NOWHERE TRIVIAL AUTOMORPHISMS OF $P(\lambda)/[\lambda]^{<\lambda}$, FOR λ INACCESSIBLE.

JAKOB KELLNER AND SAHARON SHELAH

1. INTRODUCTION

We investigate the rigidity of the Boolean algebra $P(\lambda)/[\lambda]^{<\lambda}$, for λ inaccessible. For $\lambda = \omega$ there is extensive literature on this topic (see, e.g., the survey [FGVV24]); some general results on $P(\lambda)/[\lambda]^{<\kappa}$ can be found in [LM16]. In [KLS] it was shown, for λ inaccessible and $2^{\lambda} = \lambda^{++}$, that constantly every automorphism is densely

In this paper we show:

(Thm. 5.3) If λ is (strongly) inaccessible and $2^{\lambda} = \lambda^+$, then there is a nowhere trivial automorphism of the Boolean algebra $\mathcal{P}(\lambda)/[\lambda]^{<\lambda}$.

Note that the weaker variant "there is a *nontrivial* automorphism" follows from [SS15, Lem. 3.2] (the proof there was faulty, and fixed in [SS]); and for λ measurable, a proof (again only for "nontrivial") was given in [KLS].

We also show:

trivial.

(Thm. 6.1) It is consistent that λ is inaccessible, 2^{λ} an arbitrary regular cardinal, and that there is a nowhere trivial automorphism of $\mathcal{P}(\lambda)/[\lambda]^{<\lambda}$.

2. NOTATION

We will always assume that λ is inaccessible.

For $A \subseteq \lambda$, $[A]^{<\lambda}$ denotes the subsets of A of size less than λ ; and $[A]^{\lambda}$ those of size λ . With [A] we denote the equivalence class of A modulo $[\lambda]^{<\lambda}$. We write $A =^* B$ for [A] = [B], and $A \subseteq^* B$ for $|A \setminus B| < \lambda$.

However, we also use $f[A] := \{f(a) : a \in A\}$. So for example [f[A]] is the equivalence class of the *f*-image of *A*. $f \in \text{Sym}(X)$ means that $f : X \to X$ is bijective.

We consider $\mathcal{P}(\lambda)/[\lambda]^{<\lambda}$ as Boolean algebra. A (Boolean algebra) automorphism π of $\mathcal{P}(\lambda)/[\lambda]^{<\lambda}$ is called trivial on A (for $A \in [\lambda]^{\lambda}$) if there is an $f \in \text{Sym}(\lambda)$ such that $\pi([B]) = [f[B]]$ for all $B \subseteq A$. π is called nowhere trivial, if there is no such pair (f, A).

For $\delta \leq \lambda$, $C \subseteq \delta$ closed and nonempty, and $\alpha \in C$, we set

 $I^*(C \subseteq \delta, \alpha) := \big\{\beta: \, \alpha \leq \beta < \min\big((C \cup \{\delta\}) \setminus (\alpha + 1)\big)\big\}.$

So the $I^*(C \subseteq \delta, \alpha)$, for $\alpha \in C$, form an increasing interval partition of $\delta \setminus \min(C)$.

Date: 2024-03-04.

The first author was funded by FWF Austrian science funds projects P33420 and P33895. The second author was partially support by the Israel Science Foundation (ISF) grant no: 2320/23. This is publication Sh:1251 in the second author's list.

3. Approximations

In this section, we define the set AP of "approximations". An approximation **a** will induce a "partial monomorphism" $\tilde{\pi}^{\mathbf{a}}$ defined on some $\tilde{\mathbf{B}}^{\mathbf{a}}$ which is trivial, i.e., generated by some $\pi^{\mathbf{a}} \in \text{Sym}(\lambda)$. We will use such approximations to build a nowhere trivial automorphism $\tilde{\phi}$ as limit (i.e., $\tilde{\phi} \upharpoonright \tilde{\mathbf{B}}^{\mathbf{a}} = \tilde{\pi}^{\mathbf{a}}$), cf. Fact 3.6.

Definition 3.1. AP is the set of objects **a** consisting of $C^{\mathbf{a}}$, $\pi^{\mathbf{a}}$ and $\mathbf{B}^{\mathbf{a}}$, such that:

- $\pi^{\mathbf{a}} \in \operatorname{Sym}(\lambda)$.
- $\mathbf{C}^{\mathbf{a}} \subseteq \lambda$ club such that $\pi^{\mathbf{a}} \upharpoonright \varepsilon \in \operatorname{Sym}(\varepsilon)$ for all $\varepsilon \in \mathbf{C}^{\mathbf{a}}$.
- $\mathbf{B}^{\mathbf{a}}$ is a subset of $\mathcal{P}(\lambda)$.

 $\pi^{\mathbf{a}}$ induces a (trivial) automorphism of $P(\lambda)/[\lambda]^{<\lambda}$, and $\tilde{\pi}^{\mathbf{a}}$ is the restriction of this automorphism to $\mathbf{B}^{\mathbf{a}}$:

Definition 3.2. • $\tilde{\mathbf{B}}^{\mathbf{a}} := \mathbf{B}^{\mathbf{a}} / [\lambda]^{<\lambda} = \{[A] : A \in \mathbf{B}^{\mathbf{a}}\}.$

- $\tilde{\pi}^{\mathbf{a}} : \tilde{\mathbf{B}}^{\mathbf{a}} \to P(\lambda) / [\lambda]^{<\lambda}$ is defined by $[A] \mapsto [\pi^{\mathbf{a}}[A]]$.
- For $\mathbf{a} \in AP$ and $\varepsilon \in \mathbf{C}^{\mathbf{a}}$ we set $I_{\varepsilon}^{\mathbf{a}} := I^*(\mathbf{C}^{\mathbf{a}} \subseteq \lambda, \varepsilon)$.

So the $I_{\varepsilon}^{\mathbf{a}}$ form an increasing interval partition of $\lambda \setminus \min(\mathbf{C}^{\mathbf{a}})$; and $\pi^{\mathbf{a}} \upharpoonright I_{\varepsilon}^{\mathbf{a}} \in \operatorname{Sym}(I_{\varepsilon}^{\mathbf{a}})$.

Definition 3.3. $\mathbf{b} \geq_{AP} \mathbf{a}$, if $\mathbf{a}, \mathbf{b} \in AP$ and

- (1) $\mathbf{C}^{\mathbf{b}} \subseteq^* \mathbf{C}^{\mathbf{a}}$.
- (2) $\pi^{\mathbf{b}} \upharpoonright I_{\varepsilon}^{\mathbf{a}} = \pi^{\mathbf{a}} \upharpoonright I_{\varepsilon}^{\mathbf{a}}$ for all but boundedly many $\varepsilon \in \mathbf{C}^{\mathbf{b}}$.
- (3) $\mathbf{B}^{\mathbf{b}} \supseteq \mathbf{B}^{\mathbf{a}}$, and $\tilde{\boldsymbol{\pi}}^{\mathbf{b}}$ extends $\tilde{\boldsymbol{\pi}}^{\mathbf{a}}$.

I.e., if $A \in \mathbf{B}^{\mathbf{a}}$, then $\pi^{\mathbf{a}}[A] =^{*} \pi^{\mathbf{b}}[A]$.

 \leq_{AP} is a nonempty quasi order.

Lemma 3.4. If $(\mathbf{a}_i)_{i<\delta}$ is an \leq_{AP} increasing chain such that $\bigcup_{i<\delta} \tilde{\mathbf{B}}^{\mathbf{a}_i} = P(\lambda)/[\lambda]^{<\lambda}$, then $\tilde{\boldsymbol{\phi}} := \bigcup_{i<\delta} \tilde{\boldsymbol{\pi}}^{\mathbf{a}_i}$ is an Boolean algebra monomorphism of $P(\lambda)/[\lambda]^{<\lambda}$.

If additionally $\bigcup_{i < \delta} \tilde{\pi}^{\mathbf{a}_i}[\tilde{\mathbf{B}}^{\mathbf{a}_i}] = P(\lambda)/[\lambda]^{<\lambda}$, then $\tilde{\phi}$ is an automorphism.

Proof. We use \vee and c for the Boolean-algebra-operations, i.e., $[A \cup B] = [A] \vee [B]$, and $[A]^c = [\lambda \setminus A]$. It is enough to show that $\tilde{\phi}$ is injective, honors \vee and c , and maps $[\emptyset]$ to itself.

For X_1, X_2 in $P(\lambda)/[\lambda]^{<\lambda}$ there is an $i < \delta$ and some $A_1, A_2, A_{\text{union}}$ in $\mathbf{B}^{\mathbf{a}_i}$, such that $[A_j] = X_j$ for j = 1, 2 and $[A_{\text{union}}] = [A_1 \cup A_2] = X_1 \vee X_2$. Then

$$\boldsymbol{\pi}^{\mathbf{a}_i}[A_{\text{union}}] =^* \boldsymbol{\pi}^{\mathbf{a}_i}[A_1 \cup A_2] = \boldsymbol{\pi}^{\mathbf{a}_i}[A_1] \cup \boldsymbol{\pi}^{\mathbf{a}_i}[A_2],$$

and

$$\begin{split} \tilde{\phi}(X_1 \lor X_2) &= \tilde{\pi}^{\mathbf{a}_i}([A_{\text{union}}]) = [\pi^{\mathbf{a}_i}[A_{\text{union}}]] = \\ &= \tilde{\pi}^{\mathbf{a}_i}([A_1]) \lor \tilde{\pi}^{\mathbf{a}_i}([A_2]) = \tilde{\phi}(X_1) \lor \tilde{\phi}(X_2). \end{split}$$

If $X_1 \neq X_2$, i.e., $A_1 \neq^* A_2$, then $\boldsymbol{\pi}^{\mathbf{a}_i}[A_1] \neq^* \boldsymbol{\pi}^{\mathbf{a}_i}[A_2]$, i.e., $\tilde{\boldsymbol{\phi}}(X_1) \neq \tilde{\boldsymbol{\phi}}(X_2)$. Similarly we can show $\tilde{\boldsymbol{\phi}}([\lambda \setminus A_1]) = \tilde{\boldsymbol{\phi}}([A_1])^c$ and $\tilde{\boldsymbol{\phi}}([\emptyset]) = [\emptyset]$.

Definition 3.5. For a pair (f, A) with $A \in [\lambda]^{\lambda}$ and $f \in \text{Sym}(\lambda)$, we say $\mathbf{a} \in \text{AP}$ "spoils (f, A)", if there is an $A' \in [A]^{\lambda} \cap \mathbf{B}^{\mathbf{a}}$ such that $|\boldsymbol{\pi}^{\mathbf{a}}[A'] \cap f[A']| < \lambda$.

If $\tilde{\phi}$ is an automorphism extending such a $\tilde{\pi}^{\mathbf{a}}$, then f cannot witness that $\tilde{\phi}$ is trivial on A. Therefore:

 $\mathbf{2}$

Fact 3.6. If $(\mathbf{a}_i)_{i < \delta}$ is an \leq_{AP} increasing chain such that

- $\bigcup_{i < \delta} \tilde{\mathbf{B}}^{\mathbf{a}_i} = \bigcup_{i < \delta} \tilde{\pi}^{\mathbf{a}_i} [\tilde{\mathbf{B}}^{\mathbf{a}_i}] = P(\lambda) / [\lambda]^{<\lambda}$, and for every (f, A) there is an $i < \delta$ such that \mathbf{a}_i spoils (f, A),

then $\phi := \bigcup_{i < \delta} \tilde{\pi}^{\mathbf{a}_i}$ is a nowhere trivial Boolean algebra automorphism of $P(\lambda)/[\lambda]^{<\lambda}$.

We will use this fact both in the case $2^{\lambda} = \lambda^+$, as well as in the forcing construction to get a nowhere trivial automorphism.

We will often modify an $\mathbf{a} \in AP$ by replacing $\mathbf{B}^{\mathbf{a}}$ with another $B \subseteq P(\lambda)$. Let the result be **b**. We call **b** "**a** with **B** replaced by B", or "**a** with X added to **B**" in case $B = \mathbf{B}^{\mathbf{a}} \cup \{X\}$. Obviously $\mathbf{b} \in AP$, and if $B \supseteq \mathbf{B}^{\mathbf{a}}$ then $\mathbf{b} \geq_{AP} \mathbf{a}$.

Similarly we can get a stronger approximation by thinning out \mathbf{C} . To summarize:

Fact 3.7. If $\mathbf{a} \in AP$, $D \subseteq \mathbf{C}^{\mathbf{a}}$ club, and $B \subseteq P(\lambda)$ with $B \supseteq \mathbf{B}^{\mathbf{a}}$. Then $\mathbf{b} \geq_{AP} \mathbf{a}$, for the **b** defined by $\pi^{\mathbf{b}} := \pi^{\mathbf{a}}$, $\mathbf{C}^{\mathbf{b}} := D$ and $\mathbf{B}^{\mathbf{b}} := B$.

In the definition of \leq_{AP} we require that some things hold "apart from a bounded set", or equivalently, "above some α ". We say that α is good for an increasing sequence of \mathbf{a}_i , if the requirements for each pair are met above α . We will generally only be able to find such an α for "short sequences":

- (1) AP_{λ} is the set of $\mathbf{a} \in AP$ such that $|\mathbf{B}^{\mathbf{a}}| \leq \lambda$. Analogously Definition 3.8. for $AP_{<\lambda}$.
 - (2) $(\mathbf{a}_i)_{i \in J}$ is a "short sequence", if $J < \lambda$ (or more generally, J is a set of ordinals with $|J| < \lambda$, each $\mathbf{a}_i \in AP_{<\lambda}$, and the sequence is \leq_{AP} -increasing, i.e., j > i in J implies $\mathbf{a}_i \geq_{AP} \mathbf{a}_i$.
 - (3) Let $\bar{\mathbf{a}} := (\mathbf{a}_i)_{i \in J}$ be short. We say that α is good for $\bar{\mathbf{a}}$, if for all $i \leq k$ in J: (a) $\alpha \in \mathbf{C}^{\mathbf{a}_i}$.
 - (b) $\mathbf{C}^{\mathbf{a}_k} \subseteq \mathbf{C}^{\mathbf{a}_i}$ above α . (I.e., $\beta \geq \alpha$ and $\beta \in \mathbf{C}^{\mathbf{a}_k}$ implies $\beta \in \mathbf{C}^{\mathbf{a}_i}$.)
 - (c) $\pi^{\mathbf{a}_k} \upharpoonright I_{\varepsilon}^{\mathbf{a}_i} = \pi^{\mathbf{a}_i} \upharpoonright I_{\varepsilon}^{\mathbf{a}_i}$ for all $\varepsilon \ge \alpha$ in $\mathbf{C}^{\mathbf{a}_k}$.
 - (d) $\pi^{\mathbf{a}_i}[A] \setminus \alpha = \pi^{\mathbf{a}_k}[A] \setminus \alpha$, for all $A \in \mathbf{B}^{\mathbf{a}_i}$.
 - (4) For \mathbf{a}, \mathbf{b} in $AP_{<\lambda}$, we say $\mathbf{b} >_{\zeta} \mathbf{a}$, if ζ is good for the sequence $\langle \mathbf{a}, \mathbf{b} \rangle$.

So in particular if **b** is the result of enlarging **B** in **a**, then $\mathbf{b} >_{\zeta} \mathbf{a}$ for all $\zeta \in \mathbf{C}^{\mathbf{a}}$.

- Fact 3.9. (1) If $\mathbf{a} \in AP_{<\lambda}$, then $\mathbf{b} \geq_{AP} \mathbf{a}$ iff $(\exists \zeta \in \lambda) \mathbf{b} >_{\zeta} \mathbf{a}$.
 - (2) If $\bar{\mathbf{a}} = (\mathbf{a}_i)_{i \in J}$ is short, then $\{\alpha \in \lambda : \alpha \text{ good for } \bar{\mathbf{a}}\}$ is club, more concretely it is $\bigcap_{i < \delta} \mathbf{C}^{\mathbf{a}_i} \setminus \alpha^*$ for some $\alpha^* < \lambda$.

Lemma 3.10. If $\bar{\mathbf{a}}$ is short, then is has an \leq_{AP} -upper-bound $\mathbf{b} \in AP_{<\lambda}$.

Proof. Set $D := \bigcap_{i \in J} C^{\mathbf{a}_i}$, and ζ_0 be the smallest $\bar{\mathbf{a}}$ -good ordinal. So in particular $\zeta_0 \in D$; and any $\zeta \geq \zeta_0$ is in D iff it is $\bar{\mathbf{a}}$ -good.

Fix for now some $\zeta \in D \setminus \zeta_0$. Let ζ^+ be the *D*-successor of ζ .

For $i \in J$, set $\gamma(\zeta, i)$ to be the ζ -successor of $C^{\mathbf{a}_i}$. Then the sequence $\gamma(\zeta, i)$ is weakly increasing with $i \in J$ and has limit ζ^+ . If $\alpha < \gamma(\zeta, i)$ (we also say " α is stable at i"), then $\pi^{\mathbf{a}_i}(\alpha) = \pi^{\mathbf{a}_j}(\alpha)$ for all j > i in J.

We define $\pi^{\lim}(\alpha)$ for all $\alpha \geq \zeta_0$ as $\pi^{\mathbf{a}_i}(\alpha)$ for some *i* stable for α .

To summarize: Whenever $I := \zeta^+ \setminus \zeta$ for some $\zeta \in D \setminus \zeta_0$ with ζ^+ the *D*-successor, we get:

- (1) $(\forall \alpha \in I) (\exists i \in J) (\forall j > i) \pi^{\lim}(\alpha) = \pi^{\mathbf{a}_i}(\alpha).$
- (2) $\pi^{\lim} \upharpoonright I \in \operatorname{Sym}(I).$

(3) If $i \in J$ and $A \in \mathbf{B}^{\mathbf{a}_i}$, then $\pi^{\lim}[A'] = \pi^{\mathbf{a}_i}[A']$ where $A' := A \cap I$.

For (2), note that $\pi^{\mathbf{a}_i} \in \text{Sym}(I)$ for all $i \in J$. If $\alpha_1 \neq \alpha_2 \in I$, then there is an *i* in *J* stable for both, and $\pi^{\mathbf{a}_i}(\alpha_1) \neq \pi^{\mathbf{a}_i}(\alpha_2)$. So π^{\lim} is injective. And if $\alpha_1 \in I$ and *i* in *J* stable for α_1 , then there is an $\alpha_2 \in I^{\mathbf{a}_i}_{\zeta}$ with $\pi^{\lim}(\alpha_2) = \pi^{\mathbf{a}_i}(\alpha_2) = \alpha_1$, so π^{\lim} is surjective.

For (3): Set $B := \pi^{\mathbf{a}_i}[A']$. As I is above the good ζ_0 , we have: $B = \pi^{\mathbf{a}_j}[A']$ for all $j \in J$ with j > i. So for $\alpha \in A'$, all $\pi^{\mathbf{a}_j}(\alpha)$ are in B, and also stabilize to $\pi^{\lim}(\alpha)$, which therefore has to be in B. Analogously, we get: If $\alpha \in I \setminus A$, then $\pi^{\mathbf{a}_j}(\alpha) \neq B$ stabilizes to $\pi^{\lim}(\alpha)$, which therefore is not in B. As $\pi^{\lim}[I] = I$, we get $\pi^{\lim}[I \cap A] = B.$

We can now define \mathbf{b} as:

$$\mathbf{C}^{\mathbf{b}} := D \setminus \zeta_0; \quad \boldsymbol{\pi}^{\mathbf{b}}(\alpha) = \begin{cases} \alpha & \text{if } \alpha < \zeta_0 \\ \pi^{\lim}(\alpha) & \text{otherwise;} \end{cases} \quad \mathbf{B}^{\mathbf{b}} := \bigcup_{i \in J} \mathbf{B}^{\mathbf{a}_i}. \qquad \Box$$

4. INITIAL SEGMENTS

We will work with initial segments of approximations (without the **B** part):

- An "initial segment" b consists of a "height" δ^b , a closed Definition 4.1. $C^b \subseteq \delta^b$ (possibly empty), and a $\pi^b \in \text{Sym}(\delta^b)$ such that $\pi^b \upharpoonright \zeta \in \text{Sym}(\zeta)$ for all $\zeta \in C^b$.
 - The set of initial segments is called IS.
 - $b >_{\text{IS}} a$, if $\delta^b > \delta^a$, $\delta^a \in C^b$, $C^b \cap \delta^a = C^a$, and $\pi^b \upharpoonright \delta^a = \pi^a$.

 - $b \ge_{\mathrm{IS}} a$ if $b >_{\mathrm{IS}} a$ or b = a. For $\zeta \in C^b$, we set $I^b_{\zeta} := I^*(C^b \subseteq \delta^b, \zeta)$.

So the I_{ζ}^{b} form an increasing interval partition of $\delta^{b} \setminus \min(C^{b})$, and $\pi^{b} \upharpoonright I_{\zeta}^{b} \in$ $\operatorname{Sym}(I_{\mathcal{C}}^{b}).$

 $\leq_{\rm IS}$ is a partial order.

Some trivialities:

Fact 4.2. Assume that $\overline{b} = (b_i)_{i < \xi}$, with $\xi \leq \lambda$ limit, is an $\langle IS \rangle$ -increasing sequence.

- (1) If $\xi < \lambda$, then the following $b_{\xi} \in IS$ is the \leq_{IS} -supremum of \bar{b} , and we call it "the limit" of \overline{b} : $\delta^{b_{\xi}} := \bigcup_{i < \xi} \delta^{b_i}, C^{b_{\xi}} := \bigcup_{i < \xi} C^{b_i}$ and $\pi^{b_{\xi}} := \bigcup_{i < \xi} \pi^{b_i}$.
- (2) If $\xi = \lambda$, then to each $B \subseteq P(\lambda)$ there is a **b** \in AP as follows, which we call "a limit" of \bar{b} : $\mathbf{C}^{\mathbf{b}} := \bigcup_{i < \lambda} C^{b_i} \pi^{\mathbf{b}} := \bigcup_{i < \lambda} \pi^{b_i}$ and $\mathbf{B}^{\mathbf{b}} := B$.

Let us call an $<_{\rm IS}$ -increasing sequence \bar{b} "continuous" if b_{γ} is the limit of $(b_{\alpha})_{\alpha < \gamma}$ for all limits $\gamma < \delta$. We will only use continuous sequences.

Definition 4.3. Let $\mathbf{a} \in AP_{<\lambda}$ and $b \in IS$ with $\delta^b \in \mathbf{C}^{\mathbf{a}}$. We say $c >_{\mathbf{a}} b$, if the following holds:

- $c >_{\text{IS}} b$.
- $(C^c \cup \{\delta^c\}) \setminus \delta^b \subseteq \mathbf{C}^{\mathbf{a}}.$
- For all $\zeta \in C^c \setminus \overline{\delta^b}$, $\pi^c \upharpoonright I_{\zeta}^{\mathbf{a}} = \pi^{\mathbf{a}} \upharpoonright I_{\zeta}^{\mathbf{a}}$.
- For all $A \in \mathbf{B}^{\mathbf{a}}, \pi^{c}[A'] = \pi^{\mathbf{a}}[A']$ where we set $A' := A \cap \delta^{c} \setminus \delta^{b}$.

For a short $\bar{\mathbf{a}}$ (with index set J) we say $c >_{\bar{\mathbf{a}}} b$ if $c >_{\mathbf{a}_i} b$ for all $i \in J$.

Lemma 4.4. Let \mathbf{a}, \mathbf{b} in $AP_{<\lambda}$ and c, d_i $(i < \lambda)$ in IS.

4

5

- (1) $<_{\mathbf{a}}$ is a partial order
- (2) If $\zeta < \lambda$ and $(d_i)_{i \in \zeta}$ is a >_{IS}-increasing sequence such that $d_i >_{\mathbf{a}} c$ for all $i < \zeta$, then also the limit d_{ζ} satisfies $d_{\zeta} >_{\mathbf{a}} c$.
- (3) If $\mathbf{b} >_{\delta^c} \mathbf{a}$, then $d >_{\mathbf{b}} c$ implies $d >_{\mathbf{a}} c$.
- (4) Assume $\bar{c} := (c_i)_{i \in \lambda}$ is a continuous increasing sequence in IS such that for some $i_0 < \lambda$ we have $c_i <_{\mathbf{a}} c_{i+1}$ for all $i > i_0$.

Then any limit $\mathbf{c} \in AP$ of the \bar{c} with $\mathbf{B}^{\mathbf{c}} \supseteq \mathbf{B}^{\mathbf{a}}$ satisfies $\mathbf{c} >_{AP} \mathbf{a}$.

(5) Let $\bar{\mathbf{a}}$ be short, $b \in \mathrm{IS}$, δ^b good for $\bar{\mathbf{a}}$ and $E \subseteq \lambda$ club. Then there is a $c >_{\bar{\mathbf{a}}} b$ with $\delta^c \in E$ and $C^c = C^b \cup \{\delta^b\}$

Proof. For (5), use (the proof of) Lemma 3.10: Pick any $\delta^c \in D \cap E \setminus (\delta^b + 1)$ and set $C^c = C^b \cup \{\delta^b\}$ and $\pi^c = \pi^{\lim} \upharpoonright \delta^c$.

The rest is straightforward.

We now turn to spoiling (f, A):

Definition 4.5. Given $f \in \text{Sym}(\lambda)$ and $A \in [\lambda]^{\lambda}$, we define $c >^{f,A} b$ by: $c >_{\text{IS}} b$, $f \upharpoonright \delta^c \in \text{Sym}(\delta^c)$, and there is a $\xi^* \in A \cap \delta^c \setminus \delta^b$ with $f(\xi^*) \neq \pi^c(\xi^*)$. We write $c >_{\bar{\mathbf{a}}}^{f,A} b$ for: $c >_{\bar{\mathbf{a}}} b \& c >^{f,A} b$

Lemma 4.6. Assume $(b_i)_{i \in \lambda}$ is $\leq_I S$ -increasing such that unboundedly often $b_{i+1} >^{f,A} b_i$. Then for some $A' \in [A]^{\lambda}$, every limit **b** of $(b_i)_{i \in \lambda}$ with $A' \in \mathbf{B}^{\mathbf{b}}$ spoils (f, A).

Proof. By taking a subsequence, we can assume that for all odd i (i.e., $i = \delta + 2n + 1$ with δ limit or 0 and $n \in \omega$) $b_{i+1} >^{f,A} b_i$.

For *i* odd, set $I_i := \delta^{b_{i+1}} \setminus \delta^{b_i}$ and let $\xi_i \in I_i$ satisfy $f(\xi_i) \neq \pi^{b_{i+1}}(\xi_i) = \pi^{\mathbf{b}}(\xi_i)$. If *i* is odd, then $\pi^{\mathbf{b}} \upharpoonright I_i \in \text{Sym}(I_i)$ and $f \upharpoonright \delta^{b_{i+1}} \in \text{Sym}(\delta^{b_{i+1}})$.

So if i < j are both odd, then $f(\zeta_j) > \delta^{b_{i+1}} > \pi^{\mathbf{b}}(\zeta_i)$; and if j < k are both odd then $f(\zeta_j) < \delta^{b_j} \leq \pi^{\mathbf{b}}(\zeta_k)$. This means that $f(\zeta_j)$ is different to all $\pi^{\mathbf{b}}(\zeta_i)$ for i odd.

So we can set $A' = \{\zeta_j : j \text{ odd}\}$ and get that f[A'] is disjoint to $\pi^{\mathbf{b}}[A']$. So **b** with A' added to **B** spoils (f, A).

Lemma 4.7. If $\bar{\mathbf{a}}$ is short, $b \in \mathrm{IS}$, δ^b good for $\bar{\mathbf{a}}$, $f \in \mathrm{Sym}(\lambda)$ and $A \in [\lambda]^{\lambda}$, then there is some $d >_{\bar{\mathbf{a}}}^{f,A} b$.

Proof. Let $\mathbf{B} := \bigcup_{i \in J} \mathbf{B}^{\mathbf{a}_i}$. Let $\zeta_0 < \lambda$ be the supremum of all $\mathbf{C}^{\mathbf{a}_i}$ -successors of δ^b . Set $E := \{\zeta \in \lambda : f \upharpoonright \zeta \in \operatorname{Sym}(\zeta)\}$ (a club-set). Pick $\zeta_1 \in E$ such that $|A \cap (\zeta_1 \setminus \zeta_0)| > |2^{\mathbf{B}}|$. Pick $c >_{\bar{\mathbf{a}}} b$ with $\delta^c \in E \setminus \zeta_1$ and such that $C^c = C^b \cup \{\delta^b\}$.

Set $I := \delta^c \setminus \zeta_0$. For α, β in $I \cap A$ set $\alpha \sim \beta$ iff $(\forall A \in \mathbf{B}) (\alpha \in A \leftrightarrow \beta \in A)$. As there are at most $|2^{\mathbf{B}}|$ many equivalence classes, there have to be $\beta_0 \neq \beta_1$ in $I \cap A$ with $\beta_0 \sim \beta_1$.

If $\pi^{c}(\beta_{i}) \neq f(\beta_{i})$ for i = 0 or i = 1, set d := c. Otherwise, defines d as follows: $\begin{cases} \pi^{c}(\beta_{1}) & \text{if } \alpha = \beta_{0}, \end{cases}$

$$\delta^d = \delta^c, \ C^d = C^c, \ \text{and} \ \pi^d(\alpha) := \begin{cases} \pi^c(\beta_0) & \text{if } \alpha = \beta_1, \\ \pi^c(\alpha) & \text{otherwise.} \end{cases}$$

Set $I := \delta^d \setminus \delta^b$. As $\beta_0 \sim \beta_1$ we have $\pi^d[A \cap I] = \pi^c[A \cap I] = \pi^{\mathbf{a}_i}[A \cap I]$ for all $i \in J$ and $A \in \mathbf{B}^{\mathbf{a}_i}$ (as $c >_{\bar{\mathbf{a}}} b$).

And as the β_0, β_1 are above ζ_0 , and $I^{\mathbf{a}_i}_{\delta b}$ is below ζ_0 for all $i \in J$, we have $\pi^d \upharpoonright I^{\mathbf{a}_i}_{\delta^b} = \pi^c \upharpoonright I^{\mathbf{a}_i}_{\delta^b} = \pi^{\mathbf{a}_i} \upharpoonright I^{\mathbf{a}_i}_{\delta^b}$. So $d >_{\bar{\mathbf{a}}} b$.

5. $2^{\lambda} = \lambda^{+}$ for λ inaccessible implies a nowhere trivial automorphism

Lemma 5.1. Every increasing sequence in AP_{λ} of length $<\lambda^+$ has an upper bound. Proof. We can assume without loss of generality that the increasing sequence is $\bar{a} := (\mathbf{a}_i)_{i \in \xi}$ with $\xi \leq \lambda$.

For $i < \xi$, enumerate¹ $\mathbf{B}^{\mathbf{a}_i}$ as $\{x_i^j : j \le \lambda\}$, and set $B_i^j := \{x_i^k : k \le j\}$ for $j < \lambda$. We enumerate in a way so that the B_i^j are increasing with $i < \xi$. Let \mathbf{a}_i^j be \mathbf{a}_i with **B** replaced by B_i^j , and for $\ell < \lambda$ set $\bar{\mathbf{a}}^\ell := (\mathbf{a}_k^\ell)_{k < \min(\ell, \xi)}$. Note that $\bar{\mathbf{a}}^\ell$ is short.

 $\mathbf{c} \in AP$ is an upper bound of $\bar{\mathbf{a}}$ iff it is an upper bound of all \mathbf{a}_k^{ℓ} for $\ell < \lambda$ and $k < \min(\ell, \xi)$.

We now construct by induction on $\ell < \lambda$ a $<_{\text{IS}}$ -increasing continuous sequence $(c^{\ell})_{\ell \in \lambda}$, such that $\delta^{c^{\ell}}$ is $\bar{\mathbf{a}}^{\ell}$ -good:

- At limits γ we let c^{γ} be the limit of the $(c^k)_{k < \gamma}$, and note that (by induction) its height it is $\bar{\mathbf{a}}^{\gamma}$ -good.
- For $j = \ell + 1$, let *E* be the club set of $\bar{\mathbf{a}}^{\ell+1}$ -good ordinals, and choose, as in Lemma 4.4(5) $c^{\ell+1} >_{\bar{\mathbf{a}}^{\ell}} c^{\ell}$ with $\delta^{c^{\ell+1}} \in E$.

Let **c** be the limit of the c^{ℓ} with $\mathbf{B}^{\mathbf{c}} := \bigcup_{i < \xi} \mathbf{B}^{\mathbf{a}_i}$.

We claim that $\mathbf{c} \geq_{\mathrm{AP}} \mathbf{a}_j^{\ell}$ for all $\ell < \lambda$ and $j < \min(\ell, \xi)$. Assume that $k > \max(i, j)$.

• By Lemma 4.4(3):

 $\mathbf{6}$

 δ^{c^k} (which is $\bar{\mathbf{a}}^k$ -good and so, by definition, \mathbf{a}^k_j -good) is \mathbf{a}^ℓ_j -good, as $\mathbf{a}^k_j >_{\delta^{c^k}} \mathbf{a}^\ell_j$.

Also,
$$c^{k+1} >_{\bar{\mathbf{a}}^k} c^k$$
, so (by definition) $c^{k+1} >_{\mathbf{a}^k_j} c^k$, and so $c^{k+1} >_{\mathbf{a}^\ell_j} c^k$.

• By Lemma 4.4(4) we get $\mathbf{c} >_{\mathrm{AP}} \mathbf{a}_{j}^{\ell}$, as required.

Lemma 5.2. Given $\mathbf{a} \in AP_{\lambda}$, $f \in Sym(\lambda)$ and $A \in [\lambda]^{\lambda}$, there is a $\mathbf{b} \geq_{AP} \mathbf{a}$ which is in AP_{λ} and spoils (f, A).

Proof. Enumerate $\mathbf{B}^{\mathbf{a}}$ as $\{x^j : j \in \lambda\}$ and let \mathbf{a}^j be \mathbf{a} with \mathbf{B} replaced by $\{x^i : i < j\}$. So $\mathbf{a}^j \in AP_{<\lambda}$. We construct a continuous increasing sequence b^i $(i < \lambda)$ in IS such that δ^{b^i} is \mathbf{a}^i -good: Given b^i , we find $b^{i+1} >_{\mathbf{a}^i}^{f,A} b^i$ as in Lemma 4.7. Let \mathbf{b} be the limit of the b^i with $\mathbf{B}^{\mathbf{b}} = \mathbf{B}^{\mathbf{a}} \cup \{A'\}$ as in Lemma 4.6.

And $\mathbf{b} >_A P \mathbf{a}^j$ for all $j < \lambda$ and therefore $\mathbf{b} >_{AP} \mathbf{a}$.

We can now easily show:

Theorem 5.3. If λ is (strongly) inaccessible and $2^{\lambda} = \lambda^+$, then there is a nowhere trivial automorphism of the Boolean algebra $\mathcal{P}(\lambda)/[\lambda]^{<\lambda}$.

Proof. We construct, by induction on $i \in \lambda^+$, an increasing chain of \mathbf{a}_i in AP_{λ} , such that:

- For limit i, we take limits according to Lemma 5.1.
- For odd successors $i = j + 1 = \delta + 2n + 1$ (δ limit, $n \in \omega$), pick by bookkeeping some X_j and let \mathbf{a}_{j+1} be the same as \mathbf{a}_j but with X_j and $(\pi^{\mathbf{a}_j})^{-1}[X_j]$ added to **B**.
- For even successors $i = j + 1 = \delta + 2n + 2$, we pick by book-keeping an $f_j \in \text{Sym}(\lambda)$ and an $A_j \in [\lambda]^{\lambda}$. Then we choose $\mathbf{a}_{j+1} \geq_{\text{AP}} \mathbf{a}_j$ spoiling (f_j, A_j) , using Lemma 5.2.

¹with lots of repetitions

 $\overline{7}$

Then $\tilde{\phi} := \bigcup_{i < \lambda} \tilde{\pi}^{\mathbf{a}_i}$ is a nowhere trivial automorphism according to Fact 3.6. \Box

6. Forcing a nowhere trivial automorphism with $2^{\lambda} > \lambda^+$, λ inaccessible

Theorem 6.1. Assume λ is inaccessible, $2^{\lambda} = \lambda^+$ and $\mu > \lambda^+$ is regular. Then there is a cofinality preserving ($\langle \lambda$ -closed and λ^+ -cc) poset which forces: $2^{\lambda} = \mu$, and there is a nowhere trivial automorphism of $\mathcal{P}(\lambda)/[\lambda]^{\langle \lambda}$.

For the rest of this section we fix a μ as in the lemma.

We will construct a $\langle \lambda$ -support iteration $(P_{\alpha}, Q_{\alpha})_{\alpha < \mu}$. We call the final limit P. We denote the P_{α} -extension $V[G_{\alpha}]$ by V_{α} .

Each Q_{α} and therefore also each P_{α} will be $<\lambda$ -closed.

So $x \in AP$, $x \leq_{AP} y$, as well as IS (as set) are absolute between P_{α} -extensions (and $|IS| = \lambda$).

Each Q_{α} will add a $\mathbf{a}_{\alpha}^* \in AP$, such that the \mathbf{a}_{α}^* are $<_{AP}$ -increasing in α .

By induction we assume we live in the P_{α} -extension V_{α} where we already have the increasing sequence $(\mathbf{a}_i^*)_{i < \alpha}$. (We do not claim that this sequence has an upper bound in V_{α} .)

We now define Q_{α} , which we will just call Q to improve readability.

Definition 6.2. $q \in Q$ consists of:

- (1) A $b^q \in IS$, also called "trunk of q". We also write δ^q , $\pi^q C^q$ and I^q_β instead of δ^{b^q} etc.
- (2) A set $X^q \in [\alpha]^{<\lambda}$, and for $\beta \in X^q$, a set $\mathbf{B}^q_{\beta} \in [\mathbf{B}^{\mathbf{a}^*_{\beta}}]^{<\lambda}$, such that the \mathbf{B}^q_{β} are increasing in β .
- (3) For $\beta \in X^q$ set \mathbf{a}_{β}^q to be \mathbf{a}_{β}^* with **B** replaced by \mathbf{B}_{β}^q . Set $\bar{\mathbf{a}}^q := (\mathbf{a}_{\beta}^q)_{\beta \in X^q}$ (which is short).
- (4) We require δ^{b^q} to be good for $\bar{\mathbf{a}}^q$.

("Short" and "good" are defined in Definition 3.8.) As we use Q as forcing poset, we follow the notation that $r \leq_Q q$ means that r is stronger than q (whereas in $<_{AP}$ and $<_{IS}$ the stronger object is the larger one).

Definition 6.3. $r \leq_Q q$ if:

(1) $b^r \geq_{\bar{\mathbf{a}}^q} b^q$ (see Definition 4.3). (2) $X^r \supseteq X^q$, and $\mathbf{B}^r_\beta \supseteq \mathbf{B}^q_\beta$ for $\beta \in X^q$.

The following follows immediately from the definitions:

Fact 6.4. Assume that $r \leq_Q q$, $b \in IS$ and that δ^b is good for $\bar{\mathbf{a}}^r$. Then $c \geq_{\bar{\mathbf{a}}^r} b$ implies $c \geq_{\bar{\mathbf{a}}^q} b$.

This implies that \leq_Q is transitive. (It even is a partial order.)

Lemma 6.5. For $q \in Q$, the following holds (in V_{α}): Let $E \subseteq \lambda$ be club.

- (1) For $\beta < \alpha$ and $A \in \mathbf{B}^{\mathbf{a}^*_{\beta}}$ there is an $r <_Q q$ with $\delta^r \in E, \ \beta \in X^r$ and $A \in \mathbf{B}^r_{\beta}$.
- (2) For any $A \in [\lambda]^{\lambda}$ and $f \in \text{Sym}(\lambda)$ (both in V_{α}) there is an $r \leq_Q q$ with $b^r <^{f,A} b^q$.

- (3) Q is λ -centered, witnessed by the function that maps q to its trunk, b^q . (Actually, even $\langle \lambda \rangle$ many conditions with the same trunk have lower bound.)
- (4) Q_{α} is $<\lambda$ -closed.

Moreover, a sequence $(q_i)_{i \in \xi}$ ($\xi < \lambda$) has a canonical limit r, and the trunk of r is the union of the trunks of the q_i .

Proof. (1): Extend $\bar{\mathbf{a}}^q$ in the obvious way to $\bar{\mathbf{a}}^r$: Add β to the index set, set $\mathbf{B}_{\beta}^{r} := \{A\} \cup \bigcup_{\zeta \in X^{q} \cap (\beta+1)} \mathbf{B}_{\zeta}^{q}, \text{ and add } A \text{ to all } \mathbf{B}_{\zeta}^{q} \text{ for } \zeta \in X^{q} \setminus \beta. \text{ Let } E' := \{\zeta \in \lambda : \zeta \text{ good for } \bar{\mathbf{a}}^{r}\}. \text{ Then } E' \text{ is club according to Fact 3.9, so we can use}$ Lemma 4.4(5) to find $b^r >_{\bar{\mathbf{a}}^q} b^q$ with $\delta^r \in E \cap E'$.

(2) This is Lemma 4.7.

(3) Let $(q_i)_{i \in \mu}$, $\mu < \lambda$ all have the same trunk b. Then the following r is a condition in Q: $b^r = b$, $X^r = \bigcup_{i < \mu} X^{q_i}$ and $B^r_{\zeta} = \bigcup_{i < \mu} {}_{\& \zeta \in X^{q_i}} B^{q_i}_{\zeta}$. (4) Let $(q_i)_{i < \zeta}$ with $\zeta < \lambda$ be $<_Q$ -decreasing. Then the obvious union r is an

element of Q and stronger than each q_i :

 b^r is the union of the b^{q_i} , as in Fact 4.2, and $X^r := \bigcup_{i < \zeta} X^{q_i}$ and $\mathbf{B}^r_{\beta} :=$ $\bigcup_{i<\zeta,\beta\in X^{q_i}}\mathbf{B}_{\beta}^{q_i}$ for each $\beta\in X^r.$

Then δ^r is good for \mathbf{a}^r_{β} for $\beta \in X^r$: It is enough to show that δ^r is good for all $\mathbf{a}_{\beta}^{q_i}$ (for sufficiently large *i*). Fix such an *i*. If j > i, then δ^{q_j} is good for $\bar{\mathbf{a}}^{q_j}$ and therefore for $\mathbf{a}_{\beta}^{q_j}$ and therefore for $\mathbf{a}_{\beta}^{q_i}$. So the limit δ^r is good as well.

Similarly one can argue that $b^r >_{\bar{\mathbf{a}}^{q_i}} b^{q_i}$ for all $i < \zeta$.

Definition 6.6. Let $G(\alpha)$ be Q_{α} -generic. We define \mathbf{a}_{α}^{*} (in $V_{\alpha+1}$) as follows: $\mathbf{C}^{\mathbf{a}^*_{\alpha}} := \bigcup_{q \in G(\alpha)} C^q, \, \boldsymbol{\pi}^{\mathbf{a}^*_{\alpha}} := \bigcup_{q \in G(\alpha)} \pi^q, \, \text{and} \, \mathbf{B}^{\mathbf{a}^*_{\alpha}} := P(\lambda).$

Lemma 6.7. $P_{\alpha+1}$ forces:

- (1) $\mathbf{a}_{\alpha}^* >_{\mathrm{AP}} \mathbf{a}_{\beta}^*$ for all $\beta < \alpha$. (2) \mathbf{a}_{α}^* spoils (f, A) for all $(f, A) \in V_{\alpha}$.

The proof consists of straightforward density arguments:

Proof. For (1) we know that by there is some $q \in G(\alpha)$ with $\beta \in X^q$. This implies that $\mathbf{C}^{\mathbf{a}^*_{\alpha}} \subseteq \mathbf{C}^{\mathbf{a}^*_{\beta}}$ above δ^q and that $\boldsymbol{\pi}^{\mathbf{a}^*_{\alpha}} \upharpoonright I_{\zeta}^{\mathbf{a}^*_{\beta}} = \boldsymbol{\pi}^{\mathbf{a}^*_{\beta}} \upharpoonright I_{\zeta}^{\mathbf{a}^*_{\beta}}$ for all $\zeta \in \mathbf{C}^{\mathbf{a}^*_{\beta}} \setminus \delta^q$. We can also assume that a given $A \in \mathbf{B}^{\mathbf{a}^*_{\beta}}$ is in \mathbf{B}^q_{β} , which implies that $\pi^{\mathbf{a}^*_{\alpha}}[A] = \pi^{\mathbf{a}^*_{\beta}}[A]$ above δ^q .

For (2) and $(f, A) \in V_{\alpha}$ we know by Lemma 6.5(2) that for $q \in G(\alpha)$ of unbounded heights there are r(q) in $G(\alpha)$ such that $b^{r(q)} > fA b^{q}$. I.e., in $V_{\alpha+1}$, \mathbf{a}_{α}^{*} is a limit of an $<_{\rm IS}$ -increasing sequence as in Lemma 4.6, therefore \mathbf{a}^*_{α} spoils (f, A)(as A' certainly is in $\mathbf{B}^{\mathbf{a}^*_{\alpha}} = P(\lambda)$).

So P adds a sequence $(\mathbf{a}_{\alpha}^*)_{\alpha < \mu}$ that we can use in Fact 3.6 to get a nowhere trivial automorphism. We will now show that P is λ^+ -cc, which finishes the proof of Theorem 6.1.

Lemma 6.8. Set $t(p) := (b^{p(\alpha)})_{\alpha \in \text{dom}(p)}$ (i.e., the sequence of trunks). Then the following set D is dense: p in D if there is an $x \in V$ such that the empty condition forces t(p) = x.

Proof. We claim that the lemma holds for P_{α} , by induction on P_{α} . Successors and limits of cofinality $\geq \lambda$ are clear.

8

Let α be a limit with cofinality $\kappa < \lambda$, and $(\alpha_i)_{i \in \kappa}$ cofinal in α , $\alpha_0 = 0$. Set $D_j := D \cap P_{\alpha_j}$ (by induction dense in P_{α_j}). We construct by induction on $j \in \kappa$ a decreasing sequence $p_j \in P_{\alpha}$ such that $p_0 = p$ and $p_j \upharpoonright \alpha_j \in D$:

Successors: Given p_j , we find $r \leq p_j \upharpoonright \alpha_{j+1}$ in D_{j+1} and set $p_{j+1} := r \land p_j$ (which is the same as $r \land p$).

Limits: Given $(p_i)_{i < \xi}$ with $\xi \le \kappa$, let p_{ξ} be the pointwise canonical limit. Note that we can calculate (in V) each $p_{\xi}(\beta)$ from the sequence $(p_i(\beta))_{i < \xi}$ (it is just the union).

Lemma 6.9. (Assuming $2^{\lambda} = \lambda^+$ in the ground model.) P is λ^+ -cc.

Proof. Assume $(a_i)_{i \in \lambda^+}$ is a sequence in P. For every a_i find an $a'_i \leq a$ in D. By Fodor (or the Delta-system lemma) there is an $X \subseteq \lambda^+$ of size λ^+ such that $\{\operatorname{dom}(a'_i) : i \in X\}$ form a Delta system with heart Δ , and furthermore we can assume that $t(a'_i) \upharpoonright \Delta$ (the sequence of trunks restricted to Δ) is the same for all $i \in X$. (There are $\lambda^{|\Delta|} = \lambda < \lambda^+$ many such restrictions.) Then for i, j in X, the conditions a'_i and a'_i (and therefore also a_i and a_j) are compatible.

Remark 6.10. Generally, preserving λ^+ -cc for $\lambda > \omega_1$ is much more cumbersome than for $\lambda = \omega$, as there is no obvious universal theorem analogous to "the finite support iteration of ccc forcings is ccc". In our case, it was very easy to show λ^+ -cc manually. However, we could have used existing iteration theorems. We give two examples (but there surely are many more). Note that the following theorems do not require λ to be inaccessible.

(1) From [Shi99] (generalising the $\lambda = \aleph_1$ case from [Bau83, Lem. 4.1]):

- Definition [Shi99, p. 237]: Q is λ-centered closed, if a centered subset D of Q of size <λ has a lower bound.
- Lemma [Shi99, p. 237]: Assume $2^{<\lambda} = \lambda$. Let P be a $<\lambda$ -support iteration such that each iterand is (forced to be) λ -linked and λ -centered closed. Then P is λ^+ -cc.

It is easy to see that our Q satisfies the requirements (Q is even λ -centered and " λ -linked closed").

- (2) From [BGS21] (generalizing the $\lambda = \aleph_1$ case from [She78, 3.1]):
 - [BGS21, Def. 2.2.2]: Q is "stationary λ^+ -Knaster", if for every sequence $(p_i)_{i<\lambda^+}$ in Q there exists a club $E \subseteq \lambda^+$ and a regressive function f on $E \cap S_{\lambda}^{\lambda^+}$ such that p_i and p_j are compatible whenever f(i) = f(j).
 - [BGS21, Lem. 2.2.5]: Assume that P is a $<\lambda$ -support iteration of iterands that all are: stationary λ^+ -Knaster, strategically $<\lambda$ -closed, and any two compatible conditions have a greatest lower bound, as do decreasing ω sequences. Then P is stationary λ^+ -Knaster.

Note that our Q satisfies the requirements, and that our proof of λ^+ -cc actually shows stationary λ^+ -Knaster.

References

- [Bau83] James E. Baumgartner, *Iterated forcing*, Surveys in set theory, London Math. Soc. Lecture Note Ser., vol. 87, Cambridge Univ. Press, Cambridge, 1983, pp. 1–59. MR 823775
- [BGS21] Thomas Baumhauer, Martin Goldstern, and Saharon Shelah, [Sh:1144] The higher Cichoń diagram, Fund. Math. 252 (2021), no. 3, 241–314, arXiv: 1806.08583 MR4178868 DOI: 10.4064/fm666-4-2020.
- [FGVV24] Ilijas Farah, Saeed Ghasemi, Andrea Vaccaro, and Alessandro Vignati, Corona rigidity, 2024, arXiv:2201.11618.

9

- [KLS] Jakob Kellner, Anda Latif, and Saharon Shelah, [Sh:1224] On automorphisms of $\mathcal{P}(\lambda)/[\lambda]^{<\lambda}$, arXiv: 2206.02228.
- [LM16] Paul Larson and Paul McKenney, Automorphisms of $\mathcal{P}(\lambda)/\mathcal{I}_{\kappa}$, Fund. Math. 233 (2016), no. 3, 271–291. MR 3480121
- [She78] Saharon Shelah, [Sh:80] A weak generalization of MA to higher cardinals, Israel J. Math. 30 (1978), no. 4, 297–306, MR0505492 DOI: 10.1007/BF02761994.
- [Shi99] Masahiro Shioya, Partition properties of subsets of $\mathcal{P}_{\kappa}\lambda$, Fund. Math. **161** (1999), no. 3, 325–329. MR 1716019
- [SS] Saharon Shelah and Juris Steprāns, [Sh:990a] Non-trivial automorphisms of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ from variants of small dominating number (corrected), Corrected version of [Sh:990].
- [SS15] _____, [Sh:990] Non-trivial automorphisms of $\mathcal{P}(\mathbb{N})/[\mathbb{N}]^{<\aleph_0}$ from variants of small dominating number, Eur. J. Math. 1 (2015), no. 3, 534–544, MR3401904 DOI: 10.1007/s40879-015-0058-0.

TECHNISCHE UNIVERSITÄT WIEN (TU WIEN). Email address: jakob.kellner@tuwien.ac.at URL: http://dmg.tuwien.ac.at/kellner/

10

THE HEBREW UNIVERSITY OF JERUSALEM AND RUTGERS UNIVERSITY. Email address: shlhetal@mat.huji.ac.il URL: http://shelah.logic.at/