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ABSTRACT
We answer a question of Blass and Harari about the validity of the

zero-one law in random graphs for extensions of first order logic.

For several graph properties 𝑃 (e.g. Hamiltonicity), it is known

that every (regular) logic able to express 𝑃 is also able to interpret

arithmetic, and thus strongly disobeys the zero-one law. Common

to all these properties is the ability to express the Härtig quantifier,

a natural extension of first order logic testing if two definable sets

are of the same size. We prove that the Härtig quantifier is sufficient

for the interpretation of arithmetic, thus providing a general result

which implies all known cases.
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1 INTRODUCTION
In this paper we study zero-one laws in the random binomial graph

𝐺 (𝑛, 𝑝). Recall that 𝐺 (𝑛, 𝑝) is defined as a probability distribution

over the set of all labeled graphs with vertex set {1, 2, . . . , 𝑛}, by
requiring that each of the

(𝑛
2

)
potential edges appears with proba-

bility 𝑝 and independently of all other edges. Zero-one laws — the

phenomena where all properties in some (logical) set of properties

are either almost surely valid or almost surely invalid for a given

random graph — teaches us about the set of properties itself and

the underlying random graph. It is thus considered an important

part of Finite Model Theory. In this work we prove that a certain

quantifier allows interpretation of a segment of arithmetic, which

is the extreme opposite of a zero-one law, in the sense of having

no control over asymptotic behavior of properties. We show that

this quantifier explains all known cases of properties 𝑃 for which,

if augment first order logic with 𝑃 , we can interpret Arithmetic.

Besides of its intrinsic value and the short proof, we see this result

as an explanation, or a step towards one, of the phenomena.
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The study of random graphs was pioneered by Erdös and Rényi

in the 1960s, originating from two seminal papers [8, 9]. One of

the earliest phenomena recognized in their work is the fact that

many natural graph properties — including connectivity, Hamil-

tonicity, planarity, 𝑘-colorability for a fixed 𝑘 and containing 𝐻 as

a subgraph for a fixed graph 𝐻 — hold either in almost all graphs,

or in almost none of them. Formally, consider 𝐺 (𝑛, 1/2), which is

the uniform distribution over all labeled graphs on 𝑛 vertices. For a

graph property 𝑃 , we say that it holds asymptotically almost surely
(a.a.s. for short) in 𝐺 (𝑛, 1/2) if

lim

𝑛→∞
P (𝐺 (𝑛, 1/2) satisfies A) = 1

and that it holds asymptotically almost never (a.a.n. for short) in
𝐺 (𝑛, 1/2) if

lim

𝑛→∞
P (𝐺 (𝑛, 1/2) satisfies A) = 0.

The observation that natural graph properties hold either a.a.s.

or a.a.n. in 𝐺 (𝑛, 1/2) remains valid when 1/2 is replaced by any

constant probability strictly between 0 and 1, and so from now we

consider 𝐺 (𝑛, 𝑝) for a fixed 𝑝 ∈ (0, 1).
The above observation is not a formal statement, because of the

lack of a formal definition of "natural graph properties". From a

logician’s point of view, it is natural to consider the class FO of

first order properties. These are properties which can be expressed

as a sentence in the first order language of graphs, whose dictio-

nary consists of a single binary relation ∼ representing adjacency.
1

Indeed, the classic zero-one law, proven independently by Glebskii

et al. [11] and Fagin [10], states that every first order property holds

either a.a.s. or a.a.n. in 𝐺 (𝑛, 𝑝) for a constant 𝑝 ∈ (0, 1). However,
many graph properties which are considered natural — including

connectivity, Hamiltonicity and 𝑘-colorability — are not first order.

On the other extreme, the classSO of second order graph properties
contains all the properties listed above, but fails to obey a zero-one

law. For example, as noted by Fagin [10], the property of having

an even number of vertices is second order, but has no limiting

probability.

It is therefore natural to ask for extensions of first order logic

which are strong enough to express a given graph property 𝑃 on

the one hand, but still obey a zero-one law on the other hand.

This question was posed by Blass and Harari [2], in particular for

Hamiltonicity and rigidity (asymmetry). They suggested monadic

second order logic, denotedMSO, as an extension which expresses

rigidity and might obey the zero-one law, and also asked about

extensions of FO with equicardinal quantifiers. These questions

has been studied in many papers. The following review is far from

being comprehensive; for a survey of the results in this field see,

e.g., [4].

Note that a trivial extension of FO which includes 𝑃 is the union

FO ∪ {𝑃}. However, this class of properties clearly lacks a basic

notion of closure. To avoid such trivialities, the extensions of first

order logic which are required to be regular. A regular logic can

be described as a logic that is closed under negation, conjunction,

1
From now on we shall identify logical sentences with the properties they describe.
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existential quantification, relativization and substitution (see [6] for

more details). For a given property 𝑃 , the minimal regular extension

of first order logic which expresses 𝑃 is obtained by adding the Lind-
ström quantifier of 𝑃 , which we denote 𝑄𝑃 [17, 18]. Syntactically,

we define FO[𝑄𝑃 ] as the set of sentences obtained from the set of

atomic formulas by closing it with respect to first order operations

and quantification with 𝑄𝑃 , which is done as follows: given a for-

mula 𝜑𝑉 (𝑥) with one free variable 𝑥 and a formula 𝜑𝐸 (𝑥,𝑦) with
two free variables 𝑥,𝑦, return the formula 𝑄𝑃𝑥,𝑦 (𝜑𝑉 (𝑥), 𝜑𝐸 (𝑥,𝑦))
in which 𝑥,𝑦 are quantified. Semantically, the truth value of this

formula is defined as follows. For a given graph 𝐺 = (𝑉 , 𝐸), let
𝑉0 = {𝑣 ∈ 𝑉 : 𝐺 |= 𝜑𝑉 (𝑣)} and let 𝐸0 be the set of edges {𝑢, 𝑣} ∈ 𝐸
with 𝑢, 𝑣 ∈ 𝑉0 such that 𝐺 |= 𝜑 (𝑢, 𝑣) or 𝐺 |= 𝜑 (𝑣,𝑢). Then

𝐺 |= 𝑄𝑃𝑥,𝑦 (𝜑𝑉 (𝑥), 𝜑𝐸 (𝑥,𝑦)) ⇐⇒ 𝐺0 = (𝑉0, 𝐸0) satisfies 𝑃 .

For a more detailed treatment of these notions, see [7].

The answer to the first question of Blass and Harari, regarding

Hamiltonicity and rigidity, was given by Dawar and Grädel [5],

and in a stronger form by Haber and Shelah [12]. Let 𝑄rig be the

Lindström quantifier of rigidity and let 𝑄Ham be the Lindström

quantifier of Hamiltonicity. Then FO[𝑄rig] obeys the zero-one

law, while for FO[𝑄Ham] the zero-one law fails in a very strong

sense: this language can interpret a segment of arithmetic in𝐺 (𝑛, 𝑝),
which allows (among other things) to express a property with no

limiting probability. The answer to the second question, about

monadic second order logic, was given much earlier by Kaufmann

and Shelah [16]:MSO can interpret arithmetic, and so the zero-one

law fails colossally.

As for other graph properties, Haber and Shelah also proved

that the zero-one law holds for the extensions of FO with the

Lindström quantifiers of connectivity and 𝑘-colorability for every

fixed 𝑘 . These results also follow a more general theorem by Dawar

and Grádel [5], from which Planarity follows as well. On the other

hand, there are additional graph properties for which it is known

that the corresponding Lindström-extension of FO can interpret

arithmetic: these include regularity, having a perfect matching and

having a 𝐶4-factor.

Common to all the Lindström-extensions of FO which are

known to be able to interpret arithmetic is the ability to express the

equicardinality quantifier, also known as the Härtig quantifier [13],
which we denote 𝑄=. This quantifier allows for testing if two de-

finable sets are of the same size. Syntactically, given formulas 𝜑 (𝑥)
and𝜓 (𝑥) with one free variable 𝑥 , the Härtig quantifier returns a

formula 𝑄=𝑥 (𝜑 (𝑥),𝜓 (𝑥)) in which 𝑥 is quantified. Semantically,

for a given graph 𝐺 = (𝑉 , 𝐸) we have 𝐺 |= 𝑄=𝑥 (𝜑 (𝑥),𝜓 (𝑥)) if and
only if

|{𝑣 ∈ 𝑉 : 𝐺 |= 𝜑 (𝑣)}| = |{𝑣 ∈ 𝑉 : 𝐺 |= 𝜓 (𝑣)}| .

The Härtig quantifier is a natural extension of first order languages

and was studied quite extensively in the context of general model

theory and abstract logic [14].

In this paper we prove that the extension FO[𝑄=] is able to

express arithmetic in 𝐺 (𝑛, 𝑝). This answers the third question of

Blass and Harari, and provides a general result which immediately

implies all known cases. We demonstrate the ability to interpret

arithmetic with the existence of a property with no limiting proba-

bility.

Theorem 1.1 (Main Theorem). Let 𝑝 ∈ (0, 1) be a constant. Then
there exists a sentence 𝜑 ∈ FO[𝑄=] such that the limit

lim

𝑛→∞
P (𝐺 (𝑛, 𝑝) |= 𝜑)

does not exist.

The proof consists of two parts: probabilistic and logical. In the

probabilistic part (Section 2) we show how FO[𝑄=] can express

sets of vertices of logarithmic size (which we call logarithmic sets
for short). We also show how to express arbitrary subsets of a given

logarithmic set. This allows the interpretation of MSO logic on

logarithmic sets. For the logical part (Section 3) we apply Kauffman

and Shelah [15], which, as mentioned above, show thatMSO logic

can interpret arithmetic in 𝐺 (𝑛, 𝑝).

Notation and conventions. We denote for short FO= := FO[𝑄=].
Given a list of variable symbols 𝑥1, . . . , 𝑥𝑛 , let FO(𝑥1, . . . , 𝑥𝑛) de-
note the set of first order formulas (in the language of graphs) with

𝑥1, . . . , 𝑥𝑛 as free variables. Similarly define FO= (𝑥1, . . . , 𝑥𝑛) and
MSO(𝑥1, . . . , 𝑥𝑛).

Throughout the text we maintain the convention of denoting

random variables with a boldface font.

For 𝑛 ∈ N and 𝑝 ∈ (0, 1), we write G ∼ 𝐺 (𝑛, 𝑝) when G has

distribution𝐺 (𝑛, 𝑝). For two vertices 𝑢, 𝑣 ∈ 𝑉 , let 𝑢 ∼ 𝑣 denote that
they are adjacent in G. For a subset 𝑆 ⊆ 𝑉 , let G[𝑆] denote the

subgraph of G induced by 𝑆 .

Given two sequences of positive random variables (X𝑛)∞𝑛=1,
(Y𝑛)∞𝑛=1, we define the following notions of asymptotic equiva-

lence:

(1) We say thatX𝑛 = (1 + 𝑜 (1)) Y𝑛 with high probability if there
exists a sequence 𝜀𝑛 = 𝑜 (1) such that

P
(����X𝑛Y𝑛 − 1

���� ≤ 𝜀𝑛) = 1 − 𝑜 (1) . (1)

(2) We say that X𝑛 = (1 + 𝑜 (1)) Y𝑛 with exponentially high

probability if there exists a sequence 𝜀𝑛 = 𝑜 (1) such that

P
(����X𝑛Y𝑛 − 1

���� ≤ 𝜀𝑛) = 1 − exp

(
−𝑛Ω (1)

)
.

For convenience, we often omit dependency on 𝑛 from our notation.

Finally, recall the following tail bounds on binomial and Poisson

variables, following from Chernoff’s inequality (see [1], Appendix

A). Let 𝑋 ∼ Bin(𝑛, 𝑝) and 𝜇 = E𝑋 . Then for every 0 < 𝛿 < 1,

P ( |𝑋 − 𝜇 | ≥ 𝛿𝜇) ≤ 2 exp

(
−𝛿

2

3

𝜇

)
. (2)

Let 𝑋 ∼ Pois(𝜆) and 𝜇 = E𝑋 . Then for every 0 < 𝛿 < 1,

P ( |𝑋 − 𝜇 | ≥ 𝛿𝜇) ≤ 2 exp

(
−𝛿

2

4

𝜇

)
. (3)

2 THE PROBABILISTIC PART
From now fix a constant 0 < 𝑝 < 1 and consider the binomial

Erdös-Rényi graph G ∼ 𝐺 (𝑛, 𝑝).
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We begin by fixing two arbitrary vertices 𝑢1, 𝑢2 ∈ 𝑉 . Let 𝑉 ′ =
𝑉 \ {𝑢1, 𝑢2}. Define the following (random) vertex sets:

A =
{
𝑣 ∈ 𝑉 ′

: 𝑣 ∼ 𝑢1 ∧ 𝑣 ∼ 𝑢2
}
,

B =
{
𝑣 ∈ 𝑉 ′

: 𝑣 ∼ 𝑢1 ∧ 𝑣 ≁ 𝑢2
}
,

C =
{
𝑣 ∈ 𝑉 ′

: 𝑣 ≁ 𝑢1 ∧ 𝑣 ∼ 𝑢2
}
,

D =
{
𝑣 ∈ 𝑉 ′

: 𝑥 ≁ 𝑢1 ∧ 𝑣 ≁ 𝑢2
}
.

Note that the statements 𝑣 ∈ A, 𝑣 ∈ B, 𝑣 ∈ C, 𝑣 ∈ D are all express-

ible as formulas in FO(𝑢1, 𝑢2, 𝑣).
From (2), with exponentially high probability we have

|A| = (1 + 𝑜 (1))𝑝2𝑛, (4)

|B| , |C| = (1 + 𝑜 (1))𝑝 (1 − 𝑝)𝑛, (5)

|D| = (1 + 𝑜 (1)) (1 − 𝑝)2𝑛. (6)

It will be convenient to condition by the values of the variables

A,B,C,D; that is, to condition by an event of the form

𝑄𝐴,𝐵,𝐶,𝐷 = {A = 𝐴,B = 𝐵,C = 𝐶,D = 𝐷}
where 𝐴, 𝐵,𝐶, 𝐷 are possible values of A,B,C,D. Note that condi-
tioning by 𝑄𝐴,𝐵,𝐶,𝐷 does not affect the distribution of G[𝑉 ′].

The rest of the section is as follows. In subsection 2.1 we intro-

duce a construction that can be used to express logarithmic sets.

In subsection 2.2 we show how to express arbitrary subsets of any

logarithmic set. In both subsections, all the probabilities and ex-

pected values are assumed to be conditioned by 𝑄𝐴,𝐵,𝐶,𝐷 , where

𝐴, 𝐵,𝐶, 𝐷 satisfy the asymptotic equivalences given in (4), (5), (6).

Finally, in Subsection 2.3 we apply the law of total probability to

obtain non-conditioned results.

2.1 Expressing sets of logarithmic size
We construct subsets of 𝐴 in terms of the edges between 𝐴 and 𝐵.

Definition 2.1.
(1) For every vertex 𝑥 ∈ 𝐴, let d𝐵 (𝑥) denote the 𝐵-degree of 𝑥 ,

which is the number of edges between 𝑥 and 𝐵.

(2) For every 0 ≤ 𝑘 ≤ |𝐵 | let S𝑘 = {𝑣 ∈ 𝐴 : d𝐵 (𝑣) = 𝑘}.
(3) For every𝑥 ∈ 𝐴 let S[𝑥] = Sd𝐵 (𝑥 ) = {𝑣 ∈ 𝐴 : d𝐵 (𝑣) = d𝐵 (𝑥)} .

Remark 2.2. Given a vertex 𝑥 ∈ 𝐴, the statement 𝑣 ∈ S[𝑥] is
expressible as a formula in FO= (𝑢1, 𝑢2, 𝑥, 𝑣):

𝑣 ∈ 𝐴 ∧𝑄=𝑦 (𝑦 ∈ 𝐵 ∧ 𝑦 ∼ 𝑣,𝑦 ∈ 𝐵 ∧ 𝑦 ∼ 𝑥)
where 𝑥 ∈ 𝐴means 𝑥 ∼ 𝑢1∧𝑥 ∼ 𝑢2 and𝑦 ∈ 𝐵means𝑦 ∼ 𝑢1∧¬(𝑦 ∼
𝑢2).

Importantly, note that the 𝐵-degrees (d𝐵 (𝑥))𝑥∈𝐴 are i.i.d. with

distribution Bin ( |𝐵 | , 𝑝).

Theorem 2.3. Let 𝑐 > 0 be a constant. Then, with exponentially
high probability, there exists 0 ≤ 𝑘 ≤ |𝐵 | such that |S𝑘 | = (1 +
𝑜 (1))𝑐 ln𝑛.

To prove Theorem 2.3, we introduce some notations and a lemma.

Definition 2.4. Let 𝑛𝐴 = |𝐴| and 𝑛𝐵 = |𝐵 |. For every 0 ≤ 𝑘 ≤ 𝑛𝐵
let 𝑝𝑘 = P (Bin (𝑛𝐵, 𝑝) = 𝑘). Also let 𝜇 = 𝑝𝑛𝐵 and 𝜎 =

√︁
𝑝 (1 − 𝑝)𝑛𝐵 .

In the following lemma we apply normal approximations to

estimate the binomial probabilities 𝑝𝑘 .

Lemma 2.5. Let 𝑐 > 0 be a constant. Let 𝑡0 ∈ R be the unique
positive solution of

1

√
2𝜋𝜎

exp

(
−
𝑡2
0

2

)
=
𝑐 ln𝑛

𝑛

and let 𝑘0 = 𝜇 + 𝑡0𝜎 . Then, for every integer 𝑘 ∈
[
𝑘0 − 𝑛1/4, 𝑘0 + 𝑛1/4]

we have 𝑝𝑘 = (1 + 𝑜 (1)) 𝑐 ln𝑛𝑛 (where the asymptotic term 𝑜 (1) is
uniform with respect to 𝑘).

Proof of Lemma 2.5. We apply Theorem 1.2 and Theorem 1.5

from Bollobás [3].

First note that 𝑛𝐵 = Θ(𝑛), 𝜇 = Θ(𝑛), 𝜎 = Θ
(
𝑛
1/2

)
and 𝑡0 =

(1 + 𝑜 (1))
√
ln𝑛. For a given integer 𝑘 ∈

[
𝑘0 − 𝑛1/4, 𝑘0 + 𝑛1/4]

, we

can write 𝑘 = 𝜇 + 𝑡𝜎 for 𝑡 = 𝑡0 +𝑂 (𝑛−1/4). Applying Theorem 1.2

from [3] (with ℎ = 𝑡𝜎 and 𝑛 = 𝑛𝐵 ),

𝑝𝑘 ≤ 1

√
2𝜋𝜎

exp

(
− 𝑡

2

2

)
· exp

(
𝑡𝜎

(1 − 𝑝)𝑛𝐵
+ 𝑡3𝜎3

𝑝2𝑛2
𝐵

)
=

1

√
2𝜋𝜎

exp

(
−
𝑡2
0

2

)
· exp

(
𝑂 (𝑡0𝑛−1/4)

)
· exp

(
𝑂 (𝑡0𝑛−1/2)

)
= (1 + 𝑜 (1)) 𝑐 ln𝑛

𝑛
.

Similarly, applying Theorem 1.5 from [3] (with ℎ = 𝑡𝜎 and 𝑛 = 𝑛𝐵 ),

𝑝𝑘 ≥ 1

√
2𝜋𝜎

exp

(
− 𝑡

2

2

)
· exp

(
− 𝑡3𝜎3

2(1 − 𝑝)2𝑏2
− 𝑡4𝜎4

3𝑝3𝑏3
− 𝑡𝜎

2𝑝𝑏
− 1

12𝑘
− 1

12(𝑛 − 𝑘)

)
=

1

√
2𝜋𝜎

exp

(
−
𝑡2
0

2

)
· exp

(
𝑂 (𝑡0𝑛−1/4)

)
· exp

(
𝑂 (𝑡0𝑛−1/2)

)
= (1 + 𝑜 (1))𝑐 ln𝑛

𝑛
.

Overall we have 𝑝𝑘 = (1 + 𝑜 (1))𝑐 ln𝑛𝑛 , where the 𝑜 (1) can be taken

to be 𝑂

(
(ln𝑛)1/2𝑛−1/4

)
and uniform with respect to 𝑘 . □

Proof of Theorem 2.3. Note that s𝑘 := |S𝑘 | ∼ Bin (𝑛𝐴, 𝑝𝑘 ) for
every 0 ≤ 𝑘 ≤ 𝑛𝐵 . The variables {s𝑘 }𝑛𝐵𝑘=0 are not independent, since∑𝑛𝐵
𝑘=0

s𝑘 = 𝑛𝐴 . However, we can replace them with independent

variables by introducing a Poisson process.

Let {d𝑖 }∞𝑖=1 be i.i.d. variables with distribution Bin (𝑛𝐵, 𝑝) and
let N ∼ Pois(𝑛𝐴) be independent of {d𝑖 }∞𝑖=1. These variables define
the Poisson process d1, d2, . . . , dN. For every 0 ≤ 𝑘 ≤ 𝑛𝐵 let s̃𝑘
count the number of times the value 𝑘 appears in the process; that

is, s̃𝑘 = |{0 ≤ 𝑖 ≤ N : d𝑖 = 𝑘}|. Then the variables {s̃𝑘 }𝑛𝐵𝑘=0 satisfy
the following two properties:

(1) The distribution of {s̃𝑘 }𝑛𝐵𝑘=0 given N = 𝑛𝐴 is identical to the

distribution of {s𝑘 }𝑛𝐵𝑘=0.
(2) {s̃𝑘 }𝑛𝐵𝑘=0 are independent and s̃𝑘 ∼ Pois(𝑛𝐴𝑝𝑘 ) for every 𝑘 .

We now apply Lemma 2.5 with
𝑐
𝑝2

as the constant. For every integer

𝑘 ∈
[
𝑘0 − 𝑛1/4, 𝑘0 + 𝑛1/4]

we then have

E (s̃𝑘 ) = 𝑛𝐴𝑝𝑘 = (1 + 𝑜 (1))𝑝2𝑛 · 𝑐
𝑝2

ln𝑛 = (1 + 𝑜 (1))𝑐 ln𝑛.
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From (3) we deduce that there exists a sequence 𝜀𝑛 = 𝑜 (1) such that

for every integer 𝑘 ∈
[
𝑘0 − 𝑛1/4, 𝑘0 + 𝑛1/4]

,

P (s̃𝑘 ∉ [(1 − 𝜀𝑛)𝑐 ln𝑛, (1 + 𝜀𝑛)𝑐 ln𝑛]) ≤
1

2

.

Write

𝐼 = [(1 − 𝜀𝑛)𝑐 ln𝑛, (1 + 𝜀𝑛)𝑐 ln𝑛] ,

𝐾 =

[
𝑘0 − 𝑛1/4, 𝑘0 + 𝑛1/4

]
∩ Z

for short. Then, from independence,

P (s̃𝑘 ∉ 𝐼 ∀𝑘 ∈ 𝐾) ≤
(
1

2

) |𝐾 |
= exp

(
−Θ(𝑛1/4)

)
.

Therefore there exists 𝑘 such that s̃𝑘 ∈ 𝐼 with exponentially high

probability.

Finally, we condition by the event N = 𝑛𝐴 . By Stirling’s approxi-

mation, P (N = 𝑛𝐴) = Θ
(
𝑛
−1/2
𝐴

)
= Θ

(
𝑛−1/2

)
. Overall

P (s𝑘 ∉ 𝐼 ∀𝑘 ∈ 𝐾) ≤ P (s̃𝑘 ∉ 𝐼 ∀𝑘 ∈ 𝐾)
P (N = 𝑛𝐴)

=

exp

(
−Θ(𝑛1/4)

)
Θ

(
𝑛−1/2) = exp

(
−Θ(𝑛1/4)

)
.

We conclude that, with exponentially high probability, there exists

𝑘 such that s𝑘 ∈ 𝐼 , and so s𝑘 = (1 + 𝑜 (1))𝑐 ln𝑛 as we wanted. □

Corollary 2.6. Let 𝑐 > 0 be a constant. Then, with exponentially
high probability, there exists 𝑥 ∈ 𝐴 such that |S[𝑥] | = (1+𝑜 (1))𝑐 ln𝑛.

Proof. Given 𝑘 such that |S𝑘 | = (1+𝑜 (1))𝑐 ln𝑛, pick any 𝑥 ∈ S𝑘
and then S𝑘 = S[𝑥]. □

2.2 Expressing arbitrary subsets
To express subsets of a given set 𝑆 ⊆ 𝐴, we use the edges between
𝑆 and 𝐶 .

Definition 2.7. For a set 𝑆 ⊆ 𝐴, a subset𝑇 ⊆ 𝑆 and a vertex 𝑧 ∈ 𝐶 ,
we say that 𝑧 defines 𝑇 in 𝑆 if 𝑇 = {𝑠 ∈ 𝑆 : 𝑠 ∼ 𝑧} .

Proposition 2.8. There exists a positive constant 𝑐0 such that
the following holds with exponentially high probability. For every set
𝑆 ⊆ 𝐴 of size |𝑆 | ≤ 𝑐0 ln𝑛 and for every subset 𝑇 ⊆ 𝑆 , there exists
𝑧 ∈ 𝐶 which defines 𝑇 in 𝑆 .

Proof. Let 𝑝0 = min {𝑝, 1 − 𝑝} and choose 𝑐0 be a positive con-

stant such that 𝛾 := −𝑐0 ln𝑝0 < 1.

Fix 𝑆 ⊆ 𝐴 of size |𝑆 | ≤ 𝑐0 ln𝑛 and 𝑇 ⊆ 𝑆 . For a given 𝑧 ∈ 𝐶 , it
defines 𝑇 in 𝑆 with probability

𝑝 |𝑇 | (1 − 𝑝) |𝑆 |− |𝑇 | ≥ 𝑝
|𝑆 |
0

≥ 𝑝
𝑐0 ln𝑛
0

= 𝑛−𝛾 .

Crucially, the subsets of 𝑆 defined by different vertices 𝑧 ∈ 𝐶 are

independently distributed. Thus the probability that there exists no

𝑧 ∈ 𝐶 which defines 𝑇 in 𝑆 is(
1 − 𝑝 |𝑇 | (1 − 𝑝) |𝑆 |− |𝑇 |

) |𝐶 |
≤

(
1 − 𝑛−𝛾

) |𝐶 |
= exp

(
−Θ(𝑛1−𝛾 )

)
.

Taking a union bound over 𝑛Θ(ln𝑛)
possible choices of 𝑆 and𝑇 , the

probability that exist 𝑇 and 𝑆 such that no 𝑧 ∈ 𝐶 defines 𝑇 in 𝑆 is

𝑛Θ(ln𝑛) · exp
(
−𝑛1−𝛾

)
= exp

(
Θ(ln2 𝑛) − 𝑛1−𝛾

)
= exp

(
−𝑛Ω (1)

)
.

That finishes the proof. □

2.3 Non-conditioned results
Finally, we can apply the law of total probability over the events

𝑄𝐴,𝐵,𝐶,𝐷 and lose the conditioning by the values of A,B,C,D. The
following theorem summarizes the probabilistic ingredients re-

quired for the proof of Theorem 1.1.

Theorem 2.9. There exists a positive constant 𝑐0 such that, with
exponentially high probability, for every set 𝑆 ⊆ A of size |𝑆 | ≤ 𝑐0 ln𝑛
and for every subset 𝑇 ⊆ 𝑆 there exists 𝑧 ∈ C which defines 𝑇 in 𝑆 .
Moreover, with exponentially high probability there exists 𝑥 ∈ A such
that |S[𝑥] | = (1 + 𝑜 (1)) 𝑐0

2
ln𝑛.

From now on, 𝑐0 always refers to the constant promised by

Theorem 2.9.

The event described in Theorem 2.9 depends on our initial choice

of two vertices𝑢1, 𝑢2. Let us denote it𝑄 (𝑢1, 𝑢2). The theorem states

that P (𝑄 (𝑢1, 𝑢2)) = 1 − exp

(
−𝑛Ω (1)

)
. From symmetry considera-

tions, this probability does not depend on 𝑢1, 𝑢2.

3 THE LOGICAL PART
We start by recalling the results of Kauffman and Shelah [15] about

the expressive power of monadic second order logic in𝐺 (𝑛, 𝑝) with
a constant 𝑝 ∈ (0, 1). These results are summarized by two main

theorems. Theorem 1 states that there existMSO-formulas 𝜙+, 𝜙×
which (with high probability) express addition and multiplication

operations on the vertices. Theorem 2 demonstrates the expressive

power of these formulas by constructing MSO-sentences with
complicated sets of subsequential limits.

Another useful fact is mentioned in [15] as a closing remark. It

states that unary relations on the vertex set 𝑉 = {1, 2, . . . , 𝑛} can
be used to encode binary relations on the subset

{
1, 2, . . . ,

⌊√
𝑛
⌋}
,

using the mapping (𝑖, 𝑗) ↦→ 𝑖 + 𝑗
⌊√
𝑛
⌋
. To state this result more

formally, let BSO denote the class of second order sentences (in

the language of graphs), with quantification only over unary and

binary relations (here BSO stands for binary second order).

Theorem 3.1 (Kauffman-Shelah). Let G ∼ 𝐺 (𝑛, 𝑝) for a con-
stant 0 < 𝑝 < 1 and let 𝑆 =

{
1, 2, . . . ,

⌊√
𝑛
⌋}
. Then for every

𝜓 ′ ∈ BSO there exists𝜓 ∈ MSO such that, with high probability,
G |= 𝜓 ⇐⇒ G[𝑆] |= 𝜓 ′.

For the proof of Theorem 1.1, we need a sentence which alter-

nates very slowly between near-0 probabilities and near-1 probabil-

ities. More specifically, we aim for a sentence which refers to size 𝑛

of the graph, and alternates depending on the modular residue of

log
∗ 𝑛. Here log∗ is the iterated logarithm function; its significance

comes from its insensitivity to a replacement of 𝑛 with Θ(ln𝑛),
which will be necessary later when we restrict to a logarithmic

subset. This approach is described in a subsequent paper by Shelah

and Spencer [20], and also in Spencer’s book [19] (see Subsection

8.3.3), from which we borrow some of the notation.

In BSO, by using the MSO-formulas 𝜙+, 𝜙× which (with high

probability) express addition and multiplication in G, it is not

hard to construct a formula LogStar(𝑥,𝑦) expressing the equal-

ity 𝑦 = log
∗ 𝑥 , and a formula Mod(𝑥) expressing the property

𝑥 ≡ 0, 1, . . . , 49 mod 100 (see [19] for more details).
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We now define two BSO-sentences:

(1) Arith
′
, which states that there exist a binary relation LogStar

and a unary relationMod as above.

(2) BigGap
′
, which also states the existence of LogStar andMod,

and additionally states that

∃𝑥,𝑦 [Max(𝑥) ∧ LogStar(𝑥,𝑦) ∧Mod(𝑦)]
where Max(𝑥) is a formula stating that 𝑥 is the maximal

vertex.

Given that 𝜙+, 𝜙× indeed express addition and multiplication in G
(which happens with high probability), we have:

(1) G |= Arith
′
(every finite graph satisfies Arith

′
).

(2) If log
∗ (𝑛) ≡ 0, 1, . . . 49 mod 100 then G |= BigGap

′
.

(3) If log
∗ (𝑛) ≡ 50, 51, . . . 99 mod 100 then G |= ¬BigGap′.

Now we use Theorem 3.1 to convert the BSO-sentences Arith′
and BigGap

′
intoMSO-sentences Arith and BigGap. Letting 𝑆 ={

1, 2, . . . ,
⌊√
𝑛
⌋}

inG, we haveG[𝑆] ∼ 𝐺
( ⌊√

𝑛
⌋
, 𝑝

)
. Therefore, with

high probability,

(1) G |= Arith.

(2) If log
∗ ⌊√

𝑛
⌋
≡ 0, 1, . . . 49 mod 100 then G |= BigGap.

(3) If log
∗ ⌊√

𝑛
⌋
≡ 50, 51, . . . 99 mod 100 then G |= ¬BigGap.

Also note that log
∗ 𝑛 − 1 ≤ log

∗ ⌊√
𝑛
⌋
≤ log

∗ 𝑛.
The next step involves another conversion, this time fromMSO-

sentences on a subset of logarithmic size to FO=-sentences on the

entire graph. As in Section 2, let us arbitrarily fix two vertices𝑢1, 𝑢2,

and use them to define (random) vertex sets A,B,C,D.

Proposition 3.2. Let 𝜓 ∈ MSO. Then there exists a formula
𝜓∗ (𝑢1, 𝑢2, 𝑥) ∈ F O= (𝑢1, 𝑢2, 𝑥) such that, given the event 𝑄 (𝑢1, 𝑢2),
for every 𝑥 ∈ A with |S[𝑥] | ≤ 𝑐0 ln𝑛 we have

G |= 𝜓∗ (𝑢1, 𝑢2, 𝑥) ⇐⇒ G[S[𝑥]] |= 𝜓 .

Remark 3.3. When writing G |= 𝜓∗ (𝑢1, 𝑢2, 𝑥), we implicitly as-

sume that the variable symbols 𝑢1, 𝑢2, 𝑥 are interpreted as the cor-

responding vertices 𝑢1, 𝑢2, 𝑥 ∈ 𝑉 .

Proof. Given𝜓 , define𝜓∗ (𝑢1, 𝑢2, 𝑥) as follows:
• Restrict quantification to S[𝑥]: replace every ∀𝑣 (𝜃 ) with
∀𝑣 (𝑣 ∈ S[𝑥] → 𝜃 ) and every ∃𝑣 (𝜃 ) with ∃𝑣 (𝑣 ∈ S[𝑥] ∧ 𝜃 ).
Recall that the statement 𝑣 ∈ S[𝑥] is expressible as a formula

in FO= (𝑢1, 𝑢2, 𝑥, 𝑣).
• Convert unary relations: for every unary relation 𝑅 intro-

duced by𝜓 , replace ∃𝑅 (𝜃 ) with ∃𝑧𝑅 (𝑧𝑅 ∈ C ∧ 𝜃 ) where 𝑧𝑅
is a new variable symbol, and also replace every 𝑅(𝑣) with
𝑣 ∼ 𝑧𝑅 . Similarly handle ∀𝑅 (𝜃 ). Recall that the statement

𝑧 ∈ C is expressible as a formula in FO(𝑢1, 𝑢2, 𝑧).
Given the event𝑄 (𝑢1, 𝑢2), for every 𝑥 ∈ Awith |S[𝑥] | ≤ 𝑐0 ln𝑛, we
know that every subset of S[𝑥] is defined by some 𝑧 ∈ C. Therefore

G |= 𝜓∗ (𝑢1, 𝑢2, 𝑥) ⇐⇒ G[S[𝑥]] |= 𝜓
as we wanted. □

We shall use Proposition 3.2 with 𝜓 = Arith and 𝜓 = BigGap;

this will give us access to arithmetization over logarithmic sets

S[𝑥].
Another important ingredient is the ability to compare logarith-

mic sets.

Definition 3.4. Let 𝑆, 𝑆 ′ ⊆ A. We say that 𝑆 is pseudo-smaller
than 𝑆 ′ if there exists 𝑧 ∈ C which defines a subset 𝑇 ′ ⊆ 𝑆 ′ such
that |𝑇 ′ | = |𝑆 |.

Remark 3.5. Note that is 𝑆 is pseudo-smaller than 𝑆 ′ then |𝑆 | ≤
|𝑆 ′ |. In the other direction, given the event𝑄 (𝑢1, 𝑢2), if |𝑆 | ≤ |𝑆 ′ | ≤
𝑐0 ln𝑛 then 𝑆 is pseudo-smaller than 𝑆 ′. Also note that given two

vertices 𝑥, 𝑥 ′ ∈ A, the statement “S[𝑥] is pseudo-smaller than S[𝑥 ′]”
is expressible as a formula in FO= (𝑢1, 𝑢2, 𝑥, 𝑥 ′).

We are now ready to complete the proof of Theorem 1.1. In the

proof we employ the following notation. For a vertex set 𝑈 ⊆ 𝑉

let E(𝑈 ) be the set of edges of G with both endpoint from 𝑈 . For

two disjoint vertex sets𝑈1,𝑈2 ⊆ 𝐸 let E(𝑈1,𝑈2) be the set of edges
of G with one endpoint from 𝑈1 and the other from 𝑈2. Given

two vertices 𝑢1, 𝑢2, note that the event 𝑄 (𝑢1, 𝑢2) is determined

by the values 𝐴, 𝐵,𝐶 of A,B,C and the values of the edge sets

E(𝐴, 𝐵), E(𝐴,𝐶).

Proof of Theorem 1.1. We define Alt as a sentence in FO=

stating the existence of two vertices 𝑢1, 𝑢2 and a vertex 𝑥 ∈ A such

that:

(1) G |= Arith
∗ (𝑢1, 𝑢2, 𝑥).

(2) If 𝑥 ′ ∈ A is another vertex such that G |= Arith
∗ (𝑢1, 𝑢2, 𝑥 ′)

then S[𝑥] is not pseudo-smaller than S[𝑥 ′].
(3) G |= BigGap

∗ (𝑢1, 𝑢2, 𝑥).
As we have seen, all these statements are indeed expressible in

FO=. We now show that lim𝑛→∞ P (G |= Alt) does not exist.
First, restrict to a subsequence of 𝑛 with log

∗ 𝑛 ≡ 25 mod 100.

We show that P (G |= Alt) → 1 on this subsequence. Fix 𝑢1, 𝑢2
arbitrarily (e.g. 𝑢1 = 1 and 𝑢2 = 2). We know that P (𝑄 (𝑢1, 𝑢2)) =
1 − 𝑜 (1), so it is sufficient to prove P

(
G |= Alt

�� 𝑄 (𝑢1, 𝑢2)
)
→ 1 on

the subsequence.

Condition by the values 𝐴, 𝐵,𝐶 of A,B,C and by the values of

the edge sets E(𝐴, 𝐵), E(𝐴,𝐶) such that 𝑄 (𝑢1, 𝑢2) holds. The event
𝑄 (𝑢1, 𝑢2) guarantees a vertex 𝑥 ′ ∈ 𝐴 such that |S[𝑥 ′] | = (1 +
𝑜 (1)) 𝑐0

2
ln𝑛. The conditioning determines the set 𝑆 = S[𝑥 ′]. The im-

portant observation is that the induced subgraphG[𝑆] depends only
on E(𝐴), and therefore, given the conditioning, its distribution is

still binomial, with vertex set of size (1+𝑜 (1)) 𝑐0
2
ln𝑛 and parameter

𝑝 . We deduce that, given the conditioning, G [S[𝑥 ′]] |= Arith with

high probability. Applying Proposition 3.2 and the law of total prob-

ability over all possible values of A,B,C, E(𝐴, 𝐵), E(𝐴,𝐶), we con-
clude that given𝑄 (𝑢1, 𝑢2), with high probability there exists 𝑥 ′ ∈ A
such that G |= Arith

∗ (𝑢1, 𝑢2, 𝑥 ′) and |S[𝑥 ′] | = (1 + 𝑜 (1)) 𝑐0
2
ln𝑛.

Now pick 𝑥 ∈ A such that G |= Arith
∗ (𝑢1, 𝑢2, 𝑥) and |S[𝑥] | is

maximal. Let𝑚 = |S[𝑥] |. By definition, 𝑥 satisfies parts 1 and 2 of

Alt. From maximality,𝑚 ≥ |S[𝑥 ′] | = Ω(ln𝑛) and so 23 ≤ log
∗𝑚 ≤

25. Therefore G [S[𝑥]] |= BigGap. From Proposition 3.2 we get

G |= BigGap
∗ (𝑢1, 𝑢2, 𝑥) and so 𝑥 also satisfies part 3 of Alt.

Second, restrict to 𝑛 with log
∗ 𝑛 ≡ 75 mod 100. We show that

P (G |= Alt) → 0 on this subsequence. Let 𝑄 =
⋂
𝑢1,𝑢2 𝑄 (𝑢1, 𝑢2).

Theorem 2.9 implies P(𝑄 (𝑢1, 𝑢2)) = 1 − exp

(
−𝑛Ω (1)

)
for every

𝑢1, 𝑢2. A union bound over Θ(𝑛2) possible pairs 𝑢1, 𝑢2 then shows

that P(𝑄) = 1 − 𝑜 (1). We prove that G |= ¬Alt given the event 𝑄 ,

and thus complete the proof.

Assume that there exist 𝑢1, 𝑢2, 𝑥 such that parts 1 and 2 of Alt

hold. From part 1 and Proposition 3.2 we have G [S[𝑥]] |= Arith.
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Frompart 2 and the assunption that𝑄 (𝑢1, 𝑢2) holdswe again deduce
that𝑚 := |S[𝑥] | = Ω(ln𝑛). Therefore 73 ≤ log

∗𝑚 ≤ 75. Combining

both facts we deduce G [S[𝑥]] |= ¬BigGap, which implies G |=
¬BigGap∗ (𝑢1, 𝑢2, 𝑥) from Proposition 3.2. Therefore 𝑥 does not

satisfy part 3 of Alt. □
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