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CATEGORICITY AND SOLVABILITY OF AEC, QUITE HIGHLY
SH734

SAHARON SHELAH

ABSTRACT. We investigate in ZFC what can be the family of large enough
cardinals g in which an AEC R is categorical or even just solvable. We show
that for not few cardinals A < p there is a superlimit model in K). Moreover,
our main result is that we can find a good A-frame s, categorical in A, such
that &5 C R). We then show how to use [She09¢] to get categoricity in every
large enough cardinality if & has cases of p-amalgamation for enough p and
28 < ont? <. <2¢"for enough p.

§ 0. INTRODUCTION

The hope which motivates this work is:

Conjecture 0.1. If R is an AEC then either for every large enough cardinal p, &
is categorical in u or for every large enough cardinal u, K is not categorical in p.

Why do we consider this a good dream? See [STa].

Our main result is 4.10, it says that if £ is categorical in p (ignoring few excep-
tional p-s) and A € [LST(R), 1) has countable cofinality and is a fix point of the
sequence of the J,-s, (moreover a limit of such cardinals) then there is a superlimit
M € K, for which R5;) = &\ [ {M': M’ = M} has the amalgamation property
(and a good A-frame s with &5 = R[y7)). Note that [She09e] seems to give a strong
indication that finding good A-frames is a significant advance. This may be con-
sidered an unsatisfactory evidence of an advance, being too much phrased in the
work’s own terms. So we prove in §5 - §7 that for a restrictive context we make
a clear cut advance: assuming amalgamation and enough instances of 2* < A"
occurs, much more than the conjecture holds, see [She] on background.

Note that as we try to get results on A = J, > LST(8), clearly it does not
particularly matter if for k € (LST(R),\) we use, e.g. k1 = &1 or k1 = Jor)+
(= 31,1(r)) or even Ty 7(k).

After 4.10 the next natural step is to show that sy has the better properties dealt
with in [She09c|, [She09¢], see [STb]. Note that if we strengthen the assumption
on p in §4 (to u = pu<*), then it relies on §1 only. Without this we need §2 (hence
5.1(1),(4)).

Originally we have used here categoricity assumptions but lately it seems de-
sirable to use a weaker one: (variants of) solvability. About being solvable, see
[She, §4(B)], [SV]. This seems better as it is a candidate for being an “outside”
generalization of being superstable (rather than of being categorical).

Here we use solvable when it does not require much change; for more on it see
[SV], [STc] and on material delayed from here see [STh].
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Note we can systematically use K5°(9)-in say with § = Rg or §# = LST(R) instead
of K''; see Definition 0.14(8). In several respects this is better, but not enough to
make us use it. Also working more it seemed we can get rid of “wide”, “wide over”,
see Definition 0.14(1),(2),(3). If instead proving the existence of a good A-frame it
suffices for us to prove the existence of almost good A-frame, then the assumption
on A can be somewhat weaker (fixed point instead limit of fix points of the sequence
of the J,’s). In §7 we sometimes give alternative quotations in [She99a] but do not
rely on it.

We thank Mor Doron, Esther Gruenhut, Haim Horowitz, Aviv Tatarski and Alex
Usvyatsov for their help in proofreading.

We thank Will Boney and Sebastien Vasey for pointing out (in 10.2016) a gap
in §2: in the proof of; we quote 2.9, however 2.9 speaks about L ¢-types whereas
we speak on generic such types. However, we can use 5.1 is a stronger way: though
the theorem is stated using A x 05 (in EM(I&%\X%, 1)) really we prove it for any
¢ € [A\AT) of cofinality 6y as stated explicitly in the beginning of the proof; see
details in the proof of 2.15 (also other minor changes were introduced).

Basic knowledge on infinitary logics is assumed, see e.g. [Dic85]; though the
reader may just read the definition here in [She, §5] and believe some quoted results.

Notation 0.2. Let Ty o(A) = Ja(A) == XA+ D> {3(N\) : B < a}. Let 3y () be

defined by induction on a: 3y g(A) = A, for limit § we let Jy 53 = > Ty, and
Y<B

i s+1(A) = 3, where p = (2F10N)+,

Remark 0.3. 1) For our purpose, usually Ji 341(\) = T,y where p = J; 5(A)
suffice, see e.g. [She09g, §1] in particular on §(—). Generally u = (31 5(\))" is a
more natural definition, but:

(A) the difference is not significant, e.g. for a limit we get the same value

(B) our use of omitting types makes our choice more natural.

2) We do not use but it is natural to define 3,41 0(A) = A, y41,841(A) = Ty 4 (A)
with o = (250205, 341500 = 3 y4a4(0) and

B<é
Ts50(A) =sup{3,,0(A) 1y <0} = A,

5.8+1(A) = T5,8(35,8(N))s Ts.s, = sup{Ts,a(A) : @ < d1}; this is used, e.g. in
[She94, Ch.V].

Definition 0.4. Assume M is a model, 7 = 7 is its vocabulary and A is a
language (or just a set of formulas) in some logic, in the vocabulary 7.
For any set A C M and set A of formulas in the vocabulary 7/, let Sfrx (A, M)
(which we call the set of formal (A, a)-types over A in M)! be the set of p such
that
(A) p a set of formulas of the form ¢(Z,a) where p(Z,7) € A, Z = (z;: i < a)
and a € 994

(B) if A is closed under negation (which is the case we use here) then for
any ¢(Z,7) € A with Z as above and a € “A we have p(z,a) € p or
—mp(f, &) €p.

Recall

LAnd we may omit A if A =M.
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Definition 0.5. 1) For 8 an AEC we say M € Ry is a superlimit (model in & or
in &) when:

(a) M is universal

(b) if § is a limit ordinal < 8T and (M, : @ < d) is <g,-increasing continuous
and a < § = M, =2 M then Ms = M (equivalently,

M =g 1 {N:N= M)

is a 0-AEC)

(¢c) there is N such that M <g N € £y and N is isomorphic to M.

2) We say M € Ry is locally superlimit when we weaken clause (a) to
(a)” if N € Ry is a <g-extension of M then N can be <g-embedded into M.

3) We say that M is pseudo superlimit when in part (1) clauses (b),(c) hold (but
we omit clause (a)); see 0.6(7) below.

3A) For M € K let &y = 88 be & [ {N: N = M}

4) In (1) we may say ‘globally superlimit’.

Observation 0.6. Assume (8 is an AEC and) Ry # @.
1) If R is categorical in X and there are M <g, N then every M € R is

superlimit.

2) If every/some M € Ry is superlimit then every/some M € Ky is locally
superlimit.

3) If every/some M € Ry is locally superlimit then every/some M € Ry is pseudo
superlimit.

4) If some M € Ry is superlimit then every locally superlimit M' € Ry is iso-
morphic to M.

5) If M is superlimit in & then M is locally superlimit in K. If M is locally
superlimit in R, then M is pseudo superlimit in R. If M is locally superlimit in Ry
then Ko has the joint embedding property iff M is superlimit.

6) In Definition 0.5(1), clause (c) follows from

(¢)” LST(R) <0 and K>g+ # 2.
7) M € K is pseudo-superlimit iff 85 is a \-AEC and <gu 18 not the equality.
Also Definition 0.5(34) is compatible with [She09c, 0.33].

Definition 0.7. For an AEC R, let ﬁf},ﬁf,ﬁgl be the class of M € £, which
are superlimit, locally superlimit, pseudo superlimit respectively with the partial
orders §ﬁ71, Sﬁ}s, <ganl being <g[ KZI, <gl KEI respectively.

7 ; e

Definition 0.8. 1) ® is proper for linear orders when:

(A) for some vocabulary 7 = 75 = 7(®), ® is an w-sequence, the n'" element a
complete quantifier free n-type in the vocabulary 7

(B) for every linear order I there is a 7-model M denoted by EM(I, ®), gen-
erated by {a; : t € I} such that s # t = as; # a; for s,t € I and
(aty, . - ., ay, ) realizes the quantifier free n-type from clause (a) whenever
n<wandty <jy...<jtn—1;s0 really M is determined only up to isomor-
phism but we may ignore this and use I; C J; = EM([;,®) C EM(Is, ®).
We call (a; : t € I) “the” skeleton of M; of course again “the” is an abuse
of notation as it is not necessarily unique.
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1A) If 7 C 7(®) then we let EM, (I, ®) be the 7-reduct of EM(I, ®).

2) T9'[R] is the class of ® proper for linear orders satisfying clauses (a)(«), (b), (¢)
of Claim 0.9(1) below and |7(®)| < k. The default value of s is LST(8) and then
we may write T or T°"[8] and for simplicity always x > LST(R) (and so k > |7g|).

3) We define “® proper for K” similarly when in clause (b) of part (1) we demand
I € K, so K is a class of Tg-models, i.e.

(a) ® is a function, giving for a quantifier free n-type in 7k, a quantifier free
n-type in g

(b)’ in clause (b) of part (1), the quantifier free type which (as,,...,at, )
realizes in M is ®(tpy((to, ..., tn-1), 9, M)) for n <w, to,...,tn_1 € I.

Claim 0.9. 1) Let & be an AEC and M € K be of cardinality > 3y 1(LST(R))
recalling we naturally assume |7g| < LST(R) as usual.
Then there is a ® such that ® is proper for linear orders and:
(a) (@) 72 C 7o,
(B) |re| = LST(R) + |7=]
(b) for any linear order I the model EM(I,®) has cardinality |7(®)| + |I| and
we have EM,(g)(I,®) € K
(c) for any linear orders I C J we have EM, (g (I, ®) <g EM,(g)(J, ®)
(d) for every finite linear order I, the model EM,(g)(I, ®) can be <g-embedded

into M.
2) If we allow LST(R) < |7g| and there is M € R of cardinality > 3y 1 (LST(R) +
|Tal), then there is ® € T%rST(R)-‘rlT(@)l[ﬁ] such that EM(I, ®) has cardinality <

LST(R) forI finite. Hence & has < 25T equivalence classes where & = {(Py, Py) :
EM(I,8) _ EM(I,®) )
P, P, €19 and P; =P, for every linear order I}.
8) Actually having a model of cardinality > 3, for every a < (2LSTHHIT(R)N)+

suffice (in part (2)).

Proof. Follows from the existence of a representation of & as a PC,, on-class when
w = LST(R) + |7(R)| in [She09a, 1.4(3),(4),(5)] and [She09a, 1.8] (or see [She99a,
0.6]). oo

Remark 0.10. Note that some of the definitions and claims below will be used
only in remarks: K;C(H) from 0.14(8), in 1.7; and some only in §6,87 (and part
of §5 needed for it): Y!in[2] from 0.11(5) (and even less Y% [a(x)] from Definition
0.14(9)). Also, the use of <&, <i¢ <% i marginal.

Definition 0.11. We define partial orders <% <i¢ and <® on Y*[f] (for k >
LST(R)) as follows:

1) \Ijl S% \1/2 ﬁT(\Ifl) Q T(‘I’Q) and EMT(ﬁ)(I, \111) Sﬁ EMT(Q)(I, \112) and EM(I, \I’l) ==
EM; (g,y(I,¥1) € EM,(g,)(I, ¥3) for any linear order I.

Again for k = LST(R) we may drop the k.

2) For ®1,%, € YTY[R], we say P, is an inessential extension of ®; and write
d, gig ®, if Py <P &y and for every linear order I, we have (note: there may be
more function symbols in 7(P3)!)

EM;(g)(I, ®1) = EM(g) (1, ®2).

3) Let Y™ be the class of U proper for linear order and (producing a linear order
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extending the original one, i.e.) such that:
(A) 7(¥) has cardinality < s and the two-place predicate < belongs to 7(¥)
(B) EM{;(/,¥) is a linear order which is an extension of I in the sense that
EM(I,®) E “as < a¢” iff T |= “s < t”; in fact we usually stipulate [t € T =
a; = t.
4) &y <% @, iff there is ¥ such that
(A) ¥ g lin
(B) @, € YO'[R] for £ =1,2
(C) @, <i¢ dy where @) = ¥ o ®y, i.e. for every linear order I we have

EM(Z, &) = EM(EM </ (I, ), @),

5) Tln[2] is the class of ¥ proper for KE; and producing structures from KE;
extending the originals, i.e.
(A) 75 ={<, Py, P1} where Py, P; are unary predicates, < a binary predicate
(B) K;‘Zn ={M : M a 75-model, <M a linear order, (P}, PM) a partition of M}

(C) the two-place predicate < and the one place predicates Py, P; belong to
(V)
(D) if I € K} then M = EM; (I, ®) belongs to K, <™ is a linear order,
ITEs<t=MEas < ay, andtePeléagEP,M.
6) Similarly T2 [a(x)] using Kff(*) (see below in 0.14(9)).

Claim 0.12. Assume ® € T¥.
1) If 7 is an isomorphism from the linear order Iy onto the linear order I then
it induces a unique isomorphism 7 from My = EM(I1,®) onto My = EM(I3, D)

such that:
(A) 7t(as) = arq fortel
(B) (oM (aty, ... a0, 1)) = M (an(ty), - -+ On(t, 1)) where o(xo, ..., Tn_1) is
a To-term and tg, ..., t,_1 € I1.

2) If 7 is an automorphism of the linear order I then it induces a unique automor-
phism 7t of EM(I, ®) (as above with I = I = I).

Remark 0.13. 1) So in 0.11(2) we allow further expansion by functions definable
from earlier ones (composition or even definition by cases), as long as the number
is < k.

2) Of course, in 0.12 is true for trivial K.

So we may be interested in some classes of linear orders; below 0.14(1) is used much
more than the others and also 0.14(5),(6) are used not so few times, in particular
parts (8),(9) are not used till §5.

Definition 0.14. 1) A linear order I is k-wide when for every 6 < k there is a
monotonic sequence of length 0% in I.

2) A linear order [ is k-wider if |I| > 3y (k).

3) Iy is k-wide over Iy if I; C Iy and for every 6 < « there is a convex subset of
I, disjoint to I; which is §T-wide. We say “I5 is wide over I;” if “I5 is |[1]-wide
over Iy”.

4) K'"[K1n] is the class of linear orders [of cardinality A].
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5) Let K™ be the class of infinite linear order I such that every interval has
cardinality |I| and is with neither first nor last elements.

6) Let the two-place relation <y on K" be defined by: I <y Jiff I,.J €
K" and I C J and either I = J or J \ I is a dense subset of J and for every
te J\I, I can be embedded into J [{s€ J\I: (Vrel)(s<yr=t<y7)}

6A) Let the two-place relation <*.;;, on K" be defined similarly omitting “I €
K1 (hut not J € Kin),

7) Kgin = {I € Kfin . |I| = 9} and SKélin = < gfiin ngin.

8) KZC(K)_hn is the class of linear orders of cardinality # which are the union
of < k scattered linear orders (recalling I is scattered when there is no J C I
isomorphic to the rationals). If x = Ro we may omit it (i.e. write Kj°"™).

9) Let 7,y = {<}U{P; : i <a(x)}, Pi a monadic predicate, qu_iwil(*) ={I:1a

T ()" model, < a linear order and (P : i < a(x)) a partition of I}. If a(x) = 1 we

may omit P{, so I is a linear order, so any ordinal can be treated as a member of
Klin
T

— K flin

Observation 0.15. 1) If [I| > 29 then I is 07 -wide.
2) If |I| > X and X is a strong limit cardinal then I is A-wide.
8) (Kfin, <ggin) almost is a §-AEC, only smoothness may fail.
4)If 1 € Klm then for some Iy € KU we have: |I| = |I1|+R¢ and I; <
and (VIo)[Ig C I ANy € KU = Iy <gnin o).
5) If I is k-wide and Iy <gnm o then Iy is k-wide over Is.

thn 12 ;

Remark 0.16. If in the definition of <gnin in 0.14(6) we can add
“Wte@ e HY <stA(Vsel)(s<pt=s<;t)]

(and its dual, i.e. inverting the order). So we can strengthen 0.14(6) by the demand
above.

Proof. 1) By Erdés-Rado Theorem, i.e., by (29)* — (67)3.
2) Follows by part (1).
3),4),5) Easy. Uo.15

Claim 0.17. 1) (Y1, < ©), (Tor[8], <) and Yo <®) are partial orders (and
<&, <ec<P).
2) If ®; € YU[R] and the sequence (®; : i < &) is a <P-increasing sequence,
§ < kt, then it has a <®-lu.b. ® € YU[R], and EM(I,®) = |J EM(I,®;) for
every linear order I, i.e. 7(®) = U{7(®;) : i < §} and for eve;gfj < & we have
EM, (o,) (1, ®) = U{EM, (o, (1. ®) : i € [1.0)}

3) Similarly for <9 and <'©.

4)If® e and I € K then T C EM{«y(I,®) as linear orders stipulating
(as in 0.11(3)) that a; = t.

Proof. Easy. Oo.17

Recall various well known facts on L g.
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Claim 0.18. 1) If M, N are T-models of cardinality X\, cf(\) = Rg and M =1 , N
then M = N.
2) If M, N are T-models then M =1__ , N iff there is F such that

® (a) (a) each f € F is a partial isomorphism from M to N
(B) F#2
(v) if f € F and A C dom(f) then f | A€ F
(b) if f € F,A e [M]<? and B € [N]<Y then for some g € F we have
fCg, AC dom(g), B C rang(g).
2A) If M C N are T-models, then M <p__ , N iff for some F clauses ®(a), (b) hold
together with
(c) if A€ [M]<Y then for some f € F we have ida C f.
2B) In part (2) (and part (2A)), we can omit subclause () of clause (a), and
if F satisfies (a)(a),(B) + (b) (and (c)), then also F' = {f | A: f € F and
A Cdom(f)} satisfies the demands.
2C) Let M, N be T-models and define F = {f: for some a € °>M, f is a function
from rang(a) to N such that (M,a) =L_, (N, f(a))} then M =L, N iff F # &
iff F satisfies clauses (a),(b) of ®. o
3) If M is a T-model, § = cf(0) and p = |M||<? then for some v < ut and
A C L+ (1) of cardinality < p such that each ¢(T) € A is of quantifier depth
< 7y, we have
(A) fora,b e %M we have (M,a) =, (M,b) iff tpa(a, @, M) = tpa (@, @, M)
(B) for any T-model N we have N =1, M iff {tpa(a,@,N) : a € >N} =
{tpa(a, @, M) :a e >M}.
4) Assume x > p = p<% and © € H(x). There is B such that (in fact clauses
(d)-(g) follow from clauses (a),(b),(c))
(a) B < (H(x),€) has cardinality p,
(b) u+1C B and [B]<"C B andz € B

(¢) B =L, (H(x),€)

(d) if R is an AEC with LST(R) + |7(R)| < p and 8 € B (which means
{(M,N): M <g N has universes C LST(R®)} € B) then
(@) MERNB =>M [ B:=M | (BNM) <z M
(8) if M <g N belongs to B then M | B <g N [ B

(e) if & is as in (d), ® € Y, [RINDB and I € B is a linear order and so
M =EM(I,®) € B then I' = I | B C I and M | B = EM(I',®) so
(M [ 7(8) B =EM, s, ®) <a M [ 7(R)

(f) if 7| < u, 7 € B and M, N € B are T-models, then
() M B =y, M
(B) M#L_ . N iff (M B)#L, - (N[DB)
(v) if M C© N then (M < () N) iff (M [ B) <

applies also to (M,a), (N,a) for a € "M

(9) if I € KM then I NB € KM and if I e L2 then (It N'B) <jenin

(I2NB).

() (N [%), this

00, K

Proof. 1)-3) and 4)(a),(b),(c) Well known, e.g. see [Dic85].
4) Clauses (d),(e),(f): as in 0.9(1), i.e. by absoluteness. Also clause (g) should
be clear. Uo.1s

Remark 0.19. 1) We will be able to add, in 0.18(4):
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(h) if R is as in clause (d) and 7 = 74 then in clause (f) we can replace Lo . (7)
by Lo «[8] and Ly .. (7) by Ly «[£], see Definition 1.10 and Fact 1.11(5).
2) We use part (4) in 1.27(3).

Definition 0.20. For a model M and for a set A of formulas in the vocabulary of
M, 2= (x;:i<a), AC M and a € *M, let the A-type of @ over A in M be

tpa (@, A, M) = {@(z,b) : M |= pla,b] where ¢ = ¢(Z,7) € A and b € “9WA}.
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§ 1. §1 AMALGAMATION IN K3

Our aim is to investigate what is implied by 1.3 below but instead of assuming
it we shall shortly assume only some of its consequences. For our purpose here,
for # € [LST(8),A),\ = 3, it does not really matter if we use x = 3; 1() or
k=11(3,(0)) or 31,,(0), as we are trying to analyze models in K.

Remark 1.1. 1) We can in our claims use only ® € T = Y7y 4 [R] because for
every 8 > LST(8) we can replace & by 8¢ as LST(R>¢) = 6 when f59 # &, of
course.

2) As usual we assume |7z| < LST(R) just for convenience, otherwise we should
just replace LST(R) by LST(8) + |7/

Hypothesis 1.2. (A) R = (K, <g) is an AEC with vocabulary 7 = 7(8) (and
we can assume |7| < LST(R) for notational simplicity)
(B) 8 has arbitrarily large models (equivalently has a model of cardinality >
31,1(LST(R))), not used, e.g. in 1.11, 1.12 but from 1.13 on it is used
extensively.

Definition 1.3. We say (u,\) or really (u, A, ®) is a weak/strong/pseudo 8-
candidate when (weak is the default value):
(a) p > X =23y >LST(R) (e.g. the first beth fix point > LST(R), see 3.4; in
the main case A has cofinality Np)
(b) R categorical in  and & € TY
or just
(b)~ R is weakly/strongly/pseudo solvable in p and ® € T¢ witnesses it; see
below.

Definition 1.4. 1) We say 8 is weakly (u, x)-solvable when pu > x > LST(R) and
there is ® € T)'[f] witnessing it, which means that ® € T[] and EM(x)(I, @)
is a locally superlimit member of &, for every linear order I of cardinality u. We
may say (8, ®) is weakly (u, k)-solvable and we may say ® witness that £ is weakly
(1, K)-solvable.

If Kk = LST(R) we may omit it, saying K or (&, ®) is weakly p-solvable in pu.

2) R is strongly (u,k)-solvable when p > k > LST(8) and some ® € T[8]
witness it which means that if I € K™ then EM g (I, ®) is superlimit (for &,).
We use the conventions from part (1).

3) We say 8 is pseudo (u, k)-solvable when p > k > LST(R) and there is ® €
T [R] witnessing it which means that for some p-AEC & with no <g-maximal
member, we have M € & iff M = EM, (I, ®) for some I € K}f“ iff M =
EM; (g (1, @) for every I € K}j“. We use the conventions from part (1).

4) Let (p, k)-solvable mean weakly (u, )-solvable, etc., (including 1.3)

Claim 1.5. 1) In Definition 1.3, clause (b) implies clause (b)~. Also in Definition
1.4 “R is strongly (p, k)-solvable” implies “R is weakly (u, k)-solvable” which implies
“R is pseudo (u, k)-solvable”. Similarly for (R, ®).

2) Assume ® € YO [R]; if clause (b)~ of 1.3 or just I(u, ) < 2%, or just 2* >
I(p, {EM, () (I, ®) : I € K,}) for some p satisfying LST(R) < & < p then we
can deduce that
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(%) ® (really (R, ®)) has the k-non-order property, where the k-non-order prop-
erty means that:
if I is a linear order of cardinality k,t* € "l form a A-system pair
(see below) and (o;(Z) : 1 < k) lists the 7(®)-terms (with the sequence
T of variables being (x; : i < k)) and (a; : t € I) is “the” indiscernible
sequence generating EM (I, ®) (i.e. as usual {a; : t € I) is “the” skeleton of
EM(I,®), so generating it, see Definition 0.8) then for some J D I there
is an automorphism of EM; (g)(J, ®) which exchanges (oi({ay : i < K)) :
i < k) and (o;({az 11 < K)) 1 1 < K).
where '
K 1,22 € °I is a A-system pair when for some J D I there are t € %J
for ¢ € K\ {1,2} such that (t* : a < k) is an indiscernible sequence
for quantifier free formulas in the linear order J.

t2

Proof. 1) The first sentence holds by Claim 0.9(1) and Definition 0.8 (and Claim

0.6). The second and third sentences follows by 0.6.
2) Otherwise we get a contradiction by [She87b, Ch.III] or better [Shear, III].
Usa

Definition 1.6. 1) If M’ is a class of linear orders and ® € Y¢'[R] then we let
KM @] = {EM (g, ®): 1 € M'}.

2) Let K, (M) 1o the class of linear orders I of cardinality 6 such that for
some scattered? linear order J and ® proper for K™ such that < belongs to T¢

and |7p| < Kk we have I is embeddable into EM¢y(J, ®). If we omit x we mean
LST(R). If k = Xy we may omit it.

Remark 1.7. 1) Note that in Definition 1.4(1) we can restrict ourselves to I €
K/S\C(e)'hn, see 0.14(8) and even I € K™ see 1.6(2), i.e., assume 2 > I(u, K[M', ®]),
for M’ = K/S\C(e)'hn or M’ = K;f(e)'hn and restrict the conclusion (%) to I €
Kse@)-hin A gain is that, if A > 6, every I € Kf\c(e)'lln is A-wide so later K* = K**,
and being solvable is a weaker demand. But it is less natural. Anyhow we presently
do not deal with this.

1A) Note that K5°9"™ ¢ k@

2) An aim of 1.8 below is to show that: by changing ® instead of assuming
I, C I, A (I3 is k-wide over I7) it suffices to assume I1 C Is A (I3 is k-wide).

(6)-lin

Claim 1.8. For every ®; € T[R] there is ®2 such that

(A) @y € YOU[R] and if 1 witnesses K is weakly/strongly/pseudo (A, k)-solvable
then so does ®q

(B) 7o, € To, and |Te,| = [Te,| + Ro

(C) for any I, € K" there are I and h such that:
(@) I; € K'"™ and even I, € K™ see 0.14(5)
(8) h is an embedding of I into I

(7) there is an isomorphism f from EM;(¢,)(I2, ®2) onto EM(Iy, ®1) such
that f(a¢) = ap fort € I

2j.e. one into which the rational order cannot be embedded

See https://shelah.logic.at/papers/734/ for possible updates.
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() if J1 = I | rang(h) and we let
E= {(tl,tg) ittt €L \ J1 and (VS S Jl)(S <t =s< tz)}

then £ is an equivalence relation, each equivalence class has > |l
members, and Jy <gnin I (see 0.14(6)).

(e) [Not used] if @ # Jo C I,

Ji = {t € I : for some 7(®a)-term o(zg,...,Tn_1)
and to,...,tn_1 € Jo we have
f_l(at) = O'EI\/I(IQ’(I)Q)(a,to7 N ,atnil)}

and J| C rang(h) \ J1 and t € J| then {s € t/€ : f~1(as) belongs to
the Skolem hull of {f~'(a,) : v € Ji} in EM(ls, ®)} has cardinality
> |Ji| and J| and its inverse can be embedded into it; in fact, I; and
its inverse are embeddable into any interval of I5.

Remark 1.9. 1) We can express it by <®, see 0.11(4). So for some ¥ proper for

—K?

linear orders such that ¢ is countable, the two-place predicate < belongs to 7y
and above EMy (I3, ¥) is 1.

2) In fact, Jo C I = El\/[{<}(J27 \I/) < K flin El\/l{<}(127 \I/) and I <}ﬂm EM{<}(IQ, (I))
when we identify ¢ € Iy with a;.

Proof. For Iy € K" let the set of elements of I; be {n : n is a finite sequence of
elements from (Z \ {0}) x I>}. For n € I let ({y .ty %) be n(k) for k < £g(n).
Lastly, I; is ordered by: 11 < 79 iff for some n one of the following occurs
® (a) m [n=mn2|n,Llg(m)>n,Llg(n) >n,and by, , <y, n
(b) m [ n=m2 [ n, Lglm) > n, Lg(nz) > n, €y, » = Ly, n > 0, and
tm,n <L tng,n
() m I'n=malmn lglm) >n, lyg(nz) > n,lyn = ly,n < 0, and
tﬁzm <L tm,n

(d) m ['n=mn2n,Lg(m)=n, Lg(n2) >n, and £, , >0
(€) m [n=mn2[n, Lg(m) >n, Lg(n2) =n, and £, ,, < 0.
We identify ¢ € I with the pair (1,¢). Now check. O s

Definition 1.10. 1) Let the language Lg [8] or Ly 5.« where 8 > 0 > X( and 6 is
possibly oo, be defined like the infinitary logic Lg a(7g), except that we deal only
with models from K and we add for i* < 9 the atomic formula “{z; : i < i*} is the
universe of a <g-submodel”, with obvious syntax and semantics. Of course, it is
interesting normally only for 9 > LST(R) and recall that any formula has < 9 free
variables.

2) For M a tg-model and N € K let M <, ,(q /N means that M C N and if
©(z,7) is a formula from Ly g[R] and N |= (37)¢(,b) where b € “9@WM | then for
some a € “9@M we have N |= p[a, b).

Fact 1.11. 1) If & > 0 > LST(R) and M,N are Tg-models and N € K and
M =Lo.5[A] N, then M <g N and M € K.

2) The relation =g, ,q can also be defined as usual: M <y, ,q N iff M, N €
K,M C N and for every ¢(%) € Lgp[f] and @ € “9@M we have M = [a] iff
N olal.
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3) If N € R and M is a Tg-model satisfying M <r__ N and £ > LST(R) then
MeK,M<gN and M {Lwﬁm[ﬁ] N.
4) If N € K,M a tg-model and M =i, N where x > LST(R) then M € K
and M E]Loo,m[ﬁ] N.
5) The parallel of 0.18(2) holds for Lo «[f], i.e. M = g N iff there is F
satisfying clauses (a),(b) there and
(d) if f € F then
() M [dom(f) <g M
(B) N | rang(f) <q M.
6) Also the parallel of 0.18(2A) holds for Lo «[£].
7) The parallel of 0.18(4) holds for L, .[£].

Proof. Part (1) is straight (knowing [She09a, §1] or [She87a, §1]). Part (2) is proved
as in the Tarski-Vaught criterion and parts (5),(6),(7) are proved as in 0.18.
Toward proving parts (3),(4) we first assume just

Xy M,N are Tg-models, N € K and M =i, N and x > LST(R) and
A € [LST(R), k)
and we define:
O (a) I=1,=
{(ﬁMCN’) :M'C M, N'CN, |M'|| <\,
f: M — N'is an isomorphism, and
(M,a)=L_ . (N, f(a)), where a lists M'.}
(Note that we do not require M’, N’ € K.)
(b) fortellett= (ft;Mt7Nt)
(c) for £ =0,1,2 we define the two-place relation S? on [ as follows. Let
s <4t hold iff:
() £=0and My C M; ANs; C N,
(B) ¢ =1 and (]\46 SﬁMt\/Ms :Mt)/\(Né SﬁNt\/Ns :Nt)
(v) £=2and f, C f;
(d) L =1 :={tel:N;<g N} and let gflzg‘ﬁr I, for ¥ =0,1,2.
Now easily
x)o (a @ is partially ordered by <% for £ = 0,1,
I i ially ordered by <% for £ =0,1,2
(B) sg}t:%sg?t
(7) s<¥t=s<%t
[Why? Straightforward; e.g. I # @ by 0.18(2).]
()1 if t € I then M; € K<) and N, € K< hence for r, s € I, we have S}S s
iff Mr Sﬁ Ms A Nr Sﬁ Ns‘)
[Why? Ast € I by the definition of I we have N; € K<) (because Ny <g N) and
M, € K<, as f; is an isomorphism from M, onto N,.]
%)y if s € I,A € [M]<* and B € [N]=* then for some ¢ we have s <% ¢ and
(%) then 7
Ath anngNt.
[Why? By the properties of =, , see 0.18(2C) as k > \, M =r_ , N and the
definition of I.]
%)g if s <2 ¢ then s <!t ie. My <z M, and N, <z N,.
I I
Why? As s,t € I, we know that N, <g N and N; <z N and as s <2 ¢t we have
1

fs € f; hence Ny C N;. By axiom V of AEC it follows that N, <g N;. Now
My <g M; as f; is an isomorphism from M; onto N; mapping M, onto Ny (as it
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extends fs by the definition of <?) and <g is preserved by any isomorphism. So
by the definition of <} we are done.]

(%)4 if s € I then for some ¢ € I; we have s <% ¢t (hence I; # @).
[Why? First, choose N’ <g N of cardinality < A such that Ny C N’, (possibly by
the basic properties of AEC (see [She09a, §1] or [She09f])). Second, we can find
t € I such that N; = N’ A f; C f; by the characterization of =__, as in the proof
of (%)2. So s <% t by the definition of <% and Ny = N’ <g N hence t € I as
required. Lastly, Iy # @ as by (*)o(«) we know that I # @& and apply what we
have just proved.]

(%)5 if s §?1 t then N, <g N;.
[Why? As in the proof of (x)s3 by Ax.V of AEC we have Ny, <g N; (not the part
on the M’s!)]

(x)g if s € I1,A € [M]=* and B € [N]=* then for some ¢ we have s <3 ¢ and

AC M, BCN,.

[Why? By (x)2 there is ¢; such that s S% t1,AC My, and B C N;,. By (x)4 there
is t € I such that ¢; <? ¢ hence by (¥)o(«) we have s <? t. As s,t € I; this implies
s <3 t]

Note that it is unreasonable to have “(I, S%) is directed” but

(¥)7 (I1,<},) is directed.
[Why? Let s1,s2 € I;. We now choose ¢,, by induction on n < w such that

(a) tn € Il

M, includes U{My, : k <n} UM, UM, if n > 2

) My,
) N, includes U{Ny, : k <n}UN,;, UN,, if n>2
(d) to =1
(e) t1 = s9
)ifn=m+12>2thent, §?1 tn
(9) if n =m+ 2 then t,, <3 t, hence t,, <7 tn.
For n = 0,1 this is trivial. For n =m + 2 > 2, apply (x)g with

tiy (M, sk <m+ 1}, (N, sk <m+1}

here standing for s, A, B there, getting t,, so we get t,, € I1. In particular, t,, gi tn,
so clause (a) is satisfied by ¢,,. By the choice of ¢,, and as s; = to, s2 = {1, clauses
(b) + (c) hold for ¢,,. By the choice of t,, obviously also clause (g) holds. Now why
does clause (f) holds (i.e. tpy11 <% ¢,)? It follows from clauses (a),(b),(c), so t, is
as required. Hence we have carried the induction. Let N* = [ J{N;, : 2 < n < w},
so clearly by (*)s and clause (f) we have Ny, <g N;, ., for n > 1, and clearly
M, € M, , forn >1. Let M* = [J{M,, : 2 < n < w}. Note that by ()3 and
clause (g) we have M, <g M, ,, so (M, , : n < w) is C-increasing, and for
¢ = 0,1 the sequence (M;,, , :n < w) is <g-increasing with union M*, hence by
the basic properties of AEC we have My,  , <g M*. So My, = My, <g M* and
M, = My, <g M*. Now M,,, M, C M, <g M* hence My, , M,, <g M,,. Recall
that N;, = Ny, <g Ny, was proved above and Ny, = Ny, <g Ny, was also proved
above so ts is a common <}-upper bound of sy, sy as required.]
(x)g if s S(I)l t then s S}l t.

[Why? By ()7 there is t; € I; which is a common S}l—upper bound of s,t. So
M, C My (as s <§ t) and My <g My, (as s <}, t1) and M; <g My, (as t <} t1).
Together by axiom V of AEC we get My <g M; and by (x)5 we have Ny <g N;.
Together s S}l t as required.]
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. 1 . . . 1 . .
s - y = =R~ ) y =
(%)o <M se(l <Il)> is <g-increasing, (I3 <1,) is directed and

UM :seny =M

[Why? The first phrase by the definition of <j in clause (c)(8) of [J, the second
by (%)7 and the third by (*)¢ + (¥)4.]

By the basic properties of AEC (see [She09a, 1.6]) from (*)g we deduce

® () MeK
(b) tel; = M; <g M.
Now we strengthen the assumption X; to
Xy The demands in Xy and M <Loo.n[rs] N.
We note
®1 (a) Ifae*M, |a] +LST(R) < A < & then for some ¢ € Iy, fi(a) = a.
(b) f M’ C M and ||M'|| < X then (idp/, M', M') € I,.
(c) f My C Ny C N and My C M and ||Ny|| < A then for some t € I we
have Nt = N1 and ldjw1 g ft-
[Why? Clause (a) is a special case of clause (b) and clause (b) is a special case
of clause (c). Lastly, clause (c¢) follows from the assumption M =<, N and
0.18(2A),(2B).]
We next shall prove
®; M <g N.
By [She09a, 1.6] and (x)g above for proving ®, it suffices to prove:
®3 if s € I then M, <g N.

[Why ®3 holds? As M C N there is N, <g N of cardinality < X such that
My U N5 C N,.. By ®;(c) there is t € I such that N; = N, and idy;, C f;. As
N, <g N it follows that ¢t € I;. So by X; = ®(b) applied to s and to t we can deduce
Ms <g M and M; <g M. But as idy;, C f; it follows that My C dom(f;) = M,
hence by Ax.V of AEC we know that My <g M;. But as ¢t € I clearly f; is an
isomorphism from M; onto N; hence fi(Ms) <g fi(M;) = N, and as idy, C fi
this means that M = f;(M;) <g N;. Recalling N; <g N because t € I} and <g is
transitive it follows that M, <g N as required.]

Let us check parts (3) and (4) of the Fact. Having proved X; = ©(a), clearly in
part (4) of the fact the first conclusion there, M € K, holds. The second conclusion,
M E]Loc,n[ﬁ] N holds by

®4 If O(T) € Lo x[R], [€9(Z)| + LST(R) < A < K, t € I, and a € “9() (M) then
M = plal & N |= o[fi(a)].

[Why? We prove this by induction on the depth of ¢ for all A simultaneously.
For o = 0, first for the usual atomic formulas this should be clear. Second, by (*)4
there is ¢; such that ¢t <? t; € I; hence by ®3+ clause (d) of L+ clause (b) of ®
we have M, <g N ANy, <g N A M, <z M respectively. So if u C £g(Z) then
M | rang(a | u) <g M < M | rang(a | u) <a My, & N | rang(f(a) | u) <s
Ny, & N | rang(f(a) [ u) <g N. So we have finished the case of atomic formulas,
ie. a =0. For o(Z) = (35)9¥ (T, §) use (x)2, the other cases are obvious.] So part
(4) holds. As for part (3), the first statement, “M € K” holds by part (4), the
second statement, M <g N, holds by ®; and the third statement, M < _ (g N
follows by @®1(b) + ®4. As we have already noted parts (1),(2),(5),(6) and part (7)
is proved as ®4 is proved, we are done. Oy 11

oo,H[Tﬁ]

Claim 1.12. For a limit cardinal xk > LST(R):
1) M <y ,(«) N provided that
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(a) if 0 <k and 0 € (LST(R),x) then M <p__ ,iq9 N
(b) for every 0 < k for some 6 € (9, k) we have: ifa,b € °M and (M, a) =L o[8]
(M, b) then (M,a) =L o, [] (M, b) for every 61 € [0, k).
1A) M = (aq) N provided that
(a) if LST(R) <0 < r then M =1__ ,iq) N
(b) as in part (1).
2) In parts (1) and (1A) we can conclude
(b)T for every O < k for some 0 € (0, k) we have: if a,b € °M and
(M,a) =1 ,1a) (M, D) then (M,a) =v_ 15 (M,b).
3) If cf(k) = Ng then M = N when
(a) if 0 <k and 0 € (LST(R),x) then M =1__ ,iq) N
(b) asin part (1), i.e., for every 0 € (LST(R), k), for some 6 € (0, k), we have:
ifa € °M and b € °N and (M,a) =r__ (5 (N,b) then (M,a) =Loco, (4]
(N, b) for every 61 € (6,k).
(¢) M,N have cardinality .

Proof. 1) By 1.11(3) it suffices to prove M <p_, N, for this it suffices to apply
the criterion from 0.18(2A).
Let F be the set of functions f such that:

©® (a) dom(f) C M has cardinality < &.
(B) rang(f) € N.
(v) Ifalists dom(f) then for every 6 € (¢g(a), k) we have tp, _ (@, @, M) =
tpﬂlw,g[ﬁ](f(a)v a, N)
1A) Similarly.
2) Similarly to part (1) using 1.11(4) and 0.18(2) instead 1.11(3),0.18(2A).
3) Recall 0.18(1). 0412

Claim 1.13. 1) Assume 1.3(a) + (b), i.e. R is categorical in pn > LST(R). If
p=p~" and k > LST(R) then for every M <g N from K, we have M < __ 5 N
(and there are such M <g, N).

2) Assume R is weakly or just pseudo p-solvable as witnessed by ® (see Definition
1.4 and Claim 1.5) and M* = EM_ (g (1, ®) and pp = p=<" and > |13|. If M <g N
are both isomorphic to M* then M <p_ ,(a V.

Proof. 1) We prove by induction on « that for any formula ¢(z) from L .[f] of
quantifier depth < v (and necessarily £g(Z) < k) we have
(x) if M <g N are from K, and @ € “9M then M |= ¢la) & N = ¢la).

If ¢(z) is atomic this is clear (for the “{x; : ¢ < ¢*} is the universe of a <g-
submodel”, the implication = holds as <g is transitive and the implication <«
as R satisfies Ax.V of AEC). If ©(Z) is a Boolean combination of formulas for
which the assertion was proved, clearly it holds for ¢(Z). So we are left with
the case p(z) = (FY)v(y,T), so £g(§) < k. The implication = is trivial by the
induction hypothesis and so suppose that the other fails, say N = w[b,a] and
M = —(39)¢(y,a). We choose by induction on ¢ < pt a model M; € K,, <g-
increasing continuous, and for each ¢ in addition we choose an isomorphism f; from
M onto M; and if ¢ = j 4+ 1 we shall choose an isomorphism g; from N onto M,
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extending f;. For i =0, let My = M. For i limit let M; = |J M;. For any 1, if M;
j<i

was chosen, f; exists as R is categorical in p. Now if i = j —J&— 1 then Mj, f; are well

defined and clearly we can choose M; = M;1, g; as required.

By Fodor lemma, as p = p=~" and the set {6 < p* : cf(§) > k} is stationary,
clearly for some a < 8 < p* we have f,(a) = fs(a). Now (by the choice of
Ja) we have Myi1 = 1[ga(b), go(@)], hence by the induction hypothesis applied
to the pair (M,.1, Ms) we have Mg = ¥[ga(b), ga(@)] so Mg = ¢[ga(a)]. But
9a(@) = fo(@) = fa(a), in contradiction to M = —plal.

2) The same proof but we restrict ourselves to models in K[y« so, e.g. in (*)
we have M, N € K[y« recalling that £+ is a u-AEC, see Definition 0.5(3A) and
Claim 0.6(7). Uias

Exercise: 1) For the proof (of 1.13(1)) it suffices to assume “S C {§ < u™
cf(§) > K} is a stationary subset of u™ and M* € K, is locally S-weakly limit.”
(See [She09a, 3.1(5)].)

2) Similarly we can weaken the demands “M* = EM;(g)(u, ®) and (K, ®) is
pseudo solvable” to: ‘for every M <g N isomorphic to M* (which € K,,) there is
a <g-increasing sequence (M, : a < pT) such that

{5 <puticef(6) >k, (Ms,Msy1) = (M,N), and Ms = | J{M, : a < 5}}

is a stationary subset of u™*.’

Claim 1.14. Assume ® € Y%, [R] satisfies the conclusion of 1.13(2) for (u, k) and
LST(R) < k < u and J, I1, Iy are linear orders and I, Iy are k-wide, see Definition
0.14(1). Then
(a) If I C Iy then EM, (g (11, ®) <r_ . (q) EMy(g)(I2, ®)
(b) Assume J C I, J C Iy; if o(%) € Lo «[8] 50 £g9(Z) < k and a € Y@ (EM(J, D)),
then EM;(q) (11, ®) = ¢la] & EM, () (2, ®) = ¢la]
(c) Assume & = (0:(. .., Ta(ip), - )e<e) * 1 < i(x)) where i(x) < K, each o; is
a T(®)-term, a(i,l) < a(x) < k. Ift' = (t', : a < a(*)) is a sequence of
members of Iy for £ = 1,2 and t*, 12 realizes the same quantifier free type in
Iy, I, respectively and a* = (oy(. . ST C)j<iGy 1< i(x)) for £ =1,2
then a',a® realize the same Lo [R] -type in EM;(g) (11, ®), EM(g)(I2, ®)
respectively.

Proof. Clause (a): We prove that for ¢(Z) € Lo [8] we have
(*)p(z) if I1 C I are -wide linear orders of cardinality < pand a € 9@ (EM,4) (I3, ®))
then EM, (g (1, ®) = pla] < EM, (g (12, ®) = plal.
This easily suffices as for any I € K'", the model EM;(4)(I, @) is the direct limit
of (EM(I’,®) : I' C I, |I'| < p), which is <g-increasing and p*-directed and as
we have:
o M! <Loo.«[£] M? when:

(a) I is a k-directed partial order

(b) M =(M;:tel)

(¢) s<rt— M <Loo o [8] M

(d) M? =\J{M, :t eI}

(e) M' € {M; : t € I} or for some r-directed I’ C I we have M' =

UM, :teI'}.
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We prove (*),(z) by induction on ¢ (as in the proof of 1.13 above). The only
non-obvious case is ¢(Z) = (35)Y(§, T), so let I; C Iy be k-wide linear orders of
cardinality < p and a € eg(z)(EMT(R)(Il,@)). Now if EM,(g) ({1, ®) = ¢la] then
for some b € 9@ (EM, () (11, ®)) we have EM, () (I1,®) | ¥[b,a]. Hence by the
induction hypothesis EM, g)(I2,®) |= ¢[b,a] hence by the satisfaction definition
EM; (5 (12, ®) = ¢la], so we have proved the implication =-.

For the other implication assume that b € “93)(EM, (g)(I2, ®)) and EM, (g)(I>, ®)
Plb,a). Let 6 = [£g(a"b)| + N, so § < k and without loss of generality if  is sin-
gular then > cf(k). Hence there is in I; a monotonic sequence ¢ = {¢; : i < 61):
without loss of generality, it is increasing. Clearly there is I* such that a"b €
L@ 0 (EM(I*,®)), I* C I, |[I*] < 60 and a € 9@ (EM(I* N I, ®)) and without
loss of generality i < 67 = [co,¢i], N I[* =2

Similarly without loss of generality

() I \ U{[co,ci)r, 17 <61} is k-wide or k= 07T
Let Jo = I; we can find J; such that Jo =1, C Jy and J1 \ Io = {do : a« < ux 67}
with d,, being < j, -increasing with « and

(Vx € Ig)(;v <nda=\ z<y ci).
<Ot
As EM, (g)(I2,®) = ¢[b,a] and I, = Jo C Ji, |Ji| < p and I, is k-wide (and
trivially J; is k-wide). By the induction hypothesis EM (g (J1,®) = b, a] hence
EM;(g)(J1, ®) = ¢[a]. Let

Jy =1 [{x::ﬂGJl\Jo orxefl\U{[co,ci]h :i<9+}}.

So J1 2 J2, both linear orders have cardinality u and are k-wide as witnessed by
(do = oo < px@7) for both hence the conclusion of 1.13 holds, i.e. EM(Ja, ®) <p__ (g

EM(Jy, ®). Also, I* N I; C Jp, and recall that a € 9@ (EM(I* N I, ®)) hence
a € 9@ (EM(J;, ®)). However, EM, ) (J1,®) = ¢[al, see above, hence by the last
two sentences EM,(g)(J2, @) |: vlal.

So there is b* € YW (EM, (g)(J2, ®)) such that EM, g)(J2, ®) | ¢[b*,a@). Let
J* C J be of cardinality ¢ such that b* € “9W) (EM, 4 (J*,®)) and I* NI C J*
recalling I* N [cp, ¢;)p, = @ for i < 8T, Now let uw C p x 07 be such that J*\ I} =
{do : @ € u} so |u| < 6. Let

J3 = Js [{t:tEJgﬂll, or t =d, for a > sup(u) oraEu}.

[I might be getting distracted from the main goal, but isn’t this liter-
ally Jo [ (JoN L UJ*\ 1 U{dy:a>supu}) =Js | ([1 U{ds : @ >supu})?]

Ascf(uxft) =0T > |ul, clearly sup(u) < ux6* hence |J3| = p and J3 is k-wide.
So by the conclusion of 1.13 (or by the induction hypothesis) also EM,(g)(J3, ®) =
Y[b*,al. Let w = {a < ux 07 :a € uora > sup(u) A (o — sup(u) < 07)}, so
otp(w) = 67F.

Let Jy = (JsN 1) U{d, : @ € w}, so Jy is k-wide as witnessed by

L\ U{lco,ci) :i < 0%}
or by {d, : @ € w} recalling (x) above and Jy C J3 and J* C J; hence a,b* C
%> (EM(Jy, ®)) hence by the induction hypothesis EM, (g)(Js, ®) = ¢[b*, al.
Let J5 = JyU{¢; : i <07} \ {dy : @ € w}; equivalently,
Js = (JsN L) Ufca:a<0t) = (Il\U{ CorCi)1, i < 9+}) U{ciii< 6t}

so Js € I. Let h:Jy — Js be such that h(da) = cotp(wna) for o € w and h(t) =t
for others, i.e. for t € J3sNI;. So h is an isomorphism from J; onto Js. Recalling



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

18 S. SHELAH

0.12 let  be the isomorphism from EM(Jy, ®) onto EM(J5, ®) which A induces, so
clearly h(a) = a. Hence for some b** we have b** = h(b*) € 9@ (EM, (g (J5, @)
and EM, (g)(J5,®) k= 4[b**,a]. Note that by the choice of (¢; : i < 67T), (see ()
above), we know that Js is k-wide. Also J; C I; so by the induction hypothesis
applied to ¢(7,Z), J5, 1 we have EM (g (I1,®) = Y[b**,a] hence by the definition
of satisfaction EM (s (I1,®) = ¢[a], so we have finished proving the implication
< hence clause (a).

Clause (b): Without loss of generality for some linear order I we have I; C I,
I, C I and EM(Iy, ®) C EM(I, ®) for £ = 1,2 and use clause (a) twice.

Clause (c): Easy by now, e.g. using a linear order I’ extending I, I which has
an automorphism h such that h(tl) = t2 for a < a(*). 0114 04 14

Definition 1.15. Fixing ® € T

1) For > LST(R) let K, [let K;*] [let K,*] be the family of M € K, iso-
morphic to some EM(g)(I,®) where I is a linear order of cardinality 6 [which is
f-wide|[which € K§™]. More accurately we should write K3 5, K%, Kgp; similarly
below. ’

2) Let K* is the class [ J{ K} : 6 a cardinal > LST(R)}, similarly K**, K%, K%},
etc.

3) Let & = &% = (K*, <q] K*).

4) Let & = Kj, be (K, <al K »)-

Claim 1.16. 1) Kj* is categorical in 6 if LST(R) < 6 < p, cf(8) = Xo and the
conclusion of 1.13(2) hence of 1.14 holds for @ = 0 (and ®), e.g. K is pseudo
solvable in i as witnessed by ® and p = p<?.

2) Ki* Ky C K}

3) If 0 is strong limit > LST(R) then K;* = K.

Proof. 1) By 1.14 and 0.18(1).
2) Read the definitions.
3) Recall 015(2) D1_16

Remark 1.17. 1) We will be specially interested in 1.16 in the case (u,A) is a
R-candidate (see Definition [She09b, 11.0.3]) and 6 = A.

2) Note that K, in general, is not a §-AEC.

3) If we strengthen 1.18(2) below, replacing (i, A) by (i, A7) then categoricity
of K3 and in fact Claim 1.19(4) follows immediately from (or as in) Claim 1.16(1).

For the rest of this section we assume that the triple (p, A, ®) is a pseudo &-
candidate (see Definition 1.3) and rather than y = p* we assume just the conclusion
of 1.13, that is:

Hypothesis 1.18. 1) The pair (s, A) is a pseudo R-candidate and ® witnesses
this, so |[te| < LST(R) < A = Iy < pand ® € T¥ is as in Definition 1.4 so
I € K" = EM, (I, ) € K?.

2) For every k € (LST(R), A) the conclusion of 1.13(2) holds hence also of 1.14
(if p = p=* this follows from (1) even for K = AT as u<* = p* = u by cardinal
arithmetic).
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Claim 1.19. 1) If My <g My are from K5 or just K%, and LST(R) < 0 < A then
My <L 415) Ma2; moreover My < (5] Ma. -

2) If My <g My are from K* and ||My|| > & == J1,1(0) (recall that this is De)+ )
and X > 0 > LST(R) then My _<]Loo,9+[ﬁ] M.

3) Assume LST(R) < 0 < r=2T11(0) < x <A, x1 = Di1(x) and M € K% |
and a,b € "M where v < 0T and (M, a) =L .18 (M, b); i.e.

p((25: 8 <)) € Lo+ [8] = (M [= pla] & M [= ¢[b)]).
Then (M,a) =1 (5 (M, b).
4) K3 is categorical in \ provided that cf(\) = Ng.

Remark 1.20. 1) What is the difference between say 1.19(3) and clause (a) of
1.147 Here there is no connection between the additional 7(®)-structures expanding
My, Ms.

2) Note that ® has the k-non-order property (see 1.5(2)(*)) when x > LST(R),
kT < p using 1.19(4).

3) Concerning 1.19(2), note that if |M;] > p it is easy to deduce this from
1.18(2), i.e, 1.13(2). But the whole point in this stage is to deduce something on
cardinals < p.

4) Note that the proof of 1.19(2) gives:

® assume LST(8) < 0 and 6(x) = min{(2%)*,5(255T(D) +0)}.3 If 3y, < p
then for some a(*) < §(*) we have:
® if My <g My are from K* and HM1|| > :a(*) then M, <]Loo,9+[ﬁ] M.
5) Similarly for 1.19(3) so we can weaken the demand M € K% |

6) We use “X has countable cofinality, i.e. c¢f(A) = Ry” in the proof of part (4)
of 1.19, but not in the proof of the other parts.

7) Recall that for notational simplicity we assume LST(8) > |7g| hence 6 > |74/

8) Note that for 1.19(2),(3) we can omit A from Hypothesis 1.18, i.e. we need it
only for k.

9) Note that we shall use not only 1.19 but also its proof.

Proof. 1) The first phrase holds by part (2) noting that k < Aiff < Aasf < A=
3. The second phrase holds by 1.12 as its assumption holds by parts (1) and (3).
2) We prove by induction on the ordinal ~ that:
(%) if My <g M> are from K%, and the formula ¢(Z) € L, g+ [£] has depth
< v (so necessarily £g(z) < 6F) and a € “9(® (M) then

My |= pla] & M, = ¢la).
As in 1.13, the non-trivial case is to assume ¢ (%) = (3g)v(7, 7) where a € 9 (M)
and My | ¢[a]. We shall prove M; = ¢[a], so necessarily £g(T) + £g(y) < 61 and
we can choose b € “9%W) (M) such that My |= t[b,al. For £ = 1,2 as M, € K%
there is an isomorphism f; from EM () (¢, ®) onto M, for some linear order I, 4 of
cardinality > k.

So we can find J, C I; of cardinality 6 for £ = 1,2 such that a C M; where
M; = fi(EM,(5)(J1,®)), and @a’b C M, where My = fo(EM,(g)(J2,®)) and
without loss of generality M; = M, N M;. By 1.18(1), i.e. 0.9(1), clause (c)
clearly M,” <g M, and so by Ax.V of AEC (see Definition [She09c, 0.2]), we have
M; <g M, . First assume 6 > 2LST(R); in fact it is not a real loss to assume

30n the function 5(—), see [She09g, 1.2.3,1.2].
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this. By renaming without loss of generality there is a transitive set B (in the set
theoretic sense) of cardinality < 6 such that the following objects belong to it:
@(a) Jl, JQ
(b) ® (i.e. 7o and ((EM(n, D), ap)rcn : 1 < w))
(c) R, ie, 7qg and {(M,N): M <g N have universes included in LST(K)}
(d) EM(Jp, ®) and (a; : t € Jyg) for £ =1,2.
Let x be large enough, B = (H(x), €, <}) and B be B expanded by the individual
constants M,” = EM(I,,®), (af : t € I,) the skeleton, My, M, and f; (all for
¢ =1,2), K, B and z for each z € B. By the assumption ||[M| > & = 3;1.1(),
hence (see here [She09g, 1.2]) there is € such that
©® (a) €is a 7(BT)-model elementarily equivalent to BT (that is, in first
order logic)
(b) € omits the type {x #band z € B:b € B} but
(©) |{b: €= b e ne}| = p= e,
Without loss of generality b € B = b = b.
Now
@ f €= “M e K”,so M is just a member of the model € then we can define
a Tg-model M¢ = M|[¢€] as follows:
(a) the set of elements of M % is {a : € = “a is a member of the model M”}
(b) if R € 7 is an n-place predicate then

RMIE = (a0 <n):CE “(ag: £ <n) e RM"}

(¢) if F € 7k is an n-place function symbol, FM(¢] is defined similarly.
®2 (a) if € = “I is a linear order” then we define I¢ similarly
(b) similarly if € = “M is a 7(®)-model”
®3 if € = “I is a directed partial order, M = (M, : s € I) satisfies My, € K
has cardinality LST(R) and s <j t = M, <g M;” then also (MY : s € I%)
satisfies this.
By easy absoluteness (for clauses (a)1, (a)2 we use [She09a, 1.6-1.7] and ®3):

K (a); if € = “M € K7 then M® € K
(Cl)2 if € ': “M SR N” then 1\4C SR ]VC
(b); if € |= “I is a linear order” then I® = I[€] is a linear order
(b)y if € = “I C J as linear orders” then I¢ C J¢
¢) similarly for 7¢-models
)1 if € | “M = EM(I, ®)” then there is a canonical isomorphism f§ from

EM(I¢, ®) onto M® (hence it is also an isomorphism from EM, ) (1€, ®)

onto M¢ | 7(R))

(d)2 if € = “I C J as linear orders” then f$ extends ff.

Now clearly Jf = Jyand I f is a linear order of cardinality p extending .J, for
¢=1,2. Let My = (M, )¢ for £ =1,2.

So recalling clause (c) of ® we have: MY, M5 € K}, M{ <g Ms, M; <g M,
M{ <g M3 and ff",fﬁ are isomorphisms from EM; g (If,®) onto M, in fact,
fIQ; is the identity on EMT(R)(JZC, ®) = EM, (s (Jr, ®) and f§ maps it onto M for
(=1,2.

Now My = 1[a, b, (why? assumed above) hence MS |= [a, b]

(why? By 1.14, clause (b) or (c) and the situation recalling 1.18(2), of course
noting that I, IS are of cardinality > x = 31,1(0) hence are 61-wide), hence Mf§ =
¢la] (by definition of satisfaction), hence MY |= pla]. (Why? As M{,Ms € K},
hence M{ <L o+ 8] M§ by X and 1.18(2) and recalling 1.13(2).) Hence M; [ ¢[a]
as required in 1.19(2). (Why? By clause (b) of 1.14 recalling 1.18(2))

b
b
(

(d
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So we are done except for a small debt: the case § < 2M5T(R) and f§ is an
isomorphism from EM, (g (If, ®).

In this case choose two sets By, By such that |By| =6, |Bsa| = 2LST(R) B, C By
and concerning the demands in @ above the objects from (a),(b),(d) and 7 belong
to Bi, the objects from (c) belong to Bs.

Again, without loss of generality By, By are transitive sets and B, By serve as
individual constants of BT as well as each member of B;. Now concerning ¢ we
demand that it is elementarily equivalent to B*; omit {x € BiAz #b: b € By} and
for some B} < BT of cardinality 6 we have B < € and {b: € =b € By} C B+,
This influences just the proof of ®3.

3) VYithout loss of generality M = EM,(g)(I,®) and I € Klziglm. As v < 0F
and a,b € ™M there is I; C I of cardinality € such that a,b € "M; where M; =
EM; (g (11, ®). As (M, a) =L 18] (M, b) necessarily there is I C I of cardinality
 and automorphism f of My = EM,(g)(l2, ®) mapping a to b such that I; C I,.
Why? Recalling 0.18(2), by the hence and forth argument as in the second part of
the proof of 1.11(3).

Now as in the proof of part (2) there is a linear order I3 extending I; of cardinality
X1 and an automorphism g of Mz = EM, ()(I3,®) mapping a to b. Without loss
of generality for some linear order I, we have I C Iy and I3 C 1.

Let My = EMT(R)(I4,(I)), now M <Loc,x+[ﬁ] My by part (2), M3 <]Loo,x+[ﬁ] My
by part (3) and (M3,a) =g 18] (M3, b) by using the automorphism g of M3 so
together we are done. 7

4) So let M, N € K3 (in fact, hence € K3* recalling K} = K}* by 1.16(3) but
not used). By parts (1),(3) the assumptions of 1.12(3) hold with A here standing
for x there, hence its conclusion, i.e. M = N. 0119

Note: here the types below are sets of formulas.

Definition 1.21. Assume M € K, I C "M and .Z,.%,.% are languages in the
vocabulary 7g.

1) We say that I is (£, 0, <k)-convergent in M, when: |I] > 0 and for every
b € ">M, for some J C I of cardinality < 0, for some* p we have:

(¥) for every ¢ € T\ J, the Z-type of ¢*b in M is p.
2) Let
Avg o<, M) = {gp(a’;,f)) 2 o(Z,7) is an Z-formula, Lg(y) < K,
acl=lg(a)="Lg(z), be“9PM, and
for all but < d-many sequences ¢ € 1
¢ satisfies o(Z,b) in M}
If O is missing, we mean 0 = k. In parts (1) and (2) we may write “k” instead of
< k; similarly below. (kT k)-convergent means (L, .+ (R), xT, < kT)-convergent.
3) We say that I is (£, %, 0, < k)-based® on A in M when:
(a) ACM
(b) T'is (A, 0, < k)-convergent,
(c) Avg, o,<x(I, M) does not (£, %, < k)-split over A, see below.
4) We say that p(z) € Str, (B, M) does not (£, %, < k)-split over A when: if
©o(Z,9) € L1, a = Lg(T) < K, Lg(7) < K and b, ¢ € “9P)B realize the same Z5-type

4We could have demanded it for every single formula, here this distinction is not important
51f L =% = % we may write only .Z.
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in M over A then p(%,b) € p < (%,¢) € p; recalling that Sfr% (A, M) is defined
in 0.4 and normally .2 = % or at least .4 C %.
5) Let Av.. (I, M) be AVH.,OO,K[R],K,N(L M) and Av, (I, M) be AVH-‘OO L [RleT et (I, M).

Remark 1.22. 1) See definition of Sav®(M) in 1.37(2) below.
2) An alternative for clause (c¢) of 1.21(3) is
(¢) the set {Avg g <x(f(I), M) : f an automorphism of M over A} has cardi-
nality < 3; 1 (LST(R) + 0+ |A]) < || M|

Claim 1.23. 1) Assume that M € K, AC M, 1 C°M, [I| > 0 = cf(9) > k >
0+LST(R) and I is (£, 0, k)-convergent. Then the type p = Avy g ..(I, M) belongs
to Sfrfg( )= Sfrx(M M); i.e., it is complete, recalling Definition 0.4 (no demand
that it is realized in some N Zg M!).

2) Also, 1 is (£,0,k)-based on some set of cardinality < 9, even on |JJ, for
any J C 1 of cardinality > 0.

Proof. 1) By the definition.
2) By the definitions: if b € * >M, ¢ = () € £ and lg(b) = lg(3)),
Lg(z) = 0, then by the convergence

©(Z,b) € p & for all but < d members a of I, M = ¢la,b] <
for all but < @ members of J, M |= ¢[a, b].
So only tp & (b,|JJ, M) matters, hence the non-splitting required in clause (c) of
Definition 1.21(3). 0193
As in [She09g, 1.7], we deduce non-splitting over a small set from non-order.

Claim 1.24. Assume M = EM g (I,®), 0 + LST(R) <k < A, and 3;1(9) < |I|
where 0 = (22°)* or I is well ordered and & = (2°)*. If M <i_ ,iq N then for
every a € 2N there is B C M of cardinality < O such that tpp_ (@ M, N)
does not (Lo o+ [R]; Lo o+ [R])-split over B. ’

Proof. Let T = (x; : i < £g(a)).

We try to choose Ba,Ya: Ga, bas Ca, ol Ja) € Log o+ [] by induction on o < 0

such that
Bo=Ufas: 6 < a)
ba Ca E”’O“M and Vo < kT
Z,Ya) € Lo+ [R] such that £g(ga) = Va
= S"a[a ba] = ~¢al, Ca]”
€ Y@M vealizes {¢p(Z,bs) = ~pp(Z,¢5) : B < a}in M
M |: “Oaldp, ba] = palds, cal” for B < a.
If we are stuck at a(x) < 0 then we cannot choose Ya,bea,Ca;Pa(Z, o) clauses
(b),(c),(d), because then a,, as required in clauses (e),(f) exists because M <p__ ,(q]
N. Hence B := J{an : @ < a(x)} is as required. So assume that we have carried
the induction. As v, < kT < 8 = cf(9), without loss of generality, v, = v < k™
for every a < 0.

Let 81 = (2K)+.

Now by 1.25(5) below when T is not well ordered and by 1.25(4) below when I is
well ordered (and part (1) of 1.25(1), recalling I is x-wide as k < d and 3;1(9) <
|1]) clearly for some S C O of order type J;, the sequence (Gq by Cq : @ € S) is
(Loo i+ [R], 6T, K)-convergent and (L .+ [R], < w)-indiscernible in M hence without

“

_ A/\ H/\/-\
o
vv\/\/\/
Q
—
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loss of generality o € S = ¢, = ¢. But as 9; > k™ this contradicts (e) + (f) of
® (if we use 0y = K, we can use a further conclusion of 1.25(1) stated in 1.25(2),

ie., (Gn " bo " Co : v € S) is a (Lo x[R], < w)-indiscernible set — not just a sequence,
in contradiction to (e) + (f) of ®). 0104

Claim 1.25. Assume M = EM, (g (I, ®),I is kT -wide, k < X\ and LST(R) + 6 <
Kk < 0.

1) Assume that L = Lo o+ [R] and o = (0i(. .-, Gy(ayie)s--Je<n, 1 < 0)
for a < 0 so o; is a T(®)-term, and cf(0) > k. Assume further that letting
ta = ({t(a,1,£) 1 1 < 0,0 < ng), the sequence (t, : a < ) is indiscernible in I for
quantifier free formulas (i.e. the truth values of t(aq,i1,£41) < t(ag, iz, le) depend
only on i1,41,i2,0s and the truth value of a1 < aa, a1 = ag, a1 > «az). Then
(o 1 v < 0) is (£, 0, K)-convergent in the model M.

2) In part (1), even dropping the assumption cf(0) > K, moreover, the sequence
(G 1 0 < 0) is (L, kT, K)-convergent and (£, < w)-indiscernible in M.

3) In part (1) and in part (2), letting

Jo = {t(0,4,£) : t(0,4,€) = t(1,4,£) and i < 0, £ < n;}

assume Jo C J C I, J is kT -wide (e.g. J = {t(a,1,0) :a < T, < 0,0 <n;}), B
is the universe of EM,(g)(J, ®), i1,42 <0, €1 <ng,, la < ny,, and

[, B < 0= t(a,in, l1) < t(B,iz, l2)] =
(38 € Jo) [a,ﬂ < 0= t(a,il,ﬁl) <7 s<y t(ﬂ,ig,gg):l
then B is a (0, k)-base of {aq : o < 0}.

[The conclusion did not depend on s anywhere, so I changed it.]

4) If 1 is well ordered (or just is EM{(J,¥), ¥ € T, J well ordered),
LST(R) + 0 < &, 2 < 0, (Vo < 9)[|a]’ < 8 = cf(0)] and by € M for
a < 0, then for some stationary S C {6 < @ : cf(6) > 61}, the sequence
(o : « € S) is as in part (1); hence it is (k*, K)-convergent in M. Moreover,
if So C{d < d:cf(6) > 0"} is stationary we can demand S C Sp.

5) If in (4) we omit the assumption “I is well ordered”, and add 8 — (01)3«, e.g.
O = (2)F, 0 = (22")* then we can find S C 9, |S| = 0y such that (G, : a € S) is
as in (1).

Remark 1.26. In fact the well order case always applies at least if 0 < p.

Proof. 1) Let b € "M, so b = (0}(...,as(j,),---Je<m, : j < k) where o} is a
7(®)-term, s(j,¢) € I and let § = (s(j,£) : £ <m;, j < K).
Now for each i1 < 0, {1 < n;, and j1 < K, k1 < m;, the sequence (t(a,i1,4¢1) :
a < ) is monotonic (in I) hence there is a(i1, 41,71, k1) < 0 such that
()1 if B,y € 9\ {alir, 1,1, k1)} and B < a(in, b1, j1, k1) = v < aliz, (1, j1, k1)
then

(t(B,i1,01) <1 s(j1, k1)) = (t(y, i1, 01) <1 s(j1. k1))
and

(t(B,i1,01) >1 s(j1, k1)) = (¢(y,41,01) >1 5(j1, k1)).
Let
wi={alir,l1,j1,k1) i1 <0, €1 <nyy, J1 <K, k1 <my, }.
It is a subset of 0 of cardinality < 6 + k = k.
Hence
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()2 if 8,7 € 9\ v and B &, v (which is defined by (Vo € u)a < B=a<y])

then #3735, ¢, 5 realize the same quantifier free type in I.
Now by clause (c) of 1.14 recalling I is xkT-wide we have
(¥)3 if B, € O\ v and B &, 7 then ag b, a, b realize the same L, .+ [8R]-type
in M.
As b was any member of "M we have gotten
(¥)4 if b € ®ZM, then for some u = w5 C 9 of cardinality < r we have:
if 3,y € 0\ wand § &, v then ag"b, a, b realize the same L .+ [R]-type
in M.
As we are assuming cf(9) > k(> 0 + LST(R) > |1¢|) we can conclude that
(%)5 (G :a < 0)is (£, 0, k)-convergent in M.
So we have proved 1.25(1).

2) We start as in the proof of part (1). However, after (x)s above letting for
simplicity u™ = {a < 8 : for some 8 € uNa we have a + k = 8+ K} we have

(¥)g if B,y € 9\ ut and B < v,~(BE,+~) then we can find (u+,I",5,V) such
that
(@) IC I+ eK'
) Mt = EMT(R)(I+,(I’) hence M <]Loo 48] M+
(v) 8 =(s(j, k) : k <mj, j < k) asequence of elements of I
) B/ = <O';<( .. ,asl(j’€)7 .. .)[<mj : ] < H> c K(M+)
) b a,, V' ag realize the same L. .+ [®]-types in M T as b a,, b"ag re-
spectively
(C) 8°tp, §'"tp form a A-system pair, i.e. they are as in X from 1.5(2).
Why?
Let wt = {(]7 k) k< m;j, 7 <K, (EIE < My, 1 < 0) [Oé(il,fl,j, k) € (57’7)]}
w = {(j,k):j <k, k<m;and (j,r) ¢ w"}.
We choose I extending I and 5. = (sc(j, k) : k < m;, j < k) for € < k such that

(a) the set of elements of I is the disjoint union
TU{s.(4,k): (4,k) e w, e € (0,K)}
(b) 3., 5 realize the same quantifier-free type in I
(c) ife, ¢ < K then fw_ﬁ "5¢ realizes in I the quantifier-free type tp.;(t5°5, @, )
if e < and tp,(t,°5,9,1)if e > ¢
(d) (fy+:" 8- : € < k) is indiscernible for quantifier-free formulas on I
(e) 50 =35.
This is straight. Using ' = 5; we are done.

Now as ® has the x-non-order property (by Claim 1.5(2) which contains a defini-
tion, noting that the assumption of 1.5 holds by 1.18(1) and also 1.18(2)), repeating
()4, (*)5 we get

(#)7 for every b € "M, for some u = u; € [0]=F if 8,7 € &\ u' then az"b,

a"b realize the same L .+ [R]-type in M.
In other words

(%)s the sequence (G : o < 9) i (L 4o+ [8], kT)-convergent.

The proof that it is a (L .+ [8], < w)-indiscernible set is similar.

3) Not used; easy by 1.23(2) and convergence. [That is, note that we can find
It and a), = (05(. .., Ay (aie)s - - -)es<m, 4 < 0) for o < &+ 7y such that:
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L= (i, 0) i< 0, £<ny)
(t!, : @ < &+ ) is indiscernible for quantifier-free formulas in I
() (ta:a <) (t,:ac[0,040)) is indiscernible for quantifier-free formulas

(f) for each i < 0, £ < n; such that t(0,4,¢) = (4,4,t), the convex hull I, of
{t'(av,i,0) : a < 8} in I is disjoint to I, and if s; <; s5 and
(s1,82)1+ NI, = & then [sq, so];+ N Jy # 2.
So we can average over (a,, : o < 9) instead [of] averaging over (G, : @ < 9), and
this implies the result. In fact we can weaken the assumption.]

4) Should be clear. [Still, let ¢, = (ta,; : @ < 6) be such that
l_)a = <0a,j(- . ata,i(j,a,l) . -)Z<n(a,j) : _] < 9>

So as (LST(R) + |7a|)? < 8 = cf(9) for some stationary S; C {6 < 9: cf(§) > 07}
we have o € S1 A j <0 = 0, ; = 0; (hence j < 8 = n(w,j) =n(j)) and

a€SING<ONL<n(f)=i(j,al)=1(]1L)

and for every i1,12 < 6 we have to;, <7 ta,, = (i1,%2) € W for some sequence & =
(0 :j <8) of Te-terms and W C £ x x and sequence ((i(j,€) : £ < n(j)) : j < ).

If I is well ordered, for § € S let
vs = min{~y : if ¢ < § and there are § < 0, j < 6 such that t5, <; tg; and then
letting (85,4, js,:) be such a pair with tg; , j, . being <7-minimal, we have 85; < v}.

[I tried to reformat this into {align*}, but I couldn’t follow what was
written. It’d be more readable if we broke up the definition over two
sets. Even if you never use it anywhere else, define a dummy set like
Ds; = {tp; : 8 <0, j <8, ts; <1 tg;}. Then the real definition is a lot
more digestible: 5 = min{y : t3; € D;; is <;-minimal = § < v}. Not
only that, but now you can specify exactly how § depends on i, which
seems to be a sticking point both in the definition and in the following
paragraph.]

Clearly s is well defined and < ¢ so by Fodor lemma, for some v, < 0, the
set S; = {0 € Sy : 75 = 74} is stationary. As ||’ < 9, for some u C @ and
stationary S3 C Sy we have: if § € S5 then j € v < (854, js,i) well defined and
jEeuna € 8S; = (Bsi,J5i) = (Bi,ji) and for each i € w the truth value of
“t5i=18,,4, is the same for all § € Ss.

Now apply part (1) to (b, : @ € S3).]

5) By (1) and the definition of § — (91)3.. Oy .25

Claim 1.27. 1) If M <g N are from K5, k € [LST(R),\), k™ < 9 = cf(d) < A
and moreover 0 < k and @ € °N then there is a (KT, k)-convergent set T C o\ of
cardinality O such that Av,(I, M) is realized in N by a.

2) In fact we can weaken M,N € K} to M,N € K;:h,l(é?’) where, e.g. &' =
5(k)T.
3) Assume 0 < &, k € [LST(R), ), 0' = J5(rk)* and My € K% L(ory- Assume
Jurther My <g My = EM,(q)(I2,®), || =0, and I C §(My) is a (kT k)-convergent
setS of cardinality 0'. If I <jenin I3 (o1 just I3 is kT -wide over Ig, which follows
as |I| > [I| = 0') and M3 = EM, (g (I3, ®) then

6in M1, see 1.12
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(a) We can find d € ¢(M3) realizing Av,.(I, Ms), so [it is] well defined.

(b) If My <g N € K* and d* € *N, [(| < 0 then we can find d € *(Ms)
realizing tpp_ (@, M1, N), and by (s (d, Ms, M3) is the average of
some (KT, ﬁ)-éonvergent I C*(My) of cardinality o'

Remark 1.28. The exact value of @’ has no influences for our purpose.

Proof. 1) Without loss of generality M = EM (g (I,®). Let 9y = 0 and 0py1 =
T2(8¢) T for £ =0,1s0 9y < A and

Ce{1,2} = (Ya < dp)[|a]"™ < 0y = cf(9r) < A].

If I is well ordered (which is O.K. by 1.19(4)) and (Vo < 9)[|a|® < 0] then we can
use Oy = 0.

By 1.24 there is B, € M of cardinality < dy (or just < 22° < Jy) such that
tPL_ () (a, M, N) does not (L .+ [R], Lo+ [R])-split over B,.

Now by 1.19(1) for every B C M, |B| < Oy there is @’ € °M realizing in M,
equivalently in N (with £g(Z) = 0, of course), the type

tp]Loom_'_;_ [R] (devN) = {@(jvl;) : B S HZB7 (P(j,g) S Loo,n* [RL N }: (p[&a B]}
We can choose J,, By, Gq by induction on a < do such that
Bo 2| Jag: 8 <a}uB.

B, is the universe of EM(J,, ®), J, C I, |J4| < 02, J, increasing with a and J, is
quite closed (e.g. is B, NI where B, <, . . (H(x), €, <)) with

M, N,EM(I, ®), &, (s : B < a), &, £, 0

belonging to B, B, has cardinality < 02, and B, NIz € J2). Then choose @’ = a,,
as above, i.e. G, € M realizes the same Lo o+ [R]-type as @ over B, = M NB, =
EM;(8)(Ja, ®) in N; such a, exists by 1.19(1). So for some set S; C 9o of order
type 01 the sequence I = (ag: 8 € Sy) is (kT k)-convergent (by 1.25(4),(5)).

It is enough to show that I is as required, toward contradiction assume that not.
Then there is an appropriate formula o(z, §) with £g(Z) = 6, £g(7) = x and b € "M

such that N |= ¢[a,b] but u = {a € S; : M |= ¢[@a,b]} has cardinality < x*. Now
for a € S as J, was chosen “closed enough”, there is

bo € "(EM;(g)(Ja, ®)) € "M
realizing tp, (g (b, B., M) such that

seSiNa=M ): “(p[dﬂ,b] = (p[@,@,ba]”

(possible, e.g. as | B, |0l < (2<01)<01 < 9,).

So, again by 1.25(4),(5), for some Sy C S; of order type 0 = Jp, the se-
quence {(Gy ba : @ € So) is (Leo x+, kT, k)-convergent in M and (Lo, kg, < w)-
indiscernible. Let o € Sy be such that [So N | > &, possible as [So| = 9y > k™.
So the set {8 € Si Na : M = plag,b,]} has cardinality <  (being equal to
{Be€SiNa:N [ glag,bl}) but a« € Sy € S1 and |Sp Na| > &, so for some 8 < «
from So, M | —¢lag,bs] hence by the indiscernibility M = —y[ag, b,] for every
B <~ from Sy.

On the other hand, if o < 3 are from Sy then by the choice of b, the sequences
b, b, realize the same L, .+ [f]-type over B,. Now tp,_  (a(@ M, N) does not

split over B, by the choice of B, so we have N |= “pla, b] = ¢[a, b,]”. But by the
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choice of b we have N |= p[a,b] hence N = ¢[a, b,] hence M = p[ag, by by the
choice of ag. Together this contradicts 1.5, i.e., 1.18(1).

2) Similarly (using 1.19(2) instead of 1.19(1).

3) Clause (a):

By 1.14 and the LST argument (i.e. by 0.18(4)) without loss of generality M; €
K%, and also My € K% . Let 9y = Jy(k) " for £ <5, 50 &' = 95, and for notational
simplicity assume 6 > V.

Let {aq : @ < 0'} list the members of I, so for each oo < &’ there is I o C I of
cardinality 6 such that a, is from EM,(z)(/2,q,®).

For each o < 0’ let t* = (t§ : i < 0) list I and 50 Go = (0q,c(t*) : ¢ < &) for
some sequence (0q ¢(Z) : ¢ < &) of Tg-terms. We can find S C 9’ of order type 04
such that ( <EAa € S = 04, =0¢ and (t* : @ € S) is an indiscernible sequence
(for quantifier free formulas, in I, of course).

By renaming £t C S. We define a partition (u_1,ug,u;) of & by

up = {i < 0:t2 =t for a, 8 € S}
up ={i<0:t <y, tf for a < 8 from S}
u_y ={i <0:t° <p, t& for a < B from S}.
We define an equivalence relation e on u_1 U uy
© 1y e iy iff for some £ € {1, —1}, 1,42 € up and (29 < ti) = (13 <1 tfl) for
every (equivalently, ‘some’) o < 8 from S.
There is a natural set of representatives:
W={¢(<0:{€u_1Uu; and ( = min(¢/e)}.
We now define a linear order I ; its set of elements is
{tItEIQ}U{t;-k :ieu,lLJul}
where, of course, t; € .72+ are pairwise distinct and ¢ I. The order is defined by
the following: (or see ®, and think about what conditions are necessary)
®1 S1 <Iz+ Sq iff
(a) S1,82 € I> and s <1, $2
(b) s1 € I, so =t and s1 <y, t& for every a < kT large enough
(c) s1 =1t sg € Iy and t& <y, s for every a < kT large enough
(d) 1 =t7, so=t5 and 1 <y, t$ for every a < x™.
Let t; = t& for i € ug and any o < k*. Let My" = EM, () (I3, ).
It is easy to check (by 1.14(a),(c)) that
®2 (a) Iy C L7
(b) € (Iy)
(c) If J C I, has cardinality < x then for every a < s large enough, the
sequences t*, t* realizes the same quantifier free type over J inside I;r .

Let
®3 di= (o¢(t*) 1 ¢ <€) € 5(My).
Recall that || Mz|| < X hence |I2| < X and I3 is £ T-wide having cardinality > 9" > 2.
Note
®, 1* realizes Avy({t% : a € S}, I2) in the linear order I .
Without loss of generality I, N 13 = I, so we can find a linear order I, of cardinality
A such that I;r C I4yANI3 C Iy As I3 is kT-wide over I (see the assumption

and Definition 0.14(6)+(3)), there is a convex subset I} of I3 disjoint to Iy which
contains a monotonic sequence (s, : a < k). Without loss of generality there are
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elements s, (with a € [T, A x k1)) in I such that (s, : @ < A x £T) is monotonic
(in 1), and its convex hull is disjoint to Io. Let Iy = [b U {sy : @ < k*} and
IF=LU{sq:a<Axrt}
Now we use 1.14 several times. First,
EM,(q)(I2,®) < . (5] EMr(o) (13, @) <o, (q) EMy(g) (14, @)
as I, C I; C I, are kT-wide, hence by ®, the sequence d realizes
q:= AVK<{<UC(t_a) (<) a< I<J+},M2) = Av,.;({(za o< /@+},M2) = AVH(:LMQ)

in My and also in EM, (g)(Is, ®). Second, as |I| < A, I C I C Iy and |If| =
L] = A, by 1.19(1) we have EM, (g)(I5", ®) <v__ ,(a] EM,(q)(ls, ®), so some d’ €
§(EMT(ﬁ)(ISi,CP)) realizes the type ¢ in EM; g (ISi,CI)). Let w; € X x &t be of
cardinality < 6 < x such that d’ belongs to EM,(g)(l2 U {ss : @ € w1}, ®). Choose
wy € A x kT of order type x* including wy, so

EMT((Q) (IQ U {Sa S ’wg}, (I)) -<]Loc,n+ (8] EMT(VQ)(I%, (I))

and d’ belongs to the former hence realizes ¢ in it. But there is an isomorphism
h from Iy U{sq : @ € wy} onto I; over I, hence it induces an isomorphism h
from EM;(g)(l2 U {54 : @ € wa}, ®) onto EM, (g (I35, ®) so h.(d') realizes ¢ in the
latter. But I; C I3 are both x™-wide hence by 1.14 the sequence fL(J’) realizes ¢
in M3 = EM, ()(I3, ®) as required.

Clause (b):
By part (2) we can find appropriate I and then apply clause (a). Oy .97

Remark 1.29. 1) In fact, in 1.24 we can choose B of cardinality s, hence similarly
in the proof of 1.27(1).

2) Also using solvability to get well ordered I we can prove: if A C M =
EM; () (A, @) and |A| < A then the set of L .+ [R]-types realized in M over A is
< (|4} +2)".

Claim 1.30. 1) If M € K%, and LST(R) < 6 and 0 = 3;11(0) < k < A, then for
a,b € °M the following are equivalent: (the difference is using 0 or k)

(a) a@,b realize the same Lo o[8]-type in M

(b) a,b realize the same Lo [8]-type in M.
2) For M,0,0,k as above, the number of Lo o[R]-types of a € °M where M =
EM, (q)(I,®), |I| > 0 is < 29,

(8)

[Can we say 0 < |I| <2°2]

Remark 1.31. Part (1) improves 1.19(3).

Proof. 1) Clearly (b) = (a), so assume clause (a) holds. As M € K%* , without loss
of generality there is a k-wide linear order I such that M = EMTE@)(I , ®); hence
for some J C I, |J| = 6 we have a,b € *(EM, (g (J, ®)). So for every a < (2°)T, by
the hence and forth argument for Lot [R] there are J,, fo such that J C J, C I,
|Jo| = Ja and f, is an automorphism of EM, () (Ja, ®) which maps a to b. Hence,
as in the proof of 1.19, there is a linear order J* of cardinality p extending J and
an automorphism f of M = EM, g (J", M) mapping a to b. By clause (b) of
Claim 1.14 we are done.
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2) Easy by clause (c) of 1.14, i.e., by 1.18. Oy 30

Claim 1.32. Assume:

(a) Iy C Iy, Iy # Is. Moreover, Iy <gnin I, see Definition 0.14(6)

(b) Mg = EMT(_Q)(IE, @) fOTf = 1,2

(c) b,¢ € *(My)

(d) 0> |a| + LST(8)

(e) k=211(02) <\ where 61 = 20 0y = (201)F

(#) 1L >

(9) My <g My (follows from (a) + (b))
1) Assume that for every a € "> (M) the sequences a'b, a¢ realize the same
Leo.x[R]-type in My. Then there are Is, M3 and f such that In <gnn I3 € Kﬁi“,
M3z = EM;(x)(I3,®), and f an automorphism of M3 over My mapping b to c.

2) Assume that for every a € "~ (My) the sequences @b, a"¢ realize the same
Lo x[R]-type in My (as in part (a)) and 311(0) < |I1]| and O < X. Then for every
a € *> (M), the sequences a"b, a"¢ realize the same Lo p[8]-type in Ms.

3) Assume that cf(A) = N and |I| = A, and recall A = 3y > LST(R). If
M, <g M3 € K3 then for some I3, a linear order §K§nn -extending I the model
M3 can be <g-embedded into Mz = EM,(z)(I3,®) over M;.

Remark 1.33. 1) Under mild assumptions with somewhat more work in 1.32(1),(3)
we can choose I3 = Is (but for this has to be more careful with the linear orders).
Recall that for I € Ki like I5 in 1.8(c) we have o < At = I x o can be embedded
into I and 1.4(1)(d).

Proof. 1) There is J, C I of cardinality < 6 such that b,¢ € *(EM,(g)(J2, ®)).
Let J1 = Il N Jg.
We define a two-place relation £ on Ip\ Jo: s £ tiff (Vo € Jp) [x < s=x <y, t}.
Clearly £ is an equivalence relation. As I} <gnin I5 clearly
®1 () any interval of I; has cardinality |I1]| > k

(B) for every t € Iy \ Ja the equivalence class t/€ is a singleton or has
|I3| > k members,

() for every t € I1 \ Jy, (t/E) N1 is a singleton or has |I;| > k members
(6

)

) I \ Jo has at least x elements

) € has < 21721 < 98 equivalence classes
)

(e
(¢

we may < gnin-increase I, so without loss of generality

1 te€ )\ Jo=[t/E] = |L]

)2 For every t € I for some s1, 59 € Is we have s1 <j, t <y, s2 and
(s1,t2)1,, (t,82)1, are disjoint to I.

(%
(%

Let <L{Z- 1< z(*)) list the equivalence classes of £, so without loss of generality
i(x) <29 For £ =0,11let up = {i < i(*):U; NI has exactly £ members} and let
ug = i(x) \ up \ u, so by clause ®1(7) (i.e. the definition of I, € K"") we have
i €ug = [UiN 1| =|[1| > k. For i € uy let tf be the unique member of U; N 1.

Without loss of generality u; = {i : 4 € [4¢,57)}

[Is there a type-theoretic reason why I can’t just say u; = [j§,77)7]

for some j§ < j¥ < i(x) and let @' (%) = i(x) + (j7 — 4&) and w) = [i(*),' (%)) and
define U/ for i < i'(x) by
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©®2 (a) U{ =U; if i€ ugUus
(b) U ={tel;:t <y, tI}if i €uy and
() Ul ={t e Uy : tF <y, t}if i € [i(x),7 ()], k € (j§,77) and i — i(*) =
k— 5.

[Mixing i-s and iotas in the same paper is never a good idea, much
less in the same line. I’'m changing them all to £.]

For i < 4'(*) let (t; o : @ < K) be a sequence of pairwise distinct members of U]
such that i € ugs = t;, € I and i € ug = t; o ¢ I1, this actually follows. By ®1(¢)
and ©1(5), () we can find such ¢; ,-s.

For ¢ < 6, (see clause (e) of the assumption so J¢ < k) let

JLC :{ti’aZiE’UQ, a<:l<}UJ1U{tf :iEul}.

Now by the hence and forth argument (or see 0.18(2)) for each ¢ < 6, there are
Ja,c and fe such that Jy o C I is of cardinality 3¢, it includes J; ¢ U Jo and also
{tia : 1 <i'(x) and @ < 3¢} and f¢ is an automorphism of EM(z)(J2,¢, ®) over
EM, (%)(J1,¢, ®) mapping b to . )

(Why? Let ag list EM(J1,¢, ®) so ao"b, ao”¢ realize the same Loo,:lzr [8]-type in
My, and f be the mapping taking @y b to do "¢, etc.)

Now we shall imitate the proof of 1.19. By renaming without loss of generality
there is a transitive set B (in the set theoretic sense) of cardinality < 6; = 2’ which
includes

@(a) Jla JQ

(b) @ (ie. 7o and ((EM(n, ®),ar)ecn 1 n < w))
(¢) R, ie., 7q and {(M,N): M <g N have universe included in LST(R)}
(d) (tf:i € uq) soeach ¢ for i € uy
(e) the ordinal i(x).
Let x be large enough, let B = (H(x), €, <}) and let %é be B expanded by

® (a) Q% ={a:a <3}

(b) P

ch(t):at fort € I
(

) PP¢ = Jy o NU. for i < il (x)
(c) A .
) H®¢ = feand Q)¢ = Ji¢,Q5 ¢ = Jag
)
)

¢

[=9

(
(

for 1 < i'(x), H;BC is the function mapping o < J¢ to t; o
individual constants for B and for each z € B, hence, e.g. for ¢7 (with
1 €uy), Jr, Jo, t for t € Jo
(g) individual constants Jy ., Jo . interpreted as the linear orders Ji ¢, Jo. ¢,
respectively, and individual constants for M," = EM(J, ¢, ®) and
(a : t € Iy for £ =1,2.
Clearly the vocabulary T(%Z‘) does not depend on ¢, so we call it 7T. As in the
proof of 1.19 there is a 77-model €, such that

X (a) for some unbounded S C 65,
(o) €is a first order elementarily equivalent to ‘BZF for every ( € S

e
f

(8) € omits every type omitted by ‘BZF for every ¢ € S. In particular
this gives

(v) € omits the type {x ZbAx € B: b€ B} so

(8) without loss of generality b € B = b¢ =b
(b) € is the Skolem hull of some infinite indiscernible sequence (y,. : r € I),
where I an infinite linear order and y,. € Q% for r € I.



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

CATEGORICITY AND SOLVABILITY OF AEC, QUITE HIGHLY SH734 31

Without loss of generality I € K% and I, can be <jnim-embedded into I, say by
the function g such that

(Vt € I)(3s1,82 € 1) {31 <7 g(t) <182 A
(Vt' e L)[t' <, t—g(t') <1 s1] A
(V' € I)[t <p, t' — 52 <; g(t’)”
and also ||€]| = |I|. Hence for each i < i’(x) there is an embedding h; of the linear
order U!: i.e., Iy | U! into (PF, (<z,)%) such that
telU = [tel & h(t) € Qf].
Why?
Case 0: i € ug.
Trivial.
Case 1: i € u; Uuf.
Similar to Case 0 as U NI = &, of course, we take care that
a=hit)NteU Ni€u = € “a<y, t]”
and similarly for u_;.

Case 2: i € us.
First approximation is h; = HE o (g [ U;), so t € U; = hi(t) € Q¥. However by
the choice of g we can find ((s;,s;") : t € U;) such that:

(a) 57,57 €QF
(B) (sr+8)ig NQS = {Mj(1)}-
As I, is dense with no extremal members (being from K1) clearly
t1 <]2[uif to = 8;’; <(Ip)¢ St_g
Now choose h; by: h;(t) = hj(t) if t € Iy and is s if t € I} \ L.
Hence there is an embedding h of the linear order I into Jf* such that:
®2 h(t) is:
(a) tifte JoU{t:ricu}
(b) hi(t) if t € U] and i < ' ().
Note
@3 for every t € I\ Jy for some i < i(x) < 61 we have

(Vs € J2)[s <1, t = s <r, hi(tio)]
hence by the omitting type demand in X(a)(5):

@4 for t € IS \ Ja, for some i < i(x), we have
(VS S Jz) [S <I2¢ t=s <I2¢ hi(ti70)].

We can find a linear order I3, I, C I3 and an isomorphism h, from I3 onto QS
extending h, so clearly Iy € K™ and without loss of generality h(I3) < pin
I5. Now let h, be the isomorphism which A, induces from EM; (4)(I3,®) onto
(EMT(Q)(JQQ:*, ®))¢, so e.g., it maps for each t € I, the member a; of the skeleton
to F¥ (h.(t)).

Note that h, maps U; N I; into QF C I¥ when U; C I and is the identity on
J1U{tf i € uq}, so recalling

Q%CZJLC:{Q’Q:Z'EU% Oé<:lC}UJ1U{t;k:’L'EU1}
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hence it maps I; into Q§. However, B¢ = “H is a unary function, an automorphism
of EMT(R)(Jf*,Q) mapping b to ¢ and is the identity on EMT(R)(JE*7<I>)”. Now
(hy)"YH%(h,) is an automorphism of EM; () (I3, ®) as required.

2) By part (1), i.e. choose I3, M3, f3 as there; so as f is an automorphism of M3
over M; mapping b to ¢, clearly b, ¢ realize the same Leo,5[R]-type over M; inside
Ms. The desired result (the type inside My rather than inside M3) follows because

My <1 o8] M2 <L o8] M3

by 1.14(a).
3) Let My = |J M3, be such that n <w = M3, <g M3, ., and [[M3 || < A

n<w
Let ¢, list My, for n < w (with no repetitions) and be such that ¢, < ¢,41. Let

0, = || M5, || +LST(R) so without loss of generality 0, = £g(¢,) and let 6;, = J3(0,,),
Kn, = I1,1(0),), without loss of generality , < 6,41 and we choose, for each n < w,
a sequence b,, € “9n) (M) realizing tpy, 18] (€ny M1, M3) in M. This is possible

by 1.27(3), possibly after < ynim-increasing Is.

Now we choose (I3, fn, M3, b)) by induction on n such that

) I3’0 =I5 and Ig’n c K;\m
) n=m+1= I3, <gan I3,
) M37n = EMT(R) (137,,“ (I)) (hence n=m-+ 1= M3,m SRA M3,TL)
(d) fn is an automorphism of Mj ,, over M;
) b, € t90n)( My ,,) realizes tPL_ (s (€n, My, M)
)
)

if n =m+ 1 then b}, Ib], B B B B
if n =m+ 1 then f, maps b,1 [ £g(by) to b, and fo maps by to bj.
For n = 0,130, M3, are defined in clauses (a),(c) of () and we let fo = ida, =
idpg, ,, by = bo this is trivially as required. For n = m + 1 we apply part (1) with

O Ih, I3, M1, M3 0, b1 | €9(€0), by Om, Kom here standing for
I, I, My, My, b,¢,0, k there.

Why does its assumptions hold? The main point is to check that for every a €
#m>(M) the sequences @ (bpi1 | O), @b, realize the same L ., [R]-type in
Ms . Now @ (byt1 | Om), @b, realize the same Ly ., []-type in Mj,, by
the induction hypothesis. Also, the sequences by, 1 | O, b1 | 0, satisfy for
any a € "> (M) the sequences @ (byy1 | 0m), @ (byy1 | 0.n) realize the same
Lo, [R]-type in Ms,, because the L .. [f]-type which @ (b, 41 | 0,,) realizes
in Ms ,, is the same as the Lo, ., [R]-type it realizes in My = Mj5 o which (by the
choice of b, 1) is equal to the Lo x,, [R]-type which a”(¢,41 [ 0,,) realizes in M3
which is the same as the L ., [R]-type which @"(¢,,+1 [ 6,,) realizes in M3 which
is equal to the L ., [R]-type which a”(by,41 | 0,,) realizes in Ms ,,.

By the last two sentences for every a € *>(M;) the sequences @ (byy1 | Om),
a"bl, realize the same L ., [R]-type in Mj ,,, so indeed the assumptions of part
(1) holds for the case we are trying to apply it (see [J above).

So we get the conclusion of part (1), i.e. we get I3, f, here standing for I, f
there so I3, <ptin I3, and f, is an automorphism of M3, = EMT(‘Q)(IS’T“¢)
over My mapping b, 1 | 0,, to bl,. Now we let b, = f,,(bys1 | ,,) and can check
all the clauses in (). Hence we have carried the induction. So we can satisfy (x).

So b/, satisfies the requirements on b,, and b, <1 b, . Let Iy = J{I3, : n < w}
and let Mz = EM;(x)({3,®) and let g : M3y — M3 map ¢, ; to by, ; for i < {g(¢cy),
n < w, easily it is as required. That is, g(c,,i) is well defined as ¢, ; + by, ; (for
i < £g(ey)) is a well defined mapping for each n and

. — / /
i <Lg(Cn) = Cni = Cny14 A i = bpy1 4
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Also g [ {cn,i:i < fg(cn)} is a <g-embedding of My, into M3 and is the identity
on M3, N M as ¢, list the elements of My ; and

tpH‘oo‘Fﬁr (8] (Cn, My, M3) = tp]LaQ,rc+ (8] (E;w My, M3)

by clause (e) of (x). But (g | M3, : n < w) is C-increasing with union g so by
Ax.V of AEC g is a <g-embedding of Mj into M3. Lastly, obviously

g2 U{idMg,anl n< w} = id]\/[1

so we are done. Ui.32

We arrive to the crucial advance:

Theorem 1.34. The Amalgamation Theorem:
If cf(X) = N, then R} (i.e. (K3, <gal K3)) has amalgamation, even disjoint
one.

Proof. Assume My <g: M, for £ =1,2. Choose I € K™ so
Mg == EM, (5 (L, ®) € K3

but K3 is categorical (see 1.16 or 1.19(4)) hence My = My, so without loss of
generality M} = M. Choose I; € K" such that Iy <gaw I; and let M| =
EM;(g)(I1,®) so My <g M. By applying 1.32(3) with Iy, Iy, Mo, M7, M; here
standing for I, Iy, My, My, M3 there, we can find a pair (I3, f1) such that I <fetiin
I and f; is a <g-embedding of M; into Mj = EM,g)(l2,®) over My. Apply
1.32(3) again with Iy, Io, Mo, EM; () (12, ®), M; here standing for Iy, Io, My, Mo, My
there. So there is a pair (I3, f2) such that Iy <fetiin I3 and f5 is <g-embedding M
into M3 := EM,(g) (I3, ®) over My = EM,(g)(lo, ®). Of course, M3 € K} and we
are done proving the “has amalgamation.”

Why disjoint? Let (14, k) be such that I3 <fettin Iy and h is a <gnm-embedding
of I3 into Iy over Iy such that h(I3) N I3 = Iy. Now h induces an isomorphism h
from EM, () (I3, ®) onto EM, () (h(I3), ®) <g EM,(g) (14, ).

Lastly, by our assumptions on ® if Jy,J; C J are linear orders and J; N J3 is a
dense linear order (in particular with neither first nor last member, e.g. are from
K" as in our case) then

EM; (g)(J1,®) NEM; (g)(J2, ®) = EM;(g)(J1 N J2, @).

So in particular, above

EM, () (I3, ®) NEM, (g (h(I3, ®) = EM, (4 (I, ®)
and f1, ho f2 are <g-embeddings of My, Ms respectively over My = EM, () (o, @)
into EM;(g) (I3, ®) <g EM;(g) (s, ®) and EM,(g)(h(I3), ®) <a EM,(g)(l4, P), re-
spectively, so we are done. U134

Claim 1.35. Assume cf(\) = Ng. If § < AT, the sequence (M; : i < &) is <g-
increasing continuous and M; € K5 for i < §, then Ms := |J{M, : i < §} can be
<g-embedded into some member of K3.

Proof. We choose I; € Ki“n by induction on ¢ < §, which is < Kinn—increasing con-
tinuous with 4, and a <g-embedding f; of M; into N; :== EM,()(I;, ®), increasing
continuous with . For ¢ = 0 choose Iy € Kf\li“7 so No := EM,(g)(lo, M) is isomor-
phic to My hence fy exists; for ¢ limit use I; :== (J{I; : j < i} and f; == U{f; : j <i}.
So assume i = j + 1. Now we can find M/, f/ satisfying: f/ is an isomorphism from
M, onto M extending f; such that f;(M;) <g M; (actually this trivially follows)

2
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and M{NN; = f;(M;); so also M| belongs to K3. Now f;(M;), EM,g)(I;, ®), M|

can be disjointly amalgamated (by 1.34) in (K7}, <g), so there is M, € K} such

that N; = EM, () ([, ®) <g M; and M; <g M;. Now by 1.32(3) there are I;, g;

such that I; <fegiin I; and g; is a <g-embedding of M} into N; := EM,g)(l;, ®)

over EM,(I;,®). Let f; = g; o f!, clearly it is as required. Having carried the

induction, f5 is a <g-embedding of M;s into EM, (g (U 1;, ®), as promised. [Jy 35
j<é

Claim 1.36. 1) Assume cf(\) = Ro. For every My € K} there is a <g-extension
My € K3 of My such that: if My <g, Ms € K5 and a € A>(Msy) then for some
(Ms, f) we have:
M, <g M3 € K3, f is a <g-embedding of M into Mz over My and f(a) € A>(My).
2) Assume cf(X) = Ng. For every My € K3 there is a <g-extension My € K

which is universal over My for <g, -extensions.
3) If (A) then (B), where

(A) IO SKg\liu I{ <K§\lin Il
(B) IfIO Cle K)\ﬂiny B <7< )‘; El € B(EM.,.(_@)(I{,(I))), C2 € ’Y(EMT(R)(I% (I))):
by =G | B, and for every k < \ we have

tp]Loo’,i[R] (Ela EMT(ﬁ) (IO, (I))v EMT(R) (Ilv (I))) = tplwﬁ[ﬁ] (627 EMT(R) (Iov (I))a EMT(R) (127 é))

then for some (I, f) we have I <gnin I}7 € K and f is a <g-embedding
of EM;(g)(I2, ®) into EM,(g) (I, ®) over EM; () (o, ®) mapping by to by
and ¢z into EM,(g) (11, ®).

4) Assume cf(N\) = Ng. If (C) then (D) (and moreover (D)") when
(C) (Ja : 0 S w) is <gm-increasing, lo = Jo, I = Jo.
(D) If Iy C I, € Kfin then some f is a <g-embedding of EM,(g)(I2, ®) into
EM;(g) (11, ®) over EM,(g)(lo, ®).
(D) EMy(g)(11,®) is <ay-universal over EM,g)(Io, ®).

Proof. Note that by 1.32(3) clearly (3) = (1) and (4) = (2). So we shall prove (3)
and (4).

3) First assume = 0, v = 1 so & = (c¢). Toward contradiction assume Iy C
I, € Ki® a € My := EM,()(I2,®) but there is no pair (I3, f) as required in
clause (b). Without loss of generality for some I3 we have Iy < Kfin I, < Kfin I3
and I §K§““ I §K§1in I3.

Let EM(I,®) = “c2 = o(a,...,a2_ )" where o(zo,...,2,-1) a Te-term,
n<wand I | “3 <...<t2_ 7. Let u={l <n:t; €I} As <gtn Iy, we

can find (t§, ...t} ) such that:

® (a) ty el forl<n
(b) t(l) <rn ---<np, t}L—l
(c) if £ € u then t7 =t} (€ Iy)
(d) iff<n/\f¢uthent%€]1\lo
(e) if &4 < ly <mnand [l1,0] Nu =@ then t7 <y, t; .

Let My = EM.,.(_Q)(I@, ®) for £ =0,1,2,3 and let

ca=c, c] = UEM(II’CI))(

).

até,...,atl

n—1
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Let & < A be large enough such that tpy, q(ce, Mo, My) for £ = 1,2 be distinct

(exists by 1.32(1) because its conclusion fails by the “toward contradiction”). We
easily get contradiction to the non-order property (see (*) of 1.5(2)).

Note that if in addition (I1 o : @ < A) is <gnm-increasing continuous, Iy g = 1,
I, » = I; then by what we have just proved and the proof of [She09c, 4.2a] we can
prove the general case (and part (4)). But we also give a direct proof.

In the general case, let § = |B|+Rp, so we assume clause (a) and the assumptions
of clause (b) and without loss of generality I; N Is = Iy hence there is I3 such that
Iy <gaw I3 for £=1,2. Let x € (6, ) be large enough.

Hence

EM,(g)(Io, ®) <L (5] EMr(g)(Ie, @) <p__ (5] EM;(5) (I3, ®)

for £ = 1,2. Applying 1.32(1) with Iy, I, b, & there standing for Iy, I3, b1, by here
we can find a pair (I4, f4) such that I3 < K Iy and f; is an automorphism of
My = EM, (g (11, ®) over EM, g)(Io, ®) mapping by to bi. Clearly

M; == EM;(g) (I3, D) <L [8] EM7(g) (14, D).
So f4(¢3) € 7(My), hence we can apply clause (b) of Claim 1.27(3) with
My, M, I, N, &, d*
there standing for
EM, (g (11, ®), EM, () (11, ®), I1, EM, () (14, ®), 7, fa(C2)
here. Hence we can find ¢, € 7(M) realizing in M; the type
tpy ) (fa(G2), EM () (I7, ®), EM, (g (11, ®))

Lastly, applying Claim 1.32(1) with I, I, b, ¢ there standing for I}, I, f4(¢2), &
here, clearly there is a pair (I, f5) such that Iy < Kfin I5 and f5 is an automorphism
of EM, (g (I5, ®) over EM(I], ®) mapping to f4(¢2) to c;.

Let Iff =I5, f = fio fi where f§ = f5 | EMy()(14,®)) and fi = fi |
EM; (g (I2,®). Now I, f are as required because f4(b2) = by while f5(by) = by.

4) Easy by part (3). First note that (d)* follows by (d) by 1.32(3), so we shall
ignore clause (d)*. Let EM, (g (I2, ®) be (J{M2 : n < w} where My, € K.y and
n<w= M27n <g Mg)n+1.

Let a,, list the elements of My, with no repetitions such that @, < @,y for
n < w. By induction on n, we choose b, such that

® (a) by € 9O (EM(g)(Jns1,®))
(b) If n = m + 1 then b,, <1 b,
(¢) Forevery k < A, the type tPL_ (5] (l_)n, EM;(g)({o, @), EM; (g)(Ipn1, <I>))
is equal to the type tpy__ (g (@n, EM,(g)(Io, @), EM, (g (12, ®)).

The induction step is by part (3). Let f,, be the unique function mapping a,, to
b, (with domain rang(@,)). So fn C fny1 and f, is a <g-embedding of My 4, into
EM;(g)(Jng1,®) but J,y1 C 11 hence into EM, gy (I1,®). So f:=U{fn:n < w}
is a <g-embedding of EM,(g)(I2, ®) into EM, () (1, ®). Also, f, is the identity on

rang(a,) N EM,(g)(lo, ®) hence f is the identity on

(Jrang(@,) N EM, (z)(Io, ®) = EM,(g) (o, )

n

so f is as required. Ui.36
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Exercise: 1) Assume Ry = (K, <g, ) satisfies axioms I, IT (and 0, presented below)
and amalgamation. Then tp(a, M, N) for M <g, N and a € N and Sg, (M) are
well defined and has the basic properties of types from [She09c, §1].

2) If in addition K, satisfies Ax.III® below and £, is stable (i.e. |Sg, (M)] < A
for M € K,) then every M € K, has a <g-universal extension N which means
M <g, N and

(VN') (M <a, N' = (3f)[f is a <g,-embedding of N” into N over M])

3) Ax.III (see [She09c, 0.2]) implies Ax.III®
where:

Ax.0: K is a class of Tg-models, <z a two place relation of K, both preserved
under isomorphisms
AxI: if M <g, N then M C N (are 7(8))-models of cardinality A
Ax.II: <g, is a partial order (so M <g, M for M € K})
Ax.III®: In following game the player COM has a winning strategy. A play lasts X
moves, and the players take turns to construct a <g, -increasing continuous
sequence (M, : @ < \). In the o' move, M,, is chosen by INC if « is even
or by COM is a is odd. Now COM wins if INC always has a legal move.
Ax.IV®: For each M € K, in the following game, INC has no winning strategy: a
play lasts A + 1 moves; in the a'® move f,, M,, N, are chosen such that
fa is & <g-embedding of M, into N,, both are <g, -increasing continuous,
fa is C-increasing continuous, My = M and in the o™ move, M, is chosen
by INC, and the pair is chosen by the player INC if « is even and by the
player COM if « is odd. The player COM wins if INC has always a legal
move (the player COM always has: he can choose N, = M,,)

Definition 1.37. 1) Let <} = <&; be the following two-place relation on K73 (so
M <% N mean M = N € 85 or M <j. N):

See https://shelah.logic.at/papers/734/ for possible updates.

‘ My <5 My iff My <g, Mj are from K3 and M is <g,-universal over Mj.

2) For a < A\, & = J11(|a] + LST(R)) and M € K3 let Sav">*(M) be the set of
{Av.(I,M) : Tis a ((27)*", k)-convergent subset of “M}. We define tp, (a, M, N)
when M <g N are from K3 and a € °N, as tp,_ q(a, M,N) € Sav®> (M)
naturally.

3) Let R} = (K}, <gl 8, §};§) (see 1.38 below) but if (K3, <g| K3) is a A-AEC
then we omit §j%§.

Remark 1.38. 1) Note that the relation <} = <%, seemingly depends on the choice
of ®. However, assuming p-solvability, by 1.40(2) below it does not depend.

2) The proof of 1.40 is like [She09c, 0.22(3)].

3) So R} is a semi-A\-AEC (see [She]) but we do not use this notion here.

Claim 1.39. Assume cf(\) = Yg.

0) If M € K3 then for some N € K3, M <j. N.

1) If M <g N are from K5, o« < X and a € ®°N \ ®°M then a realizes some
p € Sav">*(M).

2) IfMO <g M, <jkﬁf\ My <g M3 and M, € K; fO’f’g < 4, then My <~*ﬁf\ Ms.
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Proof. 0) As K} is categorical (by 1.16(1)) this follows by 1.36(2).
1) A proof of this is included in the proof of 1.32(2), i.e. by 1.27(1).
2) Easy, recalling amalgamation. Oy .39

Claim 1.40. Assume cf(\) = R.

1) Assume (M; : i < §) is <g, -increasing continuous and Ma; 41 <}:ii Mo 1o for
i< 6. Then M;s € K3.

2) Assume that (M : i < 8) is an <gy -increasing continuous sequence such that
M <% M$; 5 fori <& all for £ =1,2. Any isomorphism f from Mg onto Mg
(or just a <g,-embedding) can be extended to an isomorphism from M} onto MZ.

Proof. 1) We prove this by induction on §, hence without loss of generality i < § =
M; € K3.

Let M} = M, for « < 6 and let (I, : a < §) be <fnn-increasing.  Let
M? = EM;(g)({o, ®). Now there is an isomorphism f from M} onto M@ as K}
is categorical, so by part (2) there is an isomorphism g from M} onto M2, but
M?2 € K3 so we are done.

2) Note

X, without loss of generality
L] M22 <§\ Mi2+1'
[Why? We can find (M3 : i < §) which is <&; -increasing continuous and M3 = M}
and M? <3 M?_,. Now apply the restricted version (i.e., with the assumption [J)
twice.]
By induction on i < § we choose (f;, N}, N?) such that

® (a) N}, N? belong to K3

( ; N}, N2, f; are increasing continuous with i

(d) Fori=0, N} = M}, fi = f and N? is f(M}) = M?

) If i > 0 is a limit ordinal then N} = M} and N? = M?

) When i = wa + 2n < 6 we have

(@) Ngayantr = Miatoni

(8)

(7)
)

2 _ 2
5 Nwa+2n+2 - Mwa+2n+2‘

2 2
Nwa+2n+1 SR MonrQnJrl

1 1
Nwa+2n+2 SR Mwa+2n+2

Case 1: i = 0.
This is trivial by clause (d) and the assumption of the claim on f.

Case 2: i =wa +2n+ 1.
Note that N2, 9, = M2, 0, [Why? If i =0 (i.e. @ =0 =n) by ®(d), and if

i is a limit ordinal (i.e. a > 0 An = 0) by clause (e) of ®, and if n > 0 by clause

(£)(0) of @]
Now we let N} = N} o4 == M2, 5,1 and hence satisfying clause (f)(a) of
®. So
Ny =N} oo <a Moo, <q M} =N} = N}
7—1 wa+2n =K wa+2n >R wa+2n+1 wa+2n+1 7
Note that N2 | = N2, 2, <3 MZ2,42, by [J above hence we can apply Definition

1.37(1) and find an extension f; of fi_; to <g-embedding of N} = M}, 5, into
M2 40041 and let N7 = fi(N}).

Case 3: i = wa + 2n + 2.
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Note that N} on1 = M2, i0n41 by clause (f)() of ® hence by the assumption

w
: 1 * 1 2 — A2
of the claim Nj, 0,1 <k Miyaionie We choose NS, 0n 12 = MZ,1 0,12 hence

Ni2—1 = N3a+2n+1 <s M5a+2n+1 <s Mf}a—i—2n+2 = N3a+2n+2 = N1'2~
Now we apply Definition 1.37(1) to find a <g-embedding g; of N2, 5, into
M}, oo extending f; .
Lastly, let f; = g; ' and N} = M} | dom(f;). So we can carry the induction,
hence we can prove the claim. U1 .40

Note that now we use more than in Hypothesis 1.18.

Claim 1.41. Assume
X (a) (A, :n < w) isincreasing, A = A\, = Y. A\, satisfying A\, = 3y, >

n<w
LST(R) and cf(\,) = R forn < w.
(b) ® € TY, and each A\, and X\ = X, is as in Hypothesis 1.18, or just
satisfies all its conclusions so far.
1) K3 is closed under unions <g-increasing chains (of length < AT ).
2) If My, € K ,M,, <g Mpy1 and M = |J M, then M € K3.

n<w
3)If M e Ky and 0 <\ = M =p__ ,jq) EM,(g)()\, ®) then M € K}.
4) K3 is categorical.

Proof. 1) We rely on part (2) which is proven below.

So let (M; : i < §) be <g-increasing in K} with § < AT. Without loss of
generality § = cf(§), hence § < A. Call it 8, and we prove this by induction on
6. Without loss of generality (M; : i < 0) is <g-increasing continuous such that
M; € K3 for i < 6, and let My = |J M;. By renaming, without loss of generality

i<
0 < Ao
Let I,,, I/, be such that:
®1 (a) I, is a linear order of cardinality A, from K flin

a)
(b) I! is a linear order of cardinality 2*~ from Kfin
(c) I}, is At-saturated. (This means that its cofinality is > \,, the cofi-
nality of its inverse is > A, and if I}, = “sq, < sp, < tg, < to,” where
a1 < B <71, a1 < B2 < v and |y1] + [72] < A then for some r we
have I = “so, <1 <ts,” for a1 <71, as < ¥2.)
(d) I, < gflin I;L < [ flin In+1 for n < w.
Let I = {I, : n < w}, so I is a universal member of K}". Let M* = EM, () (I, ®),
so for every ¢ < 0 there is an isomorphism f; from M* onto M;, which exists as K}
is categorical by 1.19(4) as cf(A) = Ro.
Now
®2 (a) Every interval of I is universal in K}m.
(b) Ifn<w, JCI, x=|J] <A and
Epr={(ti,ta) e(I\J)P?:seJ=[s<;ti=s<; b}
then for at most x elements ¢ of J \ I the set t/€; is a singleton.
[Why? Clause (a) is obvious. For clause (b) assume (¢, : a < xT) are pairwise
distinct members of J \ I such that t, /€, is a singleton for each o < x+. Without
loss of generality for some k < w we have a < xT = t, € I hence xy < \;. For
each & < x* we can choose s, € I, such that s, <1 to and (sa,ta)j;c nJ=ga.
Clearly
a<B<xT = (ta <1 85 Vits <1 5a)
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hence <(Sa, ta)r i < X+> are pairwise disjoint intervals of I, so for every a < xT
large enough, (Sq,ta)r NJ = &, but then (sq,ta)r C ta/Esr: a contradiction.]
Now by induction on n < w and for each n by induction on € < # and for each
n <w and e <0 for i <0, we choose J,, . ; € Kﬁm such that:
©3 (a) Jn,s,z’ g 1
(b) Jn.e, has cardinality A,
(C) I, < gflin Jn’()ﬂ'
(d) If { <e <0 andi <0 then Jy¢; C Jye,. Moreover, if for some &,
¢ =26+1 and € = 26 + 2, then there is a <kfin- increasing continuous

sequence of length w with first member J;, ¢ ; and union Inei-

(e) For e limit, J,, . ; = CU ¢ i
<e
(f) If e is odd and @ < j < 6 then

fi (EMT(R)(Jn,s,i7 Cb)) =M;N fj (EMT(ﬁ)(Jnvg’j, (I)))
(&) Jno,i C Jnt1,0
(h) For every k <w and s <; t from J, . ;, if [s,t]; N I}, # & then
(s, 8 i NN Tpei # 2.

(1) If (isodd and € = (+1, then EMT(ﬁ)(Jn,C,iv @) <}%: EMT(K) (Jn’g’i7 D).
There is no problem to carry the definition, for ¢ = 2€ 4 2 recalling ®2 above; the
only non-trivial point is clause (i), which follows by 1.36(4) and clause (d) of ®@3.
Clearly (Jy, ¢,i : € <0) is C-increasing continuous by ®3(d) + (e).

Let My ;= fi (EM,(5)(Jn.c,is®)) and M =M}, .. Soclearly M _. € K}

by ®3(b) and the choice of M* _. the sequence (M :¢e < ) is <ga- 1ncreasmg

n,e, ’L
continuous with all of its members in K% .

Now
O4 (M :e<0)is <& -increasing.
[Why? As

(<e<b= My = Mnocc<g; Mnocr1c<s; Mnoctie
<}§;" Mnoci2e <ay Mnoee = M, .
by the choice of My, -, by ®3(d) and Ax.V of AEC, by ®3(f) and Ax.V of AEC, by
©3(i), by @3(d) + Ax.V of AEC(e), by the choice of M _ respectively). Now by

n,e

1.39(2) this argument shows that ( <e <@ = M} . <ﬁ§ M .. }
We can conclude, by using 1.40(1) for £ , that M := (J M, _ belongs to K}
e<f

Also as M} . <g M, <g M;s for ¢ < § = § by Ax.IV of AEC, we have M, <g M;
and smnlarly M) <g M}, and obviously for each ¢ < § we have

U M;QU{M;’E:n<w, (€<9]»:LJ{M;2’E}E:n<u)7 e< b} =

n<w
U{ moci i <w, i<0, 5<9}—U .0,
n<w

which recalling the choice of My, ; ; includes

U fi(BM- () (0,4, ®) 2 | Fi(EM () (In, @) = fi(EM, () (I, ®)) = M;.
n n<w
As this holds for every i < 6 we get |J M} = My. So by part (2) we are done.
n<w

2) We choose I, by induction on n such that:
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©s (a) I, € Kfin
(b) I’ITL <Kflin ITL if n=m + ]..
Let N, = EM, (g (In, ®).
We now choose (g, I}, I/, M), M/, N, N!') by induction on n < w such that:
)
b) I, CI, CI! C Lo and [I,| = A\, [I)/| = Apg1, and I,pq C 1))
(c) N7lz = EMT(,@)(L/w ®) and N7Iz/ = EMT(.@)(I’;{’ ®)
d) M, <ag; M, <ag~ M}] <g+ Mpyo and M, 11 <gr . My
) gn maps N;, = EM (g (I}, ®) onto M,
) gn extends g, | N/, ifn=m+1
(8) I, € Iy

Case 1: For n = 0.

First, let M)/ = M, I)) = I so also N} is defined. Second, choose g,, satisfying
®¢(a) by 1.16(1), i.e. 1.19(4), categoricity in K3 . Third, choose I C I}] = I of
cardinality A, such that g,(EM, (g (I, ®)) includes My. Fourth, let I}, = I U I,
and N;, = EM, (g (I,,,®) and let M}, = g,(N),).

Case 2: For n =m + 1.

Let k =n+2, let a € *» (M) list M/, (with no repetitions).

Now

(*)1 If 6 < )\n then tplm,o[ﬁ](@7 J, Nk) = tpﬂ-‘oo,s[ﬁ] (d, J, N,’/;L)

[Why? As EM,g) (I, ®) <115 EM,(z) (I, @) by 1.14(a) as 17, C I;.]

(#)2 if 0 < Ay = A then tpy (3,9, Ny,) = tpr__, (9m(a), @, Myy).

[Why? As gy, is an isomorphism from N,/ onto M, by ®¢(a), i.e. the induction
hypothesis.]

(*)3 if 0 < Ay then tpy,__ ,1q)(9m (@), @, M) = top_ 1) (9m (@), D, Mi).

[Why? This follows from M, <p__ ,x) My which we can deduce from 1.19(1), as
My, € K3 . = KJ, by clause (d) of ®, M), € K by an assumption of the claim,
M]! <g, My by clause (d) of ©.]

(*)4 if 0 < )\n then tpLoo,B[ﬁ] (Zl, g, Nk) = tpﬂ-«w,e[ﬁ] (gm(d>7 g, Mk)
[Why? By (#)1 + (¥)2 + (%)3.]

(%)s tPL_ . (@ 9, Ny) = tPL_ 7 (gm (@), &, My).

n+1 n4l
[Why? Clearly Ny, M € K3, , hence by 1.19(4) there is an isomorphism f,, from
Ny onto My, so obviously tpy,__ ,q)(@, D, Ni) = tpL_ 1) (fn(@), D, Ni), so by (x)a
we have

tpLooyg[ﬁ] (gm(a)a a, Mk) = tpLx,g[ﬁ] (C_l, g, Nk) = tp]LoQ,@[ﬁ] (fn((_l), a, Mk)
so by 1.19(3) we have tpy, - ) (gn(a), @, M) = tpy, - g (fn(a), @, My). But
o0, 77,+1 oo, 7L+1

as f, is an isomorphism from Nj onto M) and the previous sentence we get
R] (dv Qa Nk) = tp]Loo N [ﬁ](fn(d)7 Qv Mk) = tp]]_,ocy)\(gn(a% Qa Mk)) as re-

" n41

WPL s,
quired.]
() there are g, I/, N/ M/ as required in the relevant parts of ®g (ignoring
I N/, M), ie. clauses (a),(f) and the relevant parts of (b),(c),(d):
b)Y I, CI! Clyyo=1;and |I]/| = A\pt1 and I, 41 C I
(¢)) N]l =EM; ), ,®)
(d)/ Mn Sﬁ* MTIL/ SR* Mn+2 and Mn+1 Sﬁ;nJrz MT/L/
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[Why? By the hence and forth argument, but let us elaborate.

First, let @’ be a sequence of length )\, listing (without repetitions) the set of
elements of M, 1 and without loss of generality g(a) <t@’. Note that rang(g,,) C
Mm+2 = Mn+1~

Second, let ¢’ be a function from rang(a’) into Ny extending (g, | N/ )~ ! =
(gm | rang(a))~" such that tpr_ . w(9'(@), 2, Ne) =ty (@9, My);

Ml o An 41

this exists by (x)5. Let I/ C I of cardinality A,y; be such that rang(g’) C
EM(Z,/,®) and I,41 C I]. Let a” list the elements of EM,(x)(I;,®) € N and
without loss of generality ¢'(a’) <ta”. Let g, be a function from EM, (I}, ®) to
M, extending (¢’) ! such that

(8] (dua a, Nk) = tp]LOC 8] (gn(a/l)v Qka)'
1 A1

Lastly, let N/ = EM,(g)(I,/,®) and M, = g,(N},) so we are done.]
(%)7 there are I, N),, M), as required.
[Why? By the LST argument we can choose I/, and define N/, M/ accordingly.]

So we can carry the induction. Now N, <g N/, (by clauses (g),(c) of ®s) and
gn | N}, € gny1 | Ny (by clause (f) + the previous statement). Hence g =
U{gn | NV}, : n < w} is an isomorphism from (J{N/ : n < w} onto J{M] : n < w}.
But

tpL

oAt
n

N:U{Nn:n<w}§U{N,’L:n<w}§dom(g)§N
and
M:U{Mn:n<w}§U{M7'l:n<w}§rang(g)§M.
Together g is an isomorphism from N onto M but obviously N € K3 hence M € K3

is as required.
3), 4) Should be clear; just depends on 1.19(4). O 41

Conclusion 1.42. Let X be as in W of 1.41. 1) 8% is a \-AEC (with <g| K3) and
it has amalgamation and is categorical.

2) ﬁ»\ is an AEC, LST(R@A) = X and (R})"’ = K€>B)\ and (ﬁ>>\)A = R}, see
Definition 1.43 below.

Definition 1.43. Let ﬁg)\ =R KEBA where
KEBA = {M S K)\ M E]Loo’k[ﬁ] EM.,.(ﬁ)()\ﬁI’)}.

Proof. 1) It was clear defining (K}, <g[ K7) that it is of the right form and “M €
K37, “M <g; N7 are preserved by isomorphisms. Obviously “<g[ K} is a partial
order”, so Ax.I, Ax.II hold, and obviously Ax.V holds (see [She09c, 0.2]). The
missing point was Ax.III (about <g-increasing union) and it holds by 1.41(1).
Then Ax.IV becomes easy by the definition of <g: = <gl K}, and lastly the

amalgamation holds by 1.34.
2) By [She09c, §1] we can “lift £ up”, the result is 82, (see [She09c, 0.31,0.32]).
0142

Let us formulate a major conclusion in ways less buried inside our notation.

Conclusion 1.44. Assume (R, @) is pseudo solvable in p. Then (R, ®) is pseudo
solvable in X provided that LST(]) < X\, u = pu=* (or just the hypothesis 1.18
holds), cf(\) = No, and X\ is an accumulation point of the class of the fized points
of the sequence of the J-s.
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Proof. By 1.42(1). U144

Remark 1.45. About [weak]| solvability, see [STb].
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§ 2. §2 TRYING TO ELIMINATE g = 1<

There was one point in §1 where we use p = p* (i.e. in 1.13; more accurately, in
justifying hypothesis 1.18(1)). In this section we try to eliminate it. So we try to
prove My <g, M = My <1 ,1q) M2 for 6 < A, hence we fix &, u,6. We succeed
to do it with “few exceptions”.

Hypothesis 2.1. (We shall mention (b),, or (b),;, (), (d) when used! but not clause
(a).)
(a) Risan AEC and ® € T¢
(b), R categorical in p and ® € T, or at least
(b),, & is pseudo p-solvable as witnessed by ® € T¢ (see Definition 1.4). In
particular, EM, g)(, ) is pseudo superlimit for I € K},
(¢) u>311(LST(R)
(d) p > LST(R).

Convention 2.2. K} = Kj ,, etc., see Definition 1.15.

Definition 2.3. Assume

O u>x>0>LST(R)
1) We let

K, , ={(M,N):N<gM, Ne Ky, Me K, and p=x= M =N}
and let <g = <g , be the following partial order on K, ,:

(Mo, No) < (M1,N1) Hf Mo <g M1, No<g N1

(formally we should have written <g, ). Note that each pair (M,N) € K,
determine p,x. So if x = p, K, , is essentially &,. Let Kli = K, and let
UM, N) ci < 8 = (UM, =i < 63,U{N; : i < 6}) for any <g-increasing
sequence <(Mi,Ni) < 6>.

1A) Let K, = K2, = {(M,N) e K}, : M € K} and K} = K}; but we use
them only when ® witnesses K is pseudo p-solvable: i.e. (b); from Hypothesis 2.1
holds.

2) For k € {1,2}, a formula ¢(Z) € Ly ¢[R] (so g(Z) < ), cardinal k > 6 (the
main case being k = u), and M € KF, a € Y@M we define when M Ik, @[a] by
induction on the depth of p(Z) € L ¢[R], so the least obvious case is:

(*) M Iy (3y)y(y,a) when for every My € K[ such that M <z M there is
My € K¥ satisfying M; <g My and b € £9(M, such that Mo Ik Y[b, al.
(We may omit k if k = 2.)
Of course
(o) for ¢ atomic, M Ik ¢la] if M = ¢[a]
(B) for o(z) = A @i(T) let M Ik pla)] iff M Ik @;]a] for each i < «
i<a
(v) M Iy, =¢l[a] iff for no N do we have M <g N € K* and N IF p[a].
3) Let k € {1,2}, A C L ¢[f] (each formula with < @ free variables, of course):
(a) A is downward closed if it is closed under subformulas
(b) Ais (1, x)-model* complete (when 1 is clear from the context we may write
x-model” complete) if [A| < p, and for every (Mo, No) € K} we can find
(M,N) € K. above (Mo, Ny) which is A-generic, where:



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

44 S. SHELAH

(¢c) (M,N) € Kﬁ;x is A-generic® when: if p(z) € A and a € “@N then
M Ik, plal & N | ¢la]. (Yes! Neither (M, N) Ik ¢[a], which was not
defined, nor “M = p[al’!)

(d) A is called (i, < p)-model® complete when |A|+ 604 < p and for every x: if
|A| + 65 < x < p then A is y-model* complete, where

= min{a >LST(R): A C Looya[ﬁ]}.
We say A is model® complete if it is (u, < p)-model® complete and p is
understood from the context.

(e) Above, if ® or (&, ®) is not clear from the context, we may replace A by
(A, @) or by (A, @, R).

4) For M € K¥, a € M and A C L, »[8], let

gtp?\(&@,M) = {(p[fl] s M Iy, (p[a]}.

If we write 6 instead of A we mean Lo ¢[8]. (Note: this type is not a priori complete!)

and we say that a materializes this type in M. To stress x we may write gtpz’k (a, o, M)
or gtpg’k(d, &, M), even though M determines .

5) We say M € K, is A-generic® when for every p(z) € A and a € “9@IM we
have M Ik gla] & M |= ¢lal. So M € Kf is A-generic® iff (M, M) € K}, is
A-generick. We say A is k-model” complete when every M € K* has a A-generic
<g-extension in K* (so depend on & and if k& = 2 also on ®).

6) In all cases above, if k = 2 we may omit it.

Claim 2.4. Assume that LST(R) <0 <x <p, k>0, and k € {1,2} (soif k =2
then 2.1(b), holds; see 2.3(1A)).

1) (K}, <g) is a partial order and chains of length § < x* have a <g-l.u.b: this
is the union, see 2.8(1). If EM, () (u, ®) is superlimit (not just pseudo superlimit)
then Kﬁﬁx 1 a dense subclass of K}hx under <g.

2) If My Ik, p(a) and My <g Mo are from K¥ then M, Iy, ¢la).

3) If (My,Ny) € K} are A-generic® for £ = 1,2 and (My,N,) <g (M, N3)
then N1 <A Na.

4) If M; € KF fori < § is <g-increasing, § < kT, cf(0) > 0, A C Lo ¢[8], and
each M; is A-generic®, then Ms := |J M; is A-generic® and i < § = M; <5 M.

i<s
5) If (M;,N;) € K;]Zx for i < 6 is <g-increasing, § < x*, cf(§) > 0, A C
Loo,o[R] and each (M;, N;) is A-generic®, then (\J M;, U N;) is A-generic® and
i<s i<s
N; <A U N; for each j < 6.
<8
Proof. Should be clear; in part (1), for k = 2, we use clause (b),,; of 2.1. In part (5)
note that (J{M; : i < d} € K}, by Clause (b),, of 2.1. Oo.g
Exercise: If (M, N) is A-generic® and (M, N) <g (M’,N) € K} then (M’,N) is
A-generick.

Claim 2.5. Assume that ;1 > x > 0 > LST(R) and k € {1,2}.

1) The set of quantifier free formulas in Lo o[8] is (11, X)-model® complete.

2) If Ae C Lo o(7g) is downward closed, (u,x)-modelF complete for e < e*, and
A= |J A, 0=cf(0) < xVO<x, ande* < x* (and p > 0V =6 = cf(0)) then

e<e*

A is (i, x)-modelF complete.
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Proof. 1) Easy.
2) Given (M, N) € Kﬁ,x let 6, be min{d : & > 0 is regular}. Clearly 0, < x, and
we choose (M;, N;) € Kﬁ’x for i < &* x 0, such that
® (a) (M;:i<e* x0,)is <g-increasing continuous
(b) (NV; : i < e&* x 0,) is <g-increasing continuous
(c) If i =e* x y+¢ and € < &* then (M, 41, N;y1) is A.-generick.
(d) (Mo, No) = (M, N).
There is no problem to do this.

Now for each e < £* the sequence <(M5*m+5+17 Newsypet1) 17 < 9T> is <gpux-
increasing with union (Mc«xg,, Nexxo, ), and each member of the sequence is A.-
generic®; hence by 2.4(5) we know that the pair (M.«xg,, Nexxp, ) is A.-generick.
As this holds for each A, it holds for A, so (Mc+xg, , Nexxp, ) is as required. g 5

From now on in this section

Hypothesis 2.6. We assume (a) + (b),, +(d) of 2.1 and we omit k using Definition
2.3 meaning k = 2.

Claim 2.7. 1) For M € K}; and LST(&) < 0 < pi the number of complete Lo o[8]-
types realized by sequences from M is < 2<0. Moreover, the relation

51\</[0 = {(EL,Z_)) :a,b €% M and some automorphism of M maps @ to l_)}
is an equivalence relation with < 2<9 equivalence classes.
2) Hence there is a set A = A = A g, o Lo o[R] such that:
(a) |Ac| < 2<% and A, C Lig<oy+ 4[]
(b) A, is closed under sub-formulas and finitary operations
(c) Each ¢(%) € A, has quantifier depth < v* for some v* < (2<9)*.
(d) For a < 0, M € K, and a € “M, the A.-type which a realizes in M

determines the Lo o[R]-type which @ realizes in M. Moreover, one formula
in the type determines it.

(e) Similarly for materialize in M € K};; see Definition 2.5(4).

(f) If LST(R) < 0 < x < p and (M,N) € K, is A.-generic then it is
Lo o[ R]-generic.

(9) if M € Kﬁ is Ai-generic then it is Loo o[R]-generic.

Remark 2.8. Part (1) can also be proved using just (A+1) x I, with I, a #-saturated
dense linear order with neither first nor last element, but this is not clear for 2.11(1).

Proof. 1) By 5.1(1) and categoricity of K3.

2) Follows, but we elaborate.

Let {G, : @ < a* < 2<%} be a set of representatives of the Eﬁfe—equivalence
classes. For each a # 8 such that lg(a,) = lg(ag), let Zo = (z; : i < Lg(@a)) and
choose ¢, 5(Ta), Ya,p(Za) € Lia<oy+ o[R] such that, if possible, we have

M = pa,plaa] A —paslas]

and under this, if possible,

M IF “tha,g(aa) A —a,p(agp).
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But in any case, M |= ¢4 glGa] and M Ik ¢, glaq]. Let

Pa(Z) = /\{Saa,ﬁ(fa) 18 <a”, B# aand lg(ag) = Lg(aa)}

and similarly define ¥ (Z,). Let A, be the closure of {¢va. g, Vo g, Pas e + @ #
B < a*} under subformulas and finitary operations. Obviously, clauses (a),(b) hold
hence the existence of v* < (2<%)*, as required in clause (c), follows. Clause (d)
holds as

a & b= tpy_,q(@ 2, M) =tp,_ 5 (b 3, M)

using the automorphisms. For «, 8 < a. such that £g(a,) = fg(ag) we have

M = (Via) [pa(Ta) = ¢s(Zs)]

implies tpy, (Ge, T, M) = tpy, (g, @, M) and even

(2<8)+19[ﬁ] 2<9)+19[ﬁ]

tPL__ 4181 (Ga, D, M) = tpy_ ,1x)(@s, 2, M)

recalling the choice of the ¢, g-s.
Clause (e) holds similarly by the choice of the 14 g-s. Clauses (f),(g) should also
be clear. (The proof is similar to the proof of the classical 0.18(3).) Oa 7

Observation 2.9. Assume 2.1(b), of course, A C Ly g[R], p > 2<% and 6 >
LST(K).

1) The number of complete Lo o8] -types realized in some M € K};, by a sequence
of length < 6 of course, is < 2<Y. Hence every formula in Leo,g[8] is equivalent,
for models from K, to a formula of quantifier depth < (2<9)7F, even from A, C
Lig<oy+ o[R] where A, is in 2.7(2).

2) Assume that I C Iy are well ordered, cf(I1),cf(Iz) > 2<9,

te b\ =2 <cf(l1 [ {s€:s<y,t})
and
teb\L1=2 <cf(I [ {s€elL:(Vreh)r<pt=r<ys]}).

Then EM; (g) (11, ®) <L, 015 EMr(5)(I2, ®).

8) If M = EM () (I,®), |I| = p, I well ordered of cofinality > 2<0 @ e M
where a < 0 and a; = 0(..., a4, ,, . )e<n() for i < o then tpy (a,d, M) is deter-
mined by (o;(xo, ..., Tu@)-1) 1 i < Lg(a@)) and the essential O-type of
(tie i1 <Lg(a), £ <n(i)); see Definition 2.10 below.

Before proving 2.9:

Definition 2.10. 1) For ¢ = (¢; : i < «) € °I, I well ordered, let the essential
f-type of £ in I be shorthand for the essential (6, (2<%)")-type.

By this we mean: for an ordinal vy, let the essential (0, v)-type of £ in I, estpy ., (t,2,1),
be the following information stipulating ¢, = oo:

(a) The truth value of t; < t; (for i,j < ).
(b) otp([ri,t;)r) for i < o, where for i < o we let r; be the minimal member r
of I such that otp([r,t;)r) < 8 x v and r <; t; and
(j<0(/\tj <ti):>tj <r.
(¢) min{6 x v,o0tp[s;,r;)r} for i < a, where we let s; be the minimal member
of I such that (Vj < a)[t; <;t; =t; <1 si].
(d) min{6,cf(I | {s:s<;r;})} for i <, which may be zero.



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

CATEGORICITY AND SOLVABILITY OF AEC, QUITE HIGHLY SH734 47

2) Let the function implicit in 2.9(3) be called t} = t{; \ = th; 5 5, i.e., tii(s,0) =
tpy(a, @, M) when

a=(0i(- 1y, 4, o<, 11 < Lg(a)),

o= <U7,( < LB(,e)s - ')€<n 1< Eg(&)>,
and s is the essential O-type of (¢; 0 : 4 < g(a), £ <n;) in I.
If A =L [R] we may write just 6.

Proof. 1) By 2.7(1) this holds for each M € K.
2) Tt is known by Kino [Kin66] that Iy < I if

& C {p € Lo o({<}) : ¢ has quantifier depth < (2<%)"}.
From this the result follows by part (1).

More fully, let 6, be the first regular cardinal > 6, and we say that the pair
(I, I5) is y-suitable when we replace the assumption “of cofinality > 2<” by “of
cofinality > 6 and of order type divisible by 6 x . Now we prove by induction on
~ that:

®1 Assume that for a < 0 and for ¢ = 1,2 we have that I, is a well ordering,
tt = (tf : i < a) is <p,-increasing, and t} is the first element of I,. We
stipulate ¢/, = oo and otp([t!, tf_H)IO) = 0,val + B; where B; < 0y and
(cf(oz}) = cf(al)) Y (cf(a}) >0 Acf(a?) > 0).

7

Then for any formula ¢({z; : i < a)) € Lo g({<}) of quantifier depth
<~ we have I} = ¢[t'] & I, | ¢[t?].

Hence
©g if 9(Z) € Loo,g({<}) has quantifier depth < «y and (I3, I2) is y-suitable and
t € 9@ (1)) then I) | ¢[f] & I, = 0]1).
3) Follows by part (2). U2

Claim 2.11. Assume
& (o) M€K}
(b) A C Lo g[8] is downward closed, |A| < x, LST(R) < 6 < x < u and
2<9 <y and 0 = cf(0) VO < x so A=A, from 2.7 is O.K.
(c) In part (3),(4),(5) we assume (x<% < p) V (cf(u) > 6).
(d) For part (6) we assume cf(u) > 0 (hence the demand in clause (c)
holds).
1) If M € K, then {gtp,(a, @, M) : a € M} has cardinality < 2<°.
2) If (M,N) € K, then we can find N', (M,N) <g (M,N') € K, ,, such that
(x) if a <0 and b € “M and A C L, ¢[R] then for some b’ € *(N') we have:
for everya € P N, gtp,(a"b, @, M) = gtp,(@'V', 2, M).
3) If (M,N) € K, , then we can find (My, Ny) such that (M,N) <g (M, Ny) €
K, and: (note that § may be the empty sequence)
(*) if 39)e(y,7) € A and @ € 99N then My I+ =3go(y,Z) or for some
b e W) (Ny) we have M, |+ @[b, al.
4) In part (3) we can demand
()t if 39)e(y,2) € A and a € Y9 (Ny) then My - =(39)¢(y,Z) or for some
be Y90 (Ny) we have My |= b, a).
5) In part (4) it follows that the pair (My, N1) is A-generic (most interesting for
Ay; see 2.7).
6) If My € K, then it is A-generic.
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Proof. 1) Proved just like 2.7(1).

2) First assume 6 is a successor cardinal.” As M € K}, without loss of generality
M = EM,g)(I,®) for some linear order I of cardinality p as in 5.1(1),(4) with
0=,0,xt, u here standing for p, 0,60, A there. It follows that for some J C I of
cardinality x we have N C EM_(g)(J,®), and let J* C I be such that J C J¥,
|J*\ J| = x and for every t € 9> there is an automorphism f of I over J which
maps # to some member of 9 (J*).

Lastly, let N’ = EM,(g)(J",®). It is easy to check (see 1.4) that () holds.
If 0 is a limit ordinal it is enough to prove for each 9 < 6, a version of (x) with
a < 0; and this gives Nj. Now we choose N’ such that 0 < § = N <z N’ and
(M,N") € K, .
3),4),5),6) We prove by induction on ~ that if we let

A, ={p(z) € A: ¢(z) has quantifier depth < 1 + ~}

then parts (3),(4),(5),(6) hold for A,. For all four parts, |A| < x hence |A,| < x
and it suffices to consider v < xT. For v = 0 they are trivial and for v limit also
easy (let 6, be the first regular > 6 and extend |y|* x 6, times taking care of Ag
in stage v x  + (8 for each 8 < ). Solet vy = + 1.
We first prove (3), but we have two cases (see clause (c)) of the assumption. If
x<% < pu this is straight by bookkeeping. So assume cf(y) > 6. Given (M, N) €
K, we try to choose, by induction on i < x*, apair (M;, N;) and also ; (¥, %), @i, b;
for ¢ odd such that
&1 a) (Mo,N()):(M,N)

b) (M;, N;) € K, is <g-increasing continuous

¢) Mt is Ag-generic for ¢ even

d) for i odd v;(9:,2;) € Ag and @; € >N and b; € 9> (N,;41) are such
that £g(a;) = £g(Z;), Lg(b;) = Lg(7;) and

(a) be Kg(gji)(Mi) = M, ¥ ¢i[bi,cﬂ but

(B) Mit1 Ik %‘_[bz',@i]-

(v) For every b €_9>(Mi+1) there is an automorphism of M; 1 over
N; mapping b into N;1.

(
(
(

If we succeed, by part (2) applied to the pair of models ( |J M;, N) as x™ <y,
i<xt
this pair belongs to K, , we get N’ as there, hence for some odd i < x*, N’ C M.
Let ¢ =1 + 2, and this gives a contradiction to the choice of (¢¢,ac, be).

[Why? There is an automorphism f of M := [J{M, : j < x*} over N mapping
b into N’ hence into M; hence f(b¢) € 9>(M;). We know (by clause (d)(8) above)
that Mcy1 IF ¥clbe,ac) but Meyq <g, M, hence M Ik ¢¢[f(be),ac]. Recall that
f is an automorphism of M over N hence M IF v¢[f(be), f(ac)], but ac € N
so f(ac) = ac hence M I+ ¢<[Eg,f(5l4)]. But M <gq, M and El,f(BC) are from
M hence My W —¢[f(be),ac]. However by clause (d)(a) of ®; we have My W
Ve[ f(be),ac]. But as i (hence €) is an odd ordinal the last two sentences contradict
clause (¢) of ®; applied to i + 1.]

Hence we are stuck for some ¢ < x*. Now for i = 0 clause ®(a) gives a permis-
sible value and for ¢ limit take unions noting that clauses (c),(d) required nothing.
So i = j+ 1; if j is even we apply the induction hypothesis for the pair (M;, N;).
Hence j is odd so we cannot choose ¥;(¥,Z),a;, b;, recalling part (2) so the pair
(M;j, N;) is as required thus proving the induction step for part (3), i.e. (3) for A,.

Second, we prove part (4) still for v = §+ 1. We can now again try to choose
by induction on ¢ < x a pair (M;, N;) satisfying

"Not a real loss to assume this, as it suffices to deal with arbitrary large 8 < J; 1(LST(R)).
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@2 (a) (Mo, No) = (M, N)
(b) (M;, N;) € K, is <g-increasing continuous
(c) If i = 2541, then (M;41, N;41) is as in part (3) for A, with (M;, N;),
(M;41, Niy1) here standing for (M, N), (M7, N1) there.
(d) if ¢ = 2j then for some ¢;(¥;, Z;) € Ag and a; € ég(ji)(Ni) and
Bi € Zg(yji)(Ni+1) we have Mi+1 I ’(/)1'(?71‘, ELi) but
B € lg(]]i)(Mi) = M; ¥ 1,[)1 [B, C_Li].
If we succeed, let So = {§ < xT : ¢f(d) > 0}, so by an assumption S is a stationary
subset of xT, i.e. as by clause [J(b) we have § = cf(f) < x VO < x. Also, for
d € Sp, as (IV; : i < ) is increasing with union N5 and § = 26, clearly as is well
defined, so for some i(§) < § we have as € “>(N;(;)) and without loss of generality
i(0) = 2j(6) + 1 for some j() hence by clause (c) of ®2 the pair (M;s)+1, Ni(s)+1)
is as required there: contradiction, as in the proof for part (3). Hence for some i
we cannot choose (M;, N;).

For ¢ = 0 let (M;, N;) = (M, N) so only clauses (a) + (b) of ®y apply and are
satisfied. For ¢ limit take unions. So i = j 4+ 1. If j = 1 mod 2, clause (d) of ®3 is
relevant and we use part (3) for Ag which holds as we have just proved it.

Lastly, if j = 2 mod 2 and we are stuck then the pair (M;, N;) is as required.

Third, Part (5) should be clear but we elaborate.

We prove by induction on 4’ that if ¢(Z) € A, has quantifier depth < 1 4~/
then for every a € “9()(N;) we have M, |= ¢la] & N; = ¢[a]. For atomic ¢ this is
obvious and for ¢ = A ¢; should be clear. If ¢(Z) = = (Z) note that in (x)* of

i<
part (4) we can use empty § so =(37)¥(Z) = —(Z). Also for ¢(Z) = (37)¢' (7, T)
we apply part (4).

Fourth, we deal with part (6), so (see clause (d) of the assumption) we have
cf(u) > 6. Let x = (x; : i < cf(p)) be constantly = (so u = ;) if p is a successor
cardinal, and be increasing continuous with limit p. 2<¢ < y; < p if p is a limit
cardinal recalling 2<% < p by [J(b). Consider

K,z= {1\7 = <M2 1 < cf(g)) : M is <g-increasing continuous,
M; € K, for i <cf(u), My € K;}

ordered by M <g M~ iff i < cf(u) = M} <gq M2

By 2.11 and part (5) for A, which we proved we can easily find M € K, 5 such
that i < cf () = ‘(Meg(u)» Mig1) is Ay-generic’. Such M we call A,-generic.

Next

X if p(z) € A, and M is A,-generic, a € 9>(M,), i successor, p(z) € Log g[f]
and £g(2) = lg(a) then M,y = pla] & M) IF o[al.

[Why? Recalling cf(p) > 6, we prove this by induction on the quantifier depth of
o]

By the definition of “M is A-generic” and categoricity of K}, we are done. [y 13

Conclusion 2.12. If u > (2<%, 0 > LST(R) and cf(u) > 6 > LST(K) then every
M € K, is Leo,g[8]-generic, hence if M1 <g My are from K}, then My <p__ 1a) Ma.

Remark 2.13. 1) With a little more care, if 4 = pg also 6 = p is O.K. but here this
is peripheral.

2) # < LST(R) is not problematic, so we just ignore it.

3) So 2.12 improves 1.13; i.e., we need cf (1) > A (> LST(8)) instead of pu = u<?,
but still there is a class of u which are not covered.
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Proof. Let A, be as in 2.7(2), so in particular |A,| < 2<. Now 2.11(6) and clause
(g) of 2.7 proves the first assertion in 2.12. For the second assume that M; <g, M>
and we shall prove that My <p__ ,(q) Mo2.

By the categoricity of £ in u, or clause (b)

“w
in o hence My, My € K, are A,-generic. Suppose @ € 9@ (M), p(z) € Ay, so by

of Hypothesis 2.1, K* is categorical

M being A.-generic (or X from the end of the proof of 2.11 applied to ]\72) we
have

(*)1 M1 = pla] = My I pla] = M E ¢la]
and by Ms being A.-generic (or X from the end of the proof of 2.11 applied to ]\7[2)
we have

(¥)2 M2 | pla] = M, IF pla] = M = ¢la]
and by the definition of “M IF p[a]” recalling My <g, Mo,

()3 if My I-¢'[a] then Ms I ¢'[a] for ¢ (Z) € {¢(Z), ~(Z)}.
So both M; and M> satisfy ¢[a] if M; satisfies it, but this applies to —y[a] too; so
we are done. Ua12

Claim 2.14. If K is also categorical in p* (or just Hypothesis 2.6 applies also to
w*, with the same ®) and p* > p<? > p > 0 > LST(R) and () below, then every
M € K}, is Lo o[R]-generic and

M € K; A DM € K;: A M <&, My = M, <Les.6[5] My,
i.e. the conclusions of 1.13, 2.12 hold where

(%) if M € K. and A € [M]* then we can find N <g M suchthat AC N € K},
and for every p(Z) € Lo ¢[R] and a € 9PN we have

M Ik pla] & N IF ¢lal.

Proof. We shall choose (M;, N;) € K~ ,, by induction on ¢ < % such that not only
M; € K},. (see the definition of K« ;) but also N; € K}, and this sequence of pairs
is <g-increasing continuous. For i = 0 use any pair; e.g. My = EM (g (p*, ®) and
No = EM;(g) (1, ®).

For ¢ limit take unions, recalling M;, N; are pseudo superlimit for j < 1.

For i = j + 1, let N;r <& M; be such that N; C Nj € K, and (Mj7Nj+)
satisfies (x) of the claim (standing for (M, N)). Let A, be as in 2.7 for p*. Then by
2.11(5) with (p*, pt, 0) here standing for (u, x,6) there (noting that in [(c) there
we use the case x<¢ <y which here means u* = p<%) we can choose a A,-generic
pair (M;,N;) € K,- , above (Mj,N;'). Hence by 2.7(2)(g) it is also a Lo g[f]-
generic pair. Now for j < 6%, for a € Y>(N;), we can read gtpg*(d,Q,MjH)
and it is complete, but as by our use of (x) it is the same as gtpg(d,Q,Nﬁ_l).
So gtpg(a,Q,Nﬁl) is complete for every a € %>(INV;), so also gtp*(a,d, Np+) is
complete by monotonicity.

Now if @ € 9> (Ny+) then for some j < 0% we have a € > (N;), so by the above
Pa = gtpg*(d, @, M;+1) = gtpy (a, 2, Njftrl) = gtpy (@, &, Ny+) is complete and does
not depend on j as long as j is large enough.

Now we prove that if @ € 9> (Ny+) then ¢(Z) € pa = Ny+ = ¢la), and we
prove this by induction on the quantifier depth of ¢(Z). As usual, the real case is
o(z) = (39)p(7,7). Let j < 6F be such that a € 9 (N;), so p; = gtpg*(d, M;i1)
so M1 IF ¢la] and by the choice of (M1, Nj41) it follows that N1 = ¢lal.
Hence for some b € “9)(N; 1) we have N1 | [b,a] hence M;q I ¥(b,a),
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hence (7, Z) € pj-5 hence by the induction hypothesis Ny+ = b, a] hence Ny+ =
elal. Ua.14

Conclusion 2.15. 1) For each > LST(R), the family of u > 2<% in which K
is categorical but some (equivalently, every) M € K, is not L g[8R]-generic is
- {[ui,ufe] 1< 229} for some sequence {p; : i < 220> of cardinals.

2) Similarly for pseudo solvable: i.e. for each § > LST(R) and ® € Y§", for
at most 33(0) cardinals 1 > 2<%, we have (Va < p)[|a|<? < p] and for some
w* € [, u<?] the pair (R, ®) is pseudo u*-solvable but some (equivalently, every)
M € K3 . is not L g+ [8]-generic.

Proof. Straightforward. Note that it is enough to prove this for each ® separately.
Toward contradiction, assume <u€ e < (:lg (9))+> is an increasing sequence of
such cardinals, satisfying (u.)<% < prey1.
()1 for a linear order I let
(a) Qro = {(t,5): t €I, 5 = (oi(ag,,) 11 < iv)}, where n; € “>g(t),
tn, = (ty,0) - £ < Lg(m;)), and o is a 7(P)-term.
(b) &1 is the following equivalence relation on Qjg: (t',51) &9 (£2,52)
iff
(o) Lg(t') = Lg(t?)
(5) 51 — 52
() {(t! :¢3): i} is a partial automorphism of I.
[No idea what this means; I’ve been fixing typos freely,
but I can’t even guess at the intention.]

For transparency assume 6 is regular. Let ¥ be as in 5.1(3) so for a linear order I,
EM¢<y(1,%) is a linear ordinal (of cardinality (7)).

[I assume |I|?]

Now for each € and

¢ € we = {C € [e, pte11) : ¢ has cofinality 6 and is divisible by . }

let I, = EM{<}(I}}?, 1), hence (in the statement of 5.1), instead of ¢ we have A x 65
which here will be p. x 0; but in the proof of 5.1 we start it for any ¢ € [\, A] [of]
cofinality 65, we have
(¥)3 (a) I.¢ = I; is a linear order of cardinality p..
(b) I is increasing with ¢ and for a fixed € increasing with ¢.
(c) let M. = M¢, EM,(g)(Ic¢, ®), so <g-increasing
(d) If h is a partial automorphism of (¢, <) of cardinality < 6 then h,
the partial automorphism of I, . which induces an automorphism of
EM(I €,¢» (b)
[Sentence ends here. Does this bleed into (x)47]
(%)4 we define® an equivalence relation on Eec=Econ 9>(M57C) as follows:
a&e ¢ b iff there is a partial automorphism h of (¢, <) such that the partial
automorphism h it induces on I. ¢ satisfies that the partial automorphism
h it induces on M,  maps a to b.
[f7 is used twice. “. . . such that the induced partial automor-
phism on M, ; maps a to b?”]

8For being an equivalence relation it is better to assume the following on ®: if &1, € >,
EM(I,®) = o1(ag) = o2(ag,), t € “I, rang(f) = rang(f1) N rang(f2), then for some o,
EM(I, ®) |= o(ag) = o¢(ag,) for £=1,2.
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(¥)5 If (1 < (o then any equivalence class of 9> (M¢,) is represented in M, .
(Recall ¢¢ > po > 0 > |7(®)].)
(x)g for any (¢,0) € Qi 6, the generic type gps({oi(ar,,) + i < ix),d,Mc) is
determined by ¢ and (¢,5)/E1, 6-

As &, ¢ has < 35(0) < pe (even < 2<9 < 11.) equivalence classes, for each ¢ there is
w} C w,, unbounded in p, such that the function implicit in (*)g is constant for
¢eWe.

Similarly there is S C Jy(6), unbounded in it, such that the above function is
constant on | J{WS : ¢ € §}. For any e1 < ez in S and (o € W2, let (u*, p) :=
(e, , fte; ) and we verify condition () in 2.14. Let M € K+, so without loss of
generality M = M., ., and suppose A € [M]#, then there is Jy C ¢y of cardinality
p such that A C EM(Jy, ® o ¥).

Let (1 € we, be > otp(Jy). We can find J; C (; extending Jy of order type ¢y
(because cf(¢1) = cf(¢2) = 6 and p., divides (2). So there is an isomorphism f
from M, ¢, onto EM,(4)(J1,® o ¥). Choosing the choices / With the appropriate
choices of S, W,,, W, we are done. Oos

* * *

For the rest of this section we note some basic facts on the dependency on ® (not
used here).

Definition 2.16. 1) We define a two-place relation &, = £7[R] on T[K], so
Kk > LST(R): @1 &, Dy iff for every linear orders Iy, I5 there are linear orders Ji, Jo
extending I, I respectively such that EM,(g)(J1,®), EM,(g)(J2, ®) are isomor-
phic.

2) We define <§" = <" .., a two-place relation on Y}'[&] as in part (1); only in
the end, EM, () (J1, ®1) can be <g-embedded into EM,(g)(Jz2, ®2).

[The highlighted relation was originally typeset as <¢' [f] throughout;
it and £°[f] look horrific when actually used in an expression.]

Claim 2.17. 1) The following conditions on ®1, P2 € T[R] are equivalent:
(CL) (I>1 gﬁ (I)g
(b) There are Iy, I, € K'™ of cardinality > 311 (k) such that EM,(g)(I1, ®1),
EM; (g (I2, ®) are isomorphic.
(¢c) there are @}, @} satisfying D, <@ @), € T[R] for £ = 1,2 such that D}, P}
are essentially equal (see Definition 2.18 below).
2) The following conditions are equivalent
(a) ©1 <O Py (recall <,, = < [8]]).
(b) There are I,I, € K'"™ of cardinality > J1,1(k) such that EM; (&) (11, ®1)
can be <g-embedded into EM, (z)(I2, ®2).
(c) for every Iy € K" there is I, € K™ such that EM,(g)(I1,®1) can be
<g-embedded into EM, (z)(I2, ®2).

Definition 2.18. ®;, &, € TO'[R] are essentially equal when for every linear order
I there is an isomorphism f from EM, ) (I, ®1) onto EM, 4)(I,®2) such that
for any 7¢,-term oq(xq,...,x,—1) there is a 7¢,-term oo(zo, ..., z,—1) such that:
to <1 ... <1 tn—1 = f(a1) = a2, where a; is o¢(as,,...,as, _,) as computed in
EM(I, @) for £ =1,2.
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Proof. Straightforward (particularly recalling such proof in 1.32(1)). Os17

Claim 2.19. 1) &, = EX[R] is an equivalence relation and
(I)lggr[ﬁ](bg = &, Szr [R](I)Z

[See what I mean?]

1A) In fact, if (D, : € < e(x)) are pairwise E,-equivalent and £(x) < k then we
can find (DL : e < k) satisfying . <® ®L for e < e(x) such that the ®_ for e < ()
are pairwise essentially equal.

2) <O is a partial order.

3) If &1, Do € YOU[R] are essentially equal then (R, ®1) is pseudo/weakly/strongly
(1, K)-solvable iff (R, ®2) is pseudo/weakly/strongly (p, k)-solvable.

4) If 1 € YO [R] is strongly (i, k)-solvable and ©o exemplifies 8 is (u, k)-solvable
then @ &, ©,.

5) If R is categorical in p and p > K > LST(RK) then every ® € YU [8] is strongly
(i, k)-solvable.

6) Assume (R, ;) is pseudo (p, k)-solvable and p > 1 1(k) for £ = 1,2. Then
By &, Dy iff By <O By A Dy <O By

7) If &1 <O By and Dy is strongly (u, k)-solvable or just pseudo (u, k)-solvable
then @1, Py are E°[R]-equivalent.

Proof. Easy, use 1.32(1) and its proof. 019
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§ 3. §3 CATEGORICITY FOR CARDINALS ON A CLUB

We draw here an easy conclusion from §2, getting that, on a closed unbounded
class of cardinals which is Rg-closed, we get a constant answer to being categorical.
This is, of course, considerably weaker than conjecture 0.1 but is still progress; e.g.
it shows that the categoricity spectrum is not totally chaotic.

We concentrate on the case the results of §1 hold (e.g. u = u?) for the A\-s with
which we deal. To eliminate this extra assumption we need §2. This section is not
used later. Note that 3.3 is continued (and improved) in [S*¢| and Exercise 3, [STb]
improve 3.5; similarly 3.6.

In the claims below we concentrate on fixed points of the sequence of J,-s.

Hypothesis 3.1. Asin Hypothesis 1.2, (i.e. £is an AEC with models of arbitrarily
large cardinality).

Definition 3.2. 1) Let Catg be the class of cardinals in which R is categorical.

1A) Let Sol = Solg e = Sollﬁﬁtb be the class of u > LST[£] such that (&, ®) is
pseudo pu-solvable. Let Sol?ﬁ’q> [SO]%)@] be the class of ¢ > LST(RK) such that (&, @)
is weakly [strongly] u-solvable.

2) Let mod—comg ¢ be the class of pairs (i, ) such that: g > 6 > LST(R) and
Lo o+ [8] is p-model complete. (On Kg , see Definition 2.3(3)(b), 2.3(5).)

3) Let Caty be the class of u € Catg such that: g > 3y 1(LST(R)) and if
LST(R) < 6 and J;,1(0) < p then L g+[R] is p-model complete.

3A) For @ € T¢ let Soll};’; be the class of € Solﬁ;)@ such that ¢ > 3y 1 (LST(R))
and: if LST(R) < 6 and 3;1(0) < p then the pair (Lo g+[f], ®) is p-model com-
plete.

Let Soli{f;) be the class of A € Solf,;@ such that L ¢[f] is p-model complete (see
[She09b, §2]).

Let Soly ¢ = Solg’g. Instead of k, * we may write 3 + k.

4) Let C={X\: A =13, and cf(A) = Ng}.

Exercise: 1) The conclusion of 1.13(1) (equivalently, 1.13(2)) means that § < A =
(1,0) € mod—comg .
2) Write down the obvious implications.

Claim 3.3. If p > A =13y >k > LST(R) and ® € TU[8], cf(\) = R then
p=p<*= € Soly ¢ = X € Soljg ¢.

Proof. The first implication holds by 1.13(2) and 3. The assumption of the second
implication implies Hypothesis 1.18 (see 3(1)) hence its conclusion holds by 1.44.
Uss

Observation 3.4. K is categorical in A (hence Hypothesis 1.18 holds), if:
®x A=, =sup(AN Catly) > LST(K) and Ry = cf(N).

Proof. Fix ® € T{; now clearly Sol"@,q> D Cat’; by their definitions.

By the assumptions we can find (i, : n < w) such that A = > {p, : n < w},
LST(8) < pn € Catly, and Ty 1(p)) < prny1 where pl, = J11(pn). As every
MeK,,,, is Lo [R]-generic (as Ky, € Koy, and fin41 € Caty), easily

(¥)o if M <g N are from K3 -, . then M <L [8] N.
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Let M* € K for ¢ € {1,2}, so we can find a <g-increasing sequence (M’ : n < w)
such that M} € K, , M} <q M} | <q M*, and M* = J{M} : n <w}. Now
(¥)1 My e K; , .
[Why? As £ is categorical in ju,, = ||M/]|.]
(¥)2 if & < pin, n <m <k, and @,b € *(M},) then:
(a) thL,w’M1 [R] ((L, 9, Mrl;z) = tpLoo,;L'L (b, 9, an) iff

tp]LOQ,“/n 8] (EL) g, Mzﬁ) = tp]Loo,“;Z (Ba g, Mlg)
(b) If tpLN,#In [R] (a, @, M]ﬁ) = tp]Loo,ué,y [R] (B, @, M]g) then
tp]l,mw;n (8] (a, 2, le) = tp]LooyM;” []] (b, 2, Mlg)
[Why? Clause (a) by (*)g, clause (b) by 1.19(3).]
(x)3 M} = M2
[Why? As R is categorical in p,.]
We now proceed as in the proof of 1.41. Let
Fn = {f : for some ay,as and a < p, we have a, € "(Mﬁﬁ) for/ =1,2,

. 1 - 2
tpLoo,;An,+1 8] (a‘17 g, Mn+2) = tpﬂ_‘oo,pwrl [R] (CLQ, 9, Mrz,+1)7
and f is the function which maps a; into &2}

(Actually, we can use o = p,.) By the hence and forth argument we can find

fn € F, by induction on n < w such that M} C dom(f2n42), M2 C rang(fani2),
and f, C fny1; hence J{fn : n < w} is an isomorphism from M! onto M*. 33

Claim 3.5. R is categorical in \ when:
@j\r A =213, > LST(R) and X = otp(Catg N AN C) and cf(\) = Ny.

Proof. Fix ® as in the proof of 3.3. Let (0, : n < w) be increasing such that
A =3{0, :n <w} and LST(RK) < 6. For each n, by 2.15 we know

{p € Catg : p > 0, and the M € K, is not Lwﬂx—generic}
is “not too large”; i.e. it is included in the union of at most Ja(6,,) intervals of the
form [, x?]. Now we choose (n(£), ju¢) by induction on ¢ < w such that
® (a) n(f) <w and py € Catg N A
(b) If £ = k+1 then n(f) > n(k), 05 > pr, pe € Catg ﬂ)\\ei(e) and the
M e K,, is Lo,

This is easy and then continue as in 3.4. O35

[R]-generic (hence L__ bt [8]-generic).
We have essentially proved
Theorem 3.6. In 3.4, 3.5 we can use Solg, o, Sol}%’q, instead of Catg, Cat's.

Exercise: For Claim 1.41(2), Hypothesis 1.18 suffices.
[Hint: The proof is similar to the existing one using 1.19.]
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§ 4. 84 GooD FRAMES

Here comes the main result of [She09b]: from categoricity (or solvability) as-
sumptions we derive the existence of good A-frames.
Our assumption is such that we can apply §1.

Hypothesis 4.1. 1)
(a) Risan AEC.
(b) w>A=23,>LST(R) and cf(\) = Ry.
(c) e XYY
(d) R is categorical in u or just
(d)~ (8, ®) is pseudo superlimit in g (this means ® € SOI}M,; so 1.18(1)
holds)
(e) Also, 1.18(2)(a) holds; i.e. the conclusion of 1.13(2) holds.
2) In addition we may use some of the following, but then we mention them and
we add superscript * when used. (Note that (g) = (f) by 1.42.)
(f) K73 is closed under <g-increasing unions (justified by 1.41)
(g) (A\n : n < w) is increasing, A\g > LST(R), A = X{\, : n < w} and the
assumptions of 1.41 hold.

Observation 4.2. 1) 8% is categorical.
2) 85 has amalgamation.
3 (We assume (f) of 4.1(2)). R is a \-AEC.

Proof. 1) By 1.16(1) or 1.19(4) as cf(\) = No.

2) By 1.34(1).

3) Asin 1.42, (i.e. as <g; = <gl &, closure under unions of <g-increasing chains
is the only problematic point and it holds by (f) of 4.1(2)). s

Remark 4.3. 1) Why do we not assume 4.1(1),(2) all the time? The main reason is
that for proving some of the results assuming 4.1(1),(2) we use some such results
on smaller cardinals on which we use 4.1(1) only.

2) Note that it is not clear whether improvement by using 4.1(1) only will have
any affect when (or should we say if) we succeed to have the parallel of [She09e,
§12].

Claim 4.4. 1) Assume Mo <g; My, o < A, @y € “(My) for £ = 1,2, and k =
J11(32(0)") where 0 := |a| + LST(R) (so k < \). If
tpL () (@1, Mo, M) = tpy__ () (a2, Mo, M2)

then
tpg; (@1, Mo, My) = tpg; (G2, Mo, My).

2) If My <g; Mz then My <y ,1a) M2 for every 6 < A, and moreover
M1 <]LOC))\[R] Mg.

2A) If My S_@; My for £ =1,2 and tpﬁi(&laMli) = tpﬁi(@Q,Mo,Mg) and
ag € *(Mo), a <k < A then tpy,__  (q(@1, Mo, M1) = tpy__ (g (G2, Mo, M2).
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2B) In part (1), if My <ga; M for £ =1,2 then
tpr_ sy (@1, M, My) = tpy__ | (q)(@2, M, My).

3) Assume that My <a; My <ag; May <gag; M3, a € *(Ms), a < X and k =
J11(Ja] +LST(R)) < 0 < A. Then
(a) From tpy_  (a(@, M1, Ma) we can compute tpy__ ,q)(@, M1, Ma)
and tp,__ () (@ Mo, Ms).
(b) From tpy__  (q(a@, @, Ma) we can compute tpy__ (@, 2, M)
and even tpy__ | (q)(@, D, M2).
(¢) From tpg: (a, My, My) we can compute tpy,_ | (@, M1, M)
and tpﬁi(C_LMo,Mzg).
4) If My <g; Mz and o < k" < X\, Iy € “(My), [L| > &, Iy is (Lo o8], &7)-
convergent in My for £ =1,2 and Av.,(I1, M1) = Av (11, My) then I, is
(Loo,x[R], *)-convergent in My for £ =1,2 and Av<,(I1, My) = Ave (I, Ma).

Proof. 1) Without loss of generality Mo = EM,g)(lo, ®) and Iy € Kiin By 1.32(3)
for ¢ = 1,2 there is a pair (I, f¢) such that Iy <gam I, € K& and f, is a <g-
embedding of M, into M; = EM,g)(I¢,®) over My. By renaming, without loss
of generality f; is the identity on M, hence My, <g M;. By 1.19(1) we know that
My <v_. .15) M hence

tPL. 18] (ay, Mo, M7) = tPL 18] (ar, Mo, My) =

tp]]_‘oo’,i[ﬁ] ((_1'27 MO; MZ) = tp]Looyh.[ﬁ] (5423 MOa Mé)

By 1.32(1) we can find (I3,91,g2,h) such that Iy <gnw I3 € K" g, is a
<-embedding of M; into My = EM,(4)(I3,®) over My for £ = 1,2, and h is an
automorphism of My over My mapping g1 (a1 ) to g2(az). By the definition of orbital
types, this gives tpg: (ay, My, My) = tpg: (@2, My, M) as required.

2) This holds by 1.19(1) for § € (LST(8),\), hence by 1.12(1) also for § = A
(the assumptions of 1.12 hold as clause (a) there holds by the case above § < A and

clause (b) there holds by 1.30(1)).
2A) Should be clear:

(a) By part (2), this holds if a; = ay and M; <g Ms.
(b) Trivially, it holds if there is an isomorphism from M; onto My over My
mapping a; to as.
(c) by the definition of tp we are done.
2B) Should be clear by part (2).
3) Clause (a):
By parts (1) + (2).
Clause (b): By 1.30(1).
Clause (c): By part (2A) and the definition of tp.
4) Easy, too. Oy

Definition 4.5. Assume My <g; M; <g; Mz, a < A, @ € “(Mz), and p =
tpg; (@, M1, Ms). We say that p does not fork over My (for K}) when, letting
0o = |a| + LST(R), 61 = 31.1(32(00) ™), 02 = 2%, O3 = T5(61), we have:
(*) for some N <g. My satisfying |[N|| < 62 we have tpy,__ , (@, M1, M3)
does not split over N.
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We now would like to show that there is s, which fits [She09¢] and [She09¢] and
R, = 85

Observation 4.6. Assume that My <g; My <g; Mz, @ € (M), a < A\, A >
ko > |a| + LST(R), k1 = 31,1(32(k0)"), and ke = Jo(k1). Then the following
conditions are equivalent

(a) tpg: (a, My, Mz) does not fork over My

(b) For some (ki ,k1)-convergent I C *(My) of cardinality > ko we have
tPL. ., (8] (@, My, M3) = Ave,, (I, M1) hence this type does not split over
UY for any I’ C 1T of cardinality > k.

(¢) for every N <g Mo of cardinality < ks, if tpy  (a(@ Mo, Mz) does not

split over N then the type tpy__ (g (@, My, Ms) does not split over N.

Rl

Remark 4.7. 1) See verification of axiom (E)(c) in the proof of Theorem 4.10.
2) Note that have we used J7(k1)" instead of 1 in 4.5, 4.6: the difference would

be small.
3) We could in clause (c) of 4.6 use “for some N <g My of cardinality < &y,
tpr, . (s)--- The proof is the same.

4) We can allow [something]| below My <g M if My € K>,,.

Proof. (a) = (b)

Let 6,601,602 be as in Definition 4.5. By Definition 4.5 there is N <g My of
cardinality < 65 such that

()1 the type tPL 5, (4] (@, My, Ms) does not split over N.
By Claim 1.27(1) there is a (k] #1)-convergent set I C ®(Mp) of cardinality x5
(convergence in My, of course) such that tPL .., (4] (a, My, My) = Av,, (I, My). So
as Mo <r_ (5] M1 <L (5] M2, by Claim 4.4(2), clearly I is (kT K1)-convergent
also in M and in M, hence Av,, (I, M) is well defined. Hence, by Claims 1.23(2),
1.21(3) the type Av.,, (I, M7) does not split over | JI but 8 < k5 and I C JIUN
hence

(%)2 Avg, (I, M;) does not split over [JTU N.
But also

(%)3 tp_ o, [] (@, My, Ms) does not split over N (by the choice of N) hence over

UIUN.

As My _<H-400‘A[ﬁ] M, and ‘UI U N| < X\ and tprﬂl[ﬁ] (&, Mo,MQ) = AV<91 (I, Mo)
clearly, by ()2 + (x)3 we have tpy_ , q(@, M1, M2) = Aveg, (I, My). Now there
is a pair (My,a’) satisfying that M; <g Mj € K5 and @’ € *(M;) such that
tpL.. 5 (1@, M1, M3) = Avp, (I, M1) hence by the previous sentence

tpL_ 1@ M1, M) = tpy_, (a)(@, M, Ma).

Now by 4.4(1) and then 4.4(2A) it follows that tpy, 4)(a@, M1, Mo) = Avey, (I, M)
as required.

() = (o)
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Let I be as in clause (b), so Iis (k] , x1)-convergent in My and is of cardinality
> 1. We know that Mo <p_ (s M1, so by the previous sentence, I is (/@f,/ﬁ)—
convergent in M;. To prove clause (c), assume that N <g M is of cardinality ko
and tpy,_  q)(@ Mo, M) does not split over N. Hence

Avey, (I, My) = tpr . (@ Mo, M)

does not split over N. Again, as My <r__ (g M1, we can deduce that Av, (I, M)
does not split over N but by the choice of I it is equal to tpy,__ N (a, My, M), so
we are done.

(c) = (a)

By Claim 1.24 there is B C M of cardinality < 2 such that tpy, (g (@, My, Ms)
does not split over B.

As we can increase B as long as we preserve “of cardinality < k5”7, without
loss of generality B = |N| where N <g Mj. So the antecedent of clause (c)
holds, but we are assuming clause (c) so the conclusion of clause (c) holds, that is
tPL.. ., (%) (@, My, M) does not split over N.

Also by 1.27(1) there is I; C ®(My) of cardinality x5 which is (7, x1)-convergent
and Ave,, (I, My) = tPL. ., (%) (@, My, My). Clearly k1 > 601 hence ry = (k2)%.
Now as K7 is categorical clearly My = EM_(x)(), ®) hence applying 1.25(4) we can
find Iy C I; of cardinality /i; which is (91+7 01 )-convergent. As above M R, []
M, so we deduce that I is (6], 6;)-convergent and (k7 , x1)-convergent also in Mj.

As above we have Mo <v_ , (g M1 by 1.19(1) hence Avy, (I2, M) is well
defined and does not split over N hence is equal to tpﬂmm[ﬁ] (@, My, M3). This
implies that Avcg, (Ia, M7) = tPL o, () (@, My, Ms).

Now choose I3 C Iy C Mj of cardinality 5 and N3 <g My of cardinality 6 such
that I3 C *(N3). Now by 1.23(2) we know that DL o, () (@, My, M) does not split
over I5 hence it does not split over N3, so N3 witnesses clause (a). Uas

Definition 4.8. We define a pre-frame sy = (8, [[J, S as follows:
X

(a) Ry = £

(b) Sy is defined by SP5\ (M) = {tpgs(a, M, N): M <g; N, a € N\ M},

() U = {(Mo, My,a,M3) : My <g; My <g; My and tpg; (a, My, M) does
L)Y
not fork over My} (see Definition 4.5).

Remark 4.9. 1) Recall <, = <g[ K, = <ga;.

2) Concerning the proof of 4.10 below, we mention a variant which the reader
may ignore. This variant, from weaker assumptions gets weaker conclusions. In
detail, define the weak version (f)~ of 4.1(2)(f); see Definition 1.37 and Claim
1.40(1).

()~ if (M, : a <) is <g-increasing continuous and

a<d= Mogt <};i Moo 12

(e.g. Maoyo is <gqy-universal over Mso+1) hence both are from K3 then
M; € K.
Assuming only 4.1(1) + (f)~ we do not know whether R} is a A-AEC but still
(K3, <gl K3, <*R;), see Definition 1.37, is a so-called semi A-AEC, see [She].
If clause (f) from 4.1(2) holds (i.e., K, is closed under unions), we can omit
“<E

DN



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

60 S. SHELAH

3) It will be less good but not a disaster if we have assumed below
A = sup(Catg N \).

4) It will be better to have Rs, = Kj; of courses, this follows from categoricity
so by §3 is not unreasonable for conjecture 0.1.

5) But we can ask only for M € K;, to be universal in Kj,

6) We can ask that for every p > X large enough, for every M € K,,, for a club
of N € K satisfying N <z M, we have N € Kj,.

Theorem 4.10. (Assume 4.1(2)(g), hence (f)).
sy 18 a good \-frame categorical in A and is full.

Proof. We check the clauses in the definition [She09c, 1.1].

Clause (A):

By observation 4.2(3), [in the weak version using (f)~ from 4.9(1)].
Clause (B):

Categoricity holds by 1.16 (or 4.2(1)) and this implies “there is a superlimit
model”, the non-maximality by <g: holds by the choice of ®.

Clause (C):

Observation 4.2(2) guarantee amalgamation, categoricity (of £ by 4.2(1)) im-
plies the JEP and “no-maximal model” holds by clause (B).
Clause (D)(a),(b):

Obvious by the definition.
(D)(c) (density).
Assume M <g; N, then there are a € N \ M and for any such a the type
tpg; (a, M, N) belongs to S3(M). In fact

® 5, is type-full

(D)(d) (bs-stability).
The demand means M € K5 = |S}iA(M)\ <A

This holds by 1.36(2) (and amalgamation).

(E)(a),(b). By the definition.

(E)(c) (local character)
This says that if (M; :i <0+ 1) is <,,-increasing continuous and

p = tp,,(a, Ms, Ms.1) € S2*(Ms)

then for some i < ¢ the type p does not fork over M; (for s,).
From now on (in the remainder of this proof) we use 4.6 freely and let (noting
cf(d) < A as A is singular)
© Rog = LST(R) + Cf(é), R1 = :1’1(:2(K)0))+, Ro = :Q(Iﬁ)l).

Now by 4.6 there is a (HT, k1)-convergent I C My with
Avep, (I, Ms) = to_ 1ay(a; Ms, Msy1)

such that T is of cardinality > xz. For some i(*) < 9, LN M;(,)| > k2, so without
loss of generality I C Mj(,, so by 4.6 we are done.

(E)(d) Transitivity of non-forking.

We are given My <s, My <s, Ma <g, M3z and a € Mssuch that tp,, (a, My 1, M3)
does not fork over My for £ = 0,1. So for ¢ = 0,1 there is I, C M, which
is (k] ,k1)-convergent in My, of cardinality x5 such that Av.,, (Ip, Myri) =
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tPL, ., (4] (a, Mpy1, M3). As Av,, (To, M1) = Av,, (I1, M7) (being both realized
by a) because My <r__ ,(q) M2 by 4.4(4) clearly we have

Avew, (To, M2) = Avey, (I, M2) = tpy (a)(a, Mz, Ms)

all well defined. So Iy witnesses (by 4.6) that tPL.. ., (%) (a, My, M3) does not fork
over My, which means that tpg; (a, My, M3) does not fork over My as required.

(E)(e) Uniqueness.

Recalling 4.4(1), the proof is similar to (E)(d); the two witnesses are now in M.
(E)(f) Symmetry.

Toward contradiction, recalling [She09¢, 1.16E] assume

Mo <g; My <ay Mz <g; M3
and ay € Myyq \ My for £ = 0,1,2 are such that p, = tpﬁi(ag,Mg,MgH) does
not fork over My for £ = 0,1,2 and tpﬁ;(ao,Mo,Ml) = tpﬁ;(ag,MO,Mg) but
tpg: ((ao, a1), Mo, M3) # tpg: ((az, a1), Mo, Ms3).

By 4.6 we can deal with py = tpy,__  (5)(ae, Me, Meya) for £ =0,1,2. For each
¢ < 2, we can find a convergent I, = {a’, : @ < K3} C My which is (k] k1)-
convergent such that Ave,, (I, M;) = py.

So as My T My, we deduce the set I, is (nf‘,nl)—convergent in M,
for Z,k = 0,1,2. 1AISO7 AAV<,.gl (Io,Mo) = AV<}€1 (127MO) hence 1AV<,.€1 (IO7M2) =
Av_y, (In, M) so without loss of generality Iy = Is.

Now use the non-order property to get symmetry.

(E)(g) Existence.

Assume M <;, N and p € SP(M). So we can find a pair (M’,a) such that
M <5, M', a € My, and p = tp,, (a, M,M’). By 1.27(1) there is a (x{,r1)-
convergent I C M of cardinality 3 such that Av.,, (M,TI) = tpy_ o (s M, M.
By 1.27(3) + 4.6 there is a pair (N, a’) such that N <,, N’, ¢’ € N’, and

tp]Loo K1 (ala Na N/) = Av<f€1 (Ia N)

So by 4.6 the type tp,, (a’, N, N') is easily € SEf(N), does not fork over N, and
extends p, as required.
(E)(h) Continuity.

Follows by [She09c, 1.16A]. Alternatively, assume (M; : i < § + 1) is <,,-
increasing continuous, a € Msyq \ Ms, and tp,, (a, M;, Ms,1) does not fork over
My for i < §. So there is a convergent I; C My such that

1<0= tp]Loc, (8] (CL, M,',M5+1) = AVH(I, MZ)

As above, without loss of generality I; = Iy. We can find a convergent I C Mj
of cardinality > cf(d) + # (recall cf(d) < Al) such that tpy__  (q(a, Mo, Msi1) =
Av,. (I, Ms). So for some i(x) < & we have [I N M;.,y| > &, so without loss of
generality (by equivalence) I C M;(,). We finish as in (E)(f).

Axiom (E)(i):
Follows by [She09c, 1.15]. U410

Exercise: Replace Av,, (I, M) above by [J{Ava (xo)(L, M) : (< (270)*}.
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§ 5. HOMOGENEOUS ENOUGH LINEAR ORDERS

Claim 5.1. Assume pt =601 = cf(61) < 2 = cf(6) < A.

1) Then there is a linear order I of cardinality A such that the following equiva-
lence relation £ = S'flllf on M has < 2" equivalence classes, where m € 1 ﬂ there
is an automorphism of I mapping m to 1.

2) Moreover, if I' C I has cardinality < 02, and n < w then the following
equivalence relation € on ™ has < u+ |I'| equivalence classes:

e 5 & tiff there is an automorphism h of I over I' mapping 5 to t.

3) Moreover, there is U proper for KE; (ie. U € Tg’g [2]; see Definitions
0.11(5), 0.14(9)) with T(¥) countable such that I = EMgy(Ig", 4, ®) where
Igzrfg =((, <, Py, P1), Po={a<(: “lla) <" =“=0"}.

4) If I} C I has cardinality < 0y then for some I7 C I of cardinality < pt + 15|,
for every J C I of cardinality < i, there is an automorphism of I over I mapping
J into I7.

5) If IT, I3 C ILI,HAX#* have cardinalit}/ < u and h is an isomorphism from I}
onto I then there is an automorphism h of the linear order I = EM{<}(I(§3, )
extending the natural isomorphism h from EMy oy (I, W) onto EMy (15, ).

Remark 5.2. 1) Of course, if A = A<%2 and I is a dense linear order of cardinality
A which is -strongly saturated (hence §-homogeneous) then the demand in 5.1(1)
is satisfied (and in part (2) of 5.1 the number of £-equivalence classes is < 2X for
every x € [Rg,0s)). Also, if A= 5" \;, § < 0, and i < § = A=% = X then we have
<8

such an order.

2) Laver [Lav7l, §2] deals with related linear orders, but for his aims Iy, I are
equivalent if each is embeddable into the other; see more in [Shear, AP,§2]. For a
cardinal 0 and linear order I let

Or,9 = {cf(J) : for some <;-decreasing sequence (t; : i < )
we have J =1 [ {t € I : t < t; for every i < O}}.

So if @ < p then (“I)/E},; has > |©7 |- So we have to be careful to make ©7,5
small. We chose a very concrete construction, which leads quickly to defining I and
the checking is straight. We thought it would be easy, but a posterior: the checking
is lengthy; [Shear, AP,§2] is an antithetical approach.

3) We can replace 6; = pt by 61 = cf(6;) > R and “of cardinality < p” by “of
cardinality < 6;”.

4) In 2.7(1), 2.11(2) we use parts (1),(1)+(4) respectively. Also, we use 5.1 in the
proof of 7.9.

5) The case 2 > X in 5.1(1) says nothing; in fact, if 2 > A then 2# = M =
(*M) /5?‘/‘} for any model M of cardinality > 2 and < 2#, for any vocabulary 7).

6) Claim 5.1(1),(2) holds also if we replace p by x € [u, 02).

[We got an fifteen-page proof coming up. Of these five distinct claims,
(3) and (5) are one-liners that don’t reference anything else in 5.1, (2)
is a one-page addendum to (1), and (4) is a half-page that references (1)
four times.]

[(1) is ‘organized’ by five categories of bullets (&, (%), X, [, and ®), each
with their own independent numbering system. seems to be reserved
for high-level lemmas, but other than that I don’t see any rhyme or
reason regarding how or why these guys are used.]



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

CATEGORICITY AND SOLVABILITY OF AEC, QUITE HIGHLY SH734 63

[The longest multi-case proofs need to be moved to an appendix, as
proofs to independent, labeled lemmas that can be cited with \ref{}s.
X3 is 2.5 pages, and X,, (x); are three full pages each.]

Proof. 5.1(1)

Fix an ordinal ¢, A < ¢ < AT such that cf(¢) = 6a: e.g., ( = X x 03. (Almost
always, cf(¢) > 62 will suffice.)

Let I; be the following linear order. Its set of elements is

{(t,0) : € {-2,-1,1,2}, a < (+w}
ordered by ({1,a1) <p, (la,a0) iff €1 < €y or &1 = by € {-1,2} Ay < ag or
by =14y € {—2,1} Aoy > ao.

For t € I let t = (¢, ).
Let I3 be the set {n : 7 is a finite sequence of members of I;} ordered by

m <r, ne iff (3n) [n <Llglm)An<Lgn)Am [n=mn ] nand n(n)<p ng(n)]

or ny <A mp AL € 112} or my <y ALMEIM2)) € {2 1},
Let Iy be I3 restricted to the set of n € I3 satisfying ® where
® For no n < w do we have:
(a) £g(n) > n+ 1 [Read literally, this is identical to ‘/g(n) = 0,
correct?]
(b) "™ is a limit ordinal of cofinality > 6;
(¢) a?tD) > ¢
(d) 7)) ¢ {—1,2}, (") = _9 or 1) € {2 1}, (D) = 9,
Let Mj be the following ordered field:
(*)1 (a) Mo, as a field, is Q(a; : t € Io), the field of rational functions with
{a; : t € I} algebraically independent.
(b) The order of My is determined by
(o) If t € Is, n < w then My = “n < as”.
(8) If s <, t and n < w then My | “(as)™ < a;”.
(c) let M be the real® (algebraic) closure of My (i.e. the elements algebraic
over My in the closure by adding elements realizing any Dedekind cut
of M())
Now we shall prove that I, which is M as a linear order, is as requested.
X, each of I3, I, and I3 is anti-isomorphic to itself.
[Why? Let g : I — I be g(t) = (—¢*,at). Clearly it is an anti-isomorphism of
Ii. Let g : I3 — I3 be defined by g(n) = (g(n(m)) : m < £g(n)); it is an anti-
isomorphism of I5. Lastly, ¢ maps I» onto itself: in particular by the character of
clause (d) of ®, i.e. the two cases are interchanged by §.]
Ko (a) Iy, I3, I have cofinality Rg.
(b) if t € I then Iy 4 := Iz | {s: s <y, t} has cofinality Ny.
[Why? For clause (a), {(2,A+n) : n < w} is a cofinal subset of I; of order type
w and {(t) : t € I} is a cofinal subset of I (and of I5) of order type the same as
I;. For clause (b) for n € I the set {n"((—1,A+n)) : n < w} is a cofinal subset of
I <, of order type w by [ below.]
Now
O If n satisfies ® and ¢ € {1,—1} then also 1" (({,a)) satisfies ® for any
o< A+ w.

9n fact, we could just use M.
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[Why? By clause (d) of @ as the only value of n there Which is not obvious is
n = £g(n) — 1, but to be problematic we should have ¢ {(t:0))(n+1) ¢ £_9 91
whereas ¢ = —1.]
N3 If 9 = cf(9) (so O is 0,1, or an infinite regular cardinal), 7 = (n; : i < 9)
is a <p,-decreasing sequence, and we let J; = {s € I : (Vi < 8)[s <p, n]}
then (clearly) exactly one of the following clauses applies:
(a) If J; = @ then 0 = N,.
) If cf(J5) = 1 then 0 = R.
(c) If cf(J5) = Ng then 0 < 0.
) If Ry < cf(J5) < 61 then 0 = Ny, and for some ¢ € {—1,2}, v € I,
and ordinal § < ¢ of cofinality cf(J5), the set (v"((¢,a)) : oo < §) is an
unbounded subset of Jj.

(e) If 61 < cf(J5) then 0 > 6; and moreover 0 = 0y V cf(J5) = bs.

[Why does X3 hold? The proof is split into cases, and finishing a case we can then
assume it does not occur.

Clearly we can replace 7j by (n; : ¢ € u) for any unbounded subset u of 9, and
modify it further to (v; : i € u) provided n¢,,., <, vi <1, N¢,, and ({; : 7 < 9) is
an increasing sequence of ordinals < 0. We shall use this freely.

Case 0: 0=0o0rd=1.
By X clearly clause (c¢) of X3 holds.

Case 1: 0 = N and there is v € “(I1) such that (Vn < w)(3i < 9)[n; I n < v].

Let n; = £g(n; Nv). It is impossible that {i : n; = k} is infinite for any &, so
without loss of generality (n; : i < w) is an increasing sequence and ng > 0.

For every i < w we have v | (n; +1) < ;41 and 1,41 <p, 7, so by the definition
of <, alsov | (n; +1) <p, n;. We choose 8, < ¢ +w so that (=2, 8,,) <p, v(n;),
hence letting p; = v | n;"((—2, Bn,;)) we have p; € I,. This can be done, e.g.
because we can choose f3,, such that 3,, = o*™) + 1 if ¢*(") = —2 and B,, =0
otherwise.

For every i,j < w we have p; <1, pit1 <1, Ni+1 <1, M, so if ¢ < j then
pi <1, pj <1,<mj, and if ¢ > j then p; <p, 7; <p, 7, 50 p; € J5.

Now (p; : ¢ < w) is <y,-increasing; also, it is cofinal in J5, for if p € J5 let
n = Lg(p Nv), so for i < w such that n, < n < n;y1 we have p <z, 141 SO
p(n) <n, mit1(n) = pip1(n) and as p [ n=v [ n = p;i41 [ n we have p <y, pit1.

As (p; i < w) is of order type w, clearly cf(J;) = Xo = 0, hence clause (c) of
K3 applies and we are done.

So from now on assume that Case 1 fails.

As lg(n;) < w and Case 1 fails, without loss of generality, for some n we have
i < 0 = Lg(n;) = n. Similarly, without loss of generality for some m and v € I,
we have i < 0 = n; | m = v and (n;(m) : ¢ < J) with no repetitions so m < n.
Without loss of generality i < @ = £7(™) = ¢* and so (a”(™ : i < 9) has no
repetitions; without loss of generality it is monotonic as @ > Ny is an increasing
sequence of ordinals. As 7 is <j,-decreasing, necessarily ¢* € {—2,1}. Let § =
U{a™ (™) i < 8}, so clearly cf(6) = 0 and ¢ is a limit ordinal < ¢ 4+ w. Now those
£*§ will be used until the end of the proof of K. For the rest of the proof we are

assuming
®© (@)i<d=mnIm=v
(b) (n;(m) : 4 < ) is (strictly) increasing with limit §.

) @

) (0
(c) m0m) = ¢* € {21}
(d) cf(d) =0 and ¢ < ( + w.
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Also note by ® that v~ ((¢*,0)) ¢ o = 0 € {(+w,(} and if § = AV ((¢*,9)) ¢ I
then £g(v) > 0 and the ordinal a”(“9()=1) is limit of cofinality > 6; (and more).

Case 2: J; = @.
Clearly m = 0A£* = =2 A ¢ = ( + w hence 0 = N so clause (a) of K3 holds.

Case 3: ¢* =1 and v"((¢*,0)) ¢ Is.

As ¢* = 1, clearly we cannot have § = ¢ by clause (d) of ®, so § = ( +w and
recalling 0 = cf(0) we have 0 = Xy. Now clearly J; has a last element, v, so case
(b) of K3 applies.

Case 4: (* = -2, 0 =Yg and v ((£*,9)) ¢ L.

Again § = ( +w as g = 9 = cf(d) and cf({) = 02 > p > Vg making § = ¢
impossible; now £g(v) > 0 (as we have discarded the case J; = @, i.e. Case 2); and
let k = £g(v) — 1. Now we prove case 4 by splitting to several subcases.

Subcase 4A: (*F) ¢ {2 1}.

Let vy = (v [ k) ((¢*®) a*®) 4 1)). Note that v; € [ as v € [ A (a¥®) < ( =
a’®) 11 < ¢) and (as £#F) € {=2,1}) clearly {p: v; Ip € Ir} is a cofinal subset of
J5 even an end segment. Now for n < w we have v1"((2,(+n)) € I3 and it satisfies
®. (Why? As vy € Iy, only n = k may be problematic, but o**) 41 = a1(¥) here
stands for o™ there hence clause (b) of ® does not apply), so by the definition
of I, clearly {v1°((2,{ +n)) : n < w} is C I, and is a cofinal subset of J; so
0 =Ny = cf(J5) and clause (c) of X3 holds.

Subcase 4B: (**) ¢ {~1,2} and o*®) is a successor ordinal.

Let vy = (v | k)" ((0*®) o) — 1)), of course v, € I} and as v € I, clearly
v1 € Iy so the set {p : vy Ip € I} is an end segment of J; and has cofinality Ro
because n < w = v1 " ((2,{ +n)) € I,. (Why? It € I3 and as v; € I checking &
only n = k may be problematic, but (¢*(*),2) here stand for (£7("), ¢1("+1)) there
but presently ¢#*) € {—1,2} contradicting clause (d) of ®). So clause (c) of 3.

Subcase 4C: (**) € {—~1,2} and o*®) = 0.

Then let vy = (v | k)" ((**) —1,0)). Now vy € [yasv [ k€ I, and forn = k—1
clause (c¢) of ® fails and v17((2,{ + n)) € I because of 11 € Iy and for n = k the
failure of clause (b) of ® so continue as in Subcase 4B above.

Lastly,

Subcase 4D: (%) ¢ {—1,2} and a*® is a limit ordinal.

Then {(v | k)" ((t**) a)) : @ < a*®)} is C I, and is an unbounded subset of
Ji; hence cf(J;) = cf(a?®). If cf(a¥®)) = R, then clause (c) in X3 holds, and
if cf(a?®) € [¥y,0;) then necessarily a**) # ¢ so being a limit ordinal < ¢ + w
clearly a*®*) < ¢ so clause (d) from X3 holds. To finish this subcase note that
cf(a”®)) > 6, is impossible.

[Why “impossible”? Clearly for large enough i < 9 we have n;(m) > ¢ (because
0 = (4w as said in the beginning of the case) and recall v <7; € Iy. We now show
that clauses (a)-(d) of ® hold with #;, k here standing for n, n there. For clause (a)
recall £g(n;) > Lg(v) +1 and m = Lg(v) = k + 1. Now £n(F+1) — gni(m) — g+ — _9
as £* = —2 is part of the case, £7:(*) = ¢»(¥) ¢ {1 2} in this subcase, so clause (d)
of ® holds. Also a(F+1) = (M) > ¢ as said above so clause (c) of ® holds and
cf(am®)) = cf(a*®)) > 0, (as we are trying to prove “impossible”), so clause (b)
of ® holds. Together we have proved (a)-(d) of ®. But n; € Iz, contradiction.]

Now subcases 4A,4B,4C,4D cover all the possibilities, hence we are done with
case 4.
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Case 5: (* = —2, 0 > R, and v"((£*,0)) ¢ I>.

Recalling ¢ is the limit of the increasing sequence (a”(™) : i < 8) hence cf(§) =
0 > Ng and v"{(—2,0)) ¢ Iz, necessarily § = ¢ so 9 = 2. As v"°((—2,9)) ¢ I»
necessarily clauses (a) - (d) of ® hold for some n and as v € Iy, clearly n = lg(v)—1
(see clause (a) of ®) so we have £g(v) > 0, and letting k = fg(v) — 1, by clause (d)
of ® the ¢7("*1) there stands for £* = —2 here so we have £*(*) ¢ {—1,2} and by
clause (b) of ® we have cf(a”®)) > ;. Hence {(v | k)" ((¢**),3)) : B < a*®)} is
cofinal in .J; and its cofinality is cf(a’(®)) as (v | k)" ((¢**), ) increase (by <p,)
with 8 as #(F) € {~1,2}. But cf(a’®)) > 6; and 9 = 6, (see first sentence of the
present case), so clause (e) of X3 holds.

Case 6: v"((£*,0)) € I.

Subcase 6A: v"((¢*,6),(2,Q)) € Is.

Note that for m = £g(v) and the pair (v"((£*,9), (2,¢)), m) standing for (n,n)
in ®, clauses (a),(c),(d) of ® hold (recall £* € {—2,1}, see the discussion after case
1) so necessarily clause (b) of ® fails hence cf(d) < 61 but 9 = cf(J) so 9 < 6;.
Now as v ((£*,0), (2,¢)) € Iz clearly if £ < w, then v ((¢*,4), (2,{ + ¢)) belongs to
I hence {v"((¢*,0), (2, +¢)) : £ < w} is a cofinal subset of J;; by the choice of I
hence cf(J5) = Rg so clause (c) of M3 applies.

Subcase 6B: v ((¢*,4),(2,Q)) ¢ I».

Asv™((¢*,0)) € Ig, necesbarlly clauses (a)-(d) of ® hold with (v~ ((¢*, ), (2,()), m)
here standing for (n,n) there, recalling m = £g(v) so by clause (b) of ® we know
that cf(6) > 6y but 0 = cf(d) hence 9 > ;. Also {v"((¢*,9),(2,0)) : ax < (} is a
subset of I and cofinal in Jj; and is increasing with a so cf( 7) = B2 so clause (e)
of K3 applies.

As the two subcases 6A,6B are complimentary case 6 is done.

Finishing the proof of Xj:

It is easy to check that our cases cover all the possibilities (as after discarding
cases 0,1, if not case (6) then v"((£*,§)) ¢ I, as not case (3), £* # 1 but (see clause
®(c) before case 2), £* € {—2,1} so necessarily ¢* = —2, so case (4),(5) cover the
rest). Together we have proved Xs.|

Xy Recall Rg < p < 01 < b0y; if X C I with |X| < 62 then we can find Y
such that X CY C Iy, |[Y]| = p+ | X[, Y is unbounded in Iy from below
and from above, and for every v € I \ Y the following linear orders have
cofinality No:

(a) 3, =L {n€L\Y:(VpeY)p<pv=p<pn}
(b)
(© Jy, =L {nel: (Vp € Jg, ) <n pl}
(d) The inverse of JY =L {nel:(VpeJi,)lp<w,nl}

[Why? Let U = {a"® : € X and £ < Lg(n)}.
We choose W,, by induction on n < w such that
h (@ UCW,C(+w
(b) W, has cardinality p+ [U| = p+ | X| and m <n = W,, CW,.
(¢) p S Wy and (+n e Wy for n < w.
d) aeW,=a+1eW,
(e)
(f)
)

: 2
The inverse of JY,Z,.

at+l1leW,=ac W,
If 6 € W, is a limit ordinal of cofinality < 67 then § = sup(d N W,,41).

Wiis.

See https://shelah.logic.at/papers/734/ for possible updates.
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This is straight. Let W = [ J{W,, : n < w}, so
B U CW and |W| = p+|X| and W satisfies
(a) WC(+w
(b) W] < 62
(c)0eWand {(+m:m<w}CW
d) aeWesa+leW
(e) If 6 € W and Ry < cf(d) < p then 6 = sup(W N 4)
(f) If 6 € W and cf(§) > 61 or cf(d) = Ny then cf(otp(WW N d)) = V.
Let Y = {n € I, : a"® € W for every £ < £g(n)}. Clearly X C Y and |Y]| =
Ro+|W| = pu+|U| < 8. It suffices to check that Y is as required in X,. From now
on we shall use only the choice of Y and clauses (a)-(f) of . By [y(c) and the
choice of Y clearly Y is unbounded in I> from above and from below.

Solet vel,\Y;asv [0€Y there is n < £g(v) such that v [ n € Y and
v](n+1)¢Y,s0a’™ < (+wand a’™ ¢ W. But by clause (c) of [y we have
{¢+m:m < w} CW hence a’(™ < ¢ and so a; := min(W \ a”™) is well defined
and is found in the interval (o™ ¢]. As clearly 0 € W and €W & f+1€ W

by the choice of W, obviously «; is a limit ordinal. By clause (e) of [s clearly ay
is of cofinality Rg or > #; = u*. So clearly

ap = sup(W N a”’™) = sup(W Nay) = min{a: WNa=Wna'™}

is a limit ordinal < o™ and ag ¢ W so cf(ag) < |W| < 6. But by the assumption
on W, (see clause (f) of [y) we have cf(ag) = No. So (v [ n) ((¢*™,ap)) € JZ ;
moreover ’
O3 p e Jy, iff p € I satisfies one of the following:
(a) e v|n=p|nand 0 =e),
o a’™ ¢ [ag,ay)
(b) e v[n=p[nand ™ = e,
e, o’ = q; and a?™ ) € [sup(W N ¢), ().
oy (£P(H1) pr(m)) = (gp(n1) vy € {(2,-2),(2,1),(-2,—-1),(-2,2)}
(c) e ar=Candn>0and (v]n) (™ a))¢ .
o (v r(n=Dy € {(2,-2),(2,1),(-2,2),(-2,-1)}
o3 cf(v(n)) > 601 and v(n) > sup(W Nv(n)).
s pl(n—1)=v](n-1),0r1 =1
o5 a*" Y e [sup(v(n—1)NW),v(n — 1))

[Why? First note that if p € J%,V, plk=v]k, plk) # v(k), and k < n, then
necessarily k = n A £7(F) = *(¥) ' We now proceed to check “if’.

Let f:{-2,-1,1,2} — {2,—2} be such that f~![2] = {-2,1} and f~1[-2] =
{—1,2}. Case (a) is obvious. In case (b), in order for n € Y to separate between v
and p, it is necessary that | (n+1) = p | (n + 1), £+ = ge(nt1) — f(pr(n))
and o("*1) > ¢ but then n ¢ I5. In case (c), in order to separate between p and
v by n € Y, there are two possibilities. Either 7 [ n = v [ n and then

) — pr(n) — f(gu(n—l))

(recall that v | n"((*(™,ay)) ¢ I5), and o™ > ¢, but then also n ¢ I>. The
other possibility is that n | (n —1) = v [ (n — 1), £1=1 = pr(n=1) o = (=1
is such that o € W, and o?®~1 < a < o*(»=1 which is also impossible by the
choice of ("1, Showing that these are the only cases (the “only if” direction) is
similar and is actually done below.]

Now we proceed to check that clauses of X hold.
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Clause (a):
First assume ¢*(" € {—2,1}, and let

J={vIn{( ™ ), (2,(+m)) :m<w}.
Now J C I,.
[Why? clearly if p € J then p | (n+1) € I so we only need to check ® for n, recall
that cf(ap) = Rg < 61, hence clause (b) of ® fails].
Now by clause (a) of [J3 we have that J C J3 ,, and we claim that it is also
cofinal in it.

[Why? Note that as ¢#(™) € {~2,1} then v [ n"((£*(") ag)) <7, v | (n+ 1), and if
p € J3., is as in clauses (a) or (b) of [J3 then for every m large enough

p<pvI|n (™ ap),(2,¢+m)).

If p € J§, is as in clause (c) of [J3 then v ¢ {—2,2} by (ii) there, and as in
this case £(") € {~2,1}, necessarily ¢*(") = —2 and so by (ii) of (c) of I3 we have
¢v(n=1) ¢ {—1,2}, but then p <y, v and so it is below every element in .J.]

Second, assume £*(™) € {~1,2} and v [ n*((£*™, a1)) € Iy; let §* = sup(WN(),
so as above ¢* ¢ W and has cofinality Ro (which is less than ). Recall also that
cf(ar) > 0. So (for £ € {—2,—1,1,2}) by ® we have

(V r n)A<(€y(n)7al)? (£76)> € 12
iff
(5 <(Cand /(€ {—2,—1,172}) or (C <pB<(+wandl# —2).
Hence we have (v [ n)" ((¢"™,ay), (—2,8)) € I, & B < (. Also
W 1) (™, ), (-2.8) €Y & BEW,
S
), (=

and as v(n) < aq /\E”(”) {~1,2} clearly v <z, (v | n) ("), ), (=2, 5)).
Easily {(v | n)"((¢*("), 2,5> e€WnN()}isasubset of {n €Y :v <y, n}
unbounded from belovv in 1t
So {(v I n) ((t*™, 1), (-2,6%),(2,0)) : ( < a < ( +w} is included in I,

(recalhng Clause (b) of ® as cf(6*) = Rg) and moreover is a cofinal subset of J3,
of order type w, so cf(J%,ﬁV) = Ny as required.

Third, assume p*™ € {<1,2} and (v | n)"((¢*™ a1)) € I, and cf(a;) < 61,
equivalently cf(a;) = Rg by clause (e) of [y. In this case

{0 1) (7,0, (<2,8)) ¢ < B < ¢ +w)

is included in I5 (recalling clause (b) of ®) and in Y. Hence, recalling [13(a), the set
{w1n) ("™, a)): a € [ag,a1)} is a cofinal subset of J3.,, hence its cofinality is
cf(a1) = Ny as required.

Fourth, we are left with the case *(™) € {~1,2} and (v | n) (¢, 1)) ¢ I so
necessarily n > 0 and clauses (a)-(d) of ® hold for it for n — 1; then by clause (¢) of
® (recalling o7 < ¢ as shown before [3) necessarily oy = ¢. Clearly k:=n—-1>0
and as clause (d) of ® holds and it says there “¢7("*1) ¢ {2 —21” which means
here (*(") € {2, 2} but we are assuming presently £(") € {—1,2} hence ¢*(") =
v+ = 2 50 using clause (d) of ®, see above, it follows that ¢#(*) ¢ {—2 1}
and by clause (b) of ® we have cf(a*®)) > 6;. Let 6, = sup(W N a”®)). Now if
8. < a’®) then by clause (f) of [y we know cf(d,) = Rg and

{(w k) ((®,5,),(2,¢+m)) :m < w)
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is included in 7 (as v € I and 6, < a’®) we have only to check ®, with k& + 1
here standing for n there, but c¢f(d.) = Ng so clause (b) there fails) and so recalling
[3(c) this set is a cofinal subset of J%’V exemplifying that its cofinality is No.

Lastly, if 0, = o*(*) then (v n) ("™, a)) : o € WN () is <p,-increasing
with «, all members in Y, and in J%V, cofinal in it and has order type otp(W N ()
which has cofinality Ng so also Jf,)u has cofinality N, as required.

Clause (b): What about the cofinality of the inverse? Recall that I5 is isomorphic
to its inverse by the mapping (¢, 8) — (—¢, 8), but this isomorphism maps Y onto
itself hence it maps J%,’V onto J)Q,’V, for some v’ € I\ 'Y, but clause (a) was proved
also for v/, so this follows.

Clause (c): As Y is unbounded from below in I3 (containing {((—=2,{ +n)) :n <
w}) it follows that Jy,,, is non-empty, hence cf(Jy.,) # 0, but what is cf(Jy,)?

First, if £/(") € {~1,2} then {(v | n)"((*™,a)) : a@ < ag} is an unbounded
subset of Jy, , of order type ag hence cf(Jy,) = cf(ag) = No (see the assumption
on W and the choice of ayp).

Second, if (") = {~2,1} and (v | n)"((#*"M,a;)) € I, and cf(ay) > 6 then as
in the proof of clause (a) we have {(v | n) ((¢*(™ a1), (2, +m)) ¢ I, for m < w
and again letting 0* = sup(WN¢) we have {(v [ n) ((¢*™,a1),(2,8)) : B € WN(}
is included in Iy and in Iy, and even is an unbounded subset of Iy, of order type
otp(W N ¢*) which has the same cofinality as §* which is Rg.

Third, if ¢#(™ € {~2,1} and (v [ n) ((¢*", 1)) € I and cf(a;) < 6y (equiva-
lently cf(ay) = Rg) then {(v [ n) ((¢*™, 1), (2,{ +m)) : m < w} is a subset of I
(as cf(a1) = No) is included in Jy, ,, unbounded in it and has cofinality Rg, so we
are done. ’

Fourth and lastly, if /(") € {-2,1} and (v | n) ((#*"™, 1)) ¢ I, then as in
the proof of clause (a) we have oy = (. Again letting 6* = sup(W N () we have
cf(6%) = Ro, (v [ n)"((£*™,6*)) € I, and

{(w I n) ((™,6%),(2,¢+m)) :m < w}

is a subset of I5; moreover, it is a subset of Jy,, unbounded in it, and

(v 1) ((",6%),(2,¢ +m))

is <r,~increasing with m. So indeed Jy , has cofinality Np.

Clause (d): As in clause (b) we use the anti-isomorphism.
So Xy holds.]

X5 if I’ C I then the number of cuts of I’ induced by members of I, \ I’ (that
is, {{sel':s<pt}:teL\I'})is <|I'|+1.
[Why? Let U := {a"®) : ¢ < £g(n) and n € I'}. Tt belongs to [ + w]=H.
Now (by inspection) n1,m2 € Iz \ I’ realizes the same cut of I’ when:
(a) Lg(m) = Lg(n2)
(b) ¢m) = gn2(n) for n < Lg(ny).
(c) am™ e Y = am™ c Y = oM™ = o) for n < w.
(d) B<an™ =p<am™ for €U and n < w.
[Why? Clauses (a)-(d) define an equivalence relation on I \ I’ which refines “in-

ducing the same cut” and has < |U| + Ry = |I'| + R equivalence classes. As the
case ‘I’ is finite’ is trivial, we are done proving Xs.]
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X if O is regular uncountable, n* < w, t.p € Iy for ¢ < 0, { < n*, and
teo <fp --- <l ten+—1 for ¢ < O then for some unbounded (and even
stationary) set S C 9, m <n*, 0 =ko < k1 < ... < k;, = n* stipulating
tek,, = 00, and letting e(x) = min(S), we have:

(a) for each i < m [exactly one / at least one] of the following hold:
o If e < are from S and 41,05 € [k, kiy1) then t. o, <y, teo,.
o, if ¢ < ¢ are from S and 41,0 € [k;, kit1) then tep, <p, tes,-
®3 kiy1 = ki + 1 and for every ¢ € S we have tc k, = t.(s)i,-
(b) There is a sequence (s; ,s; :4 < m) such that
o 1 <m=s; <y, sj‘
oy If i <m—1then s < s, (except possibly when (tck, : € < 0)
is <y,-decreasing and there is no ¢t € Iy such that ¢ < 0 =
tek, <1 t <1, tek,.,, hence (by M3) we have 0 > 6s).
o3 For each ¢ < m the set {tg’g ce €8, LE [k, ki+1)} is included
in the interval (s; , s;)r,.
[Why? Straight. For some stationary S; C 0 and (ny : k < n*) we have
e€SiNk<n" = lyg(te k) = ng.

Also, without loss of generality (¢*=() : i < ng) does not depend on € € S;. By

> ny application of 9 — (9,w)?, without loss of generality for each k < n* and
k<n*

i < ny the sequence (at&k(i) : € € S1) is constant or increasing. Cleaning a little
more we are done. So Kg holds.]

Lastly, recall that we chose I to be (|[M|, <™), where M was the real closure of My
(see (¥)1), My the ordered field generated over Q by {a; : t € I} as described in
()1 above, and for every u C ( let:
()2 () L= {(LA) €T BeuorfelC.Ctw)
(b) I}?={nel;:a" c Il for every £ < Lg(n)}
(c) I2={ne€l:a"® ¢! for every £ < Lg(n)}
)
)

—~

d) I, is the real closure of Q(a; : t € I?) in M

(e) Fort € L\ 12, let I7, = I | {s € Iy : s ¢ I2 and for every r € I2 we
have r <p, t =r <y, s}.

(f) For x € I'\ I, let

Iuyx:I[{yEI\Iu:(VaGIu)[a<1yEa<1x]}.

(g) Let I, be the set I, U {Iy,q : a € I'\ I} ordered by: z <j, y iff one of
the following holds:
oy z,yel,and z <y, y
o zecl,y=1I,pand <7, b
o3 v=1,,y€l,anda <y, y
o £ =1,4 y=1,p and a <, b (can use it more!)
(Note that by R, [u| < p = |I,] < p.)
Now observe
(x)3 for u C ¢, I? is unbounded in I from below and from above.
We define [the following property.]
()4 We say'? that u is p-reasonable if:
(a) uC ¢, |u| < b, and p C u.
(b) a cu=a+1 € u for every a.

1OWe may in clauses (e) + (c) replace p by p + |U]; there’s no harm and it makes (¢)(8) of
(%)1 redundant.
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(c) If § € w and Ny < cf(§) < p then § = sup(und),
(d) If 6 < ¢ and cf(§) > p then cf(otp(d Nu)) = V.
Now we note

()5 if X C I has cardinality < 03 and u, C ¢ has cardinality < 65 then we can
find a p-reasonable u such that X C I, ux C u, and |u| = p + | X| + |-

[Why? By the proof of K]
(%) if u is p-reasonable then Y := I? satisfies the conclusions of X,.

[Why? By the proof of K. That is, if u* := uU{(+n : n < w} then Y as defined in
the proof there using u* for W, is I2 from (x)2(c), and it satisfies demands (a)-(f)
from [z so the proof there applies.]

(%)7 if u is p-reasonable and « € I\ I,, then cf(l, ;) < No.

Why? The proof takes awhile. Toward contradiction assume 9 = cf(I, ;) is > N
and let (b, : € < 0) be an increasing sequence of members of I, , unbounded in it.
So for each € < O there is a definable!! function f.(zo,... s Tn(e)—1) and

te,O <I, t871 <Ip .- <I, ts,n(e)fl from I5 such that M ': “b, = ff(ate,m ey ats,n(s)fl)”
and n(e) is minimal. As Th(R) is countable and Ry < 9 = cf(9), without loss of
generality € < 0 = f. = fi s0 £ <9 = n(e) = n(x).

Apply Mg to (% = (tep : £ < n(x)) 1 e < 0), and get S € 9,0 =ko < k1 <
oo < ko= (%), {(s7,8]) 1 i < m), and e(x) = min(S) as there. Without loss
of generality the truth value of “t., € I2”, for ¢ € S, depends only on £. Let
wy = {i <m: (Ve € G)[tey, = teq)r,]} and wo = {€ < n(x) : to(ye € 12}; clearly
for every ¢ < n(x) we have

(VE S S)[ta,é = tg(*)’g] S le {k‘l RS wl}

andiewléki+1:ki+1.

Let t; =t for (¢ <0Jand i € wy). [By]| renaming, without loss of generality
S =0 and e(x) = 0.

We have some free choice in choosing (b, : € < 9) (as long as it is cofinal in I,, ;),
so without loss of generality we choose it such that n(x) is minimal and then |w;|
is maximal and then |ws| is maximal.

Now does the exceptional case in (b)ey of Kg occur? This is an easier case and
we delay it to the end.

As I, (and Iy« for t € I) have cofinality Ry (see Ma(a), (b)) and K3 and this
holds for the inverse of I3, too, while @ = cf(0) > Ny and we can replace (b : € < 9)
by (bp(s)+e : € < 9) we can find t5 for £ < n(x) such that

© (a) ta,o <1, tag <1, -+ <Ip ton(x)—1
(b) If e < £ < 0 and ¢4, < n(*) then (tg,gl <1, ta’g2) = (ts’gl <1, tg,gz)
and (ta,gl <1, tajgz) = (t&gl < tagz).
(C) If /e [ki7ki+1) then ta,g S (S;,Sj_)b.

Case 0: {0,...,m —1} = wy.
This implies ¢ < m = k; + 1 = k;;1 hence m = n hence { < n = t¢, =t; and
so contradicts “(b. : € < 9) is increasing” (as it becomes constant).

Case 1: [0,m) \ w is not a singleton.
It cannot be empty by Case 0. Choose i(x) € {0,...,m—1}\w; and for e,£ < 9
let ¢ = (t7° : £ < n(*)) be defined by: ;° is t. g if £ € [kiuy, kigs)41) and te,

otherwise. Let b. ¢ = fi(a,ec,...,a,c ) € M. Clearly
0 n(x)—1

Hhere ‘definable,’” of course, means “in the theory of real closed fields”
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®¢ for any €1,€2,&1,&2 < 0 the truth value of b, ¢, < b., ¢, depends just on the
inequalities which (g1, 2,1, &) satisfies, and even just on the inequalities
which the tc, ¢, te, 0, te, 0, te, 0 (for £ < n(x)) satisfy.
[Why? Recall ((t-; : £ < n(x)) : € € S) is an indiscernible sequence in the linear
order I (for quantifier free formulas) and M has elimination of quantifiers.]
®1 N\ e(0) <ep <e(l) <9 = beo) <1 bey,er <1 ber)-
(=12
[Why? By ®q, the desired statement b.) <; be, e, <1 be1) is equivalent to
beo) < bey e, < be(r), which means b,y < b., < be(1), which holds.]
®2 b <7 by.
[Why? Otherwise by <j bg 2 hence € € (0,9) = b. <1 bp e+1 <5 bet2 (by ®¢ + ®1)
so (bpe : € € (1,9)) is also an increasing sequence unbounded in I, , contradicting
“w; maximal”.]
®3 b072 < b172.
[Why? By ®¢ + ®2 we have bps < by and by ®; we have by < b4 together
b0,4 < b2,4 SO by ®o we have bo,g < bl,g.]
But then (b 9 : € < 0) increases (by ®3+ ®¢) and ¢ < 9 = b, = bz < bet1,0 <
bet2 (by ®1 and ®9 respectively) hence is an unbounded subset of I, ,, contradiction
to the maximality of |w].

Case 2: m\wy ={0,...,m — 1} \ wy is {i(x)}.
Subcase 2A: For some i < m, ¢ # i(x) and j = k; ¢ wa.
Choose such i with |i —i(*)| maximal. For any s let t. ¢ be t., if £ # j and be

sitl=j.
Let
I'={se Ii)ts(*) .o s and t.(y) ; realize the same cut of {tep:e<0, L#j}}.

Note that k;jy1 = k; + 1. Recalling Ko (b), the cofinality of Iz <t..,, 1s Rg and also

is Ng. Recalling the choice of ((s;,s;) :

L)L

the cofinality of the inverse of Iy >+,

L < m>, there is an open interval'? of I, around te(s),; which is C I". Note that I’
is dense in itself and has neither a first nor last member by Ko + Xy (a), (b).
As f, is definable, by the choice of My, M, and of I’ C I? we have: ife < 0

Uste(x),j
and s € I then t.(, ; and s realize the same cut of

2U{t.y:e<0,j#1}
hence fj”( s Oy s Je<n and b, realize the same cut of I, which means that
Jeloooyae s o )e<n € Ly gz, hence by the choice of (b, : € < 0) we have
(FE <[ felooyau ,s--) <Dbel.
So again by the definability (and indiscernibility)
®y e<ONsel = M. an . ...) <bej1.

As I' is dense in itself, what we say on the pair (s,t.(.),;) when s € I' As <y, te,;
holds for the pair (t.(. ;,s) when s € I’ At.(,y; <r s, s0

® e<ONsEl =b. <M. at,,,.,..)
More fully, let s1 <y, te(s),j <L 52 and s, so € I’. Then the sequences

<t5}g £ G L< n(*)>A<sl>A<t5+1,g AE g, l< n(*)>A<t€(*)’j>
and (te g : £ F# J, £ <n(*)) (ton),j) (tesre : £ # J, £ <n(x)) (s2) realize the same
quantifier free type in I (recalling t. ; = t.(y) ;).

12if we allow +00, —oo as end points
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By ®4 + ®5 and indiscernibility we can replace t.(,y; by any ¢’ € I’ which
realizes the same cut as t.(,); of {t.r : € < 0,4 # j}. But if j > i(*) then
{5410ty _1 } © I3 by the choice of j, and the set

I"={tel:ife <, L#jthent#t.pand t.y <p, t =tco <y, tj}
includes an initial segment of J}; , o (see Ky(d)) i.e. (x)g, so its inverse has
20te(e),d

cofinality No. Say (s;; : n < w) exemplifies this, so n < w = s, <7, s5,. So
for every e < 8 for some n < w, fM(... ar .\ 55,-.-) € (be,bey1)s. So for some
n. < w this holds for unboundedly many ¢ < 9, contradictory to “|ws| is maximal”.
Similarly if j < i(x).

Subcase 2B: For every ¢ < 9, for some £ € (g,0), the interval of Is which is
defined by tc k, ., te k,., 18 not disjoint to I? (so without loss of generality it has
> ki(s)+1 — ki(x) members of I2%).

In this case, as in case 1, without loss of generality {k;(.),...,kiu)+1} € w2 so

as |we| is maximal this holds. Because subcase 2A is ruled out, {t.¢:e <09, ¢ <
n} C I2 hence {b. : ¢ < 9} C I, a contradiction.

Subcase 2C: None of the above.
As subcase 2B is ruled out, without loss of generality

{tg,g re< ol e [k‘i(*), ki(*)+1)} - Iz,t

e(%). k() :
Then, as in subcase 2A, the sequence (t. ,,, : € < 0) is increasing/decreasing and
is unbounded from above/below in 12 contradiction to (x)e.

u7ta(*),ki(*)
In more detail, I’ := IZ»tO,ki(*) includes all {t.;: e < 0 and £ € [kj(.), ki)41) }-

Also I’ and its inverse are of cofinality Ng by (x)g, hence without loss of generality
we can find (new) <ta)g A= [ki(*),ki(*)+1)> such that ts s <r, toaet1, toe €
(51_(*)7522*))127 € <0 = tey, <1, tag = teyy < leyie,, and the convex hull in
I of {tC,Z (< dand/l € [ki(*),ki(*)ﬂ]} is disjoint to I2. Let ty, = ty for
14 ¢ [kz(*)a ki(*)—&-lL /< m, ba = f*(atéw, ey at@,n—l)'

Easily e < 0 = b, <y bg. Ase <& <0 = (be,be), Nu= &, easily e < 0 =
(be,bo)1r, Nu =0, in contradiction to (b, : € < d) being cofinal in I, 4.

To finish proving ()7, we have to consider the possibility that when applying
K, the exceptional case in (b)ey of Mg occurs for some i < m; say, for i(x) (see @).

Also, without loss of generality 0 > 6, and so without loss of generality ¢ €
Wy = te o = te(y),¢ and for each £ < n(x) we have

(VE,C: < 8)(VS S Iﬁ) [S <L tey =5 <y, tge].

Now we can define ¢ = (tj’§ : £ < n(x)) as in case 1 and prove ®g - ®3 there.

Clearly all members of {t,syg e <ol e [ki(*), ki(*)+2)} realize the same cut of
IZ and we get an easy contradiction.

As we can use only (l,(4),. : € < 9) and add dummy variables to f., without
loss of generality k()41 — Ki(x) = Ki(s)42 — Ki()+1- Let J be {1, -1} x 0 ordered
by (61,51) <J (fg,fg) iffly=1ANly=—1lorli=1=VyNe1 <egorby=—-1=
by N ey > e9.

For v € J let v = (", e") = (L], elt]). For ¢ < O and 11,12 € J we define
t_C,Ll,LQ - <t§,L1,L2,n n < n(*)> by tC,Ll,Lg,n is te[Ll],n if n € [kl(*)7k1£*)+1)7 tE[Lz],n if
n € [Ki()41, Ki(x)+2), and t¢ , otherwise. Now, letting b¢,, 1, = fulte iy i)

®¢ All b¢ ,, ,, realize the same cut of I2.
Now

®7 Indiscernibility as in ®¢ holds.
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®8 (be,(1,6),(1,641) <1, b (1,642),(142+3))-
[Why? Otherwise by indiscernibility, if € (6,0) then b (1,¢y,(—1,3) <1 b¢,(=1,5),(—1,4)-
Hence (b¢ (—1,5),(—1,4) : ¢ € (6,0)) is monotonic in I,, all members realizing the
fixed cut of I? and is unbounded in it (by the inequality above), contradicting the
maximality of |w;|.]

®9 (b¢,(1.e42),(1.e43) <1 be (1), (1.e41))-
[Similarly, as otherwise if ¢ € (6,0) then be (1,¢),(-1,0) <1 bc,(1,4),1,5- Hence
(be,(1,4),(1,5) : € € (6,0)) contradicts the maximality of (w1).]

So we have proved (x)7.

(%)g if u is p-reasonable, x € I\ I,, then cf(I, ;) = Ro.

[Otherwise by (x)7 it has a last element; say b = f.(at,, ..., at,_,), whereto, ..., tn_1 €
I5 and f, a definable function (without loss of generality, with n minimal). Hence
{aty,-..,at,_,} is transcendentally independent with no repetitions and b is not

algebraic over {ay,,...,at, ,} \ {at,} for £ < n. So {to,...,tn—1} ¢ I2, and let
¢ < n be such that t, ¢ I2, hence there are sg <z, s1 such that t, € (so, s1)7, and
(s0,81)1, N I2 = @. (Recall My(a),(b) and (x)g about cofinality Xy and I, being
dense.) Also without loss of generality {to,...,tn—1} N (S0,81)1, = {te}; now the
function ¢ — fM(ayy, ..., ae, 1, ¢, a1, ., .. ap, ) for ¢ € (as,, as, )y is increasing or
decreasing (cannot be constant by the minimality on n and the elimination of quan-
tifiers for real closed fields and the transcendental independence of {tg,...,tn—1}).
So we can find sp, 8§ such that s <z, sq <r, te <1, s§ <z, s1 such that

X = {fiw(ato,...,atbl,c,atHl,...,atnfl) ice€ (asb,as'l)[}

is included in I,, ;. Again as the function defined above is monotonic on (asé, as )1
so for some value b' € (ay,ay) we have b <; b'. But b is last in I, , by our
assumption toward contradiction hence (b,d');, N I, = &. But this is impossible
as all members of {f(aty,.--,at,_,,¢ a1, a1, ;) : ¢ € (ay,ay)r} realize the
same cut of I, so (x)g holds.]

(%)g if w is p-reasonable, x € I \ I, then also the inverse of I, , has cofinality
No.

[Why? Similarly to the proof of (x)7 + (*)s, or note that the mapping y — —y
(defined in M) maps I,, onto itself and is an isomorphism from I onto its inverse.|

(*)10 if u is p-reasonable, then I, is unbounded in I from below and from above.
[Why? Easy.]

(*)11 if h,uy,us are as in clauses (a),(b),(c) below then the function hs defined

below is (well defined and) is, recalling (*)2(g), an order preserving function

from ful onto fuz mapping u; onto uy. Also, the functions hg, h1, k3, ha, hs

are as stated, where:
(a) uy,ue C ¢ are u-reasonable

(b) h is an order preserving function from u; onto us

(¢) (a) For a € uy, we have cf(a) > 6, < cf(h(a)) > 6;.
(8) If v € ug then (Va < 4)(3B € w)[a < 8 < 4] iff (Va <
R(1)(38 € uz)[a < B < h()
(d) («) hy is the [induced-order preserving / induced order-preserving]
function from I} onto Il ,i.e., hi((4, 8)) = (¢, 8”) when h(B') =
B" < Cor B =B" €6, +w).
(8) Let hg be the partial function from ¢ + w into ¢ + w such that
ho(@) = B < GO ((4,)) = (¢, B)]
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(e) h is the order preserving function from I3 onto I7:* defined by:

*,2
forn € 17,

h(m) = (ha(n(£)) £ < Lg(n)) = ("9, ho(a"D)) = £ < Lg(m)),
recalling (d).
(f) hg = h3 | IZ is an order preserving function from I onto I2,.
(g) hg is the unique isomorphism from the real closed field M, 12, onto the
real closed field M152 mapping a; to ap, ) fort € 151, where for I' C I
we let M+ C M be the real closure of {a; : t € I'} inside M.
(h) hyg is the map defined by: hy(z) =y iff () V (B), where
(o) z € I,; Ny = hs(x)
(B) For some a € I\ I,,, be I\ I,, we have x = I, o, y € I, 5, and
(Ve € I,)[c <1 a = hs(c) <5 bl.
(i) I,, = dom(hy) and I, = rang(hy) ordered naturally.
[Why? Trivially, h; is an order preserving function from I&l onto I&Q. Recall
2 ={nel;:n) el for £ < lg(n)}. So obviously h} is an order preserving
function from I}»? onto I}, Now hy = h3 | IZ , but does it map I onto I2 ? We
have excluded some members of Ijjf by ® above.

But by clauses (¢) and (d)(«) of the assumption being excluded/not excluded is
preserved by the natural mapping, i.e., h5 maps I?“ onto 152 hence he = h3 | I&l is
an isomorphism from I, onto I, . Also by ()1 being the real closure of the ordered
field My, and the uniqueness of “the real closure” hg is the unique isomorphism
from the real closed field My2 onto Mz mapping a; to ap, ) for t € Iz .

Let ((U,U?) : e < &*) list the pairs (Uy,Us) such that:

®10 (a) U has the form I, , for some x € I\ I, for ¢ =1,2

(b) for every a € I,,,, (Jy € Ur)[a <1 y] & (Fy € Us)[ha(a) <1 Y]
Now

®11 (U e < %) is a partition of I\ I, for £ = 1,2.

[Why? First, note the parallel claim for I;. For this, note that hi((¢,0)) = (¢,
as 0 € ug Nug as uy, us are p-reasonable (see clause (e) of (x)4) and hy((¢,)) =
(4,8) < h1((L,a+1)) = (¢,8+1), by clause (b) of (x)4 and if A((¢,61)) = (¢,02), 01
is a limit (equivalently dz is limit) then

(=]
=

§r=sup{a<d:(l,a) €I, } & &b =sup{la<d:(f,a)€l, }

Second, note the parallel claim for hs, I;f, h3.
Third, note the parallel claim for I2 . he.
Fourth, note the parallel claim for I,,,, hg (which is the required one).]

So it follows that
®12 hy is as promised.
So we are done proving (*)17.
[Why? By clauses (b),(c) of (*)11.]
(*)12 If uy,uq are p-reasonable, h is an order preserving mapping from _ful onto
I,,, which maps I, onto I, then there is an automorphism h™ of the linear
order I extending h [ I,,.

[Why? Let (U} : e < e*) list I, \ I, and U2 = h(U}). Now for every € we choose

(at,, :m € Z) such that
®13 (a) al, €UL

(b) at, <;af,, forneZ
(c) {af, :n €Z, n> 0} is unbounded from above in U..
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d) {a¢, :neZ, n<0}is unbounded from below in U%.
e,n e

This is justified by u, being p-reasonable by (x)g, K. Now define hs : I — I by:

hs(x) = hy(z) if x € I,,, and otherwise

h5(1') = az,n + (a’g,n-i-l - a?,n)(x - a;,n)/(a;,n-i-l - a;,n) ﬁ a;,n Slz T < a;,n+1

and n € Z. Now check using linear algebra.]
(#)13 (“1)/EP has < 2# members, recalling that fiE}Y f2 iff f1, fo are functions
from g into I and for some automorphism h of I we have
(Vo < p)[ho fi(a) = fa(a)].
[Why? Should be clear recalling |I}| < u, recalling ()5, ()11, (*)12.]
So we have finished proving part (1) of 5.1. Os.1(1)
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Proof. 5.1(2)

Really the proof is included in the proof of part (1). That is, given I’ C I
of cardinality < 6y by (*)5 there is a p-reasonable u C ¢ such that I’ C I, and
|u| = p+ |I'|. Now clearly

()14 For prreasonable u C (, the family {I7 , : x € I, \ I}} has < p+ |u]
members.

[Why? By Xs.]

(%)15 for a p-reasonable u C ¢, the family {I,, , : © € I\ I,} has < y members.
[Why? By (*)16 below.]

(%)16 if u is p-reasonable then I, ,, = I, 5, when

(a) by = flat, os---s0a8,,_ ) for k=12
(b) f a definable function in M.
(C) teo <ip -+ <fp thn—1 for k=1,2.
(d) t1e € Ig Vigy € Ig =t =12y
(e) if t1 0 ¢ I then Iz,tu = IZ,tzl for{=0,...,n—1.
[Why? Use the proof of ()11, for u1 = u = ug, h = id,, so Ul = U2 for € < &*.

By the assumptions, for each £ there is ¢ such that a;, , ,,a,, € Ul =u?. Now
for each ¢ < ¢* there is an automorphism 7. of U! as a linear order mapping t1 ¢
to to, if t1 0 €Ul Let 7 = U{m. : e <e*}Uidy, ]

(e In < w, 8§ <p ¢ <; ... <g b5,y for £ = 1,2, and I,y = I, for
k =0,1,...,n — 1 then for some automorphism ¢ of I over I, we have
k<n=g(t))=1t.

[Why? We shall use g such that ¢ [ I, =id;, and g [ I, is an automorphism of
I, for each z € I'\ I,,. Clearly it suffices to deal with the case

{tf; :l<nandl€{l,n}} CI,,

for one x € I'\ I,,.

[Obviously one of those is supposed to be a k.]

We choose s; < s from I, , such that s; <r ti < 89 for £ = 1,2. We choose
g | I, such that it is the identity on {s € I, : s <; s1 or so <; s}. Now
stipulate t_1 = s1, t, = $3 and [¢ | [, ] maps (t,lwt,lﬁl)] onto (ti,tiﬂ)] for
k=-1,0,...,n—1 as in the definition above.]

So we have completed the proof of part (2) of 5.1. Os.1(2)
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Proof. 5.1(3) Obvious from the Definition (0.14(9)) and the construction.
5.1(4) First

®1 There is J; C I of cardinality pu* such that for every J5 C I of cardinality

< i, there is an automorphism 7 of I which maps J5 into Jy.

[Why? Let u = put x pt C ¢ and let J; = I,. Clearly u has cardinality gy and
so does Ji = I,. So suppose J;5 C I has cardinality < u. There is us C ¢ of
cardinality p such that J3 C I, and without loss of generality ug is reasonable.
We define an increasing function h from uy into uy, by defining h(«) by induction
on «:

()17 If cf(a) < p then h(a) = J{R(B) +1: 8 € ug Na}.

()18 If cf(a) > p then h(a) = J{h(B) +1: B €uaNat+ u™.

Let ug := {h(a) : @ € uz} so u; C u. Now h,uy,us satisfies clauses (a),(b),(c) of
()11 hence hq, h;,h27h37h47ful,fu2 are as there.

By ()12 there is an isomorphism h* of I which extends h4; now does ht map
J3 into J;? Yes, as J5 C I, and h' | [,,, is an isomorphism from I,,, onto I,,, but
I, C I, and I, = J;, so we are done proving ®1.]

Finally

©®2 Part (4) of 5.1 holds. Ie., if I§ C I with |I}| < 02 then for some I C I
of cardinality < u™ + |I}], for every J C I of cardinality < p, there is an
automorphism of I over I mapping J into I7.

Why? Given I C I of cardinality < 63 we can find uy C ¢ of cardinality u + |I{]
such that I C I,,,. By (%) we can find a p-reasonable set us C ¢ of cardinality
i+ |ug| such that u; C us.

Let (Ue : € < €*) list the sets of the form I,,, 5, ¢ € I\ 1y, , so by 85, * < p+|I5].
For each € we choose (ac, : n € Z) as in @13 from the proof of (x)12. For each
e <e* and n € Z let 7., be an isomorphism from I onto (G, Ge nt1)1; it exists
by the properties of ordered fields. Let J;i C I be as in ®; above and let

L=IfU{acp:e<eand n <w}U{m ,(J7): e <e" and n € Z}.

Easily, I5 is as required.
5.1(5) By 0.12. D51(3)_(5)

Remark 5.3. Concerning (x)11, we could have used more time.
(%)11 ho : 12, — I2 is an order preserving function and onto, hg : I, — I, is
an isomorphism, and h; : I, — I, is order preserving and onto.



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

CATEGORICITY AND SOLVABILITY OF AEC, QUITE HIGHLY SH734 79

§ 6. LINEAR ORDERS AND EQUIVALENCE RELATIONS

This section deals with a relative of the stability spectrum. We ask: what can
be the number of equivalence classes in #I for an equivalence relation on #I which
is so called “invariant”: in fact definable (essentially by a quantifier free infinitary
formula, mainly for well ordered I).

It is done in a very restricted context, but via EM-models has useful conclusions,
for AEC and also for AEC with amalgamation; i.e. it is used in 7.9.

There are two versions; one for well ordering and one for the class of linear orders
both expanded by unary relations.

n

On T:(*),Kf*( , see 0.14(4). We may replace sequences, i.e. incy(I), by subsets

of I of cardinality |J|, this may help to eliminate 271 Jater, but at present it seems
not to help in the final bounds in §7. We do here only enough for §7.
Context 6.1. We fix a(*), u* = (u~,u™) such that

(a) a(x) is an ordinal > 1

(b) u™ C alx)

(c) ut C afx).

Remark 6.2. 1) The main cases are
(A) a(x) =1, so KE,{‘( ) is the class of linear orders

(B) a(x)=2,u" =2, u~ = {0}.

2) Usually the choice of the parameters does not matter.

Definition 6.3. 1) For I, J € KE?( X i.e. both linear orders expanded by a partition
P, (a < a(x)), pedantically the interpretation of the P,’s, let inc’;(I) be the set of
embedding of J into I; see below, we denote members by h.
2) Recalling @* = (u~,u") where u= Uut C a(x) let incY (I) be the set of h
such that
(a) h is an embedding of J into I, i.e. a one-to-one, order preserving function
mapping P; into P! for a < a(x).
(b) fac€u,te P/, and s <; h(t) then for some ¢; <; t we have s <j h(t;).

(c) If @« € ut, t € P/, and h(t) <; s then for some t; we have t <; t; and
h(tl) S[ S.

Concerning u*

Observation 6.4. 1) For any h € inc% (I):

(A) If t is the successor of s in J (i.e. s <jt and (s,t);y = @) and t € P/,
a € u~ then h(t) is the successor of h(s) in I.

(B) if {t; : i < &) is <j-increasing with limit ts € J (i.e. 1 < § = t; <j t5
and @ = ({(ti,ts); i < 8}) and ts € P, a € u™ then (h(t;) : i < §) is
<r-increasing with limit h(ts) in I.

(C) If t is the first member of J and t € P, o € u™ then h(t) is the first
member of I.

2) If hy, hy € inc% (I) then

(A) If t is the successor of s in J andt € P, a € u™ then hi(s) = ha(s) <
h1(t> = hg(t) and hl(s) <7 hQ(S) =4 hl(t) <7 hg(t) and hl(S) >7 hQ(S) <~
hl(t) > hg(t)
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(B) If (t; i < 8) is <j-increasing with limit ts and ts € P, o € u™, then
(Vi < 6)[hi(t:i) = ha(t:)] = ha(ts) = ha(ts)-
Moreover,
(Vi < 6)(3j < 8)[hits) <1 ha(t;) A ha(ts) <1 hi(t;)] = ha(ts) = ha(ts)
and also (3j < 0)(Vi < 0)(h1(t:) <1 ha(tj)) = ha(ts) <r ha(ts).

3) Similar to parts (1) + (2) for o € ut (inverting the orders of course).
4) inc;(J) = inci”? ().

Proof. Straight (and see the proof of 6.7). Og.4

Convention 6.5. 1) «a(x),@* will be constant, so usually we shall not mention
them (e.g. we will write inc;(I) for inc? (I)). Pedantically, below we should have
written € (J,I) and e? (J), and also in notions like ‘reasonable’ and ‘wide’ in
Definition 6.10 which mention @*.

2) I, J will denote members of KIin

a(*)

Below we use mainly “e-pairs” (and weak e-pairs and the reasonable case).

Definition 6.6. 1) let e(J) be the set of equivalence relations on some subset of
J such that each equivalence class is a convex subset of J.
2) For hy,he € incy(I) we say that (hi,hs) is a strict e-pair (for (I,J)) when
e € e(J) and (hy, ho) satisfies
(a) s € J\ dom(e) iff hi(s) = ha(s).
(b) If s <y tand s/e # t/e (so s,t € dom(e)) then hi(s) <p ha(t) and ha(s) <s
ha(t).
(c¢) If s <yt and s/e =t/e (so s,t € dom(e)) then hi(t) <; ha(s).
2A) We say that (hq, he) is a strict (e, ))-pair, where e € e(J) and Y C dom(e)/e,
when clauses (a)+(b) from part (2) hold and
(¢)) if s<ytand s/e=t/e (sos,t € dom(e)) then
[(h1(t) <1 h2(s)] = [s/e € V] = [h1(s) < ha(t)].
2B) We say that (hi, he) is an e-pair when (hq, ho) is a strict (e, Y)-pair for some
Y. (This relation is symmetric, see below.)
3) We say that (hy, hg) is a weak e-pair where hi, he € inc;(I) when clauses
(a),(b) hold. (This, too, is symmetric!)
4) For hy, hy € mCJ(I), let e = e(hq, h2) be the (unique) e € e(J) such that (see
6.8(1) below)
(a) dom(e) = {s € J: hi(s) # ha(s)}
(b) (h1,h2) is a weak e-pair.
(c) If e € e( ) and (hq, hs2) is a weak e’-pair then dom(e) C dom(e’) and e
refines €’ [ dom(e).
5) If e € e(J) and Y C dom(e)/e then we let set(Y) = {s € J : s/e € Y} and
el Y =ce]set(}).
6) Let e(J, I) be the set of e € e(J) such that there is an e-pair.

7) Let e (J) = U{e(J,I): I € KEP( )}.

Concerning o*
Observation 6.7. Assume that e € e(J, I).

0) (a) Ift is the first member of J and t € P, a € u™ then t ¢ dom(e).
(b) Ift € dom(e) and t is the first member of t/e and t € P; then o ¢ u~.
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1) If t is the <j-successor of s andt € P, a € u™ then s € dom(e) & t €
dom(e) and s € dom(e) = s € t/e.

2) If (t; 11 < ) is <j-increasing with limit ts and ts € P and o € u™ then:
(a) If (Vi < 9)[t; ¢ dom(e)] then ts ¢ dom(e).

(b) If (Vi < 6)(—t; e tiy1) or just (Vi < 6)(Fj < I)[i < jA—t; e t)] then
ts ¢ dom(e).
(c) If (Vi < 0)(t; € to/e) then ts € to/e.
3) Similar to parts (0),(1),(2) when o € u™ (inverting the order, of course).
4) e.(J) is the family of e € e(J) satisfying the requirements in parts (0),(1),(2),(3)
above so if u* = (&, D) then e.(J) =e(J).

Proof. Easy by 6.4, e.g.

Part (1): We are assuming e € e(.J, I) hence by Definition 6.6 there is an e-pair
(h1,h2) where hq,hy € incy(I). Now for £ = 1,2, clearly hy(s),he(t) € I and as
s <j twehave he(s) < he(t). Now if hy(t) is not the <j-successor of hy(s) then there
is s € (he(s), he(t))r hence by clause (b) of Definition 6.3(2) there is s} € [s,t)s
such that sj, <7 hy(s}) <1 he(t) so as he(s) <r s, we have hy(s) <p he(s}) <r he(t)
hence s <; s} < t, contradiction to the assumption “¢ is the successor of s in J”.
So indeed hy(t) is the successor of hy(s) in I.

As this holds for £ = 1,2, clearly hy(s) = ha(s) < hi(t) = ha(t) but by Definition
6.3(2) we know s € dom(e) < [hi(s) # ha(s)] and similarly for ¢ hence s €
dom(e) < t € dom(e). Lastly, assume s,¢ € dom(e), but s,¢ are nor e-equivalent
so by Definition 6.6(2) clause (b) we have hi(s) <p ha(t) A ha(s) <y hi(t) clear
contradiction.

Part (2): We leave clauses (a),(b) to the reader.

For clause (c) of part (2), if ts ¢ to/e then choose hy,hy € inc% (I) such that
(h1, ho) is an e-pair, hence an (e, Y)-pair for some ) C dom(e)/e. If (tg/e) € Y then
ha(to) is above {hi(t;) : i < 6} by <y so we have hi(ts) <; ha(to) but if t5 & to/e
this contradicts clause (b) in Definition 6.6(2),(2A). The proof when tg/e ¢ Y is
similar. g7

Observation 6.8. Let hy, hg € inc;(I) and e € e(J).

1) e(hy, ha) is well defined.

2) (hy, ha) is a strict (e, Y1)-pair iff (he, h1) is a strict (e, Ya)-pair when (Y1, Va)
is a partition of dom(e)/e.

3) (hi,ha) is a strict e-pair iff (he, h1) is a strict (e, @)-pair.

4) (h1, h2) is an e-pair iff (ha, h1) is an e-pair.

5) (hyi,hy) is a weak e-pair iff (hy, hy) is a weak e-pair.

6) If (hi1,he) is a strict e-pair then (hi, he) is an e-pair which implies (h1, ha)
being a weak e-pair.

7) If eq € €(J) for a < o, then

e = ﬂ{ea a<a’}y={(s,t): s,t are eq-equivalent for every a < o}

belongs to e(J) with dom(e) = [{dom(e,) : o < a*}.

8) If e € e(J,I) then for every Y C dom(e)/e also e | set(Y) belongs to e(J,I)
and there is a strict (e | set(Y))-pair (b, hYy); moreover, for every Y1 C Y there is
a strict (e | set(Y), Y1)-pair.

Proof. Easy, e.g.:
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1) Let
e= {(81,82) : hi(s¢) # ha(se) for £ =1,2 and if s; # so then
for some t; < ta we have {s1,s2} = {t1,t2}

and there is no initial segment J’ of J such that
Jl n {tl,tz} = {tl} and

(vt € N € TN\ T)[ha(t)) <1 ha(t") A ha(t)) <1 ha(t")] }

Clearly e is an equivalence relation on {t € J : hi(t) # ha(t)} and each equivalence
class is convex hence e; € e(J), so clauses (a),(b) of 6.6(1),(4) holds. Easily e is as
required.
8) Let (hi, he) be an e-pair and Y, V2, Vs be a partition of dom(e)/e. We define

hi, hY € incy(I) as follows, for ¢ € {1,2}

(a) If t € J\ dom(e) then h)(t) = hi(t) (= ha(t)).

(b) If ¢t € set(Y1) then hy(t) = hi(t).

(c) Ift € set(Ys) then h)(t) is min{hy(t), hao(t)} if £ = 1, and is max{h4 (t), ha(t)}

if ¢ =2.
(d) Ift € set(Ys) then hj(t) is max{hq(t), ho(t)} if £ = 1 and is min{hq (t), ho(t)}
if ¢ = 2.
Now (h}, h%) is a strict (e | (set(V2) Uset(Ys)), Va)-pair, so we are done. Oe.s

Definition 6.9. 1) For a subset u of J € KEE( | we define e =ey,, € e(J) on J\ u
as follows:
s1esses (Vteu|t<yjs1 =t <y sa)

2)For I,J € K(EE‘*), we say that the pair (I,.J) is non-trivial when e(J, I) # @.

Definition 6.10. 1) For hg,...,h,—1 € inc (1) let
tpe ((Ro, - - - hne1), 1) = {({,m, s,t) 1 s,t € J and hy(s) < hp(t)}.

We may write tpgf(ho7 «ooyhn—1;I) and we usually omit J as it is clear from the
context.
2) For hl,hg S iIlCJ(I) let eq(hl,hg) = {S eJ: hl(S) = ]’LQ(S)}
3) We say that the pair (I,J) is a reasonable (p, a(x))-base when:
(
(

a) I,J e Kﬁf(*), |J| < p, and the pair (I, J) is non-trivial.
b) If e € e(J,I), hi,hy € incy(I), and (hq, h2) is an e-pair then we can find
1y hh, hs €incy(I) and Y C dom(e)/e such that
(@) tpgs((h1,hy), I) = tpgs((h1, he), I)
(8) (Ry,h%) and (hb, hf) are strict (e, V)-pairs.
4) We say that the pair (I, J) is a wide (\, u, a(x))-base when:
(a) 1,J € K_lrif(*), |J| < p, and the pair (I, J) is non-trivial.
(b) for every e € e(.J, I) there is a sequence h = (h, : @ < \) such that
(o) hg is an embedding of J into I.
(8) If a < B < A then (hq, hg) is an e-pair.
5) We say that the pair (I,J) is a strongly wide (A, u, a(*))-base when:
(a) I,J € Kff(*), the pair (I, J) is non-trivial, and J has cardinality < p.
(b) For every e € e(J,I) and ) C dom(e)/e there is h = (h, : a < ) such that
() ho € incy(I)
(8) If a < B then (hqg, hg) is a strict (e, V)-pair.
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6) Above we may omit p (meaning p = |J|) and we may omit a(x), as it is deter-
mined by J (and by I), and then may omit “base.” So in part (3) we say (I,J) is
reasonable, in part (4) we say A-wide, and in part (5) say strongly A-wide.

Observation 6.11. 1) If (I,J) is a reasonable (u, a(x))-base then (I,J) is a rea-
sonable (1, a(x))-base for p' > p.

2) If (I, J) is a wide (A, u, a(x))-base and N < X\, p/ > p then (I,J) is a wide
(X, ', a(x))-base.

3) If (I,J) is a strongly wide (X, u, a(x))-base, then (I,J) is a wide (X, u, a(x))-
base.
Proof. Obvious. Us.11

Claim 6.12. 1) If a(x) =1 and p < {(*) < p* < A, then the pair (A x ((x),¢ (%))
is a reasonable (L, ( ))-based which is a wide (A, p, a(x))-base.

2) If a(x) =2, u* = ({0},2) asin 6.2, u < ((x) < pt < A, /(%) = ((*) x3, and
w C (%), w# C(*) then the pair (IL A (x ),Iﬂ ) w ) is a reasonable (p, a(x))-base
[and] a wide (X, , a(*))-base where

(x) For any ordinal 8 and w C B we define I = IL‘%W Tou(x)-Model. (If
w = & we may omit it.)
(a) Its universe is 3.
(8) The order is the usual one.
(v) PE={a < B:cf(a) > u or a € w}.
(If we write Ig‘;’ﬁ’w we mean here cf(a) > p.)

Proof. 1) First: (I,J) = (A x {(*),((x)) is a wide (), u, a(*))-base

Easily, e(J,I) # @, |J| < pand I,J € Kli}}( > 80 clause (a) of Definition 6.10(4)

holds (recalling Definition 6.9(2)), so it suffices to deal with clause (b).
Let e € e(J,I) and define

u={¢ < ((*) : ¢ € dom(e) is minimal in (/e
or ¢ € ((*)\ dom(e)}.

Now for every a < A we define h,, € inc;(I) as follows:

(a) If ¢ € {(x) \ dom(e) then hy(¢) = A x C.
(b) If ¢ € dom(e) and € = min(¢/e) then hy({) = A x e+ (%) x a + .

Second: (I,J) = (X x {(x),((x)) is a reasonable (u, a(x))-base

Again, clause (a) of Definition 6.10(3) holds so we deal with clause (b).

So assume e € e(J,I), hy,hy € incy(I), (h1,hs) is just a weak e-pair, and
Y C dom(e)/e. Let u = rang(hq) Urang(hy). For £ = 1,2 let h} € inc;(I) be
B (0) = otp( M he(C)), so rang(hf) C €(x) = otp(u) < C(+) x 3

[Why? If ((x) is finite this is trivial, so assume ((x) > w. Let n < w and «
be such that w®n < ((*) < w*(n+ 1), s0 @ > 1 and n > 1. As w® is additively
indecomposable, otp(u) < w*(2n+1): alternatively, use natural sums [MR65] which
give a better bound ((x) & ((x). [Actually, < u" suffices using ((*) < ' large
enough below, still.]]

For ¢ =1,2,3 we define h), € inc;(I) as follows:

(a) If ¢ € ((x) \ dom(e) then hy(¢) = (C(x) x 4) x ¢.
(b) If ¢ € dom(e) and € = min(¢/e) and (/e € Y then:
(o) If £ =3 then hy(¢) = ({(¥) x4) x e +((x) x 3+ (.
(B) If £ =1,2 then hj(¢) = (¢(*) x 4) x € + hj(C).
(c) If ¢ € dom(e) and e = min(¢/e) and (/e ¢ Y then:
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(o) If £ = 3 then hy(¢) = ({(x) x 4) x e+ (.
(8) If £ =1,2 then hy(¢) = ({(x) x 4) x e +¢(*) + h; (C).
Now check.

2) First: (I,J) = ([E,HAXC(*)’I}:?C(*),U)) is a wide (A, , a(x))-base.

Note that P; = w because ((*) < u* and P/ = {a € I : c¢f(a) > pu}. As above,
clause (a) of the Definition 6.10 holds so we deal with clause (b).
Let

u = {¢ < ((x): ¢ € dom(e) is minimal in (/e or ¢ € ((*) \ dom(e)}.

Clearly u is a closed subset of {(x) and 0 € w.
Given ¢ < ((%), let ¢ == max(u N (¢ + 1)); clearly this is well defined by the
choice of u and ¢ < (.
For every oo < A we define h,, € incy(I) as follows:
We define h,(¢) by induction on ¢ < () such that ha(¢) < A x (e¢ +1).
Case A: for ¢ € {(x) \ dom(e).
Subcase Al: ¢ € P/
Let ho(¢) be A x e¢c + pt.
Subcase A2: ( € P{ and ( = 0.
Let hia(C) = 0.
Subcase A3: (€ P{,(=¢+ 1.
Let ha(¢) = ha(§) + 1.
Subcase A4: ( € Py, ( is a limit ordinal, ¢ = sup(u N ¢).
Let ho(¢) = A x e¢c which is equal to [J{ha(¢") : ¢’ < (}.
Subcase A5: ( € Py, ( is a limit ordinal, and & = sup(u N () < ¢.
So (£+41)/e is an end-segment of ¢, but this is impossible by 6.7(2)(c).
Case B: ¢ € dom(e).
Subcase B1: ¢ = min(¢/e) hence ¢ € Py (see 6.7(0)(b)).
Let ho(Q) = A xe¢c +pt x ((*) x a+ pt.
Subcase B2: ¢ € Py hence ¢ > min((/e).
Let ho(¢) = U{ha(¢) +1: ¢ < ().
Subcase B3: ¢ € P/ and ¢ > min((/e).
Let ha(C) = Ulha(C) : ¢ < ¢} + pt

So clearly we can show by induction on ¢ < {(*) that
ha(C) < A x e+ put x ((x) x (a2 +2).

Also, recalling pt <\, clearly for & < X and ¢ < ((*) we have hq (C) < Axec+A.
Now check.

Second: (I}ff&x<<*>7f,lff2(*),w) is a reasonable (u, a(x))-base.

Combine the proof of “First” with the parallel proof in part (1). Os.12
Definition 6.13. 1) Let I,J € KE?( - We say that & is an invariant (I,J)-

equivalence relation when:
(a) £ is an equivalence relation on incy(I), so £ determines I and J,
(b) If h1, ho, ks, hy € incy(I) and tpge(hi, ho; I) = tpg(hs, ha; I) then

hi € hg < hg & hy.

2) We say it is also non-trivial when:
(c) If eq(hy, he) = {t € J: hi(t) = ha(t)} is co-finite then hy € ho.
(d) There are hy, hg € inc;(I) such that =(hy € ha).

3) Let J, 1,15 € KE:Z‘(*). Then I; <! I means that:
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(a) I C I

(b) For every hy, ha, hs € incy(I2) we can find by, k5, hY € incy(I) such that
tqu(h/17hl27hg;ll) = tqu(h17h27h3512)'

Claim 6.14. Assume J, 1,15 € KE?( -

1) If I C I,€& is an invariant (12, J)-equivalence relation then & | incy(Iy) is
an invariant (Iy, J)-equivalence relation.

2)If I <.1] Iy and & is an invariant (I, J)-equivalence relation then there is one
and only one invariant (I, J)-equivalence relation Es such that & | incy(I1) = &;.

3) Assume e € e(J) and Y C dom(e)/e. If (b}, hh) is a strict (e,))-pair for
(I, J) and (RY,hY) is a strict (e, Y)-pair for (I, J) then

tqu(h/h /2711):tqu(h/117 121712)

4) Assume a(x) = 1, J = ((x), I; = B¢ with the usual order (for ¢ = 1,2),
p<C(x) < pt,and pt < By < B2. Then I <1J Iy (see Definition 6.13(3)).

5) Assume a(x) =2, 7 = 1% ) o To= 10, for £=1,2, and 5™+ < By < 6.
Then I, < I (see Definition 6.13(3)).

Proof. 1) Obvious.
2) We define
& = {(hl,hg) : hi, he € incy (1), and for some
', kY € incy(I1) we have
tqu( lla /27[1) = tqu<h17 h2; 12)
and hy &1 hy}.
Now
(%)1 & is a set of pairs of members of inc;(1s).
[Why? By its definition.]

(*)2 hi 52* hq if hy € inCJ(Ig).

[Why? Let h' € inc;(I1) so clearly h' & h' and tp(h', h'; I1) = tpye(h, h; I2)]

(%)s & is symmetric.

[Why? As & is.

()4 & is transitive.

[Why? Assume hy & hg and ho & hs; let hY, hl € incy (1) witness hy €5 he and
Ry, hY € incy (1) witness he E5 hs.

Apply clause (b) of part (3) of Definition 6.13 to (h1, ha, hs3) so there are g1, g2, g3 €
incs(I1) such that tp.r(g1,92,93;11) = tpye(hi, he, ha; Iz). Now hy & hj by the
choice of (hf, hy) and tpye(g1, g2; 11) = tpye(hi, ha; I2) = tpye(hy, hy; I1) so as & is
invariant we get g1 £ go2. Similarly, go &1 g3, so as & is transitive we have g1 &1 g3.
But clearly tp.(g1, 93; [1) = tpye(hi, hs; I2) hence g1, g witness that hy £ hs is as
required.]

(%)5 & is invariant.

[Why? See its definition.]
(*)6 (‘:5 riDCI(Il) = 51.
[Why? By the way &5 is defined and by &; being invariant.]
So together £5 is as required. The uniqueness (i.e. if & is an invariant equiva-

lence relation on inc;(I) such that & [ incy(I1) = &; then & = &) is also easy.
3) Straight.
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4) See'® the proof of “Second” in the proof of 6.12(1).
5) Combine'* the proof of part (4) and of “First” in the proof of 6.12(2). .14

Below mostly it suffices to consider Dg .
Definition 6.15. 1) Let £ be an invariant (I, J)-equivalence relation: we define
De ={u C J:if hy, hy € incy(I) satisfies
eq(hi,he) D u then hy € ho}

recalling
eq(hl,hg) = {t eJ: hl(t) = hg(t)}
2) If, in addition, e € e(J,I) then we let

De. = {u C dom(e)/e : if hy, hy € incy(I) and (hy, ho) is an
(e | (dom(e) \ set(u)))-pair then hy & ha}.

Claim 6.16. Assumel,J € KE}:(*), (I,J) is reasonable (see Definition 6.10(3),(6)),
and & is an invariant (I, J)-equivalence relation.

1) For w C J such that ej,, € e(J,I) we have: w € Dg iff hy &€ ho for every
egu-pair (h1, ha) iff hi € hy for some ej-pair (hi, hy); see Definition 6.9(1).

2) Assume e € e(J,I). Then, for any u C dom(e)/e we have w € Dg ¢ iff h1 € ho
for any (e | set(w))-pair iff h1 € ha for some (e | set(u))-pair.

3) Ife € e(J,I) and uy,uy C dom(e)/e then we can find hy, ho, hs € incy(t) such
that (hy, ha) is a strict (e | set(uy))-pair, (he, hs) is a strict (e | set(usz)) pair, and
(h1,hs3) is a strict (e | (set(ug U ug))-pair.

4) Assume e € e(J,I) and that in clause (b) of Definition 6.10(3) we allow
(h1,ho) to be a weak e-pair. Then, for any u C dom(e)/e we have dom(e)\u € Dg .
iff h1 € ha for every weak e-pair (hy, hs).

Proof. 1) Like part (2).

2) In short, this follows by transitivity of equivalence and the definitions +
mixing, but we elaborate.

The “first implies the second” holds by Definition 6.15(2) and “the second implies
the third” holds trivially as there is such a pair (hy,hs) by the assumption e €
e(J,I). So it is enough to prove “the third implies the first”; hence suppose that
g1 € go where (g1,92) is an ey = e | set(u)-pair (recalling that e; € e(J,I) by
6.8(8)), and let (hq, ho) be an ej-pair, we need to show that hy £ ez. By Definition
6.6(2B), for some sets V,, YV, € dom(e1)/e1, the pair (g1, g2) is a strict (e1, Vy)-pair
and the pair (hy, ho) is a strict (e1, Yy )-pair. Recalling clause (b) of 6.10(3) there
are g1, gh, g5 and ) such that:

(x)1 (a) g; € incy(I) for £ =1,2,3.

(b) tPqe(91,92) = tpas(91, 92)
(¢) Y C dom(ey)/eq
(d) (g1,95%) and (gb, g%) are strict (eq,)-pairs.

3 . «,,+ » s i — .

I _ —_ I - 1

1 Actually, instead of “u* < 81”7 it suffices to have ((x) x 4 < (1, because if () > ¢
i<y

then > ¢; x 4 < ((*) X 4 or just the natural sum () ® (%) B ((*).
i<

i<y
MHere (ut + 1) x (¢(*) x 4) will suffice.
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Now for each s € dom(e;), we can find a permutation ¢5 = ({51, %s2,0s3) of
{1,2,3} such that I | ‘gé_syl(s) < 9r,,(s) < gi,,(s). By (#)1(d) and (+)1(b) and
(g1,9) being an ep-pair, ¢4 clearly depends only on s/e;, and every member of
{(gg, [ (t) : t € s/ex} is below every member of {g; (t):t € s/e1} (and similarly
for the pair (925,2’925,3))' Now we can find (g7, ¢4, g4 ) such that:

(x)2 (a) g/ €incy(I) for £ =1,2,3.

(b) (g7,9%) is a strict (e1, Vp)[-pair.]
(c) (¢7,95) and (g5, g%) are strict (e1, Vgy)-pairs.
[Why? We do the choice for each s/e; separately such that

{97 1 (s/e1), g5 1 (s/er), g5 1 (s/en)} = {1 | (s/er), g5 | (s/e1), g5 | (s/e1)}]

Clearly tqu(gl,gg,l) = tqu(gl,gg,l) = tqu(gz,gg,l) so as & is invariant and
g1 € go clearly gf € g¥ A gy € ¢4, which implies gf € ¢g4. For V' = YV, by clause
(b) of (¥)2 we conclude that tp,¢(g7, g5 ) = tpye(h1, ha; I), so as & is invariant we
are done.

3),4) Slmllarly D6.16

Claim 6.17. Assume I,J € KE?( ) and & is an invariant (I, J)-equivalence rela-

tion.

0) Ife € e(J,I) and & is non-trivial then Dg . contains all co-finite subsets of
dom(e)/e.
1) If the pair (I,J) is reasonable and e € e(I,J) then Dg. is a filter on
dom(e)/e (but possibly @ € Dg ).
2) (a) Dg is a filter on J.
(b) If € is non-trivial, then all cofinite subsets of J belong to Dg
but & ¢ De.
Proof. 0) Easy, see Definition 6.13(2).
1) By 6.16(2) and 6.16(3).
2) Trivial by Definition 6.15(1). Og.17
Claim 6.18. Assume
m)LJng”
(b) € is an invariant (I, J)-equivalence relation.
(c) (I,J) is a reasonable (u,a(x))-base which is a wide (X, u, a(*))-base.
(d) e €e(J,I)
(e) g is a function from dom(e)/e into some cardinal 6.
(f) D* ={Y CO:9 YY) € De.} is a filter; i.e. & ¢ D*.
Then & has at least x = )\G/D* equivalence classes.

Proof. Let (fo : @ < X) be a set of functions from 6 to A exemplifying y = \?/D*,
soa £ = (i <0 fuli) = fa(i)} ¢ D"

Let (h¢ : ¢ < A) exemplify the pair (I,J) being a wide (A, p, a(*))-base (see
Definition 6.10(4)), so h¢ € incy(I).

Lastly, for each oo < x we define h* € inc;(I) as follows:

h%ﬂ:{m@ if t € J\ dom(e)

hfa(g(t/e))(t) if t € dom(e)
Now

(x)1 h* is a function from J to I.
[Why? Trivially; recalling each h¢ is as well.]



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

88 S. SHELAH

(¥)2 h™ is increasing.
[Why? Let s < ¢, and we split the proof to cases.
If s,t € J\ dom(e) use “hg € inc;(I)”.
If s € J\ dom(e) and t € dom(e), then h*(t) = hy_ (g(t/e))(t) and h¥(s) = ho(s) =
. (g(t/e)) (s) because (hq | (J\ dom(e)) : @ < ) is constant (recalling (ho, hq) is
an e-pair for a > 0), so as hy_(4(t/e)) € incy(I) we are done.
If s € dom(e), t € J\ dom(e), the proof is similar.

If s,t € dom(e), s/e # t/e, we again use Definition 6.6(2B) and clause (b)(53) of
Definition 6.10(4).

Lastly, if s, ¢ € dom(e), s/e = t/e then we get g(s/e) = g(t/e), hence f,(g(s/e)) =
fa(g(t/e)) (call this v). So h*(s) = h,(s), h*(t) = h,(t), and of course h, € inc;(I)
hence h~(s) <r h-(t) so necessarily h*(s) <y h*(t) as required. So (*)s holds.]

(¥)3 h* € incy(I).

[Why? Clearly if i < a(x) and ¢t € P then (V3 < A)[hs(t) € P/] hence
a < X = hfa(g(t/e))(t) € PiJ

which means o < y = h®(t) € P/; so recalling (x)a, clause (a) of Definition 6.3(2)
holds. We should check clauses (b),(c) of Definition 6.3(2) which is done as in the
proof of 6.7 and of (x)y above.]

(%)4 if o < B and we let

u=1qp = J{g71() s ( <O and fa(() # fo(O)}
so u C dom(e)/e then (h®,h?) is a (e | set(u))-pair.
[Why?
Case 1: If s € J \ dom(e) then h®(s) = ho(s) = hA(s).
Case 2: If 5 € dom(e) \ set(u) then h®(s) = Ay (g(s/e))(5) = hpy(gsen(s) = hP(s).
Case 3: If s,t € set(u), s/e # t/e, and s < t then h*(s) <; hP(t) AhP(s) <; h(t)
because
Subcase 3A: If f,(g(s/e)) = fa(g(t/e)) we use hy_(g(t/e)) € inc(I) hence

(
h(8) = Rya(g(s/e(8) <1 hgugls/en(®) = Ppa(gusen (t) = b7 (1)
and similarly h®(s) <; h®(t).
Subcase 3B: If .fa( g(s/e)) # falg(t/e)) we use “(hy, (g(s/e))s Prag(t/e))) 1S an e-
pair”.
Case 4: And lastly, if s,¢ € set(u),s/e =t/e and s <; ¢ then
he(t) <1 hP(s) = (s/e € u) = h®(s) <1 hP(t).

Why? Recalling fo(g(s/e)) # fa(g(t/e)) as s,t € set(u) by the definition of u,
see (x)4 and we just use “(hy, (g(s/e))s Pfs(g(s/e))) 18 an e-pair” and clause (c)’ of
Definition 6.6.]

(*)5 If & < B then uy g # @ mod Dg .
[Why? By the choice of (fy : oo < A).]
(¥)6 if o < 3 then h® P are not E-equivalent.
[Why? By (%)4 + (*)5 and 6.16(2).]
Together we are done. Us.18

Claim 6.19. Assume & is an invariant (I, J)-equivalence relation, I,J are well
ordered and |incy(I)/E] > X = cf(\) > p = |I| > |2+ a(x)|!!. Then for some e €
e(1,J) there is an ultrafilter D on dom(e)/e extending Dg . which is not principal.
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Remark 6.20. This is close to [She99b, §7].

Proof. Without loss of generality, as linear orders J is ((x) and I is £(x) € [u, u™).
Toward contradiction assume the conclusion fails. Let g be a one-to-one function

from p onto [£(%)] <0, x be large enough, & = |J|, and @ = |2 + a(*)|l’ so 9 = 0.
We now choose (N,, : 7 € ") by induction on n < w such that

®1 (a) Ny < (H(x),€)
(b ||N||f8and8+1CN

)
() ACN, AN|A|<k=A€N,
(d) I,J and g as well as n belong to N,,.
(e) v<a4n = N, € N, (hence N, C N,, SONZ,-<N77).

There is no problem to do this. Now it suffices to prove that for every h € inc;(I),
for some h' € |J{N,, : n € “Zu} Ninc;(I), we have h € K.

Fix h, € inc;(I) such that h, ¢ (J{h/E : h € inc;(I) N N, for some n € ““u}
and for each n € “”u we define ay,, e, as follows:

®2 (a) ay = (ant:t€J)

(b) ay,e = min ((5(*) +1) NNy \ ha(t))
(c) ey :={(s,t):s,t €J, ays = s, s > ho(s), and oy > hy(t)}.
(d) For a € Ny let X, o :={t € J:ay =a>h()}.
Note
(*)1 0y, € Ny

[Why? As [N,]S% C N, |J| =k, and a,,; € N, for every t € J.]
(¥)2 (a) e, € e(J); i.e. ey, is an equivalence relation on some subset of J, with
each equivalence class a convex subset of J (see Definition 6.6(1)).
(b) () (Xya:a € {ay::tec dom(e)}) list the e,-equivalence classes.
(Note that X, o # @.)
[Why? Think.]
(¥)3 hy = hy [ (J\ dom(ey)) € N,,.
[Why? By the definition of e, we have t € J At ¢ dom(e,) = h.(t) € N,, and
recall [N,]S% C N,,.]
(%)4 If t € dom(e,) then cf(av, ) > 0.

[Why? As a,; € N, < (H(x),€) if cf(a,;+) = 6 < O then there is a cofinal set B
of a,; of cardinality ¢ in IV, but § < 0+ 1 C N, therefore B C N,,. In particular,
as h.(t) < ay, there is § € B so that h,(t) < 3, but this contradicts the choice of

Q.|
(*)5 €y € e(J, ).
[Why? Choose h' € inc;(I) N N, similar enough to h,. Specifically,
t € J\ dom(e,) = N (t) = h.(t)
and
t € dom(e,) = sup{ay,s:s€J, s<;jtand s ¢ t/e,} <h'(t) <oy,
(the point being that sup{ay, s :s € J,s <jt and s ¢ t/e,} € N,). Now (h/, hy) is
a strict e-pair.]

()¢ Thereis ¢, < w and a finite sequence (8, ¢ : ¢ < {,) of members of rang(a,, |
dom(e,)) [with] X, 5, , € dom(e,)/e, for £ < {, such that

U Xus,. € Deec,-
e<t,
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[Why? Otherwise there is an ultrafilter as desired, but toward contradiction we
have assumed this does not occur; in trying to get generalizations we should act
differently.

Now we choose (7, hy,) by induction on n < w such that

)
(b)
(¢) hy, €incy(I)
(d§

a) hy, € hy, hence hy, € h, and dom(e,, ) C dom(e,,, ).
) [ (J\ dom(ey,,)) C hn
) (o T U 0,00 € <l }) €
(8) hn | (dom(ey,, ) \ U{Xn,..8,. . : € <Zly,}) belongs to N, .
() Moreover, t € dom(e,,,) \ U{X, : 0 < 4, } implies
hin(t) < han(2).
©) &y, >0
(f) Yiny1 C Yo, where Y, = (X5, 5, 0 1 £ <Ly}

Why can we carry out the construction? For n = 0 we obviously can: choose
ho = h.. For n = m + 1, first choose h), € N, as in the proof of (x);. Now,
recalling (X, ., By,..c : £ < £,,.) was chosen in (x)g, define h,, by

b T (dom(enm)\U{Xnmanyn‘E < Enm}) = hp, | (dom(enm)\U{Xnm,ﬁnm‘e < gn})»
ho [ (J\ dom(ey,,)) = b [ (J\ dom(ey,,),

wnﬁnm,l

and

P 1 (Ut €< 1} ) = B | (UK €< 6, }).
Why h,, € h.,,?7 Because
(i) as in the proof of (%), (hn,hp) form a strict £,-pair,
(ii) they agree on (U{Xy,, 5, £ <In},
(iii) and {X,,, 3, ¢:€<n} € Dee,.
Lastly, choose 17, = 7" {(ym) where 7, is chosen such that

90rm) = { 5P (Bye \ suplhn(t) st € X5, )il <0y, }

recalling that g is a function from g onto [¢(x)]<Ne = [I]<No.

Now check that n,, h,, are as required.

Note that this induction never stops (in the sense that h,, ¢ N, ) recalling the
choice of hy and h,, € hy. Now Uy, == {B,,. ¢ : £ < ny} is a finite non-empty set of

ordinals, and if n = m 4+ 1, then easily

(VE < eﬂn)(ak < E"'lvn)[ﬂnnvé < /Bnmxk]

because for £ < ¢, letting ¢t € X, , we know that for some k& < 7, =~ we have
t € X,k and 7,(m) was chosen above such that as v,,, now hy(t) < v, € Ny, ,
Ym < @, + and the inequality is strict as cf(ay,,, ;) > 0. So (max(U,) : n < w) is a
decreasing sequence of ordinals, a contradiction, so we are done. Us.19

Example: For e € e(J,I), J € KEI‘( ) and I € Kfl‘( | we define & = &7, an

invariant equivalent relation on inc;(I), by the follow;ng.
hy & 1 ha iff:
(a) If t € J\ dom(e) then hy(t) = ha(t).
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(b) If ¢ € dom(e) then cnvyp, (t) = cnvy p,(t), where cnvy ,(s) is the convex
hull (in ) of the set

{hi(s)} U U {[hi(s),h1(t)];: s <stand t € s/e} U
U {0r(), h(s)]s -t < s and t € s/e}.

1) If I € KE?( , are well ordered and e = J x J then & from part (1) has

< |I| + Ry equivalence classes.
2)If J € KEP( , and e as in part (2), 0 = cf(J) and |J| < A = A< < A% then
there is I € K  of cardinality A such that & r has M\ equivalence classes.

a(x)

Remark 6.21. We can define the stability spectrum for some classes; essentially this
is done in §7, and generally we intend to look at it in [S*h].



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

92 S. SHELAH

§ 7. CATEGORICITY FOR AEC WITH BOUNDED AMALGAMATION

Recall that 4.10 is the main result of this chapter; we think that it will lead
to understanding the categoricity spectrum of an AEC. In particular, we hope to
eventually prove that this spectrum contains, or is disjoint to, some end segments
of the class of cardinals. Still, here we would like to show that we at least have
enough for sufficiently restricted families of AEC £-s: those definable by L, ,, for & a
measurable cardinal, or with enough amalgamation. (Concerning them and earlier
results, see [She].) We could have relied on'® [She99a], but though we mention
connections we do not rely on it, preferring self-containment.

We can say much even if we replace categoricity by strong solvability, but do
this only when it is cheap; we can work with weak and even pseudo-solvability, but
will not do so here.

Hypothesis 7.1. 1) 8 is an AEC, so S(M) = Sg, (M) for M € Ky; see [She09c,
0.12].

2) Let K3 be the class K, if K is categorical in y, and be the class of superlimit
models in K, if there is one. (The two definitions are compatible.)

The following is a crucial claim because lack of locality is the problem in [She99a].

Claim 7.2. Assume
(a) cf(pn) > Kk > LST(R)
(b) R« has amalgamation
(c) ® € YU[R] satisfies: if I is 0-wide and 0 € (k,u) then EM, () (I, M) is
0-saturated (see 0.14(1), [She09c, 0.15(2)] and [She09c, 0.19]).
Then

(a) For some p, < p, the class {M € K., : M is saturated} is [fi, pt)-local
(see Definition 7.4(3) below).

()t This applies not only to S(M) = S*(M) but also for S?(M) if cf(p) > k?.

Recall
Definition 7.3. 8 is p-stable if u > LST(R) and M € K<, = |[S(M)| < p.

Recall [She99a, Def.1.8=1.6tex(1),(2)].

Definition 7.4. 1) For M € K, p > LST(R) satisfying p < ||M]| and o [what
about o7], let Eps ;o be the following equivalence relation on S“(M):

P1 Enrp,o p2 iff for every N <g M of cardinality u we have p; [ N = pa | V.
We may suppress « if it is 1, similarly below; let E,, o be U{Ens .o : M € K} and
soE, =E, 1.

2) We say that M € R is p — a-local when Ejps ,, o is the equality; we say that
p € S*(M) is p-local if p/Ens ., is a singleton and we say, e.g., K/ C fis p1—a-local
(in R, if not clear from the context) when every M € K’ is.

[Is this supposed to be (u — «)-local, p-a-local, or (u,a)-local?]

3) We say K’ C R is [p«, ) — a-local if every M € K' N 8),+ ) is ps — a-local.

4) We say that a € N realizes p € SF(M)/E, o if M <g N and for every
M’ <g N of cardinality p the sequence @ realizes p | M’ in N (or pedantically, it
realizes ¢ | M’ for some — equivalently, every — ¢ € p).

131 the references to [She99a), e.g. 1.6tex is the definition labelled 1.6 in the published version
and 1.8 in the e-version.
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Remark 7.5. If M € K, then M is p — a-local.

Proof. Recall ® € TO'[R]; see Definition 0.8(2) and Claim 0.9. Easily, there exists
<I 0 :0 € |k, u)> an increasing sequence of wide linear orders which are strongly No-
homogeneous (that is dense with neither first nor last element such that if n < w
and 5,t € "(Iy) are <;-increasing then some automorphism of Iy maps 5 to ; e.g.
the order of any real closed field, or just [of any]| ordered field) satisfying |Iy| = 0.

Recalling Q here is the rational order, we let Jy = Q + Iy, My = EM,(5)(Ip, ®),

and Ny = EMT(ﬁ)(Jg, (I)) So
® (a) My <g, No

(b) Mgl <g M92 and Ngl <g N92 when k < 61 < 0y < L.
(¢) My is saturated (for K, of course) when 6 > &.

(d) Every type from S(My) is realized in Np.

(e) if n <w, @ € ™"(Np) then for some a’ € "(N,;) and automorphism 7 of

Ny, w(a) = a’ and m maps My onto itself.

[Why? Clauses (a),(b) hold by clause (c) of Claim 0.9(1), recalling Definition 0.8(2).

Clause (c) holds by Clause (c) of the assumption of 7.2; you may note [She99a,
6.7=6.4tex(2)].

Clause (d) holds as EM () (01 +Jy, ®) € Ry+ is saturated, and use the definition
of a type (or, like the proof of clause (e) below, using appropriate I’ + Iy instead
of 6% + Jy); you may note [She99a, 6.8=6.5tex].

Clause (e) holds as for every finite sequence ¢ from Jy there is an automorphism
7 of Jy such that: 7 is the identity on Q, it maps Iy onto itself and it maps t to a
sequence from J, = Q + I,,. Such 7 exists as Iy is strongly Ng-homogeneous and
I,. C Iy is infinite.

For any a # b from N, let

p(a,b) = min{6 : 6 > x and if 6 < p then
tpg(a, My, Ng) # tpg(b, Mg, Np)}.
So p(a,b) < . Let
s = sup{p(a,b) : a,b € N,, and p(a,b) < p}.

So i, is defined as the supremum on a set of < k X k cardinals < p, which is
a cardinal of cofinality cf(u) > k, hence clearly u, < p. Also p. > K as there
are a # b from M, hence u(a,b) = k. Now suppose that 0 € [, ), M € Ry is
saturated, and p; # p2 € S(M), and we shall find M’ <z M and M’ € ], such
that p1 | M’ # po | M’: this will suffice.

Clearly My € Ky is saturated (by clause (c¢) of ®) hence the models M, My are
isomorphic, so without loss of generality M = My. But by clause (d) of ® every
type from S(Mpy) is realized in Ny, so let by be such that py = tpg(be, My, Ng) for
¢ = 1,2. Now there is an automorphism 7w of Ny which maps My onto itself and
maps by, by into Ny, (by clause (e) of ®). Let ap = w(by) for £ = 1,2, so ay,as € Ni.

Now

tp(ah M@a Ng) = tp(ﬂ_(bl% W(Mg), ’/T(N(’)) = ﬂ—(tp(blv M@a NQ))
#* W(tp(bg, My, Ng)) = tp(ﬂ(bg), W(M@), W(Ng)) = tp(a27 My, NQ).

Hence by the definition of u(a1,as) we have p(ai,a2) < 6 < u. Hence by the
definition of u, we have p(a1,a2) < p, which implies that

tpﬁ(ah MuwNu*) 7é tpﬁ(a% Mu*aNM*)'
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As 7 is an automorphism of Ny and M~ <g My it follows that
tpg (! (ar), 7 (M=), w1 (Ng)) # tpg(m " (az), 7~ (M), ' (Np))

which means

tpg(br, m (M), No) # tpg(be, m~ ' (My-), Ng)
but 771 (M) <g Mp, as ™ maps My onto itself. Recall that p, = tpg(be, My, Np)

sope | w1 (M) is well defined for £ = 1,2. Hence py | 7~ (M) # pa | m1(M,,+)

and clearly 771(M,-) has cardinality u* and is <g My, so we are done proving
clause («). The proof of clause ()T is the same except that

(¥)1 if 0 € [k, ), t € YIp) then some automorphism 7 of Iy maps ¢ to some
' € 9(I,); this is justified by 5.1.

(x)2 We replace Q by dF.

(¥)3 Y(N,) has cardinality < (0% + )2 < k9 < cf(u). [

Implicit in non-p-splitting is
Definition 7.6. Assume o < ut, N € K<,,, N <g M, and p € §*(M) does not
p-split over N (see Definition [She09e, gr.1(1)]). The scheme of the non-y-splitting,
p = sch,(p, N), is
{(N",¢,b)een/=: N <z N' <g M and N' <g N”, {N',N"} C K,,,
and the sequence b realizes p | N’ in the model N”'}.
Definition 7.7. For a cardinal p and model M let

)

ps-Su(M) = Sg (M) = {p : p is a function with domain {N € K, : N <z M}
such that p(N) € S(N) and
N1 <g N> € dOHl(p) = p(Nl) = p(NQ) er}

2) For p € S(M) let p | (< p) be the function p with domain
{N € K, : N <4 M} such that p(N) =p [ N.

Observation 7.8. 1) The function p — p | (< u) is a function from S(M) into
ps-S,. (M) such that for pi,ps € S(M) we have py [ (< p) =p2 [ (£ 1) & p1 Ey po.
2) The subset {p | (< p) :p € S(M)} of ps-S,.(M) has cardinality |S(M)/E,|.

Proof. Should be clear. Urs

Claim 7.9. Every (equivalently, some) M € K is AT -saturated when:
(a) (o) R is categorical in u, or just
(8) R is strongly solvable in p.
(b) LST(R) < A< x < p and 2% < p (actually, 2> < p will suffice).
(¢) (a) Rysa = AP <y, or at least
(8) If0 = cf(0) < X is Rg or a measurable cardinal then for some d € (X, x)
we have & = 0<% < 9% or at least 0% > 0. (Le. there is a tree T
with 0 levels, O nodes and the number of 0-branches of T is > x; see
[She00].)
(d) R>9 # @ for every 0. Equivalently, K9 # @ for arbitrarily large 8 <
3y 1(LST(R)).
(e) (o) Re, has amalgamation and JEP, or just
(8) If LST(R) < 9 < x then
(i) Rs has amalgamation and JEP, and
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(i) R has (0, < 0T, u)-amalgamation'® (see [She09a, 2.5(2)] ) hence!”
(iii) Every M € K+ has a <g-extension in Kj;. (Actually, (i) +
(i) suffices.)

Remark 7.10. 1) M is A*-saturated is well defined as fi<) has amalgamation.

2) We assume 22" < i because the proof is simpler with not much loss (at least
as long as other parts of the analysis are not much tighter).

3) We can weaken the assumptions. In particular using solvability instead cate-
goricity, but for non-essential reasons this is delayed; similarly in 7.13.

4) If o = p* the claim is easy (as in §1).

Proof. Note that by [She94, IX,§2], [She94, II,3.1] if clause (¢)(«) holds then clause
(¢)(B) holds, hence we can assume (c)(5).

Let ® € TY (see Definition 0.8(2)); [it exists| by 0.9 and clause (d) of the
assumption and I € K}j“ = EM, (g (I, ®) € K] (trivially if K is categorical in p,
otherwise by the definition of solvable).

Clearly

(%)o If 0 € [LST(R), x) then R is stable in 0.

[Why? We prove assuming clause (e)(8), as the case of clause (e)(a) is easier.
Otherwise, as K9 has amalgamation, there are My <g M; such that My € Ky,
M, € Ky+ and {tpg(a, My, M) : a € M;} has cardinality 7. By assumption
(e)(B)(iii) there is Ny such that M; <z N; € £, and without loss of generality
Ny € K. Let I beasin 5.1 with (X, 02,0y, 1) there standing for (u, 07+, 0%, 9) here
and Ny := EM; () (I, ®). Now by 5.1(2), N1 # N3, contradicting “f categorical in
w”. Or you may see [She99a, 1.7=1.5tex].]

The proof now splits to two cases.

Case 1: For every M € Kj; we have p > |S(M)/E,|.

For every M € K, there is M’ such that: M <z M’ € K, and for every
p € S(M)/E, either p is realized in M’ or there are no M” or a such that M’ <g
M" € K,, and a € M" realizes p in M".

[Why? Let (p;/Ex : i < p) list S(M)/Ey ( this exists by the assumptions)
and choose M; for i < p, <g -increasing continuous, such that M;,; satisfies the
demand for p = p;/Ey, possibly no p € p;/Ey has an extension in S(M;1) (hence
is not realized in it), so then the desired demand holds trivially; note that it is not
unreasonable to assume £, has amalgamation and it clarifies matters, but it is not
necessary.]

Also without loss of generality M’ € K ;; as any model M from K, has a <g-
extension in K] (at least if M does <g-extend some M’ € K).

Now we can choose by induction on i < A* a model M; € K s <g-increasing
continuous with ¢, such that for every p € S(M;) either there is ¢ € S(M;) realized
in M;11 which is Ey-equivalent to p or there is no <g-extension of M, satisfying
this. Now we shall prove that My+ is AT-saturated, recalling Definition [She09c,
0.15]. Now if N <g M,+, |[N|| < A, and p € S(N) then there is i < AT such
that N <g M; and we can find p’ € S(My+) extending p. (Why? If clause

161 suffices to have: if Mo <g M1 € Kgt, M1 <g M2 € Kff, and Mo € Ky then M; can be
<g-embedded into some M3 € K};. Similarly in 7.13.

Y"Why? Assume M € Kyt. Let Ma € K¥, let Mo <g Ma be of cardinality 9, let My € Ky
be a <g-extension of My which there is an <g-embedding f of M into M; (exists as Ry has
amalgamation and JEP). Lastly, use “f has (9, < 87T, u)-amalgamation
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(e)(a) holds then this follows by R, having amalgamation; see [She09a, 2.8]. If
clause (e)(8) holds, use “f has the (A, < AT, u)-amalgamation property,” recalling
LST(R) < A < x.) Hence there is a € M;44 such that tp(a, M;, M;+1) Ex (o' | M;),
hence a realizes p in M1, hence in My+.

Case 2: Not Case 1.

Let I be as in 5.1 with (), 62,0y, 1) there standing for (u, AT, AT, \) here, so
|| = p. Let M = EM, (&) (I,®), so by ‘not Case 1’ we can find p; € S(M) for
i < pt pairwise non-Ey-equivalent. As £, is a \-AEC with amalgamation and
is stable in A (by (*)p) we can deduce (see [She09e, gr.6(2)]) that: if p € S(M)
then for some N <g M of cardinality A the type p does not A-split over N (or see
[She99a, 3.2 = 3.2tex(1)]). For each i choose N; <g M of cardinality A such that
p; does not p-split over N;. As there is no loss in increasing N; (as long as it is
<g M and has cardinality A\) without loss of generality,

(*)1 N; = EM,(g)(L;, ®) where I; C I and |[;] = A, and let ¢; = (tL : & < \) list

I, with no repetitions.
As 2* < pu, without loss of generality the I;-s are pairwise isomorphic, so without
loss of generality for 4,5 < p*, the mapping t! ~ t! is such an isomorphism.
Moreover, without loss of generality
(x)2 For every i, j < u™ there is an automorphism 7; ; of I mapping t. to ¢/ for
e <A
[Why? By 5.1(1) as we can replace (p; : i < u*) by (p; : i € U) for every unbounded
UCpt]

Let p; be the non-A-splitting scheme of p over N; (see Definition 7.6). Without
loss of generality:

(%)s For 4,j < pu*, the isomorphism h; ; from N; = EM,g)(I;,®) onto N; =

EM; () (1;, ®) induced by the mapping té — té (for ¢ < \) satisfies

(i) It is an isomorphism from N; onto N;.

(11) It maps P to p;.
[Why? For (i) this holds by the definition of EM(Z;, ®). For (ii) let h; o map
p; to p;. The number of schemes is < 22A, so if pu > 922" then without loss of
generality ¢ < ut = p, = p} hence we are done (with no real loss). If we weaken
the assumption p > 22" to p > 2> (or even p > A, so waive (*)2) using 5.1(4) we
can find I;" such that I; C I} C I, \Ij'| < A*, and for every J C I of cardinality
< A there is an automorphism of I over I; mapping J into Ij. So only

<P§((EMT(R) (15, ®), ¢, b)cerM, () (10,0)/=) b € *(EMy(g) (17, ‘I’))>

matters (an overkill) but this is determined by p; | EM, g (I;,®)) which €
S(EM,(g)(I5,®)) by ()0, and as & is stable in AT, without loss of generality
Pl = p1 and we are done.]

Now we translate our problem to one on expanded (by unary predicates) linear
orders which was treated in §6. Recall that by 5.1(3), we can use I = EMy(I*, ¥)
where W € TJ"[2] (see Deﬁpition 0.11(5)) and I* = I}\i,erA+ from 6.12(2) with
a(x) = 2. Recall that [* = I;\I,ILxA++ is u x ATt expanded by

Py ={aeTl":cf(a) > A"},
Py =1I.\ Py so I* is a well ordered 75-model, i.e. € KEQ?, see Definition 0.11(5).
Without loss of generality I; = EMy (1], ¥) where I} C I* has cardinality A and
the pair (I*, I) is a reasonable (A, a(x))-base which is a wide (u, A, a(x))-base; see
Definition 6.10(3)(4), Claim 6.12(2). Without loss of generality, for every i < p*
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there is h; an isomorphism from I} onto I} such that (see below) the induced
function h[ll] maps to to ;. Let J* = I and J = I,. We would like to apply §6 for
J*, I* fixing a(x) = 2, u* = (u”,u") = ({0},9). So, recalling Definition 6.3(2),
for every h € inc?i (I*) we can naturally define the function Al by

h[l] (O'EM(J*’\II)(tQ, ce 7tn—1>) = O'EM(J*’\IJ) (ah(to), N ’ah(tnfl))
whenever o(zg,...,2n—1) is a 7(¥)-term and J* E “tg < ... < tp—1”. It is an
isomorphism from EM;y(J*, V) onto EMyy(I* | rang(h),¥) so, as J* C I*,
by 5.1(5) there is an automorphism Al of I extending Al!l and so there is an
automorphism Al of EM(I, ®) such that hl%l(a;) = a2 for t € I and

B3] (UEM(I,<I>)( _ UEM(I,@)(

ato,...,at%l)) ah[z](to),...,ah[z](tn))
where tg <7 ... <y tn—1 and o(xg,...,2n_1) is a 7(P)-term.
Note that
(%)a If B',h" are automorphisms of EM, g (], ®) extending AR EM; 14 (1o)
then A'(po/Ex) = B (po/Ex).
[Why? Because pg does not A-split over EM,(g)({o, ®).]
We define a two-place relation € on inc« (I*) by

hi € hy if B (po/Ex) = b (po /E,).

(Note that h +— hl3l is a function, so this is well defined, and k) is an automorphism
of EM;(g)(1,®).) By ()4 clearly £ is an invariant equivalence relation on inc%. (I*)
with > p equivalence classes as exemplified by (h; : i < p*).

By 6.19 there is e € e(J*, I*) such that (recalling Definition 6.16) the filter Dg .
has an extension to a non-principal ultrafilter D; so for some regular 8 < A there is
a function g from dom(e)/e onto § which maps D to a uniform ultrafilter g(D) on
6, so 90 < Gdom(e)/e/D&e for every cardinal 9. Choose such a pair (g, ) with
minimal 6 so D is f-complete hence 8 = R or 6 is a measurable cardinal < \. By
clause (¢)(8) of our assumption (justified in the beginning of the proof) there is
0 € (\*,x) such that 9 < 9= hence 9+ < 9= < gdom(e)/e /D, .. So, letting
I§ =13 v ©I%, the set {/€ : ¢ € incy-(I*) and rang(f) C Ig} has cardinality
> 0. Now for each t € inc ;™ (I*) let 77 € Aut(I) be such that mz(fy) = £ and let 7z
be the automorphism of EM, g (I, ®) induced by 77, and let p, = 7z(po) € S(M).
Hence

{frg(po) i EMT(ﬁ)(I§%XA+’¢) 1te incJ*ﬂ*(I*) and rang(t) C I;\i%x)\++}
is of cardinality > 0, contradicting “£ stable in 9” from (x)o. Ur.g

We note, but we shall not use

Conclusion 7.11. 1) Under the assumptions of 7.9 we have k(R,) = R, see below.
2) Moreover, kg (R,) = @.

Recall

Definition 7.12. If 8, is an y-AEC with amalgamation which is stable, then:
(a) K(R,) = Vo + sup{sk™ : k regular < p and there is an <g -increasing
continuous sequence (M, : ¢ < k) and p € S(M,) such that My o is
universal over My; 1 and p | Ma; o does p-split over My 11}
(b) Ksp(Ry) = {x < p : k regular and there is an <y -increasing continuous
sequence (M; : i < k) and p € S(M,;) which p-splits over M; for each i <
and My, 1o is universal over Ma; 1}



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

98 S. SHELAH

Proof. By playing with EM(I, ®), (or see Claim [She99a, 5.7=5.7tex] and Definition
[She99a, 49:44tex]) D7_11

Question: Can we omit assumption 7.9(c) (see below so xy = LST(8))?

Theorem 7.13. For some cardinal A\, < x and a cardinal Aoy < 31,1()\;*‘“’) above
Ax, R is categorical in every cardinal A > A but in no X € (A, A\x), provided that:
@ (a) K is an AEC categorical in pu.

(b) R has amalgamation and JEP in every A < X,, A > LST(8).

(¢) x is a limit cardinal, cf(x) > LST(R), and for arbitrarily large A < x
the sequence (22" 1 n < w) is increasing.
(d) 1> 11(N) for every X < x hence p > X,.
(e) BEvery M € Kon has a <g-extension in K,.

Remark 7.14. 1) Concerning [She99a] note
(a) There the central case was £ with full amalgamation (not just below x <
w!), trying to concentrate on the difficulty of lack of localness,
(b) When we use clause (e), this is just to get the “M € K, is A-saturated”;
this is where we use 7.9.
(¢) We demand “cf(y) > LST(R)” to prove locality.

2) We rely on [She09c| and [She09¢] in the end.

3) The assumption (e) of 7.13 follows if & has amalgamation in every X' < 3 1())
for A < x, which is a reasonable assumption.

4) Most of the proof works even if we weaken assumption (a) to “8f is strongly
solvable in y” and even to weakly solvable; i.e. up to [J;. We continue in [STb];
see more there.

5) Theorem 7.13 also continues Kolman-Shelah [KS96], [She01], as its assump-
tions are proved there.

Proof. Let k = LST(R), and let ® € TO'[R] be as guaranteed by 0.9(1), hence
(¥)1 If I € K} then EM,(g)(I, ®) belongs to K for A > LST(R) (and in the
strongly solvable case, I € K}j“ = EM,(x)(I,®) € K}).
and
(¥)2 If I C J are from K'" then EM;(g)(1, @) <g EM, (g (J, ®).
Also
(%)3 (Sa(M): M € Ry, ) has the reasonable basic properties.
[Why? See [She09¢c, 0.12] and [She09c, 0.12A]; because Ry, has the amalgamation
property by clause (b) of the assumption ®*.]
(¥)a If M € K, then M is x-saturated (hence x-model homogeneous).
[Why? We shall prove that if LST(R) < A < x and M € K then M is \*-
saturated. We shall show that all the assumptions of 7.9, with (u,x, A) there

standing for (u,R,, ) here, hold. Let us check: clause (a) of 7.9 means “Rf is
categorical in p” (or is strongly solvable) which holds by clause (a) of ®/z*. Clause
(b) of 7.9 says that LST(R) < A <X, < p and 22" < yi: the first holds because of
the way A was chosen above and the second holds as clause (d) of ®* says that
> 31 1(A) and p > R,. Clause (c)(a) of 7.9 holds as AT < Ry4s which is < Ny
as x is a limit cardinal and R, here plays the role of x there. Clause (d) of 7.9
says R>p # @ for every cardinal 9, holds by (), above. Lastly, clause (e) of 7.9
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holds: more exactly, clauses (e)(3)(i)+(iii) hold by clauses (b) + (e) of ®x* and
they suffice.

We have shown that all the assumptions of 7.9 hold, hence its conclusion, which
says (as M € K,,) that M is A*-saturated. The “y-model homogeneous” holds by
[She09¢, 0.19].]

(%)s If M <g N are from K, then M <p__ (a) N.
[Why? Obvious by (*)q4.]

(%) f A € (k,x) and I € KIZ”; is A-wide then EM, (g (I, ®) is A-saturated;
moreover, if IT € K" is wide over I then every p € S(EM, k) (I, ®)) is
realized in EM, (g (I, ®).

[Why? By 1.14, its assumption “® satisfies the conclusion of 1.13” holds by (x)s,
(or as in [She99a, 6.8=6.5tex]). The “moreover” is immediate by (x)4 as in the
proof of ®(d) inside the proof of 7.2 above, or see the proof of (x)19 below.]

(¥)7 R isstable in A when K <\ < .

[Why? Recalling clause (e) of the assumption of 7.13, by Claim 7.9 (or more
accurately, (x)o in its proof) as we have proved (in the proof of (x)4) that the
assumptions of 7.9 hold with (4, x, A) there standing for (i, R, \) here.]

(x)s If A € [k, x) and M € KY then there is N € 8, which is (A, Ng)-brimmed
over M.

[Why? By (x)7 and [She09c, 0.22(1)(b)] remembering the amalgamation, clause (b)
of the assumption of the theorem.|

(¥)g If (M, : & < A) is <g-increasing continuous, x < ||My]| < A < x, then no
p € Sg(M)) satisfies “p | M;1 does A-split over M; for every i < \.”

[Why? Otherwise we get a contradiction to stability in A, i.e. (x)7, see in [She09e,
gr.6](1B), using amalgamation (using the tree °>2 when 6 = min{9 : 29 > \}; also
we can prove it as in the proof of case 2 inside the proof of 7.9.]

We could use more

(*)10 If I, Iz are wide linear orders of cardinality A € (k, x) and Iy is wide over
I (so I € I3) and My = EM,(g)(I¢, ®),then M, is universal over M; and
even brimmed over I, even (A, d)-brimmed for any regular 9 < A.

[Why? As I is wide over I, we can find a sequence (J,, : v < A) of pairwise disjoint
subsets of Iy \ I; such that each J, is a convex subset of Iy and in J, there is a
monotonic sequence (t, , : n < w) of members. Let (7. : ¢ < XA x 0) list A, and let
1270 = Il, 12,14_5 = IQ \ U {J'YC : C € []. + 6,)\ X 8)}, and Mé = EMT(R)(IQ’E,(I)). So
<Mé 1 ¢ < A x 0) is <g-increasing continuous sequence of members of Ky; the first
member is My, the last member M.

By [She09c¢, 0.22(4)(b)] it is enough to prove that if ¢ < A x 9 and p € S(M;)
then p is realized in M.41. As I; is wide of cardinality A, so is I, hence M/ is
saturated. Also, for each £ we can find a linear order IQJC . of cardinality A such
that Iy .41 C [2'*:5 and Jj = ;:54—1 \ I is a convex subset of I;E_H and is a wide
linear order of cardinality A which is strongly Ro-homogeneous. (Recall J, C J;;
is infinite.) So in M, = EM,(g)(I5 4o, ®) every p € S(M2) is realized (as I3,
is wide over I» ., as J is wide of cardinality \); moreover, [they are| realized in

!

e+1-

(+VV hy? By the strong Ng-homogeneous [linear order| every element, and even
finite sequence, from M;Zrl can be mapped by some automorphism of M;H over
M, into M.11.) As said above, this suffices.]
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@1 X« is well defined and exists in the interval (k, ), where

X+ =min{f : kK < § < x, and for every saturated M € &,
if 0 < ||M|| < x, every p € S(M) is #-local}.

(see Definition 7.4(2)).

[Why? By 7.2, which we apply with (p, k) there standing for (x, k) here, recalling

k = LST(R). This is OK as: clause (a) in 7.2 holds by clause (c) of the assumption

here, and clause (b) in 7.2 holds by clause (b) of the assumption here, as x < R,.

Lastly, clause (¢) in 7.2 easily follows by ()¢ above.]

@2 If X € (k,x) and (M; : i < ) is <g,-increasing continuous and M, is

<g-universal over M; for i < § then Mjs is saturated and moreover every
p € S(Ms) does not A-split over M, for some o < 0.

[Why? For i < 0 let I; be the linear order A x A x (1 +14) and M] = EM,(g)(I;, ®).

So (M] :i < 0) is <g, -increasing continuous. Also, for i <, { < A let

Lie=AxAx(14+i)+Ax(

and M . = EM,(g)(L; ¢, ®), so for each i < § the sequence (M; . : ( < A) is <g,-
increasing continuous, M, = M/, and M, = M/ ;. Now for i < J, { < X every
p € S(M;) is realized in M., by ()¢ and the definition of type, varying the
linear order. By [She09¢c, 0.22(4)(b)] the model M;,  is <g,-universal over M; and
by Definition [She09c, 0.21] the models Mg and Mj; are (A, cf(d))-brimmed, hence
by [She09c, 0.22(3)] they are isomorphic. But Mj is saturated by (x)g, hence Ms
must be as well.

What about the “moreover”? (Note that if A = Af(®) then ()9 does not cover
it.) We can easily find (I” : & < XA x § + 1) such that:

(a) I” is a linear order of cardinality A into which A can be embedded.

I is increasing continuous with a.

)

c) I, is an initial segment of I for a <8 <+ 1.
) I}, has a subset of order types A x A whose convex hull is disjoint to I,.
)

Ifa<pB<Axdands e Iy ;.\ Iy, then there is an automorphism
Ta,p,s Of I\, 5,1 mapping I3, onto I}, s and is over

INU{tell 5.5 ST th.

Let M/] = EM, (&) (I}, ®), so (MY, : a < 6) has the properties of (M/, : a < §),
ie. every p € S(M/]) is realized in M/, , hence M/, is <g,-universal over M.
So (easily, or see [She09¢c, 0.22,0.21]) there is an isomorphism f from Mj; onto MY, 4
such that MY, <g f(May1) < MY, o So it suffices to prove the “moreover” for
(MY, + o <6), equivalently for (M : @ < XA x 4). Let p € S(MY,;), so some
a € My, s, realizes it, hence for some tg < ... < t,—1 from I}, ;. and Te-term
o(zg,...,Tn—1) we have a = UEM(I;/XBH’@)(atO, .ooya, ). It follows that for some
m < n we have t; € I{ s < { <m. Let & < Ax 0 be such that {t, : £ <m} C I]; if
m = n choose any t, € I§, 5.1\ I\,s. If B € (a,\x0) and tpg(a, My, My ) does
A-split over My then 7’ = 7g 54, is an automorphism of I}, 5., mapping I3,

onto Iy, s and is over I5 U{s € I\, 5. tm <y s} hence it is the identity on

AXS+1
¢ £ <n}. Now 7’ induces an automorphism #’ o R , @), so clearly
te:d Now 7' ind tomorphism 7' of EM,(g) (I}, 1, ®), so clearl
it maps a to itself, maps tpg(a, Mg, \, MY, 5. ,) to tpg(a, MY, s, MY, 5,,), and it
maps M onto itself, hence also tpg(a, Mj,,, My, ) does A-split over Mg. So if
for some B € (o, A x §), the type tpg(a, My, My ) does not A-split over My we

get the desired conclusion, but otherwise this contradicts (x)g.]
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@3 If X € [x«,x), M € K, is saturated, and p € S(M) then for some N we
have:
(a) N Sﬁ M
(b) N € K, is saturated.
(¢) p does not y,-split over N.
(d) p does not A-split over N (follows by (a),(b),(c)).
[Why does @3 hold? For clauses (a),(b),(c) use ®2 or just (x)g; for clause (d) use
localness, i.e. recall ®; and Definition 7.4.]
®4 Assume \ € [k, x) and My <g My <g M3 are members of K, My is A*-
saturated and p € S(M3). If Ny <g My is from K<) and p | Myyq1 does
not A-split over Ny for £ = 1,2 then p does not A-split over Nj.
[Why? Easy manipulations. Without loss of generality, Ny <g Ny as we can
increase N3. So for some pair (My,a) we have Ms <g My, a € My, and p =
tpga(a, M3, My). Assume o < AT and let b, & € “(Ms3) be such that tpg (b, N1, M3) =
tpg(c, N1, M3). As M, is AT-saturated and Ny <g My <g M3 we can find
b',& € %(My) such that tpg(b' "¢, Na, M3) = tpg(b"¢, No, M3) using [She09c, 0.19].
Hence

tpg(b', N1, M3) = tpg(b, N1, M3) = tpg (¢, N1, M3) = tpg(c, N1, Ms).

By the choice of (My, a), and the assumption on Nj that p [ Ms does not A-split
over Ni, we get

tpg((a) b, N1, My) = tpg({a) &, N1, My).

Clearly tpg(b', No, M3) = tp (b, N2, M3) hence by the choice of (M, a) and the
assumption on Ny that p does not A-split over Ny we have tpg({a) b, No, My) =
tp({a)"b, No, My) hence by monotonicity

tpg((a)"b', Ny, My) = tpg({a) b, Ny, My).
Similarly
tpﬁ(<a>Aé/, Nl, M4) = tpﬁ(<a>A6, Nl, M4)

As equality of types is transitive
tpﬁ(<a>AE’ Ny, M4) = tpﬁ(<a>Aé/7 Ny, M4) = tpﬁ(<a>Ab/’ Ny, M4> = tpﬁ(<a>Ab’ Ny, M4)
as required.]

®; Assume I3 = Iy + I{ 4+ I are wide linear orders of cardinality A, where
X > A>k,and let I, = Iy + Ié for £ = 1,2 and M, = EMT(K)(Ig,(I)) for
¢=0,1,2,3. If £ € {1,2} and a € *>(M,) then tpg, (@, M3—_¢, M3) does
not A-split over My. (Moreover, if tpg, (@, Mo, M3) does not A\-split over
N € K<y then also tpg, (@, M3, M3) does not A-split over V).
[Why? For ¢ = 2, if the desired conclusion fails we get a contradiction as in the
proof of ®9, so for £ = 2 we get the conclusion. For ¢ = 1 if the desired conclusion
fails (but it holds for £ = 2) we get a contradiction to categoricity in p by the order
property (by 1.5).]
® If A € (e X), 0 < AT, (M; : i < §) is <g,-increasing continuous, and
1 < § = M, saturated then M; is saturated.
[Why? Let N <g Ms, ||N|| < A\, and p € S(N). If cf(d) > ||N]|| this is easy so
assume cf(d) < ||N||, hence cf(d) < A and without loss of generality § = cf(9).
Choose a cardinal 6 such that

LST(8) < X + [cf(8)] + [ N]| < 0 < A

and |[N||T < A = ||[N|| < 6, and let ¢ € S(Ms) extend p; this exists as K<) has
amalgamation.



Paper Sh:734, version 2023-02-03_2. See https://shelah.logic.at/papers/734/ for possible updates.

102 S. SHELAH

Now for every X C Mj of cardinality < 6, we can choose N; <g M; by induction
on ¢ < ¢ such that N; € Ky is saturated, is <g-increasing continuous with i, N; is
<g-universal over N;, and includes (X U N) N M; when ¢ = j + 1. So by &, (we
justify the choice of N; for limit ¢ and) the model Nj is saturated, so if [|[N||T < A
then N <gz Nj, Ns is saturated of cardinality 6§ > || N|| so we are done as N5 <g Ms;.
So without loss of generality A = || N||* hence A = 67.

Also, for some o, < § and N, <g M,, of cardinality 6, the type ¢ does not
0-split over N.,.

[Why? Otherwise we choose (N;, N;7) by induction on i < & such that N; <g N;"
are from Ky, N; <g M;, N;‘ <g Ms, N; is <g-increasing continuous, N; is <g-
universal over N; if i =5 +1, ¢ [ N;" does #-split over N;, and

v ng <y € N

In the end we get a contradiction to ®s.]

We can find N’ <g M,, from K, such that ¢ [ M,, does not 6-split over N’,
(why? by ®3) and without loss of generality N’ <g N, and N’ <g N. Also, ¢ does
not -split over N’ (why? by applying ®,, with 0, N, M, , Ms here standing for
A, My, My, M3, Ny, No there; or use N’ = N,).

By ()6 as M,, is saturated without loss of generality M,, = EM,)(A, ®) and
fore < Alet My, . = EM;(g)(0 x 0 x (1+¢),®),s0 M,, . € Ky is saturated and is
brimmed over M, ¢ when € = (+1 by (¥)19. So for each e < Athereisa. € Mg+ c41
realizing q [ M,, .. Also without loss of generality, Ms <g EM,(g) (A + A, ®) as in
the proof of ® or by (*)19, now for some £(*) < A we have N <g EM,(g)(l2, ®)
and N, <g EM;(g)(lo, ®) where

Ip=0x0x (1+e(x)) and Iy = [\, A+ e(x)) U Io.

Let Iy = 6 x 0 x ((x), where ((¥) € ((x),\) is large enough such that a..) €
EM;g)(I1,®), e.g. ¢(¥) = 1+4e(x)+1andlet I3 =1, UL, C X+ A Let M) =
EM.,.(_@)(I@, (I)) for ¢ = 07 17 2, 3.

Now we apply ®s, the “moreover” with 0, Io, I, I, I1 \ Io, I2 \ Io, ac(+), N' here
standing for A, Iy, I1, I2, I1, I3, a, N there, and we conclude that tpg, (ac(«), M3, M3)
does not #-split over N’.

As N' <g My <ag Mj also the type ¢’ = tpg, (ac(x), My, M3) does not 6-split
over N'. Let us sum up: ¢ | M4 and ¢’ belong to Sg, (M}), [something] does not
6-split over N', N' € K, and x. < 6. Also N' <g, M} <g. M), the model M| is
f-saturated, and q | M,, = ¢' | M,,. By the last two sentences obviously ¢ = ¢’
(it may be more transparent to consider ¢ [ (< x«) = ¢’ | (£ x«)), so we are done
proving ®g.]

®7 If A € (x«, x) then the saturated M € K is superlimit.
[Why? By @®g (existence by (x)g, the non-maximality by () + uniqueness; you
may look at [She99a, 6.7=6.4tex(1)].]

Now we have arrived to the main point:

®1 If A € (x«,x) then sy is a full good A-frame, K, categorical, where sy is

defined by

(a) R, = 8y [ {M € K, : M saturated}

(b) S(M) = 8(M) := {tpy(a, M,N) : M <g, N and a € N\ M} for
M e K, .

(c) pe SEE(MQ) does not fork over M; when M; <;, Ms and for some
M <g M of cardinality x., the type p does not y,.-split over N.

[Why? We check the clauses of Definition [She09c, 1.1].

K

s, is categorical:
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By [She09c, 0.34](1) and ®7.

Clause (A),Clause (B):
By ®7, recalling that there is a saturated M € K, (and it is not <, -maximal)
by (%)¢ and trivially recalling [She09c, 0.34], of course.

Clause (C):
By categoricity and (k)¢ clearly no M € K, is maximal; amalgamation and
JEP holds by clause (b) of the assumption of the claim.

Clause (D)(a),(b): By the definition.
Clause (D)(c): Density is obvious; in fact sy is full.

Clause (D)(d): (bs - stability).
Easily Ss, (M) = Sg, (M) which has cardinality < A by the moreover in (*)g.

Clause (E)(a): By the definition.

Clause (E)(b): Monotonicity (of non-forking).
By the definition of “does not y.-split”.

Clause (E)(c): Local character.

Why? Let (M, : a < 6) be <, -increasing continuous, § < A™ and ¢ € SP*(Ms).
Using the third paragraph of the proof of ®g for 8 = y., for some a, < ¢ and
N, <s, M,, of cardinality # the type ¢ does not 6-split over N,. So clearly g does
not fork over M, (for s,), as required.

Clause (E)(d): Transitivity of non-forking.
By ®4.

Clause (E)(e): Uniqueness.
Holds by the choice of x., i.e. by ®;.

Clause (E)(f): Symmetry.

Why? Let M, for £ < 3 and ag,a1,as be as in (E)(f)" in [She09¢, 1.16E]. We
can find a <g-increasing continuous sequence (Mp o @ o < A1) such that Moo =
My, Moy,a+1 is <g,-universal over My, and without loss of generality My, =
EM; (%) (Ya, ®) so it is <g-increasing continuous, and A divides 7q.

By (E)(g) proved below we can find af, € Mg o1 realizing tp,, (a¢, Mo, My11)
such that tp,, (al,, Mo o, Mo o4+1) does not fork over My = Mg for £ = 1,2. We
can find N, <g Mo of cardinality x. such that tp,, ({(a1,az2), Mo, M3) does not
Xx-split over N, so N, <g M.

Then as in 1.5 we get a contradiction (recalling [She09¢, 1.16E]).

Clause (E)(g): Extension existence.

If M <, Nandp € S;’f(M) = Sp*(M), then p does not x.-split over M, for
some M, <g M of cardinality x. by ®3. Let M* € K,- be such that M, <z
M* <g M and M* is <g-universal over M,. As M, N € K,, C K are saturated
there is an isomorphism 7 from M onto N over M* and let ¢ = m(p)*.

Now ¢ [ M = p by ®; as both are from S3*(M), does not x.-split over M, and
has the same restriction to M™.

Clause (E)(h): Follows by [She09¢c, 1.16A(3),(4)] recalling s is full.

Clause (E)(i): Follows by [She09c, 1.15].
So we have finished proving “sy is a good A-frame.]
®2 If A € (x4, x) then 85> is & [ {M : M is A-saturated}.
[Why? Should be clear.]
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®3 A, is well defined, where

2

A = min{ € (x«, x) for every n < w}.

[Why? By clause (c) of the assumption.]
Let © = {\[":n <w}.
®4 5y is weakly successful for A\ € ©.
[Why? Recalling that sy is categorical by Definition [She09e, stg.0A], Definition
[She09¢, nu.1] and Observation [She09¢, nu.13.1(b)], if (M,N,a) € K" then
for some (Mj, Ny,a) € K;?;uq we have (M, N,a) §§§ (My, Ny,a) (see Definition
[She09c, nu.1A]). Toward contradiction, assume that this fails. Let (M, : o < AT)

be <, -increasing continuous, M, is brimmed over M, for a < A" such that
My = M. Now directly by the definitions (as in [She09c, §5], see more in [She09d])

we can find (M,, f, :n € AT>9) such that:
(a) If v € >2 then M, <,, M,.

(b) If n € A">9 then fn is a one-to-one function from My, to M, over My =
M such that p <n = f, C f, and f,(Myyey)) <s, M,. In fact, fo = idy
and

(Ma Na a) Sgi (fn(Mfg(n))v an (l) € KEB

(c) If v =n () € *>2 then M, is brimmed over M,

(d) It e X >2 then f, 0y (Meg(ny11) = Far 1y (Megmy1)-
(e) If n € *>2 then there is no triple (N, fo, f1) such that Ty (Megmy41) <s
N, and f; is a <,-embedding of M, into N over f,~(Mgg(yy+1) for
¢=0,1and fo [ My, = f1 | M,.
Having carried the induction by renaming, without loss of generality n € Ao o
fn = idm,,,,- Now M, = U{M, : a < AT}; it belongs to sy+ and is saturated.
For € * 2 let My = U{Myja :a <At} so M, < , M, € K, ,. But x is a limit
cardinal so also AT € (k,x) so let N, € K, , be < ,
every n € A2 there is an < +-embedding h,, of M, into N, over M,. But 2* < A"
by the choice of A, so by [She09a, 0.wD] we get a contradiction to clause (e).]
®s5 For A\ € ©,if M € Kf\i is saturated above A for K*°*, then M is saturated
for R.
[Why? Should be clear and implicitly was proved above.]

-universal over M,, so for

[J; NF,, is well defined and is a non-forking relation on £, respecting s (for
A€ 0O).

[Why? By [She09c, §6] as s, is a weakly successful good X frame.]

[y sy is a goodt A-frame (for A € ©).
[Recalling Definition [She09e, stg.1], assume that this fails, so there are

<MZ,N1 1< >\+> and <ai+1 1< >\+>

as there; i.e. aj11 € Miro \ M1, tpg, (aiv1, Miy1, Miy2) does not fork over My
for sy, but tp,, (aiy1, No, Miy1) forks over My. Also, recalling Definition [She09e,
stg.1] the model M = [J{M; : i < AT} is saturated for K]} hence by ®5 for &, so
it belongs to K, .

We can find an isomorphism fy from M onto EM, &) (A*, ®), by (*)s. By the
“moreover” from (*)g (more exactly, by (%)10) we can find a <g-embedding f; of
N=:J{N; : i < AT} into EM,(g)(A X X, ®) extending fo. As we can increase the
Nj-s, without loss of generality fi is onto EM,(g)(A x A, ®). We can find § < AT
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such that N5 = EM,(g)(u, ®), where u = {Aa+ f : a, 8 < 0}. By asy1 we get a
contradiction to ®s.]

Dg Let A € ©.
(a) <i, is a partial order on K}i°[s)] = K, ,, and (K, ,, <} ) satisfies
the demands on AEC, except possibly smoothness. (See [She09c, §7]).
(8) If M € K+ is saturated and p € Sg(M) then for some pair (N, a) we
have M <t N and a € N realizes p.
(v) If M € K+ is saturated then some N satisfies:
(a) N € K+ is saturated.
(b) N is <g-universal over M.
() M <{ N
(6) sy is successful.
[Why? Clause («a):
We know that both K}i[s)] and K
rest holds by [She09c, §7,88].

are the class of saturated M € K. The

Clause (§):

By ®3 we can find M, <g M of cardinality x. such that p does not y.-split over
it (equivalently, does not A*-split over it).

Let (M, : a < A\T) be <, -increasing continuous such that M, is brimmed
over M, for sy for every a < AT and M, <g My (so | M.]| < ||Mo||; otherwise we
would require that My is brimmed over M,). Hence |J{M, : o < AT} € Ky is
saturated (by ®5) so without loss of generality it is equal to M. We can choose
s, No(a < X) such that (N, : a < AT) is <4, -increasing continuous, M, <;, M,,
NF,, (My, No, Mg, Mg) for a < 8 < AT, Nyyq is brimmed over My4q U N,, and
tp,, (a,No, M) =p | My so a € Ny. Let N = |J{No : @ < AT} so again N € K+
is saturated (equivalently N € K}i[s,]) and M <g N and even M <} N (by
the definition of <} ). For each o < AT we have NFy, (Mo, Ng, M, N,) but NF,,
respects sy, hence tp,, (a, My, N,) does not fork over My. Hence by the definition
of 55, the type tp,, (a, Ma, No) does not A-split over M., hence tp,, (a, My, No) =
p | M,. As this holds for every o < AT, by the choice of x, (i.e. by ®1) clearly a
realizes p.

Clause (v):

By clause (8) as in the proofs in [She09c, §4]; that is, we choose N € K+ which is
<g,-universal over M. We now try to choose (M, fa, Nu) by induction on v < A\
such that: Mo = M, No = N, fo = idy, M, is <{, -increasing continuous, Ny, is
< g-increasing continuous, f, is a <g-embedding of M, into N, f, is C-increasing
continuous with o, and o = 8+ 1= fo(My) N Ng # fa(Mp).

For o = 0, « limit there are no problems. If @« = 8+ 1 and f,(M,) = N, we
are done, and otherwise we use clause (). But by Fodor lemma we cannot carry
the induction for every a < AT, so we are done proving (7).

Clause (9):

We should verify the conditions in Definition [She09e, stg.0A]. Now clause (a)
there, being weakly successful, holds by ©4. As for clause (b) there, it suffices to
prove that if M17M2 S K;\lifc[ﬁ)\] = Ksj\r and M1 SR M2 then M1 S:)\ Mg, which
means: if (M :a < At) is <, -increasing continuous, Mﬁﬂ is brimmed over M!
with M, = [J{M/ : o < A*}, then for some club E of A, for every a < 3 from E,
NFs, (M, M2, M3, M3).
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By clause (y) there is N € Ky such that My <7 N (hence M7 <g N) and N

is <gsx-universal over Mj. So without loss of generality My <g N, but by [She09c,
ne.3](3) all of this implies M; <}, M>. So we are done proving [ls.

[ly s)+ is the successor of s, for A € ©.

[Why? Now by [z the good frame sy is successful; by [She09e, stg.3] we know
that 5;( is a well defined good A*-frame. Clearly K, (4 is the class of saturated
M € Ry+ (by ©s; see the definitions in [She09c, ne.1l], [She09c, rg.7(5)]). But
s is good™ by [z, so by [She09e, stg.3B] we know that <, 1) = Ut [sy] 38
equal to <g[ Ks,(4), 50 Re, (1) = Rs,, . As both s5(+) and sy+ are full, clearly

SEE(H = 8;);. For My <, (+) M2 <4, (+) M3 and a € M3\ My, comparing the

two definitions of “tpg_ (a, Mz, M) does not fork over M;,” they are the same.

A(H)
So we are done.]

L5 sy+ is the limit of (57" :n <w).
[Why? Should be clear.]

[Je s satisfies the hypothesis [She09e, 12.1] of [She09e, §12] if A € © \ Af?
holds.

[Why? By g, s,y and [She09e, 12D.1].]
Hence

(7 sy, is beautiful AJ“-frame.
[Why? By [She09e, 12b.14] and [She09e, 12f.16A].]

Lls K[ﬁ)\rw} is categorical in one y > A“ iff it is categorical in every x > AT%.
[Why? By [She09e, 12f.16A(d),(e)].]

Clg If A >3 1(Af“) then &) = Ralsyre].

[Why? The conclusion D is obvious. For the other inclusion let M € K, now by
the definition of class in the left, it is enough to prove that M is (A\[*)T-saturated.
But otherwise, by the omitting type theorem for AEC (i.e. by 0.9(1)(d), or see
[She99a, 8.6=X1.3A]) there is such a model M’ € K,, in contradiction to (x)4.]

By g + [y we are done. O7.13
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