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Abstract. We show that one can force superclub with an arbitrarily large value of cov(M ). We prove that the
club principle is consistent with an arbitrarily large value of add(M ). We also prove that if κ is regular then
superclub at κ+ implies Q(κ+,κ+,κ+).

Résumé. Nous prouvons que superclub est consistant avec une valeur arbitrairement élevée de cov(M ).
Nous prouvons que trèfle est consistant avec une valeur arbitrairement élevée de add(M ). Nous prouvons
aussi que superclub en κ+ implique Q(κ+,κ+,κ+) si κ est un cardinal régulier.
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1. Introduction

The diamond principle ♢κ is a prediction principle discovered by Jensen in [9]. Suppose that κ
is regular and uncountable. A ♢κ-sequence is a sequence of sets (Aα : α ∈ κ) such that Aα ⊆ α

whenever α ∈ κ and for every A ⊆ κ the set S A = {α ∈ κ : A∩α= Aα} is a stationary subset of κ. We
say that ♢κ holds iff there exists a ♢κ-sequence. Notice that ♢κ+ implies 2κ = κ+.

The club principle ♣κ is a weaker prediction principle, discovered by Ostaszewski in [12].
Denote the set of limit ordinals of κ by lim(κ). We say that (Tδ : δ ∈ lim(κ)) is a ♣κ-sequence
iff every Tδ is an unbounded subset of δ and for every A ∈ [κ]κ the set TA = {δ ∈ lim(κ) : Tδ ⊆ A∩δ}
is a stationary subset of κ.

The difference between ♢κ and ♣κ is two-fold. Firstly, ♢κ is based on equality while ♣κ is
based on inclusion. Secondly, ♢κ predicts every element of P (κ) while ♣κ predicts only elements
of [κ]κ. The latter property is responsible for the fact that ♣κ+ is consistent with 2κ > κ+. Since
♢κ+ implies 2κ = κ+ one can see that ♣κ+ is strictly weaker than ♢κ+ .

Motivated by a stubborn open problem of Juhasz about the connection between ♣ℵ1 and
the existence of Suslin trees, Primavesi defined in [13] an intermediate principle, dubbed as
superclub. We phrase the definition in the generalized form.
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Definition 1 (Superclub). Assume that κ= cf(κ) >ℵ0.

(ℵ) A superclub sequence at κ is a sequence of sets (Sα : α ∈ lim(κ)) such that Sα is an
unbounded subset of α for each α and for every A ∈ [κ]κ there exists B ∈ [A]κ so that
SB = {α ∈ lim(κ) : B ∩α= Sα} is a stationary subset of κ.

(ℶ) Superclub holds at κ iff there exists a superclub sequence for κ.

Comparing superclub to diamond and club it is clear from the definition that diamond at
κ implies superclub at κ which implies, in turn, the club principle at κ. Both implications
are irreversible. It has been proved in [7] that superclub at κ+ implies Galvin’s property at κ+

while ♣κ+ is consistent with the failure of Galvin’s property at κ+. It has been proved in [2] that
superclub at ℵ1 is consistent with 2ℵ0 >ℵ1 while ♢ℵ1 implies 2ℵ0 =ℵ1.

The forcing of [2] is based on the existence of a strongly inaccessible cardinal in the ground
model. A natural question is whether superclub with a large continuum has some consistency
strength. We shall give a negative answer. Specifically, in the model of [4] the continuum hypoth-
esis fails and superclub holds. An immediate consequence is the consistency of superclub with a
large value of some cardinal characteristics like the dominating number d.

A more interesting challenge is the bounding number b and the category invariant add(M ).
We do not know whether superclub is consistent with a large value of these characteristics, even
if the desired value is just ω2. However, we shall force club with an arbitrarily large value of b and
cov(M ) simultaneously, thus we will have a large value of add(M ) as well.

From the definition it seems that superclub has more affinities with the club principle. The
prediction of superclub applies only to [κ]κ and based on inclusion since if B ∩α = Sα then
Sα ⊆ A∩α and possibly Sα ̸= A∩α. Hence in the above mentioned features which distinguish club
from diamond, superclub behaves like club and unlike diamond. But there is another feature in
which superclub is similar to diamond.

If A ⊆ κ and S A is the stationary set of guesses given by ♢κ then the corresponding elements
of the diamond sequence are coherent in the following sense. If γ,δ ∈ S A and γ < δ then Aδ

end-extends Aγ. This is a consequence of the equality which forms the prediction of diamond
sequences. If one assumes only club atκ then this coherence fades away. Actually, one can choose
a club sequence and then shrink every element in the sequence by taking subsets of order-type
ω, in which case Aδ never extends Aγ.

From this point of view, but only from this one, superclub is similar to diamond. Given A ∈ [κ]κ

and choosing B ∈ [A]κ, the superclub sequence acts on B as a diamond sequence with equality as
the predicate for prediction. Consequently, the elements of the superclub sequence are coherent,
despite the fact that they are only included in the original set A. In other words, a superclub
sequence is a coherent club sequence. This idea stands behind the proof of Galvin’s property
from superclub, and it will be exploited in the last section.

Our notation is (hopefully) standard. We shall use the Jerusalem forcing notation, so p ≤ q
means that p is weaker than q . Occasionally we shall use the word tiltan instead of club when
refering to the club principle. The paper contains three additional sections. In the first part
we force superclub with large continuum without an inaccessible cardinal. Actually, cov(M )
assumes the value of the continuum in the generic extension, hence d= 2ω as well. In the second
part we show that one can force club with add(M ) = c where c is arbitrarily large. In the last
section we deal with a graph-theoretic statement which follows from the continuum hypothesis
and here we show that it follows merely from superclub.

We thank the anonymous referee of the paper for a careful reading of the article and for the
helpful comments, all of them are integrated within the manuscript. We also thank Thilo Weinert
for a helpful conversation concerning Cichoń’s diagram and the bounding number.
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2. A takeaway theorem

In this section we prove that the method of [4] for enlarging the continuum while preserving club
sequences from the ground model works equally well with respect to superclub sequences. The
main conclusion is that one can force superclub with an arbitrarily large value of the continuum
without the assumption that there is an inaccessible cardinal in the ground model. Another
conclusion is that one can force superclub with a large value of cov(M ), a result which will be
useful in the next section.

Let us describe the basic forcing notion of [4] in the spirit of Prikry forcing, namely we define
the forcing order which is quite incomplete and we also define a pure order which isω1-complete.

Definition 2 (The Fuchino–Shelah–Soukup forcing). Let (P,≤,≤∗) be the following forcing
notion.

(ℵ) A condition p ∈ P is a partial function from ω2 into {0,1} such that |dom(p)| ≤ ℵ0 and
dom(p)∩ [δ,δ+ω) is finite whenever δ is a limit ordinal of ω2.

(ℶ) If p, q ∈P then upq = {δ ∈ lim(ω2) :∅ ̸= dom(p)∩ [δ,δ+ω) = dom(q)∩ [δ,δ+ω)}.
(ג) If p, q ∈P then p ≤ q iff p ⊆ q and upq is finite. We define p ≤∗ q iff p ⊆ q and upq is empty.

The following statement is proved in [13, Proposition 5.1.4]. If f˜ is a P-name, p ∈ P and p
forces that f˜ : ωV

1 → ωV
1 is a function then one can find a set Ap, f

˜
∈ [ω1]ω1 ∩V and a function

gp, f
˜

: Ap, f
˜
→ ω1 such that gp, f

˜
∈ V and for every ordinal η ∈ ωV

1 there is a condition qη ∈ P such
that p ≤ qη and qη ⊩ gp, f

˜
↾ (Ap, f

˜
∩η) = f˜ ↾ (Ap, f

˜
∩η). Similar assertions appear in [4], see for

example Lemma 3.9 there.
It follows from this statement that ℵ1 is preserved, and moreover stationary subsets of ℵ1

remain stationary in the generic extension as follows from [4, Theorem 2.6]. To see that ℵ1

is preserved consider h˜ : ωV
1 → ω and a condition p which forces this fact. Let g be gp,h

˜
, so

rang(g ) ⊆ ω. Since Ap,h
˜
= dom(g ) is uncountable, there are β,γ ∈ Ap,h

˜
for which g (β) = g (γ).

Now if δ ∈ωV
1 is sufficiently large then qδ ≥ p and qδ ⊩ h˜ (β) = g (β) = g (γ) = h˜ (γ) so h˜ cannot be

one to one and hence ωV
1 is not a countable ordinal in V [G].

In the above definition the domain of any condition p is contained in ω2, but one can replace
ω2 by an arbitrarily large cardinal κ. If κℵ0 = κ in the ground model then 2ω = κ in the generic
extension.

Theorem 3. Let V be a model of GCH and let (Sα :α ∈ lim(ω1)) be a superclub sequence in V . Let
κ≥ω2 be such that κℵ0 = κ, let P be the Fuchino–Shelah–Soukup forcing based on κ, and let G ⊆P
be generic over V . Then cardinals and cofinalities are preserved in V [G], the continuum becomes
κ and (Sα :α ∈ lim(ω1)) remains a superclub sequence in V [G]. Hence superclub is consistent with
an arbitrarily large value of cov(M ).

Proof. By the comment before the statement of the theorem we know that ℵ1 is preserved.
Cardinals above ℵ1 are preserved since P is ℵ2-cc (here we use the fact that V models GCH). It
is easy to infer from density arguments that 2ω = κ in V [G], as the generic set G adds a function
from κ into {0,1} which can be sliced into κ distinct functions from ω into {0,1}.

Suppose that A ∈ [ω1]ω1 ∩V [G] and let f˜ be a name for the increasing enumeration of the
elements of A. Fix a condition p which forces this fact. Let Ap, f

˜
and gp, f

˜
be as described ahead

of the proof, so Ap, f
˜
∈ V and for every δ ∈ ωV

1 one can find qδ ≥ p such that qδ ⊩ rang(gp, f
˜
↾

Ap, f
˜

) ⊆ A. Applying superclub in the ground model to g ′′
p, f

˜

Ap, f
˜

, let B be an uncountable subset

of g ′′
p, f

˜

Ap, f
˜

on which the superclub sequence (Sα :α ∈ lim(ω1)) acts like diamond.

Let SB = {α ∈ ω1 : B ∩α = Sα}. If α ∈ SB then choose δ ∈ (α,ω1) such that Sα ⊆ rang(gp, f
˜
↾

(Ap, f
˜
∩δ)). Let qδ ≥ p be so that qδ ⊩ gp, f

˜
↾ (Ap, f

˜
∩δ) = f˜ ↾ (Ap, f

˜
∩δ). It follows that qδ ⊩B∩α= Sα.
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Since this is true for every α ∈ SB and the stationarity of SB is preserved, one can see that
superclub holds in the generic extension. It is easy to verify that cov(M ) equals c in the generic
extension, see [1] for details, so we are done. □

Remark that the main result of this section already shows that in order to force superclub with
a large value of the continuum there is no need of an inaccessible cardinal in the ground model. In
the next section we will show that the above result can be strengthened if one replaces superclub
by tiltan. The idea is that the forcing notion of [4] can be composed with Hechler forcing, thus
making both cov(M ) and b large. We do not know how to preserve superclub sequences from
the ground model in this construction, but if one begins with a diamond sequence in the ground
model then it remains a club sequence in the generic extension.

3. The additivity of the meager ideal

In this section we prove the consistency of tiltan (the club principle) with an arbitrarily large value
of add(M ). The context of this result is nicely displayed by Cichoń’s diagram:

cov(N )

��

non(M )oo

��

cof(M )oo

��

cof(N )oo

��

b

��

doo

��
add(N ) add(M )oo cov(M )oo non(N )oo

A result of Truss from [19] says that ♣ℵ1 implies add(N ) = ℵ1, so the smallest invariant in
the above diagram becomes ℵ1 under the club principle. Nevertheless, we shall see that ♣ℵ1

is consistent with an arbitrarily large value of add(M ). The idea is to increase both cov(M )
and b while keeping the club principle. By a result of Miller from [10] we know that add(M ) =
min(b,cov(M )), so our theorem will follow.

A natural way to increase cov(M ) is by using [4], as described in the previous section. A natural
way to increase b is Hechler forcing from [8]. We need, therefore, to amalgamate these two forcing
notions. Moreover, we would like to do it while maintaining tiltan. For this end, we shall use a
strong version of ccc, called sweetness. The concept of sweet forcing notions comes from [15],
and a good background is contained in [14]. Let us recall the formal definition.

Definition 4 (Sweet forcing notions). A forcing notionP is sweet iff there are a dense subset D ofP
and a sequence E = (En : n ∈ω) of equivalence relations on D such that the following requirements
are met:

(a) Each En is ≤P-directed and D/En is countable.
(b) En+1 ⊆ En for every n ∈ω.
(c) If {pi : i ∈ ω} ⊆ D and r ∈ D satisfies pi Ei r for every i ∈ ω then for every n ∈ ω there is a

condition qn ≥ r such that qnEnr and ∀ i ≥ n, pi ≤ qn .
(d) If p, q ∈ D and n ∈ ω then there is some m ∈ ω so that for every r ∈ [p]Em one can find

t ∈ [q]En such that r ≤ t .

There is another concept of sweetness, defined by Stern in [17] and based on topological
considerations. For the formal definition of topological sweetness and the concept of an iterably
sweet forcing notion we refer to [14, Section 4]. Here we just mention the fact that if P is sweet
and every pair of compatible conditions has a least upper bound then P is iterably sweet. The
forcing notion of [4] mentioned in the previous section is sweet and also iterably sweet. It has
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been proved in [15, Section 7] that if P is sweet and D˜ is a P-name of Hechler forcing then P∗D˜ is
sweet as well.

In what follows we describe a class of forcing notions which generalize the forcing of [4]. Define
K0 as the class of objects K which are essentially an iteration of ccc forcing notions. So ℓg (K ) is an
ordinal (the length of the iteration) andPα is a forcing notion for everyα≤ ℓg (K ). Ifα≤β≤ ℓg (K )
then we require Pα⋖Pβ, and for every β< ℓg (K ) we have a Pβ-name Q˜ β of a ccc forcing notion.

Suppose that α ≤ ℓg (K ). A condition p ∈ Pα is a function so that dom(p) ⊆ α and |dom(p)| ≤
ℵ0. If β ∈ dom(p) then p(β) is a Pβ-name of an element ofQ˜ β and if β<α then p ↾β ∈Pβ. If p, q ∈
Pα then p ≤Pα q iff dom(p) ⊆ dom(q) and for every β ∈ dom(p) we have p ↾ β⊩Pβ p(β) ≤Q

˜
q(β),

and the set diff(p, q) = {β ∈ dom(p) : p(β) ̸= q(β)} is finite.
Apart from the usual ordering ≤Pα we define the orderings ≤pr

α and ≤ap
α where pr stands for

pure and ap stands for apure. Formally, ≤pr
α = {(p, q) ∈ Pα ×Pα : p ≤Pα q ∧ q ↾ dom(p) = p} and

≤ap
α = {(p, q) ∈Pα×Pα : p ≤Pα q ∧dom(p) = dom(q)}. Notice that if p ≤Pα r then one can separate

the extension by finding q ∈ Pα so that p ≤pr
α q ≤ap

α r . If K ∈ K0 and α= ℓg (K ) then ≤K =≤Pα ,PK

denotes the whole iteration and so forth.
Assuming CH in the ground model, if K ∈K0 then PK is ℵ2-cc. The pure order is ℵ1-complete,

and moreover if (pn : n ∈ ω) is ≤pr
K -increasing then

⋃
n∈ω pn is an upper bound, which will be

called the canonical upper bound. One can verify that PK is proper. Assume that (pi : i ∈ ω1) is
≤pr

K -increasing and continuous, that is p j is the canonical upper bound of (pi : i ∈ j ) whenever
j ∈ ω1 is a limit ordinal. Assume further that pi+1 ≤ap

K qi+1 for every i ∈ ω1. Then one can find
i < j <ω1 such that qi+1 ∥ q j+1. It can be verified that the forcing notion of [4] used in the previous
section belongs to K0. Let K be the subclass of K0 which consists of iterations K which are
Suslin ccc (this means that the forcing and its order areΣ1

1-definable) and iterably sweet. We shall
use this class in order to prove the following:

Theorem 5. Assume that ♢ℵ1 holds in V ,K ∈ K and Q˜ K ,β is a name of Hechler forcing for every
β≤ ℓg (K ). Then ♣ℵ1 holds in the generic extension by PK . Concomitantly, b= ℓg (K ) in the generic
extension by PK , provided that ℓg (K ) is a regular and uncountable cardinal.

Proof. The fact that b = ℓg (K ) in the generic extension by PK follows from the properties of
Hechler forcing. We must show, therefore, that ♣ℵ1 holds in this generic extension. Let (Aα : α ∈
ω1) be a diamond sequence in V . Since ℓg (K ) is typically large, we get the negation of CH in the
generic extension and hence diamond fails. However, we will show that (Aα :α ∈ω1) exemplifies
♣ℵ1 in the generic extension. Suppose that A˜ is a PK -name of an element of [ω1]ℵ1 . Fix a generic
set G ⊆ PK and a condition p such that p ⊩ A˜ ∈ [ω1]ℵ1 . By induction on i ∈ω1 we choose a triple
(pi , qi ,αi ) such that the following requirements are met:

(a) p0 = p.
(b) αi ∈ω1.
(c) (p j : j ≤ i ) is ≤pr

K -increasing and continuous.
(d) pi ≤K qi .
(e) qi forces that the i th member of A˜ is α̌i .
(f) pi+1 ≤ap

K qi .

Let χ be a sufficiently large regular cardinal. For every ε ∈ ω1 choose Nε ≺ H (χ) such that each
Nε is countable, (Nε : ε ∈ ω1) is increasing and continuous, (Nζ : ζ ≤ ε) ∈ Nε+1,K ∈ N0 and
((pi , qi ,αi ) : i ∈ω1) ∈ N0. Fix an ordinal δ ∈ω1 so that Nδ∩ω1 = δ.

Let w = diff(pδ+1, qδ) = {α ∈ dom(qδ) : pδ+1(α) ̸= qδ(α)}. Choose a sequence (εn : n ∈ ω) such
that m < n ⇒ εm < εn ,δ=⋃

n∈ω εn and the following property holds. For every first order formula
ϕ(x, y) and every a ∈ ℓg (y)Nδ and every large enough n ∈ω,H (χ) |=ϕ[qδ, a] ≡ϕ[qεn , a]. For each
n ∈ ω let δn = Nεn ∩ω1, so (δn : n ∈ ω) is increasing and δ = ⋃

n∈ωδn . We define a condition q as
follows:
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(a) dom(q) = Nδ∩ℓg (K ).
(b) If α ∈ dom(q)∩w then q(α) = pδ(α).
(c) If α ∈ dom(q)−w then q(α) is a common upper bound of the conditions (qδn : n ∈ω).

The last item can be instantiated by sweetness. Let a = {αδn : n ∈ ω} and let S be a stationary
subset ofω1 for which a = Aα wheneverα ∈ S. Here we use the fact that (Aα :α ∈ω1) is a diamond
sequence in V . Since qδn ≤ q for every n ∈ω we see that q ⊩ a = Aα ⊆ A˜ for every α ∈ S, so we are
done. □

We can derive now the main result of this section:

Corollary 6 (Tiltan and add(M )). It is consistent that ♣ℵ1 holds and add(M ) is arbitrarily large.

Proof. Assume♢ℵ1 in V and choose an arbitrarily large regular cardinalλwhich satisfiesλℵ1 =λ.
Let K ∈ K be such that λ = ℓg (K ) and Q˜ K ,β is Hechler forcing for every β ∈ λ. Let G ⊆ PK be V -
generic.

By the definition of K we use a finite support iteration in K and hence Cohen reals are added
at limit stages thus cov(M ) =λ in V [G]. By Theorem 5 we have b=λ in V [G], so add(M ) =λ due
to Miller in [10]. But Theorem 5 also ensures ♣ℵ1 in V [G], so the proof is accomplished. □

There is an interesting upshot which follows from the above corollary. We shall phrase and
prove it in Corollary 8 below, but we need some background. Let f be a function fromκ into P (κ).
We say that f is C (λ,µ) iff |⋂{ f (x) : x ∈ T }| < µ for every T ∈ [κ]λ. We say that f is κ-reasonable
iff f is both C (κ,ω) and C (ω,κ). A subset A of κ is f -free iff x ∉ f (y) whenever {x, y} ⊆ A. Without
the assumption that f is κ-reasonable, one can find functions f : κ→ P (κ) for which there are
no infinite free sets (and even no two-element free set, see [11]). However, the mere assumption
of κ-reasonability is insufficient for getting infinite free sets, as shown in the above mentioned
paper.

It has been proved in [6] that if f is κ-reasonable and
(κ
ω

) → (κ
ω

)
2 then there exists an infinite

free set for f . A natural question is whether this assumption is necessary. We shall give a negative
answer to this question. Recall that

(λ
κ

) → (λ
κ

)
2 holds iff for every coloring c : λ×κ→ 2 there are

A ⊆λ and B ⊆ κ such that |A| =λ, |B | = κ and c ↾ (A×B) is constant. Our first statement says that
one can replace the assumption

(κ
ω

)→ (κ
ω

)
2 by the weaker assumption

(κ
κ

)→ (κ
ω

)
2.

Theorem 7 (Infinite free subsets). Assume that
(κ
κ

)→ (κ
ω

)
2 and f : κ→P (κ) isκ-reasonable. Then

there exists an infinite free subset for f .

Proof. We define a coloring c : [κ]2 → 2 as follows. c({α,β}) = 1 iff α ∉ f (β)∧β ∉ f (α). We employ
the Erdős–Dushnik–Miller theorem to get either H0 ∈ [κ]κ such that c ↾ [H0]2 = {0} or H1 ∈ [κ]ω

such that c ↾ [H1]2 = {1}. If there exists such H1 then we are done, since it would be a free set for f
by the definition of the coloring c, so assume towards contradiction that there is no H1 as above.

It follows that there is a 0-monochromatic set H0 of size κ. We decompose it into H0 = A ∪B
such that A ∩B = ; and |A| = |B | = κ. Now we separate the cartesian product A ×B into two
disjoint collections:

A×B = {〈a,b〉 : a ∈ f (b)}∪ {〈a,b〉 : a ∉ f (b)}.

By the assumption
(κ
κ

) → (κ
ω

)1,1
2 we can choose A0 ∈ [A]ω,B0 ∈ [B ]κ such that either A0 ×B0 ⊆

{〈a,b〉 : a ∈ f (b)} or A0 ×B0 ⊆ {〈a,b〉 : a ∉ f (b)}.
If A0 ×B0 ⊆ {〈a,b〉 : a ∈ f (b)} then A0 ⊆⋂

{ f (b) : b ∈ B0}, contradicting the assumption that f is
C (κ,ω). Similarly, if A0×B0 ⊆ {〈a,b〉 : a ∉ f (b)} then b ∈ f (a) for every a ∈ A0,b ∈ B0 (since a ∉ f (b)
and all the members are taken from H0), so B0 ⊆ ⋂

{ f (a) : a ∈ A0}, contradicting the assumption
that f is C (ω,κ). □
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Question 2.8 from [6] is whether the assumption
(κ
ω

)→ (κ
ω

)
2 is necessary for proving that every

κ-reasonable function has an infinite free set. In order to give a negative answer we will show that
the positive relation

(κ
κ

)→ (κ
ω

)
2 is consistent with the negative relation

(κ
ω

)
↛

(κ
ω

)
2.

Corollary 8. Let κ= cf(κ) >ℵ1. The following statements are consistent simultaneously:

(a) 2ω = κ.
(b)

(κ
ω

)
↛

(κ
ω

)
2.

(c) tiltan holds.
(d) every κ-reasonable function f : κ→P (κ) has an infinite free set.

Proof. Fix any κ = cf(κ) > ℵ1. Using Theorem 7 we force tiltan with b = c = κ. It follows that
b= d= κ and hence

(κ
ω

)
↛

(κ
ω

)
2, see Theorem 2.2 of [3]. On the other hand, tiltan implies stick and

by Proposition 3.3 of [3] we have
( κ
ω1

) → (κ
ω

)
2 and a fortiori

(κ
κ

) → (κ
ω

)
2. From Theorem 7 we infer

that every κ-reasonable function f : κ→P (κ) has an infinite free set, so we are done. □

We conclude this section with two problems. The first one is about the relationship between
superclub and add(M ). We do not know whether club can be replaced by superclub in the main
result of this section. The essential property that we used in the previous section in order to
guarantee the preservation of superclub sequences seems problematic in the context of Hechler
forcing.

Question 9. Is it consistent that superclub holds and add(M ) >ω1?

As mentioned at the beginning of this section, club and hence superclub imply add(N ) =ℵ1,
so the results of this section show that this cannot be stressed further in the horizontal dimension
of Cichońs diagram. Brendle proved in [1] that club is consistent with cov(N ) = ℵ2, so in some
sense we are covered in the vertical dimension as well. We did not try to strengthen the result of
Brendle as done in this section with respect to add(M ), so the following is left open:

Question 10. Is it consistent that club holds and cov(N ) is arbitrarily large?

4. Independent subsets and complete subgraphs

Suppose that κ,µ≤λ. The negative square brackets relationλ↛ [κ]2
µ is the assertion that one can

find a coloring c : [λ]2 →µ such that for every A ∈ [λ]κ one has c ′′[A]2 =µ. Namely, every subset of
λ of size κ assumes all the colors. In the language of graph theory one can describe this relation
as follows. If G = (V ,E) is the complete graph with λ vertices and one defines a decomposition
(Eα : α ∈ µ) of E then every subset A ⊆ V of size κ has at least one edge in every Eα, that is
[A]2 ∩Eα ̸=∅ for every α ∈µ.

The fact that G is the complete graph is helpful here, since there are many edges and hence the
probability that each A of size κ will intersect any Eα increases. A graph theoretic generalization
of this relation would be the same statement with respect to a larger class of graphs. One has,
however, to insert sufficiently many edges into G . Recall that I ⊆ V is independent iff I is
edge-free, that is [I ]2 ∩E =∅. A necessary requirement for our generalization is the absence of
independent sets of size κ.

Definition 11 (Q(λ,κ,µ)). Assume thatκ,µ≤λ. The property Q(λ,κ,µ) means that for every graph
G = (λ,E) with no independent subset of size κ there exists a partition (Eα :α ∈µ) of E such that for
every α ∈µ the graph Gα = (λ,Eα) has no independent subset of size κ.

The definition of Q(λ,κ,µ) comes from [5], and the fact that it is a strengthening of the square
brackets relation with the same parameters is mentioned there. Let us spell-out the proof.
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Observation 12. If Q(λ,κ,µ) then λ↛ [κ]2
µ.

Proof. Let G be the complete graph on λ vertices and let {Eα : α ∈ µ} be a decomposition of E
ensured by the assumption Q(λ,κ,µ). We define a coloring c : [λ]2 →µ as follows:

c(γ,δ) =α⇐⇒ {γ,δ} ∈ Eα.

Assume that A ∈ [λ]κ and ξ ∈ µ. For every α ∈ µ let Gα = (λ,Eα). By the assumption Q(λ,κ,µ) we
see that [A]2 ∩Eα ̸=∅ for every α ∈ µ, otherwise A would be an independent subset of Gα of size
κ. Fix γ,δ ∈ A so that {γ,δ} ∈ Eξ. By the definition of our coloring we see that c(γ,δ) = ξ. Since ξ ∈µ
was arbitrary we conclude that c ′′[A]2 =µ and the relation λ↛ [κ]2

µ is therefore established. □

The property Q(λ,κ,µ) is strictly stronger than the relation λ ↛ [κ]2
µ. It has been proved

in [5] that the negation of Q(ℵ1,ℵ1,ℵ1) is consistent. Contrariwise, Todorčević proved in [18] that
ℵ1 ↛ [ℵ1]2

ℵ1
holds in ZFC. Hence the implication in the above observation cannot be reversed.

However, for the negation of Q(ℵ1,ℵ1,ℵ1) one has to violate CH. More generally, it is shown in [5]
that if 2κ = κ+ then Q(κ+,κ+,κ+) holds. Let us prove that this conclusion follows from a weaker
assumption. Namely, rather than the strong assumption 2κ = κ+ one can assume the weaker
assumption that superclub holds at κ+ and still derive Q(κ+,κ+,κ+).

Theorem 13. Let κ be a regular cardinal. If superclub holds at κ+ then Q(κ+,κ+,κ+) holds.

Proof. Suppose that G = (κ+,E) contains no independent subset of size κ+. Let S be Sκ
+
κ , and let

superclub be exemplified by (Sα :α ∈ S). Set Sα =∅ for every α ∈ κ+−S. We would like to define
a function f : E → κ+ with the following two properties at every α ∈ κ+:

(a) For every {β,α} ∈ E where β<α, f (β,α) <α.
(b) If γ<α and |{β ∈ Sγ : {β,α} ∈ E | = κ then { f (β,α) :β ∈ Sγ∧ {β,α} ∈ E } =α.

In order to define f notice that if α ∈ κ+ then the cardinality of the set xα = {γ ∈ α : |{β ∈
Sγ : {β,α} ∈ E | = κ} is at most |α| ≤ κ. So we choose a disjoint refinement {Tγ : γ ∈ xα} for the
collection {Sγ : γ ∈ xα} and we fix a bijection hαγ : Tγ →α. For every γ ∈ xα and every β ∈ Tγ we let
f (β,α) = hαγ (β) and we define f (β,α) = 0 otherwise.

Having defined the function f we can depict our decomposition of E . For every τ ∈ κ+ set
{β,α} ∈ Eτ ⇔ f (β,α) = τ. Notice that {Eτ : τ ∈ κ+} is a decomposition of E and we claim that it
exemplifies Q(κ+,κ+,κ+) with respect to G = (κ+,E).

To see this, suppose that H ⊆ κ+ and |H | = κ+. By induction on δ ∈ κ+ we choose an element
yδ ∈ H as follows. As a first step, let {Sγi : i ∈ κ+} be a subset of the superclub sequence with the
following two properties:

(a) Sγi ⊆ H for every i ∈ κ+.
(b) If i < j < κ+ then Sγ j end-extends Sγi .

Such a collection exists since one can choose I ⊆ H , |I | = κ+ so that S I = {γ ∈ κ+ : I ∩γ = Sγ}
is a stationary subset of κ+. Enumerate the elements of S I by {Sγi : i ∈ κ+} and verify the above
properties.

Our second step is rendered by induction on δ ∈ κ+. Suppose that Aδ = {yζ : ζ ∈ δ} has been
chosen and we try to choose yδ. We will assume that Aδ ⊆ Sγi for some i ∈ κ+, and let i (δ) be the
first such ordinal. Choose yδ ∈ I ⊆ H so that yδ > γi (δ) and hence, in particular, yδ > yζ for every
ζ ∈ δ since Aδ ⊆ Sγi (δ) ⊆ γi (δ). Notice that Aδ+1 ⊆ Sγ j for some j ∈ κ+.

By way of contradiction assume that ξ ∈ κ+ and H is an independent subset of the graph
(κ+,Eξ). This means that ξ ∉ f ′′[H ]2. By the construction, ifδ> ξ then the set zδ = {β ∈ δ : {yβ, yδ} ∈
E } is of size less than κ since otherwise the image of f on these pairs will cover all the ordinals of
δ including ξ.

We employ now the free subset theorem, which says (in this case) that if h : κ+ → P (κ+)
satisfies |h(α)| < κ for every α ∈ κ+ then there exists an h-free subset F ⊆ κ+ of size κ+. Consider
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the set-mapping g : κ+ → P (κ+) given by g (δ) = zδ for every δ ∈ κ+. By the free subset theorem
there is F ⊆ κ+, |F | = κ+ which is g -free. Namely, if δ,η ∈ F and δ < η then δ ∉ zη and hence
{yδ, yη} ∉ E . It follows that {yβ :β ∈ F } is an independent subset of G = (κ+,E), a contradiction. □

We do not know whether ♣κ+ is consistent with the failure of the principle Q(κ+,κ+,κ+). It is
clear, however, that the strategy of [4] cannot yield such a result, since it cannot separate club
from superclub. On the other hand, the method of [16] is promising in this context. The idea is to
force some property at ℵ2 while keeping ♣S at S = Sω2

ω and then to collapse ℵ1. The collapse
secures the club principle at ω1 but destroys superclub. This method is limited to properties
which can be forced at ℵ2 and one also has to make sure that the pertinent property is preserved
by the collapse.

Question 14. Is it consistent that ♣κ+ holds but Q(κ+,κ+,κ+) fails for some infinite cardinal κ?

Let us indicate that the only property which separates tiltan from superclub, as far as we know,
is Galvin’s property. Thus, a positive answer to the above question would be interesting.
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