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We introduce a general framework of generalized tree forcings, GTF for short, that 
includes the classical tree forcings like Sacks, Silver, Laver or Miller forcing. Using 
this concept we study the cofinality of the ideal I(Q) associated with a GTF Q. We 
show that if for two GTF’s Q0 and Q1 the consistency of add(I(Q0)) < add(I(Q1))
holds, then we can obtain the consistency of cof(I(Q1)) < cof(I(Q0)). We also 
show that cof(I(Q)) can consistently be any cardinal of cofinality larger than the 
continuum.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The classical tree forcings like Sacks, Silver, Laver or Miller forcing consist of certain subtrees of 2<ω or 
ω<ω (see [2]). They will be denoted by Sa, Si, Mi, La respectively. As usual, for given Q ∈ {Sa, Si, La, Mi}
and p ∈ Q, [p] denotes the set of branches of p, so a subset of R, where R stands for 2ω or ωω appropriately. 
Then the tree ideal I(Q) consists of all X ⊆ R such that for every p ∈ Q there exists q ∈ Q with q ⊆ p

and [q] ∩ X = ∅. By using standard fusion arguments, it is easily seen that I(Q) is a σ-ideal. Hence we 
have ℵ1 ≤ add(I(Q)) ≤ 2ℵ0 , where add(I(Q)) denotes the additivity of I(Q), i.e. the minimal cardinality 
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of some X ⊆ I(Q) with 
⋃
X /∈ I(Q). By cof(I(Q)) we denote the minimal cardinality of some X ⊆ I(Q)

that is cofinal in (I(Q), ⊆). The same definitions make sense for many more tree forcings that are studied 
in set theory. This is one reason for us to introduce in Section 3 the general concept of generalized tree 
forcing. However, some knowledge about the antichain structure of the concrete forcing is needed for this 
framework to be applicable.

The original motivation for this paper was to gain insight into the cofinalities of classical tree ideals, 
as very little has been known about them. To our knowledge, the only papers dealing with this topic 
are [9] and [3]. In [9] it has been shown that 2ℵ0 < cf(cof(I(Sa))) holds in ZFC and that consistently 
cof(I(Sa)) can be any cardinal with cofinality > 2ℵ0 . The same facts are true for Si with essentially the 
same proofs. Similar results for La, Mi have been obtained in [3]. Here we attack the question whether we 
can consistently obtain cof(I(Q0)) �= cof(I(Q1)) for different Q0, Q1 ∈ {Sa, Si, La, Mi}. The main result 
of this paper implies that cof(I(Q1)) < cof(I(Q0)) is consistent for any pair of Q0, Q1 ∈ {Sa, Si, La, Mi}
for which add(I(Q0)) < add(I(Q1)) is consistent.

Unfortunately, distinguishing the additivities of different tree ideals is also a difficult matter. However 
there are some cases where this has been achieved, as much more work has been done about additivities of 
tree ideals. Let us mention [19], [9], [4], [10], [5], [6], [13], [14], [18], [15], [17] (chronological order). In [9] for 
Q = Sa and in [4] for Q = Si it has been shown that MA does not imply add(I(Q)) = 2ℵ0 , whereas on the 
other hand, [5] and [6] show that this is true for Q = La or Q = Mi. So we can apply our theorem for any 
choice of Q0 ∈ {Sa, Si} and Q1 ∈ {La, Mi}. Another such case is when Q0 = Si and Q1 = Sa. Implicitly in 
[10], an amoeba for Sa with the Laver property has been constructed. Iterating this with countable supports 
ℵ2 times one obtains a model for cov(M) = ℵ1 and add(I(Sa)) = ℵ2. But by [14], add(I(Si)) ≤ cov(M)
holds in ZFC. (Here cov(M) is the minimal number of meager sets needed to cover R.)

All the other cases are open. However, by the work of [13] and [15] soft amoebas for Q ∈ {Mi, La} (with 
the Laver property) and for Si (with the pure decision property) exist. We expect that using these for 
making add(I(Q)) = ℵ2 we can produce more models where our main theorem can be applied.

We expect that the methods and results presented in this paper will prove to be applicable to other tree 
ideals or similarly defined ideals as, e.g., Mycielski ideals. That is why we try to be as general as possible 
and, e.g., will introduce two versions of generalized tree forcings, GTF0 and GTF1 (see Definition 3.1), and 
associated amoebas A0 and A1 (see Definition 3.2) even though for the four tree forcings mentioned above 
one version would be enough.

2. ∗d-iterations

In [11], the first author introduced a general framework to iterate forcings that are (< λ)-closed and have 
the λ+-c.c. with supports of size < λ, where λ is some regular cardinal with λ<λ = λ. The main goal is to 
guarantee that also the iteration is λ+-c.c. For this the ∗d-property is introduced as follows:

Definition 2.1. Let λ be a regular cardinal with λ<λ = λ.

(1) A c.c.-parameter is a quintuple d = (λ, D, ε, σ, S) such that
(a) D is a normal filter on λ+ containing Sλ+

λ and ε < λ is a limit ordinal,
(b) σ is a cardinal with 2 ≤ σ ≤ λ and S ⊆ [Sλ+

λ ]<(1+σ) has nonempty intersection with [S]<(1+σ) for 
every stationary set S ⊆ Sλ+

λ .
(2) Given a forcing notion Q and a c.c.-parameter d we define the game G(Q, d) as follows: It lasts for ε

moves. In his ζth move player I plays (〈qζi : i < λ+〉, fζ) and player II plays 〈pζi : i < λ+〉, where
(a) ∀i < λ+∀ζ < ε (qζi , p

ζ
i ∈ Q ∧ qζ0 = 1Q),

(b) for every 1 ≤ ζ < ε fζ : λ+ → λ+ is regressive, f0 : λ+ → λ+ is constantly 0, and
(c) ∀ξ < ζ < ε∀Di < λ+ qζi ≤ pξi and ∀ζ < ε∀Di < λ+ pζi ≤ qζi .
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(3) Player I wins a play 〈(〈qζi : i < λ+〉, fζ), 〈pζi : i < λ+〉 : ζ < ε〉 provided that there exists E ∈ D such 
that for every u ∈ [E]<(1+σ) ∩ S with the property ∀i, j ∈ u∀ζ < ε fζ(i) = fζ(j) the set

{pζi : ζ < ε, i ∈ u}

has a lower bound in Q.
(4) Given a c.c.-parameter d, we say that forcing Q satisfies property ∗d if player I has a winning strategy 

in the game G(Q, d).

Remark 2.1. (1) Let Q be a forcing notion satisfying ∗d, where d = (λ, D, ε, σ, S) is a c.c.-parameter with 
D = CLUBλ+ and S = [Sλ+

λ ]κ for some cardinal κ with 2 ≤ κ < 1 + σ.
Note that given 〈pi : i < λ+〉, a sequence in Q, there exists a club E ⊆ λ+ such that for every stationary 

S ⊆ E ∩ Sλ+

λ there is u ∈ P(S) ∩ S with the property that the set {pi : i ∈ u} has a lower bound.
Indeed, let 〈(〈qζi : i < λ+〉, fζ), 〈pζi : i < λ+〉 : ζ < ε〉 be a play of G(Q, d) where player I uses his winning 

strategy and player II plays 〈p0
i : i < λ+〉 = 〈pi : i < λ+〉 and afterwards just repeats the moves of player I. 

By Definition 2.1(3) there exists a club E as there. Given any stationary set S ⊆ E ∩ Sλ+

λ , for every i ∈ S

we can find αi < i such that the sequence 〈fζ(i) : ζ < ε〉 is bounded by αi. By the Pressing-down-Lemma 
there exist a stationary set S∗ ⊆ S and α∗ such that αi = α∗ for every i ∈ S∗. By our assumption λ<λ = λ, 
there exists U ⊆ S∗ of size λ+ such that 〈fζ(i) : ζ < ε〉 = 〈fζ(j) : ζ < ε〉 for any i, j ∈ U . By construction 
and Definition 2.1(3), every u ∈ P(U) ∩ S is as desired. By the choice of S, such u exist. In particular, Q
is λ+-c.c.

(2) Suppose that Q is strongly λ-closed, i.e., every decreasing sequence of length < λ has a largest lower 
bound (llb for short) and, moreover, strongly λ-centered which means that Q =

⋃
μ<λ Qμ where every Qμ is 

λ-strongly centered, i.e., every subset of Qμ of size < λ has a llb. Then Q satisfies ∗d for every c.c.-parameter 
d = (λ, D, ε, σ, S).

Indeed, if such Q is given, in his ζth move player I plays (〈qζi : i < λ+〉, fζ) such that qζi is a lower bound 
of player II’s moves 〈pξi : ξ < ζ〉 and fζ(i) = μ such that qζi ∈ Qμ. We claim that this is a winning strategy 
for player I. We apply normality of D to the (almost everywhere) regressive function

i �→ 〈fζ(i) : ζ < ε〉 ∈ λ<λ = λ

to find E ∈ D and f̄ = 〈f(ζ) : ζ < ε〉 such that

∀i ∈ E∀ζ < ε fζ(i) = f(ζ).

Given any u ⊆ E of size < λ and any ζ < ε we have

qζ,u :=
{
qζ(i) : i ∈ u

}
∈
[
Qf(ζ)

]<λ
,

and hence qζ,u has a llb, say rζ . Clearly 〈rζ : ζ < ε〉 is decreasing, hence has a llb, say r. But then r is a 
lower bound of

{
pζi : ζ < ε, i ∈ u

}
.

In [11], the first author has proved the following preservation theorem:

Theorem 2.1. Suppose that λ is a cardinal with λ<λ = λ, d = (λ, D, ε, σ, S) is a c.c.-parameter and 〈Pα, Q̇β :
α ≤ μ, β < μ〉 is a (< λ)-support iteration such that for every β < μ, �Pβ

“Q̇β satisfies ∗d ”. Then Pα

satisfies ∗d.
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3. Amoebas for generalized tree forcings

Definition 3.1. Let λ = 2ℵ0 . (1) A GTF0 (here GTF stands for generalized tree forcing) is a quintupel 
Q = (Q, ζ̇, set, Q∗, ⊥) such that

(a) Q = (Q, <Q) is a forcing notion, Q ⊆ H(λ) and ζ̇ is a Q-name such that �Q ζ̇ ∈ R;
(b) Q∗ is a dense subset of Q;
(c) set is a function from Q∗ to Borel subsets of R such that

(α) if p � q then set(p) ⊆ set(q),
(β) p �Q ζ̇ ∈ set(p),
(γ) �Q {ζ̇} =

⋂
{set(p) : p ∈ Q∗ ∩ ĠQ}, (where ĠQ is the canonical Q-name of the generic filter);

(d) for every A ∈ [R]<λ the set {p ∈ Q∗ : set(p) ∩A = ∅} is dense in Q;
(e) ⊥ is a binary, symmetric relation on Q∗ such that

(α) if p ⊥ q, then p and q are incompatible in Q,
(β) if p ⊥ q, then set(p) ∩ set(q) = ∅,
(γ) if β < λ and 〈pα : α < β〉 is a sequence in Q∗, then there is q ∈ Q∗ such that ∀α < β pα ⊥ q,
(δ) if β < λ, 〈pα : α < β〉 is a sequence in Q∗ and p ∈ Q is incompatible with every pα, then there is 

q ∈ Q∗ such that q ≤ p and ∀α < β pα ⊥ q.

(2) If Q = (Q, ζ̇, set, Q∗, ⊥) is as in (1) except that in (e), (γ) and (δ) are replaced by the weaker (γ)1
and (δ)1 which ask the same thing as those, but only for orthogonal sequences 〈pα : α < β〉, i.e. pα ⊥ pα′

for any α < α′ < β, then we call Q a GTF1.
(3) If Q = (Q, ζ̇, set, Q∗, ⊥) is a GTF1 we define

I(Q) = {X ⊆ R : ∀p ∈ Q∗ ∃q ∈ Q∗(q � p ∧ set(q) ∩X = ∅)}.

Clearly I(Q) is an ideal on R and hence we can define add(I) and cof(I) as in the introduction.

Remark 3.1. (1) Clearly we have GTF0 ⊆ GTF1. By Theorem 6.1 below, Sa and Si can be considered as 
GTF0’s provided d = 2ℵ0 , and if b = 2ℵ0 , La, Mi can be considered as GTF1’s.

(2) Clearly in the definition of I(Q) we could replace Q∗ by Q, and by Definition 3.1(d) we have 
[R]<λ ⊆ I(Q).

(3) Given I ⊆ Q∗ let

X(I) = R \
⋃

{set(p) : p ∈ I}.

Then clearly the following sets are bases of I(Q):

{X(I) : I ⊆ Q∗ is predense},

{X(I) : I ⊆ Q∗ is a maximal antichain }.

Note that by applying (d) and (e) of Definition 3.1(1) we can obtain the following:

Claim 1. Let 2ℵ0 = λ = λ<λ. Given a GTF1 Q = (Q, ζ̇ , set, Q∗, ⊥) and a dense open subset D ⊆ Q, there 
exists a maximal antichain (with respect to (Q, <Q)) 〈qε : ε < λ〉 in Q∗ ∩D such that

(a) ∀ε < ξ < λ qε ⊥ qξ;
(b) ∀r ∈ Q∗(set(r) �

⋃
{set(qε) : ε < λ} ∨ ∃B ∈ [λ]<λ set(r) ⊆

⋃
{set(qε) : ε ∈ B}).
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For classical tree forcings this has been proved and applied first in [JMSh] and later was applied frequently.

Definition 3.2. Let λ = 2ℵ0 .
(1) Given a GTF0 Q = (Q, ζ̇ , set, Q∗, ⊥) we define an amoeba forcing for Q, denoted by A0(Q), as 

follows:
Elements of A0(Q) are pairs p = (p, A) = (pp, Ap) such that p is a sequence of length < λ of members 

of Q∗ and A ⊆ I(Q) is a set of size < λ. Sometimes we write pp = 〈pp,ε : ε < lg (pp)〉.
The order on A0(Q) is defined by letting p ≤ q iff pq is an initial segment of pp, Aq ⊆ Ap and for every 

B ∈ Aq and ε ∈ [lg (pq), lg (pp)) we have set(pp,ε) ∩B = ∅.
(2) Letting Ġ denote the canonical A0(Q)-name for the generic filter, we let ṗ = ṗĠ be a name for ⋃
{pp : p ∈ Ġ}, which we also denote by 〈ṗε : ε < μ̇〉, where μ̇ = μ̇Ġ = lg (ṗ), and for ε < μ̇ we let Ḃε be a 

name for R \
⋃
{set(ṗζ) : ζ ∈ [ε, μ̇)}. Finally, Ḃ = 〈Ḃε : ε < μ̇〉.

(3) Given a GTF1 Q, we define A1(Q) as A0(Q) except that for its members p = (p, A) we require that 
p is an antichain (in Q∗) with respect to ⊥. If Ġ denotes the canonical A1(Q)-name for the generic filter 
and ṗ = ṗĠ = 〈ṗε : ε < μ̇〉 is defined for it as in (2), we define Ḃ0 as R \

⋃
{set(ṗε) : ε < μ̇)} and Ḃε = Ḃ0

for every ε < μ̇.

Remark 3.2. In Definition 3.2 the notion “amoeba forcing” is somewhat abused. In the context of some 
classical tree forcing P like Sa, Si, La or Mi, an amoeba for P is a forcing A(P ) adding some tree in P such 
that all its branches are P -generic. If A(P ) is reasonably nice, its countable support iteration will increase
add(I(P )) to ℵ2, where I(P ) is the tree ideal associated to P .

The amoebas A0(Q) or A1(Q) from Definition 3.2 will be applied in a model where add(I(Q)) = 2ℵ0 =
λ = λ<λ. Then they will have the effect that, if iterated with < λ supports, they increase cof(I(Q)) and 
preserve add(I(Q)), i.e., won’t let it drop to some smaller cardinal.

Lemma 3.1. Suppose that λ = 2ℵ0 = λ<λ.
(A) Let Q be a GTF0 and add(I(Q)) = λ.

(1) A0(Q) is strongly λ-closed, i.e., every decreasing sequence of length < λ has a l lb; moreover, A0(Q) is 
strongly λ-centered. Hence it satisfies ∗d for every c.c.-parameter d = (λ, D, ε, σ, S) (see Remark 2.1(2)).

(2) �A0(Q) “μ̇ = λ ∧ ∀ε < ζ < λ (Ḃε ∈ I(Q) ∧ Ḃε ⊆ Ḃζ”, and for every B ∈ I(Q) ∩ V , �A0(Q) ∃ε <
λ B ⊆ Ḃε.

(3) ∀B ∈ I(Q) ∩ V �A0(Q) Ḃ0 � B.

(B) Let Q be a GTF1 and add(I(Q)) = λ. Then (A)(1), the first part of (A)(2) and (A)(3) also hold for 
A1(Q), and, as for the second part of (A)(2), for every A ∈ V such that A ⊆ I(Q) and |A| < λ we have 
(∅, A) �A1(Q)

⋃
A ⊆ Ḃ0.

Proof. (A)(1) Given 〈pα : α < γ〉 a descending chain in A0(Q) with γ < λ, clearly we have that 
(
⋃

α<γ
ppα

, 
⋃

α<γ
Apα

) is its largest lower bound in A0(Q). Moreover, given A ⊆ A0(Q) of size < λ with 

pp = pq =: p for every p, q ∈ A, clearly (p, 
⋃

p∈A Ap) is the llb of A. By λ<λ = λ we conclude that A0(Q)
is strongly λ-centered. By Remark 2.1(2) we conclude that A0(Q) satisfies ∗d.

(2) Given p ∈ A0(Q), γ < λ, p ∈ QQ ∩V and B ∈ I(Q) ∩V , by assumption we have that X :=
⋃

Ap ∈
I(Q). By Definition 3.1(1)(b) we can find 〈pε : ε < γ〉 in Q∗ such that p0 �Q p and ∀ε < γ X∩set(pε) = ∅, 
and hence, letting q := (pp�〈pε : ε < γ〉, Ap ∪ {B}), we have q ∈ A0(Q), q � p and q � “μ̇ � γ ∧ ∀ε <
lg (pp) ∃q ∈ Q∗(q � p ∧ Ḃε ∩ set(q) = ∅) ∧ ∀ε � lg(pq) B ⊆ Ḃε”.

Hence by genericity and as A0(Q) does not add new elements to H(λ), we conclude that (2) holds.
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(3) Given p ∈ A0(Q) and B ∈ I(Q) ∩ V , by Definition 3.1(1)(e) there is q ∈ Q∗ such that ∀ε <
lg (pp) pp,ε ⊥ q. By Definition 3.1 there exists some singleton X ⊆ set (q) such that X ∩ B = ∅, and 
hence q := (pp, Ap ∪ {X}) ∈ A0(Q), q � p and q � Ḃ0 � B (note that by Definition 3.1(1)(e)(β) we have 
∀ε < lg(pp) set(pp,ε) ∩X = ∅).

(B) The proof is almost the same as for A0(Q) in (A). �
Theorem 3.1. Suppose that Q is a GTF1, 2ℵ0 = λ = λ<λ < μ = cf(μ) < χ = χ<χ and add (I(Q)) = λ. 
There exists a forcing P such that

(a) |P | = χ, P is λ-closed and λ+-c.c.
(b) V P � 2λ = χ ∧ cof(I(Q)) = μ.

Proof. Let us first assume that Q is even GTF0 (recall GTF0 ⊆ GTF1). Let P be the limit of a (< λ)-
support iteration 〈Pα, Q̇β : α < μ, β < μ〉 where Q0 = Fn(χ, 2, λ) (which is the standard forcing for adding 
χ Cohen subsets of λ with conditions of size < λ) and Q̇1+β denotes A0(Q) in V P1+β .

It is easy to check that Fn(χ, 2, λ) satisfies ∗d for every c.c.-parameter d = (λ, D, ε, σ, S). Actually, a 
simplified version of the proof of Lemma 4.2 below can be used. Hence by Lemma 3.1(A)(1) and Theo-
rem 2.1, P satisfies ∗d and hence, letting S = [Sλ+

λ ]κ for κ = 2, by Remark 2.1(1) P is λ+-c.c. Clearly, by 
Lemma 3.1(A)(1) and as we have (< λ)-supports, P is also λ-closed.

Let G be a P -generic filter over V . For 1 � β < μ let 〈Bβ
ε : ε < λ〉 be the generic sequence in I(Q)V [Gβ+1]

determined by G(β). Note that by λ-closedness P does not add new elements to H(λ) and hence we have 
I(Q)V [Gβ ] = I(Q)V [G]∩V [Gβ ] for every β < λ. By the λ+-c.c. of P and the regularity of μ, every X ∈ V [G]
of size < μ with X ⊂ V belongs to V [Gβ ] for some β < μ. Hence by Lemma 3.1(A)(2) we conclude that 
{Bβ

ε : 1 � β < μ, ε < λ} is cofinal in I(Q)V [G], thus cof (I(Q)) � μ in V [G].
For the same reason, given X ∈ V [G] such that V [G] � X ⊆ I(Q) ∧ |X | < μ, there is β < μ such that 

X ⊂ V [Gβ ] (and actually X ∈ V [Gβ ]). By Lemma 3.1(A)(3) we conclude that no member of X contains 
Bβ

0 . Hence V [G] |= cof (I(Q)) = μ.
If Q is only GTF1 we define the iteration P as above except that iterand Q̇1+β denotes A1(Q) in VP1+β . 

The proof is almost the same as in the first case, except that now we argue that {Bβ
0 : 1 � β < μ} is cofinal 

in I(Q)V [G], where Bβ
0 denotes “B0 defined by G(β)” (see Definition 3.2(3)). In fact, given X ∈ I(Q)V [G], 

as X ∈ V [Gβ ] for some β < μ, by genericity we have (∅, {X}) ∈ G(γ) for some β < γ < μ, and hence 
X ⊆ Bγ

0 by Lemma 3.1(B). �
Lemma 3.2. Suppose 2ℵ0 = λ = λ<λ, Q is a GTF1 and P is a λ-closed forcing. If add(I(Q)) = μ, then 
V P |= add(I(Q)) = μ.

Proof. We assume μ = λ. The case μ < λ is similar. Let Q = (Q, ζ̇, set, Q∗, ⊥). Suppose p ∈ P, β < λ and 
〈Ẋα : α < β〉 are P -names such that

p �P ∀α < β Ẋα ∈ I(Q).

By Claim 1, wlog we may assume that there are İα = 〈q̇αε : ε < λ〉 for α < β such that the following hold:

(1) p �P ∀α < β (İα is a maximal antichain inQ∗ ∧ Ẋα = X(İα));
(2) for every α < β, p � ∀r ∈ Q∗(∃x ∈ set(r) x /∈

⋃
ε<λ

set(q̇αε ) ∨ ∃B ∈ [λ]<λ set(r) ⊆
⋃

ε∈B

set(q̇αε ));

(3) p � ∀ε < ξ < λ q̇αε ⊥ q̇αξ .
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Note that as P does not add new reals nor elements of H(λ), by absoluteness we have set(r)V = set(r)V P

for every r ∈ Q∗. Moreover, for every r ∈ Q∗, by strengthening p in (2) we can decide which alternative 
holds and also the witness for this (so some x ∈ set(r) or B ∈ [λ]<λ).

Let 〈rε : ε < λ〉 list Q∗. By the λ-closedness of P and the remark just made we can easily construct a 
decreasing sequence 〈pε : ε < λ〉 in P and a sequence 〈ζε : ε < λ〉 of ordinals in λ such that

(4) p0 = p, ζε � ε;
(5) for all α < β and ε < λ, pε+1 decides 〈q̇αξ : ξ < ζε〉, say as 〈qα,ξ : ξ < ζε〉;
(6) for all α < β and ε < λ there is ξ < ζε such that rε and qα,ξ are compatible (in Q);
(7) for all α < β and ε < λ, pε+1 decides which alternative of (2) for r = rε holds and also in either case 

the witness for this (so either xα,ε ∈ set(rε) or Bα,ε ∈ [λ]<λ).

For α < β we let Aα = 〈qα,ξ : ξ < λ〉. Then by construction every Aα is a maximal antichain (with 
respect to (Q, <Q)) in Q∗ and hence X(Aα) ∈ I(Q). By hypothesis, 

⋃
α<β

X(Aα) ∈ I(Q). Choose r ∈ Q∗

such that set(r) ∩
⋃

α<β

X(Aα) = ∅, thus

(8) set(r) ⊆
⋃
{set(qα,ξ) : ξ < λ} for every α < β. Let r = rε.

Note that by (7), we must have

(9) for every α < β, pε+1 � set(r) ⊆
⋃

ξ∈Bα,ε

set(q̇αξ ).

Indeed, otherwise we had α < β and xα,ε ∈ set(rε) such that

pε+1 � xα,ε /∈
⋃
ξ<λ

set(q̇αξ ).

By (8) there is ξ0 < λ such that xα,ε ∈ set(qα,ξ0). Letting μ > max{ε, ξ0} we have pμ � pε+1 and 
pμ � q̇αξ0 = qα,ξ0 , thus pμ � xα,ε ∈ set(q̇αξ0), which is a contradiction.

As (9) holds for a dense set of r ∈ Q∗, we conclude that p �
⋃

α<β

Ẋα ∈ I(Q). �

4. Small additivity and large cofinality - the antiamoeba

In this section we shall show that the assumption add(I(Q)) ≤ κ < 2ℵ0 = κ+ < χ for some GTF1 Q

enables us to define some forcing AA(Q), which we call the antiamoeba for Q, that introduces some family 
〈Xα : α < χ〉 in I(Q) that is hard to cover, i.e., for many increasing sequences 〈βι : ι < κ〉 in χ we have

⋃
ι<κ

Xβι
/∈ I(Q).

This will imply cof(I(Q)) ≥ χ.

Definition 4.1. Let 2ℵ0 = λ = λ<λ = κ+ and Q = (Q, ζ̇, set, Q∗, ⊥) be a GTF1. We say that Q has a strong 
witness W for add(I(Q)) � κ if W = (q∗, 〈q∗ι,ε : ι < κ, ε < λ〉) such that the following hold: q∗ = 〈q∗ε : ε < λ〉
is an orthogonal maximal antichain (w.r.t. (Q, ≤)) in Q∗ and for every ι < κ and ε < λ q∗ι,ε = 〈q∗ι,ε,ζ : ζ < λ〉
is some family in Q∗ below q∗ε such that q∗ι,ε is predense (w.r.t. (Q, ≤)) below q∗ε , hence
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Xι,ε := set(q∗ε ) \
⋃

{set(q∗ι,ε,ζ) : ζ < λ}

belongs to I(Q), but Yε :=
⋃
ι<κ

Xι,ε /∈ I(Q).

Definition 4.2. (1) Let χ > 2ℵ0 = λ = λ<λ = κ+ and Q = (Q, ζ̇, set, Q∗, ⊥) a GTF1 with a strong witness 
W for add(I(Q)) � κ, and let W = (q∗, 〈q∗ι,ε : ι < κ, ε < λ〉) be as in Definition 4.1. We define a forcing 
notion AA(Q, W, χ) as follows (“AA” stands for “anti-amoeba”):

(A) (a) Conditions p ∈ AA(Q, W, χ) have the form p = (u, ζ, r, S, f) =
(up, ζp, rp, Sp, fp) where

(b) u ∈ [χ]�κ and ζ < λ,
(c) r = 〈rα,ε : α ∈ u, ε < ζ〉 and r[α] := 〈rα,ε : ε < ζ〉 (for α ∈ u) are such that every rα,ε is a member 

of Q∗ below some q∗ξ (from the strong witness)
(d) S ⊆ {α : α ∈ κu is increasing } and |S| � κ,
(e) f : S → λ is such that for every α1, α2 ∈ S

(α) if f(α1) = f(α2) then (α1, α2) is a Δ-system pair, i.e. ∀i, j < κ(α1(i) = α2(j) ⇒ i = j) and
(β) if f(α1) �= f(α2), then |ran(α1) ∩ ran(α2)| � 1.

(B) The order on AA(Q, W, χ) is defined as follows: For p1, p2 ∈ AA(Q, W, χ) we declare p2 � p1 iff
(a) up1 ⊆ up2 , ζp1 � ζp2 , rp1 = rp2 � up1 × ζp1 , Sp1 ⊆ Sp2 , fp1 ⊆ fp2 and
(b) if (α, ε) ∈ (up2 × ζp2) \ (up1 × ζp1), ξ(p2, α, ε) is the unique ξ such that rp2

α,ε � q∗ξ and β ∈ Sp1 , ι < κ

are such that fp1(β) = ξ(p2, α, ε) and βι := β̄(ι) = α (note that this implies α ∈ up1 by (A)(d), and 
by (A)(e)(α) ι does not depend on β), then rp2

α,ε � q∗
ι,fp1 (β),ζ for some ζ < λ.

(2) Letting ĠAA(Q,W,χ) the canonical name for the AA(Q, W, χ)-generic filter, for α < χ we let ṗα =
〈ṙα,ε : ε < λ〉 be the AA(Q, W, χ)-name 

⋃
{r[α]

p : p ∈ ĠAA(Q,W,χ) ∧α ∈ up} and Ẋα = R \
⋃
{set(ṙα,ε) : ε <

λ}.

Lemma 4.1. With the notation of Definition 4.2 the following statements are true:

(1) Every descending sequence in AA(Q, W, χ) of length < λ has a largest lower bound.
(2) AA(Q, W, χ) is not empty and for every r∗ ∈ Q, α∗ < χ and p1 ∈ AA(Q, W, χ) there exists p2 ∈

AA(Q, χ) such that
(a) p2 � p1,
(b) ζp1 < ζp2 and α∗ ∈ up2 ,
(c) for some ε < ζp2 we have that rp2

α∗,ε and r∗ are compatible.
(d) ∀α < χ �AA(Q,W,χ) ṗα lists a predense subset of Q.

(3) Suppose that p ∈ AA(Q, W, χ), ξ < λ, β ∈ κχ \ Sp are such that ξ /∈ {ν < λ : ∃(α, ε) ∈ up × ζp rpα,ε �
q∗ν} ∪ ran(fp) and, letting

q := (up ∪ ran(β̄), ζp, rp, Sp ∪ {β}, fp ∪ {(β, ξ)}),

we have q ∈ AA(Q, W, χ) and hence q � p. Then

q �AA(Q,W,χ)
⋃
ι<κ

(set(q∗ξ ) \
⋃

{set(ṙβι,ε) : ε < λ}) /∈ I(Q)

and hence q �AA(Q,W,χ))
⋃

Ẋβι
/∈ I(Q).
ι<κ
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Remark 4.1. Note that in (3), for q ∈ AA(Q, W, χ)) to hold we only need that β is increasing and for every 
α ∈ Sp we have |ran(α) ∩ ran(β)| � 1.

Proof. (1) Given a descending chain 〈pα : α < μ < λ〉 in AA(Q, W, χ)) we define q ∈ AA(Q, W, χ)) by 
letting uq =

⋃
{upα

: α < μ}, ζq = sup{ζpα
: α < μ}, rq is such that for every β ∈ uq r

[β]
q =

⋃
{r[β]

pα : α <

μ ∧ β ∈ uα}, Sq =
⋃
{Spα

: α < μ} and fq =
⋃
{fpα

: α < μ}. By our assumptions it is easily checked that 
q ∈ AA(Q, W, χ)), ∀α < μ q � pα and q is the largest lower bound.

(2) AA(Q, W, χ)) is not empty as (∅, ∅, ∅, ∅, ∅) is an element. Let us check density. We do it in two steps. 
First we find p2 � p1 with ζp1 < ζp2 . We can choose ξ ∈ λ \ ran(fp1). We let up2 = up1 , ζp2 = ζp1 + 1, 
rp2 � up2 × ζp1 = rp1 and rp2

α,ζp1
= q∗0,ξ,0 for every α ∈ up2 , Sp2 = Sp1 and fp1 = fp2 . Then clearly 

p2 ∈ AA(Q, W, χ)) and p2 � p1.
Next we construct p2 � p1 with α∗ ∈ up2 . We may assume α∗ /∈ up1 . Let up2 = up1 ∪ {α∗}, ζp2 = ζp1 , 

rp2 � up1 × ζp2 = rp1 and rp2
α∗,ε = q∗0,0,0 for every ε < ζp2 . As α∗ /∈ ran(β) for every β ∈ Sp1 , (B)(b) of 

Definition 4.2 vacuously holds, thus p2 � p1.
Finally we construct p2 ∈ AA(Q, W, χ)), p2 � p1 such that (c) holds. By what we have just shown, we 

may assume α∗ ∈ up1 . We also assume that rp1
α∗,ε and r∗ are incompatible for every ε < ζp1 , as otherwise 

we let p2 = p1. We fix ξ < λ such that q∗ξ and r∗ are compatible (recall that q∗ is a maximal antichain), 
and fix r � q∗ξ , r∗.

Case 1. There exist β ∈ Sp1 and ι < κ such that fp1(β) = ξ and βι = α∗.

Note that by Definition 4.2 (A)(e) ι is uniquely determined. As q∗ι,ξ is a maximal antichain below q∗ξ , 
there exists ζ < λ such that q∗ι,ξ,ζ and r are compatible. We define p2 such that up2 = up1 , ζp2 = ζp1 + 1, 
rp2 � up2 × ζp1 = rp1 , r

p2
α∗,ζp1

� q∗ι,ξ,ζ , r, and rp2
α∗,ζp1

is a member of Q∗. We can easily define rp2
α,ζp1

for 
α ∈ up2 \ {α∗} such that, letting Sp2 = Sp1 and fp2 = fp1 , p2 is as desired.

Case 2. There is no pair (β, ι) ∈ Sp1 × κ such that fp1(β) = ξ and βι = α∗.

We construct p2 as in Case 1 except that ι < κ can be chosen randomly.
(3) Given q′ � q and (α, ε) ∈ uq′ × ζq′ such that α = βι for some ι < κ and rq

′
α,ε � q∗ξ , then, by 

Definition 4.2(1)(B)(b), for some ζ < λ we have rq
′

α,ε � q∗ι,ξ,ζ . By (2)(c) we conclude
q �AA(Q,W,χ) ∀ε < λ ((ṙβι,ε � q∗ξ → ∃ζ < λ ṙβι,ε � q∗ι,ξ,ζ) ∧ ∀ζ < λ∃ε < λ ṙβι,ε � q∗ι,ξ,ζ).
As ι < κ was arbitrary, by Definition 4.1 we conclude that (3) is true. �

Lemma 4.2. Suppose χ > 2ℵ0 = λ = λ<λ = κ+, Q, strong witness W for add(I(Q)) � κ and AA(Q, W, χ)
are as in Definition 4.2. If 〈pα : α < λ+〉 is a family of conditions in AA(Q, W, χ) there exist a club E ⊆ λ+

and a regressive function h : E ∩ Sλ+

λ → λ+ such that for every w ⊆ E ∩ Sλ+

λ of cardinality at most κ, if 
h � w is constant then 〈pα : α ∈ w〉 has a largest lower bound in AA(Q, W, χ).

Proof. Let 〈pα : α < λ+〉 be given. We write pα = (uα, ζα, rα, Sα, fα), rα = 〈rαγ,ε : γ ∈ uα, ε < ζα〉, r[γ]
α =

〈rαγ,ε : ε < ζα〉. For every α < λ+ let gα : otp(uα) → uα be the unique increasing surjection. We define a 
binary relation R∗ on λ+ by letting αR∗β iff

(a) otp(uα) = otp(uβ), otp(α ∩ uα) = otp(β ∩ uβ), ζα = ζβ , and
(b) gβ ◦ g−1

α is an isomorphism from pα onto pα, i.e.,
(α) if gβ ◦ g−1

α (γ1) = γ2, then r[γ1]
α = r

[γ2]
β and

(β) if γ = 〈γι : ι < κ〉 ∈ κ(λ+), then γ ∈ Sα iff gβ ◦ g−1
α (γ) := 〈gβ ◦ g−1

α (γι) : ι < κ〉 ∈ Sβ and 
fα(γ) = fβ(gβ ◦ g−1

α (γ)).
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It is easy to check that R∗ is an equivalence relation and that (by our assumption λ = λ<λ) E∗ has λ
many equivalence classes.

For every α < λ+ we let U<α =
⋃
{uβ : β < α}, vα = {ι < otp(uα) : gα(ι) ∈ U<α}.

We define the function h1 : λ+ → λ+ by letting
h1(α) = min{β ∈ Ord : β � α ∧ ∀γ1 < λ+ (ran(gγ1 � vγ1) ⊆ U<α ⇒ ∃γ2 < β (γ1R∗γ2 ∧ gγ2 � vγ2 =

gγ1 � vγ1))}.
Note that as R∗ has λ equivalence classes and |U<α|<λ � λ<λ, the function h1 maps indeed into λ+.
Let E = {γ < λ+ : γ is a limit ordinal and ∀α < γ h1(α) < γ}. Thus E is a club on λ+.
Finally we define our desired function h : E ∩ Sλ+

λ → λ+ by letting

h(γ) = min{δ < λ+ : gδ � vδ = gγ � vγ ∧ γR∗δ}.

Then h(γ) � γ holds trivially. By construction even h(γ) < γ, hence h is regressive. Indeed, by definition 
ran(gγ � vγ) ⊆ U<γ . As |ran(gγ � vγ)| < λ and cf(γ) = λ we can find δ1 < γ such that ran(gγ � vγ) ⊆ U<δ1 . 
Since h1(δ1) < γ there exists δ2 < γ such that gδ2 � vδ2 = gγ � vγ and δ2R∗γ, and hence h(γ) � δ2 < γ.

Suppose now that w ⊆ E∩Sλ+

λ , |w| � κ and h � w is constant. By definition of h, gα � vα = gβ � vβ =: g∗
for any α, β ∈ w. By definition of vα we conclude that 〈uα : α ∈ w〉 is a Δ-system with root ran(g∗) and 
gβ ◦ g−1

α is the identity on ran(g∗) for any α, β ∈ w.
Moreover, by definition of R∗ we have ζα = ζβ =: ζw, and if γ ∈ uα ∩ uβ , hence γ ∈ ran(g∗) and 

gβ ◦ g−1
α (γ) = γ then r[γ]

α = r
[γ]
β .

Now we define q = qw ∈ AA(Q, W, χ) as follows:

(a) uq =
⋃
{uα : α ∈ w}.

Note that |uq| � κ as required, as |w| � κ.

(b) ζq = ζw.
(c) rq = 〈rαγ,ε : α ∈ w, γ ∈ uα, ε < ζq〉.

Note that by the remark above this is well defined (i.e. rαγ,ε = rβγ,ε if γ ∈ uα ∩ uβ).

(d) Sq =
⋃
{Sα : α ∈ w}.

Again |Sq| � κ as required, by |w| � κ.

(e) fq =
⋃
{fα : α ∈ w}.

Note that fq is a function. Indeed, if γ ∈ Sα ∩ Sβ for α, β ∈ w then ran(γ) ⊆ uα ∩ uβ = ran(g∗). Since 
gβ ◦ g−1

α � ran(g∗) is the identity, by (b)(β) in the definition of R∗ we have fα(γ) = fβ(γ).
Let us check (A)(e) from Definition 4.2(1). Let α, β ∈ w, α �= β, and γ1 ∈ Sα, γ2 ∈ Sβ . Let γ3 :=

gβ ◦ g−1
α (γ1), thus γ3 ∈ Sβ , fα(γ1) = fβ(γ3), and (γ1, γ3) is a Δ-system pair (see Definition 4.2(1)(e)(α)). 

If γ2 = γ3, hence fq(γ1) = fq(γ2), we are done. Now suppose γ2 �= γ3. Note that

{(ι, ν) ∈ κ2 : γ1
ι = γ2

ν} ⊆ {(ι, ν) ∈ κ2 : γ3
ι = γ2

ν}.

If fα(γ1) = fβ(γ2), hence fβ(γ2) = fβ(γ3) and thus (γ2, γ3) is a Δ-system pair, we are done. Otherwise 
fα(γ1) �= fβ(γ2), hence fβ(γ2) �= fβ(γ3) and thus |ran(γ2) ∩ran(γ3)| � 1. But this implies |ran(γ1) ∩(γ2)| �
1.
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Finally, it is straightforward to verify q � pα for every α ∈ w. That q actually is the largest lower bound 
is also clear. �
5. Different cofinalities if amoeba and antiamoeba interact

Lemma 5.1. Suppose χ > 2ℵ0 = λ = λ<λ = κ+, Q, χ a cardinal, strong witness W for add(I(Q)) � κ and 
AA(Q, W, χ) are as in Definition 4.2. Moreover let d = (λ, CLUBλ+ , ε, κ, [Sλ+

λ ]κ) where ε < λ (so d is a 
c.c.-parameter). If Ṗ is an AA(Q, W, χ)-name for a forcing such that �AA(Q,W,χ) “Ṗ satisfies ∗d”, then

�AA(Q,W,χ)∗Ṗ cof(I(Q)) ≥ χ.

Proof. Towards a contradiction we assume that there are p∗ ∈ AA(Q, W, χ) ∗ Ṗ , cardinal α∗ < χ and a 
family 〈Ḃα : α < α∗〉 of AA(Q, W, χ) ∗ Ṗ -names such that

p∗ �AA(Q,W,χ)∗Ṗ “〈Ḃα : α < α∗〉 is a cofinal sequence in I(Q).”

We must have α∗ > λ. For α < χ we can find pα ∈ AA(Q, W, χ) ∗ Ṗ below p∗ and γ(α) < α∗ such that

(a) pα �AA(Q,W,χ)∗Ṗ Ẋα ⊆ Ḃγ(α),

where Ẋα is the AA(Q, W, χ)-name as in Definition 4.2(2). We can find some unbounded U ⊆ α+
∗ and 

γ∗ < α∗ such that γ(α) = γ∗ for every α ∈ U . By renumbering we may assume U = α+
∗ . In the sequel we 

only make use of 〈pα : α < λ+〉 to get a contradiction. Let pα = (p1
α, ṗ

2
α) where p1

α ∈ AA(Q, W, χ) and 
�AA(Q,W,χ) ṗ2

α ∈ Ṗ .
In V AA(Q,W,χ) we consider the game G(Ṗ , d) (see Definition 2.1), for which, by assumption, player I has 

a winning strategy. Let

〈(〈ṫζi : i < λ+〉, ḟζ), 〈ṡζi : i < λ+〉 : ζ < ε〉

be the play described in Remark 2.1(1) with 〈ṡ0
i : i < λ+〉 = 〈ṗ2

i : i < λ+〉. As player I wins this play, 
there exists a AA(Q, W, χ)-name Ė2 for a club of λ+ as in the winning rule for G(Ṗ , d). As by Lemma 4.2
AA(Q, W, χ) has the λ+-c.c., wlog we may assume Ė2 = E2 ∈ V .

By λ-closedness of AA(Q, W, χ), for every α < λ+ we can find p3
α ∈ AA(Q, W, χ) below p1

α and gα : ε →
λ+ in V such that

(b) p3
α �AA(Q,W,χ) 〈ḟζ(α) : ζ < ε〉 = gα.

By Lemma 4.1(2)(b), we may assume that α ∈ up3
α

(see Definition 4.2(1)(A)(a)). Applying Lemma 4.2
to 〈p3

α : α ∈ λ+〉 we can find a club E1 ⊆ λ+ and a regressive function f1 : E1 ∩ Sλ+

λ → λ+ as there. Note 
that by the construction of f1 (denoted h in the proof of Lemma 4.2), for given δ < λ+ there is u∗ such 
that whenever f1(α) = f1(β) = δ for some α, β ∈ E1 ∩ Sλ+

λ , then αR∗β and uα ∩ uβ = u∗.
As in Remark 2.1(1) we have a regressive function f2 : Sλ+

λ → λ+ such that ran(gα) is bounded by f2(α)
for every α ∈ Sλ+

λ .
We shall use notation and proof of Lemma 4.2 below. As E1 ∩ E2 ∩ Sλ+

λ+ is a stationary subset of λ+, 
there are ordinals γ1

∗ , γ
2
∗ such that the set

S := {α < λ+ : α ∈ E1 ∩E2 ∩ Sλ+

λ ∧ f1(α) = γ1
∗ ∧ f2(α) = γ2

∗}

is stationary. By λ = λ<λ we can find some unbounded set V ⊆ S and g∗ such that gα = g∗ for every α ∈ V .
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By the above remark about the construction of f1 in the proof of Lemma 4.2 we have that

(c) all α ∈ S are R∗-equivalent,
(d) 〈up3

α
: α ∈ S〉 is a Δ-system (hence α ∈ up3

α
\
⋃
{up3

β
: β ∈ S ∧ β �= α} for all α ∈ S).

We choose w ⊆ V such that otp(w) = κ and let ᾱ∗ list w in increasing order. By the proof of Lemma 4.2 we 
know that {p3

α : α ∈ w} has a largest lower bound, say pw. We define p1 ≤ pw in AA(Q,W, χ) as follows:
Let up1 = upw , ζp1 = ζpw , r̄p1 = r̄pw , Sp1 = Spw ∪ {ᾱ∗}, and fp1 = fpw ∪ {(ᾱ∗, ξ)}, where ξ < λ is 

chosen such that no member of r̄pw is below q∗ξ , and hence ∀β ∈ upw∀ε < ζpw set(rp
w

β,ε) ∩ set(q∗ξ ) = ∅, and 
moreover ξ /∈ ran(fpw).

By construction (see (c)) we have |ran(ᾱ∗) ∩ ran(β̄)| � 1 for every β̄ ∈ Spw and hence p1 is as desired 
(see Remark 4.1).

Let ᾱ∗ = 〈αι : ι < κ〉. By Lemma 4.1(3) we conclude

p1 �AA(Q,W,χ)
⋃
ι<κ

Ẋαι
/∈ I(Q).

By construction (especially the definition of p3
α and gα in (b)), there exists some AA(Q,W, χ)-name ṗ2 such 

that �AA(Q,W,χ) ṗ2 ∈ Ṗ and

p1 �AA(Q,W,χ) ṗ2 is a lower bound of {ṗ2
α : α ∈ w}.

But now we have a contradiction, as (p1, ṗ2) ≤ p∗ and by (a)

(p1, ṗ2) �AA(Q,W,χ)∗Ṗ
⋃
ι<κ

Ẋαι
⊆ Ḃγ∗ . �

As a conclusion of what we proved so far we obtain the following main theorem of this paper:

Theorem 5.1. Suppose that 2ℵ0 = λ = λ<λ = κ+ < μ = cf(μ) < χ = χ<χ. Moreover we assume the 
following:

(1) Q0 = (Q0, ζ̇0, set0, Q∗
0, ⊥0) is a GTF1 such that Q0 has a strong witness W for add(I(Q0)) � κ,

(2) Q1 = (Q1, ζ̇1, set1, Q∗
1, ⊥1) is a GTF1 such that add(I(Q1)) = λ,

(3) Let Ṗ be the AA(Q0,W, χ)-name of the limit of a (< λ)-support iteration 〈Ṗα, Q̇β : α < μ, β < μ〉 in 

V AA(Q
0
,W,χ), where Q̇β denotes A1(Q1) in V AA(Q

0
,W,χ)∗Ṗβ .

Then the following hold:

(4) AA(Q0,W, χ) ∗ Ṗ is λ-closed and λ+-c.c.
(5) V AA(Q

0
,W,χ)∗Ṗ � 2ℵ0 = λ ∧ cof(I(Q0)) = 2λ = χ ∧ cof(I(Q1)) = μ.

6. Application to classical tree forcings

Here we study the well-known classical tree forcings Sacks, Silver, Laver and Miller. We abbreviate them 
by Sa, Si, La and Mi, respectively. We shall show that under certain assumptions they are GTF1 in 
the sense of Definition 3.1. Then we shall explain for which pairs (Q0, Q1) of these the assumptions of 
Theorem 5.1 are known to be consistent, hence we can get the consistency of cof(I(Q0)) > cof(I(Q1)).
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Theorem 6.1. (1) Suppose d = 2ℵ0 . Then both, Sacks and Silver forcing, can be considered as GTF1’s.
(2) Suppose b = 2ℵ0 . Then both, Laver and Miller forcing, can be considered as GTF0’s.

Proof. It is well-known that for every Q ∈ {Sa, Si, La, Mi}, every p ∈ Q has continuum many extensions 
such that any two of them have no common infinite branch.

(1) Let Q ∈ {Sa, Si}. Let ĠQ be the canonical Q-name for the generic filter, let ζ̇Q =
⋂

ĠQ, i.e. ζ̇Q
denotes the Sacks, Silver real, respectively. Let setQ(p) = [p], let Q∗ be the set of all p ∈ Q such that [p]
is nowhere dense, and let p ⊥Q q mean [p] ∩ [q] = ∅. We claim that (Q, ζ̇Q, setQ, Q∗, ⊥Q) is GTF1. In fact, 
(1)(a), (b), (c) and (e)(α), (β) are obvious, for (c)(γ) we use the well-known fact that a Sacks or Silver 
real determines its generic filter. (1)(d) follows from the remark at the beginning of this proof. Nontrivial 
are (e)(γ)1 and (δ)1. For these we apply the results in [7] (for Sa) and [18] (for Si) that every maximal 
antichain in Sa or Si that consists of nowhere dense trees must have size at least d. Then (e)(γ)1 and (δ)1
follow easily from our assumption, the remark at the beginning of this proof and the fact that if p, q are 
incompatible Sacks or Silver trees, then [p] ∩ [q] is countable.

(2) For Q ∈ {La, Mi} we apply the base matrix tree from [1]. This is a family 〈Aα : α < h〉 such that 
every Aα is a mad family in [ω]ω of size continuum, Aβ refines Aα (i.e. ∀b ∈ Aβ∃a ∈ Aα b ⊆∗ a) for every 
α < β < h, and 

⋃
α<h

Aα is dense in ([ω]ω, ⊆). Actually, by an easy modification of its construction we can 
achieve the following:

(∗) for every sequence 〈an : n < ω〉 in [ω]ω there is α < h and a sequence 〈bn : n < ω〉 in Aα such that 
∀n bn ⊆ an.

Note that here we ask for proper inclusion not just almost inclusion. Otherwise (∗) would follow from 
ℵ0 < h.

Now we let La∗ consist of all p ∈ La with the property that there exists α < h such that for every 
σ ∈ p extending stem(p) we have succp(σ) ∈ Aα, where succp(σ) = {n < ω : σ�n ∈ p}. If σ /∈ p we define 
succp(σ) = ∅. As for (1) we let ζ̇La denote the Laver real, setLa(p) = [p], and p ⊥La q mean [p] ∩ [q] = ∅. 
We claim that (La, ζ̇La, setLa, La∗, ⊥La) is GTF0. Let us check Definition 3.1(1): (b) follows easily from 
property (∗) of the base tree matrix. (c) is well-known. (d) holds by the remark at the beginning of this 
proof. Nontrivial are (e)(γ) and (δ). Let β < 2ℵ0 and 〈pα : α < β〉 a sequence in La∗. The set

S = {succpα
(σ) : stempα

⊆ σ ∈ pα ∧ α < β}

has cardinality < 2ℵ0 and is contained in the base matrix tree. As A0 has size 2ℵ0 and the base matrix is 
a tree with respect to ⊇∗, there exists a ∈ A0 such that a ∩ b is finite for every b ∈ S. Let p ∈ La∗ be the 
tree with empty stem and succp(σ) = a for every σ ∈ p. Then clearly p is incompatible with every pα. We 
need the following claim which is folklore wisdom:

Claim 2. Let 〈pα : α < β < b〉 be a sequence in La. If p ∈ La is such that p is incompatible (w.r.t. (La, ≤)) 
with pα for every α < β, then there exists q ≤ p, q ∈ La, such that stem(p) = stem(q) and [pα] ∩ [q] = ∅
for every α < β.

Proof. Fix α < β. We define a rank function rkα on p− := {σ ∈ p : stem(p) ⊆ σ} as follows:
rkα(σ) = 0 iff succp(σ) ∩ succpα

(σ) is finite, and
rkα(σ) = ν iff ν ∈ Ord is minimal such that for all except finitely many n ∈ succp(σ) ∩

succpα
(σ) rkα(σ�n) < ν.

If σ gets no ordinal rank we define rkα(σ) = ∞.
It is clear that as p and pα are incompatible, every σ ∈ p− has an ordinal rank. We define fα : p− → ω

as follows: If rkα(σ) = 0 let n = sup(succp(σ) ∩ succpα
(σ)) and n = sup{m ∈ succp(σ) ∩ succpα

(σ) :
rkα(σ�m) ≥ rkα(σ)} otherwise. Now let fα(σ) = n + 1. It can easily be checked that if g(σ) ≥ fα(σ) for 
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almost all σ ∈ p−, then, if we prune p using g, i.e. for every σ ∈ p− deleting everything above σ�m for 
m < g(σ), we obtain a Laver tree q ≤ p with [pα] ∩ [q] = ∅. But by β < b we can get g like this for every 
α < β. �

Continuing with the proof of (e)(γ), by the claim and as La∗ is dense we can find q ∈ La∗ with q ≤ p

and [pα] ∩ [q] = ∅ for every α < β, as desired. These arguments also prove (e)(δ).
For Mi, analogous arguments work. �

Theorem 6.2. (1) Suppose Q ∈ {Sa, Si}. Then add(I(Q)) ≤ b holds.
(2) Suppose 2ℵ0 = b and Q ∈ {La, Mi}. Then add(I(Q)) ≤ h.

Proof. Let κ(Q) the least cardinal κ such that forcing with Q changes the cofinality of (2ℵ0)V to κ.
(1) Simon [12] has proved κ(Sa) ≤ b. In [9], add(I(Sa)) ≤ κ(Sa) is proved under the assumption that 

2ℵ0 is regular. In [7] it is proved that this assumption is not needed.
In [18], add(I(Si)) ≤ b is proved directly. A stronger result has been proved in [16] where it is shown 

that the nowhere Ramsey ideal is Tukey reducible to the Silver ideal, and hence even add(I(Si)) ≤ h is 
true.

(2) In [6], κ(Q) ≤ h has been shown for Q ∈ {La, Mi}. Similarly as in [9] for Sa, one can prove 
add(I(Q)) ≤ κ(Q) for Q ∈ {La, Mi}, provided that 2ℵ0 = b holds. Actually, for Q = Mi, d = 2ℵ0 suffices 
(see [8], Corollary 13). �
Corollary 6.1. Suppose Q0 ∈ {Sa, Si, La, Mi} is such that add(I(Q0)) = 2ℵ0 . Then the following are true:

(1) Every Q ∈ {Sa, Si, La, Mi} is GTF1 (La and Mi are even GTF0).
(2) If Q1 ∈ {Sa, Si, La, Mi} is such that add(I(Q1)) ≤ κ < 2ℵ0 , then there exists a strong witness for 

this (see Definition 4.1).

Proof. (1) follows from Theorems 6.1 and 6.2. (2) follows from (1) and the homogeneity of the classical tree 
forcings. �

The following theorem collects all the cases for which the consistency of add(I(Q0)) < add(I(Q1)) is 
known, where Q0, Q1 ∈ {Sa, Si, La, Mi}.

Theorem 6.3. If ZF is consistent, then the following statements are consistent with ZFC + 2ℵ0 = ℵ2 = ℵℵ1
2 :

(1) add(I(Si)) < add(I(Sa)),
(2) ∀Q ∈ {La, Mi} add(I(Sa)) < add(I(Q)),
(3) ∀Q ∈ {La, Mi} add(I(Si)) < add(I(Q)).

Proof. (1) Implicitly in [10], an amoeba forcing for Sa with the Laver property has been constructed. See 
also [17] for detailed analysis and proofs. If this forcing is iterated ℵ2 times with countable supports, a 
model for cov(M) < add(I(Sa)) is obtained (where M is the meager ideal). In [14], add(I(Si)) ≤ cov(M)
has been proved in ZFC.

(2) In [6], it has been shown that MA implies add(I(Q)) = 2ℵ0 for both Q ∈ {La, Mi}. In [9], and 
independently in [19], it has been shown that MA does not imply add(I(Sa)) = 2ℵ0 , i.e. a model for 
MA + add(I(Sa)) = ℵ1 < 2ℵ0 = ℵ2 is constructed.

(3) In [4] it has been shown that MA does not imply add(I(Si)) = 2ℵ0 , i.e. a model for MA+add(I(Si)) =
ℵ1 < 2ℵ0 = ℵ2 is constructed.

Alternatively one can use the models in [13], where amoebas for La and Mi with the Laver property 
have been constructed. In these, add(I(Si)) = ℵ1 holds by [14] as in (1). �
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As an immediate consequence of Theorems 5.1, 6.1, 6.2 and 6.3 we obtain the following:

Theorem 6.4. If ZF is consistent, then the following statements are consistent with ZFC:
(1) cof(I(Sa)) < cof(I(Si)),
(2) cof(I(Q1)) < cof(I(Q0)), where Q0 ∈ {Sa, Si} and Q1 ∈ {La, Mi}.

7. Singular cofinality

In this section we shall show that consistently we can have cof(I(Q)) singular, where Q is a GTF1. For 
this we apply the amoeba from Section 3, but we have to use a more elaborate iteration. For Sacks forcing, 
this result has been obtained in [9].

Theorem 7.1. Suppose that Q = (Q, ζ̇, set, Q∗, ⊥) is a GTF1, 2ℵ0 = λ = λ<λ < θ = cf(μ) < μ < χ = χ<χ

and add (I(Q)) = λ. Moreover we assume ∀α < μ |α|λ < μ. There exists a forcing P such that

(a) P is λ-closed and λ+-c.c.
(b) V P � 2λ = χ ∧ cof(I(Q)) = μ.

Proof. We fix an increasing sequence 〈λι : ι < θ〉 of regular cardinals λι < μ with λ < λ0 and sup{λι : ι <
θ} = λ. Let

F = {f ∈
∏
ι<θ

λι : |{ι < θ : f(ι) �= 0}| < λ}.

For f ∈ F let supp(f) = {ι < θ : f(ι) �= 0}. Let ≤F denote the natural partial order on F defined by 
f ≤F g iff supp(f) ⊆ supp(g) and ∀ι ∈ supp(f) f(ι) ≤ g(ι). By our assumptions, clearly |F| = μ and F
is (< λ+)-directed. Let 〈f∗

β : β < μ〉 list F such that f∗
0 is the constantly 0 function.

Definition 7.1. Let the assumptions of Theorem 7.1 hold.
(1) We call a family q = q(Q) = 〈Pα, Q̇β , uβ , η̇β , fβ : α ≤ αq, β < αq〉 a (<λ)-support iteration of Q

with memory if

(a) χ < αq is a limit ordinal, and 〈Pα, Q̇β : α ≤ αq, β < αq〉 is a (< λ)-support iteration such that for every 
β < αq,
�Pβ

“Q̇β has a subset of P(H(λ)) as its set of elements and η̇β ⊆ Q̇β is the generic filter”.
(b) uβ ⊆ β such that ∀γ ∈ uβ uγ ⊆ uβ (transitivity of the memory 〈uβ : β < αq〉).
(c) ∀β < χ (uβ = ∅ ∧ �Pβ

“Q̇β = (<λλ, ⊇)”).
(d) ∀β ∈ [χ, αq) �Pβ

“Q̇β = A1(Q)V [η̇[uβ ]]”, where η̇[u] denotes 〈η̇ν : ν ∈ u〉 for u ⊆ β.
(e) (α) fβ ∈ F and if β < μ then fβ = f∗

0 .
(β) If β ∈ uγ then fβ ≤F fγ .
(γ) If β ∈ uγ and β < μ then sup{λν : ν < ι} ≤ β < λι implies β < fγ(ι).

(2) Let q be as in (1) and ū = 〈uβ : β < αq〉. A subset U ⊆ αq is called ū-closed if ∀β ∈ U uβ ⊆ U .

Claim 3. Let q = q(Q) be as in Definition 7.1 and U ⊆ [χ, αq) such that

(1) ∀u ∈ [αq]≤λ ∃β ∈ U u ⊆ uβ.
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Let ˙̄pβ = 〈ṗβε : ε < λ〉 denote the generic maximal antichain in Q added by Q̇β and Ẋβ = X( ˙̄pβ) the 
associated set in I(Q)V [η̇[0,β]].

Then V Pαq |= “〈Ẋβ : β ∈ U〉 is cofinal in I(Q), hence cof (I(Q)) ≤ |U |”.

Proof. Note that (1) implies cf(αq) > λ and hence

(1)’ ∀u ∈ [αq]≤λ ∃λβ ∈ U u ⊆ uβ .

Now suppose p �Pαq
τ̇ ∈ I(Q). Wlog we may assume that there exists a family of Pαq -names 〈q̇ε : ε < λ〉

such that

p �Pαq
〈q̇ε : ε < λ〉 is a maximal antichain of Q and τ̇ = X(〈q̇ε : ε < λ〉).

Each q̇ε can be viewed as a pair (Aε, hε) where Aε is a maximal antichain in Pαq and hε : Aε → Q. As 
Pαq has the λ+-c.c., |Aε| ≤ λ. Note that by the definition of the Q̇β, if �Pβ

“σ̇ ∈ Q̇β” then σ̇ can be 
coded in essentially the same way as τ̇ , i.e. by λ may maximal antichains of Pβ. As q is a (< λ)-support 
iteration, doing this for every p(β) where p ∈ Aε and β ∈ dom(p) and then proceeding similarly, we obtain 
a wellfounded tree T on (αq, >) such that every node has at most λ many immediate successors, T has no 
infinite branch, and τ̇ can be evaluated from 〈η̇ν : ν ∈ T 〉. As |T | ≤ λ, by (1)’ there are λ many αι ∈ U

such that T ⊆ uαι
. By Lemma 3.1(B) we conclude p �Pαq

∃ι < λ τ̇ ⊆ Ẋαι
. Note that for this argument no 

memory is needed. �
Definition 7.2. Let q = q(Q) and ū be as in Definition 7.1. By induction on α ≤ αq, for all ū-closed U ⊆ α, 
we define P ′

U ⊆ Pα and prove

(a) P ′
U consists of all p ∈ Pα such that dom(p) ⊆ U and for every β ∈ dom(p), p(β) is a P ′

uβ
-name for a 

subset of H(λ) (so either for an element of <λλ or of A1(Q)V [η̇[uβ ]]).
(b) If α1 < α then P ′

U∩α1
⊆ P ′

U (clearly U ∩ α1 is ū-closed).
(c) P ′

α is dense in Pα.
(d) P ′

U is a dense subset of the limit of the (< λ)-support iteration of the form 〈P ∗
β , Q̇

∗
β : β ∈ U〉 such that 

for every β ∈ U ∩ χ, �P∗
β

“Q̇∗
β = (<λλ, ⊇)”, and for every β ∈ U ∩ [χ, αq), �P∗

β
“Q̇∗

β = A1(Q)V [η̇[uβ ]]”. 
(Here η̇β and η̇[uβ ] are defined as in Definition 7.1. Note again that uβ ⊆ U as U is ū-closed.) Hence, 
letting U = α, we have (c).

(e) P ′
U is a complete suborder of Pα.

(f) For every q ∈ P ′
α, q � U ∈ P ′

U and q ≤P ′
α
q � U .

(g) For every q ∈ P ′
α and p ∈ P ′

U , if p ≤P ′
U

q � U , then p and q are compatible in P ′
α; in fact, p ∪ q �

(dom(q) \ U) is a lower bound of p and q.
(h) p ∈ P ′

U iff p ∈ P ′
α and dom(p) ⊆ U .

Proof. We won’t use (d), hence we omit its proof. The main point is (c), as (f), (g), and (h) are clear, and 
hence (e) follows from (c). So let us prove (c) by induction on α. The case α = 0 is trivial.

Let α = β + 1 and p ∈ Pα. Wlog we may assume that β ∈ dom(p), as otherwise we can apply the 
induction hypothesis. For the same reason we know that P ′

uβ
is a complete subforcing of Pβ and P ′

β is dense 
in Pβ . Clearly we have P ′

uβ
⊆ P ′

β . Hence by definition we have

�P ′
β

“p(β) ∈ V [〈η̇γ : γ ∈ uβ〉]”.

As 〈η̇γ : γ ∈ uβ〉 is (forced to be) P ′
uβ

-generic, there exist a P ′
uβ

-name τ̇ and p1 ≤Pβ
p � β in P ′

β such that 
p1 �P ′ p(β) = τ̇ . Let q = (p1, τ̇). Then q ∈ P ′

α and q ≤ p.

β
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Now suppose that α is a limit ordinal and p ∈ Pα. As |dom(p)| < λ we may assume that cf(α) < λ. Let 
〈α∗

ι : ι < cf(α)〉 be increasing and cofinal in α. We choose 〈qι : ι ≤ cf(α)〉 such that qι ∈ P ′
α∗

ι
, qι ≤Pα∗

ι
p � α∗

ι

and if ι < ν ≤ cf(α) then qν ≤P ′
α∗
ν

qι. For the successor step we apply the inductive hypothesis. Suppose 

that ν ≤ cf(α) is a limit ordinal and 〈qι : ι < ν〉 have been chosen as desired. Let γ ∈
⋃

ι<ν dom(qι). Choose 
ι(γ) such that γ ∈ qι(γ). Then in V , 〈qι(γ) : ι ∈ [ι(γ), ν)〉 is a sequence of P ′

uγ
-names for members of Q̇γ

such that this sequence is forced to be decreasing. But this forcing is forced to be < λ-complete and can 
be evaluated in V Puγ . Hence we can choose qν(γ) as a P ′

uγ
-name that is forced to be a lower bound of it. 

Hence we have qcf(α) ∈ P ′
α and qcf(α) ≤ p. �

In order to get V Pαq |= cof (I(Q)) ≥ μ we must make q more concrete as follows: We let

(2) αq = χ + μ · λ+,
(3) if β < χ, then uβ = ∅ and fβ = f∗

0 ,
(4) if β = χ + μ · ι + ν for ι < λ+ and ν < μ, then fβ = f∗

ν and uβ = {α < μ : sup{λν : ν < ι} ≤ α < λι ⇒
α < fβ(ι)} ∪ {α ∈ [μ, β) : fα ≤F fβ}.

Note that 〈uβ : β < αq〉 is transitive: Let β ∈ uγ and α ∈ uβ . We must have χ ≤ β < γ and hence 
fβ ≤ fγ . If α < μ, hence sup{λν : ν < ι} ≤ α < λι for some ι < θ, we have α < fβ(ι) ≤ fγ(ι). If μ ≤ α we 
have fα ≤ fβ ≤ fγ and we are done.

Also note that (1)’ holds for U = [χ, αq): Let u ⊆ αq have size λ. As F is (< λ+)-directed, we can easily 
find f ∈ F such that

(5) u ∩ [sup{λν : ν < ι}, λι) is bounded by f(ι) for every ι < θ, and
(6) fβ ≤F f holds for every β ∈ u ∩ [μ, αq).

It follows that for every γ ∈ [sup(u) + 1, αq) such that fγ = f , we have u ⊆ uγ . As by construction there 
are at least λ+ such γ, we are done.

Now let us prove V Pαq |= cof (I(Q)) ≥ μ, where q is the iteration just defined. By Definition 7.2(e) we 
have V Pαq = V

P ′
αq . By contradiction suppose we had ι(∗) < θ, p ∈ P ′

αq
and a family 〈Ẏα : α < λι(∗)〉 of 

P ′
αq

-names such that

p �P ′
αq

〈Ẏα : α < λι(∗)〉 is cofinal in I(Q).

Wlog we may assume that every Ẏα is forced to be of the form X(〈q̇α,ε : ε < λ〉) (see Remark 3.1(3)), where 
〈q̇α,ε : ε < λ〉 is forced to be a maximal antichain of Q. Since Q ⊆ R and Pαq does not add reals, wlog 
we may assume that every q̇α,ε is a nice P ′

αq
-name, i.e. has the form (Aα,ε, fα,ε) where Aα,ε is a maximal 

antichain of P ′
αq

and fα,ε : Aα,ε → Q. Let vα =
⋃
{dom : (p) : p ∈ Aα,ε}, thus vα ∈ [αq]≤λ and hence, by 

(1)’ for our memory ū, we find γα < αq such that vα ⊆ uγα
.

Let β∗ = sup{fγα
(ι(∗) + 1) + 1 : α < ι(∗)} and u∗ =

⋃
{uγα

: α < ι(∗)}. Then clearly β∗ < λι(∗)+1, 
u∗ is ū-closed and u∗ ∩ [λι(∗), λι(∗)+1) = [λι(∗), β∗). By Definition 7.2(e) we have that P ′

u∗ is a complete 
subforcing of Pαq , and hence every ηβ for β ∈ [β∗, λι(∗)+1) is λ-Cohen, i.e. generic for (<λλ, ⊇), over V Pu∗ . 
As 〈Ẏα : α < λι(∗)〉 is forced to belong to V Pu∗ , the following claim will complete the proof of Theorem 7.1:

Claim 4. If Q is GTF1, 2ℵ0 = λ and η : λ → λ is λ-Cohen, i.e. generic for (<λλ, ⊇), over V , then in V [η]
there exists X ∈ I(Q) that is not contained in any member of I(Q)V .

Proof. Let 〈rε : ε < λ〉, 〈pε : ε < λ〉 list R, Q respectively. In V [η] we define families 〈sε : ε < λ〉 in R and 
〈qε : ε < λ〉 in Q as follows: Let s0 = rη(0) and let q0 be the η(1)th pε that satisfies pε ≤ p0 and s0 /∈ [pε]. 
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If 〈sε : ε < ν〉 and 〈qε : ε < ν〉 have been determined for some ν < λ, let sν be the η(ν · 2)th rε such that 
rε /∈

⋃
ε<ν [qε]. To define qν we distinguish two cases. If pν is compatible with some qε for ε < ν we let 

qν = q0. Otherwise, let qν the η(ν · 2 + 1)th pε such that pε ≤ pν and [pε] ∩{sξ : ξ < ν} = ∅. As Q is GTF1, 
this construction is possible. Now X = {sξ : ξ < λ} is as desired. �

�Theorem 7.1
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