CATEGORICITY AND SOLVABILITY OF AEC, QUITE HIGHLY SH734

SAHARON SHELAH

Abstract

We investigate in ZFC what can be the family of large enough cardinals μ in which an AEC \mathfrak{K} is categorical or even just solvable. We show that for not few cardinals $\lambda<\mu$ there is a superlimit model in \mathfrak{K}_{λ}. Moreover, our main result is that we can find a good λ-frame \mathfrak{s}, categorical in λ, such that $\mathfrak{K}_{\mathfrak{5}} \subseteq \mathfrak{K}_{\lambda}$. We then show how to use [She09e] to get categoricity in every large enough cardinality if \mathfrak{K} has cases of μ-amalgamation for enough μ and $2^{\mu}<2^{\mu^{+1}}<\ldots<2^{\mu^{+n}} \ldots$ for enough μ.

§ 0. Introduction

The hope which motivates this work is:
Conjecture 0.1. If \mathfrak{K} is an AEC then either for every large enough cardinal μ, \mathfrak{K} is categorical in μ or for every large enough cardinal μ, \mathfrak{K} is not categorical in μ.

Why do we consider this a good dream? See $\left[\mathrm{S}^{+}\right.$a].
Our main result is 4.10 , it says that if \mathfrak{K} is categorical in μ (ignoring few exceptional μ-s) and $\lambda \in[\operatorname{LST}(\mathfrak{K}), \mu)$ has countable cofinality and is a fix point of the sequence of the $\beth_{\alpha}-\mathrm{s}$, (moreover a limit of such cardinals) then there is a superlimit $M \in K_{\lambda}$ for which $\mathfrak{K}_{[M]}=\mathfrak{K}_{\lambda} \upharpoonright\left\{M^{\prime}: M^{\prime} \cong M\right\}$ has the amalgamation property (and a good λ-frame \mathfrak{s} with $\mathfrak{K}_{\mathfrak{s}}=\mathfrak{K}_{[M]}$). Note that [She09e] seems to give a strong indication that finding good λ-frames is a significant advance. This may be considered an unsatisfactory evidence of an advance, being too much phrased in the work's own terms. So we prove in $\S 5-\S 7$ that for a restrictive context we make a clear cut advance: assuming amalgamation and enough instances of $2^{\lambda}<2^{\lambda^{+}}$ occurs, much more than the conjecture holds, see [She] on background.

Note that as we try to get results on $\lambda=\beth_{\lambda}>\operatorname{LST}(\mathfrak{K})$, clearly it does not particularly matter if for $\kappa \in(\operatorname{LST}(\mathfrak{K}), \lambda)$ we use, e.g. $\kappa_{1}=\kappa^{+}$or $\kappa_{1}=\beth_{\left(2^{\kappa}\right)^{+}}$ $\left(=\beth_{1,1}(\kappa)\right)$ or even $\beth_{1,7}(\kappa)$.

After 4.10 the next natural step is to show that \mathfrak{s}_{λ} has the better properties dealt with in [She09c], [She09e], see [$\mathrm{S}^{+} \mathrm{b}$]. Note that if we strengthen the assumption on μ in $\S 4$ (to $\mu=\mu^{<\lambda}$), then it relies on $\S 1$ only. Without this we need $\S 2$ (hence 5.1(1),(4)).

Originally we have used here categoricity assumptions but lately it seems desirable to use a weaker one: (variants of) solvability. About being solvable, see [She, $\S 4(\mathrm{~B})]$, [SV]. This seems better as it is a candidate for being an "outside" generalization of being superstable (rather than of being categorical).

Here we use solvable when it does not require much change; for more on it see $[\mathrm{SV}],\left[\mathrm{S}^{+} \mathrm{c}\right]$ and on material delayed from here see $\left[\mathrm{S}^{+} \mathrm{b}\right]$.

[^0]Note we can systematically use $K^{\operatorname{sc}(\theta)-\operatorname{lin}}$, say with $\theta=\aleph_{0}$ or $\theta=\operatorname{LST}(\mathfrak{K})$ instead of $K^{\text {lin }}$; see Definition 0.14(8). In several respects this is better, but not enough to make us use it. Also working more it seemed we can get rid of "wide", "wide over", see Definition $0.14(1),(2),(3)$. If instead proving the existence of a good λ-frame it suffices for us to prove the existence of almost good λ-frame, then the assumption on λ can be somewhat weaker (fixed point instead limit of fix points of the sequence of the \beth_{α} 's). In $\S 7$ we sometimes give alternative quotations in [She99a] but do not rely on it.

We thank Mor Doron, Esther Gruenhut, Haim Horowitz, Aviv Tatarski and Alex Usvyatsov for their help in proofreading.

We thank Will Boney and Sebastien Vasey for pointing out (in 10.2016) a gap in $\S 2$: in the proof of; we quote 2.9 , however 2.9 speaks about $\mathbb{L}_{\infty, \theta}$-types whereas we speak on generic such types. However, we can use 5.1 is a stronger way: though the theorem is stated using $\lambda \times \theta_{2}$ (in $\left.\operatorname{EM}\left(I_{\theta_{2}, \lambda \times \theta_{2}}^{\lim }, \psi\right)\right)$ really we prove it for any $\zeta \in\left[\lambda, \lambda^{+}\right)$of cofinality θ_{2} as stated explicitly in the beginning of the proof; see details in the proof of 2.15 (also other minor changes were introduced).

Basic knowledge on infinitary logics is assumed, see e.g. [Dic85]; though the reader may just read the definition here in $[$ She, $\S 5]$ and believe some quoted results.

Notation 0.2. Let $\beth_{0, \alpha}(\lambda)=\beth_{\alpha}(\lambda):=\lambda+\sum\left\{\beth_{\beta}(\lambda): \beta<\alpha\right\}$. Let $\beth_{1, \alpha}(\lambda)$ be defined by induction on α : $\beth_{1,0}(\lambda)=\lambda$, for limit β we let $\beth_{1, \beta}=\sum_{\gamma<\beta} \beth_{1, \gamma}$ and $\beth_{1, \beta+1}(\lambda)=\beth_{\mu}$ where $\mu=\left(2^{\beth_{1, \beta}(\lambda)}\right)^{+}$.

Remark 0.3. 1) For our purpose, usually $\beth_{1, \beta+1}(\lambda)=\beth_{\delta(\mu)}$ where $\mu=\beth_{1, \beta}(\lambda)$ suffice, see e.g. [She09g, §1] in particular on $\delta(-)$. Generally $\mu=\left(\beth_{1, \beta}(\lambda)\right)^{+}$is a more natural definition, but:
(A) the difference is not significant, e.g. for α limit we get the same value
(B) our use of omitting types makes our choice more natural.
2) We do not use but it is natural to define $\beth_{\gamma+1,0}(\lambda)=\lambda, \beth_{\gamma+1, \beta+1}(\lambda)=\beth_{\gamma, \mu}(\lambda)$ with $\mu=\left(2^{\beth_{\gamma+1, \beta}(\lambda)}\right)^{+}, \beth_{\gamma+1, \delta}(\lambda)=\sum_{\beta<\delta} \beth_{\gamma+1, \beta}(\lambda)$ and

$$
\beth_{\delta, 0}(\lambda)=\sup \left\{\beth_{\gamma, 0}(\lambda): \gamma<\delta\right\}=\lambda,
$$

$\beth_{\delta, \beta+1}(\lambda)=\beth_{\delta, \beta}\left(\beth_{\delta, \beta}(\lambda)\right), \beth_{\delta, \delta_{1}}=\sup \left\{\beth_{\delta, \alpha}(\lambda): \alpha<\delta_{1}\right\}$; this is used, e.g. in [She94, Ch.V].

Definition 0.4. Assume M is a model, $\tau=\tau_{M}$ is its vocabulary and Δ is a language (or just a set of formulas) in some logic, in the vocabulary τ.

For any set $A \subseteq M$ and set Δ of formulas in the vocabulary τ_{M}, let $\operatorname{Sfr}_{\Delta}^{\alpha}(A, M)$ (which we call the set of formal (Δ, α)-types over A in $M)^{1}$ be the set of p such that
(A) p a set of formulas of the form $\varphi(\bar{x}, \bar{a})$ where $\varphi(\bar{x}, \bar{y}) \in \Delta, \bar{x}=\left\langle x_{i}: i<\alpha\right\rangle$ and $\bar{a} \in{ }^{\ell g(\bar{y})} A$
(B) if Δ is closed under negation (which is the case we use here) then for any $\varphi(\bar{x}, \bar{y}) \in \Delta$ with \bar{x} as above and $\bar{a} \in{ }^{\ell g(\bar{y})} A$ we have $\varphi(\bar{x}, \bar{a}) \in p$ or $\neg \varphi(\bar{x}, \bar{a}) \in p$.

Recall

[^1]Definition 0.5. 1) For \mathfrak{K} an AEC we say $M \in \mathfrak{K}_{\theta}$ is a superlimit (model in \mathfrak{K} or in \mathfrak{K}_{θ}) when:
(a) M is universal
(b) if δ is a limit ordinal $<\theta^{+}$and $\left\langle M_{\alpha}: \alpha \leq \delta\right\rangle$ is $\leq_{\mathfrak{K}_{\theta}}$-increasing continuous and $\alpha<\delta \Rightarrow M_{\alpha} \cong M$ then $M_{\delta} \cong M$ (equivalently,

$$
\mathfrak{K}_{\theta}^{[M]}=\mathfrak{K} \upharpoonright\{N: N \cong M\}
$$

is a θ - AEC)
(c) there is N such that $M<_{\mathfrak{K}} N \in \mathfrak{K}_{\theta}$ and N is isomorphic to M.
2) We say $M \in \mathfrak{K}_{\theta}$ is locally superlimit when we weaken clause (a) to
(a) ${ }^{-}$if $N \in \mathfrak{K}_{\theta}$ is a $\leq_{\mathfrak{K}}$-extension of M then N can be $\leq_{\mathfrak{K}^{-}}$-embedded into M.
3) We say that M is pseudo superlimit when in part (1) clauses (b),(c) hold (but we omit clause (a)); see 0.6(7) below.
$3 \mathrm{~A})$ For $M \in K_{\lambda}$ let $\mathfrak{K}_{[M]}=\mathfrak{K}_{\lambda}^{[M]}$ be $\mathfrak{K} \upharpoonright\{N: N \cong M\}$.
4) In (1) we may say 'globally superlimit'.

Observation 0.6. Assume (\mathfrak{K} is an AEC and) $\mathfrak{K}_{\lambda} \neq \varnothing$.

1) If \mathfrak{K} is categorical in λ and there are $M<_{\mathfrak{K}_{\lambda}} N$ then every $M \in \mathfrak{K}_{\lambda}$ is superlimit.
2) If every/some $M \in \mathfrak{K}_{\lambda}$ is superlimit then every/some $M \in K_{\lambda}$ is locally superlimit.
3) If every/some $M \in \mathfrak{K}_{\lambda}$ is locally superlimit then every/some $M \in \mathfrak{K}_{\lambda}$ is pseudo superlimit.
4) If some $M \in \mathfrak{K}_{\lambda}$ is superlimit then every locally superlimit $M^{\prime} \in \mathfrak{K}_{\lambda}$ is isomorphic to M.
5) If M is superlimit in \mathfrak{K} then M is locally superlimit in \mathfrak{K}. If M is locally superlimit in \mathfrak{K}, then M is pseudo superlimit in \mathfrak{K}. If M is locally superlimit in \mathfrak{K}_{θ} then \mathfrak{K}_{θ} has the joint embedding property iff M is superlimit.
6) In Definition 0.5(1), clause (c) follows from
$(c)^{-} \operatorname{LST}(\mathfrak{K}) \leq \theta$ and $K_{\geq \theta^{+}} \neq \varnothing$.
7) $M \in K_{\lambda}$ is pseudo-superlimit iff $\mathfrak{K}_{[M]}$ is a $\lambda-A E C$ and $\leq_{\mathfrak{K}_{[M]}}$ is not the equality. Also Definition 0.5(3A) is compatible with [She09c, 0.33].

Definition 0.7. For an AEC \mathfrak{K}, let $\mathfrak{K}_{\mu}^{\text {sl }}, \mathfrak{K}_{\mu}^{\text {s }}, \mathfrak{K}_{\mu}^{\text {pl }}$ be the class of $M \in \mathfrak{K}_{\mu}$ which are superlimit, locally superlimit, pseudo superlimit respectively with the partial orders $\leq_{\mathfrak{K}_{\mu}^{11}}, \leq_{\mathfrak{K}_{\mu}^{1 \mathrm{l}}}, \leq_{\mathfrak{K}_{\mu}^{\text {pl }}}$ being $\leq_{\mathfrak{K}} \upharpoonright K_{\mu}^{\text {sl }}, \leq_{\mathfrak{K}} \upharpoonright K_{\mu}^{\mathrm{pl}}$ respectively.

Definition 0.8. 1) Φ is proper for linear orders when:
(A) for some vocabulary $\tau=\tau_{\Phi}=\tau(\Phi), \Phi$ is an ω-sequence, the $n^{\text {th }}$ element a complete quantifier free n-type in the vocabulary τ
(B) for every linear order I there is a τ-model M denoted by $\operatorname{EM}(I, \Phi)$, generated by $\left\{a_{t}: t \in I\right\}$ such that $s \neq t \Rightarrow a_{s} \neq a_{t}$ for $s, t \in I$ and $\left\langle a_{t_{0}}, \ldots, a_{t_{n-1}}\right\rangle$ realizes the quantifier free n-type from clause (a) whenever $n<\omega$ and $t_{0}<_{I} \ldots<_{I} t_{n-1}$; so really M is determined only up to isomorphism but we may ignore this and use $I_{1} \subseteq J_{1} \Rightarrow \operatorname{EM}\left(I_{1}, \Phi\right) \subseteq \operatorname{EM}\left(I_{2}, \Phi\right)$. We call $\left\langle a_{t}: t \in I\right\rangle$ "the" skeleton of M; of course again "the" is an abuse of notation as it is not necessarily unique.

1A) If $\tau \subseteq \tau(\Phi)$ then we let $\operatorname{EM}_{\tau}(I, \Phi)$ be the τ-reduct of $\operatorname{EM}(I, \Phi)$.
2) $\Upsilon_{\kappa}^{\mathrm{or}}[\mathfrak{K}]$ is the class of Φ proper for linear orders satisfying clauses $(a)(\alpha),(b),(c)$ of Claim $0.9(1)$ below and $|\tau(\Phi)| \leq \kappa$. The default value of κ is $\operatorname{LST}(\mathfrak{K})$ and then we may write $\Upsilon_{\mathfrak{K}}^{\text {or }}$ or $\Upsilon^{\text {or }}[\mathfrak{K}]$ and for simplicity always $\kappa \geq \operatorname{LST}(\mathfrak{K})$ (and so $\kappa \geq\left|\tau_{\mathfrak{K}}\right|$).

3) We define " Φ proper for K " similarly when in clause (b) of part (1) we demand $I \in K$, so K is a class of τ_{K}-models, i.e.
(a) Φ is a function, giving for a quantifier free n-type in τ_{K}, a quantifier free n-type in τ_{Φ}
$(\mathrm{b})^{\prime}$ in clause (b) of part (1), the quantifier free type which $\left\langle a_{t_{0}}, \ldots, a_{t_{n-1}}\right\rangle$ realizes in M is $\Phi\left(\operatorname{tp}_{\mathrm{qf}}\left(\left\langle t_{0}, \ldots, t_{n-1}\right\rangle, \varnothing, M\right)\right)$ for $n<\omega, t_{0}, \ldots, t_{n-1} \in I$.

Claim 0.9. 1) Let \mathfrak{K} be an $A E C$ and $M \in K$ be of cardinality $\geq \beth_{1,1}(\operatorname{LST}(\mathfrak{K}))$ recalling we naturally assume $\left|\tau_{\mathfrak{K}}\right| \leq \operatorname{LST}(\mathfrak{K})$ as usual.

Then there is a Φ such that Φ is proper for linear orders and:
(a) $(\alpha) \tau_{\mathfrak{K}} \subseteq \tau_{\Phi}$,
$(\beta)\left|\tau_{\Phi}\right|=\operatorname{LST}(\mathfrak{K})+\left|\tau_{\mathfrak{K}}\right|$
(b) for any linear order I the model $\operatorname{EM}(I, \Phi)$ has cardinality $|\tau(\Phi)|+|I|$ and we have $\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi) \in K$
(c) for any linear orders $I \subseteq J$ we have $\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi) \leq_{\mathfrak{K}} \operatorname{EM}_{\tau(\mathfrak{K})}(J, \Phi)$
(d) for every finite linear order I, the model $\mathrm{EM}_{\tau(\mathfrak{\xi})}(I, \Phi)$ can be $\leq_{\mathfrak{\xi}}$-embedded into M.
2) If we allow $\operatorname{LST}(\mathfrak{K})<\left|\tau_{\mathfrak{K}}\right|$ and there is $M \in \mathfrak{K}$ of cardinality $\geq \beth_{1,1}(\operatorname{LST}(\mathfrak{K})+$ $\left.\left|\tau_{\mathfrak{K}}\right|\right)$, then there is $\Phi \in \Upsilon_{\operatorname{LST}(\mathfrak{K})+|\tau(\Phi)|}^{\circ \mathrm{or}}[\mathfrak{K}]$ such that $\operatorname{EM}(I, \Phi)$ has cardinality \leq $\operatorname{LST}(\mathfrak{K})$ for I finite. Hence \mathcal{E} has $\leq 2^{\mathrm{LST}(\mathfrak{K})}$ equivalence classes where $\mathcal{E}=\left\{\left(P_{1}, P_{2}\right)\right.$: $P_{1}, P_{2} \in \tau_{\Phi}$ and $P_{1}^{\mathrm{EM}(I, \Phi)}=P_{2}^{\mathrm{EM}(I, \Phi)}$ for every linear order $\left.I\right\}$.
3) Actually having a model of cardinality $\geq \beth_{\alpha}$ for every $\alpha<\left(2^{\mathrm{LST}(\mathfrak{K})+|\tau(\mathfrak{K})|}\right)^{+}$ suffice (in part (2)).

Proof. Follows from the existence of a representation of \mathfrak{K} as a $\mathrm{PC}_{\mu, 2^{\mu} \text {-class when }}$ $\mu=\operatorname{LST}(\mathfrak{K})+|\tau(\mathfrak{K})|$ in $[$ She09a, 1.4(3),(4),(5)] and [She09a, 1.8] (or see [She99a, 0.6]).

Remark 0.10. Note that some of the definitions and claims below will be used only in remarks: $K_{\theta}^{\mathrm{sc}(\kappa)}$ from $0.14(8)$, in 1.7 ; and some only in $\S 6, \S 7$ (and part of $\S 5$ needed for it): $\Upsilon_{\kappa}^{\operatorname{lin}}[2]$ from $0.11(5)$ (and even less $\Upsilon_{\kappa}^{\operatorname{lin}}[\alpha(*)]$ from Definition $0.14(9)$). Also, the use of $\leq_{\kappa}^{\otimes}, \leq_{\kappa}^{\mathrm{ie}}, \leq_{\kappa}^{\oplus}$ is marginal.

Definition 0.11. We define partial orders $\leq_{\kappa}^{\oplus}, \leq_{\kappa}^{\mathrm{ie}}$ and \leq_{κ}^{\otimes} on $\Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ (for $\kappa \geq$ $\operatorname{LST}(\mathfrak{K})$) as follows:

1) $\Psi_{1} \leq_{\kappa}^{\oplus} \Psi_{2}$ if $\tau\left(\Psi_{1}\right) \subseteq \tau\left(\Psi_{2}\right)$ and $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I, \Psi_{1}\right) \leq_{\mathfrak{K}} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I, \Psi_{2}\right)$ and $\operatorname{EM}\left(I, \Psi_{1}\right)=$ $\operatorname{EM}_{\tau\left(\Psi_{1}\right)}\left(I, \Psi_{1}\right) \subseteq \operatorname{EM}_{\tau\left(\Psi_{1}\right)}\left(I, \Psi_{2}\right)$ for any linear order I.
Again for $\kappa=\operatorname{LST}(\mathfrak{K})$ we may drop the κ.
2) For $\Phi_{1}, \Phi_{2} \in \Upsilon_{\kappa}^{\mathrm{or}}[\mathfrak{K}]$, we say Φ_{2} is an inessential extension of Φ_{1} and write $\Phi_{1} \leq_{\kappa}^{\text {ie }} \Phi_{2}$ if $\Phi_{1} \leq_{\kappa}^{\oplus} \Phi_{2}$ and for every linear order I, we have (note: there may be more function symbols in $\tau\left(\Phi_{2}\right)$!)

$$
\mathrm{EM}_{\tau(\mathfrak{K})}\left(I, \Phi_{1}\right)=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I, \Phi_{2}\right) .
$$

3) Let $\Upsilon_{\kappa}^{\operatorname{lin}}$ be the class of Ψ proper for linear order and (producing a linear order
extending the original one, i.e.) such that:
(A) $\tau(\Psi)$ has cardinality $\leq \kappa$ and the two-place predicate $<$ belongs to $\tau(\Psi)$
(B) $\mathrm{EM}_{\{<\}}(I, \Psi)$ is a linear order which is an extension of I in the sense that $\operatorname{EM}(I, \Phi) \models$ " $a_{s}<a_{t}$ " iff $I \models$ " $s<t$ "; in fact we usually stipulate $[t \in I \Rightarrow$ $\left.a_{t}=t\right]$.
4) $\Phi_{1} \leq_{\kappa}^{\otimes} \Phi_{2}$ iff there is Ψ such that
(A) $\Psi \in \Upsilon_{\kappa}^{\operatorname{lin}}$
(B) $\Phi_{\ell} \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ for $\ell=1,2$
(C) $\Phi_{2}^{\prime} \leq_{\kappa}^{\text {ie }} \Phi_{2}$ where $\Phi_{2}^{\prime}=\Psi \circ \Phi_{1}$, i.e. for every linear order I we have

$$
\operatorname{EM}\left(I, \Phi_{2}^{\prime}\right)=\operatorname{EM}\left(\operatorname{EM}_{\{<\}}(I, \Psi), \Phi_{1}\right)
$$

5) $\Upsilon_{\kappa}^{\operatorname{lin}}[2]$ is the class of Ψ proper for $K_{\tau_{2}^{*}}^{\operatorname{lin}}$ and producing structures from $K_{\tau_{2}^{*}}^{\operatorname{lin}}$ extending the originals, i.e.
(A) $\tau_{2}^{*}=\left\{<, P_{0}, P_{1}\right\}$ where P_{0}, P_{1} are unary predicates, $<$ a binary predicate
(B) $K_{\tau_{2}^{*}}^{\operatorname{lin}}=\left\{M: M\right.$ a τ_{2}^{*}-model, $<^{M}$ a linear order, $\left\langle P_{0}^{M}, P_{1}^{M}\right\rangle$ a partition of $\left.M\right\}$
(C) the two-place predicate $<$ and the one place predicates P_{0}, P_{1} belong to $\tau(\Psi)$
(D) if $I \in K_{\tau_{2}^{*}}^{\text {lin }}$ then $M=\operatorname{EM}_{\tau_{2}^{*}}(I, \Phi)$ belongs to $K_{\tau_{2}^{*}}^{\text {lin }},<^{M}$ is a linear order, $I \models s<t \Rightarrow M \models a_{s}<a_{t}$, and $t \in P_{\ell}^{I} \Rightarrow a_{\ell} \in P_{\ell}^{M}$.
6) Similarly $\Upsilon_{\kappa}^{\operatorname{lin}}[\alpha(*)]$ using $K_{\tau_{\alpha(*)}^{*}}^{\text {lin }}$ (see below in $0.14(9)$).

Claim 0.12. Assume $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}$.

1) If π is an isomorphism from the linear order I_{1} onto the linear order I_{2} then it induces a unique isomorphism $\hat{\pi}$ from $M_{1}=\operatorname{EM}\left(I_{1}, \Phi\right)$ onto $M_{2}=\operatorname{EM}\left(I_{2}, \Phi\right)$ such that:
(A) $\hat{\pi}\left(a_{t}\right)=a_{\pi(t)}$ for $t \in I$
(B) $\hat{\pi}\left(\sigma^{M_{1}}\left(a_{t_{0}}, \ldots, a_{t_{n-1}}\right)\right)=\sigma^{M_{2}}\left(a_{\pi\left(t_{0}\right)}, \ldots, a_{\pi\left(t_{n-1}\right)}\right)$ where $\sigma\left(x_{0}, \ldots, x_{n-1}\right)$ is a τ_{Φ}-term and $t_{0}, \ldots, t_{n-1} \in I_{1}$.
2) If π is an automorphism of the linear order I then it induces a unique automorphism $\hat{\pi}$ of $\operatorname{EM}(I, \Phi)$ (as above with $I_{1}=I=I_{2}$).

Remark 0.13 . 1) So in $0.11(2)$ we allow further expansion by functions definable from earlier ones (composition or even definition by cases), as long as the number is $\leq \kappa$.
2) Of course, in 0.12 is true for trivial \mathfrak{K}.

So we may be interested in some classes of linear orders; below $0.14(1)$ is used much more than the others and also $0.14(5),(6)$ are used not so few times, in particular parts (8),(9) are not used till $\S 5$.
Definition 0.14. 1) A linear order I is κ-wide when for every $\theta<\kappa$ there is a monotonic sequence of length θ^{+}in I.
2) A linear order I is κ-wider if $|I| \geq \beth_{1,1}(\kappa)$.
3) I_{2} is κ-wide over I_{1} if $I_{1} \subseteq I_{2}$ and for every $\theta<\kappa$ there is a convex subset of I_{2} disjoint to I_{1} which is θ^{+}-wide. We say " I_{2} is wide over I_{1} " if " I_{2} is $\left|I_{1}\right|$-wide over I_{2} ".
4) $K^{\operatorname{lin}}\left[K_{\lambda}^{\operatorname{lin}}\right]$ is the class of linear orders [of cardinality $\left.\lambda\right]$.
5) Let $K^{\text {flin }}$ be the class of infinite linear order I such that every interval has cardinality $|I|$ and is with neither first nor last elements.
6) Let the two-place relation $\leq_{K^{\text {flin }}}$ on $K^{\text {flin }}$ be defined by: $I \leq_{K^{\text {flin }}} J$ iff $I, J \in$ $K^{\text {fin }}$ and $I \subseteq J$ and either $I=J$ or $J \backslash I$ is a dense subset of J and for every $t \in J \backslash I, I$ can be embedded into $J \upharpoonright\left\{s \in J \backslash I:(\forall r \in I)\left(s<_{J} r \equiv t<_{J} r\right)\right\}$.
$6 \mathrm{~A})$ Let the two-place relation \leq_{K}^{*} flin on $K^{\text {lin }}$ be defined similarly omitting " $I \in$ $K^{\text {fin" }}$ (but not $J \in K^{\text {fin }}$).
7) $K_{\theta}^{\text {flin }}=\left\{I \in K^{\text {flin }}:|I|=\theta\right\}$ and $\leq_{K_{\theta}^{\text {flin }}}=\leq_{K^{\text {flin }}} \upharpoonright K_{\theta}^{\text {flin }}$.
8) $K_{\theta}^{\mathrm{sc}(\kappa)-\operatorname{lin}}$ is the class of linear orders of cardinality θ which are the union of $\leq \kappa$ scattered linear orders (recalling I is scattered when there is no $J \subseteq I$ isomorphic to the rationals). If $\kappa=\aleph_{0}$ we may omit it (i.e. write $K_{\theta}^{\text {sc-lin }}$).
9) Let $\tau_{\alpha(*)}^{*}=\{<\} \cup\left\{P_{i}: i<\alpha(*)\right\}, P_{i}$ a monadic predicate, $K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}}=\{I: I$ a $\tau_{\alpha(*)}^{*}$-model, $<^{I}$ a linear order and $\left\langle P_{i}^{I}: i<\alpha(*)\right\rangle$ a partition of $\left.I\right\}$. If $\alpha(*)=1$ we may omit P_{0}^{I}, so I is a linear order, so any ordinal can be treated as a member of $K_{\tau_{1}^{*}}^{\operatorname{lin}}$.

Observation 0.15. 1) If $|I|>2^{\theta}$ then I is θ^{+}-wide.
2) If $|I| \geq \lambda$ and λ is a strong limit cardinal then I is λ-wide.
3) $\left(K_{\theta}^{\text {flin }}, \leq_{K_{\theta}^{\text {flin }}}\right)$ almost is a $\theta-A E C$, only smoothness may fail.
4) If $I_{1} \in K^{\text {lin }}$ then for some $I_{2} \in K^{\text {fin }}$ we have: $\left|I_{2}\right|=\left|I_{1}\right|+\aleph_{0}$ and $I_{1} \leq_{K_{\text {flin }}^{*}} I_{2}$; and $\left(\forall I_{0}\right)\left[I_{0} \subseteq I_{1} \wedge I_{0} \in K^{\text {flin }} \Rightarrow I_{0} \leq_{K^{\text {flin }}} I_{2}\right]$.
5) If I_{1} is κ-wide and $I_{1}<_{K}$ fin I_{2} then I_{2} is κ-wide over I_{2}.

Remark 0.16. If in the definition of $\leq_{K^{\text {flin }}}$ in $0.14(6)$ we can add

$$
"(\forall t \in I)\left(\exists t^{\prime} \in J\right)\left[t^{\prime}<_{J} t \wedge(\forall s \in I)\left(s<_{I} t \Rightarrow s<_{J} t^{\prime}\right)\right] "
$$

(and its dual, i.e. inverting the order). So we can strengthen $0.14(6)$ by the demand above.

Proof. 1) By Erdős-Rado Theorem, i.e., by $\left(2^{\theta}\right)^{+} \rightarrow\left(\theta^{+}\right)_{2}^{2}$.
2) Follows by part (1).
3),4),5) Easy.

Claim 0.17. 1) $\left(\Upsilon_{\kappa[\mathfrak{K}]}^{\mathrm{or}}, \leq_{\kappa}^{\otimes}\right),\left(\Upsilon_{\kappa}^{\mathrm{or}}[\mathcal{K}],\left\langle_{\kappa}^{\mathrm{i} e}\right)\right.$ and $\left(\Upsilon_{\kappa[\mathfrak{\mathcal { K }},}^{\mathrm{or}}, \leq^{\oplus}\right)$ are partial orders (and $\left.\leq_{\kappa}^{\otimes}, \leq_{\kappa}^{\mathrm{ie}} \subseteq \leq_{\kappa}^{\oplus}\right)$.
2) If $\Phi_{i} \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ and the sequence $\left\langle\Phi_{i}: i<\delta\right\rangle$ is $a \leq_{\kappa}^{\otimes}$-increasing sequence, $\delta<\kappa^{+}$, then it has $a<{ }_{\kappa}^{\otimes}-$ l.u.b. $\Phi \in \Upsilon_{\kappa}^{\text {or }}[\mathcal{K}]$, and $\operatorname{EM}(I, \Phi)=\bigcup_{i<\delta} \operatorname{EM}\left(I, \Phi_{i}\right)$ for every linear order I, i.e. $\tau(\Phi)=\bigcup\left\{\tau\left(\Phi_{i}\right): i<\delta\right\}$ and for every $j<\delta$ we have $\operatorname{EM}_{\tau\left(\Phi_{j}\right)}(I, \Phi)=\bigcup\left\{\operatorname{EM}_{\tau\left(\Phi_{i}\right)}(I, \Phi): i \in[j, \delta)\right\}$.
3) Similarly for $<_{\kappa}^{\oplus}$ and $\leq_{\kappa}^{\text {ie }}$.
4) If $\Phi \in \Upsilon_{\kappa}^{\operatorname{lin}}$ and $I \in K^{\operatorname{lin}}$ then $I \subseteq \operatorname{EM}_{\{<\}}(I, \Phi)$ as linear orders stipulating (as in 0.11(3)) that $a_{t}=t$.

Proof. Easy.

Recall various well known facts on $\mathbb{L}_{\infty, \theta}$.

Claim 0.18. 1) If M, N are τ-models of cardinality $\lambda, \operatorname{cf}(\lambda)=\aleph_{0}$ and $M \equiv_{\mathbb{L}_{\infty}, \lambda} N$ then $M \cong N$.
2) If M, N are τ-models then $M \equiv_{\mathbb{L}_{\infty, \theta}} N$ iff there is \mathcal{F} such that
$\circledast \quad(a) \quad(\alpha)$ each $f \in \mathcal{F}$ is a partial isomorphism from M to N
(β) $\mathcal{F} \neq \varnothing$
(γ) if $f \in \mathcal{F}$ and $A \subseteq \operatorname{dom}(f)$ then $f \upharpoonright A \in \mathcal{F}$
(b) if $f \in \mathcal{F}, A \in[M]^{<\theta}$ and $B \in[N]^{<\theta}$ then for some $g \in \mathcal{F}$ we have $f \subseteq g, A \subseteq \operatorname{dom}(g), B \subseteq \operatorname{rang}(g)$.
2A) If $M \subseteq N$ are τ-models, then $M \prec_{\mathbb{L}_{\infty, \theta}} N$ iff for some \mathcal{F} clauses $\circledast(a)$, (b) hold together with
(c) if $A \in[M]^{<\theta}$ then for some $f \in \mathcal{F}$ we have $\operatorname{id}_{A} \subseteq f$.

2B) In part (2) (and part (2A)), we can omit subclause (γ) of clause (a), and if \mathcal{F} satisfies $(a)(\alpha),(\beta)+(b)$ (and $(c))$, then also $\mathcal{F}^{\prime}=\{f \upharpoonright A: f \in \mathcal{F}$ and $A \subseteq \operatorname{dom}(f)\}$ satisfies the demands.

2C) Let M, N be τ-models and define $\mathcal{F}=\left\{f\right.$: for some $\bar{a} \in{ }^{\theta>} M$, f is a function from $\operatorname{rang}(\bar{a})$ to N such that $\left.(M, \bar{a}) \equiv_{\mathbb{L}_{\infty, \theta}}(N, f(\bar{a}))\right\}$ then $M \equiv_{\mathbb{L}_{\infty, \theta}} N$ iff $\mathcal{F} \neq \varnothing$ iff \mathcal{F} satisfies clauses $(a),(b)$ of \circledast.
3) If M is a τ-model, $\theta=\operatorname{cf}(\theta)$ and $\mu=\|M\|^{<\theta}$ then for some $\gamma<\mu^{+}$and $\Delta \subseteq \mathbb{L}_{\mu^{+}, \theta}(\tau)$ of cardinality $\leq \mu$ such that each $\varphi(\bar{x}) \in \Delta$ is of quantifier depth $<\gamma$, we have
(A) for $\bar{a}, \bar{b} \in{ }^{\theta>} M$ we have $(M, \bar{a}) \equiv_{\mathbb{L}_{\infty, \theta}}(M, \bar{b})$ iff $\operatorname{tp}_{\Delta}(\bar{a}, \varnothing, M)=\operatorname{tp}_{\Delta}(\bar{a}, \varnothing, M)$
(B) for any τ-model N we have $N \equiv_{\mathbb{L}_{\infty, \theta}} M$ iff $\left\{\operatorname{tp}_{\Delta}(\bar{a}, \varnothing, N): \bar{a} \in{ }^{\theta>} N\right\}=$ $\left\{\operatorname{tp}_{\Delta}(\bar{a}, \varnothing, M): \bar{a} \in{ }^{\theta>} M\right\}$.
4) Assume $\chi>\mu=\mu^{<\kappa}$ and $x \in \mathcal{H}(\chi)$. There is \mathfrak{B} such that (in fact clauses (d)-(g) follow from clauses (a),(b),(c))
(a) $\mathfrak{B} \prec(\mathcal{H}(\chi), \in)$ has cardinality μ,
(b) $\mu+1 \subseteq \mathfrak{B}$ and $[\mathfrak{B}]^{<\kappa} \subseteq \mathfrak{B}$ and $x \in \mathfrak{B}$
(c) $\mathfrak{B} \prec_{\mathbb{L}_{\kappa, \kappa}}(\mathcal{H}(\chi), \in)$
(d) if \mathfrak{K} is an AEC with $\operatorname{LST}(\mathfrak{K})+|\tau(\mathfrak{K})| \leq \mu$ and $\mathfrak{K} \in \mathfrak{B}$ (which means $\left\{(M, N): M \leq_{\mathfrak{K}} N\right.$ has universes $\left.\left.\subseteq \operatorname{LST}(\mathfrak{K})\right\} \in \mathfrak{B}\right)$ then
$(\alpha) M \in \mathfrak{K} \cap \mathfrak{B} \Rightarrow M \upharpoonright \mathfrak{B}:=M \upharpoonright(\mathfrak{B} \cap M) \leq_{\mathfrak{K}} M$
(β) if $M \leq_{\mathfrak{K}} N$ belongs to \mathfrak{B} then $M \upharpoonright \mathfrak{B} \leq_{\mathfrak{K}} N \upharpoonright \mathfrak{B}$
(e) if \mathfrak{K} is as in (d), $\Phi \in \Upsilon_{\leq \mu}^{\text {or }}[\mathfrak{K}] \cap \mathfrak{B}$ and $I \in \mathfrak{B}$ is a linear order and so $M=\operatorname{EM}(I, \Phi) \in \mathfrak{B}$ then $I^{\prime}=I \upharpoonright \mathfrak{B} \subseteq I$ and $M \upharpoonright \mathfrak{B}=\operatorname{EM}\left(I^{\prime}, \Phi\right)$ so $(M \upharpoonright \tau(\mathfrak{K})) \upharpoonright \mathfrak{B}=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I^{\prime}, \Phi\right) \leq_{\mathfrak{K}} M \upharpoonright \tau(\mathfrak{K})$
(f) if $|\tau| \leq \mu, \tau \in \mathfrak{B}$ and $M, N \in \mathfrak{B}$ are τ-models, then
(α) $M \upharpoonright \mathfrak{B} \prec_{\mathbb{L}_{\kappa, \kappa}[\tau]} M$
$(\beta) M \not \equiv_{\mathbb{L}_{\infty, \kappa}[\tau]} N \underline{\text { iff }}(M \upharpoonright \mathfrak{B}) \equiv_{\mathbb{L}_{\infty, \kappa}[\tau]}(N \upharpoonright \mathfrak{B})$
(γ) if $M \subseteq N$ then $\left(M \prec_{\mathbb{L}_{\infty, \kappa}(\tau)} N\right)$ iff $(M \upharpoonright \mathfrak{B}) \prec_{\mathbb{L}_{\infty, \kappa}(\tau)}(N \upharpoonright \mathfrak{B})$; this applies also to $(M, \bar{a}),(N, \bar{a})$ for $\bar{a} \in{ }^{\kappa>} M$
(g) if $I \in K^{\text {flin }}$ then $I_{1} \cap \mathfrak{B} \in K^{\text {flin }}$ and if $I_{1}<_{K_{\text {flin }}^{*}} I_{2}$ then $\left(I_{1} \cap \mathfrak{B}\right)<_{K^{\text {flin }}}^{*}$ $\left(I_{2} \cap \mathfrak{B}\right)$.

Proof. 1)-3) and 4)(a),(b),(c) Well known, e.g. see [Dic85].
4) Clauses (d),(e),(f): as in $0.9(1)$, i.e. by absoluteness. Also clause (g) should be clear.

Remark 0.19. 1) We will be able to add, in 0.18(4):
(h) if \mathfrak{K} is as in clause (d) and $\tau=\tau_{\mathfrak{K}}$ then in clause (f) we can replace $\mathbb{L}_{\infty, \kappa}(\tau)$ by $\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$ and $\mathbb{L}_{\kappa, \kappa}(\tau)$ by $\mathbb{L}_{\kappa, \kappa}[\mathfrak{K}]$, see Definition 1.10 and Fact $1.11(5)$.
2) We use part (4) in 1.27(3).

Definition 0.20. For a model M and for a set Δ of formulas in the vocabulary of $M, \bar{x}=\left\langle x_{i}: i<\alpha\right\rangle, A \subseteq M$ and $\bar{a} \in{ }^{\alpha} M$, let the Δ-type of \bar{a} over A in M be $\operatorname{tp}_{\Delta}(\bar{a}, A, M)=\left\{\varphi(\bar{x}, \bar{b}): M \models \varphi[\bar{a}, \bar{b}]\right.$ where $\varphi=\varphi(\bar{x}, \bar{y}) \in \Delta$ and $\left.\bar{b} \in{ }^{\ell g(\bar{y})} A\right\}$.

§ 1. §1 Amalgamation in K_{λ}^{*}

Our aim is to investigate what is implied by 1.3 below but instead of assuming it we shall shortly assume only some of its consequences. For our purpose here, for $\theta \in[\operatorname{LST}(\mathfrak{K}), \lambda), \lambda=\beth_{\lambda}$ it does not really matter if we use $\kappa=\beth_{1,1}(\theta)$ or $\kappa=\beth_{1,1}\left(\beth_{n}(\theta)\right)$ or $\beth_{1, n}(\theta)$, as we are trying to analyze models in K_{λ}.

Remark 1.1. 1) We can in our claims use only $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}=\Upsilon_{\mathrm{LST}(\mathfrak{K})}^{\mathrm{or}}[\mathfrak{K}]$ because for every $\theta \geq \operatorname{LST}(\mathfrak{K})$ we can replace \mathfrak{K} by $\mathfrak{K}_{\geq \theta}$ as $\operatorname{LST}\left(\mathfrak{K}_{\geq \theta}\right)=\theta$ when $\mathfrak{K} \geq \theta \neq \varnothing$, of course.
2) As usual we assume $\left|\tau_{\mathfrak{K}}\right| \leq \operatorname{LST}(\mathfrak{K})$ just for convenience, otherwise we should just replace $\operatorname{LST}(\mathfrak{K})$ by $\operatorname{LST}(\mathfrak{K})+\left|\tau_{\mathfrak{K}}\right|$.

Hypothesis 1.2. (A) $\mathfrak{K}=\left(K, \leq_{\mathfrak{K}}\right)$ is an AEC with vocabulary $\tau=\tau(\mathfrak{K})$ (and we can assume $|\tau| \leq \operatorname{LST}(\mathfrak{K})$ for notational simplicity)
(B) \mathfrak{K} has arbitrarily large models (equivalently has a model of cardinality \geq $\beth_{1,1}(\operatorname{LST}(\mathfrak{K}))$), not used, e.g. in 1.11, 1.12 but from 1.13 on it is used extensively.

Definition 1.3. We say (μ, λ) or really (μ, λ, Φ) is a weak/strong/pseudo \mathfrak{K} candidate when (weak is the default value):
(a) $\mu>\lambda=\beth_{\lambda}>\operatorname{LST}(\mathfrak{K})$ (e.g. the first beth fix point $>\operatorname{LST}(\mathfrak{K})$, see 3.4 ; in the main case λ has cofinality \aleph_{0})
(b) \mathfrak{K} categorical in μ and $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}$ or just
(b) ${ }^{-} \mathfrak{K}$ is weakly/strongly/pseudo solvable in μ and $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}$ witnesses it; see below.

Definition 1.4. 1) We say \mathfrak{K} is weakly (μ, κ)-solvable when $\mu \geq \kappa \geq \operatorname{LST}(\mathfrak{K})$ and there is $\Phi \in \Upsilon_{\kappa}^{\mathrm{or}}[\mathfrak{K}]$ witnessing it, which means that $\Phi \in \Upsilon_{\kappa}^{\mathrm{or}}[\mathfrak{K}]$ and $\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$ is a locally superlimit member of \mathfrak{K}_{μ} for every linear order I of cardinality μ. We may say (\mathfrak{K}, Φ) is weakly (μ, κ)-solvable and we may say Φ witness that \mathfrak{K} is weakly (μ, κ)-solvable.

If $\kappa=\operatorname{LST}(\mathfrak{K})$ we may omit it, saying \mathfrak{K} or (\mathfrak{K}, Φ) is weakly μ-solvable in μ.
2) \mathfrak{K} is strongly (μ, κ)-solvable when $\mu \geq \kappa \geq \operatorname{LST}(\mathfrak{K})$ and some $\Phi \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ witness it which means that if $I \in K_{\mu}^{\text {lin }}$ then $\operatorname{EM}_{\tau[\mathfrak{K}]}(I, \Phi)$ is superlimit (for \mathfrak{K}_{μ}). We use the conventions from part (1).
3) We say \mathfrak{K} is pseudo (μ, κ)-solvable when $\mu \geq \kappa \geq \operatorname{LST}(\mathfrak{K})$ and there is $\Phi \in$ $\Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ witnessing it which means that for some μ-AEC \mathfrak{K}^{\prime} with no $\leq_{\mathfrak{K}^{\prime}}$-maximal member, we have $M \in \mathfrak{K}^{\prime}$ iff $M \cong \operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$ for some $I \in K_{\mu}^{\text {in }}$ iff $M \cong$ $\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$ for every $I \in K_{\mu}^{\text {lin }}$. We use the conventions from part (1).
4) Let (μ, κ)-solvable mean weakly (μ, κ)-solvable, etc., (including 1.3)

Claim 1.5. 1) In Definition 1.3, clause (b) implies clause (b) ${ }^{-}$. Also in Definition 1.4 " \mathfrak{K} is strongly (μ, κ)-solvable" implies " \mathfrak{K} is weakly (μ, κ)-solvable" which implies " is pseudo (μ, κ)-solvable". Similarly for (\mathfrak{K}, Φ).
2) Assume $\Phi \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$; if clause $(b)^{-}$of 1.3 or just $\dot{I}(\mu, \mathfrak{K})<2^{\mu}$, or just $2^{\mu}>$ $\dot{I}\left(\mu,\left\{\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi): I \in K_{\mu}^{\text {lin }}\right\}\right)$ for some μ satisfying $\operatorname{LST}(\mathfrak{K})<\kappa^{+}<\mu$ then we can deduce that
$(*) \Phi($ really $(\mathfrak{K}, \Phi))$ has the κ-non-order property, where the κ-non-order property means that:
if I is a linear order of cardinality $\kappa, \vec{t}, \vec{t}^{2} \in{ }^{\kappa} I$ form a Δ-system pair (see below) and $\left\langle\sigma_{i}(\bar{x}): i<\kappa\right\rangle$ lists the $\tau(\Phi)$-terms (with the sequence \bar{x} of variables being $\left\langle x_{i}: i<\kappa\right\rangle$) and $\left\langle a_{t}: t \in I\right\rangle$ is "the" indiscernible sequence generating $\operatorname{EM}(I, \Phi)$ (i.e. as usual $\left\langle a_{t}: t \in I\right\rangle$ is "the" skeleton of $\operatorname{EM}(I, \Phi)$, so generating it, see Definition 0.8) then for some $J \supseteq I$ there is an automorphism of $\mathrm{EM}_{\tau(\mathfrak{K})}(J, \Phi)$ which exchanges $\left\langle\sigma_{i}\left(\left\langle a_{t_{i}^{1}}: i<\kappa\right\rangle\right)\right.$: $i<\kappa\rangle$ and $\left\langle\sigma_{i}\left(\left\langle a_{t_{i}^{2}}: i<\kappa\right\rangle\right): i<\kappa\right\rangle$.
where
$\boxtimes \bar{t}, \bar{t}^{2} \in{ }^{\alpha} I$ is a Δ-system pair when for some $J \supseteq I$ there are $\bar{t} \bar{t}^{\zeta} \in{ }^{\alpha} J$ for $\zeta \in \kappa \backslash\{1,2\}$ such that $\left\langle\bar{t}^{\alpha}: \alpha<\kappa\right\rangle$ is an indiscernible sequence for quantifier free formulas in the linear order J.

Proof. 1) The first sentence holds by Claim 0.9(1) and Definition 0.8 (and Claim 0.6). The second and third sentences follows by 0.6.
2) Otherwise we get a contradiction by [She87b, Ch.III] or better [Shear, III].

Definition 1.6. 1) If \mathcal{M}^{\prime} is a class of linear orders and $\Phi \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ then we let $K\left[\mathcal{M}^{\prime}, \Phi\right]=\left\{\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi): I \in \mathcal{M}^{\prime}\right\}$.
2) Let $K_{\theta}^{u(\kappa) \text {-lin }}$ be the class of linear orders I of cardinality θ such that for some scattered ${ }^{2}$ linear order J and Φ proper for $K^{\text {lin }}$ such that $<$ belongs to τ_{Φ} and $\left|\tau_{\Phi}\right| \leq \kappa$ we have I is embeddable into $\operatorname{EM}_{\{<\}}(J, \Phi)$. If we omit κ we mean $\operatorname{LST}(\mathfrak{K})$. If $\kappa=\aleph_{0}$ we may omit it.

Remark 1.7. 1) Note that in Definition 1.4(1) we can restrict ourselves to $I \in$ $K_{\lambda}^{\mathrm{sc}(\theta)-\operatorname{lin}}$, see $0.14(8)$ and even $I \in K^{u(\theta)-\operatorname{lin}}$ see 1.6(2), i.e., assume $2^{\mu}>\dot{I}\left(\mu, K\left[\mathcal{M}^{\prime}, \Phi\right]\right)$, for $\mathcal{M}^{\prime}=K_{\lambda}^{\operatorname{sc}(\theta)-\operatorname{lin}}$ or $\mathcal{M}^{\prime}=K_{\lambda}^{u(\theta)-\operatorname{lin}}$ and restrict the conclusion $(*)$ to $I \in$ $K^{\mathrm{sc}(\theta)-\operatorname{lin}}$. A gain is that, if $\lambda>\theta$, every $I \in K_{\lambda}^{\operatorname{sc}(\theta)-\operatorname{lin}}$ is λ-wide so later $K^{*}=K^{* *}$, and being solvable is a weaker demand. But it is less natural. Anyhow we presently do not deal with this.

1A) Note that $K_{\lambda}^{\mathrm{sc}(\theta)-\operatorname{lin}} \subseteq K_{\lambda}^{u(\theta)-\operatorname{lin}}$.
2) An aim of 1.8 below is to show that: by changing Φ instead of assuming $I_{1} \subset I_{2} \wedge\left(I_{2}\right.$ is κ-wide over $\left.I_{1}\right)$ it suffices to assume $I_{1} \subset I_{2} \wedge\left(I_{2}\right.$ is κ-wide $)$.

Claim 1.8. For every $\Phi_{1} \in \Upsilon_{\kappa}^{\mathrm{or}}[\mathfrak{K}]$ there is Φ_{2} such that
(A) $\Phi_{2} \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ and if Φ_{1} witnesses \mathfrak{K} is weakly/strongly/pseudo (λ, κ)-solvable then so does Φ_{2}
(B) $\tau_{\Phi_{1}} \subseteq \tau_{\Phi_{2}}$ and $\left|\tau_{\Phi_{2}}\right|=\left|\tau_{\Phi_{1}}\right|+\aleph_{0}$
(C) for any $I_{2} \in K^{\text {lin }}$ there are I_{1} and h such that:
(α) $I_{1} \in K^{\text {lin }}$ and even $I_{1} \in K^{\text {flin }}$, see 0.14(5)
$(\beta) h$ is an embedding of I_{2} into I_{1}
(γ) there is an isomorphism f from $\operatorname{EM}_{\tau\left(\Phi_{1}\right)}\left(I_{2}, \Phi_{2}\right)$ onto $\operatorname{EM}\left(I_{1}, \Phi_{1}\right)$ such that $f\left(a_{t}\right)=a_{h(t)}$ for $t \in I_{2}$

[^2](δ) if $J_{1}=I_{1} \upharpoonright \operatorname{rang}(h)$ and we let
$$
\mathcal{E}=\left\{\left(t_{1}, t_{2}\right): t_{1}, t_{2} \in I_{1} \backslash J_{1} \text { and }\left(\forall s \in J_{1}\right)\left(s<t_{1} \equiv s<t_{2}\right)\right\}
$$
$\underline{\text { then }} \mathcal{E}$ is an equivalence relation, each equivalence class has $\geq\left|I_{2}\right|$ members, and $J_{1} \leq_{K^{\text {flin }}} I_{1}$ (see 0.14(6)).
(ε) [Not used] if $\varnothing \neq J_{2} \subseteq I_{2}$,
\[

$$
\begin{aligned}
J_{1}=\left\{t \in I_{1}:\right. & \text { for some } \tau\left(\Phi_{2}\right) \text {-term } \sigma\left(x_{0}, \ldots, x_{n-1}\right) \\
& \text { and } t_{0}, \ldots, t_{n-1} \in J_{2} \text { we have } \\
& \left.f^{-1}\left(a_{t}\right)=\sigma^{\mathrm{EM}\left(I_{2}, \Phi_{2}\right)}\left(a_{t_{0}}, \ldots, a_{t_{n-1}}\right)\right\}
\end{aligned}
$$
\]

and $J_{1}^{\prime} \subseteq \operatorname{rang}(h) \backslash J_{1}$ and $t \in J_{1}^{\prime}$ then $\left\{s \in t / \mathcal{E}: f^{-1}\left(a_{s}\right)\right.$ belongs to the Skolem hull of $\left\{f^{-1}\left(a_{r}\right): r \in J_{1}^{\prime}\right\}$ in $\left.\operatorname{EM}\left(I_{2}, \Phi\right)\right\}$ has cardinality $\geq\left|J_{1}^{\prime}\right|$ and J_{1}^{\prime} and its inverse can be embedded into it; in fact, I_{1} and its inverse are embeddable into any interval of I_{2}.

Remark 1.9.1) We can express it by \leq_{κ}^{\otimes}, see $0.11(4)$. So for some Ψ proper for linear orders such that τ_{Ψ} is countable, the two-place predicate $<$ belongs to τ_{Ψ} and above $\mathrm{EM}_{\{<\}}\left(I_{2}, \Psi\right)$ is I_{1}.
2) In fact, $J_{2} \subset I_{2} \Rightarrow \operatorname{EM}_{\{<\}}\left(J_{2}, \Psi\right)<_{K^{\text {flin }}} \operatorname{EM}_{\{<\}}\left(I_{2}, \Psi\right)$ and $I_{2}<_{K^{\text {flin }}}^{*} \operatorname{EM}_{\{<\}}\left(I_{2}, \Phi\right)$ when we identify $t \in I_{2}$ with a_{t}.

Proof. For $I_{2} \in K^{\text {lin }}$ let the set of elements of I_{1} be $\{\eta: \eta$ is a finite sequence of elements from $\left.(\mathbb{Z} \backslash\{0\}) \times I_{2}\right\}$. For $\eta \in I_{1}$ let $\left(\ell_{\eta, k}, t_{\eta, k}\right)$ be $\eta(k)$ for $k<\ell g(\eta)$.

Lastly, I_{1} is ordered by: $\eta_{1}<\eta_{2}$ iff for some n one of the following occurs

* (a) $\eta_{1} \upharpoonright n=\eta_{2} \upharpoonright n, \ell g\left(\eta_{1}\right)>n, \ell g\left(\eta_{2}\right)>n$, and $\ell_{\eta_{1}, n}<\ell_{\eta_{2}, n}$
(b) $\eta_{1} \upharpoonright n=\eta_{2} \upharpoonright n, \ell g\left(\eta_{1}\right)>n, \ell g\left(\eta_{2}\right)>n, \ell_{\eta_{1}, n}=\ell_{\eta_{2}, n}>0$, and $t_{\eta_{1}, n}<I_{2} t_{\eta_{2}, n}$
(c) $\eta_{1} \upharpoonright n=\eta_{2} \upharpoonright n, \ell g\left(\eta_{1}\right)>n, \ell g\left(\eta_{2}\right)>n, \ell_{\eta_{1}, n}=\ell_{\eta_{2}, n}<0$, and $t_{\eta_{2}, n}<I_{2} t_{\eta_{1}, n}$
(d) $\eta_{1} \upharpoonright n=\eta_{2} \upharpoonright n, \ell g\left(\eta_{1}\right)=n, \ell g\left(\eta_{2}\right)>n$, and $\ell_{\eta_{2}, n}>0$
(e) $\eta_{1} \upharpoonright n=\eta_{2} \upharpoonright n, \ell g\left(\eta_{1}\right)>n, \ell g\left(\eta_{2}\right)=n$, and $\ell_{\eta_{1}, n}<0$.

We identify $t \in I_{1}$ with the pair $(1, t)$. Now check.

Definition 1.10.1) Let the language $\mathbb{L}_{\theta, \partial}[\mathfrak{K}]$ or $\mathbb{L}_{\theta, \partial, \mathfrak{K}}$ where $\theta \geq \partial \geq \aleph_{0}$ and θ is possibly ∞, be defined like the infinitary logic $\mathbb{L}_{\theta, \partial}\left(\tau_{\mathfrak{K}}\right)$, except that we deal only with models from K and we add for $i^{*}<\partial$ the atomic formula " $\left\{x_{i}: i<i^{*}\right\}$ is the universe of a $\leq_{\mathfrak{K}}$-submodel", with obvious syntax and semantics. Of course, it is interesting normally only for $\partial>\operatorname{LST}(\mathfrak{K})$ and recall that any formula has $<\partial$ free variables.
2) For M a $\tau_{\mathfrak{K}}$-model and $N \in K$ let $M \prec_{\mathbb{L}_{\theta, \partial}[\mathfrak{\Omega}]} N$ means that $M \subseteq N$ and if $\varphi(\bar{x}, \bar{y})$ is a formula from $\mathbb{L}_{\theta, \partial}[\mathfrak{K}]$ and $N \models(\exists \bar{x}) \varphi(\bar{x}, \bar{b})$ where $\bar{b} \in{ }^{\ell g(\bar{y})} M$, then for some $\bar{a} \in{ }^{\ell g(\bar{x})} M$ we have $N \models \varphi[\bar{a}, \bar{b}]$.
Fact 1.11. 1) If $\theta \geq \partial>\operatorname{LST}(\mathfrak{K})$ and M, N are $\tau_{\mathfrak{K}}$-models and $N \in K$ and $M \prec_{\mathbb{L}_{\theta, \partial}[\mathfrak{K}]} N$, then $M \leq_{\mathfrak{K}} N$ and $M \in K$.
2) The relation $\prec_{\mathbb{L}_{\theta, \partial}[\mathcal{R}]}$ can also be defined as usual: $M \prec_{\mathbb{L}_{\theta, \partial}[\mathcal{R}]} N$ iff $M, N \in$ $K, M \subseteq N$ and for every $\varphi(\bar{x}) \in \mathbb{L}_{\theta, \partial}[\mathfrak{K}]$ and $\bar{a} \in{ }^{\ell g(\bar{x})} M$ we have $M \models \varphi[\bar{a}]$ iff $N \models \varphi[\bar{a}]$.
3) If $N \in \mathfrak{K}$ and M is a τ_{K}-model satisfying $M \prec_{\mathbb{L}_{\infty, \kappa}} N$ and $\kappa>\operatorname{LST}(\mathfrak{K})$ then $M \in K, M \leq_{\mathfrak{K}} N$ and $M \prec_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]} N$.
4) If $N \in K, M$ a τ_{K}-model and $M \equiv_{\mathbb{L}_{\infty, \kappa}} N$ where $\kappa>\operatorname{LST}(\mathfrak{K})$ then $M \in K$ and $M \equiv_{\mathbb{L}_{\infty, \kappa}[\mathcal{K}]} N$.
5) The parallel of $0.18(2)$ holds for $\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$, i.e. $M \equiv_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]} N$ iff there is \mathcal{F} satisfying clauses (a),(b) there and
(d) if $f \in \mathcal{F}$ then
$(\alpha) M \upharpoonright \operatorname{dom}(f) \leq_{\mathfrak{K}} M$
$(\beta) N \upharpoonright \operatorname{rang}(f) \leq_{\mathfrak{K}} M$.
6) Also the parallel of $0.18(2 \mathrm{~A})$ holds for $\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$.
7) The parallel of $0.18(4)$ holds for $\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$.

Proof. Part (1) is straight (knowing [She09a, §1] or [She87a, §1]). Part (2) is proved as in the Tarski-Vaught criterion and parts (5),(6),(7) are proved as in 0.18.

Toward proving parts (3),(4) we first assume just
$\boxtimes_{1} M, N$ are τ_{K}-models, $N \in K$ and $M \equiv_{\mathbb{L}_{\infty, \kappa}} N$ and $\kappa>\operatorname{LST}(\mathfrak{K})$ and $\lambda \in[\operatorname{LST}(\mathfrak{K}), \kappa)$
and we define:
(a) $I=I_{\lambda}=$

$$
\begin{aligned}
\left\{\left(f, M^{\prime}, N^{\prime}\right):\right. & M^{\prime} \subseteq M, N^{\prime} \subseteq N,\left\|M^{\prime}\right\| \leq \lambda, \\
& f: M^{\prime} \rightarrow N^{\prime} \text { is an isomorphism, and } \\
& \left.(M, \bar{a}) \equiv_{\mathbb{L}_{\infty, \kappa}}(N, f(\bar{a})), \text { where } \bar{a} \text { lists } M^{\prime} .\right\}
\end{aligned}
$$

(Note that we do not require $M^{\prime}, N^{\prime} \in K$.)
(b) for $t \in I$ let $t=\left(f_{t}, M_{t}, N_{t}\right)$
(c) for $\ell=0,1,2$ we define the two-place relation \leq_{I}^{ℓ} on I as follows. Let $s \leq_{I}^{\ell} t$ hold iff:
$(\alpha) \ell=0$ and $M_{s} \subseteq M_{t} \wedge N_{s} \subseteq N_{t}$
$(\beta) \ell=1$ and $\left(M_{s} \leq_{\mathfrak{K}} M_{t} \vee M_{s}=M_{t}\right) \wedge\left(N_{s} \leq_{\mathfrak{K}} N_{t} \vee N_{s}=N_{t}\right)$
$(\gamma) \ell=2$ and $f_{s} \subseteq f_{t}$
(d) $I_{1}=I_{\lambda}^{1}:=\left\{t \in I: N_{t} \leq_{\mathfrak{K}} N\right\}$ and let $\leq_{I_{1}}^{\ell}=\leq_{I}^{\ell} \upharpoonright I_{1}$ for $\ell=0,1,2$.

Now easily
$(*)_{0} \quad(\alpha) I \neq \varnothing$ is partially ordered by \leq_{I}^{ℓ} for $\ell=0,1,2$
(β) $s \leq_{I}^{1} t \Rightarrow s \leq_{I}^{0} t$
(γ) $s \leq_{I}^{2} t \Rightarrow s \leq_{I}^{0} t$.
[Why? Straightforward; e.g. $I \neq \varnothing$ by 0.18(2).]
$(*)_{1}$ if $t \in I_{1}$ then $M_{t} \in K_{\leq \lambda}$ and $N_{t} \in K_{\leq \lambda}$ hence for $r, s \in I_{2}$ we have $r_{1} \leq_{I_{s}}^{1} s$ iff $\left.M_{r} \leq_{\mathfrak{K}} M_{s} \wedge N_{r} \leq_{\mathfrak{K}} N_{s}\right)$.
[Why? As $t \in I_{1}$ by the definition of I we have $N_{t} \in K_{\leq \lambda}$ (because $N_{t} \leq_{\mathfrak{K}} N$) and $M_{t} \in K_{\leq \lambda}$ as f_{t} is an isomorphism from M_{t} onto N_{t}.]
$(*)_{2}$ if $s \in I, A \in[M]^{\leq \lambda}$ and $B \in[N]^{\leq \lambda}$ then for some t we have $s \leq_{I}^{2} t$ and $A \subseteq M_{t}$ and $B \subseteq N_{t}$.
[Why? By the properties of $\equiv_{\mathbb{L}_{\infty, \kappa}}$, see $0.18(2 \mathrm{C})$ as $\kappa>\lambda, M \equiv_{\mathbb{L}_{\infty, \kappa}} N$ and the definition of I.]
$(*)_{3}$ if $s \leq_{I_{1}}^{2} t$ then $s \leq_{I}^{1} t$, i.e. $M_{s} \leq_{\mathfrak{K}} M_{t}$ and $N_{s} \leq_{\mathfrak{K}} N_{t}$.
[Why? As $s, t \in I_{1}$ we know that $N_{s} \leq_{\mathfrak{K}} N$ and $N_{t} \leq_{\mathfrak{K}} N$ and as $s \leq_{I}^{2} t$ we have $f_{s} \subseteq f_{t}$ hence $N_{s} \subseteq N_{t}$. By axiom V of AEC it follows that $N_{s} \leq_{\mathfrak{K}} N_{t}$. Now $M_{s} \leq_{\mathfrak{K}} M_{t}$ as f_{t} is an isomorphism from M_{t} onto N_{t} mapping M_{s} onto N_{s} (as it
extends f_{s} by the definition of \leq_{I}^{2}) and $\leq_{\mathfrak{K}}$ is preserved by any isomorphism. So by the definition of \leq_{I}^{1} we are done.]
$(*)_{4}$ if $s \in I$ then for some $t \in I_{1}$ we have $s \leq_{I}^{2} t$ (hence $I_{1} \neq \varnothing$).
[Why? First, choose $N^{\prime} \leq_{\mathfrak{K}} N$ of cardinality $\leq \lambda$ such that $N_{s} \subseteq N^{\prime}$, (possibly by the basic properties of AEC (see [She09a, §1] or [She09f])). Second, we can find $t \in I$ such that $N_{t}=N^{\prime} \wedge f_{s} \subseteq f_{t}$ by the characterization of $\equiv_{\mathbb{L}_{\infty, \kappa}}$ as in the proof of $(*)_{2}$. So $s \leq_{I}^{2} t$ by the definition of \leq_{I}^{2} and $N_{t}=N^{\prime} \leq_{\mathfrak{K}} N$ hence $t \in I_{1}$ as required. Lastly, $I_{1} \neq \varnothing$ as by $(*)_{0}(\alpha)$ we know that $I \neq \varnothing$ and apply what we have just proved.]
$(*)_{5}$ if $s \leq_{I_{1}}^{0} t$ then $N_{s} \leq_{\mathfrak{K}} N_{t}$.
[Why? As in the proof of $(*)_{3}$ by Ax.V of AEC we have $N_{s} \leq_{\mathfrak{K}} N_{t}$ (not the part on the M 's!)]
$(*)_{6}$ if $s \in I_{1}, A \in[M]^{\leq \lambda}$ and $B \in[N]^{\leq \lambda}$ then for some t we have $s \leq_{I_{1}}^{2} t$ and $A \subseteq M_{t}, B \subseteq N_{t}$.
[Why? By $(*)_{2}$ there is t_{1} such that $s \leq_{I}^{2} t_{1}, A \subseteq M_{t_{1}}$ and $B \subseteq N_{t_{1}}$. By $(*)_{4}$ there is $t \in I_{1}$ such that $t_{1} \leq_{I}^{2} t$ hence by $(*)_{0}(\alpha)$ we have $s \leq_{I}^{2} t$. As $s, t \in I_{1}$ this implies $s \leq_{I_{1}}^{2} t$.]

Note that it is unreasonable to have " $\left(I_{1}, \leq_{I_{1}}^{2}\right)$ is directed" but
$(*)_{7}\left(I_{1}, \leq_{I_{1}}^{1}\right)$ is directed.
[Why? Let $s_{1}, s_{2} \in I_{1}$. We now choose t_{n} by induction on $n<\omega$ such that
(a) $t_{n} \in I_{1}$
(b) $M_{t_{n}}$ includes $\cup\left\{M_{t_{k}}: k<n\right\} \cup M_{s_{1}} \cup M_{s_{2}}$ if $n \geq 2$
(c) $N_{t_{n}}$ includes $\cup\left\{N_{t_{k}}: k<n\right\} \cup N_{s_{1}} \cup N_{s_{2}}$ if $n \geq 2$
(d) $t_{0}=s_{1}$
(e) $t_{1}=s_{2}$
(f) if $n=m+1 \geq 2$ then $t_{m} \leq_{I_{1}}^{0} t_{n}$
(g) if $n=m+2$ then $t_{m} \leq_{I}^{2} t_{n}$ hence $t_{m} \leq_{I_{1}}^{2} t_{n}$.
For $n=0,1$ this is trivial. For $n=m+2 \geq 2$, apply $(*)_{6}$ with

$$
t_{m}, \bigcup\left\{M_{t_{k}}: k \leq m+1\right\}, \bigcup\left\{N_{t_{k}}: k \leq m+1\right\}
$$

here standing for s, A, B there, getting t_{n} so we get $t_{n} \in I_{1}$. In particular, $t_{m} \leq_{I_{1}}^{2} t_{n}$, so clause (a) is satisfied by t_{n}. By the choice of t_{n} and as $s_{1}=t_{0}, s_{2}=t_{1}$, clauses (b) + (c) hold for t_{n}. By the choice of t_{n}, obviously also clause (g) holds. Now why does clause (f) holds (i.e. $t_{m+1} \leq_{I}^{0} t_{n}$)? It follows from clauses (a),(b),(c), so t_{n} is as required. Hence we have carried the induction. Let $N^{*}=\bigcup\left\{N_{t_{n}}: 2 \leq n<\omega\right\}$, so clearly by $(*)_{5}$ and clause (f) we have $N_{t_{n}} \leq_{\mathfrak{K}} N_{t_{n+1}}$ for $n \geq 1$, and clearly $M_{t_{n}} \subseteq M_{t_{n+1}}$ for $n \geq 1$. Let $M^{*}=\bigcup\left\{M_{t_{n}}: 2 \leq n<\omega\right\}$. Note that by $(*)_{3}$ and clause (g) we have $M_{t_{n}} \leq_{\mathfrak{K}} M_{t_{n+2}}$, so $\left\langle M_{t_{n+2}}: n<\omega\right\rangle$ is \subseteq-increasing, and for $\ell=0,1$ the sequence $\left\langle M_{t_{2 n+\ell}}: n<\omega\right\rangle$ is $\leq_{\mathfrak{K}}$-increasing with union M^{*}, hence by the basic properties of AEC we have $M_{t_{2 n+\ell}} \leq_{\mathfrak{K}} M^{*}$. So $M_{s_{1}}=M_{t_{0}} \leq_{\mathfrak{K}} M^{*}$ and $M_{s_{2}}=M_{t_{1}} \leq_{\mathfrak{K}} M^{*}$. Now $M_{s_{1}}, M_{s_{2}} \subseteq M_{t_{2}} \leq \leq_{\mathfrak{K}} M^{*}$ hence $M_{s_{1}}, M_{s_{2}} \leq \leq_{\mathfrak{K}} M_{t_{2}}$. Recall that $N_{s_{1}}=N_{t_{0}} \leq_{\mathfrak{K}} N_{t_{2}}$ was proved above and $N_{s_{2}}=N_{t_{1}} \leq_{\mathfrak{K}} N_{t_{2}}$ was also proved above so t_{2} is a common \leq_{I}^{1}-upper bound of s_{1}, s_{2} as required.]
$(*)_{8}$ if $s \leq_{I_{1}}^{0} t$ then $s \leq_{I_{1}}^{1} t$.
[Why? By $(*)_{7}$ there is $t_{1} \in I_{1}$ which is a common $\leq_{I_{1}}^{1}$-upper bound of s, t. So $M_{s} \subseteq M_{t}\left(\right.$ as $\left.s \leq_{I_{1}}^{0} t\right)$ and $M_{s} \leq_{\mathfrak{K}} M_{t_{1}}\left(\right.$ as $\left.s \leq_{I_{1}}^{1} t_{1}\right)$ and $M_{t} \leq_{\mathfrak{K}} M_{t_{1}}\left(\right.$ as $\left.t \leq_{I_{1}}^{1} t_{1}\right)$. Together by axiom V of AEC we get $M_{s} \leq_{\mathfrak{K}} M_{t}$ and by $(*)_{5}$ we have $N_{s} \leq_{\mathfrak{K}} N_{t}$. Together $s \leq_{I_{1}}^{1} t$ as required.]
$(*)_{9}\left\langle M_{s}: s \in\left(I_{1}, \leq_{I_{1}}^{1}\right)\right\rangle$ is $\leq_{\mathfrak{K}}$-increasing, $\left(I_{1}, \leq_{I_{1}}^{1}\right)$ is directed and

$$
\bigcup\left\{M_{s}: s \in I_{1}\right\}=M
$$

[Why? The first phrase by the definition of $\leq_{I_{1}}^{1}$ in clause $(c)(\beta)$ of \square, the second by $(*)_{7}$ and the third by $(*)_{6}+(*)_{4}$.]

By the basic properties of AEC (see [She09a, 1.6]) from $(*)_{9}$ we deduce

- (a) $M \in K$
(b) $t \in I_{1} \Rightarrow M_{t} \leq_{\mathfrak{K}} M$.

Now we strengthen the assumption \boxtimes_{1} to
\boxtimes_{2} The demands in \boxtimes_{1} and $M \prec_{\mathbb{L}_{\infty}, \kappa\left[\tau_{\Omega}\right]} N$.
We note
$\circledast_{1} \quad$ (a) If $\bar{a} \in{ }^{\alpha} M,|\alpha|+\operatorname{LST}(\mathfrak{K}) \leq \lambda<\kappa$ then for some $t \in I_{\lambda}, f_{t}(\bar{a})=\bar{a}$.
(b) If $M^{\prime} \subseteq M$ and $\left\|M^{\prime}\right\| \leq \lambda$ then $\left(\mathrm{id}_{M^{\prime}}, M^{\prime}, M^{\prime}\right) \in I_{\lambda}$.
(c) If $M_{1} \subseteq N_{1} \subseteq N$ and $M_{1} \subseteq M$ and $\left\|N_{1}\right\| \leq \lambda$ then for some $t \in I$ we have $N_{t}=N_{1}$ and $\operatorname{id}_{M_{1}} \subseteq f_{t}$.
[Why? Clause (a) is a special case of clause (b) and clause (b) is a special case of clause (c). Lastly, clause (c) follows from the assumption $M \prec_{\mathbb{L}_{\infty, \kappa}[\tau \mathfrak{\Omega}} N$ and $0.18(2 \mathrm{~A}),(2 \mathrm{~B})$.

We next shall prove
$\circledast_{2} M \leq_{\mathfrak{K}} N$.
By [She09a, 1.6] and $(*)_{9}$ above for proving \circledast_{2} it suffices to prove:
\circledast_{3} if $s \in I_{1}$ then $M_{s} \leq_{\mathfrak{K}} N$.
[Why \circledast_{3} holds? As $M \subseteq N$ there is $N_{*} \leq_{\mathfrak{K}} N$ of cardinality $\leq \lambda$ such that $M_{s} \cup N_{s} \subseteq N_{*}$. By $\circledast_{1}(c)$ there is $t \in I$ such that $N_{t}=N_{*}$ and $\operatorname{id}_{M_{s}} \subseteq f_{t}$. As $N_{*} \leq_{\mathfrak{K}} N$ it follows that $t \in I_{1}$. So by $\boxtimes_{1} \Rightarrow \odot(b)$ applied to s and to t we can deduce $M_{s} \leq_{\mathfrak{K}} M$ and $M_{t} \leq_{\mathfrak{K}} M$. But as $\operatorname{id}_{M_{s}} \subseteq f_{t}$ it follows that $M_{s} \subseteq \operatorname{dom}\left(f_{t}\right)=M_{t}$ hence by Ax.V of AEC we know that $M_{s} \leq_{\mathfrak{K}} M_{t}$. But as $t \in I$ clearly f_{t} is an isomorphism from M_{t} onto N_{t} hence $f_{t}\left(M_{s}\right) \leq_{\mathfrak{K}} f_{t}\left(M_{t}\right)=N_{t}$, and as $\operatorname{id}_{M_{s}} \subseteq f_{t}$ this means that $M_{s}=f_{t}\left(M_{s}\right) \leq_{\mathfrak{K}} N_{t}$. Recalling $N_{t} \leq_{\mathfrak{K}} N$ because $t \in I_{1}$ and $\leq_{\mathfrak{K}}$ is transitive it follows that $M_{s} \leq_{\mathfrak{K}} N$ as required.]

Let us check parts (3) and (4) of the Fact. Having proved $\boxtimes_{1} \Rightarrow \odot(a)$, clearly in part (4) of the fact the first conclusion there, $M \in K$, holds. The second conclusion, $M \equiv_{\mathbb{L}_{\infty, \kappa}[\mathcal{\Omega}]} N$ holds by
\circledast_{4} If $\varphi(\bar{x}) \in \mathbb{L}_{\infty, \kappa}[\mathfrak{K}],|\ell g(\bar{x})|+\operatorname{LST}(\mathfrak{K}) \leq \lambda<\kappa, t \in I$, and $\bar{a} \in{ }^{\ell g(\bar{x})}\left(M_{t}\right)$ then $M \models \varphi[\bar{a}] \Leftrightarrow N \models \varphi\left[f_{t}(\bar{a})\right]$.
[Why? We prove this by induction on the depth of φ for all λ simultaneously. For $\alpha=0$, first for the usual atomic formulas this should be clear. Second, by $(*)_{4}$ there is t_{1} such that $t \leq_{I}^{2} t_{1} \in I_{1}$ hence by $\circledast_{3}+$ clause (d) of $\square+$ clause (b) of \odot we have $M_{t_{1}} \leq_{\mathfrak{K}} N \wedge N_{t_{1}} \leq_{\mathfrak{K}} N \wedge M_{t_{1}} \leq_{\mathfrak{K}} M$ respectively. So if $u \subseteq \ell g(\bar{x})$ then $M \upharpoonright \operatorname{rang}(\bar{a} \upharpoonright u) \leq_{\mathfrak{K}} M \Leftrightarrow M \upharpoonright \operatorname{rang}(\bar{a} \upharpoonright u) \leq_{\mathfrak{K}} M_{t_{1}} \Leftrightarrow N \upharpoonright \operatorname{rang}(f(\bar{a}) \upharpoonright u) \leq_{\mathfrak{K}}$ $N_{t_{1}} \Leftrightarrow N \upharpoonright \operatorname{rang}(f(\bar{a}) \upharpoonright u) \leq_{\mathfrak{K}} N$. So we have finished the case of atomic formulas, i.e. $\alpha=0$. For $\varphi(\bar{x})=(\exists \bar{y}) \psi(\bar{x}, \bar{y})$ use $(*)_{2}$, the other cases are obvious.] So part (4) holds. As for part (3), the first statement, " $M \in K$ " holds by part (4), the second statement, $M \leq_{\mathfrak{K}} N$, holds by \circledast_{2} and the third statement, $M \prec_{\mathbb{L}_{\infty}, \kappa}[\mathfrak{\kappa}] ~ N$ follows by $\circledast_{1}(b)+\circledast_{4}$. As we have already noted parts (1),(2),(5),(6) and part (7) is proved as \circledast_{4} is proved, we are done.

Claim 1.12. For a limit cardinal $\kappa>\operatorname{LST}(\mathfrak{K})$:

1) $M \prec_{\mathbb{L}_{\infty}, \kappa}[\mathfrak{\beta}] ~ N$ provided that
(a) if $\theta<\kappa$ and $\theta \in(\operatorname{LST}(\mathfrak{K}), \kappa)$ then $M \prec_{\mathbb{L}_{\infty, \theta}[\mathfrak{\kappa}]} N$
(b) for every $\partial<\kappa$ for some $\theta \in(\partial, \kappa)$ we have: if $\bar{a}, \bar{b} \in{ }^{2} M$ and $(M, \bar{a}) \equiv_{\mathbb{L}_{\infty, \theta}[\mathfrak{\kappa}]}$ $(M, \bar{b}) \underline{\text { then }}(M, \bar{a}) \equiv_{\mathbb{L}_{\infty}, \theta_{1}}[\mathcal{K}](M, \bar{b})$ for every $\theta_{1} \in[\theta, \kappa)$.
1A) $M \equiv_{\mathbb{L}_{\infty, \kappa}[\mathfrak{k}]} N$ provided that
(a) if $\operatorname{LST}(\mathfrak{K})<\theta<\kappa$ then $M \equiv_{\mathbb{L}_{\infty, \theta}[\mathfrak{K}]} N$
(b) as in part (1).
2) In parts (1) and (1A) we can conclude
$(b)^{+}$for every $\partial<\kappa$ for some $\theta \in(\partial, \kappa)$ we have: if $\bar{a}, \bar{b} \in{ }^{\partial} M$ and

$$
(M, \bar{a}) \equiv_{\mathbb{L}_{\infty, \theta}[\mathfrak{\Omega}]}(M, \bar{b}) \underline{\text { then }}(M, \bar{a}) \equiv_{\mathbb{L}_{\infty, \kappa}[\{\mathfrak{k}]}(M, \bar{b}) .
$$

3) If $\operatorname{cf}(\kappa)=\aleph_{0}$ then $M \cong N$ when
(a) if $\theta<\kappa$ and $\theta \in(\operatorname{LST}(\mathfrak{K}), \kappa)$ then $M \equiv_{\mathbb{L}_{\infty, \theta}[\mathfrak{K}]} N$
(b) as in part (1), i.e., for every $\partial \in(\operatorname{LST}(\mathfrak{K}), \kappa)$, for some $\theta \in(\partial, \kappa)$, we have: if $\bar{a} \in{ }^{2} M$ and $\bar{b} \in{ }^{2} N$ and $(M, \bar{a}) \equiv_{\mathbb{L}_{\infty, \theta}[\mathcal{K}]}(N, \bar{b})$ then $(M, \bar{a}) \equiv_{\mathbb{L}_{\infty, \theta_{1}}[\mathcal{\beta}]}$ (N, \bar{b}) for every $\theta_{1} \in(\theta, \kappa)$.
(c) M, N have cardinality κ.

Proof. 1) By $1.11(3)$ it suffices to prove $M \prec_{\mathbb{L}_{\infty, \kappa}} N$, for this it suffices to apply the criterion from $0.18(2 \mathrm{~A})$.

Let \mathcal{F} be the set of functions f such that:
$\odot(\alpha) \operatorname{dom}(f) \subseteq M$ has cardinality $<\kappa$.
$(\beta) \operatorname{rang}(f) \subseteq N$.
(γ) If \bar{a} lists $\operatorname{dom}(f)$ then for every $\theta \in(\ell g(\bar{a}), \kappa)$ we have $\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\kappa]}(\bar{a}, \varnothing, M)=$ $\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathfrak{R}]}(f(\bar{a}), \varnothing, N)$.
1A) Similarly.
2) Similarly to part (1) using $1.11(4)$ and $0.18(2)$ instead $1.11(3), 0.18(2 \mathrm{~A})$.
3) Recall 0.18(1).

Claim 1.13. 1) Assume $1.3(a)+$ (b), i.e. \mathfrak{K} is categorical in $\mu>\operatorname{LST}(\mathfrak{K})$. If $\mu=\mu^{<\kappa}$ and $\kappa>\operatorname{LST}(\mathfrak{K}) \underline{\text { then }}$ for every $M \leq_{\mathfrak{K}} N$ from K_{μ} we have $M \prec_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]} N$ (and there are such $M<_{\mathfrak{K}_{\mu}} N$).
2) Assume \mathfrak{K} is weakly or just pseudo μ-solvable as witnessed by Φ (see Definition 1.4 and Claim 1.5) and $M^{*}=\operatorname{EM}_{\tau(\mathfrak{K})}(\mu, \Phi)$ and $\mu=\mu^{<\kappa}$ and $\kappa>\left|\tau_{\Phi}\right|$. If $M \leq_{\mathfrak{K}} N$ are both isomorphic to M^{*} then $M \prec_{\mathbb{L}_{\infty, k}[\mathcal{K}]} N$.

Proof. 1) We prove by induction on γ that for any formula $\varphi(\bar{x})$ from $\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$ of quantifier depth $\leq \gamma$ (and necessarily $\ell g(\bar{x})<\kappa$) we have
$(*)$ if $M \leq_{\mathfrak{K}} N$ are from K_{μ} and $\bar{a} \in{ }^{\ell g(\bar{x})} M$ then $M \models \varphi[\bar{a}] \Leftrightarrow N \models \varphi[\bar{a}]$.
If $\varphi(\bar{x})$ is atomic this is clear (for the " $\left\{x_{i}: i<i^{*}\right\}$ is the universe of a $\leq_{\mathfrak{K}^{-}}$ submodel", the implication \Rightarrow holds as $\leq_{\mathfrak{K}}$ is transitive and the implication \Leftarrow as \mathfrak{K} satisfies Ax.V of AEC). If $\varphi(\bar{x})$ is a Boolean combination of formulas for which the assertion was proved, clearly it holds for $\varphi(\bar{x})$. So we are left with the case $\varphi(\bar{x})=(\exists \bar{y}) \psi(\bar{y}, \bar{x})$, so $\ell g(\bar{y})<\kappa$. The implication \Rightarrow is trivial by the induction hypothesis and so suppose that the other fails, say $N \models \psi[\bar{b}, \bar{a}]$ and $M \models \neg(\exists \bar{y}) \psi(\bar{y}, \bar{a})$. We choose by induction on $i<\mu^{+}$a model $M_{i} \in K_{\mu}, \leq_{\mathfrak{K}^{-}}$ increasing continuous, and for each i in addition we choose an isomorphism f_{i} from M onto M_{i} and if $i=j+1$ we shall choose an isomorphism g_{j} from N onto M_{j+1}
extending f_{j}. For $i=0$, let $M_{0}=M$. For i limit let $M_{i}=\bigcup_{j<i} M_{j}$. For any i, if M_{i} was chosen, f_{i} exists as \mathfrak{K} is categorical in μ. Now if $i=j+1$ then M_{j}, f_{j} are well defined and clearly we can choose $M_{i}=M_{j+1}, g_{j}$ as required.

By Fodor lemma, as $\mu=\mu^{<\kappa}$ and the set $\left\{\delta<\mu^{+}: \operatorname{cf}(\delta) \geq \kappa\right\}$ is stationary, clearly for some $\alpha<\beta<\mu^{+}$we have $f_{\alpha}(\bar{a})=f_{\beta}(\bar{a})$. Now (by the choice of g_{α}) we have $M_{\alpha+1} \models \psi\left[g_{\alpha}(\bar{b}), g_{\alpha}(\bar{a})\right]$, hence by the induction hypothesis applied to the pair $\left(M_{\alpha+1}, M_{\beta}\right)$ we have $M_{\beta} \models \psi\left[g_{\alpha}(\bar{b}), g_{\alpha}(\bar{a})\right]$ so $M_{\beta} \models \varphi\left[g_{\alpha}(\bar{a})\right]$. But $g_{\alpha}(\bar{a})=f_{\alpha}(\bar{a})=f_{\beta}(\bar{a})$, in contradiction to $M \models \neg \varphi[\bar{a}]$.
2) The same proof but we restrict ourselves to models in $K_{\left[M^{*}\right]}$ so, e.g. in $(*)$ we have $M, N \in K_{\left[M^{*}\right]}$ recalling that $\mathfrak{K}_{\left[M^{*}\right]}$ is a μ-AEC, see Definition $0.5(3 \mathrm{~A})$ and Claim 0.6(7).

Exercise: 1) For the proof (of 1.13(1)) it suffices to assume " $S \subseteq\left\{\delta<\mu^{+}\right.$: $\operatorname{cf}(\delta) \geq \kappa\}$ is a stationary subset of μ^{+}and $M^{*} \in K_{\mu}$ is locally S-weakly limit." (See [She09a, 3.1(5)].)
2) Similarly we can weaken the demands " $M^{*}=\operatorname{EM}_{\tau(\mathcal{K})}(\mu, \Phi)$ and (K, Φ) is pseudo solvable" to: 'for every $M \leq_{\mathfrak{K}} N$ isomorphic to M^{*} (which $\in K_{\mu}$) there is $\mathrm{a} \leq_{\mathfrak{K}}$-increasing sequence $\left\langle M_{\alpha}: \alpha<\mu^{+}\right\rangle$such that

$$
\left\{\delta<\mu^{+}: \operatorname{cf}(\delta) \geq \kappa,\left(M_{\delta}, M_{\delta+1}\right) \cong(M, N), \text { and } M_{\delta}=\bigcup\left\{M_{\alpha}: \alpha<\delta\right\}\right\}
$$

is a stationary subset of μ^{+}.'
Claim 1.14. Assume $\Phi \in \Upsilon_{<\kappa}^{\text {or }}[\mathfrak{K}]$ satisfies the conclusion of 1.13(2) for (μ, κ) and $\operatorname{LST}(\mathfrak{K})<\kappa \leq \mu$ and J, I_{1}, I_{2} are linear orders and I_{1}, I_{2} are κ-wide, see Definition 0.14(1). Then
(a) If $I_{1} \subseteq I_{2}$ then $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right) \prec_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$
(b) Assume $J \subseteq I_{1}, J \subseteq I_{2}$; if $\varphi(\bar{x}) \in \mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$ so $\ell g(\bar{x})<\kappa$ and $\bar{a} \in{ }^{\ell g(\bar{x})}(\operatorname{EM}(J, \Phi))$, then $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right) \models \varphi[\bar{a}] \Leftrightarrow \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right) \models \varphi[\bar{a}]$
(c) Assume $\bar{\sigma}=\left\langle\sigma_{i}\left(\ldots, x_{\alpha(i, \ell)}, \ldots\right)_{\ell<\ell(i)}: i<i(*)\right\rangle$ where $i(*)<\kappa$, each σ_{i} is a $\tau(\Phi)$-term, $\alpha(i, \ell)<\alpha(*)<\kappa$. If $\bar{t}^{\ell}=\left\langle t_{\alpha}^{\ell}: \alpha<\alpha(*)\right\rangle$ is a sequence of members of I_{ℓ} for $\ell=1,2$ and \vec{t}^{1}, \bar{t}^{2} realizes the same quantifier free type in I_{1}, I_{2} respectively and $\bar{a}^{\ell}=\left\langle\sigma_{i}\left(\ldots, a_{t_{\alpha(i, j)}^{\ell}}, \ldots\right)_{j<j(i)}: i<i(*)\right\rangle$ for $\ell=1,2$ then \bar{a}^{1}, \bar{a}^{2} realize the same $\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$-type in $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right), \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$ respectively.

Proof. Clause (a): We prove that for $\varphi(\bar{x}) \in \mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$ we have
$(*)_{\varphi(\bar{x})}$ if $I_{1} \subseteq I_{2}$ are κ-wide linear orders of cardinality $\leq \mu$ and $\bar{a} \in{ }^{\ell g(\bar{x})}\left(\mathrm{EM}_{\tau(\mathfrak{\kappa})}\left(I_{1}, \Phi\right)\right)$ then $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right) \models \varphi[\bar{a}] \Leftrightarrow \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right) \models \varphi[\bar{a}]$.
This easily suffices as for any $I \in K^{\text {lin }}$, the $\operatorname{model}_{\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)}$ is the direct limit of $\left\langle\operatorname{EM}\left(I^{\prime}, \Phi\right): I^{\prime} \subseteq I,\right| I^{\prime}|\leq \mu\rangle$, which is $\leq_{\mathfrak{K}}$-increasing and μ^{+}-directed and as we have:
$\odot M^{1} \prec_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]} M^{2}$ when:
(a) I is a κ-directed partial order
(b) $\bar{M}=\left\langle M_{t}: t \in I\right\rangle$
(c) $s<_{I} t \rightarrow M_{s} \prec_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]} M_{t}$
(d) $M^{2}=\bigcup\left\{M_{t}: t \in I\right\}$
(e) $M^{1} \in\left\{M_{t}: t \in I\right\}$ or for some κ-directed $I^{\prime} \subseteq I$ we have $M^{1}=$ $\bigcup\left\{M_{t}: t \in I^{\prime}\right\}$.

We prove $(*)_{\varphi(\bar{x})}$ by induction on φ (as in the proof of 1.13 above). The only non-obvious case is $\varphi(\bar{x})=(\exists \bar{y}) \psi(\bar{y}, \bar{x})$, so let $I_{1} \subseteq I_{2}$ be κ-wide linear orders of cardinality $\leq \mu$ and $\bar{a} \in{ }^{\ell g(\bar{x})}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)\right)$. Now if $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right) \models \varphi[\bar{a}]$ then for some $\bar{b} \in{ }^{\ell g(\bar{y})}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)\right)$ we have $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right) \models \psi[\bar{b}, \bar{a}]$. Hence by the induction hypothesis $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right) \models \psi[\bar{b}, \bar{a}]$ hence by the satisfaction definition $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right) \models \varphi[\bar{a}]$, so we have proved the implication \Rightarrow.

For the other implication assume that $\bar{b} \in{ }^{\ell g(\bar{y})}\left(\operatorname{EM}_{\tau(\mathfrak{\kappa})}\left(I_{2}, \Phi\right)\right)$ and $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right) \models$ $\psi[\bar{b}, \bar{a}]$. Let $\theta=\left|\ell g\left(\bar{a}^{\wedge} \bar{b}\right)\right|+\aleph_{0}$, so $\theta<\kappa$ and without loss of generality if κ is singular then $\theta \geq \operatorname{cf}(\kappa)$. Hence there is in I_{1} a monotonic sequence $\bar{c}=\left\langle c_{i}: i<\theta^{+}\right\rangle$: without loss of generality, it is increasing. Clearly there is I^{*} such that $\bar{a}^{\wedge} \bar{b} \in$ $\ell g\left(\bar{x}^{\wedge} \bar{y}\right)\left(\operatorname{EM}\left(I^{*}, \Phi\right)\right), I^{*} \subseteq I_{2},\left|I^{*}\right| \leq \theta$ and $\bar{a} \in{ }^{\ell g(\bar{x})}\left(\operatorname{EM}\left(I^{*} \cap I_{1}, \Phi\right)\right)$ and without loss of generality $i<\theta^{+} \Rightarrow\left[c_{0}, c_{i}\right]_{I_{2}} \cap I^{*}=\varnothing$.

Similarly without loss of generality
(*) $I_{1} \backslash \bigcup\left\{\left[c_{0}, c_{i}\right)_{I_{1}}: i<\theta^{+}\right\}$is κ-wide or $\kappa=\theta^{+}$.
Let $J_{0}=I_{2}$; we can find J_{1} such that $J_{0}=I_{2} \subseteq J_{1}$ and $J_{1} \backslash I_{2}=\left\{d_{\alpha}: \alpha<\mu \times \theta^{+}\right\}$ with d_{α} being $<_{J_{1}}$-increasing with α and

$$
\left(\forall x \in I_{2}\right)\left(x<_{J_{1}} d_{\alpha} \equiv \bigvee_{i<\theta^{+}} x<_{J_{1}} c_{i}\right)
$$

As $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right) \mid=\psi[\bar{b}, \bar{a}]$ and $I_{2}=J_{0} \subseteq J_{1},\left|J_{1}\right| \leq \mu$ and I_{2} is κ-wide (and trivially J_{1} is κ-wide). By the induction hypothesis $\operatorname{EM}_{\tau(\mathfrak{\kappa})}\left(J_{1}, \Phi\right) \models \psi[\bar{b}, \bar{a}]$ hence $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{1}, \Phi\right) \models \varphi[\bar{a}]$. Let

$$
J_{2}=J_{1} \upharpoonright\left\{x: x \in J_{1} \backslash J_{0} \text { or } x \in I_{1} \backslash \bigcup\left\{\left[c_{0}, c_{i}\right]_{I_{1}}: i<\theta^{+}\right\}\right\} .
$$

So $J_{1} \supseteq J_{2}$, both linear orders have cardinality μ and are κ-wide as witnessed by $\left\langle d_{\alpha}: \alpha<\mu \times \theta^{+}\right\rangle$for both hence the conclusion of 1.13 holds, i.e. $\operatorname{EM}\left(J_{2}, \Phi\right) \prec_{\mathbb{L}_{\infty, \kappa}[\mathcal{R}]}$ $\operatorname{EM}\left(J_{1}, \Phi\right)$. Also, $I^{*} \cap I_{1} \subseteq J_{2}$, and recall that $\bar{a} \in{ }^{\ell g(\bar{x})}\left(\operatorname{EM}\left(I^{*} \cap I_{1}, \Phi\right)\right)$ hence $\bar{a} \in{ }^{\ell g(\bar{x})}\left(\operatorname{EM}\left(J_{2}, \Phi\right)\right)$. However, $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{1}, \Phi\right) \models \varphi[\bar{a}]$, see above, hence by the last two sentences $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{2}, \Phi\right) \models \varphi[\bar{a}]$.

So there is $\bar{b}^{*} \in{ }^{\ell g(\bar{y})}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{2}, \Phi\right)\right)$ such that $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{2}, \Phi\right) \models \psi\left[\bar{b}^{*}, \bar{a}\right]$. Let $J^{*} \subseteq J_{2}$ be of cardinality θ such that $\bar{b}^{*} \in{ }^{\ell g(\bar{y})}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(J^{*}, \Phi\right)\right)$ and $I^{*} \cap I_{1} \subseteq J^{*}$ recalling $I^{*} \cap\left[c_{0}, c_{i}\right)_{I_{2}}=\varnothing$ for $i<\theta^{+}$. Now let $u \subseteq \mu \times \theta^{+}$be such that $J^{*} \backslash I_{1}=$ $\left\{d_{\alpha}: \alpha \in u\right\}$ so $|u|<\theta^{+}$. Let

$$
J_{3}=J_{2} \upharpoonright\left\{t: t \in J_{2} \cap I_{1}, \text { or } t=d_{\alpha} \text { for } \alpha>\sup (u) \text { or } \alpha \in u\right\} .
$$

[I might be getting distracted from the main goal, but isn't this literally $J_{2} \upharpoonright\left(J_{2} \cap I_{1} \cup J^{*} \backslash I_{1} \cup\left\{d_{\alpha}: \alpha>\sup u\right\}\right)=J_{2} \upharpoonright\left(I_{1} \cup\left\{d_{\alpha}: \alpha>\sup u\right\}\right)$?]

As $\operatorname{cf}\left(\mu \times \theta^{+}\right)=\theta^{+}>|u|$, clearly $\sup (u)<\mu \times \theta^{+}$hence $\left|J_{3}\right|=\mu$ and J_{3} is κ-wide. So by the conclusion of 1.13 (or by the induction hypothesis) also $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{3}, \Phi\right) \models$ $\psi\left[\bar{b}^{*}, \bar{a}\right]$. Let $w=\left\{\alpha<\mu \times \theta^{+}: \alpha \in u\right.$ or $\left.\alpha>\sup (u) \wedge\left(\alpha-\sup (u)<\theta^{+}\right)\right\}$, so $\operatorname{otp}(w)=\theta^{+}$.

Let $J_{4}=\left(J_{3} \cap I_{1}\right) \cup\left\{d_{\alpha}: \alpha \in w\right\}$, so J_{4} is κ-wide as witnessed by

$$
I_{1} \backslash \bigcup\left\{\left[c_{0}, c_{i}\right): i<\theta^{+}\right\}
$$

or by $\left\{d_{\alpha}: \alpha \in w\right\}$ recalling $(*)$ above and $J_{4} \subseteq J_{3}$ and $J^{*} \subseteq J_{4}$ hence $\bar{a}, \bar{b}^{*} \subseteq$ ${ }^{\kappa>}\left(\operatorname{EM}\left(J_{4}, \Phi\right)\right)$ hence by the induction hypothesis $\operatorname{EM}_{\tau(\mathfrak{k})}\left(J_{4}, \overline{\Phi)} \models \psi\left[\bar{b}^{*}, \bar{a}\right]\right.$.

Let $J_{5}=J_{4} \cup\left\{c_{i}: i<\theta^{+}\right\} \backslash\left\{d_{\alpha}: \alpha \in w\right\}$; equivalently,

$$
J_{5}=\left(J_{3} \cap I_{1}\right) \cup\left\{c_{\alpha}: \alpha<\theta^{+}\right\}=\left(I_{1} \backslash \bigcup\left\{\left[c_{0}, c_{i}\right)_{I_{1}}: i<\theta^{+}\right\}\right) \cup\left\{c_{i}: i<\theta^{+}\right\}
$$

so $J_{5} \subseteq I_{1}$. Let $h: J_{4} \rightarrow J_{5}$ be such that $h\left(d_{\alpha}\right)=c_{\text {otp }(w \cap \alpha)}$ for $\alpha \in w$ and $h(t)=t$ for others, i.e. for $t \in J_{3} \cap I_{1}$. So h is an isomorphism from J_{4} onto J_{5}. Recalling
0.12 let \hat{h} be the isomorphism from $\operatorname{EM}\left(J_{4}, \Phi\right)$ onto $\operatorname{EM}\left(J_{5}, \Phi\right)$ which h induces, so clearly $\hat{h}(\bar{a})=\bar{a}$. Hence for some $\bar{b}^{* *}$ we have $\bar{b}^{* *}=\hat{h}\left(\bar{b}^{*}\right) \in^{\ell g(\bar{y})}\left(\operatorname{EM}_{\tau(\mathfrak{\Re})}\left(J_{5}, \Phi\right)\right)$ and $\mathrm{EM}_{\tau(\mathfrak{K})}\left(J_{5}, \Phi\right) \models \psi\left[\bar{b}^{* *}, \bar{a}\right]$. Note that by the choice of $\left\langle c_{i}: i<\theta^{+}\right\rangle$, (see $(*)$ above), we know that J_{5} is κ-wide. Also $J_{5} \subseteq I_{1}$ so by the induction hypothesis applied to $\psi(\bar{y}, \bar{x}), J_{5}, I_{1}$ we have $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right) \mid=\psi\left[\bar{b}^{* *}, \bar{a}\right]$ hence by the definition of satisfaction $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right) \mid=\varphi[\bar{a}]$, so we have finished proving the implication \Leftarrow hence clause (a).
Clause (b): Without loss of generality for some linear order I we have $I_{1} \subseteq I$, $I_{2} \subseteq I$ and $\operatorname{EM}\left(I_{\ell}, \Phi\right) \subseteq \operatorname{EM}(I, \Phi)$ for $\ell=1,2$ and use clause (a) twice.
Clause (c): Easy by now, e.g. using a linear order I^{\prime} extending I_{1}, I_{2} which has an automorphism h such that $h\left(t_{\alpha}^{1}\right)=t_{\alpha}^{2}$ for $\alpha<\alpha(*)$.
$\square_{1.14}$
$\square_{1.14}$

Definition 1.15. Fixing $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}$.

1) For $\theta \geq \operatorname{LST}(\mathfrak{K})$ let K_{θ}^{*}, [let $\left.K_{\theta}^{* *}\right]\left[\right.$ let $\left.K_{\theta}^{*, *}\right]$ be the family of $M \in K_{\theta}$ isomorphic to some $\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$ where I is a linear order of cardinality θ [which is θ-wide][which $\in K_{\theta}^{\text {fin }] . ~ M o r e ~ a c c u r a t e l y ~ w e ~ s h o u l d ~ w r i t e ~} K_{\Phi, \theta}^{*}, K_{\Phi, \theta}^{* *}, K_{\Phi, \theta}^{*, *}$; similarly below.
2) Let K^{*} is the class $\bigcup\left\{K_{\theta}^{*}: \theta\right.$ a cardinal $\left.\geq \operatorname{LST}(\mathfrak{K})\right\}$, similarly $K^{*, *}, K_{\geq \lambda}^{*}, K_{\geq \lambda}^{* *}$, etc.
3) Let $\mathfrak{K}^{*}=\mathfrak{K}_{\Phi}^{*}=\left(K^{*}, \leq_{\mathfrak{K}} \upharpoonright K^{*}\right)$.
4) Let $\mathfrak{K}_{\lambda}^{*}=K_{\Phi, \lambda}^{*}$ be $\left(K_{\Phi, \lambda}^{*}, \leq_{\mathfrak{K}} \upharpoonright K_{\Phi, \lambda}^{*}\right)$.

Claim 1.16. 1) $K_{\theta}^{* *}$ is categorical in θ if $\operatorname{LST}(\mathfrak{K})<\theta \leq \mu, \operatorname{cf}(\theta)=\aleph_{0}$ and the conclusion of 1.13(2) hence of 1.14 holds for $\partial=\theta$ (and Φ), e.g. \mathfrak{K} is pseudo solvable in μ as witnessed by Φ and $\mu=\mu^{<\theta}$.
2) $K_{\theta}^{*, *}, K_{\theta}^{* *} \subseteq K_{\theta}^{*}$.
3) If θ is strong limit $>\operatorname{LST}(\mathfrak{K})$ then $K_{\theta}^{* *}=K_{\theta}^{*}$.

Proof. 1) By 1.14 and 0.18(1).
2) Read the definitions.
3) Recall $0.15(2)$.

Remark 1.17. 1) We will be specially interested in 1.16 in the case (μ, λ) is a \mathfrak{K}-candidate (see Definition [She09b, 11.0.3]) and $\theta=\lambda$.
2) Note that K_{θ}^{*}, in general, is not a θ-AEC.
3) If we strengthen $1.18(2)$ below, replacing (μ, λ) by $\left(\mu, \lambda^{+}\right)$then categoricity of K_{λ}^{*} and in fact Claim 1.19(4) follows immediately from (or as in) Claim 1.16(1).

For the rest of this section we assume that the triple (μ, λ, Φ) is a pseudo \mathfrak{K} candidate (see Definition 1.3) and rather than $\mu=\mu^{\lambda}$ we assume just the conclusion of 1.13, that is:
Hypothesis 1.18. 1) The pair (μ, λ) is a pseudo \mathfrak{K}-candidate and Φ witnesses this, so $\left|\tau_{\Phi}\right| \leq \operatorname{LST}(\mathfrak{K})<\lambda=\beth_{\lambda}<\mu$ and $\Phi \in \Upsilon_{\mathfrak{K}}^{\circ \mathrm{or}}$ is as in Definition 1.4 so $I \in K_{\mu}^{\operatorname{lin}} \Rightarrow \operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi) \in K_{\mu}^{\mathrm{pl}}$.
2) For every $\kappa \in(\operatorname{LST}(\mathfrak{K}), \lambda)$ the conclusion of 1.13(2) holds hence also of 1.14 (if $\mu=\mu^{<\lambda}$ this follows from (1) even for $\kappa=\lambda^{+}$as $\mu^{<\kappa}=\mu^{\lambda}=\mu$ by cardinal arithmetic).

Claim 1.19. 1) If $M_{1} \leq_{\mathfrak{K}} M_{2}$ are from K_{λ}^{*} or just $K_{\geq \lambda}^{*}$ and $\operatorname{LST}(\mathfrak{K})<\theta<\lambda$ then $M_{1} \prec_{\mathbb{L}_{\infty, \theta}[\mathfrak{\Omega}]} M_{2} ;$ moreover $M_{1} \prec_{\mathbb{L}_{\infty}, \lambda}[\mathfrak{\Omega}] M_{2}$.
2) If $M_{1} \leq \mathfrak{K} M_{2}$ are from K^{*} and $\left\|M_{1}\right\| \geq \kappa:=\beth_{1,1}(\theta)$ (recall that this is $\beth_{\left(2^{\theta}\right)^{+}}$) and $\lambda>\theta \geq \mathrm{LST}(\mathfrak{K})$ then $M_{1} \prec_{\mathbb{L}_{\infty, \theta}+[\mathfrak{K}]} M_{2}$.
3) Assume $\operatorname{LST}(\mathfrak{K})<\theta<\kappa=\beth_{1,1}(\theta) \leq \chi<\lambda$, $\chi_{1}=\beth_{1,1}(\chi)$ and $M \in K_{\geq \chi_{1}}^{*}$ and $\bar{a}, \bar{b} \in{ }^{\gamma} M$ where $\gamma<\theta^{+}$and $(M, \bar{a}) \equiv_{\mathbb{L}_{\infty}, \kappa}[\mathcal{\beta}](M, \bar{b})$; i.e.

$$
\varphi\left(\left\langle x_{\beta}: \beta<\gamma\right\rangle\right) \in \mathbb{L}_{\infty^{\prime}, \kappa^{+}}[\mathfrak{K}] \Rightarrow(M \models \varphi[\bar{a}] \Leftrightarrow M \models \varphi[\bar{b}]) .
$$

Then $(M, \bar{a}) \equiv_{\mathbb{L}_{\infty, \chi}[\mathcal{K}]}(M, \bar{b})$.
4) K_{λ}^{*} is categorical in λ provided that $\operatorname{cf}(\lambda)=\aleph_{0}$.

Remark 1.20. 1) What is the difference between say $1.19(3)$ and clause (a) of 1.14? Here there is no connection between the additional $\tau(\Phi)$-structures expanding M_{1}, M_{2}.
2) Note that Φ has the κ-non-order property (see $1.5(2)\left(^{*}\right)$) when $\kappa \geq \operatorname{LST}(\mathfrak{K})$, $\kappa^{+}<\mu$ using 1.19(4).
3) Concerning $1.19(2)$, note that if $\left\|M_{1}\right\| \geq \mu$ it is easy to deduce this from $1.18(2)$, i.e, $1.13(2)$. But the whole point in this stage is to deduce something on cardinals $<\mu$.
4) Note that the proof of $1.19(2)$ gives:
$\circledast \operatorname{assume} \operatorname{LST}(\mathfrak{K}) \leq \theta$ and $\delta(*)=\min \left\{\left(2^{\theta}\right)^{+}, \delta\left(2^{\operatorname{LST}(\mathfrak{K})}+\theta\right)\right\} \cdot{ }^{3}$ If $\beth_{\delta(*)} \leq \mu$ then for some $\alpha(*)<\delta(*)$ we have:
\odot if $M_{1} \leq_{\mathfrak{K}} M_{2}$ are from K^{*} and $\left\|M_{1}\right\| \geq \beth_{\alpha(*)}$ then $M_{1} \prec_{\mathbb{L}_{\infty, \theta+}[\mathfrak{K}]} M_{2}$.
5) Similarly for $1.19(3)$ so we can weaken the demand $M \in K_{\geq \chi_{1}}^{*}$
6) We use " λ has countable cofinality, i.e. $\operatorname{cf}(\lambda)=\aleph_{0}$ " in the proof of part (4) of 1.19, but not in the proof of the other parts.
7) Recall that for notational simplicity we assume $\operatorname{LST}(\mathfrak{K}) \geq\left|\tau_{\mathfrak{K}}\right|$ hence $\theta \geq\left|\tau_{\Phi}\right|$.
8) Note that for $1.19(2),(3)$ we can omit λ from Hypothesis 1.18, i.e. we need it only for κ.
9) Note that we shall use not only 1.19 but also its proof.

Proof. 1) The first phrase holds by part (2) noting that $\kappa<\lambda$ if $\theta<\lambda$ as $\theta<\lambda=$ \beth_{λ}. The second phrase holds by 1.12 as its assumption holds by parts (1) and (3).
2) We prove by induction on the ordinal γ that:
$(*)$ if $M_{1} \leq_{\mathfrak{K}} M_{2}$ are from $K_{\geq \kappa}^{*}$ and the formula $\varphi(\bar{x}) \in \mathbb{L}_{\infty, \theta^{+}}[\mathfrak{K}]$ has depth $\leq \gamma$ (so necessarily $\left.\ell g(\bar{x})<\theta^{+}\right)$and $\bar{a} \in \ell g(\bar{x})\left(M_{1}\right)$ then

$$
M_{1} \models \varphi[\bar{a}] \Leftrightarrow M_{2} \models \varphi[\bar{a}] .
$$

As in 1.13, the non-trivial case is to assume $\varphi(\bar{x})=(\exists \bar{y}) \psi(\bar{y}, \bar{x})$ where $\bar{a} \in{ }^{\ell g(\bar{x})}\left(M_{1}\right)$ and $M_{2} \models \varphi[\bar{a}]$. We shall prove $M_{1} \models \varphi[\bar{a}]$, so necessarily $\ell g(\bar{x})+\ell g(\bar{y})<\theta^{+}$and we can choose $\bar{b} \in{ }^{\ell g(\bar{y})}\left(M_{2}\right)$ such that $M_{2} \models \psi[\bar{b}, \bar{a}]$. For $\ell=1,2$ as $M_{\ell} \in K_{\geq \kappa}^{*}$ there is an isomorphism f_{ℓ} from $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\ell}, \Phi\right)$ onto M_{ℓ} for some linear order I_{ℓ} of cardinality $\geq \kappa$.

So we can find $J_{\ell} \subseteq I_{\ell}$ of cardinality θ for $\ell=1,2$ such that $\bar{a} \subseteq M_{1}^{-}$where $M_{1}^{-}=f_{1}\left(\mathrm{EM}_{\tau(\mathfrak{K})}\left(J_{1}, \Phi\right)\right)$, and $\bar{a}^{\wedge} \bar{b} \subseteq M_{2}^{-}$where $M_{2}^{-}=f_{2}\left(\mathrm{EM}_{\tau(\mathfrak{\kappa})}\left(J_{2}, \Phi\right)\right)$ and without loss of generality $M_{1}^{-}=M_{2}^{-} \cap M_{1}$. By $1.18(1)$, i.e. $0.9(1)$, clause (c) clearly $M_{\ell}^{-} \leq_{\mathfrak{K}} M_{\ell}$ and so by Ax.V of AEC (see Definition [She09c, 0.2]), we have $M_{1}^{-} \leq_{\mathfrak{K}} M_{2}^{-}$. First assume $\theta \geq 2^{\mathrm{LST}(\mathfrak{K})}$; in fact it is not a real loss to assume

[^3]this. By renaming without loss of generality there is a transitive set B (in the set theoretic sense) of cardinality $\leq \theta$ such that the following objects belong to it:
$\oplus(a) J_{1}, J_{2}$
(b) Φ (i.e. τ_{Φ} and $\left.\left\langle\left(\operatorname{EM}(n, \Phi), a_{\ell}\right)_{\ell<n}: n<\omega\right\rangle\right)$
(c) \mathfrak{K}, i.e., $\tau_{\mathfrak{K}}$ and $\left\{(M, N): M \leq_{\mathfrak{K}} N\right.$ have universes included in $\left.\operatorname{LST}(\mathfrak{K})\right\}$
(d) $\operatorname{EM}\left(J_{\ell}, \Phi\right)$ and $\left\langle a_{t}: t \in J_{\ell}\right\rangle$ for $\ell=1,2$.

Let χ be large enough, $\mathfrak{B}=\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right)$ and \mathfrak{B}^{+}be \mathfrak{B} expanded by the individual constants $M_{\ell}^{+}=\operatorname{EM}\left(I_{\ell}, \Phi\right),\left\langle a_{t}^{\ell}: t \in I_{\ell}\right\rangle$ the skeleton, M_{ℓ}, M_{ℓ}^{-}and f_{ℓ} (all for $\ell=1,2), \kappa, B$ and x for each $x \in B$. By the assumption $\left\|M_{1}\right\| \geq \kappa=\beth_{1,1}(\theta)$, hence (see here $[\mathrm{She} 09 \mathrm{~g}, 1.2]$) there is \mathfrak{C} such that
\odot (a) \mathfrak{C} is a $\tau\left(\mathfrak{B}^{+}\right)$-model elementarily equivalent to \mathfrak{B}^{+}(that is, in first order logic)
(b) \mathfrak{C} omits the type $\{x \neq b$ and $x \in B: b \in B\}$ but
(c) $\left|\left\{b: \mathfrak{C} \models " b \in \kappa^{\mathfrak{C} "}\right\}\right|=\mu=\|\mathfrak{C}\|$.

Without loss of generality $b \in B \Rightarrow b^{\mathfrak{C}}=b$.
Now
\circledast_{1} if $\mathfrak{C} \models$ " $M \in K$ ", so M is just a member of the model \mathfrak{C} then we can define a $\tau_{\mathfrak{K}}$-model $M^{\mathfrak{C}}=M[\mathfrak{C}]$ as follows:
(a) the set of elements of $M^{\mathfrak{C}}$ is $\{a: \mathfrak{C} \models$ " a is a member of the model M " $\}$
(b) if $R \in \tau_{K}$ is an n-place predicate then

$$
R^{M[\mathfrak{c}]}=\left\{\left\langle a_{\ell}: \ell<n\right\rangle: \mathfrak{C} \models "\left\langle a_{\ell}: \ell<n\right\rangle \in R^{M "}\right\}
$$

(c) if $F \in \tau_{K}$ is an n-place function symbol, $F^{M[\mathfrak{C}]}$ is defined similarly.
\circledast_{2} (a) if $\mathfrak{C} \models$ " I is a linear order" then we define $I^{\mathfrak{C}}$ similarly
(b) similarly if $\mathfrak{C} \models " M$ is a $\tau(\Phi)$-model"
\circledast_{3} if $\mathfrak{C} \mid=$ " I is a directed partial order, $\bar{M}=\left\langle M_{s}: s \in I\right\rangle$ satisfies $M_{s} \in K$ has cardinality $\operatorname{LST}(\mathfrak{K})$ and $s \leq_{I} t \Rightarrow M_{s} \leq_{\mathfrak{K}} M_{t}$ " then also $\left\langle M_{s}^{\mathcal{C}}: s \in I^{\mathfrak{C}}\right\rangle$ satisfies this.
By easy absoluteness (for clauses $(a)_{1},(a)_{2}$ we use [She09a, 1.6-1.7] and $\left.\circledast_{3}\right)$:
$\boxtimes(a)_{1}$ if $\mathfrak{C} \models " M \in K "$ then $M^{\mathfrak{C}} \in K$
$(a)_{2}$ if $\mathfrak{C} \models " M \leq_{\mathfrak{K}} N$ " then $M^{\mathfrak{C}} \leq_{\mathfrak{K}} N^{\mathfrak{C}}$
$(b)_{1}$ if $\mathfrak{C} \models$ " I is a linear order" then $I^{\mathfrak{C}}=I[\mathfrak{C}]$ is a linear order
$(b)_{2}$ if $\mathfrak{C} \models " I \subseteq J$ as linear orders" then $I^{\mathfrak{C}} \subseteq J^{\mathfrak{C}}$
(c) similarly for τ_{Φ}-models
$(d)_{1}$ if $\mathfrak{C} \models " M=\operatorname{EM}(I, \Phi) "$ then there is a canonical isomorphism $f_{I}^{\mathcal{C}}$ from $\operatorname{EM}\left(I^{\mathfrak{C}}, \Phi\right)$ onto $M^{\mathfrak{C}}$ (hence it is also an isomorphism from $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I^{\mathfrak{C}}, \Phi\right)$ onto $\left.M^{\mathfrak{C}} \upharpoonright \tau(\mathfrak{K})\right)$
$(d)_{2}$ if $\mathfrak{C} \models$ " $I \subseteq J$ as linear orders" then $f_{J}^{\mathfrak{C}}$ extends $f_{I}^{\mathbb{C}}$.
Now clearly $J_{\ell}^{\mathfrak{C}}=J_{\ell}$ and $I_{\ell}^{\mathfrak{C}}$ is a linear order of cardinality μ extending J_{ℓ} for $\ell=1,2$. Let $M_{\ell}^{*}=\left(M_{\ell}^{-}\right)^{\mathfrak{C}}$ for $\ell=1,2$.

So recalling clause (c) of \odot we have: $M_{1}^{\mathfrak{C}}, M_{2}^{\mathfrak{C}} \in K_{\mu}^{*}, M_{1}^{\mathfrak{C}} \leq_{\mathfrak{K}} M_{2}^{\mathfrak{C}}, M_{\ell}^{*} \leq_{\mathfrak{K}} M_{\ell}^{\mathfrak{C}}$, $M_{1}^{*} \leq_{\mathfrak{K}} M_{2}^{*}$ and $f_{\ell}^{\mathcal{C}_{0}}, f_{I_{\ell}}^{\mathcal{C}}$ are isomorphisms from $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\ell}^{\mathfrak{C}}, \Phi\right)$ onto $M_{\ell}^{\mathfrak{C}}$, in fact, $f_{I_{\ell}}^{\mathfrak{C}}$ is the identity on $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{\ell}^{\mathfrak{C}}, \Phi\right)=\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{\ell}, \Phi\right)$ and $f_{\ell}^{\mathfrak{C}}$ maps it onto M_{ℓ}^{*} for $\ell=1,2$.

Now $M_{2} \models \psi[\bar{a}, \bar{b}]$, (why? assumed above) hence $M_{2}^{\mathbb{C}} \models \psi[\bar{a}, \bar{b}]$
(why? By 1.14, clause (b) or (c) and the situation recalling 1.18(2), of course noting that $I_{2}, I_{2}^{\mathcal{C}}$ are of cardinality $\geq \kappa=\beth_{1,1}(\theta)$ hence are θ^{+}-wide), hence $M_{2}^{\mathcal{C}} \models$ $\varphi[\bar{a}]$ (by definition of satisfaction), hence $M_{1}^{\mathfrak{C}} \models \varphi[\bar{a}]$. (Why? As $M_{1}^{\mathfrak{C}}, M_{2}^{\mathfrak{C}} \in K_{\mu}^{*}$ hence $M_{1}^{\mathfrak{C}} \prec_{\mathbb{L}_{\infty, \theta^{+}}[\mathfrak{\kappa}]} M_{2}^{\mathfrak{C}}$ by \boxtimes and $1.18(2)$ and recalling $1.13(2)$.) Hence $M_{1} \models \varphi[\bar{a}]$ as required in $1.19(2)$. (Why? By clause (b) of 1.14 recalling $1.18(2)$)

So we are done except for a small debt: the case $\theta<2^{\mathrm{LST}(\mathfrak{K})}$ and $f_{\ell}^{\mathcal{C}}$ is an isomorphism from $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\ell}^{\mathfrak{C}}, \Phi\right)$.

In this case choose two sets B_{1}, B_{2} such that $\left|B_{1}\right|=\theta,\left|B_{2}\right|=2^{\mathrm{LST}(\mathfrak{\kappa})}, B_{1} \subseteq B_{2}$ and concerning the demands in \oplus above the objects from (a),(b),(d) and $\tau_{\mathfrak{K}}$ belong to B_{1}, the objects from (c) belong to B_{2}.

Again, without loss of generality B_{1}, B_{2} are transitive sets and B_{1}, B_{2} serve as individual constants of \mathfrak{B}^{+}as well as each member of B_{1}. Now concerning \mathfrak{C} we demand that it is elementarily equivalent to \mathfrak{B}^{+}; omit $\left\{x \in B_{1} \wedge x \neq b: b \in B_{1}\right\}$ and for some $\mathfrak{B}_{1}^{+} \prec \mathfrak{B}^{+}$of cardinality θ we have $\mathfrak{B}_{1}^{+} \prec \mathfrak{C}$ and $\left\{b: \mathfrak{C} \models b \in B_{2}\right\} \subseteq \mathfrak{B}^{+}$. This influences just the proof of \circledast_{3}.
3) Without loss of generality $M=\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$ and $I \in K_{\geq \chi_{1}}^{\operatorname{lin}}$. As $\gamma<\theta^{+}$ and $\bar{a}, \bar{b} \in{ }^{\gamma} M$ there is $I_{1} \subseteq I$ of cardinality θ such that $\bar{a}, \bar{b} \in{ }^{\gamma} M_{1}$ where $M_{1}=$ $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)$. As $(M, \bar{a}) \equiv_{\mathbb{L}_{\infty, \kappa}+[\mathfrak{K}]}(M, \bar{b})$ necessarily there is $I_{2} \subseteq I$ of cardinality κ and automorphism f of $M_{2}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$ mapping \bar{a} to \bar{b} such that $I_{1} \subseteq I_{2}$. Why? Recalling $0.18(2)$, by the hence and forth argument as in the second part of the proof of 1.11 (3).

Now as in the proof of part (2) there is a linear order I_{3} extending I_{1} of cardinality χ_{1} and an automorphism g of $M_{3}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$ mapping \bar{a} to \bar{b}. Without loss of generality for some linear order I_{4} we have $I \subseteq I_{4}$ and $I_{3} \subseteq I_{4}$.

Let $M_{4}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{4}, \Phi\right)$, now $M \prec_{\mathbb{L}_{\infty, \chi}+[\mathfrak{K}]} M_{4}$ by part (2), $M_{3} \prec_{\mathbb{L}_{\infty, \chi}[\mathfrak{K}]} M_{4}$ by part (3) and $\left(M_{3}, \bar{a}\right) \equiv_{\mathbb{L}_{\infty, \chi^{+}}[\mathfrak{K}]}\left(M_{3}, \bar{b}\right)$ by using the automorphism g of M_{3} so together we are done.
4) So let $M, N \in K_{\lambda}^{*}$ (in fact, hence $\in K_{\lambda}^{* *}$ recalling $K_{\lambda}^{*}=K_{\lambda}^{* *}$ by $1.16(3)$ but not used). By parts (1),(3) the assumptions of $1.12(3)$ hold with λ here standing for κ there, hence its conclusion, i.e. $M \cong N$.
$\square_{1.19}$
Note: here the types below are sets of formulas.
Definition 1.21. Assume $M \in K, \mathbf{I} \subseteq{ }^{\gamma} M$ and $\mathscr{L}, \mathscr{L}_{1}, \mathscr{L}_{2}$ are languages in the vocabulary $\tau_{\mathfrak{K}}$.

1) We say that \mathbf{I} is $(\mathscr{L}, \partial,<\kappa)$-convergent in M, when: $|\mathbf{I}| \geq \partial$ and for every $\bar{b} \in{ }^{\kappa>} M$, for some $\mathbf{J} \subseteq \mathbf{I}$ of cardinality $<\partial$, for some ${ }^{4} p$ we have:
(*) for every $\bar{c} \in \mathbf{I} \backslash \mathbf{J}$, the \mathscr{L}-type of $\bar{c}^{\wedge} \bar{b}$ in M is p.
2) Let

$$
\begin{aligned}
\operatorname{Av}_{\mathscr{L}, \partial,<\kappa}(\mathbf{I}, M)=\{\varphi(\bar{x}, \bar{b}): & \varphi(\bar{x}, \bar{y}) \text { is an } \mathscr{L} \text {-formula, } \ell g(\bar{y})<\kappa, \\
& \bar{a} \in \mathbf{I} \Rightarrow \ell g(\bar{a})=\ell g(\bar{x}), \bar{b} \in{ }^{\ell g(\bar{y})} M, \text { and } \\
& \text { for all but }<\partial \text {-many sequences } \bar{c} \in \mathbf{I} \\
& \bar{c} \text { satisfies } \varphi(\bar{x}, \bar{b}) \text { in } M\}
\end{aligned}
$$

If ∂ is missing, we mean $\partial=\kappa$. In parts (1) and (2) we may write " κ " instead of $<\kappa^{+}$; similarly below. $\left(\kappa^{+}, \kappa\right)$-convergent means $\left(\mathbb{L}_{\infty, \kappa^{+}}(\mathfrak{K}), \kappa^{+},<\kappa^{+}\right)$-convergent.
3) We say that \mathbf{I} is $\left(\mathscr{L}_{1}, \mathscr{L}_{2}, \partial,<\kappa\right)$-based 5 on A in M when:
(a) $A \subseteq M$
(b) \mathbf{I} is $\left(\mathscr{L}_{1}, \partial,<\kappa\right)$-convergent,
(c) $\operatorname{Av}_{\mathscr{L}_{1}, \partial,<\kappa}(\mathbf{I}, M)$ does not $\left(\mathscr{L}_{1}, \mathscr{L}_{2},<\kappa\right)$-split over A, see below.
4) We say that $p(\bar{x}) \in \operatorname{Sfr}_{\mathscr{L}}^{\alpha}(B, M)$ does not $\left(\mathscr{L}_{1}, \mathscr{L}_{2},<\kappa\right)$-split over A when: if $\varphi(\bar{x}, \bar{y}) \in \mathscr{L}_{1}, \alpha=\ell g(\bar{x})<\kappa, \ell g(\bar{y})<\kappa$ and $\bar{b}, \bar{c} \in{ }^{\ell g(\bar{y})} B$ realize the same \mathscr{L}_{2}-type

[^4]in M over A then $\varphi(\bar{x}, \bar{b}) \in p \Leftrightarrow \varphi(\bar{x}, \bar{c}) \in p$; recalling that $\operatorname{Sfr}_{\mathscr{L}}^{\alpha}(A, M)$ is defined in 0.4 and normally $\mathscr{L}_{1}=\mathscr{L}_{2}$ or at least $\mathscr{L}_{1} \subseteq \mathscr{L}_{2}$.
5) Let $\operatorname{Av}_{<\kappa}(\mathbf{I}, M)$ be $\operatorname{Av}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}], \kappa, \kappa}(\mathbf{I}, M)$ and $\mathrm{Av}_{\kappa}(\mathbf{I}, M)$ be $\mathrm{Av}_{\mathbb{L}_{\infty, \kappa}+}\left[\mathfrak{\mathcal { K }] , \kappa ^ { + } , \kappa ^ { + }}(\mathbf{I}, M)\right.$.

Remark 1.22.1) See definition of $\operatorname{Sav}^{\alpha}(M)$ in $1.37(2)$ below.
2) An alternative for clause (c) of $1.21(3)$ is:
$(c)^{\prime}$ the set $\left\{\operatorname{Av}_{\mathscr{L}, \partial,<\kappa}(f(\mathbf{I}), M): f\right.$ an automorphism of M over $\left.A\right\}$ has cardinality $\leq \beth_{1,1}(\operatorname{LST}(\mathfrak{K})+\theta+|A|)<\|M\|$.

Claim 1.23. 1) Assume that $M \in K, A \subseteq M, \mathbf{I} \subseteq{ }^{\theta} M,|\mathbf{I}| \geq \partial=\operatorname{cf}(\partial)>\kappa \geq$ $\theta+\operatorname{LST}(\mathfrak{K})$ and \mathbf{I} is $(\mathscr{L}, \partial, \kappa)$-convergent. Then the type $p=\operatorname{Av}_{\mathscr{L}, \partial, \kappa}(\mathbf{I}, M)$ belongs to $\operatorname{Sfr}_{\mathscr{L}}^{\theta}(M)=\operatorname{Sfr}_{\mathscr{L}}^{\theta}(M, M)$; i.e., it is complete, recalling Definition 0.4 (no demand that it is realized in some $N \geq_{\mathfrak{K}} M$!).
2) Also, \mathbf{I} is $(\mathscr{L}, \partial, \kappa)$-based on some set of cardinality $\leq \partial$, even on $\cup \mathbf{J}$, for any $\mathbf{J} \subseteq \mathbf{I}$ of cardinality $\geq \partial$.

Proof. 1) By the definition.
2) By the definitions: if $\bar{b} \in{ }^{\kappa^{+}>} M, \varphi=\varphi(\bar{x}, \bar{y}) \in \mathscr{L}$ and $\ell g(\bar{b})=\ell g(\bar{y})$, $\ell g(\bar{x})=\theta$, then by the convergence

$$
\begin{aligned}
\varphi(\bar{x}, \bar{b}) \in p \Leftrightarrow & \text { for all but }<\partial \text { members } \bar{a} \text { of } \mathbf{I}, M \models \varphi[\bar{a}, \bar{b}] \Leftrightarrow \\
& \text { for all but }<\partial \text { members of } \mathbf{J}, M \models \varphi[\bar{a}, \bar{b}] .
\end{aligned}
$$

So only $\operatorname{tp}_{\mathscr{L}}(\bar{b}, \bigcup \mathbf{J}, M)$ matters, hence the non-splitting required in clause (c) of Definition 1.21(3).

As in [She09g, 1.7], we deduce non-splitting over a small set from non-order.
Claim 1.24. Assume $M=\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi), \theta+\operatorname{LST}(\mathfrak{K}) \leq \kappa<\lambda$, and $\beth_{1,1}(\partial) \leq|I|$ where $\partial=\left(2^{2^{\kappa}}\right)^{+}$or I is well ordered and $\partial=\left(2^{\kappa}\right)^{+}$. If $M \prec_{\mathbb{L}_{\infty}, \partial}[\mathfrak{\Omega}] N$ then for every $\bar{a} \in{ }^{\theta \geq} N$ there is $B \subseteq M$ of cardinality $<\partial$ such that $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}+[\mathfrak{\Omega}]}(\bar{a}, M, N)$ does not $\left(\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}], \mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]\right)$-split over B.

Proof. Let $\bar{x}=\left\langle x_{i}: i<\ell g(\bar{a})\right\rangle$.
We try to choose $B_{\alpha}, \gamma_{\alpha}, \bar{a}_{\alpha}, \bar{b}_{\alpha}, \bar{c}_{\alpha}, \varphi_{\alpha}\left(\bar{x}, \bar{y}_{\alpha}\right) \in \mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]$ by induction on $\alpha<\partial$ such that

* (a) $B_{\alpha}=\bigcup\left\{\bar{a}_{\beta}: \beta<\alpha\right\}$
(b) $\bar{b}_{\alpha}, \bar{c}_{\alpha} \in{ }^{\gamma_{\alpha}} M$ and $\gamma_{\alpha}<\kappa^{+}$
(c) $\varphi_{\alpha}\left(\bar{x}, \bar{y}_{\alpha}\right) \in \mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]$ such that $\ell g\left(\bar{y}_{\alpha}\right)=\gamma_{\alpha}$
(d) $N \models " \varphi_{\alpha}\left[\bar{a}, \bar{b}_{\alpha}\right] \equiv \neg \varphi_{\alpha}\left[\bar{a}, \bar{c}_{\alpha}\right] "$
(e) $\bar{a}_{\alpha} \in^{\ell g(\bar{a})} M$ realizes $\left\{\varphi_{\beta}\left(\bar{x}, \bar{b}_{\beta}\right) \equiv \neg \varphi_{\beta}\left(\bar{x}, \bar{c}_{\beta}\right): \beta<\alpha\right\}$ in M
(f) $M \models$ " $\varphi_{\alpha}\left[\bar{a}_{\beta}, \bar{b}_{\alpha}\right] \equiv \varphi_{\alpha}\left[\bar{a}_{\beta}, \bar{c}_{\alpha}\right]$ " for $\beta \leq \alpha$.

If we are stuck at $\alpha(*)<\partial$ then we cannot choose $\gamma_{\alpha}, \bar{b}_{\alpha}, \bar{c}_{\alpha}, \varphi_{\alpha}\left(\bar{x}, \bar{y}_{\alpha}\right)$ clauses (b), (c), (d), because then \bar{a}_{α} as required in clauses (e),(f) exists because $M \prec_{\mathbb{L}_{\infty, \mathcal{O}}[\mathcal{R}]}$ N. Hence $B:=\bigcup\left\{\bar{a}_{\alpha}: \alpha<\alpha(*)\right\}$ is as required. So assume that we have carried the induction. As $\gamma_{\alpha}<\kappa^{+}<\partial=\operatorname{cf}(\partial)$, without loss of generality, $\gamma_{\alpha}=\gamma<\kappa^{+}$ for every $\alpha<\partial$.

Let $\partial_{1}=\left(2^{\kappa}\right)^{+}$.
Now by $1.25(5)$ below when I is not well ordered and by $1.25(4)$ below when I is well ordered (and part (1) of $1.25(1)$, recalling I is κ^{+}-wide as $\kappa<\partial$ and $\beth_{1,1}(\partial) \leq$ $|I|)$ clearly for some $S \subseteq \partial$ of order type ∂_{1}, the sequence $\left\langle\bar{a}_{\alpha}{ }^{\wedge} \bar{b}_{\alpha}{ }^{\wedge} \bar{c}_{\alpha}: \alpha \in S\right\rangle$ is $\left(\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}], \kappa^{+}, \kappa\right)$-convergent and $\left(\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}],<\omega\right)$-indiscernible in M hence without
loss of generality $\alpha \in S \Rightarrow \varphi_{\alpha}=\varphi$. But as $\partial_{1}>\kappa^{+}$this contradicts (e) $+(\mathrm{f})$ of \circledast (if we use $\partial_{1}=\kappa^{+}$, we can use a further conclusion of 1.25(1) stated in 1.25(2), i.e., $\left\langle\bar{a}_{\alpha}{ }^{\wedge} \bar{b}_{\alpha}{ }^{\wedge} \bar{c}_{\alpha}: \alpha \in S\right\rangle$ is a $\left(\mathbb{L}_{\infty, \kappa}[\mathfrak{K}],<\omega\right)$-indiscernible set - not just a sequence, in contradiction to $(\mathrm{e})+(\mathrm{f})$ of $\circledast)$.
$\square_{1.24}$

Claim 1.25. Assume $M=\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi), I$ is κ^{+}-wide, $\kappa<\lambda$ and $\operatorname{LST}(\mathfrak{K})+\theta \leq$ $\kappa<\partial$.

1) Assume that $\mathscr{L}=\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]$ and $\bar{a}_{\alpha}=\left\langle\sigma_{i}\left(\ldots, a_{t(\alpha, i, \ell)}, \ldots\right)_{\ell<n_{i}}: i<\theta\right\rangle$ for $\alpha<\partial$ so σ_{i} is a $\tau(\Phi)$-term, and $\operatorname{cf}(\partial)>\kappa$. Assume further that letting $\bar{t}_{\alpha}=\left\langle t(\alpha, i, \ell): i<\theta, \ell<n_{i}\right\rangle$, the sequence $\left\langle\bar{t}_{\alpha}: \alpha<\partial\right\rangle$ is indiscernible in I for quantifier free formulas (i.e. the truth values of $t\left(\alpha_{1}, i_{1}, \ell_{1}\right)<t\left(\alpha_{2}, i_{2}, \ell_{2}\right)$ depend only on $i_{1}, \ell_{1}, i_{2}, \ell_{2}$ and the truth value of $\left.\alpha_{1}<\alpha_{2}, \alpha_{1}=\alpha_{2}, \alpha_{1}>\alpha_{2}\right)$. Then $\left\langle\bar{a}_{\alpha}: \alpha<\partial\right\rangle$ is $(\mathscr{L}, \partial, \kappa)$-convergent in the model M.
2) In part (1), even dropping the assumption $\operatorname{cf}(\partial)>\kappa$, moreover, the sequence $\left\langle\bar{a}_{\alpha}: \alpha<\partial\right\rangle$ is $\left(\mathscr{L}, \kappa^{+}, \kappa\right)$-convergent and $(\mathscr{L},<\omega)$-indiscernible in M.
3) In part (1) and in part (2), letting

$$
J_{0}=\left\{t(0, i, \ell): t(0, i, \ell)=t(1, i, \ell) \text { and } i<\theta, \ell<n_{i}\right\}
$$

assume $J_{0} \subseteq J \subseteq I, J$ is κ^{+}-wide (e.g. $J=\left\{t(\alpha, i, \ell): \alpha<\kappa^{+}, i<\theta, \ell<n_{i}\right\}$), B is the universe of $\operatorname{EM}_{\tau(\mathfrak{K})}(J, \Phi), i_{1}, i_{2}<\theta, \ell_{1}<n_{\ell_{1}}, \ell_{2}<n_{i_{2}}$, and

$$
\begin{gathered}
{\left[\alpha, \beta<\partial \Rightarrow t\left(\alpha, i_{1}, \ell_{1}\right)<_{I} t\left(\beta, i_{2}, \ell_{2}\right)\right] \Rightarrow} \\
\left(\exists s \in J_{0}\right)\left[\alpha, \beta<\partial \Rightarrow t\left(\alpha, i_{1}, \ell_{1}\right)<_{I} s<_{I} t\left(\beta, i_{2}, \ell_{2}\right)\right]
\end{gathered}
$$

then B is a (∂, κ)-base of $\left\{\bar{a}_{\alpha}: \alpha<\partial\right\}$.
[The conclusion did not depend on s anywhere, so I changed it.]
4) If I is well ordered (or just is $\operatorname{EM}_{\{<\}}(J, \Psi), \Psi \in \Upsilon^{\circ \mathrm{r}}$, J well ordered), $\operatorname{LST}(\mathfrak{K})+\theta \leq \kappa, 2^{\kappa}<\partial,(\forall \alpha<\partial)\left[|\alpha|^{\theta}<\partial=\operatorname{cf}(\partial)\right]$ and $\bar{b}_{\alpha} \in{ }^{\theta} M$ for $\alpha<\partial$, then for some stationary $S \subseteq\left\{\delta<\partial: \operatorname{cf}(\delta) \geq \theta^{+}\right\}$, the sequence $\left\langle\bar{a}_{\alpha}: \alpha \in S\right\rangle$ is as in part (1); hence it is $\left(\kappa^{+}, \kappa\right)$-convergent in M. Moreover, if $S_{0} \subseteq\left\{\delta<\partial: \operatorname{cf}(\delta) \geq \theta^{+}\right\}$is stationary we can demand $S \subseteq S_{0}$.
5) If in (4) we omit the assumption " I is well ordered", and add $\partial \rightarrow\left(\partial_{1}\right)_{2^{\kappa}}^{2}$, e.g. $\partial_{1}=\left(2^{\kappa}\right)^{+}, \partial=\left(2^{2^{\kappa}}\right)^{+}$then we can find $S \subseteq \partial,|S|=\partial_{1}$ such that $\left\langle\bar{a}_{\alpha}: \alpha \in S\right\rangle$ is as in (1).

Remark 1.26. In fact the well order case always applies at least if $\partial<\mu$.

Proof. 1) Let $\bar{b} \in{ }^{\kappa} M$, so $\bar{b}=\left\langle\sigma_{j}^{*}\left(\ldots, a_{s(j, \ell)}, \ldots\right)_{\ell<m_{j}}: j<\kappa\right\rangle$ where σ_{i}^{*} is a $\tau(\Phi)$-term, $s(j, \ell) \in I$ and let $\bar{s}=\left\langle s(j, \ell): \ell<m_{j}, j<\kappa\right\rangle$.

Now for each $i_{1}<\theta, \ell_{1}<n_{i_{1}}$ and $j_{1}<\kappa, k_{1}<m_{j_{1}}$ the sequence $\left\langle t\left(\alpha, i_{1}, \ell_{1}\right)\right.$: $\alpha<\partial\rangle$ is monotonic (in I) hence there is $\alpha\left(i_{1}, \ell_{1}, j_{1}, k_{1}\right)<\partial$ such that
$(*)_{1}$ if $\beta, \gamma \in \partial \backslash\left\{\alpha\left(i_{1}, \ell_{1}, j_{1}, k_{1}\right)\right\}$ and $\beta<\alpha\left(i_{1}, \ell_{1}, j_{1}, k_{1}\right) \equiv \gamma<\alpha\left(i_{1}, \ell_{1}, j_{1}, k_{1}\right)$ then

$$
\left(t\left(\beta, i_{1}, \ell_{1}\right)<_{I} s\left(j_{1}, k_{1}\right)\right) \equiv\left(t\left(\gamma, i_{1}, \ell_{1}\right)<_{I} s\left(j_{1}, k_{1}\right)\right)
$$

and

$$
\left(t\left(\beta, i_{1}, \ell_{1}\right)>_{I} s\left(j_{1}, k_{1}\right)\right) \equiv\left(t\left(\gamma, i_{1}, \ell_{1}\right)>_{I} s\left(j_{1}, k_{1}\right)\right)
$$

Let

$$
u:=\left\{\alpha\left(i_{1}, \ell_{1}, j_{1}, k_{1}\right): i_{1}<\theta, \ell_{1}<n_{i_{1}}, j_{1}<\kappa, k_{1}<m_{j_{1}}\right\} .
$$

It is a subset of ∂ of cardinality $\leq \theta+\kappa=\kappa$.
Hence
$(*)_{2}$ if $\beta, \gamma \in \partial \backslash u$ and $\beta \mathcal{E}_{u} \gamma$ (which is defined by $(\forall \alpha \in u)[\alpha<\beta \equiv \alpha<\gamma]$) then $\bar{t}_{\beta}{ }^{\wedge} \bar{s}, \bar{t}_{\gamma}{ }^{\wedge} \bar{s}$ realize the same quantifier free type in I.
Now by clause (c) of 1.14 recalling I is κ^{+}-wide we have
$(*)_{3}$ if $\beta, \gamma \in \partial \backslash u$ and $\beta \mathcal{E}_{u} \gamma$ then $\bar{a}_{\beta}{ }^{\wedge} \bar{b}, \bar{a}_{\gamma}{ }^{\wedge} \bar{b}$ realize the same $\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]$-type in M.
As \bar{b} was any member of ${ }^{\kappa} M$ we have gotten
$(*)_{4}$ if $\bar{b} \in{ }^{\kappa \geq} M$, then for some $u=u_{\bar{b}} \subseteq \partial$ of cardinality $\leq \kappa$ we have: if $\beta, \gamma \in \partial \backslash u$ and $\beta \mathcal{E}_{u} \gamma$ then $\bar{a}_{\beta}{ }^{\wedge} \bar{b}, \bar{a}_{\gamma}{ }^{\wedge} \bar{b}$ realize the same $\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]$-type in M.
As we are assuming $\operatorname{cf}(\partial)>\kappa\left(\geq \theta+\operatorname{LST}(\mathfrak{K}) \geq\left|\tau_{\Phi}\right|\right)$ we can conclude that
$(*)_{5}\left\langle\bar{a}_{\alpha}: \alpha<\partial\right\rangle$ is $(\mathscr{L}, \partial, \kappa)$-convergent in M.
So we have proved 1.25(1).
2) We start as in the proof of part (1). However, after $(*)_{3}$ above letting for simplicity $u^{+}=\{\alpha<\partial$: for some $\beta \in u \cap \alpha$ we have $\alpha+\kappa=\beta+\kappa\}$ we have
$(*)_{6}$ if $\beta, \gamma \in \partial \backslash u^{+}$and $\beta<\gamma, \neg\left(\beta E_{u^{+}} \gamma\right)$ then we can find $\left(\mu^{+}, I^{+}, \bar{s}^{\prime}, \bar{b}^{\prime}\right)$ such that
$(\alpha) I \subseteq I^{+} \in K^{\text {lin }}$
(β) $M^{+}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I^{+}, \Phi\right)$ hence $M \prec_{\mathbb{L}_{\infty, \kappa}+[\mathfrak{K}]} M^{+}$
$(\gamma) \bar{s}^{\prime}=\left\langle s^{\prime}(j, k): k<m_{j}, j<\kappa\right\rangle$ a sequence of elements of I^{+}
($\delta) \bar{b}^{\prime}=\left\langle\sigma_{j}^{*}\left(\ldots, a_{s^{\prime}(j, \ell)}, \ldots\right)_{\ell<m_{j}}: j<\kappa\right\rangle \in{ }^{\kappa}\left(M^{+}\right)$
$(\varepsilon) \bar{b}^{\wedge} \bar{a}_{\gamma}, \bar{b}^{\prime \wedge} \bar{a}_{\beta}$ realize the same $\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]$-types in M^{+}as $\bar{b}^{\wedge} \bar{a}_{\gamma}, \bar{b}^{\wedge} \bar{a}_{\beta}$ respectively
(ζ) $\bar{s}^{\wedge} \bar{t}_{\beta}, \bar{s}^{\prime} \bar{t}_{\beta}$ form a Δ-system pair, i.e. they are as in \boxtimes from $1.5(2)$.
Why?

$$
\begin{gathered}
\text { Let } w^{+}=\left\{(j, k): k<m_{j}, j<\kappa,\left(\exists \ell<n_{i_{1}}, i_{1}<\theta\right)\left[\alpha\left(i_{1}, \ell_{1}, j, k\right) \in(\beta, \gamma)\right]\right\} \\
\qquad w^{-}:=\left\{(j, k): j<\kappa, k<m_{j} \text { and }(j, \kappa) \notin w^{+}\right\} .
\end{gathered}
$$

We choose I^{+}extending I and $\bar{s}_{\varepsilon}=\left\langle s_{\varepsilon}(j, k): k<m_{j}, j<\kappa\right\rangle$ for $\varepsilon<\kappa$ such that
(a) the set of elements of I^{+}is the disjoint union

$$
I \cup\left\{s_{\varepsilon}(j, k):(j, k) \in w, \varepsilon \in(0, \kappa)\right\}
$$

(b) $\bar{s}_{\varepsilon}, \bar{s}$ realize the same quantifier-free type in I^{+}
(c) if $\varepsilon, \zeta<\kappa$ then $\bar{t}_{\gamma+\varepsilon}{ }^{\wedge} \bar{s}_{\zeta}$ realizes in I^{+}the quantifier-free type $\operatorname{tp}_{\mathrm{qf}}\left(\bar{t}_{\beta}{ }^{\wedge} \bar{s}, \varnothing, I\right)$ if $\varepsilon<\zeta$ and $\operatorname{tp}_{q}\left(\bar{t}_{\gamma}{ }^{\wedge} \bar{s}, \varnothing, I\right)$ if $\varepsilon \geq \zeta$
(d) $\left\langle\bar{t}_{\gamma+\varepsilon}{ }^{\wedge} \bar{s}_{\varepsilon}: \varepsilon<\kappa\right\rangle$ is indiscernible for quantifier-free formulas on I^{+}
(e) $\bar{s}_{0}=\bar{s}$.

This is straight. Using $\bar{s}^{\prime}=\bar{s}_{1}$ we are done.
Now as Φ has the κ-non-order property (by Claim 1.5(2) which contains a definition, noting that the assumption of 1.5 holds by $1.18(1)$ and also $1.18(2))$, repeating $(*)_{4},(*)_{5}$ we get
$(*)_{7}$ for every $\bar{b} \in{ }^{\kappa \geq} M$, for some $u=u_{\bar{b}}^{+} \in[\partial]^{\leq \kappa}$ if $\beta, \gamma \in \partial \backslash u^{+}$then $\bar{a}_{\beta}{ }^{\wedge} \bar{b}$, $\bar{a}_{\gamma}{ }^{\wedge} \bar{b}$ realize the same $\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]$-type in M.
In other words
$(*)_{8}$ the sequence $\left\langle\bar{a}_{\alpha}: \alpha<\partial\right\rangle$ is $\left(\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}], \kappa^{+}\right)$-convergent.
The proof that it is a $\left(\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}],<\omega\right)$-indiscernible set is similar.
3) Not used; easy by $1.23(2)$ and convergence. [That is, note that we can find I^{+}and $\bar{a}_{\alpha}^{\prime}=\left\langle\sigma_{i}\left(\ldots, a_{t^{\prime}(\alpha, i, \ell)}, \ldots\right)_{\ell_{i}<n_{i}}: i<\theta\right\rangle$ for $\alpha<\partial+\gamma$ such that:
(a) $I^{+} \in K^{\text {lin }}$ extend I
(b) $t^{\prime}(\alpha, i, \ell) \in I^{+}$
(c) $\bar{t}_{\alpha}^{\prime}=\left\langle t^{\prime}(\alpha, i, \ell): i<\theta, \ell<n_{i}\right\rangle$
(d) $\left\langle\bar{t}_{\alpha}^{\prime}: \alpha<\partial+\gamma\right\rangle$ is indiscernible for quantifier-free formulas in I^{+}
(e) $\left\langle\bar{t}_{\alpha}: \alpha<\partial\right\rangle^{\wedge}\left\langle\bar{t}_{\alpha}^{\prime}: \alpha \in[\partial, \partial+\partial)\right\rangle$ is indiscernible for quantifier-free formulas in I^{\prime}
(f) for each $i<\theta, \ell<n_{i}$ such that $t(0, i, \ell)=(j, i, t)$, the convex hull I_{*} of $\left\{t^{\prime}(\alpha, i, \ell): \alpha<\partial\right\}$ in I^{+}is disjoint to I, and if $s_{1}<_{I} s_{2}$ and $\left(s_{1}, s_{2}\right)_{I^{*}} \cap I_{*}=\varnothing$ then $\left[s_{1}, s_{2}\right]_{I^{*}} \cap J_{0} \neq \varnothing$.
So we can average over $\left\langle\bar{a}_{\alpha}^{\prime}: \alpha<\partial\right\rangle$ instead [of] averaging over $\left\langle\bar{a}_{\alpha}: \alpha<\partial\right\rangle$, and this implies the result. In fact we can weaken the assumption.]
4) Should be clear. [Still, let $\bar{t}_{\alpha}=\left\langle t_{\alpha, i}: i<\theta\right\rangle$ be such that

$$
\bar{b}_{\alpha}=\left\langle\sigma_{\alpha, j}\left(\ldots, a_{t_{\alpha, i(j, \alpha, \ell)}}, \ldots\right)_{\ell<n(\alpha, j)}: j<\theta\right\rangle
$$

So as $\left(\operatorname{LST}(\mathfrak{K})+\left|\tau_{\Phi}\right|\right)^{\theta}<\partial=\operatorname{cf}(\partial)$ for some stationary $S_{1} \subseteq\left\{\delta<\partial\right.$: $\left.\operatorname{cf}(\delta) \geq \theta^{+}\right\}$ we have $\alpha \in S_{1} \wedge j<\theta \Rightarrow \sigma_{\alpha, j}=\sigma_{j}$ (hence $\left.j<\theta \Rightarrow n(\alpha, j)=n(j)\right)$ and

$$
\alpha \in S_{1} \wedge j<\theta \wedge \ell<n(j) \Rightarrow i(j, \alpha, \ell)=i(j, \ell)
$$

and for every $i_{1}, i_{2}<\theta$ we have $t_{\alpha, i_{1}}<_{I} t_{\alpha, i_{2}} \equiv\left(i_{1}, i_{2}\right) \in W$ for some sequence $\bar{\sigma}=$ $\left\langle\sigma_{j}: j<\theta\right\rangle$ of τ_{Φ}-terms and $W \subseteq \kappa \times \kappa$ and sequence $\langle\langle i(j, \ell): \ell<n(j)\rangle: j<\theta\rangle$.

If I is well ordered, for $\delta \in S_{1}$ let
$\gamma_{\delta}=\min \left\{\gamma:\right.$ if $i<\theta$ and there are $\beta<\delta, j<\theta$ such that $t_{\delta, i}<_{I} t_{\beta, j}$ and then letting $\left(\beta_{\delta, i}, j_{\delta, i}\right)$ be such a pair with $t_{\beta_{\delta, i}, j_{\delta, i}}$ being $<_{I}$-minimal, we have $\left.\beta_{\delta, i}<\gamma\right\}$.
[I tried to reformat this into \{align*\}, but I couldn't follow what was written. It'd be more readable if we broke up the definition over two sets. Even if you never use it anywhere else, define a dummy set like $D_{\delta, i}=\left\{t_{\beta, j}: \beta<\delta, j<\theta, t_{\delta, i}<_{I} t_{\beta, j}\right\}$. Then the real definition is a lot more digestible: $\gamma_{\delta}=\min \left\{\gamma: t_{\beta, j} \in D_{\delta, i}\right.$ is $<_{I}$-minimal $\left.\Rightarrow \beta<\gamma\right\}$. Not only that, but now you can specify exactly how β depends on i, which seems to be a sticking point both in the definition and in the following paragraph.]

Clearly γ_{δ} is well defined and $<\delta$ so by Fodor lemma, for some $\gamma_{*}<\partial$, the set $S_{1}:=\left\{\delta \in S_{2}: \gamma_{\delta}=\gamma_{*}\right\}$ is stationary. As $\left|\gamma_{*}\right|^{\theta}<\partial$, for some $u \subseteq \theta$ and stationary $S_{3} \subseteq S_{2}$ we have: if $\delta \in S_{3}$ then $j \in u \Leftrightarrow\left(\beta_{\delta, i}, j_{\delta, i}\right)$ well defined and $j \in u \wedge \alpha \in S_{3} \Rightarrow\left(\beta_{\delta, i}, j_{\delta, i}\right)=\left(\beta_{i}, j_{i}\right)$ and for each $i \in u$ the truth value of " $t_{\delta, i}=t_{\beta_{i}, j_{i}}$ " is the same for all $\delta \in S_{3}$.

Now apply part (1) to $\left\langle\bar{b}_{\alpha}: \alpha \in S_{3}\right\rangle$.]
5) By (1) and the definition of $\partial \rightarrow\left(\partial_{1}\right)_{2^{\kappa}}^{2}$.

Claim 1.27. 1) If $M \leq_{\mathfrak{K}} N$ are from $K_{\lambda}^{*}, \kappa \in[\operatorname{LST}(\mathfrak{K}), \lambda), \kappa^{+}<\partial=\operatorname{cf}(\partial)<\lambda$ and moreover $\theta \leq \kappa$ and $\bar{a} \in{ }^{\theta} N$ then there is a $\left(\kappa^{+}, \kappa\right)$-convergent set $\mathbf{I} \subseteq{ }^{\theta} M$ of cardinality ∂ such that $\operatorname{Av}_{\kappa}(\mathbf{I}, M)$ is realized in N by \bar{a}.
2) In fact we can weaken $M, N \in K_{\lambda}^{*}$ to $M, N \in K_{\geq \beth_{1,1}\left(\partial^{\prime}\right)}$ where, e.g. $\partial^{\prime}=$ $\beth_{5}(\kappa)^{+}$.
3) Assume $\theta \leq \kappa, \kappa \in[\operatorname{LST}(\mathfrak{K}), \lambda)$, $\partial^{\prime}=\beth_{5}(\kappa)^{+}$and $M_{1} \in K_{\geq \beth_{1,1}\left(\partial^{\prime}\right)}^{*}$. Assume further $M_{1} \leq_{\mathfrak{K}} M_{2}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right),|\xi|=\theta$, and $\mathbf{I} \subseteq{ }^{\xi}\left(M_{1}\right)$ is a $\left(\kappa^{+}, \kappa\right)$-convergent set ${ }^{6}$ of cardinality ∂^{\prime}. If $I_{2}<_{K^{\text {flin }}}^{*} I_{3}$ (or just I_{3} is κ^{+}-wide over I_{2}, which follows as $\left.\left|I_{2}\right| \geq|\mathbf{I}|=\partial^{\prime}\right)$ and $M_{3}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$ then

[^5](a) We can find $\bar{d} \in{ }^{\xi}\left(M_{3}\right)$ realizing $\operatorname{Av}_{\kappa}\left(\mathbf{I}, M_{2}\right)$, so [it is] well defined.
(b) If $M_{1} \leq_{\mathfrak{K}} N \in K^{*}$ and $\bar{d}^{*} \in \xi^{\xi} N,|\xi| \leq \theta$ then we can find $\bar{d} \in{ }^{\xi}\left(M_{3}\right)$ realizing $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}+[\mathfrak{K}]}\left(\bar{d}^{*}, M_{1}, N\right)$, and $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}+[\mathfrak{K}]}\left(\bar{d}, M_{2}, M_{3}\right)$ is the average of some $\left(\kappa^{+}, \kappa\right)$-convergent $\mathbf{I}^{\prime} \subseteq{ }^{\alpha}\left(M_{1}\right)$ of cardinality ∂^{\prime}.

Remark 1.28. The exact value of ∂^{\prime} has no influences for our purpose.

Proof. 1) Without loss of generality $M=\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$. Let $\partial_{0}=\partial$ and $\partial_{\ell+1}=$ $\beth_{2}\left(\partial_{\ell}\right)^{+}$for $\ell=0,1$ so $\partial_{\ell}<\lambda$ and

$$
\ell \in\{1,2\} \Rightarrow\left(\forall \alpha<\partial_{\ell}\right)\left[|\alpha|^{\kappa+\theta}<\partial_{\ell}=\operatorname{cf}\left(\partial_{\ell}\right)<\lambda\right] .
$$

If I is well ordered (which is O.K. by 1.19(4)) and $(\forall \alpha<\partial)\left[|\alpha|^{\kappa}<\partial\right]$ then we can use $\partial_{\ell}=\partial$.

By 1.24 there is $B_{*} \subseteq M$ of cardinality $<\partial_{2}$ (or just $\leq 2^{2^{\kappa}}<\partial_{2}$) such that $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]}(\bar{a}, M, N)$ does not $\left(\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}], \mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]\right)$-split over B_{*}.

Now by $1.19(1)$ for every $B \subseteq M,|B|<\partial_{2}$ there is $\bar{a}^{\prime} \in{ }^{\theta} M$ realizing in M, equivalently in N (with $\lg (\bar{x})=\theta$, of course), the type

$$
\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}+[\mathfrak{K}]}(\bar{a}, B, N)=\left\{\varphi(\bar{x}, \bar{b}): \bar{b} \in{ }^{\kappa \geq} B, \varphi(\bar{x}, \bar{y}) \in \mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}], N \models \varphi[\bar{a}, \bar{b}]\right\}
$$

We can choose $J_{\alpha}, B_{\alpha}, \bar{a}_{\alpha}$ by induction on $\alpha<\partial_{2}$ such that

$$
B_{\alpha} \supseteq \bigcup\left\{\bar{a}_{\beta}: \beta<\alpha\right\} \cup B_{*}
$$

B_{α} is the universe of $\operatorname{EM}\left(J_{\alpha}, \Phi\right), J_{\alpha} \subseteq I,\left|J_{\alpha}\right|<\partial_{2}, J_{\alpha}$ increasing with α and J_{α} is quite closed (e.g. is $\mathfrak{B}_{\alpha} \cap I$ where $\mathfrak{B}_{\alpha} \prec_{\mathbb{L}_{\kappa^{+}, \kappa^{+}}}\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right)$ with

$$
M, N, \operatorname{EM}(I, \Phi), \mathfrak{K},\left\langle\bar{a}_{\beta}: \beta<\alpha\right\rangle, \mathfrak{K}, \kappa, \theta
$$

belonging to $\mathfrak{B}_{\alpha}, \mathfrak{B}_{\alpha}$ has cardinality $<\partial_{2}$, and $\mathfrak{B}_{\alpha} \cap \partial_{2} \in \partial_{2}$). Then choose $\bar{a}^{\prime}=\bar{a}_{\alpha}$ as above, i.e. $\bar{a}_{\alpha} \in{ }^{\theta} M$ realizes the same $\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]$-type as \bar{a} over $B_{\alpha}=M \cap \mathfrak{B}_{\alpha}=$ $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{\alpha}, \Phi\right)$ in N; such \bar{a}_{α} exists by $1.19(1)$. So for some set $S_{1} \subseteq \partial_{2}$ of order type ∂_{1} the sequence $\mathbf{I}=\left\langle\bar{a}_{\beta}: \beta \in S_{1}\right\rangle$ is (κ^{+}, κ)-convergent (by 1.25(4),(5)).

It is enough to show that \mathbf{I} is as required, toward contradiction assume that not. Then there is an appropriate formula $\varphi(\bar{x}, \bar{y})$ with $\ell g(\bar{x})=\theta, \ell g(\bar{y})=\kappa$ and $\bar{b} \in{ }^{\kappa} M$ such that $N \models \varphi[\bar{a}, \bar{b}]$ but $u:=\left\{\alpha \in S_{1}: M \models \varphi\left[\bar{a}_{\alpha}, \bar{b}\right]\right\}$ has cardinality $<\kappa^{+}$. Now for $\alpha \in S_{1}$ as J_{α} was chosen "closed enough", there is

$$
\bar{b}_{\alpha} \in{ }^{\kappa}\left(\mathrm{EM}_{\tau(\mathfrak{K})}\left(J_{\alpha}, \Phi\right)\right) \subseteq{ }^{\kappa} M
$$

realizing $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}+[\{]]}\left(\bar{b}, B_{*}, M\right)$ such that

$$
\beta \in S_{1} \cap \alpha \Rightarrow M \models " \varphi\left[\bar{a}_{\beta}, \bar{b}\right] \equiv \varphi\left[\bar{a}_{\beta}, \bar{b}_{\alpha}\right] "
$$

(possible, e.g. as $\left|B_{\alpha}\right|^{|S \cap \alpha|} \leq\left(2^{<\partial_{1}}\right)^{<\partial_{1}}<\partial_{2}$).
So, again by $1.25(4),(5)$, for some $S_{0} \subseteq S_{1}$ of order type $\partial=\partial_{0}$, the sequence $\left\langle\bar{a}_{\alpha}{ }^{\wedge} \bar{b}_{\alpha}: \alpha \in S_{0}\right\rangle$ is $\left(\mathbb{L}_{\infty, \kappa^{+}}, \kappa^{+}, \kappa\right)$-convergent in M and $\left(\mathbb{L}_{\infty, \kappa^{+}[\mathfrak{\kappa}]},<\omega\right)$ indiscernible. Let $\alpha \in S_{0}$ be such that $\left|S_{0} \cap \alpha\right|>\kappa$, possible as $\left|S_{0}\right|=\partial_{0}>\kappa^{+}$. So the set $\left\{\beta \in S_{1} \cap \alpha: M \models \varphi\left[\bar{a}_{\beta}, \bar{b}_{\alpha}\right]\right\}$ has cardinality $\leq \kappa$ (being equal to $\left.\left\{\beta \in S_{1} \cap \alpha: N \models \varphi\left[\bar{a}_{\beta}, \bar{b}\right]\right\}\right)$ but $\alpha \in S_{0} \subseteq S_{1}$ and $\left|S_{0} \cap \alpha\right|>\kappa$, so for some $\beta<\alpha$ from $S_{0}, M \models \neg \varphi\left[a_{\beta}, \bar{b}_{\alpha}\right]$ hence by the indiscernibility $M \models \neg \varphi\left[\bar{a}_{\beta}, \bar{b}_{\gamma}\right]$ for every $\beta<\gamma$ from S_{0}.

On the other hand, if $\alpha<\beta$ are from S_{0} then by the choice of \bar{b}_{α} the sequences $\bar{b}, \bar{b}_{\alpha}$ realize the same $\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]$-type over B_{*}. Now $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}+}[\mathcal{K}](\bar{a}, M, N)$ does not split over B_{*}, by the choice of B_{*}, so we have $N \models$ " $\varphi[\bar{a}, \bar{b}] \equiv \varphi\left[\bar{a}, \bar{b}_{\alpha}\right]$ ". But by the
choice of \bar{b} we have $N \models \varphi[\bar{a}, \bar{b}]$ hence $N \models \varphi\left[\bar{a}, \bar{b}_{\alpha}\right]$ hence $M \models \varphi\left[\bar{a}_{\beta}, \bar{b}_{\alpha}\right]$ by the choice of \bar{a}_{β}. Together this contradicts 1.5, i.e., 1.18(1).
2) Similarly (using $1.19(2)$ instead of $1.19(1)$.
3) Clause (a):

By 1.14 and the LST argument (i.e. by $0.18(4))$ without loss of generality $M_{1} \in$ $K_{<\lambda}^{*}$ and also $M_{2} \in K_{<\lambda}^{*}$. Let $\partial_{\ell}=\beth_{\ell}(\kappa)^{+}$for $\ell \leq 5$, so $\partial^{\prime}=\partial_{5}$, and for notational simplicity assume $\theta \geq \aleph_{0}$.

Let $\left\{\bar{a}_{\alpha}: \alpha<\partial^{\prime}\right\}$ list the members of \mathbf{I}, so for each $\alpha<\partial^{\prime}$ there is $I_{2, \alpha} \subseteq I_{2}$ of cardinality θ such that \bar{a}_{α} is from $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2, \alpha}, \Phi\right)$.

For each $\alpha<\partial^{\prime}$ let $\bar{t}^{\alpha}=\left\langle t_{i}^{\alpha}: i<\theta\right\rangle$ list $I_{2, \alpha}$ and so $\bar{a}_{\alpha}=\left\langle\sigma_{\alpha, \zeta}\left(\bar{t}^{\alpha}\right): \zeta<\xi\right\rangle$ for some sequence $\left\langle\sigma_{\alpha, \zeta}(\bar{x}): \zeta<\xi\right\rangle$ of τ_{Φ}-terms. We can find $S \subseteq \partial^{\prime}$ of order type ∂_{4} such that $\zeta<\xi \wedge \alpha \in S \Rightarrow \sigma_{\alpha, \zeta}=\sigma_{\zeta}$ and $\left\langle\bar{t}^{\alpha}: \alpha \in S\right\rangle$ is an indiscernible sequence (for quantifier free formulas, in I_{2}, of course).

By renaming $\kappa^{+} \subseteq S$. We define a partition $\left\langle u_{-1}, u_{0}, u_{1}\right\rangle$ of ξ by

$$
\begin{gathered}
u_{0}=\left\{i<\theta: t_{i}^{\alpha}=t_{i}^{\beta} \text { for } \alpha, \beta \in S\right\} \\
u_{1}=\left\{i<\theta: t_{i}^{\alpha}<_{I_{2}} t_{i}^{\beta} \text { for } \alpha<\beta \text { from } S\right\} \\
u_{-1}=\left\{i<\theta: t_{i}^{\beta}<_{I_{2}} t_{i}^{\alpha} \text { for } \alpha<\beta \text { from } S\right\} .
\end{gathered}
$$

We define an equivalence relation e on $u_{-1} \cup u_{1}$
$\odot i_{1} e i_{2}$ iff for some $\ell \in\{1,-1\}, i_{1}, i_{2} \in u_{\ell}$ and $\left(t_{i_{1}}^{\alpha}<_{I} t_{i_{2}}^{\beta}\right) \equiv\left(t_{i_{2}}^{\alpha}<_{I} t_{i_{1}}^{\beta}\right)$ for every (equivalently, 'some') $\alpha<\beta$ from S.
There is a natural set of representatives:

$$
W=\left\{\zeta<\theta: \zeta \in u_{-1} \cup u_{1} \text { and } \zeta=\min (\zeta / e)\right\}
$$

We now define a linear order I_{2}^{+}; its set of elements is

$$
\left\{t: t \in I_{2}\right\} \cup\left\{t_{i}^{*}: i \in u_{-1} \cup u_{1}\right\}
$$

where, of course, $t_{i}^{*} \in I_{2}^{+}$are pairwise distinct and $\notin I_{2}$. The order is defined by the following: (or see \circledast_{2} and think about what conditions are necessary)
$\circledast_{1} s_{1}<_{I_{2}^{+}} s_{2}$ iff
(a) $s_{1}, s_{2} \in I_{2}$ and $s_{1}<I_{2} s_{2}$
(b) $s_{1} \in I_{2}, s_{2}=t_{i}^{*}$ and $s_{1}<_{I_{2}} t_{i}^{\alpha}$ for every $\alpha<\kappa^{+}$large enough
(c) $s_{1}=t_{i}^{*}, s_{2} \in I_{2}$ and $t_{i}^{\alpha}<_{I_{2}} s_{2}$ for every $\alpha<\kappa^{+}$large enough
(d) $s_{1}=t_{i}^{*}, s_{2}=t_{j}^{*}$ and $t_{i}^{\alpha}<_{I_{2}} t_{j}^{\alpha}$ for every $\alpha<\kappa^{+}$.

Let $t_{i}^{*}=t_{i}^{\alpha}$ for $i \in u_{0}$ and any $\alpha<\kappa^{+}$. Let $M_{2}^{+}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}^{+}, \Phi\right)$.
It is easy to check (by 1.14(a),(c)) that
$\circledast_{2} \quad$ (a) $I_{2} \subseteq I_{2}^{+}$
(b) $\bar{t}^{*} \in{ }^{\theta}\left(I_{2}^{+}\right)$
(c) If $J \subseteq I_{2}$ has cardinality $\leq \kappa$ then for every $\alpha<\kappa^{+}$large enough, the sequences $\bar{t}^{*}, \bar{t}^{\alpha}$ realizes the same quantifier free type over J inside I_{2}^{+}.
Let

$$
\circledast_{3} \bar{d}:=\left\langle\sigma_{\zeta}\left(\bar{t}^{*}\right): \zeta<\xi\right\rangle \in \xi\left(M_{2}^{+}\right) .
$$

Recall that $\left\|M_{2}\right\|<\lambda$ hence $\left|I_{2}\right|<\lambda$ and I_{2} is κ^{+}-wide having cardinality $\geq \partial^{\prime}>2^{\kappa}$.
Note
$\circledast_{4} \bar{t}^{*}$ realizes $\operatorname{Av}_{\mathrm{qf}}\left(\left\{\bar{t}^{\alpha}: \alpha \in S\right\}, I_{2}\right)$ in the linear order I_{2}^{+}.
Without loss of generality $I_{2}^{+} \cap I_{3}=I_{2}$, so we can find a linear order I_{4} of cardinality λ such that $I_{2}^{+} \subseteq I_{4} \wedge I_{3} \subseteq I_{4}$. As I_{3} is κ^{+}-wide over I_{2} (see the assumption and Definition $0.14(6)+(3))$, there is a convex subset I_{3}^{\prime} of I_{3} disjoint to I_{2} which contains a monotonic sequence $\left\langle s_{\alpha}: \alpha<\kappa^{+}\right\rangle$. Without loss of generality there are
elements $s_{\alpha}\left(\right.$ with $\alpha \in\left[\kappa^{+}, \lambda \times \kappa^{+}\right)$) in I_{4} such that $\left\langle s_{\alpha}: \alpha<\lambda \times \kappa^{+}\right\rangle$is monotonic (in I_{4}), and its convex hull is disjoint to I_{2}. Let $I_{3}^{-}=I_{2} \cup\left\{s_{\alpha}: \alpha<\kappa^{+}\right\}$and $I_{3}^{ \pm}=I_{2} \cup\left\{s_{\alpha}: \alpha<\lambda \times \kappa^{+}\right\}$.

Now we use 1.14 several times. First,

$$
\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right) \prec_{\mathbb{L}_{\infty, \kappa}+[\mathfrak{K}]} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}^{+}, \Phi\right) \prec_{\mathbb{L}_{\infty, \kappa}+[\mathfrak{K}]} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{4}, \Phi\right)
$$

as $I_{2} \subseteq I_{2}^{+} \subseteq I_{4}$ are κ^{+}-wide, hence by \circledast_{4} the sequence \bar{d} realizes $q:=\operatorname{Av}_{\kappa}\left(\left\{\left\langle\sigma_{\zeta}\left(\bar{t}^{\alpha}\right): \zeta<\theta\right\rangle: \alpha<\kappa^{+}\right\}, M_{2}\right)=\operatorname{Av}_{\kappa}\left(\left\{\bar{a}_{\alpha}: \alpha<\kappa^{+}\right\}, M_{2}\right)=\operatorname{Av}_{\kappa}\left(\mathbf{I}, M_{2}\right)$ in M_{2}^{+}and also in $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{4}, \Phi\right)$. Second, as $\left|I_{2}\right|<\lambda, I_{2} \subseteq I_{3}^{ \pm} \subseteq I_{4}$ and $\left|I_{3}^{ \pm}\right|=$ $\left|I_{4}\right|=\lambda$, by $1.19(1)$ we have $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}^{ \pm}, \Phi\right) \prec_{\mathbb{L}_{\infty}, \lambda}[\mathfrak{K}] ~ \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{4}, \Phi\right)$, so some $\bar{d}^{\prime} \in$ ${ }^{\xi}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}^{ \pm}, \Phi\right)\right)$ realizes the type q in $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}^{ \pm}, \Phi\right)$. Let $w_{1} \subseteq \lambda \times \kappa^{+}$be of cardinality $\leq \theta \leq \kappa$ such that \bar{d}^{\prime} belongs to $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2} \cup\left\{s_{\alpha}: \alpha \in w_{1}\right\}, \Phi\right)$. Choose $w_{2} \subseteq \lambda \times \kappa^{+}$of order type κ^{+}including w_{1}, so

$$
\operatorname{EM}_{\tau((\mathfrak{K})}\left(I_{2} \cup\left\{s_{\alpha}: \alpha \in w_{2}\right\}, \Phi\right) \prec_{\mathbb{L}_{\infty, \kappa}+[\mathfrak{K}]} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}^{ \pm}, \Phi\right)
$$

and \bar{d}^{\prime} belongs to the former hence realizes q in it. But there is an isomorphism h from $I_{2} \cup\left\{s_{\alpha}: \alpha \in w_{2}\right\}$ onto I_{3}^{-}over I_{2}, hence it induces an isomorphism \hat{h} from $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2} \cup\left\{s_{\alpha}: \alpha \in w_{2}\right\}, \Phi\right)$ onto $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}^{-}, \Phi\right)$ so $\hat{h},\left(\bar{d}^{\prime}\right)$ realizes q in the latter. But $I_{3}^{-} \subseteq I_{3}$ are both κ^{+}-wide hence by 1.14 the sequence $\hat{h}\left(\overline{d^{\prime}}\right)$ realizes q in $M_{3}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$ as required.

Clause (b):

By part (2) we can find appropriate I and then apply clause (a).

Remark 1.29. 1) In fact, in 1.24 we can choose B of cardinality κ, hence similarly in the proof of $1.27(1)$.
2) Also using solvability to get well ordered I we can prove: if $A \subseteq M=$ $\operatorname{EM}_{\tau(\mathfrak{\kappa})}(\lambda, \Phi)$ and $|A|<\lambda$ then the set of $\mathbb{L}_{\infty, \kappa^{+}}[\mathfrak{K}]$-types realized in M over A is $\leq(|A|+2)^{\kappa}$.

Claim 1.30. 1) If $M \in K_{\geq \kappa}^{* *}$ and $\operatorname{LST}(\mathfrak{K}) \leq \theta$ and $\partial=\beth_{1,1}(\theta) \leq \kappa \leq \lambda$, then for $\bar{a}, \bar{b} \in{ }^{\theta} M$ the following are equivalent: (the difference is using ∂ or κ)
(a) \bar{a}, \bar{b} realize the same $\mathbb{L}_{\infty, \partial}[\mathfrak{K}]$-type in M
(b) \bar{a}, \bar{b} realize the same $\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$-type in M.
2) For $M, \theta, \partial, \kappa$ as above, the number of $\mathbb{L}_{\infty, \partial}[\mathfrak{K}]$-types of $\bar{a} \in{ }^{\theta} M$ where $M=$ $\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi),|I| \geq \partial$ is $\leq 2^{\theta}$.
[Can we say $\partial \leq|I| \leq 2^{\theta}$?]

Remark 1.31. Part (1) improves 1.19(3).

Proof. 1) Clearly $(b) \Rightarrow(a)$, so assume clause (a) holds. As $M \in K_{\geq \kappa}^{* *}$, without loss of generality there is a κ-wide linear order I such that $M=\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$; hence for some $J \subseteq I,|J|=\theta$ we have $\bar{a}, \bar{b} \in{ }^{\theta}\left(\operatorname{EM}_{\tau(\mathfrak{K})}(J, \Phi)\right)$. So for every $\alpha<\left(2^{\theta}\right)^{+}$, by the hence and forth argument for $\mathbb{L}_{\infty, \beth_{\alpha}^{+}}[\mathfrak{K}]$ there are J_{α}, f_{α} such that $J \subseteq J_{\alpha} \subseteq I$, $\left|J_{\alpha}\right|=\beth_{\alpha}$ and f_{α} is an automorphism of $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{\alpha}, \Phi\right)$ which maps \bar{a} to \bar{b}. Hence, as in the proof of 1.19, there is a linear order J^{+}of cardinality μ extending J and an automorphism f of $M^{+}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(J^{+}, M\right)$ mapping \bar{a} to \bar{b}. By clause (b) of Claim 1.14 we are done.
2) Easy by clause (c) of 1.14 , i.e., by 1.18 .

Claim 1.32. Assume:
(a) $I_{1} \subseteq I_{2}, I_{1} \neq I_{2}$. Moreover, $I_{1}<_{K^{\text {flin }}} I_{2}$, see Definition 0.14 (6)
(b) $M_{\ell}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\ell}, \Phi\right)$ for $\ell=1,2$
(c) $\bar{b}, \bar{c} \in{ }^{\alpha}\left(M_{2}\right)$
(d) $\theta \geq|\alpha|+\operatorname{LST}(\mathfrak{K})$
(e) $\kappa=\beth_{1,1}\left(\theta_{2}\right) \leq \lambda$ where $\theta_{1}=2^{\theta}, \theta_{2}=\left(2^{\theta_{1}}\right)^{+}$
(f) $\left|I_{1}\right| \geq \kappa$
(g) $M_{1} \leq_{\mathfrak{K}} M_{2}$ (follows from (a) + (b))

1) Assume that for every $\bar{a} \in{ }^{\kappa>}\left(M_{1}\right)$ the sequences $\bar{a}^{\wedge} \bar{b}, \bar{a}^{\wedge} \bar{c}$ realize the same $\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$-type in M_{2}. Then there are I_{3}, M_{3} and f such that $I_{2} \leq_{K^{\text {flin }}} I_{3} \in K_{\lambda}^{\text {flin }}$, $M_{3}=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$, and f an automorphism of M_{3} over M_{1} mapping \bar{b} to \bar{c}.
2) Assume that for every $\bar{a} \in{ }^{\kappa>}\left(M_{1}\right)$ the sequences $\bar{a}^{\wedge} \bar{b}, \bar{a}^{\wedge} \bar{c}$ realize the same $\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]$-type in M_{2} (as in part (a)) and $\beth_{1,1}(\partial) \leq\left|I_{1}\right|$ and $\partial<\lambda$. Then for every $\bar{a} \in{ }^{\kappa>}\left(M_{1}\right)$, the sequences $\bar{a}^{\wedge} \bar{b}, \bar{a}^{\wedge} \bar{c}$ realize the same $\mathbb{L}_{\infty, \partial}[\mathfrak{K}]$-type in M_{2}.
3) Assume that $\operatorname{cf}(\lambda)=\aleph_{0}$ and $\left|I_{1}\right|=\lambda$, and recall $\lambda=\beth_{\lambda}>\operatorname{LST}(\mathfrak{K})$. If $M_{1} \leq_{\mathfrak{K}} M_{2}^{*} \in K_{\lambda}^{*} \underline{\text { then }}$ for some I_{3}, a linear order $\leq_{K_{\lambda}^{\text {flin }}-\text { extending }} I_{2}$ the model M_{2}^{*} can be $\leq_{\mathfrak{K}}$-embedded into $M_{3}:=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$ over M_{1}.

Remark 1.33. 1) Under mild assumptions with somewhat more work in 1.32(1),(3) we can choose $I_{3}=I_{2}$ (but for this has to be more careful with the linear orders). Recall that for $I \in K_{\lambda}^{\text {lin }}$ like I_{2} in 1.8(c) we have $\alpha<\lambda^{+} \Rightarrow I \times \alpha$ can be embedded into I and 1.4(1)(d).

Proof. 1) There is $J_{2} \subseteq I_{2}$ of cardinality $\leq \theta$ such that $\bar{b}, \bar{c} \in{ }^{\alpha}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{2}, \Phi\right)\right)$. Let $J_{1}=I_{1} \cap J_{2}$.

We define a two-place relation \mathcal{E} on $I_{2} \backslash J_{2}: s \mathcal{E} t \underline{\text { iff }}\left(\forall x \in J_{2}\right)\left[x<_{I_{2}} s \equiv x<_{I_{2}} t\right]$. Clearly \mathcal{E} is an equivalence relation. As $I_{1}<K_{\mathrm{flin}^{\text {fin }}} \overline{I_{2}}$ clearly
$\odot_{1}(\alpha)$ any interval of I_{1} has cardinality $\left|I_{1}\right| \geq \kappa$
(β) for every $t \in I_{2} \backslash J_{2}$ the equivalence class t / \mathcal{E} is a singleton or has $\left|I_{2}\right| \geq \kappa$ members,
(γ) for every $t \in I_{1} \backslash J_{1},(t / \mathcal{E}) \cap I_{1}$ is a singleton or has $\left|I_{1}\right| \geq \kappa$ members
($\delta) I_{1} \backslash J_{2}$ has at least κ elements
(ع) \mathcal{E} has $\leq 2^{\left|J_{2}\right|} \leq 2^{\theta}$ equivalence classes
(ζ) we may $\leq_{K^{\text {flin }} \text {-increase }} I_{2}$, so without loss of generality
$(*)_{1} t \in I_{2} \backslash J_{2} \Rightarrow|t / \mathcal{E}|=\left|I_{2}\right|$
$(*)_{2}$ For every $t \in I_{1}$ for some $s_{1}, s_{2} \in I_{2}$ we have $s_{1}<_{I_{2}} t<_{I_{2}} s_{2}$ and $\left(s_{1}, t_{2}\right)_{I_{2}},\left(t, s_{2}\right)_{I_{2}}$ are disjoint to I_{1}.
Let $\left\langle\mathcal{U}_{i}: i<i(*)\right\rangle$ list the equivalence classes of \mathcal{E}, so without loss of generality $i(*) \leq 2^{\theta}$. For $\ell=0,1$ let $u_{\ell}=\left\{i<i(*): \mathcal{U}_{i} \cap I_{1}\right.$ has exactly ℓ members $\}$ and let $u_{2}=i(*) \backslash u_{0} \backslash u_{1}$, so by clause $\odot_{1}(\gamma)$ (i.e. the definition of $I_{1} \in K^{\text {fin }}$) we have $i \in u_{2} \Rightarrow\left|\mathcal{U}_{i} \cap I_{1}\right|=\left|I_{1}\right| \geq \kappa$. For $i \in u_{1}$ let t_{i}^{*} be the unique member of $\mathcal{U}_{i} \cap I_{1}$.

Without loss of generality $u_{1}=\left\{i: i \in\left[j_{0}^{*}, j_{1}^{*}\right)\right\}$
[Is there a type-theoretic reason why I can't just say $u_{1}=\left[j_{0}^{*}, j_{1}^{*}\right)$?]
for some $j_{0}^{*} \leq j_{1}^{*} \leq i(*)$ and let $i^{\prime}(*)=i(*)+\left(j_{1}^{*}-j_{0}^{*}\right)$ and $u_{1}^{\prime}=\left[i(*), i^{\prime}(*)\right)$ and define \mathcal{U}_{i}^{\prime} for $i<i^{\prime}(*)$ by
$\odot_{2} \quad$ (a) $\mathcal{U}_{i}^{\prime}=\mathcal{U}_{i}$ if $i \in u_{0} \cup u_{2}$
(b) $\mathcal{U}_{i}^{\prime}=\left\{t \in \mathcal{U}_{i}: t<_{I_{2}} t_{i}^{*}\right\}$ if $i \in u_{1}$ and
(c) $\mathcal{U}_{i}^{\prime}=\left\{t \in \mathcal{U}_{k}: t_{\iota}^{*}<_{I_{2}} t\right\}$ if $i \in\left[i(*), i^{\prime}(*)\right], k \in\left(j_{0}^{*}, j_{1}^{*}\right)$ and $i-i(*)=$ $k-j_{0}^{*}$.
[Mixing i-s and iotas in the same paper is never a good idea, much less in the same line. I'm changing them all to k.]

For $i<i^{\prime}(*)$ let $\left\langle t_{i, \alpha}: \alpha<\kappa\right\rangle$ be a sequence of pairwise distinct members of \mathcal{U}_{i}^{\prime} such that $i \in u_{2} \Rightarrow t_{i, \alpha} \in I_{1}$ and $i \in u_{0} \Rightarrow t_{i, \alpha} \notin I_{1}$, this actually follows. By $\odot_{1}(\zeta)$ and $\odot_{1}(\beta),(\gamma)$ we can find such $t_{i, \alpha}$-s.

For $\zeta<\theta_{2}$ (see clause (e) of the assumption so $\beth_{\zeta}<\kappa$) let

$$
J_{1, \zeta}=\left\{t_{i, \alpha}: i \in u_{2}, \alpha<\beth_{\zeta}\right\} \cup J_{1} \cup\left\{t_{i}^{*}: i \in u_{1}\right\}
$$

Now by the hence and forth argument (or see $0.18(2)$) for each $\zeta<\theta_{2}$, there are $J_{2, \zeta}$ and f_{ζ} such that $J_{2, \zeta} \subseteq I_{2}$ is of cardinality \beth_{ζ}, it includes $J_{1, \zeta} \cup J_{2}$ and also $\left\{t_{i, \alpha}: i<i^{\prime}(*)\right.$ and $\left.\alpha<\beth_{\zeta}\right\}$ and f_{ζ} is an automorphism of $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{2, \zeta}, \Phi\right)$ over $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{1, \zeta}, \Phi\right)$ mapping \bar{b} to \bar{c}.
(Why? Let \bar{a}_{0} list $\operatorname{EM}\left(J_{1, \zeta}, \Phi\right)$ so $\bar{a}_{0}{ }^{\wedge} \bar{b}, \bar{a}_{0}{ }^{\wedge} \bar{c}$ realize the same $\mathbb{L}_{\infty, \beth_{\zeta}^{+}}[\mathfrak{K}]$-type in M_{2}, and f be the mapping taking $\bar{a}_{0}{ }^{\wedge} \bar{b}$ to $\bar{a}_{0}{ }^{\wedge} \bar{c}$, etc.)

Now we shall imitate the proof of 1.19. By renaming without loss of generality there is a transitive set B (in the set theoretic sense) of cardinality $\leq \theta_{1}=2^{\theta}$ which includes
$\oplus(\mathrm{a}) J_{1}, J_{2}$
(b) Φ (i.e. τ_{Φ} and $\left.\left\langle\left(\operatorname{EM}(n, \Phi), a_{\ell}\right)_{\ell<n}: n<\omega\right\rangle\right)$
(c) \mathfrak{K}, i.e., $\tau_{\mathfrak{K}}$ and $\left\{(M, N): M \leq_{\mathfrak{K}} N\right.$ have universe included in $\left.\operatorname{LST}(\mathfrak{K})\right\}$
(d) $\left\langle t_{i}^{*}: i \in u_{1}\right\rangle$ so each t_{i}^{*} for $i \in u_{1}$
(e) the ordinal $i(*)$.

Let χ be large enough, let $\mathfrak{B}=\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right)$ and let \mathfrak{B}_{ζ}^{+}be \mathfrak{B} expanded by
$*_{1} \quad$ (a) $Q^{\mathfrak{B}_{\zeta}}=\left\{\alpha: \alpha<\beth_{\zeta}\right\}$
(b) $P_{i}^{\mathfrak{B}_{\zeta}}=J_{2, \zeta} \cap \mathcal{U}_{i}^{\prime}$ for $i<i^{\prime}(*)$
(c) $F_{2}^{\mathfrak{B} \zeta}(t)=a_{t}$ for $t \in I_{2}$
(d) $H^{\mathfrak{B}}{ }^{\zeta}=f_{\zeta}$ and $Q_{1}^{\mathfrak{B}_{\zeta}}=J_{1, \zeta}, Q_{2}^{\mathfrak{B}_{\zeta}}=J_{2, \zeta}$
(e) for $i<i^{\prime}(*), H_{i}^{\mathfrak{B}_{\zeta}}$ is the function mapping $\alpha<\beth_{\zeta}$ to $t_{i, \alpha}$
(f) individual constants for B and for each $x \in B$, hence, e.g. for t_{i}^{*} (with $\left.i \in u_{1}\right), J_{1}, J_{2}, t$ for $t \in J_{2}$
(g) individual constants $J_{1, *}, J_{2, *}$ interpreted as the linear orders $J_{1, \zeta}, J_{2, \zeta}$, respectively, and individual constants for $M_{\ell}^{+}=\operatorname{EM}\left(J_{\ell, \zeta}, \Phi\right)$ and $\left\langle a_{t}: t \in I_{\ell}\right\rangle$ for $\ell=1,2$.
Clearly the vocabulary $\tau\left(\mathfrak{B}_{\zeta}^{+}\right)$does not depend on ζ, so we call it τ^{+}. As in the proof of 1.19 there is a τ^{+}-model \mathfrak{C}, such that
\boxtimes (a) for some unbounded $S \subseteq \theta_{2}$,
$(\alpha) \mathfrak{C}$ is a first order elementarily equivalent to \mathfrak{B}_{ζ}^{+}for every $\zeta \in S$
$(\beta) \mathfrak{C}$ omits every type omitted by \mathfrak{B}_{ζ}^{+}for every $\zeta \in S$. In particular this gives
$(\gamma) \mathfrak{C}$ omits the type $\{x \neq b \wedge x \in B: b \in B\}$ so
(δ) without loss of generality $b \in B \Rightarrow b^{\mathfrak{C}}=b$
(b) \mathfrak{C} is the Skolem hull of some infinite indiscernible sequence $\left\langle y_{r}: r \in I\right\rangle$, where I an infinite linear order and $y_{r} \in Q^{\mathfrak{C}}$ for $r \in I$.

Without loss of generality $I \in K^{\text {flin }}$ and I_{2} can be $\leq_{K^{\text {fin }} \text {-embedded into } I \text {, say by }}$ the function g such that

$$
\begin{aligned}
&\left(\forall t \in I_{2}\right)\left(\exists s_{1}, s_{2} \in I\right) {\left[s_{1}<_{I} g(t)<_{I} s_{2} \wedge\right.} \\
&\left(\forall t^{\prime} \in I_{2}\right)\left[t^{\prime}<_{I_{2}} t \rightarrow g\left(t^{\prime}\right)<_{I} s_{1}\right] \wedge \\
&\left.\left(\forall t^{\prime} \in I_{2}\right)\left[t<_{I_{2}} t^{\prime} \rightarrow s_{2}<_{I} g\left(t^{\prime}\right)\right]\right]
\end{aligned}
$$

and also $\|\mathfrak{C}\|=|I|$. Hence for each $i<i^{\prime}(*)$ there is an embedding h_{i} of the linear order \mathcal{U}_{i}^{\prime} : i.e., $I_{2} \upharpoonright \mathcal{U}_{i}^{\prime}$ into $\left(P_{i}^{\mathfrak{C}},\left(<_{I_{2}}\right)^{\mathfrak{C}}\right)$ such that

$$
t \in \mathcal{U}_{i}^{\prime} \Rightarrow\left[t \in I_{1} \Leftrightarrow h_{i}(t) \in Q_{1}^{\mathfrak{c}}\right] .
$$

Why?
Case 0: $i \in u_{0}$.
Trivial.
Case 1: $i \in u_{1} \cup u_{1}^{\prime}$.
Similar to Case 0 as $\mathcal{U}_{i}^{\prime} \cap I_{1}=\varnothing$, of course, we take care that

$$
a=h_{i}(t) \wedge t \in \mathcal{U}_{i}^{\prime} \wedge i \in u_{1} \Rightarrow \mathfrak{C} \models " a<_{I_{2}} t_{i}^{*} "
$$

and similarly for u_{-1}.

Case 2: $i \in u_{2}$.

First approximation is $h_{i}^{\prime}=H_{i}^{\mathfrak{C}} \circ\left(g \upharpoonright \mathcal{U}_{i}\right)$, so $t \in \mathcal{U}_{i} \Rightarrow h_{i}^{\prime}(t) \in Q_{1}^{\mathfrak{C}}$. However by the choice of g we can find $\left\langle\left(s_{t}^{-}, s_{t}^{+}\right): t \in \mathcal{U}_{i}\right\rangle$ such that:
$(\alpha) s_{t}^{-}, s_{t}^{+} \in Q_{2}^{\mathbb{C}}$
(β) $\left(s_{t}^{-}, s_{t}^{+}\right)_{I_{2}^{\mathfrak{e}}} \cap Q_{2}^{\mathfrak{C}}=\left\{h_{i}^{\prime}(t)\right\}$.
As I_{2} is dense with no extremal members (being from $K^{\text {fin }}$) clearly

$$
t_{1}<_{I_{2} \mid \mathcal{U}_{i}^{\prime}} t_{2} \Rightarrow s_{t_{1}}^{+}<_{\left(I_{2}\right)^{\mathfrak{C}}} s_{t_{2}}^{-} .
$$

Now choose h_{i} by: $h_{i}(t)=h_{i}^{\prime}(t)$ if $t \in I_{1}$ and is $s_{t_{1}}^{+}$if $t \in I_{1} \backslash I_{2}$.
Hence there is an embedding h of the linear order I_{2} into $J_{1, *}^{\mathfrak{C}}$ such that:
$\circledast_{2} h(t)$ is:
(a) t if $t \in J_{2} \cup\left\{t_{i}^{*}: i \in u_{1}\right\}$
(b) $h_{i}(t)$ if $t \in \mathcal{U}_{i}^{\prime}$ and $i<i^{\prime}(*)$.

Note
\circledast_{3} for every $t \in I_{2} \backslash J_{2}$ for some $i<i(*) \leq \theta_{1}$ we have

$$
\left(\forall s \in J_{2}\right)\left[s<_{I_{2}} t \equiv s<_{I_{2}} h_{i}\left(t_{i, 0}\right)\right]
$$

hence by the omitting type demand in $\boxtimes(a)(\beta)$:
\circledast_{3}^{\prime} for $t \in I_{2}^{\mathfrak{C}} \backslash J_{2}$, for some $i<i(*)$, we have

$$
\left(\forall s \in J_{2}\right)\left[s<_{I_{2}^{\mathrm{c}}} t \equiv s<_{I_{2}^{\mathrm{c}}} h_{i}\left(t_{i, 0}\right)\right] .
$$

We can find a linear order $I_{3}, I_{2} \subseteq I_{3}$ and an isomorphism h_{*} from I_{3} onto $Q_{2}^{\mathfrak{C}}$ extending h, so clearly $I_{3} \in K^{\text {fin }}$ and without loss of generality $h\left(I_{2}\right)<K_{K^{\text {flin }}}$ I_{3}. Now let \hat{h}_{*} be the isomorphism which h_{*} induces from $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$ onto $\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{2, *}^{\mathfrak{C}}, \Phi\right)\right)^{\mathfrak{C}}$, so e.g., it maps for each $t \in I_{2}$, the member a_{t} of the skeleton to $F_{2}^{\mathfrak{C}}\left(h_{*}(t)\right)$.

Note that h_{*} maps $\mathcal{U}_{i} \cap I_{1}$ into $Q_{1}^{\mathfrak{C}} \subseteq I_{1}^{\mathfrak{C}}$ when $\mathcal{U}_{i} \subseteq I_{1}$ and is the identity on $J_{1} \cup\left\{t_{i}^{*}: i \in u_{1}\right\}$, so recalling

$$
Q^{\mathfrak{B}_{\zeta}}=J_{1, \zeta}=\left\{t_{i, \alpha}: i \in u_{2}, \alpha<\beth_{\zeta}\right\} \cup J_{1} \cup\left\{t_{i}^{*}: i \in u_{1}\right\}
$$

hence it maps I_{1} into $Q_{1}^{\mathfrak{C}}$. However, $\mathfrak{B}_{\zeta} \models$ " H is a unary function, an automorphism of $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{2, *}^{\mathfrak{C}}, \Phi\right)$ mapping \bar{b} to \bar{c} and is the identity on $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{1, *}^{\mathfrak{C}}, \Phi\right)$ ". Now $\left(\hat{h}_{*}\right)^{-1} H^{\mathfrak{C}}\left(\hat{h}_{*}\right)$ is an automorphism of $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$ as required.
2) By part (1), i.e. choose I_{3}, M_{3}, f_{3} as there; so as f is an automorphism of M_{3} over M_{1} mapping \bar{b} to \bar{c}, clearly \bar{b}, \bar{c} realize the same $\mathbb{L}_{\infty, \partial}[\mathfrak{K}]$-type over M_{1} inside M_{3}. The desired result (the type inside M_{2} rather than inside M_{3}) follows because

$$
M_{1} \prec_{\mathbb{L}_{\infty, \partial}[\mathfrak{K}]} M_{2} \prec_{\mathbb{L}_{\infty, \partial}[\mathfrak{K}]} M_{3}
$$

by $1.14(\mathrm{a})$.
3) Let $M_{2}^{*}=\bigcup_{n<\omega} M_{2, n}^{*}$ be such that $n<\omega \Rightarrow M_{2, n}^{*} \leq_{\mathfrak{K}} M_{2, n+1}^{*}$ and $\left\|M_{2, n}^{*}\right\|<\lambda$. Let \bar{c}_{n} list $M_{2, n}^{*}$ for $n<\omega$ (with no repetitions) and be such that $\bar{c}_{n} \triangleleft \bar{c}_{n+1}$. Let $\theta_{n}=\left\|M_{2, n}^{*}\right\|+\operatorname{LST}(\mathfrak{K})$ so without loss of generality $\theta_{n}=\ell g\left(\bar{c}_{n}\right)$ and let $\theta_{n}^{\prime}=\beth_{3}\left(\theta_{n}\right)$, $\kappa_{n}=\beth_{1,1}\left(\theta_{n}^{\prime}\right)$, without loss of generality $\kappa_{n}<\theta_{n+1}$ and we choose, for each $n<\omega$, a sequence $\bar{b}_{n} \in^{\ell g\left(\bar{c}_{n}\right)}\left(M_{2}\right)$ realizing $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{n}^{+}}[\mathcal{K}]}\left(\bar{c}_{n}, M_{1}, M_{2}^{*}\right)$ in M_{2}. This is possible by $1.27(3)$, possibly after $<_{K^{\text {flin }}}$-increasing I_{2}.

Now we choose ($I_{3, n}, f_{n}, M_{3, n}, \bar{b}_{n}^{\prime}$) by induction on n such that
(*) (a) $I_{3,0}=I_{2}$ and $I_{3, n} \in K_{\lambda}^{\text {lin }}$
(b) $n=m+1 \Rightarrow I_{3, m}<_{K^{\text {flin }}} I_{3, n}$
(c) $M_{3, n}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3, n}, \Phi\right)$ (hence $\left.n=m+1 \Rightarrow M_{3, m} \leq_{\mathfrak{K}_{\lambda}} M_{3, n}\right)$
(d) f_{n} is an automorphism of $M_{3, n}$ over M_{1}
(e) $\bar{b}_{n}^{\prime} \in{ }^{\ell g\left(\bar{b}_{n}\right)}\left(M_{3, n}\right)$ realizes $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{n}^{+}}[\mathcal{K}]}\left(\bar{c}_{n}, M_{1}, M_{2}^{*}\right)$
(f) if $n=m+1$ then $\bar{b}_{m}^{\prime} \unlhd \bar{b}_{n}^{\prime}$
(g) if $n=m+1$ then f_{n} maps $\bar{b}_{n+1} \upharpoonright \ell g\left(\bar{b}_{n}\right)$ to \bar{b}_{n}^{\prime} and f_{0} maps \bar{b}_{0} to \bar{b}_{0}^{\prime}.

For $n=0, I_{3,0}, M_{3,0}$ are defined in clauses (a),(c) of (*) and we let $f_{0}=\operatorname{id}_{M_{2}}=$ $\operatorname{id}_{M_{3, n}}, \bar{b}_{0}^{\prime}=\bar{b}_{0}$ this is trivially as required. For $n=m+1$ we apply part (1) with
$I_{1}, I_{3, m}, M_{1}, M_{3, m}, \bar{b}_{n+1} \upharpoonright \ell g\left(\bar{c}_{m}\right), \bar{b}_{m}^{\prime}, \theta_{m}, \kappa_{m}$ here standing for $I_{1}, I_{2}, M_{1}, M_{2}, \bar{b}, \bar{c}, \theta, \kappa$ there.
Why does its assumptions hold? The main point is to check that for every $\bar{a} \in$ $\kappa_{m}>\left(M_{1}\right)$ the sequences $\bar{a}^{\wedge}\left(\bar{b}_{n+1} \upharpoonright \theta_{m}\right), \bar{a}^{\wedge} \bar{b}_{m}^{\prime}$ realize the same $\mathbb{L}_{\infty, \kappa_{m}}[\mathfrak{K}]$-type in $M_{3, m}$. Now $\bar{a}^{\wedge}\left(\bar{b}_{m+1} \upharpoonright \theta_{m}\right), \bar{a}^{\wedge} \bar{b}_{m}^{\prime}$ realize the same $\mathbb{L}_{\infty, \kappa_{m}}[\mathfrak{K}]$-type in $M_{3, m}$ by the induction hypothesis. Also, the sequences $\bar{b}_{n+1} \upharpoonright \theta_{m}, \bar{b}_{m+1} \upharpoonright \theta_{m}$ satisfy for any $\bar{a} \in \kappa_{m}>\left(M_{1}\right)$ the sequences $\bar{a}^{\wedge}\left(\bar{b}_{n+1} \upharpoonright \theta_{m}\right), \bar{a}^{\wedge}\left(\bar{b}_{m+1} \upharpoonright \theta_{m}\right)$ realize the same $\mathbb{L}_{\infty, \kappa_{m}}[\mathfrak{K}]$-type in $M_{3, m}$ because the $\mathbb{L}_{\infty, \kappa_{m}}[\mathfrak{K}]$-type which $\bar{a}^{\wedge}\left(\bar{b}_{n+1} \upharpoonright \theta_{m}\right)$ realizes in $M_{3, m}$ is the same as the $\mathbb{L}_{\infty, \kappa_{m}}[\mathfrak{K}]$-type it realizes in $M_{2}=M_{3,0}$ which (by the choice of $\left.\bar{b}_{n+1}\right)$ is equal to the $\mathbb{L}_{\infty, \kappa_{m}}[\mathfrak{K}]$-type which $\bar{a}^{\wedge}\left(\bar{c}_{n+1} \upharpoonright \theta_{m}\right)$ realizes in M_{2}^{*} which is the same as the $\mathbb{L}_{\infty, \kappa_{m}}[\mathfrak{K}]$-type which $\bar{a}^{\wedge}\left(\bar{c}_{m+1} \upharpoonright \theta_{m}\right)$ realizes in M_{2}^{*} which is equal to the $\mathbb{L}_{\infty, \kappa_{m}}[\mathcal{K}]$-type which $\bar{a}^{\wedge}\left(\bar{b}_{m+1} \upharpoonright \theta_{m}\right)$ realizes in $M_{3, m}$.

By the last two sentences for every $\bar{a} \in{ }^{\kappa_{m}>}\left(M_{1}\right)$ the sequences $\bar{a}^{\wedge}\left(\bar{b}_{n+1} \upharpoonright \theta_{m}\right)$, $\bar{a}^{\wedge} \bar{b}_{m}^{\prime}$ realize the same $\mathbb{L}_{\infty, \kappa_{m}}[\mathfrak{K}]$-type in $M_{3, m}$, so indeed the assumptions of part (1) holds for the case we are trying to apply it (see \square above).

So we get the conclusion of part (1), i.e. we get $I_{3, n}, f_{n}$ here standing for I_{3}, f there so $I_{3, m}<_{K_{\lambda}^{\text {flin }}} I_{3, n}$ and f_{n} is an automorphism of $M_{3, n}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3, n}, \Phi\right)$ over M_{1} mapping $\bar{b}_{n+1} \upharpoonright \theta_{m}$ to \bar{b}_{m}^{\prime}. Now we let $\bar{b}_{n}^{\prime}=f_{n}\left(\bar{b}_{n+1} \upharpoonright \theta_{n}\right)$ and can check all the clauses in $(*)$. Hence we have carried the induction. So we can satisfy (*).

So \bar{b}_{n}^{\prime} satisfies the requirements on \bar{b}_{n} and $\bar{b}_{n}^{\prime} \triangleleft \bar{b}_{n+1}^{\prime}$. Let $I_{3}=\bigcup\left\{I_{3, n}: n<\omega\right\}$ and let $M_{3}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$ and let $g: M_{2}^{*} \rightarrow M_{3} \operatorname{map} c_{n, i}$ to $b_{n, i}^{\prime}$ for $i<\ell g\left(\bar{c}_{n}\right)$, $n<\omega$, easily it is as required. That is, $g\left(c_{n, i}\right)$ is well defined as $c_{n, i} \mapsto b_{n, i}^{\prime}$ (for $\left.i<\ell g\left(\bar{c}_{n}\right)\right)$ is a well defined mapping for each n and

$$
i<\ell g\left(\bar{c}_{n}\right) \Rightarrow c_{n, i}=c_{n+1, i} \wedge b_{n, i}^{\prime}=b_{n+1, i}^{\prime}
$$

Also $g \upharpoonright\left\{c_{n, i}: i<\ell g\left(\bar{c}_{n}\right)\right\}$ is a $\leq_{\mathfrak{K}}$-embedding of $M_{2, n}^{*}$ into M_{3} and is the identity on $M_{2, n}^{*} \cap M_{1}$ as \bar{c}_{n} list the elements of $M_{2, i}$ and

$$
\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{n}^{+}}[\mathcal{R}]}\left(\bar{c}_{n}, M_{1}, M_{2}^{*}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{n}^{+}}[\mathfrak{K}]}\left(\bar{b}_{n}^{\prime}, M_{1}, M_{3}\right)
$$

by clause (e) of $(*)$. But $\left\langle g \upharpoonright M_{2, n}^{*}: n<\omega\right\rangle$ is \subseteq-increasing with union g so by Ax.V of AEC g is a $\leq_{\mathfrak{K}}$-embedding of M_{2}^{*} into M_{3}. Lastly, obviously

$$
g \supseteq \bigcup\left\{\operatorname{id}_{M_{2, n}^{*} \cap M_{1}}: n<\omega\right\}=\operatorname{id}_{M_{1}}
$$

so we are done.

We arrive to the crucial advance:
Theorem 1.34. The Amalgamation Theorem:
If $\operatorname{cf}(\lambda)=\aleph_{0}$, then $\mathfrak{K}_{\lambda}^{*}$ (i.e. $\left(K_{\lambda}^{*}, \leq_{\mathfrak{K}} \upharpoonright K_{\lambda}^{*}\right)$) has amalgamation, even disjoint one.

Proof. Assume $M_{0} \leq_{\mathfrak{K}_{\lambda}^{*}} M_{\ell}$ for $\ell=1,2$. Choose $I_{0} \in K_{\lambda}^{\text {flin }}$ so

$$
M_{0}^{\prime}:=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right) \in K_{\lambda}^{*}
$$

but K_{λ}^{*} is categorical (see 1.16 or $1.19(4)$) hence $M_{0}^{\prime} \cong M_{0}$, so without loss of generality $M_{0}^{\prime}=M_{0}$. Choose $I_{1} \in K_{\lambda}^{\text {flin }}$ such that $I_{0}<_{K^{\text {flin }}} I_{1}$ and let $M_{1}^{\prime}=$ $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)$ so $M_{0} \leq_{\mathfrak{K}} M_{1}^{\prime}$. By applying $1.32(3)$ with $I_{0}, I_{1}, M_{0}, M_{1}^{\prime}, M_{1}$ here standing for $I_{1}, I_{2}, M_{1}, M_{2}, M_{2}^{*}$ there, we can find a pair $\left(I_{2}, f_{1}\right)$ such that $I_{1}<_{K_{\lambda}^{\text {flin }}}$ I_{2} and f_{1} is a $\leq_{\mathfrak{K}}$-embedding of M_{1} into $M_{2}^{\prime}:=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$ over M_{0}. Apply $1.32(3)$ again with $I_{0}, I_{2}, M_{0}, \mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right), M_{2}$ here standing for $I_{1}, I_{2}, M_{1}, M_{2}, M_{2}^{*}$ there. So there is a pair $\left(I_{3}, f_{2}\right)$ such that $I_{2}<_{K_{\lambda}^{\text {fin }}} I_{3}$ and f_{2} is $\leq_{\mathfrak{K}}$-embedding M_{2} into $M_{3}:=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$ over $M_{0}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)$. Of course, $M_{3} \in K_{\lambda}^{*}$ and we are done proving the "has amalgamation."

Why disjoint? Let $\left(I_{4}, h\right)$ be such that $I_{3}<_{K_{\lambda}^{\text {flin }}} I_{4}$ and h is a $\leq_{K^{\text {fin }} \text {-embedding }}$ of I_{3} into I_{4} over I_{0} such that $h\left(I_{3}\right) \cap I_{3}=I_{0}$. Now h induces an isomorphism \hat{h} from $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$ onto $\mathrm{EM}_{\tau(\mathfrak{K})}\left(h\left(I_{3}\right), \Phi\right) \leq_{\mathfrak{K}} \mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{4}, \Phi\right)$.

Lastly, by our assumptions on Φ if $J_{1}, J_{2} \subseteq J$ are linear orders and $J_{1} \cap J_{2}$ is a dense linear order (in particular with neither first nor last member, e.g. are from $K_{\lambda}^{\text {flin }}$ as in our case) then

$$
\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{1}, \Phi\right) \cap \operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{2}, \Phi\right)=\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{1} \cap J_{2}, \Phi\right) .
$$

So in particular, above

$$
\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right) \cap \operatorname{EM}_{\tau(\mathfrak{K})}\left(\hat{h}\left(I_{3}, \Phi\right)=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)\right.
$$

and $f_{1}, \hat{h} \circ f_{2}$ are $\leq_{\mathfrak{K}}$-embeddings of M_{1}, M_{2} respectively over $M_{0}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)$ into $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right) \leq_{\mathfrak{K}} \mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{4}, \Phi\right)$ and $\mathrm{EM}_{\tau(\mathfrak{K})}\left(h\left(I_{3}\right), \Phi\right) \leq_{\mathfrak{K}} \mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{4}, \Phi\right)$, respectively, so we are done.

Claim 1.35. Assume $\operatorname{cf}(\lambda)=\aleph_{0}$. If $\delta<\lambda^{+}$, the sequence $\left\langle M_{i}: i<\delta\right\rangle$ is $\leq_{\mathfrak{K}}$ increasing continuous and $M_{i} \in K_{\lambda}^{*}$ for $i<\delta$, then $M_{\delta}:=\bigcup\left\{M_{i}: i<\delta\right\}$ can be $\leq_{\mathfrak{K}}$-embedded into some member of K_{λ}^{*}.
Proof. We choose $I_{i} \in K_{\lambda}^{\text {fin }}$ by induction on $i \leq \delta$, which is $<_{K_{\lambda}^{\text {flin }} \text {-increasing con- }}$ tinuous with i, and a $\leq_{\mathfrak{K}}$-embedding f_{i} of M_{i} into $N_{i}:=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{i}, \Phi\right)$, increasing continuous with i. For $i=0$ choose $I_{0} \in K_{\lambda}^{\text {flin }}$, so $N_{0}:=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, M\right)$ is isomorphic to M_{0} hence f_{0} exists; for i limit use $I_{i}:=\bigcup\left\{I_{j}: j<i\right\}$ and $f_{i}:=\bigcup\left\{f_{j}: j<i\right\}$. So assume $i=j+1$. Now we can find $M_{i}^{\prime}, f_{i}^{\prime}$ satisfying: f_{i}^{\prime} is an isomorphism from M_{i} onto M_{i}^{\prime} extending f_{j} such that $f_{j}\left(M_{j}\right) \leq_{\mathfrak{K}} M_{i}^{\prime}$ (actually this trivially follows)
and $M_{i}^{\prime} \cap N_{j}=f_{j}\left(M_{j}\right)$; so also M_{i}^{\prime} belongs to K_{λ}^{*}. Now $f_{j}\left(M_{j}\right), \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{j}, \Phi\right), M_{i}^{\prime}$ can be disjointly amalgamated (by 1.34) in $\left(K_{\lambda}^{*}, \leq_{\mathfrak{K}}\right)$, so there is $M_{i}^{*} \in K_{\lambda}^{*}$ such that $N_{j}=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{j}, \Phi\right) \leq_{\mathfrak{K}} M_{i}^{*}$ and $M_{i}^{\prime} \leq_{\mathfrak{K}} M_{i}^{*}$. Now by $1.32(3)$ there are I_{i}, g_{i} such that $I_{j}<_{K_{\text {flin }}^{\text {flin }}} I_{i}$ and g_{i} is a $\leq_{\mathfrak{K}}$-embedding of M_{i}^{*} into $N_{i}:=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{i}, \Phi\right)$ over $\mathrm{EM}_{\tau}\left(I_{j}, \Phi\right)$. Let $f_{i}=g_{i} \circ f_{i}^{\prime}$, clearly it is as required. Having carried the induction, f_{δ} is a $\leq_{\mathfrak{K}}$-embedding of M_{δ} into $\mathrm{EM}_{\tau(\mathfrak{K})}\left(\bigcup_{j<\delta} I_{j}, \Phi\right)$, as promised. $\square_{1.35}$

Claim 1.36. 1) Assume $\operatorname{cf}(\lambda)=\aleph_{0}$. For every $M_{0} \in K_{\lambda}^{*}$ there is a $\leq_{\mathfrak{K}}$-extension $M_{1} \in K_{\lambda}^{*}$ of M_{0} such that: if $M_{0} \leq_{\mathfrak{K}_{\lambda}} M_{2} \in K_{\lambda}^{*}$ and $\bar{a} \in{ }^{\lambda>}\left(M_{2}\right)$ then for some $\left(M_{3}, f\right)$ we have:
$M_{1} \leq_{\mathfrak{K}} M_{3} \in K_{\lambda}^{*}, f$ is $a \leq_{\mathfrak{K}}$-embedding of M_{2} into M_{3} over M_{0} and $f(\bar{a}) \in{ }^{\lambda>}\left(M_{2}\right)$.
2) Assume $\operatorname{cf}(\lambda)=\aleph_{0}$. For every $M_{0} \in K_{\lambda}^{*}$ there is $a \leq_{\mathfrak{K}}$-extension $M_{1} \in K_{\lambda}^{*}$ which is universal over M_{0} for $\leq_{\mathfrak{R}_{\lambda}}$-extensions.
3) If (A) then (B), where
(A) $I_{0} \leq_{K_{\lambda}^{\text {flin }}} I_{1}^{\prime}<_{K_{\lambda}^{\text {flin }}} I_{1}$
(B) If $I_{0} \subseteq I_{2} \in K_{\lambda}^{\text {flin }}, \beta \leq \gamma<\lambda, \bar{b}_{1} \in{ }^{\beta}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}^{\prime}, \Phi\right)\right), \bar{c}_{2} \in{ }^{\gamma}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)\right)$, $\bar{b}_{2}=\bar{c}_{2} \upharpoonright \beta$, and for every $\kappa<\lambda$ we have
$\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]}\left(\bar{b}_{1}, \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right), \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)\right)=\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa}[\mathfrak{K}]\left(\bar{b}_{2}, \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right), \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)\right)$
then for some $\left(I_{1}^{+}, f\right)$ we have $I_{1} \leq_{K^{\text {flin }}} I_{1}^{+} \in K_{\lambda}^{\text {fin }}$ and f is a $\leq_{\mathfrak{K}}$-embedding of $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$ into $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}^{+}, \Phi\right)$ over $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)$ mapping \bar{b}_{2} to \bar{b}_{1} and \bar{c}_{2} into $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)$.
4) Assume $\operatorname{cf}(\lambda)=\aleph_{0}$. If (C) then (D) (and moreover ($\left.D\right)^{+}$) when
(C) $\left\langle J_{\alpha}: \alpha \leq \omega\right\rangle$ is $<_{K_{\lambda}^{\text {flin }}-i n c r e a s i n g, ~} I_{0}=J_{0}, I_{1}=J_{\omega}$.
(D) If $I_{0} \subseteq I_{2} \in K_{\lambda}^{\text {flin }}$ then some f is $a \leq_{\mathfrak{\xi}}$-embedding of $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$ into $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)$ over $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)$.
$(D)^{+} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)$ is $\leq_{\mathfrak{R}_{\lambda}^{*}}$-universal over $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)$.

Proof. Note that by $1.32(3)$ clearly $(3) \Rightarrow(1)$ and $(4) \Rightarrow(2)$. So we shall prove (3) and (4).
3) First assume $\beta=0, \gamma=1$ so $\bar{c}_{2}=\langle c\rangle$. Toward contradiction assume $I_{0} \subseteq$ $I_{2} \in K_{\lambda}^{\text {lin }}, a \in M_{2}:=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$ but there is no pair $\left(I_{1}^{+}, f\right)$ as required in clause (b). Without loss of generality for some I_{3} we have $I_{0} \leq_{K_{\lambda}^{\text {flin }}} I_{2} \leq_{K_{\lambda}^{\text {flin }}} I_{3}$ and $I_{0} \leq_{K_{\lambda}^{\text {flin }}} I_{1} \leq_{K_{\lambda}^{\text {flin }}} I_{3}$.

Let $\operatorname{EM}\left(I_{2}, \Phi\right) \models$ " $c_{2}=\sigma\left(a_{t_{0}^{2}}, \ldots, a_{t_{n-1}^{2}}\right)$ " where $\sigma\left(x_{0}, \ldots, x_{n-1}\right)$ a τ_{Φ}-term, $n<\omega$ and $I_{2} \models " t_{0}^{2}<\ldots<t_{n-1}^{2}$ ". Let $u=\left\{\ell<n: t_{\ell}^{2} \in I_{0}\right\}$. As $I_{0}<_{K_{\lambda}^{\text {flin }}} I_{1}$, we can find $\left\langle t_{0}^{1}, \ldots, t_{n_{1}}^{1}\right\rangle$ such that:

* (a) $t_{\ell}^{1} \in I_{1}$ for $\ell<n$
(b) $t_{0}^{1}<_{I_{1}} \ldots<_{I_{1}} t_{n-1}^{1}$
(c) if $\ell \in u$ then $t_{\ell}^{2}=t_{\ell}^{1}\left(\in I_{0}\right)$
(d) if $\ell<n \wedge \ell \notin u$ then $t_{\ell}^{1} \in I_{1} \backslash I_{0}$
(e) if $\ell_{1} \leq \ell_{2}<n$ and $\left[\ell_{1}, \ell_{2}\right] \cap u=\varnothing$ then $t_{\ell_{2}}^{2}<I_{3} t_{\ell_{1}}^{1}$.

Let $M_{\ell}=\operatorname{EM}_{\tau(\mathfrak{\kappa})}\left(I_{\ell}, \Phi\right)$ for $\ell=0,1,2,3$ and let

$$
c_{2}=c, c_{1}=\sigma^{\operatorname{EM}\left(I_{1}, \Phi\right)}\left(a_{t_{0}^{1}}, \ldots, a_{t_{n-1}^{1}}\right)
$$

Let $\kappa<\lambda$ be large enough such that $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}+[\mathfrak{K}]}\left(c_{\ell}, M_{0}, M_{\ell}\right)$ for $\ell=1,2$ be distinct (exists by $1.32(1)$ because its conclusion fails by the "toward contradiction"). We easily get contradiction to the non-order property (see (*) of $1.5(2))$.

Note that if in addition $\left\langle I_{1, \alpha}: \alpha \leq \lambda\right\rangle$ is $<_{K_{\lambda}^{\text {flin }} \text {-increasing continuous, }} I_{1,0}=I_{1}^{\prime}$, $I_{1, \lambda}=I_{1}$ then by what we have just proved and the proof of [She09c, 4.2a] we can prove the general case (and part (4)). But we also give a direct proof.

In the general case, let $\theta=|\beta|+\aleph_{0}$, so we assume clause (a) and the assumptions of clause (b) and without loss of generality $I_{1} \cap I_{2}=I_{0}$ hence there is I_{3} such that $I_{\ell}<_{K_{\lambda}^{\text {flin }}} I_{3}$ for $\ell=1,2$. Let $\kappa \in(\theta, \lambda)$ be large enough.

Hence

$$
\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right) \prec_{\mathbb{L}_{\infty, \lambda}[\mathfrak{K}]} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\ell}, \Phi\right) \prec_{\mathbb{L}_{\infty, \lambda}[\mathfrak{K}]} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)
$$

for $\ell=1,2$. Applying $1.32(1)$ with $I_{1}, I_{2}, \bar{b}, \bar{c}$ there standing for $I_{0}, I_{3}, \bar{b}_{1}, \bar{b}_{2}$ here we can find a pair $\left(I_{4}, f_{4}\right)$ such that $I_{3}<_{K_{\lambda}^{\text {flin }}} I_{4}$ and f_{4} is an automorphism of $M_{4}:=\mathrm{EM}_{\tau(\mathfrak{\kappa})}\left(I_{4}, \Phi\right)$ over $\mathrm{EM}_{\tau(\mathfrak{\kappa})}\left(I_{0}, \Phi\right)$ mapping \bar{b}_{2} to \bar{b}_{1}. Clearly

$$
M_{3}:=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right) \prec_{\mathbb{L}_{\infty, \lambda}[\mathfrak{K}]} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{4}, \Phi\right)
$$

So $f_{4}\left(\bar{c}_{2}\right) \in{ }^{\gamma}\left(M_{4}\right)$, hence we can apply clause (b) of Claim $1.27(3)$ with

$$
M_{1}, M_{2}, I_{2}, N, \xi, \bar{d}^{*}
$$

there standing for

$$
\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}^{\prime}, \Phi\right), \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right), I_{1}, \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{4}, \Phi\right), \gamma, f_{4}\left(\bar{c}_{2}\right)
$$

here. Hence we can find $\bar{c}_{2}^{\prime} \in{ }^{\gamma}\left(M_{1}\right)$ realizing in M_{1} the type

$$
\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]}\left(f_{4}\left(\bar{c}_{2}\right), \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}^{\prime}, \Phi\right), \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)\right)
$$

Lastly, applying Claim $1.32(1)$ with $I_{1}, I_{2}, \bar{b}, \bar{c}$ there standing for $I_{1}^{\prime}, I_{4}, f_{4}\left(\bar{c}_{2}\right), \bar{c}_{2}^{\prime}$ here, clearly there is a pair $\left(I_{5}, f_{5}\right)$ such that $I_{4}<_{K_{\lambda}^{\text {fin }}} I_{5}$ and f_{5} is an automorphism of $\operatorname{EM}_{\tau(\mathfrak{\kappa})}\left(I_{5}, \Phi\right)$ over $\operatorname{EM}\left(I_{1}^{\prime}, \Phi\right)$ mapping to $f_{4}\left(\bar{c}_{2}\right)$ to \bar{c}_{2}^{\prime}.

Let $I_{1}^{+}:=I_{5}, f=f_{5}^{\prime} \circ f_{4}^{\prime}$ where $\left.f_{5}^{\prime}=f_{5} \upharpoonright \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{4}, \Phi\right)\right)$ and $f_{4}^{\prime}=f_{4} \upharpoonright$ $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$. Now I_{1}^{+}, f are as required because $f_{4}\left(\bar{b}_{2}\right)=\bar{b}_{1}$ while $f_{5}\left(\bar{b}_{1}\right)=\bar{b}_{1}$.
4) Easy by part (3). First note that (d) ${ }^{+}$follows by (d) by $1.32(3)$, so we shall ignore clause (d)+. Let $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$ be $\bigcup\left\{M_{2, n}: n<\omega\right\}$ where $M_{2, n} \in K_{<\lambda}$ and $n<\omega \Rightarrow M_{2, n} \leq_{\mathfrak{K}} M_{2, n+1}$.

Let \bar{a}_{n} list the elements of $M_{2, n}$ with no repetitions such that $\bar{a}_{n} \triangleleft \bar{a}_{n+1}$ for $n<\omega$. By induction on n, we choose \bar{b}_{n} such that

* (a) $\bar{b}_{n} \in \ell g\left(\bar{a}_{n}\right)\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{n+1}, \Phi\right)\right)$
(b) If $n=m+1$ then $\bar{b}_{m} \triangleleft \bar{b}_{n}$
(c) For every $\kappa<\lambda$, the type $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]}\left(\bar{b}_{n}, \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right), \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{n+1}, \Phi\right)\right)$ is equal to the type $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]}\left(\bar{a}_{n}, \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right), \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)\right)$.
The induction step is by part (3). Let f_{n} be the unique function mapping \bar{a}_{n} to \bar{b}_{n} (with domain rang $\left(\bar{a}_{n}\right)$). So $f_{n} \subseteq f_{n+1}$ and f_{n} is a $\leq_{\mathfrak{K}}$-embedding of $M_{2, n}$ into $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{n+1}, \Phi\right)$ but $J_{n+1} \subseteq I_{1}$ hence into $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)$. So $f:=\bigcup\left\{f_{n}: n<\omega\right\}$ is a $\leq_{\mathfrak{K}^{-}}$-embedding of $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$ into $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)$. Also, f_{n} is the identity on $\operatorname{rang}\left(\bar{a}_{n}\right) \cap \operatorname{EM}_{\tau(\mathfrak{\kappa})}\left(I_{0}, \Phi\right)$ hence f is the identity on

$$
\bigcup_{n} \operatorname{rang}\left(\bar{a}_{n}\right) \cap \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)
$$

so f is as required.

Exercise: 1) Assume $\mathfrak{K}_{\lambda}=\left(K_{\lambda}, \leq_{\mathfrak{K}_{\lambda}}\right)$ satisfies axioms I, II (and 0, presented below) and amalgamation. Then $\operatorname{tp}(a, M, N)$ for $M \leq_{\mathfrak{K}_{\lambda}} N$ and $a \in N$ and $\mathcal{S}_{\mathfrak{K}_{\lambda}}(M)$ are well defined and has the basic properties of types from [She09c, §1].
2) If in addition \mathfrak{K}_{λ} satisfies Ax.III ${ }^{\odot}$ below and \mathfrak{K}_{λ} is stable (i.e. $\left|\mathcal{S}_{\mathfrak{K}_{\lambda}}(M)\right| \leq \lambda$ for $M \in K_{\lambda}$) then every $M \in \mathfrak{K}_{\lambda}$ has a $\leq_{\mathfrak{K}}$-universal extension N which means $M \leq_{\mathfrak{R}_{\lambda}} N$ and

$$
\left(\forall N^{\prime}\right)\left(M \leq_{\mathfrak{K}_{\lambda}} N^{\prime} \Rightarrow(\exists f)\left[f \text { is a } \leq_{\mathfrak{K}_{\lambda}} \text {-embedding of } N^{\prime} \text { into } N \text { over } M\right]\right)
$$

3) Ax.III (see [She09c, 0.2]) implies Ax.III ${ }^{\odot}$
where:
Ax.0: K is a class of $\tau_{\mathfrak{K}}$-models, $\leq_{\mathfrak{K}}$ a two place relation of K_{λ}, both preserved under isomorphisms
Ax.I: if $M \leq \mathfrak{K}_{\lambda} N$ then $M \subseteq N$ (are $\tau\left(\mathfrak{K}_{\lambda}\right)$-models of cardinality λ
Ax.II: $\leq_{\mathfrak{K}_{\lambda}}$ is a partial order (so $M \leq_{\mathfrak{K}_{\lambda}} M$ for $M \in K_{\lambda}$)
Ax.III ${ }^{\text {: }}$: In following game the player COM has a winning strategy. A play lasts λ moves, and the players take turns to construct a $\leq_{\mathfrak{K}_{\lambda}}$-increasing continuous sequence $\left\langle M_{\alpha}: \alpha \leq \lambda\right\rangle$. In the $\alpha^{\text {th }}$ move, M_{α} is chosen by INC if α is even or by COM is α is odd. Now COM wins if INC always has a legal move.
Ax.IV ${ }^{\odot}$: For each $M \in K_{\lambda}$, in the following game, INC has no winning strategy: a play lasts $\lambda+1$ moves; in the $\alpha^{\text {th }}$ move $f_{\alpha}, M_{\alpha}, N_{\alpha}$ are chosen such that f_{α} is a $\leq_{\mathfrak{K}}$-embedding of M_{α} into N_{α}, both are $\leq_{\mathfrak{K}_{\lambda}}$-increasing continuous, f_{α} is \subseteq-increasing continuous, $M_{0}=M$ and in the $\alpha^{\text {th }}$ move, M_{α} is chosen by INC, and the pair is chosen by the player INC if α is even and by the player COM if α is odd. The player COM wins if INC has always a legal move (the player COM always has: he can choose $N_{\alpha}=M_{\alpha}$)

Definition 1.37. 1) Let $<_{\lambda}^{*}=<_{\mathfrak{R}_{\lambda}^{*}}^{*}$ be the following two-place relation on K_{λ}^{*} (so $M \leq_{\mathfrak{K}_{\lambda}^{*}}^{*} N$ mean $M=N \in \mathfrak{K}_{\lambda}^{*}$ or $\left.M<_{\mathfrak{K}_{\lambda}^{*}}^{*} N\right)$:
$M_{1}<_{\lambda}^{*} M_{2}$ iff $M_{1} \leq_{\mathfrak{K}_{\lambda}} M_{2}$ are from K_{λ}^{*} and M_{2} is $\leq_{\mathfrak{K}_{\lambda}}$-universal over M_{1}.
2) For $\alpha<\lambda, \kappa=\beth_{1,1}(|\alpha|+\operatorname{LST}(\mathfrak{K}))$ and $M \in K_{\lambda}^{*}$ let $\operatorname{Sav}^{\mathrm{bs}, \alpha}(M)$ be the set of $\left\{\operatorname{Av}_{\kappa}(\mathbf{I}, M): \mathbf{I}\right.$ is a $\left(\left(2^{\kappa}\right)^{+}, \kappa\right)$-convergent subset of $\left.{ }^{\alpha} M\right\}$. We define $\operatorname{tp}_{*}(\bar{a}, M, N)$ when $M \leq_{\mathfrak{K}} N$ are from K_{λ}^{*} and $\bar{a} \in{ }^{\alpha} N$, as $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]}(\bar{a}, M, N) \in \operatorname{Sav}^{\mathrm{bs}, \alpha}(M)$ naturally.
3) Let $\mathfrak{K}_{\lambda}^{*}=\left(K_{\lambda}^{*}, \leq_{\mathfrak{K}} \upharpoonright \mathfrak{K}_{\lambda}^{*}, \leq_{\mathfrak{R}_{\lambda}^{*}}^{*}\right)$ (see 1.38 below) but if $\left(K_{\lambda}^{*}, \leq_{\mathfrak{K}} \upharpoonright K_{\lambda}^{*}\right)$ is a λ-AEC then we omit $\leq_{\mathfrak{K}_{\lambda}^{*}}^{*}$.

Remark 1.38. 1) Note that the relation $<_{\lambda}^{*}=<_{\mathfrak{K}_{\lambda}}^{*}$ seemingly depends on the choice of Φ. However, assuming μ-solvability, by $1.40(2)$ below it does not depend.
2) The proof of 1.40 is like [She09c, 0.22(3)].
3) So $\mathfrak{K}_{\lambda}^{*}$ is a semi- λ-AEC (see [She]) but we do not use this notion here.

Claim 1.39. Assume $\operatorname{cf}(\lambda)=\aleph_{0}$.
0) If $M \in K_{\lambda}^{*} \underline{\text { then }}$ for some $N \in K_{\lambda}^{*}, M<_{\mathfrak{K}_{\lambda}^{*}}^{*} N$.

1) If $M \leq_{\mathfrak{K}} N$ are from $K_{\lambda}^{*}, \alpha<\lambda$ and $\bar{a} \in{ }^{\alpha} N \backslash{ }^{\alpha} M$ then \bar{a} realizes some $p \in \operatorname{Sav}^{\mathrm{bs}, \alpha}(M)$.
2) If $M_{0} \leq_{\mathfrak{K}} M_{1}<_{\mathfrak{K}_{\lambda}^{*}}^{*} M_{2} \leq_{\mathfrak{K}} M_{3}$ and $M_{\ell} \in K_{\lambda}^{*}$ for $\ell<4$, then $M_{0}<_{\mathfrak{K}_{\lambda}^{*}}^{*} M_{3}$.

Proof. 0) As K_{λ}^{*} is categorical (by 1.16(1)) this follows by $1.36(2)$.

1) A proof of this is included in the proof of $1.32(2)$, i.e. by $1.27(1)$.
2) Easy, recalling amalgamation.

Claim 1.40. Assume $\operatorname{cf}(\lambda)=\aleph_{0}$.

1) Assume $\left\langle M_{i}: i \leq \delta\right\rangle$ is $\leq_{\mathfrak{K}_{\lambda}}$-increasing continuous and $M_{2 i+1}<_{\mathfrak{K}_{\lambda}^{*}}^{*} M_{2 i+2}$ for $i<\delta$. Then $M_{\delta} \in K_{\lambda}^{*}$.
2) Assume that $\left\langle M_{i}^{\ell}: i \leq \delta\right\rangle$ is an $\leq_{\mathfrak{R}_{\lambda}^{*}-i n c r e a s i n g ~ c o n t i n u o u s ~ s e q u e n c e ~ s u c h ~ t h a t ~}$ $M_{2 i+1}^{\ell}<_{\mathfrak{K}_{\lambda}^{*}}^{*} M_{2 i+2}^{\ell}$ for $i<\delta$ all for $\ell=1,2$. Any isomorphism from M_{0}^{1} onto M_{0}^{2} (or just $a \leq_{\mathfrak{K}_{\lambda}}$-embedding) can be extended to an isomorphism from M_{δ}^{1} onto M_{δ}^{2}.

Proof. 1) We prove this by induction on δ, hence without loss of generality $i<\delta \Rightarrow$ $M_{i} \in K_{\lambda}^{*}$.

Let $M_{\alpha}^{1}=M_{\alpha}$ for $\alpha \leq \delta$ and let $\left\langle I_{\alpha}: \alpha \leq \delta\right\rangle$ be $<_{K_{\lambda}^{\text {flin }} \text {-increasing. Let }}$ $M_{\alpha}^{2}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\alpha}, \Phi\right)$. Now there is an isomorphism f from \hat{M}_{0}^{1} onto M_{0}^{2} as K_{λ}^{*} is categorical, so by part (2) there is an isomorphism g from M_{α}^{1} onto M_{α}^{2}, but $M_{\alpha}^{2} \in K_{\lambda}^{*}$ so we are done.
2) Note
\boxtimes_{2} without loss of generality
$\square M_{i}^{2}<_{\lambda}^{*} M_{i+1}^{2}$.
[Why? We can find $\left\langle M_{i}^{3}: i \leq \delta\right\rangle$ which is $\leq_{\mathfrak{K}_{\lambda}^{*}}^{*}$-increasing continuous and $M_{0}^{3}=M_{0}^{2}$ and $M_{i}^{3}<_{\lambda}^{*} M_{i+1}^{3}$. Now apply the restricted version (i.e., with the assumption \square) twice.]

By induction on $i \leq \delta$ we choose $\left(f_{i}, N_{i}^{1}, N_{i}^{2}\right)$ such that
\circledast (a) N_{i}^{1}, N_{i}^{2} belong to K_{λ}^{*}
(b) f_{i} is an isomorphism from N_{i}^{1} onto N_{i}^{2}
(c) $N_{i}^{1}, N_{i}^{2}, f_{i}$ are increasing continuous with i
(d) For $i=0, N_{i}^{1}=M_{i}^{1}, f_{i}=f$ and N_{i}^{2} is $f\left(M_{i}^{1}\right)=M_{i}^{2}$
(e) If $i>0$ is a limit ordinal then $N_{i}^{1}=M_{i}^{1}$ and $N_{i}^{2}=M_{i}^{2}$
(f) When $i=\omega \alpha+2 n<\delta$ we have
(α) $N_{\omega \alpha+2 n+1}^{1}=M_{\omega \alpha+2 n+1}^{1}$
(β) $N_{\omega \alpha+2 n+1}^{2} \leq_{\mathfrak{K}} M_{\omega \alpha+2 n+1}^{2}$
$(\gamma) N_{\omega \alpha+2 n+2}^{1} \leq_{\mathfrak{K}} M_{\omega \alpha+2 n+2}^{1}$
($\delta) ~ N_{\omega \alpha+2 n+2}^{2}=M_{\omega \alpha+2 n+2}^{2}$.
Case 1: $i=0$.
This is trivial by clause (d) and the assumption of the claim on f.

Case 2: $i=\omega \alpha+2 n+1$.

Note that $N_{\omega \alpha+2 n}^{2}=M_{\omega \alpha+2 n}^{2}$. [Why? If $i=0$ (i.e. $\alpha=0=n$) by $\circledast(d)$, and if i is a limit ordinal (i.e. $\alpha>0 \wedge n=0$) by clause (e) of \circledast, and if $n>0$ by clause $(f)(\delta)$ of \circledast.]

Now we let $N_{i}^{1}=N_{\omega \alpha+2 n+1}^{1}:=M_{\omega \alpha+2 n+1}^{1}$ and hence satisfying clause $(f)(\alpha)$ of \circledast. So

$$
N_{i-1}^{1}=N_{\omega \alpha+2 n}^{1} \leq_{\mathfrak{K}} M_{\omega \alpha+2 n}^{1} \leq_{\mathfrak{K}} M_{\omega \alpha+2 n+1}^{1}=N_{\omega \alpha+2 n+1}^{1}=N_{i}^{1}
$$

Note that $N_{i-1}^{2}=N_{\omega \alpha+2 n}^{2}<_{\lambda}^{*} M_{\omega \alpha+2 n}^{2}$ by \square above hence we can apply Definition $1.37(1)$ and find an extension f_{i} of f_{i-1} to $\leq_{\mathfrak{K}}$-embedding of $N_{i}^{1}=M_{\omega \alpha+2 n+1}^{1}$ into $M_{\omega \alpha+2 n+1}^{2}$ and let $N_{i}^{2}:=f_{i}\left(N_{i}^{1}\right)$.
Case 3: $i=\omega \alpha+2 n+2$.

Note that $N_{\omega \alpha+2 n+1}^{1}=M_{\omega \alpha+2 n+1}^{1}$ by clause $(f)(\alpha)$ of \circledast hence by the assumption of the claim $N_{\omega \alpha+2 n+1}^{1}<_{\mathfrak{R}_{\lambda}^{*}}^{*} M_{\omega \alpha+2 n+2}^{1}$. We choose $N_{\omega \alpha+2 n+2}^{2}:=M_{\omega \alpha+2 n+2}^{2}$ hence

$$
N_{i-1}^{2}=N_{\omega \alpha+2 n+1}^{2} \leq_{\mathfrak{K}} M_{\omega \alpha+2 n+1}^{2} \leq_{\mathfrak{K}} M_{\omega \alpha+2 n+2}^{2}=N_{\omega \alpha+2 n+2}^{2}=N_{i}^{2}
$$

Now we apply Definition $1.37(1)$ to find $\mathrm{a} \leq_{\mathfrak{K}}$-embedding g_{i} of $N_{\omega \alpha+2 n+2}^{2}$ into $M_{\omega \alpha+2 n+2}^{1}$ extending f_{i-1}^{-1}.

Lastly, let $f_{i}=g_{i}^{-1}$ and $N_{i}^{1}=M_{i}^{1} \upharpoonright \operatorname{dom}\left(f_{i}\right)$. So we can carry the induction, hence we can prove the claim.

Note that now we use more than in Hypothesis 1.18.
Claim 1.41. Assume
$\boxtimes(a)\left\langle\lambda_{n}: n<\omega\right\rangle$ is increasing, $\lambda=\lambda_{\omega}=\sum_{n<\omega} \lambda_{n}$ satisfying $\lambda_{n}=\beth_{\lambda_{n}}>$ $\operatorname{LST}(\mathfrak{K})$ and $\operatorname{cf}\left(\lambda_{n}\right)=\aleph_{0}$ for $n<\omega$.
(b) $\Phi \in \Upsilon_{\mathfrak{K}}^{\mathrm{or}}$, and each λ_{n} and $\lambda=\lambda_{\omega}$ is as in Hypothesis 1.18, or just satisfies all its conclusions so far.

1) K_{λ}^{*} is closed under unions $\leq_{\mathfrak{K}}$-increasing chains (of length $<\lambda^{+}$).
2) If $M_{n} \in K_{\lambda_{n}}^{*}, M_{n} \leq \mathfrak{K} M_{n+1}$ and $M=\bigcup_{n<\omega} M_{n}$ then $M \in K_{\lambda}^{*}$.
3) If $M \in K_{\lambda}$ and $\theta<\lambda \Rightarrow M \equiv_{\mathbb{L}_{\infty, \theta}[\mathfrak{K}]} \operatorname{EM}_{\tau(\mathfrak{K})}(\lambda, \Phi)$ then $M \in K_{\lambda}^{*}$.
4) K_{λ}^{*} is categorical.

Proof. 1) We rely on part (2) which is proven below.
So let $\left\langle M_{i}: i<\delta\right\rangle$ be $\leq_{\mathfrak{K}}$-increasing in K_{λ}^{*} with $\delta<\lambda^{+}$. Without loss of generality $\delta=\operatorname{cf}(\delta)$, hence $\delta<\lambda$. Call it θ, and we prove this by induction on θ. Without loss of generality $\left\langle M_{i}: i<\theta\right\rangle$ is $\leq_{\mathfrak{k}}$-increasing continuous such that $M_{i} \in K_{\lambda}^{*}$ for $i<\theta$, and let $M_{\theta}=\bigcup_{i<\theta} M_{i}$. By renaming, without loss of generality $\theta<\lambda_{0}$.

Let I_{n}, I_{n}^{\prime} be such that:
$\odot_{1} \quad$ (a) I_{n} is a linear order of cardinality λ_{n} from $K^{\text {fin }}$
(b) I_{n}^{\prime} is a linear order of cardinality $2^{\lambda_{n}}$ from $K^{\text {flin }}$
(c) I_{n}^{\prime} is λ_{n}^{+}-saturated. (This means that its cofinality is $>\lambda_{n}$, the cofinality of its inverse is $>\lambda_{n}$ and if $I_{n}^{\prime}=$ " $s_{\alpha_{1}}<s_{\beta_{1}}<t_{\beta_{2}}<t_{\alpha_{2}}$ " where $\alpha_{1}<\beta_{1}<\gamma_{1}, \alpha_{1}<\beta_{2}<\gamma_{2}$ and $\left|\gamma_{1}\right|+\left|\gamma_{2}\right|<\lambda_{n}^{+}$then for some r we have $I_{n}^{\prime} \models$ " $s_{\alpha_{1}}<r<t_{\alpha_{2}}$ " for $\alpha_{1}<\gamma_{1}, \alpha_{2}<\gamma_{2}$.)
(d) $I_{n}<_{K^{\text {flin }}} I_{n}^{\prime}<_{K^{\text {flin }}} I_{n+1}$ for $n<\omega$.

Let $I=\bigcup\left\{I_{n}: n<\omega\right\}$, so I is a universal member of $K_{\lambda}^{\text {lin }}$. Let $M^{*}=\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$, so for every $i<\theta$ there is an isomorphism f_{i} from M^{*} onto M_{i}, which exists as K_{λ}^{*} is categorical by $1.19(4)$ as $\operatorname{cf}(\lambda)=\aleph_{0}$.

Now
\odot_{2} (a) Every interval of I is universal in $K_{\lambda}^{\text {lin }}$.
(b) If $n<\omega, J \subseteq I, \chi=|J|<\lambda$, and

$$
\mathcal{E}_{J, I}=\left\{\left(t_{1}, t_{2}\right) \in(I \backslash J)^{2}: s \in J \Rightarrow\left[s<_{I} t_{1} \equiv s<_{J} t_{2}\right]\right\}
$$

then for at most χ elements t of $J \backslash I$ the set $t / \mathcal{E}_{J, I}$ is a singleton.
[Why? Clause (a) is obvious. For clause (b) assume $\left\langle t_{\alpha}: \alpha<\chi^{+}\right\rangle$are pairwise distinct members of $J \backslash I$ such that $t_{\alpha} / \mathcal{E}_{J, I}$ is a singleton for each $\alpha<\chi^{+}$. Without loss of generality for some $k<\omega$ we have $\alpha<\chi^{+} \Rightarrow t_{\alpha} \in I_{k}$ hence $\chi \leq \lambda_{k}$. For each $\alpha<\chi^{+}$we can choose $s_{\alpha} \in I_{k}^{\prime}$ such that $s_{\alpha}<_{I_{k}^{\prime}} t_{\alpha}$ and $\left(s_{\alpha}, t_{\alpha}\right)_{I_{k}^{\prime}} \cap J=\varnothing$. Clearly

$$
\alpha<\beta<\chi^{+} \Rightarrow\left(t_{\alpha}<_{I} s_{\beta} \vee t_{\beta}<_{I} s_{\alpha}\right)
$$

hence $\left\langle\left(s_{\alpha}, t_{\alpha}\right)_{I}: \alpha<\chi^{+}\right\rangle$are pairwise disjoint intervals of I, so for every $\alpha<\chi^{+}$ large enough, $\left(s_{\alpha}, t_{\alpha}\right)_{I} \cap J=\varnothing$, but then $\left(s_{\alpha}, t_{\alpha}\right)_{I} \subseteq t_{\alpha} / \mathcal{E}_{J, I}$: a contradiction.]

Now by induction on $n<\omega$ and for each n by induction on $\varepsilon \leq \theta$ and for each $n<\omega$ and $\varepsilon \leq \theta$ for $i \leq \theta$, we choose $J_{n, \varepsilon, i} \in K_{\lambda_{n}}^{\text {fin }}$ such that:
$\odot_{3} \quad$ (a) $J_{n, \varepsilon, i} \subseteq I$
(b) $J_{n, \varepsilon, i}$ has cardinality λ_{n}
(c) $I_{n}<_{K_{\text {flin }}} J_{n, 0, i}$
(d) If $\zeta<\varepsilon \leq \theta$ and $i \leq \theta$ then $J_{n, \zeta, i} \subseteq J_{n, \varepsilon, i}$. Moreover, if for some ξ, $\zeta=2 \xi+1$ and $\varepsilon=2 \xi+2$, then there is a $<_{K_{\lambda n}^{\text {filin }}}$-increasing continuous sequence of length ω with first member $J_{n, \zeta, i}$ and union $J_{n, \varepsilon, i}$.
(e) For ε limit, $J_{n, \varepsilon, i}=\bigcup_{\zeta<\varepsilon} J_{n, \zeta, i}$.
(f) If ε is odd and $i<j<\theta$ then

$$
f_{i}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{n, \varepsilon, i}, \Phi\right)\right)=M_{i} \cap f_{j}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{n, \varepsilon, j}, \Phi\right)\right)
$$

(g) $J_{n, \theta, i} \subseteq J_{n+1,0, i}$
(h) For every $k<\omega$ and $s<_{I} t$ from $J_{n, \varepsilon, i}$, if $[s, t]_{I} \cap I_{k}^{\prime} \neq \varnothing$ then

$$
[s, t]_{I} \cap I_{k}^{\prime} \cap J_{n, \varepsilon, i} \neq \varnothing
$$

(i) If ζ is odd and $\varepsilon=\zeta+1$, then $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{n, \zeta, i}, \Phi\right)<_{\mathfrak{R}_{\lambda_{n}}^{*}}^{*} \operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{n, \varepsilon, i}, \Phi\right)$.

There is no problem to carry the definition, for $\varepsilon=2 \xi+2$ recalling \odot_{2} above; the only non-trivial point is clause (i), which follows by $1.36(4)$ and clause (d) of \odot_{3}. Clearly $\left\langle J_{n, \varepsilon, i}: \varepsilon \leq \theta\right\rangle$ is \subseteq-increasing continuous by $\odot_{3}(d)+(e)$.

Let $M_{n, \varepsilon, i}^{*}=f_{i}\left(\operatorname{EM}_{\tau(\mathfrak{\xi})}\left(J_{n, \varepsilon, i}, \Phi\right)\right)$ and $M_{n, \varepsilon}^{*}=M_{n, 2 \varepsilon, \varepsilon}^{*}$. So clearly $M_{n, \varepsilon, i}^{*} \in K_{\lambda_{n}}^{*}$ by $\odot_{3}(b)$ and the choice of $M_{n, \varepsilon, i}^{*}$ the sequence $\left\langle M_{n, \varepsilon}^{*}: \varepsilon<\theta\right\rangle$ is $\leq_{\mathfrak{K}}$-increasing continuous with all of its members in $K_{\lambda_{n}}^{*}$.

Now

$$
\odot_{4}\left\langle M_{n, \varepsilon}^{*}: \varepsilon<\theta\right\rangle \text { is }<_{\mathfrak{K}_{\lambda_{n}}^{*}}^{*} \text {-increasing. }
$$

[Why? As

$$
\begin{aligned}
& \zeta<\varepsilon<\theta \Rightarrow M_{n, \zeta}^{*}= M_{n, 2 \zeta, \zeta} \leq \mathfrak{K}_{\lambda_{n}}^{*} M_{n, 2 \zeta+1, \zeta} \leq_{\mathfrak{K}_{\lambda_{n}}^{*}} M_{n, 2 \zeta+1, \varepsilon} \\
&<_{\mathfrak{K}_{\lambda_{n}}^{*}}^{*} M_{n, 2 \zeta+2, \varepsilon} \leq \leq_{\mathfrak{K}_{\lambda_{n}}^{*}} M_{n, 2 \varepsilon, \varepsilon}=M_{n, \varepsilon}^{*}
\end{aligned}
$$

by the choice of $M_{n, \zeta}^{*}$, by $\odot_{3}(d)$ and Ax.V of AEC, by $\odot_{3}(f)$ and Ax.V of AEC, by $\odot_{3}(i)$, by $\odot_{3}(d)+$ Ax.V of AEC (e), by the choice of $M_{n, \varepsilon}^{*}$ respectively). Now by $1.39(2)$ this argument shows that $\zeta<\varepsilon<\theta \Rightarrow M_{n, \zeta}^{*}<_{\mathfrak{K}_{\lambda_{n}}^{*}}^{*} M_{n, \varepsilon}^{*}$.]

We can conclude, by using $1.40(1)$ for $\mathfrak{K}_{\lambda_{n}}^{*}$, that $M_{n}^{*}:=\bigcup_{\varepsilon<\theta} M_{n, \varepsilon}^{*}$ belongs to $K_{\lambda_{n}}^{*}$. Also as $M_{n, \varepsilon}^{*} \leq_{\mathfrak{K}} M_{\varepsilon} \leq_{\mathfrak{K}} M_{\delta}$ for $\varepsilon<\theta=\delta$ by Ax.IV of AEC, we have $M_{n}^{*} \leq_{\mathfrak{K}} M_{\delta}$ and similarly $M_{n}^{*} \leq_{\mathfrak{K}} M_{n+1}^{*}$, and obviously for each $i<\theta$ we have

$$
\begin{gathered}
\bigcup_{n<\omega} M_{n}^{*} \supseteq \bigcup\left\{M_{n, \varepsilon}^{*}: n<\omega, \varepsilon<\theta\right\}=\bigcup\left\{M_{n, 2, \varepsilon, \varepsilon}^{*}: n<\omega, \varepsilon<\theta\right\}= \\
\bigcup\left\{M_{n, 2 \varepsilon, i}^{*}: n<\omega, i<\theta, \varepsilon<\theta\right\}=\bigcup_{n<\omega} M_{n, 0, i}^{*}
\end{gathered}
$$

which recalling the choice of $M_{n, 0, i}^{*}$ includes

$$
\bigcup_{n} f_{i}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{n, 0, i}, \Phi\right)\right) \supseteq \bigcup_{n<\omega} f_{i}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{n}, \Phi\right)\right)=f_{i}\left(\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)\right)=M_{i}
$$

As this holds for every $i<\theta$ we get $\bigcup_{n<\omega} M_{n}^{*}=M_{\delta}$. So by part (2) we are done.
2) We choose I_{n} by induction on n such that:
$\odot_{5} \quad$ (a) $I_{n} \in K_{\lambda_{n}}^{\text {flin }}$
(b) $I_{m}<_{K_{\text {flin }}} I_{n}$ if $n=m+1$.

Let $N_{n}=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{n}, \Phi\right)$.
We now choose $\left(g_{n}, I_{n}^{\prime}, I_{n}^{\prime \prime}, M_{n}^{\prime}, M_{n}^{\prime \prime}, N_{n}^{\prime}, N_{n}^{\prime \prime}\right)$ by induction on $n<\omega$ such that:
\odot_{6} (a) g_{n} is an isomorphism from $N_{n}^{\prime \prime}$ onto $M_{n}^{\prime \prime}$
(b) $I_{n} \subseteq I_{n}^{\prime} \subseteq I_{n}^{\prime \prime} \subseteq I_{n+2}$ and $\left|I_{n}^{\prime}\right|=\lambda_{n},\left|I_{n}^{\prime \prime}\right|=\lambda_{n+1}$, and $I_{n+1} \subseteq I_{n}^{\prime \prime}$
(c) $N_{n}^{\prime}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{n}^{\prime}, \Phi\right)$ and $N_{n}^{\prime \prime}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{n}^{\prime \prime}, \Phi\right)$
(d) $M_{n} \leq_{\mathfrak{K}_{\lambda_{n}}^{*}} M_{n}^{\prime} \leq_{\mathfrak{K}^{*}} M_{n}^{\prime \prime} \leq_{\mathfrak{K}^{*}} M_{n+2}$ and $M_{n+1} \leq_{\mathfrak{K}_{\lambda_{n+1}}^{*}} M_{n}^{\prime \prime}$
(e) $g_{n} \operatorname{maps} N_{n}^{\prime}=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{n}^{\prime}, \Phi\right)$ onto M_{n}^{\prime}
(f) g_{n} extends $g_{m} \upharpoonright N_{m}^{\prime}$ if $n=m+1$
(g) $I_{n}^{\prime} \subseteq I_{n+1}^{\prime}$.

Case 1: For $n=0$.
First, let $M_{n}^{\prime \prime}=M_{1}, I_{n}^{\prime \prime}=I_{1}$ so also $N_{n}^{\prime \prime}$ is defined. Second, choose g_{n} satisfying $\odot_{6}\left(\right.$ a) by $1.16(1)$, i.e. $1.19(4)$, categoricity in $K_{\lambda_{n}}^{*}$. Third, choose $I_{n}^{*} \subseteq I_{n}^{\prime \prime}=I_{1}$ of cardinality λ_{n} such that $g_{n}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{n}^{*}, \Phi\right)\right)$ includes M_{0}. Fourth, let $I_{n}^{\prime}=I_{n}^{*} \cup I_{n}$ and $N_{n}^{\prime}=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{n}^{\prime}, \Phi\right)$ and let $M_{n}^{\prime}=g_{n}\left(N_{n}^{\prime}\right)$.
Case 2: For $n=m+1$.
Let $k=n+2$, let $\bar{a} \in{ }^{\lambda_{m}}\left(M_{m}^{\prime}\right)$ list M_{m}^{\prime} (with no repetitions).
Now
$(*)_{1}$ If $\theta<\lambda_{n}$ then $\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathfrak{k}]}\left(\bar{a}, \varnothing, N_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty}, \theta[\mathfrak{K}]}\left(\bar{a}, \varnothing, N_{m}^{\prime \prime}\right)$.
[Why? As $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{m}^{\prime \prime}, \Phi\right) \prec_{\mathbb{L}_{\infty, \theta}[\mathfrak{\kappa}]} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{k}, \Phi\right)$ by $1.14\left(\right.$ a) as $I_{m}^{\prime \prime} \subseteq I_{k}$.]
$(*)_{2}$ if $\theta<\lambda_{n}=\lambda_{m+1}$ then $\operatorname{tp}_{\mathbb{L}_{\infty, \theta}}\left(\bar{a}, \varnothing, N_{m}^{\prime \prime}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \theta}}\left(g_{m}(\bar{a}), \varnothing, M_{m}^{\prime \prime}\right)$.
[Why? As g_{m} is an isomorphism from $N_{m}^{\prime \prime}$ onto $M_{m}^{\prime \prime}$ by $\odot_{6}(a)$, i.e. the induction hypothesis.]
$(*)_{3}$ if $\theta<\lambda_{n}$ then $\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathfrak{k}]}\left(g_{m}(\bar{a}), \varnothing, M_{m}^{\prime \prime}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathfrak{k}]}\left(g_{m}(\bar{a}), \varnothing, M_{k}\right)$.
[Why? This follows from $M_{m}^{\prime} \prec_{\mathbb{L}_{\infty, \theta}[\mathfrak{\kappa}]} M_{k}$ which we can deduce from 1.19(1), as $M_{m}^{\prime \prime} \in K_{\lambda_{m+1}}^{*}=K_{\lambda_{n}}^{*}$ by clause (d) of $\odot_{6}, M_{k} \in K_{k}^{*}$ by an assumption of the claim, $M_{m}^{\prime \prime} \leq_{\mathfrak{K}_{\lambda}} M_{k}$ by clause (d) of \odot_{6}.]
$(*)_{4}$ if $\theta<\lambda_{n}$ then $\operatorname{tp}_{\mathbb{L}_{\infty}, \theta[\mathfrak{k}]}\left(\bar{a}, \varnothing, N_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty}, \theta[\mathfrak{K}]}\left(g_{m}(\bar{a}), \varnothing, M_{k}\right)$.
$\left[\right.$ Why? By $\left.(*)_{1}+(*)_{2}+(*)_{3}.\right]$
$(*)_{5} \operatorname{tp}_{\mathbb{L}_{\infty, \lambda_{n+1}^{+}}}[\mathfrak{k}]\left(\bar{a}, \varnothing, N_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \lambda_{n+1}^{+}}[\mathfrak{k}]}\left(g_{m}(\bar{a}), \varnothing, M_{k}\right)$.
[Why? Clearly $N_{k}, M_{k} \in K_{\lambda_{k}}^{*}$, hence by $1.19(4)$ there is an isomorphism f_{n} from N_{k} onto M_{k}, so obviously $\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathcal{K}]}\left(\bar{a}, \varnothing, N_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty}, \theta[\mathcal{K}]}\left(f_{n}(\bar{a}), \varnothing, N_{k}\right)$, so by $(*)_{4}$ we have

$$
\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathfrak{k}]}\left(g_{m}(\bar{a}), \varnothing, M_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty}, \theta[\mathfrak{K}]}\left(\bar{a}, \varnothing, N_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathfrak{k}]}\left(f_{n}(\bar{a}), \varnothing, M_{k}\right)
$$

so by $1.19(3)$ we have $\operatorname{tp}_{\mathbb{L}_{\infty, \lambda_{n+1}^{+}}[\mathcal{K}]}\left(g_{n}(\bar{a}), \varnothing, M_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \lambda_{n+1}^{+}}[\mathfrak{\beta}]}\left(f_{n}(\bar{a}), \varnothing, M_{k}\right)$. But as f_{n} is an isomorphism from N_{k} onto M_{k} and the previous sentence we get $\operatorname{tp}_{\mathbb{L}_{\infty, \lambda_{n+1}}[\mathfrak{K}]}\left(\bar{a}, \varnothing, N_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \lambda_{n+1}^{+}}^{+}[\{\mathfrak{K}]}\left(f_{n}(\bar{a}), \varnothing, M_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty}, \lambda}\left(g_{n}(\bar{a}), \varnothing, M_{k}\right)$ as required.]
$(*)_{6}$ there are $g_{n}, I_{n}^{\prime \prime}, N_{n}^{\prime \prime}, M_{n}^{\prime \prime}$ as required in the relevant parts of \odot_{6} (ignoring $I_{n}^{\prime}, N_{n}^{\prime}, M_{n}^{\prime}$), i.e. clauses (a),(f) and the relevant parts of (b),(c),(d):
(b) ${ }^{\prime} I_{n} \subseteq I_{n}^{\prime \prime} \subseteq I_{n+2}=I_{k}$ and $\left|I_{n}^{\prime \prime}\right|=\lambda_{n+1}$ and $I_{n+1} \subseteq I_{n}^{\prime}$
(c) $N_{n}^{\prime \prime}=\mathrm{EM}_{\tau(\mathfrak{\kappa})}\left(I_{n}^{\prime \prime}, \Phi\right)$
$(d)^{\prime} M_{n} \leq_{\mathfrak{K}^{*}} M_{n}^{\prime \prime} \leq_{\mathfrak{K}^{*}} M_{n+2}$ and $M_{n+1} \leq_{\mathfrak{K}_{\lambda_{n+2}^{*}}^{*}} M_{n}^{\prime \prime}$.
[Why? By the hence and forth argument, but let us elaborate.
First, let \bar{a}^{\prime} be a sequence of length λ_{n+1} listing (without repetitions) the set of elements of M_{n+1} and without loss of generality $g(\bar{a}) \triangleleft \bar{a}^{\prime}$. Note that $\operatorname{rang}\left(g_{m}\right) \subseteq$ $M_{m+2}=M_{n+1}$.

Second, let g^{\prime} be a function from $\operatorname{rang}\left(\bar{a}^{\prime}\right)$ into N_{k} extending $\left(g_{m} \upharpoonright N_{m}^{\prime}\right)^{-1}=$ $\left(g_{m} \upharpoonright \operatorname{rang}(\bar{a})\right)^{-1}$ such that $\operatorname{tp}_{\mathbb{L}_{\infty, \lambda_{n+1}^{+}}[\mathcal{K}]}\left(g^{\prime}\left(\bar{a}^{\prime}\right), \varnothing, N_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \lambda_{n+1}^{+}}[\mathcal{K}]}\left(\bar{a}^{\prime}, \varnothing, M_{k}\right)$; this exists by $(*)_{5}$. Let $I_{n}^{\prime \prime} \subseteq I_{k}$ of cardinality λ_{n+1} be such that $\operatorname{rang}\left(g^{\prime}\right) \subseteq$ $\operatorname{EM}\left(I_{n}^{\prime \prime}, \Phi\right)$ and $I_{n+1} \subseteq I_{n}^{\prime \prime}$. Let $\bar{a}^{\prime \prime}$ list the elements of $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{n}^{\prime \prime}, \Phi\right) \subseteq N_{k}$ and without loss of generality $g^{\prime}\left(\bar{a}^{\prime}\right) \triangleleft \bar{a}^{\prime \prime}$. Let g_{n} be a function from $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{n}^{\prime \prime}, \Phi\right)$ to M_{k} extending $\left(g^{\prime}\right)^{-1}$ such that

$$
\operatorname{tp}_{\mathbb{L}_{\infty, \lambda_{n+1}^{+}}[\mathcal{K}]}\left(\bar{a}^{\prime \prime}, \varnothing, N_{k}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \lambda_{n+1}^{+}}[\mathcal{K}]}\left(g_{n}\left(\bar{a}^{\prime \prime}\right), \varnothing, M_{k}\right)
$$

Lastly, let $N_{n}^{\prime \prime}=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{n}^{\prime \prime}, \Phi\right)$ and $M_{n}^{\prime \prime}=g_{n}\left(N_{n}^{\prime}\right)$ so we are done.]
$(*)_{7}$ there are $I_{n}^{\prime}, N_{n}^{\prime}, M_{n}^{\prime}$ as required.
[Why? By the LST argument we can choose I_{n}^{\prime} and define $N_{n}^{\prime}, M_{n}^{\prime}$ accordingly.]
So we can carry the induction. Now $N_{n}^{\prime} \leq_{\mathfrak{K}} N_{n+1}^{\prime}$ (by clauses (g),(c) of \odot_{6}) and $g_{n} \upharpoonright N_{n}^{\prime} \subseteq g_{n+1} \upharpoonright N_{n+1}^{\prime}$ (by clause (f) + the previous statement). Hence $g=$ $\bigcup\left\{g_{n} \upharpoonright N_{n}^{\prime}: n<\omega\right\}$ is an isomorphism from $\bigcup\left\{N_{n}^{\prime}: n<\omega\right\}$ onto $\bigcup\left\{M_{n}^{\prime}: n<\omega\right\}$. But

$$
N=\bigcup\left\{N_{n}: n<\omega\right\} \subseteq \bigcup\left\{N_{n}^{\prime}: n<\omega\right\} \subseteq \operatorname{dom}(g) \subseteq N
$$

and

$$
M=\bigcup\left\{M_{n}: n<\omega\right\} \subseteq \bigcup\left\{M_{n}^{\prime}: n<\omega\right\} \subseteq \operatorname{rang}(g) \subseteq M
$$

Together g is an isomorphism from N onto M but obviously $N \in K_{\lambda}^{*}$ hence $M \in K_{\lambda}^{*}$ is as required.
3), 4) Should be clear; just depends on 1.19(4).

$$
\square_{1.41}
$$

Conclusion 1.42. Let λ be as in \boxtimes of 1.41. 1) $\mathfrak{K}_{\lambda}^{*}$ is a $\lambda-A E C$ (with $\leq_{\mathfrak{K}} \upharpoonright K_{\lambda}^{*}$) and it has amalgamation and is categorical.
2) $\mathfrak{K}_{\geq \lambda}^{\oplus}$ is an $A E C, \operatorname{LST}\left(\mathfrak{K}_{\geq \lambda}^{\oplus}\right)=\lambda$ and $\left(\mathfrak{K}_{\lambda}^{*}\right)^{\text {up }}=K_{\geq \lambda}^{\oplus}$ and $\left(\mathfrak{K}_{\geq \lambda}^{\oplus}\right)_{\lambda}=\mathfrak{K}_{\lambda}^{*}$, see Definition 1.43 below.

Definition 1.43. Let $\mathfrak{K}_{\geq \lambda}^{\oplus}=\mathfrak{K} \upharpoonright K_{\geq \lambda}^{\oplus}$ where

$$
K_{\geq \lambda}^{\oplus}=\left\{M \in K_{\lambda}: M \equiv_{\mathbb{L}_{\infty}, \lambda}[\mathfrak{\kappa}] \operatorname{EM}_{\tau(\mathfrak{K})}(\lambda, \Phi)\right\}
$$

Proof. 1) It was clear defining ($K_{\lambda}^{*}, \leq_{\mathfrak{K}} \upharpoonright K_{\lambda}^{*}$) that it is of the right form and " $M \in$ $K_{\lambda}^{* "}, " M \leq_{\mathfrak{K}_{\lambda}^{*}} N$ " are preserved by isomorphisms. Obviously " $\leq_{\mathfrak{K}} \upharpoonright K_{\lambda}^{*}$ is a partial order", so Ax.I, Ax.II hold, and obviously Ax.V holds (see [She09c, 0.2]). The missing point was Ax.III (about $\leq_{\mathfrak{K}}$-increasing union) and it holds by $1.41(1)$. Then Ax.IV becomes easy by the definition of $\leq_{\mathfrak{K}_{\lambda}^{*}}=\leq_{\mathfrak{K}} \upharpoonright K_{\lambda}^{*}$, and lastly the amalgamation holds by 1.34 .
2) By [She09c, §1] we can "lift $\mathfrak{K}_{\lambda}^{*}$ up", the result is $\mathfrak{K}_{\geq \lambda}^{\oplus}$ (see [She09c, 0.31,0.32]).

Let us formulate a major conclusion in ways less buried inside our notation.
Conclusion 1.44. Assume (\mathfrak{K}, Φ) is pseudo solvable in μ. Then (\mathfrak{K}, Φ) is pseudo solvable in λ provided that $\operatorname{LST}(\mathfrak{K})<\lambda, \mu=\mu^{<\lambda}$ (or just the hypothesis 1.18 holds $), \operatorname{cf}(\lambda)=\aleph_{0}$, and λ is an accumulation point of the class of the fixed points of the sequence of the \beth-s.

Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

Proof. By 1.42(1).

Remark 1.45. About [weak] solvability, see $\left[\mathrm{S}^{+} \mathrm{b}\right]$.

§ 2. §2 Trying to Eliminate $\mu=\mu^{<\lambda}$

There was one point in $\S 1$ where we use $\mu=\mu^{\lambda}$ (i.e. in 1.13 ; more accurately, in justifying hypothesis $1.18(1))$. In this section we try to eliminate it. So we try to prove $M_{1} \leq_{\mathfrak{K}_{\mu}} M_{2} \Rightarrow M_{1} \prec_{\mathbb{L}_{\infty, \theta}[\mathfrak{K}]} M_{2}$ for $\theta<\lambda$, hence we fix $\mathfrak{K}, \mu, \theta$. We succeed to do it with "few exceptions".

Hypothesis 2.1. (We shall mention $(b)_{\mu}$ or $(b)_{\mu}^{-},(c),(d)$ when used! but not clause (a).)
(a) \mathfrak{K} is an AEC and $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}$
(b) $\mu_{\mu} \mathfrak{K}$ categorical in μ and $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}$, or at least
(b) $-\mathcal{K}$ is pseudo μ-solvable as witnessed by $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}$ (see Definition 1.4). In particular, $\mathrm{EM}_{\tau(\mathfrak{K})}(I, \mu)$ is pseudo superlimit for $I \in K_{\lambda}^{\mathrm{lin}}$,
(c) $\mu \geq \beth_{1,1}(\operatorname{LST}(\mathfrak{K}))$
(d) $\mu>\operatorname{LST}(\mathfrak{K})$.

Convention 2.2. $K_{\lambda}^{*}=K_{\Phi, \lambda}^{*}$, etc., see Definition 1.15.
Definition 2.3. Assume

$$
\square \mu \geq \chi \geq \theta>\operatorname{LST}(\mathfrak{K})
$$

1) We let

$$
K_{\mu, \chi}^{1}=\left\{(M, N): N \leq_{\mathfrak{K}} M, N \in K_{\chi}, M \in K_{\mu} \text { and } \mu=\chi \Rightarrow M=N\right\}
$$

and let $\leq_{\mathfrak{K}}=\leq_{\mathfrak{K}, \mu, \chi}$ be the following partial order on $K_{\mu, \chi}$:

$$
\left(M_{0}, N_{0}\right) \leq_{\mathfrak{K}}\left(M_{1}, N_{1}\right) \quad \text { iff } \quad M_{0} \leq_{\mathfrak{K}} M_{1}, N_{0} \leq_{\mathfrak{K}} N_{1}
$$

(formally we should have written $\leq_{\mathfrak{K}, \mu, \chi}$). Note that each pair $(M, N) \in K_{\mu, \chi}$ determine μ, χ. So if $\chi=\mu, K_{\mu, \chi}$ is essentially \mathfrak{K}_{μ}. Let $K_{\mu}^{1}=K_{\mu}$ and let $\bigcup\left\{\left(M_{i}, N_{i}\right): i<\delta\right\}=\left(\bigcup\left\{M_{i}: i<\delta\right\}, \bigcup\left\{N_{i}: i<\delta\right\}\right)$ for any $\leq_{\mathfrak{K}}$-increasing sequence $\left\langle\left(M_{i}, N_{i}\right): i<\delta\right\rangle$.

1A) Let $K_{\mu, \chi}=K_{\mu, \chi}^{2}=\left\{(M, N) \in K_{\mu, \chi}^{1}: M \in K_{\mu}^{*}\right\}$ and $K_{\mu}^{2}=K_{\mu}^{*}$ but we use them only when Φ witnesses \mathfrak{K} is pseudo μ-solvable: i.e. $(b)_{\mu}^{-}$from Hypothesis 2.1 holds.
2) For $k \in\{1,2\}$, a formula $\varphi(\bar{x}) \in \mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ (so $\ell g(\bar{x})<\theta$), cardinal $\kappa \geq \theta$ (the main case being $\kappa=\mu$), and $M \in K_{\kappa}^{k}, \bar{a} \in{ }^{\ell g(\bar{x})} M$ we define when $M \Vdash_{k} \varphi[\bar{a}]$ by induction on the depth of $\varphi(\bar{x}) \in \mathbb{L}_{\infty, \theta}[\mathfrak{K}]$, so the least obvious case is:
$(*) M \Vdash_{k}(\exists \bar{y}) \psi(\bar{y}, \bar{a}) \underline{\text { when }}$ for every $M_{1} \in K_{\kappa}^{k}$ such that $M \leq_{\mathfrak{K}} M_{1}$ there is $M_{2} \in K_{\kappa}^{k}$ satisfying $M_{1} \leq_{\mathfrak{K}} M_{2}$ and $\bar{b} \in{ }^{\ell g(\bar{y})} M_{2}$ such that $M_{2} \Vdash_{k} \psi[\bar{b}, \bar{a}]$.
(We may omit k if $k=2$.)
Of course
(α) for φ atomic, $M \Vdash_{k} \varphi[\bar{a}]$ iff $M \models \varphi[\bar{a}]$
(β) for $\varphi(\bar{x})=\bigwedge_{i<\alpha} \varphi_{i}(\bar{x})$ let $M \Vdash_{k} \varphi[\bar{a}]$ iff $M \Vdash_{k} \varphi_{i}[\bar{a}]$ for each $i<\alpha$
$(\gamma) M \Vdash_{k} \neg \varphi[\bar{a}]$ iff for no N do we have $M \leq_{\mathfrak{K}} N \in K_{\kappa}^{k}$ and $N \Vdash_{k} \varphi[\bar{a}]$.
3) Let $k \in\{1,2\}, \Lambda \subseteq \mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ (each formula with $<\theta$ free variables, of course):
(a) Λ is downward closed if it is closed under subformulas
(b) Λ is (μ, χ)-model ${ }^{k}$ complete (when μ is clear from the context we may write χ-model ${ }^{k}$ complete) if $|\Lambda|<\mu$, and for every $\left(M_{0}, N_{0}\right) \in K_{\mu, \chi}^{k}$ we can find $(M, N) \in K_{\mu, \chi}^{2}$ above $\left(M_{0}, N_{0}\right)$ which is Λ-generic, where:
(c) $(M, N) \in K_{\mu, \chi}^{k}$ is Λ-generic k when: if $\varphi(\bar{x}) \in \Lambda$ and $\bar{a} \in{ }^{\ell g(\bar{x})} N$ then $M \Vdash_{k} \varphi[\bar{a}] \Leftrightarrow N \models \varphi[\bar{a}]$. (Yes! Neither $(M, N) \Vdash_{k} \varphi[\bar{a}]$, which was not defined, nor " $M \models \varphi[\bar{a}]$ "!)
(d) Λ is called $(\mu,<\mu)$-model k complete when $|\Lambda|+\theta_{\Lambda}<\mu$ and for every χ : if $|\Lambda|+\theta_{\Lambda} \leq \chi<\mu$ then Λ is χ-model k complete, where

$$
\theta_{\Lambda}:=\min \left\{\partial>\operatorname{LST}(\mathfrak{K}): \Lambda \subseteq \mathbb{L}_{\infty, \partial}[\mathfrak{K}]\right\} .
$$

We say Λ is model ${ }^{k}$ complete if it is $(\mu,<\mu)$-model ${ }^{k}$ complete and μ is understood from the context.
(e) Above, if Φ or (\mathfrak{K}, Φ) is not clear from the context, we may replace Λ by (Λ, Φ) or by $(\Lambda, \Phi, \mathfrak{K})$.
4) For $M \in K_{\kappa}^{k}, \bar{a} \in{ }^{\theta>} M$ and $\Lambda \subseteq \mathbb{L}_{\infty, \theta}[\mathfrak{K}]$, let

$$
\operatorname{gtp}_{\Lambda}^{k}(\bar{a}, \varnothing, M)=\left\{\varphi[\bar{a}]: M \Vdash_{k} \varphi[\bar{a}]\right\}
$$

If we write θ instead of Λ we mean $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$. (Note: this type is not a priori complete!) and we say that \bar{a} materializes this type in M. To stress κ we may write $\operatorname{gtp}_{\Lambda}^{\kappa, k}(\bar{a}, \varnothing, M)$ or $\operatorname{gtp}_{\theta}^{\kappa, k}(\bar{a}, \varnothing, M)$, even though M determines κ.
5) We say $M \in K_{\kappa}$ is Λ-generic ${ }^{k}$ when for every $\varphi(\bar{x}) \in \Lambda$ and $\bar{a} \in{ }^{\ell g(\bar{x})} M$ we have $M \Vdash_{k} \varphi[\bar{a}] \Leftrightarrow M \models \varphi[\bar{a}]$. So $M \in K_{\mu}^{k}$ is Λ-generic ${ }^{k}$ iff $(M, M) \in K_{\mu, \mu}^{k}$ is Λ-generic ${ }^{k}$. We say Λ is κ-model ${ }^{k}$ complete when every $M \in K_{\kappa}^{k}$ has a Λ-generic $\leq_{\mathfrak{K}}$-extension in K_{κ}^{k} (so depend on \mathfrak{K} and if $k=2$ also on Φ).
6) In all cases above, if $k=2$ we may omit it.

Claim 2.4. Assume that $\operatorname{LST}(\mathfrak{K})<\theta \leq \chi<\mu, \kappa>\theta$, and $k \in\{1,2\}$ (so if $k=2$ then 2.1(b) ${ }_{\mu}^{-}$holds; see 2.3(1A)).

1) $\left(K_{\mu, \chi}^{k}, \leq_{\mathfrak{K}}\right)$ is a partial order and chains of length $\delta<\chi^{+}$have $a \leq_{\mathfrak{K}}-$ l.u.b: this is the union, see 2.3(1). If $\operatorname{EM}_{\tau(\mathfrak{K})}(\mu, \Phi)$ is superlimit (not just pseudo superlimit) then $K_{\mu, \chi}^{2}$ is a dense subclass of $K_{\mu, \chi}^{1}$ under $\leq_{\mathfrak{K}}$.
2) If $M_{1} \Vdash_{k} \varphi(\bar{a})$ and $M_{1} \leq_{\mathfrak{K}} M_{2}$ are from K_{κ}^{k} then $M_{2} \Vdash_{k} \varphi[\bar{a}]$.
3) If $\left(M_{\ell}, N_{\ell}\right) \in K_{\mu, \chi}^{k}$ are Λ-generic ${ }^{k}$ for $\ell=1,2$ and $\left(M_{1}, N_{1}\right) \leq_{\mathfrak{K}}\left(M_{2}, N_{2}\right)$ then $N_{1} \prec_{\Lambda} N_{2}$.
4) If $M_{i} \in K_{\kappa}^{k}$ for $i<\delta$ is $\leq_{\mathfrak{K}}$-increasing, $\delta<\kappa^{+}, \operatorname{cf}(\delta) \geq \theta, \Lambda \subseteq \mathbb{L}_{\infty, \theta}[\mathfrak{K}]$, and each M_{i} is Λ-generic ${ }^{k}$, then $M_{\delta}:=\bigcup_{i<\delta} M_{i}$ is Λ-generic ${ }^{k}$ and $i<\delta \Rightarrow M_{i} \prec_{\Lambda} M_{\delta}$.
5) If $\left(M_{i}, N_{i}\right) \in K_{\mu, \chi}^{k}$ for $i<\delta$ is $\leq_{\mathfrak{K}}$-increasing, $\delta<\chi^{+}, \operatorname{cf}(\delta) \geq \theta, \Lambda \subseteq$ $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ and each $\left(M_{i}, N_{i}\right)$ is Λ-generic ${ }^{k}$, then $\left(\bigcup_{i<\delta} M_{i}, \bigcup_{i<\delta} N_{i}\right)$ is Λ-generic ${ }^{k}$ and $N_{j} \prec_{\Lambda} \bigcup_{i<\delta} N_{i}$ for each $j<\delta$.

Proof. Should be clear; in part (1), for $k=2$, we use clause (b) $\bar{\mu}_{\mu}^{-}$of 2.1. In part (5) note that $\bigcup\left\{M_{i}: i<\delta\right\} \in K_{\mu}^{*}$ by Clause (b) $\bar{\mu}$ of 2.1.

Exercise: If (M, N) is Λ-generic k and $(M, N) \leq_{\mathfrak{K}}\left(M^{\prime}, N\right) \in K_{\mu, \chi}^{k}$ then $\left(M^{\prime}, N\right)$ is Λ-generic ${ }^{k}$.

Claim 2.5. Assume that $\mu \geq \chi \geq \theta>\operatorname{LST}(\mathfrak{K})$ and $k \in\{1,2\}$.

1) The set of quantifier free formulas in $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ is (μ, χ)-model ${ }^{k}$ complete.
2) If $\Lambda_{\varepsilon} \subseteq \mathbb{L}_{\infty, \theta}\left(\tau_{\mathfrak{K}}\right)$ is downward closed, (μ, χ)-model ${ }^{k}$ complete for $\varepsilon<\varepsilon^{*}$, and $\Lambda:=\bigcup_{\varepsilon<\varepsilon^{*}} \Lambda_{\varepsilon}, \theta=\operatorname{cf}(\theta) \leq \chi \vee \theta<\chi$, and $\varepsilon^{*}<\chi^{+}($and $\mu>\theta \vee \mu=\theta=\operatorname{cf}(\theta))$ then Λ is (μ, χ)-model l^{k} complete.

Proof. 1) Easy.
2) Given $(M, N) \in K_{\mu, \chi}^{k}$ let θ_{r} be $\min \{\partial: \partial \geq \theta$ is regular $\}$. Clearly $\theta_{r} \leq \chi$, and we choose $\left(M_{i}, N_{i}\right) \in K_{\mu, \chi}^{k}$ for $i \leq \varepsilon^{*} \times \theta_{r}$ such that
\circledast (a) $\left\langle M_{i}: i \leq \varepsilon^{*} \times \theta_{r}\right\rangle$ is $\leq_{\mathfrak{K}}$-increasing continuous
(b) $\left\langle N_{i}: i \leq \varepsilon^{*} \times \theta_{r}\right\rangle$ is $\leq_{\mathfrak{K}}$-increasing continuous
(c) If $i=\varepsilon^{*} \times \gamma+\varepsilon$ and $\varepsilon<\varepsilon^{*}$ then $\left(M_{i+1}, N_{i+1}\right)$ is $\Lambda_{\varepsilon^{-}}$-generic ${ }^{k}$.
(d) $\left(M_{0}, N_{0}\right)=(M, N)$.

There is no problem to do this.
Now for each $\varepsilon<\varepsilon^{*}$ the sequence $\left\langle\left(M_{\varepsilon^{*} \times \gamma+\varepsilon+1}, N_{\varepsilon^{*} \times \gamma+\varepsilon+1}\right): \gamma<\theta_{r}\right\rangle$ is $\leq_{\mathfrak{K}, \mu, \chi^{-}}$ increasing with union $\left(M_{\varepsilon^{*} \times \theta_{r}}, N_{\varepsilon^{*} \times \theta_{r}}\right)$, and each member of the sequence is $\Lambda_{\varepsilon^{-}}$ generic ${ }^{k}$; hence by $2.4(5)$ we know that the pair $\left(M_{\varepsilon^{*} \times \theta_{r}}, N_{\varepsilon^{*} \times \theta_{r}}\right)$ is Λ_{ε}-generic ${ }^{k}$. As this holds for each Λ_{ε} it holds for Λ, so $\left(M_{\varepsilon^{*} \times \theta_{r}}, N_{\varepsilon^{*} \times \theta_{r}}\right)$ is as required. $\square_{2.5}$

From now on in this section
Hypothesis 2.6. We assume (a) $+(\mathrm{b})_{\mu}^{-}+(d)$ of 2.1 and we omit k using Definition 2.3 meaning $k=2$.

Claim 2.7. 1) For $M \in K_{\mu}^{*}$ and $\operatorname{LST}(\mathfrak{K})<\theta<\mu$ the number of complete $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ types realized by sequences from ${ }^{\theta>} M$ is $\leq 2^{<\theta}$. Moreover, the relation

$$
\mathcal{E}_{M}^{<\theta}:=\left\{(\bar{a}, \bar{b}): \bar{a}, \bar{b} \in^{\theta>} M \text { and some automorphism of } M \text { maps } \bar{a} \text { to } \bar{b}\right\}
$$

is an equivalence relation with $\leq 2^{<\theta}$ equivalence classes.
2) Hence there is a set $\Lambda_{*}=\Lambda_{\theta}^{*}=\Lambda_{\mathfrak{K}, \Phi, \mu, \theta}^{*} \subseteq \mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ such that:
(a) $\left|\Lambda_{*}\right| \leq 2^{<\theta}$ and $\Lambda_{*} \subseteq \mathbb{L}_{\left(2^{<\theta}\right)^{+}, \theta}[\mathcal{K}]$
(b) Λ_{*} is closed under sub-formulas and finitary operations
(c) Each $\varphi(\bar{x}) \in \Lambda_{*}$ has quantifier depth $<\gamma^{*}$ for some $\gamma^{*}<\left(2^{<\theta}\right)^{+}$.
(d) For $\alpha<\theta, M \in K_{\mu}^{*}$, and $\bar{a} \in{ }^{\alpha} M$, the Λ_{*}-type which \bar{a} realizes in M determines the $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$-type which \bar{a} realizes in M. Moreover, one formula in the type determines it.
(e) Similarly for materialize in $M \in K_{\mu}^{*}$; see Definition 2.3(4).
(f) If $\operatorname{LST}(\mathfrak{K})<\theta \leq \chi<\mu$ and $(M, N) \in K_{\mu, \chi}$ is Λ_{*}-generic then it is $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$-generic.
(g) if $M \in K_{\mu}^{2}$ is Λ_{*}-generic then it is $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$-generic.

Remark 2.8. Part (1) can also be proved using just $(\lambda+1) \times I_{*}$ with I_{*} a θ-saturated dense linear order with neither first nor last element, but this is not clear for 2.11(1).

Proof. 1) By 5.1(1) and categoricity of K_{λ}^{*}.
2) Follows, but we elaborate.

Let $\left\{\bar{a}_{\alpha}: \alpha<\alpha^{*} \leq 2^{<\theta}\right\}$ be a set of representatives of the $\mathcal{E}_{M}^{<\theta}$-equivalence classes. For each $\alpha \neq \beta$ such that $\ell g\left(\bar{a}_{n}\right)=\ell g\left(\bar{a}_{\beta}\right)$, let $\bar{x}_{\alpha}=\left\langle x_{i}: i<\ell g\left(\bar{a}_{\alpha}\right)\right\rangle$ and choose $\varphi_{\alpha, \beta}\left(\bar{x}_{\alpha}\right), \psi_{\alpha, \beta}\left(\bar{x}_{\alpha}\right) \in \mathbb{L}_{\left(2^{<\theta}\right)^{+}, \theta}[\mathfrak{K}]$ such that, if possible, we have

$$
M \models \varphi_{\alpha, \beta}\left[\bar{a}_{\alpha}\right] \wedge \neg \varphi_{\alpha, \beta}\left[\bar{a}_{\beta}\right]
$$

and under this, if possible,

$$
M \Vdash " \psi_{\alpha, \beta}\left(\bar{a}_{\alpha}\right) \wedge \neg \psi_{\alpha, \beta}\left(\bar{a}_{\beta}\right) .
$$

But in any case, $M \models \varphi_{\alpha, \beta}\left[\bar{a}_{\alpha}\right]$ and $M \Vdash \psi_{\alpha, \beta}\left[\bar{a}_{\alpha}\right]$. Let

$$
\varphi_{\alpha}(\bar{x})=\bigwedge\left\{\varphi_{\alpha, \beta}\left(\bar{x}_{\alpha}\right): \beta<\alpha^{*}, \beta \neq \alpha \text { and } \ell g\left(\bar{a}_{\beta}\right)=\ell g\left(\bar{a}_{\alpha}\right)\right\}
$$

and similarly define $\psi_{\alpha}\left(\bar{x}_{\alpha}\right)$. Let Λ_{*} be the closure of $\left\{\varphi_{\alpha, \beta}, \psi_{\alpha, \beta}, \varphi_{\alpha}, \psi_{\alpha}: \alpha \neq\right.$ $\left.\beta<\alpha^{*}\right\}$ under subformulas and finitary operations. Obviously, clauses (a),(b) hold hence the existence of $\gamma^{*}<\left(2^{<\theta}\right)^{+}$, as required in clause (c), follows. Clause (d) holds as

$$
\bar{a} \mathcal{E}_{M}^{<\theta} \bar{b} \Rightarrow \operatorname{tp}_{\mathbb{L}_{\infty}, \theta}[\mathfrak{K}](\bar{a}, \varnothing, M)=\operatorname{tp}_{\mathbb{L}_{\infty}, \theta}[\mathfrak{\mathcal { K }]}(\bar{b}, \varnothing, M)
$$

using the automorphisms. For $\alpha, \beta<\alpha_{*}$ such that $\ell g\left(\bar{a}_{\alpha}\right)=\ell g\left(\bar{a}_{\beta}\right)$ we have

$$
M \models\left(\forall \bar{x}_{\alpha}\right)\left[\varphi_{\alpha}\left(\bar{x}_{\alpha}\right)=\varphi_{\beta}\left(\bar{x}_{\beta}\right)\right]
$$

implies $\operatorname{tp}_{\mathbb{L}_{(2<\theta)^{+}, \theta}[\mathcal{K}]}\left(\bar{a}_{\alpha}, \varnothing, M\right)=\operatorname{tp}_{\mathbb{L}_{\left(2^{2}<\theta\right)^{+}, \theta}[\mathcal{R}]}\left(\bar{a}_{\beta}, \varnothing, M\right)$ and even

$$
\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathfrak{\xi}]}\left(\bar{a}_{\alpha}, \varnothing, M\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathfrak{k}]}\left(\bar{a}_{\beta}, \varnothing, M\right)
$$

recalling the choice of the $\varphi_{\alpha, \beta^{-}}$-s.
Clause (e) holds similarly by the choice of the $\psi_{\alpha, \beta^{-}}$-s. Clauses (f), (g) should also be clear. (The proof is similar to the proof of the classical 0.18(3).)

Observation 2.9. Assume 2.1(b) $)_{\mu}^{-}$of course, $\Lambda \subseteq \mathbb{L}_{\infty, \theta}[\mathfrak{K}], \mu>2^{<\theta}$, and $\theta>$ $\operatorname{LST}(\mathfrak{K})$.

1) The number of complete $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$-types realized in some $M \in K_{\mu}^{*}$, by a sequence of length $<\theta$ of course, is $\leq 2^{<\theta}$. Hence every formula in $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ is equivalent, for models from K_{μ}^{*} to a formula of quantifier depth $<\left(2^{<\theta}\right)^{+}$, even from $\Lambda_{*} \subseteq$ $\mathbb{L}_{\left(2^{<\theta}\right)^{+}, \theta}[\mathfrak{K}]$ where Λ_{*} is in 2.7(2).
2) Assume that $I_{1} \subseteq I_{2}$ are well ordered, $\operatorname{cf}\left(I_{1}\right), \operatorname{cf}\left(I_{2}\right)>2^{<\theta}$,

$$
t \in I_{2} \backslash I_{1} \Rightarrow 2^{<\theta}<\operatorname{cf}\left(I_{1} \upharpoonright\left\{s \in I_{1}: s<_{I_{2}} t\right\}\right)
$$

and

$$
t \in I_{2} \backslash I_{1} \Rightarrow 2^{<\theta}<\operatorname{cf}\left(I_{2} \upharpoonright\left\{s \in I_{2}:\left(\forall r \in I_{1}\right)\left[r<_{I_{2}} t \equiv r<_{I_{2}} s\right]\right\}\right)
$$

Then $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right) \prec_{\mathbb{L}_{\infty, \theta}[\mathfrak{K}]} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$.
3) If $M=\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi),|I|=\mu, I$ well ordered of cofinality $>2^{<\theta}$, $\bar{a} \in{ }^{\alpha} M$ where $\alpha<\theta$ and $a_{i}=\sigma_{i}\left(\ldots, a_{t_{i, \ell}}, \ldots\right)_{\ell<n(i)}$ for $i<\alpha$ then $\operatorname{tp}_{\Lambda_{*}}(\bar{a}, \varnothing, M)$ is determined by $\left\langle\sigma_{i}\left(x_{0}, \ldots, x_{n(\ell)-1}\right): i<\ell g(\bar{a})\right\rangle$ and the essential θ-type of $\left\langle t_{i, \ell}: i<\ell g(\bar{a}), \ell<n(i)\right\rangle ;$ see Definition 2.10 below.

Before proving 2.9:
Definition 2.10. 1) For $\bar{t}=\left\langle t_{i}: i<\alpha\right\rangle \in{ }^{\alpha} I, I$ well ordered, let the essential θ-type of \bar{t} in I be shorthand for the essential $\left(\theta,\left(2^{<\theta}\right)^{+}\right)$-type.

By this we mean: for an ordinal γ, let the essential (θ, γ)-type of \bar{t} in I, estp ${ }_{\theta, \gamma}(\bar{t}, \varnothing, I)$, be the following information stipulating $t_{\alpha}=\infty$:
(a) The truth value of $t_{i}<t_{j}$ (for $i, j<\alpha$).
(b) $\operatorname{otp}\left(\left[r_{i}, t_{i}\right)_{I}\right)$ for $i<\alpha$, where for $i \leq \alpha$ we let r_{i} be the minimal member r of I such that $\operatorname{otp}\left(\left[r, t_{i}\right)_{I}\right)<\theta \times \gamma$ and $r \leq_{I} t_{i}$ and

$$
\left(j<\alpha \wedge t_{j}<t_{i}\right) \Rightarrow t_{j} \leq r
$$

(c) $\min \left\{\theta \times \gamma, \operatorname{otp}\left[s_{i}, r_{i}\right)_{I}\right\}$ for $i \leq \alpha$, where we let s_{i} be the minimal member of I such that $(\forall j<\alpha)\left[t_{j}<_{I} t_{i} \Rightarrow t_{j}<_{I} s_{i}\right]$.
(d) $\min \left\{\theta, \operatorname{cf}\left(I \upharpoonright\left\{s: s<_{I} r_{i}\right\}\right)\right\}$ for $i \leq \alpha$, which may be zero.
2) Let the function implicit in 2.9(3) be called $\mathbf{t}_{\Lambda}^{\mu}=\mathbf{t}_{\mathfrak{K}, \Lambda}^{\mu}=\mathbf{t}_{\mathfrak{K}, \Phi, \Lambda}^{\mu}$, i.e., $\mathbf{t}_{\Lambda}^{\mu}(\mathbf{s}, \bar{\sigma})=$ $\operatorname{tp}_{\Lambda}(\bar{a}, \varnothing, M)$ when

$$
\begin{aligned}
\bar{a} & =\left\langle\sigma_{i}\left(\ldots, a_{t_{\beta(i, \ell)}}, \ldots\right)_{\ell<n_{i}}: i<\ell g(\bar{a})\right\rangle, \\
\bar{\sigma} & =\left\langle\sigma_{i}\left(\ldots, x_{\beta(i, \ell)}, \ldots\right)_{\ell<n}: i<\ell g(\bar{a})\right\rangle,
\end{aligned}
$$

and \mathbf{s} is the essential θ-type of $\left\langle t_{i, \ell}: i<\ell g(\bar{a}), \ell<n_{i}\right\rangle$ in I.
If $\Lambda=\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ we may write just θ.

Proof. 1) By $2.7(1)$ this holds for each $M \in K_{\mu}^{*}$.
2) It is known by Kino [Kin66] that $I_{1} \prec \mathscr{L} I_{2}$ if

$$
\mathscr{L} \subseteq\left\{\varphi \in \mathbb{L}_{\infty, \theta}(\{<\}): \varphi \text { has quantifier depth }<\left(2^{<\theta}\right)^{+}\right\}
$$

From this the result follows by part (1).
More fully, let θ_{r} be the first regular cardinal $\geq \theta$, and we say that the pair $\left(I_{1}, I_{2}\right)$ is γ-suitable when we replace the assumption "of cofinality $>2^{<\theta}$ " by "of cofinality $\geq \theta$ and of order type divisible by $\theta \times \gamma$ ". Now we prove by induction on γ that:
\odot_{1} Assume that for $\alpha<\theta$ and for $\ell=1,2$ we have that I_{ℓ} is a well ordering, $\bar{t}^{\ell}=\left\langle t_{i}^{\ell}: i<\alpha\right\rangle$ is $<_{I_{\ell}}$-increasing, and t_{0}^{ℓ} is the first element of I_{ℓ}. We stipulate $t_{\alpha}^{\ell}=\infty$ and $\operatorname{otp}\left(\left[t_{i}^{\ell}, t_{i+1}^{\ell}\right)_{I_{0}}\right)=\theta_{r} \gamma \alpha_{i}^{\ell}+\beta_{i}$ where $\beta_{i}<\theta \gamma$ and

$$
\left(\operatorname{cf}\left(\alpha_{i}^{1}\right)=\operatorname{cf}\left(\alpha_{i}^{1}\right)\right) \vee\left(\operatorname{cf}\left(\alpha_{i}^{1}\right) \geq \theta \wedge \operatorname{cf}\left(\alpha_{i}^{2}\right) \geq \theta\right)
$$

Then for any formula $\varphi\left(\left\langle x_{i}: i<\alpha\right\rangle\right) \in \mathbb{L}_{\infty, \theta}(\{<\})$ of quantifier depth $\leq \gamma$ we have $I_{1} \models \varphi\left[\overrightarrow{t^{1}}\right] \Leftrightarrow I_{2} \models \varphi\left[\vec{t}^{2}\right]$.
Hence
\odot_{2} if $\vartheta(\bar{x}) \in \mathbb{L}_{\infty, \theta}(\{<\})$ has quantifier depth $<\gamma$ and $\left(I_{1}, I_{2}\right)$ is γ-suitable and $\bar{t} \in{ }^{\ell g(\bar{x})}\left(I_{1}\right)$ then $I_{1} \models \varphi[\bar{t}] \Leftrightarrow I_{2}=\theta[\bar{t}]$.
3) Follows by part (2).

Claim 2.11. Assume
(a) $M \in K_{\mu}^{*}$
(b) $\Lambda \subseteq \mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ is downward closed, $|\Lambda| \leq \chi, \operatorname{LST}(\mathfrak{K})<\theta \leq \chi<\mu$ and $2^{<\theta} \leq \chi$ and $\theta=\operatorname{cf}(\theta) \vee \theta<\chi$ so $\Lambda=\Lambda_{*}$ from 2.7 is $O . K$.
(c) In part (3),(4),(5) we assume $\left(\chi^{<\theta} \leq \mu\right) \vee(\operatorname{cf}(\mu) \geq \theta)$.
(d) For part (6) we assume $\operatorname{cf}(\mu) \geq \theta$ (hence the demand in clause (c) holds).

1) If $M \in K_{\mu}^{*}$ then $\left\{\operatorname{gtp}_{\Lambda}(\bar{a}, \varnothing, M): \bar{a} \in{ }^{\theta>} M\right\}$ has cardinality $\leq 2^{<\theta}$.
2) If $(M, N) \in K_{\mu, \chi}$ then we can find $N^{\prime},(M, N) \leq_{\mathfrak{K}}\left(M, N^{\prime}\right) \in K_{\mu, \chi}$ such that
(*) if $\alpha<\theta$ and $\bar{b} \in{ }^{\alpha} M$ and $\Lambda \subseteq \mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ then for some $\bar{b}^{\prime} \in{ }^{\alpha}\left(N^{\prime}\right)$ we have: for every $\bar{a} \in{ }^{\theta>} N, \operatorname{gtp}_{\Lambda}\left(\bar{a}^{\wedge} \bar{b}, \varnothing, M\right)=\operatorname{gtp}_{\Lambda}\left(\bar{a}^{\wedge} \bar{b}^{\prime}, \varnothing, M\right)$.
3) If $(M, N) \in K_{\mu, \chi}$, then we can find $\left(M_{1}, N_{1}\right)$ such that $(M, N) \leq_{\mathfrak{K}}\left(M_{1}, N_{1}\right) \in$ $K_{\mu, \chi}$ and: (note that \bar{y} may be the empty sequence)
(*) if $(\exists \bar{y}) \varphi(\bar{y}, \bar{x}) \in \Lambda$ and $\bar{a} \in{ }^{\ell g(\bar{x})} N$ then $M_{1} \Vdash \neg \exists \bar{y} \varphi(\bar{y}, \bar{x})$ or for some $\bar{b} \in{ }^{\ell g(\bar{y})}\left(N_{1}\right)$ we have $M_{1} \Vdash \varphi[\bar{b}, \bar{a}]$.
4) In part (3) we can demand
$(*)^{+} \underset{\bar{b}}{\text { if }}(\exists \bar{y}) \varphi(\bar{y}, \bar{x}) \in \Lambda$ and $\bar{a} \in{ }^{\ell g(\bar{x})}\left(N_{1}\right)$ then $M_{1} \Vdash \neg \neg(\exists \bar{y}) \varphi(\bar{y}, \bar{x})$ or for some $\bar{b} \in{ }^{\ell g(\bar{y})}\left(N_{1}\right)$ we have $M_{1} \models \varphi[\bar{b}, \bar{a}]$.
5) In part (4) it follows that the pair $\left(M_{1}, N_{1}\right)$ is Λ-generic (most interesting for Λ_{*}; see 2.7).
6) If $M_{1} \in K_{\mu}^{*}$ then it is Λ-generic.

Proof. 1) Proved just like 2.7(1).
2) First assume θ is a successor cardinal. ${ }^{7}$ As $M \in K_{\mu}^{*}$, without loss of generality $M=\mathrm{EM}_{\tau(\mathfrak{\kappa})}(I, \Phi)$ for some linear order I of cardinality μ as in 5.1(1),(4) with $\theta^{-}, \theta, \chi^{+}, \mu$ here standing for $\mu, \theta_{1}, \theta_{2}, \lambda$ there. It follows that for some $J \subseteq I$ of cardinality χ we have $N \subseteq \operatorname{EM}_{\tau(\mathfrak{K})}(J, \Phi)$, and let $J^{+} \subseteq I$ be such that $J \subseteq J^{+}$, $\left|J^{+} \backslash J\right|=\chi$ and for every $\bar{t} \in^{\theta>} I$ there is an automorphism f of I over J which maps \bar{t} to some member of ${ }^{\ell g(t)}\left(J^{+}\right)$.

Lastly, let $N^{\prime}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(J^{+}, \Phi\right)$. It is easy to check (see 1.4) that (*) holds. If θ is a limit ordinal it is enough to prove for each $\partial<\theta$, a version of $(*)$ with $\alpha<\partial$; and this gives N_{∂}^{\prime}. Now we choose N^{\prime} such that $\partial<\theta \Rightarrow N_{\partial}^{\prime} \leq_{\mathfrak{K}} N^{\prime}$ and $\left(M, N^{\prime}\right) \in K_{\mu, \chi}$.
$3), 4), 5), 6)$ We prove by induction on γ that if we let

$$
\Lambda_{\gamma}=\{\varphi(\bar{x}) \in \Lambda: \varphi(\bar{x}) \text { has quantifier depth }<1+\gamma\}
$$

then parts (3),(4),(5),(6) hold for Λ_{γ}. For all four parts, $|\Lambda| \leq \chi$ hence $\left|\Lambda_{\gamma}\right| \leq \chi$ and it suffices to consider $\gamma<\chi^{+}$. For $\gamma=0$ they are trivial and for γ limit also easy (let θ_{r} be the first regular $\geq \theta$ and extend $|\gamma|^{+} \times \theta_{r}$ times taking care of Λ_{β} in stage $\gamma \times \zeta+\beta$ for each $\beta<\gamma$). So let $\gamma=\beta+1$.

We first prove (3), but we have two cases (see clause (c)) of the assumption. If $\chi^{<\theta} \leq \mu$ this is straight by bookkeeping. So assume $\operatorname{cf}(\mu) \geq \theta$. Given $(M, N) \in$ $K_{\mu, \chi}$ we try to choose, by induction on $i<\chi^{+}$, a pair $\left(M_{i}, N_{i}\right)$ and also $\psi_{i}\left(\bar{y}_{i}, \bar{x}_{i}\right), \bar{a}_{i}, \bar{b}_{i}$ for i odd such that
$\circledast_{1} \quad$ (a) $\left(M_{0}, N_{0}\right)=(M, N)$
(b) $\left(M_{i}, N_{i}\right) \in K_{\mu, \chi}$ is $\leq_{\mathfrak{K}}$-increasing continuous
(c) M_{i+1} is Λ_{β}-generic for i even
(d) for i odd $\psi_{i}\left(\bar{y}_{i}, \bar{x}_{i}\right) \in \Lambda_{\beta}$ and $\bar{a}_{i} \in{ }^{\theta>} N$ and $\bar{b}_{i} \in{ }^{\theta>}\left(N_{i+1}\right)$ are such that $\ell g\left(\bar{a}_{i}\right)=\ell g\left(\bar{x}_{i}\right), \ell g\left(\bar{b}_{i}\right)=\ell g\left(\bar{y}_{i}\right)$ and
($\alpha) \bar{b} \in{ }^{\ell g\left(\bar{y}_{i}\right)}\left(M_{i}\right) \Rightarrow M_{i} \nVdash \psi_{i}\left[\bar{b}_{i}, \bar{a}\right]$ but
(β) $M_{i+1} \Vdash \psi_{i}\left[\bar{b}_{i}, \bar{a}_{i}\right]$.
(γ) For every $\bar{b} \in^{\theta>}\left(M_{i+1}\right)$ there is an automorphism of M_{i+1} over N_{i} mapping \bar{b} into N_{i+1}.
If we succeed, by part (2) applied to the pair of models $\left(\bigcup_{i<\chi^{+}} M_{i}, N\right)$ as $\chi^{+} \leq \mu$, this pair belongs to $K_{\mu, \chi}$ we get N^{\prime} as there, hence for some odd $i<\chi^{+}, N^{\prime} \subseteq M_{i}$. Let $\zeta=i+2$, and this gives a contradiction to the choice of $\left(\psi_{\zeta}, \bar{a}_{\zeta}, \bar{b}_{\zeta}\right)$.
[Why? There is an automorphism f of $M:=\bigcup\left\{M_{j}: j<\chi^{+}\right\}$over N mapping \bar{b}_{ζ} into N^{\prime} hence into M_{i} hence $f\left(\bar{b}_{\zeta}\right) \in{ }^{\theta>}\left(M_{\zeta}\right)$. We know (by clause $(d)(\beta)$ above) that $M_{\zeta+1} \Vdash \psi_{\zeta}\left[\bar{b}_{\zeta}, \bar{a}_{\zeta}\right]$ but $M_{\zeta+1} \leq \mathfrak{K}_{\mu} M$, hence $M \Vdash \psi_{\zeta}\left[f\left(\bar{b}_{\zeta}\right), \bar{a}_{\zeta}\right]$. Recall that f is an automorphism of M over N hence $M \Vdash \psi_{\zeta}\left[f\left(\bar{b}_{\zeta}\right), f\left(\bar{a}_{\zeta}\right)\right]$, but $\bar{a}_{\zeta} \in{ }^{\theta>} N$ so $f\left(\bar{a}_{\zeta}\right)=\bar{a}_{\zeta}$ hence $M \Vdash \psi_{\zeta}\left[\bar{b}_{\zeta}, f\left(\bar{a}_{\zeta}\right)\right]$. But $M_{\zeta} \leq_{\mathfrak{K}_{\mu}} M$ and $\bar{a}, f\left(\bar{b}_{\zeta}\right)$ are from M_{ζ} hence $M_{\zeta} \nVdash \neg \psi_{\zeta}\left[f\left(\bar{b}_{\zeta}\right), \bar{a}_{\zeta}\right]$. However by clause $(\mathrm{d})(\alpha)$ of \circledast_{1} we have $M_{\zeta} \nVdash$ $\psi_{\zeta}\left[f\left(\bar{b}_{\zeta}\right), \bar{a}_{\zeta}\right]$. But as i (hence ζ) is an odd ordinal the last two sentences contradict clause (c) of \circledast_{1} applied to $i+1$.]

Hence we are stuck for some $i<\chi^{+}$. Now for $i=0$ clause $\circledast(a)$ gives a permissible value and for i limit take unions noting that clauses (c),(d) required nothing. So $i=j+1$; if j is even we apply the induction hypothesis for the pair $\left(M_{i}, N_{i}\right)$. Hence j is odd so we cannot choose $\psi_{j}(\bar{y}, \bar{x}), \bar{a}_{j}, \bar{b}_{j}$, recalling part (2) so the pair $\left(M_{j}, N_{j}\right)$ is as required thus proving the induction step for part (3), i.e. (3) for Λ_{γ}.

Second, we prove part (4) still for $\gamma=\beta+1$. We can now again try to choose by induction on $i<\chi^{+}$a pair $\left(M_{i}, N_{i}\right)$ satisfying

[^6](a) $\left(M_{0}, N_{0}\right)=(M, N)$
(b) $\left(M_{i}, N_{i}\right) \in K_{\mu, \chi}$ is $\leq_{\mathfrak{K}}$-increasing continuous
(c) If $i=2 j+1$, then $\left(M_{i+1}, N_{i+1}\right)$ is as in part (3) for Λ_{γ} with $\left(M_{i}, N_{i}\right)$, $\left(M_{i+1}, N_{i+1}\right)$ here standing for $(M, N),\left(M_{1}, N_{1}\right)$ there.
(d) if $i=2 j$ then for some $\psi_{i}\left(\bar{y}_{i}, \bar{x}_{i}\right) \in \Lambda_{\beta}$ and $\bar{a}_{i} \in{ }^{\ell g\left(\bar{x}_{i}\right)}\left(N_{i}\right)$ and $\bar{b}_{i} \in{ }^{\ell g\left(\bar{y}_{i}\right)}\left(N_{i+1}\right)$ we have $M_{i+1} \Vdash \psi_{i}\left(\bar{b}_{i}, \bar{a}_{i}\right)$ but
$$
\bar{b} \in{ }^{\ell g\left(\bar{y}_{i}\right)}\left(M_{i}\right) \Rightarrow M_{i} \nVdash \psi_{i}\left[\bar{b}, \bar{a}_{i}\right]
$$

If we succeed, let $S_{0}=\left\{\delta<\chi^{+}: \operatorname{cf}(\delta) \geq \theta\right\}$, so by an assumption S is a stationary subset of χ^{+}, i.e. as by clause $\square(b)$ we have $\theta=\operatorname{cf}(\theta) \leq \chi \vee \theta<\chi$. Also, for $\delta \in S_{0}$, as $\left\langle N_{i}: i<\delta\right\rangle$ is increasing with union N_{δ} and $\delta=2 \delta$, clearly \bar{a}_{δ} is well defined, so for some $i(\delta)<\delta$ we have $\bar{a}_{\delta} \in^{\theta>}\left(N_{i(\delta)}\right)$ and without loss of generality $i(\delta)=2 j(\delta)+1$ for some $j(\delta)$ hence by clause (c) of \circledast_{2} the pair $\left(M_{i(\delta)+1}, N_{i(\delta)+1}\right)$. is as required there: contradiction, as in the proof for part (3). Hence for some i we cannot choose $\left(M_{i}, N_{i}\right)$.

For $i=0$ let $\left(M_{i}, N_{i}\right)=(M, N)$ so only clauses (a) $+(\mathrm{b})$ of \circledast_{2} apply and are satisfied. For i limit take unions. So $i=j+1$. If $j=1 \bmod 2$, clause (d) of \circledast_{2} is relevant and we use part (3) for Λ_{β} which holds as we have just proved it.

Lastly, if $j=2 \bmod 2$ and we are stuck then the pair $\left(M_{j}, N_{j}\right)$ is as required.
Third, Part (5) should be clear but we elaborate.
We prove by induction on γ^{\prime} that if $\varphi(\bar{x}) \in \Lambda_{\gamma}$ has quantifier depth $<1+\gamma^{\prime}$ then for every $\bar{a} \in{ }^{\ell g(\bar{x})}\left(N_{1}\right)$ we have $M_{1} \models \varphi[\bar{a}] \Leftrightarrow N_{1} \models \varphi[\bar{a}]$. For atomic φ this is obvious and for $\varphi=\bigwedge_{i<\alpha} \varphi_{i}$ should be clear. If $\varphi(\bar{x})=\neg \psi(\bar{x})$ note that in $(*)^{+}$of part (4) we can use empty \bar{y} so $\neg(\exists \bar{y}) \psi(\bar{x})=\neg \psi(\bar{x})$. Also for $\varphi(\bar{x})=(\exists \bar{y}) \varphi^{\prime}(\bar{y}, \bar{x})$ we apply part (4).

Fourth, we deal with part (6), so (see clause (d) of the assumption) we have $\operatorname{cf}(\mu) \geq \theta$. Let $\chi=\left\langle\chi_{i}: i<\operatorname{cf}(\mu)\right\rangle$ be constantly μ^{-}(so $\mu=\chi_{i}^{+}$) if μ is a successor cardinal, and be increasing continuous with limit $\mu .2^{<\theta}<\chi_{i}<\mu$ if μ is a limit cardinal recalling $2^{<\theta}<\mu$ by $\square(b)$. Consider

$$
\begin{aligned}
K_{\mu, \bar{\chi}}=\left\{\bar{M}=\left\langle M_{i}: i \leq \operatorname{cf}(\mu)\right\rangle:\right. & \bar{M} \text { is } \leq_{\mathfrak{K}} \text {-increasing continuous, } \\
& \left.M_{i} \in K_{\chi_{i}} \text { for } i<\operatorname{cf}(\mu), M_{\operatorname{cf}(\mu)} \in K_{\mu}^{*}\right\}
\end{aligned}
$$

ordered by $\bar{M}^{1} \leq_{\mathfrak{K}} \bar{M}^{2}$ iff $i \leq \operatorname{cf}(\mu) \Rightarrow M_{i}^{1} \leq_{\mathfrak{K}} M_{i}^{2}$.
By 2.11 and part (5) for Λ_{γ} which we proved we can easily find $\bar{M} \in K_{\mu, \bar{\chi}}$ such that $i<\operatorname{cf}(\mu) \Rightarrow$ ' $\left(M_{\mathrm{cf}(\mu)}, M_{i+1}\right)$ is Λ_{γ}-generic'. Such \bar{M} we call Λ_{*}-generic.

Next
\boxtimes if $\varphi(\bar{x}) \in \Lambda_{\gamma}$ and \bar{M} is Λ_{γ}-generic, $\bar{a} \in{ }^{\theta>}\left(M_{i}\right), i$ successor, $\varphi(\bar{x}) \in \mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ and $\ell g(\bar{x})=\ell g(\bar{a})$ then $M_{\operatorname{cf}(\mu)} \models \varphi[\bar{a}] \Leftrightarrow M_{\mathrm{cf}(\mu)} \Vdash \varphi[\bar{a}]$.
[Why? Recalling $\operatorname{cf}(\mu) \geq \theta$, we prove this by induction on the quantifier depth of φ.]

By the definition of " M is Λ-generic" and categoricity of K_{μ}^{*} we are done. \qquad

Conclusion 2.12. If $\mu \geq\left(2^{<\theta}\right)^{+}, \theta>\operatorname{LST}(\mathfrak{K})$ and $\operatorname{cf}(\mu) \geq \theta>\operatorname{LST}(\mathfrak{K})$ then every $M \in K_{\mu}^{*}$ is $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$-generic, hence if $M_{1} \leq_{\mathfrak{K}} M_{2}$ are from K_{μ}^{*} then $M_{1} \prec_{\mathbb{L}_{\infty}, \theta}[\mathfrak{K}] ~ M$.

Remark 2.13.1) With a little more care, if $\mu=\mu_{0}^{+}$also $\theta=\mu$ is O.K. but here this is peripheral.
2) $\theta \leq \operatorname{LST}(\mathfrak{K})$ is not problematic, so we just ignore it.
3) So 2.12 improves 1.13 ; i.e., we need $\operatorname{cf}(\mu) \geq \lambda(>\operatorname{LST}(\mathfrak{K}))$ instead of $\mu=\mu^{<\lambda}$, but still there is a class of μ which are not covered.

Proof. Let Λ_{*} be as in 2.7(2), so in particular $\left|\Lambda_{*}\right| \leq 2^{<\theta}$. Now 2.11(6) and clause (g) of 2.7 proves the first assertion in 2.12. For the second assume that $M_{1} \leq_{\mathfrak{K}_{\mu}} M_{2}$ and we shall prove that $M_{1} \prec_{\mathbb{L}_{\infty, \theta}[\mathcal{K}]} M_{2}$.

By the categoricity of \mathfrak{K} in μ, or clause $(b)_{\mu}^{-}$of Hypothesis $2.1, K^{*}$ is categorical in μ hence $M_{1}, M_{2} \in K_{\mu}^{*}$ are Λ_{*}-generic. Suppose $\bar{a} \in{ }^{\ell g(\bar{x})}\left(M_{1}\right), \varphi(\bar{x}) \in \Lambda_{*}$, so by M_{1}^{\prime} being Λ_{*}-generic (or \boxtimes from the end of the proof of 2.11 applied to \bar{M}^{2}) we have
$(*)_{1} \quad M_{1} \models \varphi[\bar{a}] \Rightarrow M_{1} \Vdash \varphi[\bar{a}] \Rightarrow M_{1} \models \varphi[\bar{a}]$
and by M_{2} being Λ_{*}-generic (or \boxtimes from the end of the proof of 2.11 applied to \bar{M}^{2}) we have
$(*)_{2} \quad M_{2} \models \varphi[\bar{a}] \Rightarrow M_{2} \Vdash \varphi[\bar{a}] \Rightarrow M_{2} \models \varphi[\bar{a}]$
and by the definition of " $M \Vdash \varphi[\bar{a}]$ " recalling $M_{1} \leq_{\mathfrak{K}_{\mu}} M_{2}$,
$(*)_{3}$ if $M_{1} \Vdash \varphi^{\prime}[\bar{a}]$ then $M_{2} \Vdash \varphi^{\prime}[\bar{a}]$ for $\varphi^{\prime}(\bar{x}) \in\{\varphi(\bar{x}), \neg \varphi(\bar{x})\}$.
So both M_{1} and M_{2} satisfy $\varphi[\bar{a}]$ if M_{1} satisfies it, but this applies to $\neg \varphi[\bar{a}]$ too; so we are done.
$\square_{2.12}$

Claim 2.14. If K is also categorical in μ^{*} (or just Hypothesis 2.6 applies also to μ^{*}, with the same Φ) and $\mu^{*} \geq \mu^{<\theta}>\mu>\theta>\operatorname{LST}(\mathfrak{K})$ and $(*)$ below, then every $M \in K_{\mu}^{*}$ is $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$-generic and

$$
M_{1} \in K_{\mu}^{*} \wedge M_{2} \in K_{\mu}^{*} \wedge M_{1} \leq_{\mathfrak{K}_{\mu}} M_{2} \Rightarrow M_{1} \prec_{\mathbb{L}_{\infty}, \theta}[\mathfrak{K}] \quad M_{2},
$$

i.e. the conclusions of 1.13, 2.12 hold where
$(*)$ if $M \in K_{\mu^{*}}^{*}$ and $A \in[M]^{\mu}$ then we can find $N \leq_{\mathfrak{K}} M$ such that $A \subseteq N \in K_{\mu}^{*}$ and for every $\varphi(\bar{x}) \in \mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ and $\bar{a} \in{ }^{\ell g(\bar{x})} N$ we have

$$
M \Vdash \varphi[\bar{a}] \Leftrightarrow N \Vdash \varphi[\bar{a}] .
$$

Proof. We shall choose $\left(M_{i}, N_{i}\right) \in K_{\mu^{*}, \mu}$ by induction on $i \leq \theta^{+}$such that not only $M_{i} \in K_{\mu^{*}}^{*}$ (see the definition of $K_{\mu^{*}, \mu}$) but also $N_{i} \in K_{\mu}^{*}$ and this sequence of pairs is $\leq_{\mathfrak{K}}$-increasing continuous. For $i=0$ use any pair; e.g. $M_{0}=\mathrm{EM}_{\tau(\mathfrak{K})}\left(\mu^{*}, \Phi\right)$ and $N_{0}=\mathrm{EM}_{\tau(\mathfrak{K})}(\mu, \Phi)$.

For i limit take unions, recalling M_{j}, N_{j} are pseudo superlimit for $j<i$.
For $i=j+1$, let $N_{j}^{+} \leq_{\mathfrak{K}} M_{j}$ be such that $N_{j} \subseteq N_{j}^{+} \in K_{\mu}$ and $\left(M_{j}, N_{j}^{+}\right)$ satisfies $(*)$ of the claim (standing for (M, N)). Let Λ_{*} be as in 2.7 for μ^{*}. Then by $2.11(5)$ with $\left(\mu^{*}, \mu, \theta\right)$ here standing for (μ, χ, θ) there (noting that in $\square(c)$ there we use the case $\chi^{<\theta} \leq \mu$ which here means $\mu^{*}=\mu^{<\theta}$) we can choose a Λ_{*}-generic pair $\left(M_{i}, N_{i}\right) \in K_{\mu^{*}, \mu}$ above $\left(M_{j}, N_{j}^{+}\right)$. Hence by $2.7(2)(\mathrm{g})$ it is also a $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]-$ generic pair. Now for $j<\theta^{+}$, for $\bar{a} \in{ }^{\theta>}\left(N_{j}\right)$, we can read $\operatorname{gtp}_{\theta}^{\mu^{*}}\left(\bar{a}, \varnothing, M_{j+1}\right)$ and it is complete, but as by our use of $(*)$ it is the same as $\operatorname{gtp}_{\theta}^{\mu}\left(\bar{a}, \varnothing, N_{j+1}^{+}\right)$. So $\operatorname{gtp}_{\theta}^{\mu}\left(\bar{a}, \varnothing, N_{j+1}^{+}\right)$is complete for every $\bar{a} \in{ }^{\theta>}\left(N_{j}\right)$, so also $\operatorname{gtp}^{\mu}\left(\bar{a}, \varnothing, N_{\theta^{+}}\right)$is complete by monotonicity.

Now if $\bar{a} \in{ }^{\theta>}\left(N_{\theta^{+}}\right)$then for some $j<\theta^{+}$we have $\bar{a} \in{ }^{\theta>}\left(N_{j}\right)$, so by the above $p_{\bar{a}}:=\operatorname{gtp}_{\theta}^{\mu^{*}}\left(\bar{a}, \varnothing, M_{j+1}\right)=\operatorname{gtp}_{\theta}^{\mu}\left(\bar{a}, \varnothing, N_{j+1}^{+}\right)=\operatorname{gtp}_{\theta}^{\mu}\left(\bar{a}, \varnothing, N_{\theta^{+}}\right)$is complete and does not depend on j as long as j is large enough.

Now we prove that if $\bar{a} \in{ }^{\theta>}\left(N_{\theta^{+}}\right)$then $\varphi(\bar{x}) \in p_{\bar{a}} \Rightarrow N_{\theta^{+}} \models \varphi[\bar{a}]$, and we prove this by induction on the quantifier depth of $\varphi(\bar{x})$. As usual, the real case is $\varphi(\bar{x})=(\exists \bar{y}) \varphi(\bar{y}, \bar{x})$. Let $j<\theta^{+}$be such that $\bar{a} \in{ }^{\ell g(\bar{x})}\left(N_{j}\right)$, so $p_{\bar{a}}=\operatorname{gtp}_{\theta}^{\mu^{*}}\left(\bar{a}, M_{j+1}\right)$ so $M_{j+1} \Vdash \varphi[\bar{a}]$ and by the choice of $\left(M_{j+1}, N_{j+1}\right)$ it follows that $N_{j+1} \models \varphi[\bar{a}]$. Hence for some $\bar{b} \in{ }^{\ell g(\bar{y})}\left(N_{j+1}\right)$ we have $N_{j+1} \models \psi[\bar{b}, \bar{a}]$ hence $M_{j+1} \Vdash \psi(\bar{b}, \bar{a})$,
hence $\psi(\bar{y}, \bar{x}) \in p_{\bar{b}^{\wedge} \bar{a}}$ hence by the induction hypothesis $N_{\theta^{+}} \models \psi[\bar{b}, \bar{a}]$ hence $N_{\theta^{+}} \models$ $\varphi[\bar{a}] . \quad \square_{2.14}$

Conclusion 2.15. 1) For each $\theta \geq \operatorname{LST}(\mathfrak{K})$, the family of $\mu>2^{<\theta}$ in which K is categorical but some (equivalently, every) $M \in K_{\mu}$ is not $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$-generic is $\subseteq\left\{\left[\mu_{i}, \mu_{i}^{<\theta}\right]: i<2^{2^{\theta}}\right\}$ for some sequence $\left\langle\mu_{i}: i<2^{2^{\theta}}\right\rangle$ of cardinals.
2) Similarly for pseudo solvable: i.e. for each $\theta \geq \operatorname{LST}(\mathfrak{K})$ and $\Phi \in \Upsilon_{\theta}^{\text {or }}$, for at most $\beth_{2}(\theta)$ cardinals $\mu>2^{<\theta}$, we have $(\forall \alpha<\mu)\left[|\alpha|^{<\theta}<\mu\right]$ and for some $\mu^{*} \in\left[\mu, \mu^{<\theta}\right]$ the pair (\mathfrak{K}, Φ) is pseudo μ^{*}-solvable but some (equivalently, every) $M \in K_{\Phi, \mu^{*}}^{*}$ is not $\mathbb{L}_{\infty, \theta^{+}}[\mathfrak{K}]$-generic.

Proof. Straightforward. Note that it is enough to prove this for each Φ separately.
Toward contradiction, assume $\left\langle\mu_{\varepsilon}: \varepsilon<\left(\beth_{2}(\theta)\right)^{+}\right\rangle$is an increasing sequence of such cardinals, satisfying $\left(\mu_{\varepsilon}\right)^{<\theta}<\mu_{\varepsilon+1}$.
$(*)_{1}$ for a linear order I let
(a) $\Omega_{I, \theta}=\left\{(\bar{t}, \bar{\sigma}): \bar{t} \in{ }^{\theta>} I, \bar{\sigma}=\left\langle\sigma_{i}\left(a_{\bar{t}_{\eta_{i}}}\right): i<i_{*}\right\rangle\right\}$, where $\eta_{i} \in{ }^{\omega>} \ell g(\bar{t})$, $\bar{t}_{\eta_{i}}=\left\langle t_{\eta_{i}(\ell)}: \ell<\ell g\left(\eta_{i}\right)\right\rangle$, and σ is a $\tau(\Phi)$-term.
(b) $\mathcal{E}_{I, \theta}$ is the following equivalence relation on $\Omega_{I, \theta}:\left(\vec{t}^{1}, \bar{\sigma}^{1}\right) \mathcal{E}_{I, \theta}\left(\bar{t}^{2}, \bar{\sigma}^{2}\right)$ iff
($\alpha) \lg \left(\vec{t}^{1}\right)=\ell g\left(\vec{t}^{2}\right)$
(β) $\bar{\sigma}^{1}=\bar{\sigma}^{2}$
$(\gamma)\left\{\left(t_{i}^{1}: t_{i}^{2}\right): i\right\}$ is a partial automorphism of I. [No idea what this means; I've been fixing typos freely, but I can't even guess at the intention.]
For transparency assume θ is regular. Let Ψ be as in $5.1(3)$ so for a linear order I^{\prime}, $\mathrm{EM}_{\{<\}}(I, \psi)$ is a linear ordinal (of cardinality (I)).
[I assume $|I|$?]
Now for each ε and

$$
\zeta \in w_{\varepsilon}=\left\{\zeta \in\left[\mu_{\varepsilon}, \mu_{\varepsilon+1}\right): \zeta \text { has cofinality } \theta \text { and is divisible by } \mu_{\varepsilon}\right\}
$$

let $I_{\mu}=\mathrm{EM}_{\{<\}}\left(I_{\theta, \zeta}^{\lim }, \psi\right)$, hence (in the statement of 5.1), instead of ζ we have $\lambda \times \theta_{2}$ which here will be $\mu_{\varepsilon} \times \theta$; but in the proof of 5.1 we start it for any $\zeta \in[\lambda, \lambda]$ [of] cofinality θ_{2}, we have
$(*)_{3} \quad$ (a) $I_{\varepsilon, \zeta}=I_{\zeta}$ is a linear order of cardinality μ_{ε}.
(b) $I_{\varepsilon, \zeta}$ is increasing with ε and for a fixed ε increasing with ζ.
(c) let $M_{\varepsilon, \zeta}=M_{\zeta}, \operatorname{EM}_{\tau(\mathfrak{\xi})}\left(I_{\varepsilon, \zeta}, \Phi\right)$, so $\leq_{\mathfrak{K}}$-increasing
(d) If h is a partial automorphism of $(\zeta,<)$ of cardinality $<\theta$ then \hat{h}, the partial automorphism of $I_{\varepsilon, \zeta}$ which induces an automorphism of $\operatorname{EM}\left(I_{\varepsilon, \zeta}, \Phi\right)$
[Sentence ends here. Does this bleed into $(*)_{4}$?]
$(*)_{4}$ we define ${ }^{8}$ an equivalence relation on $\mathcal{E}_{\varepsilon, \zeta}=\mathcal{E}_{\zeta}$ on ${ }^{\theta>}\left(M_{\varepsilon, \zeta}\right)$ as follows:
$\bar{a} \mathcal{E}_{\varepsilon, \zeta} \bar{b}$ iff there is a partial automorphism h of $(\zeta,<)$ such that the partial
automorphism \hat{h} it induces on $I_{\varepsilon, \zeta}$ satisfies that the partial automorphism \hat{h} it induces on $M_{\varepsilon, \zeta}$ maps \bar{a} to \bar{b}.
[\hat{h} is used twice. ". . . such that the induced partial automorphism on $M_{\varepsilon, \zeta}$ maps \bar{a} to \bar{b} ?" $]$

[^7]$(*)_{5}$ If $\zeta_{1}<\zeta_{2}$ then any equivalence class of ${ }^{\theta>}\left(M_{\zeta_{2}}\right)$ is represented in $M_{\zeta_{1}}$.
(Recall $\left.\zeta_{\ell} \geq \mu_{0}>\theta>|\tau(\Phi)|.\right)$
$(*)_{6}$ for any $(\bar{t}, \bar{\sigma}) \in \Omega_{I_{\zeta}, \theta}$, the generic type $\operatorname{gps}\left(\left\langle\sigma_{i}\left(\bar{a}_{t_{\eta_{i}}}\right): i<i_{*}\right\rangle, \varnothing, M_{\zeta}\right)$ is determined by ζ and $(\bar{t}, \bar{\sigma}) / \mathcal{E}_{I_{\zeta}, \theta}$.
As $\mathcal{E}_{\varepsilon, \zeta}$ has $\leq \beth_{2}(\theta) \leq \mu_{\varepsilon}$ (even $\leq 2^{<\theta} \leq \mu_{\varepsilon}$) equivalence classes, for each ε there is $w_{\varepsilon}^{*} \subseteq w_{\varepsilon}$, unbounded in μ_{ε}^{+}, such that the function implicit in $(*)_{6}$ is constant for $\zeta \in W_{\varepsilon}$.

Similarly there is $S \subseteq \beth_{2}(\theta)$, unbounded in it, such that the above function is constant on $\bigcup\left\{W_{\varepsilon}^{*}: \varepsilon \in S\right\}$. For any $\varepsilon_{1}<\varepsilon_{2}$ in S and $\zeta_{2} \in W_{\varepsilon}^{*}$, let $\left(\mu^{*}, \mu\right):=$ $\left(\mu_{\varepsilon_{2}}, \mu_{\varepsilon_{1}}\right)$ and we verify condition (*) in 2.14. Let $M \in K_{\mu^{*}}$, so without loss of generality $M=M_{\varepsilon_{2}, \varepsilon_{2}}$ and suppose $A \in[M]^{\mu}$, then there is $J_{0} \subseteq \zeta_{1}$ of cardinality μ such that $A \subseteq \operatorname{EM}\left(J_{0}, \Phi \circ \Psi\right)$.

Let $\zeta_{1} \in w_{\varepsilon_{1}}$ be $>\operatorname{otp}\left(J_{0}\right)$. We can find $J_{1} \subseteq \zeta_{2}$ extending J_{0} of order type ζ_{1} (because $\operatorname{cf}\left(\zeta_{1}\right)=\operatorname{cf}\left(\zeta_{2}\right)=\theta$ and $\mu_{\varepsilon_{2}}$ divides ζ_{2}). So there is an isomorphism f from $M_{\varepsilon_{1}, \zeta_{1}}$ onto $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{1}, \Phi \circ \Psi\right)$. Choosing the choices / With the appropriate choices of $S, W_{\varepsilon_{1}}, W_{\varepsilon_{2}}$ we are done.

For the rest of this section we note some basic facts on the dependency on Φ (not used here).
Definition 2.16. 1) We define a two-place relation $\mathcal{E}_{\kappa}=\mathcal{E}_{\kappa}^{\text {or }}[\mathfrak{K}]$ on $\Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$, so $\kappa \geq \operatorname{LST}(\mathfrak{K}): \Phi_{1} \mathcal{E}_{\kappa} \Phi_{2}$ iff for every linear orders I_{1}, I_{2} there are linear orders J_{1}, J_{2} extending I_{1}, I_{2} respectively such that $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{1}, \Phi\right), \mathrm{EM}_{\tau(\mathfrak{K})}\left(J_{2}, \Phi\right)$ are isomorphic.
2) We define $\leq_{\kappa}^{\text {or }}=\leq_{\kappa,[\mathfrak{K}]}^{\mathrm{or}}$, a two-place relation on $\Upsilon_{\kappa}^{\text {or }}[\mathcal{K}]$ as in part (1); only in the end, $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{1}, \Phi_{1}\right)$ can be $\leq_{\mathfrak{K}}$-embedded into $\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{2}, \Phi_{2}\right)$.
[The highlighted relation was originally typeset as $\leq_{\kappa}^{\text {or }}[\mathcal{K}]$ throughout; it and $\mathcal{E}_{\kappa}^{\text {or }}[\mathcal{K}]$ look horrific when actually used in an expression.]

Claim 2.17. 1) The following conditions on $\Phi_{1}, \Phi_{2} \in \Upsilon_{\kappa}^{\mathrm{or}}[\mathfrak{K}]$ are equivalent:
(a) $\Phi_{1} \mathcal{E}_{\kappa} \Phi_{2}$
(b) There are $I_{1}, I_{2} \in K^{\text {lin }}$ of cardinality $\geq \beth_{1,1}(\kappa)$ such that $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi_{1}\right)$, $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$ are isomorphic.
(c) there are $\Phi_{1}^{\prime}, \Phi_{2}^{\prime}$ satisfying $\Phi_{\ell} \leq^{\otimes} \Phi_{\ell}^{\prime} \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ for $\ell=1,2$ such that $\Phi_{1}^{\prime}, \Phi_{2}^{\prime}$ are essentially equal (see Definition 2.18 below).
2) The following conditions are equivalent
(a) $\Phi_{1} \leq_{\kappa}^{\text {or }} \Phi_{2}\left(\right.$ recall $\left.\leq_{\kappa}=\leq_{\kappa}^{\text {or }}[\mathfrak{K}]\right)$.
(b) There are $I_{1}, I_{2} \in K^{\text {lin }}$ of cardinality $\geq \beth_{1,1}(\kappa)$ such that $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi_{1}\right)$ can be $\leq_{\mathfrak{K}^{-} \text {-embedded into }} \mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi_{2}\right)$.
(c) for every $I_{1} \in K^{\text {lin }}$ there is $I_{2} \in K^{\text {lin }}$ such that $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi_{1}\right)$ can be $\leq_{\mathfrak{K}}$-embedded into $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi_{2}\right)$.

Definition 2.18. $\Phi_{1}, \Phi_{2} \in \Upsilon_{\kappa}^{\mathrm{or}}[\mathcal{K}]$ are essentially equal when for every linear order I there is an isomorphism f from $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I, \Phi_{1}\right)$ onto $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I, \Phi_{2}\right)$ such that for any $\tau_{\Phi_{1}}$-term $\sigma_{1}\left(x_{0}, \ldots, x_{n-1}\right)$ there is a $\tau_{\Phi_{2}}$-term $\sigma_{2}\left(x_{0}, \ldots, x_{n-1}\right)$ such that: $t_{0}<_{I} \ldots<_{I} t_{n-1} \Rightarrow f\left(a_{1}\right)=a_{2}$, where a_{ℓ} is $\sigma_{\ell}\left(a_{t_{0}}, \ldots, a_{t_{n-1}}\right)$ as computed in $\operatorname{EM}\left(I, \Phi_{\ell}\right)$ for $\ell=1,2$.

Claim 2.19. 1) $\mathcal{E}_{\kappa}=\mathcal{E}_{\kappa}^{\mathrm{or}}[\mathcal{K}]$ is an equivalence relation and

$$
\Phi_{1} \mathcal{E}_{\kappa}^{\mathrm{or}}[\mathfrak{K}] \Phi_{2} \Rightarrow \Phi_{1} \leq_{\kappa}^{\mathrm{or}}[\mathfrak{K}] \Phi_{2} .
$$

[See what I mean?]
1A) In fact, if $\left\langle\Phi_{\varepsilon}: \varepsilon<\varepsilon(*)\right\rangle$ are pairwise \mathcal{E}_{κ}-equivalent and $\varepsilon(*) \leq \kappa$ then we can find $\left\langle\Phi_{\varepsilon}^{\prime}: \varepsilon<\kappa\right\rangle$ satisfying $\Phi_{\varepsilon}^{\prime} \leq^{\otimes} \Phi_{\varepsilon}^{\prime}$ for $\varepsilon<\varepsilon(*)$ such that the $\Phi_{\varepsilon}^{\prime}$ for $\varepsilon<\varepsilon(*)$ are pairwise essentially equal.
2) $\leq_{\kappa}^{\text {or }}$ is a partial order.
3) If $\Phi_{1}, \Phi_{2} \in \Upsilon_{\kappa}^{\mathrm{or}}[\mathfrak{K}]$ are essentially equal then $\left(\mathfrak{K}, \Phi_{1}\right)$ is pseudo/weakly/strongly (μ, κ)-solvable iff $\left(\mathfrak{K}, \Phi_{2}\right)$ is pseudo/weakly/strongly (μ, κ)-solvable.
4) If $\Phi_{1} \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ is strongly (μ, κ)-solvable and Φ_{2} exemplifies \mathfrak{K} is (μ, κ)-solvable then $\Phi_{1} \mathcal{E}_{\kappa} \Phi_{2}$.
5) If \mathfrak{K} is categorical in μ and $\mu>\kappa \geq \operatorname{LST}(\mathfrak{K})$ then every $\Phi \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ is strongly (μ, κ)-solvable.
6) Assume $\left(\mathfrak{K}, \Phi_{\ell}\right)$ is pseudo (μ, κ)-solvable and $\mu \geq \beth_{1,1}(\kappa)$ for $\ell=1,2$. Then $\Phi_{1} \mathcal{E}_{\kappa} \Phi_{2}$ iff $\Phi_{1} \leq_{\kappa}^{\text {or }} \Phi_{2} \wedge \Phi_{2} \leq_{\kappa}^{\text {or }} \Phi_{1}$.
7) If $\Phi_{1} \leq_{\kappa}^{\text {or }} \Phi_{2}$ and Φ_{1} is strongly (μ, κ)-solvable or just pseudo (μ, κ)-solvable then Φ_{1}, Φ_{2} are $\mathcal{E}_{\kappa}^{\mathrm{or}}[\mathfrak{K}]$-equivalent.

Proof. Easy, use 1.32(1) and its proof.

§ 3. §3 Categoricity for cardinals on a club

We draw here an easy conclusion from $\S 2$, getting that, on a closed unbounded class of cardinals which is \aleph_{0}-closed, we get a constant answer to being categorical. This is, of course, considerably weaker than conjecture 0.1 but is still progress; e.g. it shows that the categoricity spectrum is not totally chaotic.

We concentrate on the case the results of $\S 1$ hold (e.g. $\mu=\mu^{\lambda}$) for the λ-s with which we deal. To eliminate this extra assumption we need $\S 2$. This section is not used later. Note that 3.3 is continued (and improved) in $\left[\mathrm{S}^{+} \mathrm{c}\right]$ and Exercise $3,\left[\mathrm{~S}^{+} \mathrm{b}\right]$ improve 3.5 ; similarly 3.6 .

In the claims below we concentrate on fixed points of the sequence of \beth_{α}-s.
Hypothesis 3.1. As in Hypothesis 1.2, (i.e. \mathfrak{K} is an AEC with models of arbitrarily large cardinality).
Definition 3.2.1) Let Cat $_{\mathfrak{K}}$ be the class of cardinals in which \mathfrak{K} is categorical.
1A) Let $\operatorname{Sol}=\operatorname{Sol}_{\mathfrak{K}, \Phi}=\operatorname{Sol}_{\mathfrak{K}, \Phi}^{1}$ be the class of $\mu>\operatorname{LST}[\mathfrak{K}]$ such that (\mathfrak{K}, Φ) is pseudo μ-solvable. Let $\operatorname{Sol}_{\mathfrak{K}, \Phi}^{2}\left[\operatorname{Sol}_{\mathfrak{K}, \Phi}^{3}\right]$ be the class of $\mu>\operatorname{LST}(\mathfrak{K})$ such that (\mathfrak{K}, Φ) is weakly [strongly] μ-solvable.
2) Let $\bmod -\operatorname{com}_{\mathfrak{K}, \Phi}$ be the class of pairs (μ, θ) such that: $\mu>\theta \geq \operatorname{LST}(\mathfrak{K})$ and $\mathbb{L}_{\infty, \theta^{+}}[\mathfrak{K}]$ is μ-model complete. (On $K_{\Phi, \mu}^{*}$ see Definition 2.3(3)(b), 2.3(5).)
3) Let $\mathrm{Cat}_{\mathfrak{K}}^{\prime}$ be the class of $\mu \in \operatorname{Cat}_{\mathfrak{K}}$ such that: $\mu \geq \beth_{1,1}(\operatorname{LST}(\mathfrak{K}))$ and if $\operatorname{LST}(\mathfrak{K}) \leq \theta$ and $\beth_{1,1}(\theta) \leq \mu$ then $\mathbb{L}_{\infty, \theta^{+}}[\mathfrak{K}]$ is μ-model complete.

3A) For $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}$ let $\operatorname{Sol}_{\mathfrak{K}, \Phi}^{k, *}$ be the class of $\mu \in \operatorname{Sol}_{\mathfrak{K}, \Phi}^{k}$ such that $\mu \geq \beth_{1,1}(\operatorname{LST}(\mathfrak{K}))$ and: if $\operatorname{LST}(\mathfrak{K}) \leq \theta$ and $\beth_{1,1}(\theta) \leq \mu$ then the pair $\left(\mathbb{L}_{\infty, \theta^{+}}[\mathfrak{K}], \Phi\right)$ is μ-model complete.

Let $\operatorname{Sol}_{\mathfrak{K}, \Phi}^{\ell,<\theta}$ be the class of $\lambda \in \operatorname{Sol}_{\mathfrak{K}, \Phi}^{\ell}$ such that $\mathbb{L}_{\infty, \theta}[\mathfrak{K}]$ is μ-model complete (see [She09b, §2]).

Let $\operatorname{Sol}_{\mathfrak{K}, \Phi}^{\prime}=\operatorname{Sol}_{\mathfrak{K}, \Phi}^{1, *}$. Instead of $k, *$ we may write $3+k$.
4) Let $\mathbf{C}=\left\{\lambda: \lambda=\beth_{\lambda}\right.$ and $\left.\operatorname{cf}(\lambda)=\aleph_{0}\right\}$.

Exercise: 1) The conclusion of 1.13(1) (equivalently, 1.13(2)) means that $\theta \leq \lambda \Rightarrow$ $(\mu, \theta) \in \bmod -\operatorname{com}_{\mathfrak{K}, \Phi}$.
2) Write down the obvious implications.

Claim 3.3. If $\mu>\lambda=\beth_{\lambda}>\kappa \geq \operatorname{LST}(\mathfrak{K})$ and $\Phi \in \Upsilon_{\kappa}^{\circ \mathrm{or}}[\mathfrak{K}], \operatorname{cf}(\lambda)=\aleph_{0} \underline{\text { then }}$

$$
\mu=\mu^{<\lambda} \Rightarrow \mu \in \operatorname{Sol}_{\mathfrak{K}, \Phi}^{\prime} \Rightarrow \lambda \in \operatorname{Sol}_{\mathfrak{K}, \Phi}^{\prime}
$$

Proof. The first implication holds by 1.13(2) and 3. The assumption of the second implication implies Hypothesis 1.18 (see 3(1)) hence its conclusion holds by 1.44.

Observation 3.4. K_{λ} is categorical in λ (hence Hypothesis 1.18 holds), $\underline{i f}:$

$$
\circledast \lambda \lambda=\beth_{\lambda}=\sup \left(\lambda \cap \operatorname{Cat}_{\mathfrak{K}}^{\prime}\right)>\operatorname{LST}(\mathfrak{K}) \text { and } \aleph_{0}=\operatorname{cf}(\lambda) .
$$

Proof. Fix $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}$; now clearly $\operatorname{Sol}_{\mathfrak{K}, \Phi}^{\prime} \supseteq \mathrm{Cat}_{\mathfrak{K}}^{\prime}$ by their definitions.
By the assumptions we can find $\left\langle\mu_{n}: n<\omega\right\rangle$ such that $\lambda=\sum\left\{\mu_{n}: n<\omega\right\}$, $\operatorname{LST}(\mathfrak{K})<\mu_{n} \in \operatorname{Cat}_{\mathfrak{K}}^{\prime}$, and $\beth_{1,1}\left(\mu_{n}^{\prime}\right)<\mu_{n+1}$ where $\mu_{n}^{\prime}=\beth_{1,1}\left(\mu_{n}\right)$. As every $M \in K_{\mu_{n+1}}$ is $\mathbb{L}_{\infty, \mu_{n}^{\prime}}[\mathfrak{K}]$-generic (as $K_{\mu_{n+1}} \subseteq K_{\Phi, \mu_{n+1}}$ and $\mu_{n+1} \in$ Cat $_{\mathfrak{K}}^{\prime}$), easily
$(*)_{0}$ if $M \leq_{\mathfrak{K}} N$ are from $K_{\Phi, \geq \mu_{n+1}}^{*}$ then $M \prec_{\mathbb{L}_{\infty, \mu_{n}^{\prime}}[\mathfrak{K}]} N$.

Let $M^{\ell} \in K_{\lambda}$ for $\ell \in\{1,2\}$, so we can find a $\leq_{\mathfrak{K}}$-increasing sequence $\left\langle M_{n}^{\ell}: n<\omega\right\rangle$ such that $M_{n}^{\ell} \in K_{\mu_{n}}, M_{n}^{\ell} \leq_{\mathfrak{K}} M_{n+1}^{\ell} \leq_{\mathfrak{K}} M^{\ell}$, and $M^{\ell}=\bigcup\left\{M_{n}^{\ell}: n<\omega\right\}$. Now
$(*)_{1} M_{n}^{\ell} \in K_{\Phi, \mu_{n}}^{*}$.
[Why? As \mathfrak{K} is categorical in $\mu_{n}=\left\|M_{n}^{\ell}\right\|$.]
$(*)_{2}$ if $\alpha \leq \mu_{n}, n<m<k$, and $\bar{a}, \bar{b} \in{ }^{\alpha}\left(M_{m}^{\ell}\right)$ then:
(a) $\operatorname{tp}_{\mathbb{L}_{\infty, \mu_{n}^{\prime}}[\mathfrak{\beta}]}\left(\bar{a}, \varnothing, M_{m}^{\ell}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \mu_{n}^{\prime}}\left(\bar{b}, \varnothing, M_{m}^{\ell}\right) \text { iff }}$ $\operatorname{tp}_{\mathbb{L}_{\infty, \mu_{n}^{\prime}}[\mathfrak{\beta}]}\left(\bar{a}, \varnothing, M_{k}^{\ell}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \mu_{n}^{\prime}}}\left(\bar{b}, \varnothing, M_{k}^{\ell}\right)$.
(b) If $\operatorname{tp}_{\mathbb{L}_{\infty, \mu_{n}^{\prime}}[\mathcal{K}]}\left(\bar{a}, \varnothing, M_{k}^{\ell}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \mu_{n}^{\prime}}[\mathcal{K}]}\left(\bar{b}, \varnothing, M_{k}^{\ell}\right)$ then $\operatorname{tp}_{\mathbb{L}_{\infty, \mu_{m}^{\prime}}[\mathfrak{R}]}\left(\bar{a}, \varnothing, M_{k}^{\ell}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \mu_{m}^{\prime}}[\mathfrak{k}]}\left(\bar{b}, \varnothing, M_{k}^{\ell}\right)$.
[Why? Clause (a) by $(*)_{0}$, clause (b) by $1.19(3)$.]
$(*)_{3} \quad M_{n}^{1} \cong M_{n}^{2}$.
[Why? As \mathfrak{K} is categorical in μ_{n}.]
We now proceed as in the proof of 1.41. Let
$\mathcal{F}_{n}=\left\{f:\right.$ for some \bar{a}_{1}, \bar{a}_{2} and $\alpha<\mu_{n}$ we have $\bar{a}_{\ell} \in{ }^{\alpha}\left(M_{n+2}^{\ell}\right)$ for $\ell=1,2$,

$$
\begin{aligned}
& \operatorname{tp}_{\mathbb{L}_{\infty}, \mu_{n+1}[\mathfrak{\mathcal { k }}]}\left(\bar{a}_{1}, \varnothing, M_{n+2}^{1}\right)=\operatorname{tp}_{\mathbb{L}_{\infty}, \mu_{n+1}[\{\mathfrak{\Omega}]}\left(\bar{a}_{2}, \varnothing, M_{n+1}^{2}\right), \\
& \text { and } \left.f \text { is the function which maps } \bar{a}_{1} \text { into } \bar{a}_{2}\right\}
\end{aligned}
$$

(Actually, we can use $\alpha=\mu_{n}$.) By the hence and forth argument we can find $f_{n} \in \mathcal{F}_{n}$ by induction on $n<\omega$ such that $M_{n}^{1} \subseteq \operatorname{dom}\left(f_{2 n+2}\right), M_{n}^{2} \subseteq \operatorname{rang}\left(f_{2 n+2}\right)$, and $f_{n} \subseteq f_{n+1}$; hence $\bigcup\left\{f_{n}: n<\omega\right\}$ is an isomorphism from M^{1} onto M^{1} 。 $\square_{3.3}$

Claim 3.5. \mathfrak{K} is categorical in λ when:

$$
\circledast_{\lambda}^{+} \lambda=\beth_{\lambda}>\operatorname{LST}(\mathfrak{K}) \text { and } \lambda=\overline{\operatorname{otp}}\left(\operatorname{Cat}_{\mathfrak{K}} \cap \lambda \cap \mathbf{C}\right) \text { and } \operatorname{cf}(\lambda)=\aleph_{0} .
$$

Proof. Fix Φ as in the proof of 3.3. Let $\left\langle\theta_{n}: n<\omega\right\rangle$ be increasing such that $\lambda=\Sigma\left\{\theta_{n}: n<\omega\right\}$ and $\operatorname{LST}(\mathfrak{K})<\theta_{0}$. For each n, by 2.15 we know
$\left\{\mu \in \mathrm{Cat}_{\mathfrak{K}}: \mu>\theta_{n}\right.$ and the $M \in K_{\mu}$ is not $\mathbb{L}_{\infty, \theta_{n}^{+-}}$generic $\}$
is "not too large"; i.e. it is included in the union of at most $\beth_{2}\left(\theta_{n}\right)$ intervals of the form $\left[\chi, \chi^{\theta_{n}}\right]$. Now we choose $\left(n(\ell), \mu_{\ell}\right)$ by induction on $\ell<\omega$ such that
\circledast (a) $n(\ell)<\omega$ and $\mu_{\ell} \in \operatorname{Cat}_{\mathfrak{K}} \cap \lambda$
(b) If $\ell=k+1$ then $n(\ell)>n(k), \theta_{n(\ell)}>\mu_{k}, \mu_{\ell} \in \operatorname{Cat}_{\mathfrak{K}} \cap \lambda \backslash \theta_{n(\ell)}^{+}$and the $M \in K_{\mu_{\ell}}$ is $\mathbb{L}_{\infty, \theta_{n(\ell)}}[\mathfrak{K}]$-generic (hence $\mathbb{L}_{\infty, \mu_{k}^{+}}[\mathfrak{K}]$-generic).
This is easy and then continue as in 3.4. \square
We have essentially proved
Theorem 3.6. In 3.4, 3.5 we can use $\mathrm{Sol}_{\mathfrak{K}, \Phi}, \operatorname{Sol}_{\mathfrak{K}, \Phi}^{\prime}$ instead of $\mathrm{Cat}_{\mathfrak{K}}, \mathrm{Cat}_{\mathfrak{K}}^{\prime}$.
Exercise: For Claim 1.41(2), Hypothesis 1.18 suffices.
[Hint: The proof is similar to the existing one using 1.19.]

§ 4. §4 Good Frames

Here comes the main result of [She09b]: from categoricity (or solvability) assumptions we derive the existence of good λ-frames.

Our assumption is such that we can apply $\S 1$.
Hypothesis 4.1. 1)
(a) \mathfrak{K} is an AEC.
(b) $\mu>\lambda=\beth_{\lambda}>\operatorname{LST}(\mathfrak{K})$ and $\operatorname{cf}(\lambda)=\aleph_{0}$.
(c) $\Phi \in \Upsilon_{\mathfrak{K}}^{\text {or }}$
(d) \mathfrak{K} is categorical in μ or just
(d) ${ }^{-}(\mathfrak{K}, \Phi)$ is pseudo superlimit in μ (this means $\Phi \in \operatorname{Sol}_{\mathfrak{K}, \Phi}^{1}$; so 1.18(1) holds)
(e) Also, $1.18(2)$ (a) holds; i.e. the conclusion of $1.13(2)$ holds.
2) In addition we may use some of the following, but then we mention them and we add superscript * when used. (Note that $(\mathrm{g}) \Rightarrow(\mathrm{f})$ by 1.42.)
(f) K_{λ}^{*} is closed under $\leq_{\mathfrak{R}}$-increasing unions (justified by 1.41)
(g) $\left\langle\lambda_{n}: n<\omega\right\rangle$ is increasing, $\lambda_{0}>\operatorname{LST}(\mathfrak{K}), \lambda=\Sigma\left\{\lambda_{n}: n<\omega\right\}$ and the assumptions of 1.41 hold.

Observation 4.2.1) $\mathfrak{K}_{\lambda}^{*}$ is categorical.
2) $\mathfrak{K}_{\lambda}^{*}$ has amalgamation.
3)* (We assume (f) of 4.1(2)). \mathfrak{K}_{λ} is a λ-AEC.

Proof. 1) By $1.16(1)$ or $1.19(4)$ as $\operatorname{cf}(\lambda)=\aleph_{0}$.
2) By $1.34(1)$.
3) As in 1.42 , (i.e. as $\leq_{\mathfrak{K}_{\lambda}^{*}}=\leq_{\mathfrak{K}} \upharpoonright \mathfrak{K}$, closure under unions of $\leq_{\mathfrak{K}^{-}}$-increasing chains is the only problematic point and it holds by (f) of 4.1(2)).

Remark 4.3. 1) Why do we not assume 4.1(1),(2) all the time? The main reason is that for proving some of the results assuming 4.1(1),(2) we use some such results on smaller cardinals on which we use $4.1(1)$ only.
2) Note that it is not clear whether improvement by using 4.1(1) only will have any affect when (or should we say if) we succeed to have the parallel of [She09e, §12].

Claim 4.4. 1) Assume $M_{0} \leq_{\mathfrak{K}_{\lambda}^{*}} M_{\ell}, \alpha<\lambda$, $\bar{a}_{\ell} \in{ }^{\alpha}\left(M_{\ell}\right)$ for $\ell=1,2$, and $\kappa:=$ $\beth_{1,1}\left(\beth_{2}(\theta)^{+}\right)$where $\theta:=|\alpha|+\operatorname{LST}(\mathfrak{K})$ (so $\kappa<\lambda$). If

$$
\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{R}]}\left(\bar{a}_{1}, M_{0}, M_{1}\right)=\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa[\mathfrak{K}]}\left(\bar{a}_{2}, M_{0}, M_{2}\right)
$$

then

$$
\mathbf{t p}_{\mathfrak{K}_{\lambda}^{*}}\left(\bar{a}_{1}, M_{0}, M_{1}\right)=\mathbf{t p}_{\mathfrak{R}_{\lambda}^{*}}\left(\bar{a}_{2}, M_{0}, M_{2}\right)
$$

2) If $M_{1} \leq \mathfrak{R}_{\lambda}^{*} M_{2}$ then $M_{1} \prec_{\mathbb{L}_{\infty, \theta}[\mathfrak{R}]} M_{2}$ for every $\theta<\lambda$, and moreover

$$
M_{1} \prec_{\mathbb{L}_{\infty}, \lambda}[\mathfrak{K}] M_{2} .
$$

2A) If $M_{0} \leq \mathfrak{R}_{\lambda}^{*} M_{\ell}$ for $\ell=1,2$ and $\mathbf{t} \mathbf{p}_{\mathfrak{R}_{\lambda}^{*}}\left(\bar{a}_{1}, M_{0}, M_{1}\right)=\operatorname{tp}_{\mathfrak{R}_{\lambda}^{*}}\left(\bar{a}_{2}, M_{0}, M_{2}\right)$ and $\bar{a}_{\ell} \in{ }^{\alpha}\left(M_{0}\right), \alpha<\kappa \leq \lambda \underline{\text { then }} \operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathcal{K}]}\left(\bar{a}_{1}, M_{0}, M_{1}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathcal{K}]}\left(\bar{a}_{2}, M_{0}, M_{2}\right)$.

2B) In part (1), if $M_{\ell} \leq_{\mathfrak{R}_{\lambda}^{*}} M_{\ell}^{\prime}$ for $\ell=1,2$ then

$$
\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{\beta}]}\left(\bar{a}_{1}, M, M_{1}^{\prime}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{R}]}\left(\bar{a}_{2}, M, M_{2}^{\prime}\right) .
$$

3) Assume that $M_{0} \leq_{\mathfrak{K}_{\lambda}^{*}} M_{1} \leq_{\mathfrak{K}_{\lambda}^{*}} M_{2} \leq_{\mathfrak{K}_{\lambda}^{*}} M_{3}, \bar{a} \in{ }^{\alpha}\left(M_{2}\right), \alpha<\lambda$ and $\kappa=$ $\beth_{1,1}(|\alpha|+\operatorname{LST}(\mathfrak{K}))<\theta<\lambda . \underline{\text { Then }}$
(a) From $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{R}]}\left(\bar{a}, M_{1}, M_{2}\right)$ we can compute $\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathcal{R}]}\left(\bar{a}, M_{1}, M_{2}\right)$ and $\operatorname{tp}_{\mathbb{L}_{\infty, \lambda}[\mathfrak{K}]}\left(\bar{a}, M_{0}, M_{3}\right)$.
(b) From $\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa}[\mathfrak{K}]\left[\bar{a}, \varnothing, M_{2}\right)$ we can compute $\operatorname{tp}_{\mathbb{L}_{\infty, \theta}[\mathfrak{K}]}\left(\bar{a}, \varnothing, M_{2}\right)$ and even $\operatorname{tp}_{\mathbb{L}_{\infty}, \lambda}[\mathfrak{F}]\left(\bar{a}, \varnothing, M_{2}\right)$.
(c) From $\operatorname{tp}_{\mathfrak{K}_{\lambda}^{*}}\left(\bar{a}, M_{1}, M_{2}\right)$ we can compute $\operatorname{tp}_{\mathbb{L}_{\infty, \lambda}[\mathfrak{R}]}\left(\bar{a}, M_{1}, M_{2}\right)$ and $\mathbf{t p}_{\mathfrak{R}_{\lambda}^{*}}\left(\bar{a}, M_{0}, M_{3}\right)$.
4) If $M_{1} \leq \mathfrak{K}_{\lambda}^{*} M_{2}$ and $\alpha<\kappa^{*}<\lambda, \mathbf{I}_{\ell} \subseteq{ }^{\alpha}\left(M_{1}\right)$, $\left|\mathbf{I}_{\ell}\right|>\kappa$, \mathbf{I}_{ℓ} is $\left(\mathbb{L}_{\infty, \theta}[\mathfrak{K}], \kappa^{*}\right)$ convergent in M_{1} for $\ell=1,2$ and $\operatorname{Av}_{<\kappa}\left(\mathbf{I}_{1}, M_{1}\right)=\operatorname{Av}_{<\kappa}\left(\mathbf{I}_{1}, M_{1}\right)$ then \mathbf{I}_{ℓ} is
$\left(\mathbb{L}_{\infty, \kappa}[\mathfrak{K}], \kappa^{*}\right)$-convergent in M_{ℓ} for $\ell=1,2$ and $\operatorname{Av}_{<\kappa}\left(\mathbf{I}_{1}, M_{\ell}\right)=\overline{\operatorname{Av}_{<\kappa}}\left(\mathbf{I}_{1}, M_{2}\right)$.

Proof. 1) Without loss of generality $M_{0}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)$ and $I_{0} \in K_{\lambda}^{\text {flin }}$. By 1.32(3) for $\ell=1,2$ there is a pair $\left(I_{\ell}, f_{\ell}\right)$ such that $I_{0} \leq_{K^{\text {flin }}} I_{\ell} \in K_{\lambda}^{\text {flin }}$ and f_{ℓ} is a $\leq_{\mathfrak{K}^{-}}$ embedding of M_{ℓ} into $M_{\ell}^{\prime}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\ell}, \Phi\right)$ over M_{0}. By renaming, without loss of generality f_{ℓ} is the identity on M_{ℓ} hence $M_{\ell} \leq_{\mathfrak{K}} M_{\ell}^{\prime}$. By $1.19(1)$ we know that $M_{\ell} \prec_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]} M_{\ell}^{\prime}$ hence

$$
\begin{aligned}
& \operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]}\left(\bar{a}_{1}, M_{0}, M_{1}^{\prime}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{R}]}\left(\bar{a}_{1}, M_{0}, M_{1}\right)= \\
& \operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{K}]}\left(\bar{a}_{2}, M_{0}, M_{2}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathfrak{R}]}\left(\bar{a}_{2}, M_{0}, M_{2}^{\prime}\right) .
\end{aligned}
$$

By 1.32(1) we can find $\left(I_{3}, g_{1}, g_{2}, h\right)$ such that $I_{0} \leq_{K^{\text {flin }}} I_{3} \in K_{\lambda}^{\text {fin }}, g_{\ell}$ is a $\leq_{\mathfrak{K}}$-embedding of M_{ℓ}^{\prime} into $M_{4}:=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{3}, \Phi\right)$ over M_{0} for $\ell=1,2$, and h is an automorphism of M_{4} over M_{0} mapping $g_{1}\left(\bar{a}_{1}\right)$ to $g_{2}\left(\bar{a}_{2}\right)$. By the definition of orbital types, this gives $\mathbf{t p}_{\mathfrak{R}_{\lambda}^{*}}\left(\bar{a}_{1}, M_{0}, M_{1}\right)=\mathbf{t p}_{\mathfrak{R}_{\lambda}^{*}}\left(\bar{a}_{2}, M_{0}, M_{2}\right)$ as required.
2) This holds by $1.19(1)$ for $\theta \in(\operatorname{LST}(\mathfrak{K}), \lambda)$, hence by $1.12(1)$ also for $\theta=\lambda$ (the assumptions of 1.12 hold as clause (a) there holds by the case above $\theta<\lambda$ and clause (b) there holds by $1.30(1)$).

2A) Should be clear:
(a) By part (2), this holds if $\bar{a}_{1}=\bar{a}_{2}$ and $M_{1} \leq_{\mathfrak{K}} M_{2}$.
(b) Trivially, it holds if there is an isomorphism from M_{1} onto M_{2} over M_{0} mapping \bar{a}_{1} to \bar{a}_{2}.
(c) by the definition of $\mathbf{t p}$ we are done.

2B) Should be clear by part (2).
3) Clause (a):

By parts (1) $+(2)$.
Clause (b): By 1.30(1).
Clause (c): By part (2A) and the definition of tp.
4) Easy, too.

Definition 4.5. Assume $M_{0} \leq_{\mathfrak{R}_{\lambda}^{*}} M_{1} \leq_{\mathfrak{R}_{\lambda}^{*}} M_{2}, \alpha<\lambda, \bar{a} \in{ }^{\alpha}\left(M_{2}\right)$, and $p=$ $\boldsymbol{t p}_{\mathfrak{R}_{\lambda}^{*}}\left(\bar{a}, M_{1}, M_{2}\right)$. We say that p does not fork over M_{0} (for $\mathfrak{K}_{\lambda}^{*}$) when, letting $\theta_{0}=|\alpha|+\operatorname{LST}(\mathfrak{K}), \theta_{1}=\beth_{1,1}\left(\beth_{2}\left(\theta_{0}\right)^{+}\right), \theta_{2}=2^{\theta_{1}}, \theta_{2}=\beth_{2}\left(\theta_{1}\right)$, we have:
(*) for some $N \leq \leq_{\mathfrak{K}^{*}} M_{0}$ satisfying $\|N\| \leq \theta_{2}$ we have $\operatorname{tp}_{\mathbb{L}_{\infty, \theta_{1}}[\mathfrak{R}]}\left(\bar{a}, M_{1}, M_{2}\right)$ does not split over N.

We now would like to show that there is \mathfrak{s}_{λ} which fits [She09c] and [She09e] and $\mathfrak{K}_{\mathfrak{s}_{\lambda}}=\mathfrak{K}_{\lambda}^{*}$.

Observation 4.6. Assume that $M_{0} \leq_{\mathfrak{R}_{\lambda}^{*}} M_{1} \leq_{\mathfrak{K}_{\lambda}^{*}} M_{2}, \bar{a} \in{ }^{\alpha}\left(M_{2}\right), \alpha<\lambda, \lambda>$ $\kappa_{0} \geq|\alpha|+\operatorname{LST}(\mathfrak{K}), \kappa_{1}=\beth_{1,1}\left(\beth_{2}\left(\kappa_{0}\right)^{+}\right)$, and $\kappa_{2}=\beth_{2}\left(\kappa_{1}\right)$. Then the following conditions are equivalent
(a) $\mathbf{t p}_{\mathfrak{R}_{\lambda}^{*}}\left(\bar{a}, M_{1}, M_{2}\right)$ does not fork over M_{0}
(b) For some $\left(\kappa_{1}^{+}, \kappa_{1}\right)$-convergent $\mathbf{I} \subseteq{ }^{\alpha}\left(M_{0}\right)$ of cardinality $>\kappa_{2}$ we have $\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}[\mathfrak{K}]}\left(\bar{a}, M_{1}, M_{2}\right)=\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}, M_{1}\right)$ hence this type does not split over $\bigcup \mathbf{I}^{\prime}$ for any $\mathbf{I}^{\prime} \subseteq \mathbf{I}$ of cardinality $>\kappa_{1}$.
(c) for every $N \leq_{\mathfrak{K}} M_{0}$ of cardinality $\leq \kappa_{2}$, if $\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}[\mathfrak{K}]}\left(\bar{a}, M_{0}, M_{2}\right)$ does not split over N then the type $\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}}[\mathfrak{k}]\left(\bar{a}, M_{1}, M_{2}\right)$ does not split over N.

Remark 4.7. 1) See verification of axiom (E)(c) in the proof of Theorem 4.10.
2) Note that have we used $\beth_{7}\left(\kappa_{1}\right)^{+}$instead of κ_{1} in 4.5, 4.6: the difference would be small.
3) We could in clause (c) of 4.6 use "for some $N \leq_{\mathfrak{K}} M_{0}$ of cardinality $<\kappa_{1}$, $\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}[\mathfrak{K}]} \ldots$.." The proof is the same.
4) We can allow [something] below $M_{0} \leq_{\mathfrak{K}} M_{1}$ if $M_{0} \in K_{\geq \kappa_{2}}$.

Proof. $(a) \Rightarrow(b)$
Let $\overline{\theta_{0}, \theta_{1}, \theta_{2}}$ be as in Definition 4.5. By Definition 4.5 there is $N \leq_{\mathfrak{K}} M_{0}$ of cardinality $\leq \theta_{2}$ such that
$(*)_{1}$ the type $\operatorname{tp}_{\mathbb{L}_{\infty}, \theta_{1}[\mathfrak{R}]}\left(\bar{a}, M_{1}, M_{2}\right)$ does not split over N.
By Claim $1.27(1)$ there is a $\left(\kappa_{1}^{+}, \kappa_{1}\right)$-convergent set $\mathbf{I} \subseteq{ }^{\alpha}\left(M_{0}\right)$ of cardinality κ_{2}^{+} (convergence in M_{0}, of course) such that $\mathrm{tp}_{\mathbb{L}_{\infty, \kappa_{1}}[\mathfrak{k}]}\left(\bar{a}, M_{0}, M_{2}\right)=\mathrm{Av}_{<\kappa_{1}}\left(\mathbf{I}, M_{0}\right)$. So as $M_{0} \prec_{\mathbb{L}_{\infty, \lambda}[\mathfrak{\kappa}]} M_{1} \prec_{\mathbb{L}_{\infty, \lambda}[\mathfrak{\kappa}]} M_{2}$, by Claim 4.4(2), clearly \mathbf{I} is $\left(\kappa_{1}^{+}, \kappa_{1}\right)$-convergent also in M_{1} and in M_{2}, hence $\mathrm{Av}_{<\kappa_{1}}\left(\mathbf{I}, M_{1}\right)$ is well defined. Hence, by Claims 1.23(2), $1.21(3)$ the type $\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}, M_{1}\right)$ does not split over $\bigcup \mathbf{I}$ but $\theta_{2} \leq \kappa_{2}$ and $\bigcup \mathbf{I} \subseteq \bigcup \mathbf{I} \cup N$ hence
$(*)_{2} \mathrm{Av}_{<\theta_{1}}\left(\mathbf{I}, M_{1}\right)$ does not split over $\bigcup \mathbf{I} \cup N$.
But also
$(*)_{3} \operatorname{tp}_{\mathbb{L}_{\infty}, \theta_{1}[\mathfrak{\beta}]}\left(\bar{a}, M_{1}, M_{2}\right)$ does not split over N (by the choice of N) hence over $\cup \mathbf{I} \cup N$.
As $M_{0} \prec_{\mathbb{L}_{\infty}, \lambda}[\mathfrak{\xi}] \quad M_{1}$ and $|\cup \mathbf{I} \cup N|<\lambda$ and $\operatorname{tp}_{\mathbb{L}_{\infty}, \theta_{1}[\mathfrak{K}]}\left(\bar{a}, M_{0}, M_{2}\right)=\operatorname{Av}_{<\theta_{1}}\left(\mathbf{I}, M_{0}\right)$ clearly, by $(*)_{2}+(*)_{3}$ we have $\operatorname{tp}_{\mathbb{L}_{\infty, \theta_{1}}[\mathfrak{R}]}\left(\bar{a}, M_{1}, M_{2}\right)=\operatorname{Av}_{<\theta_{1}}\left(\mathbf{I}, M_{1}\right)$. Now there is a pair $\left(M_{2}^{\prime}, \bar{a}^{\prime}\right)$ satisfying that $M_{1} \leq_{\mathfrak{K}} M_{2}^{\prime} \in K_{\lambda}^{*}$ and $\bar{a}^{\prime} \in{ }^{\alpha}\left(M_{2}^{\prime}\right)$ such that $\operatorname{tp}_{\mathbb{L}_{\infty}, \theta_{1}[\mathfrak{R}]}\left(\bar{a}^{\prime}, M_{1}, M_{2}^{\prime}\right)=\mathrm{Av}_{<\theta_{1}}\left(\mathbf{I}, M_{1}\right)$ hence by the previous sentence

$$
\operatorname{tp}_{\mathbb{L}_{\infty}, \theta_{1}[\mathcal{R}]}\left(\bar{a}^{\prime}, M_{1}, M_{2}^{\prime}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \theta_{1}}[\mathfrak{R}]}\left(\bar{a}, M_{1}, M_{2}\right)
$$

Now by $4.4(1)$ and then $4.4(2 \mathrm{~A})$ it follows that $\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}[\mathfrak{K}]}\left(\bar{a}, M_{1}, M_{0}\right)=\mathrm{Av}_{<\kappa_{1}}\left(\mathbf{I}, M_{1}\right)$ as required.
$(b) \Rightarrow(c)$

Let \mathbf{I} be as in clause (b), so \mathbf{I} is $\left(\kappa_{1}^{+}, \kappa_{1}\right)$-convergent in M_{0} and is of cardinality $>\kappa_{1}$. We know that $M_{0} \prec_{\mathbb{L}_{\infty, \lambda}[\mathfrak{\kappa}]} M_{1}$, so by the previous sentence, \mathbf{I} is $\left(\kappa_{1}^{+}, \kappa_{1}\right)$ convergent in M_{1}. To prove clause (c), assume that $N \leq_{\mathfrak{K}} M_{0}$ is of cardinality κ_{2} and $\left.\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}}[\mathfrak{\kappa}]=M_{0}, M_{2}\right)$ does not split over N. Hence

$$
\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}, M_{0}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{1}}[\mathfrak{K}]}\left(\bar{a}, M_{0}, M_{2}\right)
$$

does not split over N. Again, as $M_{0} \prec_{\mathbb{L}_{\infty, \lambda}[\mathfrak{K}]} M_{1}$, we can deduce that $\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}, M_{1}\right)$ does not split over N but by the choice of \mathbf{I} it is equal to $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{1}}[\mathfrak{K}]}\left(\bar{a}, M_{1}, M_{2}\right)$, so we are done.
$(c) \Rightarrow(a)$
By Claim 1.24 there is $B \subseteq M_{0}$ of cardinality $\leq \kappa_{2}$ such that $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{1}}[\mathcal{R}]}\left(\bar{a}, M_{0}, M_{2}\right)$ does not split over B.

As we can increase B as long as we preserve "of cardinality $\leq \kappa_{2}$ ", without loss of generality $B=|N|$ where $N \leq_{\mathfrak{K}} M_{0}$. So the antecedent of clause (c) holds, but we are assuming clause (c) so the conclusion of clause (c) holds, that is $\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}[\mathcal{K}]}\left(\bar{a}, M_{1}, M_{2}\right)$ does not split over N.

Also by $1.27(1)$ there is $\mathbf{I}_{1} \subseteq{ }^{\alpha}\left(M_{0}\right)$ of cardinality κ_{2}^{+}which is $\left(\kappa_{1}^{+}, \kappa_{1}\right)$-convergent and $\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{1}, M_{0}\right)=\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}[\mathcal{R}]}\left(\bar{a}, M_{0}, M_{1}\right)$. Clearly $\kappa_{1} \geq \theta_{1}$ hence $\kappa_{2}=\left(\kappa_{2}\right)^{\theta_{1}}$. Now as K_{λ}^{*} is categorical clearly $M_{0} \cong \mathrm{EM}_{\tau(\mathfrak{K})}(\lambda, \Phi)$ hence applying $1.25(4)$ we can find $\mathbf{I}_{2} \subseteq \mathbf{I}_{1}$ of cardinality κ_{2}^{+}which is $\left(\theta_{1}^{+}, \theta_{1}\right)$-convergent. As above $M_{0} \prec_{\mathbb{L}_{\infty, \kappa_{1}}[\mathcal{R}]}$ M_{1} so we deduce that \mathbf{I}_{2} is $\left(\theta_{1}^{+}, \theta_{1}\right)$-convergent and $\left(\kappa_{1}^{+}, \kappa_{1}\right)$-convergent also in M_{1}.

As above we have $M_{0} \prec_{\mathbb{L}_{\infty}, \kappa_{1}[\mathfrak{\kappa}]} M_{1}$ by $1.19(1)$ hence $\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{2}, M_{1}\right)$ is well defined and does not split over N hence is equal to $\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}[\mathfrak{K}]}\left(\bar{a}, M_{1}, M_{2}\right)$. This implies that $\mathrm{Av}_{<\theta_{1}}\left(\mathbf{I}_{2}, M_{1}\right)=\operatorname{tp}_{\mathbb{L}_{\infty}, \theta_{1}}[\mathfrak{F}]\left(\bar{a}, M_{1}, M_{2}\right)$.

Now choose $\mathbf{I}_{3} \subseteq \mathbf{I}_{2} \subseteq M_{0}$ of cardinality θ_{2} and $N_{3} \leq_{\mathfrak{K}} M_{0}$ of cardinality θ_{2} such that $\mathbf{I}_{3} \subseteq{ }^{\alpha}\left(N_{3}\right)$. Now by $1.23(2)$ we know that $\operatorname{tp}_{\mathbb{L}_{\infty}, \theta_{1}[\mathcal{K}]}\left(\bar{a}, M_{1}, M_{2}\right)$ does not split over \mathbf{I}_{3} hence it does not split over N_{3}, so N_{3} witnesses clause (a).

Definition 4.8. We define a pre-frame $\mathfrak{s}_{\lambda}=\left(\mathfrak{K}_{\mathfrak{s}_{\lambda}}, \bigcup_{\mathfrak{s}_{\lambda}}, \mathcal{S}_{\mathfrak{s}_{\lambda}}^{\text {bs }}\right)$ as follows:
(a) $\mathfrak{K}_{\mathfrak{s}_{\lambda}}=\mathfrak{K}_{\lambda}^{*}$
(b) $\mathcal{S}_{\mathfrak{s}_{\lambda}}^{\mathrm{bs}}$ is defined by $\mathcal{S}_{\mathfrak{s}, \lambda}^{\mathrm{bs}}(M):=\left\{\mathbf{t}_{\mathfrak{R}_{\lambda}^{*}}(a, M, N): M \leq_{\mathfrak{R}_{\lambda}^{*}} N, a \in N \backslash M\right\}$,
(c) $\bigcup_{\mathfrak{S}_{\lambda}}=\left\{\left(M_{0}, M_{1}, a, M_{3}\right): M_{0} \leq_{\mathfrak{R}_{\lambda}^{*}} M_{1} \leq_{\mathfrak{K}_{\lambda}^{*}} M_{2}\right.$ and $\operatorname{tp}_{\mathfrak{K}_{\lambda}^{*}}\left(a, M_{1}, M_{3}\right)$ does not fork over $\left.M_{0}\right\}$ (see Definition 4.5).
Remark 4.9.1) Recall $\leq_{\mathfrak{s}_{\lambda}}=\leq_{\mathfrak{K}} \upharpoonright K_{\mathfrak{s}_{\lambda}}=\leq_{\mathfrak{R}_{\lambda}^{*}}$.
2) Concerning the proof of 4.10 below, we mention a variant which the reader may ignore. This variant, from weaker assumptions gets weaker conclusions. In detail, define the weak version (f) ${ }^{-}$of $4.1(2)(\mathrm{f})$; see Definition 1.37 and Claim 1.40(1).
(f) ${ }^{-}$if $\left\langle M_{\alpha}: \alpha \leq \delta\right\rangle$ is $\leq_{\mathfrak{K}}$-increasing continuous and

$$
\alpha<\delta \Rightarrow M_{2 \alpha+1}<_{\mathfrak{K}_{\lambda}^{*}}^{*} M_{2 \alpha+2}
$$

(e.g. $M_{2 \alpha+2}$ is $\leq_{\mathfrak{K}_{\lambda}^{*}}$-universal over $M_{2 \alpha+1}$) hence both are from K_{λ}^{*} then $M_{\delta} \in K_{\lambda}^{*}$.
Assuming only $4.1(1)+(f)^{-}$we do not know whether $\mathfrak{K}_{\lambda}^{*}$ is a λ-AEC but still $\left(K_{\lambda}^{*}, \leq_{\mathfrak{K}} \upharpoonright K_{\lambda}^{*},<_{\mathfrak{K}_{\lambda}^{*}}^{*}\right)$, see Definition 1.37 , is a so-called semi λ-AEC, see [She].

If clause (f) from 4.1(2) holds (i.e., $K_{\mathfrak{s}_{\lambda}}$ is closed under unions), we can omit $"<_{\mathfrak{s}_{\lambda}}^{*}$ ".
3) It will be less good but not a disaster if we have assumed below

$$
\lambda=\sup \left(\operatorname{Cat}_{\mathfrak{K}}^{\prime} \cap \lambda\right) .
$$

4) It will be better to have $\mathfrak{K}_{\mathfrak{F}_{\lambda}}=K_{\lambda}$; of courses, this follows from categoricity so by $\S 3$ is not unreasonable for conjecture 0.1.
5) But we can ask only for $M \in K_{\mathfrak{s}_{\lambda}}$ to be universal in \mathfrak{K}_{λ},
6) We can ask that for every $\mu>\lambda$ large enough, for every $M \in K_{\mu}$, for a club of $N \in K_{\lambda}$ satisfying $N \leq_{\mathfrak{K}} M$, we have $N \in K_{\mathfrak{s}_{\lambda}}$.
Theorem 4.10. (Assume 4.1(2)(g), hence (f)).
\mathfrak{s}_{λ} is a good λ-frame categorical in λ and is full.
Proof. We check the clauses in the definition [She09c, 1.1].

Clause (A):

By observation 4.2(3), [in the weak version using (f) ${ }^{-}$from 4.9(1)].

Clause (B):

Categoricity holds by 1.16 (or $4.2(1)$) and this implies "there is a superlimit model", the non-maximality by $\leq_{\mathfrak{R}_{\lambda}^{*}}$ holds by the choice of Φ.

Clause (C):

Observation 4.2(2) guarantee amalgamation, categoricity (of $\mathfrak{K}_{\lambda}^{*}$ by $4.2(1)$) implies the JEP and "no-maximal model" holds by clause (B).

Clause (D)(a),(b):

Obvious by the definition.
(D)(c) (density).

Assume $M<\mathfrak{G}_{\lambda}^{*} N$, then there are $a \in N \backslash M$ and for any such a the type $\boldsymbol{t p}_{\mathfrak{K}_{\lambda}^{*}}(a, M, N)$ belongs to $\mathcal{S}_{\mathfrak{s}_{\lambda}}^{\text {bs }}(M)$. In fact

$$
\circledast \mathfrak{s}_{\lambda} \text { is type-full }
$$

(D)(d) (bs-stability).

The demand means $M \in K_{\lambda}^{*} \Rightarrow\left|\mathcal{S}_{\mathfrak{K}_{\lambda}^{*}}^{1}(M)\right| \leq \lambda$.
This holds by 1.36(2) (and amalgamation).
(E)(a),(b). By the definition.
(E)(c) (local character)

This says that if $\left\langle M_{i}: i \leq \delta+1\right\rangle$ is $\leq_{\mathfrak{s}_{\lambda}}$-increasing continuous and

$$
p=\mathbf{t}_{\mathfrak{s}_{\lambda}}\left(a, M_{\delta}, M_{\delta+1}\right) \in \mathcal{S}_{\mathfrak{s}_{\lambda}}^{\mathrm{bs}}\left(M_{\delta}\right)
$$

then for some $i<\delta$ the type p does not fork over M_{i} (for \mathfrak{s}_{λ}).
From now on (in the remainder of this proof) we use 4.6 freely and let (noting $\operatorname{cf}(\delta)<\lambda$ as λ is singular)

$$
\odot \kappa_{0}=\operatorname{LST}(\mathfrak{K})+\operatorname{cf}(\delta), \kappa_{1}=\beth_{1,1}\left(\beth_{2}\left(\kappa_{0}\right)\right)^{+}, \kappa_{2}=\beth_{2}\left(\kappa_{1}\right) .
$$

Now by 4.6 there is a $\left(\kappa_{1}^{+}, \kappa_{1}\right)$-convergent $\mathbf{I} \subseteq M_{\delta}$ with

$$
\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}, M_{\delta}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{1}}[\mathfrak{k}]}\left(a, M_{\delta}, M_{\delta+1}\right)
$$

such that \mathbf{I} is of cardinality $>\kappa_{2}$. For some $i(*)<\delta,\left|\mathbf{I} \cap M_{i(*)}\right|>\kappa_{2}$, so without loss of generality $\mathbf{I} \subseteq M_{i(*)}$, so by 4.6 we are done.

(E)(d) Transitivity of non-forking.

We are given $M_{0} \leq_{\mathfrak{s}_{\lambda}} M_{1} \leq_{\mathfrak{s}_{\lambda}} M_{2} \leq_{\mathfrak{R}_{\mathfrak{s}}} M_{3}$ and $a \in M_{3}$ such that $\mathbf{t p}_{\mathfrak{s}_{\lambda}}\left(a, M_{\ell+1}, M_{3}\right)$ does not fork over M_{ℓ} for $\ell=0,1$. So for $\ell=0,1$ there is $\mathbf{I}_{\ell} \subseteq M_{\ell}$ which is $\left(\kappa_{1}^{+}, \kappa_{1}\right)$-convergent in $M_{\ell+1}$ of cardinality κ_{2}^{+}such that $\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{\ell}, M_{\ell+1}\right)=$
$\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{1}}[\mathfrak{K}]}\left(a, M_{\ell+1}, M_{3}\right) . \operatorname{As~}_{\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{0}, M_{1}\right)=\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{1}, M_{1}\right) \text { (being both realized }}$ by a) because $M_{1} \prec_{\mathbb{L}_{\infty, \lambda}[\mathfrak{K}]} M_{2}$ by $4.4(4)$ clearly we have

$$
\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{0}, M_{2}\right)=\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{1}, M_{2}\right)=\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{1}}[\mathfrak{R}]}\left(a, M_{2}, M_{3}\right)
$$

all well defined. So \mathbf{I}_{0} witnesses (by 4.6) that $\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}[\mathfrak{k}]}\left(a, M_{2}, M_{3}\right)$ does not fork over M_{0}, which means that $\mathbf{t} \mathbf{p}_{\mathfrak{R}_{\lambda}^{*}}\left(a, M_{2}, M_{3}\right)$ does not fork over M_{0} as required.
(E)(e) Uniqueness.

Recalling 4.4(1), the proof is similar to $(E)(d)$; the two witnesses are now in M_{0}.
(E)(f) Symmetry.

Toward contradiction, recalling [She09c, 1.16E] assume

$$
M_{0} \leq_{\mathfrak{K}_{\lambda}^{*}} M_{1} \leq_{\mathfrak{K}_{\lambda}^{*}} M_{2} \leq_{\mathfrak{K}_{\lambda}^{*}} M_{3}
$$

and $a_{\ell} \in M_{\ell+1} \backslash M_{\ell}$ for $\ell=0,1,2$ are such that $p_{\ell}=\operatorname{tp}_{\mathfrak{R}_{\lambda}^{*}}\left(a_{\ell}, M_{\ell}, M_{\ell+1}\right)$ does not fork over M_{0} for $\ell=0,1,2$ and $\mathbf{t p}_{\mathfrak{R}_{\lambda}^{*}}\left(a_{0}, M_{0}, M_{1}\right)=\mathbf{t p}_{\mathfrak{R}_{\lambda}^{*}}\left(a_{2}, M_{0}, M_{3}\right)$ but $\boldsymbol{t p}_{\mathfrak{R}_{\lambda}^{*}}\left(\left\langle a_{0}, a_{1}\right\rangle, M_{0}, M_{3}\right) \neq \mathbf{t p}_{\mathfrak{R}_{\lambda}^{*}}\left(\left\langle a_{2}, a_{1}\right\rangle, M_{0}, M_{3}\right)$.

By 4.6 we can deal with $p_{\ell}=\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}[\mathfrak{k}]}\left(a_{\ell}, M_{\ell}, M_{\ell+1}\right)$ for $\ell=0,1,2$. For each $\ell \leq 2$, we can find a convergent $\mathbf{I}_{\ell}=\left\{a_{\alpha}^{\ell}: \alpha<\kappa_{2}^{+}\right\} \subseteq M_{0}$ which is $\left(\kappa_{1}^{+}, \kappa_{1}\right)$ convergent such that $\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{\ell}, M_{\ell}\right)=p_{\ell}$.

So as $M_{0} \prec_{\mathbb{L}_{\infty, \kappa_{1}}[\mathfrak{\kappa}]} M_{k}$ we deduce the set \mathbf{I}_{ℓ} is $\left(\kappa_{1}^{+}, \kappa_{1}\right)$-convergent in M_{k} for $\ell, k=0,1,2$. Also, $\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{0}, M_{0}\right)=\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{2}, M_{0}\right)$ hence $\mathrm{Av}_{<\kappa_{1}}\left(\mathbf{I}_{0}, M_{2}\right)=$ $\operatorname{Av}_{<\kappa_{1}}\left(\mathbf{I}_{2}, M_{2}\right)$ so without loss of generality $\mathbf{I}_{0}=\mathbf{I}_{2}$.

Now use the non-order property to get symmetry.

(E) (g) Existence.

Assume $M \leq_{\mathfrak{s}_{\lambda}} N$ and $p \in \mathcal{S}_{\mathfrak{s}_{\lambda}}^{\mathrm{bs}}(M)$. So we can find a pair ($\left.M^{\prime}, a\right)$ such that $M \leq_{\mathfrak{s}_{\lambda}} M^{\prime}, a \in M_{1}$, and $p=\mathbf{t p}_{\mathfrak{s}_{\lambda}}\left(a, M, M^{\prime}\right)$. By 1.27(1) there is a $\left(\kappa_{1}^{+}, \kappa_{1}\right)-$ convergent $\mathbf{I} \subseteq M$ of cardinality κ_{2}^{+}such that $\operatorname{Av}_{\left\langle\kappa_{1}\right.}(M, \mathbf{I})=\operatorname{tp}_{\mathbb{L}_{\infty}, \kappa_{1}[\mathfrak{R}]}\left(a, M, M^{\prime}\right)$. By $1.27(3)+4.6$ there is a pair $\left(N^{\prime}, a^{\prime}\right)$ such that $N \leq_{\mathfrak{s}_{\lambda}} N^{\prime}, a^{\prime} \in N^{\prime}$, and

$$
\operatorname{tp}_{\mathbb{L}_{\infty, \kappa_{1}}}\left(a^{\prime}, N, N^{\prime}\right)=\operatorname{Av}_{<\kappa_{1}}(\mathbf{I}, N)
$$

So by 4.6 the type $\operatorname{tp}_{\mathfrak{s}_{\lambda}}\left(a^{\prime}, N, N^{\prime}\right)$ is easily $\in \mathcal{S}_{\mathfrak{S}_{\lambda}}^{\text {bs }}(N)$, does not fork over N, and extends p, as required.

(E)(h) Continuity.

Follows by [She09c, 1.16A]. Alternatively, assume $\left\langle M_{i}: i \leq \delta+1\right\rangle$ is $\leq_{\mathfrak{s}_{\lambda}}-$ increasing continuous, $a \in M_{\delta+1} \backslash M_{\delta}$, and $\operatorname{tp}_{\mathfrak{p}_{\lambda}}\left(a, M_{i}, M_{\delta+1}\right)$ does not fork over M_{0} for $i<\delta$. So there is a convergent $\mathbf{I}_{i} \subseteq M_{0}$ such that

$$
i<\delta \Rightarrow \operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathcal{K}]}\left(a, M_{i}, M_{\delta+1}\right)=\operatorname{Av}_{\kappa}\left(\mathbf{I}, M_{i}\right)
$$

As above, without loss of generality $\mathbf{I}_{i}=\mathbf{I}_{0}$. We can find a convergent $\mathbf{I} \subseteq M_{\delta}$ of cardinality $>\operatorname{cf}(\delta)+\kappa$ (recall $\operatorname{cf}(\delta)<\lambda!)$ such that $\operatorname{tp}_{\mathbb{L}_{\infty, \kappa}[\mathcal{K}]}\left(a, M_{0}, M_{\delta+1}\right)=$ $\operatorname{Av}_{\kappa}\left(\mathbf{I}, M_{\delta}\right)$. So for some $i(*)<\delta$ we have $\left|\mathbf{I} \cap M_{i(*)}\right|>\kappa$, so without loss of generality (by equivalence) $\mathbf{I} \subseteq M_{i(*)}$. We finish as in (E)(f).

Axiom (E)(i):
Follows by [She09c, 1.15].
Exercise: Replace $\operatorname{Av}_{<\kappa_{1}}(\mathbf{I}, M)$ above by $\bigcup\left\{\operatorname{Av}_{\beth_{\zeta}\left(\kappa_{0}\right)}(\mathbf{I}, M): \zeta<\left(2^{\kappa_{0}}\right)^{+}\right\}$.

§ 5. Homogeneous enough linear orders

Claim 5.1. Assume $\mu^{+}=\theta_{1}=\operatorname{cf}\left(\theta_{1}\right)<\theta_{2}=\operatorname{cf}\left(\theta_{2}\right)<\lambda$.

1) Then there is a linear order I of cardinality λ such that the following equivalence relation $\mathcal{E}=\mathcal{E}_{I, \mu}^{\text {aut }}$ on ${ }^{\mu} I$ has $\leq 2^{\mu}$ equivalence classes, where $\eta_{1} \mathcal{E} \eta_{2}$ iff there is an automorphism of I mapping η_{1} to η_{2}.
2) Moreover, if $I^{\prime} \subseteq I$ has cardinality $<\theta_{2}$, and $n<\omega$ then the following equivalence relation \mathcal{E} on ${ }^{n} I$ has $\leq \mu+\left|I^{\prime}\right|$ equivalence classes:

- $\bar{s} \mathcal{E} \bar{t}$ iff there is an automorphism h of I over I^{\prime} mapping \bar{s} to \bar{t}.

3) Moreover, there is Ψ proper for $K_{\tau_{2}^{*}}^{\operatorname{lin}}$ (i.e. $\Psi \in \Upsilon_{\aleph_{0}}^{\operatorname{lin}}[2]$; see Definitions 0.11(5), $0.14(9))$ with $\tau(\Psi)$ countable such that $I=\mathrm{EM}_{\{<\}}\left(I_{\theta_{2}, \lambda \times \theta_{2}}^{\operatorname{lin}}, \Phi\right)$ where $I_{\theta_{2}, \zeta}^{\operatorname{lin}}=\left(\zeta,<, P_{0}, P_{1}\right), P_{\ell}=\left\{\alpha<\zeta: " c f(\alpha)<\theta_{2} " \equiv " \ell=0 "\right\}$.
4) If $I_{0}^{*} \subseteq I$ has cardinality $<\theta_{2}$ then for some $I_{1}^{*} \subseteq I$ of cardinality $\leq \mu^{+}+\left|I_{0}^{*}\right|$, for every $J \subseteq I$ of cardinality $\leq \mu$, there is an automorphism of I over I_{0}^{*} mapping J into I_{1}^{*}.
5) If $I_{1}^{*}, I_{2}^{*} \subseteq I_{\mu, \lambda \times \mu^{+}}^{\mathrm{lin}}$ have cardinality $\leq \mu$ and h is an isomorphism from I_{1}^{*} onto I_{2}^{*} then there is an automorphism \hat{h} of the linear order $I=\operatorname{EM}_{\{<\}}\left(I_{\theta, \lambda}^{\operatorname{lin}}, \Psi\right)$ extending the natural isomorphism \check{h} from $\mathrm{EM}_{\{<\}}\left(I_{1}^{*}, \Psi\right)$ onto $\mathrm{EM}_{\{<\}}\left(I_{2}^{*}, \Psi\right)$.
Remark 5.2. 1) Of course, if $\lambda=\lambda^{<\theta_{2}}$ and I is a dense linear order of cardinality λ which is θ-strongly saturated (hence θ-homogeneous) then the demand in $5.1(1)$ is satisfied (and in part (2) of 5.1 the number of \mathcal{E}-equivalence classes is $\leq 2^{\chi}$ for every $\chi \in\left[\aleph_{0}, \theta_{2}\right)$). Also, if $\lambda=\sum_{i<\delta} \lambda_{i}, \delta<\theta_{2}$, and $i<\delta \Rightarrow \lambda_{i}^{<\theta_{2}}=\lambda$ then we have such an order.
6) Laver [Lav71, §2] deals with related linear orders, but for his aims I_{1}, I_{2} are equivalent if each is embeddable into the other; see more in [Shear, AP, $\S 2$]. For a cardinal ∂ and linear order I let

$$
\begin{aligned}
\Theta_{I, \partial}=\{\operatorname{cf}(J): & \text { for some }<_{I} \text {-decreasing sequence }\left\langle t_{i}: i<\partial\right\rangle \\
& \text { we have } \left.J=I \upharpoonright\left\{t \in I: t<_{I} t_{i} \text { for every } i<\partial\right\}\right\} .
\end{aligned}
$$

So if $\partial \leq \mu$ then $\left({ }^{\mu} I\right) / E_{I, \mu}^{\text {aut }}$ has $\geq\left|\Theta_{I, \partial}\right|$. So we have to be careful to make $\Theta_{I, \partial}$ small. We chose a very concrete construction, which leads quickly to defining I and the checking is straight. We thought it would be easy, but a posteriori the checking is lengthy; [Shear, AP, $\S 2$] is an antithetical approach.
3) We can replace $\theta_{1}=\mu^{+}$by $\theta_{1}=\operatorname{cf}\left(\theta_{1}\right)>\aleph_{0}$ and "of cardinality $\leq \mu$ " by "of cardinality $<\theta_{1}$ ".
4) In $2.7(1), 2.11(2)$ we use parts (1),(1)+(4) respectively. Also, we use 5.1 in the proof of 7.9 .
5) The case $2^{\mu} \geq \lambda$ in $5.1(1)$ says nothing; in fact, if $2^{\mu} \geq \lambda$ then $2^{\mu}=\lambda^{\mu}=$ $\left({ }^{\mu} M\right) / \mathcal{E}_{I, \mu}^{\text {aut }}$ for any model M of cardinality ≥ 2 and $\leq 2^{\mu}$, for any vocabulary τ_{M}.
6) Claim $5.1(1),(2)$ holds also if we replace μ by $\chi \in\left[\mu, \theta_{2}\right)$.
[We got an fifteen-page proof coming up. Of these five distinct claims, (3) and (5) are one-liners that don't reference anything else in 5.1, (2) is a one-page addendum to (1), and (4) is a half-page that references (1) four times.]
$[(1)$ is 'organized' by five categories of bullets $(\circledast,(*), \boxtimes, \square$, and $\odot)$, each with their own independent numbering system. \boxtimes seems to be reserved for high-level lemmas, but other than that I don't see any rhyme or reason regarding how or why these guys are used.]
[The longest multi-case proofs need to be moved to an appendix, as proofs to independent, labeled lemmas that can be cited with $\backslash r e f\}$ s. \boxtimes_{3} is 2.5 pages, and $\boxtimes_{4},(*)_{7}$ are three full pages each.]

Proof. 5.1(1)

Fix an ordinal $\zeta, \lambda \leq \zeta<\lambda^{+}$such that $\operatorname{cf}(\zeta)=\theta_{2}$: e.g., $\zeta=\lambda \times \theta_{2}$. (Almost always, $\operatorname{cf}(\zeta) \geq \theta_{2}$ will suffice.)

Let I_{1} be the following linear order. Its set of elements is

$$
\{(\ell, \alpha): \ell \in\{-2,-1,1,2\}, \alpha<\zeta+\omega\}
$$

ordered by $\left(\ell_{1}, \alpha_{1}\right)<_{I_{1}}\left(\ell_{2}, \alpha_{2}\right)$ iff $\ell_{1}<\ell_{2}$ or $\ell_{1}=\ell_{2} \in\{-1,2\} \wedge \alpha_{1}<\alpha_{2}$ or $\ell_{1}=\ell_{2} \in\{-2,1\} \wedge \alpha_{1}>\alpha_{2}$.

For $t \in I_{1}$ let $t=\left(\ell^{t}, \alpha^{t}\right)$.
Let I_{2}^{*} be the set $\left\{\eta: \eta\right.$ is a finite sequence of members of $\left.I_{1}\right\}$ ordered by
$\eta_{1}<_{I_{2}} \eta_{2}$ iff $(\exists n)\left[n<\ell g\left(\eta_{1}\right) \wedge n<\ell g\left(\eta_{2}\right) \wedge \eta_{1} \upharpoonright n=\eta_{2} \upharpoonright n\right.$ and $\left.\eta_{1}(n)<_{I_{1}} \eta_{2}(n)\right]$
or $\eta_{1} \triangleleft \eta_{2} \wedge \ell^{\eta_{2}\left(\ell g\left(\eta_{1}\right)\right)} \in\{1,2\}$ or $\eta_{2} \triangleleft \eta_{1} \wedge \ell^{\eta_{1}\left(\ell g\left(\eta_{2}\right)\right)} \in\{-2,-1\}$.
Let I_{2} be I_{2}^{*} restricted to the set of $\eta \in I_{2}^{*}$ satisfying \circledast where
\circledast For no $n<\omega$ do we have:
(a) $\ell g(\eta)>n+1\left[\right.$ Read literally, this is identical to ${ }^{'} \lg (\eta)=0,{ }^{\prime}$ correct?]
(b) $\alpha^{\eta(n)}$ is a limit ordinal of cofinality $\geq \theta_{1}$
(c) $\alpha^{\eta(n+1)} \geq \zeta$
(d) $\ell^{\eta(n)} \in\{-1,2\}, \ell^{\eta(n+1)}=-2$ or $\ell^{\eta(n)} \in\{-2,1\}, \ell^{\eta(n+1)}=2$.

Let M_{0} be the following ordered field:
$(*)_{1} \quad$ (a) M_{0}, as a field, is $\mathbb{Q}\left(a_{t}: t \in I_{2}\right)$, the field of rational functions with $\left\{a_{t}: t \in I_{2}\right\}$ algebraically independent.
(b) The order of M_{0} is determined by (α) If $t \in I_{2}, n<\omega$ then $M_{0} \models$ " $n<a_{t}$ ". (β) If $s<_{I_{2}} t$ and $n<\omega$ then $M_{0}="\left(a_{s}\right)^{n}<a_{t}$ ".
(c) let M be the real ${ }^{9}$ (algebraic) closure of M_{0} (i.e. the elements algebraic over M_{0} in the closure by adding elements realizing any Dedekind cut of M_{0}).
Now we shall prove that I, which is M as a linear order, is as requested.
\boxtimes_{1} each of I_{1}, I_{2}^{*}, and I_{2} is anti-isomorphic to itself.
[Why? Let $g: I_{1} \rightarrow I_{1}$ be $g(t)=\left(-\ell^{t}, \alpha^{t}\right)$. Clearly it is an anti-isomorphism of I_{1}. Let $\hat{g}: I_{2}^{*} \rightarrow I_{2}^{*}$ be defined by $\hat{g}(\eta)=\langle g(\eta(m)): m<\ell g(\eta)\rangle$; it is an antiisomorphism of I_{2}^{*}. Lastly, \hat{g} maps I_{2} onto itself: in particular by the character of clause (d) of \circledast, i.e. the two cases are interchanged by \hat{g}.]
$\boxtimes_{2} \quad$ (a) I_{1}, I_{2}^{*}, I_{2} have cofinality \aleph_{0}.
(b) if $t \in I_{2}$ then $I_{2,<t}:=I_{2} \upharpoonright\left\{s: s<_{I_{2}} t\right\}$ has cofinality \aleph_{0}.
[Why? For clause (a), $\{(2, \lambda+n): n<\omega\}$ is a cofinal subset of I_{1} of order type ω and $\left\{\langle t\rangle: t \in I_{1}\right\}$ is a cofinal subset of I_{2}^{*} (and of I_{2}) of order type the same as I_{1}. For clause (b) for $\eta \in I_{2}$ the set $\left\{\eta^{\wedge}\langle(-1, \lambda+n)\rangle: n<\omega\right\}$ is a cofinal subset of $I_{2,<\eta}$ of order type ω by \square below.]

Now
\boxtimes If η satisfies \circledast and $\ell \in\{1,-1\}$ then also $\eta^{\wedge}\langle(\ell, \alpha)\rangle$ satisfies \circledast for any $\alpha<\lambda+\omega$.

[^8][Why? By clause (d) of \circledast as the only value of n there which is not obvious is $n=\ell g(\eta)-1$, but to be problematic we should have $\ell^{\left(\eta^{\wedge}\langle(\ell, \alpha)\rangle\right)(n+1)} \in\{-2,2\}$ whereas $\ell=-1$.]
\boxtimes_{3} If $\partial=\operatorname{cf}(\partial)$ (so ∂ is 0,1 , or an infinite regular cardinal), $\bar{\eta}=\left\langle\eta_{i}: i<\partial\right\rangle$ is a $<_{I_{2}}$-decreasing sequence, and we let $J_{\bar{\eta}}=\left\{s \in I_{2}:(\forall i<\partial)\left[s<_{I_{2}} \eta_{i}\right]\right\}$ then (clearly) exactly one of the following clauses applies:
(a) If $J_{\bar{\eta}}=\varnothing$ then $\partial=\aleph_{0}$.
(b) If $\operatorname{cf}\left(J_{\bar{\eta}}\right)=1$ then $\partial=\aleph_{0}$.
(c) If $\operatorname{cf}\left(J_{\bar{\eta}}\right)=\aleph_{0}$ then $\partial<\theta_{1}$.
(d) If $\aleph_{1} \leq \operatorname{cf}\left(J_{\bar{\eta}}\right)<\theta_{1}$ then $\partial=\aleph_{0}$, and for some $\ell \in\{-1,2\}, \nu \in I_{2}$, and ordinal $\delta<\zeta$ of cofinality $\operatorname{cf}\left(J_{\bar{\eta}}\right)$, the set $\left\langle\nu^{\wedge}\langle(\ell, \alpha)\rangle: \alpha<\delta\right\rangle$ is an unbounded subset of $J_{\bar{\eta}}$.
(e) If $\theta_{1} \leq \operatorname{cf}\left(J_{\bar{\eta}}\right)$ then $\partial \geq \theta_{1}$ and moreover $\partial=\theta_{2} \vee \operatorname{cf}\left(J_{\bar{\eta}}\right)=\theta_{2}$.
[Why does \boxtimes_{3} hold? The proof is split into cases, and finishing a case we can then assume it does not occur.

Clearly we can replace $\bar{\eta}$ by $\left\langle\eta_{i}: i \in u\right\rangle$ for any unbounded subset u of ∂, and modify it further to $\left\langle\nu_{i}: i \in u\right\rangle$ provided $\eta_{\zeta_{2 i+1}} \leq_{I_{2}} \nu_{i} \leq_{I_{2}} \eta_{\zeta_{2 i}}$ and $\left\langle\zeta_{i}: i<\partial\right\rangle$ is an increasing sequence of ordinals $<\partial$. We shall use this freely.

Case 0: $\partial=0$ or $\partial=1$.
By \boxtimes_{2} clearly clause (c) of \boxtimes_{3} holds.
Case 1: $\partial=\aleph_{0}$ and there is $\nu \in{ }^{\omega}\left(I_{1}\right)$ such that $(\forall n<\omega)(\exists i<\partial)\left[\eta_{i} \upharpoonright n \triangleleft \nu\right]$.
Let $n_{i}=\ell g\left(\eta_{i} \cap \nu\right)$. It is impossible that $\left\{i: n_{i}=k\right\}$ is infinite for any k, so without loss of generality $\left\langle n_{i}: i<\omega\right\rangle$ is an increasing sequence and $n_{0}>0$.

For every $i<\omega$ we have $\nu \upharpoonright\left(n_{i}+1\right) \unlhd \eta_{i+1}$ and $\eta_{i+1}<_{I_{2}} \eta_{i}$, so by the definition of $<_{I_{2}}$ also $\nu \upharpoonright\left(n_{i}+1\right)<_{I_{2}} \eta_{i}$. We choose $\beta_{n_{i}}<\zeta+\omega$ so that $\left(-2, \beta_{n_{i}}\right)<_{I_{1}} \nu\left(n_{i}\right)$, hence letting $\rho_{i}=\nu \upharpoonright n_{i} \wedge\left\langle\left(-2, \beta_{n_{i}}\right)\right\rangle$ we have $\rho_{i} \in I_{2}$. This can be done, e.g. because we can choose $\beta_{n_{i}}$ such that $\beta_{n_{i}}=\alpha^{\nu\left(n_{i}\right)}+1$ if $\ell^{\nu\left(n_{i}\right)}=-2$ and $\beta_{n_{i}}=0$ otherwise.

For every $i, j<\omega$ we have $\rho_{i}<_{I_{2}} \rho_{i+1}<_{I_{2}} \eta_{i+1}<_{I_{2}} \eta_{i}$, so if $i \leq j$ then $\rho_{i}<_{I_{2}} \rho_{j}<_{I_{2}}<\eta_{j}$, and if $i>j$ then $\rho_{i}<_{I_{2}} \eta_{i}<_{I_{2}} \eta_{j}$, so $\rho_{i} \in J_{\bar{\eta}}$.

Now $\left\langle\rho_{i}: i<\omega\right\rangle$ is $<_{I_{2}}$-increasing; also, it is cofinal in $J_{\bar{\eta}}$, for if $\rho \in J_{\bar{\eta}}$ let $n=\ell g(\rho \cap \nu)$, so for $i<\omega$ such that $n_{i} \leq n<n_{i+1}$ we have $\rho<_{I_{2}} \eta_{i+1}$ so $\rho(n)<_{I_{1}} \eta_{i+1}(n)=\rho_{i+1}(n)$ and as $\rho \upharpoonright n=\nu \upharpoonright n=\rho_{i+1} \upharpoonright n$ we have $\rho<_{I_{2}} \rho_{i+1}$.

As $\left\langle\rho_{i}: i<\omega\right\rangle$ is of order type ω, clearly $\operatorname{cf}\left(J_{\bar{\eta}}\right)=\aleph_{0}=\partial$, hence clause (c) of \boxtimes_{3} applies and we are done.

So from now on assume that Case 1 fails.
As $\ell g\left(\eta_{i}\right)<\omega$ and Case 1 fails, without loss of generality, for some n we have $i<\partial \Rightarrow \ell g\left(\eta_{i}\right)=n$. Similarly, without loss of generality for some m and $\nu \in I_{2}$ we have $i<\partial \Rightarrow \eta_{i} \upharpoonright m=\nu$ and $\left\langle\eta_{i}(m): i<\partial\right\rangle$ with no repetitions so $m<n$. Without loss of generality $i<\partial \Rightarrow \ell^{\eta_{i}(m)}=\ell^{*}$ and so $\left\langle\alpha^{\eta_{i}(m)}: i<\partial\right\rangle$ has no repetitions; without loss of generality it is monotonic as $\partial \geq \aleph_{0}$ is an increasing sequence of ordinals. As $\bar{\eta}$ is $<_{I_{2}}$-decreasing, necessarily $\ell^{*} \in\{-2,1\}$. Let $\delta=$ $\bigcup\left\{\alpha^{\eta_{i}(m)}: i<\partial\right\}$, so clearly $\operatorname{cf}(\delta)=\partial$ and δ is a limit ordinal $\leq \zeta+\omega$. Now those ℓ^{*}, δ will be used until the end of the proof of \boxtimes_{3}. For the rest of the proof we are assuming
\odot (a) $i<\partial \Rightarrow \eta_{i} \upharpoonright m=\nu$
(b) $\left\langle\eta_{i}(m): i<\partial\right\rangle$ is (strictly) increasing with limit δ.
(c) $\ell^{\eta_{i}(m)}=\ell^{*} \in\{-2,1\}$
(d) $\operatorname{cf}(\delta)=\partial$ and $\delta \leq \zeta+\omega$.

Also note by \circledast that $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right)\right\rangle \notin I_{2} \Rightarrow \delta \in\{\zeta+\omega, \zeta\}$ and if $\delta=\zeta \wedge \nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right)\right\rangle \notin I_{2}$ then $\ell g(\nu)>0$ and the ordinal $\alpha^{\nu(\ell g(\nu)-1)}$ is limit of cofinality $\geq \theta_{1}$ (and more).

Case 2: $J_{\bar{\eta}}=\varnothing$.
Clearly $m=0 \wedge \ell^{*}=-2 \wedge \delta=\zeta+\omega$ hence $\partial=\aleph_{0}$ so clause (a) of \boxtimes_{3} holds.
Case 3: $\ell^{*}=1$ and $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right)\right\rangle \notin I_{2}$.
As $\ell^{*}=1$, clearly we cannot have $\delta=\zeta$ by clause (d) of \circledast, so $\delta=\zeta+\omega$ and recalling $\partial=\operatorname{cf}(\delta)$ we have $\partial=\aleph_{0}$. Now clearly $J_{\bar{\eta}}$ has a last element, ν, so case (b) of \boxtimes_{3} applies.

Case 4: $\ell^{*}=-2, \partial=\aleph_{0}$ and $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right)\right\rangle \notin I_{2}$.
Again $\delta=\zeta+\omega$ as $\aleph_{0}=\partial=\operatorname{cf}(\delta)$ and $\operatorname{cf}(\zeta)=\theta_{2}>\mu \geq \aleph_{0}$ making $\delta=\zeta$ impossible; now $\ell g(\nu)>0$ (as we have discarded the case $J_{\bar{\eta}}=\varnothing$, i.e. Case 2); and let $k=\ell g(\nu)-1$. Now we prove case 4 by splitting to several subcases.

Subcase 4A: $\ell^{\nu(k)} \in\{-2,1\}$.
Let $\nu_{1}=(\nu \upharpoonright k)^{\wedge}\left\langle\left(\ell^{\nu(k)}, \alpha^{\nu(k)}+1\right)\right\rangle$. Note that $\nu_{1} \in I_{2}$ as $\nu \in I_{2} \wedge\left(\alpha^{\nu(k)}<\zeta \equiv\right.$ $\left.\alpha^{\nu(k)}+1<\zeta\right)$ and (as $\left.\ell^{\nu(k)} \in\{-2,1\}\right)$ clearly $\left\{\rho: \nu_{1} \unlhd \rho \in I_{2}\right\}$ is a cofinal subset of $J_{\bar{\eta}}$ even an end segment. Now for $n<\omega$ we have $\nu_{1}{ }^{\wedge}\langle(2, \zeta+n)\rangle \in I_{2}^{*}$ and it satisfies \circledast. (Why? As $\nu_{1} \in I_{2}$, only $n=k$ may be problematic, but $\alpha^{\nu(k)}+1=\alpha^{\nu_{1}(k)}$ here stands for $\alpha^{\eta(n)}$ there hence clause (b) of \circledast does not apply), so by the definition of I_{2}, clearly $\left\{\nu_{1}{ }^{\wedge}\langle(2, \zeta+n)\rangle: n<\omega\right\}$ is $\subseteq I_{2}$ and is a cofinal subset of $J_{\bar{\eta}}$ so $\partial=\aleph_{0}=\operatorname{cf}\left(J_{\bar{\eta}}\right)$ and clause (c) of \boxtimes_{3} holds.

Subcase 4B: $\ell^{\nu(k)} \in\{-1,2\}$ and $\alpha^{\nu(k)}$ is a successor ordinal.
Let $\nu_{1}=(\nu \upharpoonright k)^{\wedge}\left\langle\left(\ell^{\nu(k)}, \alpha^{\nu(k)}-1\right)\right\rangle$, of course $\nu_{1} \in I_{2}^{*}$ and as $\nu \in I_{2}$ clearly $\nu_{1} \in I_{2}$ so the set $\left\{\rho: \nu_{1} \unlhd \rho \in I_{2}\right\}$ is an end segment of $J_{\bar{\eta}}$ and has cofinality \aleph_{0} because $n<\omega \Rightarrow \nu_{1} \wedge\langle(2, \zeta+n)\rangle \in I_{2}$. (Why? It $\in I_{2}^{*}$ and as $\nu_{1} \in I_{2}$ checking \circledast only $n=k$ may be problematic, but $\left(\ell^{\nu(k)}, 2\right)$ here stand for $\left(\ell^{\eta(n)}, \ell^{\eta(n+1)}\right)$ there but presently $\ell^{\nu(k)} \in\{-1,2\}$ contradicting clause (d) of \circledast). So clause (c) of \boxtimes_{3}.

Subcase 4C: $\ell^{\nu(k)} \in\{-1,2\}$ and $\alpha^{\nu(k)}=0$.
Then let $\nu_{1}=(\nu \upharpoonright k)^{\wedge}\left\langle\left(\ell^{\nu(k)}-1,0\right)\right\rangle$. Now $\nu_{1} \in I_{2}$ as $\nu \upharpoonright k \in I_{2}$ and for $n=k-1$ clause (c) of \circledast fails and $\nu_{1} \wedge\langle(2, \zeta+n)\rangle \in I_{2}$ because of $\nu_{1} \in I_{2}$ and for $n=k$ the failure of clause (b) of \circledast so continue as in Subcase 4B above.

Lastly,
Subcase 4D: $\ell^{\nu(k)} \in\{-1,2\}$ and $\alpha^{\nu(k)}$ is a limit ordinal.
Then $\left\{(\nu \upharpoonright k)^{\wedge}\left\langle\left(\ell^{\nu(k)}, \alpha\right)\right\rangle: \alpha<\alpha^{\nu(k)}\right\}$ is $\subseteq I_{2}$ and is an unbounded subset of $J_{\bar{\eta}}$ hence $\operatorname{cf}\left(J_{\bar{\eta}}\right)=\operatorname{cf}\left(\alpha^{\nu(k)}\right)$. If $\operatorname{cf}\left(\alpha^{\nu(k)}\right)=\aleph_{0}$, then clause (c) in \boxtimes_{3} holds, and if $\operatorname{cf}\left(\alpha^{\nu(k)}\right) \in\left[\aleph_{1}, \theta_{1}\right)$ then necessarily $\alpha^{\nu(k)} \neq \zeta$ so being a limit ordinal $<\zeta+\omega$ clearly $\alpha^{\nu(k)}<\zeta$ so clause (d) from \boxtimes_{3} holds. To finish this subcase note that $\operatorname{cf}\left(\alpha^{\nu(k)}\right) \geq \theta_{1}$ is impossible.
[Why "impossible"? Clearly for large enough $i<\partial$ we have $\eta_{i}(m) \geq \zeta$ (because $\delta=\zeta+\omega$ as said in the beginning of the case) and recall $\nu \triangleleft \eta_{i} \in I_{2}$. We now show that clauses (a)-(d) of \circledast hold with η_{i}, k here standing for η, n there. For clause (a) recall $\ell g\left(\eta_{i}\right) \geq \ell g(\nu)+1$ and $m=\ell g(\nu)=k+1$. Now $\ell^{\eta_{i}(k+1)}=\ell^{\eta_{i}(m)}=\ell^{*}=-2$ as $\ell^{*}=-2$ is part of the case, $\ell^{\eta_{i}(k)}=\ell^{\nu(k)} \in\{-1,2\}$ in this subcase, so clause (d) of \circledast holds. Also $\alpha^{\eta_{i}(k+1)}=\alpha^{\eta_{i}(m)} \geq \zeta$ as said above so clause (c) of \circledast holds and $\operatorname{cf}\left(\alpha^{\eta_{i}(k)}\right)=\operatorname{cf}\left(\alpha^{\nu(k)}\right) \geq \theta_{1}$ (as we are trying to prove "impossible"), so clause (b) of \circledast holds. Together we have proved (a)-(d) of \circledast. But $\eta_{i} \in I_{2}$, contradiction.]

Now subcases $4 \mathrm{~A}, 4 \mathrm{~B}, 4 \mathrm{C}, 4 \mathrm{D}$ cover all the possibilities, hence we are done with case 4 .

Case 5: $\ell^{*}=-2, \partial>\aleph_{0}$, and $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right)\right\rangle \notin I_{2}$.
Recalling δ is the limit of the increasing sequence $\left\langle\alpha^{\eta_{i}(m)}: i<\partial\right\rangle$ hence $\operatorname{cf}(\delta)=$ $\partial>\aleph_{0}$ and $\nu^{\wedge}\langle(-2, \delta)\rangle \notin I_{2}$, necessarily $\delta=\zeta$ so $\partial=\theta_{2}$. As $\nu^{\wedge}\langle(-2, \delta)\rangle \notin I_{2}$ necessarily clauses (a) - (d) of \circledast hold for some n and as $\nu \in I_{2}$, clearly $n=\ell g(\nu)-1$ (see clause (a) of \circledast) so we have $\ell g(\nu)>0$, and letting $k=\ell g(\nu)-1$, by clause (d) of \circledast the $\ell^{\eta(n+1)}$ there stands for $\ell^{*}=-2$ here so we have $\ell^{\nu(k)} \in\{-1,2\}$ and by clause (b) of \circledast we have $\operatorname{cf}\left(\alpha^{\nu(k)}\right) \geq \theta_{1}$. Hence $\left\{(\nu \upharpoonright k)^{\wedge}\left\langle\left(\ell^{\nu(k)}, \beta\right)\right\rangle: \beta<\alpha^{\nu(k)}\right\}$ is cofinal in $J_{\bar{\eta}}$ and its cofinality is $\operatorname{cf}\left(\alpha^{\nu(k)}\right)$ as $(\nu \upharpoonright k)^{\wedge}\left\langle\left(\ell^{\nu(k)}, \beta\right)\right\rangle$ increase (by $\leq_{I_{2}}$) with β as $\ell^{\nu(k)} \in\{-1,2\}$. But $\operatorname{cf}\left(\alpha^{\nu(k)}\right) \geq \theta_{1}$ and $\partial=\theta_{2}$ (see first sentence of the present case), so clause (e) of \boxtimes_{3} holds.

Case 6: $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right)\right\rangle \in I_{2}$.
Subcase 6A: $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right),(2, \zeta)\right\rangle \in I_{2}$.
Note that for $m=\ell g(\nu)$ and the pair $\left(\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right),(2, \zeta)\right\rangle, m\right)$ standing for (η, n) in \circledast, clauses (a), (c), (d) of \circledast hold (recall $\ell^{*} \in\{-2,1\}$, see the discussion after case 1) so necessarily clause (b) of \circledast fails hence $\operatorname{cf}(\delta)<\theta_{1}$ but $\partial=\operatorname{cf}(\delta)$ so $\partial<\theta_{1}$. Now as $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right),(2, \zeta)\right\rangle \in I_{2}$ clearly if $\ell<\omega$, then $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right),(2, \zeta+\ell)\right\rangle$ belongs to I_{2} hence $\left\{\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right),(2, \zeta+\ell)\right\rangle: \ell<\omega\right\}$ is a cofinal subset of $J_{\bar{\eta}}$ by the choice of I_{2} hence $\operatorname{cf}\left(J_{\bar{\eta}}\right)=\aleph_{0}$ so clause (c) of \boxtimes_{3} applies.

Subcase 6B: $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right),(2, \zeta)\right\rangle \notin I_{2}$.
As $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right)\right\rangle \in I_{2}$, necessarily clauses (a)-(d) of \circledast hold with $\left(\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right),(2, \zeta)\right\rangle, m\right)$ here standing for (η, n) there, recalling $m=\ell g(\nu)$ so by clause (b) of \circledast we know that $\operatorname{cf}(\delta) \geq \theta_{1}$ but $\partial=\operatorname{cf}(\delta)$ hence $\partial \geq \theta_{1}$. Also $\left\{\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right),(2, \alpha)\right\rangle: \alpha<\zeta\right\}$ is a subset of I_{2} and cofinal in $J_{\bar{\eta}}$ and is increasing with $\alpha \operatorname{so} \operatorname{cf}\left(J_{\bar{\eta}}\right)=\theta_{2}$ so clause (e) of \boxtimes_{3} applies.

As the two subcases $6 \mathrm{~A}, 6 \mathrm{~B}$ are complimentary case 6 is done.

Finishing the proof of \boxtimes_{3} :

It is easy to check that our cases cover all the possibilities (as after discarding cases 0,1 , if not case (6) then $\nu^{\wedge}\left\langle\left(\ell^{*}, \delta\right)\right\rangle \notin I_{2}$, as not case (3), $\ell^{*} \neq 1$ but (see clause $\odot(c)$ before case 2$), \ell^{*} \in\{-2,1\}$ so necessarily $\ell^{*}=-2$, so case (4),(5) cover the rest). Together we have proved \boxtimes_{3}.]
\boxtimes_{4} Recall $\aleph_{0} \leq \mu<\theta_{1}<\theta_{2}$; if $X \subseteq I_{2}$ with $|X|<\theta_{2}$ then we can find Y such that $X \subseteq Y \subseteq I_{2},|Y|=\mu+|X|, Y$ is unbounded in I_{2} from below and from above, and for every $\nu \in I_{2} \backslash Y$ the following linear orders have cofinality \aleph_{0} :
(a) $J_{Y, \nu}^{2}:=I_{2} \upharpoonright\left\{\eta \in I_{2} \backslash Y:(\forall \rho \in Y)\left[\rho<_{I_{2}} \nu \equiv \rho<_{I_{2}} \eta\right]\right\}$
(b) The inverse of $J_{Y, \nu}^{2}$.
(c) $J_{Y, \nu}^{-}=I_{2} \upharpoonright\left\{\eta \in I_{2}:\left(\forall \rho \in J_{Y, \nu}^{2}\right)\left[\eta<_{I_{2}} \rho\right]\right\}$
(d) The inverse of $J_{Y, \nu}^{+}:=I_{2} \upharpoonright\left\{\eta \in I_{2}:\left(\forall \rho \in J_{Y, \nu}^{2}\right)\left[\rho<_{I_{2}} \eta\right]\right\}$.
[Why? Let $\mathcal{U}=\left\{\alpha^{\eta(\ell)}: \eta \in X\right.$ and $\left.\ell<\ell g(\eta)\right\}$.
We choose W_{n} by induction on $n<\omega$ such that
$\square_{1} \quad$ (a) $\mathcal{U} \subseteq W_{n} \subseteq \zeta+\omega$
(b) W_{n} has cardinality $\mu+|\mathcal{U}|=\mu+|X|$ and $m<n \Rightarrow W_{m} \subseteq W_{n}$.
(c) $\mu \subseteq W_{0}$ and $\zeta+n \in W_{0}$ for $n<\omega$.
(d) $\alpha \in W_{n} \Rightarrow \alpha+1 \in W_{n+1}$
(e) $\alpha+1 \in W_{n} \Rightarrow \alpha \in W_{n+1}$
(f) If $\delta \in W_{n}$ is a limit ordinal of cofinality $<\theta_{1}$ then $\delta=\sup \left(\delta \cap W_{n+1}\right)$.
(g) if $\delta \in W_{n}$ and $\operatorname{cf}(\delta) \geq \theta_{1}$ (or just $\left.\operatorname{cf}(\delta) \leq \mu+|X|\right)$ then $\sup \left(\delta \cap W_{n}\right)+1 \in$ W_{n+1}.

This is straight. Let $W=\bigcup\left\{W_{n}: n<\omega\right\}$, so
$\oplus_{2} \mathcal{U} \subseteq W$ and $|W|=\mu+|X|$ and W satisfies
(a) $W \subseteq \zeta+\omega$
(b) $|W|<\theta_{2}$
(c) $0 \in W$ and $\{\zeta+m: m<\omega\} \subseteq W$
(d) $\alpha \in W \Leftrightarrow \alpha+1 \in W$
(e) If $\delta \in W$ and $\aleph_{0}<\operatorname{cf}(\delta) \leq \mu$ then $\delta=\sup (W \cap \delta)$
(f) If $\delta \in W$ and $\operatorname{cf}(\delta) \geq \theta_{1}$ or $\operatorname{cf}(\delta)=\aleph_{0}$ then $\operatorname{cf}(\operatorname{otp}(W \cap \delta))=\aleph_{0}$.

Let $Y=\left\{\eta \in I_{2}: \alpha^{\eta(\ell)} \in W\right.$ for every $\left.\ell<\ell g(\eta)\right\}$. Clearly $X \subseteq Y$ and $|Y|=$ $\aleph_{0}+|W|=\mu+|\mathcal{U}|<\theta_{2}$. It suffices to check that Y is as required in \boxtimes_{4}. From now on we shall use only the choice of Y and clauses (a)-(f) of \square_{2}. By $\square_{2}(c)$ and the choice of Y clearly Y is unbounded in I_{2} from above and from below.

So let $\nu \in I_{2} \backslash Y$; as $\nu \upharpoonright 0 \in Y$ there is $n<\ell g(\nu)$ such that $\nu \upharpoonright n \in Y$ and $\nu \upharpoonright(n+1) \notin Y$, so $\alpha^{\nu(n)}<\zeta+\omega$ and $\alpha^{\nu(n)} \notin W$. But by clause (c) of \square_{2} we have $\{\zeta+m: m<\omega\} \subseteq W$ hence $\alpha^{\nu(n)}<\zeta$ and so $\alpha_{1}:=\min \left(W \backslash \alpha^{\nu(n)}\right)$ is well defined and is found in the interval $\left(\alpha^{\nu(n)}, \zeta\right]$. As clearly $0 \in W$ and $\beta \in W \Leftrightarrow \beta+1 \in W$ by the choice of W, obviously α_{1} is a limit ordinal. By clause (e) of \square_{2} clearly α_{1} is of cofinality \aleph_{0} or $\geq \theta_{1}=\mu^{+}$. So clearly

$$
\alpha_{0}:=\sup \left(W \cap \alpha^{\nu(n)}\right)=\sup \left(W \cap \alpha_{1}\right)=\min \left\{\alpha: W \cap \alpha=W \cap \alpha^{\nu(n)}\right\}
$$

is a limit ordinal $\leq \alpha^{\nu(n)}$ and $\alpha_{0} \notin W$ so $\operatorname{cf}\left(\alpha_{0}\right) \leq|W|<\theta_{2}$. But by the assumption on W, (see clause (f) of \square_{2}) we have $\operatorname{cf}\left(\alpha_{0}\right)=\aleph_{0}$. So $(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{0}\right)\right\rangle \in J_{Y, \nu}^{2}$; moreover
$\square_{3} \rho \in J_{Y, \nu}^{2}$ iff $\rho \in I_{2}$ satisfies one of the following:
(a) $\bullet_{1} \nu \upharpoonright n=\rho \upharpoonright n$ and $\ell^{\nu(n)}=\ell^{\rho(n)}$.
$\bullet_{2} \alpha^{\rho(n)} \in\left[\alpha_{0}, \alpha_{1}\right)$
(b) $\quad \bullet_{1} \nu \upharpoonright n=\rho \upharpoonright n$ and $\ell^{\nu(n)}=\ell^{\rho(n)}$.
$\bullet_{2} \alpha^{\rho(n)}=\alpha_{1}$ and $\alpha^{\rho(n+1)} \in[\sup (W \cap \zeta), \zeta)$.
$\bullet_{3}\left(\ell^{\rho(n+1)}, \ell^{\rho(n)}\right)=\left(\ell^{\rho\left(n_{1}\right)}, \ell^{\nu(n)}\right) \in\{(2,-2),(2,1),(-2,-1),(-2,2)\}$
(c) $\bullet_{1} \alpha_{1}=\zeta$ and $n>\theta$ and $(\nu \upharpoonright n)^{\wedge}\left(\ell^{\nu(n)}, \alpha_{1}\right) \notin I_{2}$.
$\bullet_{2}\left(\ell^{\nu(n)}, \ell^{\nu(n-1)}\right) \in\{(2,-2),(2,1),(-2,2),(-2,-1)\}$
$\bullet_{3} \operatorname{cf}(\nu(n)) \geq \theta_{1}$ and $\nu(n)>\sup (W \cap \nu(n))$.

- $4 \rho \upharpoonright(n-1)=\nu \upharpoonright(n-1), \ell^{\rho(n-1)}=\ell^{\nu(n-1)}$
${ }^{-} \alpha^{\rho(n-1)} \in[\sup (\nu(n-1) \cap W), \nu(n-1))$
[Why? First note that if $\rho \in J_{Y, \nu}^{2}, \rho \upharpoonright k=\nu \upharpoonright k, \rho(k) \neq \nu(k)$, and $k \leq n$, then necessarily $k=n \wedge \ell^{\rho(k)}=\ell^{\nu(k)}$. We now proceed to check "if".

Let $f:\{-2,-1,1,2\} \rightarrow\{2,-2\}$ be such that $f^{-1}[2]=\{-2,1\}$ and $f^{-1}[-2]=$ $\{-1,2\}$. Case (a) is obvious. In case (b), in order for $\eta \in Y$ to separate between ν and ρ, it is necessary that $\eta \upharpoonright(n+1)=\rho \upharpoonright(n+1), \ell^{\eta(n+1)}=\ell^{\rho(n+1)}=f\left(\ell^{\rho(n)}\right)$ and $\alpha^{\eta(n+1)} \geq \zeta$, but then $\eta \notin I_{2}$. In case (c), in order to separate between ρ and ν by $\eta \in Y$, there are two possibilities. Either $\eta \upharpoonright n=\nu \upharpoonright n$ and then

$$
\ell^{\eta(n)}=\ell^{\nu(n)}=f\left(\ell^{\nu(n-1)}\right)
$$

(recall that $\nu \upharpoonright n^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right)\right\rangle \notin I_{2}$), and $\alpha^{\eta(n)} \geq \zeta$, but then also $\eta \notin I_{2}$. The other possibility is that $\eta \upharpoonright(n-1)=\nu \upharpoonright(n-1), \ell^{\eta(n-1)}=\ell^{\nu(n-1)}, \alpha=\alpha^{\eta(n-1)}$ is such that $\alpha \in W$, and $\alpha^{\rho(n-1)}<\alpha<\alpha^{\nu(n-1)}$, which is also impossible by the choice of $\alpha^{\rho(n-1)}$. Showing that these are the only cases (the "only if" direction) is similar and is actually done below.]

Now we proceed to check that clauses of \boxtimes_{4} hold.

Clause (a):

First assume $\ell^{\nu(n)} \in\{-2,1\}$, and let

$$
J=\left\{\nu \upharpoonright n^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{0}\right),(2, \zeta+m)\right\rangle: m<\omega\right\} .
$$

Now $J \subseteq I_{2}$.
[Why? clearly if $\rho \in J$ then $\rho \upharpoonright(n+1) \in I_{2}$ so we only need to check \circledast for n, recall that $\operatorname{cf}\left(\alpha_{0}\right)=\aleph_{0}<\theta_{1}$, hence clause (b) of \circledast fails].

Now by clause (a) of \unlhd_{3} we have that $J \subseteq J_{Y, \nu}^{2}$, and we claim that it is also cofinal in it.
[Why? Note that as $\ell^{\nu(n)} \in\{-2,1\}$ then $\nu \upharpoonright n^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{0}\right)\right\rangle<_{I_{2}} \nu \upharpoonright(n+1)$, and if $\rho \in J_{Y, \nu}^{2}$ is as in clauses (a) or (b) of \square_{3} then for every m large enough

$$
\rho<_{I_{2}} \nu \upharpoonright n^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{0}\right),(2, \zeta+m)\right\rangle .
$$

If $\rho \in J_{Y, \nu}^{2}$ is as in clause (c) of \square_{3} then $\ell^{\nu(n)} \in\{-2,2\}$ by (ii) there, and as in this case $\ell^{\nu(n)} \in\{-2,1\}$, necessarily $\ell^{\nu(n)}=-2$ and so by (ii) of (c) of \square_{3} we have $\ell^{\nu(n-1)} \in\{-1,2\}$, but then $\rho<_{I_{2}} \nu$ and so it is below every element in $\left.J.\right]$

Second, assume $\ell^{\nu(n)} \in\{-1,2\}$ and $\nu \upharpoonright n^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right)\right\rangle \in I_{2}$; let $\delta^{*}=\sup (W \cap \zeta)$, so as above $\delta^{*} \notin W$ and has cofinality \aleph_{0} (which is less than θ_{1}). Recall also that $\operatorname{cf}\left(\alpha_{1}\right) \geq \theta_{1}$. So (for $\left.\ell \in\{-2,-1,1,2\}\right)$ by \circledast we have

$$
(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right),(\ell, \beta)\right\rangle \in I_{2}
$$

iff

$$
(\beta<\zeta \text { and } \ell \in\{-2,-1,1,2\}) \text { or }(\zeta \leq \beta<\zeta+\omega \text { and } \ell \neq-2)
$$

Hence we have $(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right),(-2, \beta)\right\rangle \in I_{2} \Leftrightarrow \beta<\zeta$. Also

$$
(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right),(-2, \beta)\right\rangle \in Y \Leftrightarrow \beta \in W,
$$

and as $\nu(n)<\alpha_{1} \wedge \ell^{\nu(n)} \in\{-1,2\}$ clearly $\nu<_{I_{2}}(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right),(-2, \beta)\right\rangle$. Easily $\left.\left\{(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right),(-2, \varepsilon)\right\rangle: \varepsilon \in W \cap \zeta\right)\right\}$ is a subset of $\left\{\eta \in Y: \nu<_{I_{2}} \eta\right\}$ unbounded from below in it.

So $\left\{(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right),\left(-2, \delta^{*}\right),(2, \alpha)\right\rangle: \zeta<\alpha<\zeta+\omega\right\}$ is included in I_{2} (recalling clause (b) of \circledast as $\left.\operatorname{cf}\left(\delta^{*}\right)=\aleph_{0}\right)$ and moreover is a cofinal subset of $J_{Y, \nu}^{2}$ of order type ω, $\operatorname{so~} \operatorname{cf}\left(J_{Y, \nu}^{2}\right)=\aleph_{0}$ as required.

Third, assume $\rho^{\nu(n)} \in\{-1,2\}$ and $(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right)\right\rangle \in I_{2}$ and $\operatorname{cf}\left(\alpha_{1}\right)<\theta_{1}$, equivalently $\operatorname{cf}\left(\alpha_{1}\right)=\aleph_{0}$ by clause (e) of \square_{2}. In this case

$$
\left\{(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha\right),(-2, \beta)\right\rangle: \zeta \leq \beta<\zeta+\omega\right\}
$$

is included in I_{2} (recalling clause (b) of \circledast) and in Y. Hence, recalling $\square_{3}(a)$, the set $\left\{(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha\right)\right\rangle: \alpha \in\left[\alpha_{0}, \alpha_{1}\right)\right\}$ is a cofinal subset of $J_{Y, \nu}^{2}$ hence its cofinality is $\operatorname{cf}\left(\alpha_{1}\right)=\aleph_{0}$ as required.

Fourth, we are left with the case $\ell^{\nu(n)} \in\{-1,2\}$ and $(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right)\right\rangle \notin I_{2}$ so necessarily $n>0$ and clauses (a)-(d) of \circledast hold for it for $n-1$; then by clause (c) of $\circledast\left(\right.$ recalling $\alpha_{1} \leq \zeta$ as shown before $\left.\square_{3}\right)$ necessarily $\alpha_{1}=\zeta$. Clearly $k:=n-1 \geq 0$ and as clause (d) of \circledast holds and it says there " $\ell^{\eta(n+1)} \in\{2,-2\}$ " which means here $\ell^{\nu(n)} \in\{2,-2\}$ but we are assuming presently $\ell^{\nu(n)} \in\{-1,2\}$ hence $\ell^{\nu(n)}=$ $\ell^{\nu(k+1)}=2$ so using clause (d) of \circledast, see above, it follows that $\ell^{\nu(k)} \in\{-2,1\}$ and by clause (b) of \circledast we have $\operatorname{cf}\left(\alpha^{\nu(k)}\right) \geq \theta_{1}$. Let $\delta_{*}=\sup \left(W \cap \alpha^{\nu(k)}\right)$. Now if $\delta_{*}<\alpha^{\nu(k)}$ then by clause (f) of \square_{2} we know $\operatorname{cf}\left(\delta_{*}\right)=\aleph_{0}$ and

$$
\left\{(\nu \upharpoonright k)^{\wedge}\left\langle\left(\ell^{\nu(k)}, \delta_{*}\right),(2, \zeta+m)\right\rangle: m<\omega\right\}
$$

is included in I_{2} (as $\nu \in I_{2}$ and $\delta_{*} \leq \alpha^{\nu(k)}$ we have only to check \circledast, with $k+1$ here standing for n there, but $\operatorname{cf}\left(\delta_{*}\right)=\aleph_{0}$ so clause (b) there fails) and so recalling $\square_{3}(c)$ this set is a cofinal subset of $J_{Y, \nu}^{2}$ exemplifying that its cofinality is \aleph_{0}.

Lastly, if $\delta_{*}=\alpha^{\nu(k)}$ then $\left\langle(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha\right)\right\rangle: \alpha \in W \cap \zeta\right\rangle$ is $<_{I_{2}}$-increasing with α, all members in Y, and in $J_{Y, \nu}^{2}$, cofinal in it and has order type $\operatorname{otp}(W \cap \zeta)$ which has cofinality \aleph_{0} so also $J_{Y, \nu}^{2}$ has cofinality \aleph_{0} as required.

Clause (b): What about the cofinality of the inverse? Recall that I_{2} is isomorphic to its inverse by the mapping $(\ell, \beta) \mapsto(-\ell, \beta)$, but this isomorphism maps Y onto itself hence it maps $J_{Y, \nu}^{2}$ onto $J_{Y, \nu^{\prime}}^{2}$ for some $\nu^{\prime} \in I_{2} \backslash Y$, but clause (a) was proved also for ν^{\prime}, so this follows.

Clause (c): As Y is unbounded from below in I_{2} (containing $\{\langle(-2, \zeta+n)\rangle: n<$ $\omega\}$) it follows that $J_{Y, \nu}^{-}$is non-empty, hence $\operatorname{cf}\left(J_{Y, \nu}^{-}\right) \neq 0$, but what is $\operatorname{cf}\left(J_{Y, \nu}^{-}\right)$?

First, if $\ell^{\nu(n)} \in\{-1,2\}$ then $\left\{(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha\right)\right\rangle: \alpha<\alpha_{0}\right\}$ is an unbounded subset of $J_{Y, \nu}^{-}$of order type α_{0} hence $\operatorname{cf}\left(J_{Y, \nu}^{-}\right)=\operatorname{cf}\left(\alpha_{0}\right)=\aleph_{0}$ (see the assumption on W and the choice of α_{0}).

Second, if $\ell^{\nu(n)}=\{-2,1\}$ and $(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right)\right\rangle \in I_{2}$ and $\operatorname{cf}\left(\alpha_{1}\right) \geq \theta_{1}$ then as in the proof of clause (a) we have $\left\{(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right),(2, \zeta+m)\right\rangle \notin I_{2}\right.$ for $m<\omega$ and again letting $\delta^{*}=\sup (W \cap \zeta)$ we have $\left\{(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right),(2, \beta)\right\rangle: \beta \in W \cap \zeta\right\}$ is included in I_{2} and in $J_{Y, \nu}^{-}$and even is an unbounded subset of $J_{Y, \nu}^{-}$of order type $\operatorname{otp}\left(W \cap \delta^{*}\right)$ which has the same cofinality as δ^{*} which is \aleph_{0}.

Third, if $\ell^{\nu(n)} \in\{-2,1\}$ and $(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right)\right\rangle \in I_{2}$ and $\operatorname{cf}\left(\alpha_{1}\right)<\theta_{1}$ (equivalently $\left.\operatorname{cf}\left(\alpha_{1}\right)=\aleph_{0}\right)$ then $\left\{(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right),(2, \zeta+m)\right\rangle: m<\omega\right\}$ is a subset of I_{2} (as $\operatorname{cf}\left(\alpha_{1}\right)=\aleph_{0}$) is included in $J_{Y, \nu}^{-}$, unbounded in it and has cofinality \aleph_{0}, so we are done.

Fourth and lastly, if $\ell^{\nu(n)} \in\{-2,1\}$ and $(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \alpha_{1}\right)\right\rangle \notin I_{2}$ then as in the proof of clause (a) we have $\alpha_{1}=\zeta$. Again letting $\delta^{*}=\sup (W \cap \zeta)$ we have $\operatorname{cf}\left(\delta^{*}\right)=\aleph_{0},(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \delta^{*}\right)\right\rangle \in I_{2}$, and

$$
\left\{(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \delta^{*}\right),(2, \zeta+m)\right\rangle: m<\omega\right\}
$$

is a subset of I_{2}; moreover, it is a subset of $J_{Y, \nu}^{-}$unbounded in it, and

$$
(\nu \upharpoonright n)^{\wedge}\left\langle\left(\ell^{\nu(n)}, \delta^{*}\right),(2, \zeta+m)\right\rangle
$$

is $<_{I_{2}}$-increasing with m. So indeed $J_{Y, \nu}^{-}$has cofinality \aleph_{0}.
Clause (d): As in clause (b) we use the anti-isomorphism.
So \boxtimes_{4} holds.]
\boxtimes_{5} if $I^{\prime} \subseteq I_{2}$ then the number of cuts of I^{\prime} induced by members of $I_{2} \backslash I^{\prime}$ (that is, $\left.\left\{\left\{s \in I^{\prime}: s<_{I_{2}} t\right\}: t \in I_{2} \backslash I^{\prime}\right\}\right)$ is $\leq\left|I^{\prime}\right|+1$.
[Why? Let $\mathcal{U}:=\left\{\alpha^{\eta(\ell)}: \ell<\ell g(\eta)\right.$ and $\left.\eta \in I^{\prime}\right\}$. It belongs to $[\zeta+\omega]^{\leq \mu}$. Now (by inspection) $\eta_{1}, \eta_{2} \in I_{2} \backslash I^{\prime}$ realizes the same cut of I^{\prime} when:
(a) $\ell g\left(\eta_{1}\right)=\ell g\left(\eta_{2}\right)$
(b) $\ell^{\eta_{1}(n)}=\ell^{\eta_{2}(n)}$ for $n<\ell g\left(\eta_{1}\right)$.
(c) $\alpha^{\eta_{1}(n)} \in \mathcal{U} \Leftrightarrow \alpha^{\eta_{2}(n)} \in \mathcal{U} \Rightarrow \alpha^{\eta_{1}(n)}=\alpha^{\eta_{2}(n)}$ for $n<\omega$.
(d) $\beta<\alpha^{\eta_{1}(n)} \equiv \beta<\alpha^{\eta_{2}(n)}$ for $\beta \in \mathcal{U}$ and $n<\omega$.
[Why? Clauses (a)-(d) define an equivalence relation on $I_{2} \backslash I^{\prime}$ which refines "inducing the same cut" and has $\leq|\mathcal{U}|+\aleph_{0}=\left|I^{\prime}\right|+\aleph_{0}$ equivalence classes. As the case ' I ' is finite' is trivial, we are done proving \boxtimes_{5}.]
\boxtimes_{6} if ∂ is regular uncountable, $n^{*}<\omega, t_{\varepsilon, \ell} \in I_{2}$ for $\varepsilon<\partial, \ell<n^{*}$, and $t_{\varepsilon, 0}<_{I_{2}} \ldots<_{I_{2}} t_{\varepsilon, n^{*}-1}$ for $\varepsilon<\partial$ then for some unbounded (and even stationary) set $S \subseteq \partial, m \leq n^{*}, 0=k_{0}<k_{1}<\ldots<k_{m}=n^{*}$ stipulating $t_{\varepsilon, k_{m}}=\infty$, and letting $\varepsilon(*)=\min (S)$, we have:
(a) for each $i<m$ [exactly one / at least one] of the following hold:
\bullet_{1} If $\varepsilon<\xi$ are from S and $\ell_{1}, \ell_{2} \in\left[k_{i}, k_{i+1}\right)$ then $t_{\varepsilon, \ell_{1}}<_{I_{2}} t_{\xi, \ell_{2}}$.
\bullet_{2} if $\varepsilon<\xi$ are from S and $\ell_{1}, \ell_{2} \in\left[k_{i}, k_{i+1}\right)$ then $t_{\xi, \ell_{2}}<I_{2} t_{\varepsilon, \ell_{1}}$.
$\bullet 3 k_{i+1}=k_{i}+1$ and for every $\varepsilon \in S$ we have $t_{\varepsilon, k_{i}}=t_{\varepsilon(*), k_{i}}$.
(b) There is a sequence $\left\langle s_{i}^{-}, s_{i}^{+}: i<m\right\rangle$ such that
$\bullet_{1} \quad i<m \Rightarrow s_{i}^{-}<I_{2} s_{i}^{+}$
\bullet_{2} If $i<m-1$ then $s_{i}^{+}<s_{i+1}^{-}$(except possibly when $\left\langle t_{\varepsilon, k_{i}}: \varepsilon<\partial\right\rangle$ is $<_{I_{2}}$-decreasing and there is no $t \in I_{2}$ such that $\varepsilon<\partial \Rightarrow$ $t_{\varepsilon, k_{i}}<_{I_{2}} t<_{I_{2}} t_{\varepsilon, k_{i+1}}$, hence (by \boxtimes_{3}) we have $\partial \geq \theta_{2}$).
${ }^{\bullet} 3$ For each $i<m$ the set $\left\{t_{\varepsilon, \ell}: \varepsilon \in S, \ell \in\left[k_{i}, k_{i+1}\right)\right\}$ is included in the interval $\left(s_{i}^{-}, s_{i}^{+}\right)_{I_{2}}$.
[Why? Straight. For some stationary $S_{1} \subseteq \partial$ and $\left\langle n_{k}: k<n^{*}\right\rangle$ we have

$$
\varepsilon \in S_{1} \wedge k<n^{*} \Rightarrow \ell g\left(t_{\varepsilon, k}\right)=n_{k}
$$

Also, without loss of generality $\left\langle\ell^{t_{\varepsilon, k}(i)}: i<n_{k}\right\rangle$ does not depend on $\varepsilon \in S_{1}$. By $\sum_{k<n^{*}} n_{k}$ application of $\partial \rightarrow(\partial, \omega)^{2}$, without loss of generality for each $k<n^{*}$ and $i<n_{k}$ the sequence $\left\langle\alpha^{t_{\varepsilon, k}(i)}: \varepsilon \in S_{1}\right\rangle$ is constant or increasing. Cleaning a little more we are done. So \boxtimes_{6} holds.]

Lastly, recall that we chose I to be $\left(|M|,<^{M}\right)$, where M was the real closure of M_{0} (see $\left.(*)_{1}\right), M_{0}$ the ordered field generated over \mathbb{Q} by $\left\{a_{t}: t \in I_{2}\right\}$ as described in $(*)_{1}$ above, and for every $u \subseteq \zeta$ let:
$(*)_{2} \quad$ (a) $I_{u}^{1}=\left\{(\ell, \beta) \in I_{1}: \beta \in u\right.$ or $\left.\beta \in[\zeta, \zeta+\omega)\right\}$
(b) $I_{u}^{*, 2}=\left\{\eta \in I_{2}^{*}: \alpha^{\eta(\ell)} \in I_{u}^{1}\right.$ for every $\left.\ell<\ell g(\eta)\right\}$
(c) $I_{u}^{2}=\left\{\eta \in I_{2}: \alpha^{\eta(\ell)} \in I_{u}^{1}\right.$ for every $\left.\ell<\ell g(\eta)\right\}$
(d) I_{u} is the real closure of $\mathbb{Q}\left(a_{t}: t \in I_{u}^{2}\right)$ in M
(e) For $t \in I_{2} \backslash I_{u}^{2}$, let $I_{u, t}^{2}=I_{2} \upharpoonright\left\{s \in I_{2}: s \notin I_{u}^{2}\right.$ and for every $r \in I_{u}^{2}$ we have $\left.r<_{I_{2}} t \equiv r<_{I_{2}} s\right\}$.
(f) For $x \in I \backslash I_{u}$ let

$$
I_{u, x}=I \upharpoonright\left\{y \in I \backslash I_{u}:\left(\forall a \in I_{u}\right)\left[a<_{I} y \equiv a<_{I} x\right]\right\} .
$$

(g) Let \hat{I}_{u} be the set $I_{u} \cup\left\{I_{u, a}: a \in I \backslash I_{u}\right\}$ ordered by: $x<_{\hat{I}_{u}} y$ iff one of the following holds:
$\bullet_{1} \quad x, y \in I_{u}$ and $x<_{I_{u}} y$
$\bullet_{2} x \in I_{u}, y=I_{u, b}$ and $x<_{I_{u}} b$
$\bullet_{3} x=I_{u, a}, y \in I_{u}$ and $a<_{I_{u}} y$
$\bullet_{4} x=I_{u, a}, y=I_{u, b}$ and $a<_{I_{u}} b$ (can use it more!)
(Note that by $\left.\boxtimes_{5},|u| \leq \mu \Rightarrow\left|\hat{I}_{u}\right| \leq \mu.\right)$
Now observe
$(*)_{3}$ for $u \subseteq \zeta, I_{u}^{2}$ is unbounded in I_{2} from below and from above.
We define [the following property.]
$(*)_{4}$ We say 10 that u is μ-reasonable if:
(a) $u \subseteq \zeta,|u|<\theta_{2}$, and $\mu \subseteq u$.
(b) $\alpha \in u \equiv \alpha+1 \in u$ for every α.

[^9](c) If $\delta \in u$ and $\aleph_{0} \leq \operatorname{cf}(\delta) \leq \mu$ then $\delta=\sup (u \cap \delta)$,
(d) If $\delta \leq \zeta$ and $\operatorname{cf}(\delta)>\mu$ then $\operatorname{cf}(\operatorname{otp}(\delta \cap u))=\aleph_{0}$.

Now we note
$(*)_{5}$ if $X \subseteq I$ has cardinality $<\theta_{2}$ and $u_{*} \subseteq \zeta$ has cardinality $<\theta_{2}$ then we can find a μ-reasonable u such that $X \subseteq I_{u}, u_{*} \subseteq u$, and $|u|=\mu+|X|+\left|u_{*}\right|$.
[Why? By the proof of \boxtimes_{4}.]
$(*)_{6}$ if u is μ-reasonable then $Y:=I_{u}^{2}$ satisfies the conclusions of \boxtimes_{4}.
[Why? By the proof of \boxtimes_{4}. That is, if $u^{+}:=u \cup\{\zeta+n: n<\omega\}$ then Y as defined in the proof there using u^{+}for W, is I_{u}^{2} from $(*)_{2}(c)$, and it satisfies demands (a)-(f) from \square_{2} so the proof there applies.]
$(*)_{7}$ if u is μ-reasonable and $x \in I \backslash I_{u}$ then $\operatorname{cf}\left(I_{u, x}\right) \leq \aleph_{0}$.
Why? The proof takes awhile. Toward contradiction assume $\partial=\operatorname{cf}\left(I_{u, x}\right)$ is $>\aleph_{0}$ and let $\left\langle b_{\varepsilon}: \varepsilon<\partial\right\rangle$ be an increasing sequence of members of $I_{u, x}$ unbounded in it. So for each $\varepsilon<\partial$ there is a definable ${ }^{11}$ function $f_{\varepsilon}\left(x_{0}, \ldots, x_{n(\varepsilon)-1}\right)$ and $t_{\varepsilon, 0}<_{I_{2}} t_{\varepsilon, 1}<_{I_{2}} \ldots<_{I_{2}} t_{\varepsilon, n(\varepsilon)-1}$ from I_{2} such that $M \models " b_{\varepsilon}=f_{\varepsilon}\left(a_{t_{\varepsilon, 0}}, \ldots, a_{t_{\varepsilon, n(\varepsilon)-1}}\right)$ " and $n(\varepsilon)$ is minimal. As $\operatorname{Th}(\mathbb{R})$ is countable and $\aleph_{0}<\partial=\operatorname{cf}(\partial)$, without loss of generality $\varepsilon<\partial \Rightarrow f_{\varepsilon}=f_{*}$ so $\varepsilon<\partial \Rightarrow n(\varepsilon)=n(*)$.

Apply \boxtimes_{6} to $\left\langle\bar{t}^{\varepsilon}=\left\langle t_{\varepsilon, \ell}: \ell<n(*)\right\rangle: \varepsilon<\partial\right\rangle$, and get $S \subseteq \partial, 0=k_{0}<k_{1}<$ $\ldots<k_{m}=n(*),\left\langle\left(s_{i}^{-}, s_{i}^{+}\right): i<m\right\rangle$, and $\varepsilon(*)=\min (S)$ as there. Without loss of generality the truth value of " $t_{\varepsilon, \ell} \in I_{u}^{2}$ ", for $\varepsilon \in S$, depends only on ℓ. Let $w_{1}=\left\{i<m:(\forall \varepsilon \in S)\left[t_{\varepsilon, k_{i}}=t_{\varepsilon(*), k_{i}}\right]\right\}$ and $w_{2}=\left\{\ell<n(*): t_{\varepsilon(*), \ell} \in I_{u}^{2}\right\} ;$ clearly for every $\ell<n(*)$ we have

$$
(\forall \varepsilon \in S)\left[t_{\varepsilon, \ell}=t_{\varepsilon(*), \ell}\right] \Leftrightarrow \ell \in\left\{k_{i}: i \in w_{1}\right\}
$$

and $i \in w_{1} \Rightarrow k_{i}+1=k_{i+1}$.
Let $t_{k_{i}}^{*}=t_{\varepsilon, k_{i}}$ for $\left(\varepsilon<\partial\right.$ and $\left.i \in w_{1}\right)$. [By] renaming, without loss of generality $S=\partial$ and $\varepsilon(*)=0$.

We have some free choice in choosing $\left\langle b_{\varepsilon}: \varepsilon<\partial\right\rangle$ (as long as it is cofinal in $I_{u, x}$), so without loss of generality we choose it such that $n(*)$ is minimal and then $\left|w_{1}\right|$ is maximal and then $\left|w_{2}\right|$ is maximal.

Now does the exceptional case in (b) \bullet_{2} of \boxtimes_{6} occur? This is an easier case and we delay it to the end.

As I_{2} (and $I_{2,<t}$ for $t \in I_{2}$) have cofinality $\aleph_{0}\left(\right.$ see $\left.\boxtimes_{2}(a),(b)\right)$ and \boxtimes_{3} and this holds for the inverse of I_{2}, too, while $\partial=\operatorname{cf}(\partial)>\aleph_{0}$ and we can replace $\left\langle b_{\varepsilon}: \varepsilon<\partial\right\rangle$ by $\left\langle b_{n(*)+\varepsilon}: \varepsilon<\partial\right\rangle$ we can find $t_{\partial, \ell}$ for $\ell<n(*)$ such that

- (a) $t_{\partial, 0}<_{I_{2}} t_{\partial, 1}<_{I_{2}} \ldots<_{I_{2}} t_{\partial, n(*)-1}$
(b) If $\varepsilon<\xi<\partial$ and $\ell_{1}, \ell_{2}<n(*)$ then $\left(t_{\varepsilon, \ell_{1}}<_{I_{2}} t_{\partial, \ell_{2}}\right) \equiv\left(t_{\varepsilon, \ell_{1}}<I_{2} t_{\xi, \ell_{2}}\right)$ and $\left(t_{\partial, \ell_{1}}<_{I_{2}} t_{\varepsilon, \ell_{2}}\right) \equiv\left(t_{\xi, \ell_{1}}<t_{\varepsilon, \ell_{2}}\right)$.
(c) If $\ell \in\left[k_{i}, k_{i+1}\right)$ then $t_{\partial, \ell} \in\left(s_{i}^{-}, s_{i}^{+}\right)_{I_{2}}$.

Case 0: $\{0, \ldots, m-1\}=w_{1}$.
This implies $i<m \Rightarrow k_{i}+1=k_{i+1}$ hence $m=n$ hence $\ell<n \Rightarrow t_{\xi, \ell}=t_{\ell}^{*}$ and so contradicts " $\left\langle b_{\varepsilon}: \varepsilon<\partial\right\rangle$ is increasing" (as it becomes constant).

Case 1: $[0, m) \backslash w_{1}$ is not a singleton.
It cannot be empty by Case 0 . Choose $i(*) \in\{0, \ldots, m-1\} \backslash w_{1}$ and for $\varepsilon, \xi<\partial$ let $\bar{t}^{\varepsilon, \xi}=\left\langle t_{\ell}^{\varepsilon, \xi}: \ell<n(*)\right\rangle$ be defined by: $t_{\ell}^{\varepsilon, \xi}$ is $t_{\varepsilon, \ell}$ if $\ell \in\left[k_{i(*)}, k_{i(*)+1}\right)$ and $t_{\xi, \ell}$ otherwise. Let $b_{\varepsilon, \xi}=f_{*}\left(a_{t_{0}^{\varepsilon, \xi}}, \ldots, a_{t_{n(*)-1}^{\varepsilon, \xi}}\right) \in M$. Clearly

[^10]\circledast_{0} for any $\varepsilon_{1}, \varepsilon_{2}, \xi_{1}, \xi_{2} \leq \partial$ the truth value of $b_{\varepsilon_{1}, \xi_{1}}<b_{\varepsilon_{2}, \xi_{2}}$ depends just on the inequalities which $\left\langle\varepsilon_{1}, \varepsilon_{2}, \xi_{1}, \xi_{2}\right\rangle$ satisfies, and even just on the inequalities which the $t_{\varepsilon_{1}, \ell}, t_{\varepsilon_{2}, \ell}, t_{\xi_{1}, \ell}, t_{\xi_{2}, \ell}$ (for $\left.\ell<n(*)\right)$ satisfy.
[Why? Recall $\left\langle\left\langle t_{\varepsilon, \ell}: \ell<n(*)\right\rangle: \varepsilon \in S\right\rangle$ is an indiscernible sequence in the linear order I_{2} (for quantifier free formulas) and M has elimination of quantifiers.]
$\circledast_{1} \bigwedge_{\ell=1,2} \varepsilon(0)<\varepsilon_{\ell}<\varepsilon(1)<\partial \Rightarrow b_{\varepsilon(0)}<{ }_{I} b_{\varepsilon_{1}, \varepsilon_{2}}<_{I} b_{\varepsilon(1)}$.
[Why? By \circledast_{0}, the desired statement $b_{\varepsilon(0)}<_{I} b_{\varepsilon_{1}, \varepsilon_{2}}<_{I} b_{\varepsilon(1)}$ is equivalent to $b_{\varepsilon(0)}<b_{\varepsilon_{1}, \varepsilon_{1}}<b_{\varepsilon(1)}$, which means $b_{\varepsilon(0)}<b_{\varepsilon_{1}}<b_{\varepsilon(1)}$, which holds.]
$\circledast_{2} b_{0,2}<{ }_{I} b_{1}$.
[Why? Otherwise $b_{1} \leq_{I} b_{0,2}$ hence $\varepsilon \in(0, \partial) \Rightarrow b_{\varepsilon}<_{I} b_{0, \varepsilon+1}<_{I} b_{\varepsilon+2}\left(\right.$ by $\left.\circledast_{0}+\circledast_{1}\right)$ so $\left\langle b_{0, \varepsilon}: \varepsilon \in(1, \partial)\right\rangle$ is also an increasing sequence unbounded in $I_{u, x}$ contradicting " w_{1} maximal".]
$$
\circledast_{3} \quad b_{0,2}<b_{1,2} .
$$
[Why? By $\circledast_{0}+\circledast_{2}$ we have $b_{0,4}<b_{1}$ and by \circledast_{1} we have $b_{1}<b_{2,4}$ together $b_{0,4}<b_{2,4}$ so by \circledast_{0} we have $b_{0,2}<b_{1,2}$.]

But then $\left\langle b_{\varepsilon, \partial}: \varepsilon<\partial\right\rangle$ increases (by $\circledast_{3}+\circledast_{0}$) and $\varepsilon<\partial \Rightarrow b_{\varepsilon}=b_{\varepsilon, \varepsilon}<b_{\varepsilon+1, \partial}<$ $b_{\varepsilon+2}\left(\right.$ by \circledast_{1} and \circledast_{2} respectively) hence is an unbounded subset of $I_{u, x}$ contradiction to the maximality of $\left|w_{1}\right|$.

Case 2: $m \backslash w_{1}=\{0, \ldots, m-1\} \backslash w_{1}$ is $\{i(*)\}$.
Subcase 2A: For some $i<m, i \neq i(*)$ and $j:=k_{i} \notin w_{2}$.
Choose such i with $|i-i(*)|$ maximal. For any s let $t_{\varepsilon, \ell, s}$ be $t_{\varepsilon, \ell}$ if $\ell \neq j$ and be s if $\ell=j$.

Let
$I^{\prime}=\left\{s \in I_{u, t_{\varepsilon(*), j}}^{2}: s\right.$ and $t_{\varepsilon(*), j}$ realize the same cut of $\left.\left\{t_{\varepsilon, \ell}: \varepsilon<\partial, \ell \neq j\right\}\right\}$.
Note that $k_{j+1}=k_{j}+1$. Recalling $\boxtimes_{2}(b)$, the cofinality of $I_{2,\left\langle t_{\varepsilon(*), j}\right.}$ is \aleph_{0} and also the cofinality of the inverse of $I_{2,>t_{\varepsilon(*), j}}$ is \aleph_{0}. Recalling the choice of $\left\langle\left(s_{\iota}^{-}, s_{\iota}^{+}\right)\right.$: $\iota<m\rangle$, there is an open interval ${ }^{12}$ of I_{2} around $t_{\varepsilon(*), j}$ which is $\subseteq I^{\prime}$. Note that I^{\prime} is dense in itself and has neither a first nor last member by $\boxtimes_{2}+\boxtimes_{4}(a),(b)$.

As f_{*} is definable, by the choice of M_{0}, M, and of $I^{\prime} \subseteq I_{u, t_{\varepsilon(*), j}}^{2}$ we have: if $\varepsilon<\partial$ and $s \in I^{\prime}$ then $t_{\varepsilon(*), j}$ and s realize the same cut of

$$
I_{u}^{2} \cup\left\{t_{\varepsilon, \ell}: \varepsilon<\partial, j \neq \ell\right\}
$$

hence $f_{*}^{M}\left(\ldots, a_{t_{\varepsilon, \ell, s}}, \ldots\right)_{\ell<n}$ and b_{ε} realize the same cut of I_{u}, which means that $f_{*}\left(\ldots, a_{t_{\varepsilon, \ell, s}}, \ldots\right)_{\ell<n} \in I_{u, x}$, hence by the choice of $\left\langle b_{\varepsilon}: \varepsilon<\partial\right\rangle$ we have

$$
(\exists \xi<\partial)\left[f_{*}\left(\ldots, a_{t_{\varepsilon, \ell, s}}, \ldots\right)<b_{\xi}\right]
$$

So again by the definability (and indiscernibility)

$$
\circledast_{4} \varepsilon<\partial \wedge s \in I^{\prime} \Rightarrow f_{*}^{M}\left(\ldots, a_{t_{\varepsilon, \ell, s}}, \ldots\right)<b_{\varepsilon+1}
$$

As I^{\prime} is dense in itself, what we say on the pair $\left(s, t_{\varepsilon(*), j}\right)$ when $s \in I^{\prime} \wedge s<_{I_{2}} t_{\varepsilon(*), j}$ holds for the pair $\left(t_{\varepsilon(*), j}, s\right)$ when $s \in I^{\prime} \wedge t_{\varepsilon(*), j}<_{I} s$, so

$$
\circledast_{5} \varepsilon<\partial \wedge s \in I^{\prime} \Rightarrow b_{\varepsilon}<f_{*}^{M}\left(\ldots, a_{t_{\varepsilon+1, \ell, s}}, \ldots\right)
$$

More fully, let $s_{1}<_{I_{2}} t_{\varepsilon(*), j}<_{I_{2}} s_{2}$ and $s_{1}, s_{2} \in I^{\prime}$. Then the sequences

$$
\left\langle t_{\varepsilon, \ell}: \ell \neq j, \ell<n(*)\right\rangle^{\wedge}\left\langle s_{1}\right\rangle^{\wedge}\left\langle t_{\varepsilon+1, \ell}: \ell \neq j, \ell<n(*)\right\rangle^{\wedge}\left\langle t_{\varepsilon(*), j}\right\rangle
$$

and $\left\langle t_{\varepsilon, \ell}: \ell \neq j, \quad \ell<n(*)\right\rangle^{\wedge}\left\langle t_{\varepsilon(*), j}\right\rangle^{\wedge}\left\langle t_{\varepsilon+1, \ell}: \ell \neq j, \quad \ell<n(*)\right\rangle^{\wedge}\left\langle s_{2}\right\rangle$ realize the same quantifier free type in I_{2} (recalling $t_{\varepsilon, j}=t_{\varepsilon(*), j}$).

[^11]By $\circledast_{4}+\circledast_{5}$ and indiscernibility we can replace $t_{\varepsilon(*), j}$ by any $t^{\prime} \in I^{\prime}$ which realizes the same cut as $t_{\varepsilon(*), j}$ of $\left\{t_{\varepsilon, \ell}: \varepsilon<\partial, \ell \neq j\right\}$. But if $j>i(*)$ then $\left\{t_{j+1}^{*}, \ldots, t_{n(*)-1}^{*}\right\} \subseteq I_{u}^{2}$ by the choice of j, and the set

$$
I^{\prime \prime}=\left\{t \in I_{2}: \text { if } \varepsilon<\partial, \ell \neq j \text { then } t \neq t_{\varepsilon, \ell} \text { and } t_{\varepsilon, \ell}<_{I_{2}} t \equiv t_{\varepsilon, \ell}<_{I_{2}} t_{j}^{*}\right\}
$$

includes an initial segment of $J_{I_{u}^{2}, t_{\varepsilon(*), j}}^{+}\left(\right.$see $\left.\boxtimes_{4}(d)\right)$ i.e. $(*)_{6}$, so its inverse has cofinality \aleph_{0}. Say $\left\langle s_{n}^{*}: n<\omega\right\rangle$ exemplifies this, so $n<\omega \Rightarrow s_{n+1}^{*}<_{I_{2}} s_{n}^{*}$. So for every $\varepsilon<\partial$ for some $n<\omega, f_{*}^{M}\left(\ldots, a_{t_{\varepsilon+1, \ell}, s_{n}^{*}}, \ldots\right) \in\left(b_{\varepsilon}, b_{\varepsilon+1}\right)_{I}$. So for some $n_{*}<\omega$ this holds for unboundedly many $\varepsilon<\partial$, contradictory to " $\left|w_{2}\right|$ is maximal". Similarly if $j<i(*)$.
Subcase 2B: For every $\varepsilon<\partial$, for some $\xi \in(\varepsilon, \partial)$, the interval of I_{2} which is defined by $t_{\varepsilon, k_{i(*)}}, t_{\xi, k_{i(*)}}$ is not disjoint to I_{u}^{2} (so without loss of generality it has $\geq k_{i(*)+1}-k_{i(*)}$ members of $\left.I_{u}^{2}\right)$.

In this case, as in case 1 , without loss of generality $\left\{k_{i(*)}, \ldots, k_{i(*)+1}\right\} \subseteq w_{2}$ so as $\left|w_{2}\right|$ is maximal this holds. Because subcase 2 A is ruled out, $\left\{t_{\varepsilon, \ell}: \varepsilon<\partial, \ell<\right.$ $n\} \subseteq I_{u}^{2}$ hence $\left\{b_{\varepsilon}: \varepsilon<\partial\right\} \subseteq I_{u}$, a contradiction.
Subcase 2C: None of the above.
As subcase 2B is ruled out, without loss of generality

$$
\left\{t_{\varepsilon, \ell}: \varepsilon<\partial \ell \in\left[k_{i(*)}, k_{i(*)+1}\right)\right\} \subseteq I_{u, t_{\varepsilon(*), k_{i(*)}}^{2}}
$$

Then, as in subcase 2 A , the sequence $\left\langle t_{\varepsilon, k_{i(*)}}: \varepsilon<\partial\right\rangle$ is increasing/decreasing and is unbounded from above/below in $I_{u, t_{\varepsilon(*), k_{i(*)}}^{2}}$ contradiction to $(*)_{6}$.

In more detail, $I^{\prime}:=I_{u, t_{0, k_{i(*)}}}^{2}$ includes all $\left\{t_{\varepsilon, \ell}: \varepsilon<\partial\right.$ and $\left.\ell \in\left[k_{i(*)}, k_{i(*)+1}\right)\right\}$. Also I^{\prime} and its inverse are of cofinality \aleph_{0} by $(*)_{6}$, hence without loss of generality we can find (new) $\left\langle t_{\partial, \ell}: \ell \in\left[k_{i(*)}, k_{i(*)+1}\right)\right\rangle$ such that $t_{\partial, \ell}<I_{2} t_{\partial, \ell+1}, t_{\partial, \ell} \in$ $\left(s_{i(*)}^{-}, s_{i(*)}^{+}\right)_{I_{2}}, \varepsilon<\partial \Rightarrow t_{\varepsilon, \ell_{1}}<I_{2} t_{\partial, \ell} \equiv t_{\varepsilon, \ell_{1}}<t_{\varepsilon+1, \ell_{2}}$, and the convex hull in I_{2} of $\left\{t_{\zeta, \ell}: \zeta \leq \partial\right.$ and $\left.\ell \in\left[k_{i(*)}, k_{i(*)+1}\right]\right\}$ is disjoint to I_{u}^{2}. Let $t_{\partial, \ell}=t_{\partial, \ell}$ for $\ell \notin\left[k_{i(*)}, k_{i(*)+1}\right], \ell<m, b_{\partial}=f_{*}\left(a_{t_{\partial, 0}}, \ldots, a_{t_{\partial, n-1}}\right)$.

Easily $\varepsilon<\partial \Rightarrow b_{\varepsilon}<_{I} b_{\partial}$. As $\varepsilon<\xi<\partial \Rightarrow\left(b_{\varepsilon}, b_{\xi}\right)_{I_{2}} \cap u=\varnothing$, easily $\varepsilon<\partial \Rightarrow$ $\left(b_{\varepsilon}, b_{\partial}\right)_{I_{2}} \cap u=0$, in contradiction to $\left\langle b_{\varepsilon}: \varepsilon<\partial\right\rangle$ being cofinal in $I_{u, x}$.

To finish proving $(*)_{7}$, we have to consider the possibility that when applying \boxtimes_{6}, the exceptional case in $(\mathrm{b}) \bullet_{2}$ of \boxtimes_{6} occurs for some $i<m$; say, for $i(*)$ (see \odot).

Also, without loss of generality $\partial \geq \theta_{2}$ and so without loss of generality $\ell \in$ $w_{2} \Rightarrow t_{\varepsilon, \ell}=t_{\varepsilon(*), \ell}$ and for each $\ell<n(*)$ we have

$$
(\forall \varepsilon, \zeta<\partial)\left(\forall s \in I_{u}^{2}\right)\left[s<_{I_{2}} t_{\varepsilon, \ell} \equiv s<_{I_{2}} t_{\zeta, \ell}\right]
$$

Now we can define $\bar{t}^{\varepsilon, \xi}=\left\langle t_{\ell}^{\varepsilon, \xi}: \ell<n(*)\right\rangle$ as in case 1 and prove $\circledast_{0}-\circledast_{3}$ there.
Clearly all members of $\left\{t_{\varepsilon, \ell}: \varepsilon<\partial, \ell \in\left[k_{i(*)}, k_{i(*)+2}\right)\right\}$ realize the same cut of I_{u}^{2} and we get an easy contradiction.

As we can use only $\left\langle t_{n(*), \varepsilon}: \varepsilon<\partial\right\rangle$ and add dummy variables to f_{*}, without loss of generality $k_{i(*)+1}-k_{i(*)}=k_{i(*)+2}-k_{i(*)+1}$. Let J be $\{1,-1\} \times \partial$ ordered by $\left(\ell_{1}, \varepsilon_{1}\right)<J\left(\ell_{2}, \varepsilon_{2}\right)$ iff $\ell_{1}=1 \wedge \ell_{2}=-1$ or $\ell_{1}=1=\ell_{2} \wedge \varepsilon_{1}<\varepsilon_{2}$ or $\ell_{1}=-1=$ $\ell_{2} \wedge \varepsilon_{1}>\varepsilon_{2}$.

For $\iota \in J$ let $\iota=\left(\ell^{\iota}, \varepsilon^{\iota}\right)=(\ell[\iota], \varepsilon[\iota])$. For $\zeta<\partial$ and $\iota_{1}, \iota_{2} \in J$ we define $\bar{t}_{\zeta, \iota_{1}, \iota_{2}}=\left\langle t_{\zeta, \iota_{1}, \iota_{2}, n}: n<n(*)\right\rangle$ by $t_{\zeta, \iota_{1}, \iota_{2}, n}$ is $t_{\varepsilon\left[\iota_{1}\right], n}$ if $n \in\left[k_{i(*)}, k_{i(*)+1}\right), t_{\varepsilon\left[\iota_{2}\right], n}$ if $n \in\left[k_{i(*)+1}, k_{i(*)+2}\right)$, and $t_{\zeta, n}$ otherwise. Now, letting $b_{\zeta, \iota_{1}, \iota_{2}}=f_{*}\left(\bar{t}_{\zeta, \iota_{1}, \iota_{2}}\right)$,
\circledast_{6} All $b_{\zeta, \iota_{1}, \iota_{2}}$ realize the same cut of I_{u}^{2}.
Now
\circledast_{7} Indiscernibility as in \circledast_{0} holds.

$$
\circledast_{8} \neg\left(b_{\zeta,(1, \varepsilon),(1, \varepsilon+1)} \leq_{I_{*}} b_{\zeta,(1, \varepsilon+2),(1+\varepsilon+3)}\right) .
$$

[Why? Otherwise by indiscernibility, if $\zeta \in(6, \partial)$ then $b_{\zeta,(1, \zeta),(-1,3)}<_{I} b_{\zeta,(-1,5),(-1,4)}$. Hence $\left\langle b_{\zeta,(-1,5),(-1,4)}: \zeta \in(6, \partial)\right\rangle$ is monotonic in I_{*}, all members realizing the fixed cut of I_{u}^{2} and is unbounded in it (by the inequality above), contradicting the maximality of $\left|w_{j}\right|$.]

$$
\circledast_{9} \neg\left(b_{\zeta,(1, \varepsilon+2),(1, \varepsilon+3)}<_{I} b_{\zeta,(1, \varepsilon),(1, \varepsilon+1)}\right) .
$$

[Similarly, as otherwise if $\zeta \in(6, \partial)$ then $b_{\zeta,(1, \zeta),(-1, \zeta)}<_{I} b_{\zeta,(1,4),(1,5)}$. Hence $\left\langle b_{\zeta,(1,4),(1,5)}: \zeta \in(6, \partial)\right\rangle$ contradicts the maximality of $\left(w_{1}\right)$.]

So we have proved $(*)_{7}$.
$(*)_{8}$ if u is μ-reasonable, $x \in I \backslash I_{u}$ then $\operatorname{cf}\left(I_{u, x}\right)=\aleph_{0}$.
$\left[\right.$ Otherwise by $(*)_{7}$ it has a last element; say $b=f_{*}\left(a_{t_{0}}, \ldots, a_{t_{n-1}}\right)$, where $t_{0}, \ldots, t_{n-1} \in$ I_{2} and f_{*} a definable function (without loss of generality, with n minimal). Hence $\left\{a_{t_{0}}, \ldots, a_{t_{n-1}}\right\}$ is transcendentally independent with no repetitions and b is not algebraic over $\left\{a_{t_{0}}, \ldots, a_{t_{n-1}}\right\} \backslash\left\{a_{t_{\ell}}\right\}$ for $\ell<n$. So $\left\{t_{0}, \ldots, t_{n-1}\right\} \nsubseteq I_{u}^{2}$, and let $\ell<n$ be such that $t_{\ell} \notin I_{u}^{2}$, hence there are $s_{0}<_{I_{2}} s_{1}$ such that $t_{\ell} \in\left(s_{0}, s_{1}\right)_{I_{2}}$ and $\left(s_{0}, s_{1}\right)_{I_{2}} \cap I_{u}^{2}=\varnothing$. (Recall $\boxtimes_{4}(\mathrm{a}),(\mathrm{b})$ and $(*)_{6}$ about cofinality \aleph_{0} and I_{2} being dense.) Also without loss of generality $\left\{t_{0}, \ldots, t_{n-1}\right\} \cap\left(s_{0}, s_{1}\right)_{I_{2}}=\left\{t_{\ell}\right\}$; now the function $c \mapsto f_{*}^{M}\left(a_{t_{0}}, \ldots, a_{t_{\ell-1}}, c, a_{t_{\ell+1}}, \ldots, a_{t_{n-1}}\right)$ for $c \in\left(a_{s_{0}}, a_{s_{1}}\right)_{I}$ is increasing or decreasing (cannot be constant by the minimality on n and the elimination of quantifiers for real closed fields and the transcendental independence of $\left\{t_{0}, \ldots, t_{n-1}\right\}$). So we can find $s_{0}^{\prime}, s_{1}^{\prime}$ such that $s_{0}<_{I_{2}} s_{0}^{\prime}<_{I_{2}} t_{\ell}<_{I_{2}} s_{1}^{\prime}<_{I_{2}} s_{1}$ such that

$$
X:=\left\{f_{*}^{M}\left(a_{t_{0}}, \ldots, a_{t_{\ell-1}}, c, a_{t_{\ell+1}}, \ldots, a_{t_{n-1}}\right): c \in\left(a_{s_{0}^{\prime}}, a_{s_{1}^{\prime}}\right)_{I}\right\}
$$

is included in $I_{u, x}$. Again as the function defined above is monotonic on $\left(a_{s_{0}^{\prime}}, a_{s_{1}^{\prime}}\right)_{I}$ so for some value $b^{\prime} \in\left(a_{s_{0}^{\prime}}, a_{s_{1}^{\prime}}\right)$ we have $b<_{I} b^{\prime}$. But b is last in $I_{u, x}$ by our assumption toward contradiction hence $\left(b, b^{\prime}\right)_{I_{u}} \cap I_{u}=\varnothing$. But this is impossible as all members of $\left\{f\left(a_{t_{0}}, \ldots, a_{t_{\ell-1}}, c, a_{t_{\ell+1}}, \ldots, a_{t_{n-1}}\right): c \in\left(a_{s_{1}^{\prime}}, a_{s_{2}^{\prime}}\right)_{I}\right\}$ realize the same cut of I_{u} so $(*)_{8}$ holds.]
$(*)_{9}$ if u is μ-reasonable, $x \in I \backslash I_{u}$ then also the inverse of $I_{u, x}$ has cofinality \aleph_{0}.
[Why? Similarly to the proof of $(*)_{7}+(*)_{8}$, or note that the mapping $y \mapsto-y$ (defined in M) maps I_{u} onto itself and is an isomorphism from I onto its inverse.]
$(*)_{10}$ if u is μ-reasonable, then I_{u} is unbounded in I from below and from above.
[Why? Easy.]
$(*)_{11}$ if h, u_{1}, u_{2} are as in clauses (a),(b),(c) below then the function h_{4} defined below is (well defined and) is, recalling $(*)_{2}(g)$, an order preserving function from $\hat{I}_{u_{1}}$ onto $\hat{I}_{u_{2}}$ mapping u_{1} onto u_{2}. Also, the functions $h_{0}, h_{1}, h_{2}^{*}, h_{2}, h_{3}$ are as stated, where:
(a) $u_{1}, u_{2} \subseteq \zeta$ are μ-reasonable
(b) h is an order preserving function from u_{1} onto u_{2}
(c) (α) For $\alpha \in u_{1}$, we have $\operatorname{cf}(\alpha) \geq \theta_{1} \Leftrightarrow \operatorname{cf}(h(\alpha)) \geq \theta_{1}$.
(β) If $\gamma \in u_{1}$ then $(\forall \alpha<\gamma)\left(\exists \beta \in u_{1}\right)[\alpha \leq \beta<\gamma]$ iff $(\forall \alpha<$ $h(\gamma))\left(\exists \beta \in u_{2}\right)[\alpha \leq \beta<h(\gamma)]$
(d) $\quad(\alpha) h_{1}$ is the [induced-order preserving / induced order-preserving] function from $I_{u_{1}}^{1}$ onto $I_{u_{2}}^{1}$, i.e., $h_{1}\left(\left(\ell, \beta^{\prime}\right)\right)=\left(\ell, \beta^{\prime \prime}\right)$ when $h\left(\beta^{\prime}\right)=$ $\beta^{\prime \prime}<\zeta$ or $\beta^{\prime}=\beta^{\prime \prime} \in[\zeta, \zeta+\omega)$.
(β) Let h_{0} be the partial function from $\zeta+\omega$ into $\zeta+\omega$ such that $h_{0}(\alpha)=\beta \Leftrightarrow(\exists \ell)\left[h_{1}((\ell, \alpha))=(\ell, \beta)\right]$
(e) h_{2}^{*} is the order preserving function from $I_{u_{1}}^{*, 2}$ onto $I_{u_{2}}^{*, 2}$ defined by: for $\eta \in I_{\eta_{1}}^{*, 2}$,

$$
\begin{aligned}
& h_{2}^{*}(\eta)=\left\langle h_{1}(\eta(\ell)): \ell<\ell g(\eta)\right\rangle=\left\langle\left(\ell^{\eta(\ell)}, h_{0}\left(\alpha^{\eta(\ell)}\right)\right): \ell<\ell g(\eta)\right\rangle, \\
& \quad \text { recalling (d). }
\end{aligned}
$$

(f) $h_{2}=h_{2}^{*} \upharpoonright I_{u_{1}}^{2}$ is an order preserving function from $I_{u_{1}}^{2}$ onto $I_{u_{2}}^{2}$.
(g) h_{3} is the unique isomorphism from the real closed field $M_{I_{u_{1}}^{2}}$ onto the real closed field $M_{I_{u_{2}}^{2}}$ mapping a_{t} to $a_{h_{2}(t)}$ for $t \in I_{u_{1}}^{2}$, where for $I^{\prime} \subseteq I_{2}$ we let $M_{I^{\prime}} \subseteq M$ be the real closure of $\left\{a_{t}: t \in I^{\prime}\right\}$ inside M.
(h) h_{4} is the map defined by: $h_{4}(x)=y$ iff $(\alpha) \vee(\beta)$, where
$(\alpha) x \in I_{u_{1}} \wedge y=h_{3}(x)$
(β) For some $a \in I \backslash I_{u_{1}}, b \in I \backslash I_{u_{2}}$ we have $x=I_{u, a}, y \in I_{u, b}$, and $\left(\forall c \in I_{u}\right)\left[c<_{I} a \equiv h_{3}(c)<_{I} b\right]$.
(i) $\hat{I}_{u_{1}}=\operatorname{dom}\left(h_{4}\right)$ and $\hat{I}_{u_{2}}=\operatorname{rang}\left(h_{4}\right)$ ordered naturally.
[Why? Trivially, h_{1} is an order preserving function from $I_{u_{1}}^{1}$ onto $I_{u_{2}}^{1}$. Recall $I_{u_{\ell}}^{2, *}=\left\{\eta \in I_{2}^{*}: \eta(\ell) \in I_{u_{\ell}}^{1}\right.$ for $\left.\ell<\ell g(\eta)\right\}$. So obviously h_{2}^{*} is an order preserving function from $I_{u_{1}}^{*, 2}$ onto $I_{u_{2}}^{*, 2}$. Now $h_{2}=h_{2}^{*} \upharpoonright I_{u_{1}}^{2}$, but does it map $I_{u_{1}}^{2}$ onto $I_{u_{2}}^{2}$? We have excluded some members of $I_{u_{2}}^{*, 2}$ by \circledast above.

But by clauses (c) and (d) (α) of the assumption being excluded/not excluded is preserved by the natural mapping, i.e., h_{2}^{*} maps $I_{u_{1}}^{2}$ onto $I_{u_{2}}^{2}$ hence $h_{2}=h_{2}^{*} \upharpoonright I_{u_{1}}^{1}$ is an isomorphism from $I_{u_{1}}^{1}$ onto $I_{u_{2}}^{1}$. Also by $(*)_{1}$ being the real closure of the ordered field M_{0}, and the uniqueness of "the real closure" h_{3} is the unique isomorphism from the real closed field $M_{I_{u_{1}}^{2}}$ onto $M_{I_{u_{2}}^{2}}$ mapping a_{t} to $a_{h_{2}(t)}$ for $t \in I_{u_{1}}^{2}$.

Let $\left\langle\left(\mathcal{U}_{\varepsilon}^{1}, \mathcal{U}_{\varepsilon}^{2}\right): \varepsilon<\varepsilon^{*}\right\rangle$ list the pairs $\left(\mathcal{U}_{1}, \mathcal{U}_{2}\right)$ such that:
\circledast_{10} (a) \mathcal{U}_{ℓ} has the form $I_{u_{\ell}, x}$ for some $x \in I \backslash I_{u_{\ell}}$ for $\ell=1,2$
(b) for every $a \in I_{u_{1}},\left(\exists y \in \mathcal{U}_{1}\right)\left[a<_{I} y\right] \Leftrightarrow\left(\exists y \in \mathcal{U}_{2}\right)\left[h_{2}(a)<_{I} y\right]$.

Now
$\circledast_{11}\left\langle\mathcal{U}_{\varepsilon}^{\ell}: \varepsilon<\varepsilon^{*}\right\rangle$ is a partition of $I \backslash I_{u_{\ell}}$ for $\ell=1,2$.
[Why? First, note the parallel claim for I_{1}. For this, note that $h_{1}((\ell, 0))=(\ell, 0)$ as $0 \in u_{1} \cap u_{2}$ as u_{1}, u_{2} are μ-reasonable (see clause (e) of $\left.(*)_{4}\right)$ and $h_{1}((\ell, \alpha))=$ $(\ell, \beta) \Leftrightarrow h_{1}((\ell, \alpha+1))=(\ell, \beta+1)$, by clause (b) of $(*)_{4}$ and if $h\left(\left(\ell, \delta_{1}\right)\right)=\left(\ell, \delta_{2}\right), \delta_{1}$ is a limit (equivalently δ_{2} is limit) then

$$
\delta_{1}=\sup \left\{\alpha<\delta:(\ell, \alpha) \in I_{u_{1}}^{1}\right\} \Leftrightarrow \delta_{2}=\sup \left\{\alpha<\delta:(\ell, \alpha) \in I_{u_{2}}^{1}\right\}
$$

Second, note the parallel claim for $h_{2}, I_{u_{\ell}}^{*, 2}, h_{2}^{*}$.
Third, note the parallel claim for $I_{u_{\ell}}^{2}, h_{2}$.
Fourth, note the parallel claim for $I_{u_{\ell}}, h_{3}$ (which is the required one).]
So it follows that
$\circledast_{12} h_{4}$ is as promised.
So we are done proving $(*)_{11}$.
[Why? By clauses (b),(c) of $(*)_{11}$.]
$(*)_{12}$ If u_{1}, u_{2} are μ-reasonable, h is an order preserving mapping from $\hat{I}_{u_{1}}$ onto $\hat{I}_{u_{2}}$ which maps $I_{u_{1}}$ onto $I_{u_{2}}$ then there is an automorphism h^{+}of the linear order I extending $h \upharpoonright I_{u_{1}}$.
[Why? Let $\left\langle\mathcal{U}_{\varepsilon}^{1}: \varepsilon<\varepsilon^{*}\right\rangle$ list $\hat{I}_{u_{1}} \backslash I_{u_{1}}$ and $\mathcal{U}_{\varepsilon}^{2}=h\left(\mathcal{U}_{\varepsilon}^{1}\right)$. Now for every ε we choose $\left\langle a_{\varepsilon, n}^{\ell}: n \in \mathbb{Z}\right\rangle$ such that
$\circledast_{13} \quad$ (a) $a_{\varepsilon, n}^{\ell} \in \mathcal{U}_{\varepsilon}^{\ell}$
(b) $a_{\varepsilon, n}^{\ell}<_{I} a_{\varepsilon, n+1}^{\ell}$ for $n \in \mathbb{Z}$.
(c) $\left\{a_{\varepsilon, n}^{\ell}: n \in \mathbb{Z}, n \geq 0\right\}$ is unbounded from above in $\mathcal{U}_{\varepsilon}^{\ell}$.
(d) $\left\{a_{\varepsilon, n}^{\ell}: n \in \mathbb{Z}, n<0\right\}$ is unbounded from below in $\mathcal{U}_{\varepsilon}^{\ell}$.

This is justified by u_{ℓ} being μ-reasonable by $(*)_{6}, \boxtimes_{4}$. Now define $h_{5}: I \rightarrow I$ by: $h_{5}(x)=h_{4}(x)$ if $x \in I_{u_{1}}$ and otherwise
$h_{5}(x)=a_{\varepsilon, n}^{2}+\left(a_{\varepsilon, n+1}^{2}-a_{\varepsilon, n}^{2}\right)\left(x-a_{\varepsilon, n}^{1}\right) /\left(a_{\varepsilon, n+1}^{1}-a_{\varepsilon, n}^{1}\right)$ if $a_{\varepsilon, n}^{1} \leq_{I_{2}} x<a_{\varepsilon, n+1}^{1}$ and $n \in \mathbb{Z}$. Now check using linear algebra.]
$(*)_{13}\left({ }^{\mu} I\right) / \mathcal{E}_{I, \mu}^{\text {aut }}$ has $\leq 2^{\mu}$ members, recalling that $f_{1} \mathcal{E}_{I, h}^{\text {aut }} f_{2}$ iff f_{1}, f_{2} are functions from μ into I and for some automorphism h of I we have

$$
(\forall \alpha<\mu)\left[h \circ f_{1}(\alpha)=f_{2}(\alpha)\right] .
$$

[Why? Should be clear recalling $\left|I_{u}^{1}\right| \leq \mu$, recalling $(*)_{5},(*)_{11},(*)_{12}$.]
So we have finished proving part (1) of 5.1.

Proof. 5.1(2)
Really the proof is included in the proof of part (1). That is, given $I^{\prime} \subseteq I$ of cardinality $<\theta_{2}$ by $(*)_{5}$ there is a μ-reasonable $u \subseteq \zeta$ such that $I^{\prime} \subseteq I_{u}$ and $|u|=\mu+\left|I^{\prime}\right|$. Now clearly
$(*)_{14}$ For μ-reasonable $u \subseteq \zeta$, the family $\left\{I_{u, x}^{2}: x \in I_{2} \backslash I_{u}^{2}\right\}$ has $\leq \mu+|u|$ members.
[Why? By \boxtimes_{5}.]
$(*)_{15}$ for a μ-reasonable $u \subseteq \zeta$, the family $\left\{I_{u, x}: x \in I \backslash I_{u}\right\}$ has $\leq \mu$ members.
[Why? By $(*)_{16}$ below.]
$(*)_{16}$ if u is μ-reasonable then $I_{u, b_{1}}=I_{u, b_{2}}$ when
(a) $b_{k}=f\left(a_{t_{k, 0}}, \ldots, a_{t_{k, n-1}}\right)$ for $k=1,2$.
(b) f a definable function in M.
(c) $t_{k, 0}<_{I_{2}} \ldots<_{I_{2}} t_{k, n-1}$ for $k=1,2$.
(d) $t_{1, \ell} \in I_{u}^{2} \vee t_{2, \ell} \in I_{u}^{2} \Rightarrow t_{1, \ell}=t_{2, \ell}$
(e) if $t_{1, \ell} \notin I_{u}^{2}$ then $I_{u, t_{1, \ell}}^{2}=I_{u, t_{2}, \ell}^{2}$ for $\ell=0, \ldots, n-1$.
[Why? Use the proof of $(*)_{11}$, for $u_{1}=u=u_{2}, h=\operatorname{id}_{u_{2}}$ so $\mathcal{U}_{\varepsilon}^{1}=\mathcal{U}_{\varepsilon}^{2}$ for $\varepsilon<\varepsilon^{*}$.
By the assumptions, for each ℓ there is ε such that $a_{t_{\varepsilon, 1, \ell}}, a_{t_{2, \ell}} \in \mathcal{U}_{\varepsilon}^{1}=\mathcal{U}_{\varepsilon}^{2}$. Now for each $\varepsilon<\varepsilon^{*}$ there is an automorphism π_{ε} of $\mathcal{U}_{\varepsilon}^{1}$ as a linear order mapping $t_{1, \ell}$ to $t_{2, \ell}$ if $t_{1, \ell} \in \mathcal{U}_{\varepsilon}^{1}$. Let $\pi=\bigcup\left\{\pi_{\varepsilon}: \varepsilon<\varepsilon^{*}\right\} \cup \operatorname{id}_{I_{u}}$.]
$(*)_{17}$ If $n<\omega, t_{0}^{\ell}<_{I} t_{1}^{\ell}<_{I} \ldots<_{I} t_{n-1}^{\ell}$ for $\ell=1,2$, and $I_{u, t_{k}^{1}}=I_{u, t_{k}^{2}}$ for $k=0,1, \ldots, n-1$ then for some automorphism g of I over I_{u} we have $k<n \Rightarrow g\left(t_{k}^{1}\right)=t_{k}^{2}$.
[Why? We shall use g such that $g \upharpoonright I_{u}=\operatorname{id}_{I_{u}}$ and $g \upharpoonright I_{u, x}$ is an automorphism of $I_{u, x}$ for each $x \in I \backslash I_{u}$. Clearly it suffices to deal with the case

$$
\left\{t_{k}^{\ell}: \ell<n \text { and } \ell \in\{1, n\}\right\} \subseteq I_{u, x}
$$

for one $x \in I \backslash I_{u}$.
[Obviously one of those is supposed to be a k.]
We choose $s_{1}<s_{2}$ from $I_{u, x}$ such that $s_{1}<_{I} t_{k}^{\ell}<s_{2}$ for $\ell=1,2$. We choose $g \upharpoonright I_{u, x}$ such that it is the identity on $\left\{s \in I_{u, x}: s \leq_{I} s_{1}\right.$ or $\left.s_{2} \leq_{I} s\right\}$. Now stipulate $t_{-1}=s_{1}, t_{n}=s_{2}$ and $\left[g \upharpoonright I_{u, x}\right] \operatorname{maps}\left(t_{k}^{1}, t_{k+1}^{1}\right)_{I}$ onto $\left(t_{k}^{2}, t_{k+1}^{2}\right)_{I}$ for $k=-1,0, \ldots, n-1$ as in the definition above.]

So we have completed the proof of part (2) of 5.1.

Proof. 5.1(3) Obvious from the Definition (0.14(9)) and the construction.

5.1(4) First

\odot_{1} There is $J_{1}^{*} \subseteq I$ of cardinality μ^{+}such that for every $J_{2}^{*} \subseteq I$ of cardinality $\leq \mu$, there is an automorphism π of I which maps J_{2}^{*} into J_{1}^{*}.
[Why? Let $u=\mu^{+} \times \mu^{+} \subseteq \zeta$ and let $J_{1}^{*}=I_{u}$. Clearly u has cardinality μ^{+}and so does $J_{1}^{*}=I_{u}$. So suppose $J_{2}^{*} \subseteq I$ has cardinality $\leq \mu$. There is $u_{2} \subseteq \zeta$ of cardinality μ such that $J_{2}^{*} \subseteq I_{u_{2}}$ and without loss of generality u_{2} is reasonable. We define an increasing function h from u_{2} into u_{1}, by defining $h(\alpha)$ by induction on α :
$(*)_{17}$ If $\operatorname{cf}(\alpha) \leq \mu$ then $h(\alpha)=\bigcup\left\{h(\beta)+1: \beta \in u_{2} \cap \alpha\right\}$.
$(*)_{18}$ If $\operatorname{cf}(\alpha)>\mu$ then $h(\alpha)=\bigcup\left\{h(\beta)+1: \beta \in u_{2} \cap \alpha\right\}+\mu^{+}$.
Let $u_{1}:=\left\{h(\alpha): \alpha \in u_{2}\right\}$ so $u_{1} \subseteq u$. Now h, u_{1}, u_{2} satisfies clauses (a),(b),(c) of $(*)_{11}$ hence $h_{1}, h_{2}^{*}, h_{2}, h_{3}, h_{4}, \hat{I}_{u_{1}}, \overline{\hat{I}}_{u_{2}}$ are as there.

By $(*)_{12}$ there is an isomorphism h^{+}of I which extends h_{4}; now does h^{+}map J_{2}^{*} into J_{1}^{*} ? Yes, as $J_{2}^{*} \subseteq I_{u_{2}}$ and $h^{+} \upharpoonright I_{u_{2}}$ is an isomorphism from $I_{u_{2}}$ onto $I_{u_{1}}$ but $I_{u_{1}} \subseteq I_{u}$ and $I_{u}=J_{1}^{*}$, so we are done proving \odot_{1}.]

Finally
\odot_{2} Part (4) of 5.1 holds. I.e., if $I_{0}^{*} \subseteq I$ with $\left|I_{0}^{*}\right|<\theta_{2}$ then for some $I_{1}^{*} \subseteq I$ of cardinality $\leq \mu^{+}+\left|I_{0}^{*}\right|$, for every $J \subseteq I$ of cardinality $\leq \mu$, there is an automorphism of I over I_{0}^{*} mapping J into I_{1}^{*}.
Why? Given $I_{0}^{*} \subseteq I$ of cardinality $<\theta_{2}$ we can find $u_{1} \subseteq \zeta$ of cardinality $\mu+\left|I_{0}^{*}\right|$ such that $I_{0}^{*} \subseteq I_{u_{1}}$. By $(*)_{5}$ we can find a μ-reasonable set $u_{2} \subseteq \zeta$ of cardinality $\mu+\left|u_{1}\right|$ such that $u_{1} \subseteq u_{2}$.

Let $\left\langle\mathcal{U}_{\varepsilon}: \varepsilon<\varepsilon^{*}\right\rangle$ list the sets of the form $I_{u_{2}, x}, x \in I_{2} \backslash I_{u_{1}}$, so by $\square_{5}, \varepsilon^{*} \leq \mu+\left|I_{0}^{*}\right|$. For each ε we choose $\left\langle a_{\varepsilon, n}: n \in \mathbb{Z}\right\rangle$ as in \circledast_{13} from the proof of $(*)_{12}$. For each $\varepsilon<\varepsilon^{*}$ and $n \in \mathbb{Z}$ let $\pi_{\varepsilon, n}$ be an isomorphism from I onto $\left(a_{\varepsilon, n}, a_{\varepsilon, n+1}\right)_{I}$; it exists by the properties of ordered fields. Let $J_{1}^{*} \subseteq I$ be as in \odot_{1} above and let

$$
I_{2}^{*}=I_{1}^{*} \cup\left\{a_{\varepsilon, n}: \varepsilon<\varepsilon^{*} \text { and } n<\omega\right\} \cup\left\{\pi_{\varepsilon, n}\left(J_{1}^{*}\right): \varepsilon<\varepsilon^{*} \text { and } n \in \mathbb{Z}\right\}
$$

Easily, I_{2}^{*} is as required.
5.1(5) By 0.12.
$\square_{5.1(3)-(5)}$

Remark 5.3. Concerning $(*)_{11}$, we could have used more time.
$(*)_{11}^{\prime} h_{2}: I_{u_{1}}^{2} \rightarrow I_{u_{2}}^{2}$ is an order preserving function and onto, $h_{3}: I_{u_{1}} \rightarrow I_{u_{2}}$ is an isomorphism, and $h_{1}: \hat{I}_{u_{2}} \rightarrow \hat{I}_{u_{2}}$ is order preserving and onto.

§ 6. Linear orders and equivalence relations

This section deals with a relative of the stability spectrum. We ask: what can be the number of equivalence classes in ${ }^{\mu} I$ for an equivalence relation on ${ }^{\mu} I$ which is so called "invariant": in fact definable (essentially by a quantifier free infinitary formula, mainly for well ordered I).

It is done in a very restricted context, but via EM-models has useful conclusions, for AEC and also for AEC with amalgamation; i.e. it is used in 7.9.

There are two versions; one for well ordering and one for the class of linear orders both expanded by unary relations.

On $\tau_{\alpha(*)}^{*}, K_{\tau_{\alpha(*)}^{*}}^{\text {lin }}$ see $0.14(4)$. We may replace sequences, i.e. $\operatorname{inc}_{J}(I)$, by subsets of I of cardinality $|J|$, this may help to eliminate $2^{|J|}$ later, but at present it seems not to help in the final bounds in $\S 7$. We do here only enough for $\S 7$.

Context 6.1. We fix $\alpha(*), \bar{u}^{*}=\left(u^{-}, u^{+}\right)$such that
(a) $\alpha(*)$ is an ordinal ≥ 1
(b) $u^{-} \subseteq \alpha(*)$
(c) $u^{+} \subseteq \alpha(*)$.

Remark 6.2.1) The main cases are
(A) $\alpha(*)=1$, so $K_{\tau_{\alpha(*)}^{*}}^{\text {lin }}$ is the class of linear orders
(B) $\alpha(*)=2, u^{+}=\varnothing, u^{-}=\{0\}$.
2) Usually the choice of the parameters does not matter.

Definition 6.3. 1) For $I, J \in K_{\tau_{\alpha(*)}^{*}}^{\text {lin }}$, i.e. both linear orders expanded by a partition $P_{\alpha}(\alpha<\alpha(*))$, pedantically the interpretation of the $P_{\alpha}{ }^{\prime}$ s, let inc ${ }_{J}^{\prime}(I)$ be the set of embedding of J into I; see below, we denote members by h.
2) Recalling $\bar{u}^{*}=\left(u^{-}, u^{+}\right)$where $u^{-} \cup u^{+} \subseteq \alpha(*)$ let $\operatorname{inc}_{J}^{\bar{u}^{*}}(I)$ be the set of h such that
(a) h is an embedding of J into I, i.e. a one-to-one, order preserving function mapping P_{α}^{J} into P_{α}^{I} for $\alpha<\alpha(*)$.
(b) If $\alpha \in u^{-}, t \in P_{\alpha}^{J}$, and $s<_{I} h(t)$ then for some $t_{1}<{ }_{J} t$ we have $s \leq_{I} h\left(t_{1}\right)$.
(c) If $\alpha \in u^{+}, t \in P_{\alpha}^{J}$, and $h(t)<_{I} s$ then for some t_{1} we have $t<_{J} t_{1}$ and $h\left(t_{1}\right) \leq_{I} s$.

Concerning \bar{u}^{*}

Observation 6.4. 1) For any $h \in \operatorname{inc}_{J}^{\bar{u}^{*}}(I)$:
(A) If t is the successor of s in J (i.e. $s<{ }_{J} t$ and $(s, t)_{J}=\varnothing$) and $t \in P_{\alpha}^{J}$, $\alpha \in u^{-}$then $h(t)$ is the successor of $h(s)$ in I.
(B) if $\left\langle t_{i}: i<\delta\right\rangle$ is $<_{J}$-increasing with limit $t_{\delta} \in J$ (i.e. $i<\delta \Rightarrow t_{i}<{ }_{J} t_{\delta}$ and $\left.\varnothing=\bigcap\left\{\left(t_{i}, t_{\delta}\right)_{J}: i<\delta\right\}\right)$ and $t_{\delta} \in P_{\alpha}^{J}, \alpha \in u^{-}$then $\left\langle h\left(t_{i}\right): i<\delta\right\rangle$ is $<_{I}$-increasing with limit $h\left(t_{\delta}\right)$ in I.
(C) If t is the first member of J and $t \in P_{\alpha}^{J}, \alpha \in u^{-}$then $h(t)$ is the first member of I.
2) If $h_{1}, h_{2} \in \operatorname{inc}_{J}^{\bar{u}^{*}}(I) \underline{\text { then }}$
(A) If t is the successor of s in J and $t \in P_{\alpha}^{J}, \alpha \in u^{-}$then $h_{1}(s)=h_{2}(s) \Leftrightarrow$ $h_{1}(t)=h_{2}(t)$ and $h_{1}(s)<_{I} h_{2}(s) \Leftrightarrow h_{1}(t)<_{I} h_{2}(t)$ and $h_{1}(s)>_{I} h_{2}(s) \Leftrightarrow$ $h_{1}(t)>_{I} h_{2}(t)$.
(B) If $\left\langle t_{i}: i<\delta\right\rangle$ is $<{ }_{J}$-increasing with limit t_{δ} and $t_{\delta} \in P_{\alpha}^{J}, \alpha \in u^{-}$, then

$$
(\forall i<\delta)\left[h_{1}\left(t_{i}\right)=h_{2}\left(t_{i}\right)\right] \Rightarrow h_{1}\left(t_{\delta}\right)=h_{2}\left(t_{\delta}\right)
$$

Moreover,

$$
\begin{aligned}
& (\forall i<\delta)(\exists j<\delta)\left[h_{1}\left(t_{i}\right)<_{I} h_{2}\left(t_{j}\right) \wedge h_{2}\left(t_{i}\right)<_{I} h_{1}\left(t_{j}\right)\right] \Rightarrow h_{1}\left(t_{\delta}\right)=h_{2}\left(t_{\delta}\right) \\
& \quad \text { and also }(\exists j<\delta)(\forall i<\delta)\left(h_{1}\left(t_{i}\right)<_{I} h_{2}\left(t_{j}\right)\right) \Rightarrow h_{1}\left(t_{\delta}\right)<_{I} h_{2}\left(t_{\delta}\right) .
\end{aligned}
$$

3) Similar to parts (1) + (2) for $\alpha \in u^{+}$(inverting the orders of course).
4) $\operatorname{inc}_{I}^{\prime}(J)=\operatorname{inc}_{I}^{(\varnothing, \varnothing)}(J)$.

Proof. Straight (and see the proof of 6.7).
Convention 6.5. 1) $\alpha(*), \bar{u}^{*}$ will be constant, so usually we shall not mention them (e.g. we will write $\operatorname{inc}_{J}(I)$ for $\left.\operatorname{inc}_{I}^{\bar{u}^{*}}(I)\right)$. Pedantically, below we should have written $\mathbf{e}^{\bar{u}^{*}}(J, I)$ and $\mathbf{e}_{*}^{\bar{u}^{*}}(J)$, and also in notions like 'reasonable' and 'wide' in Definition 6.10 which mention \bar{u}^{*}.
2) I, J will denote members of $K_{\tau_{\alpha(*)}^{*}}^{\text {lin }}$.

Below we use mainly " e-pairs" (and weak e-pairs and the reasonable case).
Definition 6.6.1) let $\mathbf{e}(J)$ be the set of equivalence relations on some subset of J such that each equivalence class is a convex subset of J.
2) For $h_{1}, h_{2} \in \operatorname{inc}_{J}(I)$ we say that $\left(h_{1}, h_{2}\right)$ is a strict e-pair (for $\left.(I, J)\right)$ when $e \in \mathbf{e}(J)$ and $\left(h_{1}, h_{2}\right)$ satisfies
(a) $s \in J \backslash \operatorname{dom}(e)$ iff $h_{1}(s)=h_{2}(s)$.
(b) If $s<_{J} t$ and $s / e \neq t / e$ (so $\left.s, t \in \operatorname{dom}(e)\right)$ then $h_{1}(s)<_{I} h_{2}(t)$ and $h_{2}(s)<_{I}$ $h_{1}(t)$.
(c) If $s<_{J} t$ and $s / e=t / e$ (so $\left.s, t \in \operatorname{dom}(e)\right)$ then $h_{1}(t)<_{I} h_{2}(s)$.

2A) We say that $\left(h_{1}, h_{2}\right)$ is a strict (e, \mathcal{Y})-pair, where $e \in \mathbf{e}(J)$ and $\mathcal{Y} \subseteq \operatorname{dom}(e) / e$, when clauses (a) $+(\mathrm{b})$ from part (2) hold and
$(c)^{\prime}$ if $s<_{J} t$ and $s / e=t / e$ (so $\left.s, t \in \operatorname{dom}(e)\right)$ then

$$
\left[\left(h_{1}(t)<_{I} h_{2}(s)\right] \equiv[s / e \in \mathcal{Y}] \equiv\left[h_{1}(s)<h_{2}(t)\right]\right.
$$

2B) We say that $\left(h_{1}, h_{2}\right)$ is an e-pair when $\left(h_{1}, h_{2}\right)$ is a strict (e, \mathcal{Y})-pair for some \mathcal{Y}. (This relation is symmetric, see below.)
3) We say that $\left(h_{1}, h_{2}\right)$ is a weak e-pair where $h_{1}, h_{2} \in \operatorname{inc}_{J}(I)$ when clauses (a),(b) hold. (This, too, is symmetric!)
4) For $h_{1}, h_{2} \in \operatorname{inc}_{J}(I)$, let $e=\mathbf{e}\left(h_{1}, h_{2}\right)$ be the (unique) $e \in \mathbf{e}(J)$ such that (see 6.8(1) below)
(a) $\operatorname{dom}(e)=\left\{s \in J: h_{1}(s) \neq h_{2}(s)\right\}$
(b) $\left(h_{1}, h_{2}\right)$ is a weak e-pair.
(c) If $e^{\prime} \in \mathbf{e}(J)$ and $\left(h_{1}, h_{2}\right)$ is a weak e^{\prime}-pair then $\operatorname{dom}(e) \subseteq \operatorname{dom}\left(e^{\prime}\right)$ and e refines $e^{\prime} \upharpoonright \operatorname{dom}(e)$.
5) If $e \in \mathbf{e}(J)$ and $\mathcal{Y} \subseteq \operatorname{dom}(e) / e$ then we let $\operatorname{set}(\mathcal{Y})=\{s \in J: s / e \in \mathcal{Y}\}$ and $e \upharpoonright \mathcal{Y}=e \upharpoonright \operatorname{set}(\mathcal{Y})$.
6) Let $\mathbf{e}(J, I)$ be the set of $e \in \mathbf{e}(J)$ such that there is an e-pair.
7) Let $\mathbf{e}_{*}(J)=\bigcup\left\{\mathbf{e}(J, I): I \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}^{*}}\right\}$.

Concerning \bar{u}^{*}
Observation 6.7. Assume that $e \in \mathbf{e}(J, I)$.
0) (a) If t is the first member of J and $t \in P_{\alpha}^{J}, \alpha \in u^{-}$then $t \notin \operatorname{dom}(e)$.
(b) If $t \in \operatorname{dom}(e)$ and t is the first member of t / e and $t \in P_{\alpha}^{J}$ then $\alpha \notin u^{-}$.

1) If t is the $<_{J}$-successor of s and $t \in P_{\alpha}^{J}, \alpha \in u^{-}$then $s \in \operatorname{dom}(e) \Leftrightarrow t \in$ $\operatorname{dom}(e)$ and $s \in \operatorname{dom}(e) \Rightarrow s \in t / e$.
2) If $\left\langle t_{i}: i<\delta\right\rangle$ is $<_{J}$-increasing with limit t_{δ} and $t_{\delta} \in P_{\alpha}^{J}$ and $\alpha \in u^{-}$then: (a) If $(\forall i<\delta)\left[t_{i} \notin \operatorname{dom}(e)\right]$ then $t_{\delta} \notin \operatorname{dom}(e)$.
(b) If $(\forall i<\delta)\left(\neg t_{i}\right.$ e $\left.t_{i+1}\right)$ or just $(\forall i<\delta)(\exists j<\delta)\left[i<j \wedge \neg t_{i}\right.$ e $\left.t_{j}\right]$ then $t_{\delta} \notin \operatorname{dom}(e)$.
(c) If $(\forall i<\delta)\left(t_{i} \in t_{0} / e\right)$ then $t_{\delta} \in t_{0} / e$.
3) Similar to parts (0),(1),(2) when $\alpha \in u^{+}$(inverting the order, of course).
4) $\mathbf{e}_{*}(J)$ is the family of $e \in \mathbf{e}(J)$ satisfying the requirements in parts (0),(1),(2),(3) above so if $\bar{u}^{*}=(\varnothing, \varnothing)$ then $\mathbf{e}_{*}(J)=\mathbf{e}(J)$.

Proof. Easy by 6.4, e.g.
Part (1): We are assuming $e \in \mathbf{e}(J, I)$ hence by Definition 6.6 there is an e-pair $\left(h_{1}, h_{2}\right)$ where $h_{1}, h_{2} \in \operatorname{inc}_{J}(I)$. Now for $\ell=1,2$, clearly $h_{\ell}(s), h_{\ell}(t) \in I$ and as $s<{ }_{J} t$ we have $h_{\ell}(s)<h_{\ell}(t)$. Now if $h_{\ell}(t)$ is not the $<_{I}$-successor of $h_{\ell}(s)$ then there is $s_{\ell}^{\prime} \in\left(h_{\ell}(s), h_{\ell}(t)\right)_{I}$ hence by clause (b) of Definition 6.3(2) there is $s_{\ell}^{*} \in[s, t)_{J}$ such that $s_{\ell}^{\prime} \leq_{I} h_{\ell}\left(s_{\ell}^{*}\right)<_{I} h_{\ell}(t)$ so as $h_{\ell}(s)<_{I} s_{\ell}^{\prime}$ we have $h_{\ell}(s)<_{I} h_{\ell}\left(s_{\ell}^{*}\right)<_{I} h_{\ell}(t)$ hence $s<_{I} s_{\ell}^{*}<_{J} t$, contradiction to the assumption " t is the successor of s in J ". So indeed $h_{\ell}(t)$ is the successor of $h_{\ell}(s)$ in I.

As this holds for $\ell=1,2$, clearly $h_{1}(s)=h_{2}(s) \Leftrightarrow h_{1}(t)=h_{2}(t)$ but by Definition 6.3(2) we know $s \in \operatorname{dom}(e) \Leftrightarrow\left[h_{1}(s) \neq h_{2}(s)\right]$ and similarly for t hence $s \in$ $\operatorname{dom}(e) \Leftrightarrow t \in \operatorname{dom}(e)$. Lastly, assume $s, t \in \operatorname{dom}(e)$, but s, t are nor e-equivalent so by Definition 6.6(2) clause (b) we have $h_{1}(s)<_{I} h_{2}(t) \wedge h_{2}(s)<_{I} h_{1}(t)$ clear contradiction.

Part (2): We leave clauses (a),(b) to the reader.
For clause (c) of part (2), if $t_{\delta} \notin t_{0} / e$ then choose $h_{1}, h_{2} \in \operatorname{inc}_{J}^{\bar{u}^{*}}(I)$ such that $\left(h_{1}, h_{2}\right)$ is an e-pair, hence an (e, \mathcal{Y})-pair for some $\mathcal{Y} \subseteq \operatorname{dom}(e) / e$. If $\left(t_{0} / e\right) \in \mathcal{Y}$ then $h_{2}\left(t_{0}\right)$ is above $\left\{h_{1}\left(t_{i}\right): i<\delta\right\}$ by $<_{I}$ so we have $h_{1}\left(t_{\delta}\right) \leq_{I} h_{2}\left(t_{0}\right)$ but if $t_{\delta} \notin t_{0} / e$ this contradicts clause (b) in Definition 6.6(2),(2A). The proof when $t_{0} / e \notin \mathcal{Y}$ is similar.

Observation 6.8. Let $h_{1}, h_{2} \in \operatorname{inc}_{J}(I)$ and $e \in \mathbf{e}(J)$.

1) $\mathbf{e}\left(h_{1}, h_{2}\right)$ is well defined.
2) $\left(h_{1}, h_{2}\right)$ is a strict $\left(e, \mathcal{Y}_{1}\right)$-pair iff $\left(h_{2}, h_{1}\right)$ is a strict $\left(e, \mathcal{Y}_{2}\right)$-pair when $\left(\mathcal{Y}_{1}, \mathcal{Y}_{2}\right)$
is a partition of $\operatorname{dom}(e) / e$.
3) $\left(h_{1}, h_{2}\right)$ is a strict e-pair iff $\left(h_{2}, h_{1}\right)$ is a strict (e, \varnothing)-pair.
4) $\left(h_{1}, h_{2}\right)$ is an e-pair iff $\left(h_{2}, h_{1}\right)$ is an e-pair.
5) $\left(h_{1}, h_{2}\right)$ is a weak e-pair iff $\left(h_{2}, h_{1}\right)$ is a weak e-pair.
6) If $\left(h_{1}, h_{2}\right)$ is a strict e-pair then $\left(h_{1}, h_{2}\right)$ is an e-pair which implies $\left(h_{1}, h_{2}\right)$ being a weak e-pair.
7) If $e_{\alpha} \in \mathbf{e}(J)$ for $\alpha<\alpha^{*}$, then

$$
e:=\bigcap\left\{e_{\alpha}: \alpha<\alpha^{*}\right\}=\left\{(s, t): s, t \text { are } e_{\alpha} \text {-equivalent for every } \alpha<\alpha^{*}\right\}
$$

belongs to $\mathbf{e}(J)$ with $\operatorname{dom}(e)=\bigcap\left\{\operatorname{dom}\left(e_{\alpha}\right): \alpha<\alpha^{*}\right\}$.
8) If $e \in \mathbf{e}(J, I)$ then for every $\mathcal{Y} \subseteq \operatorname{dom}(e) / e$ also $e \upharpoonright \operatorname{set}(\mathcal{Y})$ belongs to $\mathbf{e}(J, I)$ and there is a strict $(e \upharpoonright \operatorname{set}(\mathcal{Y}))$-pair $\left(h_{1}^{\prime}, h_{2}^{\prime}\right)$; moreover, for every $\mathcal{Y}_{1} \subseteq \mathcal{Y}$ there is a strict $\left(e \upharpoonright \operatorname{set}(\mathcal{Y}), \mathcal{Y}_{1}\right)$-pair.

Proof. Easy, e.g.:

1) Let
$e=\left\{\left(s_{1}, s_{2}\right): h_{1}\left(s_{\ell}\right) \neq h_{2}\left(s_{\ell}\right)\right.$ for $\ell=1,2$ and if $s_{1} \neq s_{2}$ then for some $t_{1}<{ }_{J} t_{2}$ we have $\left\{s_{1}, s_{2}\right\}=\left\{t_{1}, t_{2}\right\}$ and there is no initial segment J^{\prime} of J such that

$$
J^{\prime} \cap\left\{t_{1}, t_{2}\right\}=\left\{t_{1}\right\} \text { and }
$$

$$
\left.\left(\forall t^{\prime} \in J^{\prime}\right)\left(\forall t^{\prime \prime} \in J \backslash J^{\prime}\right)\left[h_{1}\left(t^{\prime}\right)<_{I} h_{2}\left(t^{\prime \prime}\right) \wedge h_{2}\left(t^{\prime}\right)<_{I} h_{1}\left(t^{\prime \prime}\right)\right]\right\}
$$

Clearly e is an equivalence relation on $\left\{t \in J: h_{1}(t) \neq h_{2}(t)\right\}$ and each equivalence class is convex hence $e_{1} \in \mathbf{e}(J)$, so clauses (a),(b) of 6.6(1),(4) holds. Easily e is as required.
8) Let $\left(h_{1}, h_{2}\right)$ be an e-pair and $\mathcal{Y}_{1}, \mathcal{Y}_{2}, \mathcal{Y}_{3}$ be a partition of $\operatorname{dom}(e) / e$. We define $h_{1}^{\prime}, h_{2}^{\prime} \in \operatorname{inc}_{J}(I)$ as follows, for $\ell \in\{1,2\}$
(a) If $t \in J \backslash \operatorname{dom}(e)$ then $h_{\ell}^{\prime}(t)=h_{1}(t)\left(=h_{2}(t)\right)$.
(b) If $t \in \operatorname{set}\left(\mathcal{Y}_{1}\right)$ then $h_{\ell}^{\prime}(t)=h_{1}(t)$.
(c) If $t \in \operatorname{set}\left(\mathcal{Y}_{2}\right)$ then $h_{\ell}^{\prime}(t)$ is $\min \left\{h_{1}(t), h_{2}(t)\right\}$ if $\ell=1$, and is $\max \left\{h_{1}(t), h_{2}(t)\right\}$ if $\ell=2$.
(d) If $t \in \operatorname{set}\left(\mathcal{Y}_{3}\right)$ then $h_{\ell}^{\prime}(t)$ is $\max \left\{h_{1}(t), h_{2}(t)\right\}$ if $\ell=1$ and is $\min \left\{h_{1}(t), h_{2}(t)\right\}$ if $\ell=2$.
Now $\left(h_{1}^{\prime}, h_{2}^{\prime}\right)$ is a strict $\left(e \upharpoonright\left(\operatorname{set}\left(\mathcal{Y}_{2}\right) \cup \operatorname{set}\left(\mathcal{Y}_{3}\right)\right), \mathcal{Y}_{2}\right)$-pair, so we are done.
Definition 6.9.1) For a subset u of $J \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}}$ we define $e=e_{J, u} \in \mathbf{e}(J)$ on $J \backslash u$ as follows:

$$
s_{1} \text { e } s_{2} \Leftrightarrow(\forall t \in u)\left[t<_{J} s_{1} \equiv t<_{J} s_{2}\right] .
$$

2) For $I, J \in K_{\alpha(*)}^{\operatorname{lin}}$, we say that the pair (I, J) is non-trivial when $\mathbf{e}(J, I) \neq \varnothing$.

Definition 6.10.1) For $h_{0}, \ldots, h_{n-1} \in \operatorname{inc}_{J}(I)$ let

$$
\operatorname{tp}_{\mathrm{qf}}^{J}\left(\left\langle h_{0}, \ldots, h_{n-1}\right\rangle, I\right)=\left\{(\ell, m, s, t): s, t \in J \text { and } h_{\ell}(s)<h_{m}(t)\right\} .
$$

We may write $\operatorname{tp}_{\mathrm{qf}}^{J}\left(h_{0}, \ldots, h_{n-1} ; I\right)$ and we usually omit J as it is clear from the context.
2) For $h_{1}, h_{2} \in \operatorname{inc}_{J}(I)$ let eq $\left(h_{1}, h_{2}\right)=\left\{s \in J: h_{1}(s)=h_{2}(s)\right\}$.
3) We say that the pair (I, J) is a reasonable $(\mu, \alpha(*))$-base when:
(a) $I, J \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}},|J| \leq \mu$, and the pair (I, J) is non-trivial.
(b) If $e \in \mathbf{e}(J, I), h_{1}, h_{2} \in \operatorname{inc}_{J}(I)$, and $\left(h_{1}, h_{2}\right)$ is an e-pair then we can find $h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime} \in \operatorname{inc}_{J}(I)$ and $\mathcal{Y} \subseteq \operatorname{dom}(e) / e$ such that
$(\alpha) \mathrm{tp}_{\mathrm{qf}}\left(\left(h_{1}^{\prime}, h_{2}^{\prime}\right), I\right)=\operatorname{tp}_{\mathrm{qf}}\left(\left(h_{1}, h_{2}\right), I\right)$
$(\beta)\left(h_{1}^{\prime}, h_{3}^{\prime}\right)$ and $\left(h_{2}^{\prime}, h_{3}^{\prime}\right)$ are strict (e, \mathcal{Y})-pairs.
4) We say that the pair (I, J) is a wide $(\lambda, \mu, \alpha(*))$-base when:
(a) $I, J \in K_{\tau_{\alpha(*)}^{*}}^{\lim _{n}^{n}},|J| \leq \mu$, and the pair (I, J) is non-trivial.
(b) for every $e \in \mathbf{e}(J, I)$ there is a sequence $\bar{h}=\left\langle h_{\alpha}: \alpha<\lambda\right\rangle$ such that
$(\alpha) h_{\alpha}$ is an embedding of J into I.
(β) If $\alpha<\beta<\lambda$ then $\left(h_{\alpha}, h_{\beta}\right)$ is an e-pair.
5) We say that the pair (I, J) is a strongly wide $(\lambda, \mu, \alpha(*))$-base when:
(a) $I, J \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}}$, the pair (I, J) is non-trivial, and J has cardinality $\leq \mu$.
(b) For every $e \in \mathbf{e}(J, I)$ and $\mathcal{Y} \subseteq \operatorname{dom}(e) / e$ there is $\bar{h}=\left\langle h_{\alpha}: \alpha<\lambda\right\rangle$ such that (α) $h_{\alpha} \in \operatorname{inc}_{J}(I)$
(β) If $\alpha<\beta$ then $\left(h_{\alpha}, h_{\beta}\right)$ is a strict (e, \mathcal{Y})-pair.
6) Above we may omit μ (meaning $\mu=|J|$) and we may omit $\alpha(*)$, as it is determined by J (and by I), and then may omit "base." So in part (3) we say (I, J) is reasonable, in part (4) we say λ-wide, and in part (5) say strongly λ-wide.
Observation 6.11. 1) If (I, J) is a reasonable $(\mu, \alpha(*))$-base then (I, J) is a reasonable $\left(\mu^{\prime}, \alpha(*)\right)$-base for $\mu^{\prime} \geq \mu$.
2) If (I, J) is a wide $(\lambda, \mu, \alpha(*))$-base and $\lambda^{\prime} \leq \lambda, \mu^{\prime} \geq \mu$ then (I, J) is a wide $\left(\lambda^{\prime}, \mu^{\prime}, \alpha(*)\right)$-base.
3) If (I, J) is a strongly wide $(\lambda, \mu, \alpha(*))$-base, then (I, J) is a wide $(\lambda, \mu, \alpha(*))$ base.

Proof. Obvious.
Claim 6.12. 1) If $\alpha(*)=1$ and $\mu \leq \zeta(*)<\mu^{+} \leq \lambda$, then the pair $(\lambda \times \zeta(*), \zeta(*))$ is a reasonable $(\mu, \alpha(*))$-based which is a wide $(\lambda, \mu, \alpha(*))$-base.
2) If $\alpha(*)=2, \bar{u}^{*}=(\{0\}, \varnothing)$ as in 6.2, $\mu \leq \zeta(*)<\mu^{+}<\lambda, \zeta^{\prime}(*)=\zeta(*) \times 3$, and $w \subseteq \zeta(*), w \neq \zeta(*)$ then the pair $\left(I_{\mu, \lambda \times \zeta(*)}^{\operatorname{lin}}, I_{\mu, \zeta(*), w}^{\operatorname{lin}}\right)$ is a reasonable $(\mu, \alpha(*))$-base [and] a wide $(\lambda, \mu, \alpha(*))$-base where
(*) For any ordinal β and $w \subseteq \beta$ we define $I=I_{\mu, \beta, w}^{\mathrm{lin}}$, a $\tau_{\alpha(*)}^{*}$-model. (If $w=\varnothing$ we may omit it.)
(α) Its universe is β.
(β) The order is the usual one.
(γ) $P_{1}^{I}=\{\alpha<\beta: \operatorname{cf}(\alpha)>\mu$ or $\alpha \in w\}$.
(If we write $I_{\geq \mu, \beta, w}^{\operatorname{lin}}$ we mean here $\operatorname{cf}(\alpha) \geq \mu$.)
Proof. 1) First: $(\underline{I}, J)=(\lambda \times \zeta(*), \zeta(*))$ is a wide $(\lambda, \mu, \alpha(*))$-base
Easily, $\mathbf{e}(J, I) \neq \varnothing,|J| \leq \mu$ and $I, J \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}}$, so clause (a) of Definition 6.10(4) holds (recalling Definition 6.9(2)), so it suffices to deal with clause (b).

Let $e \in \mathbf{e}(J, I)$ and define

$$
\begin{gathered}
u=\{\zeta<\zeta(*): \zeta \in \operatorname{dom}(e) \text { is minimal in } \zeta / e \\
\text { or } \zeta \in \zeta(*) \backslash \operatorname{dom}(e)\}
\end{gathered}
$$

Now for every $\alpha<\lambda$ we define $h_{\alpha} \in \operatorname{inc}_{J}(I)$ as follows:
(a) If $\zeta \in \zeta(*) \backslash \operatorname{dom}(e)$ then $h_{\alpha}(\zeta)=\lambda \times \zeta$.
(b) If $\zeta \in \operatorname{dom}(e)$ and $\varepsilon=\min (\zeta / e)$ then $h_{\alpha}(\zeta)=\lambda \times \varepsilon+\zeta(*) \times \alpha+\zeta$.

Second: $(I, J)=(\lambda \times \zeta(*), \zeta(*))$ is a reasonable $(\mu, \alpha(*))$-base
Again, clause (a) of Definition 6.10(3) holds so we deal with clause (b).
So assume $e \in \mathbf{e}(J, I), h_{1}, h_{2} \in \operatorname{inc}_{J}(I),\left(h_{1}, h_{2}\right)$ is just a weak e-pair, and $\mathcal{Y} \subseteq \operatorname{dom}(e) / e$. Let $u=\operatorname{rang}\left(h_{1}\right) \cup \operatorname{rang}\left(h_{2}\right)$. For $\ell=1,2$ let $h_{\ell}^{*} \in \operatorname{inc}_{J}(I)$ be $h_{\ell}^{*}(\zeta)=\operatorname{otp}\left(u \cap h_{\ell}(\zeta)\right)$, so $\operatorname{rang}\left(h_{\ell}^{*}\right) \subseteq \xi(*):=\operatorname{otp}(u) \leq \zeta(*) \times 3$.
[Why? If $\zeta(*)$ is finite this is trivial, so assume $\zeta(*) \geq \omega$. Let $n<\omega$ and α be such that $\omega^{\alpha} n \leq \zeta(*)<\omega^{\alpha}(n+1)$, so $\alpha \geq 1$ and $n \geq 1$. As ω^{α} is additively indecomposable, $\operatorname{otp}(u) \leq \omega^{\alpha}(2 n+1)$: alternatively, use natural sums [MR65] which give a better bound $\zeta(*) \oplus \zeta(*)$. [Actually, $<\mu^{+}$suffices using $\zeta(*)<\mu^{+}$large enough below, still.]]

For $\ell=1,2,3$ we define $h_{\ell}^{\prime} \in \operatorname{inc}_{J}(I)$ as follows:
(a) If $\zeta \in \zeta(*) \backslash \operatorname{dom}(e)$ then $h_{\ell}^{\prime}(\zeta)=(\zeta(*) \times 4) \times \zeta$.
(b) If $\zeta \in \operatorname{dom}(e)$ and $\varepsilon=\min (\zeta / e)$ and $\zeta / e \in \mathcal{Y}$ then:
(α) If $\ell=3$ then $h_{\ell}^{\prime}(\zeta)=(\zeta(*) \times 4) \times \varepsilon+\zeta(*) \times 3+\zeta$.
(β) If $\ell=1,2$ then $h_{\ell}^{\prime}(\zeta)=(\zeta(*) \times 4) \times \varepsilon+h_{\ell}^{*}(\zeta)$.
(c) If $\zeta \in \operatorname{dom}(e)$ and $\varepsilon=\min (\zeta / e)$ and $\zeta / e \notin \mathcal{Y}$ then:
(α) If $\ell=3$ then $h_{\ell}^{\prime}(\zeta)=(\zeta(*) \times 4) \times \varepsilon+\zeta$.
(β) If $\ell=1,2$ then $h_{\ell}^{\prime}(\zeta)=(\zeta(*) \times 4) \times \varepsilon+\zeta(*)+h_{\ell}^{*}(\zeta)$.
Now check.
2) First: $(I, J)=\left(I_{\mu, \lambda \times \zeta(*)}^{\operatorname{lin}}, I_{\mu, \zeta(*), w}^{\operatorname{lin}}\right)$ is a wide $(\lambda, \mu, \alpha(*))$-base.

Note that $P_{1}^{J}=w$ because $\zeta(*)<\mu^{+}$and $P_{1}^{I}=\{\alpha \in I: \operatorname{cf}(\alpha)>\mu\}$. As above, clause (a) of the Definition 6.10 holds so we deal with clause (b).

Let

$$
u=\{\zeta<\zeta(*): \zeta \in \operatorname{dom}(e) \text { is minimal in } \zeta / e \text { or } \zeta \in \zeta(*) \backslash \operatorname{dom}(e)\} .
$$

Clearly u is a closed subset of $\zeta(*)$ and $0 \in u$.
Given $\zeta<\zeta(*)$, let $\varepsilon_{\zeta}:=\max (u \cap(\zeta+1))$; clearly this is well defined by the choice of u and $\varepsilon_{\zeta} \leq \zeta$.

For every $\alpha<\lambda$ we define $h_{\alpha} \in \operatorname{inc}_{J}(I)$ as follows:
We define $h_{\alpha}(\zeta)$ by induction on $\zeta<\zeta(*)$ such that $h_{\alpha}(\zeta)<\lambda \times\left(\varepsilon_{\zeta}+1\right)$.
Case A: for $\zeta \in \zeta(*) \backslash \operatorname{dom}(e)$.
Subcase A1: $\zeta \in P_{1}^{J}$
Let $h_{\alpha}(\zeta)$ be $\lambda \times \varepsilon_{\zeta}+\mu^{+}$.
Subcase A2: $\zeta \in P_{0}^{J}$ and $\zeta=0$.
Let $h_{\alpha}(\zeta)=0$.
Subcase A3: $\zeta \in P_{0}^{J}, \zeta=\xi+1$.
Let $h_{\alpha}(\zeta)=h_{\alpha}(\xi)+1$.
Subcase A4: $\zeta \in P_{0}^{J}, \zeta$ is a limit ordinal, $\zeta=\sup (u \cap \zeta)$.
Let $h_{\alpha}(\zeta)=\lambda \times \varepsilon_{\zeta}$ which is equal to $\bigcup\left\{h_{\alpha}\left(\zeta^{\prime}\right): \zeta^{\prime}<\zeta\right\}$.
Subcase A5: $\zeta \in P_{0}^{J}, \zeta$ is a limit ordinal, and $\xi=\sup (u \cap \zeta)<\zeta$.
So $(\xi+1) / e$ is an end-segment of ζ, but this is impossible by $6.7(2)(\mathrm{c})$.
Case B: $\zeta \in \operatorname{dom}(e)$.
Subcase B1: $\zeta=\min (\zeta / e)$ hence $\zeta \in P_{1}^{J}($ see $6.7(0)(\mathrm{b}))$.
Let $h_{\alpha}(\zeta)=\lambda \times \varepsilon_{\zeta}+\mu^{+} \times \zeta(*) \times \alpha+\mu^{+}$.
Subcase B2: $\zeta \in P_{0}^{J}$ hence $\zeta>\min (\zeta / e)$.
Let $h_{\alpha}(\zeta)=\bigcup\left\{h_{\alpha}\left(\zeta^{\prime}\right)+1: \zeta^{\prime}<\zeta\right\}$.
Subcase B3: $\zeta \in P_{1}^{J}$ and $\zeta>\min (\zeta / e)$.
Let $h_{\alpha}(\zeta)=\bigcup\left\{h_{\alpha}\left(\zeta^{\prime}\right): \zeta^{\prime}<\zeta\right\}+\mu^{+}$.
So clearly we can show by induction on $\zeta<\zeta(*)$ that

$$
h_{\alpha}(\zeta)<\lambda \times \varepsilon_{\zeta}+\mu^{+} \times \zeta(*) \times(\alpha 2+2)
$$

Also, recalling $\mu^{+}<\lambda$, clearly for $\alpha<\lambda$ and $\zeta<\zeta(*)$ we have $h_{\alpha}(\zeta)<\lambda \times \varepsilon_{\zeta}+\lambda$. Now check.

Second: $\left(I_{\mu, \lambda \times \zeta(*)}^{\operatorname{lin}}, I_{\mu, \zeta(*), w}^{\operatorname{lin}}\right)$ is a reasonable $(\mu, \alpha(*))$-base.
Combine the proof of "First" with the parallel proof in part (1).
Definition 6.13. 1) Let $I, J \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}}$. We say that \mathcal{E} is an invariant (I, J) equivalence relation when:
(a) \mathcal{E} is an equivalence relation on $\operatorname{inc}_{J}(I)$, so \mathcal{E} determines I and J,
(b) If $h_{1}, h_{2}, h_{3}, h_{4} \in \operatorname{inc}_{J}(I)$ and $\operatorname{tp}_{\mathrm{qf}}\left(h_{1}, h_{2} ; I\right)=\operatorname{tp}_{\mathrm{qf}}\left(h_{3}, h_{4} ; I\right)$ then

$$
h_{1} \mathcal{E} h_{2} \Leftrightarrow h_{3} \mathcal{E} h_{4} .
$$

2) We say it is also non-trivial when:
(c) If eq $\left(h_{1}, h_{2}\right)=\left\{t \in J: h_{1}(t)=h_{2}(t)\right\}$ is co-finite then $h_{1} \mathcal{E} h_{2}$.
(d) There are $h_{1}, h_{2} \in \operatorname{inc}_{J}(I)$ such that $\neg\left(h_{1} \mathcal{E} h_{2}\right)$.
3) Let $J, I_{1}, I_{2} \in K_{\tau_{\alpha(*)}^{\text {lin }}}^{\text {in }}$. Then $I_{1} \leq_{J}^{1} I_{2}$ means that:
(a) $I_{1} \subseteq I_{2}$
(b) For every $h_{1}, h_{2}, h_{3} \in \operatorname{inc}_{J}\left(I_{2}\right)$ we can find $h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime} \in \operatorname{inc}_{J}\left(I_{1}\right)$ such that $\operatorname{tp}_{\mathrm{qf}}\left(h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime} ; I_{1}\right)=\operatorname{tp}_{\mathrm{qf}}\left(h_{1}, h_{2}, h_{3} ; I_{2}\right)$.

Claim 6.14. Assume $J, I_{1}, I_{2} \in K_{\tau_{\alpha(*)}}^{\text {lin }}$.

1) If $I_{1} \subseteq I_{2}, \mathcal{E}$ is an invariant $\left(I_{2}, J\right)$-equivalence relation then $\mathcal{E} \upharpoonright \operatorname{inc}_{J}\left(I_{1}\right)$ is an invariant $\left(I_{1}, J\right)$-equivalence relation.
2) If $I_{1}<{ }_{J}^{1} I_{2}$ and \mathcal{E}_{1} is an invariant $\left(I_{1}, J\right)$-equivalence relation then there is one and only one invariant $\left(I_{2}, J\right)$-equivalence relation \mathcal{E}_{2} such that $\mathcal{E}_{2} \upharpoonright \operatorname{inc}_{J}\left(I_{1}\right)=\mathcal{E}_{1}$.
3) Assume $e \in \mathbf{e}(J)$ and $\mathcal{Y} \subseteq \operatorname{dom}(e) / e$. If $\left(h_{1}^{\prime}, h_{2}^{\prime}\right)$ is a strict (e, \mathcal{Y})-pair for $\left(I_{1}, J\right)$ and $\left(h_{1}^{\prime \prime}, h_{2}^{\prime \prime}\right)$ is a strict (e, \mathcal{Y})-pair for $\left(I_{2}, J\right)$ then

$$
\operatorname{tp}_{\mathrm{qf}}\left(h_{1}^{\prime}, h_{2}^{\prime} ; I_{1}\right)=\operatorname{tp}_{\mathrm{qf}}\left(h_{1}^{\prime \prime}, h_{2}^{\prime \prime} ; I_{2}\right) .
$$

4) Assume $\alpha(*)=1, J=\zeta(*), I_{\ell}=\beta_{\ell}$ with the usual order (for $\ell=1,2$), $\mu \leq \zeta(*)<\mu^{+}$, and $\mu^{+} \leq \beta_{1} \leq \beta_{2}$. Then $I_{1}<_{J}^{1} I_{2}$ (see Definition 6.13(3)).
5) Assume $\alpha(*)=2, J=I_{\mu, \zeta(*), w}^{\operatorname{lin}}, I_{\ell}=I_{\mu, \beta_{\ell}}^{\operatorname{lin}}$ for $\ell=1,2$, and $\mu^{++} \leq \beta_{1} \leq \beta_{2}$. Then $I_{1}<{ }_{J}^{1} I_{2}$ (see Definition 6.13(3)).

Proof. 1) Obvious.
2) We define

$$
\begin{aligned}
\mathcal{E}_{2}^{*}=\left\{\left(h_{1}, h_{2}\right):\right. & h_{1}, h_{2} \in \operatorname{inc}_{J}\left(I_{2}\right), \text { and for some } \\
& h_{1}^{\prime}, h_{2}^{\prime} \in \operatorname{inc}_{J}\left(I_{1}\right) \text { we have } \\
& \operatorname{tp}_{\mathrm{qf}}\left(h_{1}^{\prime}, h_{2}^{\prime} ; I_{1}\right)=\operatorname{tp}_{\mathrm{qf}}\left(h_{1}, h_{2} ; I_{2}\right) \\
& \text { and } \left.h_{1}^{\prime} \mathcal{E}_{1} h_{2}^{\prime}\right\} .
\end{aligned}
$$

Now
$(*)_{1} \mathcal{E}_{2}^{*}$ is a set of pairs of members of $\operatorname{inc}_{J}\left(I_{2}\right)$.
[Why? By its definition.]
$(*)_{2} h_{1} \mathcal{E}_{2}^{*} h_{1}$ if $h_{1} \in \operatorname{inc}_{J}\left(I_{2}\right)$.
[Why? Let $h^{\prime} \in \operatorname{inc}_{J}\left(I_{1}\right)$ so clearly $h^{\prime} \mathcal{E}_{1} h^{\prime}$ and $\operatorname{tp}_{\mathrm{qf}}\left(h^{\prime}, h^{\prime} ; I_{1}\right)=\operatorname{tp}_{\mathrm{qf}}\left(h, h ; I_{2}\right)$]
$(*)_{3} \mathcal{E}_{2}^{*}$ is symmetric.
[Why? As \mathcal{E}_{1} is.]
$(*)_{4} \mathcal{E}_{2}^{*}$ is transitive.
[Why? Assume $h_{1} \mathcal{E}_{2}^{*} h_{2}$ and $h_{2} \mathcal{E}_{2}^{*} h_{3}$; let $h_{1}^{\prime}, h_{2}^{\prime} \in \operatorname{inc}_{J}\left(I_{1}\right)$ witness $h_{1} \mathcal{E}_{2}^{*} h_{2}$ and $h_{2}^{\prime \prime}, h_{3}^{\prime \prime} \in \operatorname{inc}_{J}\left(I_{1}\right)$ witness $h_{2} \mathcal{E}_{2}^{*} h_{3}$.

Apply clause (b) of part (3) of Definition 6.13 to $\left(h_{1}, h_{2}, h_{3}\right)$ so there are $g_{1}, g_{2}, g_{3} \in$ $\operatorname{inc}_{J}\left(I_{1}\right)$ such that $\operatorname{tp}_{\mathrm{qf}}\left(g_{1}, g_{2}, g_{3} ; I_{1}\right)=\operatorname{tp}_{\mathrm{qf}}\left(h_{1}, h_{2}, h_{3} ; I_{2}\right)$. Now $h_{1}^{\prime} \mathcal{E}_{1} h_{2}^{\prime}$ by the choice of $\left(h_{1}^{\prime}, h_{2}^{\prime}\right)$ and $\operatorname{tp}_{\mathrm{qf}}\left(g_{1}, g_{2} ; I_{1}\right)=\operatorname{tp}_{\mathrm{qf}}\left(h_{1}, h_{2} ; I_{2}\right)=\operatorname{tp}_{\mathrm{qf}}\left(h_{1}^{\prime}, h_{2}^{\prime} ; I_{1}\right)$ so as \mathcal{E}_{1} is invariant we get $g_{1} \mathcal{E}_{1} g_{2}$. Similarly, $g_{2} \mathcal{E}_{1} g_{3}$, so as \mathcal{E}_{1} is transitive we have $g_{1} \mathcal{E}_{1} g_{3}$. But clearly $\operatorname{tp}_{\mathrm{qf}}\left(g_{1}, g_{3} ; I_{1}\right)=\operatorname{tp}_{\mathrm{qf}}\left(h_{1}, h_{3} ; I_{2}\right)$ hence g_{1}, g_{2} witness that $h_{1} \mathcal{E}_{2} h_{3}$ is as required.]
$(*)_{5} \mathcal{E}_{2}^{*}$ is invariant.
[Why? See its definition.]
$(*)_{6} \mathcal{E}_{2}^{*} \upharpoonright \operatorname{inc}_{I}\left(I_{1}\right)=\mathcal{E}_{1}$.
[Why? By the way \mathcal{E}_{2}^{*} is defined and by \mathcal{E}_{1} being invariant.]
So together \mathcal{E}_{2}^{*} is as required. The uniqueness (i.e. if \mathcal{E}_{2} is an invariant equivalence relation on $\operatorname{inc}_{J}(I)$ such that $\mathcal{E}_{2} \upharpoonright \operatorname{inc}_{J}\left(I_{1}\right)=\mathcal{E}_{1}$ then $\left.\mathcal{E}_{2}=\mathcal{E}_{2}^{*}\right)$ is also easy.
3) Straight.
4) See^{13} the proof of "Second" in the proof of 6.12(1).
5) Combine ${ }^{14}$ the proof of part (4) and of "First" in the proof of $6.12(2)$. \qquad

Below mostly it suffices to consider $\mathcal{D}_{\mathcal{E}, e}$.
Definition 6.15. 1) Let \mathcal{E} be an invariant (I, J)-equivalence relation: we define

$$
\begin{aligned}
\mathcal{D}_{\mathcal{E}}=\{u \subseteq J: & \text { if } h_{1}, h_{2} \in \operatorname{inc}_{J}(I) \text { satisfies } \\
& \left.\operatorname{eq}\left(h_{1}, h_{2}\right) \supseteq u \text { then } h_{1} \mathcal{E} h_{2}\right\}
\end{aligned}
$$

recalling

$$
\operatorname{eq}\left(h_{1}, h_{2}\right):=\left\{t \in J: h_{1}(t)=h_{2}(t)\right\} .
$$

2) If, in addition, $e \in \mathbf{e}(J, I)$ then we let

$$
\begin{aligned}
\mathcal{D}_{\mathcal{E}, e}=\{u \subseteq \operatorname{dom}(e) / e: & \text { if } h_{1}, h_{2} \in \operatorname{inc}_{J}(I) \text { and }\left(h_{1}, h_{2}\right) \text { is an } \\
& \left.(e \upharpoonright(\operatorname{dom}(e) \backslash \operatorname{set}(u))) \text {-pair then } h_{1} \mathcal{E} h_{2}\right\} .
\end{aligned}
$$

Claim 6.16. Assume $I, J \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}},(I, J)$ is reasonable (see Definition 6.10(3),(6)), and \mathcal{E} is an invariant (I, J)-equivalence relation.

1) For $u \subseteq J$ such that $e_{J, u} \in \mathbf{e}(J, I)$ we have: $u \in \mathcal{D}_{\mathcal{E}}$ iff $h_{1} \mathcal{E} h_{2}$ for every $e_{J, u}-$ pair $\left(h_{1}, h_{2}\right)$ iff $h_{1} \mathcal{E} h_{2}$ for some e ${ }_{J, u}$-pair $\left(h_{1}, h_{2}\right)$; see Definition 6.9(1).
2) Assume $e \in \overline{\mathbf{e}}(J, I)$. Then, for any $u \subseteq \operatorname{dom}(e) / e$ we have $u \in \mathcal{D}_{\mathcal{E}, e}$ iff $h_{1} \mathcal{E} h_{2}$ for any $(e \upharpoonright \operatorname{set}(u))$-pair iff $h_{1} \mathcal{E} h_{2}$ for some ($\left.e \upharpoonright \operatorname{set}(u)\right)$-pair.
3) If $e \in \mathbf{e}(J, I)$ and $u_{1}, u_{2} \subseteq \operatorname{dom}(e) / e$ then we can find $h_{1}, h_{2}, h_{3} \in \operatorname{inc}_{J}(t)$ such that $\left(h_{1}, h_{2}\right)$ is a strict $\left(e \upharpoonright \operatorname{set}\left(u_{1}\right)\right)$-pair, $\left(h_{2}, h_{3}\right)$ is a strict $\left(e \upharpoonright \operatorname{set}\left(u_{2}\right)\right)$ pair, and $\left(h_{1}, h_{3}\right)$ is a strict $\left(e \upharpoonright\left(\operatorname{set}\left(u_{1} \cup u_{2}\right)\right)\right.$-pair.
4) Assume $e \in \mathbf{e}(J, I)$ and that in clause (b) of Definition 6.10(3) we allow $\left(h_{1}, h_{2}\right)$ to be a weak e-pair. Then, for any $u \subseteq \operatorname{dom}(e) / e$ we have $\operatorname{dom}(e) \backslash u \in \mathcal{D}_{\mathcal{E}, e}$ iff $h_{1} \mathcal{E} h_{2}$ for every weak e-pair $\left(h_{1}, h_{2}\right)$.

Proof. 1) Like part (2).
2) In short, this follows by transitivity of equivalence and the definitions + mixing, but we elaborate.

The "first implies the second" holds by Definition 6.15(2) and "the second implies the third" holds trivially as there is such a pair $\left(h_{1}, h_{2}\right)$ by the assumption $e \in$ $\mathbf{e}(J, I)$. So it is enough to prove "the third implies the first"; hence suppose that $g_{1} \mathcal{E} g_{2}$ where $\left(g_{1}, g_{2}\right)$ is an $e_{1}:=e \upharpoonright \operatorname{set}(u)$-pair (recalling that $e_{1} \in \mathbf{e}(J, I)$ by $6.8(8))$, and let $\left(h_{1}, h_{2}\right)$ be an e_{1}-pair, we need to show that $h_{1} \mathcal{E} e_{2}$. By Definition 6.6(2B), for some sets $\mathcal{Y}_{g}, \mathcal{Y}_{h} \subseteq \operatorname{dom}\left(e_{1}\right) / e_{1}$, the pair $\left(g_{1}, g_{2}\right)$ is a strict $\left(e_{1}, \mathcal{Y}_{g}\right)$-pair and the pair $\left(h_{1}, h_{2}\right)$ is a strict $\left(e_{1}, \mathcal{Y}_{h}\right)$-pair. Recalling clause (b) of $6.10(3)$ there are $g_{1}^{\prime}, g_{2}^{\prime}, g_{3}^{\prime}$ and \mathcal{Y} such that:
$(*)_{1} \quad$ (a) $g_{\ell}^{\prime} \in \operatorname{inc}_{J}(I)$ for $\ell=1,2,3$.
(b) $\operatorname{tp}_{\mathrm{qf}}\left(g_{1}, g_{2}\right)=\operatorname{tp}_{\mathrm{qf}}\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$
(c) $\mathcal{Y} \subseteq \operatorname{dom}\left(e_{1}\right) / e_{1}$
(d) $\left(g_{1}^{\prime}, g_{3}^{\prime}\right)$ and $\left(g_{2}^{\prime}, g_{3}^{\prime}\right)$ are strict $\left(e_{1}, \mathcal{Y}\right)$-pairs.

[^12]Now for each $s \in \operatorname{dom}\left(e_{1}\right)$, we can find a permutation $\bar{\ell}_{s}=\left(\ell_{s, 1}, \ell_{s, 2}, \ell_{s, 3}\right)$ of $\{1,2,3\}$ such that $I \models ' g_{\ell_{s, 1}}^{\prime}(s)<g_{\ell_{s, 2}}^{\prime}(s)<g_{\ell_{s, 3}}^{\prime}(s)^{\prime}$. By $(*)_{1}(d)$ and $(*)_{1}(b)$ and $\left(g_{1}, g\right)$ being an e_{1}-pair, $\bar{\ell}_{s}$ clearly depends only on s / e_{1}, and every member of $\left\{\left(g_{\ell_{s, 1}}^{\prime}(t): t \in s / e_{1}\right\}\right.$ is below every member of $\left\{g_{\ell_{s, 2}}^{\prime}(t): t \in s / e_{1}\right\}$ (and similarly for the pair $\left.\left(g_{\ell_{s, 2}}^{\prime}, g_{\ell_{s, 3}}^{\prime}\right)\right)$. Now we can find $\left(g_{1}^{\prime \prime}, g_{2}^{\prime \prime}, g_{3}^{\prime \prime}\right)$ such that:
$(*)_{2} \quad$ (a) $g_{\ell}^{\prime \prime} \in \operatorname{inc}_{J}(I)$ for $\ell=1,2,3$.
(b) $\left(g_{1}^{\prime \prime}, g_{2}^{\prime \prime}\right)$ is a strict $\left(e_{1}, \mathcal{Y}_{h}\right)$ [-pair.]
(c) $\left(g_{1}^{\prime \prime}, g_{3}^{\prime \prime}\right)$ and $\left(g_{2}^{\prime \prime}, g_{3}^{\prime \prime}\right)$ are strict $\left(e_{1}, \mathcal{Y}_{g}\right)$-pairs.
[Why? We do the choice for each s / e_{1} separately such that
$\left.\left\{g_{1}^{\prime \prime} \upharpoonright\left(s / e_{1}\right), g_{2}^{\prime \prime} \upharpoonright\left(s / e_{1}\right), g_{3}^{\prime \prime} \upharpoonright\left(s / e_{1}\right)\right\}=\left\{g_{1}^{\prime} \upharpoonright\left(s / e_{1}\right), g_{2}^{\prime} \upharpoonright\left(s / e_{1}\right), g_{3}^{\prime} \upharpoonright\left(s / e_{1}\right)\right\}.\right]$
Clearly $\operatorname{tp}_{\mathrm{qf}}\left(g_{1}^{\prime \prime}, g_{3}^{\prime \prime} ; I\right)=\operatorname{tp}_{\mathrm{qf}}\left(g_{1}, g_{2} ; I\right)=\operatorname{tp}_{\mathrm{qf}}\left(g_{2}^{\prime \prime}, g_{3}^{\prime \prime} ; I\right)$, so as \mathcal{E} is invariant and $g_{1} \mathcal{E} g_{2}$ clearly $g_{1}^{\prime \prime} \mathcal{E} g_{3}^{\prime \prime} \wedge g_{2}^{\prime \prime} \mathcal{E} g_{3}^{\prime \prime}$, which implies $g_{1}^{\prime \prime} \mathcal{E} g_{2}^{\prime \prime}$. For $\mathcal{Y}^{\prime}=\mathcal{Y}_{h}$, by clause (b) of $(*)_{2}$ we conclude that $\operatorname{tp}_{\mathrm{qf}}\left(g_{1}^{\prime \prime}, g_{2}^{\prime \prime} ; I\right)=\operatorname{tp}_{\mathrm{qf}}\left(h_{1}, h_{2} ; I\right)$, so as \mathcal{E} is invariant we are done.
3),4) Similarly.
Claim 6.17. Assume $I, J \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}}$ and \mathcal{E} is an invariant (I, J)-equivalence relation.
$0)$ If $e \in \mathbf{e}(J, I)$ and \mathcal{E} is non-trivial then $\mathcal{D}_{\mathcal{E}, e}$ contains all co-finite subsets of $\operatorname{dom}(e) / e$.

1) If the pair (I, J) is reasonable and $e \in \mathbf{e}(I, J)$ then $\mathcal{D}_{\mathcal{E}, e}$ is a filter on $\operatorname{dom}(e) / e$ (but possibly $\varnothing \in \mathcal{D}_{\mathcal{E}, e}$).
2) (a) $\mathcal{D}_{\mathcal{E}}$ is a filter on J.
(b) If \mathcal{E} is non-trivial, then all cofinite subsets of J belong to $\mathcal{D}_{\mathcal{E}}$ but $\varnothing \notin \mathcal{D}_{\mathcal{E}}$.

Proof. 0) Easy, see Definition 6.13(2).

1) By $6.16(2)$ and $6.16(3)$.
2) Trivial by Definition 6.15(1).

Claim 6.18. Assume
(a) $I, J \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}}$
(b) \mathcal{E} is an invariant (I, J)-equivalence relation.
(c) (I, J) is a reasonable $(\mu, \alpha(*))$-base which is a wide $(\lambda, \mu, \alpha(*))$-base.
(d) $e \in \mathbf{e}(J, I)$
(e) g is a function from $\operatorname{dom}(e) / e$ into some cardinal θ.
(f) $\mathcal{D}^{*}=\left\{Y \subseteq \theta: g^{-1}(Y) \in \mathcal{D}_{\mathcal{E}, e}\right\}$ is a filter; i.e. $\varnothing \notin \mathcal{D}^{*}$.

Then \mathcal{E} has at least $\chi:=\lambda^{\theta} / \mathcal{D}^{*}$ equivalence classes.

Proof. Let $\left\langle f_{\alpha}: \alpha<\chi\right\rangle$ be a set of functions from θ to λ exemplifying $\chi:=\lambda^{\theta} / \mathcal{D}^{*}$, so $\alpha \neq \beta \Rightarrow\left\{i<\theta: f_{\alpha}(i)=f_{\beta}(i)\right\} \notin \mathcal{D}^{*}$.

Let $\left\langle h_{\zeta}: \zeta<\lambda\right\rangle$ exemplify the pair (I, J) being a wide $(\lambda, \mu, \alpha(*)$)-base (see Definition 6.10(4)), so $h_{\zeta} \in \operatorname{inc}_{J}(I)$.

Lastly, for each $\alpha<\chi$ we define $h^{\alpha} \in \operatorname{inc}_{J}(I)$ as follows:
$h^{\alpha}(t)= \begin{cases}h_{0}(t) & \text { if } t \in J \backslash \operatorname{dom}(e) \\ h_{f_{\alpha}(g(t / e))}(t) & \text { if } t \in \operatorname{dom}(e)\end{cases}$
Now
$(*)_{1} h^{\alpha}$ is a function from J to I.
[Why? Trivially; recalling each h_{ζ} is as well.]
$(*)_{2} h^{\alpha}$ is increasing.
[Why? Let $s<_{J} t$, and we split the proof to cases.
If $s, t \in J \backslash \operatorname{dom}(e)$ use " $h_{0} \in \operatorname{inc}_{J}(I)$ ".
If $s \in J \backslash \operatorname{dom}(e)$ and $t \in \operatorname{dom}(e)$, then $h^{\alpha}(t)=h_{f_{\alpha}(g(t / e))}(t)$ and $h^{\alpha}(s)=h_{0}(s)=$ $h_{f_{\alpha}(g(t / e))}(s)$ because $\left\langle h_{\alpha} \upharpoonright(J \backslash \operatorname{dom}(e)): \alpha<\lambda\right\rangle$ is constant (recalling $\left(h_{0}, h_{\alpha}\right)$ is an e-pair for $\alpha>0)$, so as $h_{f_{\alpha}(g(t / e))} \in \operatorname{inc}_{J}(I)$ we are done.
If $s \in \operatorname{dom}(e), t \in J \backslash \operatorname{dom}(e)$, the proof is similar.
If $s, t \in \operatorname{dom}(e), s / e \neq t / e$, we again use Definition 6.6(2B) and clause (b)(β) of Definition 6.10(4).

Lastly, if $s, t \in \operatorname{dom}(e), s / e=t / e$ then we get $g(s / e)=g(t / e)$, hence $f_{\alpha}(g(s / e))=$ $f_{\alpha}(g(t / e))$ (call this γ). So $h^{\alpha}(s)=h_{\gamma}(s), h^{\alpha}(t)=h_{\gamma}(t)$, and of course $h_{\gamma} \in \operatorname{inc}_{J}(I)$ hence $h_{\gamma}(s)<_{I} h_{\gamma}(t)$ so necessarily $h^{\alpha}(s)<_{I} h^{\alpha}(t)$ as required. So $(*)_{2}$ holds.]
$(*)_{3} h^{\alpha} \in \operatorname{inc}_{J}(I)$.
[Why? Clearly if $i<\alpha(*)$ and $t \in P_{i}^{J}$ then $(\forall \beta<\lambda)\left[h_{\beta}(t) \in P_{i}^{J}\right]$ hence

$$
\alpha<\chi \Rightarrow h_{f_{\alpha}(g(t / e))}(t) \in P_{i}^{J}
$$

which means $\alpha<\chi \Rightarrow h^{\alpha}(t) \in P_{i}^{J}$; so recalling $(*)_{2}$, clause (a) of Definition 6.3(2) holds. We should check clauses (b),(c) of Definition 6.3(2) which is done as in the proof of 6.7 and of $(*)_{2}$ above.]
$(*)_{4}$ if $\alpha<\beta$ and we let

$$
\begin{aligned}
& \quad u=u_{\alpha, \beta}:=\bigcup\left\{g^{-1}(\zeta): \zeta<\theta \text { and } f_{\alpha}(\zeta) \neq f_{\beta}(\zeta)\right\} \\
& \text { so } u \subseteq \operatorname{dom}(e) / e \text { then }\left(h^{\alpha}, h^{\beta}\right) \text { is a }(e \upharpoonright \operatorname{set}(u)) \text {-pair. }
\end{aligned}
$$

[Why?
Case 1: If $s \in J \backslash \operatorname{dom}(e)$ then $h^{\alpha}(s)=h_{0}(s)=h^{\beta}(s)$.
Case 2: If $s \in \operatorname{dom}(e) \backslash \operatorname{set}(u)$ then $h^{\alpha}(s)=h_{f_{\alpha}(g(s / e))}(s)=h_{f_{\beta}(g(s / e))}(s)=h^{\beta}(s)$.
Case 3: If $s, t \in \operatorname{set}(u), s / e \neq t / e$, and $s<_{J} t$ then $h^{\alpha}(s)<_{I} h^{\beta}(t) \wedge h^{\beta}(s)<_{I} h^{\alpha}(t)$ because
Subcase 3A: If $f_{\alpha}(g(s / e))=f_{\beta}(g(t / e))$ we use $h_{f_{\alpha}(g(t / e))} \in \operatorname{inc}_{J}(I)$ hence

$$
\begin{aligned}
& h^{\alpha}(s)=h_{f_{\alpha}(g(s / e))}(s)<_{I} h_{f_{\alpha}(g(s / e))}(t)=h_{f_{\beta}(g(t / e))}(t)=h^{\beta}(t) \\
& \quad \text { and similarly } h^{\beta}(s)<_{I} h^{\alpha}(t) .
\end{aligned}
$$

Subcase 3B: If $f_{\alpha}(g(s / e)) \neq f_{\beta}(g(t / e))$ we use " $\left(h_{f_{\alpha}(g(s / e))}, h_{f_{\beta}(g(t / e))}\right)$ is an e pair".
Case 4: And lastly, if $s, t \in \operatorname{set}(u), s / e=t / e$ and $s<_{J} t$ then

$$
h^{\alpha}(t)<_{I} h^{\beta}(s) \equiv(s / e \in u) \equiv h^{\alpha}(s)<_{I} h^{\beta}(t)
$$

Why? Recalling $f_{\alpha}(g(s / e)) \neq f_{\beta}(g(t / e))$ as $s, t \in \operatorname{set}(u)$ by the definition of u, see $(*)_{4}$ and we just use " $\left(h_{f_{\alpha}(g(s / e))}, h_{f_{\beta}(g(s / e))}\right)$ is an e-pair" and clause (c) of Definition 6.6.]
$(*)_{5}$ If $\alpha<\beta$ then $u_{\alpha, \beta} \neq \varnothing \bmod \mathcal{D}_{\mathcal{E}, e}$.
[Why? By the choice of $\left\langle f_{\alpha}: \alpha<\lambda\right\rangle$.]
$(*)_{6}$ if $\alpha<\beta$ then h^{α}, h^{β} are not \mathcal{E}-equivalent.
[Why? By $(*)_{4}+(*)_{5}$ and 6.16(2).]
Together we are done.

Claim 6.19. Assume \mathcal{E} is an invariant (I, J)-equivalence relation, I, J are well ordered and $\left|\operatorname{inc}_{J}(I) / \mathcal{E}\right| \geq \lambda=\operatorname{cf}(\lambda)>\mu=|I|>|2+\alpha(*)|^{|J|}$. Then for some $e \in$ $\mathbf{e}(I, J)$ there is an ultrafilter \mathcal{D} on $\operatorname{dom}(e) /$ e extending $\mathcal{D}_{\mathcal{E}, e}$ which is not principal.

Remark 6.20. This is close to [She99b, §7].

Proof. Without loss of generality, as linear orders J is $\zeta(*)$ and I is $\xi(*) \in\left[\mu, \mu^{+}\right)$. Toward contradiction assume the conclusion fails. Let g be a one-to-one function from μ onto $[\xi(*)]^{<\aleph_{0}}, \chi$ be large enough, $\kappa=|J|$, and $\partial=|2+\alpha(*)|^{|J|}$ so $\partial^{\kappa}=\partial$. We now choose $\left\langle N_{\eta}: \eta \in{ }^{n} \mu\right\rangle$ by induction on $n<\omega$ such that $\circledast_{1} \quad$ (a) $N_{\eta} \prec(\mathcal{H}(\chi), \in)$
(b) $\left\|N_{\eta}\right\|=\partial$ and $\partial+1 \subseteq N_{\eta}$.
(c) $A \subseteq N_{\eta} \wedge|A| \leq \kappa \Rightarrow A \in N_{\eta}$
(d) I, J and g as well as η belong to N_{η}.
(e) $\nu \triangleleft \eta \Rightarrow N_{\nu} \in N_{\eta}$ (hence $N_{\nu} \subseteq N_{\eta}$ so $N_{\nu} \prec N_{\eta}$).

There is no problem to do this. Now it suffices to prove that for every $h \in \operatorname{inc}_{J}(I)$, for some $h^{\prime} \in \bigcup\left\{N_{\eta}: \eta \in{ }^{\omega>} \mu\right\} \cap \operatorname{inc}_{J}(I)$, we have $h \mathcal{E} h^{\prime}$.

Fix $h_{*} \in \operatorname{inc}_{J}(I)$ such that $h_{*} \notin \bigcup\left\{h / \mathcal{E}: h \in \operatorname{inc}_{J}(I) \cap N_{\eta}\right.$ for some $\left.\eta \in{ }^{\omega>} \mu\right\}$ and for each $\eta \in{ }^{\omega>} \mu$ we define $\bar{\alpha}_{\eta}, e_{\eta}$ as follows:
$\circledast_{2} \quad$ (a) $\bar{\alpha}_{\eta}=\left\langle\alpha_{\eta, t}: t \in J\right\rangle$
(b) $\alpha_{\eta, t}=\min \left((\xi(*)+1) \cap N_{\eta} \backslash h_{*}(t)\right)$
(c) $e_{\eta}:=\left\{(s, t): s, t \in J, \alpha_{\eta, s}=\alpha_{\eta, t}, \alpha_{\eta, s}>h_{*}(s)\right.$, and $\left.\alpha_{\eta, t}>h_{*}(t)\right\}$.
(d) For $\alpha \in N_{\eta}$ let $X_{\eta, \alpha}:=\left\{t \in J: \alpha_{\eta, t}=\alpha>h_{*}(t)\right\}$.

Note
$(*)_{1} \quad \bar{\alpha}_{\eta} \in N_{\eta}$.
[Why? As $\left[N_{\eta}\right]^{\leq \kappa} \subseteq N_{\eta},|J|=\kappa$, and $\alpha_{\eta, t} \in N_{\eta}$ for every $t \in J$.]
$(*)_{2} \quad$ (a) $e_{\eta} \in \mathbf{e}(J)$; i.e. e_{η} is an equivalence relation on some subset of J, with each equivalence class a convex subset of J (see Definition 6.6(1)).
(b) (b) $\left\langle X_{\eta, \alpha}: \alpha \in\left\{\alpha_{\eta, t}: t \in \operatorname{dom}(e)\right\}\right\rangle$ list the e_{η}-equivalence classes. (Note that $X_{\eta, \alpha} \neq \varnothing$.)
[Why? Think.]
$(*)_{3} h_{\eta}:=h_{*} \upharpoonright\left(J \backslash \operatorname{dom}\left(e_{\eta}\right)\right) \in N_{\eta}$.
[Why? By the definition of e_{η} we have $t \in J \wedge t \notin \operatorname{dom}\left(e_{\eta}\right) \Rightarrow h_{*}(t) \in N_{\eta}$, and recall $\left[N_{\eta}\right]^{\leq \kappa} \subseteq N_{\eta}$.]
$(*)_{4}$ If $t \in \operatorname{dom}\left(e_{\eta}\right)$ then $\operatorname{cf}\left(\alpha_{\eta, t}\right)>\partial$.
[Why? As $\alpha_{\eta, t} \in N_{\eta} \prec(\mathcal{H}(\chi), \in)$ if $\operatorname{cf}\left(\alpha_{\eta, t}\right)=\theta \leq \partial$ then there is a cofinal set B of $\alpha_{\eta, t}$ of cardinality θ in N_{η} but $\theta \leq \partial+1 \subseteq N_{\eta}$ therefore $B \subseteq N_{\eta}$. In particular, as $h_{*}(t)<\alpha_{\eta, t}$, there is $\beta \in B$ so that $h_{*}(t)<\beta$, but this contradicts the choice of $\alpha_{\eta, t}$.]
$(*)_{5} e_{\eta} \in \mathbf{e}(J, I)$.
[Why? Choose $h^{\prime} \in \operatorname{inc}_{J}(I) \cap N_{\eta}$ similar enough to h_{*}. Specifically,

$$
t \in J \backslash \operatorname{dom}\left(e_{\eta}\right) \Rightarrow h^{\prime}(t)=h_{*}(t)
$$

and

$$
t \in \operatorname{dom}\left(e_{\eta}\right) \Rightarrow \sup \left\{\alpha_{\eta, s}: s \in J, s<_{J} t \text { and } s \notin t / e_{\eta}\right\}<h^{\prime}(t)<\alpha_{\eta, t}
$$

(the point being that $\sup \left\{\alpha_{\eta, s}: s \in J, s<_{J} t\right.$ and $\left.s \notin t / e_{n}\right\} \in N_{\eta}$). Now (h^{\prime}, h_{*}) is a strict e-pair.]
$(*)_{6}$ There is $\ell_{\eta}<\omega$ and a finite sequence $\left\langle\beta_{\eta, \ell}: \ell<\ell_{\eta}\right\rangle$ of members of $\operatorname{rang}\left(\bar{\alpha}_{\eta} \upharpoonright\right.$ $\left.\operatorname{dom}\left(e_{\eta}\right)\right)[$ with $] X_{\eta, \beta_{\eta, \ell}} \in \operatorname{dom}\left(e_{\eta}\right) / e_{\eta}$ for $\ell<\ell_{\eta}$ such that

$$
\bigcup_{\ell<\ell_{\eta}} X_{\eta, \beta_{\eta, \ell}} \in \mathcal{D}_{\mathcal{E}, e_{\eta}}
$$

[Why? Otherwise there is an ultrafilter as desired, but toward contradiction we have assumed this does not occur; in trying to get generalizations we should act differently.]

Now we choose $\left(\eta_{n}, h_{n}\right)$ by induction on $n<\omega$ such that
(a) $\eta_{n} \in{ }^{n} \mu$
(b) If $n=m+1$ then $\eta_{m}=\eta_{n} \upharpoonright m$.
(c) $h_{n} \in \operatorname{inc}_{J}(I)$
(d) $h_{0}=h_{*}$
(e) If $n=m+1$ then:
$(\alpha) h_{n} \mathcal{E} h_{m}$ hence $h_{n} \mathcal{E} h_{*}$ and $\operatorname{dom}\left(e_{\eta_{n}}\right) \subseteq \operatorname{dom}\left(e_{\eta_{m}}\right)$.
$(\beta) h_{m} \upharpoonright\left(J \backslash \operatorname{dom}\left(e_{\eta_{m}}\right)\right) \subseteq h_{n}$
$(\gamma)\left(h_{m} \upharpoonright \bigcup\left\{X_{\eta_{m}, \beta_{\eta_{m}, \ell}}: \ell<\ell_{\eta_{m}}\right\}\right) \subseteq h_{n}$
($\delta) h_{n} \upharpoonright\left(\operatorname{dom}\left(e_{\eta_{m}}\right) \backslash \bigcup\left\{X_{\eta_{m}, \beta_{\eta_{m}, \ell}}: \ell<\ell_{\eta_{m}}\right\}\right)$ belongs to $N_{\eta_{m}}$.
(ε) Moreover, $t \in \operatorname{dom}\left(e_{\eta_{m}}\right) \backslash \bigcup\left\{X_{\eta_{m}, \beta_{\eta_{m}, \ell}}: \ell<\ell_{\eta_{m}}\right\}$ implies $h_{n}(t)<h_{m}(t)$.
(ら) $\ell_{\eta_{m}}>0$
(f) $Y_{m+1} \subseteq Y_{m}$, where $Y_{m}:=\bigcup\left\{X_{\eta_{m}, \beta_{\eta_{m}, \ell}}: \ell<\ell_{\eta}\right\}$.

Why can we carry out the construction? For $n=0$ we obviously can: choose $h_{0}=h_{*}$. For $n=m+1$, first choose $h_{m}^{\prime} \in N_{\eta_{m}}$ as in the proof of $(*)_{5}$. Now, recalling $\left\langle X_{\eta_{m}}, \beta_{\eta_{m}, \ell}: \ell<\ell_{\eta_{m}}\right\rangle$ was chosen in $(*)_{6}$, define h_{n} by

$$
\begin{gathered}
h_{n} \upharpoonright\left(\operatorname{dom}\left(e_{\eta_{m}}\right) \backslash \bigcup\left\{X_{\eta_{m}, \beta_{\eta_{m}, \ell}}: \ell<\ell_{\eta_{m}}\right\}\right)=h_{m}^{\prime} \upharpoonright\left(\operatorname{dom}\left(e_{\eta_{m}}\right) \backslash \bigcup\left\{X_{\eta_{m}, \beta_{\eta_{m}, \ell}}: \ell<\ell_{\eta}\right\}\right), \\
h_{n} \upharpoonright\left(J \backslash \operatorname{dom}\left(e_{\eta_{m}}\right)\right)=h_{m} \upharpoonright\left(J \backslash \operatorname{dom}\left(e_{\eta_{m}}\right),\right.
\end{gathered}
$$

and

$$
h_{n} \upharpoonright\left(\bigcup\left\{X_{\eta_{m}, \beta_{\eta_{m}, \ell}}: \ell<n_{\eta_{m}}\right\}\right)=h_{m} \upharpoonright\left(\bigcup\left\{X_{\eta_{m}, \beta_{\eta_{m}, \ell}}: \ell<\ell_{\eta_{m}}\right\}\right) .
$$

Why $h_{n} \mathcal{E} h_{m}$? Because
(i) as in the proof of $(*)_{5},\left(h_{n}, h_{m}\right)$ form a strict ℓ_{η}-pair,
(ii) they agree on $\bigcup\left\{X_{\eta_{m}, \beta_{\eta_{m}, \ell}}: \ell<\ell_{\eta}\right\}$,
(iii) and $\left\{X_{\eta_{m}, \beta_{\eta_{m}}, \ell}: \ell<n\right\} \in \mathcal{D}_{\mathcal{E}, \mathbf{e}_{\eta}}$.

Lastly, choose $\eta_{n}=\eta_{m}{ }^{\wedge}\left\langle\gamma_{m}\right\rangle$ where γ_{m} is chosen such that

$$
g\left(\gamma_{m}\right)=\left\{\sup \left(\beta_{\eta_{m}, \ell} \backslash \sup \left\{h_{m}(t): t \in X_{\beta_{\eta_{m}, \ell}}\right\}\right): \ell<\ell_{\eta_{m}}\right\}
$$

recalling that g is a function from μ onto $[\xi(*)]^{<\aleph_{0}}=[I]^{<\aleph_{0}}$.
Now check that η_{n}, h_{n} are as required.
Note that this induction never stops (in the sense that $h_{n} \notin N_{\eta_{n}}$) recalling the choice of h_{*} and $h_{n} \mathcal{E} h_{*}$. Now $\mathcal{U}_{n}:=\left\{\beta_{\eta_{m}, \ell}: \ell<n_{\eta}\right\}$ is a finite non-empty set of ordinals, and if $n=m+1$, then easily

$$
\left(\forall \ell<\ell_{\eta_{n}}\right)\left(\exists k<\ell_{\eta_{m}}\right)\left[\beta_{\eta_{n}, \ell}<\beta_{\eta_{m}, k}\right]
$$

because for $\ell<\ell_{\eta_{n}}$ letting $t \in X_{\eta_{n}, \ell}$ we know that for some $k \leq \ell_{\eta_{m}}$ we have $t \in X_{\eta_{m}, k}$ and $\eta_{n}(m)$ was chosen above such that as γ_{m}, now $h_{*}(t) \leq \gamma_{n} \in N_{\eta_{n}}$, $\gamma_{m} \leq \alpha_{\eta_{m}, t}$ and the inequality is strict as $\operatorname{cf}\left(\alpha_{\eta_{m}, t}\right)>0$. So $\left\langle\max \left(\mathcal{U}_{n}\right): n<\omega\right\rangle$ is a decreasing sequence of ordinals, a contradiction, so we are done.

Example: For $e \in \mathbf{e}(J, I), J \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}}$ and $I \in K_{\tau_{\alpha(*)}^{*}}^{\operatorname{lin}}$ we define $\mathcal{E}_{e}^{*}=\mathcal{E}_{e, I}^{*}$, an invariant equivalent relation on $\operatorname{inc}_{J}(I)$, by the following.
$h_{1} \mathcal{E}_{e, I}^{*} h_{2}$ iff:
(a) If $t \in J \backslash \operatorname{dom}(e)$ then $h_{1}(t)=h_{2}(t)$.
(b) If $t \in \operatorname{dom}(e)$ then $\operatorname{cnv}_{I, h_{1}}(t)=\operatorname{cnv}_{I, h_{2}}(t)$, where $\operatorname{cnv}_{I, h}(s)$ is the convex hull (in I) of the set

$$
\begin{aligned}
\left\{h_{1}(s)\right\} \cup & \bigcup\left\{\left[h_{1}(s), h_{1}(t)\right]_{I}: s<_{J} t \text { and } t \in s / e\right\} \cup \\
& \bigcup\left\{[h(t), h(s)]_{I}: t<_{J} s \text { and } t \in s / e\right\} .
\end{aligned}
$$

1) If $J, I \in K_{\tau_{\alpha(*)}^{\text {lin }}}^{\operatorname{lin}}$ are well ordered and $e=J \times J$ then $\mathcal{E}_{e, I}^{*}$ from part (1) has $\leq|I|+\aleph_{0}$ equivalence classes.
2) If $J \in K_{\tau_{\alpha}^{*}(*)}^{\operatorname{lin}}$ and e as in part (2), $\theta=\operatorname{cf}(J)$ and $|J|<\lambda=\lambda^{<\theta}<\lambda^{\theta}$ then there is $I \in K_{\tau_{\alpha(*)}^{*}}^{\text {lin }}$ of cardinality λ such that $\mathcal{E}_{e, I}^{*}$ has λ^{θ} equivalence classes.

Remark 6.21. We can define the stability spectrum for some classes; essentially this is done in $\S 7$, and generally we intend to look at it in $\left[\mathrm{S}^{+} \mathrm{b}\right]$.

§ 7. Categoricity for AEC with bounded amalgamation

Recall that 4.10 is the main result of this chapter; we think that it will lead to understanding the categoricity spectrum of an AEC. In particular, we hope to eventually prove that this spectrum contains, or is disjoint to, some end segments of the class of cardinals. Still, here we would like to show that we at least have enough for sufficiently restricted families of AEC \mathfrak{K}-s: those definable by $\mathbb{L}_{\kappa, \omega}$ for κ a measurable cardinal, or with enough amalgamation. (Concerning them and earlier results, see [She].) We could have relied on ${ }^{15}$ [She99a], but though we mention connections we do not rely on it, preferring self-containment.

We can say much even if we replace categoricity by strong solvability, but do this only when it is cheap; we can work with weak and even pseudo-solvability, but will not do so here.

Hypothesis 7.1. 1) \mathfrak{K} is an AEC, so $\mathcal{S}(M)=\mathcal{S}_{\mathfrak{K}_{\lambda}}(M)$ for $M \in K_{\lambda}$; see [She09c, 0.12].
2) Let K_{μ}^{x} be the class K_{μ} if K is categorical in μ, and be the class of superlimit models in \mathfrak{K}_{μ} if there is one. (The two definitions are compatible.)

The following is a crucial claim because lack of locality is the problem in [She99a].
Claim 7.2. Assume
(a) $\operatorname{cf}(\mu)>\kappa \geq \operatorname{LST}(\mathfrak{K})$
(b) $\mathfrak{K}_{<\mu}$ has amalgamation
(c) $\Phi \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ satisfies: if I is θ-wide and $\theta \in(\kappa, \mu)$ then $\operatorname{EM}_{\tau(\mathfrak{K})}(I, M)$ is θ-saturated (see 0.14(1), [She09c, 0.15(2)] and [She09c, 0.19]).
Then
(α) For some $\mu_{*}<\mu$, the class $\left\{M \in K_{<\mu}: M\right.$ is saturated $\}$ is $\left[\mu_{*}, \mu\right)$-local (see Definition 7.4(3) below).
$(\alpha)^{+}$This applies not only to $\mathcal{S}(M)=\mathcal{S}^{1}(M)$ but also for $\mathcal{S}^{\partial}(M)$ if $\operatorname{cf}(\mu)>\kappa^{\partial}$.

Recall
Definition 7.3. \mathfrak{K} is μ-stable if $\mu \geq \operatorname{LST}(\mathfrak{K})$ and $M \in K_{\leq \mu} \Rightarrow|\mathcal{S}(M)| \leq \mu$.

Recall [She99a, Def.1.8=1.6tex(1),(2)].
Definition 7.4. 1) For $M \in \mathfrak{K}, \mu \geq \operatorname{LST}(\mathfrak{K})$ satisfying $\mu \leq\|M\|$ and α [what about α ?], let $\mathbb{E}_{M, \mu, \alpha}$ be the following equivalence relation on $\mathcal{S}^{\alpha}(M)$:
$p_{1} \mathbb{E}_{M, \mu, \alpha} p_{2}$ iff for every $N \leq_{\mathfrak{K}} M$ of cardinality μ we have $p_{1} \upharpoonright N=p_{2} \upharpoonright N$. We may suppress α if it is 1 , similarly below; let $\mathbb{E}_{\mu, \alpha}$ be $\bigcup\left\{\mathbb{E}_{M, \mu, \alpha}: M \in K\right\}$ and so $\mathbb{E}_{\mu}=\mathbb{E}_{\mu, 1}$.
2) We say that $M \in \mathfrak{K}$ is $\mu-\alpha$-local when $\mathbb{E}_{M, \mu, \alpha}$ is the equality; we say that $p \in \mathcal{S}^{\alpha}(M)$ is μ-local if $p / \mathbb{E}_{M, \mu, \alpha}$ is a singleton and we say, e.g., $K^{\prime} \subseteq \mathfrak{K}$ is $\mu-\alpha$-local (in \mathfrak{K}, if not clear from the context) when every $M \in K^{\prime}$ is.
[Is this supposed to be $(\mu-\alpha)$-local, μ - α-local, or (μ, α)-local?]
3) We say $K^{\prime} \subseteq \mathfrak{K}$ is $\left[\mu_{*}, \mu\right)-\alpha$-local if every $M \in K^{\prime} \cap \mathfrak{K}_{\left[\mu^{*}, \mu\right)}$ is $\mu_{*}-\alpha$-local.
4) We say that $\bar{a} \in N$ realizes $\mathbf{p} \in \mathcal{S}_{\mathfrak{K}}^{\alpha}(M) / \mathbb{E}_{\mu, \alpha}$ if $M \leq_{\mathfrak{K}} N$ and for every $M^{\prime} \leq_{\mathfrak{K}} N$ of cardinality μ the sequence \bar{a} realizes $\mathbf{p} \upharpoonright M^{\prime}$ in N (or pedantically, it realizes $q \upharpoonright M^{\prime}$ for some - equivalently, every $-q \in \mathbf{p}$).

[^13]Remark 7.5. If $M \in \mathfrak{K}_{\mu}$, then M is $\mu-\alpha$-local.

Proof. Recall $\Phi \in \Upsilon_{\kappa}^{\mathrm{or}}[\mathfrak{K}]$; see Definition $0.8(2)$ and Claim 0.9. Easily, there exists $\left\langle I_{\theta}: \theta \in[\kappa, \mu)\right\rangle$ an increasing sequence of wide linear orders which are strongly $\aleph_{0^{-}}$ homogeneous (that is dense with neither first nor last element such that if $n<\omega$ and $\bar{s}, \bar{t} \in{ }^{n}\left(I_{\theta}\right)$ are $<_{I}$-increasing then some automorphism of I_{θ} maps \bar{s} to \bar{t}; e.g. the order of any real closed field, or just [of any] ordered field) satisfying $\left|I_{\theta}\right|=\theta$.

Recalling \mathbb{Q} here is the rational order, we let $J_{\theta}=\mathbb{Q}+I_{\theta}, M_{\theta}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\theta}, \Phi\right)$, and $N_{\theta}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(J_{\theta}, \Phi\right)$. So

* (a) $M_{\theta} \leq_{\mathfrak{K}_{\theta}} N_{\theta}$
(b) $M_{\theta_{1}} \leq_{\mathfrak{K}} M_{\theta_{2}}$ and $N_{\theta_{1}} \leq_{\mathfrak{K}} N_{\theta_{2}}$ when $\kappa \leq \theta_{1}<\theta_{2}<\mu$.
(c) M_{θ} is saturated (for \mathfrak{K}, of course) when $\theta>\kappa$.
(d) Every type from $\mathcal{S}\left(M_{\theta}\right)$ is realized in N_{θ}.
(e) if $n<\omega, \bar{a} \in{ }^{n}\left(N_{\theta}\right)$ then for some $\bar{a}^{\prime} \in{ }^{n}\left(N_{\kappa}\right)$ and automorphism π of $N_{\theta}, \pi(\bar{a})=\bar{a}^{\prime}$ and π maps M_{θ} onto itself.
[Why? Clauses (a),(b) hold by clause (c) of Claim 0.9(1), recalling Definition 0.8(2).
Clause (c) holds by Clause (c) of the assumption of 7.2; you may note [She99a, $6.7=6.4 \mathrm{tex}(2)]$.

Clause (d) holds as $\mathrm{EM}_{\tau(\mathfrak{K})}\left(\theta^{+}+J_{\theta}, \Phi\right) \in \mathfrak{K}_{\theta^{+}}$is saturated, and use the definition of a type (or, like the proof of clause (e) below, using appropriate $I^{\prime}+I_{\theta}$ instead of $\left.\theta^{+}+J_{\theta}\right)$; you may note [She99a, $6.8=6.5$ tex].

Clause (e) holds as for every finite sequence \bar{t} from J_{θ} there is an automorphism π of J_{θ} such that: π is the identity on \mathbb{Q}, it maps I_{θ} onto itself and it maps \bar{t} to a sequence from $J_{\kappa}=\mathbb{Q}+I_{\kappa}$. Such π exists as I_{θ} is strongly \aleph_{0}-homogeneous and $I_{\kappa} \subseteq I_{\theta}$ is infinite.]

For any $a \neq b$ from N_{κ} let

$$
\begin{aligned}
& \mu(a, b)=\min \{\theta: \theta \geq \kappa \text { and if } \theta<\mu \text { then } \\
& \left.\qquad \mathbf{t p}_{\mathfrak{K}}\left(a, M_{\theta}, N_{\theta}\right) \neq \mathbf{t p}_{\mathfrak{K}}\left(b, M_{\theta}, N_{\theta}\right)\right\} .
\end{aligned}
$$

So $\mu(a, b) \leq \mu$. Let

$$
\mu_{*}=\sup \left\{\mu(a, b): a, b \in N_{\kappa} \text { and } \mu(a, b)<\mu\right\}
$$

So μ_{*} is defined as the supremum on a set of $\leq \kappa \times \kappa$ cardinals $<\mu$, which is a cardinal of cofinality $\operatorname{cf}(\mu)>\kappa$, hence clearly $\mu_{*}<\mu$. Also $\mu_{*} \geq \kappa$ as there are $a \neq b$ from M_{κ} hence $\mu(a, b)=\kappa$. Now suppose that $\theta \in\left[\mu_{*}, \mu\right), M \in \mathfrak{K}_{\theta}$ is saturated, and $p_{1} \neq p_{2} \in \mathcal{S}(M)$, and we shall find $M^{\prime} \leq_{\mathfrak{K}} M$ and $M^{\prime} \in \mathfrak{K}_{\mu_{*}}$ such that $p_{1} \upharpoonright M^{\prime} \neq p_{2} \upharpoonright M^{\prime}$: this will suffice.

Clearly $M_{\theta} \in K_{\theta}$ is saturated (by clause (c) of \circledast) hence the models M, M_{θ} are isomorphic, so without loss of generality $M=M_{\theta}$. But by clause (d) of \circledast every type from $\mathcal{S}\left(M_{\theta}\right)$ is realized in N_{θ}, so let b_{ℓ} be such that $p_{\ell}=\mathbf{t p}_{\mathfrak{K}}\left(b_{\ell}, M_{\theta}, N_{\theta}\right)$ for $\ell=1,2$. Now there is an automorphism π of N_{θ} which maps M_{θ} onto itself and maps b_{1}, b_{2} into N_{κ} (by clause (e) of $\left.\circledast\right)$. Let $a_{\ell}=\pi\left(b_{\ell}\right)$ for $\ell=1,2$, so $a_{1}, a_{2} \in N_{\kappa}$.

Now

$$
\begin{array}{r}
\mathbf{t p}\left(a_{1}, M_{\theta}, N_{\theta}\right)=\mathbf{t p}\left(\pi\left(b_{1}\right), \pi\left(M_{\theta}\right), \pi\left(N_{\theta}\right)\right)=\pi\left(\mathbf{t p}\left(b_{1}, M_{\theta}, N_{\theta}\right)\right) \\
\neq \pi\left(\mathbf{t p}\left(b_{2}, M_{\theta}, N_{\theta}\right)\right)=\mathbf{t p}\left(\pi\left(b_{2}\right), \pi\left(M_{\theta}\right), \pi\left(N_{\theta}\right)\right)=\mathbf{t p}\left(a_{2}, M_{\theta}, N_{\theta}\right)
\end{array}
$$

Hence by the definition of $\mu\left(a_{1}, a_{2}\right)$ we have $\mu\left(a_{1}, a_{2}\right) \leq \theta<\mu$. Hence by the definition of μ_{*} we have $\mu\left(a_{1}, a_{2}\right) \leq \mu_{*}$ which implies that

$$
\mathbf{t p}_{\mathfrak{K}}\left(a_{1}, M_{\mu_{*}}, N_{\mu_{*}}\right) \neq \mathbf{t p}_{\mathfrak{K}}\left(a_{2}, M_{\mu_{*}}, N_{\mu_{*}}\right)
$$

As π is an automorphism of N_{θ} and $M_{\mu^{*}} \leq_{\mathfrak{K}} M_{\theta}$ it follows that

$$
\boldsymbol{t p}_{\mathfrak{K}}\left(\pi^{-1}\left(a_{1}\right), \pi^{-1}\left(M_{\mu^{*}}\right), \pi^{-1}\left(N_{\theta}\right)\right) \neq \mathbf{t p}_{\mathfrak{K}}\left(\pi^{-1}\left(a_{2}\right), \pi^{-1}\left(M_{\mu^{*}}\right), \pi^{-1}\left(N_{\theta}\right)\right)
$$

which means

$$
\operatorname{tp}_{\mathfrak{K}}\left(b_{1}, \pi^{-1}\left(M_{\mu^{*}}\right), N_{\theta}\right) \neq \mathbf{t p}_{\mathfrak{K}}\left(b_{2}, \pi^{-1}\left(M_{\mu^{*}}\right), N_{\theta}\right)
$$

but $\pi^{-1}\left(M_{\mu^{*}}\right) \leq_{\mathfrak{K}} M_{\theta}$, as π maps M_{θ} onto itself. Recall that $p_{\ell}=\operatorname{tp}_{\mathfrak{K}}\left(b_{\ell}, M_{\theta}, N_{\theta}\right)$ so $p_{\ell} \upharpoonright \pi^{-1}\left(M_{\mu^{*}}\right)$ is well defined for $\ell=1,2$. Hence $p_{1} \upharpoonright \pi^{-1}\left(M_{\mu^{*}}\right) \neq p_{2} \upharpoonright \pi^{-1}\left(M_{\mu^{*}}\right)$ and clearly $\pi^{-1}\left(M_{\mu^{*}}\right)$ has cardinality μ^{*} and is $\leq_{\mathfrak{K}} M_{\theta}$, so we are done proving clause (α). The proof of clause $(\alpha)^{+}$is the same except that
$(*)_{1}$ if $\theta \in[\kappa, \mu), \bar{t} \in{ }^{\partial}\left(I_{\theta}\right)$ then some automorphism π of I_{θ} maps \bar{t} to some $\bar{t}^{\prime} \in{ }^{\partial}\left(I_{\kappa}\right)$; this is justified by 5.1.
$(*)_{2}$ We replace \mathbb{Q} by ∂^{+}.
$(*)_{3}{ }^{\partial}\left(N_{\kappa}\right)$ has cardinality $\leq\left(\partial^{+}+\kappa\right)^{\partial} \leq \kappa^{\partial}<\operatorname{cf}(\mu) . \quad \square_{7.2}$
Implicit in non- μ-splitting is
Definition 7.6. Assume $\alpha<\mu^{+}, N \in K_{\leq_{\mu}}, N \leq_{\mathfrak{K}} M$, and $p \in \mathcal{S}^{\alpha}(M)$ does not μ-split over N (see Definition [She09e, gr.1(1)]). The scheme of the non- μ-splitting, $\mathfrak{p}=\operatorname{sch}_{\mu}(p, N)$, is

$$
\left\{\left(N^{\prime \prime}, c, \bar{b}\right)_{c \in N} / \cong: N \leq_{\mathfrak{K}} N^{\prime} \leq_{\mathfrak{K}} M \text { and } N^{\prime} \leq_{\mathfrak{K}} N^{\prime \prime},\left\{N^{\prime}, N^{\prime \prime}\right\} \subseteq K_{\mu}\right.
$$

and the sequence \bar{b} realizes $p \upharpoonright N^{\prime}$ in the model $\left.N^{\prime \prime}\right\}$.
Definition 7.7. For a cardinal μ and model M let
1)
$\operatorname{ps}-\mathcal{S}_{\mu}(M)=\mathcal{S}_{\mathfrak{K}, \mu}(M)=\left\{\mathbf{p}: \mathbf{p}\right.$ is a function with domain $\left\{N \in K_{\mu}: N \leq_{\mathfrak{K}} M\right\}$ such that $\mathbf{p}(N) \in \mathcal{S}(N)$ and

$$
\left.N_{1} \leq_{\mathfrak{K}} N_{2} \in \operatorname{dom}(\mathbf{p}) \Rightarrow \mathbf{p}\left(N_{1}\right)=\mathbf{p}\left(N_{2}\right) \upharpoonright N_{1}\right\} .
$$

2) For $p \in \mathcal{S}(M)$ let $p \upharpoonright(\leq \mu)$ be the function \mathbf{p} with domain $\left\{N \in K_{\mu}: N \leq_{\mathfrak{K}} M\right\}$ such that $\mathbf{p}(N)=p \upharpoonright N$.

Observation 7.8. 1) The function $p \mapsto p \upharpoonright(\leq \mu)$ is a function from $\mathcal{S}(M)$ into $\mathrm{ps}-\mathcal{S}_{\mu}(M)$ such that for $p_{1}, p_{2} \in \mathcal{S}(M)$ we have $p_{1} \upharpoonright(\leq \mu)=p_{2} \upharpoonright(\leq \mu) \Leftrightarrow p_{1} \mathbb{E}_{\mu} p_{2}$.
2) The subset $\{p \upharpoonright(\leq \mu): p \in \mathcal{S}(M)\}$ of $\mathrm{ps}-\mathcal{S}_{\mu}(M)$ has cardinality $\left|\mathcal{S}(M) / \mathbb{E}_{\mu}\right|$.

Proof. Should be clear.
Claim 7.9. Every (equivalently, some) $M \in K_{\mu}^{x}$ is λ^{+}-saturated when:
(a) $(\alpha) \mathfrak{K}$ is categorical in μ, or just
$(\beta) \mathfrak{K}$ is strongly solvable in μ.
(b) $\operatorname{LST}(\mathfrak{K}) \leq \lambda<\chi \leq \mu$ and $2^{2^{\lambda}} \leq \mu$ (actually, $2^{\lambda} \leq \mu$ will suffice).
(c) $(\alpha) \aleph_{\lambda+4}=\lambda^{+\lambda^{+4}} \leq \chi$, or at least
(β) If $\theta=\operatorname{cf}(\theta) \leq \lambda$ is \aleph_{0} or a measurable cardinal then for some $\partial \in(\lambda, \chi)$ we have $\partial=\partial^{<\theta}<\partial^{\theta}$ or at least $\partial^{\langle\theta\rangle_{\mathrm{tr}}}>\partial$. (I.e. there is a tree \mathcal{T} with θ levels, ∂ nodes and the number of θ-branches of \mathcal{T} is $>\chi$; see [She00].)
(d) $\mathfrak{K}_{\geq \partial} \neq \varnothing$ for every ∂. Equivalently, $K_{\geq \theta} \neq \varnothing$ for arbitrarily large $\theta<$ $\beth_{1,1}(\operatorname{LST}(\mathfrak{K}))$.
(e) (α) $\mathfrak{K}_{<\mu}$ has amalgamation and JEP, or just
(β) If $\operatorname{LST}(\mathfrak{K}) \leq \partial<\chi$ then
(i) \mathfrak{K}_{∂} has amalgamation and JEP, and
(ii) \mathfrak{K} has $\left(\partial, \leq \partial^{+}, \mu\right)$-amalgamation ${ }^{16}$ (see [She09a, 2.5(2)]) hence ${ }^{17}$
(iii) Every $M \in K_{\partial^{+}}$has $a \leq_{\mathfrak{K}}$-extension in K_{μ}^{x}. (Actually, (i) + (iii) suffices.)

Remark 7.10. 1) M is λ^{+}-saturated is well defined as $\mathfrak{K}_{\leq \lambda}$ has amalgamation.
2) We assume $2^{2^{\lambda}} \leq \mu$ because the proof is simpler with not much loss (at least as long as other parts of the analysis are not much tighter).
3) We can weaken the assumptions. In particular using solvability instead categoricity, but for non-essential reasons this is delayed; similarly in 7.13.
4) If $\mu=\mu^{\lambda}$ the claim is easy (as in $\S 1$).

Proof. Note that by [She94, IX, $\S 2]$, [She94, II,3.1] if clause $(c)(\alpha)$ holds then clause $(c)(\beta)$ holds, hence we can assume $(c)(\beta)$.

Let $\Phi \in \Upsilon_{\mathfrak{K}}^{\mathrm{or}}$ (see Definition 0.8(2)); [it exists] by 0.9 and clause (d) of the assumption and $I \in K_{\mu}^{\text {lin }} \Rightarrow \operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi) \in K_{\mu}^{x}$ (trivially if K is categorical in μ, otherwise by the definition of solvable).

Clearly
$(*)_{0}$ If $\partial \in[\operatorname{LST}(\mathfrak{K}), \chi)$ then \mathfrak{K} is stable in ∂.
[Why? We prove assuming clause $(e)(\beta)$, as the case of clause $(e)(\alpha)$ is easier. Otherwise, as \mathfrak{K}_{∂} has amalgamation, there are $M_{0} \leq_{\mathfrak{K}} M_{1}$ such that $M_{0} \in K_{\partial}$, $M_{1} \in K_{\partial^{+}}$and $\left\{\boldsymbol{t}_{\mathfrak{K}}\left(a, M_{0}, M_{1}\right): a \in M_{1}\right\}$ has cardinality ∂^{+}. By assumption (e) (β) (iii) there is N_{1} such that $M_{1} \leq_{\mathfrak{K}} N_{1} \in \mathfrak{K}_{\mu}$ and without loss of generality $N_{1} \in K_{\mu}^{x}$. Let I be as in 5.1 with $\left(\lambda, \theta_{2}, \theta_{1}, \mu\right)$ there standing for $\left(\mu, \partial^{++}, \partial^{+}, \partial\right)$ here and $N_{2}:=\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$. Now by $5.1(2), N_{1} \not \neq N_{2}$, contradicting " \mathfrak{K} categorical in μ ". Or you may see [She99a, $1.7=1.5 \mathrm{tex}]$.]

The proof now splits to two cases.
Case 1: For every $M \in K_{\mu}^{x}$ we have $\mu \geq\left|\mathcal{S}(M) / \mathbb{E}_{\lambda}\right|$.
For every $M \in K_{\mu}^{x}$ there is M^{\prime} such that: $M \leq_{\mathfrak{K}} M^{\prime} \in K_{\mu}$ and for every $\mathbf{p} \in \mathcal{S}(M) / \mathbb{E}_{\lambda}$ either \mathbf{p} is realized in M^{\prime} or there are no $M^{\prime \prime}$ or a such that $M^{\prime} \leq_{\mathfrak{K}}$ $M^{\prime \prime} \in K_{\mu}$ and $a \in M^{\prime \prime}$ realizes p in $M^{\prime \prime}$.
[Why? Let $\left\langle p_{i} / \mathbb{E}_{\lambda}: i<\mu\right\rangle$ list $\mathcal{S}(M) / \mathbb{E}_{\lambda}$ (this exists by the assumptions) and choose M_{i} for $i \leq \mu, \leq_{\mathfrak{K}_{\mu}}$-increasing continuous, such that M_{i+1} satisfies the demand for $\mathbf{p}=p_{i} / \mathbb{E}_{\lambda}$, possibly no $p \in p_{i} / \mathbb{E}_{\lambda}$ has an extension in $\mathcal{S}\left(M_{i+1}\right)$ (hence is not realized in it), so then the desired demand holds trivially; note that it is not unreasonable to assume \mathfrak{K}_{μ} has amalgamation and it clarifies matters, but it is not necessary.]

Also without loss of generality $M^{\prime} \in K_{\mu}^{x}$ as any model M from K_{μ} has a $\leq_{\mathfrak{K}^{-}}$ extension in K_{μ}^{x} (at least if M does $\leq_{\mathfrak{K}}$-extend some $M^{\prime} \in K_{\mu}^{x}$).

Now we can choose by induction on $i \leq \lambda^{+}$a model $M_{i} \in K_{\mu}^{x}, \leq_{\mathfrak{K}}$-increasing continuous with i, such that for every $p \in \mathcal{S}\left(M_{i}\right)$ either there is $q \in \mathcal{S}\left(M_{i}\right)$ realized in M_{i+1} which is \mathbb{E}_{λ}-equivalent to p or there is no $\leq_{\mathfrak{K}}$-extension of M_{i+1} satisfying this. Now we shall prove that $M_{\lambda^{+}}$is λ^{+}-saturated, recalling Definition [She09c, 0.15]. Now if $N \leq_{\mathfrak{K}} M_{\lambda^{+}},\|N\| \leq \lambda$, and $p \in \mathcal{S}(N)$ then there is $i<\lambda^{+}$such that $N \leq_{\mathfrak{K}} M_{i}$ and we can find $p^{\prime} \in \mathcal{S}\left(M_{\lambda^{+}}\right)$extending p. (Why? If clause

[^14]$(e)(\alpha)$ holds then this follows by $\mathfrak{K}_{<\mu}$ having amalgamation; see [She09a, 2.8]. If clause $(e)(\beta)$ holds, use " \mathfrak{K} has the $\left(\lambda, \leq \lambda^{+}, \mu\right)$-amalgamation property," recalling $\operatorname{LST}(\mathfrak{K}) \leq \lambda<\chi$.) Hence there is $a \in M_{i+1}$ such that $\operatorname{tp}\left(a, M_{i}, M_{i+1}\right) \mathbb{E}_{\lambda}\left(p^{\prime} \upharpoonright M_{i}\right)$, hence a realizes p in M_{i+1}, hence in $M_{\lambda+}$.

Case 2: Not Case 1.

Let I be as in 5.1 with $\left(\lambda, \theta_{2}, \theta_{1}, \mu\right)$ there standing for $\left(\mu, \lambda^{++}, \lambda^{+}, \lambda\right)$ here, so $|I|=\mu$. Let $M=\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$, so by 'not Case 1' we can find $p_{i} \in \mathcal{S}(M)$ for $i<\mu^{+}$pairwise non- \mathbb{E}_{λ}-equivalent. As \mathfrak{K}_{λ} is a λ-AEC with amalgamation and is stable in $\lambda\left(\right.$ by $\left.(*)_{0}\right)$ we can deduce (see [She09e, gr.6(2)]) that: if $p \in \mathcal{S}(M)$ then for some $N \leq_{\mathfrak{K}} M$ of cardinality λ the type p does not λ-split over N (or see [She99a, $3.2=3.2 \operatorname{tex}(1)]$]. For each i choose $N_{i} \leq_{\mathfrak{K}} M$ of cardinality λ such that p_{i} does not μ-split over N_{i}. As there is no loss in increasing N_{i} (as long as it is $\leq_{\mathfrak{K}} M$ and has cardinality λ) without loss of generality,
$(*)_{1} N_{i}=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{i}, \Phi\right)$ where $I_{i} \subseteq I$ and $\left|I_{i}\right|=\lambda$, and let $\bar{t}_{i}=\left\langle t_{\varepsilon}^{i}: \varepsilon<\lambda\right\rangle$ list I_{i} with no repetitions.
As $2^{\lambda} \leq \mu$, without loss of generality the I_{i}-s are pairwise isomorphic, so without loss of generality for $i, j<\mu^{+}$, the mapping $t_{\varepsilon}^{i} \mapsto t_{\varepsilon}^{j}$ is such an isomorphism. Moreover, without loss of generality
$(*)_{2}$ For every $i, j<\mu^{+}$there is an automorphism $\pi_{i, j}$ of I mapping t_{ε}^{i} to t_{ε}^{j} for $\varepsilon<\lambda$.
[Why? By $5.1(1)$ as we can replace $\left\langle p_{i}: i<\mu^{+}\right\rangle$by $\left\langle p_{i}: i \in \mathcal{U}\right\rangle$ for every unbounded $\left.\mathcal{U} \subseteq \mu^{+}.\right]$

Let \mathfrak{p}_{i} be the non- λ-splitting scheme of p over N_{i} (see Definition 7.6). Without loss of generality:
$(*)_{3}$ For $i, j<\mu^{+}$, the isomorphism $h_{i, j}$ from $N_{j}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{j}, \Phi\right)$ onto $N_{i}=$ $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{i}, \Phi\right)$ induced by the mapping $t_{\zeta}^{j} \mapsto t_{\zeta}^{i}($ for $\zeta<\lambda)$ satisfies
(i) It is an isomorphism from N_{j} onto N_{i}.
(ii) It maps \mathfrak{p}_{j} to \mathfrak{p}_{i}.
[Why? For (i) this holds by the definition of $\operatorname{EM}\left(I_{i}, \Phi\right)$. For (ii) let $h_{i, 0}$ map \mathfrak{p}_{i} to $\mathfrak{p}_{i}^{\prime}$. The number of schemes is $\leq 2^{2^{\lambda}}$, so if $\mu \geq 2^{2^{\lambda}}$ then without loss of generality $i<\mu^{+} \Rightarrow \mathfrak{p}_{i}^{\prime}=\mathfrak{p}_{1}^{\prime}$ hence we are done (with no real loss). If we weaken the assumption $\mu \geq 2^{2^{\lambda}}$ to $\mu \geq 2^{\lambda}$ (or even $\mu>\lambda$, so waive $\left.(*)_{2}\right)$ using 5.1(4) we can find I_{i}^{+}such that $I_{i} \subseteq I_{i}^{+} \subseteq I,\left|I_{i}^{+}\right| \leq \lambda^{+}$, and for every $J \subseteq I$ of cardinality $\leq \lambda$ there is an automorphism of I over I_{i} mapping J into I_{i}^{+}. So only

$$
\left\langle\mathfrak{p}_{i}^{\prime}\left(\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}^{+}, \Phi\right), c, \bar{b}\right)_{c \in \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)} / \cong\right): \bar{b} \in{ }^{\lambda}\left(\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}^{+}, \Phi\right)\right)\right\rangle
$$

matters (an overkill) but this is determined by $p_{i} \upharpoonright \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}^{+}, \Phi\right)$) which \in $\mathcal{S}\left(\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{0}^{+}, \Phi\right)\right)$ by $(*)_{0}$, and as \mathfrak{K} is stable in λ^{+}, without loss of generality $\mathfrak{p}_{1+i}^{\prime}=\mathfrak{p}_{1}^{\prime}$ and we are done.]

Now we translate our problem to one on expanded (by unary predicates) linear orders which was treated in $\S 6$. Recall that by $5.1(3)$, we can use $I=\mathrm{EM}_{\{<\}}\left(I^{*}, \Psi\right)$ where $\Psi \in \Upsilon_{\aleph_{0}}^{\operatorname{lin}}[2]$ (see Definition $0.11(5)$) and $I^{*}=I_{\lambda, \mu \times \lambda^{+}}^{\operatorname{lin}}$ from 6.12(2) with $\alpha(*)=2$. Recall that $I^{*}=I_{\lambda, \mu \times \lambda^{++}}^{\operatorname{lin}}$ is $\mu \times \lambda^{++}$expanded by

$$
P_{1}=\left\{\alpha \in I^{*}: \operatorname{cf}(\alpha) \geq \lambda^{+}\right\}
$$

$P_{0}=I_{*} \backslash P_{0}$ so I^{*} is a well ordered τ_{2}^{*}-model, i.e. $\in K_{\tau_{2}^{*}}^{\text {lin }}$, see Definition 0.11(5). Without loss of generality $I_{i}=\operatorname{EM}_{\{<\}}\left(I_{i}^{*}, \Psi\right)$ where $I_{i}^{*} \subseteq I^{*}$ has cardinality λ and the pair $\left(I^{*}, I_{i}^{*}\right)$ is a reasonable $(\lambda, \alpha(*))$-base which is a wide $(\mu, \lambda, \alpha(*))$-base; see Definition $6.10(3)(4)$, Claim 6.12(2). Without loss of generality, for every $i<\mu^{+}$
there is h_{i} an isomorphism from I_{0}^{*} onto I_{i}^{*} such that (see below) the induced function $h_{1}^{[1]}$ maps \bar{t}_{0} to \bar{t}_{i}. Let $J^{*}=I_{0}^{*}$ and $J=I_{0}$. We would like to apply $\S 6$ for J^{*}, I^{*} fixing $\alpha(*)=2, \bar{u}^{*}=\left(u^{-}, u^{+}\right)=(\{0\}, \varnothing)$. So, recalling Definition 6.3(2), for every $h \in \operatorname{inc}_{J^{*}}^{\bar{u}^{*}}\left(I^{*}\right)$ we can naturally define the function $h^{[1]}$ by

$$
h^{[1]}\left(\sigma^{\operatorname{EM}\left(J^{*}, \Psi\right)}\left(t_{0}, \ldots, t_{n-1}\right)\right)=\sigma^{\operatorname{EM}\left(J^{*}, \Psi\right)}\left(a_{h\left(t_{0}\right)}, \ldots, a_{h\left(t_{n-1}\right)}\right)
$$

whenever $\sigma\left(x_{0}, \ldots, x_{n-1}\right)$ is a $\tau(\Psi)$-term and $J^{*} \models$ " $t_{0}<\ldots<t_{n-1}$ ". It is an isomorphism from $\operatorname{EM}_{\{<\}}\left(J^{*}, \Psi\right)$ onto $\operatorname{EM}_{\{<\}}\left(I^{*} \upharpoonright \operatorname{rang}(h), \Psi\right)$ so, as $J^{*} \subseteq I^{*}$, by $5.1(5)$ there is an automorphism $h^{[2]}$ of I extending $h^{[1]}$ and so there is an automorphism $h^{[3]}$ of $\operatorname{EM}(I, \Phi)$ such that $h^{[3]}\left(a_{t}\right)=a_{h^{[2]}(t)}$ for $t \in I$ and

$$
h^{[3]}\left(\sigma^{\operatorname{EM}(I, \Phi)}\left(a_{t_{0}}, \ldots, a_{t_{n-1}}\right)\right)=\sigma^{\operatorname{EM}(I, \Phi)}\left(a_{h[2]}\left(t_{0}\right), \ldots, a_{h[2]}\left(t_{n}\right)\right)
$$

where $t_{0}<_{I} \ldots<_{I} t_{n-1}$ and $\sigma\left(x_{0}, \ldots, x_{n-1}\right)$ is a $\tau(\Phi)$-term.
Note that
$(*)_{4}$ If $h^{\prime}, h^{\prime \prime}$ are automorphisms of $\operatorname{EM}_{\tau[\mathfrak{K}]}(I, \Phi)$ extending $h^{[3]} \upharpoonright \mathrm{EM}_{\tau[\mathfrak{\mathcal { K }}]}\left(I_{0}\right)$ then $h^{\prime}\left(p_{0} / \mathbb{E}_{\lambda}\right)=h^{\prime \prime}\left(p_{0} / \mathbb{E}_{\lambda}\right)$.
[Why? Because p_{0} does not λ-split over $\mathrm{EM}_{\tau[\mathfrak{K}]}\left(I_{0}, \Phi\right)$.]
We define a two-place relation \mathcal{E} on $\operatorname{inc}_{J^{*}}\left(I^{*}\right)$ by

$$
h_{1} \mathcal{E} h_{2} \text { if } h_{1}^{[3]}\left(p_{0} / \mathbb{E}_{\lambda}\right)=h_{2}^{[3]}\left(p_{0} / \mathbb{E}_{\lambda}\right)
$$

(Note that $h \mapsto h^{[3]}$ is a function, so this is well defined, and $h^{[3]}$ is an automorphism of $\mathrm{EM}_{\tau(\mathfrak{K})}(I, \Phi)$.) By $(*)_{4}$ clearly \mathcal{E} is an invariant equivalence relation on $\operatorname{inc}_{J^{*}}^{\tilde{u}^{*}}\left(I^{*}\right)$ with $>\mu$ equivalence classes as exemplified by $\left\langle h_{i}: i<\mu^{+}\right\rangle$.

By 6.19 there is $e \in \mathbf{e}\left(J^{*}, I^{*}\right)$ such that (recalling Definition 6.16) the filter $\mathcal{D}_{\mathcal{E}, e}$ has an extension to a non-principal ultrafilter \mathcal{D}; so for some regular $\theta \leq \lambda$ there is a function g from $\operatorname{dom}(\mathbf{e}) / e$ onto θ which maps \mathcal{D} to a uniform ultrafilter $g(\mathcal{D})$ on θ, so $\partial^{\langle\theta\rangle_{\mathrm{tr}}} \leq \partial^{\operatorname{dom}(e) / e} / \mathcal{D}_{\mathcal{E}, e}$ for every cardinal ∂. Choose such a pair (g, θ) with minimal θ so \mathcal{D} is θ-complete hence $\theta=\aleph_{0}$ or θ is a measurable cardinal $\leq \lambda$. By clause $(c)(\beta)$ of our assumption (justified in the beginning of the proof) there is $\partial \in\left(\lambda^{+}, \chi\right)$ such that $\partial<\partial^{\langle\theta\rangle_{\operatorname{tr}}}$ hence $\partial^{+} \leq \partial^{\langle\theta\rangle_{\operatorname{tr}}} \leq \partial^{\operatorname{dom}(e) / e} / \mathcal{D}_{\mathcal{E}, e}$. So, letting $I_{\partial}^{0}=I_{\lambda, \partial \times \lambda^{+}}^{\operatorname{lin}} \subseteq I^{*}$, the set $\left\{\bar{t} / \mathcal{E}: \bar{t} \in \operatorname{inc}_{J^{*}}\left(I^{*}\right)\right.$ and $\left.\operatorname{rang}(\bar{t}) \subseteq I_{\partial}^{0}\right\}$ has cardinality $>\partial$. Now for each $\bar{t} \in \operatorname{inc}_{J^{*}} \bar{u}^{*}\left(I^{*}\right)$ let $\pi_{\bar{t}} \in \operatorname{Aut}(I)$ be such that $\pi_{\bar{t}}\left(\bar{t}_{0}\right)=\bar{t}$ and let $\hat{\pi}_{\bar{t}}$ be the automorphism of $\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$ induced by $\pi_{\bar{t}}$, and let $p_{t}=\hat{\pi}_{\bar{t}}\left(p_{0}\right) \in \mathcal{S}(M)$. Hence

$$
\left\{\hat{\pi}_{\bar{t}}\left(p_{0}\right) \upharpoonright \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\lambda, \partial \times \lambda^{+}}^{\operatorname{lin}}, \Phi\right): \bar{t} \in \operatorname{inc}_{J^{*}} \bar{u}^{*}\left(I^{*}\right) \text { and } \operatorname{rang}(\bar{t}) \subseteq I_{\lambda, \partial \times \lambda^{++}}^{\operatorname{lin}}\right\}
$$

is of cardinality $>\partial$, contradicting " \mathfrak{K} stable in ∂ " from $(*)_{0}$.

We note, but we shall not use
Conclusion 7.11. 1) Under the assumptions of 7.9 we have $\kappa\left(\mathfrak{K}_{\mu}\right)=\aleph_{0}$, see below.
2) Moreover, $\kappa_{\mathrm{st}}\left(\mathfrak{K}_{\mu}\right)=\varnothing$.

Recall

Definition 7.12. If \mathfrak{K}_{μ} is an μ-AEC with amalgamation which is stable, then:
(a) $\kappa\left(\mathfrak{K}_{\mu}\right)=\aleph_{0}+\sup \left\{\kappa^{+}: \kappa\right.$ regular $\leq \mu$ and there is an $\leq_{\mathfrak{K}_{\mu}}$-increasing continuous sequence $\left\langle M_{i}: i \leq \kappa\right\rangle$ and $p \in \mathcal{S}\left(M_{\kappa}\right)$ such that $M_{2 i+2}$ is universal over $M_{2 i+1}$ and $p \upharpoonright M_{2 i+2}$ does μ-split over $\left.M_{2 i+1}\right\}$
(b) $\kappa_{\mathrm{sp}}\left(\mathfrak{K}_{\mu}\right):=\left\{\kappa \leq \mu: \kappa\right.$ regular and there is an $\leq_{\mathfrak{K}_{\mu}}$-increasing continuous sequence $\left\langle M_{i}: i \leq \kappa\right\rangle$ and $p \in \mathcal{S}\left(M_{\kappa}\right)$ which μ-splits over M_{i} for each $i<\kappa$ and $M_{2 i+2}$ is universal over $\left.M_{2 i+1}\right\}$.

Proof. By playing with $\operatorname{EM}(I, \Phi)$, (or see Claim [She99a, 5.7=5.7tex] and Definition [She99a, $4.9=4.4$ tex] $)$.

Question: Can we omit assumption 7.9 (c) (see below so $\chi=\operatorname{LST}(\mathfrak{K})$)?
Theorem 7.13. For some cardinal $\lambda_{*}<\chi$ and a cardinal $\lambda_{* *}<\beth_{1,1}\left(\lambda_{*}^{+\omega}\right)$ above $\lambda_{*}, \mathfrak{K}$ is categorical in every cardinal $\lambda \geq \lambda_{* *}$ but in no $\lambda \in\left(\lambda_{*}, \lambda_{* *}\right)$, provided that:
$\circledast_{\mathfrak{K}}^{\mu, \chi} \quad$ (a) K is an AEC categorical in μ.
(b) \mathfrak{K} has amalgamation and JEP in every $\lambda<\aleph_{\chi}, \lambda \geq \operatorname{LST}(\mathfrak{K})$.
(c) χ is a limit cardinal, $\operatorname{cf}(\chi)>\operatorname{LST}(\mathfrak{K})$, and for arbitrarily large $\lambda<\chi$ the sequence $\left\langle 2^{\lambda^{+n}}: n<\omega\right\rangle$ is increasing.
(d) $\mu>\beth_{1,1}(\lambda)$ for every $\lambda<\chi$ hence $\mu \geq \aleph_{\chi}$.
(e) Every $M \in K_{<_{\chi}}$ has $a \leq_{\mathfrak{K}}$-extension in K_{μ}.

Remark 7.14. 1) Concerning [She99a] note
(a) There the central case was \mathfrak{K} with full amalgamation (not just below $\chi \ll$ $\mu!$), trying to concentrate on the difficulty of lack of localness,
(b) When we use clause (e), this is just to get the " $M \in K_{\mu}$ is λ-saturated"; this is where we use 7.9.
(c) We demand " $\operatorname{cf}(\chi)>\operatorname{LST}(\mathfrak{K})$ " to prove locality.
2) We rely on [She09c] and [She09e] in the end.
3) The assumption (e) of 7.13 follows if \mathfrak{K} has amalgamation in every $\lambda^{\prime} \leq \beth_{1,1}(\lambda)$ for $\lambda<\chi$, which is a reasonable assumption.
4) Most of the proof works even if we weaken assumption (a) to " \mathfrak{K} is strongly solvable in μ " and even to weakly solvable; i.e. up to \square_{7}. We continue in $\left[\mathrm{S}^{+} \mathrm{b}\right]$; see more there.
5) Theorem 7.13 also continues Kolman-Shelah [KS96], [She01], as its assumptions are proved there.

Proof. Let $\kappa=\operatorname{LST}(\mathfrak{K})$, and let $\Phi \in \Upsilon_{\kappa}^{\text {or }}[\mathfrak{K}]$ be as guaranteed by $0.9(1)$, hence
$(*)_{1}$ If $I \in K_{\lambda}^{\text {lin }}$ then $\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$ belongs to K_{λ} for $\lambda \geq \operatorname{LST}(\mathfrak{K})$ (and in the strongly solvable case, $\left.I \in K_{\mu}^{\text {lin }} \Rightarrow \operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi) \in K_{\mu}^{x}\right)$.
and
$(*)_{2}$ If $I \subseteq J$ are from $K^{\text {lin }}$ then $\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi) \leq_{\mathfrak{K}} \operatorname{EM}_{\tau(\mathfrak{K})}(J, \Phi)$.
Also
$(*)_{3}\left\langle\mathcal{S}_{\mathfrak{K}}(M): M \in \mathfrak{K}_{<\aleph_{\chi}}\right\rangle$ has the reasonable basic properties.
[Why? See [She09c, 0.12] and [She09c, 0.12A]; because $\mathfrak{K}_{<\aleph_{\chi}}$ has the amalgamation property by clause (b) of the assumption $\circledast_{\mathfrak{K}}^{\mu, \chi}$.]
$(*)_{4}$ If $M \in K_{\mu}$ then M is χ-saturated (hence χ-model homogeneous).
[Why? We shall prove that if $\operatorname{LST}(\mathfrak{K}) \leq \lambda<\chi$ and $M \in K_{\mu}^{x}$ then M is $\lambda^{+}{ }_{-}$ saturated. We shall show that all the assumptions of 7.9 , with (μ, χ, λ) there standing for $\left(\mu, \aleph_{\chi}, \lambda\right)$ here, hold. Let us check: clause (a) of 7.9 means " \mathfrak{K} is categorical in μ " (or is strongly solvable) which holds by clause (a) of $\circledast_{\mathfrak{K}}^{\mu, \chi}$. Clause (b) of 7.9 says that $\operatorname{LST}(\mathfrak{K}) \leq \lambda<\aleph_{\chi} \leq \mu$ and $2^{2^{\lambda}} \leq \mu$; the first holds because of the way λ was chosen above and the second holds as clause (d) of $\circledast_{\mathfrak{K}}^{\mu, \chi}$ says that $\mu>\beth_{1,1}(\lambda)$ and $\mu \geq \aleph_{\chi}$. Clause $(c)(\alpha)$ of 7.9 holds as $\lambda^{+\lambda^{+4}}<\aleph_{\lambda+5}$ which is $<\aleph_{\chi}$ as χ is a limit cardinal and \aleph_{χ} here plays the role of χ there. Clause (d) of 7.9 says $\mathfrak{K}_{\geq \partial} \neq \varnothing$ for every cardinal ∂, holds by $(*)_{1}$ above. Lastly, clause (e) of 7.9
holds: more exactly, clauses $(\mathrm{e})(\beta)(\mathrm{i})+(\mathrm{iii})$ hold by clauses $(\mathrm{b})+(\mathrm{e})$ of $\circledast_{\mathfrak{K}}^{\mu, \chi}$ and they suffice.

We have shown that all the assumptions of 7.9 hold, hence its conclusion, which says (as $M \in K_{\mu}$) that M is λ^{+}-saturated. The " χ-model homogeneous" holds by [She09c, 0.19].]
$(*)_{5}$ If $M \leq_{\mathfrak{K}} N$ are from K_{μ}^{x} then $M \prec_{\mathbb{L}_{\infty, \chi}[\mathfrak{K}]} N$.
[Why? Obvious by $(*)_{4}$.]
$(*)_{6}$ If $\lambda \in(\kappa, \chi)$ and $I \in K_{\geq \lambda}^{\text {lin }}$ is λ-wide then $\operatorname{EM}_{\tau(\mathfrak{K})}(I, \Phi)$ is λ-saturated; moreover, if $I^{+} \in K_{\lambda}^{\text {lin }}$ is wide over I then every $p \in \mathcal{S}\left(\operatorname{EM}_{\tau(K)}(I, \Phi)\right)$ is realized in $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I^{+}, \Phi\right)$.
[Why? By 1.14 , its assumption " Φ satisfies the conclusion of 1.13 " holds by $(*)_{5}$, (or as in [She99a, $6.8=6.5$ tex]). The "moreover" is immediate by $(*)_{4}$ as in the proof of $\circledast(d)$ inside the proof of 7.2 above, or see the proof of $(*)_{10}$ below.]
$(*)_{7} \mathfrak{K}$ is stable in λ when $\kappa \leq \lambda<\chi$.
[Why? Recalling clause (e) of the assumption of 7.13 , by Claim 7.9 (or more accurately, $(*)_{0}$ in its proof) as we have proved (in the proof of $\left.(*)_{4}\right)$ that the assumptions of 7.9 hold with (μ, χ, λ) there standing for $\left(\mu, \aleph_{\chi}, \lambda\right)$ here.]
$(*)_{8}$ If $\lambda \in[\kappa, \chi)$ and $M \in K_{\lambda}^{x}$ then there is $N \in \mathfrak{K}_{\lambda}$ which is $\left(\lambda, \aleph_{0}\right)$-brimmed over M.
[Why? By $(*)_{7}$ and [She09c, $\left.0.22(1)(\mathrm{b})\right]$ remembering the amalgamation, clause (b) of the assumption of the theorem.]
$(*)_{9}$ If $\left\langle M_{\alpha}: \alpha \leq \lambda\right\rangle$ is $\leq_{\mathfrak{K}}$-increasing continuous, $\kappa \leq\left\|M_{\lambda}\right\| \leq \lambda<\chi$, then no $p \in \mathcal{S}_{\mathfrak{K}}\left(M_{\lambda}\right)$ satisfies " $p \upharpoonright M_{i+1}$ does λ-split over M_{i} for every $i<\lambda$."
[Why? Otherwise we get a contradiction to stability in λ, i.e. $(*)_{7}$, see in [She09e, gr.6](1B), using amalgamation (using the tree ${ }^{\theta>} 2$ when $\theta=\min \left\{\partial: 2^{\partial}>\lambda\right\}$; also we can prove it as in the proof of case 2 inside the proof of 7.9.]

We could use more
$(*)_{10}$ If I_{1}, I_{2} are wide linear orders of cardinality $\lambda \in(\kappa, \chi)$ and I_{2} is wide over I_{1} (so $I_{1} \subseteq I_{2}$) and $M_{\ell}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\ell}, \Phi\right)$, then M_{2} is universal over M_{1} and even brimmed over I_{1}, even (λ, ∂)-brimmed for any regular $\partial<\lambda$.
[Why? As I_{2} is wide over I_{1}, we can find a sequence $\left\langle J_{\gamma}: \gamma<\lambda\right\rangle$ of pairwise disjoint subsets of $I_{2} \backslash I_{1}$ such that each J_{γ} is a convex subset of I_{2} and in J_{γ} there is a monotonic sequence $\left\langle t_{\gamma, n}: n<\omega\right\rangle$ of members. Let $\left\langle\gamma_{\varepsilon}: \varepsilon<\lambda \times \partial\right\rangle$ list λ, and let $I_{2,0}=I_{1}, I_{2,1+\varepsilon}=I_{2} \backslash \bigcup\left\{J_{\gamma_{\zeta}}: \zeta \in[1+\varepsilon, \lambda \times \partial)\right\}$, and $M_{\zeta}^{\prime}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2, \varepsilon}, \Phi\right)$. So $\left\langle M_{\zeta}^{\prime}: \zeta \leq \lambda \times \partial\right\rangle$ is $\leq_{\mathfrak{R}}$-increasing continuous sequence of members of K_{λ}; the first member is M_{1}, the last member M_{2}.

By [She09c, $0.22(4)(\mathrm{b})]$ it is enough to prove that if $\varepsilon<\lambda \times \partial$ and $p \in \mathcal{S}\left(M_{\varepsilon}\right)$ then p is realized in $M_{\varepsilon+1}$. As I_{1} is wide of cardinality λ, so is $I_{2, \varepsilon}$, hence M_{ε}^{\prime} is saturated. Also, for each ε we can find a linear order $I_{2, \varepsilon}^{+}$of cardinality λ such that $I_{2, \varepsilon+1} \subseteq I_{2, \varepsilon}^{+}$and $J_{\varepsilon}^{+}=I_{2, \varepsilon+1}^{+} \backslash I_{2, \varepsilon}$ is a convex subset of $I_{2, \varepsilon+1}^{+}$and is a wide linear order of cardinality λ which is strongly \aleph_{0}-homogeneous. (Recall $J_{\gamma_{\varepsilon}} \subseteq J_{\gamma_{\varepsilon}}^{+}$ is infinite.) So in $M_{\varepsilon+1}^{+}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2, \varepsilon+2}^{+}, \Phi\right)$ every $p \in \mathcal{S}\left(M_{\varepsilon}^{1}\right)$ is realized (as $I_{2, \varepsilon+1}^{+}$ is wide over $I_{2, \varepsilon}$, as J_{ε}^{+}is wide of cardinality λ); moreover, [they are] realized in $M_{\varepsilon+1}^{\prime}$.
(Why? By the strong \aleph_{0}-homogeneous [linear order] every element, and even finite sequence, from $M_{\varepsilon+1}^{+}$can be mapped by some automorphism of $M_{\varepsilon+1}^{+}$over M_{ε} into $M_{\varepsilon+1}$.) As said above, this suffices.]
$\circledast_{1} \chi_{*}$ is well defined and exists in the interval (κ, χ), where

$$
\begin{array}{r}
\chi_{*}=\min \{\theta: \kappa<\theta<\chi, \text { and for every saturated } M \in \mathfrak{K}, \\
\\
\text { if } \theta \leq\|M\|<\chi, \text { every } p \in \mathcal{S}(M) \text { is } \theta \text {-local }\} .
\end{array}
$$

(see Definition 7.4(2)).
[Why? By 7.2 , which we apply with (μ, κ) there standing for (χ, κ) here, recalling $\kappa=\operatorname{LST}(\mathfrak{K})$. This is OK as: clause (a) in 7.2 holds by clause (c) of the assumption here, and clause (b) in 7.2 holds by clause (b) of the assumption here, as $\chi \leq \aleph_{\chi}$. Lastly, clause (c) in 7.2 easily follows by $(*)_{6}$ above.]
\circledast_{2} If $\lambda \in(\kappa, \chi)$ and $\left\langle M_{i}: i \leq \delta\right\rangle$ is $\leq_{\mathfrak{K}_{\lambda}}$-increasing continuous and M_{i+1} is $\leq_{\mathfrak{R}}$-universal over M_{i} for $i<\delta$ then M_{δ} is saturated and moreover every $p \in \mathcal{S}\left(M_{\delta}\right)$ does not λ-split over M_{α} for some $\alpha<\delta$.
[Why? For $i \leq \delta$ let I_{i} be the linear order $\lambda \times \lambda \times(1+i)$ and $M_{i}^{\prime}=\mathrm{EM}_{\tau(\mathfrak{\kappa})}\left(I_{i}, \Phi\right)$. So $\left\langle M_{i}^{\prime}: i \leq \delta\right\rangle$ is $\leq_{\mathfrak{K}_{\lambda}}$-increasing continuous. Also, for $i \leq \delta, \zeta \leq \lambda$ let

$$
I_{i, \zeta}=\lambda \times \lambda \times(1+i)+\lambda \times \zeta
$$

and $M_{i, \zeta}^{\prime}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{i, \zeta}, \Phi\right)$, so for each $i<\delta$ the sequence $\left\langle M_{i, \zeta}^{\prime}: \zeta \leq \lambda\right\rangle$ is $\leq_{\mathfrak{R}_{\lambda}}$ increasing continuous, $M_{i, 0}^{\prime}=M_{i}^{\prime}$, and $M_{i, \lambda}^{\prime}=M_{i+1}^{\prime}$. Now for $i<\delta, \zeta<\lambda$ every $p \in \mathcal{S}\left(M_{i, \zeta}\right)$ is realized in $M_{i, \zeta+1}^{\prime}$ by $(*)_{6}$ and the definition of type, varying the linear order. By [She09c, $0.22(4)(\mathrm{b})]$ the model M_{i+1}^{\prime} is $\leq_{\mathfrak{K}_{\lambda}}$-universal over M_{i}^{\prime} and by Definition [She09c, 0.21] the models M_{δ}^{\prime} and M_{δ} are $(\lambda, \operatorname{cf}(\delta))$-brimmed, hence by [She09c, $0.22(3)]$ they are isomorphic. But M_{δ}^{\prime} is saturated by $(*)_{6}$, hence M_{δ} must be as well.

What about the "moreover"? (Note that if $\lambda=\lambda^{\mathrm{cf}(\delta)}$ then $(*)_{9}$ does not cover it.) We can easily find $\left\langle I_{\alpha}^{\prime \prime}: \alpha \leq \lambda \times \delta+1\right\rangle$ such that:
(a) $I_{\alpha}^{\prime \prime}$ is a linear order of cardinality λ into which λ can be embedded.
(b) $I_{\alpha}^{\prime \prime}$ is increasing continuous with α.
(c) $I_{\alpha}^{\prime \prime}$ is an initial segment of $I_{\beta}^{\prime \prime}$ for $\alpha<\beta \leq \delta+1$.
(d) $I_{\alpha+1}^{\prime \prime}$ has a subset of order types $\lambda \times \lambda$ whose convex hull is disjoint to $I_{\alpha}^{\prime \prime}$.
(e) If $\alpha \leq \beta<\lambda \times \delta$ and $s \in I_{\lambda \times \delta+1}^{\prime \prime} \backslash I_{\lambda \times \delta}^{\prime \prime}$ then there is an automorphism $\pi_{\alpha, \beta, s}$ of $I_{\lambda \times \delta+1}^{\prime \prime}$ mapping $I_{\beta+1}^{\prime \prime}$ onto $I_{\lambda \times \delta}^{\prime \prime}$ and is over

$$
I_{\alpha}^{\prime \prime} \cup\left\{t \in I_{\lambda \times \delta+1}^{\prime \prime}: s \leq_{I_{\lambda \times \delta+1}^{\prime \prime}}^{\prime \prime} t\right\}
$$

Let $M_{\alpha}^{\prime \prime}=\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{\alpha}^{\prime \prime}, \Phi\right)$, so $\left\langle M_{\lambda \times \alpha}^{\prime \prime}: \alpha \leq \delta\right\rangle$ has the properties of $\left\langle M_{\alpha}^{\prime}: \alpha \leq \delta\right\rangle$, i.e. every $p \in \mathcal{S}\left(M_{\alpha}^{\prime \prime}\right)$ is realized in $M_{\alpha+1}^{\prime \prime}$, hence $M_{\alpha+\lambda}^{\prime \prime}$ is $\leq_{\mathfrak{K}_{\lambda}}$-universal over $M_{\alpha}^{\prime \prime}$. So (easily, or see [She09c, $0.22,0.21$]) there is an isomorphism f from M_{δ} onto $M_{\lambda \times \delta}^{\prime \prime}$ such that $M_{\lambda \alpha}^{\prime \prime} \leq_{\mathfrak{K}} f\left(M_{\alpha+1}\right) \leq M_{\lambda \alpha+2}^{\prime \prime}$. So it suffices to prove the "moreover" for $\left\langle M_{\lambda \times \alpha}^{\prime \prime}: \alpha \leq \delta\right\rangle$, equivalently for $\left\langle M_{\alpha}^{\prime \prime}: \alpha \leq \lambda \times \delta\right\rangle$. Let $p \in \mathcal{S}\left(M_{\lambda \times \delta}^{\prime \prime}\right)$, so some $a \in M_{\lambda \times \delta+1}^{\prime \prime}$ realizes it, hence for some $t_{0}<\ldots<t_{n-1}$ from $I_{\lambda \times \delta+1}^{\prime \prime}$ and τ_{Φ}-term $\sigma\left(x_{0}, \ldots, x_{n-1}\right)$ we have $a=\sigma^{\operatorname{EM}\left(I_{\lambda \times \delta+1}^{\prime \prime}, \Phi\right)}\left(a_{t_{0}}, \ldots, a_{t_{n-1}}\right)$. It follows that for some $m \leq n$ we have $t_{\ell} \in I_{\lambda \times \delta}^{\prime \prime} \Leftrightarrow \ell<m$. Let $\alpha<\lambda \times \delta$ be such that $\left\{t_{\ell}: \ell<m\right\} \subseteq I_{\alpha}^{\prime \prime}$; if $m=n$ choose any $t_{n} \in I_{\lambda \times \delta+1}^{\prime \prime} \backslash I_{\lambda \times \delta}^{\prime \prime}$. If $\beta \in(\alpha, \lambda \times \delta)$ and $\mathbf{t p}_{\mathfrak{K}}\left(a, M_{\delta}^{\prime \prime}, M_{\delta+1}^{\prime \prime}\right)$ does λ-split over $M_{\beta}^{\prime \prime}$ then $\pi^{\prime}:=\pi_{\beta, \beta, t_{m}}$ is an automorphism of $I_{\lambda \times \delta+1}^{\prime \prime}$ mapping $I_{\beta+1}^{\prime \prime}$ onto $I_{\lambda \times \delta}^{\prime \prime}$ and is over $I_{\beta}^{\prime \prime} \cup\left\{s \in I_{\lambda \times \delta+1}^{\prime \prime}: t_{m} \leq_{I_{\lambda \times \delta+1}^{\prime \prime}} s\right\}$ hence it is the identity on $\left\{t_{\ell}: \ell<n\right\}$. Now π^{\prime} induces an automorphism $\hat{\pi}^{\prime}$ of $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{\lambda \times \delta+1}^{\prime \prime}, \Phi\right)$, so clearly it maps a to itself, maps $\operatorname{tp}_{\mathfrak{K}}\left(a, M_{\beta+1}^{\prime \prime}, M_{\lambda \times \delta+1}^{\prime \prime}\right)$ to $\operatorname{tp}_{\mathfrak{R}}\left(a, M_{\lambda \times \delta}^{\prime \prime}, M_{\lambda \times \delta+1}^{\prime \prime}\right)$, and it maps $M_{\beta}^{\prime \prime}$ onto itself, hence also $\operatorname{tp}_{\mathfrak{K}}\left(a, M_{\beta+1}^{\prime \prime}, M_{\delta+1}^{\prime \prime}\right)$ does λ-split over $M_{\beta}^{\prime \prime}$. So if for some $\beta \in(\alpha, \lambda \times \delta)$, the type $\operatorname{tp}_{\mathfrak{K}}\left(a, M_{\delta}^{\prime \prime}, M_{\delta+1}^{\prime \prime}\right)$ does not λ-split over $M_{\beta}^{\prime \prime}$ we get the desired conclusion, but otherwise this contradicts $(*)_{9}$.]
\circledast_{3} If $\lambda \in\left[\chi_{*}, \chi\right), M \in K_{\lambda}$ is saturated, and $p \in \mathcal{S}(M)$ then for some N we have:
(a) $N \leq_{\mathfrak{K}} M$
(b) $N \in K_{\chi_{*}}$ is saturated.
(c) p does not χ_{*}-split over N.
(d) p does not λ-split over N (follows by (a),(b),(c)).
[Why does \circledast_{3} hold? For clauses (a),(b),(c) use \circledast_{2} or just $(*)_{9}$; for clause (d) use localness, i.e. recall \circledast_{1} and Definition 7.4.]
\circledast_{4} Assume $\lambda \in[\kappa, \chi)$ and $M_{1} \leq_{\mathfrak{K}} M_{2} \leq_{\mathfrak{K}} M_{3}$ are members of K, M_{2} is $\lambda^{+}{ }_{-}$ saturated and $p \in \mathcal{S}\left(M_{3}\right)$. If $N_{\ell} \leq_{\mathfrak{K}} M_{\ell}$ is from $K_{\leq \lambda}$ and $p \upharpoonright M_{\ell+1}$ does not λ-split over N_{ℓ} for $\ell=1,2$ then p does not λ-split over N_{1}.
[Why? Easy manipulations. Without loss of generality, $N_{1} \leq_{\mathfrak{K}} N_{2}$ as we can increase N_{2}. So for some pair $\left(M_{4}, a\right)$ we have $M_{3} \leq_{\mathfrak{K}} M_{4}, a \in M_{4}$, and $p=$ $\mathbf{t p}_{\mathfrak{K}}\left(a, M_{3}, M_{4}\right)$. Assume $\alpha<\lambda^{+}$and let $\bar{b}, \bar{c} \in{ }^{\alpha}\left(M_{3}\right)$ be such that $\mathbf{t p}_{\mathfrak{K}}\left(\bar{b}, N_{1}, M_{3}\right)=$ $\boldsymbol{t p}_{\mathfrak{K}}\left(\bar{c}, N_{1}, M_{3}\right)$. As M_{2} is λ^{+}-saturated and $N_{2} \leq_{\mathfrak{K}} M_{2} \leq_{\mathfrak{K}} M_{3}$ we can find $\bar{b}^{\prime}, \bar{c}^{\prime} \in{ }^{\alpha}\left(M_{2}\right)$ such that $\mathbf{t p}_{\mathfrak{R}}\left(\bar{b}^{\prime} \bar{c}^{\prime}, N_{2}, M_{3}\right)=\operatorname{tp}_{\mathfrak{K}}\left(\bar{b} \wedge \bar{c}, N_{2}, M_{3}\right)$ using [She09c, 0.19]. Hence

$$
\boldsymbol{t p}_{\mathfrak{K}}\left(\bar{b}^{\prime}, N_{1}, M_{3}\right)=\operatorname{tp}_{\mathfrak{K}}\left(\bar{b}, N_{1}, M_{3}\right)=\mathbf{t p}_{\mathfrak{K}}\left(\bar{c}, N_{1}, M_{3}\right)=\boldsymbol{t}_{\mathfrak{K}}\left(\bar{c}^{\prime}, N_{1}, M_{3}\right)
$$

By the choice of $\left(M_{4}, a\right)$, and the assumption on N_{1} that $p \upharpoonright M_{2}$ does not λ-split over N_{1}, we get

$$
\operatorname{tp}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{b}^{\prime}, N_{1}, M_{4}\right)=\operatorname{tp}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{c}^{\prime}, N_{1}, M_{4}\right)
$$

Clearly $\mathbf{t p}_{\mathfrak{K}}\left(\bar{b}^{\prime}, N_{2}, M_{3}\right)=\mathbf{t p}_{\mathfrak{K}}\left(\bar{b}, N_{2}, M_{3}\right)$ hence by the choice of $\left(M_{4}, a\right)$ and the assumption on N_{2} that p does not λ-split over N_{2} we have $\operatorname{tp}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{b}^{\prime}, N_{2}, M_{4}\right)=$ $\boldsymbol{\operatorname { t p }}\left(\langle a\rangle^{\wedge} \bar{b}, N_{2}, M_{4}\right)$ hence by monotonicity

$$
\boldsymbol{t p}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{b}^{\prime}, N_{1}, M_{4}\right)=\operatorname{tp}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{b}, N_{1}, M_{4}\right) .
$$

Similarly

$$
\boldsymbol{t p}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{c}^{\prime}, N_{1}, M_{4}\right)=\operatorname{tp}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{c}, N_{1}, M_{4}\right) .
$$

As equality of types is transitive
$\boldsymbol{t p}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{c}, N_{1}, M_{4}\right)=\boldsymbol{t}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{c}^{\prime}, N_{1}, M_{4}\right)=\operatorname{tp}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{b}^{\prime}, N_{1}, M_{4}\right)=\boldsymbol{t}_{\mathfrak{K}}\left(\langle a\rangle^{\wedge} \bar{b}, N_{1}, M_{4}\right)$
as required.]
\circledast_{5} Assume $I_{3}=I_{0}+I_{1}^{\prime}+I_{2}^{\prime}$ are wide linear orders of cardinality λ, where $\chi>\lambda>\kappa$, and let $I_{\ell}=I_{0}+I_{\ell}^{\prime}$ for $\ell=1,2$ and $M_{\ell}=\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\ell}, \Phi\right)$ for $\ell=0,1,2,3$. If $\ell \in\{1,2\}$ and $\bar{a} \in{ }^{\lambda>}\left(M_{\ell}\right)$ then $\operatorname{tp}_{\mathfrak{R}_{\lambda}}\left(\bar{a}, M_{3-\ell}, M_{3}\right)$ does not λ-split over M_{0}. (Moreover, if $\mathbf{t p}_{\mathfrak{K}_{\lambda}}\left(\bar{a}, M_{0}, M_{3}\right)$ does not λ-split over $N \in K_{\leq \lambda}$ then also $\operatorname{tp}_{\mathfrak{K}_{\lambda}}\left(\bar{a}, M_{3-\ell}, M_{3}\right)$ does not λ-split over $\left.N\right)$.
[Why? For $\ell=2$, if the desired conclusion fails we get a contradiction as in the proof of \circledast_{2}, so for $\ell=2$ we get the conclusion. For $\ell=1$ if the desired conclusion fails (but it holds for $\ell=2$) we get a contradiction to categoricity in μ by the order property (by 1.5).]
\circledast_{6} If $\lambda \in\left(\chi_{*}, \chi\right), \delta<\lambda^{+},\left\langle M_{i}: i \leq \delta\right\rangle$ is $\leq_{\mathfrak{K}_{\lambda}}$-increasing continuous, and $i<\delta \Rightarrow M_{i}$ saturated then M_{δ} is saturated.
[Why? Let $N \leq_{\mathfrak{K}} M_{\delta},\|N\|<\lambda$, and $p \in \mathcal{S}(N)$. If $\operatorname{cf}(\delta)>\|N\|$ this is easy so assume $\operatorname{cf}(\delta) \leq\|N\|$, hence $\operatorname{cf}(\delta)<\lambda$ and without loss of generality $\delta=\operatorname{cf}(\delta)$. Choose a cardinal θ such that

$$
\operatorname{LST}(\mathfrak{K})<\chi_{*}+|\operatorname{cf}(\delta)|+\|N\| \leq \theta<\lambda
$$

and $\|N\|^{+}<\lambda \Rightarrow\|N\|<\theta$, and let $q \in \mathcal{S}\left(M_{\delta}\right)$ extend p; this exists as $\mathfrak{K}_{\leq \lambda}$ has amalgamation.

Now for every $X \subseteq M_{\delta}$ of cardinality $\leq \theta$, we can choose $N_{i} \leq_{\mathfrak{K}} M_{i}$ by induction on $i \leq \delta$ such that $N_{i} \in K_{\theta}$ is saturated, is $\leq_{\mathfrak{K}}$-increasing continuous with i, N_{i} is $\leq_{\mathfrak{k}}$-universal over N_{j}, and includes $(X \cup N) \cap M_{i}$ when $i=j+1$. So by \circledast_{2} (we justify the choice of N_{i} for limit i and) the model N_{δ} is saturated, so if $\|N\|^{+}<\lambda$ then $N \leq_{\mathfrak{K}} N_{\delta}, N_{\delta}$ is saturated of cardinality $\theta>\|N\|$ so we are done as $N_{\delta} \leq_{\mathfrak{K}} M_{\delta}$. So without loss of generality $\lambda=\|N\|^{+}$hence $\lambda=\theta^{+}$.

Also, for some $\alpha_{*}<\delta$ and $N_{*} \leq_{\mathfrak{K}} M_{\alpha_{*}}$ of cardinality θ, the type q does not θ-split over N_{*}.
[Why? Otherwise we choose $\left(N_{i}, N_{i}^{+}\right)$by induction on $i \leq \delta$ such that $N_{i} \leq_{\mathfrak{K}} N_{i}^{+}$ are from $K_{\theta}, N_{i} \leq_{\mathfrak{K}} M_{i}, N_{i}^{+} \leq_{\mathfrak{K}} M_{\delta}, N_{i}$ is $\leq_{\mathfrak{K}}$-increasing continuous, N_{i} is $\leq_{\mathfrak{K}^{-}}$ universal over N_{j} if $i=j+1, q \upharpoonright N_{i}^{+}$does θ-split over N_{i}, and

$$
\bigcup\left\{N_{j}^{+} \cap M_{i}: j<i\right\} \subseteq N_{i}
$$

In the end we get a contradiction to \circledast_{2}.]
We can find $N^{\prime} \leq_{\mathfrak{K}} M_{\alpha_{*}}$ from $K_{\chi_{*}}$ such that $q \upharpoonright M_{\alpha_{*}}$ does not θ-split over N^{\prime}, (why? by \circledast_{3}) and without loss of generality $N^{\prime} \leq_{\mathfrak{K}} N_{*}$ and $N^{\prime} \leq_{\mathfrak{K}} N$. Also, q does not θ-split over N^{\prime} (why? by applying \circledast_{4}, with $\theta, N_{*}, M_{\alpha_{*}}, M_{\delta}$ here standing for $\lambda, M_{1}, M_{2}, M_{3}, N_{1}, N_{2}$ there; or use $N^{\prime}=N_{*}$).

By $(*)_{6}$ as $M_{\alpha_{*}}$ is saturated without loss of generality $M_{\alpha_{*}}=\operatorname{EM}_{\tau(\mathfrak{K})}(\lambda, \Phi)$ and for $\varepsilon<\lambda$ let $M_{\alpha_{*}, \varepsilon}=\operatorname{EM}_{\tau(\mathfrak{K})}(\theta \times \theta \times(1+\varepsilon), \Phi)$, so $M_{\alpha_{*}, \varepsilon} \in K_{\theta}$ is saturated and is brimmed over $M_{\alpha^{*}, \zeta}$ when $\varepsilon=\zeta+1$ by $(*)_{10}$. So for each $\varepsilon<\lambda$ there is $a_{\varepsilon} \in M_{\alpha^{*}, \varepsilon+1}$ realizing $q \upharpoonright M_{\alpha_{*}, \varepsilon}$. Also without loss of generality, $M_{\delta} \leq_{\mathfrak{K}} \operatorname{EM}_{\tau(\mathfrak{K})}(\lambda+\lambda, \Phi)$ as in the proof of \circledast_{2} or by $(*)_{10}$, now for some $\varepsilon(*)<\lambda$ we have $N \leq_{\mathfrak{K}} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{2}, \Phi\right)$ and $N_{*} \leq_{\mathfrak{K}} \operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{0}, \Phi\right)$ where

$$
I_{0}=\theta \times \theta \times(1+\varepsilon(*)) \text { and } I_{2}=[\lambda, \lambda+\varepsilon(*)) \cup I_{0} .
$$

Let $I_{1}=\theta \times \theta \times \zeta(*)$, where $\zeta(*) \in(\varepsilon(*), \lambda)$ is large enough such that $a_{\varepsilon(*)} \in$ $\mathrm{EM}_{\tau(\mathfrak{K})}\left(I_{1}, \Phi\right)$, e.g. $\zeta(*)=1+\varepsilon(*)+1$ and let $I_{3}=I_{1} \cup I_{2} \subseteq \lambda+\lambda$. Let $M_{\ell}^{\prime}=$ $\operatorname{EM}_{\tau(\mathfrak{K})}\left(I_{\ell}, \Phi\right)$ for $\ell=0,1,2,3$.

Now we apply \circledast_{5}, the "moreover" with $\theta, I_{0}, I_{1}, I_{2}, I_{1} \backslash I_{0}, I_{2} \backslash I_{0}, a_{\varepsilon(*)}, N^{\prime}$ here standing for $\lambda, I_{0}, I_{1}, I_{2}, I_{1}^{\prime}, I_{2}^{\prime}, \bar{a}, N$ there, and we conclude that $\mathbf{t p}_{\mathfrak{K}_{\lambda}}\left(a_{\varepsilon(*)}, M_{2}^{\prime}, M_{3}^{\prime}\right)$ does not θ-split over N^{\prime}.

As $N^{\prime} \leq_{\mathfrak{K}} M_{0}^{\prime} \leq_{\mathfrak{K}} M_{2}^{\prime}$ also the type $q^{\prime}:=\operatorname{tp}_{\mathfrak{K}_{\lambda}}\left(a_{\varepsilon(*)}, M_{2}^{\prime}, M_{3}^{\prime}\right)$ does not θ-split over N^{\prime}. Let us sum up: $q \upharpoonright M_{2}^{\prime}$ and q^{\prime} belong to $\mathcal{S}_{\mathfrak{K}_{\lambda}}\left(M_{2}^{\prime}\right)$, [something] does not θ-split over $N^{\prime}, N^{\prime} \in K_{\chi_{*}}$ and $\chi_{*} \leq \theta$. Also $N^{\prime} \leq_{\mathfrak{R}_{*}} M_{0}^{\prime} \leq_{\mathfrak{K}_{*}} M_{2}^{\prime}$, the model M_{0}^{\prime} is θ-saturated, and $q \upharpoonright M_{\alpha_{*}}=q^{\prime} \upharpoonright M_{\alpha_{*}}$. By the last two sentences obviously $q=q^{\prime}$ (it may be more transparent to consider $q \upharpoonright\left(\leq \chi_{*}\right)=q^{\prime} \upharpoonright\left(\leq \chi_{*}\right)$), so we are done proving \circledast_{6}.]
\circledast_{7} If $\lambda \in\left(\chi_{*}, \chi\right)$ then the saturated $M \in \mathfrak{K}_{\lambda}$ is superlimit.
[Why? By \circledast_{6} (existence by $(*)_{6}$, the non-maximality by $(*)_{6}+$ uniqueness; you may look at $[\operatorname{She} 99 \mathrm{a}, 6.7=6.4 \mathrm{tex}(1)]$.]

Now we have arrived to the main point:
\odot_{1} If $\lambda \in\left(\chi_{*}, \chi\right)$ then \mathfrak{s}_{λ} is a full good λ-frame, $K_{\mathfrak{s}_{\lambda}}$ categorical, where \mathfrak{s}_{λ} is defined by
(a) $\mathfrak{K}_{\mathfrak{s}_{\lambda}}=\mathfrak{K}_{\lambda} \upharpoonright\left\{M \in K_{\lambda}: M\right.$ saturated $\}$
(b) $\mathcal{S}_{\mathfrak{s}_{\lambda}}^{\mathrm{bs}}(M)=\mathcal{S}_{\mathfrak{s}_{\lambda}}^{\mathrm{na}}(M):=\left\{\operatorname{t}_{\mathfrak{s}^{\prime}}(a, M, N): M \leq_{\mathfrak{K}_{\lambda}} N\right.$ and $\left.a \in N \backslash M\right\}$ for $M \in K_{\mathfrak{s}_{\lambda}}$.
(c) $p \in \mathcal{S}_{\mathfrak{S}_{\lambda}}^{\mathrm{bs}}\left(M_{2}\right)$ does not fork over M_{1} when $M_{1} \leq_{\mathfrak{s}_{\lambda}} M_{2}$ and for some $M \leq_{\mathfrak{K}} M_{1}$ of cardinality χ_{*}, the type p does not χ_{*}-split over N.
[Why? We check the clauses of Definition [She09c, 1.1].
$K_{\mathfrak{s}_{\lambda}}$ is categorical:

By $[$ She09c, 0.34$](1)$ and \circledast_{7}.

Clause (A), Clause (B):

By \circledast_{7}, recalling that there is a saturated $M \in K_{\mathfrak{s}_{\lambda}}$ (and it is not $<_{\mathfrak{s}_{\lambda}}$-maximal) by $(*)_{6}$ and trivially recalling [She09c, 0.34], of course.

Clause (C):

By categoricity and $(*)_{6}$ clearly no $M \in K_{\mathfrak{s}_{\lambda}}$ is maximal; amalgamation and JEP holds by clause (b) of the assumption of the claim.
Clause (D)(a),(b): By the definition.
Clause (D)(c): Density is obvious; in fact \mathfrak{s}_{λ} is full.
Clause (D)(d): (bs - stability).
Easily $\mathcal{S}_{\mathfrak{S}_{\lambda}}(M)=\mathcal{S}_{\mathfrak{K}_{\lambda}}(M)$ which has cardinality $\leq \lambda$ by the moreover in $(*)_{6}$.
Clause (E)(a): By the definition.
Clause (E)(b): Monotonicity (of non-forking).
By the definition of "does not χ_{*}-split".
Clause (E)(c): Local character.
Why? Let $\left\langle M_{\alpha}: \alpha \leq \delta\right\rangle$ be $\leq_{\mathfrak{s}_{\lambda}}$-increasing continuous, $\delta<\lambda^{+}$and $q \in \mathcal{S}_{\mathfrak{s}_{\lambda}}^{\text {bs }}\left(M_{\delta}\right)$. Using the third paragraph of the proof of \circledast_{6} for $\theta=\chi_{*}$, for some $\alpha_{*}<\delta$ and $N_{*} \leq_{\mathfrak{s}_{\lambda}} M_{\alpha_{*}}$ of cardinality θ the type q does not θ-split over N_{*}. So clearly q does not fork over $M_{\alpha_{*}}\left(\right.$ for $\left.\mathfrak{s}_{\lambda}\right)$, as required.

Clause (E)(d): Transitivity of non-forking.
By \circledast_{4}.
Clause (E)(e): Uniqueness.
Holds by the choice of χ_{*}, i.e. by \circledast_{1}.
Clause (E)(f): Symmetry.
Why? Let M_{ℓ} for $\ell \leq 3$ and a_{0}, a_{1}, a_{2} be as in (E)(f) ${ }^{\prime}$ in [She09c, 1.16E]. We can find a $\leq_{\mathfrak{K}}$-increasing continuous sequence $\left\langle M_{0, \alpha}: \alpha \leq \lambda^{+}\right\rangle$such that $M_{0,0}=$ $M_{0}, M_{0, \alpha+1}$ is $\leq_{\mathfrak{s}_{\lambda}}$-universal over $M_{0, \alpha}$, and without loss of generality $M_{0, \alpha}=$ $\operatorname{EM}_{\tau(\mathfrak{K})}\left(\gamma_{\alpha}, \Phi\right)$ so it is $\leq_{\mathfrak{K}}$-increasing continuous, and λ divides γ_{α}.

By $(\mathrm{E})(\mathrm{g})$ proved below we can find $a_{\alpha}^{\ell} \in M_{0, \alpha+1}$ realizing $\mathbf{t p}_{\mathfrak{s}_{\lambda}}\left(a_{\ell}, M_{0}, M_{\ell+1}\right)$ such that $\mathbf{t} \mathbf{p}_{\mathfrak{s}_{\lambda}}\left(a_{\alpha}^{\ell}, M_{0, \alpha}, M_{0, \alpha+1}\right)$ does not fork over $M_{0}=M_{0,0}$ for $\ell=1,2$. We can find $N_{*} \leq_{\mathfrak{K}} M_{0}$ of cardinality χ_{*} such that $\mathbf{t p}_{\mathfrak{s}_{\lambda}}\left(\left\langle a_{1}, a_{2}\right\rangle, M_{0}, M_{3}\right)$ does not χ_{*}-split over N_{*} so $N_{*} \leq_{\mathfrak{K}} M_{0,0}$.

Then as in 1.5 we get a contradiction (recalling [She09c, 1.16E]).

Clause (E)(g): Extension existence.

If $M \leq_{\mathfrak{s}_{\lambda}} N$ and $p \in \mathcal{S}_{\mathfrak{S}_{\lambda}}^{\mathrm{bs}}(M)=\mathcal{S}_{\mathfrak{\mathfrak { K }}}^{\mathrm{na}}(M)$, then p does not χ_{*}-split over M_{*} for some $M_{*} \leq_{\mathfrak{K}} M$ of cardinality χ_{*} by \circledast_{3}. Let $M^{*} \in K_{\chi^{*}}$ be such that $M_{*} \leq_{\mathfrak{K}}$ $M^{*} \leq_{\mathfrak{K}} M$ and M^{*} is $\leq_{\mathfrak{K}}$-universal over M_{*}. As $M, N \in K_{\mathfrak{s}_{\lambda}} \subseteq K_{\lambda}$ are saturated there is an isomorphism π from M onto N over M^{*} and let $q=\pi(p)^{+}$.

Now $q \upharpoonright M=p$ by \circledast_{1} as both are from $\mathcal{S}_{\mathfrak{K}}^{\text {na }}(M)$, does not χ_{*}-split over M_{*} and has the same restriction to M^{*}.

Clause (E)(h): Follows by [She09c, 1.16A(3),(4)] recalling \mathfrak{s}_{λ} is full.
Clause (E)(i): Follows by [She09c, 1.15].
So we have finished proving " \mathfrak{s}_{λ} is a good λ-frame.]
\odot_{2} If $\lambda \in\left(\chi_{*}, \chi\right)$ then $\mathfrak{K}^{\mathfrak{s}_{\lambda}}$ is $\mathfrak{K} \upharpoonright\{M: M$ is λ-saturated $\}$.
[Why? Should be clear.]
$\odot_{3} \lambda_{*}$ is well defined, where

$$
\lambda_{*}=\min \left\{\lambda \in\left(\chi_{*}, \chi\right): 2^{\lambda^{+n}}<2^{\lambda^{+n+1}} \text { for every } n<\omega\right\}
$$

[Why? By clause (c) of the assumption.]
Let $\Theta=\left\{\lambda_{*}^{+n}: n<\omega\right\}$.
$\odot_{4} \mathfrak{s}_{\lambda}$ is weakly successful for $\lambda \in \Theta$.
[Why? Recalling that \mathfrak{s}_{λ} is categorical by Definition [She09e, stg.0A], Definition [She09c, nu.1] and Observation [She09c, nu.13.1(b)], if $(M, N, a) \in K_{\mathfrak{s}_{\lambda}}^{3, \text { bs }}$ then for some $\left(M_{1}, N_{1}, a\right) \in K_{\mathfrak{F}_{\lambda}}^{3, \text { uq }}$ we have $(M, N, a) \leq_{\mathfrak{s}_{\lambda}}^{\text {bs }}\left(M_{1}, N_{1}, a\right)$ (see Definition [She09c, nu.1A]). Toward contradiction, assume that this fails. Let $\left\langle M_{\alpha}: \alpha<\lambda^{+}\right\rangle$ be $\leq_{\mathfrak{s}_{\lambda}}$-increasing continuous, $M_{\alpha+1}$ is brimmed over M_{α} for $\alpha<\lambda^{+}$such that $M_{0}=M$. Now directly by the definitions (as in [She09c, $\left.\S 5\right]$, see more in [She09d]) we can find $\left\langle M_{\eta}, f_{\eta}: \eta \in^{\lambda^{+}}{ }^{2}\right\rangle$ such that:
(a) If $\eta \triangleleft \nu \in{ }^{\lambda^{+}}>_{2}$ then $M_{\eta} \leq_{\mathfrak{s}_{\lambda}} M_{\nu}$.
(b) If $\eta \in^{\lambda^{+}}>_{2}$ then f_{η} is a one-to-one function from $M_{\ell g(\eta)}$ to M_{η} over $M_{0}=$ M such that $\rho \triangleleft \eta \Rightarrow f_{\rho} \subseteq f_{\eta}$ and $f_{\eta}\left(M_{\ell g(\eta)}\right) \leq_{\mathfrak{s}_{\lambda}} M_{\eta}$. In fact, $f_{0}=\mathrm{id}_{M}$ and

$$
(M, N, a) \leq_{\mathfrak{s}_{\lambda}}^{\mathrm{bs}}\left(f_{\eta}\left(M_{\ell g(\eta)}\right), M_{\eta}, a\right) \in K_{\mathfrak{s}}^{\mathrm{bs}} .
$$

(c) If $\nu=\eta^{\wedge}\langle\ell\rangle \in{ }^{\lambda>} 2$ then M_{ν} is brimmed over M_{η}.
(d) If $\eta \in^{\lambda^{+}>} 2$ then $f_{\eta^{\wedge}\langle 0\rangle}\left(M_{\ell g(\eta)+1}\right)=f_{\eta^{\wedge}\langle 1\rangle}\left(M_{\ell g(\eta)+1}\right)$.
(e) If $\eta \in{ }^{\lambda>} 2$ then there is no triple $\left(N, f_{0}, f_{1}\right)$ such that $f_{\eta^{\wedge}\langle 1\rangle}\left(M_{\ell g(\eta)+1}\right) \leq_{\mathfrak{s}}$ N, and f_{ℓ} is a $\leq_{\mathfrak{s}_{\lambda}}$-embedding of $M_{\eta^{\wedge}\langle\ell\rangle}$ into N over $f_{\eta^{\wedge}\langle\ell\rangle}\left(M_{\ell g(\eta)+1}\right)$ for $\ell=0,1$ and $f_{0} \upharpoonright M_{\eta}=f_{1} \upharpoonright M_{\eta}$.
Having carried the induction by renaming, without loss of generality $\eta \in^{\lambda^{+}>} 2 \Rightarrow$ $f_{\eta}=\operatorname{id}_{M_{\ell g(\eta)}}$. Now $M_{*}:=\bigcup\left\{M_{\alpha}: \alpha<\lambda^{+}\right\}$; it belongs to $\mathfrak{s}_{\lambda+}$ and is saturated. For $\eta \in \lambda^{\lambda^{+}} 2$ let $M_{\eta}:=\bigcup\left\{M_{\eta \upharpoonright \alpha}: \alpha<\lambda^{+}\right\}$so $M_{*} \leq_{\mathfrak{s}_{\lambda+}} M_{\eta} \in K_{\mathfrak{s}_{\lambda+}}$. But χ is a limit cardinal so also $\lambda^{+} \in(\kappa, \chi)$ so let $N_{*} \in K_{\mathfrak{s}_{\lambda}+}$ be $\leq_{\mathfrak{s}_{\lambda+}}$-universal over M_{*}, so for every $\eta \in^{\lambda^{+}} 2$ there is an $\leq_{\mathfrak{s}^{+}}$-embedding h_{η} of M_{η} into N_{*} over M_{*}. But $2^{\lambda}<2^{\lambda^{+}}$ by the choice of λ_{*}, so by [She09a, $0 . \mathrm{wD}$] we get a contradiction to clause (e).]
\odot_{5} For $\lambda \in \Theta$, if $M \in K_{\lambda^{+}}^{\mathfrak{s}_{\lambda}}$ is saturated above λ for $K^{\mathfrak{s}_{\lambda}}$, then M is saturated for \mathfrak{K}.
[Why? Should be clear and implicitly was proved above.]
$\square_{1} \mathrm{NF}_{\mathfrak{s}_{\lambda}}$ is well defined and is a non-forking relation on $\mathfrak{K}_{\mathfrak{s}_{\lambda}}$ respecting \mathfrak{s}_{λ} (for $\lambda \in \Theta)$.
[Why? By [She09c, §6] as \mathfrak{s}_{λ} is a weakly successful good λ frame.]
$\square_{2} \mathfrak{s}_{\lambda}$ is a good ${ }^{+} \lambda$-frame (for $\lambda \in \Theta$).
[Recalling Definition [She09e, stg.1], assume that this fails, so there are

$$
\left\langle M_{i}, N_{i}: i<\lambda^{+}\right\rangle \text {and }\left\langle a_{i+1}: i<\lambda^{+}\right\rangle
$$

as there; i.e. $a_{i+1} \in M_{i+2} \backslash M_{i+1}, \operatorname{tp}_{\mathfrak{s}_{\boldsymbol{\lambda}}}\left(a_{i+1}, M_{i+1}, M_{i+2}\right)$ does not fork over M_{0} for \mathfrak{s}_{λ}, but $\mathbf{t p}_{\mathfrak{s}_{\lambda}}\left(a_{i+1}, N_{0}, M_{i+1}\right)$ forks over M_{0}. Also, recalling Definition [She09e, stg.1] the model $M=\bigcup\left\{M_{i}: i<\lambda^{+}\right\}$is saturated for $\mathfrak{K}_{\lambda^{+}}^{\mathfrak{j}}$ hence by \odot_{5} for \mathfrak{K}, so it belongs to $K_{\mathfrak{s}_{\lambda+}}$.

We can find an isomorphism f_{0} from M onto $\operatorname{EM}_{\tau(\mathfrak{K})}\left(\lambda^{+}, \Phi\right)$, by $(*)_{6}$. By the "moreover" from $(*)_{6}$ (more exactly, by $\left.(*)_{10}\right)$ we can find a $\leq_{\mathfrak{K}}$-embedding f_{1} of $N=: \bigcup\left\{N_{i}: i<\lambda^{+}\right\}$into $\operatorname{EM}_{\tau(\mathfrak{K})}(\lambda \times \lambda, \Phi)$ extending f_{0}. As we can increase the N_{i}-s, without loss of generality f_{1} is onto $\operatorname{EM}_{\tau(\mathfrak{K})}(\lambda \times \lambda, \Phi)$. We can find $\delta<\lambda^{+}$
such that $N_{\delta}=\operatorname{EM}_{\tau(\mathfrak{K})}(u, \Phi)$, where $u=\{\lambda \alpha+\beta: \alpha, \beta<\delta\}$. By $a_{\delta+1}$ we get a contradiction to \circledast_{5}.]
\square_{3} Let $\lambda \in \Theta$.
$(\alpha) \leq_{\mathfrak{s}_{\lambda}}^{*}$ is a partial order on $K_{\lambda+}^{\text {nice }}\left[\mathfrak{s}_{\lambda}\right]=K_{\mathfrak{s}_{\lambda+}}$, and $\left(K_{\mathfrak{s}_{\lambda+}}, \leq_{\mathfrak{s}_{\lambda}}^{*}\right)$ satisfies the demands on AEC, except possibly smoothness. (See [She09c, §7]).
(β) If $M \in K_{\lambda^{+}}$is saturated and $p \in \mathcal{S}_{\mathfrak{K}}(M)$ then for some pair (N, a) we have $M \leq_{\mathfrak{s}_{\lambda}}^{*} N$ and $a \in N$ realizes p.
(γ) If $M \in K_{\lambda^{+}}$is saturated then some N satisfies:
(a) $N \in K_{\lambda^{+}}$is saturated.
(b) N is $\leq_{\mathfrak{K}}$-universal over M.
(c) $M \leq_{\mathfrak{s}_{\lambda}}^{*} N$
$(\delta) \mathfrak{s}_{\lambda}$ is successful.
[Why? Clause (α):
We know that both $K_{\lambda+}^{\text {nice }}\left[\mathfrak{s}_{\lambda}\right]$ and $K_{\mathfrak{s}_{\lambda+}}$ are the class of saturated $M \in K_{\lambda}$. The rest holds by $[$ She09c, $\S 7, \S 8]$.

Clause (β):
By \circledast_{3} we can find $M_{*} \leq_{\mathfrak{K}} M$ of cardinality χ_{*} such that p does not χ_{*}-split over it (equivalently, does not λ^{+}-split over it).

Let $\left\langle M_{\alpha}: \alpha<\lambda^{+}\right\rangle$be $\leq_{\mathfrak{s}_{\lambda}}$-increasing continuous such that $M_{\alpha+1}$ is brimmed over M_{α} for \mathfrak{s}_{λ} for every $\alpha<\lambda^{+}$and $M_{*} \leq_{\mathfrak{K}} M_{0}$ (so $\left\|M_{*}\right\|<\left\|M_{0}\right\|$; otherwise we would require that M_{0} is brimmed over M_{*}). Hence $\bigcup\left\{M_{\alpha}: \alpha<\lambda^{+}\right\} \in K_{\lambda^{+}}$is saturated (by \odot_{5}) so without loss of generality it is equal to M. We can choose $a_{*}, N_{\alpha}(\alpha<\lambda)$ such that $\left\langle N_{\alpha}: \alpha<\lambda^{+}\right\rangle$is $\leq_{\mathfrak{s}_{\lambda}}$-increasing continuous, $M_{\alpha} \leq_{\mathfrak{s}_{\lambda}} M_{\alpha}$, $\mathrm{NF}_{\mathfrak{s}_{\lambda}}\left(M_{\alpha}, N_{\alpha}, M_{\beta}, M_{\beta}\right)$ for $\alpha<\beta<\lambda^{+}, N_{\alpha+1}$ is brimmed over $M_{\alpha+1} \cup N_{\alpha}$, and $\operatorname{tp}_{\mathfrak{s}_{\lambda}}\left(a, N_{0}, M_{0}\right)=p \upharpoonright M_{0}$ so $a \in N_{0}$. Let $N=\bigcup\left\{N_{\alpha}: \alpha<\lambda^{+}\right\}$so again $N \in K_{\lambda^{+}}$ is saturated (equivalently $N \in K_{\lambda^{+}}^{\text {nice }}\left[\mathfrak{s}_{\lambda}\right]$) and $M \leq_{\mathfrak{K}} N$ and even $M \leq_{\mathfrak{s}_{\lambda}}^{*} N$ (by the definition of $\left.\leq_{\mathfrak{s}_{\lambda}}^{*}\right)$. For each $\alpha<\lambda^{+}$we have $\mathrm{NF}_{\mathfrak{s}_{\lambda}}\left(M_{0}, N_{0}, M_{\alpha}, N_{\alpha}\right)$ but $\mathrm{NF}_{\mathfrak{s}_{\lambda}}$ respects \mathfrak{s}_{λ}, hence $\mathbf{t p}_{\mathfrak{s}_{\lambda}}\left(a, M_{\alpha}, N_{\alpha}\right)$ does not fork over M_{0}. Hence by the definition of \mathfrak{s}_{λ}, the type $\mathbf{t p}_{\mathfrak{s}_{\lambda}}\left(a, M_{\alpha}, N_{\alpha}\right)$ does not λ-split over M_{*}, hence $\mathbf{t p}_{\mathfrak{s}_{\lambda}}\left(a, M_{\alpha}, N_{\alpha}\right)=$ $p \upharpoonright M_{\alpha}$. As this holds for every $\alpha<\lambda^{+}$, by the choice of χ_{*} (i.e. by \circledast_{1}) clearly a realizes p.

Clause (γ):

By clause (β) as in the proofs in [She09c, $\S 4]$; that is, we choose $N \in K_{\lambda+}$ which is $\leq_{\mathfrak{K}_{\lambda}}$-universal over M. We now try to choose $\left(M_{\alpha}, f_{\alpha}, N_{\alpha}\right)$ by induction on $\alpha<\lambda^{+}$ such that: $M_{0}=M, N_{0}=N, f_{0}=\operatorname{id}_{M}, M_{\alpha}$ is $\leq_{\mathfrak{s}_{\lambda}}^{*}$-increasing continuous, N_{α} is $\leq_{\mathfrak{K}}$-increasing continuous, f_{α} is a $\leq_{\mathfrak{K}}$-embedding of M_{α} into N_{α}, f_{α} is \subseteq-increasing continuous with α, and $\alpha=\beta+1 \Rightarrow f_{\alpha}\left(M_{\alpha}\right) \cap N_{\beta} \neq f_{\beta}\left(M_{\beta}\right)$.

For $\alpha=0, \alpha$ limit there are no problems. If $\alpha=\beta+1$ and $f_{\alpha}\left(M_{\alpha}\right)=N_{\alpha}$ we are done, and otherwise we use clause (β). But by Fodor lemma we cannot carry the induction for every $\alpha<\lambda^{+}$, so we are done proving (γ).

Clause (δ):

We should verify the conditions in Definition [She09e, stg.0A]. Now clause (a) there, being weakly successful, holds by \odot_{4}. As for clause (b) there, it suffices to prove that if $M_{1}, M_{2} \in K_{\lambda^{+}}^{\text {nice }}\left[\mathfrak{s}_{\lambda}\right]=K_{\mathfrak{s}_{\lambda}^{+}}$and $M_{1} \leq_{\mathfrak{K}} M_{2}$ then $M_{1} \leq_{\mathfrak{s}_{\lambda}}^{*} M_{2}$, which means: if $\left\langle M_{\alpha}^{\ell}: \alpha<\lambda^{+}\right\rangle$is $\leq_{\mathfrak{s}_{\lambda}}$-increasing continuous, $M_{\alpha+1}^{\ell}$ is brimmed over M_{α}^{ℓ} with $M_{\ell}=\bigcup\left\{M_{\alpha}^{\ell}: \alpha<\lambda^{+}\right\}$, then for some club E of λ^{+}, for every $\alpha<\beta$ from E, $\mathrm{NF}_{\mathfrak{s}_{\lambda}}\left(M_{\alpha}^{1}, M_{\alpha}^{2}, M_{\beta}^{1}, M_{\delta}^{2}\right)$.

By clause (γ) there is $N \in K_{\mathfrak{s}_{\lambda}^{+}}$such that $M_{1} \leq_{\mathfrak{s}_{\lambda}+}^{*} N$ (hence $M_{1} \leq_{\mathfrak{K}} N$) and N is $\leq_{\mathfrak{K}^{5} \lambda}$-universal over M_{1}. So without loss of generality $M_{2} \leq_{\mathfrak{K}} N$, but by [She09c, ne.3](3) all of this implies $M_{1} \leq_{\lambda+}^{*} M_{2}$. So we are done proving \square_{3}.
$\square_{4} \mathfrak{s}_{\lambda+}$ is the successor of \mathfrak{s}_{λ} for $\lambda \in \Theta$.
[Why? Now by \square_{3} the good frame \mathfrak{s}_{λ} is successful; by [She09e, stg.3] we know that $\mathfrak{s}_{\lambda}^{+}$is a well defined good λ^{+}-frame. Clearly $K_{\mathfrak{s}_{\lambda}(+)}$ is the class of saturated $M \in \mathfrak{K}_{\lambda+}$ (by \odot_{5}; see the definitions in [She09c, ne.1], [She09c, rg.7(5)]). But \mathfrak{s}_{λ} is good $^{+}$by \square_{2}, so by [She09e, stg.3B] we know that $\leq_{\mathfrak{s}_{\lambda}(+)}=<_{\lambda+,\left[\mathfrak{s}_{\lambda}\right]}^{*}$ is equal to $\leq_{\mathfrak{K}} \upharpoonright K_{\mathfrak{s}_{\lambda}(+)}$, so $\mathfrak{K}_{\mathfrak{s}_{\lambda}(+)}=\mathfrak{K}_{\mathfrak{s}_{\lambda}+}$. As both $\mathfrak{s}_{\lambda}(+)$ and $\mathfrak{s}_{\lambda^{+}}$are full, clearly $\mathcal{S}_{\mathfrak{s}_{\lambda}(+)}^{\mathrm{bs}}=\mathcal{S}_{\mathfrak{s}_{\lambda+}}^{\mathrm{bs}}$. For $M_{1} \leq_{\mathfrak{s}_{\lambda}(+)} M_{2} \leq_{\mathfrak{s}_{\lambda}(+)} M_{3}$ and $a \in M_{3} \backslash M_{2}$, comparing the two definitions of " $\mathbf{t p}_{\mathfrak{K}_{\mathfrak{s}_{\lambda}(+)}}\left(a, M_{2}, M_{1}\right)$ does not fork over M_{1}," they are the same. So we are done.]
$\boxtimes_{5} \mathfrak{s}_{\lambda_{*}^{+\omega}}$ is the limit of $\left\langle\mathfrak{s}_{\lambda_{*}}^{+n}: n<\omega\right\rangle$.
[Why? Should be clear.]
$\square_{6} \mathfrak{s}_{\lambda}$ satisfies the hypothesis [She09e, 12.1] of [She09e, §12] if $\lambda \in \Theta \backslash \lambda_{*}^{+3}$ holds.
[Why? By $\square_{2}, \square_{3}, \hookrightarrow_{4}$ and [She09e, 12D.1].]
Hence
$\square_{7} \mathfrak{s}_{\lambda_{*}}$ is beautiful $\lambda_{*}^{+\omega}$-frame.
[Why? By [She09e, 12b.14] and [She09e, 12f.16A].]
$\rrbracket_{8} K\left[\mathfrak{s}_{\lambda_{*}^{+\omega}}\right]$ is categorical in one $\chi>\lambda_{*}^{+\omega}$ iff it is categorical in every $\chi>\lambda^{+\omega}$.
[Why? By [She09e, 12f.16A(d),(e)].]
\square_{9} If $\lambda \geq \beth_{1,1}\left(\lambda_{*}^{+\omega}\right)$ then $\mathfrak{K}_{\lambda}=\mathfrak{K}_{\lambda}\left[\mathfrak{s}_{\lambda_{*}^{+\omega}}\right]$.
[Why? The conclusion \supseteq is obvious. For the other inclusion let $M \in K_{\lambda}$, now by the definition of class in the left, it is enough to prove that M is $\left(\lambda_{*}^{+\omega}\right)^{+}$-saturated. But otherwise, by the omitting type theorem for AEC (i.e. by $0.9(1)(\mathrm{d})$, or see [She99a, $8.6=\mathrm{X} 1.3 \mathrm{~A}])$ there is such a model $M^{\prime} \in K_{\mu}$, in contradiction to $(*)_{4}$.]
By $\square_{8}+\square_{9}$ we are done.

References

[Dic85] M. A. Dickman, Larger infinitary languages, Model Theoretic Logics (J. Barwise and S. Feferman, eds.), Perspectives in Mathematical Logic, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1985, pp. 317-364.
[Kin66] Akiko Kino, On definability of ordinals in logic with infinitely long expressions, Journal of Symbolic Logic 31 (1966), 365-375.
[KS96] Oren Kolman and Saharon Shelah, Categoricity of theories in $L_{\kappa \omega}$, when κ is a measurable cardinal. I, Fund. Math. 151 (1996), no. 3, 209-240, arXiv: math/9602216. MR 1424575
[Lav71] Richard Laver, On fraissé's order type conjecture, Annals of Mathematics 93 (1971), 89-111.
[MR65] Eric Milner and Richard Rado, The pigeon-hole principle for ordinal numbers, Proc. London Math. Soc. 15 (1965), 750-768.
[S+ a] S. Shelah et al., Tba, In preparation. Preliminary number: Sh:F604.
$\left[\mathrm{S}^{+} \mathrm{b}\right] \quad, T b a$, In preparation. Preliminary number: Sh:F782.
$\left[\mathrm{S}^{+} \mathrm{c}\right]$, Tba, In preparation. Preliminary number: Sh:F820.
[She] Saharon Shelah, Introduction and Annotated Contents, arXiv: 0903.3428 introduction of [Sh:h].
[She87a] , Classification of nonelementary classes. II. Abstract elementary classes, Classification theory (Chicago, IL, 1985), Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 419-497. MR 1033034
[She87b] , Universal classes, Classification theory (Chicago, IL, 1985), Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 264-418. MR 1033033
[She94] , Cardinal arithmetic, Oxford Logic Guides, vol. 29, The Clarendon Press, Oxford University Press, New York, 1994. MR 1318912
[She99a] \qquad , Categoricity for abstract classes with amalgamation, Ann. Pure Appl. Logic 98 (1999), no. 1-3, 261-294, arXiv: math/9809197. MR 1696853
[She99b] \qquad , Special subsets of ${ }^{\operatorname{cf}(\mu)} \mu$, Boolean algebras and Maharam measure algebras, Topology Appl. 99 (1999), no. 2-3, 135-235, arXiv: math/9804156. MR 1728851
[She00] \qquad , Applications of PCF theory, J. Symbolic Logic 65 (2000), no. 4, 1624-1674, arXiv: math/9804155. MR 1812172
[She01] , Categoricity of theories in $L_{\kappa^{*}, \omega}$, when κ^{*} is a measurable cardinal. II, Fund. Math. 170 (2001), no. 1-2, 165-196, arXiv: math/9604241. MR 1881375
[She09a] , Abstract elementary classes near \aleph_{1}, Classification theory for abstract elementary classes, Studies in Logic (London), vol. 18, College Publications, London, 2009, arXiv: 0705.4137 Ch . I of [Sh:h], pp. vi +813.
[She09b] , Categoricity and solvability of A.E.C., quite highly, 2009, arXiv: 0808.3023 Ch. IV of [Sh:h].
[She09c] \qquad , Categoricity in abstract elementary classes: going up inductively, 2009, arXiv: math/0011215 Ch. II of [Sh:h].
[She09d] , Non-structure in λ^{++}using instances of WGCH, 2009, arXiv: 0808.3020 Ch. VII of [Sh:i].
[She09e] \qquad , Toward classification theory of good λ frames and abstract elementary classes, 2009, arXiv: math/0404272 Ch. III of [Sh:h].
[She09f] \qquad , Universal Classes: Axiomatic Framework [Sh:h], 2009, Ch. V (B) of [Sh:i].
[She09g] \qquad Universal Classes: Stability theory for a model, 2009, Ch. V of [Sh:i].
[Shear] , Non-structure theory, Oxford University Press, to appear.
[SV] Saharon Shelah and Sebastien Vasey, Categoricity and multidimensional diagrams, arXiv: 1805.06291.

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel; and, Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA

URL: https://shelah.logic.at/

[^0]: Date: February 3, 2022.
 2020 Mathematics Subject Classification. FILL.
 The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 242/03). First version typed by Alice Leonhardt. Later versions typed using services generously funded by an individual who wished to remain anonymous.

[^1]: ${ }^{1}$ And we may omit A if $A=M$.

[^2]: $2_{\text {i.e. one into which the rational order cannot be embedded }}$

[^3]: ${ }^{3}$ On the function $\delta(-)$, see [She09g, 1.2.3,1.2].

[^4]: ${ }^{4}$ We could have demanded it for every single formula, here this distinction is not important
 ${ }^{5}$ If $\mathscr{L}_{1}=\mathscr{L}=\mathscr{L}_{2}$ we may write only \mathscr{L}.

[^5]: ${ }^{6}$ in M_{1}, see 1.12

[^6]: ${ }^{7}$ Not a real loss to assume this, as it suffices to deal with arbitrary large $\theta<\beth_{1,1}(\operatorname{LST}(\mathfrak{K}))$.

[^7]: ${ }^{8}$ For being an equivalence relation it is better to assume the following on Φ : if $\bar{t}_{1}, \bar{t}_{2} \in{ }^{\omega>} I$, $\operatorname{EM}(I, \Phi) \models \sigma_{1}\left(\bar{a}_{\bar{t}_{1}}\right)=\sigma_{2}\left(\bar{a}_{\bar{t}_{2}}\right), \bar{t} \in{ }^{\omega>} I, \operatorname{rang}(\bar{t})=\operatorname{rang}\left(\bar{t}_{1}\right) \cap \operatorname{rang}\left(\bar{t}_{2}\right)$, then for some σ, $\operatorname{EM}(I, \Phi) \models \sigma\left(\bar{a}_{\bar{t}}\right)=\sigma_{\ell}\left(\bar{a}_{\bar{t}_{\ell}}\right)$ for $\ell=1,2$.

[^8]: ${ }^{9}$ In fact, we could just use M_{0}.

[^9]: ${ }^{10}$ We may in clauses $(\mathrm{e})+(\mathrm{c})$ replace μ by $\mu+|\mathcal{U}|$; there's no harm and it makes $(c)(\beta)$ of $(*)_{1}$ redundant.

[^10]: 11 where 'definable,' of course, means "in the theory of real closed fields"

[^11]: $12_{\text {if }}$ we allow $+\infty,-\infty$ as end points

[^12]: ${ }^{13}$ Actually, instead of " $\mu^{+} \leq \beta_{1}$ " it suffices to have $\zeta(*) \times 4 \leq \beta_{1}$, because if $\zeta(*)=\sum_{i<\gamma} \zeta_{i}$
 then $\sum_{i<\gamma} \zeta_{i} \times 4 \leq \zeta(*) \times 4$ or just the natural $\operatorname{sum} \zeta(*) \oplus \zeta(*) \oplus \zeta(*)$.
 ${ }^{14}$ Here $\left(\mu^{+}+1\right) \times(\zeta(*) \times 4)$ will suffice.

[^13]: ${ }^{15}$ In the references to [She99a], e.g. 1.6tex is the definition labelled 1.6 in the published version and 1.8 in the e-version.

[^14]: ${ }^{16}$ It suffices to have: if $M_{0} \leq_{\mathfrak{K}} M_{1} \in K_{\partial^{+}}, M_{1} \leq_{\mathfrak{K}} M_{2} \in K_{\mu}^{x}$, and $M_{0} \in K_{\partial}$ then M_{1} can be $\leq_{\mathfrak{K}}$-embedded into some $M_{3} \in K_{\mu}^{x}$. Similarly in 7.13.
 ${ }^{17}$ Why? Assume $M \in K_{\partial+}$. Let $M_{2} \in K_{\mu}^{x}$, let $M_{0} \leq_{\mathfrak{K}} M_{2}$ be of cardinality ∂, let $M_{1} \in K_{\partial+}$ be a $\leq_{\mathfrak{K}}$-extension of M_{0} which there is an $\leq_{\mathfrak{K}}$-embedding f of M into M_{1} (exists as \mathfrak{K}_{∂} has amalgamation and JEP). Lastly, use " \mathfrak{K} has $\left(\bar{\partial}, \leq \partial^{+}, \mu\right)$-amalgamation

