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Abstract. In the original version of this paper, we assume a theory T in the
logic Lκ,ℵ0 is categorical in a cardinal λ > κ, and κ is a measurable cardinal.

There we prove that the class of models of T of cardinality < λ but ≥ |T |+ κ

has the amalgamation property under a natural order; this is a step toward
understanding the character of such classes of models.

In this revised version we replaced the class of models of T by k, an AEC
(abstract elementary class) which has LST-number <κ, or at least which be-

haves nicely for ultra-powers by D, some normal ultra-filter on κ or just LST+
k -

complete non-principal ultra-filters on κ.

Presently sub-section §1A deals with T ⊆ Lκ+,ℵ0 (and so does a large part

of the introduction and little in the rest of §1), but otherwise, all is done in
the context of AEC.

The reader may in the first reading for transparency fix D, a normal ultra-

filter on the measurable cardinal κ and either fix the T ⊆ Lκ,ℵ0 or fix an AEC
k with LSTk < κ.

We leave the original introduction adding a few comments at the end, after
the three stars.
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2 S. SHELAH AND OREN KOLMAN

Annotated Content

§0 Introduction, pg. 4.

§1 Preliminaries, pg. 6.

[In §1A we review materials on fragments F of Lκ,ℵ0 (including the theory
T ) and basic model-theoretic properties (Tarski-Vaught property and L.S.),
and we define amalgamation. In §1B we move to AEC k = (K,≤k) which
is our main framework now, and spell out the connection. In §1C, D we
deal with indiscernibles and E.M. models, then we deal with limit ultra-
powers which are suitable (for Lκ,ℵ0 and for our AECs) and in particular
ultra-limits. Next, we introduce a notion basic for this paper: M ≤

nice
N if

there is a ≤k-embedding of N into suitable ultra-limit of M extending the
canonical embbeding.]

§2 The amalgamation property for regular categoricity, pg. 17.

[We get amalgamation in (Kλ,≤k) when one of the extensions is nice, see
Claim 2.1. We prove that if k is categorical in the regular λ > LSTk + κ,
then (K<λ,≤k) has the amalgamation property. For this, we show that
nice extension (in K<λ) preserves being a non-amalgamation basis. We
also start investigating (in Theorem 2.5) the connection between extending
the linear order I and the model EM(I): I ⊆

nice
J ⇒ EM(I) ≤

nice
EM(J); and

give sufficient condition for I ⊆
nice

J (in Criterion 2.6). From this, we get

in Kλ a model such that any sub-model of a suitable expansion is a ≤
nice

-

sub-model (in Fact 2.8, Theorem 2.11(2)), and conclude the amalgamation
property in (K<λ,≤k) when λ is regular (in Theorem 2.10) and something
for singulars in Theorem 2.11.]

§3 Toward removing the assumption of regularity from the existence of universal
extensions, pg. 23.

[The problem is that EM(λ) has many sub-models which “sit” well in it
and we can prove that there are many amalgamation bases but we need to
get this simultaneously. First in Theorem 3.1 we show that, if 〈Mi : i < θ+〉
is ≤k-increasing continuous sequence of models from Kθ, then for a club of
i < θ+ we have Mi ≤

nice

⋃
{Mj : j < θ+}. In Definition 3.6, we define nice

models (essentially, every reasonable extension is nice). Next (in Theorem
3.4) we show that nice models are dense in Kθ. Also (by Theorem 3.5)
many embeddings are nice and (in Corollary 3.6) we show that being nice
implies being amalgamation base. Then we define a universal extension of
M ∈ Kθ in K∂ (Definition 3.7), we prove existence over a model in Lemma
3.10 and after preparation prove the existence (Corollary 3.13, Corollary
3.14).]

§4 (θ, ∂)-saturated models, pg. 28.

[If Mi ∈ Kθ for i ≤ ∂ is increasing continuous, Mi+1 universal over Mi,
and each Mi is nice, then1 we say M∂ is (θ, ∂)-saturated over M0. We show
existence (and uniqueness). We connect this to more usual saturation and
prove that (θ, ∂)-saturation implies niceness (in Theorem 4.11).]

§5 The amalgamation property for K<λ, pg. 33.

1In [She09b] we say Mj is (θ, ∂)-brimmed.
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CATEGORICITY AND AMALGAMATION FOR AEC, AND κ MEASURABLE 3

[After preliminaries we prove that for θ ≤ λ (and θ ≥ LST(k) +κ of course)
every member of Kθ can be extended to one with many nice sub-models,
this is done by induction on θ using the niceness of (θ1, ∂1)-saturated mod-
els. Lastly, we conclude that every M ∈ K<λ is nice hence K<λ has the
amalgamation property.]
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4 S. SHELAH AND OREN KOLMAN

§ 0. Introduction

The main result2 of this paper is a proof of the following theorem:

Theorem 0.1. Suppose that T is a theory in a fragment of Lκ,ℵ0 where κ is a
measurable cardinal. If T is categorical in the cardinal λ > κ+ |T |, then K<λ, the
class of models of T of power strictly less than λ (but ≥ χ = κ + |T |), has the
amalgamation property (see Definition 1.12 (1)(2)).

The interest in this theorem stems in part from its connection with the study of cat-
egoricity spectra. For a theory T in a logic L let us define Cat(T ), the categoricity
spectrum of T , to be the collection of those cardinals λ in which T is categorical.
In the 1950’s  Los conjectured that if T is a countable theory in first-order logic,
then Cat(T ) contains every uncountable cardinal or no uncountable cardinal. This
conjecture, based on the example of algebraically closed fields of fixed character-
istic, was verified by Morley [Mor65], who proved that if a countable first-order
theory is categorical in some uncountable cardinal, then it is categorical in every
uncountable cardinal. Following advances made by Rowbottom [Row64], Ressayre
[Res69] and Shelah [She69], Shelah [She74] proved the  Los conjecture for uncount-
able first-order theories: if T is a first-order theory categorical in some cardinal
λ > |T |+ ℵ0, then T is categorical in every cardinal λ > |T |+ ℵ0. It is natural to
ask whether analogous results hold for theories in logics other than first-order logic.
Perhaps the best-known extensions of first-order logic are the infinitary logics Lλ,κ.
As regards theories in Lκ,ℵ0 , Shelah (see [She83a] and [She83b]) continuing work
begun in [She75] introduced the concept of excellent classes: these have models in
all cardinalities, have the amalgamation property and satisfy the  Los conjecture.
In particular, if ϕ is an excellent sentence of Lℵ1,ℵ0 , then the  Los conjecture holds
for ϕ. Furthermore, under some set-theoretic assumptions (weaker than the Gen-
eralized Continuum Hypothesis) if ϕ is a sentence in Lℵ1,ℵ0 which is categorical
in ℵn for every natural number n (or even just if ϕ is a sentence in Lκ,ℵ0 with
at least one uncountable model not having too many models in each ℵn), then ϕ
is excellent. Now, [She87c], [She09c] try to develop classification theory in some
non-elementary classes. We cannot expect much for Lλ,κ for κ > ℵ0. The first
author conjectured that if ϕ is a sentence in Lℵ1,ℵ0 categorical in some λ > iω1

,
then ϕ is categorical in every λ > iω1

. (Recall that the Hanf number of Lℵ1,ℵ0 is
iω1 , so if ψ is a sentence in Lℵ1,ℵ0 and ψ has a model of power λ ≥ iω1 , then ψ
has a model in every power λ ≥ iω1 , see [Kei71]) . There were some who asked
why so tardy the beginning. Recent work of Hart and Shelah [HS90] showed that
for every natural number k greater than 1 there is a sentence ψk in Lℵ1,ℵ0 which
is categorical in the cardinals ℵ0, . . . ,ℵk−1, but which has many models of power
λ for every cardinal λ ≥ 2ℵk−1 . The general conjecture for Lℵ1,ℵ0 remains open
nevertheless. As regards theories in Lκ,ℵ0 , progress has been recorded under the
assumption that κ is a strongly compact cardinal. Under this assumption Shelah
and Makkai [MS90] have established the following results for a λ-categorical theory
T in a fragment F of Lκ,ℵ0 :

1) if λ is a successor cardinal and λ > ((κ′)κ)+ where κ′ = max(κ, |F|), then T is
categorical in every cardinal greater than or equal to min(λ,i(2κ′ )+),

2) if λ > iκ+1(κ′), then T is categorical in every cardinal of the form iδ with δ

divisible by (2κ
′
)+ (i.e. for some ordinal α > 0, δ = (2κ

′
)+ · α (ordinal multiplica-

tion)).

2In the old version.
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CATEGORICITY AND AMALGAMATION FOR AEC, AND κ MEASURABLE 5

In proving theorems of this kind, one has recourse to the amalgamation property
which makes possible the construction of analogs of saturated models. In turn, these
are of major importance in categoricity arguments. The amalgamation property
holds for theories in first-order logic [CK73] and in Lκ,κ when κ is a strongly
compact cardinal (see e.g. [MS90]: although ≺Lκ,κ fails the Tarski-Vaught property
for unions of chains of length κ (whereas ≺Lκ,ℵ0 satisfies it), under a categoricity

assumption it can be shown that ≺Lκ,ℵ0 and ≺Lκ,κ coincide). However, it is not
known in general for theories in Lκ,ℵ0 or Lκ,κ when one weakens the assumption
on κ, in particular when κ is just a measurable cardinal. Nevertheless, categoricity
does imply the existence of reasonably saturated models in an appropriate sense,
and it is possible to begin classification theory. This is why the main theorem of
the present paper is of relevance regarding the categoricity spectra of theories in
Lκ,ℵ0 when κ is measurable.

A sequel to this paper under preparation (which is now [She01b]) tries to provide
a characterization of Cat(T ) at least parallel to that in [MS90] and we hope to
deal with the corresponding classification theory later. This division of labor both
respects historical precedent and is suggested by the increasing complexity of the
material. Another sequel deals with abstract elementary classes (in the sense of
[She87a]) (see [She01b], [She99] respectively). On more work see [She01a], [She09b].

The paper is divided into five sections. Section 1 is preliminary and notational. In
section 2 it is shown that if the theory T ⊆ Lκ,ℵ0 or just suitable AEC K is categor-
ical in the regular cardinal λ > κ+ |T |, then K<λ has the amalgamation property.
Section 3 deals with weakly universal models, section 4 with (θ, ∂)-saturated and
θ̄-saturated models. In section 5 the amalgamation property for K<λ is established.

All the results in this paper (other than those explicitly credited) are due to Saharon
Shelah.

∗ ∗ ∗

On a more recent survey see [Sheb] and a recent one see [SV], in particular on the
history of κ-compact AEC.

We had stated that clearly, the proof of [KS96] works for AEC, but the referee
of [SV] asked to do it explicitly. Here we justify [SV, 4.7]. Note that, [KS96,
1.1, 1.2] essentially proves that (Mod(T ),≺T ) is an AEC ignoring Ax. V of AEC
(see Definition 1.17), so Fact 1.11(2) was added.

We thank Shimoni Garti for his help in proofreading and the referee for pointing
out some obscure points.
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6 S. SHELAH AND OREN KOLMAN

§ 1. PRELIMINARIES

To start things off in this section, let us fix notation, provide basic definitions and
well-known facts, and formulate our working assumptions.

The working assumptions in force throughout the paper are these.

Assumption 1.1. κ is an uncountable cardinal, and D is an uniform non-principal
ultra-filter on κ.

Assumption 1.2.

(1) The theory T is a theory in the infinitary logic Lκ,ℵ0 , χ = κ+|T | and vocabulary
τ = τT , and κ is a measurable cardinal, D is a κ-complete non-principal ultra-filter
on κ, or

(2) k is an AEC which is D-compact (see Definition 1.17 and Definition 1.40 re-
spectively) and χ = κ+ LST(k).

Our main theorem for the logic Lκ,ℵ0 is:

Theorem 1.3. If T ⊆ Lκ,ℵ0 is categorical in λ > κ+|τT | then the class of models of
T of cardinality < λ but ≥ κ+ |τT | (under the so called ≺F , see Notation 1.8(2)(7),
(8)) has the amalgamation property.

Proof. Use Theorem 1.19 on AEC which is applicable by Conclusion 1.23 and re-
calling Definition 1.21 and Claim 1.22. �1.3

From these assumptions follow certain facts, of which the most important are these.

Fact 1.4. For each model M of T , κ-complete ultra-filter D over I and suitable
set G of equivalence relations on I × I (see Definition 1.32) the limit ultra-power
Op(M) = Op(M, I,D,G) is a model of T .

Fact 1.5. For each linear order I = (I,≤) there exists an Ehrenfeucht-Mostowski
model EM(I) of T (see Definition 1.26(6)).

This section is divided into several subsections: in §1A we deal with a theory T in
Lκ,ℵ0 , in §1B we move to AEC k showing that the context in §1A is a special case.
Then in §1C we deal with EM models. Finally, in §1D we deal with ultra-powers,
ultra-limits, and nice sub-models.

§ 1(A). Frame for Lκ,ℵ0 .
Relevant set-theoretic and model-theoretic information on measurable cardinals can
be found in [Jec03], [CK73], and [Dic75].

Notation 1.6. Let τ denote3 a vocabulary, i.e. a set of finitary relation and function
symbols, including equality (i.e. the arity of the symbols in τsk is always finite). So
|τ | is the cardinality of the vocabulary τ .

Definition 1.7.

(1) For cardinals κ ≤ λ, Lλ,κ is the logic such that for any vocabulary τ, Lλ,κ(τ) is
the smallest set of (possibly infinitary) formulas in the vocabulary τ which contains
all first-order formulas and which is closed under:

(A) the formation of conjunctions (disjunctions) of any set of formulas of power
less than λ, provided that the set of free variables in the conjunctions
(disjunctions) has power less than κ,

3In the old version it was called “language” and denoted by L.
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CATEGORICITY AND AMALGAMATION FOR AEC, AND κ MEASURABLE 7

(B) the formation of ∀x̄ϕ,∃x̄ϕ, where x̄ = 〈xα : α < α∗〉 is a sequence with no
repetitions of variables of length α∗ < κ.

(2) Whenever we use the notation ϕ(x̄) to denote a formula in Lλ,κ, we mean that
x̄ is a sequence 〈xα : α < α∗〉 as above. So if ϕ(x̄) is a formula in Lκ,ℵ0 , then x̄ is a
finite sequence of variables.

(3) So L = Lℵ0,ℵ0 is a first order logic.

Notation 1.8.

(1) F denotes a fragment of Lκ,ℵ0(τ), i.e. a set of formulas of Lκ,ℵ0(τ) which
contains all atomic formulas of τ , and which is closed under negations, finite con-
junctions (finite disjunctions), and the formation of subformulas. An F-formula is
just an element of F .

(2) T is a theory in Lκ,ℵ0(τ), so there is a fragment F of Lκ,ℵ0 such that T ⊆ F
and |F| < |T |+ + κ. Let FT be the minimal such F . If not said otherwise, T and
F = FT are fixed.

(3) Models of T (invariably referred to as models) are τ -structures which satisfy
the sentences of T . They are generally denoted M,N, . . . , and |M | is the universe
of the τ -structure M ; ‖M‖ is the cardinality of |M |.
(4) For a set A, |A| is the cardinality of A and <ωA is the set of finite sequences
in A and for ā = 〈a0 . . . an−1〉 ∈ <ωA, lg(ā) = n is the length of ā. Similarly, if
ā = 〈aζ : ζ < δ〉, we write lg(ā) = δ, where δ is an ordinal.

(5) For an element R of τ and a τ -model M , let val(M,R), or RM , be the inter-
pretation of R in the τ -structure M .

(6) We ignore models of power less than κ. K is the class of all models of T ;

Kλ = {M ∈ K : ||M || = λ}, K<λ =
⋃
µ<λ

Kµ, K≤λ =
⋃
µ≤λ

Kµ, K[µ,λ) =
⋃

µ≤χ<λ

Kχ.

(7) We write f : M →
F
N (may be abbreviated f : M → N) to mean that f is an

F-elementary embedding (briefly, an embedding) of M into N , i.e. f is a function
with domain |M | into |N | such that for every F-formula ϕ(x̄), and ā ∈ <ω|M |
with lg(ā) = lg(x̄),M � ϕ[ā] iff N � ϕ[f(ā)], where if ā = 〈ai : i < n〉, then
f(ā) := 〈f(ai) : i < n〉.
(8) In the special case where an embedding f is a set-inclusion (so that |M | ⊆ |N |),
we write M ≺F N (briefly M ≺ N), instead of f : M →

F
N. We may say that M is

an F-elementary sub-model of N , or N is an F-elementary extension of M .

Notation 1.9.

(1) (I,≤I), (J,≤J) are partial orders; we will not bother to subscript the order
relation unless really necessary; we may write I for (I,≤). We say (I,≤) is directed
iff for every i1 and i2 in I, there is i ∈ I such that i1 ≤ i and i2 ≤ i. (I,<)∗ is the
(reverse) partial order (I∗, <∗) where I∗ = I and s <∗ t iff t < s.

(2) A sequence 〈Mi : i ∈ I〉 of models indexed by I is a ≺F -directed system iff
(I,≤) is a directed partial order and for i ≤ j in I,Mi ≺F Mj .

Note that, the union ∪
i∈I
Mi of a ≺F -directed system 〈Mi : i ∈ I〉 of τ -structures is

an τ -structure. In fact, more is true.

Fact 1.10.

(1) (Tarski-Vaught property) The union of a ≺F -directed system 〈Mi : i ∈ I〉 of
models of T is a model of T , and for every j ∈ I,Mj ≺F ∪

i∈I
Mi.
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8 S. SHELAH AND OREN KOLMAN

(2) For M̄ as above, if M is a fixed model of T such that for every i ∈ I there is
fi : Mi →

F
M, I is directed, and for all i ≤ j in I, fi ⊆ fj , then ∪

i∈I
fi : ∪

i∈I
Mi →

F
M .

In particular, if Mi ≺F M and fi is the identity function on Mi for every i ∈ I,
then ∪

i∈I
Mi ≺F M . Let α be an ordinal. A ≺F -chain of models of length α is a

sequence 〈Mβ : β < α〉 of models such that if β < γ < α, then Mβ ≺F Mγ . The
chain is continuous if for every limit ordinal β < α,Mβ = ∪

γ<β
Mγ .

Fact 1.11.

(1) (Downward Löwenheim-Skolem Property): Suppose that M is a model of T ,
A ⊆ |M | and max(κ + |T |, |A|) ≤ λ ≤ ||M ||. Then there is a model N such that
A ⊆ |N |, ||N || = λ and N ≺F M .

(2) If N and M1 ⊆ M2 are τ -models, F is a fragment of Lκ,ℵ0 , and M` ≺F N for
` = 1, 2 then M1 ≺F M2.

Now we turn from the rather standard model-theoretic background to the more
specific concepts which are central in our investigation.

Definition 1.12.

(1) Suppose that < is a binary relation on a class K of models (mainly (K,<) =
(Kk, <k), see below). We say K = 〈K,<〉 has the amalgamation property (AP)
iff for every M,M1,M2 ∈ K, if fi is an isomorphism from M onto rng(fi) and
rng(fi) < Mi for i = 1, 2, then there exist N ∈ K and isomorphisms gi from Mi

onto rng(gi) for i = 1, 2 such that rng(gi) < N and g1f1 = g2f2. The model N is
called an amalgam of M1,M2 over M with respect to f1, f2.

(2) An τ -structure M is an amalgamation base (a.b.) for K = 〈K,<〉 iff M ∈
K and whenever for i = 1, 2,Mi ∈ K and fi is an isomorphism from M onto
rng(fi), rng(fi) < Mi, then there exist N ∈ K and isomorphisms gi (i = 1, 2) from
Mi onto rng(gi) such that rng(gi) < N and g1f1 = g2f2.

(3) We say K = 〈K,<〉 has AP iff every model in K is an a.b. for K.

Example 1.13. Suppose that T is a theory in first-order logic having an infinite
model. Define, for M,N in the class K≤|T |+ℵ0 of models of T of power at most
|T |+ℵ0, M < N iff the indentity on |M | is an embedding of M onto an elementary
sub-model of N. Then K≤|T |+ℵ0 = 〈K≤|T |+ℵ0 , <〉 has AP, (see [CK73]).

Example 1.14. Suppose that T is a theory in Lκ,ℵ0 and F is a fragment of Lκ,ℵ0
containing T with |F| < |T |+ + κ. Let < be the binary relation ≺F defined on the
class K of all models of T . M ∈ K is an a.b. for K iff whenever for i = 1, 2,Mi ∈ K
and fi is an ≺F -elementary embedding of M into Mi, there exist N ∈ K and F-
elementary embeddings gi(i = 1, 2) of Mi into N such that g1f1 = g2f2.

Definition 1.15. Suppose that < is a binary relation on a class K of models.
Let µ be a cardinal. M ∈ K≤µ is a µ-counter amalgamation basis (µ-c.a.b.) of
K = 〈K,<〉 iff there are M1,M2 ∈ K≤µ and isomorphisms fi from M into Mi such
that:

(a) rng(fi) < Mi(i = 1, 2),
(b) there is no amalgam N ∈ K≤µ of M1,M2 over M with respect to f1, f2.

Observation 1.16. Suppose that T,F and < are as in Example 1.14 and κ+ |T | ≤
µ < λ. Note that if there is an amalgam N ′ of M1,M2 over M (for M1,M2,M in
K≤µ), then by Fact 1.11(1) there is an amalgam N ∈ K≤µ of M1,M2 over M .

§ 1(B). Replacing T by AEC.

On AEC see [She87a], [She09a] or [Bal09], recall:
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CATEGORICITY AND AMALGAMATION FOR AEC, AND κ MEASURABLE 9

Definition 1.17. We say k = (Kk,≤k) is an a.e.c. with L.S.T. number λ(k) =
LSTk = LST(k), we may write K for Kk, when K is a class of τk-models, ≤k a
two-place relation on K and

• Ax 0: The holding of M ∈ K,N ≤k M depend on N,M only up to iso-
morphism, i.e. [M ∈ K,M ∼= N ⇒ N ∈ K] and [if N ≤k M and f is an
isomorphism from M onto the τ -model M ′ and f � N is an isomorphism
from N onto N ′ then N ′ ≤k M

′.]
• Ax I: if M ≤k N then M ⊆ N (i.e. M is a sub-model of N).
• Ax II: M0 ≤k M1 ≤k M2 implies M0 ≤k M2 and M ≤k M for M ∈ K.
• Ax III: If λ is a regular cardinal, Mi (i < λ) is a ≤k-increasing (i.e. i <
j < λ implies Mi ≤k Mj) and continuous (i.e. for every limit ordinal
δ < λ,Mδ =

⋃
i<δMi) then M0 ≤k

⋃
i<λMi. Hence Mj ≤κ

⋃
i<λMi for

every j < λ.
• Ax IV: If λ is a regular cardinal and Mi (for i < λ) is ≤k-increasing con-

tinuous and Mi ≤k N for i < λ then
⋃
i<λMi ≤k N .

• Ax V: If N0 ⊆ N1 ≤k M and N0 ≤k M then N0 ≤k N1.
• Ax VI: If A ⊆ N ∈ K and |A| ≤ LST(k) then for some M ≤k N,A ⊆ |M |

and ‖M‖ ≤ LST(k) (and LST(k) is the minimal infinite cardinal satisfying
this axiom which is ≥ |τ |; the ≥ |τ | is for notational simplicity).

Definition 1.18.

(1) We define “k categorical in λ”, k<λ, “k has amalgamation” “M ∈ Kk is a.b.”,
“M is c.a.b.” naturally (see Definitions 1.12 and 1.15).

(2) Let kλ = (Kλ,≤k� Kλ), where Kλ = {M ∈ Kk : ‖M‖ = λ}.
(3) For χ < λ, let k[χ,λ) = (K[χ,λ),≤k� K[χ,<λ)]), whereK[χ,λ) =

⋃
{Kµ : µ ∈ [χ, λ)}.

So our main theorem is:

Theorem 1.19. Assume κ is a measurable cardinal, k is an AEC, and χ = LSTk +
κ < λ, and LSTk < κ or just k is D-compact (see Definition 1.2 and Assumption
1.1). If k is categorical in λ then k[χ,λ) has amalgamation, see Definition 1.12.

Proof. First, without loss of generality, assume that Hypothesis 1.45 holds.

[Why? If LSTk < κ then by Claim 1.28(0), without loss of generality |τk| ≤ 2LST(k),
hence |τk| < χ and by Claim 1.41(1), k is D-compact (see Assumption 1.1). So in
any case k is D-compact and by Claim 1.42, Hypothesis 1.45(1) holds.

By Claim 1.28(1), (2) also Hypothesis 1.45(2) holds. So Hypothesis 1.45 holds
indeed.]

Recall that, in §2-§5 we assume Hypothesis 1.45.

Second, if λ is regular, then the desired conclusion holds by §2, that is, by Theorem
2.10.

Third, if λ is singular, then the desired conclusion holds by §5, that is, by Corollary
5.6. �1.19

Claim 1.20. Assume k is an AEC and τ = τk. Then;

There are τ1 = τk,1 ⊇ τk of cardinality |τ | + LSTk and a set P of q.f. (quantifier
free) 1-types in L(τ1) such that:

(A) a τ -structure M belongs to Kk iff it can be expanded to a τ1-model M+

from K+, where:
• K+ = K+

k = {N : N a τ1-structure omitting every p ∈P}.
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(B) If M+ ∈ K+ and M+ � τ ≤k N then there is a model N+ ∈ K+ expanding
N such that M+ ⊆ N+. Also, for M,N ∈ K, we have M ≤k N iff there

are expansions M+, N+ ∈ K+ of M,N respectively such that M+ ⊆ N+.
(C) (K+,⊆) is an AEC with LST(K+,⊆) = LST(k).
(D) There is a set τ ′1 ⊆ τ1 of cardinality LSTk such that A ⊆ M+ ∈ K+ ⇒

clτ ′1(A,M+) ⊆ M+.
(E) Some ψ ∈ L(2λ)+,ℵ0 defines Kk,1 where λ = LSTk + |τk|.

Proof. By [She09a, 1.7]. �1.20

Definition 1.21.

Assume T is a theory in Lκ,ℵ0(τT ), τT determined by T (so |T | ≤ (|τT | + κ)<κ)
and recall FT is the set of formulas ϕ(x̄) such that ϕ(x̄) is a sub-formula of some
sentence ψ ∈ T. We define k = kT as follows:

(A) Kk is the class of τT -models of T of cardinality ≥ κ+ |T |.
(B) M ≤k N iff:

(a) M,N ∈ Kk,
(b) M ⊆ N,
(c) M �F N i.e., if ϕ(x̄) ∈ FT (see below, so lg(x̄) is finite and ā ∈ lg(x̄)M)

then M |= ϕ[ā] iff N |= ϕ[ā].

Claim 1.22. If T is a theory in Lκ,ℵ0(τT ), then:

(A) kT is an AEC.
(B) LSTkT = LST(kT ) ≤ |T |+ κ.
(C) If T ⊆ Lλ+,ℵ0(τT ) then LSTk ≤ |T |+ λ.
(D) kT has no model of cardinality < |τ | + κ but for any τ(T )-model M of

cardinality ≥ |T |+ κ, M ∈ KkT ⇔M |= T.
(E) If D is a κ-complete non-principal ultra-filter on κ, then the AEC k is

D-compact (By  Los’s theorem for Lκ,ℵ0 , even Lκ,κ) proved by Hanf (see
Definition 1.40).

Proof. Mainly, this holds by Fact 1.10 and Fact 1.11, but see fully in the proof of
Claim 1.25, except clause (E) which is proved in 1.41. �1.22

Conclusion 1.23. To prove our results for T ⊆ Lκ,ℵ0 it suffices to prove them for
the AEC kT (see Definition 1.21).

Proof. By Claim 1.22 just check the definitions and assumptions. �1.23

Definition 1.24. We say the AEC k is (µ, λ, κ)-representable when there are
(τ1, T1,Γ) such that:

(a) τ1 ⊇ τk has cardinality ≤ λ,
(b) T1 ⊆ L(τ1) is a first order logic universal theory, so |T1| ≤ λ,
(c) Γ is a set of ≤ µ qf-types in L(τ1), each of cardinality < κ,
(d) M ∈ Kk iff M is the τk-reduct of some M2 ∈ EC(T1,Γ), where

EC(T1,Γ) = {N : N a τ1-model of T1 omitting every p(x) ∈ Γ},

(e) M ≤k N iff for everyM1 ∈ EC(T1,Γ) expandingM , there isN1 ∈ EC(T1,Γ)
expanding N and extending M1.

Claim 1.25.

(1) Let k be an AEC. If λ ≥ LSTk + |τk|, then k is (2λ, λ, λ+)-representable.
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(2) If T ⊆ Lκ,ℵ0 is a theory then kT is (|τ | + κ, |τ | + κ, κ)-representable. If in
addition κ is a limit regular cardinal and |T | < κ hence is ⊆ Lθ,ℵ0 for some θ < κ,
then it is (|FT |, |FT |, θ)-representable.

Proof.

(1) By Claim 1.20, that is, by [She09a] and classical theorems, see e.g. [She98,
Ch. VII].

(2) Just consider Definition 1.24 and the proof of Claim 1.22. �1.25

§ 1(C). Indiscernibles and Ehrenfeucht-Mostowski structures.

The basic results on generalized Ehrenfeucht-Mostowski models can be found in
[She78] or [She90, VII].

Definition 1.26.

(1) We recall here some notation. Let I be a class of models which we call the index
models. Denote the members of I by I, J . . . , etc.

(2) For I ∈ I we say that 〈as : s ∈ I〉 is indiscernible in M iff the as-s are pairwise
distinct and for every s̄, t̄ ∈ <ωI realizing the same atomic type in I, ās̄ and āt̄
realize the same quatifier free type in M (where ā〈s0,...,sn〉 = 〈as0 , . . . , asn〉).
(3) Assume τ ⊆ τ ′ are vocabularies and Φ is a function with domain including

{tpat(s̄, ∅, I) : s̄ ∈ <ωI for some I ∈ I}

and if s̄ ∈ nI then Φ(tp(s̄, ∅, I)) is a complete quantifier free n-type in L(τ ′), let
τΦ = τ ′. Moreover, if I ∈ I, we let GEM′(I,Φ) be an τ ′-model generated by
{as : s ∈ I} such4 that tpat(ās̄, ∅,M) = Φ

(
tpat(s̄, ∅, I)

)
; 〈as : s ∈ I〉 is called the

skeleton.

(4) We say that Φ is proper for I if for every I ∈ I, GEM′(I,Φ) is well-defined.

(5) Let GEM(I,Φ) be the τ -reduct of GEM′(I,Φ).

Pedantically, we should write GEMτ (I,Φ) but τ is constant.

(6) For the purposes of this paper we’ll let I be the class LO of linear orders and
Φ will be proper for LO and then write EM (instead GEM). For I ∈ LO we may
abbreviate EM′(I,Φ) by EM′(I) and EM(I,Φ) by EM(I), when Φ is clear from the
context.

We first deal with pairs (T,F).

Claim 1.27. If T ⊆ Lκ,ℵ0(τ) is a theory which has a model of cardinality ≥ κ,
then there are τ, Φ as in Definition 1.26 such that, for each linear order I = (I,≤)
there exists a Ehrenfeucht-Mostowski model EM(I,Φ) is a model of T.

Proof. See Nadel [Nad85] and Dickmann [Dic85] or [She90, VII, §5] or see the limit
ultra-power below. �1.27

But now we use the AEC framework.

Claim 1.28.

(0) If k is an AEC then without loss of generality τk has cardinality ≤ 2LST(k). Fully
we have τk/Ek has ≤ 2LST(k) equivalent classes when Ek = {(R1, R2) : R1, R2 are
both predicates or both function symbols and are of the same arity and M ∈ Kk ⇒
RM1 = RM2 }.

4Equivalently, we can use tpqf , the quantifier free type.
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(1) Assume k is an AEC, µ = 2LST(k)+|τ(k)|. If k has a model of cardinality ≥ iµ+

(or just model of cardinality ≥ iα for every α < µ+) then there is Φ such that:

(a) Φ is as in Definition 1.26,
(b) τΦ = τk,1, where τk,1 is from Claim 1.20 or Definition 1.24,
(c) EM(I) ∈ Kk has cardinality LSTk + |I|,
(d) for (τ1, T1,Γ) as in Definition 1.24, every model of the form EM′(I) is in

EC(Γ, T1) and τΦ = τ1.

(2) In particular,

(a) EM′(I) is a τ1-model,
(b) EM(I) = EM′(I) � τ belongs to K,
(c) (follows) if I ⊆ J then EM(I) ≤k EM(J), both models from K of cardinality
|I|+ LST(k).

Proof. As in [She09a, 1.13], [She90, Ch. VII]. �1.28

§ 1(D). Limit ultra-powers, iterated ultra-powers and nice extensions.

An important technique we shall use in studying the categoricity spectrum of a
theory in Lκ,ℵ0 or suitable AECs is the limit ultra-power. It is convenient to record
here the well-known definitions and properties of limit and iterated ultra-powers
(see Chang and Keisler [CK73], Hodges-Shelah [HS81]) and then to examine nice
extensions of models.

Definition 1.29. Suppose that M is an τ -structure, I is a non-empty set, D is an
ultra-filter on I (but see Definition 1.30(5)), and G is a filter on I × I.

(1) For each g ∈ I |M |, let

(a) eq(g) := {〈i, j〉 ∈ I × I : g(i) = g(j)}, and
(b) g/D := {f ∈ I |M | : g = f Mod D} where,

g = f Mod D iff {i ∈ I : g(i) = f(i)} ∈ D.

(2) Let Π
D/G
|M | := {g/D : g ∈ I |M | and eq(g) ∈ G}. Note that Π

D/G
|M | is a non-

empty subset of ΠD|M | = {g/D : g ∈ I |M |} and is closed under the constants and
functions of the ultra-power ΠDM of M modulo D.

(3) The limit ultra-power Π
D/G

M of the τ -structure M (with respect to (I,D,G))

is the substructure of ΠDM whose universe is the set Π
D/G
|M |. The canonical map

d from M into Π
D/G

M is defined by d(a) = 〈ai : i ∈ I〉/D, where ai = a for every

i ∈ I.

(4) Note that the limit ultra-power Π
D/G

M depends only on the equivalence relations

which are in G, i.e. if E is the set of all equivalence relations on I and G∩ E = G′∩
E, where G′ is a filter on I × I, then Π

D/G
M = Π

D/G′
M .

Definition 1.30. Assume,

(a) M be an τ -structure, 〈Y,<〉 = 〈Y,<Y 〉 a linear order,
(b) for each y ∈ Y , let Dy be an ultra-filter on a non-empty set 〈Y,<Y 〉,
(c) Ī = 〈Iy : y ∈ Y 〉,
(d) D̄ = 〈Dy : y ∈ Y 〉,
(e) I = Π

y∈Y
Iy.
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Then,

(1) Let E = Π
y∈Y

Dy be the set of s ⊆ I such that there are y1 < · · · < yn in Y

satisfying:

(α) for all i, j ∈ I, if i � {y1, . . . , yn} = j � {y1, . . . , yn} then i ∈ s iff j ∈ s,
(β) {〈i(y1), . . . , i(yn)〉 : i ∈ s} ∈ Dy1 × · · · ×Dyn .

(2) The iterated ultra-power
∏
D̄ |M | or

∏
E |M | of the set |M |, noting E is a filter

on I, is the set {f/E : f ∈ I |M | and for some finite Zf ⊆ Y for all i, j ∈ I, if
i � Zf = j � Zf , then f(i) = f(j)}.
(2A) Note that 〈Y,<〉, Ī, D̄, E, I and E can be defined from E and can be defined
from D̄, so we may indeed write ΠE , ΠD̄ above.

(3) The iterated ultra-power
∏
EM of the τ -structure M with respect to 〈Dy : y ∈

Y 〉 is the τ -structure whose universe is the set ΠE |M |; for each n-ary predicate sym-
bol R of L,RΠEM (f1/E, . . . , fn/E) iff {i ∈ I : RM (f1(i), . . . , fn(i))} ∈ E; for each
n-ary function symbol F of L, FΠEM (f1/E, . . . , fn/E) = 〈FM (f1(i), . . . , fn(i)) : i ∈
I〉/E.

(4) The canonical map d : M → ΠEM is defined as usual by:

d(a) = 〈a : i ∈ H〉/E.

(5) In Definition 1.29, we do not need “D is an ultra-filter on I”, just “D is a filter
on I such that, if e ∈ G is an equivalence relation on I, then D/e is an ultra-filter
on I/e”.

(6) We say u is an iterated ultra-powers parameter when it consists of 〈Y,<〉,
Ī = 〈Iy : y ∈ Y 〉, D̄ = 〈Dy : y ∈ Y 〉 and I as in the beginning of Definition 1.30, E
as in Definition 1.30(1) and

• G = {e : is an equivalence relation on I such that, for some finite subset Z
of Y , we have f, g ∈ I ∧ f � Z = g � Z ⇒ f e g}.

(6A) So u = (Yu, . . . , ) definable from D̄u and from Eu and we may write
∏

u .

Remark 1.31.

(1) Every ultra-power is a limit ultra-power: take G = P(I × I) and note that
ΠDM = Π

D/G
M .

(2) Every iterated ultra-power is a limit ultra-power, hence in Definition 1.30 we
may write OpD̄, OpE or Opu .

[Why? let the iterated ultra-power be defined by 〈Y,<〉 and 〈(Iy, Dy) : y ∈ Y 〉 (see
Definition 1.30). For Z ∈ [Y ]<ω, let AZ = {(i, j) ∈ I×I : i � Z = j � Z}. Note that
{AZ : Z ∈ [Y ]<ω} has the finite intersection property and hence can be extended
to a filter G on I × I. Now for any model M we have ΠEM ∼= Π

D/G
M for every

filter D over I extending E under the map f/E → f/D.]

Definition 1.32.

(1) We say that (I,D,G) is suitable when:

(a) D is an ultra-filter on a non-empty set I (or just a filter, see Definition
1.30(5)),

(b) G is a suitable, pedantically a D-suitable filter on I × I or just a set of
equivalence relations on I, which means:

(i) if e ∈ G and e′ is an equivalence relation on I coarser than e, then
e′ ∈ G,

(ii) G is closed under finite intersections,
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(iii) (I,D,G) is κ-complete, which means that, if e ∈ G, then D/e =
{A ⊆ I/e : ∪

x∈A
x ∈ D} is a κ-complete ultra-filter on I/e which, for

simplicity, has cardinality κ.

(2) A limit parameter u is suitable when (Iu, Eu, Gu) is.

(3) Suppose thatM is an τ -structure and (I,D,G) is suitable. Then Op(M, I,D,G) =

OpI,D,G(M) is the limit ultra-power Π
D/Ĝ

M where Ĝ is the filter on I× I generated

by G. When clear from the context one abbreviates Op(M, I,D,G) by Op(M),
pedantically Op stand for OpI,M,G and one writes fOp = fOp,M for the canonical

map d : M → Op(M); so we may write fOp or fMOp instead fOp,M when M is clear
from the context.

Recall that,

Observation / Convention 1.33.

(1) For any τ -structure N, fOp = fOp,N is an elementary embedding of N into
Op(N) and if N ∈ Kk then fOp : N →

k
Op(N).

(2) Since fOp is canonical, one very often identifies N with the τ -structure rng(fOp)
which is an k-elementary substructure of Op(N), and one writes N ≤k Op(N). In
particular for any model M ∈ K and Op, fOp : M →k Op(M) (briefly written
M ≤k Op(M)) so that Op(M) is a model from K too.

(3) Remark that if D is a κ-complete ultra-filter on I and G is a filter on I × I,
then Op(M, I,D,G) is well defined.

(4) Suitable limit ultra-power means one using a suitable triple, for such Op in
Observation/Convention 1.33(2) we get a Lκ,ℵ0-elementary embedding.

More information on limit and iterated ultra-powers can be found in [CK73] and
[HS81].

Observation 1.34. (1) Given κ-complete ultra-filters D1 on I1, D2 on I2 and
suitable filters G1 on I1 × I1, G2 on I2 × I2 respectively, there exist a κ-complete
ultra-filter D on a set I and a filter G on I × I such that:

Op(M, I,D,G) = Op(Op(M, I1, D1, G1), I2, D2, G2)

and (D,G, I) is κ-complete.

(2) Also iterated ultra-power (along any linear order) with each iterand being ultra-
power by κ-complete ultra-filter, gives a suitable triple (in fact, even iteration of
suitable limit ultra-powers is a suitable ultra-power).

Definition 1.35. Suppose that K is a class of τ -structures and <=<K is a binary
relation on K (usually (K,<) = (Kk, <k)). For M,N ∈ K, write f : M ≤nice

K N to
mean (if < is clear from the context we may write f : M →

nice
N and, if f = idM we

may write M ≤
nice

N):

(a) f is an isomorphism from M onto rang(f) = N � rang(f) and rng(f) < N.
Which means f(M) < N, where f(M) is the model M ′ with universe rng(f)
such that f is an isomorphism from M into M ′,
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(b) for some5 ultra-limit parameter u = (Y,<Y , Ī, D̄, I, E,G), so G is a suitable
set of equivalence relations on I (so Definition 1.32 clause (i), (ii), (iii) holds)
each6 Di is isomorphic to D, and an isomorphism g from N onto rang(f) =
Op(M, I,E,G) � rang(f), such that rng(g) < Op(M, I,E,G) and gf =
fOp, where fOp is the canonical embedding of M into Op(M, I,E,G). Then
f is called a <-nice embedding of M into N . Of course, one writes f : M →

nice

N and says that f is a nice embedding of M into N when < is clear from
the context.

Example 1.36. Consider T,F and K = 〈K,<〉 = (K,<K) as set up in Example
1.14. In this case f : M →

nice
N holds iff f : M →

F
N and for some suitable ultra-limit

parameter u and some g : N →
F

Opu(M) we have gf = fOp.

Abusing notation one may writes M →
nice

N to mean that there are f, g and Op such

that f : M →
nice

N using g and Op . IF NOT SAID OTHERWISE, < is <k. We may

also write M ≤
nice

N , and for linear orders we use I ⊆
nice

J .

Example 1.37. Let LO be the class of linear orders and let (I,≤I) < (J,≤J) mean
that (I,≤I) ⊆ (J,≤J), i.e. (I,≤I) is a suborder of (J,≤J). If f : (I,≤I) →

nice
(J,≤J),

then identifying isomorphic orders, one has (I,≤I) ⊆ (J,≤J) ⊆ Op(I,≤I) and we
may write (I,≤I) ⊆

nice
(I,≤J).

Observation 1.38. Assume that K = (K,<K) is as in 1.35. Suppose further
M ≤

nice
N and M ⊆M ′ ≤k N where M,M ′, N ∈ K. Then M ≤

nice
M ′.

Proof. For some f, g and Op, f : M →
k
N , g : N →

k
Op(M) and gf = fOp. Now

g : M ′ →
k

Op(M) (since M ′ ≤k N) and gf = fOp so that M ≤
nice

M ′. �1.38

Observation 1.39. Suppose that δ is any ordinal, 〈Mi : i ≤ δ〉 is a continuous
increasing chain and for each i < δ, Mi ≤

nice
Mi+1. Then for every i < δ, Mi ≤

nice

Mδ.

Proof. Like the proof of Remark 1.31(2). For each i < δ, there is a ui as in Definition
1.32 which witnesses Mi ≤

nice
Mi+1 and and let Yi = Yui for i < δ. Without loss of

generality, 〈Yi : i < δ〉 are pairwise disjoint. We define u by:

(a) Y =
⋃
{Yi : i < δ},

(b) s <y t iff
∨
i<δ s <i t or s ∈ Yui ∧ t ∈ Yuj ∧ i < j,

(c) Dj = Dui,s when s ∈ Yui for i < δ.

This is enough and the rest should be clear. �1.39

Definition 1.40.

(1) Assume D is an ultra-filter on κ. For an AEC k = (Kk,≤k) we say k is D-compact
when:

(a) if M ∈ Kk then the ultra-power Mκ/D belongs to Kk,

5We could use here and Theorem 2.5 suitable tuples (I,D,G). However, then we have to add
to the definition of “k is (I,D,G)-compact” a clause saying:

(∗) if M ∈ Kk, e1 ⊇ e2 are from G and M` =
∏
D/GM � {f ∈ IM : eq(f) ⊇ e`} for ` = 1, 2,

then M1 ≤k M2.

In [KS96] this issue does not arise.
6 Can fix a family of filters.
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(b) moreover, the canonical embedding of M into Mκ/D is a ≤k-embedding,
(c) if M ≤k N then the canonical embedding of Mκ/D into Nκ/D is a ≤k-

embedding,
(d) k has a model of cardinality ≥ κ (or at least of cardinality ≥ θ where D is

not θ-complete).

(2) If u = (Y, Ī, D̄, I, E,G) is as in Definition 1.30, then for an AEC k we say k is
u-compact and E-compact when:

(a) if M ∈ Kk and
∏
EM ∈ Kk,

(b) moreover, the canonical embedding of M into
∏
EM is a ≤k-embedding,

(c) if M ≤k N then the canonical embedding of
∏
EM into

∏
E N is a ≤k-

embedding.

Claim 1.41. Assume D is a non-principal κ-complete ultra-filter (usually on κ).

(1) If k is an AEC and |τk|+ LST(k) < κ then k is D-compact.

(2) If k is (µ, λ, κ)-representable, then k is D-compact.

(3) Also the claim on Op generalizes, that is, if 〈Y,<〉, Ī, D̄, E, I is as in Definition
1.30 and ks is Ds-compact for every s ∈ Y then in (1) and (2), k is E-compact.

(4) So if there is one ultra-filter D on κ which is normal or just non-principal
κ-complete ultra-filter on κ, then for every linear order 〈Y,<〉 then we can find
Ī , D̄, E, I such that they together are as in 1.41(3)

Proof.

(1) By 1.25 and part (c).

(2), (3), (4) Easy. �1.41

Claim 1.42. Assume D is a non-principal κ-complete ultra-filter on κ and k1 is a
D-compact AEC, χ ≥ LSTk1 and let k2 = (k1)[χ,∞), see Definition 1.18(3).

(1) If χ ≥ κ and k1 is D-compact then k2 is D-compact.

(2) If λ ≥ χ, then k1 is categorical in λ iff k1 is categorical in λ.

(3) If λ ≥ χ, then (k2)[χ,<λ) has amalgamation iff (k1)[χ,<λ) has amalgamation.

Proof. Straightforward. �1.42

Remark 1.43.

(1) Claim 1.41 justifies the assumption LSTk ≥ χ in 1.45 below (e.g. to proof 1.19).

(2) Usually λ denotes a power in which k is categorical.

Claim 1.44. For every model M of cardinality ≥ κ and λ ≥ κ+LSTk +‖M‖ there
is N such that M ≤

nice
N , M 6= N and ‖N‖ = λ.

Proof. As k is D-compact, by Assumption 1.2(2) no M ∈ K≥κ is ≤k-maximal, so
by Definition 1.17 we are done. �1.44

For the rest of this work,

Hypothesis 1.45. Assume χ ≥ κ.
(1) k is a D-compact AEC with LSTk = χ, no M ∈ Kk has cardinality < χ, D a κ-
complete non-principal ultra-filter on κ, K = Kk and similarly for any 〈Y,<〉, Ī, D̄, I
or E derived from D as in Definition 1.30.

(2) Φ, a = 〈as : s ∈ I〉 are as in Definition 1.26 for k with τΦ of cardinality ≤ χ,
hence λ ≥ χ⇒ (Kk)λ 6= ∅.
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§ 2. The amalgamation property for regular categoricity

The main aim of this section is to show that if K is categorical in the regular
cardinal λ > LSTk, then k<λ = 〈K<λ,≤k〉 has the amalgamation property (AP)
(Definition 1.12 (1)). Categoricity is not presumed if not required.

Recall Hypothesis 1.45 is assumed.

Lemma 2.1. Suppose that χ ≤ µ ≤ λ,M,M1,M2 ∈ K≤µ, f1 : M →
nice

M1, f2 : M →
k

M2. Then there is an amalgam N ∈ K≤µ of M1,M2 over M with respect to f1, f2.

Moreover, there are N and g` : M` →
k
N for ` = 1, 2 such that g1f1 = g2f2 hence

rng(g2f2) = rng(g1f1) and g1 : M1 →
nice

N.

Proof. There are g and Op such that g : M1 →
k

Op(M), and gf1 = fOp,M . Now, f2

induces an ≤k-elementary embedding f∗2 of Op(M) into Op(M2) such that f∗2 f
M
Op =

fM2

Op f2. Let g1 = f∗2 g and g2 = fOp,M2
. By Fact 1.11 one finds N ∈ K≤µ such that

rng(g1) ∪ rng(g2) ⊆ N ≤k Op(M2). Now N is an amalgam of M1,M2 over M with
respect to f1, f2 since g1f1 = f∗2 gf1 = f∗2 f0p,M = fOp,M2

f2 = g2f2. The last phrase
in the lemma is easy by properties of Op. �2.1

Lemma 2.2. Suppose that M ∈ K≤µ is a µ-c.a.b., χ ≤ µ < λ. Then N ∈ K<λ is
a ‖N‖-c.a.b. whenever f : M →

nice
N .

Proof. By the assumption, there is g : N →
k

Op(M) such that gf = fOp,M . Recall

M is a µ- c.a.b., so for some Mi ∈ K≤µ and fi : M →
k
Mi (for i = 1, 2) there is no

amalgam of M1,M2 over M w.r.t. f1, f2. Let f∗i be the ≤k-elementary embedding
from Op(M) into Op(Mi) induced by fi (note that f∗i fOp,M = fOp,Mifi, i = 1, 2).
Choose Ni of power ||N || such that Mi ∪ rng(f∗i g) ⊆ Ni ≤k Op(Mi). Note that
f∗i g : N →

k
Ni. It suffices to show that there is no amalgam of N1, N2 over N w.r.t.

f∗1 g, f
∗
2 g.

Well, suppose that one could find an amalgam N∗ and hi : Ni →
k
N∗, i = 1, 2, with

h1(f∗1 g) = h2(f∗2 g). Using Fact 1.11 choose M∗, ||M∗|| ≤ µ,M∗ ≤k N
∗, rng(h1fOp �

M1) ∪ rng(h2fOp �M2) ⊆ |M∗|. Set gi = hifOp �Mi, for i = 1, 2, and note that:

g1f1 = h1fOpf1 = h1f
∗
1 fOp = h1f

∗
1 gf = h2f

∗
2 gf = h2f

∗
2 fOp

= h2fOpf2 = g2f2.

In other words, M∗ is an amalgam of M1,M2 over M w.r.t. f1, f2-contradiction.
It follows that N is a ‖N‖-c.a.b. �2.2

Corollary 2.3. Suppose that µ, λ satisfy χ ≤ µ < λ. If M ∈ Kµ is a µ-c.a.b., then
there exists M∗ ∈ Kλ such that:

(∗) M ≤k M
∗ and for every M ′ ∈ K<λ, if M ≤k M

′ ≤k M
∗, then M ′ is a

||M ′||-c.a.b.

Proof. As ‖M‖ ≥ κ, for some appropriate Op one has ||Op(M)|| ≥ λ, and by Fact
1.11 one finds M∗ ∈ Kλ such that M ⊆ M∗ ≤k Op(M), hence M ≤k M

∗. Let
us check that M∗ works in (∗). Take M ′ ∈ K<λ,M ≤k M

′ ≤k M
∗; so M ≤

nice
M ′

since M∗ ≤k Op(M), see Observation 1.38; hence by Lemma 2.2, M ′ is a ||M ′||-
c.a.b. �2.3
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18 S. SHELAH AND OREN KOLMAN

Theorem 2.4. Suppose that k is λ-categorical, λ = cf(λ) > χ. If K<λ fails AP,
then there is N∗ ∈ Kλ such that for some continuous increasing ≤k-chain 〈Ni ∈
K<λ : i < λ〉 of models,

(1) N∗ = ∪
i<λ

Ni,

(2) for every i < λ,Ni �
nice

Ni+1 (and so Ni �
nice

N∗).

Proof. By an assumption k<λ fails AP, so for some µ ∈ [χ, λ) and M ∈ K≤µ,M is
a µ-c.a.b. recalling Definition 1.15. By Lemma 2.2 and Claim 1.44 without loss of
generality M ∈ Kµ. Choose by induction a continuous strictly increasing ≤k-chain
〈Ni ∈ K<λ : i < λ〉 as follows:

N0 = M ; at a limit ordinal i, take the union; at a successor ordinal i = j + 1, if
there is N ∈ K<λ such that Nj ≤k N and Nj �

nice

N (so necessarily Nj <k N),

choose Ni = N , otherwise choose for Ni any non-trivial ≤k-elementary extension
of Nj of power less than λ. Next, we prove:

� (∃j0 < λ)(∀j ∈ (j0, λ))(Nj is a ||Nj ||-c.a.b.).

Why � holds? Suppose not. So one has a strictly increasing sequence 〈ji : i < λ〉
such that for each i < λ,Nji is not a ‖Nji‖-c.a.b. Let N∗ = ∪

i<λ
Nji . So ‖N∗‖ = λ.

Applying 2.3 one can find M∗ ∈ Kλ and M ∈ K<λ such that M ≤k M
∗ and

whenever M ′ ∈ K<λ and M ≤k M
′ ≤k M

∗, then M ′ is a ‖M ′‖-c.a.b.

Since k is λ-categorical, there is an isomorphism g of N∗ onto M∗. Let N = g−1(M)
and Mi = g−1(Ni) for i < λ. Now, ||N || = µ < cf(λ) = λ, so there is i0 < λ such
that N ⊆ Nji0 , hence N ≤k Nji .

In fact Nji0 is a ||Nji0 ||-c.a.b. [Otherwise, consider Nji0 . Since M ≤k f
−1(Nji0 ) ≤k

M∗ and ‖Mji0
‖ < λ,Mji0

is a ‖Mji0
‖-c.a.b., so there are f` : Mji0

→
F
M ′`, (` = 1, 2),

with no amalgam of M ′1,M
′
2 over Mji0

w.r.t. f1, f2. If Nji0 is not a ||Nji0 ||-
c.a.b., then one can find an amalgam N+ ∈ K≤||Nji0 || of M ′1,M

′
2 over Nji0 w.r.t.

f1g, f2g such that h` : M ′` →
k
N+ and h1(f1g) = h2(f2g); so h1f1 = h2f2 and N+

is thus an amalgam of M ′1,M
′
2 over Mji0

w.r.t. f1, f2, ‖N+‖ ≤ ‖Nji0‖ = ||Mji0
||-

contradiction.] This contradicts the choice of Nji0 . So the statement � is correct.

It follows that for each j ∈ (j0, λ) there are N1
j , N

2
j in K<λ and f` : Nj →k N

`
j

such that no amalgam of N1
j , N

2
j over Nj w.r.t. f1, f2 exists. By Lemma 2.1 for

both ` ∈ {1, 2}, Nj �
nice

N `
j+1. So by the inductive choice of 〈Nj+1 : j < λ〉,∀j ∈

(j0, λ)(Nj �
nice

Nj+1). Taking N∗ = ∪
j0<j<λ

Nj , one completes the proof (of course

for j0 < j < λ,Nj �
nice

N∗: if Nj ≤
nice

N∗ ≤k Op(Nj), then by Observation 1.38

Nj ≤
nice

Nj+1-contradiction). �2.4

Theorem 2.5. Suppose that I = (I,<I), J = (J,<J) are linear orders and I is a
suborder of J . Let EM′(I,Φ) be as in Definition 1.26, so let 〈a1

s : s ∈ I〉 be a skeleton
of M ′1 = EM′(I) = EM′(I,Φ), a τΦ-model, 〈a1

s : s ∈ I〉 is an indiscernible sequence
in EM(I) which generates it. Similarly, M ′2 = EM′(J,Φ), 〈as ∈ s ∈ J〉 and as
standard, we assume M ′1 ⊆ M ′2, s ∈ I ⇒ a1

s = as, let M` = EM(I) = M ′` � τk. If
(I,<I) ⊆

nice
(J,<J), then EM(I) ≤

nice
EM(J).
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Proof. So there is a suitable ultra-limit7 parameter u = (Y,<Y , Ī , D̄, Iu, E,G) wit-
nessing (I,<I) ⊆

nice
(J,<J), that is, we have (I,≤I) ⊆ OpI,D,G((I,<I)) and (J,<) is

isomorphic over (I,≤) to some (J ′, <) such that (I,<I) ⊆ (J ′, <) ⊆ OpI,D,G((I,<

)) and let π be such isomorphism. So for each t ∈ J , there exists ft ∈ I(u)I such
that π(t) = ft/D. Note that if t ∈ I, then ft/D = fOp(t) so that without loss of
generality for all i ∈ Iu, ft(i) = t. Define a map h from EM(J) into Op(EM(I)) as
follows. An element of EM(J) has the form

σEM′(J)(at1 , . . . , atn),

where t1, . . . , tn ∈ J , σ an τΦ-term. Define, for t ∈ J, gt ∈ I EM(I) by gt(i) = aft(i).

Note that ft(i) ∈ I, so that aft(i) ∈ EM(I) and so gt/D ∈ Op(EM(I)). Let

h(σEM′(J)(at1 , . . . , atn)) = σOp(EM′(I))(gt1/D, . . . , gtn/D) which is an element in
Op(EM(I)). The reader is invited to check that h is an ≤k-elementary embedding
of EM(J) into Op(EM(I)), and consequently EM(I) ≤k EM(J), but we elaborate.
Prove by induction on n < ω that:

⊕ if s̄ = 〈si : i < n〉 is <Y -increasing then let m ≤ n and Ns̄ := M2 �
{f ∈ HM : eq(f) is refined by eqs̄�m = {(h1, h2) : h1, h2 ∈

∏
s∈I Is and

` < m⇒ h1(s`) ≥ h2(s`)}},

� for s̄ = 〈s` : ` < n〉 as above, Ns̄�m ≤k Ns̄.

[Why? Prove by induction on n that it suffices to conclude that m = n − 1 and
now read the Definition.]

� if s̄ is as above and t̄ is a sub-sequence of s̄ then Nt̄ ≤k Ns̄.

Why? By Ax. V of AEC (see Definition 1.17): The rest should be clear.

Finally note that if b = σEM′(I)(at1 , . . . , atn) ∈ EM(I), t1, . . . , tn ∈ I, then h(a) =

σOp(EM′(I))(gt1/D, . . . , gtn/D) = σOp(EM′(I))(〈afti(i) : i < µ〉/D, . . . , 〈aftn(i)
: i <

µ〉/D) = fOp(σEM′(I)(at1 , . . . , atn)) = fOp(b). Thus EM(I) ≤
nice

EM(J). �2.5

Criterion 2.6. Suppose that (I,<) is a suborder of the linear order (J,<). We have
(I,≤) ⊆

nice
(J,<) when:

(∗) for every t ∈ J \ I,

(ℵ) cf((I,<) � {s ∈ I : (J,<) |= s < t}) = κ,

or

(i) cf((I,<)∗ � {s ∈ I : (J,<)∗ |= s <∗ t}) = κ.

Notation 2.7. (I,<)∗ is the (reverse) linear order (I∗, <∗) where I∗ = I and (I∗, <∗

) � s <∗ t iff (I,<) � t < s.

Proof. We shall use freely Assumption 1.1, that is, “D is a uniform ultra-filter on
κ”. Let us list some general facts which facilitate the proof.

Fact (A): Let κ denote the linear order (κ,<) where < is the usual order ∈� κ× κ.
If J1 = κ+J0, then κ ⊆

nice
J1 (+ is the addition of linear orders in which all elements

in the first order precede those in the second).

Fact (B): If κ ⊆ (I,<), κ is unbounded in (I,<) and J1 = I + J0, then I ⊆
nice

J1.

Fact (C): If I ⊆
nice

J , then I + J1 ⊆
nice

J + J1.

7We write Iu = I(u) to distinguish it from (I,<I).
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Fact (D): I ⊆
nice

J iff (J <)∗ ⊆
nice

(I,<)∗.

Fact (E): If 〈Iα : α ≤ δ〉 is a continuous increasing sequence of linear orders and for
α < δ, Iα ⊆

nice
Iα+1, then Iα ⊆

nice
Iδ.

Now using these facts, let us prove the criterion. Define an equivalence relation E
on J \ I as follows: tEs iff t and s define the same Dedekind cut in (I,<). Let
{tα : α < δ} be a set of representatives of the E-equivalence classes. For each β ≤ δ,
define

Iβ = J �

t : t ∈ I ∨ ∨
α<β

tEtα


so I0 = I, Iδ = J and 〈Iα : α ≤ δ〉 is a continuous increasing sequence of linear
orders. By Fact (E), to show that I ⊆

nice
J , it suffices to show that Iα ⊆

nice
Iα+1 for

each α < δ.

Fix α < δ. Now tα belongs to J \ I, so by (∗), (ℵ) or (i) holds. By Fact (D), it is
enough to treat the case (ℵ). So without loss of generality cf

(
(I,<) � {s ∈ I : (J,<

) |= s < tα}
)

= κ.

Let

Iaα = {t ∈ Iα : t < tα},

Ibα = {t ∈ Iα+1 : t ∈ Iaα ∨ tEtα},

Icα = {t ∈ Iα : t > tα}.

Note that Iα = Iaα + Icα and Iα+1 = Ibα + Icα. Recalling Fact (C), it is now enough
to show that Iaα ⊆

nice
Ibα. Identifying isomorphic orders and using (ℵ), one has that

κ is unbounded in Iaα and Ibα = Iaα + (Ibα \ Iaα) so by Fact (B), Iaα ⊆
nice

Ibα as required.

We still owe the five facts, we prove (A), (B), and (E) as (C) and (D) are obvious.

Proof of Fact (A): Recall that D is a uniform ultra-filter on κ. For every linear

order J0 (or J∗0 ) there is OpI,D(−), the iteration of I ultra-powers (−)κ/D, ordered
in the order J0 (or J∗0 ), giving the required embedding (use Observation 1.34).

Proof of Fact (B) Since κ ⊆ I and using Fact (A), we know that

•1 let d0 be the identity map from κ into I,
•2 let d1 be the canonical map from κ into Op(κ), which exists by properties

of Op,
•3 let d2 be the embedding of J0 into Op(κ) as in the choice of Op, so rang(d1)

is below rang(d2),
•4 let d3 be the canonical embedding from Op(κ) into Op(I) by lifting (really

is the identity),
•5 let d4 be the canonical embedding of I into Op(I), which exists by properties

of Op extending d1 by the properties of Op,
•6 So rang(d4 � κ) is unbounded in rang(d4) in the order Op(I),
•7 rang(d4) ⊆ Op(I) is below d3 ◦ d′′2 ∈ J0.

Chasing through the diagram, we obtain the required embedding. So we are done.

Proof of Fact (E). Apply Observation 1.39 to the chain 〈Iα : α ≤ δ〉. �2.6

So we are done proving Criterion 2.6. �2.6
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Fact 2.8. Suppose that λ ≥ κ. There exist a linear order (I,<I) of power λ and
a sequence 〈Ai ⊆ I : i ≤ λ〉 of pairwise disjoint subsets of I, each of power κ such
that I = ∪

i≤λ
Ai and,

(∗) if λ ∈ X ⊆ λu 1, then I � ∪
i∈X

Ai ⊆
nice

I.

Proof. Let I = (λ u 1) × κ and define <I on I : (i1, α1) <I (i2, α2) iff i1 < i2 or
(i1 = i2 and α1 > α2). For each i ≤ λ, let Ai = {i} × κ. Let us check (∗) of
Criterion 2.6: suppose that λ ∈ X ⊆ λ + 1. Write IX = I �

(⋃
i∈X Ai

)
. To show

that IX ⊆
nice

I, we can assume without loss of generality that IX 6= I and then one

employs Criterion 2.6. Consider t ∈ I − IX , say t = (i, α) (note that α < κ and
i < λ, since λ ∈ X) and i /∈ X. Let j = min(X − i); note that j is well-defined,
since λ ∈ X− i, and j 6= i. Now, if s ∈ IX and s ≤I t, then for every β < κ, one has
s <I (j, β) and (j, β) ∈ IX . Also if s ∈ IX and t <I s, then for some β < κ, we have
(j, β) <I s. Thus 〈(j, β) : β < κ〉 is a cofinal sequence in (IX � {s ∈ I : t <I s})∗.
By the criterion, IX ⊆

nice
I. �2.8

Theorem 2.9. Suppose that κ = cf(δ) ≤ δ < λ. Then EM(δ) ≤
nice

EM(λ).

Proof. By Fact (B) of Criterion 2.6, one has that δ ⊆
nice

λ; so by Theorem 2.5,

EM(δ) ≤
nice

EM(λ). �2.9

Now let us turn to the main theorem of this section.

Theorem 2.10. Suppose that k is categorical in the regular cardinal λ > χ. Then
k<λ has the amalgamation property.

Proof. Suppose that k<λ fails AP. Note that ‖EM(λ)‖ = λ. Apply Theorem 2.4
to find M∗ ∈ Kλ and 〈Mi : i < λ〉 satisfying Theorem 2.4(1) and Theorem 2.4 (2).
Since k is λ-categorical, M∗ ∼= EM(λ), so without loss of generality EM(λ) = ∪

i<λ
Mi

and so C = {i < λ : Mi = EM(i)} is a club of λ. Choose δ ∈ C, cf(δ) = κ. By
Theorem 2.9, EM(δ) ≤

nice
EM(λ), so Mδ ≤

nice
M∗. But of course by Theorem 2.4(2)

Mδ �
nice

M∗-contradiction. �2.10

The last theorem of this section applies to singular cardinals as well.

Theorem 2.11. Suppose that K is categorical in λ > χ (notice that λ is not
necessarily regular). Then:

(1) K has a model M of power λ such that if N ≤k M and ‖N‖ < λ, then there
exists N ′ such that:

(α) N ≤k N
′ ≤k M,

(β) ‖N ′‖ = ‖N‖+ χ,
(γ) N ′ ≤

nice
M.

(2) K has a model M of power λ and an expansion M+ of M by at most χ functions
such that if N+ ⊆M+, then N+ � τ ≤

nice
M .

Proof. (1) Let 〈I, 〈Ai : i ≤ λ〉〉 be as in Fact 2.8. Let M = EM(I). Suppose that
N ≤k M, ‖N‖ < λ. Then there exists J ⊆ I, |J | < λ such that N ⊆ EM(J) so by
Fact 2.8 there exists X ⊆ λ+ 1 such that λ ∈ X, |X| < λ and J ⊆ ∪

i∈X
Ai.
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Note that

∣∣∣∣ ∪i∈XAi
∣∣∣∣ ≤ |X| · κ < λ. Now N ′ = EM(I � ∪

i∈X
Ai) is as required, since

I � ∪
i∈X

Ai ≤
nice

I and so by Theorem 2.5 EM(I �
(⋃

i∈X Ai
)
) ≤

nice
EM(I). This proves

(1).

(2) We expand M = EM(I) with skeleton 〈as : s ∈ I〉 as follows:

(a) by all functions of EM′(I),
(b) by the unary functions f`(` < n) which are chosen as follows: we know that

for each b ∈ M there is σb an τ1-term (τ1-the vocabulary of EM′(I)) and
t(b, 0) < t(b, 1) < . . . < t(b, nσb − 1) from I such that

b = σb(at(b,0), at(b,1), . . . , at(b,nσb−1))

(it is not unique, but we can choose one; really if we choose it with nb
minimal it is almost unique). We let

f`(b) =

{
at((b,`)), if ` < nσb ,

b, if ` ≥ nσb .

(c) by unary functions gα, gα for α < κ such that if t < s are in I, α =
otp[(t, s)∗I ] then gα(at) = as,

∨
β<κ

gβ(as) = at (more formally gα(a(i,β)) =

a(i,β+α) and gα(a(i,β)) = a(i,α)) in the other cases gα(b) = b, gα(b) = b.
(d) by individual constants cα = a(λ,α) for α < κ.

Call the expanded model M+. Now suppose N+ is a sub-model of M+ and N its

τ -reduct. Let J
def
= {t ∈ I : at ∈ N}, now J is a subset of I of cardinality ≤ ||N || as

for t 6= s from J , at 6= as. Also if b ∈ N by clause (b), at(b,`) ∈ N hence b ∈ EM(J);
on the other hand if b ∈ EM(J) then by clause (a) we have b ∈ N ; so we can
conclude N = EM(J). So far this holds for any linear suborder of I.

By clause (c) J =
⋃
i∈X

Ai for some X ⊆ λ+ 1, and by clause (d), λ ∈ X.

Now EM(J) ≤
nice

EM(I) = M by Fact 2.8. �2.11
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§ 3. Towards removing the assumption of regularity from the
existence of universal extensions

In §2 we showed that k<λ has the amalgamation property when k is categorical in
the regular cardinal λ > χ. We now study the situation in which λ is not assumed
to be regular.

Our problem is that while we know that most sub-models of N ∈ Kλ sit well
in N (see Theorem 2.11(2)) and that there are quite many N ∈ K<λ which are
amalgamation bases, our difficulty is to get those things together: constructing
N ∈ Kλ as

⋃
i<λ

Ni, Ni ∈ K<λ means N has ≤k-sub-models not included in any Ni.

Recall we are assuming Hypothesis 1.45.

Theorem 3.1. Suppose that k is categorical in λ and χ ≤ θ < λ. If 〈Mi ∈ Kθ : i <
θ+〉 is an increasing continuous ≤k-chain, then:

{
i < θ+ : Mi ≤

nice
(∪j<θ+Mj)

}
∈ Dθ+ .

Remark 3.2.

(1) We cannot use Theorem 2.11(1) as possibly λ has cofinality < χ.

(2) Recall that Dθ+ is the closed unbounded filter on θ+.

Proof. Write Mθ+ = ∪
i<θ+

Mi. Choose an operation Op such that for all i <

θ+, ‖Op(Mi)‖ ≥ λ. Let M∗i = Op(Mi), hence Mi ≤
nice

M∗i . Applying Fact 1.11 for

non-limit ordinals, Fact 1.10 for limit ordinals, one finds inductively an increasing
continuous ≤k-chain 〈Ni : i ≤ θ+〉 such that for i < θ+,Mi ≤k Ni ≤k M

∗
i , ‖Ni‖ = λ,

so Mi ≤
nice

Ni and Nθ+ = ∪
i<θ+

Ni. Note that ‖Nθ+‖ = θ+ · λ = λ.

Since k is λ-categorical, Nθ+ ∼= EM(I) where Fact 2.8 furnishes I of power λ. By
Theorem 2.11(2), there is an expansion N+

θ+ of Nθ+ by at most κ+|τk| functions such

that if A ⊆ |N+
θ+ | is closed under the functions of N+

θ+ , then (N+
θ+ � τk) � A ≤

nice
Nθ+ .

Choose a set Ai and an ordinal ji, by induction on i < θ+, satisfying:

(1) Ai ⊆ |Nθ+ |, |Ai| ≤ θ; 〈Ai : i < θ+〉 is continuous increasing,

(2) 〈ji : i < θ+〉 is continuous increasing,

(3) Ai is closed under the functions of N+
θ+ ,

(4) Ai ⊆ |Nji+1
|,

(5) |Mi| ⊆ Ai+1.

This is possible: for zero, let A0 := ∅, j0 := 0 and for limit ordinals unions work;
for i+ 1 choose ji+1 to satisfy (2) and (4), and Ai+1 to satisfy (1), (3) and (5).

By (2), C = {i < θ+ : i is a limit ordinal and ji = i} is a club of θ+ i.e. C ∈ Dθ+ .

Fix i ∈ C. Note that |Mi| ⊆ Ai and Ai ⊆ |Ni| (since |Mi| = ∪
j<i
|Mj | ⊆ ∪

j<i
Aj+1 =

Ai = ∪
i′<i

Ai′ ⊆ ∪
i′<i
|Nji′+1

| = Nji = Ni (using (5), (1), (4), (2) and ji = i))

and recalling (3), Mi ≤k (N+
θ+ � τk) � Ai ≤k Ni ≤k M∗i = Op(Mi), so that

Mi ≤
nice

(N+
θ+ � τk) � Ai. However by (3) and the choice of Nθ+ and N+

θ+ one has

also that (N+
θ+ � τk) � Ai ≤

nice
Nθ+ . So by transitivity of ≤

nice
, one obtains Mi ≤

nice
Nθ+ .
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Finally remark that Mθ+ ≤k Nθ+ since Mi ≤
nice

Ni ≤k Nθ+ for every i < θ+.

Hence i ∈ C ⇒ Mi ≤k Mθ+ ≤k Nθ+ , so recalling i ∈ C ⇒ Mi ≤
nice

Nθ we have

i ∈ C ⇒Mi ≤
nice

Mθ+ ; so C ⊆
{
i < θ+ : Mi ≤

nice
Mθ+

}
∈ Dθ+ . �3.1

Definition 3.3. Suppose that θ ∈ [χ, λ) and M ∈ Kθ. M is nice iff whenever
M ≤k N ∈ Kθ, then M ≤

nice
N . (The analogous ≤k-elementary embedding definition

runs: M is nice iff whenever f : M →
k
N ∈ Kθ then f : M →

nice
N).

Theorem 3.4. Suppose that k is categorical in λ and M ∈ Kθ, θ ∈ [χ, λ). Then
there exists N ∈ Kθ such that M ≤k N and N is nice.

Proof. Suppose otherwise. We’ll define a continuous increasing ≤k-chain 〈Mi ∈
Kθ : i < θ+〉 such that for j < θ+:

(∗)j Mj �
nice

Mj+1.

For i = 0, put M0 = M ; if i is a limit ordinal, put Mi = ∪
j<i
Mj ; if i = j + 1, then

since Theorem 3.4 is assumed to fail, Mj+1 exists as required in (∗)j (otherwise
Mj works as N in Theorem 3.4). But now 〈Mi : i < θ+〉 yields a contradiction
to Theorem 3.1, since C = {i < θ+ : Mi ≤

nice
∪

j<θ+
Mj} ∈ Dθ+ by Theorem 3.1 so

that choosing j from C one has Mj ≤
nice

Mj+1 by Observation 1.38, contradicting

(∗)j . �3.4

Theorem 3.5. Suppose that k is categorical in λ and θ ∈ [χ, λ). If M ∈ Kθ is nice
and f : M →

k
N ∈ K≤λ, then f : M →

nice
N .

Proof. Choosing an appropriate Op and using Fact 1.11 one finds N1 such that
N ≤k N1 and ‖N1‖ = λ. Find M ′1 ≤

nice
N1 by Theorem 2.11(2) such that rng(f) ⊆

|M ′1|, ‖M ′1‖ = θ. So M ′1 ≤k N1 and therefore N1 � rng(f) ≤k M
′
1. Recall M is nice,

so f : M →
nice

M ′1. Now M ′1 ≤
nice

N1, therefore f : M →
nice

N1. So there are Op and

g : N1 →
k

Op(M) satisfying gf = fOp. Since N ≤k N1 it follows that f : M →
nice

N

as required. �3.5

Corollary 3.6. Suppose that M ∈ Kθ is nice, θ ∈ [χ, λ). Then M is an a.b. in k≤λ
i.e. if fi : M →

k
Mi,Mi ∈ K≤λ(i = 1, 2), then there exists an amalgam N ∈ K≤λ

of M1,M2 over M w.r.t. f1, f2.

Proof. By Definition 3.5 fi : M →
nice

Mi(i = 1, 2). Hence by Lemma 2.1 there is an

amalgam N ∈ K≤λ of M1,M2 over M w.r.t. f1, f2. �3.6

Definition 3.7. Suppose that θ ∈ [χ, λ) and ∂ is a cardinal.

(1) A model M ∈ Kθ is ∂-universal iff for every N ∈ K∂ , there exists an ≤k-
elementary embedding f : N →

k
M . We say M is universal iff M is ‖M‖-universal.

(2) A model M2 ∈ Kθ is ∂-universal over the model M1 (and one writes M1 �
∂−univ

M2) iff M1 ≤k M2 and whenever M1 ≤k M ′2 ∈ K∂ , then there exists an ≤k-
elementary embedding f : M ′2 →

k
M2 such that f �M1 is the identity. (The embed-

ding version runs: there exists h : M1 →
k
M2 and whenever g : M1 →

k
M ′2 ∈ K∂ , then
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there exists f : M ′2 →
k
M2 such that fg = h.) M2 is universal over M1 (M1 �

univ
M2)

iff M2 is ‖M2‖-universal over M1.

(3) A model M2 is ∂-universal over M1 in M iff M1 ≤k M2 ≤k M , ||M1|| ≤ ∂
and whenever M ′2 ∈ K∂ and M1 ≤k M

′
2 ≤k M , then there exists an ≤k-elementary

embedding f : M ′2 →
k
M2 such that f �M1 is the identity. M2 is universal over M1

in M iff M2 is ‖M2‖-universal over M1 in M .

(4) M2 is weakly ∂-universal over M1 (written M1 ≺
∂−wu

M2) iff M1 ≤k M2 ∈ K∂

and whenever M2 ≤k M
′
2 ∈ K∂ , then there exists an ≤k-elementary embedding

f : M ′2 →
k
M2 such that f � M1 is the identity. (The embedding version is: there

exists h : M1 →
k
M2 and whenever g : M2 →

k
M ′2 ∈ K∂ , then there exists f : M ′2 →

k

M2 such that h = fgh (written h : M1 →
∂−wu

M2)). We say M2 is weakly universal

over M1(M1 �
wu
M2) iff M2 is ‖M2‖-weakly universal over M1.

Remark 3.8. In k<λ, if M1 is an a.b., then weak universality over M1 is equivalent
to universality over M1.

Proof. Suppose that h : M1 →
wu
M2 and g : M1 →

k
M ′2 ∈ K‖M2‖. Since M1 is an a.b.

there exist a model N and h′ : M2 →
k
N, g′ : M ′2 →

k
N satisfying h′h = g′g. By

Fact 1.11 without loss of generality ‖N‖ = ‖M2‖. Since M2 is weakly universal

over M1, there exists h
′′

: N →
k
M2, h = h

′′
h′h. Let f = h

′′
g′ : M ′2 →M2, and note

that fg �M1 = h
′′
g′g = h

′′
h′h = h, so that M2 is universal over M1. �3.8

Remark 3.9. For any model M , universality over M implies weak universality over
M .

Lemma 3.10. Suppose that k is categorical in λ, θ ∈ [χ, λ). If M ∈ Kθ and
M ≤k N ∈ Kλ, then there exists M+ ∈ Kθ such that:

(a) M ≤k M
+ ≤k N,

(b) M+ is universal over M in N.

Proof. We choose I such that:

(∗) (a) I is a linear order of cardinality λ,
(b) if ∂ ∈ [ℵ0, λ), J0 ⊆ I, |J0| = ∂ then there is J1 satisfying J0 ⊆ J1 ⊆ I,
|J1| = ∂, and for every J∗ ⊆ I of cardinality ≤ ∂ there is an order-
preserving (one to one) mapping from J0∪J∗ into J0∪J1 which is the
identity on J0.

Essentially the construction follows Laver [Lav71] and [She87b, Appendix], see more
in [Shea]; but for our present purpose let I = ( ω>λ,<`ex); given θ and J0 we can
increase J0 so without loss of generality J0 = ω>A, A ⊆ λ, |A| = θ. Define an
equivalence relation E on I \ J0: ηEν ⇔ (∀ρ ∈ J0)(ρ <`ex η ≡ ρ <`ex ν), easily it
has ≤ θ equivalence classes, so let {η∗i : i < i∗ ≤ θ} be a set of representatives each
of minimal length, so η∗i � (lg η∗i − 1) ∈ J0, η∗i (lg η∗i − 1) ∈ λ \A.

Let J1 = I ∪ {η∗i ˆν : ν ∈ ω>θ and i < i∗}, so clearly J0 ⊆ J1 ⊆ I, |J1| = θ.
Suppose J0 ⊆ J ⊆ I, |J | ≤ θ, and we should find the required embedding h. As
before without loss of generality J = ω>B, |B| = θ and A ⊆ B. Now h � J0 = idJ0

so it is enough to define h � (J1 ∩ (η∗i /E)), hence it is enough to embed J1 ∩ (η∗i /E)
into {η∗1 ˆν : ν ∈ ω>θ} (under <`ex).
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Let γ = otp(B), so it is enough to show ( <ωγ,<`ex) can be embedded into ω>θ,
where of course |γ| ≤ θ. This is proved by induction on γ.

Since k is λ-categorical and EM(I) is a model of k of power λ, there is an isomorphism

g from EM(I) onto N . It follows from (∗) that M+ = g
′′
(EM(J)) ∈ Kθ satisfies

(1) and (2). (Analogues of (1) and (2) are checked in more detail in the course of
the proof of Corollary 3.14.) �3.10

Lemma 3.11. Suppose that k is categorical in λ, θ ∈ [χ, λ), and 〈Mi ∈ Kθ : i <
θ+〉, 〈Ni ∈ Kλ : i < θ+〉 are continuous ≤k-chains such that for every i < θ+ we
have Mi ≤k Ni. Then there exists i(∗) < θ+ such that (i(∗), θ+) ⊆ C := {i <
θ+ : Mi+1 can be ≤k-elementarily embedded into Ni over M0}.

Proof. Apply Lemma 3.10 for M0 ∈ Kθ and Nθ+ = ∪
i<θ+

Ni ∈ Kλ (noting that

M0 ≤k N0 ≤k Nθ+) to find M+ ∈ Kθ such that M0 ≤k M
+ ≤k Nθ+ and M+ is

universal over M0 in Nθ+ .

For some i(∗) < θ+,M+ ⊆ Ni(∗) and so M+ ≤k Ni(∗). If i ∈ (i(∗), θ+), then
Mi+1 ∈ Kθ and M0 ≤k Mi+1 ≤k Ni+1 ≤k Nθ+ , so there is an ≤k-elementary
embedding f : Mi+1 →

k
M+ and f � M0 is the identity. Now M+ ≤k Ni(∗) ≤k Ni,

so f : Mi+1 →
k
Ni. Hence (i(∗), θ+) ⊆ C as required. �3.11

Theorem 3.12. Suppose that k is categorical in λ, θ ∈ [χ, λ),M ∈ Kθ. Then there
exists M+ ∈ Kθ such that:

(ℵ) M ≤k M
+ and M+ is nice,

(i) M+ is weakly universal over M.

Proof. Define by induction on i < θ+ continuous≤k-chains 〈Mi ∈ Kθ : i < θ+〉, 〈Ni ∈
Kλ : i < θ+〉 such that:

(0) M0 = M,

(1) Mi ≤k Ni,

(2) if (∗)i holds, then Mi+1 cannot be ≤k-elementarily embedded into Ni over M0,
where (∗)i is the statement:

(∗)i there are M ′ ∈ Kθ and N ′ ∈ Kλ such that Mi ≤k M
′, Ni ≤k N

′, M ′ ≤k N
′

and M ′ cannot be ≤k-elementarily embedded into Ni over M0,

(3) Mi+1 ≤
nice

Ni+1.

This is possible. N0 is obtained by an application of Fact 1.11 to an appropriate
Op(M0) of power at least λ. At limit stages, continuity dictates that one take
unions. Suppose that Mi, Ni have been defined. If (∗)i does not hold, by Theorem
2.11(2) there is M ′′ ∈ Kθ, Mi ≤k M

′′ ≤
nice

Ni. Let Mi+1 = M ′′, Ni+1 = Ni. If (∗)i
does hold for M ′, N ′, let Ni+1 = N ′; note that by Theorem 2.11(2) there exists

M
′′ ∈ Kθ,M

′ ≤k M
′′ ≤

nice
N ′; now let Mi+1 = M

′′
. Note that in each case, (3) is

satisfied.

Find i(∗) < θ+ and C as in Lemma 3.11 and choose i ∈ C. By (1), we have
Mi+1 ≤k Ni+1 so by Lemma 3.10 there exists M− ∈ Kθ such that Mi+1 ≤k M

− ≤k

Ni+1 and M− is weakly universal over Mi+1 in Ni+1. By Theorem 3.4 one can
find M+ ∈ Kθ such that M− ≤k M+ and M+ is nice. So M+ satisfies (ℵ).
It remains to show that M+ is weakly universal over M . Suppose not and let
g : M+ →

k
M∗ ∈ Kθ where M∗ cannot be ≤k-elementarily embedded in M+ over

M hence cannot be ≤k-elementarily embedable in M− over M , hence in Ni+1 over
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M . Now, Mi+1 ≤k M
∗ ∈ Kθ and by (3) Mi+1 ≤

nice
Ni+1 ∈ Kλ, so by 2.1 there is

an amalgam N∗ ∈ Kλ of M∗, Ni+1. The existence of M∗, N∗ implies that (∗)i+1

holds since M∗ cannot be ≤k-elementarily embedded into Ni+1 over M0, hence
Mi+2 cannot be ≤k-elementarily embedded into Ni+1 in contradiction to the choice
of i as by Lemma 3.10 i+ 1 is in C. �3.12

Corollary 3.13. If k is categorical in λ, θ ∈ [χ, λ) and M ∈ Kθ is an a.b. (e.g. M
is nice, see 2.1), then there exists M+ ∈ Kθ such that:

(ℵ) M ≤k M
+ and M+ is nice,

(i) M+ is universal over M .

Proof. By Theorem 3.12 and Remark 3.8. �3.13

Corollary 3.14. Suppose that k is categorical in λ and θ ∈ [χ, λ). Then there is a
nice universal model M ∈ Kθ.

Proof. By 3.4 it suffices to find a universal model of power θ, noting that universality
is preserved under ≤k-elementary extensions in the same power. As in the proof of
3.10, there is a linear order (I,<I) of power λ and J ⊆ I, |J | = θ, such that:

(∗) (∀J ′ ⊆ I) (if |J ′| ≤ θ, then there is an order-preserving injective map g
from J ′ into J).

To finish the proof it suffices to prove:

� EM(J) ∈ Kθ is universal.

Why � holds? EM(J) is a model of power θ since max(|J |, χ) ≤ θ and θ =
|J | ≤ ‖EM(J)‖. Let us show that EM(J) is universal. Suppose that N ∈ Kθ.
Applying Fact 1.11 to a suitably large Op(N) find M ∈ Kλ, N ≤k M , so that by
λ-categoricity of k,M ∼= EM(I). There is a surjective ≤k-elementary embedding
h : N →

k
N ′ ≤k EM(I) and there exists J ′ ⊆ I, |J ′| ≤ ‖N ′‖ + χ = θ, such that

N ′ ⊆ EM(J ′). So by (∗) there is an order preserving injective map g from J ′ into
J . Now g induces an ≤k-elementary embedding ĝ from EM(J ′) into EM(J). Let
f = ĝh, then f : N →

k
EM(J) is as required. �3.14

Theorem 3.15. Suppose that k is categorical in λ, θ ∈ [κ + |T |, λ), N ∈ K<λ is
nice, M ∈ Kθ and M ≤

nice
N . Then M is nice.

Proof. Let B ∈ Kθ, M ≤k B and we show that M ≤
nice

B. Well, since M ≤
nice

N

and M ≤k B, by 2.1 there exists an amalgam M∗ ∈ K<λ of N,B over M . Without
loss of generality by 1.16 ‖M∗|| = ||N ||. But N is nice, hence N ≤

nice
M∗. Since

M ≤
nice

N , it follows by 1.34 that M ≤
nice

M∗. Since M ≤k B ≤k M
∗, it follows by

1.39 that M ≤
nice

B. �3.15
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§ 4. (θ, ∂)-saturated models

In this section, we define notions of saturation which will be of use in proving
amalgamation for kλ.

Definition 4.1. Suppose that ∂ is an ordinal, ℵ0 ≤ ∂ ≤ θ ∈ [χ, λ).

(1) An τ -structure M is (θ, ∂)-saturated8 iff:

(a) ‖M‖ = θ,
(b) there exists a continuous ≤k-chain 〈Mi ∈ Kθ : i < ∂〉 witnessing it, which

means:
(i) M0 is nice and universal,
(ii) Mi+1 is universal over Mi,

(iii) Mi is nice, and,
(iv) M = ∪

i<∂
Mi.

(2) M is θ-saturated iff M is (θ, cf(θ))-saturated.

(3) M is (θ, ∂)-saturated over N iff M is (θ, ∂)-saturated as witnessed by a chain
〈Mi : i < ∂〉 such that N ≤k M0.

The principal facts established in this section connect the existence, uniqueness and
niceness of (θ, ∂)-saturated models.

Theorem 4.2. Suppose that k is categorical in λ and ∂ ≤ θ ∈ [χ, λ). Then:

(1) there exists a (θ, ∂)-saturated model M,

(2) for ∂ a limit ordinal, M is unique up to isomorphism,

(3) M is nice.

Proof. One proves (1), (2), and (3) simultaneously by induction on ∂.

Ad (1). Choose a continuous ≤k-chain 〈Mi ∈ Kθ : i < ∂〉 of nice models by induc-
tion on i as follows. For i = 0, apply 3.14 to find a nice universal model M0 ∈ Kθ.
For i = j + 1, note that Mj is an a.b. by 3.6 (since Mj is nice), hence by 3.13
there exists a nice model Mi ∈ Kθ,Mj ≤k Mi,Mi universal over Mj . For limit i,
let Mi = ∪

j<i
Mj . Note that by the inductive hypothesis (3) on ∂ for i < ∂, since

Mi is (θ, i)-saturated, Mi is nice. Thus M = ∪
i<∂

Mi is (θ, ∂)-saturated (witnessed

by 〈Mi : i < ∂〉). Note that M is universal since 〈Mi : i < ∂〉 is continuous and M0

is universal.

Ad (2). Recall that each Mi is an amalgamation base by 2.1. As ∂ is a limit ordinal
standard back-and-forth argument shows that if M and N are (θ, ∂)-saturated
models, then M and N are isomorphic.

Ad (3). By the uniqueness (i.e. by Ad(2)) it suffices to prove that some (θ, ∂)-
saturated model is nice. Suppose that M is (θ, ∂)-saturated. We’ll show that M is
nice.

If cf(∂) < ∂, then M is also (θ, cf(∂))-saturated and hence by the inductive hy-
pothesis (3) on ∂ for cf(∂),M is nice. So we’ll assume that cf(∂) = ∂. Choose
a continuous ≤k-chain 〈Mi ∈ Kθ : i < θ+〉 such that: M0 is nice and universal
(possible by 3.14); if Mi is nice, then Mi+1 ∈ Kθ is nice and universal over Mi

(possible by 3.6 and 3.13); if Mi is not nice (so necessarily i is a limit ordinal),
then Mi+1 ∈ Kθ,Mi ≤k Mi+1 and Mi �

nice

Mi+1. By 3.1 and 1.38 there is a club

C of θ+ such that if i ∈ C, then Mi ≤
nice

Mi+1. So by the choice of 〈Mi : i < θ+〉,

8Called (θ, ∂)-trimmed in [She09b].
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if i ∈ C, then Mi is nice. Choose i ∈ C, i = sup(i ∩ C), cf(i) = ∂. It suffices to
show that Mi is (θ, ∂)-saturated (for then by (2) Mi is isomorphic to M and so
M is nice). Choose a continuous increasing sequence 〈αζ : ζ < ∂〉 ⊆ C such that
i =

⋃
{αζ : ζ < ∂} (recall that i = sup(i ∩ C), cf(i) = ∂). Now Mi = ∪

ζ<∂
Mαζ . Of

course Mα0 is universal (since M0 is universal and M0 ≤k Mα0), Mαζ+1
is universal

over Mαζ since Mαζ+1 is universal over Mαζ and Mαζ ≤k Mαζ+1 ≤k Mαζ+1
. Also

Mαζ is nice for each ζ < ∂ since αζ ∈ C. Hence Mi is (θ, ∂)-saturated, recall that
Mi is nice because i ∈ C, so we are done. �4.2

Remark 4.3. Remember that by 3.15, if k is categorical in λ, θ ∈ [χ, λ), N ∈ K<λ

is nice, M ∈ Kθ and M ≤
nice

N, then M is nice.

Theorem 4.4. Suppose that k is categorical in λ, χ ≤ θ < θ+ < λ. If 〈Mi ∈
Kθ : i < θ+〉 is a continuous ≤k-chain of nice models such that Mi+1 is universal
over Mi for i < θ+, then

⋃
i<θ+

Mi is (θ+, θ+)-saturated.

Remark 4.5. Why this is not trivial? Because here Mi is of cardinality θ whereas
in Definition 4.1 the Mi are of cardinality θ+.

Proof. Write M =
⋃
i<θ+

Mi. Note that if 〈M ′i ∈ Kθ : i < θ+〉 is any other continuous

≤k-chain of nice models such that M ′i+1 is universal over M ′i then
⋃
i<θ+

M ′i
∼= M

(use again the back and forth argument recalling that M0, is an a.b., so as Mj is
universal over M0, it is universal).

By Theorem 4.2 there exists a (θ+, θ+)-saturated model N which is unique and nice.
In particular ||N || = θ+ and there exists a continuous ≤k-chain 〈Ni ∈ Kθ+ : i < θ+〉
such that:

(i) N0 is nice and universal,
(ii) Ni+1 is universal over Ni,
(iii) Ni is nice,
(iv) N =

⋃
i<θ+

Ni.

It suffices to prove that M and N are isomorphic models.

Without loss of generality |N | = θ+. By Fact 1.11, the set C1 = {δ < θ+ : N �
δ ≤k N} contains a club of θ+. By 3.1 there exists a club C2 ⊆ C1 of θ+ such that
for every δ ∈ C2, N � δ ≤

nice
N . Since {|Ni| : i < θ+} is a continuous increasing

sequence of subsets of θ+, it follows that C3 = {δ < θ+ : δ ⊆ |Nδ|} is a club of
θ+. Hence there is a club C4 of θ+ such that C4 ⊆ C1 ∩ C2 ∩ C3 ∩ [θ, θ+). Note
that for δ ∈ C4 one has N � δ ≤

nice
N , |N � δ| = δ ⊆ |Nδ| and Nδ ≤k N , so that

N � δ ≤k Nδ ≤k N and so by 1.38 N � δ ≤
nice

Nδ. Also, 〈Nδ : δ ∈ C4〉 is a continuous

increasing ≤k-chain, Nδ ∈ Kθ+ and N � δ ∈ Kθ.

By 3.15 N � δ is nice since Nδ is nice (by (iii)). So by 3.13 N � δ has a nice
≤k-extension Bδ ∈ Kθ which is universal over N � δ, without loss of generality
N � δ ≤k Bδ ≤k N .

[Why? since N � δ ≤k Bδ (in fact N � δ ≤
nice

Bδ) and N � δ ≤
nice

Nδ, by 2.1 there

exists an amalgam Aδ ∈ K≤θ+ of Bδ, Nδ over N � δ. Let fδ : Bδ →
k
Aδ be a witness.

But Nδ+1 is universal over Nδ (by (ii)), so Aδ can be ≤k-elementarily embedded
into Nδ+1 over Nδ (say by gδ), hence Bδ can be ≤k-elementarily embedded into N
(using gδfδ).]
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Let C5 = {δ ∈ C4 : if α ∈ C4 ∩ δ, then |Bα| ⊆ δ}. Note that C5 is a club of θ+

since ||Bα|| = θ. [Why? For α ∈ C4, let Eα = (sup |Bα|, θ+) ∩ C4, let Eα = θ+

for α 6∈ C4 and let E be the diagonal intersection of 〈Eα : α < θ+〉, i.e. E = {δ <
θ+ : (∀α < δ)(δ ∈ Eα)}. Note that E is a club of θ+ and C5 ⊇ E ∩ C4 which is a
club of θ+.]

Thus 〈N � δ : δ ∈ C5〉 is a continuous ≤k-chain of nice models, each of power
θ. If δ1 ∈ C5 and δ2 = min(C5 \ (δ1 + 1)), then N � δ1 ≤k Bδ1 ≤k N � δ2.
Hence N � δ2 is universal over N � δ1 (since Bδ1 is universal over N � δ1). Let
{δi : i < θ+} enumerate C5 and set M ′i = N � δi. Note that N =

⋃
i<θ+

M ′i . Then

〈M ′i ∈ Kθ : i < θ+〉 is a continuous ≤k-chain of nice models, M ′i+1 is universal over
M ′i . Therefore N and M are isomorphic (as said at the beginning of the proof), as
required. �4.4

Notation 4.6. Θ = {θ : θ = 〈θi : i < δ〉 is a (strictly) continuous increasing se-
quence of cardinals, χ < θ0, δ < θ0 (a limit ordinal),

⋃
i≤δ

θi ≤ λ} and Θ− = {θ̄ ∈

Θ: sup θi < λ}.

Remark 4.7. Let θ = sup(θ) = sup{θi : i < lg(θ̄)} for θ̄ ∈ Θ. Then θ is singular,
since cf(θ) ≤ δ < θ0 ≤ θ.

Definition 4.8. Let θ̄ ∈ Θ. A model M is θ-saturated iff there is a continuous
≤k-chain 〈Mi ∈ Kθi : i < δ〉 such that M =

⋃
i<δ

Mi, Mi is nice and Mi+1 is θi+1-

universal over Mi.

Definition 4.9. Suppose that θ ∈ Θ. Pr(θ) holds iff every θ-saturated model is
nice.

Remark 4.10. (1) If θ̄1, θ̄2 ∈ Θ, rng(θ̄1) ⊆ rng(θ̄2), sup rng(θ̄1) = sup rng(θ̄2), and
M is θ̄2-saturated, then M is θ̄1-saturated.

(2) For θ̄ ∈ Θ− and Pr(θ̄′) whenever θ̄′ ∈ Θ is a proper initial segment of θ̄, there
is a θ̄-saturated model and it is unique.

Theorem 4.11. Suppose that θ ∈ Θ− and for every limit ordinal α < lg(θ),
Pr(θ � α). Then Pr(θ).

Proof. Let θ = sup(θ̄). By 4.10(1) and the uniqueness of θ-saturated models 4.10(2),
without loss of generality one may assume that lg(θ) = cf(sup(θ)) = cf(θ). Now,
by 4.7, we know (cf(θ))+ < θ (= sup(θ̄)), so by [She93, 1.16 + Fact 1.11(1)] there
exists 〈S, 〈Cα : α ∈ S〉〉 such that:

(α) S ⊆ θ+ is a set of ordinals; 0 /∈ S,
(β) S1 = {α ∈ S : cf(α) = cf(θ)} is a stationary subset of θ+,
(γ) if α ∈ S then α = sup(Cα) and, if α ∈ S \ S1 then otp(Cα) < cf(θ),
(δ) if β ∈ Cα, then β ∈ S and Cβ = Cα ∩ β,
(ε) Cα is a set of successor ordinals.

[Note that the existence of 〈S, 〈Cα : α ∈ S〉〉 is provable in ZFC.]

Without loss of generality S \S1 = ∪{Cα : α ∈ S1}. We shall construct the required
model by induction, using 〈Cα : α ∈ S〉. Remember θ̄ = 〈θζ : ζ < cf(θ)〉. Let us
start by defining by induction on α < θ+ the following entities: Mα, Mα,ξ (for
α < θ+, ξ < cf(θ)), and Nα (only when α ∈

⋃
β∈S

Cβ) such that:

(A1) Mα ∈ Kθ,

(A2) 〈Mα : α < θ+〉 is a continuous increasing ≤k-chain of models,
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(A3) Mα+1 is nice, and if Mα is not nice, then Mα 6�
nice

Mα+1,

(A4) Mα 6= Mα+1,

(A5) Mα+1 is weakly universal over Mα,

(B1) Mα =
⋃

ξ<cf(θ)

Mα,ξ, ||Mα,ξ|| = θξ,

(B2) if α ∈ S1 , β ∈ Cα , γ ∈ Cα , β < γ, then:

(a) Nβ ≤k Mβ ,
(b) ||Nβ || = θotp(Cβ),
(c) (∀ξ < otp(Cβ))(Mβ,ξ ≤k Nγ),
(d) Nβ is nice,
(e) Nγ is θotp(Cγ)-universal over Nβ .

There are now two tasks at hand. First of all, we shall explain how to construct
these entities (THE CONSTRUCTION, below). Then we shall use them to build
a nice θ-saturated model (PROVING Pr(θ), below). From the uniqueness of θ-
saturated models it will thus follow that Pr(θ) holds.

THE CONSTRUCTION: we consider several cases:

Case (i): β = 0. Choose M0 ∈ Kθ and 〈M0,ξ ∈ Kθ : ξ < cf(θ)〉 with M0 =⋃
ξ<cf(θ)

M0,ξ using Fact 1.11. There is no need to define N0 since 0 6∈ Cα.

Case (ii): β is a limit ordinal. Let Mβ =
⋃
γ<β

Mγ and choose 〈Mβ,ξ : ξ < cf(θ)〉

using Fact 1.11. Again there’s no call to define Nβ since Cα is always a set of
successor ordinals.

Case (iii): β is a successor ordinal, β = γ + 1. Choose M ′γ ∈ Kθ such that

Mγ ≤k M
′
γ and if possible Mγ �

nice

M ′γ ; without loss of generality M ′γ is weakly

universal over Mγ . If β 6∈ S, then define things as above, taking into account (A3).
The definitions of Mβ , Mβ,ξ present no special difficulties. Now suppose that β ∈ S.
The problematic entity to define is Nβ .

If Cβ = ∅, choose for Nβ any nice sub-model (of power θ0) of Mγ .

If Cβ 6= ∅, then first define N−β =
⋃

γ∈Cβ
Nγ . Note that N−β is nice. [If Cβ has

a last element β′, then N−β = Nβ′ which is nice; if Cβ has no last element, then

N−β =
⋃

γ∈Cβ
Nγ is θ � otp(Cβ)-saturated, and, by the hypothesis of the theorem,

Pr(θ � otp(Cβ)), so N−β is nice.] Also N−β �k Mγ . If otp(Cβ) is a limit ordinal we

let Nβ = N−β and Mβ = M ′γ , so we have finished, so assume otp(Cβ) is a successor

ordinal. To complete the definition of Nβ , one requires a Lemma (the proof of
which is similar to 3.12, 3.13):

(∗) if A ⊆M ∈ Kθ, |A| ≤ θj < θ, then there exist a nice M+ ∈ Kθ, M ≤k M
+,

and nice models N∗, N+ ∈ Kθj , A ⊆ N∗ ≤k N
+ ≤k M

+ and N+ is
universal over N∗.

Why is this enough? Use the Lemma with M = M ′β and A = N−β ∪
⋃

ξ<otp(Cβ)
γ∈Cβ

Mγ,ξ

to find N∗, N+, M+ and choose N+, M+ as Nβ , Mβ respectively.

Now, why (∗) holds? The proof of (∗) is easy as M ′β is nice.

PROVING Pr(θ):
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For α ∈ S1, consider 〈Nβ : β ∈ Cα〉. For β, γ ∈ Cα, β < γ, one has by (B2)(c)⋃
ξ<otp(Cβ)

Mβ,ξ ⊆ Nγ . Therefore Mβ ⊆
⋃

γ∈Cα
Nγ . (Recalling Mβ =

⋃
ξ<cf(θ)

Mβ,ξ =⋃
ξ<cf(α)

Mβ,ξ (since α ∈ S1); for ξ < cf(α), choose γ ∈ Cα, ξ < γ, β < γ; so

Mβ,ξ ⊆ Nγ and Mβ ⊆
⋃

γ∈Cα
Nγ).

Thus for every β ∈ Cα, Mβ ⊆
⋃

γ∈Cα
Nγ hence Mα =

⋃
β∈Cα

Mβ ⊆
⋃

γ∈Cα
Nγ (remember

α = sup(Cα) as α ∈ S1). If γ ∈ Cα, then Nγ ≤k Mγ (by (B2)(a)), and so⋃
γ∈Cα

Nγ ⊆
⋃

β∈Cα
Mβ = Mα by continuity. So Mα =

⋃
β∈Cα

Nβ hence 〈Nβ : β ∈ Cα〉

exemplifies Mα is θ̄-saturated (remember Pr(θ̄ � δ) for every limit δ < lg(θ̄)). So Mα

is θ-saturated for every α ∈ S1. In other words {α < θ+ : Mα is θ-saturated} ⊇ S1

and is stationary, so, applying 3.1, there exists α < θ+ such that Mα is θ-saturated
and Mα ≤

nice

⋃
β<θ+

Mβ . Hence by 1.38 Mα ≤
nice

Mα+1 and so, since Mα+1 is nice

(A3), Mα is nice (by 3.15).

We conclude that Pr(θ) holds. �4.11

To round off this section of the paper, let us make the connection between θ-
saturation and (θ, cf(θ))-saturation (Notation follows 4.6–4.10).

Theorem 4.12. Let θ̄ ∈ Θ− and θ = sup
i

(θi). Every θ-saturated model is (θ, cf(θ))-

saturated.

Proof. Let 〈Mα : α < θ+〉 be as in the proof of 4.11. By 3.1 there exists a club C
of θ+ such that for every α ∈ C, Mα ≤

nice

⋃
β<θ+

Mβ hence by the construction Mα

is nice. So if α, β ∈ C and α < β, then Mβ is a universal extension of Mα and for
γ = sup(γ ∩C), γ ∈ C, one has that Mγ is (θ, cf(γ))-saturated. Choose γ ∈ S1 ∩C
and sup(γ ∩ C) = γ. So Mγ is (θ, cf(θ))-saturated and also θ̄-saturated (see proof
of 4.11). Together we finish. �4.12
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§ 5. THE AMALGAMATION PROPERTY FOR k<λ

Corollaries 5.5 and 5.6 are the goal of this section, showing that if K is categorical
in λ then every element of k<λ is nice (see 5.5) and k<λ has the amalgamation
property (see 5.6).

Lemma 5.1. Suppose that µ is singular, 〈µi : i < cf(µ)〉 is a continuous strictly
increasing sequence of cardinals, µ = sup

i<cf(µ)

µi, and χ ≤ µ0 < µ ≤ λ. Then there

exist a linear order I of power µ and a continuous increasing sequence 〈Ii : i < cf(µ)〉
of linear orders such that:

(a) χ ≤ |Ii| ≤ µi and |Ii| < |Ii+1| for each i,
(b)

⋃
i<cf(µ)

Ii = I,

(c) every t ∈ Ii+1 \ Ii defines a Dedekind cut of Ii in which (at least) one side
of the cut has cofinality κ.

Proof. Let I = ({0} × µ) ∪ ({1} × κ), Ii = ({0} × µi) ∪ ({1} × κ) ordered by:

(i, α)<I (j, β) iff i < j or (0 = i = j and α < β) or (1 = i = j and α > β).

�5.1

Lemma 5.2. Suppose that k is categorical in λ > cf(λ), κ + LSTk < µ ≤ λ. If
M ∈ Kλ, then there exists a continuous increasing ≤k-chain 〈Mi : i < cf(λ)〉 of
models such that:

(a) M ≤k

⋃
i<cf(λ)

Mi,

(b) ‖ ∪
i<cf(λ)

Mi‖ = λ,

(c) κ+ |T | ≤ ‖Mi‖ < ‖Mi+1‖ < λ,

(d) for each i < cf(λ),Mi ≤
nice

(
∪

j<cf(λ)
Mj

)
.

Proof. As λ is a limit cardinal, choose a continuous increasing sequence 〈µi : i <
cf(λ)〉, λ = sup

i<cf(λ)

µi, κ + |T | ≤ µ0 < λ. Let 〈I, 〈Ii : i < cf(λ)〉〉 be as in 5.1. By

λ-categoricity of k without loss of generality M = EM(λ). Let Mi = EM(Ii) for
i < cf(λ). Clearly (a), (b), and (c) hold. To obtain (d), observe that by 2.6 and
3.6 it suffices to remark that by demand (c) from 5.1 on 〈Ii : i < cf(λ)〉 clauses (ℵ)
or (i) in 2.6 holds for each t ∈ I \ Ii. �5.2

Theorem 5.3. For every µ ∈ [χ, λ] and M ∈ Kµ, there exists M ′ ∈ Kµ,M ≤k M
′

such that:

(∗)M ′ for every A ⊆ |M ′|, |A| < λ ∧ |A| ≤ µ, there is N ∈ Kχ+|A| such that
A ⊆ N ≤k M

′ and N is nice.

Proof. The proof is by induction on µ.

Case 1: µ = χ. By 3.4 there is M ′ ∈ Kµ, M ≤k M
′ and M ′ is nice. Given A ⊆ |M ′|

let N = M ′ and note that N is as required in (∗)M ′ .
Case 2: χ < µ. Without loss of generality, one can replace M by any ≤k-extension
in Kµ. Choose a continuous increasing sequence 〈µi : i < cf(µ)〉 such that if µ is a
limit cardinal it is a strictly increasing sequence with limit µ; if µ is a successor,
use µ+

i = µ for every i < cf(µ), and in both cases χ ≤ µi < µ. Find M̄ = 〈Mi : i <
cf(µ)〉 such that:
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(a) M ≤k

⋃
i<cf(µ)

Mi,

(b) ||
⋃

i<cf(µ)

Mi|| = µ,

(c) ||Mi|| = µi,
(d) Mi ≤

nice

⋃
j<cf(µ)

Mj .

Why does M̄ exist? If µ = λ by 5.2, otherwise by 4.4 (µ regular) and 4.12 (µ
singular).

Choose by induction on i < cf(µ) models L0
i , L

1
i , L

2
i in that order such that:

(α) Mi ≤k L
0
i ≤k L

1
i ≤k L

2
i ∈ Kµi ,

(β) j < i⇒ L2
j ≤k L

0
i ,

(γ) (∗)L1
i

holds , i.e. for each A ⊆ |L1
i |, there is N ∈ K≤κ+|T |+|A| such that

A ⊆ N ≤k L
1
i and N is nice (so in particular L1

i is nice, letting A = |L1
i |),

(δ) L2
i is nice and µi-universal over L1

i ,
(ε) L0

i is ≤k-increasing continuous,
(ζ) L`i ∩

⋃
j<cf(µ)Mj = Mi (or use system of ≤k-embeddings).

For i = 0, let L0
i = M0. For i = j + 1, note that by 2.1 there is an amalgam

L0
i ∈ Kµi of Mi, L

2
j over Mj since Mj ≤

nice
Mi and Mj ≤k L

2
j (use last phrase of Fact

1.11 for clause (ζ)); actually not really needed. For limit i, continuity necessitates
choosing L0

i =
⋃
j<i L

0
j (note that in this case L0

i =
⋃
j<i L

2
j ). To choose L1

i apply

the inductive hypothesis with respect to µi, L
0
i to find L1

i so that L0
i ≤k L

1
i and

(γ)(∗)(L1
i )

holds. To choose L2
i apply 3.10 to L1

i ∈ Kµi giving L1
i ≤k L

2
i , L

2
i is nice

and µi-universal over L1
i (so (δ) holds).

Let L =
⋃
i<cf(µ) L

0
i =

⋃
i<cf(µ) L

1
i =

⋃
i<cf(µ) L

2
i , and let Li = L0

i if i is a limit, L1
i

otherwise. Now show by induction on i < cf(µ) that Li is nice.

[Why? show by induction on i for i = 0 or i successor that Li = L1
i hence use

clause (γ), if i is limit then Li is (θ̄ � i)-saturated, hence Li is nice by 4.9, 4.11.]

Now 〈Li : i < cf(µ)〉 witnesses that if µ is regular, L is (µ, µ)-saturated by 4.4, if µ
is singular, L is µ̄-saturated; in all cases L is µ̄-saturated of power µ, hence by the
results of section 4 (i.e. 4.9, 4.11) if µ < λ then L is nice. Claim 5.4 below provides
the desired model M ′, so we are done. �5.3

Claim 5.4. M ′ = L is as required (in 5.3).

Proof. M ≤k ∪
i<cf(µ)

Mi ≤k ∪
i<cf(µ)

L0
i = L ∈ Kµ. Suppose that A ⊆ |L|. If |A| = µ,

then necessarily µ < λ and we take N = L. So without loss of generality, |A| < µ.
If µ = cf(µ) or |A| < cf(µ), then there is i < cf(µ) such that A ⊆ L1

i and,
by (γ), (∗)L1

i
holds, so there is N ∈ Kκ+LST(k)+|A|, A ⊆ N ≤k L

1
i , N is nice and

N ≤k L as required. So suppose that cf(µ) ≤ |A| < µ. Choose by induction on
i < cf(µ) models N0

i , N
1
i , N

2
i in that order such that:

(α) N0
i ≤k N

1
i ≤k N

2
i ,

(β) N2
i ≤k N

0
i+1,

(γ) A ∩ L0
i ⊆ N0

i ≤k L
0
i ,

(δ) N1
i ≤k L

1
i and N1

i is nice,
(ε) N2

i ≤k L
2
i , N

2
i is nice and universal over N1

i ,
(ζ) N0

i , N
1
i , N

2
i have power at most min{χ+ |A|, µi}.

For i = 0, apply Fact 1.11 for A ∩ L0
0, L

0
0; for i = j + 1, apply Fact 1.11 to

find N0
i ∈ Kµi , (A ∩ L0

i ) ∪ N2
j ⊂ N0

i ≤k L
0
i (in particular N2

j ≤k N
0
i ); for limit
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i,N0
i = ∪

j<i
N0
j . To choose N1

i , use (∗)L1
i

for the set Ai = N0
i to find a nice

N1
i ∈ K≤χ+|A|, N

0
i ≤k N

1
i ≤k L

1
i . Note that ‖N1

i ‖ ≤ µi. Finally to choose N2
i

note that by Lemma 3.12 the model N1
i has a nice extension N+

i (of power ‖N1
i ‖)

weakly universal over N1
i . Now N1

i is nice, hence N+
i is universal over N1

i (by
3.7A(5)) and by Lemma 2.1 there is an amalgam Ni of N+

i , L
1
i over N1

i such that
‖Ni‖ ≤ µi. Since L2

i is universal over L1
i one can find an ≤k-elementary sub-model

N2
i of L2

i isomorphic to Ni. Let Ni be N0
i if i is a limit, N1

i otherwise; prove by
induction on i that Ni is nice (by Theorem 4.2).

Now ∪
i<cf(µ)

N0
i is an ≤k-elementary sub-model of L of power at most κ+ |T |+ |A|,

including A (by (γ)) and ∪
i<cf(µ)

N0
i is (χ+ |A|, cf(µ))-saturated, hence (by Theorem

4.2) nice, as required. �5.4

Corollary 5.5. If K is categorical in λ then every element of K<λ is nice.

Proof. Suppose otherwise and let N0 ∈ K<λ be a model which is not nice. Choose
a suitable Op such that ‖Op(N0)‖ ≥ λ and by Fact 1.11 find M0 ∈ Kλ, N0 ≤k

M0 ≤k Op(N0) i.e. N0 ≤
nice

M0. It follows that:

� if N0 ≤k N ≤k M0 and N ∈ K<λ then N is not nice.

[Why? By 4.3; alternatively, suppose contrariwise that N is nice. So there is
N1 ∈ K<λ, N0 ≤k N1, N0 ≤

nice
N1, so N0 ≤

nice
N since N0 ≤

nice
M0 and N ≤k M0,

hence there is an amalgam N ′ ∈ K<λ of N1, N over N0. But N is nice, so N ≤
nice

N ′;N0 ≤
nice

N , so N0 ≤
nice

N ′ and so N0 ≤
nice

N1 contradiction.]

On the other hand, applying 5.3 for µ = λ there exists M ′ ∈ Kλ satisfying (∗)M ′ .
By λ-categoricity of k without loss of generality, (∗)M0

holds (see 5.3) and A = |N0|
yields a nice model N ∈ Kκ+|T |+‖N0‖ such that N0 ≤k N ≤k M0 contradicting
�. �5.5

Corollary 5.6. If K is categorical in λ, then k<λ has the amalgamation property.

Proof. As every nice M ∈ K<λ is an amalgamation base (by 3.6) we are done by
the previous corollary. �5.6

References

[Bal09] John Baldwin, Categoricity, University Lecture Series, vol. 50, American Mathematical

Society, Providence, RI, 2009.

[CK73] Chen C. Chang and H. Jerome Keisler, Model theory, Studies in Logic and the Founda-
tion of Math., vol. 73, North–Holland Publishing Co., Amsterdam, 1973.

[Dic75] M. A. Dickmann, Large infinitary languages, Studies in Logic and the Foundations of

Mathematics, Vol. 83, North-Holland Publishing Co., Amsterdam-Oxford; American
Elsevier Publishing Co., Inc., New York, 1975, Model theory. MR 0539973

[Dic85] M. A. Dickman, Larger infinitary languages, Model Theoretic Logics (J. Barwise and

S. Feferman, eds.), Perspectives in Mathematical Logic, Springer-Verlag, New York
Berlin Heidelberg Tokyo, 1985, pp. 317–364.

[HS81] Wilfrid Hodges and Saharon Shelah, Infinite games and reduced products, Ann. Math.
Logic 20 (1981), no. 1, 77–108. MR 611395

[HS90] Bradd T. Hart and Saharon Shelah, Categoricity over P for first order T or categoricity

for φ ∈ Lω1ω can stop at ℵk while holding for ℵ0, · · · ,ℵk−1, Israel J. Math. 70 (1990),
no. 2, 219–235, arXiv: math/9201240. MR 1070267

[Jec03] Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin,

2003, The third millennium edition, revised and expanded.

Paper Sh:E102, version 2024-07-04. See https://shelah.logic.at/papers/E102/ for possible updates.

https://arxiv.org/abs/math/9201240


36 S. SHELAH AND OREN KOLMAN

[Kei71] H. Jerome Keisler, Model theory for infinitary logic. logic with countable conjunctions

and finite quantifiers, Studies in Logic and the Foundations of Mathematics, vol. 62,

North–Holland Publishing Co., Amsterdam–London, 1971.
[KS96] Oren Kolman and Saharon Shelah, Categoricity of theories in Lκω, when κ is a mea-

surable cardinal. I, Fund. Math. 151 (1996), no. 3, 209–240, arXiv: math/9602216.
MR 1424575
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