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Abstract

For A inaccessible, we may consider (< A)-support iteration of some definable in fact specific
(< A)-complete At -c.c. forcing notions. But do we have “preservation by restricting to a
sub-sequence of the iterated forcing"? To regain it we “correct" the iteration. We prove this for
a characteristic case for iterations which holds by “nice” for A = R¢. This is done generally
in a work H. Horowitz and the author Shelah. This work is use in a work of the author in
(Trans Am Math Soc 373(8):5351-5369, arXiv:0904.0817, 2020) where we use so called
strongly (< A™)-directed m. We could here restrict ourselves to reasonable m (see 2.13(3)).
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0 Introduction

This work is dedicated to proving a theorem on (< A)-support iterations of (< A)-complete
“nicely" definable A™-c.c. forcing notions for A inaccessible. A nicely definable forcing
notion can be, for example, random reals forcing (when A = 8). Pedantically, at each stage
it is a different forcing notion, but it has the same definition at every step of the iteration.
Assume Q is such a definition, (Py, Qg : @ < @y, B < ay) is such an iteration, Qg = QV[PﬁJ
has generic ng. A question is: assufning (ng : B < o) is generic for Py, and letting B
be maximal such that 2B« < a4, does it follows that also the sequence (125 : B satisfies
2B < ay) is generic for the iteration (Py, Qg : o < By, B < By)? i

The point is that in the parallel case for A = Ry so for FS-iterated forcing such a claim
is true. In fact, by Judah-Shelah [4], if (Py, Qg : @ < a(*), B < a(x)) is FS-iteration of
Suslin-c.c.c. forcing notions, Qg with the generic 7 g € “o and for notational transparency,
its definition is with no parafneter and the function ¢ : B(x) — a(x) is increasing and
P=(P,. Q}; ca < B(*), B < B(*))is FS iteration, @}3 defined exactly as Q¢ (g) but now in

VT rather than VP¢® then L I “(17;(,3) 1 B < B(x)) is generic for IP’;S(*) over V". For CS
iteration of Suslin proper forcing a weaker result holds, see [4, §2] and [10].

Now this is not clear to us for (< X)-support iteration of (< A)-strategically complete
forcing notions. The solution is essentially to change the iteration to what we call “corrected
iteration". We use a “quite generic" (< A)-support iteration which “includes" the one we like
and use the complete sub-forcing it generates. Here we deal with a characteristic case (used in
[12]). The proof applies also to partial memory iteration. On wide generalization (including
the case & = Np) and application (for A = No) this is continued in a work of H. Horowitz
and the author [3]; more fully [3] generalizes §1, §2, §3A, §3B, §3D of the present work
whereas §3C, §3E, §3F were added later, and §3C is inverse engineering of [3, 4.2,4.4]. Our
main result is 2.12, proving that there is “corrected iteration", i.e. one satisfying the promised
property or see 2.11 and more in 2.16, 2.17.

The problem arises as follows. In [12] it is proved that for A inaccessible, consistently
cov, (meagre), the covering number of the meagre ideal on A is strictly smaller than 0,, the
dominating number. The result here is used there but the editor prefers to separate it. In §3F
we have an alternative proof of the main theorem, for this we noted in some earlier places
what rely on what.

‘We have two extreme versions of our frameworks, one we call fat, that is, in Definition 1.10,
Pm,: = [Uum, 1= (used in [12]). The other is the lean one when the Pm,; are restricted to the
leaves (i.e. 7/ E},). This was the original version and is the one continued in Horowitz-Shelah
[3].

The interest in having “m is strongly A*-directed” is that it implies IFp, “{ns : s €
M} cofinal in (Hsdﬂg, <J)Ead>”, by 1.29. Now using m € Mg (being full and wide) as
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constructed in §1C, does not give this, e.g. because there may be t € L, above all members
of M. This is circumvented in 2.6 by having, on the one hand for cofinaly many ¢ €
M, m(< ¢) € Mg and on the other hand having “m is strongly (< A™)-directed” (see
2.13(2)). An alternative approach is to restrict ourselves to the fat context.

This work is continued in [3] and lately in [7], which in particular sort out when corrected
iteration is necessary; we have lecture on this in the Set Theoretic Conference, in Jerusalem,
July 2022.

We thank Shimoni Garti and Haim Horowitz for helpful comments. We thank Johannes
Schiirz and Martin Goldstern for pointing out several times problem with the application to
[12], in particular in 2019 that an earlier version of the proof of [12, 2.7=La32] the statement
@}, was insufficient; and later pointing out a problem in earlier version of §3E. We thanks
Mark Podr for pointing out many points which need correction.

For a reader of [12] we try to give exact references to the places here we rely on there
(pages refer to the 2022-08 version; there we assume that m is ordinary, that is, Ly, has set
of elements an ordinal «(m) and 8 < y < «(m) implies B <7, ¥).

(a) on [12, 1.8=Lz32, page 6], the definition of Q = Q,\,é,a(*)’ see here Def 1.10, Claim
1.11, page 9, so q there is (essentially) qm here, and so Py, here is dense in Pg’ o there
when L = Ly, | «,

(b) on[12,1.9=Lz33, pag.7] where ]P"ll,a defined there, is Pm[Lm | o] here; see 2.4(3), page
29,

(c) on[12,1.10=Lz35, pag.7], claim on the existence of generic; include changing the generic
in < X places see here 1.13, 1.16, page 11, 13 respectively,

(d) on[12, 1.11=1.z38, pag.8] see 2.12 page 32 or 2.14, page 33,

(e) in (x)1(A) in the proof of [12, 2.7 = La32, page 15], see (a)-(e) above,

(f) in (x)4 in the proof of [12, 2.7 = La32, page 16], See 2.14.

(g) after ()7 in the proof of [12, 2.7 = La32, page 17] See 0.6(4).

(h) on H; inside the proof of Lemma [12, 2.7=La32, pag. 17], more details are in 2.12, that
is: H(a) («) by 2.12(A)(c); B(a)(B) by 2.12(a)(h); H(b) by 2.12(C); H(c) by 2.12(A)(b);
H(d) by 2.12(B); H(e) by 2.12(A)(e),

(i) on @2 inside the proof of Lemma [12, 2.7=La32, pag.18-19], see [4.12-4.27 = Le53-
Le70],

(G) In[12, 2.8 =La35, pg. 21] we use 4.26, page 69.

Note thatevenifs € My = usNMy = Pstill: if m € Mecthen My, Es <t = ns <y
mod de, see 1.29.

Notation 0.1 We try to use standard notation. We use 6, «, A, i, x, for cardinals and
o, B,v,6,¢, ¢, & for ordinals. We use also i and j as ordinals. We adopt the Cohen con-
vention that p < ¢ means that g gives more information, in forcing notions. The symbol <«
is preserved for “being a proper initial segment". Also recall A = {f : f a function from
BtoA}andlet® A = U{PA : B < «}, some prefer <* A, but ®> A is used systematically in
the author’s papers. Lastly, de denotes the ideal of the bounded subsets of A.

Recall from [12]:

Definition 0.2 Let A be inaccessible, & = (6, : € < A) be a sequence of regular cardinals
< A satisfying 6, > ¢.

(1) We define the forcing notion Q = Q; by:
() peQiff:
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(@ p=@, )= f7),
(b) n € [] 6 for some ¢ < 4, (n is called the trunk of p),

f<e

(© fellé:,

<A
(d) naf.
(B) p =<q qiff:
(@ n? <9,
(b) fP < fi,ie. (Ve <A)fP(e) < fi(e),
(c) ifLg(n?) <e < Lg(n?) then ni(e) € [fP(e), L), actually follows.

(2) The genericis n = U{n” : p € Gg;}.

The new forcing defined above is not A-complete anymore. By fixing a trunk 5 one
can define a short increasing sequence of conditions which goes up to some 6, at the ¢-

th coordinate and hence has no upper bound in [] 6,. However, this forcing is (< A)-
’<e
strategically complete since the COM (= completeness) player can increase the trunk at each

move.

Remark 0.3 (0) The forcing parallel to the creature forcing from [8], [5] but they are “w-
bounding.

(1) The forcing is parallel to the creature forcing from [8, §1,8§2], [5] though they are “w-
bounding and not to Hechler forcing, whose parallel for X is Q?f’m = Q?ccmer ={W, f):
f € *A, v« f}, ordered naturally. We can change the definition of order, saying p < ¢ iff
p=qorp<qgAtr(p) # tr(g) and then all (strictly) increasing sequence of length < A
have upper bound, but the gain is doubtful as we shall use only strategic completeness
for some derived forcing notions.

(2) Closer to [8] we can use § = (O1,6,00,6 : € < A)suchthat0) o > 6y = cf(6p) > &
and A > 01 ¢, and let Q be such that:

(a) P= (n,f) = (nlhfp) GQQﬁ
o nellecle, & <A,
o f¢€ Hse[{,k)[91,5]<00’2~
(b) Q@ Ep =qiff:
® p.q€by,
® 1np Ing,
o ¢ €[lg(ng),r) = fpe) € fy(e),
® £ c [lg(np)’ lg(nq)) = flq(E) € fp(g)-

Does not matter.

Notation 0.4 (1) L, M, N are linear orders and r, s, t are members.

(2) If n € Me=0 where ¢ < A then (IT;<30,)!" will mean {v € T,.;6, : v satisfies
n<v}

(3) For a cardinal A by induction on ordinal o« we define 3, (1) as A + X ﬁ<a23ﬂ ™) and
o =) = :a(NO)-

Discussion 0.5 (1) Fat A*-directed m are helpful when we like to have IFp, “{ns : s € M}
is cofinal in (I, -, 6,, <J)t3d)” as in [12], see Definition 1.5.

Recall,
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Definition 0.6 (1) We say that a forcing notion P is «-strategically complete when for each
p € P in the following game O, (p, P) between the players COM and INC, the player
COM has a winning strategy.

A play lasts @ moves; in the 8-th move, first the player COM chooses pg € P such that
p <p pgandy < B = g, <p pg and second the player INC chooses gg € IP such that
PB =P 4B

The player COM wins a play if he has a legal move for every 8 < «.

(2) We say that a forcing notion IP is (< X)-strategically complete when it is «-strategically
complete for every o < A.

Basic properties of Q5 are summarized and proved in [2, §2].

1 Iteration parameters
1.1 The frame

Hypothesis 1.1 (1) A = A<* is strongly inaccessible.

(2) 6=1(0, 16 <A).

(3) 6 is an infinite regular cardinal > ¢ and < A.

(4) Assume Ay > A; > Ao = cf(Ag) > A are such that! (11)* = A;, so notations should
have the parameter A = (A2, A1, Ao, A) and even® L = (A2, Aq, Ao, A, 0).

Notation 1.2 (1) L, M denote partial orders, well founded if not said otherwise.

(2) Below m, n will be members of M; we may write e.g. L, q instead Ly, qm When m is
clear from the context, see Def 1.5, 1.10.

(3) We may not pedantically distinguish the subset L of L and the sub-partial order L; of
L.

Remark 1.3 Here there is no harm in adding:

(@) 6: > [] 2% 4 2% for e < A, and/or,
r<e
(b) for m € M demanding My, is a linear order, well founded (it suffices to assume even

M = (k, <), k regular from [Lg, A1)).
Definition 1.4 (1) For a partial order L (not necessarily well founded) let:

(o) dp(L) = U{dp; (t) +1:¢t € L}, see below,

(B) dpp(t) =dp(t,L) € Ord U {oo} be defined by dp; (t) = U{dp, (s) + 1: s < t}.
() Lao=L[{seL:s<pt}

() L, =L[{seL:s=<pt}

(2) Let LT = L(+) be L U {oo} with the natural order (but we may write ¢ <; oo instead
of t <L(+) 00).
(3) We say the set L is an initial segment of the partial order L, when:

o LC L, ie.sel=sce€L,,
e s<i, tANtelL=sel.

1 Usually A = (Az))‘ > A1 suffices but see 3.12, 3.22, however in §4A we add Ap > J)L+.
1

2 We mainly can use Ag = 21, but when we restrict ourselves to lean m-s, Ao = A seem to suffice, see mainly
1.13(H)(y), §2, §3C but does not seem worthwhile to pursue.
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The class M is central in this work, see explanation 1.9, in particular, My, is our aim, the rest
(L first of all) are the scaffoldings.

Definition 1.5 (1) Let M be the class of objects m, called iteration parameters, of the fol-
lowing form (so really M = M[A] and if we omit sub-clauses (), (¢) of clause (e) we
may write M[x]).

(a) L, a partial order,

(b) M C L, as partial orders, (in the main case M is linearly ordered),

) (@) u=(u :tel), P = (P .t € L), each & is closed under subsets and
Py C [u =,
(B) ur S{selL:s <t}

(d) dp(L) < oo, that is L is well founded,

(e)

(a) E’is atwo-place relation (on L),

(B) E” := E'|(L\ M) is an equivalence relation on L \ M,

(y) the order <y is the transitive closure of | J{<p [(s/E’) : s € L\ M}U{<p [M},
equivalently (using (8)-(n) below):

o if 5,7 € L\ M are not E”-equivalent, then s < t iff for some r| <q r2, we have
s <mrifromes/E,r <mt,rnct/Ep,

o ifsc L\ Mandr e M, thens <y tiff for somer € (s/E’) N M wehaves <r <t,

o ifseMandt € L\ M, thens <, tiff forsomer € (t/E')yNM wehaves <r < 1.

(8) if sE'tthens ¢ M vt ¢e€ M,

(¢) iste L\Mthen{s € L : sE't} ={s € L : tE’'s}; wecallitt/E’; so E’ is a symmetric
relation,

(¢) ifs,t € L\ M are E"-equivalent thens/E' =t/E’,

(n) ift € L\ M thenu, C t/E’,

(0) ift € L'\ M then t/E’ has cardinality < A,,

O 1Ml < 21,

(f) disjoint subsets M,f"‘,“, M,lflan of My, such that:

o if s € M then Py s = (1,15,
o ifs € M thenu € Py = A C t/Em)
o welet MIO" = My, \ (MU Mleamy,

(2) Sayingm € M is lean means that My, = Mllﬁan. The lean context means that we restrict
ourselves to lean m: similarly for fat and neat, see below.

(3) We say m € M is fat when My, = M,ffl‘t and moreover t € Ly = % = [u,]=".

(4) My, is neat when My, = M) U pfat,

Remark 1.6 (1) We may demand m is strongly (< A)-directed, see Definition 2.13(2) or even
reasonable, see Definition 2.13(3); is harmless here and help [12].
(2) It may seem reasonable to demand:

Hiss€Lm\Mpands € A € &, then (s/E') Nu; € &;.

However in the crucial claim 3.25, 3.26 this cause problems for t € My, \ M]ffl“.
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Definition 1.7 Form € M.

(0) In 1.5 we let m = (Lm, M, itm, Pm, Ely, M, MY iy = (um, @ t €
Lm), Pm = (Pmy it € L), fort € Ly \ My let t/Ey = (t/EJ,) U My, and
fort € My lett/Ewm = Mp; so there is no relation Ey, but ¢/ Ey, for t € Ly, is well
defined.

(1) In 1.5, let dpy, (1) = dpy (1), dpp = dp(Lm) and <m =<p,.

(2) For L C Lp:

(@) letn=m[L meann € M, Ly, = L, <qy==<p [Ln, E}, = E},|L, tn; = tim; N L
and Pp; = P N[L]=* fort € Land Mp = My NL, M} = Ml L, Mft =
f;
Mp'NL,
(b) letdp,, (L) = dp(Lm[L) and we may write dp(L) when m is clear from the context.

(3) Fort € L, letmo, = m(< t) = m[L., where L; = Li(<;y = Lm, <t = {5 :
S <m t} SO Um(<s),s = Um,s fors € L4, etc.

(3A) Also m<; = m(f t) = m[LE, where Lft = Lm(ft) = L<t @] {t}, let L<OO =
L,L<x = LT, etc.

(4) M., is the class of m € M such that Ly, has cardinality < u. Similarly
M<, . M_, .M. ,,M>;letM,, = M_,.

(5) Form,n € Mletm ~ n, and we may say m, n are equivalent meaning that Ly, = Lp
(as partial orders) and t € Ly = uUm,; = Un;: N Pm,r = Pn,; note that there are no
demands on M and E’.

(6) We say f is an isomorphism from m; € M onto my € M when:

(a) f is an isomorphism from the partial order Ly, onto the partial order Ly,

(b) fors,t € Ly, wehaves € um,,; & f(5) € umy, r(r) and P, r) = {f(5) 15 €
u}:u € Pm .t}

(c) fors,t € Lm, we have sE,’m,t & f(s)E,’nzf(z),

(d) Mm, ={f(s) : s € M, } and similarly for M, Mf.

mp
(7) We define weak isomorphisms as in part (6) omitting clauses (c),(d).
(8) We say that m is ordinary when the set of elements of Ly, is an ordinal o, = o(m)
satisfying 8 <1, v = B <y.
(9) For a forcing notion IP we say that ¢ € P is essentially above p € IP (inside ) when
qgl-peG.
(10) We say m € Myq or m is bounded, when: if s € L \ M then for some t € M we have
s/E' C L<; we could have asked? there is X € [M]< such thats/E’ C U ex L=<t
(11) We say m € Mypg or m is weakly bounded when Ly = | J{Lm(<s) : t € Mm}.

Discussion 1.8 Concerning the aim of the choice to use u; (and %) in 1.5, note the following.

(1) By the partial order we already can get partial memory, so why not simply use only
ur = {s : s <p t}? After all, the index set is only partially ordered, not necessarily
linearly, so these sets can be independent of each other. The reason is that a partial order
is transitive, so this simple definition would imply s € u; = u; < u; which means (by
definition) the memory is transitive, but we do not want that to hold in general, (this is
central in [9]). Here u is not necessarily transitive, thatis, s € u; # us C u,. By a partial
order we cannot get it.

3 In the main case M is AT -directed, so this does not make a difference. Also no real case when we restrict
ourselves to bounded m’s.
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(2) In [6, 11] we use Z7’s which are ideals, but here not necessarily: this helps, but has a
price; we are relying on “Q)j is close to being A-centered", i.e. any subset of {p € Qj :
tr(p) = n} of cardinality < 6y, (;) has a lub in this forcing. But for the fat context we get
more than (< A)-complete ideal.

(3) What is the point of “m being neat”? It tells us that in that case it is easy to be an
automorphism of m, see 1.16(2), we may forget to say we use it.

Explanation 1.9 For m € M:

(a) We shall use Ly, as the index set for the iteration; always a well founded partial order.

(b) My, is the part of the index set we are really interested in, it may be (k, <) as in [12].

(c) The other partin the interesting case is “generic enoughm', more accurately existentially
closed enough so that the iteration restricted to M will be “stabilized" under further
extensions. That is, for every m € M we define an iteration resulting in the forcing Pp,
adding a generic ng for s € Ly, we are interested in the extension V[(ng : s € Mp)], it
is the generic extension for the forcing we call Py[Mm). But, in general, even ifn € M
extends m (see Definition 1.19 below of <m) maybe Pu[Mpn] # Pm[Mm]. Our aim is to
define M, < so that for a dense set of m’s this holds; (done in the crucial claim 1.32).
So our aim is having Pym[Mmn], hence the s € Ly \ My, serves as scaffolding, (but see
2.17).
Existentially closed structures are used in model theory, but this approach gives non-well
founded structures, which is “bad" for us. So an essential point here is to prove (under
suitable definitions) that “generic, existentially closed enough m" is well defined in spite
of Ly being required to be well founded.

(d) of course, the aim of m € M is to be used to define the forcing, as in 1.10 below.

Definition 1.10 (1) In the fat context, form € M let L = Ly, and we define the iteration qm
to consist of:

(a) aforcing notion P; = Py, , fort € LT; we let Py, = Poo,
(b) @, a [P;-name of a sub-forcing of Q; in the universe VP, even Q; <ic Qs Ge. Qr € Qp

as quasi orders and incompatibility and compatibility are preserved*),
(©) p e Py iff:

(o) p is a function,
(B) dom(p) € L, has cardinality < A,
(y) if s € dom(p) then p(s) consists of tr(p(s)) € [] 6. forsome ¢ = ¢(s) < A and
e<{(s)
&= gp(s) =£&(p(s)) < )LandBp(s) andr = fp(s) =(r):¢ < Sp(s)) = (rp(s)(é-) :
¢ <&p) € € (u) lists the coordinates used in computing p(s) and are such that:
o1 B, is a A-Borel function®, B = B, : S(I] 6:) — [I 6 moreover
e<i e<A
into (J] O)EPEN] and considering (d)(«) below less pedantically p(s) =
e<h
(tr(p(s)), [ p(s))> where
fre) = Bpi(.., Nrp) (©)s - - .)(<gm) which means: absolutely, i.e. in every
forcing extension V@ of V where Q is a (< A)-strategically complete and is
At-c.c. forcing notion, still B is such a (A-Borel) function; we may write
&p,s instead of & (), etc.,

4 But maximal anti-chains - not necessarily. Recall that Q is from 0.2, 0.3. Whatis Q; ? It is implicitly defined
in clause (c) and explicitly in 1.18).

5 That is, a definition of one.
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(d) (@) s is the P;-name, when 1 € Ly, s € L, defined by U{tr(p(s)) : p € Gp,},
(B) For p € P; and s € dom(p) we interpret p(s) as a Pg-name
(tr(p($)), Bps ooy )5 - i<ty s)-
(e) P E="p <q"iff:
(@) p.g Py,
(B) dom(p) < dom(q),
(y) ift € dom(p) then (¢ [L <) IFp,, ., “P(1) =g; ¢(O)".

(2) In the general context we replace clause (c)(y) by: (so part (1) is a special case with

Lpis) = 1, Fp(),0 = Tpis))-

(y) if s € dom(p) then p(s) consists of tr(p(s)) € Mg ()0 for some g = {(s) < A and
& =¢gps) =e(p(s)) < rand B,y and 7 = 7p5) = (r(Q) 1 & < &p5)) = (Fps)(©) -
¢ < &p(s) € ®(uy) lists the coordinates used in computing p(s) and® Bps),i Tps)e it <
t(p(s)) are such that:

e B, is a A-Borel function’, B = B,y §(T] 6:) — ] e moreover into
e<h e<h
(T 6:)!=P]; and considering (d) (e) below less pedantically p(s) = (tr(p(s)), f p(s))s

g<A
where f ) = By (..., Nrpis) () - - .);<gp(_‘,) which means: absolutely, i.e. in every forc-
ing extension V@ of V where Q is a (< A)-strategically complete and is A -c.c. forcing
notion, still B ) is such a (A—;Sorel) function; we may write &, ¢ instead of £,(y), etc.,
®) Lp(s) = L(p(s)) < A moreover® < Opg(ir(p(s))»
o3 for: < Lp(s)s ’:p(s),t = ;p(s) pr(s),t SO Wp(s),, = w(p(s), ) = dom(;p(s),t) - Sp(s) and
Tp(s),. 15 a subsequence of 7 y),
os B, is a Borel function from wPE0(TT 6e) into ([] O:)rPED],

e<A e<A
o5 Bp(s)((l’]rp(s)(g) 1< Sp(s)» = Sup{Bp(s),t((nr,,(s)({) 1 ¢ € wp(s),t)) 2t < u(p(s))} and
naturally .fP(S) = Sup{fp(s),t L= u(p(s)}, ,fp(.&‘),l = Bp(s),t((l?{ HYQNS wp(s),l>),
o for each 1 < ((p(s)) for some u € Py s we have {rp)(¢) : ¢ € wp),} S usoisa
subset of ug,
o7 (follows) whenmis lean, if t < tp(5) and & € Wp(s),i, 7p(s)(€) € Lm\Mm then {rp)(¢) :
¢ e wp(s),L} - rp(s)(e)/Em,
[Why? As Definition 1.5(2) together with eg implies {r, ()¢ : ¢ € Wpe).t} €
I'p(s) (8)/E;n]

og welet.7 (s be the set { f,5),. 1 ¢ < t(p(s))}, s0 we may write p(s) = (tr(p(s)), Fp(s)))-
The following matters only for [12].

Claim 1.11 Assume m € M is, (see 1.7(8)) ordinaryg, that is the set of elements of Ly, is an
ordinal aym = a(m) satisfying B <p, v = B <.
There is a unique object q = (i, P, Q, ) such that:

6 What is the point of “c < ¢(p(s))"? As the support is not just us but also & and & is a family of suitable
subsets of ug, p(s)is (tr(p(s)), fx), fs is aname of a member of [] 6, such that tr(p(s)) is a (proper) initial

e<h
segment. Buthow is f¢ computed? As our memory is &5 € £ (us) and not just ug (oreven a (< A)-complete
ideal) f5 is composed of ¢}(5) names each coming from (n; : 7 € u,), u, € P for 1 < 1(p(s).
7 That is, a definition of one.

8 This and the rest of (c)(y) are used in the proof of 3.18. The aim is that defining B ,(5) from (B (5),, 1 ¢ <
t(p(s))), the sup will not give in ¢ the value 0.

9 As L is well founded, this is not a real restriction.
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(a) u = um so am = 1gu),

(b) (nga, Qg’ﬁ to < om, B < am), the (< A)-support iteration such that: @a is essentially
the forcing notion form from 1.10,

(c) qisasin[12, 1.8=Lz32, page 32].

Proof 1.11 Follows from 1.18 below. O
Definition 1.12 (1) For p € Py, let,

(a) fsupp(p), the full support of p be U{{r)(¢) : ¢ <&, 5} U {{s} : s € dom(p)}
(b) wsupp(p), the wide support of p be the set of s € Ly, such that for some ¢ at least
one of the following hold:
e s =1 € fsupp(p),
o, 1 € fsupp(p) \ M,s € t/E},.

(2) Form € M let P = Py, 4, etc., in Definition 1.10.
(3) For L C Ly let Py(L) = P [{p € P, : fsupp(p) C L}, that is:

e pePyn(L)iff p € Py and fsupp(p) € L,
e p <p,)qiff p e Pn(L)Aqg € Pu(L) A p <p, g,

(4) Form e Mandt € Ly, let!9 @, = Qm,, be the IP;-name of Qg [{(v, fIGEn D+ (v, f)
as in Definition 1.10(c)(y) with s there for ¢ here}. )

Claim 1.13 Form € M (so P, = Py, ;, etc.):

(a) the iteration qm is well defined, i.e. exists and is unique,

(b) (@) ift € L} then P, is indeed a forcing notion and is equal 1o Py(<y),
(B) the P;-name ny does not depend on't as long as s <p, t € L,
(y) nrisa ]Pm(st;—name.

(c) ifs <p t are from L} then:

(@) pePy=peP, AplLos=p,

(B) ifp.q €PsthenP; ="p<q" &P ="“p=<q"

(y) if p e P then p|[Los € Py and P, = “(p [Lm(<s)) <p"

) PrE“p=<q"=P; E“pPlLm<s) < q[Lm<s"

(e) Py < Py, moreover

&) pePiA(pILm(<s)) < q € Ps = qU(p[(Lm(<n)\Lm(<s)) € Prisa <-lubofp,q.

(d) if L is an initial segment of Ly, then Py = Pm[{p € Pm : dom(p) C L, equivalently
fsupp(p) C L}; this holds in particular for Lm<) and for Lm(<y).

(e) if L1 C Ly are initial segments of Ly, then the parallel of clause (b) holds replacing
Pm,s» Pm,s by Pz, PmiL,, respectively. Also the parallel of clause (c) holds.

(f) if p € Pm then:

() dom(p) has cardinality < A,

(B) fsupp(p) has cardinality at most A,

(v) e1 wsupp(p) is included in the union of < A sets of the form t | Ey, or {t},
e ifm is lean then the union is even of < A such sets.

Proof 1.13 Straightforward. For t € L}, by induction on dpy,(¢), define P, and prove the
relevant parts of (a),(b),(c),(d),(e). ]

10 Not used, could have used it in 1.18.
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Note the following:

Observation 1.14 If B is a A-Borel function from 5(}'[9_) to P (L) or even (A7) where
& < A then there is a A-Borel function B’ from §(116) to Qg (so absolutely” to Qg) such
that for any ij € § (I10) we have, absolutely:

o ifB(i7) € Qg then B' (i) = B(7),
o ifB(i) ¢ Qg then B'(i7) = (¥, 05.), the minimal member of Qg.

Proof 1.14 Just define B’ (i) as B(77) if B(77) € Q; and the trivial condition ((), 0;) otherwise.
O

Remark 1.15 (1) A reader may wonder, e.g.:

(%) if By : o < oy < X) is a sequence of A-Borel subsets of 1,0, which form a
partition (in V), does they from a partition also in V.

In our case as PP is A-strategically complete (see 1.16(3A)) the answer is obviously yes.

(2) Note that in (*) we cannot weaken the assumption too much because “if P add a new
subset to & < A this certainly faill”. Even (< A)-strategically complete is not enough.
Why? assume A is a Mahlo cardinal § € {# < A : 0 inaccessible} is stationary, such that
(for transparency) ¢g holds. We can find .7 such that:

B (a) 7 asubtree of (*>2, <),
(b) 7 with no <-maximal nodes,
(c) if § € A\ S alimit ordinal, n € *2and @ < § = nla € 7, thenn € 7,
(d) .7 has no A-branch.

LetBy={ne?*2: \,_, nla € 7} and B; ="*2.

In V those two A-Borel sets form a partition: the first is empty and the second is all. The
forcing notion .7 add a A-branch to .7, hence (Bg, B1) are no longer disjoint so fail to
form a partition of *2. Lastly, for & < A the forcing notion .7 is a-strategically complete
(just COM choose pg € .7 of length > «).

(3) Alternatively, if it suffice to us to have “for « < X, COM do not lose in the game of length
o’ let A be inaccessible and S as above or just such that A\ S is fati.e. for every club E of
Aand o < A there is an increasing continuous 4 : « — E such that SNrang(h) = @. Let
Q = {n : n € *> 1 be increasing continuous with range disjoint to S and sup(rang(;))
is not in S}. Let the sequence (n; : i < A) of pairwise <J-incomparable be such that
lg(n;) € S and (Vo < lg(n;))[n;i [ € Q] and it is dense in Q. For i < A, let B14; be
{ve’r:n <v}, soclosed and By = {v € *A : v is not increasing continuous}, now
(Bj : i < A) is as required.

(4) Another avenue is to assume Rg < 0 =cf(@) <A, So C{§ <A:cf(X) <6},SC{§ <
A : cf(8) = 0 and SpN 4 is a stationary subset of §}. Now let Q = {1 : € *>2 and for no
8 <lg(n) wehave § € S and for some club E of § dowe haveo € EN Sy = n(a) = 1}.
Continue as in 1.15(3).

(5) Note that if in 0.6(1) we let INC to choose first, then 1.15(a) does not work whereas in
1.15(2), (3) this does no matters.

(6) Anyhow in 1.14 this is not necessary; it is enough that being a member of Q; is a A-Borel
set.

T That is, for every forcing notion P which is A-strategically complete, this property continue to hold in

VP here the property is that the range is as indicated; parallely below. We could demand just preserving the
regularity of A and the 6;-s,
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Claim 1.16 Letm € M.
(1) If LL = “s < t" then:

@) IFey, “ns € T] 6:"

g<A
B) if G C P; is generic over V, n, = g,[G] forr € L, <t, u € Pmyandv € I16 is
from V[(n, : r € u)] C V[G], then v < jpd Ny

(2) Pm satisfies the A" -c.c., and even the A+ -Knaster (and more).

(3) Pu is (< A)-strategically complete (even A-strategically complete but not used'?).

(3A) If p = (pi 1 i < 8) is <p,-increasing, § < Landi < j < § At € dom(p;) =
tr(pi(t)) < tr(p;(t)) then' p has a <p,-upper bound p. Moreover, dom(p) =
U{dom(p;) : i < 8} and s € dom(p;) = tr(p(s)) = Uftr(p;(s)) : j € [i,8)},
in fact also fsupp(p) = U{fsupp(p;) : i < 8} and p is a lub of p. Also, we can
weaken the demand above to i < § A's € dom(p;) = & < Og) where we let
£(s) = sup{Lg(tr(p; () : j € [i, &)},

(3B )If¢ < hand L} = “s < t", then the following is a dense open subset of P;:
Fsic =1{p € P i s € dom(p) and tr(p(s)) has length > ¢}.

(3C) If p € Py and ¢ < A then for some q € Py we have p < q and t € dom(p) =
w(p(1) atr(g(n)) and t € dom(q) = g (tr(g(n))) > ¢.

(4) If x is a Pm-name of a member of (A7), e.g. of Qg (in V[P ]) then for some § < A
and A-Borel function B : §(Mb) — #(AF) and a sequence (r; : { < &) of members
of Lm we have lFp,, “x =B(..., Nres - Je<e"

(4A) Ift € L;’;l and u C Ly(<y) and I-p, “y is a member of Qg from V[(ns : s € u)]", then
for some & < X and A-Borel functions as in 1.10(c) (y), B; : £ (110) — Qg fori <&
and sequence (r; : { < &) of members of u we have l-p, “for some i < & we have
y= B;(..., Nres - Je<t".

(5) If m, n are equivalent then Py = Py and Py ; = Pn; fort L$ = L:{.

(6) Assume that p, q € Py are incompatible then there are q| and s such that:

(a) q1 € Pm,sy
(b) s € dom(p) Ndom(g),
(C) (!] FLm,<s) SIP’m q1,
(d) (p [Lm,<s) <Pm 91,
(e) q11Fpy, -, “p(s) and q(s) are incompatible in Qg which means tr(p(s)) L tr(g(s)),
i.e. they are <J-incomparable or () + (B) + (y) where:
(o) £g(tr(g(s))) # Lg(tr(p(s))),
(B) if Lg(tr(g(s))) < Lg(tr(p(s))) then for some ordinal ¢, Lg(tr(q(s))) < & <
Lg(tr(p(s))) and qi [ Lm(<s) IFpy ) r(p($))(€) < fq(s)(e)"
(y) if Lg(tr(q(s))) > £g(tr(p(s))) then for some ordinal e, £g(tr(q(s))) > & >
Lg(tr(p(s))) and qi[Lm(<s) PPy, “r(g($))(€) < fpis)(€)"

7) lkpy, “VI(ns : s € Lm)] = VIG]".
8) Fort € Li the sequence (g : s € Lm, <) is generic for Py ;; that is:

(x) if G C P, is generic over V and ny = 1~75[G]f0rs € L, <; then V[G] = V[(n; :
s € Lm,<t)]~

12 Recall that being A-strategically complete means that a play of the game lasts A moves, and the COM
player to win needs to have a legal choice in each move. So COM needs just to have a common upper bound
to suitable increasing sequences of length < A.

13 But tr(p; (1)) Str(p; (1)) does not suffice, but if e.g. cf(§) < 6 it suffice.
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9) Form € M, 7 is an automorphism of m when:

(a) 7 is a permutation of Ly,

(b) 7| My, is the identity,

(c) ifforeverys € Lyy\Mm, forsomet € L\ My wehave [ (s/Ew) is anisomorphism
fromm]|(s/Ep) ontom|(t/Enp).

10) In part (8), moreover, in VG, if i = (n, : s € Lm,;) and 0, € M0, and the set
{(s,€) : 5 € Lm,<1,& < X and n,(¢) # ns(e)} has cardinality < X\ then also 7’ is
generic (for P(Lm, <)) and V[ij'] = V[G].

Remark 1.17 What is the use of e.g. (6), (6A)? See 2.12(A)(b) and 1.18.

Proof 1.16 We prove all parts simultaneously by induction on dpp,.

(1) For clause (o) for each m, using the induction hypothesis and 1.13(e), the problem is
only when dp, (t) = dp,, — 1 and use part (5A) proved below (and 1.13(c)(¢)). For clause
(B) use also part (6A) for Py proved below in 1.13(c)(¢). In both cases the proof of the
parts quoted does not rely on part (1), (but may depend on the induction hypothesis).

(2) Recall that A is strongly inaccessible. If p, € Py, fore < AT then we can find by the A-
system lemma a set # and unbounded S € AT suchthate # ¢ € S = dom(pe)Ndom(p;) =
u and (tr(pe(B)) : B € u) is the same for all ¢ € S. Now p,, p; has a common upper bound
for every ¢, ¢ € u, i.e. we define r by:

dom(r) = dom(p,) U dom(p;),

r(s) = pe(s) is s € dom(pe)\dom(p;),

r(s) = p¢(s) if s € dom(p;)\dom(pe),

if s € dom(pg) N dom(p;) then r(s) = (tr(pe(s)), max{f p.s), [ pc(s)})-

(3) By (4), the second sentence + (4A) below which use only the induction hypothesis.
3A) We define p by:

e dom(p) = U{dom(p;) : i < 8§}
o tr(p(s)) = U{tr(p;(s)) : i < & satisfies s € dom(p;)}
° fp(s) = sup{fp[(s) 10 < § satisfies s € dom(p;)}.

Note that here having to really start with (f (), : ¢t < t(p;i(s))) and get (f p(5), it <
t(p(s))), see 1.10(c)(y) causes no problem, sﬁnilarly in the proof of part (2) - ]ust take the
union.

3B) Obvious by the definition of Py and 1.13(c), recalling that Pp<5) is (< A)-
strategically complete, that is part (4) and (5B).

3C) The proof is by induction on dp,, and is splitted in cases:

Case 1: dpy, is zero:

So L is empty.

Case 2: dpp, = o + 1:

Hence Ly = {s € L : dp,,(s) = «} is non-empty and letting L1 = Ly \Ly; clearly s €
Ly = dpy(s) < a,s0dpyz, <o Lets =sup({lg(tr(p(s))+1:s € dom(p)}U{¢+1}).
Hence applying parts (3) and (5B) tom L, i.e. the induction hypothesis we can find g; such
that Pz, = “pIL1 < ¢1" and [s € dom(g;) = £g(tr(q1(s)) > 4] and g forces a value
1o f p(s) [+ call it pg for s € dom(p) N L.

Define ¢ € Py, by dom(g) = dom(gy) U (L, Ndom(p)),gq[L; = ¢ and if s € Ly N
dom(p) then q(s) = (py. p"(f pis) 112w ). Fully 1(g(5)) = 1(P($)). Syis1 = Spisy.c and
B, (s),. is like B (5) , only restricting the range to (Mg <;.6,)T@6E)
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Easily ¢ is as required.

Case 3: § = dpy, is a limit ordinal of cofinality > A:

Soa = sup{dpp,(s)+1:s € dom(p)}isanordinal < §andlet L = {s € Ly, : dpp,(s) <
a}, so L is an initial segment of Ly, and applying the induction hypothesis tom[L, p we get
q as required in Py, 7, hence in Pyy,.

Case 4: § = dpy, is a limit ordinal of cofinality < A:

Let (o; : i < cf(8)) be increasing continuous with limit §, let oef(sy = 8 and fori < cf(6)
let L; :=={s € Ly : dpp () < 1 4+ o;}.

Now we choose (p;, ¢;) by induction on i < cf(§) such that:

@ pi € Pm;»

() Pmz; E“(pILi) < piand pj < p;" when j <1,

(c) if i is a limit ordinal then p; is gotten from (p; : j < i) as in part (4),

(d) if s € dom(p;) then £g(tr(pi (5)) = &,

(e) (¢j :j < i)isanincreasing continuous sequence of ordinals < A and if i is non-limit then
giis> ¢ and > |dom(p)|and > sup({£g(tr(p;(s))) : j <iands € p;}U{Lg(tr(p(s))) :
s € dom(p)}).

Using 1.13 and the induction hypothesis this is easy.
4) For transparency assume |- “y € [] 6." or just € *V. By parts (4) + (4A), i.e. part

e<A
(3), for each ¢ < A the following subset of Py, ; is open and dense: .%; = {p € Py ,: for

some v € [] 6, or € ¢V (from V!) we have p IFpy,, “yI¢ = v"}. Clearly there is a maximal
e<

antichain ( p;,g 1 & < &) of Py, included in .#; and by part (2) without loss of generality
& < A, the rest should be clear. In the general case we can code y as a subset of A, etc.

4A) This too should be clear as P, satisfies the AT-c.c. B

5) Look at the definitions.

6) Using parts (4) and (4A) and the definition this is easy.

7) Suppose toward contradiction that G; # G» are generic subsets of P, buts € Ly, =
Z?S[Gl] =1ns = Z].S[GZ]~

Let p1 € G1\G> hence there is p» € G2 such that p, IFp,, “p1 ¢ G2" hence p1, p are
incompatible. Let Ly, = {s € Ly : G| N P<; = G NP<} so L, is an initial segment of
L. If L, = Ly we can easily get a contradiction, so L, # Ly and letr € Ly \ L, be such
that Ly(<r) € L. Now as in part (8) we can get a contradiction having found a common
upper bound to py, pa.

Alternatively use part (6).

(8), (9), (10) Easy too. o

Conclusion 1.18 Ler m € M and for notational transparency is ordinary (see 1.7(8), which

means that for some ordinal B(x),t € Ly <t € B(x)ands <m t = s < t.) Then q is
Vi{ng:p<a)l
5 :

essentially'4 a (< L)-support iteration of length B(x) with @a ={(, ) eQ

VI(na:
vaf, f=sup{f it <)}, la) <r,v<fiand{f 1t < (o)} C U{Qéwj el ‘u €
Pm.a}} With the natural order i.e. the order of Qg]m"‘] restricted to this set.
Proof 1.18 Should be clear by 1.16. O

Till now (E},,, Mm) have played no role and we could have omitted them.

14 1n particular - Py, « is a sub-forcing of the one we get by the iteration.
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Definition 1.19 (1) We define the two-place relation <= <y on M as follows: m < n iff:

(@) Lm C Ly, as partial orders of course,
(b) My = My, (yes! equal), and M2t = pfat  pylean — pylean
(¢) tmys =tns N Lyand™ P, ={uNLy:ue Py,)fort € My,
(d) um,; = un; and Py = Pn,; fort € Lin\Mn,
(e) ift € Lm\Mm thent/E} =1t/E} hence Ey, = E{[Lmp.
(f) Hence,
o ift € Ly \ Mm then P = Py,
o ifte Mpands € Ly \ Mmthen{u € P i u Cs/Em} ={u € Pn;s:uC
s/En},
o3 ift e Mpthen{u € P iu S My} =1{u e Pns i u S Mn)

(2) We define the two-place relation <,=<j, as in part (1) omitting clauses (b),(e) and (f);
natural but not used here.

(3) We define the two-place relation 5}{2 by m 5{{,‘[1 n iff m <pp n and both are bounded, see
1.7(10).

Claim 1.20 (/) <wm is a partial order or M and SR/‘} a partial order on Myq in fact is
<M [Mpq.
(2) If (my : @ < &) is <m-increasing, then its union mg (naturally defined) is a <\i-lub
and |Lmg| < 2{|Lm,| 1 o < &}.
(2A) Similarly for Mypgq.
(2B) We can restrict ourselves to any of the context (see 1.5)(2) including the fat context (there
fort € My, P should be [um; ., ]SA which may be different then | J{[um, .« ]SA < 8}).
(3) Ifm <yqnand L C Ly, then p € Py(L) < p € Po(L) for every p.
(4) Ifm <y nand Py <Ppand L C Ly, then Py (L) = Py (L) as quasi orders.
(5) ifm <u n then:

m is lean iff n is lean,
m is fat iff n is fat,

m is neat iff n is neat,
m is bounded if n is.

Proof 1.20 Easy.

(1) Obvious.

(2) Why is Ly, := U{Lpy, : « < 8} well founded? Toward contradiction assume 7 = (1, :
n < w)is < Lg -decreasing. We can replace 7 by any infinite sub-sequence. So without
loss of generality:

() either («) or (8), where:
(o) forevery n < m thereis s, ,;, € Mm, suchthatt, <p; sy.m <L; tr,
(B) fornon < m this holds.

If clause () holds, then (s,,,+1 : n < ) is a <, -decreasing sequence contradiction.
If clause (B) holds, then for n < o, let a(n) = min{a : t, € Lm,}; without loss of
generality the sequence (x(n) : n < w) is monotonically increasing or constant; so as
Mmg,, = Mm,, by 1.19(1)(e) we get 1y / Emgy 1y = tn+1/ Emy,.y, (recalling part (1)),
hence t,11 € Lm,,, hence a(n + 1) < a(n). So {t, : n < w} C Mm,, hence as Ly,
is well founded we are done.

15 This is the parallel in clause (d) are covered by clause (f) but see part (2).
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The proofs of (2A) and (2B) are easy too.
Finally for (3), (4) and (5), see the proof of H, in the proof of 1.26.

[}

Claim 1.21 (M, <u) has amalgamation. That is, if mg <y mj, mg <y mp and Ly, N
Ly, = L, then there ism € M such thatm; <yy m,mp <y mand Ly, = Ly, U Lpy,.
In fact, m is unique, so we call it m; Gm, My

Proof 1.21 Note that by clause (¢)(y) of Definition 1.5 and clause (e) of Definition 1.19(1):
()1 assume (51 € Lm;\Lmy) A (53 € Lmy\Lm,) and 52 € L;

o if (51 <m, $2) A (52 <m, $3), then for some 57,5, € Mm, we have s| € (s/E) N
Mm, s5 € t/E}, N My, St <m; S| <mo 52 and $2 <m, § <m, 53,

o if 53 <m, $2 A2 <m, 51, then for some s, s, € Mm, wehaves| € (s/E}) N My, 55 €
(t/Ef) N M, 53 <m, §5 <m; $2 and 2 <m, §| <m, S1.

We now define m by:

()2 (@) (@) teLpmifft € Ly, V1€ Lm,,
(B) Mm = Mp, and ME' = M2 Mlean = prlean,
(b) s <m t iff one of the following occurs:
(@) s <m, 1,
(B) s <my 1,
(¥) s € Lm\Lm, and t € Lm,\Lm, and for some r € My, S <m; ¥ A7 <m, t,
(8) s € Lmy\Lmy and t € Ly, \Lm, and for some v € My, S <m, ¥ AT <m, I.
(©) um, is:
(@) Umy,r Ylim, iflor e Ly,
(B) ttmy. if 1 € Lun,\Lmy-
(¥) umy,rift € Ly \Lm,-
@ E, = E;nl U E,’nz.
) Pm,;is:
(@) Pm,;ift € Lm; \ Ly,
(B) Pmy,t,ift € L, \ Ly,
&) Pmya U Py ift € MED, ‘
&) {urUuy:uy € Py uz € Prmyi}ift € MR,
&) Pmyt U Pm,ift € M.

Clearly,
® m e M and m; <y m and my <p; m.

So we are done proving the existence of m, the uniqueness is obvious. O

Observation 1.22 (1) For p,q € Py we have: Py = “p < ¢" iff dom(p) <€ dom(q) and q
is essentially above p inside Py, (see 1.7(9) or below).
(2) For p,q € Py the following conditions are equivalent:

((a) g - “p e Gp,", that is q is essentially above p, see 1.7(9),

(b) if s € dom(p) then either s € dom(q) and (q|Lm,<5) Iy, “p(s) < q(s)"
ors ¢ dom(q),tr(p(s)) = ¥ and q|Lm,<s Fp, o, “p(s) is trivial, i.e. f ) is
constantly zero", B

16 But recall that for £ € {1,2} we have: t € Lmy\Mmy = 4m,.r = Umg.t A Pmy,t = Pmg.t-

@ Springer



Sh:1126

Corrected iteration 537

(c) Pm = “p < q" where dom(qg ™) = dom(q) U dom(p) and g™ (s) is:
(@) q(s)if s € dom(g),
(B) the trivial condition if s € dom(p)\dom(q); note that fsupp(q™) = fsupp(g) U
fsupp(p).

Remark 1.23 We shall use this freely.

Proof 1.22 (1) Easy but we shall elaborate.

Let p,q € Pn. If p < g then clearly dom(p) € dom(g) and g IFp,, “p € G", thatis g is
essentially above p.

For the other direction assume dom(p) € dom(g) but P, = —(p < ¢) and we shall
prove that g is not essentially above p, this suffices. By the present assumption there is
s € dom(p) (hence s € dom(g)) but g[Lm(<s) ¥ “p(s) < g(s)".

Hence there is g1 € Pm(<s) above ¢ [Lm(<s) such that g1 IFp,, (<5)“—(p(s) < g(s))”. By
the properties of Q; (and Q}, 1.16(6)) there are g2, ¢’ such that:

()1 () ¢ € P, dom(q’) = {s},
() g1 < g2 in Pry(<y),
©) q2 IFpm(s)“q(s) < q'(s) but ¢’(s), p(s) are incompatible”

Lastly, choose the function g3 by:

()2 (a) dom(g3) = dom(gz) Udom(g),
(b) g3/dom(q2) = g2,
(©) g3(s) =q’(s),
(d) q2(t) = q(t) if t € dom(p) \ (dom(g2) U {s}).

Clearly g3 € Pm,q < g3 and ¢3 IFp,,“p ¢ Qp,,” so we are done.

2) (a) implies (c): i

By the choice of g1 we have ¢ < g™, so clause (a) implies that g is essentially above p
hence by part (1) in Py, we have p < ¢ so clearly clause (c) holds.

(c) implies (a):

Easy.

(c) iff (b):

Obvious recalling the properties of Qj. O

1.2 Special sufficient conditions

Claim 1.24 Form € M, recalling 1.12(3), we have Py (L1) < Py (L3) when:

(%) (a) Ly C Lj are initial segments of Ly,
(b) Ly € Lzand Lo = L N Ly,
(¢) Lo is an initial segment of L1, (follows),
(d) ]P)m(LO) < Pm(LZ)y
(e) Li\Ly is disjoint to My,
(f) ift € Li\Lo then (t/Em) N Lm,<; € L.

Remark 1.25 (1) We may phrase it differently. Recall that assuming ' < P, we say p’ € P’ is
areduction of p € IP where every condition r € I stronger than p’ (in ') is still compatible
(in P) with p. Let P, = Py (L¢). Now the statement is: to find a reduction of p3 from P3 to
Py first consider p; = the reduction of p3 to [P, then let po be a reduction of p, from P,
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to Pg and finally extend pg to a condition p by appending the information from p3 on (L
minus Lg).

(2) Claim 1.24 is used only in the proof of 1.26 which is used only in the proof of 3.20
and 3.22.

Proof 1.24 As dp,,(L1) < oo it suffices to prove by induction on the ordinal y that:
B, if (Ly : £ < 3) satisfies (x) of the claim and dp,,(L) < y then:

e we have p; € P (L) and p; < g1 € Pm(L1) = p3, q1 are compatible in Py, (L3)
when:
(@) p3 € Pm(L3),
b) po € Pm(Lo),
(c) if po < go € Pm(Lo) then pr := p3[L, and gg are compatible in Py (L>),
(d) p1 = poV (p3](L1\Lo)).

) Pm(L1) < Pm(L3).

Why this holds? Assume we have arrived to y.

Clause e : (notice that here we do not use the induction hypothesis): Recalling clause (f)
of the assuaption, indeed, p; = po U (p3[(L1\Lo)) € Pm(L1) by the definitions (clauses
ei(a)), (b), (d) of B,), e.g. why fsupp(p1) € L? Note that if s € dom(p3[(L1\Lo) then
s € Li\Lo € Ly and {rp;()(¢) : ¢ < &p(s)} is included in L3 because p € Pp(L3) and in
L s by Definition 1.10. As s € L1\ Lo by (x)(e) we have s ¢ My, hence by Definition 1.10
we have {rpg(s)(é-) 1L < Ep(s)} C us C s/Em. By (x)(f) we have (s/Em) N Lm<: € L)
hence together {rp;5)(¢) : ¢ < &)y} € L1, and we are done proving fsupp(p1) € L.

So the first statement in H, o1 holds; what about the second? Toward contradiction assume
g1 contradicts the desired conclusion. Then by 1.16(6) there are s and p; such that:

@ (a) s € dom(g1) Ndom(ps),
) P3+ € Pm(Lm,<s),
(c) pg' is above p3[Lm,<s and above g1 [Lm, <,

(d) p; IFp,, ., “P3(s), q1(s) € Qg are incompatible (in Qp)".

So s € dom(g;) € L; and as Lj is an initial segment of Ly, and clause (c) of e, (of
B, ), clearly s € Lg is impossible, so s € dom(g1)\Lo S Li\Lg. As Py = “p1 < ¢1",
necessarily g1 [Lm, <5 IFpy, _, “P1(s) < q1(5)", 80 as 1 [Lm,<s < P3 [Lm <5 (by ©(c)),
also p;r [Lm,<s IFpy ., “P1(s) < qi(s)". As's ¢ Lo clearly pi(s) = p3(s) by clauses
B, e (b), (d),so0 p;r [Lm,<s IFp, o, “P3(s) < q1(s)" and again easy contradiction to &(d).

Clause e5:

Clearlyﬁm(Ll) C Pm(L3) as quasi orders. Next we shall prove Py (L1) <ic Pm(L3), so
assume g1, ¢2 € Pp(L1) has a common upper bound p3 in P, (L3), and we should find one
in Py (L1). Hence (see 1.10(e)(B)) we have dom(g;) U dom(g2) € dom(p3).

As p3[Ly € Py (L2) by (¢)(a) and we are assuming P (Lo) < Py (L2), see (x)(d) there
is po € Pm(Lo) such that pg < g € Pn(Lo) = ¢, p3[L> are compatible in P (L) and let
p1 = po Y (p3[(L1\Lo)). By B, (b), which we have proved noting that clauses (a)-(d) of
tH, e holds, we know that p; € Pp(L;) and py < p/1 € Pm(Ly) = p3, p/l are compatible
in P, (L3). It suffices to prove that p; is a common upper bound of ¢, ¢>.

We could have replaced pg by p; whenever py < p{ € Pm(Lo). So without loss of
generality for £ = 1,2 we have dom(g¢) N Lo € dom(pp) hence € dom(p;), also recall
dom(ge)\Lo € dom(p3) N L{\Lg and by the choice of p; we have dom(pz) N L1\Lg €
dom(p1)\Lo.

So recalling dom(gy) € L together dom(ge) € dom(py).
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As we are assuming P, (Lg) < Py (L) without loss of generality pg is above!’ qelLo. If
toward contradiction we assume that £ € {1, 2} and g; j(_ p1 then for some s € dom(gy) we
have (g¢[Lm,<s) < (p1[Lm,<s) but p1[Lm, < HélP’m(Lm,q) “qe(s) < pi(s)". Clearly, s € Lo
is impossible so s € L1\ Lo hence s ¢ M, by clause (x)(e).

Let L = Lo, L} = LoU(L1 N Lm, <), L) = Ly, L}, = Ly so (Lg, LY, L), L)) satisfies
the assumptions of the present claim and dp,(L}) < y, hence by the induction hypothesis,
Pun(L}) < P (L}).

Recall s € Li\Lo hence (s/Em) N Lm,<s € L1 by clause (f) of the assumption of the
claim, so fsupp(p; [{s})\{s}, fsupp(ge [{s})\{s} are € L} hence pi(s), ge(s) are Py (L})-
names. So recalling p1[Lm,<s ¥Pp(Lm o) “qe(s) p1()" and Py (L)) < Pp(L}) and

<
Lm<s C L3 = L/3 we have p;[L] WIPm(L’I) “qe(s) < p1(s)". Hence there is pfr such that
piILy < pi € Pm(L)) suchthat py Ikp, (1) “qe(s) £ pi(s)" sorecalling Pm(L}) <P(L})

we have p; Fpmczy) “qe(s) £ p1(s)".

But by H,, e, for yi = dp,(L}), we know that pfr and p3[Lm, <5 are compatible
(in Py, equivalently Py (Lm,<5)) so let p3+ € Pm(Lm,<s) be a common upper bound of
pr, P3[Lm,<s. Now p; “_]pm(L’3) “qe(s) < p1(s)" because: g¢ < p3 by the choice of p3;
p1(s) = p3(s) by the choice of p; and p3 < p;r, see above. However, p;r H—Pm(,_/}) “qe(s) f_
p1(s)" as pfr < p;“, see above.

So we have proved P (L) <ic Pm(L3).

To finish proving clause M, ey, that is, Py (L1) < Py (L3) note that clause B, e; does
this as for every p3 € Pm(L3) there is pg as in B, e (b), (c) by clause (d) of the claim’s
assumption and let p; be as defined in B, o (d). O

Claim 1.26 We have Py, (L1) = Pm,(L1) (i.e. as quasi orders) and Py, (L1) < P, for
=1, 2 when:
L (@) my <y my,

(b) Lo C L) C Lml,

(¢) Lo is an initial segment of L1,

(d) Pm,(Lo) = Pm,(Lo),

(e) Pm,(Lo) <P, fort =1,2,

(f) ift € Li\Lo then t ¢ Mm, and Ly, <; N (t/Em;) = Lmy,<¢ N (t/Em,) € L.

Remark 1.27 Used only in the proof of By 4 inside the proof of 3.20, so we could have used
Mg, & from there.

Proof 1.26 For ¢ € {1,2}let L, = (L¢,i 1 i < 4) be defined by:
@1 (@) Leo = Lo,

b) Ley =Ly,

(¢) Lyp={s € Lm, : § <m,  for some t € Lo},
(d) L¢3 = L,

Clearly,

17 Why? It suffices to prove that there is p6 € Pm(Lg) above pg and above g [Lg. So toward contradiction
assume this fails hence there is pg' € Pm(Lg) above pg incompatible with g, [ L. By the choice of pg we

know that paL, (p3[L2) are compatible, so let p; € Pm(L7) be a common upper bound. Now L is an initial
segment of Ly by (x)(a) and p3 is above gy hence p3[Lj is above gp[Lo andas gy € Pm(L1), Lo = L1NLy
we have gy [Ly = q¢[Lo, p3[L> is above g¢ [L( but p3+ is above p3[L, hence p3+ is above gy [ L. Also p;r

is above pg which forces g¢[Lo € Gpy, (L), equivalently g¢[Lo ¢ Gpy,(L,), contradiction.
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@, (@) (myg, Ly) satisfies the assumptions of 1.24 hence,
(b) Pm,(Le,1) < Pm,(L¢3) which means Py, (L1) <Py, for €& =1, 2.

Why @57 Clearly it suffices to prove clause (a), so we just have to check clauses (x)(a) —
(f) of 1.24.

Clause (x)(a):

By ®1(d), L¢3 = Lm, hence is an initial segment of Ly, and by &1(c), L> is an initial
segment of Ly, whichis Ly 350 Lyo € Ly 3.

Clause (x)(b):

For the first statement, Ly 1 C Ly 3 is trivial by @1(d) + @©1(b) + [H(a), (b). The second
statementsays Lgo = L¢,1NLg2.Now Ly o € Ly 1 by(a), (b) of the claimand @ (a), (b).
Also Lgo € L¢ holds by @1 (c) (and @1(a)). Together Ly o € L¢,1 N L¢2; to prove the
inverse inclusion assume s € Lg> N Ly 1, s0ass € Ly by @1(c) thereis t € Lo such that
s <m, t.Buts € Ly 1 = Ly so by [l(c) of the claim we have s € Lo = Lo as promised.

Clause (x)(c):

Holds by condition [J(c¢) of the claim.

Clause (*)(d):

By clause [I(f) of the claim and @1(c), L¢> is an initial segment of Ly, , hence by
1.13(e) we have Py, (L¢2) < Pm, = Pm,(L¢3). By [(e) Pmy(L¢,0) < Pm,; so together as
Lgo € Lg, we have Py, (Lo) < Py, (Lg,2).

Clauses (x)(e), (f):

Hold by condition [I( f) of the claim.

So @5 holds indeed. So now we deal with the other half.

Proof of: Py, (L1) = Pm, (L1).

Let (sq : @ < ar(x)) list L1\ L such that s, <7, sg = o < B. This is possible as L, is
well founded.

Now,

@3 fort=1,2and <a(x)let L}, = (L}

i
(@) LZCY,O = Lo,
(b) Lza,l =LoU{sg: B <a},
(©) Lzal ={s€Lm, :5 <m, t forsomet € Lo},
@ Ly = Lm,.

1 i < 4) be (but we can omit £) where:

@4 (a) (my, I:Z o) satisfies the assumption of 1.24,
(®) Pm, (L7 4 1) <Pm, (L7, 3)-

[Why? Note the my, (L

v -1 <4) satisfies the assumptions of 1.24, hence @ holds for

my, Eg,a fora < a(x).]
Now by induction on @ < « () we prove that:

Eﬂa Pml (L;’l) = ]sz (L:;,l)-

Case l: ¢ =0:
As L’l‘%1 =Ly= L;,a,l’ clause [1(d) of the assumption gives H, as promised.
Case 2: o a limit ordinal:
Easy by the definition of the iteration. That is, first, if dom(p) € [Lmz]f’\ then we
know p € Py, (L:;,l) < /3/\ [PFLZJ € Pml(L;;,l)] Nd ﬂ/\ [PFLZJ € PmZ(LZ,l)] <
<o <o

p € Pn, (L;yl); second, for p, g € P, (L}, |) by the definition of the order and the induc-
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tion hypothesis, Pm, (L} ) = “p < q"iff A [Pm,(L} ) E “pIL5, < qIL} "] iff
: A : : :

N Pmy (Lg ) | “pILG | < qlLg "1iff Pmy (L5 ) E“p <q".

B<a

So H, holds.
Case3:a=p8+1:
Clearly,

()1 pe PmI(L;;,l) < PE sz(l‘z.l)'
Next,

()2 assume p,q € P (L} ;) and we shall prove that P, (qul) E “p < ¢q" implies
]ijz(L:;’]) ': “p S qu.

[Why? If s ¢ dom(p) this is obvious by the induction hypothesis. Hence we can assume
sg € dom(p), so as we are assuming P, (L} |) E “p < q", clearly sg € dom(g)
hence sg € dom(p) N dom(q). First, similarly IP’m](LE:]‘) = “(p[L’E’I) < (g [L"é’l)”
and (¢ [L;; l)H—]Pml(qﬁ)“p(Sﬁ) <@; q(sp)" by the definition of }P’ml(Ll’g 1)- Second, as
qlL% 1€ Pm, (L* = mz(L* D) and Py, (L; ) <Pm, by @4 and sz(L* 1) <Pm, by @4
and p(sp), q(sﬁ) are Py, (Lﬁ 1) names (as fsupp(p(sg), fsupp(g(sg)) < Lﬁ D necessarlly
we have g[Lj | IFp,, “p(sp) =g, q(sp)". Third, as ]P’m,(Lﬂ D E“pILy, <qlLg," by
the induction hypothesis Pmy(Lg ) E“pILg, < qlLj B Fourth by the last two sentence
and the definition of the order in Py, we have P, = “p < ¢" so the conclusion of (x)>
holds also in this case.

Note that if sg € dom(p)\dom(g) then p j{ g, so we are done proving (x)2.]

(93 if p.q € Pm, (LY, ) and Py (LY ) b= “p < ¢" then Py, (L7 ) = “p < q".

[Why? Similar to the proof of (x).]

By (%)1, (x)2, ()3 clearly B, holds. So we carried the induction so H, holds for every
a < a(x) and for o = a(x) we get Py, (L1) = Pm,(L2). Together with ®>(b) in the
beginning of the proof we are done. O

1.3 On existentially closed m’s

Definition 1.28 (0) For m € M let:

(a) dpm(L) =U{dpy,, (1) +1:t€ LN Mm}, for L C L,
(b) Lmy ={t € Lm :1 € Mm = dpy, (1) <y and? € Lm \ Mm = sup{dp,,, (s) : s €
Mmands <, t} < y}. So,
° Lg«ﬁy is an initial segment of Ly,
° L?{V is C-increasing continuous with y and is equal to Ly for y = dp};,(Mm), or
for y = dpj,(Mm) + 1 (if (3t € L\ M)(¥s € Mm)(t > 5)).

(c) Lmy ={t € Lm : 1 € Mm,dpy, (f) < yort € Lm \ Mm and min{dp,, (s) : s €
M U {oo}, t < s} < y}, note that (we mean):

e fory = Othisis {r € Ly : if (3s € My)(t < s) then for some s € My, we have
t <sanddpy, (s) =0},
e cach Lﬁiy is an initial segment of Ly,

d . . . . . .
e the set Ln;],y is C-increasing with y, but not necessarily continuous,
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e (meaningful only if we do not assume m is bounded, see 1.7(10)) if + € Ly, then
we have: forno s € My, do we have r < s iff 7 € L;i,ﬂy \U{L?t}m,/S : B < y}for
y = dpj(Mm) = U{dpy, (5) +1:5 € M}

(1) (a) Foran ordinal y let M)tj"c (here bec stands for bounded existentially closed) be the class
of m € Myq such that, recalling Definition 1.12(3):

(x) if m <y my <y mg and my, my are bounded, then P, (Lob ) < P, (LYY, ) hence
L C LY, implies P, (L) = Pmy (L) (by 1.20(4)).

(b) Let Mj‘iec (where ueb stand for unbounded existentially closed) is defined similarly omit-
ting “bounded”.

(c) Let M)‘ﬁ’ec (where wec stand for weakly bounded existential closed) is defined similarly
replacing “bounded” by “weakly bounded”.

(d) We may write Mf,c for M‘)‘,ec.

(2) Let Mg
Mbec = Mggc-
(3) Let MS°, = {m € M{’ : [Lm| < x}, similarly M5’ and for bec.

M be the class of m which € M’ for every ordinal y; similarly

Observation 1.29 (1) Of course, M‘;; - M‘;f and Lglf,},l C Lﬂgn are initial segments of Ly
when y| < y».
(2) In 1.28(1), the following are equivalent:

d
(a) Pm, (L?,flg),) < IP’mZ(Lnfz,y)for every y,
(b) Pm, <Pm,.

(3) If m € Mec and My |=s < t” (in particular, s,t € Mm) then IFp, “ng < n;
mod J)E’d ”. Moreover, if M = 5i < t fori < i, < AandB is an i-place )L-Borel}uncti(;n
Sfrom 1.0, into Tz <) 6¢, then lbp, “B(. .., 15, .. )i<i, <1 mod de,

(4) If for every L € [Lm]=* for some t € My we have L € Py then (see 2.13(3))
IFp,, “{g, 1t € My} is cofinal in (I1,2).6;)”.

Remark 1.30 Recall if m is fat, then L € %, means L C upy ;.

Proof 1.29 (1) Easy.
(2) First, concerning (a) = (b), note that for y large enough we have Lﬂ{’[,y = L, hence

P, (Lf],l,)z,y) = Py, , soclear. Second, assume (b), note that Lgfby is an initial segment of Ly,

hence Pr,, (Lfl,fm,) <P, for £ = 1,2 by 1.13(c), hence we have Py, (L:j,fly;,) < Pm; <Py,
but < is transitive, hence Ppy, (L?r?1,y) < Pp,. Also P, (L?,?zy},) < Pm, and Lﬂfm, C L?,fz,y
by the definition. Hence by the definition p € Py, (Lﬂf’l,y) = p € Pn, (Lﬁfz,,,); but lastly
Q <PAQ<PANMP)(peQ = pe@) = Q <@ sowe are done.

(3) Easy, as m € Mg, its suffice to find n such that m <pp n and n satisfies the conclusion.
So given iy, t, s; such that s; <p, t (fori < i,) we define n € M as follows:

(a) the set of elements of L, are those of Ly, and r,, a new element,

(b) the order <y, is defined by: r| <y rp iff ri <m r2 orry <pm s;i Arp = ry forsomei < i,
orry =ryx ANt <m 12,

(©) My = M,

(d) E, ={(r1,r) : (ri,rn) € Ejyorry =re Arp € {si 1 i <ix}Uftlorr =reAr €
{si 11 < i} U{t}},
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(e) un,ris:

o Um,ifr € L\ {t},
o um, U{ntifr =1,
o {s5;:i <iy}ifr =r,.

) P, is:

o P, ifr € Lm\ 1},
o P U{{ri}}ifr =1¢, except whent e M,ffl‘t, in which case it us 2 (un,;),
o P({s; i <iy})ifr =r,.

(4) Easy by 1.16(1)(B). O

Definition 1.31 Letm € M.
(1) We say mis u—wide18 when u > Agand foreveryt € Ly \Mp therearet, € Lin\Mmn
for o < u such that:

(a) m[(ty/Em) is isomorphic to m|[(t/Ey) over My,
(b) B<y<n=tg/Ejf #t,/EN.

(1A) We say m is wide when it is Ao-wide, see 1.1. We say m is very wide when it is
| Lm|-wide.

(2) We say m is full when: if m[Mpy <m nand E]] has exactly one equivalence class then
for some t € L\ Mp, we have n is isomorphic to m[(z/ Ep) over My,. Similarly for Mypq.

(3) We say m is p-wide or full inside Mpg when we restrict ourselves to Mpg.

Crucial Claim 1.32 (1) If x = x* > 2’2 (see 1.1) and m € M<,, then for some n we have
m <y n €M, andn € M.
(2) If in addition m is bounded, then for some n we have m <y n € M, and n € Mpec.

Proof 1.32 Let x = u for part (1) and x = b for part (2). Let 2" = Zm = {n : n is bounded
if x = b; and (m[My) <m nand L, \ My = t/E} for some 7, hence || Ly| < A2}.
We define a two-place relation & on 2":

(%) m&my iff (n, ny € 2 and) there is an isomorphism 4 from n; onto ny over m| My,
that is: an isomorphism from Ly, onto Ly, over My, (as partial orders) such that:

(@) t € Ln; = uny,n@y) = {h(s) 15 € uny ¢}
() 1 € Lo, = Pryiy = {{h(s) : s €u} 1 u € Py 4},
(¢) 5.1 € Ln, = (SE} 1 & h(s)E},h(1)).

Clearly & is an equivalence relation.

By our assumptions x > 2*2andn € 2 = |Ly| < A2 A (V1 € Ly) (s C [Ln,<t]f’\),
hence recalling A, = (1) clearly & has < 2*? equivalence classes and let (n, : o < 2*2)
be a set of representatives (not necessary, but no harm in allowing repetitions).

By 1.20(2) and 1.21 we can find n such that:

(»)1 (@) m <y n € M,,
(b) forevery o« < 2*2 we can find (ta,i 11 < x) such that:
(@) lo,i € Ln\Lm,
B) (@#B)V (I #J)= tai/En #1pj/En,
(¥) n[(to.i/En) is &-equivalent to ny, see 1.7(0) on 4 ; / Ep.

18 No real harm if we demand o > Ao and use AT . in part (1A).
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We shall now prove that n is as required. Let n <y n; <y np, and ny, ny are bounded
when x = b and define .Z as the set of functions f such that some L1, L, satisfy:

(#)2 (@) Ly € Ly,,
(b) Mm = Mn - L] ﬁLz,
(¢) Ly has cardinality < X,,
(d) Lgis En,-closed,i.e. Mm € Ly andt € Le\Mm = t/En, € Ly,
(e) f is an isomorphism from ny[L| onto ny [ Ly over My, i.e.:
e fis aone-to-one mapping from L onto L,
e  f[Mp is the identity,
o3 [ maps <y, [L onto <y, [Lo,
o4 SEyt & f(S)Eq, f(1),
o5 fors,t € Ly wehaves € un,; & f(5) € un,, ()
o fort € Ly wehave Py, sy ={{f(s):s €u}:u &€ Py, u C Ly}

Clearly,

(x)3 if f € Fand L’ C Ly, L" C Ly, and [L'| + |L"| < X, then for some g € F
extending f we have:

(a) L' € dom(g),
(b) L” C rang(g),
(c) rang(g)\(L" Urang(f)) C Ln,,
(d) dom(g)\(L' Udom(f)) C Ly,.

We can finish as in the parallel of the Tarski-Vaught criterion for L A but we shall

elaborate. That is, first we can prove by induction on the ordinal y < |Ly,| (and in fact just
Y < | Mn, || ") that (¥)4 — (%)¢ below holds:

(¥)4 letting L), = an v if g € 7 then:

(a) g maps dom(g) N L, onto rang(g) N L,,
(b) g induces an isomorphism g from Py, (dom(g) N L, ) onto Py, (rang(g) N L, ), that
is: g(p) = q iff:

(@) p € Poy(dom(g) N L,),

(B) g € Py (rang(g) N L,),

(y) g maps dom(p) onto dom(q) and s € dom(p) = tr(p(s)) = tr(q(g(s))),

(8) if s € dom(g), g(s) =t € rang(g) and fp(s) =B,(..., N @)s - - .)¢<5pm
and foi) = Bqo) (- - My (@) - - o<ty then &gy = Ep(s), Bgt) = Bp(s) and
¢ < Ep(s) = rq(t)(g) = g(rj)(s)@))7

(¢) moreover in (8) we have ((s, p) = 1(t,q) and if ¢« < (s, p) then w,, =
Wy.t.0s Bps). = Byn).-

[Why? We use freely 1.16(9). Let x4 be such that y, g, n,n;, m € 5 (x,). Let A <
(H(x+), €) besuchthat y, g, m,ny,m € A, |A| = x, x + 1 € A and [A]=* € L, (hence
A=<, . (A €).

Fort =1,2let L} = Ly,N2andnj = ng [ L}, soby absoluteness P, *(L *) =Pn,(Lp *)
hence P+ (L »«)<]P>né (Ln,). By the choice of n as Very wide and full (see Deﬁmtlon 1.31), also

n | (Q[ﬂLn) is very wide and full of cardinality x. Butwehaven | (ANLy) <np [ (ANLp,)
both of cardinality x hence also nj is very wide and full (see Definition 1.5) of cardinality
x. Now easily g can be extended to an automorphism of nj. The promised statement now
follows.]

Second,
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(*)5 II~])n2(L)/ N Lnl) < ]Pnz (L}/)

[Why? By19 the definitions and the induction hypothesis Py, (L, N Ly,) € Py, (L, ) as
quasi orders.

Alsoif py, p» € Pn, (L, N Ly, ) are compatible in Py, (L, ) letg € Py, (L, ) be acommon
upper bound there. We can find an Ep,-closed L' C Ly, of cardinality < %, (recalling
n € 2 = |Ln| < A) such that py, pa € Py, (L') and Ep,-closed L” C Ly, of cardinality
< Az suchthat L' € L” and g € Py, (L"). Now we can find f; € .Z such that dom(f;) =
U{t/En, : t € L'} U My, recalling that t/Eyn 2 Mp, see 1.7(0) and f; is the identity.
Then by (x)3 we can find f, € .# extending f; with dom(f;) = U{t/Ey, : t € L"}
and rang(f2)\rang(f1) € Ly,. So recalling (x)4(b) applied to f we have Py, = “(p1 <
H@)A(p2 < f2(@))" and f>(q) € Pny(Ly N Ly,) recalling (+)4. So py, pa are compatible
alsoin Py, (L, NLy,). Obviously, if py, p> € Py, (L, NLy,) are compatible in Py, (L, NLy,),
say, g witnesses, then ¢ is a common upper bound of pi, p2 in Py, (L).

So every antichain of Py, (L, N Ly,) is an antichain of Py, (L, ). Similarly to the above
every maximal antichain of Py, (L), N Ly, ) is a maximal antichain of Py, (L, ); similarly for
the other direction. So we are done.]

(*)6 Pnl (Ly N Lnl) = ]Pnz(L]/ N Lnl) < ]Pnz (Ly)

[Why? We prove this by induction on y, as in proving the Tarski-Vaught criterion is
sufficient (we shall elaborate later in the proof of 3.20, more specifically Hy proves a similar
statement in detail with weaker assumptions).]

Hence (using ¥ = |Ln,|™),

()7 P, < Pp,.

Hence for every L C Ly, by 1.20(4) we have Py, (L) = Py, (L) as required for n € M.,
see Definition 1.28. O
Definition 1.33 (1) Form € M, let n = m!® be m[Lt,"?, where LP,‘E ={s € Ly : for
some ¢ € My we have s/E} C Lm(<) or just for some 2~ € [My]=* we have s/E}, C
U{Lm(ft) it e X}

(1A) Form € M, let n := m™? be m L}, where L™ := | J{Lm(<) : t € Mm}.

(2) Assume nj <y my,n; <y np and Ly, N Ly, = Ly,. Thenlet my = ny lela m; be

1

defined by:

(a) the set of elements of Ly, 1S Lm; U Lm,,
(b) <m, is the transitive closure of <n, U <m,,
(©) Ep, = Ep, U Epyy. Mm, = Mnyand My = Ml Mot = My
(d) um,, is:
® Um,ift € Ly, \ Ly,
® um, ;ift € L, \ Ln,,
® Upn, Ultm, ;ift € Ly, (S0iN Uy, s if L € Ly, \ Mmy).
(€) Pm.; is defined naturally, that is:
® ‘@mZ’t ifr e an \Lnl»

o Pny;ift € Ly, \ Ln,,
® PnyU Py ift € Lin, except when 1 € ME! (soin P if L € L, \ Mm,),

19 Can repeat the proof of (x)4 but for variety we give another proof.
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o [um, J="if 1 € ML

Claim 1.34 (1) In 1.33(1) indeed m'®! € M and moreover it is bounded.
(2) Ifm € M, m is bounded iff m = m!*d.
(3) In1.33(2) indeedmy = ny@®my belongsto M, m; <y mp andn; = m[lbd] <M ng’d] =
nj
m%bd] _ ngbdj'
(4) In 1.33(1) we can add n'™ € M.

Proof 1.34 Easy, e.g.
For part (3) we are given m € M and let n be as constructed above for x = u. Clearly
nt*d] is as constructed above for x = b, so we are done. O

2 The Corrected P,

Discussion 2.1 Here for L € L,, we define Py [L], the complete subforcing of the comple-
tion of Py, generated by (ns : s € L), the central case is L = My, of course.

Definition 2.2 Let P be a forcing notion and ¥ C P and x a regular cardinal.

(1) Let L, (Y) be the set of sentences formed from {p : p € PP} closing under the operations
—pand A p;,fora < yx;so (infinitary) propositional logic.

(2) For a dilrgcated G C Pand € L, (Y) we define the truth value ¥[G] naturally (by
induction on ¢ starting with p[G] = true < p € G).

(3) Let IL; (Y, P), the L, -closure of Y for P, (where Y C P; if Y = P we may omit Y) be
the following partial order:

e setof elements {y € L, (Y, P) :p “¢[G] = false"},
e the order ¥ < ¥ iff IFp “if Y2[G] = true then ¥ [G] = true".

(4) The completion of P is the L., -closure of IP which is ]L;(r ™) = ]L;(r (P, P) where x is
minimal such that IP satisfies the x-c.c.

Claim 2.3 For a cardinal x and forcing notion P and Y C P we have:

(a) ]L;(Y, PP) is a forcing notion,

(b) P< ]L; (P) under the natural identiﬁcationzo,

(c) ]L;(Y, P) < IL}'(IP’),

(d) ]L;(rl Y,P) < ]L;Q(Y, P) when x1 < x2 are regular,

(e) if P satisfies the x1-c.c. and x1 < x» are regular, then IL;(*'1 (Y, P) is essentially equal to
LL(Y, P), i.e. up to the natural equivalence of elements in a quasi order,

(f) if Y = P then P is a dense subset of]L; ™).

Proof 2.3 Easy. o

Definition 2.4 Letm € M.
(1) Fort € Lm,e <tandn e [[ 6 let p = p,’"n € Pp be the function with domain {7}

i<e
such that p(¢) = (n, n°0,), i.e. fpu) € [ 6: is defined by frin(e)isn(e)ife < Lg(n)
i<i
and is zero otherwise.

. Pedantically P <’ ]L}("1 [P], see 2.4(8), because ]L;("[IP’] E“p <q"iff glFp “p € Gp".
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(2) ForL € LmletYy = Ym, ={p/, :t € Landn € [] 6, for some ¢ < A}.
e<¢

(3) For L C Ly, let Py[L] be IL)TO (Yr, Pm), see Definition 2.2(3) and Hypothesis 1.4(4) on
20

(4) For L € Ly let Py(L) = Py[{p € Pm : fsupp(p) C L}, see Definition 1.12(1),
recalling 1.12(2),(3).

(5) Py, isthe partial order with the same set of elements as P, and <p.={(p,q):p,q €Pm
and no r above ¢ is incompatible with p} and P, (L) = P, [{p € Pm : fsupp(p) C L},
we may “forget" the distinction?!.

(6) For quasi orders Q;, Q; let Q; €’ Q, mean that:

@ seQ=seQ
(b) s <@, t=s =@t

(7) For quasi orders Qp, Q; let Q; C! @, means that Q; €’ Q; and

—IC

(c) if s, ¢ € Qq are incompatible in (Q; then they are incompatible in Q.

(8) Wedefine <’ similarly, thatis Q €/ Qs and every maximal antichain of Q; is a maximal
antichain of Q5.

(9) Let Q g;q Q3 means that Q; <’ Q, and for every p € Q; there is ¢ € Q; equivalent
to it which means IFg, “p € G, iff ¢ € G, .

Claim2.5 Letm € M and L C Ly,.

(1) Pm[Lm]isequivalent to Py, as forcing notions, in fact, Py = Py (L) <Pml[Lm]andisa
dense subset of it under the natural identification (see 2.2(1)), but we should pedantically
use P, (Lm) or use <.

(2) PmlLm] is (< A)-strategically complete and is A" -c.c.

(3) Pm(L) C PwmlL] as sets and P [L] < Pm[Lm] and Py(L) €' Pn[L].

(4) IfG C Py is genericoverV andn, = n:[Glfort € LymandGt = {y € Ly+(Yr,,, Pm) :
V[G] = true}, see 2.2(2)(3), then V[G] = VIGT] = V[(i; : t € Lm)].

(5) In part (4), moreover G is a subset of Pm[Lm] generic over V.

(6) Pm(L1) € Pm(L2) and Py[L1] < Pm[L2] when L1 C Ly C L.

(7) If m,n € M are equivalent then Py[L] = Py[L] and Py (L) = Py(L) for L € L.

8) [(> A)-continuity] Assume I, to be a A" -directed partial order and L= (Ly :r € I,) be
suchthatr € I, = L, C Lyandr <, s = L, € Lyand L = U{L, : r € I,}. Then,
as sets and moreover as partial orders Py[L] = U{Py[L,] : r € I} and Pu(L) =
U{P(Ly) : 7 € I}

(9) Ifm € M. and m <y my <y my then Ppy [Lim] = Py [Lm].

(10) The sequence np = (ns : s € L) is a generic for Py[L], that is: if G C Py [L] is generic
over V and vg = Ns [G]fors € L then:

(a) VIG] = V[{vs : s € L)],

(b) v = {vs : 5 € L) determines G uniquely.
Remark 2.6 What about Py (L) €/ P[L] and P (L) <’ P[L]?

Concerning the second, there may be a maximal antichain (p; : i < i) of P(L), but
some g € P is incompatible with p; for i < i,. This witness =(Pyp(L) < Pp) hence
—=(Pm(L) < Pn[L]). Concerning the first (P (L) C!. Pp[L]) easily it holds. Note that

—IC

(Pm(L) € Pw[L]) may fail as explained earlier as maybe ¢ IFp,,“p € G” but j{pm q, see
1.7(9) and 1.22.

21 Really the only difference is the possibility that dom(p) ¢ dom(q), see 1.22.
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Proof 2.5
(1) Easy.
(2) Follows by part (1) and 1.16.
(3) The first statement by their definitions, the second statement by part (1).
For the third clause, “Pp[L] €' Pm(L)", note that:

(x)1 if p, g € Pm(L), then Py (L) = “p < q¢" iff Py ="p < ¢” which implies Py [L] =
“p < q" by the definition of Pp[L].
()2 if p,q € Pm(L) and dom(p) € dom(q), then Pm(L) E“p < ¢” iff Pm E"“p < ¢”
iff Pml[L] =p < ¢,
[The first “iff” by the definition of Py, (L), the second “iff” by 1.22.]
4), 5), 6) Should be clear recalling 1.16(7).
7) Easy, recalling 1.16(5).
(8), 9) Easy.
(10) By the definition of Py, [L]. ]

The Uniqueness Claim 2.7 There is an isomorphism from Py [M1] onto Pm,[M>] which
(recalling Definition 2.4(1)) maps p,*w to p;l‘(t) nforl € My,n € U{[] 0 : ¢ < A} when:
’ e<¢
B (@) me Mg fort =1,2,
(b) My = Mp, fort =1,2,
(¢) h is an isomorphism from m | My onto my | M>.

Proof 2.7 By renaming without loss of generality M| = M> call it M and £ is the identity
and Ly, N Lm, = M. Letmg = m[M = my[M so my <y myg for £ = 1,2 and

Lmg = Lmy N Lm,.
By 1.21, there is m such that m; <y m and my <y m. As my, my € ME by 2.5(9) we
have Py, [M] = Pm[M] and Py, [M] = Pwu[M] so together we get the desired conclusion.
O

Definition 2.8 (1) We call m € M reduced when Ly, = Mp,. We call m unary when the
equivalence relation EJ}, has exactly one equivalence class.
(2) Form € Mlet P be Py[Lm] and Py [L] be Py[L] for L € Ly when m <y n € Mec.

Remark 2.9 (1) Why is Pg"[L] well defined? see below.
(2) Here “cor" stands for corrected.

The interest in the definition is because:

Claim2.10 (1) Ifm € M and L C Ly, then P"[L] is well defined.

(2) P [Mm] is well defined and depends only on m|Mp,.

(3) Ifm <yynand Ly C Ly € Ly then P"[L1] = P [L1] < PR [La] < PR

(4) Assume m is bounded and m <y n € Myec. If L € Ly then PiY"[L] = Py[L].

(5) Assume m is weakly bounded and m <y n € Myec. If L € Ly then Piy"[L] = Py[L].
(6) Ifn € My,c then m € M.

Proof 2.10, each L, is an initial segment of Ly,

(1) By 1.32, P*[ L] has at least one definition so it suffices to prove uniqueness. So assume
m <y my € M for £ = 1, 2 and we should prove that Py, [L] = P, [L]. Without loss
of generality Ly, N Lm, = Lm. Now by 1.21 we can find n € M such that m; <y n
and my <pm n; as my € M, see Definition 1.28 we have Py, <P, for £ = 1,2. Asiin
the end of the proof of 2.7 we are done.
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(2) By 2.7.

(3) Follows from Definition 1.28(2) and 2.8(2).

(4) On the one hand, we can find m; € My, such that n <p; m; by 1.32(2). On the other
hand, can find m3 € M, such that m; <y m3 by 1.32(1). Let mp = mgbd] and let
mp = m so mp <y m; <y my <y m3. By the choice of m; we have

L4 ]Pml [L]= ]sz [L] < ]P)mz-
As Ly, is an initial segment of Ly, clearly,
o Py, <Py 50 P, [L] = Py [L].

Lastly as m3 € Mec, Pm;[L] = P"[L]. Together we are done.
(5) Similarly to part (4).
(6) Easy.
[m}

Discussion 2.11 (1) But we like to prove for reducedm € Mand M C My, that P;;)FM <Py,
this is the whole point of the corrected iteration. This is delayed to 3.27. We now prove
that this suffices.

(2) Conclusion 2.12 below is the desired conclusion but it relies on §3, specifically on 3.27
(or §4A).

(3) The reader may understand 2.12 without reading the rest of §2, §3 by ignoring clause
(A)(d), or reading 2.2, 2.3.

(4) By 2.10(4) we may restrict ourselves to Mpq. We use it freely.

Conclusion 2.12 For every ordinal 8 there is q = (P, ngio < 84, B < 84x) such that:

(A) (a) (Py :a < 8,) is <-increasing sequence of forcing notions,
(b) ng is a Pyiy-name of a member of [| 6. which dominates (] 6¢) Ve,

< <
(¢) na is a generic for Po11 /Py, moreosve/\r (np:B<a)isa geiiei}icfor Py,
(d) Py <'Lf (Yo, Py) infact Py is dense in L (Yo, Po) where Yy is defined as in 2.4(2)
with o here standing for L there and see 2.2,
(e) Py is (< A)-strategically complete and 1T -c.c.,
(f) if 8 < &4 has cofinality > A then Ps = U{Py : a < &}, if cf(8) = A then the union is
Jjust a dense subset of P,
(g) Ps, has cardinality 18] if 6 > 2.
(B) if % C 8, then the complete sub-forcing generated by (Mo 1o € U ) is isomorphic to
IP)olp(OZ/);
(C) if G C Ps, is generic over V and nq = ga[G]foroz < 8.andn), € ] Osfora < 84 and
e<A

{(or, &) o0 < 84,8 < Xand n),(€) # nu(e)} has cardinality < A then also (n, : o < 8y)
is a generic for Ps,, determining a possibly different G' but V[G'] = V[G],

(D) in clause (B), moreover if %4 C 8, and (o; : i < otp(%)) list % in increasing order then
for some unique G" C Poyy ) generic over V, i < otp(%) = 1, = ni[G"].

Proof 2.12 Without loss of generality A1 > |5«|; we can use only m € Mpq (by 2.10(4)).
We define m € M by:

() (@) Lm = ds,
(b) My = 8, and®> Mft =5,

22 Other reasonable choice is M2t = ¢, M€ = 5, and MfAt = p = plcan,
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(©) Umo = and Py = [a]=* fora < &,
) E. = 9.

It is easy to check that indeed m € M and let n € Mg, be such that m <p n, exists by
the Crucial Claim 1.32 and let P, = Py[{i : i < a}] for o < &.

Now clearly clause (A) holds and Ps = Pg" by 2.8(2), 2.10(1) and e.g. clause (A)(b)
holds by 1.16(4A).

As for clause (B), first note that for every L C §,, the sequence 17;, = (g : o € L) is
generic for P [L] by Definition 2.4. i

Second, for M C §, let « = otp(M) and h : M — « be h(i) = otp(i N M) so h
is an isomorphism from m[M onto m |« hence by 3.27(2) below, with m, m[«, M, o here
standing for my, my, My, M, there we have i induces an isomorphism from P$"[M] onto
]P’f::? o[Lmie]. In particular, id, induces an isomorphism from IP;?F o, onto PR [a].

Together we get clause (B). Also Clause (C) holds by 1.16(8) and clause (D) follows so
we are done. m]

Definition 2.13 (1) We say m is essentially (< u)—directed (if © = NRo we may omit it)
when: if L € M, |L| < w then for some t € My,, we have:

e se€Ll =s5<mfASsEu soMpyisdirected?).

[Note that it follows because m is bounded and My, is cf(u)-directed.]

(2) We say m is strongly p-directed (or (< w)-directed; if £ = No we may omit it) when:
for every L € Ly, of cardinality < p there is t € My such that L € %y, (the condition
implies “m is weakly bounded” and “m is not lean, r ¢ M when EJ, has at least two
equivalence classes”).

(3) We say m is reasonable when:

() mis strongly AT -directed and M,f,’;‘t is cofinal in Mp,,
(B) m(<t) € M forevery t € My,
(y) mis wide and bounded (see Definition 1.7(10) and Definition 1.31(1A)).

Similarly we can deal with such iterations with partial memory and spell out how Py'[L]
is defined from a (< A)-support iteration with partial memory. This is used in [12], but we
need more: see §3.

Conclusion 2.14 Assume M is a well founded partial order and i’ = (u) : t € M), u, C
M_; and 7' = (2] : t € M) with 2, C [u,1=" is closed under subsets. Then we can
find (), h,Pg = Po g, Qs = Qo,8. P1,g, Qi N, 1y and Py v, Py, (for B < B(x), 0 <
B(x),s € Mandv C B(x),u C M) and h, i, P such that:

(A) (a) (Pg, Qq : B < BGx),a < B(x)) is (< A)—support24 iteration,
(b) () 0= (ug : B < B(x)) such that ug C B,
B) 2= (Pg : B < B(*)) such that Pg < [uﬁ]f}‘ is closed under subsets,

(¢) ng is a Pyi1-name of a member of ] 0,
- e<)

(d) (na : @ < B) is generic for Pg,

(e) Qq is defined as in Definition 1.12(4),

(f) IFpy, “np € [1 e dominates everyv € [] 6z fromVI[(ng : o € u)l whenu € Zg.
- <A ~

e<A

23 Why not add {s} € Pm.;? See 1.29(13).

24 This will be qm, well up to equivalence, see §1.
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(B) (a) his a one-to-one function from M into® B(x); stipulate h(co) = B(x*),
(b) s <mt = h(s) <h@),
(c) upp Nrang(h) = {h(s) : s € u;},
(d) PpieN [rang(h)]=* = {{h(s) : s € u} : u € 2},
(C) (a) P1g = L;(Y,g,IP’ﬂ) where we let Yg = {p;’v ta < B,v e [] O forsome ¢ < A,

e<¢
see 2.2, 2.4(1),
(b) Py, = IL;\"O (Yu, Pg), where Y, is defined similarly when u C B(x),
(c) P, is a forcing notion for u € M and 17; isa Pi‘v}-namefor seM,
(d) h induces an isomorphism from P, onto Py (ns).seuy for u € M and g; 10 M (s) for
seM,
(e) (Z;h(s) 1 s € u) is generic for P, foru C M,
(D) (a) P, <P, whenu Cv C M,
(b) Pg, P14, ]P’/l’u are (< \)-strategically complete and M ™ -c.c.,
(c) if My, My € M and f is anisomorphism from My onto M as partial orders such that
reM; = ”/f(t) NMy,={f(s):seu,NM}andt € M} = @;"(1) N [Mr]=* =
{f(s) : s e unN M} :u € P} then the mapping h(s) — h(f(s)) induces an
isomorphism from the forcing notion | M, Onto Py My
(E) if M is (< AT)-directed and the set Y € M is cofinal in M, then the set {(Nhs) : s €Y}

is cofinal in {173 1B < B(x)} and even in 1,0, in VEseo (see 1.29(3)).

Proof 2.14 Easy. We can assume A; > |M|. Similarly to the proof of 2.12, the proof of clause
(E) is easy by 3.22 O

Claim 2.15 Ifm; <y mo <pm n and P, < Py for £ =1, 2 then Py, < P,
Proof 2.15 Easy. O
The following will be used in 2.17.

Claim 2.16 1) If (A) then (B), where:

(A) (a) mo,m;,my € M,
(b) Ly is an initial segment of L,
(¢) Ly =Lm; N Lm,,
(d) mp =m[L, <y=my,

(B) there is m € M such that:

(a) m; <y m,

(b) my =m[Ly,.

2)If L1 C Ly are initial segments of Lyy and m[Ly € Mg then m[L| € M.
3) In part (1) we may add (e) to clause (A) and (c), (d) to clause (B), where:

(A) (¢) Ly C L, (<t,), where t, € Mm,,

(B)(c) ifs € Lm \ Lm, then s <m, ts,
(d) ifs € M, \ M, and ty <m, s then um s = tm; s U ((Lm \ Lm;) N Lm(<s))-

Proof 2.16 1) Easy but we elaborate. We define m as follows:

()1 (@) Lmasasetis Ly, U Lp,,

5 In general not onto!
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(b) <m is the transitive closure of {(s, t):Lm Es<torly, =5 <t}
(©) Mm = M, My®™ = My, Mgt = Mg,
(d) um, is:
(a) um,,whent € Ly, \ Ly, and,
(B) ttmy.e Whent € Ly, \ M,
(7/) Um, 1 U Um,,t ift € MmU'
(€) Pm,is:
() Pmy, whent € Ly, \ Ly and,
(B) Pm,. Wwhent € Ly, \ Mm,,
() lum =% if 1 € MBS
(8) Pyt U Py if 1 € Mg \ M.
(f) We define Ep, by: for s, € Ly, we have sEqt iff sEy, ¢ or sEy, ¢.

As L, is an initial segment of Ly, we have:

()2 Lm=“s <t"Mf Ly, =“s <t"ors € Lm,,t € Lm, \ L« and for some r € L, we
have Ly, ="s <r"and Ly, = “r <t"
(*)3 Lm, is an initial segment of Ly,.
Now check that m is as required.
2) Follows.
3) Easy (changing ()| above naturally). ]

Sometime we would like to have in addition to being in Mg, that {n; : s € M} be cofinal
in (Il 6., < de) in VPm_ Toward this we use the following claim:

Claim 2.17 Assume m € M.
1) A sufficient condition for m € My is:

(*)m For some 8, L, ¢ we have:

(b) L =(Ly:a <3$),

(c¢) m[Ly belongs to Mg for every a < 6,

(d) Lo € Lm,<cys La S tm,cyr Mm(<cy) € Lo and ift € Lo \ M then Ly N (t/Em)
is an initial segment of t | En,

(e) 8 has cofinality > X,

(f) ¢ isincreasing and cofinal in Ly,

(g) L is C-increasing with union Ly,.

(a) c =(cq :ax <8) € $(Mm), each Ly is an initial segment

2) A sufficient condition for m € My, is:
(*%)yy For some ¢, L we have:
(a)-(e) as above,
(f) if L € Ly has cardinality < X then for some o < § we have L C L,
3) For L, € Ly we have (A)L, = (B)L,, where:

(A)r, if L C Ly has cardinality < » and m <y n then Py[L] = Py[L],
(B)r, ifm <y nthen Py[Ly] = Py[L],

4)Ifc € Lm, Ly C tme, M[Ly € Mee, Mim(<¢) € Ly andt € Ly \ My implies
L, N (t/Em) is an initial segment of t /| Exy then clause (B) [, above holds,
5) We have (a) = (b), when:

@ Springer



Sh:1126

Corrected iteration 553

(a) we have:

() m is strongly (< AT)-directed,
(B) foreveryt € My (or just for cofinally many t € My) we have m(< t) € Mec.

(b) m € M.

5A) Similarly for Myec.

6) If M is a < )\ -directed well founded partial order of cardinality < i, for example,
M = (k, <),k = cf(k) € (A, A1, our main case, then there is a strongly A+ -directedm € M
such that My, = M and (%), from part (2) holds, (hence m € Myec and {ng : s € Mp} is

cofinal in <H£<}L95, <de) in the universe Vfm.
A

Proof 2.17 Straightforward (recalling 2.10(4)), i.e.
1) By (2).
2) By (3) and (4).
3) Obvious, see 2.5(8).
4) Clear.
5) Easy.
6) Choose ¢ such that:

()1 (a) ¢ € *(Mp,) for some ordinal §,
(b) ifa < B < dthencpg £y ca,
(c) clists My,
(d) (follows), if L € Ly, has cardinality < A then for some o < § the element ¢, is an
upper bound of L, moreover L € Py ¢,

Now we choose fat bounded m,, by induction on o < § such that:

(¥)2 (a) (mg: B < a)is <p-increasing continuous,
(b) Lmy = M and um, s = My, (hence Py, s = [umo,s]EA recalling mg being fat) for
sEeM,
(c) forevery s € Ly, \ M for some 8 < a we have Ly, =5 < cg,
(d) ify € [«,d) then um, ¢, = Lm,.<c,
(e) ifa =B+ 1thenmy (< cg) € Mec,
(f) Lm, has cardinality at most 2*2 or even A5, but this does not matter,
(g) if t € Ly, then for some B < o we have t/E;,/lu C Lmgyy \ Lmy-

There is no problem to carry the definition; as:

For o = 0 we have defined my in clause (b) of (x); above.

For « a limit ordinal use 1.20(1), so in particular Ly, = U{Lmﬁ 1B < al.

For @ = B + 1 by 1.32 there is ng € M. such that mg(< cg) <m ng, without loss of
generality we have Lmy N Ly = Lm(<cp)-

By 3.22 below without loss of generality the cardinality of Ly, is at most 2. Now apply
2.16(3) with mg, Lmﬁ,<cﬂ, ng here standing for my, L., m; there.

So we have carried the induction. Now clearly m; is as promised, That is, (s)m, from part
(2) of the claim holds, hence m € Mc. by part (2) being cofinal holds by 1.29; so we are
done. O
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3 The main conclusion

3.1 Wider m’s

Recall that in this section our main interest is in restricting ourselves to lean m, but in
§3C we do not assume this and in §3A, §3B, §3D we rely on §1, §2, in particular §1B

In §3B, §3D we restrict ourselves to lean m, but not in §3A, however the projection defined
in 3.1(1) are helpful only in the lean case.

Note that here we fulfil the promises from §2, Now in §4A we rely on §3A, §3C, but we
do not rely on §3B, §3D. Lastly, §4A gives alternative proof of the promises from §2 proved
in §3D, it relies on §3A, §3C but not on §3B, §3D (except Def 3.25). In §4B and in 2.17 we
fulfil additional promises from [12].

We have a debt from §2, i.e. see discussion 2.11. Toward this we explicate what appear in
the proof of 1.32. We use mainly the notions of wide, full and “being in Mg ".

Note that 3.1(2), (4) and 3.2(3), (4) are of interest exceptionally only for the neat context.

Definition 3.1 Letm € M.
(1) For L € Ly, we say p € Py(L) is the projection (to L) of ¢ € Py (L) and write
p =¢q | L when:

(2) dom(p) = dom(g) N L,
(b) if s € dom(p) then:

(o) tr(p(s)) = tr(q(s)),
B) {fporw 1t < tlpGN} = {fqw. =t < tlg(s)) and rp(), is a sequence of
members of L}, see Definition 1.10(2).

(2) Let Fm,;, be the set of the functions f such that for some L, Ly:

(a) f isan isomorphism from m[L onto m[Ly,

(b) Lyisasubsetof Ly, foré =1,2,

(¢) My € Ly for€ = 1,2 and f| My, is the identity,

(d) Lgis Ey-closed, i.e. My € Ly and ift € Liy\Mpy andt € Ly thent/Eyn € Ly for
(=1,2,

(e) {t/E}, :t € Ly\ M)} has cardinality < p.

2A) Let Fm = Fmp,-

(3)If L1, L, € Ly and f is an isomorphism from m|[L onto m[L, then we let f be
the one-to-one mapping26 from P (L) onto P (L) as in (x)4(b) of the proof of 1.32.

(4) Let P, (L) be {p € Pnu(L) : fsupp(p) € L and ((p(x)) < 1 for every o € dom(p)}
with the order inherited from Py,.

Observation3.2 Letm € M and L C Ly,.

(1) The projection of q € Py to L is well defined and € Py (L).

(2) Moreover, it is unique.

(3)If p € Pm(L) is the projection of ¢ € Pm(Lm) to L then p < q in Ppy,.

(4) Each p € Py is equivalent to . := {(p[{t}) 1 L : t € dom(p) AL € Pm <}V
{p 1 Mw}; the equivalence means I-p, “p € Gp, iff &p € Gp,,”. More specifically it is

26 We have not said “order preserving"! still it is a function from Py (L) onto Pm (L) by the way we have
defined the Py, (L)-s and because of 1.5(e)(x).
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equivalent to .-/, = {(p[{t}) 1 L : t € dom(p) A L € £} when £, satisfies: if 1 < Lp(s)
then for some L € £, (recalling 1.10) we have rang(7p(,.) € L.

(5) For every p € Py, p is equivalent to y[; = {pl" : t € dom(p)} where p!') € Py, has
domain {t} and p(t) = (tr(py), Bp(,)((nrp(,)(;) 2 & € wp()), recall Definition 1.10 for the
meaning of B ), etc.

Remark 3.3 (1) Note that the choice in Definition 1.10(c)(y) to require such (f ), : ¢
t(py)) exists, is necessary for 3.2(4), which is crucial in the proof of 3.27. -

(2) In Definition 1.31(1A) we choose “wide means A-wide" as when applying it, if X =
fsupp(p) then for some ¥ C Ly, of cardinality < A, X C U{t/Ey 1t € Y}.

A

Proof 3.2 Easy e.g.

(4) Now if g € .7, then g has the form (p[{t}) 1 L where L € Py hence - “p € G
implies ¢ € G", hence I-“p € G implies ., € G”.

For the other direction assume g € Py, forces ), € G C Py, and we shall prove that g
is compatible with p, this suffices, so toward contradiction assume ¢, p are incompatible.

Without loss of generality dom(p) € dom(g) and recalling t € dom(p) = ¢ IF “p 1
(t/Em) € G" clearly s € dom(p) = g IF “tr(p(s)) € 55" so necessarily s € dom(p) =
tr(p(s)) < tr(g(s)). Recalling 1.16(6), as p, g are inco}npatible there are s € dom(p) N
dom(g) and g1 suchthatq[Lm, <5 < q1 € Pm(Lm,<s) andg; I- “q(s), p(s) are incompatible
in Qg".

As tr(p(s)) < tr(g(s)) this implies g1 |- “tr(g(s)), p(s) are incompatible, so recall-
ing g IF“tr(p(s)) € n,” this implies f)(s) [£g(tr(g(s))) ﬁ tr(g(s))". Recalling Definition
1.102)(0)(¥), q1 IFp,,, “there is ¢ < t(s, p) such that f},),,, tr(g(s)) are incompatible".
Possibly increasing g1, we can fix . But letting u € P s be such that 75, C u this
implies that ¢1 IF “(p{s}) 1 u ¢ G or tr(q(s)) € n,". However, g1, g are compatible and
this contradicts the choice of g. . O

Claim3.4 (1) For x > 22 then € M, constructed in 1.32 satisfies: if n <y 0| then ny is
full and wide, even Ar-wide and if my € M, even very wide.
(2)Ifn € M. and n <y njp then n; € M.
(3) If m € M, is full and very wide (or just A>-wide and even Lo-wide), then m € Mec.
(4) If m € M, then there is a very wide full n € M such that m <y n.

Proof 3.4
(1) Holds by the proof of 1.32.
(2) Holds by Definition 1.28(1),(2).
(3),4) By the proof of 1.32. o

Claim 3.5 Assume m is t-wide where 1 > Ag.
DIf f € Fmy and X C Ly has cardinality < , then there is g such that:

(a) g € Fm,00 and even belongs to Fm 1,
(b) f<eg

(c) dom(g) = rang(g),

(d) X € dom(g).

(2)Ifg € Fm,u and dom(g) = rang(g) then g™ = g Uidy,\dom(g) is an automorphism
of m.

(3)If f is an automorphism of m then it naturally induces an automorphism f of Pm(Lm)
similarly to ffmm (*%)4(b) of the proof of 1.32 and it induces an automorphism of Py[Lm]
as well; abusing our notation we denote both by f .
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(4)If f € Fm,u then it induces an isomorphism ffrom Pm[dom(f)] onto Py[rang(f)]
hence (as above) from Py (dom( f)) onto Py (rang(f)).
(5)If p € P, then the set {t/En : t € wsupp(p)} has cardinality < A.

Proof 3.5 1) Easy by the definition of wide in 1.31(1) and of %, in 3.1(2), in particular
clause (e).
(2) Just read the definition of m € M and of f € %, in particular:

(a) if 11,2 € Lm\Mm are not E, -equivalent then (t{/Em) N (t2/Em) = Mm and <p
[(t1/Em Ut/ Em) is determined by <m [(t1/Em), <m [(22/Em),
(b) gIMm = idpy,.
3) Naturally by the definition.
@4 Letg e 7 be as in part (1) and let h = g™ so an automorphlsm of m which extends
g as in part (2). So h is an automorphism of Py, (L) and clearly f =h [Pm (dom(f)) is as

required.
(5) Is clear, see 1.13(f). ]

Claim3.6 Lerm € M and 1 > Ag.
If f1, f2 € Pm, . then:

(a) fle2=>f1Cf2,
b) fi=f"'= ="

Proof 3.6 Just consider the definition, see 3.1(3) and (x)4(b) of the proof of 1.32. ]

3.2 Ordinal equivalence

Context 3.7 All m-s are lean?’

Observation 3.8 (1) P, (L) € Pm(L), see Definition 3.1(4).
(2) For every p € Py, there is a sequence (p; 1 i < i(x)) of < A members of P, (see
3.1(6)) such that IFp, (L) “P €G = {pi i <i(x)} S G".

Proof 3.8 (1) By their definitions.
(2) Should be clear, see Definition 3.1(4) and 3.2(3). ]

Remark 3.9 (1) Observation 3.8 is not used.
(2) Probably we can avoid using “wide" and prove earlier the density of M., with smaller
cardinality but the present way seems more transparent.

Definition 3.10 Assume m € M.

(1) Let %, be the set of pairs (¢, 5) such that t € Ly \Mp, and § € §(t/El/,/1) for some
. < At we may write § instead of (¢, §) as usually 5 determines ¢/ E;’], but this is the only
information about 7 that matter. We could have used instead pairs (¢/EL,, §).

(2) By induction on the ordinal y we define when (t1, 51), (#2, 52) are y-equivalent in m
or are (m, y)-equivalent:

(a) if y =0, then letting L, = (My, U rang(sy)) for £ = 1, 2 there is & such that:

27 S0 maybe we can use Lo = A.
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(o) h is an isomorphism from m[L; onto m[L>,

(B) h maps 57 to 57,

(y) h[Mp is the identity,

(8) h induces an isomorphism from Py, (L) onto Py (L7) (as defined in 1.5(x)4 (b)),

(¢) moreover, i induces an isomorphism from Py [L] onto Py [L>], as defined in 2.7,
SO pin — p;l"(t),n, see 2.4(3),

(b) if y = B + 1 then for every £ € {1,2} for every ¢ < AT and 5, € “(t¢/E},) there is
55_, € ®(13_¢/Eyy) such that (t1, §1°5)), (2, 52755) are B-equivalent,
(c) if y is a limit ordinal then (#1, 51), (#2, 52) are S-equivalent for every 8 < y.

Remark 3.11 (1) Note above that if 5, is the empty sequence then #, would not be determined
by ¢, still in those cases the equivalence just means 51 = 5».
(2) We can use 1/ Ep or t / E},, instead of 1/ E}; as everything is over Mp,.

Claim 3.12 For m € M and ordinal o the number of equivalence classes of “being (m, o)-
equivalent" is < Jj41g11(A1).

Proof 3.12 By induction on «.

Case 1: ¢ = 0:

Note that the set of elements of Pp(My, U rang(s)) has cardinality < 2*1 (and even
< (A1)*) and depends just on m[(Mp U rang(s)) but there are 3, (A1) possibilities for the
quasi order on [Py, (L1) and even for Py [L1].

Case 2: « is a limit ordinal:

By clause (c) of Definition 3.10, the number of a-equivalence classesis < [] (the number
<o

of B-equivalence classes) < [] Ji4p+1(A1) < Ogart G+ = Dj4ga1 (A1).
B<a
Case3:a=pB8+1:
Clearly every a-equivalence class can be coded as a set of S-equivalence classes hence
the number of «-equivalence classes is < 23 4p+1 (A1) — JIH;H()L[) = Jisgr1(Xy), as
promised. O

Definition 3.13 For an ordinal B, let %y g be the set of functions f such that for some tf, Ef
fori < i(x)and ¢ € {1, 2} we have:

(a) i(x) < AT,

(b) (til : i < i(%)) is a sequence of pairwise non-E;; -equivalent members of Ly \ Mm,

(c) 5f € *O(tf/E}) where £ (i) < AT,

(d) (tl.l, El.l), (tl.z, Eiz) are B-equivalent (members of %),

(e) f isan isomorphism from m[L| onto m[L, when Ly = U{rang(Ef) i< i(x)}U Mp,
(f) fIMm = the identity,

(g) f maps Eil to El.z fori < i(x).

(2) For f € %m0 we define f as the mapping from Py, (dom(f)) onto P (rang(f))

induced by f; see clause 3.10(2)(a)(¢); (clearly well defined 1-to-1 function, but does it
preserve the order? we shall return to this in 3.18).
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3.3 Representing p € P, [Mp,]

Applying this subsection in §3D we may assume all m-s are lean and so maybe 1o = X
is O.K., but certainly not applying it in §4.

Claim 3.14 Assume m is p-wide and . > Ag.
(1) The conditions p,q € Pm(Lm) are compatible when for some  the following con-
dition holds:

(St p.g,y (@) ¥ € Pm[Mm],
(b) p,q € Pm(Lm) and wsupp(p) N wsupp(q) S M, see Definition 1.12(1)(b),
equivalently (s € fsupp(p)\Mm) A (t € fsupp(q)\Mm) = —(sE}1),
(c) ifYy <@ € PnlMm] then ¢, p are compatible in Py[ L],
(d) Y, q are compatible in Py[Lm], equivalently g ¥p,, “¥[G] = false".

(2) For a dense set of € Pm[Mm] there are L, p such that:

(a) l:’ = (ps:e < p) € (Pn),

(b) L = (L :& < ) wherefsupp(p:) C L,

(c) m[L, <y m so in particulart € L\Mmy = t/Em C L,

(d) (L\Mm : € < W) are pairwise disjoint,

(e) (L:\Mm)/E}, has cardinality < Lo, (see 1.4(4) and 1.13(f)(y)),

(f) forevery permutation w of  there is an automorphism fofm over My mapping (L¢, pe)
10 (L (e)s Pr(e)) for & < i,

(g) ifu C whascardinality . thenr, \/ pe are equivalent inPmy[Ly] i.e. v < | pe < V.

EEU EEU

(3) Assume that L is a p-wide initial segment of Ly and Yoy € Pp[Mm N L). Then there
is a pair (Y, p) satisfying Yo < ¥ € Pu[Mm N L] and clauses (a)-(g) above hold and:

(h) ife < uthen p, € Pp(L).
Also we can add:
(i) the sequence (ﬂs 1 s € LN Mp) is a generic for Py[L N My], that is it determines
Gp,, [L N Mp].
Remark 3.15 (1) In 3.14(1) instead of stt,, 4 4 We can use the stronger statement:

(stt);). gy A there but omit clause (d) and add to clause (c): also ¢, g are compatible in
~ PulLml.

But the present choice is more convenient in the proof of 3.14(1).
(2) We use & > R in the proof, to eliminate it we can imitate the completeness theorem
for LR] Ro-

28

28 put we give details. First as a warm up notice that (for A = Rg):
(x) if r € Py then we can find 7 and 7, § such that:

(a) () 7 is asub-tree of “~ w which is well founded,
(B) ifn € 7, then suc & (1) is empty or is w.
(b) F=(p:neT)andry =r,
(c) rpePmandry CSryforndve,
(d) 5=(sp:ne T \max(7))suchthatn <v = sy £ 5y,
(e) ifn =v"(k) € 7, then s, € dom(ry) N Mm and ry, [(dom(ry) \ L(<s,)) = ry[(dom(ry) \ Liys,)),
() if n € max(7), then dom(ry) N Mm = {s,1¢ : 0 < £ < lg(n)},
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Proof 3.14 (1) We choose (py, ¢n, ¥,) by induction on n such that:

B, (@ (@) (stt)p, ..y, holds if n is even,
(B) (stt)g,. p,.y, holdsif n is odd,
() (po, qo, ¥o) = (p,q, V),
(c) ifn =2m + 1 and s € dom(pa,) N My, then s € dom(qam+1), and tr(pay, (s)) <
tr(gam+1(s)),
(d) ifn =2m+2ands € dom(gam+1) N Mm, then s € dom(pay,42) and tr(gam+1(s)) <
tr(pam+2(s5)),
(e) iftn =m+ 1then py, < pu,qm < qn-
Case 1: For n = 0 use clause (b).
Case2:n =2m + 1.
So the triple (pam, go2m, Yom) is well defined, let uz, = dom(pa,) N My, and let v =
(v : s € ugy) be defined by vy = tr(pay, (s)).
Clearly,

)1 Yom I p§, fors € uam.

[Why? Clearly po,, IFp, p;"vs, i.e. p;k’vs < pom in Py(Lpm), hence in Py[Ly] and
therefore, if V¥, ¥ p;‘,US, then ¥/ = Yo A — ) v, € Pm[Mm] is > v, hence compatible
with py;,, contradiction, see clause (¢) in (stt) , 4,y Which holds by Hy,, (@) (@).]

(%) there is qém € Pm(Lm) which is above g2, and above ¥, and naturally uj, C
dom(gy,,) hence s € us, implies vy C tr(g,, (5)).
[Why? By clause (d) of (Stt) y,,,.gom, ¥, Which holds by By, (a) () recalling Py (L) is
dense Py [Lm]; the “hence" by (x)1.]

(%)3 thereis v/}, € Py[M,,] such that:

(a) if ¥}, <@ € Pm[Mm] then ¢, ¢}, are compatible in Ppy[Lm],

(b) if s € uay, then y) I+ P;(,W

(©) Vom < V3,

[Why? Obvious using the At-c.c., i.e. wém = Yom A =(V{p : ¢ € }) where .7 is a
maximal anti-chain of members ¢ € Py [Mp,] satisfying ¢ L qém in Pp[Lm]; see more in
3.14.]

(g) ifn € 7 \ max(7), then for some k we have:

e if £ >k, then tr(rnﬂm (sy)) has length ¢,
o if¢ >k, 0= tr(rnﬁm(s,])) for some o € I1;¢6;, then for every p € Il 40, satisfying o < ¢
and tr(ry(sy)) < p for some j < w we have p = tr(rnﬂm(sn)).

Footnote 29 continued

This can be proved by induction on sup{rk(Mm(s)) + 1 : s € dom(r) N My }.

Let (s; 1 < ix) lists Mm such thats; <m s; = i < j, and lets;, = 00. Fori <iyletL; = U{Lm(gsj) :
Jj < i}, itis as an initial segment of Ly,. We prove by induction on i < iy that the statement holds when
P, q € Pm(L;). Fori = 0 this is trivial and limit 7 it is. So assume i = j + 1, now if s; ¢ dom(p) U dom(q)
this is trivial and if s; € dom(p) \ dom(g) this is obvious. Similarly if 5; € dom(g) \ dom(p). So assume
sj = dom(p) Ndom(g). as in the proof of 3.14(1), without loss of generality tr(g(s;)) <tr(p(s;)). As in the
proof of 3.14(1), for some g1 € Pq, we have (¥)4, p y and ¢ < g) and lg(tr(g1 (s))) > lg(tr(p(s))), hence
tr(p(s)) < tr(gq(s)).

Clearly (g IL;.plLj. holds, therefore g [Ls, p[Ls are compatible in Py, hence in Pm(L ), and let
r € Pm(L j) be acommon upper bound. Now, r forces (i.e. H-]pm(Lj))then fq(x) [(g(tr(g(s))), 1g(tr(p(s)))) <
tr(q1(s)), hencer \Fpm(Lj)“p(s), q(s) are compatible in @sj ”, therefore r, p, ¢ have acommon upper bound.
So we are done.
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(%)4 without loss of generality wsupp(g5,,) N wsupp(p2u) S Mm.

[Why? As mis - wide using an automorphism of m which is the identity on wsupp(g2m),
i.e. by 3.5. Even if m is fat this is fine.]

Lastly, let p, = p5.., 4n = q,,» ¥n = ¥, and check.

Case3:n =2m + 2.

Similar to case 2 with the roles of the p’s and the ¢’s interchanged.

Having carried the induction we can define p, as the upper bound of, in fact the union of
{pn :n < w}asin 1.16(3A), in particular:

()7 (@) (dom(ps) = (Jdom(p,); in fact, also fsupp(ps) = (J fsupp(p,) and wsupp(p.) =

U wsupp(pa),

(b) ig s € dom(p,) and n is minimal such that s € dom(p,) then tr(p.(s)) =
kU tr(p(s))and{ fp, . = ¢ < t(px)(s)}isequalto{tr(ps(s)U fp, . [g(tr(p«(s))), A) :

L < t(pr(s)) for some k € [n, w)}.

Similarly let g, be the upper bound of, in fact the union of {g, : n < w} as in 1.16(3A),
S0 again, in particular:

(#)g (a) dom(gy) = |Jdom(g,), and also fsupp(gs) = (Jfsupp(g,) and wsupp(g:) =

U, wsupp(gn),
(b) if s € dom(p,) and n is minimal such that s € dom(g,) then:

o tr(g«(s)) = kU tr(qx (s)),

o {far it < 1(gs)(s)) is equal to {tr(pu(s)) U fp  [E(tr(pa(s))), 2) ¢ < t(gr(s))
for some k € [n, w)}.

Hence,

(¥)9 (@) px, s € Pm,
(b) dom(py) Ndom(gy) S My, moreover, wsupp(p,) N wsupp(g«) S Mm,
©  dom(ps) N M = dom(gs) N My,
(d) if s € dom(py) N My, equivalently, s € dom(p,) N dom(g,) then: tr(p.(s)) =
tr(gs(s))-

[Why? Clause (a) by properties of Py and p, < pu+t1,qn < gu+1 see above, clause (b)
as dom(pa;,) N dom(qam) S Mm as (5tt) p,,, gom, vam - Clause (c) by By, (c), (d), the first
conclusion and clause (d) by B, (¢), (d), the second conclusion.]

It follows that p., g, are compatible in Py, but p = po < p«, ¢ = qo < g«, SO p, q are
compatible as promised.

(2) Let ¢ € Pm[Mm] be given. Let p € Py be such that p IFp,, “¢o[G] = true".

Let %) = {¢ : ¢ € Pu[Mn] and ¢, p are incompatible in Py[Ly]} and let . be a
maximal set of pairwise incompatible members of .%). As Ppy[Lp] satisfies the A*-c.c.,
clearly .#] has cardinality at most A and let = A{—¢ : ¢ € #1}. Clearly we have:

()1 ¥ € Pm[Mp] and:

(a) if ¥ < ¢ € Pp[Mn], then p, ¢ are compatible in Pyy[ L],
(b) Yo <Y in Ppy[My],
(©) ¥ < pinPm[L].
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Let Lo = U{t/Em : t € fsupp(p)} U Mm, so (Lo \ Mm)/Ep, has cardinality < Ao and as
m is p-wide, we can find L, (¢ € [1, n)) as required, that is, choose an automorphism 7,
of m for ¢ < w such that 7, [ My, is the identity, (7. (Lo)\Mm : € < ) are pairwise disjoint
where we let 7 be the identity and so L, = 7,(L), and let p, = 7 (p) for ¢ < u. Note:

(*)2 if @1 € Ppm[Lm], and Py[L] = “¢ < ¢1" then for for all but < A ordinals ¢ < w, the
conditions p,, ¢ are compatible.

[Why? Let g € P (L) be above ¢ in Py[Lpy], so the set {t/En : t € fsupp(g)} has
cardinality < Aq.

So for every ¢ < u except < Ao many, the sets wsupp(g) = U{t/En : t € fsupp(g)} and
L\ My, are disjoint. Now for every such ¢, the triple (pg, ¢, ¥) satisfies the assumptions of
part (1), hence p., g are compatible hence p., ¢ are compatible, so (x); holds indeed].

Now clearly ((pe, Le) : € < ) satisfies clauses (a)-(f) of part (2), so we are left with
clause (g), that is:

o ifu € [u]* then ¥, \/ p. are equivalent in Ppy[Lp],ie. ¥ < \/ pe < ¥.
EEU EEU

Why this holds? First by the choice of v, that is by (%) clearly p IFp (2. “¥ € G"
hence for ¢ < u by the choice of p, also pe IFp,[1,,] “¥ € G" hence ¥ < p; in Py[Lm]
hence ¥ < Veeype PmlLml-

Second, for the other inequality, just note that:

(%)3 if ¢ € Pyu[Lm] and Py[Lm] E “¢ < ¢" then g is compatible with p, for every
& < |4 except < A many.

[Why does (x)3 holds? as in the proof of (x);.]

(3) Weuse part (2)onn = m | L;sofind ¥ € Py[Ly]above v satisfying clauses (a)-(g),
but Py[Ln] = Pm[Ln] = Pml[L], and so clause (h) is obvious and clause (i) holds by the
definition of Py[Lm]- O

Claim 3.16 The set {y; : i < i(x)} U {y} has a common upper bound in Py[Ly] when:

(%) (a) m € M is u-wide and . > X,

(b) i(x) < Xorjustiy, < X,

(c) Li C L fori <i(x),

(d) LiNL;=Mpyfori#j <i(*),

(e) Vs € Pm[Mm],

(f) teLi= (t/Em) S L,

(g) ¥i € PmlL;],

(h) if Pm[Mm] E “Vs < ¢" and i < i(x) then V;, ¢ are compatible in Py[Lny],
equivalently in Py[L;].

Proof 3.16 We can for i < i(x) replace L; by L; when My, C L; C L; and the parallel of
clauses (f), (g) of () hold. Hence without loss of generality:
()1 theset{t/E,, :t € L; \ My} has cardinality < Xo.

As Yy € Pm[Mm], there is p € Py, such that p Ikp, “Y[Gp,, ] = true". Asm is u-wide,
by 3.5 there is an automorphism f of m over My, suchthati < i(x) = f”(wsupp(p))NL; C
M, hence without loss of generality i < i(x) = wsupp(p) N L; € M. Now we choose
pi by induction on i < i (%) such that:

H (a) pi € Pm,
(b) (pj : j <i) isincreasing,
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(¢) if s € dom(p;),i < i(x) then £g(tr(pi+1(s)) > i (%),

(d) po=p,

(e) ifi = j + 1then p; I “¢;[Gp, ] = true",

(f) wsupp(p;) hence also fsupp(p;) is disjoint to U{L j\My, : j € [i,i(*¥))}.

This is sufficient for the claim as p; ) is as required. So let us carry the induction. For
i = 0 use clause (d), for i limit by 1.16(3A) we know that (p; : j < i) has a <p, -upper
bound p; with domain U{dom(p;) : j < i} satisfying wsupp(p;) € U{wsupp(p;) : j < i}
by 1.16(3A), hence p; is as required, in particular as in clause (f).

Recall p; is above pg = p hence above ¥, (in Pyy[Lm]). As in the proof of (x)3 inside
3.14(1) (or see 4.11(1) below) there is ¢; € Py[My] such that:

o] 1/f>|< < Dj,
oy ifp; < ¢ € Py[Mp] then p;, ¢ are compatible.

Lastly, assume i = j + 1, by (x)(h) there is g; € Py, above ¢; A ¥;. Because m
is -wide there is an automorphism 7 of m over My, satisfying 7 [L; is the identity, so
7" (dom(q;) \ Mpy is disjoint to wsupp(pe) and to L, for & € i, \ i. So without loss of
generality:

(k)2 g itself satisfies this.

Now the statement (stt) a0 holds.

[Why? because wsupp(p;) N wsupp(q;) € Mm by (*)2, the choice of ¢; and g; above.]

Hence by 3.14 p;, g; has a common upper bound called p;. As m is wide, for some
automorphism 7 of m over My, such that 7w [wsupp(p;) is the identity and 7 "wsupp(p;) is
disjoint to U{L, : € € [i, ix)}, hence by renaming without loss of generality:

()3 wsupp(p;) \ M is disjoint to U{L; : ¢ € [i, i)},
Clearly p; is as required so we have finished proving (x)3.

So we have finished proving the last case in the the induction.
So we are done. O

3.4 The main result

Here we continue §3A, §3B, and in particular prove the main result, it does not rely on
3.3. Concerning §1B, we rely on it only in one point: quoting 1.26 while proving B4 4 and
the beginning of Case 3 inside the proof of 3.20, this can be avoided using §4A. We have not
work out if e.g. §3D works for the fat context.

Hypothesis 3.17 We are in the lean context (for this subsection).

Conclusion 3.18 If B > 0 and m is wide and [ € %y g and L1, Ly its domain and range
respectively then f induces an isomorphism ffrom Pm(L1) onto Py (L»).

Remark 3.19 (1) See Definition 3.1(3); note that this claim is not covered by Definition 3.1(2).

(2) Here we use 3.2(4), so the choice in Definition 1.10(c)(y) is justified (see Remark
3.3(1) used below in the proof).

(3) We could have separated the definition of “analyze" and its properties.

(4) Note that in Definition 3.10, we deal only with L C t/Ey, for some 7.

(5) How come even = 0 is suitable for 3.18? The point is clause (a)(e) of Definition
3.10(2). But there is no real harm using larger S.
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Proof 3.18 By the definitions, clearly f is a one-to-one function from Py, (L) onto Py, (L2).

Next assume pi, g1 € Pm(L1), dom(p;) € dom(qy) and let p» == F(p1),q2 := f(q1);
clearly they belong to P, (L>). We shall prove that Py, = “p; < ¢1" iff Py = “p2 < 2"
Leti(¥) < Aand ] = (ti1 i < i(%)) be such that:

D1 () tl.] € fsupp(q1)\Mm € L such that fsupp(g) is included in U{til/Em i< i(%)},

(b) (ti1 i < i(x)) are pairwise non- E, -equivalent.
Next let,

> (c) lett? = f(t}) fori <i(x)andletr, = (t? :i < i(%)),
(d) fsupp(pr) < U{tf/E;{l i< j(%)} U Mp,s0 j(x) <i(x),forl =1,2.

Fori < i(%) let 1//1*J. € Pm[Mm] be such that: ¥ € Py[Mp] is compatible with g1 ; :=
q1 1 (tl.l/Em) (the projection!) iff ©# A ¥, € Pm[Mm]; clearly exists as Py, satisfies the
At-c.c. Clearly Ppy[L] = “wf‘,i <qi < }]1 fori <i(x) andlet ¥ = /\{‘ﬁ,i i< i(%)).

Now yf € Py[Mm] as g1 |- “¢{[Gp,, ] = true". We will say “¥ ', &f‘ = (1//1*,[., quii<
i(*)) analyze g1 or (q1, t1)" when the above holds.

Next choose ¢7, <('0>lk,l" p1,i o1 < j(x)) which analyze pi, (ti1 11 < j(x)) where without
loss of generality j(x) < i(x). Why possible? As above recalling p; < g1 = fsupp(p1) <
fsupp(q1). 5 . 5 5

Lastly, let ¥5, = f(¥{),p2i = f(pr) V5 = [, e5; = fle] ) qi =
f(CIl,i)JP; = fv(<pf) where f is the function from L,,(Y.,, Pm) onto Ly, (YL,, Pm)
induced by f, i.e. where f is the one-to-one function with domain L;+[Y,] defined by
p;k’n — pf"(t).n' Now,

(x) for £ = 1,2 the sequence (py, qe, 1/72“, 1}2‘,(/)2‘,(/3;‘) where 1@* = (Y qei 1 i <
(%)), o) = ((pzi, pe.i © 1 < i(x)) satisfy the same demands as listed above for £ = 1, 2,
that is

@ ), 1/_/2“) analyze (g¢, ;) for £ = 1,2

(b) (¢}, ¢;) analyze (pe, te[j(x)) for £ =1, 2.

[Why? Think, recalling f [(til/ En) is an isomorphism from m[((ti1 /Em) N L1) onto
m [((ziz/Em) N L»), inducing an isomorphism between IP’m[(ti1 /Em)N L and IF’m[(tiz/Em) N
L>]by 3.10(a)(8) and /) = /\{w;i 1 i < i(x)} is because each function f [(til/Em) induces
the identity mapping on Py [Mp].]

Next,

B for £ = 1,2 we have (A)y < (B),; where:

(A)e Pm = "pe < 0",
(B)¢ foreveryi < j(x) we have Pm[t!/Em] = “(¢} A pei) < (Y} Aqei)".

Why? First, assume that the condition (B), fails, say for i, hence there is ¥ € IP’m[z‘iZ /Eml
such that P [tf/Em] = “(¥} A qei) < 0", and ¢} A pei A0 ¢ Plt!/Em]. So by claim
3.16 there is q[ € Py such that qj € Pm[Lm] is above ¥, hence above v/ and above
qe,j = qe (zf./Em) for j < i(x). That is, first get v € Pm[Mm] such that ¥ > v
and [ < ¥ € Py[Mm] = v/, 9 are compatible] (using & > lpZ‘). Then apply 3.16 to
(ge,j:j <i(x),j#i}U{®}) U{y}toget qZ’. We have used i (x) < A.

Hence by 3.2(4) the condition qZ’ is above ¢y, but qj I- @y A pei[G] = false" as qZ is
above 1. However, py¢ IFp, (1,1 “Pe.i € G and ¢; € G". By the last two sentences qj, Pe
are incompatible in Py, [ Ly, ] equivalently in Pp,. So indeed —~(B)y = —(A)y.
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For the other direction assume condition (B), holds, but condition (A), fails and we shall
get a contradiction. So there is q? € Py above g, incompatible with pyg.

For each i < i(x) as (¥, WZ,,-,qz,j © j < i(x))) analyze gy, clearly Py[Lm] E
“(W; ANqei) < q¢"butgqp < qZ hence P[Lml = “(¥) A qei) < ¢, ", and as we are
assuming clause (B); we have j < j(¥) = Pm[Lm] & “(¢] A pej) < qzr". Hence by
3.2(4), q,j is above py in Py [ Ly ] hence they are compatible in Py, contradiction. So indeed
(B)¢ = (A);. Together, H holds].

Now clearly (B); < (B)a, see Definition 3.10, 3.13; so by HH we have (A); < (A);
which is the desired conclusion. ]

Claim 3.20 We have Py, < P when:
(a) m; <y m,
(b) ift € Lm\Mm, and s € *(t/E}), ¢ < AT then we can find t;, §; for i < A" such that:
(@) ti € Ly \Mm,,
(B) ti/Ef, #1j/Eq, wheni # j < A%,
(v) 5i € “(ti/Eq))
(8) (t,5;) is E-equivalent to (¢, 5) in m where® £ = 1.

(¢) m is wide.
Remark 3.21 In the proof we use conclusion 3.18 but not clause (a) (&) of Definition 3.10(2).

Proof 3.20
B for B > 0and f € Y g,

(a) f preserves “pj is above pj in Py, ", and its negations,
(b) if B > O then f preserves also incompatibility in Py,.

[Why? Clause (a) holds by 3.18. For clause (b) use clause (a) and Definitions 3.10 and
3.13 or see the proof of H,.]

By if p; € Py, fori <i(x) < At and p € Py, then there is p* such that:

(a) p* € Pm,, equivalently p* € Py (Lm,),
(®) Pm, E“pi < p*"iff Pm = “pi < p",
() Pm, = “pi, p* are compatible" iff Py, = “p;, p are compatible”.

[Why? Let g; € Py, be such that: if p;, p are compatible in Py, then p; < g; A p < gq;.
We can find L{ € L, such that

¢ My €Ly C Ly, |[Li\Mm| <A,
o {pi:i<i(x)} CPm(L),
e L1 C Ly C Ly, |Lo\Mn| <Aand p, q; € Pn(Ly) fori < i(x).

By the assumption of the claim there is f € %y, such that:

o dom(f) CU{(t/EL)NLy:t € Lo} U Mp,

e teli= fl(t/EmN L) =id¢/gmnL,s

e ifgefqg i <i(x)}U{plU{p;:i <i(x)}andt € dom(q)\Mpn then fsupp(g(t)) <
dom(f),

29 1o real harm in using larger £.

@ Springer



Sh:1126

Corrected iteration 565

e rang(f) € Ly,.

Let p* = f(p): bAy Hi(a) glearly clauses (a),(b) of B, holds; and the choice of the ¢g;’s
(and as p < g2 = f(p) < f(gi)) also the implication “if" of clause (c). The “only if" of
clause (c) holds by Hj (b) so we are done.]

Hz if p € Py then p € Py, iff fsupp(p) € L, .

[Why? Obvious.]
Recalling Definition 1.28(0)(c):

B4 for every ordinal y, we have Ppy, (Lf,fll,y) <Py (Lf,f{},).

[Why? We shall prove this by induction on y using H, + Hjs.
Note that:

d d
Ba1 () Ly O Lm, = Lo,
(b) if f € Ym,p,s € dom(f) and B is an ordinal then:
es C Lf,?,,y & f(s) e Ldm?y,
(c) the parallel of B> holds replacing the pair (Py,, Pm) by the pair (P, (L:i,;llﬁy),
d d
Pm(Lmy)); S0 €.g. p* € P(Lm) ),
(d) Lgﬁy is an initial segment of Ly,
(e) Lﬁll y 1s an initial segment of Ly,
() P, (Lm1 y) <Pm (Lm,), similarly for m.
We shall use this freely. The inductive proof on y splits to three cases.
Casel: y =0.
So,
e E=E] [L?n » is an equivalence relation on Lﬁiy,
ElLg, ” = = Ej ILuh .
ifr € Lml v thent ¢ Mm,,t/Ep, =1t/Eq, (t/Ey) N Lml y = {/Em) N Lml y =
(t/E) N Lmy initial segment of Ly, and of Ly and Py ((z/Em,) N Lml y) =
P (¢/ Emy) 0 L)),

m(Lm ») is the product with (< A)-support of {Py ((t/Em,) N Lml y)ite Lg%,/},
similarly for m;.

So the result should be clear.
Case2:y =8+1
Let Mg = {s € My, : dpy, (s) = B}, clearly:
42 (a) Mg is aset of pairwise incomparable elements
(b) s € Mg = Lm,, <S§L dﬁ/\Lm<s§Lm NE
q
Ly, e

(c) Mgis d1§]01nt to Lm B
(d) MB - Lm1 Vs
(e) L U Mg is an initial segment of Ly,

) Lml ) U Mg is an initial segment of Ly, .
As first half we prove:

3 P, (L 5 U Mp) < Pr(Ly 5 U Mp).
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Why? Recalling By 1 (a), note
d d « " d
(@7 for p,q € Pm;(Ly, g U Mp) we have P, (Lyy 5 U Mp) = “p < q" iff Prm(Lm., U
Mp) ="p <q"
[Why? Immediate by the definition of the order and the induction hypothesis.]

®)F if 1. p2 € Py (Lyl ;U Mg) then py. py are compatible in P, (Lysl ;U Mp) iff they
are compatible in IF’,I,(LS:?’/3 U Mpg).

[Why? The implication = holds by clause (a)?.

So assume p3 € IP’m(Lqu’/3 U Mg) is a common upper bound of py, p; in Pm(l‘?:?,ﬁ UMpg)
equivalently in Pp,.

Now (by clause (b) of the claim assumption) there is f € %y, 1 (actually %y o suffices
here) such that:

S (fsupp(p1) U fsupp(p»)) is the identity, moreover
s € wsupp(p1) Uwsupp(pz2) A s € dom(f) = f(s) =s,

dom(f) = U{fsupp(pe) : € = 1,2, 3}
rang(f) € Ly, .
Hence clearly f[Mg = idMﬂ so by BH4.1(b) we have rang(f) C Li?]ﬁ U Mg so f(p3) €
P (Lyt 5 U Mp).
By H; the condition f (p3) is acommon upper bound of p;, p> in Py, and by the previous
sentence also in ]P’m(Lﬁ?lﬁ U Mpg), so by clause (a)" the conclusion of (b)" holds.]

()" If .# is a maximal antichain in P, (Li?], 8 U Mpg) then .# is a maximal antichain of
d
Pm(Lnj{B U Mp).

[Why? As in the proof of clause (b)T and of H,.]
So we are done proving Hy 3.
Now we return to proving B, note

Bl let& = {(51,52) : 51,52 € Ly andsi/Em = 52/ Em} where L, = Lu,\ (Lot ;UMp)},
then:
(a) & is an equivalence relation on L,
(b) if sy, 59 € Ly and 51 SLn 52 then s1&’s7,
(c) if 51,50 € Ly and 51 &y then 51 € Lﬂill,;, & 5 € Lﬂ?w (and both ¢ Mp),
(d) if s € Ly then L <5 C Lyl , UMp U (5/6),
(€) if s € Ly N L, then L, <5 € Ly, UMp U (5/6).

Hencelet Ly = Lﬁ?l,ﬂ UMgandL| = L?,?M, = L?,?l U M they satisfy all the assumptions
of 1.26 hence its conclusion, so we are done easily proving Case 2 of Hjy.
Case 3: y is a limit ordinal

Note that in this case the set Lﬁ?’y \ U{Li?’/g : B < y}consistof s € Lﬁ?’y \ M which
are not below any elements from Lﬂ?’ﬂ, = U{Li?’ K B < y}hence as in case 2 we can treat
them as in the proof of Hy 4, citing 1.26, so we shall ignore them below.

Clearly p € P, (Lqu1’<y) iff p € Pp (Lgfll ,<y); also each of them implies p €

d d ds « "o
]P]m(Ln(ll,<y)- Also for p,q € IFDm|(Ln?1,<y) we have Pml(Ln(nll,q/) E “p < ¢"iff
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IP’m(Ldm‘{ <y) |E “p < q" by the definition of the order and the induction hypothesis. Together
Pon, (Lo <) € P (L ), (as partial orders).
Next assume that g1, g2 € P, (L?r?lxy) and p3 is a common upper bound of g1, g2 in
dq
Pa(Lgs ).
We shall find p; € P, (L. -,,) such that:

. . d . . d
(%)1 (a) pjisabove qi, g2 (in Py, (Lnill,<y) or equivalently in IP’m(Ln?l,q)),
(b) if py < pj € ]P’m(Lfl,%KV) then p|, p3 are compatible in IP’m(Lﬁf{q).

This clearly suffices; why?e.g.if {r; : i < i(%)} C P, (Lﬂ?lxy) is a maximal antichain of
Pm, (L?r(l]1,<y) but not of Py, (L(rir?,<y)’ letq; = g =Wand p3 € IF’m(L?,‘,]K},) be incompatible
with every r;; let p; be as in (x)1, it gives a contradiction.

If cf(y) > A then for some y; < y we have ¢q1,¢q2 € IP’m(Lﬁ?,,y,) and fsupp(p3) N
L?,?K}, - L(,i,?yy] and use the induction hypothesis on y; for clause (a) of (x)1; for clause (b)
of ()1 we also recall 1.16(6); (alternatively imitate the case cf(y) < A, choosing “changing
our minds" y, < y with the induction). So assume 8¢ < cf(y) < A and let (y; : ¢ < cf(y))
be increasing continuous with limit y.

Now we choose p| ¢ by induction on ¢ < cf(y) such that:

()2 (@) pr.e € Pm(LY ),

d d ds . .
(b) (Ve @11 Lm > @21 L s P3[ Ly, p1.e) are like (v, g1, g2, p3, p1) in ()1,
(©) pice <preforg <e,
(d) ife = ¢ + 1 and s € dom(py ;) then £g(tr(ps(s)) > cf(y).

So we are done proving Hy.]
Hs Pm, <Pmn.

[Why? By Hy for y large enough.]
So we are done. O

Claim 3.22 Ifm € M is reduced or just Ly, has cardinality < Ly then there isn € M. of
cardinality < Ay such that m <y n.

Remark 3.23 By this we may restrict ourselves to M<,, (but then similarly in the end of §2).

Proof 3.22 We choose x large enough and m, € M, which is wide, belongs to M. and
m <py m,; moreover is full and very wide (see 3.1(1), as constructed in 1.32).
We can choose n such that:

(*) (a) n € M and nis wide and |Ly| = A2,
(b) m <y n <m m,,
(c) (n, my) satisfies the criterion from 3.20, with m, m there standing for n, m, here.

[Why? Let & = 1 and recalling Definition 3.10(1) choose ((fy,5¢) : @ < X2)) such
that (o, Sa) € Zm,,ta € Lm,\Mm,. (ts/Em : @ < X2) are pairwise distinct and for every
(t,5) € %, there are AT ordinals & < A, such that (¢, ), (4, 54) are &-equivalent, possible
by 3.12recalling 22 > J3(A1).Let L' = U{ty/Em, : @ < A2}ULy and foreachs € L'\ M,
let (s;.o : @ < AT) be such that s, 4 € Lm,\Mm, and m,[(s;4/Em,) is isomorphic to
m, [(t/Em,) over Myy. Let L = L' U {s; 4 : @ < AT, 1 € L'\My,,} and n = m, | L. Now it
is easy to check that n is as required.]

@ Springer



Sh:1126

568 S. Shelah

It suffices to prove that n belongs to M, let n <pr nj <p ny.

Without loss of generality Ly, has cardinality < 2*2, by the LST argument; (what is
the LST argument here? let x, be large enough such that A, m, m,, n;, ny all belong to
A (x+) and let A < (A (x«), €) be of cardinality 2’2\ such that all the above belong to it and
u CAA Jul < xy = u € . Now replace ny, ny by their restriction to 21).

Now as my is very wide and full without loss of generality ny <y m,. Now (nj, m,)
satisfies the criterion from 3.20 hence Py, < Py, .

Also the pair (ny, m,) satisfies the criterion from 3.20 looking at the criterion. Hence by
3.20 we have Py, < Pp,,.

Asn; <M mp <m m, from the last two sentences it easily follows that P, < Pp,, so we
are done. ]

Discussion 3.24 In what way does this proof help? Will it not be simpler to omit in Definition
1.10 clause (c) the ¢ (), By(s),., etc.?

In this case in 3.1 we cannot define the projection directly hence we should look for projec-
tion as in general forcing, but then we run into problems of absoluteness. More specifically,
3.20 seems to be problematic; anyhow this does not matter.

Definition 3.25 For m € M and M is a subset of My, so of cardinality < A; we define
n := m(M) € M as follows:

(a) Ly = Ly even as a partial order,

(b) ity = itm and Py = P,

(c) My = M;yes M not Mp,!

(d) E,={(s,1):5,1 € Ly, and {s, 1} € M}.

Claim 3.26 Assume m € M<,, and M is a subset of M.
1) n := m(M) indeed belongs to M and is equivalent to m hence Py (L) = Pp(Lm)
i.e. P = Py.
2)Ifn = m(M) <m nj then for some m| we have m <y mj and mp, n are equivalent.
3)Ifm € M. andn = m(M) then n € Mq.
4) Ifm € Myec andn = m(M) then n € Myc.

Proof 3.26 1) Check, noting thatt € Ly\Mn =t € Lm\M = |t/E}| < |Ln| = |Lm| < X2
and |[My| = M| < |[Mm| < A1, (in fact, here M C M, is not necessary, only “M has
cardinality < A;").

2) Given such n; we now define m; € M by:

(x)1 (a) Lml = Lnl, B _
(b) Um; = Uy, and Py, = P,
(c) Mp, = My,
(d) EI’nl ={(s, 1) : sEptor{s,t} ¢ Lmbut {s, 1} € Ly, and sE,’,lt}.

Clearly:

(#)2 (@) (Mm)"(s/Ep 15 € Lm;\Mm)"(t/Ey, :t € Ln,\Ln) is a partition of Ly, = Ln,,
(b) Eqy, = Ep, [{(s, 1) € Ef, ands, t ¢ My} is an equivalence relation, its equivalence
classes being the sets listed in clause (a) except Mpy,
(c) m; satisfies clause (e)(y) of Definition 1.5.
(%)3 (a) if s € L\ M then:
(@) s € L \Mm,,
(B) s/Em, =5/En,
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) Um;,s = Uny,s = Un,s = Um,s,

(8) gzml,s = f@m,s = gznl,s = f@n,y
(b) if s € Ly, \Lm then:

(a) s € Ly \Ln,

(B) s/Em, =5s/Eq,,

(¥) umy,s = Uny, s,

(6) <gzm|,s = <@n1,s-
(c) if s € My, equivalently s € My, then

(o) Um;,s = Uny,s

(,3) yml,s = gnl,s = yn,s U (ynl,s \ gn,s)
and easily,

(x)4 (a) indeed m; € M,
(b) m <y my,
(c) my, n; are equivalent.

So we are done.

3) Assume n <pr n; <y g, as in the proof of part (2) there are m;, my such that
m <y m; <p m and my, ng are equivalent for £ = 1, 2. Asm € M. we have Py, < Py,
but this means P, < Py,, as required.

4) Similarly because m € Mypg = m(M) € Mypq. ]

Conclusion 3.27 /) Ifm € M, M is a subset of My and n = m[M then PY" < PQ".
2)Ifmy € M and My is a subset of Mw, for £ = 1,2 and h is an isomorphism from

my [ M| onto my [ M, then h induces an isomorphism from Pflg’lr[Ml] onto IF’;;’ZI[MZ].

Proof 3.27 (1) Without loss of generality m € M<;,; (wWhy? because trivially n € M<;, and
letting m; = m| My, we have m; <y m and ]P’f,‘l’lr =Py [Mm] and n = m; [Mp,). By 3.22
there ism,, € Mi; such that m <p m, hence by 2.10(2) P5" = Py, [Mm].

Let n, = m, (M), see Definition 3.25, so n.[M = n and by 3.26(3) we have n,, € M,
hence Py, [Mp] = P{*". Butn,, m, are equivalent, hence P, = Pp,, hence Py, [L] = P, [L]
for every L C L, hence by 2.10(3) P = Py, [Mn] < Pn,[Mm] = Pm,[Mm] = P3". So
the conclusion holds.

(2) Easy, too. ]

4 Generalm’s

This section depend on §1A, §1C, §2, §3A, §3C but not on §1B, §3B, §3D.

4.1 Alternative proof

Hypothesis 4.1 We are in the general context.

This sub-section plays a double role. First, we give an alternative proof of the main results,
they may be simpler but we lose some information and we are assuming Ay > :)»T' Second,

it give proof which works also for the fat context and even the neat and general contexts not
just the lean context (as in §3D). Specifically,

H in this section:
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(a) weignore §1B, thatis 1.24, 1.26,
(b) we ignore §3B that is 3.8-3.13
(c) we ignore or replace almost all §3D, that is:
(o) we ignore Claims 3.18, 3.19, 3.20,
(B) we replace Claim 3.22 by 4.2(2),
(y) Def 3.25,3.26(1),(2), (3) remains,
(8) Claim 3.27 is replaced by 4.9 (whose proof just say “repeat the proof of 3.27”).

Definition 4.2 1) Let Qlln = U{Qllm 1t € Ly}, where for t € Ly, Qlll‘l,l‘ is the set of

b= (t,B,c,d,c,t,g) such that:

(@ c=(ci:i<ip<A),

(b) d Cc=Ulci i <ip} CA,

(c) Bis a Borel function from €52 (A) into ;4 (%), soif p € (1) VI®], then B(p)
belongs to ©2())VR] but not necessarily to V,

(d) t<ip,t €Ly

(e) g is afunction from c into L such that e € ¢ = [g(¢) € My = (¢ € d)] and rang(g) is
included in some L € &;.

(2) Let Q,zn = U{an,t :te L}, wherefort € Ly, Q,zn’t is the set of b such that:

(@) b=(b;: j <lg(b) <A),

(b) bj € QL.

(©) Iy, =1, =] for j < lg(b), )
(d) (t;, cn;, dbj) is the same for all j < 1g(b),

(2A) Fort € Ly, wesay b € len’, strictly represent p(t) when:

(a) p = p[{t} € Pm and in Definition 1.10(2) we have ¢, (s) = 1,

() () ISBC 80,00 g gt

(2B) We let 5, := (R, : 1 € Lm}, where for t € Ly, we let € , be the family of b
such that b is a subset of Q,zn,t of cardinality < A.
(2C) Wesay b € Q?n represents p(s) when:

(@) peP,

(b) s € dom(p),

(©) p(s) =sup,_,, (1, fe). where b = {b; : & < &}, eachb, € Q% , and (1, f) is strictly
represented by by,

(3) For m € M we shall define a model md(m), pedantically it is md;(m), where30
I = (ly = tmg : & < am = a(m)), fym) is a fix member of My oy is a maximal
sequence of pairwise non-Ej,-equivalent members of Ly \ Mm (so below A, = Aﬁw for
o < 0m), Ie(m) € Mm and stipulate My, = fa(m)/EZ(m) ignoring the case My = ¥:

(A) The set of elements of md(m) is the disjoint union of the following sets; below o < o(m):
@ Ay ={(.1a.5) : s € 1o/ E[,}, see 1.5(e)(e), (2),
(b) A2 ={Q2.1a. p) : p € Pm(te/Em)} U {2, 10, P, q) : Pm(ta/Em) = p < q}, sce

Definition 1.12, central for the lean context,
(©) A2 =1{(3,ta,s,b) : 5 €ty/EL, b e Q) and rang(gp)  ty/Em},

30 S0 instead we can use (ta Ef - 00 < o).
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() A} ={(@. 10, ¥) : ¥ € Pulta/Eml} U{(4. 10, ¥, ¢) : Pulte/Em] =¥ < ¢},

@ Ay ={(Lom,s,0):s € Mpand € =1=>s € My™, ( =2= 5 M3, ( =
0=s5 e MM,

() AZm) = (2. tay: p) 2 p € Pm(Lm)} U {2, &m. p. @) - Pm(Lm) b= p < g},

@ A)m =B, lay,5,b) 15 € M, b € Qy,, and rang(gp) S Mm},

(h) Aj(m) = {4, o, V) : ¥ € Pmlta/Emland @ = am}U{(4, am, ¥, ¢) : Pm[Mn] =
v < ¢}
(i) notation: fora < a(m), A, = AéUAiUAgUAiUA] uUAz uA3 ua?

a(m) a(m) o(m) o(m)*

(B) The relations of md(m) are the relations R on md(m) such that:

(@ R= U{Rert fo < o},
(b) (an overkill) R is first order definable in (7 (xm), €, <;[m], m), where <;[m] isa
well ordering of 77 (}m)-

1

a(m)UA

(C) In particular there is an individual constant for each ¢ € A A UA

or code them by unary relations.

(4)For s € Ly \ M, the model md(m) [(s/Enp) is naturally defined as (when s E}, t4)
the restriction of the model md(m) to U{Aﬁ :0=1,2,3,41U {Af;(m) 0=1,2,3,4}.

2 3 4
ao(m) U o (m) o(m)’

Definition 4.3 (1) We say that @ € *(mmd(m)) represents p € Py, when for some & we have:

(a) «a is an sequence of ordinals < a(m) of length £, < A,

(b) weleta = (a(e) = (o : € < &p),

(c) wsupp(p) is equal to | J{fm,a,/Em : € < {p} U Mm,

(d) if s € dom(p), then the following set b represents p(s), where b is the set of be Q,zn s
such that for each i < lg(l_)) we have #p,; = s and there is an ¢ < ¢, such that:

o aye = (1,14,,5) € AL and o, < oy,
o ar, = (1,14,,5,0) € A(]x(m) and o, = oy,

o ayi1 = (3. 1y, 5. b 8) € A .

(e) if & < ¢, then one of the cases above occurs.
(f) ife € [2¢p, A) then a; is the triple (2, o, ¥) € Ag(m) where ¢ € Py [Mp] is witnessed
by p.

(2) We say a is a formal representative for Py, when for some & the demands above holds
(ignoring the existence of p).

(3) We say @ € *(md(m)) is a formal representation of a member of Py[My,] similarly
using A%, A%

a(m)*

Claim 4.4 Here,

(a) every p € P is represented by some @ € *md(m),

(b) every formal representative represent some member of Py,

(c) there is a formula Yrep(X11) in the logic LAT»}\T in the vocabulary of md(m) defining the
set of formal representative,

(d) similarly for p € Pm[Lm] more accurately € Ly+[Ym] not excluding contradictory
ones.

Proof 4.4 Easy. O

Definition 4.5 We say L is good when:
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(a) L is ainitial segment of Ly,
(b) Lis ]L)L;r, A -definable in md;(m) (without parameters),
(c) the following are definable in md;(m) by a formula (without parameters) in L*T* A

a represent some p € Pp[L],
a represent some p € Py (L),
ap, ap represent pi, p2 € Py (L) respectively, and pg <Pmu, P2:
ap, ap represent py, po € Py[L] respectively and p1 <p,[1] P2-

Claim4.6 (1) The set L ={s € Ly : fornot € My do we have t <y, s} is good.
(2)If L is good and t, € My \ L but Lyn(<s,) € L, then L U {t,} is good.
(3) If (Ly : a < 8) is an C-increasing sequence of good sets and § < )\T then so is

Uot<6 Lg.
(4) If L is good then L™ = {s : thereisnot € My \ L such thatt <p s} is good.

Proof 4.6 Notice that 1), 2) and 3) are straightforward. Concerning part (2) the reader may
wonder: how do you define Py, (L) not using parameters if, say, multiple such #,’s exists?.
The answer is by 4.2(3) clause (C); that is, each t € My, is definable without parameters.

(4) The point is that we do not like to induct on dp(s, L) just on dp(t, My,). Note that
the clauses on Py, [L ] follows by those on Py, (L ™). What we do is noting:

@ for p,q € Pn(L™), p < q iff:

(@) pIL <pnw) qIL,
(b) if s € dom(p) \ L then necessarily s € L™ \ L and s/ Ep, appears in (fy/Em : & < i)
and,

o Pu[LU(s/Em)l = pI(LU (LY Ns/Em)) € gl(LU (LY Ns/Em)).
[Why? Just think.]
Recalling 4.2(3)(A)(d) it suffice to prove that:
(x) Assume s € LY\ L, p,g € Py and dom(p) C dom(q) € L U (s/E},) then Py, =
“p < q iff (a) + (b)”, where:

(@) (pIL) <pnw) (qIL),

(b) for some ¥ € Ly+[Ys/p; nr] we have:
o Pullm]l E¥ Cgq,
© Y AGA—p¢EPuILY N (s/Ep)]

[Why () holds? As in §3C.] O
Claim4.7 (1) Py, is LAT‘AT-interpremble in md(m).
(2) We have Py, < Py, when:

(a) m <pm n,
(b) foreveryl < )\T andt € Ly \ Ly there are at least )»T elements s € Ly \ My, such that,
recalling 4.2(3), the models md(n) [(t/Ey), md(n)[(s/E,) are ]L:l;yjzr-equivalent.

(3) If n € Mg, is wide and full, then there is m such that:

(a) m <p n,
(b) Lm has cardinality < :AT’
(c) m € M.
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(4) Similarly to part (3) for Mpec.

Proof 4.7 (1) Let (s; : & < &) lists the elements of My, such that s, <, S¢ = & < ¢ :
exists as Ly, is a (possibly partial) well order. Clearly ¢, < ||[Mpy|T < )\;r. We define L, for
¢ < 2¢ + 1 as follows:

o ife < ¢, then Ly = {t € Ly, : forsome { < e wehaver <, s},
o fore < ¢y welet Logy1 = Lo U{t € Ly :if ¢ € [g, §4) then s¢ f t or for some £ < ¢
we have (V¢ € [€, &) (s¢ £ D).

Pedantically, the models (md(m)[Am, : @ < am) are not pairwise disjoint but the
common part consists of A individual constants hence this does not matter.

Clearly L, +1 = Lm, L is a definable initial segment of Ly, . By Definition 4.5 it suffice
to prove that Ly, is good.

Now we prove by induction on ¢ that L, is good, so for ¢ = 2¢, + 1 we get the desired
conclusion.

For ¢ = 0, this holds by 4.6(1).

For ¢ = 2¢ + 1 we have L; \ Lo, = {s¢} and Ly(<s,) S Lo¢; hence by 4.6(2) we are
done.

For ¢ = 2¢ 4 2 we apply 4.6(4).

Lastly, for ¢ limit we apply 4.6(3). Together we are done.

(2) By part (1) and the addition theorem, (best formulated for the intermediate logic
Lot ¢ for & < af), see [1]).

(3), (4) As in the proof of 4.8 below. ]

Claim 4.8 Assume Ay > :)\T'

(1) If n € M satisfy Ly, = My (e.g. it is isomorphic to (y, <),y < )LT) then there is
m € M. of cardinality ), above n.

(1A) Similarly for Myec.

(1B) Moreover if n is strongly (< A7)-directed (see 2.13(2), if Ly = My = (y, <) for
some y < AT, this mean cf(y) = A) then (in part (1A)) m is strongly (< A™)-directed, so
{ny :r € Mp} is cofinal in T, _,0, in VP 5o m € Mpec.

"2 Ifmy| € M has cardinality < Ay then we can demand in part (1) m; <y m.

(2A) If m| € Myq has cardinality < Ay, then in part (1A) we can demand m; <y m.
Proof 4.8 (1) Letn, be very wide full of cardinality 22 gquch thatn <p ne and letn, = n£bd].
We can find m <y n, of cardinality A, as in 4.7(2), because for every ¢ < )\f there are
< theories in the relevant vocabulary and logic. So Ly, has cardinality < X, and
n <p m but why does it belong to My.? Toward contradiction let my, my € My be such
that m <p m; <y my but Py, < Py, fail. By the L.S.T. argument, (see the proof of 3.22
third paragraph), without loss of generality m; has cardinality < 2*2, Hence by the choice of
m, n without loss of generality my <p n,. Now for £ = 1, 2, by 4.7(2) applied to (mg, n,)
we have Py, < Py,. But this implies Py, < P, so we are done.

(1A) Similarly.

(1B) In the proof of part (1) we restrict ourselves to strongly (< A™1)-directed m-s (see
1.7(10)) so we use the relevant criterion for being in My, see 2.17(7) i.e. consider bounded
m-s only: m < m; < my, m;, m; strongly A" -directed = Pm, < Pm,. The cofinality is by
1.29(3).

(2), 2A) Similarly. ]
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Conclusion4.9 (1) Ifm e M, M C My andn = m[M then P> < Py".

(2)Ifmy € Mand My C My, for £ = 1,2 and h is an isomorphism from my [ My onto
my [ M, then h induces an isomorphism from ]P)f,‘l’lr[M 1] onto ]P’f,‘l’zr [M>].

(3)Ifm € My is strongly . -directed, M C My, is cofinal in My, thenlbp, “{ns : s € M}
is cofinal in (I1y 2,0, <kad)”‘ -

Proof 4.9 For 1) and 2) it suffices to proceed exactly as the proof 3.27, replacing quoting
3.22 by quoting 4.8(2). Also, 3) is easy by now. O

4.2 Generalm’s

See Discussion 4.17 for our aim and 4.24 on the connection to [12].

Definition 4.10 Assume m is Ag-wide. Let IF’fn = IP’I,,[Mm] be the forcing notion Py, [Mpy]
restricted to the set of Y € Py[Mpy] such that there is p € Py (Ly) witnessing it, which
means that (it is the projection of p into Py [Mp], that is):

e the condition v is smaller or equal to p in the forcing notion P [ L],
o if Py[Mpm] E “Y < ¢" then ¢, p are compatible in the forcing notion P, [Lpy].

Claim 4.11 Assume m fo be Ag-wide.
1) IP)fn is a dense subset of P[Mm], hence IP’L1 < Pml[Lml.
2) If L is an initial segment of Ly, and n = m[L, then IP’I, = IP’IH NPu[Mpy].
3) If L is a ho-wide initial segment of Ly, andn =m | L, then:

(a) Po[Mn] < Py[Ln] and Pa[My] = Pu[Mn] < Pu[Mm],
(b) if p1 € Pn(Ly) then there is r € Py[My] satisfying:

(@) ¥ < p1 € Pn[Ln],
(B) ifyr <@ € Pu[My] then pi, ¢ are compatible in Py[Ly],
(v) Y being witnessed by p1, (see Definition 4.10 this follows).

Proof 4.11 1) Let ¢ € Pp[Mp] and we should find ¢ € IP’I,, above it, this suffice. Clearly
there is p; € Py such that ¢ < py, thatis p1 IF“¢ € Gp,[1,,]”- Now let (; : i < iy) be
a maximal anti-chain of members of P,[M;] which are incompatible with p; in Ppy[Lpy].
Clearly i, < AT hence without loss of generality i, < A andlety = A,_; —;. Clearly p;

l<l
witnesses ¥ € IP’T hence ¢ < v, see more details in the proof of 4.11(3).

T2) Trivially P, C Pu[Maq], so it suffice assume Y € Pu[Mpy] and prove ¢ € PT S Y oe
Ph.

First assume ¢ € IP’}L1 is witnessed by p € Py, and we shall prove that p witness ¥ € ]P’In;
we have to check the two conditions e; + e, of Definition 4.10. Now clearly p € Py, and
Y € Py[Mnp] (the second because v € Py[Mpy] and Py < Py, and My, € My, hence
Pm[My] < Pm[Mm]). Also Py[Ly] = ¥ < p but Py[Ly] < Pm[Lm] hence Py[Lm] =
¥ < p. So in Definition 4.10 condition e; holds; for proving condition ey, assume that
Pm[Mm] E“Y < ¢ hence, by part (1), we can find ¢ € Py, and ¥ € Pp[Myy] which is
witnessed by ¢ such that ¢ is above ¢. Without loss of generality, dom(g) Ndom(p) € Mpy
and let g1 = ¢[L, now g, ¥ are compatible in Py [Lpy], hence in Py[Ly], also dom(g;) N
dom(p)isincludedin L = L, andis included in dom(g) Ndom(p) which is included in Myy,;
together dom(g;) Ndom(p) € Ly N My = My. Therefore by 3.14(1), p, g1 are compatible
in Pm(Lm), hence in Py(Ly), so let r € P, be a common upper bound. As g[L <p, r,
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clearly r, ¢ has a common upper bound r (in Pp,) and so | is a common upper bound of
¢, P-

So we are done proving one implication (the “first” above) and the second is easier: if
p € Py witness ¥ € Pl then p[L witness ¢ € P},.

3) Why?

Clause (a):

The first clause is obvious, the second recalling P, < Py, it is clear.

Clause (b):

In P, [My] let 1& = (Vi : 1 < ix), ¥ be as in the proof of part (1) for p; (and n).

Now,

() ¥ is maximal also for m, p;.

Why () holds? It means: if ¥ € Py[Mp] is incompatible with p; in Py[Ly] then &
is compatible with some ¥; (i < i) in Py[Ly]. But if ¥ is a counterexample then there
is p» € Pn(Lm) above ¥, so p> is incompatible with v; for i < i, and with p;. Let
q> € Pm(Ly) be above po[Ly and decide “does ¢ € Gp,, (1.1~ AS q2, p2 are compatible
necessarily q2 H—“w € GPm[Ln]” hence q2 H_]P)n[Ln]“w € ~GPn[Ln]”' Let 9, € ]P)n[Mn] be
witnessed by ¢» (exists by part (1)) so Pp[Ly] E“Y < 9,.”. Also without loss of generality
dom(gz) N dom(p;) € My (by 3.12) and py, g» are incompatible in P,[Ly], (otherwise
p1, g1 would be compatible).

So by 3.12, ¥, p; are incompatible in P,[Ly] so ¥, contradicts the maximality of xﬁ O

Definition 4.12 1) Let R be the class of objects r consisting of (so N = Ny, m = m;, but
we may omit the subscript r when its identity is clear from the context, also in other parts):

(a) m € M which is k;‘ -wide (actually AT suffices),

(b) acardinal x such thatm € 52 (x) and 2/Eml+22 < 5,

(¢) N < (4(x),€)suchthatm € N,and N NOrd = N N x has order type xr (a cardinal
< A),

(d) N N Ais aninaccessible cardinal < A called A, = A(r) = Ay = A(N),

© [IN|| <63 and® [N]*® C N,

(f) My is listed in non-decreasing order 5y = (s; = s(i) : i < i(m) = i) and let s;(m) be
oo(e L;‘l‘,),(sosr,,' =sm,i =) letUp :={j <im:s; e Ntand Uy ; :=={j <i:s; €
N}, and Uf = Uy U {im},

(2) fori € U let Ly; = U{Lm(<sj) : j < i} NN, and Ly = Lyrim) S N so if 5; is
<m-increasing, theni = j +1 = L;; = Lm(gs,-) NN,

(h) Ef # @, see (2B) below.

2)Forr € Randi € U} let EIT = EI ; be?? the set of sequences ¥ such that:

@ 7= (v :j €U
(b) v € H£<A(r)98,
(c) there is G weakly witnessing ¥ which means:
(@) GC NN PjﬂrLr,i is generic over N;
(B) if j € Uy, then v; = ns[G], that is for every & < Ar, for some ¥ € G we have
v H_H”m<<s(i))[1"1m(<,x-<i))] “Q?s(j) &) = (Vj [&)".

31 We shall use just Pm[Mm] has cardinality < A because A| = )\]<)"0 in the proof (x)3 in 1.32(1).

32 Justified when r is clear from the context.
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Note that, if My N N is not linearly ordered, then maybe j < i and s(j) ¢ Lm(<s()) but
s(j) € Ly,; so these two may not coincide.

2A) We have:
(a) Forr e R,i € U+ andv € B ., let GT G’ ; weakly witness v, see 4.12(2)(c) above,
so (by 4.14 below) umquely determmed (by v and r), unlike in (2B) below.
®) let f = 8} Ibe B 3,

r i(m)

2B)Forr € Randi € U} let E:L = E:’ ; be the set of sequences v such that:
(@) v=A(vj:j<i),
(b) v € Hs<k(r)955
(c) there is G strongly witnessing v which means:

(@) G € NNPy(Ly;)is generic over N; (but G € Ppy[Mpy] is not sufficient),

(B) if j < i then v; = ns(j)[G] that is for every £ < A, for some ¥y € G we have

w ‘hpm(L [ Mmr;)] (ns(j) TS) (vj ff)",
(y) N[G] is isomorphic to 5# (x') for some x’ in fact x’ = xy; see clause (c) of part (1).

2C) We have:

(a) forv € B, let GJr G+- strongly witness v, see 4.12(2B)(c) above, so not necessarily
uniquely determlned

(b) let 2T = E/ be B sz(r)35'

Remark 4.13 Assume m is A-wide. The following Claim 4.14 justifies 4.12(2A)(a).

Claim4.14 Letr € Randi € U], and N = Ny.

1)If G C Pn[Lr; N Mm] N N is generic over N then there is one and only one v €
i(HK)Lr@g) such that for every j € Uy ; we have v; = U{g : there is ¢ € G satisfying ¢
forces 0 L ns(jy}-

1A) We can use IP’In instead of Py [Mmn].

2)IfG1, Gy € Pw[Ly; N Mm] N N are generic over N, i € U;" and v = (vj : j <),
and the pair (Gy, V) is as abovefor L = 1,2 then G| = G», (not essentially used).

3) In part (1), we have G N ]P’m = G (vj2jeUn) = G:,(v_i:jeUr_i)’ see 4.12(2A)(a).

4) Similarly for Pym[Lm], (~ 18 € Lm N N) instead Py [ Mp ], (gs 1S € MyNN).

Proof 4.14 1) For ¢ € Py[Ly; N Mu] N N and j < i let oy, ; be the <J-maximal @ such

that ¥ IFpy, (M <1 @ D 05"
Clearly,

()1 for ¥, j as above, gy, jis well defined and belongs to U{IT, <0, : & < Ar}).
[Easy, e.g. why Ig(0y, ;) < Ar? because I “n;(j) ¢ V" and ¢ € Nr.]

(k)2 for j <iand& < A for some ¥ € Gy we have Ig(vy ;) > &.
[Why? by genericity and the definition of Ppy[Ly; N Mp]].

(x)3 if j < i and ¥ < ¥ are from Pr[Ly,i N Mm] then gy,,j < oy, ;-

33 Justified when r is clear from the context.
34 Justified when r is clear from the context.

35 Justified when r is clear from the context.
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[Why? Obvious].

(x)4 if j <iand ¥, Y2 € G where G is a subset of Py [Ly; N Mmpm] generic over N then
Oy, j» Qy»,j are J-comparable.

[Why? as G is directed and (x)3].

Together we are done proving part (1).

1A) Easy.

2) Toward contradiction G| # G, so we canassume | € G1\Ga, hence thereis Y, € G»
which is incompatible with ¥r;. Without loss of generality v, ¥ € PP [Mm]. So there is
p1 € Py witnessing y; (for [ = 1, 2), and without loss of generality dom(p;) Ndom(pz) €
M.

Now by induction on n we choose (Y1, P1.n, ¥2.n, P2.n) such that:

(*), forl =1,2:

@ pipn€PmNNeandm <n = p; < prm < pin,

(b) Y., € Gy is witnessed by py ,

(C) m<n= ]P[Mm] ': ‘m,m < 1//1,)1»

(d) dom(pi,,) Ndom(ps,,) S Mmp,

(e) ifn =m+1, s € dom(py ,)Ndom(py,,) then max{lg(tr(pi,m(s))), lg(tr(p2,m(s))} <
min{lg(tr(p1,n(s))), lg(tr(p2,n ()},

) if s € dom(p; ) N My, then nP2n) gy

Why it is enough to carry the induction? Because for [ = 1,2 we can let p; be the
lub of the increasing sequence (p;, : n < w), and now pp, pp are compatible (as s €
dom(p;) N dom(py)) implies s € dom(p; ,) N dom(pz,,) N My for some n € @ which
implies tr(pi(s)) = tr(pa(s)).

Now if g is a common upper bound pp, ps in Py, then it is a common upper bound of
Y1, ¥ in Py[Lm], contradicting the choice of .

Why can we carry the induction?

In the induction step we use having enough automorphisms and (reflecting to Ny).

(%) if g1 € Pym N Ny witnesses ¥ € G; and { < A then there are gy € Py, and ¥, € IP’In
such that 91 < 92, g1 < g2, g2 witnesses ¥ and s € dom(g;) N My = lg(tr(g2)) > ¢.

[Why? let .# = {¢ € IP’L1 : either ¢, ¥ are incompatible in Pp[My] or Pn[Mn] E
“Yo < ¢’ andthereis g» € Py above g1,s € dom(qy) N My = l1g(tr(ga(s))) >
¢ and gpwitnessing ¢}. By 3.14(1), .# is a dense subset of Py [Mpy] and it belongs to N, so
necessary .¥ N G; # ¥ and we can finish.]

3) Follows.

4) Similarly. O

We may note:

Definition 4.15 Assume that p = (p; : i < iy) where p; € Py, fori < i, and i, < 6y (or
justiy < Aand iy < Og(u(p;(s)) Toreveryi < iy, s € dom(p;)).
We define ¢ = @(p) as the following function ¢:

(A) g is a function with domain U{dom(p;) : i < iy},
(B) if s € dom(g) then ¢g(s) is defined as in Definition 1.10, as follows (see (c) on jy):

(a) tr(q(s)) = Ultr(p;(s) : i < j, satisfies s € dom(p;)), on js see below,
(b) fore e [Ig(tr(g(s)), 1) welet f, (e) = sup{p;(s)(e) : i < jssatisfiess € dom(p;))};
pedantically we consider each of the “components"” of f;; see Definition. 1.10; where:
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(¢) js = sup{j : j < iy and the set {tr(p;(s)) : i < j and s € dom(p;)} is a set of
pairwise <J-comparable sequences}.

Claim 4.16 1) If(A) then (B) where:
(A) (a) pi € Py fori < iy,
(b) iy < 0p at least iy < Ogr(p;(s))) Whenever i < iy, s € dom(p;).
(B) (a) q = ®(p) is a member of Pp,
(b) if r € Py is a common upper bound of {p; :i < iy} thenq <r € P,
(c) q is a common upper bound of {p; : i < iy} when in addition to (A) and (B)(a):
(%) ifir, iz < iy, s € dom(p;;) Ndom(pj,) and 1g(tr(p;,)) < € < lg(tr(pi,)) then
for some i3 < i, we have p;, < pj, for£ =1,2.
2) If (A)T then (B)™ where:
(AT as in (A) above adding:

(c) pi witnesses ; € EI“[M'“]’
(d) ¥ = iz, Vi € Pn[ M),
(B)T as in (B) above adding:
(d) if q is a common upper bound of {p; : i < i} then q witnesses Y € ]P’fn[Mm].

Proof 4.16 1) Clearly g € Pp,. Also if r € Pp, is a common upper bound of {p; : i < iy}
clearly g < r € Pp,.
2) Easy and will not be used. O

4.3 Nicely existentially closed

Discussion 4.17 (1) In the main case we have M C My, cofinal in My, and m[M = m|Mp,.
In §4A we proved that if m € M, then Py [M] = Py [Mn] even in the general case.
Our main aim is to prove more; e.g.

(%) (a) form, M as above, there isn € M such thatn = m[Ly, M, = M and P, < Pp,,
(b) moreover there is n such that My, = M, L, C Ly, Pa[M] = Pyu[M] and Py [Lm]
is isomorphic to Py[L,] over Py [M].

(2) In the main case (m € Mg, is strongly by A*-directed even in the general case),

o IFp, “{ns 15 € M} is cofinal in (TTg <6, <J)E)d)”.

From Definition 4.18 we shall use L' = | J cmp(M, m) defined below.

Earlier in §3D we doctored m € Mc;, to an equivalent n such that My, = My, E;
has one equivalent class “glueing” together all #/Ey,t € Ly \ Mpy. Here things are more
elaborated. First, in 4.18 we define the set cmp(M, m) of the 7/ E;n for which M is enough
and then in 4.19 doctor m to an equivalent n with My = M, but glueing together all ¢/E},
not in cmp(M, m). Later we can treat n as earlier.

Definition 4.18 Assumem € M and M C My,.
(1) Let cmp(M, m) be the set of L such that for some t € Ly, \ My, we have:

(@ L=t/E}, ={s € Ly : sE[;1},
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b)) LNMy <M.

(2) Let cmp*™ (M, m) = cmp(M, m) U {M}.
(3) For t,, € M let cmp(t,, M, m) be the set of L € cmp(M, m) such that L € Ly (<)
and similarly cmp™ (t,, M, m) = cmp(t,, M, m) U Mm(<t,) "M).

Definition 4.19 Assumem € M, M C My, and .Z € cmp(M, m).
(1) We define rest(-Z, M, m) as the object n consisting of (intended to be in M):

(a) the set of elements of Ly is | J{L : L € L} UM,
(b) the order on Ly, is <m [Ln,

() My =M,

(d) Ey = Eq[Ln,

() un;s = tm,s N Ln,

() yn,s = ﬂm,s n [Mn,s]§A~

(2) Further assume m € Mc,,. We define Rest(.Z’, M, m) as the object n consisting of
(intended to be in M):

(a) Ln = Lm,

(b) My =M,

(© Ej=1{(s1,52) : forsome L € 2, (s1.51) € Ep[Lor (VL € £)(s1.52 ¢ L\ M), {s1. 51}
C Ln, {s1,52} € Mn},

(d) uns = tm,y fors € Ly,

€) Zns = Pms-

(3) We may omit .¢ when . = cmp(M, m).
(4) Forr € R, let &7 be the set of v such that some G*® witness it, which means:

(a) G* € Py N Ny is generic over Ny,
(b) v={(vs:5 € My N Ny),
(c) vy = Z;S[G’] for s € My N Ny.

(So compared to Definition 4.12(2B) clause (c)(y) is not required here).
(5)Forr € R, M’ € My, such that M" € Ny and M = M' N Ny, let E}, = &}, be the
setof v = (vs : s € M) such that some pair (n, G) witnesses U which means:

() nm <p restM’, m) and n € N; and P, < Py,
(B) G is asubset of P, N Ny generic over Ny,
(y) v = TZJ[G] fors e M.

Claim 4.20 Assume m € M, M C My, .£ C cmp(M, m), np := Rest(.Z, M, m) (see
4.19(2)) and ny = rest(Z, M, m), (see 4.19(1)):
(1)m <pm ny,
(2) Lny = L, Pny = Py and cmp(M, ny) = £ C cmp(M, np) and cmp(M, mp) \ L is
empty or a singleton; note that this is the single E;,Z-class that is not in 2y, .
(3)IfM = My and £ = cmp(M, m) thenn; = n; = m.
(4)ift e {1,2} andn, <m ny and Ly, N Ly = Ly,, then we can find m,. such that:
(a) m <yymy and Lyy, = Ly, U Ly,
(b) £ < cmp(M, m,),
(c) ift =2 then n, = Rest(Z, M, m,),
(d) ift = 1letting X1 = cmp(M, ny) we have n, = rest(Z;, M, m,),
(e) (choosing minimalu)ift € M \M and it = 1, thenum, ; = um U{s : s € Ln,\Lm s €

“n,t}-
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Proof 4.20 Straightforward, as in earlier proofs (in particular 2.16) in particular for part (1),
check the clause (e)(y) of 3.1. O

Claim 4.21 Assume m € M.

(1)Ift € My andn = m(< t) then t = max(My) = max(Ly).

(2) If for every t € My, rest(Mm(<r), m) € Mec then m € Mg provided that is strongly
At -directed.

(3)Ifm; <y mp and t € My, then rest(Mm(<t),m) <m rest(Mm(<r), m).

Proof 4.21 Easy. O

Observation 4.22 (1) If Ly, = My, then m is essentially A+ -directed (see Definition 2.13(1))
ifUlus : s € M} = My = My and ({ug : s € My}, C) is AT —directed.
"~ (2) Assume m is strongly p-directed and m; < m, then my is strongly ji-directed.

(3) if m; <y m and m is essentially ju-directed then so is mj.

Cl_aim 4.23 1) Assume m € My, is strongly ’*-directed (hence bounded). There are n and
£ such that:

B (@) m <y neM,,,

(b) n e Mpec,

(c) X =(Ly:Me P (Mn)), recalling that foraset X, Z(X)” ={Y C X :Y #
)8

(d) Ly € cmp(M, n) for M € P~ (Mw) and Ly, = cmp(Mpy, m),

(e) ny =n[M] :=rest(Zv, M, m) € Mpe. for M € &~ (M), sony, =m,

(f) Pun,, <Ppfor M € 2~ (Mn),

(g) if h <m t3 are from My and t; € Ln \ Lm and (Vs € t;/E}) (s <m 1) then
1/E] C uny, (ves! nott/Ey)

(h) m is strongly AV -directed (see 2.13(2)),

(i) if M1 € M> are from &~ (Mw) then Ly, € Ly, .

2) We can add.:

(j) ifMy, My € My, and h is an isomorphism fromm| M ontom| M, then h can be extended
to h, an isomorphism from nyy, onto nyy,,

(k) if M € 2~ (Mw) and L € Ly then L O Ly € M.

() If M € &2~ (Mw) and h is an isomorphism from m[M onto m|My,, then:

e there is an isomorphism h Sfromny onto ny, = m embedding h,
o if GT is a subset of Py, generic over V, then there is G € VIG™], a generic subset
of Pm over V such that s € M = n5[GT] = nj5)[Gl.

3) Above n is reasonable (see Definition 3.21).

Proof 4.23 1) Let (My : @ < o < A]) list 227 (M) 50 oty < A2 such that fo <m 15 =
o < .
We choose by induction on @ < a,, my and if ¢ < a, also ng, ng[, %, such that:

(¥)o (2) my € Mg,,,
(b) m,, is <pj-increasing continuous,
() mp =m,
(d) ifa =B+ 1, then:
(@) ng =m/[Mg,
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B) ng =M n}; € My,
(y) n/l3 €Mqy, and Lyt N L, = Lng,

) n}g = rest(Z, Mg, m),
(e) it t € Mm \U{M, : y < B}, then um,r = tmy U{s € Lm, : 5 ¢
Lmﬁ’ SrEI/na < Lma(ft)}’

Why can we carry the induction?
First, arriving to & we choose my, as follows:

o ifa = 0letmy = m (so (x)(c) holds).

e if o is a limit ordinal then m, = U{mg : B < a}, see §1A, noting m, € M«,, because
a <oy <A

o ifa =B+ 150 ng, n}3 have been chosen then choose m,, by 4.20(4) and (x)(d)(¢).

Second assuming @ < ., and m, has been defined we choose ng as rest(M, m) so ng €

M., by 4.20(1), 50 (x)(d) () holds. Then choose n), € M<j, such thatn) <m n;, € Mec
(by claim 3.22), without loss of generality Lng( NLm, = Lng so clause (x)(d)(f), () holds.
So we have carried the induction.

()1 Letn =mg, son € M<;, andm =ng <y n.

So clause H(a) holds. Why n € Mye.? (i.e. clause H(b)). As clearly M, is strongly
(< AT)-directed, by 2.17(5) it suffices to prove that Mu(<t) € Mpec for every t € My,. But
Mu<s) € {My : o < ay} and if M = My (<y,) then rest(M, n) <y m(< t) so this follows
if we prove clauses H(d), (e).

Why clauses H(d), (e) holds? So assume M € &~ (My,) then for some o = a(M) < o
we have M = M, and let &) = cmp(M,nl) o UL : L € Ly} = Lyi). Assume
rest(Zy, M,n) = ng <M n; <y np and we shall prove that P,, < Pp,, this suffices for
He).

Let ¢ < oy be such that M, = M, so clearly.

()2 o1 rest(Zy, M,n) =nl,
®) né = rest(M, m),

o3 rest(M, m) <y rest(M, n),
o4 rest(M, n) <p Rest(M, n) <pp Rest(M, nj) <y Rest(M, ny).

As né € My, it follows that Rest(M, ny) < Rest(M, ny), but by 4.20(1),
(%)3 Pnl = Prest (Mg, mp) forl =1, 2.

So we are done proving H(e).

Now H(c) is just a choice, so we are left with H( f) which says P,,, < Py but it follows
by (¥)2 and (¥)3.
2) We can find n™ such that:

(*) (@ n <m nt € M<,,, (nis from part (1)),

(b) if M, My € P~ (Mp,) and h is an isomorphism from m|M; onto m[M; and L €
cmp(My, n) then there is ((L;, h;) : i < X2) such that:
(¢) L; € cmp(M2, m),
(B) h; is an isomorphism from m[L onto m|L; which extends A [(L N M;),
(y) LiNLn C Mn.

(c) ift € Ln(t) \ Ly then for some s € Ly \ My we have n[(t/En(),+), n[(s/En,;) are
isomorphic,
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(d) ifs € Ly \ My, M| =s/E', My € 22~ (Myp,) and h is an isomorphism from m|M
onto m|M,, then there is a sequence (t; : ¢ < Ay) of pairwise non—E;l’(t)—equivalent

members of Ly \ M such that (t; /E};)) N Mm = M> and there is an isomorphism
from n[(s/E}) onto n' [ (z, /Eniy)

Now we can easily find the isomorphism promised in clause (j). Lastly, clause (k) holds
because ng = m[M, above. So n™ is as required recalling t € Lo+ \ Mp+ = t/E . =
U{L : L € cmp(Mp, m)} as m is bounded.

3) Easy. O

Remark 4.24 How does this subsection help [12]?

(1) Note in the family R of r’s see Definition 4.12 we demand that there is G+ € Ny NPy,
generic over N such that: (so N < (#(x), €),(m, A,...) € N and jy is the Mostowski
collapse)

() Iy (NIGT] = A (xe), xe = otp(N N ).

You can think of it as: in the preliminary forcing to get Laver diamond, in stage Ay = NNA
we force by j.(Pm N N).

(2) The present 4.26 tells us to use E (defined in 4.19(4)) that instead of using EI =
{G:GC Ny IP’fn is generic over N such that vy, = n4[G] for « € M} which gives too
may candidates or E:“ ={G : G € N NPy, is generic over N such that j” (N)[j}(G)] =
JC(xn) and vy, = ny[G]} which seems too restrictive.

Enough to use the middle ground B} ={G : G S N NPy, is generic over N and vy =
ne[G] for @ € M}.

(3) Now the original idea was that G € E:-C is enough in [12] but not so, however G € &
is sufficient.

(4) Also we need that m is reasonable (see 3.21(3)) so if M C My, is cofinal then
(v : @ € M) is cofinal for m.

(5) The point is that for M ;(_ My (or with M NN, My N N the reflection) we need
stronger homogeneity of Py, which is the aim of 4.17-4.25 relying on 4.23.

Conclusion 4.25 Ifmg € M is strongly A" -directed, (so bounded) of cardinality < A, then
there is m such that:

(a) m € M of cardinality 1y,
(b) mp <m m,

(c) m € My,

(d) () = (B), where:

(¢) o reRandmy, =mand (n; : s € M) € EfF.
oy M' C My, (in the main case is My = (k, <), My a cofinal subset of Mp,),
M, =M N Np, M' € Ny,
e3 h is an isomorphism from m| M, onto m| My,
o4 so there is GT C Py N Ny generic over Ny such that s € My = 1y = n,[GT]
and 7 (xx) = jY, (Noi [GT1] (by the definition of R). B
(B) thereis G C N N Py, generic over N such thats € M, = Nh(s) [G] = ns.

Proof 4.25 Let (n, %) be as in 4.23 for mg and we shall show that n can serve as m.

Clauses (a), (b) of 4.25 holds by clause (a) of 4.23(1).
Clause (c) of 4.25 holds by clause (b) of 4.23(1).
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To prove clause (d) of 4.25 assume («) there. Let n = ny from 4.23(1)(e) and use
4.23(1),(2).
2) Use 4.23(2). O

Claim4.26 (1) Assume m is as in 425, r € R (and m = my). f M G My NNy, M =
M' N Ne,M' € Ny and v = 7j.[M and h € N is an isomorphism from m[M' onto
m|Mm, then there is G witnessing 1, = (nj-1(5) : 5 € M) belongs to E} (see Definition
4.19(4)).

(2) Above, G has (in Py) an upper bound p™* which satisfies s € My = tr(p(s)) = ns[G].

(3) If p* € Py, is as above then p* is also an upper bound of G' = G NPyu[M] in PmlLm]

V[Pn]
(4) Ifm is strongly (< A")-directed, then 7y, is cofinal in (H;<Ar9§, <J)|3;1) .

(5) If m is strongly (< AV)-directed (or just essentially directed, see 3.20) then for every
p € Pmands € dom(p) N My, for every large enought € My we have p IFp, “ f p(s) <

n; mod J/{’d 7

Proof 4.26

(1) Let n from 4.25(1)(d)(B) for our M.

(2) This is because || N2l < Oy 4.12(1)(e) and 4.16.
(3) As Pu[Mp] = P[M] because Py, < Pp,.

(4) Easy recalling 4.23(2)(j) and 4.22(4)).

(5) Just check the definition (and) or see 1.29.
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