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2 SAHARON SHELAH

Annotated Content

Part I: On the Beth Property.

(§1) On Beth closures
[This is a soft section. We define some variants of the Beth closure

of a logic, and prove sufficient conditions for compactness, among
them an abstract theorem related to: “it is consistent that L(Q)
satisfies weak Beth” from Mekler-Shelah [MS85].]

(§2) Beth and PPP
[The PPP for L says that the L-theory ofM1+M2 is determined by

the L-theories of M1, and M2. We show (in 2.2) that under suitable〈2.2〉
compactness it is equivalent to URP2 (and that URP2 is preserved by
one-step Beth closure under suitable conditions (2.3-2.7 are variants〈2.3〉

〈2.7〉 of this and see 3.9).]

〈3.7〉 (§3) Automorphisms and definable logics
[We introduce some variants of “every theory has a model with

automorphisms”, and show that any logic satisfying PPP+FROB
satisfies one of them. We then prove the consistency of “no logic
extend L(Q) is definable and satisfies PPP + INT”.]

(§4) Interpolation for cofinality logic in stationary
[We prove that the pair (L(Qcf

ℵ0), L(aa)) satisfies the interpolation
theorem.]

(§5) Higher cardinals and strongly homogeneous models
[We deal with logics like L(aa), L((Qcf

ℵ0) when we change the cardi-
nality parameters, and see what occurs to the ’majority’ of submod-
els for suitable logics. Our main result is the existence of somewhat
ℵ0-strongly homogeneous models.]

(§6) A compact logic with the Beth property
[We prove that for κ ≥ 2ℵ0 , the Beth closure of L((Qcf

≤κ) has sev-

eral nice properties: it is compact, the pair L((Qcf
≤κ)Beth, L(aaκ)) has

the interpolation property and the super ℵ0-homogeneity property
and trivially it has the Beth property and PPP, but INT fails. So in
the theorem that “for compact logics satisfying a preservation theo-
rem for tree sum,INT is equivalent to Beth” the second hypothesis
is necessary, and even cannot be weakened to a usual form. We rely
heavily on §4, §5.]
Part II: Compactness versus Occurrence

(§7) Compactness revisited
[We show more restriction on the compactness spectrum of a logic

in the case L is [λ]-compact but not [cfλ]-compact. Really this is a
pure set-theoretic lemma on ultrafilters.]

(§8) Amalgamation implies [λ]-compactness for λ an occurrence
cardinal

[We strengthen the main theorem of Makowsky-Shelah [MS83], by
weakening the demand on the occurrence number.]
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REMARKS IN ABSTRACT MODEL THEORY 3

(§9) A strange logic with the JEP
[We show that the compactness spectrum of a logic may be quite

bizzare though it has the amalgamation property and even JEP.]1

1Meanwhile we have shown that this logic satisfies e.g. INT (the interpolation theorem)
and ROB, PPP.

Paper Sh:199, version 2024-06-21. See https://shelah.logic.at/papers/199/ for possible updates.



4 SAHARON SHELAH

0. Introduction
LABEL 〈0〉
LABEL 〈0A〉 0.1. On the Beth Property. Usually the Beth property lives in the shadow

of the interpolation property. The main results of [MS79] indicate their
affinity (assuming compactness, they are equivalent if a preservation theo-
rem holds for trees of models). It was asserted that the original problem
was Beth, and in fact weak Beth, (deducing from this their importance) (see
Feferman [Fef74b], [Fef74a], [Fef75], Friedman [Fri75]).

Our reasons for dealing with the Beth property are:

(A) Every logic has a Beth closure, so we have an interesting operation
on logics.

(B) the question “is the Beth closure of L compact” is more explicit
then “is there a compact extension of L satisfying interpolation”,
and gives information concerning it.

(C) We have more to say on it.

We have been interested for a long time whether there is a compact logic
satisfying interpolation ( 6= Lω,ω). Our main result here is that there is a
compact logic satisfying Beth, even an easily definable one-the Beth closure
of L(Qcf

≤2ℵ0
). It does not satisfy INT, so those properties are distinct even

for compact logic. In fact it satisfy PPP, hence the condition used in [MS79]
for proving their equivalence for compact logic (preservation for tree sum)
is reasonable.

We use notation from Makowsky [Mak85]. On ∆-closure see [MSS76] and
references there.

1. On Beth closure
LABEL 〈1〉

In this section we define some variants of the Beth closure of a logic
L = LB (one time), LBeth (which satisfies Beth). We then gain some suf-
ficient conditions for the compactness of the logic LB and for the Weak
Beth property of L (see Mekler and Shelah [MS85] for the proof for L(Q)
(consistency with ZFC)).

LABEL 〈1.1〉
Notation 1.1. 1) L will be a logic.
2) If the occurrence number oc(L ) is κ ≥ ℵ0 we demand closure under
(∀x0, . . . , xi, . . .)i<α for α < κ, and the relations and functions have arity
< κ (as well as the predicates and function symbols).
3) An L-formula is defined naturally (with < κ free variables),
4) ThL(M) = {ψ ∈ L(τM ) : M |= ψ} where τM is the vocabulary of M . We
denote predicates (and relations) by P,Q,R; but when treating predicates
as variables we write P,Q,R. A bar denotes this is a sequence.

LABEL 〈1.2〉
Definition 1.2. (1) ∆(L) = (L)∆ is the ∆-closure.

(2) We say ψ(P ; R̄) is a Beth sentence if ∀R̄∃≤1Pψ(P, R̄).
The sentence Φψ(P,R̄)(R̄) means (∀R̄)∃≤1Pψ(P, R̄) and (∃P)ψ(P, R̄).
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(3) LB is the closure of LatB = L ∪ {Φψ(P,R̄)(R̄ : ψ(P, R̄) a Beth

sentence} under first-order operation and (∀x0, . . . , xi, . . .)i<α when
α < oc(L) (see 1.1) and, more generally substitution. 〈1.1〉

(4) LBeth is the Beth closure of L, i.e. define

LBeth
0 = L, LBeth

α+1 = LBeth
α )B,

LBeth
δ =

⋃
α<δ

LBeth
α , and LBeth =

⋃
α

LBeth
α .

(5) L∆ is the ∆-closure of L and L∆−Beth is the closure of L under ∆
and Beth, i.e.,

⋃
α L∆−Beth

α ,

L∆−Beth
0 = L, L∆−Beth

2α+1 = (L∆−Beth
2α )∆,

L∆−Beth
2α+2 = (L∆−Beth

2α+1 )B, L∆−Beth
δ =

⋃
α<oc(L)

L∆−Beth
α .

(6) For a model M,Mmor
L is the expansion of M by a relation for every

L-formula. Such a model is called L-Morleyized; similarly for the
the theory.

LABEL 〈1.3〉
Claim 1.3. (1) If ψ(P, R̄) ∈ L is a Beth sentence, then for some ϑ(x̄, R̄) ∈

LB (where P is an l(x̄)- place predicate)

M |= ψ(P, R̄)→ (∀x)[P (x̄ ≡ ϑ(x̄, R̄],

M |= ¬(∃P)ψ(P, R̄)→ ¬(∃x̄)ϑ(x̄, R̄),

(2) If µ is the first regular cardinal ≥ oc(L), then
LBeth = LBeth

µ ( in 1.2(4)’s notation) and L∆−Beth = L∆−Beth
µ (in 〈1.2〉

1.2(5)’s notation); in both cases Lα = Lα+2 ⇒ (∀β ≥ α)Lα = Lβ. 〈1.2〉
Note that for a compact logic L, µ = ℵ0; and

LBeth
α ⊆ LBeth

β , L∆−Beth
α ⊆ L∆−Beth

β for α ≤ β.

Proof. (1) Let ψ1 = ψ1(P ; c̄, R̄) = [ψ(P, R̄) ∧ P (c̄)]. Put ϑ(c̄, R̄) =
Φψ1(P,c̄,R̄))c̄, R̄).

(2) Immediate.
�

LABEL 〈1.4〉
Definition 1.4.

(1) An L-Bethless model M is a model such that: for every relation P
on M , not definable by any L-formula with parameters in M , the
theory ThL((M,P )) has two models (M ′, P1), (M ′, P2) with P1 6= P2.

(2) We define by induction on α, when M is an (L, α) -Bethless model:
for every β < α and relation P onM , not definable by any L- formula
with parameters from M,ThL((M,P )mLBeth

β

) has two (L, β)- Bethless

models (M ′, P1, . . .), (M
′, P2, . . .), P1 6= P2 (M ′ is the common τM -

reduct).
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6 SAHARON SHELAH

LABEL 〈1.4A〉
Remark 1.5. Note that any model is an (L, 0)-Bethless model and L-Bethless
is equivalent to (L, 1)-Bethless.

LABEL 〈1.5〉
Lemma 1.6. Suppose λ = λ<oc(L) and |τ | ≤ λ⇒ |L(τ)| ≤ λ.

(1) Suppose L satisfies for every ξ ≤ ζ:
(∗)λ,ξ If T is a complete theory in L(τ) which has an LBeth

ξ -

Morleyized model, |T | ≤ λ, then T has an (L, ξ)-Bethless model.
Then also LBeth

α (and even L∆−Beth
α ) satisfies (∗)λ,β when α+β ≤

ζ.
(2) If L is (λ, µ)-compact and satisfies (∗)λ,α, then LBeth

α ( and L∆−Beth
α )

is (λ, µ)-compact.

Proof. 1) Clearly we can concentrate on the LBeth case, the proof of L∆−Beth
α

is similar. We now prove by induction on i ≤ α, for all complete T ⊆
LBeth
j (τ ′), |T | ≤ λ, which has an LBeth

j -Morleyized model, j ≥ i, that every

(L, i)- Bethless model of T∩L is a model of Ti
def
= T∩LBeth

i and then prove by
induction on j ≤ β, that any (L, α+j)- Bethless model of T∩LBeth

α+j is a (L, j)-
Bethless model of T when T is a complete theory in some LBeth

α (τ ′), |T | ≤ λ
which has an LBeth

α+1 -Morleyized model.
For i = 0 this is trivial. For i = δ a limits ordinal a L, δ)- Bethless model

of T0 is for any γ < δ an (L, γ)- Bethless model of T0 hence M is a model
of Tγ , but Tδ =

⋃
α<δ Tγ hence we finish. So suppose i = γ + 1. First sup-

pose ψ(P.c̄, R̄) ∈ LBeth
γ (R̄ ⊆ τ, c̄ a finite sequence of individual constants):

(∀x)[ϑ(x̄ ≡ Φψ(P,c̄,R̄)(x̄, R̄)] belongs to T and ψ is an atomic formula. We

shall show that: for c̄ ∈M : M |= ϑ[c̄] iff M |= (∃Pψ(P, c̄, R̄). The implica-
tion⇒ follows by 1.3(1) and the choice of T . So suppose that the implication〈1.3〉
⇐ fails for some c̄. So for some P, (M,P ) |= ψ[P, c̄, R̄]. Let T ′ = ThLBeth

γ
,

so as M was (L, γ + 1)-Bethless, there are models (M ′, Pl, . . .) for (l = 1, 2)
of T ′ ∩ L which are (L, γ)-Bethless, P1 6= P2. By the induction hypothesis
(M ′, P, . . .) is a model of T ′, and we get a contradiction to “ψ(P, c̄, R) is a
Beth sentence”. As LBeth

i = the closure of (Lγ)rmatB by substitution, we
have carried the induction on i. The induction on j is similar.
2) Easy. �

LABEL 〈1.6〉
Definition 1.7. (1) A Sk.f like (Skolem function like) L-function F is

a pair of functions F0, F1 such that: for every vocabulary τ, F0(τ) is
a vocabulary extending τ , maybe with new sorts: F1(τ) is a theory
in L(F0(τ)) such that:

(*) Any τ -model can be expanded to an F0(τ)-model of F1(τ),
and F1(τ) is L-Morleyized.

(2) An L-theory T has Sk.f. (F0, F1) if for some τ, F1(τ) ⊆ T ⊆ L(F0(τ));T
is (λ, F0, F1)- Skolemized if T has Sk.f. (F0, F1), |F(F0(τ)| < λ and
every finite subset of T has a model. We call (F0, F1)λ-bounded if
|τ | < λ Implies |L(F0(τ)| < λ.

Paper Sh:199, version 2024-06-21. See https://shelah.logic.at/papers/199/ for possible updates.



REMARKS IN ABSTRACT MODEL THEORY 7

Hypothesis 1.8. Finite occurrence numbers, i.e. oc(L ) = ℵ0 are assumed
for the rest of the section.

LABEL 〈1.7〉
Lemma 1.9. Suppose L satisfies:

(**) If T is a complete (λ, F0, F1)-Skolemized theory in L(τ), then T has
an (L, ω)- Bethless model (where (F0, F1) is λ-bounded, of course).

Then LBeth, and even L∆−Beth, satisfies (**) (hence is λ-compact) for
suitable F ′0, F

′
1 where |τ | < λ⇒ L(F ′0(τ)) has power < λ.)

Proof. Like the proof of Lemma 1.6. � 〈1.5〉

Remark: Instead of Skolemization we can use devices like 3.1(4). 〈3.1〉
LABEL 〈1.8〉

Definition 1.10. (1) A model M is (L,ℵ0)- strongly homogeneous, if

for every finite sequences ā, b̄ from M , if they realize the same L-
formulas in M , then some automorphism of M maps ā to b̄. We can
replace ℵ0 by any λ, and then l(ā), l(b̄) < λ.

(2) A model M is (D,ℵ0)-homogeneous (D a set of types p(x̄), usually
complete in some logic), when (a) every ā ∈M realizes some p ∈ D,
and (b) if ā realizes p(x̄, ȳ) � x̄, p(x̄, ȳ) ∈ D then for some b̄ ∈M, ā∧ b̄
realizes p(x̄, ȳ).

(3) A model M is (L,ℵ0)- saturated if every L- type with finitely many
parameters from M , finitely satisfiable in M , is realized in M (such
a model is (D,ℵ0) -homogeneous for some D).

LABEL 〈1.9〉
Claim 1.11. A sufficient condition for LB to be (< λ∗,ℵ0)- compact is
that for some logic L∗,L ⊆ L∗, and λ∗- bounded Skolem function like L∗-
functions (F0, F1) the following holds:

(*) For every complete (λ∗, F0, F1)- Skolemized T ⊆ L∗ we have a model
MT such that:

(a) MT is a model of T ∩ L and is L- Morleyized,
(b) each MT is (L,ℵ0)- saturated,
(c) MT is (L,ℵ0)- strongly homogeneous,
(d) if T1 ⊆ T2, ττ2 = F0(ττ1 + P̄ ), F1(ττ1 + P̄ ) ⊆ T2(P̄ finite), then

MT1 ,Mt2 � ττ1 are L∞,ω-equivalent.

Remark: L∞,ω is defined naturally.

Proof. Clearly by (*) (b) L is λ∗-compact, and (by the λ∗- boundedness)
|τ | < λ∗ ⇒ |L(τ)| < λ∗. We shall prove for n = 0, 1 (letting T be the

family of T ⊆)L∗)Beth, T a complete (λ, F0, F1) - Skolemized theory, MT
def
=

MT∩L∗) (A)n For T ∈ T,MT is a model of T ∩ LBeth
n .

For n = 0 there are no problems: (A)0 is one of the demands.
For n = 1: It is suffices to prove that for T ∈ T, and ψ(P, c̄, R̄) ∈ L, and

R̄ from τT , if (⊆ x)[ϑ(x̄) ≡ Φψ(P,c̄,R̄)(x̄, R̄)] belongs to T, ϑ atomic, then for

c̄ ∈ MT : MT |= (∃Pψ(P, c̄, R̄) iff M |= ϑ[c̄]. The implication ⇐ is easy by
1.3(1). 〈1.3〉
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8 SAHARON SHELAH

As for the implication ⇒ , suppose it fails. So for some P, (MT , P ) |=
ψ(P, c̄, R̄) but M ⊆ ¬ϑ(c̄]. Hence P is not definable by any L- formula with
parameter in MT . On the other hand, as ψ(P, c̄, R̄) is a Beth sentence, P
is preserved by automorphisms of MT . As MT is (L,ℵ))- strongly homoge-

neous, if ā, b̄ realize the same L- type in MT , then there is an automorphism
of MT taking ā to b̄, hence P is definable by some L∞,ω- formula. Now
(MT , P c̄) can be expanded to an F0(τT + P + c̄)-model of F1(τT + O + c̄)
which we call M∗, and let T2 = ThL∗(M

∗). Now we know that MT and
MT2 � τT are L∞,ω- equivalent, hence also (MT , c̄), (MT2 � τT , c̄) are L∞,ω-
equivalent, So for (MT2 � τT , c̄) there is an L∞,ω- formula defining a relation
P ′ such that MT2 |= ψ[P ′, c̄, R̄] (use the definition we gave found for MT ,
and (*)(d) which says that MT ,MT2 � τT are (L)∞,ω eauivalent).

However, also MT2 |= ψ[P ′′, c̄, R̄] where P ′′ is the interpretation of P in
MT2 . By ψ(P, c̄, R̄) being a Beth sentence, P ′ = P ′′. However, we shall now
prove that P ′′ is not definable by an L∞,ω(τ)T + c̄)- formula. For this it
is enough to find sequences b̄, ā ∈ MT2 realizing the same L-type over c̄ in
MT2ΓτT such that ¬P ′′(b̄ ≡ P ′′(ā. If we restrict ourselves to

∧
l<m ϑi(b̄, c̄ ≡

ϑi(ā, c̄) for finitely many L(τT )-formulas, we can find such ā, b̄ in MT as P
is not definable there. As T2 is the L∗- theory of an expansion of MT and
MT2 is (L,ℵ0)- saturated, the existence of b̄, c̄ is clear.

We get a contradiction , hence, prove (A)1. �
LABEL 〈1.10〉

Fact 1.12. ¿From the hypothesis of 1.11 we can conclude that L has the〈1.9〉
weak Beth property.

Remark: Compare with Mekler-Shelah [MS85]; essentially this is an ab-
stract version of the result in §2 there; this is clearer in 1.13,1 (???),1.14.〈1.11〉

〈1.12〉
〈1.13〉

Proof. As we know |τ | < λ∗ ⇒ |L(τ)| < λ∗ and L is (< λ∗ < ℵ0) -compact,
it suffices to prove that: if T is complete, ψ(P; R̄) a weak-Berth sentence for
R̄ ∈ τT , then for some formula ϕ(x̄, R̄), ψ({x̄ : ϕ(x̄, R̄)}, R̄) ∈ T . Suppose
not; let P ⊆ MT be such that (MT , P ) |= ψ[P, R̄];P is not definable (even
with parameters) in MT ( if we use some parameter to define, P , we can
eliminate it by P ’s uniqueness). Now we continue as in the proof of 1.11 �〈1.9〉

LABEL 〈1.11〉 Claim 1.13. We can weaken the hypothesis of 1.12 as follows:
〈1.10〉 (∗)′ For every complete (λ∗, F0, F1)-Skilemized T ⊆ L∗ we have a class of

models KT such that:

(a) Each M ∈ KT is a model of T ∩ L.
(b) For some µ ≤ λ∗, if T ∈ R, τ ⊆ τT is such that |τ | < µ, T ∩L∗(τ) is

Morleyized, then MT � τ is (L,ℵ0)- strongly homogeneous.
(c) If T1 ⊆ T2, τT2 = F0(τT1 + P̄ ) ⊆ T2, (P̄ finite), τ ′1 ⊆ τ1 is as

in (b), p a set of formula of L(τ1) with the free variables x̄ =
〈x0, . . . , xn−1〉,∃x̄[

∧
p′] ∈ T ∩ L(τ1) for finite p′ ⊆ p, then there

are Ml ∈ KTl ,M1,M2 � τ1 are L∞,ω-equivalent, M2 realizing p.
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Remark: We can replace (L,ℵ0)- strongly homogeneous by: LABEL 〈1.12〉
LABEL 〈1.13〉

Definition 1.14. M is (L,ℵ0)-ps-strongly homogeneous if for every ā, b̄ ∈ B
realizing the same L- type, there is a class V∗ ∈ V, which is an inner model,
V a generic extension of V∗,L(τµ) ∈ V∗; so we can look at V and hence
M , as a Boolean-valued model M,M |= “ā, b̄ realize the same L-type” (i.e.,
this is forced) and ThL(M, ā, b̄) ∈ V∗, and M has an automorphism which
takes ā to b̄ (and may move truth values) (we can assume for simplicity that
the universe of the model is an ordinal).

LABEL 〈1.14〉
Remark 1.15. In the applications, we can ask more things to be in V∗.

LABEL 〈1.15〉
Observation 1.16. Suppose the vocabulary of L is recrusive, the same is
true for LBeth, provided we make the following minor change. Φpsi(P,R̄)(R̄)
is defined for every ψ; the demand on Bethness of ψ is delayed to the sat-
isfaction (or Φ should contain a proof of ψ being Beth). Also we have a
completness theorem for LB : if e.g., 1.9 (**) holds then F0(τ), F1(τ) are 〈1.7〉
recrusive.

2. Beth and PPP

Our main interest here is to give sufficient conditions for the one step Beth
closure of a logic to satisfy the “pair preservation property” and “uniform
reduct property for pairs”, i.e., that we can compute the truth values of
M0 + M1 |= ψ (for ψ ∈ L) from the truth values of M)1 |= ψlk(k < k1)

(where the ψlk do not depend on the M1).
LABEL 〈2.1〉

Definition 2.1. (1) L has the PPP if for eery models M,N,ThL(M +
N) is determined by ThL(M),ThL(N)(M+N)- we have more sorts).

(2) L has the URP2-property if for every vocabularies τ1, τ2 (disjoint
without loss of generality) and sentence ψ ∈ L(τ1 + τ2) there are
sentences ψ′i ∈ L(τl(i = 1, . . . , ni) such that the truth value of (M1 +
M2) |= ψ is determined by the truth values of M1 |= ψli(Ml a τl-
model, M1 +M2 a (τ1 + τ2)-model).

Remark: We can reformulate (2) as: ψ is equivalent to a Boolean com-
bination of the ψli’s.

LABEL 〈2.2〉
Claim 2.2. (1) PPP+|L|+-compact implies URP2 (where |L| = sup |{L(τ) :

τ a finite vocabulary}—).
(2) URP2 implies PPP.

Proof. 1) Suppose ψ ∈ L(τ1 +τ2) is a counterexample to URP2. This means
that for no finite Ψ1 ⊆ L(τ1),Ψ2 ⊆ L(τ2) we can compute the truth value
of M1 + M2 |= ψ from the truth values of M1 |= ∅, (∅ ∈ Ψ1). Note Ml is a
τl-model, and that for notational simplicity the sets of sorts of τ1 and τ2 are
disjoint. So L(τ1),L(τ2) are disjoint.

So for every finite set Ψ1 ⊆ L(τ1)(l = 1, 2) there is a function h = hΨ1∪Ψ2

from Ψ1 ∪Ψ2 to {t, f} (= the set of truth values) such that some models of
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10 SAHARON SHELAH

Γh = {∅ ≡ h(∅) : ∅ ∈ Ψ1 ∪Ψ2} satisfies ψ and some satisfy ¬ψ. (Note that
∅ ≡ h(∅) is equivalent to ∅ if h(∅) = t, and is equivalent to ¬∅ if h(∅) = f).
Without loss of generality τ1, τ2 are finite, and it is well known that for some
h : L(τ1) ∪ L(τ2) → {t, f}, for every finite Ψl ⊆ L(τ1)(l = 1, 2), for some
finite Ψl,Ψ

l ⊆ Ψl ⊆ L(τl) (l = 1, 2) and h � (Ψ1 ∪Ψ2) ⊆ hΨ1∪Ψ@. So every
finite subset of Γh∪{ψ} has a model and also every finite subset of Γh∪{¬ψ}
has a model. By the |L|+-compactness, Γh ∪ {ψ} has a model, and let it
be M+

1 + M+
2 ; similarly Γh ∪ {¬ψ} has a model and let it be M−1 + M−2 .

So M+
1 + M+

2 |= ψ,M−1 + M− + 2 |=, but M+
l ,M

−
l are L-equivalent (for

l = 1, 2) by the definition of Γh. This contradicts the PPP.
2) Easy. �

LABEL 〈2.3〉
Lemma 2.3. Suppose (for some Sk.f.)

(i) L satisfies URP2.
(ii) Every T as2 in 1.9 for LB, has a (LB,ℵ0)–strongly homogeneous〈1.7〉

(LB,ℵ0)–saturated model.
Then LB satisfies URP2 too.

LABEL 〈2.4〉
Remark 2.4. We can apply this to LBeth by proving by induction for LBn .

Proof. Let ∅ = Φψ(P,R̄)(R̄) where ψ(P,R) ∈ L, R̄ ⊆ τ1 + τ2 is a Beth

sentence. It suffices to prove URP2 for such sentences (then prove that the
set of sentences satisfying the URP2 is closed under substitution). Note R̄
may contain individual constants. Without loss of generality |barR lists all
members of τ1 + τ2. Without loss of generality P is a (2n)-place relation,
the first n places for elements of sorts of τ1, the rest for elements of the sorts
of τ2 (which are disjoint). We write P (x̄, ȳ); now clearly: �

Assertion If there are ϑli(x̄, z̄
l
i, R̄) ∈ LB(τ1)(l = 1, 2, i < i0 < ω) such

that for every Ml(τ1-models, l = 1, 2), and P :
if M1 + M2 |= ψ(P, R̄), then for some c̄li ∈ Mi, P (x̄, ȳ) is equivalent

to
a Boolean combination of the formulas ϑ1

i (x̄, c̄
1
i , R̄), ϑ2

i (ȳ, c̄
2
i , R̄), then

the desired conclusion holds.
So we shall suppose there are no c̄li, ϑ

l
i as above. Then there is a complete

consistent T ⊆ LB(τ∗), τ∗ = F0(τ1 + τ2) : T ⊇ F1(τ1 + τ2) such that

(a) Φψ(P,R̄)(R̄ ∈ T , i.e., T ` (∃PψP, R̄).

(b) T “says” that for every ϑli, z̄
l
i as above, P (x̄, ȳ) is not defined as a

Boolean combination of ϑ2
i (x̄, z̄

1
i , R̄), ϑ2

i (x̄, z̄
2
i , R̄).

Let M be a τ∗-model,M � (τ1 +τ2) = M1 +M2 such that M is a (LB,ℵ0)-
strongly homogeneous, LB,ℵ0)-saturated model of T . Now the P satisfying
ψ(−, R̄) is definable by an LB-formula (see claim 1.3). Also if b̄, c̄ ∈ M1〈1.3〉
realize the same LB(τ∗)-type in M , then there is an automorphism of M

2I.e. for some (F0, F1) Sk.f.like λ-bounded, T is a complete (λ, f0, f1)-Skolemized theory
in LB(τT ).
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which takes b̄ to c̄, hence there is an automorphism of M1 which takes b̄ to
c̄. [Note that realizing the same LB-type in M1 is not necessarily sufficient.]
So there is an automorphism f of M � (τ1 + τ2), f(b̄) = c̄, f �M2 = identity.
Remember ψ(P, R̄) is a Beth sentence. So for any d̄ ∈ M2, if l(b̄) = l(c̄) =
l(d̄) = n, then P (b̄, d̄) ≡ P (|barc, d̄). Similarly this holds interchanging M1

and M2. We can conclude

M |= (∀x̄, ȳ)[P (x̄, ȳ) ≡
∨
i

∧
j

(ϑ1
i,j(x̄, ~R) ∧ ϑ2

i,j(ȳ, R̄)]

(remember R̄ contains everybody from τ1 + τ2), where ϑli,j ∈ LB(τ∗) (not

L(τ1 + τ)) but x̄ varies on M1, ȳ varies on M2. But P (x̄, ȳ) is also definable
by an LB(τ1 + τ2)-formula.

As M is (LB,ℵ0)-saturated, usual compactness arguments give

P (x̄, ȳ) ≡
∨
i<i0

∧
j<ji

(ϑ1
i,j(x̄, R̄) ∧ ϑ2

i,j(ȳ, R̄))

were i0, ji are finite, ϑli,j ∈ L(τ∗). Now we can forget τ∗, and look only at
M1 +M2. Define a relation E1 between n-tuples from M1:

āE1b̄ iff (∀c̄ ∈M2)[P (ā, c̄) ≡ P (b̄, c̄]

Similarly E2 on M2.
The ϑi,j above show that E1, E2 has finitely many equivalence classes.

They are definable in M1 + M2 by an LB(τ1 + τ2)- formula (we have just
defined them). If each El is definable in Ml by an LB(τL)- formula, we get
a contradiction to the choice of T .

Let τ+
l = τl + {El}. So M+

l = (Ml, El) is a τl ∈ L(τ+
l ) be such that

M+
l |= ψl(l = 1, 2) and if N+

l |= ψl(l = 1, 2), then N+
1 + N+

2 satisfies all

the (finitely) many relevant information from ThL(M+
1 +M+

2 ) (possible by
URP2 for L).

Question If ψl = ψl(El, τl) a Beth sentence (i.e., defining implicit El)?
If the answer for l = 1, 2 is yes, the El re explicity defined in Ml by an

LB(τi)-formula, contradiciton.
If for at least one l the answer is no, say for l = 1 we can find (N1E

a
1 )ψψ1, (N1, E

b
1) |=1

but E1
1 6= Eb1. Now (N1, E

x
1 ) + M+

2 (x = 1, b, ), satisfies enough L-sentence
which M+

1 +M+
2 satisfies, to have a P solving ψ(−, R̄). But for x = a, x = b,

we get distinct P (look at E1’s defintion). Contradiction to ψ(P̄, R̄) being
a Beth sentence.

LABEL 〈2.5〉
Lemma 2.5. In 2.3(ii) we can omit “(L,ℵ0)-saturated” if ”T is a τ∗-theory 〈2.3〉
with sk.f.” is preserved by adding finitly many individual constants to the
signature and by completing demanding the (L,ℵ0)-strongly homogeneous for
the reduct to τ∗.
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12 SAHARON SHELAH

Proof. The only need for ℵ0-saturation is to replace
∨
i

∧
j(ϑ

1
i,j(x̄∧ϑ2

i,j(ȳ by
a finite formula. Let

T ′ = T ∪ {ϑ(c̄1) ≡ ϑ(c̄2) : ϑ(x̄) ∈ L(τ∗), x̄ hboxoffirstsort}
∪{ϑ(d̄1) ≡ ϑ(d̄2) : ϑ(y) ∈ L(τ∗), ȳ of second sort}

∪{P (c̄1, d̄2) 6≡ P (c̄2, d̄2)}.
If T ′ is consistent, we work as before and get a contradiction in the point

where we use “(L,ℵ0)- saturated” (remember we demand in 1.4 the (L,ℵ0)-〈1.4〉
strongly homogenous for the τ∗- reduct).

If T ′ is inconsistent, we work as there for T , having the ϑli,j , by the
above. �LABEL 〈2.6〉
Remark 2.6. Another way to phrase the hypothesis is:

(1′) For every T and L(τ∗)-type p(x̄) consistent with T , T has an (L,ℵ0)-
strongly homogeneous L-Bethless model realizing p.

The proof of 2.3 really says (see Definition 3.1):〈2.3〉
〈3.1〉
LABEL 〈2.7〉

Lemma 2.7. (1) Suppose (i) L has the URP2, (ii) L has the weak ho-
mogeneity property. Then LB has the URP2

3.
(2) Suppose L is compact and has the homogeneity property. Then L

has the weak homogeneity property.

3. Automorphisms and definable logics

We define here homogeneity properties of a logic L (saying ThL(M) has
models with automorphisms we require). We then prove some variant of it
assuming L has the INT (= interpolation) property and PPP (and other
variants of the assumptions and conclusion). At last we define “a definable
logic” (i.e., by a set-theoric formula with no parameters) and prove the
consistency of “no definable logic extending L(Q) has PPP and INT”. (Note
that when V = L “definable” is an extremely weak restriction.)

We do not systematically deal with the “pair of logics“ versions or the
trivial implications involving those definitions. The definitions seem to us
interesting though the results here are easy.

LABEL 〈3.1〉
Definition 3.1. (1) L has the super [strong] λ- homogeneity property if

for every τ -modelM [there is an expansionM∗] such that ThL(M)[ThL(M∗)]
has a model N [whose τ -reduct is a] (L, λ)-strongly homogeneous
model (see Definition 1.10(1)).〈1.8〉

(2) L has the homodeneity property if for every τ -model M , and ca, c2 ∈
M realizing the same L-type inM,ThL(M, c1, c2) has a model (N, c1, c2)
such that some automorphism of N maps c1 to c2. (We can use n-
tuples c̄l instead; this is equivalent).

3First show that if (M1 + M2, P ) |= ψ(P, R̄), then E1 has finitely many equivalences
classes (otherwise use the weak homogeneity property). Second, using the same property
find a uniform bound n(1) on the number of E1-equivalence classes; the same holds for
E2. Now continue as before.
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(3) L has the weak homogeneity property if for every τ -model M and

infinite P ⊆M,ThL(M,P ) has some model (N,P ′) such that some
automorphism of N is not the identity on P ′.

(4) We add “local” if just for every sentence of the relevant theory there
is a model N as required. We can add also “for finite vocabulary”,
etc.

(5) (L,L∗) has the super λ homogeneity property if for every τ -modelM ,
whose L∗-theory is Morleyized, THL(M) has an (L, λ)- homogeneous
model. Similarly for the other properties.

LABEL 〈3.2〉
Remarks 3.2. (1) By [She71b] (see also [She71a]) any ℵ0-compact logic

L(Qn)n<ω the Qn are cardinality quantifiers, has the weak homo-
geneity property.

(2) By [She78b], [She78c], [She83] if we assume GCH, then some com-
pact logic does not have even the weak homogeneity property (e.g.
L(Q), where Q the quantifier says two atomic Boolean algebras are
isomorphic).

For the definition of RROB see notation of [Mak85].

LABEL 〈3.3〉
Claim 3.3. (1) If L satisfies the PPP and FROB, then is has the ho-

mogeneity property.
(2) If L satisfies the PPP and INT, then is has the local homogeneity

property.

Proof. We prove only (1) (the other is similar). Suppose M, c1, c2 from a
counterexample to the homogeneity property with finite occurrence. Let
M ′, c′1, c

′
2 be a disjoint copy. Let N = [M,M ′], T = ThL(n, c1, c2c

′
1) =

ThL(N, c1, c2c
′
1) = ThL(N, c1, c2, c

′
2) ( the equality is by the PPP,and c′

denotes the name of c′1 or c′2 in τT ). Let
ψl = “f is a isomorphism from the first sort to the second
(ignoring the c’s) mapping c′ to cl”.

Clearly T ∪ {ψ1, ψ2} does not have a model, hence FROB fails. �

LABEL 〈3.4〉
Definition 3.4. (1) A logic L is called definable if the relations “ψ ∈

L(τ)′′, “M |= ψ′′ are definable (in set theory, without parameters).
So ψ ∈ L(τ),M |= ψ are meaningful in any universe of set theory.

(2) A logic L is called λ-definable if for some A ⊆ λ, the relations “ψ ∈
L(τ)′′, “M |= ψ′′ are definable using A as the only parameter.

Remark: Most reasonable logics are definable: the exception is fragments
of such logic (mainly Lω1,ω). So restriction by definability is reasonable.

LABEL 〈3.5〉
Claim 3.5. It is consistent that no definable extension L (or ℵ0- definable
extension) of L(Q) has the PPP and INT.
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Proof. Let

K = {(A,P,Q1 < c, f) : A an uncountable set, Pa countable subset,

< a linear order onQ = A− P − {c}, fa function fromQ×Q to P

such that f−1({p}) is a chain for every p ∈ P}.
Clearly K is definable in L(Q) by some ψ, and by [She75a] it is not empty,

and such linear order is not isomorphic to its inverse. For M ∈ K let M∗

be the same except inverting the order. Let us define a forcing notion which
forces a member M of K. The universe of M will be ω1, P

M = ω−{0}, cM =
0, QM = ω1 − ω. A condition p consists of a finite subset wp of ω1 − ω, a
linear order ≤p on wp, and a function fp : wp × wp → ω − {0} so that
fp(〈α, β〉) = fp(〈α′, β′〉) implies α ≤p α′ ∧ β ≤p β′ or α′ ≤p α ∧ β′ ≤p β.
We say p ≤ q if wp,⊆ wq,≤p=≤q� wp, fq = fq � wp × wp. We can prove
(essentially as in [22]) that the forcing notion satisfies thec.c.c., and for a
generic set G,M[G] ∈ K. Now there is a natural automorphism F of order
2 of the forcing notion: P → P ∗ where in p∗ we just invert the order.
Clearly M[F (G)] = (M∗[G])∗. Hence in V[G],M0 = M[G],M1 = (M[G])∗

are L- equivalent (as L is definable , P is homogeneous). By the PPP,
[M00M0], [M0,M1] are L-equivalent. Let ψ1[ψ2] say that the linear order
in the two sorts are isomorphic [anti isomorphic]. As explained in [22],
ψ1 ∧ ψ2 has no model in which each sort satisfies ∅. So we have obtained a
contradiction. �LABEL 〈3.5A〉
Remark 3.6. In 3.5 we can replace INT by FROB.〈3.5〉

LABEL 〈3.6〉 Claim 3.7. Suppose L satisfies PPP, WB and for countable τ, |L(τ)| < iα.
Then the well order number of L (for one sentence) is < ω + α.

Proof. Should be clear.
By 3.2(2) and by easy manipulation: �〈3.2〉

LABEL 〈3.6a〉 Lemma 3.8. Suppose L satisfies the URP2.

(1) Then the following are equivalent (i) ROB, (ii) FROB, (iii) the ho-
mogeneity property for PC (see below).

(2) Also the following are equivalent : (i) WFROB (see [Mak85]), (ii)
the local homogeneity property for PC.

LABEL 〈3.7〉
Definition 3.9. (1) L has the homogeneity property for PC when: if

for τ ⊆ τ + M, c1 and c2 ∈ M realize the same L-type in M � τ,
then ThL(M, c1, c2) has a model (N, c′1, c

′
2) such that N � τ has a

automorphism taking c′1 to c′2.
LABEL 〈3.8〉

Remark 3.10. I thank Makiwsky for discussions concerning this lemma. He
also showed that the weak homogeneity property implies [ω]-compactness.

4. Interpolation for cofinality logic in stationary logic
LABEL 〈4.1〉

Definition 4.1. L(aa) is defined as follows: defining the formulas we allow
as variables monadic predicated; however we do not allow existential or
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universal quantification over them, but the quantifier aaP : (aaP )ϕ(P ) is
allowed, it bounds the variable P , and

M |= (aaP )ϕ(P ) iff {P ⊆ S<ℵ1(|M |) : M |= ϕ[P ]}

contains a closed unbouned subset of S<ℵ1)|M |)
(closed means under countable increasing union, unbouned means ev-

ery member of S<ℵ1(|M |) is countained in some member of the subset and
S<λ(A) = {B : B ⊆ A, |B| < λ}).

The dual quantifier is stP : (stP )ϕ = ¬(aaP )¬∅.
LABEL 〈4.2〉

Definition 4.2. L(Qcf
ℵ0) is first-order logic expaned by the quantifier Qcf

ℵ0
which acts syntacticaly as “if ∅(x, y, z̄) is a formula (with x, y, z̄ free) then
so is (Qcf

ℵ0x, y)ϕ(x, y; z̄) (with z̄ free)”.

Semanticly M |= (Qcf
ℵ0x, y)ϕ(x, y, ā) iff on Dom[∅(x, y, ā)]

def
= {b ∈ M :

M |= (∃y)(b, y, ā)} the relation ∅(x, y; ā) defined a linear order with no last

element (i.e., x < y
def
= ϕ(x, y, ā)) with cofinality ℵ0.

Discussion 4.3. The cofinality logic L(Qcf
ℵ0) was introduced by Shelah [She72],

[She75b] as a solution to a problem of Friedman and Keisler: is there a logic,
stronger than first-order, which is compact ( and not just λ-compact for some
λ). It also has reasonable axiomatization and it seemed weak.

In search for stronger logics, in Shelah [She75b] L(aa) was introduced.
Like second-order logic, in it formula free monadic predicated are allowed
but the quantifier is different. We cannot sat “for some P” but “for almost
all P”. This logic draws much attention. Barwise, Kaufman and Makkai
[BKM78] investigate it thoroughly; showing it has all the good properties
known for L(Q) and, of course , it seems considerably stronger, so Eklof
and Mekler use it to investigate ℵ1-Abelian groups (see [?], [EM81]). Kauf-
man suggests and investigates determined structures. Kaufman and Kakuda
investigate ZF(aa).

However only lately properties of the logic L(aa) were found indicating
it really inherits something from second-order logic. Here we show that the
interpolation theorem hold for the pair of logics (L(Qcf

ℵ0), L(aa)). Consider-
ing that there has been much research efforts on interpolation (and related
notions) for ℵ0-compact logics, without having any example (even “patho-
logical” one), and that the logics involved are reasonable and not invented
for the example,this is nice though the proof is easy. (A drawback is our
having a pair of logics, not one).

This is the main results here. A subsequent results is the bigness of
the Hank number of L(aa) (see Kaufman and Shelah [KS86]) which really
shows that on models of power > ℵ1, L(aa) is really very strong, stronger
than quantification on countable sets.

LABEL 〈4.4〉
Claim 4.4. L(Qcf

ℵ0) ≤ L(aa).
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Proof. This is because in L(aa) we can express “ϕ(x, y; z̄) is a linear order

of cofinality ℵ0” by ψϕ(z̄)
def
= [ψ(x, y; z̄) defines a linear order with no last

element] ∧(aaP )(∀x)[(∃x)ϕ(x, y; z̄)→ (∃y ∈ P )(ϕ(x, y; z̄)]. �
LABEL 〈4.5〉

Convention 4.5. ¿From now on we consider every sentence of L(Qcf
ℵ0)(τ) as

a sentence of L(aa).
LABEL 〈4.6〉

Theorem 4.6. The pair (L(Qcf
ℵ0), L(aa)) has the interpolation property; i.e.,

if ∅, ψ ∈ L(Qcf
ℵ0),` ∅ → ψ (i.e., it is valid), then for some ϑ ∈ L(aa), τϑ ⊆

τϕ ∩ τψ and ` ψ → ϑ and ` ϑ→ ψ.
As L(aa) is ℵ0-compact and |τ | ≤ ℵ0 ⇒ |L(aa)(τ)| ≤ ℵ0 ( and the occur-

rence number is ℵ0) the following lemma suffices:
LABEL 〈4.7〉

Lemma 4.7. Suppose that τ0 = τ1 ∩ τ2 are countable vocabularies, Tl a
complete theory in L(aa)(τl) (for l = 1, 2, 3) and T1 ∩ T2 = T0.

Then (T1 ∩ L(Qcf
ℵ0)(τ1)) ∪ (T2 ∩ L(Qcf

ℵ0)(τ2)) has a model.

Proof. We start with the following notation. �
LABEL 〈4.8〉

Notation 4.8. Γl = {ψ(Pi0 , . . . , Pi1) : i0 < . . . < in < ω1, ψ ∈ L(aa)[τl] and
(aaS0), . . . , . . . , (aaSn)ψ(S0, . . . , Sn) ∈ Tl}. Clearly Tl ⊂ Γl.

Given any model Ml and any ψl which is a finite conjunction of members
of Γl it is easy to choose by induction 〈Pi ⊆ Ml : i < n〉 such that Ml |=
ψ(P0, . . . , Pn−1). That is (as Tl has a model):

LABEL 〈4.9〉
Fact 4.9. Γl is consistent.

Moreover, if we let Γ+
0 be any completion (in L(aa)[τ0]) of Γ0:

LABEL 〈4.10〉
Fact 4.10. For l = 1, 2,Γ+

0 ∪ Γl is consistent.

Proof. Let ψ(Pi0 , . . . , Pin−1) be a conjunction of finitely many members of

Gamma+
0 . Then (¬(aaS) . . . (aaS)¬ ∈ T0. (Otherwise ¬ψ ∈ Γ0 ⊆ Gamma+

0 ,
but Gamma+

0 is consistent.) Let Ml |= Tl and suppose ϑ0(Pi0 , . . . ,¶in) is a
finite conjunction of formulas in Γl.

(i) Ml |= ¬(aaSn)¬ψ(P0, . . . , Pi, Si+1, . . . , Sn).
(ii) For any formula ϑ ∈ L(aa)[τl] if Ml |= (aaS)ϑ(P0, . . . , Pi−1, S) then

Ml |= ϑ(P0, . . . , Pi−1, Pi) ( note that are only countably many such
ϑ’s).

Let τ ′l = τl + {Pi : i < ω}. So let Γ+
l be

a complete consistent extension of Γ+
0 ∪ Γl, in L(aa)[τ ′l ]. Let γfl be the

extension of Γ+
l by giving name to every formula (Rψ to ψ) with indicidual

free variables only, so Γfl is complete in L(aa)[τ fl ], τ f0 = τ f1 ∩τ
f
2 . Clearly Γ∗l

def
=

Γfl ∩Lω,ω(τ fl ) is a complete theory in Lω,ω[τ fl ], and Γf0 = Γfl ∩γ
f
2 , τ

f
0 = τ f1 ∩τ

f
2 .

So by Robinson’s lemma (for first-order logic) Γ∗1 ∪ Γ∗2 is consistent. �
LABEL 〈4.11〉

Fact 4.11. For any i < ω1, l < 3,Γl ( and also Γ+
l ,Γ

f
l ) “says” that Pi is

an L(aa)-elementary submodel of the universe (restricting ourselves to the
vocabulary τl + {Pj : j < i}). Also it “says” Pi ⊆ Pj for i < j.
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Let M be an ℵ2-staruted model of Γ∗1 ∪Γ∗2 and let N be the substructure
with universe

⋃
i<ℵi P

M
i . Note that by Fact 4.11 and unions of chains N |= 〈4.11〉

Γ∗2 (do it for each Γ∗l separately).
LABEL 〈4.12〉

Lemma 4.12. Suppose ∀z̄((Qcf
ℵ0x, y)(R(x, y, z̄)⇔ S(z̄)) ∈ Γ∗l (R,S are pred-

icates. Fix c̄ ∈ N , and suppose R(x, u, z̄) is a liniear order with no last
element.

(i) If N |= ¬S(c̄), then N |= (Qcf
ℵ0x, y)R(x, y, c̄).

(ii) If N |= S(c̄), then N |= (Qcf
≥ℵ2x, y)R(x, y, c̄).

Proof. Choose i so that c̄ ∈ Pi and if R is R∅ and Pj occurs in ∅, then j < i.

(i) In this case, for every j < i there is a bj ∈ Pj+1 − Pj such that if
a ∈ Pj and a is in the field of R(x, y, c̄) then N |= R(a, bj , c̄). This
follows immediately from the assertion:

[(∀z̄)(∃y0)(∀x)[(∃y)(R(x, y, z̄)) ∧ Pi(x)→ Pi+1(y0) ∧R(x, y0, z̄]] ∈ Γl

But this is clear, since if Ml |= Tl, and d̄ ∈ Ml, R(x, y, d̄) is a linear
ordering of cofinality > ℵ0 and Pi is countable, then the intersec-

tion of PMl
i and the field of R(x, y, d̄) is bounded. But PMi+1 is an

elementary eubmodel of Ml so there is a bound in PMi+1.
Now the sequence of {bj : j < ℵ1} witnesses that the cofinality of

R(x, y, c̄) is ℵ1.
(ii) Note first that since M is ℵ2-saturated, the cofinality of R(x, ȳ, c̄) in

PMi is ≤ ℵ2. But

N |=)∀x)[∃τ)R(x, τ, c̄)→ (∃y)(R(x, y, c̄) ∧ Pi(y))]

as

(∀z̄)[(Qcf
ℵ0x, y)R(x, y, z̄)→ (aaS)(∀x)[(∃y)R(x, y, z̄)

→ (∃y ∈ S)R(x, y, z̄)]) ∈ Tl.

So the intersection of the field of R(x, y, c̄) and PMi is unbounded in
M , hence in N . Thus the linear order defined in N by R(x, y, c̄) has
cofinality at least ℵ2.

Now we reverse the cofinalities to get the required model.

�
LABEL 〈4.13〉

Lemma 4.13. There is an elementary submodel N∗ of N such that N∗ is
a model of Γ∗l ∩ Ll(Qcf

ℵ0) for l = 1, 2.

Proof. We define by induction Ni for i < ω such that

(i) |Ni| = ℵ1.
(ii) Ni ≺ N .
(iii) For any linear order without endpoints, <, definable with parameters

in Ni:
(a) If the cofinality of < in N is ≤ ℵ1, then Ni+1 contains a subset

of the field of < which is unbounded in N .
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(b) If the cofinality of < in N is > ℵ1, then there is an element of
Ni+1 which bounds the intersection of Ni with the field of <.

But the choice of the required Ni is easy, and from it the result is
clear (the union

⋃
i<ωNi is as required).

�

Remark:

(1) Looking at the proof of Theorem 4.6 we can see that:〈4.6〉
(a) We can make the Pi’s indiscernible (using Ramsey theorem).
(b) We can find an interpolant of the form (aaP1) . . . (aaPn)ψ(P −

1, . . . .Pn), ψ ∈ L(Qcf
ℵ0).

5. Higher cardinals and strong homogeneous models

We deal with cofinality quantifiers and stationary logic for uncountable
cardinals. Our results is that pair (L(Qcf

≤λ), L(aaλ)) satisfies the super ℵ0−
homogeneity property (see Definition 3.1(1)).〈3.1〉

LABEL 〈5.1〉 Definition 5.1. (1) For cardinals κ ≤ λ, and set A we define a filter
Eκλ (A) on S≤λ(A). It is generated by sets of the following from:⋃
i<κAi : for i < κ,A− i ⊆ A|Ai| ≤ λ, and F (〈Aj : i < j〉) ⊆ Ai+1}

for some F .
(2) Suppose λ2 ≤ λ1, κ

1 ≤ λ1, κ
2 ≤ λ2, then Eκ1λ1 (A) is the following filter

on S≤λ2(A) : S ∈ Eκ
1,κ2

λ1,λ2
(A) iff {B ⊆ A : |B| = λ1, and S ∩ Sλ2(B) ∈

Eκ2λ2 (B)} belong to Eκ1λ1 (A).
(3) the meaning of “the E-majority of A(∈ S≤λ(A)) satisfies . . .” is “{A :

A satisfies . . .} ∈ E”.

Remark:

(1) In these filters we can replace κ by cfκ.
(2) On such filter see [She85], §3. (and see [She19])].

LABEL 〈5.2〉
Definition 5.2. (1) For a class C of regular cardinals, L(Qcf

C ) is de-

fined just like L(Qcf
ℵ0x, y, ā) iff φ(x, y, ā) defines on {b ∈ M : M |=

(∃y)φ(b, y, ā)} a linear order with no last element whose cofinality is
in C. If C = {µ : µ regular, µ ≤ λ} we write Qcf

≤λ instead.

(2) For a cardinal λ we define L(aaλ) just like L(aa), butM |= (aaλP )φ(P )
iff {P ∈ S≤λ(|M |) : M |= φ[P ]} belongs to Eλλ (i.e., to Eλλ (|M |). The
dual quantifier to (aaλP ) is (stλP ).

(3) All the languages L(Qcf
C ) have the same syntax so for a sentence

ψ ∈ L(Qcf
C1

) (or theory) it is clear what we mean by ”M is a model
of ψ in the C2-interpretation, M |=c2 ψ“. We identify λ and {λ} in
this content.

Similarly for ψ ∈ L(aaµ), ”M is a model of ψ in the λ -interpretation,
M |=λ ψ“ is defined.
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(4) Dealing with L(Qcf
C ) we ignore the trivial cases C = ∅ or C = {µ : µ

a regular cardinal}. We know (see Mekler-Shelah [MS86] for (2) and
(3), [She75b] for (1) and 4.4 〈4.4〉

LABEL 〈5.3〉Theorem 5.3. (1) For any C1, C2 (non-trivial), a theory T in L(Qcf
C1

)
has a model iff it has a model in the C2-interpretation (so all those
logics are compact). In fact if λ ∈ C2, λ ∈ C2, λ, µ regular, then T
has a Min{λ, µ}-saturated model in which each definable linear order
with no last element has cofinality λ or µ.

(2) For any λ and ψ ∈ L(aaλ), if ψ has a model then ψ has a model in
the ℵ0-interpretation.

(3) If λ = λ<λ, T ⊆ L(aaλ), |T | ⊆ λ, then T is consistent iff T is consis-
tent in the ℵ0-interpretation iff T has a λ+-compact model of power
λ+.

(4) L(Qcf
≤λ) ≤ L(aaλ) (and we adopt the convention L(Qcf

≤λ) ⊆ L(aaλ)).
LABEL 〈5.4〉

Claim 5.4. Let M be a model τM |+ κ ≤ λ, κ is regular.

(1) Then for a set of A ∈ S≤λ(|M |) which belong to Eκλ the following
holds:

(*) For any relation R(x, y, z̄) ∈ τM and c̄ ∈ A, if R(x, y, c̄) defines
in M a linear order with domain DomR(x, y, c̄) (and no last element)
of cofinality µ, then R(x, y; c̄) defines in M � A a linear order of
cofinality µ′ where:

µ > λ⇒ µ′ = κ, µ ≤ λ⇒ µ′ = µ

(2) Suppose further that C is a class of regular cardinals, κ ∈ C, and
every regular µ > λ, µ ≤‖ M ‖ belongs to C. Then for a set of
A ∈ S≤λ2(|M |) which belongs to Eκλ ,M � A is a L(Qcf

C )-elementary
submodel of M .

Proof. Easy. �
LABEL 〈5.5〉

Lemma 5.5. The pair (L(Qcf
≤λ), L(aaλ)) has the super ℵ0 -homogeneity

property (getting even an (L(Qcf
≤λ),ℵ0)- saturated model).

Remark:

(1) The proof gives a little more ; the 2|
τM | is needed for the saturation

only (otherwise τM | suffices).
(2) We can get super µ-homogeneity if µ ≤ λ.

Proof. So let M be a model, Morleyized for L(aaλ). Let µ0 be regular such

that M ∈ H (µ0), λ+ < µ0, 2
|τM | < µ0 and let A be (H (µ0);∈) expanded

by M (i.e., its relation and a predicate for its universe) and Morleyized for
L(aaλ).

We shall build a model of ThL(Qcf
≤κ)(M) of power µ

def
= λ+ + 2|τM | so

without loss of generality there is a cardinal χ = χ<χ > µ by working inside
the inner model L[A] where A ⊆ χ, χ refular for suitable A).
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By 5.3(2),(3) ThL(aaλ)(A) has a model sB in the χ-interpretation. Of〈5.3〉
course in B we can interpret a model of ThL(Qcf

≤κ)(M) in the χ-interpretation

which is (L(aaχ), χ)-satured. Let C = {κ regular, κ ≤ λ or κ = χ} so by
saturation, as λ+ < χ, no L(aaχ)-formula with parameters defines in sB
a linear order (with no last element and) with cofinality < χ. So the C-
interpretation and χ-interpretation coincide. By applying twice Claim 5.4(2)〈5.4〉
for an Eλ+ℵ0

χ,µ -majority of the A ∈ S≤µ(|B|),B � A is an L(Qcf
C )-elementary

submodel of B (remember µ < χ).
Clearly it suffices to prove the following fact (the κ which interests us is

λ+). �
LABEL 〈5.6〉

Fact 5.6. Suppose N0, N1 are models definable in B (i.e., their universe
and relations are first-order definable with parameter in B), have the same
vocabulary, and are L(aaχ)-equivalent and let κ < χ. Then for an Eκχ -
majority of A ∈ S≤χ(|B|), N0 � A w N1 � A (i.e. Nl � (|Nl| ∩A)).

LABEL 〈5.6A〉
Remark 5.7. So surely this holds for a Eκ,κ

1

χ,χ1 -majority of A ∈ S≤λ(|B|), when
χ1 < χ, κ1 ≤ χ1.

Proof. As in the proof of 4.11 there is a complete theory Γ in L(aaχ)|τ +〈4.11〉
{Pi : i < κ}] such that ψ(Pi1 , . . . , Pin) ∈ Γ, i1 < . . . < in < κ implies
Nl |= (stχPi1)(stχPi2) . . . (stχPin)ψ(Pi1 , Pi2 . . . , Pin), (note Γ is closed by
finite conjunction).

Let Γl be Γ when we replace the predicated from τNl by their defining
L(aaχ)[τB]-formulas with parameters and restrict everything by the formula
defining ‖ Nl ‖. Clearly, for every ψ = ψ(Pi1 , . . . , Pin)(i1 < . . . < in < κ).

B |= (stχPi1) . . . (stχPin)ψ(Pκ1 , . . . , Pin)

Clearly A |= (aaλP )(∃χ)[(∀y)(Py) ≡ y ∈ χ)] (because every subset of
H (µ0) of power ≤ λ belongs to H (µ0)). Hence also B satisfies this (in
the χ- interpretation). So we can find ai ∈ B(i < χ+) such that:

(*) Ai = {b : B |= “b ∈ ai”} has power χ, it is increasing, for δ of
cofinality χ,Aδ =

⋃
i<δ Ai, and {Ai : i < χ+} ∈ Eχχ (|B|).

Hence we can define by induction on γ < κ, for every η ∈ γ(χ+) an ordinal
i(η, l) such that:

(a) i(η � β, l) < i(η, l) < χ+ and i(η, l) ≥ sup{η(j) : j < l(η)} for
β < l(η).

(b) For every ψ = ψ(Pi1 , . . . , Pin , . . . , Pjm) ∈ Γl, i1 < . . . < in ≤ γj1 <
. . . < jn

B |= stχPj1) . . . (stχPjm)ψ(Ai(η�i1,l), . . . , Ai(η�in,l), Pj1 , . . . , Pjm).

There is no problem in this. It is also clear that for every η, ν ∈κ
(κ+), (N1, Ai(η�γ,l) ∩ N1)gamma<κ and (N2, Ai(η�γ,l) ∩ N2)γ<κ are L(aaχ) -
equivalent, L(aaχ)− saturated, and as in 5.4 (N1 �

⋃
γ<γ Ai(η�γ,l), Ai(η�γ,l) ∩〈5.4〉

N1)γ<κ and (N2 �
⋃
γ<κAi(ν�γ,l), Ai(ν�γ,l) ∩N2)γ<κ are isomorphic.
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However, S = {i < χ+ : if j < i, η ∈ γj, γ < κ, l = 1, 2 then i(η, l) < i} is
a closed unbounded subset of χ+. Now if δ ∈ S, cfδ = κ, we can easily find
η which is increasing and converge to δ, then clearly 〈i(η � γ, l) : γ < κ〉 is
increasing and converge to δ. It is also clear that

⋃
γ<κAi(η�γ,l) =

⋃
i<δ Ai.

Hence by the previous paragraph N0 �
⋃
i<δ Ai w N1 �

⋃
i<δ Ai. But

{
⋃
i<δ

Ai : δ ∈ S, cfδ = κ} ∈ Eκχ(|B|)

so we finish proving the fact, hence the theorem. �

6. A compact logic with the Beth property

We prove here (in ZFC) the existence of a compact logic satisfying the
Beth property (and which is stronger the first-order logic). Moreover this
logic has a reasonable description: it is the Beth closure of L(Qcf

≤(2ℵ0 )
, and

it has the URP2 but nor the Craig property, thus it shows that in the
main theorem of Makowsky-Shelah [MS79] the preservation theorem for trees
cannot be replaced by the preservation theorem for the sum or two models.

Really we deal mainly with L∗κ, a sublogic of L(aaκ) and deduce the
properties of L(Qcf

≤κ)Beth from it. We rely heavily on Sections 2,4 and 5.
LABEL 〈6.1〉

Definition 6.1. CFD(λ) is the family of regular cardinals µ. such that for
some µ+-saturated model M.τM of power ≤ λ, some L∞,ω-formula φ(x, y)
defines on {b ∈M : (∃y)φ(x, y)} a linear order of cofinality µ. (We can allow
quasi-linear order and replace x, y be sequences of length n < ω.)

LABEL 〈6.2〉
Claim 6.2. (1) If M,N are µ+ saturated elementary equivalent, τM =

τN has power ≤ λ, φ(x, y) ∈ L∞,omega defines a linear order of cofi-
nality µ on {x : (∃y)φ(x, y)} in M then the same holds in N .

(2) If λ,M, φ(x, y), µ are as in Definition 6.1, then µ ≤ 2λ. 〈6.1〉
(3) Moreover in (2), there is no cofinal sequence in Domφ(x, y) (in M)

of elements realizing the same strong type (over ∅). (See [She78a],
[She90] Ch.III].)

Proof. (1) It is well known that M,N are L∞,µ-equivalent.
(2) Let M0 be an elementary submodel of M of power λ, 〈ai : i < µ〉

a cofinal sequence in the linear order φ(x, y) (in M). Suppose µ >
2λ; then without loss of generality p = tp(ai,M0) is constant. By
[She78a], [She90], VII 4.1, p.406] there is an elementary mapping f
(whose domain and range are ⊆M) such that f �M0 = the identity,
and tp∗({ai : i < µ},M0 ∪ {f(ai) : i < µ}) is finitely satisfiable in
M0.

Clearly each f(ai) realizes p, hence is in the domain of φ(x, y).
By the choice of ai(i < µ) for some i < µ,M |= φ(f(a0), ai). As
tp(ai,M0 ∪ {f(aj) : j < µ} is finitely satisfiable in M0 it does not
split over M0 (see [She78a], [She90], [25, I.2.6,p.11]); hence as all
f(aj) realize the same type over M0 they realize also the same type
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over M0 ∪ {aj}. Hence for every j,M |= φ[f(aj), ai]. Let g be an
elementary mapping such that g � M0 = the identity, g(f(aj)) = aj
and whose domain includes ai. Then M |= φ[aj , g(ai)] for every j.
Contradinction to the cofinality of 〈aj : j < µ〉.

(3) Suppose 〈ai : i < µ〉 is cofinal, all ai’s realizing the same strong type
over ∅. Without loss of generality M is (µ+ λ)+-saturated (by (1)),
and M0 ≺M has power λ. Let

Γ = {φ(xi1 , . . . , xin) : i1, . . . , in < µ, |= φ[ai1 , . . . , ain ]}
∪{φ(xi, c̄) ≡ φ(xj , c̄) : c̄ ∈M0, φ a formula}.

If Γ is consistent, let the assignment xi → a′i realize it; as in the proof
of (1) also 〈a′i : i < µ〉 is cofinal, and tp(a′i,M0) does not depend on
i (by the choice of Γ). So we can continue as in (2).

Γ is consistent by the hypothesis.
�LABEL 〈6.3〉

Definition 6.3. We define a logic L∗κ.L∗[τ ] is the set of sentences ψ ∈
L(aaκ)[τ ] s.t.: for any λ > κ.expansion A of (H (µ0) ∈) (for µ0 regular
> κ+), τA countable and any (L(aaχ), χ)-saturated model B of THL(aaκ)(A)

in the χ− interpretation, for χ = χ<χ and any N interpretable in B, by
an L∞,ω(aaχ)-formula with finitely many parameters |τN | ≤ ℵ0 : N |=χ ψ

iff for a Eκ
+,κ

χ,λ -majority of A ∈ S≤λ(|B|).N � A |=κ ψ; where we make the

hypothesis:
LABEL 〈6.4〉

Hypothesis 6.4. For arbitrarily large cardinals χ, χ = χ<χ.
LABEL 〈6.5〉

Discussion 6.5. (1) The hypothesis is just for convenience. Other wise
we should say: for any set A of ordinals s.t. H (µ0 + λ) ∈ L[A] the
requirement of the definition holds in L[A], for every large enough
regular cardinal (for L[A]).

(2) We can also wave the role of A. Instead we should demand that B is
a model of ZFC−(aaχ) (zermelo-Fraenkel set theory with choice but
without the power set axiom, and an image of a set by an L(aaχ-
definable function is a set ane B |= (aaχP )(∃x)(∀y)[P (y) ≡ y ∈ x].
We can also make τB = {∈} without changing anyting and/or B |=
“|N | is included in some set”).

LABEL 〈6.6〉
Claim 6.6. If κ ≥ 2ℵ0, then L(Qcf

≤κ) ≤ L∗κ.

Proof. The point is that by 6.1(2) any L(aaχ)-definable linear order in N ,〈6.1〉
has cofinality ≤ 2ℵ0 or ≤ χ. Hence by 5.4(2) any φ ∈ L(Qcf

≤κ) satisfies the〈5.4〉
requirement in Definition 6.3. �〈6.3〉

LABEL 〈6.7〉 Claim 6.7. L∗κ is a regular logic.

Proof. Easy (for the universal quantifier use normality of filter Eκ
+,κ

chi,λ , i.e., if

S1 ∈ Eκ
+,κ

χ,χ (A) for a ∈ A, then

{B ∈ S≤λ(A) : for every a ∈ b, B ∈ Sa} ∈ Lκ
+,κ
χ,λ
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which follows from the normality of every Lµ(1)
µ(0)(A)). �

LABEL 〈6.8〉
Claim 6.8. L∗κ is a compact logic.

Proof. Let Γ be ⊆ sL∗κ[τ ], any finite T ⊆ Γ has a model Mτ and λ =
|Γ| + κ+. So for some regular µ0, {MT : T ⊆ Γ, T finer} and τ belongs to
H (µ0). Let A be (H (µ0),∈, κ), and let χ = χ<χ >‖ A ‖,B an (L(aaχ), χ)-
saturated model of ThL(aaκ)(A) in the χ-interpretation. Clearly for any
finite T ⊆ Γ,B |= “ there is a model of T in the χ-interpretation.” As B is
(L(aaλ), χ)-saturated, we can find an L(aaχ)-formula with parameters from
B, defining a model (N,RN )R∈τT s.t., for any ψ ∈ T, τψ = {R1, . . . , Rn}

B |= “(N,RN1 , . . . , R
N
n ) |=λ ψ”

By Definition 6.3, for every such ψ, for an Lκ
+,κ
χ,λ -majority ofA ∈ S≤λ(N), (N,RN1 , . . . , R

N
n ) �〈6.3〉

A �κ ψ. By the λ-completeness of Eκ
+,κ

χ,λ there is a model of Γ. �
LABEL 〈6.9〉

Claim 6.9. (1) The pair (L∗κ, L(aaκ)) has the interpolation property.
(2) If M = [N1, N2, N3; barR], N1, N2 are L(aaκ)-equivalent, then for

some L∗κ- equivalent model M ′ = [N ′1, N
′
2, N

′
3; R̄′], N ′1 is isomorphic

to N ′2,
(3) The pair (L∗κ, L(aaκ)) has the super ℵ0-homogeneity property.

Proof. (1) By the compactness it suffices to prove that if the complete
L ∗ aaκ)-theories Tl, satisfy.

T1 ∩ T2 = T1 ∩ L(aaκ)[τT1 ∩ τT2 ] = τ2 ∩ L(aaκ)[τT1 ∩ τT2 ],

then (T1 ∪ T2) ∩ L∗κ[τT1 ,∪τT1 ] has a model. This Follows by (2).
(2) The proof is like 5.6 (see 5.6(A)). 〈5.6〉

〈5.6〉(3) The proof is like 5.5.

〈5.5〉Up to now, all we have proved on L∗κ is satisfied by L(Qcf
≤κ). �

LABEL 〈6.10〉Theorem 6.10. L∗κ has the Beth property.

Proof. Suppose φ(O, Q̄) is a Beth sentence, P a monadic predicate for sim-
plicity (i.e., for every model (A, Q̄) for at most one P ⊆ A, (A,P,Q) |=
ψ[P,Q]). So

ψ(P 0, Q̄) ∩ P 0(c)→ (φ(P 1, Q̄)→ P 1(c)).

So by 6.9(2) there is ϑ(x, Q̄) ∈ L(aa)(Q̄) which is an iterpolant hence defines 〈6.9〉
P (when it exists). (This repeats the proof INT → Beth) . Without loss
of generality ¬φ({x : ψ(x, Q̄)}, Q̄) → ¬ϑ(y, Q̄). Clearly it suffices to prove
that ϑ(c, Q̄) ∈ L∗κ. Let A,B, χ,N = (|N |), q̄), λ be as in Definition 6.3, 〈6.3〉
λ ≥ iλ. Then for Eκ

+,κ
χ,λ - majority of a ∈ S≤λ(|B|), (B, q̄) � A is ℵ0-strongly

homogeneous.
Let c̄∗ ∈ B be a finite sequence in which all parameters used in defining

|N | and QNi (by L∞,ω(aaχ)-formulas, in B) appear.
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Our problem is that maybe ψ(P, Q̄) in (N, Q̄) � A has a solution, where
in (N, Q̄) it does nor have (the other direction is easy). Now every automor-
phism of (B � A, c̄∗) maps the |N”, Ql to themselves (as they are definable
in B by an L∞,ω-formula with parameters ⊆ c̄∗) hence maps P to itself
(otherwise ψ(P, Q̄) is not a Beth sentence). As (B � A, c̄∗) is ℵ0- strongly
homogeneous, P is necessarily also defined in B by an L∞,ω-formula with c̄∗

as parameter. The same formula defined a monadic relation P ′ on N . Now
the number of such formulas is ≤ 22ℵ0 (the number of complete n-types,

m < ω, for ThLκ(N) is ≤ 2ℵ0). As λ ≥ 22ℵ0 and ψ(P, Q̄) ∈ L∗, for Lκ
+,κ
χ,λ -

majority of A ∈ S≤λ(N) for every L∞,ω-definable P, (N,P, Q̄) |=χ ψ(P, Q̄)
iff (N,P, Q̄) � A |=χ ψ(P, Q̄), contradiction. �

LABEL 〈6.11〉
Conclusion 6.11. Let κ ≥ 2ℵ0 .

(1) L(Qcf
≤κ)Beth (the Beth closure of L(Qcf

≤κ) is ≤ L∗κ.

(2) L(Qcf
≤κ)Beth is compact, L(Qcf

≤κ)Beth, L(aaκ)) has the interpolation

property and the super ℵ0-homogeneity property (getting, in fact,
an ℵ0-saturated model) and trivially it has the Beth property.

(3) L(Qcf
≤κ)Beth has the PPP, and

(4) L(Qcf
≤κ)Beth does nor have the interpolation property nor even the

∆-INT property.

Proof. (1) By 6.6, L(Qcf
≤κ)≤L∗κ, hence our conclusion follows by 6.10.〈6.6〉

〈6.10〉 (2) Follows by (1) and corresponding claims on (L∗κ, L(aaκ)) in 6.7.

〈6.7〉 6.9(2).6.9(3).

〈6.9〉
〈6.9〉

(3) We prove it by induction on n for L(Qcf
≤κ)Beth

n ; using 2.3.

〈2.3〉

(4) It is enough to find N1, N2 such that
(a) N1 ≡L(Qcf

≤κ) N2.

(b) For every n, only finitely many complete n-types (in L(Qcf
≤κ)[τN1 ])

are realized in Nl.
(c) Each Nl is ℵ0-strongly homogeneous.
(d) N1, N2 belong to disjoint PCL(Qcf

≤κ) class.

By (b),(c) every L(Qcf
≤κ)Beth-formula is equivalent inNl to an L(Qcf

≤κ)-

formula (prove by induction on n for formula of L(Qcf
≤κ)Beth

n ). As

those equivalence are the same forN1 andN2 are L(Qcf
≤κ)Beth-equivalent.

Now (d) finishes the proof of the conclusion (we can omit (b) if
we strengthen (a), by adding: even if we expand the Nl by all
L∞,ω(Qcf

≤κ)-definable relations. Let T0 be the model completion of
the theory of partial order. Now T0 exists, has eliminations of quan-
tifiers, and all its models are directed.

We can find a λ-strongly homogeneous, λ-saturated model M of
T0. Let 〈ai : i < λ〉 be an increasing sequence of membership of M ,
and for every µ < λ let

Mµ = M � {b : (∃i < µ)b < ai}
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Clearly each Mµ is ℵ0-strongly homogeneous (even cfµ-strongly ho-

mogeneous) and ℵ0-saturated and all Mµ are L(Qcf
≤κ)-equivalent and

THL(Qcf
≤κ)(Mµ) has eliminations of quantifiers. As for (d):

�

Fact 6.12. Kl = {(A,<) : (A,<) is a directed partial order, and there is an
increasing sequence 〈ai : i < δ〉, [cfδ ≤ κ iff l = 0] and (∀a ∈ A)(∃i < δ)a ≤
ai} is a PC(L(Qcf

≤κ)-class and they are disjoint.
This is enough to contradict INT. To contradict ∆-INT use partial orders

with no three pairwise incomparable elements.
LABEL 〈6.12〉

Claim 6.13. (1) L∗κ has the ∆-INT property.
(2) 6.11 holds for L(Qcf

≤κ)∆−Beth except on INT.) 〈6.11〉

Proof. (1) Like the proof of 6.10 but easier. 〈6.10〉
�

Part 1. Compactness Versus Occurrence

In the first section we give more restrictions on the compactness spectrum
of a logic.

In the second section we introduce some solutions to ?/[λ]-compact =
λ ≤ occurrence no./λ-compact. We then prove that if a logic L has the
amalgamation property, then L is [λ]-compact iff λ is an occurrence cardinal
of L (for regular λ).

In the third section we prove that if 0 < κ0 < κ1 are compact cardinals,
then there is an [ω]-compact logic having amalgamation property.

7. Compactness revisited
LABEL 〈g1〉

Observation 7.1. The following are equivalent:

(1) L is [λ]-compact for every regular λ ≥ λ0 (i.e. , is eventually com-
pact).

(2) L is [λ]-compact for every λ ≥ λ0.
(3) L is [∞, λ0]-compact.
(4) L is (∞, λ0)-compact.

Remark: See [Mak85, 4.3.6(ii)]. For original references to the facts we
shall use, see [Mak85].

Proof. (2)⇒ (3) by [Mak85, 1.1.7(1)], (3)⇔ (4) by [Mak85, 1.17(1)] (3)⇒
(1) by [Mak85, 1.1.6(i),(ii)] Assume (1) and let us prove (2). If λ = λ0 is
regular this is clear by (1); if λ is singular, by (1), L is [λ+]-compact, hence
by [Mak85, 1.4.9 ] there is a uniform ultrafilter F on λ+ which belongs to
UF (L), so by [Mak85, 1.4.11(ii)] F is (λ+, λ)-regular, hence by [Mak85,
1.4.9(i)] L is [λ+, λ]-compact hence is [λ]- compact. �

LABEL 〈g2〉
Conclusion 7.2. (1) In [Mak85, 4.3.8] we can conclude L is (∞, ωα)-

compact.
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(2) In [Mak85, 3.3.1] we can conclude L is (∞, λ)-compact.

The following lemma, by [Mak85, 2.1] can be rephrased as a pure set-
theoretic lemma on ultra-filters.

LABEL 〈g3〉
Lemma 7.3. Suppose λ is singular, κ = cf(λ),L is [λ]-compact but not
[κ]-compact and λ =

∑
i<κ λi, λi < λ, each λi regular.

Suppose µ is a regular cardinal > λ.

(1) Suppose there are fα ∈ Πi<κλi (for α < µ) such that for every
α < β, fα <D<κ fβ (see below) and for every f ∈ Πi<κλi for some
α, f <D<κ fα. Then L is [µ]-compact.

(2) If there are fα ∈ Πi<κλi(α < µ) such that fα <Dα fβ for α < β < µ
and for every f ∈ Πi<κλi for some α < µ, f <Dκ fα and χ is a
regular cardinal < κ (so κ > ℵ0), then L is [µ]-compact or [χ]-
compact where

LABEL 〈g4〉
Notation 7.4. (1) D<κ = {A ⊆ κ : |κ − A| < κ}. Dκ is the filter of

closed unbounded sunsets of λ.
(2) For f, g ∈ Πi<κ, λi, g <D g if {i < κ : f(i) < g(i)} ∈ D (more

formally we should write f(λi) < g(λi).
LABEL 〈g5〉

Remark 7.5. (1) So really the hypothesis of 7.3(1) 7.3(2) above speaks〈g3〉
〈g3〉

about the cofinality of Πi<κλi/sD. See [She86]; [She90][27]; [28. Ch.
XIII, §5, §6 and [She94]. We can get cases where the hypothesis of
7.3(1) or 7.3(2) holds for some λi (given λ, µ). E.g.〈g3〉

〈g3〉
LABEL 〈g6〉

Lemma 7.6. (1) Suppose λ is singular, κ = cfλ, (∀χ < λ)χκ < λ, κ is
uncountable, µ = λ+. Then we can find λi(i < κ), fα(α < µ) as in
7.3(2). [Let 〈λ0

i : i < κ〉 be increasing continuous,
∑
λ0
i = λ;λi =〈g3〉

(λ0
i )

+, fα ∈ Πi<αλi, fα <Dκ fβ for α < β.]
(2) Suppose λ is singular, κ = cfλ, µ = λ+, (∀λ0 < λ)(λκ0 < λ). Then we

can find λi(i < κ) and fα(α < λ+) as required in 7.3(1). [See [28,〈g3〉
Ch. XIII, §5].]

LABEL 〈g7〉
Remark 7.7. In 7.3 we can use other filters (instead D<κ); we can use a filter〈g3〉 D on κ if

(*) κ,D, {A : κ − A /∈ D) is L-characterizable (see 2.3) (and D extends〈2.3〉
D<κ).

By [28] in case (2) of 7.6, for every regular µ, λ ≤ µ ≤ λκ[κ > ℵ0] for〈g6〉
some [normal] ultrafilter D on κ, there are fα(α < µ) as required. So if e,g,
2κ = κ+, (∗) will hold.

Proof. of 7.3〈g3〉
Let λ′ be a large enough regular cardinal, andN an expansion of (H (λ′),∈

) which L-cofinally characterizes any cardinal ≤ µ which can be L-cofinally
characterized. In particular we shall assume the conclusion fails, i.e., µ is
L-cofinally characterizable.
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So N has an elementary extension N∗, and there is α∗ ∈ N∗ such that

N∗ |= “a∗ is a subset of λ of power < λ”.

but for every i < λ,N∗ |= “i ∈ a∗”.
As L is not [κ]-compact, N∗L-cofinally characterized κ, hence {i : i < κ}

is unbounded in κN
∗
, hence for some i(∗) < κ

N∗ |= “a∗ has power < λi(∗)”.

Now there is f∗ ∈ N∗ s.t.

N∗ |= “f∗ ∈
∏
i<κ

λi and for i(∗)lei < κ, f∗(i) = sup(a∗ ∩ λi)”

(clearly f∗ exists-the sentence asserting it is satisfied by N).
Hence N∗ |= “for some α < µ, f∗ <Dfα” (where D = D<κ or D = Dκ

according to the case). As NL- cofinally characterizes µ, and

N∗ |= “{fα : α < µ〉 is <D −increasing, <D a partial order

and for every f ∈
∏
i<κ

λi for some α, f <Dfα ”

there is α < µ s.t.

N∗ |= “f∗ <Df∗α , i.e., {i < κ : f∗(i) < fα(i)} ∈ D”.

As fα ∈ N, and by the choice of a∗, as we may increase i(∗) without loss of
generality , for every i

i(∗) ≤ i < κ, N∗ |= “fα(i) ∈ a∗” hence N∗ |= “f∗(i) > fα(i)”.

We can conclude that for some b ∈ N∗, N∗ |= “b ∈ D and i /∈ D” for every
i < κ (remember N∗ |= “every co-bounded subset of κ belong to sD”).

So really the requirement from 7.7 suffices. Why it holds: For D = D<κ, 〈g7〉
this is very easy: {i : i < κ} is an unbounded subset of κ(κN

∗
, <N

∗
) (as L

is not [κ]-compact). For sD = Dκ we use the failure of [κ]-compactness and
of [χ]− compactness of L. �

8. Amalgamation implies [λ]-compactness for λ an occurrence
cardinal

We generalize here the main result of Makowsky-Shelah [MS83], For this
we analyze more closely the occurrence cardinal; just as previously compact-
ness was sliced to [λ]-compactness we suggest here some interpretation to
“[λ]-occurrence cardinals”.

We can generalize this to the context of abstract elementary submodel
relations, as in Makowsky-Mundici [?]. For this [λ, κ]-compactness will be
reinterpreted as “(λ, S<κ(λ), {A ⊆ λ : A 6= λ})-characterization” (see Defini-
tion 8.3) and [λ]-occurrence can be interpreted by “if M ⊆ N,

⋃
i<λAi ⊆ |M | 〈h3〉

and for every S ⊆ λ, |S| < λ the models M,N are isomorphic over
⋃
i∈S Ai,
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then M,N are isomorphic over
⋃
i<λAi” (it is more reasonable to define [λ]-

occurrence by “if τ =
⋃
i<λ τi,M,Nτ -models, M �

⋃
i∈S τi ≡ N �

⋃
i∈S τi for

every S ⊆ λ, |S| < λ, then M ≡ N” where ≡ is either a basic relation (which
we axiomatize or interpret as having a common elementary extension).

LABEL 〈h1〉
Definition 8.1. (1) A cardinal λ is an occurrence number (of cardinal)

of (the logic) L if for every sentence ψ = ψ(. . . , Rt, . . .)t∈J , J ⊆ λ×I
for any model M and relations R0

t , R
1
t (t ∈ J) over it (with the right

arity, etc.) for some S ⊆ λ, |S| < λ, if S ⊆ T ⊆ λ, |T | < λ then

(∗) M |= ψ(. . . , R0
t , . . .)t∈J ≡ ψ(. . . , R0

t , . . . , R
1
s, . . .)t∈J∩T×Is∈J∩(λ−T )×I

(2) We call λ a strong occurrence number of L, if S above depends on
ψ(. . . , Rt, . . .) (and not on M and the relation Rlt interpreting the
predicates Rt).

(3) We call λ a weak occurrence number of L, if every ψ, J, I,M,Rlt(l =
0, 1, t ∈ J) as in (1), for every S ⊆ λ, |S| ⊆ λ, there is T, S ⊆ T ⊆
λ, |T | < λ, satisfying (*) of (1).

Note
LABEL 〈h2〉

Fact 8.2. (1) The following implication holds: “L is [λ]-compact” ⇒ “λ
is a strong occurrence number of “L”⇒ “λ is an occurrence number
of L”⇒ “λ is a weak occurrence number of L”.

(2) oc(L) = Min{λ : every µ ≥ λ is a strong occurrence number of L}.
LABEL 〈h3〉

Definition 8.3. (1) For families Pl ⊆ P(λ) we say (λ,P1,P2) is L-
characterizable if: for some model M expanding some (H (µ), ε)(µ <
2λ) for every L-elementary extension N of M , and a s.t. N ⊆ “a ∈
P1” the set {α < λ : N |= α ∈ A} belongs to P2.

(2) Under such circumstances we say NL-characterizes (λ, P1, sP2).
(3) If P = P1 = P2 (the case which interests us) we write (λ,P) instead

of (λ,P1,P2).
LABEL 〈h4〉

Definition 8.4. We say (λ,P) (where P ⊆ P(λ)) is L-oc-characterizable if
for some ψ, I, S,M,Rlt the following hold, where J ⊆ λ × I, ψ − ψ(Rt)t∈J
and Rlt are relations on M . For every A ⊆ λ we define RA〈α,S〉 by: RA〈α,s〉 is

R0
〈α,s〉 if α ∈ A and R1

〈α,s〉 if α /∈ A. Then

P = {A ⊆ λ : (M,Rlt)t∈J,l=1,2 |= ψ(RAt )t∈J .
LABEL 〈h5〉

Claim 8.5. If (λ,P) is L-oc-characterizable, then (λ,P) is L- characteriz-
able.

LABEL 〈h6〉
Fact 8.6. (1) Suppose (λ,P) is L-characterizable, F a compact ultrafil-

ter of L on µ. Then P(λ) and P(λ)−R are F -closed, i.e., if Aα ⊆ λ
(for α < µ) then:

LimF 〈Aα : α < µ〉 = {i < λ : {α < µ : i ∈ Aα} ∈ F}
belongs to P iff {α ∈ µ : Aα ∈ P}belongs to F .
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(2) If (λ,P1,P2) is L-characterizable, F a compact ultrafilter of L on µ,
then

{α < µ : Aα ∈ P1} ∈∈ F ⇒ (LimF 〈Aα : α < µ〉) ∈ P2.

(3) The converses of (1),(2) holds; (λ,P1,P) is L-characterizable iff

P2 includes clL(P1) = {LimF 〈Aα : α < µ〉 : Aα ∈ P, F ∈ UF(L)}.

(4) L is [λ]-compact iff (λ, {A ⊆ λ : |A| < λ}) is not L -characterizable.

Proof. (4) If L is not [λ]-compact, there are sets of sentences Γi(i < λ)
(from L) such that

⋃
i<λ Γi has no model, but

⋃
i∈A Γi has a model for

every A ⊆ λ of cardinality < λ; let Ma be a model of
⋃
i∈A Γi. Suppose

M expands (H (µ),∈), µ large enough, N is an L-elementary extension of

M,N |= “a ⊆ λ” and A
def
= {i < λ : N |= “i ∈ a”} has power λ.

In H (µ) we can find Γ1
i (i ∈ A), a set of L-sentences such that

⋃
i∈A Γ1

i

has no model and we can find M ′B, a model of
⋃
i∈B Γ1

i for B ⊆ A, |B| < λ.
The function M ′B (i.e. B 7→ M ′B) is in H (µ), and so M ′a∩{i:N |=i∈A} is well

defined and is a model of
⋃
i∈A Γ1

i (check for each sentence). Contradiction.
If L is [λ]-compact, the proof is easy too. �

LABEL 〈h7〉
Claim 8.7. For any ultrafilter F on µ and a logic L(1)⇒ (2) where:

(1) For every L-oc-characterizable (λ,P), and

Aα ⊆ λ(α < µ), {Aα : Aα ∈ P, α < µ} ∈ F iff (LimF 〈Aα : α < µ〉) ∈ P.

(2) Min{|A| : A ∈ F} is an occurrence cardinal of L.

Proof. Without loss of generality µ = Min{|A| : A ∈ F} as if B ∈ F, (∀A ∈
F )(|B| ≤ |A|) then for our purposes F and F � B = F∩P(B) are equivalent.

Let us check (1) ⇒ (2). Suppose ψ = ψ(Rt), T ∈ µ × I,M,Rlt(t ∈ J, l =
0, 1) are as in Definition 8.1(1). Suppose (2) fails this instance. Then for 〈h1〉
every S ⊆ λ, |S| < µ there is T, S ⊆ T ⊆⊆ µ, |T | < µ and

(∗)T M |= ψ(. . . , R0
t , . . .)t ≡ ¬ψ(. . . , R0

t , . . . , R
1
s, . . .)oversett∈J∩(T×I)s∈J∩((λ−T )×I .

Hence we can find Aα ⊆ µ, |Aalpha| < µ for α < cfµ, such that Aα ⊆ Aβ
for α < β and

(∗)Aα holds. Now (letting µ be regular for notational simplicity) and by
(1)

M |= ψ[. . . , R0
t , . . .] iff {α : M |= ψ(. . . , R0

s, . . . , R
1
t ) s∈J∩Aα timesI

t∈J∩((µ−Aα)×I)
} ∈ F.

But the last set is empty. �
LABEL 〈h8〉

Main Theorem 8.8. Suppose sL has the amalgamation property. Then
for every weak occurence cardinal λ of L,L is [λ]-compact provided that λ is
regular.
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Remark: So we have considered vatious compactness demands. (We
consider occurence restriction as very weak compactness demands.) By the
theorem they coincide for logics with the amalgamation property.

Proof. We assume the conclusion fails.
Part A. There is a model M , expanding some (H (λ′), ε), 2λ < λ′, which

L-characterize (λ, {A ⊆ λ : |A| < λ}). Let λ be an individual constant of
M .

Part B. We now define a class K(M). A model of K(M) has the form
A = 〈A0, A1, A2; Q̄.R.F 〉 s.t.

(K1) (2, Q̄) is M .
(K2) R ⊆ A1 is a one-place relation.
(K3) F is a partial two-place function, with F (x, y) is defined iff x ∈

A1, y ∈ A2,M |= “y < λ”, and F (x, y) ∈ A0 when defined.
(K4) For every x ∈ A1, λ > i 6= j ⇒ F (x, i) 6= F (x, j).
(K5) For every x, y ∈ A1

x = y iff {F (x, i) : i < λ} ∩ {F (y, i) : i < λ} has power ≥ λ
iff {i < λ : F (x, i) 6= F (y, i)} has power < λ.

We use A.B to denote members of K(M).

Part C. We say that A ⊆K B if A ⊆ B (i.e., A is a submodel of B) and
for every x ∈ AB

1 −AA
1 , {i < λ : F (x, i) ∈ AA

0 } has power < λ.

For c ∈ AA
1 , (A ∈ K(M)), then let A[c] be a model equal to A except for

the relation R which satisfies:

ifA |= x 6= c ∧ x ∈ AA
1 , then x ∈ RA ⇔ x ∈ RA[c],

ifA |= x = c, then x ∈ RA ⇔ x /∈ RA[c].

Part D. We say that (A,B, c, Ci)i<λ is a special sequence if:

(a) A ⊆ B, c ∈ AgB1 − AA
1 and 〈Ci : i < λ〉 is a partition of AA

1 ∪
AA

0 , F (x, i) ∈ Ci for i < λ,

(b) for every S ⊆ λ, |S| < λ, there is an isomorphism g0
s [g

1
s ] from B[gB[c]]

onto A which is the identity on AA
2 ∪

⋃
i∈S Ci.

For a while, we shall investigate special sequences, and draw the
conclusion. Later we shall build such a sequence.

Part E. A is an L-elementary submodel of B. So let ψ be a sentence in the
vocabulary τA + |A|; and we should prove A |= ψ ⇒ B |= ψ. For clarity
we explicate the dependence of ψ on the elements of AA

0 ∪AA
1 and suppress

the rest (in the notation). Let Ci = {d0
i,α : α < α} (with not repetition);

d1
i,α = d0

0,0, and for S ⊆ λ let

(1) dSi,α =

{
d0
i,α, i ∈ S,
d1
i,α, i /∈ S.
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Now we let ψ = ψ(. . . , d0
i,α . . .)i<λ,α<α1 . For S ⊆ λ, |S| < λ, applying g0

S ,

applying g0
S (see (b) in Part D):

A |= ψ(. . . , dSi,α, . . .)⇔ B |= ψ(. . . , dSi,α, . . .)

We now want to find S ⊆ λ, |S| < λ, s.t.

A |= ψ(. . . , dS1,α, . . .) ≡ ψ(. . . , d0
i,α, . . .),

B |= ψ(. . . , dSi,α, . . .) ≡ ψ(. . . , d0
i,α, . . .).

At first glance the definition of the weak occurrence number guarantees the
existence of an S satisfying each one of those demands, but why both? As
we can use conjunction: let φ0, φ1 ∈ {ψ.¬ψ}, suppose

A |= φ0[. . . , d0
i,α, . . .], B |= φ1[. . . , d0

i,α, . . .],

so (with changes of names) apply the definitions to the model [A,B], to the
conjunction of those sentences.

Part F. A is an L-elementary submodel of B[c]. Use g1
S instead of g0

S
above.

Part G. The following diagram cannot be completed by sL-embedding,
i.e., we cannot find gA∗h0, h1 like that. without loss of generality h0 � |A| =
h1 � |A| = h1 � |A| is the identity. Now we shall prove h0(c) and h1(c) are
equal. If not, then

A∗ |= “{i < λ : F (h0(c), i) = F (h1(c), i)} has power < λ”.

By the definition of K(M) this implies {i < λ : A∗ |= F (h0(c), i) =
f(h1(c), i)} has power < λ; but we know (by (a) of Part D), F (hi(c), i) ∈
Ci ⊆ |A|. hence F (h1(c), i) = F (c, i), hence that this set is λ itself. So a
contradiction, hence A∗ |= h0 = h1(c), hence

h0(c) ∈ RA∗ ⇔ h1(c) ∈ RA∗

buth0(c) ∈ RA∗ ⇔ c ∈ RB ⇔ c /∈ RB[c] ⇔ h1(c) /∈ RA∗, a contradiction.

We finish the proof of the theorem (as we have assumed amalgamation)
modulo the construction of the special sequence.

We shall have AA
0 ∪ A|gA1 = λ,Ci = {i}. So clearly it is enough for (b)

of Part D to have:
(b′) for every S ⊆ λ, |S| < λ,A,B,B[c] are isomorphic over S. For regular

λ it is enough to have
(b′′) for every α < λ,A,B.B[c] are isomorphic over α.
Part I Construction (alternatively see Part J). We shall define by in-

duction on α < λ, models Aα,Bα ∈ K with c ∈ ABα
1 − AAα

1 , functions
glα,β(β < α) such that

(1) Aα,Bα, c satisfy (a) and (b) of Part D, except that F (x, i) is defined
for i < α only.

(2) ABα
0 ∪ABα

1 has power < λ.
(3) 〈AB : β < α〉 is increasing continuous (by ⊆ not ⊆K).
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(4) If β ≤ i < α, b, a ∈ ABβ
1 ; then Bβ |= F (a, i) 6= F (b, i)(ifa 6= b).

(5) g0
α,β is a partial isomorphism from (Bα)[c] into Aα, hence if i < α.x ∈
ABα

1 ∩Domg1
α,β then (F (x, i)) = F (g1

α|β(x), i).

(7) glα,β is the identity over |Aβ|.
(8) For β ≤ α(0) ≤ (1), glα(0),β ⊆ g

l
α(1),β

(9) For every l = 0, 1, β ≤ α < λ for some γ ≥ α, |Bα| ⊆ Domglγ,β.

(10) For every l = 0, 1, β ≤ α < λ, for some γ ≥ α, |Aα| ⊆ Rangglγ,β
There is no problem in the proof.

�

9. A Strange logic with the JEP

In this section we give an [ω]-compact logic satisfying the JEP, and which
is stronger than first- order logic. This contradicts previous hopes. Really
if λ is a compact cardinal, D a family of ultrafilters on cardinals < λ we
can define Lλ,λ/D as we defined L′ (in 9.1’s proof) allowing ∧Ei<µ for any〈i1〉
E ∈ P(µ) s.t. E and P(µ) − E are D -closed [i.e., E is D-closed if Ai ∈
E, i < χ < λ,D ∈ D an ultrafilter on χ implies limD Ai ∈ E]. By 9.4, if〈i4〉
some non-uniform ultrafilter on ω belongs to D, then we can without loss
of generality restrict ourselves to E which are ultrafilters on some µ < λ.
In any case for Lλ,λ/D to satisfy JEP (hence AM) it suffices to prove the
parallel of subclaim 9.2: if µ < λ,E ⊆ P(µ) is D-closed, µ /∈ E, then for〈i2〉
some E1 ⊆ P(µ)− E,µ ∈ E1, and E1,P(µ)− E1 are D-closed.

By Claim 9.4 if L is [ω]-compact, the dependency of the sentence ψ(. . . , R̄i, . . .)〈i4〉
on the choice of the R̄i’s is a finite sum of ℵ1-complete ultrafilters and sin-
gletons.

LABEL 〈i1〉
Theorem 9.1. Suppose ℵ0 < κ < λ and κ, λ are compact cardinals. Let the
logic L be the following sublogic of Lλ,λ: the formulas are the closure of the
atomic formulas by:

¬ψ1, ψ1 ∧ ψ2, (∃x0, . . . , xi, . . .)i<µψ when µ < λ, and

D∧
i<µ

ψi

where D is a κ-complete ultrafilter on µ < λ, and
∧D
i<µ ψi means {i : ψi holds

} ∈ D (i.e.,
∨
A∈D

∧
i∈A ψi). Then L is [λ,< ∞]-compact, satisfies funny

Ltheorem for any ultrafilter D on any µ < κ (hence is [ω]-compact), has
the JEP (hence the amalgamation property) but is stronger than first-order
logic.

Proof. For a cardinal µ and family E ⊆ P(µ) define

E∧
i<µ

ψi =
∨
A∈E

(
∧
i∈A

ψi ∧
∧

i∈λ−A
¬ψi).
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We call E(< κ)-closed if for every χ < κ and ultrafilter D on χ and Ai ⊆
µ(i < χ)

{i : Ai ∈ E} ∈ D

implies

lim
D
Ai = {α < µ : {i < χ : α ∈ Ai} ∈ D} ∈ E.

We call E(< κ)-bi-closed if E,P(µ) − E are (< κ)-closed. Clearly if E is
a κ-complete ultrafilter, then E is (< κ)-bi-closed. Define a logic L′ like

L but we allow
∧E
i<µ ψi for every (< κ)-bi-closed E (for µ < λ). We shall

prove that L′ is as required, and then it follows by Claim 9.4 that L,L′ are 〈i4〉
(essentially) equal.

(A) Fact. L′ is [λ,<∞]-compact. This is so because L′ ⊆ Lλ,λ.
(B) Fact. L′ satisfies funny Ltheorem for any ultrafilter D on χ < κ.

This follows by direct checking (the definition of (< κ)-closed is
tailor-made for this).

(C) Fact. L′ has the JEP.

Let M1,M2 be L′-equivalent. It is enough to show that CDL′(M1) ∪
CDL′(M2) has a model (where cDD′(M) is the complete L′-theory of (M, c)c∈[M ]).
By Fact A it is enough to show that if Γl ⊆ CDL′(Mt), |Γi| < λ for l = 1, 2
then Γ1∪Γ2 has a model. Without loss of generality |M1|, |M2| are disjoint.
Let Γ2 = {φi(ā) : i < µ} and

E0 = {A ⊆ µ : Γ1 ∪ {φli : i ∈ A} has a model}.

If µ ∈ E0 we finish, so assume µ /∈ E0 we finish, so assume µ /∈ E0, and it is
also clear that ϕ ∈ E0 (as M1 is a model of Γ1 if we expand it by suitable
individual constants).

By Fact B, E is (< κ)-closed. We shall later prove �

LABEL 〈i2〉
Subclaim 9.2. If E ⊆ P(µ)(µ < λ) is (< κ)-closed, µ /∈ E, then there is
an E1 ⊆ P(µ)− E0, µ ∈ E1 such that E1 is (< κ)-bi-closed.

Now M2 ⊆
∧
i<µ φi(x̄) is in Lλ,λ but not neccessarily in L′). As µ ∈

E1,M2 |=
∧E1

i<µ φi(ā), hence M2 |= (∃x̄)[∧E1

i<µφi(x̄)] (as |Γ2| < λ without loss

of generality x̄ has length < λ). But (∃x̄)[
∧E1

i<µ φi(x̄)] belongs to L′, hence

also M1 satisfies this sentence, hence for some b from M1,M1 |=
∧E1

i<µ φi[b̄],

hence for some A ∈ E1,M1 |=
∧
i∈A φi(b̄), so Γ1 ∪ {φ1(ā) : i ∈ A} has a

model, hence A ∈ E, contradicting “E1 ⊆ P(µ)− E”.

Proof. of Subclaim 9.2. 〈i2〉
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E1 exists iff the following set of sentences in the Lκ,κ-propositional cal-
culus has a model, (let pA(A ∈ P(µ)) stand for the truth value of A ∈ E1):

¬pA(A ∈ E),

pµ,

pC ≡
∨
B∈D

∧
i∈B

pAi when C = lim
D
Ai, Ai ∈ P(µ) for i < χ, χ < κ.

As κ is compact, we can look at any subset of power < κ, so it involves
< κA’s and there is an equivalence relation E on µ with < κ equivalence
classes, such that we mat consider only A =

⋃
a∈A a/E. So we reduce the

problem to the case µ < κ. Now there is a finite w ⊆ µ s.t. (∀A ∈ E)w * A
[because otherwise for any finite w ⊆ µ,Aw ∈ E s.t. w ⊆ Aw let I = {w ⊆
µ : w finite},D an ultrafilter on I s.t.{u ∈ I : w ⊆ u} ∈ J for every w, then
limD Aw = µ /∈ E0 but Aw ∈ E, a contradiction]. Let

E1 = {A ⊆ µ : w ⊆ A}.
It is easy to check all the demands. �

LABEL 〈i3〉
Claim 9.3. Suppose D is a filter on λ (i.e., a dual to an ideal of the Boolean
algebra P(λ)) and suppose

(*) if An ⊆ λ,An /∈ D for n < ω and Lim An exists, then it is not in D.
Then there is a partition of λ to finitely many sets, 〈Al : l < n〉 for l > n,

and an ℵ1- complete ultrafilter Dl on Al(Al may be a singleton and then
Dl = {Al}) s.t. D = {B ⊆ λ : (∀l < n)(B ∩Al ∈ Dl)}.

Proof. Let I = {λ − A : A ∈ D}, so I is an ideal. We shall prove that
P(λ))I is finite. Otherwise the Boolean algebra P(λ)/I has infinitely many
pairwise disjoint non-zero elements Al/I(l < ω), i.e., Al /∈ I, Al ∩ Am ∈ I
for l /∈ m. As

Al − (Al
⋃
m<l

Am) ⊆
⋂
m<l

(Al ∩Am) ∈ I,

without loss of generality Al ∩ Am = ∅ for l 6= m. Now λ − Al /∈ D, hence
by (*), liml(λ−Al) /∈ D but liml(λ−Al) = λ (as every i belongs to at most
one Am), contradiction.

So P(λ)/I is finite; let Al/I(l < n) be its atoms, without loss of generality
〈Al : l < n〉 is a partition of λ. So Il = I ∩ P(Al) is a maximal ideal of
P(Al),Dl = P(Al) − Il is an ultrafilter on Al. Now Dl os ℵ1-complete,
otherwise there are Bk ∈ Il(k < ω) with

⋃
k<ω Bk = Al. Without loss of

generality Bk ⊆ Bk+1. So

B′k
def
= Bk ∪

⋃
l /∈k

l < nAl

is not in D, but limk<w B
′
ω = λ again a contradiction to (*). �

LABEL 〈i4〉
Claim 9.4. If L is an [ω]-compact logic, and ψ = ψ(. . . , R̄i, . . .)i<λ is a
sentence of L, then for some partition A0, . . . , An−1 of λ, and ℵ1-complete

Paper Sh:199, version 2024-06-21. See https://shelah.logic.at/papers/199/ for possible updates.



REMARKS IN ABSTRACT MODEL THEORY 35

ultrafilters Dl on Al (maybe Al = {i}, Dl = {Al}), the following holds:
beginenumerate

(+) If R̄i, R̄
′
i (for i < λ) are sequences of relations of the right arity on B,

and {i ∈ Al : R̄i = R̄i} ∈ Dl for l = 0, n− 1, then

(B, . . . , R̄i, . . .) |= ψ iff (B, . . . , R̄′i, . . .) |= ψ.

Now if A0, A1 ∈ D, then A = A0 ∩A1 ∈ D (for any B, R̄, R̄′i as above define
R̄′′i as Ri if i ∈ A0 and as R′i if i ∈ λ−A0 and apply D’s definition). Also if
An ∈ P(λ)−D, A = limnAn (and its exists) we let Bn, R̄n,i, R̄

′
n,i exemplify

An /∈ D, i.e.,

(Bn, . . . , R̄n,i, . . .) |= ψ(. . . , R̄n,i, . . .),

(Bn, . . . , R̄
′
n,i, . . .) |= ¬ψ(. . . , R̄′n,i, . . .).

By the [ω]-compactness of L we get easily a counterexample showing A /∈ D.
So we can apply Claim 9.3 〈i3〉
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