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Abstract. We introduce a new weak variation of diamond that is
meant to only guess the branches of a Kurepa tree. We demonstrate
that this variation is considerably weaker than diamond by proving it
is compatible with Martin’s axiom. We then prove that this principle is
nontrivial by showing it may consistently fail.

1. Introduction

Kurepa [Kur35] initiated the systematic study of uncountable trees through
his attempt to solve Souslin’s problem [Sou20] that asks whether the real
line is the unique dense complete linear order with no endpoints satisfying
that every pairwise disjoint collection of open intervals is countable. Kurepa
showed that a counterexample is equivalent to the existence of what he called
a Souslin tree. After sharing his findings with Aronszajn, the latter was able
to construct a poor man’s version of a Souslin tree that Kurepa then named
an Aronszajn tree. A third type of an uncountable tree is now known as a
Kurepa tree. These trees and their higher analogs were central in the de-
velopment of set theory, where quite a few key concepts and techniques in
forcing theory and large cardinals were discovered through solving problems
concerning these objects. A milestone work here is Jensen’s study [Jen72]
of the fine structure of Gödel’s inner model L [Göd40], where it is proved
that a Souslin tree exists in L [Jen68]. Soon after, Solovay proved that a
Kurepa tree exists in L and Silver [Sil71] extended it to outer universes un-
der an optimal anti-large cardinal assumption. Then, Jensen (with a touch
by Kunen) formulated the axiom ♢ as a guessing principle that holds in L
but is sufficient for the construction of a Souslin tree in any universe of set
theory, and then Jensen, Kunen and Silver devised the stronger variation
♢+ as an axiom sufficient for the construction of a Kurepa tree.

Uncountable trees and diamond principles found many applications in
infinite Ramsey theory, topology, measure theory and algebra. To give just
one example, we mention that in [She74], the third author proved that ♢+

is sufficient to imply that all Whitehead groups of size ℵ1 are free. And
there are in addition some indirect applications, e.g., the Higman-Stone
construction of an uncountable inverse system of rings whose limit is empty
[HS54] which involves the rediscovery of an Aronszajn tree.
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By now, a good understanding of diamond principles has been reached.
For instance, the connection to other postulates such as the continuum hy-
pothesis and forcing axioms has been determined [ST71, DJ74, DS78, SK80,
Bau84, She10, GR12] and pump up lemmas were discovered showing that
weaker diamonds can be made stronger by various combinatorial maneuvers
[Dev78, Dev79, Kun80, Mat87, She05].

Motivated by the current state of this understanding and by the fact that
♢+ is actually equivalent to the existence of a particular sort of a Kurepa tree
[Kun80, Exercise VI.9], in this paper we revisit the very basics by propos-
ing a generalization of diamond that becomes most interesting when tested
against Kurepa trees and prove that all the familiar features of diamonds
break down in the new context. Unlike the usual diamond, our new dia-
mond does not imply the continuum hypothesis and it is compatible with
forcing axioms. Furthermore, it is indestructible under various notions of
forcing and can be made indestructible under all proper forcings. Three ad-
ditional features that the classical diamond possesses and our new diamond
lacks are: guessing uncountably often is equivalent to guessing stationarily
often, guessing correctly modulo a countable error is equivalent to guessing
correctly with no errors, and the feature that diamond cannot be added by
a ccc forcing.

Next we make things precise. For this, let us first recall the definition of
the trees under discussion.

Definition 1. A binary tree of height 𝜔1 is a set 𝑇 satisfying the following
three requirements:

∙ 𝑇 ⊆ <𝜔12, i.e., 𝑇 consists of binary sequences of countable length;
∙ 𝑇 is downward-closed, i.e., for all 𝑡 ∈ 𝑇 and 𝛼 < dom(𝑡), 𝑡 � 𝛼 ∈ 𝑇 ;
∙ for every 𝛼 < 𝜔1, the 𝛼th level of 𝑇 , 𝑇𝛼 := {𝑡 ∈ 𝑇 | dom(𝑡) = 𝛼}, is

nonempty.

We denote by ℬ(𝑇 ) := {𝑓 ∈ 𝜔12 | ∀𝛼 < 𝜔1 (𝑓 � 𝛼 ∈ 𝑇𝛼)} the collection of all
cofinal branches through 𝑇 .

We now arrive at the main definition of this paper.

Definition 2. For a binary tree 𝑇 of height 𝜔1, the axiom ♢(𝑇 ) asserts the
existence of a sequence ⟨𝑡𝛼 | 𝛼 < 𝜔1⟩ such that:

∙ for every 𝛼 < 𝜔1, 𝑡𝛼 is a function from 𝛼 to 2;
∙ for every 𝑓 ∈ ℬ(𝑇 ), the set {𝛼 < 𝜔1 | 𝑓 � 𝛼 = 𝑡𝛼} is stationary.

Modulo the identification of sets with their characteristic functions, the
classical ♢ is by definition equivalent to ♢(<𝜔12), where <𝜔12 is the full
binary tree of height 𝜔1. In particular, ♢ implies ♢(𝑇 ) for every 𝑇 .

A decomposition theorem of Ulam [Ula30] easily implies that ♢(𝑇 ) holds
for every 𝑇 such that |ℬ(𝑇 )| ≤ ℵ1. In addition, if ♢(𝑇 ) holds then so does
♢(𝑇 ′) for some tree 𝑇 ′ of size ℵ1 with ℬ(𝑇 ′) = ℬ(𝑇 ). When put together,
this shows that the study of ♢(𝑇 ) should focus on those 𝑇 of size ℵ1 such
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that |ℬ(𝑇 )| > ℵ1. This is a well-known class of trees. Indeed, it is the first
class of the following definition.

Definition 3. A binary tree 𝑇 of height 𝜔1 is:

(1) weak Kurepa iff |𝑇 | = ℵ1 < |ℬ(𝑇 )|;
(2) Kurepa iff |𝑇𝛼| < ℵ1 for all 𝛼 < 𝜔1 and |ℬ(𝑇 )| > ℵ1;
(3) Aronszajn iff |𝑇𝛼| < ℵ1 for all 𝛼 < 𝜔1 and ℬ(𝑇 ) = ∅;
(4) Souslin iff it is Aronszajn and for every uncountable 𝑋 ⊆ 𝑇 there

are 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ( 𝑦.

Note that by Cantor’s theorem, <𝜔12 happens to be a weak Kurepa tree iff
the continuum hypothesis holds. Also note that it follows from the previous
discussion and the trivial fact that every Kurepa tree is a weak Kurepa tree
that the failure of diamond over a Kurepa tree would constitute the ultimate
failure of our new principle, hence also of the classical one.

1.1. Main results. We will establish that ♢ =⇒ ♣ =⇒ ♣𝑤 =⇒ ♢(𝑇 )
for every 𝑇 of size ℵ1, and show that our new principle is considerably
weaker than the other ones. Moreover, it will be shown that Martin’s axiom
is compatible with ♢(𝑇 ) holding over a binary Kurepa tree 𝑇 . This is a
corollary to any of the following two results:

Theorem A. If 𝑇 and 𝑆 are two binary Kurepa trees and |ℬ(𝑇 )| < |ℬ(𝑆)|,
then ♢(𝑇 ) holds.

Theorem B. It is consistent that there exists a binary Kurepa tree 𝑇 such
that ♢(𝑇 ) holds and cannot be killed by a proper forcing.1

There are additional results that we already hinted upon earlier on, but
the main result of this paper is the finding that this very weak variation of
diamond is nevertheless nontrivial:

Theorem C. It is consistent that ♢(𝑇 ) fails for some binary Kurepa tree 𝑇 .
Furthermore, such a tree 𝑇 can be chosen to be either rigid or homogeneous.
Furthermore, the failure of ♢(𝑇 ) can be arranged together with ♢(𝑇 ′) holding
for some binary Kurepa tree 𝑇 ′ having the same number of branches as that
of 𝑇 .

The model witnessing the preceding is obtained by a countable support
iteration of proper notions of forcing for adding a branch that evades a
potential diamond sequence using models as side conditions. Curiously, the
said Kurepa tree 𝑇 will start its life in the ground model as a particular
Aronszajn tree obtained from ♢+.

1.2. Organization of this paper. In Section 2, we provide some pre-
liminaries on trees, justify our focus on Kurepa trees that are binary and
compare the principle ♢(𝑇 ) with other standard set-theoretic hypotheses.
The proof of Theorem A will be found there.

1A proper forcing may kill the Kurepa-ness of 𝑇 , but then ♢(𝑇 ) will hold trivially.
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In Section 3, we study indestructible forms of ♢(𝑇 ). The proof of Theo-
rem B will be found there.

In Section 4, we present a notion of forcing Q(𝑇, 𝑡⃗) to add a branch
through an ℵ1-tree 𝑇 that evades a given potential diamond sequence 𝑡⃗ =
⟨𝑡𝛼 | 𝛼 < 𝜔1⟩. We give a sufficient condition for Q(𝑇, 𝑡⃗) to be proper, and
then turn to iterate it. The proof of Theorem C will be found there.

2. Warm up

2.1. Abstract, Hausdorff and binary trees. A tree is a partially ordered
set T = (𝑇,<𝑇 ) such that, for every 𝑥 ∈ 𝑇 , the cone 𝑥↓ := {𝑦 ∈ 𝑇 | 𝑦 <𝑇 𝑥}
is well-ordered by <𝑇 ; its order type is denoted by ht(𝑥). For any ordinal
𝛼, the 𝛼th-level of the tree is the collection 𝑇𝛼 := {𝑥 ∈ 𝑇 | ht(𝑥) = 𝛼}. The
height of the tree is the first ordinal 𝛼 for which 𝑇𝛼 = ∅. The tree is normal
iff for every 𝑡 ∈ 𝑇 and every ordinal 𝛼 in-between ht(𝑥) and the height of
the tree, there exists some 𝑦 ∈ 𝑇𝛼 with 𝑥 <𝑇 𝑦. The tree is Hausdorff iff for
every limit ordinal 𝛼 and all 𝑥, 𝑦 ∈ 𝑇𝛼, if 𝑥↓ = 𝑦↓, then 𝑥 = 𝑦. In particular,
a (nonempty) Hausdorff tree has a unique root.

An ℵ1-tree is a tree T of height 𝜔1 all of whose levels are countable. A
Kurepa tree (resp. Aronszajn tree) is an ℵ1-tree T satisfying that the set
ℬ(T) of all uncountable maximal chains in T has size ≥ ℵ2 (resp. is empty).
Definition 2 generalizes to abstract trees of height 𝜔1 by interpreting 𝑓 � 𝛼
(for 𝑓 ∈ ℬ(T) and 𝛼 < 𝜔1) as the unique element of 𝑇𝛼 that belongs to 𝑓 .

Hereafter, whenever we talk about a binary ℵ1-tree, we mean a set 𝑇 as in
Definition 1 such that 𝑇𝛼 is countable for every 𝛼 < 𝜔1, and we shall freely
identify it with the Hausdorff ℵ1-tree T := (𝑇,().

Lemma 2.1. For every Hausdorff ℵ1-tree T = (𝑇,<𝑇 ), there exists a bi-
nary ℵ1-tree 𝑆 that is club-isomorphic to T, i.e., for some club 𝐷 ⊆ 𝜔1,
(
⋃︀

𝛼∈𝐷 𝑇𝛼, <𝑇 ) and (
⋃︀

𝛼∈𝐷 𝑆𝛼,() are order-isomorphic.
In particular, if T is Kurepa, then 𝑆 is Kurepa and ♢(𝑆) iff ♢(T).

Proof. Let T = (𝑇,<𝑇 ) be a given Hausdorff ℵ1-tree. For every 𝛼 < 𝜔1, fix
an injection 𝜙𝛼 : 𝑇𝛼+1 → 𝜔. Also fix an injective sequence ⟨𝑟𝑚 | 𝑚 < 𝜔⟩ of
functions from 𝜔 to 2. We shall define an injection 𝜓 : 𝑇 → <𝜔12 satisfying
the following two requirements:

(1) for every 𝑡 ∈ 𝑇 , dom(𝜓(𝑡)) = 𝜔 · ht(𝑡);
(2) for all 𝑡′, 𝑡 ∈ 𝑇 , 𝑡′ <𝑇 𝑡 iff 𝜓(𝑡′) ( 𝜓(𝑡).

The definition of 𝜓 is by recursion on the heights of the nodes in T. By
Clause (1) we are obliged to send the unique root of T to ∅ and by Clauses
(1) and (2), for every 𝛼 ∈ acc(𝜔1) and every 𝑡 ∈ 𝑇𝛼,2 we are obliged to set
𝜓(𝑡) :=

⋃︀
{𝜓(𝑡′) | 𝑡′ <𝑇 𝑡}.3 Thus, the only freedom we have is at nodes of

successor levels. Here, for every 𝛼 < 𝜔1 such that 𝜓 � 𝑇𝛼 has already been

2For a set of ordinals 𝐴, we write acc(𝐴) := {𝛼 ∈ 𝐴 | sup(𝛼) = 𝛼 > 0}.
3The injectivity here follows from Hausdorff-ness.
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defined, and for every 𝑡 ∈ 𝑇𝛼+1, let 𝑡− denote the immediate predecessor of
𝑡, and set

𝜓(𝑡) := 𝜓(𝑡−)a𝑟𝜙𝛼(𝑡).

Finally, consider 𝑆 := {𝑠 � 𝛼 | 𝑠 ∈ Im(𝜓), 𝛼 ≤ dom(𝑠)}. It is clear that
𝑆 is a downward-closed subfamily of <𝜔12. Thus, to see that 𝑆 is a binary
ℵ1-tree, it suffices to prove that all of its levels are countable. However, by
Clauses (1) and (2), more is true, namely, for every 𝛼 < 𝜔1,

𝑆𝛼 = {𝜓(𝑡) � 𝛼 | 𝑡 ∈ 𝑇𝛼}.

Consider the club 𝐷 := {𝛼 < 𝜔1 | 𝜔 ·𝛼 = 𝛼}. Evidently, 𝜓 witnesses that
(
⋃︀

𝛼∈𝐷 𝑇𝛼, <𝑇 ) and (
⋃︀

𝛼∈𝐷 𝑆𝛼,() are order-isomorphic. �

Any tree T = (𝑇,<𝑇 ) can be cofinally-embedded in a Hausdorff tree of
the form (𝑆,() by letting 𝑆 be the downward closure of the collection of all
𝑠 : 𝛼 → 𝑇 that are order-preserving maps from a successor ordinal (𝛼,∈)
onto some downward-closed subset of (𝑇,<𝑇 ). The map that sends each
𝑡 ∈ 𝑇 to the unique 𝑠 ∈ 𝑆 with max(Im(𝑠), <𝑇 ) = 𝑡 embeds T to the
successor levels of 𝑆. In case that T is non-Hausdorff, there is no better
embedding. Since non-Hausdorff trees lack genuine limit levels and since
our definition of diamond on trees has to do with stationary sets, the study
here will be focused on the theory of diamond on Hausdorff Kurepa trees.
By Lemma 2.1, then, we may moreover focus on binary Kurepa trees.

2.2. Diamonds and clubs. As said before, ♢ =⇒ ♣ =⇒ ♣𝑤 =⇒ ♢(𝑇 )
for those 𝑇 of size ℵ1. The first two implications are well-known. We now
give the details of the last one.

Proposition 2.2. If ♣𝑤 holds, then so does ♢(𝑇 ) for every binary tree 𝑇
of height 𝜔1 and size ℵ1.

Proof. Suppose that ♣𝑤 holds. By [FSS97, p. 61], this means that we may
fix a sequence ⟨𝐵𝛼 | 𝛼 ∈ acc(𝜔1)⟩ such that each 𝐵𝛼 is a cofinal subset of
𝛼 of order-type 𝜔, and, for every uncountable 𝐵 ⊆ 𝜔1, the following set is
stationary:

𝐺(𝐵) := {𝛼 ∈ acc(𝜔1) | 𝐵𝛼 ∖𝐵 is finite}.
Now, suppose 𝑇 is a binary tree of height 𝜔1 and size ℵ1. Fix a bijection

𝜋 : 𝜔1 ↔ 𝑇 . For every 𝛼 ∈ acc(𝜔1), if there are 𝑡𝛼 ∈ 𝑇𝛼 and a finite 𝐹𝛼 ⊆ 𝐵𝛼

such that

𝑡𝛼 =
⋃︁

{𝜋(𝛽) | 𝛽 ∈ 𝐵𝛼 ∖ 𝐹𝛼},

then we keep this unique 𝑡𝛼; otherwise (including the case 𝛼 /∈ acc(𝜔1)), we
let 𝑡𝛼 be an arbitrary choice of an element of 𝑇𝛼. To see that ⟨𝑡𝛼 | 𝛼 < 𝜔1⟩
witnesses ♢(𝑇 ), let 𝑓 ∈ ℬ(𝑇 ). Consider the following club:

𝐷 := {𝛿 ∈ acc(𝜔1) | ∀𝛾 < 𝛿 [𝜋−1(𝑓 � 𝛾) < 𝛿]}.
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Note that for every 𝛿 ∈ 𝐷, 𝛿 ≤ 𝜋−1(𝑓 � 𝛿) < min(𝐷 ∖ (𝛿+ 1)). In particular,
the following set is uncountable:

𝐵 := {𝜋−1(𝑓 � 𝛿) | 𝛿 ∈ 𝐷}.
We claim that for every 𝛼 ∈ 𝐺(𝐵), it is the case that 𝑓 � 𝛼 = 𝑡𝛼. Indeed,
the set 𝐹𝛼 := 𝐵𝛼 ∖ 𝐵 is finite, and for every 𝛽 ∈ 𝐵𝛼 ∖ 𝐹𝛼, there exists a
unique 𝛿 ∈ 𝐷 such that 𝛿 ≤ 𝛽 = 𝜋−1(𝑓 � 𝛿) < min(𝐷 ∖ (𝛿 + 1)). So, since
sup(𝐵𝛼 ∖ 𝐹𝛼) = 𝛼, it is the case that

𝑡𝛼 =
⋃︁

{𝜋(𝛽) | 𝛽 ∈ 𝐵𝛼 ∖ 𝐹𝛼} = 𝑓 � 𝛼,

as sought. �

It follows from the preceding that ♢(𝑇 ) is compatible with ¬CH. An
alternative reasoning goes through the next proposition. Namely, add ℵ2

many Cohen reals to a model of ♢+.

Proposition 2.3. Suppose that T is a Kurepa tree such that ♢(T) holds,
and that P is a notion of forcing. If P is 𝜎-closed or if P2 satisfies the ccc,
then ♢(T) remains to hold in 𝑉 P.

Proof. By [Sil71], a 𝜎-closed forcing does not add new branches to ℵ1-trees.
By [Ung13, Lemma 2.2], a forcing notion whose square satisfies the ccc does
not add new branches to ℵ1-trees. In addition, stationary sets are preserved
by 𝜎-closed notions of forcing and by ccc notions of forcing. So, in both cases,
the ground model witness to ♢(T) will survive as a witness in 𝑉 P. �

Another simple argument shows that an instance of the parameterized
diamond principle from [JTM03] is enough.

Proposition 2.4. If Φ(𝜔,=) holds, then so does ♢(𝑇 ) for every binary
Kurepa tree 𝑇 .

Proof. Suppose that Φ(𝜔,=) holds. This means that for every function
𝐹 : <𝜔12 → 𝜔, there exists a function 𝑔 : 𝜔1 → 𝜔 such that, for every
function 𝑓 : 𝜔1 → 𝜔, the following set is stationary:

𝐺(𝑓) := {𝛼 < 𝜔1 | 𝐹 (𝑓 � 𝛼) = 𝑔(𝛼)}.
Now, suppose 𝑇 is a binary Kurepa tree. For every 𝛼 < 𝜔1, fix an

enumeration ⟨𝑡𝑛𝛼 | 𝑛 < 𝜔⟩ of 𝑇𝛼. Fix a function 𝐹 : <𝜔12 → 𝜔 such that for
all 𝛼 < 𝜔1 and 𝑡 ∈ 𝑇𝛼,

𝐹 (𝑡) = min{𝑛 < 𝜔 | 𝑡 = 𝑡𝑛𝛼},
and then let 𝑔 : 𝜔1 → 𝜔 be the corresponding function given by Φ(𝜔,=).

A moment’s reflection makes it clear that the transversal ⟨𝑡𝑔(𝛼)𝛼 | 𝛼 < 𝜔1⟩
witnesses ♢(𝑇 ). �

Recall that a Souslin tree is an Aronszajn tree with no uncountable an-
tichains. Every Souslin tree contains a Souslin subtree that is normal. As
established in [JTM03], forcing with such trees gives an instance of Φ(𝜔,=).
A variant of that argument gives the following.

Paper Sh:1252, version 2024-08-02 2. See https://shelah.logic.at/papers/1252/ for possible updates.



DIAMOND ON KUREPA TREES 7

Proposition 2.5. Forcing with a normal Souslin tree adds a ♢(𝑇 )-sequence
for every ground model binary ℵ1-tree 𝑇 .

Proof. Working in 𝑉 , suppose that S = (𝑆,<𝑆) is a normal Souslin tree, and
that 𝑇 is a binary ℵ1-tree. As S is normal and ℬ(S) = ∅, for each 𝑠 ∈ 𝑆, we
may let ⟨𝑠𝑛 | 𝑛 < 𝜔⟩ be a bijective enumeration of some infinite maximal
antichain above 𝑠. For every 𝛼 < 𝜔1, fix an enumeration ⟨𝑡𝑛𝛼 | 𝑛 < 𝜔⟩ of
𝑇𝛼. Given a generic 𝐺 for S* := (𝑆,>𝑆), for every 𝛼 < 𝜔1, denote by 𝑠𝛼 the
unique element of 𝑆𝛼 that belongs to 𝐺, and then let 𝑔(𝛼) denote the unique
integer 𝑛 < 𝜔 such that (𝑠𝛼)𝑛 belongs to 𝐺. We claim that the transversal

⟨𝑡𝑔(𝛼)𝛼 | 𝛼 < 𝜔1⟩ witnesses ♢(𝑇 ).

To see this, back in 𝑉 , fix a condition 𝑠 ∈ 𝑆, a name 𝑓 for a cofinal branch
through 𝑇 , and a club 𝐶 ⊆ 𝜔1; we shall find an 𝛼 ∈ 𝐶 and an extension of

𝑠 forcing that 𝑓 � 𝛼 coincides with 𝑡
𝑔̇(𝛼)
𝛼 . Note that since S* is ccc, we can

indeed restrict our attention to ground model clubs.
Fix a countable 𝑀 ≺ H𝜔2 , containing {𝑓, 𝑠,S*, 𝑇, 𝐶}. Write 𝛼 := 𝑀 ∩𝜔1,

and note that 𝛼 ∈ 𝐶, since 𝐶 ∈ 𝑀 . As S is normal, fix 𝑠′ ∈ 𝑆𝛼 extending
𝑠. By a folklore fact, 𝑠′ is an S*-generic branch over 𝑀 , so in particular it
determines 𝑓 � 𝛼, and therefore there is an integer 𝑛 such that

𝑠′ 
 𝑓 � 𝛼 = 𝑡𝑛𝛼.

Set 𝑠′′ := (𝑠′)𝑛, so that 𝑠′′ 
 𝑔̇(𝛼) = 𝑛. Then 𝑠′′ >𝑆 𝑠
′ >𝑆 𝑠, and

𝑠′′ 
 𝑓 � 𝛼 = 𝑡𝑔̇(𝛼)𝛼 ,

as sought. �

Corollary 2.6. If 𝑇 is a normal binary almost-Kurepa Souslin tree, then
in some ccc forcing extension, 𝑇 is a binary Kurepa tree and ♢(𝑇 ) holds.

Proof. By definition, as 𝑇 is almost-Kurepa, in the forcing extension by
P := (𝑇,⊇), 𝑇 is a Kurepa tree. By Proposition 2.5, ♢(𝑇 ) holds in 𝑉 P. �

2.3. Weak variations. Devlin [Dev79, S2] showed that if there exists a
sequence ⟨𝑡𝛼 | 𝛼 < 𝜔1⟩ ∈

∏︀
𝛼<𝜔1

𝛼2 such that, for every function 𝑓 : 𝜔1 → 2,
there is an infinite ordinal 𝛼 < 𝜔1 with 𝑓 � 𝛼 = 𝑡𝛼, then ♢ holds. When
combined with Theorem C, the next proposition shows that this does not
generalize to our context.

Proposition 2.7. Every ℵ1-tree T admits a transversal ⟨𝑡𝛼 | 𝛼 < 𝜔1⟩ such
that 𝐺(𝑓) := {𝛼 < 𝜔1 | 𝑓 � 𝛼 = 𝑡𝛼} is uncountable for every 𝑓 ∈ ℬ(T).

Proof. Suppose that T = (𝑇,<𝑇 ) is a an ℵ1-tree. Recall that for all 𝑓 ∈
ℬ(T) and 𝛼 < 𝜔1, 𝑓 � 𝛼 denotes the unique element of 𝑇𝛼 that belongs to
𝑓 . Likewise, for every 𝑡 ∈ 𝑇 , and 𝛼 ≤ ht(𝑡), we denote by 𝑡 � 𝛼 the unique
element of 𝑇𝛼 that is <𝑇 -comparable with 𝑡.

Now, for every limit ordinal 𝛽 < 𝜔1, fix a surjection 𝜑𝛽 : 𝜔 → 𝑇𝛽+𝜔, and
then for every 𝑛 < 𝜔, let 𝑡𝛽+𝑛 := 𝜑𝛽(𝑛) � (𝛽 + 𝑛). To see that ⟨𝑡𝛼 | 𝛼 < 𝜔1⟩
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is as sought, let 𝑓 ∈ ℬ(𝑇 ). For every limit 𝛽 < 𝜔1, as 𝑓 � (𝛽 +𝜔) is in 𝑇 , we
may find some 𝑛 < 𝜔 such that 𝜑𝛽(𝑛) = 𝑓 � (𝛽 + 𝜔). Consequently,

𝑓 � (𝛽 + 𝑛) = 𝜑𝛽(𝑛) � (𝛽 + 𝑛) = 𝑡𝛽+𝑛.

It follows that for some stationary 𝐵 ⊆ 𝜔1 and some 𝑛′ < 𝜔, 𝐺(𝑓) ⊇ {𝛽+𝑛′ |
𝛽 ∈ 𝐵}. In particular, 𝐺(𝑓) is uncountable. �

In [Kun80, Theorem II.7.14], Kunen proved that ♢− is equivalent to ♢.
This means that if there exists a sequence ⟨𝑇𝛼 | 𝛼 < 𝜔1⟩ ∈

∏︀
𝛼<𝜔1

[𝛼2]ℵ0

such that, for every function 𝑓 : 𝜔1 → 2, the set {𝛼 < 𝜔1 | 𝑓 � 𝛼 ∈ 𝑇𝛼} is
stationary, then there exists a sequence ⟨𝑡𝛼 | 𝛼 < 𝜔1⟩ ∈

∏︀
𝛼<𝜔1

𝛼2 such that,
for every function 𝑓 : 𝜔1 → 2, the set {𝛼 < 𝜔1 | 𝑓 � 𝛼 = 𝑡𝛼} is stationary.

In contrast, if T is an ℵ1-tree, then for every 𝛼 < 𝜔1, 𝑇𝛼 is a countable
subset of 𝛼2 and for every 𝑓 ∈ ℬ(T), the set {𝛼 < 𝜔1 | 𝑓 � 𝛼 ∈ 𝑇𝛼} is whole
of 𝜔1. By Theorem C, this shows that in our context, guessing correctly
modulo a countable error is not equivalent to guessing correctly.

2.4. Additional ways to get diamond. Kunen proved that ♢ cannot be
introduced by a ccc forcing, whereas Proposition 2.5 demonstrates that this
is not the case with ♢(𝑇 ). Another small ccc forcing that adds a diamond
sequence for every ground model Kurepa tree is Cohen’s forcing Add(𝜔, 1).
The core of this fact can be restated combinatorially, as follows.

Proposition 2.8. Suppose that T is a Kurepa tree. If cov(ℳ) > |ℬ(T)|,4
then ♢(T) holds.

Proof. For every 𝛼 < 𝜔1, fix an enumeration ⟨𝑡𝑛𝛼 | 𝑛 < 𝜔⟩ of 𝑇𝛼. Fix a
partition ⟨𝑆𝑖 | 𝑖 < 𝜔⟩ of 𝜔1 into stationary sets, and let 𝜋 : 𝜔1 → 𝜔 be
such that 𝜋[𝑆𝑖] = {𝑖} for every 𝑖 < 𝜔. For each 𝑓 ∈ ℬ(T), define a map
𝑟𝑓 : 𝜔 → 𝜔 via:

𝑟𝑓 (𝑖) := min{𝑛 < 𝜔 | {𝛼 ∈ 𝑆𝑖 | 𝑓 � 𝛼 = 𝑡𝑛𝛼} is stationary}.
Finally, assuming cov(ℳ) > |ℬ(T)|, by [BJ95, Lemma 2.4.2], we may fix

a function 𝑔 : 𝜔 → 𝜔 such that 𝑟𝑓 ∩ 𝑔 ̸= ∅ for every 𝑓 ∈ ℬ(T). Then the

transversal ⟨𝑡𝑔(𝜋(𝛼))𝛼 | 𝛼 < 𝜔1⟩ witnesses ♢(T). �

Remark 2.9. ♢+ implies that ♢(T) holds for some Kurepa tree T with
cov(ℳ) < |ℬ(T)|. In Corollary 3.5 below, we get a model in which ♢(T)
holds for some Kurepa tree T with cov(ℳ) = |ℬ(T)|.
Remark 2.10. A proof similar to that of Proposition 2.8 shows that ♢(T)
holds for every Kurepa tree T with d𝜔1 > |ℬ(T)|.

Our next task is proving Theorem A. For this, let us recall the following
definition.

Definition 2.11. A tree T = (𝑇,<𝑇 ) of height 𝜔1 is:

∙ a weak Kurepa tree iff |𝑇 | = ℵ1 < |ℬ(T)|;
4That is, if the real line cannot be covered by |ℬ(T)|-many meager sets.
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∙ thick iff |ℬ(T)| = 2ℵ1 .

As mentioned earlier, CH implies that (<𝜔12,() is a thick weak Kurepa
tree.

Proposition 2.12. Suppose that T is a Kurepa tree, S is a weak Kurepa
tree, and |ℬ(T)| < |ℬ(S)|. Then ♢(T) holds.

Proof. By [IR24, Corollary 7.18], if 𝜅 is a regular uncountable cardinal and
there is a Kurepa tree with (at least) 𝜅-many branches, then onto({ℵ1},
𝐽bd[𝜅],ℵ0) holds. The same proof works equally well against weak Kurepa
trees. Therefore, 𝜅 := |ℬ(T)|+ is a regular uncountable cardinal such that
onto({ℵ1}, 𝐽bd[𝜅],ℵ0) holds. This means that we may fix a map 𝑐 : 𝜔1×𝜅→
𝜔 such that for every 𝐵 ∈ [𝜅]𝜅, there exists 𝑖 < 𝜔1 such that 𝑐[{𝑖}×𝐵] = 𝜔.
For each 𝛽 < 𝜅, define 𝑔𝛽 : 𝜔1 → 𝜔 via 𝑔𝛽(𝑖) := 𝑐(𝑖, 𝛽). It is easy to check
that for every ℛ ∈ [𝜔1𝜔]<𝜅, there exists some 𝛽 < 𝜅 such that 𝑟 ∩ 𝑔𝛽 ̸= ∅
for every 𝑟 ∈ ℛ. From this point on, the proof continues the same way
as that of Proposition 2.8, where the only change is that we fix a partition
⟨𝑆𝑖 | 𝑖 < 𝜔1⟩ into ℵ1-many stationary sets and so each of the 𝑟𝑓 ’s is now a
function from 𝜔1 to 𝜔. �

Corollary 2.13. CH implies ♢(T) for every non-thick Kurepa tree T. �

3. Indestructible diamonds

We would like to show that if the universe is close to being constructible,
then there exists a Kurepa tree on which ♢ holds. The construction of such
a tree relies on the concept of a sealed Kurepa tree:

Definition 3.1 (Hayut-Müller, [HM23]). A Kurepa tree T is sealed if for
every notion of forcing P that preserves both 𝜔1 and 𝜔2, P does not add a
new branch through T.

Fact 3.2 (Poór-Shelah, [PS21, S4]). If 𝜔1 = 𝜔
L[𝐴]
1 and 𝜔2 = 𝜔

L[𝐴]
2 for some

𝐴 ⊆ 𝜔1, then there exists a Kurepa tree T such that ℬ(T) ⊆ L[𝐴].5

Corollary 3.3 (Giron-Hayut, [GH23]). If 𝜔1 = 𝜔
L[𝐴]
1 and 𝜔2 = 𝜔

L[𝐴]
2 for

some 𝐴 ⊆ 𝜔1, then there exists a sealed Kurepa tree. �

Corollary 3.4. Suppose that 𝑉 = L[𝐴] for some 𝐴 ⊆ 𝜔1. Then there
exists a binary Kurepa tree 𝑇 such that ♢(𝑇 ) holds in any forcing extension
preserving 𝜔1, 𝜔2, and the stationary subsets of 𝜔1.

Proof. Let T be a tree as in Fact 3.2. It can be verified that T is Hausdorff,
but, regardless, as described right after Lemma 2.1, there is a Hausdorff tree
S and an order-preserving injection 𝜋 from T to S such that 𝜋[𝑇𝛼] = 𝑆𝛼+1 for
every 𝛼 < 𝜔1. In particular, 𝜋 induces a bijective correspondence between
ℬ(T) and ℬ(S), meaning that we may as well assume that T is Hausdorff.

5This was generalized by Hayut and Müller [HM23, Lemma 15] to any successor of a
regular uncountable cardinal 𝜅 such that 𝜅+ = (𝜅+)L.
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Next, as 𝐴 ⊆ 𝜔1, it is the case that ♢ holds in L[𝐴], so ♢(T) holds as well.
Suppose P is a notion of forcing preserving 𝜔1 and 𝜔2. The construction of
T takes place inside L[𝐴], so

𝑉 P |= ℬ(T) ⊆ L[𝐴].

As the definition of L[𝐴] is absolute, all the branches through T from 𝑉 P

are already in 𝑉 . Now, if P also preserves stationary subsets of 𝜔1, then the
witness to ♢(T) in 𝑉 will still witness ♢(T) in 𝑉 P. Finally, by running the
translation procedure of Lemma 2.1, we obtain a binary Kurepa tree with
the same key features as the Hausdorff tree T. �

Corollary 3.5. It is consistent that 2ℵ0 = ℵ2, Martin’s axiom holds, and
♢(𝑇 ) holds for some binary Kurepa tree 𝑇 .

Proof. Work in L. By Corollary 3.4, we may fix a binary Kurepa tree 𝑇
such that ♢(𝑇 ) holds in any forcing extension preserving 𝜔1, 𝜔2, and the
stationary subsets of 𝜔1. Now, let P be some ccc notion of forcing such that
in LP, Martin’s axiom holds and 2ℵ0 = ℵ2. As P preserves 𝜔1, 𝜔2, and the
stationary subsets of 𝜔1, ♢(𝑇 ) holds in LP. �

A Kurepa tree that is sealed for all proper forcings can also be added
by forcing, and in fact such a notion of forcing was already devised by
D. H. Stewart in his 1966 Master’s thesis.

Definition 3.6 (Stewart (see [Jec71])). For a cardinal 𝜅 > ℵ1, the forcing
S𝜅 consisting of all triples (𝑇𝑝, 𝜖𝑝, 𝑏𝑝) such that:

(1) 𝜖𝑝 ∈ acc(𝜔1);
(2) 𝑇𝑝 is a countable downward-closed subfamily of ≤𝜖𝑝2 such that (𝑇𝑝,()

is a normal tree of height 𝜖𝑝 + 1;
(3) 𝑏𝑝 is an injection from a countable subset of 𝜅 to the top level of 𝑇𝑝,

and the ordering is given by 𝑞 ≤ 𝑝 iff

∙ 𝜖𝑞 ≥ 𝜖𝑝;
∙ 𝑇𝑞 ⊇ 𝑇𝑝 and 𝑇𝑞 � (𝜖𝑝 + 1) = 𝑇𝑝;
∙ dom(𝑏𝑞) ⊇ dom(𝑏𝑝);
∙ for every 𝜉 ∈ dom(𝑏𝑝), 𝑏𝑞(𝜉) ⊇ 𝑏𝑝(𝜉).

Note that S𝜅 is 𝜎-closed, and that, assuming CH, it has the ℵ2-cc. The
following establishes Theorem B.

Proposition 3.7. Suppose 𝜅 > ℵ1 is some cardinal. In the forcing extension
by S𝜅, there exists a binary Kurepa tree 𝑇 such that ♢(𝑇 ) holds and no proper
forcing adds a new branch through 𝑇 , let alone kills diamond over it.

Proof. Suppose 𝐺 is S𝜅-generic. Let 𝑇 :=
⋃︀
{𝑇𝑝 | 𝑝 ∈ 𝐺} denote the generic

binary tree added by S𝜅. For each 𝜉 < 𝜅, let

𝑓𝜉 := {𝑡 ∈ 𝑇 | ∃𝑝 ∈ 𝐺 (𝜉 ∈ dom(𝑏𝑝) ∧ 𝑡 ⊆ 𝑏𝑝(𝜉)}.
A density argument shows that 𝑇 is an ℵ1-tree and that ⟨𝑓𝜉 | 𝜉 < 𝜅⟩ is an
injective sequence of branches through it. By a theorem of Baumgartner,

Paper Sh:1252, version 2024-08-02 2. See https://shelah.logic.at/papers/1252/ for possible updates.



DIAMOND ON KUREPA TREES 11

any 𝜎-closed forcing that adds a new subset of 𝜔1 forces ♢ to hold (see
[Sak06, Theorem 3.1]), hence ♢(𝑇 ) hold in 𝑉 [𝐺].

In [Jec71, p. 10], Jech proved that {𝑓𝜉 | 𝜉 < 𝜅} enumerates all cofinal
branches through 𝑇 . It is a folklore fact that this remains the case in any
extension by a proper notion of forcing. Hints of this fact may be found
in [Tod84, Lemma 8.14] and [Kos05, Proposition 37], but for completeness,
we give the details here. Following [Kos05, Definition 1], we consider the
following set:

𝒮 := {𝑋 ∈ [𝜅]ℵ0 | 𝑋 ∩ 𝜔1 ∈ acc(𝜔1), 𝑇𝑋∩𝜔1 = {𝑓𝜉 � (𝑋 ∩ 𝜔1) | 𝜉 ∈ 𝑋}}.

Claim 3.7.1. 𝒮 is stationary.

Proof. Back in 𝑉 , pick a name 𝐶̇ for a club in [𝜅]ℵ0 , and a condition 𝑝.
Recursively construct a sequence ⟨(𝑝𝑛, 𝑋𝑛) | 𝑛 < 𝜔⟩ such that (𝑝0, 𝑋0) :=
(𝑝, 𝜔) and, for every 𝑛 < 𝜔:

∙ 𝑝𝑛+1 ≤ 𝑝𝑛;
∙ 𝜖𝑝𝑛+1 > 𝜖𝑝𝑛 ;
∙ dom(𝑏𝑝𝑛+1) ⊇ 𝑋𝑛;
∙ every element of 𝑇𝑝𝑛 is extended by some element of Im(𝑏𝑝𝑛+1);

∙ 𝑋𝑛+1 ∈ [𝜅]ℵ0 with 𝑋𝑛+1 ⊇ 𝑋𝑛 ∪ dom(𝑏𝑝𝑛) ∪ (sup(𝑋𝑛 ∩ 𝜔1) + 1);

∙ 𝑝𝑛+1 
 𝑋𝑛+1 ∈ 𝐶̇.

Set 𝑋 :=
⋃︀

𝑛<𝜔𝑋𝑛 and note that 𝑋 ∩ 𝜔1 ∈ acc(𝜔1). Define a condition 𝑞
by letting:

(1) dom(𝑏𝑞) :=
⋃︀

𝑛<𝜔𝑋𝑛;
(2) for all 𝑛 < 𝜔 and 𝜉 ∈ 𝑋𝑛, 𝑏𝑞(𝜉) :=

⋃︀
𝑛<𝑚<𝜔 𝑏𝑝𝑚(𝜉);

(3) 𝜖𝑞 := sup𝑛<𝜔 𝜖𝑝𝑛 ;
(4) 𝑇𝑞 :=

⋃︀
𝑛<𝜔 𝑇𝑝𝑛 ∪ Im(𝑏𝑞).

It is clear that 𝑞 ≤ 𝑝𝑛 for all 𝑛 < 𝜔, and hence 𝑞 
 𝑋 ∈ 𝐶̇. In addition,
Clause (4) implies that 𝑞 
 𝑋 ∈ 𝑆̇. �

Now, let Q be any proper forcing in 𝑉 [𝐺], and work in 𝑉 [𝐺][𝐻], where 𝐻
is Q-generic. Towards a contradiction, suppose that 𝑓 is a branch through
𝑇 distinct from any of the 𝑓𝜉’s. As Q is proper, 𝒮 remains stationary, so
we may fix an elementary submodel 𝑀 ≺ H𝜃 (for a large enough regular
cardinal 𝜃) containing {𝑇, 𝑓, ⟨𝑓𝜉 | 𝜉 < 𝜅⟩} such that 𝑋 := 𝑀 ∩ 𝜅 is in 𝒮. By
elementarity,

𝑀 |= ∀𝜉 < 𝜅 (𝑓 ̸= 𝑓𝜉).

Denote 𝛼 := 𝑋 ∩𝜔1. As 𝑓 is a branch through 𝑇 , we get that 𝑓 �𝛼 ∈ 𝑇𝛼. As
𝑋 ∈ 𝒮, we may find a 𝜉 ∈ 𝑋 such that 𝑓 � 𝛼 = 𝑓𝜉 � 𝛼. But 𝜉 ∈ 𝑋 = 𝑀 ∩ 𝜅,
and then, by elementarity,

𝑀 |= 𝑓 = 𝑓𝜉.

This is a contradiction. �

Despite the fact that the generic tree added by S𝜅 is sealed for proper
forcings, we can still add new branches to it without collapsing cardinals or

Paper Sh:1252, version 2024-08-02 2. See https://shelah.logic.at/papers/1252/ for possible updates.



12 ZIEMOWIT KOSTANA, ASSAF RINOT, AND SAHARON SHELAH

adding reals using the quotient forcing S𝜅+/S𝜅. More generally, consider the

countable support iteration (⟨P𝜉 | 𝜉 ≤ 𝜅⟩, ⟨Q̇𝜉 | 𝜉 < 𝜅⟩), for an uncountable
cardinal 𝜅, where Q0 is the Jech partial order for adding a Souslin tree 𝑇 ,
and, for every nonzero 𝜉 < 𝜅,

P𝜉 
 Q̇𝜉 = 𝑇.

By Proposition 3.7 and the upcoming proposition, P𝜅 is proper (even 𝜎-
strategically closed) for any choice of 𝜅, and yet the quotient forcings of the
form P𝜇/P𝜆 are not proper, whenever ℵ2 ≤ 𝜆 < 𝜇.

Proposition 3.8. P𝜅 has a dense subset that is isomorphic to S𝜅.

Proof. Let 𝑅 denote the collection of all rectangular conditions in P𝜅, i.e,
the collection of all conditions 𝑞 for which there exists some 𝛿 < 𝜔1 such
that:

∙ 𝑞(0) is a tree of height 𝛿 + 1,
∙ for every 𝜉 ∈ 𝜅 ∖ {0}, 𝑞(𝜉) is either trivial or a node at the 𝛿th-level

of 𝑞(0),
∙ all maximal nodes of 𝑞(0) which are of the form 𝑞(𝜉), for 𝜉 ∈ 𝜅∖{0},

are pairwise distinct.

To see that 𝑅 is isomorphic to S𝜅, note that we can map a condition
𝑞 ∈ 𝑅 to a condition 𝜑(𝑞) in S𝜅, by keeping the tree coordinate, and using
the function 𝑏𝜑(𝑞) to record all maximal nodes of 𝑞(0) that are of the form
𝑞(𝜉). More precisely, we put:

∙ 𝑇𝜑(𝑞)(0) := 𝑞(0),
∙ 𝜖𝜑(𝑞) := ht(𝑞(0)) − 1,
∙ 𝑏𝜑(𝑞)(𝜉) := 𝑞(𝜉), whenever 𝑞(𝜉) belongs to the top level of 𝑞(0).

This mapping is clearly order-preserving, with the image

{𝑝 ∈ S𝜅 | 0 /∈ dom(𝑏𝑝)},
which is obviously isomorphic to S𝜅. Moreover, it is straightforward to define
an inverse of 𝜑.

It remains to show that 𝑅 is dense. Let 𝑝 be an arbitrary condition in
P𝜅. Fix a countable 𝑀 ≺ H𝜃, for a sufficiently large regular cardinal 𝜃,
containing all relevant objects. Let 𝛿 := 𝜔1 ∩𝑀 , and let 𝐺 ⊆ 𝑃 ∩𝑀 be a
P𝜅-generic filter over 𝑀 , containing 𝑝. For 𝜉 ∈ 𝜅∩𝑀 , let us denote by 𝐺(𝜉)
the projection of 𝐺 to the coordinate 𝜉. Therefore

⋃︀
𝐺(0) is a tree of height

𝛿, with countable levels, and for each 𝜉 ∈ 𝜅 ∩𝑀 ∖ {0}, 𝐺(𝜉) determines a
cofinal branch 𝑓𝜉 through 𝐺(0), given by the formula

𝑓𝜉 :=
⋃︁

{𝑡 ∈ <𝜔12 | ∃𝑟 ∈ 𝐺 (𝑟 � 𝜉 
 𝑟(𝜉) = 𝑡)}.

The latter follows from the observation that for any 𝜖 < 𝛿, the set

𝐷𝜉,𝜖 := {𝑟 ∈ P𝜅 | ∃𝑡 ∈ <𝜔12 (𝑟 � 𝜉 
 𝑟(𝜉) = 𝑡 ∧ dom(𝑡) ≥ 𝜖)},
is dense in P𝜅, and belongs to 𝑀 .

Finally, we define a condition 𝑞 by the following considerations:
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∙ 𝑞(0) := 𝐺(0) ∪ {𝑓𝜉 | 𝜉 ∈𝑀 ∩ 𝜅},
∙ 𝑞(𝜉) := 𝑓𝜉 for every 𝜉 ∈𝑀 ∩ 𝜅 ∖ {0},
∙ 𝑞(𝜉) := ∅ for every 𝜉 ∈ 𝜅 ∖𝑀 .

Then 𝑞 is a rectangular condition extending 𝑝, as sought. �

4. The failure of diamond on a Kurepa tree

The main result of this section is a consistent example of a binary Kurepa
tree on which diamond fails. At the end of this section, we shall derive a
few additional corollaries.

As a first step, we present a notion of forcing with side conditions for
adding a branch through a given normal binary ℵ1-tree 𝑇 . The poset takes
a transversal 𝑡⃗ of the full binary tree (<𝜔12,() as a second parameter, and
ensures that the generic branch will disagree on a club with this transversal.

Definition 4.1. Let 𝑇 be a normal binary ℵ1-tree, and let 𝑡⃗ ∈
∏︀

𝛼<𝜔1

𝛼2.

The forcing Q(𝑇, 𝑡⃗) consists of all triples 𝑝 = (𝑥𝑝,ℳ𝑝, 𝑓𝑝) that satisfy all
of the following:

(1) 𝑥𝑝 is a node in 𝑇 ;
(2) ℳ𝑝 is a finite, ∈-increasing chain of countable elementary submodels

of H𝜔1 ;
(3) 𝑓𝑝 is a partial function from ℳ𝑝 to 𝜔1;
(4) for every 𝑀 ∈ ℳ𝑝:

∙ dom(𝑥𝑝) ≥𝑀 ∩ 𝜔1,

∙ 𝑥𝑝 � (𝑀 ∩ 𝜔1) ̸= 𝑡⃗(𝑀 ∩ 𝜔1);
∙ 𝑓𝑝 �𝑀 ∈𝑀 .

The ordering is defined by letting 𝑞 ≤ 𝑝 iff

(1) 𝑥𝑞 ⊇ 𝑥𝑝;
(2) ℳ𝑞 ⊇ ℳ𝑝;
(3) for every 𝑀 ∈ dom(𝑓𝑝), 𝑀 ∈ dom(𝑓𝑞) and 𝑓𝑞(𝑀) ≥ 𝑓𝑝(𝑀).

Remark 4.2. Q(𝑇, 𝑡⃗) ⊆ H𝜔1 , so that Q(𝑇, 𝑡⃗) ∈ H𝜔2 .

Lemma 4.3. Suppose that 𝑇 is a normal binary ℵ1-Souslin tree, and 𝑡⃗ ∈∏︀
𝛼<𝜔1

𝛼2. Let 𝑝 ∈ Q(𝑇, 𝑡⃗). Then for every countable 𝑀* ≺ H𝜔2 with

Q(𝑇, 𝑡⃗) ∈𝑀* such that 𝑀* ∩ H𝜔1 ∈ ℳ𝑝, 𝑝 is 𝑀*-generic.

Proof. Fix a model 𝑀* as above, and let 𝐷 ∈ 𝑀* be a dense open subset
of Q(𝑇, 𝑡⃗); we need to find an 𝑟 ∈ 𝐷 ∩𝑀* compatible with 𝑝.

Fix a large enough 𝛾 ∈ 𝑀* ∩ 𝜔1 such that 𝑁 ∩ 𝜔1 ⊆ 𝛾 for every 𝑁 ∈
ℳ𝑝 ∩𝑀*. Define a condition

𝑝 := (𝑥𝑝 � 𝛾,ℳ𝑝 ∩𝑀*, 𝑓𝑝 �𝑀
*),

and note that 𝑝 ∈𝑀*.

Claim 4.3.1. The set 𝐷′ := {𝑥𝑞 | 𝑞 ∈ 𝐷, 𝑞 ≤ 𝑝} is dense in (𝑇,⊇) below
𝑥𝑝.

Paper Sh:1252, version 2024-08-02 2. See https://shelah.logic.at/papers/1252/ for possible updates.



14 ZIEMOWIT KOSTANA, ASSAF RINOT, AND SAHARON SHELAH

Proof. Let 𝑦 be any extension of 𝑥𝑝. Evidently, (𝑦,ℳ𝑝, 𝑓𝑝) is a legitimate
condition. Pick 𝑞 ∈ 𝐷 such that 𝑞 ≤ (𝑦,ℳ𝑝, 𝑓𝑝). Then 𝑥𝑞 is an extension
of 𝑦 that lies in 𝐷′, as sought. �

Denote 𝛿 := 𝑀* ∩ 𝜔1. Since 𝑇 is a Souslin tree lying in 𝑀*, any node in
𝑇𝛿 is (𝑇,⊇)-generic over 𝑀*. In particular, 𝑥𝑝 � 𝛿 is (𝑇,⊇)-generic over 𝑀*,
and it follows that there is an 𝑥 ∈ 𝐷′ ∩𝑀* such that

𝑥 ⊆ 𝑥𝑝 � 𝛿.

Now, pick any 𝑞 witnessing 𝑥 ∈ 𝐷′, so that 𝑥 = 𝑥𝑞 ⊆ 𝑥𝑝. By elementarity,
we can assume that 𝑞 ∈𝑀*.

Define a condition 𝑟 by letting 𝑥𝑟 := 𝑥𝑝, ℳ𝑟 := ℳ𝑝 ∪ ℳ𝑞, and 𝑓𝑟 be
such that dom(𝑓𝑟) = dom(𝑓𝑝) ∪ dom(𝑓𝑞) and

𝑓𝑟(𝛼) := max({𝑓𝑝(𝛼) | 𝛼 ∈ dom(𝑓𝑝)} ∪ {𝑓𝑞(𝛼) | 𝛼 ∈ dom(𝑓𝑞)}).

It is not hard to see that 𝑟 is a legitimate condition extending both 𝑝 and
𝑞. �

Lemma 4.4. Suppose that 𝑇 is a normal binary ℵ1-Souslin tree, and 𝑡⃗ ∈∏︀
𝛼<𝜔1

𝛼2. Then:

(1) Q(𝑇, 𝑡⃗) is proper;
(2) Q(𝑇, 𝑡⃗) adds a branch through 𝑇 that evades 𝑡⃗ on a club.

Proof. (1) To verify properness, fix 𝑝 ∈ Q(𝑇, 𝑡⃗), and a countable 𝑀* ≺
H𝜔2 , containing everything relevant including 𝑝. Denote 𝛿 := 𝑀* ∩
𝜔1. As 𝑇 is normal and Souslin, we may be able to extend 𝑥𝑝 to

some node 𝑥 ∈ 𝑇𝛿 distinct from 𝑡⃗(𝛿).
The triple (𝑥,ℳ𝑝∪{𝑀*∩H𝜔1}, 𝑓𝑝) is a condition in Q(𝑇, 𝑡⃗), and

by Lemma 4.3, it is an 𝑀*-generic condition.
(2) Let 𝐺 be a generic filer. It suffices to verify that the following un-

countable set is moreover closed:

𝐷 := {𝑀 ∩ 𝜔1 | ∃𝑝 ∈ 𝐺 (𝑀 ∈ ℳ𝑝)},
that is, every 𝛾 ∈ 𝜅 ∖𝐷 is not an accumulation point of 𝐷.

Let 𝐷̇ be a name for the above set, and suppose 𝑝 
 𝛾̇ ∈ 𝜅 ∖ 𝐷̇.
By extending 𝑝, we can assume that it forces that 𝛾̇ = 𝛾, and 𝛾 lies
between two consecutive elements 𝑁0 ∈ 𝑁1 of ℳ𝑝. By extending 𝑝
further, we can assume that 𝑓𝑝(𝑁0) ≥ 𝛾. Since 𝛾 is forced to not be
the height of any element of ℳ𝑝, it follows that 𝑁0 ∩ 𝜔1 < 𝛾, and

𝑝 
 𝐷̇ ∩ (𝑁0 ∩ 𝜔1, 𝛾) = ∅,
as sought. �

Definition 4.5. Given a sequence of binary ℵ1-trees 𝑇 0, . . . , 𝑇𝑛+1, the tree
product 𝑇 0 ⊗ · · · ⊗ 𝑇𝑛 is the collection of all (𝑥0, . . . , 𝑥𝑛) ∈ 𝑇 0 × · · · × 𝑇𝑛

such that dom(𝑥0) = · · · = dom(𝑥𝑛), and the ordering is such that a node
(𝑥0, . . . , 𝑥𝑛) is below a node (𝑦0, . . . , 𝑦𝑛) iff 𝑥𝑖 ⊆ 𝑦𝑖 for all 𝑖 ≤ 𝑛.
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DIAMOND ON KUREPA TREES 15

In our context, it will be useful to know of the following fact.

Fact 4.6 ([BRY24, S5]). If ♢+ holds, then there is a binary ℵ1-Aronszajn

tree 𝑇 and a sequence 𝑇 = ⟨𝑇 𝜂 | 𝜂 < 𝜔2⟩ of normal binary ℵ1-subtrees of 𝑇
such that, for every nonempty 𝑎 ∈ [𝜔2]

<𝜔, the tree product
⨂︀

𝜂∈𝑎 𝑇
𝜂 is an

ℵ1-Souslin tree.

It is well-known that if the product 𝑇 ⊗ 𝑆 of two normal binary ℵ1-trees
is Souslin, then

(𝑇,⊇) 
 “𝑆 is Souslin”.

Thus, it is natural to expect that furthermore

Q(𝑇, 𝑡⃗) 
 “𝑆 is Souslin”.

The next lemma shows that this is indeed the case.

Lemma 4.7. Suppose 𝑇 and 𝑆 are normal binary ℵ1-trees the product of
which is Souslin, and let 𝑡⃗ ∈

∏︀
𝛼<𝜔1

𝛼2. Then

Q(𝑇, 𝑡⃗) 
 “𝑆 is Souslin”.

Proof. Let 𝑞 ∈ Q(𝑇, 𝑡⃗), and fix a Q(𝑇, 𝑡⃗)-name 𝐴̇ for a maximal antichain

in 𝑆. Fix a countable 𝑀* ≺ H𝜔2 containing {Q(𝑇, 𝑡⃗), 𝑞, 𝐴̇}. Denote 𝛿 :=
𝑀* ∩ 𝜔1, and pick a node 𝑥 ∈ 𝑇𝛿 ∖ {𝑡⃗(𝛿)} extending 𝑥𝑞. We define an
extension 𝑞′ ≤ 𝑞 by letting:

𝑞′ := (𝑥,ℳ𝑞 ∪ {𝑀* ∩ H𝜔1}, 𝑓𝑞).
It is clear that 𝑞′ is indeed a condition and 𝑞′ ≤ 𝑞. We claim that

𝑞′ 
 “𝐴̇ ∩ (𝑆 � 𝛿) is a maximal antichain in 𝑆”.

To see this, pick a condition 𝑝 ≤ 𝑞′ and a node 𝑦 ∈ 𝑆𝛿; our aim is to find
a condition 𝑟 ≤ 𝑝 that forces 𝑦 to extend an element of 𝐴̇.

Fix a large enough 𝛾 < 𝛿 such that 𝑁 ∩ 𝜔1 ⊆ 𝛾 for every 𝑁 ∈ ℳ𝑝 ∩𝑀*.
Let 𝑥̄ := 𝑥𝑝 � 𝛾 and 𝑦 := 𝑦 � 𝛾. Define a condition

𝑝 := (𝑥̄,ℳ𝑝 ∩𝑀*, 𝑓𝑝 �𝑀
*).

Now, we turn to run a recursion producing a family

ℰ = {(𝑞𝛼, 𝑦𝛼) | 𝛼 < 𝜃},
satisfying that for each 𝛼:

(1) 𝑞𝛼 ∈ Q(𝑇, 𝑡⃗) with 𝑞𝛼 ≤ 𝑝;
(2) 𝑦𝛼 ∈ 𝑆 with 𝑦 ⊆ 𝑦𝛼;

(3) 𝑞𝛼 
 ∃𝑎 ∈ 𝐴̇ (𝑎 ⊆ 𝑦𝛼);
(4) dom(𝑥𝑞𝛼) = dom(𝑦𝛼);
(5) for all 𝛽 < 𝛼, (𝑥𝑞𝛽 , 𝑦𝛽)⊥(𝑥𝑞𝛼 , 𝑦𝛼) in 𝑇 ⊗ 𝑆.

We continue the construction until it is not possible to choose the next
element. Because 𝑇 ⊗ 𝑆 is Souslin, Requirement (5) ensures that the con-
struction terminates after countably many steps, so the ordinal 𝜃 ends up
being countable.
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Claim 4.7.1. The set {(𝑥𝑞𝛼 , 𝑦𝛼) | 𝛼 < 𝜃} is a maximal antichain above
(𝑥̄, 𝑦) in 𝑇 ⊗ 𝑆.

Proof. Suppose not. Then we may pick (𝑥′, 𝑦′) ∈ 𝑇 ⊗𝑆 extending (𝑥̄, 𝑦) that
is incompatible with (𝑥𝑞𝛼 , 𝑦𝛼) for every 𝛼 < 𝜃. By possibly extending both
𝑥′ and 𝑦′, we may assume that 𝑥′ = 𝑥𝑞′ for some condition 𝑞′ ≤ 𝑝 which
moreover satisfies:

𝑞′ 
 ∃𝑎 ∈ 𝐴̇ (𝑎 ⊆ 𝑦′).

But now we can add (𝑞′, 𝑦′) to ℰ , contradicting its maximality. �

Since 𝑞 ∈ 𝑀*, by making canonical choices in the recursive construction
we may secure that the countable family ℰ be a subset of 𝑀*. So, by
Claim 4.7.1, we may find an 𝛼 < 𝜃 such that (𝑥𝑞𝛼 ⊆ 𝑥 and 𝑦𝛼 ⊆ 𝑦). Since
ℰ ⊆ 𝑀*, we infer that 𝑞𝛼 ∈ 𝑀*. Now, as in the proof of Lemma 4.3,
we see that there exists a condition 𝑟 extending both 𝑝 and 𝑞𝛼. Recalling
Requirement (3) in the choice of 𝑞𝛼, we get that

𝑟 
 ∃𝑎 ∈ 𝐴̇ (𝑎 ⊆ 𝑦),

as sought. �

We are now in conditions to prove the core of Theorem C.

Theorem 4.8. It is consistent that there exists a binary Kurepa tree 𝑇 such
that ♢(𝑇 ) fails.

Proof. We start with a model of GCH and ♢+. Using Fact 4.6, fix a binary

ℵ1-tree 𝑇 and a sequence 𝑇 = ⟨𝑇 𝜉 | 𝜉 < 𝜔2⟩ of normal binary ℵ1-subtrees of
𝑇 such that

⨂︀
𝜉∈𝑎 𝑇

𝜉 is an ℵ1-Souslin tree for every nonempty 𝑎 ∈ [𝜔2]
<𝜔.6

Note that for all 𝜉 ̸= 𝜂, the trees 𝑇 𝜉 and 𝑇 𝜂 have a countable intersection.
Let 𝒫 denote the collection of all pairs (R, 𝜏) such that R is a notion of

forcing lying in H𝜔2 , and 𝜏 is a nice R-name for an element of
∏︀

𝛼<𝜔1
𝑇𝛼.

Using GCH, we may fix a (repetitive) enumeration ⟨(R𝜉, 𝜏𝜉) | 𝜉 < 𝜔2⟩ of 𝒫
in such a way that every pair is listed cofinally often.

Finally, we force with P𝜔2 , where (⟨P𝜉 | 𝜉 ≤ 𝜔2⟩, ⟨Q̇𝜉 | 𝜉 < 𝜔2⟩) is the
countable support iteration satisfying that for every 𝜉 < 𝜔2:

(i) P𝜉 
 “Q̇𝜉 = Q̇(𝑇 𝜉, 𝜎𝜉)”, and
(ii) 𝜎𝜉 is a nice P𝜉-name for an element of

∏︀
𝛼<𝜔1

𝑇𝛼 such that if R𝜉 = P𝜂

for some 𝜂 ≤ 𝜉, then 𝜎𝜉 is the lift of 𝜏𝜉 (from a P𝜂-name to a P𝜉-
name).

Recalling Remark 4.2, we infer that (P𝜉, 𝜏𝜉) ∈ 𝒫 for all 𝜉 < 𝜔2.

Claim 4.8.1. For every 𝜉 < 𝜔2, P𝜉 forces that Q̇(𝑇 𝜉, 𝜎𝜉) is proper.

6The tree 𝑇 given by the fact is moreover Aronszajn, but this feature is not necessary
for our application here.
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Proof. By Lemma 4.4(1), it suffices to prove that for every 𝜉 < 𝜔2,

P𝜉 
 “𝑇 𝜉 is Souslin”.

We shall prove by induction on 𝜉 < 𝜔2 a stronger claim, namely that for
every finite tuple 𝜉 < 𝜂0 < . . . < 𝜂𝑛 < 𝜔2,

P𝜉 
 “𝑇 𝜉 ⊗ 𝑇 𝜂0 ⊗ · · · ⊗ 𝑇 𝜂𝑛 is Souslin”.

There are three cases to consider:

∙ 𝜉 = 0. This is since the sequence 𝑇 was given by Fact 4.6.
∙ 𝜉 + 1. Recall that

P𝜉+1 ≃ P𝜉 * Q̇(𝑇 𝜉, 𝜎𝜉).

Let 𝜉 + 1 < 𝜂0 < . . . < 𝜂𝑛 < 𝜔2 be a finite tuple. By the induction
hypothesis,

P𝜉 
 “𝑇 𝜉 ⊗ 𝑇 𝜉+1 ⊗ 𝑇 𝜂0 ⊗ · · · ⊗ 𝑇 𝜂𝑛 is Souslin”.

By invoking Lemma 4.7 in 𝑉 P𝜉 , we infer that

P𝜉 * Q̇(𝑇 𝜉, 𝜎𝜉) 
 “𝑇 𝜉+1 ⊗ 𝑇 𝜂0 ⊗ · · · ⊗ 𝑇 𝜂𝑛 is Souslin”,

as sought.
∙ 𝜉 ∈ acc(𝜔2). We apply a result from [AS93, S3] or [Miy93] stating

that for any ℵ1-tree 𝑆, the property “𝑆 is Souslin” is preserved at
a limit stage of a countable support iteration of proper forcings. �

A standard name counting argument shows that CH is preserved in every
intermediate stage, so P𝜔2 satisfies the ℵ2-cc.7 In addition, P𝜔2 is proper, so
our forcing preserves all cardinals.

Claim 4.8.2. P𝜔2 forces that 𝑇 is Kurepa.

Proof. For every 𝜉 < 𝜔2, P𝜔2 projects to a forcing of the form Q(𝑇 𝜉, 𝑡⃗), and
then Lemma 4.4(2) implies that in 𝑉 P𝜔2 , there exists a branch 𝑓𝜉 through

𝑇 𝜉, and in particular, through 𝑇 . As the elements of ⟨𝑇 𝜉 | 𝜉 < 𝜔2⟩ have a
pairwise countable intersection, in 𝑉 P𝜔2 , ⟨𝑓𝜉 | 𝜉 < 𝜔2⟩ is injective. �

Claim 4.8.3. P𝜔2 forces that ♢(𝑇 ) fails.

Proof. Otherwise, as
∏︀

𝛼<𝜔1
𝑇𝛼 lies in the ground model, we may fix a nice

P𝜔2-name 𝑡 for a transversal 𝑡⃗ ∈
∏︀

𝛼<𝜔1
𝑇𝛼 that witnesses ♢(𝑇 ) in the ex-

tension. As P𝜔2 has the ℵ2-cc and 𝑡 is a nice name for an ℵ1-sized set,
there is a large enough 𝜂 < 𝜔2 such that all nontrivial conditions appearing
in 𝑡 belong to P𝜂. It thus follows that 𝑡⃗ admits a nice P𝜂-name, say, 𝜏 .
Clearly, (P𝜂, 𝜏) ∈ 𝒫, so we may find a large enough 𝜉 ∈ [𝜂, 𝜔2) such that
(R𝜉, 𝜏𝜉) = (P𝜂, 𝜏). Recalling Clauses (i) and (ii) in the definition of our

iteration, it is the case that P𝜉+1 ≃ P𝜉 * Q̇(𝑇 𝜉, 𝜎𝜉) where 𝜎𝜉 is a P𝜉-name for

𝑡⃗. By Lemma 4.4(2), then, P𝜉+1 introduces a branch through 𝑇 that evades

𝑡⃗ on a club. So 𝑡⃗ cannot witness ♢(𝑇 ) in P𝜔2 . This is a contradiction. �

7Recall [Bau83, Theorem 2.2].
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This completes the proof. �

4.1. Ramifications. Proposition 2.12 may suggest that the validity of ♢(𝑇 )
for a Kurepa tree 𝑇 only depends on the cardinal |ℬ(𝑇 )|. However, the next
corollary shows that this is not the case:

Corollary 4.9. It is consistent that there exist two binary Kurepa trees 𝑇 ′

and 𝑇 such that |ℬ(𝑇 ′)| = |ℬ(𝑇 )| = 2ℵ1, ♢(𝑇 ′) holds, but ♢(𝑇 ) fails.

Proof. Work in L. By Corollary 3.4, we may fix a binary Kurepa tree 𝑇 ′

such that ♢(𝑇 ′) holds in any forcing extension preserving 𝜔1, 𝜔2, and the
stationary subsets of 𝜔1. As L satisfies GCH and ♢+, the proof of Theo-
rem 4.8 provides us with an ℵ2-cc proper notion of forcing P𝜔2 ⊆ H𝜔2 that
introduces a binary Kurepa tree 𝑇 on which ♢ fails. Altogether, LP𝜔2 is a
model satisfying the desired configuration. �

Corollary 4.10. It is consistent that there exists a binary Kurepa tree 𝑇
such that ♢(𝑇 ) fails and 𝑇 is uniformly homogeneous.8

Proof. The proof is almost identical to that of Theorem 4.8. We start with
a model of GCH and ♢+. Using Fact 4.6, we fix a binary ℵ1-tree 𝑇 and a
sequence ⟨𝑇 𝜉 | 𝜉 < 𝜔2⟩ of normal binary ℵ1-subtrees of 𝑇 such that

⨂︀
𝜉∈𝑎 𝑇

𝜉

is an ℵ1-Souslin tree for every nonempty 𝑎 ∈ [𝜔2]
<𝜔. Now, let 𝑇 ′ be the

collection of all functions 𝑡′ ∈ <𝜔12 for which there exists some 𝑡 ∈ 𝑇 such
that dom(𝑡′) = dom(𝑡) and {𝛼 ∈ dom(𝑡) | 𝑡(𝛼) ̸= 𝑡′(𝛼)} is finite. Then
𝑇 ′ is a uniformly homogeneous ℵ1-tree having each of the 𝑇 𝜉’s as a normal
binary ℵ1-subtree. So, we can continue with the proof of Theorem 4.8 using
𝑇 ′ instead of 𝑇 . �

Corollary 4.11. It is consistent that there exists a binary Kurepa tree 𝑆
such that ♢(𝑆) fails and 𝑆 is rigid.

Proof. The proof is quite close to that of Theorem 4.8. We start with a model
of GCH and ♢+. Instead of using Fact 4.6, we appeal to [BRY24, S5] to ob-
tain a downward closed subfamily 𝑇 ⊆ <𝜔1𝜔 such that (𝑇,() is an Aronszajn
tree, every node in 𝑇 admits infinitely many immediate successors, and there
exists a sequence ⟨𝑇 𝜉 | 𝜉 < 𝜔2⟩ of normal downward-closed subtrees of 𝑇
such that

⨂︀
𝜉∈𝑎 𝑇

𝜉 is an ℵ1-Souslin tree for every nonempty 𝑎 ∈ [𝜔2]
<𝜔. We

force with P𝜔2 , where (⟨P𝜉 | 𝜉 ≤ 𝜔2⟩, ⟨Q̇𝜉 | 𝜉 < 𝜔2⟩) is the countable support

iteration satisfying that for every 𝜉 < 𝜔2, P𝜉 
 “Q̇𝜉 = Q̇(𝑇 𝜉, 𝜎𝜉)”, where 𝜎𝜉
is a nice P𝜉-name for an element of

∏︀
𝛼<𝜔1

𝑇𝛼 obtained from some bookkeep-

ing sequence. This time, a typical transversal 𝑡⃗ ∈
∏︀

𝛼<𝜔1
𝑇𝛼 is an element of∏︀

𝛼<𝜔1

𝛼𝜔 instead of
∏︀

𝛼<𝜔1

𝛼2, but everything goes through and we end up
in a generic extension in which 𝑇 is a Kurepa tree on which diamond fails.

Next, let 𝑆 be the binary ℵ1-tree produced by the proof of Lemma 2.1
when fed with the tree T := (𝑇,(). Since T is Kurepa on which diamond
fails, 𝑆 is a binary Kurepa tree and ♢(𝑆) fails.

8The definition of a uniformly homogeneous tree may be found in [BRY24, S4].
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Recall that the proof of Lemma 2.1 made use of an injective sequence ⟨𝑟𝑚 |
𝑚 < 𝜔⟩ of functions from 𝜔 to 2. For our purpose here, we shall moreover
assume that for all 𝑚 ̸= 𝑚′, it is the case that ∆(𝑟𝑚, 𝑟𝑚′) = min{𝑚,𝑚′}.9

To prove that 𝑆 is rigid, we must establish the following.

Claim 4.11.1. Suppose that 𝜋 : 𝑆 ↔ 𝑆 is an automorphism of (𝑆,(). Then
𝜋 is the identity map.

Proof. Suppose not, so that 𝜋(𝑠) ̸= 𝑠 for some 𝑠 ∈ 𝑆. By the definition of
𝑆 and as 𝜋 is order-preserving, it follows that there exists a 𝑡 ∈ 𝑇 such that
𝜋(𝜓(𝑡)) ̸= 𝜓(𝑡). Let 𝛽 < 𝜔1 be the least for which there exists a 𝑡 ∈ 𝑇𝛽
with 𝜋(𝜓(𝑡)) ̸= 𝜓(𝑡). Clearly, 𝛽 is a successor ordinal, say, 𝛽 = 𝛼 + 1. Fix
𝑡0 ̸= 𝑡1 in 𝑇𝛼+1 such that 𝜋(𝜓(𝑡0)) = 𝜓(𝑡1) and note that the minimality of
𝛽 implies that 𝑡0 � 𝛼 = 𝑡1 � 𝛼, which we hereafter denote by 𝑡. Now, since
every node in 𝑇 admits infinitely many immediate successors, we may fix
𝑡2, 𝑡3 ∈ 𝑇𝛼+1 such that:

∙ 𝑡2, 𝑡3 are immediate successors of 𝑡,10

∙ 𝜋(𝜓(𝑡2)) = 𝜓(𝑡3), and
∙ min{𝜙𝛼(𝑡2), 𝜙𝛼(𝑡3)} > max{𝜙𝛼(𝑡0), 𝜙𝛼(𝑡1)}.

Recalling the proof of Lemma 2.1, for every 𝑖 < 4, letting 𝑚𝑖 := 𝜙𝛼(𝑡𝑖),
it is the case that

𝜓(𝑡𝑖) = 𝜓(𝑡)a𝑟𝑚𝑖 .

As 𝑚0 < 𝑚2, ∆(𝑟𝑚0 , 𝑟𝑚2) = 𝑚0 and

∆(𝜓(𝑡0), 𝜓(𝑡2)) = 𝜔 · 𝛼 + 𝑚0.

Likewise,

∆(𝜋(𝜓(𝑡0)), 𝜋(𝜓(𝑡2))) = ∆(𝜓(𝑡1), 𝜓(𝑡3)) = 𝜔 · 𝛼 + 𝑚1.

As 𝑚0 ̸= 𝑚1, we infer that

∆(𝜓(𝑡0), 𝜓(𝑡2)) ̸= ∆(𝜋(𝜓(𝑡0)), 𝜋(𝜓(𝑡2))),

contradicting the fact that 𝜋 is an automorphism of 𝑆. �

This completes the proof. �
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[JTM03] M. Džamonja J. T. Moore, M. Hrušak. Parametrized ♢ principles. Transactions

of the AMS, 356(6):2281–2306, 2003.
[Kos05] Piotr Koszmider. Kurepa trees and topological non-reflection. Topology Appl.,

151(1-3):77–98, 2005.

Paper Sh:1252, version 2024-08-02 2. See https://shelah.logic.at/papers/1252/ for possible updates.



DIAMOND ON KUREPA TREES 21

[Kun80] Kenneth Kunen. Set theory, volume 102 of Studies in Logic and the Foundations
of Mathematics. North-Holland Publishing Co., Amsterdam, 1980. An introduc-
tion to independence proofs.

[Kur35] Duro Kurepa. Ensembles ordonnés et ramifiés. Publications de l’Institut
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