
ON AUTOMORPHISMS OF P(λ)/[λ]<λ.

JAKOB KELLNER, ANDA RAMONA TĂNASIE, AND SAHARON SHELAH

Abstract. We investigate the statement “all automorphisms of P(λ)/[λ]<λ are trivial”. We
show that MA implies the statement for regular uncountable λ < 2ℵ0 ; that the statement is
false for measurable λ if 2λ = λ+; and that for “densely trivial” it can be forced (together with
2λ = λ++) for inaccessible λ.

1. Introduction

We investigate automorphisms of Boolean algebras of the form

Pλκ := P(λ)/[λ]<κ

The instance Pωω , i.e., P(ω)/FIN, has been studied extensively for many years.1 One can study
variants for uncountable cardinals λ. Unsurprisingly, the behaviour here tends to be quite different
to the countable case. One moderately popular2 such generalisation is Pλω . Here, we study another
obvious generalization of the countable case, Pλλ . Some results for general Pλκ can be found
in [LM16].

The main result of the paper is:

(T1, Thm. 5.2) The following is equiconsistent with an inaccessible: λ is inaccessible, 2λ is λ++

and all automorphisms of Pλλ are densely trivial.

Here, 2λ > λ+ is necessary, at least for measurables:

(T2, Thm. 4.1) If λ is measurable and 2λ = λ+, then there is a nontrivial automorphism of Pλλ .

Remark 1.1. From [SS15, Lem. 3.2] it would follow that T2 holds even when “measurable” is
replaced by just “inaccessible”. However, the proof there turned out to be incorrect.3

For λ below the continuum we get the following result under Martin’s Axiom (MA). More
explicitly, MA=λ(σ-centered) is sufficient, which is the statement that for any σ-centered poset P
and ≤λ many open dense sets in P there is a filter G meeting all these open sets:

(T3, Thm. 3.1) For ℵ0 < κ ≤ λ < 2ℵ0 and κ regular, MA=λ(σ-centered) implies that every
automorphism of Pλκ is trivial.

Larson and McKenney [LM16] showed the same under MAℵ1 for the case λ = 2ℵ0 and κ = ℵ1.
Contrast this to the case λ = κ = ω: Due to results of Veličković, Steprāns and the third

author, “Every automorphisms of P(ω)/[ω]<ω is trivial” is implied by PFA [SS88], in fact even by
MA+OCA [Vel93], but not by MA alone [Vel93] (not even for “somewhere trivial” [SS02]).
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Contents. We start by introducing some notation and basic results in Sec. 2 (p. 2).
The following sections are independent of each other:
In Sec. 3 (p. 3) we show T3, i.e., Thm. 3.1; in Sec. 4 (p. 6), we show T2, i.e., Thm. 4.1; and

finally in the main part, Sec. 5 (p. 7) we develop some forcing notions to prove T1, i.e., Thm. 5.2.

Acknowledgments. We thank an anonymous referee for numerous corrections.

2. Definitions

We always assume:
• λ is a cardinal and κ ≤ λ is regular.
• The case κ = ℵ0 or λ = ℵ0 is included only for completeness sake in the following definitions.
• In Section 3 we will assume that ℵ1 ≤ κ ≤ λ < 2ℵ0 .
• In Section 4 we assume that λ is measurable and κ = λ.
• In Section 5 we assume that λ is inaccessible and κ = λ.

Notation:
• We investigate the Boolean algebra (BA) Pλκ := P(λ)/[λ]<κ, i.e., the power set of λ factored

by the ideal of sets of size <κ.
• For A ⊆ λ, we denote the equivalence class of A with [A]. We set 0 := [∅].
• A ⊆∗ B means |B \A| < κ, analogously for A =∗ B; and “for almost all α ∈ A” means for

all but <κ many in A. In particular, A =∗ λ means A ⊆ λ and |λ \A| < κ.
• We denote the BA-operations in Pλκ with x ∨ y, x ∧ y and xc (for the complement).

So we have [A] ∨ [B] = [A ∪B], [A] ∧ [B] = [A ∩B], and [A]c = [λ \A].
• A function φ : Pλκ → Pλκ is a BA-automorphism (which we will just call automorphism), if

it is bijective, compatible with ∧ and the complement, and satisfies φ(0) = 0.
• Preimages of a function f are denoted by f−1x, images by f ′′x.
• We sometimes identify η ∈ 2λ with η−1{1} ⊆ λ without explicitly mentioning it, by

referring to η as element of 2λ or of P (λ).
Let us note that Pλκ is <κ-complete4 and λ+-cc. Also, any automorphism φ is closed under <κ

unions: φ(
∨
i∈I [Ai]) =

∨
i∈I φ([Ai]).

An automorphism is trivial if it is induced by a function on λ. A standard definition to capture
this concept is the following:

Definition 2.1. An automorphism φ : Pλκ → Pλκ is trivial, if there is a g : λ → λ such that
φ([A]) = [g−1A] for all A ⊆ λ.

However, we prefer to use forward images instead of inverse images; which can easily be seen to
be equivalent:

Definition 2.2.
• For f : A0 → λ with A0 =∗ λ, define πf : Pλκ → Pλκ by πf ([B]) := [f ′′(B ∩ A0)] for all
B ⊆ λ.

• f is an almost permutation, if there are A0 =∗ λ and B0 =∗ λ with f : A0 → B0 bijective.

(Such a πf is always a well-defined function.)

Lemma 2.3. Let φ : Pλκ → Pλκ be a function. The following are equivalent:
(1) φ is a trivial automorphism.
(2) There is an almost permutation f such that φ = πf .
(3) (Assuming κ > ℵ0.) There is a bijection f : λ→ λ such that φ = πf .

Proof. (1) implies (2): Assume φ is a trivial automorphism, witnessed by g.
Then X := g′′λ =∗ λ (as φ([X]) = [g−1X] = [λ]), and Y := {α ∈ X : |g−1{α}| 6= 1} =∗ ∅:

Otherwise, pick y0
α 6= y1

α for each α ∈ Y with g(y0
α) = g(y1

α) = α. So y0
α ∈ g−1C iff y1

α ∈ g−1C for
any C ⊆ λ. Set Bi := {yiα : α ∈ Y } for i = 0, 1 and let [C] = φ−1([B0]). So φ([C]) = [g−1C] = [B0],

4I.e., if |I| < κ then
∨
i∈I [Ai] = [

⋃
i∈I Ai]
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i.e., almost all y0
α are in g−1C, but then almost all y1

α are in g−1C as well, i.e., [B0] = φ([C]) ≥ [B1],
a contradiction as B0 ∩B1 = ∅.

Set A0 := X \ Y , and B0 := g−1A0. Note that B0 =∗ λ, as 0 = φ(0) = φ([Y ]) = [g−1Y ]. So
g � B0 → A0 is bijective, and we can set f : A0 → B0 the inverse. Then f is an almost permutation,
and π = πf .

(2) implies (1): Let f : A0 → B0 be an almost permutation, and g : B0 → A0 the inverse (and
let g be defined arbitrarily on λ \ B0). Then πf ([X]) = [f ′′(X ∩ A0)] = [g−1(X)]. It remains to
be shown that πf is an automorphism: πf ([∅]) = [f ′′∅] = [∅]; πf ([X ∩ Y ]) = [f ′′(X ∩ Y ∩A0)] =
[f ′′(X ∩A0) ∩ f ′′(Y ∩A0)]; and πf ([λ \X]) = [f ′′(A0 \X)] = [B0 \ f ′′X].

(2) implies (3) if cf(κ) > ℵ0: This follows from the follwing lemma. �

Lemma 2.4. (κ > ℵ0) Let f be a κ-almost permutation. Then there is an S =∗ λ such that
f � S : S → S is bijective.

Proof. Set X0 := A0 = dom(f), and Xi+1 := Xi ∩ f ′′Xi ∩ f−1Xi, and S :=
⋂
i∈ωXi.

The Xn are decreasing, and |λ \Xn| < κ and thus |λ \ (f ′′Xn)| < κ for n < ω. Accordingly,
|λ \ S| < κ. We claim that g := f � S is a permutation of S. Clearly it is injective. If α ∈ S then
α ∈ Xn for all n ∈ ω, so f(α) ∈ Xn+1 for all n. So g : S → S. If α ∈ S, then α ∈ Xn+1 for all n,
so f−1(α) exists and is in Xn. �

Remark: For κ = λ = ω, there are trivial automorphisms that are not induced by “proper”
bijections f : ω → ω, e.g. the automorphism φ induced by the almost permutation n 7→ n+ 1.5

We will investigate somewhere and densely trivial automorphisms. To simplify notation, we
assume κ = λ > ℵ0:

Definition 2.5. (λ > ℵ0 regular.) Let φ : Pλλ → Pλλ be an automorphism.
• φ is trivial on A ∈ [λ]λ, if there is an f : A→ λ with φ([B]) = [f ′′B] for all B ⊆ A.
• φ is somewhere trivial, if it is trivial on some A ∈ [λ]λ.
• φ is densely trivial, if for all A ∈ [λ]λ there is a B ⊆ A of size λ such that φ is trivial on B.

Just as before it is easy to see that we can assume f to be a full permutation:

Fact 2.6. (λ > ℵ0 regular.) An automorphism φ : Pλλ → Pλλ is trivial on A ∈ [λ]λ iff there is a
bijection f : λ→ λ such that φ([B]) = [f ′′(B)] for all B ⊆ A.

Lemma 2.7. (λ > ℵ0 regular.) If every automorphism of Pλλ is somewhere trivial, then every
automorphism of Pλλ is densely trivial.

Proof. Assume π is an automorphism of Pλλ , and fix A ∈ [λ]λ. If A =∗ λ and if π is trivial on some
B, then π is trivial on B ∩A ⊆ A, so we are done. So assume A 6=∗ λ.

Pick some representative π∗ : P(λ)→ P(λ) of π such that π∗(A) and π∗(λ \A) partition λ, and
such that π∗(C) ⊆ π∗(A) for every C ⊆ A. Let i : λ \A→ A and j : π∗(λ \A)→ π∗(A) both be
bijective. Let π′ map [D] to [π∗(D ∩A)∪ j−1π∗(i′′(D \A))]. This is an automorphism of Pλλ , so it
is trivial on some D0. If |D0 ∩ A| = λ, we are done, as π′ restricted to D0 ∩ A is the same as π
and trivial. So assume otherwise. Then π′ is trivial on the large set D0 \A. Then π is trivial on
i′′(D0 \A) ⊆ A. �

3. Under MA, every automorphism is trivial for ω1 ≤ λ < 2ℵ0

Theorem 3.1. Assume ℵ0 < κ ≤ λ < 2ℵ0 , κ regular, and MA(=λ)(σ-centered) holds. Then every
automorphism of Pλκ is trivial.

For the proof we will use that we can separate certain sets by closed sets.
A tree T is a subset of 2<ω such that s ∈ T ∩ 2n and m ≤ n implies s � m ∈ T ; for such a T we

set lim(T ) = {η ∈ 2ω : (∀n ∈ ω) η � n ∈ T}. A subset of 2ω is closed iff it is of the form lim(T ) for
some tree T .

5A bijection f : ω → ω has infinitely many n such that f(n) 6= n+ 1, and therefore an infinite set A such that
f ′′A is disjoint to {n+ 1 : n ∈ A}.
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Lemma 3.2. Assume ℵ0 < θ ≤ λ < 2ℵ0 , cf(θ) > ℵ0, and MA(=λ)(σ-centered) holds. Assume
A0, A1 are disjoint subsets of 2ω of size ≤ λ; |A0| ≥ θ. Then there is a tree T0 in 2<ω such that
|A0 ∩ lim(T0)| ≥ θ and A1 ∩ lim(T0) = ∅.

If additionally |A1| ≥ θ, we get an additional tree T1 such that |A1∩lim(T1)| ≥ θ, A0∩lim(T1) = ∅,
and T0 ∩ T1 ⊆ 2n for some n.

Proof of the lemma. In the following we identify an x ∈ 2ω with the according (infinite) branch b
in the tree 2<ω. So a branch b can be in A0 or in A1 (or in neither; but not both, as A0 and A1

are disjoint).
We define a poset Q as follows: A condition q ∈ Q is a triple (nq, Sq, fq), where
• nq ∈ ω,
• Sq is a tree in 2<ω of the following form: Sq is the union of 2≤nq and finitely many (infinite)
branches {bj : j ∈ m} for some m ∈ ω, each bj ∈ A0 ∪ A1, and bj � nq = bk � nq implies
(bj ∈ Ai iff bk ∈ Ai).

So every s ∈ Sq with |s| > nq is either “in A0-branches” (i.e., there is one or more
bj ∈ A0 with s ∈ bj), or “in A1-branches” (but not in both).

Note that an s ∈ Sq of length nq is either in A0-branches, or in A1-branches, or in
neither (but not in both).

• fq : Sq → 2 such that, for i = 0, 1, fq(s) = i whenever s ∈ Sq, |s| ≥ nq and s is in
Ai-branches.

The order on Q is the natural one: q ≤ p if nq ≥ np, Sq ⊇ Sp and fq extends fp.
Q is σ-centered witnessed by (nq, Sq, fq) 7→ (nq, fq � 2≤nq): If p, q are in Q with np = nq =: n

and fp � 2≤n = fq � 2≤n, then (n, Sp ∪ Sq, fp ∪ fq) is a valid condition stronger than both p and q.
For x ∈ Ai, the set Dx of conditions containing x as branch is dense: Given p ∈ Q, let nq ≥ np

be such that all A1−i-branches in p split off x below nq; set Sq := Sp ∪ 2≤nq ∪ x; and set Fq(s) = i
for s ∈ Sq \ Sp.

Similarly, for all n ∈ ω, the set D∗n of conditions q with nq ≥ n is dense as well.
By MA(=λ)(σ-centered) and |Ai| ≤ λ, we can find a filter G which has nonempty intersection

with each Dx for x ∈ A0 ∪ A1 as well as for each D∗n. So F :=
⋃
p∈G fp is a total function from

2<ω to 2; and for all x ∈ Ai there is an nx ∈ ω such that m ≥ nx implies F (x � m) = i.
As |A0| ≥ θ and cf(θ) > ℵ0 we can assume that there is an n∗0 such that nx = n∗0 for θ many

x ∈ A0. If additionally |A1| ≥ θ, we analogously get an n∗1 and set n∗ := max(n∗0, n
∗
1); otherwise we

set n∗ := n∗0. We set T ∗i := {s ∈ 2<ω : |s| ≥ n∗, (∀n∗ ≤ k ≤ |s|)F (s � k) = i} and generate a tree
from it; i.e., we set Ti := T ∗i ∪ {s � m : m < n∗, s ∈ T ∗i }. As we have seen above, lim(Ti) ∩Ai ≥ θ
for i = 0 (and, if |A1| ≥ θ, for i = 1 as well). Clearly T0 ∩ T1 ⊆ 2n

∗
; and lim(Ti) ∩Ai−1 is empty,

as for any x ∈ Ai−1, cofinally many n satisfy F (x � n) = i− 1. �

Proof of the theorem. Fix an automorphism π of Pλκ represented by some π∗ : P(λ)→ P(λ), and
let π−1∗ represent π−1. We have to show that π is trivial.

Fix an injective function η : λ→ 2ω. Set

Cn := {x ∈ 2ω : x(n) = 0} and Λn := η−1Cn = {α < λ : η(α)(n) = 0}.
Define ν : λ→ 2ω by

ν(β)(n) = 0 iff β ∈ π∗(Λn).

In the following, “large” means “of cardinality ≥κ”, and “small” means not large. We will show:
(∗1) π∗(η−1C) =∗ ν−1C for C ⊆ 2ω closed.
(∗2) Y ⊆ λ and |Y | ≥ κ implies |ν′′Y | ≥ κ.
(∗3) If A0, A1 are disjoint subsets of 2ω, A0 ⊆ ν′′λ large, then π−1∗(ν−1A0) \ η−1A1 is large.
(∗4) If A0, A1 are disjoint subsets of 2ω, A0 ⊆ η′′λ large, then π∗(η−1A0) \ ν−1A1 is large.

(Note that (∗2) is the only place where we use that κ is regular.)
Proof:

(∗1) π∗(η−1Cn) = ν−1Cn holds by definition of ν. As π honors <κ-unions and complements,
and as the Cn generate the open sets, this equation (with =∗) holds whenever C is generated
by <κ-unions and complements from the open sets, in particular, if C is closed.
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(∗2) Fix x ∈ 2ω. Then η−1{x} has at most one element (as η is injective), and η−1{x} =∗

π−1∗ν−1{x} by (∗1). I.e., ν−1{x} is small. And Y ⊆
⋃
x∈ν′′Y ν

−1{x}, so as κ is regular
we get |ν′′Y | ≥ κ.)

(∗3) Using the previous lemma (with κ as θ) we get a tree T0 separating A0 and A1. I.e.,
lim(T0) ∩A1 = ∅ and X := lim(T0) ∩A0 is large. As X ⊆ A0 ⊆ ν′′λ, we get that ν−1X is
large. And ν−1X = ν−1 lim(T0) ∩ ν−1A0 =∗ π∗(η−1 lim(T0)) ∩ ν−1A0, the last equation
by (∗1). This implies η−1 lim(T0) ∩ π−1∗(ν−1A0) is large, and so π−1∗(ν−1A0) \ η−1A1 is
large.

(∗4) We get an analogous result when interchanging ν and η and using π∗ instead of π−1∗.
We claim that the following sets Ni are all small:

(1) N1 := {α ∈ λ : (¬∃β ∈ λ) η(α) = ν(β)}.
(2) N2 := {α ∈ λ : (∃(≥2)β ∈ λ) η(α) = ν(β)}.
(3) N3 := {β ∈ λ : (¬∃α ∈ λ) η(α) = ν(β)}.

Proof:
(3) Assume N3 is large. Set A0 := ν′′N3, which is large by (∗2); and A1 := η′′λ. So A0 and

A1 are disjoint, and by (∗3) π−1∗ν−1A0 \ η−1A1 is large, but η−1A1 = λ.
(1) Assume N1 is large. Set A0 = η′′N1 (large, as

∼
η is injective) and A1 := ν′′λ. So A0 and A1

are disjoint, and by (∗4) π∗(η−1A0) \ ν−1A1 is large, but ν−1A1 = λ.
(2) Assume that N2 is large. For every α ∈ N2, let β0

α 6= β1
α in λ be such that η(α) = ν(β0

α) =
ν(β1

α). For i ∈ {0, 1}, set Yi := {βiα : α ∈ N2} and Xi := π−1∗(Yi) (without loss of
generality disjoint), and Ai := η′′Xi. So the Ai are large and disjoint, and we can find a
tree T0 such that A0 ∩ lim(T0) is large, and A1 ∩ lim(T0) is empty.

As A0 ⊆ η′′λ, this implies that the inverse η-image of A0 ∩ lim(T0) is also large.
I.e., η−1(A0 ∩ lim(T0)) = η−1A0 ∩ η−1 lim(T0) =∗ X0 ∩ π−1∗ν−1 lim(T0) is large (for the
last equation we use (∗1)). Therefore also Y0 ∩ ν−1 lim(T0) is large, and so, by (∗2),
ν′′(Y0 ∩ ν−1 lim(T0)) = lim(T0) ∩ ν′′Y0 is large as well.

On the other hand lim(T0)∩A1 is empty, so 0 =∗ π∗η−1(lim(T0)∩A1) =∗ π∗η−1 lim(T0)∩
π∗η−1A1. Using (∗1) for lim(T0), and noting that π∗η−1A1 = Y1, this set is (almost) equal
to Y1 ∩ ν−1 lim(T0) which therefore is also small, and so lim(T0) ∩ ν′′Y1 is small.

So we know that lim(T0) ∩ ν′′Y0 is large and lim(T0) ∩ ν′′Y1 is small, but ν′′Y0 = ν′′Y1,
a contradiction.

Note that this implies:
(∗5) X ∩ Y small implies ν′′X ∩ ν′′Y small, for X,Y ⊆ λ.
(∗6) ν−1ν′′X =∗ X for X ⊆ λ.

Proof:
(∗5) Assume otherwise. Without loss of generality we can assume that X and Y are disjoint,

and by (3) that ν′′X and ν′′Y both are subsets of η′′λ. Then ν′′X ∩ ν′′Y ⊆ η′′N2 is small.
(∗6) Set Y := ν−1ν′′X \X. Then ν′′Y ⊆ N2 ∪N3 is small, and by (∗2) Y is small.

Set D := λ \ (N1 ∪ N2) and define e : D → λ such that e(α) is the (unique) β ∈ λ with
η(α) = ν(β). Clearly e is injective. We claim that e generates π, i.e., that the following are small
(where we can assume X ⊆ D):

(4) N4 := π∗(X) \ e′′X.
(5) N5 := e′′X \ π∗(X).

Proof:
(4) Assume that N4 is large. Set Y = π−1∗(N4), without loss of generality Y ⊆ X and

π∗(Y ) = N4. So π∗(Y ) is disjoint from e′′Y (as it is even disjoint from e′′X). We set
A0 := ν′′π∗(Y ) and A1 := ν′′e′′Y , by (∗5) we can assume they are disjoint, and by (∗2)
both are large (e is injective).

By (∗3), π−1∗(ν−1A0) \ η−1A1 is large.
η−1(A1) = Y , as ν(e(α)) = η(α) for all α ∈ D. And π−1∗(ν−1A0) =∗ Y by definition

and (∗6), a contradiction.
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(5) The same proof works: This time we set Y = e−1N5; see that π∗(Y ) and e′′Y are disjoint
and large; set A0 := ν′′π∗(Y ) and A1 := ν′′e′′Y ; use (∗3) to see that Y \η−1ν′′e′′Y = Y \Y
is large, a contradiction. �

4. For measureables, GCH implies a nontrivial automorphism

Theorem 4.1. If λ is measurable and 2λ = λ+, then there is a nontrivial automorphism of Pλλ .

Proof. Let D be a normal ultrafilter on λ and denote by I := [λ]λ \ D its dual ideal restricted to
sets of size λ.

Since 2λ = λ+, we can list all permutations of λ as {eα : α < λ+}; and analogously all elements
of I as {Xα : α < λ+}.

We will construct, by induction on α < λ+ a set Aα ∈ I and a permutation fα of Aα, such that
for α < β:

(1) Aα ⊆∗ Aβ ,
(2) Xα ⊆ Aα+1,
(3) fα(x) = fβ(x) for almost all x ∈ Aα ∩Aβ ,
(4) there is some X ⊆ Aα+1 of size λ such that e′′αX and f ′′α+1X are disjoint.

(Note that by x ⊆∗ y we mean |y \ x| = λ, not y \ x ∈ I; and the same for ‘almost all”.)
The construction:

• Successor stages α + 1: Fix any B ∈ I disjoint to Aα such that Aα ∪ B ⊇ Xα. Set
C := e′′αB ∩Aα.

First assume that |C| = λ. Then set Aα+1 = Aα ∪ B and let fα+1 extend fα by the
identity on B. Then (4) is witnessed by X := e−1

α C.
So we assume |C| < λ. Partition B into large sets B0, B1, B2 such that e′′αBi is disjoint

to Aα for i = 0, 1. Set Aα+1 := Aα ∪ B ∪ e′′αB, and define fα+1 on B such that the
restriction to Bi is a bijection op e′′αB1−i for i = 0, 1, and the restriction to B2 a bijection
to e′′B2 \A. Then (4) is witnessed by X := B0.

• Limit stages δ of cofinality <λ: Let ξ := cf(δ) and choose 〈αi : i < ξ〉 a cofinal increasing
sequence converging to δ. The union

⋃
i<ξ Aαi is, by <λ completeness, in I. Remove < λ

many points to get a subset Aδ such that
– For all i < j < ξ, fi and fj agree on Aαi ∩Aδ,
– For all i < ξ, fi � (Aαi ∩Aδ) is a full permutation (we can do this as in Lemma 2.4).

Then fδ, defined as the union of the fαi , is a permutation of Aδ and almost extends each
fαi .

• Limit stages δ of cofinality λ: We choose an increasing cofinal sequence 〈αi : i < λ〉
converging to δ. By induction on i ∈ λ we construct A′i =∗ Aαi , such that
– A′i ∩ i = ∅,
– The fαi ’s fully extend each other on the A′i’s, i.e., if x ∈ A′i ∩A′j then fαi(x) = fαj (x),
– fαi : A′i → A′i is a “full” permutation.

We can do this by removing from Aαi : the points less than i, the points where fαi disagrees
with some previous fαj for any j < i; and by removing <λ many points to get a full
permutation.

Now we can set Aδ and fδ to be the unions of A′i and fαi , respectively, for i < δ. Note
that Aδ is in I (as it is a subset of the diagonal union); and fδ is a permutation of Aδ
satisfying (3).

Note that for all X ⊆ λ, either X ∈ I or λ \X ∈ I (but not both), i.e., either X or λ \X is
⊆∗ Aα for coboundedly many α < λ.

This allows us to define the automorphism π as follows: For X ∈ [λ]λ,

π([X]) :=

{
[f ′′αX] if X ∈ I, X ⊆∗ Aα for some α < λ+ (Case 1)
[λ \ f ′′α(λ \X)] if X /∈ I, λ \X ⊆∗ Aα for some α < λ+ (Case 2).

Note that in Case 2, π([X]) = [(λ \ Aα) ∪ (Aα \ f ′′α(Aα \ X))] = [(λ \ Aα) ∪ f ′′α(X ∩ Aα)], as
f ′′αAα =∗ Aα.
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π is well defined on [λ]λ, as exactly one of X or λ \X will eventually be ⊆∗ Aα.
π is an automorphism: π([∅]) = ∅. π honors complements: If X is Case 1, then π([λ \X]) is by

definition (Case 2) [λ \ f ′′α(X)]. π honors intersections X ∩ Y : This is clear if both sets are the
same Case. Assume that X is Case 1 and Y Case 2. Then X ∩ Y ⊆ X is Case 1, and for any α
suitable for both X and Y we have

π([X]) ∧ π([Y ]) = [f ′′αX ∩ ((λ \Aα) ∪ f ′′α(Y ∩Aα))] = [f ′′αX ∩ f ′′α(Y ∩Aα)] = [f ′′α(X ∩ Y ))].

π is not trivial: Every automorphism e is an eα for some α ∈ λ+; and according to (4) there
is some Xα ⊆ Aα+1 (and therefore in I) of size λ such that e′′αXα is disjoint to f ′′α+1Xα, a
representative of π([Xα]). �

5. For inaccessible λ, all automorphisms can be densely trivial

In this section, we always assume the following (in the ground model):

Assumption 5.1. λ is inaccessible and 2λ = λ+. We set µ := λ++.

In the rest of the paper, we will show the following:

Theorem 5.2. (λ is inaccessible and 2λ = λ+.) There is a λ-proper, <λ-closed, λ++-cc poset P
(in particular, preserving all cofinalities) that forced: 2λ = λ++, and every automorphism of Pλλ is
densely trivial.

By Lemma 2.7, it is enough to show that every automorphism is somewhere trivial.

5.1. The single forcing Q.

Definition 5.3. We fix a strictly increasing sequence (θ∗ζ )ζ<λ with θ∗ζ < λ regular and θ∗ζ > 2|ζ|.

• Let (I∗ζ )ζ∈λ be an increasing interval partition of λ such that I∗ζ has size 2θ
∗
ζ ; and fix a

bijection of I∗ζ and 2θ
∗
ζ . Using this (unnamed) bijection, we set [s] := {` ∈ I∗ζ : ` > s} for

s ∈ 2<θ
∗
ζ .

So the [s] are cones, i.e., the set of all branches in I∗ζ extending s.
For ζ < λ, we set I∗(<ζ) :=

⋃
`<ζ I

∗
` , and analogously I∗(≤ζ) := I∗(<ζ + 1), I∗(≥ζ) :=

λ \ I∗(<ζ), and I∗(≥ζ,<ξ) := I∗(≥ζ) ∩ I∗(<ξ).
• A condition q of the forcing notion Q is a function with domain λ such that, for all ζ ∈ λ,
q(ζ) is a partial function from I∗ζ to 2, and such that for a club-set Cq ⊆ λ
– if ζ /∈ Cq, then q(ζ) is total,
– otherwise, the domain of q(ζ) is I∗ζ \ [sqζ ] for some sqζ ∈ 2<θ

∗
ζ .

Cq and sqζ are uniquely determined by q; and q is uniquely determined by the partial
function ηq : λ→ 2 defined as

⋃
ζ∈λ q(ζ).

• q is stronger than p if ηq extends ηp.
(This implies that Cq ⊆ Cp, and that sqζ extends spζ for all ζ ∈ Cq.)

The following is straightforward:

Lemma 5.4. Q has size 2λ, is <λ-closed and adds a generic real
∼
η :=

⋃
q∈G η

q in 2λ.

Proof. <λ-closure is obvious, but for later reference we would like to point out the “problematic
cases”:

Let (pi)i<δ be decreasing for a limit ordinal δ < λ.
As a first approximation, set η∗ :=

⋃
i<δ η

pi (a partial function) and C∗ :=
⋂
i<δ C

pi (a club
set) and s∗ζ :=

⋃
i<δ s

pi
ζ ∈ 2≤θ

∗
ζ for s ∈ C∗. For ζ /∈ C∗, η∗ is indeed total on I∗ζ , and for ζ ∈ C∗

the domain in I∗ζ is I∗ζ \ [s∗ζ ].
The problematic case is when s∗ζ is unbounded in θ∗ζ . (This can only happen if cf(δ) = θ∗ζ , in

particular for at most one ζ.) In this case we can just pick any extension ηq of η∗ by filling all
values in I∗≤ζ . This gives the desired q, with Cqδ = C∗ \ ζ + 1. �

Remarks.

Paper Sh:1224, version 2024-05-11. See https://shelah.logic.at/papers/1224/ for possible updates.



ON AUTOMORPHISMS OF P(λ)/[λ]<λ. 8

• The limits of <λ-sequences of conditions are not “canonical” if there are problematic ζ’s,
as we have to fill in arbitrary values.

•
∼
η determines the generic filter, by G = {p ∈ Q : ηp ⊆

∼
η}. This follows from the following

facts:
– p and q are compatible (as conditions in Q) iff ηp and ηq are compatible as partial

functions and Xp,q := {ζ ∈ Cp : spζ and sqζ are incomparable} is non-stationary.
– If p, q are such that Xp,q is stationary, then the set of conditions r such that ηr and
ηq are incompatible (as partial functions) is dense below p.

5.2. Properness of Q: Fusion and pure decision.

Definition 5.5. We say q ≤ξ p, if q ≤ p, ξ ∈ Cq and q � ξ = p � ξ.
q ≤+

ξ p means q ≤ξ p and q(ξ) = p(ξ).

(Note the difference between q ≤+
ξ p and q ≤ξ+1 p: The former does not require ξ + 1 ∈ Cq.)

Lemma 5.6. Let δ ≤ λ be a limit ordinal, ξ ∈ λ and (qi)i<δ a sequence in Q.
(1) If δ < λ and qj <+

ξ qi for all i < j < δ, then there is a q∞ such that q∞ <+
ξ qi for all i.

(2) If qj <ξi qi for i < j < δ, where (ξi)i∈δ is a strictly increasing6 sequence in λ, then there
is a (canonical) limit q∞ such that q∞ <ξi qi for all i.

Proof. (1): We perform the same construction as in the proof of Lemma 5.4. If there is a problematic
case ζ, then ζ > ξ (as for ζ ′ ≤ ξ the conditions qi(ζ ′) are constant). We can then make η∗ total on
I∗(> ξ,≤ ζ). (It may not be enough to make it total on I∗ζ , as C

∗ \ {ζ} might not be club.)
(2): Define q∞(ζ) :=

⋃
i∈δ qi(ζ) for ζ ∈ λ.

This is a non-total function (on I∗ζ ) iff ζ ∈ Cq∞ :=
⋂
i<δ C

qi , which is closed as intersection of
closed sets, and also unbounded: If δ < λ because we have a small intersections of clubs, if δ = λ
as it contains each ξi.

There are no problematic cases: If ζ is below some ξi, then qj(ζ) is eventually constant. If ζ is
above all ξi, which can only happen if δ < λ, then cf(δ) ≤ δ ≤ sup(ξi) ≤ ζ < θ∗ζ . �

So Q satisfies fusion; and we will now show that it also satisfies “pure decision”; standard
arguments then imply that Q is λ-proper and λλ-bounding.

Definition 5.7. Let ξ ∈ λ, q ∈ Q.
• POSSQ(ξ) := 2I

∗(<ξ). So in the extension V [G], for each ξ there will be exactly one
x ∈ POSSQ(ξ) compatible with (or equivalently: an initial segment of) the generic real

∼
η.

We write “x ⊆
∼
η” or “G chooses x” for this x.

• poss(q, ξ) is the set of x ∈ POSSQ(ξ) compatible with ηq (as partial functions), or equiva-
lently: x ∈ poss(q, ξ) iff ¬q  x *

∼
η. So q forces that exactly one x ∈ poss(q, ξ) is chosen

by G.
• Let ∼τ be a name for an ordinal. We say that q ξ-decides ∼τ , if there is for all x ∈ poss(q, ξ)

an ordinal τx such that q forces x ⊆
∼
η → ∼τ = τx.

Note that for p ∈ Q and ζ ∈ Cp, q ≤+
ζ p is equivalent to poss(q, ζ + 1) = poss(p, ζ + 1), while

q ≤ζ p is equivalent to ζ ∈ Cq and poss(q, ζ) = poss(p, ζ).

Lemma 5.8. Assume p ∈ Q, ζ ∈ Cp, x ∈ poss(p, ζ + 1), and r ≤ p extends7 x. Then there is a
q ≤+

ζ p forcing: x ⊆
∼
η → r ∈ G. This condition is denoted by r ∨ (p � ζ + 1).

Proof. We set q(`) to be p(`) for ` ≤ ζ, and r(`) otherwise. If q′ ≤ q forces x ⊆
∼
η then q′ extends

x and thus q′ ≤ r. �

Corollary 5.9. (“Pure decision”) Let ∼τ be a name for an ordinal, p ∈ Q, and ζ ∈ Cp. Then there
is a q ≤+

ζ p which (ζ + 1)-decides ∼τ .

6For δ = λ, it is enough that the ξi converge to λ. For δ < λ, we use that the ξi are increasing and that
sup(ξi) ≥ cf(δ).

7By which we mean x ⊆ ηr.
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Proof. Let (xi)i∈δ enumerate poss(p, ζ+1), for some δ < λ. Set p0 = p, and define a ≤+
ζ -decreasing

sequence pj by induction on j ≤ δ: For limits use Lemma 5.6(1), and for successors choose some
r ≤ pi deciding ∼τ with a stem extending xi and set pi+1 to r ∨ pi � (ζ + 1). �

From fusion and pure decision we get bounding and λ-proper, via “continuous reading of names”.
This is a standard argument, and we will not give it here; we will anyway prove a more “general”
variant (for an iteration of Q’s), in Lemmas 5.25 and 5.27.

Fact 5.10.
• Q has continuous reading of names: If ∼σ is a Q-name for a λ-sequence of ordinals, and
p ∈ Q, then there is a q ≤ p and there are ξi ∈ λ such that q ξi-decides ∼σ(i) for all i ∈ λ.

• Q is λλ-bounding. I.e., for every name ∼σ ∈ λλ and p ∈ Q there is an f ∈ λλ and q ≤ p
such that q forces f(i) > ∼σ(i) for all i ∈ λ.

• Q is λ-proper. This means: If N is a <λ-closed elementary submodel of H(χ) of size λ
containing Q, with χ sufficently large and regular, and if p ∈ Q ∩N , then there is a q ≤ p
N -generic (i.e., forcing that each name of an ordinal which is in N is evaluated to an
ordinal in N).

For completeness, we also mention the following well-known fact (the proof is straightforward):

Fact 5.11. Assume κ is regular, and that the forcing notion R is κκ-bounding. Then R preserves
the regularity of κ, and every club-subset of κ in the extension contains a ground model club-set.

5.3. The iteration P . Let us first recall some well-known facts:

Facts 5.12. A <λ-closed forcing preserves cofinalities ≤λ and also the inaccessibilty of λ.
The ≤λ-support iteration of <λ-closed forcings is <λ-closed.

We will iterate the forcings Q from the previous section in a <λ-closed ≤λ-support iteration of
length µ := λ++:

Definition 5.13. Let (Pα, Qα)α<µ be the ≤λ-support iteration such that each Qα is the forcing
Q (evaluated in the Pα-extension). We will write P to denote the limit.

Remark. One way to see that P is proper is to use the framework of [RaS11]. However, we will
need an explicit form of continuous reading for P anyway, which in turn gives properness for free.

Definition 5.14. Assume that w ∈ [µ]<λ and ξ ∈ λ.
• ¯
∼
η = (

∼
η
α

)α∈µ is the sequence of Qα-generic reals added by P .
• POSS(w, ξ) := 2w×I

∗(<ξ). Exactly one x ∈ POSS(w, ξ) is extended by ¯
∼
η, we write “x is

selected by G,” or “x / G.”
• poss(p, w, ξ) := {x ∈ POSS(w, ξ) : ¬p  ¬x / G}.
• Let ∼τ be a name of an ordinal. ∼τ is (w, ξ)-decided by q, if there are (τx)x∈poss(q,w,ξ) such

that q forces x / G→ ∼τ = τx.

Clearly, if ∼τ is (w, ξ)-decided by q, and if q′ ≤ q, w′ ⊇ w and ξ′ ≥ ξ, then ∼τ is (w′, ξ′)-decided
by q′.

Remark. If q ∈ P (w, ζ)-decides some Pα-name∼τ , then the same q will generally not (w∩α, ξ)-decide
∼τ for any ξ.8

In the following, whenever we say that q (w, ζ)-decides something, we implicitly assume that
w ∈ [µ]<λ and ζ ∈ λ.

Definition 5.15. Let ∼σ be a P -name for a λ-sequence of ordinals.

8For example: For a p-condition Q, let oddp be the set of odd elements of Cp (or any other unbounded subset
X of Cp such that Cp \X is still club), and set oddp? :=

⋃
ζ∈oddp I

∗
ζ \ dom(ηp). Note that for any x : oddp? → 2,

ηp ∪ x defines a condition in Q (stronger than p). So if we fix any p(0) ∈ P1, and define the P1-name ∼τ ∈ {0, 1} to
be 0 iff

∼
η
0
� oddp(0)? is eventually constant to 0, then ∼τ cannot be ({0}, ζ)-decided by p(0) for any ζ. And if p(1) is

any condition with p(0)  ηp(1)(0) =∼τ , then ∼τ is ({1}, 1)-decided by q := (p(0), p(1)).
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• q continuously reads ∼σ, if there are (wi, ξi)i∈λ such that q (wi, ξi)-decides ∼σ(i) for each
i ∈ λ.

• P has continuous reading, if for each such ∼σ and p ∈ P there is some q ≤ p continuously
reading ∼σ.

The following is a straightforward standard argument:

Fact 5.16. If P has continuous reading, then it is λλ-bounding.

As a first step towards pure decision, let us generalize the ≤ζ-notation we defined for Q:

Definition 5.17. Let p ∈ P , w ∈ [µ]<λ and ξ ∈ λ.
• p fits (w, ξ), if w ⊆ dom(p) and p � α  ξ ∈ Cp(α) for all α ∈ w.
• q ≤w,ξ p means: q ≤ p, and for all α ∈ w, q � α forces q(α) <ξ p(α).
• q ≤+

w,ξ p is defined analogously using <+
ξ instead of <ξ.

Obviously q ≤+
w,ξ p implies q ≤w,ξ p; and q ≤w,ξ p implies that both p and q fit (w, ξ).

Remark. In contrast to the single forcing (or a product of such forcings), q ≤w,ξ p (or q ≤+
w,ξ p)

does not imply poss(q, w, ξ) = poss(p, w, ξ).9 More explicitly, setting w = {0, 1}, it is possible
that x ∈ poss(p, w, ξ) but p does not force that x(0) ⊆

∼
η

0
implies x(1) ∈ poss(p(1), ξ). (But see

Section 5.5.)

5.4. Continuous reading and properness of P .

Lemma 5.18. If qi is a ≤+
w,ζ-decreasing sequence of length δ < λ, then there is an r ≤+

w,ζ qi for
all i < δ.

Proof. Set dom(r) :=
⋃
i∈δ dom(qi), without loss of generality closed under limits. By induction

on α ∈ dom(r) we know that r � α ≤ qi � α for all i, and define r(α) as follows: If α ∈ w, we know
that the qi(α) are ≤+

ζ -increasing. Using Lemma 5.6(1), we pick some r(α) such that r(α) ≤+
ζ qi(α)

for all i. If α /∈ w, we just pick any r(α) ≤ qi(α) for all i. �

It is easy to see that P satisfies a version of fusion:

Lemma 5.19. Assume (pi)i<δ is a sequence of length δ ≤ λ, such that pj ≤wi,ξi pi for i ≤ j < δ,
wi ∈ [µ]<λ increasing, ξi ∈ λ strictly increasing. Set w∞ :=

⋃
i<δ wi, dom∞ :=

⋃
i<δ dom(pi) and

ξ∞ := supi<δ ξi. If δ = λ, we additionally assume w∞ = dom∞.
Then there is a limit q∞ with dom(q∞) = dom∞ such that q∞ ≤wi,ξi pi for all i < δ.
If δ < λ, then q∞ fits (w∞, ξ∞).

(If w∞ = dom∞, then the limit q∞ is “canonical”.)

Proof. We define q∞(α) by induction on dom∞. We assume that we already have q′ := q∞ � α
which satisfies q′ ≤wi∩α,ξi pi for all i < δ.

Case 1: α /∈ w∞ (this can only happen if δ < λ): We know that q′ forces that (pi(α))i<δ is a
decreasing sequence, and we just pick some q∞(α) stronger then all of them.

Case 2: α ∈ w∞: Let i∗ be minimal such that α ∈ wi∗ . We know that q′ forces for all
i∗ ≤ i < j < δ that pj(α) <ξi pi(α), so according to Lemma 5.6(2) there is a limit q∞(α) <ζi pi(α)

(so in particular q′  ζi ∈ Cq∞(α) for all i ≥ i∗).
Now assume δ < λ. If α ∈ w∞, then it is in wi for coboundedly many i < δ. In other words,

pj � α  ζi ∈ Cpj(α) for coboundedly many i ∈ δ and all j > i, which implies q∞ � α  ξ∞ ∈ Cq∞(α).
�

9An example: dom(p) = dom(q) = w = {0, 1}, min(Cp(0)) = min(Cq(0)) = ξ, and both p(0) and q(0) have
trunk a ∈ POSSQ(ξ). p(0) forces that p(1) = q(1), that min(Cp(1)) = ξ and that the trunk of p(1) is either b or c
(elements of POSSQ(ξ)); both are possible with p(0). Now q(0) ≤+

ξ p(0) decides that the trunk of p(1) is b. Then
q ≤+

w,ξ p, and (a, c) is in poss(p, w, ξ) \ poss(q, w, ξ). In particular (a, c) ∈ poss(p, w, ξ) but p does not force that
a ⊆

∼
η
0
implies c ∈ poss(p(1), ξ).
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Preliminary Lemma 5.20. Let p fit (w, ζ), x ∈ poss(p, w, ζ + 1), and let r ≤ p extend x, i.e.,
r  x / G. Then there is a q ≤+

w,ζ p forcing that x / G implies r ∈ G.

Proof. Set dom(q) := dom(r). We define q(α) by induction on α ∈ dom(q) and show inductively:
• q � α ≤+

w∩α,ζ p � α.
• q � α  (x � α / Gα → r � α ∈ Gα).

For notational convenience, we assume dom(p) = dom(r) (by setting p(α) = 1Q for any α outside
the original domain of p).

Assume we already have constructed q0 = q � α. Work in the Pα-extension V [Gα] with q0 ∈ G.
Case 1: r � α /∈ Gα. Set q(α) := p(α).
Case 2: r � α ∈ Gα. Then r(α) ≤ p(α). If α /∈ w, we set q(α) := r(α); otherwise we set q(α) to be
r(α) ∨ (p(α) � ζ + 1) as in Lemma 5.8.

If α ∈ w, then in both cases we get q � α � q(α) ≤+
ζ p(α). Also, if Gα+1 selects x � (α+ 1), then

at stage α we used, by induction, Case 2; so then r(α) ∈ G(α) as x(α) ⊆
∼
η
α
. �

We can iterate the construction for all elements of poss(w, ζ + 1), which gives us:

Lemma 5.21. If p fits (w, ζ) and ∼τ is a name for an ordinal, then there is a q ≤+
w,ζ p which

(w, ζ + 1)-decides ∼τ .

Proof. We enumerate poss(p, w, ζ + 1) as (xi)i∈δ. We start with p0 := p. Inductively we construct
p`: If at step `, if x` is not in poss(p`, w, ζ + 1) any more, then we set p`+1 := p`. Otherwise, pick
an r ≤ p` that decides ∼τ to be some τx` and extends x`. Then apply 5.20 to get p`+1 ≤+

w,ζ p`
which forces that x` / G implies ∼τ = τx` . At limits use Lemma 5.18. �

For the proof of Lemma 5.23 we will need a variant where the “height” ζ is not the same for all
elements of w, more specifically:

Preliminary Lemma 5.22. Assume that p fits (w, ζ) and p � α∗  ζ∗ ∈ Cp(α∗), and that ∼τ is a
name for an ordinal. Then there is a q ≤+

w,ζ p such that q � α∗  q(α∗) ≤+
ζ∗ p(α

∗) and there is a
(ground model) set A of size <λ such that q  ∼τ ∈ A.

Proof. This is just a notational variation of the previous proof. For notational simplicity we assume
α∗ /∈ w.

First we have to modify 5.20: A candidate is a pair (x, a) where x ∈ POSS(w, ζ) and a∗ ∈
POSSQ(ζ∗). Assume that (x, a) is a candidate, that p ∈ P fits (w, ζ) and that p � α∗  ζ∗ ∈ Cp(α∗),
and assume that r ≤ p extends (x, a), i.e., r  (x / G& a∗ ⊆

∼
η
α∗

). Then there is a q such that

(∗) q ≤+
w,ζ p, q � α∗  q(α∗) ≤+

ζ∗ p(α
∗), and q 

(
(x / G& a∗ ⊆

∼
η
α∗

) → r ∈ G
)
.

The same proof works, with the obvious modifications:
When defining q(α), we inductively show:
• q � α ≤+

w∩α,ζ p � α and if α > α∗ then q � α∗  q(α∗) ≤+
ζ∗ p(α

∗),
• q � α 

(
(x � α / Gα & a∗ ⊆

∼
η
α∗

)→ r � α ∈ Gα
)
, unless α ≤ α∗ in which case we omit the

clause about α∗.
Again, in the Pα-extension we have:
Case 1: r � α /∈ Gα. Set q(α) := p(α).
Case 2: r � α ∈ Gα. Then r(α) ≤ p(α). If α /∈ w ∪ {α∗}, we set q(α) := r(α); otherwise we set
q(α) to be r(α) ∨ (p(α) � ζ + 1) as in Lemma 5.8.

Then we can show (∗) as before.

We then enumerate all candidates (there are <λ many) as (x`, a`), and at step `, if (x`, a`) is
compatible with p`, use (∗) to decide ∼τ to be some ∼τ

`. �

We will now show that P is λλ-bounding and proper. We first give two preliminary lemmas
that assume this is already the case for all Pβ′ with β′ < β.
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Preliminary Lemma 5.23. Let β ≤ µ, and assume that Pβ′ is λλ-bounding for all β′ < β.
Assume p ∈ Pβ fits (w, ζ), C̃ ⊆ λ is club, and α∗ < β.
Then there is a q ≤+

w,ζ p and a ξ ∈ C̃ such that q fits (w ∪ {α∗}, ξ).
If additionally α∗ ∈ dom(p) and p � α∗  ζ∗ ∈ Cp(α∗) for some ζ∗ ∈ λ, then we can additionally

get q � α∗  q(α∗) ≤+
ζ∗ p(α

∗).

Proof. For notational simplicity assume α∗ /∈ w and min(C̃) > max(ζ, ζ∗). By induction on α ≤ β
we show that the result holds for all w,α∗ with w ∪ {α∗} ⊆ α.

Successor case α+ 1: Set w0 := w ∩ α.
By our assumption Pα is λλ-bounding, so every club-set in the Pα-extension contains a ground-

model club (see Fact 5.11). In particular, Cp(α) contains some ground-model C∗. By Lemma 5.21
(or 5.22, if α∗ < α) there is a p′ ≤+

w0,ζ
p � α (also dealing with α∗, if α∗ < α) leaving only

<λ many possibilities for C∗. So we can intersect them all, resulting in C ′. Set C ′′ := C ′ ∩ C̃.
Apply the induction hypothesis in Pα to get q′ ≤+

w0,ζ
p′ and ξ in C ′′ such that q′ fits (w0, ξ) (and

also ({α∗}, ξ), if α∗ < α). Set q := q′ ∪ {(α, p(α))}, so trivially q ≤+
w,ζ p (and, if α = α∗, then

q � α  q(α) ≤+
ζ∗ p(α)), and q fits (w ∪ {α}, ξ).

Limit case: If w is bounded in α there is nothing to do. So assume w is cofinal.
Set α0 := min(w \ α∗) and w0 := (w ∩ α0) ∪ {α∗}. Use the induction hypothesis in Pα0 using

(p � α0, w0, ζ, α
∗, ζ∗) as (p, w, ζ, α∗, ζ∗). This gives us some p′0 ≤+

w∩α0,ζ
p � α0 fitting (w0, ζ0) and

dealing with α∗, for some ζ0 ∈ C̃. Set p0 := p′ ∧ p.
Enumerate w \ w0 increasingly as (αi)i<δ, and set wj := w0 ∪ {αi : i < j} for j ≤ δ.
We will construct p′i in Pαi and (ζi)i<δ a strictly increasing sequence in C̃, and we set pj := p′j∧p

and will get: p` fits (w`, ζ`),and p` ≤+
wi,ζi

pi for all i < ` ≤ j.
For successors ` = i+ 1, we use the induction hypothesis in Pαi+1 , using (pi � αi+1, wi, ζi, αi, ζ)

as (p, w, ζ, α∗, ζ∗). This gives us p′i+1 ≤
+
wi,ζi

pi � αi+1 and some ζi+1 > ζi in C̃ such that pi+1 fits
(wi+1, ζi+1) and pi+1 � αi  pi+1(αi) ≤+

ζ pi(αi).
For j limit, we set ζj := supi<j ζi (which is in C̃), and let pj be a limit of the (pi)i<j . I.e.,

dom(pj) =
⋃
i<j dom(pi), and for β ∈ dom(pj) let pj(β) be as follows: If β /∈ w, fix some condition

pj(β) stronger than all pi(β). Otherwise, there is a minimal i0 < j such that β ∈ wi0 , and
p`(β) <+

ζi
pi(β) for all i0 ≤ i < ` < j. In that case let pj(β) be the (canonical) limit of the

(pi(β))i0≤i<j , and note that ζj ∈ Cpj(β). �

Preliminary Lemma 5.24. Let β ≤ µ, and assume that Pβ′ is λλ-bounding for all β′ < β.
Assume that p ∈ Pβ fits (w, ζ), and ∼σ is a Pβ-name for a λ-sequence of ordinals. Then there is

a q ≤+
w,ζ p continuously reading ∼σ.

Proof. Set p0 := p, ζ0 := ζ, w0 := w. We construct by induction on i < λ p′i, pi, ζi, αi and wi as
follows:

• Given pj , wj , and ζj , pick αj ∈ dom(pj) \ wj by bookkeeping (so that in the end the
domains of all conditions will be covered).

• Successor j = i + 1: Set wi+1 := wi ∪ {αi}. Find p′i+1 ≤
+
wi,ζi

pi and ζi+1 > ζi such that
p′i+1 fits (wi+1, ζi+1) (using the previous preliminary lemma).

• Limit j: Let p′j be the canonical limit of the (pi)i<j , ζj := supi<j(ζi), and wj :=
⋃
i<j wi.

Note that p′j fits (wj , ζj).
• In any case, given p′j we pick some pj ≤+

wj ,ζj
p′j which (wj , ζj + 1)-decides ∼σ(ζj).

Then the limit q of the pi continuously reads ∼σ. �

Lemma 5.25. P has continuous reading (and in particular is λλ-bounding).

Proof. Assume by induction that Pβ′ is λλ-bounding for all β < β′. Then the previous lemma
gives us that Pβ has continuous reading of names, and thus is λλ-bounding. �

The same construction shows λ-properness:
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Definition 5.26. Let χ � µ be sufficiently large and regular. An “elementary model” is an
M � H(χ) of size λ which is <λ-closed and contains λ and µ (and thus P ).

Lemma 5.27. If M is an elementary model containing p ∈ P , then there is a q ≤ p which is
strongly M -generic in the following sense: For each P -name ∼τ in M for an ordinal, q (w, ζ)-decides
∼τ via a decision function in M (so in particular q  ∼τ ∈M).

(The decision function being in M is equivalent to w ⊆M , as M is <λ closed.)

Proof. Let ∼σ be a sequence of all P -names for ordinals that are in M . Starting with p0 ∈ M ,
perform the successor step of the previous construction within M ; as M is closed the limits at
steps <λ are in M as well. Then the λ-limit is M -generic. �

5.5. Canonical conditions. We will use conditions that “continuously read themselves.”

Definition 5.28. p ∈ P is (w, ζ)-canonical if p fits (w, ζ) and p(α) � (ζ+1) is (w∩α, ζ+1)-decided
by p � α for all α ∈ w.

Facts 5.29. Let p be canonical for (w, ζ).
(1) If q ≤+

w,ζ p, then q is canonical for (w, ζ) and poss(p, w, ζ + 1) = poss(q, w, ζ + 1)

(2) Let x ∈ poss(p, w, ζ + 1). There is a naturally defined p ∧ x ≤ p such that p  (p ∧ x ∈
G↔ x / G). {p ∧ x : x ∈ poss(p, w, ζ + 1)} is a maximal antichain below p.

(3) Let x ∈ poss(p, w, ζ + 1). In an intermediate Pα-extension V [Gα] with x � α / Gα the rest
of x, i.e., x � [α, µ], is compatible with p/Gα in the quotient forcing.

Or equivalently: If r0 ≤ p � α in Pα extends x � α, then there is an r ≤ r0 extending x.

Definition 5.30. Assume p ∈ P , and ∼σ is a P -name for a λ-sequence of ordinals. Let E ⊆ λ be a
club-set and w̄ = (wζ)ζ∈E an increasing sequence in [µ]<λ.
p canonically reads ∼σ as witnessed by w̄ if the following holds:
• dom(p) =

⋃
ζ∈E wζ .

• p is (wζ , ζ)-canonical for all ζ ∈ E.
• p � α  Cp(α) = E \ (ζ ′α) for some (ground model) ζ ′α.
• ∼σ � I∗(≤ζ + 1) is (wζ , ζ + 1)-decided by p for all ζ ∈ E.

If σ is the constant 0 sequence (or any sequence in V ), we just say “p is canonical” (as witnessed
by w̄).

Lemma 5.31. For p, ∼σ as above, there is a q ≤ p canonically reading ∼σ.
If p ∈ Pα and ∼σ is a Pα-name for some α < µ, then q ∈ Pα.

Proof. We just have to slightly modify the proof of Lemma 5.24.
We will construct pj , ξj and αj by induction on j ∈ λ, setting wj := {αi : i < j}, such that for

0 < j < k the following holds:
• pk ≤+

wj ,ξj
pj .

• pj is (wj , ξj)-canonical.
• pj (wj , ξj + 1)-decides ∼σ � I∗(≤ξj + 1).
• In pk, for αj ∈ wk, {ζi : j < i < k} is (forced to be) an initial segment of Cpk(αj).
• The αj are chosen (by some book-keeping) so that {αi : i ∈ λ} =

⋃
i∈λ dom(pi).

Then the limit of the pj is as required, with E = {ξi : i ∈ λ} and, for ζ = ξj in E, we use wj as wζ .
Set p0 ≤ p such that |dom(p0)| = λ, and set ξ0 := 0. Assume we already have pi, αi for i < j

(so we also have wj).
• For j limit, let s be a limit of (pi)i<j , and set ξj := supi<j ξi. Note that s fits (wj , ξ).
• Successor case j = i + 1: Find s0 ≤+

wi,ξi
pi and ξj > ξi such that s fits (wj , ξj). (As in

Lemma 5.23. Recall that wj = wi ∪ {αi}.)
Strengthen s0 to s ≤+

wi,ξi
so that:

– s still fits (wj , ξj),
– the trunk at αi has length ξj , i.e., s � αi  min(Cs(αi)) = ξj),
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– for αi′ , i′ < i, there are no elements in Cs(αi′ ) between ξi and ξj .
• Construct s∗ � α by recursion on α ∈ wj , such that s∗ � α ≤+

wj∩α,ξj s � α and s∗ � α
(wj ∩ α, ξj + 1)-decides s(α) � (ξj + 1) (which is the same as s∗(α) � (ξj + 1)). This gives
s∗ ≤+

wj ,ξj
s.

• Find pj ≤+
wj ,ξj

s∗ which (wj , ξj + 1) decides ∼σ � I∗(≤ξ + 1).
• Choose αj ∈ dom(pj) \ wj by bookkeeping. �

Facts 5.32. (1) If a Pβ-name ∼x ⊆ λ is continuously read (by some Pβ-condition p), and
cf(β) > λ, then there is an α < β such that: p ∈ Pα, and ∼x is already a Pα-name (formally:
there is a Pα-name

∼
y such that p  ∼x =

∼
y).

(2) There are at most |α|λ ≤ λ+ many pairs10 (p,∼x) such that p canonically reads ∼x in Pα.

5.6. ∆ systems. In this section we define ∆-systems and show that such systems exist, which we
will in the indirect proofs of Lemmas 5.39 and 5.54.

In Section 5.10 we will then fix a specific ∆-system for the rest of the paper.
From now on, we assume that p∗ forces

(5.33) ∼π : P(λ)→ P(λ) represents the automorphism
∼
φ : Pλλ → Pλλ ,

and we set, for β ∈ µ,
∼aβ := ∼π(

∼
η
β
),

where, as usual, we identify
∼
η
β
∈ 2λ with

∼
η−1

β
{1} ⊆ λ.

Note that, other than
∼
η
β
, ∼aβ is a priori not a Pβ+1-name (but see Section 5.9).

We also fix a P -name for a representation of the inverse automorphism
∼
φ−1. Abusing notation,

we call it ∼π
−1.

With Sµλ+ we denote the stationary subset of µ consisting of ordinals with cofinality λ+.

Definition 5.34. Let S ⊆ Sµλ+ be stationary, χ� µ sufficiently large and regular, and z ∈ H(χ).
“An elementary S-system” (using parameter z) is a sequence (Mβ , pβ)β∈S such that, for each
β ∈ S, Mβ is an elementary model (as in Definition 5.26) and contains z, β, p∗,

∼
φ, ∼π and ∼π

−1,
and pβ ∈ P ∩Mβ canonically reads ∼aβ witnessed by some (w

pβ
ζ )ζ∈Epβ , which Epβ ⊆ λ club (cf.

Def. 5.30).

By a simple ∆-system argument we can make an S-system homogeneous:

Definition 5.35. (Mβ , pβ)β∈S forms a “∆-system”, if M̄, p̄ is an elementary S-system with
parameter z, and is homogeneous in the following sense: For β and β1 < β2 in S, we get:

(1) Mβ1
∩Mβ2

∩ µ is constant. We call this set the “heart” and, abusing notation, denote it
with ∆. Obviously ∆ ⊇ λ, ∆ ⊇ dom(p∗), λ+ ∈ ∆, etc.

(2) Mβ ∩ β = ∆. So in particular β is the minimal element of Mβ above ∆. All the non-heart
elements of Mβ2

are above all elements of Mβ1
. I.e., sup(Mβ1

∩ µ) < β2.
(3) There is an ∈-isomorphism h∗β1,β2

: Mβ1
→Mβ2

, mapping β1 to β2, pβ1
to pβ2

, ∼aβ1
to ∼aβ2

and fixing λ, µ,
∼
φ,∼π as well as each α in ∆.

Note that this implies that the continuous reading of ∼aβ works the same way for all β. In particular
the Epβ are that same E for all β; and if F βζ is the function mapping POSS(w

pβ
ζ , ζ+ 1) to the value

of ∼aβ � I∗(≤ζ + 1) (for ζ ∈ E), then h∗β1,β2
(F β1

ζ ) = F β2

ζ and in particular h∗β1,β2
(w

pβ1
ζ ) = w

pβ2
ζ ; i.e.,

they are the same apart from shifting coordinates above ∆.

Lemma 5.36. Assume S ⊆ Sµλ+ is stationary.
• For every z ∈ H(χ) and (p′β)β∈S there are Mβ and pβ ≤ p′β such that M̄, p̄ is an S-system
with parameter z.

10Depending on the formal definition, we could/should add “modulo equivalence”, i.e., there is a ≤|α|λ-sized set
Z of such pairs such that whenever p canonically reads

∼
y in Pα then there is a ∼x such that (p,∼x) ∈ Z and p  ∼x =

∼
y.
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• If M̄, p̄ is an S-system then there is an S′ ⊆ S stationary such that (Mβ , pβ)β∈S′ is a
∆-system on S′.

Proof. The first item is trivial, using the fact that everything can be read canonically.
Using 2λ = λ+, a standard ∆-system argument (or: Fodor’s Lemma argument) lets us thin out

S to some S2 so that (Mβ ∩ µ)β∈S2 satisfies (1–3). For β ∈ S2 let ιβ : Mβ ∪ {Mβ} → H(λ+) be
the transitive collapse, and assign to β the tuple of the ιβ-images of the following objects:

• Mβ , pβ , ∼aβ , µ, ∼φ, ∼π, and E
pβ .

• For ζ ∈ Epβ , the object wpβζ ,
• For ζ ∈ Epβ and γ ∈ wpβζ , the object F pβγ .

Again, there are |H(λ+)|λ < µ many possibilities, so the objects are constant on a stationary
S′ ⊆ S2.

For α < β in S′, we define h∗β1,β2
:= ι−1

β2
◦ ιβ1

. (Note that ιβ1
(α) = ιβ2

(α) for α ∈ ∆.) �

So in particular if we have a ∆-system on S, then pβ � sup(∆) = pβ � β ∈Mβ is the same for
all β ∈ S, and outside of ∆ the domains of the pβ are disjoint for β ∈ S. In particular we get:

Fact 5.37. For a ∆-system with domain S, and A ⊆ S of size ≤λ, the union of the (pβ)β∈A is a
condition in P (and stronger than each pβ).

Whenever r ∈ Pβ ∩Mβ (as is the case for r = pβ � β), we know that r ∈ Pα for α ∈ ∆ (as Mβ

knows that β has cofinality λ+).
Instead of “r ∈ Pα for some α ∈ ∆” we will sometimes just state the weaker but shorter

r ∈ Psup(∆).

Remark. This is an important effect also for some names. Generally, a Pβ-name in Mβ is of course
not a Pα-name for any α < β (just take the Pβ-generic filter Gβ). However, as we will explicitly
state in Lemma 5.42, such names for subsets of λ are, modulo some condition, Pα-names for some
α ∈ ∆ and independent of β. In the specific case of the Pβ-name pβ(β) we do not have to increase
the condition:

Definition and Lemma 5.38. p̃ := pβ(β) is a Psup(∆)-name independent of β ∈ S.

Proof. pβ(β) � ζ + 1 is (w
pβ
ζ , ζ + 1)-determined for cofinally many ζ ∈ E, where wpβζ ∈ [β]<λ is a

subset of Mβ . So w
pβ
ζ ⊆ ∆, and the isomorphisms between the Mβ guarantee that each wpβζ is the

same, and that pβ(β) � ζ + 1 is decided the same way. So p̃ is a Pγ-name for γ = sup(w
pβ
ζ )ζ∈E .

This γ is independent of β ∈ S, and is in ∆. So p̃ is actually a Pα-name for some α ∈ ∆; and
certainly a Psup(∆)-name. �

For later reference we note:

Lemma 5.39. For all but non-stationary many β, p∗ forces ∼aβ /∈ Vβ.

(Here, Vβ denotes the Pβ-extension of the ground model.)

Proof. Assume that pβ ≤ p∗ forces that ∼aβ = ∼xβ for a Pβ-name ∼xβ for all β ∈ S∗ stationary. We
can also assume that pβ canonically reads ∼aα. Pick Mβ containing pβ and S ⊆ S∗ such that
(Mβ , pβ)β∈S is a ∆-system, where we can assume (or get from homogeneity) that h∗β0,β1

(∼xβ0) = ∼xβ1 .
So the ∼xβ are Pβ-names in Mβ and therefore Psup(∆)-names, and are the same for all β. Choose
β1 > β0 in S. So pβ0

∧ pβ1
force that ∼aβ0

= ∼x = ∼aβ1
, which contradicts the injectivity of

∼
φ and the

fact that
∼
η
β0

6=
∼
η
β1

. �

5.7. Preservation of cofinalities, catching canonical names.

Corollary 5.40. P is λ++-cc and preserves all cofinalities.

Proof. Cofinalities ≤λ are preserved as P is <λ-closed.
Cofinality λ+ is preserved by properness: Assume that it is forced by p that κ has a cofinal

λ-sequence ∼̄α := (∼αi)i∈λ. Then there is an elementary model M containing p and ∼̄α. If q ≤ p is
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M -generic, and G a P -generic filter containing q, then ∼αi[G] ∈ M for all i < λ, so M ∩ κ is a
cofinal subset of κ of size λ in the ground model.

Cofinality ≥ λ++ is preserved as P has the λ++-cc, which we have shown in a very roundabout
way with the fact about ∆-systems: If (p′α)α∈µ are arbitrary conditions, then (Mβ , pβ) form a
∆-system from some pβ < p′β and stationary S, and any two (in fact, ≤λ many) pβ are compatible
for β ∈ S. �

Remark 5.41. This shows that P is (µ, λ)-Knaster, i.e., for every A ∈ [P ]µ there is a B ∈ [A]µ

which is λ-linked.

The λ++-cc also implies: For every name ∼x for a subset of λ (or of λ+) there is a β < µ and a
Pβ-name

∼
y such that the empty condition forces that ∼x =

∼
y.

Given α < µ, there are <µ many pairs (p,∼x) where p canonically reads ∼x ⊆ λ in Pα, see
Fact 5.32(2). So there is a g(α) < µ such that for each such p,∼x, both ∼π(∼x) and ∼π

−1(∼x) are
equivalent (modulo the empty condition) to some Pg(α)-name. Let C∗ ⊆ µ be the club set with
(ζ ∈ C∗&α < ζ) → g(α) < ζ.

Given a ∆-system on S we can restrict it to a ∆-system on S ∩C∗; so we will assume from now
on that each ∆-system we consider satisfies S ⊆ C∗.

To summarize:

Lemma 5.42. (1) If β ∈ S, p ∈ Pβ and ∼x a Pβ-name for a subset of λ, then there is an
α < β and a q ≤ p canonically reading ∼x, ∼τ(∼x), ∼τ

−1(∼x) as Pα-names.
More explicitly: There is a Pα-name

∼
y which is canonically read by q such that q 

∼
y = ∼x.

(And analogously for ∼τ(∼x) and ∼τ
−1(∼x) instead of ∼x.)

(2) If additionally p ≤ pβ � β in Pβ and (p,∼x) ∈ Mβ, then we can additionally get: ∼x, ∼π(∼x)
and ∼π

−1(∼x) are Pα-names in Mβ independent of β ∈ S.
More explicitly: Let

∼
y be as above (for ∼x). Then α ∈ ∆, q and

∼
y are in Mβ, and if

β′ ∈ S and h := h∗β,β′ , then h acts as identity on α, q, and
∼
y, and (Mβ′ knows that)

q 
∼
y = h(∼x). (And analogously for ∼τ(∼x) and ∼τ

−1(∼x) instead of ∼x.)

Proof. (1): Use Lemma 5.31 to get a q1 ∈ Pβ canonically reading ∼x. And if β ∈ S then cf(β) = λ+,
so dom(p) is bounded by some α′ < β and, by Fact 5.32(1), q1 ∈ Pα1 for some α′ ≤ α1 < β.
As β ∈ C∗, ∼π(∼x) and ∼π

−1(∼x) are Pβ-names. So repeat the same argument to get q ≤ q1 in Pα
canonically reading all three subsets of λ.

(2): Apply (1) inside Mβ . As α ∈ β ∩Mβ , we get α ∈ ∆. As q canonically reads itself as well as

∼
y, we know that h does not change q and

∼
y. As h is an isomorphism, we know that h(q) = q forces

that h(∼x) = h(
∼
y) =

∼
y. �

5.8. Majority decisions. For any (a1, a2, a3) with ai ∈ {0, 1} there is a b ∈ {0, 1} such that
b = ai for at least two i ∈ {1, 2, 3}. We write b = majori=1,2,3(ai).

Similarly, if f1, f2, f3 are functions A→ 2 we write majori=1,2,3(fi) for the function A→ 2 that
maps ` to majori=1,2,3(fi(`)).

The following is a central point of the whole construction:

Lemma 5.43. Let (Mα, pα)α∈S be a ∆-system. Pick β0 < β1 < β2 < β3 in S.

(1) p∗ forces: If
∼
η
β0

=∗ majori=1,2,3(
∼
η
βi

), then ∼aβ0
=∗ majori=1,2,3(∼aβi).

(2) Let s =
∧
i<4 pβi . Recall that s(βi) is the same Psup(∆)-name called p̃ for all i. We

can strengthen s by strengthening, for i = 1, 2, 3, the condition s(βi) = p̃ to some
Pβ0+1-names ri ≤ p̃ (without changing C p̃) such that the resulting condition forces

∼
η
β0

= majori=1,2,3(
∼
η
βi

).
(We do not have to strengthen s(β0) for this, i.e., we can use r0 := p̃.)

We describe this by “(ri)i<4 honors majority”.
Recall that ν1 =∗ ν2 denotes that ν1(`) = ν2(`) for all but <λ many ` ∈ λ.
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Proof. (1) Identifying 2λ with P (λ), we have majori=1,2,3 fi = (f1 ∩ f2) ∪ (f2 ∩ f3) ∪ (f1 ∩
f3) for any tuple (fi)i=1,2,3. As ∼π represents an automorphism, we get ∼π(majori=1,2,3(fi)) =∗

majori=1,2,3(∼π(fi)). Apply this to fi :=
∼
η
βi
.

(2) Work in the Pβ0+1-extension. Recall p̃ := pβ0(β0). So both p̃ and
∼
η
β0

are already determined,

and
∼
η
β0

extends ηp̃. Set r0 := p̃.

Set s1 := (0, 0), s2 := (0, 1), s3 := (1, 0). For ζ ∈ C p̃ and i = 1, 2, 3, we define ri(ζ) ⊇ p̃(ζ) as
follows:

(5.44) Extend sp̃ζ by si, i.e., sriζ := (sp̃ζ)
_si; and set ri(ζ)(`) :=

∼
η
β
(`) for ` ∈ [sp̃ζ ] \ [sriζ ].

So ηri agrees on its domain with
∼
η
β0

, and each ` ∈ λ is in dom(ηri) for at least two i ∈ {1, 2, 3}.
Accordingly, an extension by a generic filter G with ri ∈ G(βi) for all i < 4 will satisfy

∼
η
β0

=

majori=1,2,3(
∼
η
βi

). (We do not even have to assume that any pβ ∈ G.) �

Remark 5.45. Let p′β1
be the condition where we strengthen pβ1(β1) to r1. Note that p′β1

is not in
Mβ1

, as β0 /∈Mβ1
and r1 is defined using

∼
η
β0

. Similarly (basically the same): r1[Gβ1
] /∈Mβ1

[Gβ1
],

even if we assume that Gβ1
is Mβ1

-generic. But generally we will not be interested in Mβ-generic
conditions or extensions (we needed generic conditions only in Lemma 5.27, which in turn is needed
for Corollary 5.40). And while usually most conditions we consider can be constructed within (and
therefore will be elements of) some Mβ , this is generally not required (an example are the si’s in
the following Lemma).

The same proof works if we do not start with the pβ but with any stronger conditions, as long
as they still “cohere” in the way that the pβi cohere:

Lemma 5.46. Let (Mα, pα)α∈S be a ∆-system, β0 < β1 < β2 < β3 in S, and si ≤ pβi for
i = 0, 1, 2, 3 such that:

• dom(si) ⊆Mβi

• s∗ := si � βi is the same for all i,
• s∗ forces that the si(βi) are the same for all i.

(In the usual sense: The si(βi) are continuously read from generics below β0 in the same
way for each i < 4.)

Then there is condition stronger than all si forcing that
∼
η
β0

= majori=1,2,3(
∼
η
βi

) and thus ∼aβ0
=∗

majori=1,2,3(∼aβi).

5.9. ∼aβ is in the β+ 1-extension. We now show that ∼aβ can be assumed to be a Pβ-name.
The following definitions, in particular everything concerning the notion of coherence, is used

only in this section. In the rest of the paper, we will use from this section only Lemma 5.54, i.e.,
the fact that ∼aβ ∈ Vβ+1.

Remark. Why do we introduce this (rather annoying) notion of coherence? Well, we would like to
simultaneously construct something like si ≤ pβi where each si ends up in Mβi . We cannot directly
do this in Mβ0 , as Mβ0 does not know about, e.g., β1. So instead, we construct four different
s′i ≤ pβ0

in Mβ0
in such a way (a “coherent” way) and use si := h∗β0,βi

(s′i).

Let us for now (until Lemma 5.54) fix an arbitrary ∆-system (Mβ , pβ)β∈S as well as β0 < β1 <
β2 < β3 in S. For notational convenience, set

β := β0.

Definition 5.47. • q̄ = (qi)i<4 in Mβ is called coherent, if each qi is stronger than pβ and
qi � (β + 1) is the same for all i < 4.

• If q̄ is coherent, then
∧
i<4 h

∗
β,βi

(qi) is a valid condition in P , and we call it q∗.
I.e., q∗ is the union of the copies of qi in Mβi ; and the copy for q0 is just q0.
r ∈ P is called coherent, if r = q∗ for some coherent q̄ ∈Mβ .
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Facts. • The pβi are coherent, more correctly:
The condition

∧
i∈4 pβi is coherent; equivalently: The tuple

(
h∗−1
β,βi

(pβi)
)
i<4

is coherent.
• Any coherent r is stronger than

∧
i<4 pβi .

• If q̄ is coherent, ri ≤ qi in Mβ for i < 4, and ri � βi is the same for all i < 4, then∧
i<4 h

∗
β,βi

(ri) is (a valid condition and) compatible with q∗.
• r ∈ P is coherent iff: dom(r) ⊆

⋃
i<4Mβi , r � (µ ∩Mβi) ∈Mβi is stronger than pβi , and

each r(βi) is forced to be the same condition.
In that case, r = q∗ for qi := h∗−1

β,βi
(ri) and ri := r � (µ ∩Mβi)

Lemma 5.48. If r is coherent, then it can be strengthened11 to force12 ∼aβ0
= majori=1,2,3∼aβi .

Proof. This follows from Lemma 5.46, using si := r � (µ ∩Mβi). �

Definition 5.49.
• w̄ = (wi)i<4 is coherent, if wi ∈ [µ]<λ is in Mβ and wi ∩ (β + 1) is independent of i.

In the following we always assume that q̄ and w̄ are coherent.
• q̄ fits (w̄, ζ), if each qi fits (wi, ζ).
• q̄ is (w̄, ζ)-canonical, if each qi is (wi, ζ)-canonical.
• r̄ ≤+

w̄,ζ q̄ means: r̄ is coherent, and ri ≤+
wi,ζ

qi for all i < 4.
• x̄ = (xi)i<4 is defined to be in poss(q̄, w̄, ζ) if xi ∈ poss(qi, wi, ζ) and xi � β is independent

of i. Such a x̄ will be called coherent possibility.
(Note that the xi(β) in a coherent possibility can be different for different i < 4. Also

note that such a x̄ is automatically in Mβ , which is <λ-closed.)

Note that if r̄ ≤+
w̄,ζ q̄ and q̄ is (w̄, ζ)-canonical, then r̄ and q̄ have the same coherent (w̄, ζ + 1)-

possibilities, see Fact 5.29(1).
Several of the previous constructions result in coherent 4-tuples when applied to coherent

4-tuples. In particular:
Lemma 5.50.

(1) Assume (q̄j)j∈δ is a sequence of coherent 4-tuples such that, for each i < 4, the i-part
(qji )j∈δ satisfies the assumptions of Lemma 5.18.

Then for each i, the lemma (in Mβ) gives us a limit r, which we call qδi .
We can choose the qδi so that they form a coherent 4-tuple.

(2) The same applies to Lemma 5.19. I.e., we can get a coherent fusion limit from a λ-sequence
of coherent tuples.

(3) Assume p̄ fits (w̄, ζ), and αi ∈ µ such that w′i := wi ∪ {αi} is coherent. Then there is a
ξ > ζ and a q̄ ≤+

w̄,ζ p̄ which fits (w̄′, ξ) and is (w̄′, ξ)-canonical.
(4) Assume q̄ is coherent and (for simplicity) (w̄, ζ)-canonical with β ∈ wi (which is independent

of i < 4), and ∼τi are names of ordinals. Then there is an r̄ ≤+
w̄,ζ q̄ such that ∼̄τ is (w̄, ζ + 1)-

decided by r̄.
By this we mean that ∼τi is (wi, ζ + 1)-decided by ri for all i < 4.

Proof. For the first items, we just have to look at the proofs of the according lemmas (For (3) this
is 5.23 and 5.24) and note that coherent input gives us coherent output. In the following we will
prove (4). We work in Mβ .

Enumerate all coherent possibilities as (x̄k)k∈K . Set r̄0 := q̄. We now construct r̄k+1 from
r̄ := r̄k where we assume r̄k ≤+

w̄,ζ q̄.
• Find s0 stronger than r0 and extending x0, deciding ∼τ0.
• s∗ := (s0 � β) ∧ r1 is stronger than r1, as r̄ is coherent. Strengthen s∗(β) = r1(β) = r0(β)
to s0(β), but replace the trunk with x1(β). Then s∗ � β forces that s∗(β) ≤ r1(β), as
x1 � β = x0 � β and as x1(β) is guaranteed to be possible, because r1 is canonical. Further
strengthen s∗ (above β) to extend (the rest of) x1; and then strengthen the whole condition
once more to decide ∼τ1. Call the result s1.

11to a condition that will generally not be coherent
12Here we write β0 instead of β to stress the interaction with β1, . . . , β3, but recall that β := β0.
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• Do the same for i = 2, starting with s1, resulting in s2, and then for i = 3, starting with
s2, resulting in some s3.

So si ≤ ri extends xi and decides ∼τi, and s3 � β ≤ si � β and s3(β) is stronger than
si(β) “above ζ + 1”.

• We define r′i ≤ ri as follows: dom(r′i) = (dom(s3)∩β)∪dom(si). We define r′i(α) inductively
such that r′i � α ≤

+
wi∩α,ζ ri forces that xi � α / G implies si � α ∈ G.

– For α ≤ β:
If s3 � α /∈ Gα, set r′i(α) = ri(α). Assume otherwise. So s3(α) is defined and stronger
than ri(α) = r3(α). If α /∈ wi (which implies α < β), set r′i(α) = s3(α). Otherwise,
use s3(α) ∨ (r3(α) � ζ + 1), as in Lemma 5.8.

– For α > β, we do the same but we use si instead of s3. In more detail:
If si � α /∈ Gα, set r′i(α) = ri(α). Assume otherwise. If α /∈ wi, set r′i(α) = si(α).
Otherwise, use si(α) ∨ (ri(α) � ζ + 1).

We can use this r̄′ as r̄k+1: It is coherent, r̄′ ≤+
w̄,ζ r̄

k, and r′i decides ∼τi assuming xi /G. �

Coherent tuples q̄ naturally define a P -condition q∗. However, we have to assume that q̄ is
canonical to guarantee that coherent q̄ possibilities correspond to q∗-possibilities:

Lemma 5.51. Assume q̄ and w̄ coherent. We set w∗ :=
⋃
i<4 h

∗
β,βi

(wi). Let x̄ be in poss(q̄, w̄, ζ+1).
(1) q̄ fits (w̄, ζ) iff q∗ fits (w∗, ζ).
(2) r̄ ≤+

w̄,ζ q̄ iff r∗ ≤+
w∗,ζ q

∗.
(3) Assume q̄ fits (w̄, ζ). Then q̄ is (w̄, ζ)-canonical iff q∗ is (w∗, ζ)-canonical.
(4) Assume that q̄ is (w̄, ζ)-canonical. Let x∗ be the union of the h∗β,βi(xi). Then x∗ ∈

poss(q∗, w∗, ζ + 1); and every element of poss(q∗, w∗, ζ + 1) is such an x∗ for some x̄ ∈
poss(q̄, w̄, ζ + 1).

(5) Assume that q̄ is (w̄, ζ)-canonical. Then q̄ (w̄, ζ+1)-decides (∼τi)i<4 iff q∗ (w∗, ζ+1)-decides
all h∗β,βi(∼τi).

Proof. Assume α ∈ wi. Set α′ := h∗β,βi(α) ∈ w∗ and q′ := h∗β,βi(qi).
(1) Assume qi, α satisfy qi � α  ζ ∈ Cqi(α). By absoluteness they satisfy it in Mβ , so the

h∗β,βi-images q′, α′ satisfy it in Mβi , which again is absolute; and q∗ � α′ ≤ q′ � α′ forces that
q∗(α′) = q′(α′). For the other direction, assume (in Mβ) some s ≤ qi � α forces ζ /∈ Cqi(α). Then
h∗β,βi(s) is compatible with q∗ and forces ζ /∈ Cq′i(α′) = Cq

∗(α′).
In the same way we can show (2), as well as (5) and the trivial directions of (3), (4). E.g.,

if q̄ is (w̄, ζ)-canonical, then q∗ is (w∗, ζ)-canonical. For this, use the fact that every element
y∗ ∈ poss(q∗, w∗, ζ + 1) “induces” a coherent possibility ȳ (which is true whether q̄ is canonical or
not). And if additionally x̄ ∈ poss(q̄, w̄, ζ + 1), then x∗ ∈ poss(q∗, w∗, ζ + 1); and if each qi forces
that xi / G implies ∼τi = xi, then q∗ forces that x∗ / G implies h∗β,β1

(∼τi) = h∗β,β1
(xi).

We omit the (also straightforward) proofs of the other directions of (3) and (4) (which we do
not need in this paper). �

In the following, whenever we mention q∗ or w∗, we assume w̄, q̄ to be coherent and in Mβ .
We will (and can) use x∗ only if q̄ additionally is canonical (otherwise x∗ will generally not be
a possibility for q∗). In this case, every P -generic filter containing q∗ will select an x∗ for some
coherent possibility x̄.

Lemma 5.52. Assume q̄ is coherent, ∼σi are P -names in Mβ for elements of 2λ, and13 q0 

∼σ0 /∈ Vβ+1. Then there is a coherent r̄ ≤ q̄, and sequences (ζj)j∈λ and (w̄j)j∈λ such that r̄ is
(w̄j , ζj)-canonical for all j, and for all x̄ ∈ poss(r̄, w̄j , ζj + 1) there is some ` ∈ I∗(>ζj , <ζj+1)
and b̄ = (bi)i<4, with bi ∈ 2, violating majority14 such that for all i < 4

ri  xi / G→ ∼σi(`) = bi.

As the pβi are coherent, we can apply the lemma to ∼σi := ∼aβ (for all i) and get:

13As usual, Vβ+1 denoted the Pβ+1-extension.
14I.e., b0 = 1−majori=1,2,3(bi).
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Corollary 5.53. If pβ  ∼aβ /∈ Vβ+1, then there is a coherent r∗ ≤
∧
i<4 pβi forcing that

¬
(
∼aβ0

=∗ majori=1,2,3(∼aβi)
)
.

Proof of the lemma. We will construct (in Mβ), by induction on j ∈ λ, ζj , w̄j and r̄j with r0
i = qi,

such that the following holds:
(1) r̄j is coherent.
(2) w̄j is coherent, for each i < 4 the wji are increasing with j, and their union covers⋃

j∈λ dom(rji ).
(3) r̄j is (w̄j , ζj)-canonical.
(4) r̄k ≤+

w̄j ,ζj r̄
j for j < k.

(5) If x̄ ∈ poss(r̄j , w̄j , ζj + 1), then there is an ` ∈ I∗(>ζj , <ζj+1) and a b ∈ 2 such that for at
least two i1, i2 in {1, 2, 3}, rj+1

i forces that xi / G implies

(∗) ∼σ0(`) = 1− b, ∼σi1(`) = b, ∼σi2(`) = b.

Then we take the usual fusion limits, as in Lemma 5.50(2), and are done.
For limits j, let r̄′ be a (coherent) limit of (r̄j

′
)j′<j , and set ζ∗ := supj′<j(ζ

j′) and w∗i :=⋃
j′<j w

j′

i for each i < 4. Note that r̄′ fits (w̄∗, ζ∗). Then we can find coherent r̄∗ ≤+
w̄∗,ζ∗ r̄

′ which
is (w̄∗, ζ∗)-canonical, as in Lemma 5.50(3).

In successor cases j = j′ + 1 set (r̄∗, w̄∗, ζ∗) := (r̄j
′
, w̄j

′
, ζj
′
).

In any case we want to construct r̄j , w̄j , and ζj .
Enumerate poss(r̄∗, w̄∗, ζ∗ + 1) as (x̄k)k∈K .
We define s̄k for k ≤ K, with s̄0 := r̄∗ and, as usual, taking (coherent) limits at limits, such

that:
• s̄k is coherent.
• s̄` ≤+

w̄∗,ζ∗ s̄
k for k < ` < K. (This implies that s̄k is (w̄∗, ζ∗)-canonical.)

• There is a ξk and an ` ∈ I∗(>ζ∗, <ξk) and a b ∈ 2 such that

(∗∗) sk+1
0  xk0 / G→ ∼τ0(`) = 1− b and (∃≥2i ∈ {1, 2, 3}) sk+1

i  xki / G→ ∼τi(`) = b.

Assume we can construct these s̄k, ξk for all k ∈ K, then let s̄K be again a (coherent) limit. We
set wji := w∗i ∪ {αj} such that w̄j is coherent (and such that, by bookkeeping, all elements of
dom(pji ) will be eventually covered), and find some ζj > supk∈K(ξk) and r̄j ≤+

w̄∗,ζ∗ r
∗ which is

(w̄j , ζj)-canonical, again as in Lemma 5.50(3). Then r̄j , w̄j and ζj are as required.
So it remains to construct, for k ∈ K, s̄k+1 and ξk, which we will do in the rest of the proof.

Set s̄ := s̄k, x̄ := x̄k, w̄ := w̄∗ and ζ := ζ∗. Recall that s̄ is (w̄, ζ)-canonical, x̄ ∈ poss(s̄, w̄, ζ), and
we are looking for s̄k+1 ≤+

w̄,ζ s̄ which satisfies (∗∗) for x̄.
Set s′i := si ∧ xi. It is enough to construct ti ≤ s′i such that:
• Both ti � β and ti(β) � (λ \ ζ + 1) are independent of i.
• t0  ∼τ0(`) = 1− b and (∃≥2i ∈ {1, 2, 3}) ti  ∼τi(`) = b.

Then we can define s̄k+1 in the usual way: dom(sk+1
i ) = dom(ti) (and we can assume dom(si) =

dom(ti), by using trivial conditions). For α ∈ dom(ti), if ti � α /∈ Gα then set sk+1
i (α) to be si(α),

otherwise ti(α)∨ (si(α) � ζ+1) if α ∈ wi and ti(α) otherwise. The resulting s̄k+1 ≤+
w̄,ζ s̄ is coherent

and sk+1
i forces that xi / G implies ti ∈ G.

We have to introduce more notation: Fix j 6= i, and a ≤ s′j and b ≤ s′i � β + 1 (in Pβ+1)
such that b � β ≤ a and b � β forces that b(β) is stronger than a(β) above ζ (i.e., b � β  (∀ξ >
ζ) b(β)(ξ) ⊇ a(β)(ξ)). Then we define b[j] ∧ a by

(b[j] ∧ a)(α)(ξ) =


b(α)(ξ) if α < β,

xj(β)(ξ) if α = β and ξ ≤ ζ,
b(β)(ξ) if α = β and ξ > ζ,

a(α)(ξ) otherwise.

Note that b[j] ∧ a is stronger than a, but generally not stronger than b.
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By our assumption, q0 and therefore s′0 forces ∼σ0 /∈ Vβ+1. So in an intermediate model
V [Gβ+1], there is some ` ∈ I∗(>ζ) such that s′0/Gβ+1 does not decide ∼σ0(`). Back in V , fix some
b0 ≤ s′0 � (β + 1) in Pβ+1 which determines this `.

Find r′1 ≤ b
[1]
0 ∧ s′1 which determines ∼σ1(`) to be j1 for some j1 ∈ 2. Find r′2 ≤ (r′1 � β+ 1)[2] ∧ s′2

which determines ∼σ2(`) to be j2; analogously find r′3 ≤ (r′2 � β + 1)[3] ∧ s′3 which determines ∼a(`) to
be some j3. Let j ∈ 2 be equal to at least two of j1, j2, j3.

Set p := (r′3 � β + 1)[0] ∧ s′0. In any Pβ+1-extension honoring p � β + 1,
∼∼
σ0(`) is not determined

by p/Gβ+1, i.e., there is an t0 ≤ p forcing that ∼a(`) = 1− j.
We now set and ti := (t0 � β + 1)[i] ∧ r′i for i = 1, 2, 3. Note that ti ≤ r′i ≤ s′i extends xi and

forces ∼σi(`) to be 1− j if i = 0 and to be j for at least two i in {1, 2, 3}. �

We can now easily show:

Lemma 5.54. For all but non-stationary many β ∈ Sµλ+

p∗  ∼aβ ∈ Vβ+1

Proof. We started in this section with an arbitrary ∆-system and showed that Corollary 5.53 and
Lemma 5.48 holds for this system.

We now use a specific ∆-system:
Assume towards a a contradiction that on a non-stationary set S′ there are pβ ≤ p∗ forcing

∼aβ /∈ Vβ+1. By strengthening we can assume that pβ canonically reads ∼aβ . Let Mβ contain pβ and
let S ⊆ S′ be such that (Mβ , pβ)β∈S is a ∆-system. Fix β0 < β1 < β2 < β3 in S. By Corollary 5.53
we get a coherent r̄ stronger than p̄ such that r∗  ¬

(
∼aβ0

=∗ majori=1,2,3(∼aβi)
)
. This contradicts

Lemma 5.48. �

5.10. Fixing the ∆-system. We now know that there is a stationary set S0 ⊆ Sµλ+ such that for
all β ∈ S0, ∼aβ is forced (by p∗) to be in Vβ+1 but not in Vβ (see Lemmas 5.39 and 5.54).

For each β ∈ S0 there is a p′β ≤ p∗ in P forcing that ∼aβ is equal to some Pβ+1-name, call it ∼a
∗
β ,

and we choose pβ ≤ p′β (we only have to strengthen the part below β + 1) which canonically reads

∼a
∗
β .

15

We now fix, as usual, for each β ∈ S0, some elementary model Mβ containing pβ , and fix S ⊆ S0

such that (Mβ , pβ)β∈S is a ∆-system.
So p∗∗ := pβ � β ≤ p∗ is independent of β ∈ S (it is a Pα-condition for some α ∈ ∆, independent

of β ∈ S ); and ∼a
∗
β is read continuously by pβ � β + 1 via (w′ζ)ζ∈E′ for some E′ ⊆ λ club, with

w′ζ ⊆ β + 1. As usual, due to homogeneity E′ is independent of β ∈ S, and the w′ζ are independent
of β apart from the shifting of the final coordinate β via the mapping h∗β0,β1

; the same holds for
the decision functions that map poss(pζ , w

′
ζ , ζ + 1) to ∼aβ � I∗(<ζ + 1)

Let E be the limit points of E′, and set wζ :=
⋃
ν<ζ w

′
ν . Then ∼aβ � I∗(<ξ) is (wξ, ξ)-determined

by pβ for all ξ ∈ E.
In the Pβ-extension, only

∼
η
β
remains undetermined, i.e., there are fξ for ξ ∈ E such that

pβ/Gβ forces ∼aβ � I∗(<ξ) = fξ(
∼
η
β
� I∗(<ξ)). The fξ are canonically read from pβ � β in a way

independent of β (due to homegeneity).
Recall that x ∈ poss(p̃, ξ) is equivalent to: x ∈ 2I

∗(<ξ) and x extends ηp̃ � I∗(<ξ). So the
domain of fξ is poss(p̃, ξ).

To summarize:

Fact 5.55. (Mβ , pβ)β∈S satisfies:
• pβ � β =: p∗∗ ≤ p∗ is a Psup(∆)-condition independent of β ∈ S.
• pβ(β) =: p̃ is a Psup(∆)-name independent of β ∈ S,
• There is a club-set E ⊆ λ and, for ξ ∈ E, Psup(∆)-names

∼
fξ : poss(p̃, ξ) → 2I

∗(<ξ) such
that for all β ∈ S and ξ ∈ E

pβ  ∼aβ � I∗(<ξ) =
∼
fξ(
∼
η
β
� I∗(<ξ)).

15So pβ � β + 1 reads ∼a
∗
β , but generally the whole pβ may be required to force ∼aβ =∼a

∗
β .
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• If β ∈ S, ∼x ⊆ λ is a Pβ-name, q ≤ p∗∗ in Pβ and q,∼x are in Mβ , then we can find α ∈ ∆
and p′∗∗ ≤ q in Pα which continuously reads ∼x, ∼τ(∼x) and ∼τ

−1(∼x) independently16 of β.

The last item follows from Lemma 5.42; and we will use it several times: Before Corollary 5.59
we find p2

∗∗ ≤ p∗∗ to get names for U , Fξ etc. that are independent of β; before Lemma 5.63 we get
p3
∗∗ ≤ p2

∗∗ to get independent names for some unions, intersections and ∼π-images; and finally after
Corollary 5.70 we choose q ≤ p3

∗∗ to get an independent name for the generator fgen.

5.11. Local reading. So we know that we can determine initial segments of ∼aβ from initial
segments of

∼
η
β
, more specifically, we can determine

∼
η
β
� I from ∼aβ � I for I := I∗(<ξ).

In this section we show that on unboundedly many disjoint intervals of the form A := I∗(≥ ξ,< ν),
we can read ∼aβ � A from just

∼
η
β
� A (without having to use the

∼
η
β
-values below A).

The following definition (the notion of candidate) is only used in this section. In the rest of the
paper we only need Corollary 5.59.

In the following, we work in Vβ , the Pβ-extension V [Gβ ] where we assume β ∈ S and p∗∗ ∈ Gβ .

Definition 5.56. (In Vβ)
• For A ⊆ λ and x̄ = (xi)i<4, xi : A→ 2, we say x̄ honors majority above ζ, if

x0(`) = majori=1,2,3 xi(`) for all ` ∈ A ∩ I∗(≥ζ).

We say x̄ honors p̃, if each xi is compatible with ηp̃ (as partial functions).
• x̄ = (xi)i<4 is a (ζ0, ζ1)-candidate, (for ζ0 ≤ ζ1 both in E) if the xi ∈ poss(p̃, ζ1) honor

majority above ζ0.
(As elements of poss(p̃, ζ1) they automatically honor p̃.)

• If x̄ is a (ζ0, ζ1)-candidate, we say “ ȳ extends x̄” if ȳ is a (ζ1, ζ2)-candidate17 for some
ζ2 ≥ ζ1 and each yi extends xi.

Equivalently, ȳ = x̄_b̄ for some b̄, with bi : I∗(≥ζ1, <ζ2) → 2, which honors both
majority and p̃.

• A (ζ0, ζ1)-candidate ȳ is “good”, if for every candidate z̄ of height ξ > ζ1 that extends ȳ we
have:

(∗1) fξ(z0)(`) = majori=1,2,3 fξ(zi)(`) for all ` ∈ I∗(≥ζ1, <ξ).

Preliminary Lemma 5.57. (In Vβ.) Every candidate can be extended to a good candidate.

Proof. Assume otherwise, i.e., there is a (ζ ′, ζ0)-candidate x̄ which is a counterexample, which
means:

(∗2)
Whenever ȳ is a (ζ0, ζ1)-candidate extending x̄ then there is a ξ > ζ1 and a
(ζ1, ξ)-candidate z̄ extending ȳ which violates (∗1).

We now construct r0 ≤ p̃ and, for i = 1, 2, 3, Qβ-names ri ≤ p̃. All these conditions live on the
same C∗ ⊆ E with min(C∗) = ζ0. The trunk of ri is xi.

We now construct inductively C∗ � ζ and ri � ζ.
Assume we have determined that ζ ∈ C∗ and we have constructed each ri below ζ. Set

r0(ζ) := p̃(ζ) and pick ri(ζ) as in (5.44), i.e., they have majority
∼
η
β
and leave enough freedom to

form a valid condition.
We will now construct the C∗-successor ξ of ζ, together with ri on I∗(>ζ,<ξ).
Enumerate all (ζ0, ζ + 1)-candidates extending x̄ as (ȳk)k∈K .
Let ā0 be the empty 4-tuple and set ξ0 := ζ + 1. We will construct, for k ∈ K, ξk and some āk

that honors majority and p̃, where aki has domain I∗(≥ζ + 1, <ξk) and extends aji if j < k.
If k is a limit, let āx be the (pointwise) union of āj with j < k, and set ξk := supj<k(ξj).

16This means: p′∗∗ ∈Mγ for all γ ∈ S, and there is a way (independent of γ ∈ S) to continuously read
∼
y1,∼

y2,∼
y3

modulo p′∗∗ from the generics below α, and for all γ ∈ S we have that p′∗∗ ∧ pγ forces
∼
y1 = ∼x

′,
∼
y2 = ∼τ(∼x

′) and

∼
y3 =∼τ

−1(∼x
′), where ∼x

′ := h∗β,γ(∼x).
17or equivalently, a (ζ0, ζ2)-candidate
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Assume we already have āj . Extend ȳj_āj to some candidate ȳj_āj+1 of some height ξj+1 in
E such that

(∗3) ȳj
_
āj+1 violates (∗1) for some ` ∈ I∗(≥ξj , <ξj+1).

We can due that due to (∗2).
So in the end we get some ξ > ζ in E and b̄ζ with domain I∗(>ζ,<ξ) honoring majority and p̃

such that

(∗4)
for every (ζ0, ζ + 1)-candidate ȳ extending x̄, ȳ_b̄ζ is a (ζ0, ξ)-candidate violating (∗1)
for some ` ∈ I∗(>ζ,<ξ).

We then define C∗ below ξ + 1 by adding only ξ, i.e., ξ is the C∗-successor of ζ. We extend the
conditions ri by b

ζ
i for i < 4. I.e., we have ηri(`) = bζi (`). This ends the construction of ri ≤ p̃.

Back in V , assume that (∗2) is forced by some q′ ≤ pβ � β. Pick an increasing sequence βi
(i < 4) in S. We take the union of q′ and the pβi , call it s, and strengthen s(βi) = p̃ to ri. The
resulting condition s′ forces the following:

• ∼aβi � I∗(<ξ) = fξ(
∼
η
βi

� I∗(<ξ)) for all ξ ∈ C∗. This is because s′ ≤ pβi , cf. Fact 5.55.
• The

∼
η
βi

honor majority above ζ0. This is because for all ζ ∈ C∗, the ri(ζ) are chosen as

in (5.44) and therefore honor majority; and for ζ ∈ λ \ (C∗ ∪ ζ0) we use values b̄ which
honor majority.

• Accordingly, the ∼aβi honor majority above some γ < λ, cf. Lemma 5.43(1). Pick ζ1 such
that sup(I∗(<ζ1)) > γ.

• So for all ξ > ζ1 the fξ(
∼
η
βi

� I∗(<ξ)) honor majority above ζ1.
• Pick some ζ > ζ0, ζ1 in C∗ with C∗-successor ξ. By construction of the ri,

∼
η
βi

� I∗(≥ζ+1, <

ξ) is bζi . As ri extends xi, ȳ :=
∼
η
βi

� I∗(<ζ + 1) is a (ζ0, ζ + 1)-candidate extending x̄. So
by (∗4), the

∼
η
βi

� I∗(<ξ) violate (∗1) at some ` ∈ I∗(> ζ,< ξ), a contradiction. �

Let U ⊆ λ be club. Set Uodd to be the odd elements18 of U . For ξ ∈ Uodd with U -successor ν,
set

AUξ := I∗(≥ξ,<ν)

Lemma 5.58. (In Vβ.) There is an r0 ≤ p̃, a club U ⊆ Cr0 ⊆ E and, for ξ ∈ Uodd, an
Fξ : 2A

U
ξ → 2A

U
ξ such that

• r0 ∧ pβ/Gβ forces that Fξ(
∼
η
β
� AUξ ) = ∼aβ � AUξ .

• Fξ is not constant: There are, for k = 0, 1, zkξ in poss(r0, I
∗(<ν)) and `ξ ∈ AUξ such that

Fξ(z
k
ξ � AUξ )(`ξ) = k. (Again, ν is the U -successor of ξ.)

(Note: Only those elements of 2A
U
ξ that are compatible with r0 are relevant as arguments for

Fξ.)

Proof. We construct ri for i < 4 and U iteratively; Cri will be independent of i, call it C.
All ri have the same trunk as p̃; i.e., min(C) = min(C p̃) =: ζ0 and ri � ζ0 := p̃ � ζ0. We also set

min(U) = ζ0.
For all ζ ∈ C, we choose some r∗i (ζ) as in (5.44), i.e., r∗0(ζ) = p̃(ζ), and the r∗i (ζ) for i = 1, 2, 3

are such that the majority of their generics would be the r∗0(ζ)-generic.
Assume that we already know that some ζ is in U (which is a subset of C), and that we know

ri � ζ for i < 4.
We now construct the U -successor ξ of ζ, C � [ζ, ξ], and ri(ν) for i < 4 and ν ∈ [ζ, ξ).
• Even case: If ζ is an even element of U , we start with ri(ζ) := r∗i (ζ), but then add a
“shield”, or “isolator” above ζ: As in the previous proof, we iterate over all ζ + 1-candidates
ȳj , but but in (∗3), instead of violating (∗1) for some `, we demand that ȳj_z̄j+1 is good.

18I.e., if (uα)α<λ is the canonical enumeration of U , then ζ ∈ U is in Uodd if ζ = uδ+2n+1 for δ a limit (or 0)
and n ∈ ω.
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(We already know that every candidate can be extended to a good one.) Accordingly, we
get some ξ > ζ and b̄ζ with domain I∗(>ζ,<ξ) (and honoring majority and p̃) such that
ȳ_b̄ζ is good for every candidate ȳ of height ζ + 1; i.e.:

(∗′4)
If z̄ is a (ζ + 1, ν)-candidate whose restriction to I∗(>ζ,<ξ) is b̄ζ , then the
fν(zi) honor majority above ξ.

We now let this ξ be the successor of ζ in both C and U (and extend each pi(ζ) by bi).
• Odd case: Now assume ζ is odd in U . Then we choose some ξ > ζ in C p̃ large enough such
that there are, for k = 0, 1, zkξ in poss(p̃, ξ) compatible with all the r0 constructed so far,
such that the fξ(zkξ )(`) = k for some ` > I∗(<ζ). (Such ξ and ` have to exist as ∼aβ is not
in Vβ .)

We let C restricted to [ζ, ξ] be the same as C p̃, and set ri(ν) := r∗i (ν) for ν ∈ C ∩ [ζ, ξ).
(For ζ ∈ [ζ, ξ) \ C there is no freedom left, i.e., p̃(ζ) is already completely determined, so
the only choice for any r ≤ p̃ is r(ζ) = p̃(ζ).)

This ends the construction of U and of ri (for i < 4).

Pick ξ ∈ Uodd, let ζ be the U -predecessor and ν the U -successor. We have to show that we can
determine (modulo pβ) ∼aβ � I∗(≥ ξ,< ν) from

∼
η
β
� I∗(≥ ξ,< ν) alone. (We already know that we

can determine it from
∼
η
β
� I∗(< ν).)

Fix any zζ∗ ∈ poss(r0, ζ + 1). Let x0 ∈ poss(r0, ν). In particular x0 extends bζ0. For i = 1, 2, 3, let
xi be the copy of x0 with the initial segment x0 � ξ replaced by zζ∗_bζi . Note that x̄ is a candidate
extending b̄ζ . Accordingly the fν(xi) honor majority above ξ. So we can define

Fξ(x0 � AUξ ) := majori=1,2,3 fν(xi) � A
U
ξ = fν(x0) � AUξ .

This is well-defined,19 and r0 ∧ pβ/Gβ forces that Fξ(x0 � AUξ ) = ∼aβ � AUξ . �

We now summarize this lemma, which was shown in Vβ for some β ∈ S, from the point of view
of the ground model. The lemma only uses the parameters

∼
η
β
and ∼aβ (and p̃, which is just

∼
η
β
(β)),

so by absoluteness Mβ knows that the Lemma is forced by p∗∗. Accordingly, we can find Pβ-names
for U , Fξ etc in Mβ . Using the last item of Fact 5.55, we can strengthen p∗∗ to p2

∗∗ to canonically
read these names:

Corollary 5.59. There is an α ∈ ∆, a p2
∗∗ ≤ p∗∗ in Pα and Pα-names for: A condition r0 ≤ p̃, a

set U and a sequence (Fξ, z
0
ξ , z

1
ξ , `

0
ξ , `

1
ξ)ξ∈U , such that the following holds for all β ∈ S, where we set

p+
β to be the condition p2

∗∗ ∧ pβ where we strengthen pβ(β) to r0.

(1) α, the condition p2
∗∗ and all the names are in Mβ.

(2) p2
∗∗  U ⊆ Cr0 ⊆ λ club.

(3) for k = 0, 1: p2
∗∗  ∀ξ ∈ Uodd

(
zkξ ∈ poss(r0, I

∗(<ν)) & `ξ ∈ AUξ &Fξ(z
k
ξ � AUξ )(`ξ) = k

)
.

(4) p+
β  (∀ξ ∈ Uodd)Fξ(

∼
η
β
� AUξ ) = ∼aβ � Aξ, where we define

Aξ to be I∗(≥ξ,<ν) with ν the U -successor of ξ.

5.12. Finding the generator. In this section we use these p2
∗∗, r0, (Fξ, z

0
ξ , z

1
ξ , `

0
ξ , `

1
ξ)ξ∈U .

We start working in Vβ = V [Gβ ], where we assume p2
∗∗ ∈ Gβ .

Let ξ ∈ Uodd and ν its U -successor. Set

Aξ := I∗(≥ξ,<ν), A?
ξ := Aξ \ dom(ηr0),

odd :=
⋃

ξ∈Uodd

Aξ, odd? :=
⋃

ξ∈Uodd

A?
ξ = odd \ dom(ηr0).(5.60)

19Assume y and x in poss(r0, ν) are the identical restricted to AUξ . Then y defines the same (xi)i=1,2,3 and thus
the same Fξ.
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For Fξ it is enough to use
∼
η
β
� A?

ξ as input (the part in Aξ \A?
ξ is determined anyway by r0),

and every element of 2A
?
ξ is compatible with r0 (and thus a possible input for Fξ). Identifying 2B

and P(B) as usual, we get:
Fξ : P(A?

ξ)→ P(Aξ)

is such that p+
β /Gβ forces

Fξ(
∼
η
β
∩A?

ξ) = ∼aβ ∩Aξ,

We now define
F : P(odd?)→ P(odd) by x 7→

⋃
ξ∈Uodd

Fξ(x ∩A?
ξ).

So in particular p+
β /Gβ forces that

(5.61) F (
∼
η
β
∩ odd?) = ∼aβ ∩ odd.

Note that for every z ⊆ odd? (in Vβ that is) there is an r′ ≤ r0 forcing that
∼
η
β
∩ odd? = z.

(C ′ := U \ Uodd is club, so it is enough to leave freedom at C ′ and we may assign arbitrary values
everywhere else.)

Back in the ground model V , using the last item of Fact 5.55 again, we can strengthen p2
∗∗ to

p3
∗∗ so that

(5.62) p3
∗∗ canonically reads each of the following (countably many) sets:20

• (Aξ)ξ∈Uodd , odd, r0, (A?
ξ)ξ∈Uodd , odd? (actually, these are already read by r2

∗∗).
• The closure of these sets under ∼π, ∼π

−1, finite unions, and finite intersections.

In particular, the (names for) all these sets are independent of β ∈ S, modulo p3
∗∗.

21

Lemma 5.63. (In V ) p3
∗∗  |∼π(odd?) ∩ odd| = λ.

Proof. Let q ≤ p3
∗∗ in Pβ be arbitrary. We have to show that q does not force (in Pβ) |∼π(odd?) ∩

odd| < λ.
For ξ ∈ Uodd and k = 0, 1, use r0, p+

β , z
k
ξ and `ξ as in Corollary 5.59 and set bkξ := zkξ ∩A?

ξ.
For k = 0, 1, set Bk :=

⋃
ξ∈Uodd(bkξ ). Note that F (B1) \ F (B0) contains {`ξ : ξ ∈ Uodd}, a set

of size λ.
Pick increasing (βi)i<4 in S with β0 = β. Set s := q ∧

∧
i<4 p

+
βi
∈ P .

Now for each i < 4, strengthen s(βi) (i.e., r0) as follows: At the even intervals in some way that
together they honor majority; and at the odd intervals (where we do not have to leave freedom) to
the value Bsgn(i) (where sgn(k) = 0 for k = 0 and 1 for k = 1, 2, 3).

Accordingly, we have

∼π(
∼
η
βi

) ∩ odd = F (
∼
η
βi
∩ odd?) = F (Bsgn(i)),

or, when we split ∼π(
∼
η
βi

) into the parts in and out of ∼π(odd?):((
∼π(
∼
η
βi

) \ ∼π(odd?)
)
∩ odd

)
∪
(
∼π(
∼
η
βi

) ∩ ∼π(odd?) ∩ odd
)

=∗ F (Bsgn(i))

Now assume towards a contradiction that ∼π(odd?) ∩ odd =∗ ∅. Then we get:

(5.64)
(
∼π(
∼
η
βi

) \ ∼π(odd?)
)
∩ odd =∗ F (Bsgn(i)).

20We can do this for λ many sets, of course; but we cannot assume e.g. that ∼π(z) ∈ Vβ for all z ∈ Vβ , let alone
that each such ∼π(z) is canonically read by p3∗∗.

21But we need p+β to force that these names have anything to do with ∼aβ .
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But on the other hand we have:

∼
η
β0

\ odd? = majori=1,2,3(
∼
η
βi
\ odd?), so

∼π(
∼
η
β0

) \ ∼π(odd?) =∗ ∼π
(
∼
η
β0

\ odd?
)

= ∼π
(

majori=1,2,3(
∼
η
βi
\ odd?)

)
=∗

=∗ majori=1,2,3

(
∼π(
∼
η
βi
\ odd?)

)
=∗ majori=1,2,3

(
∼π(
∼
η
βi

)
\ ∼π(odd?), and(

∼π(
∼
η
β0

) \ ∼π(odd?)
)
∩ odd =∗ majori=1,2,3

((
∼π(
∼
η
βi

) \ ∼π(odd?)
)
∩ odd

)
.

Applying (5.64) to both sides of the last line, we get F (B0) =∗ majori=1,2,3 F (Bsgn(i)) = F (B1),
a contradiction. �

Set

(5.65) ∼X := odd? ∩ ∼π
−1(odd).

By choice of p3
∗∗, ∼X and ∼π(∼X) are canonically read by p3

∗∗ (and independent of β).
We now show that F (z) ∩ ∼π(∼X) = ∼π(z) for z ⊆ ∼X. Again, here we are talking about z ∈ Vβ . To

make that more explicit, let us formulate in the ground model V :

Lemma 5.66. For β ∈ S,

p3
∗∗ Pβ

(
|∼X| = λ, and for all z ⊆ ∼X, p

+
β /Gβ  ∼π(z) =∗ F (z) ∩ ∼π(∼X)

)
.

(Note that, other than F (z), ∼π(z) will generally not be in Vβ , and we have to force with p+
β /Gβ .)

Proof. Work in Vβ . |∼X| = λ follows from Lemma 5.63, as ∼π(∼X) =∗ ∼π(odd?) ∩ odd.
Set y :=

∼
η
β
∩ odd?. So by (5.61), p+

β /Gβ ≤ r0 forces: F (y) = ∼π(
∼
η
β
) ∩ odd. As ∼π(∼X) ⊆∗ odd,

we get F (y) ∩ ∼π(∼X) =∗ ∼π(
∼
η
β
) ∩ ∼π(∼X). Then y ⊆∗ ∼π−1(odd) (or equivalently, y ⊆∗ ∼X) implies

y =∗ y ∩ ∼π−1(odd) =
∼
η
β
∩ ∼X and thus ∼π(y) =∗ ∼π(

∼
η
β
) ∩ ∼π(∼X). To summarize:

(∗) p+
β /Gβ 

(
y ⊆∗ ∼X → ∼π(y) =∗ F (y) ∩ ∼π(∼X), for y :=

∼
η
β
∩ odd?

)
Now back in V assume towards a contradiction that some q ≤ p+

β forces that the lemma fails,
i.e., that ∼z ⊆ ∼X in Vβ is a counterexample (in the final extension). By absoluteness, we can assume
that q and ∼z are in Mβ , in particular ∼z is a Pβ-name in Mβ . Strengthen q � β to canonically read
∼z. So for every β′ ∈ S, h∗β,β′(∼z) will be evaluated in Vβ′ to the same z ⊆ λ as ∼z in Vβ .

Chose a β′ above supp(q). Then we can strengthen q ∧ pβ′ at index β′, i.e., r0, to some r1 that
forces

∼
η
β
∩ odd? = h∗β,β′(∼z). (Recall that we can fix the values in the odd intervals, as the even

intervals still form a club). Let G be P -generic containing q ∧ p+
β′ ∧ r1. Then we have:

• The evaluation of h∗β,β′(∼z) in Vβ′ , is the same as the evaluation of ∼z in Vβ , call it z.
• Also the evaluation of ∼X and F are the same β and β′, cf. (5.62).
• z ⊆ ∼X is a counterexample (as this is forced by q).

In particular, z ⊆ ∼X and ∼π(z) 6=∗ F (z) ∩ ∼π(X) in the final extension.
• pβ′ ∧ r1 forces in Vβ′+1 that

∼
η
β
∩ odd? = z; also we have just seen that z ⊆ ∼X; and so

∼π(z) =∗ F (z) ∩ ∼π(X) by (∗), a contradiction. �

For ξ ∈ Uodd, we define the following Pβ-names (independent of β):22

∼xξ := A?
ξ ∩ ∼X ∼

y
ξ

:= Aξ ∩ ∼π(∼X)

so
⋃

ξ∈Uodd
∼xξ = ∼X

⋃
ξ∈Uodd

∼
y
ξ

= odd ∩ ∼π(∼X) =∗ ∼π(∼X),

as well as

22 More concretely, canonically read by p3∗∗, see (5.62).
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F ′ξ : P(∼xξ)→ P(
∼
y
ξ
) by a 7→ Fξ(a) ∩ ∼π(∼X),

and F ′ : P (∼X)→ P (∼π(∼X)) by z 7→
⋃
ξ∈Uodd F ′ξ(z � ∼xξ) = F (z) ∩ ∼π(∼X).

So the p3
∗∗ forces that for all z ∈ Vβ the following is forced by p+

β /Gβ :

(5.67) z ⊆ ∼X → F ′(z) =∗ ∼π(z), in particular F ′(∼X) =∗ ∼π(∼X), also F ′(z) ⊆ ∼π(∼X) for all z

Lemma 5.68. p3
∗∗ forces: For almost all ξ ∈ Uodd, F ′ξ is a Boolean algebra isomorphism from

P (∼xξ) to P (
∼
y
ξ
).

Proof. All and nothing: We claim that for almost all ζ, F ′ζ(∼xζ) =
∼
y
ζ
. Assume that ` ∈

∼
y
ζ
\F ′ζ(∼xζ) ⊆

∼π(∼X). Then ` ∈ ∼π(∼X), and ` is not in F ′(∼X) =∗ ∼π(∼X), so there cannot be many such `. Similarly
F ′ζ(∅) = ∅ for almost all ζ .

Unions: We claim that for almost all ζ, F ′ζ(a) ∪ F ′ζ(b) = F ′ζ(a ∪ b) for all subsets a, b of ∼xζ . Let
A ⊆ λ be the set of counterexamples, i.e., for ξ ∈ A there are `ξ ∈

∼
y
ξ
, and aξ, bξ subsets of ∼xζ

such that `ξ ∈
(
F ′ξ(aξ) ∪ F ′ξ(bξ)

)
∆F ′ξ(aξ ∪ bξ). Set x :=

⋃
ξ∈A aξ and y :=

⋃
ξ∈A bξ. Then `ξ is in(

F ′(x) ∪ F ′(y)
)
∆F ′(x ∪ y) =∗ ∅, so A cannot be large.

Complements: We claim that for almost all ξ, F ′ξ(a) ∩ F ′ξ(∼xξ \ a) = ∅. Let A be the set of
counterexamples, i.e., for ξ ∈ A there is an aξ ⊆ ∼xξ and ` ∈

∼
y
ξ
such that `ξ ∈ F ′ξ(aξ) ∩ F ′ξ(∼xξ \ aξ).

Then `ξ is in F ′(
⋃
ζ∈A aζ) ∩ F ′(

⋃
ζ∈A ∼xξ \ aζ) =∗ ∅, so A cannot be large.

Injectivity: We already know that union and complements (and thus disjointness) are preserved,
so it is enough to show that a nonempty set is mapped to a nonempty set.

Assume this fails often, then we get an x ⊆ ∼X of size λ such that ∅ = F ′(x) =∗ ∼π(x), a
contradiction.

Surjectivity: Assume surjectivity fails often; i.e., there are many bζ ⊆ ∼π(∼X) ∩ odd not in the
range of F ′ζ . Let y be the union of those bζ . Pick x ⊆ λ such that ∼π(x) =∗ y ⊆ ∼π(∼X). So we can
assume x ⊆ ∼X and so F ′(x) =∗ y, which implies that Fζ(x ∩ ∼xζ) = y ∩Aζ = bζ for almost all ζ, a
contradiction. �

Lemma 5.69. For each β ∈ S: p3
∗∗ forces (in Pβ): There is a fgen : ∼X → ∼π(∼X) bijective such

that for all z ⊆ ∼X (in Vβ), p+
β /Gβ forces ∼π(z) =∗ f ′′genz.

Proof. Every Boolean algebra isomorphism from P (A) to P (B) is generated by a bijection from A
to B (the restriction to the atoms). So there is an U ′ ⊆ Uodd with |Uodd \U ′| < λ such that ζ ∈ U ′
implies that F ′ζ is generated by some bijection gζ : ∼xζ → ∼

y
ζ
. So F ′ is generated by g :=

⋃
ζ∈U ′ gζ ;

and we can change g into a bijection from ∼X to ∼π(∼X) by changing less than λ many values. �

We now strengthen p3
∗∗ to some q to continuously read fgen (independently of β), again using

Fact 5.55.
So to summarize, we have the following (where we start with the ∆-system (Mβ , pβ)β∈S of

Section 5.10):

Corollary 5.70. There is α ∈ ∆, q ∈ Pα stronger than all pβ � β and canonically reading r0 ≤ p̃,
∼X, fgen and ∼π(∼X), such that the following holds for all β ∈ S:

• q ∧ pβ with the condition23 at index β strengthened to r0 is a valid condition, called p++
β .

• α, p++
β and the names are in Mβ.

• q forces in Pβ: |∼X| = λ, fgen : ∼X → ∼π(∼X) is a bijection, and if z ⊆ ∼X is in Vβ, then
p++
β /Gβ  ∼π(z) =∗ f ′′genz.

5.13. Putting everything together.

Corollary 5.71. (Assuming λ is inaccessible and 2λ = λ+.) P forces that every automorphism of
Pλλ is somewhere trivial.

23which is pβ(β) = p̃
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Proof. Assume towards a contradiction that some p∗ forces that
∼
φ is a nowhere trivial automorphism

represented by ∼π.
As described in Section 5.10 we find a ∆-system (Mβ , pβ)β∈S with pβ � β ≤ p∗ for all β ∈ S,

and we find q, ∼X, fgen as in Corollary 5.70, so in particular: q ≤ pβ � β for all S; and q forces that
|∼X| = λ and that fgen : ∼X → ∼π(∼X) is a bijection.

As ∼π is nowhere trivial, fgen cannot be a generator, i.e., there is some z ⊆ ∼X with ∼π(z) 6=∗ f ′′genz.
Fix a name for this z and let q∗ ≤ q canonically read z.

Pick β ∈ S above dom(q∗). So q∗ ∧ p++
β is a valid condition, which forces that in the final

extension V [G] the following holds:
• z ⊆ ∼X with ∼π(z) 6=∗ f ′′genz, as this is forced by q∗.
• z ∈ Vβ , as q∗ canonically reads z.
• So by Corollary 5.70 and as p++

β ∈ G, we get ∼π(z) =∗ f ′′genz, a contradiction. �
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