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ABSTRACT. We prove that assuming suitable cardinal arithmetic, if B is a Boolean algebra 
every homomorphic image of which is isomorphic to a factor, then B has locally small density. 
We also prove that for an (infinite) Boolean algebra B, the number of subalgebras is not smaller 
than the number of endomorphisms, and other related inequalities. Lastly we deal with the 
obtainment of the supremum of the cardinalities of sets of pairwise incomparable elements of 
a Boolean algebra. 

We show in the first section: 

0.1 Conclusion. It is consistent, that for every Q = F Boolean algebra B", for some 
n < w, {x : B•lx has a density ≤ k•in} is dense (so B' has no independent subset of power 
Nn). 

Where: 

0.2 Deflnition. A B.A. is Q = F (quotient equal factor) if every homomorphic image 
of B is isomorphic to some factor of B i.e Biafor somea E B. 

The "consistent" is really a derivation of the conclusion from a mild hyphothesis on 
cardinal arithmetic (1.2). The background of this paper is a problem of Bonnet whether 
every Q = F Boolean algebra is superatomic. 

Noting that : "Blx has density < 1.4n" is a weakening of "x is as atom of B'", we see 
that 0.1 is relevant. 

The existence of non trivial example is proved in R. Bonnet, S. Shelah [2]. 
M. Bekkali, R. Bonnet and M. Rubin [1] characterized all interval Boolean algebras with 

this property. 
In the second section we give a more abstract version. In a paper in preparation , 

Bekkali and the author use theorem 2.1 to show that every Q = F tree Boolean algebras 
are superatomic. 

In the third section we deal with the number of endomorphism (e.g. aut(B)N° < end(B)) 
and in the fourth with the width of a Boolean algebra. 

We thank D. Monk for detecting an inaccuracy in a previous version. 

Notation 
B= denote a Boolean algebra. 
B+= is the set of non zero members of B. 
Blx= where x E B+ is Bl{y : y < x}. 
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386= S. SHELAH 

comp B is the completion of B, so it is an extension of B. 
Remember : if B1  is a subalgebra of B2, B is complete, h a homormorphism from B1  to 

B, then h can be extended to a homomorphism from B2  to B. 
idA  is the identity function on A. 
"(cx = {n : n is a sequence of lenghts 7 of ordinals < a}. 
7>a = 0<a Pa • 

§1 Maybe every "quotient equal factor" BA has locally small density . 

1.1 Hypothesis. 
(1) B* is a Q = F Boolean algebra. 
(2) for each n <= B* has a factor B. s.t.: 0< x E= density(Bnls) ≥ Nn• 

1.2 Hypothesis. For a > co we have 21a1  > 

1.3 Desired Conclusion. Contradiction. 
We shall use 1.1 all the times, but 1.2 only in 1.17. 

1.4 Definition. lq is the class of Boolean algebra such that: 

(Vx E B+)[density(Blx) = A]. 

1.5 Claim. If B is atomless, x E B+ then for some y, 0 < y < x,and infinite cardinal 
A we have Bly E 

1.6 Claim. If B E Ka , B C B' C comp(B) then, 

E 

K*  = K(*) =: 
(2) Let for a < a*, b. E B* be such that B*lb. E t'L_Fi . 
(3) Let J. be the ideal= E B* : B*Ib E 
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1.10 Deflnition. B["> A] is the Boolean algebra generated freely by {x,i  := E "I> À} 
except 5,7  ≤ r n1,7, (m ≤ lg (rt), E w>  À). 

1.11 Claim. 

(1) For cx < <a., Ja  n Jo = {0} and Ja  is an ideal. 
(2) For no B' C B* and proper ideal I of B',= E B'\I= density(Blx/ I) > Na(*)]• 

Proof. 
(1)Trivial. 
(2)By 1.5 for some /3 > a(*) and proper ideal J of B' (of the form {x E B'= — b E 

we have B' / I E If t*40  so there is a homomorphism h from B* into camp(BY I) extending 
x= (x E B'). So B* has a factor isomorphic to Rang h, but this Boolean algebra is in 
If t*to ,No > Na(*). So by 1.7 we get contradiction to the choice of a(*). 

1.12 Deflnition. 1) P= E B* : U(,,,<Q(*))  Ja  is dense below x}. 
2) For A C a(*) := {x E B* : U{Ja  : E A} is dense below x}. 

1.13 Claim. 

(1) P, IA are ideals of B. 
(2)ACB./",1C.PLCI*. 

1.14 Claim. For every A C a(*), there are cA, hA  such that: 

(1)cA E B* and PA is dense below cA, 
(2) hA  is a homomorphism from B" onto B* 
(3) hAII:t  is one to one, 
(4) If Blx n IA = {0} then hA (x) = 0, 
(5) B"IcA is a subalgebra of the completion of the subalgebra {hA (x) : x E I:t}. 

Proof. Let ba(A) be 
P;I U {1 — x : x E 1:1}, 

this is a subalgebra of B*. 
Let h1  be a homomorphism from B" to comp(ba(A)) extending idba(A)  and h j(x) = 0 

if B'lx n= = {0}. 
Now hi(B*) is a quotient of B* hence there is an isomorphism h2  from h1(B*) onto some 

B*IcA. 
Let 

hA = h2 h1 

so (1), (2), (3), (4), (5) holds. 

1.15 Claim. Let A C a(*) 

v (1) IfrEH aEA  JQ  then hA(x) E 
(2) If x E IA \ WEA  Ja  then hA(x) UaEA 41• 
(3) LLEA hA(Ja) is dense and downwared closed in B*ICA• 
(4)CA  E PA. 
(5) If x E Ja  and cx E A then hA (x) E Ja. 
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Proof. 
(1) By (5) of 1.14. 
(2) is easy too. 
(3) is easy too. 
(4) is easy too. 
(5) is easy too. 

1.16 Claim. We can find xn  E .B* for 77 E ->), where A = r (*)  such that: 
(1) m < lg(71)= 0 < xn  ≤ x(,71m) . 

(2) If A:=1 ve= 11, E '4> A, Ae  ve E c'A then 

B*= U x,. 
e=1 

Proof. Now we can choose (A°,7  : q E 1"-'› À) which is a family of subsets of K(*) such that 
any non trivial Boolean combination of then has cardinality K(*). 

Let for q E ">)t An =clef n me≤19(n) Anle. Let 

(a) x<> = CA <>  = hA < , (1B.)• 

(b) x<i> = hA < > (CA < > = hA<>hA<i> (1B. ) 

and generally, 

= hA<> hA<;. >=
n _ i>  (1/3.). 

We prove (a) by induction of lgq. 

The reader may check 

1.17 Final Contradiction. {x,1  : E w>A} from Claim 1.16 contradict by 1.11(2) 
and the choice of Nor(s), because A = r (*)  = 21Q(*)I > 

1Of course N.(. )  ≤ 1B* I] 
Actually, we have prove rnore. 

1.18 Remark. (1) So we have in 1.17 prove that if set theory is as in Hypothesis 
1.2, then there is no Boolean algebra as in 1.1, hence proving Conclusion 0.1 

(2) Note: if 1.2, any Q= F Boolean algebra has no factor P(w). 

§2 Q = F Boolean algebras: a general theorem . 

2.1 Theorem. Suppose: 
(1) B* is a (Q = F) Boolean algebra. 
(2) N is a family of (non zero) members of B* (the "nice" elements). 
(3) K a cardinal (≥ No), (K. : a < K) a sequence. 
(4) K. is family of Boolean algebras closed under isomorphism and for a /3 we have 

n Ko = 0. 
(5) for every a some factor of IP is in Ka. 
(6) if x E (.B*)+, (B*Ix) E K. then for some y < x, B*Iy E K., y E N. 
(7) if xi , x2  E N, B* lx j  E c,„ B* lx2 E Ka2 , al # .22 then x1  n x2  = 0. 
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(8) if x E B*,Nl C N then 
(a) for some yi, • • • , yn E N', for every z E N' we have B'= nz c yl  U • • • U yn 
or 
(0)= for some y E N' : y ≤ 
Actually we use (8) only for N' of the form {y E N : (3a)[a E A& B* ly E K.}. 

(9) if x < y E B*, B* E K. and B"Iy E Ko, then a = 0. 

Then the Boolean algebra B r (2')]  can be embedded into IP, remember w> (2A) is 
the tree {77  : n  a finite sequence of ordinals < r} and Def 1.10. 

Proof of theorem 2.1. 
Let for a < ,= =: {y E N : B* ly E K.}. 
For A C let us define 
I A  =the ideal generated by YA = UaEA Ya = {y E N : B*ly E K. for some a E A} and 

=: {z E= : for every y E YA we have z y = 0}. 
Clearly J A  is an ideal. 
Now for each A C BVJA  is a quotient of B*. Hence by condition (1) there are y:t  E B' 

and an isomorphism hA  : BVJA= 11* ly*A  onto. 
Let gA  : B*= BVJA be canonical, so hA  o gA(1B• = y:t • Let fA=hAogA• 
Define for y E B' the following: cont(y) =: {a : (3y' ≤ y)[B*Iyl E 
(i.e. the content of y). We next prove 
(*)1= cont (Vii) 2 A. 

Proof. By conditon (5) for each a E A, there is x. E B', such that: Irlx. E K.. 
By condition (6) wlog= E N, hence x. E IA, hence gA  l(B*Ixa ), is one to one, hence 
B*Ix. = B*IfA(x.), hence by condition (4) B*IfA (xn ) E K.; now RangfA  = B%, so 
a E Cont(y:4 ). So we have prove (*)1. 

(*)2 cont(VA) C A 

Proof. Suppose a E cont(y:1), so there is z < y:1, such that B*lz E Ka. As fA  is a 
homomorphism from B* onto B*Iy:t , there is x E B* such that fA(x) = z. 

Now the kernel of fA is J A , and B*I0 ¢ K, so X cg J A; and clearly (B*Ix)/JA  is in Ka. 
Hence by (*)3  below a E A. 

(*)3  if x E= \ JA and (B*PA)lfA(x)  E K. then a E A 

Proof. We apply condition (8) to x and N' = YA. So one of the following two cases 
ocurrs: 

Case a: There are n < w, Y1, • • • yn E N' such that: 
(VzEN')xnzCyiU...Uyn. 
So x — (yi U • • • U yn ) E JA (by definition of./.0• 
Let xi = x n (y1  U • • • U yn ) hence .B* lfA(x) = (B`lx)/JA= (B*Ixl )/JA= B*lxi ,(last 

isomorphism as Aeye  E YA hence yj U • • • U yn  E I A  hence fAl(Blxi) is one to one). So 
B`Ixi  E K., hence by condition (6) for some x2  < xi, we have x2 E N&B*1s2  E 

Let Bly, E K.. where a, E A (by definition of YA ). Clearly x2  ≤ x1 ≤ yl  U • • • U Yn7 
so for some e, ye  fl= 0 hence a = a, E A (by condition (7)) so we get the trivial desired 
conclusion. 

Case p: There is y E N', y ≤ x. 
As y E= = YA = U/3 E A YO for some Q E A we have y E K0, also y E N' C N 

so J A  fl (Bly) = {0} so (BVJA )IgA(y) E Kp. Remembering (.B*/JA )IgA (x) E K., as 
B* /..1A= B*ly:1  we get by condition (9) that a = O. So (*)3  hence (*)2  is proved. 
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Next we prove 
(*)4= ifBCACK, and cont(y) = B, then cont[f A (y)] = B. 

Proof. 

inclusion D 
First let a E B, then for some x < y,B*Ix E Ka , and by condition (6) wlogx E N, 

hence x E I A  (as aEBC A) hence fA l(B* lx) is one to one and onto B1 f A (x) so fA(x) ≤ 

fA(y), B"IfA(x) E Ka, so a E cont(fA(0). 

inclusion C 
Second let us assume a E cont[fA(y)]. So (as f A  is onto Bly:1, and if fA (x) ≤ fA(y) 

then f A (x n y) = fA (y), x fl y < y) there is x < y such that B*IfA(x) E Ka. Now apply 
condition (8) to x and YA. So case (a) or case (0) below holds. 

Case a:= There are n < u), Yi, • • • tyn E YA such that for every z E YA we have 
x flz C= U • ••Uyn. 

Hence x — (yi U • • • U yn ) E J A let xl  = x fl (y1 u= U yn ) so fA(x) = fA(xl) so 
B•lfA(xl ) E Ifc, and of course x1  ≤ yl  U • • • U yn, (and x1  ≤ y) so fAl(B*Ixi) is one to one. 

Now f A  is one to one on B"= hence B*Ixl  = IrlfA(xl) E Ka. Now xl  ≤ X < y, so x1 
wittness a E cont(y), which is B. 

Case 0: There is t < x, t E YA. 
Now t <= < y,B*ItElfp for some p E A as t E YA. Now f A is one to one on 

B* f A(t) E Kp. 
Also f A(t)= fA(x) hence by assumption (9) we have = a. Also t < < y so t wittness 

E cont(y), so a = E cont(y) = B as required. 
So we have proved (*)4 

end of proof of theorem 2.1: Let A = 2". 
Let (lin  : E= be a family of subsets of tc, any finite Boolean combination of them 

has power IC (or just ~ 0). 
Let /4 = ne<igni4,11e. Now define for every n E w> frc and e < lg(77) an element yne  of B': 

e def= ® _clef 0 
Y„= a m,„ • • • fu;i(n _,)  fu;(1B.) and= —= Y„ 
Now: (a) prove for each n E n is by downward induction on e E {0, 1, ..., n} that cont(y,l) = 

Zln ; for e = n this is (*)1 + (*)2 as yn = YI4n ; 

for e < n (assuming for e + 1) this is by (*)4. 
Next note: (b) if v = < a> then y?,)  < y,7 
[prove by domnward induction for e E {0, 1,...,ign} we have : yf,+1  < yne ; remember fu 

is order preserving]. 
Lastly note (c) if n E "› À, n < co, and ve  E w>  is not initial segment of 71 for e = 1, ..., n 

then y,7° - Urei=l y:,%= this follows by (a) and the definition of cont(y,?°). 
Now by (a), (b), (c) there is an embedding g from the subalgebra of B' which { yn°  : E 

"1> A} generates mapping y,7°  to xn  . 

§3 The Number of Subalgebras . 

3.1 Definition. For a Boolean alagebra A. 

(1) Sub(A) is the set of subalgebras of A. 
(2) Id(A) is the set of ideals of A. 
(3) End(A) is the set of endomorphisms of A. 

Sh:397



FACTOR = QUOTIENT, UNCOUNTABLE BOOLEAN ALGEBRAS= 391 

(4) Pend(A) is the set of partial endomorphisms ( i.e. homomorphisms from a subal-
gebra of A into A). 

(5) Psub(A) is the family of subsets of A closed under union ,intersection and sub-
struction but 1 may be not in it though 0 is [so not neccessarily closed under 
complementation]. 

(6) We let sub(A), id(A), end(A), aut(A), pend(A), psub(A) be the cardinality of 
Sub(A), Id(A), End(A), Aut(A), Pend(A) and Psub(A) respectively 

In D. Monk [4] list of open problems appear: 

PROBLEM 63. Is there a BA A such that aut(A) > sub(A) ? 
See [4] page 125 for backgraound. 

3.2 Theorem. For a BA A we have: aut(A) is not bigger than sub(A). 

3.3 Conclusion. 

(1) For a BAA we have end(A) is not bigger than sub(A). 
(2) For a BAA we have pend(A) is exactly sub(A). 
(3) For a BA A and a in A, 0 < a< 1 we have sub(A) = Mas{sub(Ala), sub(Al — a)}. 
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Observe: for t = 0,1, 2 we have: I t  fl /4 1  = {0} [why ? for t = 1, by the choice of 
{xi : i < a}, for t = 0 by definition of Io, lastly for t = 2 applies its definition + f being an 
automorphism.] 

Observe: Io U I l  U I2  is a dense subset of I" [why? assume x in I* but below it there 
is no non zero member of this union , so we can replace it by any non zero element below 
it; as x E I*, there is below it a non zero element y with y fl f(y) = 0 so wlog x fl f(x) = 0; 
why have we not choose x,„ = x? there are two case: 

Case 1: For some j < a, x fl f (xi) is not zero 
so there is a non zero element below x in 12. 

Case 2: for some j < a, f(x) n xj  is not zero 
so there is a non zero y in /1  below f(x) hence (as f is an automorphism) there is x' 

below x such that f(x') = y so wolg f(x) is in /1, but then by its definition, either below x 
there is a member of h or x is in Io so we have finished proving the observation.] 

Observe: for t = 0, 1, 2, x E= f(x) E= [check]. 
Now we define Ct  = Ct , a member of Psub(A) for t = 0,1, 2 as follows: Ct  is the set 

{x u f(x) : x E I t}. The closure under the relevant operations follows as h is closed under 
them and f is an isomorphism and for x, y in I t , xn f (y) = 0, this is needed for substraction. 

Also for every automorphism f of A we assign the sequence (J, I, 10,1.1,12,13, Co,= , C2) 
(some reddundancy). Suppose for fl ,  f2  E Aut(A) we get the same tuple; it is enough to 
show that their restriction to J and to I are equal -as the union is dense. Concerning J this 
is trivial - they are the identity on it so we discuss I, by an observation above it is enough 
to choeck it for h, t = 0,1, 2 but for each t, from Ct  and h, h+1  we can [or see below] 
reconstruct f llt. 

So we have finished the proof. 

3.4B Remark. We can phrased this argument as a claim: let I, J, be ideals of A with 
intersection {0}; for every f, a one to one homomorphism from I to J let X1  be the set 
{x U f(x) : x E I} then "f mapped to Xf "  is a one to one mapping from HO M (I , J) to 
Psub(A) (the former include {gl/ : g E Aut(A),g maps I onto J} , for which we use this). 
For subalgebra relative to U, n only f needs not be one to one. 

3.5 Proof of the conclusion from the theorem. 
(1) For a given Boolean Algebra B assume µ =: sub(A) is < end(A). For any endomor-

phism f of A we attach the pair (Kernel( f ), Range( f)) . The number of possible 
such pairs is at most id(A) x sub(A) , which is at most µ(we are dealing with 
infinite BAs and id(A) ≤ psub(A) ≤ sub(A)) so as we assume µ < end(A), there 
are distinct fi , endomorphisms of A for i < µ+ , an ideal I and a subalgebra R of 
B such that for every i we have Kernel( f = I and Range( fi ) = R. 

We now define a homomorphism g; from B II to R by : gs(x1I). fs (x) . Easily 
the definition does not depend on the representative, so gi is as required and it is 
one to one and onto. So {gi  0(90 )-1  : i < µ+} is a set of µ,4-  distinct automorphisms 
of R. 

So 

 

but, by the theorem 

µ < aut(R) 

aut(R) ≤ sub(R) 
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obviously 

 

remember 

sub(R) ≤ sub(A) 

µ = sub(A) 

together a contradiction. 
(2) As R I—, ( identity map on R) is one to one from sub(A) into Pend(A), obviously 

sub(A) ≤ pend(A), so we are left with proving the other inequality. Same proof, 
only the domain is a subalgebra too and it has an ideal. So for every such partial 
endomorphism h of A we attach two subalgebras Dh = Domain(h) and Rh = 
Range(h) an ideal I h  of Dh  {x : X E Dh  and f (x) = 0} . They are all in Psub(A), 
so their number is at most sub(A) and if we fixed them the amount of freedom we 
have left is : an automorphism of R (and aut(R) ≤ sub(R) ≤ sub(A)). 

(3) Let B be a subalgebra of A. We shall attached to it several ideals and subalgebras 
of Bla, Bl(—a) such that B can be reconstructed from them; this clearly suffice. 
Let C be the subalgebra (B, a), Co  = {x E C : x < a}, Cl  = {x E C : x < 1— a}. 
The number of possible C is clearly the number of pairs (Ce, C1) which is clearly 
sub(Ala) + sub(Al — a) ; fix C. Let I =: {x : x E B, x < a}, it is an ideal of Cla ; 
so the number of such I is at most 

id(Cla) ≤ pend(CIA) < sub(Cla) ≤ sub(Ala). 
So we can fix it . Similarly we can fix J = {y : y E B,y < (1 — a)}, now I 

and J are subsets of B , now check : the amount of freedom we have left is an 
isomorphism g from (Cia)I I onto (Cl — a)/J such that B = { the subalgebra of C 
generated by I U J U {x uy:x E (Cla), y E (CI — a) and g(x/I) = (yIJ)}. 

So we can finish easily. 

We originally want to prove Aut(A)K° < sub A and even 
l{f E End(A) : f is onto }ro ≤ subA. But we get more: intermediate invariants with 

reasonable connections. 

3.6 Definition: For a Boolean algebra A 

(0) A partial function f from A to A is everywhere onto if: 
x E Dom( f)&y E Rang( f)&y ≤ f (x)= (3z)[z ≤ x& f (z) = y]. 

(1) Endo(A) = End(A). 
Endi(A) = ff E End(A) : Rang( f) include a dense ideal}. 
End2(A) is the set of endomorphism f of A which are onto. 
End3(A) = {f : for some dense ideal I, f is an onto endomorphism of I}. 
End4(A) = {f : for some ideal I of A, f is an onto endomorphism of I}. 
End5(A) = {f : for some dense ideals I, J, f is an homorphism from I onto J}. 
End6(A) = (f : for some ideals I, J of A, f is an endomorphism from I onto J}. 
Note I = A is allowed. All kinds of endomorphism, commute with fl, U, preserve 

0 but not necessarily —. 
(2) For 1 = 1, • • • , 6 we let Auti(A) = {fEEndi(A) : f(x) =0.1*x= 0 for 

x E Dom f}. 
(3) For function f,g whose domain is C A let: f ,,, g if Ker f = Kerg and {x : f(x) = 

g(x) or both are defined not } include a dense ideal of BIKerf. 
(4) Let ende(A) = lEnde(A)l, aute (A) = lAute(A)l. 
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Proof. E.g. 
(5) Supposse x E Domfn Domg, f (x) Og(x), so wlog f (x) ¢ g(x) so let z= f(x) — 

g(x) # O. As z < f(x) for some t E Dom f we have 0 < f(t) ≤ z, and wlog f(t) = 
g(t), and we get contradiction. 

(6) As in proof of 3.2 or see proof of 3.12 (noting If/ : I a dense ideal of AN ≤ sub(A) 
by 3.4A). 

3.8 Definition. For a Boolean Algebra A 
(1) Idc(A) == : I an ideal of A, and Ic = I} where I' = {x E A : I is dense below 

x}. 
(2) idc(A) = lIdc(A)l. 
(3) Did(A) == : I a dense ideal of A}. 
(4) For ideals I,JI+Jis the minimal ideal / of A which include IUJi.e. {xUy : x E I 

and y E J}. Similarly E c<to 
(5) If we replace A by an ideal I (in 3.8 (1),(2),(3), 3.1 (2)) means we restrict ourselves 

to subideals of it. 
3.9 Claim. For a Boolean algebra A: 
(1) id(A) ≥ idc(A) = Icomp(A)l. 
(2) IAI ≤ idc(A) = idc(A)NO (when A is infinite, of course). 
(3) If f E Endu5(A), then f has a unique extension to an endomorphism f + of camp(A) 

where f+(x) = supA{f(y) : y < x, y E Damn. If f is everywhere onto it is the 
unique extension of f in End(compA). 
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(4)For g E End(A), (3f E End5(A))f+ g iffg E Endu(A). 
(5) For f,g E End5(A) we have f g q f+ = g+. 
(6) For f E Endu6(A), letting a = supcomp(A){x := Dam f} E comp(A) and 

b = supcomp(A){x := Rangf} E comp(A), we define f+ E HOM(comp(Ala), 
comp(Alb)) extending f by f(x) = sup{f(y) : y ≤ x, y E Dom f}, also f+ is onto. 

3.10 Claim. 
(1)id(A) ≤ end13(A). 
(2) idc(A) ≤ endt3-(A). 
(3) endle(A) = id(A) + endlNA) for e = 3, 4, 5, 6. 
(4)If f E End5(A) then f+ E End j(compA). 
(5) aute (A) ≤ id(A) + autZ(A) when e, m E {3, 5} or e, m E{4, 6}. 

Proof. 
(1)For I E Id(A) let J1 == E B : (Blx)nI = {0}}, so JI  is an ideal, JrnI = {0}, .11U 

I is dense. Let F1  be the following map: Domfi = I + J1,= = idl, trIJI = oh• 
Now I I-4 fl  is a one to one mapping from Id(A) to Endl3(A). 

(2)The mapping above works. 
(3) Note that id(A) < end3(A) by part(1), and end1“A) < end13(A) trivially. A is 

infinite hence all those cardinals are infinite so x= id(A) + end1VA) < end13(A). 
The inverse inequality is easy too. 

(4), (5) Left to the reader. 
3.11 Claim. 
(1)For x E A: 

(3f E Aut(A)) [x= f(x)] iff 
E Auts(A))(x E Dom f&x # f(x)) iff (3y, z)[o < y < x&0 < z < 1- 

x&Aly = Alz]. 
(2) If (Ic : < a) is a sequence of ideals of A 4( 0= Ic  n= {O}] and 

I = Ei<c, h then: 
id(I) ≥ 7Tc<a  id(Ic). 
idc(I) ≥ 7r-c<c, idc(Ic). 
aut(I) ≥ irc<a  aut(Ic). 
end(I) ≥ irc<a  end(Jc). 
Similarly for endi, auti, endr, autr etc. 

There are many more easy relations, but for our aim the main point is 

3.12 Main Lemma. For an infinite Boolean Algebra A: 
(1)auq(A) for e = 3, 5 are equal or both finite (and we can restrict ourselves to 

automorphisms of order 2). 
(2) If for some e E {3,4,5,6} we have alit' elA) > idc(A) then auq(A) for e = 3,4,5,6 

are all equall. 
(3) aut'31A) = aut“Ar° or aut3(A) is finite. 
(4)autv;' (A) = autv3(A) + idc(A) for e = 4, 6. 

Proof. Let J= {x E A: for every f E Aut(A), f KAlx) = MAO. 
The function F1, • • • , F5 satisfying y <= F,(y) ≤ Fe(x) are functions from A to ord 

defined below; and we let: 
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K= {x E A : 
(i) for some y,xny= 0 and Alx = Aly. 
(ii) for e = 1,• • • ,5 and 0 < y < x we have F,(y) = Fe(y)}. 

Where: 
F i(x) = the cardinality of Als. 
F2(x) = idc(Alx). 
F3(x) = aut(Alx). 
F4(x) = aut3(Alx). 
F6(x) = autVAlx). 
Now 
(*)1  J is an ideal of B. 
(*)z K is downward closed. 
(*)3  K U J is dense. 
Choose {xi  : i < cx} maximal such that: 
(a) s i  E K, xi > 0, 
(b) if i= j, 0 < y' < si, 0 < y" < xi then Aly'= Aly". 

Let Ki = {y : for some y' ≤ xi, Aly Aly'}, and K; : the ideal K;  generate. Now 

(*)4 Ui<,„ Ki is dense in K [hence J UU,<,,,Ki is dense in A]. 
(*)5  For i j we have Ki  n Ki  = {0},= n J = {0}. 
Clearly, 
(*)6  for f E Aut6(A) we have: 

(a) f is the identity on J fl Dam f . 
(b) for x E Domf we have x E= f(x) E Ki. 

So 
(*)7  aut.; (A) = 7ri.‹ ,,,aut-e'(lq- ) for e = 3,5 and autNA) = idc(J) x ri<c,aut;'(Kill for 

e = 4, 6 
We shall prove: 
(*)8  For each i, one of the following ocurrs: 
(a) aut (Kt) for e = 3,4,5,6 are all finite > 1, 
(b) For some infinite K we have aut; (Kt) = autve—  (Kt)" > idc(Ki) for e = 3,4,5,6 

(really we can use F6(i) = sup{K+ : Blx has lc pairwise disjoint non zero 
members} and any such K is OK for (b)). 

Case 1. xi is an atom. 
This is clear: let Ai  =: lKi l, if it is infinite, auq(Kt) = 2Ai for e = 3,4,5,6 so case (b) 

in (*)8  ocurrs. 
If Ai is finite, 1 < autZ= < 1.20  (we can compute exactly), so case (a) in (*)8. In fact 

in all cases we can use just automorphism of order 2. 
So we can assume 

Case 2. not Case 1, so Blxi  is atomless, hence idc(Blxi) > 2'°. 
Let (./i,c,./Lc  : ( < (i) be a sequence such that: 

(a) 4,c,= are ideals C .1q-  and # {0}, 
(0) {0} ~= g Alxi, 
(-y) Ji,c= an hi,c an isomorphism from J i,c onto ./Lc, 
(6) Ac<4<ci  J1,c  n Ji e  = {o}, 
(e) if y E .1q-  is disjoint to all members Ue≤c.J E  then for some y' < y and z E 

Blz'= Bly' hence 
(() if ( < < (i then Ji,4 fl= is a dense subset of Ji,4 
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Now 
(*)8  Ljc<ci  J: c  is a dense subset of K. 
(*)le= ≥ 2 (as there is y, xi fl y = 0 and Aly= Alxi as xi E K). 
(*)11  idc(Kt) = 
By the definition of K (see choice of F2 ), we have 0 < y < xi= idc(Aly) = (Alx) 
hence idc(.1: c )= idc(Aixi) so 

(*)12 idc(Kt) = [idc(Alxi)]Kil hence [idc(Kt)]K.I = idc(Kt). 
Easily 
(*)13 autW(Kt) ≥ aut3' (Kt) ≥ idc(Alxi). 
(and even by automorphism of order 2). 
Last inequality: for each z E Idc(Alxi) there is z', z' fl xi = 0, and Alz= Alz' and let g 

be such isomorphism, let ./z  be the ideal of A generated by {x E Kt : x < z or x < z' or 
xnz=x= == 9z E Aut(Iz ) C Aut3(K:),g2(y) =: (y — zUz')Ug(y fl z)Ug- '(ynz'). 

Case 2A. 6 < tio (and not Case 1) 
Let for n <= xi,„ < xi,xi,„ # 0, and [n # m= = 0], and= = {y E 

Kt : A n y n xi,n  = O} and ./i,n  = {z : z < SBA. : So aut3 (Kt) > aut;(Ea<„, I i,a ) > 

irn<L,ant'31Blxi,n) = auq(Blxi)No • 
Similarly to the proof of Case 2B below (but easier) we can show that Case (b) of (*)8 

ocurrs. From now on we assume 

Case 2B. Not Case 2A, so 6 > No • 
For every f E Aut6(Kt) let, for (,C < 
Ltt  = {x E= : f(x) E 

== (x) : x E= f (x) E J1,d. 

So the number of possible Lf = (supLL : ( $ e < (i) and fff = (sup(ML) : ( $ 

< ()is < [idc(AIxi)]lcil and for fixed L,M the number of f E autW (Kt) for which 
Lf = L,Mf = M is < rc,t lff= : f an isomorphism from a dense subset of Lc,t  onto a 
dense subset of Afc,dl ≤ irc,out“Lc,t ) ≤= aut“Alxi) = [auG(Alxi)]IC: I ). 

(In the last equality we use F5 in the definition of K: for the last <, note we can replace 
Lc,4  by isomosrphic ideal= of Alxi, and letting L-c-,e  = fy : y E Alxi, (Vx E LZ,d[y fl z = 
0]} we can extend every f E Aut3(L*((,e) to f' E Aut3(Alx) by letting f' (x1_1 y) = f(x)uy 
for x E Dom( f), y E LZ4 ). 

So 
(*)14 aur 6 (Kt) ≤ [auq(Alxi) += I. 
Now for each such that g + 1 < 6 we can choose yi,g E= yi,2e+1 E Ji,2C+1 such 

that Alyi,24  = Alyi,2w. and (gi,e,„ : a< autVAlxi)) such that= is an isomorphism 
from a dense subset of= onto a dense subset of Alyi,g+i,= : a < autVAlxi)) 
pairwise distinct. Let= be minimal such that 2c < 

Now for every sequence a = (at  : e <= < autVAlxi), we define gi,a  E Aut3(Kt) 
of order two (see condition (7)): 

go l(yit2e  U= = h20.1 0 gi,t,a  o hZfl  U h2e  o 6Q1,. o 11. 4+1 

and if y E= \ {0} and f‘ <c: (y n= = 0) then go(y) = 0. 
Lastly if y is the disjoint union of yo, • • • , yn  and each ga  (ye ) was defined then we define 

ga(yo U • • • U Yn) = Yei(Yo) U • • • U ga (yn). The reader may check that ga E Aut3(Kt). 
The mapping a go  show: 

(*)15 aut“Kt)> 
Easily, choosing yi E Jo (possible as 6 > 2) 
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(*)16 autillft) > auq(Al(xi U yi)) ≥ idc(AIy) = idc(Alzi) ≥ 
Together by (*)13, (*)14, (*)15, (*)18 for e = 3,6: 

aut;-(Kt) = 
By 3.7(1) this holds for e = 4, 5, hence (*)8  has been proved. 
Now by (*)7  + (*)8  the four parts of 3.12 follows. 

3.13 Conclusion : aut(A)N0 < sub(A), also aute(Ar° < sub(A) for e = 3, 4, 5, 6. 
Note: even if aut(A) is finite, A infinite, still 2N0  < sub(A) (for A infinite). 

Proof. By 3.7(3) + 3.7(6) aut(A) = autVA) ≤ id(A) + auq(A) ≤ id(A) + Pend(A) ≤ 
sub(A) but by S. Shelah [6] id(A)N0  = id(A) and by 3.12(3) auq(A)Ko = auti-  (A), together 
we can finish the first inequality, the second is similar using 3.10(5). 

3.14 Claim : For an (inifinite) Boolean algebra A we have: 

(1) ende(A) = id(A) + aut3(A) for e = 3, 4, 5, 6. 
(2) end6(A)NO ≤ sub(A). 
(3) ende (A)NO < sub(A) for e = 2, 3, 4, 5, 6. 

Proof. 

(1) Clearly end3(A) ≥ aut3(a) and end3(A) ≥ id(A) (as the mapping in the proof of 
3.10(1) examplify). 

On the other hand we can attach to every f E End6(A) three ideals Ii(f) = 
Dom f, I 2(f) = Rang(f) and I3(f) = Ker(f). Now the number of triples I of 
ideal of A has cardinality id(A) and for each such I: 

{f E End6(A)= Ie(f) = l e  for e = 1, 2, 3} has cardinality lAut(I2 )I which is 
< aut3(A). By 3.7(2) we can finish. 

(2) Remember also id(A)N° = id(A) by S. Shelah [6] and part (1) and 3.13. 
(3) By part (2) and 3.7. 

§4 The width of the Boolean algebra . 

4.1 Definition. For a Boolean algebra B let: (1) A C B is an antichain if x E A&y E 
A&x # y= x ¢ y (i.e. A is a set of pairwise incomparable elements). 

(2) Width of B, w(B) is sup{IAI : A C B antichain},w+(B) = U{lAl+ : A C B 
antichain}. 

E. C. Milner and M. Poizat [3], answering a question of E. K. van Dowen, D. Monk and 
M. Rubin [7] proved cf(w+ (B))= No• 

In S. Shelah [5] we claim: if A > cf.\ > No, for some generic extension of the universe 
preserving cardinalities and cofinalities, for some B,= (B) = A. We retract this and replace 
it by the theorem 4.2 below. 

For weakly inaccessibles we still have the consistency. Moreover, if A is a limit uncount-
able regular cardinal, S C A stationary not reflecting and os it then we have such an 
example for A. 

4.2 Theorem. For an infinite Boolean algebra B, w+(B) is an uncountable regular 
cardinal. 

Proof. As B is infinite it has an antichain A, IAI = No, [if B has finitely many atoms clear, 
if not it has a subalgebra which is atomless, without loss of generality countable and check]. 
So A =: w+(B) > No. Assume pc =: c f a< A; let A = Ei,„ Ai, cf A + Ej<i= < Ai  < A and 
let Ai C B be an antichain of cardinality ATiE (exist by the choice of A). Let A = j i<,, Ai, 
so IAI = A. Choose such (Ai : i < pc) such that, if possible 
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(*)i < j < K, E Ai, E Ai 
For x E B let A[>, = {y E A : y > x}, A[<, = {y E A : y < x}, 
A[>,11,] = {x E A: IA[>,x]l < µ},A[<,A] = {x E A : IA[<,x]l < µ}. 

Case 1. For some µ < A, A[>, µ] has cardinality A. 
By Hajnal free subset theorem, there is a set E C A[>, µ] of cardinality A such that: 
x#y&x E E&y EExcz' A[>, y] & y¢ A[>,x]. So E witness w+(B) > A. 

Case 2. For some µ< a, A[<, µ] has cardinality A. 
Same proof. 

Case 3. For every i < K there is x E A such that Ai < IA[>,x]l < A. 
Let for i <= xi E A be such that Ai < lA[>,xi]l < A. Let u C K be such that: K = supu 

and for i E u, Ai > — 7 jEuni lA[>, xi]l (choose the members of u inductively). By renaming 
without loss of generality u = K. Clearly A[>, xi] \ Ui<i A[>, xj] has cardinality > Ai. 

As Ai > K (by its choice) and A = Uj‹ „Ai, clearly for each i there is a(i) < K such that 
(A[>, xi] \ Ui<i  A[>, xi ]) n Aa(i)  has cardinality > Ai; necessarily cx(i) ≥ i. 

For some unbounded u C K we have [i E u&j E u&i < j= ct(i) < j]; without loss of 
generality u = K, a i  = i. Let A: be a subset of (A[>, si]\ Uj<i A[<, xi])nA„(i)  of cardinality 
À. Now (A: : i < K) satisfies: A: C B is an antichain of cardinality A:-  and 

(*)' i< j, xEA:,yEA;= x¢ y (otherwise x, <x<yitA[>,xi], contradiction). 

So (A'i= {1B  —x:xEA:}:i< K) satisfies= C B is an antichain of B of cardinality 
and also (*) above (check). So by the choice of (A, : < ic), it satisfies (*). By (*) + (*)', 
A* = ui<,,A: is an antichain of B of cardinality A, so w4- (B) > A. 

Case 4. For every i < x there is x E A such that A, < IA[<,= < A. 
Similar to Case 3. 

Case 5. None of the previous cases. 
By "not Case 3" for some i(*) < K, for no x E A is Ai(*)  < IA[>, x]l < A. By not Case 2, 

A[<,A;ii,)] has cardinality < A. By not Case 1 A[>, At(5)] has cardinality < A. 

Choose x• E A\A[<,)Cili.)1\A[>,A:i5) ] so A[>, xl has cardinality= > A;(5) , hence 
by the choice of i(*) we have A[>, xl has cardinality A. 

As Ai( ,,, )  > K, for some j(*), A[<,x1 n Ai(*)  has cardinality > Ai(*) , so choose distinct 
yi E A[<,x1 n Ai(*)  for i < It. Now yi < xi  (as yi E A[<, xl), and [i # j= yi  ¢ yi ] (as 
they are distinct and in AiN). 

Let A: = Ai n A[>, x*], so A: C Ai  hence is an antichain of B, and 

= (UA,) n A[>, x*] = A n A[>,= = A[>, x5] 

So each A: is an antichain, its member are > xi and l Ui= is A as lA[>,x*ll is. 
Now 

A' = ui<„{yi (x x5 ) : x 

is an antichain of B of cardinality A, so w+(B) > A, as required. 
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