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NOWHERE TRIVIAL AUTOMORPHISMS OF P(\)/[\<*,
FOR )\ INACCESSIBLE.

JAKOB KELLNER AND SAHARON SHELAH

1. INTRODUCTION

We investigate the rigidity of the Boolean algebra P())/[A]<*, for A inaccessible.

For A = w there is extensive literature on this topic (see, e.g., the survey [FGVV24]);
some general results on P(X\)/[A]<* can be found in [LM16]. In [KLS] it was shown,
for X inaccessible and 2* = AT, that conistently every automorphism is densely
trivial.

In this paper we show:

If \ is (strongly) inaccessible and 2* = A*, then there is a nowhere

Thm. 5.
(Thm. 5.3) trivial automorphism of the Boolean algebra P(\)/[A]<*.

Note that the weaker variant “there is a nontrivial automorphism” follows from [SS15,
Lem. 3.2] (the proof there was faulty, and fixed in [SS]); and for A measurable, a
proof (again only for “nontrivial”) was given in [KLS].

We also show:

It is consistent that A is inaccessible, 2* an arbitrary regular
(Thm. 6.1) cardinal, and that there is a nowhere trivial automorphism of

PN/
2. NOTATION

We will always assume that A is inaccessible.

For A C A, [A]<* denotes the subsets of A of size less than \; and [A]* those
of size A. With [A] we denote the equivalence class of A modulo [\]<*. We write
A =* B for [A] = [B], and A C* B for [A\ B| < \.

However, we also use f[A] := {f(a) : a € A}. So for example [f[A]] is the
equivalence class of the f-image of A. f € Sym(X) means that f : X — X is
bijective.

We consider P(\)/[\]<* as Boolean algebra. A (Boolean algebra) automorphism
7 of P(N)/[A\]<* is called trivial on A (for A € [A]*) if there is an f € Sym()) such
that 7([B]) = [f[B]] for all B C A. 7 is called nowhere trivial, if there is no such
pair (f, A).

For § < A\, C C ¢ closed and nonempty, and a € C, we set

I"(C Cé,a):= {,3 o< B < min ((CU {6P)\ (. + 1))}
So the I*(C C §, ), for a € C, form an increasing interval partition of § \ min(C).
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3. APPROXIMATIONS

In this section, we define the set AP of “approximations”. An approximation
a will induce a “partial monomorphism” 72 defined on some B? which is trivial,
i.e., generated by some 7@ € Sym(\). We will use such approximations to build a
nowhere trivial automorphism ¢ as limit (i.e., ¢ B2 = 7), cf. Fact 3.6.

Definition 3.1. AP is the set of objects a consisting of C?, 7w and B?, such that:
e 7 € Sym(X).
e C? C ) club such that 72 | € € Sym(e) for all € € C.
e B2 is a subset of P(\).

<

7 induces a (trivial) automorphism of P(\)/[A\]<*, and 72 is the restriction of

this automorphism to B2:
Definition 3.2. e B2:=B2/[\|<* = {[4] : A € B?}.
o 72 : B2 — P()\)/[\<* is defined by [A] — [m2[A]].
e For a € AP and € € C? we set I2 := I*(C? C \,¢).
So the I2 form an increasing interval partition of A \ min(C?); and =2 [ I2 €
Sym(I2).
Definition 3.3. b >p a, if a,b € AP and
(1) CP C* C2.
(2) 7P | I2 = w2 | I2 for all but boundedly many e € CP.
(3) BP O B2, and 7P extends 72.
Le., if A € B2, then w2a[A] =* wP[A].
<ap is a nonempty quasi order.

B = PO/,
<)\'

Lemma 3.4. If(a;)i<s is an <ap increasing chain such that|J;
then ¢ = U5 ®2 is an Boolean algebra monomorphism of P(A)/[A]

If additionally | J; 5 © [B2:] = P(\)/[N<*, then ¢ is an automorphism.
Proof. We use V and ¢ for the Boolean-algebra-operations, i.e., [AU B] = [A] V [B],
and [A]° = [A\ A]. It is enough to show that ¢ is injective, honors V and °, and
maps [0] to itself.

For X1, X5 in P(\)/[A]<* there is an i < § and some Ay, As, Aynion in B2, such
that [A;] = X, for j = 1,2 and [Aunion) = [A1 U A2] = X1 V X5. Then

i [Aunion} =" g [Al U AQ] = [Al] U m? [AQ],
and
G(X1 V Xa) = 7 ([Aunion]) = [7* [Auion]] =
= 7 ([A1]) V & ([A2]) = (X1) V $(X2).

If X1 # X, ie., A1 #* Ay, then w2 [Ay] #* 7 [Ay], ie., §(X1) # B(X2).

Similarly we can show ¢([\\ A1]) = @([A1])¢ and @([0]) = [0]. O
Definition 3.5. For a pair (f, A) with A € [A\]* and f € Sym(\), we say a € AP
“spoils (f, A)”, if there is an A’ € [A]* N B2 such that |w2[A’] N f[A]| < \.

If q3 is an automorphism extending such a 7, then f cannot witness that qg is
trivial on A. Therefore:
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Fact 3.6. If (a;);<s is an <ap increasing chain such that
o Uies BY = U, ®#[B*] = P(\)/[\]<*, and
e for every (f, A) there is an i < § such that a; spoils (f, 4),

then ¢ := U, <5 @ is a nowhere trivial Boolean algebra automorphism of P(X)/[A]<*.

We will use this fact both in the case 2* = AT, as well as in the forcing construc-
tion to get a nowhere trivial automorphism.

We will often modify an a € AP by replacing B® with another B C P(\). Let
the result be b. We call b “a with B replaced by B”, or “a with X added to B”
in case B=B2U {X}. Obviously b € AP, and if B O B® then b >5p a.

Similarly we can get a stronger approximation by thinning out C. To summarize:

Fact 3.7. If a € AP, D C C? club, and B C P(\) with B O B®. Then b >4p a,
for the b defined by 7P := 72, CP := D and BP := B.

In the definition of <sp we require that some things hold “apart from a bounded
set”, or equivalently, “above some «”. We say that « is good for an increasing
sequence of a;, if the requirements for each pair are met above a. We will generally
only be able to find such an « for “short sequences”:

Definition 3.8. (1) AP, is the set of a € AP such that |B?| < A. Analogously
for AP.,.

(2) (a;)ies is a “short sequence”, if J < A (or more generally, J is a set of
ordinals with |J| < A), each a; € AP, and the sequence is <ap-increasing,
i.e., j >4 in J implies a; >ap a;.

(3) Let a:= (a;);cs be short. We say that « is good for a, if for all i < k in J:

(a) € C*i.
(b) C& C C# above . (Le., f > a and 8 € C* implies § € C*.)
(¢) mwar | J2 = q2i | J2 for all € > « in C?*.
(d) w2i[A]\ a =72 [A]\ a, for all A € B*.
(4) For a,b in AP, we say b > a, if  is good for the sequence (a, b).

So in particular if b is the result of enlarging B in a, then b >, a for all ¢ € C2.

Fact 3.9. (1) fac APy, then b >sp aiff (3¢ € A)b >, a.
(2) If a = (a;);e is short, then {& € A : « good for a} is club, more concretely
it is ;.5 C* \ a* for some o* < .

Lemma 3.10. If a is short, then is has an <ap-upper-bound b € AP .

Proof. Set D :=(1,c; C®, and (p be the smallest a-good ordinal. So in particular
(o € D; and any ¢ > (p is in D iff it is a-good.

Fix for now some ¢ € D\ (y. Let (T be the D-successor of (.

For i € J, set v({,4) to be the (-successor of C?i. Then the sequence v((,1) is
weakly increasing with ¢ € J and has limit ¢*. If o < v(¢,7) (we also say “a is
stable at ¢”), then 7 (a) = w2 («) for all j > i in J.

We define 7!™ () for all a > (p as w2i(«) for some i stable for a.

To summarize: Whenever I := ¢\ for some ¢ € D\(p with (T the D-successor,
we get:

(1) Va€I)(FieJ)(Vj>i)nim(a)=n2(a).
(2) #lim 1 [ € Sym([).
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(3) If i € J and A € B®, then 7™ [A’] = w2i[A’] where A’ := AN 1.

For (2), note that w2 € Sym(I) for all ¢ € J. If a1 # as € I, then there is an
i in J stable for both, and 7 (o) # 7 (). So wi™ is injective. And if oy € I
and 7 in J stable for aq, then there is an as € I?i with 7wlim (ay) = 72 (ag) = ay,
so 7™ is surjective.

For (3): Set B := w2i[A’]. As I is above the good (p, we have: B = w?i[A4’]
for all j € J with j > 4. So for o € A’, all 72 () are in B, and also stabilize to
7l (q), which therefore has to be in B. Analogously, we get: If a € I\ A, then
72 (o) # B stabilizes to 7™ (a), which therefore is not in B. As 7'"™[I] = I, we
get 7M1 N A] = B.

We can now define b as:

if
C*:=D\ ¢y wa)={" 1 a<§° B":= | B™. O
™ () otherwise; gt

4. INITIAL SEGMENTS
We will work with initial segments of approximations (without the B part):

Definition 4.1. e An “initial segment” b consists of a “height” §°, a closed
C® C 6% (possibly empty), and a 7° € Sym(§°) such that 7° | ¢ € Sym(()
for all ¢ € C®.

e The set of initial segments is called IS.

o b>iga,if 6* > 6% 6% CP C"N* = C%, and 7° | 6% = 7°.
e b>gaifb>gaorb=a.

e For ¢ € C?, we set Ig = I*(C? C 6% ().

So the Ié’ form an increasing interval partition of §° \ min(C?), and 7° | Ié’ €
Sym([, é’)
<1s is a partial order.

Some trivialities:

Fact 4.2. Assume that b = (b;);<¢, with € < X limit, is an <s-increasing sequence.
(1) If € < A, then the following be € IS is the <jg-supremum of b, and we call
it “the limit” of b: §b := Uice §bi, Cbe = Uice CP and 7t = Uice mbi,
(2) If £ = A, then to each B C P(\) there is a b € AP as follows, which we call
“a limit” of b: CP :=J,., C% P :={J,_, 7" and B" := B.

Let us call an <g-increasing sequence b “continuous” if by is the limit of (ba)a<~
for all limits v < §. We will only use continuous sequences.

Definition 4.3. Let a € AP_, and b € IS with §* € C2®. We say ¢ >, b, if the
following holds:

c >1g b.

(Ceu{s°})\ 6b C Ca.

For all ( € C¢\ 6", n° | I¢ == | I2.

For all A € B2, 7¢[A’] = n2[A’] where we set A’ := AN §°\ §°.
For a short a (with index set J) we say ¢ >5 bif ¢ >, bforall i € J.

Lemma 4.4. Let a,b in APy and ¢, d; (i < )\) in IS.
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(1) <a is a partial order
(2) If { < X and (d;)iec is a >1g-increasing sequence such that d; >a ¢ for all
1 < (, then also the limit d¢ satisfies d¢e >a c.
(3) If b >sc a, then d >y ¢ implies d >, c.
(4) Assume € := (¢;)iex 1S a continuous increasing sequence in IS such that for
some g < A we have ¢; <u c¢iy1 for all i > ig.
Then any limit ¢ € AP of the ¢ with B¢ O B? satisfies ¢ >ap a.
(5) Let a be short, b € IS, 6° good for a and E C X club.
Then there is a ¢ >z b with 6¢ € E and C° = C* U {§%}

Proof. For (5), use (the proof of) Lemma 3.10: Pick any 6 € DN E\ (6° 4+ 1) and
set C¢ = CPU{6°} and 7¢ = 7lim | §¢.
The rest is straightforward. ([l

We now turn to spoiling (f, A):

Definition 4.5. Given f € Sym()\) and A € [A\]}, we define ¢ >4 b by: ¢ >15 b,
f 1 6°€ Sym(d°), and there is a £ € AN 4§\ §° with f(£*) # 7¢(¢*).
We write ¢ >£’A bfor: c>ab& c>H4b

Lemma 4.6. Assume (b;);ex is <p S-increasing such that unboundedly often b; 11 >hA
b;. Then for some A’ € [A]®, every limit b of (b;)iex with A" € BP spoils (f, A).

Proof. By taking a subsequence, we can assume that for all odd i (i.e., i = §+2n+1
with ¢ limit or 0 and n € w) by >4 b;.

For i odd, set I; := 8%+ \ 6% and let &; € I; satisfy f(&) # n¥+1(&) = wP(&).

If i is odd, then 7P | I; € Sym(I;) and f | 8%+ € Sym(5%+1).

So if i < j are both odd, then f((;) > §%+1 > wP((;); and if j < k are both odd
then f(¢;) < 0% < @wP((). This means that f((;) is different to all wP(¢;) for i

odd.
So we can set A’ = {¢; : j odd} and get that f[A’] is disjoint to wP[A’]. So b
with A’ added to B spoils (f, A). O

Lemma 4.7. If a is short, b € 1S, 6° good for a, f € Sym()\) and A € [\*, then
. f7A
there is some d >3 b.

Proof. Let B := J,.; B®. Let (o < A be the supremum of all C®-successors of 5.
Set E :={C € X: f 1€ Sym(()} (aclub-set). Pick ¢; € E such that
AN (¢1\ ¢o)| > |2B]. Pick ¢ >4 b with 6 € E'\ ¢; and such that C¢ = C® U {§%}.
Set I:=6°\¢p. Fora,finINAseta~piff VAeB)(a€e A+ € A). As
there are at most |2B| many equivalence classes, there have to be 3y # 31 in I N A
with 50 ~ Bl'
If m¢(B;) # f(B;) for i =0 or i = 1, set d := ¢. Otherwise, defines d as follows:
m(B1) if a =P,
5 =¢¢, C? = C° and () := S 7¢(By) if a = By,
m¢(a)  otherwise.
Set I:= 84\ 6% As By ~ 1 we have m¢[ANI] = m¢[ANI] = w2 [AN ] for all
i€ Jand A€ B? (asc>30).
And as the By, 81 are above (p, and I?,j is below (y for all i € J, we have
a3 = e [ 13 = w13
So d >3 b. O
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5. 2 = AT FOR \ INACCESSIBLE IMPLIES A NOWHERE TRIVIAL AUTOMORPHISM

Lemma 5.1. Every increasing sequence in APy of length <AT has an upper bound.
Proof. We can assume without loss of generality that the increasing sequence is
a:= (ai)ieg with £ < .

For i < £, enumerate’ B2 as {z7 : j < A}, and set B! := {a¥ : k < j} for j < A.
We enumerate in a way so that the Bf are increasing with ¢ < £. Let a{ be a; with
B replaced by Bg, and for ¢ < \ set af := (af;)k<min(4,§). Note that a¢ is short.

c € AP is an upper bound of a iff it is an upper bound of all af; for £ < X\ and
k < min(¢,§).

We now construct by induction on £ < \ a <ig-increasing continuous sequence
(c)¢en, such that 5 is a‘-good:

e At limits  we let ¢” be the limit of the (c*), <., and note that (by induction)
its height it is a7-good.
e For j = ¢+ 1, let E be the club set of a*'-good ordinals, and choose, as
in Lemma 4.4(5) ¢‘™' >, ¢ with 6" € E.
Let ¢ be the limit of the ¢/ with B¢ := Uice B
We claim that ¢ >xp aﬁ for all £ < X\ and j < min(¢,£). Assume that k >
max(, ).
e By Lemma 4.4(3):
5" (which is a*-good and so, by definition, a;?—good) is aﬁ-good7 as
k > sk aﬁ.
Also, **1 >4 ¥, so (by definition) cF+! >ak c*, and so cFt1 >t k.

e By Lemma 4.4(4) we get ¢ >ap aﬁ,

Lemma 5.2. Given a € APy, f € Sym()\) and A € [\]*, there is a b >ap a which
is in AP and spoils (f, A).
Proof. Enumerate B2 as {27 : j € A} and let a/ be a with B replaced by {z° : i <
j}. So al € AP_,. We construct a continuous increasing sequence b° (i < \) in IS
such that 6° is a’-good: Given b?, we find b**! >£;A b’ as in Lemma 4.7. Let b be
the limit of the b* with BP = B2 U {A’} as in Lemma 4.6.

And b >4 Pa’ for all j < X\ and therefore b >ap a. O

a;

as required. O

We can now easily show:

Theorem 5.3. If \ is (strongly) inaccessible and 2* = \*, then there is a nowhere
trivial automorphism of the Boolean algebra P(\)/[N<*.

Proof. We construct, by induction on i € A", an increasing chain of a; in AP},
such that:

e For limit ¢, we take limits according to Lemma 5.1.

e For odd successors ¢ = j+1 = § +2n + 1 (§ limit, n € w), pick by
bookkeeping some X; and let a;,; be the same as a; but with X; and
(w2)71X,] added to B.

e For even successors ¢ = j+ 1 = § + 2n + 2, we pick by book-keeping an
f; € Sym(\) and an A; € [A]*. Then we choose a;11 >ap a; spoiling
(fj,Aj), using Lemma 5.2.

Lwith lots of repetitions
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Then ¢ := Ui 72 is a nowhere trivial automorphism according to Fact 3.6. [

6. FORCING A NOWHERE TRIVIAL AUTOMORPHISM WITH 2* > AT,
A INACCESSIBLE

Theorem 6.1. Assume \ is inaccessible, 2* = X\T and p > X\ is reqular. Then
there is a cofinality preserving (<A-closed and A\ -cc) poset which forces: 2* = u,
and there is a nowhere trivial automorphism of P(\)/[N]<*.

For the rest of this section we fix a p as in the lemma.

We will construct a <A-support iteration (P, Qa)a<u. We call the final limit
P. We denote the P,-extension V[G,] by V.

Each @, and therefore also each P, will be <A-closed.

So x € AP, z <ap y, as well as IS (as set) are absolute between P,-extensions
(and [IS| = \).

Each Q, will add a a} € AP, such that the a¥ are <ap-increasing in a.

By induction we assume we live in the P,-extension V,, where we already have
the increasing sequence (a});<. (We do not claim that this sequence has an upper
bound in V,,.)

We now define @, which we will just call @ to improve readability.

Definition 6.2. ¢ € Q consists of:
(1) A b7 €18, also called “trunk of ¢”.
We also write §%, 74 C? and Ig instead of 6°* etc.

(2) A set X7 € [a]<?, and for B € X9, a set B} € [B25]<*, such that the B}
are increasing in f3.

(3) For B € X7 set ajj to be aj with B replaced by Bj. Set a? := (a})pexq
(which is short).

(4) We require 6*" to be good for ad.

(“Short” and “good” are defined in Definition 3.8.) As we use () as forcing poset,
we follow the notation that » <g ¢ means that r is stronger than ¢ (whereas in
<ap and <ig the stronger object is the larger one).

Definition 6.3. r <g ¢ if:
(1) b" >54 b7 (see Definition 4.3).
(2) X" 2 X9, and B}; D) Bqﬁ for g € X1.

The following follows immediately from the definitions:

Fact 6.4. Assume that r <¢ ¢, b € IS and that 6° is good for a”. Then ¢ >4~ b
implies ¢ >5q b.

This implies that <q is transitive. (It even is a partial order.)

Lemma 6.5. For g € Q, the following holds (in V): Let E C X be club.
(1) For B < o and A € B25 there is an r <@ q with 0" € E, 8 € X" and
A€ Bj.
(2) For any A € [\ and f € Sym(\) (both in V,) there is an r <g q with
bro<A ba,
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(8) Q is A-centered, witnessed by the function that maps q to its trunk, b?.
(Actually, even <X many conditions with the same trunk have lower
bound.)
(4) Qo is <A-closed.
Moreover, a sequence (¢;)ice (6 < A) has a canonical limit v, and the
trunk of r is the union of the trunks of the q;.

Proof. (1): Extend a? in the obvious way to a”: Add S to the index set, set
Bj = {A} UUcexan(p1) BE: and add A to all BY for ( € X7\ B. Let E' =
{C € A: (good for a"}. Then E’ is club according to Fact 3.9, so we can use
Lemma 4.4(5) to find " >z b with 6" € ENE".

(2) This is Lemma 4.7.

(3) Let (¢5)icp, 1 < A all have the same trunk b. Then the following r is a
condition in Q: b" = b, X" = Ui<u X% and B[ = Ui<u & Cex Bgi.

(4) Let (¢s)i<c with ¢ < X be <g-decreasing. Then the obvious union r is an
element of ) and stronger than each g;:

b" is the union of the b%, as in Fact 4.2, and X" := (J;  X? and Bj :=
Uicc pexa Bj for each g € X7

Then 6" is good for aj for § € X": It is enough to show that ¢ is good for all
a%i (for sufficiently large ¢). Fix such an 4. If j > 4, then §% is good for a% and
therefore for azj and therefore for ag". So the limit §" is good as well.

Similarly one can argue that b" >z4¢; b% for all i < (. (]

Definition 6.6. Let G(a) be Q,-generic. We define a* (in V1) as follows:

(83

C% = Uyega) €% 7 = Ugeg(a) ™ and B == P()).

Lemma 6.7. P, forces:
(1) ai, >ap aj for all B < a.
(2) a, spoils (f,A) for all (f,A) € V,.

The proof consists of straightforward density arguments:

Proof. For (1) we know that by there is some ¢ € G(a) with 8 € X?. This implies
that C* C C% above 07 and that w2 [ I;° = > | I.” for all { € C% \ §7. We
can also assume that a given A € B®# is in B, which implies that w2 [A] = 723 [A]
above 9.

For (2) and (f,A) € V,, we know by Lemma 6.5(2) that for ¢ € G(a) of un-
bounded heights there are r(g) in G(«) such that b"(9) >4 b9, Te, in Vi1, a¥ is
a limit of an <jg-increasing sequence as in Lemma 4.6, therefore a}, spoils (f, A)
(as A’ certainly is in B2« = P())). O

So P adds a sequence (a},)a<, that we can use in Fact 3.6 to get a nowhere
trivial automorphism. We will now show that P is AT-cc, which finishes the proof
of Theorem 6.1.

Lemma 6.8. Set t(p) := (bp(“))aedom(p) (i.e., the sequence of trunks). Then the
following set D is dense: p in D if there is an x € V' such that the empty condition
forces t(p) = x.

Proof. We claim that the lemma holds for P,, by induction on P,. Successors and
limits of cofinality >\ are clear.
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Let « be a limit with cofinality x < A, and (a;);cx cofinal in «, ag = 0. Set
Dj := DN P,; (by induction dense in P,;). We construct by induction on j € x a
decreasing sequence p; € P, such that pg = p and p; [ a; € D:

Successors: Given p;, we find 7 < p; | oj41 in Djqq and set pjpq = 7 A p;
(which is the same as r A p).

Limits: Given (p;);<¢ with £ < &, let ps be the pointwise canonical limit. Note
that we can calculate (in V) each p¢(8) from the sequence (p;(3))i<¢ (it is just the
union). O

Lemma 6.9. (Assuming 2> = AT in the ground model.) P is \*-cc.

Proof. Assume (a;);ex+ is a sequence in P. For every a; find an a; < a in D.
By Fodor (or the Delta-system lemma) there is an X C AT of size AT such that
{dom(a}) : i € X} form a Delta system with heart A, and furthermore we can
assume that t(a)) | A (the sequence of trunks restricted to A) is the same for all
i € X. (There are MAL =X < At many such restrictions.) Then for 4,5 in X, the
conditions a; and a’; (and therefore also a; and a;) are compatible. (]

Remark 6.10. Generally, preserving AT-cc for A > w; is much more cumbersome
than for A = w, as there is no obvious universal theorem analogous to “the finite
support iteration of ccc forcings is cec”. In our case, it was very easy to show AT-cc
manually. However, we could have used existing iteration theorems. We give two
examples (but there surely are many more). Note that the following theorems do
not require A to be inaccessible.

(1) From [Shi99] (generalising the A = R; case from [Bau83, Lem. 4.1]):

e Definition [Shi99, p. 237]: @ is A-centered closed, if a centered subset D
of @ of size <\ has a lower bound.

e Lemma [Shi99, p. 237]: Assume 2<* = ). Let P be a <\-support iteration
such that each iterand is (forced to be) A-linked and A-centered closed.
Then P is AT -cc.

It is easy to see that our @ satisfies the requirements (Q is even A-centered and
“A-linked closed”).
(2) From [BGS21] (generalizing the A = Ry case from [She78, 3.1]):

e [BGS21, Def. 2.2.2]: Q is “stationary AT-Knaster”, if for every sequence
(pi)ica+ in Q there exists a club £ C AT and a regressive function f on
EN Sf\‘+ such that p; and p; are compatible whenever f(i) = f(j).

e [BGS21, Lem. 2.2.5]: Assume that P is a <A-support iteration of iterands
that all are: stationary AT-Knaster, strategically <\-closed, and any two
compatible conditions have a greatest lower bound, as do decreasing w-
sequences. Then P is stationary A*T-Knaster.

Note that our Q satisfies the requirements, and that our proof of A™-cc actually
shows stationary AT-Knaster.
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