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ABSTRACT ELEMENTARY CLASSES NEAR X;
SH88R

SAHARON SHELAH

ABSTRACT. We prove, in ZFC, that no ¢ € Ly, »[Q] have unique models of
uncountable cardinality; this confirms the Baldwin conjecture. But we analyze
this in more general terms. We introduce and investigate AECs and also
versions of limit models, and prove some basic properties like representation
by a PC class, for any AEC.

For PCy,-representable AECs we investigate the conclusion of having not
too many non-isomorphic models in X1 and Rg, but we have to assume 280 <
281 and even 281 < 282,
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§ 0. INTRODUCTION

In [SheT75al, proving a conjecture of Baldwin, we show that

(*)1 No ¢ € Ly, ,(Q) has a unique uncountable model up to isomorphism. (Q

here stands for the quantifier <R, ‘there are uncountably many.” )

by showing that

(x)2 Categoricity (of ¢ € Ly, ,(Q)) in 8y implies the existence of a model of v
of cardinality Ny (so ¢ has > 2 non-isomorphism models).

Unfortunately, both (x); and (%) were not proved in ZFC because diamond on N;
was assumed. In [She83a] and [She83b] this set-theoretic assumption was weakened
to 2% < 2%i: here we shall prove it in ZFC (see §3). However, for getting the
conclusion from the weaker model-theoretic assumption / (Ry,9) < 2% as in those
papers, we still need 280 < 281,

The main result of [She83a], [She83b] was:

(¥)3 Ifn >0, 2% < 28 < L <2 gh € Ly, 0, 1 < T(Rp, ) < prga(Re) for
1 < £ < n, (where fiyq(Ry) is usually 2%¢ and always > 2%¢-1; see 0.6 below)
then ¢ has a model of cardinality N, ;1.

(%)q I 280 < 2™ < <2 < 2t < 9h € Ly, o, and
1< I(Re,Y)) < pwa(Re)

for ¢ < w, then 1 has a model in every infinite cardinal (and satisfies Los’
Conjecture).
(Note that (x)3; was proved in [She75a] for n = 1, assuming v, .)

In (%)4, it is proved that without loss of generality € is excellent; this means, in
particular, that K is the class of atomic models of some countable first-order T
The point is that an excellent class £ is similar to the class of models of an Ry-stable
first-order T. In particular, the set of relevant types Sg(A4, M) is defined as the set
of complete types p(x) over A in M (in the first-order sense) such that p | B is
isolated for every finite B C A.

However, we’d better restrict ourselves to “nice” A; that is, A which are the uni-
verse of some N < M, or A = N;yUN, where Ny, N1, No are in stable amalgamation,
or | J{Ny :ue P CP(n)} for some (so-called) stable system (N, : u € ). (On
such stable systems, in the stable first-order case, see [She90, XIL,§5].)

So types are quite like the first-order case. In particular, we say M € ¢ is A\-full
when if p € S¢(A, M) with A as above, |A| < A implies p is realized in M; this is
the replacement for ‘A-saturated’ for that context.

In [She83a] and [She83b], why was ¢ assumed to be just in L, ., and not more
generally in L,,, ,,(Q)? Mainly because we feel that in [She75a], the logic L, ,(Q)
was incidental. We delay the search for the right context to this sequel.

)

So here we are working in an AEC, (an “abstract elementary class,” so no logic
is present in the context) which are formally like elementary classes; i.e. (Modr, <)
with T first-order. Note the absence of amalgamation, but they still have closure
under unions of increasing chains. They are of the form ¢ = (K, <), where <; is
the “abstract” notion of elementary submodel. So if £ is a fragment of L, ,(7) (for
a fixed vocabulary), T C £ a theory included in £, and we let K :={M : M =T}
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and M < N if and only if M <, N, we get such a class; if £ is countable then &
has LST number X.

So the class of models of ¢ € L, .,(Q) is not represented directly, but can be
with minor adaptation; see 3.19(2). Surprisingly (and by a not-so-hard proof),
every AEC ¢ can be represented as a pseudo-elementary class if we allow omitting
types (see 1.11). We introduce a relative of saturated models (for stable first-order
T) and full models (for excellent classes, see [She83a] and [She83b]). That is, we
are talking about limit models (really, several variants of this notion; see Definition
3.3.)

The strongest and most important variant is “M € K superlimit,” which means
M is universal (under <g),
(@N)[M <¢ NAM # N,
and if (M; 17 < 6 < ||M]]) is <e-increasing with each M; = M then |J M; = M. If
<9
we restrict ourselves to d-s of cofinality x, we get (A, k)-superlimit. Such M exists
for a first-order T' for some pairs A, x. In particular,®

(¥)s For every X > 2/TI 43, a superlimit model of T of cardinality \ exists if
and only if T is superstable (by [Shel2, 3.1]).

Moreover,

(¥)6 “Almost always:” for A > 2/7! 4k and k = cf(s) (for simplicity), we have
that a (\, k)-superlimit model exists iff “T" is stable in \” A k > &(T) or
A= A<F,

But we can prove something under those circumstances: if K is categorical in A
(or we just have a superlimit model M* in A, but the A-amalgamation property
fails for M*) and 2* < 227 then [(A*, K) = 2*" (see 3.9). With some reasonable
restrictions on A and K, we can prove that (e.g.)

INK) =TI\ K)=1= I\ K)>1
(see 3.12, 3.14).

However, our long-term main aim was to do the parallel of [She83a] and [She83b]
in the present context; i.e. for an AEC ¢ (and it is natural to assume ¢ is PCy,).
Here we prepare the ground.

Sections 4 and 5 presently work toward this goal (§5 assuming 2% < 281 64
without it). We should note that dealing with superlimit models rather than full
ones causes problems, as well as the fact that the class is not necessarily elementary
in some reasonable logics. Because of the second issue we were driven to use for-
mulas which hold “generically”, are “forced” instead of are satisfied, say “the type
a is materialized” instead of realized, and use gtp(a, N, M) instead of tp(a, N, M).

We also (necessarily) encounter the case “D(NN) of cardinality Ry for N € Ky,”
(see 5.2, 5.4(6)). Because of the first issue, the scenario for getting a full model in
Ry (which can be adapted to (X1, {®;})-superlimit: see 5.18) does not seem to be
enough for getting superlimit models in X; (see 5.45).

We had felt that arriving at enough conclusions on the models of cardinality Ny
to start dealing with models of cardinality Ny will be a strong indication that we
can complete the generalization of [She83a] and [She83b], so getting superlimits in

ISee more in [Shel2].
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Ny is the culmination of this paper and a natural stopping point. Trying to do the
rest (of the parallel to [She83a] and [She83b]) was delayed.

Much remains to be done.

Problem 0.1. 1) Prove (x)3, (%)4 in our context.
2) Parallel results in ZFC; e.g. prove (x)3 for n =1, 2% = 2%,

Note that if 2% = 2% assuming 1 < I(Xy, K) < 2% really gives fewer model-
theoretic consequences, as new phenomena arise (see §6). See §4 (and its concluding
remarks).

3) Construct examples; e.g. (an AEC) ¢ (or ¢ € L,,, ), categorical in Rg, Ny, ..., N,
but not in N, 1.

4) If € is a PC, class, categorical in A and A", does it necessarily have a model in
ATF?

See the book’s introduction [Sheb] on the progress on those problems — in
particular in [She01], redone here in [She75b]. The direct motivation for [She01]
was that Grossberg asked me (in October 1994) some questions in this neighborhood
(mainly 0.1(4)).

In particular:

(¥) Assume K = Mod(T) (i.e. K is the class of models of T'), T' C L, .,
IT| = A\, IMVK) = 1 and 1 < I(AF,K) < 2", Does it follow that
I\t K) > 07

We think of this as a test problem, and would much prefer a model-theoretic to a
set-theoretic solution. This is closely related to 0.1(4) above and to 3.12 (where
we assume categoricity in AT and do not require 2* < 2’\+, but take A = Ny or
some similar cases) and 5.30(4) (and see 5.2 and 4.8 on the assumptions) (there we
require 2% < 227 1 < I(AT,K) < 22" and A = Xy).

[She01, Problem 0.1] was stated a posteriori but is, I think, the real problem. It
says:

(#x) Can we have some (not necessarily much) classification theory for reason-
able non-first-order classes £ of models, with no use of even traces of com-
pactness and only mild set-theoretic assumptions?

This is a revised version of [She87] which continues [She83a], [She83b] but do not
use them. The paper [She87] and the present chapter relies on [She75a] only when
deducing results on ¢ € L, ,(Q); it improves some of its early results and extends
the context. The work on [She87] was done in 1977, and a preprint was circulated.
Before the paper had appeared, a user-friendly expository article of Makowsky
[Mak85] represented, gave background and explained the easy parts of the paper.
In [She87] the author has corrected and replaced some proofs and added mainly §6.
See more in [ST].

We thank Rami Grossberg for lots of work in the early eighties on previous
versions (i.e. [She87]) which improved this paper, and the writing up of an earlier
version of §6 and Assaf Hasson on helpful comments in 2002 and Alex Usvyatsov
for very careful reading, corrections and comments and Adi Jarden and Alon Siton
on help in the final stages.
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On history and background on L, «,Lec and the quantifier Q see [Kei71].
On (D, \)-sequence-homogeneous (which 2.2 - 2.5 here has generalized) see Keisler-
Morley [KM67]: this is defined in 2.3(5), and 2.5 is from there. Theorem 3.9 is
similar to [She83a, 2.7] and [She83b, 6.3].

Remark 0.2. On non-splitting (used here in 5.6) see [She71], [She90, Ch.I,Def.2.6,p.11]
or [SheT7bal.

We finish §0 by some necessary quotation.

By [Kei70] and [Mor70],
Claim 0.3. 1) Assume that b € L, ,,(Q) has a model M in which
{tpA(C_L@,M) ta € M}

is uncountable, where A C Ly, ,(Q) is countable. Then 1 has 2™ pairwise non-
isomorphic models of cardinality R1. In fact, we can find models M, of ¢ of car-
dinality Xy for a < 28t such that {tpa(a; @, M) : a € M,} are pairwise distinct,
where

tpa (@, A, M) = {o(Z,0) : ¢(7.7) € A, M [= ¢la,b], and b€ “A}.

2) If Y € Loy w(Q), A C L, (Q) is countable, and
{tpa(@, @, M) :a € “”M and M is a model of 1}

is uncountable, then it has cardinality 2%°.

Also note
Observation 0.4. Assume (T is a vocabulary and)
(a) K is a family of T-models of cardinality .
(0) > A"
(¢) {(M,a): M € K and a € "M} has > p members up to isomorphism.

Then K has > p models up to isomorphism (similarly for = p).

Proof. See [She78, VIII,1.3] or just check by cardinal arithmetic. Oo.a

Furthermore,

Claim 0.5. 1) Assume X is regular uncountable, My is a model with countable
vocabulary and T = Thy(My), < a binary predicate from 7(T) and (PMo, <Mo) =
(A, <). Then every countable model M of T has an end-extension; i.e. M < N and
PM £ PN andac PNAbe PMha<Nb=ac M.

2) Moreover, we can further demand (PY,<™) is non-well ordered and we can
demand |PN| = Xy and (PN, <") is Ny-like (which means that it has cardinality
Ny but every (proper) initial segment has cardinality < N1 ); and we can demand N
1s countable.

3) Moreover, we can add the demand that in (PN, <) there is a first element in
PN\ PM_ or that there is no first element in PN\ PM.
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Proof. 1,2) By Keisler [Kei70].
3) By [She75c|, and independently Schmerl [Sch76]. o

By Devlin-Shelah [DS78], and [She98, Ap,§1] (the so-called weak diamond).
Theorem 0.6. Assume that 2 < 22"

1) There is a normal ideal WDmIdy+ on AT (and A\™ ¢ WDmldy+, of course —
the members are called ‘small sets’) such that: if S € (WDmldy+)t (e.g., S = A1)

and ¢ : N> (AF) = {0,1}, then there is £ = (04 : o < AT) € X2 such that for every
n e (AY) the set {§ € S:c(n | 8) =Ly} is stationary.

We call ¢ a weak diamond sequence (for the colouring ¢ and the stationary set

S).
2) fix = pwa(AT), the cardinal defined by () below, is > 2* (we do not say ‘> A" )

(*) (a) If u < ps and c. for € < p is as above then we can find £ as in part
(1) for all the c.-s simultaneously.
(B) ps« is mazimal such that clause («) holds.

3) tw = punit( AT, 20) satisfies pio = 22"+ and moreover A > 3, = . = 2>, where
Hunit (AT, X) is the first cardinal p such that we can find (c, : o < p) such that:

(a) cq is a function from )‘+>(/\+) to x.

(b) There is no p € N\ such that for every a < p, for some n € (A1), the
set {0 < X:co(n | d)# p()} is stationary (so pwa(AT) = punir(AT,2)).

See more in [She09b, §0,89] and hopefully in [?].

The following are used in §2.
Definition 0.7. 1) For a regular uncountable cardinal A, let
ITA] = {S C X : some pair (E,a) witnesses S € I(\)}
(see below).
2) We say that (F, @) is a witness for S € I[)\] if:

(A) E is a club of the regular cardinal A.

B) t=(ua:a<A), an Ca,and f € ay = ag = L Nag.

(C) For every § € ENS, us is an unbounded subset of ¢ of order-type < § (and
d is a limit ordinal).

By [She93] and [Sheal:
Claim 0.8. Let A be regular uncountable.
1) If S € I[\] then we can find a witness (E,a) for S € I[\] such that:

(a) 6 € SN E = otp(as) = cf(d)
(b) If o ¢ S then otp(ay) < cf(d) for some d € SNE.

2) S € I[N iff there is a pair (E,2?) such that:
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(a) E is a club of the regular uncountable .

(b) P =(P,:a <)), where P, C P(a) has cardinality < .

(¢) fa<pB<Xand a € ue Pg thenuNa € P,.
)

(d) If 6 € ENS then some u € Ps is an unbounded subset of § (and § is a
limit ordinal).
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§ 1. AXIOMS AND SIMPLE PROPERTIES FOR CLASSES OF MODELS

Context 1.1. 1) Here in §1-85, 7 is a vocabulary, K will be a class of 7-models, and
<¢ a two-place relation on the models in K. We do not always strictly distinguish
between K and ¢ = (K, <;). We shall assume that K, <; are fixed; and usually we
assume that ¢ is an AEC (abstract elementary class) which means that the following
axioms hold.

2) For a logic £ let M <, N mean M is an elementary submodel of N for the
language £(7p7) and 1y C 75 iee. if p(Z) € L(Ta) and @ € Y@M then
M = ¢la] & N |= pla].

Similarly, M <p N for L a language; i.e. a set of formulas in some L(7ps). So
M < N in the usual sense means M <y, N as L is first-order logic and M C N
means M is a submodel of N.

Definition 1.2. 1) We say ¢ is a AEC with LST number A(¥) = LST, if:

Ax. 0: The truth of M € K and N < M depends on N, M only up to isomor-
phism; i.e.
MeKANM=N=NEeK

and ‘if N <¢ M and f is an isomorphism from M onto the 7-model M’, f | N is
an isomorphism from N onto N’ then N/ <z M'.

Ax. L if M <¢ N then M C N (i.e. M is a submodel of N).
Ax. II: My <¢ My <¢ My implies My <¢ My and M <¢ M for M € K.

Ax. III: If X\ is a regular cardinal, M; is <g-increasing (i.e. i < j < A implies
M; <¢ M;) and continuous (i.e. for 6 < X\, M5 = |J M;) for i < X then
<0

My < U M;.

i<

Ax. IV:If ) is a regular cardinal and M; (for i < \) is <g-increasing continuous
and M; <g N for i < A then U M; <¢ N.

i<
Ax. V: If N() Q Nl SE M and N() Se M then NO Sg Nl.

Ax. VI. If AC N € K and |A| < LST¢, then for some M <; N, we have A C |M|
and ||[M|| < LST¢ (and LST; is the minimal infinite cardinal satisfying this axiom
which is > |7]; the > |7| is for notational simplicity).

2) We say ¢ is a weak® AEC if above we omit clause IV.

Remark 1.3. Note that Ax.V holds for <, for any logic L.

2This is not really investigated here.
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Notation 1.4. Let Ky :={M € K : |M||= A}, K<) = |J K,, and
pn<A

)= (K, <el Ky)
(and similarly for £<y, K<, >x, K>»). Recall that L denotes first-order logic.

Definition 1.5. The embedding f : N — M is called a <g-embedding if the range
of f is the universe of a model N’ <¢ M (so f: N — N’ is an isomorphism onto).

Definition 1.6. Let 77 be a theory in £L(1), T a set of types in L(7;) for some
logic L, usually first-order.
1) EC(T1,T") = {M : M an 7;-model of T} which omits every p € T'}.

We implicitly use the fact that 7y is reconstructible from 77 and I'. A problem
may arise only if some symbols from 71 are not mentioned in 77 or I', so we may
write EC(T1, T, 71), but usually we ignore this point.

2) For 7 C 1; we let

PC(Ty,T',7) = PC,(T,T') = {M : M is a 7-reduct of some M; € EC(T},I)}.

3) We say that a class of 7-models K is a PCY (or PCy ,) class when
K =PC,.(T1,I)
for some 71 O 7, T} a first-order theory in the vocabulary 71 and I'y a set of types
in L(m), with |T1] < A and |T'q] < p.
4) We say ¢ is PCY or PCy , if for some (T1,T'1,71), (T2, I'2,72) as in part (3) we
have K = PC(T1,T';,7) and
{(M,N)e K xK:M <¢ N} = PC(T5,T,7),

where 7/ = 7 U {P} C 7, with P a new one-place predicate. (So |r| < A and
ITy| < pfor £=1,2))

If p = X\ we may omit pu.

5) In (4) we may say “t is (A, u)-presentable,” and if A = pu we may say “t is
A-presentable”.

Example 1.7. If T C L(7), I a set of types in L(7), then K := EC(T,I') and
<¢ := <L, form an AEC with LST-number < |T'| + |7| 4+ No; that is, it satisfies the
Axioms from 1.2 (for LSTe := |7] + Ry).

Observation 1.8. Let I be a directed set (i.e. partially ordered by <, such that
any two elements have a common upper bound).

1) If My is defined fort € T and t < s € I implies My <¢ My, then |J M € K and

sel
M; <¢ | M for everyt € I.
sel

2) If in addition (Vt € I)[M; <¢ NJ, then |J M <¢ N.
sel
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Proof. By induction on |I| (simultaneously for (1) and (2)).

If I is finite, then I has a maximal element ¢(0), hence |J M; = My, so there
tel
is nothing to prove.

So suppose |I| = p and we have proved the assertion when |I| < p. Let A = cf(u)
so A is a regular cardinal; hence we can find I, (for a < \) such that |I,| < |1,
a<pf < XimpliesI, CIg CI, |JI,=1and ;= |J I, for limit 6 < A,

a< a<d
and each I, is directed and non-empty. This is trivial when A > Ry and obvious

otherwise. Let M* := |J My; so by the induction hypothesis on (1) we know that
tel,

t € I, implies M; < M“. If a < B then t € I, implies ¢ € Ig, hence M; < MP;
hence by the induction hypothesis on (2) applied to (M, : t € I,) and Mg we have
M= |J M; <¢ M5,

tel,
So by Ax.III applied to (M® : a < \), we have M <, |J M# = |J M;, and
B<A tel
as t € I, implies M; <, M“, by Ax.II, t € I implies M; <; |J M. So we have
sel

finished proving part (1) for the case |I| = p.

To prove (2) in this case, note that for each o < A, (M : t € I,) is <g-directed
and t € I, = M; < N, so clearly by the induction hypothesis for (2) we have
Me SE N. So

a < A= M* <, N,
and as proved above (M?* : « < \) is <g-increasing and obviously it is continuous,

hence by Ax.IV, | M;= |J M* <¢ N. O g
sel a<A

Lemma 1.9. [Lemma/Definition]
1) Let
71 =7e(+) =7 U{F" : i <LSTe, n < w}
with F* an n-place function symbol (assuming, of course, F* ¢ 7).

Every model M (in K ) can be expanded to an 11-model My such that:

(A) Mz <¢ M, where forn < w and a € "|M|, Mg is the submodel of M with
ungverse {F}*(a) : i < LSTe}.

(B) Ifa € ™| M| then | M| < LST.

(C) If b is a subsequence of a permutation of @, then My <¢ M.

(D) For every Ny C My we have Ny | 7 <¢ M.

2) We say M= (M} :se€l)isat-SE (a suitable expansion) of
M= (M;:sel
when:
(A) M} is a Te(+)-expansion of M, where 1¢(+) is defined as above.
(B) M, <¢ My = M} C M;".
3) Given M = (Mg : s € I) with My € K¢ and (sq : a < o) an enumeration of I,
there is a ¢-SE M such that:

o For every a there is a finite u C My, such that 8 < a = u € M.
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Proof. We define, by induction on n, the values of M; and of F*(a) for every
i < LSTe, @ € ™|M]| such that F is symmetric (i.e. preserved under permutation
of its variables). Arriving to n, for each a € "M by Ax.VI there is an M; <¢ M
such that ||Mz|| < LSTe, |M3| includes

U{M(; : b a subsequence of @ of length < n} Ua

and Mz does not depend on the order of a. Let |Mz| = {¢; : ¢ < ip < LST¢} and
define F]*(a) = ¢; for i < ip and ¢g for ig <4 < LST,.

Clearly our conditions are satisfied; in particular, if b is a subsequence of @ then
My <¢ M; by Ax.V, and clause (D) holds by 1.8 and Ax.IV. Oig

Remark 1.10. 1) This is the “main” place we use Axs.V,VI; it seems that we use
it rarely; e.g. in 2.12; which is not used later. It is clear that we can omit Ax.V if
we strengthen somewhat Ax.VT for the proofs above.

2) Note that in 1.9, we do not require that Mj is closed under the functions (F/*)M:.
By a different bookkeeping we can have this: renaming

Te=TU{F":i<LSTe xe, n<w}
for ¢ <w and we choose a 7y y-expansion M; , of M such that
m<n= Ml,n r’TLm = MLm.

Let My, := M, and if M, ,, is defined, choose a (non-empty) subset AL™ of M,
of cardinality < LST, for every a € “~ (M), such that AL™ is closed under the
functions of M, and M | Aé’" <¢ M. Concretely, let

Ay" = {cai i€ [LSTe - n, LSTe- (n+1))}

and define M ,, 1 by letting (F/™)M1n+1(@) = ¢5 ;. Let My = M, be the 7,,-model
with the universe of M such that n <w = My | 71, = My .

3) Actually, M 1 suffices if we expand it by making every term 7(Z) equal to some
function F(z).

4) Alternatively, for n > 0 demand that F/*(a) is Fi‘ul(d | u), where
u={i<n:(Vj<i)la; #aj]}.

Lemma 1.11. 1) € 4s (LSTe, 2V5T¢)-presentable.

2) There is a set T of types in L(m) (where 71 is from Lemma 1.9) — in fact,
complete [and] quantifier-free — such that K = PC.(2,T).

3) For the T from part (2), if M1 C Ny € EC(&,T') and M, N are the T-reducts of
My and Ny, respectively, then M <g N.

4) For the T from part (2), we have
{(M,N) e K?: M <, N} = {(M1 I 7,N1 [ 7): My C Ny are both from PCp(@,F)}.
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Proof. 1) By part (2) the first half of “¢ is (LST¢,2%57¢)-presentable” holds. The
second part will be proved with part (4).

2) Let T',, be the set of complete quantifier-free n-types p(xo,...,xn—1) in L(m)
such that if M7 is a 7i-model, a realizes p in M, 5 and M is the 7-reduct of My,
then Mz € K and Mg <; Mj for any subsequence b of any permutation of a.

Recall that M (for € € ™|My]) is the submodel of M whose universe is
{F™(¢) : i < LSTy}. Clearly there are such submodels (when K # ).

Let T" be the set of p which, for some n, are complete quantifier-free n-types (in
L(7y)) which do not belong to I';,. By 1.8(1) we have PC,(2,T') C K and by 1.9
K CPC.(2,1).

3) Similar to the proof of (2) using 1.8(2).

4) The inclusion 2 holds by part (3); so let us prove the other direction. Given
N <y M we apply the proof of 1.9 to M, but demand further a € "N = M; C N,
simply add this demand to the choice of the Mz-s (hence of the F}*-s). We still
have a debt from part (1).

We let I, be the set of complete quantifier-free n-types in 71 := 7 U{P} (P a
new unary predicate), p(xo, . ..,Zn—1) such that:

(*) If My is an 7{-model, a realizes p in M;, and M is the T-reduct of My, then
() My <¢ Mj for any subsequence b of a.
(B) bC PM = M; C PMi for b C a.

We leave the rest to the reader. (Alternatively, use PC., (7", T'), with 7" saying “P
is closed under all the functions F*.) 04 11

By the proof of 1.11(4), we conclude:

Conclusion 1.12. The 71 and T from 1.11 (so |m1| < LSTe) satisfy the following,
for any M € K and any 11-expansion My of M which is in EC,, (&,T).

(a) N1<]LM1§N1§M1:>N1 [TSEM
(b) Ny <L No <. M1 = N1 CNo C My =N [T<¢Na [T

(¢) If M <¢ N then there is a T1-expansion N1 of N from EC, (&,T) which
extends M.

Conclusion 1.13. If £ has a model of cardinality > 3, for every a < (285Te)+
then K has a model in every cardinality > LST.

Proof. Use 1.11 and the classical upper bound on the value of the Hanf number for
first-order theory and omitting any set of types, for languages of cardinality LST,
(see e.g. [She90, VII,5.3,5.5]). 0113

Notation 1.14. 1) If M € A then M | 2 is the submodel of M with universe
[ M| O[]

2) If B = “M € ¢’ then M[B] is the following Tx-model:
(A) it has universe {b € B : B |= “b an element of the model M”}.
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(B) for any m-place predicate @ of T,
QM = {(bo, . b1 : B = “M = Qlbo, ..., bm_1]"}.

(C) Similarly for any m-place function symbol G of .

Conclusion 1.15. Assume that € is an AEC, p = |7¢| + LSTe, and for simplicity
Te € p or just 7 C L, recalling L is the constructible universe of Gébel.
IFA>p, A< (H(x),€), p+1C A, and e
(which means {(M,N) : M <¢ N has universe C u} € )
then:

(A MetNK=MA< M

(B) If M <¢ N (so both belong to K) and M,N € 2 then M [ A <¢ N [ 2.
(C) IfA<DB, [b<pg u=be A, and B = “M € K” then M[B] € K.
(D) Similarly for B = “M <¢ N”.

Proof. Should be clear. U1

Remark 1.16. 1) Clearly { > LST¢ : K, # 0} is an initial segment of the class of
cardinals > LST.

2) For every cardinal x (> Xg) and ordinal a < (2%)*, there is an AEC ¢ such that
LST, = k = |7¢| and € has a model of cardinality in the interval [n,]a (/{)) This
follows by [She90, VII, §5, p.432] (in particular, [She90, VII, 5.5(6)]) because

(A) If 7 is a vocabulary of cardinality < x, T C L(7), and T" a set of (L(7), <w)-
types, then K = {M : M a 7-model of T omitting every € I'} and <; =
<[ K form an AEC (we can use I" a set of quantifier-free types and T' = &),
with LST(¢, <) < k.

(B) If {¢i #¢; i < j <k} CT then K above has no model of cardinality < x.

3) For more on such theorems, see [She99].

4) We can phrase 1.15 as “for any 9B in appropriate EC(T7,T1)”, but the present
formulation is the way we use it.
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§ 2. AMALGAMATION PROPERTIES AND HOMOGENEITY

Context 2.1. tis an AEC.

The main theorem 2.9, the existence and uniqueness of the model-homogeneous

models, is a generalization of Jonsson [J6n56], [J6n60] to the present context. The
result on the upper bound 22" {61 the number of D-sequence homogeneous

universal-models of cardinality is from Keisler-Morley [KM67]. Earlier there were
serious good reasons to concentrate on sequence-homogeneous models, but here we
deal with the model-homogeneous case. From 2.14 to the end we consider what we
can say when we omit smoothness (i.e. Ax.IV of Definition 1.2).

Definition 2.2. 1) D(M) := {N/=: N <¢ M, |N| < LST}.
2) D(¢) :== {N/=: N € K, ||N|| < LST}.

3) D(M) = {tpy(r,,)(@, D, M) :a € “"M}.

Definition 2.3. Let A > LST,.

1) A model M is A-model-homogeneous when: if Ny <¢ N1 < M and | N1|| < A,
then any <g-embedding of Ny into M can be extended to a <g-embedding Ny — M.

1A) A model M is (D, A)-model-homogeneous if D = D(M) and M is a A-model
homogeneous.

1B) Adding “above p” means in £>,.

2) M is A-strongly model-homogeneous if: for every N € K. such that N <, M,
any <g-embedding of N into M can be extended to an automorphism of M.

3) M is A\-universal model-homogeneous (for £) when: A > LSTy, every® N € Ksr,
is <g-embeddable into M and for every Ny, Ny € K. such that Ny <¢ N; and
<g-embedding f : Ng — M there exists a <g-embedding g : N; — M extending f.

Unlike (1), we do not demand that N; is <g-embeddable into M.

[That sounds ezxactly like what you’re demanding. I don’t know how
else to interpret ‘there exists a <;-embedding ¢ : N; — M.’]

(The universal is related to A, it does not imply M is universal).

4) For each of the above three properties and the one below, if M has cardinality
A and has the A-property then we may say for short that M has the property (i.e.
omitting \).

5) M is (D, A)-sequence-homogeneous if:
(A) D = D(M) = {tpr(ry)(a, D, M) : a € [M|} (ie. a a finite sequence from

3In fact, N € K<, is okay by 2.5(2).
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(B) Ifa; e M fori < a < X\, bj € M for j < a, and
tpL(rary((ai 10 < @), @, M) = tpy(, ((bi 11 < ), &, M),
then for some b, € M,
tPL(ry) ({0 18 < @) (aa), @, M) = tpp (7, ((bi 1 7 < @) (ba), &, M).

5A) In (5) we omit D when
D = {tpy(4)(@,@,N) :a € "N, n <w, and M <y, N}.

6) We omit the “model” or “sequence” when it is clear from the context; i.e. if D is
as in 2.2(3) = 2.3(5)(a), (D, A)-homogeneous means (D, A)-sequence-homogeneous.
If D is as in Definition 2.2(1), (D, A\)-homogeneous means (D, \)-model-homogeneous.
If not obvious, we mean the model version.

7) M is A-universal when every N € K can be <g-embedded into it. Similarly for
(< A)-universal and (< A)-universal.

Claim 2.4. Assume N is A-model-homogeneous and D(M) C D(N) (and LST, <
A, of course).

1) If Mo <¢ My <¢ M, || Mo|| < A, ||M1]] < A, and f is a <¢-embedding of My into
N, then we can extend f to a <g-embedding of My into N.

2) If My <¢ M and | M1|| < X then there is a <g-embedding of M, into N.

Proof. We prove simultaneously, by induction on g < A, that:

(i) For every My <¢ M with ||[My]| < p (Yes! Not ‘< pul’), there is a <¢-
embedding of M; into V.

(1), If Mo <¢ My <¢ M, ||My]| < p, and || M|l < A, then any <g-embedding of
My into N can be extended to a <g-embedding of M; into N.

Clearly (4) is part (2) and (i), is part (1), so this is enough.

Proof. Proof of (i),:
If i < LSTy, this follows by D(M) C D(N).

If u > LSTe, then by 1.12 we can find M; = (M{ : o < p) such that M; =

U My, M is <g-increasing continuous with «, and
a<p

Oé<M:>||M1Q|| <M/\M1a <g M.

We define a <¢g-embedding f, : M{* — N by induction on « such that f, extends
fp for B < a. For a = 0 we can define f, by clause (i),( (the base case of the

induction hypothesis), where x(3) := ||M .

Next we define f, for a = v + 1: by (ii),(a) (which holds by the induction
hypothesis) there is a <¢-embedding f, of M{* into N extending f,.

Lastly, for limit o we let fo, = |J fg; it is a <¢-embedding into NV by 1.8. So
B<a
we finish the induction and |J f, is as required. Oy
a<p

o
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Proof. Proof of (ii),:

[I have a lot of doubts about this proof. I’'m not qualified to judge it
on its merits, but a proof by induction on y < A\ should end with ‘now
take = \.” If it starts with ‘assume that ;= \,” you’re skipping the bit
where the actual proof should go.]

First, assume that 4 = X\ so we have proved (ii)y for 8 < X and ||My|| = A >
|Mol|, so LST¢ < p = A hence we can find (M{* : o < p) as in the proof of (i), such
that MY = My and let x(8) = |M/||. Now we define fz by induction on 8 < p
such that fg is a <¢-embedding of M 51 into N and f3 is increasing continuous in /3
and fo = f. We can do this as in the proof of (i), by (ii)y(q) for o < p.

Second, assume ||M7|| < A. Let g be a <g-embedding of M into N; it exists by
(), which we have just proved. Let g be onto Ni <¢ N, and let g [ My be onto
N} <¢ Ni, and let f be onto Ny <¢ N. So clearly h : N} — Ny defined by h(g(a)) =
f(a) for a € |Mp|, is an isomorphism from N| onto Ny. So Ny, N}, Ni <¢ N. As
[|M1]] < A clearly ||N7|| < A so (by the assumption “N is Ad-model-homogeneous”
— see Definition 2.3(1)) we can extend h to an isomorphism A’ from Nj onto some
Ny <¢ N,so h'og: M; — N is as required. O,

[Also, I don’t see why (i), needs to be its own clause. If f: My; — N
can be extended to M; — N for any M; up to some cardinality, then it
would trivially follow that a map from M; — N exists. The fact that it’s
written like this is making me intensely suspicious.] Co 4

Conclusion 2.5. 1) If M, N are model-homogeneous, of the same cardinality (>
LSTe), and D(M) = D(N) then M, N are isomorphic. Moreover, if My <¢ M
and || M|l < ||M||, then any <¢-embedding of My into N can be extended to an
isomorphism from M onto N.

2) The number of model-homogeneous models from € of cardinality \ is < 92T

If in the definition of LSTe (in Definition 1.2, Ax.VI) we omit ‘|7| < LST,
the bound 4s 22" 77!,
3) If M is A-model-homogeneous and D(M) = D() then M is (< \)-universal; i.e.
every model N (in K ) of cardinality < X has a <g-embedding into M.

So if D(M) = D(¥) then: M is A-model universal homogeneous (see Definition
2.3(3)) iff M is a A\-model-homogeneous iff M is (X, D(¢))-homogenecous.
4) If M is A-model-homogeneous then it is A-universal for

{N e K,:D(N)CD(M)}.

5) If M is (D, \)-sequence-homogeneous, (and A > LSTy) then M is a A-model
homogeneous.

6) For A > LSTe, M is A-model universal homogeneous iff M is X\-model-homogeneous
and (< LSTy)-universal.
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Proof. 1) Immediate by 2.4(1), using the standard hence-and-forth argument.

2) The number of models (in K) of power < LSTy is, up to isomorphism, < 2L5Te

(recalling that we are assuming |7(£)| < LST¢). Hence the number of possible D(M)
is < 22" So by 2.5(1) we are done.

3-5) Immediate. Uas

Remark 2.6. The results parallel to 2.5(1)-(4) for A-sequence homogeneous models
and D(M) also hold.

Definition 2.7. 1) A model M has the (A, u)-amalgamation property or am.p. (in
€, of course) if for every My, My such that |M;]| = A, || Ma|| = p, M <y My, and
M <¢ My, there is a model N and <g-embeddings f1 : M1 — N and fo : My —» N
such that fy [ |M| = fo | |[M]|.

Now the meaning of (e.g.) the (< A, < p)-amalgamation property should be clear.
Always A\, p > LST (and, of course, if we use ‘< p’ then p > LSTy).

1A) In part (1) we add the adjective “disjoint” when fi(M;) N fo(Ms) = M.
Similarly in (2) below.

2) ¢ has the (k, A, u)-amalgamation property if every model M (in K) of cardinality
k has the (A, p)-amalgamation property. The (k, A)-amalgamation property for ¢
means just the (k, k, A)-amalgamation property. The x-amalgamation property for
¢ is just the (k, k, k)-amalgamation property.

3) ¢ has the (\, p)-JEP (joint embedding property) if for any M;, My € K of
cardinality A and p, respectively, there is an N € K into which M; and M, are
<g-embeddable.

4) The A-JEP is the (A, A)-JEP.

5) The amalgamation property means the (k, A, u)-amalgamation property for every
A > K (> LSTy).

6) The JEP means the (\, u)-JEP for every A, u > LSTe.
Remark 2.8. Clearly, the roles of A and p are symmetric in 2.7.

Theorem 2.9. 1) If LSTy < k < A = A<", K\ # &, and t has the (<K, \)-
amalgamation property then for every model M of cardinality X\, there is a k-
model-homogeneous model N of cardinality A satisfying M <g N. If kK = A, then
alternatively the (< k, < A)-amalgamation property suffices.

2) So in (1), if kK = X then there is a universal, model-homogeneous model of
cardinality A, provided that for some M € K<y, D(M) = D(¢) or just € has the
LST,-JEP.

3) If € has the amalgamation property and the LST¢-JEP, then t has the JEP.

Remark 2.10. 1) The last assumption of 2.9(2) holds; e.g. if the (< LST, < 285T¢)-
JEP holds and |D(¢)| < A.

2) If D(M) = D(¢) for some M € K, then we can have such M of cardinality
S QLSTg .
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3) In 2.9, we can replace the assumption “(<k,\)-amalgamation property” by
“(< Kk, < A)-amalgamation property” if, e.g., no M € K_, is maximal.

Proof. Immediate; in (1), note that if x is singular then necessarily
B< A=A = ASFT

so we can replace k by xT. Oog
Remark 2.11. Also, the corresponding converses hold.

Lemma 2.12. 1) IfLST, < « and ¢ has the k-amalgamation property then € has the
(k, kT)-amalgamation property, and even the (k,x™, xkT)-amalgamation property.

2) If Kk < p < X and € has the (k,u)-amalgamation property and the (u,\)-
amalgamation property then € has the (k, \)-amalgamation property. If € has the
(k, i, 1) and the (i, \)-amalgamation property, then € has the (k, A, u)-amalgamation

property.

3) If \; is increasing and continuous for i < «, LSTe < Ao, and € has the
(Ai, b+ A, Aig1)-amalgamation property for every i < «, then t has the
(Mo, 4 + Ao, A )-amalgamation property.

4) If k < py < w, and for every M with | M|| = 1 there is N such that M <¢ N and
IN|| = p, then the (k,u, N)-amalgamation property (for €) implies the (K, p1, A)-
amalgamation property (for t).

5) Similarly with the disjoint amalgamation version.

Proof. Straightforward, e.g.

3) So assume My € Ky,, My <¢ My € K, 4»,, Mo <¢ My € K)_, and for variety
we prove the disjoint amalgamation version (see part (5)). By (e.g.) 1.12 we can
find an <g-increasing continuous sequence (M ; : i < «a) such that Mo = Mo,
My o = M, and My ; € Ky, for i < o

Without loss of generality M; N My = My. We now choose M ; by induction on
i < « such that:

For ¢ = 0 see clause (b); for ¢ limit take unions; for ¢ = j + 1 apply the disjoint
(Aj, b+ A, Ai)-amalgamation to Ms j, My j, Ma j11. For i = o we are done. g 19

Conclusion 2.13. If LST: < x1 < x2 and t has the k-amalgamation property
whenever k € [x1, X2) then t has the (k, \, u)-amalgamation property for all A\, €

[k, X2]-
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It may be interesting to note that we can say something even when we waive
Ax.IV.

Context 2.14. For the remainder of this section t is just a weak AEC; i.e. Ax.IV
is not assumed.

Definition 2.15. Let M € K have cardinality A > LST,, with A a regular un-
countable cardinal. We say M is smooth if there is a <g-increasing continuous
sequence (M; : ¢ < X\) with M = |J M;, M; <¢ M, and ||M;|| < X for i < A.

i<

Remark 2.16. We can define S/D-smooth for S a subset of P(A) and D a filter on
P(A).

That is, M € K is (S/D)-smooth when for every one-to-one function f from
|M| onto A, the set

{ueP\): M| f'u <¢ M} €D.
Usually we demand that for every permutation f on A,
{u C X\:uis closed under f} € D,

and usually we demand that D is a normal LST:‘—complete filter).

Claim 2.17. Assume that A = A\<* > |1x|, €< has no mazimal member, ¢ has
the (<A, <A, <\)-amalgamation property, and LSTy < X (or at least assume in
the (<A, <\, < \)-amalgamation demand that the resulting model has cardinality
< A). Then t\ has a smooth model-homogeneous member.

Proof. Same proof. Oa.17

Lemma 2.18. If M, N € K)(A > LST:) are smooth, model-homogeneous, and
D(M)=D(N) then M = N.
Proof. By the hence-and-forth argument, left to the reader.
(The set of approximations is
{f : f is an isomorphism from some M’ <, M
of cardinality < A onto some N’ <; N},

but note that for an increasing continuous sequence of approximations, the union
is [not always / never] an approximation.) Oo.1s

Remark 2.19. It is reasonable to consider

(x) If M € K, is smooth and model-homogeneous and N € K is smooth
(with A > LST¢), and D(N) C D(M) then N can be <g-embedded into M.

This can be proved in the context of universal classes (e.g. Ax.Fr; from [She09d]).



Paper Sh:88r, version 2024-09-01. See https://shelah.logic.at/papers/88r/ for possible updates.

20 SAHARON SHELAH

Fact 2.20. 1) If ¢, = (K;,<;) is a [weak] AEC (i.e. with \; = LST(K;, <;) > Rg
fori < a), 7, ;=7 fori < a, K := [\ Kj;, and ‘<’ is defined by
<o
M <N <& (Vi<a)M <; N,
then ¢ = (K, <) is a [weak] AEC with LST, < > A,.
i<«
2) Concerning Axs.I-V, we can omit some of them in the assumption and still get

the rest in the conclusion. But for Ax.VI we need in addition to assume Ax.V +
Ax.IVy for at least one § = cf(0) < > A,.

<o
Proof. Easy. U220
Example 2.21. Counsider the class K of norm[ed] spaces over the reals with M <,

N iff M C N and M is complete inside N. Now ¢t = (K, <;) is a weak AEC with
LST¢ = 2% and it is as required in 2.17.
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§ 3. LIMIT MODELS AND OTHER RESULTS

In this section we introduce various variants of limit models (the most important
are the superlimit ones). We prove that if £ has a superlimit model M* of cardinality
A for which the A-amalgamation property fails and 2* < 2*", then [(\, K) = 2*
(see 3.9). We later prove that if ¢ € Ly, .,(Q) is categorical in N; then it has a
model in Ry (see 3.19(2)). This finally solves Baldwin’s problem (see §0). In fact,
we prove an essentially more general result on AECs and A (see 3.12, 3.14).

The reader can read 3.3(1),(1A),(1B) ignore the other definitions, and continue
with 3.8(2),(5) and everything from 3.9 (interpreting all variants as superlimits).

You may wonder if can we prove the parallel to Baldwin conjecture in AT if
A > Ng. It would be:

@, If £ is a A-presentable AEC (where LST; = A), categorical in AT, then
Ky++ # @.

This is false when cf(\) > N,.

Contezt 3.1. €is an AEC.

Example 3.2. Let A be given and ¢ = (K, <¢) be defined by
K ={(A,<): (A,<) a well-order of order type < A*}
<= {(M7 N) € K x K : N is an end-extension of M}

Now

(A) tis an abstract elementary class with LST, = X and ¢ categorical in A\T.
(B) If X has cofinality > ®; then € is A-presentable (see e.g. [She90, VII,§5] and
history there); by clause (a) it is always (), 2*)-presentable.
(C) & has no model of cardinality > A™.
Note that if we are dealing with classes which are categorical (or just simple in

some sense), we have a good chance to find limit models and they are useful in
constructions.

Definition 3.3. Let A be a cardinal > LST,. For parts (3)—(7) (but not (8)), for
simplifying the presentation we assume the axiom of global choice (alternatively,
we restrict ourselves to models with universe an ordinal < A™).

1) M € K is locally superlimit (for €) if:

(a) For every N € K such that M <; N, there is M’ € K isomorphic to M
such that N <; M’ and N # M’.
(b) If 6 < AT is a limit ordinal, (M; : i < d) is <e-increasing sequence, and

M; =2 M for i < § then | M; = M.
i<d

1A) M € K, is globally superlimit if (a)4(b) hold and

(¢) M is universal in £y; i.e. any N € K can be <;-embedded into M.
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1B) When we just say superlimit, we mean globally. Similarly with the other notions
below; we define the global version as adding clause (1A)(c), and the default version
will be the global one.

(Note that in the local version we can restrict our class to
{N € K, : M can be <;-embedded into N}
and get the global one.)

2) For © C {p € [Ro, A) : p regular}, M € K is locally (X, ©)-superlimit if:

(a) As in part (1) above.
(b) If (M; : ¢ < p) is <g-increasing, M; = M for i < p, and g € O then
UM =M.
i<p
2A) If © is a singleton (say, © = {0}) we may say that M islocally (), §)-superlimit.

3) Let S C AT be stationary. M € K is called locally S-strong limit or locally
(A, S)-strong limit when for some function F : Ky — K, we have:

(a) N < F(N) for N € K.
(b) If 6 € S is a limit ordinal, (M; : i < §) is a <g-increasing continuous
sequence? in Ky, My = M, and
i<d=>F(M1) <e¢ Mo,
then M = |J M;.
i<d
(¢) If M <y M; € K then there is N such that M; <; N € K.

4) Let S C AT be stationary. M € K, is called locally S-limit or locally (), S)-limit
if for some function F : K, — K, we have:

(a) N < F(N) for N € K.
(b) If (M; : i < AT) is a <p-increasing continuous sequence of members of K,
My = M, and F(M;11) <¢ M, then for some closed unbounded® subset
C of AT,
deSNC = Ms=M.

(¢) If M <¢ My € Ky then there is N such that M; <¢ N € K.

5) We define “locally S-weak limit” and “locally S-medium limit” like “locally S-
limit”, “locally S-strong limit” respectively, by demanding that the domain of F is
the family of <g-increasing continuous sequence of members of £ of length < A
and replacing “F(M; 1) <¢ M;42” by
“Mip1 <e F((Mj : j <i+1)) <e Miyo".

We replace “limit” by “limit™" if

“F(Mig1) <e Mit2” and “M,p1 <e F((M; 1§ <i+1)) <¢ Miyo”
are replaced by “F(M;) <¢ M;11” and “M; <¢ F((M; : j <)) <¢ M;}1”, respec-
tively.
6) If S = AT then we omit S (in parts (3)-(5)).

4No loss if we add M;4+1 =2 M, so this simplifies the demand on F; i.e. only F(M') for M’/ = M
are required.
5We can use a filter as a parameter.
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7) For © C {u € [No,A] : p is regular}, M is locally (A, ©)-strong limit if M is
locally {§ < At : ¢f(d) € ©}-strong limit. Similarly for the other notions (where
O C {p < A:pregular}). If we do not write A we mean A = || M||.

8) We say that M € K is invariantly strong limit when in part (3) we demand
that F is just a subset of {(M,N)/= : M <¢ N are from K,} and in (3)(b) we
replace “F(M;11) <¢ M;42” by

“3N)[Miy1 <e N <¢ Mizo A (M, N)/= € F],”
but (abusing notation) we still write N = F(M) instead of ((M,N)/ =) € F.
Similarly with the other notions, so if F acts on suitable <g-increasing sequence of
models then we use the isomorphism type of M~ (N).

Remark 3.4. [Obvious implication diagram:]

For ©,5; as in 3.3(7) and S; C {d < At : cf(d) € O} a stationary subset of AT:

superlimit = (A, { € Reg : p < A})-superlimit
(A, ©)-superlimit

S1-strong limit

N

S1-medium limit S1-limit

~

S1-weak limit

Lemma 3.5. 0) All the properties are preserved if S is replaced by a subset. and if
t has the A-JEP then the local and global version in Definition 3.8 are equivalent.

1) If S; C AT fori < AT, S:={a < AT :(3i < a)la €8]}, and S;Ni =& for
i < A, then M s S;-strong limit for each i < X\ if and only if M is S-strong limit.

2) Suppose k < X is regular, S C {6 < AT : cf(d) = Kk} is a stationary set and
M € K then the following are equivalent:

(a) M is S-strong limit.
(b) M is (A {k})-strong limit.
(¢) M €ty is <g-universal but not <g-mazimal, and there is a function
F: K\ — K satisfying (VN € K)\)[N < F(N)] such that if M; € Ky for
1 < K,
1< j = M; < Mj,
F(Mi+1) SE MH_Q and MO = M then U Mz =M.
<K
24) If S C A\t and © = {cf(d) : 6 € S}, then M is S-strong limit iff clause (2)(c)
above holds for every k € O.

3) In part (1) we can replace “strong limit” by “limit”, “medium limit” and “weak
limit”.
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4) Suppose r < X is regular, S C {6 < At : cf(0) = &} is a stationary set which
belongs to I[\] (see 0.7, 0.8 above) and M € K.

The following are equivalent:

(a) M is S-medium limit in €.
(b) M € Ky is <g-universal not mazimal and there is a function
F: H>]:()\ — K
such that
(a) For any <g-increasing (M; : i < a), if My = M, a < k, and M; € K,
then My, <¢ F((M; : i < a)).
(8) If (M; :i < K) is <g-increasing, My = M, M; € Ky, and for i < k we
have M1 <¢ F((M; :j <i+1)) <¢ Mo then |J M; = M.
1<K

Proof. 0) Trivial.

1) Recall that in Definition 3.3(3), clause (b), we use F only on M;;1. (See the
proof of (2A) below, second part.)
2) For (c) = (a) note that the demands on the sequence are “local:”
Mty <e F(Miy1) <¢ Mito

(whereas in part (4) they are “global”).
2A) First assume that M is S-strong limit and let F witness it. Suppose k € O,
so we choose ¢, € S with cf(d,) = k and let (o; : i < k) be increasing continuous
with limit §, ap = 0, and ;11 a successor of a successor ordinal for each i < k. We
now define F,; as follows: first we will define F,, , by induction on o < 6.

(a) If @ =0 then F o(M) :== M.

(b) f =+ 1then F, (M) :=F(F,g(M)).

(c) If & <4 a limit ordinal then F,, (M) :== |J Fy g(M).
B<a

Lastly, let F,,(M) := F s(M).
Now suppose (V; : i < k) is <g-increasing continuous, N; € K and
F.(Nit1) <e Nit2

for i < k, and we should prove N,, = M. Now we can find (M; : j < ") such that
it obeys F and M,, = N; for i < k; so clearly we are done.

Second, assume that for each k € O, clause (c) of 3.5(2) holds and let F
exemplify this. Let (k. : € < g,) list © (so e, < AT) and define F as follows. For
any M € ¢ choose M|, by induction on € < €, as follows:

o My =M

® Micqy) = Fp (M)

e For ¢ limit let M) := ... M.
Lastly, let F[M] := M| ;. Now check.
3) No new point.

4) First note that (a) = (b) should be clear. Second, we prove that (b) = (a) so
let F witness that clause (b) holds. Let E, (uq : @ < A) witness that S € I[)\]; i.e.
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(¥)1 (a) Eisaclubof A
(b) uq € o and otp(ua) < K for a < A
(¢) If @ € SN E then sup(ua) = o and otp(uqa) = k.
(d) If a € A\ (SN E) then otp(uy) < k.
(e) If & € ug then uq =ugNa.

We can add

(x)2 (f) If B € uq then B is of the form 3y + 1.
Let (e : € < A) list E in increasing order; without loss of generality, ag = 0 and
a1+ 18 a limit ordinal (note that only the limit ordinals of S count).

To define F’/ as required we shall deal with the requirement according to whether
§ € Sis “easy” (i.e. 6 ¢ E, 500 € (ae,ae11] for some € < AT, so after a. we can
“take care of it”), or § is “hard” (i.e. § € E) so we use the a € us.

We choose (e5 : 6 € S\ E) such that § € (e, aer1] NS implies es C § = sup(es)
and min(es) > a., otp(es) = K, e5 is closed, and

a€es=suplesNa)=aVac{3y+2:vy<d}
If § € SN E let es be the closure of us. Let (y5,¢ : ¢ < k) list es in increasing order.

We now define a function F’; so let (M; : j < i+ 1) be given and let
a: < i < agy1. We fix e ([so fixing the interval| (a.,a.y1)) and now define
F'((M; : j <i+1)) by induction on ¢ € [, Get1), assuming that if a, <7/ +1<
i+ 1 then F/((M; : j < j'+1)) <¢ Mjr4o. Furthermore, there is

—ji 41
N7 = (Njrjre € < aeqa)

such that the following holds:

-/

()3 N’ 1 is <¢,-increasing continuous, Mj/ 41 <¢ Nj41,0, and
Njrre Sex Myt
(¥)2 If 6 € (S\ E) N (ceq1 \ @) and j' + 1 = 75, (so necessarily
J 1€ (e, aer)N{3y+2:y <A}

and ¢ is a successor ordinal) then let N;j/ = (N§j e+ ¢" < Q) be the
following sequence of length ¢ + 1:

N Nys e 1 ¢’ is a successor ordinal
§.41.¢0 = ’
VNS M.

v, if ¢’ is limit or zero.
We demand F((Ngk,j@c, :¢'<Q) <e Njgicsr-

(x)5 If 5+ 1 € ug for some 6 € SNE (hence 5 +1 € {3y+1:v < ¢} and
¢ = otp(ujr4+1) < k), f- is the one-to-one order-preserving function from
¢+ 1 onto cl(uj41 U{j’ +1}), and ¢’ is a successor, then

F(<Maf5(</) : CI S <>) SE M(Xs"rl'

This implicitly defines F'. Now F' is as required: M; = M when i < A, ¢f(i) = &
by (%)4 when (Je)[ae < i < ae41] and by (x)5 when (Je)[i = a.]. Os.5
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Lemma 3.6. Let T be a first-order complete theory, K its class of models, and
<e¢ = <L.

1) If X is regular and M a saturated model of T of cardinality X\, then M is (A, {\})-
superlimit.

2) If T is stable and M is a saturated model of T of cardinality A\, then M is
(A, [(T), ] N Reg)-superlimit.® (Note that by [She90], if A is singular and T has
a saturated model of cardinality A then T is stable and cf(\) > &(T).)

3) If T is stable, \ singular > x(T'), M a special model of T' of cardinality A,
S C{d < AT :cf(0) = cf(N)} is stationary and S € I[N (see 0.7, 0.8) then M is
(A, S)-medium limit.

Remark 3.7. See more in [Shel2].

Proof. 1) Because if M; is a A-saturated model of T for i < ¢ and cf(4) > A, then
U M; is A-saturated. Remembering that a A-saturated model of T of cardinality
<0
A is unique, we finish.
2) Use [She90, I11,3.11]: if M; is a A-saturated model of T', (M; : i < §) increasing,
and cf(d) > x(T) then | M; is A-saturated.

<9

3) Should be clear by now. Os6

Claim 3.8. 1) If M, € K, are S¢-weak limit and Sy N Sy is stationary, then
My = My, provided & has (A, \)-JEP.

2) K has at most one locally weak limit model of cardinality A, provided K has the
(A A)-JEP.

3) If M € K then {S C A" : M is S-weak limit or S not stationary} is a normal
ideal over \T.

Instead of “S-weak limit”, we may use “S-medium limit”, “S-limit”, or “S-strong
limit.”

4) In Definition 3.3, without loss of generality F(N) =2 M or F(M) = M according
to the case (and we can add N <¢ F(N), etc.)

5) If K is categorical in A then the M € K is superlimit, provided that Ky+ # &
(or equivalently, M has a proper <g-extension).

Proof. Easy.

1) E.g. let Fy witness that M, is S,-weak limit. We can choose (M2, M}) by
induction on « such that (Mé : B < ) is <g-increasing continuous for £ = 0,1,
M2 <¢ M}y, M} <¢ MY, and Fg((Mf; :B<a+1)) <M., So for some club
E,of \t,0 € S,NE;, = Mf &~ M, for £ = 0,1. But Sy NSy is stationary hence
there is a limit ordinal § € Sy NSy N Ey N Ey, hence My = M{ = M} = M, as
required. Osg

60n k(T), see [She90, I11,§3].
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Theorem 3.9. If 2 < 22", M € K superlimit, S = AT or M is S-weak limit, S
is not small (see Definition 0.6) and M does not have the \-amalgamation property
(in &) then [(AT,K) = 22", Moreover, there is no universal member in £+ and
(@M < 22" = TEOT, K) = 2*" (that is, there are 2" -many models M € K+,
no one of them <g-embeddable into another).

Remark 3.10. 0) So in 3.9, if K is categorical in A then it has Ad-amalgamation.

1) We can define a superlimit for a family of models; i.e. when
N:{Nttel}gk)\

is superlimit (i.e. if (M; : 7 < 0) is <g-increasing, i < § = M; € £y, § < AT a limit

ordinal, and Ms = |J M, then A V[M; = N = V [Ms = N;] — and similarly
<6 i<stel tel

for the other variants).

Of course, the family is contained K, and non-empty. Essentially, everything
generalizes, but in 3.9 the hypothesis should be stronger: the family should satisfy
that any member does not have the amalgamation property. (E.g. N = ¢, — and
we can reduce the general case to this by changing €¢). But this complicates the
situation and the gain is unclear, so we do not elaborate on this.

2) We can many times (and in particular in 3.9) strengthen “there is no <g-universal
M € K)+” to “thereisno M € K, into which every N € K+ can be <g-embedded”
for u not too large. We need” —unif (A, S, 2, p1).

Proof. Let F be as in Definition 3.3(5) for M. We now choose by induction on
a < AT, models M, for n € *2 such that:

®1 (1) MnGK,\,M<>:M
(ii) If B8 < o and n € “2 then M,5 <¢ M,,.
(iii) If i +2 < v and n € *2, then (F((My; : j <i+1))) <e My(it2)-
(iv) If @« = f+ 1 and § non-limit, n € *2, then M5 # M,),.
(v) If @ < A is a limit ordinal and n € 2 then:
(a) My =U{Myp:B<tlg(n)}
(b) If M, fails the A-amalgamation property then M, -y, M-,
cannot be amalgamated over M,; i.e. for no N € K do we have
M, <¢ N and MnA<0>, M<,]A<1> can be <g-embedded into N over
M,.
For oo = 0 or o limit we have no problem. For a + 1 with o limit: if M, fails the
A-amalgamation property, use its definition; otherwise, let M, -1y = M, = My~ .
For ae+ 1 with a non-limit, use F to guarantee clause (iii) and then for clause (iv)
use Definition 3.3(5) (i.e. 3.3(4)(c)).

For n e )‘+2, let M, = U+ M. By changing names we can assume that
a<A

®1 (vi) For n € “2 (with @ < AT), the universe of M, is an ordinal < A* (or
even C A x (1+4g(n)), and we could even demand equality).

So (by clause (iv)) for n € *'2, M,, has universe AT.

First, why is there no universal member in €y+7 If N € K+ is universal (by <,
of course), without loss of generality its universe is A*. For n € )‘+2, as M, € K+,

"See [She98, AP,§1].
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there is a <¢-embedding f,, of M, into N. So f, is a function from At to A*. Let

neE >‘+2, so by the choice of F and of (M}, : & < AT) there is a closed unbounded
C, C AT such that &« € SNC,, = M, ;o = M, hence M, fails the A\-amalgamation
property. Without loss of generality, M,,;5 has universe d for each § € C,.

Now by 0.6, if ((f,,C,) : p € *'2) is such that f, : A* — AT and C, C AT is
closed and unbounded for each p € ”2, then for some n # v € A2 and § € c,NS,
we haven [ d =v [ 6, n(0) #v(d), and f, [ 6 = f, [ 4.

[Why? For every § < AT, p €92, and f:6 — AT, we define c(p, f) € 2 as follows:
it is1ifthereisz/6>‘+2suchthatpzu FOANf=Ff, [dAV() =0andis 0
otherwise. So some 7 € A2 is a weak diamond sequence for the colouring ¢ and
the stationary set S. Now (), f, are well defined and

S :={6€S:6limit and n(6) =c(n |6, f | 6)}

is a stationary subset of A*, so we can choose § € S'NC,. If n(d) = 0

c(n | d,f 196 =0 by the choice of S” but n witnesses that c(n [ 6, f [ 0) is 1,
standing for v there. If n(6) = 1 there is v witnessing c¢(n [ 0, f, | 0) =
particular, v(§) = 0 so n,v, and n | § are as required.]

Now as 6 € SN C, C C, it follows that M;;; = M hence M,s fails the A-
amalgamation property. Also, M,s has universe ¢ as 0 € Cy, and M5 = M,s as
nlé=vld.

So fo I Myys = fn 10 =1Ff, 10=1Ff, 1 Mys. So fy | Myyss1y: fo | Muriser
show that M, 541y, Myj54+1) can be amalgamated over M5, contradicting clause
(v)(b) of the construction (i.e. of ®). So there is no <g-universal N € £,+.

It takes some more effort to get oA pairwise non-isomorphic models (rather than
just quite many).

Case A:® There is M* € Ky with M <¢ M* such that for every N satisfying
M* <¢ N € K, there are N', N? € K, such that N <¢ N!, N <¢ N2, and N?, N'!
cannot be <g-amalgamated over M* (not just N).

In this case we do not need “M is S-weak limit”.

We redefine M,, n € *2, a < AT so that:

B9 (a) vane*2=M, SEMnGKA
(b) If « =0 then M< y = M*.
(c) If o limit and n € *2 then M, = |J Mys.
B<a

(d) If p € A2 and a = B+ 1, use the assumption for N = M,. Now obvi-
ously the (N1, N?) there satisfies N! # N and N2 # N, so we can have
M, < Mn*<1) € Ky, M, <¢ MTIA(()) € K, such that MnA<0>,MnA(1>
cannot be amalgamated over M*.

Obviously, the models M, = |J My for n € A9 are pairwise non-isomorphic
a<At

over M*, and by 0.4 (as 2* < 2*") we finish proving I\t 8) = 22",
Note also that for each n € A2 the set
{ve A9 M, can be <g-embedded into M,}

8We can make it a separate claim.
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has cardinality < |{f : f a <e-embedding of M* into M,}| < 2*. So if (2*)* <
2>‘+, then by the Hajnal free subset theorem [Haj62] there are 2/\+—many models
M, € Ky+ (n€ ’\+2), no one <g-embeddable into another.

Case B: Not Case A.
Now we return to the first construction, but we can add

(vii) If n € (®*Y2 and M, <¢ N, N? (both in K)), then N!, N? can be <,-
amalgamated over Mq.

As {W C AT : W is small} is a normal ideal (see 0.6) and it is on a successor
cardinal, it is well known that we can find A* pairwise disjoint non-small S C S
for ¢ < AT. We define a colouring (= function) c:

®3 (a) c(n,v, f) will be defined iff n,v € °2 for some limit ordinal § < A™,
and f is a function from § to AT.

(b) c(n,v, f) = 1 iff the triple (n,v, f) belongs to the domain of ¢ (i.e. is
as in (a)) and M,, M, have universe ¢, f is a <g-embedding of M,
into M, and for some p with v"(0) < p € 22 the function f can be
extended to a <g-embedding of M, oy into M.

(¢) c(n,v, f) is zero iff it is defined but is # 1.

For each ¢ <A™, as S¢ is not small, by a simple coding there is h¢ : S¢ — {0,1}
such that:

(x)¢ For every n,v € A9 and f: At — A, for a stationary set of § € Se,
c(nld,v10,f16)=he(d)
Now, for every W C AT we define ny € A2 as follows:
O -
(Note that there is at most one (.)

Now we can show (chasing the definitions) that

®4 If W1, Wy C AT and Wi & Wa, then M, cannot be <¢-embedded into
anz.

This clearly suffices.

Why is ®4 true? Suppose Wy € Wa; let ¢ € Wy \ Wa, and toward contradiction
let f be a <g-embedding of My, into My, , so

E:={0: My, 15 and M,,, s have universe ¢, and
f 16 1s a <g-embedding of M,,, 15 into My, 15}

is a club of A*. Hence by the choice of ¢ and h¢ there is § € E NS¢ such that

X C(’?W1 [63 Wy F(Saf [6) = hg(é) and M,

Nu(1y 18 is not an amalgamation
base.

Now the proof splits to two cases.

Case 1: h¢(0) = 0.



Paper Sh:88r, version 2024-09-01. See https://shelah.logic.at/papers/88r/ for possible updates.

30 SAHARON SHELAH

So nw, (0) = nw,(8) = 0, and by clause (b) of @3 above (i.e. the definition of
c) we have the objects nw,, nw,, and f | My 0y = 1 M, 1(5+1) witness that
c(nw, I 6,nw, 19, f10) =1, a contradiction.

Case 2: h¢(0) = 1.

So nw, (6) =1, nW2(6) =0, C(T/W1 f 67 nw, f §7f f 6) =1 By the definition
of ¢, we can find v € "2 such that (g, | 6)°(0) < v and a <g-embedding g of
M(ﬂwl 18)"(0) into M, .

For some o € (6, A"), f embeds My, 1541) = My, 15)"(1) into My, 1o and g
embeds M(ﬁwl 18)"(0) into Ml, lou

Asnw, 16°(0) v | o and nw, | 67(0) <nw, | « by clause (vii) above, there
are f1,g91 and N € K such that

(a) My, 16 <e N
(b) fiis a <e-embedding of M,,, o into N over M., 5.
(¢) g1 is a <g-embedding of M,,, into N over My, 16-
So [I don’t understand the numbering here]
(b)* fio fisa <e-embedding of M(,,, 15)~(1) into N
(c)* g10gis a <¢-embedding of M., 15)~(0) into N
(d)* fiofand g1 og both extend f [ §: My, 15 — N.

So together we get a contradiction to assumption (x)q(d). Os.9

[There is no (x);(d). There’s a ®;(iv); maybe that’s it?]

Theorem 3.11. 1) Assume one of the following cases occurs:

(a); €is PCy, (hence LSTy =Ro) and 1 < (R, ) < 281

or

(a)y ¢ has models of arbitrarily large cardinality, LSTy = Rg, and I(Ry,€) < 281,
Then there is an AEC € such that

(A) MeK = MEeK, MSEI N=M <N, andLSTgl = LST, = Ng.
(B) If K has models of arbitrarily large cardinality then so does K.
(C) ?1 18 PCNO-
(D) (K1), # @
(E) All models of K1 are Lo o -equivalent,

MS& N<:>M—<]Loo,w NAM < N,
K1 s categorical in Ny, and

M, € (KI)NO = K; = {N eceK:N oo (k) M*}

(F) if € is categorical in Ny then (K1)x = Ky for every A > Ngo; moreover,
<e, = <el (K1)>n,-
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2) If in (1) we add LST: names to formulas in Lo, (i-e. to a set of represen-
tations up to equivalence) then we can assume each member of K is Ro-sequence-
homogeneous. The vocabulary remains countable; in fact, for some countable first-
order theory T, the models of K are the atomic models of T (in the first-order
sense) and <g becomes C (being a submodel).

Proof. Like [She7ba, 2.3,2.5] (using 2.20 here for a« = 2). E.g. why, if K is cat-
egorical in Ry then <y = <¢| (Ki1)>xr,? We have to prove that if M <, N are
uncountable then M <p_ (r,) V. But there is M, € Ky, such that

K, = {M’ eK:M =L .o M*}

and (K1)x, = Ky, # @, so it suffices to prove M <p,, () N, so assume this is a
counterexample.

So for some p(z,7) € Ly, (1), a € “9O M, and b € N we have N = ¢[b,a] but
for no ' € M do we have N = ¢[b/,a]. Without loss of generality the quantifier
depth of ¢(x, ) (call it 7) is minimal, for all such pairs (M, N). Let

A, = {Y(Z) € Ly, (TK) : ¢ has quantifier depth < v}
hence M" <¢ N' N M' € Koy, = M’ <a, N'. Also without loss of general-
ity, |M|| = |IN|| = X;. Now choose M, € Ky, by induction on o < ws to be
<¢-increasing continuous (hence <a_-increas[ing]) and for each a there is an iso-
morphism f, from N onto M, mapping M onto M,, recalling the categoricity.
By Fodor’s lemma, for some a <  we have f,(a) = fs(a), so fﬁ_l(fa(b)) contra-
dicts the choice of ¢(z, %), b, and a. Os.11

We arrive to the main theorem of this section.

Theorem 3.12. Suppose  and A satisfy the following conditions:

(A) t has a superlimit member M* of cardinality X\ > LST.
(If K is categorical in X\, then by assumption (B) below there is such
M*; really, “invariantly \*-strong limit’ suffices if (x)(d) of 3.13(2) below
holds.”)
(B) tis categorical in AT .
(C) («) tis PCy, and A = N,

or
(6) t= PC)\, A ::5, Cf((;) = No,
or
(7) A=y and t is PCy,,
or

(6) € is PCy and X\ > Diguy+. (This is not useful for 3.12; still, it too
implies (%), in 3.13.)

Then K has a model of cardinality \T.

Remark 3.13. 1) If A = Ry we can waive hypothesis (A) by the previous theorem
(3.11).

2) Hypothesis (C) can be replaced by the following (giving a stronger theorem):
(*)an (a) is PC,.

93ee Definition 3.3.
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(b) Any ¢ € L+, which has a model M of order-type A* [and] |PM| = A,
has a non-well-ordered model N of cardinality .

(c) {M e Ky:M=M"}is PC, (among models in K)).

(d) for some F witnessing “M* is invariantly A-strong limit,” that is the
class {(M,F(M)): M € K,} is PC,. (If M* is superlimit this clause
is not required, as F = idg, is okay.)

3) It is well known, see e.g. [She90, VII,§5] that hypothesis (C) implies (x), , from
part (2), see more [GS].

Proof. By 3.13(3) we can assume (%), from 3.13(2).

Stage A: It suffices to find Ny <¢ Ny, || No|| = AT, Ng # Ni.

Why? We define a model N, € K,+ by induction on o < A™T such that

B < «a implies Ng <¢ N, and Ng # N,. Clearly Ny, Ny are defined (without loss

of generality |[N1|| = AT as A > LST}, as otherwise we already have the desired

conclusion). For limit § < A™", the model |J N, is as required. For a = $+1, by
a<d

the A\T-categoricity, Ny is isomorphic to Ny (say, by f) and we define Ngi; such

that f can be extended to an isomorphism from N; onto Ng.1, so clearly Ng4q is

as required. Now |J N, € Ky++ is as required. Hence the following theorem
a<Att

will complete the proof of 3.12 (use F = the identity for the superlimit case). Oa

We can find Ny, Ny € Kf+ such that Ny <¢ N7 and Ny # N; when the following
clauses hold:

Theorem 3.14. Suppose the following:

(A) € has an invariantly \-strong limit member M* of cardinality \, as exem-
plified by F : Ky — K, and £y has the JEP (see Definition 3.3).

(B) I(AF,Ky+) < 22" or even just IO KF) < 22" (or just IEOY, KF) <
22" see below).

(C) € is a PC, class, as well as F; i.e. K’ is PC, where K' is a class closed
under an isomorphism of (¢ U {P})-models and P a unary predicate such
that K\ = {(N,M) : N =F(M)}.

(D) pw=X=Nq, or p =X =215 with cf(§) =Ny, or p =Ry and A =Ry, or just
(#)a,u(c) from 3.13(2).

(E) K is categorical in X, or at least there is 1) € Ly, o(71) such that

(M) =) ={M [ 7e: M =4, [[M]| = A}.

Here we define

Definition 3.15. Assume F : K\ — K, satisfies M <y F(M) for M € Ky; or
more generally, F C {(M,N) : M <; N are from K} satisfies

(VM € K)(3N)[(M,N) € F|

or just
(VM S K,\)(HN(),Nl)[(No,Nl) eEFAM <y Ng <¢ Nl]
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Then we let
Ker = { U M;: M; € Ky, (M;:i< \") is <g-increasing continuous
i<t
and not eventually constant, and
F(M;i1) <e Mtz or (Mig1, Miyo) € F}
for ¢ < .

Remark 3.16. 1) As the sequence in the definition of Ker is <g-increasing and
not eventually constant (which follows if (M,N) € F = M # N), necessarily
K)I\: C ety

2) Theorem 3.14 is good for classes which are not exactly AEC; see (e.g.) 3.19.

Considering K er, we may note that the proofs of some earlier claims give us more.
In particular (before proving 3.14), similarly to 3.9:

Claim 3.17. Assume that
(a) 2* < 227
(b) ¢ is an AEC and LST¢ < A.
(¢) M € Ky is S-weak limit, S not small (see Definition 0.6).
)

(d) M does not have the amalgamation property in € (= ‘s an amalgamation
base’).

(e) F is as in 3.15.

Then (A, KF,) = 2",

Proof. To avoid confusion, rename F of clause (e) as F;, and choose Fy which
exemplifies “M is S-weak limit” (i.e. as in Definition 3.3(5)). Now we define F
with the same domain as Fs by

F'((Mj:j <i)) = F1(F2((M; : j <)),
and continue as in the proof of 3.9 (noting that F’ works there as well).
The sequence of models (M, : n € 2"2) we got there are from Kfi (so they

witness that (A", K}1) = 227 because:

(x) If the sequence (M, : o < AT) is <g-increasing continuous with M,, € €,
for @ < AT and F'((M; : j <i+ 1)) <¢ My, then |J M, € K} }.
a<At

Os.17

Also similarly to 3.11, we can prove:
Claim 3.18. Assume ¢ is a PCx, and F a PCy, is as in 3.15. If
1< IRy, KY) <2

then the conclusion of 3.11 above holds.
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Proof. [Proof of 3.14] (Hence of 3.12.)
The reader may do well to read it with ‘F = the identity’ in mind.

Stage B: We now try to find Ny, N7 as mentioned in Stage A above by approxi-
mations of cardinality A. A triple will denote here (M, N, a) satisfying M, N = M*
(see hypothesis 3.14(A)), M <¢ N and a € N \ M. Let < be the following partial
order among this family of triples: (M, N,a) < (M',N’,d’) if a = o/, N <¢ N/,
M <¢ M', M # M', and moreover (AN")[N <; N” AF(N") <¢ N’] and

(AM")M <¢ M" NF(M") <¢ M').

(It is tempting to omit a and require M = M’ N N, but this apparently does not
work as we do [not]| know if disjoint amalgamation £y, exists).

We first note that there is at least one triple (as M* has a proper elementary
extension which is isomorphic to it, because it is a limit model by clause (A) of the
assumption).

Stage C: We show that if there is no maximal triple, our conclusion follows.

We choose a triple (M, Ny, a) by induction on «, increasing by <. For a = 0
see the end of previous stage; for a =  + 1, we can define (M,, N,,a) by the

hypothesis of this stage. For limit § < A*, (Ms, N5, a) will be ( | Ma, U Na,a).
a<d a<d
(Notice M5 <¢ Ns by Ax.IV of 1.2 and Ms, N5 are isomorphic to M* by the

choice of F and the definition of order on the family of triples.) Now similarly

M:= |J My <¢N:= |J N, are both from E§+ and the element a exemplifies
a< A\t a< At

M # N, so by Stage A we finish.
Recall

® If (M, N, a) is a maximal triple then there is no triple (M’, N’, a) such that
M' <¢ N', M <¢ M, N <¢ N', a e N'\ M,

(EIMN) [M SE M// SB F(M//) SE M’]7
and (AN")[N <¢ N < F(N") <¢ N'].

Stage D: There are M; = M* for i < w such that
i<j§w:>Mj <e Ml/\F(MZJrl) <¢ M;
and |M,| = () |M,| (and note that M; is AT-strong limit).
n<w
This stage is dedicated to proving this statement. As M* is superlimit (or just
strong limit), there is an <g-increasing continuous sequence (M; : i < A*) with

M; = M* and F(M;41) <¢ M;12. (Note that this is true also for limit models as

we can restrict ourselves to a club of i-s). So without loss of generality |J M, has
<At
universe AT and Mj has universe \.

Define a model B; first, its universe will be AT.

Relations and Functions:

(a) Those of |J M;.
<At
(b) R, a two-place relation: a R4 if and only if a € M;.
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(¢) P (a monadic relation): P = A, which is the universe of M.

(d) g, a two-place function such that for each 4, g(i, —) is an isomorphism from
My onto M;.

(e) < (a two-place relation) — the usual ordering on the ordinals < A*.

(f) Relations with parameter ¢ witnessing M; <, J M;. (We can instead
J<At
make functions witnessing M € K as in 1.11 (the strong version) and have
that each M; is closed under them.)

(g) Relations with parameter ¢ witnessing each F(M;41) <¢ M2 and M, #
M2 (including (M1, F(M;41)) € F).

(h) If g = A, then also individual constants for each a € M.

Let ¢ € L+ ,, describe this. In particular, for clauses (f), (g) use clause (C) of the
assumptions. So ¢ has a non-well ordered model B* with |P®"| = A by clause (D)
of the assumption (see 3.13(2),(3)). So let

B = “ant1 < ay” for n < w.
For a € B*, let A, := {x € B*: B* =2 Ra} and
A4@1=:CB* TTO [Au.
Easily, M, <¢ (B* | 7¢) (use clause (f)) and || M,| = A. In fact, M, is superlimit

(or just isomorphic to M*) if p = A, as ¢ includes the diagram of My = M*,
having names for all members. If u < A, see assumption (E). So M,, <¢ B* | 7¢

and M,,,,, € M,,, hence M,, , <¢ My, by Ax.V. Let M, :== M, . Let
I={beB": \[B Eb<a,]}
n<w

Also as My <¢ B* [ ¢ for b € I and My, <¢ My, for by <3 by, by Ax.IV
clearly M, :== (B* | 7¢) | | Ay satisfies M, <¢ B* [ 7¢, hence M, <; M, for
bel
n < w. Obviously M, C (| M, and equality holds as 1) guarantees

n<w

() For every y € B* there is a minimal z € B* such that y € M,.

As each M, is isomorphic to M™* and of cardinality A, M, must be as well.

Stage E: Suppose that there is a maximal triple, then we shall show I (AT K) =

22" and moreover | (A"’,Kﬁ;) = 2’\+, and so we shall get a contradiction to as-
sumption (B).

So there is a maximal triple (M°, N° a). Hence by the uniqueness of the limit
model for each M € K, which is isomorphic to M* hence to M° there are N,a
satisfying M <; N 2 M* € K, and a € N \ M such that if M <, M’ <, N’ € ¢,,
A’<EZVQ

(EIM//)[M Sk M// SE F(M//) SE M/ o~ ]\4*]7
and
(EINI/)[N SE NI/ SE F(N//) SE N/ o~ M*]
then a € M’. (That is, in some sense a is algebraic over M). We can waive the

latter, as by the definition of strong limit there is N 2 M* such that F(N’) <, N/.
On the other hand, by Stage D:
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(¥); For each M € K isomorphic to M* there are M/ (for n < w) such that
M <¢ M’

n

M}, = M*, F(M),,,) <¢ M, and () MJ, = M.

n<w

+1 <e MT/L € K,

For notational simplicity: for M € K, |M| an ordinal = |F(M)| an ordinal.

Now for each S C A+ we define M7 by induction on o < A*, increasing (by <)
and continuous with universe an ordinal < At such that M(f 2 M*andif f+2 < «
then F(Mpi1) <¢ Mpiq. Let My = M*, and for limit § < At let My = |J MZS;

a<d
by the induction assumption and the choice of M* and F, clearly M f is isomorphic
to M*. For a = 8+ 1 with 3 successor, let M2 be such that F(Mg) <p M5 = M~
So we are left with the case « = § + 1, with § limit or zero.

Now if § € S hence My =2 M*, choose Myy1,a3 such that (Mg, ,, My, a3) is a
maximal triple (possible as by the hypothesis of this case there is a maximal triple,
and there is a unique strong limit model). If § ¢ S we choose Mf’n € Ky forn <w
(not used) such that M(g‘; < Mf’"“ <e Més’" and F(Mgg’"ﬂ) <e Més’" forn < w
and My = M(SS’n and M(SS’" =~ M*; and let MJ, | = Mg?,o (again possible as

n<w

Ms = M* and an (x); above).
Lastly, let M* = |JM7.

Now clearly it suffices to prove that if SO, St C AT [and] S*\ S© is stationary,
then MS' >3 M5, So suppose [ is a <g-embedding from MS" onto M5’ (or just
into MSO). Then

E?={0 <A": Mésl,Mgso each have universe 6 and [i < § & f(i) < 6]}
is a closed unbounded subset of A, hence there is a limit ordinal § € (S'\ S°)NE2.
Let us look at f(a;?l); asd € S, ?551 is well defined anld [a member of] OJM(;SL\({W(?I.
As § € E?, it follows that f(a§ ) ess 0 hence f(a§ ) belongs to M5 \ M but
ME" = () M5 (as 6 ¢ S°).
n<w

Hence f(agl) ¢ M(SSO’” for some n. Let B € (6, A1) be large enough such that

M5! ) € MS". But then f(MS") <¢ MS'™ <y MS" and f(MZ,,) <¢ M5 and
f( 5+1)_ 5 ut then f(My ) <e M; Se Mg an f( 6+1)_€ g N

1 — S%n
ag & fH (Mg ™).

Now (f(Mtssl),f(Mﬂl),f(afl)) has the same properties as (Mésl,Mgil,aésl)

because if f is an isomorphism from M’ onto M” € K, then we can extend f to
an isomorphism from F(M') onto F(M") (i.e. the “invariant”). But

1 1 1 0 n 0 1
(FOM5), F(M), flag)) < (M5 M5 f(ag))),
a contradiction.

So we are done. Us.14

Conclusion 3.19. 1) If LST¢ = Ny, K is PCy,, and f(Nl,K) =1, then K has a
model of cardinality No.

2) If Y € Ly, w(Q) (Q is the quantifier “there are uncountably many”) has one and
only one model of cardinality Xy up to isomorphism then ¥ has a model in Ns.
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Proof. 1) By 3.11 we get suitable €; (as in its conclusion) and by 3.12 the class &
has a model in Ny, hence £ has a model in N,.

2) We can replace ¢ by a countable theory T' C L, ,(Q).

Let L be a fragment of L, ,(Q)(7) in which T is included. (E.g. L is the
closure of T'U (the atomic formulas) under subformulas, =, A, (3z), and (Qz). In
particular, L includes (of course) first-order logic).

By [She75a], without loss of generality T “says” that every formula p(zo, ..., Zn—1)
of L is equivalent to an atomic formula (i.e. P(xq,...,x,—1) with P a predicate),
every type realized in a model of T is isolated (i.e. every model is atomic), and T
is complete in L. Let

K :={M : M an atomic 7(T)-model of T NL, and if M = P[a]
and (¥2)[P(z) = ~(Qy)R(y,7)] € T
then {b: M = R[b,a]} is countable}.
So & = (K, <y) is categorical in R, is an AEC, and is PCy,. Let F (see 3.3(8)) be
such that for M € Ky,, N = F(M) iff M <** N. By this we mean M < N € Ky,

and if @ € M, M = Pla], and (VZ)[P(Z) = (Qy)R(y,Z)] € T, then for some
be N\ M we have N |= R[b,a]. So F is invariant.

Note that every M € Kgl is a model of ¥. So 3.14 gives that some M € Kgl
has a proper extension in Kgl.

The rest should be easy, just as in Stage A of the proof of 3.12. Os.19

Question 3.20. Under the assumptions of 3.19(2), can we get M € Ky, such that
if M (= Pla) and (VZ)[P(z) = (Qy)R(y,z)] € T, then {b € M : M |= R[b,a]} has
cardinality No? Note that in the proof of 3.14 we show that no triple is maximal.

Remark 3.21. 1) We could have used multi-valued F; then in the proof above
N =F(M) just means the demand there.

2) To answer 3.20 (i.e. to prove the existence of M € Ky, as above) we have to
prove:

(¥)1 There are N; € K§ for i < wy and N <¢ N; such that if N |= P[a] and
the sentence (VZ)[P(Z) = (Qy)R(y, )] belongs to T, then for some i < w;
there is b, € N; \ N such that N; &= Rb,,al.

Clearly

(*)2 The existence of N, N; as in (*); is equivalent to “i0* has a model” for some
Y* € Ly, (Q) which is defined from T, <.

Hence

(%)3 It is enough to prove that for some forcing notion P in V¥ there are N, N;
as in (*)1.

There are some natural ccc forcing notions tailor-made for this.

()4 Consider the class of triples (M, N,a) such that M <; N € Ky,, a € “”N,
and ¢ < lg(a) = a; ¢ M, ordered as in the proof of 3.14. By the same
proof there is no maximal triple.
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3) We can restrict ourselves in (k)2 to
{R(y,a):ae %@)N and a realizes a type p(z)}.

Also, we may demand i < w; = N; = Ny and we may try to force such a sequence
of models (or pairs), and there is a natural forcing. By absoluteness it is enough to
prove that it satisfies the ccc.

Problem 3.22. If £ is PC, and K is categorical in A and AT, does it necessarily
have a model in AT+?

Remark 3.23. The problem is proving (x) of 3.13.

Question 3.24. Assume ¢ € L,,, ,,(Q)(7) is complete in L,,, .,(Q)(7), is categorical
in Ny, has an uncountable model M, a € "M and ¢ € L, ,(Q)(7) axiomatizes the
Ly, .w(Q)(7)-theory of (M,a). Is ¢ categorical in Ry?

Question 3.25. Can we weaken the demand on M* in 3.14 to “M* is a AT-limit
model”?
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§ 4. FORCING AND CATEGORICITY

The main aim in this section is, for £ as in §1 with LST, = Ry, to find what we
can deduce from 1 < I(Ry, K) < 2% first without assuming 2% < 2%,

We can build a model of cardinality N; by an w;-sequence of countable approx-
imations. Among those, there are models which are the union of a quite generic
<g-increasing sequence (N; : i < wy) of countable models, so it is natural to look
at them (e.g. if ¢ is categorical in Ry, every model in Ky, is like that). We say of
such models that they are quite generic. More exactly, we look at countable mod-
els and figure out properties of the quite generic models in €x,. The main results
are 4.13(a),(f). Note that the case 2% = 2% though in general making our work
harder, can be utilized positively — see 4.11.

A central notion is (e.g.) “the type which a € “~(N7) materializes in (Ny, Np)”,
for Ny <; Ny € Ky,. This is (as the name indicates) the type materialized in N1+,
which is N; expanded by PV T = Np; it consists of the set of formulas forced (in
the model-theoretic sense started by Robinson) to satisfy; here ‘forced’ is defined
thinking on (Ky,, <y, ), so models in Ky, can be constructed as the union of quite
generic <g-increasing wi-sequences. As we would like to build models of cardinality
Ny by such sequences, the “materialize” in (N7, Np) becomes realized in the (quite
generic) N € Ky, ; but most of our work is in Ky,. This is also a way to express Q
speaking on countable models.

By the hypothesis 4.8 justified by §3, the Lo o (7¢)-theory of M € K is clear; in
particular, it has elimination of quantifiers hence M <¢ N = M < N. But
for N = (N, : a < wy) as above we would like to understand (Ng, N,,) for a < f3.
(From the point of view of N, N is not reconstructible, but its behaviour on a club
is.) Toward a parallel analysis of such pairs we again analyze them by (LY : a < wy)

(similarly to [Mor70]).

Convention 4.1. We fix A > LST; as well as the AEC ¢.

The main case below is here A = Ry, k = Ng.
Definition 4.2. For A > LST¢, N, € K., and p, k satisfying A > & > Rg, p > k:

1) Let ]ng,,i be first-order logic enriched by conjunctions (and disjunctions) of length
<, homogeneous strings of existential quantifiers or of universal quantifiers of
length < k, and the cardinality quantifier Q interpreted as 3Z*. But we apply
those operations such that any formula has < k free variables and the non-logical
symbols are from 7(£), so actually we should write L), _(7¢) but we may omit this
when clear; the syntax does not depend on A but we shall mention it in the definition
of satisfaction.

2) For a logic £ and A;, A C N, fori < a < A, let L(N,, A;; A)i<q be the language
with the logic £ and the vocabulary 7y 4 4, where A=(A;:i<a)and TN, A:A
consists of 7(K), the predicates x € N, and x € A; for i < «, and the individual
constants ¢ for ¢ € A. (I A = @ we may omit the A; if we omit N, then “z € N.,”
is omitted; if the sequence of the A; is omitted then the “x € A;” are omitted, so
L( ) means having the vocabulary 7(K)). So L(N., A;; A);<q formally should have
been written L(7y, 4.4)-
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3) L}, . is defined is as in part (1), but we have also variables (and quantification)

over relations of cardinality < A. Let ]L;}€ be as in part (1) but not allowing the
cardinality quantifier Q; this is the classical logic IL,, ;.

4) (N, Ny, Aj; A)i<q is the model N expanded to a 7y, 4, 4-model by monadic pred-
icates for N,, A;, and individual constants for every c € A.

5) For “x € N,” and “x € A;” we use the predicates P and P;, respectively, so
we may write L(7 + P) instead of L(N,). But [when] writing £(N.), we fix the
interpretation of P.

Let 77 :=7U{P,Ps: B < a}. If L =L(7"") (i.e. for « = 0) then L(N) means
L but we fix the interpretation of P as N; i.e. |N|, the set of elements of N.

Let L(Ny, N;)icu, where u is a set of < k ordinals, mean the language L in the
vocabulary T U {P, P; : i € u} when we fix the interpretation of P as N, and of
Potp(uﬁ(x) as No,.

Definition 4.3. 1) For N, € K. and ¢(zo,...) € LL,H(N*,A; A), we define when
No IF¢ ¢lao, . . .] by induction on ¢, where N, <¢ Ny € K< and ay, ... are elements
of Ny or appropriate relations over it, depending on the kind of z;. (Pedantically,
we should write ‘(No, Ny, 4; A) IF} ¢lag,...]", and we may do it when not clear
from the context.)

For ¢ atomic this means Ny = ¢[ag, ...]. For ¢ = A ¢; this means

No IF¢ @ifao, . . ] for each i.

For ¢ = (37)¢ (%, ao, . . .), this means that for every Ny satisfying No <¢ N1 € K<
there is Ny satisfying N1 <¢ N3 € K< and b from N3 of the appropriate length
(and kind) such that Na I3 ¥[b, a].

For ¢ = —) this means that for no Ny do we have Ny <; N; € K.y and
N1 |F£\ w[CLO7 . ]

For o(xo,...) = (Qy)¥(y, zo, . ..) this means that for every N; satisfying
No <¢ N1 € K.y there is Ny satisfying Ny <¢ Ny € K. and a € Ny \ Ny such
that N2 ‘F? ¢[a, ag, . . ]

2) In part (1) if ¢ € L}, , (N.) we can omit the demand “N, <¢ N” similarly below.

3) For a language L C LL)N(N*7A; A) and a model N satisfying N, <; N € K.
and a sequence a € *> N the L-generic type of @ in N is

gtp(a; Nu, A; A;N) = {p(z) € L: N Iy plal}.

4) For N, <¢ N € K and L C L(N,, A; A), let gtp} (a; N, A; A; N) be
{o(): ¢ € L(N., A; A), and for some N’ € K
we have N <¢ N’ <; N and N’ ¢ ¢[al}.

We may omit gl, A (and omit A if clear from the context) and may write £ instead
of L = L(N,, A; A) (but note Definition 4.4).

5) We say “@ materializes p (or )” if p (or {¢}) is a subset of the L-generic type
of ain N.
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Definition 4.4. Let (N; : i < A) be an increasing (by <;) continuous sequence,
N=UN;, Ni|| <X and L* € |J LY . (719).

<A a<k

1) N is L*-generic, if for any formula ¢(zo,...) € L* NLY . (¢) and ag,... € N we
have:

N = ¢lag,...] © Ng IFp @lag, .. .] for some a < .

2) The <g-presentation (N; : ¢ < A) of N is L*-generic when for any o < X of
cofinality > s and ¢ (zo,...) € L*(Ny, N;)ier with I € [a]<* and ag,... € N we
have:

N E ¢lag,...] © N, Ik ¢lag, . ..] for some v < X
and for each § > « with cofinality > x, Ng is almost L*(N,, N;);er-generic (see
part (5)).

3) N is strongly L*-generic if it has an L*-generic presentation. (In this case, if A
is regular, then for any presentation (N; : i < A) of N there is a closed unbounded
E C X such that (N; : i € E) is an L*-generic presentation.)

4) We say that N € K. is pseudo L*-generic if

(a) For every o(z) = (3y)y(z,5) € L*, if N Ik} ¢(a) then N I+ ¢(a,b) for
some b.

(b) For every a € N, a materializes some complete L*-type in N.

5) We add “almost” to any of the notions defined above when for IF?, the inductive
definition of satisfaction works (except possibly for Q.) E.g. N Iy (3z)¢(x,...) iff
N Ik ¢(a,...) for some a € N.

Remark 4.5. 1) Notice we can choose N; = Ny = N, so ||[N|| < A. In particular,
almost (and pseudo-) L*-generic models of cardinality < A may well exist.

0

00,w

0

2) Here we concentrate on A = N; and fragments of L w1 and its

countable fragments).

(mainly L

3) There are obvious implications, and forcing is preserved by isomorphism and
replacing N (€ K.,) by N’ with N <; N’ € K.

There are obvious theorems on the existence of generic models; e.g.

Theorem 4.6. 1) Assume Ny € Koy, A = pt, u=" = pu, L C |J Lo k(71%),

a<k

L is closed under subformulas, and |L| < X. Then there are N; (i < \) such that

(N; : i < Ay is an L-generic representation of N = |J N;, (hence N is strongly
<A

L-generic).

2) In part (1), N € Ky if no N with Ny <¢ N’ € K. is <g-mazimal.

Proof. Straightforward. Us6
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Remark 4.7. 1) If L = U Ly, |Li] < A, then we can get “(N; : j < i < A) is an
<A
L j-generic representation of N for each j < \”.

2) When we speak on a “complete L-type p,” we mean p = p(zo, ..., Z,—1) for some
n.

From time to time we add some hypotheses and prove a series of claims; such
that the hypothesis holds (at least without loss of generality) in the case we are
interested in. We are mainly interested in the case I(XNy,£) < 28, etc., so by 3.11,
3.18 it is reasonable to state the following:

Hypothesis 4.8. € is PCy,, <¢ refines Lo, £ is categorical in Xy, 1 < IRy, K),
and I(Ry, K{ ) < 2% (where K{ is as in Definition 3.15 and is PCy, or just
KE, ={M | 7¢: M =4} for some ¢ € Ly, ,(Q) — if F is invariant, this follows).

Remark 4.9. 0) We can add ‘every M € Ky, is atomic’ (an atomic model of
Thy(M)).

1) Usually below we ignore the case I(N1,£) < 2% as the proof is the same.

2) We can deal similarly with the case 1 < I(R;, K’) < 28, where
by, C Ky, C{M €ty : M is strongly L.-generic}
and K’ is PCy, (or less: {M | 7¢ : M a model of ¢ € Ly, o (Q)(7%)}).

3) Can we use F a function with domain Ky, such that M <, F(M,) € Ky, for
M € Ky,, without the extra assumptions, or even

F: {]\7 =(M;:i<a): M is gy mincreasing continuous} — b,

such that M, <¢ F((M; : i < «))? We cannot use the non-definability of well
ordering (see 3.11(3), as in the proof of (f) of 4.13).

Claim 4.10. 1) Ifa € N € Ky, and p(z) € LY, ,(719) (s0 a is a finite sequence)
then (N, N) IFy* @[a] or (N, N) IFy* —pl[a] (i.e. P is interpreted as N).

2) If (N,N) H—Nl 3% A p(Z), where p(T) is a not necessarily complete n-type in L
(here n = lg(z )), where L C 1LY (710) is countable, then for some complete n-type

wil,w

q in L extending p we have (N, N) IFy* 3% A ¢(%).

[I don’t recognize this notation. Is it (3z)p(z), (37) /\p ), or something

different?]

Proof. 1) Suppose not. Then for each S C wy, we define N5 € Ky, by induction
on a < wy, increasing (by <) and continuous.

N@g := N and Nf = U NS for limit a. For a = 28 + 1, remember that
B<a

(N, B a) = (N,a) because N = Ny <; Nﬁ, hence Ny <p_ Nﬁs € Ky, hence
(N, 5 a) =L ., (N,a) hence they are isomorphic. So (NB , NS) forces (IFy*) neither
pla] nor —pla]. So there are M, (for £ = 0,1) such that NE <¢ M, € Ky, and
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(Mo, N5) I pla] but (My, N§) Ib* —pla]. Now if 8 € S we let N3 = My, and if
B¢ S welet NS = M.
Lastly, Magi2 = F(Mag1), recalling F is from 4.8. Let N° .= [J NZ. Now

a<wy

if Sp \ Sy is stationary then (N0, a) 2 (N*,a).

Why? Because if f : N9 — N*1 is an isomorphism from N°° onto N mapping
a to a, then for some closed unbounded set £ C w;, we have: ‘if a € E then f
maps N5° onto N51.” So choose some a € EN Sy \ S; and choose B € E'\ (a + 1).
Now (N(fﬂ_l,N(fO) IF3* ¢la] hence (NgO,Ng?O) IF3* ¢lal, and similarly

(NBSl,N(fl) \F?l —p(a), but f | NEO is an isomorphism from NBS0 onto NBS1 mapping
N50 onto N5t and a to itself, and we get a contradiction. By 0.4, we get (N, K) =
2% 5 contradiction.

2) Easy, by 4.6 and part (1). In detail: if N <y M; € ty, then by the definition
of IF?;l and the assumption we can find (Ms,a) satisfying My <¢ My € ty, and
a € My such that (Ms, N) IFy* Ap(a@). As L is countable and the definition of IFy",
without loss of generality (Ma, N) IFy* @[a] or (Ma, N) IFy* —pl[a] for every formula
o(z) € L.

[Why? Simply let (¢, (Z) : n < w) list the formulas ¢(Z) € L and choose Ma,, € &y,
by induction on n with My o = My and My ,, <¢ M> ;41 such that

(M2,n+17N) |H;1 ©n () or (M2,n+17N) Hﬁ —n(T);
now replace My by |J Mz,

n<w
Recalling Definition 4.3(4), let ¢ :== gtpp,ny (@, N, M2); it is a complete (L(N), n)-
type. So clearly (Ms, N) II—];1 (3z) A q(Z). Now apply the proof of part (1) to the
formula (3%) A ¢(Z), so we are done. U410

Claim 4.11. For each countable L C LY, ,(77°) and N € Ky,, the number of

complete L(N)-types p (with no parameters) such that N H—?l (3z) Ap(Z) is count-
able.

Proof. At first glance it seemed that 0.3 would imply this trivially. However, here we
need the parameter N as an interpretation of the predicate P, and if 2% = 2% then
there are too many choices. So we shall deal with “every N, in some presentation.”
Suppose the conclusion fails. First we choose N, by induction on o < wy such that:

® (i) Ny € Ky, is <g-increasing and (N, : @ < wy) is L-generic.

(ii) For each 8 < a, there is a5 € N,11\ N, materializing an L(Ng)-type
not materialized in N, (i.e. in'® (N, Ng); possible by 4.10 and our
assumption toward contradiction).

(iii) |No| =w -«

(iv) For ao < 3, Ng is pseudo-L(N,)-generic and F(Nogy1) <¢ Nagio.

Now let N := |J N,, and we expand N by all relevant information: the order <
a<wi
on the countable ordinals, ¢ € Ny, enough “set theory,” “witnesses” for

Ng <¢ N, for 8 < a, the 2-place functions F(5,a) := a?; and lastly, witnesses of

RS

)

10gee Definition 4.3(2) on ‘materialize.’
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F(Nogt1) <¢ Nogyo (recalling F is quite definable by Definition 4.8) and names for
all formulas in L(N,) (with a as a parameter); i.e. the relations

Ry ={{a)a:a<wy, ae BN and (Ng, Ny) -yt “p(@)”
for every 8 < wy large enough}
for o(z) € L.

Clearly for every a < wi, every ¢(Z) € L(Ng), and a € “® N, we have
(N,N.) [ ¢la] iff for every B < w; large enough we have (Ng, N,) IFp" olal.
We get a model B with countable vocabulary and ¢ € L, .,(Q) expressing all
this. By 0.3(1) applied to the case A = L, there are models B; (for i < 2%) of
cardinality N; (note Ny <¢ B | 7¢), so that the set of L(Ny)-types realizes in N*

(the 7(K)-reduct of B;) are distinct for distinct i-s. So (N, ¢)cen, are pairwise
non-isomorphic. If 2% < 2% we finish by 0.4.

So we can assume 2% = 281, In N, uncountably many complete L(Ny)-n-types
are realized, hence by 0.3(2) the set

{p : p a complete L(Ny)-m-type for some m < w
realized in some N’ € By, with Ny <¢ N’}

has cardinality continuum, hence by 4.10 the set of complete L(Np)-types p = p(z)
such that (No, No) IFy* 3% A p(&) has cardinality 2¥. So we choose a sequence
(N&,a® :i < w;) by induction on a < 2%0 such that:

(2

Niao < Nia for ip < i < ws.
af € N7 | \ N{* materializes a complete L(N;*)-type p§.
(d) If j <wi is a limit ordinal then N3 := [J Ny
1<j
(e) p¢ ¢ {gtp(@NI;ND) : ji < j2 < wi, a € “>(NJ) and B < a} (See
Definition 4.3(4).)
(f) F(Nagt1) <e Nogyo.

As ¥y < 2% = 2%0 this is possible; i.e. in clause (e) we should find a type which
is not in a set of < Wy x |a| < 2% types, as the number of possibilities is 2%, Let
N, = |J N for a < 2%0; clearly N, € Ky,.

1<wi
Now toward contradiction, if 8 < a < 2% and N, & Npg then there is an

isomorphism f from N, onto Ng; necessarily f maps N onto Nf for a club of 7. For
any such ¢, p¢ € gtpy (f(as); Nf; Nf) for j large enough, a contradiction. [y 11

Remark 4.12. In the proof of 4.11(2), we can fix m and we can combine the two
cases, when for N € Kgl represent by (N, : @ < wy) we consider

Py = {p : p a complete L-m-type such that for a club of a@ < wy
and some 8 € (a,w;) and a € ™ (Ng) materialize p in (Ng, No )}

We can replace “club” by “stationarily many”. That is, we can prove that
{Py: N € K{ } has cardinality 2%
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Lemma 4.13. 1) There are countable L% C L2 (71°) for a < wy increasing

w1,w
continuous in «, closed under finitary operations and subformulas such that, letting
LY, = U L2, we have (some clauses do not mention the L2 -s):
a<wi

(a) For each N € Ky, and every complete LS (N)-type p(Z), we have

NI (32) Ap(z) = Ap € L1 (N).

Hence for every LY (719)-formula ¢(Z) there are formulas ¢n(Z) €

LY, forn <w such that (N,N) k3" (VZ)[)(Z) = \ ¢n(7)].

<wi

(b) For every No <g¢ N1 € Ky, there is Ny with Ny <; Ny € Ky, such that for

every a € Ny and o(z) € LY, ,(No) (with lg(a) = lg(Z) < w, of course),
we have (N2, Np) IFgl wla] or (Na, Np) |F§1 —plal.

(¢) If N <¢ Ny € Ky, and ag € N; (for ¢ = 1,2), and the LY, (N)-generic
types of @y in Ny are equal,*' then so are the Lgo)w(N)-generic types. In
fact, there is M >y N and <g-embeddings fo : Ny — M such that f; maps N
onto itself and f1(a1) = fa(az) (though we do not claim f1 | N = fo [ N).
Also, if Ny = Ny then there is M € Ky, which <¢-extends N1 and an
automorphism f of M mapping N onto itself and a; to as.

(d) For each N € Ky, and complete L2 (N)-type p(z), the class

wi,w
K':={(N,M,a): M € Ky,, N <¢ M and M <¢ M’ for some M’ € Ky,
and @ materializes p in (M;N)}

is a PCy,-class.

(e) For any complete L;! ,(N)-type p(Z), for some complete LY, ,(N)-type
dp, if N <¢ M € Ky,, a € M, and a materializes p in (M, N), then @
materializes q, in (M,N). (On L0 L™, see Definition 4.2(1),(3).)

(f) The number of complete LY (N)-types p which are materialized in (M, N)

w1,w

by a (for some M € Ky, and a € “”M with N <; M) is < N;.
(9) If in clause (f) we get that there are Xy such types then f(Nl, K) >Ny,
(h) Let L' := LY N1L ! (77°). Then the parallel clauses to (a)-(g) hold.

w1 ,wW

2) Clause (e) means that

(1) Assume further that No <¢ N; € Ky, and a; € Ny for £ = 1,2, and
the LZY, (N)-type which a; materializes in Ny is equal to the LZ., (N)-
type which as materializes in No. Then we can find N1+,N2+ such that
Ny <¢ NZ’ € Ky, for £ = 1,2 and an isomorphism f from N1+ onto N2+
mapping N onto itself and a; to as.

Remark 4.14. 1) We cannot get rid of the case of N; types (but see 5.23, 5.30) by
the following variant of a well known example of Morley [Mor70] for I(Xg, K) = Na.
Let

K = {(A7 E, <) : E an equivalence relation on A, each E-equivalence

class is countable, z < y = z EF'y, and

2Ey= (z/E, <,x) (y/E7<,y)}.

HThough they are not necessarily complete; i.e. for every o(Z) € LO<W1 (N) we have Np \F?l
p(ar) iff Na -yt plas].
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(That is, < is a 1-transitive linear order on each E-equivalence class.) Let M <; N
if M C N and

reEMANye NNz Ey=yc M.
By the analysis of such countable linear orders, each (a/E™, <) is determined up
to isomorphism by (a,f) € wy x 2. For appropriate F, if M = F(N), a € N,
and I is an interval of (a/EY, <) which is 1-transitive then for some b € M \ N,
(b/EM | <M) is isomorphic to (I, <™). This is enough.

2) In clauses (c),(i) of 4.13, the mappings are not necessarily the identity on N.
In clause (i) the assumption is apparently weaker (tho[ugh| by its conclusion the
assumption of (c) holds).

3) Note that clause (f) of 4.13 does not follow from clause (a) as there may be
N;-Kurepa trees.

4) In clause (c) of 4.13 for the second sentence we can weaken the assumption: if
() € LY, (N) and (Ny; N) H‘?l ¢(@;) then (No, N) 3" ¢(d@2). This is enough
to get the M o, M3 o from the proof.

[Why? For each a < wi, there are My, such that Ny <¢ M;, € Ky, and a
complete L%-lg(a;)-type p.(Z) such that (Mj o, N) IF Ap.(a@1). But = A pi(z) €
Lo+1 and obviously (N1, N) ¥ = Ap.(a;) hence (Na, N) ¥y* = Ap.(az) hence there
is My o such that Ny <; M3, € Ky, and (Ma,; N) H—?l Ap«(az2). Now continue as
in the proof below.]

Remark 4.15. We can prove clause (b) (and the last sentence in clause (c) of 4.13)
directly, not mentioning the L?-s.

Proof. Note that proving clause (e) we just need to say “repeat the proof of clauses
(a)-(d) for L;L”.

Clause (a): We choose L by induction on « using 4.11. The second phrase is
proved by induction on the depth of the formula using 4.10.

Clause (b): By iterating w times, it suffices to prove this for each @ € Ny, so again
by iterating w times it suffices to prove this for a fixed a € N;. If the conclusion

fails we can define, by induction on n < w, a model M, and ¢, (z) € LY, ,(N) for
every 1 € "2 such that:

(&) My =N
(ZZ) M7] < M,,]A<g> S KNO for / =0,1.
(idi) (My, N) " oy(a)
() @y 1) (T) = ~0y~0) ().
Now for n € “2, let M, = |J M. Clearly for n € “2 we have

M, % (3z) [n/<\w Pnin(Z)]

and after slight work, we get a contradiction to 4.11 + 4.10.

Clause (c): In general, by clause (a) we can find M§* € Ky, for = 1,2 and a < w;
such that N, <¢ Mg, (M{,a1), (M$,as) are LY (N)-equivalent, and without loss
of generality each of N, Ny, M have universe an ordinal < w;. Let

A= (H(N2)7N7N17N2’ <M104 ra< OJ]_>, <M§ o< W]_>)
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Let 203 < 2 be countable, and (recalling 0.5(3)) find a non-well ordered countable
model > which is an end-extension of 2(; for wf‘l. Hence w?2 = w, so N*2 = N and
N} = Ny for £ = 1,2. For x € (w1)%2\ Ay, let M7 = (MF)%2 so Ny <¢ M} € Ky,.
Now there are x,, such that s = “r,41 < @, are countable ordinals”, so using the
hence-and-forth argument

(M7°,a1,N) = (M5°, a9, N).

[Why? Let
Fr = {(0",0%) : b° € "(M}°) and
Ao |= “gtppy (@' D', Ny M[?) = gtppg (a*"b% Ny My°)" .
Clearly ({ ),()) € Fo and if (b!,0%) € F,,, £ € {1,2}, and b, € M;° then there is

b3~¢ € M3°, such that (b'°(bL), 0% (b2)) € Fpp1. As My, M3° are countable, we
can find an isomorphism.]

But this is as required in the second phrase of (c).

We still have to prove the first phrase. For this we prove by induction on the
ordinal « that

®. Let £ = 1,2. If a, € “>(Ny) materializes a complete L% -type p(z) in
(Ng, N.) not depending on /, and ¢(z) € LI ,(N.) has quantifier depth
< a, then (Ng, N.) IFy* ¢(@g) or (Ng, N IFR —p(ae).

For countable N < M and a € “”N,

©1 Let Po(N, M,a) =
{gtpLo@(ZL;N; M*): M <¢g MT € Ky, and gtpLg(d;N;M+) is a complete L2 -type}.
Now

®2 For B < o < wq, we can complete Pg(N, M, a) from gtpLg(a;N;M).

©®3 For a < wy, from Pg(N, M, a) we can compute gtpyo (a; N; M).

©4 Assume N <¢ M are countable and @ € “”M. For ¢(z) € L, ,(N) of
quantifier depth < o we have

p(2) € gtprg ()@ N3 M)
iff for every q(z) € Po(N,M,a), ¢(Z) belongs to the type computed im-
plicitly in ®q; ie. if ¢(2) = gtpro _(a’; N'; M) then (N', M") et o(T).

Those three should be clear, and give the desired conclusion. Also, the last sentence
is easy.

Clause (d): Let Ny <; My € Ky, and ag € My be such that
(Mo, No) ¢ /\ elao]
p(z)EP
(if it does not exist, the set of triples is empty). Let
K" :={(N,M,a): M,N € Ky,, N <¢ M, and there are M" € Ky,

with M <¢ M" and a <¢-embedding f : My — M"”
such that f(No) = N, g(ao) = a}.

[What’s ¢7]
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Clearly it is a PCy, class. Also,
MO SE M/ S KN() = gtpLﬂlyw(No)(&;NO;MO) = gtpﬂagl,w(NO)(a;NO’M/)'

Now first, if (N, M,a) € K" let (M", f) witness this; so by applying clause (b)
of 4.13,

gtpo (@ N; M) C gtpye  (a; N; M") = gtpyg  (a: N3 f(Mo))
= gtprg _(ao; No; Mo) = p,
so (N,M,a) € K.

Second, if (N, M,a) € K! let fy be an isomorphism from M, onto M. Let
(Mj, f1) be such that Ng <; M; € Ky,, fi1 2 fo is an isomorphism from M; onto
M, and a; = f; '(a). Hence p = gtpio  (a1; No; M;) and we apply clause (c) of

01w
4.13, with Ny, My, ag, M1, a, here standing in for N, My, a1, Ma, as there, and can
finish easily.
Clause (e): We can define (L

(03

1t o < wy) satisfying the parallel of Clause (a) and
repeat the proofs of clauses (b),(c), and we are done.

Clause (f): Suppose this fails. The proof splits to two cases.

Case A: 280 = 281,

We shall prove I(Xy, K) > 2% thus contradicting Hypothesis 4.8 (as 2% = 281),

Let p; (for i < wy) be distinct complete LY, ,(77°)-types such that for each

i, p; is materialized in some pair (M, N) (so N <¢ M € Ky,; they exist by the
assumption that (f) fails). For each i < wy and o < wy, we define N; o,&; o, and
@, such that:

X; (i) N € Ky, has universe w - (1 + «) and Ny := N.
(i)
(iii)
(iv) For every oo < # < wy and a € “7(N; g), the sequence @ materializes
a complete LY (77%)-type in (N; g, Ni o).

w1 ,wW

(Nio t @ <wi) is <g-increasing continuous.

dia € Nj o1 materializes p; in (N;q41, Nio)-

(v) &.o < wi is strictly increasing continuous in a.

(vi) For o < B, N p is pseudo-Lj(N; o )-generic (see 4.4(4)) and ‘takes care
of’ Q.
Le. if v < 8, p(y, T) is a complete Lg—type and

(Nig, Nio) IFE" (Qy) A ply, a)
then for some b € N; 41\ N; g we have (N; g+1, Ni.o) H—?l Ap(b,a).
(vii) If @ < B and @,b € Ng_; materialize different L  (N; ,)-types in

w1 ,w

Ni s, then a and b realize different (L, .,(77°) N Lgi,lﬂﬂ)(Na)—types
in Ni,5~
(Vlll) Nz = U Ni,a
a<wi

(ix) fapg < Bfor=1,2,7 < B, n <w, and a; € "(N; g) then for some
ag € "(N; g) we have

8tpro (@15 Nisays Niyg) = 8tPro (@2; Niasi Nig)-
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(ix)™ Moreover, if n < w, 71 <72 < B, aw < B, ag € "(N; ) for £ = 1,2,
gtpro_(a1; Niay; Nig) = 8tpro_(a2; Nias; Nip),
and by € N; g then for some by € N; g we have
gtpro (a1 (b1); Niay; Nip) = gtpro (a"(b2); Nias; Nig)-
This is possible by the earlier claims. By clause (e) of 4.13, clearly
Xy The pair (N;, No) is LZL, (7+9)-homogeneous.

Below we could use D; a set of complete Lgi—types; the only problem is that the
countable (D;, Rg)-homogeneous models have to be redefined using “materialized”
instead of “realized”. As it is, we need to use clause (e) to translate the results on
LY to Lj'.

Let 7% := {€,Q1,Q2}U{cs : £ < 5}, with each ¢; an individual constant, and 2}
be (H(N2), €) expanded to a 7*-model, by predicates for K [and] <, with
Q1 = K NH(Ry)
Q% == {(M,N): M <¢ N both in H(Xs)},
and cﬁq,..., " being {(Nio : @ < wi)}, o @ <wi), {(Gia:a<w)}, N,
and {i}, respectlvely

Let 2; be a countable elementary submodel of 2}, so |2;| Nwy is an ordinal

0; < wy. It is also clear that 03" is N; 5, as c§[ = N;. As 2A; is defined for 7 < ws,
for some unbounded S C wy and § < wy, §; = § for every i € S. For i,j € S, we
know that some sequence from N; materializes p; in the pair (Nj, Njs¢;) iff i = j.
For i € S, let D; be the set of complete Ly —types materialized in (N;s,, Nio).
Because of the choice of &; ,-s and X, the palr (Ni.s,No) is (D;, No)-homogeneous
and D; is a countable set of complete Ly Ltypes. Note that by the choice of S,

i#jeS=D;#D;.

Let

I':= {D : D a countable set of complete Lgl—types, such that for some model

A=9Ap of ﬂ Thy, , (;), with {a:Ap = “a a countable ordinal”} = ¢
i€S
we have D = {{p(z) € L;": Ap |= (N; No) I la]} :a € N}}
(where N = ¢3'P).
So D; € T for i < ws, hence I" is uncountable.

By standard descriptive set theory I' (is an analytic set, hence) has cardinality
continuum. So let D¢ € I' be distinct for ¢ < 2% For each (, let 2[%( be as in the
definition of I'. We define 27, by induction on o < wy such that

(A) A%, is countable.
(B) a< B =A% <u,. AP,

(C) For limit am we have g, = ﬁU Ql
<«



Paper Sh:88r, version 2024-09-01. See https://shelah.logic.at/papers/88r/ for possible updates.

50 SAHARON SHELAH

(D) If d € Ql%tl \ AP, and Ql%tl = “d a countable ordinal”, then for a € A,
we have Ql%tl = “if a is a countable ordinal then a < d”.

(E) For a =0, there is no minimal such d in clause (D).

(F) For every a there is d¢ o € Ql%tl \ AP, satisfying 2l%t1 E “d¢ .o a countable

ordinal”, and for « # 0 it is minimal.

Without loss of generality

0 0
(%) (H(Nl)mDC,EmDC) is equal to its Mostowski collapse (and L, ,(N) C
H(Ry)).

0
We could have also fixed otp(2; Nws), and hence ensure that (A% 762[1’4 is also
D¢
equal to its Mostowski collapse). ‘

Let M¢ o be the d¢ o-th member of the w;i-sequence of models in Ql%c for 8 > a
(remember cgl: = (Nja:a <wy)). Let Me = |J M. By absoluteness from

a<wi

QIBDC we have M¢ o <¢ M¢ g € Ky,. Now,
(¥) (M¢,g, Mc¢.o) is (D¢, Ro)-homogeneous for 0 < a < f3.

[Why? Assume AD, E “dy < dy are countable ordinals > +” when v < §. Now if
- A%
a,be“> (N, ") and
_ B AD = A Ap
y<0= gtpro (a; Ny 3N, ) = gtpro (b Ny, 5Ny, <)
then Ql%( also satisfies this. But Ql%g “thinks that” the countable ordinals are well-
ordered hence for some d, QI‘XDC E “d is a countable ordinal > +” for each v < ¢,

and we have

e = “gtpro (@ Nay; Na,) = gtprg (@5 Nays Na,)”

A9 A
Hence if A% = “d’ < d” then for every a € NdzDC, for some b € NdZDC, we have

De F “stpro(a”(a); Nay; Nay) = gtpro (b™(0); Nay; N, )”

h =7 -NQ[%on%C — BA b .Nm%C.NQl%C
ence gtpLg(a (a); Ny, ) =gtp(b™(b); Ny, “ 1N, ©)-

Also, we can replace LY by Lé_l. By clause (ix)" of X1, the set

@ DIE
D DC

A A
{gtpro(as N, " N, ) ra € > (N,”)} = Di.

A% A
So (Nd2D<,Nd2DC) is (D;, Ng)-homogeneous.

So from the isomorphism type of M¢ we can compute D¢. So ¢ # £ = M¢ 22 Me.
As M¢ € Ky, we finish.

Case B: 280 < 981,

By 3.9, £ has the Rg-amalgamation property. So clearly if N <, M € Ky,,a € M,
then a materializes a complete L, ,(77%)-type in (M, N). We would now like to
use descriptive set theory.

We represent a complete ng (779)-type materialized in some (N, M) by a real,

by representing the isomorphism type of some (N, M,a) with N <, M € Ky,
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and a € M. The set of representatives is analytic, recalling € is PCy,, and the
equivalence relation is 1.

[As (N1, My, @), (N2, Mo, a2) represent the same type if and only if for some (N, M)
with N <¢ M € Ky,, there are <¢-embeddings f; : M7 — M and fy : My — M
such that f1(N1) = f2(N2) = N and fi(a) = f2(a).]

By Burgess [Bur78]12 as there are > N equivalence classes, there is a perfect set
of representation, pairwise representing different types.

[“. . . set of representatives?”|

From this we easily get that without loss of generality, their restrictions to some
L are distinct, contradicting clause (a).

Clause (g): Easy, by the proof of Case A of clause (f) above, but much simpler
as in 4.12.

Clause (h): As in the proof of clause (e).

2) Should by clear by now. Uaas

Remark 4.16. 1) Note that in the proof of 4.13(f), in Case A we also get many
types, but it was not clear whether we can make the N, to be generic enough to
get the contradiction we got in Case B (but this is not crucial here).

2) We may like to replace L), , by L},  in 4.10, 4.11 and 4.13 (except that for
our benefit, we may retain the definition of L'(N) in 4.13(e)). We lose the ability
to build L-generic models in Ky, (as the number of relations (even unary) on
N € Ky, is 2%, which may be > X;). However, we can say “@ materializes the
type p = p(Z) in N € Ky, which is a complete type in ]L,Uthw(Nn,]\fn_l7 ..., No);
where Ny <¢ ... <¢ N,, <¢ N with N, countable)”.

[Why? Let some N' a' be as above and a! materializes p in (N!,N,,..., Np).
Then this holds for (IV,a) iff for some N’ and f we have N <; N’ € Ky, and f
is an isomorphism from N' onto N mapping @' to @ and N, to N, for £ < n. If
there is no such pair (N1, a'), this is trivial.]

We can get something on formulas.

This suffices for 4.10.

Concluding remarks for §4:

Remark 4.17. 0) We can get more information on the case 1 < I(X;, K) < 2% (and
the case 1 < (R, Kf ) < 2%, etc.).

1) As in 3.9, there is no difficulty in getting the results of this section for the class
of models of ¢ € Ly, ,(Q); because using (K, <¢) from the proof of 3.19(2) in all
constructions, we get many non-isomorphic models for appropriate F (as in 4.9(2)).

2) For generic enough N € Ky, with a <g-representation (N, : a < wi), we have
determined the N,-s (by having that without loss of generality K is categorical in
Ng). In this section we have shown that for some club E of wy, for all a < 8 from
E, the isomorphism type of (Ng, N,) is essentially® unique. We can continue the

120r see [Shesd].
13VVhy only essentially? As the number of relevant complete types can be Ny; we can get rid
of this by shrinking &.
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analysis; e.g. deal with sequences Ny <¢ N; <¢ ... <¢ N € Ky, such that Ny
is pseudo-L2 (Ny, Ny_1, ..., Np)-generic. We can prove by induction on k that for
any countable L C LY (77*) and some «, any strong L-generic N € Ky, is L-
determined. That is, for any <g-increasing continuous (N, : o < wq) with union
N and N, <¢ N countable, for some club F, for all ag < ... < aj from N, the
isomorphic type of (Na,, Na,,-- -, Nag) is the same; i.e. determining for Ly ,(aa).

3) We can do the same for stronger logics: let us elaborate.

Let us define a logic £*. It has variables for elements x1, x5 . . . and variables
for filters V1,Ys . . .

The atomic formulas are:

(i) The usual ones.

(ii) ‘@ € dom(Y)’.
The logical operations are:

(a
(b

) A conjunction, — negation.

)
(c) the quantifier aa acting on variables ) (so we can form (aa))yp).
(d)

)

(3x) existential quantification, where z is an individual variable.

d) the quantification (3x € dom(}))e.
(e) the quantification (3/x € dom(Y))¢.

[[’m guessing f stands for ‘filter?’ Can I change it to 3% instead? I had
assumed there should be some function f in the definition.]

It should be clear what are the free variables of a formula ¢. The variable ) varies
on pairs (a countable set, a filter on the set). Now in (3z)[p, V], (3z € dom(Y))y,
and (3fz € dom(Y))yp, z is bounded but not Y; and in (aa))), Y is bounded.

The satisfaction relation is defined as usual, plus

(@) M = (3z € dom(Y))¢(z,Y,a) iff for some b from the domain of Y, we
have M = ¢[b, Y, a).
(B) M (3z € dom(Y))p(x,Va) iff {z € dom(Y): M = ¢(z,V,a)} € V.
(v) M E (aaY,a)p(Y) iff there is a function
B (0] - ()

(An : n < w) is C-increasing with A4, € [M]<®° and

such that if A =
A,) C A,y then

F(Ao,..
M = o[Y3z,
where )y is the filter on |J A, generated by { U A \Ar:l< w}.
n<w nw

[’m not sure what this function F adds. It’s not used in the conclu-
sion, and choosing F(Ay, ..., A,) := Ag would always satisfy the condition
trivially.]

[Also, should that be M = (aa))p(),a) at the top?]

4) We can, of course, define Lj, . (extending L, [) As we would like to analyze
models in Ny, it is most natural to deal with L7,

We can prove that (if 1 < I(X;,€) < 2%) the quantifier aa ) is determined on
Ky, (i.e. we have () for almost all Y iff we do not have —¢(Y) for almost all V.
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5) The logic from (3) strengthens the stationary logic L(aa) (see [She75c] and
[BKMT78]).
Not so strongly: looking at PCy, class for Ly, .,(aa)
(i.e. {M |7 :M amodel of ¢ of cardinality N;}),

we can assume that ¢ = “< is an N;-like order”. Now we can express ¢ € L, ,
but the determinacy tells us more. Also, we can continue to define higher variables

V.
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§ 5. THERE IS A SUPERLIMIT MODEL IN N

Here we make the following change:
Hypothesis 5.1. Like 4.8, but also 2% < 2%,

(Note that we can assume that Ky, is the class of atomic models of a first-order
complete countable theory).

This section is the deepest (of this paper = chapter). The main difficulties are
proving the facts which are obvious in the context of [She75a]. So while it was easy
to show that every p € D*(N) is definable over a finite set,'* it was not clear to me
how to prove that if you extend the type p to ¢ € D*(M), where N <, M € Ky,
by the same definition, then ¢ = p. (Remember, p and ¢ are types materialized but
not realized, and at this point in the paper we still do not have the tools to replace
the models by uncountable generic enough models.) So rather, we have to show
that failure is a non-structure property; i.e. it implies existence of many models.

Also, symmetry of stable amalgamation becomes much more complicated. We
prove existence of stable amalgamation by four stages (5.29, 5.30(3), 5.34, 5.37).
The symmetry is proved as a consequence of uniqueness of one-sided amalgamation
(so it cannot be used in its proof). Originally, the intention was for the culmination
of the section to be the existence of a superlimit models in ®; (5.45). This seems
to be a natural stopping point, as it seems reasonable to expect that the next step
should be phrasing the induction on n; i.e. dealing with XN,, and P(n — £)-diagrams
of models of power N, as in [She83al, [She83b] (so this is done in [She09c]).

But less is needed in [She09a].

Definition 5.2. We define functions D, D* with domain Ky, .

1) For N € Ky, let
D(N) := {p: pis a complete L) (N)-type over N such that for some

wi,w
a €M € Ky,, N <¢ M and a materializes p in (M, N)}.

(I.e. the members of p have the form ¢(Z,a), where Z is finite and fixed for each p,
a is a finite sequence from N, and ¢ € L (N).)

wi,w
2) For N € Ky,, let
D*(N) := {p : p is a complete L2 (N; N)-type such that for some

w1 ,w

a €M € Ky,, N <¢ M and a materializes p in (M, N;N)}.

3) For p(z,y) € D(N), let p(z,9) | Z € D(N) be defined naturally. I.e. if for
some M € Ky, with N <¢ M and a | b € 9@ 9 M materializing p(z,7) such
that g(z) = fg(a), the sequence a materializes p(Z,y) [ « € D(N). Similarly for
permuting the variables.

0
wi,w

Explanation 5.3. 0) Recall that any formula in L
variables.

(N) has finitely many free

1) So for every finite b € N and (z,9) € LY. (N), if p € D(N), then (z,b) € p

— w1,w
or =p(Z,b) € p.

1p*(N) is defined below.
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2) But a formula from p € D*(IV) may have all ¢ € N as parameters, whereas a
formula from p € D(N) can mention only finitely many members of N.

Lemma 5.4. 1) t has the Ng-amalgamation property.

2) If N, <¢ N € Ky, and A; C N, fori <n, then for every sentence
P € Léoyw(N*, Ap, ..., A1y Ag) we have

NIF 9 or N Iyt b,

3) If N < M € Ky, then every a € M materializes in (M, N; N) one and only one
type from D*(N) and also materializes in (M, N) one and only one type from D(N).
Also, for every N <¢ M € Ky, and q € D*(N), for some M', M <, M’ € Ky,
and some b € M' materializes q in (M; N).

4) For every N € Ky, and countable L C LY, (N;N), the number of complete

L(N; N)-types p such that N \P;l “(3z) A p” is countable; note that, pedantically,
L C Ly, ow(ttU{c: c € N}) and we restrict ourselves to models M such that
PM = |N| and ™ = c.

5) For N € Ky, there are countable L), C LY, (N;N) for a < w; increasing
continuous in «, closed under finitary operations (and subformulas) such that:

(x) For each complete LY -type p we have
NI 3z Ap=ApeLd,,.

Hence for every LY, ,(N; N)-formula 1(Z), for some ¢, (%) € aL<Jw LY with n < w,

for every N € Ky,,
(N, N) IE® (va) [9(@) =V ¢n(@)].

n<w

6) For N € Ky, we have [D*(N)| <8y and [D(N)| < ®y.

7) If p € D*(N) then there is q such that if N <¢ M € K\ and a € M materializes
p in (M;N), then the complete Lgovw(]\f)—type which @ realizes in M over N is
q; also, q belongs to D(N) and is unique. Moreover, we can replace q by the
complete ;! (N )-type which a materializes in M. Similarly for D(N), LY, ,(N),

L' (N).

wi,w

8) Ifn < w and b, € "N realize the same Lo, w(7)-type in N, then they materialize
the same L., ,(77°)-type in (N,N).

9) If f is an isomorphism from Ny € Ky, onto No € Ky, then f induces a one-to-
one function from D(N7) onto D(N2) and from D*(N7) onto D*(N2).

Proof. 1) By 3.9.

2) By 1).

3) By (2) and (1).

4) Like the proof of 4.11 (just easier).
)

5) Like the proof of 4.13(a).
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6) Like the proof of 4.13(f) (recalling 0.4).
7) Clear, as in p € D*(N) we allow more formulas than for ¢ € D(N).

8,9) Easy as well. Os.4

From now on, we will use a variant of gtp. (In Definition 4.3(4) we defined
gtpy, (a; Ni, A; A; N).)
Definition 5.5. 1) If Ny <; Ny € Ky,,a € Ny, gtp(a, No, N1) is the p € D(Np)
such that (N1, No) IFy* Aplal. So @ materializes (but does not necessarily re-

alize) gtp(a, No, N1). We may omit N; when clear from context. We define
gtp*(a, No, N1) € D*(Np) similarly.
2) We say p = gtp* (b, Ny, N1) is definable over @ € Ny if

gtp<ba NUaNl) = p7 =

(o) € p: p(#,7) € LY, ,(No) and @ € 90 (Ng) € “>(Ng)}
is definable over a.

[Nothing here depends on b, and there appear to be too many a-s.]

(See Definition 5.7 below; note that p — p~ is a one-to-one mapping from D*(Ny)
onto D(Np) by 5.9(1) below.) So stationarization is defined for p € D*(Ny) as well,
after we know 5.9(1).

Claim 5.6. 1) Eachp € D(N) does not (LY, ,(77%), Ly, (7)) -split (see Definition

wi,w

5.7 below) over some finite subset C of N, hence p is definable over it.

Moreover, letting ¢ list C, there is a function g, satisfying g,(o(Z, 7)) is ¥p (7, 2) €
Lo, w(7) such that for each o(z,y) € LY, ,(N) and a € N, we have

40(57@) € p ~ N |: wpﬁp(da E)‘

(In particular, Q is “not necessary.”)

2) Every automorphism of N maps D(N) onto itself and each p € D(N) has at most
Ng possible images (we may also call them conjugates). So if g is an isomorphism
from Ny € Ky, onto N1 € Ky, then g(D(Ny)) = D(Ny).

3) If Nog <¢ N1 <¢ N> € KNO and a € Ny, then gtp(&, NQ,Nl) = gtp(a,No,Ng).

Before we prove 5.6:

Definition 5.7. Assume

(a) N is a model.

(b) Ay is a set of formulas (possibly in a vocabulary ¢ 7n) closed under nega-
tion.

(c) Ag is a set of formulas in the vocabulary 7 = 7.

(d) pisa (A1,n)-type over N.

(I.e. each member has the form ¢(Z,a) with @ from N, ¢(Z,y) from Ay,

and T = (zy : £ < n); no more is required. We may allow other formulas,
but they are irrelevant.)

(e) ACN.
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0) We say p is a complete Aj-type over B when:
(i) BCN
(i) @(Z,0) Ep=bC AN@(T,7) € Ay
(iii) if p(Z,7) € Ay and b € WP A, then ¢(z,b) € p or —p(Z,b) € p.
The default value here for Aq is Ly, o (7¢).

1) We say that p does (A1, Az)-split over A when there are p(7,7) € Ay and
b,é € WO N such that

(Ot) _(P(i‘, B)a _‘410('%3 é) €p
(8) b and ¢ realize the same Ag-type over A.

2) We say that p is (A1, Ay)-definable over A when for every formula ¢(Z, ) € A
there is a formula ¢ (7, 2) € Ay and ¢ € 9(3)A such that

p(z,b) € p= N = ¢[b, ¢
~p(z,b) €p= N = b, 7.
(In the case p is complete over B,b C B we get “iff.”)

3) Above, we may write A, instead of (Aj,As) when this holds for every A
(equivalently, Ay is {¢(Z,7) : ¢(T,a) € p}).

Observation 5.8. Assume
(a)-(e) Asin 5.7.
In addition:

(d)™ p is a complete (A1, n)-type over N.

Le. if (Z,7) € Ay, d € YON, and T = (xy : £ < n), then ©(Z,d) € p or
~¢(z,d) € p.

Then the following conditions are equivalent:

() p does not (A1, Ag)-split over A.
(B) There is a sequence of (gu(z,5) : (Z,Y) € A1) of functions such that:
(1) dom(gy(z,5)) 2 {tpa, (b, A, N):be “ONY.
(ii) the values of gy, (z.5) are truth values.
(iii) If p(Z,5) € A1, b€ “OIN, and g = tpa, (b, A, N), then
o(z,b) € p= Go(z,5)(q) = true and -p(z,b) €p = Go(z,5)(q) = false.

Proof. [Proof of 5.8:]
Reflect on the definitions. Os.8

Proof. [Proof of 5.6:]

1) Clearly the second sentence follows from the first, so we shall prove the first.
Assume this fails. Let (M, a) be such that N <¢ M € Ky, and the sequence a € M
materializes p. Clearly, for every b € M, (M, N) IF Ag[b] for some ¢(z) € D(N),
and let (b} : £ < w) list N. We choose (Cy,C}, f,,ad,a) : n € "2) by induction on
n such that
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(a) For £ <2 and n € "2, Cf; is a finite subset of N.
(b) fy is an automorphism of N mapping CO onto Cl.
0 1 0
){eg(n)}u() UCHC CO yNCL, for £=0,1.
)

ay,a, € N realize in N the same Lwl,w(r)—type over C) U Cy U {by,»} in
(M,N),
[Which is it? In N or in (M, N)?]

but @"al, a"a, do not materialize the same LY, (77%) in (M, N) (this

wi,w
exemplifies sphttlng) So ¢, (Z, Jn) belongs to the first and -, (Z,y,) be-
longs to the second (where lg(z) = fg(a) and €g(y,) = €g(a)).

(e) f <>( ) _na f’r] 1)(_ )*(E}]
[This isn’t symmetric. (Could still be correct, tho.)]
(f) fn TC,?Q n" () for £ =0,1.
~0~=1 0 1
(&) @@y € Cyi) N Crrgy

For n =0 let Cg, C% = @ and f, = idy. Recall that Ky, is categorical in Ny and
N is countable, hence if n < w and V/,b"” € "N realize the same L,,, ., (7)-type over
a finite subset B of N, then some automorphism of N over B maps b’ to b’ by
a theorem of Scott (see [Kei71]). If (Cp,Cy, f,) are defined and satisfies clauses
(a)+(b), we recall that by our assumption toward contradiction, as

Cy UGy U {by

is a finite subset of N, there are @’ a,17 € “”N as required in clause (d) again.

n7
So clearly there are automorphisms f, ), f,~(1) extending f, | 02 such that
foroy(@g) = @) and f-1y(ay) = a, as required in clause (e), (f).

Lastly, choose
0 0 1y gl i al -1 (z0-g
OnA(@ '_ On U Cn va;“(é} ) U {bég(n) fn (é)(bﬁg n)) Oy Gy n" (€>( )}
and G-ty = fir 10 (G
Having carried the induction, for every n € “2 clearly f, = U (fym | CY) is

n<w
an automorphism of N.

[Why? As (fyin | Cg i 1< w) is an increasing sequence of functions by clauses
(b)+(c)+(f), the union f, is a partial function; as, in addition, each f,, is an
automorphism of N by clause (b), f, is also a partial automorphism of N. Re-
calling that (b; : ¢ < n) lists N, clearly f,, have domain N by clause (c¢). And as

forn(CY,,) = C},,, the union f,, has range N by clause (c).]

Hence for some M,, € Ky, there is an isomorphism fJr from M onto M,, extend-
ing f. Now for some p, € D(N), f,(a) materializes p,, in (M,, N). Choose a count-
able L C 1LY, ,(71) which includes {¢, (Z,7,) : n € “>2}. Easily, if n"(€) <, € “2
for £ = 0,1, then (Z,a,) € po and —¢(Z,a)) € p1. So

n#ve“2=p,NL#*p,NL

by clauses (d)+(e), in contradiction to 5.4(4) (as we can use < ¥y formulas to
distinguish them).

2) Follows.
3) Trivial. Us.6
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Claim 5.9. 1) Suppose Ng <¢ Ny € Ky, and Ny forces that a,b (in Ni) real-
ize the same LY (No)-type over No, then Ny forces that they realize the same

wi,w

LY (No; No)-type (the inverse is trivial).

1A) Suppose Ny C¢ Ny € Ky,, a¢ € “~(Ny) for £ =1,2, and
gtp(a1, No, N1) = gtp(az, No, N1).

Then we can find (Nf,]\@ﬂf) such that N1 <g Nf € Ky,, N2 <¢ N; € Ky,, and
f is an isomorphism from Nfr onto N; over Ny mapping a1 to Qs.

2) If Ng <¢ Ny <¢ Ny € Ky, and a,b € Ny then'® we can compute the L (No)-

wi1,w
generic type of a over Ny from the ]L?Jhw(Nl)—genem'c type of a over Nj.

(Hence if the IL.?  (Ny)-generic types of @,b over Ny are equal, then so are the

wi,w

L0 . (No)-generic types of a,b over Ny.)

w1 ,w

3) For every N, € Ky, there is a one-to-one function f from D(N) onto D*(N)
such that if N C¢ M € Ky, and a € “> M, then

f(gtp(a, N, M)) =gtpr, ;) (@3 N5 N; M).
Remark 5.10. 1) So there is no essential difference between D(N) and D*(N).

2) Recall that in a formula of LY, (No; No), all ¢ € Ny may appear as individual
constants.

Proof. 1) We shall prove there are Ny such that Ny <¢ Ny € Ky, and an automor-
phism of Ny over Ny taking @ to b. This clearly suffices, and we prove the existence
of such Ny by hence-and-forth arguments (of course). We shall use 5.4(2) freely.
So by renaming and symmetry, it suffices to prove that

(*) If m < w, Nog <¢ Np, and a,b € ™(N1) materialize the same LI, ,(No)-
type over Ny, then for every ¢ € Ny, there are Ny and d € N> such that
a"(c),b"(d) materialize the same LY _(Ny)-type over No.

w1 ,w
However, by the previous Claim 5.4, for some a* € “~(Ny), the Lglvw(No)—type
over Ny that a”(c) materializes in (Ny, Np) does not L, (7)-split over a*. Now
@, b materialize the same ]Lghw(No)—type over Ny in (Ny,Ng), hence a*"a, a* b
materialize the same LJ, , (No)-type in (N1, Np). Hence there is Ny € Ky with
N7 <¢ N3 and an automorphism f of Ny mapping Ny onto N7 and mapping a*"a
to a*"b (but possibly f | Ny # idy,). This holds by the last sentence in 4.13(c).
Let d == f(c); hence if a"(c) and b"(d) materialize the same L, (No)-type in

(N3, Np) then they materialize the same L (Ng)-type over Ny in (Na, No).

wi,wW
1A) Similarly to part (1).

2) Clearly it suffices to prove the “hence” part. By the assumption and proof of
5.9(1) there are N3 satisfying No <¢ N3 € Ky, and f an automorphism of N3 over
N; taking a to b. Now the conclusion follows.

3) Should be clear. Us.9

Definition 5.11. 1) We say that D, is a €-diagram function when

15Remember7 No determines the complete ]Lglyw(Nl)—generic types of @, b.
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(a) D, is a function with domain Ky,. (Later we shall lift it to K.)

(b) D.(N) C D(N), and has at least one non-algebraic member, for N € Ky, .

(c) If N1, Ny € Ky, and f is an isomorphism from N; onto Na, then f maps
D.(N;) onto D,(N3); in particular, this applies to an automorphism of
N € KN0~

1A) Such D, is called weakly good when:
(d) () D4(N) is closed under subtypes: that is, if p(Z) € D4(N),
T = (xp: L <m),

and 7 is a function from {0,...,m — 1} into {0,...,n — 1}, then some
(necessarily unique) G({zg,...,2n—1)) € D.(INV) is equal to

{(p((gco, oy Tne1)) (T r0)s - s Tr(m—1)) € p(i)}

(B) If N <¢ M € Ky,, a1,b1 € “’N, ay € 9@IM, (M,a;) = (M, az),
and gtpﬂww(Tﬂ(&g;N;M) € D(N), then for some M™T, by we have

M <¢ M+ € Ky, by € 900 (M%), (M*,a,°b1) = (M*,a2°b), and
gtprlﬁw(TJr)(ELgAbQ;N; M+) S D(N)

(v) If N <¢ M € Ky,, a € “>M, b€ “>N, and
gtpL,,, ., (r+) (@ N; M) € D(N)
then gtpLWLW(Tﬂ(dAB;N;M) € D(N).

2) Such D, is called countable if N € Ky, = |D«(N)| < .
3) Such D, is called good when it is weakly good (i.e. clause (d) holds) and

(e) D,(NN) has amalgamation.
(Te. if po(Z),p1(Z,7),p2(Z,2) € D(N) and pg C p; N ps then there is
q(z,9,Z) € D.(N) which includes p1(Z, §) U p2(Z, Z).)

4) Such D, is called very good if it is good and:

(f) If No <¢ Ni <¢ Ny € Ky,, ap C a1 C ag, ar € Ny for £ = 0,1,2, and
gtp(a@et+1, Ne, Neg1) is definable over a, and belongs to D..(Ny) for £ = 0,1
then gtp(ag, Ny, N2) belongs to D, (Ng) and is definable over ag.

Remark 5.12. 1) Note that if D is a weakly good ¢-diagram function, N € Ky,
and p € D(N) then we can find (M,a) such that N <, M € Ky,, a € “”M,
p= gtpLWLW(Tﬂ(d;N;M), and for every b € “”M the type gtprw(Tﬂ(If);N;M)
belongs to D(N).

2) Moreover, if D is a good ¢-diagram function then we can demand above that M
is (D(INV), Rg)*-homogeneous (see Definition 5.15(1) below).

3) On ‘very good’ D, see 5.13(2).

4) The D,-s in 5.13 below are very good ¢-diagrams, and for us it suffices to then
have the properties mentioned above, so we do not elaborate.

Fact 5.13. 1) for a < w; there are D, D, functions with domain Ky,, such that:



Paper Sh:88r, version 2024-09-01. See https://shelah.logic.at/papers/88r/ for possible updates.

CLASSIFICATION OF NE CLASSES 61

(a) For N € Ky,, Do(N) and D% (NN) are countable subsets of D(N) and
D*(N), respectively.
(b) For each N € Ky,, (Do(N): a <wi) and (D(N) : @ < wq) are increasing

continuous.
(¢c) D(N) = 9 D,(N) and D*(N) = 9 D (N).

(d) If N1, N2 € Ky,, f is an isomorphism from N; onto N3 then f maps D, (N7)
onto D, (N2) and D (Ny) onto D% (Ns) for a < wy.

(e) For every o < wy and N € Ky,, there is a (D4 (), Ng)*-homogeneous
model (see Definition 5.15(1) below; obviously, it is unique up to isomor-
phism over N).

(f) If Ny <¢ N1 <¢ Ny € Ky,, Na is (D (N1), Xg)*-homogeneous, and N; is
(D (No), Ro)*-homogeneous!® then Ny is (D4 (Np), Rg)*-homogeneous.

+ . . . . . .
£ - — bl
()T If (o : € < () is an increasing continuous sequence of countable ordinals
(N : e < () is <g-increasing continuous with N, € &y,
gtp(a, N, Ney1) € Do (N:)
for every @ € N.41, and for every £ < (, for some ¢ € [£,(), Neyq is
(Da. (Ne), Ng)*-homogeneous then N¢ is (Dq, (No), No)*-homogeneous.

(g) Ny is (Da(No),Ro)*-homogeneous iff Ny is (DX (Ng), Np)*-homogeneous,

where Ny < N; € KNO-

(h) D, is a very good countable ¢-diagram function.

2) If D is very good then clauses (d),(e),(f),(f)™ hold for it (and also (g), defining
D* as f”(D), f from 5.17(3)).

Remark 5.14. 1) We can add

(i) If ¢, <* are as derived from the ¢ € L, ,,(Q) in the proof of 3.19(2), then
we can add: if Ny <; N; € Ky, and every p € Do(Ng) is materialized in
N1, then Ny <* Nj.

2) So our results apply to ¢ € L, ,(Q) as well.

3) So it follows that if (N, : i < a) is <g-increasing in Ky,, Nit+1 is (Dg, (No), No)*-
homogeneous, and (8; : i < «) is non-decreasing with supremum g, then N, is
(Dg, Ng)*-homogeneous.

4) So by 5.13(1)(h), each D,, is very good and countable.

Proof. [Proof of 5.13:]
First, D is a t-diagram function by Definition 5.2 and 5.4(9). As D(N) has
cardinality < Ny by 5.4(6) we can find a sequence (D, : & < w1) such that

® (a) D, is a countable ¢-diagram function.

(b) For every N € Ky, the sequence (D, (N) : a < wy) is increasing
continuous with union D(NV).

160 just (Dg(No), Rg)*-homogeneous for some 8 < «, or just
be“”(N1) = gtpy,, ,(r+) (b No; N1) € D(No).
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Second, D is very good. (Clause (f) of 5.11 obviously holds, but to prove that it
reflects to D, for a club of @ < wy; we need 5.23 below. There is no vicious circle;
the other way is easier.)

Third, note that for each of the demands (d),(e),(f) from Definition 5.11, for a
club of § < wy, Dy satisfies it. So without loss of generality each D,, is very good.

The parts on D}, follow by 5.9. See 5.17(1) below, which does not rely on 5.13-
5.16 (and see proof of 5.19). Us.13

Definition 5.15. Assume Ny <¢ N; € Ky, and D, is a ¢t-diagram.

1) We say that (N1, Np), or just Ny, is (D.(Np), Rg)*-homogeneous over Ny (but
we may omit the “over Ny”) if:

(a) Every a € Ny materializes some p € D.(No) in (N1, No) over Ny, and every
q € Dy (Np) is materialized in (Ng, N1) by some b € Nj.
(b) If @,b € N1 materialize the same type over Ng in (N1, No) and ¢ € Ny, then

for some d € N; the sequences @”(c), b"(d) materialize the same type from
D*(NQ) in (Nl,NQ).

2) Similarly for (D (Ng), No)*-homogeneity. Pedantically, we have to say (N1, No; No)
is (D*(N), No)*-homogeneous, but normally we just say N is.

Remark 5.16. 1) Now this is meaningful only for N <, M € Ky,, but later it
becomes meaningful for any N <, M € K.

2) Uniqueness for such countable models hold in this context as well.

Now by 5.9:

Conclusion 5.17. If (N1, Ny) is (Do (No), Ro)*-homogeneous then Ny
(i.e. (N1, No,¢)cen,) is (D} (No), Ro)*-homogeneous.

Proof. This is easy by 5.9(1) and clause (g) of 5.13. Os.17

Lemma 5.18. There is N* € Ky, such that N* = |J Na, No € Ky, is

a<wi
<g-increasing continuous with o, and Nyy1 is (Dat1(Na), Ro)*-homogeneous for
o < wi.
Proof. Should be clear. Us.18

Theorem 5.19. The N* € Ky, from 5.18 is unique (not even depending on
the choice of Do (N)-s), is universal, and is (D(¢),Ny)-model-homogeneous (hence
model-homogeneous for €).

Proof. Uniqueness: For £ = 0,1 and a < wy, let N2, D’ be as in 5.13, 5.18, and
we should prove |J N2 = [J Nl; because of 5.13(1)(g), it does not matter if

a<wi a<wi
we use the D or D* version.
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As DY, is increasing and continuous for a < wy, D% (N)| < Ry,
U DL(V) =D(WV)
a<wy

for every N € Ky,, and the Dg—s commute with isomorphisms, clearly there is a
closed unbounded F C w; consisting of limit ordinals such that

a € E= D) =D..

Let E := {a(i) : i < w1} with a(i) increasing and continuous. Now we define, by
induction on i < w;, an isomorphism f; from Ng(i) onto Né(i) increasing with 1.
For i = 0 use the Ry-categoricity of K, and for limit ¢ let f;, := |J f;.

i<t
Suppose f; is defined; then by 5.13(1)(d) the function f; maps Dg(iJrl)(Nao(i))
onto Dg(iﬂ) (Ni(i))v and by the choice of E, Dg(iﬂ) = Di(iﬂ). By the assumption

on the N! and clause 5.13(1)(f)*, N’

i) 15 (Dh iy (NE))s Ro)*-homogeneous.
Summing up those facts and 5.13(e) we see that we can extend f; to an isomorphism

fit1 from N2(i+1) onto Ni(i+1).

Now |J f; is the required isomorphism.
<wi

Universality: Let M € Ky, so M = |J M, with M, is <g-increasing con-
a<wi
tinuous and | M, | < Ng. We now define f,, Nu, Vo by induction on o < wy such

that v, € [, w1) is increasing continuous with «, f, is a <g-embedding of M, into
Ny € Ky,, Ny is <g-increasing continuous, f, is increasing and continuous, and
Npy1is (D4, (Ng),Ng)*-homogeneous for 3 < a.

For o = 0 let N, := M, and f, :=idn,. For « limit use unions. For a successor,
let @« = 8+ 1 and we use the Np-amalgamation property (which holds by 3.9,4.8).
So there is a pair (fa, NJ,) such that N3 <¢ N/, € Ky, and f, is a <;-embedding
of M, into N/, extending fz. The set

{gtp(a,Ng,N,,) :a € “7(N,)}

is a countable subset of D(Ng) hence is C D, (Ng) for some v € (y5,w1). By
5.13(1)(c) there is N, which <g-extends N/, and is (D, (N/,),Xo)*-homogeneous;
by 5.13(1)(f) we are done. So f:= |J fo embeds M into N := |J N,, which is

a<wi a<wi
isomorphic to N* by the uniqueness. So the universality follows from the unique-

ness.

(D(¢), X1)-Model-homogeneity: So let (N, : @ < wy), Dy, N* be as in 5.13, 5.18,
and we are given (MO,Ml,MS',f) such that My < MJ‘ € Kyy, M1 <¢ N*, and f
an isomorphism from My onto M. For some v < w; we have M; <¢ IN,.

Now {gtp(a, Mo, M) : @ € “> (M)} is a countable subset of D(My), hence

C D, (M) for some 7y < ws; also, {gtp(a, M1,N,) : a € “7(N,)} is a countable
subset of D(M;) and hence C D, (M;) for some 71 < w;.

Let B8 = max{y, 70,71} and let Mg € Ky, be (Dg(M;"),No)*-homogeneous, so
My <¢ Mg exists by 5.13(1)(e), hence Mg € Ky, is (Dg(Mp), Ro)*-homogeneous
by 5.13(1)(f) because 8 > ~y. Now Ny is (D(N,), Rg)*-homogeneous by 5.13(1), so
as 3 > v is follows that Ng is (D, (M), Rg)*-homogeneous.



Paper Sh:88r, version 2024-09-01. See https://shelah.logic.at/papers/88r/ for possible updates.

64 SAHARON SHELAH

By 5.13(1)(d),(e) we can extend f to an isomorphism g¢ from Mg onto Ng, so
g | My is a <g-embedding of M into N.

We can deduce “N* is a model-homogeneous” directly: let My, M; <¢ N* be
countable and f is an isomorphism from M, onto M;. Let v < w; be such that
My, My <¢ N, let v, be such that

{gtp(d, My, Nv) rac w>(N7)} cD,, (Mf)

for £ = 0,1, and let 8 := max{v,v,1} + 1. As above, Ng is (Dg(My),Ro)*-
homogeneous, and now we choose an automorphism f, of N, increasing with a €
[B,w1) and extending f by induction. Now (J{fs : @ € (8, w1)} is an automorphism
of N* extending f. Os.10

Definition 5.20. 1) If Ny <; N; € Ky,, pe € D(Ny) for £ = 0,1, and they are
definable in the same way,'” then we call p; the stationarization of py over Nj.

2) For £ = 0,1, Ny <¢ Ny, and py € D(Ny), let p1 = po mean that if Ny <; Ny €
Ky, and @ € Ny materializes p;, then it materializes po.

Remark 5.21. Tt is easy to justify the uniqueness implied by “the stationarization”.

Observe
Claim 5.22. If p; = gtp(a, N¢, N3) for £ = 0,1 and Ny <¢ N1 <¢ N3 € Ky,, then
p1 = po-
Proof. Easy. Us 22

Claim 5.23. 1) Suppose Ny < N; <¢ Ny € Ky,, a¢ € Ny for £ = 0,1,2,
ap C a; C ag (i.e. the ranges increase), gtp(ay, No, N1) is definable over ag, and
gtp(ag, N1, No) is definable over ay. Then gtp(aqe, No, Na) is definable over ay.
Moreover, the definition depends only on the definitions mentioned previously.

2) If Ng <¢ N1 <¢ N, pr € D(Ny) for £ =0,1,2, and ps11 is the stationarization
of pe over Nyy1 for £ =0,1, then pa is the stationarization of po over Na.

Proof. 1) So we have to prove that gtp(as, No, Na) does not split over ag. Let n < w
and b, ¢ € "N realize the same type in Ng over ag. (That is, in the logic Ly, ,(7e),
or even first-order logic when every N € Ky, is atomic.) Now b ay,¢ ay also
materialize the same L, ,(No)-type in N7, hence they realize the same Ly, o, (7¢)-
type (recall 5.4(8)). Hence b, ¢ realize the same L, ,,(7¢)-type in Ny over a; in Nj.
But gtp(as, No, N2) does not split over a;, so by the previous sentence we get that
b ay and & @y materialize the same Ly, ., (Np)-type in Na.

2) Easy. The “moreover” is proved similarly. Os.03

Lemma 5.24. Suppose Ny <¢ N1 € Kx,, pr € D(Ny), and p1 is a stationarization
of po over Ni. Then py = po; i-e. every sequence materializing p1 materializes po
in any No such that Ny <g Ns.

17See Definition 5.7 and 5.6; so in particular, they do not both split over the same finite subset
of No.
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Remark 5.25. 1) In [She75a], [She83a], [She83b], and [She90], the parallel proof of
the claims were totally trivial, but here we need to invoke I(Ry, K) < 2%,

2) A particular case can be proved in the context of §4.

Proof. Suppose Ng, N1, pg, p1 contradict the claim, and let a* € Ny be such that pg
is definable over a* (so p; is as well). By 5.13(e)+(f) there are § < w; and Ny € Ky,
satisfying N1 <¢ Na such that Ny is (D}(Ny), Xg)*-homogeneous for £ = 0,1. We
can find po € D(N2) which is the stationarization of py and p;. It is enough to
prove that ps = p1.

[Why? First, note that there is an automorphism f of Na which maps N7 onto Ny
and f(a*) = a*, hence f(p2) = p2 and f(p1) = po, hence ps = py. Now assume
that V7 <g N1+ € Ky, and a; € Nf‘ materializes p;. Clearly we can find N2+ and
as such that Ny <; N2+ € Ky, and ay € N2+ materializes po. As we are assuming
p2 = p1 it also materializes p1, hence there are N3, f such that N1+ <¢ N3 € Ky,
and f is a <g-embedding of N2Jr into N3 over Ny mapping as to a;. But ps E po
(see above) hence f(as) = a; materializes pyp and p; as well.]

So without loss of generality for some 9,
® Ny is (D}(No),Ro)*-homogeneous over No.
For N € Ky, with Ng <¢ N, let py be the stationarization of p over N, so
X; If No <¢ N € Ky, then py is definable over a*.

Without loss of generality the universes of Ny, N7 are w and w X 2, respectively.

Now we choose models N, € Ky, for a < wy, with |[N,| = w x (1 + «) and
B < a = Ng <¢ N,. Ny and N; are the ones mentioned in the claim, and
G € Noy1 materializes the stationarization p, € D3 (Ny) of pg over N,. For 5 > a,
Ng is (D}(Ny), Xg)-homogeneous (see 5.13(f),(f) ™). Recalling that € is categorical
in Ry (and the uniqueness over Ny of (Dg(Np), Rg)*-homogeneous models) we have

a> = (N, Ng) = (N1, Np).
So recalling ®, clearly a, does not materialize py, (in Nao1).

Let N:= |J N,. Let B be (H(X2), €) expanded by N, K NH(Nz), <¢ H(N2),
a<wiy
and anything else which is necessary. Let 8~ be a countable elementary submodel

of B to which (N, : @ < wy) and N belong, and let §(*) := B~ Nw;. For any
stationary co-stationary S C w1, let B be a model satisfying the following.

e, Bg an elementary extension of B°.

o5 By is an end-extension of B~ for wi.
(That is, if Bg = “s < ¢ are countable ordinals” and ¢t € B~ then
s€B)
o3 Among the Bg-countable ordinals not in 267, there is no first one.

e, “The set of countable ordinals” of B is Is = |J I3, even IJ is not well
a<wy
ordered, each I, a countable initial segment of Ig, and

oz<ﬁz>]5§]§.

o5 Is\ IS has a first element if and only if & € S (in which case we call it

s(a@)).



Paper Sh:88r, version 2024-09-01. See https://shelah.logic.at/papers/88r/ for possible updates.

66 SAHARON SHELAH

In particular, w and finite sets are standard in Bg. For s € Ig, Ns[B,] == N2s is

defined naturally, and so is N° = NPs. Clearly NXs € Ky, is <g-increasing with

s € I, as those definitions are X1 (as £ is PCy,). Let NS := (J N2Zs and let s + 1
s€ly

be the successor of s in Ig.

So

B If Bg = “s < t are countable ordinals” then (N;2%, N25) is (D5(N2s), Rg)*-
homogeneous, and if s € I,, then N is (D%(N,25), Rg)*-homogeneous.

If @ € S then clearly the type p = pys satisfies the following (using absoluteness

from B 5 because N7 is definable in Bg as N;I(ij)).

(A) p is materialized in N° (i.e. in Ng for a club of 5 € 5).
But by the assumption toward contradiction

(B) For a closed unbounded F C wy, for no 8 € EN S with 8 > o* and
v € (B,w1), does a sequence from N* materialize both p = pns and its sta-
tionarization pys over N § in N7. (Again, remember NS = N, ?E(f) because
a€sl.)

and similarly
(C) For a closed unbounded set of 5 > «, NBS is (D3(N5), Ro)*-homogeneous.
We shall prove that every a < wq,
[ If a ¢ S then « cannot satisfy the statement (C) above.

This is sufficient because if 51,52 C wy are stationary and co-stationary and f is an
isomorphism from N°' onto N2 mapping a* to itself, then for a closed unbounded
set E C wq, for each o < wy

[This has to be ‘for each « € F,” right? Otherwise nothing you wrote
depends on E.]

the function f maps N, (fl onto NN, 32, hence the property above is preserved, hence
S1NE = S3NE. But there is a sequence (S; : i < 2N1> of subsets of wy such that for
i # j the set S;\S; is stationary. So by 0.4 we have (R, K) = 2%, a contradiction.

So suppose a € w1 \ S, p = pys, and clause (C) above holds. But obviously (C)
= (A), recalling po € Ds(No), hence pys € Ds(NS). So let @ € N materialize p
in N and we shall get a contradiction.

There are elements 0 = t(0) < t(1) < ... < t(k) of I¥ and @y € Ny = Nt?osj’

Qpp1 € N;%H such that @ C ay, a* C ag, a¢ C Gp41, and gtp(ag+1,Nt?€§,N§€il))
is definable over a,. Furthermore, if (£ 4 1) is a successor (in Ig) then it is the

successor of ¢(¢), and if limit in I° then @, = ap ;.

[Why do they exist? Because of the sentence saying that for every @ we can find
such k,t(¢), and a, as above (for £ < k) satisfied by % and involve parameters
which belong to B~ hence to Bg, etc., so Bg inherits it (and finiteness is absolute
from Bg).]

It follows that gtp(a, Nfg, Nt’?ks)) is definable over a, for each ¢ < k.
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Clearly ¢(0) = 0 € I, but t(k) ¢ I,. (Otherwise t(k) + 1 € I, hence a €
N, ;I(;ks) 41 e N2 which is impossible as p is a non-algebraic type over N¥s.) Hence
for some ¢ we have t({) € I, and t({ + 1) ¢ I,. By the construction ¢(¢ + 1)
is limit (in 7°) hence agy1 = ap. As a ¢ S we can choose t(x) € I\ I35 with
t(x) <t(f+1). As we are assuming (toward contradiction) that «, p satisfy clause
(C), for some 8 € S, s(f3) is well defined, s(8) > t(k), and'® Ng is (D5(NS),No)*-

homogeneous. Now N§S) NB and N (Z+1) are isomorphic over Ny, (being both

(D*(Nf(;f)) Ng)*-homogeneous by the choice of Bg; see B above).

So as N3 < N(é+1) <¢ N? s = NS and (as said above) Ng is (D5(N5),No)*-
homogeneous (also, N, ?ZSH) is (D*(Nf ), Ng)*-homogeneous as well),
B S a*) =~ —x
(Nt(éil)’N ) :(Nl,No,a, )

As by B above, clearly N N;I(%*S) are (D*(N;I&)H)) Ng)*-homogeneous, there is
an isomorphism fy from N2 onto Nt( ) over Nt(e . As Nt(£+1) is (DE(NS*S)), No)*-
homogeneous and (D%(NZ), Rg)*-homogeneous by the prev1ous paragraph (where

we use ) we can extend fy to an automorphism f; of N, t(€+1) Let vy € SNE
satisfy s(y) > t(k)+1. As gtp(ax, N£€+1)’ N¥) is definable over @y = a1y and @, =

fo(ae) = f1(ap) (as as € Nt(e)+1) and N’y 1 is (D*(N%SH)) Rg)*-homogeneous, we

can extend f; to an automorphism fo of N:Y9 satisfying fo(ay) = ax.
Notice that by the choice of {(a, : £ < k) and (¢(£) : £ < k), it follows that

gtp(a@r, Ne(m)s Ne(k)+1) does not split over a,, for any m < k, Hence is definable
over [a,,7] by 5.23, and recall that we know that ay = Gg41.

So there is in N¥ a sequence materializing both gtp(a, N7 N )=0p ns and its
stationarization over N7 syt Just @ (€ ag) (so use fz).

This contradicts the assumption as (N7, Ng,a*) = (N;i,ﬁ_l) N2 a*). Os5.04

Clauses (5)-(9) of the following claim are closely related to Definition 5.27.

Claim 5.26. 1) Ifa € No <¢ N1 <¢ N2 € Ky,, b€ No, and p; = gtp(b, N1, No) is
definable over a € Ny, then po = gtp(b, No, N2) is definable in the same way over
a, hence gtp(b, N1, Na) is its stationarization.

2) For a fized countable M € Ky,, to have a common stationarization in D(N')
for some N’ satisfying M <g¢ N’ or N' <¢ M is an equivalence relation on the

set | D(N) (and we can choose the common stationarization in D(M) as a
N<eM
representative). So if Ng <¢ N1 <¢ Ny € Ky,, pe € D(Ny) for £ = 0,1,2, and

p1,pe are stationarizations of py then py = p;.

3) If N, € Ky, is <g-increasing and continuous (for « < w + 1) and @ € Ny1q
then for some n < w, for every k, if n < k < a < w then gtp(a, Ny, Nwt1) is the
stationarization of gtp( s Ny, Nyi1).

4) If N <¢ M € K, N € Ky, and a € M, then gtp(a, N, M’) is constant for all
M’ € Ky, satisfying a € M’ and N <, M’ <¢ M. We will call it gtp(a, N, M).

180n the definition of s(y) for v € S, see o5 above.
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(The new point is that M is not necessarily countable. This is compatible with
Definition 5.27(c) being a special case.)

5) Suppose Ng <¢ Ny (in K) and a € Ny1. Then there is a countable M <y Ny such
that for every countable M’ satisfying M <¢ M’ <¢ Ny, we have that gtp(a, M’', N1)
is the stationarization of gtp(a, M, N1). Moreover, there is a finite A C Ny such
that any countable M <y No which includes A is okay. So gtp(a, Ny, N1) from
5.27(c) is well-defined, a member of D(Ny), and is definable over some finite A C
No.

6) The parallel of part (3) holds for N, € K as well, and for any limit ordinal instead
of w. That is, if (Ng : a < 0 + 1) is <g-increasing continuous and @ € Ns41, then
for some a < 6 and countable M <, N,, we have

M <¢ M’ <¢ M5 = gtp(a, M’', Ms) is the stationarization of gtp(a, M, Msy).
Similarly for every p € D(Nj).

) If No <¢ N1 <¢ No <¢ N3 <¢ Ny, @ € Ny, and gtp(a, N3, Ny) is the stationariza-
tion of gtp(a@, No, N4), then gtp(a, Na, Ny) is the stationarization of gtp(a, N1, N3).
Also, if b satisfies rang(b) C rang(a) and gtp(a, Na, Ny) is the stationarization
of gtp(a, N1, Ny), then this holds also for b. We can replace gtp(a, N3, Ny) by
pE D(N4)

8) If No <¢ N1 <¢ N2 € Ky, pe € D(INy) for £ =0,1,2, and pes1 is the stationar-
ization of py for £ = 0,1 then ps is the stationarization of pg.

9) If (M, : @ < §+ 1) is <g-increasing continuous, 0 a limit ordinal, and a €
w>(Msy1) then

(a) For some a < 8, for all B € [,0), we have gtp(a, Mg, Ms11) is the sta-
tionarization of gtp(a, My, Msy1).

(b) If gtp(a, My, Msi1) is the stationarization of gtp(a, Mo, Msi1) for every
«a < § then this holds for a = 0 as well.

10) If (M, : « < 6) is <g-increasing continuous, 0 a limit ordinal and ps € D(Ms),
then for some a < (8 there is po, € D(M,) such that ps is the stationarization of
Pa-

11) Those definitions in 5.27 are compatible with the ones for countable models.

12) gtp(a, N, M) (wherea € M and N <¢ M are both in K ) is the stationarization
over N of gtp(a, N', M) for every large enough countable N’ <; N (see 5.26(5)).

Proof. 1) As we can replace Ny by any N4 satisfying Ny <; Nj € Ky,, without loss
of generality, Ny is (D% (Ny), Ro)*-homogeneous and (DX (Ny), Rg)*-homogeneous
for some «. Let ps € D(N3) be the stationarization of p; over Ns.

So by 5.24 we get pa = p1. On the other hand, clearly there is an isomorphism
fo from Ny onto Ny such that fo(a) = a; and by the assumption above on N, fy
can be extended to an automorphism f; of Ns.

Note that fi maps po = gtp(b, No, Na) to pj == gtp(f1(b), f1(No), Na), and maps
p2 to itself as fo(a) = a.
Now p1 | po (by the choices of p1 and pg) and p2 = p1 by 5.9(1), so together

p2 E po- As fi1(p2) = p2 and fi(po) = py, it follows that ps = pf. As also ps E py
and pj,p1 € D(IVy), it follows that pj = p; hence py,pf, have the same definition
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over a. But now also pg € D(Np) and py € D(N;) have the same definition over a
(using f1); together, p1, po have the same definition over @, which means that p; is
the stationarization of pg over N7 and we are done.

Trivial.

6)-12) Easy by now. Us.26

Definition 5.27. By 5.26(5) the type gtp(a, M, N) can be reasonably defined when
M <; N and @ € “”N, and we can define D(N), D,(N), gtp(a, N, M) and sta-
tionarization for not necessarily countable N with N <, M € K. Everything still
holds, except that maybe some p-s are not materialized in any <g-extension of N.

More formally,

(a) If N < M, N € Ky,, and p € D(V) then the stationarization of p over M
is

U {q : N1 € Ky, N <¢ N1 <¢ M and ¢ is the stationarization of p € D(Nl)}.
(b) If M € ¢ then
D(M) = {q : for some countable N <¢ M and p € D(N),
the type ¢ is the stationarization of p over M}.

Similarly for D, a ¢-diagram.

(¢) f N <¢ M and @ € “”M then gtp(a, N, M) is defined as
U {etp(@a N, M) : Ny <e N' <¢ M € Ky,, M' <¢ M, N <; N}
for every countable Ny < N large enough; it is well defined and belongs
to D(N) by 5.26(5), and we say ‘G materializes gtp(a, N, M) in M.

(d) If N et, N <, M, and p € D(N) is definable over the countable Ny <
N (equivalently, it is the stationarization of some p’ € D(Np)), then the

stationarization of p over M is the stationarization of p’ over M (see clause
(a)). Equivalently,

U {pnm, : No <¢ My <¢ M, My is countable}

[What about it?]
where pyy, is the stationarization of p’ € D(Ny) over Mpy; it belongs to

D(Ny).

(e) If p(z,y) € D(M) then p(z,y) [ £ € D(M) is naturally defined [as in]
5.2(3); similarly for permuting the variables.

(f) For N <¢ M, we say that M is (D(N), Xo)*-homogeneous when for every
p(Z,9) € D(N) and @ € “®M materializing p(z,7) | = in M, there is
b € WO such that a*b materializes p(z, ) in M.

Remark 5.28. Claim 5.29 below strengthens 3.9; it is a step toward non-forking
amalgamation.



Paper Sh:88r, version 2024-09-01. See https://shelah.logic.at/papers/88r/ for possible updates.

70 SAHARON SHELAH

Claim 5.29. Suppose Ny <¢ N1 € Ky,, No <¢ Na € Ky,, and a € Ny. Then
we can find M with No <¢ M € Ky, and <g-embeddings f, of Ny into M over
No (for £ = 1,2) such that gtp(f1(a), f2(N2), M) is a stationarization of py =
gtp(a, No, N1) (so fi(a) ¢ f2(N2)).

Proof. Let ps € D(N3) be the stationarization of pg. Clearly we can find an
a < w; (in fact, a closed unbounded set of a-s), some Nj, Nj from Ky, which
are (D} (No),No)*-homogeneous and Ny, <; N, (for £ = 1,2), and some b € N}
materializing p. But by 5.24, b materializes py hence there is an isomorphism f
from N{ onto N4 over Ny satisfying f(a@) = b, recalling 5.9(1A). Now let M := Nj,
fr=f 1Ny, fo:=id. Us.20

Claim 5.30. 1) For any Ng <¢ N1 € Ky, so Ny € K<y,, there is No such that
Ny < Ny € Ky, and Ny is (D(Np), Rg)*-homogeneous.

2) Also, 5.29 holds for Ny € Ky, (but still with No, N1 € Ky, ).

3) If Ng <¢ Ny € Ky, and Ng <¢ Ny € K<y, then we can find M € K<y,
and <g-embeddings fi1, fo of N1 and Ny into M over Ny, respectively, such that
gtp(f1(2), f2(N2), M) is a stationarization of gtp(¢, No, N1) for every ¢ € Ny, hence
J1(N1) N fo(N2) = No.

4) KNz 7é a.
Remark 5.31. 1) Note that 5.30(3) is another step toward stable amalgamation.

2) Note that 5.30(3) strengthens 5.30(2), and hence 5.29.

Proof. 1) As we can iterate <g-increasing N; in Ky,, it is enough to prove that
if p(z,y) € D(Np) and @ € Ny materializes p(Z,g) | T in (N1, No), then for some
Ny € Ky, with N <¢ Ny and b € Ny, the sequence @ b materializes p(Z,y) in
(N2, Ng). Let My <¢ Ny be countable and ¢ € D(Mj) be such that p(Z,y) a
stationarization of q. Without loss of generality if Ny is countable then My = Np.

(Note that the case Ny = M, is easier.)
Choose M; (0 < i < wq) such that M; <, Ny, Ny = U M;, (M; : i < wy) is

i<wi
a <g-increasing continuous sequence of countable models, and My Ua C M;. As
(M;N Ny : ¢ < wy) is an increasing continuous sequence of countable sets with union
Ny, clearly for a club of i < wy, M; N Ny <¢ Ny hence M; N Ny <¢ M;. So without
loss of generality
i < wy = M; NNy <¢ No, M;.

For every ¢ € N; there is a countable Ny such that My <¢ Noz <¢ Ny and if
Noz <¢ N’ <¢ Ny and N’ € Ky, then gtp(¢, N',N1) is the stationarization of
gtp(¢, No,z, N1). Without loss of generality ¢ € M; = Ny z C M;, hence

() For every ¢ € M;, gtp(¢, No, N1) is a stationarization of gtp(¢, NoNM;, M;).

We can find M; € Ky, satisfying M; <¢ M; and b € M; such that ¢ = gtp(ab, My, M;).
We can find @y, @1, ag such that ag € My N Ng, a1 € My, as € My, b C as, a C ay,

ap < a; <ag, and gtp(ag, My, M) and gtp(ay, My N Ny, M;) are definable over a;

and ao, respectively. Now we define f;, M7 by induction on j < w; such that:

(1) (M7 :1<1i<j)is <g-increasing continuous.
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(i) M7 is countable (M7 is already given).

i) M;
(iii) f; is a <e-embedding of M; into M.
(iv) f1 is the identity on Mj.
(v) f; is increasing continuous with j.

)

(vi) gtp(az, fj(M;), M}) is the stationarization of gtp(az, M1, M7) (so definable
over ai).

For j = 1 we have it letting f; =idpy, -

For j > 1 successor, use 5.29 to define (Mj, f;) such that gtp(az, f;(M;), M) is
the stationarization of gtp(as, fj—1(M;-1), M;_;). So clauses (i)-(v) clearly hold.
Clause (vi) follows by 5.26(8).

For j limit: let My := |J M; and f; .= |J fi. Condition (vi) holds by

1<i<j 1<i<j

5.26(3).
By renaming, without loss of generality f; = idas, for j € [1,w:).

By (*) we get that gtp(ai, NoNM;, M7) = gtp(ai, NoNM;, M;) is definable over
ap (as this holds for j = 1). Combining this and clause (vi), by 5.23(1) we get that
for every j > 1, gtp(aa, NoNM;, M) is the stationarization of gtp(az, NoN My, M7).
Hence by the choice of a2, a1,ap and 5.26(7), easily gtp(a"b, No N M;, M) is the
stationarization of gtp(a"b, No N My, M7) hence of gtp(a”b, My, M7).

Let Ny := U M;. Clearly Ny <¢ Ny € KNI.
je[l’wl)

So by 5.26(9), clause (c), and the first sentence in the proof, we finish.
2) Similar proof!® (or use the proof of part (3)).

3) Without loss of generality Ny & N* from 5.18 (as we can replace Ny by an
extension — so use 5.19 and 5.26(7)).

Also (by 5.30(1)) there is M with Ny <; M € Ky, such that M is (D(N2), Ng)*-
homogeneous. As N; is countable, there is @ < w; such that for every ¢ € Ny,
gtp(¢, No, N1) € Do (No). Let M = |J M; with M; € Ky, being <g-increasing

i<wi

continuous. So for some ¢ € (a,wq) we have M; N Ny <; M and (recalling 5.26(6))
for every ¢ € M;, gtp(¢, N2, M) is stationarization of gtp(¢, No N M;, M;) and M;
is (D;(N2 N M;), Rg)*-homogeneous. Now we can find an isomorphism fy from N
onto No N M; (as K is Ng-categorical) and extend it to an automorphism fo of Ny
(by 5.19-model homogeneity). Also, there is N such that Ny <¢ N € Ky, and N{
is (D;(V1), Rg)*-homogeneous, hence is (D;(Ny), Rp)*-homogeneous (by the choice
of a, as o < i; see 5.13(f)). Hence there is an isomorphism f] from Ni onto M;
extending fo. Now fo, fi | N1, fa, M show that amalgamation as required exists
(we just change names).

4) Immediate; use (1) or (2) or (3) we-many times. Os.30

Definition 5.32. For any D, = D, for some a < w; (or just any very good
t-diagram D,; i.e. satisfies the demands on each D, in 5.13 — see 5.11) we define:

here Ny € Ky, is okay; similar to 2.12(1)
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1) M <p, N if M <; N and for every a € N,
gtp(aaMaN) GD*(M)

2) Kp, is the class of M € K which are the union of a family of countable submodels
which is directed by <p,.

3) tp, = (Kb, <pD,), or pedantically (Kp,,<p,| Kp.)-

Claim 5.33. Let D, be countable and as in 5.32.

1) The pair (Kp,,<p,) is an Rg-presentable AEC; that is, it satisfies all the axioms
from 1.2(1) and is PCy,.

2) Also for (Kp,,<p,), we get D(N) countable and equal to D.(N) for every
countable N € Kp,.

Proof. 1) Obviously Kp, is a class of 7-models and <p, is a two-place relation on
Kp,; also they are preserved by isomorphisms. About being PCy,, note that

®1 M € Kp, iff M € K and for some model 8 with universe | M| and countable
vocabulary, for every countable %, C 85 C B we have

M 8, <p, M | B,

iff there is a directed partial order and (M, : t € I) such that M; € Ky,
and s <;t = M, <¢ My and a C M; = gtp(a, My, M;) € D (Mj).
[You have two ‘iff’s here. Should I read this as A < B < C or
A& (Be O)7]
®o similarly for M <p, N.

Ax.I: If M <p, N then M <; N hence M C N.

Ax.JII: The transitivity of <p, holds by 5.11(4), 5.23(1), and Definition 5.27 (this
works as D, is closed enough, or use clause (f) of 5.13). The demand M <p, M is
trivial.2’

Ax.IIT: Assume (M; : i < A) is <p,-increasing continuous and M = J M;. As
i<A

tis an AEC, clearly M € K and i < A\ = M; <z M. Also, for each i < X\ and

a € M, for some j € (i,A), we have @ € M, hence gtp(a, M;, M;) € D,(M;). But

recalling 5.26(7), it follows that gtp(a, M;, M) = gtp(a, M;, M;) € D, (M;). So

1 < A= M; <p, M. By applying ®; to every M, and coding we can easily show

that M € Kp, thus finishing.

Ax.IV: Assume (M; : i < Ay, M are as above and i < A = M; <p, N. To prove
M <p, N, note that as ¢ is an AEC we have M <; N, and consider a € N. By
5.26(6), gtp(a, M, N) is the stationarization of gtp(a, M;, N)for some i < A, but
the latter belongs to D, (M;) hence gtp(a, M, N) € D,(M) as required.

Ax.V: By ®; this is translated to the case Ny, N1, M € Ky,, but then it holds
easily.

20Recall that M [ B =M | {a € M : a € B}.
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Ax.VI: By ®; + ® + Ax.VI for ¢.

2) So we replace € by ¢ = tp_, and easily all that we need for D is that ¢ is satisfied
by D, (actually, repeating the work in §5 up to this point on ¥, we get it) noting
that

® If M <p, M,y € KNO for £ = 1,2 and gtp(al,Mo,Ml) = gtp(dg,Mo,Mg),
then there is a triple (Mf,M;,f) such that M, <p, MZ € Ky,, ML}" is
(D(M;), Rg)*-homogeneous for i = 0,¢, and f is an isomorphism from M;"
onto ]\42+ over My mapping a; to as.

This follows by:

@1 If My <p, M, <p, My and a € M, then
gtp(a, Mo, M) = gtp(a, Mo, Ma) € D.(Mp).

®9 If My € Ky,, then for some M; € Ky, we have My <p, M and M; is
(D, (Mp), Rg)*-homogeneous.

@3 If My <p, My <p, M and My is (d.(M;),Rg)*-homogeneous then My is
(D, (Mp), Rg)*-homogeneous.

@4 If My <p, My € Ky, and gtp(ai, My, My) = gtp(az, My, M), then there
is an isomorphism from M; onto Ms over My mapping a; to as.

Us.33

Claim 5.34. Suppose Ny <¢ Ny € Ky, (for £ =1,2) and ¢ € Ny. Then there is
M such that Nog < M and <g-embeddings f; of Ny into M over Ny such that

(i) For every a € Ny, gtp(fi(a), f2(N2), M) is a stationarization of
gtp(dv N(]7 Nl)
(ii) gtp(f2(2), f1(N1), M) is a stationarization of gtp(¢, No, Na).

Remark 5.35. This is one more step toward stable amalgamation: in 5.29 we have
obtained it for one @ € Ny and in 5.30(3) for every a € Np, which gives disjoint
amalgamation.

Proof. Clearly, for £ = 1,2 we can replace N; by any N, € Ky, with N, <¢ Ny, and
without loss of generality No = N1 N N2. By 5.30(3) there is N3 € Ky, such that
Ny <¢ N3 for £ < 3 and

a € “7(N1) = gtp(a, Na, N3) is the stationarization of gtp(a, No, N1).

So we can assume that for some D, as in Definition 5.32 and ¢ = 1,2, Ny, is
(D (No), Rg)*-homogeneous. As in the proof of 5.24, we can find a countable linear
order I such that every element s € I has an immediate successor s + 1, 0 is the
first element, I* has a subset isomorphic to the rationals,?’ and models M, € Ky,
for s € I such that s <t = M, <; My and M, is (D, (M), Rg)-homogeneous, etc.

So by 5.26(3), for every initial segment .J of I and t € I such that®* J < ¢, if
J has no last element and I\ J has no first element then M; is (Do (M), Ng)*-

homogeneous, where
My=|JM;= (] M.
seJ teI\J

21Really, this follows.
22That is, (Vs € J)[s <1 t].
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We let N§ = My, N{ == M;, and Ny be a (Do(Ng'),Ro)*-homogeneous model
satisfying N§ < NJ; without loss of generality N N NJ = Ng. Also easily,
there is N} <¢ Ny such that gtp(¢, No, N1) is definable over some ¢y C Nj and Ny
is (Do (NV)), Ng)-homogeneous. Clearly the triples (No, N1, N2), (NG, N, N3') are
isomorphic, and let f3, f{, f5 be appropriate isomorphisms such that f§ C f/, fs .
Without loss of generality fi(Nj}) = My. Now by 5.30(3), there is M7 € Ky,
satisfying NZJ <¢ M for £ = 0,1,2 such that for every a € Ny, gtp(a, NJ, M7) is
the stationarization of gtp(a, Ng, Ni’) and there exist N3 € Ky, with N; <; N3 for
¢=0,1,2 and an isomorphism fi O f{ U fs from N3 onto M”.

Suppose our conclusion fails. Then gtp(fs (¢), N{, M”) is not the stationariza-
tion of gtp(fs (¢), NJ, M”). Moreover, as in the proof of 5.24,

tel\J= M;:= NlJ and M, are isomorphic over N()] = My,

hence we can replace Ni by M, for any t € I\ J. So as we assume that our
conclusion fails,

te I\ J= gtp(fs(c), My, M”) is not a stationarization of gtp(fs (), Ny, M”)
and the latter is the stationarization of gtp(fs (¢), Mo, M”). Let
by = gtp(fii(é), Nila MJ) - gtp(év My, MJ);
all this was done for any appropriate J. So it is easy to check that

Jl 7& J2 :>p.]1 #p.fzv

but as I* C I A |I] =Yg, we have continuum many such J-s and hence that many
pg-s. If CH fails, we are done. Otherwise, note that we can ensure that for J; # Jo
as above there is an automorphism of M; taking pj, to pj,, hence the set of such
pJ-s is contained in Dg(M;) for some 8 < wy; i.e. (f2) o (f{*)~! maps one to the

other, [giving a] contradiction by clause (d) of 5.13.

Alternatively, repeat the proof of 5.24. More elaborately, by the way D, was cho-
sen, Claim 5.30(3) holds for £p, hence without loss of generality M7 is (D, (Ny), Ro)-
homogeneous. So without loss of generality for some t, € I\ J, N{ = M;,), and
N7 = My, 11, and we get a contradiction as in the proof of 5.24 (i.e. the choice of
(@g - £ < £(x)) there.??) Os.34

Definition 5.36. 1) ¢ has the symmetry property when the following holds: if
No <¢ Ny <¢ N3 for £ = 1,2 and gtp(a, Na, N3) is the stationarization of gtp(a, No, N3)

for every a € Ny, then for every b € Ny, gtp(b, N1, N3) is the stationarization of

gtp(ba N07N3)'

2) If Ny, N1, No <; Nj satisfies the assumption and conclusion of part (1) we say
that Ny, Ny are in stable amalgamation over Ny inside N3 (or in two-sided stable
amalgamation over Ny inside N3). If only the hypothesis of (1) holds, we say they
are in a one-sided stable amalgamation over Ny inside N3. (Then the order of
(N1, N2) is important.)

3) We say that ¢ has unique [one-sided] amalgamation when: if Ny <, N, € Ky,
for £ = 1,2 then Ny, Ny has unique [one-sided] stable amalgamation, see part (4).

4) We say Np, Ny have a unique [one-sided] stable amalgamation over Ny (where
for notational simplicity, Ny N Ny = Ny) provided that: if () then (sx), where:

23A third way is to use forcing and absoluteness to use the case ‘CH fails.’
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(¥) (a) Ny <¢ N3, No <¢ N3, (N1, N3) are in [one-sided] stable amalgamation
inside N3 over Ny, and || N3|| < ||N1]| + || Nz2].
(b) My <¢ My <¢ M3 for £ = 1,2 and (M7, M>) are in [one-sided] stable
amalgamation inside M3 over My (hence My N My = My).
(c) feis an isomorphism from N, onto M, for £ = 0,1, 2.

(d) fo C f1and fo C fa.
(xx) We can find M4 with M3 <, M}, and f3 a <g-embedding of N3 into M}
extending f1 U fs.

We at last get the existence of stable amalgamation (to which earlier we got ap-
proximations).

Claim 5.37. For any Ny <¢ Ni,Na, all from Ky,, we can find M € Ky, with
Ny <¢ M and <g-embeddings f1, fo, of N1 and Ny respectively, over Ng into N
such that Ny, f1(N1), f2(N1) are in stable amalgamation.

Remark 5.38. In the proof we could have “inverted the tables” and used ¢¢ in the
wy direction.

Proof. We define (MY : a < wy) and & by induction on ¢ < w; such that:

(i) (M§ : o < w;) is <g-increasing continuous and M§ € Ky, .
(i) For a < ¢, M§ = M2 and € < (Aa <w; = M§ <¢ M.
(idi) For ¢ limit, MS = |J M.
£<¢
(tv) For ¢ < a < wp and ¢ non-limit, MC+1 is (Dat1(MS), Ng)*-homogeneous.

(e
(v) For every ¢ € M§+1> gtp(e, M§TL, Mgﬁ) is a stationarization of

gtp(é, Mé, Mi-{-l)-

(vi) ¢ € Mgfll7 and for a € (¢ + 1,w1), gtp(éc, MS, M§HL) is the stationariza-

: - +1

tion of gtp(ce, MCC—&-I’ MCC_H ).

(vii) For every p € D(MSY), for some ¢ € (€4, w1), we have gtp(¢c, MCC-H’ Mé_tll)
is a stationarization of p.

There is no problem doing this (by 5.34 and as in earlier constructions); in limit
stages we use local character 5.26(3) and D, being closed under stationarization.

Now easily, for a thin enough closed unbounded set F C wy, for every ( € E, we
have

(x)c (a) MCC is (DC(Mg),NO)*—homogeneouS.

(b) For every ¢ € M, gtp(c, U MS, U Mé) is a stationarization of
a<wi E<wy
gtp(c, MO, M),
(¢) For every ¢ € M&l, gtp(c, MCCH, Mg_tll) is a stationarization of
gtp(éa Mga Mg+1)'

[Why? Clause (c) holds by clause (v) of the construction (as (M¢ : e < () is <e-
increasing continuous). Clause (b) holds as F is thin enough; i.e. is proved as in
earlier constructions (i.e. see () in the proof of 5.30(1)). As for Clause (a), first
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note that by clauses (i)-(ii) the sequence (MS : e < () is <g-increasing continuous.
By clause (vi) we have

€ < (= gtp(ee, M¢, MEH) does not fork over M¢.

By clause (vii) of the construction we have: if p € D¢(M$) with € < ¢, then for
some ¢ € (g,(), gtp(Q,Mé,Mé_l) is a non-forking extension of p. As FE is thin
enough we have d € Mg = gtp(d, Mg,Mg) € DC(Mg). Together it is easy to get
clause (a) (e.g. see 5.47).]

So as in the proof of 5.30(3) we can finish (choose ¢ € E, f an isomorphism from
Ny onto Mg, f1 2 fo an <g-embedding of N into MCC, and fo O fp a <g-embedding
of Ny into MP, ;). Us.37

Remark 5.39. Note that in [She09a] we use only the results up to this point.

Theorem 5.40. 1) Suppose, in addition to the hypothesis of this section, that
281 < 282 qnd the club ideal on Ny is not Ny-saturated and I(Ny, K) < 282 (or just
I(Ny, K(R;-saturated)) < 282 ). Then € has the symmetry property.

2) Assume 2% < 282 and f(Ng,K(Nl-saturated)) < fhunit (N2, 28) (this number is
always > 281, usually 2%2; see 0.6). Then € has the symmetry property and stable
amalgamation in Ky, is unique (we know that it always exists, and it follows by
(1)+(2) that one-sided amalgamation is unique).

Discussion 5.41. 1) This certainly gives a desirable conclusion. However, part (2)
is not used so we shall return to it in [She09b].

" More elaborately, in [She09b, 4.1], in the ‘lean version’ of [She09b],2* assuming
the weak diamond ideal is not No-saturated, we prove 5.40(2). Hence we also prove
a slight weaker version of 5.40(1), replacing “I(Rg, K)(X;-saturated) < 2%2” by

f(Nz, K (Ry-saturated)) < prunit(Na2, PA ).

" Better, in [She09b, 4.40] we prove 5.40(2) fully. Still, the proof of part (1)
given below is not presently covered by [She09b], and it gives nicer reasons for
non-isomorphisms (essentially different natural invariants).

2) As for part (1), we can avoid using it (except in 5.45 below). More fully, in

" [She09a, §3] dealing with € as here by [She09a, 3.4], for every a < w; we derive a
good Ny-frame s, with £°« = £p_. (If we would have liked to derive a good R;-frame
we would need 5.40.)

Then in [She09c¢] if s is successful (holds, e.g., if 280 < 2% < 2%z (R, £5=) <

282 and WDmldy, is not Np-saturated) then we derive the successor s}, a good

N;-frame with K& C {M € K}i? : M is Wy-saturated for K°*}, and s} is even

" good™ (see [She09c, Claim 1.6(2)] and [She09c, Definition 1.3]). This suffices for

" the main conclusions of [She09a, §9] and end of [She09c¢, §12].

3) Still, we may wonder: is Ssl the same as <[ {’53? If s, is goodt then the
answer is yes (see [She09c, 1.6(1)]). That is, the present theorem 5.40 is used in
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[She09¢c, §1] to prove s is “good™;” really, this is proved in 5.45. In fact, part (1)
of 5.40 is enough to prove that sp, is good™; see [She09c, 1.5](1A).

4) The proof of 5.40(1) gives that if ¢ fails the symmetry property then

IRy, K) > 28 even if 2% = 2% and doles] not use 2% = 2%t directly (but
uses earlier results of §5). The case “Dy, is No-saturated, 2% < 281 < 282 and
j(N27 No) < plunif(Ra, 2%2)” is covered in [She09b].

Proof. 1) So in the first part, towards contradiction we can assume that K* # &,
where K* is the class of quadruples N = (Ng, N1, N2, N3) such that N, N, are
one-sided stably amalgamated over Ny inside N3 but Ns, N7 are not. Hence there
is € € Ny such that gtp(¢, N1, N3) is not the stationarization of

gtp(é7 NO? N2> = gtp(éa N07 NS)
We define a two-place relation < on K* by N < N iff N} = Ng, N} <¢ N} for
0=0,1,2, and
a € Ni = gtp(a, N3, N2) is definable over some b € N;.

Easily, this is a partial order and K* is closed under unions of increasing countable
sequences. Hence without loss of generality, for some D, and N *,

(%)

a) D,e{Dy:a<w}
b) N' e K*
)
)

—~ o~ —

C

d

N} is (D (N§), Ro)*-homogeneous over N for £ =1,2.
N3 is (D.(N;}),Rg)*-homogeneous over N; for £ =1,2.

—~

So we have established the following.

Observation 5.42. To prove 5.40, we can assume that D = D, for [some] a <
wi; t.e. D is countable.

[Continuation of the proof of 5.40:]

A problem is that we still have not proven the existence of a superlimit model
of K of cardinality N;, though we have a candidate N* from 5.18. So we use N*,
but to ensure we get it at limit ordinals (in the induction on a < Ny), we have to
take a stationary Sp C wy with wy \ Sp not small. T.e. w; \ Sy does not belong to
the ideal WDmldy, from Theorem 0.6 and “devote” it to ensure this, using 5.37.

The point of using Sy is as follows (this is supposed to help to understand the
quotation from [She09b]):

Definition 5.43. 1) Let
K% := {N = (N4 :a<wi): N is <p-increasing continuous, N, € Ky,,
and Ngy1 is (D (Ng), Ro)*-homogeneous }.

2) On K9 we define a two-place relation <% (for S C wy) as follows.

N' <4 N iff for some closed unbounded E C wy:

24See Reading plan A in [She09b, §0].

See https://shelah.logic.at/papers/88r/ for possible updates.
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(a) For every a € C, we have N} <; N2 and N}, <¢ N2, .
or every a < rom L, we have N = an , are 1n
b) F f E h Ng N(i Nﬁ1 d Nﬂ1 Ng i

a<wi
one-sided stable amalgamation over N} inside NE. (Te. ifa € Né then

gtp(a, N2, Ng) is the stationarization of gtp(a, N}, Nj).)
(c) If a € SNC then N2 and N}, are in stable amalgamation over N} inside
N2,

Fact 5.44. 0) The two-place relation <% defined in 5.43 are partial orders on K1
for n < w.

1) Suppose N" <&, N and let E,, exemplify this (as in the Definition 5.43). Let
Ey:= () En, B, :=={a,a+1:a €},

n<w

[undefined]
and let Ng »= |J Nj when = min(E], \ a). Then (N§ : o < wi) € Kcy,

nw

and N <g, (NG 1 a <wy) forn <w.

2) If (]VE t e < wy) is <%-increasing and N = |J NE € Ky, is <g-increasing
a<wi

continuous, [if] the club E . witnesses N° < N fore < ¢<Nyand (N, :a <wq)

a <g-representation of N, and N, = |J NJ and Noy1 = | Ng,, for club-many

e<a e<a

a<N1,then€<w1éN6 Saso N.

Proof. Should be easy by now. Us.44

[Continuation of the proof of 5.40:]
It is done as follows.

There is (S; : € < wq) such that S, C wy, { < ¢ = Sc NS, countable and
So,8:141\ S: € (D) (this is possible by an assumption).

Now for any u C ws we choose N, N* by induction on € < wsy such that

® (a) N = (N’ a<w)e K
(b) N = U N, € Ky,
a<wiy
(¢) For ¢ < € we have Né‘ <§§ N. when ¢ ¢ [¢,e) Nu. (We can use S[/C,s)’
the complement of the diagonal union of {(S¢ : € € [(,€)) Nu}.)
[Not sure what those braces are doing.]
(d) We can demand continuity, as defined implicitly in Fact 5.44.

(e) For each € € u, for a club of @ < wy, if @« € S. then NY,, ,, N, are
not in stable amalgamation over N, inside N ,; (though they
are in one|-sided]).

Lastly, let N*:= |J N € Ky,. Now we can prove that if u,v C wp and N* ~ N?

e<wy
then f_or some club C of we, uNC =vNC. So we can easily get j(Ng, £) = 2%2 and
even I(Ny, £(X;-saturated)) = 282, Us.40



Paper Sh:88r, version 2024-09-01. See https://shelah.logic.at/papers/88r/ for possible updates.

CLASSIFICATION OF NE CLASSES 79

[~ isn’t defined or used anywhere else in this paper. Did you mean

7]

12

Theorem 5.45. Suppose ¢ has the symmetry property (this holds if the assumption
of 5.40(1) holds). Then t has a superlimit model in R .

Proof. We have a candidate N* from 5.18. So let (N; : i < J) be <;-increasing
with N; 2 N*, and without loss of generality § = cf(d). If § = w; this is very easy.
If § =w, let N, = |J N; and for each i < w let (N : @ < wy) be <p-increasing

i<w
continuous with union IV; and N € Ky,. Now by restricting ourselves to a club £/
of a-s and renaming it F' = wi, we get: N = N; N N for i < j <w and

S, and i < w, the type gtp(c‘z,NiB,Nf) is a
stationarization of gtp(a, N&, N3).

®, For any a < f < wi, a € N2

To prove N, = N* it is enough to prove:
®2 If @ <w; and p € D(N2) then some b C N,, realizes p in N,.

By 5.26(3) there is ¢ < w such that p is the stationarization of ¢ := p | N € D(NF).
As N; = N*, there is b C N; which realizes ¢ and we can find 3 € (a,w;) such that
bC Nf. By ®1, we have N:j‘,Nf are in one-sided stable amalgamation over N
inside N? (see 5.36(2)).

As we assume t has the symmetry property, Niﬁ , NS are also in stable amalga-
mation over Nf inside N°. In particular, as b C NiB, we have gtp(b, N&, N) is
the stationarization of gtp(b, Ng, Nlﬁ) but the latter is p [ N*. So by uniqueness
of stationarization, p = gtp(b, N, N5) which is gtp(b, N%, N,,), so p is realized in
N, as required. Us.45

We have implicitly proved

Claim 5.46. Assume that Nyg <¢ N1 € Ky, and ag € 7 (N1) for £ = 1,2. Then
(%)1 < (%)2, where: (for£=1,2)

(x)¢ There are Ml,Mg,El,l_Jz such that
(a) No <¢ My <¢ Ms € Ky,
(b) ay €« (My) for k=1,2.
(c) gtp(bs—r, No, M1) = gtp(as—¢, No, N1)
[Either one or both of those subscripts need to be an (.]
(d) gtp(be, My, My) is the stationarization of gtp(ag, No, N1) from D(M).
(6) gtp(i)lAi)g,No,Mg) :gtp(alA(lg,Nle),

Proof. We can deduce it from 5.34 (or imitate the proof of 5.24).

In detail: by symmetry it is enough to assume (*)2 and prove (*);. So let
M1,M2,b1,b2 witness (*)2

By 5.37 we can find MJ, f such that My <, M} € Ky,, f is a <g-embedding
of My into M}, over Ny such that My, f(My) is in stable amalgamation over N
inside Mj. Now, as f(Ms), My are in one-sided stable amalgamation over N inside
M}, by the choice of (M, Ma, by, bs), we get gtp(f(be), My, M) = gtp(be, My, M})
hence

gtp(blAb27 N(), Mé) = gtp(blAf<b2>7 No, Mé)
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By the choice of M? and f, gtp(b1, f(Ms), MJ) is the stationarization of
gtp(b1, No, Ma) = gtp(a, No, N1).
Now (*); holds, as exemplified by (f(Mz), M, f(bz),b1). Os .46

Ezercise 5.47. Assume o < wy and

(a) (M; :i<§) is <-increasing continuous, ¢ a limit ordinal.

(b) If p € D(M;) is realized in M;;q then it is a member of D, (M;) (or just
p [ Mo € D(Mp)).

(c) If i < ¢ and p € Do (M;), then p is materialized in M; for some j € (1, 9).

Then Mj is (D, (Mp), Rp)*-homogeneous.

Proof. Easy. Os .47

Discussion 5.48. 1) Consider ¢ € Ly, ,(Q), |7y| < Ro, and I(Ry,9) € [1,2%0).
We translate it to £ and <** as earlier (see 3.19).

2) What if we waive categoricity in Rg? Adopting this was okay, as we shrink € but
not too much. But without shrinking probably we still can say something on the
models in

= {M S EZNO sif Ny <g M, Ny € KNO then (E'Nl)[NO <* Ny <g M]}

as there are good enough approximations.
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§ 6. COUNTEREXAMPLES

In [She75a] the statement of Conclusion 3.9 was proved for the first time, where
K is the class of atomic models of a first order theory assuming Jensen’s diamond
On, (taking A = Ng). In [She83a] and [She83b] the same theorem was proved using
only 2% < 2% (using 0.6). Let us now concentrate on the case A = Ry. We
asked whether the assumption 2%¢ < 2% is necessary to get Conclusion 3.9. In this
section we construct [four] classes of models K1, K2, K3, K* failing amalgamation
(i.e. failing the conclusion of 3.9). K2, K3 K% are AECs with LST-number R while
K satisfies all the axioms needed in the proof of Conclusion 3.9 (but it is not an
abstract elementary class — it fails to satisfy Axs. IV,V).

K? is PCy, and is axiomatizable in Ly, ., (Q).

K3 is PCy, and is axiomatizable in L(Q). Now the common phenomena to

K', K? K3, K* are that all of them satisfy the hypothesis of Conclusion 3.9; i.e.
for £ = 1,2,3 we have I(Rg, K*) = 1 and the Rg-amalgamation property fails in K¢,
but assuming R; < 2% and MAy, for £ = 1,2,3 we have (X1, K*) = 1.

Definition 6.1. Let Y be an infinite set. For ease of notation, if X C Y then we
will denote X := X and X' =Y \ X.

A family &2 of infinite subsets of Y is called independent if for every n € “>2

and pairwise distinct Xo, X1,..., Xy (;)—1, the following set () Xg[k] is infinite.
k<tg(n)

Definition 6.2. 1) The class of models K is defined by
P= { f: f is a partial finite isomorphism from M into N satisfying
(Va < wy)(Vz € dom(f))[z € My & f(z) € Nol},

2) For M € K, let Aé” = {x € PM .z RMy} for every y € QM.
3) Let K be the class of M € K° such that

(a) The family {A)" : y € QM} is independent, which means that if m < n
and 7o, . .., Yn_1 are pairwise distinct members of Q, then the set
{m e PM .y RMy, =1 < m for every { < n}
is infinite.
(b) For all disjoint finite subsets u,w of PM we have ||M|| = |A},|, where

AM ={ye QM acu=aRMy, andbecw=-(bRMy)}.

4) The notion of (strict) substructure, denoted <g1, is defined as follows.

For Ml,MQ € Kl, M1 Sgl M2 ﬁ M1 Q ]\427 _P]\/[1 = PMZ, and if M1 7& M2
then for any finite disjoint u,w C PM2 the set A} \ My is infinite (equivalently,
‘non-empty’).

5) ¢ = (K1, <p).
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Lemma 6.3. The class (K, <) satisfies

| U Ma| < [[Ms]
a<d

then U My <p M.
a<d

5) Ax.V fails for countable models.
6) Ax. VI holds with LST(€') = N; in fact, it holds for every cardinal.
7) For every M € K1, || M| < 2%,

Proof. 0-2) Follows trivially from the definition.

3) To prove that M = |J M; € K, it is enough to verify that for every finite
i<

disjoint u,w € PM, [AY | = |IM|. If (M; : i < X) is eventually constant we are

done; hence without loss of generality (M; : i < \) is <p-increasing. From the

definition of < it follows that for each i, M;;; has a new y = y; as above; i.e.

y; € AN\ M; for every i < A. Also. for each i there are at least | M; ||-many

members in A} C A} . Together there are at least ||M|| members in A}/, .

4) Let {M,, : n < w} C Ky, be an <p-increasing chain and let M := |J M,; by
n<w

part (3) we have M € Ky . Since |Q™| = Ry by Claim 6.5(a) below, there exists an
infinite A € PM\ {4} :y € QM} such that {A, : y € QM} U{A} is independent.
Now define N € K! by PN := PM let yo ¢ M and take QV = Q™ U {y}, and
finally let

RN .=RMy {(a,y()} cae PN nae A}.
Clearly M,, <g N for every n < w, but N is not an <g-extension of M = |J M,

n<w
because the second part in Definition 6.2(4) is violated.

5) Let Ng <g1 N € K! be given. As in (4), define Ny C N, |[N1| 2 |No| by adding a
single element to Q™° (from the elements of Q™ \ Q™°). It is obvious that Ny <g N
and Nl Sgl N but No #El Nl.

6) By closing the set under the second requirement in Definition 6.2(3).

7) Let y1 # y2 € QM; we show that Aéw #* A%. If Agf - A% then

1

AM (PM\ AM) = g,

Y1 Y2
in contradiction to the requirement that {A, : y € @} is independent. Hence
QM| < 21PM = 2% and as |PM| = X, we are done. Oe.3



Paper Sh:88r, version 2024-09-01. See https://shelah.logic.at/papers/88r/ for possible updates.

CLASSIFICATION OF NE CLASSES 83

Theorem 6.4. £ = (K1, <u) satisfies the hypothesis of Conclusion 3.9. Namely
1) I(Rg, K1) =1.

2) Every M € Kéo has a proper <gi-extension in Kéo.

3) £ is closed under chains of length < w;.

4) €' fails the Ro-amalgamation property.

Proof. 1) Let My, Ms € Kéo, pick the following enumerations |M;| = {a, : n < w}
and |Ms| = {b, : n < w}. It is enough to define an increasing sequence of finite
partial isomorphisms (f, : n < w) from M; to Ms such that for every k < w, for
some n(k) < w, ar € dom(fp)) and by € rang(fyx)). Finally take f = (J fn,

n<w
and this will be an isomorphism from M; onto Ms.

Define the sequence (f, : n < w) by induction on n < w.

First, fo := @. If n = 2m denote k := min{k < w : a; ¢ dom(f,)}. Distinguish
between the following two alternatives:

(A) Ifap € PM et {ap,...,a;_} = QM Ndom(f,). Without loss of generality
there exists ¢ < j — 1 such that ay R aj, for all ¢ < i and —(ax R a}) for all
i <¢<j—1. By 6.2(1), PM¢ is infinite, hence by clause (b) of 6.2(2) Q¢
is also infinite. Hence by 6.2(3)(a) there are infinitely many y € P2 such
that y RM2f,,(a}) for all £ < i and —=(y RM2 f,(a})) for all i < £ < j — 1.
But rang(f,,) is finite. Hence there is such y € P2\ rang(f,,). Finally, let
fot1 = fu U {{ak, y)}

(B) Ifar € QY let {ag,...,a}_,} = P Ndom(f,). As before we may assume
that there exists i < j — 1 such that a), RM1ay, for all ¢ < i and —=(a, RM1ay,)
for alli < ¢ < j—1. By 6.2(3)(b) there exists y € Q™2 \ dom(f,,) such that
(V0 < i)[fn(ay) RM2 y] and

(Ve € [i,j — 1)) ~[fulap) RM2y].
Now define f,41 := fn U {{ak,v)}.

[m isn’t used anywhere.] Oy

2) First we prove the following.

Observation 6.5. (a) Let P be a countable set. For every countable family
& of infinite subsets of P, if & is independent then there exists an infinite
A C P such that A¢ & and & U{A} is independent.

(b) If A and & are as in (a) then for every infinite B C P satisfying
|AA B| < Ng
and B¢ &, 2 JU{B} is also independent.

(¢) Moreover, in clause (a) we can additionally require that for any finite dis-
joint u,v C P there exists A C P as in (a) satisfyingu C A and ANv = &.

Proof. [Proof of Claim 6.5:]
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Clause (a): Let
P = {X CP:(En<w)(3Xo,...,Xn1 € P)(3k <n)

[X or P\ X isequal to (| X;N (P\Xi)]}.
i<k k<i<n

Clearly | 22*| = N, hence we can list them in a sequence (A, : n < w) [(where
each set is repeated infinitely often)| such that for every k < w there exists
n > k satisfying A,, = Ay, (hence for some m >k, A, = P\ Ag).

Let P = {a, : n < w} without repetition.

Now define i(n) < w by induction on n. Let i(0) = 0.

Ifn=k+1,let

i(n) ==min{l <w:i(n—1) < £and as € (A \ {ai0),- -+ Win—1)}}-

It is easy to verify that the construction is possible. Directly from the construc-
tion it follows that A = {a;(,) : » < w} is a set as required.

Clause (b): Easy.

Clause (c): Let u,w C P be finite disjoint and & a countable family of subsets
of P which is independent.

Let A’ C P be as proved in clause (a). According to (b), A = (A’ Uu) \ w also
satisfies ‘the family &2 U {A} is independent.’ O 5

Proof. [Return to the proof of Theorem 6.4(2):]

Let & = {A) C PM .y e QM}. Let (s, : n < w) be an enumeration of
[PM]<Ro (with repetition) such that sox N sary1 = @ for each k < w, and for every
finite disjoint u,w C PM there exists n < w such that ss, = u and Sop41 = W.

It is enough to define an increasing chain {2, : n < w} of countable independent
families of subsets of PM such that &y, = & and for all k¥ < w and every finite
disjoint u,w C PM,

(n<w)(F3Ae 2, \ Zp)uCANANW = 2]

because ) &7, enables us to define N € Kéo such that M <z N as required.

n<w
Assume 2, is defined; apply Claim 6.5(c) on P = PM and &, when substituting
U = Sop, W = Sapt1 let A C P be supplied by the Claim and define &, =
P U{A}. Tt is easy to check that {2, : n < w} satisfies our requirements.

3) This is a special case of Ax.III which we checked in Lemma 6.3(3).

4) Let M € K}, and we shall find M, € Ky (for £ =0,1) with M <g M,, which
cannot be amalgamated over M. By part (2) we can find a model M; such that
M <g My € K&O, and choose y € QM \ QM. Define M, € Kio; its universe is
|My|, PM2 .= pMi QM2 .= QM1 and

RM2 = {(a,b) :aRM bAb#yorae P Nb=yA-(aRy)}.

Clearly My, My cannot be amalgamated over M (since the amalgamation must
contain a set and its complement). Us.4(2)-(4)
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Theorem 6.6. Assume MAy, (hence 2% > R;). The class (K, <g1) is categorical
m Nl .

Proof. Let M, N € Kél and we shall prove that they are isomorphic. By repeated

use of Lemma 6.3(6),(4) for Ax.VI we get (strictly) <gi-increasing continuous

chains {M, : a < wi},{Ns : @ < wi} C Ky, such that M = |J M, and
a<wi

N= |J N, (so My <p Mg and N, <p Ng for a < ).

a<wy

Now define a forcing notion which supplies an isomorphism g : M — N.
P:= { f: f is a partial finite isomorphism from M into N satisfying
(Va < wy) (Vo € dom(f)) [z € M, < f(z) € NoJ}

The order is inclusion. It is trivial to check that if G C P is a directed subset
then g = |J G is a partial isomorphism from M to N. We show that dom(g) = | M|
if G is generic enough.

For every a € |M| define J, = {f € P : a € dom(f)}, and we shall show that
for all a € |M| the set J, is dense. For a € M let

a(a) =min{a <w; : a € My}.

Clearly it is zero or a successor ordinal. Let f € IP be a given condition; it is enough
to find h € J, such that f C h and a € dom(h). Let A :=dom(f) andlet B,C C A
be disjoint sets such that BUC = A, B = dom(f) N PM and C = dom(f) N QM.
Without loss of generality a ¢ BUC. If a € PM let

@(x,é):/\{ich:CEC, M = +aRc}.

From the definition of K* there exists b € P \rang(f) such that N |= ¢[b, f(¢)].
If a € QM let ¢(x,b) = N{tbRz : b€ B, M |= +bRa}. We can find infinitely
many b € QN \ |J N satisfying ¢(, f(b)).

p<ala)

Why? This is as (J{Np : B < a(a)} <g¢ Naq) as C is finite. Without loss of
generality b ¢ f(C).

Finally, let h = f U {(a, b)}.

The proof that rang(g) = |N| is analogous to the proof that dom(g) = |M|. In
order to use MA we just have to show that R has the ccc. Let {fo, :a <wi1} C R
be given. It is enough to find o, 8 < wy such that f,, fg have a common extension.
Without loss of generality we may assume |M|N|N| = &. By the finitary A-system
lemma there exists S C wy with |S| = Ry such that {dom(f,) Urang(fa) : o € S}
is a A-system with heart A. Let B C |M|, C C |N| be such that A= BUC. Now
without loss of generality, for every a € S, f, maps B into C.

[Why? If not,
Sq = {a €85 : (I, € B)[fa(ba) ¢ C]}

is uncountable hence for some b € B, Sy := {«a € S; : b, = b} is uncountable; so
(fa(b) : @ € S} is without repetitions hence is uncountable. But

{f(b): f € Pand b € dom(f)N B}
is countable because

fePAbedom(f)Na<w = [be My < f(b) € Ny
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Similarly, f;! maps C into B, so necessarily f, maps B onto C; but the number
of possible functions from B to C' is |C’||B| < Ng. Hence there exists S; C S with
|S1] = Ny such that for all o, 8 € S1, fo | B= fg | B. dom(f,) N My C B, and
rang(f,) N No C C. As PMa = pMo C My and PN = PNo C Nj for every a € Sy,
we have PM Ndom(f,) C B and PN Nrang(f,) C C. Therefore f, U f3 € P for all
a, B € 51, and in particular there exists o # § < wy such that f, U fg € P.] g

In the terminology of [GS83], Theorems 6.4 and 6.6 give us together:

Conclusion 6.7. Assuming 2% > R; and MAy,, &' is a nice category which has a
universal object in Xy. Moreover, it is categorical in Ny.

Definition 6.8. 1) K? is the class of M € K° (see Definition 6.2) satisfying:

(a) (Y € QY)(Vu € [PM]<")(3Fy € Q)[A} AAY = u]
(b) If ¥ < w and yo,...,ys—1 € Q satisfies [A,, AA, | >Ry for { <m < k
then the set {AM : ¢ < k} is an independent family of subsets of PM.

Ye

() QY ANQ(z)AN(Vzx e P)xr Ry cRz]|=y==z2

(d) For every k < w, for some g, ...,y € QM, we have
/\ “Ayz AAym ER R
t<m<k

2) For My, M, € K2,
My <g2 My <% My C My A PMr = pM2,

3) €2 = (K2, <p).
4) K3 is the class of models M = (|M|, PM, Q™ , R™ EM) such that

(a) (M|, PM,QM,RM) € !

(b) EM is an equivalence relation on Q™.

(c) EM has infinitely many equivalence classes.

(d) Each equivalence class of EM is countable.
)

(e) If u,w C PM are finite disjoint and y € QM then for some 3y’ € y/EM we
have a € u = a RMy' and b € w = —(b RMy/).

5) We define <gs as follows:

M <gs My <9 My C My A (Va € My)[a/EM2 = o/ EM1).

6) Eg == (K?’, §E3)~

If we would like to have a class defined by a sentence from L, . (rather than
L,,.»(Q)), we can use an alternative.

Definition 6.9. 1) £ is defined as follows:

(A) 7(¢*) = {P,Q, R} U{P, : n < w}, R is a two-place predicate, and P,Q, P,
are unary predicates.

(B) M € K*iff M is a 7(€*)-model such that M | {P,Q, R} € K? and
(a) (PM:n < w) is a partition of PM.
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(b) PM has exactly 2" elements.

(¢) (Vo € Q)(Vu € [PM]<M)(3y € QM)[AY AAY = u]

(d) If k <wand yo,...,ye—1 € Q satisfies |4,, A A, | >Nofor ¢ <m < k
then the set {A})! : £ < k} is an independent family of subsets of P,
Moreover, for any n large enough and any 1 € *2, the set

PMn ﬂ AM U AM

n(£)=1 n(£)=0

has exactly 2"~ % elements.
(e) QM) AQM(2) A (Ve € Pz RMy o 2 RM 2] =y =2

(f) For every k < w, for some yo, ...,y € QM we have
/\ “Ayz AAym >Ry
<m<k

(C) M <e N iff M,N € K* and M C N and PM = PN,

Theorem 6.10. 1) (K2, <2) is an Ng-presentable abstract elementary class which
is categorical in Ng.

2) Also, € and €* are No-presentable AECs categorical in Rg.

Proof. Similar to the proof for €. Us.10

Theorem 6.11. 1) £ has an aziomatization in L(Q) and <g is <** from the
proof of 3.19 (this is <** from [She83a] and [She83b]).

2) €2 has an aziomatization in Ly, (Q) and < is <* from the proof of 3.19 (this
is <X, ., from [She83a] and [She83b]).

wi,w
3) € has an axiomatization in L(Q) and <gs is <* from [She83a] and [She83b].
4) € has an aziomatization in Ly, » and <g is just being a submodel.

5) (V€€ {1,2,3,4})[K" is PCy,].

Proof. Should be clear. Us.11

Theorem 6.12. If MAy, then K* is categorical in Xy for { = 2,3.
Proof. Easy.?® Us.12

Conclusion 6.13. Assuming MAy,, there exists an abstract elementary class which
is PCy,, categorical in Ry and Ry, but without the No-amalgamation property.

25Tn the earlier version this was claimed also for £ = 4, but, as Baldwin noted, this was wrong
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