REMARKS ON SOME CARDINAL INVARIANTS AND PARTITION RELATIONS

ASHUTOSH KUMAR AND SAHARON SHELAH

Abstract

We answer some questions about two cardinal invariants associated with separating and almost disjoint families and a partition relation involving indecomposable countable linear orderings.

1. Introduction

The aim of this paper is to prove some results about two cardinals invariants and partition relations. These cardinal invariants (denoted $\mathfrak{l s}(\mathfrak{c})$ and $\mathfrak{l a}(\mathfrak{c})$) were introduced by Higuchi, Lempp, Raghavan and Stephan in [2]. The primary motivation behind studying them was to shed some light on the order dimension of the Turing degrees.

Definition 1.1 ([2]). Let κ be an infinite cardinal.
(1) $\mathfrak{l s}(\kappa)$ is the least cardinality of a family $\mathcal{F} \subseteq \mathcal{P}(\kappa)$ that separates countable subsets of κ from points in the following sense: For every countable $A \subseteq \kappa$ and $\alpha \in \kappa \backslash A$, there exists $X \in \mathcal{F}$ such that $\alpha \in X$ and $A \cap X=\emptyset$.
(2) $\mathfrak{l a}(\kappa)$ is the least cardinal λ such that $\operatorname{cf}(\lambda) \geq \omega_{1}$ and there exists an almost disjoint family $\mathcal{A} \subseteq[\lambda]^{c f(\lambda)}$ with $|\mathcal{A}| \geq \kappa$. Here $X, Y \in \mathcal{A}$ are almost disjoint iff $|X \cap Y|<c f(\lambda)$.

In [2], the authors showed $\omega_{1} \leq \mathfrak{l s}(\kappa) \leq \mathfrak{l a}(\kappa)$ for every uncountable cardinal κ and asked if this inequality could be strict when κ is the successor of a cardinal of uncountable cardinality. This question also appears in [5] (Question 5.3) for the case $\kappa=\mathfrak{c}=\omega_{3}$. We positively answer it by showing the following.

Theorem 1.2. Assume $V \models G C H$. Then there is a ccc forcing \mathbb{P} such that $V^{\mathbb{P}}=\mathfrak{l s}\left(\omega_{3}\right)=\omega_{1}<\mathfrak{l a}\left(\omega_{3}\right)=\omega_{2}<\mathfrak{c}=\omega_{3}$.

In the next section, we generalize our construction to separate $\mathfrak{l a}(\kappa)$ and a stronger variant of $\mathfrak{l s}(\kappa)$ defined as follows.

Definition 1.3. Let $\omega \leq \theta \leq \mu \leq \kappa$ be cardinals. $\mathfrak{l s}(\kappa, \mu, \theta)$ is the least cardinality of a family $\mathcal{F} \subseteq \mathcal{P}(\kappa)$ that is a (μ, θ)-separating family on κ which means the following: For every $A \in[\kappa]^{<\mu}$ and $B \in[\kappa \backslash A]^{<\theta}$, there exists $X \in \mathcal{F}$ such that $B \subseteq X$ and $A \cap X=\emptyset$.

It is easy to check that $\mathfrak{l s}(\kappa)=\mathfrak{l s}\left(\kappa, \omega_{1}, \omega\right)$ for every infinite κ.
Theorem 1.4. Suppose $\mu<\kappa, \kappa$ is Mahlo and $\lambda>2^{\kappa}$. There is a< μ-closed κ-cc forcing \mathbb{P} such that the following hold in $V^{\mathbb{P}}$.

[^0](1) $\kappa=\mu^{+}$.
(2) $\mathfrak{l s}(\lambda, \kappa, \mu)=\kappa$.
(3) $\mathfrak{l a}(\lambda) \geq \kappa^{+}$.

An order-theoretic variant of $\mathfrak{s s}(\kappa)$ defined in [5] is $\mathfrak{l o s}(\kappa)$. It equals the order dimension of the Turing degrees when $\kappa=\mathfrak{c}$ (see Corollary 2.11 in [5]).

Definition 1.5. Let κ be an infinite cardinal. Define $\mathfrak{l o s}(\kappa)$ to be the least cardinality of a family \mathcal{F} of linear orders on κ that separates countable subsets of κ from points in the following sense: For every countable $A \subseteq \kappa$ and $\alpha \in \kappa \backslash A$, there exists \prec in \mathcal{F} such that for every $\beta \in A, \beta \prec \alpha$.

Note that $\mathfrak{l o s}(\kappa) \leq \mathfrak{l s}(\kappa) \leq \mathfrak{l a}(\kappa)$ and each of these two inequalities can be strict at $\kappa=\omega_{3}$ (by Theorem 1.2 above and Lemma 5.1 in [5). So we ask the following.

Question 1.6. Is it consistent to have $\mathfrak{l o s}(\kappa)<\mathfrak{l s}(\kappa)<\mathfrak{l a}(\kappa)$ for some infinite cardinal κ ? What if $\kappa=\omega_{3}$?

1.1. Partition relations.

Definition 1.7. An order type φ is unionwise indecomposable iff for every linear ordering (L, \prec) of type φ and a partition $L=A \sqcup B$, at least one of (A, \prec) and (B, \prec) contains a subordering of type φ.

Let $\varphi, \psi, \varphi_{0}, \varphi_{1}, \psi_{0}, \psi_{1}$ be order types. Recall that we write

$$
\binom{\psi}{\varphi} \longrightarrow\left(\begin{array}{ll}
\psi_{0} & \psi_{1} \\
\varphi_{0} & \varphi_{1}
\end{array}\right)
$$

to denote the following statement: Whenever $\left(X, \prec_{0}\right)$ and $\left(Y, \prec_{1}\right)$ are linear orderings of type ψ and φ respectively and $c: X \times Y \rightarrow 2$, there exist $A \subseteq X$ and $B \subseteq Y$ such that one of the following holds.
(a) $\left(A, \prec_{0}\right)$ has type $\psi_{0},\left(B, \prec_{1}\right)$ has type φ_{0} and $c \upharpoonright(A \times B)$ is constantly 0 .
(b) $\left(A, \prec_{0}\right)$ has type $\psi_{1},\left(B, \prec_{1}\right)$ has type φ_{1} and $c \upharpoonright(A \times B)$ is constantly 1 .

The following questions were raised by Klausner and Weinert (Questions (C) and (D) in [4).

Question 1.8 ([4]). Does the following hold for all countable ordinals α and unionwise indecomposable countable order types φ ?

$$
\binom{\omega_{1}}{\varphi} \longrightarrow\left(\begin{array}{ll}
\alpha & \alpha \\
\varphi & \varphi
\end{array}\right)
$$

Question 1.9 ([4]). Is it consistent to have the following for all countable ordinals α and unionwise indecomposable countable order types φ ?

$$
\binom{\omega_{1}}{\varphi} \longrightarrow\left(\begin{array}{cc}
\omega_{1} & \alpha \\
\varphi & \varphi
\end{array}\right)
$$

In the final section, we will show that the answer to both of these questions is yes. In fact, we have the following.

Theorem 1.10. Let $c: \omega_{1} \times L \rightarrow K$ where $K<\omega$ and $\left(L, \prec_{L}\right)$ is a unionwise indecomposable countable linear order. Then for each $\alpha<\omega_{1}$, there exist $A \in\left[\omega_{1}\right]^{\alpha}$ and $B \subseteq L$ such that $\left(B, \prec_{L}\right) \cong\left(L, \prec_{L}\right)$ and $c \upharpoonright(A \times B)$ is constant.

Theorem 1.11. Assume Martin's axiom plus $\mathfrak{c}>\omega_{1}$. Let $c: \omega_{1} \times L \rightarrow K$ where $K<\omega$ and $\left(L, \prec_{L}\right)$ is a unionwise indecomposable countable linear order. Then there exist $A \in\left[\omega_{1}\right]^{\omega_{1}}$ and $B \subseteq L$ such that $\left(B, \prec_{L}\right) \cong\left(L, \prec_{L}\right)$ and $c \upharpoonright(A \times B)$ is constant.

2. Consistency of $\mathfrak{l s}\left(\omega_{3}\right)<\mathfrak{l a}\left(\omega_{3}\right)$

A natural attempt to get a model of $\mathfrak{l s}\left(\omega_{3}\right)=\omega_{1}<\mathfrak{l a}\left(\omega_{3}\right)=\omega_{2}$ would be to start with a model of GCH and add ω_{3} subsets of ω_{1} using countable or finite conditions. Both of these fail.

Fact 2.1. Assume $V \models G C H$. Let \mathbb{P} consist of all partial functions from ω_{3} to 2 such that either $(\forall p \in \mathbb{P})(|\operatorname{dom}(p)|<\omega)$ or $(\forall p \in \mathbb{P})\left(|\operatorname{dom}(p)|<\omega_{1}\right)$. Then $V^{\mathbb{P}} \mid=\mathfrak{l s}\left(\omega_{3}\right)=\mathfrak{l a}\left(\omega_{3}\right)$.

Proof. Note that both of these forcings preserves all cofinalities (and hence cardinals). If \mathbb{P} consists of all finite partial functions from ω_{3} to 2 , then Lemma 5.1 in 5 implies that $V^{\mathbb{P}} \models \mathfrak{l a}\left(\omega_{3}\right)=\mathfrak{l s}\left(\omega_{3}\right)=\omega_{2}$. So assume that \mathbb{P} consists of all countable partial functions from ω_{3} to 2 . Then \mathbb{P} does not add any new countable set of ordinals. Since $V \models 2^{\omega}=\omega_{1}$, it follows that $V \cap 2^{<\omega_{1}}=V^{\mathbb{P}} \cap 2^{<\omega_{1}}$ has size ω_{1} in $V^{\mathbb{P}}$. Furthermore, as $V^{\mathbb{P}} \models 2^{\omega_{1}} \geq \omega_{3}$ we can find a family $\mathcal{F} \in V^{\mathbb{P}}$ consisting of ω_{3} distinct subsets of ω_{1}. For each $A \in \mathcal{F}$, define $S_{A}=\left\{1_{A} \upharpoonright \alpha: \alpha<\omega_{1}\right\}$. Observe that $\left\{S_{A}: A \in \mathcal{F}\right\}$ is a \bmod countable almost disjoint family of subsets of $2^{<\omega_{1}}$. Since $V^{\mathbb{P}} \models\left|2^{<\omega_{1}}\right|=\omega_{1}$, it follows that $V^{\mathbb{P}} \models \mathfrak{l a}\left(\omega_{3}\right) \leq \omega_{1}$. As $\omega_{1} \leq \mathfrak{l s}\left(\omega_{3}\right) \leq \mathfrak{l a}\left(\omega_{3}\right)$, it follows that $V^{\mathbb{P}}=\mathfrak{l s}\left(\omega_{3}\right)=\mathfrak{l a}\left(\omega_{3}\right)=\omega_{1}$.

An infinite ordinal δ is (additively) indecomposable iff for each $X \subseteq \delta$, either $\operatorname{otp}(X)=\delta \operatorname{or} \operatorname{otp}(\delta \backslash X)=\delta$. Recall that the following are equivalent.
(i) δ is infinite and indecomposable.
(ii) Whenever A, B are sets of ordinals of order type $<\delta$, $\operatorname{otp}(A \cup B)<\delta$.
(iii) $\delta=\omega^{\alpha}$ (ordinal exponentiation) for some $\alpha \geq 1$.

Definition 2.2. For an uncountable cardinal κ and an indecomposable ordinal $\delta<\kappa$, define the forcing $\mathbb{Q}_{\kappa, \delta}$ as follows. $p \in \mathbb{Q}_{\kappa, \delta}$ iff the following hold.
(i) p is a function, $\operatorname{dom}(p) \subseteq \kappa$ and $\operatorname{range}(p) \subseteq 2$.
(ii) $\operatorname{otp}(\operatorname{dom}(p))<\delta$.
(iii) $\{\alpha \in \operatorname{dom}(p): p(\alpha)=1\}$ is finite.

For $p, q \in \mathbb{Q}_{\kappa, \delta}$, define $p \leq q$ iff $q \subseteq p$.
The following lemma shows that if $\delta \geq \omega_{1}$, then $\mathbb{Q}_{\kappa, \delta}$ collapses ω_{1}.
Lemma 2.3. Let $\omega_{1} \leq \delta<\kappa$ be indecomposable. Then $V^{\mathbb{Q}_{\kappa, \delta}} \vDash|\delta|=\omega$.
Proof. Suppose $V \models|\delta|=\theta \geq \omega_{1}$. Choose $\alpha<\theta^{+}$such that $\delta=\omega^{\theta+\alpha}=$ $\theta \cdot \omega^{\alpha}=\theta \cdot \gamma$ where $\gamma=\omega^{\alpha}$. Let G be $\mathbb{Q}_{\kappa, \delta}$-generic over V and $F=\bigcup G$. Then $F: \kappa \rightarrow 2$. Define $W=\{\beta<\delta: F(\beta)=1\}$. An easy density argument shows that $\operatorname{otp}(W)=\omega$. For each $k<\omega$, let α_{k} be the k th member of W. Choose $\xi_{k}<\theta$ and $j_{k}<\gamma$ such that $\alpha_{k}=\theta \cdot j_{k}+\xi_{k}$. Define $h: \omega \rightarrow \theta$ by $h(k)=\xi_{k}$. Another density argument shows that for every $X \in V \cap[\theta]^{\theta}$, range $(h) \cap X \neq \emptyset$. It follows that $V[G] \models|\theta|=\omega$.

Recall that a forcing \mathbb{Q} has ω_{1} as a precaliber iff for every uncountable $A \subseteq \mathbb{Q}$, there exists an uncountable $B \subseteq A$ such that every finite set of conditions in B has
a common extension in \mathbb{Q}. It is easy to see that if \mathbb{Q} has ω_{1} as a precaliber, then it satisfies ccc.

Lemma 2.4. Suppose κ is uncountable, $\delta<\omega_{1}$ is indecomposable and $\mathbb{Q}_{\kappa, \delta}$ is as in Definition 2.2. Then $\mathbb{Q}_{\kappa, \delta}$ has ω_{1} as a precaliber.
Proof. Let $\left\langle p_{i}: i<\omega_{1}\right\rangle$ be a sequence of conditions in \mathbb{Q}. Put $D_{i}=\operatorname{dom}\left(p_{i}\right)$, $A_{i}=\left\{\alpha \in D_{i}: p_{i}(\alpha)=0\right\}, B_{i}=\left\{\alpha \in D_{i}: p_{i}(\alpha)=1\right\}$ and $D=\bigcup\left\{D_{i}: i<\omega_{1}\right\}$. Let $\gamma=\operatorname{otp}(D)$. Clearly, $\gamma<\omega_{2}$. Let $h: \gamma \rightarrow D$ be the order preserving bijection. By replacing each D_{i} with $h^{-1}\left[D_{i}\right]$, we can assume that $D_{i} \subseteq \gamma$. By induction on γ, we will show that there exists $X \in\left[\omega_{1}\right]^{\omega_{1}}$ such that for every $i, j \in X, p_{i}$ and p_{j} are compatible (and hence $p_{i} \cup p_{j} \in \mathbb{Q}_{\kappa, \delta}$ as otp $\left(D_{i} \cup D_{j}\right)<\delta$). This suffices since any finite set S of conditions in $\left\langle p_{i}: i \in X\right\rangle$ has a common extension (namely its union) in $\mathbb{Q}_{\kappa, \delta}$.

Case 1: γ is a successor ordinal. Let $\gamma=\xi+1$. Applying the inductive hypothesis to the sequence $\left\langle p_{i} \upharpoonright \xi: i<\omega_{1}\right\rangle$, we can find $Y \in\left[\omega_{1}\right]^{\omega_{1}}$ such that for every $i, j \in Y, p_{i} \upharpoonright \xi$ and $p_{j} \upharpoonright \xi$ are compatible. Choose $X \in[Y]^{\omega_{1}}$ and $k<2$ such that either $(\forall i \in X)\left(\xi \notin D_{i}\right)$ or $(\forall i \in X)\left(\xi \in D_{i} \wedge p_{i}(\xi)=k\right)$. Then X is as required.

Case 2: $\operatorname{cf}(\gamma)=\omega$. Since each B_{i} is a finite subset of γ and $\operatorname{cf}(\gamma)=\omega$, we can choose $Y \in\left[\omega_{1}\right]^{\omega_{1}}$ and $\gamma^{\prime}<\gamma$ such that for every $i \in Y, B_{i} \subseteq \gamma^{\prime}$. Applying the inductive hypothesis to $\left\langle p_{i} \upharpoonright \gamma^{\prime}: i \in Y\right\rangle$, we can find $X \in[Y]^{\omega_{1}}$ such that for every $i, j \in X, p_{i} \upharpoonright \gamma^{\prime}$ and $p_{j} \upharpoonright \gamma^{\prime}$ are compatible. Since for every $i \in X, p_{i} \upharpoonright\left[\gamma^{\prime}, \gamma\right)$ is constantly 0 , it follows that for every $i, j \in X, p_{i}$ and p_{j} are compatible.

Case 3: $\operatorname{cf}(\gamma)=\omega_{1}$. Let $\left\langle\gamma_{\xi}: \xi<\omega_{1}\right\rangle$ be a continuously increasing cofinal sequence in γ. Since D_{i} 's are countable subsets of γ, we can choose a club $E \subseteq \omega_{1}$ consisting of limit ordinals such that for every $\xi \in E$ and $i<\xi, D_{i} \subseteq \gamma_{\xi}$.

Let $F=\left\{\xi \in E:(\forall i>\xi)\left(D_{i} \cap \gamma_{\xi}\right.\right.$ is unbounded in $\left.\left.\gamma_{\xi}\right)\right\}$. We claim that F is countable. Suppose not and fix a strictly increasing sequence $\left\langle\xi(i): i<\omega_{1}\right\rangle$ in F. Choose j such that $\xi(\delta)<j<\omega_{1}$. Then $\sup \left(D_{j} \cap \gamma_{\xi(i)}\right)=\gamma_{\xi(i)}$ for every $i<\delta$. Define $f: \delta \rightarrow D_{j}$ by $f(i)=\min \left(\left[\gamma_{\xi(i)}, \gamma_{\xi(i+1)}\right) \cap D_{j}\right.$. Then f is strictly increasing and hence $\operatorname{otp}(\operatorname{range}(f))=\delta$. But this implies that $\operatorname{otp}\left(D_{j}\right) \geq \operatorname{otp}(\operatorname{range}(f))=\delta$ which is impossible. So F must be countable.

Next fix a club $C \subseteq E \backslash F$ and a function $h: C \rightarrow \omega_{1}$ such that for every $\xi \in C$, $h(\xi)>\xi$ and $\sup \left(D_{h(\xi)} \cap \gamma_{\xi}\right)<\gamma_{\xi}$. It follows that the function $g: C \rightarrow \omega_{1}$ defined by $g(\xi)=\min \left(\left\{\xi^{\prime}<\xi: \sup \left(D_{h(\xi)} \cap \gamma_{\xi}\right)<\gamma_{\xi^{\prime}}\right\}\right)$ is regressive on C. By Fodor's lemma, we can find a stationary $S \subseteq C$ and $\xi_{\star}<\omega_{1}$ such that $\min (S)>\xi_{\star}$ and for every $\xi \in S, D_{h(\xi)} \cap \gamma_{\xi} \subseteq \gamma_{\star}=\gamma_{\xi_{\star}}$. Let $T \in[S]^{\omega_{1}}$ be such that for every $\xi_{1}<\xi_{2}$ in $T, \xi_{1}<h\left(\xi_{1}\right)<\xi_{2}<h\left(\xi_{2}\right)$. Put $Y=h[T]$ and note that for every $i<j$ in $Y, D_{i} \cap D_{j} \subseteq \gamma_{\star}$. Applying the inductive hypothesis to $\left\langle p_{i} \upharpoonright \gamma_{\star}: i \in Y\right\rangle$, choose $X \in[Y]^{\omega_{1}}$ such that for every $i, j \in X, p_{i} \upharpoonright \gamma_{\star}$ and $p_{j} \upharpoonright \gamma_{\star}$ are compatible. Since for every $i<j$ in $X, D_{i} \cap D_{j} \cap\left[\gamma_{\star}, \gamma\right)=\emptyset$, it follows that $\left\langle p_{i}: i \in X\right\rangle$ has pairwise compatible functions.

As $\gamma<\omega_{2}$, there are no more cases and we are done.
Lemma 2.5. Let κ be an uncountable cardinal. Let \mathbb{P} be the finite support product of $\mathbb{Q}_{\kappa, \delta}$'s where δ runs over the set of indecomposable ordinals $<\omega_{1}$. Then the following hold.
(1) \mathbb{P} has ω_{1} as a precaliber.
(3) $V^{\mathbb{P}} \models \mathfrak{l s}(\kappa)=\omega_{1}$.

Proof. (1) Let $\left\langle p_{i}: i<\omega_{1}\right\rangle$ be a sequence in \mathbb{P}. By the Δ-system lemma, we can find $Y \in\left[\omega_{1}\right]^{\omega_{1}}$ and a finite set R of indecomposable countable ordinals such that for every $i<j$ in $Y, \operatorname{dom}\left(p_{i}\right) \cap \operatorname{dom}\left(p_{j}\right)=R$. Using Lemma 4.4 we can choose $X \in[Y]^{\omega_{1}}$ such that for every $i, j \in X$ and $\delta \in R, p_{i}(\delta)$ and $p_{j}(\delta)$ are compatible in $\mathbb{Q}_{\kappa, \delta}$. It follows any finite set of conditions in $\left\langle p_{i}: i \in X\right\rangle$ has a common extension in \mathbb{P}. Therefore \mathbb{P} has ω_{1} as a precaliber.
(2) Let G be \mathbb{P}-generic over V. By Clause (1), all cofinalities (and hence cardinals) from V are preserved in $V[G]$. Since $\kappa \geq \omega_{1}$, it is easy to see that $\mathfrak{l s}(\kappa) \leq \omega_{1}$ - For any countable $\mathcal{F} \subseteq \mathcal{P}(\kappa)$, consider $A=\{\min (X): X \in \mathcal{F}\}$ and $\alpha \in \kappa \backslash A$. For the other inequality, we'll show that in $V[G]$, there is a family \mathcal{F} of size ω_{1} that separates countable subsets of κ from points. For each indecomposable $\delta<\omega_{1}$, define $X_{\delta}=\{\alpha<\kappa:(\exists p \in G)(\delta \in \operatorname{dom}(p) \wedge \alpha \in \operatorname{dom}(p(\delta)) \wedge p(\delta)(\alpha)=1)\}$. Put $\mathcal{F}=\left\{X_{\delta}: \delta<\omega_{1}\right.$ is indecomposable $\}$. We claim that \mathcal{F} separates countable subsets of κ from points. For suppose $A \subseteq \kappa$ is countable and $\alpha \in \kappa \backslash A$. Since \mathbb{P} satisfies ccc, there exists $B \in V \cap[\kappa]^{<\omega_{1}}$ such that $A \subseteq B$ and $\alpha \notin B$. Now a simple density argument shows that there exists $p \in G$ and $\delta \in \operatorname{dom}(p)$ with $\delta>\operatorname{otp}(B)$ such that $B \cup\{\alpha\} \subseteq \operatorname{dom}(p(\delta)),(\forall \beta \in B)(p(\delta)(\beta)=0)$ and $p(\delta)(\alpha)=1$. This means that $\alpha \in X_{\delta}$ and $X_{\delta} \cap A=\emptyset$. Hence \mathcal{F} separates countable subsets of κ from points.

Theorem 2.6. Suppose $\omega_{1} \leq \theta$ and $2^{\theta}<\kappa=\kappa^{\omega}$. Let \mathbb{P} be the finite support product of $\mathbb{Q}_{\kappa, \delta}$'s where δ runs over the set of indecomposable ordinals $<\omega_{1}$. Then $V^{\mathbb{P}}=\mathfrak{c}=\kappa, \mathfrak{l s}(\kappa)=\omega_{1}$ and $\theta<\mathfrak{l a}(\kappa)$.

Proof. Since \mathbb{P} satisfies ccc and $|\mathbb{P}|=\kappa^{\omega}=\kappa$, an easy name counting argument shows that $V^{\mathbb{P}}\left|=\mathfrak{c}=|\mathcal{P}(\omega)| \leq \kappa\right.$. To see that $V^{\mathbb{P}} \models \mathfrak{c} \geq \kappa$, just note that $\mathbb{Q}_{\kappa, \omega} \lessdot \mathbb{P}$ and $\mathbb{Q}_{\kappa, \omega}$ is the forcing for adding κ Cohen reals. Furthermore, Lemma 2.5 implies that $V^{\mathbb{P}} \models \mathfrak{l s}(\kappa)=\omega_{1}$. So we only need to check that $V^{\mathbb{P}} \models \theta<\mathfrak{l a}(\kappa)$.

Towards a contradiction, assume $V^{\mathbb{P}} \models \mathfrak{l a}(\kappa) \leq \theta$. Then we can find $p \in \mathbb{P}, \lambda \leq \theta$ and $\left\langle\AA_{i}: i<\kappa\right\rangle$ such that the following hold.
(i) $\operatorname{cf}(\lambda)=\mu \geq \omega_{1}$.
(ii) For every $i<\kappa, p \Vdash \AA_{i} \in[\lambda]^{\mu}$.
(iii) For all $i<j<\kappa, p \Vdash\left|\AA_{i} \cap \AA_{j}\right|<\mu$.

For each $i<\kappa$, define $B_{i}=\left\{\xi<\lambda:(\exists q \leq p)\left(q \Vdash \xi \in \AA_{i}\right)\right\}$. Since \mathbb{P} satisfies ccc, it is easy to see that for every $i<\kappa,\left|B_{i}\right|=\mu$. Furthermore, each $B_{i} \in V \cap \mathcal{P}(\lambda)$ and $p \Vdash \AA_{i} \subseteq B_{i}$. As $V \models|\mathcal{P}(\lambda)|=2^{\lambda} \leq 2^{\theta}<\kappa$, we can find $X \in[\kappa]^{\kappa}$ and $B_{\star} \subseteq \lambda$ such that for every $i \in X, B_{i}=B_{\star}$. Fix a bijection $h: B_{\star} \rightarrow \mu$. Since \mathbb{P} satisfies ccc and μ is regular uncountable, for every $i<j$ in X, we can choose $\xi(i, j)<\mu$ such that $p \Vdash h\left[\AA_{i} \cap \AA_{j}\right]<\xi(i, j)$. As $V \models \kappa>2^{\theta} \geq 2^{\mu}$, by the Erdős-Rado theorem, we can find $Y \in[X]^{\mu^{+}}$and $\xi_{\star}<\mu$ such that for every $i<j$ in $Y, \xi(i, j)=\xi_{\star}$. Choose $\alpha \in B_{\star}$ such that $\xi_{\star}<h(\alpha)<\mu$. For each $i \in Y$, choose $q_{i} \leq p$ such that $q_{i} \Vdash \alpha \in \AA_{i}$. Now note that no two conditions in $\left\{q_{i}: i \in Y\right\}$ are compatible. Since $|Y|=\mu^{+}>\mu \geq \omega_{1}$, this contradicts the fact that \mathbb{P} satisfies ccc. Hence $V^{\mathbb{P}} \models \mathfrak{l a}(\kappa)>\theta$.

Corollary 2.7. Assume $V \models 2^{\omega_{k}}=\omega_{k+1}$ for $k<3$. Let \mathbb{P} be the finite support product of $\mathbb{Q}_{\omega_{3}, \delta}$'s where δ runs over the set of indecomposable ordinals $<\omega_{1}$. Then $V^{\mathbb{P}}=\mathfrak{c}=\omega_{3}, \mathfrak{l s}\left(\omega_{3}\right)=\omega_{1}$ and $\mathfrak{l a}\left(\omega_{3}\right)=\omega_{2}$.

Proof. By Theorem 2.6, $V^{\mathbb{P}} \models \mathfrak{c}=\omega_{3}, \mathfrak{l s}\left(\omega_{3}\right)=\omega_{1}$ and $\mathfrak{l a}\left(\omega_{3}\right)>\omega_{1}$. Since there is an almost disjoint family in $\left[\omega_{2}\right]^{\omega_{2}}$ of size ω_{3}, we must have $V^{\mathbb{P}} \models \mathfrak{l a}\left(\omega_{3}\right)=\omega_{2}$.

3. Stronger separating families

Definition 3.1. Let $\mu<\delta \leq \lambda$ be infinite cardinals such that μ, δ are regular and $\delta=\delta^{<\mu}$. Define a forcing $\mathbb{Q}_{\lambda, \delta, \mu}$ as follows. $p \in \mathbb{Q}_{\lambda, \delta, \mu}$ iff the following hold.
(i) p is a function, $\operatorname{dom}(p) \subseteq \lambda$ and $\operatorname{range}(p) \subseteq 2$.
(ii) $|\operatorname{dom}(p)|<\delta$.
(iii) $|\{\xi \in \operatorname{dom}(p): p(\xi)=1\}|<\mu$.

For $p, q \in \mathbb{Q}_{\lambda, \delta, \mu}$, define $p \leq q$ iff $q \subseteq p$.
Lemma 3.2. Let $\mathbb{Q}=\mathbb{Q}_{\lambda, \delta, \mu}$ be as in Definition 3.1. Then the following hold.
(1) \mathbb{Q} is $<\mu$-closed.
(2) For every $X \in[\mathbb{Q}]^{\delta^{+}}$, there exists $Y \in[X]^{\delta^{+}}$such that for any $F \in[Y]^{<\mu}$, there exists $p \in \mathbb{Q}$ such that $(\forall q \in F)(p \leq q)$. So \mathbb{Q} satisfies δ^{+}-cc.
(3) $V^{\mathbb{Q}} \models|\delta|=\mu$.
(4) Forcing with \mathbb{Q} preserves all cardinals $\leq \mu$ and $\geq \delta^{+}$and collapses every cardinal in $\left(\mu, \delta^{+}\right)$to μ.

Proof. That \mathbb{Q} is $<\mu$-closed is easy to see. This implies that all cardinals $\leq \mu$ are preserved.

Next, suppose $\left\langle p_{i}: i<\delta^{+}\right\rangle$is a sequence of conditions in \mathbb{Q}. Put $A_{i}=\operatorname{dom}\left(p_{i}\right)$, $B_{i}=\left\{\xi \in \operatorname{dom}\left(p_{i}\right): p_{i}(\xi)=1\right\}$ and $A=\bigcup\left\{A_{i}: i<\delta^{+}\right\}$. Then $|A| \leq \delta^{+}$. WLOG, we can assume $A \subseteq \delta^{+}$. Fix a club $E \subseteq \delta^{+}$such that for each $\gamma \in E$ and $i<\gamma$, $A_{i} \subseteq \gamma$. Let $S=\{\gamma \in E: \operatorname{cf}(\gamma)=\delta\}$. Then S is stationary in δ^{+}and the function $h: S \rightarrow \delta^{+}$defined by $h(\gamma)=\sup \left(A_{\gamma} \cap \gamma\right)$ is regressive. By Fodor's lemma, we can find $T \subseteq S$ and $\gamma_{\star}<\delta^{+}$such that T is stationary in δ^{+}and $h \upharpoonright T$ is constantly γ_{\star}. Observe that, as $T \subseteq E$, for every $i<j$ in $T, A_{i} \cap A_{j} \subseteq \gamma_{\star}$. Since $\left|\gamma_{\star}\right| \leq \delta$ and $\delta^{<\mu}=\delta$, we can find $B_{\star} \in\left[\gamma_{\star}\right]^{<\mu}$ and $W \subseteq T$ such that W is stationary in δ^{+} and for every $i \in W, B_{i} \cap \gamma_{\star}=B_{\star}$. It follows that $\left\langle p_{i}: i \in W\right\rangle$ consists of pairwise compatible functions. Clause (2) follows.

To see (3), suppose G is \mathbb{Q}-generic over V. Put $F=\bigcup G$. Then $F: \lambda \rightarrow 2$. Let $W=\{\xi<\delta: F(\xi)=1\}$. Fix a partition $\delta=\bigsqcup\left\{W_{i}: i<\delta\right\}$ in V such that each $W_{i} \in[\delta]^{\delta}$. An easy density argument shows that $\operatorname{otp}(W)=\mu$ and for every $i<\delta$, $W \cap W_{i} \neq \emptyset$. It follows that $V[G] \models|\delta|=\mu$.

By Clause (1) all cardinals $\geq \delta^{+}$are preserved and by Clause (1) all cardinals $\leq \mu$ are preserved. Hence Clause (4) follows from Clauses (1)-(3).

Definition 3.3. Suppose $\omega \leq \mu=\operatorname{cf}(\mu)<\kappa<\lambda$ and $S_{\star}=\{\delta: \mu<\delta<$ κ and δ is inaccessible\} is stationary in κ (so κ is Mahlo). Let $\mathbb{P}_{\lambda, \kappa, \mu}$ be the Eastonsupport product of $\left\langle\mathbb{Q}_{\lambda, \delta, \mu}: \delta \in S_{\star}\right\rangle$. So $p \in \mathbb{P}_{\lambda, \kappa, \mu}$ iff
(a) p is a function with $\operatorname{dom}(p) \subseteq S_{\star}$,
(b) for every $\delta \in S_{\star} \cup\{\kappa\}, \sup (\operatorname{dom}(p) \cap \delta)<\delta$ and
(c) for every $\delta \in \operatorname{dom}(p), p(\delta) \in \mathbb{Q}_{\lambda, \delta, \mu}$.

For $p, q \in \mathbb{P}_{\lambda, \kappa, \mu}$, define $p \leq q$ iff $\operatorname{dom}(q) \subseteq \operatorname{dom}(p)$ and for every $\delta \in \operatorname{dom}(q)$, $p(\delta) \leq_{\mathbb{Q}_{\lambda, \delta, \mu}} q(\delta)$.

Lemma 3.4. Let $\mu, \kappa, \lambda, S_{\star}$ and $\mathbb{P}=\mathbb{P}_{\lambda, \kappa, \mu}$ be as above. Then the following hold.
(1) Forcing with \mathbb{P} collapses all cardinals in the interval (μ, κ) to μ.
(2) \mathbb{P} is $<\mu$-closed and κ-cc. So all cardinals $\leq \mu$ are preserved and $V^{\mathbb{P}} \models \kappa=$ μ^{+}.

Proof. For each $\delta \in S_{\star}, \mathbb{Q}_{\lambda, \delta, \mu} \lessdot \mathbb{P}$. Therefore Clause (1) follows from Lemma 3.2 It is also clear that \mathbb{P} is $<\mu$-closed.

Let us check that \mathbb{P} satisfies the κ-cc. Towards a contradiction, suppose $\left\langle p_{i}: i<\right.$ $\kappa\rangle$ is a sequence of pairwise incompatible conditions in \mathbb{P}. Choose a club $E \subseteq \kappa$ such that for every $\gamma \in E$ and $i<\gamma, \sup \left(\operatorname{dom}\left(p_{i}\right)\right)<\gamma$. Since the function $h: E \cap S_{\star} \rightarrow \kappa$ defined by $h(\delta)=\sup \left(\operatorname{dom}\left(p_{\delta}\right) \cap \delta\right)$ is regressive, by Fodor's lemma, we can find a stationary subset $T \subseteq E \cap S_{\star}$ and $\gamma_{\star}<\kappa$ such that for every $\delta \in T, h(\delta)<\gamma_{\star}$. Note that for any $\delta_{1}<\delta_{2}$ in $T, \operatorname{dom}\left(p_{\delta_{1}}\right) \cap \operatorname{dom}\left(p_{\delta_{2}}\right) \subseteq \gamma_{\star}$. Define a coloring $c:[T]^{2} \rightarrow \gamma_{\star}$ by $c\left(\left\{\delta_{1}, \delta_{2}\right\}\right)$ is the least $\gamma \in \operatorname{dom}\left(p_{\delta_{1}}\right) \cap \operatorname{dom}\left(p_{\delta_{2}}\right)$ such that $p_{\delta_{1}}(\gamma)$ and $p_{\delta_{2}}(\gamma)$ are incompatible in $\mathbb{Q}_{\lambda, \gamma, \mu}$. Put $\theta=\left|\gamma_{\star}\right|^{++}$. Since $|T|=\kappa$ is inaccessible and $\theta<\kappa$, using Erdős-Rado theorem, we can find $X \in[T]^{\theta}$ and $\gamma<\gamma_{\star}$ such that $c \upharpoonright[X]^{2}$ takes the constant value γ. But this means that $\left\{p_{\delta}(\gamma): \delta \in X\right\}$ is an antichain of size $\theta>\gamma^{+}$in $\mathbb{Q}_{\lambda, \gamma, \mu}$ which is impossible by Lemma 3.2.
Lemma 3.5. Let $\mu, \kappa, \lambda, S_{\star}$ and $\mathbb{P}=\mathbb{P}_{\lambda, \kappa, \mu}$ be as above. Then the following hold in $V^{\mathbb{P}}$.
(1) There is a family $\mathcal{F} \subseteq \mathcal{P}(\lambda)$ such that $|\mathcal{F}|=\kappa$ and for any $A \in[\lambda]^{<\kappa}$ and $B \in[\lambda]^{<\mu}$, if $A \cap B=\emptyset$, then there exists $X \in \mathcal{F}$ such that $B \subseteq X$ and $A \cap X=\emptyset$.
(2) If $\mu=\omega$, then $\mathfrak{l s}(\lambda)=\omega_{1}$. If $\mu \geq \omega_{1}$, the $\mathfrak{l s}(\lambda)=\mu$.
(3) If $\lambda>2^{\kappa}$, then there is no family $\mathcal{A} \subseteq[\kappa]^{\kappa}$ such that $|\mathcal{A}|=\lambda$ and for every $X \neq Y$ in $\mathcal{A},|X \cap Y|<\kappa$.

Proof. (1) Let G be \mathbb{P}-generic over V. For each $\delta \in S_{\star}$, define

$$
X_{\delta}=\{\xi<\lambda:(\exists p \in G)(p(\delta)(\xi)=1)\}
$$

Put $\mathcal{F}=\left\{X_{\delta}: \delta \in S_{\star}\right\}$. Then $|\mathcal{F}|=\kappa$. We claim that \mathcal{F} is as required. For suppose $A \in[\lambda]^{<\kappa}$ and $B \in[\lambda]^{<\mu}$. Since \mathbb{P} is $<\mu$-closed, $B \in V$. Since \mathbb{P} satisfies κ-cc, we can find $C \subseteq V \cap[\lambda \backslash B]^{<\kappa}$ such that $A \subseteq C$. Now observe that the set of conditions $p \in \mathbb{P}$ satisfying the following is dense in \mathbb{P} : There exists $\delta \in \operatorname{dom}(p)$ such that (a)-(c) below hold.
(a) $|C|<\delta$.
(b) $(\forall \xi \in B)(p(\delta)(\xi)=1)$.
(c) $(\forall \xi \in C)(p(\delta)(\xi)=0)$.

Choose such a $p \in G$ and a witnessing $\delta \in \operatorname{dom}(p)$. It follows that $B \subseteq X_{\delta}$ and $C \cap X_{\delta}=A \cap X_{\delta}=\emptyset$.
(2) Recall that forcing with \mathbb{P} preserves all cardinals $\leq \mu$ and $\geq \kappa$ and collapses all cardinals in the interval (μ, κ) to μ. So $V^{\mathbb{P}} \models \kappa=\mu^{+}$. First suppose $\mu=\omega$. Then by (1), $V^{\mathbb{P}} \models \mathfrak{l s}(\lambda) \leq \kappa=\mu^{+}=\omega_{1}$. Since λ is uncountable, we also have $\mathfrak{l s}(\lambda) \geq \omega_{1}$. Therefore $V^{\mathbb{P}} \models \mathfrak{l s}(\lambda)=\omega_{1}$.

Next assume $\mu \geq \omega_{1}$. Fix $\delta \in S_{\star}$ and a bijection $h: \lambda \times \delta \rightarrow \lambda$ such that $h \in V$. Let G be \mathbb{P}-generic over V. For each $i<\delta$, define

$$
X_{i}=\{\xi<\lambda:(\exists p \in G)(p(\delta)(h(\xi, i))=1)\} .
$$

Put $\mathcal{F}=\left\{X_{i}: i<\delta\right\}$. An easy density argument shows that for every $A \in$ $[\lambda]^{<\delta} \cap V$ and $B \in[\lambda \backslash A]^{<\mu} \cap V$, there exists $i<\delta$ such that $A \cap X_{i}=\emptyset$ and $B \subseteq X_{i}$. Since \mathbb{P} is $<\mu$-closed, forcing with \mathbb{P} does not add new countable subsets
of λ. Hence $V[G] \models \mathcal{F}$ separates countable subsets of λ from points. Since $V[G] \models$ $|\mathcal{F}|=|\delta|=\mu$, it follows that $\mathfrak{l s}(\lambda) \leq \mu$.

Finally, to see that $V^{\mathbb{P}} \models \mathfrak{l s}(\lambda) \geq \mu$, towards a contradiction, fix $p \in \mathbb{P}, \theta<\mu$ and $\left\langle\AA_{i}: i<\theta\right\rangle$ such that $(\forall i<\theta)\left(p \Vdash \AA_{i} \in \mathcal{P}(\lambda)\right)$ and $p \Vdash\left\{\AA_{i}: i<\theta\right\}$ separates countable subsets of λ from points. Define $\stackrel{\circ}{B}_{\xi}=\left\{i<\theta: \xi \in \AA_{i}\right\}$. As \mathbb{P} is $<\mu^{-}$ closed, $p \Vdash \stackrel{\circ}{B}_{\xi} \in \mathcal{P}(\theta) \cap V$. Since $V \vDash 2^{\theta}<\kappa<\lambda$, we can choose $\dot{X} \in[\lambda]^{\lambda} \cap V^{\mathbb{P}}$, $q \in \mathbb{P}$ and $B_{\star} \in \mathcal{P}(\theta) \cap V$ such that $q \leq p$ and $q \Vdash(\forall \xi \in \dot{X})\left(B_{\xi}^{\circ}=B_{\star}\right)$. Choose $q \leq p$ and $\xi_{1}<\xi_{2}<\lambda$ such that $q \Vdash\left\{\xi_{1}, \xi_{2}\right\} \subseteq X$. Then $q \Vdash \stackrel{\circ}{B}_{\xi_{1}}=\stackrel{\circ}{B}_{\xi_{2}}=B_{\star}$. Now observe that for every $i<\theta$,

$$
q \Vdash\left(\xi_{1} \in \AA_{i} \Longleftrightarrow i \in \stackrel{\circ}{B}_{\xi_{1}} \Longleftrightarrow i \in B_{\star} \Longleftrightarrow i \in \stackrel{\circ}{B}_{\xi_{2}} \Longleftrightarrow \xi_{2} \in \AA_{i}\right)
$$

Therefore $q \Vdash\left\{\AA_{i}: i<\theta\right\}$ does not separate countable subsets of λ from points. Hence $V^{\mathbb{P}} \models \mathfrak{l s}(\lambda)=\mu$.
(3) Towards a contradiction, fix $p \in \mathbb{P}$ and $\left\langle\AA_{i}: i<\lambda\right\rangle$ such that

$$
p \Vdash(\forall i<\lambda)\left(\AA_{i} \in[\kappa]^{\kappa}\right) \text { and }(\forall i<j<\lambda)\left(\left|\AA_{i} \cap \AA_{j}\right|<\kappa\right) .
$$

Since \mathbb{P} satisfies the κ-cc, we can find $c:[\lambda]^{2} \rightarrow \kappa$ in V such that for every $i<j<\lambda, p \Vdash \sup \left(\AA_{i} \cap \AA_{j}\right)<c(\{i, j\})$. Since $V \models \lambda>2^{\kappa}$, by the Erdős-Rado theorem, there are $H \in[\lambda]^{\kappa^{+}}$and $\gamma<\kappa$ such that for every $i<j$ in $H, c(\{i, j\})=\gamma$. It now follows that $p \Vdash\left\{\AA_{i} \backslash \gamma: i \in H\right\}$ is a family of κ^{+}pairwise disjoint sets in $[\kappa]^{\kappa}$ which is impossible since all cardinals $\geq \kappa$ are preserved in $V^{\mathbb{P}}$.

Theorem 3.6. Suppose $\mu<\kappa$, κ is Mahlo and $\lambda>2^{\kappa}$. There is $a<\mu$-closed κ-cc forcing \mathbb{P} such that
(1) $V^{\mathbb{P}} \models \kappa=\mu^{+}$.
(2) $V^{\mathbb{P}} \models \mathfrak{l s}(\lambda, \kappa, \mu)=\kappa$.
(3) $V^{\mathbb{P}} \models \mathfrak{l a}(\lambda) \geq \kappa^{+}$.

Proof. Readily follows from Lemmas 3.4 and 3.5 ,

4. Partition relations

Let (L, \prec) be a linear ordering. Throughout this section, we will assume that $|L| \geq 2$. Recall that $\left(C_{0}, C_{1}\right)$ is a cut in (L, \prec) iff C_{0} is downward closed in L, C_{1} is upward closed in L and $L=C_{0} \sqcup C_{1}$.

Definition 4.1. A linear ordering (L, \prec) is additively indecomposable iff for every cut $\left(C_{0}, C_{1}\right)$ in (L, \prec), at least one of $\left(C_{0}, \prec\right)$ and $\left(C_{1}, \prec\right)$ contains an isomorphic copy of (L, \prec).

It is easy to see that unionwise indecomposable linear orderings are also additively indecomposable but the converse is false. Recall that a linear ordering is scattered iff it does not contain a copy of the rationals $(\mathbb{Q},<)$. The following fact appears in [3] (also Exercise 10.4.1 in [7]).
Fact 4.2. Let $\left(L, \prec_{L}\right)$ be a scattered additively indecomposable linear ordering. Then one of the following holds.
(a) For every cut $\left(C_{0}, C_{1}\right)$ in L, if $C_{0} \neq \emptyset$, then L embeds into C_{0}. In this case, we say that $\left(L, \prec_{L}\right)$ is indecomposable to the left.
(b) For every cut $\left(C_{0}, C_{1}\right)$ in L, if $C_{1} \neq \emptyset$, then L embeds into C_{1}. In this case, we say that $\left(L, \prec_{L}\right)$ is indecomposable to the right.

Definition 4.3. Let (L, \prec) be a unionwise indecomposable linear ordering. An ultrafilter \mathcal{U} on L is uniform iff for every $A \in \mathcal{U}, L$ embeds into A.

The following lemma is a straightforward generalization of the results of Section 13.3 in [8.

Lemma 4.4. Assume $M A+\mathfrak{c}>\omega_{1}$. Let $\left(L, \prec_{L}\right)$ be a countable scattered unionwise indecomposable linear ordering. Then there exists a uniform ultrafilter \mathcal{U}_{L} on L such that for every family $\mathcal{F} \subseteq \mathcal{U}_{L}$, if $|\mathcal{F}| \leq \omega_{1}$, then there exists $X \in \mathcal{U}_{L}$ such that for every $A \in \mathcal{F}, X \backslash A$ is indecomposably bounded in (L, \prec) which means the following.
(a) Either $\left(L, \prec_{L}\right)$ is indecomposable to the left and for every cut $\left(C_{0}, C_{1}\right)$ in L with $C_{0} \neq \emptyset, C_{0} \in \mathcal{U}_{L}$ and $X \backslash A$ is bounded from below in $\left(L, \prec_{L}\right)$ or
(b) $\left(L, \prec_{L}\right)$ is indecomposable to the right and for every cut $\left(C_{0}, C_{1}\right)$ in L with $C_{1} \neq \emptyset, C_{1} \in \mathcal{U}_{L}$ and $X \backslash A$ is bounded from above in $\left(L, \prec_{L}\right)$.

Proof. Let \mathcal{C} be the class of all countable scattered indecomposable linear orders. Laver [6] showed that there is a rank function $r: \mathcal{C} \rightarrow \omega_{1}$ such that the following hold.
(i) For every $L \in \mathcal{C}$, either $r(L)=1$ and $L \in\left\{\omega, \omega^{\star}\right\}$ or L is the sum of an ω or ω^{\star} sequence of members of \mathcal{C} of strictly smaller ranks.
(ii) If $L_{1}, L_{2} \in \mathcal{C}$ and L_{1} embeds into L_{2}, then $r\left(L_{1}\right) \leq r\left(L_{2}\right)$.

We construct \mathcal{U}_{L} by induction on the rank of L. If $r(L)=1$, this is clear: Say $\left(L, \prec_{L}\right)=(\omega,<)$. Using MA, build a sequence $\left\langle A_{i}: i<\mathfrak{c}\right\rangle$ of \subseteq^{\star}-descending sequence in $[\omega]^{\omega}$ such that for every $X \subseteq \omega$, there exists $i<\mathfrak{c}$ such that either $A_{i} \subseteq X$ or $X \cap A_{i}=\emptyset$. Take \mathcal{U}_{ω} to be the filter generated by $\left\{A_{i}: i<\mathfrak{c}\right\}$.

Now suppose $r(L)>1$. Let us consider the case when L is the sum of an ω sequence of members of \mathcal{C} of smaller ranks. The case when L is the sum of an ω^{\star}-sequence is similar. Fix $\left\{\left(L_{n}, \prec_{n}\right): n<\omega\right\}$ such that L_{n} 's are pairwise disjoint, $r\left(L_{n}\right)<r(L), L=\bigcup\left\{L_{n}: n<\omega\right\}$ and for every $a, b \in L, a \prec_{L} b$ iff $a \in L_{m}, b \in L_{n}$ and $\left(m<n\right.$ or $\left.\left(m=n \wedge a \prec_{n} b\right)\right)$.

We can assume that $\left(L, \prec_{L}\right)$ is indecomposable to the right. Otherwise, since L is indecomposable, it would embed into some L_{n} which is impossible since $r\left(L_{n}\right)<$ $r(L)$. Fix \mathcal{U}_{ω} as above. For each $n<\omega$, let \mathcal{U}_{n} be a uniform ultrafilter on L_{n} such that for every $\mathcal{A} \subseteq \mathcal{U}_{n}$, if $|\mathcal{A}| \leq \omega_{1}$, then there exists $X \in \mathcal{U}_{n}$ such that for every $A \in \mathcal{A}, X \backslash A$ is indecomposably bounded in $\left(L_{n}, \prec_{n}\right)$.

Define $\mathcal{U}_{L}=\left\{X \subseteq L:\left\{n: X \cap L_{n} \in \mathcal{U}_{n}\right\} \in \mathcal{U}_{\omega}\right\}$. We claim that \mathcal{U}_{L} is as required. To see this, suppose $\mathcal{F} \subseteq \mathcal{U}_{L}$ and $|\mathcal{F}| \leq \omega_{1}$. We can assume that $L \in \mathcal{F}$. For $A \in \mathcal{F}$ and $n<\omega$, define $S_{A}=\left\{n: A \cap L_{n} \in \mathcal{U}_{n}\right\}$. Choose $B \in \mathcal{U}_{\omega}$ such that $B \backslash S_{A}$ is finite for every $A \in \mathcal{F}$. Let $\mathcal{A}_{n}=\left\{A \cap L_{n}: A \in \mathcal{F}\right\} \cap \mathcal{U}_{n}$. Choose $X_{n} \in \mathcal{U}_{n}$ such that $X_{n} \backslash W$ is indecomposably bounded in L_{n} for every $W \in \mathcal{A}_{n}$. Put $Y=\bigcup\left\{X_{n}: n \in B\right\}$. It is clear that $Y \in \mathcal{U}_{L}$.

Choose $\left\langle x_{n}(k): k<\omega\right\rangle$ such that for every n, one of $(\star)_{n},(\star \star)_{n}$ below holds.
$(\star)_{n}$ Either L_{n} is indecomposable to the right and the following hold.
(1) $X_{n} \backslash W$ is bounded from above in L_{n} for every $W \in \mathcal{A}_{n}$.
(2) $\left\langle x_{n}(k): k<\omega\right\rangle$ is increasing and right-cofinal in $\left(L_{n}, \prec_{n}\right)$.
$(\star \star)_{n}$ Or L_{n} is indecomposable to the left and the following hold.
(2) $X_{n} \backslash W$ is bounded from below in L_{n} for every $W \in \mathcal{A}_{n}$.
(3) $\left\langle x_{n}(k): k<\omega\right\rangle$ is decreasing and left-cofinal in $\left(L_{n}, \prec_{n}\right)$.

For each $A \in \mathcal{F}$, fix $N_{A}<\omega$ such that $B \backslash N \subseteq S_{A}$. Choose $f_{A}: \omega \rightarrow \omega$ such that for every $n \in B \backslash N_{A}$, if $(\star)_{n}$ holds, then $(Y \backslash A) \cap L_{n}$ is \prec_{n}-bounded from above by $x_{n}\left(f_{A}(n)\right)$ and if $(\star \star)_{n}$ holds, then then $(Y \backslash A) \cap L_{n}$ is \prec_{n}-bounded from below by $x_{n}\left(f_{A}(n)\right)$. Using $\mathrm{MA}_{\omega_{1}}$, fix $f_{\star}: \omega \rightarrow \omega$ dominating every function in $\left\{f_{A}: A \in \mathcal{F}\right\}$. Put $Z=\bigcup\left\{Y \cap W_{n}: n<\omega\right\}$ where

$$
W_{n}= \begin{cases}\left(x_{n}\left(f_{\star}(n)\right), \infty\right)_{L_{n}} & \text { if }(\star)_{n} \text { holds } \\ \left(-\infty, x_{n}\left(f_{\star}(n)\right)\right)_{L_{n}} & \text { otherwise }\end{cases}
$$

Then $Z \in \mathcal{U}_{L}\left(\right.$ as $\left.Y \backslash Z \notin \mathcal{U}_{L}\right)$ and for every $A \in \mathcal{F}, Z \backslash A$ is indecomposably bounded in $\left(L, \prec_{L}\right)$.

Proof of Theorem 1.11 If $\left(L, \prec_{L}\right)$ contains a copy of rationals, then this is Theorem 6.7 in [4] (For a slightly stronger result see Lemma 4.5 below). So assume it is scattered. Fix \mathcal{U}_{L} as in Lemma 4.4 and suppose $c: \omega_{1} \times L \rightarrow K$. For each $\alpha<\omega_{1}$, fix $A_{\alpha} \in \mathcal{U}_{L}$ and $k_{\alpha}<K$ such that for every $x \in A_{\alpha}, c(\alpha, x)=k_{\alpha}$. Fix $X \in\left[\omega_{1}\right]^{\omega_{1}}$ such that $k_{\alpha}=k_{\star}$ does not depend on $\alpha<X$. Now apply Lemma 4.4 to the family $\left\{A_{\alpha}: \alpha \in X\right\}$ to get $B \in \mathcal{U}_{L}$ such that for each $\alpha \in X, B \backslash A_{\alpha}$ is indecomposably bounded in $\left(L, \prec_{\alpha}\right)$ by $y_{\alpha} \in L$. Choose $Y \in[X]^{\omega_{1}}$ such that $y_{\alpha}=y_{\star}$ does not depend on $\alpha \in Y$. Choose $D \subseteq B$ such that $(\forall \alpha \in Y)\left(D \subseteq A_{\alpha}\right)$ and $\left(D, \prec_{L}\right) \cong\left(L, \prec_{L}\right)$. Then $c \upharpoonright(Y \times D)$ is constant.

Proof of Theorem $\mathbf{1 . 1 0}$. We use an absoluteness argument like the one in 1]. Let W be a ccc extension of V satisfying MA $+\mathfrak{c}>\omega_{1}$. Let $\alpha<\omega_{1}$. Fix linear orders \prec_{1} and \prec_{2} on ω such that $\operatorname{otp}\left(\omega, \prec_{1}\right)=(\alpha,<)$ and $\operatorname{otp}\left(\omega, \prec_{2}\right)=\left(L, \prec_{L}\right)$. Let T be the set of all pairs (s, t) such that

- s, t are functions, $\operatorname{dom}(s)=\operatorname{dom}(t)=N<\omega$,
- $\operatorname{range}(s) \subseteq \omega_{1}, \operatorname{range}(t) \subseteq L$,
- $c \upharpoonright(\operatorname{range}(s) \times \operatorname{range}(t))$ is constant and
- for every $m, n<N,\left(m \prec_{1} n \Longleftrightarrow s(m)<s(n)\right)$ and $\left(m \prec_{2} n \Longleftrightarrow\right.$ $\left.t(m) \prec_{L} t(n)\right)$.
Define $(s, t) \preceq_{T}\left(s^{\prime}, t^{\prime}\right)$ iff $s \subseteq s^{\prime}$ and $t \subseteq t^{\prime}$ and note that $\left(T, \preceq_{T}\right)$ is well-founded iff there is no c-homogeneous set of type $\alpha \times L$. But this is absolute between V and W since a tree is well-founded iff there is a rank function on it. So it suffices to construct such a homogeneous set in W. But this was already done above.

Lemma 4.5. Let $f: \omega_{1} \times \mathbb{Q} \rightarrow K$ where $K<\omega$.
(1) Assume $\mathrm{MA}_{\omega_{1}}$ (or just $\mathfrak{p}>\omega_{1}$). Then there exist $X \in\left[\omega_{1}\right]^{\omega_{1}}$ and $Y \subseteq \mathbb{Q}$ such that Y is somewhere dense in \mathbb{Q} and $f \upharpoonright(X \times Y)$ is constant.
(2) For each $\alpha<\omega_{1}$, there exist $X \subseteq \omega_{1}$ and $Y \subseteq \mathbb{Q}$ such that otp $(X)=\alpha$, Y is somewhere dense in \mathbb{Q} and $f \upharpoonright(X \times Y)$ is constant.

Proof. (1) It is enough to show this for $K=2$ for then we can argue by induction on K. For each $i<\omega_{1}$, put $A_{i}=\{x \in \mathbb{Q}: f(i, x)=1\}$. The following is Lemma 6.11 in (4).

Fact 4.6 (4]). Let $\left\langle A_{i}: i<\omega_{1}\right\rangle$ be a sequence of subsets of \mathbb{Q}. There exist $W \in\left[\omega_{1}\right]^{\omega_{1}}, c<2$ and a rational interval J such that for every finite $F \subseteq W$, $\bigcap_{i \in F} A_{i}^{c}$ is dense in J. Here, $A_{i}^{c}=A_{i}$ if $c=0$ and $\mathbb{Q} \backslash A_{i}$ otherwise.

Using Fact 4.6, we can find a rational interval J and $W \in\left[\omega_{1}\right]^{\omega_{1}}$ such that either the intersection of any finite subfamily of $\left\{A_{i}: i \in W\right\}$ is dense in J or the intersection of any finite subfamily of $\left\{\mathbb{Q} \backslash A_{i}: i \in W\right\}$ is dense in J. WLOG, let us assume that the former situation holds. Define a forcing \mathbb{P} as follows: $p \in \mathbb{P}$ iff $p=\left(u_{p}, v_{p}, I_{p}\right)$ where
(i) $u_{p} \in[\mathbb{Q}]^{<\omega}$ and $v_{p} \in[W]^{<\omega}$.
(ii) I_{p} is a finite family of rational subintervals of J.
(iii) For each $I \in I_{p}, u_{p} \cap I \neq \emptyset$.
(iv) For $p, q \in \mathbb{P}$, define $p \leq q$ iff
(a) $u_{q} \subseteq u_{p}, v_{q} \subseteq v_{p}, I_{q} \subseteq I_{p}$.
(b) If $x \in u_{p} \backslash u_{q}$ and $i \in v_{q}$, then $x \in A_{i}$.
\mathbb{P} is σ-centered (as there are countably many u_{p} 's) and if $G \subseteq \mathbb{P}$ is sufficiently generic (use $\mathfrak{p}>\omega_{1}$) then $X=W=\bigcup\left\{v_{p}: p \in G\right\}$ and $Y=\bigcup\left\{u_{p}: p \in G\right\}$ are as claimed in (1).
(2) Fix a linear order \prec_{α} on ω such that $\operatorname{otp}\left(\omega, \prec_{\alpha}\right)=(\alpha,<)$. For each rational interval J, fix a computable enumeration $\left\langle J_{n}: n<\omega\right\rangle$ of all rational subintervals of J and define $X=X_{J}$ to be the set of all finite sequences $s=\left\langle\left(x_{n}, i_{n}\right): n<N\right\rangle$ such that the following hold.

- For every $n<N, x_{n} \in J_{n}$.
- $\left\langle i_{n}: n<N\right\rangle$ is an injective sequence of countable ordinals.
- For every $m, n<N,\left(i_{m}<i_{n} \Longleftrightarrow m \prec_{\alpha} n\right)$.
- $f \upharpoonright\left(\left\{i_{n}: n<N\right\} \times\left\{x_{n}: n<N\right\}\right)$ is constant.

Define a relation $R=R_{J}$ on X by $s R t$ iff $t \subseteq s$. Note that $\left(X_{J}, R_{J}\right)$ is not well-founded iff there exist $X \subseteq \omega_{1}$ and $Y \subseteq \mathbb{Q}$ such that $\operatorname{otp}(X)=\alpha, Y$ is dense in J and $f \upharpoonright(X \times Y)$ is constant.

Now we can start repeating the proof of part (1). Choose a rational interval J and the forcing \mathbb{P} as there and get a \mathbb{P}-generic filter G over V. In $V[G],\left(X_{J}, R_{J}\right)$ is not well-founded. By absoluteness, the same holds in V and we are done.

References

[1] J. Baumgartner, A. Hajnal, A proof (involving Martin's axiom) of a partition relation, Fund. Math. 78 No. 3 (1973), 193-203.
[2] K. Higuchi, S. Lempp, D. Raghavan, F. Stephan, The order dimension of locally countable partial orders, Proc. Amer. Math. Soc. , Vol. 148 No. 7 (2020), 2823-2833.
[3] P. Jullien, Contributions to the study of dispersed order types, Ph.D. thesis, Marseille, 1969.
[4] L. D. Klausner and T. Weinert, The polarised partition relation for order types, Quart. J. Math. 71 (2020) No.3, 823-842.
[5] A. Kumar, D. Raghavan, Separating families and order dimension of Turing degrees, Ann. Pure Appl. Logic, Vol. 172 Issue 5 (2021), 102911.
[6] R. Laver, On Fraisse's order type conjecture, Ann. of Math. (2) 93 (1971), 89-111.
[7] A. Rosenstein, Linear orderings, Academic Press, New York 1982.
[8] S. Todorcevic, Notes on forcing axioms, World Scientific 2014.
(Kumar) Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.

Email address: krashu@iitk.ac.in
URL: https://home.iitk.ac.in/~krashu/
(Shelah) Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem 91904, Israel and Department of Mathematics, Rutgers, The State University of New Jersey, Hill Center-Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

Email address: shelah@math.huji.ac.il
URL: https://shelah.logic.at/

[^0]: S. Shelah's research was partially supported by Israel Science Foundation grant no.s 1838/19 and 2320/23 and NSF grant no. DMS 1833363. Publication no. 12XX.

