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ABSTRACT

A central theme in set theory is to find universes with extreme, well-
understood behaviour. The case we are interested in is assuming GCH
and having a strong forcing axiom of higher order than usual. Instead
of “every suitable forcing notion of size λ has a sufficiently generic filter”
we shall say “for every suitable method of producing notions of forcing
based on a given stationary set, there is such a suitable stationary set S

and sufficiently generic filters for the notion of forcing attached to S”.
Such notions of forcing are important for Abelian group theory, but this
application is delayed for a sequel.

1. Introduction

One of the original motivations for the work presented in this paper is to show
the consistency of the failure of singular compactness for properties such as
being a Whitehead group (Ext(G,Z) = 0). Under V = L, for example, singular
compactness for being a Whitehead group holds, but this is because V = L

implies that Whitehead groups are all free [She74], and singular compactness for
free groups is a ZFC theorem [She75]. The question whether V = L is necessary
arises from work in [Ekl80]; see also [EFS90, Hod81, She19]. A similar question
about singular compactness of a property Ext(G, T ) = 0 where T is a torsion
group was asked by Strüngmann, following [Str02, Prop. 2.6].

These problems are closely related to so-called uniformisation principles
(see [EM02]), and in many cases are even equivalent to them. The first work
along these lines is [She77], where it is proved that GCH is consistent with di-
amond holding at some stationary subset of ω1, while failing at others (indeed
on the latter, some uniformisation principle, usually derived from MA, holds).
For more see [She03a, She03b].

In this paper we present an axiom which guarantees, among other conse-
quences, instances of uniformisation. What we term the “task axiom” for a reg-
ular cardinal λ ensures that mutually competing principles, such as diamonds
and uniformisation, all hold at (necessarily disjoint) stationary sets.

A feature of this axiom is that it entails Π4, rather than Π2 statements: to
satisfy a “task”, we need not only a sufficiently generic filter for an appropriate
notion of forcing, but also many filters for subsequent notions of forcing which
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are determined by the first filter. The two examples we present in this paper are
exact diamonds (Proposition 4.9) and uniformisation (Proposition 4.12). For
example, for the former, the first notion of forcing adds a stationary set and a
diamond sequence on that set; subsequent notions of forcing ensure that this
diamond sequence is exact, by adding functions which are not guessed by less
than the full diamond sequence.

Much of the technical work is involved in showing that the stationary set,
added by the primary notion of forcing of a task (in the example above, the set
on which the diamond sequence is supported), remains stationary after adding
the subsequent generic filters. We also need to ensure that different tasks do not
interfere with each other; that is more easily achieved, by ensuring that distinct
tasks are met on disjoint stationary sets. Overall, this requires a “niceness
condition” which is part of the definition of the task axiom. The definition of
this condition uses a notion of closure of a forcing partial ordering on a given fat
set, related to the notions of S-completeness defined in [She77, She03a, She03b].

In a planned sequel, the second author intends to use the task axiom to show
the consistency of the failure of singular compactness for the classes of groups
mentioned above.

1.1. The contents of the paper. Tasks (Definition 3.3) are defined in Sec-
tion 3; the task axiom (Definition 4.8) is stated in Section 4. Beforehand, we de-
velop the tools required to formulate tasks and to work with them. Throughout,
we fix a regular uncountable cardinal λ, and assume that GCH holds below λ.

To start, we define two notions of completeness:
• explicitly S-closed notions of forcing (Definition 2.1);
• S-sparse names for subsets of λ (Definition 2.9).

The former attaches ordinals to conditions, and states that increasing sequences
of conditions whose associated oridnals converge to points in S have upper
bounds. The latter is similar, except that we now associate to conditions initial
segments of a subset of λ in the generic extension, and state that increasing
sequences of conditions which determine a closed set disjoint from the subset in
question have upper bounds.

We then turn to develop machinery that will help us work with forcing itera-
tions. The general situation is a <λ-support iteration 〈Pζ ,Qζ〉ζ<ξ, one of which
we will use to show consistency of the task axiom. In the intended application,
some of the notions of forcing Qζ add new stationary sets Wζ , on which we
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130 N. GREENBERG AND S. SHELAH Isr. J. Math.

will want to fulfill some “task”; that is done by some of the subsequent notions
of forcing Qη appearing (cofinally) later in the iteration. The typical task will
state the existence of a stationary set S and possibly some associated object (for
example a diamond sequence), for which some Π2(Hλ) fact holds (for example,
the diamond sequence is exact).

For simplicity of notation, we will set Wη = ∅ for the notions Qη which do
not start a new task. Thus, for many of our definitions and lemmas, we do not
need to differentiate between the two kinds of Qζ’s. We will ensure that the
sets Wζ are pairwise disjoint (modulo clubs).

In Section 2 we show (Corollary 2.32) how to construct, for each ζ � ξ, a
sparse Pζ-name for the least upper bound of the sets Wζ′ (for ζ′ < ζ), again
modulo clubs. These names, and how they cohere with each other, will be one
of the main tools we use in the analysis of tasks, ensuring that they can be
adequately fulfilled.

In Section 3 we define tasks. To motivate the definitions, before we define
the task axiom, we give a prototypical example of an iteration, of length λ+,
attempting to fulfill tasks. We formulate the example of exact diamonds and
show that these exist in the generic extension (Proposition 3.8).

To formulate the task axiom, we need to bear in mind that some tasks may be
too ambitious; an attempt to fulfill them, along with other tasks, will result in
failure, for example, in a hoped-for stationary set not being stationary anymore.
Thus we need to define “correctness conditions” for tasks (Definition 4.5). It is
only reasonable to expect that a task be fulfilled if a typical forcing iteration
preserves this correctness condition; this is the notion of niceness for tasks
(Definition 4.6), with which we can then state the task axiom.

Unfortunately, the iteration of length λ+ given in Section 3 may be too short
to expose those tasks which are not nice, i.e., to witness the failure of the
correctness condition after some iteration. The consistency of the task axiom
is then proved by a longer iteration (still of length < λ++), with sufficient
closure. At steps of cofinality λ+, we need auxiliary notions of forcing to ensure
that the sequence of sets Wζ have upper bounds; we develop this machinery
(Proposition 4.3) in the beginning of Section 4.

Finally, as a second example, we show that the task axiom implies instances
of uniformisation (Proposition 4.12).

We remark that the construction can be modified to ensure the preservation
of suitable large cardinals; we do not pursue this topic in this paper.
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1.2. Notation and terminology. We list some of the notation that we use.
We follow the Israeli convention for extension in notions of forcing; p � q

means that q extends p. Complete embeddings P � Q of forcing notions will
always be accompanied with a complete projection p �→ p � P from Q to P.
For typographical convenience, for a notion of forcing P and a definable set
or class X , we let X(P) denote the interpretation of X in the Boolean valued
model V P. So, for example, V (P) = V P, P(λ)(P) = (P(λ))V P is the collection
of names a ∈ V P such that �P a ⊆ λ, etc. When we say that a statement ϕ

holds in V (P), we mean that every condition forces ϕ.
For a binary string σ (a function from an ordinal into 2), we let |σ| = dom σ

denote the length of σ. We will at times be imprecise and identify sets with
characteristic functions; that is, we identify σ : α → 2 with {β < α : σ(β) = 1},
when there is no danger that we forget α = |σ|. We write σ � τ to indicate
that τ extends σ, that is, σ = τ � |σ|.

Cof(θ) denotes the class of ordinals of cofinality θ; similarly we use Cof(� θ)
etc. For a cardinal λ, we let Cofλ(θ) denote λ ∩ Cof(θ).

We let Hχ denote the collection of sets whose transitive closure has size < χ.

1.3. The underlying hypothesis. Throughout this paper, λ denotes a reg-
ular uncountable cardinal, and we assume that GCH holds below λ.

1.4. Approachable ordinals. In this section we isolate a tool that will allow
us to make use of closure conditions on fat sets. The technique we use was intro-
duced in [She79], where it is used to show that there are many “approachable”
ordinals below λ (so a large subset of a given fat subset of λ will be in Ǐ[λ]).
Recall that a subset S of λ is fat iff for every regular θ < λ, for every club C

of λ, S ∩ C contains a closed subset of order-type θ + 1. If S is fat then for all
regular θ < λ, S ∩ Cof(θ) is stationary in λ.

For the following lemma, recall that a λ-filtration of the universe is an
increasing and continuous sequence N̄ = 〈Nγ〉γ<λ such that for some large χ,
for all γ < λ,

(i) Nγ is an elementary submodel of Hχ;
(ii) |Nγ | < λ;
(iii) γ ⊆ Nγ ; and
(iv) N̄ �(γ + 1) ∈ Nγ+1.
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Lemma 1.1: Suppose that S ⊆ λ is fat. For every regular cardinal θ < λ and
every set X with |X | < λ there is a λ-filtration N̄ such that X ⊆ N0, and a
set D ⊂ λ such that:

(i) otp(D) = θ + 1;
(ii) the closure D of D is a subset of S;
(iii) for all γ ∈ D, Nγ ∩ λ = γ;
(iv) for all γ ∈ D other than max D, D ∩ γ ∈ Nγ+1.

Note that the set X needn’t be a subset of λ; we will have X ∈ Hχ for some
large χ, of which the Nγ will be elementary submodels.

Proof. There are two cases. The easier one is when λ is not the successor of
a singular cardinal, that is, it is either the successor of a regular cardinal, or
inaccessible. In that case we can build the filtration 〈Nγ〉 inductively, requiring
that for all γ < λ, [γ]<θ ⊂ Nγ+1. This we can do because |γ|<θ < λ, as in
either case there is a regular cardinal κ < λ such that |γ|, θ � κ, and for all
regular κ < λ, κ<κ = κ. We then let

E = {γ < λ : Nγ ∩ λ = γ};

this is a club of λ, so S ∩ E contains a closed subset D of order-type θ + 1.
If γ ∈ D and γ �= max D then |D ∩ γ| < θ, so is an element of Nγ+1.

We now suppose that λ = μ+ where μ is singular; let κ = cf(μ). In this case
we may have |γ|<θ = λ, so we need a finer approach. We know that θ < μ.

Let 〈μξ〉ξ<κ be a sequence of cardinals increasing to μ. For all α ∈ [μ, λ) fix
a partition {Aα

ξ : ξ < κ} of α such that |Aα
ξ | = μξ. We build 〈Nγ〉γ<λ such

that |Nγ | = μ and ensure that all bounded subsets of μ are in N0. We also put
the map (α, ξ) �→ Aα

ξ into N0. We define E as above.
We may assume that θ > κ. By GCH below λ, we know that (2θ)+ < λ,

and so we can find a closed set D∗ ⊂ S ∩ E of size (2θ)+. By the Erdős–Rado
theorem we can find D ⊂ D∗ of order-type θ + 1 (in fact of size θ+) such that
for all γ < δ from D, γ ∈ Aδ

ξ∗ for some fixed ξ∗ < κ. The set D may not be
closed but its closure is a subset of D∗, and so of S ∩ E. For all γ ∈ D,

D ∩ γ ⊆ Aγ
ξ∗ .

Since Aγ
ξ∗ ∈ Nγ+1, and this set is bijective with μξ∗ , every subset of Aγ

ξ∗ is
in Nγ+1. So D ∩ γ ∈ Nγ+1.
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2. Closed notions of forcing and sparse names

2.1. Explicit S-closure.

Definition 2.1: Let S ⊆ λ. A notion of forcing P is explicitly S-closed if there
is a function δ : P → λ satisfying:

(i) p � q implies δ(p) � δ(q);
(ii) for every γ < λ, the collection of conditions p with δ(p) � γ is dense

in P;
(iii) whenever p̄ = 〈pi〉i<i∗ is an increasing sequence of conditions from P,

with i < j < i∗ implying δ(pi) < δ(pj), and α = supi<i∗ δ(pi) ∈ S,
then p̄ has an upper bound p∗ in P with δ(p∗) = α.

We call such an upper bound p∗ an exact upper bound of p̄.

Lemma 2.2: If S and S′ are equivalent modulo the club filter, then a notion of
forcing P is explicitly S-closed if and only if it is explicitly S′-closed.

Proof. If P is explicitly S-closed, as witnessed by δ, and C is a club, then by
replacing δ(p) by sup(C ∩ δ(p)), we may assume that δ takes values in C.

Proposition 2.3: Suppose that S ⊆ λ is fat, and that P is explicitly S-closed.
Then P is <λ-distributive, and S is fat in V (P).

Proof. Let θ < λ be a regular cardinal, and let {Ui : i < θ} be a family of dense
open subsets of P; let p0 ∈ P. Let N̄ = 〈Nγ〉γ<λ and D be given by Lemma 1.1,
with P, p0, 〈Ui〉 ∈ N0.

We enumerate D as 〈γi〉i�θ and define an increasing sequence p̄ = 〈pi〉i�θ

(starting from p0) of conditions from P. We fix a well-ordering �∗
P of P which

is an element of N0, and define the sequence of conditions as follows:

(a) Given pi for i < θ, pi+1 is the �∗
P-least p ∈ P extending pi such that

δ(p) � γi and p ∈ Ui.
(b) For limit i � θ, pi is the �∗

P-least upper bound of p̄� i.

Of course we need to argue that this construction is possible, which means
showing that at a limit step i � θ, p̄ � i has an upper bound. First we observe
that if the construction has been performed up to and including step i + 1, then
the sequence 〈pj〉j�i+1 is definable from P, p0, 〈Ui〉,�∗

P and the sequence 〈γj〉j�i.
These parameters are all in Nγi+1, so pi+1 ∈Nγi+1. It follows that δ(pi+1)<γi+1.
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Suppose now that i � θ is a limit ordinal and that the sequence 〈pj〉j<i

has been successfully defined. Then as γj � δ(pj+1) < γj+1 for all j < i, we
have supj<i δ(pj) = supj<i γj is a limit point of D, and hence is in S; so the
closure assumption says that p̄� i has an upper bound in P, whence pi is defined
and the construction can proceed. Then pθ is an extension of p0 in

⋂
i Ui.

To show that S is fat in V (P), again let θ < λ be regular, and let C ∈ V (P)
be a club of λ. We perform a similar construction, this time with pi+1 forcing
some βi > γi into C. As pi+1 ∈ Nγi+1, we have βi < γi+1. The final condition
forces that the limit points of D are all in C, and so form a closed set of order-
type θ + 1 in S ∩ C.

Note that if S′ ⊆ S then P is also explicitly S′-closed, and so if S′ is fat, then
it is fat in V (P). The argument for the case θ = ω shows that if S′ ⊆ S∩Cof(ℵ0)
is stationary, then it remains stationary in V (P).

We introduce terminology:

Definition 2.4: We say that P is explicitly closed outside S if it is explicitly
(λ \ S)-closed.

Strategic closure. We remark that we can generalise Definition 2.1:

Definition 2.5: Let S ⊆ λ. A notion of forcing P is strategically S-closed
if the “completeness” player has a winning strategy in the following game, of
length � λ: the players alternate choosing conditions forming an increasing
sequence 〈pi〉 from P (the incompleteness player chooses first; the completeness
player chooses at limit steps), and also choosing ordinals below λ which form an
increasing and continuous sequence 〈εi〉 (so at limit stages there is no freedom
in the choice of ordinal).

• The incompleteness player loses at a limit stage i if εi /∈ S.
• The completeness player loses at a limit stage i if εi ∈ S and 〈pj〉j<i

does not have an upper bound in P.
If the play lasts λ moves then the completeness player wins.

Note that if S = λ then there is no need to choose ordinals; it is then the usual
notion of λ-strategic closure. Also note that if S and S′ are equivalent modulo
the club filter, then P is strategically S-closed if and only if it is strategically
S′-closed.

Lemma 2.6: If P is explicitly S-closed then it is strategically S-closed.
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Proposition 2.3 holds with the weaker hypothesis that P is strategically S-
closed. The proof is modified so that the sequence p̄ is part of a play (p̄, ε̄) in
which the completeness player follows her winning strategy; the incompleteness
player chooses conditions in the desired dense sets, and plays the ordinal εi = γi.
The completeness player’s response is inside Nγi+1, so the ordinal she plays is
below γi+1.

Remark 2.7: If P is strategically S-closed then there is some explicitly S-closed
notion of forcing P′ and a complete projection from P′ onto P: fixing a strat-
egy s witnessing strategic closure of P, we let P′ consist of all plays in which
the completeness player follows s and which have a last move, made by the in-
completeness player. This gives an alternative proof of Proposition 2.3 when P

is strategically S-closed.

2.2. Adding sparse sets.

Definition 2.8: Let P be a notion of forcing. An explicit P-name for a subset
of λ is a partial map σ from P to 2<λ satisfying:

(i) If p, q ∈ dom σ and q extends p then σ(q) � σ(p);
(ii) dom σ is dense in P; in fact, for every γ < λ, the set of conditions

p ∈ dom σ with |σ(p)| � γ is dense in P.1

That is, we insist that all bounded initial segments of the set named are
determined in V . To avoid confusion, we denote by Wσ the actual P-name of
the resulting subset of λ: (p, α) ∈ Wσ if α < |σ(p)| and σ(p)(α) = 1. In other
words, if G ⊂ P is generic, then

Wσ[G] = {α < λ : (∃p ∈ G ∩ dom σ) σ(p)(α) = 1}.

Of course, if P is <λ-distributive then every subset of λ in V (P) has an explicit
name. We remark that it is not difficult to extend σ to be defined on all of P,
but we will naturally work with dense subsets of orderings in a way that makes
this formulation more convenient.

Suppose that σ is an explicit P-name for a subset of λ. For an increasing
sequence p̄ = 〈pi〉i<i∗ of conditions from dom σ (where i∗ < λ), we let

σ(p̄) =
⋃

i<i∗
σ(pi).

1 Recall that |τ | = dom τ is the length of the string τ .
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An exact sparse upper bound (with respect to σ) for a sequence p̄ is an
upper bound p of p̄ in dom σ such that σ(p) = σ(p̄)̂ 0.

Definition 2.9: Let σ be an explicit P-name for a subset of λ.
(a) A choice of sparse upper bounds is a partial function f , defined on

a collection of increasing sequences of conditions from dom σ, such that
for each p̄ ∈ dom f , f(p̄) is an exact sparse upper bound of p̄.

(b) Two increasing sequences p̄ = 〈pi〉i<i∗ and q̄ = 〈qj〉j<j∗ are co-final if
for all i there is a j such that pi � qj and vice-versa. We say that f is
canonical if whenever p̄ and q̄ are co-final and f(p̄) is defined, then f(q̄)
is defined as well, and

f(q̄) = f(p̄).

(c) We say that an increasing sequence p̄ = 〈pi〉i<i∗ is a sparse sequence
(for σ and f) if for all i < j < i∗,

|σ(pi)| < |σ(pj)|,
and for all limit i < i∗, f(p̄� i) is defined and

pi = f(p̄� i).

A sparse sequence p̄ = 〈pi〉i�i∗ determines a closed set disjoint from Wσ,
namely the set

{|σ(p̄�j)| : j � i∗ limit};
this is a set in V , and pi∗ forces that this set is disjoint from Wσ (which note is
not in V ).

Definition 2.10: Let S ⊆ λ. An S-sparse P-name (for a subset of λ) is a pair
(σ, f) consisting of an explicit P-name σ for a subset of λ, and a choice f of
sparse upper bounds for σ, satisfying:

• For any sparse sequence p̄ for σ and f (of limit length), if |σ(p̄)| ∈ S,
then f(p̄) is defined.

Notation 2.11: If (σ, f) is a sparse name then we usually denote f by cbσ

(standing for “canonical bound”). We use σ to also denote the pair (σ, cbσ).

Remark 2.12: Suppose that σ is S-sparse. Any increasing ω-sequence 〈pn〉 of
conditions from dom σ (with σ(pn) strictly increasing) is, vacuously, sparse for σ,
and so if |σ(p̄)| ∈ S then cbσ(p̄) is defined.
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Lemma 2.13: If there is an S-sparse P-name then P is strategically S-closed.

Proof. A winning strategy for the completeness player ensures that at limit
steps, we use the canonical choice of a sparse upper bound, thus ensuring that
the sequence of conditions played by the completeness player is sparse. The
ordinal played at successor step i is |σ(pi)|.
Lemma 2.14: If σ is an S-sparse P-name, and S′ is equivalent to S modulo
the club filter on λ, then there is an S′-sparse P-name σ′ such that in V (P),
Wσ = Wσ′ .2

Proof. We extend the argument of Lemma 2.2. Suppose that S∩C = S′∩C for a
club C. Determine that dom σ′ = dom σ. For p ∈ dom σ, let α = sup(C∩|σ(p)|).
If α = |σ(p)| then let σ′(p) = σ(p). Otherwise let σ′(p) = σ(p) � (α + 1).
Suppose that p̄ = 〈pi〉i<i∗ is an increasing sequence of conditions with i < j < i∗

implying |σ′(pi)| < |σ′(pj)|. So C ∩ [|σ′(pi)|, |σ′(pj)|) �= ∅. It follows that if i∗ is
a limit then σ(p̄) = σ′(p̄). We therefore use the same choice of canonical sparse
upper bounds; if p̄ is a sparse sequence for σ′, then it is a sparse sequence
for σ.

Proposition 2.15: Suppose that S ⊆ λ is fat, and that σ is an S-sparse
P-name. Then P is <λ-distributive, and S \ Wσ is fat in V (P).

And as above, the proof also shows that for all stationary S′ ⊆ S ∩ Cof(ℵ0),
S′ \ Wσ is stationary in V (P).

Proof. By Lemma 2.13, we know that P is <λ-distributive.
To see that S \Wσ is fat, we mimic the proof of Proposition 2.3, ensuring that

the sequence of conditions p̄ is sparse, with |σ(pi+1)| > γi. At limit steps we
take the canonical sparse upper bound. Again pi+1 ∈ Nγi+1 forces some βi > γi

into the club C. The limit points of D are disjoint from Wσ.

Lemma 2.16: Suppose that P is explicitly S-closed. Then there is an S-sparse
P-name for the empty set.

Proof. Let δ : P → λ show that P is explicitly S-closed. For p ∈ P we let
σ(p) = 0δ(p)+1, that is, a string of zeros of length δ(p) + 1. By well-ordering
all (co-finality equivalence classes of) increasing sequences of conditions, we can
make a choice of canonical exact upper bounds.

2 Recall that this means that every condition forces that Wσ = Wσ′ .
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2.3. Sparseness and iterations: the successor case.

Definition 2.17: Suppose that P � R, S ⊆ λ, that ρ is an S-sparse P-name and
that τ is an S-sparse R-name. We say that τ coheres with ρ (and write ρ�τ) if:

(i) If p ∈ dom τ then p�P ∈ dom ρ and |ρ(p�P)| = |τ(p)|.3
(ii) For an increasing sequence p̄ from dom τ , if cbτ (p̄) is defined, then

cbρ(p̄�P) is defined and equals cbτ (p̄)�P.

Note that if ρ � τ and p̄ is a sparse sequence for τ , then p̄ � P is a sparse
sequence for ρ.

Definition 2.18: Let S ⊆ λ. Suppose that P is <λ-distributive; suppose that ρ

is an S-sparse P-name; suppose that in V (P), Q is a notion of forcing and σ is
an S \ Wρ-sparse Q-name. We define τ = ρ ∨ σ as follows:

• dom τ ⊆ P∗Q is the collection of (p, q) ∈ P∗Q such that p ∈ dom ρ, and,
letting α = |ρ(p)|, there is some string π ∈ 2<λ (in V ) of length α such
that p �P q ∈ dom σ & σ(q) = π.

• For (p, q) ∈ dom τ we define τ(p, q) to be the characteristic function
of the union of ρ(p) and σ(q). That is, if p � σ(q) = π (where
|π| = α = |ρ(p)|) then we declare that |τ(p, q)| = α, and for all β < α,
τ(p, q)(β) = 1 if and only if ρ(p)(β) = 1 or π(β) = 1.

• If (p̄, q̄) is an increasing sequence of conditions from dom τ , then we
define

cbτ (p̄, q̄) = (cbρ(p̄), cbσ(q̄)).

That is, cbτ (p̄, q̄) is defined to be (p∗, q∗) if p∗ = cbρ(p̄) is defined,
and p∗ forces that q∗ = cbσ(q̄).4

Lemma 2.19: Suppose that the hypotheses of Definition 2.18 hold: that S ⊆ λ,
P is <λ-distributive, ρ is an S-sparse P-name, and in V (P), Q is a notion of
forcing and that σ is an S\Wρ-sparse Q-name. Suppose further that S∩Cof(ℵ0)
is stationary. Then:

• ρ ∨ σ is an S-sparse P∗Q-name;
• ρ � ρ ∨ σ; and
• in V (P∗Q), Wρ∨σ = Wρ ∪ Wσ .

3 Note that we do not require that ρ(p �P) = τ(p).
4 The condition cbτ (p̄, q̄) is unique once we identify conditions (p, q) and (p, q′) such that

p � q = q′.
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Proof. Let τ = ρ ∨ σ.
Let us first show that dom τ is dense in P ∗Q. Given (p0, q0) ∈ P ∗Q,

since S ∩ Cof(ℵ0) is stationary, we find an increasing sequence of ordinals 〈γn〉
and a λ-filtration N̄ such that Nγn ∩ λ = γn for all n, P,Q, ρ, σ, p0, q0 ∈ N0,
and γω = supn γn ∈ S. We then define an increasing sequence of conditions
〈pn, qn〉 ∈ P∗Q such that (pn, qn) ∈ Nγn , pn ∈ dom ρ, |ρ(pn)| � γn−1, and pn

forces that qn ∈ dom σ and σ(qn) = πn for some string πn ∈ V with γn−1 � |πn|.
Here we use that P does not add sequences of ordinals of length <λ. Of course,
since (pn, qn) ∈ Nγn , we have |ρ(pn)|, |πn| < γn.

Let πω =
⋃

n πn. Since γω ∈ S, pω = cbρ(〈pn〉) is defined; and pω forces
that 〈qn〉 is increasing in Q and that σ(q̄) = πω and so has length γω. Also, as
ρ(pω)(γω) = 0, pω forces that γω /∈ Wρ; so pω forces that qω = cbσ(q̄) is defined.
Note that pω �P σ(qω) = πω 0̂. Then (pω , qω) ∈ dom τ and extends (p0, q0). It
is now not difficult to see that in V (P∗Q), Wτ = Wρ ∪ Wσ.

Next, we observe that if defined, cbτ (p̄, q̄) is in dom τ , and

τ(cbτ (p̄, q̄)) = τ(p̄, q̄)̂ 0;

this is because ρ(cbρ(p̄)) = ρ(p̄)̂ 0 and cbρ(p̄) forces that σ(cbσ(q̄)) = σ(q̄)̂ 0.
We also observe that cbτ is canonical. Finally, suppose that (p̄, q̄) is sparse for τ ,
with α = |τ(p̄, q̄)| ∈ S. Then p̄ is sparse for ρ, and |ρ(p̄)| = α; let p∗ = cbρ(p̄).
Then, p∗ forces that q̄ is sparse for σ, and that |σ(q̄)| = α ∈ S \Wρ; so p∗ forces
that cbσ(q̄) is defined, whence cbτ (p̄, q̄) is defined. It follows that τ is S-sparse,
and that ρ � τ .

Lemma 2.16 yields:

Corollary 2.20: Let S ⊆ Cofλ(ℵ0) be stationary. Suppose that ρ is an S-
sparse P-name; suppose that in V (P), Q is a notion of forcing which is explicitly
S \ Wρ-closed. Then there is an S-sparse P∗Q-name τ for Wρ, which coheres
with ρ.

2.4. Sparseness and iterations: the limit case.

Definition 2.21: Let P̄ = 〈Pi〉 be an iteration. A coherent system of S-sparse
names for P̄ is a sequence τ̄ = 〈τi〉 such that each τi is an S-sparse Pi-name,
and for i < j < |P̄|,

τi � τj .
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Definition 2.22: Let S ⊆ λ. Suppose that θ < λ is regular, that P̄ = 〈Pi〉i�θ

is an iteration with full support (a directed system with inverse limits), and
that τ̄ = 〈τi〉i<θ is a coherent system of S-sparse names for P̄ � θ. We de-
fine τθ =

∨
τ̄ as follows. First,

• p ∈ dom τθ if for all i < θ, p� i ∈ dom τi.

Suppose that p ∈ dom τθ. For i < j < θ, because τi � τj , we have

|τi(p� i)| = |τj(p�j)|.

• For p ∈ dom τθ, we let τθ(p) be the characteristic function of the union
of τi(p � i). That is, if α = |τi(p � i)| for all i < θ, then we declare
that |τθ(p)| = α, and for β < α, τθ(p)(β) = 1 if and only if there is
some i < θ such that τi(p� i)(β) = 1.

• For an increasing sequence of conditions p̄ from dom τθ, we let q =cbτθ
(p̄)

if for all i < θ, q � i = cbτi(p̄� i).

Lemma 2.23: Suppose that the hypotheses of Definition 2.22 hold: S ⊆ λ;
θ < λ is regular; P̄ = 〈Pi〉i�θ is an iteration with full support, and τ̄ = 〈τi〉i<θ

is a coherent system of S-sparse names for P̄�θ. Suppose further that S is fat.
Then:

• τθ =
∨

τ̄ is an S-sparse Pθ-name;
• for all i < θ, τi � τθ; and
• in V (Pθ), Wτθ

=
⋃

i<θ Wτi .

Proof. We show that dom τθ is dense in Pθ. Let r ∈ Pθ. Obtain a λ-filtration N̄

and a set D ={γi : i � θ} given by Lemma 1.1, with S, r, P̄, τ̄ ∈N0 (and θ ⊂N0).
We build a sequence p̄ = 〈pi〉i�θ of conditions with the following properties:

(i) pi ∈ Pi;
(ii) pi extends r � i;
(iii) if i is a successor then pi ∈ dom τi and |τi(pi)| > γi−1;
(iv) for all k < i, 〈pj �k〉j∈(k,i) is a sparse sequence for τk.

Note that (iv) implies that for all j < i < θ, pi �j ∈ dom τj . We do not however
assume that for limit i, pi ∈ dom τi.

We start with p0 being the empty condition. Given pi we find an exten-
sion pi+1 ∈ dom τi+1 which also extends r � (i + 1). By extending, we can
make |τi+1(pi+1)| � γi.
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Now suppose that i � θ is a limit ordinal. As we argued in the proof of
Proposition 2.3, for all j < i, pj+1 ∈ Nγj+1, and so |τj+1(pj+1)| < γj+1. Let
αi = supj<i γj ; so αi ∈ S (recall that the sequence 〈γi〉 need not be continuous).
Now (iv) above holds for i by induction; for all k < i, |τk(〈pj �k〉j∈(k,i))| = αi.
It follows that for all k < i, qk = qi

k = cbτk
(〈pj � k〉j∈(k,i)) is defined. Further,

if k < k′ < i then as cbτk
is canonical, qk = cbτk

(〈pj �k〉j∈(k′,i)). By coherence,
qk = qk′ � k. Since Pi is the inverse limit of P̄ � i, we let pi ∈ Pi be the inverse
limit of the sequence 〈qk〉k<i, that is, for all k < i, qk = pi �k. Note that (iv) now
holds for i + 1. Also note that for all k < i, qk extends pk which extends r �k;
it follows that pi extends r � i. At step θ we get pθ ∈ dom τθ and extending r.

If p, q ∈ dom τθ and q extends p, then for all i < θ,

τi(p� i) � τi(q � i),

so τθ(p) � τθ(q). In V (Pθ),

Wτθ
=

⋃
i

Wτi .

Let p̄ be an increasing sequence from dom τθ, and suppose that p∗ = cbτθ
(p̄)

is defined. By definition, p∗ ∈ dom τθ. Let α = |τθ(p̄)|. For all i < θ,

|τi(p̄� i)| = α and τi(p∗ � i)(α) = 0,

so by our definition, τθ(p∗) = τθ(p̄)̂ 0. It is also easy to see that cbθ is canonical.
Suppose that p̄ is a sparse sequence for τθ, and that α = |τθ(p̄)| ∈ S. For

all i < θ, p̄ � i is sparse for τi, and so qi = cbτi(p̄ � i) is defined; and as above,
for i < i′ < θ, qi = qi′ � i. Then the inverse limit of 〈qi〉 equals cbτθ

(p̄).
We conclude that τθ is S-sparse and that τi � τθ for all i < θ.

For the next definition and lemma, note that if τ is an S-sparse P-name, and
A ⊆ dom τ is a dense final segment of dom τ , then τ � A is also an S-sparse
P-name, and in V (P), Wτ = Wτ�A.

Definition 2.24: Let S ⊆ λ. Suppose that P̄ = 〈Pi〉i�λ is an iteration with
inverse limits below λ and a direct limit at λ; suppose that τ̄ = 〈τi〉i<λ is a
coherent system of S-sparse names for P̄ � λ. We define τλ =

∨
τ̄ as follows.

First,

• we let dom τλ be the collection of p ∈ Pλ such that for some limit α < λ,
p ∈ Pα, and for all β < α, p�β ∈ dom τβ and |τβ(p�β)| = α + 1.
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For all p ∈ dom τλ there is a unique α witnessing this fact; α is determined
by |τγ(p�γ)| for any γ < α.

• For p ∈ dom τλ, as witnessed by α, we declare that |τλ(p)| = α + 1
and that for β � α, τλ(p)(β) = 1 if and only if τγ(p � γ)(β) = 1 for
some γ < β. That is, τλ(p) = ∇γ<ατγ(p�γ).

• Suppose that p̄ is an increasing sequence from dom τλ. Let α = |τλ(p̄)|.
We let cbτλ

(p̄) = p∗ if p∗ ∈ Pα and for all β < α, p∗ �β is cbτβ
of a tail

of p̄�β.

Lemma 2.25: Suppose that the hypotheses of Definition 2.24 hold: S ⊆ λ;
P̄ = 〈Pi〉i�λ is a <λ-support iteration; τ̄ is a coherent system of S-sparse names
for P̄�λ. Suppose further that S ∩ Cof(ℵ0) is stationary in λ.

Then:
• τλ =

∨
τ̄ is an S-sparse Pλ-names;

• In V (Pλ), Wτλ
= ∇i<λWτi ;

and letting
Cα = {p ∈ dom τλ : |τλ(p)| > α + 1},

• for all α < λ, τα � τλ �Cα.

Note that indeed each Cα is a dense final segment of dom τλ.

Proof. We show that dom τλ is dense in Pλ. Let p0 ∈ Pλ. Obtain an increasing
sequence 〈γn〉 with γω = supn γn ∈ S, and models Nγn with Nγn ∩ λ = γn,
such that all relevant information, including p0, is in Nγ0 . We then define
an increasing sequence 〈pn〉 with pn ∈ Nγn and for some αn ∈ [γn−1, γn),
pn ∈ dom ταn , and |ταn(pn)| � αn. As usual, |ταn (pn)| < γn. Now for
all β < γω, for all but finitely many n (say for all n � nβ), pn � β ∈ dom τβ ;
since |τβ(〈pn �β〉n�nβ

)| = γω ∈ S, qβ = cbτβ
〈pn �β〉n�nβ

is defined. As above,
this value does not change if we take a tail of the sequence, so for β < α < γω

we have qβ = qα �β; so the inverse limit of the sequence 〈qβ〉 is in dom τλ (note
that |τβ(qβ)| = γω + 1).

Now for all α < λ, p�α ∈ dom τα for all p ∈ Cα. Further, by definition of τλ,
for p ∈ Cα we have |τλ(p)| = |τα(p�α)|.

Suppose that p, q ∈ dom τλ and that q extends p; say |τλ(p)| = α + 1
and |τλ(q)| = β + 1. For any γ < α, β, we have p�γ � q �γ and so

τγ(p�γ) � τγ(q �γ);

and α + 1 = |τγ(p�γ)|, β + 1 = |τγ(q �γ)|. Hence α � β.
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It is then not difficult to see that τλ(p) � τλ(q): to determine the value
on γ � α we note that for all δ < γ, τδ(p�δ) and τδ(q �δ) agree on γ. It follows
that τλ is an explicit Pλ-name for ∇i<λWτi , and that each Cα is a final segment
of dom τλ.

Suppose that p̄ is an increasing sequence from dom τλ, and let α = |τλ(p̄)|.
Suppose that p∗ = cbτλ

(p̄) is defined. Let β < α. Then |τβ(p∗ � β)| = α + 1
and τβ(p∗ � β)(α) = 0. By definition, p∗ ∈ dom τλ, and τλ(p∗)(α) = 0. Also,
cbτλ

is canonical.
Suppose that p̄ = 〈pi〉i<i∗ is a sparse sequence for σλ. Let α = |τλ(p̄)|, and

suppose that α ∈ S. For β < α let i(β) be the least i such that |τλ(pi)| > β + 1.
Then 〈pi〉i∈[i(β),i∗) is a sequence from Cβ , and 〈pi �β〉i∈[i(β),i∗) is sparse for τβ .
As usual, since Pα is an inverse limit we get q ∈ Pα such that for all β < α,
q �β = cbτβ

(〈pi �β〉i∈[i(β),i∗)); q = cbτλ
(p̄).

This argument shows that τλ is S-sparse and that τα � τλ �Cα for all α.

Note that the sets Cα have a continuity property: suppose that p̄ = 〈pi〉 is
an increasing sequence (of limit length) from dom τλ and q = cbτλ

(p̄) is defined.
For α < λ, if for all i, pi /∈ Cα, then q /∈ Cα. Also note that for all p ∈ dom τλ,
p ∈ Cα for fewer than λ many α.

2.5. Named λ-iterations.

Definition 2.26: We say that 〈Pζ〉ζ�ξ, where ξ � λ+, is a named λ-iteration, if
there is a sequence 〈Qζ , σζ〉ζ<ξ such that:

(i) 〈Pζ ,Qζ〉 is a <λ-support iteration;
(ii) for all ζ < ξ, Pζ is <λ-distributive;
(iii) for all ζ < ξ, σζ ∈ V (Pζ) is an explicit Qζ-name for a subset of λ.

Note that we are not requiring Pξ to be <λ-distributive; under further as-
sumptions, this will follow, as we shall shortly see. We require that Pζ be
<λ-distributive for ζ < λ so that λ is regular in V (Pζ), so that the notion of σζ

being an explicit Qζ-name for a subset of λ (and later, a sparseness requirement)
makes sense. When ξ is a limit ordinal, we also refer to the restriction P � ξ as
a named λ-iteration.

If 〈Pζ〉ζ�ξ is a named λ-iteration, then we let, for all ζ � ξ, ζ < λ+, in V (Pζ),
uζ ∈ P(λ)/ NSλ be the least upper bound of

{[Wσυ ]NSλ
: υ < ζ}.
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Definition 2.27: Let S ⊆ λ. We say that a named λ-iteration 〈Pζ〉ζ�ξ is S-
sparse if for every ζ < ξ, in V (Pζ), σζ is S \ uζ-sparse.5

Our aim is to show that when S is fat, if 〈Pζ〉 is an S-sparse iteration, then
for each ζ � ξ, ζ < λ+, there is an S-sparse Pζ-name τζ such that (in V (Pζ))
[Wτζ

]NSλ
= uζ . However, because we may have ξ > λ, we will not be able to

get a coherent sequence τ̄ of names. We need a weak notion of coherence:

Definition 2.28: Suppose that P̄ = 〈Pζ〉ζ<ξ is an iteration, and that τ̄ = 〈τζ〉ζ<ξ

is a sequence such that for all ζ < ξ, τζ is an explicit Pζ-name for a subset of λ.
We say that τ̄ is weakly coherent if for υ � ζ < ξ there are sets Aζ

υ satisfying:

(a) Each Aζ
υ is a dense final segment of dom τζ .

(b) For all υ � ζ < ξ, τυ � τζ �Aζ
υ.

(c) Aζ
ζ = dom τζ .

(d) For α � β � γ < ξ, p ∈ Aγ
α ∩ Aγ

β implies p�β ∈ Aβ
α.

(e) For α � β � γ < ξ, p ∈ Aγ
β and p�β ∈ Aβ

α implies p ∈ Aγ
α.

(f) For all ζ < ξ and every p ∈ dom τζ , there are <λ many υ < ζ such that
p ∈ Aζ

υ .
(g) For υ < ζ, if p̄ = 〈pi〉 is an increasing sequence from dom τζ , p = cbτζ

(p̄)
is defined, and for all i, pi /∈ Aζ

υ, then p /∈ Aζ
υ.

We will show that we can construct a weakly coherent sequence of names as
required. We will use more properties of the sequence, which we incorporate
into the following definition.

Definition 2.29: Let 〈Pζ〉ζ<ξ be an S-sparse iteration. An associated se-
quence is a sequence τ̄ = 〈τζ〉ζ∈[1,ξ) such that:

(1) Each τζ is an S-sparse Pζ-name.
(2) In V (Pζ), [Wτζ

]NSλ
= uζ .

(3) The sequence τ̄ is weakly coherent.
(4) For p ∈ dom τζ , for all υ < ζ, p ∈ Aζ

υ+1 if and only if υ ∈ supp(p),
in which case there is a string πυ ∈ 2<λ of length |τζ(p)| such that
p�υ �Pυ p(υ) ∈ dom σζ & συ(p(υ)) = πυ.

We write συ(p(υ)) for the string πυ.

5 We mean that it is S \ U -sparse for some U such that [U ]NSλ
= uζ . By Lemma 2.14, up

to a slight modification of σζ , the choice of U does not matter.
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(5) If p, q ∈ dom τζ , q extends p, and υ ∈ supp(p), then6

συ(q(υ)) \ |τζ(p)| ⊆ τζ(q).

(6) If p ∈ dom τζ , α < |τζ(p)|, and for all υ ∈ supp(p), συ(p(υ))(α) = 0,
then τζ(p)(α) = 0.

(7) If p̄ = 〈pi〉 is an increasing sequence from dom τζ and p = cbτζ
(p̄) is

defined, then supp(p) =
⋃

i supp(pi).
(8) If p̄ = 〈pi〉 is an increasing sequence from dom τζ and p = cbτζ

(p̄) is
defined, then for all υ ∈ supp(p), p �υ forces that p(υ) is cbσυ of a tail
of 〈pi(υ)〉.

Notation 2.30: If P̄ is an S-sparse iteration, and τ̄ is an associated sequence,
then we write Wζ for Wσζ

and Uζ for Wτζ
.

Proposition 2.31: Let S ⊆ λ be fat. Suppose that 〈Pζ〉ζ�ξ is an S-sparse
named λ-iteration, with ξ < λ+, and that τ̄ = 〈τζ〉ζ∈[1,ξ) is an associated
sequence for P̄�ξ.

Then there is some τξ such that τ̄ τ̂ξ is an associated sequence for P̄.

In particular, Pξ is <λ-distributive.

Corollary 2.32: If S is fat, ξ � λ+, and P̄ = 〈Pζ〉ζ<ξ is an S-sparse iteration,
then P̄ has an associated sequence τ̄ .

Proof of Proposition 2.31. The definition of τξ is of course by cases.
Case I: ξ = 1. We let τ1 = σ0 (recall that P1 = Q0).
Case II: ξ = ϑ + 1, ϑ > 0. We apply Lemma 2.19 to P = Pϑ, ρ = τϑ, Q = Qϑ,
and σ being some mild variation of σϑ which is sparsely S \ Uϑ-closed; let τξ

be the τ obtained. For ζ � ϑ, we let Aξ
ζ = {p ∈ dom τξ : p � ϑ ∈ Aϑ

ζ }; note
that Aξ

ϑ = dom τξ.
For (2) of Definition 2.29, note that uξ = uϑ ∨ [Wϑ]NSλ

, and Uξ = Uϑ ∪ Wϑ.
(3) is not difficult. For (4), note that for all p ∈ dom τξ, ϑ ∈ supp(p)
and p�ϑ � p(ϑ) = π for some π of length |τξ(p)| = |τϑ(p�ϑ)|. (5) and (6) follow
from τξ(q) = τϑ(p�ϑ)∪σϑ(p(ϑ)). (7) follows from the fact that cbτϑ

(p̄�ϑ)=p�ϑ,
and that ϑ ∈ supp(q) for all q ∈ dom τξ. (8) follows similarly, noting that Defi-
nition 2.18 implies that it holds for υ = ϑ.

6 Again, recall that we identify sets and characteristic functions; so this means: for all α

with |τζ(p)| � α < |τζ(q)|, if συ(q(υ))(α) = 1 then τζ(q)(α) = 1.
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Case III: ξ is a limit ordinal and cf(ξ) < λ. For all ζ < ξ, Pζ is <λ-
distributive. Then for all J ⊆ ζ, if |J | < λ then

Aζ
J =

⋂
υ∈J

Aζ
υ

is a dense final segment of dom τζ ; for all υ ∈ J , τυ � τζ �Aζ
J . Further, for J ⊆ ξ

with |J | < λ, the sequence
〈τζ �Aζ

J∩ζ〉ζ∈J

is coherent; this follows from condition (d) of Definition 2.28.
We fix a closed, unbounded J ⊆ ζ of order-type θ = cf(ζ), and apply

Lemma 2.23 to the sequence 〈τζ �Aζ
J∩ζ〉

ζ∈J
; notice that for limit points δ of J ,

as cf(δ) < λ, Pδ is the inverse limit of 〈Pυ〉υ∈J∩δ. We let τξ be the τ obtained.
So for all δ ∈ J , τδ �Aδ

J∩δ � τξ.
For (2), we use Uξ =

⋃
δ∈J Uδ, and the fact that J is cofinal in ξ. For (3),

we notice that for all γ < ξ, for p ∈ dom τξ, there is some δ ∈ J , δ � γ such
that p � δ ∈ Aδ

γ if and only if for all δ ∈ J such that δ � γ, p � δ ∈ Aδ
γ ; we

use either (d) or (e) of Definition 2.28; in either case we note that for all δ < ε

from J , for all p ∈ dom τξ, p � ε ∈ Aε
δ. We let p ∈ Aξ

γ if these equivalent
conditions hold. Note that Aξ

δ = dom τξ for all δ ∈ J . For (f), we use that τ̄

is an associated sequence, and |J | < λ. (5) and (6) of Definition 2.29 follow
from τξ(q) =

⋃
δ∈J τδ(p � δ). (7) follows from the fact that if p = cbτξ

(p̄) then
for all δ ∈ J , p � δ = cbτδ

(p̄ � δ), and of course supp(q) =
⋃

δ∈J supp(q � δ) for
all q ∈ Pξ. (8) follows from (7) and our assumptions on τ̄ .

Case IV: cf(ξ) = λ. The construction is similar to case III. We fix J ⊆ ξ closed
and unbounded of order-type λ; let 〈δi〉i<λ be the increasing enumeration of J .
We again have that 〈τδ �Aδ

J∩δ〉δ∈J is a coherent system, with Pδ being an inverse
limit of 〈Pυ〉υ∈J∩δ for all limit points δ of J , whereas this time, Pξ is the direct
limit of 〈Pδ〉δ∈J . So this time we apply Lemma 2.25 to get τξ. In this case,
for δ = δi ∈ J we obtain the sets

Cδ = {p ∈ dom τξ : |τξ(p)| > i + 1}.

So if |τξ(p)| = j + 1 then p ∈ Cδi ⇐⇒ i < j, and τδ � Aδ
J∩δ � τξ � Cδ for

all δ ∈ J .
For (2), we use the fact that Uξ = ∇Uδi so

uξ = sup
δ∈J

uδ.
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Toward (3), let γ < ξ, let p ∈ dom τξ, and let |τξ(p)| = j +1. If γ < δj , then the
following are equivalent: p � δ ∈ Aδ

γ for some δ ∈ J ∩ [γ, δj); and p � δ ∈ Aδ
γ for

all δ ∈ J ∩ [γ, δj). We let p ∈ Aξ
γ if these equivalent conditions hold. If γ � δj

then p /∈ Aξ
γ . The argument is then the same as in case III, restricting to δ < δj ;

(f) follows from j < λ. For (g), letting j + 1 = |τξ(p)|, assuming that υ < δj ,
we fix some δ ∈ J ∩ [γ, δj); for a tail of p̄ we have pi ∈ Cδ; we use the fact
that cbτξ

(p̄) does not change when restricting to this tail.
For (4), if |τξ(p)| = j + 1 then by the construction in Lemma 2.25, p ∈ Pδj ,

in other words supp(p) ⊆ δj . Also p ∈ Aξ
υ implies υ < δj . For υ < δj , we

find δ ∈ J ∩ (υ, δj), and use (4) for τδ.
For (5) and (6) we use the definition of τξ(p): if |τξ(p)| = j+1 then τξ(p)(β)=1

if and only if τδi (p�δi)(β) = 1 for some i < β. If i < β and for all υ ∈ supp(p�δi),
συ(p(υ))(β) = 0, then τδi (p � δi)(β) = 0. On the other hand, suppose that q

extends p, ν ∈ supp(p), that β ∈ [|τξ(p)|, |τξ(q)|), and that συ(q)(β) = 1.
Let j + 1 = |τξ(p)|. Since υ ∈ supp(p), υ < δj . Choose δ ∈ J ∩ [υ, δj).
Then p�δ, q �δ ∈dom τδ, so by assumption on τ̄ , τδ(q �δ)(β)=1. Since β�δj >δ,
by definition, τξ(q)(β) = 1.

Finally, for (7), let p = cbτξ
(p̄); let j + 1 = |τξ(p)|. Then by construction,

supp(p) =
⋃

δ∈J∩δj

supp(cbτδ
(p̄�δ))

(where we actually take a tail of p̄�δ). Again (8) follows.

2.6. Some more on named iterations.

Lemma 2.33: Let ξ be a limit ordinal with cf(ξ) � λ, suppose that 〈Pζ〉ζ<ξ is
a <λ-support iteration, that each Pζ is <λ-distributive, and that τ̄ is a weakly
coherent, S-sparse sequence for P̄. Then Pξ is strategically S-closed.

As discussed above, by the generalisation of Proposition 2.3 to strategic clo-
sure, this implies that if S is fat then Pξ is <λ-distributive.

Proof. The strategy for the completeness player is to play sequences p̄ = 〈pi〉,
where pi ∈ Pζi , with 〈ζi〉 increasing and continuous, such that:

• If the completeness player plays pi+1, then pi+1 ∈ ⋂
j�i A

ζi+1
ζj

; the ordi-
nal played is |τζi+1(pi+1)|.

• For limit i, for all k < i, pi �ζk = cbτζk
(〈pj �ζk〉j∈(k,i)).
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Lemma 2.34: Suppose that 〈Pζ〉ζ<ξ is an S-sparse iteration, and that S is fat.
For all υ < ξ, in V (Pυ), the iteration 〈Pζ/Pυ〉ζ∈[υ,ξ) is S \ Uυ-sparse (witnessed
by 〈Qζ , σζ〉ζ∈[υ,ξ)).

Proof. All we need to observe is that as Pυ is <λ-distributive, the quotient
iteration is <λ-support.

Lemma 2.35: Suppose that 〈Pζ〉ζ�ξ is an S-sparse iteration, that ξ < λ+,
that S is fat, and let τ̄ be an associated sequence.

Let υ < ξ. Suppose that κ < λ and that {pi : i < κ} ⊆ Pξ is a family of
conditions such that pi �υ = pj �υ for all i, j < κ. Then there is a collection of
conditions {qi : i < κ} such that:

(i) Each qi extends pi.
(ii) For all i, qi ∈ dom τξ, indeed qi ∈ Aξ

υ.
(iii) For i < j < κ, qi �υ = qj �υ.

Note that it follows that for all i < j < κ, |τξ(qi)| = |τξ(qj)|.
Proof. By induction on κ. First we consider κ = k finite. We define a se-
quence 〈rn〉 of conditions such that 〈rn � υ〉 is increasing, and as usual
supn|τυ(rn�υ)|∈S. We start with ri = pi for i < k; then at step n = i mod k,
we find an extension of rn−1 � υ ∨ rn−k in Aξ

υ. At the limit, for i < k we
let qi = cbτξ

(〈rkn+i〉n<ω). The sequences 〈rkn+i � υ〉 are co-final and so have
the same canonical upper bound.

For infinite κ < λ, let θ = cf(κ), and let 〈αi〉i�θ be a continuous increasing
sequence converging to κ. We build an array of conditions 〈rj

i 〉i�θ,j<αi
such that:

• For each j < κ, say j ∈ [αk, αk+1), the sequence 〈rj
i 〉i>k is a sparse

sequence for τξ.
• Each rj

i is in Aξ
υ .

• For j < j′ < αi, rj
i �υ = rj′

i �υ.
• For each i < θ and j < αi, rj

i extends pj.
Let si be the common value of rj

i � υ; it follows that 〈si〉 is sparse for τυ. At
step k + 1 < θ we apply the inductive hypothesis to the collection of conditions

{rj
k : j < αk} ∪ {sk ∨ pj : j ∈ [αk, αk+1)}.

As usual everything is happening within a filtration N̄ of length θ + 1 with
limit points in S, so at limit steps we can take canonical upper bounds. We
let qj = rj

θ.
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3. Tasks and the task iteration

3.1. Tasks.

Notation 3.1: Let Fλ be the collection of <λ-distributive notions of forcing.
Each P ∈ Fλ preserves Hλ.

Note that since we assume that GCH holds below λ, we may identify P(λ)
with P(Hλ).

Generically uniform definitions. Let O ⊆ λ and let ϕ be a first-order formula.
For every A ∈ P(λ) we define

B(A) = BO,ϕ(A) = {x ∈ Hλ : (Hλ; O, A) |= ϕ(x)}.

We call this a uniform definition of B(A) from A; O can be considered as an
“oracle”, but can also incorporate any parameters from Hλ if we so choose.

Further, for every P ∈ Fλ and every A ∈ P(λ)(P), that is, any A ∈ V (P)
such that �P A ⊆ λ, we let B(A) be a P-name denoting the result of this
definition in V (P). Thus, O and ϕ give us what we call a generically uniform
definition of subsets of Hλ.

We remark that if P � Q and Q ∈ Fλ then as Hλ is the same in V (P) and
in V (Q), we can naturally consider P(λ)(P) as a subset of P(λ)(Q). Since ϕ is
first-order, the interpretation of B(A) in V (P) and V (Q) is the same.

Limited genericity.

Definition 3.2: Suppose that P ⊆ Hλ is a notion of forcing and that O ∈ P(λ).
A filter G ⊆ P is O-generic if it meets every dense subset of P which is first-
order definable in the structure (Hλ;P, O) (we allow parameters from Hλ).

Note that if P is λ-strategically closed then for any O there is an O-generic
G ⊆ P in V .7

If σ is an explicit P-name for a subset of λ, then for any σ-generic filter G ⊆ P,
Wσ[G] is well-defined and is an element of 2λ.

7 Strategic S-closure for a fat S does not seem to suffice.
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Tasks.

Definition 3.3: A λ-task t consists of three generically uniform definitions Qt, σt

and St (say with oracle O = Ot) such that for all P ∈ Fλ and all C ∈ P(λ)(P),
in V (P),

(A) Qt(C) is a notion of forcing, and σt(C) is a λ-sparse Qt(C)-name for a
subset of C.8 We let W t(C) = Wσt(C).

(B) For any G ⊆ Qt(C) which is (O, C)-generic, for any P′ ∈ Fλ with P�P′,
for any A ∈ P(λ)(P′), in V (P′), St(C, G, A) is a notion of forcing which
is explicitly closed outside W t(C)[G].9

Note that explicit closure or sparse closure of a notion of forcing does not
depend on the universe we work in, as it only involves sequences of length <λ.

Example: Exact diamonds.

Definition 3.4: Let μ < λ be a cardinal (possibly finite, but � 2), and let S ⊆ λ

be stationary. A μ-sequence on S is a sequence F̄ = 〈Fα〉α∈S such that for
each α ∈ S, Fα ⊆ P(α) and |Fα| = μ.

A μ-sequence F̄ guesses a set X ⊆λ if for stationarily many α∈S, X ∩ α∈Fα.
We say that F̄ is a μ-diamond sequence if it guesses every X ⊆ λ.
We say that it is a μ-almost diamond sequence if it guesses all subsets

of λ except possibly for a collection of at most λ many subsets X .
We say that F̄ is a μ-exact diamond sequence if it is a μ-diamond sequence,

and whenever we choose xα ∈ Fα for all α ∈ S, the sequence 〈Fα \ {xα}〉α∈S is
not a μ-almost diamond sequence (let alone a μ-diamond sequence).

We define the μ-exact diamond task t = t♦(μ). The forcing Qt(C) adds a
μ-diamond sequence on a subset of C; the subsequent forcings St ensure that it
is exact.

(i) For C ⊆ λ, p ∈ Qt(C) if p = (σ(p), F̄ (p)) where:
• σ(p) ∈ 2<λ and σ(p) ⊆ C;10

• F̄ (p) = 〈Fα(p)〉α∈σ(p) with Fα(p) ⊆ P(α) and |Fα(p)| = μ;
• extension is by extending the sequences in both coordinates.

σt(C) = σ; i.e., the function sending p to σ(p).
8 This means that �Qt(C) Wσt(C) ⊆ C.
9 Recall that this means that it is explicitly λ \ W t(C)[G]-closed.

10 As usual, identifying the characteristic function with its underlying set.
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(ii) Fixing C, suppose that G ⊆ Qt(C) is C-generic; let W = W t(C)[G],
and let F̄ be the generic μ-sequence of sets.

For a sequence x̄ = 〈xα〉α∈W with xα ∈ Fα, St(C, G, x̄) is the notion
of forcing consisting of conditions (d, y), where

• d, y ∈ 2<λ and |d| = |y| + 1;
• d is a closed subset of |d|;
• for all α ∈ d ∩ W , y ∩ α /∈ Fα \ {xα};
• extension is extension in both coordinates.

Observe that indeed σt(C) is λ-sparse: for a canonical sparse upper bound of
an increasing sequence p̄=〈pi〉 we choose a condition p∗ defined by σ(p∗)=σ(p̄)̂ 0,
and F̄ (p∗) = F̄ (p̄) =

⋃
i F̄ (pi). Of course one of the main points is that

α = |σ(p̄)| is excluded from σ(p∗), so we do not need to define Fα(p∗). Note that
in fact, Qt(C) is <λ-closed. Also observe that St(C, G, x̄) is explicitly closed
outside W , by taking δ(d, y) = |y|.
Remark 3.5: In the example above, what is St(C, G, A) if A is not of the form x̄

where xα ∈ Fα(C)? Note that the collection of “legal” A is Π0
1(Hλ; C, G), so the

generic definition St(C, G, A) can involve a check and output a trivial notion of
forcing when A does not have the right form.

3.2. The task iteration. We now define the λ-task iteration. This will be
a λ-sparse iteration 〈Pζ ,Qζ, σζ〉 of length λ+. We let 〈τζ〉 be the associated se-
quence, and as above use the abbreviations Wζ = Wσζ

and Uζ = Wτζ
. Together

with the iteration we will define bookkeeping objects I, f such that I ⊆ λ+, and
for all ζ < λ+:

(i) If ζ ∈ I, then f(ζ) ∈ V (Pζ) is a λ-task t, and

Qζ = Qt(λ \ Uζ), σζ = σt(λ \ Uζ).

(ii) If ζ /∈ I, then f(ζ) = (υ, A) where:
• υ < ζ and υ ∈ I, and
• A ∈ P(λ)(Pζ);

and Qζ = St(λ \ Uυ, Gυ, A), where t = f(υ) and Gυ ∈ V (Pυ+1) is the
generic for Qυ = Qt(λ \ Uυ). In this case, as Qζ is explicitly closed
outside Wυ , we let δζ witness this fact, and let σζ be the associated
explicit name for the empty set (see Lemma 2.16). Note that Wυ ⊆ Uζ

modulo clubs, so Qζ is explictly closed outside Uζ as required.
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Lemma 3.6: Pλ+ is strategically λ-closed, and has the λ+-chain condition.

Proof. Strategic λ-closure follows from Lemma 2.33. For the λ+-chain condi-
tion, note that for all ζ < λ+, �Pζ

|Qζ | � λ, and that the iteration is <λ-
support.

Corollary 3.7: P(λ)(Pλ+ ) =
⋃

ζ<λ+ P(λ)(Pζ); Pλ+ is < λ-distributive;
in V (Pλ+ ), no cofinalities are changed and no cardinals are collapsed; if GCH
holds in V then it also holds in V (Pλ+).

Corollary 3.7 allows us to define the bookkeeping functions so that:
• For every λ-task t ∈ V (Pλ+) there is some ξ ∈ I such that f(ξ) = t.
• For every ξ ∈ I, for every A ∈ P(λ)(Pλ+ ), there are unboundedly

many ζ > ξ such that f(ζ) = (ξ, A).

3.3. Exact diamonds in the extension.

Proposition 3.8: In V (Pλ+), for every regular θ < λ, for every cardinal
μ ∈ [2, λ), there is a stationary set W ⊆ Cofλ(θ) and a μ-exact diamond se-
quence on W .

To prove this proposition, we let t = t♦(μ, θ) be the obvious modification of
the task t♦(μ) above, where the requirement σ(p) ⊆ C is replaced by

σ(p) ⊆ C ∩ Cof(θ).

We fix some υ ∈ I such that f(υ) = t. Let W = Wυ = W t(λ \ Uυ)[Gυ ] and
let F̄ = F̄ [Gυ ].

The easier part is to check exactness.

Lemma 3.9: In V (Pλ+), for every x̄ = 〈xα〉α∈W for which xα ∈ Fα for all
α ∈ W , there are λ+-many Y ∈ P(λ) which are not guessed by 〈Fα \ {xα}〉.
Proof. Fix a set T ⊂ P(λ)(Pλ+ ) with |T | � λ. Find some ζ sufficiently large
so that T ∈ V (Pζ) and f(ζ) = (υ, x̄), so Qζ = St(λ \ Uυ, Gυ, x̄). This notion of
forcing adds a set Y ∈ P(λ) \ T and a club D witnessing that 〈Fα \ {xα}〉 does
not guess Y .

What is trickier is showing that F̄ is a diamond sequence in V (Pλ+ ). Certainly
it is a diamond sequence in V (Pυ+1): But we need to show that it remains a
diamond sequence in V (Pλ+). The argument follows, to a large degree, the
main argument of [She81].
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Let Z ∈ 2λ(Pλ+), and let C ⊆ λ in V (Pλ+) be a club; find some
limit ξ ∈ (υ, λ+) such that C, Z ∈ V (Pξ).

For the rest of the proof, we work in V (Pυ). In that universe, Uυ is co-
fat, and Pξ/Pυ is the result of the named λ-iteration (Pζ/Pυ,Qζ, σζ)ζ∈[υ,ξ)
(Lemma 2.34).

Let

Q =
{

ζ ∈ (υ, ξ) : f(ζ) = (υ, x̄) where in V (Pζ), x̄ ∈
∏

α∈W

Fα

}
.

For ζ ∈ Q we write x̄ζ = 〈xζ
α〉α∈W where

f(ζ) = (υ, x̄ζ),

and we let (Dζ , Yζ) ∈ V (Pζ+1) be the pair of club and subset of λ which are
added by

Qζ = St(λ \ Uυ, Gυ, x̄ζ).

We note:
• If ζ ∈ (υ, ξ) \ Q, then σζ is W -sparse.

For if ζ ∈ I then σζ is λ-sparse; if ζ /∈ I then Qζ is explicitly closed outside Wϑ

for some ϑ < ζ distinct from υ; and Wϑ ∩ W = ∅ modulo the club filter. So Qζ

is explicitly W -closed; and σζ (a Qζ-name for the empty set) is W -sparse.
We apply Corollary 2.32 to the iteration 〈Pζ/Pυ〉ζ∈[υ,ξ], with S = λ \ Uυ, ob-

taining an associated sequence of names 〈τζ〉ζ∈(υ,ξ], which is sparse outside Uυ.
However we modify the construction at successor steps ζ + 1 for ζ ∈ Q to
determine not only the height

δζ(p(ζ)) = |yp(ζ)|
of a condition, but the actual values (d, y) of the condition. So for all p ∈ dom τξ,
for all ζ ∈ supp(p) ∩ Q, there is a pair (dp

ζ , yp
ζ ) ∈ V (Pυ) (rather than V (Pζ))

such that p � ζ forces that p(ζ) = (dp
ζ , yp

ζ ). Note that for such p and ζ we
have |dp

ζ | = |τξ(p)|. For brevity, let τ = τξ.
There are two cases.
In the first case, we work above a condition p∗ ∈ Pξ/Pυ which forces that for

all ζ ∈ Q, Z �= Yζ . Because Pξ/Pυ is <λ-distributive, every p � p∗ in Pξ/Pυ

has an extension r ∈ dom τ such that for some string π ∈ 2<λ with |π| > |τ(p)|,
(i) r � π ≺ Z; and
(ii) for every ζ ∈ Q ∩ supp(p), π ⊥ yr

ζ .
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Since Uυ is co-fat, we use our usual technique to get a sparse sequence
p̄ = 〈pi〉i<θ in dom τ such that for limit i � θ, supj<i γj /∈ Uυ;11 and such
that each pi+1 separates Z from ypi

ζ as above, namely: for some πi of length
in [γi, γi+1), we have pi+1 � πi ≺ Z, and for all ζ ∈ Q ∩ supp(pi), πi ⊥ y

pi+1
ζ .

Naturally 〈πi〉 is increasing. Also, we ensure that pi+1 forces that C ∩ [γi, γi+1)
is nonempty. We may assume that υ ∈ supp(p0).

We are after a condition q which forces that Z is guessed by F̄ at some
point in C. Informally, we define q to be a modification of the canonical sparse
upper bound pθ of p̄; the difference is in q(υ), which, recall, is a condition
in Qυ = Qt(λ \ Uυ). Let α∗ = supi<θ γi, so cf(α∗) = θ and α∗ /∈ Uυ. Formally,
by induction on ζ ∈ (υ, ξ], we define q � ζ, extending each pi � ζ, as follows. We
declare that supp(q) =

⋃
i<θ supp(pi). For ζ ∈ supp(q) ∩ Q, let y∗

ζ =
⋃

i<θ ypi

ζ

and d∗
ζ =

⋃
i<θ dpi

ζ . Also let π∗ =
⋃

i<θ πi.
(1) First we define q(υ) by letting

σ(q(υ)) =
⋃
i<θ

σ(pi(υ))̂ 1 and F̄ (q(υ)) =
⋃
i<θ

F̄ (pi(υ))̂ Fα∗ ,

where π∗ ∈ Fα∗ but for all ζ ∈ supp(q) ∩ Q, y∗
ζ /∈ Fα∗ . Note that this is

a legitimate condition because α∗ ∈ Cofλ(θ) \ Uυ.
Let ζ > υ be in supp(q), and suppose that q � [υ, ζ) has already been defined,
and that for all i < θ, q � [υ, ζ) extends pi � [υ, ζ).

(2) Suppose that ζ /∈ Q. Since q � [υ, ζ) extends each pi � [υ, ζ), it forces that
a tail of 〈pi(ζ)〉 is a sparse sequence for σζ (we use (8) of Definition 2.29).
Also, q � [υ, ζ) forces that α∗ ∈ W , so it forces that 〈pi(ζ)〉 has an upper
bound, which we set to be q(ζ).

(3) Suppose that ζ ∈ Q. We declare that q(ζ) = (d∗
ζ 1̂, y∗

ζ ). This is a
legitimate condition because α∗ ∈ W and y∗

ζ /∈ Fα∗ .
The condition q forces that π∗ = Z ∩α∗, α∗ ∈ C ∩W and π∗ ∈ Fα∗ , finishing

the proof in this case.
In the second case, we work above a condition p∗ which forces that Z = Y�

for some � ∈ Q. (Note that we still have to work in V (Pξ) rather than V (P�),
as C ∈ V (Pξ) may not be in V (P�).) We may assume that p∗ ∈ dom τ and
� ∈ supp(p∗). Let α = |τ(p∗)| + μ, where, recall, μ is the size of each Fβ .
Let p∗(�) = (d∗, y∗). Find strings yi, for i < μ, of length α, each extending y∗,

11 Recall that θ is the cofinality on which W concentrates.
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which are pairwise incomparable; let pi agree with p∗ except that pi(�) = (d, yi),
where |d| = α + 1 is an extension of d∗ by a string of zeros.

Using Lemma 2.35, we follow our usual construction, this time constructing
an array 〈pi

j〉i<μ,j<θ such that:
(i) For each i < μ, 〈pi

j〉j�θ is a sparse sequence for τ .
(ii) For each i < i′ � θ, pi

j �� = pi′
j ��; call the common value rj .

(iii) pi
0 = pi.

(iv) For each i < μ and j < θ, pi
j ∈ Aξ

�.
(v) For each i, i′ < μ, j < θ, and ζ ∈ Q ∩ supp(pi

j) other than �,

y
pi

j+1
ζ ⊥ y

pi′
j+1

� .

At step θ, instead of taking the sparse upper bound, we inductively define a
condition q ∈ dom τ� by induction as above. For i < μ let yi

� =
⋃

j<θ y
pi

j
� .

Let α∗ = |τ�(r̄)|, which has cofinality θ and is out of Uυ. We start with set-
ting q(υ) so that α∗ ∈ συ(q(υ)) and Fα∗ , according to q(υ), is {yi

� : i < μ}.
We then define q(ζ) for ζ ∈ supp(q) =

⋃
j supp(rj) as above, noting that for

all ζ ∈ Q ∩ supp(q), for all i < μ, yi
� �= yq

ζ , where of course yq
ζ =

⋃
j<θ y

rj

ζ .
Now, we extend q to a condition q′ ∈ dom τ� such that for some π of length α∗,

q′ � x�
α∗ = π.

Since q′ decides the value of Fα∗ , necessarily π = yi∗
� for some i∗ < μ. As above,

extend q′ to a condition s ∈ dom τξ extending pi∗
j for all j < θ. Defining

s(�) = (di∗
� , yi∗

� )

(where of course di
� = (

⋃
j<θ d

pi
j

� )̂ 1) is legitimate since q′ forces that
yi∗

� /∈Fα∗ \{x�
α∗}. The condition s forces that α∗ ∈C and that Z ∩ α∗ =yi∗

� ∈Fα∗ .

4. The task axiom

4.1. Named iterations beyond λ+
. Let U be a family of subsets of λ. We

define the notion of forcing R(U ):
• Conditions are pairs p = (u(p), σ(p)) where σ(p) ∈ 2<λ and u(p) ⊆ U

has size <λ.
• q extends p if u(p) ⊆ u(q), σ(p) � σ(q) and for all U ∈ u(p),

U ∩ [|σ(p)|, |σ(q)|) ⊆ σ(q).
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This notion of forcing is <λ-closed; σ is an explicit R(U )-name for a subset
of λ. In V (R(U )), Wσ is an upper bound of U modulo clubs (indeed modulo
bounded subsets of λ). We will not need to directly appeal to the following
lemma, since in our context we will use the heavier machinery of sparse names.

Lemma 4.1: For every S ⊆ λ in V , if for all U ∈ U , S \ U is stationary, then
in V (R(U )), S \ Wσ is stationary.

We can now give a general definition of named λ-iterations (of any length):

Definition 4.2: A sequence 〈Pζ〉ζ<ξ is a named λ-iteration if it satisfies condi-
tions (i)–(iii) of Definition 2.26, together with:

(iv) For ζ < ξ such that cf(ζ) > λ, Qζ = R({Wσυ : υ < ζ}) and σζ is the
corresponding explicit name.

Using this definition, as above, for such an iteration we can define a se-
quence 〈uζ〉ζ<ξ,cf(ζ)�λ with uζ ∈ P(λ)/ NSλ(Pζ). This will be an increasing
sequence in P(λ)/ NSλ. If ζ = υ + 1 and cf(υ) > λ then we let uζ = [Wσυ ]NSλ

.
Otherwise we can take least upper bounds as above. Definition 2.27 now
makes sense for named λ-iterations of length beyond λ+ as well. Similarly
we can generalise Definition 2.29; the only change is that τζ is defined only
for ζ ∈ [1, ξ) ∩ Cof(� λ). We can then extend Proposition 2.31:

Proposition 4.3: Let S ⊆ λ be fat. Suppose that 〈Pζ〉ζ�ξ is an S-sparse
iteration, and that τ̄ = 〈τζ〉ζ∈[1,ξ)∩Cof(�λ) is an associated sequence for P̄ � ξ.
Suppose that cf(ξ) � λ.

Then there is a name τξ such that τ̄ τ̂ξ is an associated sequence for P̄.

Proof. The proof of Proposition 2.31 holds in all cases handled in that proposi-
tion, so we assume that ξ = ϑ+1 where cf(ϑ) > λ. In this case, by Lemma 2.33,
Pϑ is <λ-distributive.

For brevity, let I = ξ ∩ Cof(� λ). Also for brevity, let
R = Qϑ = R({Wσζ

: ζ < ξ}).
Since Pϑ is <λ-distributive, the set of conditions (p, q) ∈ Pϑ∗R = Pξ such that
for some v ⊆ I of size <λ and some string π ∈ 2<λ,

p �Pϑ
σ(q) = π & u(q) = {Wσζ

: ζ ∈ v}
is dense in Pϑ∗R. We restrict ourselves to this dense subset, and write v(q), σ(q)
for the corresponding v and π.
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Let 〈Aβ
α〉 witness the weak coherence of τ̄ . We let (p, q) ∈ dom τξ if:

(i) p ∈ Psup v(q);
(ii) for all δ, δ ∈ v(q) ⇐⇒ δ + 1 ∈ v(q);
(iii) for all δ ∈ v(q), p�δ ∈ dom τδ and |τδ(p�δ)| = |σ(q)|; and
(iv) for all δ ∈ v(q), for all ε < δ in I, p�δ ∈ Aδ

ε if and only if ε ∈ v(q).

For (p, q) ∈ dom τξ we let τξ(p, q) = σ(q). If (p̄, q̄) = 〈(pi, qi)〉i<i∗ is an increasing
sequence from dom τξ, then we let cbτξ

(p̄, q̄) = (p∗, q∗) if:

(v) (p∗, q∗) ∈ dom τξ;
(vi) v(q∗) =

⋃
i<i∗ v(qi);

(vii) σ(q∗) =
⋃

i<i∗ σ(qi)̂ 0;
(viii) for all δ ∈ v(q∗), p∗ �δ is cbτδ

of a tail of p̄�δ.

We show that dom τξ is dense in Pξ. Given (p0, q0) ∈ Pξ, we obtain a λ-
filtration N̄ and a sequence 〈γn〉n<ω with limit γω ∈ S as usual. We define an
increasing sequence 〈pn, qn〉n<ω with (pn, qn) ∈ Nγn . We require that:

• |σ(qn)| > γn−1;
• Nγn−1 ∩ I ⊆ v(qn);
• pn ∈ Pζn for some ζn ∈ Nγn , ζn > sup v(qn);
• |τζn(pn)| > γn−1; and
• for all δ ∈ v(qn), pn ∈ Aζn

δ .

Note that having size <λ, v(qn) ⊂ Nγn .
Let v∗ =

⋃
n v(qn) = Nγω ∩I, which is cofinal in Nγω ∩ξ; let ζ∗ = sup v∗. Also

let π∗ =
⋃

n σ(qn), which has length γω. Since |v∗| < λ, Pζ∗ is the inverse limit
of 〈Pδ〉δ∈v∗ . For δ ∈ v∗, a tail of 〈pn �δ〉 is in dom τδ; we let rδ = cbτδ

(〈pn �δ〉) be
its canonical upper bound. By coherence, rδ �ε = rε for ε < δ in v∗, so we obtain
an inverse limit r ∈ Pζ∗ ; this condition extends each pn. Define (r, s) ∈ Pϑ∗R by
letting σ(s) = π∗ 1̂, and v(s) = v∗. We claim that (r, s) ∈ dom τξ. Requirements
(i)–(iii) and one direction of (iv) are clear; for the other direction of (iv), we
suppose that δ ∈ v∗, ε < δ, and rδ = r �δ ∈ Aδ

ε; we need to show that ε ∈ v∗. By
the continuity property (g) of Definition 2.28, for large enough n, pn � δ ∈ Aδ

ε.
Fixing some large n, we know (by (f)) that ε is among the fewer than λ-many
ε′ < δ such that pn �δ ∈ Aδ

ε′ . Since 〈Aβ
α〉, I, pn ∈ Nγn it follows that each such ε′

is in Nγn , so

ε ∈ I ∩ Nγn ⊆ v(qn+1) ⊂ v∗.
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To show that (r, s) extends (pn, qn), we need to show that if δ ∈ v(qn)
and α ∈ (|σ(qn)|, γω], then r forces that if α ∈ Wσδ

, then σ(s)(α) = 1.
But we may assume that α < γω; if m > n is sufficiently large so that
|σ(qm)|, |τδ(pm � δ)| > α, then pm forces what’s required, as it forces that qm

extends qn.
We check that the requirements of Definition 2.29 hold. We first need to

check that τξ is S-sparse. Suppose that (p̄, q̄) = 〈pi, qi〉i<i∗ is a sparse sequence
for τζ , with α∗ = |τζ(p̄, q̄)| ∈ S. Let

v∗ =
⋃

i<i∗
v(qi), π∗ =

⋃
i<i∗

σ(qi).

Let ζ∗ = sup v∗. For all δ ∈ v∗, a tail of p̄ � δ is in dom τδ and is a sparse
sequence for τδ; we let rδ be the canonical upper bound; we let r be the inverse
limit of 〈rδ〉; we define s by

σ(s) = π∗ 0̂ and v(s) = v∗.

It is not difficult to see that (r, s) ∈ dom τξ and (r, s) = cbτξ
(p̄, q̄), except

that we need to show that (r, s) extends each (pi, qi). The only potentially
contentious point is the legitimacy of setting σ(s)(α∗) = 0. Let δ ∈ v(qi). Then
δ + 1 ∈ v(qi) ⊆ v(s), whence pi �δ + 1 ∈ dom τδ+1. By (4) for τδ+1, δ ∈ supp(pi),
and since τδ+1(rδ+1)(α∗) = 0, by (5) (applied to q = rδ+1 and p = pi � δ + 1),
σδ(r)(α∗) = 0, so δ and α∗ are not an obstacle to (r, s) extending (pi, qi).

(2) follows from the fact that we defined uξ = [Wσϑ
]NSλ

.
For (3), for δ ∈ I and (p, q) ∈ dom τξ, we let (p, q) ∈ Aξ

δ if and only if δ ∈ v(q).
The requirements of Definition 2.28 follow from our definitions.

For (4), let ζ ∈ supp(p); since p ∈ Psup v(q), ζ < sup v(q); let δ ∈ v(q), δ > ζ.
Then p � δ ∈ dom τδ, and so p � δ ∈ Aδ

ζ+1; it follows that ζ + 1 ∈ v(q). On the
other hand we note that ϑ ∈ supp(p, q).

(6) is immediate: if for all δ ∈ supp(p, q), σδ(p, q)(α) = 0, then

τξ(p, q)(α) = σϑ(q)(α) = 0.

For (5), suppose that ζ ∈ supp(p, q), and that (p′, q′) extends (p, q). We may
assume that ζ < ϑ, so ζ ∈ v(q). Then

σζ(p′(ζ)) \ |σζ(p(ζ))| ⊆ σϑ(q′) = τ(p′, q′)

because p′ forces that q′ extends q.
Finally, (7) and (8) follow from our definitions.
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Quotients of named iterations. Let S be fat, and let 〈Pζ〉ζ<ξ be an S-sparse
iteration. Let υ < ξ. If cf(υ) � λ then the usual argument shows that the
quotient iteration 〈Pζ/Pυ〉ζ∈[υ,ξ) is, in V (Pυ), an S \ Uυ-sparse iteration.

What happens though if cf(υ) > λ? In this case, the iteration 〈Pζ/Pυ〉 is a
one-step extension R(U )∗〈Pζ/Pυ+1〉ζ∈(υ,ξ), where U = {Wζ : ζ < υ}. The
second step, as mentioned, is an S \ Uυ+1-sparse iteration, where Uυ+1 = Wυ

comes from the generic for R(U ); we know that S \ Uυ+1 is fat in V (Pυ+1).

4.2. Nice tasks and the task axiom.

Definition 4.4: Let t be a λ-task, let S ⊆ λ be fat. An S-sparse iteration
〈Pζ〉ζ<ξ is t-friendly if Q0 = Qt(S), and letting G0 be the generic for Q0

and W = W t(S)[G0] = W0, for all ζ ∈ [1, ξ) with cf(ζ) � λ, in V (Pζ),
(i) either σζ is W -sparse; or
(ii) Qζ = St(S, G0, A) for some A.

For example, for the task iteration above, for every υ ∈ I, in V (Pυ), the
quotient iteration 〈Pζ/Pυ〉 is f(υ)-friendly (with S = λ \ Uυ).

Definition 4.5: Let t be a λ-task. A correctness condition for t is a Π1
1

sentence ψ such that for all fat sets C, Qt(C) forces that (Hλ; Ot, C, G) |= ψ

(where Ot is the oracle for t).

For example, for t = t♦(μ) (or t♦(μ, θ)) as above, the correctness condition is
that the resulting sequence 〈Fα〉α∈W is a μ-diamond sequence.12

Definition 4.6: Let t be a λ-task and let ψ be a correctness condition for t.
We say that the pair (t, ψ) is nice if for any <λ-distributive R, in V (R), for
any fat S, for any S-sparse iteration 〈Pζ〉ζ�ξ with ξ < λ++ which is t-friendly,
in V (R∗Pξ), (Hλ; O, S, G0) |= ψ (where as above G0 is the generic for Q0).

Definition 4.7: Let t be a λ-task and let ψ be a correctness condition for t. We
say that the pair (t, ψ) is satisfied if:

(1) there is a fat set C and a filter G ⊂ Qt(C) which is (Ot, C)-generic;
(2) (Hλ; Ot, C, G) |= ψ; and
(3) for all A∈P(λ), there is a filter HA ⊂ St(C, G, A) which is (Ot, C, G, A)-

generic.
12 Note that if G ⊂ Qt(C) is merely C-generic, then for this task it is not the case that ψ

holds in (Hλ; C, G); for ψ to hold we need a filter G fully generic over V .
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We can now define the λ-task axiom.

Definition 4.8: The λ-task axiom TaskAxλ states:
Every nice pair (t, ψ) is satisfied.

Again we emphasise that throughout, we assume that GCH holds below λ.

Diamonds and the task axiom. As mentioned above, for t = t♦(μ, θ), the natural
correctness condition ψ for t is that F̄ = 〈Fα〉α∈W is a μ-diamond sequence.
Further, the argument proving Proposition 3.8 shows that (t, ψ) is nice. We
modify the interpretation of the extra oracle A in the definition of St(C, G, A),
so that A not only codes the sequence x̄ = 〈xα〉α∈W but also codes a family of
λ-many Z ∈ P(λ), the result being that the generic Y satisfies Y �= Z for all Z

coded by A. The result is:

Proposition 4.9: TaskAxλ implies that for all μ < λ and all regular θ < λ,
there is an exact μ-diamond sequence concentrating on Cofλ(θ).

4.3. Consistency of the task axiom. We remind the reader that as usual,
λ is regular and uncountable, and that GCH holds below λ. In this subsection
we prove:

Proposition 4.10: There is a notion of forcing P which is < λ-distributive
and has the λ+-chain condition (and so preserves cardinals and cofinalities),
preserves GCH (if it holds in V ), and such that the task axiom TaskAxλ holds
in V (P).

Proof. Towards constructing P, we define a λ-sparse iteration 〈Pζ〉ζ<λ++ ; P will
be a proper initial segment of this iteration. As above we have bookkeeping
devices I and f , except that for υ ∈ I, f(υ) is a pair (t, ψ) consisting of a task
and a correctness condition for that task. Also, of course, f is only defined
on λ++ ∩ Cof(� λ), as Qζ is prescribed when cf(ζ) = λ+. Also, we will repeat
tasks when earlier attempts have resulted in failure. Suppose that f(υ) = (t, ψ),
and that ζ > υ. We say that f(υ) has failed by stage ζ if there is some
condition in Pζ which forces that in V (Pζ),

(Hλ; O, λ \ Uυ, Gυ) |= ¬ψ.
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We keep our books so that:
• For every pair (t, ψ) ∈ V (Pλ++), either

– there is some υ ∈ I such that f(υ) = (t, ψ) and for all ζ > υ, f(υ)
does not fail by stage ζ; or

– there are unboundedly many υ ∈ I such that f(υ) = (t, ψ), and
if υ < υ′ are in I and f(υ) = f(υ′), then f(υ) has failed by stage υ′.

• In the first case, with υ last such that f(υ)=(t, ψ), for all A∈P(λ)(Pλ++ ),
there are unboundedly many ζ < λ++ such that f(ζ) = (υ, A).

Then by a standard closure argument, we can find some ξ∗ < λ++ such that:
(i) cf(ξ∗) = λ+;
(ii) for every pair (t, ψ) ∈ V (Pξ∗ ), if there is a last υ ∈ I such that

f(υ) = (t, ψ), then this υ is smaller than ξ∗;
(iii) if υ < ξ∗ is last with f(υ) = (t, ψ), then for all A ∈ P(λ)(Pξ∗) there are

unboundedly many ζ < ξ∗ such that f(ζ) = (υ, A).
We let P = Pξ∗ . Suppose that t ∈ V (P), that ψ is a correctness condition for t,

and that (t, ψ) is nice in V (P). Then there is a last υ ∈ I such that f(υ) = (t, ψ).
For otherwise, there is some υ > ξ∗ such that f(υ) = (t, ψ) and some ξ > υ such
that f(υ) has failed by stage ξ. Then the iteration 〈Pζ/Pυ〉ζ∈[υ∗,ξ) witnesses
(in V (Pυ), which is an extension of V (Pξ∗ ) by Pυ/Pξ∗ , which as a quotient of a
<λ-distributive notion of forcing is also <λ-distributive), that (t, ψ) is not nice.

Taking this last υ, we have υ < ξ∗; we know that ψ holds in V (Pξ∗); and our
bookkeeping ensures that (t, ψ) is satisfied in V (Pξ).

Iterating with set Easton support, we get:

Corollary 4.11: Assuming GCH, there is a class forcing extension preserving
all cofinalities, cardinals, and GCH, and in which TaskAxλ holds for every
regular uncountable cardinal λ.

4.4. Uniformisation. Let W ⊆ λ. Recall that a ladder system on W is a
sequence Ē = 〈Eα〉α∈W such that each Eα is an unbounded subset of α of order-
type cf(α). A 2-colouring of a ladder system Ē is a sequence c̄ = 〈cα〉α∈W

such that for all α ∈ W , cα : Eα → 2. A function g : λ → 2 uniformises the
2-colouring c̄ if for every α ∈ W ,

g �Eα =∗ cα,

meaning that {γ ∈ Eα : g(γ) �= cα(γ)} is bounded below α.
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A ladder system Ē on W has uniformisation if every 2-colouring of ē is
uniformised by some g.

Since we are assuming GCH below λ, there are some restrictions on what
kind of uniformisation we can deduce from the task axiom. If λ = μ+ and
θ = cf(μ) then no ladder system on any stationary W ⊆ Cofλ(�= θ) can have
uniformisation, as ♦W holds [Gre76, She79, She10]. Also, if λ = μ+ and μ is
singular, then for no stationary W ⊆ λ is it the case that every ladder system
on W has uniformisation [She03b].

Proposition 4.12: Suppose that λ is inaccessible and θ < λ is regular; or
that λ = μ+ and θ = cf(μ). Then TaskAxλ implies that for any ladder system Ē

on Cofλ(θ) there is some stationary W ⊆ Cofλ(θ) such that the restriction Ē �W

has uniformisation.

Proof. Let Ē be a ladder system on Cofλ(θ). Define the following task t= tUP(θ):

(i) For C ⊆ λ, p ∈ Qt(C) if p ∈ 2<λ, p ⊂ C ∩ Cof(θ), and the restriction
of Ē to p has uniformisation.

We let σt(C)(p) = p.
(ii) If G ⊆ Qt(C) is C-generic, then we let W = W [G] = Wσt(C)[G].

If c̄ is a 2-colouring of Ē �W , then St(C, G, c̄) consists of conditions
q ∈ 2<λ which are an initial segment of a uniformising function: for
all α ∈ W with α � |q|, q �Eα =∗ cα.

First, we verify Definition 3.3. It is clear that St(G, c̄) is explicitly closed out-
side W ; take δ(q) = |q|. To see that σt(C) is λ-sparse (using cbσ(p̄) = (

⋃
p̄)̂ 0),

suppose that p̄ = 〈pi〉i<i∗ is sparse for σ. Let p∗ = (
⋃

p̄)̂ 0. We need to argue
that the restriction of Ē to p∗ has uniformisation. This follows from the closed
set disjoint from p∗ determined by the sequence p̄: let γi = |pi|. Every α ∈ p∗

is in (γi, γi+1) for some i, the salient point being that α > γi. So if c̄ is a
2-colouring of Ē �p∗, then as each pi is in Qt(C), we let gi : γi → 2 uniformise
c̄�pi; define g : |p∗| → 2 by letting g agree with gi+1 on [γi, γi+1).

Let ψ be the correctness condition which states that W = W [G] is stationary.
We argue that this is forced by Qt(C). To see this, let D ∈ V (Qt(C)) be a club;
and suppose that C is fat. Obtain a filtration N̄ and a sequence 〈γi〉i<θ (with
limits in C) as usual. Define an increasing sparse sequence p̄ of length θ as
usual, so any upper bound forces that α∗ = supi γi is in D; it is, of course,
also in C ∩ Cof(θ). We argue that p∗ = (

⋃
p̄)̂ 1 is a valid condition in Qt(C),

Sh:832



Vol. 261, 2024 MANY FORCING AXIOMS 163

namely, that it has uniformisation. Let c̄ be a 2-colouring of Ē �p∗. As above,
for each i < θ let gi uniformise the restriction of c̄ to pi. We define g : α∗ → 2
uniformising c̄, as follows: for β ∈ [γi, γi+1), we let g(β) = gi+1(β), except
that if β ∈ Eα∗ we set g(β) = cα∗(β). That g uniformises c̄ follows from
the fact that the changes from gi+1 are bounded: let β ∈ p∗, β < α∗; so
β ∈ (γi, γi+1) for some i. Since cf(β) = θ, Eα∗ ∩ β is bounded below β,
so g �Eβ =∗ gi+1 �Eβ =∗ fβ .

Suppose that the pair (t, ψ) is satisfied, say by C and G; then

W = W [G] ⊂ Cofλ(θ)

is stationary. The ladder system Ē �W has uniformisation: let c̄ be a 2-colouring
of Ē �W ; let H = Gc̄ ⊆ St(C, G, c̄) be (C, G, c̄)-generic. Since each p ∈ Qt(C)
has uniformisation, gH =

⋃
H is a function with domain λ (for all γ < λ, the

conditions in St with domain � γ are dense), and it uniformises c̄.
It remains to show that (t, ψ) is nice. The argument follows [She77, She84].
After passing, possibly, to a generic extension, suppose that S ⊆ λ is fat, and

that P̄ = 〈Pζ〉ζ�ξ is S-sparse and t-friendly. We need to check that W = W [G0]
is stationary in V (Pξ). Let D ∈ V (Pξ) be a club. By extending by one step, we
may assume that cf(ξ) � λ.

Let τ̄ be an associated sequence for P̄. Let Q be the collection of ζ < ξ for
which Qζ = St(S, G0, c̄) for some appropriate c̄ ∈ V (Pζ); we write c̄ζ for c̄. By
assumption, for ζ ∈ ξ \ Q, if cf(ζ) � λ then σζ is W -sparse; if cf(ζ) > λ then
we know that Qζ is <λ-closed. We further modify the construction of τ̄ to
ensure that for all ς � ξ with cf(ς) � λ (so τς is defined), for all p ∈ dom τς and
all ζ ∈ Q ∩ supp(p), p ∈ Aς

ζ and there is some string π = π(p, ζ) (in V ) such
that p�ζ forces that p(ζ) = π, and the length of π is |τς(p)| − 1.

Elaborating only a little on our standard construction, we obtain a filtra-
tion N̄ = 〈Ni〉i�θ such that letting γi = Ni ∩ λ, we have:

• All objects above are elements of N0, including an initial condition
p−1 ∈ Pξ.

• θ ⊂ N0, and if λ = μ+ then μ ⊆ N0.
• For limit i � θ, γi ∈ S.
• For successor i < θ, N<θ

i ⊆ Ni.

We can do this since either λ is inaccessible, or λ = μ+ and μ<θ = μ. Note
that the sequence 〈γi〉 is continuous. Let α∗ = γθ. What is pertinent is that
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for successor i < θ, cf(γi) � θ, so Eα∗ ∩ γi is bounded below γi. Note that for
limit i < θ, N<θ

i ⊂ Ni+1.
We use the trees-of-conditions method to obtain a sparse sequence p̄ and an

upper bound q forcing α∗ ∈ W ∩ D; to do this, we need to take care of all
possible choices for pi(ζ)�Eα∗ for ζ ∈ Q ∩ supp q.

For i � θ we define:
• an ordinal δi;
• sets ui ⊂ Q;
• functions mi : ui → i.

Let Ti be the collection of all sequences f̄ = 〈fζ〉ζ∈v, where v ⊆ ui is an initial
segment of ui and for all ζ ∈ v, fζ : Eα∗ ∩ γi → 2. We also define:

• for each f̄ ∈ Ti, a condition pi(f̄) ∈ Pξ.
For a proper initial segment v of ui, let ς(v) = min(ui \ v); let ς(ui) = ξ.
For f̄ ∈ Ti defined on v, we write v(f̄) = v and ς(f̄) = ς(v(f̄)). We say that f̄

is maximal (for Ti) if dom f̄ = ui, i.e., if ς(f̄) = ξ. If f̄ ∈ Ti and ζ � ξ then
we write f̄ � ζ for f̄ � (v ∩ ζ). Note that whether maximal or not, cf(ς(f̄)) � λ

(no ζ ∈ Q has cofinality λ+), so in any case, τς(f̄) is defined; we write τv = τς(v)
and τf̄ = τς(f̄) = τv(f̄).

We ensure that the objects defined have the following properties:
(1) ui, mi, Ti and the map f̄ �→ pi(f̄) are all in Ni+1 (and in fact for

successor i, they will be in Ni);
(2) |ui| < λ; if λ = μ+ then |ui| < μ;
(3) ui ⊆ uj if i < j, and uj =

⋃
i<j ui for limit j;

(4) if i < j then mi = mj �ui;
(5) δi = γi for limit i; for successor i, γi−1 < δi < γi and sup(Eα∗ ∩γi) < δi;
(6) for all f̄ ∈Ti, pi(f̄)∈Pς(f̄), in fact pi(f̄)∈dom τf̄ , and |τf̄ (pi(f̄)| = δi + 1;
(7) for all f̄ ∈ Ti and all ζ ∈ v(f̄), pi(f̄)�Pζ = pi(f̄ �ζ);
(8) for f̄ ∈Ti, v(f̄) ⊂ supp(pi(f̄)); we write πi(f̄ , ζ) for the string π(pi(f̄), ζ)

mentioned above;
(9) for all f̄ ∈ Ti and ζ ∈ v(f̄), for all β ∈ Eα∗ ∩ [γmi(ζ), γi), we have

πi(f̄ , ζ)(β) = fζ(β).
(10) for all f̄ ∈ Ti, Q ∩ supp(pi(f̄)) ⊆ uθ;
(11) for all maximal f̄ ∈ Ti+1, pi+1(f̄) forces that D∩ [γi, γi+1) is nonempty;
(12) for all j < i, for all f̄ ∈ Ti, pi(f̄) extends pj(f̄ [j]), where f̄ [j] ∈ Tj is

the sequence 〈fζ �(E∗
α ∩ γj)〉ζ∈uj ∩v(f̄);
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(13) for all j <i and f̄ ∈Ti, if ς(f̄) = ς(f̄ [j]), then the sequence 〈pk(f̄ [k]〉k∈[j,i)
is sparse for τf̄ ;

(14) 0 ∈ supp(pi(f̄)) for all f̄ ∈ Ti.

Let us show how to construct such objects. We start with u0 = ∅; for f̄ being
the empty sequence (the only element of T0) we let p0(f̄) be some extension
of p−1 (the initial condition we started with) in dom τξ; note that ς(f̄) = ξ. We
let δ0 = |τξ(p0(f̄))| − 1. We can ensure that 0 ∈ supp(p0(f̄)).

Suppose that i � θ is a limit, and that all objects indexed by j < i have been
defined, and satisfy the properties above, except of course for (10). As required,
we define

ui =
⋃
j<i

uj, mi =
⋃
j<i

mj ,

and δi = γi. Let f̄ ∈ Ti and let v = v(f̄). There is some j < i such that
ς(f̄) = ς(f̄ [j]) (either ς(f̄) ∈ uj , or it is ξ); by (13), we can let

pi(f̄) = cbτf̄
(〈pk[f̄ [k]]〉k∈[j,i)).

To define the sequence of objects up to i, we need the sequence 〈Eα∗ ∩ γj〉j<i;
as each Eα∗ ∩ γi has size < θ, and i < θ, this sequence is in Ni+1. Now
(7) for i follows from the canonical choices of bounds being, well, canonical,
and τζ � τf̄ �A

ς(f̄)
ζ . (9) follows from

πi(f̄ , ζ) =
⋃

k∈[j,i)

πj(f̄ [k], ζ)

(as pi(f̄) extends pj(f̄ [j])), where j < i is any such that ζ ∈ uj .
Suppose that i < θ is a successor ordinal, and that all objects have been

defined for j � i − 1. First, we define ui. This is done to make progress
towards (10):

• If λ is inaccessible, then we can let ui =
⋃

f̄∈Ti−1
Q ∩ supp(pi−1(f̄)).

• Otherwise, λ = μ+. If μ is a limit cardinal, let 〈μj〉j<θ be a sequence
of cardinals increasing to μ. In this case |Ti−1| < μ, so we just ensure
that for all f̄ ∈ Ti−1, “μi-much” of Q ∩ supp(pi−1(f̄)) is added to ui

(note that | supp(pi−1(f̄))| is likely μ).
• If μ = ν+ is a successor, then we will likely have |Ti−1| = μ (even

though |ui−1| � ν), as θ = μ and (< θ)ν = μ. We then add “i-much”
of Q ∩ supp(pi−1(f̄)) for “i-many” f̄ ∈ Ti−1.
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We define mi to extend mi−1 by letting mi(ζ) = i−1 for all ζ ∈ ui \ui−1. Note
that ui and γi determine Ti.

To define pi(f̄) for f̄ ∈ Ti we perform a transfinite construction. We work
in Ni. By our analysis immediately above, there is a regular cardinal κ < λ

with κ � |Ti|. Let M̄ be a filtration (with all relevant objects in M0); we
obtain a sequence 〈ε�〉�<κ with the usual properties: its limit points are in S,
Mε�

∩ λ = ε�, and for � < κ we have 〈ε�′〉�′<� ∈ Mε�+1. Since κ may be larger
than θ, we cannot require that the sequence be continuous.

Let 〈f̄�〉�<κ be a list of all maximal f̄ ∈ Ti, where each such f̄ appears
unboundedly often. This list is in M0. We also ensure that sup(Eα∗ ∩ γi) < ε0

(recall that Eα∗ ∩ γi is bounded below γi for successor i).
For � � κ and f̄ ∈ Ti we define conditions r�(f̄), satisfying the following:

(i) r0(f̄) = pi−1(f̄ [i − 1]).
(ii) Either r�(f̄) = r0(f̄), or v(f̄) ⊂ supp(r�(f̄)) and r�(f̄) ∈ dom τf̄ , in

fact r�(f̄) ∈ A
ς(f̄)
ζ for all ζ ∈ v(f̄).

If r�(f̄) �= r0(f̄) then we write η�(f̄) = |τf̄ (r�(f̄))|, and for ζ ∈ v(f̄), we
let π�(f̄ , ζ) = π(r�(f̄), ζ).

(iii) If ζ ∈ v(f̄) then r�(f̄ �ζ) extends r�(f̄)�Pζ .
(iv) For � < κ, the map f̄ �→ r�(f̄) is in Mε�+1.
(v) For �′ < �, r�(f̄) extends r�′(f̄).

We say that r�(f̄) is new if � > 0 and for all �′ < �, r�′(f̄) �= r�(f̄).
(vi) If r�(f̄) is new then η�(f̄) � ε<� := sup�′<� ε�′ .
(vii) If r�(f̄) is new then for all ζ ∈ v(f̄), r�(f̄ �ζ) is new, and equals r�(f̄)�Pζ .
(viii) If r�(f̄) �= r0(f̄) then for all ζ ∈ v(f̄), π�(f̄ , ζ) extends fζ � [γi−1, γi).
(ix) For all limit � < κ, the subsequence

〈r�′(f̄) : r�′(f̄) is new〉
is sparse for τf̄ (but note that it may not be cofinal in 〈r�′(f̄)〉�′<�, in
which case the latter sequence is eventually constant).

For � = 0 we follow (iii). At limit � � κ we let r�(f̄) be either the eventually
constant value of r�′(f̄) for �′ < �, if such exists; otherwise, we let r�(f̄) be
the τf̄ -canonical upper bound of the sparse subsequence of new r�′(f̄). Note
that r�(f̄) is new if and only if the second case holds, in which case, by (vii), for
all ζ ∈ v(f̄), the second case holds for defining r�(f̄ �ζ), and it equals r�(f̄)�Pζ

by the coherence τζ � τf̄ �A
ς(f̄)
ζ .
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For the successor case, suppose that r�(f̄) have been defined for all f̄ . We
now consider f̄� in steps:

(1) First, obtain the condition s0 which is the “sum” of the sequence
〈r�(f̄� �v〉 for v an initial segment of ui; for

ζ ∈ supp(s0) =
⋃

v�ui

supp(r�(f̄� �v)),

having defined s0 �ζ extending each r�(f̄� �v)�Pζ , we define s0(ζ) to be

r�(f̄� �ζ + 1)(ζ).

Note that for all ζ ∈ ui ∩ supp(s0), s0 �ζ forces that s0(ζ) is

π(s0, ζ) = π(r�(f̄� �ζ + 1), ζ),

and either |π(s0, ζ)| � γi−1, or π(s0, ζ) extends fζ � [γi−1, γi) (where fζ

of course comes from the sequence f̄�).
(2) Extend s0 to a condition s1 ∈ Pξ by setting supp(s1) = supp(s0) ∪ ui;

for each ζ ∈ ui such that |π(s0, ζ)| � γi−1, or ζ /∈ supp(s0), we set s1(ζ)
to be some string (in V ) which extends π(s0, ζ) if defined, and which
extends fζ � [γi−1, γi).

(3) Extend s1 to a condition s2 in
⋂

ζ∈ui
Aξ

ζ , and also ensure that s2 forces
some β ∈ [γi−1, γi) into D, where, recall, D is the club in V (Pξ) we want
to get to meet W at α∗. Also ensure that |τξ(s2)| > ε�−1. Further, by
extending, we can ensure that for all initial segments v of ui, s2 �Pς(v)
properly extends s1 �Pζ, and so properly extends r�(f̄� �v).

(4) Set r�+1(f̄�) = s2, and for all ζ ∈ ui, set

r�+1(f̄� �ζ) = s2 �Pζ.

For ḡ ∈ Ti which is not an initial segment of f̄�, set r�+1(ḡ) = r�(ḡ).
Note that we ensured that r�+1(ḡ) is new if and only if ḡ is an initial seg-
ment of f̄�. Also note that for ζ < ζ′ in ui, r�+1(f̄ � ζ′) ∈ Aζ′

ζ follows from
Definition 2.28(d).

This completes the construction of all r�(f̄); we let pi(f̄) = rκ(f̄). Since
each f̄ is tended to unboundedly many times, we see that each rκ(f̄) is new; so
for all f̄ ,

ηκf̄ = ε<κ + 1,

which we set to be δi + 1. This completes the construction of all pi(f̄) for i � θ.
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We want to find some maximal f̄ ∈ Tθ and some condition q, extending pi(f̄)
for all i < θ (and as usual, not extending pθ(f̄)), forcing that α∗ ∈ W ; such
a condition also forces that α∗ ∈ D. To this end, call a sequence f̄ ∈ Tθ

acceptable if there is some condition q ∈ Pς(f̄), extending pi(f̄) for all i < θ,
which forces that α∗ ∈ W . So we want to show that some maximal f̄ ∈ Tθ is
acceptable.

To do that, we show by induction on initial segments v of uθ, that some f̄

with v(f̄ ) = v is acceptable. To do that, we show:
(1) the empty sequence is acceptable; and
(2) for all initial segments w < u of uθ, if ḡ ∈ Tθ with v(ḡ) = w is acceptable,

as witnessed by some q, then ḡ can be extended to an acceptable f̄

with v(f̄) = u, as witnessed by some r extending q.
Let us show (1), that the empty sequence 〈〉 is acceptable. We have 0 ∈

supp(pθ(〈〉)), and pθ(0) is a sequence of length α∗ + 1 ending with 0. We let
q(0) agree with pθ(〈〉)(0), except that we change the last 0 to a 1, i.e., we
say α∗ ∈ q(0). This condition extends pi(〈〉) for all i < θ. Let

υ = ς(〈〉) = min uθ;

since Q ∩ supp(pθ(〈〉)) ⊆ uθ, we have

Q ∩ supp(pθ(〈〉)) = ∅.

Thus, we can define the condition q ∈ Pυ by setting supp(q) = supp(pθ(〈〉)), and
by defining q � ζ by induction on ζ � υ. This has already been done for ζ = 0.
If ζ > 0 is in supp(q) and q � ζ has already been defined, then as ζ /∈ Q, we
know that Qζ is explicitly W -closed; pi(〈〉)(ζ) is defined for a final segment of ζ,
with height δi; since q �ζ forces that α∗ ∈ W , it forces that there is some upper
bound for 〈pi(〈〉)〉, which we set to be q(ζ).

Now we tend to (2), which is proved by induction on (the order-type of) u.
Suppose this has been proved for all initial segments u′ of u. There are two
cases, depending on the order-type of u. First, suppose that u has a greatest
element υ. Let � = ς(u). By induction, it suffices to show (2) for w = u ∩ υ.
Suppose that v(ḡ) = w and that ḡ is acceptable, as witnessed by some q.

We define r �Pζ by induction on ζ ∈ [υ, �]. We let r �Pυ be some extension of q

which decides the value of cυ
α∗ (where recall Qυ = St(S, G0, c̄υ)), say it forces

that cυ
α∗ = fυ (where fυ ∈ V ); we let f̄ = ḡ f̂υ. We also let r(υ) = πθ(f̄ , υ);

then r �υ + 1 is a condition since πθ(f̄ , υ) agrees with fυ from γmθ(υ) onwards.
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We then repeat the argument for the empty sequence; we set supp(r) to
agree with supp(pθ(f̄)) on (υ, �), and note that there it is disjoint from Q;
for ζ ∈ (υ, �) ∩ supp(r) we let r(ζ) be an upper bound of 〈pi(f̄)(ζ)〉i∈[i∗ ,θ),
which is forced by r �ζ to exist since it forces that α∗ ∈ W .

Finally, suppose that the order-type of u is a limit; let κ < λ be regular and
let 〈wi〉i�κ be an increasing and continuous sequence of initial segments of u

with wκ = u, with w0 = w being the initial segment we start with; let ḡ be
acceptable, as witnessed by some q0, with v(ḡ) = w0.

As expected, we work with a filtration N̄ and a sequence 〈εj〉j<κ with limit
points in S, Nεj ∩ λ = εj, with N0 containing all pertinent objects. We mimic
the construction of Lemma 2.23. We define sequences 〈qj〉j�κ of conditions
and f̄j satisfying:

(a) 〈q�, f̄�〉�<j , ∈ Mεj+1;
(b) v(f̄j) = wj , and qj ∈ Pς(wj) witnesses that f̄j is acceptable;
(c) if � < j then qj extends q� and f̄� = f̄j �w�;
(d) for successor j < κ, qj ∈ dom τς(wj ), indeed qj ∈ A

ς(wj)
ζ for all ζ ∈ wj ;

and |τς(wj )| > εj;
(e) for all � < j, 〈qk �Pς(w�)〉k∈(�,j) is sparse for τς(w�).

At successor steps we apply the induction hypothesis from wj to wj+1, and
then extend to a condition in dom τς(wj+1) as required; at limit steps we take
canonical sparse upper bounds and then an inverse limit. This completes the
proof.
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Montréal, Montreal, QC, 1980.

[EM02] P. C. Eklof and A. H. Mekler, Almost Free Modules, North-Holland Mathematical
Library, Vol. 65, North-Holland, Amsterdam, 2002.

[Gre76] J. Gregory, Higher Souslin trees and the generalized continuum hypothesis, Journal
of Symbolic Logic 41 (1976), 663–671.

[Hod81] W. Hodges, In singular cardinality, locally free algebras are free, Algebra Universalis
12 (1981), 205–220.

[She74] S. Shelah, Infinite abelian groups, Whitehead problem and some constructions, Israel
Journal of Mathematics 18 (1974), 243–256.

[She75] S. Shelah, A compactness theorem for singular cardinals, free algebras, Whitehead
problem and transversals, Israel Journal of Mathematics 21 (1975), 319–349.

[She77] S. Shelah, Whitehead groups may be not free, even assuming CH. I, Israel Journal
of Mathematics 28 (1977), 193–204.

[She79] S. Shelah, On successors of singular cardinals, in Logic Colloquium ’78 (Mons,
1978), Studies in Logic and the Foundations of Mathematics, Vol. 97, North-Holland,
Amsterdam–New York, 1979, pp. 357–380.

[She81] S. Shelah, On Fleissner’s diamond, Notre Dame Journal of Formal Logic 22 (1981),
29–35.

[She84] S. Shelah, Diamonds, uniformization, Journal of Symbolic Logic 49 (1984), 1022–
1033.

[She03a] S. Shelah, Not collapsing cardinals � κ in (< κ)-support iterations, Israel Journal
of Mathematics 136 (2003), 29–115.

[She03b] S. Shelah, Successor of singulars: combinatorics and not collapsing cardinals � κ in
(< κ)-support iterations, Israel Journal of Mathematics 134 (2003), 127–155.

[She10] S. Shelah, Diamonds, Proceedings of the American Mathematical Society 138
(2010), 2151–2161.

[She19] S. Shelah, Compactness in singular cardinals revisited, Sarajevo Journal of Mathe-
matics 15(28) (2019), 201–208.
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