
1

in M . This

means (see Definition 1.9(3)) that for some M i,∗
1 we have b ∈ M i,∗

1 and M i−1
1 ≤k

M i,∗
1 ≤k M and

(M i−1
1 ,M i−1

2 , gi−1(ai−1)) Eat
Mi−1

1
(M i−1

1 ,M i,∗
1 , b).

This means (see Definition 1.9(1)) that M i,∗
1 also has cardinality ≤ κ′ and there

is M i,∗
2 ∈ K≤κ′ such that M i−1

1 ≤k M
i,∗
2 and there are ≤k-embeddings hi2, h

i
1 of

M i−1
2 ,M i,∗

1 into M i,∗
2 over M i−1

1 respectively, such that hi2(gi−1(ai−1)) = hi1(b).
Now changing names, without loss of generality hi1 is the identity.

Let N i
2, hi be such that N i−1

2 ≤k N
i
2 and hi an isomorphism from N i

2 onto M i,∗
2

extending gi−1. Let N i
1 = h−1

i (M i,∗
1 ) and fi = (hi � N i

1).

We have carried the induction. Now fκ is a ≤k-embedding of Nκ
1 into M over

N1, but |N2| = {ai : i < κ} ⊆ Nκ
1 . Hence by Ax.V of Definition 1.4, N2 ≤k N

κ
1 , so

fκ � N2 : N2 →M is as required.

2), 3) By the hence and forth argument (or see [She09a, 88r-2.3], [She09a, 88r-2.4]
or see [She87b, II,§3] = [She09f, §3]).

4),5),6) Easy, too. �1.15

Definition 1.16. 1) For ∂ = cf(∂) ≤ λ+, we say N is (λ, ∂)-brimmed over M

if (M ≤k N are in Kλ and) we can find a sequence 〈Mi : i < ∂〉 which is ≤k-
increasing,9 Mi ∈ Kλ,M0 = M,Mi+1 is ≤k-universal10 over Mi and

⋃
i<∂

Mi = N .

We say N is (λ, ∂)-brimmed over A if A ⊆ N ∈ Kλ and we can find 〈Mi : i < ∂〉
as above such that A ⊆ M0 but M0 � A ≤k M0 ⇒ M0 = A; if A = ∅ we may
omit “over A”. We say continuously (λ, ∂)-brimmed (over M) when the sequence
〈Mi : i < ∂〉 is ≤k-increasing continuous; if kλ has amalgamation, the two notions
coincide.

7See Definition 1.14(21).
8If k has amalgamation in µ the proof is slightly shorter
9We have not asked continuity; because in the direction we are going, it makes no difference

if we add “continuous”. Then we have in general fewer cases of existence, uniqueness (of being
(λ, ∂)-brimmed over M ∈ Kλ) does not need extra assumptions, and existence is harder.

10Hence Mi is an amalgamation base.
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2) We say N is (λ, ∗)-brimmed over M if for some ∂ ≤ λ,N is (λ, ∂)-brimmed over
M . We say N is (λ, ∗)-brimmed if for some M,N is (λ, ∗)-brimmed over M .

3) If α < λ+ let “N is (λ, α)-brimmed over M” mean M ≤k N are from Kλ and
cf(α) ≥ ℵ0 ⇒ N is (λ, cf(α))-brimmed over M .

On the meaning of (λ, ∂)-brimmed for elementary classes, see 3.1(2) below. Recall

Claim 1.17. Assume λ ≥ LS(k).
1) If k has amalgamation in λ, is stable in λ and ∂ = cf(∂) ≤ λ, then

(a) for every M ∈ kλ there is N,M ≤k N ∈ Kλ, universal over M

(b) for every M ∈ kλ there is N ∈ kλ which is (λ, ∂)-brimmed over M

(c) if N is (λ, ∂)-brimmed over M then N is universal over M .

2) If N` is (λ,ℵ0)-brimmed over M for ` = 1, 2, then N1, N2 are isomorphic over
M .

3) Assume ∂ = cf(∂) ≤ λ+, and for every ℵ0 ≤ θ = cf(θ) < ∂ any (λ, θ)-brimmed
model is an amalgamation base (in k). Then:

(a) if N` is (λ, ∂)-brimmed over M for ` = 1, 2 then N1, N2 are isomorphic
over M

(b) if k has λ-JEP (i.e., the joint embedding property in λ) and N1, N2 are
(λ, ∂)-brimmed then N1, N2 are isomorphic.

3A) There is a (λ, ∂)-brimmed model N over M ∈ Kλ when: M is an amalgamation
base, and for every ≤kλ-extension M1 of M there is a ≤kλ-extension M2 of M1 which
is an amalgamation base and there is a λ-universal extension M3 ∈ Kλ of M2.

4) Assume k has λ-amalgamation and the λ-JEP and M = 〈Mi : i ≤ λ〉 is
≤k-increasing continuous and Mi ∈ Kλ for i ≤ λ.

(a) If λ is regular and for every i < λ, p ∈ S(Mi) for some j ∈ (i, λ), some
a ∈Mj realizes p, then Mλ is universal over M0 and is (λ, λ)-brimmed over
M0

(b) if for every i < λ every p ∈ S(Mi) is realized in Mi+1 then Mλ is (λ, cf(λ))-
brimmed over M0.

5) Assume ∂ = cf(∂) ≤ λ and M ∈ k is continuous (λ, ∂)-brimmed. Then M is a
locally (λ, {∂})-strongly limit model in kλ (see Definition [She09a, 88r-3.1](2),(7),
not used).

6) If N is (λ, ∂)-brimmed over M and A ⊆ N, |A| < ∂, e.g. A = {a} then for
some M ′ we have M ∪A ⊆M ′ <k M and M is (λ, ∂)-brimmed over M ′.

Proof. 1) Clause (c) holds by Definition 1.16.
As for clause (a), for any given M ∈ Kλ, easily there is an ≤k-increasing contin-

uous sequence 〈Mi : i ≤ λ〉 of models from Kλ,M0 = M such that p ∈ S(Mi)⇒ p
is realized in Mi+1, this by stability + amalgamation. So 〈Mi : i ≤ λ〉 is as in part
(4) below hence by clause (b) of part (4) below, we get that Mδ is ≤k-universal over
M0 = M so we are done. Clause (b) follows by (a).

2) By (3)(a) because the extra assumption in part (3) is empty when ∂ = ℵ0.

3) Clause (a) holds by the hence and forth argument, that is assume 〈N`,i : i < ∂〉
is ≤k-increasing with union N`,∂ , N`,0 = M,N`,i+1 is universal over N`,i and N` =
N`,∂ so N`,i ∈ kλ.

Now for each limit δ < ∂ the model N ′`,δ := ∪{N`,i : i < δ} is an amalgamation

base (and is ≤k N`,δ+1) hence without loss of generality 〈N`,i : i ≤ ∂〉 is ≤k-
increasing continuous. We now choose fi by induction on i ≤ ∂ such that:
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(i) if i is odd, fi is a ≤k-embedding of N1,i into N2,i.

(ii) if i is even, f−1
i is a ≤k-embedding of N2,i into N1,i.

(iii) if i is limit then fi is an isomorphism from N1,i onto N2,i.

(iv) fi is increasing continuous with i.

(v) if i = 0 then f0 = idM .

For i = 0 let f0 = idM . If i = 2j + 2 use “N1,i is a universal extension of N1,2j+1

(in kλ) and f2j+1 is a ≤k-embedding of N1,2j+1 into N2,2j+1 (by clause (i) applied
to 2j + 1) and N1,2j+1 is an amalgamation base”. That is, N2,i is a ≤k-extension

of f2j+1(N2j+1) which is an amalgamation base so f−1
2j+1 can be extended to a ≤k-

embedding of f−1
i of N2,i into N1,i. For i = 2j+1 use “N2,i is a universal extension

(in kλ) of N2,2j and f−1
2j is a ≤k-embedding of N2,2j into N1,2j and N2,2j is an

amalgamation base (in kλ)”.
For i limit let fi = ∪{fj : j < i}. Clearly f∂ is an isomorphism from N1 = N1,∂

onto N2,∂ = N2 so we are done, i.e. clause (a) holds.
As for clause (b), for ` = 1, 2 we can assume that 〈N`,i : i ≤ ∂〉 exemplifies “N`

is (λ, ∂)-brimmed” so N` = N`,∂ and without loss of generality as above 〈N`,i : i ≤
∂〉 is ≤kλ -increasing continuous. By the λ-JEP there is a pair (g1, N) such that
N1,0 ≤k N ∈ Kλ and g1 is a ≤k-embedding of N2,0 into N . As above there is a
≤k-embedding g2 of N into N1,1 over N1,0. Let f0 = (g2 ◦ g1)−1 and continue as in
the proof of clause (a).

3A) Easy, too.

4) We first proved weaker version of (a) and of (b) called (a)−,(b)− respectively.
Clause (a)−: Like (a) but we conclude only: Mλ is universal over M0.
So let N satisfy M0 ≤k N ∈ Kλ and we shall prove that N is ≤k-embeddable into

Mλ over M0. Let 〈Si : i < λ〉 be a partition of λ such that |Si| = λ, min(Si) ≥ i
for i < λ. We choose a quadruple (Ni, fi, āi, ji) by induction on i < λ such that:

~ (a) Ni ∈ Kλ is ≤k-increasing continuous.

(b) N0 = N

(c) āi = 〈aα : α ∈ Si〉 lists the members of Ni.

(d) ji < λ is increasing continuous.

(e) fi is a ≤k-embedding of Mi into Mi.

(f) f0 = idM0

(g) fi is ⊆-increasing continuous.

(h) If i = α+ 1 then aα ∈ rang(fi).

There is no problem to carry the definition (below, proving (a) we give more details)
and necessarily f = ∪{fi : i < λ} is an isomorphism from Mλ onto Nλ ..= ∪{Ni :
i < λ}, so f−1 � N is a ≤k-embedding of N into Mλ over M0 (as f−1 � N ⊇ idM0),
so we are done.

Clause (b)−: Like clause (b) but we conclude only: Mλ is universal over M0.
Similar to the proof of (a)− except that we demand ji = i.
Clause (a): Let M0 ≤k N ∈ Kλ and we let 〈Si : i < λ〉 be a partition of λ to

λ sets each with λ members, i ≤ min(Si). Let M1,i = Mi for i ≤ λ and we choose
〈M2,i : i ≤ δ〉 which is ≤k-increasing such that M2,i ∈ k,M2,0 = M1,0, N ≤k M2,1

and M2,i+1 ∈ Kλ is ≤k-universal over M2,i, possible as we have already proved
clause (a)− recalling k has λ-amalgamation and the λ-JEP.

We shall prove that M1,λ,M2,λ are isomorphic over M0 = M1,0, this clearly
suffices. We choose a quintuple (ji,M3,i, f1,i, f2,i, āi) by induction on i < λ such
that

~ (a) ji < λ is increasing continuous.
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(b) M3,i ∈ Kλ is ≤k-increasing continuous.
(c) f`,i is a ≤k-embedding of M`,ji into M , for ` = 1, 2.
(d) f`,i is increasing continuous with i, for ` = 1, 2.
(e) āi = 〈aiε : ε ∈ Si〉 lists the members of M3,i.
(f) If ε ∈ Si then aiε ∈ rang(f1,2ε+1) and aiε ∈ rang(f2,2ε+2).

If we succeed then f` ..= ∪{f`,i : i < λ} is a ≤k-embedding of M`,λ into M3,λ :=
M3

..= ∪{M3,i : i < λ} and this embedding is onto because a ∈ M3 ⇒ for some
i < λ, a ∈ M3,i ⇒ for some i < λ and ε ∈ Si, a = aiε ⇒ a = aiε ∈ rang(f`,ε+1) ⇒
a ∈ rang(f`). So f−1

1 ◦ f2 is an isomorphism from M2,λ onto M1,λ = Mλ so as said
above we are done.

Carrying the induction; for i = 0 use “k has the λ-JEP” for M1,0,M2,0.
For i limit take unions.
For i = 2ε+1 let ji = min{j < λi : j > j2ε and (f1

2ε)
−1(ortp(aiε, f

1
2ε(M1,i),M3,i)) ∈

Sk(M1,i) is realized in Mj and continue as in the proof of 1.15(1), so can avoid using
“(f1

i )−2 of a type.
For i = 2ε+2, the proof is similar. So M2,λ is (λ, cf(λ))-brimmed over M2,0 = M0

hence also Mλ being isomorphic to M2,λ over M0 is (λ, cf(λ))-brimmed over M0,
as required.

Clause (b): As in the proof of clause (a) but now ji = i.

5) Easy and not used. (Let 〈Mi : i ≤ ∂〉 witness “M is (λ, ∂)-brimmed”, so M can
be ≤k-embedded into Mi, hence without loss of generality M0

∼= M1. Now use F
such that F(M ′) is a ≤kλ -extension of M ′ which is ≤kλ -universal over it and is an
amalgamation base.)

6) Easy. �1.17

Claim 1.18. 1) Assume that k is an AEC, LS(k) ≤ λ, k has λ-amalgamation and
is stable in λ, and no M ∈ Kλ is ≤k-maximal. Then there is a saturated N ∈ Kλ+ .
Also for every saturated N ∈ Kλ+ (in k, above λ of course) we can find a ≤k-
representation N = 〈Ni : i < λ+〉, with Ni+1 being (λ, cf(λ))-brimmed over Ni and
N0 being (λ, λ)-brimmed.

2) If for ` = 1, 2 we have N
`

= 〈N `
i : i < λ+〉 as in part (1), then there is an

isomorphism f from N1 onto N2 mapping N1
i onto N2

i for each i < λ+. Moreover,
for any i < λ+ and isomorphism g from N1

i onto N2
i we can find an isomorphism

f from N1 onto N2 extending g and mapping N1
j onto N2

j for each j ∈ [i, λ+).

3) If N0 ≤k N
1 are both saturated (above λ) and are in Kλ+ (hence LS(k) ≤ λ), then

we can find ≤k-representation N̄ ` of N ` as in (1) for ` = 1, 2 with N0
i = N0 ∩N1

i ,
(so N0

i ≤k N
1
i ) for i < λ+.

4) If M ∈ Kλ+ and k has λ-amalgamation and is stable in λ (and LS(k) ≤ λ),
then for some N ∈ Kλ+ saturated (above λ) we have M ≤k N .

Proof. Easy (for (2),(3) using 1.15(6)), e.g.

4) There is a ≤k-increasing continuous sequence 〈Mi : i < λ+〉 with union M such
that Mi ∈ Kλ. Now we choose Ni by induction on i < λ

(∗) (a) Ni ∈ Kλ is ≤k-increasing continuous

(b) Ni+1 is (λ, cf(λ))-brimmed over Ni

(c) N0 = M0.
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16 S. SHELAH

This is possible by 1.17(1). Then by induction on i ≤ λ+ we choose a ≤k-embedding
fi of Mi into Ni, increasing continuous with i. For i = 0 let fi = idM0

. For i limit
use union.

Lastly, for i = j + 1 use “k has λ-amalgamation” and “Nj is universal over Ni”.
Now by renaming without loss of generality fλ+ = idNλ+ and we are done. (Of
course, we have assumed less). �1.18

You may wonder why in this work we have not restricted ourselves k to “abstract
elementary class in λ” say in §2 below (or in [She01]); by the following facts (mainly
1.24) this is immaterial.

Definition 1.19. 1) We say that kλ is a λ-abstract elementary class or λ-AEC in
short, when:

(a) kλ = (Kλ,≤kλ),

(b) Kλ is a class of τ -models of cardinality λ closed under isomorphism for
some vocabulary τ = τkλ ,

(c) ≤kλ a partial order of Kλ, closed under isomorphisms

(d) axioms (0 and) I,II,III,IV,V of abstract elementary classes (see 1.4) hold
except that in Ax.III we demand δ < λ+ (you can demand this also in
Ax.IV).

2) For an abstract elementary class k let kλ = (Kλ,≤k� Kλ) and similarly k≥λ, k≤λ, k[λ,µ]

and define (≤ λ)-AEC and [λ, µ]-AEC, etc.

3) Definitions 1.9, 1.12, 1.14, 1.16 apply to λ-AEC kλ.

Observation 1.20. If k1 is an AEC with K1
λ 6= ∅ then

(A) k1λ is a λ-AEC.

(B) if k2λ is a λ-AEC and k1λ = k2λ then Definitions 1.9, 1.12, 1.14, 1.16, when
applied to k1 (but restricting ourselves to models of cardinality λ) and when
applied to k2λ, are equivalent.

Proof. Just read the definitions. �1.20

We may wonder

Problem 1.21. : Suppose k1, k2 are AEC such that for some λ > µ ≥ LS(k1),
LS(k2) and k1λ = k2λ. Can we bound the first such λ above µ? (Well, better bound
than the Lowenheim number of Lµ+,µ+(second order)).

Observation 1.22. 1) Let k be an AEC with λ = LS(k) and µ ≥ λ and we define
k≥µ by: M ∈ k≥µ iff M ∈ K and ‖M‖ ≥ µ and M ≤k≥µ N if M ≤k N and
‖M‖, ‖N‖ ≥ µ. Then k≥µ is an AEC with LS(k≥µ) = µ.

2) If kλ is a λ-AEC then Observation 1.7 holds when |I| ≤ λ.

3) Claims 1.11, 1.17 apply to λ-AEC.

Proof. Easy. �1.22
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Remark 1.23. Recall if k is an AEC with Lowenheim-Skolem number λ, then every
model of k can be written as a direct limit (by ≤k) of members of kλ (see 1.8(1)).
Alternating we prove below that given a λ-abstract elementary class kλ, the class
of direct limits of members of kλ is an AEC kup. We show below (kλ)up = k, hence
kλ determines k≥λ.

Lemma 1.24. Suppose kλ is a λ-abstract elementary class.
1) The pair (K ′,≤k′) is an abstract elementary class with Lowenheim-Skolem

number λ which we denote also by kup where we define

K ′ =

{
M :M is a τkλ-model, and for some directed partial order

I and M = 〈Ms : s ∈ I〉 we have

M =
⋃
s∈I

Ms

s ∈ I ⇒Ms ∈ Kλ

I |= s < t⇒Ms ≤kλ Mt

}
.

We call such 〈Ms : s ∈ I〉 a witness for M ∈ K ′, we call it reasonable if |I| ≤ ‖M‖

M ≤k′ N iff for some directed partial order J, and

directed I ⊆ J and 〈Ms : s ∈ J〉 we have

M =
⋃
s∈I

Ms, N =
⋃
t∈J

Mt,Ms ∈ Kλ and

J |= s < t⇒Ms ≤kλ Mt.

We call such I, 〈Ms : s ∈ J〉 witnesses for M ≤k′ N or say (I, J, 〈Ms : s ∈ J〉)
witness M ≤k′ N .

2) Moreover, K ′λ = Kλ and ≤k′λ
(which means ≤k′� K ′λ) is equal to ≤kλ so

(k′)λ = kλ.
3) If k′′ is an abstract elementary class satisfying (see 1.22) K ′′λ = Kλ, <k′′�

Kλ =≤kλ and LS(k′′) ≤ λ then 11 k′′≥λ = k′.

4) If k′′ is an AEC, Kλ ⊆ K ′′λ and ≤kλ=≤k′′� Kλ, then K ′ ⊆ K ′′ and ≤k′⊆≤k′′�
K ′ and if LS(k′′) ≤ λ then equality holds..

Proof. The proof of part (2) is straightforward (recalling 1.7) and part (3) follows
from 1.8 and part (4) is also straightforward hence we concentrate on part (1). So
let us check the axioms one by one.

Ax 0: K ′ is a class of τ -models, ≤k′ a two-place relation on K ′, both closed under
isomorphisms.
[Why? Trivially by their definitions.]

Ax I: If M ≤k′ N then M ⊆ N .
[Why? trivial.] Ax II: M0 ≤k′ M1 ≤k′ M2 implies M0 ≤k′ M2 and M ∈ K ′ ⇒

M ≤k′ M .
[Why? The second phrase is trivial (as if M = 〈Mt : t ∈ I〉 witness M ∈ K ′

11If we assume in addition that M ∈ k′′ ⇒ ‖M‖ ≥ λ then we can show that equality holds.
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then (I, I,M) witness M ≤k′ M above). For the first phrase let for ` ∈ {1, 2} the

directed partial orders I` ⊆ J` and M
`

= 〈M `
s : s ∈ J`〉 witness M`−1 ≤k′ M` and

let M
0

= 〈M0
s : s ∈ I0〉 witness M0 ∈ K ′. Now without loss of generality M

0
is

reasonable, i.e. |I0| ≤ ‖M0‖, why? by

�1 every M ∈ K ′ has a reasonable witness, in fact, if M = 〈Mt : t ∈ I〉 is a
witness for M then for some I ′ ⊆ I of cardinality ≤ ‖M‖ we have M � I ′

is a reasonable witness for M .
[Why? If M = 〈Mt : t ∈ I〉 is a witness, for each a ∈ M choose ta ∈ I

such that a ∈Mta and let F : [I]<ℵ0 → I be such that F ({t1, . . . , tn}) is an
upper bound of {t1, . . . , tn} and let J be the closure of {ta : a ∈M} under
F ; now M � J is a reasonable witness of M ∈ K ′.]

Similarly

�2 if (I, J, 〈Ms : s ∈ J〉 witness M ≤k′ N then for some directed I ′ ⊆ I, |I ′| ≤
‖M‖ we have (I ′, J, 〈Ms : s ∈ J〉) witness M ≤K′ N

�3 if I,M = 〈Mt : t ∈ J〉 witness M ≤k′ N then for some directed J ′ ⊆ J we
have ‖J ′‖ ≤ |I|+ ‖N‖, I ⊆ J ′ and I,M � J ′ witness M ≤k′ N .

Clearly �1 (and �2,�3) are cases of the LS-argument. We shall find a witness
(I, J, 〈Ms : s ∈ J〉) for M0 ≤k′ M2 such that 〈Ms : s ∈ I〉 = 〈M0

s : s ∈ I0〉 so
I = I0 and |J | ≤ ‖M2‖. This is needed for the proof of Ax III below. Without
loss of generality I1, I2 has cardinality ≤ ‖M0‖, ‖M1‖ respectively, by �2. Also

without loss of generality M
1
,M

1
� I1,M

2
,M

2
� I2 are reasonable as by the same

argument we can have |J1| ≤ ‖M1‖, |J2| ≤ ‖M2‖ by �3.
As 〈M0

s : s ∈ I0〉 is reasonable, there is a one-to-one function h from I0 into M2

(and even M0); the function h will be used to get that J defined below is directed.
We choose by induction on m < ω, for every c̄ ∈ m(M2), sets I0,c̄, I1,c̄, I2,c̄, J1,c̄, J2,c̄

such that:

⊗1(a) I`,c̄ is a directed subset of I` of cardinality ≤ λ for ` ∈ {0, 1, 2}
(b) J`,c̄ is a directed subset of J` of cardinality ≤ λ for ` ∈ {1, 2}
(c)

⋃
s∈I`+1,c̄

M `+1
s =

( ⋃
s∈J`+1,c̄

M `+1
s

)
∩M` for ` = 0, 1

(d)
⋃

s∈I0,c̄
M0
s = (

⋃
s∈I1,c̄

M1
s ) ∩M0

(e)
⋃

s∈J1,c̄

M1
s =

⋃
s∈I2,c̄

M2
s

(f) c̄ ⊆
⋃

s∈J2,c̄

M2
s

(g) if d̄ is a permutation of c̄ (i.e., letting m = g̀(c̄) for some one to one g :
{0, . . . ,m−1} → {0, . . . ,m−1} we have d` = cg(`)) then I`,c̄ = I`,d̄, Jm,c̄ =
Jm,d̄

(for ` ∈ {0, 1, 2},m ∈ {1, 2})
(h) if d̄ is a subsequence of c̄ (equivalently: an initial segment of some per-

mutation of c̄) then I`,d̄ ⊆ I`,c̄, Jm,d̄ ⊆ Jm,c̄ for ` ∈ {0, 1, 2},m ∈ {1, 2}

(i) if h(s) = c so s ∈ I0 then s ∈ I0,<c>.

There is no problem to carry the definition by LS-argument recalling clauses (a) +
(b) and ‖M `

s‖ = λ when ` = 0∧ s ∈ I0 or ` = 1∧ s ∈ J1 or ` = 2∧ s ∈ J2. Without
loss of generality I` ∩ ω>(M2) = ∅.

Now let J have as set of elements I0 ∪ {c̄ : c̄ a finite sequence from M2} ordered
by: J |= x ≤ y iff I0 |= x ≤ y or x ∈ I0, y ∈ J \ I0,∃z ∈ I0,y[x ≤I0 z] or x, y ∈ J \ I0
and x is an initial segment of a permutation of y (or you may identify c̄ with its
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set of permutations). Let I = I0.

Let Mx be M0
x if x ∈ I0 and

⋃
s∈J2,x

M2
s if x ∈ J \ I0.

Now

(∗)1 J is a partial order
[Clearly x ≤J y ≤J x ⇒ x = y, hence it is enough to prove transitivity.

Assume x ≤J y ≤J z; if all three are in I0 use “I0 is a partial order”, if
all three are not in J \ I0, use the definition of the order. As x′ ≤J y′ ∈
I0 ⇒ x′ ∈ I0 without loss of generality x ∈ I0, z ∈ J \ I0. If y ∈ I0 then (as
y ≤J z) for some y′, y ≤I0 y′ ∈ I0,z but x ≤I0 y (as x, y ∈ I0, x ≤J y) hence
x ≤I0 y′ ∈ I0,z so x ≤J z. If y /∈ I0 then I0,y ⊆ I0,z (by clause (h)) so we
can finish similarly. So we have covered all cases.]

(∗)2 J is directed and I ⊆ J is directed
[Let x, y ∈ J and we shall find a common upper bound. If x, y /∈ I0

their concatenation xˆy can serve. If x, y ∈ I0 use “I0 is directed”. If
x ∈ I0, y ∈ J \ I0, then 〈h(x)〉 ∈ J \ I0 and z = yˆ〈h(x)〉 ∈ J \ I0 is <J
above y (by the choice of ≤J) and is ≤J -above x as x ∈ I0,〈h(x)〉 ⊆ I0,z by
clause (i) of ⊗1 so we are done. If x ∈ J \ I0, y ∈ J0 the dual proof works.
Lastly, I ⊆ J as a partial order by the definition of I, J , and I is directed
as I0 is and I = I0.]

(∗)3 if x ∈ J \ I0 then Mx ∩M` ≤kx Mx for ` = 0, 1
[Why? Clearly Mx ∩M0 = (∪{M2

t : t ∈ J1,x}) ∩M0 = ((∪{M2
t : t ∈

J2,x) ∩M1) ∩M0 = (∪{M2
t : t ∈ I2,x}) ∩M0 = (∪{M1

t : t ∈ J1,x}) ∩M0 =
∪{M1

t : t ∈ I1,x} by the choice of M2
x , as M0 ⊆ M1, by clause (c) for

` = 1, by clause (e) and by clause (c) for ` = 0, respectively. Similarly
Mx ∩M1 = ∪{M1

t : t ∈ J1,x}. Now the sets I1,x ⊆ J1,x(⊆ J1) are directed
by ≤J1

so by the assumption on 〈M1
t : t ∈ J1〉 and Lemma 1.7 we have

Mx ∩M0 ≤kλ Mx ∩M1. Using J2 we can similarly prove Mx ∩M1 ≤kλ

Mx ∩M2 and trivially Mx ∩M2 = Mx. As ≤kλ is transitive we are done.]

(∗)4 if x ≤J y then Mx ≤kλ My

[Why? If x, y ∈ I0 use the choice of 〈M0
s : s ∈ I0〉. If x, y ∈ J \ I0 the

proof is similar to that of (∗)3 using J2. If x ∈ I0, y ∈ J \I0 there is s ∈ I0,y
such that x ≤I0 s, hence Mx = M0

x ≤kλ M
0
s and as 〈M0

t : t ∈ I0,y〉 is ≤kλ -
directed clearly M0

s ≤kλ ∪{M0
t : t ∈ I0,y} = My∩M0 and My∩M0 ≤kλ My

by (∗)3. By the transitivity of ≤kλ we are done.]

(∗)5

⋃
{Mx : x ∈ I} = ∪{M0

x : x ∈ I0} = M0

[Why? Trivially recalling I0 = I and x ∈ I ⇒Mx = M0
x .]

(∗)6 M2 = ∪{Mx : x ∈ J}
[Why? Trivially as c̄ ⊆ M2

c̄ ⊆ M2 for c̄ ∈ ω>(M2) and t ∈ I0 ⇒ M0
t ⊆

M0 ⊆M1 ⊆M2.]

By (∗)1 + (∗)2 + (∗)4 + (∗)5 + (∗)6 we have checked that I, 〈Mx : x ∈ J〉 witness
M0 ≤k′ M2. This completes the proof of AxII, but we also have proved

⊗2 if M = 〈Mt : t ∈ I〉 is a reasonable witness to M ∈ K ′ and M ≤k′ N ∈ K ′,
then there is a witness I ′,M

′
= 〈M ′t : t ∈ J ′〉 to M ≤k′ N such that

I ′ = I,M
′
� I = M and M

′
is reasonable and x ≤J′ y ∧ y ∈ I ′ ⇒ x ∈ I ′;

can add M = N ⇒ I ′ = I.]

Ax III: If θ is a regular cardinal, Mi (for i < θ) is ≤k′ -increasing and continuous,
then M0 ≤k′

⋃
i<θ

Mi (in particular
⋃
i<θ

Mi ∈ k′).

[Why? Let Mθ =
⋃
i<θ

Mi, without loss of generality 〈Mi : i < θ〉 is not eventually
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constant and so without loss of generality i < θ ⇒ Mi 6= Mi+1 hence ‖Mi‖ ≥ |i|;
(this helps below to get “reasonable”, i.e. |I`| = ‖Mi‖ for limit i). We choose by
induction on i ≤ θ, a directed partial order Ii and Ms for s ∈ Ii such that:

⊗3(a) 〈Ms : s ∈ Ii〉 witness Mi ∈ K ′

(b) for j < i, Ij ⊆ Ii and (Ij , Ii, 〈Ms : s ∈ Ii〉) witness Mj ≤k′ Mi

(c) Ii is of cardinality ≤ ‖Mi‖
(d) if Ii |= s ≤ t and j < i, t ∈ Ij then s ∈ Ij

For i = 0 use the definition of M0 ∈ K ′.
For i limit let Ii ..=

⋃
j<i

Ij (and the already defined Ms’s) are as required because

Mi =
⋃
j<i

Mj and the induction hypothesis (and |Ii| ≤ ‖Mi‖ as we have assumed

above that j < i⇒Mj 6= Mj+1) .
For i = j + 1 use the proof of Ax.II above with Mj ,Mi,Mi, 〈Ms : s ∈ Ij〉 here
serving as M0,M1,M2, 〈M0

j : s ∈ I0〉 there, that is, we use ⊗2 from there. Now for
i = θ, 〈Ms : s ∈ Iθ〉 witness Mθ ∈ K ′ and (Ii, Iθ, 〈Ms : s ∈ Iθ〉) witness Mi ≤k′ Mθ

for each i < θ.] Axiom IV: Assume θ is regular and 〈Mi : i < θ〉 is ≤k-increasingly

continuous, M ∈ K ′ and i < θ ⇒Mi ≤k′ M and Mθ =
⋃
i<θ

Mi (so Mθ ⊆M). Then

Mθ ≤k′ M .
[Why? By the proof of Ax.III there are 〈Ms : s ∈ Ii〉 for i < θ satisfying clauses

(a),(b),(c) and (d) of ⊗3 there and without loss of generality Ii ∩ θ = ∅. For each
i < θ as Mi ≤k′ M there are Ji and Ms for s ∈ Ji\Ii such that (Ii, Ji, 〈Ms : s ∈ Ji〉)
witnesses it; without loss of generality with 〈

⋃
i<θ

Ii〉ˆ〈Ji \ Ii : i < θ〉 a sequence

of pairwise disjoint sets; exist by ⊗2 above. Let I ..=
⋃
i<θ

Ii, let i : I → θ be

i(s) = min{i : s ∈ Ii} and recall |I| ≤ ‖Mθ‖ hence by clause (d) of ⊗3 we have
s ≤I t ⇒ i(s) ≤ i(t) and let h be a one-to-one function from I into Mθ. Without
loss of generality the union below is disjoint and let

(∗)7 J ..= I∪
{

(A,S) : A a finite subset of M and S a finite subset of I with a maximal element
}

.

ordered by: J |= x ≤ y iff x, y ∈ I, I |= x ≤ y or x ∈ I, y = (A,S) ∈ J \ I and
x ∈ S or x = (A1, S1) ∈ J \ I, y = (A2, S2) ∈ J \ I, A1 ⊆ A2, S1 ⊆ S2. We choose

Ny for y ∈ J as follows: If y ∈ I we let Ny = My. By induction on n < ω, if

y = (A,S) ∈ J \ I satisfies n = |A| + |S|, we choose the objects Ny, Iy,s, Jy,s for
s ∈ S such that:

⊗4(a) Iy,s is a directed subset of Ii(s) of cardinality ≤ λ and s ∈ Iy,s
(b) Jy,s is a directed subset of Ji(s) of cardinality ≤ λ
(c) s ∈ Ii(s) for s ∈ S (follows from the definition of i(s))

(d) Iy,s ⊆ Jy,s for s ∈ S and for s <I t from S we have Iy,s ⊆ Iy,t and Jy,s ⊆
Jy,t

(e) if y1 = (A1, S1) ∈ J \ I, (A1, S1) <J (A,S) and s ∈ S1 then
Iy1,s ⊆ Iy,s, Jy1,s ⊆ Jy,s

(f) Ny =
⋃

t∈Jy,s
Mt for any s ∈ S

(g) A ⊆Mt for some t ∈ Jy,s for any s ∈ S, hence A ⊆ Ny.

No problem to carry the induction and check that (I, J, 〈Ny : y ∈ J〉) witness
Mθ ≤k′ M . Axiom V: Assume N0 ≤k′ M and N1 ≤k′ M .

If N0 ⊆ N1, then N0 ≤k′ N1.
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[Why? Let (I0, J0, 〈M0
s : s ∈ J0〉) witness N0 ≤k′ M and without loss of general-

ity |I0| ≤ ‖N0‖ and h0 : I0 → N0 be one-to-one. Let 〈M1
s : s ∈ I1〉 witness N1 ∈ k′

and without loss of generality I1 is isomorphic to ([N1]<ℵ0 ,⊆) and let h1 be an
isomorphism from I1 onto ([N1]<ℵ0 ,⊆). Now by induction on n, for s ∈ I1 satisfy-
ing n = |{t : t <I1 s}| we choose directed subsets F0(s), F1(s) of I0, I1 respectively,
each of cardinality ≤ λ such that:

(i) s ∈ I1 ⇒ s ∈ F1(s) and t <I1 s⇒ F0(t) ⊆ F0(s) and F1(t) ⊆ F1(s)

(ii) if s ∈ I1 then
(α)

⋃
{M0

t : t ∈ F0(s)} =
⋃
{M1

t : t ∈ F1(s)} ∩N0

(β) r ∈ I0 and t ∈ I1 and h0(r) ∈M1
t ⇒ r ∈ F0(s).

Now letting M2
s = ∪{M1

t : t ∈ F1(s)} and letting F = F0 we get:

(iii) t ∈ I1 ∧ s ∈ F (t)(⊆ I0)⇒M0
s ⊆M2

t

(iv) F is a function from I1 to [I0]≤λ

(v) for s ∈ I1, F (s) is a directed subset of I0 of cardinality ≤ λ
(vi) for s ∈ I1,M2

s ∩N0 = ∪{M0
t : t ∈ F (s)}

(vii) I1 |= s ≤ t⇒ F (s) ⊆ F (t)

(viii) 〈M2
s : s ∈ I1〉 witness N1 ∈ K ′.

As N1 ≤k′ M by the proof of Ax.II, i.e., by ⊗2 above we can find J1 extending I1
and M2

s for s ∈ J1 \ I1 such that (I1, J1, 〈M2
s : s ∈ J1〉) witnesses N1 ≤k′ M . We

now prove

�4 if r ∈ I1, s ∈ I0 and s ∈ F (r) then M0
s ≤kλ M

2
r .

[Why? As 〈M0
t : t ∈ J0〉, 〈M2

t : t ∈ J1〉 are both witnesses for M ∈ K ′, clearly
for r ∈ I1(⊆ J1) we can find directed J ′0(r) ⊆ J0 of cardinality ≤ λ and directed
J ′1(r) ⊆ J1 of cardinality ≤ λ such that r ∈ J ′1(r), F (r) ⊆ J ′0(r) and

⋃
t∈J′0(r)

M0
t =⋃

t∈J′1(r)

M2
t , call it M∗r .

Now M∗r ∈ K ′λ = Kλ (by part (2) and 1.7) and t ∈ J ′1(r) ⇒ M2
t ≤kλ M

∗
r (as

kλ is a λ-abstract elementary class applying the parallel to Observation 1.7, i.e.,
1.22(2)) and similarly t ∈ J ′0(r) ⇒ M0

t ≤kλ M∗r . Now the s from �4 satisfied
s ∈ F (r) ⊆ J ′0(r) hence M0

s ⊆ M1
r (why? by clause (iii) above s ∈ F (r) is as

required in �4). But above we got M0
s ≤k M

∗
r ,M

2
r ≤k M

∗
r , so by Ax.V for kλ we

have M0
s ≤k M

1
r as required in �4.]

Without loss of generality I0 ∩ I1 = ∅ and define the partial order J with set
of elements I0 ∪ I1 by J |= x ≤ y iff x, y ∈ I0, I0 |= x ≤ y or x ∈ I0, y ∈ I1 and
x ∈ F (y) or x, y ∈ I1, I1 |= x ≤ y.

�5 J is a partial order and x ≤J yinI0 ⇒ x ∈ I0 (hence x ≤J y and x ∈ I1 ⇒
y ∈ I1).

[Why? The second phrase holds by the definition of ≤J . For J being a partial
order obviously x ≤J y ≤J x⇒ x = y, so assume x ≤J y ≤J z and we shall prove
x ≤J z. If x ∈ I1 then y, z ∈ I1 and we use “I1 is a partial order”, and if z ∈ I0
then x, y ∈ I0 and we can use “I0 is a partial order”. So assume x ∈ I0, z ∈ I1. If
y ∈ I0 use “F (z) = F1(z) satisfies clause (i) above. If y ∈ I1, use clause (vii) above
with (y, z) here standing for (s, t) there.]

�6 J is directed.

[Why? Note that I0, I1 are directed, x ≤J y ∈ I0 ⇒ x ∈ I0 and (∀x ∈ I0)(∃y ∈
I1)[x ≤J y] because given r ∈ I0, h0(r) ∈ N0 hence h0(r) belongs to M1

t for some
t ∈ I1, and so by clause (i) we have t ∈ F1(t) hence by clause (ii)(β) above r ∈ F0(t).
Together this is easy.]

Define Ms for s ∈ J as M0
s if s ∈ I0 and as M2

s if s ∈ I1
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�7 Ms ∈ Kλ for s ∈ J .

[Why? Obvious.]

�8 if x ≤J y then Mx ≤x My.

[Why? If y ∈ I0 (hence x ∈ I0) use 〈M0
t : t ∈ I0〉 is a witness for N0 ∈ K ′. If x ∈ I1

(hence y ∈ I1) use clause (viii) above; i.e. 〈M2
s : s ∈ I1〉 is a witness for N1 ∈ K ′.]

�9

⋃
{Mx : x ∈ J} = N1.

[Why? As (∀x ∈ I0)(∃y ∈ I1)[x ≤J y], see the proof of �6 recalling � we have⋃
{Mx : x ∈ J} = ∪{Mx : x ∈ I1} but the latter is

⋃
{M2

x : x ∈ I1} which is equal
to N2.]

�10 I0 ⊆ J is directed and
⋃
{Mx : x ∈ J} = N1.

[Why? Obvious.]
Together (I0, J, 〈Ms : s ∈ J〉) witnesses N0 ≤k′ N1 are as required.]

Axiom VI: LS(k′) = λ.
[Why? Let M ∈ K ′ and A ⊆ M with |A|+ λ ≤ µ < ‖M‖, and let 〈Ms : s ∈ J〉

witness M ∈ K ′. As ‖M‖ > µ we can choose a directed I ⊆ J of cardinality ≤ µ
such that A ⊆ M ′ ..=

⋃
s∈I

Ms and so (I, J, 〈Ms : s ∈ J〉) witnesses M ′ ≤k′ M , so as

A ⊆M ′ and ‖M ′‖ ≤ |A|+ µ; this is more than enough.] �1.24

We may like to use k≤λ instead of kλ; no need as essentially k consists of two parts
k≤λ and k≥λ which have just to agree in λ. That is,

Claim 1.25. Assume

(a) k1 is an abstract elementary class with λ = LS(k1),K1 = K1
≥λ

(b) k2≤λ is a (≤ λ)-abstract elementary class (defined as in 1.19(1) with the

obvious changes so M ∈ k2≤λ ⇒ ‖M‖ ≤ λ and in Axiom III, ‖
⋃
i

Mi‖ ≤ λ

is required)

(c) K2
λ = K1

λ and ≤k2� K2
λ =≤k1� K1

λ

(d) we define k as follows: K = K1 ∪K2,M ≤k N iff M ≤k1 N or M ≤k2 N
or for some M ′,M ≤k2 M

′ ≤k1 N .

Then k is an abstract elementary class and LS(k) = LS(k2) which trivially is ≤ λ.

Proof. Straight. E.g.

Axiom V: We shall use freely

(∗) k≤λ = k2 and k≥λ = k1.

So assume N0 ≤k M,N1 ≤k M,N0 ⊆ N1.
Now if ‖N0‖ ≥ λ use assumption (a), so we can assume ‖N0‖ < λ. If ‖M‖ ≤ λ

we can use assumption (b) so we can assume ‖M‖ > λ and by the definition of ≤k

there is M ′0 ∈ K1
λ = K2

λ such that N0 ≤k2 M
′
0 ≤k1 M . First assume ‖N1‖ ≤ λ,

so we can find M ′1 ∈ K1
λ such that N1 ≤k2 M

′
1 ≤k1 M (why? if N1 ∈ K<λ, by

the definition of ≤k and if N1 ∈ Kλ just choose M ′1 = N1). Now by assumption
(a) we can find M ′′ ∈ K1

λ such that M ′0 ∪M ′1 ⊆ M ′′ ≤k1 M , hence by assumption
(a) (i.e. Ax.V for k1) we have M ′0 ≤k1 M

′′,M ′1 ≤k1 M
′′, so by assumption (c) we

have M ′0 ≤k2 M ′′,M ′1 ≤k2 M ′′. As N0 ≤k2 M ′0 ≤k2 M ′′ ∈ K≤λ by assumption
(b) we have N0 ≤k2 M

′′, and similarly we have N1 ≤k2 M
′′. So N0 ⊆ N1, N0 ≤k2

M ′′, N1 ≤k2 M
′ so by assumption (b) we have N0 ≤k2 N1 hence N0 ≤k N1.

We are left with the case ‖N1‖ > λ; by assumption (a) there is N ′1 ∈ Kλ

such that N0 ⊆ N ′1 ≤k1 N1. By assumption (a) we have N ′1 ≤k1 M , so by the
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previous paragraph we get N0 ≤k2 N
′
1, together with the previous sentence we have

N0 ≤k2 N
′
1 ≤k1 N1 so by the definition of ≤k we are done. �1.25

Recall

Definition 1.26. If M ∈ Kλ is locally superlimit or just pseudo superlimit let

K[M ] = K
[M ]
λ = {N ∈ Kλ : N ∼= M}, k[M ] = k

[M ]
λ = (K[M ],≤k� K

[M ]
λ ) and let k[M ]

be the k′ we get in 1.24(1) for k = k[M ] = k
[M ]
λ . We may write kλ[M ], k[M ].

Trivially but still important is showing that assuming categoricity in one λ is a not
so strong assumption.

Claim 1.27. 1) If k is an λ-AEC, M ∈ Kλ is locally superlimit or just pseudo
superlimit then k[M ] is a λ-AEC which is categorical (i.e. categorical in λ).

2) Assume k is an AEC and M ∈ kλ is not ≤k- maximal. M is pseudo superlimit (in
k, i.e., in kλ) iff k[M ] is a λ-AEC which is categorical iff k[M ] is an AEC, categorical

in λ and ≤k[M]=≤k� K [M ].

3) In (1) and (2), LS(k[M ]) = λ = min{‖N‖ : N ∈ k[M ]}.

Proof. Straightforward. �1.27

Exercise 1.28. Assume k is a λ-AEC with amalgamation and stability in λ. Then
for every M1 ∈ Kλ, p1 ∈ Sk(M1) we can find M2 ∈ K and minimal p2 ∈ Sk(M2)
such that M1 ≤k M2, p1 = p2 �M1.

[Hint: See [She09c, 2b.4](2).]

Exercise 1.29. 1) Any ≤kλ -embedding f0 of M1
0 into M2

0 can be extended to an
isomorphism f from M1

δ onto M2
δ such that f(M1

2α) ≤kλ M2
2α, f

−1(M2
2α+1) ≤kλ

M1
2α+1 for every α < δ, provided that

~ (a) kλ is a λ-AEC with amalgamation and δ is a limit ordinal ≤ λ+.

(b) 〈M `
α : α ≤ δ〉 is ≤kλ -increasing continuous for ` = 1, 2.

(c) M `
α is an amalgamation base in kλ (for α < δ and ` = 1, 2).

(d) M `
α+1 is ≤kλ -universal extension of M `

α for α < δ, ` = 1, 2.

2) Write the axioms of “a λ-AEC” which are used.

3) For kλ, δ as in (a) above, for any M ∈ Kλ there is N ∈ Kλ which is (λ, cf(δ))-
brimmed over it.

[Hint: Should be easy; is similar to 1.17 (or 1.18).]
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§ 2. Good Frames

We first present our central definition: good λ-frame (in Definition 2.1). We are
given the relation “p ∈ S(N) does not fork over M ≤k N when p is basic” (by
the basic relations and axioms) so it is natural to look at how well we can “lift”
the definition of non-forking to models of cardinality λ and later to non-forking of
models (and types over them) in cardinalities > λ. Unlike the lifting of λ-AEC
in Lemma 1.24, life is not so easy. We define in 2.4, 2.5, 2.7 and we prove basic
properties in 2.6, 2.8, 2.10 and less obvious ones in 2.9, 2.11, 2.12. This should
serve as a reasonable exercise in the meaning of good frames; however, the lifting,
in general, does not give good µ-frames for µ > λ. There may be no M ∈ Kµ at all
and/or amalgamation may fail. Also the existence and uniqueness of non-forking
types is problematic. We do not give up and will return to the lifting problem,
under additional assumptions in [She09e, §12] and [SV].

In 2.16 (recalling 1.27) we show that the case “ks categorical in λ” is not so rare
among good λ-frames; in fact if there is a superlimit model in λ we can restrict kλ
to it. So in a sense superstability and categoricity are close, a point which does not
appear in first order model theory, but if T is a complete first order superstable
theory and λ ≥ 2|T |, then the class k = kT,λ of λ-saturated models of T is in general
not an elementary class (though is a PCλ class) but is an AEC categorical in λ
though in general not in λ+ and for some good λ-frame s,Ks = kT,λ. How justified
is our restriction here to something like “the λ-saturated model”? It is O.K. for
our test problems but more so it is justified as our approach is to first analyze the
quite saturated models.

Last but not least in 2.18 we show that one of the axioms from 2.1, i.e., (E)(i),
follows from the rest in our present definition; additional implications are in Claims
2.19, 2.21. Later “Ax(X)(y)” will mean (X)(y) from Definition 2.1.

Recall that good λ-frame is intended to be a parallel to (bare bones) superstable
elementary class stable in λ; here we restrict ourselves to models of cardinality λ.

Definition 2.1. We say s = (k,
⋃
λ
,Sbs
λ ) = (ks,

⋃
s
,Sbs

s ) is a good frame in λ or a

good λ-frame (λ may be omitted when its value is clear, note that λ = λs = λ(s)
is determined by s and we may write Ss(M) instead of Sks(M) and ortps(a,M,N)
instead of ortpks(a,M,N) when M ∈ Ks

λ, N ∈ Ks; we may write ortp(a,M,N) for
ortpks(a,M,N)) when the following conditions hold:

(A) k = (K,≤k) is an abstract elementary class also denoted by k[s], the Löwenheim
Skolem number of k, being ≤ λ (see Definition 1.4); there is no harm in
assuming M ∈ K ⇒ ‖M‖ ≥ λ; let ks = ksλ and ≤s=≤k� Kλ, and let
ks = (Kλ,≤s) and k[s] = ks so we may write s = (ks,

⋃
s
,Sbs

s )

(B) k has a superlimit model in λ which 12 is not <k-maximal.

(C) kλ has the amalgamation property, the JEP (joint embedding property),
and has no ≤k-maximal member.

(D)(a) Sbs = Sbs
λ (the class of basic types for kλ) is included in⋃

{S(M) : M ∈ Kλ} and is closed under isomorphisms including automor-
phisms; for M ∈ Kλ let Sbs(M) = Sbs ∩ S(M); no harm in allowing types
of finite sequences, i.e., replacing S(M) by S<ω(M), (Sω(M)) is different
as being new (= non-algebraic) is not preserved under increasing unions).

(b) if p ∈ Sbs(M), then p is non-algebraic (i.e. not realized by any a ∈M).

12in fact, the “is not <k-maximal” follows by (C)
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(c) (density)

if M ≤k N are from Kλ and M 6= N , then for some a ∈ N \M we have
ortp(a,M,N) ∈ Sbs

[intention: examples are: minimal types in [She01], i.e. [She09c],
regular types for superstable first order (= elementary) classes].

(d) bs-stability

Sbs(M) has cardinality ≤ λ for M ∈ Kλ.

(E)(a)
⋃
λ

denoted also by
⋃
s

or just
⋃

, is a four place relation 13 called non-

forking with
⋃

(M0,M1, a,M3) implying M0 ≤k M1 ≤k M3 are from Kλ, a ∈

M3 \M1 and ortp(a,M0,M3) ∈ Sbs(M0) and
ortp(a,M1,M3) ∈ Sbs(M1). Also

⋃
is preserved under isomorphisms and

we demand: if M0 = M1 ≤k M3 both in Kλ and a ∈M3, then:⋃
(M0,M1, a,M3) is equivalent to “ortp(a,M0,M3) ∈ Sbs(M0)”. The asser-

tion
⋃

(M0,M1, a,M3) is also written asM1

M3⋃
M0

a and also as “ortp(a,M1,M3)

does not fork over M0 (inside M3)” (this is justified by clause (b) below).
So ortp(a,M1,M3) forks over M0 (where M0 ≤s M1 ≤s M3, a ∈M3) is just
the negation

[Explanation: The intention is to axiomatize non-forking of types, but
we already commit ourselves to dealing with basic types only. Note that in
[She01], i.e. [She09c] we know something on minimal types but other types
are something else.]

(b) (monotonicity):

if M0 ≤k M
′
0 ≤k M

′
1 ≤k M1 ≤k M3 ≤k M

′
3,M

′
1 ∪ {a} ⊆ M ′′3 ≤k M

′
3 all of

them inKλ, then
⋃

(M0,M1, a,M3)⇒
⋃

(M ′0,M
′
1, a,M

′
3) and

⋃
(M ′0,M

′
1, a,M

′
3)⇒⋃

(M ′0,M
′
1, a,M

′′
3 ), so it is legitimate to just say “ortp(a,M1,M3) does not

fork over M0”.
[Explanation: non-forking is preserved by decreasing the type, increasing

the basis (= the set over which it does not fork) and increasing or decreasing
the model inside which all this occurs, i.e. where the type is computed. The
same holds for stable theories only here we restrict ourselves to “legitimate”,
i.e., basic types. But note that here the “restriction of ortp(a,M1,M3) to
M ′1 is basic” is a worthwhile information.]

(c) (local character):

if 〈Mi : i ≤ δ + 1〉 is ≤k-increasing continuous in kλ, a ∈Mδ+1 and
ortp(a,Mδ,Mδ+1) ∈ Sbs(Mδ) then for every i < δ large enough ortp(a,Mδ,Mδ+1)
does not fork over Mi.

[Explanation: This is a replacement for superstability which says that:
if p ∈ S(A) then there is a finite B ⊆ A such that p does not fork over B.]

(d) (transitivity):

if M0 ≤s M
′
0 ≤s M

′′
0 ≤s M3 are from Kλ and a ∈M3 and ortp(a,M ′′0 ,M3)

does not fork overM ′0 and ortp(a,M ′0,M3) does not fork overM0 (all models
are in Kλ, of course, and necessarily the three relevant types are in Sbs),
then ortp(a,M ′′0 ,M3) does not fork over M0

13we tend to forget to write the λ, this is justified by 2.6(2), and see Definition 2.5

Paper Sh:600, version 2023-06-18. See https://shelah.logic.at/papers/600/ for possible updates.



26 S. SHELAH

(e) uniqueness:

if p, q ∈ Sbs(M1) do not fork over M0 ≤k M1 (all in Kλ) and
p �M0 = q �M0 then p = q

(f) symmetry:
if M0 ≤k M3 are in kλ and for ` = 1, 2 we have
a` ∈M3 and ortp(a`,M0,M3) ∈ Sbs(M0), then the following are equivalent:

(α) there are M1,M
′
3 in Kλ such that M0 ≤k M1 ≤k M

′
3,

a1 ∈M1,M3 ≤k M
′
3 and ortp(a2,M1,M

′
3) does not fork over M0

(β) there are M2,M
′
3 in Kλ such that M0 ≤k M2 ≤k M

′
3,

a2 ∈M2,M3 ≤k M
′
3 and ortp(a1,M2,M

′
3) does not fork over M0.

[Explanation: this is a replacement to “ortp(a1,M0∪{a2},M3) forks over
M0 iff ortp(a2,M0 ∪ {a1},M3) forks over M0” which is not well defined in
our context.]

(g) extension existence:
if M ≤k N are from Kλ and p ∈ Sbs(M) then some q ∈ Sbs(N) does not
fork over M and extends p

(h) continuity:
if 〈Mi : i ≤ δ〉 is ≤k-increasing continuous, all in Kλ (recall δ is always a
limit ordinal), p ∈ S(Mδ) and i < δ ⇒ p �Mi ∈ Sbs(Mi) does not fork over
M0 then p ∈ Sbs(Mδ) and moreover p does not fork over M0.

[Explanation: This is a replacement to: for an increasing sequence of
types which do not fork over A, the union does not fork over A; equivalently
if p forks over A then some finite subtype does.]

(i) non-forking amalgamation:
if for ` = 1, 2,M0 ≤k M` are from Kλ, a` ∈ M` \M0, ortp(a`,M0,M`) ∈
Sbs(M0), then we can find f1, f2,M3 satisfying M0 ≤k M3 ∈ Kλ such that
for ` = 1, 2 we have f` is a ≤k-embedding of M` into M3 over M0 and
ortp(f`(a`), f3−`(M3−`),M3) does not fork over M0 for ` = 1, 2.

[Explanation: This strengthens clause (g), (existence) saying we can do
it twice so close to (f), symmetry, but see 2.18.]

∗ ∗ ∗

Discussion 2.2. : 0) On connections between the axioms see 2.18, 2.19, 2.21.
1) What justifies the choice of the good λ-frame as a parallel to (bare bones)

superstability? Mostly starting from assumptions on few models around λ in the
AEC k and reasonable, “semi ZFC” set theoretic assumptions (e.g. involving cate-
goricity and weak cases of G.C.H., see §3) we can prove that, essentially, for some⋃
,S the demands in Definition 2.1 hold. So here we shall get (i.e., applying our

general theorem to the case of 3.5) an alternative proof of the main theorem of
[She83a], [She83b] in a local version, i.e., dealing with few cardinals rather than
having to deal with all the cardinals λ, λ+1, λ+2, . . . , λ+n as in [She83a], [She83b]
in an inductive proof. That is, in [She83b], we get dichotomies by the omitting type
theorem for countable models (and theories). So problems on ℵn are “translated”
down to ℵn−1 (increasing the complexity) till we arrive to ℵ0 and then “translated”
back. Hence it is important there to deal with ℵ0, . . . ,ℵn together. Here our λ may
not have special helpful properties, so if we succeed to prove the relevant claims
then they apply to λ+, too. There are advantages to being poor.
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2) Of course, we may just point out that the axioms seem reasonable and that
eventually we can say much more.

3) We may consider weakening bs-stability (i.e., Ax(D)(d) in Definition 2.1) to
M ∈ Kλ ⇒ |Sbs(M)| ≤ λ+, we have not looked into it here; Jarden-Shelah [JS13]
will; actually [She09a] deals in a limited way with this in a considerably more
restricted framework.

4) On stability in λ and existence of (λ, ∂)-brimmed extensions see 4.2.

From the rest of this section we shall use mainly the defintion of K3,bs
λ in Def-

inition 2.4(3), also 2.23 (restricting ourselves to a superlimit). We sometimes use
implications among the axioms (in 2.18 - 2.21). The rest is, for now an exercise to
familiarize the reader with λ-frames, in particular (2.3-2.16) to see what occurs to
non-forking and basic types in cardinals > λ. This is easy (but see below). For this
we first present the basic definitions.

Convention 2.3. 1) We fix s, a good λ-frame so K = Ks,Sbs = Sbs
s .

2) By M ∈ K we mean M ∈ K≥λ if not said otherwise.

We lift the properties to k≥λ by reflecting to the situation in Kλ. But do not
be too excited: the good properties do not lift automatically, we shall be working
on that later (under additional assumptions). Of course, from the definition below

later we shall use mainly K3,bs
s = K3,bs

λ .

Definition 2.4. 1)

K3,bs = K3,bs
≥s :=

{
(M,N, a) :M ≤k N, a ∈ N \M and there is M ′ ≤k M

satisfying M ′ ∈ Kλ, such that for every M ′′ ∈ Kλ we have:

[M ′ ≤k M
′′ ≤k M ⇒ ortp(a,M ′′, N) ∈ Sbs(M ′′)

does not fork over M ′]; equivalently [M ′ ≤k M
′′ ≤k M

and M ′′ ≤k N
′′ ≤k N and N ′′ ∈ Kλ and a ∈ N ′′

⇒
⋃
λ

(M ′,M ′′, a,N ′′)]

}
.

2) K3,bs
=µ = K3,bs

s,µ := {(M,N, a) ∈ K3,bs
≥s : M,N ∈ ksµ}.

3) K3,bs
s

..= K3,bs
=λ,s; and let K3,bs

µ = K3,bs
=µ , used mainly for µ = λs and K3,bs

s,≥µ is
defined naturally.

Definition 2.5. We define
⋃
<∞

(M0,M1, a,M3) (rather than
⋃
λ

) as follows: it holds

iff M0 ≤k M1 ≤k M3 are from K (not necessarily Kλ), a ∈ M3 \M1 and there is
M ′0 ≤k M0 which belongs to Kλ satisfying: if M ′0 ≤k M

′
1 ≤k M1,M

′
1 ∈ Kλ,

M ′1 ∪ {a} ⊆M ′3 ≤k M3 and M ′3 ∈ Kλ then
⋃
λ

(M ′0,M
′
1, a,M

′
3).

We now check that
⋃
<∞

behaves correctly when restricted to Kλ.

Claim 2.6. 1) Assume M ≤k N are from Kλ and a ∈ N . Then (M,N, a) ∈ K3,bs
s

iff ortp(a,M,N) ∈ Sbs
s (M).

2) Assume M0,M1,M3 ∈ Kλ and a ∈M3. Then
⋃
<∞

(M0,M1, a,M3) iff
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λ

(M0,M1, a,M3).

3) Assume M ≤k N1 ≤k N2 and a ∈ N1. Then

(M,N1, a) ∈ K3,bs
≥s ⇔ (M,N2, a) ∈ K3,bs

≥s .

4) Assume M0 ≤k M1 ≤k M3 ≤k M
∗
3 and a ∈M3 then:

⋃
<∞

(M0,M1, a,M3) iff⋃
<∞

(M0,M1, a,M
∗
3 ).

Proof. 1) First assume ortp(a,M,N) ∈ Sbs
s (M) and check the definition of (M,N, a) ∈

K3,bs. Clearly M ≤k N, a ∈ N and a ∈ N \M ; we have to find M ′ as required in
Definition 2.4(1); we let M ′ = M , so M ′ ≤k M,M ′ ∈ Kλ and

M ′ ≤k M
′′ ≤k M and M ′′ ∈ Kλ ⇒M ′′ = M

⇒ ortpkλ
(a,M ′′, N) = ortpkλ

(a,M,N) ∈ Sbs
s (M) = Sbs

s (M ′′)

so we are done.

Second, assume (M,N, a) ∈ K3,bs so there is M ′ ≤k M as asserted in the defini-
tion 2.4(1) of K3,bs so (∀M ′′)[M ′ ≤k M

′′ ≤k M and M ′′ ∈ Kλ ⇒ ortp(a,M ′′, N) ∈
Sbs
s (M ′′)] in particular this holds for M ′′ = M and we get ortp(a,M,N) ∈ Sbs

s (M)
as required.
2) First assume

⋃
<∞

(M0,M1, a,M3).

So there is M ′0 as required in Definition 2.5; this means

M ′0 ∈ Kλ,M
′
0 ≤k M0 and

(∀M ′1 ∈ Kλ)(∀M ′3 ∈ Kλ)[M ′0 ≤k M
′
1 ≤M1 and M ′1 ∪ {a} ⊆M ′3 ≤k M3

→
⋃
λ

(M ′0,M
′
1, a,M

′
3)].

In particular, we can choose M ′1 = M1,M
′
3 = M3 so the antecedent holds hence⋃

λ
(M ′0,M

′
1, a,M

′
3) which means

⋃
λ

(M ′0,M1, a,M3) and by clause (E)(b) of Definition

2.1,
⋃
λ

(M0,M1, a,M3) holds, as required.

Second assume
⋃
λ

(M0,M1, a,M3). So in Definition 2.5 the demands M0 ≤k

M1 ≤k M3, a ∈ M3 \M1 hold by clause (E)(a) of Definition 2.1; and we choose
M ′0 as M0; clearly M ′0 ∈ Kλ and M ′0 ≤k M0. Now suppose M ′0 ≤k M ′1 ≤k

M1 and M ′1 ∈ Kλ,M
′
1 ∪ {a} ≤k M ′3 ≤ M3; by clause (E)(b) of Definition 2.1

we have
⋃
λ

(M ′0,M
′
1, a,M

′
3); so M ′0 is as required so really

⋃
<∞

(M0,M1, a,M3).

3) We prove something stronger: for any M ′ ∈ ks which is ≤k[s] M,M ′ witnesses

(M,N1, a) ∈ K3,bs iff M ′ witnesses (M,N2, a) ∈ K3,bs (of course, witness means:
as required in Definition 2.4). So we have to check the statement there for every
M ′′ ∈ Kλ such that M ′ ≤s M

′′ ≤k M . The equivalence holds because for every
M ′′ ≤k M,M ′′ ∈ Kλ we have ortp(a,M ′′, N1) = ortp(a,M ′′, N2), by 1.11(2), more
transparent as kλ has the amalgamation property (by clause (C) of Definition 2.1)
and so one is “basic” iff the other is by clause (E)(b) of Definition 2.1.
4) The direction ⇐ is because if M ′0 witness

⋃
<∞

(M0,M1, a,M
∗
3 ) (see Definition

2.5), then it witnesses
⋃
<∞

(M0,M1, a,M3) as there are just fewer pairs (M ′1,M
′
3)

to consider. For the direction ⇒ the demands M0 ≤k M1 ≤k M3, a ∈ M3 \M1, of
course, hold and let M ′0 be as required in the definition of

⋃
<∞

(M0,M1, a,M3); let
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M ′0 ≤k M
′
1 ≤k M1,M

′
1 ∪ {a} ⊆ M ′3 ≤k M

∗
3 ,M

′
3 ∈ Kλ. As λ ≥ LS(k) we can find

M ′′3 ≤k M3 such that M ′1 ∪ {a} ⊆ M ′′3 ∈ Kλ and then find M ′′′3 ≤s M
∗
3 such that

M ′3 ∪M ′′3 ⊆M ′′′3 ∈ Kλ. So by the choice of M ′0 and M ′′3 clearly
⋃
λ

(M ′0,M
′
1, a,M

′′
3 )

and by clause (E)(b) of Definition 2.1 we have⋃
λ

(M ′0,M
′
1, a,M

′′
3 )⇔

⋃
λ

(M ′0,M
′
1, a,M

′′′
3 )⇔

⋃
λ

(M ′0,M
′
1, a,M

′
3)

(note that we know the left statement and need the right statement) so M ′1 is as
required to complete the checking of

⋃
<∞

(M0,M1, a,M
∗
3 ). �2.6

We extend the definition of Sbs
s (M) from M ∈ Kλ to arbitrary M ∈ K.

Definition 2.7. 1) For M ∈ K we let

Sbs(M) = Sbs
≥s(M) =

{
p ∈ S(M) : for some N and a,

p = ortp(a,M,N) and (M,N, a) ∈ K3,bs
≥s

}
(for M ∈ Kλ we get the old definition by 2.6(1); note that as we do not have

amalgamation (in general) the meaning of types is more delicate. Not so in kλ as
in a good λ-frame we have amalgamation in kλ but not necessarily in k≥λ).

2) We say that p ∈ Sbs
≥s(M1) does not fork over M0 ≤k M1 if for some M3, a we

have p = ortpk[s](a,M1,M3) and
⋃
<∞

(M0,M1, a,M3). (Again, for M ∈ Kλ this is

equivalent to the old definition by 2.6).

3) For M ∈ K let EλM be the following two-place relation on S(M) : p1EλMp2 iff
p1, p2 ∈ Sbs(M) and if p` = ortp(a`,M,M∗), N ≤k M,N ∈ Kλ then p1 � N = p2 �

N . Let EsM = Eλ(s)
M � Sbs(M).

4) k is (λ, µ)-local if every M ∈ kµ is λ-local which means that EλM is equality;
let (s, µ)-local means (λs, µ)-local. Though we will prove below some nice things,

having the extension property is more problematic. We may define “the extension”
in a formal way, for M ∈ K>λ but then it is not clear if it is realized in any ≤k-
extension of M . Similarly for the uniqueness property. That is, assume M0 ≤k

M ≤k N` and a` ∈ N` \M , and M0 ∈ ks and ortp(a`,M,N`) does not fork over
M0 for ` = 1, 2 and ortp(a1,M0, N1) = ortp(a2,M0, N1). Now does it follow that
ortp(a1,M,N1) = ortp(a2,M,N2)? This requires the existence of some form of
amalgamation in k, which we are not justified in assuming. So we may prefer to
define Sbs(M) “formally”, the set of stationarization of p ∈ Sbs(M0),M0 ∈ ks, see
[SV]. We now note that in definition 2.7 “some” can be replaced by “every”.

Fact 2.8. 1) For M ∈ K

Sbs
≥s(M) =

{
p ∈ Sk[s](M) : for every N, a

we have: if M ≤k N, a ∈ N \M and

p = ortpk(a,M,N) then (M,N, a) ∈ K3,bs
≥s

}
.
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2) The type p ∈ Sk[s](M1) does not fork over M0 ≤k M1 iff for every a,M3

satisfying M1 ≤k M3 ∈ K, a ∈ M3 \ M1 and p = ortpk[s](a,M1,M3) we have⋃
<∞

(M0,M1, a,M3).

3) (M,N, a) ∈ K3,bs
≥s is preserved by isomorphisms.

4) If M ≤k N`, a` ∈ N` \M for ` = 1, 2 and ortp(a1,M,N1)EsMortp(a2,M,N2) then

(M,N1, a1) ∈ K3,bs
≥s ⇔ (M,N2, a2) ∈ K3,bs

≥s .

5) EsM is an equivalence relation on Sbs
≥s(M) and if p, q ∈ Sbs

≥s(M) do not fork over

N ∈ Kλ so N ≤k M then pEsMq ⇔ (p � N = q � N).

Proof. 1) By 2.6(3) and the definition of type.

2) By 2.6(4) and the definition of type.

3) Easy.

4) Enough to deal with the case (M,N1, a1)Eat
M , (M,N2, a2) or (by (3)) even a1 =

a2, N1 ≤k N2. This is easy.

5) Easy, too. �2.8

We can also get that there are enough basic types, as follows:

Claim 2.9. If M ≤k N and M 6= N , then for some a ∈ N \ M we have
ortpk(a,M,N) ∈ Sbs(M).

Proof. Suppose not. So as we are assuming K = K≥λ, by clause (D)(c) of Definition
2.1, necessarily ‖N‖ > λ. If ‖M‖ = λ < ‖N‖ choose N ′ satisfying M <k N

′ ≤k N ,
N ′ ∈ Kλ and by clause (D)(c) of Definition 2.1 choose a∗ ∈ N ′ \ M such that
ortps(a

∗,M,N ′) ∈ Sbs
s (M). So we can assume ‖M‖ > λ; choose a∗ ∈ N \M . We

choose Mi, Ni,Mi,c by induction on i < ω (for c ∈ Ni \Mi) such that:

(a) Mi ≤k M is ≤k-increasing.

(b) Mi ∈ Kλ

(c) Ni ≤k N is ≤k-increasing.

(d) Ni ∈ Kλ

(e) a∗ ∈ N0

(f) Mi ≤k Ni

(g) If c ∈ Ni \M , ortps(c,Mi, N) ∈ Sbs
s (Mi) and there is M ′ ∈ Kλ such that

Mi ≤k M
′ ≤k M and ortps(c,M

′, N) forks over Mi then Mi,c satisfies this,
otherwise Mi,c = Mi

(h) Mi+1 includes the set
⋃

c∈Ni\M
Mi,c ∪ (Ni ∩M).

There is no problem to carry the definition; in stage i + 1 first choose Mi,c for
c ∈ Ni \ M then choose Mi+1 and lastly choose Ni+1. Let M∗ =

⋃
i<ω

Mi and

N∗ =
⋃
i<ω

Ni. It is easy to check that:

(i) Mi ≤k M
∗ ≤k M for i < ω

(by clause (a))

(ii) M∗ ∈ Kλ

(by clause (i) we have M∗ ∈ K and ‖M∗‖ = λ by the choice of M∗ and
clause (b))
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(iii) Ni ≤k N
∗ ≤k N

(by clause (c))

(iv) N∗ ∈ Kλ

(by clause (iii) we have N∗ ∈ K and ‖N∗‖ = λ by the choice of N∗ and
clause (d))

(v) Mi ≤k M
∗ ≤k N

∗ ≤k N
(by clauses (a) + (f) + (iii) we have Mi ≤k N

∗ hence by clause (a) and the
choice of M∗ we have M∗ ≤k N

∗, and N∗ ≤k N by clause (iii))

(vi) M∗ = N∗ ∩M
(by clauses (f) + (h) and the choices of M∗, N∗)

(vii) M∗ 6= N∗

(as a∗ ∈ N \M and a∗ ∈ N0 ≤k N
∗ ≤k N and M∗ = N∗ ∩M ;

they hold by the choice of a∗, clause (e), clause (iii), clause (iii) and clause
(vi) respectively)

(viii) there is b∗ ∈ N∗ \M∗ such that ortp(b∗,M∗, N∗) ∈ Sbs(M∗)
[why? by clause (v) and (viii) recalling Definition 2.1 clause (D)(c) (den-
sity)]

(ix) for some i < ω we have
⋃

(Mi,M
∗, b∗, N∗), so

ortp(b∗,M∗, N∗) ∈ Sbs
s (M∗) and ortps(b

∗,Mj , N
∗) ∈ Sbs

s (Mj) for j ∈
[i, ω)

[why? by Definition 2.1 clause (E)(c) (local character) applied to the
sequence 〈Mn : n < ω〉ˆ〈M∗, N∗〉 and the element b∗, using of course
(E)(a) of Definition 2.1 and clause (viii)]

(x)
⋃

(Mi,Mi,b∗ , b
∗, N∗)

[why? by clause (ix) and Definition 2.1(E)(b) (monotonicity) as
Mi ≤k Mi,b∗ ≤k Mi+1 ≤k M

∗ by clause (g) in the construction]

(xi) if Mi ≤k M
′ ≤k M and M ′ ∪ {b∗} ⊆ N ′ ≤k N and M ′ ∈ Kλ, N

′ ∈ Kλ then⋃
(Mi,M

′, b∗, N ′)

[why? by clause (x) and clause (g) in the construction.]

So we are done. �2.9

Claim 2.10. If M ≤k N, a ∈ N \M , and ortp(a,M,N) ∈ Sbs
≥s(M) then for some

M0 ≤k M we have

(A) M0 ∈ Kλ

(B) ortp(a,M0, N) ∈ Sbs
s (M0)

(C) If M0 ≤k M
′ ≤k M , then ortp(a,M ′, N) ∈ Sbs

s (M ′) does not fork over M0.

Proof. Easy by now. �2.10

Claim 2.11. 1) Assume M1 ≤k M2 and p ∈ Sk(M2). Then p ∈ Sbs
≥s(M2) and p

does not fork over M1 iff for some N1 ≤k M1, N1 ∈ Kλ and p does not fork over
N1 iff for some N1 ≤k M1, N1 ∈ Kλ and we have (∀N)[N1 ≤k N ≤k M2 and N ∈
Kλ ⇒ p � N ∈ Sbs

s (N) and (p � N does not fork over N1)]; we call such N1 a
witness, so every N ′1 ∈ Kλ, N1 ≤k N

′
1 ≤M1 is a witness, too.

2) Assume M∗ ∈ K and p ∈ Sk(M∗).
Then: p ∈ Sbs

≥s(M
∗) iff for some N∗ ≤k M

∗ we have N∗ ∈ Kλ, p � N∗ ∈ Sbs(N∗)
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and (∀N ∈ Kλ)(N∗ ≤k N ≤k M
∗ ⇒ p � N ∈ Sbs(N) and does not fork over N∗)

(we say such N∗ is a witness, so any N ′ ∈ Kλ, N
∗ ≤k N

′ ≤k M is a witness, too).

3) (Monotonicity)
If M1 ≤k M

′
1 ≤k M

′
2 ≤k M2 and p ∈ Sbs

≥s(M2) does not fork over M1, then

p �M ′2 ∈ Sbs
≥s(M

′
2) and it does not fork over M ′1.

4) (Transitivity)
If M0 ≤k M1 ≤k M2 and p ∈ Sbs

≥s(M2) does not fork over M1 and p � M1 does not
fork over M0, then p does not fork over M0.

5) (Local character) If 〈Mi : i ≤ δ + 1〉 is ≤k-increasing continuous and a ∈ Mδ+1

and ortpk(a,Mδ,Mδ+1) ∈ Sbs
≥s(Mδ) then for some i < δ we have ortpk(a,Mδ,Mδ+1)

does not fork over Mi.

6) Assume that 〈Mi : i ≤ δ + 1〉 is ≤k-increasing, p ∈ S(Mδ), and for every i < δ
we have that p � Mi ∈ Sbs

≥s(Mi) does not fork over M0. Then p ∈ Sbs
≥s(Mδ) and p

does not fork over M0.

Proof. 1), 2) Check the definitions.

3) As p ∈ Sbs
≥s(M2) does not fork over M1, there is N1 ∈ Kλ which witnesses it.

This same N1 witnesses that p �M ′2 does not fork over M ′1.

4) Let N0 ≤k M0 witness that p �M1 does not fork overM0 (in particularN0 ∈ Kλ);
let N1 ≤k M1 witness that p does not fork over M1 (so in particular N1 ∈ Kλ). Let
us show that N0 witnesses p does not fork over M0, so let N ∈ Kλ be such that
N0 ≤k N ≤k M2 and we should just prove that p � N does not fork over N0. We
can find N ′ ≤k M1, N

′ ∈ Kλ such that N0 ∪N1 ⊆ N ′, we can also find N ′′ ≤k M2

satisfying N ′′ ∈ Kλ such that N ′ ∪N ⊆ N ′′. As N1 witnesses that p does not fork
over M1, clearly p � N ′′ ∈ Sbs

s (N ′′) does not fork over N1, hence by monotonicity
does not fork over N ′. As N0 witnesses p �M1 does not fork over M0, clearly p � N ′

belongs to Sbs(N ′) and does not fork over N0, so by transitivity (in ks) we know
that p � N ′′ does not fork over N0; hence by monotonicity p � N does not fork over
N0.

5) Let p = ortpk(a,Mδ,Mδ+1) and let N∗ ≤k Mδ witness p ∈ Sbs(Mδ). Assume
toward contradiction that the conclusion fails. Without loss of generality cf(δ) = δ.

Case 0: ‖Mδ‖ ≤ λ(= λs).
Trivial.

Case 1: δ < λ+, ‖Mδ‖ > λ.
As ‖Mδ‖ > λ, for some i, ‖Mi‖ > λ so without loss of generality i < δ ⇒ ‖Mi‖ >

λ. We choose by induction on i < δ, models Ni, N
′
i such that:

(α) Ni ∈ Kλ

(β) Ni ≤k Mi (hence Ni ≤k Mj for j ∈ [i, δ))

(γ) Ni is ≤k-increasing continuous

(δ) N ′i ∈ Kλ, N
∗ ≤k N

′
0

(ε) Ni ≤k N
′
i ≤k Mδ,

(ζ) N ′i is ≤k-increasing continuous

(η) p � N ′i forks over Ni when i 6= 0 for simplicity

(θ) Ni ∪
⋃
j≤i(N

′
j ∩Mi+1) ⊆ Ni+1.
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No problem to carry the induction, but we give details.

First, if i = 0 trivial. Second let i be a limit ordinal.
Let Ni = ∪{Nj : j < i}, now Ni ≤k Mi by clauses (β) + (γ) and k being AEC

and ‖Ni‖ = λ by clause (α), as i ≤ δ < λ+; so clauses (α), (β), (γ) hold. Next, let
N ′i = ∪{N ′j : j < i} and similarly clauses (δ), (ε), (ζ) hold. Lastly, we shall prove
clause (η) and assume toward contradiction that it fails; so p � N ′i does not fork
over Ni in particular p � Ni ∈ Sbs

s (Ni) hence for some j < i the type p � N ′i does
not fork over Nj ≤k Ni, (by (E)(c) of Definition 2.1) hence by transitivity (for ks),
p � N ′i does not fork over Nj hence by monotonicity p � N ′j does not fork over Nj
(see (E)(b) of Definition 2.1) contradicting the induction hypothesis.

Lastly, clause (θ) is vacuous.
Third assume i = j + 1, so first choose Ni satisfying clause (θ) (with j, i here

standing for i, i + 1 there), and (α), (β), (γ); this is possible by the L.S. property.
Now Ni cannot witness “p does not fork over Mi” hence for some N∗i ∈ Kλ we have
Ni ≤k N

∗
i ≤k Mδ and p � N∗i forks over Ni; again by L.S. choose N ′i ∈ Kλ such

that N ′i ≤k Mδ and N∗ ∪Ni ∪N ′j ∪N∗i ⊆ N ′i , easily (Ni, N
′
i) are as required.

Let Nδ =
⋃
i<δ

Ni, so by clause (β), (γ) we have Nδ ≤k Mδ and by clause (α),

as δ < λ+ we have Nδ ∈ Kλ and by clauses (δ) + (θ) in the construction we have
i < δ ⇒ N ′i = ∪{N ′i ∩Mj+1 : j ∈ [i, δ)} ⊆ N so by clause (δ), N∗ ≤k N

′
0 ≤k Nδ.

Hence by the choice of N∗, p � Nδ ∈ Sbs
s (Nδ) and it does not fork over N∗. Now as

p � Nδ ∈ Sbs
s (Nδ) by local character, i.e., clause (E)(c) of Definition 2.1, for some

i < δ, p � Nδ does not fork over Ni (so p � Ni ∈ Sbs
s (Ni)). Now Ni ≤k N

′
i ≤k Mδ

and by clause (θ) of the construction N ′i ⊆ Nδ hence Ni ≤k N
′
i ≤k Nδ hence by

monotonicity of non-forking (i.e. clause (E)(b) of Definition 2.1), p � N ′i ∈ Sbs(Ni)
does not fork over Ni. But this contradicts the choice of N ′i (i.e., clause (η) of the
construction).

Case 2: δ = cf(δ) > λ.
Recall that N∗ ≤k Mδ, N

∗ is from Kλ and N∗ ≤k N ≤k Mδ and N ∈ Kλ ⇒
p � N ∈ Sbs

s (N). Now as δ = cf(δ) > λ ≥ ‖N∗‖ clearly for some i < δ we
have N∗ ⊆ Mi hence N∗ ≤k Mi (hence i ≤ j < δ ⇒ p � Mj ∈ Sbs

≥s(Mj)), and N∗

witnesses that p ∈ Sbs
≥s(Mδ) does not fork over Mi so we are clearly done.

6) Let N0 ∈ Kλ, N0 ≤k M0 witness p � M0 ∈ Sbs
≥s(M0). By the proof of part (4)

clearly i < δ and N0 ≤k N ∈ Kλ and N ≤k Mi ⇒ p � N does not fork over N0. If
cf(δ) > λ we are done, so assume cf(δ) ≤ λ. Let N0 ≤k N

∗ ∈ Kλ and N∗ ≤k Mδ,
and we shall prove that p � N∗ does not fork over N0, this clearly suffices. As
in Case 1 in the proof of part (5) we can find Ni ≤k Mi for i ∈ (0, δ) such that
〈Ni : i ≤ δ〉 is ≤k-increasing with i, each Ni belongs to kλ and N∗ ∩Mi ⊆ Ni+1,
hence N∗ ⊆ Nδ ..=

⋃
i<δ

Ni. Now Nδ ≤k Mδ and as said as i < δ ⇒ p � Ni ∈ Sbs
≥s(Ni)

does not fork over N0 hence p � Nδ does not fork over N0 and by monotonicity
p � N∗ does not fork over N0, as required. �2.11

Lemma 2.12. If µ = cf(µ) > λ and M ≤k N are in Kµ, then we can find ≤k-

representations M,N of M,N respectively such that:

(i) Ni ∩M = Mi for i < µ

(ii) if i < j < µ and a ∈ Ni then

(a) ortp(a,Mi, N) ∈ Sbs
≥s(Mi)⇔ ortp(a,Mj , N) ∈ Sbs

≥s(Mj)

⇔ ortp(a,M,N) does not fork over Mi

⇔ ortp(a,Mj , N) is a non-forking extension of ortp(a,Mi, N)
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(b) Mi ≤k Ni ≤k Nj and Mi ≤k Mj ≤k Nj
(and obviously Mi ≤k Nj and Mi ≤k M,Mi ≤k N,Ni ≤k N).

Remark 2.13. In fact for any representations M̄,N of M,N respectively, for some
club E of µ the sequences M � E,N � E are as above.

Proof. Let M be a ≤k-representation of M . For a ∈ N we define Sa = {α < µ :
ortp(a,Mα, N) ∈ Sbs

≥s(Mα)}. Clearly if δ ∈ Sa is a limit ordinal then for some

i(a, δ) < δ we have i(a, δ) ≤ i < δ ⇒ i ∈ Sa and (ortp(a,Mi, N) does not fork
over Mi(a,δ)) by 2.11(5). So if Sa is stationary, then for some i(a) < µ the set

S′a = {δ ∈ Sa : i(a, δ) = i(a)} is a stationary subset of λ hence by monotonicity we
have i(a) ≤ i ≤ µ ⇒ ortp(a,Mi, N) does not fork over Mi(a). Let Ea be a club of
µ such that: if Sa is not stationary (subset of µ) then Ea ∩Sa = ∅ and if Sa is not
stationary then Sa ∩ Ea = ∅.

Let N be a representation of N , and let

E∗ = {δ < µ :Nδ ∩M = Mδ and Mδ ≤k M,Nδ ≤k N

and for every a ∈ Nδ we have δ ∈ Ea}.

Clearly it is a club of µ and M � E∗, N � E∗ are as required. �2.12

∗ ∗ ∗

We may treat the lifting of K3,bs
λ as a special case of the “lifting” of kλ to

k≥λ = (kλ)up in Claim 1.24; this may be considered a good exercise.

Claim 2.14. 1) (K3,bs
λ ,≤bs) is a λ-AEC.

2) (K3,bs
≥s ,≤bs) is (K3,bs

λ ,≤bs)
up.

Remark 2.15. What is the class in 2.14(1)? Formally, let τ+ = {R[`] : R a predicate
of τK , ` = 1, 2} ∪ {F[`] : F a function symbol from τK and ` = 1, 2} ∪ {c} where
R[`] is an n-place predicate when R ∈ τ is an n-place predicate and similarly F[`]

and c is an individual constant. A triple (M,N, a) is identified with the following
τ+-model N+ defined as follows:

(A) Its universe is the universe of N .

(B) cN
+

= a

(C) RN
+

[2] = RN

(D) FN
+

[2] = FN

(E) RN
+

[1] = RM

(F) FN
+

[1] = FM

(if you do not like partial functions, extend them to functions with full domain by
F (a0, . . .) = a0 when not defined if F has arity > 0, if F has arity zero it is an

individual constant, FN
+

= FN so no problem).

Proof. Left to the reader (in particular, this means that K3,bs
λ is closed under ≤bs-

increasing chains of length < λ+). �2.14
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Continuing 1.24, 1.27 (and see more in 2.23), note that:

Lemma 2.16. Assume

(a) k is an abstract elementary class with LS(k) ≤ µ.

(b) K ′≤µ is a class of τK-model, K ′≤µ ⊆ K≤µ is non-empty and closed under

≤k-increasing unions of length < µ+ and isomorphisms (e.g. the class of
µ-superlimit models of kµ, if there is one).

(c) K ′ ..= {M ∈ K : M is a ≤k-directed union of members of K ′µ} ∪K ′≤µ
(d) Let k′ = (K ′,≤k� K ′) so ≤k′ is ≤k� K ′, so k′≤µ

..= (K ′≤µ, ≤k� K ′≤µ); or ≤k

is as in 1.24(1) (see 1.24(4)).

Then

(A) k′ is an abstract elementary class, LS(k) ≤ LS(k′) ≤ µ.

(B) If µ ≤ λ and (k,
⋃
,Sbs) is a good λ-frame, k′λ has amalgamation and JEP,

and M ∈ k′λ ⇒ Sk′(M) = Sk(M), then (k′,
⋃
,Sbs) (with

⋃
, Sbs restricted

to k′) is a good λ-frame.

(C) In clause (B), instead of “M ∈ k′λ ⇒ Sk′(M) = Sk(M),” it suffices to
require: if M ∈ k′λ, M ≤k N ∈ k′λ, p ∈ Sbs

s (N), p does not fork over M ,
and p �M is realized in some M ′ with M ≤k′ M

′ then p is realized in some
N ′ with N ≤k N

′ ∈ k′λ.

Remark 2.17. If in 2.16, K ′µ is not closed under ≤k-increasing unions, we can close
it but then the “so k′≤µ = . . .” in clause (d) may fail.

Proof. Clause (A): As in 1.24. Clauses (B),(C): Check. �2.16

∗ ∗ ∗

Next we deal with some implications between the axioms in 2.1.

Claim 2.18. 1) In Definition 2.1 clause (E)(i) is redundant, i.e., follows from the
rest, recalling

(E)(i) non-forking amalgamation:
if for ` = 1, 2,M0 ≤k M` are in Kλ, a` ∈ M` \ M0, ortp(a`,M0,M`) ∈
Sbs(M0), then we can find f1, f2,M3 satisfying M0 ≤k M3 ∈ Kλ such that
for ` = 1, 2 we have f` is a ≤k-embedding of M` into M3 over M0 and
ortp(f`(a`), f3−`(M3−`),M3) does not fork over M0.
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2) In fact, proving part (1) we use Axioms (A),(C),(E)(b),(d),(f),(g) only.

f   (N   )

M
2

a
2 M

M

a

1

1

0

1

N

N

N

*

3

3

3
*

2

2 

 N

  3
   *

 N

 2

  2

   2

  2 1

1  2
f   (a  )

   1

f   ( f  (a   ))

f   ( f  (M  ))

Proof. By Axiom (E)(g) (existence) applied with ortp(a2,M0,M2),M0,M1 here
standing for p,M,N there; there is q1 such that:

(a) q1 ∈ Sbs(M1)

(b) q1 does not fork over M0

(c) q1 �M0 = ortp(a2,M0,M2).

By the definition of types and as kλ has amalgamation (by Axiom (C)) there are
N1, f1 such that

(d) M1 ≤k N1 ∈ Kλ

(e) f1 is a ≤k-embedding of M2 into N1 over M0

(f) f1(a2) realizes q1 inside N1.

Now consider Axiom (E)(f) (symmetry) applied with M0, N1, a1, f1(a2) here stand-
ing for M0,M3, a1, a2 there; now as clause (α) of (E)(f) holds (use M1, N1 for
M1,M

′
3) we get that clause (β) of (E)(f) holds which means that there are N2, N

∗
2

(standing for M ′3,M2 in clause (β) of (E)(f)) such that:

(g) N1 ≤k N2 ∈ Kλ

(h) M0 ∪ {f1(a2)} ⊆ N∗2 ≤k N2

(i) ortp(a1, N
∗
2 , N2) ∈ Sbs(N∗2 ) does not fork over M0.

As kλ has amalgamation (see Axiom (C)) and the definition of type and as
ortp(f1(a2),M0, f1(M2)) = ortp(f1(a2),M0, N2) = ortp(f1(a2),M0, N

∗
2 ), we can

find N∗3 , f2 such that

(j) N∗2 ≤k N
∗
3 ∈ Kλ
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(k) f2 is a ≤k-embedding 14 of f1(M2) into N∗3 over M0 ∪ {f1(a2)}.
As by clause (i) above ortp(a1, N

∗
2 , N2) ∈ Sbs(N∗2 ), so by Axiom (E)(g) (extension

existence) there are N3, f3 such that

(l) N2 ≤k N3 ∈ Kλ

(m) f3 is a ≤k-embedding of N∗3 into N3 over N∗2
(n) ortp(a1, f3(N∗3 ), N3) ∈ Sbs(N∗3 ) does not fork over N∗2 .

By Axiom (E)(d) (transitivity) using clauses (i) + (n) above we have

(o) ortp(a1, f3(N∗3 ), N3) ∈ Sbs(N∗3 ) does not fork over M0.

Letting f = f3 ◦ f2 ◦ f1 as f(M2) ⊆ f3(N∗3 ) by clauses (e), (k), (m) we have

(p) f is a ≤k-embedding of M2 into N3 over M0.

By (E)(b) (monotonicity) and clause (o) and clause (p)

(q) ortp(a1, f(M2), N3) ∈ Sbs(f(M2)) does not fork over M0.

As ortp(f1(a2),M1, N3) = ortp(f1(a2),M1, N1) = q1 does not fork over M0 by
clauses (b) + (f), and f2(f1(a2)) = f1(a2) by clause (k) and f3(f1(a2)) = f1(a2) by
clauses (m) + (h), we get

(r) ortp(f(a2),M1, N3) ∈ Sbs(M1) does not fork over M0.

So by clauses (o) and (r) we have idM1
, f,N3 are as required on f1, f2,M3 in our

desired conclusion. �2.18

Claim 2.19. 1) In the local character Axiom (E)(c) of Definition 2.1 if Sbs
s = Sna

ks
recalling Sna

ks
(M) = {ortp(a,M,N) : M ≤s N and a ∈ N \M} then it suffices to

restrict ourselves to the case that δ has cofinality ℵ0 (i.e., the general case follows
from this special case and the other axioms).

2) In fact in part (1) we need only Axioms (E)(b),(h) and you may say (A),(D)(a),(E)(a).

3) If Sbs = Sna then the continuity Axiom (E)(h) follows from the rest.

4) In (3) actually we need only Axioms (E)(c), (local character) (d), (transitivity)
and you may say (A),(D)(a),(E)(a).

Proof. 1), 2) Let 〈Mi : i ≤ δ + 1〉 be ≤kλ -increasing, a ∈ Mδ+1 \Mδ and without
loss of generality ℵ0 < δ = cf(δ), so for every α ∈ S ..= {α < δ : cf(α) = ℵ0},
ortp(a,Mα,Mδ+1) ∈ Sbs(Mα) by the assumption “Sbs

s = Sna
ks

hence there is βα < α
such that ortp(a,Mα,Mδ+1) does not fork over Mβα , so for some β < δ the set
S1 = {α ∈ S : βα = β) is a stationary subset of δ. By Axiom (E)(b) (monotonicity)
it follows that for any γ1 ≤ γ2 from [β, δ) the type ortp(a,Mγ2

,Mδ+1) ∈ Sbs(Mγ2
)

does not fork over Mγ1 . Now for any γ ∈ [β, δ) the type ortp(a,Mδ,Mδ+1) does
not fork over Mγ by applying (E)(h) (continuity) to 〈Mα : α ∈ [γ, δ+ 1] so we have
finished.

3),4) So assume 〈Mi : i ≤ δ〉 is ≤k-increasing continuous, all in Kλ and δ is a limit
ordinal, p ∈ S(Mδ) and pi ..= p � Mi ∈ Sbs(Mi) does not fork over M0 for each
i < δ; we should prove that p ∈ Sbs(Mδ) and p does not fork over M0.

First, for each i < δ, pi ∈ Sbs(Mi) hence pi is not realized in Mi. As Mδ =
∪{Mi : i < δ} clearly p is not realized in Mδ so p ∈ Sna(Mδ) = Sbs(Mδ).

Second, by Ax(E)(c) the type p does not fork over Mj for some j < δ. As
pj = p � Mj does not fork over M0 (by assumption) by the transitivity Axiom
(E)(d), we get that p does not fork over M0, as required. �2.19

14we could have chosen N∗3 = N2, f2 = idf1(M2)
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Remark 2.20. So in some sense by 2.19 we can omit in 2.1, the local character Axiom
(E)(c) or the continuity Axiom (E)(h) but not both. In fact (under reasonable
assumptions) they are equivalent.

Claim 2.21. In Definition 2.1, Clause (E)(d), i.e., transitivity of non-forking fol-
lows from (A),(C),(D)(a),(b),(E)(a),(b),(e),(g).

Proof. As kλ is an λ-AEC with amalgamation, types as well as restriction of types
are not only well defined but are “reasonable”.

So assume M0 ≤s M ′0 ≤s M ′′0 ≤s M3, a ∈ M3 and p′′ ..= ortps(a,M
′′
0 ,M3)

does not fork over M ′0 and p′ ..= ortps(a,M
′
0,M3) does not fork over M0. Let

p = p′ �M0. As p′ does not fork over M0, by Axiom (E)(a) we have p′ ∈ Sbs(M ′0)
and p = ortp(a,M0,M3) = p′ � M0 belongs to Sbs(M0). As p′′ does not fork over
M ′0 clearly p′′ ∈ Sbs(M ′′0 ) and recall p′′ � M ′0 = p′. By the existence axiom (E)(g)
the type p has an extension q′′ ∈ Sbs(M ′′0 ) which does not fork over M0. By the
monotonicity Axiom (E)(b) the type q′′ does not fork over M ′0 and q′ = q′′ � M ′0
does not fork over M0. As p′, q′ ∈ Sbs(M ′0) do not fork over M0 and p′ � M0 =
p = q′′ � M0 = q′ � M0, by the uniqueness Axiom Ax(E)(e), we have p′ = q′.
Similarly p′′ = q′′, but q′′ does not fork over M0 hence p′′ does not fork over M0 as
required. �2.21

Claim 2.22. 1) The symmetry axiom (E)(f) is equivalent to (E)(f)′ below if we
assume (A),(B),(C),(D)(a),(b),(E)(a),(b),(g) in Definition 2.1

(E)(f)′ there are no M`(` ≤ 3) and a`(` ≤ 2) such that
(a) M0 ≤s M1 ≤s M2 ≤s M3

(b) ortp(a`,M`,M`+1) does not fork over M0 for ` = 0, 1, 2

(c) ortps(a0,M0,M1) = ortps(a2,M0,M3)

(d) ortps(〈a0, a1〉,M0,M1) 6= ortps(〈a2, a1〉,M0,M1).

Proof. Easy. �2.22

∗ ∗ ∗

A most interesting case of 2.16 is the following. In particular it tells us that the
categoricity assumption is not so rare and it will have essential uses here.

Claim 2.23. If s = (k,
⋃
λ
,Sbs) is a good λ-frame and M ∈ Kλ is a superlimit model

in kλ and we define s′ = s[M ] = s[M ] = (k[s[M ]],
⋃
λ

[s[M ]],Sbs[s[M ]]) by

k[s[M ]] = k[M ], see Definition 1.26 so ks[M ] = k � {N : N ∼= M}⋃
λ

[s[M ]] = {(M0,M1, a,M3) ∈
⋃
λ

: M0,M1,M3 ∈ K [M ]
λ }

Sbs[s[M ]] =
{

ortpk[M ](a,M0,M1) :M0 ≤k M1,M0 ∈ K [M ]
λ , N ∈ K [M ]

λ

and ortpk(a,M0,M1) ∈ Sbs(M0)
}
.

Then

(A) s′ is a good λ-frame
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(B) k[s′] ⊆ k≥λ[s]

(C) ≤k[s′]=≤k� K[s′]

(D) Kλ[s′] is categorical.

Proof. Straight by 1.24, 1.27, 2.16. �2.23

————————————————————
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§ 3. Examples

We show here that the context from §2 occurs in earlier investigation: in [She87a]
= [She09a], [She01] that is [She09c], [She75] (and [She83a], [She83b]). Of course,
also the class K of models of a superstable (first order) theory T (working in Ceq),
with ≤k=≺ and Sbs(M) being the set of regular types (when we work in Ceq) or just
“the set non-algebraic types” works, with

⋃
(M0,M1, a,M3) iff M0 ≤k M1 ≤k M3

are in Kλ, a ∈ M3 and ortp(a,M1,M3) ∈ Sbs(M1) does not fork over M0, (in the
sense of [She90, III], of course). The reader may concentrate on 3.10 (or 3.5) below
for easy life.

Note that 3.5 (or 3.8) will be used to continue [She87a] = [She09a] and also to
give an alternative proof to the theorem of [She83a], [She83b] + (deducing “there
is a model in ℵn” if there are not too many models in ℵ` for ` < n) and note that
3.8 will be used to continue [She75], i.e., on ψ ∈ Lω1,ω(Q) and 3.10 will be used to
continue [She01]. Many of the axioms from 2.1 are easy.

§ 3(A). The superstable prototype.

Claim 3.1. Assume T is a first order complete theory and λ be a cardinal ≥ |T |+ℵ0;
let k = kT,λ = (KT,λ ≤kT,λ) be defined by:

(a) KT,λ is the class of models of T of cardinality ≥ λ
(b) ≤kT,λ is “being an elementary submodel”.

0) k is an AEC with LS(k) = λ.
1) If T is superstable, stable in λ, then s = sT,λ is a good λ-frame when s =

(kT,λSbs,
⋃

) is defined by:

(c) p ∈ Sbs(M) iff p = ortpkt,λ
(a,M,N) for some a,N such that tpL(τT )(a,M,N),

see Definition 3.3 is a non-algebraic complete 1-type over M , so M ≺ N, a ∈
N \M

(d)
⋃

(M0,M1, a,M3) iff M0 ≺ M1 ≺ M3 are in KT,λ and a ∈ M3 and

tpL(τT )(a,M1,M3) is a type that does not fork over M0 in the sense of

[She90, III].

2) Let κ = cf(κ) ≤ λ. The model M is a (λ, κ)-brimmed model for kT,λ iff (i)+(ii)
or (i)+(iii) where

(i) T is stable in λ

(ii) κ = cf(κ) ≥ κ(T ) and M is a saturated model of T of cardinality λ

(iii) κ = cf(κ) < κ(T ) and there is a ≺-increasing continuous sequence 〈Mi :
i ≤ κ〉 (by ≺, equivalently by ≤s) such that M = Mκ and (Mi+1, c)c∈Mi is
saturated for i < κ.

2A) So there is a (λ, κ)-brimmed model for kT,λ iff T is stable in λ.
3) M is (λ, κ)-brimmed over M0 in kT,λ iff (M, c)c∈M0

is (λ, κ)-brimmed.
4) Assume T is superstable first order complete theory stable in λ and we define

sregT,λ as above only Sbs(M) is the set of regular types p ∈ SkT (M) and we work in

T eq. Then sregT,λ is a good λ-frame.

5) For κ ≤ λ or κ = ℵε (abusing notation), sκT,λ is defined similarly restricting

ourselves to Faκ-saturated models. (Let s0
t,λ = sT,λ.) If T is superstable, stable in λ

then sκT,λ is a good λ frame.

Remark 3.2. We can replace (c) of 3.1 by:
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(c)′ p ∈ Sbs(M) iff p = ortpkT,λ
(a,M,N) for some a,N such that tpL(τT )(a,M,N)

is a complete 1-type over M

except that clause (D)(b) of Definition 2.1 fail. In fact the proofs are easier in this
case; of course, the two meaning of types essentially agree.

Proof. 0),1),2),2A),3) Obvious (see [She90]).

4) As in (1), except density of regular types which holds by [HS89].

5) Also by [She90]. �3.1

Recall

Definition 3.3. 1) For a logic L and vocabulary τ,L (τ) is the set of L -formulas
in this vocabulary.

2) L = Lω,ω is first order logic.

3) A theory in L (τ) is a set of sentences from L (τ) which we assume has a model
if not said otherwise. Similarly in a language L(⊆ L (τ))

Very central in [She09a] (and [She09b]) but peripheral here (except when in (parts
of) §3 we continue [She09a] in our framework) is:

Definition 3.4. Let T1 be a theory in L(τ1), τ ⊆ τ1 vocabularies, Γ a set of types
in L(τ1); (i.e. for some m, a set of formulas ϕ(x0, . . . , xm−1) ∈ L(τ1)).

1) EC(T1,Γ) = {M : M a τ1-model of T1 which omits every p ∈ Γ}.
(So without loss of generality τ1 is reconstructible from T1,Γ) and

PCτ (T1,Γ) = PC(T1,Γ, τ) = {M : M is a τ -reduct of some M1 ∈ EC(T1,Γ)}.
2) We say that k is PCµλ or PCλ,µ if for some T1, T2,Γ1,Γ2 and τ1 and τ2 we

have: (T` a first order theory in the vocabulary τ`,Γ` a set of types in L(τ`) and)
K = PC(T1,Γ1, τk) and {(M,N) : M ≤k N and M,N ∈ K} = PC(T2,Γ2, τ

′) where
τ ′ = τk ∪ {P}, (P a new one place predicate and (M,N) means the τ ′-model N+

expanding N where PN
+

= |M |) and |T`| ≤ λ, |Γ`| ≤ µ for ` = 1, 2.

3) If µ = λ, we may omit µ.

§ 3(B). An abstract elementary class which is PCℵ0
.

theorem 3.5. Assume 2ℵ0 < 2ℵ1 and consider the statements

(α) k is an abstract elementary class with LS(k) = ℵ0 (the last phrase follows
by clause (β)) and τ = τ(k) is countable

(β) k is PCℵ0
, equivalently for some sentences ψ1, ψ2 ∈ Lω1,ω(τ1) where τ1 is a

countable vocabulary extending τ we have

K ={M1 � τ : M1 a model of ψ1}
{(N,M) : M ≤k N} = {(N1 � τ,M1 � τ) : (N1,M1) a model of ψ2}

(γ) 1 ≤ İ(ℵ1, k) < 2ℵ1

(δ) k is categorical in ℵ0, has the amalgamation property in ℵ0 and is stable in
ℵ0

(δ)− like (δ) but “stable in ℵ0” is weakened to: M ∈ kℵ0
⇒ |S(M)| ≤ ℵ1

(ε) all models of k are L∞,ω-equivalent and M ≤k N ⇒M ≺L∞,ω N .
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For M ∈ kℵ0
we define k′M as follows: the class of members is

{N ∈ K : N ≡L∞,ω M} and N1 ≤k′M
N2 iff N1 ≤k N2 and N1 ≺L∞,ω N2.

1) Assume (α)+(β)+(γ), then for some M ∈ kℵ0 the class k′M satisfies (α)+(β)+
(γ) + (δ)− + (ε); in fact any M ∈ kℵ0

such that (k′M )ℵ1
6= ∅ will do and there are

such M ∈ Kℵ0
. Moreover, if k satisfies (δ) then also k′M satisfies it; also trivially

K ′M ⊆ K and ≤k′M
⊆≤k.

1A) Also there is k′ such that: k′ satisfies (α) + (β) + (γ) + (δ) + (ε), and for every
µ we have K ′µ ⊆ Kµ. In fact, in the notation of [She09a, 88r-5.6] for every α < ω1

we can choose k′ = kDα
.

2) Assume (α) + (β) + (γ) + (δ). Then (k,
⋃
,Sbs) is a good ℵ0-frame for some

⋃
and Sbs.

3) In fact, in part (2) we can choose Sbs(M) = {p ∈ S(M) : p not algebraic} and⋃
is defined by [She09a, 88r-5.11] (the definable extensions).

Remark 3.6. 1) In [She09a, 88r-5.23] we use the additional assumption İ(ℵ2,K) <
µunif(ℵ2, 2

ℵ1). But this Theorem is not used here!
2) Note that k′M is related to K [M ] from Definition 1.26 but is different.
3) In the proof we relate the types in the sense of Ss(M), and those in [She09a,

§5]. Now in [She09a, §5] we have lift types, from kℵ0
to any kµ, i.e., define D(N) for

N ∈ kµ. In µ > ℵ0, in general we do not know how to relate them to types Sks(N).
But when s+ is defined (in the “successful” cases, see §8 here and [She09e, §1]) we
can get the parallel claim.

Discussion 3.7. 1) What occurs if we do not pass in 3.5 to the case “D(N)
countable for every N ∈ Kℵ0

”? If we still assume “k categorical in ℵ0” then as
|D(N0)| ≤ ℵ1, if we assume “there is a superlimit model in kℵ1

” we can find a good
ℵ1-frame s; this assumption is justified by [She09a, 88r-5.23], [She09a, 88r-5.24].

Proof. 1) Note that for any M ∈ Kℵ0
, the class k′M satisfies (α), (β), (ε) and it

is categorical in ℵ0 and (K ′M )µ ⊆ Kµ hence İ(µ,K ′M ) ≤ İ(µ,K). By Theorem
[She09a, 88r-3.6], (note: if you use the original version (i.e., [She87a]) by its proof
or use it and get a less specified class with the desired properties) for some M ∈ Kℵ0

we have (k′M )ℵ1
6= ∅. By [She09a, 88r-3.5] we get that k′M has amalgamation in

ℵ0 and by [She09a] almost we get that in k′M the set S(M) is of small cardinality
(≤ ℵ1); be careful - the types there are defined differently than here, but by the
amalgamation (in ℵ0) and the omitting types theorem in this case they are the
same, see more in the proof of part (3) below. So by [She09a, 88r-5.1], [She09a,
88r-5.2] we have M ∈ (k′µ)ℵ0

⇒ |Sk′µ(M)| ≤ ℵ1.

Also the second sentence in (1) is easy.
1A) Use [She09a, 88r-5.18], [She09a, 88r-5.19].
In more detail, (but not much point in reading without some understanding

of [She09a, §5], however we should not use [She09a, 88r-5.23] as long as we do not
strengthen our assumptions) by part (1) we can assume that clauses (δ)−+(ε) hold.
(Looking at the old version [She87a] of [She09a] remember that there ≺ means ≤k.)
We can find D∗ = D∗α, α < ω1, which is a good countable diagram (see Definition
[She09a, 88r-5.6.1] and Fact [She09a, 88r-5.6] or [She09a, 88r-5.16], [She09a, 88r-
5.17]. So in particular (give the non-maximality of models below) such that for
some countable M0 <k M1 <k M2 we have Mm is (D∗(M`),ℵ0)-homogeneous for
` < m ≤ 2. In [She09a, 88r-5.18] we define (KD∗ ,≤D∗). By [She09a, 88r-5.19]
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the pair (KD∗ ,≤D∗) is an abstract elementary class (the choice of D∗ a part, e.g.
transitivity = Axiom II which holds by the existence of the M`’s above and [She09a,
88r-5.16]) categorical in ℵ0 and no maximal countable model (by ≤D∗ , see [She09a,
88r-5.6](2). Now ℵ0-stability holds by [She09a, 88r-5.19](2) and the equality of the
three definitions of types in the proof of parts (2),(3) and KD∗ ⊆ K so we are done
by part 3) below.

2),3) The first part of the proof serves also part (1) of the theorem so we assume
(δ)− instead of (δ). We should be careful: the notion of type has three relevant
meanings here. For N ∈ Kℵ0 the three definitions for S<ω(N) and of tp(ā, N,M)
when ā ∈ ω>M,N ≤k M ∈ Kℵ0

(of course we can use just 1-types) are:

(α) the one we use here (recall 1.9) which uses elementary mappings; for the
present proof we call them S<ω0 (M), tp0(ā,M,N)

(β) S1(N) which is (recall that materialize is close to but different from realize)

D(N) =
{
p : p a complete L0

ℵ1,ℵ0
(N)-type over N

(so in each formula only finitely many parameters from N appear)

such that for some M, ā ∈ ω>M, ā materializes p in (M,N)
}

(“materializing a type” is defined in [She09a, 88r-4.2](2)) so

S1(N) = {tp1(ā, N,M) : ā ∈ ω>M and N ≤k M ∈ Kℵ0
}

where

tp1(ā, N,M) = {ϕ(x̄) ∈ L0
ℵ1,ℵ0

(N) : M 
ℵ1

k ϕ(ā)}
(see [She09a, 88r-4.2](1) on the meaning of this forcing relation).

(γ) S2(N) which is

D∗(N) =
{
p : p a complete L0

ℵ1,ℵ0
(N ;N)-type over N

(so in each formula all members of N may appear)

such that for some M ∈ Kℵ0
and

ā ∈ ω>M satisfying N ≤k M the sequence

ā materializes p in (M,N)
}

so

S2(N) = {tp2(ā, N,M) : ā ∈ ω>M and N ≤k M ∈ Kℵ0
}

tp2(ā, N,M) = {ϕ(x̄) ∈ L0
ℵ1,ℵ0

(N,N) : M 
ℵ1

k ϕ(ā)}.
As we have amalgamation in Kℵ0

it is enough to prove for `,m < 3 that

(∗)`,m if k < ω,N ≤k M ∈ Kℵ0
and ā, b̄ ∈ kM , then

tp`(ā, N,M) = tp`(b̄, N,M)⇒ tpm(ā, N,M) = tpm(b̄, N,M).

Now (∗)2,1 holds trivially (more formulas) and (∗)1,2 holds by [She09a, 88r-5.5].
By amalgamation in kℵ0

, if tp0(ā, N,M) = tp0(b̄, N,M), then for some M ′,M ≤k

M ′ ∈ Kℵ0
there is an automorphism f of M ′ over N such that f(ā) = b̄, so trivially

(∗)0,1, (∗)0,2 hold (we use the facts that tp`(ā, N,M) is preserved by isomorphism
and by replacing M by M1 if M ≤k M2 ∈ Kℵ0 and N ∪ ā ⊆M1 ≤k M2). Lastly we
prove (∗)2,0.

So N ≤k M ∈ Kℵ0
, hence tp2(c̄, N,M) : c̄ ∈ ω>M} ⊆ D∗(N) is countable so

by [She09a, 88r-5.6](b),(c) for some countable α < ω1 we have {tp2(c̄, N,M) : c̄ ∈
ω>M} ⊆ D∗α(N). Now there is M ′ ∈ Kℵ0

such that M ≤k M
′,M ′ is (D∗α,ℵ0)∗-

homogeneous (by [She09a, 88r-5.6](e) see Definition [She09a, 88r-5.7]) hence M ′ is
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(D∗α(N),ℵ0)∗- homogeneous (by [She09a, 88r-5.6](f)), and tp2(ā, N,M ′) = tp2(b̄, N,M ′)
by [She09a, 88r-5.4.1](3), (N here means N0 there, that is increasing the model pre-
serve the type).

Lastly by Definition [She09a, 88r-5.7] there is an automorphism f of M ′ over
N mapping ā to b̄, so we have proved (∗)2,0, so the three definitions of type are
equivalent.

Now we define for M ∈ Kℵ0
:

(a) Sbs(M) = {p ∈ Sk(M) : p not algebraic}
(b) for M0,M1,M3 ∈ Kℵ0

and an element a ∈M3 we define:⋃
(M0,M1, a,M3) iff M0 ≤k M1 ≤k M3 and a ∈M3 \M1 and

tp1(a,M1,M3)(= gtp(a,M1,M3) in [She09a]’s notation)
is definable over some finite b̄ ∈ ω>M0 (equivalently is preserved by every

automorphism of M1 over b̄ (see [She09a, 88r-5.11])
equivalently gtp(a,M1,M3) is the stationarization of gtp(a,M0,M3).

Now we should check the axioms from Definition 2.1.
Clause (A): By clause (α) of the assumption.
Clauses (B),(C): By clause (δ) or (δ)− of the assumption except “the superlimit

M ∈ Kℵ0
is not ≤k-maximal” which holds by clause (γ) + (δ) or (γ) + (δ)−.

Clause (D): By the definition (note that about clause (d), bs-stability, that it
holds by assumption (δ), and about clause (c), i.e., the density is trivial by the way
we have defined Sbs).

Subclause (E)(a): By the definition.

Subclause (E)(b)(monotonicity):

LetM0 ≤k M
′
0 ≤k M

′
1 ≤k M1 ≤k M3 ≤M ′3 be all in kℵ0

and assume
⋃

(M0,M1, a,M3).

So M ′0 ≤k M
′
1 ≤k M3 ≤M ′3 and a ∈M3 \M1 ⊆M ′3 \M ′1. Now by the assumption

and the definition of
⋃

, for some b̄ ∈ ω>(M0), gtp(a,M1,M3) is definable over b̄. So

the same holds for gtp(a,M ′1,M3) by [She09a, 88r-5.13], in fact (with the same def-
inition) and hence for gtp(a,M ′1,M

′
3) = gtp(a,M ′1,M3) by [She09a, 88r-5.4.1](3),

so as b̄ ∈ ω>(M0) ⊆ ω>(M ′0) we have gotten
⋃

(M ′0,M
′
1, a,M

′
3).

For the additional clause in the monotoncity Axiom, assume in addition M ′1 ∪
{a} ⊆M ′′3 ≤k M

′
3 again by [She09a, 88r-5.4.1](3) clearly gtp(a,M ′1,M

′′
3 ) = gtp(a,M ′1,M

′
3),

so (recalling the beginning of the proof) we are done.
Sublcause (E)(c)(local character):

So let 〈Mi : i ≤ δ + 1〉 be ≤k-increasing continuous in Kℵ0
and a ∈ Mδ+1 and

ortp(a,Mδ,Mδ+1) ∈ Sbs(Mδ), so a /∈ Mδ and gtp(a,Mδ,Mδ+1) is definable over
some b̄ ∈ ω>(Mδ) by [She09a, 88r-5.4].

As b̄ is finite, for some α < δ we have b̄ ⊆Mα, hence we have (ortp(a,Mβ ,Mδ+1) ∈
Sbs(Mβ) trivially and) ortp(a,Mδ,Mδ+1) does not fork over Mβ .

Sublcause (E)(d)(transitivity):

By [She09a, 88r-5.13](2) or even better [She09a, 88r-5.16].
Subclause (E)(e)(uniqueness):

Holds by the Definition [She09a, 88r-5.11].
Subclause (E)(f)(symmetry):

By [She09a, 88r-5.20] + uniqueness we get (E)(f). Actually [She09a, 88r-5.20]
gives this more directly.

Subclause (E)(g)(extension existence):

By [She09a, 88r-5.11] (i.e., by [She09a, 88r-5.4] + allM ∈ Kℵ0
are ℵ0-homogeneous).

Alternatively, see [She09a, 88r-5.15].
Subclause (E)(h)(continuity):
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Suppose 〈Mα : α ≤ δ〉 is ≤k- increasingly continuous, Mα ∈ Kℵ0
, δ < ω1, p ∈

S(Mδ) and α < δ ⇒ p �Mα does not fork overM0. Now we shall use (E)(c)+(E)(d).
As p �Mα ∈ Sbs(Mα) clearly p �Mα is not realized in Mα hence p is not realized in
Mα; as Mδ =

⋃
α<δ

Mα necessarily p is not realized in Mδ, hence p is not algebraic.

So p ∈ Sbs(Mδ). For some finite b̄ ∈ ω>(Mδ), p is definable over b̄, let α < δ be
such that b̄ ∈ ω>(Mα), so as in the proof of (E)(c), (or use it directly) the type p
does not fork over Mα. As p �Mα does not fork over M0, by (E)(d) we get that p
does not fork over M0 as required. Actually we can derive (E)(h) by 2.19.

Subclause (E)(i)(non-forking amalgamation):

One way is by [She09a, 88r-5.20]; (note that in [She09a, 88r-5.23] we get more,

but assuming, by our present notation İ(ℵ2,K) < µwd(ℵ2)); but another way is
just to use 2.18. �3.5

§ 3(C). The uncountable cardinality quantifier case, Lω1,ω(Q). Now we turn
to sentences in Lω1,ω(Q).

Conclusion 3.8. Assume ψ ∈ Lω1,ω(Q) and 1 ≤ İ(ℵ1, ψ) < 2ℵ1 and 2ℵ0 < 2ℵ1 .
Then for some abstract elementary classes k, k+ (note τψ ⊂ τk = τk+) we have:

(a) k satisfies (α), (β), (δ), (ε) from 3.5 with τk ⊇ τψ countable (for (γ), (b) is a
replacement)

(b) for every µ > ℵ0, İ(µ, k(ℵ1-saturated)) ≤ İ(µ, ψ), where 15 “ℵ1-saturated”
is well defined as kℵ0

has amalgamation, see 1.15

(c) for some
⋃
,Sbs (and λ = ℵ0), the triple (k,

⋃
, Sbs) is as in 3.5(2) so is a

good ℵ0-frame

(d) every ℵ1-saturated member of k belongs to k+ and there is an ℵ1-saturated
member of k (and naturally it is uncountable, even of cardinality ℵ1)

(e) k+ is an AEC, has LS number ℵ1 and {M � τψ : M ∈ k+} ⊆ {M :
M |= ψ} and every τ -model M of ψ has a unique expansion in k+ hence

µ ≥ ℵ1 ⇒ İ(µ, ψ) = İ(µ, k+) and k+ is the class of models of some complete
ψ ∈ Lω1,ω(Q).

Proof. Essentially by [She75] and 3.5.
I feel that upon reading [She75] the proof should not be inherently difficult, much

more so having read 3.5, but will give full details.
Recall Mod(ψ) is the class of τψ-models of ψ. We can find a countable fragment

L of Lω1,ω(Q)(τψ) to which ψ belongs and a sentence ψ1 ∈ L ⊆ Lω1,ω(Q)(τψ)
such that ψ1 is “nice” for [She75, Definition 3.1,3.2], [She75, Lemma 3.1]

~1 (a) ψ1 has uncountable models

(b) ψ1 ` ψ, i.e., every model of ψ1 is a model of ψ

(c) ψ1 is Lω1,ω(Q)-complete

(d) every model M |= ψ1 realizes just countably many complete
Lω1,ω(Q)(τψ)-types (of any finite arity, over the empty set),
each isolated by a formula in L .

The proof of ~1(d) is sketched in Theorem 2.5 of [She75]. The reference to Keisler
[Kei71] is to the generalization of theorems 12 and 28 of Keisler’s book from Lω1,ω

to Lω1,ω(Q), see [She09a, 88r-0.1].
Let

15much less than saturation suffice, like “obeying” <∗∗
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~2 (i) k0 = (Mod(ψ),≺L ),

(ii) k1 = (Mod(ψ1),≺L )

~3 k` is an AEC with L.S. number ℵ1 for ` = 0, 1.

Toward defining k, let τk = τψ ∪ {Rϕ(x̄) : ϕ(x̄) ∈ L }, Rϕ(x̄) a new g̀(x̄)-predicate
and let ψ2 = ψ1 ∧ {(∀ȳ)(Rϕ(x̄)(ȳ) = ϕ(ȳ) : ϕ(x̄) ∈ L}. For every M ∈ Mod(ψ) we

define M+ by

~4 M+ is M expanded to a τk-model by letting RM
+

ϕ(x̄) = {ā ∈ g̀(x̄)M : M |=
ϕ[ā]}

~5 (a) k+0 = ({M+ : M ∈ Mod(ψ)},≺L) is an AEC with LS(k+0 ) = ℵ1

(b) k+1 = ({M+ : M ∈ Mod(ψ1)},≺L) is an AEC with LS(k+) = ℵ1.

Clearly

~6 if M |= ψ1 then M+ is an atomic model of the complete first-order theory
Tψ1 where Tψ1 is the set of first order consequences in L(τk) of ψ2.

So it is natural to define k:

~7 (a) N ∈ k iff
(α) N is a τk-model which is an atomic model of Tψ1

(β) if ψ1 ` (∀x̄)[ϕ1(x̄) = (Qy)ϕ2(y, x̄)] and ϕ1, ϕ2 ∈ L andN |= ¬Rϕ1(x̄)[ā]
then {b ∈ N : N |= Rϕ2(y,x̄)(b, ā)} is countable

(b) N1 ≤k N2 iff (N1, N2 ∈ K,N1 ≺L N2 equivalently N1 ⊆ N2 and) for
ϕ1(x̄), ϕ2(y, x̄) as in subclause (β) of clause (a) above, if ā ∈

g̀(x̄)(N1),
N1 |= ¬Rϕ1(x̄)[ā] and b ∈ N2 \N1 then N2 |= ¬Rϕ2(y,x̄)[b, ā].

Observe

~8 N ∈ k iff N is an atomic τk-model of the first order L(τk)-consequences ψ2

(i.e. of ψ and every τk sentence of the form ∀x̄[Rϕ(x̄) ≡ ϕ(x̄)]) and clause
(β) of ~7(a) holds

~9 k is an AEC with LS(k) = ℵ0 and is PCℵ0 , k is categorical in ℵ0 (and ≤k is
called ≤∗ in [She75, Definition 3.3]).

Note that k1, k
+
1 has the same number of models, but k has “more models” than

k+1 , in particular, it has countable members and k0 has at least as many models as
k1. For N ∈ k to be in k+1 = {M+ : M ∈ Mod(ψ1)} what is missing is the other
implications in ~7(a)(β).

This is very close to 3.5, but k may have many models in ℵ1 (as Q is not
necessarily interpreted as expected). However,

~10 constructing M ∈ Kℵ1
by the union as ≤k-increasing continuous chain

〈Mi : i < ω1〉, to make sure M ∈ k+1 it is enough that for unboundedly
many α < ω1,Mα <

∗∗ Mα+1 and (∀M ∈ kℵ0
)(∃N ∈ kℵ0

)(M <∗∗ N)
where

~11 for M,N ∈ k,M <∗∗ N iff
(i) M ≤k N

(ii) in ~7(b) also the inverse direction holds.

Does k have amalgamation in ℵ0? Now [She75, Lemma 3.4], almost says this but
it assumed ♦ℵ1 instead of 2ℵ0 < 2ℵ1 ; and [She09a, 88r-3.5] almost says this, but
the models are from kℵ1

rather than k+ℵ1
but [She09a, 88r-3.8.4] fully says this

using the so called KF
ℵ1

, see Definition [She09a, 88r-3.8.1] and using F such that
M ∈ kℵ0 ⇒ M <∗∗ F(N) ∈ kℵ0 ; or pedantically F = {(M,N) : M <∗∗ N are from
k}. So

~12 k has the amalgamation property in ℵ0.
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It should be clear by now that we have proved clauses (a),(b),(d),(e) of 3.8 using k.
We have to prove clause (c); we cannot quote 3.5 as clause (γ) there is only almost
true. The proof is similar to (but simpler than) that of 3.5 quoting [She75] instead
of [She09a]; a marked difference is that in the present case the number of types over
a countable model is countable (in k) whereas in [She09a] it seemingly could be ℵ1,
generally [She75] situation is more similar to the first order logic case.

Recall that all models from k are atomic (in the first order sense) and we shall
use below tpL.

As k has ℵ0-amalgamation (by ~12), clearly [She75, §4] applies; now by [She75,
Lemma 2.1](B) + Definition 3.5, being (ℵ0, 1)-stable as defined in [She75, Definition
3.5](A) holds. Hence all clauses of [She75, Lemma 4.2] hold, in particular ((D)(β)
there and clause (A), i.e., [She75, Def.3.5](B)), so

~13 (i) if M ≤k N and ā ∈ N then tpL(ā,M,N) is definable over a finite
subset of M

(ii) if M ∈ kℵ0
then {tpL(ā,M,N) : ā ∈ ω>N and M ≤k N} is countable.

By [She75, Lemma 4.4] it follows that

~14 ifM ≤k N are countable and ā ∈M then tpL(ā,M,N) determine tpk(ā,M,N).

Now we define s = (kℵ0 ,Sbs,
⋃

) by

~15 Sbs(M) = {ortpk(ā,M,N) : M ≤k N are countable and ā ∈ ω>N but
ā /∈ ω>M}

~16 ortpk(ā,M1,M3) does not fork over M0 where M0 ≤k M1 ≤k M3 ∈ kℵ0 iff
tpL(ā,M1,M3) is definable over some finite subset of M0.

Now we check “s is a good frame”, i.e., all clauses of Definition 2.1.

Clause (A): By ~9 above.

Clause (B): As k is categorical in ℵ0, has an uncountable model and LS(k) = ℵ0

this should be clear.

Clause (C): kℵ0
has amalgamation by ~12 and has the JEP by categoricity in ℵ0

and kℵ0
has no maximal model by (categoricity and) having uncountable models

(and LS(k) = ℵ0).

Clause (D): Obvious; stability, i.e., (D)(d) holds by ~13(ii) +~14.

Subclause (E)(a),(b): By the definition.

Subclause (E)(c): (Local character).
If 〈Mi : i ≤ δ + 1〉 is ≤k-increasing continuous Mi ∈ Kℵ0

, ā ∈ ω>(Mδ+1) and
ā ∈ ω>(Mδ) then for some finite A ⊆ Mδ, tpL(ā,Mδ,Mδ+1) is definable over A,
so for some i < δ,A ⊆ Mδ hence j ∈ [i, δ) ⇒ tpL(ā,Mi,Mδ+1) is definable over
A⇒

⋃
(Mi,Mδ, ā,Mδ+i).

Subclause (E)(d): (Transitivity).
As if M ′ ≤k M

′′ ∈ kℵ0
, two definitions in M ′ of complete types, which give the

same result in M ′ give the same result in M ′′.

Sublause (E)(e)(uniqueness): By ~14 and the justification of transitivity.

Subclause (E)(f)(symmetry): By [She75, Theorem 5.4], we have the symmetry
property see [She75, Definition 5.2]. By [She75, 5.5] + the uniqueness proved above
we can finish easily.

Subclause (E)(g): Extension existence.
Easy, included in [She75, 5.5].

Subclause (E)(h): Continuity.
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As Sbs
s (M) is the set of non-algebraic types this follows from “finite character”,

that is by 2.19(3)(4).

Subclause (E)(i): non-forking amalgamation
By 2.18. �3.8

Remark 3.9. So if ψ ∈ Lω1,ω(Q) and 1 ≤ İ(ℵ1, ψ) < 2ℵ1 , we essentially can apply
Theorem 0.1, exactly see 9.5.

§ 3(D). Starting at λ > ℵ0. The next theorem puts the results of [She01] in our
context hence rely on it heavily.

(Alternatively, even eliminating “WDmId(λ+) is λ++-saturated” we can deduce
3.10 by [She09c], [She09d], i.e. by [She09c, 0z.1](2) there is a so called almost good
λ-frame s and by [She09d, e.6A] it is even a good λ-frame, and by §9 here, also s+

is a good λ+-frame and easily it is the frame described in 3.10(2).)

We use K3,na
λ as in [She09c] called K3

λ is [She01]. Note that while the material
does not [She01, §1,§2,§4,§7] appears in [She09c], the material in [She01, §8,§9,§10]
similar to §6 - §9 here, so we still need some parts of [She01], though as said above
we can avoid it.

theorem 3.10. Assume 2λ < 2λ
+

< 2λ
++

and

(α) k is an abstract elementary class with LS(k) ≤ λ
(β) k is categorical in λ and in λ+

(γ) k has a model in λ++

(δ) İ(λ+2,K) < µunif(λ
+2, 2λ

+

) and WDmId(λ+) is not λ++-saturated or just
some consequences: density of minimal types (see by [She09c, 4d.19,4d.23])

and ⊗, i.e. K3,uq
λ 6= ∅ of [She01, 6.4,pg.99] = [She09c, 6f.5] proved by the

conclusion of [She01, Th.6.7](pg.101) or [She09c, 6f.13].

Then 1) Letting µ = λ+ we can choose
⋃
µ
,Sbs such that (k≥µ,

⋃
µ
,Sbs) is a µ-good

frame.
2) Moreover, we can let

(a) Sbs(M) ..= {ortpk(a,M,N) : for some M,N, a we have (M,N, a) ∈ K3,na
λ+

and for some M ′ ≤k M we have M ′ ∈ Kλ

and ortpk(a,M
′, N) ∈ Sk(M ′) is minimal}

(see Definition [She01, 2.3](4),pg.56 and [She01, 2.5](1),(13),pg.57-58 or ([She09c,
1a.19,1a.34])

(b)
⋃

=
⋃
µ

be defined by:
⋃

(M0,M1, a,M3) iff M0 ≤k M1 ≤k M3 are from

Kµ, a ∈M3\M1 and for some N ≤k M0 of cardinality λ, the type ortpk(a,N,M3) ∈
Sk(N) is minimal.

Proof. 1), 2). Note that k has amalgamation in λ and in λ+, see [She09a, 88r-3.5].
By clause (δ) of the assumption, we can use the “positive” results of [She01] in
particular [She01] freely. Now (see Definition 1.12(2))

(∗) if (M,N, a) ∈ K3,na
λ+ and M ′ ≤k M,M ′ ∈ Kλ and p = ortpk(a,M

′, N) is
minimal (see Definition 1.9(0)) then
(a) if q ∈ Sk(M) is not algebraic and q �M ′ = p then q = ortpk(a,M,N)
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(b) if 〈Mα : α < µ〉, 〈Nα : α < µ〉 are ≤k-representations of M,N respec-
tively then for a club of δ < µ we have ortpk(a,Mδ, Nδ) ∈ Sk(Mδ) is
minimal and reduced

[Why? For clause (b) let α∗ = min{α : M ′ ≤k Mα}, so α∗ is well defined
and as M is saturated (for k), for a club of δ < µ = λ+, the model Mδ is
(λ, cf(δ))-brimmed over M ′ hence by [She01, 7.5](2)(pg.106) we are done.

For clause (a) let M0 = M,M1 = N and a1 = a and M2, a2 = a

be such that (M0,M2, a2) ∈ K3,na
µ = K3,na

λ+ and q = ortpk(a
2,M0,M).

Now we repeat the proof of [She01, 9.5](pg.120) but instead f(a2) /∈ M1

we require f(a2) = a1; we are using [She01, 10.5](1)(pg.125) which says
<∗λ+=<k� Kλ+ .]

In particular we have used

(∗∗) if M0 ≤kλ M1,M1 is (λ, κ)-brimmed over M0, p ∈ Sk(M1) is not algebraic
and p �M0 is minimal, then p is minimal and reduced.

Clause (A):
This is by assumption (α).

Clause (B):
As K is categorical in µ = λ+, the existence of superlimit M ∈ Kµ follows; the

superlimit is not maximal as LS(k) ≤ λ and Kµ+ = Kλ++ 6= ∅ by assumption (γ).

Clause (C):
Kλ+ has the amalgamation property by [She09a, 88r-3.5] or [She01, 1.4](pg.46),1.6(pg.48)

and kλ has the JEP in λ+ by categoricity in λ+.

Clause (D):
Subclause (D)(a),(b):

By the definition of Sbs(M) and of minimal types (in Sk(N), N ∈ Kλ,
[She01, 2.5](1)+(3)(pg.57),2.3(4)+(6)](pg.56)), this is clear.

Subclause (D)(c):

Suppose M ≤k N are from Kµ and M 6= N ; let 〈Mi : i < λ+〉, 〈Ni : i < λ+〉
be a ≤k-representation of M,N respectively, choose b ∈ N \M so E = {δ < λ+ :
Nδ ∩M = Mδ and b ∈ Nδ} is a club of λ+. Now for δ = min(E) we have Mδ 6=
Nδ,Mδ ≤k Nδ and there is a minimal inevitable p ∈ Sk(Mδ) by [She01, 5.3,pg.94]
and categoricity of K in λ; so for some a ∈ Nδ \Mδ we have p = ortpk(a,Mδ, Nδ).
So ortpk(a,M,N) is non-algebraic as a ∈M ⇒ a ∈M ∩Nδ = Mδ, a contradiction,
so ortpk(a,M,N) ∈ Sbs(M) as required.

Subclause (D)(d): If M ∈ Kµ let 〈Mi : i < λ+〉 be a ≤k-representation of M , so by

(∗)(a) above p ∈ Sbs(M) is determined by p �Mα if p �Mα is minimal and reduced.
But for every such p there is such α(p) < λ+ by the definition of Sbs(M) and for
each α < λ+ there are ≤ λ possible such p � Mα as k is stable in λ by [She01,
5.7](a)(pg.97), so the conclusion follows. Alternatively, M ∈ Kµ ⇒ |Sbs(M)| ≤
µ as by [She01, 10.5](pg.125), we have ≤∗λ+=≤k� Kλ+ , so we can apply [She01,
9.7](pg.121); or use (∗) above.

Clause (E):
Subclause (E)(a):

Follows by the definition.

Subclause (E)(b): (Monotonicity)

Obvious properties of minimal types in S(M) for M ∈ Kλ.

Subclause (E)(c): (Local character)
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Let δ < µ+ = λ++ and Mi ∈ Kµ be ≤k-increasing continuous for i ≤ δ and
p ∈ Sbs(Mδ), so for some N ≤k Mδ we have N ∈ Kλ and p � N ∈ Sk(N) is
minimal. Without loss of generality δ = cf(δ) and if δ = λ+, there is i < δ such
that N ⊆Mi and easily we are done. So assume δ = cf(δ) < λ+.

Let 〈M i
ζ : ζ < λ+〉 be a ≤k-representation of Mi for i ≤ δ, hence E is a club of

λ+ where:

E ..=
{
ζ < λ+ :ζ a limit ordinal and for j < i ≤ δ we have

M i
ζ ∩Mj = M j

ζ and for ξ < ζ, i ≤ δ we have :

M i
ζ is (λ, cf(ζ))-brimmed over M i

ξ and N ≤k M
δ
ζ

}
.

Let ζi be the i-th member of E for i ≤ δ, so 〈ζi : i ≤ δ〉 is increasing continuous,
〈M i

ζi
: i ≤ δ〉 is≤k-increasingly continuous inKλ andM i+1

ζi+1
is (λ, cf(ζi+1))-brimmed

over M i+1
ζi

hence also over M i
ζi

. Also p �Mδ
ζδ

is non-algebraic (as p is) and extends

p � N (as N ≤k M
δ
ζδ

as ζδ ∈ E) hence p �Mδ
ζδ

is minimal.

Also M δ
ζδ

is (λ, cf(ζδ))-brimmed over M δ
ζ0

hence over N , hence by (∗∗) above

we get that p � M δ
ζδ

is not only minimal but also reduced. Hence by [She01,

7.3](2)(pg.103) applied to 〈M i
ζi

: i ≤ δ〉, p � M δ
ζδ

we know that for some i < δ

the type p � M i
ζi

= (p � Mδ
ζδ

) � M i
ζi

is minimal and reduced, so it witnesses that

p �Mj ∈ Sbs(Mj) for every j ∈ [i, δ), as required.

Subclause (E)(d): (Transitivity)
Easy by the definition of minimal.

Subclause (E)(e): (Uniqueness)

By (∗)(a) above.

Subclause (E)(f): (Symmetry)
By the symmetry in the situation assume M0 ≤k M1 ≤k M3 are from Kµ,

a1 ∈M1\M0, a2 ∈M3\M1 and ortpk(a1,M0,M3) ∈ Sbs(M0) and ortpk(a2,M1,M3) ∈
Sbs(M1) does not fork over M0; hence for ` = 1, 2 we have ortpk(a`,M0,M3) ∈
Sbs(M0). By the existence of disjoint amalgamation (by [She01, 9.11](pg.122),10.5(1)(pg.125))
there are M2,M

′
3, f such that M0 ≤k M2 ≤k M

′
3 ∈ Kµ, M3 ≤k M

′
3, f is an isomor-

phism from M3 onto M2 over M0, and M3 ∩M2 = M0. By ortpk(a2,M0,M3) ∈
Sbs(M1) and as f(a2) /∈M1 being in M2 \M0 = M2 \M3 and a2 /∈M1 by assump-
tion and as a2, f(a2) realize the same type from Sk(M0) clearly by (∗)(a) we have
ortpk(a2,M1,M

′
3) = ortpk(f(a2),M1,M

′
3).

Using amalgamation in kµ (and equality of types) there is M ′′3 such that:
M ′3 ≤k M ′′3 ∈ Kµ, and there is an ≤k-embedding g of M ′3 into M ′′3 such that
g � M1 = idM1 and g(f(a2)) = a2. Note that as a1 /∈ g(M2),M1 ≤k g(M2) ∈ Kµ

and ortpk(a1,M1,M
′′
3 ) is minimal then necessarily ortpk(a1, g(M2),M ′′3 ) is its non-

forking extension. So g(M2),M ′′3 are models as required.

Subclause (E)(g): (Extension existence)

Claims [She01, 9.11](pg.122),10.5(1)(pg.125) do even more.

Subclause (E)(h): (Continuity)
Easy.

Subclause (E)(i): (Non-forking amalgamation)

Like (E)(f) or use 2.18. �3.10
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Question 3.11. If k is categorical in λ and in µ and µ > λ ≥ LS(k), can we conclude
categoricity in χ ∈ (µ, λ)?

Fact 3.12. In 3.10:
1) If p ∈ Sbs(M) and M ∈ Kµ, then for some N ≤k M,N ∈ Kλ and p � N is

minimal and reduced.
2) If M <k N,M ∈ Kµ and p ∈ Sbs(M), then some a ∈ N \M realizes p, (i.e.,

“a strong version of uni-dimensionality” holds).

Proof. The proof is included in the proof of 3.10.
�

∗ ∗ ∗

(E) An Example:

A trivial example (of an approximation to good λ-frame) is:

Definition/Claim 3.13. 1) Assume that k is an AEC and λ ≥ LS(k) or k is a
λ-AEC We define s = sλ[k] as the triple s = (kλ,Sna,

⋃
na

) where:

(a) Sna(M) = {ortpk(a,M,N),M ≤k N and a ∈ N \M}
(b)

⋃
(M0,M1, a,M3) iff M0 ≤kλ M1 ≤kλ M3 and a ∈M3 \M1.

2) Then s satisfies Definition 2.1 of good λ-frame except possibly: (B), existence
of superlimits, (C) amalgamation and JEP, (D)(d) stability and (E)(e),(f),(g),(i)
uniqueness, symmetry, extension existence and non-forking amalgamation.
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§ 4. Inside the frame

We investigate good λ-frames. We prove stability in λ (we have assumed in
Definition 2.1 only stability for basic types), hence the existence of a (λ, ∂)-brimmed
≤k-extension in Kλ over M0 ∈ Kλ (see 4.2), and we give a sufficient condition for

“Mδ is (λ, cf(δ))-brimmed over M0” (in 4.3). We define again K3,bs
λ (like K3

λ from
1.12(2) but the type is basic) and the natural order≤bs on them as well as “reduced”
(Definition 4.5), and indicate their basic properties (4.7).

We may like to construct sometimes pairs Ni ≤kλ Mi such that Mi, Ni are
increasing continuous with i and we would like to guarantee that Mγ is (λ, cf(γ))-
brimmed over Nγ , of course we need to carry more inductive assumptions. Toward
this we may give a sufficient condition for building a (λ, cf(γ))-brimmed extension
over Nγ where 〈Ni : i ≤ γ〉 is ≤kλ -increasing continuous, by a triangle of extensions
of the Ni’s, with non-forking demands of course (see 4.8). We also give conditions
on a rectangle of models to get such pairs in both directions (4.12), for this we use
nice extensions of chains (4.10, 4.11).

Then we can deduce that if “M1 is (λ, ∂)-brimmed over M0” then the isomor-
phism type of M1 over M0 does not depend on ∂ (see 4.9), so the brimmed N
over M0 is unique up to isomorphism (i.e. being (λ, ∂)-brimmed over M0 does not
depend on ∂). We finish giving conclusion about Kλ+ ,Kλ++ .

Hypothesis 4.1. s = (k,
⋃
,Sbs) is a good λ-frame.

Claim 4.2. 1) k is stable in λ, i.e., M ∈ kλ ⇒ |S(M)| ≤ λ.
2) For every M0 ∈ Kλ and ∂ ≤ λ there is M1 such that M0 ≤k M1 ∈ Kλ and

M1 is (λ, ∂)-brimmed over M0 (see Definition 1.16) and it is universal 16 over M0.

Proof. 1) Let M0 ∈ Kλ and we choose by induction on α ∈ [1, λ],Mα ∈ Kλ such
that:

(i) Mα is ≤k-increasing continuous

(ii) if p ∈ Sbs(Mα) then this type is realized in Mα+1.

No problem to carry this: for clause (i) use Axiom(A), for clause (ii) use Axiom
(D)(d) and amalgamation in kλ, i.e., Axiom (C). If every q ∈ S(M0) is realized in
Mλ we are done. So let q be a counterexample, so let M0 ≤k N ∈ Kλ be such that q
is realized in N . We now try to choose by induction on α < λ a triple (Nα, fα, āα)
such that:

(A) Nα ∈ Kλ is ≤k-increasingly continuous

(B) fα is a ≤k-embedding of Mα into Nα

(C) fα is increasing continuous

(D) f0 = idM0
and N0 = N

(E) āα = 〈aα,i : i < λ〉 lists the elements of Nα

(F ) if there are β ≤ α, i < λ such that ortp(aβ,i, fα(Mα), Nα) ∈ Sbs(fα(Mα))
then for some such pair (βα, iα) we have:
(i) the pair (βα, iα) is minimal in an appropriate sense, that is: if (β, i) is

another such pair then β + i > βα + iα or β + i = βα + iα and β > βα
or β + i = βα + iα and β = βα and i ≥ iα

(ii) aβα,iα ∈ rang(fα+1).

16in fact, this follows
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This is easy: for successor α we use the definition of type and let Nλ ..= ∪{Nα :
α < λ}. Clearly fλ ..= ∪{fα : α < λ} is a ≤s-embedding of Mλ into Nλ over M0.

As inN , the type q is realized and it is not realized inMλ necessarilyN * fλ(Mλ)
hence Nλ 6= fλ(Mλ) but easily fλ(Mλ) ≤k Nλ. So by Axiom (D)(c) for some
c ∈ Nλ \ fλ(Mλ) we have p = ortp(c, fλ(Mλ), Nλ) ∈ Sbs(fλ(Mλ)). As 〈fγ(Mγ) :
γ ≤ λ〉 is ≤k-increasing continuous, by Axiom (E)(c) for some γ < λ we have
ortp(c, fλ(Mλ), Nλ) does not fork over fγ(Mγ), also as c ∈ Nλ =

⋃
β<λ

Nβ clearly

c ∈ Nβ for some β < λ and let i < λ be such that c = aβ,i. Now if α ∈ [max{γ, β}, λ)
then (β, i) is a legitimate candidate for (βα, iα) that is ortp(aβ,i, fα(Mα), Nα) ∈
Sbs(fα(Mα)) by monotonicity of non-forking, i.e., Axiom (E)(b). So (βα, iα) is
well defined for any such α and βα + iα ≤ β + i by clause (F)(i). But α1 < α2 ⇒
aβα1 ,iα1

6= aβα2 ,iα2
(as one belongs to fα1+1(Mα1

) and the other not), contradiction
by cardinality consideration.

2) So kλ is stable in λ and has amalgamation, hence (see 1.17) the conclusion
holds; alternatively use 4.3 below. �4.2

Claim 4.3. Assume

(a) δ < λ+ is a limit ordinal divisible by λ

(b) M = 〈Mα : α ≤ δ〉 is ≤k-increasing continuous sequence in kλ

(c) if i < δ and p ∈ Sbs(Mi), then for λ ordinals j ∈ (i, δ) there is c′ ∈ Mj+1

realizing the non-forking extension of p in Sbs(Mj).

Then Mδ is (λ, cf(δ))-brimmed over M0 and universal over it.

Remark 4.4. 1) See end of proof of 6.31.
2) Of course, by renaming, Mδ is (λ, cf(δ))-brimmed over Mα for any α < δ.
3) Why in clause (c) of 4.3 we ask for “λ ordinals j ∈ (i, δ)” rather than “for

unboundedly many j ∈ (i, δ)”? For λ regular there is no difference but for λ singular
not so. Think of k the class of (A,R), R an equivalence relation on A; (so it is not
categorical) but for some λ-good frames s, ks = kλ and exemplifies a problem; some
equivalence class of Mδ may be of cardinality < λ.

Proof. Like 4.2, but we give details.
Let g : δ → λ be a one to one and choose by induction on α ≤ δ a triple

(Nα, fα, āα) such that

(A) Nα ∈ Kλ is ≤k-increasing continuous

(B) fα is a ≤k-embedding of Mα into Nα

(C) fα is increasing continuous

(D) f0 = idM0 , N0 = M0

(E) āα = 〈aα,i : i < λ〉 list the elements of Nα

(F ) Nα+1 is universal over Nα

(G) if α < δ and there is a pair (β, i) = (βα, iα) satisfying the condition (∗)β,ifα,Nα
stated below and it is minimal in the sense that

(∗)β
′,i′

fα,Nα
⇒ (∗∗)β′,i′,β,ig , see below, then aβ,i ∈ rang(fα+1),

where
(∗)β,ifα,Nα (a) β ≤ α and i < λ

(a) (b) ortp(aβ,i, fα(Mα), Nα) ∈ Sbs(fα(Mα))
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(b) (c) some c ∈Mα+1 realizes f−1
α (ortp(aβ,i, fα(Mα), Nα), so by clause

(b) it follows that c ∈Mα+1 \Mα

(∗∗)β′,i′,β,ig [g(β) + i < g(β′) + i′]∨
[g(β)+i = g(β′)+i′ and g(β) < g(β′)]∨[g(β)+i = g(β′)+i′ and
g(β) = g(β′) and i ≤ i′].

There is no problem to choose fα, Nα. Now in the end, by clauses (A),(F) clearly
Nδ is (λ, cf(δ))-brimmed over N0, i.e., over M0, so it suffices to prove that fδ is onto
Nδ. If not, then by Axiom (D)(c), the density, there is d ∈ Nδ \ fδ(Mδ) such that
p ..= ortp(d, fδ(Mδ), Nδ) ∈ Sbs(fδ(Mδ)) hence for some β(∗) < δ we have d ∈ Nβ(∗)
so for some i(∗) < λ, d = aβ(∗),i(∗). Also by Axiom (E)(c), (the local character) for
every β < δ large enough say ≥ βd the type p does not fork over fδ(Mβ), without

loss of generality βd = β(∗). Let q = f−1
δ (ortp(d, fδ(Mδ), Nδ), so it ∈ Sbs(Mδ).

Let u = {α : β(∗) ≤ α < δ and q � Mα ∈ Sbs(Mα) (note β(∗) ≤ α) is realized
in Mα+1}. By clause (c) of the assumption clearly |u| = λ. Also by the definition

of v for every α ∈ u the condition (∗)β(∗),i(∗)
Nα,fα

holds, hence in clause (F) the pair

(βα, iα) is well defined and is “below” (β(∗), i(∗)) in the sense of clause (G). But
there are only ≤ |g(β(∗)) × i(∗)| < λ such pairs hence for some α1 < α2 in u we
have (βα1

, iα1
) = (βα2

, iα2
), a contradiction: aβα1 ,iα1

∈ rang(fα1+1) ⊆ rang(fα2
) =

fα2
(Mα2

) hence ortp(aβα1
,iα1

, fα2
(Mα2

), Nα2
) /∈ Sbs(fα2

(Mα2
)), contradiction. So

we are done. �4.3

∗ ∗ ∗
The following is helpful for constructions so that we can amalgamate disjointly

preserving non-forking of a type; we first repeat the definition of K3,bs
λ , <bs.

Definition 4.5. 1) Let (M,N, a) ∈ K3,bs
λ ifM ≤k N are models fromKλ, a ∈ N\M

and ortp(a,M,N) ∈ Sbs(M). Let (M1, N1, a) ≤bs (M2, N2, a) or write ≤s
bs, when:

both triples are in K3,bs
λ ,M1 ≤k M2, N1 ≤k N2 and ortp(a,M2, N2) does not fork

over M1.
2) We say (M,N, a) is bs-reduced when if it belongs to K3,bs

λ and (M,N, a) ≤bs

(M ′, N ′, a) ∈ K3,bs
λ ⇒ N ∩M ′ = M .

3) We say p ∈ Sbs(N) is a (really the) stationarization of q ∈ Sbs(M) if M ≤k N
and p is an extension of q which does not fork over M .

Remark 4.6. 1) The definition of K3,bs
λ is compatible with the one in 2.4 by 2.6(1).

2) We could have strengthened the definition of bs-reduced (4.5), e.g., add: for
no b ∈ N ′ \M ′, do we have ortp(b,M ′, N ′) ∈ Sbs(M ′) and there are M ′′, N ′′ such
that (M ′, N ′, a) ≤bs (M ′′, N ′′, a) and ortp(b,M ′′, N ′′) forks over M ′.

Claim 4.7. For parts (3),(4),(5) assume s is categorical (in λ).

1) If κ ≤ λ, (M,N, a) ∈ K3,bs
λ , then we can find M ′, N ′ such that: (M,N, a) ≤bs

(M ′, N ′, a) ∈ K3,bs
λ ,M ′ is (λ, κ)-brimmed over M,N ′ is (λ, κ)-brimmed over N and

(M ′, N ′, a) is bs-reduced.

1A) If (M,N`, a`) ∈ K3,bs
λ for ` = 1, 2, then we can find M+, f1, f2 such

that: M ≤k M+ ∈ Kλ and for ` ∈ {1, 2}, f` is a ≤k-embedding of N` into
M+ over M and (M,f`(N`), f`(a`)) ≤bs (f3−`(N3−`),M

+, f`(a`)), equivalently
ortp(f`(a`), f3−`(N3−`),M

+) does not fork over M .
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2) If (Mα, Nα, a) ∈ K3,bs
λ is ≤bs-increasing for α < δ and δ < λ+ is a limit

ordinal then their union (
⋃
α<δ

Mα,
⋃
α<δ

Nα, a) is a ≤bs-lub. If each (Mα, Nα, a) is

bs-reduced then so is their union.
3) Let λ divide δ, δ < λ+. We can find 〈Nj , ai : j ≤ δ, i < δ〉 such that:

Nj ∈ Kλ is ≤k-increasing continuous, (Nj , Nj+1, aj) ∈ K3,bs
λ is bs-reduced and if

i < δ, p ∈ Sbs(Ni) then for λ ordinals j ∈ (i, i + λ) the type ortp(aj , Nj , Nj+1) is
a non-forking extension of p; so Nδ is (λ, cf(δ))-brimmed over each Ni, i < δ. We
can add “N0 is brimmed”.

4) For any (M0,M1, a) ∈ K3,bs
λ and M2 ∈ Kλ such that M0 ≤k M2 there are

N0, N1 such that (M0,M1, a) ≤bs (N0, N1, a),M0 = M1 ∩ N0 and M2, N0 are iso-

morphic over M0. (In fact, if (M0,M2, b) ∈ K3,bs
λ we can add that for some isomor-

phism f from M2 onto N0 over M0 we have (M0, N0, f(a)) ≤bs (M1, N1, f(a)).)
5) If M0 ∈ Kλ is brimmed and M0 ≤s M` for ` = 1, 2 and there is a disjoint

≤s-amalgamation of M1,M2 over M0.

Proof. 1) We choose Mi, Ni, b
`
i(` = 1, 2), c̄i by induction on i < δ ..= λ such that

(a) (Mi, Ni, a) ∈ K3,bs
s is ≤bs-increasing continuous

(b) (M0, N0) = (M,N)

(c)1 b1i ∈Mi+1 \Mi and ortp(b1i ,Mi,Mi+1) ∈ Sbs(Mi),

(c)2 b2i ∈ Ni+1 \Ni and ortp(b2i , Ni, Ni+1) ∈ Sbs(Ni)

(d)1 if i < λ and p ∈ Sbs(Mi) then the set {j : i ≤ j < λ and ortp(b1j ,Mj ,Mj+1)
is a non-forking extension of p} has order type λ

(d)2 if i < λ and p ∈ Sbs(Ni) then the set {j : i ≤ j < λ and ortp(b2j , Nj , Nj+1)
is the non-forking extension of p} has order type λ

(e) c̄i = 〈ci,j : j < λ〉 list Ni

(f) if α < λ, i ≤ α, j < λ, ci,j /∈Mα but for some (M ′′, N ′′) we have (Mα+1, Nα+1, a) ≤bs

(M ′′, N ′′, a) and ci,j ∈ M ′′ then for some i1, j1 ≤ max{i, j} we have
ci1,j1 ∈Mα+1 \Mα.

Lastly, let M ′ = ∪{Mi : i < λ}, N ′ = ∪{Ni : i < λ}, by 4.3 M ′ is (λ, cf(λ))-
brimmed over M (using (d)1), and N ′ is (λ, cf(λ))-brimmed over N (using (d)2).

Lastly, being bs-reduced holds by clauses (e)+(f).
1A) Easy.
2) Recall Ax(E)(h).
3) For proving part (3) use part (1) and the “so” is by using 4.3.
4) For proving part (4), without loss of generality M2 is (λ, cf(λ))-brimmed over

M0, as we can replace M2 by M ′2 if M2 ≤k M
′
2 ∈ Kλ. By part (3) there is a sequence

〈ai : i < δ〉 and an ≤k-increasing continuous 〈Ni : i ≤ δ〉 with N0 = M0, Nδ = M2

and (Ni, Ni+1, ai) ∈ K3,bs
λ is reduced. Then use (1A) successively.

5) By part (3) as in the proof of part (4). �4.7

Claim 4.8. Assume

(a) γ < λ+ is a limit ordinal

(b) δi < λ+ is divisible by λ for i ≤ γ, 〈δi : i ≤ γ〉 is increasing continuous

(c) 〈Ni : i < γ〉 is ≤k-increasing continuous in Kλ

(d) 〈Mi : i < γ〉 is ≤k-increasing continuous in Kλ

(e) Ni ≤k Mi for i < γ

(f) 〈Mi,j : j ≤ δi〉 is ≤k-increasing continuous in Kλ for each i < γ
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(g) Mi,0 = Ni,Mi,δi = Mi, aj ∈ Mi,j+1 \ Mi,j and ortp(aj ,Mi,j ,Mi,j+1) ∈
Sbs(Mi,j) when i < γ, j < δi

(h) if j ≤ δi(∗), i(∗) < γ then 〈Mi,j : i ∈ [i(∗), γ)〉 is ≤k-increasing continuous

(i) ortp(aj ,Mβ,j ,Mβ,j+1) does not fork over Mi,j when i < γ, j < δi, i ≤ β < γ

(j) if i < γ, j < δi, p ∈ Sbs(Mi,j) then for λ ordinals j1 ∈ [j, δi) we have
ortp(aj1 ,Mi,j1 ,Mi,j1+1) ∈ Sbs(Mi,j1) is a non-forking extension of p

or we can ask less

(j)− if i < γ, j < δi and p ∈ Sbs(Mi,j) then for λ ordinals j1 ∈ [j, δγ) for some
i1 ∈ [i, γ) we have ortp(aj1 ,Mi1,j1 ,Mi1,j1+1) ∈ Sbs(Mi1,j1) is a non-forking
extension of p.

Then Mγ
..= ∪{Mi,j : i < γ, j < δi} = {Mi : i < γ} is (λ, cf(γ))-brimmed over

Nγ := ∪{Ni : i < γ}.

Proof. For j < δγ let Mγ,j = ∪{Mi,j : i < γ}, and let Mγ,δγ = Mγ be
⋃
{Mγ,j : j <

δγ}. Easily 〈Mγ,j : j ≤ δγ〉 is ≤k-increasing continuous, Mγ,j ∈ Kλ and i ≤ γ ∧ j <
δi ⇒ Mi,j ≤k Mγ,j . Also if i < γ, j < δi then ortp(aj ,Mγ,j ,Mγ,j+1) ∈ Sbs(Mγ,j)
does not fork over Mi,j by Axiom (E)(h), continuity.

Now if j < δγ and p ∈ Sbs(Mγ,j) then for some i < γ, p does not fork over Mi,j

(by Ax(E)(c)) and without loss of generality j < δi.
Hence if clause (j) holds we have u ..= {ε : j < ε < δi and ortp(aε,Mi,ε,Mi,ε+1) is

a non-forking extension of p �Mi,j} has λmembers. But for ε ∈ u, ortp(aε,Mγ,ε,Mγ,ε+1)
does not fork over Mi,ε (by clause (i) of the assumption) hence does not fork over
Mi,j and by monotonicity it does not fork over Mγ,i and by uniqueness it extends p.
If clause (j)− holds the proof is similar. By 4.3 the model Mγ is (λ, cf(γ))-brimmed
over Nγ . �4.8

Lemma 4.9. 1) If M ∈ Kλ and the models M1,M2 ∈ Kλ are (λ, ∗)-brimmed over
M (see Definition 1.16(2)), then M1,M2 are isomorphic over M .

2) If M1,M2 ∈ Kλ are (λ, ∗)-brimmed then they are isomorphic.

We prove some claims before proving 4.9; we will not much use the lemma, but it
is of obvious interest and its proof is crucial in one point of §6.

Claim 4.10. 1)

(E)(i)+ long non-forking amalgamation for α < λ+:
if 〈Ni : i ≤ α〉 is ≤k-increasing continuous sequence of members of

Kλ, ai ∈ Ni+1 \ Ni for i < α, pi = ortp(ai, Ni, Ni+1) ∈ Sbs(Ni) and q ∈
Sbs(N0), then we can find a ≤k-increasing continuous sequence 〈N ′i : i ≤ α〉
of members of Kλ such that: i ≤ α ⇒ Ni ≤k N

′
i ; some b ∈ N ′0 \ N0 re-

alizes q, ortp(b,Nα, N
′
α) does not fork over N0 and ortp(ai, N

′
i , N

′
i+1) does

not fork over Ni for i < α.

2) Above assume in addition that there are M, b∗ such that N0 ≤k M ∈ Kλ, b
∗ ∈M

and ortp(b∗, N0,M) = q. Then we can add: there is a ≤k-embedding of M into N ′0
over N0 mapping b∗ to b.
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Proof. Straight (remembering Axiom (E)(i) on non-forking amalgamation of Defi-
nition 2.1). In details

1) Let M0, b
∗ be such that N0 ≤k[s] M0 and q = ortp(b∗, N0,M0) and apply part

(2).

2) We choose (Mi, fi) by induction on i ≤ α such that

~ (a) Mi ∈ ks is ≤k-increasing continuous.

(b) fi is a ≤k-embedding of Ni into Mi.

(c) fi is increasing continuous with i ≤ α.

(d) M0 = M and f0 = idN0 .

(e) ortp(b∗, fi(Ni),Mi) does not fork over N0.

(f) ortp(fi+1(ai),Mi,Mi+1) does not fork over fi(Ni).

For i = 0 there is nothing to do. For i limit take unions; clause (e) holds by
Ax(E)(h). Lastly, for i = j + 1, we can find (M ′i , f

′
i) such that fj ⊆ f ′i and f ′i is

an isomorphism from Ni onto M . Hence fj(Nj) ≤k[s] N
′
i . Now use Ax(E)(i) for

fj(Nj),M
′
i , Ni, f

′
i(aj), b

∗.
Having carried the induction, we rename to finish. �4.10

In the claim below, we are given a ≤kλ -increasing continuous 〈Mi : i ≤ δ〉 and
u0, u1, u2 ⊆ δ such that: u0 is where we are already given ai ∈ Mi+1 \Mi, u1 ⊆ δ
is where we shall choose ai(∈ M ′i+1 \M ′i) and u2 ⊆ δ is the place which we “leave
for future use”; main case is u1 = δ;u0 = u2 = ∅.

Claim 4.11. 1) Assume

(a) δ < λ+ is divisible by λ

(b) u0, u1, u2 are disjoint subsets of δ

(c) δ = sup(u1) and otp(u1) is divisible by λ

(d) 〈Mi : i ≤ δ〉 is ≤k-increasing continuous in kλ

(e) ā = 〈ai : i ∈ u0〉, ai ∈Mi+1 \Mi, ortp(ai,Mi,Mi+1) ∈ Sbs(Mi).

Then we can find M
′

= 〈M ′i : i ≤ δ〉 and ā′ = 〈ai : i ∈ u1〉 such that

(α) M
′

is ≤k-increasing continuous in Kλ

(β) Mi ≤k M
′
i

(γ) if i ∈ u0 then ortp(ai,M
′
i ,M

′
i+1) is a non-forking extension of ortp(ai,Mi,Mi+1)

(δ) if i ∈ u2 then Mi = Mi+1 ⇒M ′i = M ′i+1

(ε) if i ∈ u1 then ortp(ai,M
′
i ,M

′
i+1) ∈ Sbs(M ′i)

(ζ) if i < δ, p ∈ Sbs(M ′i) then for λ ordinals j ∈ u1∩(i, δ) the type ortp(aj ,M
′
j ,M

′
j+1)

is a non-forking extension of p.

2) If we add in part (1) the assumption

(g) M0 ≤k N ∈ Kλ

then we can add to the conclusion

(η) there is an ≤k-embedding f of N into M ′0 over M0 and moreover f is onto.

3) If we add in part (1) the assumption

(h)+ M0 ≤k N ∈ Kλ and b ∈ N \M0, ortp(b,M0, N) ∈ Sbs(M0)

then we can add to the conclusion

(η)+ as in (η) and ortp(f(b),Mδ,M
′
δ) does not fork over M0.

4) We can strengthen clause (ζ) in part (1) to
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(ζ)+ if i < δ and p ∈ Sbs(M ′i) then for λ ordinals j we have j ∈ [i, δ) ∩ u1 and
ortp(aj ,M

′
j ,M

′
j+1) is a non-forking extension of p and otp(u1 ∩ j \ i) < λ.

Proof. Straight like 4.10(2). Note that we can find a sequence 〈u1,i,ε : i < δ, ε < λ〉
such that: this is a sequence of pairwise disjoint subsets of u1 each of cardinality λ
satisfying u1,i,ε ⊆ {j : i < j, j ∈ u1 and |u1 ∩ (i, j)| < λ} (or we can demand that
i ≤ i1 < i2 ≤ δ ∧ |u1 ∩ (i1, i2)| = λ⇒ |u1,i,ε ∩ (i1, i2)| = λ). �4.11

Toward building our rectangles of models with sides of difference lengths (and then
we shall use 4.8) we show (to understand the aim of the clauses in the conclusion
of 4.12 see the proof of 4.9 below):

Claim 4.12. Assume

(a) δ` < λ+ is divisible by λ for ` = 1, 2

(b) M
`

= 〈M `
α : α ≤ δ`〉 is ≤k-increasing continuous for ` = 1, 2

(c) u`0, u
`
1, u

`
2 are disjoint subsets of δ`, otp(u`1) is divisible by λ and δ` = sup(u`1)

for ` = 1, 2

(d) ā` ≡ 〈a`α : α ∈ u`0〉 and ortp(a`α,M
`
α,M

`
α+1) ∈ Sbs(M `

α) for ` = 1, 2, α ∈ u`0

(e) M1
0 = M2

0

(f) α ∈ u`1 ∪ u`2 ⇒M `
α = M `

α+1 for ` = 1, 2.

Then we can find f̄ ` = 〈f `α : α ≤ δ`〉, b̄` = 〈b`α : α ∈ u`0 ∪ u`1〉 for ` = 1, 2 and
M = 〈Mα,β : α ≤ δ1, β ≤ δ2〉 and functions ζ : u1

1 → δ2 and ε : u2
1 → δ1 such that

(α)1 for each α ≤ δ1, 〈Mα,β : β ≤ δ2〉 is ≤k-increasing continuous

(α)2 for each β ≤ δ2, 〈Mα,β : α ≤ δ1〉 is ≤k-increasing continuous

(β)1 for α ∈ u1
0, b

1
α belongs to Mα+1,0 and ortp(b1α,Mα,δ2 ,Mα+1,δ2) ∈ Sbs(Mα,δ2)

does not fork over Mα,0

(β)2 for β ∈ u2
0, b

2
β belongs to M0,β+1 and ortp(b2β ,Mδ1,β ,Mδ1,β+1) ∈ Sbs(Mδ1,β)

does not fork over M0,β

(γ)1 for α ∈ u1
1, ζ(α) < δ2 and we have b1α ∈Mα+1,ζ(α)+1 and ortp(b1α,Mα,δ2 ,Mα+1,δ2)

does not fork over Mα,ζ(α)+1

(γ)2 for β ∈ u2
1, ε(β) < δ1 and we have b2β ∈Mε(β)+1,β+1 and ortp(b2β ,Mδ1,β ,Mδ1,β+1)

does not fork over Mε(β)+1,β

(δ)1 if α < δ1, β < δ2 and p ∈ Sbs(Mα,β) or just p ∈ Sbs(Mα,β+1) then for
λ ordinals 17 α′ ∈ [α, δ1) ∩ u1

1, the type ortp(b1α′ ,Mα′,β+1,Mα+1,β+1) is a
(well defined) non-forking extension of p and β = ζ(α′)

(δ)2 if α < δ1, β < δ2 and p ∈ Sbs(Mα,β) or just p ∈ Sbs(Mα+1,β) then for
λ ordinals 18 β′ ∈ [β, δ2) ∩ u2

1, the type ortp(b2β′ ,Mα+1,β′ ,Mα+1,β′+1) is a

non-forking extension of p and α = ε(β′)

(ε) M0,0 = M1
0 = M2

0

(ζ)1 f1
α is an isomorphism from M1

α onto Mα,0 such that α ∈ u1
0 ⇒ f1

α(a1
α) = b1α

f1
0 = idM1

0
and f1

α is increasing continuous with α

(ζ)2 f2
β is an isomorphism from M2

β onto M0,β such that β ∈ u2
0 ⇒ f2

β(a2
β) = b2β

f2
0 = idM2

0
and f2

α is increasing continuous with α

(η)1 if α ∈ u1
2 then Mα,β = Mα+1,β for every β ≤ δ2

17we can add “and otp(α′ ∩ u11 \ α2) < λ”
18we can add “and otp(β′ ∩ u21 \ β2) < λ”
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(η)2 if β ∈ u2
2 then Mα,β = Mα,β+1 for every α ≤ δ1.

Proof. Straight, divide u`1 to δ3−` subsets large enough), in fact, we can first choose
the function ζ(−), ε(−). Now choose 〈Mα,β : α ≤ δ1, β ≤ β∗〉, 〈f1

α : α ≤ δ1〉, 〈f2
β :

β ≤ β∗〉 and 〈b1α : ζ(α) ∈ β∗〉, 〈b2β : β < β∗〉 by induction on β∗ using 4.11. �4.12

Proof. [Proof of 4.9] By 1.17(3), i.e., uniqueness of the (λ, θ`)-brimmed model over
M , it is enough to show for any regular θ1, θ2 ≤ λ that there is a model N ∈ Kλ

which is (λ, θ`)-brimmed over M for ` = 1, 2. Let δ1 = λ× θ1, δ2 = λ× θ2 (ordinal
multiplication, of course), M1

α = M2
β = M for α ≤ δ1, β ≤ δ2, u

1
0 = u2

0 = ∅, u1
1 =

δ1, u
2
1 = δ2, u

1
2 = u2

2 = ∅. So there are 〈Mα,β : α ≤ δ1, β ≤ δ2〉, 〈b1α : α < δ1〉, 〈b2β :

β < δ2〉 and 〈f1
α : α ≤ δ1〉, 〈f2

β : β ≤ δ2〉 as in Claim 4.12. Without loss of generality

f1
α = f2

α = idM . Now

(∗)1 〈Mα,δ2 : α ≤ δ1〉 is ≤k-increasing continuous in Kλ (by clause (α)1, of 4.12).
Also

(∗)2 if α < δ1 and p ∈ S(Mα,δ2) then for λ ordinals α′ ∈ (α, δ1) ∩ u1
1 the type

ortp(b1α′,δ2 ,Mα′,δ2 ,Mα′+1,δ2) is a non-forking extension of p.

(Easy, by Axiom (E)(c) for some β < δ2, p does not fork over Mα,β+1 and use clause
(δ)1 of 4.12).

So by 4.8, Mδ1,δ2 is (λ, cf(δ1))-brimmed over M0,δ2 which is M .
Similarly Mδ1,δ2 is (λ, cf(δ2))-brimmed over Mδ1,0 which is M ; so together we

are done. �4.9

Claim 4.13. 1) If M ∈ Kλ+ and p ∈ Sbs(M0),M0 ≤k M (so M0 ∈ Kλ), then we
can find b, 〈N0

α : α ≤ λ+〉 and 〈N1
α : α ≤ λ+〉 such that

(a) 〈N0
α : α < λ+〉 is a ≤k-representation of N0

λ+ = M

(b) 〈N1
α : α < λ+〉 is a ≤k-representation of N1

λ+ ∈ Kλ+

(c) N1
α+1 is (λ, λ)-brimmed over N1

α (hence N1
λ+ is saturated over λ in k)

(d) M0 ≤ N0
0 and N0

α ≤k N
1
α

(e) ortps(b,N
0
α, N

1
α) is a non-forking extension of p for every α < λ+.

2) We can add

(f) for α < β < λ+, N1
β is (λ, ∗)-brimmed over N0

β ∪N1
α.

Proof. 1) Easy by long non-forking amalgamation 4.10 (see 1.18).

2) Use 4.8. �4.13

Conclusion 4.14. 1) Kλ++ 6= ∅.

2) Kλ+ 6= ∅.

3) No M ∈ Kλ+ is ≤k-maximal.

Proof. 1) By (2) + (3).

2) By (B) of 2.1.

3) By 4.13. �4.14
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Exercise 4.15. : 1) Let M ∈ Ks be superlimit and t = s[M ], so Kt is categorical. If

(M,N, a) ∈ Kbs
t is reduced for t, then it is reduced for s.

2) In 4.7(3),(4),(5), we can omit the assumption “s is categorical” if:

(a) we add in part (3), each Ni is superlimit (equivalently brimmed)

(b) in parts (4),(5) add the assumption “M0 is superlimit”.

2) Some extra assumption in 4.7(5) is needed.
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§ 5. Non-structure or some unique amalgamation

We shall assuming 2λ < 2λ
+

< 2λ
++

get from essentially İ(λ++,K) < 2λ
++

pedantically < µunif(λ
++, 2λ

+

) or just İ(λ++,K(λ+-saturated)) < µunif(λ
++, 2λ

+

),
many cases of uniqueness of amalgamation assuming in addition WDmId(λ+) is not
λ++-saturated, a weak assumption. The proof is similar to [She], [She01, §3] but
now we rely on [She09d], the “lean” version; and by the “full version” without we
can eliminate the additional assumption.

We define K3,bt
λ , it is a brimmed relative of K3,bs

λ hence the choice of bt; it
guarantees much brimness (see Definition 5.2) hence it guarantees some uniqueness,

that is, if (M,N, a) ∈ K3,bt
λ ,M is unique (recalling the uniqueness of the brimmed

model) and more crucially, we consider K3,uq
λ , (the family of members of K3,bs

λ for
which we have uniqueness in relevant extensions). Having enough such triples is
the main conclusion of this section (in 5.9 under “not too many non-isomorphic

models” assumptions). In 5.4 we give some properties of K3,bt
λ ,K3,uq

λ .
To construct models in λ++ we use approximations of cardianlity in λ+ with

“obligation” on the further construction, which are presented as pairs (M, ā) ∈ Ksq
λ

ordered by ≤ct, see Definition 5.5, Claims 5.6, 5.7. We need more: the triples
(M, ā, f) ∈ Kmqr

S ,Knqr
S in Definition 5.12, Claim 5.13. All this enables us to quote

results of [She01, §3] or better [She09d, §2], but apart from believing the reader do
not need to know non of them.

Hypothesis 5.1. (a) s = (k,
⋃
,Sbs) is a good λ-frame.

Definition 5.2. 1) Let K3,bt
λ = K3,bt

s be the set of triples (M,N, a) such that for
some ∂ = cf(∂) ≤ λ,M ≤k N are both (λ, ∂)-brimmed members of Kλ, a ∈ N \M
and ortp(a,M,N) ∈ Sbs(M).

2) For (M`, N`, a`) ∈ K3,bt
λ for ` = 1, 2 let (M1, N1, a1) <bt (M2, N2, a2) mean

a1 = a2, ortp(a1,M2, N2) does not fork over M1 and for some ∂2 = cf(∂2) ≤ λ, the
model M2 is (λ, ∂2)-brimmed over M1 and the model N2 is (λ, ∂2)-brimmed over
N1. Finally (M1, N1, a2) ≤bt (M2, N2, a2) means (M1, N1, a1) <bt (M2, N2, a2) or
(M1, N1, a1) = (M2, N2, a2).

Definition 5.3. 1) Let “(M0,M2, a) ∈ K3,uq
λ ” mean: (M0,M2, a) ∈ K3,bs

λ and: for
every M1 satisfying M0 ≤k M1 ∈ Kλ, the amalgamation M of M1,M2 over M0,
with ortp(a,M1,M) not forking over M0, is unique, that is:

(∗) if for ` = 1, 2 we have M0 ≤k M1 ≤k M
` ∈ Kλ and f` is a ≤k-embedding

of M2 into M ` over M0 (so f1 � M0 = f2 � M0 = idM0) such that
ortp(f`(a),M1,M

`) does not fork over M0, then
(a) [uniqueness]:

for some M ′, g1, g2 we have: M1 ≤k M
′ ∈ Kλ and

g` is a ≤k-embedding of M ` into M ′ over M1 for ` = 1, 2 such that
g1 ◦ f1 �M2 = g2 ◦ f2 �M2

(b) [being reduced] f`(M2) ∩M1 = M0

[this is “for free” in the proofs; and is not really necessary so the
decision if to include it is not important but simplify notation, but see
5.4(3)].

2) K3,uq
λ is dense (or s has density for K3,uq

λ ) when K3,uq
λ is dense in (K3,bs

λ ,≤bs),

i.e., for every (M1,M2, a) ∈ K3,bs
λ there is (M1, N2, a) ∈ K3,uq

λ such that (M1,M2, a) ≤bs

(N1, N2, a) ∈ K3,uq
λ .
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3) K3,uq
λ has existence or s has existence for K3,uq

λ when for every M0 ∈ Kλ and

p ∈ Sbs(M0) for some M1, a we have (M0,M1, a) ∈ K3,uq
λ and p = ortp(a,M0,M1).

4) K3,uq
s = K3,uq

λ .

Claim 5.4. 1) The relation ≤bt is a partial order on K3,bt
λ that is transitive and

reflexive (but not necessarily satisfying the parallel of Ax V of AEC see Definition
1.4).

2) If (Mα, Nα, a) ∈ K3,bt
λ is ≤bt-increasing continuous for α < δ where δ is

a limit ordinal < λ+ then (M,N, a) = (
⋃
α<δ

Mα,
⋃
α<δ

Nα, a) belongs to K3,bt
λ and

α < δ ⇒ (Mα, Nα, a) ≤bt (M,N, a) and so (M,N, a) is a ≤bt-upper bound of
〈(Mα, Nα, a) : α < δ〉.

3) In (∗) of 5.3(1), clause (b) follows from (a).

Proof. Easy; e.g. (3) by the uniqueness (i.e., clause (a)) and 4.7(4). �5.4

We now define Ksq
λ+ , a family of ≤k-increasing continuous sequences (the reason

for sq) in Kλ of length λ+, will be used to approximate stages in constructing
models in Kλ++ .

Definition 5.5. 1) Let Ksq
λ+ = Ksq

s be the set of pairs (M, ā) such that (sq stands
for sequence):

(a) M = 〈Mα : α < λ+〉 is a ≤k-increasing continuous sequence of models from
Kλ

(b) ā = 〈aα : α ∈ S〉, where S ⊆ λ+ is stationary in λ+ and aα ∈Mα+1 \Mα

(c) for some club E of λ+ for every α ∈ S ∩ E we have ortp(aα,Mα,Mα+1) ∈
Sbs(Mα)

(d) if p ∈ Sbs(Mα) then for stationarily many δ ∈ S we have: ortp(aδ,Mδ,Mδ+1) ∈
Sbs(Mδ) does not fork over Mα and extends p.

In such cases we let M =
⋃

α<λ+

Mα.

2) When for ` = 1, 2 we are given (M
`
, ā`) ∈ Ksq

λ+ we say (M
1
, ā1) ≤ct (M

2
, ā2)

if for some club E of λ+, letting ā` = 〈a`δ : δ ∈ S`〉 for ` = 1, 2, of course, we have

(a) S1 ∩ E ⊆ S2 ∩ E
(b) if δ ∈ S1 ∩ E then

(α) M1
δ ≤k M

2
δ ,

(β) M1
δ+1 ≤k M

2
δ+1

(γ) a2
δ = a1

δ

(δ) ortp(a1
δ ,M

2
δ ,M

2
δ+1) does not fork over M1

δ , so in particular a1
δ /∈M2

δ .

Observation 5.6. 1) If (M, ā) ∈ Ksq
λ+ then M ..=

⋃
α<λ+

Mα ∈ Kλ+ is saturated.

2) Ksq
λ+ is partially ordered by ≤ct. �5.6

Claim 5.7. Assume 〈(Mζ
, āζ) : ζ < ζ∗〉 is ≤ct-increasing in Ksq

λ+ , and ζ∗ is a limit

ordinal < λ++, then the sequence has a ≤ct-l.u.b. (M, ā).
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Proof. Let āζ = 〈aζδ : δ ∈ Sζ〉 for ζ < ζ∗ and without loss of generality ζ∗ = cf(ζ∗)
and for ζ < ξ < ζ∗ let Eζ,ξ be a club of λ+ consisting of limit ordinals witnessing

(M
ζ
, āζ) ≤ct (M

ξ
, āξ), i.e. as in 5.5(2).

Case 1: ζ∗ < λ+.

Let E = ∩{Eζ,ξ : ζ < ξ < ζ∗} and for δ ∈ E let Mδ = ∪{Mζ
δ : ζ < ζ∗}

and Mδ+1 = ∪{Mζ
δ+1 : ζ < ζ∗} and for any other α,Mα = Mmin(E\α). Let S =⋃

ζ<ζ∗
Sζ∩E and for δ ∈ S let aδ = aζδ for every ζ for which δ ∈ Sζ . Clearly Mα ∈ Kλ

is ≤k-increasing continuous and ζ < ζ∗ ∧ δ ∈ E ⇒Mζ
δ ≤k Mδ and Mζ

δ+1 ≤k Mδ+1.

Now if δ ∈ E∩Sζ then ξ ∈ [ζ, ζ∗) implies ortp(aδ,M
ξ
δ ,Mδ+1) = ortp(aζδ ,M

ξ
δ ,M

ξ
δ+1)

does not fork over Mζ
δ (and 〈Mξ

δ : ξ ∈ [ζ, δ)〉, 〈Mξ
δ+1 : ξ ∈ [ζ, δ)〉 are ≤k-increasing

continuous); hence by Axiom (E)(h) we know that ortp(aδ,Mδ,Mδ+1) does not

fork over Mζ
δ and in particular ∈ Sbs(Mδ). Also if N ≤k M ..=

⋃
α<λ+

Mα, N ∈ Kλ

and p ∈ Sbs(N) then for some δ(∗) ∈ E,N ≤k Mδ(∗), let p1 ∈ Sbs(Mδ(∗)) be a

non-forking extension of p, so for some ζ < ζ∗, p does not fork over Mζ
δ(∗) hence

for stationarily many δ ∈ Sζ , q
0
δ = ortp(aδ,M

ζ
δ ,M

ζ
δ+1) is a non-forking exten-

sion of p1 � M
ζ
δ(∗), hence this holds for stationarily many δ ∈ S ∩ E and for

each such δ, qδ = ortp(aδ,Mδ,Mδ+1) is a non-forking extension of p1 � M
ζ
δ(∗),

hence of p1 hence of p. Looking at the definitions, clearly (M, ā) ∈ Ksq
λ+ and

ζ < ζ∗ ⇒ (M̄ζ , āζ) ≤ct (M, ā).
Lastly, it is easy to check the ≤ct-l.u.b.

Case 2: ζ∗ = λ+.
Similarly using diagonal union, i.e., E = {δ < λ+ : δ is a limit ordinal such that

ζ < ξ < δ ⇒ δ ∈ Eζ,ε} and we choose Mα = ∪{Mζ
α : ζ < α} when α ∈ E and

Mα = Mmin(E\(α+1)) otherwise. �5.7

Observation 5.8. Assume K3,uq
λ is dense in K3,bs

λ , i.e., in (K3,bs
λ ,≤bs) and even

in (K3,bt
λ , <bt). Then

(a) if M ∈ Kλ is superlimit and p ∈ Sbs(M) then there are N, a such that

(M,N, a) ∈ K3,uq
λ and p = ortp(a,M,N)

(b) if in addition Ks is categorical (in λ) then s has existence for K3,uq
λ (recall

that this means that for every M ∈ Ks and p ∈ Sbs(M) for some pair

(N, a) we have (M,N, a) ∈ K3,uq
λ and p = ortp(a,M,N)).

Proof. Should be clear. �5.8

Now the assumptions of 5.8 are justified by the following theorem (and the
categoricity in (b) is justified by Claim 1.27).

Claim 5.9. [First Main Claim] Assume that

(a) as in 5.1

(b) WDmId(λ+) is not λ++-saturated and19 2λ < 2λ
+

< 2λ
++

.

19alternatively the parallel versions for the definitional weak diamond, but not here
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If İ(λ++,K) < µunif(λ
++, 2λ

+

or just İ(λ++,K(λ+-saturated)) < µunif(λ
++, 2λ

+

),

then for every (M,N, a) ∈ K3,bs
λ there is (M∗, N∗, a) ∈ K3,bt

λ such that (M,N, a) <bt

(M∗, N∗, a) and (M∗, N∗, a) ∈ K3,uq
λ .

Explanation 5.10. The reader who agrees to believe in 5.9 can ignore the rest of
this section (though it can still serve as a good exercise).

Let 〈Sα : α < λ++〉 be a sequence of subsets of λ+ such that α < β ⇒ |Sα\Sβ | ≤
λ and Sα+1 \ Sα 6= ∅ mod WDmId(λ+), exists by assumption.

Why having (M,N, a) failing the conclusion of 5.9 helps us to construct many

models in Kλ++? The point is that we can choose (M
α
, āα) ∈ Ksq

λ+ with Dom(āα) =
Sα for α < λ++, <ct-increasing continuous (see 5.7).

Now for α = β+1, having (M
β
, āβ), without loss of generality Mβ

i+1 is brimmed

over Mβ
i and we shall choose Mα

i by induction on i < λ+ (for simplicity we assume

Mα
i ∩∪{M

β
j : j < λ+} = Mβ

i ) and Mβ
i ≤k M

α
i ∈ Kλ and ortp(aβi ,M

α
i ,M

α
i+1) does

not fork over Mβ
i and Mα

i+1 is brimmed over Mα
i ).

Given (M
β
, āβ),M

β
= 〈Mβ

i : i < λ+〉, āβ = 〈aβi : i ∈ Sβ〉 we work toward

building (M
α
, āα), αβ+1.

We start with choosing (Mα
0 , b) such that no member of K3,bs

λ which is ≤bs-above

(Mβ
0 ,M

α
0 , b) ∈ K

3,bs
λ belongs to K3,uq

λ and will choose Mβ
i by induction on i such

that (Mβ
i ,M

α
i , b) ∈ K3,bs

λ is ≤bs-increasing continuous and even <bt-increasing

hence in particular that ortp(b,Mβ
i ,M

α
i ) does not fork over Mα

0 . Now in each

stage i = j + 1, as Mβ
i is universal over Mβ

j , and the choice of Mα
0 , b we have some

freedom. So it makes sense that we will have many possible outcomes, i.e., models
M = ∪{Mα

i : α < λ++, i < λ+} which are in Kλ++ . The combination of what

we have above and [She01, §3] better [She09d, §2] gives that 2λ < 2λ
+

< 2λ
++

is
enough to materialize this intuition. If in addition 2λ = λ+ and moreover ♦λ+ it
is considerably easier. In the end we still have to define āα � (Sα \ Sβ) as required
in Definition 5.5, [GSar]. An alternative is to force a model in λ++. Now below we

replace K3,sq
λ+ by Kmqr

λ+ ,Knqr
S but actually K3,sq

λ+ is enough. So we need a somewhat
more complicated relative as elaborated below which anyhow seems to me more
natural.

Claim 5.11. [Second Main Claim] Assume 2λ < 2λ
+

< 2λ
++

(or the paral-

lel versions for the definitional weak diamond). If İ(λ++,K(λ+-saturated)) <

µunif(λ
++, 2λ

+

), then for every (M,N, a) ∈ K3,bt
λ there is (M∗, N∗, a) ∈ K3,bt

λ

such that (M,N, a) <bt (M∗, N∗, a) and (M∗, N∗, a) ∈ K3,uq
λ .

We shall not prove here 5.11 and shall not use it, it is proved in the full version of
[She09d]; toward proving 5.9 (by quoting) let

Definition 5.12. Let S ⊆ λ+ be a stationary subset of λ+.
1) Let Kmqr

S or Kmqr
λ+ [S] be the set of triples (M, ā, f) such that:

(a) M = 〈Mα : α < λ+〉 is ≤k-increasing continuous, Mα ∈ Kλ

(we denote
⋃

α<λ+

Mα by M) and demand M ∈ Kλ+

(b) ā = 〈aα : α < λ〉 with aα ∈Mα+1

(c) f is a function from λ+ to λ+ such that for some club E of λ+ for every δ ∈
E ∩S and ordinal i < f(δ) we have ortp(aδ+i,Mδ+i,Mδ+i+1) ∈ Sbs(Mδ+i)
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(d) for every α < λ+ and p ∈ Sbs(Mα), stationarily many δ ∈ S satisfies: for
some ε < f(δ) we have ortp(aδ+ε,Mδ+ε,Mδ+ε+1) is a non-forking extension
of p.

1A) Knqr
λ+ [S] = Knqr

S is the set of triples (M, ā, f) ∈ Kmqr
S such that:

(e) for a club of δ < λ+, if δ ∈ S then f(δ) is divisible by λ and 20 for ev-
ery i < f(δ) if q ∈ Sbs(Mδ+i) then for λ ordinals ε ∈ [i, f(δ)) the type
ortp(aδ+ε,Mδ+ε,Mδ+ε+1) ∈ Sbs(Mδ+ε) is a stationarization of q (= non-
forking extension of q, see Definition 4.5).

2) Assume (M
`
, ā`, f `) ∈ Kmqr

S for ` = 1, 2; we say (M
1
, ā1, f1) ≤0

S (M
2
, ā2, f2) iff

for some club E of λ+, for every δ ∈ E ∩ S we have:

(a) M1
δ+i ≤k M

2
δ+i for 21 i ≤ f1(δ)

(b) f1(δ) ≤ f2(δ)

(c) for i < f1(δ) we have a1
δ+i = a2

δ+i and

ortp(a1
δ+i,M

2
δ+i,M

2
δ+i+1) does not fork over M1

δ+i.

3) We define the relation <1
S on Kmqr

S as in part (2) adding

(d) if δ ∈ E and i < f1(δ) then M2
δ+i+1 is (λ, ∗)-brimmed over M1

δ+i+1 ∪M2
δ+i.

Claim 5.13. 0) If (M, ā, f) ∈ Kmqr
S then

⋃
α<λ+

Mα ∈ Kλ+ is saturated.

1) The relation ≤0
S is a quasi-order 22 on Kmqr

λ ; also <1
S is.

2) Kmqr
S ⊇ Knqr

S 6= ∅ for any stationary S ⊆ λ+.

3) For every (M, ā, f) ∈ Kmqr
λ [S] for some (M

′
, ā, f ′) ∈ Knqr

λ [S] we have (M, ā, f) <1
S

(M
′
, ā, f ′).

4) For every (M
1
, ā1, f1) ∈ Kmqr

S and q ∈ Sbs(M1
α), α < λ+, there is (M2, ā2, f2) ∈

Kmqr
S such that (M

1
, ā1, f1) <1

S (M
2
, ā2, f2) ∈ Knqr

S and b ∈ M2
α realizing q such

that for every β ∈ [α, λ+) we have ortp(b,M1
β ,M

2
β) ∈ Sbs(M1

β) does not fork over

M1
α.

5) If 〈(Mζ
, āζ , fζ) : ζ < ξ(∗)〉 is ≤0

S-increasing continuous in Kmqr
S and ξ(∗) <

λ++ a limit ordering, then the sequence has a ≤0
S-l.u.b..

Proof. 0, 1) Easy.

2) The inclusion Kmqr
S ⊇ Knqr

S is obvious, so let us prove Knqr
S 6= ∅. We choose by

induction on α < λ+, aα,Mα, pα such that

(a) Mα ∈ Kλ is a super limit model,

(b) Mα is ≤k-increasingly continuous,

(c) if α = β + 1, then aβ ∈Mα \Mβ realizes pβ ∈ Sbs(Mβ),

(d) if p ∈ Sbs(Mα), then for some i < λ, for every j ∈ [i, λ) for at least one
ordinal ε ∈ [j, j + i), pα+ε �Mα = p and pα+ε does not fork over Mα.

For α = 0 choose M0 ∈ Kλ. For α limit, Mα =
⋃
β<α

Mβ is as required. Then

use Axiom(E)(g) to take care of clause (d) (with careful bookkeeping). Lastly, let
f : λ+ → λ+ be constantly λ,M = 〈Mα : α < λ〉, ā = 〈aα : α < λ〉; now for any
stationary S ⊆ λ+, the triple (M, ā � S, f � S) belong to Knqr

S .

20if we have an a priori bound f∗ : λ+ → λ+ which is a <D
λ+

-upper bound of the “first” λ++

functions in λ+
(λ+)/D, we can use bookkeeping for ui’s as in the proof of 4.11

21could have used (systematically) i < f1(δ)
22quasi order ≤ is a transitive relation, so we waive x ≤ y ≤ x⇒ x = y
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3) Let E be a club witnessing (M
1
, ā1, f1) ∈ Kmqr

S such that δ ∈ E ⇒ δ + f1(δ) <
min(E\(δ+1)). Choose f2 : λ+ → λ+ such that α < λ+ implies f1(α) < f2(α) < λ+

and f2(α) is divisible by λ. We choose by induction on α < λ+, fα,M
2
α, pα, a

2
α such

that:

(a), (b), (c) as in the proof of part (2)

(d) fα is a ≤k-embedding of M1
α into M2

α

(e) fα is increasing continuous

(f) if δ ∈ E ∩ S and i < f1(δ) hence ortp(a1
δ+i,M

1
δ+i,M

1
δ+i+1) ∈ Sbs(M1

δ+i),

then fδ+i+1(a1
δ+i) = a2

δ+i and pε+i = ortp(a2
δ+i,M

2
δ+i,M

2
δ+i+1) ∈ Sbs(M2

δ+i)

is a stationarization of ortp
(
fδ+i+1(a1

δ+i), fδ+i(M
1
δ+i), fδ+i+1(M1

δ+i+1)
)

=

ortp(a2
δ+i, fδ+i(M

1
δ+i),M

2
δ+i+1)

(g) if δ ∈ E and i < f2(δ), q ∈ Sbs(M2
δ+i) then for some λ ordinals ε ∈ (i, f2(δ))

the type pδ+ε is a stationarization of q

(h) if δ ∈ E, i < f2(δ) thenMδ+i+1 is (λ, ∗)-brimmed overMδ+i∪fδ+i+1(M1
δ+i+1).

The proof is as in part (2) only the bookkeeping is different. At the end without loss
of generality

⋃
α<λ∗

fα is the identity and we are done. 4) Similar proof but in some

cases we have to use Axiom (E)(i), the non-forking amalgamation of Definition 2.1,
in the appropriate cases.

5) Without loss of generality cf(ξ(∗)) = ξ(∗). First assume that ξ(∗) ≤ λ. For

ε < ζ < ξ(∗) let Eε,ζ be a club of λ+ witnessing M
ε
<0
S M

ζ
. Let

E∗ =
⋂

ε<ζ<ξ(∗)
Eε,ζ ∩ {δ < λ+ : for every α < δ we have

ε<ξ(∗)
→ sup fε(α) < δ},

it is a club of λ+. Let fξ(∗) : λ+ → λ+ be fξ(∗)(i) =
ε<ξ(∗)

→ sup fε(i) now define

M
ξ(∗)
i as follows: Case 1: If δ ∈ E∗ and ε < ξ(∗) and i ≤ fε(δ) and i ≥

⋃
ζ<ε

fζ(δ)

then

(α) M
ξ(∗)
δ+i =

⋃{
Mζ
δ+i : ζ ∈ [ε, ξ(∗))

}
(β) i < fε(δ)⇒ a

ξ(∗)
δ+i = aεδ+i.

(Note: we may define M
ξ(∗)
δ+i twice if i = fε(δ), but the two values are the same).

Case 2: If δ ∈ E∗, i = fξ(∗)(δ) is a limit ordinal let

M
ξ(∗)
δ+i =

⋃
j<i

M
ξ(∗)
δ+i .

Case 3: If M
ξ(∗)
i has not been defined yet, let it be M

ξ(∗)
min(E∗\i). Case 4: If a

ξ(∗)
i

has not been defined yet, let a
ξ(∗)
i ∈Mξ(∗)

i+1 be arbitrary.

Note that Case 3,4 deal with the “unimportant” cases.

Let ε < ξ(∗), why (M
ε
, āε, fε) ≤0

S (M
ξ(∗)

, āξ(∗), fξ(∗)) ∈ Kmqr
S ? Enough to check

that the club E∗ witnesses it.
Why ortp(aδ+i,M

ξ(∗)
δ+i ,M

ξ(∗)
δ+i+1) ∈ Sbs(M

ξ(∗)
δ+i ) and when δ ∈ E∗, i < fξ(∗)(i), and

does not fork over Mε
δ+i when i < fε(δ) ? by Axiom (E)(h) of Definition 2.1.

Why clause (e) of Definition 5.12(1A)? By Axiom (E)(c), local character of non-
forking.

The case ξ(∗) = λ+ is similar using diagonal intersections. �5.13
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Remark 5.14. If we use weaker versions of “good λ-frames”, we should systemati-
cally concentrate on successor i < f(δ).

Proof. [Proof of 5.9] We can use [She09d, 2b.3] or more explicitly [She09d, e.4]: the
older version runs as follows. The use of λ++ /∈WDmId(λ++) is as in the proof of
[She01, 3.19](pg.79)=3.12t. But now we need to preserve saturation in limit stages
δ < λ++ of cofinality < λ+, we use <1

S , otherwise we act as in [She01, §3]. �5.9

Let us elaborate.

Definition 5.15. We define C = (k+,Seq,≤∗) as follows:

(a) τ+ = τ ∪ {P,<}, k+ is the set of (M,PM , <M ) where M ∈ k<λ, P
M ⊆

M,<M a linear ordering of PM (but =M may be as in [She01, 3.1](2) and
M1 ≤k+ M2 iff (M1 � τ) ≤k (M2 � τ) and M1 ⊆M2

(b) Seqα = {M : M = 〈Mi : i ≤ α〉 is an increasing continuous sequence of
members of k+ and 〈Mi � τ : i ≤ α〉 is ≤k-increasing, and for
i < j < α : PMi is a proper initial segment of (PMj , <Mj ) and there is a
first element in the difference}

we denote the <Mi+1-first element of PMi+1 \ PMi , by ai[M ] and we
demand ortp(ai(M),Miτ �,Mi+1 � τ) ∈ Sbs(Mi � τ) and if α = λ,M =
∪{Mi � τ : i < λ+} is saturated

(c) M <∗t N iff
M = 〈Mi : i < α∗〉, N = 〈Ni : i < α∗∗〉 are from Seq, t is a set of pairwise
disjoint closed intervals of α∗ and for any [α, β] ∈ t we have (β < α∗ and):
γ ∈ [α, β)⇒Mγ ≤k Nγ and aγ [M ] /∈ Nγ , moreover

aγ [M ] = aγ [N ] and ortp(aj [M ], Nγ � τ,Nγ+1, τ) does not fork over Mγ � τ .

Claim 5.16. 1) C is a λ+-construction framework (see [She01, 3.3](pg.68).
2) C is weakly nice (see Definition [She01, 3.14](2)(pg.76).
4) C has the weakening λ+-coding property.

Discussion 5.17. Is it better to use (see [She01, 3.14](1)(pg.75)) stronger axiom-
atization in [She01, §3] to cover this?

But at present this will be the only case.

Proof. Straight. �5.16

Now 5.11 follows by [She01, 3.19](pg.79).
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§ 6. Non-forking amalgamation in kλ

We deal in this section only with kλ.
We would like to, at least, approximate “non-forking amalgamation of models”
using as a starting point the conclusion of 5.9, i.e., K3,uq

λ is dense. We use what looks

like a stronger hypothesis: the existence for K3,uq
λ (also called “weakly successful”);

but in our application we can assume categoricity in λ; the point being that as we
have a superlimit M ∈ Kλ, this assumption is reasonable when we restrict ourselves
to k[M ], recalling that we believe in first analyzing the saturated enough models; see
5.8. By 4.9, the “(λ, cf(δ))-brimmed over” is the same for all limit ordinals δ < λ+,
(but not for δ = 1 or just δ non-limit); nevertheless for possible generalizations we
do not use this.

It may help the reader to note, that (assuming 6.9 below, of course), if there is
a 4-place relation NFλ(M0,M1,M2,M3) on Kλ, satisfying the expected properties
of “M1,M2 are amalgamated in a non-forking = free way over M0 inside M3”, i.e.,
is a kλ-non-forking relation from Definition 6.1 below then Definition 6.13 below
(of NFλ) gives it (provably!). So we have “a definition” of NFλ satisfying that: if
desirable non-forking relation exists, our definition gives it (assuming the hypothesis
6.9). So during this section we are trying to get better and better approximations
to the desirable properties; have the feeling of going up on a spiral, as usual.

For the readers who know on non-forking in stable first order theory we note
that in such context NFλ(M0,M1,M2,M3) says that ortp(M2,M1,M3), the type
of M2 over M1 inside M3, does not fork over M0. It is natural to say that there are
〈N1,α, N2,α : α ≤ α∗〉, N`,α is increasing continuous. N1,0 = M0, N2,0 = M2,M1 ⊆
M1,α,M3 ⊆ M ′3, N2,α ⊆ M ′3, N`,α+2 is prime over N`,α + aα for ` = 1, 2 and

ortp(aα, N2,α) does not fork over N1,α but this is not available. The K3,uq
λ is a

substitute.

Definition 6.1. 1) Assume that k = kλ is a λ-AEC We say NF is a non-forking
relation on 4(kλ) or just a kλ-non-forking relation when:

�NF(a) NF is a 4-place relation on Kλ and NF is preserved under isomorphisms

(b) NF(M0,M1,M2,M3) implies M0 ≤k M` ≤k M3 for ` = 1, 2

(c)1 (monotonicity): if NF(M0,M1,M2,M3) and M0 ≤k M
′
` ≤k M` for ` = 1, 2

then NF(M0,M
′
1,M

′
2,M3)

(c)2 (monotonicity): if NF(M0,M1,M2,M3) and M3 ≤k M
′
3 ∈ Kλ,M1 ∪M2 ⊆

M ′′3 ≤k M
′
3 then NF(M0,M1,M2,M

′′
3 )

(d) (symmetry) NF(M0,M1,M2,M3) iff NF(M0,M2,M1,M3)

(e) ((long) transitivity) if NF(Mi, Ni,Mi+1, Ni+1) for i < α, 〈Mi : i ≤ α〉 is
≤k-increasing continuous and 〈Ni : i ≤ α〉 is ≤k-increasing continuous then

NF(M0, N0,Mα, Nα)

(f) (existence) if M0 ≤k M` for ` = 1, 2 (all in Kλ) then for some M3 ∈
Kλ, f1, f2 we have M0 ≤k M3, f` is a ≤k-embedding of M` into M3 over M0

for ` = 1, 2 and NF(M0, f1(M1), f2(M2),M3)

(g) (uniqueness) if NF(M `
0 ,M

`
1 ,M

`
2 ,M

`
3) and for ` = 1, 2 and fi is an isomor-

phism from M1
i onto M2

i for i = 0, 1, 2 and f0 ⊆ f1, f0 ⊆ f2 then f1 ∪ f2

can be extended to an embedding f3 of M1
3 into some M2

4 ,M
2
3 ≤kλ M

2
4 .

2) We say that NF is a pseudo non-forking relation on 4(Kλ) or a weak kλ-non-
forking relation if clauses (a)-(f) of �NF above holds but not necessarily clause
(g).
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3) Assume s is a good λ-frame and NF is a non-forking relation on k or just a weak
one. We say that NF respects s or NF is an s-non-forking relation when:

(h) if NF(M0,M1,M2,M3) and a ∈M2 \M0, ortps(a,M0,M2) ∈ Sbs(M0) then
ortps(a,M1,M3) does not fork over M0 in the sense of s.

Observation 6.2. Assume kλ is a λ-AEC and NF is a non-forking relation on
4(kλ).

1) Assume k is stable in λ. If in clause (g) of 6.1(1) above we assume in addition
that M `

3 is (λ, ∂)-brimmed over M `
1 ∪M `

2 , then in the conclusion of (g) we can add
M2

3 = M2
4 , i.e., f1 ∪ f2 can be extended to an isomorphism from M1

3 onto M2
3 .

This version of (g) is equivalent to it (assuming stability in λ; note that “kλ has
amalgamation” follows by clause (f) of Definition 6.1).

2) If M0 ≤k M1 ≤k M3 are from Kλ then NF(M0,M0,M1,M3).

3) In Definition 6.1(1), clause (d), symmetry, it is enough to demand “if”.

Proof. 1) Chase arrows and the uniqueness from 1.17.

2) By clause (f) of �NF of 6.1(1) and clause (c)2, i.e., first apply existence with
(M0,M0,M3) here standing for (M0,M1,M2) there, then chase arrows and use the
monotonicity as in (c)2.

3) Easy. �6.2

The main point of the following claim shows that there is at most one non-forking
relation respecting s; so it justifies the definition of NFs later. The assumption “NF
respects s” is not so strong by 6.7.

Claim 6.3. 1) If s is a good λ-frame and NF is a non-forking relation on 4(ks) re-

specting s and (M0, N0, a) ∈ K3,uq
λ and (M0, N0, a) ≤bs (M1, N1, a) then NF(M0, N0,M1, N1).

2) If s is a good λ-frame, weakly successful (which means K3,uq
s has existence in

K3,uq
s , i.e., s satisfies hypothesis 6.9 below) and NF is a non-forking relation on

4(ks) respecting s then the relation NFλ = NFs, i.e., N1

N3⋃
N0

N2 defined in Definition

6.13 below is equivalent to NF(N0, N1, N2, N3). [Recalling 6.36, but see 6.37(2),
6.38.]

3) If s is a weakly successful good λ-frame and for ` = 1, 2, the relation NF` is a
non-forking relation on 4(ks) respecting s, then NF1 = NF2.

Proof. Straightforward, but we elaborate.

1) We can find (M ′1, N
′
1) such that NF(M0, N0,M

′
1, N

′
1) and M1,M

′
1 are isomorphic

over M0, say f1 is such an isomorphism from M1 onto M ′1 over M0; why such
(M ′1, N

′
1, f1) exists? by clause (f) of �NF of Definition 6.1.

As NF respects s, see Definition 6.1(2), recalling ortp(a,M0, N0) ∈ Sbs(M0) we
know that ortp(a,M ′1, N

′
1) does not fork over M0, so by the definition of ≤bs we

have (M0, N0, a) ≤bs (M ′1, N
′
1, a).

As (M0, N0, a) ∈ K3,uq
λ , by the definition of K3,uq

λ (and chasing arrows) we
conclude that there are N2, f2 such that:

(∗) N1 ≤k[s] N2 ∈ Kλ and f2 is a ≤k-embedding of N ′1 into N2 extending f−1
1

and idN0
.
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As NF(M0, N0,M
′
1, N

′
1) and NF is preserved under isomorphisms (see clause (a)

in 6.1(1)) it follows that NF(M0, N0,M1, f2(N ′1)). By the monotonicity of NF (see
clause (c)2 of Definition 6.1) it follows that NF(M0, N0,M1, N2). Again by the
same monotonicity we have NF(M0, N0,M1, N1), as required.

2) First we prove that NFλ,δ̄(N0, N1, N2, N3), which is defined in Definition 6.12 be-
low implies NF(N0, N1, N2, N3). By definition 6.12, clause (f) there are 〈(N1,i, N2,i :
i ≤ λ×δ1〉), 〈ci : i < λ×δ1〉 as there. Now we prove by induction on j ≤ λ×δ1 that
i ≤ j ⇒ NF(N1,i, N2,i, N1,j , N2,j). For j = 0 or more generally when i = j this is
trivial by 6.2(2). For j a limit ordinal use the induction hypothesis and transitivity
of NF (see clause (e) of 6.1(1)).

Lastly, for j successor by the demands in Definition 6.12 we know that N1,j−1 ≤k

N1,j ≤k N2,j , N1,j−1 ≤k N2,j−1 ≤k N2,j are all in Kλ, ortp(cj−1, N2,j−1, N2,j) does

not fork over N1,j−1 and (N1,j−1, N1,j , cj−1) ∈ K3,uq
λ . By part (1) of this claim we

deduce that NF(N1,j−1, N1,j , N2,j−1, N2,j) hence by symmetry (i.e., clause (d) of
Definition 6.1(1)) we deduce NF(N1,j−1, N2,j−1, N1,j , N2,j).

So we have gotten i < j ⇒ NF(N1,i, N2,i, N1,j , N2,j).
[Why? If i = j − 1 by the previous sentence and for i < j − 1 note that by the

induction hypothesis NF(N1,i, N2,i, N1,j−1, N1,j−1) so by transitivity (clause (e) of
6.1(1) of Definition 6.1) we get NF(N1,i, N2,i, N1,j , N2,j)].

We have carried the induction so in particular for i = 0, j = α we get NF(N1,0, N2,0, N1,α, N2,α),
which means NF(N0, N1, N2, N3) as promised. So we have proved NFλ,δ̄(N0, N1, N2, N3)⇒
NF(N0, N1, N2, N3).

Second, if NFλ(N0, N1, N2, N3) as defined in Definition 6.13 then there are
M0,M1,M2,M3 ∈ Kλ such that NFλ,〈λ,λ〉(M0,M1,M2,M3), N` ≤k M` for ` < 4
andN0 = M0. By what we have proved above we can conclude NF(M0,M1,M2,M3).
As N0 = M0 ≤k N` ≤k M` for ` = 1, 2 by clause (c)1 of Definition 6.1(1) we get
NF(M0, N1, N2,M3) and by clause (c)2 of Definition 6.1(1) we get NF(N0, N1, N2, N3).
So we have proved the implication NFλ(N0, N1, N2, N3)⇒ NF(N0, N1, N2, N3).

For the other implication assume NF(N0, N1, N2,M3). Now as we have exis-
tence for NFλ (as proved below, see 6.23), we can find N ′` for ` = 0, 1, 2, 3 and f`
for ` = 0, 1, 2 such that NFλ(N ′0, N

′
1, N

′
2, N

′
3), f` is an isomorphism from N` onto N ′`

for ` = 0, 1, 2 and f0 ⊆ f1, f0 ⊆ f2. But what we have already proved it follows that
NF(N ′0, N

′
1, N

′
2, N

′
3). As we have uniqueness for NF by clause (g) of Definition 6.1 we

can find (f3, N
′′
3 ) such that N ′3 ≤kλ N

′′
3 and f3 is a ≤k-embedding of N3 into N ′′3 ex-

tending f1∪f2. As NFλ satisfies clause (c)2 of 6.1, recalling NFλ(N ′0, N
′
1, N

′
2, N

′
3) it

follows that NFλ(N ′0, N
′
1, N

′
2, f3(N3)) holds. As NFλ is preserved by isomorphisms,

it follows that NFλ(N0, N1, N2, N3) holds as required.

3) By the rest of this section, i.e., the main conclusion 6.36, the relation NFλ defined
in 6.13 is a non-forking relation on 4(Ks) respecting s. Hence by part (2) of the
present claim we have NF1 = NFλ = NF2. �6.3

Example 6.4. : Do we need s in 6.3(3)? Yes.
Let k be the class of graphs and M ≤k N iff M ⊆ N ; so k is an AEC with LS(k) =

ℵ0. For cardinal λ and ` = 1, 2 we define NF` = {(M0,M1,M2,M3) : M0 ≤k M1 ≤k

M3 and M0 ≤k M2 ≤k M3 and M1 ∩M2 = M0 and if a ∈ M1 \M0, b ∈ M2 \M0

then {a, b} is an edge of M3 iff ` = 2} and NF`λ
..= {(M0,M1,M2,M3) ∈ NF :

M0,M1,M2,M3 ∈ Kλ}. Then NF`λ is a non-forking relation on 4(kλ) but NF1
λ 6=

NF2
λ.

Remark 6.5. 1) So the assumption on kλ that for some good λ-frame s we have
ks = kλ is quite a strong demand on kλ.
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2) However, the assumption “respect” essentially is not necessary as it can be
deduced when s is good enough.

3) Below on “good+” see [She09e, §1] in particular Definition [She09e, 705-stg.1].

Exercise 6.6. : 1) Assume NF1,NF2 are non-forking relations on 4(kλ).
If NF1 ⊆ NF2 then NF1 = NF2.
2) In part (1) write down the clauses from 6.1. We need to assume on NF1,

and those we need assume on NF2. [Hint: Read the last paragraph of the proof of

6.3(3).]

Claim 6.7. Assume that s is a good+λ-frame and NF is a non-forking relation on
4(ks). Then NF respects s.

Remark 6.8. The construction in the proof is similar to the ones in 4.10, 6.15.

Proof. Assume NF(M0,M1,M2,M3) and a ∈M2\M0, ortp(a,M0,M2) ∈ Sbs(M0).
We define (N0,i, N1,i, fi) for i < λ+

s as follows:

⊗1 (a) N0,i is ≤s-increasing continuous and N0,0 = M0.

(b) N1,i is ≤s-increasing continuous and N1,0 = M1.

(c) NF(N0,i, N1,i, N0,i+1, N1,i+1)

(d) fi is a ≤k-embedding of M2 into N0,i+1 over M0 = N0,0 such that
ortp(fi(a), N0,i, N0,i+1) does not fork over M0 = N0,0.

We shall choose fi together with N0,i+1, N1,i+1.
Why can we define? For i = 0 there is nothing to do. For i limit take unions.

For i = j + 1 choose fj , N0,i satisfying clause (d) and N0,j ≤s N0,i, this is possible
for s as we have the existence of non-forking extensions of ortp(a,M0,M2) (and
amalgamation).

Lastly, we take care of the rest (mainly clause (c) of ⊗1 by clause (f) of Definition
6.1(1), existence). Now

~2 For i < j < λ+ we have NF(N0,i, N1,i, N0,j , N1,j).
[why? by transitivity for NF, i.e., clause (e) of Definition 6.1(1), transi-

tivity]

~3 For some i, ortp(fi(a), N1,i, N1,i+1) does not fork over M0.
[why? by the definition of good+].

So for this i, M0 ≤s fi(M2) ≤s N0,i+1 by clause (d) of ⊗1, hence by clause (c)1

of Definition 6.1, monotonicity we have NF(M0,M1, fi(M2), N1,i+1). Now again
by the choice of i, i.e., by ~3 we have ortp(fi(a),M1, N1,i+1) does not fork over
M0. By clause (g) of Definition 6.1(1), i.e., uniqueness of NF (and preservation by
isomorphisms) we get ortp(a,M1,M3) does not fork over M0 as required. �6.3

We turn to our main task in this section proving that such NF exist; till 6.36 we
assume:

Hypothesis 6.9. 1) s = (k,
⋃
,Sbs) is a good λ-frame.

2) s is weakly successful which just means that it has existence for K3,uq
λ : for every

M ∈ Kλ and p ∈ Sbs(M) there are N, a such that (M,N, a) ∈ K3,uq
λ (see Definition

5.3) and p = ortp(a,M,N). (This follows by K3,uq
s is dense in K3,bs

s ; when s is
categorical, see 5.8.)

In this section we deal with models from Kλ only.
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Claim 6.10. If M ∈ Kλ and N is (λ, κ)-brimmed over M , then we can find

M = 〈Mi : i ≤ δ〉,≤k-increasing continuous, (Mi,Mi+1, ci) ∈ K3,uq
λ , M0 = M , and

Mδ = N for δ any pre-given limit ordinal < λ+ of cofinality κ divisible by λ.

Proof. Let δ be given (e.g. δ = λ × κ). By 6.9(2) we can find a ≤k-increasing
sequence 〈Mi : i ≤ δ〉 of members of Kλ and 〈ai : i < δ〉 such that M0 = M and

i < δ ⇒ (Mi,Mi+1, ai) ∈ K3,uq
λ and for every i < δ and p ∈ Sbs(Mi) for λ ordinals

j ∈ (i, i + λ) we have that ortp(aj ,Mj ,Mj+1) is a non-forking extension of p. So
the demands in 4.3 hold, hence Mδ is (λ, κ)-brimmed over M0 = M . Now we are
done by the uniqueness of N being (λ, κ)-brimmed over M0, see 1.17(3). �6.10

Claim 6.11. If M `
0 ≤k M

`
1 ≤k M

`
3 and M `

0 ≤k M
`
2 ≤k M

`
3 , c` ∈M `

1 and (M `
0 ,M

`
1 , c`) ∈

K3,uq
λ and ortp(c`,M

`
2 ,M

`
3) ∈ Sbs(M `

2) does not fork over M `
0 and M `

3 is (λ, ∂)-

brimmed over M `
1 ∪M `

2 all this for ` = 1, 2 and fi is an isomorphism from M1
i onto

M2
i for i = 0, 1, 2 such that f0 ⊆ f1, f0 ⊆ f2 and f1(c1) = c2, then f1 ∪ f2 can be

extended to an isomorphism from M1
3 onto M2

3 .

Proof. Chase arrows (and recall definition of K3,uq
λ ), that is by 6.1(1) and Definition

6.2(1) and 1.17(3). �6.11

Definition 6.12. Assume δ̄ = 〈δ1, δ2, δ3〉, δ1, δ2, δ3 are ordinals < λ+, maybe 1. We
say that NFλ,δ̄(N0, N1, N2, N3) or, in other wordsN1, N2 are brimmedly smoothly amalgamated

in N3 over N0 for δ̄ when:

(a) N` ∈ Kλ for ` ∈ {0, 1, 2, 3}
(b) N0 ≤k N` ≤k N3 for ` = 1, 2

(c) N1∩N2 = N0 (i.e. in disjoint amalgamation, actually follows by clause (f))

(d) N1 is (λ,cf(δ1))-brimmed over N0; recall that if cf(δ1) = 1 this just means
N0 ≤k N1

(e) N2 is (λ,cf(δ2))-brimmed over N0; so that if cf(δ2) = 1 this just means
N0 ≤k N2 and

(f) there are N1,i, N2,i for i ≤ λ× δ1 and ci for i < λ× δ1 (called witnesses and
〈N1,i, N2,i, cj : i ≤ λ × δ1, j < λ × δ1〉 is called a witness sequence as well
as 〈N1,i : i ≤ λ× δ1〉, 〈N2,i : i ≤ λ× δ1〉) such that:
(α) N1,0 = N0, N1,λ×δ1 = N1

(β) N2,0 = N2

(γ) 〈N`,i : i ≤ λ× δ1〉 is a ≤k-increasing continuous sequence of models for
` = 1, 2

(δ) (N1,i, N1,i+1, ci) ∈ K3,uq
λ

(ε) ortp(ci, N2,i, N2,i+1) ∈ Sbs(N2,i) does not fork over N1,i and N2,i ∩
N1 = N1,i, for i < λ× δ1 (follows by Definition 5.3)

(ζ) N3 is (λ,cf(δ3))-brimmed over N2,λ×δ1 ; so for cf(δ3) = 1 this means
just N2,λ×δ1 ≤k N3
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Definition 6.13. 1) We say N1

N3⋃
N0

N2 (or N1, N2 are smoothly amalgamated over

N0 inside N3 or NFλ(N0, N1, N2, N3) or NFs(N0, N1, N2, N3)) when we can find
M` ∈ Kλ (for ` < 4) such that:

(a) NFλ,〈λ,λ,λ〉(M0,M1,M2,M3)

(b) N` ≤k M` for ` < 4

(c) N0 = M0

(d) M1,M2 are (λ, cf(λ))-brimmed over N0 (follows by (a) see clauses (d), (e)
of 6.12).

2) We call (M,N, a) strongly bs-reduced if (M,N, a) ∈ K3,bs
λ and (M,N, a) ≤bs

(M ′, N ′, a) ∈ K3,bs
λ ⇒ NFλ(M,N,M ′, N ′); not used.

Clearly we expect “strongly bs-reduced” to be equivalent to “∈ K3,uq
λ ”, e.g. as

this occurs in the first order case. We start by proving existence for NFλ,δ̄ from
Definition 6.12.

Claim 6.14. 1) Assume δ̄ = 〈δ1, δ2, δ3〉, δ` an ordinal < λ+ and N` ∈ Kλ for ` < 3
and N1 is (λ, cf(δ1))-brimmed over N0 and N2 is (λ, cf(δ2))-brimmed over N0 and
N0 ≤k N1 and N0 ≤k N2 and for simplicity N1 ∩ N2 = N0. Then we can find N3

such that NFλ,δ̄(N0, N1, N2, N3).
2) Moreover, we can choose any 〈N1,i : i ≤ λ × δ1〉, 〈ci : i < λ × δ1〉 as in 6.12
subclauses (f)(α), (γ), (δ) as part of the witness.

3) If NFλ(N0, N1, N2, N3) then N1 ∩N2 = N0.

Proof. 1) We can find 〈N1,i : i ≤ λ × δ1〉 and 〈ci : i < λ × δ1〉 as required in part
(2) by Claim 6.10, the (λ, cf(λ× δ1))-brimmedness holds by 4.3 and apply part (2).

2) We choose the N2,i (by induction on i) by 4.10 preserving N2,i ∩N1,λ×δ2 = N1,i;
in the successor case use Definition 5.3 + Claim 5.4(3). We then choose N3 using
4.2(2).

3) By the definitions of NFλ, NFλ,δ̄. �6.14

The following claim tells us that if we have “(λ, cf(δ3))-brimmed” in the end, then
we can have it in all successor stages.

Claim 6.15. In Definition 6.12, if δ3 is a limit ordinal and κ = cf(κ) ≥ ℵ0, then
without loss of generality (even without changing 〈N1,i : i ≤ λ×δ1〉, 〈ci : i < λ×δ1〉)

(g) N2,i+1 is (λ, κ)-brimmed over N1,i+1 ∪N2,i (which means that it is
(λ, κ)-brimmed over some N , where N1,i+1 ∪N2,i ⊆ N ≤k N2,i+1).

Proof. So assume NFλ,δ̄(N0, N1, N2, N3) holds as being witnessed by 〈N`,i : i ≤
λ × δ1〉, 〈ci : i < λ × δ1〉 for ` = 1, 2. Now we choose by induction on i ≤ λ × δ1 a
model M2,i ∈ Kλ and fi such that:

(i) fi is a ≤k-embedding of N2,i into M2,i

(ii) M2,0 = fi(N2)

(iii) M2,i is ≤k-increasing continuous and also fi is increasing continuous

(iv) M2,j ∩ fi(N1,i) = fi(N1,j) for j ≤ i
(v) M2,i+1 is (λ, κ)-brimmed over M2,i ∪ fi(N2,i+1)

(vi) ortp(fi+1(ci),M2,i,M2,i+1) ∈ Sbs(M2,i) does not fork over fi(N1,i).
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There is no problem to carry the induction. Using in the successor case i = j + 1
the existence Axiom (E)(g) of Definition 2.1, there is a model M ′2,i ∈ Ks such that
M2,j ≤k M

′
2,i and fi ⊇ fj as required in clauses (i), (iv), (vi) and then use Claim

4.2 to find a model M2,i ∈ Kλ which is (λ, κ)-brimmed over M2,j ∪ fi(N2,i).
Having carried the induction, without loss of generality fi = idN2,i

. Let M3

be such that M2,λ×δ1 ≤k M3 ∈ Kλ and M3 is (λ,cf(δ3))-brimmed over M2,λ×δ1 , it
exists by 4.2(2) but N2,λ×δ1 ≤k M2,λ×δ1 , hence it follows that M3 is (λ, κ)-brimmed
over N1,λ×δ1 . So both M3 and N3 are (λ,cf(δ3))-brimmed over N2,λ×δ1 , hence they
are isomorphic over N2,λ×δ1 (by 1.17(1)) so let f be an isomorphism from M3 onto
N3 which is the identity over N2,λ×δ1 .
Clearly 〈N1,i : i ≤ λ× δ1〉, 〈f(M2,i) : i ≤ λ× δ1〉 are also witnesses for
NFλ,δ̄(N0, N1, N2, N3) satisfying the extra demand (g) from 6.15. �6.15

The point of the following claim is that having uniqueness in every atomic step we
have uniqueness in the end (using the same “ladder” N1,i for now).

Claim 6.16. (Weak Uniqueness).
Assume that for x ∈ {a, b}, we have NFλ,δ̄x(Nx

0 , N
x
1 , N

x
2 , N

x
3 ) holds as witnessed

by 〈Nx
1,i : i ≤ λ×δx1 〉, 〈cxi : i < λ×δx1 〉, 〈Nx

2,i : i ≤ λ×δx1 〉 and δ1 ..= δa1 = δb1, cf(δa2 ) =

cf(δb2) and cf(δa3 ) = cf(δb3) ≥ ℵ0.
(Note that cf(λ× δa1 ) ≥ ℵ0 by the definition of NF).

Suppose further that f` is an isomorphism from Na
` onto N b

` for ` = 0, 1, 2,
moreover: f0 ⊆ f1, f0 ⊆ f2 and f1(Na

1,i) = N b
1,i, f1(cai ) = cbi .

Then we can find an isomorphism f from Na
3 onto N b

3 extending f1 ∪ f2.

Proof. Without loss of generality for each i < λ × δ1, the model Nx
2,i+1 is (λ, λ)-

brimmed over Nx
1,i+1 ∪Nx

2,i (by 6.15, note there the statement “without changing
the N1,i’s”). Now we choose by induction on i ≤ λ × δ1 an isomorphism gi from
Na

2,i onto N b
2,i such that: gi is increasing with i and gi extends (f1 � Na

1,i) ∪ f2.
For i = 0 choose g0 = f2 and for i limit let gi be

⋃
j<i

gj and for i = j + 1

it exists by 6.11, whose assumptions hold by (Nx
1,i, N

x
1,i+1, c

x
i ) ∈ K3,uq

λ (see 6.12,
clause (f)(δ)) and the extra brimmedness clause from 6.15. Now by 1.17(3) we can
extend gλ×δ1 to an isomorphism from Na

3 onto N b
3 as Nx

3 is (λ, cf(δ3))-brimmed
over Nx

2,λ×δ1 (for x ∈ {a, b}). �6.16

Note that even knowing 6.16 the choice of 〈N1,i : i ≤ λ × δ1〉, 〈ci : i < λ × δ1〉
still possibly matters. Now we prove an “inverted” uniqueness, using our ability to
construct a “rectangle” of models which is a witness for NFλ,δ̄ in two ways.

Claim 6.17. Suppose that

(a) for x ∈ {a, b} we have NFλ,δ̄x(Nx
0 , N

x
1 , N

x
2 , N

x
3 )

(b) δ̄x = 〈δx1 , δx2 , δx3 〉, δa1 = δb2, δa2 = δb1, cf(δa3 ) = cf(δb3), all limit ordinals

(c) f0 is an isomorphism from Na
0 onto N b

0

(d) f1 is an isomorphism from Na
1 onto N b

2

(e) f2 is an isomorphism from Na
2 onto N b

1

(f) f0 ⊆ f1 and f0 ⊆ f2.

Then there is an isomorphism from Na
3 onto N b

3 extending f1 ∪ f2.

Before proving we shall construct a third “rectangle” of models such that we
shall be able to construct appropriate isomorphisms each of Na

3 , N
b
3
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Subclaim 6.18. Assume

(a) δa1 , δ
a
2 , δ

a
3 < λ+ are limit ordinals

(b)1 M
1

= 〈M1
α : α ≤ λ× δa1 〉 is ≤k-increasing continuous in Kλ

and (M1
α,M

1
α+1, cα) ∈ K3,bs

λ

(b)2 M
2

= 〈M2
α : α ≤ λ×δa2 〉 is ≤k-increasing continuous in Kλ and (M2

α,M
2
α+1, dα) ∈

K3,bs
λ

(c) M1
0 = M2

0 we call it M and M1
α ∩M2

β = M for α ≤ λ× δa1 , β ≤ λ× δa2 .

Then we can find Mi,j (for i ≤ λ× δa1 and j ≤ λ× δa2 ) and M3 such that:

(A) Mi,j ∈ Kλ and M0,0 = M and Mi,0 = M1
i ,M0,j = M2

j

(B) i1 ≤ i2 and j1 ≤ j2 ⇒Mi1,j1 ≤k Mi2,j2

(C) if i ≤ λ× δa1 is a limit ordinal and j ≤ λ× δa2 then Mi,j =
⋃
ζ<i

Mζ,j

(D) if i ≤ λ× δa1 and j ≤ λ× δa2 is a limit ordinal then Mi,j =
⋃
ξ<j

Mi,ξ

(E) Mλ×δa1 ,j+1 is (λ, cf(δa1 ))-brimmed over Ma
λ×δa1 ,j

for j < λ× δa2
(F ) Mi+1,λ×δa2 is (λ, cf(δa2 ))-brimmed over Mi,λ×δa2 for i < λ× δa1
(G) Mλ×δa1 ,λ×δa2 ≤k M3 ∈ Kλ moreover

M3 is (λ, cf(δa3 ))-brimmed over Mλ×δa1 ,λ×δa2
(H) for i < λ× δa1 , j ≤ λ× δa2 we have ortp(ci,Mi,j ,Mi+1,j) does not fork over

Mi,0

(I) for j < λ× δa2 , i ≤ λ× δa1 we have ortp(dj ,Mi,j ,Mi,j+1) does not fork over
M0,j.

We can add

(J) for i < λ×δa1 , j < λ×δb2 the model Mi+1,j+1 is (λ, ∗)-brimmed over Mi,j+1∪
Mi+1,j.

Remark 6.19. 1) We can replace in 6.18 the ordinals λ × δa` (` = 1, 2, 3) by any
ordinal αa` < λ+ (for ` = 1, 2, 3) we use the present notation just to conform with
its use in the proof of 6.17.

2) Why do we need u`1 in the proof below? This is used to get the brimmedness
demands in 6.18.

Proof. We first change our towers, repeating models to give space for bookkeeping.
That is we define ∗M1

α for α ≤ λ× λ× δa1 as follows:

if λ× β < α ≤ λ× β + λ and β < λ× δa1 then ∗M1
α = M1

β+1

if α = λ×β, then ∗M1
α = M1

β . Let u1
0 = {λβ : β < δa1}, u1

1 = λ×λ×δa1\u1
0, u

1
2 = ∅

and for α = λβ ∈ u1
0 let a1

α = cβ .
Similarly let us define ∗M2

α (for α ≤ λ× λ× δa2 ),u2
0, u

2
1, u

2
2 and 〈a2

α : α ∈ u2
0〉.

Now apply 4.12 (check) and get ∗Mi,j , (i ≤ λ × λ × δa1 , j ≤ λ × λ × δa2 ).
Lastly, for i ≤ δa1 , j ≤ δa2 let Mi,j = ∗Mλ×i,λ×j . By 4.3 clearly ∗Mλ×i+λ,λ×j+λ
is (λ, cf(λ))-brimmed over ∗Mλ×i+1,λ×j+1 hence Mi+1,j+1 is (λ, cf(λ))-brimmed
over Mi+1,j ∪Mi,j+1. And, by 4.2(1) choose M3 ∈ Kλ which is (λ, cf(δa3 ))-brimmed
over Mλ×δa1 ,λ×δa2 . �6.18

Paper Sh:600, version 2023-06-18. See https://shelah.logic.at/papers/600/ for possible updates.



76 S. SHELAH

Proof. [Proof of 6.17] We shall let Mi,j ,M3 be as in 6.18 for δ̄a and M
1
,M

2
de-

termined below. For x ∈ {a, b} as NFλ,δ̄x(Nx
0 , N

x
1 , N

x
2 , N

x
3 ), we know that there

are witnesses 〈Nx
1,i : i ≤ λ × δx1 〉, 〈cxi : i < λ × δx1 〉, 〈Nx

2,i : i ≤ λ × δx1 〉 for this. So

〈Nx
1,i : i ≤ λ × δx1 〉 is ≤k-increasing continuous and (Nx

1,i, N
x
1,i+1, c

x
i ) ∈ K3,uq

λ for

i < λ × δx1 . Hence by the freedom we have in choosing M
1

and 〈ci : i < λ × δ1〉
without loss of generality there is an isomorphism g1 from Na

1,λ×δa1
onto Mλ×δa1

mapping Na
1,i onto M1

i = Mi,0 and cai to ci; remember that Na
1,λ×δa1

= Na
1 . Let

g0 = g1 � Na
0 = g1 � Na

1,0 so g0 ◦ f−1
0 is an isomorphism from N b

0 onto M0,0.

Similarly as δb1 = δa2 , and using the freedom we have in choosing M
2

and 〈di :
i < λ× δb1〉 without loss of generality there is an isomorphism g2 from N b

1,λ×δa2
onto

M2
j = M0,λ×δa2 mapping N b

1,j onto M0,j (for j ≤ λ× δa2 ) and mapping cbi to di and

g2 extends g0 ◦ f−1
0 .

Now would like to use the weak uniqueness 6.16 and for this note:

(α) NFλ,δ̄a(Na
0 , N

a
1 , N

a
2 , N

a
3 ) is witnessed by the sequences 〈Na

1,i : i ≤ λ× δa1 〉,
and 〈Na

2,i : i ≤ λ× δa1 〉
[why? an assumption]

(β) NFλ,δ̄a(M0,0,Mλ×δa1 ,0,M0,λ×δa2 ,M3) is witnessed by the sequences
〈Mi,0 : i ≤ λ× δa1 〉, 〈Mi,λ×δa2 : i ≤ λ× δa1 〉
[why? check]

(γ) g0 is an isomorphism from Na
0 onto M0,0

[why? see its choice]

(δ) g1 is an isomorphism from Na
1 onto Mλ×δa1 ,0 mapping Na

1,i onto Mi,0 for
i < λ× δa1 and cai to ci for i < λ× δa1 and extending g0

[why? see the choice of g1 and of g0]

(ε) g2 ◦ f2 is an isomorphism from Na
2 onto M0,λ×δa2 extending g0

[why? f2 is an isomorphism from Na
2 onto N b

1 and g2 is an isomorphism
from N b

1 onto M0,λ×δa1 extending g0 ◦ f−1
0 and f0 ⊆ f2].

So there is by 6.16 an isomorphism ga3 from Na
3 onto M3 extending both g1 and

g2 ◦ f2.

We next would like to apply 6.16 to the N b
i ’s, so note:

(α)′ NFλ,δ̄b(N
b
0 , N

b
1 , N

b
2 , N

b
3) is witnessed by the sequences 〈N b

1,i : i ≤ λ× δa2 〉,
〈N b

2,i : i ≤ λ× δa2 〉
(β)′ NFλ,δ̄b(M0,0,M0,λ×δa2 ,Mλ×δa1 ,0,M3) is witnessed by the sequences

〈M0,j : j ≤ λ× δa2 〉, 〈Mλ×δa1 ,j : j ≤ λ× δa2 〉
(γ)′ g0 ◦ (f0)−1 is an isomorphism from N b

0 onto M0,0

[why? Check.]

(δ)′ g2 is an isomorphism from N b
1 onto M0,λ×δa2 mapping N b

1,j onto M0,j and

caj to dj for j ≤ λ× δa2 and extending g0 ◦ (f2)−1

[why? see the choice of g2: it maps N b
1,j onto M0,j ]

(ε)′ g1 ◦ (f1)−1 is an isomorphism from N b
2 onto Mλ×δa0 extending g0

[why? remember f1 is an isomorphism from Na
1 onto N b

2 extending f0 and
the choice of g1: it maps Na

1 onto Mλ×δa1 ,0].

So there is an isomorphism gb3 form N b
3 onto M3 extending g2 and g1 ◦ (f1)−1.

Lastly, (gb3)−1 ◦ ga3 is an isomorphism from Na
3 onto N b

3 (chase arrows). Also
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((gb3)−1 ◦ ga3 ) � Na
1 = (gb3)−1(ga3 � N

a
1 )

= (gb3)−1g1 = ((gb3)−1 �Mλ×δa1 ,0) ◦ g1

= (gb3 � N
b
2)−1 ◦ g1 = ((g1 ◦ (f1)−1)−1) ◦ g1

= (f1 ◦ (g1)−1) ◦ g1 = f1.

Similarly ((gb3)−1 ◦ ga3 ) � Na
2 = f2.

So we have finished. �6.17

But if we invert twice we get straight; so

Claim 6.20. [Uniqueness]. Assume for x ∈ {a, b} we have
NFλ,δ̄x(Nx

0 , N
x
1 , N

x
2 , N

x
3 ) and cf(δa1 ) = cf(δb1), cf(δa2 ) = cf(δb2), cf(δa3 ) = cf(δb3), all

δx` limit ordinals < λ+.
If f` is an isomorphism from Na

` onto N b
` for ` < 3 and f0 ⊆ f1, f0 ⊆ f2 then

there is an isomorphism f from Na
3 onto N b

3 extending f1, f2.

Proof. Let δ̄c = 〈δc1, δc2, δc3〉 = 〈δa2 , δa1 , δa3 〉; by 6.14(1) there are N c
` (for ` ≤ 3) such

that NFλ,δ̄c(N
c
0 , N

c
1 , N

c
2 , N

c
3 ) and N c

0
∼= Na

0 . There is for x ∈ {a, b} an isomorphism

gx0 from Nx
0 onto N c

0 and without loss of generality ga0 = gb0 ◦ f0. Similarly for
x ∈ {a, b} there is an isomorphism gx1 from Nx

1 onto N c
2 extending gx0 (as Nx

1

is (λ, cf(δx1 ))-brimmed over Nx
0 and also N c

2 is (λ, cf(δc2))-brimmed over N c
0 and

cf(δc2) = cf(δa1 ) = cf(δx1 )) and without loss of generality gb1 = ga1 ◦ f1. Similarly
for x ∈ {a, b} there is an isomorphism gx2 from Nx

2 onto N c
1 extending gx0 (as Nx

2

is (λ, cf(δx2 ))-brimmed over Nx
0 and also N c

1 is (λ, cf(δc1))-brimmed over N c
0 and

cf(δc1) = cf(δa2 ) = cf(δx2 )) and without loss of generality ga2 = gb2 ◦ f2.
So by 6.17 for x ∈ {a, b} there is an isomorphism gx3 from Nx

3 onto N c
3 extending

gx1 and gx2 . Now (gb3)−1 ◦ ga3 is an isomorphism from Na
3 onto N b

3 extending f1, f2

as required. �6.20

So we have proved the uniqueness for NFλ,δ̄ when all δ` are limit ordinals; this
means that the arbitrary choice of 〈N1,i : i ≤ λ × δ1〉 and 〈ci : i < λ × δ1〉
is immaterial; it figures in the definition and, e.g. existence proof but does not
influence the net result. The power of this result is illustrated in the following
conclusion.

Conclusion 6.21. [Symmetry].

If NFλ,〈δ1,δ2,δ3〉(N0, N1, N2, N3) where δ1, δ2, δ3 are limit ordinals < λ+ then
NFλ,〈δ2,δ1,δ3〉(N0, N2, N1, N3).

Proof. By 6.18 we can find N ′`(` ≤ 3) such that: N ′0 = N0, N
′
1 is (λ, cf(δ1))-brimmed

over N ′0, N
′
2 is (λ, cf(δ2))-brimmed over N ′0 and N ′3 is (λ, cf(δ3))-brimmed over N ′1∪

N ′2 and NFλ,〈δ1,δ2,δ3〉(N
′
0, N

′
1, N

′
2, N

′
3) and NFλ,〈δ2,δ1,δ3〉(N

′
0, N

′
2, N

′
1, N

′
3). Let f1, f2

be an isomorphism from N1, N2 onto N ′1, N
′
2 over N0, respectively. By 6.20 (or 6.17)

there is an isomorphism f ′3 form N3 onto N ′3 extending f1 ∪ f2. As isomorphisms
preserve NF, we are done. �6.21

Now we turn to smooth amalgamation (not necessarily brimmed, see Definition
6.13). If we use Lemma 4.9, of course, we do not really need 6.22.
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Claim 6.22. 1) If NFλ,δ̄(N0, N1, N2, N3) and δ1, δ2, δ3 are limit ordinals, then
NFλ(N0, N1, N2, N3) (see Definition 6.13).
2) In Definition 6.13(1) we can add:

(d)+ M` is (λ, cf(λ))-brimmed over N0 and moreover over N`,

(e) M3 is (λ, cf(λ))-brimmed over M1 ∪M2 (actually this is given by clause
(f)(ζ) of Definition 6.12).

3) If N0 ≤k N` for ` = 1, 2 and N1 ∩ N2 = N0, then we can find N3 such that
NFλ(N0, N1, N2, N3).

Proof. 1) Note that even if every δ` is limit and we waive the “moreover” in clause
(d)+, the problem is in the case that e.g. (cf(δa), cf(δb), cf(δc)) 6= (cf(λ), cf(λ), cf(λ)).

For ` = 1, 2 we can find M
`

= 〈M `
i : i ≤ λ × (δ` + λ)〉 and 〈c`i : i < λ × (δi + λ)〉

such that M `
0 = N0,M

1
is ≤k-increasing continuous (M `

i ,M
`
i+1, ci) ∈ K

3,uq
s and if

p ∈ Sbs(M `
i ) and i < λ× (δ` + λ) then for λ ordinals j < λ, ortp(ci,M

`
i+j ,M

`
i+j+1)

is a non-forking extension of p. So M `
λ×δ` is (λ, cf(δ`))-brimmed over M `

0 = N0

and M `
λ×(δ`+λ) is (λ, cf(λ))-brimmed over M `

λ×δ` ; so without loss of generality

M `
λ×δ` = N` for ` = 1, 2.

By 6.18 we can find Mi,j for i ≤ λ×(δ1 +λ), j ≤ λ×(δ2 +λ) for δ̄′ ..= 〈δ1 +λ, δ2 +

λ, δ3〉 such that they are as in 6.18 for M
1
,M

2
so M0,0 = N0; then choose M ′3 ∈ Kλ

which is (λ, cf(δ3))-brimmed overMλ×δ1,λ×δ2 . So NFλ,δ̄(M0,0,Mλ×δ1,0,M0,λ×δ2 ,M
′
3),

hence by 6.20 without loss of generality M0,0 = N0,Mλ×δ1,0 = N1, M0,λ×δ2 = N2,
and N3 = M ′3. Lastly, let M3 be (λ, cf(λ))-brimmed over M ′3. Now clearly also
NFλ,〈δ1+λ,δ2+λ,δ3+λ〉(M0,0,Mλ×(δ1+λ),0,M0,λ×(δ2+λ),M3) and
N0 = M0,0, N1 = Mλ×δ2,0 ≤k Mλ×(δ2+λ),0, N2 = M0,λ×δ2 ≤k M0,λ×(δ2+λ)

and Mλ×(δ1+λ),0 is (λ, cf(λ))-brimmed over Mλ×δ1,0 and M0,λ×(δ2+λ) is
(λ, cf(λ))-brimmed over M0,λ×δ2 and N3 = M ′3 ≤k M3. So we get all the require-
ments for NFλ(N0, N1, N2, N3) (as witnessed by 〈M0,0,Mλ×(δ1+λ),0,M0,λ×(δ2+λ),M3〉).
2) Similar proof.

3) By 6.14 and the proof above. �6.22

Now we turn to NFλ; existence is easy.

Claim 6.23. NFλ has existence, i.e., clause (f) of 6.1(1).

Proof. By 6.22(3). �6.23

Next we deal with real uniqueness

Claim 6.24. [Uniqueness of smooth amalgamation]:
1) If NFλ(Nx

0 , N
x
1 , N

x
2 , N

x
3 ) for x ∈ {a, b}, f` an isomorphism from Na

` onto N b
`

for ` < 3 and f0 ⊆ f1, f0 ⊆ f2 then f1 ∪ f2 can be extended to a ≤k-embedding of
Na

3 into some ≤k-extension of N b
3 .

2) So if above Nx
3 is (λ, κ)-brimmed over Nx

1 ∪ Nx
2 for x = a, b, we can extend

f1 ∪ f2 to an isomorphism from Na
3 onto N b

3 .

Proof. 1) For x ∈ {a, b} let the sequence 〈Mx
` : ` < 4〉 be a witness to

NFλ(Nx
0 , N

x
1 , N

x
2 , N

x
3 ) as in 6.13, 6.22(2), so in particular

NFλ,〈λ,λ,λ〉(M
x
0 ,M

x
1 ,M

x
2 ,M

x
3 ). By chasing arrows (disjointness) and uniqueness,

i.e. 6.20 without loss of generality Ma
` = M b

` for ` < 4 and f0 = idNa0 . As Ma
1

is (λ, cf(λ))-brimmed over Na
1 and also over N b

1 (by clause (d)+ of 6.22(2)) and f1
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is an isomorphism from Na
1 onto N b

1 , clearly by 1.17 there is an automorphism g1

of Ma
1 such that f1 ⊆ g1, hence also idNa0 = f0 ⊆ f1 ⊆ g1. Similarly there is an

automorphism g2 of Ma
2 extending f2 hence f0. So g` ∈ Aut(Ma

` ) for ` = 1, 2 and
g1 � Ma

0 = f0 = g2 � Ma
0 . By the uniqueness of NFλ,〈λ,λ,λ〉 (i.e. Claim 6.20) there

is an automorphism g3 of Ma
3 extending g1∪g2. This proves the desired conclusion.

2) Should be clear. �6.24

We now show that in the cases the two notions of non-forking amalgamations
are meaningful then they coincide, one implication already is a case of 6.22.

Claim 6.25. Assume

(a) δ̄ = 〈δ1, δ2, δ3〉, δ` < λ+ is a limit ordinal for ` = 1, 2, 3;
N0 ≤k N` ≤k N3 are in Kλ for ` = 1, 2

(b) N` is (λ, cf(δ`))-brimmed over N0 for ` = 1, 2

(c) N3 is cf(δ3)-brimmed over N1 ∪N2.

Then NFλ(N0, N1, N2, N3) iff NFλ,δ̄(N0, N1, N2, N3).

Proof. The “if” direction holds by 6.22(1). As for the “only if” direction, basically
it follows from the existence for NFλ,δ̄ and uniqueness for NFλ; in details by the
proof of 6.22(1) (and Definition 6.12, 6.13) we can find M`(` ≤ 3) such that M0 =
N0 and NFλ,δ̄(M0,M1,M2,M3) and clauses (b), (c), (d) of Definition 6.13 and

(d)+ of 6.22(2) hold so by 6.22 also NFλ(M0,M1,M2,M3). Easily there are for
` < 3, isomorphisms f` from M` onto N` such that f0 = f` � M` where f0 =
idN0 . By the uniqueness of smooth amalgamations (i.e., 6.24(2)) we can find an
isomorphism f3 from M3 onto N3 extending f1 ∪ f2. So as NFλ,δ̄(M0,M1,M2,M3)
holds also NFλ,δ̄, (f0(M0), f3(M1), f3(M2), f3(M3)); that is NFλ,δ̄(N0, N1, N2, N3)
is as required. �6.25

Claim 6.26. [Monotonicity]: If NFλ(N0, N1, N2, N3) and N0 ≤k N
′
1 ≤k N1 and

N0 ≤k N
′
2 ≤k N2 and N ′1 ∪N ′2 ⊆ N ′3 ≤k N

′′
3 , N3 ≤k N

′′
3 then NFλ(N0, N

′
1, N

′
2, N

′
3).

Proof. Read Definition 6.13(1). �6.26

Claim 6.27. [Symmetry]: NFλ(N0, N1, N2, N3) holds if and only if
NFλ(N0, N2, N1, N3) holds.

Proof. By Claim 6.21 (and Definition 6.13). �6.27

We observe

Conclusion 6.28. If NFλ(N0, N1, N2, N3), N3 is (λ, ∂)-brimmed over N1∪N2 and
λ ≥ ∂, κ ≥ ℵ0, then there is N+

2 such that

(A) NFλ(N0, N1, N
+
2 , N3)

(B) N2 ≤k N
+
2

(C) N+
2 is (λ, κ)-brimmed over N0 and even over N2.

(D) N3 is (λ, ∂)-brimmed over N1 ∪N+
2 .
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Proof. Let N+
2 be (λ, κ)-brimmed over N2 be such that N+

2 ∩N3 = N2. So by exis-
tence 6.23 there is N+

3 such that NFλ(N0, N1, N
+
2 , N

+
3 ) and N+

3 is (λ, ∂)-brimmed
over N1 ∪N+

2 . By monotonicity 6.26 we have NFλ(N0, N1, N2, N
+
3 ). So by unique-

ness (i.e., 6.24(2)) without loss of generality N3 = N+
3 , so we are done. �6.28

The following claim is a step toward proving transitivity for NFλ; so we first deal
with NFλ,δ̄. Note below: if we ignoreN c

i we have problem showing NFλ,δ̄(N
a
0 , N

a
α, N

b
0 , N

b
α).

Note that it is not clear at this stage whether, e.g. N b
ω is even universal over Na

ω ,
but N c

ω is; note that the N c
i are ≤k-increasing with i but not necessarily continuous.

However once we finish proving that NFλ is a non-forking relation on ks respecting
s this claim will lose its relevance.

Claim 6.29. Assume α < λ+ is an ordinal and for x ∈ {a, b, c} the sequence

N
x

= 〈Nx
i : i ≤ α〉 is a ≤k-increasing sequence of members of Kλ, and for x = a, b

the sequence N
x

is ≤k-increasing continuous, N b
i ∩Na

α = Na
i , N

c
i ∩Na

α = Na
i , N

a
i ≤k

N b
i ≤k N

c
i and N b

0 is (λ, δ2)-brimmed over Na
0 and NFλ,δ̄i(N

a
i , N

a
i+1, N

c
i , N

b
i+1) (so

necessarily i < α⇒ N c
i ≤k N

b
i+1) where

δ̄i = 〈δi1, δi2, δi3〉 with δi1, δ
i
2, δ

i
3 are ordinals < λ+ and δ3 < λ+ is limit, N c

α is

(λ, cf(δ3))-brimmed over N b
α, δ1 =

∑
β<α

δβ1 and δ3 = δα3 and δ2 = δ0
2 , δ̄ = 〈δ1, δ2, δ3〉.

Then NFλ,δ̄(N
a
0 , N

a
α, N

b
0 , N

c
α).

Proof. For i < α let 〈N i
1,ε, N

i
2,ε, d

i
ζ : ε ≤ λ × δi1, ζ < λ × δi1〉 be a witness to

NFλ,δ̄i(N
a
i , N

a
i+1, N

c
i , N

b
i+1). Now we define a sequence 〈N1,ε, N2,ε, d

i
ζ : ε ≤ λ × δ1

and ζ < λ× δ1〉 where

(a) N1,0 = Na
0 , N2,0 = N b

0 and

(b) if λ × (
∑
j<i

δj1) < ζ ≤ λ × (
∑
j≤i

δj1) then we let N1,ζ = N i
1,εζ

, N2,ζ = N i
2,εζ

where εζ = ζ − λ× (
∑
j<i

δj1) and

(c) if 0 < ζ = λ ×
∑
j<α

δj1 we let N1,ζ = Na
i , N2,ζ = N b

i = α (if i is non-limit

we should note that this is compatible with clause (b), note that by this if
i = α then N1,ζ = Na

α, N2,ζ = ∪{N i
2,λ×δ1 : i < α}

(d) if λ × (
∑
j<i

δj1) ≤ ζ < λ × (
∑
j≤i

δj1) then we let dζ = diεζ where εζ = ζ − λ ×

(
∑
j<i

δjj ) = ∪{N∗2,ζ : ζ < λ× (
∑
j<α

δj1).

Clearly 〈N1,ζ : ζ ≤ λ×δ1〉 is≤k-increasing continuous, and also 〈N2,ζ : ζ ≤ λ×δ1〉 is.

Obviously (N1,ζ , N1,ζ+1, dζ) ∈ K3,uq
λ as this just means (N i

1,εζ
, N i

1,εζ+1, d
i
ζ) ∈ K

3,uq
λ

when λ×
∑
j<i

δj1 : j ≤ ζ < λ×
∑
j≤i

δj1 and εζ as above.

Why ortp(dζ , N2,ζ , N2,ζ+1) does not fork overN1,ζ for ζ, i such that λ×(
∑
j<i

δj1)ζ <

λ× (
∑
j≤i

δjj )? If λ×
∑
j<i

δj1 < ζ this holds as it means ortp(diεζ , N
i
2,εζ

, N i
2,εζ+1) does

not fork over N i
1,ζ . If λ×

∑
j<i

δj1 = ζ this is not the case but N i
1,0 = N1,ζ ≤k N2,ζ ≤k

N c
i = N i

2,0 and we know that ortp(dζ , N
i
2,0, N

i
2,1) does not fork over N i

1,0 = N1,ζ

hence by monotonicity of non-forking ortp(dζ , N2,ζ , N2,ζ+1) does not fork over N1,ζ

is as required.
Note that we have not demanded or used “N

c
continuous”; the N c

i is really
needed for i limit as we do not know that N b

i is brimmed over Na
i . �6.29
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Claim 6.30. [transitivity] 1) Assume that α < λ+ and for x ∈ {a, b} we have
〈Nx

i : i ≤ α〉 is a ≤k-increasing continuous sequence of members of Kλ.
If NFλ(Na

i , N
a
i+1, N

b
i , N

b
i+1) for each i < α then NFλ(Na

0 , N
a
α, N

b
0 , N

b
α).

2) Assume that α1 < λ+, α2 < λ+ and Mi,j ∈ Kλ (for i ≤ α1, j ≤ α2) satisfy
clauses (B), (C), (D), from 6.18, and for each i < α1, j < α2 we have:

Mi,j+1

Mi+1,j+1⋃
Mi,j

Mi+1,j .

Then Mi,0

Mα1,α2⋃
M0,0

M0,j for i ≤ α1, j ≤ α2.

Proof. 1) We first prove special cases and use them to prove more general cases.

Case A: Na
i+1 is (λ, κi)-brimmed over Na

i and N b
i+1 is (λ, ∂i)-brimmed over Na

i+1∪
N b
i for i < α (∂i infinite, of course).
In essence the problem is that we do not know “N b

i is brimmed over Na
i ” (i

limit) so we shall use 6.29; for this we introduce appropriate N c
i .

Let δi1 = κi, δ
i
2 = κi, δ

i
3 = ∂i where we stipulate ∂α = λ. For i ≤ α we can choose

N c
i ∈ Kλ such that

(a) N b
i ≤k N

c
i ≤k N

b
i+1, N

c
i is (λ, κi)-brimmed over N b

i , and

NFλ,〈δi1,δi2,δi3〉(N
a
i , N

a
i+1, N

c
i , N

b
i+1)

(b) N c
α ∈ Kλ is (λ, δα3 )-brimmed over N b

α

(c) 〈N c
i : i < α〉 is ≤k-increasing (in fact follows)

(Possible by 6.28). Now we can use 6.29. Case B: For each i < α we have: Na
i+1

is (λ, κi)-brimmed over Na
i .

In essence our problem is that we do not know anything about brimmedness of
the N b

i , so we shall “correct it”.
Let δ̄i = (κi, λ, λ).

We can find a ≤k-increasing sequence 〈Mx
i : i ≤ α〉 of models in Kλ for x ∈

{a, b, c}, continuous for x = a, b such that i < α ⇒ Ma
i ≤k M b

i ≤k M c
i ≤k

M b
i+1 and M b

α ≤k M
c
α and M c

i is (λ, κi)-brimmed over M b
i (hence over Ma

i ) and

NFλ,δ̄i(M
a
i ,M

a
i+1,M

c
i ,M

b
i+1) by choosing Ma

i ,M
b
i ,M

c
i by induction on i,Ma

0 = Na
0

and M b
0 is universal over Ma

0 recalling that the NFλ,δ̄i implies some brimmedness

condition, e.g. M b
i+1 is (λ, cf(δi3))-brimmed over Ma

i+1 ∪M b
i . By Case A we know

that NFλ(Ma
0 ,M

a
α,M

b
0 ,M

c
α) holds.

We can now choose an isomorphism fa0 from Na
0 onto Ma

0 , as the identity (exists
as Ma

0 = Na
0 ) and then a ≤k-embedding f b0 of N b

0 into M b
0 extending fa0 . Next

we choose by induction on i ≤ α, fai an isomorphism from Na
i onto Ma

i such that:
j < i⇒ faj ⊆ fai , possible by “uniqueness of the (λ, κi)-brimmed model over Ma

i ”
so here we are using the assumption of this case.

Now we choose by induction on i ≤ α, a ≤k-embedding f bi of N b
i into M b

i

extending fai and f bj for j < i. For i = 0 we have done it, for i limit use
⋃
j<i

f bj ,

lastly for i a successor ordinal let i = j + 1, now we have

(∗)2 NFλ(Ma
j ,M

a
j+1, f

b
j (N b

j ),M b
j+1)

[why? because NFλ,δ̄j (M
a
j ,M

a
j+1,M

c
j ,M

b
j+1) by the choice of the

Mx
ζ ’s hence by 6.25 we have NFλ(Ma

j ,M
a
j+1,M

c
j ,M

b
j+1) and as

Ma
j = faj (Na

j ) ≤k f
b
j (N b

j ) ≤M b
j ≤k M

c
j by 6.26 we get (∗)2.]
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By (∗)2 and the uniqueness of smooth amalgamation 6.24 and as M b
j+1 is (λ, cf(δ3

j ))-

brimmed over Ma
j+1∪M b

j hence over Ma
j+1∪f bj (N b

j ) clearly there is f bi as required.
So without loss of generality faα is the identity, so we have Na

0 = Ma
0 , N

a
α =

Ma
α, N

b
0 ≤k M

b
0 , N

b
α ≤k M

b
α; also as said above NFλ(Ma

0 ,M
a
α,M

b
0 ,M

b
α) holds (using

Case A) so by monotonicity, i.e., 6.26 we get NFλ(Na
0 , N

a
α, N

b
0 , N

b
α) as required.

Case C: General case.

We can find M `
i for ` < 3, i ≤ α such that (note that M1

0 = M0
0 ):

(a) M `
i ∈ Kλ

(b) for each ` < 3,M `
i is ≤k-increasing in i (but for ` = 1, 2 they are not

required to be continuous)

(c) M0
i = Na

i

(d) M `+1
i+1 is (λ, λ)-brimmed over M `

i+1 ∪M
`+1
i for ` < 2, i < α

(e) NFλ(M `
i ,M

`
i+1,M

`+1
i ,M `+1

i+1 ) for ` < 2, i < α

(f) M1
0 = M0

0 and M2
0 is (λ, cf(λ))-brimmed over M1

0

(g) for ` < 2 and i < α limit we have

M `+1
i is (λ, λ)-brimmed over

⋃
j<i

M `+1
j ∪M `

i

(h) for i < α limit we have

NFλ(
⋃
j<i

M1
j ,M

1
i ,
⋃
j<i

M2
j ,M

2
i ).

[How? As in the proof of 6.18 or just do by hand.]

Now note:

(∗)3 M `+1
i is (λ, cf(λ× (1 + i)))-brimmed over M `

i if ` = 1 ∨ i 6= 0
[why? If i = 0 by clause (f), if i a successor ordinal by clause (d) and if i
is a limit ordinal then by clause (g)]

(∗)4 for i < α,NFλ(M0
i ,M

0
i+1,M

2
i ,M

2
i+1).

[Why? If i = 0 by clause (e) for ` = 1, i = 0 we get NFλ(M1
0 ,M

1
1 ,M

2
0 ,M

2
1 )

so by clause (f) (i.e., M1
0 = M0

0 ) and monotonicity (i.e., Claim 6.26) we have
NFλ(M0

0 ,M
1
0 ,M

2
0 ,M

2
1 ) as required. If i > 0 we use Case B for α = 2 with

M0
i ,M

0
i+1,M

1
i ,M

1
i+1,M

2
i ,M

2
i+1 here standing for Na

0 , N
b
0 , N

a
1 , N

b
1 , N

a
2 , N

b
2

there (and symmetry).]

Let us define N `
i for ` < 3, i ≤ α by: N `

i is M `
i if i is non-limit and N `

i = ∪{N `
j :

j < i} if i is limit.

(∗)5(i) 〈N `
i : i ≤ α〉 is ≤k-increasing continuous, N0

i = Na
i and N `

i ≤k M
`
i

(ii) for i < α, NFλ(N0
i , N

0
i+1, N

2
i , N

2
i+1)

[why? by (∗)4+ monotonicity of NFλ]

(iii) for i < α,N2
i+1 is (λ, cf(λ))-brimmed over N0

i+1 ∪N2
i and even over N1

i+1 ∪
N2
i

[why? by clause (d)]

(∗)6 NFλ,〈λ,λ,1〉(N
1
0 , N

1
α, N

2
0 , N

2
α).

[Why? As we have proved case A (or, if you prefer, by 6.29; easily the
assumption there holds).]

Choose fai = idNai for i ≤ α and let f b0 be a ≤k-embedding of N b
0 into N2

0 .

Now we continue as in Case B defining by induction on i a ≤k-embedding f bi of
N b
i into N2

i , the successor case is possible by (∗)5(ii) + (∗)5(iii). In the end by (∗)6

and monotonicity of NFλ (i.e., Claim 6.26) we are done.
2) Apply for each i < α2 part (1) to the sequences 〈Mβ,i : β ≤ α1〉, 〈Mβ,i+1 :
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β ≤ α1〉 so we get Mα1,i

Mα1,i+1⋃
M0,i

M0,i+1 hence by symmetry (i.e., 6.24) we have

M0,i+1

Mα1,i+1⋃
M0,i

Mα1,i. Applying part (1) to the sequences 〈M0,j : j ≤ α2〉, 〈Mα1,j :

j ≤ α2〉 we getM0,α2

Mα1,α2⋃
M0,0

Mα1,0 hence by symmetry (i.e. 6.24) we haveMα1,0

Mα1,α2⋃
M0,0

M0,α2 ;

so we get the desired conclusion. �6.30

Claim 6.31. Assume α < λ+, 〈N `
i : i ≤ α〉 is ≤k-increasing continuous sequence

of models for ` = 0, 1 where N `
i ∈ Kλ and N1

i+1 is (λ, κi)-brimmed over N0
i+1 ∪N1

i

and NFλ(N0
i , N

1
i , N

0
i+1, N

1
i+1).

Then N1
α is (λ, cf(

∑
i<α

κi))-brimmed over N0
α ∪N1

0 .

Remark 6.32. 1) If our framework is uni-dimensional (see [She09e, §2]; as for ex-
ample when it comes from [She01]) we can simplify the proof.

2) Assuming only “N1
i+1 is universal over N0

i+1 ∪N1
i ” suffices when α is a limit

ordinal, i.e., we get N1
α is (λ, cf(α))-brimmed over N0

α. Why? We choose N2
j for

j ≤ i such that N2
j = N1

j if j = 0 or j a limit ordinal and N2
j is a model ≤s N

1
j

and (λ, κ1)-brimmed over N0
j ∪N1

i when j = i + 1. Now 〈N2
j : j ≤ α〉 satisfies all

the requirements in 〈N1
j : j ≤ α〉 in 6.31.

3) We could have proved this earlier and used it, e.g. in 6.30.

Proof. The case α not a limit ordinal is trivial so assume α is a limit ordinal. We
choose by induction on i ≤ α, an ordinal ε(i) and a sequence 〈Mi,ε : ε ≤ ε(i)〉 and
〈cε : ε < ε(i) non-limit〉 such that:

(a) 〈Mi,ε : ε ≤ ε(i)〉 is (strictly) <k-increasing continuous in Kλ.

(b) N0
i ≤k Mi,ε ≤k N

1
i

(c) N0
i = Mi,0 and N1

i = Mi,ε(i).

(d) ε(i) is (strictly) increasing continuous in i and ε(i) is divisible by λ.

(e) j < i and ε ≤ ε(j)⇒Mi,ε ∩N1
j = Mj,ε.

(f) For j < i and ε ≤ ε(j + 1), the sequence
〈
Mβ,ε : β ∈ (j, i]

〉
is ≤k-increasing

continuous.

(g) For j < i and ε < ε(j) non-limit, the type ortp(cε,Mi,ε,Mi,ε+1) ∈ Sbs(Mi,ε)
does not fork over Mj,ε. (Actually, allowing all ε here is OK as well.)

(h) Mi+1,ε+1 is (λ, cf(λ))-brimmed over Mi+1,ε ∪Mi,ε+1.

(i) If ε < ε(i) and p ∈ Sbs(Mi,ε) then, for λ successor ordinals ξ ∈ [ε, ε(i)), the
type ortp(cξ,Mi,ξ,Mi,ξ+1) is a non-forking extension of p.

If we succeed, then 〈Mα,ε : ε ≤ ε(α)〉 is a (strictly) <k-increasing continuous se-
quence of models from Kλ, Mα,0 = N0

α, and Mα,ε(α) = N1
α. We can apply 4.3

and we conclude that N1
α = Mα,ε(α) is (λ, cf(α))-brimmed over Mα,ε(j) hence over

N0
α ∪N1

0 (both ≤k Mα,1).
Carrying the induction is easy. For i = 0, there is not much to do. For i

successor we use “N j
i+1 is brimmed over N0

i+1 ∪ N1
i ” the existence of non-forking

amalgamations and 4.2, bookkeeping and the extension property (E)(g). For i limit
we have no problem. �6.31
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Conclusion 6.33. 1) If NFλ(N0, N1, N2, N3) and 〈M0,ε : ε ≤ ε(∗)〉 is an ≤k-
increasing continuous sequence of models from Kλ, N0 ≤k M0,ε ≤k N2 then we can
find 〈M1,ε : ε ≤ ε(∗)〉 and N ′3 such that:

(a) N3 ≤k N
′
3 ∈ Kλ

(b) 〈M1,ε : ε ≤ ε(∗)〉 is ≤k-increasing continuous

(c) M1,ε ∩N2 = M0,ε

(d) N1 ≤k M1,ε ≤k N
′
3

(e) if M0,0 = N0 then M1,0 = N1

(f) NFλ(M0,ε,M1,ε, N2, N
′
3), for every ε ≤ ε(∗).

2) If N3 is universal over N1 ∪N2, then without loss of generality N ′3 = N3.

3) In part (1) we can add

(g) M1,ε+1 is brimmed over M0,ε+1 ∪M1,ε.

Proof. 1) Define M ′0,i for i ≤ ε∗ ..= 1 + ε(∗) + 1 by M ′0,0 = N0,M
′
0,1+ε = M0,ε

for ε ≤ ε(∗) and M ′0,1+ε(∗)+1 = N2. By existence (6.23) we can find an ≤k-

increasing continuous sequence 〈M ′1,ε : ε ≤ ε∗〉 with M ′1,0 = N1 and ≤k-embedding
f of N2 into M ′1,ε∗ such that ε < ε∗ ⇒ NFλ(f(M ′0,ε),M

′
1,0, f(M ′0,ε+1),M ′1,ε+1).

By transitivity we have NFλ(f(M ′0,0),M ′1,0, f(M ′0,ε∗),M
′
1,ε∗). By disjointness (i.e.,

f(M ′0,ε∗)∩M ′1,0 = M ′0,0, see 6.14(3)) without loss of generality f is the identity. By
uniqueness for NF there are N ′3, N3 ≤k N

′
3 ∈ Kλ and ≤k-embedding of M ′1,ε∗ onto

N ′3 over N1 ∪N2 = M ′0,ε∗ ∪M ′1,0 so we are done.

2) Follows by (1).

3) Similar to (1). �6.33

Claim 6.34. NFλ respects s; that is assume NFλ(M0,M1,M2,M3) and a ∈ M1 \
M0 satisfies ortp(a,M0,M3) ∈ Sbs(M0), then ortp(a,M2,M3) ∈ Sbs(M2) does not
fork over M0.

Proof. Without loss of generality M1 is (λ, ∗)-brimmed over M0. [Why? By the ex-
istence we can find M+

1 which is a (λ, ∗)-brimmed extension of M1. By the existence
for NFλ without loss of generality we can findM+

3 such that NFλ(M1,M
+
1 ,M3,M

+
3 ),

hence by transitivity for NFλ we have NFλ(M0,M
+
1 ,M2,M

+
3 ).] By the hypothesis

of the section there are M ′1, a
′ such that M0 ∪ {a′} ⊆ M ′1 and ortp(a′,M0,M

′
1) =

ortp(a,M0,M1) and (M0,M
′
1, a) ∈ K3,uq

λ ; as M+
1 is (λ, ∗)-brimmed over M0 with-

out loss of generality M ′ ≤k M
+
1 and a′ = a and M1 is (λ, ∗)-brimmed over M ′1.

We can apply 6.10 to M ′1,M
+
1 getting 〈M∗i , ai : i ≤ δ < λ+〉 as there. Let M ′i

be: M0 if i = 0,M∗j if 1 + j = i so M ′1 = M∗0 = M ′1 and let ai be a if i = 0, aj if

1+j = i. So we can find M ′3 and f such that M2 ≤k M
′
3, f is a ≤k-embedding of M+

1

into M ′3 extending idM0 such that NFλ,〈δ,λ,λ〉(M0, f(M+
1 ),M2,M

′
3) and M ′3, this is

witnessed by 〈f(M ′i) : i ≤ δ〉, 〈M ′′i : i ≤ δ〉, 〈f(ai) : i < δ〉 and M ′′0 = M2; this is
possible by 6.14(2). Hence NFλ(M0, f(M+

1 ),M2, N) = NFλ(f(M ′0), f(M ′δ),M
′′
0 , N)

hence by the uniqueness for NFλ without loss of generality f = idM+
1

and M3 ≤k

N . By the choice of f,N we have that ortp(a,M2,M3) = ortp(a0,M2, N) =
ortp(a0,M

′′
0 ,M

′
1) ∈ Sbs(M ′′0 ) = Sbs(M2) does not fork over M ′0 = M0 as re-

quired. �6.34
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Conclusion 6.35. If M0 ≤k M` ≤k M3 for ` = 1, 2 and (M0,M1, a) ∈ K3,uq
λ and

ortp(a,M2,M3) ∈ Sbs(M2) does not fork over M0 then NF(M0,M1,M2,M3).

Proof. By the definition of K3,uq
λ and existence for NFλ and 6.34 (or use 6.3 +

6.36. �6.35

We can sum up our work by

Conclusion 6.36. [Main Conclusion] NFλ is a non-forking relation on 4(kλ) which
respects s.

Proof. We have to check clauses (a)-(g)+(h) from 6.1. Clauses (a),(b) hold by the
Definition 6.13 of NFλ. Clauses (c)1, (c)2, i.e., monotonicity hold by 6.26. Clause
(d), i.e., symmetry holds by 6.27. Clause (e), i.e., transitivity holds by 6.30. Clause
(f), i.e., existence hold by 6.23. Clause (g), i.e., uniqueness holds by 6.24.

Lastly, clause (h), i.e., NFλ respecting s by 6.34. �6.36

The following definition is not needed for now but is natural (of course, we can
omit “there is superlimit” from the assumption and the conclusion). For the rest
of the section we stop assuming Hypothesis 6.9.

Definition 6.37. 1) A good λ-frame s is type-full when for M ∈ ks,Sbs(M) =
Sna
kλ

(M).

2) Assume kλ is a λ-AEC and NF is a 4-place relation on Kλ. We define t =
tkλ,NF = (Kt,

⋃
t
,Sbs

t ) as follows:

(A) kt is the λ-AEC kλ

(B) Sbs
t (M) is Sna

kλ
(M) for M ∈ kλ

(C)
⋃
t

is defined by: (M0,M1, a,M3) ∈
⋃
t

when we can find M2,M
′
3 such that

M0 ≤kλ M2 ≤kλ M
′
3,M3 ≤kλ M

′
3, a ∈M2 \M0 and NF(M0,M1,M2,M

′
3).

Claim 6.38. 1) Assume that

(A) kλ is a λ-AEC with amalgamation (actually follows by (c)) and a superlimit
model

(B) kλ is stable

(C) NF is a kλ-non-forking relation, see Definition 6.1(1).

Then t = tkλ,NF is a type-full good λ-frame.

2) Assume that s is a good λ-frame which has existence for K3,uq
λ (see 6.9(2))

and NF = NFλ. Then t is very close to s, i.e.:

(A) ks = kt

(B) if p ∈ Sbs
s (M1) and M0 ≤kλ M1 then p ∈ Sbs

t (M1) and p forks over M0 for
s iff p forks over M0 for t.

Proof. For the time being, left to the reader (but before it is really used, it is proved
in [She09e, 705-9.11A]). �6.38

Remark 6.39. Note that this actually says that from now on we could have used
type-full s, but it is not necessary for a long time.
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Definition 6.40. 1) Let s be a good λ-frame. We say that NF is a weak s-non-
forking relation when

(a) NF is a pseudo ks-non-forking relation, see Definition 6.1(2), i.e., uniqueness
is omitted

(b) NF respects s, see Definition 6.1(3)

(c) NF satisfies 6.33, (NF-lifting of an ≤k-increasing sequence).

1A) If in part (1) we replace “s-non-forking” by “non-forking”, we mean that we
omit clause (c).

1B) In part (1) we omit “weak” when we omit the “pseudo” in clause (a), so clause
(c) becomes redundant.

2) We say s is pseudo-successful if some NF is a weak s-non-forking relation wit-
nesses it.

Observation 6.41. 1) If s is a good λ-frame which is weakly successful (i.e., has

existence for K3,uq
λ , i.e., 6.9) then NFλ = NFs is a s-non-forking relation.

2) If s is a good λ-frame and NF is a weak s-non-forking relation then 6.35 holds.

3) If s is a good λ-frame and NF is an s-non-forking relation then NF is a weak
s-non-forking relation which implies NF is a pseudo non-forking relation.

Proof. Straight.

1) Follows by 6.36, NFλ satisfies clauses (a)+(b) and by 6.33 it satisfies also clause
(c) of Definition 6.1(1).

2) Also easy.

3) We have just to check the proof of 6.33 still works. �6.41

Remark 6.42. 1) In [She09e, §1-§11] we can use “s is pseudo successful as witnessed
by NF” so has lifting of decompositions instead of “s is weakly successful”. We
shall return to this elsewhere: see [She09d], [SV].
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§ 7. Nice extensions in Kλ+

Hypothesis 7.1. Assume the hypothesis 6.9.

So by §6 we have reasonable control on smooth amalgamation in Kλ. We use this
to define “nice” extensions in Kλ+ and prove some basic properties. This will be
treated again in §8.

Definition 7.2. 1) Knice
λ+ is the class of saturated M ∈ Kλ+ .

2) Let M0 ≤∗λ+ M1 mean:

M0 ≤k M1 and they are from Kλ+ and we can find M
`

= 〈M `
i : i < λ+〉, a

≤k-representation of M` for ` = 0, 1 such that:
NFλ(M0

i ,M
0
i+1,M

1
i ,M

1
i+1) for i < λ+.

3) Let M0 <+
λ+,κ M1 mean 23 that (M0,M1 ∈ Kλ+ and) M0 ≤∗λ+ M1 by some

witnesses M `
i (for i < λ+, ` < 2) such that NFλ,〈1,1,κ〉(M

0
i ,M

0
i+1,M

1
i ,M

1
i+1) for

i < λ+; of course M0 ≤k M1 in this case. Let M0 ≤+
λ+,κ M1 mean (M0 = M1 ∈

Kλ+) ∨ (M0 <
+
λ+,κ M1). If κ = λ, we may omit it.

4) Let K3,bs
λ+ = {(M,N, a) : M ≤∗λ+ N are from Kλ+ and a ∈ N \ M and for

some M0 ≤k M,M0 ∈ Kλ we have [M0 ≤k M1 ≤k M and M1 ∈ Kλ implies

ortp(a,M1, N) ∈ Sbs(M1) and does not fork overM0]}. We callM0 or ortp(a,M0, N)

a witness for (M,N, a) ∈ K3,bs
λ+ . (In fact this definition on K3,bs

λ+ is compatible with
the definition in §2 for triples such that M ≤∗λ+ N but we do not know now whether

even (Knice
λ+ ,≤∗λ+) is a λ+-AEC.)

Claim 7.3. 0) Knice
λ+ has one and only one model up to isomorphism and M ∈ Knice

λ+

implies M ≤∗λ+ M and M ≤+
λ+ M ; moreover, M ∈ Kλ+ ⇒ M ≤∗λ+ M . Also ≤∗λ+

is a partial order and if M` ∈ Kλ+ for ` = 0, 1, 2 and M0 ≤k M1 ≤k M2 and
M0 ≤∗λ+ M2 then M0 ≤∗λ+ M1.

1) If M0 ≤∗λ+ M1 and M
`

= 〈M `
i : i < λ+〉 is a representation of M` for ` = 0, 1

then

(∗) For some club E of λ+,
(a) for every α < β from E we have NFλ(M0

α,M
0
β ,M

1
α,M

1
β).

(b) if ` < 2 and M` ∈ Knice
λ+ then for α < β from E the model M `

β is

(λ, ∗)-brimmed over M `
α.

2) Similarly for <+
λ+,κ: if M0 <+

λ+,κ M1,M
`

= 〈M `

i : i < λ+〉 a representation

of M` for ` = 0, 1 then for some club E of λ+ for every α < β from E we have
NFλ,〈1,1,κ〉(M

0
α,M

0
β ,M

1
α,M

1
β), moreover NFλ,〈1,cf(λ×(1+β)),κ〉(M

0
α,M

0
β ,M

1
α,M

1
β) and

if (Mα,M
0

β ,M
1
α,M

1
β),M0 ∈ Knice

λ+ then we can add NFλ,〈λ,cf(λ×(1+β)),κ)(M
0
α,M

0
β ,M

′
α,M

′
β).

3) The κ in Definition 7.2(3) does not matter.

4) If M0 <
+
λ+,κ M1, then M1 ∈ Knice

λ+ .

5) If M ∈ Kλ+ is saturated, equivalently M ∈ Knice
λ+ then M has a ≤k-representation

M = 〈Mα : α < λ+〉 such that Mi+1 is (λ, λ)-brimmed over Mi for i < λ+ and also
the inverse is true.

23Note that M0 <
+
λ+,κ

M1 implies M1 ∈ Knice
λ+ but in general M0 ∈ Knice

λ+ does not follow.
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6) If M ≤∗λ+ N and N0 ≤k N,N0 ∈ Kλ then we can find M1 ≤k N1 from Kλ such
that M1 ≤k M,N0 ≤k N1 ≤k N and: for every M2 ∈ Kλ satisfying M1 ≤k M2 ≤k M
there is N2 ≤k N such that NFs(M1,M2, N1, N2).

Proof. 0) Obvious by now (for the second sentence use part (1) and NFs being a
non-forking relation on ks); in particular transitivity and monotonicity.

1) Straight by 6.30 as any two representations agree on a club.

2) Up to “moreover” quite straight. For the “moreover” use 6.31 to show that
M1
β is (λ, cf(β))-brimmed over M0

β . Lastly, for the “we can add” just use part (5),

choosing thin enough club E of λ+ then use {α ∈ E : otp(α∩E) is divisible by λ}.
3) By 6.31.

4) By 6.31.

5) Trivial.

6) Easy. �7.3

Claim 7.4. 0) For every M0 ∈ Kλ+ for some M1 ∈ Knice
λ+ we have M0 ≤k M1.

1) For every M0 ∈ Kλ+ and κ = cf(κ) ≤ λ for some M1 ∈ Kλ+ we have
M0 <

+
λ+,κ M1 so M1 ∈ Knice

λ+ .

1A) Moreover, if N0 ≤k M0 ∈ Kλ+ , N0 ∈ Kλ, p ∈ Sbs(N0) then in (1) we can add

that for some a, (M0,M1, a) ∈ K3,bs
λ as witnessed by p.

2) ≤∗λ+ and <+
λ+,κ are transitive.

3) If M0 ≤k M1 ≤k M2 are in Kλ+ and M0 ≤∗λ+ M2, then M0 ≤∗λ+ M1.

4) If M1 <
+
λ+,κ M2, then M1 <

∗
λ+ M2.

5) If M0 <
∗
λ+ M1 <

+
λ,κ M2 then M0 <

+
λ,κ M2.

Proof. 0) Easy, and follows from the proof of part (1) below.

1), 1A) Let 〈M0
i : i < λ+〉 be a ≤k-representation of M0 with M0

i brimmed and
brimmed over M0

j for j < i and for part (1A) we have M0
0 = N0, and for part (1)

let p be any member of Sbs(M0
0 ). We choose by induction on i a model M1

i ∈ Kλ

and a ∈ M1
0 such that M1

i is (λ, cf(λ × (1 + i)))-brimmed over M0
i , 〈M1

i : i < λ+〉
is <k-increasing continuous, M1

i ∩M0 = M0
i and ortp(a,M0

0 ,M
1
0 ) = p and M1

i+1 is

(λ, κ)-brimmed over M0
i+1 ∪M1

i and NFλ,〈1,cf(λ×(1+i)),κ〉(M
0
i ,M

0
i+1,M

1
i ,M

1
i+1) for

i < λ+. Note that for limit i, by 6.31, M1
i is (λ, cf(i))-brimmed over M0

i ∪M1
j for

any j < i.
Note that for i < λ+, the type ortp(a,M0

i ,M
1
i ) does not fork over M0

0 = N0 and
extends p by 6.34 (saying NFλ respects s) 6.27 (symmetry) and 6.25. So clearly we
are done.

2) Concerning <+
λ+,κ use 7.3 and 6.30 (i.e. transitivity for smooth amalgamations).

The proof for <∗λ+ is the same.

3) By monotonicity for smooth amalgamations in kλ; i.e., 6.26.

4), 5) Check. �7.4

Claim 7.5. 1) If (M0,M1, a) ∈ K3,bs
λ+ and M1 ≤∗λ+ M2 ∈ Kλ+ then

(M0,M2, a) ∈ K3,bs
λ+ .

2) If M0 <
∗
λ+ M1, then for some a, (M0,M1, a) ∈ K3,bs

λ+ .
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Proof. 1) By the transitivity of ≤∗λ+ which holds by 7.4(2).

2) As in the proof of 2.9; in fact, it follows from it. �7.5

Remark 7.6. Note that the parallel to 7.4(1A) is problematic in §2 as, e.g. locality

may fail; i.e. (M,Ni, ai) ∈ K3,bs
λ+ and M ′ ≤k M ∧M ′ ∈ Kλ ⇒ ortps(a1,M

′, N1) =
ortps(a2,M

′, N2) but ortpKs
λ+

(a1,M,N1) 6= ortpKs
λ+

(ā2,M,N2).

Claim 7.7. 1) [Amalgamation of ≤∗λ+ and toward extending types] If M0 ≤∗λ+ M`

for ` = 1, 2, κ = cf(κ) ≤ λ and a ∈ M2 \ M0 is such that (M0,M2, a) ∈ K3,bs
λ+

is witnessed by p, then for some M3 and f we have: M1 <
+
λ+,κ M3 and f is an

≤k-embedding of M2 into M3 over M0 with f(a) /∈ M1, moreover, f(M2) ≤∗λ+ M3

and (M1,M3, f(a)) ∈ K3,bs
λ+ is witnessed by p.

2) [uniqueness] Assume M0 <
+
λ+,κ M` for ` = 1, 2 then there is an isomorphism f

from M1 onto M2 over M0.

3) [locality] Moreover,24 in (2), if a` ∈M` \M0 for ` = 1, 2 and [N ≤k M0 and N ∈
Kλ ⇒ ortp(a1, N,M1) = ortp(a2, N,M2)], then we can demand f(a1) = a2 (so in
particular ortp(a1,M0,M1) = ortp(a2,M0,M2) where the types are as defined in
kλ+ and even in (Kλ+ ,≤∗λ+).

4) Moreover in (2), assume further that for ` = 1, 2, the following hold: N0 ≤k

N` ≤k M`, N0 ∈ Kλ, N0 ≤k N`, N` ∈ Kλ and (∀N ∈ Kλ)[N0 ≤k N ≤k M0 →
(∃N ′ ∈ Kλ)(N ∪ N` ⊆ N ′ ≤k M` ∧ NFλ(N0, N`, N,N

′)]. If f0 is an isomorphism
from N1 onto N2 over N0 then we can add f ⊇ f0.

Proof. We first prove part (2).

2) By 7.3(1) + (2) there are representations M
`

= 〈M `
i : i < λ+〉 of M` for ` < 3

such that for ` = 1, 2 we have: M `
i ∩M0 = M `

0 and NFλ,〈1,1,κ〉(M
0
i ,M

0
i+1,M

`
i ,M

`
i+1)

and without loss of generality M `
0 is (λ, κ)-brimmed over M0

0 for ` = 1, 2.

Now we choose by induction on i < λ+ an isomorphism fi from M1
i onto M2

i ,
increasing with i and being the identity over M0

i . For i = 0 use “M `
0 is (λ, κ)-

brimmed over M0
0 for ` = 1, 2” which we assume above. For i limit take unions, for

i successor ordinal use uniqueness (Claim 6.20).

[Proof of part (1)] By 7.4(1) there are for ` = 1, 2 models N∗` ∈ Kλ+ such

that M` <
+
λ+,κ N

∗
` . Now let M

`
= 〈M `

i : i < λ+〉 be a representation of M` for

` = 0, 1, 2 and let N
`

= 〈N `
i : i < λ+〉 be a representation of N∗` for ` = 1, 2.

By 7.4(4) and 7.3(2) without loss of generality N `
0 is (λ, κ)-brimmed over M `

0 and
NFλ(M0

i ,M
0
i+1,M

`
i ,M

`
i+1) and NFλ,〈1,1,κ〉(M

`
i ,M

`
i+1, N

`
i , N

`
i+1) respectively for i <

λ+, ` = 1, 2. Let M∗0 be such that p ∈ Sbs(M∗0 ),M∗0 ∈ Kλ,M
∗
0 ≤k M0; without

loss of generality M∗0 ≤k M
0
0 and a ∈ M2

0 ≤k N
2
0 . Now N `

0 is (λ, κ)-brimmed
over M `

0 hence over M0
0 (for ` = 1, 2) so there is an isomorphism f0 from N2

0 onto
N1

0 extending idM0
0
. There is a′ ∈ N1

0 such that ortp(a′,M1
0 , N

1
0 ) is a non-forking

extension of p and without loss of generality f0(a) = a′ hence ortp(f0(a),M1
0 , N

1
0 ) ∈

Sbs(M1
0 ) does not fork over M0

0 .

24The meaning of this will be that types over M ∈ Knice
λ+ for (Knice

λ+ ,≤∗
λ+ ) can be reduced to

basic types over a model in Kλ, i.e., locality.
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We continue as in the proof of part (2). In the end f =
⋃

i<λ+

fi is an iso-

morphism of N∗2 onto N∗1 over M0 and as f0(a) is well defined and in N1
0 \M1

0

clearly ortp(f(a),M1
i , N

1
i ) does not fork over M1

0 and extends p hence the pair
(N∗1 , f �M2) is as required.

[Proof of part (3), (4)] Like part (2). �7.7

Claim 7.8. 1) If δ is a limit ordinal < λ+2 and 〈Mi : i < δ〉 is a ≤∗λ+-increasing
continuous (in Kλ+) and Mδ =

⋃
i<δ

Mi (so Mδ ∈ Kλ+), then Mi ≤∗λ+ Mδ for each

i < δ.

2) If δ is a limit ordinal < λ+2 and 〈Mi : i < δ〉 is a ≤∗λ+-increasing sequence, each

Mi is in Knice
λ+ , then

⋃
i<δ

Mi is in Knice
λ+ .

3) If δ is a limit ordinal < λ+2 and 〈Mi : i < δ〉 is a <+
λ+-increasing continuous (or

just <∗λ+-increasing continuous, and M2i+1 <
+
λ+ M2i+2 for i < δ), then i < δ ⇒

Mi <
+
λ+

⋃
j<δ

Mj.

Proof. 1) We prove it by induction on δ. Now if C is a club of δ, (as ≤∗λ+ is
transitive) then we can replace 〈Mj : j < δ〉 by 〈Mj : j ∈ C〉 so without loss of
generality δ = cf(δ), so δ ≤ λ+; similarly it is enough to prove M0 ≤∗λ+ Mδ

..=⋃
j<δ

Mj . For each i ≤ δ let 〈M i
ζ : ζ < λ+〉 be a <∗k -representation of Mi.

Case A: δ < λ+.
Without loss of generality (see 7.3(1)) for every i < j < δ and ζ < λ+ we have:

M j
ζ ∩Mi = M i

ζ and NFλ(M i
ζ ,M

i
ζ+1,M

j
ζ ,M

j
ζ+1). Let Mδ

ζ =
⋃
i<δ

M i
ζ , so

〈Mδ
ζ : ζ < λ+〉 is ≤k-increasing continuous sequence of members of Kλ with

limit Mδ, and for i < δ,Mδ
ζ ∩ Mi = M i

ζ . By symmetry (see 6.27) we have

NFλ(M i
ζ ,M

i+1
ζ ,M i

ζ+1,M
i+1
ζ+1) so as 〈M i

ζ : i ≤ δ〉,〈M i
ζ+1 : i ≤ δ〉 are ≤k-increasing

continuous, by 6.30, the transitivity of NFs, we know NFλ(M0
ζ ,M

δ
ζ ,M

0
ζ+1,M

δ
ζ+1)

hence by symmetry (6.27) we have NFλ(M0
ζ ,M

0
ζ+1,M

δ
ζ ,M

δ
ζ+1).

So 〈M0
ζ : ζ < λ+〉, 〈Mδ

ζ : ζ < λ+〉 are witnesses to M0 ≤∗λ+ Mδ.

Case B: δ = λ+.
By 7.3(1) (using normality of the club filter, restricting to a club of λ+ and

renaming), without loss of generality for i < j ≤ 1 + ζ < 1 + ξ < λ+ we have

M j
ζ ∩Mi = M i

ζ , and NFλ(M i
ζ ,M

i
ξ,M

j
ζ ,M

j
ξ ). Let us define Mλ+

ζ =
⋃

j<1+ζ

M j
ζ . So

〈Mλ+

ζ : ζ < λ+〉 is a <k-representation of Mλ+ = Mδ and continue as before.

2) Again without loss of generality δ = cf(δ) call it κ. Let 〈M i
ζ : ζ < λ+〉 be a

<k-representation of Mi for i < δ.

Case A: δ = κ < λ+.
Easy by now, yet we give details, noting 7.9. So without loss of generality

(see 7.3(1)) for every i < j < δ and ζ < ξ < λ+ we have: M j
ζ ∩ Mi = M i

ζ ,

NFλ(M i
ζ ,M

i
ξ,M

j
ζ ,M

j
ξ ) and M i

ζ+1 is (λ, λ)-brimmed over M i
ζ . Let Mδ

ζ =
⋃
β<δ

Mβ
ζ .

Let ξ < λ+. Now if p ∈ Sbs(M δ
ξ ) then by the local character Axiom (E)(c) + the
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uniqueness Axiom (E)(e), for some i < δ, p does not fork over M i
ξ. As Mi is λ+-

saturated above λ, the type p � M i
ξ is realized in Mi. So let b ∈ Mi realize p � M i

ξ

and by Axiom (E)(h), continuity, it suffices to prove that for every j ∈ (i, δ), b

realizes p � M j
ξ in Mj which holds by 6.34 (note that b ∈ Mi ≤k Mj as j ∈ [i, δ)).

So p is realized in Mδ =
⋃
i<δ

Mi. As this holds for every ξ < λ+ and p ∈ Sbs(Mδ
ξ ),

the model Mδ is saturated.

Case B: cf(δ) = λ+.
Straight: in fact true for k AEC with the λ-amalgamation property.

3) Similar. �7.8

Remark 7.9. Note that in Ax(E)(c),Ax(E)(h) the continuity of the sequences is not
required.

Claim 7.10. 1) If M0 ∈ Kλ+ then there is M1 such that M0 <
+
λ+ M1 ∈ Knice

λ+ , and
any such M1 is universal over M0 in (Kλ+ ,≤∗λ+).

2) Assume �N1,N2,M1,M2
below holds. Then M1 <

+
λ+ M2 iff for every α < λ+ for

stationarily many β < λ+ there is N such that N1
β ∪ N2

α ⊆ N ≤k N
2
β and N2

β is

(λ, ∗)-brimmed over N where

�N1,N2,M1,M2
M1 ≤∗λ+ M2 is being witnessed by N1, N2 that is N ` = 〈N `

α : α < λ+〉 is a

≤k-representation of M` for ` = 1, 2 and α < λ+ ⇒ NFλ(N1
α, N

1
α+1, N

2
α, N

2
α+1)

(hence α ≤ β < λ+ ⇒ NFλ(N1
α, N

1
β , N

2
α, N

2
β)).

Proof. 1) The existence by 7.4(1). Why “any such M1, . . .?” if M0 ≤∗λ+ M2 then

for some M+
2 ∈ Knice

λ+ we have M2 <
+
λ M

+
2 ∈ Knice

λ+ so M0 ≤∗λ+ M1 <
+
λ+ M+

2 hence

by 7.4(5) we have M0 <
+
λ M+

2 ; so by 7.7(2) the models M+
2 ,M1 are isomorphic

over M0, so M2 can be ≤∗λ+ -embedded into M1 over M0, so we are done.

2) Not hard. �7.10
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§ 8. Is Knice
λ+ with ≤∗λ+ an AEC?

Hypothesis 8.1. The hypothesis 6.9.
An important issue is whether (Knice

λ+ ,≤∗λ+) satisfies Ax IV of AEC. So a model
M ∈ Kλ++ may be the union of a ≤∗λ+ -increasing chain of length λ++, but we still
do not know if there is a continuous such sequence.

E.g. let 〈Mα : α < λ++〉 be ≤∗λ+ -increasing with union M ∈ Kλ++ let M ′n =
Mn,M

′
ω+α+1 = Mω+α and M ′δ = ∪{Mβ : β < δ} for δ limit. So 〈M ′α : α < λ++〉

is ≤k-increasing continuous, 〈M ′α+1 : α < λ++〉 is ≤∗λ+ -increasing, but we do not
know whether M ′δ ≤∗λ+ M ′δ+1 for limit δ < λ++.

Definition 8.2. Let M ∈ kλ++ be the union of an ≤k-increasing continuous chain
from (Knice

λ+ ,≤∗λ+) or just (Kλ+ ,≤∗λ+),M = 〈Mi : i < λ++〉 such that 〈Mi : i < λ++

non-limit〉 is ≤∗λ+ -increasing.

1) Let S(M) = {δ : Mδeq
∗
λ+Mδ+1 (see 8.3(3) below)}, so S(M) ⊆ λ++.

2) For such M let S(M) be S(M)/Dλ++ where M is a ≤k-representation of M and
Dλ++ is the club filter on λ++; it is well defined by 8.3 below.

3) We say 〈Mi : i < δ〉 is non-limit <∗λ+ -increasing if for non-limit i < j < δ we
have Mi ≤∗λ+ Mj .

Claim 8.3. 1) If M
`

= 〈M `
i : i < λ++〉 for ` ∈ {1, 2} is ≤k-increasing continuous

and i < j < λ++ ⇒M0 ≤∗λ+ Mi+1 ≤∗λ+ Mj+1 and M =
⋃

i<λ++

M1
i =

⋃
i<λ++

M2
i has

cardinality λ++ then S(M
1
) = S(M

2
) mod Dλ++ .

2) If M,M are as in 8.2 hence M =
⋃

i<λ++

Mi then S(M)/Dλ++ depends just on

M/ ∼=.

3) If M is as in 8.2 or, equivalently as in part (1), and i < j < λ++, then Mi ≤∗λ+

Mi+1 ⇔Mi ≤∗λ+ Mj.

4) If M ∈ kλ++ is the union of a ≤∗λ+-increasing chain from (Knice
λ+ ,≤∗λ+), not

necessarily continuous, then there is M as in Definition 8.2, that is M = 〈Mi : i <
λ++〉, a ≤k-representation of M with Mi ≤∗λ+ Mj for non-limit i < j.

Proof. 1) We can find a club E of λ++ consisting of limit ordinals such that i ∈
E ⇒M1

i = M2
i . Now if δ1 < δ2 are from E then δ1 ∈ S(M

1
)⇔M1

δ1
≤∗λ+ M1

δ1+1 ⇔
M1
δ1
≤∗λ+ M1

δ2
⇔M2

δ1
≤∗λ+ M2

δ2
⇔M2

δ1
≤∗λ+ M2

δ1+1 ⇔ δ1 ∈ S(M2).

[Why? By the definition of S(M
1
), by part (3), by “δ1, δ2 ∈ E”, by part (3), by

the definition of S(M
2
), respectively.] So we are done.

2) Follows by parts (1) and (3).
3) The implication ⇐ is by 7.4(3); for the implication ⇒, note that assuming

Mi <
∗
λ+ Mi+1, as ≤∗λ+ is a partial order, noting that by the assumption on M we

have Mi+1 ≤∗λ+ Mj+1, and by 7.4(3) we are done.
4) Trivial. �8.3

Claim 8.4. If (∗) below holds then for every stationary S ⊆ Sλ
++

λ+ (= {δ < λ++ :
cf(δ) = λ+}) for some λ+-saturated M ∈ Kλ++ we have S(M) is well defined and
equal to S/Dλ++ , where
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(∗) we can find 〈Mi : i ≤ λ+ + 1〉 which is <k-increasing continuous sequence
of members of Knice

λ+ such that i < j ≤ λ+ + 1 and (i, j) 6= (λ+, λ+ + 1)⇒
Mi <

+
λ+ Mj but ¬(Mλ+ ≤∗λ+ Mλ++1).

Proof. Fix S ⊆ Sλ++

λ+ and 〈Mi : i ≤ λ+ + 1〉 as in (∗).
Without loss of generality |Mλ++1 \Mλ+ | = λ+.
We choose by induction on α < λ+2 a model MS

α such that:

(a) MS
α ∈ Knice

λ+ has universe an ordinal < λ++

(b) for β < α we have MS
β ≤k M

S
α

(c) if α = β + 1, β /∈ S then MS
β <+

λ+ MS
α

(d) if α = β + 1, β ∈ S then (MS
β ,M

S
α ) ∼= (Mλ+ ,Mλ++1)

(e) if β < α, β /∈ S then MS
β ≤

+
λ+ MS

α

(f) if α is a limit ordinal, then Mα =
⋃
{Mβ : β < α}.

We use freely the transitivity and continuity of ≤∗λ and of <+
λ .

For α = 0 no problem.

For α limit no problem; choose an increasing continuous sequence 〈γi : i < cf(α)〉
of ordinals with limit α each of cofinality < λ, γi /∈ S, and use 7.8(3) for clause (e).

For α = β + 1, β /∈ S no problem.

For α = β + 1, β ∈ S so cf(β) = λ+, let 〈γi : i < λ+〉 be increasing continuous
with limit β and cf(γi) ≤ λ, hence γi /∈ S and each γi+1 a successor ordinal. By
clause (e) above and 7.4(5) we have MS

γi <
+
λ+ MS

γi+1
, hence 〈Mγi : i < λ+〉 is

<+
λ+ -increasing continuous. Now there is an isomorphism fβ from Mλ+ onto MS

β

mapping Mi onto MS
γi for i < λ (why? choose fβ �Mi by induction on i, for i = 0

by 7.3(0), for i successor MS
γi <

+
λ M

S
γi+1

by 7.4(3) as MS
γi <

∗
λ+ MS

γi+1
<+
λ+ MS

γi+1
so

we can use 7.7(2)). So we can choose a one-to-one function fα from Mλ++1 onto
some ordinal < λ++ extending fβ and let Mα = fα(Mλ++1).

Finally having carried the induction, let MS =
⋃

α<λ+2

MS
α , it is easy to check

that MS ∈ Kλ++ is λ+-saturated and M = 〈MS
α : α < λ++〉 witnesses that

S(MS)/Dλ++ is well defined and S(MS)/Dλ++ = S(〈MS
α : α < λ++〉)/Dλ++ =

S/Dλ++ as required. �8.4

Below we prove that some versions of non-smoothness are equivalent.

Claim 8.5. 1) We have (∗∗)M∗1 ,M∗2 ⇒ (∗ ∗ ∗) (see below).
2) If (∗) then (∗∗)M∗1 ,M∗2 for some M∗1 ,M

∗
2 and trivially (∗ ∗ ∗)⇒ (∗).

3) In part (1) we get 〈Mi : i ≤ λ+ + 1〉 as in (∗ ∗ ∗), see below, such that
Mλ+ = M∗1 ,Mλ++1 = M∗2 if we waive i < λ+ ⇒ Mi <

+
λ Mλ+1 or assume M∗1 <k

M∗ <+
λ M

∗
2 for some M∗.

4) If M∗1 ≤∗λ+ M∗2 and M∗1 ∈ Knice
λ+ and N1 ≤k N2 ∈ Kλ, N` ≤ M∗` for ` = 1, 2

and p ∈ Sbs(N2) does not fork over N1 then some c ∈M∗1 realizes p
where

(∗) there are limit δ < λ++, N and M = 〈Mi : i ≤ δ〉 a ≤∗λ+-increasing

continuous sequence with Mi, N ∈ Knice
λ+ such that: Mi ≤∗λ+ N ⇔ i < δ

(∗∗)M∗1 ,M∗2 (i) M∗1 ∈ Knice
λ+ ,M∗2 ∈ Knice

λ+

(ii) M∗1 ≤k M
∗
2

(iii) M∗1 eq
∗
λ+M∗2
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(iv) if N1 ≤k N2 are from Kλ,
N` ≤k M

∗
` for ` = 1, 2 and p ∈ Sbs(N2) does not

fork over N1, then some a ∈M∗1 realizes p in M∗2

(∗ ∗ ∗) there is M = 〈Mi : i ≤ λ+ + 1〉,≤k-increasing continuous, every
Mi ∈ Knice

λ+ and Mλ+eq∗λ+Mλ++1 but

i < j ≤ λ+ + 1 and i 6= λ+ ⇒Mi <
+
λ+ Mj;

note that this is (∗) of 8.4.

Proof. 1),3) Let 〈a`i : i < λ+〉 list the elements ofM∗` for ` = 1, 2. Let 〈N∗2,i : i < λ+〉
be a ≤k-representation of M∗2 .

Let 〈(pζ , N∗ζ , γζ) : ζ < λ+〉 list the triples (p,N, γ) such that γ < λ+, p ∈
Sbs(N), N ∈ {N∗2,i : i < λ+} with each such triple appearing λ+ times. By induc-

tion on α < λ+ we choose 〈Nα
i : i ≤ α〉, Nα such that:

(a) Nα
i ∈ Kλ and Nα

i ≤k M
∗
1

(b) Nα ≤k M
∗
2 and Nα ∈ Kλ

(c) 〈Nα
i : i ≤ α〉 is ≤k-increasing continuous

(d) Nα
α ≤k Nα, Nα ∩M∗1 = Nα

α

(e) if i ≤ α then 〈Nβ
i : β ∈ [i, α]〉 is ≤k-increasing continuous

(f) 〈Nβ : β ≤ α〉 is ≤k-increasing continuous

(g) if α = β + 1, i ≤ β then NFλ(Nβ
i , Nβ , N

α
i , Nα)

(h) if α = 2β + 1 then a2
β ∈ Nα+1

(i) if α = 2β + 2 and i < α then Nα
i+1 is brimmed over Nα

i ∪N
2β+1
i+1 and Nα

0

is brimmed over N2β
0 .

Why is this enough?

We letMλ+ = M∗1 ,Mλ++1 = M∗2 and letM ′λ++1 ∈ K
nice
λ+ be such thatMλ++1 <

+
λ+

M ′λ++1 and for i < λ+ we let Mi = ∪{Nα
i : α ∈ [i, λ+)}; now

(α) M∗1 =
⋃

α<λ+

Nα
α =

⋃
i<λ+

Mi and M∗2 =
⋃

α<λ+

Nα

[why? the second by clause (h) (and (b) of course), the first as Nα∩M∗1 =
Nα
α ].

Now:

(β) 〈Mi : i ≤ λ+ + 1〉 is ≤k-increasing continuous
[trivial by clauses (c) + (e) if i < λ+ and (d) if i = λ+]

(γ) for i < λ+,Mi is saturated, i.e., ∈ Knice
λ+ .

[Why? Clearly 〈Nα
i : α ∈ (i, λ+)〉 is a ≤k-representation of Mi by clause

(e) and the choice of Mi. If i = 0 this follows by clauses (i) + (e). If
i = j + 1 this follows by clauses (e) + (i). If i is a limit ordinal use 7.8(2)
and clause (g)]

(δ) for i < λ+, i < j ≤ λ+ + 1 we have Mi ≤∗λ+ Mj .
[Why? Let Nα

λ+ := Nα
α , N

α
λ++1 = Nα for α < λ+ and let γ be i if

j = λ+, λ+ + 1 and be j if j < λ+; so in any case γ < λ+. Now as
〈Nα

i : α ∈ [γ, λ+)〉 is a ≤k-representation of Mi and 〈Nα
j : α ∈ [γ, λ+)〉 is

a ≤k-representation of Mj and if γ ≤ β < λ+ then by clause (g) we have

NFλ(Nβ
i , Nβ , N

β+1
i , Nβ+1) hence by symmetry NFλ(Nβ

i , N
β+1
i , Nβ , Nβ+1)

hence by monotonicity

NFλ(Nβ
i , N

β+1
i , Nβ

j , N
β+1
j ); this suffices]
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(ε) if i < j ≤ λ+ then Mi <
+
λ+ Mj

[why? by 7.8(3) it suffices to prove this in the cases j = i+1. Now claim
7.10(2), clause (i) guaranteed this.]

Clearly 〈Mi : i ≤ λ+ + 1〉 is as required for part (1) and for part (3) for first
possibility (with waiving) obviously. For the second possibility in part (2), easily
〈Mi : i ≤ λ+〉ˆ〈M ′λ++1〉 is as required but M∗2 ,M

1
λ+1 are isomorphic over M∗, so

also 〈Mi : i ≤ λ+ + 1〉 is O.K.
So we are done.

So let us carry the construction.

For α = 0 trivially.

For α limit: straightforward.

For α = 2β + 1 we let Nα
i = N2β

i for i ≤ 2β and Nα ∈ Kλ is chosen such that
N2β ∪ {a2

β} ⊆ Nα ≤k M
∗
2 and Nα � M∗1 ≤k M

∗
1 , easy by the properties of abstract

elementary class and we let Nα
2β+1 = Nα � M∗1 . For α = 2β + 2 we choose by

induction on ε < λ2, a triple (N⊕α,ε, N
⊗
α,ε, aα,ε) such that:

(A) N⊗α,ε ≤k M
∗
2 belongs to Kλ and is ≤k-increasing continuous with ε

(B) N⊗α,0 = N2β+1 and N⊗α,ε �M
∗
1 ≤∗k M∗1

(C) N⊕α,ε ≤k M
∗
1 belongs to Kλ and is ≤k-increasing continuous with ε

(D) N⊕α,0 = N2β+1
2β+1

(E) (N⊕α,ε, N
⊕
α,ε+1, aα,ε) ∈ K

3,uq
λ

(F) ortp(aα,ε, N
⊗
α,ε,M

∗
2 ) does not fork over N⊕α,ε

(G) N⊕α,ε ≤k N
⊗
α,ε

(H) for every p ∈ Sbs(N⊕α,ε) for some odd ζ ∈ [ε, ε+λ) the type ortp(aα,ζ , N
⊗
α,ζ , N

⊗
α,ζ+1)

is a non-forking extension of p.

No problem to carry this. [Why? For ε = 0 and ε limit there are no problems. In
stage ε+1 by bookkeeping gives you a type pε ∈ Sbs(N⊕α,ε) and let qε ∈ Sbs(N⊗α,ε) be
a non-forking extension of pε. By assumption (iv) of (∗∗)M∗1 ,M∗2 there is an element

aα,ε ∈ M∗1 realizing qε. Now M∗1 is saturated hence there is a model N⊕α,ε+1 ∈ Kλ

such that N⊕α,ε+1 ≤k M
∗
1 and (N⊕α,ε, N

⊕
α,ε+1, aα,ε) ∈ K

3,uq
λ .

Lastly, choose N⊗α,ε+1 satisfying clauses (A),(B),(G) so we have carried the in-

duction on ε.]
Note that NFλ(N⊕α,ε, N

⊗
α,ε, N

⊕
α,ε+1, N

⊗
α,ε+1) for each ε < λ2 by clauses (E),(F)

and 6.35, hence NF(N2β+1
2β+1 , N2β+1,

⋃
{N⊕α,ε : ε < λ2},

⋃
{N⊗α,ε : ε < λ2}) by 6.30 as

(N⊕α,0, N
⊗
α,0) = (N2β+1

2β+1 , N2β+1) and the sequences 〈N⊕α,ε : ε < λ+〉, 〈N⊗α,ε : ε < λ+〉
are increasing continuous.

Now let Nα =
⋃
{N⊗α,ε : ε < λ2}, Nα

α = Nα ∩M∗1 recalling clauses (A)+(B).

Now
⋃
{N⊕α,ε : ε < λ2} ≤k M

∗
1 is (λ, ∗)-brimmed over N2β+1

2β+1 by 4.3 (and clause

(H) above). Hence there is no problem to choose Nα
i ≤k N

α
α for i ≤ 2β + 1 as

required, that is N2β+1
i ≤k N

α
i , 〈Nα

i : i ≤ 2β + 1〉 is ≤k-increasing continuous,

NFλ(N2β+1
i , N2β+1

i+1 , Nα
i , N

α
i+1) and Nα

i+1 is (λ, ∗)-brimmed over N2β+1
i+1 ∪ Nα

i and

Nα
0 is (λ, ∗)-brimmed over N2β+1

0 . So we have finished the induction step on α =
2β + 2.

Having carried the induction we are done.

2) So assume (∗) and letMδ+1
..= N from (∗). It is enough to prove that (∗∗)Mδ,Mδ+1

holds. Clearly clauses (i), (ii), (iii) hold, so we should prove (iv). Without loss of
generality δ = cf(δ) so δ = λ+ or δ ≤ λ. For i ≤ δ + 1 let 〈Mi,α : α < λ+〉
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be a ≤k-representation of Mi and for i < δ, j ∈ (i, δ + 1] let Ei,j be a club of λ+

witnessing Mi ≤∗λ+ Mj for M
i
,M

j
. First assume δ ≤ λ. Let E = ∩{Ei,j : i < δ, j ∈

(i, δ + 1]}, it is a club of λ+. So assume N2 ≤k Mδ+1, N1 ≤k N2, N1 ≤k Mδ and
N1, N2 ∈ Kλ and p ∈ Sbs(N2) does not fork over N1. We can choose ζ ∈ E such
that N2 ⊆Mδ+1,ζ , let p1 ∈ Sbs(Mδ+1,ζ) be a non-forking extension of p, so p1 does
not fork over N1 hence (by monotonicity) over Mδ,ζ so p2

..= p1 �Mδ,ζ ∈ Sbs(Mδ,ζ).
By Axiom (E)(c) for some α < δ, p2 does not fork over Mα,ζ hence p2 � Mα,ζ ∈
Sbs(Mα,ζ). As Mα ∈ Knice

λ+ , i.e., Mα is λ+-saturated (above λ), clearly for some ξ ∈
(ζ, λ+)∩E some c ∈Mα,ξ realizes p2 �Mα,ζ but NFλ(Mα,ζ ,Mδ+1,ζ ,Mα,ξ,Mδ+1,ξ)
hence by 6.34 we know that ortp(c,Mδ+1,ζ ,Mδ+1,ξ) belongs to Sbs(Mδ+1,ζ) and
does not fork over Mα,ζ hence c realizes p2 and even p1 hence p and we are done.

Second, assume δ = λ+, then for some δ∗ < δ we have N1 ≤k Mδ∗ , and use the
proof above for 〈Mi : i ≤ δ∗〉,Mδ+1 (or use Mδ∗ ≤∗λ+ Mδ+1).

4) Straight, in fact included the proof of 7.8(2). �8.5

The definition below has affinity to “blowing kλ to kup
λ ” in §1.

Definition 8.6. 0) K3,cs
λ+ = {(M,N, a) ∈ K3,bs

λ+ : M,N are from Knice
λ+ }; we say

N ′ ∈ Kλ (or p′) witness (M,N, a) ∈ K3,cs
λ+ if it witnesses (M,N, a) ∈ K3,bs

λ .

1) Scs
λ+

..= {ortp(a,M,N) : M ≤∗λ+ N are in Knice
λ+ , a ∈ N and (M,N, a) ∈ K3,cs

λ+ },
the type being for knice

λ+ = (Knice
λ+ ,≤∗λ+), see below 25 so the notation is justified by

8.7(1).
2) We define k⊗ = (K⊗,≤⊗) as follows

(a) K⊗ = k � {M ∈ K : M = ∪{Ms : s ∈ I} where Ms ∈ Knice
λ+ , I is a directed

partial order and s <I t⇒Ms ≤∗λ+ Mt}
(b) Let M1 ≤⊗ M2 if M1,M2 ∈ K⊗,M1 ≤k M2 and:

(∗)M1,M2 if N` ∈ Kλ, N` ≤k M`, for ` = 1, 2, p ∈ Sbs(N2) does not fork over N1

and N1 ≤k N2 then some a ∈M1 realizes p in M2

(c) let ≤⊗λ+=≤⊗� K⊗λ+ .

3)
⋃
λ+

= {(M0,M1, a,M3) : M0 ≤∗λ+ M1 ≤∗λ+ M3 are in Knice
λ+ and (M1,M3, a) ∈

K3,cs
λ+ as witnessed by some N ≤k M0 from Kλ}.
4) knice

λ+ = (Knice
λ+ ,≤∗λ+), that is (Knice

λ+ ,≤∗λ+� Knice
λ+ ).

5) We say that M ′ or p′ witness p = ortpknice
λ+

(a,M,N) when M ′ ≤k M,M ′ ∈ Kλ

and [M ′ ≤kλ M ′′ ≤k M ⇒ ortps(a,M
′′, N) does not fork over M ′ and p′ =

ortps(a,M
′, N).

Conclusion 8.7. Assume 26 (recalling 8.4):

� not for every S ⊆ Sλ++

λ+ is there λ+-saturated M ∈ Kλ++ such that S(M) =
S/Dλ++ .

0) On Knice
λ+ , the relations ≤∗λ+ ,≤⊗ agree.

1) knice
λ+ = (Knice

λ+ ,≤∗λ+) is a λ+-abstract elementary class and is categorical in λ+

and has no maximal member and has amalgamation.

2) K⊗ is included in the class of λ+-saturated models in k and K⊗λ+ = Knice
λ+ .

3) k⊗ is an AEC with LS(K⊗) = λ+ and is the lifting of knice
λ+ .

25actually to define ortpkλ
(a,M,N) where M ≤kλ N, ā ∈ N we need less that “kλ is a λ-AEC”,

and we know on (Knice
λ+ ,≤∗

λ+ ) more than enough
26this is like (∗∗)M1,M2

from 8.5, particularly see clause (iv) there
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4) On Knice
λ+ , (Scs

λ+ ,
⋃
λ+

) are equal to (Sbs � Knice
λ+ ,

⋃
<∞

� Knice
λ+ ) where they are

defined in 2.4, 2.5.

5) (knice
λ+ ,Scs

λ+ ,
⋃
λ+

) is a good λ+-frame.

6) For M1 ≤∗λ+ M2 from K⊗λ+ and a ∈ M2 \M1, the type ortpK⊗(a,M1,M2) is
determined by ortpkλ

(a,N1,M2) for all N1 ≤k M1, N1 ∈ Kλ.

Proof. 0) By 8.4 and our assumption �, we have M1,M2 ∈ Knice
λ+ and M1 ≤⊗

M2 ⇒M1 ≤∗λ+ M2 (otherwise (∗∗)M1,M2 of 8.5 holds hence (∗ ∗ ∗) of 8.5 holds and
by 8.4 we get ¬�, contradiction). The other direction is easier just see 8.5(4).

1) We check the axioms for being a λ+-AEC: Ax 0: (Preservation under isomor-

phisms) Obviously. Ax I: Trivially. Ax II: By 7.4(2). Ax III: By 7.8(2) the union

belongs to Knice
λ+ and it ≤∗λ+ -extends each member of the union by 7.8(1). Ax IV:

Otherwise (∗) of 8.5 holds, hence by 8.5 also (∗ ∗ ∗) of 8.5 holds. So by 8.4 our
assumption � fail, contradiction; this is the only place we use � in the proof of (1).
Ax V: By 7.4(3) and Ax V for k.

Also knice
λ+ is categorical by the uniqueness of the saturated model in λ+ for k has

no maximal model by 7.4(1). knice
λ+ has amalgamation by 7.7(1).

2) Every member of K⊗ is λ+-saturated in k by 7.8(2) (prove by induction on
the cardinality of the directed family in Definition 8.6(2), i.e. by the LS-argument
it is enough to deal with the index family of ≤ λ+ models each of cardinality λ+,
which holds by part (0) + (1)). If M ∈ Kλ+ is λ+-saturated, clearly ∈ Knice

λ+ .
3),4) Easy by now (or see §1).
5) We have to check all the clauses in Definition 2.1. We shall use parts (0)-(3)

freely. Axiom (A):

By part (3) (of 8.7). Axiom (B):

There is a superlimit model in K⊗λ+ = Knice
λ+ by part (1) and uniqueness of the

saturated model. Axiom (C):

By part (1), i.e., 7.7(1) we have amalgamation; JEP holds as Knice
λ+ is categorical

in λ+. “No maximal member in k⊗λ+” holds by 7.4(1). Axiom (D)(a),(b):

By the definition 8.6(1). Axiom (D)(c):

By 2.9 (and Definition 8.6(1)). Clearly K3,cs
λ+ = K3,bs � Knice

λ+ . Axiom (D)(d):

For M ∈ k⊗λ+ let M = 〈Mi : i < λ+〉 ≤k-represent M , so if M ≤⊗ N ∈ K⊗λ+ ,

(hence M ≤∗λ+ N ∈ K⊗λ+ = Knice
λ+ ) and a ∈ N , ortpknice

λ+
(a,M,N) ∈ Scs

λ+(M), we

let α(a,N,M) = min{α : ortp(a,Mα, N) ∈ Sbs(Mα) and for every β ∈ (α, λ+),
ortp(a,Mβ , N) ∈ Sbs(Mβ) is a non-forking extension of ortp(a,Mα, N)}.

Now

(a) α(a,N,M) is well defined for a,N as above
[Why? By Defintion 2.7 + 8.6(1)]

(b) if a`, N` are above for ` = 1, 2 and α(a1, N1,M) = α(a2, N2,M) call it α
and ortps(a1,Mα, N) = ortps(a2,Mα, N2) then
(∗) for β < λ+ we have ortps(a1,Mβ , N1) = ortps(a1,Mβ , N2) ∈ Sbs(Mβ)

[Why? By the non-forking uniqueness (Ax(E)(e)) when β ≥ α by
monotonicity if β ≤ α]

(c) if a`, N` are as above for ` = 1, 2 and (∗) above holds then
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(∗∗) ortpk⊗
λ+

(a1,M,N1) = ortpk⊗
λ+

(a2,M,N2)

[Why? Use 7.7(3) or by part (6) below].

As α < λ⇒ |Sbs
s (Mα)| ≤ λ (by the stability Axiom (D)(d) for s), clearly |Scs

λ+(M)| ≤∑
α<λ+

|Sbs(Mα)| ≤ λ+ = ‖M‖ as required.

The reader may ask why do we not just quote the parallel result from §2: The
answer is that the equality of types there is “a formal, not the true one”. The crux
of the matter is that we prove locality (in clause (c) above). Axiom (E)(a):

By 2.4 - 2.7. Axiom (E)(b); monotonicity:

Follows by Axiom (E)(b) for s and the definition. Axiom (E)(c); local character:

By 2.11(5) or directly by translating it to the s-case. Axiom (E)(d); (transitivity):

By 2.11(4). Axiom (E)(e); uniqueness:

By 7.7(3) or by part (6) below. Axiom (E)(f); symmetry:

So assume M0 ≤∗λ+ M1 ≤∗λ+ M2 are from K⊗λ+ and for ` = 1, 2 we have a` ∈M`,

ortpknice
λ+

(a`,M0,M`) ∈ Scs
λ+(M0) as witnessed by p` ∈ Sbs

s (N∗` ), N∗` ∈ Kλ, N
∗
` ≤k

M0 and ortpk⊗
λ+

(a2,M1,M2) does not fork (in the sense of
⋃
λ+

) over M0 (note that

M0,M1,M2 here stand for M0,M1,M
′
3 in clause (i) of Ax(E)(f) from Definition

2.1). As we know by monotonicity without loss of generality M1 <
+
λ+ M2. We can

finish by 7.7(4) (and Axiom (E)(e) for s).
In more details, we can find N0, N1, N2 such that: N` ≤k M` and N` ∈ Kλ for

` = 0, 1, 2 and N∗1 ∪ N∗2 ⊆ N0 ≤k N1 ≤k N2 and a1 ∈ N1, a2 ∈ N2 and N2 is
(λ, ∗)-brimmed over N1 hence over N0, and (∀N ∈ Kλ)[N0 ≤k N ≤k M0 → (∃M ∈
Kλ)(M ≤k M2 and NFλ(N0, N,N2,M))].

By Axiom (E)(f) for s = (k,Sbs,
⋃
λ

) we can find N ′ such that N0 ≤k N
′ ≤k N2

such that a2 ∈ N ′ and ortps(a1, N
′, N2) does not fork over N0. Now we can find

f ′0,M
′
1 such that M0 ≤+

λ+ M ′1, f
′
0 is a ≤k-embedding of N ′ into M ′1 and (∀N ∈

Kλ)[N0 ≤k N ≤k M0 → (∃M ∈ Kλ)(M ≤k M ′1 and NFλ(N0, N, f
′
0(N ′),M))].

Next we can find f ′′0 ,M
′
2 such that M ′1 <

+
λ+ M ′2, f

′′
0 ⊇ f ′0 and f ′′0 is a ≤k-embedding

ofN2 intoM ′2 and (∀N ∈ Kλ)[N0 ≤k N ≤k M0 → (∃M ∈ Kλ)(M ≤k M
′
2 and NFλ(N0, N, f

′′
0 (N2),M)].

Lastly, by 7.7(4) there is an isomorphism f from M2 onto M ′2 over M0 extending
f ′′0 . Now f−1(M ′1) is a model as required. Axiom (E)(g); extension existence:

Assume M0 ≤∗λ+ M1 are from Knice
λ+ , p ∈ Scs

λ+(M0), hence there is N0 ≤k

M0, N0 ∈ Kλ such that (∀N ∈ Kλ)(N0 ≤k N <k M0 → p � N does not fork
over N0). By 7.4(1A) there are M2 ∈ K⊗λ+ and a ∈ M2 such that M1 ≤∗λ+ M2

and ortpknice
λ+

(a,M1,M2) ∈ Scs
λ+(M1) is witnessed by p � N0 and by part (6) we have

ortpknice
λ+

(a,M0,M2) = p. Checking the definition of does not fork, i.e.,
⋃
λ+

we are

done. Axiom (E)(h), (continuity):

By 2.11(6). Axiom (E)(i):

It follows from the rest by 2.18.
6) So assume M ≤∗λ+ M`, a` ∈ M` \M for ` = 1, 2 and N ≤k M ∧ N ∈ Kλ ⇒

ortpk(a1, N,M1) = ortpk(a2, N,M2). By 7.4(1) there are M+
1 ,M

+
2 ∈ Knice

λ+ such

that M` <
+
λ+ M+

` for ` = 1, 2. By 7.7(2),(3) there is an isomorphism f from M+
1

onto M+
2 over M which maps a1 to a2. This clearly suffices. �8.7
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§ 9. §9 Final conclusions

We now show that we have actually solved our specific test questions about
categoricity and few models. First we deal with good λ-frames.

Lemma 9.1. Main Lemma
1) Assume

(a) (α) 2λ < 2λ
+

< 2λ
++

< . . . < 2λ
+n

, and n ≥ 2

(β) and WDmId(λ+`) is not λ+`+1-saturated (normal ideal on λ+`) for
` = 1, . . . , n− 1

(b) s = (k,Sbs,
⋃

) is a good λ-frame

(c) İ(λ+`, k(λ+-saturated)) < µunif(λ
+`, 2λ

`−1

) for ` = 2, . . . , n.

Then

(α) K has a member of cardinality λ+n+1

(β) for ` < n there is a good λ+`-frame s` = (k`,Sbs
s`
,
⋃
s`

) such that K`
λ+` ⊆ Kλ+`

and ≤k`⊆≤k

(γ) s0 = s and if ` < m < n then K`
λ+m ⊇ Km

λ+m and ≤k`� K
m ⊇≤km .

2) Like part (1) omitting (β) of clause (a).

Proof. 1) We prove this by induction on n.
For n = m + 1 ≥ 2, by the induction hypothesis for ` = 0, . . . ,m − 1, there is

a frame s` = (k`,
⋃
s`
,Sbs

s`
) which is λ+`-good and Ks` ⊆ Ks

λ+` and ≤k`⊆≤k� k`. By

5.9 and clause (c) of the assumption we know that s has density for K3,uq
s . Now

without loss of generality Km−1 is categorical in λ+(m−1) (by 2.23 really necessary
only for ` = 0) and by Observation 5.8 we get the assumption 6.9 of §6 hence the
results of §6, §7, §8 apply. Now apply 8.7 to (km−1,Sbs

sm−1
,
⋃

sm−1

) and get a λ+m-

frame sm as required in clause (β). By 4.14 we have Km
λ+m+1 6= ∅ which is clause

(α) in the conclusion. Clause (β) has already been proved and clause (γ) should
be clear.

2) Similarly but we use 5.11 instead of 5.9, i.e. we use the full version. �9.1

Second (this fulfills the aim of [She01] — equivalently, [She09c]).

theorem 9.2. 1) Assume 2λ
+`

< 2λ
+(`+1)

for ` = 0, . . . , n− 1 and the normal ideal
WDmId(λ+`) is not λ+`+1-saturated for ` = 1, . . . , n− 1.

If k is an abstract elementary class with LS(k) ≤ λ which is categorical in

λ, λ+ and 1 ≤ İ(λ+2,K) and İ(λ+m, k) < µunif(λ
+m, 2λ

+(m−1)

), see [She09a, 88r-

0.wD](3). For m ∈ [2, n) (or just İ(λ+m, k(λ+-saturated)) < µunif(λ
+m, 2λ

+(m−1)

),
then kλ+n 6= ∅ (and there are s`(` < n) as in (γ) of 9.1).

2) We can omit the assumption “not λ+`+1-saturated”.

Proof. 1) By 3.10 and 9.1(1).

2) See by 3.10 and 9.1(2), i.e. using the full version of [She09d]. �9.2

Next we fulfill an aim of [She09a].
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theorem 9.3. 1) Assume 2ℵ` < 2ℵ(`+1) for ` = 0, . . . , n − 1 and n ≥ 2 and
WDmId(λ+`) is not λ+`+1-saturated for ` = 1, . . . , n− 1.

If k is an abstract elementary class which is PCℵ0
and 1 ≤ İ(ℵ1, k) < 2ℵ1 and

İ(ℵ`, k) < µunif(ℵ`, 2ℵ`−1), for ` = 2, . . . , n, then k has a model of cardinality ℵn+1

(and there are s`(` < n) as in 9.2.
2) We can omit the assumption “not λ+`+1-saturated”.

Remark 9.4. Compared with Theorem 9.2 our gains are no assumption on İ(λ,K)

and weaker assumption on İ(λ+,K), i.e., < 2ℵ1 (and ≥ 1) rather than = 1. The
price is λ = ℵ+

0 and being PCℵ0
.

Proof. 1) By 3.5 and 9.1(1).

2) See by 3.5 and 9.1(2), i.e. using the full version of [She09d]. �9.3

Lastly, we fulfill an aim of [She75].

theorem 9.5. 1) Assume 2ℵ` < 2ℵ`+1 for ` ≤ n − 1 and WDmId(λ+`) is not

λ+`+1-saturated for ` = 1, . . . , n − 1, ψ ∈ Lω1,ω(Q), İ(ℵ1, ψ) ≥ 1 and İ(ℵ`, ψ) <
µunif(ℵ`, 2ℵ`−1), for ` = 1, . . . , n. Then ψ has a model in ℵn+1 and there are
s1, . . . , sn−1 as in 9.3 with Ks` ⊆ Modψ and appropriate ≤k.

2) We can omit the assumption “not λ+`+1-saturated”.

Proof. 1) By 3.8 mainly clauses (c)-(d) and 9.1(1). Note that this time in 9.1 we

use the İ(λ+`, k(λ+-saturated)) < µunif(ℵ`, 2ℵ`−1).

2) As in part (1) using 9.1(2). �9.5
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