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ON AUTOMORPHISMS OF P()\)/[N<*.

JAKOB KELLNER, ANDA RAMONA TANASIE, AND SAHARON SHELAH

ApsTRAaCT. We investigate the statement “all automorphisms of P(\)/[A\]<* are trivial”. We
show that MA implies the statement for regular uncountable A < 2%0; that the statement is
false for measurable X if 2 = A*; and that for “densely trivial” it can be forced (together with
2% = \t+) for inaccessible .

1. INTRODUCTION
We investigate automorphisms of Boolean algebras of the form
Py =P/ A"

The instance P%, i.e., P(w)/FIN, has been studied extensively for many years.! One can study
variants for uncountable cardinals A. Unsurprisingly, the behaviour here tends to be quite different
to the countable case. One moderately popular? such generalisation is P. Here, we study another
obvious generalization of the countable case, P/{‘. Some results for general P can be found
in [LM16].

The main result of the paper is:

The following is equiconsistent with an inaccessible: A is inaccessible, 2* is AT

(T1, Thm. 5.2) and all automorphisms of Py are densely trivial.

Here, 2 > A% is necessary, at least for measurables:
(T2, Thm. 4.1) If X is measurable and 2* = A*, then there is a nontrivial automorphism of P5.

Remark 1.1. From [SS15, Lem. 3.2] it would follow that T2 holds even when “measurable” is
replaced by just “inaccessible”. However, the proof there turned out to be incorrect.?

For X\ below the continuum we get the following result under Martin’s Axiom (MA). More
explicitly, MA_ (o-centered) is sufficient, which is the statement that for any o-centered poset P
and <\ many open dense sets in P there is a filter G meeting all these open sets:

N . s
(T3, Thm. 3.1) For ¥y < K <A< 3 '0 ar}q k regular, MA_, (o-centered) implies that every
automorphism of P7 is trivial.

Larson and McKenney [LM16] showed the same under MAy, for the case A = 2% and x = ;.

Contrast this to the case A = Kk = w: Due to results of Velickovi¢, Steprans and the third
author, “Every automorphisms of P(w)/[w]<% is trivial” is implied by PFA [SS88], in fact even by
MA-+OCA [Vel93], but not by MA alone [Vel93] (not even for “somewhere trivial” [SS02]).
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Contents. We start by introducing some notation and basic results in Sec. 2 (p. 2).

The following sections are independent of each other:

In Sec. 3 (p. 3) we show T3, i.e., Thm. 3.1; in Sec. 4 (p. 6), we show T2, i.e., Thm. 4.1; and
finally in the main part, Sec. 5 (p. 7) we develop some forcing notions to prove T1, i.e., Thm. 5.2.

Acknowledgments. We thank an anonymous referee for numerous corrections.

2. DEFINITIONS

We always assume:

A is a cardinal and x < A is regular.

The case kK = Ng or A = Ny is included only for completeness sake in the following definitions.
In Section 3 we will assume that 8; < k < A < 2o,

In Section 4 we assume that A\ is measurable and x = A.

In Section 5 we assume that A is inaccessible and xk = A.

Notation:

e We investigate the Boolean algebra (BA) P} := P(\)/[\]<¥, i.e., the power set of \ factored
by the ideal of sets of size <k.
e For A C )\, we denote the equivalence class of A with [A]. We set 0 := [f)].
e A C* B means |B\ A| < k, analogously for A =* B; and “for almost all & € A” means for
all but <k many in A. In particular, A =* A means A C X and [A\ 4| < k.
e We denote the BA-operations in P} with z V y, z Ay and 2¢ (for the complement).
So we have [A] V [B] = [AU B], [A] A [B] = [AN B], and [A]¢ = [A\ A4].
e A function ¢ : P} — P is a BA-automorphism (which we will just call automorphism), if
it is bijective, compatible with A and the complement, and satisfies ¢(0) = 0.
e Preimages of a function f are denoted by f~ 'z, images by f"x.
e We sometimes identify 7 € 2* with n71{1} C X without explicitly mentioning it, by
referring to 1 as element of 2* or of P(\).
Let us note that P,;\ is <k-complete* and At-cc. Also, any automorphism ¢ is closed under <s

unions: ¢(V;e [Ai]) = Viep ¢([Ai]).
An automorphism is trivial if it is induced by a function on A. A standard definition to capture
this concept is the following:

Definition 2.1. An automorphism ¢ : P} — P} is trivial, if there is a g : A — X such that
#([A]) = [g7LA] for all A C .

However, we prefer to use forward images instead of inverse images; which can easily be seen to
be equivalent:

Definition 2.2.
e For f: Ay — A with Ag =* A, define 7y : P} — P by 74([B]) := [f"(B N Ap)] for all
BCA.
e f is an almost permutation, if there are Ag =* X and By =* \ with f: Ag — By bijective.

(Such a 7y is always a well-defined function.)

Lemma 2.3. Let ¢ : P) — P2 be a function. The following are equivalent:
(1) ¢ is a trivial automorphism.
(2) There is an almost permutation f such that ¢ = my.
(3) (Assuming k > Ng.) There is a bijection f : A — X such that ¢ = my.

Proof. (1) implies (2): Assume ¢ is a trivial automorphism, witnessed by g.

Then X := ¢g"\ =* X (as ¢([X]) = [¢7'X] =[N]), and YV := {a € X : [g7Ha}| # 1} =* O:
Otherwise, pick 40 # y! for each o € Y with g(y2) = g(yl) = . Soy% € g71C iff y. € g71C for
any C C \. Set B' := {y{,: a € Y} fori=0,1andlet [C] = ¢~1([B°]). So ¢(|C]) = [¢g71C] = [BY],

Ye., if |[I] < & then ;¢ [Ai] = [U;e s Adl
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i.e., almost all y2 are in g~1C, but then almost all y} are in g=1C as well, i.e., [B°] = ¢([C]) > [BY],
a contradiction as B® N Bl = .

Set Ap := X\ Y, and By := g~ '4p. Note that By =* \, as 0 = ¢(0) = ¢([Y]) = [¢7'Y]. So
g | By — Ay is bijective, and we can set f : A9 — By the inverse. Then f is an almost permutation,
and T = 7.

(2) implies (1): Let f: Ay — By be an almost permutation, and g : By — Ay the inverse (and
let g be defined arbitrarily on A\ Bp). Then 7¢([X]) = [f”(X N Ap)] = [¢g7}(X)]. It remains to
be shown that 7 is an automorphism: 7;([0]) = [f"0] = [0]; 7¢([X NY]) = [f"(X NY NAg)| =
(X 1 Ag) 1 /(Y 1 Ag)]s and mp(I\\ X)) = 1 (A \ X)] = [Bo \ ],

(2) implies (3) if cf(x) > Ng: This follows from the follwing lemma. O

Lemma 2.4. (k > Ng) Let f be a k-almost permutation. Then there is an S =* X such that
f1S:8—S5 is bijective.

Proof. Set Xg := Ag = dom(f), and X;11 := X; N f"X; N f71X;, and S =", Xi.

The X,, are decreasing, and |\ \ X,,| < x and thus |\ \ (fX,)| < k for n < w. Accordingly,
A\ S| < k. We claim that g := f | S is a permutation of S. Clearly it is injective. If & € S then
a€ X, foralln €w, so f(a) € Xpy1 foralln. Sog: S —S. If a € 5, then a € X, for all n,
so f71(a) exists and is in X,,. O

M

Remark: For k = A = w, there are trivial automorphisms that are not induced by “proper’
bijections f : w — w, e.g. the automorphism ¢ induced by the almost permutation n — n + 1.°

We will investigate somewhere and densely trivial automorphisms. To simplify notation, we
assume K = A > Ng:

Definition 2.5. (A > ¥ regular.) Let ¢ : P{* — Py be an automorphism.
e ¢ is trivial on A € [A]?, if there is an f : A — X\ with ¢([B]) = [f"B] for all B C A.
e ¢ is somewhere trivial, if it is trivial on some A € [A]*.
e ¢ is densely trivial, if for all A € [A\]* there is a B C A of size A such that ¢ is trivial on B.

Just as before it is easy to see that we can assume f to be a full permutation:

Fact 2.6. (A > ¥ regular.) An automorphism ¢ : Py — P} is trivial on A € [A]* iff there is a
bijection f : A — X such that ¢([B]) = [f”(B)] for all B C A.

Lemma 2.7. (A > X regular.) If every automorphism of Pf‘ is somewhere trivial, then every
automorphism of Pf‘ is densely trivial.

Proof. Assume 7 is an automorphism of PQ, and fix A € [A]*. If A =* X and if 7 is trivial on some
B, then 7 is trivial on BN A C A, so we are done. So assume A #* \.

Pick some representative 7* : P(A) — P(A) of 7 such that 7*(A) and 7*(A\ A) partition A, and
such that 7*(C) C 7*(A) for every C C A. Let i : A\\ A — A and j: 7*(A\ A) — 7*(A) both be
bijective. Let 7/ map [D] to [7*(D N A) Ui~ 7*(i"(D\ A))]. This is an automorphism of Py, so it
is trivial on some Dy. If |[Dg N A| = A, we are done, as 7’ restricted to Dy N A is the same as 7
and trivial. So assume otherwise. Then 7’ is trivial on the large set Dy \ A. Then = is trivial on
(Do \ A) C A. O

3. UNDER MA, EVERY AUTOMORPHISM IS TRIVIAL FOR w; < A\ < 280

Theorem 3.1. Assume Ry < £ < A < 280,k regular, and MA () (o-centered) holds. Then every

automorphism of P2 is trivial.

For the proof we will use that we can separate certain sets by closed sets.

A tree T is a subset of 2<% such that s € TN 2" and m < n implies s | m € T'; for such a T we
set lim(T) ={ne€2¥: (Vnew)n | n €T} A subsetof 2¥ is closed iff it is of the form lim(7") for
some tree 7.

5A bijection f :w — w has infinitely many n such that f(n) # n + 1, and therefore an infinite set A such that
f" A is disjoint to {n+1: n € A}.
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Lemma 3.2. Assume Rg < 0 < X\ < 2% ¢f(6) > Ry, and MA(_,)(o-centered) holds. Assume
Ap, Ay are disjoint subsets of 2% of size < X; |Ag| > 0. Then there is a tree Ty in 2<% such that

If additionally |A1] > 0, we get an additional tree Ty such that |A;Nlim(T7)| > 6, AgNlim(7Ty) = 0,
and To NTy C 2™ for some n.

Proof of the lemma. In the following we identify an x € 2* with the according (infinite) branch b
in the tree 2<%. So a branch b can be in Ay or in A; (or in neither; but not both, as Ay and A;
are disjoint).

We define a poset @ as follows: A condition ¢ € Q is a triple (n,, Sy, f;), where

® Ny € w,

e S, is a tree in 2<* of the following form: S, is the union of 25"« and finitely many (infinite)
branches {b; : j € m} for some m € w, each b; € Ay U Ay, and b; | ng = by [ ng implies
(bj cA; iff by € Az)

So every s € S, with |s| > n, is either “in Ay-branches” (i.e., there is one or more
b; € Ay with s € b;), or “in A;-branches” (but not in both).

Note that an s € S; of length n, is either in Ap-branches, or in A;-branches, or in
neither (but not in both).

o f, : S; — 2 such that, for i = 0,1, f,(s) = i whenever s € S, |s| > n, and s is in
A;-branches.

The order on @ is the natural one: ¢ < p if ng > ny, Sq 2 S, and f, extends f,.

Q is o-centered witnessed by (ng, Sy, fq) = (ng, fq | 25™): If p,q are in Q with n, =n, =:n
and f, | 25" = f, | 25", then (n, S, U Sy, f, U f,) is a valid condition stronger than both p and g.

For x € A;, the set D, of conditions containing x as branch is dense: Given p € @), let ny, > n,
be such that all A;_;-branches in p split off = below ng; set S, := S, U25" U z; and set Fy(s) =i
for s € Sg \ 5.

Similarly, for all n € w, the set D}, of conditions ¢ with ng, > n is dense as well.

By MA (_y)(o-centered) and |4;| < A, we can find a filter G which has nonempty intersection
with each D, for z € Ag U A; as well as for each D). So F := UpeG fp is a total function from
2<% to 2; and for all x € A; there is an n, € w such that m > n, implies F(x [ m) = 1.

As |Ap| > 0 and cf(6) > Ry we can assume that there is an nf such that n, = n for § many
x € Ap. If additionally |A;]| > 6, we analogously get an nj and set n* := max(ng, n}); otherwise we
set n* :=ng§. Weset T; 1= {s € 2<% : |s] > n*, (Vn* <k <|s|) F(s | k) =i} and generate a tree
from it; i.e., we set T; := T U{s [ m: m < n* s €T;}. As we have seen above, lim(T;) N A; >0
for i = 0 (and, if |A;| > 6, for i = 1 as well). Clearly To N7} C 2" ; and lim(7;) N A;_; is empty,
as for any x € A;_1, cofinally many n satisfy F(x | n) =i — 1. O

Proof of the theorem. Fix an automorphism 7 of P} represented by some 7* : P(\) — P(\), and
let 7= 1* represent 1. We have to show that 7 is trivial.
Fix an injective function n: A — 2%. Set

Cp:={re€2”: x(n)=0}and A, :=n"'C, = {a < X:n(a)(n) = 0}.
Define v : A — 2“ by
V(B)(n) = 0 it § € 7°(A,).
In the following, “large” means “of cardinality >x”, and “small” means not large. We will show:
(x1) m*(n~tC) =* v=1C for C C 2¢ closed.
(%2) Y C X and |Y| > « implies [V'Y] > k.
(x3) If Ag, Ay are disjoint subsets of 2¢, Ay C v\ large, then 7~ (v=14y) \ n~1A4; is large.
(x4) If Ag, Ay are disjoint subsets of 2%, Ay C 1\ large, then 7*(n~14) \ v~ 1A is large.
(Note that (x3) is the only place where we use that x is regular.)
Proof:
(x1) 7 (n~*C,) = v~1C, holds by definition of v. As m honors <s-unions and complements,
and as the C), generate the open sets, this equation (with =*) holds whenever C' is generated
by <k-unions and complements from the open sets, in particular, if C is closed.
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(x2) Fix x € 2. Then n~'{z} has at most one element (as 7 is injective), and n~!{z} =*
7~y Ha} by (x1). Le.,, v {z} is small. And Y C U,y v {2}, so as k is regular
we get VY| > k.)

(#3) Using the previous lemma (with k as 0) we get a tree Ty separating Ag and A;. Le.,
lim(7p) N Ay = 0 and X := lim(Tp) N Ag is large. As X C Ay C v\, we get that 171X is
large. And v='X = v~ im(Tp) Nv=tAg =* 7*(n~ ! lim(Ty)) N v~ Ap, the last equation
by (*1). This implies n~1 lim(Tp) N7~ 1* (v~ Ap) is large, and so 7~ 1*(v1A4g) \ n ™1 4; is
large.

(x4) We get an analogous result when interchanging v and 1 and using 7* instead of 7~ 1*.

We claim that the following sets IV; are all small:

(1) Ny:={aeX: (m38 € N)nla) =v(B)}.

(2) Nz:={aer: (A=V5eNn(a) =v(B)}

(3) Ng:={peA: (-3 e N)nla) =v(h)}

Proof:

(3) Assume Nj is large. Set Ag := " N3, which is large by (x2); and A; := 7"\, So Ap and
Ay are disjoint, and by (x3) 7 1*v 1Ay \ n7A; is large, but n1A4; = A

(1) Assume N; is large. Set Ag = "Ny (large, as 1 is injective) and Ay := v""A. So Ag and A;
are disjoint, and by (x4) 7*(n~14g) \ v 714 is large, but v=1A; = \.

(2) Assume that N, is large. For every a € No, let 82 # 8L in A be such that n(a) = v(3%) =
v(BL). For i € {0,1}, set V; := {B}, : a € Ny} and X; := 7 1*(Y;) (without loss of
generality disjoint), and A; := " X;. So the A; are large and disjoint, and we can find a
tree Ty such that Ag N1lim(7p) is large, and 41 N1lim(7p) is empty.

As Ap C 7, this implies that the inverse n-image of Ag N lim(7y) is also large.
Le., n71(Ag Nlim(Ty)) = n~ 1 Ao N~ lim(Tp) =* Xo N7~ v~ 1lim(Tp) is large (for the
last equation we use (x1)). Therefore also Yy N v~11im(7y) is large, and so, by (x3),
V(Yo Nv~tim(Ty)) = lim(Tp) Nv"Yy is large as well.

On the other hand lim(7p)NA; is empty, so 0 =* 7*n~! (lim(7p)N A1) =* 7*n~ ! lim(Tp)N
7*n~LA;. Using (*;) for lim(7p), and noting that 7*n~1A; = Y7, this set is (almost) equal
to Y1 N v~ 1im(7p) which therefore is also small, and so lim(7p) N v"'Y; is small.

So we know that lim(7p) N v"'Yy is large and lim(75) N v”’Y; is small, but v"'Yy = "Y1,
a contradiction.

Note that this implies:

(*5) X NY small implies v X Nv"Y small, for X, Y C A.
(x¢) v "X =* X for X C \.
Proof:

(#5) Assume otherwise. Without loss of generality we can assume that X and Y are disjoint,
and by (3) that v’ X and v"'Y both are subsets of n””A. Then v X Nv"Y C 5’ Ny is small.
(x6) Set Y :=v~1”X \ X. Then v""Y C Ny U Nj is small, and by (*3) Y is small.

Set D := A\ (N; U Ny) and define e : D — X such that e(a) is the (unique) 8 € A with
n(a) = v(B). Clearly e is injective. We claim that e generates m, i.e., that the following are small
(where we can assume X C D):

(4) Ny:=7%(X)\e"X.
(5) N5:=e"X \ n*(X).
Proof:

(4) Assume that N, is large. Set Y = 7~ !*(Ny), without loss of generality ¥ C X and
7 (Y) = Ny. So n*(Y) is disjoint from €Y (as it is even disjoint from e”X). We set
Ag = v"'7*(Y) and Ay := v"e"Y, by (x5) we can assume they are disjoint, and by (x3)
both are large (e is injective).
By (x3), (v 4p) \ n71 A is large.
n (A1) =Y, as v(e(a)) = n(a) for all @« € D. And 7= 1*(v=1Ap) =* Y by definition
and (*g), a contradiction.
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(5) The same proof works: This time we set Y = e~ Nj; see that 7*(Y) and €Y are disjoint
and large; set Ag := v"'7*(Y) and A; := v"e"Y; use (3) to see that Y \n~1"e"Y =Y \Y
is large, a contradiction. U

4. FOR MEASUREABLES, GCH IMPLIES A NONTRIVIAL AUTOMORPHISM
Theorem 4.1. If X is measurable and 2* = X\, then there is a nontrivial automorphism of P/{‘.

Proof. Let D be a normal ultrafilter on A and denote by Z := [A\]* \ D its dual ideal restricted to
sets of size .
Since 2* = AT, we can list all permutations of X as {e, : @ < AT}; and analogously all elements
of 7T as { Xy :a < AT}
We will construct, by induction on o < AT a set A, € Z and a permutation f, of A,, such that
for a < 5:
(1) Ao C* Ag,
(2) Xa g AaJrla
(3) fa(z) = fa(x) for almost all z € A, N Ag,
(4) there is some X C A, of size A such that e/, X and f// ;X are disjoint.

(Note that by z C* y we mean |y \ z| = A, not y \ z € Z; and the same for ‘almost all”.)
The construction:

e Successor stages a + 1: Fix any B € 7 disjoint to A, such that A, UB 2 X,. Set
C:=elBNA,.

First assume that |C| = X\. Then set A,11 = A, U B and let f,41 extend f, by the
identity on B. Then (4) is witnessed by X :=e;!C.

So we assume |C| < A. Partition B into large sets By, B, By such that e B; is disjoint
to A, for i = 0,1. Set Ay41 := Aq U B UelB, and define f,y1 on B such that the
restriction to B; is a bijection op e/l By_; for i = 0, 1, and the restriction to Bs a bijection
to €’ By \ A. Then (4) is witnessed by X := By.

e Limit stages 0 of cofinality <A: Let £ := cf(d) and choose («; : ¢ < &) a cofinal increasing
sequence converging to 0. The union (J, <€ Aq, 18, by <A completeness, in Z. Remove < A
many points to get a subset As such that

— For all i < j < ¢, f; and f; agree on A,, N As,

— For all i <&, fi | (A, N As) is a full permutation (we can do this as in Lemma 2.4).
Then f5, defined as the union of the f,,, is a permutation of As and almost extends each
Jou-

e Limit stages § of cofinality \: We choose an increasing cofinal sequence (a; : i < \)
converging to §. By induction on i € A we construct A; =* A,,, such that

- Aini=9,

— The f,,’s fully extend each other on the Aj’s, i.e., if z € A;N A} then fo,(z) = fo,(2),

— fa, + AL — Al is a “full” permutation.

We can do this by removing from A,,: the points less than 4, the points where f,, disagrees
with some previous f,, for any j < i; and by removing <A many points to get a full
permutation.

Now we can set As and fs to be the unions of A} and f,,, respectively, for i < §. Note
that As is in Z (as it is a subset of the diagonal union); and fs is a permutation of As
satisfying (3).

Note that for all X C A, either X € T or A\ X € Z (but not both), i.e., either X or A\ X is
C* A, for coboundedly many o < A.
This allows us to define the automorphism 7 as follows: For X € [\]*,

(X)) [frX] if X €Z,X C* A, for some o < AT (Case 1)
m([X]) :=
M\ IO\ X)] X ¢Z,N\ X C* A, for some a < AT (Case 2).

Note that in Case 2, 7([X]) = [(A\ Aa) U (Ao \ f7(Aa \ X))] = [(A\ Aa) U f/(X N Ay)], as
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7 is well defined on [A]*, as exactly one of X or A\ X will eventually be C* A,.

7 is an automorphism: 7([]) = . 7 honors complements: If X is Case 1, then 7([A\ X]) is by
definition (Case 2) [A\ f4(X)]. = honors intersections X NY": This is clear if both sets are the
same Case. Assume that X is Case 1 and Y Case 2. Then X NY C X is Case 1, and for any «
suitable for both X and Y we have

(XD A#(Y]) = [£EX N (A Aa) U (Y 0 AL))] = [faX NSV N Ad)] = [f5(X NY))].
7 is not trivial: Every automorphism e is an e, for some o € A™; and according to (4) there

is some X, C A,41 (and therefore in Z) of size A such that e, X, is disjoint to f X, a
representative of w([X,]). O

5. FOR INACCESSIBLE A, ALL AUTOMORPHISMS CAN BE DENSELY TRIVIAL
In this section, we always assume the following (in the ground model):
Assumption 5.1. X is inaccessible and 2* = \*. We set p:= AT+,
In the rest of the paper, we will show the following;:

Theorem 5.2. (\ is inaccessible and 2* = \*.) There is a A-proper, <\-closed, Nt -cc poset P
(in particular, preserving all cofinalities) that forced: 2* = A+, and every automorphism of P)’\\ 18
densely trivial.

By Lemma 2.7, it is enough to show that every automorphism is somewhere trivial.
5.1. The single forcing Q.
Definition 5.3. We fix a strictly increasing sequence (92)C<>\ with 92 < A regular and 02 > 2l¢l,

e Let (I&*)C@\ be an increasing interval partition of A such that It has size 202; and fix a
bijection of I} and 2%, Using this (unnamed) bijection, we set [s] := {£ € It 0> s} for
s € 2<%,
So the [s] are cones, i.e., the set of all branches in I} extending s.
For ¢ < A, we set I*(<() := U, 17, and analogously I*(<() := I"(<C + 1), I"(=() =
M\ I7(<C), and (>, <€) 1= I*(>C) N I*(<€).
e A condition ¢ of the forcing notion @ is a function with domain A such that, for all { € A,
q(¢) is a partial function from I to 2, and such that for a club-set C'7 C A
— if ¢ ¢ CY, then ¢(¢) is total,
— otherwise, the domain of ¢(() is 17 \ [s{] for some s{ € 2<0¢.
C? and Sg are uniquely determined by ¢; and ¢ is uniquely determined by the partial
function n? : A — 2 defined as [J.¢, ¢(¢).
e ¢ is stronger than p if n? extends nP.
(This implies that C? C C?, and that s{ extends s{ for all ( € C.)

The following is straightforward:
Lemma 5.4. Q has size 2, is <)\-closed and adds a generic real 1 := quG n? in 27

Proof. <\-closure is obvious, but for later reference we would like to point out the “problematic
cases™

Let (pi)i<s be decreasing for a limit ordinal § < A.

As a first approximation, set #* := [J,_sn?* (a partial function) and C* := (1,5 C?* (a club
set) and s¢ = Uics s’c” € 25% for s € C*. For ¢ ¢ C*, n* is indeed total on I%, and for ¢ € C~
the domain in I} is 17\ [s{].

The problematic case is when sf is unbounded in 6. (This can only happen if cf(d) = 67, in

particular for at most one ¢.) In this case we can just pick any extension n? of n* by filling all
values in IZ.. This gives the desired ¢, with C% = C*\ ( + 1. O

Remarks.
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e The limits of <A-sequences of conditions are not “canonical” if there are problematic (’s,
as we have to fill in arbitrary values.
e 1) determines the generic filter, by G = {p € Q : n? C n}. This follows from the following
facts: -
— p and q are compatible (as conditions in @) iff n? and n? are compatible as partial
functions and X, , ;= {( € C?: slg and sg are incomparable} is non-stationary.
— If p, g are such that X, , is stationary, then the set of conditions r such that n" and
n? are incompatible (as partial functions) is dense below p.

5.2. Properness of Q: Fusion and pure decision.

Definition 5.5. Wesay ¢ <¢p,if¢<p,{cC%andq&=p|&.
g <{ p means ¢ <¢ p and ¢(§) = p(€).

(Note the difference between g gg p and g <gyq1 p: The former does not require £ +1 € C9.)

Lemma 5.6. Let 6 < X\ be a limit ordinal, £ € X and (g;)i<s a sequence in Q.
(1) If § < X\ and ¢, <2‘ q; for all 1 < j < 0§, then there is a ¢ Such that g <2‘ q; for all i.
(2) If q; <¢, qi fori < j <9, where (&)ies is a strictly increasing® sequence in A, then there
is a (canonical) limit ¢oo such that g <g, q; for alli.

Proof. (1): We perform the same construction as in the proof of Lemma 5.4. If there is a problematic
case (, then ¢ > ¢ (as for ¢’ < ¢ the conditions g;(¢’) are constant). We can then make n* total on
I*(> §,< ¢). (It may not be enough to make it total on I?, as C* \ {¢} might not be club.)

(2): Define qoo(C) := ;s 4:(C) for ¢ € A.

This is a non-total function (on [7) iff ¢ € C% := (), _; C¥", which is closed as intersection of
closed sets, and also unbounded: If § < A\ because we have a small intersections of clubs, if § = A
as it contains each &;.

There are no problematic cases: If ¢ is below some ¢;, then g;({) is eventually constant. If ¢ is
above all &;, which can only happen if § < A, then cf(0) < <sup(&;) < (< 0. O

So @ satisfies fusion; and we will now show that it also satisfies “pure decision”; standard
arguments then imply that @ is A-proper and A*-bounding.

Definition 5.7. Let £ € A\, g € Q.

e POSSP(¢) := 27"(<8 . S0 in the extension V|[G], for each ¢ there will be exactly one
z € POSS?(¢) compatible with (or equivalently: an initial segment of) the generic real 7.
We write “x C 17” or “G chooses z” for this z. -

e poss(q, &) is the set of z € POSS?(€) compatible with ¢ (as partial functions), or equiva-
lently: z € poss(q, &) iff =g IF 2 € n. So g forces that exactly one x € poss(g, &) is chosen
by G. -

e Let 7 be a name for an ordinal. We say that ¢ {-decides 7, if there is for all x € poss(g, )
an ordinal 7% such that ¢ forces z C n—T= T,

Note that for p € Q and ¢ € CP, ¢ §2‘ p is equivalent to poss(q,¢ + 1) = poss(p, ¢ + 1), while

q <¢ p is equivalent to ¢ € C' and poss(q,() = poss(p, ().

Lemma 5.8. Assumep € Q, ( € CP, x € poss(p,( + 1), and r < p extends” x. Then there is a
q Sé p forcing: © Cn — r € G. This condition is denoted by rV (p [ ( + 1).

Proof. We set ¢(£) to be p(£) for £ < (, and r(¢) otherwise. If ¢ < g forces z C 7 then q' extends
2 and thus ¢ < r. O

Corollary 5.9. (“Pure decision”) Let T be a name for an ordinal, p € Q, and ( € CP. Then there
is aq SZ‘ p which ({4 1)-decides 7.

6For 6 = A, it is enough that the &; converge to A. For § < A, we use that the §; are increasing and that
sup(&;) > cf(6).
7By which we mean =z C n".
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Proof. Let (x;);cs enumerate poss(p,+1), for some & < A. Set pg = p, and define a Szr—decreasing
sequence p; by induction on j < §: For limits use Lemma 5.6(1), and for successors choose some
r < p; deciding 7 with a stem extending z; and set p,y1 to 7V p; | ((+1). O

From fusion and pure decision we get bounding and A-proper, via “continuous reading of names”.
This is a standard argument, and we will not give it here; we will anyway prove a more “general”
variant (for an iteration of Q’s), in Lemmas 5.25 and 5.27.

Fact 5.10.

e () has continuous reading of names: If g is a ()-name for a A-sequence of ordinals, and
p € @, then there is a ¢ < p and there are & € A such that ¢ &;-decides g(3) for all i € A.

e () is M-bounding. Ie., for every name ¢ € \* and p € Q there is an f € A* and ¢ < p
such that g forces f(i) > g(i) for all ¢ € A.

e ( is A-proper. This means: If N is a <A-closed elementary submodel of H(x) of size A
containing ), with x sufficently large and regular, and if p € Q@ N N, then there isa g <p
N-generic (i.e., forcing that each name of an ordinal which is in N is evaluated to an
ordinal in ).

For completeness, we also mention the following well-known fact (the proof is straightforward):

Fact 5.11. Assume x is regular, and that the forcing notion R is k"-bounding. Then R preserves
the regularity of k, and every club-subset of x in the extension contains a ground model club-set.

5.3. The iteration P. Let us first recall some well-known facts:

Facts 5.12. A <A-closed forcing preserves cofinalities <\ and also the inaccessibilty of .
The <A-support iteration of <A-closed forcings is <A-closed.

We will iterate the forcings @ from the previous section in a <A-closed <A-support iteration of
length p:= A*T:

Definition 5.13. Let (P,, Qa)a<u be the <A-support iteration such that each @, is the forcing
Q@ (evaluated in the P,-extension). We will write P to denote the limit.

Remark. One way to see that P is proper is to use the framework of [RaS11]. However, we will
need an explicit form of continuous reading for P anyway, which in turn gives properness for free.

Definition 5.14. Assume that w € [u]<* and £ € \.
o= (?a)aeﬂ is the sequence of @,-generic reals added by P.

POSS(w, ) := 2w*I" (<€) Exactly one z € POSS(w, €) is extended by 7, we write “z is
selected by G,” or “x <G.”
poss(p,w, &) := {x € POSS(w, &) : —plk —~x<G}.
Let 7 be a name of an ordinal. 7 is (w,&)-decided by ¢, if there are (7%),cposs(q,w,¢) Such
that ¢ forces x <G = 7 = 7%,

Clearly, if 7 is (w, )-decided by ¢, and if ¢’ < ¢, w’ O w and & > &, then 7 is (w’, £’)-decided
by ¢'.
Remark. If ¢ € P (w, {)-decides some P,-name 7, then the same ¢ will generally not (wNa, §)-decide
7 for any ¢£.8

In the following, whenever we say that ¢ (w, ()-decides something, we implicitly assume that
w € [p]<* and ¢ € .

Definition 5.15. Let g be a P-name for a A-sequence of ordinals.

8For example: For a p-condition @, let opDP be the set of odd elements of CP (or any other unbounded subset
X of CP such that CP \ X is still club), and set 0pp} := U coppr IZ \ dom(nP). Note that for any = : obp§ — 2,
nP Uz defines a condition in @ (stronger than p). So if we fix any p(0) € Py, and define the Pj-name 7 € {0,1} to

be O iffn | ODDS(O) is eventually constant to 0, then 7 cannot be ({0}, {)-decided by p(0) for any ¢. And if p(1) is
o ? z

any condition with p(0) I- n?(1)(0) = 7, then 7 is ({1}, 1)-decided by ¢ := (p(0), p(1)).



Paper Sh:1224, version 2024-05-11. See https://shelah.logic.at/papers/1224/ for possible updates.

ON AUTOMORPHISMS OF P())/[A]<*. 10

e ¢ continuously reads g, if there are (w;,&;)iex such that ¢ (w;, &;)-decides g (i) for each
i€ A

e P has continuous reading, if for each such ¢ and p € P there is some ¢ < p continuously
reading ¢.

The following is a straightforward standard argument:
Fact 5.16. If P has continuous reading, then it is A*-bounding.
As a first step towards pure decision, let us generalize the <. -notation we defined for Q:

Definition 5.17. Let p € P, w € [u]<* and & € .

o p fits (w,£), if w C dom(p) and p | a - &€ € CP) for all a € w.
e ¢ <,¢pmeans: ¢ <p, and for all @ € w, ¢ | o forces g(a) <¢ p(a).
e ¢ <' . pis defined analogously using <Z instead of <.

—w,§

Obviously ¢ S;E p implies ¢ <, ¢ p; and g <,, ¢ p implies that both p and ¢ fit (w, §).

Remark. In contrast to the single forcing (or a product of such forcings), ¢ <., ¢ p (or ¢ S;E D)
does not imply poss(q,w,&) = poss(p,w,£).> More explicitly, setting w = {0,1}, it is possible
that z € poss(p, w, &) but p does not force that x(0) C 1, implies x(1) € poss(p(1),&). (But see
Section 5.5.)

5.4. Continuous reading and properness of P.

Lemma 5.18. Ifq; is a Sjv ¢~decreasing sequence of length § < X, then there is an r §$’C q; for
alli < §6.

Proof. Set dom(r) := J,cs dom(g;), without loss of generality closed under limits. By induction
on « € dom(r) we know that r [ a < ¢; [ a for all 4, and define r(«) as follows: If & € w, we know
that the g;(«) are §Zr—increasing. Using Lemma 5.6(1), we pick some r(a) such that r(c) gg gi(@)
for all i. If & ¢ w, we just pick any r(a) < ¢;(a) for all 3. O

It is easy to see that P satisfies a version of fusion:

Lemma 5.19. Assume (p;)i<s is a sequence of length 6 < X, such that p; <., ¢, pi fori <j <o,
w; € [u]<* increasing, & € X strictly increasing. Set woo = J; o5 Wi, doms = |J; 5 dom(p;) and
Eoo = 8Up; 5 &i- If 0 = A, we additionally assume woo = domey.

Then there is a limit oo with dom(geo) = domee such that goo <uw, e, pi for all i < 4.

If 6 < A, then goo fits (Woos€oo)-

(If weo = domey,, then the limit g is “canonical”.)

Proof. We define ¢ (a) by induction on doms,. We assume that we already have ¢’ := ¢ [ @
which satisfies ¢’ <y;na.¢; pi for all i < 6.

Case 1: a ¢ weo (this can only happen if § < A): We know that ¢’ forces that (p;(a)).<s is a
decreasing sequence, and we just pick some g () stronger then all of them.

Case 2: a € ws: Let i* be minimal such that @ € w;«. We know that ¢’ forces for all
i* <i < j < that pj(a) <g¢, pi(a), so according to Lemma 5.6(2) there is a limit goo (o) <¢, pi()
(so in particular ¢’ I- ¢; € C9%(®) for all i > i*).

Now assume § < \. If a € wy, then it is in w; for coboundedly many ¢ < §. In other words,
pj [ alF ¢ € CPi(*) for coboundedly many i € § and all j > i, which implies g | @ IF £ € C5(@),

O

9An example: dom(p) = dom(q) = w = {0, 1}, min(CP(®)) = min(C?®) = ¢, and both p(0) and ¢(0) have
trunk a € POSS@(€). p(0) forces that p(1) = ¢(1), that min(CP(M)) = ¢ and that the trunk of p(1) is either b or ¢
(elements of POSS®(£)); both are possible with p(0). Now ¢(0) Sg p(0) decides that the trunk of p(1) is b. Then

q §I ¢ P, and (a,c) is in poss(p,w, &) \ poss(q, w,&). In particular (a,c) € poss(p,w, &) but p does not force that
aC 1, implies ¢ € poss(p(1),£).
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Preliminary Lemma 5.20. Let p fit (w,(), x € poss(p,w,( + 1), and let r < p extend z, i.e.,
rlkx<aG. Then there is a q S:Z,C p forcing that © < G implies r € G.

Proof. Set dom(q) := dom(r). We define ¢(«) by induction on « € dom(q) and show inductively:
eqla<i.pla
e glalk(zladGy =1 acG,).
For notational convenience, we assume dom(p) = dom(r) (by setting p(«) = 1¢ for any « outside
the original domain of p).
Assume we already have constructed ¢o = ¢ | a. Work in the P,-extension V[G,] with ¢g € G.
Case 1: 7 [ a ¢ Gq. Set q(a) :=p(a).
Case 2: 7 | @ € G,. Then r(a) < p(a). If a ¢ w, we set g(«) := r(a); otherwise we set g(«) to be
r(a)V (p(a) | ¢+ 1) as in Lemma 5.8.
If & € w, then in both cases we get ¢ [ a F g(a) gé p(a). Also, if G441 selects z [ (a+ 1), then
at stage a we used, by induction, Case 2; so then r(a) € G(«) as z(a) C n O

We can iterate the construction for all elements of poss(w, ¢ + 1), which gives us:

Lemma 5.21. If p fits (w,¢) and 7 is a name for an ordinal, then there is a q Sut,( p which
(w, ¢ + 1)-decides T.

Proof. We enumerate poss(p, w,( + 1) as (x;);es. We start with py := p. Inductively we construct
pe: If at step ¢, if x4 is not in poss(pe, w, ¢ + 1) any more, then we set pyi1 := py. Otherwise, pick
an r < py that decides 7 to be some 7%¢ and extends x,. Then apply 5.20 to get pey: SLC Do
which forces that xy < G implies 7 = 7%¢. At limits use Lemma 5.18.

For the proof of Lemma 5.23 we will need a variant where the “height” ¢ is not the same for all
elements of w, more specifically:

Preliminary Lemma 5.22. Assume that p fits (w,¢) and p | o* I+ ¢* € CP(*7), and that T is a
name for an ordinal. Then there is a q g; ¢ b such that q [ ™ Ik q(a*) §2; p(a*®) and there is a
(ground model) set A of size <A such that ¢ IF 7 € A.

Proof. This is just a notational variation of the previous proof. For notational simplicity we assume
a* ¢ w.

First we have to modify 5.20: A candidate is a pair (x,a) where x € POSS(w, () and a* €
POSSQ(C*). Assume that (z,a) is a candidate, that p € P fits (w, ) and that p | a* IF ¢* € CP(@7),
and assume that r < p extends (z,a), i.e., rl- (r<G&a* Cn ). Then there is a ¢ such that

(%) q SI,C p, qla*lFq(a”) §2} p(a*), and gl (z<G&a* C ga*) = red).

The same proof works, with the obvious modifications:
When defining ¢(«), we inductively show:

e gl Szﬁmc p |« and if @ > o* then ¢ [ a* IF g(a*) SZZ p(a*),
e qlalk ((x la<dGa&a*Cny J)—=rlac Ga), unless o < o* in which case we omit the
~a
clause about a*.

Again, in the P,-extension we have:
Case 1: 7 [ a ¢ G,. Set q(a) := p(«a).
Case 2: r [ @ € G,. Then r(a) < p(a). If a ¢ wU {a*}, we set g(a) := r(a); otherwise we set
q(a) to be r(a) V (p(a) [ ¢ +1) as in Lemma 5.8.
Then we can show (x) as before.

We then enumerate all candidates (there are <\ many) as (x¢,a¢), and at step ¢, if (x4, ar) is

compatible with py, use (*) to decide 7 to be some 7. O

We will now show that P is AM-bounding and proper. We first give two preliminary lemmas
that assume this is already the case for all Pg with 8’ < §.



Paper Sh:1224, version 2024-05-11. See https://shelah.logic.at/papers/1224/ for possible updates.

ON AUTOMORPHISMS OF P())/[A]<*. 12

Preliminary Lemma 5.23. Let 8 < u, and assume that P is A -bounding for all ' < .
Assume p € Pg fits (w, (), C C X is club, and o* < S.
Then there is a q S;C p and a & € C such that q fits (wU{a*},§).
If additionally o € dom(p) and p | a* IF ¢* € CP) for some ¢* € N, then we can additionally
get g | o IF g(a) <X p(a”).

Proof. For notational simplicity assume a* ¢ w and min(C') > max(¢,(*). By induction on a < 8
we show that the result holds for all w, a* with wU {a*} C a.

Successor case o + 1: Set wp := w N a.

By our assumption P, is A-bounding, so every club-set in the P,-extension contains a ground-
model club (see Fact 5.11). In particular, CP(®) contains some ground-model C*. By Lemma 5.21
(or 5.22, if &* < «) there is a p/ g;mc p | « (also dealing with o, if a* < «) leaving only

<\ many possibilities for C*. So we can intersect them all, resulting in C’. Set C” := C' N C.
Apply the induction hypothesis in P, to get ¢’ §$07C p’ and & in C” such that ¢’ fits (wo, ) (and
also ({a*},€), if a* < a). Set q := ¢ U {(a,p(c))}, so trivially ¢ SJu:,c p (and, if o = o, then
qlalkqla) §2; p(a)), and ¢ fits (w U {a},§).

Limit case: If w is bounded in « there is nothing to do. So assume w is cofinal.

Set ap := min(w \ o*) and wg := (w N agp) U {a*}. Use the induction hypothesis in P,, using
(p I g, wo, ¢, *,¢*) as (p,w, (,a*,¢*). This gives us some py §$0a0,< p | ap fitting (wo, (o) and
dealing with o*, for some (y € C. Set py :=p' Ap.

Enumerate w \ wy increasingly as (o )i<s, and set w; 1= wo U {a; : 7 < j} for j < 6.

We will construct pj in Py, and ({;);<s a strictly increasing sequence in C, and we set pj = DjAp
and will get: py fits (wy, (),and py §$Z_7<Z_ p; for all i < £ <j.

For successors £ =i + 1, we use the induction hypothesis in P, ,, using (p; [ i1, wi, G, a4, Q)
as (p,w,¢, o, ¢*). This gives us p/_, SL’Q pi | aiy1 and some i1 > ¢ in C such that p; o, fits
(wit1,Giv1) and pig | @itk piga(es) <F pilew).

For j limit, we set (; := sup,.; (; (which is in C), and let p; be a limit of the (p;)i<;. Le.,
dom(p;) = U, ; dom(p;), and for 8 € dom(p;) let p;(B3) be as follows: If 3 ¢ w, fix some condition
p;(B) stronger than all p;(3). Otherwise, there is a minimal iy < j such that § € w;,, and
pe(B) <2fi pi(B) for all ip < i < £ < j. In that case let p;j(3) be the (canonical) limit of the

i(8))is<i<i, and note that (; c Cori(B), .
(p( 01<y j

Preliminary Lemma 5.24. Let 8 < pi, and assume that Py is A -bounding for all B/ < f3.
Assume that p € P3 fits (w,(), and g is a Pg-name for a A-sequence of ordinals. Then there is
aq Si,c p continuously reading .

Proof. Set pg :=p, (o := (, wy := w. We construct by induction on i < X p}, p;, ¢;, o; and w; as
follows:
o Given p;, w;, and (j, pick o; € dom(p,) \ w; by bookkeeping (so that in the end the
domains of all conditions will be covered).
e Successor j =i+ 1: Set w;y1 := w; U {a;}. Find pj Szi’gi p; and ;41 > (; such that
Piyq fits (wiy1, Gip1) (using the previous preliminary lemma).
e Limit j: Let p; be the canonical limit of the (p;)i<j, (j := sup;;(G), and w; == U, wi.
Note that p’; fits (wy, (;).
e In any case, given p} we pick some p; SL,Q pj; which (wj, (j + 1)-decides g(¢;)

Then the limit g of the p; continuously reads g. O
Lemma 5.25. P has continuous reading (and in particular is \-bounding).

Proof. Assume by induction that Pg is A-bounding for all 3 < 3. Then the previous lemma
gives us that Pz has continuous reading of names, and thus is A -bounding. O

The same construction shows A-properness:



Paper Sh:1224, version 2024-05-11. See https://shelah.logic.at/papers/1224/ for possible updates.

ON AUTOMORPHISMS OF P())/[A]<*. 13

Definition 5.26. Let y > p be sufficiently large and regular. An “elementary model” is an
M =< H(x) of size A which is <A-closed and contains A and p (and thus P).

Lemma 5.27. If M is an elementary model containing p € P, then there is a g < p which is
strongly M -generic in the following sense: For each P-name T in M for an ordinal, ¢ (w,()-decides
T via a decision function in M (so in particular g -7 € M ).

(The decision function being in M is equivalent to w C M, as M is <X closed.)

Proof. Let g be a sequence of all P-names for ordinals that are in M. Starting with py € M,
perform the successor step of the previous construction within M; as M is closed the limits at
steps <A are in M as well. Then the A-limit is M-generic. O

5.5. Canonical conditions. We will use conditions that “continuously read themselves.”

Definition 5.28. p € P is (w, {)-canonical if p fits (w, ) and p(«) [ ((+1) is (wNe, (+1)-decided
by p | a for all o € w.

Facts 5.29. Let p be canonical for (w, ().
(1) If ¢ gg’c p, then ¢ is canonical for (w,¢) and poss(p, w,( + 1) = poss(g, w,{ + 1)
(2) Let € poss(p,w,( + 1). There is a naturally defined p Az < p such that p - (pAx €
G+ 2<@). {pAz: x € poss(p,w,( + 1)} is a maximal antichain below p.
(3) Let x € poss(p,w,( + 1). In an intermediate P,-extension V[G,] with z | @ < G,, the rest
of z, i.e., x | [, p], is compatible with p/G,, in the quotient forcing.
Or equivalently: If ro < p [ a in P, extends x [ a, then there is an r < ry extending x.

Definition 5.30. Assume p € P, and ¢ is a P-name for a A-sequence of ordinals. Let £ C A be a
club-set and w = (w¢)¢ep an increasing sequence in [u] <.
p canonically reads ¢ as witnessed by w if the following holds:
dom(p) = UceE we.
p is (we, )-canonical for all ¢ € E.
plalkCP® =E\({,) for some (ground model) (/.
o [ I*(<¢+1)is (we, ¢ + 1)-decided by p for all ¢ € E.

If o is the constant 0 sequence (or any sequence in V), we just say “p is canonical” (as witnessed
by o).

Lemma 5.31. For p, g as above, there is a ¢ < p canonically reading o.
If p € P, and g is a P,-name for some oo < p, then q € P,.

Proof. We just have to slightly modify the proof of Lemma 5.24.
We will construct pj, £ and «; by induction on j € A, setting w; := {a; : 4 < j}, such that for
0 < j < k the following holds:
Pk S$j75j Dj-
p; is (wy, &;)-canonical.
pj (wj, & + 1)-decides g | I*(<&; + 1).
In pg, for aj € wy, {¢;: j <i < k} is (forced to be) an initial segment of CP*(%),
e The a; are chosen (by some book-keeping) so that {a; : i € A} = (J;c, dom(p;).

Then the limit of the p; is as required, with E = {&; : i € A} and, for ( =&, in E, we use w; as we.
Set pp < p such that |dom(pg)| = A, and set & := 0. Assume we already have p;, a; for i < j
(so we also have w;).
e For j limit, let s be a limit of (p;)i<;, and set &; := sup,; ;. Note that s fits (wy, &).
e Successor case j =i+ 1: Find sg SL@_ pi and & > & such that s fits (w;,§;). (As in
Lemma 5.23. Recall that w; = w; U {a;}.)
Strengthen sy to s g:;i,& so that:
— s still fits (w;,&;),
— the trunk at a; has length &;, i.e., s [ a; IF min(C*(*)) = ¢;),
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— for ayr, i’ < i, there are no elements in C*(®) between &; and &
e Construct s* | o by recursion on « € wj, such that s* [ « Szjma g 5 [ « and s* | «
(w; Na, & + 1)-decides s(e) [ (§; + 1) (which is the same as s*(«) [ (§; +1)). This gives

8* S;Z]‘ﬂgj S
e Find p; < . s* which (w;,& + 1) decides g [ I*(<€ + 1).
e Choose a; € dom(p;) \ w; by bookkeeping. O
Facts 5.32. (1) If a Pg-name g C A\ is continuously read (by some Pg-condition p), and

cf(B) > A, then there is an a < 8 such that: p € P,, and g is already a P,-name (formally:
there is a P,-name y such that p IF z = y).
1o (

(2) There are at most |a|* < AT many pairs'® (p,z) such that p canonically reads x in P,.

5.6. A systems. In this section we define A-systems and show that such systems exist, which we
will in the indirect proofs of Lemmas 5.39 and 5.54.

In Section 5.10 we will then fix a specific A-system for the rest of the paper.

From now on, we assume that p, forces

(5.33) 7 : P(A) = P(A) represents the automorphism ¢ : P = P},

and we set, for 8 € p,

ap:=1(n,),

where, as usual, we identify 1, € 2* with ngl{l} C A
Note that, other than nﬁ, ap is a priori not a Pgii-name (but see Section 5.9).
We also fix a P-name for a representation of the inverse automorphism ¢~!. Abusing notation,

we call it 771,
With S{, we denote the stationary subset of y consisting of ordinals with cofinality A*.

Definition 5.34. Let S C S§f+ be stationary, x > u sufficiently large and regular, and z € H(x).
“An elementary S-system” (using parameter z) is a sequence (Mpg,pg)ges such that, for each
B € S, Mg is an elementary model (as in Definition 5.26) and contains z, 3, p., ¢, 7 and 771,
and pg € P N Mg canonically reads ag witnessed by some (wfﬁ)gg grs, which EPs C X club (cf.
Def. 5.30).

By a simple A-system argument we can make an S-system homogeneous:

Definition 5.35. (Mg, ps)ses forms a “A-system”, if M,p is an elementary S-system with
parameter z, and is homogeneous in the following sense: For 5 and 51 < B2 in S, we get:
(1) Mg, N Mg, N is constant. We call this set the “heart” and, abusing notation, denote it
with A. Obviously A D A\, A D dom(p,), AT € A, etc.
(2) Mgn B = A. So in particular 3 is the minimal element of Mgz above A. All the non-heart
elements of Mpg, are above all elements of Mg, . Le., sup(Mga, Npu) < Bo.
(3) There is an €-isomorphism hj 5 : Mg, — Mpg,, mapping 51 to B2, ps, to pg,, ap, to ag,
and fixing A\, u, ?, 7 as well as each a in A.

Note that this implies that the continuous reading of g3 works the same way for all 5. In particular
the EP# are that same F for all 3; and if Fcﬁ is the function mapping POSS(w}gﬁ ,C+1) to the value
of ag [ I*(<¢+1) (for ¢ € E), then h 4 (F') = F and in particular b, ,, (wg™) = w(™; ie.,
they are the same apart from shifting coordinates above A.

Lemma 5.36. Assume S C S§+ s stationary.

e [or every z € H(x) and (p};)geg there are Mg and pg < p’ﬁ such that M,p is an S-system
with parameter z.

10Depending on the formal definition, we could/should add “modulo equivalence”, i.e., there is a g\a|)‘-sized set
Z of such pairs such that whenever p canonically reads y in P, then there is a z such that (p,z) € Z and plFz = y.
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o If M,p is an S-system then there is an S’ C S stationary such that (Mg, pg)pes’ is a
A-system on S’.

Proof. The first item is trivial, using the fact that everything can be read canonically.
Using 2* = A, a standard A-system argument (or: Fodor’s Lemma argument) lets us thin out
S to some S? so that (Mg N p)pes> satisfies (1-3). For 8 € S? let 15 : Mg U{Mpg} — H(A") be
the transitive collapse, and assign to 3 the tuple of the ¢g-images of the following objects:
[ ) Mﬂ, pg, 957 W, ?, , and Epﬂ.
e For ¢ € EP5, the object w?ﬁ,
e For ( € EPs and v € wgﬁ, the object FL”.
Again, there are |[H(A1)|* < u many possibilities, so the objects are constant on a stationary
S’ C s
For a < B in &', we define h3, 5 = LE; otg,. (Note that tg, (@) = tg,(a) for a € A.) O

So in particular if we have a A-system on S, then pg | sup(A) = pg [ 8 € Mg is the same for
all 8 € S, and outside of A the domains of the pg are disjoint for 5 € S. In particular we get:

Fact 5.37. For a A-system with domain S, and A C S of size <\, the union of the (pg)gea is a
condition in P (and stronger than each pg).

Whenever r € P3N Mg (as is the case for r = pg | ), we know that r € P, for a € A (as Mg
knows that /3 has cofinality A™).

Instead of “r € P, for some a € A” we will sometimes just state the weaker but shorter
re Psup(A)-
Remark. This is an important effect also for some names. Generally, a Ps-name in Mg is of course
not a P,-name for any o < 3 (just take the Pg-generic filter Gg). However, as we will explicitly
state in Lemma 5.42, such names for subsets of A are, modulo some condition, P,-names for some

a € A and independent of 8. In the specific case of the Pg-name pg(8) we do not have to increase
the condition:

Definition and Lemma 5.38. p := pg(8) is a Psyp(a)-name independent of 3 € S.

Proof. pg(B) I ¢ +11is (wfﬁ,g‘ + 1)-determined for cofinally many ¢ € E, where wé’ﬁ cp<risa
subset of Mpg. So w‘gﬁ C A, and the isomorphisms between the Mg guarantee that each w?j is the

same, and that pg(8) | ¢ + 1 is decided the same way. So p is a P,-name for v = sup(wfﬁ)geE.
This ~ is independent of § € S, and is in A. So p is actually a P,-name for some a € A; and
certainly a Py,p(a)-name. O

For later reference we note:
Lemma 5.39. For all but non-stationary many 3, p. forces ag ¢ V3.
(Here, V3 denotes the Pg-extension of the ground model.)

Proof. Assume that pg < p, forces that ag = zg for a Pg-name g3 for all § € S* stationary. We

can also assume that pg canonically reads g,. Pick Mg containing pg and S C S* such that

(Mg, pg)pes is a A-system, where we can assume (or get from homogeneity) that b 5 (25,) = 2,

So the zg are Pg-names in Mg and therefore Py,,a)-names, and are the same for all . Choose

B1 > Boin S. So pg, A pg, force that ag, = £ = ag,, which contradicts the injectivity of ¢ and the

fact that ", #* M- - O
~Po ~p1

5.7. Preservation of cofinalities, catching canonical names.
Corollary 5.40. P is At -cc and preserves all cofinalities.

Proof. Cofinalities <\ are preserved as P is <A-closed.
Cofinality AT is preserved by properness: Assume that it is forced by p that x has a cofinal
A-sequence @ := (@;)iex. Then there is an elementary model M containing p and &@. If ¢ < p is
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M-generic, and G a P-generic filter containing ¢, then o;[G] € M for all i < A\, so M Nk is a
cofinal subset of k of size A in the ground model.

Cofinality > AT is preserved as P has the AT +-cc, which we have shown in a very roundabout
way with the fact about A-systems: If (pl,)ac, are arbitrary conditions, then (Mgz,pg) form a
A-system from some ps < pjy and stationary S, and any two (in fact, <A many) pg are compatible
for g€ S. O

Remark 5.41. This shows that P is (u, A)-Knaster, i.e., for every A € [P]* there is a B € [A]*
which is A-linked.

The AT T-cc also implies: For every name g for a subset of A (or of A1) there is a 8 < p and a
Ps-name Y such that the empty condition forces that ¢ = y-

Given a < pu, there are <p many pairs (p,z) where p canonically reads z C A in P,, see
Fact 5.32(2). So there is a g(a) < u such that for each such p,z, both 7(z) and 77(z) are
equivalent (modulo the empty condition) to some Py)-name. Let C* C u be the club set with
eC*&a<() — gla) <.

Given a A-system on S we can restrict it to a A-system on S N C™*; so we will assume from now
on that each A-system we consider satisfies S C C*.

To summarize:

Lemma 5.42. (1) If 8 € S, p € Pg and g a Pg-name for a subset of \, then there is an
a < B and a g < p canonically reading z, 7(x), 7 1(x) as Py-names.
More explicitly: There is a P,-name y which is canonically read by q such that q - y=z.
(And analogously for 7(z) and 771 (x) instead of z.)
(2) If additionally p < pg | B in Pg and (p,z) € Mg, then we can additionally get: x, w(zx)
and 771 (z) are P,-names in Mg independent of 3 € S.
More explicitly: Let Yy be as above (for z). Then o € A, q and y are in Mg, and if
B €S and h := W . then h acts as identity on «, g, and y, and (Mg knows that)

qlFy = h(z). (And analogously for 7(x) and 7~ (z) instead of x.)

Proof. (1): Use Lemma 5.31 to get a ¢; € Ps canonically reading z. And if 8 € S then cf(8) = AT,
so dom(p) is bounded by some o’ < § and, by Fact 5.32(1), q1 € P,, for some o/ < a1 < .
As B € C*, (z) and 77 1(z) are Pg-names. So repeat the same argument to get ¢ < ¢; in P,
canonically reading all three subsets of A.

(2): Apply (1) inside Mg. As o € SN Mg, we get € A. As ¢ canonically reads itself as well as
y, we know that h does not change ¢ and Y- As h is an isomorphism, we know that h(q) = ¢ forces

that h(z) =h(y) = y. O

5.8. Majority decisions. For any (aj,as,a3) with a; € {0,1} there is a b € {0,1} such that
b = a; for at least two i € {1,2,3}. We write b = major,_; 5 3(a;).

Similarly, if f1, fa, f3 are functions A — 2 we write major,_; 5 5(f;) for the function A — 2 that
maps £ to major,_; 5 3(fi(¢)).

The following is a central point of the whole construction:

Lemma 5.43. Let (M, po)acs be a A-system. Pick By < f1 < o < B3 in S.

(1) p« forces: Ifﬂﬁo =" maj0r¢:1,2,3(17ﬂi); then ag, =" Inajori:l,Q,S(gﬁi)‘
(2) Let s = N\,_,pp,- Recall that s(B;) is the same Pypay-name called p for all i. We
can strengthen s by strengthening, for i = 1,2,3, the condition s(f;) = p to some

Psyi1-names r; < p (without changing CP?) such that the resulting condition forces
:]Bo = majori:m,s(?? )-

(We do not have to strengthen s(Bo) for this, i.e., we can use ro := p.)

We describe this by “(r;);<4 honors majority”.
Recall that v; =* 15 denotes that v4(¢) = vo(¢) for all but <A many ¢ € A.
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Proof. (1) Identifying 2* with P(X), we have major,_; 53 fi = (f1 N f2) U (f2N f3) U (fi N
f3) for any tuple (f;)i=1,23. As 7 represents an automorphism, we get m(major,_; 5 5(fi)) =*
major;_; 5 3(7(fi)). Apply this to f; := Ny

(2) Work in the Pg,41-extension. Recall p := pg,(8o). So both p and 15, e already determined,
and M4, extends n?. Set ro := p.

Set s1 := (0,0), s2 := (0,1), s3 := (1,0). For ¢ € C? and i = 1,2, 3, we define r;({) 2 p(¢) as
follows:

(5.44) Extend s’Z by s;,1.e., s = (sg)Asi; and set 7;(¢)(£) := gﬂ(@) for ¢ € [s’z] \ [s¢']-

So 1"t agrees on its domain with N5, and each £ € X is in dom(n") for at least two i € {1,2,3}.
~ o
Accordingly, an extension by a generic filter G with r; € G(;) for all i < 4 will satisfy Ny =
~ L0

major;_; o 3 (775_). (We do not even have to assume that any ps € G.)
Remark 5.45. Let pj; be the condition where we strengthen pg, (1) to r1. Note that pbl is not in

Mg, , as Bo ¢ Mp, and 7 is defined using My Similarly (basically the same): m[Gg,] ¢ Mg, [Gga,],
~Po

even if we assume that G, is Mg, -generic. But generally we will not be interested in Mg-generic
conditions or extensions (we needed generic conditions only in Lemma 5.27, which in turn is needed
for Corollary 5.40). And while usually most conditions we consider can be constructed within (and
therefore will be elements of) some Mg, this is generally not required (an example are the s;’s in
the following Lemma).

The same proof works if we do not start with the pg but with any stronger conditions, as long
as they still “cohere” in the way that the pg, cohere:

Lemma 5.46. Let (Mg, pa)acs be a A-system, By < B1 < P2 < B3 in S, and s; < pg, for
1=20,1,2,3 such that:
o dom(s;) C Mg,
o s*:=s; [ B; is the same for all 1,
o s* forces that the s;(5;) are the same for all i.
(In the usual sense: The s;(B;) are continuously read from generics below By in the same
way for each i < 4.)

Then there is condition stronger than all s; forcing that Naw = majori:172’3(7~75i) and thus ag, ="
majori:l,?,?)(@ﬂi)‘

5.9. ag is in the B8 + 1-extension. We now show that gz can be assumed to be a Pg-name.

The following definitions, in particular everything concerning the notion of coherence, is used
only in this section. In the rest of the paper, we will use from this section only Lemma 5.54, i.e.,
the fact that ag € Vg41.

Remark. Why do we introduce this (rather annoying) notion of coherence? Well, we would like to
simultaneously construct something like s; < pg, where each s; ends up in Mg,. We cannot directly
do this in Mg,, as Mg, does not know about, e.g., B;. So instead, we construct four different
8; < pp, in Mg, in such a way (a “coherent” way) and use s; := hj 5 (s}).

Let us for now (until Lemma 5.54) fix an arbitrary A-system (Mg, pg)ges as well as Sy < 1 <
B2 < B3 in S. For notational convenience, set

B = fo-

Definition 5.47. ® §=(qi)i<a in Mg is called coherent, if each g; is stronger than pg and
q; | (B +1) is the same for all 7 < 4.
e If g is coherent, then A\;_, h} 5.(g:) is a valid condition in P, and we call it ¢*.
IL.e., ¢* is the union of the copies of ¢; in Mg,; and the copy for g is just go.
r € P is called coherent, if r = ¢* for some coherent ¢ € Mg.
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Facts. e The pg, are coherent, more correctly:

The condition A\,, ps, is coherent; equivalently: The tuple (h;}l (p/g))l 4 is coherent.

e Any coherent 7 is stronger than A,_, pg, .

o If g is coherent, r; < ¢; in Mg for i < 4, and r; [ 3; is the same for all ¢ < 4, then
Nica P 5, (1) is (a valid condition and) compatible with ¢*.

e r € P is coherent iff: dom(r) C ;.4 Mg,, r | (1N Mp,) € Mpg, is stronger than pg,, and
each r(f;) is forced to be the same condition.

In that case, r = ¢* for ¢; := hffﬂlz (r;) and 7 :=7 [ (pN Mag,)

Lemma 5.48. If 7 is coherent, then it can be strengthened'! to force'? ap, = mMajor;_j o 3 4g; -

Proof. This follows from Lemma 5.46, using s; :=r | (uN Mg,). O

Definition 5.49.
e W = (w;);<4 is coherent, if w; € [u]<* is in Mg and w; N (B + 1) is independent of 1.

In the following we always assume that § and w are coherent.
q fits (w, (), if each g; fits (w;, ().
q is (w, ¢)-canonical, if each ¢; is (w;, ¢)-canonical.
T g,;c ¢ means: 7 is coherent, and 7; SL,C q; for all © < 4.
T = (;)i<4 is defined to be in poss(g, @, ¢) if x; € poss(¢;, w;, ) and x; | 5 is independent
of i. Such a Z will be called coherent possibility.

(Note that the x;(8) in a coherent possibility can be different for different ¢ < 4. Also
note that such a Z is automatically in Mg, which is <X-closed.)

Note that if 7 Sg,( q and q is (w, ¢)-canonical, then 7 and g have the same coherent (w, ¢ + 1)-
possibilities, see Fact 5.29(1).

Several of the previous constructions result in coherent 4-tuples when applied to coherent
4-tuples. In particular:
Lemma 5.50.

(1) Assume (¢%)jes is a sequence of coherent 4-tuples such that, for each i < 4, the i-part
(qg)jeg satisfies the assumptions of Lemma 5.18.

Then for each i, the lemma (in Mg) gives us a limit v, which we call qf.
We can choose the q? so that they form a coherent 4-tuple.

(2) The same applies to Lemma 5.19. Le., we can get a coherent fusion limit from a \-sequence
of coherent tuples.

(3) Assume p fits (w,(), and o; € p such that w; := w; U{«a;} is coherent. Then there is a
E>Candaq SEC P which fits (@', €) and is (W', §)-canonical.

(4) Assume q is coherent and (for simplicity) (w0, ¢)-canonical with B € w; (which is independent
of i <4), and T; are names of ordinals. Then there is an Sg,g q such that T is (w,(+1)-
decided by T.

By this we mean that 7; is (w;, ¢ + 1)-decided by r; for all i < 4.

Proof. For the first items, we just have to look at the proofs of the according lemmas (For (3) this
is 5.23 and 5.24) and note that coherent input gives us coherent output. In the following we will
prove (4). We work in Mag.

Enumerate all coherent possibilities as (Zx)rer. Set 7 := g. We now construct 7*+! from
7 := ¥ where we assume 7% <F - g.

e Find s¢ stronger than ro and extending xg, deciding 9.

e s*:=(so | B) Arq is stronger than r1, as 7 is coherent. Strengthen s*(8) = r1(8) = ro(5)
to so(8), but replace the trunk with z1(8). Then s* | 8 forces that s*(8) < r1(3), as
x1 | B=wx0 | B and as z1(f) is guaranteed to be possible, because r is canonical. Further
strengthen s* (above ) to extend (the rest of) x1; and then strengthen the whole condition
once more to decide 7;. Call the result s;.

1to a condition that will generally not be coherent
12Here we write Bo instead of B to stress the interaction with 51,..., 83, but recall that 8 := 9.
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e Do the same for ¢ = 2, starting with s, resulting in s, and then for ¢ = 3, starting with
So, resulting in some ss.
So s; < r; extends x; and decides 7;, and s3 [ 8 < s; | 8 and s3(83) is stronger than
s;(B) “above ¢ + 17.
e We define r, < r; as follows: dom(r}) = (dom(s3)NS)Udom(s;). We define /() inductively
such that 7} | « Sima,c r; forces that x; [ a <G implies s; [ a € G.
— For a < 6:
If s3 | @ ¢ Gg, set 7i(a) = 7;(). Assume otherwise. So s3(«) is defined and stronger
than r;(a) = r3(@). If a ¢ w; (which implies o < ), set ri(a) = s3(«). Otherwise,
use sg(a) V (r3(a) | ¢ + 1), as in Lemma 5.8.
— For a > 3, we do the same but we use s; instead of s3. In more detail:
If s; | @ ¢ G, set ri(a) = ri(a). Assume otherwise. If a ¢ w;, set ri(a) = s;().
Otherwise, use s;(a) V (ri(a) [ ¢ +1).

We can use this 7 as 7 *1: It is coherent, 7 <7 . 7*, and r} decides 7; assuming z; <G. [

Coherent tuples ¢ naturally define a P-condition ¢*. However, we have to assume that ¢ is
canonical to guarantee that coherent ¢ possibilities correspond to ¢*-possibilities:

Lemma 5.51. Assume q and w coherent. We set w* :=J,;, h g, (w;). Let T be in poss(q,w,(+1).

(1)  fits (1,C) iff 4" fits (w*,C).

(2) v §$7¢ q iff r* Si*g q.

(8) Assume q fits (w,¢). Then q is (w, C)-canonical iff ¢* is (w*, {)-canonical.

(4) Assume that q is (w,()-canonical. Let z* be the union of the hj 5 (x;). Then z* €
poss(¢*,w*,{ + 1); and every element of poss(¢*,w*,( + 1) is such an x* for some T €
poss(g, w, ¢ + 1).

(5) Assume that G is (0, ¢)-canonical. Then q (w,{+1)-decides (1;)i<a iff ¢* (w*, (+1)-decides
all hs 5. (7:)-

Proof. Assume a € w;. Set ' := hj 5 (o) € w* and ¢’ := hj 5 (q;).

(1) Assume ¢;, « satisfy ¢; | o |- ¢ € C%(®), By absoluteness they satisfy it in Mg, so the
hj 5,-images ¢', o' satisfy it in Mp,, which again is absolute; and ¢* [ o/ < ¢’ [ o/ forces that
¢*(a’) = ¢/ (/). For the other direction, assume (in Mp) some s < g; | o forces ¢ ¢ C%(®). Then
hjs 5,(s) is compatible with ¢* and forces ¢ ¢ Cu@) = g (),

In the same way we can show (2), as well as (5) and the trivial directions of (3), (4). E.g.,
if ¢ is (@, ()-canonical, then ¢* is (w*,()-canonical. For this, use the fact that every element
y* € poss(¢*, w*, ¢ + 1) “induces” a coherent possibility § (which is true whether g is canonical or
not). And if additionally Z € poss(g,w,{ + 1), then z* € poss(¢*, w*,{ + 1); and if each ¢; forces
that x; 9 G implies 7; = 2, then ¢* forces that #* < G implies h}; 53 (7:) = hj; 5, (¢").

We omit the (also straightforward) proofs of the other directions of (3) and (4) (which we do
not need in this paper). O

In the following, whenever we mention ¢* or w*, we assume w, ¢ to be coherent and in Mg.
We will (and can) use * only if ¢ additionally is canonical (otherwise z* will generally not be
a possibility for ¢*). In this case, every P-generic filter containing ¢* will select an x* for some
coherent possibility .

Lemma 5.52. Assume q is coherent, g; are P-names in Mg for elements of 2*, and™ qo I+
a0 & Vai1. Then there is a coherent T < q, and sequences (¢7);jex and (w7);ex such that 7 is
(0, ¢7)-canonical for all j, and for all Z € poss(7, w’,(? + 1) there is some £ € I*(>¢7, <¢7*1)
and b = (b;)i<a, with b; € 2, violating majority** such that for all i < 4

T I+ Z; 4G — gz(f) = bl

As the pg, are coherent, we can apply the lemma to g; := gg (for all i) and get:

13As usual, Vg1 denoted the Pg1-extension.
Mie,bp=1— major;_j o 3(b;)-
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Corollary 5.53. If pg |k ag ¢ Vpy1, then there is a coherent r* < \,_, pg, forcing that
- (Qﬁo =" majori:1,273(g’ﬂi))'

Proof of the lemma. We will construct (in Mpg), by induction on j € A, ¢/, @’ and # with r{ = ¢,
such that the following holds:

(1) 7 is coherent. '
(2) w’ is coherent, for each i < 4 the w] are increasing with j, and their union covers

Ujex dom(ry).

(3) 7 is (@w?,(?)-canonical.

(4) 7+ S;f)j@ 7 for j < k.

(5) If 7 € poss(7/, @, (7 + 1), then there is an £ € I*(>¢7, <¢/*') and a b € 2 such that for at
least two 41,42 in {1,2,3}, rf“ forces that x; <G implies

3
4

(*) Q'O(é) =1-b, gy (é) =b, gi, (6) =b.
Then we take the usual fusion limits, as in Lemma 5.50(2), and are done.
For limits j, let 7 be a (coherent) limit of (7); —;, and set ¢* := supj/<j(Cj/) and w} :=

U< wf, for each i < 4. Note that 7 fits (@*,(*). Then we can find coherent 7* Sg*7o 7 which
is (@w*, ¢*)-canonical, as in Lemma 5.50(3).
In successor cases j = j' + 1 set (7*,w*,¢*) := (7w, 7).
In any case we want to construct 7, @w’, and (7.
Enumerate poss(7*,w*,(* + 1) as (Z¥)rex.
We define 5% for k < K, with 5° := # and, as usual, taking (coherent) limits at limits, such
that:
e 5% is coherent.
o 5t gg*vc* 5k for k < ¢ < K. (This implies that 5% is (w*, (*)-canonical.)
e There is a ¢¥ and an £ € I*(>C*, <€¥) and a b € 2 such that
(xx) s kg aG 5 o(f) =1—-b and (3% € {1,2,3}) s IFab oG = 1(0) = 0.

Assume we can construct these 5%, ¢¥ for all k € K, then let 5% be again a (coherent) limit. We
set wf := w} U {a;} such that @’ is coherent (and such that, by bookkeeping, all elements of
dom(p]) will be eventually covered), and find some ¢/ > supycx (€¥) and 7 Sg*,c* r* which is
(w7, ¢7)-canonical, again as in Lemma 5.50(3). Then #/, @/ and (7 are as required.

So it remains to construct, for k € K, 5**! and &*, which we will do in the rest of the proof.
Set 5:= 5%, 7 := z¥, w := w* and ¢ := ¢*. Recall that 5 is (@, ¢)-canonical, Z € poss(5, w, (), and
we are looking for §8+! SE’C 5 which satisfies (xx) for Z.

Set s} := s; A x;. It is enough to construct ¢; < s; such that:

e Both ¢; [ 8 and ¢,(8) [ (A\ ¢ + 1) are independent of 3.

o tolr7o(0) =1—b and (322 € {1,2,3}) t; IF 7:(£) = b.
Then we can define **! in the usual way: dom(sF™!) = dom(t;) (and we can assume dom(s;) =
dom(t;), by using trivial conditions). For a € dom(t;), if t; | a ¢ G then set s¥7(a) to be s;(a),
otherwise t;(a) V (s;(a) [ (+1) if @ € w; and #;() otherwise. The resulting 5%+! gjm 5 is coherent
and sf“ forces that z; < G implies t; € G.

We have to introduce more notation: Fix j # i, and a < s; and b < s, [ B+ 1 (in Pgiq)
such that b | 8 < a and b | 8 forces that b(3) is stronger than a(8) above ¢ (i.e., b | g IF (V€ >

Q) b(B)(€) D a(B)(€)). Then we define bl A a by

b()(§) ifa<p,

zj(B)(€) if a=pand { <,
b(B)(§) ifa=pand >,
a(a)(§)  otherwise.

(BT A a)(a)(€) =

Note that b7} A @ is stronger than a, but generally not stronger than b.
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By our assumption, go and therefore s forces gg ¢ Vsyi. So in an intermediate model
V[Gpg41], there is some £ € I*(>() such that s(/G g1 does not decide go(¢). Back in V, fix some
bo < s{ | (B+1)in Pgyq which determines this 4.

Find r] < bg] A s} which determines ¢;(¢) to be j; for some j; € 2. Find vy < (] | B+ 1) As)
which determines g2 (¢) to be ja; analogously find r4 < (1 | 8+ 1)1¥ A s4 which determines a(¢) to
be some j3. Let j € 2 be equal to at least two of j1, jo, j3-

Set p:= (ry [ B+ 1) As). In any P, i-extension honoring p [ 8+ 1, go(¢) is not determined
by p/Ga41, i.e., there is an to < p forcing that ¢(¢) =1 — j.

We now set and t; := (to | 4+ 1)l A r} for i = 1,2,3. Note that ¢; < r] < s, extends x; and
forces g;(¢) to be 1 — j if i = 0 and to be j for at least two ¢ in {1, 2, 3}. O

We can now easily show:
Lemma 5.54. For all but non-stationary many 5 € Sﬁ\ﬁr
P« IF s € Vep

Proof. We started in this section with an arbitrary A-system and showed that Corollary 5.53 and
Lemma 5.48 holds for this system.

We now use a specific A-system:

Assume towards a a contradiction that on a non-stationary set S’ there are pg < p, forcing
ag ¢ Vsi1. By strengthening we can assume that pg canonically reads ag. Let Mg contain pg and
let S C S’ be such that (Mg, pg)ges is a A-system. Fix Sy < /1 < f2 < B3 in S. By Corollary 5.53
we get a coherent 7 stronger than p such that r* I- = (¢, =* major,_, 5 3(ag,)). This contradicts
Lemma 5.48. O

5.10. Fixing the A-system. We now know that there is a stationary set S C S4, such that for
all B € 5% ag is forced (by ps) to be in Vz41 but not in Vs (see Lemmas 5.39 and 5.54).

For each 3 € S° there is a pr < ps« in P forcing that ag is equal to some Pgyi-name, call it aj,
and we choose pg < pfg (we only have to strengthen the part below 5 + 1) which canonically reads
a* .15

We now fix, as usual, for each 3 € S°, some elementary model Mz containing pg, and fix S C S°
such that (Mg, pg)ges is a A-system.

S0 pux :=pg | B < p4 is independent of § € S (it is a P,-condition for some oo € A, independent
of 8 € S ); and g} is read continuously by pg [ 8+ 1 via (w;)cep for some E' C A club, with
w’C C 8+ 1. As usual, due to homogeneity E’ is independent of 3 € S, and the w’C are independent
of 3 apart from the shifting of the final coordinate 3 via the mapping hj, g ; the same holds for
the decision functions that map poss(p¢,w;, ¢ +1) to ag [ I*(<¢+1)

Let E be the limit points of E’, and set w¢ := |, _, w,,. Then ag | I*(<§) is (we, §)-determined
by pg for all £ € E.

In the Pg-extension, only up remains undetermined, i.e., there are f; for { € E such that

v<(

pp/Gps forces ag | I*(<€) = fE(ﬂB I I*(<€)). The f are canonically read from pg | § in a way

independent of 5 (due to homegeneity).

Recall that = € poss(p,€) is equivalent to: x € 27" (<9 and x extends 1P | I*(<€). So the
domain of fe is poss(p, §).

To summarize:

Fact 5.55. (Mg, pg)pes satisfies:
® pg [ B =:pux < ps is a Pyyp(a)-condition independent of 3 € S.
e ps(B) =: p is a Psyp(a)-name independent of 3 € S,
e There is a club-set 2 C X and, for § € E, Pypa)-names fe : poss(p, &) — 217 (<€) such
that forall e Sand (£ € E

pslFap 1 I°(<€) = fe(n, 1 I"(<€)).

1550 pg [ B+ 1 reads gg, but generally the whole pg may be required to force gg = (Nz;g.
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o If €S,z C \is a Pg-name, ¢ < p,, in Pg and ¢,z are in Mg, then we can find o € A
and p., < ¢ in P, which continuously reads z, 7(z) and 7!(z) independently'® of /3.

The last item follows from Lemma 5.42; and we will use it several times: Before Corollary 5.59
we find p?, < p.. to get names for U, Fy etc. that are independent of 3; before Lemma 5.63 we get
p3, < p2, to get independent names for some unions, intersections and r-images; and finally after
Corollary 5.70 we choose ¢ < p2, to get an independent name for the generator fgen.

5.11. Local reading. So we know that we can determine initial segments of ag from initial
segments of 1], more specifically, we can determine Up I from gg | I for I := I*(<§).

In this section we show that on unboundedly many disjoint intervals of the form A := I'*(> £, < v),
we can read ag [ A from just 1, I A (without having to use the nﬁ—values below A).

The following definition (the notion of candidate) is only used in this section. In the rest of the
paper we only need Corollary 5.59.
In the following, we work in V3, the Pg-extension V[Gg] where we assume 3 € S and p.. € Gg.

Definition 5.56. (In Vj)
e For AC X\ and T = (z;)i<4, 2; : A — 2, we say T honors majority above (, if
xo(f) = major;_; 5 3 z;(¢) for all £ € AN I*(>().

We say Z honors p, if each z; is compatible with n? (as partial functions).
o T = (2;)i<q is a (o, ¢1)-candidate, (for ¢y < ¢; both in E) if the x; € poss(p, (1) honor
majority above (g.
(As elements of poss(p, (1) they automatically honor p.)
o If T is a ((p, (1)-candidate, we say “y extends z” if 7 is a (1, (2)-candidate!” for some
(3 > (1 and each y; extends x;.
Equivalently, § = #7b for some b, with b; : I*(>(;,<(2) — 2, which honors both
majority and p.
e A ((o, (1)-candidate 7 is “good”, if for every candidate Z of height £ > (; that extends g we
have:

(*1) fe(20)(£) = major;_; 5 5 fe(2i)(€) for all £ € I"(2(y, <§).
Preliminary Lemma 5.57. (In Vg.) Every candidate can be extended to a good candidate.

Proof. Assume otherwise, i.e., there is a (¢’, {p)-candidate Z which is a counterexample, which
means:
(42) Whenever § is a ((o, ¢1)-candidate extending Z then there is a £ > (; and a

2 (¢4, €)-candidate z extending § which violates (x1).

We now construct 7o < p and, for i = 1,2,3, Qg-names r; < p. All these conditions live on the
same C* C E with min(C*) = (5. The trunk of r; is ;.

We now construct inductively C* | ¢ and r; | C.

Assume we have determined that ( € C* and we have constructed each r; below (. Set
ro(¢) := p(¢) and pick r;({) as in (5.44), i.e., they have majority 1, and leave enough freedom to

form a valid condition.

We will now construct the C*-successor £ of ¢, together with r; on I*(>(, <¢).

Enumerate all ({o, ¢ + 1)-candidates extending = as (7*)xex -

Let @° be the empty 4-tuple and set & := ¢ + 1. We will construct, for k € K, &k and some ak
that honors majority and p, where a,’f has domain I*(>¢ + 1, <) and extends a7 if j < k.

If k is a limit, let a® be the (pointwise) union of @’ with j < k, and set & := sup, (&)

16This means: pls € M, for all v € S, and there is a way (independent of v € S) to continuously read y1,y2,y3
modulo p, from the generics below «, and for all v € S we have that p,, A py forces y1 = z’, y2 = 7(z') and
y3 =77 1(z'), where g’ := kg (2)-

7or equivalently, a (o, (2)-candidate
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Assume we already have @’. Extend 37~ @’ to some candidate §7~ @' of some height ;41 in
E such that
(*3) 77" @t violates (x1) for some £ € I*(>¢;, <€j11).

We can due that due to (x2).
So in the end we get some ¢ > ¢ in F and b¢ with domain I*(>(, <€) honoring majority and p
such that
(a) for every (Co, ¢ + 1)-candidate 7 extending Z, 7b¢ is a ({p, £)-candidate violating (1)
for some ¢ € I*(>(, <¢€).
We then define C* below £ + 1 by adding only &, i.e., £ is the C*-successor of (. We extend the
conditions r; by bf for ¢ < 4. Le., we have 1" () = bg (¢). This ends the construction of r; < p.

Back in V, assume that (x2) is forced by some ¢’ < pg | 5. Pick an increasing sequence [3;

(1 < 4) in S. We take the union of ¢’ and the pg,, call it s, and strengthen s(8;) = p to ;. The
resulting condition s’ forces the following:

o ag, | I*(<€) = fg( [ I*(<€)) for all £ € C*. This is because s’ < pg,, cf. Fact 5.55.
e The 77 honor majorlty above (p. This is because for all ¢ € C*, the r;({) are chosen as

in (5. 44) and therefore honor majority; and for ¢ € A\ (C* U () we use values b which
honor majority.

e Accordingly, the gg, honor majority above some 7y < A, cf. Lemma 5.43(1). Pick (; such
that sup(I*(<¢1)) > v

e So for all £ > (; the fg(z]ﬁ‘ I I*(<£)) honor majority above (;.

e Pick some ¢ > (p, (1 in C* with C*-successor £. By construction of the r;, s, I (>(+1,<

&) is bC As r; extends x;, § := 1, [ I*(<C+1) is a (¢p, ¢ + 1)-candidate extending Z. So
by (#4), the s, [ I*(<€) violate (1) at some £ € I*(> ¢, < £), a contradiction. O

Let U C X be club. Set U°PP to be the odd elements!'® of U. For ¢ € U°PP with U-successor v,
set
Ag =I"(>&, <v)

Lemma 5.58. (In V3.) There is an ro < p, a club U C C™ C E and, for £ € U°™", an
Fe: 24¢ 5 24¢ such that
o 79 Apg/Gga forces that FE(Hﬂ [Ag) =ag FAg,

o F¢ is not constant: There are, for k =0,1, zg in poss(ro, I*(<v)) and £¢ € Ag such that
Fg(zf [AU)(&) = k. (Again, v is the U-successor of €.)

(Note: Only those elements of 24¢ that are compatible with ry are relevant as arguments for
Fe)

Proof. We construct r; for i < 4 and U iteratively; C"¢ will be independent of i, call it C.
All 7; have the same trunk as j; i.e., min(C) = min(C?) =: (o and r; [ (o :=p | (o. We also set
min(U) = (p.
For all ¢ € C, we choose some r7(¢) as in (5.44), i.e., r§(¢) = p(¢), and the r({) for i =1,2,3
are such that the majority of their generics would be the r§(¢)-generic.
Assume that we already know that some ¢ is in U (which is a subset of C'), and that we know
r; | ¢ for ¢ < 4.
We now construct the U-successor & of ¢, C [ [(,£], and r;(v) for ¢ < 4 and v € [(,£).
e Even case: If ¢ is an even element of U, we start with r;(¢) := r7(¢), but then add a
“shield”, or “isolator” above (: As in the previous proof, we iterate over all ( + 1-candidates
77, but but in (x3), instead of violating (#;) for some ¢, we demand that 37~ z/+! is good.

8l e., if (ta)a< is the canonical enumeration of U, then ¢ € U is in U°P® if { = usy2y,41 for 6 a limit (or 0)
and n € w.
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(We already know that every candidate can be extended to a good one.) Accordingly, we
get some § > ¢ and b¢ with domain I*(>(, <€) (and honoring majority and $) such that
7 b¢ is good for every candidate § of height ¢ + 1; i.e.:
(1) If z is a (¢ + 1,v)-candidate whose restriction to I*(>(, <¢) is b¢, then the
fu(z;) honor majority above &.
We now let this £ be the successor of ¢ in both C' and U (and extend each p;(¢) by b;).

e Odd case: Now assume ( is odd in U. Then we choose some ¢ > ¢ in CP large enough such
that there are, for £k =0, 1, z? in poss(p,£) compatible with all the ry constructed so far,
such that the fg(zg)(ﬁ) = k for some ¢ > I*(<(). (Such & and ¢ have to exist as gg is not
in Vlg)

We let C restricted to [, €] be the same as CP, and set r;(v) := 7} (v) for v € C N [(, €).
(For ¢ € [(,€) \ C there is no freedom left, i.e., p(¢) is already completely determined, so
the only choice for any r < p is r(¢) = p(¢).)

This ends the construction of U and of r; (for ¢ < 4).

Pick £ € U°PP, let ¢ be the U-predecessor and v the U-successor. We have to show that we can
determine (modulo pg) ag | I*(> &, < v) from 1, I I*(> &, < v) alone. (We already know that we

can determine it from N, [ I*(<v).)

Fix any 25 e poss(rg,(+1). Let z¢ € poss(rg,v). In particular zy extends bg. Fori=1,2,3, let

x; be the copy of g with the initial segment zq [ £ replaced by 25 ’\bg. Note that Z is a candidate
extending b¢. Accordingly the f,(z;) honor majority above £. So we can define

FE(xO | Ag) = majori:l,Z,B fo(x:) FAQ = fu(wo) | A?
This is well-defined,' and 7o A pg/Gp forces that Fe(zo | Af) = as | AY. O

We now summarize this lemma, which was shown in Vj for some 3 € S, from the point of view
of the ground model. The lemma only uses the parameters 1, and gg (and p, which is just 776(5)),

so by absoluteness Mg knows that the Lemma is forced by p... Accordingly, we can find Pz-names
for U, F¢ etc in Mg. Using the last item of Fact 5.55, we can strengthen p.. to p2, to canonically
read these names:

Corollary 5.59. There is an o € A, a p2, < pux in P, and Py-names for: A condition ro < p, a
set U and a sequence (Fy, zg, zg,fg, K%)gey, such that the following holds for all 5 € S, where we set

p; to be the condition p>, A pg where we strengthen pg(B) to ro.

(1) «, the condition p?, and all the names are in Mg.
(2) P2, IFU C C™ C X\ club.

(3) for k=0,1: p2, - V& € U°PP (zéC € poss(ro, I*(<v)) & le € Ag &,Fg(zéc [Ag)(ég) = k)
(4) ng IF (V€ € U°PP) Fi(ﬂﬁ I AY) = ap | A¢, where we define
A¢ to be I"(>€, <v) with v the U-successor of €.

5.12. Finding the generator. In this section we use these p2,, o, (Ft, zg, zg,ég,ﬁé)geU.
We start working in Vs = V[Gg], where we assume p?, € Gj.
Let £ € U°PP and v its U-successor. Set

Ae = I"(>¢, <v), Az = A¢ \ dom(n"),
(5.60) oop:= | J A, oop’:= | J A{=opD)\dom(y™).
geUODD {EUODD

19Assume y and @ in poss(ro, v) are the identical restricted to Ag. Then y defines the same (z;);=1,2,3 and thus
the same Fg.
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For F¢ it is enough to use P i Az as input (the part in A \AZ is determined anyway by rg),
and every element of 24¢ s compatible with ro (and thus a possible input for Fy). Identifying 25
and P(B) as usual, we get:

Fe : P(A7) = P(Ag)
is such that p‘g /Gp forces
Feln, N AD) = a5 0 Ag

We now define
F:P(opp’) = P(obp) by z— | Fe(enA)).
erODD

So in particular pg /G forces that
(5.61) Fn, N opp’) = g N ODD.

Note that for every 2 C opD’ (in Vj that is) there is an v’ < 7 forcing that P Nobp’ = z.

(C":= U\ U°PP is club, so it is enough to leave freedom at C’ and we may assign arbitrary values
everywhere else.)

Back in the ground model V, using the last item of Fact 5.55 again, we can strengthen p?, to
p2, so that

(5.62) p3, canonically reads each of the following (countably many) sets:2

o (A¢)eeporn, ODD, 70, (Ag)gerDo, opD’ (actually, these are already read by r2,).
e The closure of these sets under 7, 7!, finite unions, and finite intersections.

In particular, the (names for) all these sets are independent of 3 € S, modulo p3,.2!

Lemma 5.63. (InV) p2, IF |7(opD?) NODD| = \.

Proof. Let ¢ < p3, in Ps be arbitrary. We have to show that ¢ does not force (in P3) |r(opDp”) N
ODD| < A.

For £ € U°"" and k = 0,1, use ro, pg, zé“ and {¢ as in Corollary 5.59 and set b’g = zé“ N Az.

For k = 0,1, set B" := Ugcyon (bE). Note that F(B')\ F(B°) contains {{¢ : € € U°"}, a set
of size .

Pick increasing (8;);<4 in S with Sy = 8. Set s:= ¢ A /\i<4pgi € P.

Now for each i < 4, strengthen s(3;) (i.e., o) as follows: At the even intervals in some way that
together they honor majority; and at the odd intervals (where we do not have to leave freedom) to
the value B%"(®) (where sgn(k) = 0 for k =0 and 1 for k = 1,2, 3).

Accordingly, we have

75(7]5 )N oDD = F(

i

‘nobp’) = F(B*="™),

i

s
or, when we split 77(n ) into the parts in and out of 7(0DD?):

~Pi

(2, \atoow™) noon ) (x(y

)N z(opp?) N ODD) =* F(B*"0))
Now assume towards a contradiction that 7(0pD?) N ODD =* §). Then we get:

(5.64) (x(n, )\ m(0pD")) NODD =* F(B*"().

20We can do this for A many sets, of course; but we cannot assume e.g. that w(z) € V3 for all z € Vg, let alone
that each such 7(z) is canonically read by p3,.
21Byt we need pg to force that these names have anything to do with ag.
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But on the other hand we have:

O\ODD = major;_ 123(77 \ODD)

*

x(n, ) \x(opp’) =" 7(y, \opp’) =7 maJori:Lz,g(gﬁi \ opp’)) =

=" major;_; 53 (75([75 \ODD?)) =" major;_; 53 (ZT(HB) \E(ODD7)7 and

(5(1,,)\ (000")) MoDD = major,_, 5 (s(3, )\ 5(oDD") 71 0DD ).

Applying (5.64) to both sides of the last line, we get F(BY) =* major,_; 5 5 F(Bs()) = F(BY),
a contradiction. 0

Set
(5.65) X :=opp’ Nz~ !(opD).
By choice of p2,, X and 7(X) are canonically read by p3, (and independent of 3).

We now show that F'(z) Ng(X) = 7(2) for z C X. Again, here we are talking about z € V. To
make that more explicit, let us formulate in the ground model V:

Lemma 5.66. For 3 €S,
P, IFp, ( | X|= A, and for all z C X, pE/Gg IF7(z) =* F(z) ﬂg(.Z())

(Note that, other than F'(2), 7(2) will generally not be in V3, and we have to force with pj 1/Gg.)

Proof. Work in V3. |X| = A follows from Lemma 5.63, as 7(X) =* 7(0pD”) N ODD.
Set y := ", nobb’. So by (5.61), +/G5 < rg forces: F(y) = (N )N obD. As (X)) C* oDD,
we get F(y) Ng(X) =* g(nﬁ) Na(X). Then y C* 7 D) (or equlvalently, y C* X) implies

~ ~

~'(op
y=*yNr !(opD) = P N X and thus 7(y) =* 7(n ) 7m(X). To summarize:

(* pj/Gat (€ X = a) =" Fu) N(X), for yi= g, 01000 )

Now back in V' assume towards a contradiction that some g < p; forces that the lemma fails,
i.e., that z C X in V3 is a counterexample (in the final extension). By absoluteness, we can assume
that ¢ and z are in Mg, in particular z is a Pg-name in Mg. Strengthen ¢ [ 8 to canonically read
z. So for every 8’ € S, h; 5(z) will be evaluated in Vj: to the same z C A as z in Vj.

Chose a 3’ above supp(¢). Then we can strengthen g A pg at index ', i.e., 1o, to some r; that
forces s nobp’ = hs 5(2). (Recall that we can fix the values in the odd intervals, as the even

intervals still form a club). Let G be P-generic containing g A ng, Ar1. Then we have:

e The evaluation of hj; 4 (2) in Vp, is the same as the evaluation of z in Vj, call it 2.
Also the evaluation of X and F are the same 8 and §', cf. (5.62).
e 2 C X is a counterexample (as this is forced by q).
In particular, z C X and 7(z) #* F(z) N7(X) in the final extension.
ppr A1y forces in Vg4 q that Ny N oDpD’ = z; also we have just seen that z C X; and so

m(z) =* F(z) N7(X) by (*), a contradiction. O
For & € U°PP, we define the following Pg-names (independent of 3):%2
=ANX = A N(X
Le eha ?jg eN7(X)
so |J z.=X Uy, =orpnz(X)="7(X),
geUODD EGUODD

as well as

22 More concretely, canonically read by p3,, see (5.62).
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Fg:Plz) = Ply,) by awm Fe(a)Na(X),
and  F': P(X) = P(x(X)) by 2 Ugepom FL 1 20) = F(2) N 2(X).
So the p3, forces that for all z € Vj the following is forced by pg /Gg:
(5.67) 2z C X — F'(z) =" 1(2), in particular F'(X) =" r(X), also F'(z) C 7(X) for all 2

Lemma 5.68. p2, forces: For almost all £ € U°PP, Fg’ is a Boolean algebra isomorphism from
P(gg) to P(gg).

Proof. All and nothing: We claim that for almost all ¢, Fc’(gc) =Y. Assume that ¢ € Y, \FY{ (gc) -
7(X). Then ¢ € 7(X), and ¢ is not in F'(X) =* 7(X), so there cannot be many such ¢. Similarly
F/(0) = 0 for almost all ¢ .

Unions: We claim that for almost all ¢, F{(a) U F{(b) = F/(a Ub) for all subsets a,b of .. Let
A C X be the set of counterexamples, i.e., for £ € A there are ¢ € Y and ag, be subsets of T,
such that /¢ € (Fé(ag) U Fé’(bg))AFg’(ag Ubg). Set @ :=gca ac and y := Jgc 4 be. Then £¢ is in
(F'(z) U F'(y)) AF'(x Uy) =* 0, so A cannot be large.

Complements: We claim that for almost all £, F¢(a) N F¢(z, \ a) = . Let A be the set of
counterexamples, i.e., for £ € A there is an a¢ C 2, and £ € Y, such that (¢ € F¢(ag) N Fé(g5 \ ag).

Then £ is in F'(Ueeaac) N F'(Ueea 2 \ a¢c) =" 0, so A cannot be large.

Injectivity: We already know that union and complements (and thus disjointness) are preserved,
so it is enough to show that a nonempty set is mapped to a nonempty set.

Assume this fails often, then we get an * C X of size A such that § = F'(z) =* ©(x), a
contradiction.

Surjectivity: Assume surjectivity fails often; i.e., there are many b C 7(X) N ODD not in the
range of F¢. Let y be the union of those bc. Pick  C A such that 7(x) =" y C 7(X). So we can
assume = C X and so F'(x) =* y, which implies that F¢(x N g;C) =y N Ac = b¢ for almost all ¢, a
contradiction. O

Lemma 5.69. For each 3 € S: p2, forces (in Pg): There is a fgen : X — 7(X) bijective such
that for all z C X (in V3), ng/Gg forces 71(2) =* f" 2

gen~"

Proof. Every Boolean algebra isomorphism from P(A) to P(B) is generated by a bijection from A
to B (the restriction to the atoms). So there is an U’ C U°PP with |[U°P"\ U’| < A such that ¢ € U’
implies that Fé is generated by some bijection g : T.— yc. So F’ is generated by g := UceU’ gc;

and we can change g into a bijection from X to 77(X) by changing less than A many values. O

We now strengthen p2, to some ¢ to continuously read feen (independently of 3), again using
Fact 5.55.

So to summarize, we have the following (where we start with the A-system (Mg, pg)ges of
Section 5.10):

Corollary 5.70. There is « € A, q € P, stronger than all pg | B and canonically reading ro < p,
X, fgen and w(X), such that the following holds for all B € S:
® g A pg with the condition®® at index 3 strengthened to ro is a valid condition, called p}'*‘.

o (o, p;fr and the names are in Mpg.
o g forces in Pg: |X| = A, fgen : X — 7(X) is a bijection, and if z C X is in Vg, then
PET /G E 1(2) =" fren?.

5.13. Putting everything together.

Corollary 5.71. (Assuming \ is inaccessible and 2> = \T.) P forces that every automorphism of
PX\ ts somewhere trivial.

23which is pa(B) =p
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Proof. Assume towards a contradiction that some p, forces that ¢ is a nowhere trivial automorphism
represented by 7. N

As described in Section 5.10 we find a A-system (Mg, pg)ges with pg | 5 < p. for all 5 € 5,
and we find g, X, fgen as in Corollary 5.70, so in particular: ¢ < pg | 8 for all S; and g forces that
|X| = A and that fgen : X — 7(X) is a bijection.

As 1 is nowhere trivial, fgen cannot be a generator, i.e., there is some z C X with 7(z) #* fgo,2-
Fix a name for this z and let ¢* < ¢ canonically read z.

Pick 8 € S above dom(g¢*). So ¢* A p;"’ is a valid condition, which forces that in the final
extension V[G] the following holds:

o z C X with 7r(2) #* fl,z, as this is forced by ¢*.

gen
e z € V3, as ¢* canonically reads z.
I 1

e So by Corollary 5.70 and as p}'"‘ € G, we get 1(z) = z, a contradiction. O

gen
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