FACTOR $=$ QUOTIENT, UNCOUNTABLE BOOLEAN ALGEBRAS, NUMBER OF ENDOMORPHISM AND WIDTH

Saharon Shelah

Received June 22, 1991

Abstract

We prove that assuming suitable cardinal arithmetic, if B is a Boolean algebra every homomorphic image of which is isomorphic to a factor, then B has locally small density. We also prove that for an (infinite) Boolean algebra B, the number of subalgebras is not smaller than the number of endomorphisms, and other related inequalities. Lastly we deal with the obtainment of the supremum of the cardinalities of sets of pairwise incomparable elements of a Boolean algebra.

We show in the first section:
0.1 Conclusion. It is consistent, that for every $Q=F$ Boolean algebra B^{*}, for some $n<\omega,\left\{x: B^{*} \mid x\right.$ has a density $\left.\leq \aleph_{n}\right\}$ is dense (so B^{*} has no independent subset of power \aleph_{n}).

Where:
0.2 Definition. A B.A. is $Q=F$ (quotient equal factor) if: every homomorphic image of B is isomorphic to some factor of B i.e $B \mid a$ for some $a \in B$.

The "consistent" is really a derivation of the conclusion from a mild hyphothesis on cardinal arithmetic (1.2). The background of this paper is a problem of Bonnet whether every $Q=F$ Boolean algebra is superatomic.

Noting that : " $B \mid x$ has density $\leq \aleph_{n}$ " is a weakening of " x is as atom of B ", we see that 0.1 is relevant.

The existence of non trivial example is proved in R. Bonnet, S. Shelah [2].
M. Bekkali, R. Bonnet and M. Rubin [1] characterized all interval Boolean algebras with this property.

In the second section we give a more abstract version. In a paper in preparation, Bekkali and the author use theorem 2.1 to show that every $Q=F$ tree Boolean algebras are superatomic.

In the third section we deal with the number of endomorphism (e.g. aut $(B)^{\aleph_{0}} \leq \operatorname{end}(B)$) and in the fourth with the width of a Boolean algebra.

We thank D. Monk for detecting an inaccuracy in a previous version.

Notation

B denote a Boolean algebra.
$B^{+} \quad$ is the set of non zero members of B.
$B \mid x \quad$ where $x \in B^{+}$is $B \mid\{y: y \leq x\}$.

[^0]$\operatorname{comp} B$ is the completion of B, so it is an extension of B.
Remember : if B_{1} is a subalgebra of B_{2}, B is complete, h a homormorphism from B_{1} to B, then h can be extended to a homomorphism from B_{2} to B.
$i d_{A}$ is the identity function on A.
$\gamma_{\alpha}=\{\eta: \eta$ is a sequence of lenghts γ of ordinals $<\alpha\}$.
${ }^{\gamma}{ }_{\alpha}=\bigcup_{\beta<\alpha}{ }^{\beta} \alpha$.
§1 Maybe every "quotient equal factor" $B A$ has locally small density .

1.1 Hypothesis.

(1) B^{*} is a $Q=F$ Boolean algebra.
(2) for each $n<\omega, B^{*}$ has a factor B_{n} s.t.: $0<x \in B_{n} \Rightarrow \operatorname{density}\left(B_{n} \mid x\right) \geq \aleph_{n}$.
1.2 Hypothesis. For $\alpha \geq \omega$ we have $2^{|\alpha|}>\mathcal{K}_{\alpha}$.
1.3 Desired Conclusion. Contradiction.

We shall use 1.1 all the times, but 1.2 only in 1.17.
1.4 Definition. K_{λ}^{*} is the class of Boolean algebra such that:

$$
\left(\forall x \in B^{+}\right)[\operatorname{density}(B \mid x)=\lambda] .
$$

1.5 Claim. If B is atomless, $x \in B^{+}$then for some $y, 0<y \leq x$, and infinite cardinal λ we have $B \mid y \in K_{\text {density }}^{*}(B \mid x)$.
1.6 Claim. If $B \in K_{\lambda}^{*}, \quad B \subseteq B^{\prime} \subseteq \operatorname{comp}(B)$ then,

$$
B^{\prime} \in K_{\lambda}^{*} .
$$

1.7 Claim. If $B \in K_{\lambda}^{*}, \aleph_{0} \leq \mu<\lambda, \mu$ regular then some subalgebra B^{\prime} of B is in K_{μ}^{*}. If in addition B is a $Q=F$ algebra, then some homomorphic image $B^{\prime \prime}$ of B is in K_{μ}^{*}.

Proof. Choose by induction on $i<\mu, B_{i} \subseteq B,\left|B_{i}\right| \leq \mu,\left[i<j \Rightarrow B_{i} \subseteq B_{j}\right]$ such that: if $x \in B_{i}^{+}$then there is $y(x, i) \in B_{(i+1)}$ satisfying:
(1) $0<y(x, i) \leq x$,
(2) for no $z \in B_{i}, 0<z \leq y(x, i)$.
(possible as for each i and $x \in B_{i}^{+} \operatorname{density}\left(B_{i} \mid x\right)=\lambda$). Let now $B^{\prime}=\cup_{i<\mu} B_{i}$; it is a subalgebra of B. Now $x \in\left(B^{\prime}\right)^{+} \Rightarrow \operatorname{density}\left(B^{\prime} \mid x\right)=\mu$ as on the one hand $\left|B^{\prime}\right| \leq$ $\sum_{i<\mu}\left|B_{i}\right| \leq \mu \times \mu=\mu$ implies density $\left(B^{\prime} \mid x\right) \leq \mu$ for every $x \in B^{\prime}$ and on the other hand if $x \in\left(B^{\prime}\right)^{+}, A \subseteq B^{\prime}\left|x,|A|<\mu\right.$ then for some $i<\mu, A \subseteq B_{i}$, hence $y(x, i) \in\left(B^{\prime}\right)^{+}$wittness A is not dense in $B^{\prime} \mid x$, Now, if B is a $Q=F$ Boolean Algebra, then $i d_{B^{\prime}}$ can be extended to a homomorphism h^{\prime} from B into $\operatorname{comp}\left(B^{\prime}\right)$, so $h^{\prime}(B)$ is as required.
1.8 Conclusion. $\left\{\lambda: \lambda\right.$ regular and B^{*} has a factor in $\left.K_{\dot{\lambda}}^{*}\right\}$ is an initial segment of $\left\{\aleph_{\alpha}: \aleph_{\alpha}\right.$ regular $\}$.

1.9 Definition.

(1) $\alpha(*)$ is minimal such that for no $\lambda>\aleph_{\alpha(*)}$ does B^{*} has a factor in K_{λ}^{*}. Let $\kappa^{*}=\kappa(*)=:|\alpha(*)|$.
(2) Let for $\alpha<\alpha^{*}, b_{\alpha} \in B^{*}$ be such that $B^{*} \mid b_{\alpha} \in K_{\aleph_{\alpha+1}}^{*}$.
(3) Let J_{α} be the ideal $\left\{b \in B^{*}: B^{*} \mid b \in K_{\aleph_{\alpha+1}}^{*}\right\}$.
1.10 Definition. $B\left[{ }^{\omega>} \lambda\right]$ is the Boolean algebra generated freely by $\left\{x_{\eta}: \eta \in{ }^{\omega>} \lambda\right\}$ except $x_{\eta} \leq x_{\eta \mid m}\left(m \leq \lg (\eta), \eta \in{ }^{\omega>} \lambda\right)$.

1.11 Claim.

(1) For $\alpha<\beta<\alpha^{*}, J_{\alpha} \cap J_{\beta}=\{0\}$ and J_{α} is an ideal.
(2) For no $B^{\prime} \subseteq B^{*}$ and proper ideal I of $B^{\prime},\left[x \in B^{\prime} \backslash I \Rightarrow \operatorname{density}\left(B^{\prime} \mid x / I\right)>\mathcal{K}_{\alpha(*)}\right]$.

Proof.

(1) Trivial.
(2) By 1.5 for some $\beta>\alpha(*)$ and proper ideal J of B^{\prime} (of the form $\left\{x \in B^{\prime}: x-b \in I\right\}$) we have $B^{\prime} / I \in K_{\kappa_{\beta}}^{*}$ so there is a homomorphism h from B^{*} into $\operatorname{comp}\left(B^{\prime} / I\right)$ extending $x \mapsto x / I\left(x \in B^{\prime}\right)$. So B^{*} has a factor isomorphic to Rang h, but this Boolean algebra is in $K_{\kappa_{\beta}}^{*}, \aleph_{\beta}>\aleph_{\alpha(*)}$. So by 1.7 we get contradiction to the choice of $\alpha(*)$.
1.12 Deflnition. 1) $I^{*}=:\left\{x \in B^{*}: \bigcup_{(\alpha<\alpha(*))} J_{\alpha}\right.$ is dense below $\left.x\right\}$.
2) For $A \subseteq \alpha(*): I_{A}^{*}=:\left\{x \in B^{*}: \bigcup\left\{J_{\alpha}: \alpha \in A\right\}\right.$ is dense below $\left.x\right\}$.

1.13 Claim.

(1) I^{*}, I_{A}^{*} are ideals of B.
(2) $A \subseteq B \Rightarrow I_{A}^{*} \subseteq I_{B}^{*} \subseteq I^{*}$.
1.14 Claim. For every $A \subseteq \alpha(*)$, there are c_{A}, h_{A} such that:
(1) $c_{A} \in B^{*}$ and I_{A}^{*} is dense below c_{A},
(2) h_{A} is a homomorphism from B^{*} onto $B^{*} \mid c_{A}$,
(3) $h_{A} \mid I_{A}^{*}$ is one to one,
(4) If $B \mid x \cap I_{A}^{*}=\{0\}$ then $h_{A}(x)=0$,
(5) $B^{*} \mid c_{A}$ is a subalgebra of the completion of the subalgebra $\left\{h_{A}(x): x \in I_{A}^{*}\right\}$.

Proof. Let ba(A) be

$$
I_{A}^{*} \cup\left\{1-x: x \in I_{A}^{*}\right\}
$$

this is a subalgebra of B^{*}.
Let h_{1} be a homomorphism from B^{*} to $\operatorname{comp}(b a(A))$ extending $i d_{b a(A)}$ and $h_{1}(x)=0$ if $B^{*} \mid x \cap I_{A}^{*}=\{0\}$.

Now $h_{1}\left(B^{*}\right)$ is a quotient of B^{*} hence there is an isomorphism h_{2} from $h_{1}(B *)$ onto some $B^{*} \mid c_{A}$.

Let

$$
h_{A}=h_{2} \circ h_{1}
$$

so (1), (2), (3), (4), (5) holds.
1.15 Claim. Let $A \subseteq \alpha(*)$
(1) If $x \in \bigcup_{\alpha \in A} J_{\alpha}$ then $h_{A}(x) \in \bigcup_{\alpha \in A} J_{\alpha}$.
(2) If $x \in I_{A}^{*} \backslash \bigcup_{\alpha \in A} J_{\alpha}$ then $h_{A}(x) \notin \bigcup_{\alpha \in A} J_{\alpha}$.
(3) $\bigcup_{\alpha \in A} h_{A}\left(J_{\alpha}\right)$ is dense and downwared closed in $B^{*} \mid c_{A}$.
(4) $c_{A} \in I_{A}^{*}$.
(5) If $x \in J_{\alpha}$ and $\alpha \in A$ then $h_{A}(x) \in J_{\alpha}$.

Proof.
(1) $\mathrm{By}(5)$ of 1.14.
(2) is easy too.
(3) is easy too.
(4) is easy too.
(5) is easy too.
1.16 Claim. We can find $x_{\eta} \in B^{*}$ for $\eta \in{ }^{\omega>} \lambda$ where $\lambda=2^{\kappa(*)}$ such that:
(1) $m<\lg (\eta) \Rightarrow 0<x_{\eta} \leq x_{(\eta \mid m)}$.
(2) If $\bigwedge_{e=1}^{k} \nu_{e} \mathbb{Z} \eta, \eta \in{ }^{\omega>} \lambda, \bigwedge_{e} \nu_{e} \in^{\omega} \lambda$ then

$$
B^{*} \vDash x_{\eta} \notin \bigcup_{e=1}^{k} x_{\nu_{e}}
$$

Proof. Now we can choose $\left\langle A_{\eta}^{0}: \eta \in^{\omega\rangle} \lambda\right\rangle$ which is a family of subsets of $\kappa(*)$ such that any non trivial Boolean combination of then has cardinality $\kappa(*)$.

Let for $\eta \in^{\omega>} \lambda \quad A_{\eta}={ }^{\operatorname{def}} \bigcap_{e \leq 1 g(\eta)} A_{\eta \mid e}$. Let

$$
\begin{equation*}
x_{<>}=c_{A_{<>}}=h_{A_{<>}}\left(1_{B} \cdot\right) . \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
x_{\langle i\rangle}=h_{A_{<>}}\left(c_{A_{<i\rangle}}\right)=h_{A_{<>}} h_{A_{<i\rangle}}\left(1_{B} \cdot\right) \tag{b}
\end{equation*}
$$

and generally,

$$
x_{\left\langle i_{0}, i_{1}, \ldots, i_{n-1}\right\rangle}=h_{A_{<>}} h_{\left.A_{\left.<i_{0}\right\rangle}\right\rangle} h_{A_{\left\langle i_{0}, i_{1}\right\rangle}} \ldots h_{A_{\left\langle i_{0}, i_{1}, \ldots, i_{n-1}\right\rangle}}\left(1_{B^{*}}\right) .
$$

We prove (a) by induction of $\lg \eta$.
The reader may check
1.17 Final Contradiction. $\left\{x_{\eta}: \eta \epsilon^{\omega>} \lambda\right\}$ from Claim 1.16 contradict by 1.11(2) and the choice of $\mathcal{N}_{\alpha(*)}$, because $\lambda=2^{\kappa(*)}=2^{|\alpha(*)|}>\mathcal{N}_{\alpha(*)}$.
[of course $\left.\aleph_{\alpha(*)} \leq\left|B^{*}\right|\right]$
Actually, we have prove more.
1.18 Remark. (1) So we have in 1.17 prove that if set theory is as in Hypothesis 1.2, then there is no Boolean algebra as in 1.1, hence proving Conclusion 0.1
(2) Note: if 1.2, any $Q=F$ Boolean algebra has no factor $\mathcal{P}(\omega)$.

§2 $Q=F$ Boolean algebras: a general theorem .

2.1 Theorem. Suppose:

(1) B^{*} is a $(Q=F)$ Boolean algebra.
(2) N is a family of (non zero) members of B^{*} (the "nice" elements).
(3) κ a cardinal $\left(\geq \aleph_{0}\right),\left\langle K_{\alpha}: \alpha<\kappa\right\rangle$ a sequence.
(4) K_{α} is family of Boolean algebras closed under isomorphism and for $\alpha \neq \beta$ we have $K_{\alpha} \cap K_{\beta}=\emptyset$.
(5) for every α some factor of B^{*} is in K_{α}.
(6) if $x \in\left(B^{*}\right)^{+},\left(B^{*} \mid x\right) \in K_{\alpha}$ then for some $y \leq x, B^{*} \mid y \in K_{\alpha}, y \in N$.
(7) if $x_{1}, x_{2} \in N, \quad B^{*}\left|x_{1} \in K_{\alpha_{1}}, \quad B^{*}\right| x_{2} \in K_{\alpha_{2}}, \quad \alpha_{1} \neq \alpha_{2}$ then $x_{1} \cap x_{2}=0$.
(8) if $x \in B^{*}, N^{\prime} \subseteq N$ then
(α) for some $y_{1}, \cdots, y_{n} \in N^{\prime}$, for every $z \in N^{\prime}$ we have $B^{*} \vDash x \cap z \subseteq y_{1} \cup \cdots \cup y_{n}$ or
(β) for some $y \in N^{\prime}: y \leq x$.
Actually we use (8) only for N^{\prime} of the form $\left\{y \in N:(\exists \alpha)\left[\alpha \in A \& B^{*} \mid y \in K_{\alpha}\right\}\right.$. (9) if $x<y \in B^{*}, B^{*} \mid x \in K_{\alpha}$ and $B^{*} \mid y \in K_{\beta}$, then $\alpha=\beta$.

Then the Boolean algebra $B\left[^{\omega>}\left(2^{\kappa}\right)\right]$ can be embedded into B^{*}, remember ${ }^{\omega>}\left(2^{\lambda}\right)$ is
the tree $\left\{\eta: \eta\right.$ a finite sequence of ordinals $\left.<2^{\kappa}\right\}$ and Def 1.10.
Proof of theorem 2.1.
Let for $\alpha<\kappa, Y_{\alpha}=:\left\{y \in N: B^{*} \mid y \in K_{\alpha}\right\}$.
For $A \subseteq \kappa$ let us define
$I_{A}=$ the ideal generated by $Y_{A}=\bigcup_{\alpha \in A} Y_{\alpha}=\left\{y \in N: B^{*} \mid y \in K_{\alpha}\right.$ for some $\left.\alpha \in A\right\}$ and $J_{A}=:\left\{z \in B_{\alpha}:\right.$ for every $y \in Y_{A}$ we have $\left.z \cap y=0\right\}$.
Clearly J_{A} is an ideal.
Now for each $A \subseteq \kappa B^{*} / J_{A}$ is a quotient of B^{*}. Hence by condition (1) there are $y_{A}^{*} \in B^{*}$ and an isomorphism $h_{A}: B^{*} / J_{A} \rightarrow B^{*} \mid y_{A}^{*}$ onto.

Let $g_{A}: B^{*} \rightarrow B^{*} / J_{A}$ be canonical, so $h_{A} \circ g_{A}\left(1_{B^{*}}\right)=y_{A}^{*}$. Let $f_{A}=h_{A} \circ g_{A}$.
Define for $y \in B^{*}$ the following: $\operatorname{cont}(y)=:\left\{\alpha:\left(\exists y^{\prime} \leq y\right)\left[B^{*} \mid y^{\prime} \in K_{\alpha}\right]\right\}$.
(i.e. the content of y). We next prove
$(*)_{1} \quad \operatorname{cont}\left(y_{A}^{*}\right) \supseteq A$.
Proof. By conditon (5) for each $\alpha \in A$, there is $x_{\alpha} \in B^{*}$, such that: $B^{*} \mid x_{\alpha} \in K_{\alpha}$. By condition (6) wlog $x_{\alpha} \in N$, hence $x_{\alpha} \in I_{A}$, hence $g_{A} \mid\left(B^{*} \mid x_{\alpha}\right)$, is one to one, hence $B^{*}\left|x_{\alpha} \cong B^{*}\right| f_{A}\left(x_{\alpha}\right)$, hence by condition (4) $B^{*} \mid f_{A}\left(x_{\alpha}\right) \in K_{\alpha} ;$ now $R a n g f_{A}=B^{*} \mid y_{A}^{*}$, so $\alpha \in \operatorname{cont}\left(y_{A}^{*}\right)$. So we have prove (*) ${ }_{1}$.
$(*)_{2} \quad \operatorname{cont}\left(y_{A}^{*}\right) \subseteq A$
Proof. Suppose $\alpha \in \operatorname{cont}\left(y_{A}^{*}\right)$, so there is $z \leq y_{A}^{*}$, such that $B^{*} \mid z \in K_{\alpha}$. As f_{A} is a homomorphism from B^{*} onto $B^{*} \mid y_{A}^{*}$, there is $x \in B^{*}$ such that $f_{A}(x)=z$.

Now the kernel of f_{A} is J_{A}, and $B^{*} \mid 0 \notin K_{\alpha}$ so $x \notin J_{A}$; and clearly $\left(B^{*} \mid x\right) / J_{A}$ is in K_{α}.
Hence by ($*)_{3}$ below $\alpha \in A$.
$(*)_{3} \quad$ if $x \in B^{*} \backslash J_{A}$ and $\left(B^{*} / J_{A}\right) \mid f_{A}(x) \in K_{\alpha}$ then $\alpha \in A$
Proof. We apply condition (8) to x and $N^{\prime}=Y_{A}$. So one of the following two cases ocurrs:

Case α : There are $n<\omega, y_{1}, \cdots, y_{n} \in N^{\prime}$ such that:
$\left(\forall z \in N^{\prime}\right) x \cap z \subseteq y_{1} \cup \ldots \cup y_{n}$.
So $x-\left(y_{1} \cup \cdots \cup y_{n}\right) \in J_{A} \quad$ (by definition of J_{A}).
Let $x_{1}=x \cap\left(y_{1} \cup \cdots \cup y_{n}\right)$ hence $B^{*}\left|f_{A}(x)=\left(B^{*} \mid x\right) / J_{A} \cong\left(B^{*} \mid x_{1}\right) / J_{A} \cong B^{*}\right| x_{1}$, (last isomorphism as $\wedge_{e} y_{e} \in Y_{A}$ hence $y_{1} \cup \cdots \cup y_{n} \in I_{A}$ hence $f_{A} \mid\left(B^{*} \mid x_{1}\right)$ is one to one). So $B^{*} \mid x_{1} \in K_{\alpha}$, hence by condition (6) for some $x_{2} \leq x_{1}$, we have $x_{2} \in N \& B^{*} \mid x_{2} \in K_{\alpha}$.

Let $B^{*} \mid y_{e} \in K_{\alpha_{e}}$ where $\alpha_{e} \in A$ (by definition of Y_{A}). Clearly $x_{2} \leq x_{1} \leq y_{1} \cup \cdots \cup y_{n}$, so for some $e, y_{e} \cap x_{2} \neq 0$ hence $\alpha=\alpha_{e} \in A$ (by condition (7)) so we get the trivial desired conclusion.

Case β : There is $y \in N^{\prime}, y \leq x$.
As $y \in N^{\prime}=Y_{A}=\cup_{\beta \in A} Y_{\beta}$ for some $\beta \in A$ we have $y \in K_{\beta}$, also $y \in N^{\prime} \subseteq N$ so $J_{A} \cap\left(B^{*} \mid y\right)=\{0\}$ so $\left(B^{*} / J_{A}\right) \mid g_{A}(y) \in K_{\beta}$. Remembering $\left(B^{*} / J_{A}\right) \mid g_{A}(x) \in K_{\alpha}$, as $B^{*}\left|J_{A} \cong B^{*}\right| y_{A}^{*}$ we get by condition (9) that $\alpha=\beta$. So (*) $)_{3}$ hence ($)_{2}$ is proved.

Next we prove
$(*)_{4} \quad$ if $B \subseteq A \subseteq \kappa$, and $\operatorname{cont}(y)=B$, then $\operatorname{cont}\left[f_{A}(y)\right]=B$.
Proof.
inclusion ?
First let $\alpha \in B$, then for some $x \leq y, B^{*} \mid x \in K_{\alpha}$, and by condition (6) wlog $x \in N$, hence $x \in I_{A}(\operatorname{as} \alpha \in B \subseteq A)$ hence $f_{A} \mid\left(B^{*} \mid x\right)$ is one to one and onto $B^{*} \mid f_{A}(x)$ so $f_{A}(x) \leq$ $f_{A}(y), B^{*} \mid f_{A}(x) \in K_{\alpha}$, so $\alpha \in \operatorname{cont}\left(f_{A}(y)\right)$.
inclusion \subseteq
Second let us assume $\alpha \in \operatorname{cont}\left[f_{A}(y)\right]$. So (as f_{A} is onto $B^{*} \mid y_{A}^{*}$, and if $f_{A}(x) \leq f_{A}(y)$ then $\left.f_{A}(x \cap y)=f_{A}(y), x \cap y \leq y\right)$ there is $x \leq y$ such that $B^{*} \mid f_{A}(x) \in K_{\alpha}$. Now apply condition (8) to x and Y_{A}. So case (α) or case (β) below holds.

Case α : There are $n<\omega, y_{1}, \cdots, y_{n} \in Y_{A}$ such that for every $z \in Y_{A}$ we have $x \cap z \subseteq y_{1} \cup \cdots \cup y_{n}$.

Hence $x-\left(y_{1} \cup \cdots \cup y_{n}\right) \in J_{A}$ let $x_{1}=x \cap\left(y_{1} \cup \ldots \cup y_{n}\right)$ so $f_{A}(x)=f_{A}\left(x_{1}\right)$ so $B^{*} \mid f_{A}\left(x_{1}\right) \in K_{\alpha}$ and of course $x_{1} \leq y_{1} \cup \cdots \cup y_{n}$, (and $\left.x_{1} \leq y\right)$ so $f_{A} \mid\left(B^{*} \mid x_{1}\right)$ is one to one.

Now f_{A} is one to one on $B^{*} \mid x_{1}$ hence $B^{*}\left|x_{1} \cong B^{*}\right| f_{A}\left(x_{1}\right) \in K_{\alpha}$. Now $x_{1} \leq x \leq y$, so x_{1} wittness $\alpha \in \operatorname{cont}(y)$, which is B.

Case β : There is $t \leq x, t \in Y_{A}$.
Now $t \leq x \leq y, B^{*} \mid t \in K_{\beta}$ for some $\beta \in A$ as $t \in Y_{A}$. Now f_{A} is one to one on $B^{*} \mid f_{A}(t) \in K_{\beta}$.

Also $f_{A}(t) \leq f_{A}(x)$ hence by assumption (9) we have $\beta=\alpha$. Also $t \leq x \leq y$ so t wittness $\beta \in \operatorname{cont}(y)$, so $\alpha=\beta \in \operatorname{cont}(y)=B$ as required.

So we have proved (*) ${ }_{4}$
end of proof of theorem 2.1: Let $\lambda=2^{\kappa}$.
Let $\left\langle\mathcal{U}_{\eta}: \eta \in^{\omega\rangle} \lambda\right.$) be a family of subsets of κ, any finite Boolean combination of them has power κ (or just $\neq \emptyset$).

Let $\mathcal{U}_{\eta}^{*}=\cap_{e \leq l g \eta} \mathcal{U}_{\eta \mid e}$. Now define for every $\eta \in^{\omega>} \kappa$ and $e \leq \lg (\eta)$ an element y_{η}^{e} of B^{*} : $y_{\eta}^{e} \stackrel{\text { def }}{=} f u_{\eta \mid e}^{*} f_{\mathcal{U}_{\eta \mid(c+1)}^{*}}^{*} \cdots f_{\mathcal{U}_{\eta \mid(n-1)}^{*}} f u_{\eta}^{-}\left(1_{B} \cdot\right)$ and $y_{\eta}^{\otimes}={ }^{\text {def }} y_{\eta}^{\circ}$
Now: (a) prove for each $\eta \in{ }^{n} \kappa$ by downward induction on $e \in\{0,1, \ldots, n\}$ that $\operatorname{cont}\left(y_{\eta}^{e}\right)=$ \mathcal{U}_{η}^{*}; for $e=n$ this is $(*)_{1}+(*)_{2}$ as $y_{\eta}^{n}=y_{\mathcal{U}_{\eta}}$;
for $e<n$ (assuming for $e+1$) this is by ($*)_{4}$.
Next note: (b) if $\nu=\eta^{\wedge}<\alpha>$ then $y_{\nu}^{\otimes} \leq y_{\eta}^{\otimes}$
[prove by domnward induction for $e \in\{0,1, \ldots, \lg \eta\}$ we have : $y_{v}^{e+1} \leq y_{\eta}^{e}$; remember $f u$ is order preserving].

Lastly note (c) if $\eta \epsilon^{\omega>} \lambda, n<\omega$, and $\nu_{e} \in^{\omega>} \lambda$ is not initial segment of η for $e=1, \ldots, n$ then $y_{\eta}^{\circ}-\cup_{e=1}^{n} y_{\nu_{e}}^{\circ} \neq$; this follows by (a) and the definition of $\operatorname{cont}\left(y_{\eta}^{\circ}\right)$.

Now by (a), (b), (c) there is an embedding g from the subalgebra of B^{*} which $\left\{y_{\eta}^{\circ}: \eta \in\right.$ $\omega>\lambda\}$ generates mapping y_{η}° to x_{η}.
§3 The Number of Subalgebras .
3.1 Definition. For a Boolean alagebra A.
(1) $\operatorname{Sub}(A)$ is the set of subalgebras of A.
(2) $\operatorname{Id}(A)$ is the set of ideals of A.
(3) $\operatorname{End}(A)$ is the set of endomorphisms of A.
(4) $\operatorname{Pend}(A)$ is the set of partial endomorphisms (i.e. homomorphisms from a subalgebra of A into A).
(5) $P s u b(A)$ is the family of subsets of A closed under union ,intersection and substruction but 1 may be not in it though 0 is [so not neccessarily closed under complementation].
(6) We let $\operatorname{sub}(A), \operatorname{id}(A)$, $\operatorname{end}(A)$, aut (A), $\operatorname{pend}(A), \operatorname{psub}(A)$ be the cardinality of $\operatorname{Sub}(A), I d(A), \operatorname{End}(A), \operatorname{Aut}(A), \operatorname{Pend}(A)$ and $\operatorname{Psub}(A)$ respectively
In D. Monk [4] list of open problems appear:
PROBLEM 63. Is there a BA A such that $\operatorname{aut}(A)>\operatorname{sub}(A)$?
See [4] page 125 for backgraound.
3.2 Theorem. For a $B A A$ we have: aut (A) is not bigger than $\operatorname{sub}(A)$.

3.3 Conclusion.

(1) For a $B A A$ we have end (A) is not bigger than $\operatorname{sub}(A)$.
(2) For a $B A A$ we have pend (A) is exactly $\operatorname{sub}(A)$.
(3) For a $B A A$ and a in $A, 0<a<1$ we have $\operatorname{sub}(A)=\operatorname{Max}\{\operatorname{sub}(A \mid a), \operatorname{sub}(A \mid-a)\}$.

We shall prove it in 3.5.
Remark. Of course - A is infinite- we many times forget to say so.
3.4 Proof of the theorem. Let μ be $\operatorname{sub}(A)$.
3.4A Observation: $\operatorname{Psub}(A)$ has cardinality $\operatorname{Sub}(A)$ [why? for the less trivial inequality, \leq, for every X in $P \operatorname{sub}(A)$ which is not a subset of $\{0,1\}$ choose a member $a \neq 0,1$ in X and let $Y_{a}[X]$ be the subalgebra generated by $\{x: x \in X, x \leq a\}$ let $Z_{a}[X]$ be the subalgebra generated by $\{x: x \in X, x \cap a=0\}$; now X can be reconstructed from $\langle a, Y, Z\rangle$ as $\{x \in A$: $x \cup a \in Y$ and $x-a \in Z\}$. So $|P s u b(A)| \leq|A| \times|S u b(A)|^{2}+4=|S u b(A)|+\aleph_{0}=|S u b(A)|$. (remember that $|A| \geq \mathcal{N}_{0}$, and that $|A| \leq|\operatorname{Sub}(A)|$, as the number of non-atoms of A is $\leq\left|\left\{Z_{a}[A]: a \in A\right\}\right|$).

For any automorphism f of A we shall choose a finite sequence of members of $\operatorname{Psub}(A)$ (in particular of ideals of A), and this mapping is one to one, thus we shall finish.

Let $J^{\text {def }}\{x: x \in A$, and for every $y \in A$ below x, we have $f(y)=y\}$; let I^{*} be the ideal of A generated by I, the set of elements x for which $f(x) \cap x=0$.

Observe : $x \in I$ implies $f(x) \in I$ [why? as $y=f(x), x \in I$ implies $f(x) \cap x=0$ hence $f(y) \cap y=f(f(x)) \cap f(x)=f(f(x) \cap x)=f(0)=0$.

Observe: $J \cup I$ is a dense subset of A [if $x \in B^{+}$and there is no $y \in J, 0<y \leq x$ then $w \log x \neq f(x)$. If $x \notin f(x)$ then $z=: x-f(x)$ satisfies $0<z \leq x, f(z) \cap z \leq f(x) \cap z=$ $f(x) \cap(x-f(x))=0$; so $z \in I$. If $x \leq f(x)$ then $x<f(x)$; as f is an automorphism of B^{*}, for some z in B^{*} we have $f(z)=x$, so $x<f(x)$ means $f(z)<f(f(z))$ hence $z<f(z)$, and $z^{\prime}=x-z=f(z)-z$ is in I, is >0 but $<x$, as required.]

Next let $\left\{x_{i}: i<\alpha\right\}$ be a maximal sequence of distinct members of I satisfying : for any $i, j<\alpha$ we have $x_{i} \cap f\left(x_{j}\right)=0$, let I_{1} be the ideal generated by $\left\{x_{i}: i<\alpha\right\}$ and let I_{2} be the ideal generated by $\left\{f\left(x_{i}\right): i<\alpha\right\}$.

Clearly $I_{1} \cap I_{2}=\{0\}$ let $I_{0}=\left\{y: y \in I^{*}\right.$, and for every $x \in I_{1}, y \cap x=0$ and $\left.f(y) \in I_{1}\right\}$ and let I_{3} be the ideal of A generated by $\left\{f(x): x \in I_{2}\right\}$.

Observe : each $I_{t}(t=0,1,2,3)$ is an ideal of A, contained in I^{*} [why? for $t=1$ by choice each x_{i} is in $I, t=0$ by its definition, I_{2}, I_{3} by their definition and an observation above, i.e., $x \in I \Rightarrow f(x) \in I]$.

Observe: for $t=0,1,2$ we have: $I_{t} \cap I_{t+1}=\{0\}$ [why ? for $t=1$, by the choice of $\left\{x_{i}: i<\alpha\right\}$, for $t=0$ by definition of I_{0}, lastly for $t=2$ applies its definition $+f$ being an automorphism.]

Observe: $I_{0} \cup I_{1} \cup I_{2}$ is a dense subset of I^{*} [why? assume x in I^{*} but below it there is no non zero member of this union, so we can replace it by any non zero element below it; as $x \in I^{*}$, there is below it a non zero element y with $y \cap f(y)=0$ so wlog $x \cap f(x)=0$; why have we not choose $x_{\alpha}=x$? there are two case:

Case 1: For some $j<\alpha, x \cap f\left(x_{j}\right)$ is not zero so there is a non zero element below x in I_{2}.
Case 2: for some $j<\alpha, f(x) \cap x_{j}$ is not zero
so there is a non zero y in I_{1} below $f(x)$ hence (as f is an automorphism) there is x^{\prime} below x such that $f\left(x^{\prime}\right)=y$ so wolg $f(x)$ is in I_{1}, but then by its definition, either below x there is a member of I_{1} or x is in I_{0} so we have finished proving the observation.]

Observe: for $t=0,1,2, x \in I_{t} \Rightarrow f(x) \in I_{t+1}$ [check].
Now we define $C_{t}=C_{t}^{f}$, a member of $\operatorname{Psub}(A)$ for $t=0,1,2$ as follows: C_{t} is the set $\left\{x \cup f(x): x \in I_{t}\right\}$. The closure under the relevant operations follows as I_{t} is closed under them and f is an isomorphism and for x, y in $I_{t}, x \cap f(y)=0$, this is needed for substraction.

Also for every automorphism f of A we assign the sequence $\left\langle J, I, I_{0}, I_{1}, I_{2}, I_{3}, C_{0}, C_{1}, C_{2}\right\rangle$ (some reddundancy). Suppose for $f_{1}, f_{2} \in \operatorname{Aut}(A)$ we get the same tuple; it is enough to show that their restriction to J and to I are equal -as the union is dense. Concerning J this is trivial - they are the identity on it so we discuss I, by an observation above it is enough to choeck it for $I_{t}, t=0,1,2$ but for each t, from C_{t} and I_{t}, I_{t+1} we can [or see below] reconstruct $f \mid I_{t}$.

So we have finished the proof.
3.4B Remark. We can phrased this argument as a claim: let I, J, be ideals of A with intersection $\{0\}$; for every f, a one to one homomorphism from I to J let X_{f} be the set $\{x \cup f(x): x \in I\}$ then " f mapped to X_{f} " is a one to one mapping from $\operatorname{HOM}(I, J)$ to $\operatorname{Psub}(A)$ (the former include $\{g \mid I: g \in \operatorname{Aut}(A), g$ maps I onto $J\}$, for which we use this). For subalgebra relative to U, \cap only f needs not be one to one.

3.5 Proof of the conclusion from the theorem.

(1) For a given Boolean Algebra B assume $\mu=: \operatorname{sub}(A)$ is $<\operatorname{end}(A)$. For any endomorphism f of A we attach the pair ($\operatorname{Kernel}(f), \operatorname{Range}(f))$. The number of possible such pairs is at most $i d(A) \times \operatorname{sub}(A)$, which is at most μ (we are dealing with infinite BAs and $\operatorname{id}(A) \leq p s u b(A) \leq \operatorname{sub}(A))$ so as we assume $\mu<\operatorname{end}(A)$, there are distinct f_{i}, endomorphisms of A for $i<\mu^{+}$, an ideal I and a subalgebra R of B such that for every i we have $\operatorname{Kernel}\left(f_{i}\right)=I$ and $\operatorname{Range}\left(f_{i}\right)=R$.

We now define a homomorphism g_{i} from B / I to R by : $g_{i}(x / I)=f_{i}(x)$. Easily the definition does not depend on the representative, so g_{i} is as required and it is one to one and onto. So $\left\{g_{i} \circ\left(g_{0}\right)^{-1}: i<\dot{\mu}^{+}\right\}$is a set of μ^{+}distinct automorphisms of R.

So
$(*)_{1}$

$$
\mu<\operatorname{aut}(R)
$$

but, by the theorem

$$
\operatorname{aut}(R) \leq \operatorname{sub}(R)
$$

obviously

$$
\operatorname{sub}(R) \leq \operatorname{sub}(A)
$$

remember

$$
\mu=\operatorname{sub}(A)
$$

together a contradiction.
(2) As $R \mapsto$ (identity map on R) is one to one from $\operatorname{sub}(A)$ into $\operatorname{Pend}(A)$, obviously $\operatorname{sub}(A) \leq \operatorname{pend}(A)$, so we are left with proving the other inequality. Same proof, only the domain is a subalgebra too and it has an ideal. So for every such partial endomorphism h of A we attach two subalgebras $D_{h}=\operatorname{Domain}(h)$ and $R_{h}=$ Range (h) an ideal I_{h} of $D_{h}\left\{x: x \in D_{h}\right.$ and $\left.f(x)=0\right\}$. They are all in $\operatorname{Psub}(A)$, so their number is at most $\operatorname{sub}(A)$ and if we fixed them the amount of freedom we have left is : an automorphism of R (and $\operatorname{aut}(R) \leq \operatorname{sub}(R) \leq \operatorname{sub}(A)$).
(3) Let B be a subalgebra of A. We shall attached to it several ideals and subalgebras of $B|a, B|(-a)$ such that B can be reconstructed from them; this clearly suffice. Let C be the subalgebra $\langle B, a\rangle, C_{o}=\{x \in C: x \leq a\}, C_{1}=\{x \in C: x \leq 1-a\}$. The number of possible C is clearly the number of pairs $\left\langle C_{0}, C_{1}\right\rangle$ which is clearly $\operatorname{sub}(A \mid a)+\operatorname{sub}(A \mid-a)$; fix C. Let $I=:\{x: x \in B, x \leq a\}$, it is an ideal of $C \mid a$; so the number of such I is at most

$$
i d(C \mid a) \leq \operatorname{pend}(C \mid A) \leq \operatorname{sub}(C \mid a) \leq \operatorname{sub}(A \mid a)
$$

So we can fix it . Similarly we can fix $J=\{y: y \in B, y \leq(1-a)\}$, now I and J are subsets of B, now check : the amount of freedom we have left is an isomorphism g from $(C \mid a) / I$ onto $(C \mid-a) / J$ such that $B=\{$ the subalgebra of C generated by $I \cup J \cup\{x \cup y: x \in(C \mid a), y \in(C \mid-a)$ and $g(x / I)=(y / J)\}$.
So we can finish easily.
We originally want to prove $A u t(A)^{N_{0}} \leq \operatorname{sub} A$ and even
$\mid\left.\{f \in \operatorname{End}(A): f$ is onto $\}\right|^{\alpha_{0}} \leq s u b A$. But we get more: intermediate invariants with reasonable connections.

3.6 Definition: For a Boolean algebra A

(0) A partial function f from A to A is everywhere onto if:

$$
\begin{equation*}
x \in \operatorname{Dom}(f) \& y \in \operatorname{Rang}(f) \& y \leq f(x) \Rightarrow(\exists z)[z \leq x \& f(z)=y] \tag{1}
\end{equation*}
$$

$E n d_{0}(A)=\operatorname{End}(A)$.
$E n d_{1}(A)=\{f \in \operatorname{End}(A): \operatorname{Rang}(f)$ include a dense ideal $\}$.
$E n d_{2}(A)$ is the set of endomorphism f of A which are onto.
$E n d_{3}(A)=\{f:$ for some dense ideal I, f is an onto endomorphism of $I\}$.
$\operatorname{End}_{4}(A)=\{f:$ for some ideal I of A, f is an onto endomorphism of $I\}$.
$E n d_{5}(A)=\{f:$ for some dense ideals I, J, f is an homorphism from I onto $J\}$.
$\operatorname{End}_{6}(A)=\langle f$: for some ideals I, J of A, f is an endomorphism from I onto $J\}$.
Note $I=A$ is allowed. All kinds of endomorphism, commute with \cap, \cup, preserve 0 but not necessarily -.
(2) For $l=1, \cdots, 6$ we let $A u t_{l}(A)=\left\{f \in \operatorname{End}_{l}(A): f(x)=0 \Leftrightarrow x=0\right.$ for $x \in \operatorname{Dom} f\}$.
(3) For function f, g whose domain is $\subseteq A$ let: $f \sim g$ if $\operatorname{Kerf}=\operatorname{Kerg}$ and $\{x: f(x)=$ $g(x)$ or both are defined not \} include a dense ideal of B / Kerf.
(4) Let end $(A)=\left|E n d_{e}(A)\right|$, $\operatorname{aut}_{e}(A)=\left|A u t_{e}(A)\right|$.

Let $\operatorname{end}_{e}^{\sim}(A)=\left|\left\{f / \sim: f \in \operatorname{End}_{e}(A)\right\}\right|$ and $a u t_{e}^{\sim}(A)=\left|\left\{f / \sim: f \in A u t_{e}(A)\right\}\right|$.
(5) We allow to replace A by an ideal I with the natural changes.
(6) We define $E n d v_{e}(A)$, $e n d v_{e}(A)$ similarly replacing "onto" by "everywhere onto" and define $E n d l_{e}(A), \operatorname{endl} l_{e}(A)$ similarly omitting "onto". We define $E n d u_{e}(A)$ as the set of $f \in \operatorname{End}_{e}(A)$ such that for every $x \in \operatorname{Dom} f, f(x) \neq 0$ and ideal I of $A \mid x$ which is dense, we have $f(x)=\sup _{A}\{f(y): y \in I\}$. We defined naturally $A u t v_{e}(A), A u t l_{e}(A), A u t v_{e}(A)$ etc.

Note: In $E n d v_{1}(A)$ we mean: for some dense ideal I of $A, y \leq f(x) \in I \Rightarrow$ $(\exists z \leq x)(f(z)=y)$ and $E n d l_{1}(A)=\operatorname{End}(A)$.

3.7 Claim.

(1) $\operatorname{End}_{6}(A) \supseteq \operatorname{End}_{5}(A) \cup \operatorname{End}_{4}(A) \supseteq \operatorname{End}_{5}(A) \cap \operatorname{End}_{4}(A) \supseteq \operatorname{End}_{3}(A) \supseteq \operatorname{End}_{2}(A)$ and $E n d_{2}(A) \subseteq \operatorname{End}_{1}(A) \subseteq \operatorname{End}_{0}(A)=E n d A$.
(2) $\operatorname{end}_{6}(A) \geq \max \left\{e n d_{5}(A), \operatorname{end}_{4}(A)\right\} \geq \min \left\{\operatorname{end}_{5}(A), \operatorname{end}_{4}(A)\right\} \geq e n d_{3}(A) \geq$ $\operatorname{end}_{2}(A)$, and end $(A) \leq \operatorname{end}_{1}(A) \leq \operatorname{end}(A)$.
(3) In (1) we can replace End by Aut or Endv or Endl or Autv or Autl, or Endu or Autu and in (2) end by aut etc. We can in (2) replace end (or aut t_{l}) by end ${ }_{l}^{\sim}$ (or aut $\left.{ }_{l}\right)$ etc.
(4) $\operatorname{Aut}_{l}(A) \subseteq \operatorname{End}_{l}(A)$ hence $\operatorname{aut}_{l}(A) \leq \operatorname{end}_{l}(A)$; and $E n d v_{e}(A) \subseteq \operatorname{End}_{e}(A) \subseteq$ $\operatorname{Endl}_{e}(A)$ hence endve $(A) \leq \operatorname{end}_{e}(A) \leq \operatorname{endl}_{e}(A) ; \operatorname{Endv}_{e}(A)=\operatorname{End}_{e}(A)$ if $e=0$. Also $\operatorname{Aut}(A)=A u t_{2}^{\sim}(A)$ hence aut $(A)=a u t_{2}^{\sim}(A)$.
(5) If $f, g, \in E n d v_{6}(A), f \sim g$ then f, g, are compatible functions, i.e. $x \in \operatorname{Domf} \cap$ Domg $\Rightarrow f(x)=g(x)$.
(6) $\operatorname{sub}(A) \geq a u t_{6}(A)$ and $\operatorname{aut}(A) \leq a u t_{3}^{\sim}(A)$.
(7) $A u t_{e}(A)=A u t v_{e}(A)$.
(8) $e n d_{e}(A) \leq i d(A)+e n d_{e}^{\sim}(A)$ etc.

Proof. E.g.
(5) Supposse $x \in \operatorname{Domf} \cap \operatorname{Domg}, f(x) \neq g(x)$, so $w \log f(x) \not 又 g(x)$ so let $z=: f(x)-$ $g(x) \neq 0$. As $z \leq f(x)$ for some $t \in \operatorname{Dom} f$ we have $0<f(t) \leq z$, and $w \log f(t)=$ $g(t)$, and we get contradiction.
(6) As in proof of 3.2 or see proof of 3.12 (noting $\mid\{I: I$ a dense ideal of $A\} \mid \leq \operatorname{sub}(A)$ by 3.4 A).
3.8 Definition. For a Boolean Algebra A
(1) $I d c(A)=\left\{I: I\right.$ an ideal of A, and $\left.I^{c}=I\right\}$ where $I^{c}=\{x \in A: I$ is dense below $x\}$.
(2) $i d c(A)=|I d c(A)|$.
(3) $\operatorname{Did}(A)=\{I: I$ a dense ideal of $A\}$.
(4) For ideals $I, J I+J$ is the minimal ideal I of A which include $I \cup J$ i.e. $\{x \cup y: x \in I$ and $y \in J\}$. Similarly $\sum_{\zeta<\xi_{0}} I_{\zeta}$.
(5) If we replace A by an ideal I (in 3.8 (1),(2),(3), 3.1 (2)) means we restrict ourselves to subideals of it.
3.9 Claim. For a Boolean algebra A :
(1) $i d(A) \geq i d c(A)=|\operatorname{comp}(A)|$.
(2) $|A| \leq i d c(A)=i d c(A)^{N_{0}}$ (when A is infinite, of course).
(3) If $f \in E n d u_{5}(A)$, then f has a unique extension to an endomorphism f^{+}of $\operatorname{comp}(A)$ where $f^{+}(x)=\sup _{A}\{f(y): y \leq x, y \in \operatorname{Domf}\}$. If f is everywhere onto it is the unique extension of f in $\operatorname{End}(\operatorname{compA})$.
(4) For $g \in \operatorname{End}(A),\left(\exists f \in \operatorname{End}_{5}(A)\right) f^{+} \supseteq g$ iff $g \in \operatorname{Endu}(A)$.
(5) For $f, g \in \operatorname{End}_{5}(A)$ we have $f \sim g \Leftrightarrow f^{+}=g^{+}$.
(6) For $f \in E n d u_{6}(A)$, letting $a=\sup _{\text {comp }(A)}\{x: B \mid x \subseteq \operatorname{Dom} f\} \in \operatorname{comp}(A)$ and $b=\sup _{\operatorname{comp}(A)}\{x: A \mid x \subseteq \operatorname{Rang} f\} \in \operatorname{comp}(A)$, we define $f^{+} \in H O M(\operatorname{comp}(A \mid a)$, $\operatorname{comp}(A \mid b))$ extending f by $f(x)=\sup \{f(y): y \leq x, y \in \operatorname{Dom} f\}$, also f^{+}is onto.

3.10 Claim.

(1) $i d(A) \leq e n d l_{3}(A)$.
(2) $i d c(A) \leq e n d l_{3}^{\sim}(A)$.
(3) $\operatorname{endl} l_{e}(A)=i d(A)+e n d l_{e}^{\sim}(A)$ for $e=3,4,5,6$.
(4) If $f \in \operatorname{End}_{5}(A)$ then $f^{+} \in \operatorname{End}_{1}(\operatorname{compA})$.
(5) $a u t_{e}(A) \leq i d(A)+a u t_{m}^{\sim}(A)$ when $e, m \in\{3,5\}$ or $e, m \in\{4,6\}$.

Proof.

(1) For $I \in I d(A)$ let $J_{I}=\{x \in B:(B \mid x) \cap I=\{0\}\}$, so J_{I} is an ideal, $J_{I} \cap I=\{0\}, J_{I} \cup$ I is dense. Let F_{I} be the following map: $\operatorname{Domf}_{I}=I+J_{I}, f_{I}\left|I=i d_{I}, f_{I}\right| J_{I}=0_{J_{I}}$. Now $I \mapsto f_{I}$ is a one to one mapping from $I d(A)$ to $\operatorname{Endl}_{3}(A)$.
(2) The mapping above works.
(3) Note that $i d(A) \leq e n d_{3}(A)$ by part(1), and endl $l_{3}^{\sim}(A) \leq e n d l_{3}(A)$ trivially. A is infinite hence all those cardinals are infinite so $\chi=: i d(A)+\operatorname{endl}_{3}^{\sim}(A) \leq \operatorname{endl}_{3}(A)$. The inverse inequality is easy too.
(4), (5) Left to the reader.

3.11 Claim.

(1) For $x \in A$:
$(\exists f \in \operatorname{Aut}(A))[x \neq f(x)]$ iff
$\left(\exists f \in A u t_{6}(A)\right)(x \in \operatorname{Domf\& x} \neq f(x))$ iff $(\exists y, z)[0<y \leq x \& 0<z \leq 1-$ $x \& A|y \cong A| z]$.
(2) If $\left\langle I_{\zeta}: \zeta<\alpha\right\rangle$ is a sequence of ideals of $A,\left[\zeta \neq \xi \Rightarrow I_{\zeta} \cap I_{\xi}=\{0\}\right]$ and
$I=\sum_{i<\alpha} I_{i}$ then:
$i d(I) \geq \pi_{\zeta<\alpha} i d\left(I_{\zeta}\right)$.
$i d c(I) \geq \pi_{\zeta<\alpha} i d c\left(I_{\zeta}\right)$.
$\operatorname{aut}(I) \geq \pi_{\zeta<\alpha} \operatorname{aut}\left(I_{\zeta}\right)$.
$\operatorname{end}(I) \geq \pi_{\zeta<\alpha} \operatorname{end}\left(J_{\zeta}\right)$.
Similarly for end d_{l}, aut t_{l}, nd d_{l}^{\sim}, aut t_{l}^{\sim} etc.
There are many more easy relations, but for our aim the main point is

3.12 Main Lemma. For an infinite Boolean Algebra A:

(1) $\operatorname{aut}_{e}^{\sim}(A)$ for $e=3,5$ are equal or both finite (and we can restrict ourselves to automorphisms of order 2).
(2) If for some $e \in\{3,4,5,6\}$ we have aut ${\underset{e}{\sim}}_{\sim}(A)>i d c(A)$ then aut $t_{e}^{\sim}(A)$ for $e=3,4,5,6$ are all equall.
(3) $a u t_{3}^{\sim}(A)=a u t_{3}^{\sim}(A)^{N_{0}}$ or $a u t_{3}(A)$ is finite.
(4) $\operatorname{autv}_{e}^{\sim}(A)=\operatorname{autv}_{3}(A)+i d c(A)$ for $e=4,6$.

Proof. Let $J=:\left\{x \in A\right.$: for every $\left.f \in \operatorname{Aut}(A), f \mid(A \mid x)=i d_{A \mid x}\right\}$.
The function F_{1}, \cdots, F_{5} satisfying $y \leq x \Rightarrow F_{e}(y) \leq F_{e}(x)$ are functions from A to ord defined below; and we let:
$K=:\{x \in A:$
(i) for some $y, x \cap y=0$ and $A|x \cong A| y$.
(ii) for $e=1, \cdots, 5$ and $0<y<x$ we have $\left.F_{e}(y)=F_{e}(y)\right\}$.

Where:
$F_{1}(x)=$ the cardinality of $A \mid x$.
$F_{2}(x)=i d c(A \mid x)$.
$F_{3}(x)=\operatorname{aut}(A \mid x)$.
$F_{4}(x)=a u t_{3}(A \mid x)$.
$F_{5}(x)=a u t_{3}^{\sim}(A \mid x)$.
Now
$(*)_{1} J$ is an ideal of B.
$(*)_{2} K$ is downward closed.
$(*)_{3} K \cup J$ is dense.
Choose $\left\{x_{i}: i<\alpha\right\}$ maximal such that:
(a) $x_{i} \in K, x_{i}>0$,
(b) if $i \neq j, 0<y^{\prime} \leq x_{i}, 0<y^{\prime \prime} \leq x_{j}$ then $A\left|y^{\prime} \neq A\right| y^{\prime \prime}$.

Let $K_{i}=\left\{y\right.$: for some $\left.y^{\prime} \leq x_{i}, A|y \cong A| y^{\prime}\right\}$, and K_{i}^{+}: the ideal K_{i} generate. Now
$(*)_{4} \bigcup_{i<\alpha} K_{i}$ is dense in K [hence $J \cup \bigcup_{i<\alpha} K_{i}$ is dense in A].
$(*)_{5}$ For $i \neq j$ we have $K_{i} \cap K_{j}=\{0\}, K_{i} \cap J=\{0\}$.
Clearly,
$(*)_{6}$ for $f \in A u t_{6}(A)$ we have:
(a) f is the identity on $J \cap D o m f$.
(b) for $x \in \operatorname{Dom} f$ we have $x \in K_{i} \Leftrightarrow f(x) \in K_{i}$.

So
$(*)_{7} a u t_{e}^{\sim}(A)=\pi_{i<\alpha} a u t_{e}^{\sim}\left(K_{i}^{+}\right)$for $e=3,5$ and $a u t_{e}^{\sim}(A)=i d c(J) \times \pi_{i<\alpha} a u t_{e}^{\sim}\left(K_{i}^{+}\right)$for $e=4,6$

We shall prove:
$(*)_{8}$ For each i, one of the following ocurrs:
(a) $a u t_{e}^{\sim}\left(K_{i}^{+}\right)$for $e=3,4,5,6$ are all finite >1,
(b) For some infinite κ we have $\operatorname{aut}_{e}^{\sim}\left(K_{i}^{+}\right)=a u t v_{e}^{\sim}\left(K_{i}^{+}\right)^{\kappa} \geq i d c\left(K_{i}\right)$ for $e=3,4,5,6$ (really we can use $F_{6}(i)=\sup \left\{\kappa^{+}: B \mid x\right.$ has κ pairwise disjoint non zero members $\}$ and any such κ is OK for (b)).

Case 1. x_{i} is an atom.
This is clear: let $\lambda_{i}=:\left|K_{i}\right|$, if it is infinite, aut $e_{e}^{\sim}\left(K_{i}^{+}\right)=2^{\lambda_{i}}$ for $e=3,4,5,6$ so case (b) in (*) ${ }_{8}$ ocurrs.

If λ_{i} is finite, $1<\operatorname{aut}_{e}^{\sim}\left(K_{i}^{+}\right)<\aleph_{0}$ (we can compute exactly), so case (a) in (*) $)_{8}$. In fact in all cases we can use just automorphism of order 2.

So we can assume
Case 2. not Case 1 , so $B \mid x_{i}$ is atomless, hence $\operatorname{idc}\left(B \mid x_{i}\right) \geq 2^{\kappa_{0}}$.
Let $\left\langle J_{i, \zeta}, J_{i, \zeta}^{\prime}: \zeta<\zeta_{i}\right\rangle$ be a sequence such that:
(α) $J_{i, \zeta}, J_{i, \zeta}^{\prime}$ are ideals $\subseteq K_{i}^{+}$and $\neq\{0\}$,
(β) $\{0\} \neq J_{i, \zeta} \subseteq A \mid x_{i}$,
(γ) $J_{i, \zeta} \cong J_{i, \zeta}^{\prime}$, an $h_{i, \zeta}$ an isomorphism from $J_{i, \zeta}$ onto $J_{i, \zeta}^{\prime}$,
(δ) $\wedge_{\zeta<\xi<\zeta_{i}} J_{i, \zeta}^{\prime} \cap J_{i, \xi}^{\prime}=\{0\}$,
(ϵ) if $y \in K_{\zeta}^{+}$is disjoint to all members $\cup_{\xi \leq \zeta} J_{i, \xi}^{\prime}$ then for some $y^{\prime} \leq y$ and $z \in$ $J_{i, \zeta}, B\left|z^{\prime} \cong B\right| y^{\prime}$ hence
(ζ) if $\zeta<\xi<\zeta_{i}$ then $J_{i, \xi} \cap J_{i, \xi}$ is a dense subset of $J_{i, \xi}$

Now
$(*)_{9} U_{\zeta<\zeta_{i}} J_{i, \zeta}^{\prime}$ is a dense subset of K_{i}^{+}.
$(*)_{10} \zeta_{i} \geq 2$ (as there is $y, x_{i} \cap y=0$ and $A|y \cong A| x_{i}$ as $x_{i} \in K$).
$(*)_{11} \operatorname{idc}\left(K_{i}^{+}\right)=\pi_{\zeta<\zeta_{i}} i d c\left(J_{i, \zeta}^{\prime}\right)$.
By the definition of K (see choice of F_{2}), we have $0<y \leq x_{i} \Rightarrow i d c(A \mid y)=(A \mid x)$
hence $i d c\left(J_{i, \zeta}^{\prime}\right)=i d c\left(A \mid x_{i}\right)$ so
$(*)_{12} i d c\left(K_{i}^{+}\right)=\left[i d c\left(A \mid x_{i}\right)\right]^{\left|\zeta_{i}\right|}$ hence $\left[i d c\left(K_{i}^{+}\right)\right]^{\left|\zeta_{i}\right|}=i d c\left(K_{i}^{+}\right)$.
Easily
$(*)_{13} \operatorname{aut}_{6}^{\sim}\left(K_{i}^{+}\right) \geq a u t_{3}^{\sim}\left(K_{i}^{+}\right) \geq i d c\left(A \mid x_{i}\right)$.
(and even by automorphism of order 2).
Last inequality: for each $z \in \operatorname{Idc}\left(A \mid x_{i}\right)$ there is $z^{\prime}, z^{\prime} \cap x_{i}=0$, and $A|z \cong A| z^{\prime}$ and let g be such isomorphism, let I_{z} be the ideal of A generated by $\left\{x \in K_{i}^{+}: x \leq z\right.$ or $x \leq z^{\prime}$ or $\left.x \cap z=x \cap z^{\prime}=0\right\}, g_{z} \in \operatorname{Aut}\left(I_{z}\right) \subseteq A u t_{3}\left(K_{3}^{+}\right), g_{z}(y)=:\left(y-z \cup z^{\prime}\right) \cup g(y \cap z) \cup g^{-1}\left(y \cap z^{\prime}\right)$.

Case 2A. $\zeta_{i}<\aleph_{0}$ (and not Case 1)
Let for $n<\omega x_{i, n} \leq x_{i}, x_{i, n} \neq 0$, and $\left[n \neq m \Rightarrow x_{i, n} \cap x_{i, m}=0\right]$, and $I_{i, \omega}=\{y \in$ $\left.K_{i}^{+}: \wedge_{n} y \cap x_{i, n}=0\right\}$ and $I_{i, n}=\left\{z: z \leq x_{i, n}\right\}$: So aut $\tilde{3}_{3}^{\sim}\left(K_{i}^{+}\right) \geq a u t_{3}^{\sim}\left(\sum_{\alpha \leq \omega} I_{i, \alpha}\right) \geq$ $\pi_{n<\omega} a u t_{3}^{\sim}\left(B \mid x_{i, n}\right)=a u t_{3}^{\sim}\left(B \mid x_{i}\right)^{\aleph_{0}}$.

Similarly to the proof of Case 2B below (but easier) we can show that Case (b) of (*) ${ }_{8}$ ocurrs. From now on we assume

Case 2B. Not Case 2A, so $\zeta_{i} \geq \aleph_{0}$.
For every $f \in A u t_{6}\left(K_{i}^{+}\right)$let, for $\zeta, \xi<\zeta_{i}$:

$$
\begin{aligned}
& L_{\zeta, \xi}^{f}=\left\{x \in J_{i, \zeta}^{\prime}: f(x) \in J_{i, \xi}^{\prime}\right\} . \\
& M_{\zeta, \zeta}^{f}=\left\{f(x): x \in J_{i, \zeta}^{\prime}, f(x) \in J_{i, \xi}^{\prime}\right\} .
\end{aligned}
$$

So the number of possible $\bar{L}^{f}=\left\langle\sup L_{\zeta, \zeta}^{f}: \zeta \neq \xi<\zeta_{i}\right\rangle$ and $\bar{M}^{f}=\left\langle\sup \left(M_{\zeta, \xi}^{f}\right): \zeta \neq\right.$ $\xi<\zeta\rangle$ is $\leq\left[i d c\left(A \mid x_{i}\right)\right]^{\left|\zeta_{i}\right|}$ and for fixed \bar{L}, \bar{M} the number of $f \in a u t_{6}^{\sim}\left(K_{i}^{+}\right)$for which $\bar{L}^{f}=\bar{L}, \bar{M}^{f}=\bar{M}$ is $\leq \pi_{\zeta, \xi} \mid\left\{f / \sim: f\right.$ an isomorphism from a dense subset of $L_{\zeta, \xi}$ onto a dense subset of $\left.\left.M_{\zeta, \xi}\right\} \mid \leq \pi_{\zeta, \xi} a u t_{3}^{\sim}\left(L_{\zeta, \xi}\right) \leq \pi_{\zeta, \xi} a u t_{3}^{\sim}\left(A \mid x_{i}\right)=\left[a u t_{3}^{\sim}\left(A \mid x_{i}\right)\right]^{\zeta_{i} \mid}\right)$.
(In the last equality we use F_{5} in the definition of K : for the last \leq, note we can replace $L_{\zeta, \xi}$ by isomosrphic ideal $L_{\zeta, \xi}^{*}$ of $A \mid x_{i}$, and letting $L_{\zeta, \xi}^{-}=\left\{y: y \in A \mid x_{i},\left(\forall z \in L_{\zeta, \xi}^{*}\right)[y \cap z=\right.$ $0]\}$ we can extend every $f \in A u t_{3}\left(L^{*}(\zeta, \xi)\right.$ to $f^{\prime} \in A u t_{3}(A \mid x)$ by letting $f^{\prime}(x \cup y)=f(x) \cup y$ for $\left.x \in \operatorname{Dom}(f), y \in L_{\zeta, \xi}^{-}\right)$.

So

$$
(*)_{14} \quad a u t_{6}^{\sim}\left(K_{i}^{+}\right) \leq\left[a u t_{3}^{\sim}\left(A \mid x_{i}\right)+\left.i d c\left(A \mid x_{i}\right)\right|^{\left|\zeta_{i}\right|} .\right.
$$

Now for each ξ such that $2 \xi+1<\zeta_{i}$ we can choose $y_{i, 2 \xi} \in J_{i, 2 \xi}, y_{i, 2 \xi+1} \in J_{i, 2 \xi+1}$ such that $A\left|y_{i, 2 \xi} \cong A\right| y_{i, 2 \xi+1}$ and $\left\langle g_{i, \xi, \alpha}: \alpha<a u t_{3}^{\sim}\left(A \mid x_{i}\right)\right\rangle$. such that $g_{i, \xi, \alpha}$ is an isomorphism from a dense subset of $A \mid y_{i, \xi, \alpha}$ onto a dense subset of $A \mid y_{i, 2 \xi+1},\left\langle g_{i, \xi, \alpha}^{+}: \alpha<a u t_{3}^{\sim}\left(A \mid x_{i}\right)\right\rangle$ pairwise distinct. Let ζ_{i}^{*} be minimal such that $2 \zeta_{i}^{*} \leq \zeta_{i}$.

Now for every sequence $\bar{\alpha}=\left\langle\alpha_{\xi}: \xi<\zeta_{i}^{*}\right\rangle, \alpha_{\xi}<a u t_{3}^{\tilde{3}}\left(A \mid x_{i}\right)$, we define $g_{i, \bar{\alpha}} \in A u t_{3}\left(K_{i}^{+}\right)$ of order two (see condition (γ)):

$$
g_{i, \bar{\alpha}} \mid\left(y_{i, 2 \xi} \cup y_{i, 2 \xi+1}\right)=h_{2 \xi+1} \circ g_{i, \xi, \alpha} \circ h_{2 \xi}^{-1} \cup h_{2 \xi} \circ g_{i \xi, \alpha}^{-1} \circ h_{2 \xi+1}^{-1}
$$

and if $y \in K_{i}^{+} \backslash\{0\}$ and $\wedge_{\xi<\zeta_{i}^{-}}\left(y \cap y_{i, \xi}=0\right\rangle$ then $g_{i, \Sigma}(y)=0$.
Lastly if y is the disjoint union of y_{0}, \cdots, y_{n} and each $g_{\bar{\alpha}}\left(y_{e}\right)$ was defined then we define $g_{\bar{\alpha}}\left(y_{0} \cup \cdots \cup y_{n}\right)=g_{\tilde{\alpha}}\left(y_{0}\right) \cup \cdots \cup g_{\bar{\alpha}}\left(y_{n}\right)$. The reader may check that $g_{\bar{\alpha}} \in A u t_{3}\left(K_{i}^{+}\right)$.

The mapping $\bar{\alpha} \mapsto g_{i, \bar{\alpha}}$ show:
$(*)_{15} a u t_{3}^{\sim}\left(K_{i}^{+}\right) \geq a u t_{3}^{\sim}\left(A \mid x_{i}\right)^{\left|\kappa_{i}\right|}$.
Easily, choosing $\bar{y}_{i} \in J_{i, 1}$ (possible as $\zeta_{i} \geq 2$)
$(*)_{16} a u t_{3}^{\sim}\left(K_{i}^{+}\right) \geq a u t_{3}^{\sim}\left(A \mid\left(x_{i} \cup y_{i}\right)\right) \geq i d c(A \mid y)=i d c\left(A \mid x_{i}\right) \geq \aleph_{0}$.
Together by $(*)_{13},(*)_{14},(*)_{15},(*)_{16}$ for $e=3,6$:

$$
\operatorname{aut}_{e}^{\sim}\left(K_{i}^{+}\right)=\operatorname{aut}_{3}^{\sim}\left(A \mid x_{i}\right)^{\left|\kappa_{i}\right|} .
$$

By 3.7(1) this holds for $e=4,5$, hence $(*)_{8}$ has been proved.
Now by $(*)_{7}+(*)_{8}$ the four parts of 3.12 follows.
3.13 Conclusion : $\operatorname{aut}(A)^{\aleph_{0}} \leq \operatorname{sub}(A)$, also $a u t_{e}(A)^{\aleph_{0}} \leq \operatorname{sub}(A)$ for $e=3,4,5,6$.

Note: even if $\operatorname{aut}(A)$ is finite, A infinite, still $2^{\kappa_{0}} \leq \operatorname{sub}(A)$ (for A infinite).
Proof. By 3.7(3) $+3.7(6)$ aut $(A)=a u t_{0}^{\sim}(A) \leq i d(A)+a u t_{3}^{\sim}(A) \leq i d(A)+\operatorname{Pend}(A) \leq$ $\operatorname{sub}(A)$ but by S. Shelah [6] $i d(A)^{\kappa_{0}}=i d(A)$ and by $3.12(3) a u t_{3}^{\sim}(A)^{\kappa_{0}}=a u t_{3}^{\sim}(A)$, together we can finish the first inequality, the second is similar using 3.10(5).
3.14 Claim : For an (inifinite) Boolean algebra A we have:
(1) $e n d_{e}(A)=i d(A)+a u t_{3}(A)$ for $e=3,4,5,6$.
(2) $\operatorname{end}_{6}(A)^{N_{0}} \leq \operatorname{sub}(A)$.
(3) $\operatorname{end}_{e}(A)^{\aleph_{0}} \leq \operatorname{sub}(A)$ for $e=2,3,4,5,6$.

Proof.

(1) Clearly $\operatorname{end}_{3}(A) \geq a u t_{3}(a)$ and $\operatorname{end}_{3}(A) \geq i d(A)$ (as the mapping in the proof of $3.10(1)$ examplify).

On the other hand we can attach to every $f \in \operatorname{End}_{6}(A)$ three ideals $I_{1}(f)=$ $\operatorname{Dom} f, I_{2}(f)=\operatorname{Rang}(f)$ and $I_{3}(f)=\operatorname{Ker}(f)$. Now the number of triples \bar{I} of ideal of A has cardinality $i d(A)$ and for each such \bar{I} :
$\left\{f \in \operatorname{End}_{6}(A): I_{e}(f)=I_{e}\right.$ for $\left.e=1,2,3\right\}$ has cardinality $\left|A u t\left(I_{2}\right)\right|$ which is $\leq \operatorname{aut}_{3}(A)$. By 3.7(2) we can finish.
(2) Remember also id($A)^{\aleph_{0}}=i d(A)$ by S. Shelah [6] and part (1) and 3.13.
(3) By part (2) and 3.7.
$\S 4$ The width of the Boolean algebra .
4.1 Deflnition. For a Boolean algebra B let: (1) $A \subseteq B$ is an antichain if $x \in A \& y \in$ $A \& x \neq y \Rightarrow x \notin y$ (i.e. A is a set of pairwise incomparable elements).
(2) Width of $B, w(B)$ is $\sup \{|A|: A \subseteq B$ antichain $\}, w^{+}(B)=\cup\left\{|A|^{+}: A \subseteq B\right.$ antichain\}.
E. C. Milner and M. Poizat [3], answering a question of E. K. van Dowen, D. Monk and M. Rubin [7] proved $c f\left(w^{+}(B)\right) \neq \aleph_{0}$.

In S. Shelah [5] we claim: if $\lambda>c f \lambda>\aleph_{0}$, for some generic extension of the universe preserving cardinalities and cofinalities, for some $B, w^{+}(B)=\lambda$. We retract this and replace it by the theorem 4.2 below.

For weakly inaccessibles we still have the consistency. Moreover, if λ is a limit uncountable regular cardinal, $S \subseteq \lambda$ stationary not reflecting and ∇_{S} it then we have such an example for λ.
4.2 Theorem. For an infinite Boolean algebra $B, w^{+}(B)$ is an uncountable regular cardinal.

Proof. As B is infinite it has an antichain $A,|A|=\aleph_{0}$, [if B has finitely many atoms clear, if not it has a subalgebra which is atomless, without loss of generality countable and check]. So $\lambda=: w^{+}(B)>\aleph_{0}$. Assume $\kappa=$: cf $\lambda<\lambda$; let $\lambda=\sum_{i<\kappa} \lambda_{i}, c f \lambda+\sum_{j<i} \lambda_{j}<\lambda_{i}<\lambda$ and let $A_{i} \subseteq B$ be an antichain of cardinality λ_{i}^{+}(exist by the choice of λ). Let $A=\bigcup_{i<\kappa} A_{i}$, so $|A|=\lambda$. Choose such $\left\langle A_{i}: i<\kappa\right\rangle$ such that, if possible
$\left.{ }^{*}\right) i<j<\kappa, x \in A_{i}, y \in A_{j} \Rightarrow y \geq x$.
For $x \in B$ let $A[>, x]=\{y \in A: y>x\}, A[<, x]=\{y \in A: y<x\}$, $A[>, \mu]=\{x \in A:|A[>, x]|<\mu\}, A[<, \mu]=\{x \in A:|A[<, x]|<\mu\}$.
Case 1. For some $\mu<\lambda, A[>, \mu]$ has cardinality λ.
By Hajnal free subset theorem, there is a set $E \subseteq A[>, \mu]$ of cardinality λ such that: $x \neq y \& x \in E \& y \in E \Rightarrow x \notin A[>, y] \& y \notin A[>, x]$. So E witness $w^{+}(B)>\lambda$.
Case 2. For some $\mu<\lambda, A[<, \mu]$ has cardinality λ.
Same proof.
Case 3. For every $i<\kappa$ there is $x \in A$ such that $\lambda_{i}<|A[>, x]|<\lambda$.
Let for $i<\kappa, x_{i} \in A$ be such that $\lambda_{i}<|A|>, x_{i}| |<\lambda$. Let $u \subseteq \kappa$ be such that: $\kappa=$ supu and for $i \in u, \lambda_{i}>\sum_{j \in u \cap i}\left|A\left[>, x_{i}\right]\right|$ (choose the members of u inductively). By renaming without loss of generality $u=\kappa$. Clearly $A\left[>, x_{i}\right] \backslash \cup_{j<i} A\left[>, x_{j}\right]$ has cardinality $>\lambda_{i}$.

As $\lambda_{i}>\kappa$ (by its choice) and $A=\cup_{j<\kappa} A_{j}$, clearly for each i there is $\alpha(i)<\kappa$ such that $\left(A\left[>, x_{i}\right] \backslash \cup_{j<i} A\left[>, x_{j}\right]\right) \cap A_{\alpha(i)}$ has cardinality $>\lambda_{i} ;$ necessarily $\alpha(i) \geq i$.

For some unbounded $u \subseteq \kappa$ we have $[i \in u \& j \in u \& i<j \Rightarrow \alpha(i)<j]$; without loss of generality $u=\kappa, \alpha_{i}=i$. Let A_{i}^{*} be a subset of $\left(A\left[>, x_{i}\right] \backslash \cup_{j<i} A\left[<, x_{j}\right]\right) \cap A_{\alpha(i)}$ of cardinality λ_{i}^{+}. Now $\left\langle A_{i}^{*}: i<\kappa\right\rangle$ satisfies: $A_{i}^{*} \subseteq B$ is an antichain of cardinality λ_{i}^{+}and
$(*)^{\prime} i<j, x \in A_{i}^{*}, y \in A_{j}^{*} \Rightarrow x \notin y$ (otherwise $x_{i} \leq x \leq y \notin A\left[>, x_{i}\right]$, contradiction).
So $\left\langle A_{i}^{\prime}=:\left\{1_{B}-x: x \in A_{i}^{*}\right\}: i<\kappa\right\rangle$ satisfies $A_{i}^{\prime} \subseteq B$ is an antichain of B of cardinality λ_{i}^{+} and also (${ }^{(}$) above (check). So by the choice of $\left\langle A_{i}: i\langle\kappa\rangle\right.$, it satisfies (${ }^{*}$). By (*) $+(*)^{\prime}$, $A^{*}=\mathrm{U}_{i<\kappa} A_{i}^{*}$ is an antichain of B of cardinality λ, so $w^{+}(B)>\lambda$.

Case 4. For every $i<x$ there is $x \in A$ such that $\left.\lambda_{i}<|A|<, x\right] \mid<\lambda$.
Similar to Case 3.
Case 5. None of the previous cases.
By "not Case 3" for some $i(*)<\kappa$, for no $x \in A$ is $\left.\lambda_{i(*)}<|A|>, x\right] \mid<\lambda$. By not Case 2, $A\left[<, \lambda_{i(*)}^{+}\right]$has cardinality $<\lambda$. By not Case $1 A\left[>, \lambda_{i(*)}^{+}\right]$has cardinality $<\lambda$.

Choose $x^{*} \in A \backslash A\left[<, \lambda_{i(*)}^{+}\right] \backslash A\left[>, \lambda_{i(*)}^{+}\right]$so $A\left[>, x^{*}\right]$ has cardinality $\geq \lambda_{i(*)}^{+}>\lambda_{i(*)}$, hence by the choice of $i(*)$ we have $A\left[>, x^{*}\right]$ has cardinality λ.

As $\lambda_{i(*)}>\kappa$, for some $j(*), A\left[<, x^{*}\right] \cap A_{j(*)}$ has cardinality $>\lambda_{i(*)}$, so choose distinct $y_{i} \in A\left[<, x^{*}\right] \cap A_{j(*)}$ for $i<\kappa$. Now $y_{i}<x^{*}$ (as $y_{i} \in A\left[<, x^{*}\right]$), and $\left[i \neq j \Rightarrow y_{i} \notin y_{j}\right]$ (as they are distinct and in $\left.A_{j(*)}\right)$.

Let $A_{i}^{\prime}=A_{i} \cap A\left[>, x^{*}\right]$, so $A_{i}^{\prime} \subseteq A_{i}$ hence is an antichain of B, and

$$
\cup_{i} A_{i}^{\prime}=\left(\cup A_{i}\right) \cap A\left[>, x^{*}\right]=A \cap A\left[>, x^{*}\right]=A\left[>, x^{*}\right]
$$

So each A_{i}^{\prime} is an antichain, its member are $>x^{*}$ and $\left|U_{i} A_{i}^{\prime}\right|$ is λ as $\left|A\left[>, x^{*}\right]\right|$ is.
Now

$$
A^{\prime}=\cup_{i<\kappa}\left\{y_{i} \cup\left(x-x^{*}\right): x \in A_{i}^{\prime}\right\}
$$

is an antichain of B of cardinality λ, so $w^{+}(B)>\lambda$, as required.

References

1. M. Bekkali, R. Bonnet and M. Rubin, Spaces for which every closed subspace is homeomorphic to a closen subspace, to appear Order.
2. R. Bonnet and S. Shelah, On HCO spaces. An uncountable compact T_{2} space different from $\aleph_{1}+1$ which is homeomorphic to every of its uncountable closed subspaces, to appear Israel J. Math.
3. E. C. Milner and M. Pouzet, On the width of ordered sets and Boolean Algebras, Algebra Universatis 23 (1986), 242-253.
4. J. D. Monk, "Cardinal Functions on Boolean Algebra, Lectures in Mathematics," ETH Zurich, Birkhäuse Verlag, Basel, Boston, Berlin, 1990.
5. S. Shelah, Construction of many complicated uncountable structures and Boolean Algebras, Israel J. Math. 23 (1983), 100-146. [Sh 136]
6. S. Shelah, Remarks on the number of ideals of Boolean algebras and open sets of a topology, SpringerVerlag Lecture Notes 1182 (1982), 151-187. [Sh 233]
7. E. K. van Dowen, D. Monk and M. Rubin, Some questions about Boolean Algebras, Algebra Universatis 11 (1980), 220-243.

The Hebrew University of Jerusalem, Israel, Rutgers University, New Brunswick, nJ USA, MSRI, Berkeley, Calif, U.S.A.

[^0]: Partially supported by Basic Research Fund of the Israeli Academy of Sciences. Publ. No. 397

