S-spaces and large continuum

Alan Dow ${ }^{\mathrm{a}, *}$, Saharon Shelah ${ }^{\mathrm{b}, 1,2}$
a University of North Carolina at Charlotte, Charlotte, NC 28223, USA
b Department of Mathematics, Rutgers University, Hill Center, Piscataway, NJ, 08854-8019, USA

A R T I C L E I N F O

Article history:
Received 27 June 2022
Accepted 6 April 2023
Available online 12 April 2023

MSC:

54A35
03E35
Keywords:
S-spaces
Forcing

Abstract

We prove that it is consistent with large values of the continuum that there are no S-spaces. We also show that we can also have that compact separable spaces of countable tightness have cardinality at most the continuum. © 2023 Elsevier B.V. All rights reserved.

1. Introduction

An S-space is a regular hereditarily separable space that is not Lindelöf. If an S-space exists it can be assumed to be a topology on ω_{1} in which initial segments are open [11]. The continuum hypothesis implies that S-spaces exist [9] and the existence of a Souslin tree implies that S-spaces exist [14]. Therefore it is consistent with any value of \mathfrak{c} that S-spaces exist. Todorcevic [16] proved the major result that it is consistent with $\mathfrak{c}=\aleph_{2}$ that there are no S-spaces. He also remarks that this follows from PFA. We prove that it is consistent with arbitrary large values of \mathfrak{c} that there are no S-spaces. Our method adapts the approach used in [16] and incorporates ideas, such as the Cohen real trick in Lemma 2.15, first introduced in [1,2].

The outline of the proof (of Theorem 4.3) is that we choose a regular cardinal κ in a model of GCH. We construct a preparatory mixed support iteration sequence $\left\langle P_{\alpha}, \dot{Q}_{\beta}: \alpha \leq \kappa, \beta<\kappa\right\rangle$ consisting of iterands that are Cohen posets and cardinal preserving subposets of Jensen's poset for adding a generic cub. Following methods first introduced in [12], but more closely those of [16], the poset P_{κ} is shown to be cardinal preserving. We then extend the iteration sequence to one of length $\kappa+\kappa$ with iterands that are

[^0]ccc posets of cardinality less than κ. These iterands are the same as those used in [16]. For cofinally many $\beta<\kappa, \dot{Q}_{\kappa+\beta}$ is constructed so as to add an uncountable discrete subset to a P_{β}-name of an S-space. The bookkeeping is routine to ensure that $P_{\kappa+\kappa}$ forces there are no S-spaces. The challenging part of the proof is to prove that these $\dot{Q}_{\beta}(\kappa \leq \beta<\kappa+\kappa)$ are ccc in this new setting. In the final section, we use similar techniques to produce a model in which compact separable spaces of countable tightness have cardinality at most \mathbf{c}.

2. Constructing P_{κ}

Throughout the paper we assume that GCH holds and that $\kappa>\aleph_{2}$ is a regular uncountable cardinal.
Definition 2.1. The Jensen poset \mathcal{J} is the set of pairs (a, A) where a is a countable closed subset of ω_{1} and $A \supset a$ is an uncountable closed subset of ω_{1}. The condition (a, A) is an extension of $(b, B) \in \mathcal{J}$ providing a is an end-extension of b and $A \subset B$.

We use \mathbf{E} to denote the set $\{\lambda+2 k: \lambda<\kappa$ a limit, $k \in \omega\}$. We also choose a family $\mathcal{J}=\left\{I_{\gamma}: \gamma \in \mathbf{E}\right\}$ of subsets of κ such that, for each $\mu<\gamma \in \mathbf{E}$
(1) $\gamma \in I_{\gamma} \subset \gamma+1$ and $\left|I_{\gamma}\right| \leq \aleph_{1}$,
(2) if $\gamma<\omega_{2}$, then $I_{\gamma}=\gamma+1$,
(3) if $\mu \in I_{\gamma} \cap \mathbf{E}$, then $I_{\mu} \subset I_{\gamma}$
(4) the family \mathcal{J} is cofinal in $[\kappa]^{\aleph_{1}}$.

Say that a set $I \subset \kappa$ is \mathcal{J}-saturated if it satisfies that $I_{\mu} \subset I$ for all $\mu \in I \cap \mathbf{E}$. Of course, each $I_{\gamma} \in \mathcal{J}$ is J-saturated.

Definition 2.2. A. We define a mixed support iteration sequence $\left\langle P_{\alpha}, \dot{Q}_{\beta}: \alpha \leq \kappa, \beta<\kappa\right\rangle$:
(1) $P_{0}=\emptyset$,
(2) $p \in P_{\alpha}$ is a function with $\operatorname{dom}(p)$, a countable subset of α, such that $\operatorname{dom}(p) \cap \mathbf{E}$ is finite,
(3) for all $p \in P_{\alpha}$ and $\beta \in \operatorname{dom}(p), p(\beta)$ is a P_{β}-name forced by $1_{P_{\beta}}$ to be an element of \dot{Q}_{β},
(4) the support of a P_{α}-name $\tau, \operatorname{supp}(\tau)$, is defined, by recursion on α to be the union of the set $\{\operatorname{supp}(\sigma) \cup$ $\operatorname{dom}(q):(\sigma, q) \in \tau\}$,
(5) for $\alpha \in \mathbf{E}, \dot{Q}_{\alpha}$ is the trivial P_{α}-name for $\mathcal{C}_{\omega_{1}}=\operatorname{Fn}\left(\omega_{1}, 2\right)$ (i.e. each element of \dot{Q}_{α} has empty support),
(6) for $\alpha \in \mathbf{E}, \dot{Q}_{\alpha+1}$ is the subposet of the standard $P_{\alpha+1}$-name for \mathcal{J} consisting of the $P_{\alpha+1}$-names that are forced to have the form (\dot{a}, \dot{A}) where $\operatorname{supp}(\dot{a}) \subset \mathbf{E} \cap I_{\alpha}, \operatorname{supp}(\dot{A}) \subset \alpha$, and $1_{P_{\alpha}+1}$ forces that $(\dot{a}, \dot{A}) \in \mathcal{J}$. $\dot{Q}_{\alpha+1}$ is chosen so as to be sufficiently rich in names in the sense that if $p \in P_{\alpha+1}$ and \dot{q} is a $P_{\alpha+1}$-name such that $p \Vdash_{P_{\alpha}} \dot{q} \in \dot{Q}_{\alpha+1}$, then there is a $\dot{q}_{1} \in \dot{Q}_{\alpha+1}$ such that $p \Vdash \dot{q}=\dot{q}_{1}$.
B. For each $\alpha \in \mathbf{E}$, we let \dot{C}_{α} denote the $P_{\alpha+2}$-name of the generic subset of ω_{1} added by $\dot{Q}_{\alpha+1}$.

Remark 1. Since we defined the family \mathcal{J} to have the property that $I_{\gamma}=\gamma+1$ for all $\gamma \in \omega_{2} \cap \mathbf{E}$, it follows that $1_{P_{\omega_{2}}}$ is isomorphic to that used in [16]. It also follows that for all $\beta \in \omega_{2} \cap \mathbf{E}, P_{\beta+1} \Vdash \dot{Q}_{\beta+1}$ is countably closed. We necessarily lose this property for $\omega_{2} \leq \beta$ for any family \mathcal{J} satisfying our properties (1)-(4). Nevertheless, our development of the properties of P_{κ} will closely follow that of [16].

Remark 2. We prove in Lemma 2.13 that, for each $\alpha \in \mathbf{E}, \dot{C}_{\alpha}$ is forced, as hoped, to be a cub. However, even though, for $\beta \geq \omega_{2}, P_{\beta+1}$ does not force that $\dot{Q}_{\beta+1}$ is countably closed, we make note of subsets of the iteration sequence that have special properties, such as in Lemma 2.9.

For any ordered pair (a, b), let $\pi_{0}((a, b))=a$ and $\pi_{1}((a, b))=b$. For convenience, for an element v of V and any $\alpha<\kappa$, we identify the usual trivial P_{α}-name for v with v itself. In particular, if $s \in \mathcal{C}_{\omega_{1}}$ and $\alpha \in \mathbf{E}$, then $s \in \dot{Q}_{\alpha}$. Similarly, if (\dot{a}, \dot{A}) is a pair of the form specified in Definition $2.2(6)$, then again (\dot{a}, \dot{A}) can be regarded as an element of $\dot{Q}_{\alpha+1}$. We will say that a P-name τ for a subset of an ordinal λ and poset P is canonical if it is a subset of $\lambda \times P$ and if $\{p:(\alpha, p) \in \tau\}$ is an antichain for all $\alpha \in \lambda$. Let \mathcal{D}_{β} denote the set of canonical P_{β}-names of closed and unbounded subsets of ω_{1}.

Definition 2.3. For each $\alpha<\kappa$, let P_{α}^{\prime} denote the subset of P_{α}, where $p \in P_{\alpha}^{\prime}$ providing for all $\beta \in \operatorname{dom}(p) \cap \mathbf{E}$, $p(\beta)$ is, literally, an element of $\mathcal{C}_{\omega_{1}}$.

Lemma 2.4. For all $\alpha \leq \kappa, P_{\alpha}^{\prime}$ is a dense subset of P_{α}.
Proof. Assume $\alpha \leq \kappa$ and that, by induction, P_{β}^{\prime} is a dense subset of P_{β} for all $\beta<\alpha$. Consider any $p \in P_{\alpha}$. If α is a limit, choose any $\beta<\alpha$ such that $\operatorname{dom}(p) \cap \mathbf{E} \subset \beta$. Choose any $p^{\prime} \in P_{\beta}^{\prime}$ so that $p^{\prime}<p \upharpoonright \beta$. We then have that $p^{\prime} \cup p \upharpoonright(\alpha \backslash \beta)$ is a condition in P_{α} that is below p.

Now let $\alpha=\beta+1$. If $\beta \in \mathbf{E}$, then choose $p^{\prime} \in P_{\beta}^{\prime}$ so that there is an $s \in \mathcal{C}_{\omega_{1}}$ such that $p^{\prime} \Vdash_{P_{\beta}} p(\beta)=s$. Then the desired extension of p in P_{α}^{\prime} is $p^{\prime} \cup\langle\beta, s\rangle$. Similarly, if $\beta \notin \mathbf{E}$ and $p^{\prime} \in P_{\beta}^{\prime}$ with $p^{\prime}<p \upharpoonright \beta$, then $p^{\prime} \cup\langle\beta, p(\beta)\rangle \in P_{\alpha}^{\prime}$.

Proposition 2.5. If $p \in P_{\kappa}$ then for every $I \subset \kappa, p \upharpoonright I \in P_{\kappa}$ and $p \leq p \upharpoonright I$.
Definition 2.6. For a subset $I \subset \kappa$ and $\alpha \leq \kappa$, let $P_{\alpha}(I)$ denote the subset $\left\{p \in P_{\alpha}^{\prime}: \operatorname{dom}(p) \subset I\right\}$.
Recall that for posets $\left(P,<_{P}\right)$ and $\left(R,<_{R}\right), P$ is a complete subposet of R, i.e. $P \subset_{c} R$, providing
(1) $P \subset R,<_{P}=<_{R} \cap(P \times P)$,
(2) $\perp_{P}=\perp_{R} \cap(P \times P)$, where \perp is the incompatibility relation,
(3) for each $r \in R$, the set of projections, $\operatorname{proj}_{P}(r)$, is not empty, where $\operatorname{proj}_{P}(r)=\left\{p \in P:(\forall q \in P)\left(q<_{P}\right.\right.$ $\left.\left.p \Rightarrow q \not \varliminf_{R} r\right)\right\}$.

If $P \subset_{c} R$, then R / P is often used to denote the P-name of the poset satisfying that $R \simeq P * R / P$. In fact, R / P can be defined so that simply if $G \subset P$ is a generic filter, then $\operatorname{val}_{G}(R / P)=\left\{r \in R: \operatorname{proj}_{P}(r) \cap G \neq \emptyset\right\}$ with the ordering inherited from $<_{R}$. With this view, $\operatorname{val}_{G}(R / P)=G^{+}$where, as is standard, $G^{+}=\{r \in$ $R:(\forall p \in G) r \not \perp p\}$. Of course it follows that for $\beta<\alpha \leq \kappa, P_{\beta} \subset_{c} P_{\alpha}$.

It is clear that $P_{\alpha}(\mathbf{E})$ is isomorphic to (the usual dense subset of) a finite support iteration of the Cohen $\operatorname{poset} \mathcal{C}_{\omega_{1}}$.

Proposition 2.7. For each $\alpha \leq \kappa$, the set $P_{\alpha}(\mathbf{E}) \subset_{c} P_{\alpha}$ and is ccc.
Definition 2.8. For each $\alpha \in \mathbf{E}$, let $Q_{\alpha+1}^{\prime}$ be the subset of $\dot{Q}_{\alpha+1}$ consisting of those pairs (\dot{a}, \dot{A}) as in Definition 2.2(6).

We may note that, for each $(\dot{a}, \dot{A}) \in Q_{\alpha+1}^{\prime}, \dot{a}$ is a $P_{\alpha+1}\left(I_{\alpha} \cap \mathbf{E}\right)$-name and \dot{A} is a P_{α}-name that is forced by $1_{P_{\alpha}}$ to be a cub subset of ω_{1}. Also, for every $p \in P_{\alpha+1}, p \upharpoonright \alpha \Vdash p(\alpha+1) \in Q_{\alpha+1}^{\prime}$.

Lemma 2.9. If $\alpha \in \mathbf{E}$ and $\left\{\left(\dot{a}_{n}, \dot{A}_{n}\right): n \in \omega\right\} \subset Q_{\alpha+1}^{\prime}$ is a sequence that satisfies, for each $n \in \omega$, $1 \Vdash_{P_{\alpha+1}}\left(\dot{a}_{n+1}, \dot{A}_{n+1}\right) \leq\left(\dot{a}_{n}, \dot{A}_{n}\right)$, then there is a condition $(\dot{a}, \dot{A}) \in Q_{\alpha+1}^{\prime}$ such that
(1) $1 \Vdash_{P_{\alpha+1}}$ forces that \dot{a} is the closure of $\bigcup\left\{\dot{a}_{n}: n \in \omega\right\}$,
(2) $1_{P_{\alpha}}$ forces that \dot{A} equals $\bigcap\left\{\dot{A}_{n}: n \in \omega\right\}$,
(3) $1 \Vdash_{P_{\alpha+1}}$ forces that $(\dot{a}, \dot{A})=\bigwedge\left\{\left(\dot{a}_{n}, \dot{A}_{n}\right): n \in \omega\right\}$.

Proof. In the forcing extension by a $P_{\alpha+1}$-generic filter G, it is clear that $\left(\mathrm{cl}\left(\bigcup\left\{\operatorname{val}_{G}\left(\dot{a}_{n}\right)\right), \bigcap\left\{\operatorname{val}_{G}\left(\dot{A}_{n}\right)\right.\right.\right.$: $n \in \omega\}$) is the meet in \mathcal{J} of the sequence $\left\{\left(\operatorname{val}_{G}\left(\dot{a}_{n}\right), \operatorname{val}_{G}\left(\dot{A}_{n}\right)\right): n \in \omega\right\}$. We just have to be careful about the supports of the names for these objects. Each \dot{a}_{n} is a $P_{\alpha+1}\left(I_{\alpha}\right)$-name and so it is clear that there is a $P_{\alpha+1}\left(I_{\alpha} \cap \mathbf{E}\right)$-name, \dot{a}, such that $1 \Vdash_{P_{\alpha+1}} \dot{a}=\operatorname{cl}\left(\bigcup\left\{\dot{a}_{n}: n \in \omega\right\}\right)$. This is the only subtle point. Any P_{α}-name, \dot{A}, for $\bigcap\left\{\dot{A}_{n}: n \in \omega\right\}$ is adequate (although we are using that each \dot{A}_{n} is a P_{α}-name forced by 1 to be a cub).

When we have a sequence $\left\{\left(\dot{a}_{n}, \dot{A}_{n}\right): n \in \omega\right\} \subset \dot{Q}_{\alpha+1}^{\prime}$ as in the hypothesis of Lemma 2.9, we will use $\bigwedge\left\{\left(\dot{a}_{n}, \dot{A}_{n}\right): n \in \omega\right\}$ to denote the element (\dot{a}, \dot{A}) in the conclusion of the Lemma.

Let $<_{E}$ denote the relation on P_{κ} defined by $p_{1}<_{E} p_{0}$ providing
(1) $p_{1} \leq p_{0}$,
(2) $p_{1} \upharpoonright \mathbf{E}=p_{0} \upharpoonright \mathbf{E}$,
(3) for $\beta \in \operatorname{dom}\left(p_{0}\right) \backslash \mathbf{E}, \mathbf{1}_{P_{\beta}} \Vdash p_{1}(\beta)<p_{0}(\beta)$.

For $r \in P_{\kappa}(\mathbf{E})$ and compatible $p \in P_{\kappa}$, let $p \wedge r$ denote the condition with domain $\operatorname{dom}(p) \cup \operatorname{dom}(r)$ satisfying $(p \wedge r)(\beta)=p(\beta) \cup r(\beta)$ for $\beta \in \operatorname{dom}(r)$ and $(p \wedge r)(\beta)=p(\beta)$ for $\beta \in \operatorname{dom}(p) \backslash \operatorname{dom}(r)$. For convenience, let $p \wedge r$ equal p if $r \in P_{\kappa}$ is not compatible with p.

Lemma 2.10. Assume that $\left\{p_{n}: n \in \omega\right\} \subset P_{\kappa}^{\prime}$ is a $<_{E}$-descending sequence. Then there is a $p_{\omega} \in P_{\kappa}^{\prime}$ such that $\operatorname{dom}(p)=\bigcup_{n} \operatorname{dom}\left(p_{n}\right)$ and $p_{\omega}<_{E} p_{n}$ for all $n \in \omega$.

Proof. We let $J=\bigcup\left\{\operatorname{dom}\left(p_{n}\right): n \in \omega\right\}$. We define $p_{\omega} \upharpoonright \beta$ by induction on $\beta \in \mathbf{E}$ so that $\operatorname{dom}\left(p_{\omega} \upharpoonright \beta\right)=J \cap \beta$. For limit α, simply $p_{\omega} \upharpoonright \alpha=\bigcup_{\beta<\alpha} p_{\omega} \upharpoonright \beta$. If $p_{\omega} \upharpoonright \beta<_{E} p_{n} \upharpoonright \beta$ for all $n \in \omega$ and $\beta<\alpha$, then we have $p_{\omega} \upharpoonright \alpha<_{E} p_{n} \upharpoonright \alpha$ for all $n \in \omega$. Now let $\alpha=\beta+2$ with $\beta \in \mathbf{E}$ and assume that we have defined $p_{\omega} \upharpoonright \beta$ as above. If $\beta \in J$, then let $p_{\omega}(\beta)=p_{0}(\beta)$. If $\beta+1 \in J$, then $\mathbf{1}_{P_{\beta+1}}$ forces that $\left\{p_{n}(\beta+1): n \in \omega\right\}$ is a descending sequence in $\dot{Q}_{\beta+1}$. We define $p_{\omega}(\beta+1)$ to equal $\bigwedge\left\{p_{n}(\beta+1): n \in \omega\right\}$. It follows by the definition of $\bigwedge\left\{p_{n}(\beta+1): n \in \omega\right\}$, that $\mathbf{1}_{P_{\beta+1}} \Vdash p_{\omega}(\beta+1)<p_{n}(\beta+1)$ for all $n \in \omega$.

Lemma 2.11. For every $p_{0} \in P_{\kappa}^{\prime}$ and dense subset D of P_{κ}, there is a $p<_{E} p_{0}$ satisfying that the set $D \cap\left\{p \wedge r: r \in P_{\kappa}(\mathbf{E})\right\}$ is predense below p. Moreover, there is a countable subset of $D \cap\left\{p \wedge r: r \in P_{\kappa}(\mathbf{E})\right\}$ that is predense below p.

Proof. Let $r_{0}=p_{0} \upharpoonright \mathbf{E}$. There is nothing to prove if $p_{0} \in D$ so assume that it is not. By induction on $0<\eta<\omega_{1}$, we choose, if possible, conditions p_{η}, r_{η} such that, for all $\zeta<\eta$:
(1) $p_{\zeta}<_{E} p_{\eta}$ and $r_{\zeta}<r_{0}$,
(2) $p_{\zeta} \wedge r_{\zeta} \in D$,
(3) $\left(p_{\eta} \wedge r_{\eta}\right) \perp\left(p_{\zeta} \wedge r_{\zeta}\right)$.

Suppose that we have so chosen $\left\{p_{\zeta}, r_{\zeta}: \zeta<\eta\right\}$. Let $L_{\eta}=\bigcup\left\{\operatorname{dom}\left(p_{\zeta}\right): \zeta<\eta\right\}$. If $\eta=\beta+1$, let $\bar{p}_{\eta}=p_{\beta}$. If η is a limit, then let \bar{p}_{η} be a condition as in Lemma 2.10 for some cofinal sequence in η. If $\left\{p_{\zeta} \wedge r_{\zeta}: \zeta<\eta\right\}$ is predense below \bar{p}_{η}, we halt the induction and set $p=\bar{p}_{\eta}$. Otherwise we choose any $p_{\eta}<_{E} \bar{p}_{\eta}$ and an $r_{\eta} \supset r_{0}$ so that $p_{\eta} \wedge r_{\eta}$ in D. The induction will halt for some $\eta<\omega_{1}$ since the family $\left\{r_{\zeta}: \zeta<\eta\right\}$ is evidently an antichain in $P_{\kappa}(\mathbf{E})$.

Corollary 2.12. For each $\beta \in \mathbf{E}, P_{\beta}$ is proper and $P_{\beta} / P_{\beta}(\mathbf{E} \cap \beta)$ does not add any reals.
Proof. Let $P_{\beta} \in M$ where M is a countable elementary submodel of $H\left(\kappa^{+}\right)$. Let $\left\{D_{n}: n \in \omega\right\}$ be an enumeration of the dense open subsets of P_{β} that are members of M. By Lemma 2.11, we have that for each $q \in P_{\beta} \cap M$ and $n \in \omega$, there is a $\bar{q}<_{E} q$ also in $P_{\beta} \cap M$ so that $D_{n} \cap\left\{\bar{q} \wedge r: r \in P_{\beta}(\mathbf{E}) \cap M\right\}$ is predense below \bar{q}. Let $M \cap \omega_{1}=\delta$. Fix any $p_{0} \in P_{\beta} \cap M$. By a simple recursion, we may construct a $<_{E}$-descending sequence $\left\{p_{n}: n \in \omega\right\} \subset M$ so that, for each $n, D_{n} \cap\left\{p_{n+1} \wedge r: r \in P_{\beta}(\mathbf{E}) \cap M\right\}$ is predense below p_{n+1}. By Lemma 2.10, we have the $\left(P_{\beta}, M\right)$-generic condition p_{ω}. It is clear that for each P_{β}-name $\tau \in M$ for a subset of ω, p_{ω} forces that τ is equal to a $P_{\beta}(\mathbf{E})$-name. This implies that $P_{\beta} / P_{\beta}(\mathbf{E} \cap \beta)$ does not add reals.

We can now prove that $P_{\beta+2}$ does indeed force that \dot{C}_{β} is a cub.
Lemma 2.13. For each $\beta \in \mathbf{E}, P_{\beta+2}$ forces that \dot{C}_{β} is unbounded in ω_{1}.
Proof. Let $p \in P_{\beta+2}$ be any condition and let $\gamma \in \omega_{1}$. By possibly strengthening p we can assume that $p(\beta+1) \in Q_{\beta+1}^{\prime}$. We find $q<p$ so that $q \Vdash \dot{C}_{\beta} \backslash \gamma$ is not empty. Let $p, P_{\beta+2}$ be members of a countable elementary submodel $M \prec H\left(\kappa^{+}\right)$. Let $\bar{p}<p \upharpoonright \beta$ be $\left(P_{\beta}, M\right)$-generic and let $\dot{D}=\pi_{1}(p(\beta+1)) \in \mathcal{D}_{\beta}$. Since p, \dot{D} are members of M and p forces that \dot{D} is a cub, it follows that $\bar{p} \Vdash \delta \in \dot{D}$. It also follows that $\bar{p} \Vdash \dot{a} \subset \dot{D} \cap \delta$. Let \dot{a}_{1} be the $P_{\beta+1}$-name that has support equal to the support of the name \dot{a} and satisfies that $\mathbf{1}_{P_{\beta}+1} \Vdash \dot{a}_{1}=\dot{a} \cup\{\delta\}$. Let \dot{E} be the P_{β}-name for $\dot{D} \cup\{\delta\}$ and notice that, given that $(\dot{a}, \dot{D}) \in Q_{\beta+1}^{\prime}$, we have that $\left(\dot{a}_{1}, \dot{E}\right)$ is also in $Q_{\beta+1}^{\prime}$. Now let $q \in P_{\beta+2}$ be defined according to $q \upharpoonright \beta=\bar{p}, q(\beta)=p(\beta)$, and $q(\beta+1)=\left(\dot{a}_{1}, \dot{E}\right)$. It is immediate that $q \upharpoonright \beta+1<p \upharpoonright \beta+1$. Also, $q \upharpoonright \beta+1$ forces that \dot{a} is an initial segment of \dot{a}_{1}, that $\dot{a}_{1} \subset \dot{D}$, and that $\dot{E} \subset \dot{D}$. Therefore, $q<p$ and $q \Vdash \delta \in \dot{C}_{\beta}$.

Lemma 2.14. For each $\beta \leq \kappa, P_{\beta}$ satisfies the $\aleph_{2}-c c$.

Proof. We prove the lemma by induction on β. If $\beta \in \mathbf{E}$ and P_{β} satisfies the \aleph_{2}-cc, then it is trivial that $P_{\beta+1}$ does as well. Similarly $P_{\beta+2}$ satisfies the \aleph_{2}-cc since $P_{\beta+1} \star Q_{\beta+1}^{\prime}$ clearly does, and this poset is dense in $P_{\beta+2}$. The argument for limit ordinals β with cofinality less than ω_{2} is straightforward, so we assume that β is a limit with cofinality greater than ω_{1}. Let $\left\{p_{\gamma}: \gamma \in \omega_{2}\right\}$ be a subset of P_{β}^{\prime}. Choose any elementary submodel M of $H\left(\kappa^{+}\right)$such that $\left\{p_{\gamma}: \gamma \in \omega_{2}\right\} \in M,|M|=\aleph_{1}$, and $M^{\omega} \subset M$. Let $M \cap \omega_{2}=\lambda$ and let $I=\operatorname{dom}\left(p_{\lambda}\right) \cap M$ and fix any $\mu \in M \cap \beta$ so that $I \subset \mu$. For each $\beta \in \mathbf{E}$ such that $\beta+1 \in I$, let $\dot{a}_{\beta} \in M$ so that $\pi_{0}\left(p_{\lambda}(\beta+1)\right)=\dot{a}_{\beta}$. That is, $p_{\lambda}(\beta)=\left(\dot{a}_{\beta}, \dot{D}_{\beta}\right)$ for some $\dot{D}_{\beta} \in \mathcal{D}_{\beta}$. Clearly the countable sequence $\left\{\dot{a}_{\beta}: \beta \in I \cap \mathbf{E}\right\}$ is an element of M. Therefore there is a $\gamma \in M$ so that $\operatorname{dom}\left(p_{\gamma}\right) \cap \mu=I$ and so that $\pi_{0}\left(p_{\gamma}(\beta+1)\right)=\dot{a}_{\beta}$ for all $\beta \in \mathbf{E}$ such that $\beta+1 \in I$. It follows that $p_{\gamma} \not \perp p_{\lambda}$.

Now we discuss the Cohen real trick, which, though simple and powerful, is burdened with cumbersome notation.

Lemma 2.15. Let $\alpha \in \mathbf{E}$ and let $p_{0} \in P_{\alpha+2} \in M$ be a countable elementary submodel of $H\left(\kappa^{+}\right)$and let $\delta=M \cap \omega_{1}$. There is a $\left(P_{\alpha+2}, M\right)$-generic condition $p_{1}<p_{0}$ satisfying that for all P_{α}-generic filters satisfying $p_{1} \upharpoonright \alpha \in G_{0}$ and \dot{Q}_{α}-generic filters $p_{1}(\alpha) \in G_{1}$, the collection, in $V\left[G_{0} * G_{1}\right]$,

$$
p_{1 \alpha}^{\uparrow}=\left\{p(\alpha+1): p \in M \cap P_{\alpha+2}, p \upharpoonright(\alpha+1) \in G_{0} * G_{1}, p_{1}<p\right\}
$$

is $\operatorname{val}_{G_{0} * G_{1}}\left(\dot{Q}_{\alpha+1} \cap M\right)$-generic over $V\left[G_{0} *\left(G_{1} \upharpoonright \delta\right)\right]$.
Moreover, for any P_{α}-name \dot{Q} of a ccc poset and $P_{\alpha} * \dot{Q}$-generic filter $G_{0} * G_{2}, p_{1 \alpha}^{\uparrow}$ is also generic over the model $V\left[G_{0} * G_{2}\right]\left[G_{1} \upharpoonright \delta\right]$.

Proof. Let \dot{Q} be any P_{α}-name of a ccc poset. Choose any $\bar{p}_{1}<p_{0} \upharpoonright(\alpha+1)$ that is (M, P_{α})-generic with $\bar{p}_{1}(\alpha)=p(\alpha)$. We will let $p_{1} \upharpoonright \alpha=\bar{p}_{1} \upharpoonright \alpha$ and then we simply have to choose a value for $p_{1}(\alpha+1)$. We may assume that $\bar{p}_{1} \upharpoonright \mathbf{E}=p_{0} \upharpoonright \mathbf{E}$. Let \tilde{G} denote the filter $\left(G_{0} * G_{1}\right) \cap P_{\alpha+1}\left(I_{\alpha} \cap \mathbf{E}\right)$ and let $R=\left(M \cap \dot{Q}_{\alpha+1}\right) / \tilde{G}$. For $r \in R$ we may regard r in the extension $V[\tilde{G}]$ to have the form $\left(a_{r}, \dot{A}_{r}\right)$, with $a_{r} \subset \omega_{1}$, because, for each $(\dot{a}, \dot{A}) \in M \cap \dot{Q}_{\alpha+1}, \dot{a}$ has support contained in $P_{\alpha+1}\left(I_{\alpha} \cap \mathbf{E}\right)$. We have no such reduction for \dot{A}. We adopt the subordering, $<_{R}$, on R where $(a, \dot{A})<_{R}(b, \dot{B})$ in R will mean that $\mathbf{1}_{P_{\alpha+1}} \Vdash \dot{A} \subset \dot{B}$. The fact that $(a, \dot{A}) \in R$ already means that $\mathbf{1}_{P_{\alpha+1}} \Vdash a \subset \dot{A}$. If $p \in M \cap P_{\alpha+1}$ and $\left(a, \dot{A}_{1}\right) \in R$ is such that $p \Vdash\left(a, \dot{A}_{1}\right)<(b, \dot{B})$, then there is an $(a, \dot{A}) \in R$ such that $p \Vdash \dot{A}=\dot{A}_{1}$ and $(a, \dot{A})<{ }_{R}(b, \dot{B})$.

The quotient poset $\left(R / \tilde{G},<_{R}\right)$ is isomorphic to \mathcal{C}_{ω}. Let $\psi \in V[\tilde{G}]$ be an isomorphism from $\mathcal{C}_{(\delta, \delta+\omega)}$ to $\left(R / \tilde{G},<_{R}\right)$. We regard $\mathcal{C}_{(\delta, \delta+\omega)}$ as the canonical subposet of \dot{Q}_{α} and let G_{α}^{δ} denote a generic filter for this subposet of \dot{Q}_{α}. Now we have, in the extension $V[\tilde{G}]\left[G_{\alpha}^{\delta}\right]$, a $<_{R}$-filter $R_{\alpha}^{\delta} \subset R$ given by $\left\{\psi(\sigma): \sigma \in G_{\alpha}^{\delta}\right\}$. Let $a_{\omega}=\{\delta\} \cup \bigcup\left\{a_{r}: r \in R_{\alpha}^{\delta}\right\}$. Note that \bar{p}_{1} forces that $\delta \in \dot{C}$ for all $\dot{C} \in M \cap \mathcal{D}_{\alpha}$. By the construction, it follows that we may fix a $P_{\alpha+1}$-name, \dot{a}_{ω}, for a_{ω}, that has support contained in $I_{\alpha} \cap \mathbf{E}$. Let \dot{A}_{ω} be the $P_{\alpha+1}$-name satisfying that \bar{p}_{1} forces that \dot{A}_{ω} equals the intersection of all $\dot{C} \in \mathcal{D}_{\alpha} \cap M$ such that $\dot{a}_{\omega} \subset \dot{C}$. It follows that for $r \in R_{\alpha}^{\delta}$ and $\tilde{p} \upharpoonright \alpha+1<\bar{p}_{1}, \tilde{p}(\alpha) \in G_{\alpha}^{\delta}$, and $\tilde{p}(\alpha+1)=r$, we have that $\tilde{p} \wedge r \Vdash \dot{A}_{\omega} \subset \dot{A}_{r}$ (and this takes place in $V[\tilde{G}])$. We may choose \dot{A}_{ω} so that $\tilde{p} \Vdash \dot{A}_{\omega}=\omega_{1}$ for all $\tilde{p} \perp \bar{p}_{1}$ in $P_{\alpha+1}$. It then follows that $\left(\dot{a}_{\omega}, \dot{A}_{\omega}\right)$ is an element of $\dot{Q}_{\alpha+1}$. We now define p_{1} so that $p_{1} \upharpoonright \alpha+1=\bar{p}_{1}$ and $p_{1}(\alpha+1)=\left(\dot{a}_{\omega}, \dot{A}_{\omega}\right)$. The fact that p_{1} is $\left(M, P_{\alpha+2}\right)$-generic follows from the stronger claim below.

Claim 3. Let G_{0} be a P_{α}-generic with $\bar{p}_{1} \upharpoonright \alpha \in G_{0}$ and let G_{1} be a \dot{Q}_{α}-generic filter with $\bar{p}_{1}(\alpha) \in M \cap G_{1}$. Also let $G_{0} * G_{2}$ be $P_{\alpha} * \dot{Q}$-generic. Let $\sigma \in \mathcal{C}_{(\delta, \delta+\omega)}$ be arbitrary. Let \dot{D} be a $P_{\alpha+1} * \dot{Q}$-name of a dense subset of $\operatorname{val}_{G_{0} * G_{1}}\left(\dot{Q}_{\alpha+1} \cap M\right)$. Then there is a $\tau \supset \sigma$ such that $\tau \Vdash p_{1 \alpha}^{\uparrow} \cap \operatorname{val}_{G_{0} *\left(G_{1} \times G_{2}\right)}(\dot{D}) \neq \emptyset$.

Proof of Claim. Fix the generic filter $\tilde{G} \subset G_{0} * G_{1}$ as used in the construction of ($\dot{a}_{\omega}, \dot{A}_{\omega}$) and let ψ : $\mathcal{C}_{\alpha}^{\delta} \rightarrow\left(R / \tilde{G},<_{R}\right)$ denote the above mentioned isomorphism. Let $(b, \dot{B})=\psi(\sigma)$ and, using the density of $\operatorname{val}_{G_{0} *\left(G_{1} \times G_{2}\right)}(\dot{D})$, choose $(a, A)<\left(b, \operatorname{val}_{G_{0} * G_{1}}(\dot{B})\right)$, so that $(a, A) \in \operatorname{val}_{G_{0} *\left(G_{1} \times G_{2}\right)}(\dot{D})$. By elementarity, choose $(\dot{a}, \dot{A}) \in M \cap \dot{Q}_{\alpha+1}$ such that $\operatorname{val}_{G_{0} * G_{1}}((\dot{a}, \dot{A}))=(a, A)$. Again by elementarity and using that \bar{p}_{1} is $\left(M, P_{\alpha+1}\right)$-generic, there is a $p \in M \cap\left(G_{0} * G_{1}\right)$ such that $p \Vdash \dot{A} \subset \dot{B}$. Now choose $\tau \supset \sigma$ so that $\psi(\tau)=$ $\left(a, \dot{A}_{1}\right)$ satisfies that $\left(a, \dot{A}_{1}\right)<_{R}(b, \dot{B})$ and $p \Vdash \dot{A}_{1}=\dot{A}$. It follows that $\tau \Vdash\left(a, \dot{A}_{1}\right) \in \operatorname{val}_{G_{0} *\left(G_{1} \times G_{2}\right)}(\dot{D})$. Since $p_{1} \wedge \tau$ also forces that $p_{1}(\alpha+1)<\left(a, \dot{A}_{1}\right)$ we have that $p_{1} \wedge \tau \Vdash\left(a, \dot{A}_{1}\right) \in p_{1 \alpha}^{\uparrow}$.

This completes the proof of the Lemma.
Lemma 2.16. Let $\lambda<\kappa$ with $\lambda \in \mathbf{E}$ and let \dot{Q} be a P_{λ}-name of a ccc poset. Then P_{κ} forces that \dot{Q} is ccc.
Proof. Let G be a P_{λ}-generic filter and let $Q=\operatorname{val}_{G}(\dot{Q})$. Since P_{κ} satisfies the \aleph_{2}-cc, we can assume that Q is of the form $\left(\omega_{1},<_{Q}\right)$. We work in the extension $V[G]$ and we view, for each $\lambda<\alpha \leq \kappa, \bar{P}_{\alpha}=P_{\alpha} / G$ as a subset of P_{α}. We prove, by induction on $\lambda \leq \alpha \in \mathbf{E}$, that for any countable elementary submodel $\left\{Q, \lambda, \bar{P}_{\alpha}\right\} \in M$ and any $p \in \bar{P}_{\alpha} \cap M$, there is a $p_{M}<_{E} p$ such that $\left(1_{Q}, p_{M}\right)$ is $\left(M, Q \times \bar{P}_{\alpha}\right)$-generic. Note that this inductive hypothesis, i.e. the fact that it is $\left(1_{Q}, p_{M}\right)$ that is the generic condition rather than $\left(q, p_{M}\right)$ for some other $q \in Q$, is equivalent to the statement that P_{α} preserves that Q is ccc.

The proof at limit steps follows the standard proof (as in [15]) that the countable support iteration of proper posets is proper. We feel that this can be skipped. So let $\alpha=\beta+2$ for some $\beta \in \mathbf{E}$. Let M be a suitable countable elementary submodel and let $p \in P_{\alpha} \cap M$ (such that $p \upharpoonright \lambda \in G$). Let $M \cap \omega_{1}=\delta$. By the inductive hypothesis, we can assume that we have $\bar{p}_{1} \in P_{\beta}$ so that, $\bar{p}_{1} \upharpoonright \lambda \in G, \bar{p}_{1}<_{E} p \upharpoonright \beta$ and so that $\left(1_{Q}, \bar{p}_{1}\right)$ is an $\left(M, Q \times P_{\beta}\right)$-generic condition. Of course it is also clear that $\left(1_{Q}, \bar{p}_{1}\right)$ is an $\left(M, Q \times P_{\beta+1}\right)$ generic condition. Now let $p_{1} \in P_{\beta+2}$ be chosen as in Lemma 2.15. That is, p_{1} is chosen so that for any P_{β}-generic filter $G_{\beta} \supset G$ with $p_{1} \upharpoonright \beta \in G_{\beta}$, any $\mathcal{C}_{\omega_{1}}$-generic G_{1} with $p_{1}(\beta) \in G_{1}$, and, since Q is ccc in $V\left[G_{\beta}\right]$, any Q-generic filter G_{Q}, we have that $p_{1 \beta}^{\uparrow}$ is generic over $V\left[G_{\beta} *\left(G_{1} \times G_{Q}\right)\right]$. Let $G_{\beta+1}=G_{\beta} * G_{1}$.

Let $D \in M$ be any dense open subset of $P_{\beta+2} * Q$. Let R denote $\dot{Q}_{\beta+1} /\left(G_{\beta} * G_{1}\right)$. It follows that $D /\left(G_{\beta} * G_{1}\right)$ or

$$
E=\left\{(r, q):(\exists d \in D)\left(d \upharpoonright \beta+1 \in G_{\beta} * G_{1} \& d=d \upharpoonright \beta+1 *(r, q)\right)\right\}
$$

is a dense open subset of $R \times Q$ and $E \in M\left[G_{\beta+1}\right]$. By standard product forcing theory, we have that for each $r \in R, E_{r}=\{q \in Q:(\exists s \in R)(s<r \&(s, q) \in E\})$ is a dense subset of Q. For each $r \in R \cap M\left[G_{\beta+1}\right]$, $E_{r} \in M\left[G_{\beta+1}\right]$ and so, $E_{r} \cap M\left[G_{\beta+1}\right]$ is a predense subset of Q. This implies that, for each $\bar{q} \in Q$, the set $E(\bar{q})=\left\{s \in R \cap M\left[G_{\beta+1}\right]:\left(\exists(s, q) \in E \cap M\left[G_{\beta+1}\right]\right)(\bar{q} \not \perp q)\right\}$ is a dense subset of $R \cap M\left[G_{\beta+1}\right]$. Although $E(\bar{q})$ need not be an element of $M\left[G_{\beta+1}\right]$, it is an element of $V\left[G_{\beta} *\left(G_{1} \upharpoonright \delta\right)\right]$. Therefore, by Lemma 2.15, $E(\bar{q}) \cap p_{1 \beta}^{\uparrow}$ is not empty for all $\bar{q} \in G_{Q}$. By elementarity, it then follows that p_{1} is an $\left(M, P_{\beta+2} * Q\right)$-generic condition.

3. S-space tasks

Following [1] and [16] we define a poset of finite subsets of ω_{1} separated by a cub.
Definition 3.1. For a family $\mathcal{U}=\left\{U_{\xi}: \xi \in \omega_{1}\right\}$ and a cub $C \subset \omega_{1}$, define the poset $Q(\mathcal{U}, C) \subset\left[\omega_{1}\right]^{<\aleph_{0}}$, to be the set of finite sets $H \subset \omega_{1}$ such that for $\xi<\eta$ both in H
(1) $\xi \notin U_{\eta}$ and $\eta \notin U_{\xi}$,
(2) there is a $\gamma \in C$ such that $\xi<\gamma \leq \eta$.
$Q(\mathcal{U}, C)$ is ordered by \supset.
Definition 3.2. A family $\mathcal{U}=\left\{U_{\xi}: \xi<\omega_{1}\right\}$ is an S-space task if it satisfies:
(1) $\xi \in U_{\xi} \in\left[\omega_{1}\right]^{<\aleph_{1}}$,
(2) every uncountable $A \subset \omega_{1}$ has a countable subset that is not contained in any finite union from the family \mathcal{U}.

Remark 4. If \mathcal{T} is a regular locally countable topology on ω_{1} that contains no uncountable free sequence (see Definition 5.1), then each neighborhood assignment $\left\{U_{\xi}: \xi \in \omega_{1}\right\}$ consisting of open sets with countable closures, is an S-space task. An uncountable $A \subset \omega_{1}$ failing property (2) would contain an uncountable free sequence. Suppose that there is a cub $C \subset \omega_{1}$ such that $Q(\mathcal{U}, C)$ is ccc. Then, as usual, there is a $q \in Q(\mathcal{U}, C)$ such that any generic filter including q is uncountable. If $G \subset Q(\mathcal{U}, C)$ is a filter (even pairwise compatible), then $\bigcup G$ is a discrete subspace of $\left(\omega_{1}, \mathcal{T}\right)$. Of course this cub C can be assumed to satisfy that if $\xi<\eta$ are separated by C, then $\eta \notin U_{\xi}$. This means that requirement (1) in the definition of $Q(\mathcal{U}, C)$ can be weakened to only require that $\xi \notin U_{\eta}$.

The following result is a restatement of Lemma 1 from [16]. It also uses the Cohen real trick. We present a proof that is more adaptable to the modifications needed for the consistency with $\mathfrak{c}>\aleph_{2}$.

Proposition 3.3. Let R be a ccc poset and let $\mathcal{U}=\left\{\dot{U}_{\xi}: \xi \in \omega_{1}\right\}$ be a sequence of R-names such that \mathcal{U} is forced to be an S-space task. Then $R \times P_{2}$ forces that for every $n \in \omega$, every uncountable pairwise disjoint subfamily \mathcal{H} of $Q\left(\mathcal{U}, \dot{C}_{1}\right) \cap\left[\omega_{1}\right]^{n}$, has a countable subset \mathcal{H}_{0} satisfying that, for some $\delta \in \omega_{1}$ and all $F \in\left[\omega_{1} \backslash \delta\right]^{n}$, there is an $H \in \mathcal{H}_{0}$ such that $H \cap \bigcup\left\{U_{\xi}: \xi \in F\right\}=\emptyset$. In particular, $R \times P_{2}$ forces that $Q\left(\mathcal{U}, \dot{C}_{1}\right)$ is ccc.

Proof. Of course P_{2} is isomorphic to $\mathcal{C}_{\omega_{1}} * \dot{\jmath}$. Fix any $n \in \omega$ and let $\left\{\dot{H}_{\xi}: \xi \in \omega_{1}\right\}$ be $R \times P_{2}$-names of pairwise disjoint elements of $\left[\omega_{1}\right]^{n} \cap Q\left(\mathcal{U}, \dot{C}_{1}\right)$. Since we can pass to an uncountable subcollection of $\left\{\dot{H}_{\xi}: \xi \in \omega_{1}\right\}$ we may assume that for all $\xi \in \omega_{1}$, it is forced that there is a $\delta \in \dot{C}_{1}$ such that $\xi<\delta \leq \min \left(\dot{H}_{\xi}\right)$.

For each $(r, p) \in R \times P_{2}$ and $H \in\left[\omega_{1}\right]^{n}$, let $\Gamma_{\xi}(H,(r, p))$ be the set $\left\{s \in R:\left(\exists q \in P_{2}\right)((s, q)<\right.$ $\left.\left.(r, p) \&(s, q) \Vdash H=\dot{H}_{\xi}\right)\right\}$. In other words, $\Gamma_{\xi}(H,(r, p))$ is not empty if and only if $(r, p) \nVdash H \neq \dot{H}_{\xi}$. We say that $\Gamma_{\xi}(H,(r, p))$ is ω_{1}-full simply if it is not empty.

Now we define what it means for $\Gamma_{\xi}(H,(r, p))$ to be ω_{1}-full for $H \in\left[\omega_{1}\right]^{n-1}$. We require that there is a set $\left\{\dot{\eta}_{\zeta}: \zeta \in \omega_{1}\right\}$ of canonical R-names such that $r \Vdash \dot{\eta}_{\zeta} \in \omega_{1} \backslash \zeta$ and for $(\eta, s) \in \dot{\eta}_{\zeta}, s \leq r$ and satisfies that $\Gamma_{\xi}(H \cup\{\eta\},(s, p))$ is ω_{1}-full. It is worth noting that (r, p) has been changed to (s, p) rather than to some (s, q) with $q<p$. This definition generalizes to $H \in\left[\omega_{1}\right]^{i}$. We say that $\Gamma_{\xi}(H,(r, p))$ is ω_{1}-full if there is a set of canonical R-names $\left\{\dot{\eta}_{\zeta}: \zeta \in \omega_{1}\right\}$ such that, for each $\zeta \in \omega_{1}, r \Vdash \dot{\eta}_{\zeta} \in\left(\omega_{1} \backslash \zeta\right)$, and for $(\eta, s) \in \dot{\eta}_{\zeta}$, $s \leq r$ and $\Gamma_{\xi}(H \cup\{\eta\},(s, p))$ is ω_{1}-full.

Claim 5. Suppose that $\Gamma_{\xi}(\emptyset,(r, p))$ is ω_{1}-full and that $M \prec H\left(\kappa^{+}\right)$is countable and $\{\xi, \mathcal{U}, R,(r, p)\} \in M$. Then for any $\bar{r}<r \in R$ and finite $F \subset \omega_{1} \backslash M$, there are (s, q), $H \in M$ such that
(1) $(s, q)<(r, p) \in R \times P_{2}$,
(2) $H \cap \bigcup\left\{\dot{U}_{\zeta}: \zeta \in F\right\}$ is empty,
(3) $(s, q) \Vdash \dot{H}_{\xi}=H$,
(4) $s \not \perp \bar{r}$.

Proof of Claim. Let $\dot{W}_{F}=\bigcup\left\{\dot{U}_{\zeta}: \zeta \in F\right\}$. Since $R \in M \prec H\left(\kappa^{+}\right)$is ccc and forces that \mathcal{U} is an S-space task, it follows that for each R-name $\dot{A} \in M$ for an uncountable subset of ω_{1}, the set $\dot{A} \cap M$ is forced to not be contained in \dot{W}_{F}. By induction on $1 \leq i \leq n$, we choose $\left(\eta_{i}, s_{i}\right) \in\left(\omega_{1} \times R\right) \cap M$ and $\bar{r}_{i}<s_{i}$ so that $\bar{r}_{i} \Vdash \eta_{i} \notin \dot{W}_{F}, s_{i} \leq s_{j} \leq r$ and $\bar{r}_{i} \leq \bar{r}_{j}$ for $j<i$, and $\Gamma_{\xi}\left(\left\{\eta_{j}: 1 \leq j<i\right\},\left(s_{i}, p\right)\right)$ is ω_{1}-full.

Let $\bar{r}_{0}=\bar{r},\left(s_{0}, q_{0}\right)=(r, p), \emptyset=\left\{\eta_{j}: 1 \leq j<1\right\}$ and we assume by induction that, at stage $i, \Gamma\left(\left\{\eta_{j}: 1 \leq\right.\right.$ $\left.j<i\},\left(s_{i}, p\right)\right)$ is ω_{1}-full. Fix any sequence $\left\{\dot{\eta}_{\zeta}: \omega \leq \zeta \in \omega_{1}\right\} \in M$ witnessing that $\Gamma_{\xi}\left(\left\{\eta_{j}: j<i\right\},\left(s_{i}, p\right)\right)$ is ω_{1}-full. We have that $\left\{\dot{\eta}_{\zeta}: \omega \leq \zeta \in \omega_{1}\right\} \in M$ is an R-name for an uncountable subset of ω_{1}. It follows that \bar{r}_{i-1} forces that there is a $\zeta \in M$ such that $\dot{\eta}_{\zeta} \notin \dot{W}_{F}$. We find an extension \bar{r}_{i+1} of \bar{r}_{i} so that we may choose $\zeta \in M$ and $(\eta, s) \in \dot{\eta}_{\zeta}$ such that $\eta \notin \dot{W}_{F}, \bar{r}_{i+1}<s \leq s_{i}$. Therefore we set $\left(\xi_{i}, s_{i+1}, q_{i+1}\right)=(\eta, s, q)$ and this completes the construction.

Setting $H=\left\{\xi_{i}: 1 \leq i \leq n\right\}$ and $(s, q)=\left(s_{n}, q_{n}\right)$ completes the proof of the Claim.
Claim 6. If $\Gamma_{\xi}(H,(r, p))$ is not ω_{1}-full, there is an $s<r$ in R and a $\zeta<\omega_{1}$ such that $\Gamma_{\xi}(H \cup\{\eta\},(s, p))$ is not ω_{1}-full for all $\zeta<\eta \in \omega_{1}$.

Proof of Claim. Since $\Gamma_{\xi}(H,(r, p))$ is not ω_{1}-full, there is some $\zeta \in \omega_{1}$ so that the suitable nice name $\dot{\eta}_{\zeta}$ does not exist. It follows immediately that $\dot{\eta}_{\gamma}$ does not exist for all $\zeta<\gamma \in \omega_{1}$. In addition, since $\dot{\eta}_{\zeta}$ fails to exist, it is because $\Gamma_{\xi}\left(H \cup\{\eta\},\left(s^{\prime}, r\right)\right)$ is not ω_{1}-full for all $s^{\prime} \not \perp s$.

Claim 7. For every $(r, p) \in R \times P_{2}$, there is a δ so that $\Gamma_{\delta}(\emptyset,(r, p))$ is ω_{1}-full.
Proof of Claim. Let M_{0} be a countable elementary submodel of $H\left(\kappa^{+}\right)$so that $\{\mathcal{U},(r, p), R\} \in M_{0}$. Choose any $p_{1}<_{E} p$ (i.e. $p_{1}(0)=p(0)$ and $\left.p_{1}(0) \Vdash p_{1}(1)<p(1)\right)$ that is $\left(M_{0}, P_{2}\right)$-generic. Notice that $\left(r, p_{1}\right)$ is therefore ($M, R \times P_{2}$)-generic since R is ccc. Let $\delta_{0}=M_{0} \cap \omega_{1}$. Choose any continuous \in-chain $\left\{M_{\alpha}: 0<\right.$ $\left.\alpha<\omega_{1}\right\}$ of countable elementary submodels of $H\left(\kappa^{+}\right)$such that $p_{1} \in M_{1}$. For each $\alpha \in \omega_{1}$, let $\delta_{\alpha}=M_{\alpha} \cap \omega_{1}$. We did not actually have to choose p_{1} before choosing M_{1} of course. Let C be the cub $\left\{\delta_{\alpha}: \alpha \in \omega_{1}\right\}$ and let $p_{2} \in P_{2}$ be a common extension of p_{1} and $\left(\emptyset,\left(\emptyset, \delta_{0} \cup\left(C \backslash \delta_{0}\right)\right)\right.$) (or equivalently $p_{2}(0) \leq p_{1}(0)$ and $\left.p_{2}(0) \Vdash p_{2}(1) \leq\left(\pi_{0}\left(p_{1}(1)\right), \pi_{1}\left(p_{1}(1)\right) \cap C\right)\right)$. It follows that $p_{2} \Vdash \dot{C}_{1} \backslash \delta_{0} \subset C$.

Assume $\Gamma_{\delta_{0}}(\emptyset,(r, p))$ is not ω_{1}-full. Choose $s_{0}<r$ and $\zeta_{0} \in \omega_{1}$ as in Claim 5. By elementarity we may assume that s_{0}, ζ_{0} are in M_{1}.

Now choose any $\bar{s}_{0}<s_{0}$ so that there is a $q_{0}<p_{1}$ and an $H \in\left[\omega_{1} \backslash \delta_{0}\right]^{n}$ such that $\left(\bar{s}_{0}, q_{0}\right) \Vdash \dot{H}_{\delta_{0}}=H$. Of course this implies that $\Gamma_{\delta_{0}}(H,(r, p))$ is not empty and therefore, it is ω_{1}-full. Let H be enumerated in increasing order $\left\{\eta_{i}: 1 \leq i \leq n\right\}$.

Since $\left(\bar{s}_{0}, q\right) \Vdash \dot{H}_{\delta_{0}} \in Q\left(\mathcal{U}, \dot{C}_{1}\right)$, we can assume that q has already determined the members of \dot{C}_{1} that separate the elements of $\left\{\delta_{0}\right\} \cup H$. In other words, there is a set $\left\{\alpha_{i}: 1 \leq i \leq n\right\} \subset \omega_{1}$ so that $\left\{\delta_{\alpha_{i}}: 1 \leq\right.$ $i \leq n\} \subset \pi_{0}(q(1)) \subset C$ such that, for each $1 \leq i<n, \delta_{0} \leq \delta_{\alpha_{i-1}} \leq \eta_{i}$. Therefore, $\left\{\eta_{j}: 1 \leq j<i\right\} \in M_{\alpha_{i}}$ for all $i<n$ and $\Gamma_{\delta_{0}}\left(\left\{\eta_{j}: 1 \leq j \leq n\right\},(r, p)\right)$ is ω_{1}-full. Clearly, for all $s^{\prime}<\bar{s}_{0}, \Gamma_{\delta_{0}}\left(\left\{\eta_{j}: 1 \leq j \leq n\right\},\left(s^{\prime}, p\right)\right)$ is also ω_{1}-full.

By the choice of s_{0} and ζ_{0}, we have that $\Gamma_{\delta_{0}}\left(\left\{\eta_{1}\right\},\left(s_{0}, p\right)\right) \in M_{\alpha_{2}}$ is not ω_{1}-full. We note that \bar{s}_{0} is $\left(M_{\alpha_{2}}, R\right)$-generic condition. There is therefore, by Claim 5 , a $\zeta_{1} \in M_{\alpha_{2}}$ and a pair $\bar{s}_{1}<s_{1}$ so that $s_{1} \in M_{\alpha_{2}}$, $\bar{s}_{1}<\bar{s}_{0}$ and $\Gamma_{\delta_{0}}\left(\left\{\eta_{1}, \eta\right\},\left(s_{1}, p\right)\right)$ is not ω_{1}-full for all $\eta>\zeta_{1}$. Following this procedure we can recursively choose a pair of descending sequences $\left\{s_{i}: 1 \leq i \leq n\right\} \subset R$ and $\left\{\bar{s}_{i}: 1 \leq i \leq n\right\} \subset R$ so that
(1) $s_{i-1} \in M_{\alpha_{i}}$ and $\bar{s}_{i}<s_{i}$,
(2) $\Gamma_{\delta_{0}}\left(\left\{\eta_{1}, \ldots, \eta_{i}\right\},\left(s_{i}, p\right)\right)$ is not ω_{1}-full.

We now have a contradiction that completes the proof. We noted above that since $\bar{s}_{n}<\bar{s}_{0}, \Gamma_{\delta_{0}}\left(\left\{\eta_{1}, \ldots, \eta_{i}\right\}\right.$, $\left.\left(\bar{s}_{n}, p\right)\right)$ is ω_{1}-full. However since $\bar{s}_{n}<s_{n}$, this contradicts that $\Gamma_{\delta_{0}}\left(\left\{\eta_{1}, \ldots, \eta_{n}\right\},\left(s_{n}, p\right)\right)$ is not ω_{1}-full.

Now we complete the proof of the Proposition. Consider any countable elementary submodel M as in Claim 5 and let $\delta=M \cap \omega_{1}$. Let p_{1} be a condition as in Lemma 2.15 applied to the case $\alpha=0$. Let G_{R} be any R-generic filter and let $G_{1} \subset \mathcal{C}_{\omega_{1}}$ be any generic filter, which is generic over the model $V\left[G_{R}\right]$. Pass to the extension $V\left[G_{R}\right]$.

Fix any $F \in\left[\omega_{1} \backslash \delta\right]^{n}$. It follows from Claim 5 and Claim 6 , that the set \mathcal{W}_{F} of those $(t,(\dot{b}, \dot{B})) \in$ $M \cap\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)$ for which

$$
(\exists \xi \in \delta)\left(\exists s \in G_{R}\right) \quad\left(s \Vdash H \cap \dot{W}_{F}=\emptyset \&(s,(t,(\dot{b}, \dot{B}))) \Vdash H=\dot{H}_{\xi}\right)
$$

is a dense subset of $M \cap\left(\mathcal{C}_{\omega_{1}} * \dot{\mathcal{J}}\right)$. The proof is that Claim 6 provides a potential $\xi \in M$ to strive for, and Claim 5 provides an (s, q) to yield an element of \mathcal{W}_{F}.

It then follows easily that, in the extension $V\left[G_{R} \times G_{1}\right]$, the set

$$
\operatorname{val}_{G_{1} \upharpoonright \delta}\left(\mathcal{W}_{F}\right)=\left\{\operatorname{val}_{G_{1}}((\dot{b}, \dot{B})):\left(\exists t \in G_{1}\right)((t,(\dot{b}, \dot{B}))) \in \mathcal{W}_{F}\right\}
$$

is a dense subset of $\operatorname{val}_{G_{1}}(M \cap \dot{\mathcal{J}})$ which is an element of $V\left[G_{R} \times\left(G_{1} \upharpoonright \delta\right)\right]$. Since p_{1} forces that the generic filter meets $\operatorname{val}_{G_{1} \upharpoonright \delta}\left(\mathcal{W}_{F}\right)$, this completes the proof.

For any $\alpha \leq \kappa$ and subset $I \subset \alpha$, we will say that a P_{α}-name \dot{E} is a $P_{\alpha}(I)$-name if it is a $P_{\alpha}(I)$-name in the usual recursive sense. This definition makes technical sense even if $P_{\alpha}(I)$ is not a complete subposet of P_{α}.

Corollary 3.4. Let $\lambda \in \mathbf{E}$ and let \dot{R}_{0} be a $P_{\lambda}\left(I_{\lambda}\right)$-name that is forced by P_{λ} to be ccc poset. Let \dot{R} be a P_{λ}-name of a ccc poset such $\mathbf{1}_{P_{\lambda}}$ forces that $\dot{R}_{0} \subset_{c} \dot{R}$. Assume that $\mathcal{U}=\left\{\dot{U}_{\xi}: \xi \in \omega_{1}\right\}$ is a sequence of $P_{\lambda}\left(I_{\lambda}\right) * \dot{R}_{0}$-names of subsets of ω_{1} such that $P_{\lambda} * \dot{R}$ forces that \mathcal{U} is an S-space task. Then the $P_{\lambda+2}$-name $Q\left(\mathcal{U}, \dot{C}_{\lambda}\right)$ satisfies that $P_{\lambda+2}$ forces that $\dot{R} \times Q\left(\mathcal{U}, \dot{C}_{\lambda}\right)$ is ccc.

Proof. Let G_{λ} be a P_{λ}-generic filter and pass to the extension $V\left[G_{\lambda}\right]$. Let $R=\operatorname{val}_{G_{\lambda}}(\dot{R})$ and observe that we may now regard \mathcal{U} as a family of R-names of subsets of ω_{1} that is forced to be an S-space task. We would like to simply apply Lemma 3.3 but unfortunately, $P_{\lambda+2}$ is not isomorphic to $P_{\lambda} * P_{2}$. Naturally the difference is that $\dot{Q}_{\lambda+1}$ is a proper subset of $\dot{\mathcal{J}}$. It will suffice to identify the three key places in the proof of Lemma 3.3 that depended on consequences of the properties of \mathcal{J} and to verify that the consequences also hold for $\dot{Q}_{\lambda+1}$. The first was in the proof of Claim 7 where we selected a condition $p_{2}(1) \in \mathcal{J}$ that satisfied that $\pi_{1}\left(p_{2}(1)\right)$ was forced to be a subset of $C \cup \delta_{0}$ for the cub C. Since, in this proof, C will be an cub set in the model $V\left[G_{\lambda}\right]$, it follows from condition (6) of Definition 2.2, this can be done. The next property of P_{2} that we used was that Lemma 2.15 holds, but of course this also holds for $P_{\lambda+2}$. The third is in the proof and statement of Claim 5. When choosing the pair (s, q) in $R \times P_{2}$ we require that it satisfies condition (2) in Claim 5. In the current situation, each \dot{U}_{ζ} is not simply an R-name but rather it is a $P_{\lambda}\left(I_{\lambda}\right) * \dot{R}_{0}$-name. Therefore, there is a $P_{\lambda}\left(I_{\lambda}\right)$-name for a suitable q so that $(s, q) \Vdash H \cap \bigcup\left\{\dot{U}_{\zeta}: \zeta \in F\right\}$ is empty. This causes no difficulty since $P_{\lambda}\left(I_{\lambda}\right)$-names for elements of $\dot{Q}_{\lambda+1}$ are, in fact, elements of $\dot{Q}_{\lambda+1}$. That is, a choice for (s, q) in $R \times\left(\dot{Q}_{\lambda} * \dot{Q}_{\lambda+1}\right)$ can be made in $V\left[G_{\lambda}\right]$ as required in Claim 5.

4. Building the final model

In this section we present the construction of the iteration sequence of length $\kappa+\kappa$ extending that of Definition 2.2 that will be used to prove the main theorem.

We introduce more terminology.
Definition 4.1. Fix any $\mu \leq \lambda \leq \kappa$ and define $\mathcal{Q}(\lambda, \mu)$ to be the set of all iterations \mathbf{q} of the form $\left\langle P_{\alpha}^{\mathbf{q}}, \dot{Q}_{\beta}^{\mathbf{q}}\right.$: $\alpha \leq \lambda+\mu, \beta<\lambda+\mu\rangle \in H\left(\kappa^{+}\right)$satisfying that
(1) $\left\langle P_{\alpha}^{\mathbf{q}}, \dot{Q}_{\beta}^{\mathbf{q}}: \alpha \leq \lambda, \beta<\lambda\right\rangle$ is our sequence $\left\langle P_{\alpha}, \dot{Q}_{\beta}: \alpha \leq \lambda, \beta<\lambda\right\rangle$ from Section 2,
(2) for all $\lambda \leq \beta<\lambda+\mu, \dot{Q}_{\beta}^{\mathbf{q}} \in H(\kappa)$ is a $P_{\beta}^{\mathbf{q}}$-name of a ccc poset,
(3) for all $\alpha \leq \mu$ and $p \in P_{\alpha}^{\mathbf{q}}, p \upharpoonright \lambda \in P_{\lambda}^{\mathbf{q}}$ and $\operatorname{dom}(p) \backslash \lambda$ is finite,
(4) if $\lambda<\kappa$, then $\mathbf{q} \in H(\kappa)$.

For $\mathbf{q} \in \mathcal{Q}(\lambda, \mu)$, let $\mathbf{q}(\kappa)$ denote the element of $\mathcal{Q}(\kappa, \mu)$ where $\dot{Q}_{\kappa+\beta}^{\mathbf{q}(\kappa)}=\dot{Q}_{\lambda+\beta}^{\mathbf{q}}$ for all $\beta<\mu$.
Lemma 4.2. Let $\mu<\kappa$ and let $\mathbf{q} \in \mathcal{Q}(\kappa, \mu)$ and let $\mathcal{U}=\left\{\dot{U}_{\xi}: \xi \in \omega_{1}\right\}$ be a sequence of $P_{\kappa+\mu}^{\mathbf{q}}$-names. Assume that $P_{\kappa+\mu}^{\mathbf{q}}$ forces that \mathcal{U} is an S-space task. Let \bar{M} be an elementary submodel of $H\left(\kappa^{+}\right)$of cardinality \aleph_{1} that is closed under ω-sequences and contains $\{\mathcal{U}, \mathbf{q}\}$. Choose any $\lambda \in \mathbf{E} \cap \kappa$ so that $\bar{M} \cap \kappa \subset I_{\lambda}$. Then $P_{\kappa+\mu}^{\mathbf{q}}$ forces that $Q\left(\mathcal{U}, \dot{C}_{\lambda}\right)$ is $c c c$.

Proof. Since $\mu \in \bar{M}$, it follows that $\mu \leq \lambda$. Furthermore, by the assumptions on $\mathbf{q} \in \mathcal{Q}$ and $\mathbf{q} \in \bar{M}$, it follows that there is a $\gamma \in \bar{M} \cap \kappa$ such that \dot{Q}_{β} is a P_{γ}-name for all $\kappa \leq \beta<\kappa+\mu$. In addition, for each $\beta \in \bar{M} \cap \mu$, \dot{Q}_{β} is a $P_{\gamma}(\bar{M} \cap \gamma)$-name. Since $\gamma<\lambda$, there is a P_{λ}-name, \dot{R}, of a finite support iteration of length μ such that $P_{\kappa} * \dot{R}$ is isomorphic to $P_{\kappa+\mu}^{\mathrm{q}}$. More precisely, the β-th iterand for \dot{R} is the name $\dot{Q}_{\kappa+\beta}$. Similarly, let \dot{R}_{0} be the set of conditions in \dot{R} with support contained in $\bar{M} \cap \mu$ and values taken in $\bar{M} \cap \dot{Q}_{\kappa+\beta}$ for each β in the support. Then we have that $\mathbf{1}_{P_{\lambda}} \Vdash \dot{R}_{0} \subset_{c} \dot{R}$. By minor re-naming, we may treat \mathcal{U} as a sequence of $P_{\lambda}\left(I_{\lambda}\right) * \dot{R}_{0}$-names. Since $P_{\kappa+\mu}^{\mathbf{q}}$ forces that \mathcal{U} is an S-space task, it follows that $P_{\lambda} * \dot{R}$ also forces that \mathcal{U} is an S-space task. By Corollary 3.4, $P_{\lambda+2}$ forces that $\dot{R} \times Q\left(\mathcal{U}, \dot{C}_{\lambda}\right)$ is ccc. By Lemma 2.16, P_{κ} forces that $\dot{R} \times Q\left(\mathcal{U}, \dot{C}_{\lambda}\right)$ is ccc. Since $P_{\kappa+\mu}^{\mathbf{q}}$ is isomorphic to $P_{\kappa} * \dot{R}$, this completes the proof.

Theorem 4.3. Let $\kappa>\aleph_{2}$ be a regular cardinal in a model of GCH. There is an iteration sequence $\left\langle P_{\alpha}, \dot{Q}_{\beta}\right.$: $\alpha \leq \kappa+\kappa, \beta<\kappa+\kappa\rangle$ such that $P_{\kappa+\kappa}$ forces that there are no S-spaces and, for all $\mu<\kappa,\left\langle P_{\alpha}, \dot{Q}_{\beta}\right.$:
$\alpha \leq \kappa+\mu, \beta<\kappa+\mu\rangle$ is in $\mathcal{Q}(\kappa, \mu)$. It therefore follows that $P_{\kappa+\kappa}$ is cardinal preserving and forces that $\kappa^{<\kappa}=\kappa=\mathfrak{c}$.

The iteration can be chosen so that, in addition, Martin's Axiom holds in the extension.
Proof. Fix a sequence $\mathcal{J}=\left\{I_{\gamma}: \gamma \in \kappa\right\}$ as described in the construction of the sequence $\left\langle P_{\alpha}, \dot{Q}_{\beta}: \alpha \leq\right.$ $\kappa, \beta<\kappa\rangle$. Also let $\mathcal{Q}(\lambda, \mu)$ for $\mu \leq \lambda<\kappa$ be defined as in Definition 4.1.

We introduce still more notation. For all $\alpha \leq \lambda<\kappa$, let P_{α}^{λ} simply denote P_{α} and $\dot{Q}_{\alpha}^{\lambda}=\dot{Q}_{\alpha}$. Also for any $\mu \leq \lambda<\kappa$ and sequence $\mathbf{q}^{\prime}=\left\langle\dot{Q}_{\beta}^{\prime}: \beta<\mu\right\rangle \in H(\kappa)$, let $\dot{Q}_{\lambda+\beta}^{\lambda}\left(\mathbf{q}^{\prime}\right)$ denote \dot{Q}_{β}^{\prime}. By recursion on $\alpha<\mu$, let $P_{\lambda+\alpha}^{\lambda}\left(\mathbf{q}^{\prime}\right)$ denote the limit of the iteration sequence $\left\langle P_{\zeta}^{\lambda}\left(\mathbf{q}^{\prime}\right), \dot{Q}_{\beta}^{\lambda}\left(\mathbf{q}^{\prime}\right): \zeta<\alpha, \beta<\alpha\right\rangle$ so long as this sequence (and its limit) is in $\mathcal{Q}(\lambda, \alpha)$. Say that a sequence $\mathbf{q}^{\prime}=\left\langle\dot{Q}_{\beta}^{\prime}: \beta<\lambda\right\rangle \in H(\kappa)$ is suitable if for all $\alpha \in \mathbf{E} \cap \lambda+1$, $\left\langle P_{\zeta}^{\lambda}\left(\mathbf{q}^{\prime}\right), \dot{Q}_{\beta}^{\lambda}\left(\mathbf{q}^{\prime}\right): \zeta \leq \alpha, \beta<\alpha\right\rangle$ is in $\mathcal{Q}(\lambda, \alpha)$. We state for reference two properties of suitable sequences.

Fact 1. If λ is a limit ordinal, then $\left\langle\dot{Q}_{\beta}^{\prime}: \beta \in \lambda\right\rangle \in H(\kappa)$ is suitable so long as $\left\langle\dot{Q}_{\beta}^{\prime}: \beta<\mu\right\rangle$ is suitable for all $\mu<\lambda$.

Fact 2. If $\mathbf{q}^{\prime}=\left\langle\dot{Q}_{\beta}^{\prime}: \beta \in \lambda\right\rangle \in H(\kappa)$ is suitable, then $\left\langle\dot{Q}_{\beta}^{\prime}: \beta \in \lambda+1\right\rangle$ is suitable for any $P_{\lambda+\lambda}^{\lambda}\left(\mathbf{q}^{\prime}\right)$-name $\dot{Q}_{\lambda}^{\prime}$ of a ccc poset of cardinality at most \aleph_{1}.

Now that we have this cumbersome, but necessary, notation out of the way, the proof of the theorem is a routine consequence of the prior results. Let \sqsubset be a well ordering of $H(\kappa)$ in type κ. We recursively define a sequence $\left\langle\dot{Q}_{\beta}^{\prime}: \beta<\kappa\right\rangle$ and a 1-to-1 sequence $\left\langle\mathcal{U}_{\beta}: \beta<\kappa\right\rangle$. One inductive assumption is that every initial segment of $\left\langle\dot{Q}_{\beta}^{\prime}: \beta<\kappa\right\rangle$ is a suitable sequence. The list $\left\{\mathcal{U}_{\beta}: \beta<\kappa\right\}$ will contain the list the potential S -space tasks as we deal with them.

Let $\lambda<\kappa$ and assume that $\left\langle\dot{Q}_{\beta}^{\prime}, \mathcal{U}_{\beta}: \beta<\lambda\right\rangle \in H(\kappa)$ has been chosen. If $\lambda \notin \mathbf{E}$, then $\dot{Q}_{\lambda}^{\prime}$ is the trivial poset and $\mathcal{U}_{\lambda}=\lambda$. Now let $\lambda \in \mathbf{E}$ and let $\mathbf{q}^{\prime}=\left\langle\dot{Q}_{\beta}^{\prime}: \beta<\lambda\right\rangle$. Consider the set of all $P_{\lambda+\lambda}^{\lambda}\left(\mathbf{q}^{\prime}\right)$-names $\mathcal{U}=\left\{\dot{U}_{\xi}: \xi \in \omega_{1}\right\}$ that are forced to be S-space tasks. Consider only those \mathcal{U} for which there is an elementary submodel \bar{M} of $H\left(\kappa^{+}\right)$as in Lemma 4.2. More specifically, such that $\bar{M} \cap \lambda \subset I_{\lambda},\left\{\mathcal{U}, P_{\lambda+\lambda}^{\lambda}\left(\mathbf{q}^{\prime}\right)\right\} \in \bar{M}$, $|\bar{M}|=\aleph_{1}$, and $\bar{M}^{\omega} \subset \bar{M}$. The final requirement of such \mathcal{U} is that they are not in the set $\left\langle\mathcal{U}_{\beta}: \beta<\lambda\right\rangle$. If any such \mathcal{U} exist, then let \mathcal{U}_{λ} be the \sqsubset-minimal one. Loosely, \mathcal{U}_{λ} is the \sqsubset-minimal S-space task that has not yet been handled and can be handled at this stage. Otherwise, let $\mathcal{U}_{\lambda}=\lambda$ (so as to preserve the 1-to-1 property). Now we choose $\dot{Q}_{\lambda}^{\prime}$. If $\mathcal{U}_{\lambda}=\lambda$, then \dot{Q}_{λ} is the trivial poset. Otherwise, of course, \dot{Q}_{λ} is the $P_{\lambda+\lambda}^{\lambda+2}\left(\mathbf{q}^{\prime}\right)$-name for $Q\left(\mathcal{U}_{\lambda}, \dot{C}_{\lambda}\right)$. By Lemma 4.2 and Fact $2,\left\langle\dot{Q}_{\beta}: \beta \leq \lambda\right\rangle$ is suitable.

This completes the recursive construction of the suitable sequence $\mathbf{q}^{\prime}=\left\langle\dot{Q}_{\beta}^{\prime}: \beta<\kappa\right\rangle$ and the listing $\left\langle\mathcal{U}_{\beta}: \beta<\kappa\right\rangle$. It remains only to prove that if $\mathcal{U}=\left\{\dot{U}_{\xi}: \xi \in \omega_{1}\right\}$ is a $P_{\kappa+\kappa}^{\kappa}\left(\mathbf{q}^{\prime}\right)$-name of an S-space task, then there is an $\alpha<\kappa$ such that $\mathcal{U}=\mathcal{U}_{\alpha}$. Fix any such \mathcal{U} and elementary submodel $\bar{M} \prec H\left(\kappa^{+}\right)$such that $\left\{\mathcal{U}, P_{\kappa+\kappa}^{\kappa}\left(\mathbf{q}^{\prime}\right)\right\} \in \bar{M},|\bar{M}|=\aleph_{1}$, and $\bar{M}^{\omega} \subset \bar{M}$. Let Λ be the set of $\lambda \in \kappa$ such that $\bar{M} \cap \kappa \subset I_{\lambda}$. Let γ be the order type of the set of predecessors of \mathcal{U} in the well ordering \sqsubset. Choose any $\lambda \in \Lambda$ such that the order type of $\Lambda \cap \lambda$ is greater than γ. Note that $\Lambda \subset \mathbf{E}$. For every $\mu \in \Lambda \cap \lambda, \mathcal{U}$ would have been an appropriate choice for \mathcal{U}_{μ} and if not chosen, then $\mu \neq \mathcal{U}_{\mu} \sqsubset \mathcal{U}$. Since the sequence is 1-to-1, there is therefore a $\mu \in \Lambda \cap \lambda$ such that $\mathcal{U}=\mathcal{U}_{\mu}$.

It should be clear that we can ensure that Martin's Axiom holds in the extension by making minor adjustments to the choice of \dot{Q}_{β}^{\prime} for $\beta \notin \mathbf{E}$ in the sequence $\left\langle\dot{Q}_{\beta}^{\prime}: \beta<\kappa\right\rangle$ together with some additional bookkeeping,

5. Moore-Mrowka tasks

The Moore-Mrowka problem asks if every compact space of countable tightness is sequential. A space has countable tightness if the closure of a set is equal to the union of the closures of all its countable subsets. A
space is sequential providing that each subset is closed so long as it contains the limits of all its converging (countable) subsequences. To illustrate that a sequential space has countable tightness, note that a space has countable tightness if a set is closed so long as it contains the closures of all of its countable subsets. Say that a compact non-sequential space of countable tightness is a Moore-Mrowka space.

Results on the Moore-Mrowka problem have closely resembled those of the S-space problem. In particular, there are proofs that PFA implies there are no Moore-Mrowka spaces that have many similarities to the proof that PFA implies there are no S-spaces. While it is independent with CH as to whether MooreMrowka spaces exist [5], it is known that \diamond implies there are (Cohen indestructible) Moore-Mrowka spaces of cardinality \aleph_{1} [13]. In addition, \diamond implies there is a separable compact space of countable tightness with cardinality $2^{\aleph_{1}}$ (greater than \mathfrak{c}) [8]. It is also known that the addition of \aleph_{2} Cohen reals over a model of $\diamond+\aleph_{2}<2^{\aleph_{1}}$ results in a model in which there is a compact separable space of countable tightness that has cardinality greater than $\mathfrak{c}[6]$. Of course these spaces are Moore-Mrowka spaces since every separable sequential space has cardinality at most \mathbf{c}.

Here are two open problems and a third that we solve in the affirmative in this section.
Question 5.1. Is it consistent with $\mathfrak{c}>\aleph_{2}$ that every compact space of countable tightness is sequential?
Question 5.2. Is it consistent with $\mathfrak{p}>\aleph_{2}$ that there is a Moore-Mrowka space?
Question 5.3. Is it consistent with $\mathfrak{c}>\aleph_{2}$ that every separable Moore-Mrowka space has cardinality at most c?

The solution to Question 5.3 will follow the same pattern as that used for the S-space problem in the previous section. A Moore-Mrowka task mentioned in the title of the section is similar to an S-space task. The difference will be that rather than using the poset $Q(\mathcal{U}, C)$ to force an uncountable discrete subset, we will hope to force an uncountable (algebraic) free sequence. We define these notions and indicate their relevance.

Definition 5.1. A sequence $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\}$ is a free sequence in a space X if, for every $\delta<\omega_{1}$, the initial segment $\left\{x_{\alpha}: \alpha \in \delta\right\}$ and the final segment $\left\{x_{\beta}: \beta \in \omega_{1} \backslash \delta\right\}$ have disjoint closures.

A sequence $\left\{x_{\alpha}, U_{\alpha}, W_{\alpha}: \alpha \in \omega_{1}\right\}$ is an algebraic free sequence in a space X providing
(1) $x_{\alpha} \in U_{\alpha}$ and W_{α} are open sets with $\overline{U_{\alpha}} \subset W_{\alpha}$,
(2) for every $\alpha<\delta \in \omega_{1}, x_{\delta} \notin W_{\alpha}$ and there is a finite $H \subset \delta+1$ such that $\left\{x_{\eta}: \eta \leq \delta\right\} \subset \bigcup\left\{U_{\beta}: \beta \in H\right\}$.

Free sequences were introduced by Arhangelskii. Algebraic free sequences were introduced by Todorcevic in a slightly different formulation. The advantage of an algebraic free sequence is that the only reference to the (second order) closure property is with the pairs U_{α}, W_{α}. If $\left\{x_{\alpha}, U_{\alpha}, W_{\alpha}: \alpha \in \omega_{1}\right\}$ is an algebraic free sequence, then the set $\left\{x_{\alpha+1}: \alpha<\omega_{1}\right\}$ is a free sequence. This follows from the fact that for all $\delta \in \omega_{1}$, there is a finite $H \subset \delta+1$ satisfying that $\left\{x_{\alpha}: \alpha \leq \delta\right\} \subset U_{H}=\bigcup\left\{U_{\alpha}: \alpha \in H\right\}$ and $\left\{x_{\beta}: \delta<\beta \in \omega_{1}\right\}$ is disjoint from $W_{H}=\bigcup\left\{W_{\alpha}: \alpha \in H\right\}$. The free sequence property now follows from the fact that U_{H} and $X \backslash W_{H}$ have disjoint closures. This was crucial in Balogh's proof [4] that PFA implies there are no Moore-Mrowka spaces.

Proposition 5.2 ([3]). A compact space has countable tightness if and only if it contains no uncountable free sequence.

Definition 5.3. A sequence $\mathcal{A}=\left\{A_{\alpha}: \alpha \in \omega_{1}\right\}$ is a Moore-Mrowka task if, for all $\alpha \in \omega_{1}, \alpha \in A_{\alpha} \subset \alpha+1$, and
(1) for all $\beta<\alpha$ there is a γ such that $A_{\gamma} \cap\{\beta, \alpha\}=\{\alpha\}$, and
(2) for all uncountable $A \subset \omega_{1}$, there is a $\delta \in \omega_{1}$ such that for all $\beta \in \omega_{1} \backslash \delta,(A \cap \delta) \cap \bigcap_{\gamma \in H} A_{\gamma}$ is not empty for all finite $H \subset\left\{\gamma: \beta \in A_{\gamma}\right\}$.

The idea behind a Moore-Mrowka task is that we identify ω_{1} with a set of points in space X and so that there is a collection $\left\{U_{\alpha}, W_{\alpha}: \alpha \in \omega_{1}\right\}$ that is a neighborhood assignment for those points. For each $\alpha, \overline{U_{\alpha}} \subset W_{\alpha}$ and $W_{\alpha} \cap \omega_{1}$ is also contained in $\alpha+1$. Then we set $A_{\alpha}=U_{\alpha} \cap \omega_{1}$. Condition (1) is trivial to arrange but condition (2) is a \diamond-like condition. A distinction with S-space task is that the non-existence of a Moore-Mrowka task extracted from a compact space of countable tightness does not imply that the space is sequential. The similarity with S-space task is that we will use a Moore-Mrowka task to generically introduce an algebraic free sequence.

Definition 5.4. Let $\mathcal{A}=\left\{A_{\alpha}: \alpha \in \omega_{1}\right\}$ be a Moore-Mrowka task and let $C \subset \omega_{1}$ be a cub. The poset $\mathcal{M}(\mathcal{A}, C)$ is the set of finite subsets of $\omega_{1} \backslash \min (C)$ that are separated by C. For each $H \in \mathcal{M}(\mathcal{A}, C)$ and each $\beta \in H$, let $A(H, \beta)$ be the intersection of the family $\left\{A_{\gamma}: \gamma \in H, \beta \in A_{\gamma}\right\}$. We define $H<K$ from $\mathcal{M}(\mathcal{A}, C)$ providing $H \supset K$ and for each $\alpha \in H \cap \max (K), \alpha \in A(K, \min (K \backslash \alpha))$.

Lemma 5.5. Let $\lambda \in \mathbf{E}$ and let \dot{R}_{0} be a $P_{\lambda}\left(I_{\lambda}\right)$-name that is forced by P_{λ} to be ccc poset. Let \dot{R} be a P_{λ}-name of a ccc poset such $\mathbf{1}_{P_{\lambda}}$ forces that $\dot{R}_{0} \subset_{c} \dot{R}$. Assume that $\mathcal{A}=\left\{\dot{A}_{\xi}: \xi \in \omega_{1}\right\}$ is a sequence of $P_{\lambda}\left(I_{\lambda}\right) * \dot{R}_{0}$-names of subsets of ω_{1} such that $P_{\lambda} * \dot{R}$ forces that \mathcal{A} is a Moore-Mrowka task. Then the $P_{\lambda+2}$-name $\mathcal{N}\left(\mathcal{U}, \dot{C}_{\lambda}\right)$ satisfies that $P_{\lambda+2}$ forces that $\dot{R} \times \mathcal{N}\left(\mathcal{U}, \dot{C}_{\lambda}\right)$ is ccc.

Proof. The proof proceeds much as it did in Lemma 3.3 and Corollary 3.4 for S-space tasks. To show that a poset of the form $\mathcal{M}(\mathcal{A}, C)$ is ccc, it again suffices to prove that, for each $n \in \omega$, there is no uncountable antichain consisting of pairwise disjoint sets of cardinality n. So we consider an arbitrary family of pairwise disjoint sets of cardinality n. Fix $P_{\lambda+2} * \dot{R}$-names $\left\{\dot{H}_{\xi}: \xi \in \omega_{1}\right\}$ for a set of pairwise disjoint elements of $\mathcal{M}\left(\mathcal{A}, \dot{C}_{\lambda}\right) \cap\left[\omega_{1}\right]^{n}$. Following Lemma 3.3, we may assume that, for each $\xi \in \omega_{1}$, it is forced that $\xi<\min \left(\dot{H}_{\xi}\right)$ and that $\{\xi\} \cup \dot{H}_{\xi}$ is also separated by \dot{C}_{λ}. We prove that no condition forces this to be an antichain.

Let M be a countable elementary submodel containing all the above and let $p_{1} \in P_{\lambda+2}$ be chosen as in Lemma 2.15 so that p_{1} is $\left(M, P_{\lambda+2}\right)$-generic and so that $p_{1}(\lambda) \in M$. Let $p_{1} \upharpoonright \lambda \in G_{\lambda}$ be a P_{λ}-generic filter and pass to the extension $V\left[G_{\lambda}\right]$. Let $R=\operatorname{val}_{G_{\lambda}}(\dot{R})$ and let $G_{1} \subset \mathcal{C}_{\omega_{1}}$ so that $p_{1} \upharpoonright \lambda+1 \in G_{\lambda} * G_{1}$ is $P_{\lambda+1}$-generic. Let $\delta=M \cap \omega_{1}$. We will prove that p_{1} forces that \dot{H}_{δ} is compatible with some element of $\left\{\dot{H}_{\eta}: \eta \in \delta\right\}$.

For each $\zeta \in \omega_{1}$, let, in $V\left[G_{\lambda}\right]$, \dot{J}_{ζ} denote the R-name for the set $\left\{\gamma: \zeta \in \dot{A}_{\gamma}\right\}$ and, for each finite $F \subset \omega_{1}$, also let \dot{A}_{F} denote the R-name for $\bigcap_{\gamma \in F} \dot{A}_{\gamma}$. We leave the reader to check that it suffices to prove that p_{1} forces that for each finite $F \subset \dot{J}_{\min \left(\dot{H}_{\delta}\right)}$, there is an $\eta<\delta$ such that $\dot{H}_{\eta} \subset \dot{A}_{F}$. For each $\zeta \in \omega_{1}$ and finite $F \subset \omega_{1}$, we will let J_{ζ} and A_{F} denote $\operatorname{val}_{G_{R}}\left(\dot{J}_{\zeta}\right)$ and $\operatorname{val}_{G_{R}}\left(\dot{A}_{F}\right)$ respectively. Also, for the remainder of the proof we will treat each \dot{H}_{ξ} as the canonical $R \times\left(Q_{\lambda} * \dot{Q}_{\lambda+1}\right)$-name obtained from the evaluation of the original $P_{\lambda+2} * \dot{R}$-name by G_{λ}. For each $\xi \in \omega_{1}$ and $H \in\left[\omega_{1}\right]^{n}$, let $\Gamma_{\xi}(H)$ be the (possibly empty) set of conditions in $R \times\left(Q_{\lambda} * \dot{Q}_{\lambda+1}\right)$ that force H to equal \dot{H}_{ξ}.

We need an updated version of ω_{1}-full. Say that a countable set B, in $V\left[G_{\lambda}\right]\left[G_{R}\right]$, is \mathcal{A}-large if there is a $\gamma \in \omega_{1}$ such that $B \cap A_{F} \neq \emptyset$ for all $\beta \in \omega_{1} \backslash \gamma$ and finite $F \in J_{\beta}$. We may interpret this as that \bar{B} contains $\omega_{1} \backslash \gamma$.

For $\xi \in \omega_{1}$ and $(r, p) \in R \times\left(Q_{\lambda} * \dot{Q}_{\lambda+1}\right)$, let $\Gamma_{\xi}(H,(r, p))$ be the set of conditions in $\Gamma_{\xi}(H)$ that are below (r, p). In other words, $\Gamma_{\xi}(H,(r, p))$ is not empty if and only if $(r, p) \nVdash H \neq \dot{H}_{\xi}$. Similarly, for each $0<i<n$ and $H \in\left[\omega_{1}\right]^{i}$, let $\Gamma_{\xi}(H,(r, p))=\bigcup\left\{\Gamma_{\xi}(H \cup\{\eta\},(r, p)): \eta \in \omega_{1}\right\}$. For $H \in\left[\omega_{1}\right]^{n}$, say that $\Gamma_{\xi}(H,(r, p))$ is full if $\Gamma_{\xi}(H,(\bar{r}, p))$ is not empty for all $\bar{r} \leq r$. For $0<i<n$ and $H \in\left[\omega_{1}\right]^{n-i}$, say that $\Gamma_{\xi}(H,(r, p))$ is
full if there is a R-name \dot{B} that is forced to be an \mathcal{A}-large set of $\eta \in \omega_{1}$ and, for each η and $s \Vdash \eta \in \dot{B}$, $\Gamma_{\xi}(H \cup\{\eta\},(s, p))$ is full.

Claim 8. Suppose that $\xi, r, p \in M\left[G_{\lambda}\right]$ and that $\Gamma_{\xi}(\emptyset,(r, p))$ is full. Suppose also that $\bar{r} \in R$ forces that F is a finite subset of \dot{J}_{ζ} for some $\delta \leq \zeta \in \omega_{1}$. Then there are $(s, q), H \in M\left[G_{\lambda}\right]$ and $\bar{s}<\bar{r}$ such that
(1) $(s, q)<(r, p)$ in $R \times\left(Q_{\lambda} * \dot{Q}_{\lambda+1}\right)$,
(2) $\bar{s}<s$,
(3) $\bar{s} \Vdash H \subset \dot{A}_{F}$,
(4) $(s, q) \Vdash \dot{H}_{\xi}=H$.

Proof of Claim. There is an $R \times Q_{\lambda}$-name $\dot{B}_{0} \in M\left[G_{\lambda}\right]$ that is forced to be a \mathcal{A}-large subset of δ and witnesses that $\Gamma_{\xi}(\emptyset,(r, p))$ is full. Therefore there are $\eta<\delta$ and $r^{\prime}<\bar{r}$ such that $\bar{r}_{1} \Vdash \eta \in \dot{B}_{0} \cap A_{F}$. There is no loss to assuming, by elementarity, that \bar{r}_{1} extends some $r_{1} \in M\left[G_{\lambda}\right]$ such that $r_{1} \Vdash \eta \in \dot{B}_{0}$. Since $r_{1} \Vdash \eta \in \dot{B}_{0}$, we have that $\Gamma_{\xi}\left(\{\eta\},\left(r_{1}, p\right)\right)$ is full. Following a recursion of length n, there is an $\bar{r}_{n}<\bar{r}$ in R, an $H=\left\{\eta_{1}, \ldots, \eta_{n}\right\} \in M\left[G_{\lambda}\right]$, and an $\bar{r}_{n}<r_{n} \in M\left[G_{\lambda}\right]$ such that $\bar{r}_{n} \Vdash H \subset A_{F}$ and $\Gamma_{\xi}\left(H,\left(r_{n}, p\right)\right)$ is full. Since $\bar{r}_{n}<r_{n}, \Gamma_{\xi}\left(H,\left(\bar{r}_{n}, p\right)\right)$ is not empty. Therefore there is a pair $(\bar{s}, \bar{q})<(\bar{r}, p)$ forcing that $H=\dot{H}_{\xi}$. By elementarity, since $\xi, H, p \in M\left[G_{\lambda}\right]$, the set of $\left\{s \in R \cap M:(\exists q)\left((s, q)<\left(r_{n}, p\right) \&(s, q) \Vdash H=\dot{H}_{\xi}\right)\right\}$ is predense below r_{n}. Therefore there is an $(s, q)<\left(r_{n}, p\right) \in M\left[G_{\lambda}\right]$ with $s \not \perp \bar{r}_{n}$ such that $(s, q) \Vdash H=\dot{H}_{\xi}$. Let \bar{s} be any extension of s, \bar{r}_{n}.

Claim 9. For every $(r, p) \in R \times\left(Q_{\lambda} * \dot{Q}_{\lambda+1}\right)$, there is a δ so and a $r_{0}<r$ such that $\Gamma_{\delta}\left(\emptyset,\left(r_{0}, p\right)\right)$ is full.
Proof of Claim. Let $(r, p) \in M_{0}$ be a countable elementary submodel of $H\left(\kappa^{+}\right)\left[G_{\lambda}\right]$ so that $\left\{\mathcal{A}, R, P_{\lambda+2}\right\} \in$ M_{0}. Choose any $(\bar{r}, \bar{p})<(r, p)$ that is an $\left(M_{0}, R \times\left(Q_{\lambda} * \dot{Q}_{\lambda+1}\right)\right)$-generic condition. Let $\delta_{0}=M_{0} \cap \omega_{1}$. Choose any continuous \in-chain $\left\{M_{\alpha}: 0<\alpha<\omega_{1}\right\}$ of countable elementary submodels of $H\left(\kappa^{+}\right)\left[G_{\lambda}\right]$ such that $\left\{M_{0},(\bar{r}, \bar{p})\right\} \in M_{1}$.

For each $\alpha \in \omega_{1}$, let $\delta_{\alpha}=M_{\alpha} \cap \omega_{1}$. Let C^{*} be the cub $\left\{\delta_{\alpha}: \alpha \in \omega_{1}\right\}$. Choose any extension $\left(r_{n}, p_{n}\right)$ of (\bar{r}, \bar{p}) such that $\pi_{1}\left(p_{2}(\lambda+1)\right) \subset C^{*} \cup \delta_{0}$, and so that there is an $H=\left\{\xi_{1}, \ldots, \xi_{n}\right\} \in\left[\omega_{1}\right]^{n}$ with $\left(r_{n}, p_{n}\right) \Vdash$ $H=\dot{H}_{\delta_{0}}$. Of course this implies that $\Gamma_{\delta_{0}}\left(H,\left(r_{n}, p\right)\right) \supset \Gamma_{\delta_{0}}\left(H,\left(r_{n}, p_{n}\right)\right)$ is actually full. Okay, then $H_{n-1}=$ $\left\{\xi_{1}, \ldots, \xi_{n-1}\right\}$ is in $M_{\alpha_{n}}$. Let's take the R-name \dot{E}_{n-1} to the set of (η, \tilde{r}) such that $\Gamma_{\delta_{0}}\left(\{\eta\} \cup H_{n-1},(\tilde{r}, p)\right)$ is full. The condition r_{n} forces that \dot{E}_{n-1} is uncountable. Since \mathcal{A} is a Moore-Mrowka task in $V\left[G_{\lambda} * G_{R}\right], r_{n}$ forces that $\dot{E}_{n-1} \in M_{\alpha_{n}}$ contains an \mathcal{A}-large set. By elementarity and the fact that r_{n} is $\left(M_{\alpha_{n}}, R\right)$-generic, there is an r_{n-1} in $M_{\alpha_{n}}$ that forces \dot{E}_{n-1} contains an \mathcal{A}-large set. Therefore, for such an $r_{n-1} \in M_{\alpha_{n}}$, we have that $\Gamma_{\delta_{0}}\left(H_{n-1},\left(r_{n-1}, p\right)\right)$ is full. This recursion continues as above and for each $i<n$, there is an $r_{i} \in M_{\alpha_{i}}$ such that $\Gamma_{\delta_{0}}\left(\left\{\xi_{j}: j<i\right\},\left(r_{i}, p\right)\right)$ is full. Setting $\delta=\delta_{0}$, this completes the proof of the Claim.

Following the proof of Corollary 3.4 we can complete the proof using that p_{1} satisfied the conclusion of Lemma 2.15. Using Claim 9, it follows from Claim 8 that in $V\left[G_{\lambda}\right]\left[G_{R}\right]$, for each $\delta \leq \zeta \in \omega_{1}$ and finite $F \subset J_{\zeta}$, the set \mathcal{W}_{F} consisting of those $p \in M\left[G_{\lambda}\right] \cap\left(Q_{\lambda} * \dot{Q}_{\lambda+1}\right)$ for which there is a $\bar{s} \in G_{R}$ and $\xi \in \delta$ such that $(\bar{s}, p) \Vdash \dot{H}_{\xi} \subset A_{F}$, is a dense subset of $M\left[G_{\lambda}\right] \cap\left(Q_{\lambda} * \dot{Q}_{\lambda+1}\right)$. By the genericity of $\left(\left(G_{1}\right) \upharpoonright \delta\right) *\left(p_{1 \lambda}^{\uparrow}\right)$ over the model $V\left[G_{\lambda} * R\right]$ as in Lemma 2.15, it meets \mathcal{W}_{F}. It follows that p_{1} forces that there is a $\xi \in \delta$ such that $\dot{H}_{\xi} \subset A_{F}$. Applying this fact to $\zeta=\min \left(H_{\delta}\right)$ completes the proof.

Now we show that Moore-Mrowka tasks will arise that will allow us to prove there is a minor additional condition that we can place on the construction of $P_{\kappa+\kappa}$ (assuming an extra \diamond-principle) that will force there are no separable Moore-Mrowka spaces of cardinality greater than \mathfrak{c}. Let S_{1}^{κ} denote the set of $\lambda \in \kappa$ that have cofinality ω_{1}. We will assume there is a $\diamond\left(S_{1}^{\kappa}\right)$-sequence.

We begin with this Lemma.

Lemma $5.6\left(\mathfrak{c}^{<\mathfrak{c}}=\mathfrak{c}\right)$. Let X be a separable Moore-Mrowka space of cardinality greater than \mathfrak{c}. Let $X \in M$ be an elementary submodel of $H(\theta)$ for some sufficiently large θ such that $|M|=\mathfrak{c}$ and $M^{\mu} \subset M$ for all $\mu<\mathfrak{c}$. For any point $z \in X \backslash M$ there is a sequence $\left\{B_{\eta}: \eta<\mathfrak{c}\right\}$ of countable subsets of $M \cap X$ satisfying, for all $\eta<\zeta<\mathfrak{c}$,
(1) $\overline{B_{\eta}}$ contains $B_{\zeta} \cup\{z\}$
(2) for all $A \subset M \cap X$ with $z \in \bar{A}$, there is an $\alpha<\mathfrak{c}$ such that \bar{A} contains B_{α}.

Proof. Since X is separable, we can let $B_{0} \in M$ be any countable dense subset. Fix an enumeration $\left\{S_{\xi}: \xi<\mathfrak{c}\right\}$ of all the countable subsets of $M \cap X$ that have z in their closure. Let $\mathcal{W} \in M$ be a base for the topology. Assume we have chosen $\left\{B_{\xi}: \xi<\eta\right\}$ for some $\eta<\mathfrak{c}$. Assume, by induction, that B_{ξ} is also a subset of $\overline{S_{\xi}}$. The set $\overline{S_{\eta}} \cup\left\{\overline{B_{\xi}}: \xi<\eta\right\}$ is an element of M and every member contains z. Let K_{η} denote the intersection of this family. Choose any neighborhood $U \in \mathcal{W}$ of z. Since $z \in W \cap K$, it follows from elementarity that $M \cap W \cap K_{\eta}$ is non-empty. Therefore, z is in the closure of some countable $B_{\eta} \subset M \cap K_{\eta}$. This completes the inductive construction of the family. We simply have to verify that property (2) holds. Let $z \in \bar{A}$ for some $A \subset M \cap X$. By countable tightness, there is an η such that $S_{\eta} \subset A$. Therefore $\bar{A} \supset B_{\eta}$.

Remark 10. A compact separable space of cardinality at most \mathfrak{c} will have a $G_{\boldsymbol{\delta}}$-dense set of points of character less than \mathfrak{c}. Therefore, in a model with $\mathfrak{p}=\mathfrak{c}$, any such space has the property that the sequential closure of any subset is countably compact. In particular, in such a model a Moore-Mrowka space necessarily has weight at least \mathfrak{c} and will have a countably compact subset that is not closed. A space is said to be C-closed if it has no such subspace, see $[7,10]$.

Definition 5.7. Say that a sequence $\left\langle y_{\alpha}, U_{\alpha}, W_{\alpha}: \alpha<\kappa\right\rangle$ is a κ-MM sequence of a space X if
(1) U_{α}, W_{α} are open in X and $y_{\alpha} \in U_{\alpha} \subset \overline{U_{\alpha}} \subset W_{\alpha}$,
(2) $y_{\gamma} \notin U_{\alpha}$ for all $\alpha<\gamma \in \kappa$,
(3) for all $\beta<\alpha<\kappa, U_{\gamma} \cap\left\{y_{\beta}, y_{\alpha}\right\}=\left\{y_{\alpha}\right\}$ for some $\alpha \leq \gamma \in \kappa$,
(4) for every $A \subset \kappa$, there is a countable $B \subset A$ and a $\gamma<\kappa$ such that the closure of $\left\{y_{\alpha}: \gamma<\alpha<\kappa\right\}$ is either contained in the closure of $\left\{y_{\beta}: \beta \in B\right\}$ or is disjoint from the closure of $\left\{y_{\alpha}: \alpha \in A\right\}$.

Theorem 5.8. Let $\left\langle P_{\alpha}, \dot{Q}_{\beta}: \alpha \leq \kappa+\kappa, \beta<\kappa+\kappa\right\rangle$ be an iteration sequence in the sense of Theorem 4.3. In particular, assume that for all $\mu<\kappa$ there is a $\mathbf{q}_{\mu} \in \mathcal{Q}(\mu, \mu)$ satisfying that $P_{\kappa+\lambda}$ is equal to $P_{\kappa+\mu}^{\mathbf{q}_{\mu}(\kappa)}$.

Let \dot{X} be a $P_{\kappa+\kappa-n a m e ~ o f ~ a ~ c o m p a c t ~ s e p a r a b l e ~ s p a c e ~ o f ~ c o u n t a b l e ~ t i g h t n e s s . ~ A s s u m e ~ a l s o ~ t h a t ~}^{\left\langle\dot{y}_{\alpha}\right.}, \dot{U}_{\alpha}, \dot{W}_{\alpha}$: $\alpha<\kappa\rangle$ is forced to be a κ-MM sequence of \dot{X}. Then there is a cub $C_{\dot{X}} \subset \kappa$ such that for each $\lambda \in C_{\dot{X}} \cap S_{1}^{\kappa}$, there is an injection $f_{\lambda}: \omega_{1} \rightarrow \lambda$ such that $\mathcal{A}=\left\langle\dot{A}_{\eta}: \eta<\omega_{1}\right\rangle$, where $\dot{A}_{\eta}=\left\{\xi: y_{f_{\lambda}(\xi)} \in \dot{U}_{f_{\lambda}(\eta)}\right\}$, is forced by $P_{\lambda+\lambda}^{\mathbf{q}_{\lambda}}$ to be a Moore-Mrowka task.

Proof. We may assume, since it is forced to be compact and separable, that \dot{X} is a $P_{\kappa+\kappa}$-name of a closed subspace of $[0,1]^{\kappa}$. Let G be a $P_{\kappa+\kappa}$-generic filter so that we may make some observations about \dot{X} and the κ-MM sequence $\left\langle y_{\alpha}, U_{\alpha}, W_{\alpha}: \alpha<\kappa\right\rangle$. There is a point $z \in \operatorname{val}_{G}(\dot{X})$ that is a κ-accumulation point of $\left\{y_{\alpha}: \alpha \in \kappa\right\}$. We check that z is the unique such point. If U, W are open neighborhoods of z with $\bar{U} \subset W$, then $A=\left\{\alpha \in \kappa: y_{\alpha} \in U\right\}$ is cofinal in κ. By condition (4) of the κ-MM property, there is a countable $B \subset A$ so that the closure of $\left\{y_{\beta}: \beta \in B\right\}$ contains $\left\{y_{\alpha}: \sup (B)<\alpha<\kappa\right\}$. It thus follows that $\left\{y_{\alpha}: \sup (B)<\alpha<\kappa\right\}$ is contained in W and shows that $X \backslash W$ contains no κ-accumulation points of $\left\{y_{\alpha}: \alpha \in \kappa\right\}$. Now assume that z is in the closure of $\left\{y_{\beta}: \beta \in A\right\}$ for some $A \subset \kappa$. Since the second clause of condition (4) of the κ-MM property fails, it follows that there is a countable $B \subset A$ such that
the closure of $\left\{y_{\beta}: \beta \in B\right\}$ contains a final segment of $\left\{y_{\alpha}: \alpha \in \kappa\right\}$. We will be interested in the subspace $X_{\lambda}=\{x \upharpoonright \lambda: x \in X\}$ of $[0,1]^{\lambda}$. Since this space is a continuous image of X, it also has countable tightness. Let \dot{z} be a canonical $P_{\kappa+\kappa}$-name for z.

Let $M \prec H\left(\kappa^{+}\right)$so that $\sup (M \cap \kappa)=\lambda \in S_{1}^{\kappa}$ and $M^{\omega} \subset M$. We note that it follows from Corollary 2.12, and the fact that $P_{\kappa+\kappa} / P_{\kappa}$ is ccc, that every countable subset of $M \cap \kappa$ in $V[G]$ has a name in M. Assume also that $\dot{z}, \dot{X}, P_{\kappa+\kappa}$ and the κ-MM sequence are elements of M. Choose any continuous \in-increasing sequence $\left\{M_{\eta}: \eta \in \omega_{1}\right\}$ of countable elementary submodels of M such that $Y_{\lambda}=\bigcup\left\{M_{\eta} \cap \lambda: \eta \in \omega_{1}\right\}$ is cofinal in λ. Define f_{λ} so that $f_{\lambda}(\eta)=\sup \left(M_{\eta} \cap \lambda\right)$. It should be clear that to show that \mathcal{A}, as in the statement of the Theorem, is forced by $P_{\lambda+\lambda}^{\mathbf{q}_{\lambda}}$ to be a Moore-Mrowka task it is sufficient to check that condition (2) of Definition 5.3 is forced to hold. Let \dot{A} be any $P_{\lambda+\lambda}^{\mathbf{q}_{\lambda}}$-name of an uncountable subset of ω_{1}. We may regard $P_{\lambda+\lambda}^{\mathbf{q}_{\lambda}}$ as a complete subposet of $P_{\kappa+\kappa}$ and so consider $\operatorname{val}_{G}(\dot{A})$ in $V[G]$. In the space X_{λ}, it is clear that $z \upharpoonright \lambda$ is in the closure of the set $\left\{y_{f_{\lambda}(\eta)}: \eta \in A\right\}$. Therefore, there is a countable $B \subset A$ such that $z \upharpoonright \lambda$ is in the closure of the set $\vec{y}\left(f_{\lambda}(B)\right)=\left\{y_{f_{\lambda}(\eta)}: \eta \in B\right\}$. Now B is a countable subset of $M \cap \lambda$, and so there is a $P_{\lambda+\lambda}^{\mathbf{q}_{\lambda}}$-name \dot{B} in M such that $\operatorname{val}_{G}(\dot{B})$ is B. Now we can apply elementarity (using that $f_{\lambda} \upharpoonright B \in M$) and observe that \dot{z} is forced to be in the closure of $\left\{\dot{y}_{f_{\lambda}(\beta)}: \beta \in \dot{B}\right\}$. Moreover, by elementarity and the κ-MM property, there is a $\gamma \in \kappa \cap M$ such that the closure of $\vec{y}\left(f_{\lambda}(\dot{B})\right)$ is forced to contain $\left\{\dot{y}_{\alpha}: \gamma<\alpha<\kappa\right\}$. For each $\gamma<\alpha<\kappa, \vec{y}\left(f_{\lambda}(\dot{B})\right)$ is forced to meet $\bigcap_{\zeta \in H} \dot{U}_{\zeta}$ for all finite $H \subset\left\{\zeta: \alpha \in \dot{U}_{\zeta}\right\}$. Of course there is an $\delta \in \omega_{1}$ such that $\gamma<f_{\lambda}(\delta)$. This completes the proof that, for all $\beta \in \omega_{1} \backslash \delta, \dot{A} \cap \delta$ is forced to meet $\bigcap_{\zeta \in H} \dot{A}_{\zeta}$ for all finite $H \subset\left\{\zeta: \beta \in \dot{A}_{\zeta}\right\}$.

Theorem 5.9. It is consistent with Martin's Axiom and $\mathfrak{c}>\aleph_{2}$ that there are no S-spaces and that compact separable spaces of countable tightness have cardinality at most \mathbf{c}.

Proof. Let $\kappa>\aleph_{2}$ be a regular cardinal in a model of GCH. Using an iteration sequence as in Theorem 4.3, it follows from Theorem 5.8 and Lemma 5.6 that it suffices to ensure that for each \dot{X} and κ-MM-sequence as in Theorem 5.8 , there is a $\lambda \in C_{\dot{X}} \cap S_{1}^{\kappa}$ so that I_{λ} is chosen suitably and so that $\dot{Q}_{\kappa+\lambda}$ is chosen to be $\mathcal{M}\left(\mathcal{A}, \dot{C}_{\lambda}\right)$ for a sequence \mathcal{A} as identified in Theorem 5.8. This is a somewhat routine application of $\diamond\left(S_{1}^{\kappa}\right)$.

Since S_{1}^{κ} is stationary, we may assume that $\diamond\left(S_{1}^{\kappa}\right)$ holds in V. There are many equivalent formulations of $\diamond\left(S_{1}^{\kappa}\right)$ and we choose this one: There is a sequence $\left\langle h_{\alpha}: \alpha \in S_{1}^{\kappa}\right\rangle$ satisfying
(1) for each $\alpha \in S_{1}^{\kappa}, h_{\alpha}: \alpha \times \alpha \rightarrow \alpha$ is a function,
(2) for all functions $h: \kappa \times \kappa \rightarrow \kappa$, the set $\left\{\alpha \in S_{1}^{\kappa}: h_{\alpha} \subset h\right\}$ is stationary.

We will also have to recursively define our sequence $\mathcal{J}=\left\{I_{\gamma}: \gamma \in \mathbf{E}\right\}$ since special choices will have to be made for indices in S_{1}^{κ} and which, due to conditions (3) and (4) impact all the subsequent choices. To assist with the condition (4) of the requirements on \mathcal{J}, we choose an enumeration $\left\{J_{\xi}: \xi \in \kappa\right\}$ of $[\kappa]^{\aleph_{1}}$ as follows. Let $D \subset \kappa$ be a cub consisting of λ such that $\mu+\mu^{\aleph_{1}}<\lambda$ for all $\mu<\lambda$. For each $\mu \in D$, the list $\left\{J_{\xi}: \mu \leq \xi<\mu+\mu^{\aleph_{1}}\right\}$ is an enumeration of $[\mu]^{\aleph_{1}}$.

Say that a sequence $\mathcal{J}_{\lambda}=\left\{I_{\gamma}: \gamma \in \mathbf{E} \cap \lambda\right\} \subset[\lambda] \leq \aleph_{1}$ is an acceptable sequence if it satisfies the properties (1), (2), and (3) that we assume for the sequence \mathcal{J} in section 2 , and, it also satisfies that, for each $\xi<\mu \in \lambda$ such that $\mu+\mu^{\aleph_{1}}<\lambda$, there is a $\zeta \in \mathbf{E} \cap \mu+\mu^{\aleph_{1}}$ such that $J_{\xi} \subset I_{\zeta}$. If $\left\{\mathcal{J}_{\lambda}: \lambda \in D\right\}$ is an increasing sequence of acceptable sequences, then the union, \mathcal{J}, satisfies the requirements of section 2 . Similarly, once we have chosen an acceptable sequence \mathcal{J}_{λ}, we will assume that the sequence $\left\langle P_{\alpha}, \dot{Q}_{\beta}: \alpha \leq \lambda, \beta<\lambda\right\rangle$ is defined as in Definition 2.2 using the sequence \mathcal{J}_{λ}.

In a similar fashion, we relativize the definition of $\mathcal{Q}(\lambda, \mu)$ from Definition 4.1. Given an acceptable sequence \mathcal{J}_{λ}, say that a sequence $\mathbf{q}^{\prime}=\left\{\dot{Q}_{\beta}^{\prime}: \beta<\lambda\right\} \in H(\kappa)$ is \mathcal{J}_{λ}-suitable providing (as in Theorem 4.3), by induction on $\beta<\lambda, \dot{Q}_{\beta}^{\lambda}(\mathbf{q})=\dot{Q}_{\beta}^{\prime}$ is a $P_{\lambda+\beta}^{\lambda}(\mathbf{q})$-name of a ccc poset, where $P_{\alpha}^{\lambda}(\mathbf{q})=P_{\alpha}$ for $\alpha \leq \lambda$ and, for $\beta>0, P_{\lambda+\beta}^{\lambda}(\mathbf{q})$ is the usual poset from the iteration sequence $\left\langle P_{\alpha}^{\lambda}(\mathbf{q}), \dot{Q}_{\zeta}^{\lambda}(\mathbf{q}): \alpha \leq \beta, \zeta<\beta\right\rangle$.

Let f be any function from κ onto $H(\kappa)$. We recursively choose our sequences $\left\{\mathcal{J}_{\lambda}: \lambda \in D\right\}$ and $\left\{\dot{Q}_{\gamma}^{\prime}: \gamma \in \kappa\right\}$. The critical inductive assumptions are, for $\lambda \in D$,
(1) \mathcal{J}_{λ} extends \mathcal{J}_{μ} for all $\mu \in D \cap \lambda$,
(2) \mathcal{J}_{λ} is acceptable,
(3) $\left\{\dot{Q}_{\gamma}^{\prime}: \gamma<\lambda\right\}$ is \mathcal{J}_{λ}-suitable.

Now let $\lambda \in D$ and assume we have constructed, for each $\mu \in D \cap \lambda, \mathcal{J}_{\mu}$ and $\left\{\dot{Q}_{\gamma}^{\prime}: \gamma<\mu\right\}$. If $D \cap \lambda$ is cofinal in λ, then we simply let $\mathcal{J}_{\lambda}=\bigcup\left\{\mathcal{J}_{\mu}: \mu \in D \cap \lambda\right\}$ and there is nothing more to do. Otherwise, let μ be the maximum element of $D \cap \lambda$.

Case 1: $\mu \notin S_{1}^{\kappa}$. First choose any acceptable $\mathcal{J}_{\lambda} \supset \mathcal{J}_{\mu}$. Choose $\left\{\dot{Q}_{\beta}^{\prime}: \mu \leq \beta<\lambda\right\}$ by induction as follows. For $\mu<\beta \notin \mathbf{E}$, let \mathbf{q} denote $\left\{\dot{Q}_{\gamma}^{\prime}: \gamma<\beta\right\}$. Let $\zeta<\kappa$ be minimal so that $\dot{Q}_{\beta}^{\prime}=f(\zeta)$ is a $P_{\mu+\beta}^{\mu}(\mathbf{q})$-name of a ccc poset that is not in the list $\left\{\dot{Q}_{\gamma}^{\prime}: \gamma<\beta\right\}$. For $\mu \leq \beta \in \mathbf{E}$, choose, if possible minimal $\zeta<\kappa$ so that $f(\zeta)$ is equal to $Q\left(\mathcal{U}, \dot{C}_{\beta}\right)$ for some S-space task that is not yet handled and let $\dot{Q}_{\beta}^{\prime}=f(\zeta)$. Otherwise, let $\dot{Q}_{\beta}^{\prime}=\mathcal{C}_{\omega}$.

The verification of the inductive hypotheses in Case 1 is routine. We also note that if the induction continues to κ, then $P_{\kappa+\kappa}^{\kappa}\left(\left\{\dot{Q}_{\beta}^{\prime}: \beta<\kappa\right\}\right)$ will force that there are no S-spaces and that Martin's Axiom holds.

Case 2: $\mu \in S_{1}^{\kappa}$. Let \mathbf{q} denote $\left\{\dot{Q}_{\beta}^{\prime}: \beta<\mu\right\}$. Now we decode the element h_{μ} from the \diamond-sequence. If there is any $(\alpha, \xi) \in \mu \times \mu$ such that $f\left(h_{\mu}(\alpha, \xi)\right)$ is not a $P_{\mu+\mu}^{\mu}(\mathbf{q})$-name, then proceed as in Case 1 . For each $\alpha \in \mu$, if $f\left(h_{\mu}(\alpha, 0)\right)$ is not a name of a finite subset of μ, then proceed as in Case 1, otherwise let $\dot{F}_{\alpha}=f\left(h_{\mu}(\alpha, 0)\right)$. Similarly, if there is an $\alpha \in \mu$ such that $f\left(h_{\mu}(\alpha, 1)\right)$ is not a name of a positive rational number, then proceed as in Case 1, otherwise let $\dot{\epsilon}_{\alpha}=f\left(h_{\mu}(\alpha, 1)\right)$. If there is an $\alpha \in \mu$ and a $\xi>1$ such that $f\left(h_{\mu}(\alpha, \xi)\right)$ is not a name of a element of $[0,1]$, then proceed as in Case 1 , otherwise let

$$
\text { for }(\alpha, \xi) \in \mu \times \mu \quad \dot{y}_{\alpha}(\xi)=\left\{\begin{array}{ll}
f\left(h_{\mu}(\alpha, \xi+2)\right) & \text { if } \xi<\omega \\
f\left(h_{\mu}(\alpha, \xi)\right) & \text { if } \omega \leq \xi<\mu
\end{array}\right. \text {. }
$$

It now follows that \dot{y}_{α} is a name of an element of $[0,1]^{\mu}$ and let the name $\left\{x \in[0,1]^{\mu}:\left(\forall \beta \in \dot{F}_{\alpha}\right) \mid x(\beta)-\right.$ $\left.\dot{y}_{\alpha}(\beta) \mid<\dot{\epsilon}_{\alpha}\right\}$ be denoted by \dot{U}_{α}. Now we ask if there is a function $f_{\mu}: \omega_{1} \rightarrow \mu$ as in Theorem 5.8. In particular, if there is an $I \in[\mu]^{\aleph_{1}}$ and such a function $f_{\mu}: \omega_{1} \rightarrow \mu$ such that the sequence $\mathcal{A}=\left\{\dot{A}_{\eta}: \eta \in \omega_{1}\right\}$ as defined in the statement of Theorem 5.8 satisfies that $P_{\mu+\mu}^{\mu}(\mathbf{q})$ forces that \mathcal{A} is a Moore-Mrowka task and each \dot{A}_{α} is a $P_{\mu+\mu}^{\mu}(\mathbf{q})(I) * \dot{R}_{0}$-name in the sense of Lemma 5.5. If all these holds, then choose an appropriate I_{μ} so that $I \subset I_{\mu}$ and define \dot{Q}_{μ}^{\prime} to be $\mathcal{M}\left(\mathcal{A}, \dot{C}_{\mu}\right)$. For the remaining choices proceed as in Case 1.

The construction of $P_{\kappa+\kappa}=P_{\kappa+\kappa}^{\kappa}(\mathbf{q})$ where $\mathbf{q}=\left\{\dot{Q}_{\beta}^{\prime}: \beta<\kappa\right\}$ is complete. As explained at the beginning of the proof, it follows from Lemma 5.6 and Theorem 5.8, and that the fact that D is a cub, that separable Moore-Mrowka spaces in this model have cardinality at most \mathfrak{c}.

References

[1] Uri Abraham, Matatyahu Rubin, Saharon Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of \aleph_{1}-dense real order types, Ann. Pure Appl. Log. 29 (2) (1985) 123-206, https://doi.org/10.1016/ 0168-0072(84)90024-1. MR801036.
[2] Uri Avraham, Saharon Shelah, Martin's axiom does not imply that every two \aleph_{1}-dense sets of reals are isomorphic, Isr. J. Math. 38 (1-2) (1981) 161-176, https://doi.org/10.1007/BF02761858. MR599485.
[3] A.V. Arhangel'skiĭ, The structure and classification of topological spaces and cardinal invariants, Usp. Mat. Nauk 33 (6(204)) (1978) 29-84, 272 (in Russian). MR526012.
[4] Zoltán T. Balogh, On compact Hausdorff spaces of countable tightness, Proc. Am. Math. Soc. 105 (3) (1989) 755-764, https://doi.org/10.2307/2046929. MR930252.
[5] Alan Dow, Todd Eisworth, CH and the Moore-Mrowka problem, Topol. Appl. 195 (2015) 226-238, https://doi.org/10. 1016/j.topol.2015.09.025. MR3414886.
[6] Alan Dow, Compact spaces of countable tightness in the Cohen model, in: Set Theory and Its Applications, Toronto, ON, 1987, in: Lecture Notes in Math., vol. 1401, Springer, Berlin, 1989, pp. 55-67. MR1031765.
[7] A. Dow, Compact C-closed spaces need not be sequential, Acta Math. Hung. 153 (1) (2017) 1-15, https://doi.org/10. 1007/s10474-017-0739-x. MR3713559.
[8] V.V. Fedorčuk, Completely closed mappings, and the compatibility of certain general topology theorems with the axioms of set theory, Mat. Sb. (N. S.) 99 (141) (1) (1976) 3-33, 135 (in Russian). MR0410631.
[9] A. Hajnal, I. Juhász, On hereditarily α-Lindelöf and α-separable spaces. II, Fundam. Math. 81 (2) (1973/1974) 147-158, https://doi.org/10.4064/fm-81-2-147-158. MR336705.
[10] Mohammad Ismail, Peter Nyikos, On spaces in which countably compact sets are closed, and hereditary properties, Topol. Appl. 11 (3) (1980) 281-292, https://doi.org/10.1016/0166-8641(80)90027-9. MR585273.
[11] I. Juhász, A survey of S - and L-spaces, in: Topology, vol. II (Proc. Fourth Colloq., Budapest, 1978), in: Colloq. Math. Soc. János Bolyai, vol. 23, North-Holland, Amsterdam, New York, 1980, pp. 675-688. MR588816.
[12] William Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Log. 5 (1972/1973) 21-46, https://doi.org/10.1016/0003-4843(72)90017-4. MR313057.
[13] A.J. Ostaszewski, On countably compact, perfectly normal spaces, J. Lond. Math. Soc. (2) 14 (3) (1976) 505-516, https:// doi.org/10.1112/jlms/s2-14.3.505. MR438292.
[14] Mary Ellen Rudin, A normal hereditarily separable non-Lindelöf space, Ill. J. Math. 16 (1972) 621-626. MR309062.
[15] Saharon Shelah, Proper Forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, New York, 1982. MR675955.
[16] Stevo Todorčević, Forcing positive partition relations, Trans. Am. Math. Soc. 280 (2) (1983) 703-720, https://doi.org/10. 2307/1999642. MR716846.

[^0]: * Corresponding author.

 E-mail addresses: adow@uncc.edu (A. Dow), shelah@math.rutgers.edu (S. Shelah).
 1 Current address: Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel.
 2 The research of the second author was supported by the United States-Israel Binational Science Foundation (BSF Grant no. 1838/19), and by the NSF grant No. NSF-DMS 1833363. Paper 1228 on Shelah's list.

