NOWHERE TRIVIAL AUTOMORPHISMS OF $P(\lambda) /[\lambda]^{<\lambda}$, FOR λ INACCESSIBLE.

JAKOB KELLNER AND SAHARON SHELAH

1. Introduction

We investigate the rigidity of the Boolean algebra $P(\lambda) /[\lambda]^{<\lambda}$, for λ inaccessible. For $\lambda=\omega$ there is extensive literature on this topic (see, e.g., the survey [FGVV24]); some general results on $P(\lambda) /[\lambda]^{<\kappa}$ can be found in [LM16]. In [KLS] it was shown, for λ inaccessible and $2^{\lambda}=\lambda^{++}$, that conistently every automorphism is densely trivial.

In this paper we show:
(Thm. 5.3)
If λ is (strongly) inaccessible and $2^{\lambda}=\lambda^{+}$, then there is a nowhere trivial automorphism of the Boolean algebra $\mathcal{P}(\lambda) /[\lambda]^{<\lambda}$.

Note that the weaker variant "there is a nontrivial automorphism" follows from [SS15, Lem. 3.2] (the proof there was faulty, and fixed in [SS]); and for λ measurable, a proof (again only for "nontrivial") was given in [KLS].

We also show:
It is consistent that λ is inaccessible, 2^{λ} an arbitrary regular
(Thm.6.1) cardinal, and that there is a nowhere trivial automorphism of $\mathcal{P}(\lambda) /[\lambda]^{<\lambda}$.

2. Notation

We will always assume that λ is inaccessible.
For $A \subseteq \lambda,[A]^{<\lambda}$ denotes the subsets of A of size less than λ; and $[A]^{\lambda}$ those of size λ. With $[A]$ we denote the equivalence class of A modulo $[\lambda]^{<\lambda}$. We write $A={ }^{*} B$ for $[A]=[B]$, and $A \subseteq^{*} B$ for $|A \backslash B|<\lambda$.

However, we also use $f[A]:=\{f(a): a \in A\}$. So for example $[f[A]]$ is the equivalence class of the f-image of $A . f \in \operatorname{Sym}(X)$ means that $f: X \rightarrow X$ is bijective.

We consider $\mathcal{P}(\lambda) /[\lambda]^{<\lambda}$ as Boolean algebra. A (Boolean algebra) automorphism π of $\mathcal{P}(\lambda) /[\lambda]^{<\lambda}$ is called trivial on A (for $A \in[\lambda]^{\lambda}$) if there is an $f \in \operatorname{Sym}(\lambda)$ such that $\pi([B])=[f[B]]$ for all $B \subseteq A . \pi$ is called nowhere trivial, if there is no such pair (f, A).

For $\delta \leq \lambda, C \subseteq \delta$ closed and nonempty, and $\alpha \in C$, we set

$$
I^{*}(C \subseteq \delta, \alpha):=\{\beta: \alpha \leq \beta<\min ((C \cup\{\delta\}) \backslash(\alpha+1))\} .
$$

So the $I^{*}(C \subseteq \delta, \alpha)$, for $\alpha \in C$, form an increasing interval partition of $\delta \backslash \min (C)$.

The first author was funded by FWF Austrian science funds projects P33420 and P33895. The second author was partially support by the Israel Science Foundation (ISF) grant no: 2320/23. This is publication Sh:1251 in the second author's list.

3. Approximations

In this section, we define the set AP of "approximations". An approximation a will induce a "partial monomorphism" $\tilde{\boldsymbol{\pi}}^{\mathbf{a}}$ defined on some $\tilde{\mathbf{B}}^{\mathbf{a}}$ which is trivial, i.e., generated by some $\boldsymbol{\pi}^{\mathbf{a}} \in \operatorname{Sym}(\lambda)$. We will use such approximations to build a nowhere trivial automorphism $\tilde{\boldsymbol{\phi}}$ as limit (i.e., $\tilde{\boldsymbol{\phi}} \upharpoonright \tilde{\mathbf{B}}^{\mathbf{a}}=\tilde{\boldsymbol{\pi}}^{\mathbf{a}}$), cf. Fact 3.6.
Definition 3.1. AP is the set of objects a consisting of $\mathbf{C}^{\mathbf{a}}, \boldsymbol{\pi}^{\mathbf{a}}$ and $\mathbf{B}^{\mathbf{a}}$, such that:

- $\pi^{\mathbf{a}} \in \operatorname{Sym}(\lambda)$.
- $\mathbf{C}^{\mathbf{a}} \subseteq \lambda$ club such that $\boldsymbol{\pi}^{\mathbf{a}} \upharpoonright \varepsilon \in \operatorname{Sym}(\varepsilon)$ for all $\varepsilon \in \mathbf{C}^{\mathbf{a}}$.
- $\mathbf{B}^{\mathbf{a}}$ is a subset of $\mathcal{P}(\lambda)$.
$\boldsymbol{\pi}^{\mathbf{a}}$ induces a (trivial) automorphism of $P(\lambda) /[\lambda]^{<\lambda}$, and $\tilde{\boldsymbol{\pi}}^{\mathbf{a}}$ is the restriction of this automorphism to $\mathbf{B}^{\mathbf{a}}$:

Definition 3.2. - $\tilde{\mathbf{B}}^{\mathbf{a}}:=\mathbf{B}^{\mathbf{a}} /[\lambda]^{<\lambda}=\left\{[A]: A \in \mathbf{B}^{\mathbf{a}}\right\}$.

- $\tilde{\boldsymbol{\pi}}^{\mathbf{a}}: \tilde{\mathbf{B}}^{\mathbf{a}} \rightarrow P(\lambda) /[\lambda]^{<\lambda}$ is defined by $[A] \mapsto\left[\boldsymbol{\pi}^{\mathbf{a}}[A]\right]$.
- For $\mathbf{a} \in \mathrm{AP}$ and $\varepsilon \in \mathbf{C}^{\mathbf{a}}$ we set $I_{\varepsilon}^{\mathbf{a}}:=I^{*}\left(\mathbf{C}^{\mathbf{a}} \subseteq \lambda, \varepsilon\right)$.

So the $I_{\varepsilon}^{\mathbf{a}}$ form an increasing interval partition of $\lambda \backslash \min \left(\mathbf{C}^{\mathbf{a}}\right)$; and $\boldsymbol{\pi}^{\mathbf{a}} \upharpoonright I_{\varepsilon}^{\mathbf{a}} \in$ $\operatorname{Sym}\left(I_{\varepsilon}^{\mathbf{a}}\right)$.

Definition 3.3. $\mathbf{b} \geq_{\mathrm{AP}} \mathbf{a}$, if $\mathbf{a}, \mathbf{b} \in \mathrm{AP}$ and
(1) $\mathbf{C}^{\mathbf{b}} \subseteq^{*} \mathbf{C}^{\mathbf{a}}$.
(2) $\boldsymbol{\pi}^{\mathbf{b}} \upharpoonright I_{\varepsilon}^{\mathbf{a}}=\boldsymbol{\pi}^{\mathbf{a}} \upharpoonright I_{\varepsilon}^{\mathbf{a}}$ for all but boundedly many $\varepsilon \in \mathbf{C}^{\mathbf{b}}$.
(3) $\mathbf{B}^{\mathbf{b}} \supseteq \mathbf{B}^{\mathbf{a}}$, and $\tilde{\boldsymbol{\pi}}^{\mathbf{b}}$ extends $\tilde{\boldsymbol{\pi}}^{\mathbf{a}}$.
I.e., if $A \in \mathbf{B}^{\mathbf{a}}$, then $\boldsymbol{\pi}^{\mathbf{a}}[A]=^{*} \boldsymbol{\pi}^{\mathbf{b}}[A]$.
\leq_{AP} is a nonempty quasi order.
Lemma 3.4. If $\left(\mathbf{a}_{i}\right)_{i<\delta}$ is an \leq_{AP} increasing chain such that $\bigcup_{i<\delta} \tilde{\mathbf{B}}^{\mathbf{a}_{i}}=P(\lambda) /[\lambda]^{<\lambda}$, then $\tilde{\boldsymbol{\phi}}:=\bigcup_{i<\delta} \tilde{\boldsymbol{\pi}}^{\mathbf{a}_{i}}$ is an Boolean algebra monomorphism of $P(\lambda) /[\lambda]^{<\lambda}$.

If additionally $\bigcup_{i<\delta} \tilde{\boldsymbol{\pi}}^{\mathbf{a}_{i}}\left[\tilde{\mathbf{B}}^{\mathbf{a}_{i}}\right]=P(\lambda) /[\lambda]^{<\lambda}$, then $\tilde{\boldsymbol{\phi}}$ is an automorphism.
Proof. We use \vee and c for the Boolean-algebra-operations, i.e., $[A \cup B]=[A] \vee[B]$, and $[A]^{c}=[\lambda \backslash A]$. It is enough to show that $\tilde{\phi}$ is injective, honors \vee and ${ }^{c}$, and maps $[\emptyset]$ to itself.

For X_{1}, X_{2} in $P(\lambda) /[\lambda]^{<\lambda}$ there is an $i<\delta$ and some $A_{1}, A_{2}, A_{\text {union }}$ in $\mathbf{B}^{\mathbf{a}_{i}}$, such that $\left[A_{j}\right]=X_{j}$ for $j=1,2$ and $\left[A_{\text {union }}\right]=\left[A_{1} \cup A_{2}\right]=X_{1} \vee X_{2}$. Then

$$
\boldsymbol{\pi}^{\mathbf{a}_{i}}\left[A_{\text {union }}\right]=^{*} \boldsymbol{\pi}^{\mathbf{a}_{i}}\left[A_{1} \cup A_{2}\right]=\boldsymbol{\pi}^{\mathbf{a}_{i}}\left[A_{1}\right] \cup \boldsymbol{\pi}^{\mathbf{a}_{i}}\left[A_{2}\right]
$$

and

$$
\begin{aligned}
& \tilde{\phi}\left(X_{1} \vee X_{2}\right)=\tilde{\boldsymbol{\pi}}^{\mathbf{a}_{i}}\left(\left[A_{\text {union }}\right]\right)=\left[\boldsymbol{\pi}^{\mathbf{a}_{i}}\left[A_{\text {union }}\right]\right]= \\
& \quad=\tilde{\boldsymbol{\pi}}^{\mathbf{a}_{i}}\left(\left[A_{1}\right]\right) \vee \tilde{\boldsymbol{\pi}}^{\mathbf{a}_{i}}\left(\left[A_{2}\right]\right)=\tilde{\boldsymbol{\phi}}\left(X_{1}\right) \vee \tilde{\phi}\left(X_{2}\right) .
\end{aligned}
$$

If $X_{1} \neq X_{2}$, i.e., $A_{1} \not \neq^{*} A_{2}$, then $\boldsymbol{\pi}^{\mathbf{a}_{i}}\left[A_{1}\right] \neq^{*} \boldsymbol{\pi}^{\mathbf{a}_{i}}\left[A_{2}\right]$, i.e., $\tilde{\boldsymbol{\phi}}\left(X_{1}\right) \neq \tilde{\phi}\left(X_{2}\right)$.
Similarly we can show $\tilde{\phi}\left(\left[\lambda \backslash A_{1}\right]\right)=\tilde{\phi}\left(\left[A_{1}\right]\right)^{c}$ and $\tilde{\phi}([\emptyset])=[\emptyset]$.
Definition 3.5. For a pair (f, A) with $A \in[\lambda]^{\lambda}$ and $f \in \operatorname{Sym}(\lambda)$, we say $\mathbf{a} \in \mathrm{AP}$ "spoils (f, A) ", if there is an $A^{\prime} \in[A]^{\lambda} \cap \mathbf{B}^{\mathbf{a}}$ such that $\left|\boldsymbol{\pi}^{\mathbf{a}}\left[A^{\prime}\right] \cap f\left[A^{\prime}\right]\right|<\lambda$.

If $\tilde{\boldsymbol{\phi}}$ is an automorphism extending such a $\tilde{\boldsymbol{\pi}}^{\mathbf{a}}$, then f cannot witness that $\tilde{\boldsymbol{\phi}}$ is trivial on A. Therefore:

Fact 3.6. If $\left(\mathbf{a}_{i}\right)_{i<\delta}$ is an $\leq_{\text {AP }}$ increasing chain such that

- $\bigcup_{i<\delta} \tilde{\mathbf{B}}^{\mathbf{a}_{i}}=\bigcup_{i<\delta} \tilde{\boldsymbol{\pi}}^{\mathbf{a}_{i}}\left[\tilde{\mathbf{B}}^{\mathbf{a}_{i}}\right]=P(\lambda) /[\lambda]^{<\lambda}$, and
- for every (f, A) there is an $i<\delta$ such that \mathbf{a}_{i} spoils (f, A), then $\tilde{\boldsymbol{\phi}}:=\bigcup_{i<\delta} \tilde{\boldsymbol{\pi}}^{\mathbf{a}_{i}}$ is a nowhere trivial Boolean algebra automorphism of $P(\lambda) /[\lambda]^{<\lambda}$.

We will use this fact both in the case $2^{\lambda}=\lambda^{+}$, as well as in the forcing construction to get a nowhere trivial automorphism.

We will often modify an $\mathbf{a} \in \mathrm{AP}$ by replacing $\mathbf{B}^{\mathbf{a}}$ with another $B \subseteq P(\lambda)$. Let the result be \mathbf{b}. We call \mathbf{b} "a with \mathbf{B} replaced by B ", or "a with X added to \mathbf{B} " in case $B=\mathbf{B}^{\mathbf{a}} \cup\{X\}$. Obviously $\mathbf{b} \in \mathrm{AP}$, and if $B \supseteq \mathbf{B}^{\mathbf{a}}$ then $\mathbf{b} \geq_{\mathrm{AP}} \mathbf{a}$.

Similarly we can get a stronger approximation by thinning out \mathbf{C}. To summarize:
Fact 3.7. If $\mathbf{a} \in \mathrm{AP}, D \subseteq \mathbf{C}^{\mathbf{a}}$ club, and $B \subseteq P(\lambda)$ with $B \supseteq \mathbf{B}^{\mathbf{a}}$. Then $\mathbf{b} \geq_{\mathrm{AP}} \mathbf{a}$, for the \mathbf{b} defined by $\boldsymbol{\pi}^{\mathbf{b}}:=\boldsymbol{\pi}^{\mathbf{a}}, \mathbf{C}^{\mathbf{b}}:=D$ and $\mathbf{B}^{\mathbf{b}}:=B$.

In the definition of $\leq_{\text {AP }}$ we require that some things hold "apart from a bounded set", or equivalently, "above some α ". We say that α is good for an increasing sequence of \mathbf{a}_{i}, if the requirements for each pair are met above α. We will generally only be able to find such an α for "short sequences":

Definition 3.8. (1) $A P_{\lambda}$ is the set of $\mathbf{a} \in A P$ such that $\left|\mathbf{B}^{\mathbf{a}}\right| \leq \lambda$. Analogously for $\mathrm{AP}_{<\lambda}$.
(2) $\left(\mathbf{a}_{i}\right)_{i \in J}$ is a "short sequence", if $J<\lambda$ (or more generally, J is a set of ordinals with $|J|<\lambda$), each $\mathbf{a}_{i} \in \mathrm{AP}_{<\lambda}$, and the sequence is $\leq_{\text {AP-increasing, }}$ i.e., $j>i$ in J implies $\mathbf{a}_{j} \geq{ }_{\text {AP }} \mathbf{a}_{i}$.
(3) Let $\overline{\mathbf{a}}:=\left(\mathbf{a}_{i}\right)_{i \in J}$ be short. We say that α is good for $\overline{\mathbf{a}}$, if for all $i \leq k$ in J :
(a) $\alpha \in \mathbf{C}^{\mathbf{a}_{i}}$.
(b) $\mathbf{C}^{\mathbf{a}_{k}} \subseteq \mathbf{C}^{\mathbf{a}_{i}}$ above α. (I.e., $\beta \geq \alpha$ and $\beta \in \mathbf{C}^{\mathbf{a}_{k}}$ implies $\beta \in \mathbf{C}^{\mathbf{a}_{i}}$.)
(c) $\boldsymbol{\pi}^{\mathbf{a}_{k}} \upharpoonright I_{\varepsilon}^{\mathbf{a}_{i}}=\boldsymbol{\pi}^{\mathbf{a}_{i}} \upharpoonright I_{\varepsilon}^{\mathbf{a}_{i}}$ for all $\varepsilon \geq \alpha$ in $\mathbf{C}^{\mathbf{a}_{k}}$.
(d) $\boldsymbol{\pi}^{\mathbf{a}_{i}}[A] \backslash \alpha=\boldsymbol{\pi}^{\mathbf{a}_{k}}[A] \backslash \alpha$, for all $A \in \mathbf{B}^{\mathbf{a}_{i}}$.
(4) For \mathbf{a}, \mathbf{b} in $\mathrm{AP}_{<\lambda}$, we say $\mathbf{b}>_{\zeta} \mathbf{a}$, if ζ is good for the sequence $\langle\mathbf{a}, \mathbf{b}\rangle$.

So in particular if \mathbf{b} is the result of enlarging \mathbf{B} in \mathbf{a}, then $\mathbf{b}>_{\zeta} \mathbf{a}$ for all $\zeta \in \mathbf{C}^{\mathbf{a}}$.
Fact 3.9. (1) If $\mathbf{a} \in \mathrm{AP}_{<\lambda}$, then $\mathbf{b} \geq_{\mathrm{AP}} \mathbf{a}$ iff $(\exists \zeta \in \lambda) \mathbf{b}>_{\zeta} \mathbf{a}$.
(2) If $\overline{\mathbf{a}}=\left(\mathbf{a}_{i}\right)_{i \in J}$ is short, then $\{\alpha \in \lambda: \alpha$ good for $\overline{\mathbf{a}}\}$ is club, more concretely it is $\bigcap_{i<\delta} \mathbf{C}^{\mathbf{a}_{i}} \backslash \alpha^{*}$ for some $\alpha^{*}<\lambda$.
Lemma 3.10. If $\overline{\mathbf{a}}$ is short, then is has an \leq_{AP}-upper-bound $\mathbf{b} \in \mathrm{AP}_{<\lambda}$.
Proof. Set $D:=\bigcap_{i \in J} C^{\mathbf{a}_{i}}$, and ζ_{0} be the smallest $\overline{\mathbf{a}}$-good ordinal. So in particular $\zeta_{0} \in D$; and any $\zeta \geq \zeta_{0}$ is in D iff it is $\overline{\mathbf{a}}$-good.

Fix for now some $\zeta \in D \backslash \zeta_{0}$. Let ζ^{+}be the D-successor of ζ.
For $i \in J$, set $\gamma(\zeta, i)$ to be the ζ-successor of $C^{\mathbf{a}_{i}}$. Then the sequence $\gamma(\zeta, i)$ is weakly increasing with $i \in J$ and has limit ζ^{+}. If $\alpha<\gamma(\zeta, i)$ (we also say " α is stable at $i "$), then $\boldsymbol{\pi}^{\mathbf{a}_{i}}(\alpha)=\boldsymbol{\pi}^{\mathbf{a}_{j}}(\alpha)$ for all $j>i$ in J.

We define $\pi^{\lim }(\alpha)$ for all $\alpha \geq \zeta_{0}$ as $\boldsymbol{\pi}^{\mathbf{a}_{i}}(\alpha)$ for some i stable for α.
To summarize: Whenever $I:=\zeta^{+} \backslash \zeta$ for some $\zeta \in D \backslash \zeta_{0}$ with ζ^{+}the D-successor, we get:
(1) $(\forall \alpha \in I)(\exists i \in J)(\forall j>i) \pi^{\lim }(\alpha)=\boldsymbol{\pi}^{\mathbf{a}_{i}}(\alpha)$.
(2) $\pi^{\lim } \upharpoonright I \in \operatorname{Sym}(I)$.
(3) If $i \in J$ and $A \in \mathbf{B}^{\mathbf{a}_{i}}$, then $\pi^{\lim }\left[A^{\prime}\right]=\boldsymbol{\pi}^{\mathbf{a}_{i}}\left[A^{\prime}\right]$ where $A^{\prime}:=A \cap I$.

For (2), note that $\boldsymbol{\pi}^{\mathbf{a}_{i}} \in \operatorname{Sym}(I)$ for all $i \in J$. If $\alpha_{1} \neq \alpha_{2} \in I$, then there is an i in J stable for both, and $\boldsymbol{\pi}^{\mathbf{a}_{i}}\left(\alpha_{1}\right) \neq \boldsymbol{\pi}^{\mathbf{a}_{i}}\left(\alpha_{2}\right)$. So $\boldsymbol{\pi}^{\text {lim }}$ is injective. And if $\alpha_{1} \in I$ and i in J stable for α_{1}, then there is an $\alpha_{2} \in I_{\zeta}^{\mathbf{a}_{i}}$ with $\boldsymbol{\pi}^{\lim }\left(\alpha_{2}\right)=\boldsymbol{\pi}^{\mathbf{a}_{i}}\left(\alpha_{2}\right)=\alpha_{1}$, so $\pi^{\lim }$ is surjective.

For (3): Set $B:=\boldsymbol{\pi}^{\mathbf{a}_{i}}\left[A^{\prime}\right]$. As I is above the good ζ_{0}, we have: $B=\boldsymbol{\pi}^{\mathbf{a}_{j}}\left[A^{\prime}\right]$ for all $j \in J$ with $j>i$. So for $\alpha \in A^{\prime}$, all $\boldsymbol{\pi}^{\mathbf{a}_{j}}(\alpha)$ are in B, and also stabilize to $\pi^{\lim }(\alpha)$, which therefore has to be in B. Analogously, we get: If $\alpha \in I \backslash A$, then $\pi^{\mathbf{a}_{j}}(\alpha) \neq B$ stabilizes to $\pi^{\lim }(\alpha)$, which therefore is not in B. As $\pi^{\lim }[I]=I$, we get $\pi^{\lim }[I \cap A]=B$.

We can now define \mathbf{b} as:

$$
\mathbf{C}^{\mathbf{b}}:=D \backslash \zeta_{0} ; \quad \boldsymbol{\pi}^{\mathbf{b}}(\alpha)=\left\{\begin{array}{ll}
\alpha & \text { if } \alpha<\zeta_{0} \\
\pi^{\lim }(\alpha) & \text { otherwise } ;
\end{array} \quad \mathbf{B}^{\mathbf{b}}:=\bigcup_{i \in J} \mathbf{B}^{\mathbf{a}_{i}}\right.
$$

4. Initial segments

We will work with initial segments of approximations (without the \mathbf{B} part):
Definition 4.1. - An "initial segment" b consists of a "height" δ^{b}, a closed $C^{b} \subseteq \delta^{b}$ (possibly empty), and a $\pi^{b} \in \operatorname{Sym}\left(\delta^{b}\right)$ such that $\pi^{b} \upharpoonright \zeta \in \operatorname{Sym}(\zeta)$ for all $\zeta \in C^{b}$.

- The set of initial segments is called IS.
- $b>_{\text {IS }} a$, if $\delta^{b}>\delta^{a}, \delta^{a} \in C^{b}, C^{b} \cap \delta^{a}=C^{a}$, and $\pi^{b} \upharpoonright \delta^{a}=\pi^{a}$.
- $b \geq_{\text {IS }} a$ if $b>_{\text {IS }} a$ or $b=a$.
- For $\zeta \in C^{b}$, we set $I_{\zeta}^{b}:=I^{*}\left(C^{b} \subseteq \delta^{b}, \zeta\right)$.

So the I_{ζ}^{b} form an increasing interval partition of $\delta^{b} \backslash \min \left(C^{b}\right)$, and $\pi^{b} \upharpoonright I_{\zeta}^{b} \in$ $\operatorname{Sym}\left(I_{\zeta}^{b}\right)$.
$\leq_{\text {IS }}$ is a partial order.
Some trivialities:
Fact 4.2. Assume that $\bar{b}=\left(b_{i}\right)_{i<\xi}$, with $\xi \leq \lambda$ limit, is an $<_{\text {IS }}$-increasing sequence.
(1) If $\xi<\lambda$, then the following $b_{\xi} \in \operatorname{IS}$ is the $\leq_{\text {IS }}$-supremum of \bar{b}, and we call
it "the limit" of $\bar{b}: \delta^{b_{\xi}}:=\bigcup_{i<\xi} \delta^{b_{i}}, C^{b_{\xi}}:=\bigcup_{i<\xi} C^{b_{i}}$ and $\pi^{b_{\xi}}:=\bigcup_{i<\xi} \pi^{b_{i}}$.
(2) If $\xi=\lambda$, then to each $B \subseteq P(\lambda)$ there is a $\mathbf{b} \in$ AP as follows, which we call "a limit" of $\bar{b}: \mathbf{C}^{\mathbf{b}}:=\bigcup_{i<\lambda} C^{b_{i}} \boldsymbol{\pi}^{\mathbf{b}}:=\bigcup_{i<\lambda} \pi^{b_{i}}$ and $\mathbf{B}^{\mathbf{b}}:=B$.

Let us call an $<_{\text {IS }}$-increasing sequence \bar{b} "continuous" if b_{γ} is the limit of $\left(b_{\alpha}\right)_{\alpha<\gamma}$ for all limits $\gamma<\delta$. We will only use continuous sequences.

Definition 4.3. Let $\mathbf{a} \in \mathrm{AP}_{<\lambda}$ and $b \in \mathrm{IS}$ with $\delta^{b} \in \mathbf{C}^{\mathbf{a}}$. We say $c>_{\mathbf{a}} b$, if the following holds:

- $c>_{\text {IS }} b$.
- $\left(C^{c} \cup\left\{\delta^{c}\right\}\right) \backslash \delta^{b} \subseteq \mathbf{C}^{\mathbf{a}}$.
- For all $\zeta \in C^{c} \backslash \delta^{b}, \pi^{c} \upharpoonright I_{\zeta}^{\mathrm{a}}=\pi^{\mathbf{a}} \upharpoonright I_{\zeta}^{\mathrm{a}}$.
- For all $A \in \mathbf{B}^{\mathbf{a}}, \pi^{c}\left[A^{\prime}\right]=\boldsymbol{\pi}^{\mathbf{a}}\left[A^{\prime}\right]$ where we set $A^{\prime}:=A \cap \delta^{c} \backslash \delta^{b}$.

For a short $\overline{\mathbf{a}}$ (with index set J) we say $c>_{\overline{\mathbf{a}}} b$ if $c>_{\mathbf{a}_{i}} b$ for all $i \in J$.
Lemma 4.4. Let \mathbf{a}, \mathbf{b} in $\mathrm{AP}_{<\lambda}$ and $c, d_{i}(i<\lambda)$ in IS.
(1) $<_{\mathbf{a}}$ is a partial order
 $i<\zeta$, then also the limit d_{ζ} satisfies $d_{\zeta}>_{\mathbf{a}} c$.
(3) If $\mathbf{b}>_{\delta^{c}} \mathbf{a}$, then $d>_{\mathbf{b}} c$ implies $d>_{\mathbf{a}} c$.
(4) Assume $\bar{c}:=\left(c_{i}\right)_{i \in \lambda}$ is a continuous increasing sequence in IS such that for some $i_{0}<\lambda$ we have $c_{i}<_{\mathbf{a}} c_{i+1}$ for all $i>i_{0}$.

Then any limit $\mathbf{c} \in \mathrm{AP}$ of the \bar{c} with $\mathbf{B}^{\mathbf{c}} \supseteq \mathbf{B}^{\mathbf{a}}$ satisfies $\mathbf{c}>_{\mathrm{AP}} \mathbf{a}$.
(5) Let $\overline{\mathbf{a}}$ be short, $b \in \mathrm{IS}, \delta^{b}$ good for $\overline{\mathbf{a}}$ and $E \subseteq \lambda$ club. Then there is a $c>_{\overline{\mathbf{a}}} b$ with $\delta^{c} \in E$ and $C^{c}=C^{b} \cup\left\{\delta^{b}\right\}$

Proof. For (5), use (the proof of) Lemma 3.10: Pick any $\delta^{c} \in D \cap E \backslash\left(\delta^{b}+1\right)$ and set $C^{c}=C^{b} \cup\left\{\delta^{b}\right\}$ and $\pi^{c}=\pi^{\lim } \upharpoonright \delta^{c}$.

The rest is straightforward.
We now turn to spoiling (f, A) :
Definition 4.5. Given $f \in \operatorname{Sym}(\lambda)$ and $A \in[\lambda]^{\lambda}$, we define $c>^{f, A} b$ by: $c>_{\text {IS }} b$, $f \upharpoonright \delta^{c} \in \operatorname{Sym}\left(\delta^{c}\right)$, and there is a $\xi^{*} \in A \cap \delta^{c} \backslash \delta^{b}$ with $f\left(\xi^{*}\right) \neq \pi^{c}\left(\xi^{*}\right)$.

We write $c>_{\overline{\mathbf{a}}}^{f, A} b$ for: $c>_{\overline{\mathbf{a}}} b \& c>^{f, A} b$
Lemma 4.6. Assume $\left(b_{i}\right)_{i \in \lambda}$ is $<_{I} S$-increasing such that unboundedly often $b_{i+1}>^{f, A}$ b_{i}. Then for some $A^{\prime} \in[A]^{\lambda}$, every limit \mathbf{b} of $\left(b_{i}\right)_{i \in \lambda}$ with $A^{\prime} \in \mathbf{B}^{\mathbf{b}}$ spoils (f, A).
Proof. By taking a subsequence, we can assume that for all odd i (i.e., $i=\delta+2 n+1$ with δ limit or 0 and $n \in \omega) b_{i+1}>^{f, A} b_{i}$.

For i odd, set $I_{i}:=\delta^{b_{i+1}} \backslash \delta^{b_{i}}$ and let $\xi_{i} \in I_{i}$ satisfy $f\left(\xi_{i}\right) \neq \pi^{b_{i+1}}\left(\xi_{i}\right)=\boldsymbol{\pi}^{\mathbf{b}}\left(\xi_{i}\right)$.
If i is odd, then $\boldsymbol{\pi}^{\mathbf{b}} \upharpoonright I_{i} \in \operatorname{Sym}\left(I_{i}\right)$ and $f \upharpoonright \delta^{b_{i+1}} \in \operatorname{Sym}\left(\delta^{b_{i+1}}\right)$.
So if $i<j$ are both odd, then $f\left(\zeta_{j}\right)>\delta^{b_{i+1}}>\boldsymbol{\pi}^{\mathbf{b}}\left(\zeta_{i}\right)$; and if $j<k$ are both odd then $f\left(\zeta_{j}\right)<\delta^{b_{j}} \leq \boldsymbol{\pi}^{\mathbf{b}}\left(\zeta_{k}\right)$. This means that $f\left(\zeta_{j}\right)$ is different to all $\boldsymbol{\pi}^{\mathbf{b}}\left(\zeta_{i}\right)$ for i odd.

So we can set $A^{\prime}=\left\{\zeta_{j}: j\right.$ odd $\}$ and get that $f\left[A^{\prime}\right]$ is disjoint to $\boldsymbol{\pi}^{\mathbf{b}}\left[A^{\prime}\right]$. So \mathbf{b} with A^{\prime} added to \mathbf{B} spoils (f, A).

Lemma 4.7. If $\overline{\mathbf{a}}$ is short, $b \in \mathrm{IS}$, δ^{b} good for $\overline{\mathbf{a}}, f \in \operatorname{Sym}(\lambda)$ and $A \in[\lambda]^{\lambda}$, then there is some $d>\overline{\mathbf{a}}, \frac{f, A}{}$.
Proof. Let $\mathbf{B}:=\bigcup_{i \in J} \mathbf{B}^{\mathbf{a}_{i}}$. Let $\zeta_{0}<\lambda$ be the supremum of all $\mathbf{C}^{\mathbf{a}_{i}}$-successors of δ^{b}.
Set $E:=\{\zeta \in \lambda: f \upharpoonright \zeta \in \operatorname{Sym}(\zeta)\}$ (a club-set). Pick $\zeta_{1} \in E$ such that $\left|A \cap\left(\zeta_{1} \backslash \zeta_{0}\right)\right|>\left|2^{\mathbf{B}}\right|$. Pick $c>_{\overline{\mathbf{a}}} b$ with $\delta^{c} \in E \backslash \zeta_{1}$ and such that $C^{c}=C^{b} \cup\left\{\delta^{b}\right\}$.

Set $I:=\delta^{c} \backslash \zeta_{0}$. For α, β in $I \cap A$ set $\alpha \sim \beta$ iff $(\forall A \in \mathbf{B})(\alpha \in A \leftrightarrow \beta \in A)$. As there are at most $\left|2^{\mathbf{B}}\right|$ many equivalence classes, there have to be $\beta_{0} \neq \beta_{1}$ in $I \cap A$ with $\beta_{0} \sim \beta_{1}$.

If $\pi^{c}\left(\beta_{i}\right) \neq f\left(\beta_{i}\right)$ for $i=0$ or $i=1$, set $d:=c$. Otherwise, defines d as follows: $\delta^{d}=\delta^{c}, C^{d}=C^{c}$, and $\pi^{d}(\alpha):= \begin{cases}\pi^{c}\left(\beta_{1}\right) & \text { if } \alpha=\beta_{0}, \\ \pi^{c}\left(\beta_{0}\right) & \text { if } \alpha=\beta_{1}, \\ \pi^{c}(\alpha) & \text { otherwise. }\end{cases}$

Set $I:=\delta^{d} \backslash \delta^{b}$. As $\beta_{0} \sim \beta_{1}$ we have $\pi^{d}[A \cap I]=\pi^{c}[A \cap I]=\pi^{\mathbf{a}_{i}}[A \cap I]$ for all $i \in J$ and $A \in \mathbf{B}^{\mathbf{a}_{i}}\left(\right.$ as $\left.c>_{\overline{\mathbf{a}}} b\right)$.

And as the β_{0}, β_{1} are above ζ_{0}, and $I_{\delta^{b}}^{\mathbf{a}_{i}}$ is below ζ_{0} for all $i \in J$, we have $\pi^{d} \upharpoonright I_{\delta^{b}}^{\mathbf{a}_{i}}=\pi^{c} \upharpoonright I_{\delta^{b}}^{\mathbf{a}_{i}}=\pi^{\mathbf{a}_{i}} \upharpoonright I_{\delta^{b}}^{\mathbf{a}_{i}}$.

So $d>_{\overline{\mathbf{a}}} b$.

5. $2^{\lambda}=\lambda^{+}$FOR λ INACCESSIBLE IMPLIES A NOWHERE TRIVIAL AUTOMORPHISM

Lemma 5.1. Every increasing sequence in AP_{λ} of length $<\lambda^{+}$has an upper bound.
Proof. We can assume without loss of generality that the increasing sequence is $\bar{a}:=\left(\mathbf{a}_{i}\right)_{i \in \xi}$ with $\xi \leq \lambda$.

For $i<\xi$, enumerate ${ }^{1} \mathbf{B}^{\mathbf{a}_{i}}$ as $\left\{x_{i}^{j}: j \leq \lambda\right\}$, and set $B_{i}^{j}:=\left\{x_{i}^{k}: k \leq j\right\}$ for $j<\lambda$. We enumerate in a way so that the B_{i}^{j} are increasing with $i<\xi$. Let \mathbf{a}_{i}^{j} be \mathbf{a}_{i} with \mathbf{B} replaced by B_{i}^{j}, and for $\ell<\lambda$ set $\overline{\mathbf{a}}^{\ell}:=\left(\mathbf{a}_{k}^{\ell}\right)_{k<\min (\ell, \xi)}$. Note that $\overline{\mathbf{a}}^{\ell}$ is short.
$\mathbf{c} \in \mathrm{AP}$ is an upper bound of $\overline{\mathbf{a}}$ iff it is an upper bound of all \mathbf{a}_{k}^{ℓ} for $\ell<\lambda$ and $k<\min (\ell, \xi)$.

We now construct by induction on $\ell<\lambda$ a $<_{\text {IS }}$-increasing continuous sequence $\left(c^{\ell}\right)_{\ell \in \lambda}$, such that $\delta^{c^{\ell}}$ is $\overline{\mathbf{a}}^{\ell}$-good:

- At limits γ we let c^{γ} be the limit of the $\left(c^{k}\right)_{k<\gamma}$, and note that (by induction) its height it is $\overline{\mathbf{a}}^{\gamma}$-good.
- For $j=\ell+1$, let E be the club set of $\overline{\mathbf{a}}^{\ell+1}$-good ordinals, and choose, as in Lemma $4.4(5) c^{\ell+1}>_{\overline{\mathbf{a}}^{\ell}} c^{\ell}$ with $\delta^{c^{\ell+1}} \in E$.
Let \mathbf{c} be the limit of the c^{ℓ} with $\mathbf{B}^{\mathbf{c}}:=\bigcup_{i<\xi} \mathbf{B}^{\mathbf{a}_{i}}$.
We claim that $\mathbf{c} \geq_{\text {AP }} \mathbf{a}_{j}^{\ell}$ for all $\ell<\lambda$ and $j<\min (\ell, \xi)$. Assume that $k>$ $\max (i, j)$.
- By Lemma 4.4(3):
$\delta^{c^{k}}$ (which is $\overline{\mathbf{a}}^{k}$-good and so, by definition, \mathbf{a}_{j}^{k}-good) is \mathbf{a}_{j}^{ℓ}-good, as $\mathbf{a}_{j}^{k}>_{\delta^{c}} \mathbf{a}_{j}^{\ell}$.

Also, $c^{k+1}>_{\overline{\mathbf{a}}^{k}} c^{k}$, so (by definition) $c^{k+1}>_{\mathbf{a}_{j}^{k}} c^{k}$, and so $c^{k+1}>_{\mathbf{a}_{j}^{\ell}} c^{k}$.

- By Lemma 4.4(4) we get $\mathbf{c}>_{\mathrm{AP}} \mathbf{a}_{j}^{\ell}$, as required.

Lemma 5.2. Given $\mathbf{a} \in \mathrm{AP}_{\lambda}, f \in \operatorname{Sym}(\lambda)$ and $A \in[\lambda]^{\lambda}$, there is a $\mathbf{b} \geq_{\mathrm{AP}} \mathbf{a}$ which is in AP_{λ} and spoils (f, A).
Proof. Enumerate $\mathbf{B}^{\mathbf{a}}$ as $\left\{x^{j}: j \in \lambda\right\}$ and let \mathbf{a}^{j} be \mathbf{a} with \mathbf{B} replaced by $\left\{x^{i}: i<\right.$ $j\}$. So $\mathbf{a}^{j} \in \mathrm{AP}_{<\lambda}$. We construct a continuous increasing sequence $b^{i}(i<\lambda)$ in IS such that $\delta^{b^{i}}$ is \mathbf{a}^{i}-good: Given b^{i}, we find $b^{i+1}>_{\mathbf{a}^{i}}^{f, A} b^{i}$ as in Lemma 4.7. Let \mathbf{b} be the limit of the b^{i} with $\mathbf{B}^{\mathbf{b}}=\mathbf{B}^{\mathbf{a}} \cup\left\{A^{\prime}\right\}$ as in Lemma 4.6.

And $\mathbf{b}>_{A} P \mathbf{a}^{j}$ for all $j<\lambda$ and therefore $\mathbf{b}>_{\text {AP }} \mathbf{a}$.
We can now easily show:
Theorem 5.3. If λ is (strongly) inaccessible and $2^{\lambda}=\lambda^{+}$, then there is a nowhere trivial automorphism of the Boolean algebra $\mathcal{P}(\lambda) /[\lambda]^{<\lambda}$.
Proof. We construct, by induction on $i \in \lambda^{+}$, an increasing chain of \mathbf{a}_{i} in AP_{λ}, such that:

- For limit i, we take limits according to Lemma 5.1.
- For odd successors $i=j+1=\delta+2 n+1(\delta$ limit, $n \in \omega)$, pick by bookkeeping some X_{j} and let \mathbf{a}_{j+1} be the same as \mathbf{a}_{j} but with X_{j} and $\left(\boldsymbol{\pi}^{\mathbf{a}_{j}}\right)^{-1}\left[X_{j}\right]$ added to \mathbf{B}.
- For even successors $i=j+1=\delta+2 n+2$, we pick by book-keeping an $f_{j} \in \operatorname{Sym}(\lambda)$ and an $A_{j} \in[\lambda]^{\lambda}$. Then we choose $\mathbf{a}_{j+1} \geq{ }_{\text {AP }} \mathbf{a}_{j}$ spoiling $\left(f_{j}, A_{j}\right)$, using Lemma 5.2.

[^0]Then $\tilde{\boldsymbol{\phi}}:=\bigcup_{i<\lambda} \tilde{\boldsymbol{\pi}}^{\mathbf{a}_{i}}$ is a nowhere trivial automorphism according to Fact 3.6.

6. Forcing a nowhere trivial automorphism with $2^{\lambda}>\lambda^{+}$, λ INACCESSIBLE

Theorem 6.1. Assume λ is inaccessible, $2^{\lambda}=\lambda^{+}$and $\mu>\lambda^{+}$is regular. Then there is a cofinality preserving ($<\lambda$-closed and $\lambda^{+}-c c$) poset which forces: $2^{\lambda}=\mu$, and there is a nowhere trivial automorphism of $\mathcal{P}(\lambda) /[\lambda]^{<\lambda}$.

For the rest of this section we fix a μ as in the lemma.
We will construct a $<\lambda$-support iteration $\left(P_{\alpha}, Q_{\alpha}\right)_{\alpha<\mu}$. We call the final limit P. We denote the P_{α}-extension $V\left[G_{\alpha}\right]$ by V_{α}.

Each Q_{α} and therefore also each P_{α} will be $<\lambda$-closed.
So $x \in \mathrm{AP}, x<_{\text {AP }} y$, as well as IS (as set) are absolute between P_{α}-extensions (and $|\mathrm{IS}|=\lambda$).

Each Q_{α} will add a $\mathbf{a}_{\alpha}^{*} \in \mathrm{AP}$, such that the \mathbf{a}_{α}^{*} are $<_{\mathrm{AP}}$-increasing in α.
By induction we assume we live in the P_{α}-extension V_{α} where we already have the increasing sequence $\left(\mathbf{a}_{i}^{*}\right)_{i<\alpha}$. (We do not claim that this sequence has an upper bound in V_{α}.)

We now define Q_{α}, which we will just call Q to improve readability.
Definition 6.2. $q \in Q$ consists of:
(1) A $b^{q} \in$ IS, also called "trunk of q ".

We also write $\delta^{q}, \pi^{q} C^{q}$ and I_{β}^{q} instead of $\delta^{b^{q}}$ etc.
(2) A set $X^{q} \in[\alpha]^{<\lambda}$, and for $\beta \in X^{q}$, a set $\mathbf{B}_{\beta}^{q} \in\left[\mathbf{B}^{\mathbf{a}_{\beta}^{*}}\right]^{<\lambda}$, such that the \mathbf{B}_{β}^{q} are increasing in β.
(3) For $\beta \in X^{q}$ set \mathbf{a}_{β}^{q} to be \mathbf{a}_{β}^{*} with \mathbf{B} replaced by \mathbf{B}_{β}^{q}. Set $\overline{\mathbf{a}}^{q}:=\left(\mathbf{a}_{\beta}^{q}\right)_{\beta \in X^{q}}$ (which is short).
(4) We require $\delta^{b^{q}}$ to be good for $\overline{\mathbf{a}}^{q}$.
("Short" and "good" are defined in Definition 3.8.) As we use Q as forcing poset, we follow the notation that $r \leq_{Q} q$ means that r is stronger than q (whereas in $<_{\text {AP }}$ and $<_{\text {IS }}$ the stronger object is the larger one).

Definition 6.3. $r \leq_{Q} q$ if:
(1) $b^{r} \geq_{\overline{\mathbf{a}}^{q}} b^{q}$ (see Definition 4.3).
(2) $X^{r} \supseteq X^{q}$, and $\mathbf{B}_{\beta}^{r} \supseteq \mathbf{B}_{\beta}^{q}$ for $\beta \in X^{q}$.

The following follows immediately from the definitions:
Fact 6.4. Assume that $r \leq_{Q} q, b \in \mathrm{IS}$ and that δ^{b} is good for $\overline{\mathbf{a}}^{r}$. Then $c \geq_{\overline{\mathbf{a}}^{r}} b$ implies $c \geq_{\overline{\mathbf{a}}^{q}} b$.

This implies that \leq_{Q} is transitive. (It even is a partial order.)
Lemma 6.5. For $q \in Q$, the following holds (in V_{α}): Let $E \subseteq \lambda$ be club.
(1) For $\beta<\alpha$ and $A \in \mathbf{B}^{\mathbf{a}_{\beta}^{*}}$ there is an $r<_{Q} q$ with $\delta^{r} \in E, \beta \in X^{r}$ and $A \in \mathbf{B}_{\beta}^{r}$.
(2) For any $A \in[\lambda]^{\lambda}$ and $f \in \operatorname{Sym}(\lambda)$ (both in V_{α}) there is an $r \leq_{Q} q$ with $b^{r}<^{f, A} b^{q}$.
(3) Q is λ-centered, witnessed by the function that maps q to its trunk, b^{q}.
(Actually, even $<\lambda$ many conditions with the same trunk have lower bound.)
(4) Q_{α} is $<\lambda$-closed.

Moreover, a sequence $\left(q_{i}\right)_{i \in \xi}(\xi<\lambda)$ has a canonical limit r, and the trunk of r is the union of the trunks of the q_{i}.

Proof. (1): Extend $\overline{\mathbf{a}}^{q}$ in the obvious way to $\overline{\mathbf{a}}^{r}$: Add β to the index set, set $\mathbf{B}_{\beta}^{r}:=\{A\} \cup \bigcup_{\zeta \in X^{q} \cap(\beta+1)} \mathbf{B}_{\zeta}^{q}$, and add A to all \mathbf{B}_{ζ}^{q} for $\zeta \in X^{q} \backslash \beta$. Let $E^{\prime}:=$ $\left\{\zeta \in \lambda: \zeta\right.$ good for $\left.\overline{\mathbf{a}}^{r}\right\}$. Then E^{\prime} is club according to Fact 3.9, so we can use Lemma $4.4(5)$ to find $b^{r}>_{\overline{\mathbf{a}}^{q}} b^{q}$ with $\delta^{r} \in E \cap E^{\prime}$.
(2) This is Lemma 4.7.
(3) Let $\left(q_{i}\right)_{i \in \mu}, \mu<\lambda$ all have the same trunk b. Then the following r is a condition in $Q: b^{r}=b, X^{r}=\bigcup_{i<\mu} X^{q_{i}}$ and $B_{\zeta}^{r}=\bigcup_{i<\mu \& \zeta \in X^{q_{i}}} B_{\zeta}^{q_{i}}$.
(4) Let $\left(q_{i}\right)_{i<\zeta}$ with $\zeta<\lambda$ be $<_{Q}$-decreasing. Then the obvious union r is an element of Q and stronger than each q_{i} :
b^{r} is the union of the $b^{q_{i}}$, as in Fact 4.2, and $X^{r}:=\bigcup_{i<\zeta} X^{q_{i}}$ and $\mathbf{B}_{\beta}^{r}:=$ $\bigcup_{i<\zeta, \beta \in X^{q_{i}}} \mathbf{B}_{\beta}^{q_{i}}$ for each $\beta \in X^{r}$.

Then δ^{r} is good for \mathbf{a}_{β}^{r} for $\beta \in X^{r}$: It is enough to show that δ^{r} is good for all $\mathbf{a}_{\beta}^{q_{i}}$ (for sufficiently large i). Fix such an i. If $j>i$, then $\delta^{q_{j}}$ is good for $\overline{\mathbf{a}}^{q_{j}}$ and therefore for $\mathbf{a}_{\beta}^{q_{j}}$ and therefore for $\mathbf{a}_{\beta}^{q_{i}}$. So the limit δ^{r} is good as well.

Similarly one can argue that $b^{r}>\overline{\mathbf{a}}^{q_{i}} b^{q_{i}}$ for all $i<\zeta$.
Definition 6.6. Let $G(\alpha)$ be Q_{α}-generic. We define \mathbf{a}_{α}^{*} (in $V_{\alpha+1}$) as follows: $\mathbf{C}^{\mathbf{a}_{\alpha}^{*}}:=\bigcup_{q \in G(\alpha)} C^{q}, \pi^{\mathbf{a}_{\alpha}^{*}}:=\bigcup_{q \in G(\alpha)} \pi^{q}$, and $\mathbf{B}^{\mathbf{a}_{\alpha}^{*}}:=P(\lambda)$.
Lemma 6.7. $P_{\alpha+1}$ forces:
(1) $\mathbf{a}_{\alpha}^{*}>_{\mathrm{AP}} \mathbf{a}_{\beta}^{*}$ for all $\beta<\alpha$.
(2) \mathbf{a}_{α}^{*} spoils (f, A) for all $(f, A) \in V_{\alpha}$.

The proof consists of straightforward density arguments:
Proof. For (1) we know that by there is some $q \in G(\alpha)$ with $\beta \in X^{q}$. This implies that $\mathbf{C}^{\mathbf{a}_{\alpha}^{*}} \subseteq \mathbf{C}^{\mathbf{a}_{\beta}^{*}}$ above δ^{q} and that $\boldsymbol{\pi}^{\mathbf{a}_{\alpha}^{*}} \upharpoonright I_{\zeta}^{\mathbf{a}_{\beta}^{*}}=\boldsymbol{\pi}^{\mathbf{a}_{\beta}^{*}} \upharpoonright I_{\zeta}^{\mathbf{a}_{\beta}^{*}}$ for all $\zeta \in \mathbf{C}^{\mathbf{a}_{\beta}^{*}} \backslash \delta^{q}$. We can also assume that a given $A \in \mathbf{B}^{\mathbf{a}_{\beta}^{*}}$ is in \mathbf{B}_{β}^{q}, which implies that $\boldsymbol{\pi}^{\mathbf{a}_{\alpha}^{*}}[A]=\boldsymbol{\pi}^{\mathbf{a}_{\beta}^{*}}[A]$ above δ^{q}.

For (2) and $(f, A) \in V_{\alpha}$ we know by Lemma 6.5(2) that for $q \in G(\alpha)$ of unbounded heights there are $r(q)$ in $G(\alpha)$ such that $b^{r(q)}>^{f, A} b^{q}$. I.e, in $V_{\alpha+1}, \mathbf{a}_{\alpha}^{*}$ is a limit of an $<_{\mathrm{IS}}$-increasing sequence as in Lemma 4.6 , therefore \mathbf{a}_{α}^{*} spoils (f, A) (as A^{\prime} certainly is in $\mathbf{B}^{\mathbf{a}_{\alpha}^{*}}=P(\lambda)$).

So P adds a sequence $\left(\mathbf{a}_{\alpha}^{*}\right)_{\alpha<\mu}$ that we can use in Fact 3.6 to get a nowhere trivial automorphism. We will now show that P is λ^{+}-cc, which finishes the proof of Theorem 6.1.
Lemma 6.8. Set $t(p):=\left(b^{p(\alpha)}\right)_{\alpha \in \operatorname{dom}(p)}$ (i.e., the sequence of trunks). Then the following set D is dense: p in D if there is an $x \in V$ such that the empty condition forces $t(p)=x$.
Proof. We claim that the lemma holds for P_{α}, by induction on P_{α}. Successors and limits of cofinality $\geq \lambda$ are clear.

Let α be a limit with cofinality $\kappa<\lambda$, and $\left(\alpha_{i}\right)_{i \in \kappa}$ cofinal in $\alpha, \alpha_{0}=0$. Set $D_{j}:=D \cap P_{\alpha_{j}}$ (by induction dense in $P_{\alpha_{j}}$). We construct by induction on $j \in \kappa$ a decreasing sequence $p_{j} \in P_{\alpha}$ such that $p_{0}=p$ and $p_{j} \upharpoonright \alpha_{j} \in D$:

Successors: Given p_{j}, we find $r \leq p_{j} \upharpoonright \alpha_{j+1}$ in D_{j+1} and set $p_{j+1}:=r \wedge p_{j}$ (which is the same as $r \wedge p$).

Limits: Given $\left(p_{i}\right)_{i<\xi}$ with $\xi \leq \kappa$, let p_{ξ} be the pointwise canonical limit. Note that we can calculate (in V) each $p_{\xi}(\beta)$ from the sequence $\left(p_{i}(\beta)\right)_{i<\xi}$ (it is just the union).

Lemma 6.9. (Assuming $2^{\lambda}=\lambda^{+}$in the ground model.) P is $\lambda^{+}-c c$.
Proof. Assume $\left(a_{i}\right)_{i \in \lambda^{+}}$is a sequence in P. For every a_{i} find an $a_{i}^{\prime} \leq a$ in D. By Fodor (or the Delta-system lemma) there is an $X \subseteq \lambda^{+}$of size λ^{+}such that $\left\{\operatorname{dom}\left(a_{i}^{\prime}\right): i \in X\right\}$ form a Delta system with heart Δ, and furthermore we can assume that $t\left(a_{i}^{\prime}\right) \upharpoonright \Delta$ (the sequence of trunks restricted to Δ) is the same for all $i \in X$. (There are $\lambda^{|\Delta|}=\lambda<\lambda^{+}$many such restrictions.) Then for i, j in X, the conditions a_{i}^{\prime} and a_{j}^{\prime} (and therefore also a_{i} and a_{j}) are compatible.
Remark 6.10. Generally, preserving λ^{+}-cc for $\lambda>\omega_{1}$ is much more cumbersome than for $\lambda=\omega$, as there is no obvious universal theorem analogous to "the finite support iteration of ccc forcings is ccc". In our case, it was very easy to show λ^{+}-cc manually. However, we could have used existing iteration theorems. We give two examples (but there surely are many more). Note that the following theorems do not require λ to be inaccessible.
(1) From [Shi99] (generalising the $\lambda=\aleph_{1}$ case from [Bau83, Lem. 4.1]):

- Definition [Shi99, p. 237]: Q is λ-centered closed, if a centered subset D of Q of size $<\lambda$ has a lower bound.
- Lemma [Shi99, p. 237]: Assume $2^{<\lambda}=\lambda$. Let P be a $<\lambda$-support iteration such that each iterand is (forced to be) λ-linked and λ-centered closed. Then P is λ^{+}-cc.
It is easy to see that our Q satisfies the requirements (Q is even λ-centered and " λ-linked closed").
(2) From [BGS21] (generalizing the $\lambda=\aleph_{1}$ case from [She78, 3.1]):
- [BGS21, Def. 2.2.2]: Q is "stationary λ^{+}-Knaster", if for every sequence $\left(p_{i}\right)_{i<\lambda^{+}}$in Q there exists a club $E \subseteq \lambda^{+}$and a regressive function f on $E \cap S_{\lambda}^{\lambda^{+}}$such that p_{i} and p_{j} are compatible whenever $f(i)=f(j)$.
- [BGS21, Lem. 2.2.5]: Assume that P is a $<\lambda$-support iteration of iterands that all are: stationary λ^{+}-Knaster, strategically $<\lambda$-closed, and any two compatible conditions have a greatest lower bound, as do decreasing ω sequences. Then P is stationary λ^{+}-Knaster.
Note that our Q satisfies the requirements, and that our proof of λ^{+}-cc actually shows stationary λ^{+}-Knaster.

References

[Bau83] James E. Baumgartner, Iterated forcing, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1-59. MR 823775
[BGS21] Thomas Baumhauer, Martin Goldstern, and Saharon Shelah, [Sh:1144] The higher Cichoń diagram, Fund. Math. 252 (2021), no. 3, 241-314, arXiv: 1806.08583 MR4178868 DOI: 10.4064/fm666-4-2020.
[FGVV24] Ilijas Farah, Saeed Ghasemi, Andrea Vaccaro, and Alessandro Vignati, Corona rigidity, 2024, arXiv:2201.11618.
[KLS] Jakob Kellner, Anda Latif, and Saharon Shelah, [Sh:1224] On automorphisms of $\mathcal{P}(\lambda) /[\lambda]^{<\lambda}$, arXiv: 2206.02228.
[LM16] Paul Larson and Paul McKenney, Automorphisms of $\mathcal{P}(\lambda) / \mathcal{I}_{\kappa}$, Fund. Math. 233 (2016), no. 3, 271-291. MR 3480121
[She78] Saharon Shelah, [Sh:80] A weak generalization of MA to higher cardinals, Israel J. Math. 30 (1978), no. 4, 297-306, MR0505492 DOI: 10.1007/BF02761994.
[Shi99] Masahiro Shioya, Partition properties of subsets of $\mathcal{P}_{\kappa} \lambda$, Fund. Math. 161 (1999), no. 3, 325-329. MR 1716019
[SS] Saharon Shelah and Juris Steprāns, [Sh:990a] Non-trivial automorphisms of $\mathcal{P}(\mathbb{N}) /[\mathbb{N}]<\aleph_{0}$ from variants of small dominating number (corrected), Corrected version of [Sh:990].
[SS15]
Sh:990] Non-trivial automorphisms of $\mathcal{P}(\mathbb{N}) /[\mathbb{N}]<\aleph_{0}$ from variants of small dominating number, Eur. J. Math. 1 (2015), no. 3, 534-544, MR3401904 DOI: 10.1007/s40879-015-0058-0.

Technische Universität Wien (TU Wien).
Email address: jakob.kellner@tuwien.ac.at
URL: http://dmg.tuwien.ac.at/kellner/
The Hebrew University of Jerusalem and Rutgers University.
Email address: shlhetal@mat.huji.ac.il
URL: http://shelah.logic.at/

[^0]: $1_{\text {with lots of repetitions }}$

