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1 Introduction

Questions as to whether a mapping on a quotient can be lifted to the original structure are abundant in math-
ematics (in algebraic topology, group theory, etc.). When the mapping cannot be (easily) lifted, then it is of
particular interest and intrinsic to the quotient structure. Our focus is on the power of a universal algebra
and its natural quotient — the set of “tails”.

Let k be an infinite regular cardinal and & a universal algebra. We take each ordinal to be the set of ordi-
nals strictly below it. Write g ~ 7 if g, 7 € U* are eventually equal (i.e. |[{a € k : o(a) # 7(a)}| < k) and write
p~: U* — 4*/~ for the quotient homomorphism. It is not difficult to produce a A € End(4(*) for which there is
no & € End(4*/~) which makes the following diagram commute:

g —L s gk

b

(LYY

This happens precisely when A makes essential use of early coordinates in defining cofinal coordinates. For
example, the homomorphism (Ag)(a) = o(0) for all @ € k doesnotdescend toan & € End(1*/~) when the under-
lying set of 4l has at least two elements. By contrast, it is generally less clear how to produce an € which is not
descended from a A. In the parlance of calculus, does there exist an epsilon for which there is no delta? We will
restrict our attention to the especially challenging situation where € is required to be a homomorphic projection
(€ o &€ = &). The following classical example will motivate us.

Example 1. Letting k = Ny, it is well known that the abelian group Z™ /~ has a direct summand which is iso-
morphic to Q. Taking € € End(Z~?/~) to be a homomorphic projection whose image is Q < Z™/~, we claim
thereisno Awith Eep. =p. oA
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To see this, suppose such a A exists. If A(Z*) is uncountable, then p.. - A(ZX?) ~ Q is uncountable since
p- has countable kernel. Thus A(Z0) is countable, hence free abelian [1, Theorem 3.8.2], and therefore finitely
generated [1, Lemmas 13.2.1, 13.2.3], and so p.. o ANZM) = Qis finitely generated, a contradiction.

It is not obvious how to produce such an £ when Xy is replaced with an uncountable regular cardinal x since
7 |~ will then be Rj-free abelian (hence cotorsion-free) [5], so in particular, we cannot project to a nonzero
divisible subgroup. A large cardinal will allow us to determine such a homomorphism, and the map will be of
the flavor of the next example.

Example 2. Let x be a measurable cardinal and U an ultrafilter on k witnessing this. Define A: ZX — Z* hy
letting Ao be the constant sequence (zo)qex, Where {a € k : g(a) = zo} € U. As Uis nonprincipal and k-complete,
A descends to a homomorphic projection € with € o p. = p. o A.

Of course, the € in Example 2 descends from a A, but the map is defined set-theoretically. Moreover, the con-
struction is quite general as one can replace Z with any 4{ having underlying set smaller than k.

We will provide two definitions toward stating the main theorem. Letting $( = (y, ), we say a subset Y < k
is a strong support for homomorphism ©: 4 - M if o [ Y = 7 [ Y implies 0 = 07 and, for each y € Y and
o € 4I¥, there exists x € y such that if 7 € 4" is given by

(a) =

ola) ifa+y,
X ifa=y,

then @ + ©7. A homomorphism may or may not have a strong support. If I is a field, then we can take

©: F* — F to be any homomorphism which extends the homomorphism 5, F — I which takes the sum of

the entries (such a 0 exists by choosing a basis By of P, IF and extending to a basis By 2 By of F* and defining

Ov = 0 for v € By \ By). The strong support for this © is the entire set k. On the other hand, if © is an extension

of the map which takes the constant (1r)qex to 1 and all elements of @, FF to O, then © has no strong support.
We say a homomorphism Av: [ x {{ — $lis a changing average if, for all xq, X1 € y, we have

Av(xo, x1) = Av(X1, Xo) and Av(Xo, Xo) = Xo

and there exist xy, x3 € y for which x; # Av(xy, x3) # X3.In this paper, we give two technical constructions which
specialize to the main result (see Remark 2.4 and Theorems 3.8 and 4.10). The map 7, : 4 — 4l is projection to
the a coordinate.

Main Theorem. Suppose that x is inaccessible with k™ = 2*. If 4 = (x, 8) is a universal algebra with 2 < |y| < Kk,
then there exists a homomorphic projection & € End(4*/~) such that

(1) the image of & is isomorphic to $1*/~; and

(2) for any A € End(4*) with € o p. = p~ o A, we have

{a € x : 4 o A has no strong support of cardinality < A}| = k

foreach A < k.
Additionally, if 4 has a changing average,
(3) there exists o € U such that, when &[o]. = [7]., we get

{a € k: a(a) = t(a)}] < k.

When there is no changing average, the projection € essentially spreads some coordinates sideways in a compli-
cated way. When there is a changing average, we obtain a projection which is more algebraically elaborate. Of
course, the theorem is most interesting for very specific algebras $l. For example, if {( is a slender abelian group
A (ie. A is torsion-free and includes no subgroups isomorphic to Q, Z*, or the p-adics ], with p a prime),
we know that every homomorphism from A* to A has a finite strong support when « is smaller than the least
measurable cardinal [1, Corollary 13.2.10]. The following is immediate.
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Corollary 1.1. Let A be a nontrivial slender abelian group. If k is an inaccessible which is smaller than any mea-
surable cardinal and k* = 2%, then there exists a homomorphism projection & € End(A*/~) for which there is no
A € End(AX) such that € o p. = p~ o A. Moreover; if A = 2A, then there is g € A for which

{a e k: a(a) = t(a)}| < k for E[o]. = [T]-.

For thelast sentence in the corollary, we use the average function Av(x, x1) = *7**. We maylet A in Corollary 1.1
be Z or more generally a free abelian group of rank less than , and for an application which involves the second
sentence of the corollary, we can take A = Z[%]. The hypothesis k* = 2¥ in the main theorem can be relaxed in
a technical way (see Remark 2.4). The assumptions on k used in our theorem (x is inaccessible and x* = 2¥) are
quite mild compared to that used in Example 2 (k is measurable); if u is the least measurable cardinal, then the
set of inaccessible cardinals smaller than y is of cardinality u (see [2, Lemma 10.21]).

The proof of our theorem will involve modifications of the main arguments of [3]. We give some prelimi-
naries in Section 2 and then give the first and second constructions in Sections 3 and 4, respectively.

2 Some preliminaries

The reader may reference [2] for most set-theoretic terminology. We review some notational conventions below.

Notation 2.1. We will let

« Card denote the class of cardinals;

e [XP={Y:YcX|Y =2}

o [XIf={Y:YCX|Y <A}

o P(X) be the powerset of X;

«  YX be the set of functions from Y to X;

» cof(a) denote the cofinality of ordinal a; and

o X =¢ Y mean that the symmetric difference (X U Y) \ (X n Y) has cardinality less than «.

Definition 2.2. For functions f, g € XCard, we let 9, denote the least cardinality of a family D < [T, [f(v)]5"
such that, for each F € [, f(v), there are G € D and p € k with F(v) € G(v) forv e k \ B.

For the following, see [4, Hypothesis 3.1].

Definition 2.3. For a cardinal x, we write 1(k, f, g) if f, g € *(x n Card) are such that f(v) and g(v) are infinite
regular for all v € k and

@) 250 < f(v);

(2) ifvev* then|v| < g(v) < g(v*);and

B) vy g=x".

Remark 2.4. It is clear from (1) and (2) of Definition 2.3 that if t(k, f, ), then v < k implies 2"! < k, and also
lim,_x g(v) = k. We will also want k to be a regular cardinal for our arguments, so our attention will be strictly
on k which is inaccessible.

When « is inaccessible with k* = 2X, we can take g and f to be any functions satisfying conditions (1)
and (2), take an enumeration {Hg}gexr Of [, f(V), €g: k — & to be a bijection for each ¢ € k*\ k, and
Gg(v) = {Hey,, : N € g(v)} to witness ¥(k, f, g).

It is also possible to have an inaccessible k and f, g such that 1(x, f, ) and k* < 2¥ (see [4, Corollary 3.2]).

The following appears as [4, Lemma 3.1]; we will provide the proof in extenso since that document has not been
refereed and also for the sake of completeness.

Lemma 2.5. Ifk is inaccessible and 1(k, f, g), then there is a collection {Z; ¢} pex+,cex Satisfying the following:
D) Zygcn

@ 1Zpcl < 80

) f{<{*thenZy; < Zpc;
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@ U(EK Z’?y( =
(8 ifnen®, thenthereis f ¢ k suchthat Zy- ;N n = Z, for { € k\ p; and
(6) ifneZy g thenZy-cnn==2Zy.

Proof. The sets Z, ; are defined by induction on the first parameter n € k. We let Zo; = 0 for all { € k (as
required by condition (1)). That (1)—(6) hold is easy to see. Suppose that Z, ; have been defined for all n € ¢ and
for all { € k. We will treat three cases.

Caseone: §{ = {* + 1. Inthis case, welet Zg ; = Zg« ¢ U {&*}. That (1) holds at this stage is quite clear, and (2) holds
because g(¢) is an infinite cardinal. Condition (3) is clear, and (4) holds at ¢ because (4) holds at &*.

Condition (5) is true by induction. Let n < & be given. If n < £* then by induction we select g € k such that
Zgonn=Zyc forall e x\p,and clearly Zg; nn =Zy ¢ for all { € k\ B. If n = &* then we can simply let
B = 0. Condition (6) holds by induction, looking at cases n < £* and n = ¢&.

Casetwo: §isalimit ordinal and cof(§) < k. Let {yy}y<cof(¢) be a strictly increasing sequence with sup,, ¢ofs) Vv =¢.
As (5) holds below ¢, for each pair v, v* with v < v* < cof(¢), we select - € k such that Z, . ; nyv = Zy, ¢
for all ¢ € K\ By,v+. As (4) holds below ¢, for each pair v, v* with v < v* < cof(¢), select €,,,+ € k such that
Vv € Zype e, - L€L S = SUP{By, v+ bycvr <cof(e) U {€v,v+ fuv <cof(s), and as cof () < k,wehave § € k.Ifa > §, wehave
for all v < v* < cof(&) that

VV € ZVV*+1y€V,V*+1 n yV* S ZVnu*+1,max(€v,v*+l’ﬁv*,v*+1) n VV* < ZVV*+1,n n yV* = ZVV* )

where the first two inclusions hold because condition (3) holds below &, and the last equality holds by choice
of By= v+4+1. Picking a € x \ (max(cof(¢), §)), we therefore know that, for all { > a and all v < v* < cof(¢), the
equality Z,,. ; Ny, = Zy, ¢ holds. Let

if{ <aq,
Zgg = .
Uv<cot®) Zy,¢ ¢ >a.

That (1) holds is clear. To see that condition (2) holds, we point out that

1Zg ¢ | < cof (§)g(0) < lalg({) < I¢18(¢) < &(0),

where the last inequality follows from condition (2) of f(x, f, 8). For condition (3), we notice that, given
¢ < ¢* <k, we either have { < a, in which case Zg; = 0 € Zg ¢+, or a < {, and since Z, ¢ < Zy, ¢~ holds for each
v < cof(£), we get Zg ; € Zg ¢+ Condition (4) is clear by induction. To check condition (5), we let n € & be given
and pick v < cof(¢) such that 5 < y,. As condition (5) holds at y,, we select § € k \ a such that { € k \ f implies
Zy,.c NN = Zy ¢ Recall that, by how a was selected, we have Z,, . ¢ N yy++ = Zy,.. ¢ forall v** < v* < cof(¢) and
¢ € x\ B.Then, for { € k\ B, we have

Zgenn = ( U ZVv*,() nn= ( U ZVv*,{) Nyvnn=2Zy,cnn=2Zyg.
v*<cof(§) v*<cof(§)
For condition (6), we suppose that n) € Z¢ ;. As Zg p # 0, we have ¢ > @,80 Zg¢ = Uy<cof(s) Zy,.¢- Select v < cof(§)
for which n € Zy, ;. Then Z,, N n = Z, ; since condition (6) holds at y,. As { € k \ B, we know that

Zy g VYyes =Zy,.. ¢ forallv™ < v* < cof(§),

and so

Zgenn = ( U Zyv*,() nn= ( U Zyv*,() NyvNn=2Zy,cnn=2Zyg
v*<cof(¢) v*<cof(¢)

and all conditions are satisfied.

Casethree: cof(§) = k. Wetake {y,}vex tobe a strictly increasing sequence such thatsup,,,. yv = §. Askisregular
and condition (5) holds below &, we can take {g}gcx to be a strictly increasing sequence of ordinals in k such
that fo = 0, and when v < 6, we have for all { > g that Zy, ; N yy = Zy, ;. Let Zg ; = Z), c for g < { < Bos1. We
check conditions (1)—(6).
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To see why (1) and (2) hold, let { € xbe given and take 6 € x to be the unique element such that o < { < Sg41,
and notice that

Zeg=Zyc Syo ¢ and |Zggl = [Zp, ¢l < 8(0).
For (3), welet { < {* < k and take g < { < Bo+1 and Bo- < {* < Bo-11.I£ 0 = 07, then

Ze g = Zyo.r S Zyge g+ = Zggr
since condition (3) holds below &, and if 6 < 6*, then
Zeg = Zygr S Zygor = ZLyge i Y9 S Zyge o+ = Zg g

For condition (4), we notice first that (s, Z¢x € € as condition (1) holds. For the reverse inclusion, we let a € ¢
be given. Select v € k such that a ¢ y,, and as condition (4) holds at y,, we select {* € k such that a € Z, .
Select v < 6 € k so that there exists {** € k with {** > {* and g < {** < Bg+1. Then

a€Zy, o € Zy oo = Zyggo MYy € Zyg e = Zeger < | Zeg

(e

For condition (5), we let n € £. Select 6 € k large enough that n € yg. As condition (5) holds at yg, we select
B € xsuchthat ¢ € x\ fimplies Zy, ; N n = Z, ;. Fixing { € k \ max(p, Bg), we select 0* € k with fg: < { < Bg+41.
Then 6 < 0* and Z¢ ; = Z),. ¢, o in particular,

Zng =Zyg¢ NN =Zypc NYo NN =Zgg N1,

To see condition (6), if § € Z¢; = Z), ¢, then

ZegNN=ZycNN=2Zy¢
since condition (6) holds below &, and all conditions hold. O

Definition 2.6. If 95 is an atomic Boolean algebra, we say that a function ®: 6 — B is a j-mapping if
@ ®-9=09;

(b) ®(Atoms(®B)) < Atoms(*B);

(c) @ [ (Atoms(*B) \ ®(Atoms(®5))) is a bijection with ®(Atoms(*83)); and

(d) 2(Jpgex A) = Ugex P(A) for any X < Atoms(‘B),

where Atoms(3) denotes the set of atoms of 8.

Now we give the crucial lemma from which the constructions will follow, which is a modification of the ideas
in [3].

Lemma 2.7. Assume K is inaccessible and t(x, f, g) and let {I,}yex be a partition of k such that |I,| = f(v).

Let p: k — K be defined by a € Iyq). For each v € k, write I, = Iy, U I, where |Ipy| = |I1y| = |Iv], and let

Yy: I, — I,y be a function such that Y, [ I,y is identity and ¢, [ Iy, is a bijection with I .
Then there exist {B¢v}eex+ vex and {P¢ y}eex+ vex SUch that

(1) Be,y is an atomic Boolean subalgebra of P(I,) and ®¢,: B¢y — By is a J-mapping for each ¢ € k* and
VEK;

(2) if & enex* thenthereisaf € k such that Bgy € By, and Oy, € Oy, forallv e k\ B;

(3) for A € P(k), thereare e k* and p € k withAnI, € Bey forallv e k\ B;

(4) for any collection {Fq}qex Of sets such that |Fq| < f(p(a)) and Fq < Ippq), there are ¢ € k*, p € k and
a sequence {ay}yex\g for which Fq, € Bg, and ay € Iy \ D¢y (Fg,).

Proof. Let {G¢}sex+ Witness 0y , = k™. For each v € k, let {Eg,y}geyro enumerate P(I,) and let {Lg,y}gex» enu-
merate all functions from Iy , to [Io,]<™.

We inductively define the {B¢}ecxt,vex and {®@gy}eext vex. Let {Zy c}yext,cex be the collection given by
Lemma 2.5. For v € k, we let By, = {0,1,, 1oy, 1y} and let ¥,,: By, — By, be the j-mapping induced by ¥,.
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Forv e k,let Bgy = By, and let @p, , be the empty mapping. Suppose that B¢, and ¢¢ , have been defined
for all { € n and v € k satisfying the following conditions:
(1) foréenandv ek,
(@ ¢¢gv: Dgy — Dg,y is such that
(D) @&y [ (Dgy NIpy)is abijection with Dy N 14y,
(i) @ev [ (Dgy N Iy)is the identity, and
(iii) for x € Dgy N 1oy, we have gy o (P | IO,v)_l o Qg v(X) = Yy(x);
(0) [Deyl < f(V);
() B¢,y is an atomic Boolean subalgebra of P(I,) such that
@) By, < Bey, and
(i) forall X € B¢, we have i, (X), P;1(X) € Be;
(d) Dgy e Bgy;
(e) |Atoms(B¢,)| < 28™);
(2) ifn € nand ¢ € Zz,y then
(@) Bgy < Byv;
(b) ¢E,v - ¢ﬁ,v;
() Wy < dgy C Oy, where g, B, — By is a j-mapping given by

ch,v(A) = ¢E,V(A n Df,v) u l/)v(A \Df,v)-

By condition (6) of Lemma 2.5 and induction hypothesis (2) (a), we see that if £ € £* and &, ¢* € Z,,y, then
By € By Moreover, because |Z, | < g(v), it follows from induction hypothesis (1) (e) that, letting

dnw={ N J©]je T] Atoms(B;v},

§eZpy §€Zpnu

we have
dnvl < (280)8M = 28M  for each v.

Furthermore, letting K , be the partition of I, generated by {Eg,,}occ, (v), We see also [K | < 2160 = 280,
We point out that the union Ufezn,v ¢¢,y is a function, for if £,&* € Zpy and £ € ¥, then Z; , N &* = Zg
(by condition (6) of Lemma 2.5), and by induction hypothesis (2) (b), we have ¢¢, < @¢- . By induction hypoth-
esis (1) (), we see that gz, , @¢,v has domain (Jgz, , D¢,y and moreover
(0] (UEGZW dev) | (Ufezqu D¢y nIyy) is a bijection with U&Z,”v Deynlyy;
(i) (UEEZW Oey) | (U&ZW D¢y N I4,y) is the identity; and
(iii) for x € UEeZn,v D¢y NIy, we have (Ufezw Oev)e (Yy T onv)‘l ° (UEEZW dev)(X) equal to Py (x).
We let
Dyy = U D¢y and w: ¥y T Iy \%) U U Pev.

E€Zyy EeZyy

Also, since f(v) is regular and | D¢, | < f(v) for all £, we have |D, | < f(v). Clearly, for x € Iy, we have

%° Wy T IO,V)_l °%(X) = Py(x).

We let Ay, be the partition of I, generated by v U Xy v U {Io,v, I1,v}, 50 [Ayvl < 285 As Apy,v is a partition
of I, for each x € Iy, there are unique Wy x, W1,x, Wy x, W3 x € Aj,, such that

e X€ Wy,

o Uy(x) e Wiy

Wy [ IO,V)_l o Ppv(x) € Wy y; and

.« Pu(0) € Wiy

Thus, for x € Iy, we let

Ax = Wox NP5 (W) 0 @™ @u(W2)) 0 @™ (Wa) N oy

and define Hy < P(Ioy) by Ho = {Ax}xen, - It is clear that 3y is a partition of Io y. Let (1 = {{)y(Ax)}xer,, and
Ay = Ho U Hy, and it is clear that A, , is a partition of I, and |A,,, | < 25,
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We note that, for any x € Ipy, we have ,(Ay) € H; (by definition of J(;) but also ¢, (Ax) € H1. To see why
this latter claim is true, we let x € I, be given and lety = (¥, [ Ip,) " o Gy,v (). We have

Wy [ o)™ o () = x.

Then Wox = Wz,y, Wiy = Wg,y, Wox = W()Jy, W3y = le)" It is readily seen that

Dn.v(Ax) = Gy (Wox N (Wix) 0 Gy~ Uy (W) N Gy~ (Wa) N 1o)

= @nv(Wox) N @pve Py | Iny) ™ (Wax)
N Py e (@n 1 Low) ™ Wv(Wa)) N @nv o (P [ o)™ (Wa)

= G0y (Wox) N v o Wy 1 Ton) ™ (Wix) N Pu(Wa) N Wiy

= onv(Way) N ppve Py | Tow) " (Wsy) N hy(Woy) N W,

=Yy o Wy 1 1o0) ™ (S (Way) N Gy o Yy | Tow) ™ (Way) N Pu(Woy) N Wiy)

= Pu(@v T Ton) ™ o @n,u(Way) N Wy [ Tow) ™" o dyw o (B T Ion) ™ (Wsy)
Ny 1 Top)™ o Yu(Woy) N Wy T Ton) ™ (Why))

= Yo((@y [ o)™ o Gnv(Way) 0 (@nv 1 Ton) ™ (Way) 0 Woy 0 (% [ Tow) ™ (Wiy))

= Yy (¥y" © $nv(W2y) 0 @™ (Way) N Woy 015 (Wiy) N 1o)

= Yo (@ @u(Way)) 0 @y ™ (Way) 0 Woy 051 (Way) N 1o)

= wv(Ay) € Hy.

It is similarly seen that if A € I, and A € Ay, then both (i, | Ip,)"1(A) € Ay and (¢,,,) H(A) € Apy. As
f(v)isregular and | A, | < 26 < f(v), we have some A, , € A, with|A, .| = f(v), and moreover, we can take
Ap,v € Io,y by replacing A, , with (¢, | Io,v)‘1 (Ap,v) if necessary.

We let B} € [1hy(A,,)]'9M). Select BY € [A,,]'™) such that the intersection ({ycp: Lo,v(X)) N BY = 0 for
all 6 € G,(v) and ¥, (B%) n B} = 0. Let B2 = (¥, [ Ip,,)"1(BL)) and B3 = 1,,(BY). Let

¢: BSUBLUB UBS - BlUB}

be a function such that
« ¢ I (B! uB})is the identity map;
« ¢ [ BYisabijection with B};
« ¢ | B?isthe bijection with B3 such that, for x € B2, we have ¢ o (¥, [ Xo,y)"! o ¢(x) = P ().
Now define
Dyv=[J DeyUBYUB,UB,UB;,
§eZyy

We point out that the sets BY, B, B2, B are pairwise disjoint by construction. Because
Dpv=DyyUBSUBLUB:UBS,

we have [Dj | < f(v).

Note that A, U ¥, (4,,) is disjoint from Ufezn,v Dg,y. To see this, given ¢ € Z, ,, we have by induction
hypothesis (1) (d) that D¢, € Bg,,, and we have already seen that if € {* € Z, , we have B¢, < B¢y, 50 in
particular, D¢y, is a union of elementsin g, . As |Aj v| = f(v) > [Dgy| and A,y is in the partition A, ,, we see that
Apv N Dgy = 0. Butalso ¥y (Ay,v) € Ay, and as [y (Ayv)| = f(v), we argue as before that ¢, (A,,v) N Dgy = 0.

Thus it is also the case that each of the sets BY), B}, B}, B} is disjoint from [ g7, , Dg,v- Let

Gny = U by U@

§ezyy

By construction, ¢, [ (Dy,v N Io,y) is a bijection with Dy, N I,y and @,y [ (Dy,v N I1,y) is the identity, and
forx € Dy N 1oy, wehave ¢,y o (Yy | Io,v)’l o Pp,v(X) = Yy(x). We have also seen that | Dy, | < f(v). Thus (1) (a)
and (1) (b) hold.
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Let %B,,, be the Boolean subalgebra of P(I,) generated by A, , U {BY, B, B2, B3}. It is easy to see by our
construction that 28, ,, is atomic with

Atoms(Bj ) = (Agy \ {Anv, Yv(Ap)) U{BY, B2, Ay \ (BS UB2), BL, B, Yu(A,0) \ (B) UB3)}
For A € Atoms(B,, ), we know if A ¢ Iy, then ¢,,(A) € Atoms(5,,), and if A ¢ I y, then
Wy [ Inv) M (A) € Atoms(B,,) and Y, (A) = A.

Also,
A= IO,v;
Acly,y,AcAtoms(B, ;)

80 By,y € By, and X € B, implies 1, (X), lj);l(X) € B,y (since this is true when X is an atom), so inductive
hypothesis (1) (c) holds. It is also clear thatif A € Atoms(5, ) with A € D, N Ioy, then ¢, (A) € Atoms(B, ),
and for A € Atoms(B,,,,) with A € D, , N I1,,, we have (¢ | (Dyv N1oy))"1(A) € Atoms(B, ).

We note that, for ¢ € Z,,,, we have B¢, < B, 1.e. (2) (a) holds as well, since by construction g,y < B,,.

For (1) (d), werecall thatif £, &* € Z, , with & € £*, wehave ¢ € Z,, N &* = Zg+ ,, and by induction hypothe-
ses (1) (c) and (2) (a), we have B¢, < B¢y and both are atomic. Therefore, when ¢* € Z, ,, we have D¢+, € B
(by hypothesis (1) (d)) and also gez,. , Dgv € B v, 50 Dee v \ (Ugez,., Dev) € Beev. Therefore,

Dpv=BSUB,UB:UB}U ( U (Df*,v v Y DE,V)) € By
& eZyy §€Zpxy

For (1) (e), we point out that [Atoms(B,,)| = [Aj | +4 < 28, and it is quite clear that ¢¢, < ¢y, for
¢ € Zy,y so that (2) (b) holds as well.

We must check (2) (c). Let ¢ € Z,, be given, along with A € B¢,. Then AnAy, =A,y or ANAy,, =0,
and similarly A n $,(A,) = Py (Ajyv). Therefore, A n (B U B2) = (BY U B2) or A n (B% U B2) = 0, and similarly
An(BLUB3) =Bl UBorAn (Bl uB3) = 0. Therefore,

d(An (BSUBLUB2UBS)) =y,(An (B UBLUB2UBY)).
We also have for &* € Z,, , \ ¢ that D+, \ D¢y € B¢y, and applying induction hypothesis (2) (c), we obtain

¢E*,V(A n (DE*,V \Df,v)) = l/)v(A n (DE*,V \ DE,V))-

Thus
Gpv(ANDyy) = deu(ANDey)U | ) de v(AN (Dgr v \ Dey)) U (AN (B UBY UBS UBY))
&reZyv\&
=¢ev(ANDey)U () Yu(AN(Dey\ Dey)) Uhy(AN (BY UB, UBLUBY))
& eZyu\§
= ¢E,V(A n Df,v) U l/)v(A n (Dn,v \ Df,v)),
and so

Dpv(A) = Ppv(ANDpy) UPy(A\Dyy)
= ¢ev(ANDgy) UPy(AN (Dyy\ Dgy)) Uhy(A\Dpy)
= @ev(ANDgy) Uhy(A\ D)
= d¢(4),

and so ®¢, ¢ @, ,. The fact that ®, ,, is a j-mapping is immediate from our observations on how ¢, , and ¥,
behave on Atoms(*5, ), and so (2) (c) holds, and all induction hypotheses hold.

Now we check that properties (1)-(4) in the statement of the lemma hold. Property (1) is immediate from
the construction. For property (2), we let £ € n € k* be given. By condition (4) of Lemma 2.5, we select § € k so
that ¢ € Z; g, and by condition (3) of Lemma 2.5, we see that, for v € k \ f, the membership ¢ € Z,, holds. By
induction hypotheses (2) (a) and (2) (b), we get that B¢, < B, and D¢, < @, , hold for v € x \ B.
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For property (3) of our lemma, we let A € P(x) be given. Let A n I, = Ey, , for each v € k. By the selection
of G, wepick ¢ € k" and € ksuch that 6, € Gg(v) forall v € k \ B. Then, by construction, we have Eg, , € B¢
forallv e k\B.

For property (4) of our lemma, we let {F}qex be a collection of sets such that |[Fy| < f(p(a)) and Fq < Io p(a)-
Then, for v € x, we have the function L, : Iy, — [I,,]" given by L, (a) = F,. Let {8,}ycx, where 6, € 2/,
be the sequence such that Lg,, = L,. Then, by the selection of G, there is {* € k™ and f* € k such that
0y € Gg- (v) for all v e k\ B*. Then, by construction, we see that, for v € x\ f*, we have nonempty pair-
wise disjoint atoms BY, B}, € B¢, with B) € Ipy, By, < I1y, @¢v(B)) = B, and (Ugep: Le,,v(X)) N BY = 0. Select
ay € BL. By statement (4), we select &** € k* and B** € k \ B* such that F,, € B+, for each v € k\ f**. Let
¢ =max{¢*, £**} + 1, and by conditions (3) and (4) of Lemma 2.5, select f € k \ B** suchthat&*, £** € Z¢ g. Then,
by induction hypotheses (2) (a) and (2) (b), we have for v € k \ pthat B¢- , Bg:+ y € Bey and Dg- , < Pg . Then,
in particular, for v € k \ B, we have a, ¢ ®¢,(Fq) since Fq, € Ip,y \ BY, @z, is a j-mapping, BY € Atoms(B;- ),
and ®¢, 2 D¢ . O

We remind the reader of some concepts introduced in the introduction and give some observations.

Definition 2.8. If k is a regular cardinal, we say functions gy, a1 € ¥y are eventually equal if
{a € k:gg(a) # or(a)} = 0.

Eventual equality determines an equivalence relation which we will write as gy ~ o1 and let ¥ y/~ denote the set
of equivalence classes. If [y| < k, then gy ~ o1 if and only if, for all x € y, we have g 1({x}) =x 0] l({x}). Weletp.
denote the function o — [g].. When y is the underlying set for a universal algebra 1, then ¥y is the underlying
set for the algebra 4" and the function p.. is a homomorphism from 4 to L(¢/~.

Definition 2.9. Let & = (y, 8) and M1 = (R, 8) be universal algebras and 0: 4 — 9 a homomorphism from
the power 4%, A subset Y € Z is a strong support for ®if ¢ [ Y = 7 | Y implies ®¢ = O7 and, for any y € ¥ and
o € 47, there exists some x € y such that 7 € 4 given by

) = a(z) ifz+y,
X ifz=y
has ©c + O7.

Observation 2.10. We point out that a strong support, if it exists, is unique provided y # 0. To see this, suppose
that Yy and Y; are strong supports for ©. If y € Yy \ Y3, then in particular, Z # 0, and as y + 0, we can select
0 € 4%, As Y, is a strong support, pick x € y such that

o(z) ifz ,
oy |0@ Hzy
X ifz=y
has ®c # 07, but as Y; is a strong supportand 7 [ Yo = o [ Y1, we have ©c = 07, a contradiction.

Observation 2.11. A homomorphic function 8: 4# — 9 with nonempty domain and strong support Y is con-
stantifand onlyif Y = 0. If y € Y, then we select ¢ in the domain of A and select x € y such that letting 7(y) = x
andt [ (Z\{y}) =0 [ (Z\{y}) gives O7 + Og, so A is not constant. On the other hand, if Y = ¢, then for c and 7
in the domain of ®, we get o [0 =7 [ 0,50 ©O0 = OT.

Lemma 2.12. Suppose that k is an infinite regular cardinal, i = (y, 8) with 1 < |y| < k, and

g —L s g

b

[TLYAN TN

is a commuting diagram. If ] < k is such that |J| = k and Y € k is a strong support for g o A for each a € |, then
Naey Ya = 0.
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Proof. Assume the hypotheses and suppose for contradiction that { € (,¢; Yq. Select xo € x and let o € 4" be
constantly xq. For each a € J, there exists some x, € y suchthatifz [ (x\ {¢}) =0 [ (x\ {¢}) and 7({) = Xg, then
(7Tq © A)O # (7T o A)T. As k is regular, there exist some J' ¢ J and x € y with |J'| = |J| = k, and for each a € ', we
have (17 o A)0 # (71q o A)T, where 7 [ (k\ {{}) = 0 [ (k\ {{}) and 7({) = x. Then, as |]'| = k, we get

&lo]. = [Ao]. # [AT]. = E[T].,

but of course, [7]. = [0]., a contradiction. O

3 First construction

We are now prepared to define the first homomorphic projection.

Construction 3.1. Suppose that « is inaccessible and t(x, f, £), and that 4l = (y, 8) is a universal algebra, with
2 < |yl < k. Take {Iy}yex, {Bev}eex+ ver, {Pev}eex+ ver> o,v}vex, and {I1y}vex as in Lemma 2.7.

Given o € ¥y, for each x € y, we select &, € k* and By € k such that ™2 ({x}) NI, € B, voralvex)\ Py
Let n € k* be greater than all elements in {{x}xc,. For each x € y, select By € k such that Be,v € By, and
®¢, v € Dy, forallv e k\ ). Select B € k which is greater than all elements in {By}xey U {B)}xey- Then we have
forallv e k\ fand x € y that o 1({x}) € Be, v € By, and Pg , € Dy . Let T € “y be such that

T {xH N1y = (07 ({xh) N Ioy) U @y v (07 (XD N 1o,y)

forall ve k\ B (define 7 | (UVGB I,)) arbitrarily). Let this function which assigns o to 7, defined via various
arbitrary choices for each o, be denoted G: {* — $I¥.

Lemma 3.2. The function G in Construction 3.1 gives a well-defined €y : 1%/~ — U*/~ which is a homomorphic
projection.

Proof. To see that the element 7 is well-defined up to ~, suppose that instead we select & €Kkt and_ﬂ_x €K
such that f1({x}) N1, € Bg vforallvex) E and select 7 € k* greater than all elements in {a_}xex, By such
that Bz, € By, and &z, < &, forallv e k'\ B, /_5' € k greater than all elements in {B_X}XEX u {ﬁ;}xex. Define
TeXybhy
T XD N1y = (67 ({x}) N Toy) U @gu(o(X3) N To,w)

forv e k\ pand define 7 | (UveB I,) arbitrarily.

Now select n € k* which is greater than both ny and 7. Select 8 € x large enough that B, , € By, @50 € Dyp,v,
By S By, and &5y € @y forallv e k\ B. Then, for v e k\ ﬁ_,we have N N

T NI = (67 (X)) N Tow) U @50 (07(1x) N 1o )
= (07 ({x}) N Iov) U @p (o ({x}) N 1o )
= ({x}),

andso 7 ~ T.
Notice also that if o ~ g1, then we select B e x\fsuchthatvex) E implies o~ Y({x}) NI, = o{l({x}) nli,.
Then a;l({x}) NI, e Bg yforallvek\pand x € y,andforall v e k\ a and x € y, we have

o7 ({x}) € B,y € Byy and D, S Dy y.
Then we define 7; € “y to be such that
M) N1y = (67 () N Io) U @ (07 (XD N 1py) forallvek\ B

andlet 7y | (Uveﬁ I,)) be arbitrary. Then it is clear that 77 | (Uvex\E L)=1] (Uvex\E I,),s0 T~ 1.

We let €p[0]. = [7].. We have seen that & is well-defined. To see that & o £y = &y, we point out that, for
o and 7 as above, we have 7 [ g lov = 0 [ Uyexg lo,v, and by how &, was defined, it is immediate that
&oltl. = [7]~.
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We now check that €y is a homomorphism. Let s(wy, . . ., wp_1) € S be given, together with [gp].,. .., [0n-1]~.
For each x € y, select {x € k* and Sy € k such that g;-1({x}) NI, € B¢, for all v € k \ By and 0 < i < n. Take
N € k* greater than sup{&y}xe,. For each x € y, select B}, € k such that B¢, , < B, forallv € k \ B}. Select f € k

greater than sup{Bx}xey U {Bi}xex-
For each 0 < i < n, we let 7; be given by

{ael,:ti(a)=x}=({a €lpy:gia) =xp)ud,v({a’ €Ip,:gia’)=x})

forxeyandvex\p,and 7 [ Uye plv is defined arbitrarily. We have &gy[o;]~ = [7;]~ for all i. Let ¢ be given
by{ael,:d(a)=x}={acl, :s(gp(a),...,on-1(a)) =x}forx e yandvek\f,and o [ Uveﬁ I, is arbitrary.
Thus [o].~ = s([gg]~, ..., [On-1]~).
Let 7 be given by
{ael,:t(a) =x}={ael, :s(t(a),...,Tn1(a)) = x}

forxeyandvex\fandz | Uveﬁ I, arbitrary, so s([7¢]~, ..., [Tn-1]~) = [7]~. Let T be given by
{ael,:T(a)=x} = ({a' €Loy:o(a) =x3ud,,({a’ € Lo, :a(a’) =x})

forxe yandvek\fand7 | Uveﬁ I, arbitrary, so that £y[a]. = [T]-~.

For x € y,welet Ny = {(Xo, ..., Xn-1) € ¥" : (X0, ..., Xp-1) = x} and note that, forafixedx € yandv € k \ 5,
we have
{ael,:(a) =x}={ael, :s(tg(a),...,n1(a)) = x}

={ael,: (to(q),...,Tn_1(a)) € Ny}

n-1
= U d ey :aid) =xihudyua’ € Iy : oi@’) = xi})

(XO »»»»» Xn—l)ENx i=0

= U ({a’ eloy: Z\:Gi(a') = xi}> U ‘I’q,v<{a' €lpy:

(X0,0+-s Xn-1)€Ny

n-1

i/z\ooi(a’) = Xi})

=({a' € Ioy : o(a") =xh u @y ({a’ € Iy : a(a’) = x})

={ael,:T(a) = x},
and so [7]. = [7]. and &g is a homomorphism. O

Lemma 3.3. Suppose that A: 4* — U such that p. o A = Eg o p.. If Y, s a strong support for 4 o A for each
acJck thenl{fae]: Y, =0} <k

Proof. We suppose on the contrary that |{a € J : Y, = 0}| = k, and without loss of generality, we replace J with
{a € J: Y, = 0}. Without loss of generality, we further replace J with a subset such that p [ J is injective while
maintaining |J| = k. By Observation 2.11, for each a € J, the function 4 o A is constant, say 7, o A is constantly
Xq. Using the fact that |y| > 2, we select x}, € y \ {x,}. Take g € {/¥ to have ¢ | I p(a) b€ constantly x}, and o is
defined arbitrarily elsewhere. Then, letting 7 € /¥ be such that &y[a]. = [7]., it is easily seen by the definition
of &p that

{a € ]: 7| Ipq is constantly Xz} = J,

but on the other hand, we have (74 o A)o = x, for every a € J so that &y[a]. = [7]~ # [Acg]., contradicting
PooA=Epop.. O

Lemma 3.4. Suppose that we have a homomorphism A: 4* — 4U* such that p.. » A = Eg ° p... Suppose also that
J € x with |J| = k, and for each v € | and each a € I,, the homomorphism 1, » A has strong support Y, with
|Yq4| < k. Then there exists J' < J with |]'| = k, and for all v € J' and a € I, we have Y, € Iy .

Proof. Assume the hypotheses. Since k is regular, we know for each v € J that |I, U{J,¢;, Yal < k. Then, by
Lemma 2.12, it is straightforward to select by induction a J"' ¢ J such that the collection {I,, U Uadv Yolver is
pairwise disjoint and |J"'| = k. Let J' = {v e J" : Yo c Iy, forall a € I,}.
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Suppose for contradiction that |J”" \ J'| = k. For each v € J" \ J', we select a,, € I,, such that Y4, ¢ Io,y, so let
ta, € Yo \ Io,y. Let xo € y and define o € U* to be the function which is constantly xo. For each t4,, select x;,, € y
such that if 7 agrees with o, except 7(tq,) = X¢,,, then (17q, e A)T # (74, ° A)o. Then, more generally, if 7 € L(* is
such that 7 [ Yq \ {tq,} is constantly xo and 7(ts,) = X¢,,, then (4, o A)T # (774, o A)o. Define 7o € 4" by

( ) Xtq, if Yy = tav,
Toly) = .
Xo  otherwise.

If we take 71 € 4" to be such that [71]. = €y[7o]~, then by the construction of €y, it is the case that
veJ"\J' iti(a) =xoforalla e I,} =< J" \ ],

but on the other hand, we know that (174, o A)To # Xo for all v € J" \ J' so that [A7g]~ # [71]~ = Eo[To]~ con-
tradicting the assumption that p.. o A = &g o p... Therefore, we have |J” \ J'| < k, so |J’| = k, and the lemma is
proved. O

Lemma 3.5. Suppose A: X — $X is a homomorphism such that p. o A = & o p.. For each J € k with |]| = k,
there exists J' < J with |J'| = k and such that, for every v ¢ J', there exists a, € I, such that the homomorphism
Tq, © A does not have a strong support Yq, with |Yq,| < f(v).

Proof. Suppose that the conclusion fails. Then there is a J ¢ k with |J| = k, and for every v € ] and «a € I, the
homomorphism 77, o A has a strong support Y, with |Y,| < f(v). By removing fewer than k elements in J, without
loss of generality, we replace J with a subset such that, for every v € J and a € I,,, we have Y, # 0 by Lemma 3.3.
As f(v) < k for all v € k, we have by Lemma 3.4 a J' ¢ J such that |J'| = k, and for all v € J' and « € I, the
inclusion Y, < Iy, holds.

Now we define a collection {Fq}qex by letting Fy = Y, forv e J' anda € I, and forv e k \ J' and «a € I,,, we
let Fy = 0. For this collection {Fy}qex, We have |Fq| < f(p(a)) and Fq € Ig pq. By Lemma 2.7, there are & € k*
and f € k and sequence {ay}vex\p for which Fo, € Bey and ay € Iy \ $gy(Fg,). For each v e J', we select
tq, € Fq,.Let xg € y and o € ¥ be the constant function with output xo. As Fg, is a strong support for g, o A,
we pick x¢,, € y such that, for any 7 € {* such that 7 [ (Fg, \ {tq,}) = 0 [ (Fq, \ {tq,}) and 7(tq,) = X¢,,, We have
(71, o A)T # (114, » A)o. Define 7¢ € $1€ by

( ) thv 1fy = tav,
Toly) = .
Xo  otherwise.

Now, by Lemma 2.7 parts (2) and (3), selecta £* € k* \  and f* € k \ B such that, for v € x \ p*, we have
e {tq,} € B y;and
e Bey S By and gy € Dge .
Let 77 € U* be given by

. Xt,, iy =tq, oF ®g ,({tg,}) = {y} withv e J'\ B*,
1(y) =
X0 otherwise.

By how & is defined, we have €y[7o]~ = [71]~, but on the other hand, we have
(TTa, © AT)(To) = X¢,, # Xo = 7a, T1

forallv e J'\ B*,and as |J’ \ B*| = k, we see that [A7g]. # [71]~ = Eo[T0]~, contradicting p. oA = Egop.. O

Lemma 3.6. Suppose that A: 1 — $* is a homomorphism such that p. - A = €y o p.. and that A < k. The set
{a € k : my o A has no strong support of cardinality < A}

has cardinality k.
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Proof. Assume the hypotheses. Recall that t(k, f; g) implies that lim,_,x f(v) = k. Take ] = {v € k : A < f(v)}, s0
|/l = k as k is regular. By Lemma 3.5, we obtain J' ¢ J with |J’| = k, and for every v € J', we have a, € I, such
that 74, o A does not have a strong support of cardinality < f(v); in particular, 74, - A does not have support of
cardinality at most A. O

Lemma 3.7. The image of & is isomorphic to $4*/~.

Proof. For each v € k, welet P,: Iy, — I, be a bijection and define bijection P: [ J, ¢, Jo,y = K by J, ¢, Pv- Let
H: 4% — $I¥ be given by (H(0))(a) = o(P~(a)). Itis clear that H is a homomorphism. Lettingﬁ: UK [~ — UK~
be given by H([o].) = [H(0)]., it is clear that H is also a homomorphism.

We claim that H [ im(&o) is an isomorphism from im(&g) to £¥/~. Letting 7 € (¥ be given, we take o € {(¥
to be such that o [ Iy, is given by a(a) = 7(Py(a)) for each v € k and let o [ (|, ¢, I1,v) be defined arbitrarily.
Then it is easy to see that H(&[0]..) = [7].. Thus H [ im(&g) is onto ¥/~

To see that H [ im(&) is injective, suppose that [0¢]-, [01]. € im(&g) are such that H([gp].) = H([01].).
Then H(ay) ~ H(a1), so in particular, there exists someﬁ € ksuchthatv e '\ Eimplies H(op) [ I, = H(oy) | I.
Thenag [ Ipy =01 [ oy forallv e k\ /_3 Taking g € 4/ tobe such thato [ Ipy =0ag [ Ipy forallv e x\ /_3 itis
easy to see that [gp]. = Eg[0]~ = [01]-. O

We anthologize the relevant facts.

Theorem 3.8. Suppose that k is inaccessible, {(k, f, g), and that i\ = (y, 8) is a universal algebra with 2 < |y| < k.
Then there is a homomorphic projection Ey: ¥/~ — X /~, with the image of &, isomorphic to 4*/~, such that,
for any homomorphism A: 4U* — I making

e 8 gx

L o
UK/~ G0, e /~
commute, the set
{a € x : mq o A has no strong support of cardinality < A}

is of cardinality k for every A < k.

4 A homomorphic projection using averages

We begin with a definition.

Definition 4.1. Letil = (x, 8) be a universal algebra. We say that a homomorphism Av: 4 x {{ — $lis an average
if, for all xq, x1 € y, we have Av(xy, x1) = Av(X1, Xg) and Av(xg, Xp) = Xo.

Construction 4.2. Suppose that k is inaccessible and f(x, f, g) and that 4{ = (x, 8) is a universal algebra with
2 < |yl < k and that Av is an average for (. Take {Iv}vex, {Bevleext ver, (Pevicert ver, and {Iovivex and {I1 v}vex
asin Lemma 2.7.

Recall that, for ¢ € k™ and v € k, the mapping ®¢, is a J-mapping on B¢ ,, and particularly, the restriction
of @¢, to {A € Atoms(B¢y) : A < Iy} gives a bijection with {A € Atoms(B¢,) : A < I1,}. Let

1gv: Atoms(Bg,) — Atoms(B¢,)
be the involution of atoms defined by
gy = Py [ {A € Atoms(Bg ) : A € Ip v} U (P [ {A € Atoms(Bg,) 1 A < Io,v})‘l.

Given o € Xy, for each x € y, we select & € k* and By € k such that o7 1({x}) NI, € Vg, for all v € k \ By.
Let n € k* be greater than all elements in {&y}xey. For each x € y, select B € k such that B¢, < B, and
®s v €Dy forall verx) By Select B € k which is greater than all elements in {Bx}xey U {,B;}XEX. Then we
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have for all v € k \ B and x € y that 07 ({x}) € B¢, , € B, and D¢, < Dy, Let 7 € ¥y be defined by letting
7 [ A = Av(xg, X1) for A € Atoms(‘B,,,), where g [ A is constantly xo and ¢ [ 1;,y(4) is x; (and define 7 arbi-
trarily on {J,, I»). Call this function Gy : £ — I*.

Lemma 4.3. The function G given in Construction 4.2 induces a well-defined homomorphic projection
&1t UK/~ — )~

Proof. We check well-definedness first. Imagine that we select & € x* and By such that f1({x})) NI, € B,y for
allv € By, and select ] € k* with > sup{a}xex, set {Bi}xey With BE,, € By, and @F,, < Py, forallv e k \ B}
and § > sup{E}xq U {BX}xey- Let The given by T [ A’ = Av(xq, X1), where A" € Atoms(%B7,) and o [ A’ is con-
stantly xo and o [ 27, v(A") is x1, and define T | Uvex\B arbitrarily.

Select n € k™ with > n, 77 and B € k which is large enough that B, U By, € By and @, U Py € Ppy
forall v e k\ B. Now we fix v € k \ B. Take A € Atoms(%,,) and A’ € Atoms(B7,,) such that An A" + 0. We
know o [ A and o [ A’ are both constant, so g [ A U A’ is constant, say constantly xq. If A € Iy, and therefore
A cy V,thenCID,7 v(A) = @, (4) = 1;,,(A) and tIJ,] v(A") = d7,(A") = 35,,(A").Theno | 3;,,(A)and o | I7.,(A")
are each constant functions, and 1;,,(4) N 7, vANY £0,s00 | Ipv(A) U g, v(A") is constant, say constantly x;.
Therefore, 7 [ (AN A') is constantly Av(xg, x;) and so is 7 [ (AnA’). Then 7 | (UVEK\ﬁ IL)=7] (Uvex\ﬂ L)
and 7 ~ 7.

When o ~ aj, the element 77 € {* with g1 — 77 under Construction 4.2 has 7 ~ 71. The check is straight-
forward and follows appropriate changes to the comparable claim in Lemma 3.2. Thus we have a well-defined
function &;.

To see that & o &1 = €1, we take g, n and 8 and 7 as before. It is clear that, for every x € yand v € x \ 5, we
have 7 1({x})n1, € B),v. For each atom A € Atoms(3,,,), wehave 7 [ Aand 7 | 1, ,(A) are each constantly x,
by how 7 is constructed. Then, since Av(x, x) = x, we see that again £1[7]. = [7].,S0 €10 &1 = €1.

Now we check that £ is a homomorphism. Let s(wy, ..., w,_1) € 8§ and also [op]-~, ..., [On-1]~. We take
n € k* large enough and f € k large enough that, for every x € y and v € x \ 5, we have oi‘l(x) NI, € By,.
For A € Atoms(B,,,) and 0 < i < n, take 7; [ A to be constantly Av(xo, x1), where o; [ A and o; [ 1;,,(A) are
constantly xo and x1, respectively, and 7; is defined arbitrarily elsewhere. Then £1([a;]~) = [7i]-.

Let ¢ be defined by having o [ A be constantly x when A € Atoms(5,,,), where g; [ A is constantly x;
and s(xo, ..., Xn-1) = X, and define o arbitrarily elsewhere. Thus [0]. = s([0¢]-~, . . ., [On-1]~). Let T be defined
by having 7 | A be constantly x when A € Atoms(5, ), where 7; [ A is constantly x; and s(xo, ..., Xp-1) = X
and define 7 arbitrarily elsewhere. Thus €1[o]. = [7].. Let T be defined by 7 [ A to be constantly Av(xp, x1),
where o [ Aand o [ 1, (A) are constantly xo and x1, respectively, and 7 is defined arbitrarily elsewhere. Then
&1[a]. = [7]-.

Fixing v € k \ B and A € Atoms(5, ), we let o; | A be constantly xo; and o; | 1;,(A) be constantly xq ;.

Then 7; [ A is constantly Av(xg;, X1,i), and © [ A is constantly s(Av(Xo,0, X1,0), - - - , AV(X0,n—1, X1,n-1)), and 7 [ A
is constantly Av(s(Xo,, ..., Xo,n-1), S(X1,0, ..., X1,n-1)). Then 7 [ A =7 [ A since Av is a homomorphism, and
SOT ~T. O

Lemma 4.4. Suppose that A: 3% — ${¥ is such that p. o A = &1 o p.. If Y, is a strong support for 1, o A for each
acJck thenl{ae]:Y,=0} <k

Proof. Assume the hypotheses, and suppose for contradiction that [{a € ] : Y, = 0}| = x. Without loss of general-
ity, we can assume that Y, # 0forall a € Jandthatp [ Jisinjective. Define functionr: J — {0, 1} by a € Iy(a) p(a)-
As [y| > 2, there exist Xg, X1 € y such that Av(xg, x1) # Xo. Define gy € 4I* to be constantly xo and define g; € U
by
o1(y) = {xl ify € I1_r(a),p(a) for some a € J,
Xo otherwise.

Itis clear that £1[0g]~ = [0g]~ and €1[01]~ = [T1]~, Where

") Av(xq,x1) ify € Ipq) for some a € J,
T\y) = .
X0 otherwise,
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and in particular,
Ha €] : (a2 D)ag # (7q ° A)o1}] = K,

whereas, by Observation 2.11,
{a € J: mq o Als constant} = J,

which gives a contradiction. O

Lemma 4.5. Suppose that we have a homomorphism A: 4* — 4U* such that p.. o A = €1 o p... Suppose also that
J € x with || = x and, for each v € | and each a € I,, the homomorphism 1, o A has strong support Y, with
|Yq| < k. Then there exists J' < J with |]'| = k, and for all v € J' and a € I, we have

(@ Yq <y and

() Yonloy #0.

Proof. By the same proof as that of Lemma 3.4 but with every mention of Yj ,, being replaced with Yy, we obtain
aJ" ¢ Jwith |J"| = k,and for all v € J"" and « € I,,, we have Y, € I,.

Now suppose for contradiction that J; = {v € J” : there exists a € I, such that Y, n Iy, = 0} is of cardinal-
ity . Selectforeach v € J1 an a, € I, with Y, N Iy, = 0. As |y| > 2, select xg, x1 € y such that Av(xp, x1) # Xo. Let
gy € ¥ be constantly xq. Let g1 € U* be given by

x1 ify € Iy, for some v € Jp,
a1(y) = .
Xo otherwise.

Clearly, €1[0o]~ = [00]~ and €1[01]~ = [71]~, Where

Av(xg, x1) ify eI, for somev € Jq,
71(y) = .
X0 otherwise.

As Yy, NIp,y = 0 for each v € J;, we see that (114,  A)0p = (714, ° A)ay, but on the other hand, it is also the case
that g, 00 = X0 # Av(Xg, X1) = 74,71 for all v € J;, contradicting p. o A = & o p.. Thus we let J' = J'\ J;, and
the claim is true. O

Lemma 4.6. Supposethat A: ${ — ¥ is a homomorphism such thatp. o A = €1 o p.. Foreach ] < k with|]| = ,
there exists J' ¢ J with |J'| = k and such that, for every v € J', there exists a,, € J' such that the homomorphism
Tq, © A does not have a strong support Y, with |Yq,| < f(v).

Proof. Suppose for contradiction that there is some J ¢ k with |J| = k such that, for every v € J and « € I, the
homomorphism 4 A has strong support Y, with |Y,| < f(v). By Lemma 4.4, we can assume without loss of
generality that Y, # 0 for each a € I, with v € J. By Lemma 4.5, we have a J' ¢ J with |J'| = k, and for all v € J'
and a € I, weget Y, € I, and Y, N I # 0. Let collection {Fy}qex be defined by Fy = Y4 N Ip,, when a € I, and
veJ andlet F, = 0whena € I, for v € x \ J'. Now we have |F,| < f(p(a)) and F, € Iop(q) for each a € k. Now,
by Lemma 2.7 part (4), we have ¢ € k* and § € k and sequence {av}yex\g Such that, for each v € k \ B, we have
both Fy, € Bgyand ay € I, \ Pev(Fq,).

For each v € J', pick tq, € Fq, NIp,y. Let Xo € y and g € 44X, Since Fy, is a strong support for g, o A, it is
possible to select x;,, € y such that, when 7 € 4* satisfies 7 [ (Fq, \ {te,}) = 0 | (Fg, \ {ta,}) and 7(tq,) = X¢,,»
we have (174, © A)T # (714, o A)0. Let 7g € 4" be given by

X ify =tq,
To(y) = Jl o BV o~
Xo  otherwise.

By Lemma 2.7 (2) and (3), we select £* € k* \ {and f* € k \ fsuch that, forany v € k \ f*, we have {t4,} € B¢,
and B¢y € Bg-y and Pg, < P . Take 71 € LUF to be

Av(xt,, ,Xo) ify =tq, or @& y({te,}) = {y},
To(y) = .
Xo otherwise.
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Itis clear that &1[79]~ = [71]~, but we also know (774, © A)Tp # X = 77, 71 forall v e J'\ B*,andsince |J" \ B*| =k,
we get [A7p]. # [71]~ = E1[70]~, which contradicts p. o A = &1 o p.. O

Lemma 4.7. Suppose that A: U* — ¥ is a homomorphism such that p. o A = €1 o p... The set
{a € K : ;4 o A has no strong support of cardinality of < A}

has cardinality k for every A < k.
Proof. The proof is that of Lemma 3.6 with obvious modifications. O
Lemma 4.8. The image of £ is isomorphic to $4*/~.

Proof. We begin as in Lemma 3.7. For v € k, let Py,: In, — I1,, be a bijection and let P: |J ¢, Io,y — K be the
bijection | J,, Py. Then H: ¥ — UX is given by (H(0))(a) = o(P~()). It is clear that H is a homomorphism.
Let H: 4*/~ — ¥/~ be given by H([0]..) = [H(0)]., and H is also a homomorphism.

We will show that H | im(&;)isan isomorphism from im(€&1) to U*/~. Let 7 € ¥ be given. We will define an
element o € {* in stages. First we let o be such that o | Iy, is given by a(a) = 7(P,(a)). By Lemma 2.7 part (3),
l¥| < k, and the fact that k is regular, we can select ¢ € k* and § € k large enough that v € k \ fand x € y imply
that Ky, := {a € Iy, : o(a) = x} € Bg,y. Then O¢ ,(Ky,v) € Bey forallv e k \ . For each A € Atoms(B¢ ) with
A < I1,v,welet o | ADbe the constant xo where o [ 1¢,(A) is Xo. At all the (negligible) places where o is not yet
defined, define it arbitrarily. Clearly, &1[0].. = [0]. and H([0].) = [7].,s0 H | im(&;) is onto U*/~.

To see that H [ im(&;) is injective, suppose that [gp]., [01]. € im(&1) are such that H([go].) = H([01]-).
Then H(ogo) ~ H(o1). Then, in particular, there exists § € k such that gg [ Ip,y = 01 [ I, for each v € K\ B.
Then, again using Lemma 2.7 part (3), we can select B’ € k, with 8’ > B, and & € k* such that v € k\ g’ and
X € y imply that Ky, = {a € Ip, : gp(a) = x} € B¢,. Now, for any atom A of B¢y, v appropriately large, with
A < Iy, we have that g | A has the same constant output as gy [ @¢,,(A) (since [op]~ € im(E1)). But, similarly,
o1 [ A has the same constant output as o1 [ ®¢,(A) when v is large enough. Since we have already seen that
oo [ Ipy = 01 | Ip, forlargeenough v € k, we haveinfactthatay [ I, = gy [ I, forallsuchv.Thus gy ~ 07. O

Definition 4.9. We say an average Av: 4 x 4l — $lis changing provided there exist xo, X1 € 4l such that
Xo # AV(Xg, X1) # X1.

Theorem 4.10. Suppose that k is a inaccessible, 1(x, f, g), and that {L = (y, 8) is a universal algebra with 2 < |y| < k
and that Av is an average for 1. Then there is a homomorphic projection £1: U*/~ — U¥/~, with the image of &1
isomorphic to ¥ /~, such that, for any homomorphism A: * — [ making

et g

Pk

UK/~ _& UK~

commute, the set
{a € x : 4 o A has no strong support of cardinality < A}

is of cardinality x for every A < k. Moreover; if Av is changing, then there exists g € ${* such that, when £1[a].. = [7].,
we get{a € k : a(a) = ()} =« 0.

Proof. Everything hasbeen checked already except the claim in the last sentence. Selecting xo, X1 € y witnessing
that Av is changing, we let o € l be given by

xo ifac Io.v,
o(a) = 0 : UveK o,v
x1 ifaeUpee 1y

and it is clear that, letting 7 € /¥ be constantly Av(xy, x1), we have &;[0]. = [7].. O
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