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Abstract. We conclude a long-standing research program in progress since

1954 by giving negative answers to test problems à la Kaplansky. Among

these problems, the first was largely open, but the others were known to be

consequences of Jensen’s diamond principle and therefore impossible to answer

affirmatively. Let R be a left non-pure semisimple, and let m > 1 be a natural

number. For example, we construct an R-module M such that Mn ∼= M if and

only if m divides n−1, and thus solving the first test problem in the negative.

As an application, we also construct an R-module M of arbitrary size such

that Mn1 ∼= Mn2 if and only if m divides (n1−n2), giving a strongly negative

answer to the cube problem of whether an R-module M which is isomorphic

to M3 must be isomorphic to its square M2? We will treat the other two

problems in a similar way. The crux of our method is to construct a ring S

and an (R,S)-bimodule with few endomorphisms, for which we rely heavily

on techniques from algebra and set theory, in particular the black box.
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1. Introduction

Throughout this paper R is an associative ring with 1 = 1R, which is neither

necessarily commutative nor Noetherian. An R-module M is a left R-module,

unless stated otherwise. Moreover, for any positive integer n, the notation Mn

stands for
⊕n

i=1 M. We will prove the following theorem.

Theorem 1.1. (See Theorem 8.1) Let R be a ring which is not left pure semisimple.

Let m > 1 be an integer, and let λ > |R| be a cardinal of the form λ =
(
µℵ0
)+

.

Then there is an R-module M of cardinality λ such that:

Mn ∼= M⇐⇒ m divides n− 1.

Recall that R is called left pure semisimple if every left R-module is a direct

sum of countably generated indecomposable left R-modules, and furthermore such

a representation is unique up to isomorphism. This can be seen as a pure version

of semisimple rings.

We will prove Theorem 1.1 in ZFC, the Zermelo-Fraenkel set theory with the

axiom of choice. To do so, we will introduce the construction of (R,S)-bimodules,
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KAPLANSKY TEST PROBLEMS 3

i.e. the structures that are both left R-modules and right S-modules with appro-

priate associativity over a commutative ring T. Ultimately, we will choose S to

solve each of the test questions. However, we will first analyze what the smallest

endomorphism ring of an (R,S)-bimodule can be. As an application, we will prove

the following result.

Corollary 1.2. (See Corollary 8.2) Assume that R is not pure semisimple. Let

λ = (µℵ0)+ > |R|, and let m > 2 be an integer. Then there is an R-module M of

cardinality λ such that:

Mn1 ∼= Mn2 ⇐⇒ m|(n1 − n2).

This result extends several well-known theorems that began with Corner [2]. A

special case of this, namely when R is the ring of integers, was recently recon-

structed by Göbel-Herden-Shelah [21, Corollary 9.1(iii)] and by Eklof-Shelah [15].

When an algebraic theory is given, one of the main goals is to find some structure

theorems for the objects. In 1954, Kaplansky formulated a list of three test problems

(see [28, page 12]), where, in his opinion, a structure theory can only be satisfactory

if it can solve these problems. He formulated his problems in the context of abelian

groups as follows

Problem 1.3. (I) If G is isomorphic to a direct summand of H and H is

isomorphic to a direct summand of G, are G and H necessarily isomorphic?

(II) If G⊕G and H⊕H are isomorphic, are G and H isomorphic?

(III) If F is finitely generated and F⊕G is isomorphic to F⊕H, are G and H

isomorphic?

He also noted that the problems 1.3 can be formulated for very general mathe-

matical systems, and he also mentioned that problem (I) in set theory has a positive

answer, namely the Cantor-Schröder-Bernstein theorem. It is perhaps worth men-

tioning that problems 1.3 (I) and (II) were posed earlier, in 1948, independently by
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Sikorski [48] and Tarski [49] in the context of Boolean algebras, where they gave a

positive answer to the problem 1.3 for countably complete Boolean algebras. Sier-

pinski also posed the cube problem (see below for explanation) in the context of

linear orders, see [47].

There are numerous publications on the Kaplansky test problems for various

algebraic structures. Some of these are summarized below. For Boolean algebras,

the first negative result was proved by Kinoshita [30], who gave a negative answer

to the problem 1.3 (I) for countable Boolean algebras. [25] gave a negative answer

to the problem 1.3 (II) for the same class of structures, and Ketonen [29] solved,

among many other interesting things, the Tarski cube problem by producing a

countable Boolean algebra which is isomorphic to its cube but not to its square.

A solution to the Schroeder-Bernstein problem for Banach spaces is the subject of

[24] by Gowers. Recently, Ervin [18] proved that every linear order isomorphic to

its cube is also isomorphic to its square, thus solving Sierpinski’s cube problem for

linear orders.

It is known that Kaplansky’s problems have positive answers for many classes of

abelian groups, such as finitely generated groups, free groups, divisible groups, and

so on, see [17]. Jónsson [26] gave negative answers to problems 1.3 (I) and (II) for

countable centerless non-commutative groups and then in [27] he gave a negative

answer to problem 1.3 (II) for the class of torsion-free abelian groups of rank 2.

In 1961 Sasiada [35] gave a negative answer to the first problem for the class of

torsion-free groups of rank 2ℵ0 . Corner, in his groundbreaking work [2], proved

that any countable torsion-free reduced ring can be realized as an endomorphism

ring of a torsion-free abelian group and derived a negative answer to Kaplansky’s

test problems (I) and (II) for countable torsion-free reduced groups. Later, Corner

[3] constructed a countable torsion-free abelian group G which is isomorphic to G3

but not to G2, giving a negative answer to the cube problem which asks, if G is

isomorphic to G3, does it follow that G is isomorphic to G2?
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Let m and n be positive integers. As a further contribution, Corner proved that

for every positive integer r there exists a countable torsion-free abelian group G

such that Gm ∼= Gn if and only if m ≡r n. This property of G is called the

Corner pathology. In particular, the ring of integers has a pathological module.

For countable separable p-groups, Elm’s theorem gives a positive solution to the

Kaplansky problems (I) and (II), and Crawley [6] showed in 1965 that this does not

extend to the uncountable case by giving a negative answer to these problems for

the case of uncountable separable p-groups. For any n ≥ 2, Eklof and Shelah [16]

constructed a locally free abelian group G of cardinality 2ℵ0 such that G⊕Zn ∼= G.

More recently, Richard [34] has presented more friendly examples of abelian groups

endowed with Corner’s pathological property. Corner’s ideas have been used by

many mathematicians to give negative answers to the first two test questions for

some classes of abelian groups. See for example [9], [10], [11] [15], [34], and [13].

Shelah’s work [46] deals with Kaplansky’s first test problem in the category

of modules over a general ring, but his results were obtained under set-theoretic

assumptions beyond ZFC. In fact, Shelah used Jensen’s diamond principle, a pre-

diction principle whose truth is independent of ZFC, to present rigid-like modules

that give negative answers to Kaplansky’s test problem.

Thomé [50] and Eklof-Shelah [15] constructed a ℵ1-separable abelian group M

in ZFC such that the Corner ring is algebraically closed in End(M). Consequently,

M is isomorphic to its cube, but not to its square.

In summary, the Kaplansky test problems for the category of modules over a

general ring have remained largely open.

In this paper we are interested in the category of modules over a general ring

which is neither necessarily commutative nor countable. We work in ZFC and an-

swer the test problems. This continues and even completes the program announced

in [46], but can also be read independently. We would like to emphasize that all our

results are in ZFC (without additional set-theoretic axioms) and that the results
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we obtain are even stronger than those proved in [46]. See for example Theorem

1.1. We will do this using a simple case of “Shelah’s black box”, see Lemma 4.47

and Theorem 4.48. Black boxes were introduced by Shelah in [43] and [44], where

he shows that they follow from ZFC. We can think of black boxes as a general way

to generate a class of diamond-like principles that are provable in ZFC.

In [36] Shelah proved that every ring R satisfies one of the following two possi-

bilities:

(i) All modules are direct sums of countably generated modules, or

(ii) For every cardinal λ > |R|, there exists an R-module of cardinality λ that

is not a direct sum of R-modules of cardinality ≤ µ for some µ < λ.

Shelah’s work in [46] extends (ii) with respect to endomorphism algebras. From this

and from V = L he constructed an R-module M with prescribed endomorphisms

modulo an ideal of small endomorphisms. Consequently, Shelah found a connection

from (ii) to the Kaplansky test problems. Here we remove the additional assumption

of V = L.

Here we lose the λ-freeness (this is unavoidable even for abelian groups, see

Magidor and Shelah [31]). In particular, we prove here that for every m > 1 there

exists an R module M such that M ∼= Mn if and only if m divides n − 1, and we

also answer the other Kaplansky test problems promised in [46]. Furthermore, we

explicitly prove that the theorems hold for elementary classes of modules that are

not superstable.

In the course of proving Theorem 1.1, we develop general methods that allow us

to prove the following results in ZFC. Note that these results give negative solutions

to the Kaplansky test problems (I) and (II).

Theorem 1.4. Let R be a ring which is not pure semisimple and let λ =
(
µℵ0
)+

>

|R| be a regular cardinal. Then there are R-modules M, M1, M2 of cardinality λ

such that
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i) M⊕M1
∼= M⊕M2,

ii) M1 6∼= M2.

iii) M1 ≡L∞,λ M2.

Here by L∞,λ, we mean the infinitary language L∞,λ(τR), where τR is the lan-

guage of modules over the ring R.

Theorem 1.5. Let R be a ring which is not pure semisimple and let λ > |R| be

a regular cardinal of the form
(
µℵ0
)+

. Then there are R-modules M1 and M2 of

cardinality λ such that:

i) M1, M2 are not isomorphic,

ii) M1 is isomorphic to a direct summand of M2,

iii) M2 is isomorphic to a direct summand of M1.

In particular, Theorems 1.4 and 1.5 improve the main results of [46] by removing

the use of the diamond principle.

Since the Kaplansky test problems and also our results are related to the inde-

composability of modules, we will also look at some background in this direction.

Fuchs [17] proved the existence of an indecomposable abelian group in many cardi-

nals λ (e.g. up to the first strongly inaccessible cardinal), and even a rigid system

of 2λ abelian groups of power λ. At the time, it was conjectured that this might

fail for some “large cardinals” (e.g., supercompact). Corner [4] reduced the number

of primes to five, and later Göbel and May [20] reduced it to four, in the following

sense. Suppose R is an algebra over a commutative ring A, λ is an infinite cardi-

nal, and suppose R can be generated as an A-algebra by λ or less elements. Let

M = ⊕λR and also assume that there is an embedding R ↪→ EndA(M) by scalar

multiplication. Göbel and May introduced four A-submodules M0,M1,M2,M3 of

M such that

R =
{
ϕ ∈ EndA(M) : ϕ(Mi) ⊂Mi for all 0 ≤ i ≤ 3

}
.
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Using certain stationary sets, Shelah [39] proved the existence of an indecom-

posable abelian group of cardinality λ in every λ, and even a rigid system of 2λ

such groups. Recently, Göbel and Ziegler [23] generalized this to R-modules for “R

with five ideals”. In response to a question from Pierce, Shelah [40] constructed

essentially decomposable1 abelian p-groups for any cardinal λ, which is strong limit

of uncountable cofinality.

Eklof and Mekler [12] have obtained a λ-free indecomposable abelian group of

power λ using diamond on some non-reflecting stationary set of ordinals < λ of

cofinality ℵ0. Shelah [42] continued this and showed that the diamond can be

replaced by the weak diamond on a non-reflecting stationary subset of

Sλℵ0 := {δ < λ : cf(δ) = ℵ0}

(Thus,for λ = ℵ1, 2ℵ0 < 2ℵ1 is sufficient).

Dugas [8], continuing [12], proved, assuming V = L, the existence of a strongly

κ-free abelian group with endomorphism ring Z and then, using p-adic rings, Göbel

[19] realized a larger family of rings.

Dugas and Göbel [9], continuing [8], [19], and [42], and working over a Dedekind

domain R which is not a field proved that:

i) there exist arbitrarily large indecomposable R-modules, and

ii) there exist arbitrarily large R-modules that do not satisfy the Krull-Schmidt

cancellation property.

Moreover, they related these to the Kaplansky test problems by showing that R is

not a complete discrete valuation ring if and only if there are R-modules of arbitrary

high rank which do not satisfy Problem 1.3. In addition, they showed that every

torsion-free ring is the endomorphism ring of a suitable abelian group.

In [10], Dugas and Göbel characterized the rings which can be represented as

End(G) modulo “the small endomorphism” for some abelian p-group, but as it

1G is essentially decomposable if G = G1 ⊕G2 implies that G1 or G2 is bounded.
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follows [40] (which dealt with the case when we want the smallest such ring), the

representation of a ring R by an abelian group G of size a strong limit cardinal

of cofinality > |R|. The situation is similar in Dugas and Göbel [11], where the

results of [9] and more are obtained in such cardinals.

Black box allows us to get the results of [9], [10] in more and smaller cardinals,

e.g. λ =
(
|R|ℵ0

)+
. Corner and Göbel [5] continued this work and, using ideas from

Shelah, presented a detailed treatment of the construction of abelian groups and

modules with given endomorphism rings and satisfying additional constraints. We

also mention the recent work [21].

The organization of the paper and the strategy of the proof of Theorem 1.1 are

presented in the next section.

For more information, see the books Eklof-Mekler [14] and Göbel-Trlifaj [22].

The books [32] and [33] by Prest discuss model theory of modules, and also pure

semisimple rings.

2. Outline of the proof of Theorem 1.1

This section is divided into two subsections. In the first subsection, we present

an introduction to the concept of semi-nice construction, and survey things that

we need from [36]. The interested reader is referred to §4, where some definitions

and details are given there. In subsection 2.2 we give an overview of the proof of

Theorem 1.1.

2.1. Towards a semi-nice construction. In Section 4, and more formally, we

develop the setting needed for our approach. We will do this by introducing the

concept of semi-nice construction and its specialization and generalization. To

explain it, let us first present a simple case. Let R be a ring with unit 1R which is

not left purely semisimple. Then we consider formulas ϕ(x) of the form

(∃y0, . . . , ykm)

[ ∧
m<m(∗)

amx =
∑
i<km

bm,iyi

]
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where {am, bm,i} are elements of the ring R. For any left R–module M we set

ϕ(M) := {x : M |= ϕ(x)}.

This is not necessarily a submodule, because R is not necessarily commutative, but

ϕ(M) is an additive subgroup of M. Now, our assumption implies that for some

sequence ϕ̄ = 〈ϕn(x) : n < ω〉, each ϕn is as above. For every n and M we have

ϕn+1(M) ⊆ ϕn(M), and for some M, the sequence 〈ϕm(M) : m < ω〉 is strictly

increasing. Without loss of generalitywe may assume that ϕn(x) is of the following

form:

ϕn(x) = (∃ y0, . . . ykn−1−1)

[ ∧
m<n

amx =
∑
i<km

bm,iyi

]
,

and also kn < kn+1.

Let Nn be the R–module generated by xn, yni (i < km) freely, except the following

relations

amx
n =

∑
i<kn

bm,iy
n
i ∀m < n.

Let gn be the homomorphism from Nn into Nn+1 mapping xn to xn+1 and yni to

yn+1
i (for i < kn). Let

e = 〈Nn, xn, gn : n < ω〉 = 〈Ne
n, x

e
n, g

e
n : n < ω〉.

Next, for any n, we define the following subgroup of M:

ϕn(M) = ϕe
n(M) := {f(x) : f is a homomorphism from Nn to M}.

In Definition 4.36 we will define the notion of “semi-nice construction”, which in

particular gives a sequence M̄ of R-modules, and in Theorem 4.48 we show that the

existence of a semi-nice construction follows from a suitable version of black boxs.

This gives us an R–module M =
⋃
α
Mα such that every endomorphism f of M is

in a suitable sense trivial. To be more explicit, on general grounds, f maps ϕn(M)

into itself. Hence it maps

ϕe
ω(M) :=

⋂
n<ω

ϕn(M)
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into itself. So it induces an additive endomorphism

f̂n = f � (ϕn(M)/ϕe
ω(M))

of the abelian group ϕn(M)/ϕe
ω(M). By the construction, for some n = n(f), the

mapping f̂n is of the “unavoidable” kind. Here, unavoidable means multiplication

by some element a from the center of R.

The point is that for undesirable f , we will be able to find xn and x such that

x− xn ∈ ϕn(M) but for no y ∈M we have:

n < ω ⇒ y − f(xn) ∈ ϕn(M).

In other words, omitting countable types helps. But, we would like to have more,

namely not only to generalize “the abelian group M has no endomorphism except

multiplication by a ∈ Z”, but also we rather want to generalize “the abelian group

(M,+) has a prescribed endomorphism ring S”. For running this propose, we

consider a fixed pair (R,S) of rings and a commutative subring T of the center

of R and the center of S, and work with (R,S)-bimodules, where by an (R,S)-

bimodule, we mean a left R-module M which is a right S-module and satisfies the

following equations:

(1) ∀r ∈ R, ∀s ∈ S, (rx)s = r(xs),

(2) ∀t ∈ T, tx = xt.

We would like to build a bimodule M such that all of its R–endomorphisms (i.e.,

endomorphisms as an R–module) are, in a sense, equal to left multiplication by a

member of S. To be able to construct such an M, we need to have

e = 〈Ne
n, x

e
n, g

e
n : n < ω〉,

but now Ne
n is a bimodule, xen ∈ Ne

n and gen is a bimodule homomorphism from Ne
n

to Ne
n+1, mapping xen to xen+1. As a first approximation, let ϕe

n(M) be{
x : there is an R-homomorphism from Ne

n to M mapping xen to x

}
.
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Of course, ϕe
n(M) is an additive subgroup of M. We define ψe

n(M) similarly but

using bimodule homomorphism. In fact, we consider a set E of such e’s.

However, Ne
n is not necessarily finitely generated as an R-module. So let us

restrict ourselves to bimodules such that, locally they look like direct sums of R-

modules from some class K. This property is denoted by 0 ≤ℵ0 M. This can be

represented as being L∞,ℵ0 -equivalent to such a sum. More generally, we say M1

is an almost direct K-summand of M2 with respect to κ denoted by M1 ≤ads
K,κ M2,

provided player II has a winning strategy in the following game aM1,M2

K,κ of length

ω: in the nth move player I chooses a subset An ⊆M2 of cardinality < κ, and then

player II chooses a sub-bimodule Kn ⊆M2. Player II wins iff:

(a) An ⊆M1 +
∑
`≤n

K`,

(b) Kn is in c`κis(K),

(c) M1 +
∑
`<ω

K` = M1 ⊕
∑
`<ω

K`.

For more details, see Definition 4.16. Now, if 0 ≤ℵ0 M, we let

ϕe
n(M) :=

{
x ∈M : ∃ R–homomorphism Ne

n → N mapping xen to x
}
,

and

ψe
n(M) :=

{
x : ∃ bimodule homomorphism Ne

n → N mapping xen to x
}
.

Also, our complicated set e enable us to define the set Le
n of elements of Ne

n whose

image under bimodule homomorphism is determined by the image of xen.

In addition, we would like to include in our framework the class of R-modules

of a fix first order complete theory T . This is fine for T not to be superstable, but

we need to replace the requirement 0 ≤ℵ0 M by “M∗ ≤ℵ0 M” and choose K and

M∗ appropriate for T . For example, M∗ can be any ℵ1-saturated model of T and

K :=
{
N : N is an R–module such that M∗ ≺L(τR) M∗ ⊕ N

}
,

where L(τR) is the language of R-modules (see Definition 3.6). Also, N is not too

large, e.g. it has size at most ‖R‖+ ‖S‖.
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2.2. Test equations for Theorem 1.1. Let M̄ = 〈Mα : α ≤ κ〉 be a semi-nice

construction and let Mκ be the module defined by M̄. For any f : Mκ →Mκ, α < κ

and n < ω, we consider the following principle: For any bimodule homomorphism

h from Ne
n into Mκ, and for every ` < ω we have

f(h(xen)) ∈Mα + ϕe
`(Mκ) + Rang(h).

We refer to this property by saying that the statement (Pr)nα[f , e] holds. In

Lemma 5.2 we prove that every R-endomorphism f of the module Mκ constructed

in Section 4 is “somewhat definable” and specifically satisfies (Pr)
n(∗)
α [f , e] (for some

α < κ, n(∗) < ω and for all the e’s we have taken care of). We regard this as a key

stone of §4. Despite its importance, (Pr)
n(∗)
α [f , e] is not enough strong to run our

program. However, we show that (Pr)
n(∗)
α [f , e] implies a stronger version, denoted

by (Pr 1)
n(∗)
α,z [f , e]. As the notation suggests, the new invariant z is involved. More

explicitly, if h is a bimodule homomorphism from Ne
n into Mκ, then (Pr 1)

n(∗)
α,z [f , e]

implies that

f(h(xen))− h(z) ∈Mα + ϕe
ω(Mκ).

This is subject of Lemma 5.8. These enable us to connect to subsection 1.1, by

defining the concept of strongly semi-nice construction. For more details, see Defi-

nition 5.16.

In Section 6 we try to say more. Working with Mκ, every endomorphism is in

some suitable sense equal to one in a ring dE, whose definition is given in Lemma

6.24(5b). This means, we restrict f to an additive subgroup ϕe
n(Mκ) closed under

f , and divide it by another ϕe
ω(Mκ), then take direct limit; on the top of this we

have an “error term”. To handle this, we have to divide by a “small” submodule

of Mκ, which means of cardinality < λ = ‖Mκ‖. In order to get a stronger result

than this, we divide the ring of such endomorphisms by the ideal of those with

“small” range and then even “compact ones” which are essentially of cardinality
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≤ sup{‖M‖ : M ∈ K}. More explicitly, see Lemma 6.25. We close Section 6 by

proving the following auxiliary result.

Corollary 2.1. Suppose S is a ring extending Z such that (S,+) is free, and let

R be a ring which is not pure semisimple. Let D be a field such that

p := char(D)| char(R)

and set

Zp :=

 Z/pZ p > 0,

Z otherwise.

Suppose Σ is the set of equations over S which is not solvable in D⊗Zp(S/pS).

Finally, let M be strongly nicely constructed. Then Σ is not solvable in End(M).

In Section 7 we present the proof of theorems 1.5 and 1.4. It may be worth to

mention that 1.5 follows directly from Theorem 1.1. In sum, we drive it by applying

different test equations.

Let us now explain how the above constructions can be applied to prove Theorem

1.1 (for more details see Section 8). We first introduce a ring S0, it is incredibly

easy compared to S. To this end, let T be the subring of R which 1 generates. Let

S0 be the ring extending T generated by {X0, . . . ,Xm(∗),W,Z} freely except the

following list of test equations:

(∗)1: X 2
` = X`,

X`Xm = 0 (` 6= m),

1 = X0 + . . .+ Xm(∗),

X`WXm = 0 for `+ 1 6= m mod m(∗) + 1,

Wm(∗)+1 = 1,

Z2 = 1,

X0Z(1−X0) = X0Z,

(1−X0)ZX0 = (1−X0)Z.
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For an integer m let [−∞,m) := {n : n is an integer and n < m}. To each

η ∈ [−∞,m)ω we assign

η � k := η � [−∞,min{m, k}).

The next object is Γ. It consists all functions with domain of the form [−∞, n) and

the range is a subset of {1, . . . ,m(∗)}. Now, we look at

W1 := W0 × {0, . . . ,m(∗)},

where

W0 :=

{
η ∈ Γ : η(m) = 1 for every small enough m ∈ Z

}
.

Let D be a field such that

T is finite ⇒ char(D) divides |T|.

So, D ⊗ S is the ring extending D by adding D,X0, . . . ,Xm(∗),W,Z as non com-

muting variables freely except satisfying the equations in (∗)1. Let M∗ = DM∗ be

the left D-module freely generated by {xη,` : η ∈W0, ` < m(∗)+1}. We make DM∗

to a right (D⊗S0)-module by defining xz for x ∈ DM∗ and z ∈ S0, so it is enough

to deal with

z ∈ {Xm : m < m(∗) + 1} ∪ {Z,W}.

Let x =
∑
η,`

aη,`xη,` where

(1) (η, `) vary on W0,

(2) aη,` ∈ D and {(η, `) : aη,` 6= 0} is finite.

It is natural to extend things linearly, that is

(∑
η,`

aη,`xη,`
)
z =

∑
η,`

aη,`(xη,`z),

where
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16 M. ASGHARZADEH, M. GOLSHANI, AND S. SHELAH

xη,`Xm :=

 xη,` if ` = m,

0 if ` 6= m,

xη,`Z :=

 xη_〈`〉,0 if ` > 0,

xη�[−∞,n−1),η(n−1) if ` = 0, and (−∞, n) = Dom(η).

Also,

xη,`W := xη,m when m = `+ 1 mod m(∗) + 1.

These assignments allow us to deal with an additional structure of the (D,S)-

bimodule. Indeed, it is enough to look at

DM∗` :=

{∑
η

dη,`xη,` : η ∈W0 and dη,` ∈ D

}
.

In other words,

DM∗ =

m(∗)⊕
`=0

DM∗` .

Now, we are ready to define S, but in addition σ = 0 when M∗Dσ = 0 for every D

and every (D,S0)-bimodule DM∗ as defined above.

We will prove that S is a free T-module. This allows us to apply Corollary 2.1.

Then, we look at P := Mκ, the bimodule obtained by the semi-nice construction

that equipped with the strong property presented in above. We define P` := PX`. It

follows easily that
m(∗)⊕
`=1

RP` ∼= (RP0)m(∗).

It is enough to show RPk0 6∼= RP0 for all 1 < k < m(∗). Assume k is a counterexam-

ple. We apply Corollary 2.1 to find a field D and Y ∈ D⊗
T

S satisfying the following

equations:

(∗)2 : Y � DM∗0 is an isomorphism from DM∗0 onto
k⊕̀
=1

DM∗` ,

Y �
k⊕̀
=1

DM∗` is an isomorphism from
k⊕̀
=1

DM∗` onto DM∗0,
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Y �
m(∗)+1⊕
`=k+1

DM∗` is the identity,

Y2 = 1.

The next task is to introduce the following sets:

wη,` :=
{

(ν,m)|(ν,m) = (η, `) or η_〈`〉 E ν and m < m(∗) + 1
}
,

u` :=
{

(η,m)|m = `, η ∈ w0

}
,

wmη,` := wη,` ∩ um,

w
[1,n]
η,` := wη,` ∩

⋃
m∈[1,n]

um.

For any

u ⊆
{

(η, `) : η ∈W0, ` < m(∗) + 1
}
,

we define Nu be the D-subspace generated by {xη,` : (η, `) ∈ u}. For every large

enough finite subset v ⊆ wη,`, we show the following is well defined:

nη,` := dim

(
Nw0

η,`

Nw0
η,`
\v

)
− dim

( N
w

[1,k]

η,`

Nw0
η,`
\vY

)
.

These integers are independent from the first factor: Suppose η, ν ∈ w0 are given.

We show

nη,` = nν,` ∀` ∈ [0,m(∗)],

so we shall denote these common quantities by n`. These numbers are such that

they satisfy the following equations:

n` =

 0 if ` ∈ [1, k]

n0 + n1 + . . .+ nm(∗) if ` ∈ [k + 1,m(∗) + 1) or ` = 0

Finally, we use this equation to derive the following contradiction

m(∗)∑
`=1

n` =
k

m(∗)
.
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3. Preliminaries from algebra and logic

In this section we provide some preliminaries from algebra and logic that are

needed for the rest of the paper. Let us start by fixing some notations that we will

use through the paper. Recall that R is a ring, not necessary commutative, with

1 = 1R.

Notation 3.1. By Cent(−) we mean the center of a ring (−).

Convention 3.2. The rings S and R are with 1, and we always assume that

T := Cent(R) ∩ Cent(S) is a commutative ring.2

Definition 3.3. An (R,S)-bimodule M is a left R-module and right S-module such

that for all r ∈ R, x ∈M and s ∈ S we have (rx)s = r(xs) and that tx = xt for all

t ∈ T. When the pair (R,S) is clear from the context, we refer to M as a bimodule.

Convention 3.4. We use K, M, N and P to denote bimodules (or left R-modules).

Definition 3.5. Let f : M→ N be a bimodule homomorphism.

(1) The kernel, Ker(f) := {x ∈M : f(x) = 0} is a sub-bimodule of M.

(2) The image, Rang(f) := {f(x) : x ∈M} is a sub-bimodule of N.

(3) If N is a sub-bimodule of M then M/N := {x+N : x ∈M} is a homomorphic

image of M. The mapping x 7→ x+ N is a homomorphism with kernel N.

(4) For a bimodule M,EndR(M) is the endomorphism ring of M as a left R-

module.

In this paper we also consider modules and bimodules as logical structures, so let

us fix a language for them. We only sketch the basic definitions and results which

are needed here, and refer to [1] and [7] for further information.

2Indeed, in our applications we have T = R ∩ S (see Section 6, below).
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Definition 3.6. (1) An R-module M is considered as a τR-structure. In other

words,

τR = {0,+,−} ∪ {rH : r ∈ R},

where the universe is the set of elements of M, and 0,+,− are interpreted

naturally and rH is interpreted as a multiplication from left by r, i.e.,

rH(x) := rx. Let us recall terms and atomic formulas:

(a) Terms of τR are expressions of the form
∑
i<m rixi, where m < ω, ri

is in R and xi is a variable.

(b) Atomic formulas of τR are equations of the form t1 = t2, where t1, t2

are terms.

(2) An (R,S)-bimodule is similarly interpreted as a τ(R,S)-structure where

τ(R,S) := {0,+,−} ∪ {rH : r ∈ R} ∪ {Hs : s ∈ S}

and rH,Hs for r ∈ R, s ∈ S are unary function symbol, which will be

interpreted as follows: rH may regard as a left multiplication by r. In other

words, rH(x) := rx. Similarly, Hs stands for right hand side multiplication

by s, i.e., Hs(x) = xs. Here, we recall terms and atomic formulas:

(a) Terms of τ(R,S) are expressions of the form

∑
i<d

∑
h<hd

ri,hxisi,h

where d, hd < ω, ri,h ∈ R, si,h ∈ S and xi is a variable.

(b) Atomic formulas of τ(R,S) are equations of the form t1 = t2, where

t1, t2 are terms.

The next lemma is trivial.

Lemma 3.7. The class of (R,S)-bimodules is a variety, i.e., there are equations

in the language of τ(R,S) such that a τ(R,S)-structure is an (R,S)-bimodule iff it

satisfies these equations.
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Let us now introduce the infinitary languages for modules and bimodules. They

will play essential roles in the sequel.

Definition 3.8. Suppose κ and µ are infinite cardinals, which we allow to be ∞,

and let τ be one of τR or τ(R,S). The infinitary language Lµ,κ(τ) is defined so as

its vocabulary is the same as τ, it has the same terms and atomic formulas as in

τ, but we also allow conjunction and disjunction of length less than µ, i.e., if φj ,

for j < β < µ are formulas, then so are
∨
j<β φj and

∧
j<β φj. Also, quantification

over less than κ many variables (i.e., if φ = φ((vi)i<α), where α < κ, is a formula,

then so are ∀i<αviφ and ∃i<αviφ).

Note that Lω,ω(τ) is just the first order logic with vocabulary τ. Given κ, µ and

τ as above, we are sometimes interested in some special formulas from Lµ,κ(τ).

Definition 3.9. (1) Lcpe
µ,κ(τ), the class of conjunctive positive existential for-

mulas, consists of those formulas of Lµ,κ(τ) which in their formulation only

∧,
∧
j<β ,∃x and ∃i<αvi are used (where β < µ and α < κ).

(2) Lpe
µ,κ(τ), the class of positive existential formulas, is defined similarly where

we also allow ∨ and
∨
j<β

(3) Lp
µ,κ(τ), the class of positive formulas, is defined similarly where we allow

∨,
∨
j<β and also the universal quantifiers ∀x and ∀i<αvi.

(4) By a simple formula of Lµ,κ(τ), we mean a formula of the form

φ = ∃i<αvi[
∧
j<β

φj ],

where each φj = φj((vi)i<α) is an atomic formula.

Lemma 3.10. The following assertions are valid:

(1) Suppose f : M→ N is an (R,S)-bimodule homomorphism. Then f preserves

Lpe
∞,∞(τ(R,S))-formulas.

(2) Suppose in addition to 1) that f is surjective. Then f preserves Lp
∞,∞(τ(R,S))-

formulas.
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Proof. (1). Suppose φ((vi)i<α) ∈ Lpe
∞,∞(τ(R,S)) and let ai ∈ M, where i < α. We

need to show:

M |= φ((ai)i<α)⇒ N |= φ((f(ai))i<α).

This can be proved by induction on the complexity of the formulas, and we leave

its routine check to the reader.

(2). This can be proved in a similar way; let us only consider the case of the

universal formula to show how the surjectivity of the function f is used. To this

end, we assume that

φ((vi)i<α) = ∀xψ((vi)i<α, x) ∈ Lpe
∞,∞(τ(R,S))

and let ai ∈M, where i < α. We may assume that the lemma holds for ψ. Suppose

M |= φ((ai)i<α). We are going to show that

N |= φ((f(ai))i<α).

To see this, let b ∈ N. As f is surjective, there exists a ∈M such that f(a) = b. Due

to the assumption, we know that M |= ψ((ai)i<α, a). By the induction hypothesis,

N |= ψ((f(ai))i<α, f(a)),

i.e., N |= ψ((f(ai))i<α, b). Since b was arbitrary we have N |= φ((f(ai))i<α). �

Remark 3.11. Note that there is no need for f to preserve ¬ formulas. But if f

is an isomorphism, then it preserves all formulas.

The next lemma shows that under suitable conditions, we can replace cpe-formulas

by simple formulas.

Lemma 3.12. Let τ be either τR or τ(R,S), and suppose µ1 ≥ µ, κ is regular. If

ϕ(x̄) ∈ Lcpe
µ,κ(τ), then we can find as equivalent simple formula in Lµ1,µ1(τ).

We are also interested in definable subsets of (bi)modules.
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Definition 3.13. Let τ be one of τR or τ(R,S). Given a τ -structure M and a

formula φ(x0, · · · , xn−1) in L∞,∞(τ), let

φ(M) =
{
〈a0, · · · , an−1〉 ∈ nM : M |= φ(a0, · · · , an−1)

}
.

Here, by lg(−) we mean the length function.

Lemma 3.14. Let τ be either τR or τ(R,S), and let ϕ(x̄) ∈ Lp
µ,κ(τ). Suppose

z̄` ∈ lg(x̄)M`, for ` = 1, 2 and z̄` = 〈z`i : i < lg(x̄)〉, M = M1⊕M2, and z̄ = 〈zi : i <

lg(x̄)〉 where M |= zi = z1
i + z2

i . Then

M |= ϕ(z̄) ⇔
2∧
`=1

M` |= ϕ(z̄`).

Furthermore, if for ` = 1, 2 and i < lg(x̄), z`i = 0M`
, then M` |= ϕ(z̄`) and z̄ =

0̄lg(z̄).

Proof. The desired claim follows by an easy induction on the complexity of the

formula ϕ(x̄). �

The above lemma implies if ϕ(x) ∈ Lcpe
µ,κ(τ), where τ is τR or τ(R,S) and if

M = M1 ⊕M2, then ϕ(M) = ϕ(M1)⊕ ϕ(M2).

Lemma 3.15. For each bimodule M, the following assertions hold:

(1) If ϕ(x) ∈ Lcpe
∞,∞(τ(R,S)), then ϕ(M) is a subgroup of M.

(2) If ϕ(x) ∈ Lcpe
∞,∞(τR), then ϕ(M) is a right S-submodule, but not neces-

sarily an R-submodule. Furthermore, if R is commutative, then it is an

R-submodule as well.

Proof. This follows by induction on the complexity of ϕ(x). The straightforward

details are leave to the reader. �

Another notion from model theory which is of importance for us is the notion of

omitting types:
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Discussion 3.16. Suppose τ is a countable languages and suppose M is a τ -

structure.

(1) Given A ⊆ M, by an n-type over A we mean a set p(v1, · · · , vn) of for-

mulas, whose free variables are v1, · · · , vn such that every finite p0 ⊆ p is

realized, i.e., there are x1, · · · , xn in M such that for all ϕ ∈ p0, M |=

ϕ(x1, · · · , xn).

(2) A type is complete if it is maximal under inclusion. By the axiom of choice

each type can be extended into a complete type.

(3) The type p is isolated by some formula ψ(v1, · · · , vn) ∈ p if for every ϕ ∈ p,

M |= ∀x1 · · · ∀xn(ψ(x1, · · ·xn)→ ϕ(x1, · · · , xn)).

It is clear that if p is isolated by some formula ψ(v1, · · · , vn) ∈ p, then it is

realized. The omitting types theorem says that the converse is also true.

Lemma 3.17. Let τ be a first order countable vocabulary and let T be a complete

τ -theory. If p is a complete type which is not isolated, then there is a countable

τ -structure M |= T which omits (i.e., does not realize) p.

Definition 3.18. Suppose that M0,M1 and M2 are (bi)modules and gi : M0 →Mi

are (bi)module homomorphisms for i = 1, 2. The amalgamation of M1 and M2

along M0 is M := M1⊕M2

(g1(m),−g2(m):m∈M0) . There are natural maps fi : Mi → M such

that the following diagram is commutative:

M0

6

M1
- M

6

M2
-
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It may be nice to note that the common notation for this is M1 +M0
M2.

Definition 3.19. Let M be an R-module and S be any subring of EndR(M). We

say that S is algebraically closed in EndR(M) if every finite system of equations in

several variables over S which has a solution in EndR(M), also has a solution in S

Let us recall the definition of pure semisimple rings.

Definition 3.20. A ring R is left pure semisimple if every left R-module is pure-

injective.

The next theorem gives several equivalent formulations for the above notion.

Theorem 3.21. (See [33, Theorem 4.5.7]) The following conditions on a ring R

are equivalent:

(a) R is left pure semisimple;

(b) every left R-module is a direct sum of indecomposable modules;

(c) there is a cardinal number κ such that every left R-module is a direct sum

of modules, each of which is of cardinality less than κ;

(d) there is a cardinal number κ such that every left R-module is a pure sub-

module of a direct sum of modules each of cardinality less than κ.

The following result of Shelah gives us a model theoretic criteria for rings which

are not pure semisimple, and plays an important role in this paper.

Theorem 3.22. (Shelah, [36, 8.7]) Let R be a ring which is not left pure semisim-

ple. Then there is a bimodule M and there is a sequence ϕ̄ = 〈ϕn(x) : n < ω〉 such

that:

(a) each ϕn is a conjunctive positive existential formula, and

(b) the sequence 〈ϕn(M) : n < ω〉 is strictly decreasing.
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4. Developing the framework of the construction

In this section we develop some part of the theory that we need for our con-

struction. The main result of this section is Theorem 4.48, which gives, in ZFC, a

semi-nice construction, that plays an essential role in the next sections.

Definition 4.1. Let (R,S) be as Convention 3.2.

(1) Let E(R,S) = E(R,S) be the class of all

e = 〈Nn, xn, gn : n < ω〉

where:

(a) Nn is an (R,S)-bimodule,

(b) xn ∈ Nn,

(c) gn is a bimodule homomorphism from Nn to Nn+1 mapping xn to xn+1.

Given e ∈ E(R,S) we denote it by e = 〈Ne
n, x

e
n, g

e
n : n < ω〉.

(2) We call e ∈ E(R,S) non-trivial if for every n there is no homomorphism

from Ne
n+1 to Ne

n as R-modules mapping xen+1 to xen.

(3) Let e = 〈Nn, xn, gn : n < ω〉 ∈ E(R,S). For each n ≤ m, we define:

gn,m := gn ◦ gn+1 ◦ . . . ◦ gm−1.

We set gn,n := idNn and note that n0 ≤ n1 ≤ n2 implies gn1,n2
◦ gn0,n1

=

gn0,n2 . We denote gn,m by gen,m.

(4) For e ∈ E(R,S) and an infinite U ⊆ ω, let e′ =: e � U , the restriction of e to

U , be defined by

(a) Ne′

` := Ne
m(`),

(b) xe
′

` := xem(`),

(c) ge
′

` := gem(`),m(`+1),

where m(`) is the `–th member of U . Clearly e′ is in E(R,S).

Let us define a special sub-class of E(R,S).
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Definition 4.2. Let Eµ,κ be the class of e ∈ E(R,S) such that for each n < ω, Ne
n,

as a bimodule, is generated by < κ elements freely except satisfying < µ equations.

This means, there are (xi)i<α<κ and atomic formulas tj = 0, for j < β < µ, such

that Ne
n = (

⊕
i<α RxiS)/K, where K is the bimodule generated by 〈tj : j < β〉.

We now define what it means for a sequence of formulas to be adequate with

respect to an element of E(R,S):

Definition 4.3. Let e := 〈Nn, xn, gn : n < ω〉 and ϕ̄ := 〈ϕn : n < ω〉.

(1) The sequence ϕ̄ is called (µ, κ)-adequate with respect to e if the following

conditions satisfied:

(α) ϕn = ϕn(x) is a formula from Lcpe
µ,κ(τR),

(β) ϕn+1(x) ` ϕn(x) (for the class of R-modules)3,

(γ) Nn |= ϕn(xn) & ¬ϕn+1(xn).

Also, we say e is (µ, κ)-adequate with respect to e.

(2) We say e is explicitly (µ, κ)-adequate with respect to e if e is (µ, κ)-adequate

with respect to e and e ∈ Eµ,κ.

(3) For simplicity, κ-adequate means (∞, κ)-adequate with respect to e. Also,

adequate is referred to ℵ0-adequate with respect to e.

(4) We say that ϕ̄ is (µ, κ)-adequate if ϕ̄ is (µ, κ)-adequate with respect to some

e ∈ E(R,S).

(5) We say ϕ̄ is adequate with respect to E ⊆ E(R,S) if it is adequate with respect

to some e ∈ E.

It follows from Lemma 3.10 that any (µ, κ)-adequate e ∈ E(R,S) is non-trivial.

Definition 4.4. Let e ∈ E, n < ω and κ be given. We define

(1) ϕe,κ
n :=

∧{
ϕ(x) : ϕ ∈ Lcpe

∞,κ(τR) and Ne
n |= ϕ(xen)

}
4,

3we can restrict ourselves to those we actually use, i.e. the ones from cl(K).
4This is not a formula being a conjunction on a class, not a set, but when we deal with an

R-module M it is enough to restrict ourselves to Lcpeλ,κ for λ = (||M||<κ)+.
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(2) ψe,κ
n :=

∧{
ψ(x) : ψ ∈ Lcpe

∞,κ(τ(R,S)) and Ne
n |= ψ(xen)

}
,

(3) ϕ̄e,κ := 〈ϕe,κ
n : n < ω〉,

(4) ψ̄e,κ := 〈ψe,κ
n : n < ω〉,

(5) ϕe,κ
ω (x) :=

∧
n<ω

ϕe,κ
n (x),

(6) ψe,κ
ω (x) :=

∧
n<ω

ψe,κ
n (x).

Remark 4.5. In Definition 4.4, we omit the index κ, when it is κ(e) for ψ or

κR(e) for ϕ, where κ(e) and κR(e) are defined in Definition 4.7, see below.

The next lemma shows the relation between different ϕe,κ
n ’s and ψe,κ

n ’s.

Lemma 4.6. For each n ≥ m the following holds:

(1) ϕe,κ
n (x) ` ϕe,κ

m (x),

(2) ψe,κ
n (x) ` ψe,κ

m (x),

(3) ψe,κ
n (x) ` ϕe,κ

n (x).

Proof. The lemma follows easily by applying Lemma 3.10 to gem,n. �

Definition 4.7. (1) For e ∈ E(R,S) we define:

(a) κ(e) be the first infinite cardinal κ such that for each n < ω, the

bimodule Ne
n is generated by a set of < κ elements.

(b) κR(e) be the first infinite cardinal κ such that for each n < ω, the

bimodule Ne
n as an R-module is generated by a set of < κ elements.

(2) For each E ⊆ E(R,S), we let

(a) κ(E) := sup{κ(e) : e ∈ E} and

(b) κ(E)R := sup{κR(e) : e ∈ E}.

We frequently use the following lemma.

Lemma 4.8. (1) Assume N is a bimodule (resp. an R-module) generated by

< κ members freely except satisfying < µ equations and x ∈ N. Then

there is a simple formula ϕ ∈ Lµ,κ(τ(R,S)) (resp. ϕ ∈ Lµ,κ(τR)) such that
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for any bimodule (resp. an R-module) M and y ∈ M, the following are

equivalent:

(a) M |= ϕ(y),

(b) for some homomorphism f from N into M, f(x) = y (if N is an R-

module this means f is an R-homomorphism).

(c) for some N′ extending N and a homomorphism f from N′ into M we

have f(x) = y.

(2) Clause (1) applies if N = Ne
n, x = xen and ϕ = ψe,κ

n , when Ne
n is generated

by < κ members freely except satisfying < µ equations (as a bimodule).

Similarly for ϕ = ϕe,κ
n for R-modules.

Proof. (1). We prove the lemma for the case of bimodules, exactly the same proof

works for R-modules. Suppose N is a bimodule generated by < κ members freely

except satisfying < µ equations and x ∈ N. So it has the form N =
⊕

i<α RxiS/K,

where K is the bimodule generated by 〈tj : j < β〉, where each tj = 0 is an atomic

formula, α < κ and β < µ. Then

• x =
∑
i<d

∑
h<hd

ri,hxisi,h, where d, hd < ω, ri,h ∈ R and si,h ∈ S. We

should remark that for all but finitely many of them we have ri,hxisi,h = 0.

• tj =
∑
i<d

∑
h<hd

rji,hxis
j
i,h, where rji,h ∈ R and sji,h ∈ S. Again, for all

but finitely many of them we have rji,hxis
j
i,h = 0.

Now consider the formula

ϕ(v) = ∃i<αvi
[ ∧
j<β

∑
i<α

∑
h<hd

rji,hvis
j
i,h = 0 ∧ v =

∑
i<α

∑
h<hd

ri,hvisi,h

]
.

It is clearly a simple formula in Lµ,κ(τ(R,S)).

(a)⇒ (b): Now suppose M |= ϕ(y). Thus we can find yi, for i < α, such that in

M , ∑
i<α

∑
h<hd

rji,hyis
j
i,h = 0,
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and

y =
∑
i<α

∑
h<hd

ri,hyisi,h.

Define f : N→M so that for each i < α, f(xi) = yi. Then f is as required.

(b)⇒ (c): This is easy.

(c)⇒ (a): This is easy.

(2). This follows from the fact that ψe,κ
n ` ϕ, because Ne

n |= ϕ(xen). �

The next lemma shows that each non-trivial e ∈ Eµ,κ has a canonical adequate

sequence.

Lemma 4.9. If e ∈ Eµ,κ is non-trivial and µ ≥ κ ≥ ℵ0 then ϕ̄e,κ is (µ, κ)-adequate

with respect to e.

Proof. It is easily seen, by the structure of each Ne
n that ϕe,κ

n is equivalent to a

formula of Lcpe
∞,κ(τR). According to Lemma 4.6 ϕe,κ

n+1 ` ϕe,κ
n . By the definition of

ϕe,κ
n , we have Ne

n |= ϕe,κ
n (xen). It remains to show that Ne

n |= ¬ϕ
e,κ
n+1(xen). Suppose

not. It follows from Lemma 4.8(3) that there is a bimodule homomorphism h :

Ne
n+1 → Ne

n with h(xen+1) = xen, contradicting the non-triviality of e. �

Definition 4.10. A λ-context is a tuple

m := (K,M∗,E,R,S,T) = (Km,Mm
∗ ,E

m,Rm,Sm,Tm)

where

(1) R,S and T are as usual, see Convention 3.2.

(2) K is a set of (R,S)-bimodules.

(3) E is a subset of E∞,λ closed under restrictions (i.e., if e ∈ E and U ⊆ ω is

infinite then e � U ∈ E).

(4) If e ∈ E, then Ne
n ∈ K for each n < ω.

(5) M∗ is a bimodule. If M∗ is omitted we mean the zero bimodule.
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Notation 4.11. Let χ(K) be the minimal cardinal χ ≥ ℵ0 such that every N ∈ K

is generated, as a bimodule, by a set of < χ members. Also, we set

||m|| :=
∑
{‖N‖ : N ∈ K}+ ‖E‖+ ||M∗||||R||+ ||S||+ ℵ0.

Remark 4.12. We omit λ from the λ-context, if it is clear from the context and

then we mean for the minimal such λ.

Convention 4.13. From now on suppose that m = (K,M∗,E,R,S,T) is a context.

Definition 4.14. (1) Given a context m = (K,M∗,E,R,S,T), we set:

i) c`is(K) be the class of bimodules isomorphic to some K ∈ K.

ii) c`κis(K) be the class of bimodules of the form M =
⊕
i<j

Mi, where j < κ

and Mi ∈ c`is(K) for all i < j.

iii) c`(K) = c`ds(K) be the class of bimodules isomorphic to a direct sums

of bimodules from c`is(K). 5

iv) κ(m) = κ(Em).

v) κR(m) = κR(Em).

(2) Following Definition 4.3, let us say that ϕ̄ is adequate for a context m if it

is adequate with respect to Em.

Definition 4.15. By a K-bimodule we mean a bimodule from c`is(K). Also, we

say M1 is a K-direct summand of M2 if M2 = M1 ⊕K for some K ∈ c`ds(K).

Definition 4.16. We say M1 is an almost direct K-summand of M2 with respect to

κ denoted by M1 ≤ads
K,κ M2, provided player II has a winning strategy in the following

game aM1,M2

K,κ of length ω: in the nth move player I chooses a subset An ⊆ M2 of

cardinality < κ, and then player II chooses a sub-bimodule Kn ⊆ M2. Player II

wins iff:

(a) An ⊆M1 +
∑
`≤n

K`,

5 In particular, c`is(c`(K)) = c`(K).
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(b) Kn is in c`κis(K),

(c) M1 +
∑
`<ω

K` = M1 ⊕
∑
`<ω

K`.

We usually write ≤κ or ≤ads
κ instead of ≤ads

K,κ if K is clear. We also may write ≤m,κ

or ≤ads
m,κ, when K = Km.

We now define another order between bimodules and then connect it to the above

defined notion.

Definition 4.17. Let M1 and M2 be two bimodules.

(1) M1 ≤pr
ϕ M2 means that M1 ⊆ M2 and if ψ = ψ(x̄) is a sub-formula of ϕ

and z̄ ∈ lg(x̄)M1 then

M1 |= ψ(z̄) ⇐⇒ M2 |= ψ(z̄).

(2) By M1 ≤qr
ϕ M2 we mean that M1 ⊆ M2 and if ψ = ψ(x̄) is a sub-formula

of ϕ and z̄ ∈ (lg x̄)M1, then

M2 |= ϕ(z̄)⇒M1 |= ψ(z̄).

(3) Assume F is a set of formulas. The notation M1 ≤pr
F M2 (resp. M1 ≤qr

F

M2) means M1 ≤pr
ϕ M2 (resp. M1 ≤qr

ϕ M2) for all ϕ ∈ F . In the special

case ϕ̄ := 〈ϕn : n < ω〉, the property M1 ≤pr
ϕ̄ M2 holds iff M1 ≤pr

ϕn M2 for

each n.

For instance, let ϕ be the following simple formula

ϕ = ϕ(x) = (∃y0, . . . , yi . . .)i<α
∧
j<β

[ajx =
∑
i<α

bj,iyi]

where aj , bj,i ∈ R. Then M1 ≤pr
ϕ M2 means that if for some x ∈ M1 and yi ∈ M2

we have

ajx−
∑
i<α

bj,iyi = 0 ∀j < β,
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then there are y′i ∈M1 such that

ajx−
∑
i<α

bj,iy
′
i = 0 ∀j < β.

Remark 4.18. Note that if ϕ is existential (e.g. a simple formula), then ≤qr
ϕ is

equal to ≤pr
ϕ .

Definition 4.19. We say M1 is m-nice (or K-nice), when some M0 witnesses it

which means the following items are satisfied:

(1) M0 is a bimodule,

(2) M0 ≤K M1,

(3) if 〈(A`,K`) : ` < n〉 is a winning position of player II in the game aM0,M1

K,κ ,

An = ∅ and K ∈ K, then for some Kn ∈ Km we have

(a) Kn ∼= K,

(b) 〈(A`,K`) : ` ≤ n〉 is a winning position of player II in the game.

The next lemma connects the above defined relations to each other.

Lemma 4.20. Let M1 and M2 be two bimodules. The following assertions are

true:

(1) M1 ≤κ M2 iff M1 ≤pr
L∞,κ(τ(R,S))

M2.

(2) If M1 ≤κ M2 and ϕ(x) ∈ Lcpe
∞,κ(τ(R,S)), then ϕ(M1) = M1 ∩ ϕ(M2).

Proof. Clause (2) follows from (1) and the definition of ≤pr, so let us prove (1).

Suppose M1 ≤κ M2. We prove, by induction on the complexity of the formula

ϕ ∈ L∞,κ(τ(R,S)), that M1 ≤pr
ϕ M2.

The only non-trivial case where the assumption M1 ≤κ M2 is used is the case of

existential quantifier6, so let us suppose ϕ(vi)i<α is of the form

∃j<βwj
[
ψ((wj)j<β , (vi)i<α)

]
,

6The case of universal quantifier then follows easily as ∀ ≡ ¬∃¬.
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the claim holds for ψ = ψ((wj)j<β , (vi)i<α) and suppose (xi)i<α ∈ M1. We want

to show that

M1 |= ϕ((xi)i<α) ⇐⇒ M2 |= ϕ((xi)i<α).

As M1 is a submodule of M2, by the induction hypothesis, if M1 |= ϕ((xi)i<α),

then M2 |= ϕ((xi)i<α). Conversely suppose that M2 |= ϕ((xi)i<α). Then we can

find (yj)j<β ∈M2 such that M2 |= ψ((yj)j<β , (xi)i<α).

Now consider the game aM1,M2

K,κ , in which player I plays An = {yj : j < β} at

each step n. At the end, we have bimodules {Kn : n < ω} such that:

• An ⊆M1 +
∑
`≤n

K`,

• Kn is in c`κis(K),

• M1 +
∑
`<ω

K` = M1 ⊕
∑
`<ω

K`.

Set K =
∑
`<ω

K`. It then follows that M1⊕K |= ϕ((xi)i<α). In view of Lemma 3.14,

M1 |= ϕ((xi)i<α).

Conversely, suppose that M1 ≤pr
L∞,κ(τ(R,S))

M2. Let us first state a few simple

facts:

(i) Suppose α < κ and b̄ ∈αM2. Then there exists ā ∈αM1 such that

(M1, ā) ≡L∞,κ(τ(R,S)) (M2, b̄).

To see this, let α < κ and b̄ ∈αM2. Suppose by contradiction that there is

no ā ∈ αM1 such that (M1, ā) ≡L∞,κ(τ(R,S)) (M2, b̄). Thus for each ā ∈ αM1

we can find φā(ν̄) ∈ L∞,κ(τ(R,S)) such that

M1 |= ¬φā(ā) & M2 |= φā(b̄).

Let

φ(ν̄) =
∧
{φā(ν̄) : ā ∈ αM1} ∈ L∞,κ(τ(R,S)).

Then M1 |= ∀ν̄¬φ(ν̄), while M2 |= φ(b̄), a contradiction to our assumption.
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(ii) Suppose ā1 ∈ lg(ā1)M1 and ā2 ∈ lg(ā2)M1 are so that ā1 E ā2. Let b̄1 ∈

lg(ā1)M2 be such that

(M1, ā1) ≡L∞,κ(τ(R,S)) (M2, b̄1).

There is some b̄2 ∈ lg(ā2)M2 such that b̄1 E b̄2 and (M1, ā2) ≡L∞,κ(τ(R,S))

(M2, b̄2).

(iii) Suppose α < κ, ā ∈ αM1, b̄ ∈ αM2 and (M1, ā) ≡L∞,κ(τ(R,S)) (M2, b̄). Let

c̄ = 〈bi − ai : i < α〉 and let K be the submodule of M2 generated by c̄.

Then b̄ ∈M1 + K and M1 + K = M1 ⊕K.

(iv) Suppose 〈K` : ` < ω〉 is an increasing sequence of submodules of M2 such

that for each ` < ω,M1 + K` = M1 ⊕K`. Then

M1 +
∑
`<ω

K` = M1 ⊕
∑
`<ω

K`.

We are now ready to define a winning strategy for the game aM1,M2

K,κ . Fix a well-

ordering <∗ of M2. To start set A−1 = ∅ and b̄−1 = 〈〉. At stage n, suppose player

I has chosen An ⊆M2 of size < κ. We may assume that An ⊇ An−1. Let

ān :=
〈
an(i) : i < lg(ān)

〉
enumerate An in the <∗-order in such a way that An−1 is an initial segment of the

enumeration. By parts (i) and (ii), we choose

b̄n =
〈
bn(i) : i < lg(ān)

〉
∈M2

such that b̄n D b̄n−1 and

(M1, ān) ≡L∞,κ(τ(R,S)) (M2, b̄n).

Let Kn be the submodule of M2 generated by {bn(i) − an(i) : i < lg(ān)}. Now

(iii) and (iv) guarantee that items (a) and (c) of Definition 4.16 are satisfied. This

completes the proof. �

Claim 4.21. Let ϕ be in Lcpe
∞,∞(τ(R,S)). The following holds:
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(1) Assuming ϕ = ϕ(x̄) we can find a simple formula ϕ∗(z̄) ∈ L∞,∞(τ(R,S))

satisfying:

(a) if M1 ≤pr
ϕ∗ M2 and x̄ ∈ M2 then 〈xi + M1 : i < lg(x̄)〉 ∈ ϕ(M2/M1) iff

x̄ ∈ ϕ(M2) + M1.

(b) if ϕ(x̄) ∈ Lcpe
µ,µ(τ(R,S)) and µ is regular, then ϕ∗(z̄) ∈ Lµ,µ(τ(R,S)).

(2) Assume M2 ∈ c`ds(K) and M1 is K-nice. If M1 ⊕M2 = M3, then M1 ≤pr
ϕ

M3.

(3) If 〈Mi : i < δ〉 is increasing, Mi ≤pr
ϕ M for all i < δ and ϕ ∈ L∞,cf(δ)(τ(R,S)),

then
⋃
i<δ

Mi ≤pr
ϕ M and Mj ≤pr

ϕ

⋃
i<δ

Mi for all j < δ.

(4) Assume ϕ is a simple formula of Lκ,κ(τ(R,S)). Then M1 <pr
ϕ M2 iff for

every < κ-generated submodule N ⊆M2 we have M1 ≤pr
ϕ M1 + N.

(5) If M =
⊕
t∈I

Mt and ϕ(x) ∈ Lp∞,∞(τ(R,S)), then ϕ(M) =
⊕
t∈I

ϕ(Mt).

Proof. (1). For simplicity, suppose that ϕ = ϕ(x). By Lemma 3.12, we can assume

the formula ϕ is simple, so let it be of the form

ϕ = ∃i<αyi
∧
j<β

ϕj(ȳ, x)

where each ϕj(ȳ, x) is an atomic formula. But the only atomic relation is equality,

so by moving to one side, without loss of generality ϕj(ȳ, x) is of the form

σj(ȳ, x) = 0

for some term σi. Let z̄ = 〈zj : j < β〉 and

ϕ∗(z̄) = (∃x, ȳ)
[ ∧
j<β

σj(ȳ, x) = zj
]
.

We show that ϕ∗(z̄) is as required. Clause (b) clearly holds. In order to prove

clause (a), take M1 ≤pr
ϕ∗ M2 and x ∈M2. First, assume that x+ M1 ∈ ϕ(M2/M1).

Then

M2/M1 |= “∃ȳ
∧
j<β

σj(ȳ, x+ M1) = 0′′.
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We can find b̄ = (bi)i<α ∈M2 such that M2/M1 |= σj(b̄+ M1, x+ M1) = 0 for all

j < β. 7 By definition, σj(b̄ + M1, x + M1) = cj + M1 for some cj ∈ M1. We set

c̄ := 〈cj : j < β〉. Then M2 |= ϕ∗(c̄). Hence,

M2 |= σj(b̄, x) = cj

for all j < β. We apply our assumption to see M1 |= ϕ∗(c̄), e.g., there are b̄′ =

(b′i)i<α and x′ in M1 such that

M1 |= σj(b̄
′, x′) = cj

for all j < β. Then M2 satisfies the same formulas. In particular,

M2 |= “σj((bi − b′i)i<α, x− x′) = 0′′,

which implies M2 |= ϕ(x− x′). Thus x ∈ ϕ(M2) + M1.

Conversely, suppose that x ∈ ϕ(M2) + M1. Let y ∈ M1 be such that x − y ∈

ϕ(M2). Then M2 |= ϕ(x − y), and consequently there is b̄ = ((bi)i<α) ∈ M2 such

that

M2 |= σj(b̄, x− y) = 0

for all j < β. Set z̄ := 0̄. Then M2 |= ϕ∗(z̄), and hence by our assumption

M1 |= ϕ∗(z̄). It follows that for some b̄′ = (b′i)i<α and x′ in M1 and

M1 |= σj(b̄
′, x′) = 0

for all j < β. Thus, M2 satisfies the same formulas. Therefore,

M2 |= “σj((bi − b′i)i<α, x− y − x′) = 0′′

for all j < β. Since b̄′, y + x′ are in M1, we have

M2/M1 |= “σj(b̄+ M1, x+ M1) = 0′′

for all j < β. This implies M2/M1 |= ϕ(x+ M1). Hence, x+ M1 ∈ ϕ(M2/M1).

7By b̄+ M1 we mean 〈bi + M1 : i < α〉.
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(2). This is in Lemma 3.14.

(3). Let us first show that
⋃
i<δMi ≤pr

ϕ M. To see this, let ψ(x̄) be a subformula

of ϕ and z̄ ∈
⋃
i<δMi. There is i∗ < δ such that z̄ ∈ Mi∗ . Then for all i∗ ≤ i < δ,

Mi |= ψ(z̄) iff M |= ψ(z̄). It follows that

⋃
i<δ

Mi |= ψ(z̄) ⇐⇒ M |= ψ(z̄).

Let j < δ, ψ(x̄) a subformula of ϕ and z̄ ∈ Mj . We conclude from the above

argument that

Mj |= ψ(z̄) ⇐⇒ M |= ψ(z̄) ⇐⇒
⋃
i<δ

Mi |= ψ(z̄).

Thus Mj ≤pr
ϕ

⋃
i<δMi.

(4). It is easily seen that if M1 ≤pr
ϕ M2 then M1 ≤pr

ϕ M1 + N for each < κ-

generated submodule N of M2.

Conversely, suppose that the above condition holds. Let ψ(x̄) be a subformula

of ϕ. Then it is a simple formula as well, thus it is of the form

∃i<αvi
∧
j<β

[σj(x̄, v̄) = 0],

for some terms σj . Let x̄ ∈ M1. It is obvious that if M1 |= ψ(x̄), then M2 |= ψ(x̄).

Now let M2 |= ψ(x̄). Thus we can find b̄ ∈M2 such that

M2 |=
∧
j<β

[σj(x̄, b̄) = 0].

Let N be the submodule generated by b̄. Then M1 + N |=
∧
j<β [σj(x̄, b̄) = 0]. We

combine this along with our assumption to conclude that M1 |= ψ(x̄).

(5). We proceed by induction on the complexity of the formula ϕ (see also

Lemma 3.14). We leave the routine check to the reader. �

Let κ be an infinite cardinal and let m = (K,M∗,E,R,S,T) be a context. Set

Modm,κ := {M : M∗ ≤ads
K,κ M}.

Lemma 4.22. Let m be a context as above and let κ be an infinite cardinal.
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(1) If M1 ≤κ M2, then M1 is a submodule of M2.

(2) ≤κ is a partial order on Modm,κ.

(3) If κ ≤ θ and M ≤θ N then M ≤κ N.

(4) If 〈Mi : i < δ〉 is a ≤κ-increasing and continuous in Modm,κ, then

(a)
⋃
i<δ

Mi ∈ Modm,κ,

(b) For each j < δ,Mj ≤κ
⋃
i<δ

Mi.

(5) If M1,M2,M3 ∈ Modm,κ are such that M1,M2 ≤κ M3 and M1 ⊆M2, then

M1 ≤κ M2.

(6) If M1 ≤κ M2 and A ⊆ M2 has cardinality < κ then for some N ∈ c`κis(K),

we have A ⊆M1 + N = M1 ⊕ N ≤κ M2.

(7) The pair (Modm,κ,≤κ) has the amalgamation property.

(8) There is a cardinal χ such that if M1 ⊆ N are in Modm,κ, then there is

M2 ∈ Modm,κ such that M1 ⊆M2 ≤κ N and |M2| ≤ |M1|+ χ.

Proof. The lemma follows easily from Lemmas 4.20 and 4.21. �

Definition 4.23. We say the bimodule N is free as an S–module provided the

following two items hold:

(a) as an R-module, it can be written as
⊕
i<α

Ni where each Ni is an R-submodule

of N.

(b) If M is a bimodule, i < α and g : Ni −→ M is an R-homomorphism, then

there is a unique bimodule homomorphism h : N −→M extending g:

N
∃!h

  A
AA

AA
AA

A

Ni

⊆

OO

g
// M

The next lemma can be proved as in Lemma 4.8.

Lemma 4.24. Let e ∈ E.
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(1) There exists a formula ϕe
n ∈ Lcpe∞,∞(τR) such that for an R-module M,

M |= ϕe
n(x) iff for some M′ with M ≤ℵ0 M′, M′ |= ϕe,∞

n (x); equivalently

there is an R-module homomorphism from Ne
n into M′ mapping xen to x.

(2) There exists ψe
n ∈ L∞,∞(τR) such that for a bimodule M, M |= ψe

n(x) iff

for some M′ with M ≤ℵ0 M′, M′ |= ψe,∞
n (x).

The above lemma suggests the following:

Definition 4.25. By ϕe
ω(x) we mean

∧
n<ω

ϕe
n(x) and ϕe := 〈ϕe

n : n < ω〉. Similarly,

we define ψe
ω(x) :=

∧
n<ω

ψe
n(x) and let ψ

e
:= 〈ψe

n : n < ω〉.

Definition 4.26. (1) A bimodule M is called E-closed if for every e ∈ E, n < ω

and every x ∈M we have

M |= ψe
n(x) ⇐⇒ M |= ψe,∞

n (x).

(2) We say that e is non-trivial for m if for every n < ω there exists M ∈ Km

such that Mm
∗ ⊕M |= (∃x)[ϕe

n(x) ∧ ¬ϕe
ω(x)].

Fact 4.27. It is easily seen that if e ∈ Em is adequate and each Ne
n is finitely

generated as an R-module, then e is non-trivial for m.

Convention 4.28. From now on we fix a context m = (K,M∗,E,R,S,T) which

is non-trivial which means:

(a) K 6= ∅,

(b) E 6= ∅,

(c) every e ∈ E∞,κ is non-trivial for m.

Definition 4.29. Let e ∈ E and ϕ̄ is adequate with respect to e.

(1) Suppose M is a bimodule and h1,h2 : Ne
n → M are bimodule homomor-

phisms. We define

Le,ϕ̄,h1,h2
n (M) := {z ∈ ϕn(Ne

n) : h1(z) = h2(z) mod ϕω(M)}.
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For simplicity, and if there is no danger of confusion, we set

Le,ϕ̄,h1,h2
n := Le,ϕ̄,h1,h2

n (M).

If ϕ̄ = ϕ̄e,κ we may write Le,κ,h`,h2
n and if κ = ℵ0 we may omit it.

(2) Let Σ be the family of all pairs (h1,h2) such that h1,h2 : Ne
n → M that

are bimodule homomorphisms, M ∈ K ∪ {M∗} and h1(xen) = h2(xen). We

define

Le
n[m] :=

⋂
(h1,h2)∈Σ

Le,h1,h2
n

We may write Le
n := Le

n[m], when m is clear from the context.

(3) Le
n[K], is defined similarly but we only require M ∈ K.

Lemma 4.30. Let e ∈ E. Then, there are bimodules Pe, Pe
n and Kn, embeddings

he
n : Ne

n −→ Pe, an element x = xe, an embedding f e : Ne
0 −→ Pe and xn := xe,n ∈

Pe furnished with the following four properties:

(a) Rang(he
n) ∩

∑
m 6=n Rang(he

m) = {0},

(b) For each Kn we have:

Pe =
(∑
`<n

Rang(he
`)
)

+ Kn =
⊕

`<n
Rang(he

`)⊕Kn,

and Kn is a direct sum of copies of Ne
m’s.

(c)
∑
n<ω Rang(he

n) is not a direct summand of Pe; moreover, for some em-

beddings f en : Ne
n −→ Pe satisfying:

(∗)1 xn =
∑
`<n he

`

(
xe`
)
∈
∑
`<n Rang(he`),

(∗)2 x− xn ∈ ϕe
n(Pe),

(∗)3 f e = f e0 ,

(∗)4 f e
(
xe0
)

= x,

(∗)5 x /∈
∑
n<ω Rang(he

n) + ϕe
ω(Pe).

(d) Pe is the direct sum of the copies Rang(f en) of Ne
n.
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Proof. Set Pe :=
⊕
n<ω

Ne
n and denote the natural embedding from Ne

n into Pe by f en.

In particular,

Pe =
⊕
n<ω

Rang(f en),

i.e., (d) holds. We define he
n : Ne

n −→ M, for all n < ω, as follows, where gen,n+1 is

defined as in Definition 4.1(3):

he
n(y) = f en(y)− f en+1(gen,n+1(y)) for every y ∈ Ne

n.

As Pe = Rang(f en) ⊕
⊕̀
6=n

Rang(f e` ), we observe that he
n is a bimodule embedding.

Set also

Pe
n :=

∑
`<n

Rang(he
`).

The next claim can be proved easily.

Claim 4.31. Adopt the above notation. Then, for each n,

Rang(f en)⊕ Rang(f en+1) = Rang(he
n)⊕ Rang(f en+1).

In particular, Pe =
⊕
`<n

Rang(he
n)⊕

⊕
`≥n

Rang(f e` ) for all n.

We set Kn :=
⊕
`≥n

Rang(f e` ). In view of Claim 4.31, the items (a), (b) and (d) of

Lemma 4.30 are hold. Next we shall show that x := f e0((xe0)) and xn :=
∑
`<n

he
`(x

e
`)

are as required in Lemma 4.30(c). This implies the first statement of (∗)1 in item

(c). Trivially (∗)3 and (∗)4 are true. Now,

x = f e0(xe0)

= he
0(xe0) + f e1(ge0,1(xe0))

= he
0(xe0) + f e1(xe1)

= he
0(xe0) + he

1(xe1) + f e2(xe2).

By induction on n we have

x =
∑
`<n

he
`(x

e
`) + f en(xen) = xn + f en(xen).
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Clearly, xn ∈
⊕

`<n+1

Rang(he
`) ⊆

⊕
`<ω

Rang(he
`) and by the choice of f en the second

term is in ϕe
n(Pe), so (∗)1 + (∗)2 of clause (c) holds. We shall now show that

x /∈
∑
`<ω

Rang(he
`) + ϕe

ω(Pe), i.e., (∗)5 holds.

Suppose by contradiction that there is an n ≥ 1 such that x ∈ y+
∑
`<n

Rang(he
`),

where y ∈ ϕe
ω(Pe).

We now define a bimodule endomorphism fn ∈ End(Pe). As Pe =
⊕
`<ω

Rang(f e` ),

it is clearly enough to define each fn � Rang(f e` ), for n ≥ 1, separately. Recall that

f e` is one-to-one. Let z ∈ Ne
`. We define

fn(f e` (z)) =

 f en(ge`,n(z)) if ` ≤ n,

0 otherwise

Now, we bring the following claim:

Claim 4.32. 1) If ` 6= n, then fn � Rang(he
`) is identically zero.

2) If ` = n, then fn(x) = f en(xen).

Proof. 1): For ` > n this is trivial, so suppose that ` < n. Let z ∈ Ne
`. Then

he
`(z) = f e` (z)− f e`+1(ge`,`+1(z)). So,

fn(he
`(z)) = fn

(
f e` (z)− f e`+1(ge`,`+1(z))

)
= fn(f e` (z))− fn(f e`+1(ge`,`+1(z)))

= f en(ge`,n(z))− f en(ge`,`+1(ge`+1,n(z)))

= f en(ge`,n(z))− f en(ge`,n(z))

= 0.

The third equation holds because of clause (e) of Lemma 4.30.

2): It is enough to recall fn(x) = fn(f e0(xe0)) = f en(ge0,n(f e0(xe0)) = f en(xen). �

Since xen /∈ ϕω(Ne
n), we have fn(x) = f en(xen) 6= 0. Indeed, we have

xen /∈ ϕe
ω(Rang(f en)) = ϕe

ω(Pe) ∩ Rang(f en).
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But x − y ∈
∑
`<n

Rang(he
`) and fn�Rang(hen) is zero, so fn(x − y) = 0. Hence

fn(x) = fn(y). However fn(x) /∈ ϕe
ω(Pe). Thus, fn(y) /∈ ϕe

ω(Pe). Recall that

y ∈ ϕe
ω(Pe). Therefore, fn(y) ∈ ϕe

ω(Pe). This contradiction completes the proof of

Lemma 4.30. �

Lemma 4.33. (1) Let x ∈ M1, e ∈ E and ϕ ∈ {ϕ̃e
α, ψ̃

e
α : α ≤ ω}. If M1 ≤ℵ0

M2, then

M1 |= ϕ(x) ⇐⇒ M2 |= ϕ(x).

(2) If M∗ ≤ℵ0 M1 and E′ ⊆ E, then there is an M2 with the following properties:

(a) M1 ≤ℵ0 M2,

(b) ‖M2‖ ≤ ‖M1‖+ ‖m‖+ |E′|,

(c) if x ∈M1, n < ω and e ∈ E′ then

M2 |= ϕe,∞
n (x) ⇐⇒ M1 |= ϕe

n[x],

(d) M2 is the free sum of {M2,i : i < i∗} ∪ {M1} where each M2,i isomor-

phic to some member of K,

(e) For each N ∈ K, there are ||M2|| many bimodules from {M2,i : i < i∗}

each of them being isomorphic to N.

Proof. Clause (1) can be proved easily. To prove (2), let κ := |M1‖ + ‖m‖ + |E′|

and set

M2 := M1 ⊕
⊕
N∈K

⊕
i<κ

MN
i ,

where each MN
i is isomorphic to N. It is easily seen that M2 is as required. �

Notation 4.34. Sκℵ0 := {α < κ : cf(α) = ℵ0}.

We now introduce the notion of (semi) nice construction. This concept plays an

important role for the proof of our main results.

Definition 4.35. Let us first fix the following quadric (λ,m, S, γ̄∗):
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(1) Let m = (K,M∗,E,R,S,T) be a context.

(2) Let λ ≥ κ = cf(κ) > κ(E). Also, λ = λκ and for all α < λ, |α|ℵ0 < λ.

(3) Let γ̄∗ = 〈γ∗α : α ≤ κ〉 be increasing and continuous.

(4) Let S ⊆ Sκℵ0 be stationary so that Sκℵ0 \ S is stationary as well.

Let also 〈eα : α < |E|〉 be a fixed enumeration of E and

rep(K) :=
〈
Nβ : β < |K/ ∼= |

〉

be an enumeration of K up to isomorphism.

By a weakly semi-nice construction A with respect to (λ,m, S, γ̄∗) we mean a

sequence M̄ := 〈Mα : α ≤ κ〉 together with the other objects mentioned below

satisfying the following conditions

(A) Mα is a bimodule whose universe is the ordinal γ∗α for α ≤ κ.

(B) α < β ⇒ Mα ⊆Mβ.

(C) if δ ≤ κ is a limit ordinal, then Mδ =
⋃
α<δ

Mα.

(D) M0 = M∗.

(E) for every α ∈ κ \ S, Mα+1 = Mα ⊕
⊕
t∈Jα

Nαt where

(a) |Jα| ≤ λ,

(b) Jα ∩ (
⋃
β<α

Jβ) = ∅,

(c) cf(γ∗α+1) < λ⇔ |Jα| < λ,

(d) for every t ∈ Jα there is β < |K/ ∼= | such that Nαt ∼= Nβ, i.e., every

Nαt is isomorphic to some member of K,

(e) for every β < |K/ ∼= | there are ||Mα||-many t ∈ Jα such that Nαt ∼= Nβ.

By the assumption (b), for each t ∈
⋃
β≤α

Jβ there is a unique β ≤ α such

that t ∈ Jβ; so we may replace Nβt by Nt. Also given t ∈ Jα, there is a

unique Nso
t ∈ rep(K) such that Nso

t
∼= Nαt . Also, we use the notations ht

and hα,t : Nso
t

∼=−→ Nαt for the mentioned isomorphism.
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(F) for δ ∈ S, either the demand in clause8 (E) holds or else there are γ∗∗δ < δ

and

〈(es,Ps, ᾱs, t̄s, ḡs, hs, qs) : s ∈ Jδ〉 = 〈eδs,Pδs, ᾱδs, t̄δs, ḡδs , hδs, qδs) : s ∈ Jδ〉

such that Jδ ∩ (
⋃
α<δ Jα) = ∅ and

(a) es ∈ E and in fact es ∈ {eβ : β < γ∗∗δ and β < |E|},

(b) ᾱs = 〈αs,n : n < ω〉,

(c) t̄ = 〈ts,n : n < ω〉,

(d) 〈αs,n : n < ω〉 is an increasing sequence of ordinals bigger than γ∗∗δ

such that αs,n /∈ S,

(e) δ = sup{αs,n : n < ω},

(f) ts,n ∈ Jαs,n ,

(g) Nsots,n = Nes
n ,

(h) if s1 6= s2 are in Jδ then the sets

{ts1,n : n < ω}, {ts2,n : n < ω}

are tree-like, i.e.,

• {ts1,n : n < ω} ∩ {ts2,n : n < ω} is finite,

• if ts1,n1
= ts2,n2

then n1 = n2 and
∧

n<n1

ts1,n = ts2,n,

(i) ḡs = 〈gs,n : n < ω〉, where each gs,n is a (bimodule) homomorphism

from Nes
n into Mγ∗∗

δ
,

(j) for s ∈ Jδ, hs is a bimodule homomorphism from Pes9 onto Pδs, where

Pδs is a sub-bimodule of Mδ+1,

(k) the following diagram commutes for n < ω, s ∈ Jδ and e = es (where

Pe,he
n are from Lemma 4.30 and the hts,n are from clause (E)):

8 we can ignore this first possibility as we can just shrink S if the result is stationary.

9where Pes is as in Lemma 4.30.
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(hts,n + gδs,n)

Ne
n

6

Mδ ∩ Pδs
-

id

Pδs
6

Pe

he
n

hδs

-

(l) for s ∈ Jδ we have

(a) Pδs ⊆Mδ+1,

(b) Mδ+1 is generated by Mδ ∪
⋃
s∈Jδ

Pδs,

(c) Pδs, 〈Mδ ∪
⋃
s′ 6=s

Pδs′〉Mδ+1
are amalgamated freely over

∑
n<ω

Rang(hδs ◦ hes
n ),

(m) for s ∈ Jδ the type qs with the free variable y has the form

{ϕe
n(y − zs,n) : n < ω},

where e ∈ E and zs,n ∈Mδ,

(n) qs is omitted by Mα for α ∈ [δ, κ], i.e. there is no y ∈ Mα such that

for all n < ω, Mα |= ϕe
n(y − zs,n).

In abuse of notation we sometimes use 〈Mα : α ≤ κ〉 as being A, we of course

may write MAα , JAα etc. and even κ = κA, γα = γAα , λ = λA. We now define various

refinements of weakly semi-nice construction:

Definition 4.36. We adopt the notation of Definition 4.35.

(1) (a) By a weakly semi-nice construction with respect to (λ,m, S, κ) we mean

a weakly semi-nice construction with respect to (λ,m, S, γ̄∗), where one

of the following occurs:
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• κ = cf(λ), (∀α < κ)(γ∗α < λ) and if α < β < κ then

γ∗α+1 − γ∗α ≤ γ∗β+1 − γ∗β ,

• κ 6= cf(λ) and (∀α < λ) we have γ∗α + λ ≤ γ∗α+1 < (λℵ0)+.

(b) if we omit κ, i.e., write (λ,m, S) we mean κ = cf(λ).

(2) We omit “semi” from “weakly semi-nice construction” if whenever δ ∈ S

and s1, s2 ∈ Jδ then ḡδs1 = ḡδs2 and es1 = es2 .

(3) We omit “weakly” from “weakly semi-nice construction” if we add the fol-

lowing two properties (G)1 and (G)2:

(G)1 if f is an endomorphism of Mκ as an R-module, e ∈ Em, γ < κ and

gn : Ne
n → Mγ is a bimodule homomorphism for each n = 1, 2, . . .,

then there are y ∈ Mκ, z ∈ Pe and {zn,i,` : n, ` < ω, i < 2} with

zn,i,` ∈ Dom(g`) = Ne
` such that for each n we have

zn,i,` = 0 ∀`� 0.

Also, for all large enough n, we have:

(a) z ∈
∑
`<ω

he
`(zn,1,` − zn,0,`) + ϕe

n(Pe), and

(b)
∑
`<n

f(g`(x
e
`)) ∈ y +

∑
`<ω

g`(zn,1,`) + ϕe
n(Mκ),

(G)2 if e ∈ Em and for n < ω and α ∈ κ r S, hα,n is an embedding of Ne
n

into Mκ such that

Mα + Rang(hα,n) = Mα ⊕ Rang(hα,n) ≤ℵ0 Mκ,

then there are an embedding h of Pe into Mκ and ordinals αn ∈ κr S

for n = 1, 2, . . . such that hαn,n = h ◦ he
n:

Ne
n

hαn,n

��

he
n

~~}}
}}

}}
}}

Pe

h

// Mκ

for each such n.
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(4) We say M̄ = 〈Mα : α ≤ κ〉 is strongly semi-nice construction with respect

to (λ,m, S, κ) if f is an R-endomorphism of Mκ and e ∈ Em, then there are

n(∗) < ω,α < λ and z ∈ Ne
n(∗) such that for every bimodule homomorphism

h : Ne
n(∗) →Mκ,

f(h(xen))− h(z) ∈Mα + ϕe
ω(Mκ).

(5) We say M is weakly semi-nice (resp. semi-nice) with respect to (λ, S,m, κ)

if for some weakly semi-nice (resp. semi-nice) construction M̄ = 〈Mα : α ≤

κ〉 with respect to (λ, S,m, κ) we have M = Mκ. If we omit S we mean for

some S ⊆ Sκℵ0 , similarly for λ and κ.

Lemma 4.37. Let 〈Mα : α ≤ κ〉 be a semi-nice construction with respect to

(λ,m, S, γ̄∗) and κ(Em) = ℵ0. The following assertions are valid:

(1) If α /∈ S and α ≤ β ≤ κ, then Mα ≤ℵ0 Mβ, i.e., Mα is an almost direct

K-summand of M with respect to ℵ0.

(2) If α ≤ β ≤ κ and n < ω then ϕe
n(Mα) = Mα ∩ ϕe

n(Mβ).

(3) Assume e ∈ Em, δ ∈ S and clause (F) of Definition 4.35 holds for δ.

Suppose s0, . . . , sk(∗)−1 are distinct members of Jδ. Then

(a) for each n, the set ϕe
n

(
〈Mδ ∪

⋃
{Pe

sk
: k < k(∗)i}〉Mδ+1

)
is equal to

〈
Mδ ∪

⋃
{Pe

sk
: k < k(∗)}

〉
Mδ+1

∩ ϕe
n(Mκ).

(b) Suppose z` ∈ Pe for ` < n, z ∈ Mδ, and z +
∑
{hδsk(zk) : k < k(∗)} ∈

ϕn(Mδ+1). Then, there is

z′k ∈
∑
{Rang(he`) : ` < ω}

equipped with the following two properties:

(b.1) : zk − z′k ∈ ϕn(Pe) and

(b.2) : z +
∑
{hδsk(z′k) : k < k(∗)} ∈ ϕn(Mδ+1).

(c) 〈Mδ ∪ {Pe
sk

: k < k(∗)}〉Mδ+1
≤pr
ϕe
n
Mδ+1.
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(d) ϕe
n(Mδ+1) = ϕe

n(Mδ) +
∑
{ϕe

n(Pe
s) : s ∈ Jδ}.

Proof. (1). We proceed by induction on β ≥ α. The straightforward details leave

to reader.

(2). If α /∈ S, then the conclusion follows from (1) and Lemma 4.20. Now

suppose that α ∈ S. By Definition 4.35(F), the result holds if β = α+ 1. But then

for any β > α (and since α+ 1 /∈ S), we have

Mα ∩ ϕe
n(Mβ) = Mα ∩ (ϕe

n(Mβ) ∩Mα+1) = ϕe
n(Mα+1) ∩Mα = ϕe

n(Mα).

(3). Items (a), (c) and (d) can be proved easily by Definition 4.35(F). Let us prove

(b). To this end, take z` ∈ Pe for ` < k(∗), z ∈Mδ, and

z +
∑
{hδsk(zk) : k < k(∗)} ∈ ϕn(Mδ+1).

In the light of (c) we observe that

z +
∑
{hδsk(zk) : k < k(∗)} ∈ ϕe

n(〈Mδ ∪ {Pe
sk

: k < k(∗)}〉Mδ+1
).

Let k < k(∗). We now apply the items (a), (c) and (d) to find y ∈ ϕe
n(Mδ) and

yk ∈ ϕe
n(Pe

sk
) such that

z +
∑
{hδsk(zk) : k < k(∗)} = y +

∑
{yk : k < k(∗)}.

Since ϕe
n(Pe

sk
) is the image of ϕe

n(Pe) under hδsk , we have yk = hδsk(xk) for some

xk ∈ ϕe
n(Pe). Then

∑
{hδsk(zk − xk) : k < k(∗)} = y − z ∈ ϕe

n(Mδ).

As s0, · · · , sk(∗)−1 are chosen distinct, we deduce that

hδsk(zk − xk) ∈ Rang(hδsk) ∩ ϕe
n(Mδ) = ϕe

n(Rang(hδsk)),

where k < k(∗). Hence, zk − xk ∈ ϕe
n(Pe).
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Let h < ω be such that for each k < k(∗),

xk ∈ ϕe
n

(⊕̀
≤h

(Rang(f en))

)
=
⊕̀
≤h
ϕe
n(Rang(f e` ))

=
⊕̀
<h

ϕe
n(Rang(he

`))⊕ ϕe
n(Rang(f eh)).

Thus, for some z′k ∈
⊕̀
<h

ϕe
n(Rang(he

`)), we have

xk − z′k ∈ ϕe
n(Rang(f eh)) ⊆ ϕe

n(Pe).

It then follows that

zk − z′k = (zk − xk) + (xk − z′k) ∈ ϕe
n(Pe) + ϕe

n(Pe) = ϕe
n(Pe).

We now show that w := z +
∑
{hδsk(z′k) : k < k(∗)} ∈ ϕn(Mδ+1). Indeed,

w = z +
∑
{hδsk(z′k − zk) : k < k(∗)}+

∑
{hδsk(zk) : k < k(∗)}

= (z +
∑
{hδsk(zk) : k < k(∗)}) +

∑
{hδsk(z′k − zk) : k < k(∗)}

∈ ϕn(Mδ+1) +
∑
{ϕe

n(Pδsk) : k < k(∗)}

= ϕn(Mδ+1).

This completes the proof of (b) and hence of the lemma. �

The main result of this section is that under suitable assumptions on (λ,m, S, γ̄∗),

there is, in ZFC, a semi-nice construction for it. Before, we state and prove our

result, let us show that under extra set theoretic assumptions we can get a stronger

result.

Definition 4.38. Suppose λ = cf(λ) > |R|+ |S|+ ℵ0, S ⊆ Sλℵ0 is stationary such

that Sλℵ0 \ S is stationary as well. Then M̄ = 〈Mα : α ≤ λ〉 is called very nicely

constructed with respect to (λ,m, S) if the following properties are satisfied:

(1) Clauses (A)-(E) of Definition 4.35 holds.

(2) Each Jα is singleton.
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(3) For each N ∈ K, for stationary many α ∈ λ \ S, N appears as one of the

summands of Mα+1.

(4) Replace clause (F) of Definition 4.35 by the following modification:

For δ ∈ S, Mδ+1 is defined either as in (E), or else there are an infinite

U ⊆ ω and the sequences 〈αn : n < ω〉 and 〈βm(αn) : m ∈ U〉 and 〈hαn,n :

n ∈ U〉 such that the following items (a), . . . , (g) are hold:

(a) αn ∈ λ \ S.

(b) 〈αn : n < ω〉 is increasing and cofinal in δ.

(c) eδ = e.

(d) for each n < ω and m ∈ U , αn < βm(αn) < αn+1 is in λ \ S.

(e) for n ∈ U , hαn,n : Ne
n →Mβn(αn) is a bimodule homomorphism and

Mαn + Rang(hαn,n) = Mαn ⊕ Rang(hαn,n) ≤ℵ0 Mβm(αn).

(f) Set PU :=
⊕

n∈U Rang(f en) and PU,n :=
∑

`∈U∩n
Rang(he

`). Recall from

Lemma 4.30 that there are bimodule homomorphisms he
n : Ne

n → Pe

and f e : Ne
0 → Pe. We define N∗δ :=

∑
n∈U

hαn,n(Nn). Then Pe is iso-

morphic to PU by an isomorphism hδ such that the following diagram

commutes:

he
m

PU
?

Nn -
hαn,n

hαn,n(Nn)

?

Pe

hδ

id

�

where the notation n = i(m) stands for the m-th member of U .

(g) Pe
n = h′′δ (PU,n). So, taking intersection inside Mδ+1 gives us Pe∩Mδ =

N∗δ .
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Discussion 4.39. Recall that for a stationary set S ⊆ λ, Jensen’s diamond ♦λ(S)

asserts the existence of a sequence 〈Sα : α ∈ S〉 such that for every X ⊆ λ the set

{α ∈ S : X ∩ α = Sα}

is stationary. It is easily seen that ♦λ(S) implies 2<λ = λ. One the one hand, due

to a well-known theorem of Jensen, ♦λ(S) holds in Gödel’s constructible universe

L for all uncountable regular cardinals λ and all stationary sets S ⊆ λ. On the

other hand, if 2<λ is forced to be above λ, then ♦λ(S) fails for all stationary sets

S ⊆ λ.

The next result of Shelah shows that under diamond principle, we can get very

nicely 〈Mα : α ≤ λ〉.

Lemma 4.40. Suppose m is a non-trivial context, λ = cf(λ) > |R|+ |S|+ κ(m) +

||m||, S ⊆ Sλℵ0 is a stationary non-reflecting10 subset of λ and ♦λ(S) holds. Then

there is a very nicely construction with respect to (λ,m, S) such that

(1) (λ,m, S) is strongly very nice.

(2) If cf(α) ∈ κrS and α < β ≤ λ, then Mα is a K- directed summand of Mβ.

Proof. See [46, Section 2]. �

We would like to prove a similar result in ZFC, thus we have to avoid the use

of diamond in the above lemma. To this end, we use Shelah’s Black Box. This

leads us to get a weaker conclusion than Lemma 4.40, but as we will see later, it is

sufficient to prove Theorem 1.1.

Notation 4.41. For the rest of this section we use the following:

1) λ > κ be infinite cardinals.

10S is non-reflecting if for all limit ordinals ξ < λ of uncountable cofinality, S ∩ ξ is non-

stationary.
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2) H<θ(X) be the least set Y such that Y ⊇ X and if y ⊆ Y and |y| < θ,then

y ∈ Y.

3) 〈τn : n < ω〉 be an increasing sequence of vocabularies, each of size ≤ κ

such that for each n < ω, there exists some unary predicate Pn in τn+1 \τn.

Definition 4.42. For n < ω let Fn be the family of sets of the form

{(N`, f`) : ` ≤ n}

satisfying the following conditions:

(a) f` : κ≤` → λ≤` is a tree embedding, i.e.,

(1) for each η ∈ κ≤`, η and f`(η) have the same length,

(2) for η C ν in κ≤`, f`(η)C f`(ν),

(3) f` is one-to-one,

(b) for `+ 1 ≤ n, f`+1 extends f`,

(c) for some τ ′` ⊆ τ`, N` is a τ ′`-structure of size ≤ κ and the universe of N`,

denoted by N`, is a subset of H<κ+(λ),

(d) τ ′`+1 ∩ τ` = τ ′` and N`+1 � τ ′` extends N`,

(e) if Pm ∈ τ ′m+1, then PN`m = N`,

(f) if x, y ∈ N`, then {x, y} ∈ N` and ∅ ∈ N`,

(g) Rang(f`) ⊆ N`.

Definition 4.43. Let 〈Fn : n < ω〉 be as in Definition 4.42. Then Fω is the family

consisting of all pairs (N , f) such that for some sequence 〈(N`, f`) : ` < ω〉, we

have

(a) for each n < ω, {(N`, f`) : ` ≤ n} belongs to Fn,

(b) f =
⋃
`<ω

f` and N =
⋃
`<ω

N`.

We may note that if for each m < ω,Pm ∈ τ ′m+1, then for each (N , f) ∈ Fω,

there is a unique sequence 〈(N`, f`) : ` < ω〉 witnessing this.
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Definition 4.44. Let (N , f) ∈ Fω. A branch of f is any η ∈ λω such that for each

n < ω, η � n ∈ Rang(f). We use lim(f) for the set of all branches of f .

Given W ⊆ Fω, we define two games aW and a′W as follows.

Definition 4.45. Suppose W ⊆ Fω.

(1) The game aW of length ω is defined as follows. In the nth move, player I

chooses Nn such that {(N`, f`) : ` ≤ n} ∈ Fn (noting that f0 is determined),

and player II chooses a tree embedding fn : κ≤n → λ≤n extending
⋃
`<n

f`

such that Rang(fn) \ (
⋃
`<n

Rang(f`)) is disjoint to
⋃
`<n

N`. Player II wins if

(
⋃
`<ω

N`,
⋃
`<ω

f`) ∈W.

(2) The game a′W of length ω is defined as follows. In the zero move, player

I chooses k < ω, {(N`, f`) : ` ≤ k} ∈ Fk, and X0 ⊆ λ<ω of size less

than λ. For n > 0, in the nth move, player I chooses Nk+n and Xn such

that {(N`, f`) : ` ≤ k + n} ∈ Fk+n and Xn ⊆ λ<ω is of size less than λ.

Then player II chooses a tree embedding fk+n : κ≤k+n → λ≤k+n extending⋃
`<k+n

f` such that Rang(fk+n) \ (
⋃

`<k+n

Rang(f`)) is disjoint to
⋃
`<n

N` ∪⋃
`<n

X`. Player II wins if (
⋃
`<ω

N`,
⋃
`<ω

f`) ∈W.

Definition 4.46. Suppose W ⊆ Fω. Recall that

(1) W is called a barrier if player I does not win aW or even a′W .

(2) W is called a strong barrier if player II wins aW and even a′W .

(3) W is called disjoint if for distinct (N 1, f1), (N 2, f2) in W , f1 and f2 have

no common branch.

We are now ready to state the version of Shelah’s black box theorem that is needed

in this paper.

Lemma 4.47 (The Black Box Theorem). Suppose λ > κ are infinite cardinals,

cf(λ) > ℵ0, λ
ℵ0 = λκ and S ⊆ Sλℵ0 is stationary. Then there is a sequence

W = {(Nα, fα) : α < α∗} ⊆ Fω
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and a non-decreasing function

ζ : α∗ → S

such that the following properties are satisfied:

(1) W is a disjoint strong barrier,

(2) every branch of fα is an increasing sequence converging to ζ(α) ∈ S,

(3) each Nα is transitive,

(4) if ζ(β) = ζ(α), β + κℵ0 ≤ α < α∗ and η is a branch of fα, then for some

k < ω, η � k /∈ N β ,

(5) if λ = λκ, we can also demand that if η is a branch of fα and η � k ∈ N β

for all k < ω, then Nα ⊆ N β, and even for all n < ω,Nα
n ∈ N β .

Proof. This is in [44, 2.8]. �

We now state and prove the main result of this section.

Theorem 4.48. Assume m is a non-trivial context. Suppose λ > ||m|| is such that

cf(λ) ≥ ℵ1 + κ(m), for µ < λ, µℵ0 < λ, κ = cf(λ) > κ(m) and S ⊆ Sκℵ0 is such that

S and Sκℵ0 \ S are stationary in κ. Then

(i) There is a semi-nice construction with respect to (λ,m, S, κ).

(ii) If in addition λ is regular, then there is a nice construction with respect to

(λ,m, S, κ).

(iii) In part (i) if we omit the assumption cf(λ) = κ, and let γ̄∗ = 〈γ∗α : α ≤ κ〉

be such that γ∗0 = ||M∗|| and for all α < κ γ∗1+α = γ∗0 + λ ·α. Then there is

a semi-nice construction with respect to (λ,m, S, γ̄∗).

(iv) In part (iii) if κ = λ, then there is a nice construction with respect to

(λ,m, S, γ̄∗).

Proof. (i) We start by fixing some notation and facts:

(i1) Without loss of generality for e ∈ E and n < ω, the universe of Ne
n is a

cardinal.
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(i2) As cf(λ) = κ, let γ̄ = 〈γ0
α : α < κ〉 be an increasing and continuous sequence

cofinal in λ.

(i3) Let γ̄∗ = 〈γ∗α : α ≤ κ〉 be an increasing and continuous sequence of ordinals

with limit λ such that γ∗0 > ||m|| and for each α < κ, γ∗α+1 − γ∗α is > 0 and

divisible by ||m||ℵ0 + γ∗α . We further assume that for each α < κ, γ∗α ≥ γα.

(i4) Let 〈N∗α : α < |K|〉 be an enumeration of elements of K.

Set

S̄ := {γ∗α : α ∈ S}.

Then S̄ is a stationary subset of λ. For each n < ω, let τn be the following countable

vocabulary

τn := {∈, F,G, P0, · · · , Pn−1, c0, c1, · · · , ci, · · · },

where F,G are unary function symbols, P0, · · · , Pn−1 are unary predicate symbols

and ci’s, for i < ω are constant symbols. We now apply the black box theorem (see

Lemma 4.47) to get a sequence

W = {(Nα, fα) : α < α∗} ⊆ Fω

and a non-decreasing function

ζ : α∗ → S̄.

By induction on ε ≤ κ we will construct Aε which is going to be a semi-nice

construction up to ε in the following sense:

(a) Aε consists of

(a-1) 〈Mξ : ξ ≤ ε〉,

(a-2) 〈Nt, ht : t ∈ Jξ, ξ ∈ ε \ Sε〉,

(a-3) Sε ⊆ S ∩ ε,

(a-4) Tε,

(a-5) 〈(es,Ps, ᾱs, t̄s, ḡs, hs, qs) : s ∈ Jδ and δ ∈ Sε〉,

(a-6) 〈γ∗ξ : ξ ≤ ε〉.
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(b) A satisfies all the relevant parts of Definition 4.35.

(c) we have

(c-1) if ξ < ε, then Sξ = Sε ∩ ξ,

(c-2) for δ ∈ S ∩ ε,

Jδ ⊆ {β < α∗ : ζ(β) = γδ},

(c-3) if ε /∈ S, then ε /∈ Sε+1 and

Jε = {β : ∃η ∈ Tε, η_〈β〉 ∈ Tε+1}.

(d) Let 〈γ′ε : ε < κ〉 be an increasing and continuous sequence of ordinals cofinal

in λ with γ′0 = ‖Mm
∗ ‖. The sequence is such that

(d-1) 〈(nγ , eγ , fγ) : γ < γ′ε〉 is a collection of triples (n, e, f) where n < ω, e ∈

E and f is a bimodule homomorphism from Ne
n into Mε,

(d-2) every triple (n, e, f) as above appears as some (nγ , eγ , fγ), for some

γ < γ′ε, for some ε < κ large enough.

(e) we have

(e-1) 〈Tε : ε < κ〉 is increasing and continuous,

(e-2) T0 = {<>},

(e-3) if Tε+1 \ Tε 6= ∅, then

Tε+1 = {η_〈β〉 : η ∈ Tε and β ∈ [γ′ε, γ
′
ε+1)}.

We now start defining Aε for ε ≤ κ.

We distinguish five possibilities for ε:

ε1) ε = 0,

ε2) ε is a limit ordinal,

ε3) ε = ξ + 1 and ξ /∈ S,

ε4) ε = δ + 1, δ ∈ S and γ∗δ 6= γ0
δ ,

ε5) ε = δ + 1, δ ∈ S and γ∗δ = γ0
δ .
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In the case ε1), we set M0 := M∗ and let γ∗0 be the universe of M∗. In the case ε2),

we set Mε :=
⋃
ξ<ε

Mξ, and for everything else, just take the union of the previous

ones. Suppose we are in the situation of ε3). In the same vein as of Definition

4.35(E), we define Mε, so

Mε := Mξ ⊕
⊕
t∈Jξ

Nt,

where Jξ and Nt, for t ∈ Jξ are defined similar to Definition 4.35(E). Everything

else in the definition of Aε is clear how to define.

In the case of ε4) we define Mε as in the previous case (i.e., as in Definition

4.35(E)). Note that in all of the above cases, if δ < ε is in S, s ∈ Jδ and in

stage δ the type qs = qδs is defined, then in view of Lemma 3.14 (and its natural

generalization to arbitrary direct sums), qs continues to be omitted at ε.

Finally, we deal with ε5) which is the most important part of the induction which

corresponds to the case (F) of Definition 4.35. Set

α∗δ = sup{α+ 1 : ζ(α) ≤ γ0
δ}.

By induction on α ≤ α∗δ we define

• Mδ,α,

• wδ,α,

• ηβ for β ∈ wδ,α,

• xβ = (eβ ,Pβ , ᾱβ , t̄β , ḡβ , hβ , qβ) and ηβ for β ∈ wδ,α,

such that:

(α) wδ,α ⊆ {β < α : ζ(β) = γ0
δ} and for β < α, wδ,α ∩ β = wδ,β .

(β) ηβ ∈ lim(fβ) for β ∈ wδ,α.

(γ) clause (F) of Definition 4.35 is satisfied when we consider

(Mδ,α, wδ,α, 〈xβ : β ∈ wδ,α〉)

instead of

(Mδ+1, Jδ, 〈(es,Ps, ᾱs, t̄s, ḡs, hs, qs) : s ∈ Jδ〉).
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We distinguish four possibilities for α:

α1) α = 0;

α2) α is a limit ordinal;

α3) α = β + 1 and ζ(β) 6= γ0
δ ;

α4) α = β + 1 and ζ(β) = γ0
δ .

In the case α1), we set Mδ,0 = Mδ and wδ,0 = ∅. Recall that there is nothing else

to define. In the case α1), we set Mδ,α :=
⋃
ξ<α

Mδ,ξ and wδ,α :=
⋃
ξ<α

wδ,ξ. Also, for

β ∈ wδ,α pick some ξ < α such that β ∈ wδ,ξ and then define ηβ and xβ as defined

at step ξ of the induction.

In the case α3), we set α = β + 1 and ζ(β) 6= γ0
δ , here we set Mδ,α = Mδ,β and

wδ,α = wδ,β .

Finally, we deal with the forth possibility: In this case we decide if we add β to

our final Jδ or not, where Jδ is going to be wδ,α∗
δ
. So, we consider two possibilities:

case α4.1) and case α4.2), see below:

Case α4.1): There are i < 2 and η ∈ lim(fβ) such that

(Mη,i
δ,β , wδ,β+1, 〈xν : ν ∈ wδ,β+1〉) (+)

satisfies the conclusion of clause (F) of Definition 4.35, where (+) is defined as

follows:

(δ) wδ,α := wδ,β ∪ {β},

(ε) ηβ := η,

(ε) xβ := (eβ ,Pβ , ᾱβ , t̄β , ḡβ , hβ , qβ), where this sequence is defined as follows:

(ε-1) t̄β := 〈tn : n < ω〉, where for each n < ω, tn = GN
β

(η(n)),

(ε-2) for some αn < δ, tn ∈ Jαn (note that such an αn is unique if it exists),

(ε-3) ᾱβ := 〈αn : n < ω〉 is an increasing sequence of ordinals in δ \S cofinal

in δ,

(ε-4) for each n,m < ω, etn = etm . Set e := et0 ,

(ε-5) {xen, htn , tn, αn} ∈ N
β
n+1,
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(ε-6) ḡβ := ḡη,iβ := 〈gη,iβ,n : n < ω〉 where gn = gη,iβ,n : Ne
n → Mγ∗∗

δ
, for some

γ∗∗δ , is defined by gn = i · f
cN

β
n

,

(ε-7) zη,iβ,n := FN
β( ∑

`<n

(g` + ht`)(x
e
`)
)
,

(ε-8) qβ := qη,iδ,β := {ϕe
n(y − zη,iβ,n) : n < ω},

(ε-9) hβ := hη,iδ,β : Pe → Pβ is onto,

(ε-10) Mη,i
δ,β is generated by Mδ,β ∪ Pβ .

In this case we set

• Mδ,β+1 = Mη,i
δ,β ,

• wδ,β+1 = wδ,β ∪ {β},

• ηβ = η,

• for ν ∈ wδ,β+1 we let xν be as above.

Case α4.2): The above situation does not hold. Then we set Mδ,β+1 := Mδ,β

and wδ,β+1 := wδ,β .

Having considered the above cases, we set

• Mδ+1 := Mδ,α∗
δ
,

• Jδ := wδ,α∗
δ
,

• for s ∈ Jδ, 〈(es,Ps, ᾱs, t̄s, ḡs, hs, qs) : s ∈ Jδ〉 is defined to be xs.

This completes our inductive construction of Aε’s for ε ≤ κ. Finally, we set A := Aκ

and M := Mκ. We are going to show that A is as required.

Clearly, we have gotten a weakly semi-nice construction. We now show that it is

indeed a semi-nice construction. Let us prove the property presented in Definition

4.36(3)(G)1. Thus suppose that e ∈ E, f is an endomorphism of M as an R-module,

γ < κ and for each n < ω suppose gn : Ne
n → Mγ is a bimodule homomorphism.

Suppose by contradiction that the property presented in Definition 4.36(3)(G)1

fails. Let

g : Tκ → Tκ,
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where Tκ = λ<ω, be a one-to-one order preserving (i.e, η C ν iff g(η) C g(ν))

embedding such that for each η ∈ Tκ \ T0, eg(η) = e. Let

B = 〈B,∈B, FB, GB, (cBn)n<ω, (P
B
n )n<ω〉

be a τ =
⋃
n<ω

τn-structure satisfying the following properties:

τ1) : (B,∈B) expands (H<ℵ1(M),∈),

τ2) : FB �M = f ,

τ3) : GB = g,

τ4) : for n < ω, cBn = γn, where γn is such that (n, e,gn) = (nγn , eγn , fγn).

Pick γ∗∗ ∈ κ \ S such that γ∗∗ > γ and for each n < ω, f(gn(xen)) ∈ Mγ∗∗ . Recall

that Rang(gn) ⊆Mγ ⊆Mγ∗∗ . Note that the set

{δ ∈ S : γ∗δ = γδ}

is a stationary set. We are going to use the black box theorem. In the light of

Lemma 4.47 we observe that there are δ ∈ S and β ∈ Jδ such that

(1) ζ(β) = γδ,

(2) γ∗δ = γδ,

(3) N β ≺ B, in particular,

(a) fβ = f � N β ,

(b) for all n < ω, cN
β

n = cBn ,

(c) for n < ω,gn = f
cN

β
n

.

Let ε = δ+ 1. Note that as δ ∈ S and γ∗δ = γδ, at step ε of the construction we are

at one of the cases (1) or (2). The nontrivial part is to check the property presented

in Definition 4.35(n). If case (1) occurs we are immediately done. So suppose that

we are in case (2), and hence, by the construction, we are in one of the following

situations:

(?)1 for all η ∈ lim(fβ) and all i < 2 the type qη,iδ,β is realized in Mη,i
δ,β .
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(?)2 there is some δ′ ∈ Sδ and some β′ ∈ Jδ′ such that for some η ∈ lim(fβ
′
) and

some i < 2, qη,iδ′,β′ is well-defined and is omitted in Mη,i
δ′,β′ , but it is realized

in Mη,i
δ,β .

(?)3 there is some β′ ∈ wδ,β , some η ∈ lim(fβ
′
) and some i < 2 such that

β′ ≤ 2ℵ0 + β and qη,iδ,β′ is well-defined and is omitted in Mη,i
δ,β′ , but it is

realized in Mη,i
δ,β .

We only consider the case (?)1 and leave the other cases to the reader, as they are

easier to prove. Pick some η ∈ lim(fβ). For i < 2 the following type

qη,iδ,β = {ϕe
n(y − zη,iβ,n) : n < ω}

is realized in Mη,i
δ,β . By our construction, Mη,i

δ,β is generated by Mδ,β ∪ Pβ and

hη,iδ,β : Pe → Pβ is onto, thus we can find yi ∈ Mδ,β and zi ∈ Pe such that qη,iδ,β is

realized by yi + hη,iδ,β(zi). Hence for all n < ω,

Mη,i
δ,β |= ϕe

n(yi + hη,iδ,β(zi)− zη,iβ,n).

Recall from (ε-6) that:

gη,iβ,n = i · f
cN

β
n

= i · gn (∗)

Hence

zη,iβ,n = FN
β(∑

`<n

(ht` + i · g`)(xe`)
)

=
∑
`<n

f(ht`(x
e
`)) + i ·

∑
`<n

f(g`(x
e
`)).

It follows for each i < 2 that

yi + hη,iδ,β(zi)− zη,iβ,n = yi + hη,iδ,β(zi)−
∑
`<n

f(ht`(x
e
`))− i ·

∑
`<n

f(g`(x
e
`))

∈ ϕe
n(Mη,i

δ,β).

By applying Lemma 4.37(3) to z0 ∈ Pe and y0 − zη,0β,n ∈ Mδ,β we can find some

z′n,0 ∈
∑
`<ω

Rang(he
`) equipped with the following two properties:

(4) z0 − z′n,0 ∈ ϕe
n(Pe),
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(5) y0 − zη,0β,n + hη,0δ,β(z′n,0) ∈ ϕe
n(Mδ,β).

In the same vein, there is z′n,1 ∈
∑
`<ω

Rang(he
`) such that

(6) z1 − z′n,1 ∈ ϕe
n(Pe),

(7) y1 − zη,1β,n + hη,1δ,β(z′n,1) ∈ ϕe
n(Mδ,β).

Given n < ω, pick kn < ω such that

z′n,0, z
′
n,1 ∈

∑
`<kn

Rang(he
`).

So we can find {z′n,0,` : ` < kn} and {z′n,1,` : ` < kn} such that for i < 2, z′n,i,` ∈

Rang(he
`) and z′n,i =

∑
`<kn

z′n,i,`. For ` < kn pick some zn,i,` ∈ Ne
n with he

`(zn,i,`) =

z′n,i,`.

Set z = z1 − z0. In view of clauses (4) and (6) above, we have

z ∈ (z′n,1 − z′n,0) + ϕe
n(Pe) =

∑
`<kn

he
`(zn,1,`)−

∑
`<kn

he
`(zn,0,`) + ϕe

n(Pe)

for all n. Thus part (a) of Definition 4.36(3)(G)1 is satisfied.

For part (b) of Definition 4.36(3)(G)1, by items (5) and (7) we have

∑
`<n

f(g`(x
e
`)) ∈ (y1 − y0) +

(
hη,1δ,β(z′n,1)− hη,0δ,β(z′n,0)

)
+ ϕe

n(Mδ,β) (†)

Now let K be such that Mδ,β = Mγ∗∗ ⊕ K and let π : Mδ,β → K be the natural

projection. We apply (∗) for i = 1 along with the property presented in Definition

4.35(F)(k) to see:

(8) hη,1δ,β(z′n,1) =
∑
`<kn

hη,1δ,β(z′n,1,`) =
∑
`<kn

hη,1δ,β(he
`(zn,1,`)) =

∑
`<kn

(ht` +g`)(zn,1,`).

Also, we apply (∗) for i = 0 along with the property presented in Definition

4.35(F)(k) to see:

(9) hη,0δ,β(z′n,0) =
∑
`<kn

hη,0δ,β(z′n,0,`) =
∑
`<kn

hη,1δ,β(he
`(zn,0,`)) =

∑
`<kn

ht`(zn,0,`).

By the choice of γ∗∗, f(g`(x
e
`)) ∈Mγ∗∗ and Rang(g`) ⊆Mγ ⊆Mγ∗∗ and hence the

following assertions are valid as well:

(10) for all ` < n, π(f(g`(x
e
`))) = 0,

(11) for all ` < kn and i < 2, π(g`(zn,i,`)) = 0.
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We may assume without loss of the generality that α` > γ∗∗ for all ` < ω, where

α` is such that t` ∈ Jα` . It then follows from Definition 4.35(E) that for each ` < ω,

Rang(ht`) ⊆ K and hence:

(12) for all ` < kn, π(ht`(z
′
n,1,`)) = ht`(z

′
n,1,`).

(13) By setting y′ := y1 − y0 and y := y′ − π(y′) in the previous formulas we

observe the following equalities and the resulting containment:∑
`<n

f(g`(x
e
`))

(10)
=
∑
`<n

f(g`(x
e
`))− π(

∑
`<n

f(g`(x
e
`)))

(†)
∈ (y1 − y0) +

(
hη,1δ,β(z′n,1)− hη,0δ,β(z′n,0)

)
+ ϕe

n(Mδ,β))

−π(y1 − y0)− π
(
hη,1δ,β(z′n,1)− hη,0δ,β(z′n,0)

)
+ ϕe

n(Mδ,β))

(13)
= y +

(
hη,1δ,β(z′n,1)− hη,0δ,β(z′n,0)

)
− π

(
hη,1δ,β(z′n,1)− hη,0δ,β(z′n,0)

)
+ ϕe

n(Mδ,β)

(8+9)
= y +

∑
`<kn

(ht` + g`)(zn,1,`)−
∑
`<kn

ht`(zn,0,`)

−π
∑
`<kn

(ht` + g`)(zn,1,`) + π
∑
`<kn

ht`(zn,0,`) + ϕe
n(Mδ,β)

(11+12)
= y +

∑
`<kn

(ht` + g`)(zn,1,`)−
∑
`<kn

ht`(zn,0,`)

−
∑
`<kn

(ht`)(zn,1,`) +
∑
`<kn

ht`(zn,0,`) + ϕe
n(Mδ,β)

= y +
∑
`<kn

g`(zn,1,`) + ϕe
n(Mδ,β).

This completes the proof of Definition 4.36(3)(G)1(b).

We now sketch the proof of property (G)2 of Definition 4.36(3), as its details are

similar to the above. Let e ∈ Em and for n < ω and α ∈ κr S. By hα,n we mean

an embedding of Ne
n into Mκ such that

Mα + Rang(hα,n) = Mα ⊕ Rang(hα,n) ≤ℵ0 Mκ.

We look at the following set

C := {δ < κ : ∀α < δ ∀n < ω,Rang(hα,n) ⊆Mδ},

which C is a club subset of κ.11 Let

g : Tκ → Tκ

11Club means closed and unbounded.
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be such that for all η, µ ∈ lim(g) and all n < ω,g(η(n)) = g(µ(n)). Let

B = 〈B,∈B, FB, GB, (cBn)n<ω, (P
B
n )n<ω〉

be a τ =
⋃
n<ω

τn-structure satisfying the following properties:

τi) : (B,∈B) expands (H<ℵ1(M),∈),

τj) : GB = g,

τk) : for n < ω, cBn = γn, where γn is such that (n, e,hαn,n−htn) = (nγn , eγn , fγn),

where tn = g(η(n)) and αn is such that tn ∈ Jαn .

In the same vein, we can find δ ∈ S ∩ C, β ∈ Jδ such that:

(†1) ζ(β) = γδ.

(†2) γ∗δ = γδ.

(†3) N β ≺ B, in particular,

(a) fβ = f � N β ,

(b) for all n < ω, cN
β

n = cBn ,

(c) for n < ω,hαn,n − htn = f
cN

β
n

, where tn and αn are defined as above.

(†4) The properties presented in Clause (F) of Definition 4.35 are hold.

According to Definition 4.35(F)(k), we have

hδβ ◦ hn = htn + (hαn,n − htn) = hαn,n,

as claimed by (G)2 from Definition 4.36(3). The proof of clause (i) is now complete.

(ii): In order to prove the desired claim, suppose further that λ is a regular

cardinal. We show that by shrinking S, if necessary, we can assume that the above

constructed structure is indeed a nice construction, i.e., we can omit “semi” from

it. The map δ 7→ γ∗∗δ is a regressive function on S. We are going to use the Fodor’s

lemma. This says that δ 7→ γ∗∗δ is constant on some stationary subset S1 of S, thus

for some γ∗∗ and for all δ ∈ S1, γ
∗∗
δ = γ∗∗. Now note that for each δ ∈ S1 and each

s ∈ Jδ, eδs is of the form eβ for some β < γ∗∗, so again by Fodor’s lemma and for

each s ∈ Jδ, ḡδs is an ω-sequence 〈gδs,n : n < ω〉 where for each n, gδs,n : Nes
n → Mγ∗∗
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is a bimodule homomorphism. But, the set

{g : g : Nes
n →Mγ∗∗ is a bimodule homomorphism}

has size less than λ. Now, let δ ∈ S1 be as such that the property presented in

clause (F) of Definition 4.35 holds. The sets

{es : s ∈ Jδ} & {ḡδs : s ∈ Jδ}

have size less than λ. Again, we revisit Fodor’s lemma, to find a stationary subset

S2 of S1 such that the sets {es : s ∈ Jδ} and {ḡδs : s ∈ Jδ} are the same for all

δ ∈ S2. This concludes the required result.

(iii) and (iv): These are similar to the previous parts, and we leave the modifi-

cation to the reader. �

5. Any endomorphism is somewhat definable

In this section we shall investigate what “M̄ = 〈Mα : α ≤ κ〉 is a semi-nice con-

struction” gives us and look somewhat at various implications. The main results

of this section are to verify the following property (see Lemma 5.2 and its modi-

fications, see e.g. Lemma 5.8). These enable us to define the concept of strongly

semi-nice construction. For more details, see Definition 5.16.

Definition 5.1. Let α < κ and n < ω be given. Suppose f : Mκ → Mκ is a

bimodule homomorphism. We say the property (Pr)nα[f , e] is satisfied provided

f(h(xen)) ∈Mα + ϕe
`(Mκ) + Rang(h),

for all ` < ω, where h : Ne
n →Mκ is a bimodule homomorphism.

As an application of the results of Section 4, we present the following statement.

This plays an essential role in proving some stronger versions of (Pr)nα[f , e], see

Lemma 5.8 blow.
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Lemma 5.2. Let A be a semi-nice construction with respect to (λ,m, S, κ) and

suppose f : Mκ →Mκ is an endomorphism of R-modules. Also, suppose κ ≥ κ(E).

Then for every e ∈ E there are α ∈ κ \ S and n(∗) < ω such that the property

(Pr)
n(∗)
α [f , e] holds.

Proof. Assume not. Then for every ε ∈ κ \ S and n < ω we can find a bimodule

homomorphism hε,n : Ne
n →Mκ such that for some `(ε, n) < ω,

f(hε,n(xen)) /∈Mε + ϕe
`(ε,n)(Mκ) + Rang(hε,n).

Without loss of generality, we may assume that n < `(ε, n). The following set

E := {ζ < κ : Rang(f �Mζ) ⊆Mζ and ∀ξ < ζ ∀n < ω,Rang(hξ,n) ⊆Mζ}

is a club subset of κ. Since S is stationary, we have

S ∩ lim
(
E ∩ (Sκℵ0 \ S)

)
6= ∅,

where lim denote the set of limit points. Let ζ be in this intersection. Then

cf(ζ) = ℵ0 and there exists an increasing sequence 〈ζn : 0 < n < ω〉 of elements of

E ∩ (Sκℵ0 \ S) cofinal in ζ.

For each 0 < ` < ω, as ζ` /∈ S, we can find a bimodule K` such that Mζ`+1
=

Mζ` ⊕K`. Set also K0 = Mζ0 . Thus, Mζ =
⋃
`<ω

Mζ` =
⊕
`<ω

K`. Let g∗` : Mζ`+1
→ K`

be the natural projection, this is well-defined, because K` is a direct summand of

Mζ`+1
. Pick also an infinite subset U ⊆ ω such that

∀n,m ∈ U (n < m =⇒ `(ζn, n) < m) .

For each n < ω, we set tn := hζn,n(xen) ∈ Mζ . By Definition 4.36(3)(G)1,

we can find y ∈ Mκ, z ∈ Pe and a sequence {zn,`, z′n,` : n ∈ U , ` < ω} with

zn,` ∈ Dom(hζ`,`) such that for each n ∈ U , zn,` = 0 for all large enough `, say for

all ` ≥ kn and for all large enough n ∈ U we have

(a) z ∈
∑

`∈U∩kn
he
`(z
′
n,`) + ϕe

n(Pe).
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(b)
∑

`∈U∩n
f(hζ`,`(x

e
`)) ∈ y +

∑
`∈U∩kn

hζ`,`(zn,`) + ϕe
n(Mκ).

As ζ /∈ S we know Mζ ≤ℵ0 Mκ. Hence, for some K we have y ∈ Mζ ⊕ K and

Mζ ⊕ K ≤ℵ0 Mκ. So, in clause (b) all elements are in Mζn ⊕ K. This allows us to

replace ϕe
n(Mκ) with ϕe

n(Mζn ⊕K), and leads us to get the following new clause:

(b′)n :
∑

`∈U∩n
f(hζ`,`(x

e
`)) ∈ y +

∑
`∈U∩kn

hζ`,`(zn,`) + ϕe
n(Mζn ⊕K).

Let π : Mζ ⊕ K → Mζ be the natural projection and let y′ := π(y). Recall

that π(ϕe
n(Mζn ⊕ K)) = ϕe

n(Mζn). By applying π along with (b′)n we lead to the

following equation:

(b′′)n :
∑

`∈U∩n
f(hζ`,`(x

e
`)) ∈ y′ +

∑
`∈U∩kn

hζ`,`(zn,`) + ϕe
n(Mζn).

Pick n(∗) < ω such that y′ ∈ Mζn(∗) and choose successive elements n < m in U

bigger than n(∗) which are large enough. Also, pick w ∈ ϕe
m(Mζm) such that

(1)
∑

`∈U∩m
f(hζ`,`(x

e
`)) = y′ +

∑
`∈U∩km

hζ`,`(zm,`) + w.

Then we have:

(2) As
∑

`∈U∩n
f(hζ`,`(x

e
`)), y

′ ∈Mζn , by (1) we have

g∗n(hζn,n(xen)) = g∗n

( ∑
`∈U∩m

f(hζ`,`(x
e
`))

)
=

∑
`∈U∩km

g∗n (hζ`,`(zm,`)) + g∗n(w).

In particular, we drive the following:

(3)
∑

`∈U∩km
g∗n (hζ`,`(zm,`)) ∈ Rang(g∗n ◦ hζn,n) + ϕe

m(Mζm).

Due to the definition of g∗n we know:

(4) f(hζn,n(xen))− g∗n (f(hζn,n(xen))) ∈Mζn .

Putting all things together, we have

f(hζn,n(xen)) ∈ g∗n (f(hζn,n(xen))) + Mζn

⊆
∑

`∈U∩km
g∗n (hζ`,`(zm,`)) + Mζn + ϕe

m(Mζm)

⊆Mζn + Rang(g∗n ◦ hζn,n) + ϕe
m(Mζm)

= Mζn + Rang(hζn,n) + ϕe
m(Mζm).
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This is a contradiction and the lemma follows. �

Definition 5.3. By hdsM2

M1
(h,N) we mean the following data:

(1) M1,M2,N are bimodules,

(2) M1 ⊆M2,

(3) h is a bimodule homomorphism from N into M2,

(4) N ∈ c`is(K),

(5) M1 + Rang(h) = M1 ⊕ Rang(h),

(6) M1 + Rang(h) ≤ℵ0 M2.

The next lemma summarizes the main properties of hds.

Lemma 5.4. (1) Suppose hdsM2

M1
(h1,N) holds and let h0 be a bimodule homo-

morphism from N into M1. If h := h0 + h1, then hdsM2

M1
(h,N) holds as

well.

(2) Suppose M0 ⊆M1 ⊆M2 are bimodules, M0 ≤ℵ0 M1 and suppose hdsM2

M1
(h,N)

holds. Then so does hdsM2

M0
(h,N).

(3) Let M̄ = 〈Mα : α ≤ κ〉 be a weakly semi-nice construction with respect

to (λ,m, S, κ) and assume that hdsMλMα(h,N) holds where α < κ. Then

hds
Mβ
Mα(h,N) holds for a club of β ∈ (α, κ).

(4) If hdsM2

M1
(h,N) holds, then so does hds

M1+Rang(h)
M1

(h,N).

Proof. (1) We only need to show that M1 + Rang(h) = M1⊕Rang(h) ≤ℵ0 M2.

But, this is clear as M1 + Rang(h) = M1 + Rang(h1) and the property

hdsM2

M1
(h1,N) holds.

(2) We have

M0 + Rang(h) = M0 ⊕ Rang(h) ≤ℵ0 M1 ⊕ Rang(h) ≤ℵ0 M2,

from which the result follows.
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(3) By our assumption, h : N→Mκ is a bimodule homomorphism and

Mα + Rang(h) = Mα ⊕ Rang(h) ≤ℵ0 Mκ.

But, then for a club C ⊆ (α, κ) and for all β ∈ C we have

Mα ⊕ Rang(h) ≤ℵ0 Mβ .

Following definition, hds
Mβ
Mα(h,N) holds for all β ∈ C ⊆ (α, κ).

(4) Clear from the definition.

�

Definition 5.5. Let α < κ and n < ω be given. Suppose f : Mκ → Mκ is an

R-module homomorphism. We say the property (Pr−)nα[f , e] is valid, provided:

(1) there is some α < β ∈ κ \ S and some suitable bimodule homomorphism

h : N→M2 so that hds
Mβ
Mα(h,Ne

n) holds,

(2) for all ` < ω, we have

f(h(xen)) ∈Mα + Rang(h) + ϕe
`(Mκ).

Lemma 5.6. Let f : Mκ →Mκ be an R-module homomorphism.

(1) Assume α ≤ β < κ, α /∈ S and β /∈ S. Then (Pr−)
n(∗)
α [f , e] implies

(Pr−)
n(∗)
β [f , e].

(2) If (Pr)
n(∗)
α [f , e] holds, then (Pr−)

n(∗)
α [f , e] holds too.

Proof. (1). This is a combination of Lemma 4.37(1) and Lemma 5.4 (2).

(2). This is clear by definition. �

We need the following membership property:

Definition 5.7. Let f : Mκ → Mκ be a bimodule homomorphism, α < κ, n < ω

and let z ∈ Ne
n. We say the property (Pr 1)nα,z[f , e] is valid if

f(h(xen))− h(z) ∈Mα + ϕe
ω(Mκ),

where h is a bimodule homomorphism from Ne
n into Mκ.
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Lemma 5.8. Let 〈Mα : α ≤ κ〉 be a weakly semi-nice construction with respect to

(λ,m, S, κ) and f : Mκ → Mκ be an R-endomorphism and let α /∈ S be such that

the property (Pr−)
n(∗)
α [f , e] holds. Then there is some z ∈ Le

n(∗)[K
m] such that the

property (Pr 1)
n(∗)
α,z [f , e] is satisfied.

Proof. Let x := xen(∗). We shall prove the lemma in a sequence of claims, see Claims

5.9–5.12.

Claim 5.9. Let β ∈ (α, λ) \ S be such that hds
Mβ
Mα(h,Ne

n(∗)) holds. Then

f(h(x)) ∈Mα + Rang(h) + ϕe
ω(Mκ).

Proof. Let N := Rang(h). We know that Mα + N = Mα ⊕ N ≤ℵ0 Mβ and Mβ ≤ℵ0

Mκ. Combining these yields that Mα ⊕ N ≤ℵ0 Mκ. In view of Definition 4.16 and

Lemma 4.22(6), there is K ⊆Mκ such that

(Mα ⊕ N) + K = Mα ⊕ N⊕K ≤ℵ0 Mκ.

Then, we may assume that f(h(x)) ∈ Mα ⊕ N ⊕ K. Since Mα ⊕ N ⊕ K ≤ℵ0 Mκ,

and in the light of Lemma 4.20 we observe that Mα ⊕ N⊕K ≤prϕe
n
Mκ holds for all

n < ω. According to the property (Pr−)
n(∗)
α [f , e], we know

f(h(x)) ∈Mα + N + ϕe
n(Mκ),

for all n < ω. We use these to find elements x1,n ∈Mα and x2,n ∈ N such that

f(h(x))− x1,n − x2,n ∈ ϕe
n(Mκ).

It follows from Mα ⊕ N⊕K ≤prϕe
n
Mκ that

f(h(x)) = x1,n + x2,n + (f(h(x))− x1,n − x2,n)

∈Mα + N + ϕe
n(Mα ⊕ N⊕K).

Let g be the projection from Mα⊕N⊕K onto K. Recall that its kernel is Mα⊕N.

Let z1
n ∈Mα, z2

n ∈ N and z3
n ∈ ϕn(Mα⊕N⊕K) be such that f(h(x)) = z1

n+z2
n+z3

n.
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Let us evaluate g on both sides of this formula to obtain:

g(f(h(x))) = g(z1
n) + g(z2

n) + g(z3
n) = z3

n ∈ ϕe
n(Mα ⊕ N⊕K) ⊆ ϕe

n(Mκ).

As this holds for each n, we have

g(f(h(x))) ∈
⋂
n<ω

ϕe
n(Mκ).

So,

f(h(x)) = (f(h(x))− g(f(h(x)))) + (g(f(h(x)))

∈ (Mα ⊕ N) +
⋂
n<ω ϕn(Mκ)

= Mα + Rang(h) + ϕe
ω(Mκ).

The claim follows. �

Claim 5.10. For i = 1, 2, let N∗i and βi be such that Mα ⊕ N∗i ≤ℵ0 Mβi and

α < βi < κ where βi is not in S. Let hi : Ne
n(∗) → N∗i be an isomorphism and

zi ∈ Ne
n(∗) be such that

f(hi(x))− hi(zi) ∈Mα + ϕe
ω(Mκ).

Then z1 ≡ z2 mod ϕe
ω(Ne

n(∗)).

Proof. Let β ∈ κ \ S be large enough such that β > β1 and β > β2. Let N∗3 be

isomorphic to Ne
n(∗) and such that for any large enough γ < κ,

Mβ + N∗3 = Mβ ⊕ N∗3 ≤ℵ0 Mγ .

Let h3 be an isomorphism from Ne
n(∗) onto N∗3. In the light of Claim 5.9 we deduce

that

f(h3(x))− h3(z3) ∈Mα + ϕe
ω(Mκ),

where z3 ∈ Ne
n(∗). By the transitivity of the equivalence relation, it is enough to

show that z3 ≡ z1 and z3 ≡ z2 mod ϕe
ω(Ne

n(∗)) in Ne
n(∗); and by the symmetry it

is enough to prove z3 ≡ z1 mod ϕe
ω(Ne

n(∗)).
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Pick γ > β large enough. Then Mα ⊕ N∗1 ⊕ N∗3 ≤ℵ0 Mγ . Let

N∗4 := {h1(z)− h3(z) : z ∈ Ne
n(∗)},

and define h4 : Ne
n(∗) −→Mβ+1 by

h4(z) = h1(z)− h3(z).

Due to its definition, we know N∗4 is a sub-bimodule of Mα⊕N∗1⊕N∗3 and hence of Mκ.

Also, h4 is an isomorphism from Ne
n(∗) onto N∗4, and Mα⊕N∗1⊕N∗3 = Mα⊕N∗1⊕N∗4.

Thus, we have

(∗)1 Mα ⊕ N∗4 ≤ℵ0 Mα ⊕ N∗1 ⊕ N∗3 ≤ℵ0 Mγ .

Now modulo Mα + ϕe
ω(Mκ), we have

(∗)2 f(h4(x)) = f(h1(x)− h3(x)) = f(h1(x))− f(h3(x)) ≡ h1(z1)− h3(z3).

Next, by Claim 5.9 and (∗)1, we have

(∗)3 f(h4(x)) ∈ Rang(h4) + (Mα + ϕe
ω(Mκ)).

So

(∗)4 h1(z1)− h3(z3) ∈ Rang(h4) + (Mα + ϕe
ω(Mκ)).

We combine (∗)4 along with the definition of h4 to deduce that

(h1(z1)− h3(z3)− h4(z) ∈Mα + ϕe
ω(Mκ),

for some z ∈ Ne
n(∗). Recall that h4(z) = h1(z)− h3(z). It yields that

(h1(z1)− h3(z3))− (h1(z)− h3(z)) ∈Mα + ϕe
ω(Mκ).

In other words,

h1(z1 − z)− h3(z3 − z) ∈Mα + ϕe
ω(Mκ).

Therefor, there is y ∈ Mα such that h1(z1 − z) − h3(z3 − z) − y ∈ ϕe
ω(Mκ). As

Mα ⊕ N∗1 ⊕ N∗3 ≤ℵ0 Mκ, we deduce that

h1(z1 − z)− h3(z3 − z)− y ∈ ϕe
ω(Mα ⊕ N∗1 ⊕ N∗3).
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Recall that h1(z1 − z) ∈ N1, h3(z3 − z) ∈ N∗3 and y ∈ Mα. We conclude from

Claim 4.21(5) that

ϕe
ω(Mα)⊕ ϕe

ω(N∗1)⊕ ϕe
ω(N∗3) ∼= ϕe

ω(Mα ⊕ N∗1 ⊕ N∗3).

Hence

hi(zi − z) ∈ h′′i
(
ϕe
ω(Ne

n(∗))
)

for i = 1, 3,

i.e., zi − z ∈ ϕe
ω(Ne

n(∗)). It then follows that

z1 − z3 = (z1 − z)− (z3 − z) ∈ ϕe
ω(Ne

n(∗)).

So z1 − z3 ∈ ϕe
ω(Ne

n(∗)), which finishes the proof of the claim. �

Claim 5.11. There is z ∈ Ne
n(∗) such that if h : Ne

n(∗) → Mκ is a bimodule

homomorphism, then f(h(z))− h(z) ∈Mα + ϕe
ω(Me

κ).

Proof. Let N∗0, β0 and h : Ne
n(∗) → N∗0 be as Claim 5.10. In the light of Claim 5.9,

there is z ∈ Ne
n(∗) which satisfies the above requirement for this h. We show that z

is as required. Suppose not and let h0 be a counterexample, i.e.,

f(h0(z))− h0(z) /∈Mα + ϕe
ω(Me

κ).

Choose β such that β0 < β ∈ κ \ S and Rang(h0) ⊆ Mβ . Such a β exists as

κ = cf(κ) ≥ κ(E). Let h1 be an isomorphism from Ne
n(∗) onto some N∗1 such that

Mβ ⊕ N∗1 ≤ℵ0 Mγ for some γ ∈ (β, κ) \ S. So

f(h1(z))− h1(z) ∈Mα + ϕe
ω(Mκ).

Let h2 : Ne
n(∗) −→Mκ be defined by

h2(z) = h1(z)− h0(z).

Easily h2 is a bimodule homomorphism. Set N∗2 =: Rang(h2). By the assumptions

on N∗1 and h1, we deduce that

Mβ ⊕ N∗1 = Mβ ⊕ N∗2 ≤ℵ0 Mκ.
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In the light of Claim 5.10, we see that

f(h2(x))− h2(z) ∈Mα + ϕe
ω(Mκ).

We apply this to conclude that

f(h0(z)) = f(h1(z)− h2(z))

= f(h1(z))− f(h2(z))

∈ h1(z)− h2(z) + Mα + ϕe
ω(Mκ)

= h0(z) + Mα + ϕe
ω(Mκ),

i.e.,

f(h0(z))− h0(z) ∈Mα + ϕe
ω(Me

κ),

which contradicts our initial assumption on h0. The claim follows. �

Claim 5.12. Let z be as Claim 5.11. Then z ∈ Le
n(∗)[K].

Proof. Let h1, h2 : Ne
n(∗) → N ∈ K be such that h1(xen(∗)) − h2(xen(∗)) ∈ ϕe

ω(N)

and f(hi(x
e
n(∗))) = hi(z) mod Mα + ϕe

ω(Mλ). By the definition of Le
n(∗)[K], it is

sufficient to show h1(z)−h2(z) ∈ ϕe
ω(N). To this end, choose γ ∈ κ\S large enough

and an embedding h of N into Mκ such that Mγ+Rang(h) = Mγ⊕Rang(h) ≤ℵ0 Mκ.

Let i = 1, 2 and note that h ◦ hi is a bimodule homomorphism from Ne
n(∗) into Mκ.

Thanks to Claim 5.11 we observe that

f(h(hi(x
e
n(∗))))− f(h(hi(z))) ∈Mα + ϕe

ω(Mκ).

So, by subtracting the above relations for i = 1, 2, we have

f(h(h1 − h2(xen(∗))))− f(h(h1 − h2(z))) ∈Mα + ϕe
ω(Mκ).

Also, h1(xen(∗)) = h2(xen(∗)) mod ϕe
ω(N). It follows that h(h1 − h2(z)) ∈ Mα +

ϕe
ω(Mκ). We conclude from Mα + Rang(h) = Mα ⊕ Rang(h) that

h(h1 − h2(z)) ∈ ϕe
ω(Rang(h)).
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Since h is an embedding, (h1 − h2)(z) ∈ ϕe
ω(N). Consequently,

h1(z)− h2(z) = (h1 − h2)(z) ∈ ϕe
ω(N).

By definition, z ∈ Le
n(∗)[K] as required. �

In sum, Lemma 5.8 follows. �

Lemma 5.13. Let M̄ be a semi-nice construction with respect to (λ,m, S, κ) and f

be an R-endomorphism of Mκ. Then for some α < κ, n(∗) < ω and z ∈ Le
n(∗) the

statement (Pr 1)
n(∗)
α,z [f , e] holds.

Proof. In the light of Lemma 5.2, we can find α ∈ κ \ S and n(∗) < ω such that

(Pr)
n(∗)
α [f , e] holds. According to Lemma 5.8, there exists z ∈ Le

n(∗) such that the

desired property (Pr 1)
n(∗)
α,z [f , e] holds, as claimed. �

Remark 5.14. The property (Pr 1)
n(∗)
α,z [f , e] is almost what is required, only the

“error term” Mα is too large. However, before we do this, we note that for the

solution of Kaplansky test problems, as done later in Section 8, this improvement

is immaterial as we just divide by a stronger ideal, i.e., we allow to divide by a

submodule of bigger cardinality.

Definition 5.15. Assume M̄ = 〈Mα : α ≤ κ〉 is a weakly semi-nice construction

with respect to (λ,m, S, κ), f is an R-endomorphism of Mκ, e ∈ Em and n(∗) < ω.

Let also Ḡ := 〈Gn : n ≥ n(∗)〉 be a sequence of additive subgroups of ϕe
n(∗)(Mκ).

(1) We say Ḡ is ϕ̄-appropriate for M̄ if Gn ⊆ ϕe
n(Mκ) for all n ≥ n(∗).

(2) We say Ḡ is compact with respect to (ϕ̄e, n(∗)) in Mκ, if it is ϕ̄-appropriate

and for any z∗` ∈ G` with ` ≥ n(∗), there is z∗ ∈ Gn(∗) such that

z∗ −
n∑

`=n(∗)

z∗` ∈ ϕn+1(Mκ).12

12So in appropriate sense,
∑

`≥n(∗)
z` exists; of course we can increase n(∗).
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(3) We say Gm is (K, ϕ̄)-finitary with respect to M̄, if Gm ⊆
∑
`<n

K` + ϕω(Mκ)

for some finite n < ω and K` ∈ c`is(K) such that
∑
`<n

K` ≤ℵ0 Mα for α

large enough in κ \ S.

(4) We say Ḡ is (K, ϕ̄)-finitary with respect to M̄ if Gm is (K, ϕ̄)-finitary with

respect to M̄ for some m ≥ n(∗).

(5) We say Ḡ is non-trivial if Gm * ϕe
ω(Mκ) for all m ≥ n(∗).

Let us recall “strongly semi-nice construction”:

Definition 5.16. Assume M̄ = 〈Mα : α ≤ κ〉 is a weakly semi-nice construction

with respect to (λ,m, S, κ). Then M̄ is strongly semi-nice, if for any f ∈ EndR(Mκ)

and e ∈ Em the following properties are valid:

(G)+ : (a) there is some α < κ such that |Mα| < λ;

(b) there is some n(∗) < ω and z ∈ Ne
n(∗) such that for every bimodule

homomorphism h : Ne
n(∗) →Mκ we have

fh(xen(∗))− h(z) ∈Mα + ϕω(Mκ).

Definition 5.17. In the previous definition, we replace “strongly” by strong+ if

Mα is replaced by

M∗ ⊕K ≤ℵ0 Mκ

for some K ∈ c`is(K).

Lemma 5.18. Assume κ = λ and M̄ = 〈Mα : α ≤ κ〉 is a semi-nice construction

with respect to (λ,m, S, κ) such that ||Mα|| < λ for α < κ. Suppose for given e ∈ E

and f ∈ EndR(Mκ) there are

• n(∗) < ω,

• α(∗) ∈ κ \ S and

• z ∈ Le
n(∗)[K]
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such that the property (Pr 1)
n(∗)
α(∗),z[f , e] holds. Then there exists a decreasing sequence

Ḡ∗ = 〈G∗n : n ≥ n(∗)〉 of additive subgroups of ϕe
n(∗)(Mκ) satisfying G∗n ⊆ ϕe

n(Mκ)

and equipped with the following properties:

(1) for every n ≥ n(∗) and every bimodule-homomorphism h : Ne
n −→Mκ,

(a) f(h(xen))− h(zn) ∈ G∗n where zn := gen(∗),n(z),

(b) Gn ⊆Mα(∗) + ϕe
ω(Mκ).

(2) Ḡ∗ is compact with respect to ϕ̄e.

Proof. For every n ≥ n(∗) we define G∗n by

G∗n :=
{
f(h(xen))− h(zn) : h : Ne

n →Mκ is a bimodule homomorphism
}

(+)

Clearly, G∗n is an additive subgroup of ϕe
n(Mκ) and the sequence Ḡ is decreasing.

(1). The desired claim f(h(xen)) − h(zn) ∈ G∗n is in (+). It is easily seen that

G∗n ⊆ Mα(∗) + ϕe
ω(Mκ). Indeed, let h : Ne

n → Mκ be a bimodule homomorphism.

Then h′ = h ◦ gen(∗),n : Ne
n(∗) → Mκ is a bimodule homomorphism. In view of

(Pr 1)
n(∗)
α(∗),z[f , e] we observe that

f(h(xen))− h(zn) = f(h′(xen(∗)))− h
′(z) ∈Mα(∗) + ϕe

ω(Mκ).

Also as xen, z ∈ ϕe(Ne
n), we have f(h(xen))− h(zn) ∈ ϕe

n(Mκ).

(2). Suppose z∗` ∈ G∗` for n(∗) ≤ ` < ω, so for some bimodule homomorphism

h` : Ne
` −→Mκ we have

z∗` = f(h`(x
e
n))− h`(z`).

Let α(0) with α(∗) < α(0) < κ be such that α(0) /∈ S, and for n(∗) ≤ `, Rang(h`) ⊆

Mα(0) and f(h`(x
e
`)) ∈Mα(0). Note that such α(0) necessarily exists as κ = cf(κ) ≥

κ(E) + ℵ0. We need the following claim:

Claim 5.19. For each n ≥ n(∗) and β > α(1) with β ∈ κ\S, there are γ satisfying

β < γ ∈ κ \ S, some embedding hβ,n : Ne
n −→ Mγ and some Kβ,n ∈ c`ℵ0is (K) such

that the following two items hold:
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(1) Mβ ⊕ Rang(hβ,n)⊕Kβ,n ≤ℵ0 Mγ ,

(2) f(hβ,n(xen)) ∈ Rang(hβ,n)⊕Kβ,n.

In particular, f(hβ,n(xen))− hβ,n(zn) ∈ ϕe
ω(Mκ).

Proof. Fix n and β as in the claim. For every γ satisfying β < γ ∈ κ \ S, let

hγ : Ne
n −→Mγ+1 and K0

γ ∈ c`is(K) be such that hγ is a bimodule embedding and

f(hγ(xen)) ∈Mγ ⊕ Rang(hγ)⊕K0
γ ≤ℵ0 Mκ.

Let εγ > γ be in κ \ S such that f maps Mεγ into Mεγ and

Mγ ⊕ Rang(hγ)⊕K0
γ ≤ℵ0 Mεγ .

Let f(hγ(xen)) = z1
γ + z2

γ + z3
γ , where z1

γ ∈ Mγ , z2
γ ∈ Rang(hγ) and z3

γ ∈ K0
γ . By

Fodor’s lemma for some z and for a stationary set T ⊆ κ \ S we have

• min(T ) > β,

• z1
γ = z, for all γ ∈ T.

Let γ(1), γ(2) ∈ T be such that εγ(1) < γ(2). Now, the following

(i) γ := εγ(2),

(ii) hβ,n := hγ(2) − hγ(1) and

(iii) Kβ,n := K0
γ(1) ⊕K0

γ(2) ⊕ Rang(hγ(1))

are as required.

The particular case follows by the choose of α(∗). �

Let us complete the proof of Lemma 5.18. To this end, we look at the following

club of κ:

A := {β < κ : β > α(0) and f ′′(Mβ) ⊆Mβ}.

Let n ≥ n(∗) and β ∈ A∩(κ\S). According to Claim 5.19, we can find some γβ > β

a bimodule embedding hβ,n : Ne
n −→Mγβ , and Kβ,n ∈ c`ℵ0is (K) such that

• Mβ ⊕ Rang(hβ,n)⊕Kβ,n ≤ℵ0 Mγβ ,

• f(hβ,n(xen)) ∈ Rang(hβ,n)⊕Kβ,n.
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Set U =: {` : n(∗) ≤ ` < ω} and e∗ = e � U , so e∗ ∈ Em as well. For ` ∈ U and

β ∈ A ∩ (κ \ S), set

h′β,` = hβ,` + h`.

We are going to use the property presented in part (G)2 of Definition 4.36(3). In

this regard, we can find an embedding h : Pe∗ → Mκ and an increasing sequence

〈εn : n < ω〉 of elements of A ∩ (κ \ S) such that ε = sup
n<ω

εn ∈ A ∩ (κ \ S) and for

each n ∈ U , h′εn,n = h ◦ he∗n . Then

f(h′ε`,`(x
e
`))− h′ε`,`(z`) = f(hε`,`(x

e
`))− hε`,`(z`)− z∗` ∈ z∗` + ϕe

ω(Mκ).

Let x := f en(∗)(x
e∗

1 ) and z′ := f en(∗)(z) where f en(∗) is in Lemma 4.30. It then follows

that

• x−
`=n−1∑
`=n(∗)

he`(x
e
`) ∈ ϕe

n(Pe), and

• z′ −
`=n−1∑
`=n(∗)

he`(z`) ∈ ϕe
n(Pe).

We deduce from these memberships that

h(x)−
`=n−1∑
`=n(∗)

h(he`(x
e
`)) ∈ ϕe

n(Mκ)

and

h(z′)−
`=n−1∑
`=n(∗)

h(he`(z`)) ∈ ϕe
n(Mκ).

As f is an endomorphism, we have

f(h(x))−
`=n−1∑
`=n(∗)

f(h(he`(x
e
`))) ∈ ϕe

n(Mκ).

We plug this in the previous formula and deduce that

f(h(x))− h(z′)−
`=n−1∑
`=n(∗)

(f(h(he`(x
e
`)))− h(he`(z`))) ∈ ϕe

n(Mκ).

Note that for some K ∈ c`(K),Mε = Mα(0) ⊕ Pe ⊕ K. Let π : Mε → Mα(0) be the

projection map and set

(∗) : z∗ := π(f(h(x)))− π(h(z′)).
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We apply h′ε`,` = h ◦ he∗` along with the previous observation to see:

f(h(he`(x
e
`)))− h(he`(z`)) = f(h′ε`,`(x

e
`))− h′ε`,`(z`)

= f(hε`,`(x
e
`))− hε`,`(z`)− z∗` .

This yields that

(∗, ∗) : π(f(h(he`(x
e
`))))− π(h(he`(z`))) = π(f(hε`,`(x

e
`)))− π(hε`,`(z`))− π(z∗` )

= z∗` .

Therefore,

z∗ −
n−1∑
`=n(∗)

z∗`
(∗)
= π(f(h(x)))− π(h(z′))−

n−1∑
`=n(∗)

z∗`

(∗,∗)
= π(f(h(x)))− π(h(z′))−

`=n−1∑
`=n(∗)

π(f(h(he`(x
e
`))))− π(h(he`(z`)))

∈ ϕe
n(Mκ).

So, z∗ is as required. �

Recall that e ∈ Em. For simplicity, we bring the following notation:

Notation 5.20. For each ` = 1, 2, we take finite subsets J` of I, and let y` ∈∑
t∈J`

Kt. Suppose y1 − y2 ∈ ϕe
n(K) where n < ω. We say the property (∗) is valid,

provided for some y3 ∈
∑
t
{Kt : t ∈ J1 ∩ J2} we have

(1) y1 − y3 ∈ ϕe
n(K) and

(2) y3 − y2 ∈ ϕe
n(K).

Let z ∈ Ne
n(∗). Following the above lemma, let us define, Gm

n,z[M̄] as 〈Gn : n ≥

n(∗)〉 where

Gn := {f(h(xen))− h(gen(∗),n(z)) : h ∈ Hom(Ne
n,Mκ)}.

We now show that under some extra assumptions we can get a better 〈Gn〉:

Lemma 5.21. Let M̄ = 〈Mα : α ≤ κ〉 be a weakly semi-nice construction with

respect to (λ,m, S, κ), f be an R-endomorphism, e ∈ Em and n(∗) < ω.
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(1) Let K =
⊕
t∈I

Kt when we view things as R-modules, and let Ḡ = Gm
n,z[M̄] be

decreasing and compact for (ϕ̄e, n(∗)) in K over K0. Then for some finite

J ⊆ I and m < ω:

Gm ⊆
⊕
t∈J

Kt + ϕe
ω(K).

(2) Let K =
∑
t∈I

Kt when we view things as R–modules, and suppose the property

(∗) from Notation 5.20 is valid. Then for some finite subset J ⊆ I and

m < ω:

Gm ⊆
⊕
t∈J

Kt + ϕe
ω(K).

(3) Let Ḡ be compact with respect to (ϕ̄e, n(∗)) in K, as R-modules, and let

h : K −→ K′ be an R-homomorphism. Suppose for any h(x) ∈ ϕe
`(K′) \

ϕe
`+1(K′) there is some y ∈ ϕe

`(K) \ ϕe
`+1(K) so that h(y) = h(x). Then

h′′(Ḡ) :=
〈
h′′(Gn) : n ≥ n(∗)

〉
is compact with respect to (ϕ̄e, n(∗)) in K′.

(4) If G ⊆ K :=
n⊕
t=1

Kt and the projections from G to each Kt is (K, ϕ̄)-finitary,

then G is (K, ϕ̄)-finitary.

(5) If K0 ⊆ K1 ≤adsK,ℵ0 K2 and Ḡ is (ϕ̄e, n(∗))-compact in K2 over K0, then

〈Gn ∩K1 : n ≥ n(∗)〉 is (ϕ̄e, n(∗))-compact in K1 over K0.

Proof. (1) Let us first suppose that the index set I is countable. Suppose by

contradiction that for all finite J ⊆ I and m < ω,

Gm *
⊕
t∈J

Kt + ϕe
ω(K).

We argue by induction on ` ≥ n(∗) to find z`, J` and n` such that the following

properties hold:

i) J` is a finite subset of I,

ii) J` ⊆ J`+1,

iii) I =
⋃
`<ω

J`,
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iv) z` ∈ G` \

(⊕
t∈J`

Kt + ϕe
ω(K)

)
,

v) z` /∈
⊕
t∈J`

Kt + ϕe
n`+1

(K),

vi) z` ∈
⊕

t∈J`+1

Kt.

Let U be an infinite subset of ω such that 0 ∈ U and

` < m and m ∈ U =⇒ n`+1 < m.

Define 〈z∗` : ` < ω〉 by z∗` = z` if ` ∈ U and z∗` = 0 otherwise. By compactness, we

can find z∗ ∈ Gn(∗) such that for each ` ≥ n(∗),

z∗ −
∑̀
i=n(∗)

z∗i ∈ ϕe
`+1(K).

Let J ⊆ I be a finite set such that z∗ ∈
⊕
t∈J

Kt. Pick m ∈ U such that J ⊆ Jm and

set n be the least element of U above m. Then zm = z∗m and

z∗ −
m∑

i=n(∗)

z∗i = z∗ −
n−1∑
i=n(∗)

z∗i ∈ ϕe
n(K),

an easy contradiction.

Let us now show that we can get the result for arbitrary I. Thus suppose I is

uncountable and suppose that the conclusion of the lemma fails for it. Construct

z`, J`, n` as before and set Ī =
ω⋃

`=n(∗)
J`. Then Ī is countable. Set K̄ =

⊕
t∈Ī

Kt and

Ḡn = Gn ∩ K̄. It then follows that the conclusion fails for this case, contradicting

the above argument.

(2). This is similar to (1).

(3). Suppose h(x`) ∈ h′′(G`), for ` ≥ n(∗). By our assumption, we can find a

sequence 〈y` : ` ≥ n(∗)〉 such that

• y` ∈ G`,

• h(y`) = h(x`),

• h(x`) ∈ ϕe
`(K′) \ ϕe

`+1(K′) =⇒ y` ∈ ϕe
`(K) \ ϕe

`+1(K).
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Let z ∈ Gn(∗) be such that for each n ≥ n(∗), z−
n∑

`=n(∗)
y` ∈ ϕe

n+1(K). This implies

that

h(z)−
n∑

`=n(∗)

h(y`) ∈ ϕe
n+1(K).

Thus h(z) ∈ h′′(Gn(∗)) is as required.

(4). For t = 1, · · · , t let πt : K→ Kt be the projection map to Kt. We have

π′′t (G) ⊆
∑
i<mt

Kti + ϕe
ω(K),

where each Kti is in c`is(K). Then

G =

n∑
t=1

π′′t (G) ⊆
n∑
t=1

(∑
i<mt

Kti + ϕe
ω(K)

)
⊆

n∑
t=1

∑
i<mt

Kti + ϕe
ω(K).

We are done.

(5). For each ` ≥ n(∗), we peak z` ∈ G` ∩ K1. Due to our assumption, there

exists z∗ ∈ K2 such that z∗ −
n∑

`=n(∗)
z` ∈ ϕe

n+1(K2) for all n ≥ n(∗). Consequently,

K2 |= ∃z∗
ω∧

n=n(∗)

ϕe
n+1(z∗ −

n∑
`=n(∗)

z`).

As K1 ≤adsK,ℵ0 K2 and in the light of Lemma 4.20(1) we have

K1 |= ∃z∗
ω∧

n=n(∗)

ϕe
n+1(z∗ −

n∑
`=n(∗)

z`).

Let z∗ ∈ K1 be witness this. Then, z∗ −
n∑

`=n(∗)
z` ∈ ϕe

n+1(K1) for all n ≥ n(∗), as

required. �

Remark 5.22. Adopt the notation of Lemma 5.21(3).

i) We can weaken the assumption on h to the following property: for some

η ∈ ωω diverging to infinity if ` ≥ n(∗) and h(x) ∈ ϕe
`(K′) \ ϕe

`+1(K′), then

h(x) = h(y) for some y ∈ ϕe
n(∗)(K) \ ϕe

η(`)(K).

ii) Note that if h is a projection, then it satisfies in the presented condition

from the first item.
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Lemma 5.23. Let R, S and every N ∈ K be of cardinality < 2ℵ0 and let e ∈ E.

Then there is no non-trivial compact Ḡ for ϕ̄e in any K-bimodule M.

Proof. Let 〈Gn : n ≥ n0〉 be (ϕ̄e, n0)-compact in M. According to Definition 5.15

(4) we need to show that Gm ⊆ ϕe
ω(M) for some m. Suppose on the contradiction

that Gm * ϕe
ω(M) for all m ≥ n0. Hence, Gm * ϕe

`m
(M) for some `m > n0. For

each m ≥ n0, we pick zm ∈ Gm\ϕe
`m

(M). For any infinite U ⊆ ω\n0, find zU ∈ Gn0

such that

zU −
∑
{zm : m ∈ U ∩ [n0, n]} ∈ ϕe

n+1(M)

for all n ∈ U . Let U1 and U2 be two subsets of ω with finite intersection property.

Then zU1 6= zU2 . It follows that

2ℵ0 ≤ ||Gn0
|| ≤ ||M|| < 2ℵ0 ,

which is impossible. �

Lemma 5.24. Assume κ = λ and M̄ = 〈Mα : α ≤ κ〉 is a semi-nice construction

with respect to (λ,m, S, κ) such that α < κ, ||Mα|| < λ.

i) Suppose e ∈ E and f is an R-endomorphism of Mκ, for some n(∗) < ω,

α(∗) ∈ κ \ S and z ∈ Le
n(∗)[K] such that the property (Pr 1)

n(∗)
α(∗),z[f , e] holds.

Then

Gm
n,z[M̄] := 〈Gn : n ≥ n(∗)〉

is (K, ϕ̄e)-finitary in Mκ, for some additive subgroups of ϕe
n(∗)(Mκ) such as

Ḡ∗ = 〈G∗n : n ≥ n(∗)〉.

ii) Assume in addition that for N ∈ K, there is no non-trivial L̄ = 〈Ln : n ≥

n(∗)〉 compact with respect to (ϕ̄e, n(∗)) in M∗⊕N, then, by increasing n(∗),

we can take Gm
n,z[M̄] = 0̄, i.e., Gn = 0 for all n ≥ n(∗).

Proof. Let Ḡ∗ = 〈G∗n : n ≥ n(∗)〉 be as Lemma 5.18, and pick α(∗) ∈ κ \ S be

such that z ∈ Le
n(∗)[K] ⊆ Mα(∗). We use the assumption Mα(∗) ∈ c`(K) along with
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Lemma 5.21(1) to find m < ω and a finite subset {K0, · · · ,Kn−1} of c`is(K) such

that each Ki is a direct summand of Mα(∗) and

Gm ⊆
∑
`<n

K` + ϕe
ω(Mκ).

Recall from Lemma 4.37(1) that
∑
`<n

K` ≤ℵ0 Mα(∗) ≤ℵ0 Mα, where α > α(∗). Thus

Gm
n,z[M̄] = 〈Gn : n ≥ n(∗)〉 is (K, ϕ̄e)-finitary in Mκ.

Now suppose that for each N ∈ K, there is no non-trivial L̄ = 〈Ln : n ≥ n(∗)〉

compact for (ϕ̄e, n(∗)) in M∗ ⊕N. Suppose by contradiction that Gm
n,z[M̄] 6= 0̄. Let

α(∗), {K0, · · · ,Kn−1} ⊂ c`is(K) and m be as above. By increasing n(∗) we may

assume that m = n(∗). Then
⊕

`<nK` is a direct summand of Mα(∗). Suppose

Mα(∗) =
⊕

`<nK` ⊕M and we look at the natural projection map π : Mα(∗) →M.

In view of Lemma 5.21(3) (and Remark 5.22) we observe that π′′(Gm
n,z[M̄]) is non-

trivial and compact for (ϕ̄e, n(∗)) in M∗ ⊕ N, which is a contradiction. �

Remark 5.25. (1) Suppose for every K-bimodule M and e ∈ E and Gn ⊆ M

for n ≥ n0, if 〈Gn : n ≥ n0〉 is (ϕ̄e, n0)-compact in M, then for some

m, Gm ⊆ ϕe
ω(M). Recall that Lemma 5.23 presents a situation for which

this property holds. In view of Lemma 5.18 we can choose Gn(∗) = 0. In

particular, the “error term” disappears, i.e., for every endomorphism f of

Mλ as an R–module, for some m we have f � ϕe
m(Mλ)/ϕe

ω(Mλ) is equal to

he,m
Mλ,z (for its definition, see Definition 6.12 below).

(2) If R, S have cardinality < 2ℵ0 , we have some interesting candidates to

define K. For example, let K be the family of finitely generated finitely

presented bimodules.

6. More specific rings and families E

In this section we introduce some special rings that play an important role in our

solution of Kaplansky test problems. In fact, we are going to present the proof of

Corollary 2.1. We also specify some specific elements of E that we work with them

Paper Sh:421, version 2022-06-07. See https://shelah.logic.at/papers/421/ for possible updates.



KAPLANSKY TEST PROBLEMS 87

later. Let us start by extending the notion of pure semisimple from rings to a pair

of rings.

Definition 6.1. Given a bimodule M and a sequence ϕ̄ of formulas, the notation

(∗)ϕ̄,Mℵ0,ℵ0 stands for the following two assumptions:

(a) ϕn = ϕn(x) is in Lcpeℵ0,ℵ0(τR), and

(b) the sequence 〈ϕn(M) : n < ω〉 is strictly decreasing.

Note that if ϕ̄ is as above, then it is (ℵ0,ℵ0)-adequate. Also for simplicity, we

can assume that ϕn+1(x) ` ϕn(x) holds for all n < ω.

Definition 6.2. The pair (R,S) of rings is called purely semisimple if for some

bimodule M∗ and a sequence ϕ̄ = 〈ϕn(x) : n < ω〉, the property (∗)ϕ̄,M
∗

ℵ0,ℵ0 holds.

Thanks to Theorem 3.22 a ring R is not purely semisimple if and only if the pair

(R,R) is purely semisimple.

Definition 6.3. (1) The sequence ϕ̄ := 〈ϕn(x) : n < ω〉 is called very nice if

it is as in Definition 6.1 and for some mn, k` < ω and a`, b`,i ∈ R we have

(a) ϕn(x) = (∃y0, . . . , ykn−1)[
mn−1∧
`=0

a`x` =
∑
i<k`

b`,iyi],

(b) mn < mn+1, k` ≤ k`+1.

(2) Let ϕ̄1 := 〈ϕ1
n(x) : n < ω〉 and ϕ̄2 := 〈ϕ2

n(x) : n < ω〉 be two sequences of

formulas. By ϕ̄1 ≤ ϕ̄2 we mean

(∀n < ω)(∃m < ω)[ϕ2
m(x) ` ϕ1

n(x)].

(3) Let ϕ̄1 and ϕ̄2 be two sequences of formulas. We say ϕ̄1 and ϕ̄2 are equiv-

alent if ϕ̄1 ≤ ϕ̄2 and ϕ̄2 ≤ ϕ̄1.

(4) e ∈ E is called κ-simple if for each n there are a set X ⊆ Ne
n of cardinality

< κ and a set Σ of < κ equations from Lℵ0,ℵ0(τR) with parameters from X

such that Ne
n is generated by X freely except the equations in Σ. We call X

a witness.
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Lemma 6.4. Adopt the above notation. The following assertions are true:

(1) Suppose (∗)ϕ̄,M
∗

ℵ0,ℵ0 holds. Then there is a very nice sequence ϕ̄′ equivalent to

ϕ̄.

(2) If the ϕn’s are from infinitary logic, the same thing holds, only mn, k` may

be infinite but for each ` the set {i : b`,i 6= 0} is finite.

Proof. We only prove (1), as clause (2) can be proved in a similar way. Thus assume

(∗)ϕ̄,M
∗

ℵ0,ℵ0 holds. According to Lemma 3.12, we can assume that each ϕn is a simple

formula, so it is of the form

ϕn(x) = (∃y0, . . . , ykn−1)

[mn−1∧
`=0

an` x =
∑
i<kn

bn`,iyi

]
,

where an` , b
n
`,i are members of R, kn,mn are natural numbers. After replacing ϕn

with
∧
`≤n

ϕ`, if necessary, we may assume that the sequence is decreasing in the

sense that ϕn+1(x) ` ϕn(x), for each n. Also without loss of generality and by

taking bn`,i = 0R, we can assume that k` < k`+1 and mn < mn+1. Finally, note

that we can even get a better sequence by taking

ϕ0(x) = ∃y0(x = y0).

So, m0 = 1, a0 = 1R, k0 = 1 and b0,0 = 1. This completes the proof. �

Remark 6.5. Let ϕ̄ be a very nice sequence. According to Lemma 6.4 and its

proof, we assume from now on that ϕ0 is of the form ϕ0(x) = ∃y0(x = y0).

We now assign to each very nice sequence ϕ̄, an element e(ϕ̄) ∈ Eℵ0,ℵ0 as follows.

Definition 6.6. Suppose ϕ̄ is a very nice sequence. Then

e(ϕ̄) = 〈Nn, xn, gn : n < ω〉

is defined as follows:
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i) Nn is the (R,S) bimodule which is generated by

{xn} ∪ {yn,i : i < kmn−1}

freely except to the following equations

{
a`xn =

∑
i<k`

b`,iyn,i : ` < mn

}
.

In other words,

Nn =
RxS⊕ (

⊕
i<kmn−1

Ryn,iS)

K
,

where K is the bimodule generated by 〈a`xn −
∑
i<k`

b`,iyn,i : ` < mn〉.

ii) gn : Nn → Nn+1 is defined so that gn(xn) = xn+1 and gn(yn,i) = yn+1,i for

i < kmn−1.

We call e simple if it is of the form e(ϕ̄) for some very nice ϕ̄.

Note that by Remark 6.5, for each n, xn = yn,0. Then next lemma shows that

e(ϕ̄) ∈ Eℵ0,ℵ0

Lemma 6.7. Let ϕ̄ be very nice and set e := e(ϕ̄). The following assertions are

valid:

(1) xn ∈ ϕn(Nn).

(2) Let M be a bimodule. Then x∗ ∈ ϕn(M) if and only if for some bimodule

homomorphism h : Nn →M we have h(xn) = x∗.

(3) xn /∈ ϕn+1(Nn).

(4) Each gn is a bimodule homomorphism.

Proof. Clauses (1), (3) and (4) are trivial. Clause (2) follows from Lemma 4.8. �

We will frequently use the following simple observation without any mention of

it.

Lemma 6.8. Let e ∈ Em be simple. Then for every n < ω, ψe
n and ϕe

n are

equivalent. In other words, if Mm
∗ ≤ℵ0 M and x ∈M then M |=“ψe

n(x)↔ ϕe
n(x)”.
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We now define some very special bimodules.

Definition 6.9. Let n < ω.

(1) Let N′n be the bimodule generated by xn, y′n,i and y′′n,i for i < kmn−1 freely

subject to the following relations for ` < mn:

(a) a`x =
∑
i<k`

b`,iy
′
n,i

(b) a`x =
∑
i<kn

b`,iy
′′
n,i.

(2) Let N`n for ` = 1, 2, be the sub-bimodule of N′n generated by:

{xn} ∪ {y′n,i : i < kmn−1} for ` = 1,

{xn} ∪ {y′′n,i : i < kmn−1} for ` = 2.

(3) Let f `n : Nn −→ N`n be the bimodule homomorphisms defined by the following

assignments:

(a) f `n(xn) = xn,

(b) f1
n(yn,i) = y′n,i and

(c) f2
n(yn,i) = y′′n,i.

(4) Ltr,ϕ̄
n := {z ∈ ϕn(Nn) : f1

n(z)− f2
n(z) ∈ ϕω(N′n)}.

Clearly, it is an abelian subgroup of Nn.

Let e ∈ E and suppose ϕ̄ is an adequate sequence for e. Also, let (h1,h2) be a

pair of bimodule homomorphisms from Ne
n to M. Recall from Definition 4.29 that

Le,ϕ̄,h1,h2
n =

{
z ∈ ϕn(Ne

n) : h1(z) = h2(z) mod ϕω(M)
}
.

Suppose m is a context and recall that

Le
n[m] =

⋂
M∈K∪{M∗}

{
Le,ϕ̄e,h1,h2
n : h1,h2 ∈ Hom(Ne

n,M) and h1(xen) = h2(xen)

}
.

In the next lemma we show that the bimodule N′ and the homomorphisms f1
n, f

2
n

are sufficient to determine Le(ϕ̄)
n [m] provided ϕ̄ is very nice.

Lemma 6.10. Let m be a nice context, ϕ̄ be very nice and e := e(ϕ̄) ∈ Em. Then

Le(ϕ̄)
n [m] = Ltr,ϕ̄

n .
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Proof. Let z ∈ Le(ϕ̄)
n [m]. Since f1

n, f
2
n : Nn −→ N`n satisfy f1

n(xn) = f2
n(xn), thus it

follows from Definition 6.9 that z ∈ Ltr,ϕ̄
n .

In order to prove Ltr,ϕ̄
n ⊆ Le(ϕ̄)

n [m], let h1,h2 : Ne
n → M ∈ K ∪ {M∗} be such

that h1(xn) = h2(xn). Note that

M |= ϕe
n(h1(xn))

and

M |= ϕe
n(h2(xn)).

Thus, we can find h′1 : N1
n → M and h′2 : N2

n → M such that h1 = f1
n ◦ h′1 and

h2 = f2
n ◦ h′2. Take some z ∈ Ltr,ϕ̄

n . By definition, z ∈ ϕe
n(Nn) and f1

n(z)− f2
n(z) ∈

ϕω(N′n). But then h1(z)− h2(z) ∈ ϕe
ω(M). From this, z ∈ Le,ϕ̄,h1,h2

n . Since h1,h2

were be arbitrary, z ∈ Le(ϕ̄)
n [m]. �

So, if m is a context whose Em consists of simple e’s and if M ∈ Km, then every

R-endomorphism is in some sense definable, i.e., by fixing e ∈ Em and restricting

ourselves to ϕe
n(M) for large enough n, modulo ϕe

n(M), it is determined by some

z ∈ Le
n[Km]. However, not every such z may really occur. We try to formalize this

in Lemma 6.22.

Notation 6.11. From now on we fix a context m = (K,M∗,E,R,S,T).

Definition 6.12. Suppose e ∈ E, n < ω and z ∈ Le
n are given. Let M be a

bimodule which ≤adsK,ℵ0-extends M∗. We define he,n
M,z ∈ End(ψe

n(M)/ϕe
ω(M)) as an

endomorphism of the additive group ψe
n(M)/ϕe

ω(M)13 so that for every bimodule

homomorphism h : Ne
n →M

he,n
M,z (h(xen) + ϕe

ω(M)) := h(z) + ϕω(M).

Remark 6.13. According to Lemma 4.8, every w ∈ ψe
n(M) is of the form h(xen),

for some h : Ne
n →M as above. Also note that as z ∈ Le

n, if h′ : Ne
n →M is another

13Pedantically we should write ψe
n(M)/ϕe

ω(M) ∩ ψe
n(M).
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bimodule homomorphism such that h′(xen) = h(xen), then h′(z) = h(z) mod ϕe
ω(M).

This shows that he,n
M,z is well-defined, and does not depend on the choice of h.

Definition 6.14. Let e ∈ E, n < ω, z ∈ Le
n and let M be a bimodule such that

M∗ ≤ℵ0 M. Then

(1) z ∈ Le
n is called (m, e, n)-nice if when h : Ne

n −→ M is a bimodule homo-

morphism, m ≥ n and M |= ψe
m(h(xen)), then M |= ψe

m(h(z)).

(2) z ∈ Le
n is called (m, e)-nice if it is (m, e, n)-nice for every n.

(3) z ∈ Le
n is called weakly (m, e)-nice if there is an infinite subset U ⊆ ω such

that z is (m, e, n)-nice for every n ∈ U .

We remove (m, e), when it is clear from the context.

We now define a subgroup of Le,n
n .

Definition 6.15. For each e ∈ E and n < ω, we define

Le,∗
n := {z ∈ Le

n : z is (m, e)-nice}.

Lemma 6.16. Let e be simple and Mκ be strongly nice with respect to (λ,m, S, κ)

and let f be an R-endomorphism of Mκ. The following assertions hold:

(1) Let z be as Lemma 5.8. Then z ∈ Le,∗
n .

(2) For some n < ω and z ∈ Le,∗
n there is K′ ∈ clis(K) such that

• M′ := M∗ ⊕K′ ≤ℵ0 Mκ and

• x ∈ ψe
n(Mκ)⇒ f(x) + ϕe

n(Mκ) + M′ = he,n
Mκ,z(x) + ϕe

n(Mκ) + M′.

Proof. (1): Since e is simple, there is a very nice sequence ϕ such that e = e(ϕ).

Since z ∈ Le
n we know that z ∈ ϕn(Ne

n) and f1
n(z) − f2

n(z) ∈ ϕω(N′n) where f `n :

Nn −→ N`n are bimodule homomorphisms defined in Definition 6.9(3). Now suppose

h : Nn →Mκ is a bimodule homomorphism, m ≥ n and suppose

Mκ |= ψe
m(h(xen)).
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We are going to show that

Mκ |= ψe
m(h(z)).

Recall that f(h(xn)) − h(z) ∈ Mα + ψe
ω(Mκ). This gives an element y ∈ Mα such

that

f(h(xn))− h(z) + y ∈ ψe
ω(Mκ).

In particular, Mκ |= ψe
m(f(h(xen))− h(z) + y). As ϕ is very simple,

Mκ |= ϕe
m(f(h(xen))− h(z) + y).

We conclude from this that there is a bimodule homomorphism H1 : Ne
n → Mκ

such that H1(xm) = f(h(xn))− h(z) + y. Since Mκ |= ψe
m(h(xen)), we have

Mκ |= ψe
m(f(h(xen))).

This gives a bimodule homomorphism H2 : Ne
n → Mκ such that H2(xem) =

f(h(xen)). Define K : Ne
n →Mκ by K := H2 −H1. Clearly, K(xem) = h(z) + y. So,

Mκ |= ϕe
m(h(z) + y).

Take M ≤ℵ0 M∗ be such that h(z) ∈M and M⊕Mα ≤ℵ0 Mκ. Then

M⊕Mα |= ψe
m(h(z) + y).

So, M |= ψe
m(h(z)) and then Mκ |= ψe

m(h(z)), as required.

(2): In view of Lemmas 5.2 and 5.8, there are n < ω and α ∈ κ \ S such

that the property (Pr 1)nα,z[f , e] holds. Since e is simple, by Lemma 6.8 we have

ψe
n(M) ≡ ψe

n(M).

Now let x ∈ ψe
n(Mκ). Then x ∈ ϕe

n(Mκ). This gives us a bimodule homomor-

phism h : Ne
n → Mκ such that h(xen) = x. Since (Pr 1)nα,z[f , e] holds, thus we

have

f(x)− h(z) = f(h(xen))− h(z) ∈Mα + ϕe
ω(Mκ).
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Also, recall that

he,n
M,z(x+ ϕe

ω(Mκ)) = h(z) + ϕe
ω(Mκ).

This completes the argument. �

Remark 6.17. Adopt the notation of Lemma 6.16, and suppose in addition that

||M∗|| < λ and ||K|| < λ for every K ∈ clis(K). Then ||M′|| < λ = ||Mκ||.

Definition 6.18. Let M be an R-module, e ∈ E and n < ω.

(1) (a) For f ∈ End(M), we set f̂n := f � ϕe
n(M)/ϕe

ω(M).

(b) Let Ende,n(M) :=
{
f̂n : f ∈ End(M)

}
14.

(c) Let Υn,λ(M) be the family of all f ∈ End(M) such that for some A ⊆M

of cardinality < λ we have

Rang(f�ϕe
n(M)) ⊆ {x+ ϕe

ω(M) : x ∈ ϕe
n(〈A〉M)}.

(d) The notation Ende,n
<λ(M) stands for the following two-sided ideal:

Ende,n
<λ(M) :=

{
f̂n ∈ Ende,n(M) : f ∈ Υn,λ(M)}C Ende,n(M).

(e) Let n ≤ m. The notation he,n,m
<λ [M] stands for the natural map from

Ende,n
<λ(M) to Ende,m

<λ (M). In particular, {Ende,n
<λ(M); he,n,m

<λ [M]} is a

directed system.

(f) Ende,ω
<λ(M) := lim−→(· · · −→ Ende,n

<λ(M) −→ Ende,n+1
<λ (M) −→ · · · ).

(g) We denote the natural maps:

he,n,ω
<λ [M] : Ende,n

<λ(M)→ Ende,ω
<λ(M).

(2) Suppose in addition that M is an (R,S)-bimodule.

(a) For any f ∈ EndR(M), we assign f̂n := f � ϕe
n(M)/ϕe

ω(M).15

14Recall that End(M) := EndR(M) is the ring of R-endomorphisms of M.
15There should be no confusion with clause (1)(a) above, as here we are talking about a

bimodule M.
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(b) The ring of R-endomorphisms of M induces the following ring

Ende,n,∗(M) := {f̂n : f ∈ EndR(M)}.

(c) Let Υ∗n,λ(M) be the family of all f ∈ EndR(M) such that for some

A ⊆M of cardinality < λ we have

Rang(f�ψe
n(M)) ⊆ {x+ ϕe

ω(M) : x ∈ ϕe
n(〈A〉M)}.

(d) Ende,n,∗
<λ := {f̂n : f ∈ Υ∗n,λ(M)}.

It is easily seen that all the above defined notions are rings. We now define some

expansions of ϕe
n(M)/ϕe

ω(M).

Definition 6.19. Let M, e and n be as above.

(1) The notation Be
n(M) stands for ϕe

n(M)/ϕe
ω(M) expanded by the finitary

relations definable by formulas in Lpe
∞,ω(τR) (so actually even if we use this

notation for a bimodule M, it counts only as an R-module).

(2) Similarly, we define +Be
n(M), where p.e. formulas are replaced by “formu-

las preserved by direct sums”.

(3) For a bimodule M we define Be
n(M) and +Be

n(M) similarly let restricting

ourselves to ψe
n(M).

So,

Be
n(M) = (ϕe

n(M)/ϕe
ω(M), 〈R〉R∈R),

where R consists of all finitary relations defined by a formula from Lpe
∞,ω(τR). Sim-

ilarly

+Be
n(M) = (ϕe

n(M)/ϕe
ω(M), 〈R〉R∈+R),

where +R consists of all finitary relations which are defined by a formula from

L∞,ω(τR) which is preserved under direct sums. Since, by Lemma 3.14, pe-formulas

are preserved by direct limits, +Be
n(M) expands Be

n(M).
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Lemma 6.20. The following assertions are hold:

(1) Adopt the notation of Definition 6.18(1). Then Ende,n(M) is a ring with 1

and Ende,n
<λ(M) is a two-sided ideal of Ende,n(M). 16 Suppose in addition

M is a bimodule, then S is naturally maps to Ende,n(M).

(2) Ende,n
<λ(M) is a two-sided subideal of Ende,n

<µ(M) when λ < µ.

(3) Ende,n
<‖M‖+(M) = Ende,n(M).

(4) If M1,M2 are R-modules and h is an R-homomorphism from M1 to M2,

then h induces a homomorphism from Be
n(M1) into Be

n(M2).

Proof. (1). It is clear that all the defined notions are rings (not necessarily with

1). Now suppose M is a bimodule. Then one can easily show that for each s ∈ S,

s defines an R-endomorphism of M by x→ xs.

Items (2) and (3) are clear. To prove (4), first note that, as h(ϕe
n(M1)) ⊆

ϕe
n(M2),

ĥn = h � ϕe
n(M1)/ϕe

ω(M1) : ϕe
n(M1)/ϕe

ω(M1)→ ϕe
n(M2)/ϕe

ω(M2)

is well-defined. Now let ϕ(ν1, · · · , νn) ∈ Lpe
∞,ω(τR), and for ` = 1, 2 set

R` = {〈x1, · · · , xn〉 ∈M` : M` |= ϕ(x1, · · · , xn)}.

Clearly h(R1) = R2, and hence ĥn(R1 + ϕω(M1)) = R2 + ϕω(M2). The result

follows immediately. �

Remark 6.21. Adopt the notions presented in the proof of Lemma 6.20(4). Let h

be an R-homomorphism from M1 to M2 and n < ω. The notation ĥn may stand

for the homomorphism from Be
n(M1) into Be

n(M2).

We now define some rings derived from the ring of R-endomorphism of bimod-

ules. Before doing that we need the following lemma which shows that the maps

he,n
M,z from Definition 6.12 are definable.

16 Note that this ideal may be proper, i.e., 1 /∈ Ende,n
<λ(M) or not.
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Lemma 6.22. Let M be a bimodule, e ∈ E be simple and n < ω.

(1) Suppose h : M1 → M2 is an R-homomorphism, e ∈ E, n < ω and z ∈ Le
n.

Then he,n
M1,z
◦ ĥn = ĥn ◦ he,n

M2,z
.

(2) Suppose z ∈ Le
n is n-nice and m > n. Then there is y ∈ Ne

m such that for

every bimodule M,

he,m
M,y = he,n

M,z � (ψn(M)/ϕω(M)).

(3) Suppose ψ(x, y) ∈ Lpe
∞,ω(τ(R,S)) is such that

(i) ψe
n(x) ` ∃yψ(x, y),

(ii) ψ(x, y) ` ψe
n(x) ∧ ψe

n(y),

(iii) ψ(x, y1) ∧ ψ(x, y2) ` ψe
`(y1 − y2), for all ` < ω.

Then there is some z ∈ Le
n such that for every bimodule M and x, y ∈

ψn(M),

M |= ψ(x, y) ⇐⇒ he,n
M,z(x+ ϕe

ω(M)) = y + ϕe
ω(M).

This property is denoted by (?)nψ,z.

(4) For every z ∈ Le
n, there exists ψ(x, y) ∈ Lpe

∞,ω(τ(R,S)) satisfying the above

conditions, such that (?)nψ,z holds.

(5) If z1, z2 ∈ Le
n, then for some z3 ∈ Le

n and for all bimodule M,

he,n
M,z3 = he,n

M,z1 ◦ he,n
M,z2 .

Furthermore,

he,n
M,z1 ± he,n

M,z2 = he,n
M,z1±z2 .

(6) If z ∈ Le
n and he,n

M,z is a bijection, then for some z′ ∈ Le
n and for all bimodule

M, he,n
M,z′ is the inverse of he,n

M,z.

(7) If Ne
n is finitely presented, then the formula ψ(x, y) is first order. Further-

more, if Ne
n is generated by {yi : i < mn} freely except equations involving

r ∈ R only (no s ∈ S), and z ∈
∑
i<mn

Ryi, then ψ(x, y) ∈ Lpe
ω,ω(τR).

Paper Sh:421, version 2022-06-07. See https://shelah.logic.at/papers/421/ for possible updates.



98 M. ASGHARZADEH, M. GOLSHANI, AND S. SHELAH

Proof. (1). Let g : Ne
n → M1 be a bimodule homomorphism and let x = g(xen).

Then

he,n
M2,z

(ĥn(x+ ϕe
ω(M1))) = he,n

M2,z
(h(x) + ϕe

ω(M2))) = h(g(z)) + ϕe
ω(M2).

In a similar way, we have

ĥn(he,n
M1,z

(x)) = ĥn(g(z) + ϕe
ω(M1)) = h(g(z)) + ϕe

ω(M2)).

The desired claim follows immediately.

(2). Set y = gn,m(z). It is easily seen that y is as required.

(3). Let z be such that ψe
n(xen) ` ψ(xen, z). In view of (i) such an element z

exists, and it is unique mod ϕe
ω(M) by (iii). Now define he,n

M,z as given. Thanks

to items (i) and (iii) we know he,n
M,z is a well-defined function and by item (ii) we

deduce that

3.1) Dom(he,n
M,z) = ψe

n(M)/ϕe
ω(M),

3.2) Rang(he,n
M,z) = ψe

n(M)/ϕe
ω(M).

So, we are done.

(4). Suppose z ∈ Le
n is given, and let Ne

n be as Definition 6.6. Then for some

r∗, r∗i ∈ R and s∗, s∗i ∈ S, for i < kmn−1, we have

z = r∗xns
∗ +

∑
i<kmn−1

r∗i yn,is
∗
i (+)

Let ψ(x, y) be the formula

ψe
n(x) ∧ ψe

n(y) ∧ y = r∗xs∗.

We are going to show that ψ(x, y) is as required. Clauses (i)-(iii) are clearly satisfied.

To prove (?)nψ,z, let M be a bimodule and x, y ∈ ψe
n(M). Suppose first that ψ(x, y)

holds. Let also g : Ne
n → M be a bimodule homomorphism, defined on generators

xn, yn,i by the following assignments:

4.1) g(xn) = x,

4.2) g(yn,i) = 0.
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In view of (+) we observe that

g(z) = r∗xs∗ = y.

According to the definition

he,n
M,z(x+ ϕe

ω(M)) = y = ϕe
ω(M).

Conversely, suppose that he,n
M,z(x + ϕe

ω(M)) = y = ϕe
ω(M). Let g be defined as

above, so that g(xn) = x. Now it is clear that g(z) = r∗xs∗ = y, and thus ψ(x, y)

holds.

Clauses (5) and (6) follows from a combination of (4) and (5). Clause (7) is clear

as well. The lemma follows. �

The above lemma allows us to define he,n
z , independent of the choice of the bi-

module M.

Definition 6.23. Suppose e ∈ E is simple as witness by X (see Definition 6.3(4))

and n < ω.

(1) Let DEe
n be the following ring, whose universe is:

{he,n
z : z ∈ Le

n},

such that:

(a) he,n
z1 = he,n

z2 if and only if z1 − z2 ∈ ϕe
ω(Ne

n),

(b) he,n
z1 ± he,n

z2 = he,n
z1±z2 ,

(c) he,n
z1 ◦ he,n

z2 = he,n
z3 , where z3 is as in Lemma 6.22(5), and it is unique

modulo ϕe
ω(Ne

n),

(d) the zero element is he,n
0 , the identity element is he,n

xe
n
. 17

(2) Deen :=
{
he,n
z ∈ DEe

n : z ∈
∑
{Rx : x ∈ X}

}
.

(3) dEe
n :=

{
he,n
z ∈ DEe

n : he,n
M,z ∈ End(Be

n(M)) for all bimodule M ≥ℵ0 M∗
}

.

17Note that DEn is embedded into the endomorphism ring of ψe
n(Ne

n)/ϕe
ω(Ne

n) as an abelian

group.
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(4) dEe
n,∗ := {he,n

z ∈ dEe
n : z is n-nice}.

(5) deen := Deen ∩ dE
e
n.

(6) deen,∗ := Deen ∩ dE
e
n,∗.

18

(7) DEe
n(R) is DEe

n, when we choose S = T = Cent(R); similarly for the

others.

In the following diagram we display these rings. By A → B we mean A is a

subring of B:

deen Deen

dEe
n DEe

n

deen+1 Deen+1

dEe
n+1 DEe

n+1

Lemma 6.24. The following assertions are hold:

(1) DEe
n is a ring. Furthermore if e is simple, then Deen and dEe

n and deen are

subrings of DEe
n. The unit (resp. zero) element all of them is 1 = he,n

xe
n

(resp. 0 = he,n
0 ).

(2) All rings from part (1) are extensions of the ring T.

(3) Deen, dEe
n commute.

(4) The ring deen is commutative.

(5) There is a natural homomorphism DEe
n → DEe

n+1 (n < ω). Similarly,

there are natural homomorphisms Deen → Deen+1, dE
e
n → dEe

n+1 and deen →

deen+1. By taking directed limit from the corresponding directed system, the

following rings are well-defined:

(a) Dee := lim−→(Dee0 −→ Dee1 −→ · · · −→ Deen −→ · · · ),

18So, they two depend on X which witnesses that e is simple.
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(b) dEe := lim−→(dEe
0 −→ dEe

1 −→ · · · −→ dEe
n −→ · · · ),

(c) dee := lim−→(dee0 −→ dee1 −→ · · · −→ deen −→ · · · ),

(d) DEe := lim−→(DEe
0 −→ DEe

1 −→ · · · −→ DEe
n −→ · · · ).

(6) The ring S is naturally mapped into dEe
n.

(7) The ring deen is naturally embedded into deen+1 and DEe
n into DEe

n+1.

(8) The abelian group ψe
n(M)/ϕe

ω(M) is equipped with a module structure over

DEe
n and it is naturally a (Deen, dE

e
n)–bimodule, with deen playing the role

of T.

Proof. (1). This is clear.

(2). This is clear.

(3). Suppose z, w ∈ Le
n are such that he,n

z ∈ Deen and he,n
w ∈ dEe

n. Without loss

of generality, z = rx for some r ∈ R and x ∈ X. Furthermore, since he,n
z ∈ Deen, it

preserves pe-definable relations, so we can assume without loss of generality that

X = {xn} ∪ {yn,i : i < kmn−1},

where the canonical sequence is taken from Definition 6.6. Let also

w = r∗xns
∗ +

∑
i<kmn−1

riyn,isi.

We have to show that

he,n
z ◦ he,n

w = he,n
w ◦ he,n

z .

We have two possibilities: 1) z = ryn,i for some i < kmn−1 or 2) z = rxn.

Case 1: z = ryn,i for some i < kmn−1.

In this case, first we define

i) ψz(x, y) = ψe
n(x) ∧ ψe

n(y) ∧ y = 0,

ii) ψw(x, y) = ψe
n(x) ∧ ψe

n(y) ∧ y = r∗xs∗.
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Let M ≥ℵ0 M∗ and x ∈ ψe
n(M). It follows from the proof of Lemma 6.22(4) that

he,n
M,z(x+ ϕe

ω(M)) = y + ϕe
ω(M) ⇐⇒ ψz(x, y)

and

he,n
M,w(x+ ϕe

ω(M)) = y + ϕe
ω(M) ⇐⇒ ψw(x, y).

In particular, we have the following implications

he,n
M,w(he,n

M,z(x+ ϕe
ω(M))) = y + ϕe

ω(M)

m

∃v (ψz(x, v) ∧ ψw(v, y))

m

∃v (ψe
n(x) ∧ ψe

n(v) ∧ ψe
n(y) ∧ v = 0 ∧ y = r∗vs∗) .

Similarly, one deduces the following implications

he,n
M,z(h

e,n
M,w(x+ ϕe

ω(M))) = y′ + ϕe
ω(M)

m

∃v (ψw(x, v) ∧ ψz(v, y′))

m

∃v (ψe
n(x) ∧ ψe

n(v) ∧ ψe
n(y′) ∧ v = r∗xs∗ ∧ y′ = 0) .

It follows from the above equations that y = y′ = 0, and thus the equality follows.

Case 2: z = rxn.

In this case, for each x ∈ M, he,n
M,z(x + ϕe

ω(M)) = rx + ϕe
ω(M). Set he,n

M,w(x +

ϕe
ω(M)) = y + ϕe

ω(M). By plugging this, we observe that

he,n
M,w(he,n

M,z(x+ ϕe
ω(M))) = he,n

M,w(rx+ ϕe
ω(M))

= rhe,n
M,w(x+ ϕe

ω(M))

= ry + ϕe
ω(M),
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and

he,n
M,z(h

e,n
M,w(x+ ϕe

ω(M))) = he,n
M,z(y + ϕe

ω(M)) = ry + ϕe
ω(M).

The equality follows in this case as well.

(4). Recall from definition that deen = Deen ∩ dE
e
n. It remains to apply (3).

(5). In view of Lemma 6.22(2) we observe that the assignment he,n
M,z 7→ he,n+1

M,gn(z)

defines an embedding map Fn : DEe
n → DEe

n+1. This yields a directed system

{DEe
n}n≥1. Now, we define

DEe := lim−→(DEe
0

F0−→ DEe
1 −→ · · · −→ DEe

n
Fn−→ DEe

n+1 −→ · · · ).

Similarly, one may define the rings Dee, dEe, dEe
∗ and dee by taking them as a

direct limit of the corresponding directed system. In all cases they depend on m of

course.

(6). To each s ∈ S we assign fs ∈ End(M) defined by fs(x) = xs. The assignment

s 7→ fs defines a map S −→ End(M) which is an embedding. For each n < ω, this

induces a map

(f̂s)n :
ϕe
n(M)

ϕe
ω(M)

−→ ϕe
n(M)

ϕe
ω(M)

.

We may regard this as an endomorphism of Be
n(M). Now, let z := xns. Then

(f̂s)n = he,n
z . We proved that the assignment s 7→ (f̂s)n induces a map ρn : S →

dEe
n. Denote the natural map dEe

n → dEe
n+1 by Hn. Now we look at the following

commutative diagram:

S
=−−−−→ S

=−−−−→ . . .
=−−−−→ S

=−−−−→ S
=−−−−→ . . .yρ1 ρ2

y ...

y yρn−1 ρn

y
dEe

1
H1−−−−→ dEe

2
H2−−−−→ . . . −−−−→ dEe

n−1

Hn−1−−−−→ dEe
n

Hn−−−−→ . . .

Taking direct limits of these directed systems, leads us to a natural map

ρ : S = lim−→S→ lim−→ dEe
n = dEe,

as claimed.
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(7). This is similar to (6).

(8). The assignment

(m+ ϕe
ω(M),he,n

M,z) 7→ he,n
M,z(m+ ϕe

ω(M))

defines the scaler multiplication
ψe
n(M)

ϕe
ω(M)×DE

e
n →

ψe
n(M)

ϕe
ω(M) . Now, we take the following:

8.1) m+ ϕe
ω(M) ∈ ψe

n(M)
ϕe
ω(M) ,

8.2) he,n
M,z ∈ De

e
n and

8.3) he,n
M,w ∈ dE

e
n.

The assignment

(he,n
M,z,m+ ϕe

ω(M),he,n
M,w) 7→ he,n

M,w(he,n
M,z(m+ ϕe

ω(M)))

defines the scaler multiplication

Deen ×
ψe
n(M)

ϕe
ω(M)

× dEe
n →

ψe
n(M)

ϕe
ω(M)

.

Since deen = dEe
n∩De

e
n is commutative, this induces the desired bimodule structure

on ψe
n(M)/ϕe

ω(M). �

The following diagram summarizes the relation between the above rings, where

by A→ B we mean A is a subring of B:

de De

dE DE

de∗

de De

dE DE

de∗

The following lemma says that for example for strongly semi-nice construction

M̄ we have some control over EndR(Mκ); note that it only says it is not too large,

but we have the freedom to choose the ring S in order to make End(Mλ) have some

elements with desirable properties.
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Lemma 6.25. Let M̄ = 〈Mα : α ≤ κ〉 be a strongly semi-nice construction with

respect to (λ,m, S, κ), let M := Mκ, and suppose every e ∈ E is simple. The

following assertions are hold:

(i) If (Pr 1)nα,z[f , e] holds, then he,n
z is an endomorphism of Be

n(M). Further-

more, he,n
z ∈ dEe

n,∗.

(ii) If (Pr 1)nα,z[f , e] holds and f ∈ Aut(M), then he,n
M,z is an automorphism of

Be
n(M) and even of +Be

n(M).

(iii) Ende,ω(M)/Ende,ω
<λ(M) embedded into dEe. Suppose in addition that λ = κ

and let S be a subring of Ende,ω(M)/Ende,ω
<λ(M) of cardinality < λ. There

is a club C of κ such that for any α ∈ C \ S large enough, the ring S is

embedded into Ende,ω(M/Mα).

(iv) Let he,n[M] denote the natural map Ende,n(M) → Ende,ω(M) and let En

be the set of all he,n[M](f̂n) 19 where f ∈ End(M) satisfies in the property

(Pr 1)nαn(f),zn(f)[f , e] for some zn(f) ∈ Le
n and αn(f) < κ. Then

(a) Ende,ω(M) =
⋃
n<ω

En,

(b) En ⊆ En+1,

(c) zn(f) is unique modulo ϕe
ω(Ne

n).

(v) En is a subring of Ende,ω(M) and the mapping f̂n 7→ he,n
zn(f) is a homomor-

phism from{
f̂n : f ∈ End(M) and (Pr 1)nαn(f),zn(f) for some αn(f) < κ and zn(f) ∈ Ltr

n

}
into dEe

n with kernel Ende,n
<λ(M), i.e.,

{f ∈ Ende,n(M) : zn(f) ∈ ϕe
ω(Nn)}.

(vi) The ring S is naturally mapped into End(M), for each α ≤ ω, there is a

natural homomorphism from End(M) to Ende,α(M), where for α < ω has

a natural mapping to dE. In particular, S is naturally mapped into dEe.

19See Definition 6.18 for the definition of f̂n.
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Proof. (i). In view of Lemma 6.20(ii), f induces a homomorphism from Be
n(M1)→

Be
n(M2), and we conclude from Lemma 6.16 that z ∈ Le,∗

n . By definition, he,n
z ∈

dEe
n,∗.

(ii). For some formula ψ(x, y) ∈ Lpeµ,κ(τ(R,S)), for all M, and all x, y ∈ ψn(M) we

have

he,n
M,z(x+ ϕω(M)) = y + ϕω(M)⇔M |= ψ(x, y).

Now, we define ψ′(x, y) by the following role

M |= ψ′(x, y)⇔M |= ψ(y, x).

Since f is an automorphism, ψ′(x, y) satisfies the assumptions (i)-(iii) of Lemma

6.22(3), and hence for some z′ ∈ Le
n and all x, y ∈ ψn(M),

he,n
M,z′(x+ ϕω(M)) = y + ϕω(M)⇔M |= ψ′(x, y).

It is now clear that he,n
M,z′ is the inverse of he,n

M,z. In particular, he,n
M,z is an automor-

phism of Be
n(M).

(iii)+(iv)+(v). For each n, set

Fn = {f̂n : f ∈ End(M) and (Pr 1)nαn(f),zn(f) for some αn(f) < κ, zn(f) ∈ Ltr
n }.

We will prove the following four claims:

(1) Ende,ω(Mκ) =
⋃
n<ω

En.

(2) En is a subring of Ende,ω(M).

(3) The assignment f̂n 7→ he,n
zn(f) yields a homomorphism %n : Fn → dEe

n with

kernel

{f̂n ∈ Ende,n(M) : zn(f) ∈ ϕe
ω(Nn)}.

(4) The assignment he,n[M](f̂n) 7→ he,n
zn(f) induces a homomorphism En → dEe

n.

Let us prove them:

(1): Clearly, we have
⋃
n<ω

En ⊂ Ende,ω(Mκ). To see the reverse inclusion take

g ∈ Ende,ω(Mκ). There is some n < ω such that g = he,n[M](f̂n) where f ∈
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Ende,n(M). Here, we are going to use the a strongly semi-nice construction. In

view of this assumption, we can find αn(f) < λ and zn(f) ∈ Ltr
n such that the

property (Pr 1)nαn(f),zn(f) holds. By definition, g ∈ En. This completes the proof of

claim (1).

(2): This is clear and we leave it to the reader.

(3): Note that zn(f1± f2) = zn(f1)± zn(f2) modulo ϕω(Nn). This shows that %n

is additive:

%n(f1 ± f2) = hnzn(f1±f2) = hnzn(f1) ± hnzn(f2) = %n(f1) + %n(f2).

Similarly, for any r ∈ R we have %n(rf) = %n(rf). Here, we compute ker(%n):

%n(f) = 0⇔ hnzn(f) = hn0 ⇔ zn(f) ∈ ϕω(Nn),

i.e., ker(%n) = {f̂n ∈ Fn : zn(f) ∈ ϕω(Nn)}, as claimed.

(4): This is trivial.

Items (iv) and (v) follow immediately. The assignment

he,n[M](f̂n) 7→ he,n
zn(f)

defines a homomorphism from Ende,ω(M) into dEe with kernel

⋃
n<ω

{
he,n[M](f̂n) ∈ Ende,ω(M) : zn(f) ∈ ϕe

ω(Nn)

}
,

which is included in Ende,ω
<λ(M). In sum, we have a natural embedding from the

ring Ende,ω(M)/Ende,ω
<λ(M) into dEe.

It remains to prove the moreover part of (iii). To this end, let S be any subring

of Ende,ω(M)/Ende,ω
<λ(M) of cardinality < λ. For each s ∈ S we find ns < ω and

fs ∈ End(M) such that s = he,n[M]( ˆ(fs)ns) + Ende,ω
<λ(M). We look at the following

club of κ:

Cs := {α < κ : Rang(fs �Mα) ⊆Mα}.
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For each α ∈ Cs \ S, we define an endomorphism θ(s) : M/Mα → M/Mα by the

following role:

θ(s)(x+ Mα) = fs(x) + Mα.

It is now natural to take
⋂
s∈S

Cs as our required club, but we need to do a little

more. Indeed, it is not clear that if θ is a homomorphism, as it may not preserve

addition or multiplication. To handle this, we shrink the above intersection further

as follows. Given s1, · · · , sm ∈ S, we see the following element

he,n[M]((f̂s1+···+sm)ns1+···+sm
)− he,n[M]((f̂s1)ns1 )− · · · − he,n[M]((f̂sm)nsm )

is in Ende,ω
<λ(M) and the following element

he,n[M]((f̂s1···sm)ns1···sm )−
(
he,n[M]((f̂s1)ns1 ) ◦ · · · ◦ he,n[M]((f̂sm)nsm )

)
belongs to Ende,ω

<λ(M). Thus, we can find α(s1, · · · , sm) < κ such that

Rang((fs1+···+sm − fs1 − · · · − fsm) � ψe(M)) ⊆Mα(s1,··· ,sm)

and

Rang((fs1···sm − (fs1 ◦ · · · ◦ fsm)) � ψe(M)) ⊆Mα(s1,··· ,sm).

Let

α(∗) := sup{α(s1, · · · , sm) : m < ω, s1, · · · , sm ∈ S} < κ.

We claim that

C :=
⋂
s∈S

Cs \ (α(∗) + 1)

is as required. The key point is that for s1, · · · , sm ∈ S, and α ∈ C, modulo Mα,

we have

fs1+···+sm = fs1 + · · ·+ fsm

and

fs1···sm = fs1 ◦ · · · ◦ fsm .

(vi). Let s ∈ S. The notation fs stands for the multiplication map by s, e.g.,

fs ∈ End(M) and it is defined by fs(x) = xs. The assignment s 7→ fs defines
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an embedding S −→ End(M). Let α < ω. The map f 7→ f̂n yields a natural

homomorphism End(M) → Ende,n(M). For α := ω, as Ende,ω(M) is the direct

limit of 〈Ende,n(M) : n < ω〉, and by the above argument, we have a natural

homomorphism End(M) → Ende,ω(M). Finally, the assignment he,n[M](f̂n) 7→

hnzn(f) defines a homomorphism Ende,ω(M)→ dE. �

Definition 6.26. By Ende,n
cpt(M) we mean

{h ∈ Ende,n : the range of h is compact for (e, n) in Mλ} .

Remark 6.27. In Lemma 6.25 we can replace Ende,n
<λ(M) with Ende,n

cpt(M) and

drive the analogue statement. Since this has no role in this paper, we leave the

routine modification to the reader.

Lemma 6.28. Let m := (K,M∗,E,R,S,T) be a λ-context, where λ is a regular

cardinal such that

λ = λℵ0 > |R|+ |S|+ ℵ0 + ||M∗||

and for all α < λ, αℵ0 < λ. Then there is a bimodule M ≥ℵ0 M∗ satisfying

‖M‖ = λ = |ψe
n(M)/ϕe

ω(M)| such that M has few direct decompositions in the

following sense:

(i) if M =
⊕
t∈J

Mt and e ∈ E, then for all but finitely many t ∈ J we have

∨
n

[
ψe
n(Mt) ⊆ ϕe

ω(Mt)
]
.

In particular, ∨
n

[
ϕe
n(Mt) = ϕe

ω(Mt)
]
,

provided e is simple.

(ii) Assume in addition that |R| + |S| < 2ℵ0 and that M = Kα ⊕ Pα for α <

(|R|+ |S|+ ℵ0)+. Then for some α0 < α1 and some n < ω we have

ψe
n(Kα`) ⊆ ϕe

n(Kα1
) + ϕe

ω(M),
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where ` < 2. In particular, if e is simple, then

ϕe
n(Kα1

) + ϕe
ω(M) = ϕe

n(Kα2
) + ϕe

ω(M).

(iii) Ende,ω(M)/Ende,ω
<λ(M) has cardinality ≤ |R|+ |S|+ ℵ0.

Proof. Let 〈Mα : α ≤ λ〉 be a strongly semi-nice construction for m and assume

S ⊂ Sλℵ0 is stationary such that Sλℵ0 \ S is stationary as well. Let M := Mλ. We

show M is as required.

(i). Suppose not. Let M =
⊕
t∈J

Mt and e ∈ E be a counterexample to the claim.

Without loss of the generality, and by shrinking we may and do assume that J = ω.

Also, for each n < ω, ψe
n(Mn) * ϕe

ω(Mn). Define f : M→M in such a way that

f(x) =

 0 x ∈M2n,

x x ∈M2n+1

In other words, f is the natural projection from M onto
⊕
n<ω

M2n+1. Recall that

there is some n(∗) < ω, α < λ and z ∈ Le
n(∗) so that the property (Pr 1)

n(∗)
α,z [f , e]

holds. Let Ḡ∗ = 〈G∗n : n ≥ n(∗)〉 be a decreasing sequence of additive subgroups of

ϕe
n(∗)(M) is taken from Lemma 5.18. In particular, the following is satisfied:

(1) If n ≥ n(∗), h : Ne
n →M and zn := gn(∗),n(z), then f(h(xen))−h(zn) ∈ G∗n.

(2) If z∗` ∈ G∗` , for ` ≥ n(∗), then there exists z∗ ∈ G∗n(∗) such that

z∗ −
n∑

`=n(∗)

z∗` ∈ ϕe
n+1(M).

Due to Lemma 5.21(1) we know that there are k,m < ω such that

(3) G∗m ⊆
⊕̀
<k

M` + ϕe
ω(M).

For each n > n(∗) + m + k, we pick some yn ∈ ψe
n(Mn) \ ϕe

ω(Mn). Let also

hn : Ne
n → Mn be a bimodule homomorphism such that yn = hn(xen). We choose

n large enough. The assignment

x 7→ (hn(x),hn+1(gn(x)) ∈Mn ⊕Mn+1 ⊂M
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defines a map h : Nn → M. This unifies hn+1 and hn. By symmetry, we may

assume that n is even. It then follows from clause (3) that

h(zn) =
(
hn(zn),hn+1(zn+1)

)
∈ ϕe

ω(Mn) ⊂ ϕe
ω(M)

and

yn − h(zn+1) = yn − (hn+1(zn+1),hn+2(zn+2)) ∈ ϕe
ω(Mn) ⊂ ϕe

ω(M).

It follows from the first one that hn(zn) and hn+1(zn+1) are in ϕe
ω(M). By repeti-

tion, hn+2(zn+2) ∈ ϕe
ω(M). We plug these in the second containment to see

yn ∈ ϕe
ω(M).

This is a contradiction that we searched for it.

Here, we assume that e is simple. According to Lemma 6.8, ψe
n(Mt) = ϕe

n(Mt)

for all n and t ∈ J . Hence for the n as chosen above, we have

ϕe
n(Mt) = ϕe

ω(Mt),

as required.

(ii). For each α < (|R|+ |S|+ ℵ0)+, let fα be the projection onto Kα, i.e.,

fα(x) =

 x x ∈ Kα,

0 x ∈ Pα

Pick n∗(α) < ω, z∗(α) ∈ Le
n∗(α) and β∗(α) such that (Pr 1)

n∗(α)
β∗(α),z∗(α)[fα, e] holds.

We combine Lemma 5.18 along with Lemma 5.21(1) to find m(α) < ω and a com-

pact and decreasing sequence 〈Ḡ∗` : ` ≥ m(α)〉 of additive subgroups of ϕe
n(∗)(M).

Furthermore, in the light of Lemma 5.23 we can assume that G∗m(α) ⊆ ϕe
ω(M).

There exists a stationary set S of α < (|R|+ |S|+ ℵ0)+ such that for some n < ω

and some fixed z ∈ Le
n, and for all α ∈ S, we have n∗(α) = n and z∗(α) = z. Let

α0 < α1 be in S and ` < 2. It follows that:
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y ∈ ψe
n(Kα`) ⇒ ∃h : Ne

n → Kα` such that h(xen) = y

⇒ f(y)− h(zn) ∈ G∗n ⊂ ϕe
ω(M)

⇒ y − h(zn) ∈ ϕe
ω(M)

⇒ y ∈ ϕe
n(Kα`) + ϕe

ω(M).

We proved that ψe
n(Kα`) ⊆ ϕe

n(Kα`) + ϕe
ω(M).

Now suppose that e is simple. In view of Lemma 6.8 we have ψe
n(Kα`) = ϕe

n(Kα`).

It then follows that

ϕe
n(Kα`) + ϕe

ω(M) = ϕe
n(Kα1−`) + ϕe

ω(M).

(iii). We apply the notation introduced in Lemma 6.25. We say f ∈ End(M) is

nice at level n. if it satisfies in (Pr 1)nαn(f),zn(f) for some αn(F ) < λ and zn(f) ∈ Ltr
n .

Recall that En is defined by the natural image of

Fn :=
{
f � (ϕe

n(Mλ)/ϕe
ω(Mλ) : f ∈ End(M) which is nice at level n

}
in Endϕ̄,ω(M). Also, the mapping f 7→ hn

zn(f) induces a homomorphism from Fn

into dEe
n with kernel Ende,n

<λ(M). Since Ende,ω(M) =
⋃
n<ω

En, it is enough to show

that {hn
zn(f) : zn(f) ∈ Ltr

n } is of cardinality at most ≤ |R| + |S| + ℵ0. Thus it is

enough to show that the cardinality of Ne
n is at most ≤ |R|+ |S|+ ℵ0. This holds,

because Ne
n is finitely generated as an (R,S)-bimodule. �

Remark 6.29. Adopt the notation of Lemma 6.28(ii). If we omit “|R|+|S| < 2ℵ0”,

we get by the same proof weaker conclusions: with an “error term” which is included

in a finitely generated bimodule.

The following is supposed to be used together with any of the later lemmas here

as its conclusion is in their assumptions.

Lemma 6.30. Let R be a ring which is not purely semisimple and let S := T :=

〈1〉R. Let K = K[R, µ] be the family of (≤ µ1) generated and (≤ θ) presented

bimodules where µθ1 ≤ µ and let M∗ be a bimodule of cardinality < µ. Finally, let
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E := ER,µ be the set of (< κ)-simple non trivial e ∈ E(R,S) wherever (||R||+ℵ0)<κ ≤

µ. The following assertions are true.

(a) There is e ∈ E which is very nice.

(b) If (|R|+ ℵ0)ℵ0 ≤ µ, then e(ϕ̄) ∈ E for every very nice ϕ̄.

(c) m = (K,M∗,E,R,S,T) is a non trivial context which is simple.

Proof. Since R is not purely semisimple, and in the light of Theorem 3.22, we can

find a sequence ϕ̄ = 〈ϕn(x) : n < ω〉 as in Definition 6.2. Then e = e(ϕ̄) ∈ E is very

nice. This confirms (a). Items (b) and (c) are clear. �

Lemma 6.31. Suppose R is a ring, T is a complete first order theory of R-modules

which is not superstable, S = T = 〈1〉R and µ ≥ |R| + κ. Then there is a family

K ∪ {M∗} of R-modules with µ members such that:

(a) M∗ ⊕
⊕
t∈I

Mt is model of T whenever Mt ∈ K, moreover

M∗ ≺L(τR) M∗ ⊕
⊕
t∈I

Mt.

(b) For any N ∈ K we have ||N|| ≤ µ.

(c) If 2µ1 ≤ µ and µ1 ≥ ||R||+ κ, then every model N of T satisfying

M∗ ≺L(τR) M∗ ⊕ N

belongs to K.

(d) Let 2µ1 ≤ µ and µ1 ≥ ||R||+ℵ0. Then every appropriate sequence 〈Nn, gn, xn :

n < ω〉 with ||Nn|| ≤ µ1 belongs to K.

(e) Let E be the set of (< ℵ0)-simple non trivial e ∈ E(R,S) such that each Ne
n

is in K. Then m = (K,M∗,E,R,S,T) is a µ-context; note that a bimodule

for m is just an R-module.

Proof. Let M∗ be any ℵ1-saturated model of T of size ≤ µ and set

K :=
{
N : N is an R–module such that M∗ ≺L(τR) M∗ ⊕ N and 2‖N‖ ≤ µ

}
.
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It is easily seen that K is as required. Since this has no role in the paper, we leave

the routine details to the reader. �

The following easy lemma plays an essential role in the sequel:

Lemma 6.32. Let m be a λ-context and S be a free T-module with a base {c∗β :

β < α}. Let ϕ̄ be very nice, ϕn = (∃y0, . . . , ykn−1)ϕ′n where

ϕ′n =

mn−1∧
`=0

[
an` x−

kn−1∑
i=0

bn`,iyi

]
.

Let e = e(ϕ̄) ∈ Em and Nn = Ne
n (see Definition 6.6). The following assertions

hold:

(1) Let Nn,0 be the R-submodule of Nn generated by {x, yi : i < kmn−1}. Then

Nn is the direct sum
∑
β<α

Nn,β and hβ : Nn,0
∼=−→ Nn,β, as R-modules, where

Nn,β is the R-module generated by {xc∗β}∪ {yic∗β : i < kmn−1} freely except

the equations ϕ′n and h0 is the identity.

(2) ϕn(Nn)/ϕω(Nn) ∼=
∑
β<α

ϕn(Nn,β)/ϕω(Nn,β) as a T-module.

(3) For any z ∈ Le
n, there are zβ ∈ Nn,0 ∩ Le

n ∩ ϕe
n(Nn,0) such that z =∑

β<α

hβ(zβ). Also, he,n
z =

∑
β<α

he,n
hβ(zβ). In particular, z is n-nice if and

only if each zβ is n-nice.

(4) The rings deen and S generate dEe
n. In fact each element of dEe

n has the

form
∑
β<α

xβsβ, where xβ ∈ deen and sβ ∈ Sβ. Also we have dEe
n = deen⊗

T
S.

(5) Let In be a maximal ideal of deen. Then Dn := deen/In is a field.

(6) Let T′ := T/(In∩T), S′ := S/(In∩T) and let M be from a strongly semi-

nice construction. Then any set of equations on S which has a solution in

EndR(M) has a solution in Dn ⊗
T′

S′.

Proof. (1). Since S is free as a T-module with the base {c∗β : β < α}, we have

S =
⊕

β<α Tc∗β . Now, we apply this through the following natural identifications

of R-modules:
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RxS⊕
⊕

i<km−1 RyiS =
⊕

β<α Rxc∗β ⊕
⊕

i<km−1

⊕
β<α Ryic

∗
β

=
⊕

β<α

(
Rxc∗β ⊕

⊕
i<km−1 Ryic

∗
β

)
.

It turns out from the previous displayed identification that

Nn ∼=
⊕
β<α

Nn,β ,

as an R-module. Also for any y ∈ Nn,0, we set hβ(y) := ycβ . This yields an

isomorphism hβ : Nn,0
∼=−→ Nn,β of R-modules.

(2). We apply Lemma 4.21 along with (1) to conclude that ϕn(Nn) =
⊕

β<α ϕn(Nn,β).

Consequently, ϕn(Nn)/ϕω(Nn) =
⊕

β<α ϕn(Nn,β)/ϕω(Nn,β).

(3). Let z ∈ Le
n. Then,

z ∈ ϕn(Nn) =
⊕
β<α

ϕe
n(Nn,β) ∼=

⊕
β<α

h′′β(ϕe
n(Nn,0)).

Let zβ ∈ Nn,0 be such that z =
∑
β<α

hβ(zβ). It is evident that zβ ∈ Nn,0 ∩ Le
n ∩

ϕe
n(Nn,0).

Now suppose that g : Nn →M is a bimodule homomorphism. Then

he,n
z (g(xn) + ϕω(M)) = g(z) + ϕω(M)

=
( ∑
β<α

g(hβ(zβ))
)

+ ϕω(M)

=
∑
β<α

(g(hβ(zβ)) + ϕω(M))

=
∑
β<α

he,n
hβ(zβ)(g(xn) + ϕω(M)).

It follows that he,n
z =

∑
β<α

he,n
hβ(zβ).

(4). Let x ∈ deen and s ∈ S. Then xs ∈ dEe
n. This implies the existence of

a T-linear map deen × S → dEe
n. By the universal property of tensor products,

there is a map f : deen ⊗T S → dEe
n. Now, let z ∈ dEe

n. By clause (3), there are

zβ ∈ deen and sβ ∈ S such that z =
∑
β

zβsβ . Moreover, by its proof, we know that

such a presentation is unique. This shows that f is an isomorphism. Up to this

identification, dEe
n = deen⊗

T
S. Thanks to Lemma 6.24 we know the rings deen and

S commute with each other.
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(5). As In is a maximal ideal, it is clear that Dn is a division ring. Since the

ring deen is commutative (see Lemma 6.24(4)) we deduce that Dn is a field.

(6). Let

(∗)1

∑
j sijX

j
i = 0,

be a system of polynomial equations with parameters sij ∈ S and indeterminates

{Xi}. Suppose these equations have a solution f ∈ End(M). This means that

(∗)2

∑
j sijf

j = 0.

There are zn(f) ∈ Le
n and αn(f) < λ such that the property (Pr 1)nαn(f),zn(f)[f , e]

holds. Let fn := f̂n. Then

(∗)3

∑
j sijf

j
n = 0.

Recall from Lemma 6.25(v) that the natural mapping %n : f̂n 7→ hnzn(f) is a homo-

morphism from

{
f̂n : f ∈ End(M) and (Pr 1)nαn(f),zn(f) holds for some αn(f) < λ and zn(f) ∈ Ltr

n

}
into dEe

n with kernel included in Ende,n
<λ(M). Let

π : Ende,n(M)�
Ende,n(M)

Ende,n
<λ(M)

be the canonical surjection and let gn = π(hnzn(f)). Applying π ◦ %n to both sides

of (∗)3, we get

(∗)4

∑
j sijg

j
n = 0.

Since there is an embedding

ρn :
Ende,n(M)

Ende,n
<λ(M)

↪→ dEe
n,

by setting en := ρn(gn), we have

(∗)5

∑
j sije

j
n = 0.

Paper Sh:421, version 2022-06-07. See https://shelah.logic.at/papers/421/ for possible updates.



KAPLANSKY TEST PROBLEMS 117

In view of Clause (4) we see that dEe
n = deen⊗

T
S. Recall that there are natural

surjective maps deen � Dn and S� S′. These induce the following natural map

σ : deen⊗
T

S −→ Dn ⊗
T′

S′.

Set tn := σ(en). By applying σ to (∗)5 we obtain

(∗)6

∑
j sijt

j
n = 0.

This essentially says that the polynomial equations from (∗)1 with parameters in

S have a solution in Dn ⊗
T′

S′ as well. This is what we want to prove. �

In what follows we will use the following two consequences of Lemma 6.32:

Corollary 6.33. Suppose that the following three items are valid:

(a) R is a ring which is not pure semisimple and let T be the subring of R

generated by 1, i.e., T ∼= Z/nZ, where n := char(R) which is not necessarily

prime.

(b) S is a ring containing T such that (S,+) is a free T-module and suppose

that for every s ∈ S \ {0S} for some N ∈ K ∪ {M∗} we have Ns 6= {0N}.

(c) λ = cf(λ) > ||R||+ ||S||+ ℵ0 and α < λ⇒ |α|ℵ0 < λ.

Then we can find an R-module M of cardinality λ, and a homomorphism h from S

into End(M) such that:

(d) Ker(h) = {0}.

(e) If Σ is a set of equations with parameters in S such that h(Σ) is solvable

in EndR(M), then Σ is solvable in D⊗ S for some field D.

(f) If s ∈ S \ {0S} and N ∈ K is such that Ns 6= {0N}, then the image of M

under h(s) has cardinality λ.

Recall that the notation | means divides.
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Corollary 6.34. Suppose S is a ring extending Z such that (S,+) is free, and let

R be a ring which is not pure semisimple. Let D be a field such that

p := char(D)| char(R)

and set

Zp :=

 Z/pZ p > 0,

Z otherwise.

Suppose Σ is the set of equations over S which is not solvable in D⊗Zp(S/pS).

Finally, let M be strongly nicely constructed. Then Σ is not solvable in End(M).

Recall that a module is ℵ0-free if each of its finitely generated submodules are

free. This yields the following statement:

Remark 6.35. In Corollary 6.34, if (S,+) is an ℵ0-free T-module, the similar

conclusions are hold.

7. Dropping Gödel’s axiom of constructibility

Our aim in this section is to extend the main results of [46] to the ordinary set

theory. From now on we assume that R is a ring which is not pure semisimple.

Theorem 7.1. Let λ be a regular cardinal of the form (µℵ0)+ such that λ > |R|.

Then there are R-modules M, M1 and M2 of cardinality λ such that:

(1) M⊕M1
∼= M⊕M2,

(2) M1 6∼= M2,

(3) M1 ≡L∞,λ M2.

Proof. (1) + (2): Let T be the subring of R which 1 (the unit) generates.

Step A): Here, we introduce the auxiliary ring S:

Let S := T〈X ,W1,Y,W2〉
I where T〈X ,W1,Y,W2〉 is the skew polynomial ring in

non commuting variables {X ,W1,Y,W2} with coefficients in the commutative ring

T, and I is its two-sided ideal generated by:
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(∗): XX = X ,

YY = Y,

XW1W2 = X ,

YW2W1 = Y,

XW1Y = XW1,

(1−X )(1− Y) = 1−X ,

YX = Y,

YW2X = YW2.

We call them “test equations”. In other words, S is the ring generated by T ∪

{X ,W1,Y,W2} extending T freely except the test equations (to understand these

equations see the definition of M⊗ as a bimodule below).

Step B): Let α < β < γ be additively indecomposable ordinals20 and let M

be an R-module. We define a new bimodule M⊗ related to M and ordinals α, β, γ.

For i < γ, let hi : M
∼=−→M⊗i (where M⊗i is an R-module) and set M⊗ :=

⊕
i<γ

M⊗i .

We expand M⊗ to an (R,S)-bimodule. To this end, we take x ∈ M⊗i . Due to the

axioms of bimodules, it is enough to define {hi(x)X , hi(x)Y, hi(x)W1, hi(x)W2}.

We define these via the following rules:

hi(x)X :=

 hi(x) i ≥ α,

0 i < α,

hi(x)Y :=

 hi(x) i ≥ β,

0 i < β,

hi(x)W1 :=

 hj(x) if for some ε, i = α+ ε < γ, j = β + ε < γ,

0 otherwise,

20Recall that an ordinal γ is additively indecomposable if for all ordinals α, β < γ we have

α+ β < γ.
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and

hi(x)W2 :=

 hj(x) if for some ε, i = β + ε < γ, j = α+ ε < γ,

0 otherwise.

Let m := (K,M∗,E,R,S,T) be a λ-context, where M∗ is an ℵ1-saturated R-

module of size λ, see Definition 4.10.

Let M̄ := 〈Mα : α ≤ κ〉 be a strongly semi-nice construction with respect to

m. Recall that semi-nice construction is a consequence of Section 4, and its strong

form was constructed in Section 5.

Let P := Mκ and let RP be P as an R-module.

Step C): Here, we define the R-modules M, M1 and M2 of cardinality λ such

that M⊕M1
∼= M⊕M2.

To this end, recall from the second step that every element of S may be considered

as an endomorphism of RP. Set RM1 := (RP)X and RM1 := (RP)(1 − X ). We

conclude from the formula XX −X = 0 that RM1 ∩RM1 = 0. Let us use from the

formula X (1−X ) = 1 that

RP = RP(X + (1−X )) = RPX + (1−X )RP = RM1 + RM1 = RM1 ⊕ RM1.

Let RM2 := (RP)Y and RM2 := (RP)(1−Y). In the same vein, the above formula

leads us to the following decomposition

RP = RM2 ⊕ RM2.

In view of the equation XW1Y = XW1, we have

M1W1 = RPXW1 = RPXW1Y ⊂ RPY = M2.

This yields a homomorphism from M1 to M2, defined by the help of the following

assignment

a 7→ aW1.
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Similarly, W2 provides a homomorphism from M2 onto M1, defined via

b 7→ bW2.

Thanks to the equations YW2W1 = Y and YX = Y, it is easily seen that the

multiplication maps by W1 and W2 are inverse to each other. This provides an

isomorphism from M1 onto M2, so let RM := RM1 ∼= RM2.

Step D): One has RM1 6∼= RM2.

Assume towards contradiction that RM1
∼= RM2. Thus there are f1 : RM1 →

RM2 and f2 : RM2 → RM1 such that f1f2 = 1 and f2f1 = 1. Recall that

RP = RM1 ⊕ RM1 = RM2 ⊕ RM2. Define Z1 ∈ EndR(RP) by applying the

following assignment

(a, b) ∈ RM1 ⊕ RM1 7→ (aW1, f1(b)) ∈ RM2 ⊕ RM2.

In the same vein, define Z2 ∈ EndR(RP) via

(a, b) ∈ RM2 ⊕ RM2 7→ (aW2, f2(b)) ∈ RM1 ⊕ RM1.

Clearly, Z1Z2 = Z2Z1 = 1 = idP. It is also easy to check that:

XZ1 = XZ1Y,

(1−X )Z1 = (1−X )Z1(1− Y),

YZ2 = YZ2X ,

(1− Y)Z2 = (1− Y)Z2(1−X ).

We use just one very simple non trivial e ∈ Em. In the light of Lemma 5.13 there

are

• n(∗) < ω,

• α(∗) ∈ κ \ S and

• zi ∈ Le
n(∗)[K]
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such that the property (Pr 1)
n(∗)
α(∗),zi holds. This allows us to apply Lemma 5.18 to

conclude that the equations above hold in the endomorphism ring of the abelian

group ϕe
n(∗)(M)/ϕe

ω(M) for any bimodule M,21 when we replace Z1 (resp. Z2) by

h
e,n(∗)
M,z1 (resp. h

e,n(∗)
M,z2 ) and interpret X ,Y,W1,W2 ∈ S naturally. This holds in

particular for the bimodule M⊗ we defined in Step B). So, the following equations

hold:

Xhe,n
M⊗,z1 = Xhe,n

M⊗,z1Y,

(1−X )he,n
M⊗,z1 = (1−X )he,n

M⊗,z1(1− Y),

Yhe,n
M⊗,z2 = Yhe,n

M⊗,z2X ,

(1− Y)he,n
M⊗,z2 = (1− Y)he,n

M⊗,z2(1−X ).

These equations in turn define certain decompositions of ϕe
n(M⊗)/ϕe

ω(M⊗) which

yield to the following isomorphism

ϕe
n

(∑
i<βM

⊗
i

)
ϕe
ω

(∑
i<βM

⊗
i

) ∼=−→
ϕe
n

(∑
i<αM

⊗
i

)
ϕe
ω

(∑
i<αM

⊗
i

) .
The cardinality of left (resp. right) hand side is |β| (resp. |α|). Thus if we choose

|β| > |α|, we get a contradiction that we searched for it.

(3): This follows from (1)+(2) and Lemma 4.20. �

Remark 7.2. Adopt the notation of Theorem 7.1.

(a) Note that (1) becomes trivial if we remove the “of cardinality λ”. To see

this, take M, M1 and M2 to be free R-modules with

‖M‖ > ‖M1‖ > ‖M2‖ ≥ |R|+ ℵ0.

(b) Recall that M1 ≡L∞,λ M2 means for every sentence σ ∈ L∞,λ,

M1 |= σ ⇐⇒ M2 |= σ.

Notation 7.3. ∀∞ means for all but finitely many n ∈ ω.

In 8.3, see blow, we will reconstruct the following:

21Recall from Lemma 6.8 that ϕe
n(M) ≡ ψe

n(M) holds for all n < ω.
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Theorem 7.4. Let λ = (µℵ0)+ > |R| be a regular cardinal. Then there are R-

modules M1 and M2 of cardinality λ such that:

(1) M1, M2 are not isomorphic,

(2) M1 is isomorphic to a direct summand of M2,

(3) M2 is isomorphic to a direct summand of M1.

Proof. Let T be the subring of R which 1 generates. As before, we need to choose

a ring S (essentially the ring of endomorphisms we would like).

Step A): To make things easier, we first introduce a ring S0 which is easy

compared to S.

Let A1 (resp. A−1) be the set of even (resp. odd) integers and let f be the

following function:

f(i) :=

 i+ 1 if i ≥ 0,

i− 1 if i < 0.

Thus, f maps A1 (resp. A−1) into A−1 (resp. A1). Also, A1 \Rang(f � A−1) = {0}

and A−1 \ Rang(f � A1) = {−1}. Let i vary on the integers. Let S0 be the ring

extending T generated freely by {X1,X−1,W1,W−1,Z1,Z−1}. Let D be a field

such that if ‖T‖ is finite, then the characteristic of D is finite and divides ‖T‖.

Then, we set S∗D = D⊗
T

S0.

We are going to define a right (D⊗
T

S0)-module M∗D∗ . We first equip a left

D-module structure over M :=
∑
{Dxi : i ∈ Z} via the following rule

b(
∑
i

aixi) :=
∑
i

(bai)xi,

where ai and b are in D. As mentioned earlier, we like to make M a structure of

right (D⊗
T

S0)–module over M which will be called M∗D. Let x ∈M and c ∈ D⊗
T

S0.

In order to define xc, as D and S0 commute, it is enough to define it for x = xi and

c ∈ {X1,X−1,W1,W−1,Z1,Z−1}. In sum, the desired scaler multiplication, can be
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completed if we follow the following table of assignments:

xiX1 :=

 xi if i ∈ A1

0 if i ∈ A−1,

xiX−1 :=

 0 if i ∈ A1

xi if i ∈ A−1,

xiW1 := xf(i),

xiW−1 :=

 xf−1(i) if i ∈ Rang(f)

0 otherwise,

xiZ1 :=

 xi if i ∈ A1 ∩ (Z \ {0})

0 otherwise,

and

xiZ−1 :=

 xi if i ∈ A−1 ∩ (Z \ {0})

0 otherwise.

Recall that we equipped M∗D with a structure of right S∗D–module. Let g∗D be the

natural ring homomorphism from S0 into S∗D. By using g∗D, the S∗D–module M∗D

becomes a right S0-module.

Step B): In this step we define the auxiliary ring S.

Let S be the ring with 1, associative but not necessarily commutative, extending

T generated by X1, X−1, W1, W−1, Z1, Z−1 freely except the following list of test

equations (to understand them see below):

(∗) σ = 0 if σ is a term22, M∗Dσ = 0 for M∗D as defined in Step A), for every

field D such that if T is of finite cardinality n, then char(D)|n.

In the course of proof, we need some explicit test equations. Let us drive some of

them from (∗):

22i.e., in the language of rings, in the variables X1,X−1,W1,W−1,Z1,Z−1.
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(?)1: X 2
1 = X1,

X 2
−1 = X−1,

X1 + X−1 = 1,

X1X−1 = X−1X1 = 0,

Z2
1 = Z1, Z1X1 = Z1 = X1Z1,

X−1W1 = (X−1W1)X1Z1,

X1Z1W−1 = (X1Z1W−1)X−1,

X−1W1W−1 = X−1, and

X1Z1W−1W1 = Z1 = X1Z1.

Let us show, for example, that X1 + X−1 = 1. We need to show the left hand

side is the identity map when we consider it as an endomorphism of M∗D. To this

end, we evaluate X1 + X−1 at any generator of M∗D, say xi. Recall from

xiX1 =

 xi if i ∈ A1,

0 if i ∈ A−1,

and

xiX−1 =

 0 if i ∈ A1,

xi if i ∈ A−1

that xi(X1 +X−1) = xi. Hence, X1 +X−1 = 1, as claimed. The other relations will

follow in the same way.

Step C): In this step, we introduce the R-modules M1 and M2 of cardinality λ

such that:

(i) M1 is isomorphic to a direct summand of M2 and

(ii) M2 is isomorphic to a direct summand of M1.

Let 〈Mα : α ≤ λ〉 be a strongly semi-nice construction for (λ,m, S, λ) and let

M := Mλ. Recall that such a thing exists. Let M1 := MX1 and M−1 := MX−1.

Since X1X−1 = X−1X1 = 0, we have M1 ∩ M−1 = 0. Thanks to the formula
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X1 + X−1 = 1,

M = M(X1 + X−1) = MX1 + MX−1 = M1 + M−1 = M1 ⊕M−1.

Then M1 and M−1 are equipped with R-module structure, and there is the identi-

fication M = M1 ⊕M−1. We shall show that M1, M−1 are as required in Theorem

7.4 (with respect to M1 and M2).

The relations Z2
1 = Z1 and Z1X1 = Z1 = X1Z1 imply that

M1 = M1(1−Z1)⊕M1Z1,

i.e., M1Z1 is a direct summand of M1. Since X−1W1 = (X−1W1)X1Z1, we have

M−1W1 = MX−1W1 = M(X−1W1)X1Z1 ⊂MX1Z1 = M1Z1.

Thus,W1 maps M−1 into M1Z1. In the light of the formula X1Z1W−1 = (X1Z1W−1)X−1

we observe that

M1Z1W−1 = MX1Z1W−1 = MX1Z1W−1X−1 ⊂MX−1 = M−1.

In other words, W−1 maps M1Z1 into M−1. We are going to combine the formula

X−1W1W−1 = X−1 along with X1Z1W−1W1 = Z1 = X1Z1 to deduce that the

multiplication maps by W1 and W−1 are the inverse of each other. This implies

that M−1 is isomorphic to a direct summand of M1 (as left R-modules). Similarly,

we obtain:

M−1 = M−1(1−Z−1)⊕M−1Z−1.

So, M−1Z−1 is a direct summand of M−1 and M−1Z−1 is isomorphic to M1. By the

same argument, M1 is isomorphic to a direct summand of M2 as left R-modules.

In summary, we showed that

• M1
∼= M1(1−Z1)⊕M−1 and

• M−1
∼= M−1(1−Z−1)⊕M1.
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This completes the proof of Step C).

It remains to show that M1 6∼= M−1. Suppose on the contrary that they are

isomorphic, and we get a contradiction, which is presented at Step H) below. Let

e ∈ Em be simple.

Step D): There is a solution Y ∈ dEe
n to the following equations:

(∗)2: X1YX−1 = X1Y, X−1YX1 = X−1Y, YY = 1.

To see this, recall that M1
∼= M−1 and M = M1⊕M−1. Let h be an isomorphism

from M1 onto M−1. Define f : M→M by

(a, b) ∈M = M1 ⊕M−1 =⇒ f(a, b) = (h−1(b), h(a)).

So, f ∈ EndR(M) and it satisfies f � M1 = h and f � M−1 = h−1. The member in

dEe
n which f induces solves the equations in (∗)2. This completes the proof of Step

D).

In the light of Corollary 6.33, it is enough to prove the following two items:

(a) in D⊗
T

S0 there is no solution to (∗)2, in particular, there is no such Y.

Note that S∗D have the same characteristic as D.

(b) S0 is a free T–module.

Clearly S is a T-module, generated by the set of monomials in

{X1,X−1,W1,W−1,Z1,Z−1}.

Our aim is to show that S is a free T-module; in fact we shall exhibit explicitly a

free basis. For ` ∈ {1,−1}, k ∈ Z, n ≥ 0, n ≥ −k, we define an endomorphism f `k,n

of M∗D by

f `k,n(xi) :=

 xfk(i) if f−n(i) is well defined and xi ∈ A`,

0 otherwise

It is easy to see that it is an endomorphism of M∗D as a left D-module. We will

define a monomial Y`k,n, in the following way. For every monomial σ let σ0 be
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1 = idM∗
D

and remember n ≥ −k so n+ k ≥ 0. Now set

Y`k,n = X`(W−1)nWn+k
1 .

It is easy to see that the operation of Y`k,n on M∗D by right multiplication, is equal

to f `k,n.

Let

G := {Y`k,n : (`, k, n) ∈ w}

where w =

{
(`, k, n) : ` ∈ {1,−1}, k ∈ Z, n ≥ 0, k + n ≥ 0

}
.

In the next step, we show that G generates S as a T-module.

Step E): The set G generates S as a T-module.

Indeed, it is enough to show that for every monomial σ, some equation σ =∑
a`n,kY`k,n holds in S, where {(`, n, k) : a`n,k 6= 0} is finite and a`k,n ∈ T, i.e., it

holds in the endomorphism ring of M∗D. We prove this by induction on the length

of the monomial σ.

If the length is zero, σ is 1. Recall from (?)1 that 1 = X1 + X−1. By definition,

X` = Y`0,0; so 1 = Y1
0,0 + Y−1

0,0 as required.

If the length is > 0, by the induction hypothesis it is enough to prove the

following:

(∗) Let τ ∈ {X1,X−1,W1,W−1,Z1,Z−1}. Then Y`(∗)k(∗),n(∗)τ is equal to some∑
`,k,n

a`k,nY`k,n.

Indeed, it is enough to check equality on the generators of M∗D, that is the xi’s.

The proof of (∗) is divided into the following three cases:

Case 1: Y`(∗)k(∗),n(∗)W` is:

Y`(∗)k(∗)+1,n(∗) if ` = 1

Y`(∗)k(∗)−1,n(∗) if ` = −1 and k(∗) + n(∗) > 0,

Y`(∗)k(∗)−1,n(∗)+1 if ` = −1 and k(∗) + n(∗) = 0.
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First assume that ` = 1. Then

Y`(∗)k(∗),n(∗)W` = X1(W−1)nWn+k
1 W1

= X1(W−1)nWn+k+1

= Y`(∗)k(∗)+1,n(∗).

Now assume that ` = −1 and k(∗)+n(∗) > 0. If i ∈ Rang(f), then xiW1W−1 = xi.

From this,

xiY`(∗)k(∗),n(∗)W` = xiY`(∗)k(∗)−1,n(∗).

If i /∈ Rang(f), then i ∈ {0, 1}. It is easy to see that

x0Y`(∗)k(∗),n(∗)W−1 = x0Y`(∗)k(∗)−1,n(∗)

and

x−1Y`(∗)k(∗),n(∗)W−1 = x−1Y`(∗)k(∗)−1,n(∗).

Thus, the functions Y`(∗)k(∗),n(∗)W−1 and Y`(∗)k(∗)−1,n(∗) are the same. Finally, assume

that ` = −1 and k(∗) + n(∗) = 0. Then

Y`(∗)k(∗),n(∗)W−1 = X−1(W−1)nWn+k
1 W−1

= X−1(W−1)nW−1

= X−1(W−1)n+1

= Y`(∗)k(∗)−1,n(∗)+1.

This completes the argument.

Case 2: Y`(∗)k(∗),n(∗)X` is:

zero if [`(∗) = ` ⇐⇒ k(∗) odd],

Y`(∗)k(∗),n(∗)if [`(∗) = ` ⇐⇒ k(∗) even].

The proof of this is similar to Case 1.

Paper Sh:421, version 2022-06-07. See https://shelah.logic.at/papers/421/ for possible updates.



130 M. ASGHARZADEH, M. GOLSHANI, AND S. SHELAH

Case 3: Y`(∗)k(∗),n(∗)Z` is:

Y`(∗)k(∗),n(∗) if n(∗) + k(∗) > 0 and [`(∗) = ` ⇐⇒ k(∗) even],

Y
`(∗)
k(∗),n(∗)+1 if n(∗) + k(∗) = 0 and [`(∗) = ` ⇐⇒ k(∗) even],

zero if [`(∗) = ` ⇐⇒ k(∗) odd].

It is enough to check equality on the generators of M∗D, that is the xi’s. The proof

is again similar to the proof of Case 1.

Step F): The set G = {Y`k,n : (`, k, n) ∈ w} generates S freely as a T-module.

Indeed, in the light of Step E) we see that G generates S as a T-module. Toward

a contradiction suppose that

0 =
∑
{a`k,nY`k,n : (`, k, n) ∈ w},

when we view both sides in S, where w ⊆ w∗ is finite, a`k,n ∈ T and not all of them

are zero. If n = |T| is finite, we take the field D such that char(D)|n, and some

a`k,n is not zero in D. Hence,

0 =
∑
{a`k,n : (`, k, n) ∈ w} ∈ EndD(M∗D),

where a`k,n ∈ D and w ⊆ w∗ is finite. We shall prove that a`k,n = 0 for every

(`, k, n) ∈ w.

If i ∈ A1 and i ≥ 0, then

0 = xi(
∑

(`,k,n)∈w
a`k,nY`k,n)

=
∑

(`,k,n)∈w
a`k,n(xiY`k,n)

=
∑

(`,k,n)∈w
{a`k,nxi+k : ` = 1, and n ≤ i}

=
∑
j≥0

(
∑

(1,k,n)∈w
{a1
k,n : i ≥ n, i+ k = j})xj

=
∑
j≥0

(
∑

(1,j−i,n)∈w
{a1
j−i,n : i ≥ n, })xj .

Hence, for every i ∈ A1, i ≥ 0 and j ≥ 0 we have

(∗)ai,j: 0 =
∑
{a1
j−i,n : n ≥ 0, n ≤ i and n+ (j − i) ≥ 0}.
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Similarly, for i ∈ A−1, i ≥ 0 (equivalently, i > 0 as i ∈ A−1 ⇒ i 6= 0) and j ≥ 0

we can prove

(∗)bi,j: 0 =
∑
{a−1
j−i,n : n ≥ 0, n ≤ i and n+ (j − i) ≥ 0}.

Similarly, for i ∈ A1, i < 0,

0 = xi(
∑

(`,k,n)∈w
a`k,nY`k,n)

=
∑

(`,k,n)∈w
a`k,n(xiY`k,n)

=
∑

(1,k,n)∈w
{a1
k,nxi−k : − i > n}

=
∑
j<0

(
∑

(1,i−j,n)∈w{a1
i−j,n : n < −i})xj .

Thus,

(∗)ci,j: 0 =
∑
{a1
i−j,n : n ≥ 0 and n+ (i− j) ≥ 0 and n < −i}

for every negative i ∈ A1 and j < 0. Similarly, for every i ∈ A−1, i < 0 and j < 0

(∗)di,j: 0 =
∑
{a−1
i−j,n : n ≥ 0 and n+ (i− j) ≥ 0 and n < −i}.

Choose, if possible, (k,m) such that:

(1) (1, k,m) belongs to w,

(2) a1
k,m 6= 0,

(3) m is minimal under (1)+(2).

Note that m ≥ 0 by the definition of w. First assume that m is even. Let i = m

and j = i+ k. So i ∈ A1 (being even), i ≥ 0 and j = m+ k is ≥ 0 as (1, k,m) ∈ w.

In the equation (∗)ai,j the term a1
k,m appears in the sum, and for every other term

a1
k1,m1

which appears in the sum, we have m1 < m (and k1 = k), and hence by (3)

above is zero. It follows that a1
k,m is zero, a contradiction.

If m is odd, we get a similar contradiction using (∗)ci,j . Let i = −m − 1 and

j = i− k. Note that m ≥ 0, hence i < 0 and i is even as m is odd, so i ∈ A1. Also,

j = i− k = −m− 1− k ≤ −1 < 0.

Paper Sh:421, version 2022-06-07. See https://shelah.logic.at/papers/421/ for possible updates.



132 M. ASGHARZADEH, M. GOLSHANI, AND S. SHELAH

Recalling k+m ≥ 0 as (1, k,m) ∈ w∗. In the equation (∗)ci,j , the term a1
i−j,n = a1

k,n

appears in the sum if and only if

i) 0 ≤ n < −i = m+ 1, and

ii) n+ (i− j) = n+ k ≥ 0

(but if the later fails, a1
k,m is not defined). So, a1

k,m appears, and if another term

a1
k1,m1

occurs then m1 ≤ m (and k1 = k). Hence, m1 < m, and so a1
k1,m1

= 0.

Necessarily, a1
k,m is zero, a contradiction. In sum, a1

k,n = 0 whenever it is defined.

In the same vein, a−1
k,n = 0 whenever it is defined (use (∗)bi,j + (∗)di,j). So, S0 is a

free module over T, as required.

Step G): In this step we get a contradiction that we searched for it. This will

show that M1 6∼= M−1.

To this end, recall that there are finitely many nonzero a`k,n ∈ D such that

�: Y =
∑{

a`k,nY`k,n : n ≥ 0 and k + n ≥ 0 and ` ∈ {1,−1}
}
.

Let n(∗) < ω be such that

a`k,n 6= 0 ⇒ |k|, n < n(∗).

For ` = 1,−1 let

Mpos
` :=

{ ∑
i≥0

dixi : di ∈ D, ∀∞di = 0 and di 6= 0 ⇒ i ∈ A`
}
,

Mneg
` :=

{ ∑
i<0

dixi : di ∈ D, ∀∞di = 0 and di 6= 0 ⇒ i ∈ A`
}
.

Clearly as a D-module

M∗D = Mpos
1 ⊕Mpos

−1 ⊕Mneg
1 ⊕Mneg

−1 .

Let Ypos
` := Y �Mpos

` and Yneg
` := Y �Mneg

` for ` ∈ {1,−1}.

Now each Y`k,n maps Mpos = Mpos
1 ⊕Mpos

−1 to itself, and Mneg = Mneg
1 ⊕Mneg

−1

to itself, and hence by � above also Y does it. According to (∗)2 from Step B) we

have X1YX−1 = X1Y. This implies that

M1Y = MX1Y = MX1YX−1 ⊂MX−1 = M−1,
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i.e., Y maps M1 to M−1. Thus, by the previous sentence, Y maps Mpos
1 into Mpos

−1 ,

and Mneg
1 into Mneg

−1 , i.e., Ypos
1 (resp. Yneg

1 ) is into Mpos
−1 (resp. Mneg

−1 ).

By the same reasoning, and in view of (∗)2 we deduce that X−1YX1 = X−1Y.

Hence, Y maps Mpos
−1 into Mpos

1 and Mneg
−1 into Mneg

1 . Also, the mappings Ypos
1 ,

Ypos
−1 , Yneg

1 , Yneg
−1 are endomorphisms of D-modules. As Y2 = 1 (again by (∗)2)

we conclude that Ypos
1 and Ypos

−1 are the inverse of each other, so both of them are

isomorphisms. Similarly for Yneg
1 and Yneg

−1 .

Let

Mstp
1 := {

∑
i>0

dixi : di ∈ D,∀∞di = 0 and di 6= 0 ⇒ i ∈ A1}.

Clearly, Mstp
1 is a sub D-module of Mpos

1 . Note that x0 ∈Mpos
1 \Mstp

1 . This yields

the difference between Mstp
1 and Mpos

1 .

Let

N := {
∑

i>n(∗)
dixi : di ∈ D,∀∞di = 0 and di 6= 0 ⇒ i ∈ A1}.

Let Hpos : Mstp
1 −→ Mneg

1 (resp. Hneg : Mneg
−1 −→ Mstp

−1) be defined by the

assignment xiH
pos = x−i (resp. xiH

neg = x−i). Both of them are isomor-

phisms of D-modules. Note that Ypos
1 is an isomorphism from Mpos

1 onto Mpos
−1

and HposYneg
1 Hneg is an isomorphism from Mstp

1 onto Mpos
−1 . Note that

Mstp
1

Hpos

−−−−→ Mneg
1

Yneg
1−−−−→ Mneg

−1
Hneg

−−−−→ Mpos
−1 .

We claim that

Ypos
1 � N = (HposYneg

1 Hneg) � N.

To see this, it is enough to check equality on the generators of N, that is over the

xi’s where i is even and it is larger than n(∗). In particular, by choosing n(∗) large

enough, we may assume that i� 0. Recall that

Y =
∑{

a`k,nY`k,n : n ≥ 0 and k + n ≥ 0 and ` ∈ {1,−1}
}
.
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By definition xiX−1 = 0. Then

xi(H
posYneg

1 Hneg) = x−i(
∑
{a`k,nY`k,n})Hneg

=
∑
a`k,nx−i(X1Wn

−1Wn+k
1 )Hneg

=
∑
a1
k,n(x−iWn

−1Wn+k
1 )Hneg

=
∑
a1
k,n(xf−n(−i)Wn+k

1 )Hneg

=
∑
a1
k,n(xfn+k(f−n(−i)))H

neg

=
∑
a1
k,n(xfk(−i))H

neg

=
∑
a1
k,n(x−i−k))H

neg

=
∑
a1
k,nxi+k.

Also, (xi)Ypos
1 � N =

∑
a1
k,nxi+k. Thus we have Ypos

1 � N = (HposYneg
1 Hneg) � N,

as claimed.

Let N∗ := Rang(Ypos
1 � N). Then N∗ = Rang((HposYneg

1 Hneg) � N). So, as

Ypos
1 is an isomorphism from Mpos

1 onto Mpos
−1 , and N ⊆ Mpos

1 we have that N∗ is

a D-submodule of Mpos
−1 . This means that Mpos

−1 /N∗ is isomorphic to Mpos
1 /N (as

D-modules).

But HposYneg
1 Hneg is an isomorphism from Mstp

1 onto Mpos
−1 and N ⊆Mstp

1 , and it

maps N onto N∗ (see above), so Mstp
1 /N is isomorphic to Mpos

−1 /N∗. By the previous

paragraph we get

Mstp
1 /N ∼= Mpos

−1 /N
∗ ∼= Mpos

1 /N.

On the one hand, Mpos
1 /N is free as a D-module, because {x2i+N : 0 ≤ 2i ≤ n(∗)}

is a free basis for it. Also, Mstp
1 /N is a free D-module with the base {x2i + N : 0 <

2i ≤ n(∗)}. On the other hand, the number of their generators differ by 1. This is

a contradiction that we searched for it.

The theorem follows. �
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8. All things together: the test problem

Recall that R is a ring which is not pure semisimple. We now prove the existence

of an R-module equipped with the Corner pathology. We present such a thing by

applying Corollary 6.33.

Theorem 8.1. Let m(∗) be an integer bigger that 1 and let λ > |R| be a cardinal

of the form λ =
(
µℵ0
)+

. Then there is an R-module M of cardinality λ such that:

Mn ∼= M⇐⇒ m(∗) divides n− 1.

Proof. We divide the proof into nine steps.

Step A) We first introduce rings S0 and S. The ring S0 is incredibly easy

compared to S and S is essentially the ring of endomorphisms we would like.

To this end, let T be the subring of R which 1 generates. Let S0 be the ring

extending T generated by {X0, . . . ,Xm(∗),W,Z} freely except the following list of

test equations:

(∗)1: X 2
` = X`,

X`Xm = 0 (` 6= m),

1 = X0 + . . .+ Xm(∗),

X`WXm = 0 for `+ 1 6= m mod m(∗) + 1,

Wm(∗)+1 = 1,

Z2 = 1,

X0Z(1−X0) = X0Z,

(1−X0)ZX0 = (1−X0)Z.

The meaning of these equations will become clear when we use them, see below.

Similarly, we define S, but in addition we require σ = 0, where σ is a term in the

language of rings, when DM∗σ = 0 for every field D and where DM∗ is the (D,S0)-

bimodule as defined below. Now “S is a free T-module” will be proved later.
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For an integer m, the notation [−∞,m) stands for {n : n is an integer < m}

and if η ∈ [−∞,m)ω, then we set η � k := η � [−∞,min{m, k}).

We look at the following set:

W1 := W0 × {0, . . . ,m(∗)},

where

W0 :=

{
η : η is a function with domain of the form [−∞, n)

and range ⊆ {1, . . . ,m(∗)}, and such that

for every small enough m ∈ Z, η(m) = 1

}
.

Let D be a field such that if T is finite and of cardinality n, then char(D) divides

n. So, D⊗ S is the ring extending D by adding

{X0, . . . ,Xm(∗),W,Z}

as non-commuting variables over D act freely except satisfying the equation in

(∗)1, and if ||T|| is finite, we divide S by pS where p := char(D). So, there is a

homomorphism gD from S to D⊗ S such that

{0S} = ∩{Ker(gD) : D as above}.

Let M∗ = DM∗ be the left D-module freely generated by

{xη,` : η ∈W0, ` < m(∗) + 1}.

We make DM∗ to a right (D⊗S0)-module by defining xz when x ∈ DM∗ and

z ∈ S0. It is enough to deal with

z ∈ {Xm : m < m(∗) + 1} ∪ {Z,W}.

Let x :=
∑
η,`

aη,`xη,` where

(1) (η, `) vary on W0,

(2) aη,` ∈ D and {(η, `) : aη,` 6= 0} is finite.
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It is natural to extend things linearly, that is

(
∑
η,`

aη,`xη,`)z :=
∑
η,`

aη,`(xη,`z),

where our table of undefined actions of {Xm,Z,W} on xη,` is as follows:

xη,`Xm :=

 xη,` if ` = m

0 if ` 6= m,

xη,`Z :=

 xη_〈`〉,0 if ` > 0

xη�[−∞,n−1),η(n−1) if ` = 0, and (−∞, n) = Dom(η),

and

xη,`W := xη,m when m = `+ 1 mod m(∗) + 1.

In sum, we get a (D,S)-bimodule as the identities in the definition of S0 and S

holds. If D = T, some by inspection (those of (∗)1), the rest by the choice of S. If

D 6= T, by the restriction on D. Let

DM∗` :=

{∑
η

dη,`xη,` : η ∈W0 and dη,` ∈ D

}
.

So, clearly

DM∗ =

m(∗)⊕
`=0

DM∗` .

Step B) In this step we introduce an R-module M such that Mm(∗) ∼= M.

Let 〈Mα : α ≤ κ〉 be a strongly semi-nice construction. Set P := Mκ. We look

at P` := PX`. Let i 6= j. We use the formula XiXj = 0 to observe that Pi ∩ Pj = 0.

Since
m(∗)∑̀

=0

X` = 1 we have

RP =

m(∗)∑
`=0

PX` =

m(∗)⊕
`=0

RP`.
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Suppose ` + 1 6= m mod m(∗) + 1. We combine the formula X`WXm = 0 with

the formula
m(∗)∑̀

=0

X` = 1 to observe that

P`W = PX`W(X0 + . . .+ Xm(∗)) = P`WX`+1 ⊂ P`+1,

i.e., W : RP` � RP`+1 is surjective. Here, we use the relation Wm(∗)+1 = 1 to

consider W as an embedding from P onto P. It turns out that W � RP` is an

isomorphism from RP` onto RP`+1. So

RPm(∗) ∼= . . . ∼= RP1
∼= RP0.

Thanks to the formulas X0Z(1 − X0) = X0Z and
m(∗)∑̀

=0

X` = 1 we conclude that Z

maps RP0 into

PX0Z = PX0Z(1−X0)

= PX0Z(X1 + . . .+ Xm(∗))

⊆
m(∗)⊕̀

=1

PX`

=
m(∗)⊕̀

=1

P`

∼= P0.

By the same vein, Z maps
m(∗)⊕̀

=1

P` into RP0. We are going to use the formula

Z2 = 1 to exemplifies Z with the following isomorphism

m(∗)⊕
`=1

RP` ∼= RP0.

But, we have just shown

m(∗)⊕
`=1

RP` ∼= (RP0)m(∗).

This completes the proof of Step B).

So, it is enough to show

(∗)2: 1 < k < m(∗) ⇒ RPk0 6∼= RP0.
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Assume k is a counterexample. The desired contradiction will be presented in Step

I), see below. To this end we need some preliminaries steps.

Step C) There exists a field D and Y ∈ D⊗
T

S satisfying the following equations:

(∗)3 : Y � DM∗0 is an isomorphism from DM∗0 onto
k⊕̀
=1

DM∗` ,

Y �
k⊕̀
=1

DM∗` is an isomorphism from
k⊕̀
=1

DM∗` onto DM∗0,

Y �
m(∗)+1⊕
`=k+1

DM∗` is the identity, and

Y2 = 1.

Indeed, recall from RPk0 ∼= RP0 that RP is equipped with an endomorphism f

such that:

(∗)4 : f � RP0 is an isomorphism from RP0 onto RP1 ⊕ . . .⊕ RPk,

f � (RP1⊕ . . .⊕RPk) is an isomorphism from RP1⊕ . . .⊕RPk onto RP0,

f � RPj = id, for k < j < m(∗) + 1, and

f2 = 1.

Assuming (S,+) is a free T-module, according to Corollary 6.33, there is a field D

with the property that p := char(D) divides n := char(R), when n > 0, and there

exists Y ∈ D⊗
T

S satisfying the the desired equations. This completes the proof of

Step C).

In sum, we are reduced things to showing that (S,+) is a free T-module. Note

that each of {1S ,X0, . . . ,Xm(∗),W,Z}map each generator xη,` to another generator

with some vanishing exceptions. So this applies to any composition of them, in

fact, following a quite specific way with respect to the quadric (ρ, ν, k,m), where

{ρ, ν} ⊂ {1, . . . ,m(∗)}<ω and k, m < ω. To this run, we are going to define Yk,mρ,ν

as a “monomial operator” with respect to the generators of S so that:

xη,`Yk,mρ,ν =

 xη1_ν,m if ` = k, and η = η1
_ρ for some η1 ∈W0

0 otherwise.

Paper Sh:421, version 2022-06-07. See https://shelah.logic.at/papers/421/ for possible updates.



140 M. ASGHARZADEH, M. GOLSHANI, AND S. SHELAH

In order to define these operators, first we define Yk,kρ,〈〉 and Yk,k〈〉,ν by induction on

lg(ρ) and lg(ν) respectively. Also, negative powers of W can be defined, because

W is invertible. Now, we let

Yk,mρ,ν := Yk,kρ,〈〉Y
k,k
〈〉,νW

m−k.

Step D): Let ρ, ν ∈ [1,m(∗) + 1)<ω. We say they have the same root provided

lg(ρ) > 0 and lg(ν) > 0, then ρ(0) = ν(0).

In this step we claim that the following set

Ω :=

{
Yk,mρ,ν : ρ, ν ∈ [1,m(∗) + 1)<ω, k,m ∈ [0,m(∗) + 1) and ρ, ν have same root

}
generates S as a T-module.

To prove this, first note that if Yk,mρ1,ν1 is not in the family, then for some (%, ρ, ν) we

have Yk,mρ,ν belongs to the family and (ρ, ν) = (%_ρ1, %
_ν1). Hence Yk,mρ,ν = Yk,mρ1,ν1 .

So, Ω generates all of Yk,mρ,ν ’s and thus we can use them.

Let S′ be the T-submodule of S generated by T and the family above. Now

T ⊆ S′ because

(†)1 1 =
∑{
Ym,m〈〉,〈〉 : m = 0, . . . ,m(∗)

}
.

To see this, we evaluate both sides at xη,`. The right hand side of (†)1 is equal to

xη,`
∑{
Ym,m〈〉,〈〉 : m = 0, . . . ,m(∗)

}
= xη_〈〉,`

∑{
Ym,m〈〉,〈〉 : m = 0, . . . ,m(∗)

}
= xη_〈〉,`Y`,`〈〉,〈〉

= xη_〈〉,`

= xη,`.

Since the left hand side of (†)1 is the identity, we get the desired equality.

Next we show Xm ∈ S′ for each m < m(∗) + 1. It suffices to show that

(†)2 Xm = Ym,m〈〉,〈〉 .
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In order to see (†)2, we evaluate both sides at xη,`. Let n = lg(η)+1. First, assume

that ` = m. Then, the right hand side of (†)2 is equal to

xη,`Ym,m〈〉,〈〉 = xη,mYm,m〈〉,〈〉 = xη,m,

which is equal to xη,`Xm. Now, we show the claim when ` 6= m. In this case both

sides of (†)2 are equal to zero, e.g., (†)2 is valid.

In order to show W ∈ S′ we bring the following claim:

(†)3 W =
∑{
Y`,m〈〉,〈〉 : ` = m+ 1 mod m(∗) + 1

}
.

As before, it is enough to evaluate both sides of (†)3 at xη,`. Let m be such that

` ≡m(∗)+1 m+ 1. The right hand side of (†)3 is equal to

xη,`
∑{
Y`,m〈〉,〈〉 : ` = m+ 1 mod m(∗) + 1

}
= xη,`Y`,m

= xη,m.

By definition, this is equal to the left hand side of (†)3.

Finally, we claim that Z ∈ S′. Indeed, it suffices to prove that

(†)4 Z =
{
Y0,m
〈m〉,〈〉 : m = 1, . . . ,m(∗)

}
+
∑{
Ym,0〈〉,〈m〉 : m = 1, . . . ,m(∗)

}
.

Again we evaluate both sides of (†)4 at xη,`. Let n = lg(η) + 1 and first suppose

that ` = 0. Then, the right hand side of (†)4 is equal to

xη,0
{
Y0,m
〈m〉,〈〉 : m = 1, . . . ,m(∗)

}
+xη,0

∑{
Ym,0〈〉,〈m〉 : m = 1, . . . ,m(∗)

}
= xη,0

{
Y0,m
〈m〉,〈〉 : m = 1, . . . ,m(∗)

}
= xη�n−1_〈η(n)〉,0Y0,η(n)

= xη�n−1_〈η(n)〉,η(n).

This is equal to the left hand side of (†)4. Suppose now that ` > 0. Then the right

hand side is equal to xη_〈`〉,0. By definition, this is equal to the left hand side of

(†)4.

So far, we have proved that the subring S′ includes T,Xm(m < m(∗) + 1),Z

and W. Indeed, it is a T-module. To finish this step, it suffices to prove that S′ is
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closed under product. For this, it is enough to prove that S′ includes the product

Yk1,m1

ρ1,ν1 Y
k2,m2

ρ2,ν2 of any two members of Ω.

Now if m1 6= k2 or no one of ν1, ρ2 is an end-segment of the other then this is

not the case. So easily the product is Yk1,m2

ρ3,ν3 where:

• if ν1 = ρ2, then (ρ3, ν3) = (ρ1, ν2),

• if ν1 = (%1)_ρ2, then (ρ3, ν3) = (ρ1, (%
1)_ν2),

• if ρ2 = (%1)_ν1, then (ρ3, ν3) = ((%1)_ν1, ν2).

This completes the proof of Step D).

Step E) The set Ω from Step D) is a free basis of S as a T-module.

Indeed, assume that

X :=
∑
{ak,mν,ρ Yk,mν,ρ : ρ, k, ν,m} = 0,

where {(ρ, ν, k,m) : ak,mν,ρ 6= 0} is a finite set. We need to show ak,mν,ρ = 0, for all

such ρ, k, ν,m.

Let k∗ < ω and ρ∗ ∈ {0, . . . ,m(∗)}<ω be such that

lg(ρ∗) > sup{lg(ρ) : ak,nρ,ν 6= 0}.

We look at xρ∗,k∗X . Let A(k∗, ρ∗) be the set of all ν in the finite sequence above

where ρ∗ = ρ∗ν
_ν, for some ρ∗ν . Then

xρ∗,k∗X =
∑

ν,ρ,k,m

ak,mν,ρ (xρ∗,k∗Yk,mν,ρ )

=
∑
ν,ρ,m

{
ak
∗,m
ν,ρ (xρ∗,k∗Yk

∗,m
ν,ρ ) : ν ∈ A(k∗, ρ∗)

}
=
∑
ν,ρ,m

{
ak
∗,m
ν,ρ x(ρ∗ν)_ρ,m : ν ∈ A(k∗, ρ∗)

}
= 0.

Recall that M∗ is the left D-module freely generated by xη,`’s, so as we are free in

choosing k∗, ρ∗, we can easily show that for any tuple (ρ, ν, k, n) in the finite set

above, for some suitable choice of ρ∗, ak,nρ,ν is the only component of x(ρ∗ν)_ρ,m in

the sum above, and hence ak,nρ,ν = 0. This completes the proof of Step E).
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Before we continue, let us introduce some notations and definitions. Clearly, Y

can be represented as a finite sum of the form:

Y =
∑{

dk,mρ,ν Yk,mρ,ν : k,m, ρ, ν
}
.

Choose n(∗) large enough such that

n(∗) > max{lg(ρ), lg(ν) : dk,mρ,ν 6= 0}.

For any

u ⊆
{

(η, `) : η ∈W0, ` < m(∗) + 1
}
,

we set Nu be the subspace generated by {xη,` : (η, `) ∈ u}. , Clearly Nu ⊆ DM∗,

when we view them as D-modules. For η ∈ w0 and ` = 1, . . . ,m(∗) + 1, we define

DM∗[1,k] :=

k⊕
j=1

M∗` ,

and let

wη,` :=
{

(ν,m)|(ν,m) = (η, `) or η_〈`〉 E ν and m < m(∗) + 1
}
,

u` :=
{

(η,m)|m = `, η ∈ w0

}
,

wmη,`, := wη,` ∩ um,

w
[1,n]
η,` := wη,` ∩

⋃
m∈[1,n]

um.

Step F) For any η ∈ w0 and ` < m(∗) + 1, there is a finite subset u ⊆ w0
η,`

satisfying the following three items:

(α) Y maps Nw0
η,`
\u into Nwη,` in fact into N

w
[1,k]

η,`

(β) if v is finite and u ⊆ v ⊆ w0
η,` then Nw0

η,`
\vY is a D-vector subspace of

Nw0
η,`
Y of cofinite dimension.

(γ) for any finite subsets v1, v2 of w0
η,` extending u the following equalities are

true:
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dim(Nw0
η,`
/Nw0

η,`
\v1) −dim(N

w
[1,k]

η,`

/(Nw0
η,`
\v1Y))

= dim(Nw0
η,`
/Nw0

η,`
\v2)

−dim(N
w

[1,k]

η,`

/(Nw0
η,`
\v2Y)),

where the dimensions are computed as D-vector spaces.

Indeed, the case ` = 0 is easy. Recalling the representation of Y and the choice

of n(∗) < ω, if we set

u =
{

(ν,m) ∈ wη,` : |Dom(ν) \Dom(η)| < n(∗)
}
,

then we have

(ν,m) ∈ wη,` \ u ⇒ xν,mY ∈ Nwη,` .

Note that u is finite and clause (α) holds. As YY = 1 etc., we can show that

(β) holds. For checking the equalities in clause (γ), let v3 := v1 ∪ v2. Due to the

transitivity of equality, it is enough to prove the required equality for pairs (v1, v3)

and (v2, v3). This enables us to assume without loss of generality that v1 ⊆ v2.

Also, we stipulate v0 = ∅.

Now

Nw0
η,`
\v2 ⊆ Nw0

η,`
\v1 ⊆ Nw0

η,`
\w0

= Nw0
η,`
,

and

dim(Nw0
η,`
/Nw0

η,`
\vi) = |vi|.

Manipulating the equalities in clause (α), they are equivalent to

dim(Nw0
η,`
/Nw0

η,`
\v1) − dim(Nw0

η,`
/Nw0

η,`
\v2)

= dim(N
w

[1,k]

η,`

/(Nw0
η,`
\v1Y))

− dim(N
w

[1,k]

η,`

/(Nw0
η,`
\v2Y)) (∗)

Since Nw0
η,`
\v2 ⊆ Nw0

η,`
\v1 ⊆ Nw0

η,`
, the left hand side of (∗) is equal to

dim(Nw0
η,`
\v1/Nw0

η,`
\v2).
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Also,

Nw0
η,`
\v2Y ⊆ Nw0

η,`
\v1Y ⊆ N

w
[1,k]

η,`

.

Indeed, the first inclusion holds as Nw0
η,`
\v2 ⊆ Nw0

η,`
\v1 and the second one holds by

clause (β) and u ⊆ v1 ∩ v2. Hence the right hand side of (∗) is equal to

dim(Nw0
η,`
\v1Y/Nw0

η,`
\v2Y).

Thus, (∗) is reduced in proving

(∗)′ dim(Nw0
η,`
\v1/Nw0

η,`
\v2) = dim(Nw0

η,`
\v1/(Nw0

η,`
\v2Y)).

Since Y is an isomorphism from Nw0
η,`
\v2 onto Nw0

η,`
\v2Y, it implies the validity of

(∗)′. This completes the proof.

Let nη,` be the natural number so that for every large enough finite subset

v ⊆ wη,`

nη,` := dim

(
Nw0

η,`

Nw0
η,`
\v

)
− dim

( N
w

[1,k]

η,`

Nw0
η,`
\vY

)
.

In view of Step F), this is a well-defined notion, which does not depend on the

choice of v.

Step G) If η, ν ∈ w0 and ` ∈ {0, 1, . . . ,m(∗)}, then nη,` = nν,`.

To see this, we define a function f : wη,` −→ wν,` by f(η_ρ,m) = (ν_ρ,m) for

any ρ ∈ {0, . . . ,m(∗)}<ω. This function is one-to-one and onto, and it induces an

isomorphism from N
w

[0,m(∗)+1)

η,`

onto N
w

[0,m(∗)+1)

ν,`

. It almost commutes with all of our

operations (the problems are “near” η and ν). So choose v1 ⊆ w0
η,` large enough,

as required in the definition of nη,`, nν,` and to make Nw0
η,`
\v1Y ⊆ N

w
[1,k]

η,`

, and let

v2 = f(v1). Now, it is easy to check the desired claim.

So, we shall write n` instead of nν,`. By Step G), this is well-defined.

Step H) The following equations are valid:

n` =

 0 if ` ∈ [1, k]

n0 + n1 + . . .+ nm(∗) if ` ∈ [k + 1,m(∗) + 1) or ` = 0
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To prove this, first note that

wη,` = {(η, `)} ∪
⋃

m<m(∗)+1

wη_〈`〉,m.

In order to apply Step F), we fix a pair (η, `) and we choose a finite subset v ⊆ w0
η,`

large enough as there. Let (η_〈`〉,m) be such that

{(η, `)} ∪ {(η_〈`〉,m) : m < m(∗) + 1} ⊆ v.

Now, we compute nη,` which is equal to n`, and nη_〈`〉,m which is equal to = nm

for m < m(∗) + 1 and we shall get the equality.

Now set

n1
v,η,` := dim

(
Nw0

η,`

Nw0
η,`
\v

)
−

∑
m<m(∗)+1

dim

(
Nw0

η_〈`〉,m

Nw0
η_〈`〉,m\v

)
.

According to the definition, we lead to the following equality:

Nw0
η,`

=
⊕

m<m(∗)+1

Nw0
η_〈`〉,m

⊕Dxη,`.

Using this equality, we can easily see that

(⊗1) n1
v,η,` is equal to 1 when η ∈ w0, ` < m(∗) + 1 and v ⊆ w0 is finite and

sufficiently large enough. Of course, we can replace v by v ∩ w0
η,`.

In particular, the following definition makes sense:

(⊗2) n2
v,η,` := dim

(
N
w

[1,k]

η,`

N
w

[1,k]

η,`
\v

)
−

∑
m<m(∗)+1

dim

( N
w

[1,k]

η_〈`〉,m
N
w

[1,k]

η_〈`〉,m
\v

)
.

Suppose η ∈ w0, ` < m(∗) + 1 and v ⊆ w0 is finite and large enough. In view of

definition, and as the argument of (⊗1) we present the following three implications:

(⊗2.1) ` = 0 ⇒ n2
v,η,` = 0,

(⊗2.2) ` ∈ [1, k] ⇒ n2
v,η,` = 1,

(⊗2.3) ` ∈ [k + 1,m(∗) + 1)⇒ n2
v,η,` = 0.

Next, we show that

(⊗3) n1
v,η,` − n2

v,η,` = n` −
∑

m<m(∗)+1

nm.
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Indeed, we have

n1
v,η,` − n2

ν,η,` = dim(
N
w0
η,`

N
w0
η,`
\v

)− dim(
N
w

[1,k]

η,`

w
[1,k]

η,`
\v

)

−
∑

m<n(∗)
dim(

N
w0
η_〈`〉,m

N
w0

η
_〈`〉,m

rv
)

+
∑

m<n(∗)
dim(

N
w0

η
_〈`〉,m

N
w

[1,k]

η
_〈`〉,m

rv
)

= nη,` −
∑

`<m(∗)+1

nη_〈`〉,m

= n` −
∑

m<m(∗)+1

nm.

Now we combine (⊗1), (⊗2.1) and (⊗2.2) along with (⊗2.3) to deduce the follow-

ing formula.

(⊗4) n1
v,η,` − n2

v,η,` =

 0 if ` ∈ [1, k]

1 otherwise

Step H) follows from (⊗3) + (⊗4).

Step I) In this step, we present our desired contradiction. To see this, recall

from Step H) that

m(∗)∑̀
=0

n` = (n0 + . . .+ nm(∗))

+
k∑̀
=1

(n0 + . . .+ nm(∗)) +
m(∗)∑
`=k+1

(n0 + . . .+ nm(∗))

= (m(∗) + 1)
(m(∗)∑̀

=0

n`
)
− k.

In other words,

m(∗)

m(∗)∑
`=1

n`

 = k,

i.e.,
m(∗)∑
`=1

n` =
k

m(∗)
.

Now, the left hand side is an integer, while as 1 < k < m(∗), the right hand side is

not an integer. This is the contradiction that we searched for it.

So, we proved (∗)2:

1 < k < m(∗) ⇒ RPk0 6∼= RP0.
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The proof is now complete. �

An additional outcome is a slight improvement of the above pathological property.

Now, we are ready to proof Corollary 1.2 from the introduction:

Corollary 8.2. Assume λ = (µℵ0)+ > |R|. Let m(∗) > 2 be an integer and assume

that R is not pure semisimple. Then there is an R-module M of cardinality λ such

that:

Mn1 ∼= Mn2 ⇐⇒ m(∗)|(n1 − n2)

Proof. Let S1 be the ring constructed in the proof of Theorem 8.1. Let also M∗ be

the (R,S1)-bimodule constructed as there. Choose cardinals

λm1 > λm1−1 > . . . > λ0 > ‖M∗‖+ ‖R‖+ ‖S1‖+ ℵ0,

where m1 is any integer bigger than n1. Let I :=
⋃

m≤m1

m−1∏
`=0

λ` and define a function

f : I −→ I by the following rules:

f(η) :=

 η � k if η ∈ I, and lg(η) = k + 1

η if η = 〈〉.

The notation M⊗ stands for the bimodule ⊕
η∈I

M⊗η where M⊗η ∼= M∗ for each η ∈ I,

and we denote hη : M∗ −→M⊗η for such an isomorphism.

For every endomorphism Y of M∗ we define an endomorphism Y⊗ ∈ EndR(M⊗)

of M⊗ as an R-module as follows. We are going to define the action of Y⊗ on each

M⊗η (η ∈ I). To this end, we take x ∈M⊗η and define the action via:

xY⊗ := hf(η)

(
(h−1
η (x)Y)

)
.

Let S⊗ be the subring of the ring of endomorphisms of M⊗ as an R-module gener-

ated by

{1⊗,X⊗0 ,X
⊗
1 , . . . ,X

⊗
m(∗),W

⊗,Z⊗}.23

23Each one is a member of S and as is such an endomorphism of M⊗ as an R-module.
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Note also that 1⊗ is not a unit in S⊗. Now we continue as in the proof of Theorem

7.1, with M⊗ here instead of M there, and S⊗ here instead of S there. We leave

the details to the reader. �

We close the paper by reproving Theorem 7.4 from Theorem 8.1:

Corollary 8.3. Let λ = (µℵ0)+ > |R| be a regular cardinal. Then there are R-

modules M1 and M2 of cardinality λ such that:

(1) M1, M2 are not isomorphic,

(2) M1 is isomorphic to a direct summand of M2,

(3) M2 is isomorphic to a direct summand of M1.

Proof. We apply Theorem 8.1, for m(∗) := 2 to find an R-module M such that

Mn ∼= M ⇐⇒ 2|n− 1 (∗)

Now, let M1 := M and M2 := M2. Then

(1) M1, M2 are not isomorphic. This follows from (∗).

(2) M1 is isomorphic to a direct summand of M2. Indeed,

M1 ⊕M = M ⊕M = M2 = M2.

(3) M2 is isomorphic to a direct summand of M1. Indeed,

M2 ⊕M = M2 ⊕M = M3
(∗)∼= M = M1.

�
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