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STRONG PARTITION RELATIONS BELOW THE POWER SET:
CONSISTENCY — WAS SIERPINSKI RIGHT? VOL. II

SAHARON SHELAH

ABSTRACT. We continue here [She88] (see the introduction there) but we do
not rely on it. The motivation was a conjecture of Galvin stating that (2“’ >
wz) + (wg — [wlm(n>) is consistent for a suitable h : w — w. In section 5
we disprove this and give similar negative results. In section 3 we prove the
consistency of the conjecture replacing wo by 2%, which is quite large, starting
with an Erd8s cardinal. In section 1 we present iteration lemmas which [are
needed| when we replace w by a larger A\, and in section 4 we generalize a
theorem of Halpern and Lauchli replacing w by a larger .
This is a slightly corrected version of an old work.

§ 0. PRELIMINARIES

Let <} be a well ordering of H(x), where
H(x) = {x : the transitive closure of x has cardinality < x}

agreeing with the usual well-ordering of the ordinals. P (and Q, R) will denote
forcing notions; i.e. partial orders (really, quasiorders) with a minimal element
2 = op.

A forcing notion P is A-closed if every increasing sequence of members of P of
length less than A has an upper bound.

If P € H(x), then for a sequence p = (p; : i <) of members of P, let

a = ap =sup{j : {#; : j < j} has an upper bound in P}
and define &p, the canonical upper bound of p, as follows:

(a) It is the least upper bound of {p; : ¢ < a} in P, if there exists such an
element.

(b) If upper bounds of p exist but are not unique, we choose the <}-first upper
bound.

(¢) po, if (a) and (b) fail and v > 0.

(d) op, if v = 0.
Let pg & p;1 be the canonical upper bound of (p,: £ < 2).
Notation 0.1. 1) Take [a]* == {b C a: |b| = x} and [a]<" = | [a]’.

<k

2) For sets of ordinals A and B, define Hg’% as the maximal order preserving
bijection between initial segments of A and B: i.e. it is the function with domain
{a € A: otp(anN A) < otp(B)} such that HSEB(@) =Bif a € A, 8 € B, and
otp(aN A) = otp(5 N B).
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Definition 0.2. X =% (@)% holds if whenever F is a function from [A]<% to
uand C C X is a club, then there is A C C of order type a such that for any
wy, wy € [A]N, Jwy| = wa| = F(w:) = F(ws).

Definition 0.3. A\ — [a]! , if for every function F' from [A]" to & there is A C A
of order type a such that {F(w) : w € [A]"} has [cardinality] < 6.

Definition 0.4. A forcing notion P satisfies the Knaster condition (or ‘has property
K) if for any {p; : i < w1} C P there is an uncountable A C wy such that the
conditions p; and p; are compatible whenever 4, j € A.

§ 1. INTRODUCTION
Concerning 1.1-1.3, see Shelah [She78] and Shelah and Stanley [SS82], [SS86].

Definition 1.1. A forcing notion Q satisfies %, where ¢ is a limit ordinal < y, if
Player I has a winning strategy in the following game:
Playing: the play finishes after ¢ moves. In the a'" move:

Player I - If @ # 0 he chooses (¢¢ : ( < u) such that ¢¢ € Q and

(V6 < ) (V¢ < u)[p] < g
and he chooses a regressive function f, : u* — pt (ie. fo(i) < 1+7i). If
a=0let ¢f =g and f, = 2.
Player IT -~ He chooses (p¢ : ¢ < pT) such that q¢ <p¢ €Q.
The outcome: Player I wins provided whenever p < ¢ < & < ut, cf(¢) = cf(§) =
py and A () = fa(§), the set {p¢ : o < e} U{pg : @ < &} has an upper bound
B<e
in Q.
Definition 1.2. We call (P;, Q; : i <i(x), j <i(x)) a «-iteration provided that:
(a) Tt is a (< p)-support iteration (u is a regular cardinal).
(b) If iy <ip <i(x) and cf(i1) # p then Py, /IP;, satisfies *7,.
Lemma 1.3. Ifq = (P;, Q; : i < i(x), j < i(x)) is a (< p)-support iteration and
(a) or (b) or (c) below hold, then it is a x; -iteration.
(a) i
(b) i(
(c) i(x) = j(+) + 1, cf(j(x)) = ut, q [ (%) is a ¥ -iteration, and for every
successor i < j(x), Py /P satisfies xJ,.

*) is limit and q | j(*) is a *,-iteration for every j(x) < i(x).

«)=j()+1,qlj(x)isa *,-iteration, and Q. satisfies *, in VFie,

Proof. Left to the reader (after reading [She78] or [SS86]). Ois

Theorem 1.4. Suppose i = p~F < x < X and X is a strongly inaccessible k3-Mahlo
cardinal, where k3 is a suitable natural number (see [She89, 3.6(2)]), and assume
V =L for simplicity.
Then for some forcing notion P:
(A) P is p-complete, satisfies the u*-c.c., has cardinality \, and
VIP’ ': QB — )\,
(B) Ikp A = [ut]3 and even X — [uT]2 5 for k < pu.
(C) If p=Xg then I- “MA,”.
(D) If p > Ry then Ikp “for every u-complete forcing notion Q of cardinality
< x satisfying *;,, and for any dense sets D; C Q, for i <ig < A, there is

a directed G C Q with NA\GND; #@7.
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As the proof! is very similar to [She88] (particularly after reading section 3), we
do not give details. We shall define below only the systems needed to complete the
proof. More general ones are implicit in [She89).

Convention 1.5. We fix a one to one function Cd = Cdy,, from #~\ onto .
Remark 1.6. Below we could have otp(B;) = u™ + 1 with little change.
Definition 1.7. Let u < x <k < X\, A= AH y = x<H, u= p<H.

1) We call z a (A, &, x, p)-pre-candidate if x = (a®
set B, (unique, in fact):

(i) I, = [B,]=?

(ii

)
)
(iii) a® is a subset of A of cardinality < x closed under Cd.
)
)
)

:u € I), where for some

B, is a subset of s of order type pu™.

iv) a; N By =u

v
x T T
a’u N av g a’uﬂv

—~
—~

v
(vi) If u,v € I, and |u| = |v| then af and a? have the same order type

o OoP - T
(and so Hgz' - maps ajy, onto ay).

(vii) If ug,ve € Iy and |ug| = |ve] for £ = 1,2, |ug Uug| = |v1 U wa,
and HOF .. .o Lae maps ug onto vy for £ = 1,2 then HOY .. and
up = Pug Gy Yy, uy 1@y

av qv_ Are compatible.
2) We say 7 is a (A, K, x, p)-candidate if it has the form (M? : u € I,)), where
(@) (i) (IMZ]:u € I) is a (A, K, X, u)-precandidate (with B, defined
as JI).
(ii) 75 is a vocabulary with (< x)-many (< p)-ary place predicates
and function symbols.
(iii) Each M? is a 7,-model.
(iv) For u, v € I, with |u| = |v], MZ | (|]MZ|N|MZ|) is a model, and
in fact an elementary submodel of M7, M? and M?Z-,.
(8) For u, v € I, with |u|] = |v|, the function Hlol\;:flv\Mi\ is an isomorphism
from M onto M.
3) We say the set 2 is a (A, &, X, p)-system if
(A) Each x € 2 is a (A, &, X, p)-candidate.
(B) Guessing: if 7 is as in (2)(a)(ii) and M* is a 7-model with universe
A, then for some x € A, s € B, = M? < M*.
Definition 1.8. 1) We call the system 2 disjoint when:
(x) If z # y are from 2 and otp(|M%]) < otp(|M}|) then for some By C By,
By C B, we have
(a) [Bi| + [Ba| < p*
(b) The sets

M| s € [Bo\ B2} and [ J{IM2]: 5 € [B, \ B2l=*)
have intersection C M.

2) We call the system 2 almost disjoint when:

(xx) If z, y € A and otp(|M%]) < otp(|MY]) then for some By C B, and By C
B, we have:
() |Bi] +|Bo| < pu*
(b) If s € [B; \ B1]=%, t € [By \ B2]=? then |MZ| N |MF| C |[MY]|.

n [She00], full details are given for stronger theorems.
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§ 2. INTRODUCING THE PARTITION ON TREES

Definition 2.1. Let
1) Per(#~2) be the set of T such that
(A) T Cr>2, () eT.
B) (WneT) (Va<tlg(n)|n!aecT|
(C) fneTN®2and a < B < i then for some v € T NP2 we have n < v.
(D) If n € T then for some v we have n <v, v™(0) € T, and v (1) € T.
(E) If n €°2, § < p is a limit ordinal, and {n [ a: a < 6} C T then n € T.
2) Perg(#~2) =

—_ O D —

1 1
{TGPer(“>2) ra< p, v,vp €2NT = [ N {)eT < A\ wn {) GT}}.
£=0 £=0

3) Peryq("~2) =

12
{TeF’er(“>2):oz<,u7 v # v from “2NT = \ V vn " (£) §§T}
£=0m=1

4) For T € Per(*>2), let limT = {n € *2: (Va < p)[n | a € T|}.

5) For T € Perg("*~2) let clpy : T — #>2 be the unique one-to-one function from
sp(T) == {n e T :n"(0),n (1) € T} onto #>2 which preserves <1 and lexicographic
order.

6) Let SP(T) = {¢g(n) : n € sp(T)}, and for n,v € T let

sp(n,v) = min{i : n(i) # v(i) Vi=Lg(n) Vi=lg(v)}
(hence sp(n,n) = lg(n))-

Definition 2.2. For cardinals u, o and n < w and T € Per(#>2), let
1) Col(T) = {d : d is a function from {J [*2]" NT to o}. We may write

a<p
d(vg,...,Vn—1) for d({l/(), cey Vn,l}).

2) Let <}, denote a well ordering of “2 (in this section it is arbitrary). We call
d € Col(T) end-homogeneous for (<7, : o < p) provided that if @ < 3 are
from SP(T), {vo,...,vn_1} CP2NT, (v, | a: ¢ < n) are pairwise distinct,
and A [y <jvm & ve [ @ <} vy [ ] then

lm
d(vg, .. Vn—1) =d(vo [ a,...,Un_1 | Q).
3) Let EhCol(T') =
{d € Col(T) : d is end-homogeneous for some (<}, : v < )}

(see above).
4) For vy, ..., Vpn_1,M0,- - Nn—1 from #>2, we say U = (g, ...,vp_1) and 7 =
Moy -+, Nn—1) are strongly similar for <<j; Ta< u) if:
(i) €g(ve) = Lg(ne)
(ii) sp(ve, Vm) = sp(ne, nm) (equivalently, lg(ve Nvy,) = lg(ne N 0m))-
(iil) If €1, €9, 03,04 < n and a = sp(ve,, vi,), @ < lg(ve,), lg(ve,), then
ve, [a<h v, [aen, [ a<kn, | aand v, (a) =1, (a).

5) For vg,...,v2_ 1, v§,...,v2_, from #>2, we say v* = (1&,...,v2_;) and
v’ = (vh,... vt _,) are similar if the truth values of (i)—(iii) below do not
depend on t € {a,b} for any £(1),£(2),4(3),4(4) < n:

() EQ(VEQ)) < @(VE(z))



Paper Sh:288, version 2023-09-08_2. See https://shelah.logic.at/papers/288/ for possible updates.

STRONG PARTITION RELATIONS BELOW THE POWER SET 5

(i) sP(V1y Viay) < SP(Viay» Vigay)
(iii) for o = sp(vjyy, Vja)) and lg(vyz)), Lg(vjy)) = , the truth value of
the following does not depend on ¢:

V}f(?)) o <X V§(4) I o and 1/5(3)(04) =0.

6) We say d € Col(T) is almost homogeneous [homogeneous] on T3 C T (for
(<t s a <)) if for every aw € SP(Ty), 7, 77 € [*2]" N'Ty which are strongly
similar [similar] we have d(7) = d(7).

7) We say (<} : a < p) is nice to T € Per(*>2), provided that: if a < 3
are from SP(T), (o, B) NSP(T) = @, ;1 # m2 € P2NT, [7)1 Fa <l n |
aorn fa=nla ma)< 772(04)] then n1 <j 2.

Definition 2.3. 1) Prey (i, n,0) means “for every d € Coll(#~2), for some T €
Per(#~2), d is end homogeneous on T.”

2) Prant(p,n,0) means “for every d € Coll(#~2), for some T € Per(#~2), d is
almost homogeneous on T.”

3) Pryt(p, n, o) means for every d € Col,(#~2), for some T € Per(#>2), d is homo-
geneous on T

4) For x € {eht,aht, ht}, Pri®(u,n,o) is defined like Pr,(u,n,0) but we demand
T € Perg(#2).

5) If above we replace eht, aht, ht by ehtn, ahtn, htn, respectively, this means

(<t ia<p)is fixed a priori.

6) Replacing n by “< k” and o0 by ¢ = (0 : £ < k) for K < Xy means that
(d, : n < k) are given, d,, € Col}(#>2), and the conclusion holds for all d,, with
n < k simultaneously. Replacing “o” by “< ¢” means that the assertion holds for
every o1 < 0.

Definition 2.4. 1) Pran(p,n,0(1),0(2)) means: for every d € Coly ) (#~2), for
some T € Per(#>2) and (<}, : o < p), for every ij € J{[*2]"NT : a € SP(T)},
the set

{d(ﬁ) S U {[*2]"NT\ : « € SP(T1)}, 7 and ¥ are strongly similar for (< : o < ,u>}

has cardinality < o(2).

2) Pryt (i, n,0(1),0(2)) is defined similarly with “similar” instead of “strongly sim-
ilar”.

3) Pr (1, < . {0} < 0 < w), (07 £ £.< ), Pr(um, o(1),0(2)), Pr(u, < g, 6",5%)
are defined in the same way.

There are many obvious implications.

Fact 2.5. 1) For every T € Per(#~2) there is a 77 C T with T} € Per,q(*~2).

2) In defining Pr’(y, n, o) we can demand T' C Ty for any T € Perg,(#>2); similarly
for Pri®(u, < &, 0).

3) The obvious monotonicity holds.

Claim 2.6. 1) Suppose p is regular, ¢ > Ro, and Pr'S, (u,n, <o). Then

Pri (u,n, <o) holds.

1A) Similarly for Pr'S. —and Pr'S, .

2) If . is weakly compact and Pr'S, (u,n, <o) with o < p, then Pris (u,n, <o) holds.
8) If i is Ramsey and Pr'S, (p, < o, <o) with o < p, then Pric (u, < N, <o).

4) If u = w, in the “nice” version, the orders <<g fa< u> disappear.
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5) In parts (1)-(8), we can replace aht, eht, ht by ahtn, ehtn, htn respectively.
6) In Pr’S, (1, n,0), we can strengthen the conclusion to:
(*) If a < B are from SP(T), (ne : £ < m) € ™(2%) is <y-increasing, and
ne < vy €28 (for £ <n and . € {1,2}) then
d({vi : £ <n}) =d{v}:t<n}).
Proof. Easy; e.g. for (1A) we can use (6).
We induct on n; for n 4+ 1 and given d,iq @ U{[*2]"™ : @ < p} — o and
Il — (<t o < ), we apply PriS (u,n, < o). We get T
Let f =clpp : T — #>2 be as in 2.1(5). Define <* = (<% : a < p) and d,, as
follows:
(A) For a < pand 1o, € 2, clpp(ve) = ne, lg(ve) = B then

1
no <pm vy <oty

(B) for @ < pand no <2 ... <2 9p_1, clpp(ve) = ne, ly(ve) = B and for
k <mn, p<2wehave vy (€) < pre € sp(Tht1) N72. If v is minimal then
dn({no, ... nMn-11}) codes the set of the following objects t:

e For some v > « there are py ¢ € sp(Th+1) N 72 such that v, (¢) < pre
for K < n, £ < 2 and t codes all the information on the sequence
(pr,e : k < m, € <2) (ie. theorder <Z+1 and instances of d,,41). o

The following theorem is a quite strong positive result for 4 = w. Halpern-
Lauchli proved 2.7(1), Laver proved 2.7(2) (and hence (3)), Pincus pointed out that
Halpern-Lauchli’s proof can be modified to get 2.7(2), and then Pr'S (w,n, <o) and
(by it) Pri (w,n, <o) are easy.

Theorem 2.7. 1) If d € Col(“”2) and o < N, then there are Ty,...,Tn—1 €
Perg(“>2) and ko < k1 < ... < kg < ... and s < o such that for every £ < w, if
o €To, p1 €11y ooy Un1 € Th1, N\ lg(vm) = ke, then d(vg, ..., Vn_1) = s. N

m<n

2) We can demand in 1) that
SP(Ty) = {ko, k1, ...}
3) Pri® (w,n,0) for o < No.
4) prie (w, < Ro, (0} :n <w), (02 :n<w)) if ol <Ng and (o2 : n < w) diverge
to infinity.
Definition 2.8. Let d be a function with domain D [A]™, A be a set of ordinals, F

be a one-to-one function from A to **)2, <* be a well ordering of *2 for a < ()
such that F(a) <} F(B) < o < 8, and o be a cardinal.

1) We say d is (F, o)-canonical on A if for any oy < ... < o, € A,

{d(Brs- -, Ba) : (F(Br),- .., F(B,)) similar to (F(a1),..., F(an))}| <o

2) We define “almost (F,o)-canonical” similarly using strongly similar instead of
“similar”.
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§ 3. CONSISTENCY OF A STRONG PARTITION BELOW THE CONTINUUM
This section is dedicated to the proof of

Theorem 3.1. Suppose A is the first Erdds cardinal (i.e. the first such that
A — (w1)5¥). Then, if A is a Cohen subset of X, in V[A] for some Ry —c.c. forcing
notion P of cardinality \, IFp “MAy, (Knaster) + 2% = \” and:
1) Ikp “X — [Nlm(n) ” for suitable h : w — w (explicitly defined below).
2) In'VE, for any colorings d,, of \ where d,, is n-place, and for any divergent
(on 1 n < w) (see below), there is a W C X, |W| = Xy and a function
F : W — “2 such that d,, is (F,op)-canonical on W for each n. (See
Definition 2.8 above.)

Remark 3.2. 1) h(n) is n! times the number of u € [“2]™ satisfying “if 91,72, 13,74 €
u are distinct and n; N7y # n3 NNy then sp(n1,n2), sp(ns,n4) are distinet” up to
strong similarity for any nice <<;‘; ra< w>.
2) A sequence (o, : n < w) is divergent if (Vvm)(3k)(Vn > k)[o, > m)].
Notation 3.3. For a sequence a = (a;, e : i < a) with a; C 7 and e; € {1,2}, we
call b C « closed (or ‘a-closed’) if

(iieb=a; Cbh

(ii) Ifi < o, f =1, and sup(bNi) =4 then ¢ € b.
Definition 3.4. Let & be the family of q = (P;,Q;, a5, e
that:

(a) a; C i, |a;] < Ng, and ef € {0,1}.

(b) a; is closed for (aj, e} : j <i) and [ej =1 = cf(i) = Ny].

T j <a, i< a)such

(c) P; is a forcing notion, Q; is a Pj-name of a forcing notion of cardinality N,
with minimal element & or &, and for simplicity the underlying set of Q;
is C [w1]<M (we do not lose anything by this).

(d) Pg = {p : p is a function whose domain is a finite subset of 3 and for
i € dom(p), IFp, “f(i) € @1‘”} with the order p < ¢ if and only if for
i € dom(p), g i ke, “p(i) < q(i)".

(e) For j <1, Q; is a Pj-name involving only antichains contained in
{p € P; : dom(p) € a;}.

Notation: For p € P;, j < 4, j ¢ dom(p) we let p(j) = &. Note that for p € P;
and j <, we have p [ j € P;.
Definition 3.5. For q € £ as above (so a = {g(q)):

1) for any b C 8 < a closed for (a;,ef : i < f3), we define P§* [by simultaneous
induction on f]:

it ={p € Pg : dom(p) C b, and for ¢ € dom(p), p(¢) is a canonical name} .
Le. for any =, {p € P§" : pIFp, “p(i) = " or plFp, “p(i) # 2"} is a predense subset
of ]Pz
2) For q as above, a = fg(q), take q [ B = (P;,Q;,a; : 1 < 3, j < ) for B < o and
the order is the order in P, (if 8 > a, q | 8 = Q).
3) “b closed for q means “b closed for (a;,ef : i < {g(q))”.

Fact 3.6. 1) if g € Rthenq | § € R

2) Suppose b C ¢ C 3 < £g(f), b and c are closed for q € &.
(i) If pe P then p [ b € P5™.
(ii) fp,gePP and p< qgthenp [b<q[ec.
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(ii) Po" < P.
3) 4y(q) is closed for q.
4) If q € R, o = lg(q) then P" is a dense subset of P,.
5) If b is closed for q, p,q € Pj;(q), p < qin Pgyq) and i € dom(p) then
q | a;lFp, “p(i) < q(i)” hence Im»glil “p(i) <g, q(i)”.

Definition 3.7. Suppose W = (W, <) is a finite partial order and q € f.
1) INw (q) is the set of b-s satisfying (a)—(vy) below:

(@) b= (b, : w € W) is an indexed set of g-closed subsets of {g(q).

(B) W= wy < wa = by, C by,.

(7) If € € by, Nby,, w1 < w, and wy < w then

FueW)[(eb, Au<w Au < ws).
We assume b codes (W, <).
2) For b € INw(q), let
qlb] = {(pu, cw e W) ipy € B, [WEw < wy = Puy | bu, :pwl]}
with ordering q[b] = p' < p? iff A pl < p2.
weW

3) Let &' be the family of q € £ such that for every 8 < fg(q) and (q | 3)-closed
set b, Pg and Pg/P;" satisfy the Knaster condition.

Fact 3.8. Suppose q € &, (W, <) is a finite partial order, b € INy(q) and p € q[b].

) IfweW, p, <qeP? then there is 7 € q[b], ¢ < 7y, p < 7. In fact,

pu(7) if v € dom p, \ dom g¢,
pu(y) & q(v) if v € b, Ndom ¢ and for some v € W,

Tu(Y) =

u<v<wand y € by,
Pu(Y) if v € b, Ndom ¢ but the previous case fails.

2) Suppose (Wi, <) is a submodel of (W5, <), both finite partial orders, b' €
INw, (q), bl = b2 for w € W;.
(o) If g € q[b?] then (g, : w € Wy) € q[b'].
(B) If p € q[b'] then there is § € q[b?] with ¢ [ W, = p; in fact, ¢ () is pu(7)
if u e Wy, v € by,and u < w, provided that
(k) If wy,we € Wy, w € Wa, w1 < w, we < w and ¢ € by, N by, then for
somev € Wi, ( € b, v < wy, v < ws.
(This guarantees that if there are several u-s as above we shall get the same
value.)

3) If q € &' then qb] satisfies the Knaster condition. If & is the minimal element of
W (ie. ue W =W | @ < u) then q[b]/P§? also satisfies the Knaster condition

and so is < q[b], when we identify p € P{* with (p: w € W).

Proof. 1) It is easy to check that each r,(7) is in P§". So, in order to prove 7 € q[b],
we assume W = u; < ug and have to prove that ry, [ by, = ry,. Let € by, .

First case: ¢ ¢ dom(p,,) U dom(q). -
So ¢ ¢ dom(ry,) (by the definition of r,, ) and ¢ ¢ dom(py,) (as p € q[b]) hence
¢ ¢ dom(py,)Udom(q) hence ¢ ¢ dom(r,,) by the choice of r,, so we have finished.

Second case: ¢ € dom(p,,) \ dom(q).

As p € q[b] we have p,, (¢) = pu,(¢), and by their definition, 7, (¢) = py, ({),
Tuy (€) = Puy (€).
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Third case: ¢ € dom(g) and (Jv e W) [( € by Av <ug Av < w].
By the definition of 7, (¢), we have r,, (¢) = pu,({) & ¢(¢); also, the same v
witnesses 7y, (C) = Pusy (C) & Q(C)

(asCeb,ANv<uy Av<w=(Eb,Av<us Av < w),

and of course pu, () = puy (C) (as 7 € afb]):

Fourth case: ¢ € dom(q) and =(Fv € W)[( € by Av < uy Av < w).

By the definition of 7, ({) we have 7., (¢) = pu, (¢). It is enough to prove that
Tus () = Pus (C) as we know that py, (¢) = pu,(¢) (because p € q[g]v up < up). If
not, then for some vy € W, ¢ € by, Avg < ug Avg < w. But b € INy(q), hence
(see condition () of Definition 3.7(1), applied with ¢, wy, we, w there standing for
¢, vo, u1, ug here) we know that for some v € W, € vAv < vgAv < uy. As (W, <)
is a partial order, v < vg and vy < w, we can conclude v < w. So v contradicts our
being in the fourth case. So we have finished the fourth case.

Hence we have finished proving 7 € q[b]. We also have to prove q < r,,, but for
¢ € dom(q) we have ¢ € by, (as ¢ € PS® is on assumption) and r,,(¢) = ¢(¢) because

T4 (C) is defined by the second case of the definition as
(FveW)Ceby,Ahv<wAv>uw

ie. v=w.
Lastly, we have to prove that p < 7 (in q[b]). So let u € W, ¢ € dom(p,,) and we

have to prove ry [ ¢ IFp, “pu(C) <p, Tu(()”. As r4(C) is pu(C) or pu(() & q(¢) this
is obvious.

2) Immediate.

3) We prove this by induction on |W|.

For |W| = 0 this is totally trivial.

For |W| = 1,2 this is assumed.

For [W| > 2 fix p' € q[b] for i < w;. Choose a maximal element v € W and let
¢ =J{bw : W E w < v}. Clearly ¢ is closed for q.

We know that Pg", Py /P are Knaster by the induction hypothesis. We also
know that pi | ¢ € PS" for i < wy, hence for some 7 € P2,

riF“A= {z <wi:ipllce Q]Pgn} is uncountable”
hence

I-“there is an uncountable A* C A such that
[i,j € A" = pl, p) are compatible in P§"/Gpen] 7.

Fix a PS"-name A' for such an A*.

Let A2 = {i <w;: (g€ PM)[gl-ic A'}. Necessarily [A2| = Ry, and for
i € A? there is ¢' € P", ¢' I i € A!, and without loss of generality pi | ¢ < ¢'.
Note that p! & ¢* € P,

For i € A2, let 7 be defined using 3.8(1) (with p*, p & ¢%). Let Wy = W\ {v},
b = <bw W E W1>

By the induction hypothesis applied to Wy, b, # | Wy, for i € A? there is
an uncountable 42> C A% and for i < j in A3, there is 77 € q[b] with 7 |
Wy < 779 and # | W; < 7. Now define rf;j € P¢" as follows: its domain is
U {dom(r5?) : W | w < v} [and] r27 | dom(r5?) = ri/ whenever W = w < v.

Why is this a definition? As W E w1 < v Awy < v, { € by, A( € by, implies
that for some u € W, u < wy Au < ws and ¢ € u. It is easy to check that ri’j e Ppen.
Now 7 IFpen “pév, p{;v are compatible in P§" /Pgh”.
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So there is r € P{" such that rid <o pgv <r, piv <r. Asin part (1) of 3.8, we
can combine r and 7 to a common upper bound of p’, 5’ in q[b]. Os.s

Claim 3.9. Ife = 0,1 and 0 is a limit ordinal, and P;, Q;, a;,e; (for i <) are
such that for each a < §, q* = (P;,Qj,j,€] 11 < a, j < a) belongs to R, then
for a unique Ps, q = <Pi7@j,aj,e;f 11 <5, § < 8) belongs to 8.

Proof. We define Ps by Definition 3.4(d). The least easy problem is to verify the
Knaster conditions (for q € &!). The proof is like the preservation of the c.c.c.
under iteration for limit stages. Osg

Convention 3.10. In 3.9, we shall not make a strict distinction between
<Pi,@j,aj,e;f 1 < ES, i< 5> and (Pi,@i,ai,ef < 5>

Claim 3.11. If q € &, a = {g(q), a C «a is closed for q, |a| < Ry, and Q1 is
a P -name of a forcing notion satisfying (in V'« ) the Knaster condition whose
underlying set is a subset of [w1]<N°, then there is a unique q' € R with lg(q1) =
a+1, Q}l:@, andqla=q.

Proof. Left to the reader. Us.a1

We are now ready to prove 3.1.

Proof. Stage A: We force by KL, = {q cRl:lg(q) <\ q¢€ 7—[()\)} ordered by

being an initial segment (which is equivalent to forcing a Cohen subset of A). The

generic object is essentially q* € &), fg(q*) = A, and then we force by P = limq*.

Clearly ﬁi 5 is a A-complete forcing notion of cardinality A, and Py satisfies the

c.c.c. Clearly it suffices to prove part (2) of 3.1.

Suppose d,, is a name of a function from [A]" to k,, for n < w, g, < w,

(0, :n < w) diverges® and for some q° € ﬁ1<>\, we have

Q' kg, GpePy)[plre, “(dp:n<w)isa
counterexample to 3.1(2)”].

In V we can define {(q¢ : ¢ < \) with q¢ € ﬁ1<>\ such that

(<&=4q° =g | (q)
[In] q**1, €ac) = Ly q° 1! forces (in &L ,) a value to p and the Py-names d, | ¢,
On, kn for n < w; i.e. the values here are still Py-names. Let q* be the limit of
the g*-s. So q* € &Y, fy(q*) = X, q* = (P;,Q},af,¢e5 : i < A, j < A), and the
P}-names d,,, g, kn are defined such that in VP, dy, o, kn contradict clause (2)
(as any P§-name of a bounded subset of A is a Pzg(qg)—name for some & < ).

Stage B: Let x = T and <} be a well-ordering of H(x). Now we can apply
A = (w1)5¥ to get 6, B, Ns and hy; (for s,t € [B]<®° with |s| = |¢|) such that:
(a) B C A with otp(B) = w; and sup B = 4.

(b) Ns < (H(x), € <%), a" € Ny, (d1; Gns kn i n <w) € Ny,

(¢) NsN Ny = Nypy

(d) NynB=s

(e) If s=tNa,te[B]<N then N, N\ is an initial segment of N;.
(f) hg, is an isomorphism from N; onto Ny (when defined).

(g) ht,s = hs_,tl

2Le. (Vm)(3k)(VYn > k)[on > m].
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(h) po € Ns, po lFpy, “{dn,0n, kn : n < w) is a counterexample to the conclusion
of 3.17.
(i) w1 € Ny, |[Ng| =8y and if v € Ny, cf(y) > Ry then cf(sup(y N N;)) = wi.
Let q=q* [ 0, P =P} and P, = P¢" (for q), where a is closed for q.
Note: Py NNy = P; N Ny = Psupann, N Ny =P; N N,. Note also

'yEAﬂNS:af/QAﬂNS.

Stage C: It suffices to show that we can define Qs in V¥4 which forces a subset W
of B of cardinality 8; and an F': W — ¥2 which exemplify the desired conclusion
in (2), and prove that Qs satisfies the N;-c.c.c. in V¥ (and has cardinality ¥;).
Moreover (see Definitions 3.4 and 3.7(3)), we also define as = |J N, es = 1,
s€[B]<No

q' = q (P}, Qs, as, es) and prove q' € R We let d(u) = djy ().

Let F : w; — “2 be one-to-one such that (Vn € “>2)(Fa < wi)n < F(a)).
(This will not be the needed F, just notation).

For s,t € [B]<Y0, we say s =% t if [s| = |t| and

(V€ € s)(VC e[ =hy () = F(§) [n=F(C) [ n]
Let
Ly =I,(F) = {s € [B]<: (V¢ £ £ € s)[F(C) I n # F(€) I n]}.
We define R,, as follows: a sequence (p; : s € I,) € R,, if and only if
(i) for s € I,, ps € P N N,
(ii) for some c¢s we have pg IF “d(s) = ¢s”,
(iii) for s,t € I, s =% t = hy 1 (pr) = ps,
(iv) for s,t € Iy, ps | None = D¢ | Nore-
R,, is defined similarly, omitting (ii).
For x = (ps : s € I,) let n(z) = n, p¥ = ps, and (if defined) ¢¥ = ¢;. Note that
we could replace z € R,, by a finite subsequence. Let R= (J R,, R" = | R,,.

n<w n<w

We define an order on R: x < y if and only if n(z) < n(y) and
SEIn(I)/\tEIn(y)/\SQt@pi Spg

Stage D: Note the following facts:
Subfact D(a): If z € R, t € I,, and py < p' € Pf N Ny, then there is y such that
r <yeR, and p} = p’.

Proof. For s € I, we let
Pl =& {hsl,t1(p1 [Ny ):s1Cs, t1Ct, s1=pt1} &pl.

(This notation means that p? is a function whose domain is the union of the
domains of the conditions mentioned, and for each coordinate we take the canonical
upper bound; see preliminaries.)

Why is p¥ well defined? Suppose § € NsNA (for § € A\ N, clearly p¥(8) = @g),
sg € s, 1ty Ct, sp =% tpfor{ = 1,2 and 8 € dom(hsbn(p1 [ Nn))7 and it
suffices to show that p?(3), hs, +, (p' | Ni,)(B), and hy, 4, (p' | Ni,)(B) are pairwise
comparable. Let u = ({v € [B]<™ : 8 € N,}; necessarily u C s1 N sz, and let
Up = hs_it,Z (u). As sg,te,t € I, s¢ =% tp and uy C tp C ¢, necessarily uq = ug. Thus
y=h,L(8) = hs_e%tg (8) and so the last two conditions are equal.

Now

PE(B) = P (B8) = huw(PE (7)) < haye,((0F 1 Nep) (7)) = (hspe, (0F T Niy)) (B)-

We leave to the reader checking the other requirements. Ub(a)
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Subfact D(8): If z € R, t € I then J{p? : s € I,, s C t} (as a union of
functions) exists and belongs to P} N V.

Proof. See (iv) in the definition of R,,. Op(s)

Subfact D(y): If <y, x € R,,, y € R,, then y € R,,.

Proof. Check it. Up(y)

Subfact D(d): If x € R, n < m, then there is y € R,,, with z <.

Proof. By subfact D(B) we can find 2! = (p} : t € I,) € R, with 2 < zl.
Repeatedly using subfact D(a), we can increase x' (finitely many times) to get
y € R,,. DD((;)

Subfact D(¢): If t € R,, s,t € I,,, s =} ¢,
pZS’IHG}P);ﬂNS, pfSTQEPKQNt,
(V¢ € t) [F(C)(n) # F(hyy(C))(n)] (or just pZ | s1 = hey(pf | t1), where t; =

t
{§ et: F)n) = F(hst(f))(n)} and s1 = {hs:(€) : & € t1}), then there is
y € R,41 with < y such that r; = p¥ and ro = py.

Proof. Left to the reader. Ub(e)

Stage E:3
We define T;F C 229 by induction on & as follows:

Ty ={(), (1}
Ti, =T U {Z/ZQk <lg(v) <281 v 12k e Ty, and
RF <i< 2P Aav()=1]=i=2"+( 3 v(i)2m)}.

We define
TrEmb(k,n) := {h : h a is function from T} into =

such that for v, p € T} we have
n=v < h(n) =h),
n<v < h(n) <h(v),
tyg(n) = tg(v) = Lg(h(n)) = g(h(v)),
v=m1 (i) = ()( ( ())):
ly(n) =k =tg(h =n}.

T(k,n) := {Rang(h) : h € TrEmb(k,n)},

- UT(kvn)a
k
= UT(k,n).

3We will have T' C “>2 from 2.7(2) and then want to get a subtree with as few colors as
possible; we can find one isomorphic to “>2, and there restrict ourselves to |J,, Tr
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For T € T(k,*) let n(T) be the unique n such that T € T(k,n) and let
Br ={a € B: F(a) | n(T) is a maximal member of T},

fsp ={t CBr:netrvetAn#v=nlnT)£v|nT)},

Or :{<ps :s €fspy i ps € PN Ny, [s CtA{s,t} Clsp = ps =p; [NS]}.

Furthermore, let

Or = J{Or : T € T(k,+)}
@:U@k.

For p € ©, n; = n(p) and T are defined naturally.

For p,q € ©, p < q iff n; < ng and for every s € fs7, we have ps < gs.
Stage F: Let g : w — w, g € N, g grows fast enough relative [to] ( On i < w).
We define a game Gm. A play of the game lasts w moves: in the n'® move Player
I chooses p" € O,, and a function h,, satisfying the restrictions below, and then
Player II chooses g, € ©,, such that p, < g, (so T, = Tj,). Player I loses the
play if at any time he has no legal move; if he never loses, he wins. The restrictions
Player I has to satisfy are:

(a) For m <n, @m < Pn, p§ forces a value to g [ (n +1).
(b) A
(¢) m < n = hy, hy, are compatible.
(d) If m <n, ¢ <g(m), and s € [Br,, |* then p? I d(s) = hq(s).
(e) Let s1,s2 € dom(hy,). Then h,(s1) = hy,(s2) whenever s1,s2 are similar

over n, which means:

(i) F(Hsgil(C)) I'n[p"] = F(¢) [ n[p"] for ¢ € s1.

(i) HOF, preserves the relations sp(F((1), F(C2)) < sp(F(¢3), F(C4)) and

F(¢3)(sp(F(C1), F(¢2))) =i (in the interesting case (3 # (1, [we have]
(o implies 7 = 0).

» 18 a function from [Br, 1590 to w.

Stage G/Claim: Player I has a winning strategy in this game.

Proof. As the game is closed, it is determined, so we assume Player IT has a winning
strategy , and eventually we shall get a contradiction. We define by induction on
n, 7 and ®" such that

(a) 7 € Ry, 7 < 7t

(b)

(¢) In each member of ®", Player IT uses his winning strategy.

(d) If y belongs to ®" then it has the form (p¥* h¥* @¥¢ : £ < m(y)); let
hy = h¥"v and Ty = Ty m(y)- Also, T, C"= 2 and ¢¥* < r? for s € fsg,.

(e) &, C D41, D, is closed under taking the initial segments and the empty
sequence (which too is an initial segment of a play) belongs to ®g.

®" is a finite set of initial segments of plays of the game.

(f) For any y € ®,, and T, h, either for some z € @11, n. =ny + 1,y =2 |
(ny+1), T, =T, and h, = h or Player I has no legal (n, + 1) move p", h"
(after y was played) such that Tzn = T, h™ = h, and p? = rl for s € fsp
(or always < or always >).
There is no problem to carry the definition. Now (77 : n < w) defines a function
cif my,...,mp € ™2 are distinct then d* (<771, e 717k>) = ¢ iff for every (equiva-
lently, ‘some’) (1 < --- < ¢ from B, n, < F(¢) and

7”]{21}”.706} I “glk({cl’ Ceey Ck}’) E
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Now apply 2.7(2) to this coloring and get T* C “~2 as there. Now Player I could
have chosen initial segments of this 7 (in the n*® move in ®,,), and we easily get
a contradiction. g

Stage H: We fix a winning strategy for Player I (whose existence is guaranteed by
stage G).
We define a forcing notion Q*. We have (r,y, f) € Q* iff
(i) re PR
(i) y = (p*, h*,q" : £ < m(y)) is an initial segment of a play of Gm in which
Player I uses his winning strategy.
(iii) f is a finite function from B to {0,1} such that f~*({1}) € fsy, (where
Ty = Tq‘nl(y)).

: _ um(y)
(iv) 7= aoa gy

(The order is the natural one.)

Stage I: If J C 5" is dense open then {(r,y, fleQ*:re l} is dense in Q*.

Proof. By 3.8(1) (by the appropriate renaming). Oy

Stage J: We define Qs in Vs as {(r,y, fleQ*:re Qpé}, the order is as in Q*.
The main point left is to prove the Knaster condition for the partial ordered set

q* = q"(Ps,Qs, as, es) demanded in the definition of &'. This will follow by 3.8(3)

(after you choose meaning and renamings) as done in stages K and L below.

Stage K: So let i < §, cf(i) # Ny, and we shall prove that IP’}'H/]P’Z- satisfies
the Knaster condition. Let p, € Pj, , for @ < wy, and we should find p € P;,
p IFp, “there is an unbounded A C {a : p, [ @ € Gp,} such that for any «, 8 € A,
Pa,Pp are compatible in P5., /Gp,”.

Proof. Without loss of generality:
(a) pa € P,

(b) For some (i, : @ < wy) increasing continuous with limit § we have iy > 1,
Cf(la) # Nl) pOé r 6 E Pia+17 and pa F Z.Ot e Pio' Let pg = pcY r iO?

pfly =Pa [ 6 =Da [ iayt1, and pa(§) = (Ta,ya,fa)-

(€) Ta €Pi 1y ra i € Py, and m(yq) = m*.

(d) dom(fa) Cio U lia,ia+1),

(e) fa Iip is constant. (Remember, otp(B) = wy.)

(f) If dom(fa) = {4 .- jg. 1} then ko =k, [j§ <ia < <k*], A j&=j",

L<k*
F8) = 1), and F(3)) [ m(ya) = F(i) T m(ys).
The main problem is the compatibility of the ¢g¥™¥=) Now by the definition of
O, (in stage E) and 3.8(3) this holds. Ok

Stage L: If ¢ C 6+ 1 is closed for q*, then P}, , /Pc" satisfies the Knaster condition.
If ¢ is bounded in §, choose a successor i € (supe,d) for q [ ¢ € . We know
that P;/Pg" satisfies the Knaster condition and by stage K, P, /P; also satisfies
the Knaster condition; as it is preserved by composition we have finished the stage.
So assume c¢ is unbounded in § and it is easy too. So as seen in stage J, we have
finished the proof of 3.1. Oz .1

Theorem 3.12. If A > 1, and P is the forcing notion which adds A\ Cohen reals,
then:
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(¥)1 InVE ifn <wandd: [NJS" — o with o < Ry, then for some c.c.c. forcing
notion Q we have lFg “there are an uncountable A C A and a one-to-one
F: A — “2 such that d is F-canonical on A” (see notation in §2).

()2 If X > p —ywsp (K)x, in V (see [She89]) and d : [u]<" — o in VT (with
o < Vg) then, in V¥, for some c.c.c. forcing notion Q we have Ik “there
are A € [u]" and one-to-one F': A — “2 such that d is F-canonical on A”
(see §2).

($)a If A > p —=wsp R1)E, in Voand d : [u]=" = o in VF (with o < Rg) then,
in VE, for every a < wy and F : a — “2, for some A C p of order type o
and F': A — 2, F'(8) = F(otp(ANp)), d is F'-canonical on A.

()4 In VE, 2% — (a,n)? for every a < wy and n < w. Really, assuming
V |= GCH we have N,;; — (v, n) (see [She89]).

Proof. Similar to the proof of 3.1. Superficially we need more indiscernibility then
we get, but getting (M, : u € [B]=") we ignore d({a, 8}) when there is no u with
{a, B} € My. WERP

Theorem 3.13. If A is strongly inaccessible w-Mahlo and p < X, then for some
c.c.c. forcing notion P of cardinality A\, VT satisfies

(a) MA,,
(b) 280 =X = 2% for k < \.
(€) A= [Ra]7 ) forn <w, 0 <o, and h(n) as in 3.1.

Proof. Again, like 3.1. Us.13

See https://shelah.logic.at/papers/288/ for possible updates.
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§ 4. PARTITION THEOREM FOR TREES ON LARGE CARDINALS

Lemma 4.1. Suppose u > o + Ry and
(%) for every p-complete forcing notion P, in VP, 11 is measurable.
Then
(1) We have P, (u,n,0) for all n < w.
(2) P (1, < No,0), if there is X > p such that \ — (u*);w.
(3) In both cases we can have the Pr'S,  wversion, and even choose the
(<E a < p) in any of the following ways.
(a) We are given (<%: a < p), and (for n,v € “2NT, a € SP(T), and T
the subtree we consider) we let:
o 1 <;, v if and only if clpp(n) <3 clpp(v), where § =
otp(a NSP(T)) and clpp(n) = (n(j) : j € lg(n), j € SP(T)).
(b) We are given (<%: a < p), and we say n <% v if and only if
nl(B+1) <%+1 v ] (B+1), where § =sup(aNSP(T)).
Remark 4.2. 1) (x), holds for a supercompact after Laver treatment. On hyper-
measurable, see Gitik-Shelah [GS89].

2) We can in (%), restrict ourselves to the forcing notion IP actually used. For that,
by Gitik [Git10] much smaller large cardinals suffice.

3) The proof of 4.1 is a generalization of a proof of Harrington to the Halpern-
Lauchli theorem from 1978.

Conclusion 4.3. In 4.1 we can get Pris (u,n, o) (even with (3)).

Proof. We do the parallel to 4.1(1). By (x),, u is weakly compact hence by 2.6(2)
it is enough to prove Pr'S, (4, n, o). This follows from 4.1(1) by 2.6(1). Oas

Proof. Proof of 4.1:
1), 2). Let k <w, o(n) < p, d, € Coly,)(#>2) for n < k.
Choose A such that A\ — (u*)52% (there is such a A by assumption for (2) and
by k < w for (1)). Let Q be the forcing notion (#~2, <), and P =P, be
{f : dom(f) is a subset of A of cardinality < p1, f(i) € Q},

ordered naturally. For i ¢ dom(f), take f(i) = (). Let n; be the P-name for
U{f (@) : f € Gp}. Let D be a P-name of a normal ultrafilter over u. For each n < w,
d € Coly(,y("72), j < o(n) and u = {ap, ..., a1}, Where ag < -++ < ap_1 < A,
let A%(u) be the Py-name of the set

Ail(u) = {z < (na, [1:€ < n) are pairwise distinct, j = d(Nag [ 4, Na,_, [ z)}

So A%(u) is a Py-name of a subset of u, and for j(1) < j(2) < o(n) we have

2 (W) 0 47 (w) = 2, and Uy
H-]p “® is u-complete uniform ultrafilter on 17, in V¥ there is exactly one j < o(n)
with Ai(u) € ®. Let j4(u) be the P-name of this j.

Let I;(u) C P be a maximal antichain of P, each member of I(u) forces a value
to ja(u). Let Wa(u) = U{dom(p) : p € La(uw)} and W (u) = (J{Wa, (u) : n < k}. So
Wa(u) is a subset of A of cardinality < u as well as W (u) (as P satisfies the pu*-c.c.
and p € P = |dom(p)| < ).

As A — (ut)52%, d,, € Colj; (#>2) there is a subset Z of A of cardinality p++
and set W (u) for each u € [Z]<" such that:

(i) W+(’LL1) N W+(UQ) = W+(U1 N Ug)

A ’(u) is a co-bounded subset of . As
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(ii) W(u) C W (u) if u € [Z]<".
(iil) If Jus| = Jus| < x and uy,us € Z then W (uy) and W (uz) have the same
order type.
(Note that Huj,us] = HVOVP+(u1),W+(u2) naturally induces a map from

Plu; ={peP:dom(p) CWt(u1)} to
Pl uy={peP:dom(p) C W(us)}.)

(iv) If ug,ug € [Z]<" and |uz| = |ug| then H[uy,us] maps Iy, (u1) onto Iy, (u2)
and

q k%) (1) =57 & Hluy, us)(q) I- “j (u2) = j7.

(v) Ifup Cug € [Z]<", uz Cuy € [Z]<F, |ua| = |usg|, and HSZP:M maps uj onto
ug, then Hluy,u3] C H[ug, uy).

Let v(i) be the i*" member of Z.

Let s(m) be the set of the first m members of Z and

R, = {p€P:dom(p) CW'(s(n) \ |J Wr®)}.
tCs(n)

We define, by induction on o < g, a function F, and p, € Ry, for u € [J [P2]<*
B<a

where we let @5 be the empty subset of [#2], we behave as if [8 # v = @5 # ],
and we also define (() < p such that:

(i) F, is a function from “~2 into #~2, extending Fj for each § < a.
(ii) F, maps 2 to <(#)2 for some ((3) < p, and

B < B2 <a= (1) < ((Ba)
(i) n <v € *>2 implies Fy,(n) < Fy(v).
(iv) For n €% 2, B+ 1 < o, and £ < 2, we have F,(n)"(¢) < F,(n"(()).
(v) pu € Ry, whenever u € [?2]™, m < K, B < «a and for u(1) € [Z]™ let
(vi) n €2, B < a, then pg, (min Z) = F,(n).

(vii) If B < @, u € [P2]", n < Kk, and h : u — s(n) is one-to-one and onto (but

not necessarily order preserving) then for some c(u, h) < o(n),

U Pen ) Fey “dn(N4(0)s - - -5 Dy(n—1)) = c(u, h)”.

tCu
(Note: as p, € Ry, the domains of the conditions in this union are pairwise
disjoint.)

(viii) If n,u, B, h are as in (vii), u = {vo, ..., Vn-1}, Ve <<pe € 72, and 8 < v < q,
then d,,(Fuo(po), .- Fa(pn-1)) = c(u,h), where h is the unique function
from u onto s(n) such that [h(vy) < h(vm) = pe < pml-

(ix) I8 <y <o vVi,...sVno1 €72,n < k,and vy | B,...,0p—1 | B are
pairwise distinct, then: pri1 5, v, 187 S Plug,cvm_1}-
For « limit: no problem.
For a + 1 with « limit: we try to define F,(n) for n € *2 such that
U Fsra(n 1 8) Q Fa(m)
B<a

and (viii) holds. Let ( = |J ¢(B). For n € 2, we define
B<a

Fi(n) = | Faln 1 8)

B<a
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and for u € [*2]<F,

0 = U{p({)urﬂ:%u} < an |{1/ [B:v € u}{ = \u|}

Clearly pg S R‘M
Then let h : “2 — Z be one-to-one such that n <X v < h(n) < h(v) and let

p =) s u)) € (2057, we (2], Ju(1)] = [ul, B (u) = u(1)}.
For any generic G C P, to which p belongs, for § < «a, n < w, and ordinals
ig < -+ < ip_1 from Z such that (h=1(i;) | 8 : £ < n) are pairwise distinct, we
have that

Bigeeny.s = {€ <t dnlnig 1€0omi, sy 1€) = e(u,h”) }

belongs to D[G], where u = {h™1(iy) | B: ¢ <n} and h* : u — s(|u|) is defined by
W (™ (ie) | B) = HQY .y ny s(my(i0)- Really every large enough 3 < p can serve so
we omit it. As D[G] is p-complete uniform ultrafilter on u, we can find € € (¢, %)
such that £ € B, for every u € [*2]<%.

For v € *2, we let Fy(v) = 15,(3)[G] | €, and we let p, = p}) except when u = {v}.

In that case:
o) = {pzm ifi #9(0)
Funa(v) i =(0).
For o+ 1, with « a successor:

First, for n € 712 define F(n"(f)) = Fa(n) (). Next we let {(u;, h;) 1 i < i*}
list all pairs (u, h) with u € [“2]3"‘ and h : u — s(Ju|) one-to-one and onto. Now,
by induction on i < i*, we define p!, (for u € [*2]<*) such that:

(a) p’fb € R\ul

(b) pi increases with i.

(¢) For i+ 1, clause (vii) above holds (with a,u;, h; here standing in for 5, u, h
there).

(d) vy, € *2form <n<kand (v, [ (a—1):m <n) are pairwise distinct,
then py,,, j(a—1)m<n} < Py men)-

(e) frve*2and v —1) =/ Mpgy}(O) =F,(v ] (a—1))(0).

There is no problem to carry the induction.

Now Fiy1 | *2 is to be defined as in the second case, starting with n — pﬂ} (n).
For a = 0, 1: Left to the reader.

So we have finished the induction hence the proof of 4.1(1), (2).

3) Left to the reader (the only influence is the choice of h in stage of the induction).
Uag
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§ 5. SOMEWHAT COMPLEMENTARY NEGATIVE PARTITION RELATION IN ZFC

The negative results here suffice to show that the value we have for 2% in §3 is
reasonable. In particular, the Galvin conjecture is wrong and that for every n < w,
for some m < w, N, 7 [R] .

See Erdés-Hajnal-Maté-Rado [EHMR84| for

Fact 5.1. If 2<# < XA < 2# and p /4 [p]? then A A [(2<H)F]2+L,

This shows that if e.g. in 1.4 we want to increase the exponents to 3 (and still
= p<H) then p cannot be successor (when o < Rg; by [She88, 3.5(2)]).

Definition 5.2. Pr, (A, p, ) (where & = (0, : n < w)) means that there are
functions F,, : [\]" — o, such that for every W € [AJ#, for some n, F)/([W]") =
o(n). The negation of this property is denoted by NPry,(\, p, 7).

If the sequence in constantly o we may write o instead of (o, : n < w).

Remark 5.3. 1) Note that A — [p]s% means “if F : [A\|<¥ — o then for some
A e [A*, F"([A]<¥) # 0. Sofor A > pu > o = Ry, we have A /A [u]|S¥ (use a — |«
for F'), and Pryn, (A, i, 0) is stronger than A /4 [u|5%.

2) We do not write down the monotonicity properties of Pry,,: they are obvious.

Claim 5.4. 1) Without loss of generality we can (in 5.2) use Fy, p, = [\]™ — op, for
n,m < w and obvious monotonicity properties holds, and A\ > p > n.
2) Suppose NPry, (A, i, k) and & /4 [k]2, or even k # [k]$¥. Then the following
case of the Chang conjecture holds:
(x) For every model M with universe A and countable vocabulary, there is an
elementary submodel N of M of cardinality pn [with] |[N Nk| < k.

3) If NPI‘np()\7N1,N0) then ()\, Nl) — (Nl,NQ).
Proof. Easy. Os.4

Theorem 5.5. Suppose Pry, (Ao, i, No), p is regular > Rg and A\ > Ao, and no
€ (Xo, A1) is p'-Mahlo. Then Pryp (A1, i1, No).

Proof. Let x = Js(A1)*, let {F),, : m < w} list the definable n-place functions in
the model (#(x), €, <}) with o, s, A1 as parameters, let F  (ao,...,on_1) (for
ag,...,an—1 < A1) be equal to Fg’m(ao, ...yQp_1) if it is an ordinal < A; and zero
otherwise. Let F,, ,,(ag,...,an—1) (for ag,...,an_1 < A1) be ngm(am ceey Q) if
it is an ordinal < w and zero otherwise. We shall show that the F, ,,, (for n,m < w)
exemplify Prnp (A1, i, Ro) (see 5.3(1)).

So suppose W € [A1]* is a counterexample to Pr(\y, u, Ng): i.e. for no n,m is
F) . ([W]") = w. Let W* be the closure of W under {F},, : n,m < w}. Let N be
the Skolem Hull of W in (H(x), €, <}), so clearly N N A\; = W*. (Note W* C \,
l[and] |W*| = p.) Also, as cf(u) > N, if A C W* with |A| = p then for some
n,m < w and u; € [W]" (for i < p) we have F,  (u;) € A and

i<j<p=F,y,(u)#F, . (u).

It is easy to check that also W' := {F,, (u;) : i < p} is a counterexample to
Pr(A1,p1,0). In particular, for n,m < w, Wy, = {F},(u) : u € [W]"} is a
counterexample if it has power . Without loss of generality W is a counterexample
with minimal ¢ := sup(W) = [J{a + 1 : @ € W}. The above discussion shows that
[W*Na|l < pfor a < §. Obviously cf(6) = put. Let (a; : i < p) be a strictly
increasing sequence of members of W*, converging to §, such that for limit i we
have o; = min(W*\ U (e, +1)). Let N = [J N; where N; < N, [N;| < p, N;
j<i i<
increasing continuous,Jand without loss of gener;lity N;,Nd=NnNa,.



Paper Sh:288, version 2023-09-08_2. See https://shelah.logic.at/papers/288/ for possible updates.

20 S. SHELAH

Fact (a): § > A.

Proof. Otherwise we then get an easy contradiction to Pr(Ag, i, o), as when choos-

ing the F,, we allowed \g as a parameter. o

Fact (8): If F is a unary function definable in N, F(«) is a club of « for every
limit ordinal & (< A1) then for some club C of y1 we have

(Vj € C\{minC})(Jiy < j) (Vi € (i1,4))[i € C = a; € F(ay)].
Proof. For some club Cy of p we have
j€Co= (Nj{oi:i<j}, W) =< (N {a;:i<p},W).

We let C' = C = acc(C) (= set of accumulation points of Cj).

We check C is as required; suppose j is a counterexample. So j = sup(j N C)
(otherwise choose i1 = max(jNC)). So we can define, by induction on n, a sequence
of i,, such that:

(a) i <fint1 <J
(b) @i, ¢ Flay)
(C) (O‘in7ain+1) N F(aj) 7é .

Why (Cj)? | “F(c;) is unbounded below a;” hence N |= “F(«;) is unbounded
below a;”, but in N, {a; : i € Cp, i < j} is unbounded below «;.

Clearly, for some n, m we have a; € W, ,,, (see above). Now we can repeat the
proof of [She88, 3.3(2)]* using only members of W,, ,,,.

Note: here we set the number of colors to be Nj. Ogs

Fact (3)": Without loss of generality, the club C in Fact (8) is p.
Proof: By renaming.

Fact (v): ¢ is a limit cardinal.

Proof. Suppose not. Now § cannot be a successor cardinal (as cf(d) = p < Ag < 9)
hence for every large enough i, |o;| =[], so || € W* C N and |§|T € W*.

So W* N 4] has cardinality < p hence order-type equal to some v* < u. Choose
i* < g limit such that [j < ¢* = j +~* < i*]. There is a definable function F' of
(H(x), €, <}) such that for every limit ordinal a, F'(r) is a club of a, such that if
|a| < a then F(a)N|a| = @ and otp(F(«)) = cf(a).

So in N there is a closed unbounded subset Cy; = F(a;) of a; of order type
< cf(a;) < 16|, hence C,, N N has order type < ~*, hence for i* chosen above
unboundedly many ¢ < i*, a; ¢ Cy,.. We can finish by Fact (3)7. 0O,

Fact (9): For each i < p, a; is a cardinal.

Proof. 1f ;| < i then |ay| € Ny, but then |ay|™ € N; contradicting Fact (v), by
which |a;|T < §, as we have assumed N; N6 = N N ;. Os

Fact (¢): For a club of i < p, a; is a regular cardinal.

Proof. If S = {i : «; singular} is stationary, then the function a; — cf(a;) is
regressive on S. By Fodor’s lemma, for some o* < 4§, {i < p : cf(ay) < o} is
stationary. As [N Na*| < p for some 8%, {i < p : cf(a;) = B*} is stationary. Let
F1 (@) be a club of a of order type cf(«), and by Fact (8) we get a contradiction
as in Fact (7). O

Fact (¢): For a club of ¢ < p, a; is Mahlo.

15ee mainly the end.
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Proof. Use Fy ,(a) = a club of a which, if « is a successor cardinal or inaccessible
not Mahlo, then it contains no inaccessible, and continue as in Fact (7). Oe¢

Fact (&): For a club of i < y, a; is a;-Mahlo.

Proof. Let Fy ,(0)(e) = sup{¢ : ais (-Mahlo}. If the set {i < z : c; is not a;-Mahlo}
is stationary then as before, for some v € N we have {i : Fy ;,,(0)(c;) = 7} is sta-
tionary. Let I ,(1)(«) — a club of « such that if « is not (v + 1)-Mahlo then the
club has no y-Mahlo member. Finish as in the proof of Fact (). Ole

Together we are done. Os 5
Remark 5.6. We can continue, and say more.

Lemma 5.7. 1) Suppose A > p > 0 are regular cardinals, n > 2, and
(1) For every regular cardinal k, if A > k > 6 then k / [0 ]0(1)

(13) For some a(x) < p, for every reqular k € (a(*),\), k # [a(x )]U(2
Then
(@) X [u]nTt, where o = min{o(1),0(2)}.
(b) There are functions dy : [\"Tt — 0(2) and dy : [\]* — o(1) such that for
every W € [AJ* we have dy([W]3) = o(1) or dy([W]"1) = o(2).
2) Suppose A >y > 0 are regular cardinals, and
(i) For every regular k € [0, \) we have k £ [0]5¢ o)

(ii) sup{x < A : K regular} # [/‘]0(2)'

Then
(@) X+ (42", where o = min{o(1),0(2)}.
(b) There are functions dy : [\]> — (1), do : [N]*™ — 0(2) such that for every

W € [A]* we have df ([W]?) = o(1) or d([W]? ) a(2).
The proof is similar to that of [She88, 3.3,3.2].

Proof. 1) For each i, 0 < i < \;, we choose C; such that if i is a successor ordinal
then C; = {i — 1,0}, and if ¢ is a limit ordinal then C; is a club of ¢ of order type
cf(i) containing 0 such that [cf(¢) < i = cf(i) < min(C; \ {0})] and C; \ acc(C;)
contains only successor ordinals.

Now for a < 3, a > 0 we define 7, (3, @), 7, (8,) by induction on ¢, and then

K(B,a), e(B,a).
(A) 75 (B,a) = B, % (B,a) = 0.
(B) If v/ (B, ) is defined and > « and « is not an accumulation point of
Ot (8,0) then we let Yo+1(B, ) be the maximal member of C’Y?(ﬁﬂ) which

is < o and 7/, (8, @) is the minimal member of Cl# (8,a) Which is > o (by
the choice of Cﬁ( 5.y and the demands on v, (B, @) they are well defined).
So 4

(B1) (a) v (B,a) < a <~/ (B,a), and if the equality holds then v, (8, @) is
not defined.

(b) vjﬂ(ﬁ, @) < v/ (B,a) when both are defined.
(C) Let k = k(B, @) be the maximal number k such that v, (3, «) is defined (it
is well defined as (v, (3, ) : £ < w) is strictly decreasing). So
(C1) 'y,j(ﬁ a)(ﬂ,a) = «a or ’y]:'(ﬁ a > 'y,':(ﬁ o) 18 a limit ordinal and a is an

accumulation point of C_+ (8, «).
RLICRY
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(D) For m < k(fB, a) let us define

em(B,a) = max{y, (8,a) +1: £ < m}.

Note
(D1) (a) enm(B, @) < a (if defined).

(b) If « is limit then £,,(8, @) < o (if defined).
)

(c) If (B, ) < & < « then for every £ < m we have

VX(B,Q) :7;(5a£)7 Wﬁi(ﬂaa) :’yg(ﬁvf), €e(ﬁ7a):€£(5,£)~
(Explanation for (c): if ,,(8, @) < « this is easy (check the definition)
and if €,,(5, &) = «, necessarily £ = « and it is trivial.)

(d) If £ < m then €,(8, ) < e (B, @).

For a regular k € (a(x),)) let gl : [5]<¥ — o0(2) exemplify x 4 [9];“1), and for
every regular cardinal k € [0, \) let g2 : [k]" — 0(2) exemplify k /4 [a(4)]7 2)-
Let us define the colourings:
Let ag > a1 > ... > ay,. (Remember n > 2.)
Let n = n(ag, a1, as) be the maximal natural number such that:
(1) en(ao, 1) < ap is well defined.
(ii) v, (a0, 1) =, (0, ) for £ < mn.
We define da(ag, a1, - .., ) as g2(B1,- - -, Bn), where

k= Cf (ry’:(ao,al,az)(ao’ al))7

Be = otp(az N C"’:(ao,al,%)(ao’“l))'
Next we define d; (g, a1, az) .
Let i(%) = 5P (C 4 (ag.a0) N Cy (ar.an))» Where n = n(ag, ar,az). Let E be the

Vi
equivalence relation on C.+( ) \i(*) defined by

@p,01

N E e (Ve C 1+ a) <ve 12 <1l

If the set w = {7 € C t 40y : 7 > i(*), ¥ = miny/E} is finite, we let

di (g, a1, a0) be gt ({57 1y € w}), where k = }Cﬁ | and

(ao,001)
By = otp(’y N Cﬁ(ao}al)).

We have defined dy, ds required in condition (b) (though have not yet proved
that they work) We still have to define d (exemplifying A /4 [u]}™!). Let n > 3:
for ag > a1 > ... > ay, we let d(ap, ..., a,) be di(ap, a1, as) if w defined during
the definition has odd number of members and ds(a, ..., a;,) otherwise.

Now suppose Y is a subset of A of order type u, and let 6 =supY. Let M be a
model with universe A and with relations Y and {(¢,7) : i € Cj}. Let (N; 14 < p)
be an increasing continuous sequence of elementary submodels of M of cardinality
< p such that a(i) = a; = min(Y '\ IV;) belongs to N1, sup(N Nay;) = sup(N NJ).
Let N = |J N;. Let 6(z) = 6; = sup(V; Na;), so 0 < 0; < a, and let n = n; be

i<p
the first natural number such that §; an accumulation point of C? = C’y,’f(ai,é(i))’
let £; = €,(;)(as, ;). Note that ;¥ (v, 6;) = v, (a4, €;) hence it belongs to N.
Case I: For some (limit) ¢ < u, cf(i) > 6 and (Vy < @)[y + a(*) < i] such that for
arbitrarily large j < i, C* N N, is bounded in N; Nd = N; N 6.
This is just like the last part in the proof of [She88, 3.3], using g} and d; for
k= cf(yt (a4, 05)).
Case II: Not case L.
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Let Sop = {i < p: (Vo < i)[y + a(x) < 4], cf(i) = 8}. So for every i € Sy, for
some j(i) < 1,

(V5) [j € (ji),i) = C'n N; is unbounded in 6j].

But as C' N §; is a club of §;, clearly (Vj)[j € (j(i),i) = &; € C].

We can also demand j(i) > 5 (a(i),5()) ((), 0()).

As Sy is stationary, by ‘not case I, for some stationary S; C Sy and n(x), j(x)
we have (Vi € S1)[j(i) = j(x) An(a(i),§;) = n(x)].

Choose i(x) € Sy, i(*x) = sup(i(x) N S1), such that the order type of Sy N i(x)
is i(x) > a(x). Now if iy < 4y € Sy Mi(x) then n(a;y, i, a5,) = n(x). Now
Liy = {otp(e; N Ci) 1§ € S;Ni(x)} are pairwise distinct and are ordinals <
k = |C¥*)|, and the set has order type a(x). Now apply the definitions of dy and
g2 on L;(,). 2) The proof is like the proof of part (1),but for ag > cy > -+ we let

da(a, ... aon—1) = g2(Bos - - -, Bn), where

Be = ot (Clt (8,0 n0s1) (B20 Bae1) N Baet)

and in case II note that the analysis gives p possible 8¢-s so that we can apply the
definition of g2. Os.7

Definition 5.8. Let A\ /A, [p]y mean: if d @ [A]” — 0, (a; : i < p) is strictly
increasing continuous, and for i < j < p, i ; € [a;, ;1) then

0= {d(w) : for some j < p, w € [{’Yi,j . <j}]n}.
Lemma 5.9. 1) X; /4 [Nl]ﬁjl forn > 1.
2) Nn 7L>stg [Nl]zjl fOT n>1.

Proof. 1) For n = 2 this is a theorem of Todor¢evi¢ [Tod87], and if it holds for
n > 2 by 5.7(1) we get that it holds for n+1 (with n, A, y, 6, a(x), o(1), o(2) there
corresponding to n + 1, N, 11, Ry, Vg, Rg, Vg, Ry here).

2) Similar. Os.9
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