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Variations on the splitting number s are examined by localizing the splitting 
property to finite sets. To be more precise, rather than considering families of subsets 
of the integers that have the property that every infinite set is split into two infinite 
sets by some member of the family a stronger property is considered: Whenever an 
subset of the integers is represented as the disjoint union of a family of finite sets 
one can ask that each of the finite sets is split into two non-empty pieces by some 
member of the family. It will be shown that restricting the size of the finite sets 
can result in distinguishable properties. In §2 some inequalities will be established, 
while in §3 the main consistency result will be proved.
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1. Introduction

While not included in the Cichon diagram, the cardinal invariant s, the splitting number, has been the 
source of considerable interest. Any of the surveys of cardinal invariants — such as [3], [8] or [2] — will 
provide ample justification for this assertion. Of course, s is defined to be the least cardinal of a family S of 
infinite subsets of ω such that for any infinite X ⊆ ω there is S ∈ S such that |S ∩X| = |X \S|. The article 
[6] introduces a modification of the splitting number obtained by what can be considered a localization of 
the concept. The authors of [6] define the pair splitting number spair to be the least cardinal of a family 
S of subsets of ω such that for any infinite, pairwise disjoint family of pairs X ⊆ [ω]2 there is S ∈ S such 
that |S ∩ x| = |x \ S| for infinitely many x ∈ X. The authors establish connections between spair and well 
known cardinal invariants of the continuum, as well as with the covering number of the finite chromatic 
ideal consisting of graphs, considered as sets of pairs of integers, with finite chromatic number.
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The present work will continue these explorations by expanding the definitions of [6] beyond pairs. It 
was already shown in [6] that generalizing spair to, for example, striple in the obvious way does not create 
a new concept. The goal of the research to be presented here is that generalizing from pairs to finite sets 
does introduce a new concept. Generalizing splitting to what may be called balanced splitting has been 
examined in [4]. Some connections between the research under consideration here and that of [4] will also 
be established.

2. Definitions and basic results

This section will introduce some cardinal invariants very similar to those introduced in [6]. Indeed, they 
are so similar that it will be shown they are, in fact, the same. It was mentioned in the introduction that it 
was shown in [6] that if sn is defined to be the least cardinal of a family S of subsets of ω such that for any 
infinite, pairwise disjoint family of pairs X ⊆ [ω]n there is S ∈ S such that S ∩ x �= ∅ �= x \ S for infinitely 
many x ∈ X then spair = sn. It will be shown that the same holds if one considers splitting n-sized sets into 
k pieces.

Notation 2.1. The reader unwilling to part with von Neumann’s definition of ordinals is warned that if F
is any function and x a subset of its domain then F (x) will be used to denote the image of x under F ; this 
will be used even when there is a slight danger that some confusion between an ordinals thought of as a 
point and a set may arise. For a function f : ω → ω define sk,f to be the least cardinal λ such that there is 
a family F ⊆ kω of cardinality λ such that for each sequence of pairwise disjoint sets of integers {an}n∈ω

such that |an| = f(n) there is F ∈ F such that F (an) = k for infinitely many n. The notation sk,m will be 
used to denote sk,f when f is constant with value m.

Lemma 2.1. If f ≤∗ g then sk,g ≤ sk,f .

Proof. Let F ⊆ kω be such that |F| = sk,f and for each sequence of pairwise disjoint sets {an}n∈ω such that 
|an| = f(n) there is F ∈ F such that F (an) = k for infinitely many n. Given {bn}n∈ω such that |bn| = g(n)
let b∗n ⊆ bn be such that |b∗n| = f(n) and F ∈ F such that F (b∗n) = k for infinitely many n. Clearly it is also 
true that F (bn) = k. �
Lemma 2.2. If

(a) f , g and h are functions from ω from ω
(b) h is increasing
(c) g(n) = f(h(n)) for all n

then sk,f ≤ sk,g.

Proof. Suppose that |F| = sk,g and for each sequence of pairwise disjoint sets {an}n∈ω such that |an| = g(n)
there is F ∈ F such that F (an) = k for infinitely many n. Then if {bn}n∈ω is sequence of pairwise disjoint 
sets such that |bn| = f(n) then {bh(n)}n∈ω is sequence of pairwise disjoint sets such that |bh(n)| = g(n)
and so there is F ∈ F such that F (bh(n)) = k for infinitely many n and hence F (bn) = k for infinitely 
many n. �
Theorem 2.1. If f and g are unbounded functions from ω to ω then sk,g = sk,f .

Proof. Since f and g are both unbounded, it is possible to find an increasing h and a function e such that 
f(n) < e(n) and such that e(n) = g(h(n)) for all n. By Lemma 2.1 it follows that sk,e ≤ sk,f and by 
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Lemma 2.2 it follows that sk,g ≤ sk,e. Hence sk,g ≤ sk,f . The symmetry of the hypothesis implies that 
sk,g = sk,f . �

Theorem 2.1 justifies the following definition.

Definition 2.1. sk,∞ will be used to denote sk,f when f is any unbounded function.

Note that if f is any bounded function then a simple re-indexing argument shows that sk,f = sk,m where 
m = lim supn f(n). Hence the cardinals sk,f can be replaced by the cardinals sk,∞ and sk,m for m ∈ ω. 
Some simple relationships between these cardinals are easily established.

Lemma 2.3. s2,m = s2,m2 for all m ≥ 2.

Proof. By Lemma 2.1 it follows that s2,m ≥ s2,m2 for all m ≥ 2. Now suppose that |F| = s2,m2 and for 
each sequence of pairwise disjoint sets {an}n∈ω such that |an| = m2 there is F ∈ F such that F (an) = 2
for infinitely many n. If s2,m > s2,m2 then there is a sequence of pairwise disjoint sets {bn}n∈ω such that 
|bn| = m and for each F ∈ F there is F ∗ : ω → 2 such that for all but finitely many n ∈ ω the restriction 
of F to bn has constant value F ∗(n).

Since | {F ∗ | F ∈ F } | < s2,m there is a sequence of pairwise disjoint sets {cn}n∈ω such that |cn| = m

for each n and such that for each F ∈ F for all but finitely many n ∈ ω the restriction of F ∗ to cn has 
constant value. Then let dn =

⋃
m∈cn

bm and note that the dn are pairwise disjoint elements of [ω]m2 and 
F is eventually constant on each dn. This contradicts the choice of F . �
Corollary 2.1. s2,m = s2,k for all m, k ≥ 2.

Lemma 2.4. s2,2 ≥ sm,m for all m ≥ 2.

Proof. Let F ⊆ 2ω be a family such that |F| = s2,2 and for each sequence of pairwise disjoint sets {an}n∈ω

such that |an| = 2 there is F ∈ F such that F (an) = 2 for infinitely many n. For any indexed family 
�F = {Fi}i∈k ⊆ F and �σ = {σj}j∈m a family of distinct elements of 2k define a partial function H�F,�σ ∈ mω

by letting

H�F ,�σ(n) = j if (∀i ∈ k) σj(i) = Fi(n)

and letting H�F ,�σ(n) be undefined otherwise. Then let

F∗ =
{
H�F ,�σ

∣∣∣ �F = {Fi}i∈k ⊆ F and �σ = {σj}j∈m are distinct elements of 2k
}

and note that |F∗| = s2,2.
Now suppose that {an}n∈ω are pairwise disjoint elements of [ω]m. Let �F = {Fi}i∈k ⊆ F be such that if

Sn =
{
an ∩

⋂
i∈k

F−1
i {σ(i)}

}
σ∈2k

then lim supn |Sn| is maximal. Note that this means that limn |Sn| = m because if there are infinitely many 
bn ∈ Sn such that |bn| ≥ 2 then there is then F ∈ F such that F (bn) = 2 for infinitely many n contradicting 
the maximality of lim supn |Sn|. For all but finitely many n there are �σn = {σn,i}i∈m ⊆ 2k such that for 
each j ∈ an there is i ∈ m such that
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{j} =
⋂
�∈k

F−1
� {σn,i(�)}.

Let �σ be such that �σn = �σ for infinitely many n. Then for each such n it follows that H�F ,�σ(an) = m. �
The following is a refinement of Theorem 1.3 of [6] due to Kamo.

Corollary 2.2. If 2 ≤ m ≤ k < ω then sm,k = s2,2.

Proof. From Lemma 2.4 and Corollary 2.1 it follows that s2,2 ≥ sm,m ≥ sm,k ≥ s2,k = s2,2. �
Hence the only question that remains to be addressed is whether s2,∞ = s2,2. It will be shown in the next 

section that it is consistent for these cardinals to be different. But it is worth pointing out a connection to 
cardinals that have been studied elsewhere. The following is Definition 2.2 from [4].

Definition 2.2 ([4]). If S and X are infinite subsets of ω say that S bisects X in the limit if

lim
n→∞

|S ∩X ∩ n|
|X ∩ n| = 1/2

and for ε such that 0 < ε < 1/2 say that S ε-almost bisects X if for all but finitely many n ∈ ω

|S ∩X ∩ n|
|X ∩ n| ∈ (1/2 − ε, 1/2 + ε).

Then define s1/2 to be the least cardinal of a family S such that for all X ∈ [ω]ℵ0 there is an element of S
that bisects X. Define s1/2±ε to be the least cardinal of a family S such that for all X ∈ [ω]ℵ0 there is an 
element of S that ε-almost bisects X.

Proposition 2.1. s2,∞ ≤ s1/2±ε if 0 < ε < 1/2.

Proof. Let S be a family of cardinality s1/2±ε such that for all X ∈ [ω]ℵ0 there is an element of S that 
ε-almost bisects X. It suffices to show that if {an}n∈ω is any family of pairwise disjoint finite sets such that 
|an| >

∑
i∈n |ai|(1/2 + ε) then there is S ∈ S such that

(∃∞n) an ∩ S �= ∅ �= an \ S. (1)

Given such a family {an}n∈ω let A =
⋃

n an and let S ∈ S be such that for all but finitely many n ∈ ω

|S ∩A ∩ n|
|A ∩ n| ∈ (1/2 − ε, 1/2 + ε).

If (1) fails it can be assumed that there are infinitely many n such that an ⊆ S. But for any such n if 
m = max(an) then

|S ∩A ∩m|
|A ∩ n| ≥ |an|∑

i∈n |ai|
> 1/2 + ε. �

Of course, s ≤ s2,∞ ≤ s1/2±ε ≤ s1/2 and in Theorem 2.4 of [4] it is shown that s1/2 is no greater than 
non(N ), the least cardinal of a non-Lebesgue null set. A companion to this is the following, which is one 
of various inequalities established in Proposition 0.1 of [6].
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Proposition 2.2. s2,2 ≤ non(N ).

The natural question about possible equality is easily answered by the following. The inequality s2,∞ <

s2,2 is much harder and is the main result to be established in the current work.

Proposition 2.3. It is consistent that s2,2 �= non(N ).

Proof. Since non(N ) = ℵ2 after adding ℵ2 Cohen reals, it suffices to show that if C is Cohen forcing and

1 �C “{ȧn}n∈ω are pairwise disjoint pairs ”

then there is F : ω → 2 such that 1 �C “(∃∞n) F (ȧn) = 2”. Now apply the argument that Cohen forcing 
does not add a dominating real. For the reader who would appreciate the details, let {pn}n∈ω enumerate 
C. Construct inductively {bn,j}j∈n such that

(a) bn,j ∩ bm,i = ∅ unless (n, j) = (m, i)
(b) there is some qn,j ≤ pj such that qn,j �C “ȧ� = bn,j” for some �.

To carry out the construction suppose that {bn,j}j∈n and {bn+1,i}i∈k have been constructed for some 
k ∈ n + 1. Let

B =
⋃

m≤n

⋃
j∈m

bm,j ∪
⋃
m≤k

bn+1,m.

There is then some q ≤ pk and � > n + 1 such that q �C “ȧ� ∩B = ∅”. Let qn+1,k ≤ q and bn+1,k be such 
that qn+1,k �C “ȧ� = bn+1,k”.

Now let F : ω → 2 be such that F (bn,j) = 2 for all n and j. To see that 1 �C “(∃∞n) F (ȧn) = 2” suppose 
that there are p and k such that p �C “(∀n ≥ k) F is constant on ȧn”. If p = pj let � be greater than both 
j and k. Then F (b�,j) = 2 and q�,j ≤ p and q�,j �C “ȧ� = b�,j” yielding a contradiction. �
3. Combinatorial content of consistency of s2,∞ < s2,2

The goal of this section to introduce the combinatorial results that will be used in the proof that it is 
consistent that s2,2 = ℵ2 and s2,∞ = ℵ1. The forcing to be used is a countable support iteration of creature 
forcing partial orders about which the interested reader can find more in [7], although the reader familiar 
with [1] should have no trouble following the argument. The argument to be used will rely on a fusion over 
finite subsets of the support; so this section will look at the structures that result when obtaining finite 
approximations to the fusion argument. Although not logically necessary, it may be useful to some readers 
to jump ahead and look at Definition 4.1 before continuing to the results leading to Theorem 3.2 which will 
play a key role in establishing Theorem 4.1.

Definition 3.1. Define Ramseyv(k) = r if r is the least integer such that r → (k)4v. Let Ramseyn
v be the 

n-fold iteration of Ramseyv defined inductively by

Ramseyn+1
v (k) = Ramseyv(Ramseyn

v (k)).

The following obvious fact will often be used without further explanation.

Fact 3.1. Ramseyv(m) → (m)2v.
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Theorem 3.1 (Canonical Ramsey Theorem [5]). If v is sufficiently large (v ≥ 66 will do) then for any k, if 
Ramseyv(k) = r then for any Z : [r]2 → ω there is B ∈ [r]k such that Z is canonical on [B]2 in that one 
of the following four options holds:

(1) Z is constant on [B]2
(2) Z is one-to-one on [B]2
(3) there is a one-to-one Z∗ : B → ω such that Z(a) = Z∗(min(a)) for a ∈ [B]2
(4) there is a one-to-one Z∗ : B → ω such that Z(a) = Z∗(max(a)) for a ∈ [B]2.

Definition 3.2. Construct an increasing sequence of integers {ej}j∈ω inductively. Let e0 = 0 and e1 = 2 and 
now suppose that ek has been defined. First, define an interval of integers Ij = [ej , ej+1 − 1] and let

uj =
∏
i∈j

(
ei+1 − ei

2

)
=

∣∣∣∣∣∣
∏
i∈j

[Ii]2
∣∣∣∣∣∣ .

Note that if ek has been defined then only Ik−1 and uk have been defined up to this point. Let Mk be so 
large that if W is a function from Mk to the family of partial functions from uk

k to 4 × k then there is 
M ∈ [Mk]2uk such that W is constant on M. Let bk be so large that

bk > (4k)Mk (2)

and let Ek,0 = uk and then define Ek,�+1 by

Ek,�+1 = RamseyF 2
k,�

bk
(2Fk,�Ek,�) (3)

where Fk,� satisfies

Fk,� > 3uk+1
k

∏
i≤�

Ek,i > bk (4)

Then let ek+1 = ek + Ek,kMk
.

Definition 3.3. For k ∈ ω define U [k] =
∏

j∈k[Ij ]2 and define U =
⋃

k∈ω U [k]. If T ⊆ U is a subtree and 
t ∈ T let succT (t) =

{
x ∈ [I|t|]2 | t�x ∈ T

}
. Then let P consist of all trees T ⊆ U such that for all t ∈ T

there is S ⊆ I|t| such that succT (t) = [S]2 and either

• there is some j such that |S| ≥ Ek,j in which case ‖t‖T will denote the greatest such integer, or,
• | succT (t)| = 1

and, furthermore,

(∀k ∈ N) |
{
t ∈ T

∣∣∣ ‖t‖T < M3
|t|k

}
| < ℵ0 (5)

and order P by inclusion. Let Pγ be the countable support iteration of length γ of the partial order P . (The 
iteration and Condition (5) will only play a role later in §4.) If k ∈ ω and T ⊆ U define T [k] = T ∩U [k].

Definition 3.4. Let J and K be positive integers. If j ≤ J and k ≤ K and θ ∈ U [K]J define

θ � (k, j) = (θ(i) � k)
i∈j
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and for U ⊆ U [K]J define

U [k, j] = {θ � (k, j) | θ ∈ U } .

For θ ∈ U [k, j] define

U〈θ〉 = {θ∗ ∈ U | θ = θ∗ � (k, j)} .

For j ∈ J and θ ∈ U define U〈θ, j〉 = {τ(j) � k | τ ∈ U〈θ � (K, j)〉 & k ∈ K } and note that this is a subtree 
of U . If j ≤ J and k ≤ K and θ ∈ U [k, j] then define

U〈〈θ〉〉 = {τ ∈ U [k, J − j] | θ�τ ∈ U [k, J ]} .

Finally, if K0 ≤ K1 and U ⊆ U [K1]J then define U to be K0-stratified if

(∀θ ∈ U)(∀θ∗ ∈ U)(∀k ≤ K0)(∀j ≤ J) if θ � (k, j) = θ∗ � (k, j) then U〈〈θ〉〉[k, J − j] = U〈〈θ∗〉〉[k, J − j].

Define S[K0, K1, J ] =
{
U ⊆ U [K1]J | U is K0-stratified

}
. If K0 = K1 then define S[K0, K1, J ] = S[K0, J ].

Fact 3.2. If U ⊆ U [K]J and k ≤ K and j ≤ J then |U [k, j]| ≤ uj
k.

Definition 3.5. For θ and θ∗ in U [K]J and k ∈ K and j ∈ J define

θ ∼k,j θ
∗

if θ � (k+1, j) = θ∗ � (k+1, j) and θ � (k, j +1) = θ∗ � (k, j +1). For θ ∈ U ∈ S[K, J ] and k ∈ K and j ∈ J

define B(k, j, θ, U) to be any set guaranteed by Definition 3.3 to satisfy

[B(k, j, θ,U)]2 = {θ∗(j)(k) | θ ∼k,j θ
∗ & θ∗ ∈ U } = succU〈θ,j〉(θ(j) � k).

It is worth noting that the asymmetry of the definition of ∼k,j points to the fact that this plays a role in 
an iteration rather than a product of the P . Indeed, from the forcing point of view, B(k, j, θ, U) will arise 
as follows: p ∈ Pγ will be a condition with {σi}ji=0 ⊆ γ enumerated in increasing order and satisfies that

p � σi �Pσi
“θ(i) ∈ p(σi)[k + 1]”

for each i ∈ j and

p � σj �Pσj
“θ(j) ∈ p(σj)[k]”

then

pθ�j �Pσj
“succp(σj)(θ(j)) = [B(k, j, θ,U)]2”.

The notation pθ�j will be explained and other details will be provided in §4; however, this interpretation will 
not play a role until that section. Applying fusion type arguments to conditions that are not stratified results 
in complications, so it is convenient to restrict attention to stratified U . The following lemma, Lemma 3.1, 
makes this possible.
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Lemma 3.1. If J ≤ K0 ≤ K1 then for any U ⊆ U [K1]J such that U ∈ S[K0, K1, J ] and

(∀θ ∈ U)(∀j ∈ J)(∀k ∈ [K0,K1))|B(k, j, θ,U)| ≥ Ek,1 (6)

there is U ⊆ U such that

(1) U ∈ S[K1, J ]
(2) Ramseybk

(|B(k, j, θ, U)|) ≥
∣∣⋃ succU〈θ,j〉(θ(j) � k)

∣∣ whenever θ ∈ U and j ∈ J and K0 ≤ k ∈ K1

(3) U [K0, J ] = U [K0, J ].
(4) if θ ∈ U [k, j] for some k ≤ K1 and j ∈ J and U〈〈θ〉〉 ∈ S[k, J − j] then U〈〈θ〉〉 = U〈〈θ〉〉.

Proof. Proceed by induction on J noting that in the case J = 1 it is possible to let U∗ = U . Given the 
result for J , proceed by induction on K1 −K0 = N to establish the result for U ∈ S[K0, K1, J + 1]. The 
case K1 −K0 = N = 0 is immediate so assume the result for N and let U ⊆ U [K1 + 1]J+1 be such that 
K1 − K0 = N . Use the induction hypothesis to find U∗ ⊆ U [K1, J + 1] such that U∗ ∈ S[K1, J + 1] and 
Conditions (2), (3) and (4) hold. Then define

U∗∗ = {θ ∈ U | θ � (K1, J + 1) ∈ U∗ } =
⋃

θ∈U∗

U〈θ〉

and note that Conditions (2), (3) and (4) hold for U∗∗.
By the induction hypothesis, for each θ ∈ U∗∗[K1 + 1, 1] there is U∗

θ ⊆ U〈〈θ〉〉 satisfying Conditions (1), 
(2), (3) and (4). Now for each

θ ∈ U∗∗[K1, 1] = U∗[K1, 1]

observe that B(K1, 0, θ, U∗∗) = B(K1, 0, θ, U) and define

Pθ : [B(K1, 0, θ,U)]2 → uJ
K1

by Pθ(a) = U∗
θ�a[K1, J ] noting that 2u

J
K1 < bK1 by Inequality (2) of Definition 3.2. Let �θ be such that 

|B(K1, 0, θ, U)| = EK1,�θ . It is then possible to use Equation (3) of Definition 3.2 and the fact that

|B(K1, 0, θ,U)| = EK1,�θ ≥ Ramseybk
(EK1,�θ−1)

to find B∗
θ ⊆ B(K1, 0, θ, U) such that |B∗

θ | = EK1,�θ−1 and Pθ is constant on [B∗
θ ]2. Let

U = {θ ∈ U∗∗ | θ(0)(K1) ∈ B∗
θ }

and note that the construction guarantees that Condition (1) holds. �
Lemma 3.1 will often be applied in the context that J ≤ K0 ≤ K1 and U ⊆ U [K1]J is such that 

|U [K0, J ]| = 1. Observe that this automatically implies that U [K0, J ] ∈ S[K0, K1, J ] and hence the hy-
pothesis of Lemma 3.1 is satisfied. As a result, the following fact will be used implicitly in various lemmas, 
starting with Lemma 3.4.

Fact 3.3. If J ≤ K0 ≤ K1 and U ⊆ U [K1]J and |U [K0]| = 1 then U ∈ S[K0, K1, J ].
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Definition 3.6. For U ∈ S[K, J ] and k ∈ K define

‖U‖k = min
θ∈U,j∈J

‖θ(j) � k‖U〈θ,j〉.

For k ∈ K define U to be k-organized if

|B(k, j, θ,U)| = Ek,‖U‖k+j

whenever θ ∈ U and j ∈ J .

Lemma 3.2. If U ∈ S[K, J ] and U is k-organized and j ≤ J then the number of ∼k,j equivalence classes in 
U is bounded by uj+1

k

∏
i∈j Ek,‖U‖k+i.

Proof. Each ∼k,j equivalence classes corresponds to some θ ∈ U [k]j+1 and some �σ ∈
∏

i∈j B(k, i, θ, U). 
From Fact 3.2 it follows that uj+1

k bounds the number of such θ. From the k-organized hypothesis it follows 
that |B(k, i, θ, U)| = Ek,‖U‖k+i for i ∈ j and so 

∏
i∈j Ek,‖U‖k+i bounds the number of possible �σ. Hence the 

number of equivalence classes is bounded by

uj+1
k

∏
i∈j

Ek,‖U‖k+i. � (7)

Definition 3.7. If U ∈ S[K, J ] and k < K define U∗ �k U if U∗ ⊆ U , U∗ ∈ S[K, J ] and for all j ∈ J and 
θ ∈ U∗

RamseyFk,j−1
bk

(2|B(k, j, θ,U∗)|) ≥ |B(k, j, θ,U)| .

For K0 ≤ K1 define U∗ �K0,K1 U if U∗ �k U holds provided that K0 ≤ k < K1.

It should be noted that the superscripts in RamseyFk,j

bk
are correct and are not intended to be 

RamseyF 2
k,j

bk
as in Definition 3.2. The reason for this will become clear in Lemma 3.15.

Lemma 3.3. If J ≤ K0 ≤ k < K1 and M ≤ FK0,0 and {Ui}Mi=0 satisfy that:

• {Ui}Mi=0 ⊆ S[K1, J ]
• Ui+1 �k Ui

• ‖U0‖k ≥ 1

then ‖UM‖k ≥ ‖U0‖k − 1.

Proof. It must be shown that if � = ‖UM‖k then |B(k, j, θ, UM )| ≥ Ek,�−1 for each j ∈ J and θ ∈ UM . To 
this end, fix j and θ. Then M ≤ FK0,0 ≤ Fk,�−1 and so

RamseyF 2
k,�−1

bk

(
2Fk,�−1 |B(k, j, θ,UM )|

)
≥ RamseyMFk,�−1

bk

(
M |B(k, j, θ,UM )|

)
=

Ramsey(M−1)Fk,�−1
bk

(
RamseyFk,�−1

bk

(
2M−1|B(k, j, θ,UM )|

))
≥

Ramsey(M−1)Fk,�−1
bk

(
2M−1 RamseyFk,�−1

bk
(2|B(k, j, θ,UM )|)

)
≥

Ramsey(M−1)Fk,�−1
(
2M−1|B(k, j, θ,UM−1)|

)
≥
bk
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Ramsey(M−2)Fk,�−1
bk

(
2M−2 RamseyFk,�−1

bk
(2|B(k, j, θ,UM−1)|)

)
≥

Ramsey(M−2)Fk,�−1
bk

(
2M−2|B(k, j, θ,UM−2|

)
≥ . . . ≥ |B(k, j, θ,U0)| ≥ Ek,�

and this is as required, recalling that RamseyF 2
k,�−1

bk

(
2Fk,�−1Ek,�−1

)
= Ek,� by Equation (3) of Defini-

tion 3.2. �
Lemma 3.4. If

• J ≤ K0 ≤ K1
• U ∈ S[K1, J ]
• ‖U‖k ≥ 1 if K0 ≤ k < K1
• |U [K0, J ]| = 1
• P : U → bK0

then there is a non-empty U∗ �K0,K1 U such that P is constant on U∗.

Proof. Proceed by induction on J to prove the following stronger statement: Under the hypotheses of the 
lemma there is a non-empty U∗ ⊆ U such that

(1) P is constant on U∗

(2) U∗ ∈ S[K1, J ]
(3) Ramsey2

bk
(|B(k, j, θ, U∗)|) ≥ |B(k, j, θ, U)| whenever K0 ≤ k < K1, j ∈ J and θ ∈ U∗[k + 1, J ].

For the case J = 1 proceed by induction on K1−K0 to prove the even stronger statement where Inequality (3) 
is replaced by

(∀k ∈ [K0,K1)(∀j ∈ J)(∀θ ∈ U∗[k, J ]) Ramseybk(|B(k, j, θ,U∗)|) ≥ |B(k, j, θ,U)|. (8)

The case that K1 − K0 = 0 is trivial. If K1 > K0 and the result is true for K1 − K0 − 1 then let ρ be 
the unique element of U [K0, 1]. Then U〈ρ�a〉 and P � U〈ρ�a〉 satisfy the inductive hypothesis for each 
a ∈ [B(K0, 0, ρ, U)]2. Hence there is P ∗(a) ∈ bK0 < bK0+1 and U∗

a ⊆ U such that Conditions (8) and (3) hold 
and P has constant value P ∗(a) on U∗

a . Then there is B∗ ⊆ B(K0, 0, ρ, U) such that RamseybK0
(|B∗|) ≥

|B(K0, 0, ρ, U)| and P ∗ is constant on B∗. Then 
⋃

a∈B∗ U∗
a is as desired.

Assuming the result holds for J − 1, let U ∈ S[K1, J ] be such that |U [K0, J ]| = 1 and suppose that 
P : U → bK0 . Using the induction hypothesis, for each θ ∈ U [K1, 1] find Uθ ⊆ U〈〈θ〉〉 such that Conditions (2) 
and (3) hold and such that P is constant on {θ�τ | τ ∈ Uθ } with constant value Q(θ). Now apply the case 
J = 1 to find U∗∗ ⊆ U [K1, 1] such that Conditions (8) and (3) hold and such that Q is constant on U∗∗. 
Let U = {θ�τ | θ ∈ U∗∗ & τ ∈ Uθ } and use Lemma 3.1 to find U∗ ⊆ U such that

(1) U∗ ∈ S[K1, J ]
(2) Ramseybk(|B(k, j, θ, U∗)|) ≥

∣∣∣⋃ succU〈θ,j〉(θ(j) � k)
∣∣∣ whenever θ ∈ U∗, j ∈ J and K0 ≤ k < K1

(3) U [K0, J ] = U∗[K0, J ]
(4) if θ ∈ U∗[k, j] for some k ∈ K1 and j ∈ J and U〈〈θ〉〉 ∈ S[k, J − j] then U〈〈θ〉〉 = U∗〈〈θ〉〉.

It follows that if j > 1 and θ ∈ U∗[k, j] for some k ∈ K1 then

Ramsey2
b (|B(k, j, θ,U∗)|) = Ramsey2

b (|B(k, j, θ,Uθ�(k,1))|) ≥ |B(k, j, θ,U)|

k k
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by the induction hypothesis. When j = 1 then

Ramsey2
bk

(|B(k, j, θ,U∗)|) ≥ Ramseybk
(|B(k, 1, θ,U∗∗)|) ≥ |B(k, j, θ,U)|. �

Definition 3.8. If U ∈ S[K, J ] and Z : U → ω define C(U , Z) to be the set of all 4-tuples (k, j, θ, �) such 
that k ∈ K, j ∈ J , θ ∈ U and � ∈ 3 and there is Zk,j,θ : [B(k, j, θ, U)]2 → ω such that if θ∗ ∼k,j θ and 
θ∗(k, j) = a then Zk,j,θ(a) = Z(θ∗) and:

(1) if � = 0 then Zk,j,θ is one-to-one
(2) if � = 1 then there is a one-to-one Z∗

k,j,θ : B(k, j, θ, U) → ω such that Z∗
k,j,θ(min(a)) = Zk,j,θ(a)

(3) if � = 2 then there is a one-to-one Z∗
k,j,θ : B(k, j, θ, U) → ω such that Z∗

k,j,θ(max(a)) = Zk,j,θ(a)

and |B(k, j, θ, U)| ≥ Ek,1. Let

R(Z, k, j, θ,U) =
{
Zk,j,θ

(
[B(k, j, θ,U)]2

)
if (∃� ∈ 3) (k, j, θ, �) ∈ C(U , Z)

∅ if (∀� ∈ 3) (k, j, θ, �) /∈ C(U , Z).

Say that C(U , Z) is a front in U if for every θ ∈ U there are kθ ≤ K, jθ ∈ J and �θ ∈ 3 such that 
(kθ, jθ, θ, �θ) ∈ C(U , Z).

Fact 3.4. Zk,j,θ and � in Definition 3.8 are invariant under the ∼k,j equivalence relation and R(Z, k, j, θ, U)
depends only on the ∼k,j equivalence class of θ.

Lemma 3.5. If

• U ∈ S[k + 1, J ]
• ‖U‖k ≥ 2
• |U [k, J ]| = 1
• Z : U → ω

then there is U∗ �k U such that either Z is constant on U∗ or C(U∗, Z) is a front in U∗.

Proof. Proceed by induction on J , the case J = 1 following from Theorem 3.1. Now assume the result true 
for J and suppose that U ⊆ U [k + 1]J+1. Let θ be the unique member of U [k, 1]. For a ∈ [B(k, 0, θ, U)]2
apply the induction hypothesis to each U〈〈θ�a〉〉 and Za : U〈〈θ�a〉〉 → ω defined by Za(τ) = Z((θ�a)�τ). 
This yields U∗

a �k U〈〈θ�a〉〉 such that either Za is constant on U∗
a or C(U∗

a , Za) is a front in U∗
a .

Then define Q : [B(k, 0, θ, U)]2 → 2 by Q(a) = 0 if and only if Za is constant on U∗
a . By Lemma 3.1 there 

is B∗ ⊆ B(k, 0, θ, U) such that Ramseybk(|B∗|) ≥ |B(k, 0, Θ, U)| and B∗ is homogeneous for Q. If B∗ is 
1-homogeneous then let

U∗ =
{
(Θ�a)�τ

∣∣ a ∈ [B∗]2 & τ ∈ U∗
a

}
and note that 

⋃
a∈[B∗]2 C(U∗

a , Za) is a front in U∗. To see this, let τ ∈ U∗. Then there is some a ∈ [B∗]2
such that τ(0)(k) = a and so if τ = τ(0)�τ∗ with τ∗ ∈ Ua then there are jτ ∈ J and �τ ∈ 3 such that 
(k, jτ , τ∗, �τ ) ∈ C(Ua, Za). But then k, jτ and �τ witness that (k, jτ , τ, �τ ) ∈ C(U∗, Z).

On the other hand, if B∗ is 0-homogeneous then let Z∗(a) be the constant value of Za on U∗
a for each 

a ∈ [B∗]2. By Theorem 3.1 it is then possible to find B∗∗ ⊆ B∗ such that Ramseybk
(|B∗∗|) ≥ |B∗| (and 

hence Ramsey2
bk

(|B∗∗|) ≥ |B|) such that Z∗ is either constant on B∗∗ or one of the three alternatives of 
Definition 3.8 holds. Now let
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U∗ =
{
(θ�a)�τ

∣∣ a ∈ [B∗∗]2 & τ ∈ U∗
a

}
and note that either Z is constant on U∗ or there is � ∈ 3 such that (k, 0, τ, �) ∈ C(U∗, Z) for all τ ∈ U∗. �
Lemma 3.6. If

• J ≤ K0 ≤ K1
• U ∈ S[K1, J ]
• ‖U‖k ≥ 2 for all k such that K0 ≤ k < K1
• |U [K0, J ]| = 1
• Z : U → ω

then there is U∗ �K0,K1 U such that either Z is constant on U∗ or C(U∗, Z) is a front in U∗.

Proof. Proceed by induction on K1 −K0 using Lemma 3.5. �
Lemma 3.7. If

• K0 ≤ K1
• U ∈ S[K1, J ]
• B∗(k, j, θ) ∈ [B(k, j, θ, U)]≥2 provided that K0 ≤ k < K1, j < J and θ ∈ U [k, j]

then there is U∗ ⊆ U such that

• U∗ ∈ S[K1, J ]
• B(k, j, θ, U∗) = B∗(k, j, θ) provided that K0 ≤ k < K1, j < J and θ ∈ U∗[k, j]
• U∗[K0, J ] = U [K0, J ].

Proof. Proceed by induction on J , the case J = 1 being easy. Given U ∈ S[K1, J + 1] use the induction 
hypothesis to find U ⊆ U [K, J ] such that

• U ∈ S[K1, J ]
• B(k, j, θ, U) = B∗(k, j, θ) provided that K0 ≤ k < K1, j < J and θ ∈ U
• U [K0, J ] = U [K0, J ].

Let U∗∗ =
{
τ ∈ U

∣∣ τ [K,J ] ∈ U
}

and note that U∗∗ ∈ S[K1, J + 1]. It follows that

B∗(k, J, θ) ⊆ B(k, J, θ,U) = B(k, J, θ,U∗∗)

for each k ∈ K and θ ∈ U∗∗[k, J ]. Therefore, let

U∗ = {θ ∈ U∗∗ | (∀k ∈ K) θ(J)(k) ∈ B∗(k, J, θ � (k, J + 1))} . �
Lemma 3.8. Suppose that

• J ≤ K0 ≤ K1
• U ∈ S[K1, J ]
• ‖U‖k ≥ J for k ≥ K0.
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There is then U∗ ⊆ U such that:

• U∗ ∈ S[K1, J ]
• U∗[K0, J ] = U [K0, J ]
• U∗ is k-organized for all k such that K0 ≤ k < K1
• ‖U∗‖k ≥ ‖U‖k − J for k ≥ K0.

Proof. Let n(k) be maximal such that ‖U‖k ≥ n(k) + J for all k ≥ K0. Then simply choose B∗(k, j, θ) ⊆
B(k, j, θ, U) such that |B∗(k, j, θ)| = Ek,n(k)+j and apply Lemma 3.7. �
Lemma 3.9. If J ≤ K0 < K1 and

• U ∈ S[K1, J ]
• θ ∈ U [K0, J ]
• V ⊆ U〈θ〉

then there is W such that

• W[K0, J ] = U [K0, J ]
• V = W〈θ〉
• if τ ∈ W[K0, j] and τ �= θ � (K0, j) then W〈τ〉 = U〈τ〉.

Proof. This is a routine argument by induction on J . �
Lemma 3.10. Suppose that

• J ≤ K0 ≤ K1
• D ⊆ S[K1, J ]
• if U ⊆ V ∈ D and U ∈ S[K1, J ] then U ∈ D
• for all U ∈ S[K1, J ] and θ ∈ U [K0, J ] there is U∗ �K0,K1 U〈θ〉 such that U∗ ∈ D.

Then for any U ∈ S[K1, J ] such that ‖U‖k ≥ 1 for all k such that K0 ≤ k < K1 there is Ū ⊆ U such that

• Ū [K0, J ] = U [K0, J ]
• Ū〈θ〉 ∈ D for each θ ∈ U [K0, J ]
• ‖Ū‖k ≥ ‖U‖k − 1 for all k ≥ K0.

Proof. Let {θi}ui=0 enumerate U [K0, J ] where u ≤ uJ
K0

≤ uK0
K0

≤ FK0,0 by Inequality (4) of Definition 3.2. 
Then construct inductively Ui such that

• U = U0
• Ui+1〈θi〉 ∈ D for each i
• Ui[K0, J ] = Ui+1[K0, J ]
• Ui+1 �K0,K1 Ui.

Letting Ū = Uu it follows from Lemma 3.3 and consideration of the sequence

U0 �K0,K1 U1 �K0,K1 U2 �K0,K1 . . . �K0,K1 Uu
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that ‖Ū‖k ≥ ‖U‖k − 1 for all k ≥ K0 and hence Ū satisfies the lemma.
To see that the induction can be completed suppose that Ui is given. Use the hypothesis to find

Vi �K0,K1 Ui〈θi〉

such that Vi ∈ D. The use Lemma 3.9 to find Ui+1 such that Ui[K0, J ] = Ui+1[K0, J ] and Ui+1〈θi〉 = Vi and, 
moreover, such that if τ ∈ Ui+1[K0, j] and τ �= θi � (K0, j) then Ui+1〈τ〉 = Ui〈τ〉. From this it immediately 
follows that Ui+1 �K0,K1 Ui. Note that Ū〈θ〉 ∈ D for each θ ∈ U [K0, J ] by the closure of D under subset. �
Lemma 3.11. Suppose that

(a) J ≤ K0 ≤ K1

(b) U ∈ S[K1, J ]
(c) Z : U → ω.

There is then U∗ ⊆ U such that

(d) ‖U∗‖k ≥ ‖U‖k − 1 for k ≥ K0

(e) U∗[K0, J ] = U [K0, J ]
(f) for each θ ∈ U [K0, J ] either Z is constant on U∗〈θ〉 or C(U∗〈θ〉, Z) is a front in U∗〈θ〉.

Proof. Let D consist of all V ⊆ U such that either Z is constant on V or C(V, Z) is a front in V. Inspection 
of Definition 3.8 reveals that D is closed under subsets. From this and Lemma 3.6 it follows that D satisfies 
the hypotheses of Lemma 3.10 and, hence, there is Ū ⊆ U such that

• Ū [K0, J ] = U [K0, J ]
• Ū〈θ〉 ∈ D for each θ ∈ U [K0, J ]
• ‖Ū‖k ≥ ‖U‖k − 1 for k ≥ K0,

as required. �
Lemma 3.12. Suppose that |S0| = |S1| = Ramsey2(2m) and m ≥ 3 and Zi : [Si]2 → ω for i ∈ 2. Suppose 
also that Zi(a) �= Zi(b) if a ∩ b = ∅ for each i ∈ 2. There are then S∗

i ⊆ Si such that |S∗
0 | = |S∗

1 | = m and 
Z0([S∗

0 ]2) ∩ Z1([S∗
1 ]2) = ∅.

Proof. For x ⊆ ω let {x[i]}i∈|x| enumerate x in increasing order. Let Ψ : S0 → S1 be an order preserving 
bijection and define P : [S0]4 → 2 by P (x) = 0 if and only if Z0({x[0], x[1]}) = Z1({Ψ(x[2]), Ψ(x[3])}). It is 
easy to see that the hypothesis on the Zi rules out the possibility that there is a 0-homogeneous set for P
of cardinality greater than 5. Let S∗ be homogenous for P of cardinality 2m and let S∗

0 = {S∗[i]}i∈m and 
S∗

1 = Ψ(S∗ \ S∗
0 ). �

Corollary 3.1. Suppose that

(1) Z�
i : [Si]2 → ω for i ∈ L and � ∈ 2

(2) Z�
i (a) �= Z�

i (b) if a ∩ b = ∅.
(3) |Si| ≥ RamseyL

2 (2Lm) for each i ∈ L.

There are then S∗
i ⊆ Si such that
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• |S∗
i | = m for each i

• Z0
i ([S∗

i ]2) ∩ Z1
j ([S∗

j ]2) = ∅ if i < j < L.

Proof. Apply Lemma 3.12 iteratively for each pair {i, j} ∈ [L]2 noting that for each i Lemma 3.12 is not 
applied more than L times. �
Lemma 3.13. Suppose that m ≥ 8 and |S| = Ramsey2(m) and Zi : [S]2 → ω for i ∈ 2. Suppose also that 
Z0(a) �= Z1(a) for all a ∈ [S]2 and that one of the following three options holds:

• each Zi is one-to-one
• Zi(x) = Zi(y) if and only if min(x) = min(y) for each i
• Zi(x) = Zi(y) if and only if max(x) = max(y) for each i.

There is then S∗ ⊆ S such that |S∗| = m and Z0([S∗]2) ∩ Z1([S∗]2) = ∅.

Proof. Define P : [S]4 → 2 by P (x) = 0 if and only if there are a and b in [x]2 such that Z0(a) = Z1(b). 
It suffices to show that no 0-homogeneous subset of P can have cardinality 5. Three cases need to be 
considered.

If each Zi is one-to-one and w ∈ [S]5 is 0-homogeneous. Let a and b be distinct elements of [w]2 such that 
Z0(a) = Z1(b) and let x ∈ [w]4 be such that a ∪ b ⊆ x ⊆ w. There is then x′ ∈ [w]4 such the isomorphism 
taking x to x′ moves precisely one of a or b. This yields a contradiction to the assumption that each Zi is 
one-to-one.

If Zi(x) = Zi(y) if and only if min(x) = min(y) for each i let Z∗
i : S → ω be such that Zi(a) = Z∗

i (min(a))
and note that Z∗

0 (s) �= Z∗
1 (s) for all s ∈ S and each Z∗

i is one-to-one. However, if w is 0-homogenous for 
P and |w| ≥ 8 then it is possible to find x ∈ [w]4 such that Z∗

0 (x) ∩ Z∗
1 (x) = ∅ contradicting that w is 

0-homogenous.
The case that Zi(x) = Zi(y) if and only if max(x) = max(y) for each i is handled similarly. �
Note that in the last part of the proof of Lemma 3.13 if it were the case that Z0(x) = Z∗

0 (min(x))
and Z1(x) = Z∗

1 (max(x)) then the argument to get x from w would fail since it might be possible that 
Z∗

0 (s) = Z∗
1 (s) without violating the hypothesis that Z0(a) �= Z1(a) for all a ∈ [S]2.

Corollary 3.2. Suppose that:

• J ≤ K0 ≤ K1
• U ∈ S[K1, J ]
• ‖U‖k ≥ 1 if K0 ≤ k < K1
• U is k-organized if K0 ≤ k < K1
• Zi : U → ω for i ∈ 2 are such that Z0(θ) �= Z1(θ) for all θ ∈ U .

There is then U∗ ⊆ U such that

• U∗ ∈ S[K1, J ]
• ‖U∗‖k ≥ ‖U‖k − 1 for all k ≥ K0
• U∗[K0, J ] = U [K0, J ]
• if � ∈ 3 and (k, j, θ, �) ∈ C(U∗, Zi) for i ∈ 2 then R(Z0, k, j, θ, U∗) ∩ R(Z1, k, j, θ, U∗) = ∅ provided that 

k ≥ K0.

Proof. By Lemma 3.10 and Lemma 3.7 it suffices to show that if:
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• θ ∈ U [K0, J ]
• � ∈ 3
• K0 ≤ k < K1
• j < J

• θ∗ ∈ U〈θ〉
• (k, j, θ∗, �) ∈ C(U , Zi) for each i ∈ 2

then there is B∗ ⊆ B(k, j, θ∗, U) such that Ramsey2(|B∗|) ≥ |B(k, j, θ, U)| and

R(Z0, k, j, θ,U∗) ∩R(Z1, k, j, θ,U∗) = ∅

provided that B(k, j, θ, U∗) = B∗. This follows directly from Lemma 3.13. �
Lemma 3.14. Suppose that

• J ≤ K0 ≤ K1
• U ∈ S[K1, J ]
• ‖U‖k ≥ 1 for all k ≥ K0
• U is k-organized if K0 ≤ k < K1
• Zi : U → ω for i ∈ 2.

There is then U∗ ⊆ U such that

(1) ‖U∗‖k ≥ ‖U‖k − (J + 1) for k ≥ K0
(2) U∗[K0, J ] = U [K0, J ]
(3) if the following hold

• (k0, j0) is lexicographically less than (k1, j1)
• (ki, ji, θi, �i) ∈ C(U∗, Zi) for i ∈ 2

then R(Z0, k0, j0, θ0, U∗) ∩R(Z1, k1, j1, θ1, U∗) = ∅

(4) if θ ∈ U∗[K0, J ] and Z0 has constant value v on U∗〈θ〉 then v /∈ R(Z1, k1, j1, θ, U∗).

Proof. Begin by using Lemma 3.8 to find U ⊆ U such that

(a) U ∈ S[K1, J ]
(b) ‖U‖k ≥ ‖U‖k − J if K0 ≤ k < K1
(c) U [K0, J ] = U [K0, J ]
(d) U is k-organized if K0 ≤ k < K1.

Let V be the set of all v such that there is some θ ∈ U [K0, J ] such that Z0 has constant value v on U〈θ〉. 
Then let

Rk,j =
⋃
θ∈U

⎛
⎝ ⋃

K0≤k∗<k

⋃
j∗∈J

R(Z0, k
∗, j∗, θ,U) ∪

⋃
j∗∈j

R(Z0, k, j
∗, θ,U)

⎞
⎠ ∪ V

and note that if K0 ≤ k∗ < k then using Inequality (4) of Definition 3.2 and the fact that ‖U‖k ≥ 1

|R(Z0, k
∗, j∗, θ,U)| ≤ |[Ik∗ ]2| ≤ uk (9)
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and hence ∣∣∣∣∣∣
⋃

K0≤k∗<k

⎛
⎝ ⋃

j∗∈J

R(Z0, k
∗, j∗, θ,U)

⎞
⎠
∣∣∣∣∣∣ ≤ kJuk (10)

while if j∗ ∈ j then from the fact that U is k-organized it follows that

|R(Z0, k, j
∗, θ,U)| ≤ |[B(k, j∗, θ,U)]2| = Ek,‖U‖k+j∗ ≤ Ek,‖U‖k+j−1. (11)

Combining Inequalities (10) and (11) it follows that
∣∣∣∣∣∣

⋃
K0≤k∗<k

⋃
j∗∈J

R(Z0, k
∗, j∗, θ,U) ∪

⋃
j∗∈j

R(Z0, k, j
∗, θ,U)

∣∣∣∣∣∣ < kJuk + jEk,‖U‖k+j−1 (12)

Using Lemma 3.2, Fact 3.4 and Property (d) of U the number of ∼k,j equivalence classes in U is bounded 
by

uj+1
k

∏
i∈j

Ek,‖U‖k+i ≤ uj+1
k Ej

k,‖U‖k+j−1

and it follows from Inequality (12) that
∣∣∣∣∣∣
⋃
θ∈U

⎛
⎝ ⋃

K0≤k∗<k

⋃
j∗∈J

R(Z0, k
∗, j∗, θ,U) ∪

⋃
j∗∈j

R(Z0, k, j
∗, θ,U)

⎞
⎠
∣∣∣∣∣∣ < uj+1

k Ej

k,‖U‖k+j−1(kJuk + jEk,‖U‖k+j−1).

(13)
Since Fact 3.2 and Inequality (4) of Definition 3.2 imply that

|V | ≤ |U [K0, J ]| ≤ uJ
K0

≤ uJ
k

and since j < J ≤ K0 ≤ k it follows that

|Rk,j | < uj+1
k Ej

k,‖U‖k+j−1

(
kJuk + jEk,‖U‖k+j−1

)
+uJ

k ≤ uJ+1
k (2kJ+1)EJ

k,‖U‖k+j−1 ≤ uk+1
k 3k2Ek

k,‖U‖k+j−1.

(14)
Fix k, j and θ. Let (Z1)k,j,θ be as defined in Definition 3.8 and consider two cases.

Case 1. If there is � ∈ 3 such that (k, j, θ, �) ∈ C(U , Z1) then let

B∗(k, j, θ) = B(k, j, θ,U) \
⋃

(Z1)−1
k,j,θ(Rk,j).

Case 2. If there is no � such that (k, j, θ, �) ∈ C(U , Z1) then let

B∗(k, j, θ) = B(k, j, θ,U).

Notice that it easily follows from Equation (3) of Definition 3.2 that Ek,�+1 ≥ uk+1
k 3k2Ek

k,� +Ek,�. Using 
this with � = ‖U‖k + j − 1 it follows that

Ek,‖U‖ +j ≥ uk+13k2Ek + Ek,‖U‖ +j−1
k k k,‖U‖k+j−1 k
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and combining this with Inequality (14) and keeping in mind that Z1 is one-to-one, it follows that

|B∗(k, j, θ)| ≥ |B(k, j, θ,U)| − |Rk,j | ≥ Ek,‖U‖k+j − uk+1
k 3k2Ek

k,‖U‖k+j−1 ≥ Ek,‖U‖k+j−1.

Now apply Lemma 3.7 to find U∗ ⊆ U such that

• U∗ ∈ S[K1, J ]
• B(k, j, θ, U∗) = B∗(k, j, θ) provided that K0 ≤ k ≤ K1, j < J and θ ∈ U∗[k, j]
• U∗[K0, J ] = U [K0, J ].

It follows that ‖U∗‖k ≥ ‖U‖k − 1 = ‖U‖k − (J + 1) provided that K0 ≤ k < K1 or, in other words, 
Conclusion (1) holds. The fact that (4) holds follows directly from the choice of V and the construction of 
U∗.

To see that (3) holds suppose that

• K0 ≤ ki < K1 for i ∈ 2
• ji < J for i ∈ 2
• (ki, ji, θi, �i) ∈ C(U∗, Zi) for i ∈ 2
• (k0, j0) is lexicographically less than (k1, j1).

Then to show that

R(Z0, k0, j0, θ0,U∗) ∩R(Z1, k1, j1, θ1,U∗) = ∅

it must be shown that, letting (Z1)k1,j1,θ1 = Z,

R(Z0, k0, j0, θ0,U∗) ∩ Z(B(k1, j1, θ1,U∗)) = R(Z0, k0, j0, θ0,U∗) ∩ Z(B∗(k1, j1, θ1)) = ∅.

Consider first the case that k0 < k1. It follows from the construction that

R(Z0, k0, j0, θ0,U∗) ⊆ R(Z0, k0, j0, θ0,U) ⊆ Rk1,j1

and so either

B(k1, j1, θ1,U∗) ∩ Z−1(R(Z0, k0, j0, θ0,U∗)) = ∅

or

B(k1, j1, θ1,U∗) ∩
⋃

Z−1(R(Z0, k0, j0, θ0,U∗)) = ∅.

The final case to consider is that k0 = k1 and j0 < j1 and a similar argument works here. �
Lemma 3.15. Suppose that

(a) J ≤ K0 ≤ K1
(b) U ∈ S[K1, J ]
(c) U is k-organized if K0 ≤ k < K1
(d) Zi : U → ω for i ∈ 2
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There is then U∗ ⊆ U such that

(e) U∗ ∈ S[K1, J ]
(f) U∗[K0, J ] = U [K0, J ]
(g) if K0 ≤ k < K1 and j < J and the following two conditions hold

(∀i ∈ 2) (k, j, θi, �i) ∈ C(U∗, Zi) (15)
θ0 �k,j θ1 (16)

then ‖U∗‖k ≥ ‖U‖k − 2 for k ≥ K0 R(Z0, k, j, θ0, U∗) ∩R(Z1, k, j, θ1, U∗) = ∅.

Proof. The first step will be to show that for all k and j and L ≤ Fk,‖U‖k+j−1 and {[θ�]∼k,j
}�∈L enumerating 

the ∼k,j equivalence classes there are Bk,j,� ⊆ B(k, j, θ�, U) such that

(a) RamseyL
bk

(
2L|Bk,j,�|

)
≥ |B(k, j, θ�, U)|

(b) if θ�0 �k,j θ�1 and (k, j, θ�i , m) ∈ C(U , Zi) for each i ∈ 2 then Z0
k,j,θ�0

(Bk,j,�0) ∩ Z1
k,j,θ�1

(Bk,j,�1) = ∅

where Zi
k,j,θ∗ : [B(m, j, θ∗, U)]2 → ω is as defined in Definition 3.8 for C(U , Zi). By Lemma 3.7 it then 

follows that there is some U∗ ⊆ U such that

• U∗ ∈ S[K1, J ]
• B(k, j, θ, U∗) = Bk,j,� provided that K0 ≤ k < K1, j < J and θ ∈ U∗[k, j] and θ ∼k,j θ�
• U∗[K0, J ] = U [K0, J ].

From (a) it will then follow that ‖U∗‖k ≥ ‖U‖k − 1 for k ≥ K0
To see that it is possible to obtain Conditions (a) and (b) begin by fixing k and j. Using Inequality (4)

of Definition 3.2 it follows that

Fk,‖U‖k+j−1 > uj+1
k

∏
i≤j−1

Ek,‖U‖k+i

and so it is possible to apply Lemma 3.2 to find L ≤ Fk,‖U‖k+j−1 and an enumeration {θn}n∈L ⊆ U〈θ〉 such 
that each ∼k,j equivalence classes of U〈θ〉 is represented in the enumeration.

Then apply Corollary 3.1 with Sn = B(k, j, θn, U) and

Zi
n = Zi

k,j,θn (17)

for n ∈ L and i ∈ 2 noting that Hypothesis (2) of Corollary 3.1 is satisfied since (k, j, θn, �n) ∈ C(U∗, Zi). 
To see that Hypothesis (3) is satisfied let m = Ek,‖U‖k+j−1. Then, using Inequality (3) in Definition 3.2,

|B(k, j, θ�,U)| = Ek,‖U‖k+j = Ramsey
F 2

k,‖U‖k+j−1
bk

(2Fk,‖U‖k+j−1Ek,‖U‖k+j−1) ≥ RamseyL
2 (2LEk,‖U‖k+j−1)

and this yields Bk,j,� ⊆ B(k, j, θ�, U) such that

(c) |Bk,j,�| = Ek,‖U‖k+j−1
(d) Z0

n([Bk,j,n]2) ∩ Z1
m([Bk,j,m]2) = ∅ for n < m < L.

Therefore RamseyL
bk

(2L|Bk,j,�|) ≥ |B(k, j, θn, U)| and so Condition (a) holds. Note that by Equation (c) it 
follows that U∗ is k-organized. �
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Lemma 3.16. Suppose that

(1) J ≤ K0 ≤ K1
(2) U ∈ S[K1, J ]
(3) Z� : U → ω for � ∈ 2 are such that Z0(θ) �= Z1(θ) for all θ ∈ U .

There is then U∗ ⊆ U such that

(4) U∗ ∈ S[K1, J ]
(5) ‖U∗‖k ≥ ‖U‖k − (6J + 5) for k ≥ K0
(6) U∗[K0, J ] = U [K0, J ]
(7) if (ki, ji, θi, �i) ∈ C(U , Zi) for each i ∈ 2 and one of following three options holds:

(a) k0 = k1 = k and j0 = j1 = j and θ0 �k,j θ1
(b) (k0, j0) �= (k1, j1)
(c) θ0 ∼k,j θ1 and �0 = �1

then

R(Z0, k0, j0, θ0,U∗) ∩R(Z1, k1, j1, θ1,U∗) = ∅

(8) if i0 �= i1 and θ ∈ U [K0, J ] and Zi0 has constant value v on U∗〈θ〉 then v /∈ R(Zi1 , ki1 , ji1 , θ, U∗).

Proof. Using Lemma 3.8 find U∗
1 ⊆ U such that Conclusion (6) holds and

(a) U∗
1 ∈ S[K1, J ]

(b) U∗
1 is k-organized for all k such that K0 ≤ k < K1

(c) ‖U∗
1 ‖k ≥ ‖U‖k − J for k ≥ K0.

Then apply Lemma 3.15 to get U∗
2 ⊆ U∗

1 satisfying the conclusion of (7) under hypothesis (7a) such that 
‖U∗

2 ‖k ≥ ‖U∗
1 ‖k − 2 for k ≥ K0. Then apply Lemma 3.8 again to find U∗

3 ⊆ U∗
2 such that Conclusion (6) 

and Conditions (a), (b) and (c) hold with U∗
3 in place of U∗

1 . Then use Corollary 3.2 to get U∗
4 ⊆ U∗

3 such 
that ‖U∗

4 ‖k ≥ ‖U∗
3 ‖k − 1 the conclusion of (7) follows from hypothesis (7 c). Then apply Lemma 3.8 again 

and then Lemma 3.14 twice, once for the pair (Z0, Z1) and again for (Z1, Z0), to get U∗ ⊆ U∗
4 such that the 

conclusion of (7) holds under hypothesis (7b) and such that ‖U∗‖k ≥ ‖U∗
4 ‖k − 2J − 2(J +1). This also gives 

(8) and (5). �
Corollary 3.3. Suppose that

(a) J ≤ K0 ≤ K1
(b) U ∈ S[K1, J ]
(c) Z : U → [ω]M and Zm(θ) be the mth element of Z(θ).

There is then U∗ ⊆ U such that

• U∗ ∈ S[K1, J ]
• ‖U∗‖k ≥ ‖U‖k −M2(6J + 5) for k ≥ K0
• U [K0, J ] = U∗[K0, J ]
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• if mi ∈ M and (ki, ji, θi, �i) ∈ C(U , Zmi
) and one of following three options holds:

(1) k0 = k1 = k and j0 = j1 = j and θ0 �k,j θ1
(2) (k0, j0) �= (k1, j1)
(3) θ0 ∼k,j θ1 and �0 = �1

then

R(Zm0 , k0, j0, θ0,U∗) ∩R(Zm1 , k1, j1, θ1,U∗) = ∅

• if m0 �= m1 are in M and θ ∈ U [K0, J ] and Zm0 has constant value v on U∗〈θ〉 then v /∈
R(Zm1 , km1 , jm1 , θ, U∗).

Proof. For each pair (m, m′) ∈ M2 apply Lemma 3.16. It needs to be noted that Zm(θ) �= Zm′(θ) for all 
θ ∈ U and m �= m′ by the definition of the Zm and hence the hypotheses of Lemma 3.16 are satisfied. �
Theorem 3.2. Suppose that

• J < K0 ≤ K1
• U [K0, J ] ∈ S[K0, J ]
• U ⊆ U [K1]J
• Z : U → [ω]MK0 .

There are then U∗ ⊆ U and disjoint A and B such that

• ‖U∗‖k ≥ ‖U‖k − (M2
K0

(6J + 5) + M + 2) for k ≥ K0
• U [K0] = U∗[K0]
• A ∩ Z(θ) �= ∅ �= B ∩ Z(θ) for all θ ∈ U∗.

Proof. Let M = MK0 . Let Zm(θ) be the mth element of Z(θ). To begin use Lemma 3.1 to find Ũ ⊆ U such 
that

(1) Ũ ∈ S[K1, J ]
(2) Ramseybk

(|B(k, j, θ, Ũ)| ≥
∣∣⋃ succU〈θ,j〉(θ(j) � k)

∣∣ whenever θ ∈ Ũ and j ∈ J and K0 ≤ k ∈ K1
(3) Ũ [K0, J ] = U [K0, J ].

Using Lemma 3.11 inductively, find Um for each m ≤ M such that

• U0 = Ũ
• ‖Um‖k ≥ ‖Um−1‖k − 1
• Um[K0, J ] = Um−1[K0, J ]
• for each θ∗ ∈ Um[K0] either Zm is constant on Um+1〈θ∗〉 or C(Um+1, Zm) is a front in Um+1.

Hence ‖UM‖k ≥ ‖Ũ‖k −M ≥ ‖U‖k −M − 1.
For each θ ∈ UM let Ψθ : M → (J + 1) × 4 be the mapping defined by

Ψθ(m) =
{

(jθ,m, �θ,m) if this is defined as in Definition 3.8 with (kθ,m, jθ,m, θ, �θ,m) ∈ C(U , Zm)
(J, 3) otherwise.
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Note that 4(J +1)M ≤ 4KM
0 < bK0 . Hence, it is possible to use Lemma 3.4 in conjunction with Lemma 3.10

to find Ū ⊆ UM such that for each θ ∈ Ū [K0, J ] and m ∈ M there are j∗θ (m) and �∗θ(m) such that
Ψθ∗(m) = (j∗θ (m), �∗θ(m)) for each m and θ∗ ∈ Ū〈θ〉 and such that ‖Ū‖k ≥ ‖U‖k− (M +2) for k ≥ K0. Then 
use Corollary 3.3 to get the conclusion of that corollary to hold on U∗ ⊆ Ū and ‖Ū‖k ≥ ‖U∗‖k − (M2(6J +
5) + M + 2).

Let W be the function defined on M such that W (m) is the function from U∗[K0, J ] to 4 ×K0 (noting 
that J + 1 ≤ K0) defined by W (m)(θ) = (�∗θ(m), j∗θ (m)). Referring to Definition 3.2, let M ⊆ M and 
W ∗ : U∗[K0, J ] → 4 ×K0 be such that W (m) = W ∗ for all m ∈ M and note that

|M| ≥ 2uK0−1 ≥ |U [K0]|J ≥ 2|U∗[K0, J ]|.

Let the coordinate functions of W ∗ be given by W ∗ = (W ∗
� , W

∗
j ).

Then for θ ∈ U∗[K0, J ] and m ∈ M define

R∗
m(θ) =

⋃
θ∗∈U∗〈θ〉

R(Zm, kθ∗(Zm),W ∗
j (θ), θ∗,U∗).

Let Y =
{
θ ∈ U∗[K0, J ]

∣∣ W ∗
j (θ) = J

}
or, in other words, Y consists of those θ ∈ U∗[K0, J ] such that Zm is 

constant on UM 〈θ〉 for each m ∈ M. Let Y (θ, m) be this constant value and define Yθ = {Y (θ,m) | m ∈ M}. 
Observing that |Yθ| = |M| ≥ 2|U∗[K0, J ]| it is easy to find disjoint A0 and B0 such that A0∩Yθ �= ∅ �= B0∩Yθ

for θ ∈ Y.
Finally, let Y∗ = U∗[K0, J ] \ Y let ma ∈ M and mb ∈ M be distinct and define

A = A0 ∪
( ⋃

θ∈Y∗

R∗
ma

(θ)
)

& B = B0 ∪
( ⋃

θ∈Y∗

R∗
mb

(θ)
)
.

To see that U∗ and A and B satisfy the conclusion, two points need to be verified. The first is that if θ∗ ∈ U∗

then Z(θ∗) ∩A �= ∅ �= Z(θ∗) ∩B. Let θ = θ∗ � (K0, J). If θ ∈ Y then it follows that A0 ∩ Yθ �= ∅ �= B0 ∩ Yθ

and hence A0 ∩ Z(θ∗) �= ∅ �= B0 ∩ Z(θ∗). On the other hand, if θ ∈ Y∗ then

Zma
(θ∗) ∈ R(Zma

, kθ∗(Zma
),W ∗

j (θ), θ∗,U∗) ⊆ R∗
ma

(θ) ⊆ A

and the result follows. The same argument works for B.
The final point that needs to be checked is that A ∩B = ∅. The fact that A0 ∩B0 = ∅ follows from the 

construction. The fact that( ⋃
θ∈Y∗

R∗
ma

(θ)
)

∩ (A0 ∪B0) = ∅ =
( ⋃

θ∈Y∗

R∗
mb

(θ)
)

∩ (A0 ∪B0)

follows immediately from the last clause of Corollary 3.3. The fact that R∗
ma

(θ) ∩R∗
mb

(θ′) = ∅ for all θ and 
θ′ in Y∗ will be shown to follow from the first part of Corollary 3.3.

To see this it has to be shown that if θi ∈ Y∗ for i ∈ 2 and θ∗i ∈ U∗〈θi〉 then

R(Zma
, kθ∗

0 (Zma
),W ∗

j (θ0), θ∗0 ,U∗) ∩R(Zmb
, kθ∗

1 (Zmb
),W ∗

j (θ1), θ∗1 ,U∗) = ∅.

If kθ∗
0 (Zma

) �= kθ∗
0 (Zmb

) or if W ∗
j (θ0) �= W ∗

j (θ1) then Corollary 3.3 can be directly applied, so assume that 
kθ∗

0 (Zma
) = kθ∗

0 (Zmb
) = k and W ∗

j (θ0) = W ∗
j (θ1) = w. If θ∗0 �k,w θ∗1 then again Corollary 3.3 can be directly 

applied, so it may be assumed that θ∗0 ∼k,w θ∗1 . In this case it must be verified that �∗θ∗
0
(Zma

) = �∗θ∗
1
(Zmb

)
and for this it suffices to show that W ∗

� (θ0) = W ∗
� (θ1).
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But this follows from the fact that θ∗0 ∼k,w θ∗1 . To see this, note that W (ma) = W (mb) = W ∗. Hence 
�∗θ∗

0
(Zma

) = �∗θ∗
0
(Zmb

) and �∗θ∗
1
(Zma

) = �∗θ∗
1
(Zmb

), as required. Moreover, since θ∗0 ∼k,w θ∗1 it follows from 
Definition 3.8 applied to Zma

that �∗θ∗
0
(Zma

) = �∗θ∗
1
(Zma

) and hence �∗θ∗
0
(Zma

) = �∗θ∗
1
(Zmb

). �
4. The iteration

Definition 4.1. Let Γ be a finite subset of ω2 of cardinality J enumerated in the ordinal ordering as Γ =
{γj}j∈J and p ∈ Pω2 . Recalling Definition 3.3, for j ≤ J and σ ∈ U j define pσ,Γ (which will be denoted by 
pσ if the dependence on Γ is clear) by induction on j as follows:

(a) p∅ = p � γ0
(b) if i = |σ| and pσ is defined and t ∈ U then

(i) pσ�t � γi = pσ
(ii) pσ�t(γi) = {s ∈ p(γi) | s ⊆ t or t ⊆ s}
(iii) pσ�t(γ) = p(γ) if γi < γ < γi+1 where γJ is defined to be ω2.

The p(γ) are, of course, Pγ names, but the reader will not be reminded of this by dots in forcing statements. 
Note that it may well be the case that pσ /∈ Pω2 . Indeed, pσ ∈ Pω2 precisely if

(∀j ∈ domain(σ)) pσ�j ∈ Pω2 and pσ�j �Pγj
“σ(j) ∈ p(γj)” (18)

for every j in the domain of σ. Let Up,Γ,K =
{
σ ∈ U [K]J | pσ ∈ Pω2

}
.

A condition p will be called (Γ, K)-determined if for each σ ∈ U [K]J \ Up,Γ,K there is some j ∈ J such 
that pσ�j ∈ Pω2 and pσ�j �Pγj

“σ(j) /∈ p(γj)” and p will be called (Γ, K, N)-determined if, in addition,

(∀σ ∈ Up,Γ,K)(∀j ∈ J) pσ �Pγj
“(∀t ∈ p(γj)) if |t| ≥ K then ‖t‖p(γj) ≥ NM3

|t|”. (19)

Definition 4.2. If Γ = {γj}j∈J and V ⊆ Up,Γ,K define the pV by defining pV � β by induction on β. For β = 0
there is nothing to do. For β a limit let β̄ < β be so large that Γ ⊆ β̄ and let

pV = (p � β̄)V�(p � [β̄, β)).

Given pV � β and β /∈ Γ define pV � β + 1 by letting pV(β) = p(β). If β = γj then define pV(β) by

(∀σ ∈ Up,Γ,K [K, j]) pσ � β �Pγ
“pV(β) = {θ ∈ p(γ) | σ�(θ � K) ∈ V[K, j + 1]} ”.

Lemma 4.1. If p is (Γ, K)-determined and V ⊆ Up,Γ,K then pV ∈ Pω2 .

Proof. This is immediate from Definition 4.2 and induction on |Γ|. �
Lemma 4.2. If the following hold:

• p is (Γ, K0)-determined
• Up,Γ,K0 ∈ S[K0, |Γ|]
• q ≤ p

• Up,Γ,K0 = Uq,Γ,K0

then Uq,Γ,K1 ∈ S[K0, K1, |Γ|].
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Proof. Suppose that θ ∈ Uq,Γ,K1 and γ is the jth element of Γ. Then qθ � γ ≤ pθ�(K0,j) � γ and pθ�(K0,j) � γ
decides p(γ)[K0]. Hence, qθ � γ makes the same decision. Since this is true for any θ∗ ∈ Up,Γ,K0〈θ � (K0, j)〉
the result follows. �
Lemma 4.3. If

• p ∈ Pω2

• Γ is a finite subset of ω2
• K0 and N are in ω
• p �Pω2

“ẋ ∈ 2 & ẏ ∈ ω”
• p � γ �Pγ

“|p(γ)[K0]| = 1” for all γ ∈ Γ

then there are K1 ∈ ω, q ≤ p and n ∈ 2 and N ∈ ω such that q �Pω2
“ẋ = ň & ẏ < Ň” and for all γ ∈ Γ, 

using the notation of Definition 3.3,

q � γ �Pγ
“ if K0 ≤ |t| < K1 then Ramsey2

(∣∣∣⋃ succq(γ)(t)
∣∣∣) ≥

∣∣∣⋃ succp(γ)(t)
∣∣∣ ” (20)

q � γ �Pγ
“ if K1 ≤ |t| then ‖t‖q(γ) ≥ NM3

|t|”. (21)

Proof. A standard rank argument, such as can be found in §7.3 of [1], can be used. For T ∈ U and t ∈ T

define rank(t) = 0 if ‖t‖T ≥ NM3
|t| and there is T ∗ ⊆ {s ∈ T | s ⊆ t or t ⊆ s} such that T ∗ �P “ẋ = ň &

ẏ = m̌” for some n ∈ 2 and m ∈ ω. Then define rank(t) ≤ r + 1 if there is S ⊆ I|t| such that

[S]2 ⊆ {a ∈ succT (t) | rank(t�a) ≤ r}

and

Ramsey2(|S|) ≥ |
⋃

succT (t)|.

This shows that if ‖t‖T ≥ 1 for t ⊇ t∗ then rank(t∗) is defined. A standard induction yields the result for 
the iteration. �
Lemma 4.4. Suppose that

(a) p ∈ Pω2

(b) Γ ∈ [ω2]J
(c) ż is a Pω2 name for a finite set of integers
(d) K0 > J = |Γ| and N are in ω.

There are then q, K1 and Z such that:

(e) q is (Γ, K1, N)-determined
(f) q � γ �Pγ

“q(γ)[K0] = p(γ)[K0]” for all γ ∈ Γ
(g) q � γ �Pγ

“(∀t ∈ q(γ)) if |t| ≥ K0 then ‖t‖q(γ) ≥ ‖t‖p(γ) − 1” for all γ ∈ Γ
(h) Z : Uq,Γ,K1 → [ω]<ℵ0 and qσ �Pω2

“ż = Z(σ)” for all σ ∈ Uq,Γ,K1 .

Proof. Proceed by induction on J = |Γ|. In order to prove the general case a stronger induction hypothesis 
is required: There is K̄ ∈ ω such that for all K1 ≥ K̄ there is q ≤ p and U ⊆ U [K1]J such that conditions 
(e), (f), (g) and (h) are all satisfied for ż, q, K0, K1, U and Γ. If Γ = ∅ there is nothing to do and if |Γ| = 1, 
Lemma 4.3 can be applied.
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Now suppose that the general result has been established if |Γ| = J and that Γ is given such that 
|Γ| = J + 1. Let γ be the minimum element of Γ and let Γ̃ = Γ \ {γ}. Then find q̃ ≤ p � γ such that:

(i) there is K̃ such that q̃ �Pγ
“ the induction hypothesis holds for p/Pγ , ̃Γ, ż/Pγ and K̃”

(ii) there is K ′ such that q̃ �Pγ
“‖t‖p(γ) > (N + 1)M3

|t| if |t| ≥ K ′”.

Let K̄ = max(K̃, K ′) and suppose that K1 ≥ K̄.
Using the stronger induction hypothesis and Lemma 4.3 it is possible to find and q∗ ≤ q̃ and T ⊆ U � K1

such that

q∗ �Pγ
“T ⊆ p(γ) and (∀s ∈ T ) if K0 ≤ |s| < K1 then ‖s‖T ≥ ‖s‖p(γ) − 1” (22)

and, moreover, for each t ∈ T [K1] there are Ṫt, q̇t, Zt and Ut such that for each t ∈ T [K1]

q∗ �Pγ
“p(γ)〈t〉 ⊇ Ṫt” (23)

q∗ �Pγ
“(∀s ∈ Ṫt) if |s| ≥ k then ‖s‖Ṫt

≥ NM3
|s|” (24)

q∗ �Pγ
“Ut = U̇q̇t,Γ̃,K1

” (25)

q∗ ∗ Ṫt �Pω2
“q̇t,K1, Zt witness that conditions (e), (f), (g) and (h) of Lemma 4.4 hold.” (26)

Let q be defined by letting q(γ) =
⋃

t∈T [K1] Ṫt and having q∗ ∗ Ṫt �Pγ+1 “q � [γ + 1, ω2) = q̇t”. Observe that 
(24), (22) and (ii) together imply that q �Pγ

“(∀s ∈ q(γ)) if K1 ≤ |s| then ‖s‖T ≥ NM3
|s|”. Hence (19) of 

Definition 4.1 holds. Then let Z(t�σ) = Zt(σ) for t ∈ T ∗[K1] and σ ∈ Ut. It follows easily that q, K1 and 
Z are as required. �
Lemma 4.5. If p is (Γ, K, N)-determined and γ∗ /∈ Γ then there is q ≤ p such that:

(1) q is (Γ ∪ {γ∗}, K, N)-determined
(2) Up,Γ,K ∈ S[K, |Γ|]
(3) q � γ �Pγ

“p(γ)[K] = q(γ)[K]” for all γ ∈ Γ
(4) Uq,Γ∪{γ∗},K ∈ S[K, |Γ| + 1]
(5) q � γ �Pγ

“(∀t ∈ q(γ)) if |t| > K then ‖t‖p(γ) − 1 ≤ ‖t‖q(γ)” for all γ ∈ Γ.

Proof. Proceed by induction on |Γ| the case that Γ = ∅ being immediate. For the general case proceed as 
in Lemma 4.4. �
Theorem 4.1. It is consistent that s2,2 = ℵ2 and s2,∞ = ℵ1.

Proof. It should be clear that P is proper and ωω-bounding by Lemma 4.3. Moreover, the choice of the 
Ek,j guarantees (see Definition 3.2) that if P ⊆ Ik and |P | ≥ Ek,j+1 and X ⊆ Ik then either |P ∩X| ≥ Ek,j

or |P \X| ≥ Ek,j and this implies that if Gξ ∈
∏

n∈ω[In]2 is the generic sequence added by Pω2 at stage ξ
then for each X ⊆ ω such that X ∈ V Pξ there are only finitely many n such that |Gξ(n) ∩ X| = 1. This 
shows that

1 �Pω2
“s2,2 = ℵ2”. (27)

Using Observation (27) it suffices to show that 1 �Pω2
”s2,∞ = ℵ1” so suppose that

p �Pω2
“Ż ∈ [ω]<ℵ0 & lim sup |z| = ∞”.
z∈Ż
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Using the countable support, it suffices to show that there are pn ∈ Pω2 , Γn ∈ [ω2]n, positive integers Kn, 
finite sets An and Bn and names żn such that:

(a) p0 = p

(b) An ∩Bn = ∅

(c) min(An+1 ∪Bn+1) > max(An ∪Bn)
(d) pn �Pω2

“żn ∈ Ż & min(żn) > n”
(e) pn �Pω2

“żn ∩An �= ∅ �= żn ∩Bn”
(f) Kn+1 > Kn

(g) pn is (Kn, Γn, n + 3)-determined
(h) pn+1 � γ �Pγ

“(∀t ∈ pn+1(γ)) if |t| ≥ Kn then ‖t‖pn+1(γ) ≥ nM3
Kn

” for all γ ∈ Γn

(i) Upn+1,Γn,Kn
= Upn,Γn,Kn

(j) Upn,Γn,Kn
∈ S[Kn, |Γn|] = S[Kn, n]

(k) Γn+1 ⊇ Γn

(l)
⋃

n Γn =
⋃

n domain(pn).

Given this, it follows from Inductive Hypotheses (g), (h), (i) and (k) that a standard fusion argument 
establishes that there is q ∈ Pω2 such that q ≤ pn for all n. Using (c) and (b) it is possible to define 
A =

⋃
n∈ω An and B =

⋃
n∈ω Bn such that A ∩B = ∅ and, using (e), such that

q �Pω2
“(∀n)(∃z ∈ Ż) min(z) ≥ n & z ∩A �= ∅ �= z ∩B” (28)

thus establishing that s2,∞ = ℵ1 after forcing with Pω2 over a model of 2ℵ0 = ℵ1.
To carry out the inductive construction, suppose that pn ∈ Pω2 , Γn ∈ [ω2]n, Kn, An, Bn and zn have 

been constructed. Let Γn+1 = Γn ∪ {γ∗} where γ∗ has been chosen according to some scheme that will 
guarantee that (l) will be satisfied and, of course, |Γn+1| = n + 1. Let żn+1 be a name such that

1 �Pω2
“żn+1 ∈ Ż & & min(żn+1) > n + 1 & |żn+1| ≥ MKn

”.

Using Lemma 4.5 and Hypothesis (g) to find q ≤ pn such that:

(m) q is (Γn+1, Kn, n + 2)-determined
(n) Uq,Γn+1,Kn

∈ S[Kn, n + 1]
(o) q � γ �Pγ

“(∀t ∈ q(γ)) if |t| > Kn then ‖t‖pn(γ) − 1 ≤ ‖t‖q(γ)” for all γ ∈ Γn

(p) Uq,Γn,Kn
= Upn,Γn,Kn

.

Then use Lemma 4.4 to find q̄ ≤ q, Kn+1 ∈ ω and Z such that:

(q) q̄ is (Γn+1, Kn+1, n + 4)-determined
(r) Uq,Γn+1,Kn

= Uq̄,Γn+1,Kn

(s) q̄ � γ �Pγ
“(∀t ∈ q̄(γ)) if |t| ≥ Kn then ‖t‖q̄(γ) ≥ ‖t‖q(γ) − 1” for all γ ∈ Γn+1

(t) q̄ �Pω2
“żn+1 ∈ Ż & min(żn+1) ≥ n + 1 & |żn+1| ≥ MKn

”
(u) there is Z : Uq̄,Γn+1,Kn+1 → [ω]MKn such that q̄σ �Pω2

“żn+1 = Z(σ)” for all σ ∈ Uq̄,Γn+1,Kn+1 .

Observe that it follows from Induction Hypotheses (g) and Conditions (s) and (o) that

q̄ � γ �Pγ
“(∀t ∈ q̄(γ)) if |t| ≥ Kn then ‖t‖q̄(γ) ≥ (n + 3)M3

|t| − 2 ≥ (n + 2)M3
Kn

”

and hence
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‖Uq̄,Γn+1,Kn+1‖k ≥ (n + 2)M3
Kn

(29)

for all k ≥ Kn. From Lemma 4.2 it follows that Uq̄,Γn+1,Kn+1 ∈ S[K0, K1, n + 1] so it is possible to use 
Lemma 3.1 to find U ⊆ Uq̄,Γn+1,Kn

such that

(v) U ∈ S[Kn+1, n + 1]
(w) ‖U‖k ≥ ‖Uq̄,Γn+1,Kn

‖k − 1 for k ≥ Kn

(x) U [Kn, n + 1] = Uq̄,Γn+1,Kn
[Kn, n + 1].

Then use Theorem 3.2 and Condition (t) to find Ũ ⊆ U and disjoint An+1 and Bn+1 such that

(∀k ∈ [Kn,Kn+1)) ‖Ũ‖k ≥ ‖U‖k − (M2
Kn

(6n + 5) + MKn
+ 2) (30)

Ũ [Kn] = U [Kn] = Uq̄,Γn+1,Kn+1 [Kn] (31)

(∀θ ∈ U) An+1 ∩ Z(θ) �= ∅ �= Bn+1 ∩ Z(θ). (32)

Note that from Condition (30) it follows that if Kn ≤ k < Kn+1 that then

‖Ũ‖k ≥ ‖Uq̄,Γn+1,Kn
‖k − (M2

Kn
(6n + 5) + MKn

+ 2) − 2 ≥ M3
Kn

(n + 2) −M3
Kn

≥ (n + 1)M3
Kn

. (33)

Then let pn+1 = q̄U . It then follows from (o) and (s) that Induction Hypothesis (h) holds. It follows 
from Condition (r) and Equation (31) that Induction Hypothesis (i) holds. Condition (t) guarantees that 
Induction Hypothesis (d) holds. Condition (q) ensures that Induction Hypothesis (g) will be satisfied by 
pn+1. Of course, Induction Hypothesis (e) follows from Condition (32). �
5. Some more cardinal invariants

Those readers who have followed the proof of Theorem 4.1 may well be asking themselves whether better 
results are possible. In order to formulate precise questions along these lines it is worth introducing some 
new cardinal invariants that incorporate ideas already found in the definitions of s1/2±ε and s1/2±ε.

Definition 5.1. For ε > 0 define sk,ε to be the least cardinal of a family F ⊆ kω such that for each infinite, 
pairwise disjoint family A ⊆ [ω]<ℵ0 whose elements have unbounded cardinality there is F ∈ F such that 
for infinitely many a ∈ A

1 − ε

k
<

|a ∩ F−1(j)|
|a| <

1 + ε

k

for all j ∈ k. Define sk,0 to be the least cardinal of a family F ⊆ kω such that for each infinite, pairwise 
disjoint family A ⊆ [ω]<ℵ0 whose elements have unbounded cardinality there is F ∈ F such that

lim inf
a∈A

(
max
j∈k

(
|a ∩ F−1(j)|

|a| − 1/k
))

= 0.

Other variations of the splitting cardinals also come to mind.

Definition 5.2. Let 2 ≤ m ≤ k and let s∗m,k be the least cardinal of a family F ⊆ mω such that for any 
infinite, pairwise disjoint family A ⊆ [ω]k there is F ∈ F such that for any non-empty x ⊆ m there are 
infinitely many a ∈ A such that F [a] = x.
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Finally, recall that sω1 is the following stronger version of the statement s = ℵ1: There is a family 
{Sξ}ξ∈ω1 such that for each infinite X ⊆ ω there is β ∈ ω1 such that |Sα∩X| = ℵ0 = |X \Sα| for all α > β. 
The following definition extends this to the current context.

Definition 5.3. Define sω1
k,m to be the assertion that there is family {fη}η∈ω1 such that fη : ω → k and for 

each infinite, pairwise disjoint family A ⊆ [ω]m there is β ∈ ω1 such that fη[a] = k for infinitely many a ∈ A
and each η > β.

It can easily be checked that the proof of Corollary 2.1 shows that sω1
2,m holds for some m if and only if 

s
ω1
2,2 holds. However, the proof of Lemma 2.4 does not seem to extend to show that sω1

k,m holds for some k
and m if and only if sω1

2,2 holds. These questions will be considered in a forthcoming paper.
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