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Abstract. This version provides details to fill a gap in a previous version of this article. It is shown that if various cardinal
invariants of the continuum related to d are equal to ℵ1 then there is a nontrivial automorphism of P(N)/[N]<ℵ0 . Some of

these results extend to automorphisms of P(κ)/[κ]<κ if κ is inaccessible.

1. Introduction

This is a revised version of [14]. The revision is required to address a gap in the proof of Lemma 3.2 of [14] in which it
is claimed that a “standard diagonalization” yields the limit case. Enormous thanks are owed to the long suffering referee
for carefully reading various early versions of this revision. While the general structure of the proof is the same, the use of
the Lemma 3.1 now allows the argument to be presented without gaps, although adding the existence of square sequences
as a hypothesis. A byproduct of this reorganization is that Lemma 3.3 now applies to both cases, κ inaccessible or ω.
This improvement has allowed the proof of Lemma 3.3, which deals with the important case κ = ω to be considerably
simplified.

A fundamental result in the study of the Čech–Stone compactification, due to W. Rudin [8, 9], is that, assuming the
Continuum Hypothesis, there are 2c autohomeomorphisms of βN \ N and, hence, there are some that are non-trivial in
the sense that they are not induced by any one-to-one function on N. While Rudin established his result by showing
that for any two P-points of weight ℵ1 there is an autohomeomorphism sending one to the other, Parovičenko [7] showed
that non-trivial autohomeomorphisms could be found by exploiting the countable saturation of the Boolean algebra of
clopen subsets of βN \ N — this is isomorphic to the algebra P(N)/[N]<ℵ0 . Indeed, the duality between Stone spaces of
Boolean algebras and algebras of regular open sets shows that the existence of non-trivial autohomeomorphisms of βN\N
is equivalent to the existence of non-trivial isomorphisms of the Boolean algebra P(N)/[N]<ℵ0 to itself.

Notation 1.1. If A and B are subsets of κ let ≡κ denote the equivalence relation defined by A ≡κ B if and only if
|A△B| < κ and A ⊆κ B will denote the assertion that |A \B| < κ. Let [A]κ denote the equivalence class of A modulo ≡κ
and let P(κ)/[κ]<κ denote the quotient algebra of the P(κ) modulo the congruence relation ≡κ. If κ = ω it is customary
to use ≡∗ instead of ≡ω and ⊆∗ instead of ⊆ω.

Notation 1.2. If f is a function defined on the set A and X ⊆ A then the notation f(X) will be used to denote
{f(x) | x ∈ X } in spite of the potential for ambiguity.

Definition 1.1. An isomorphism Φ : P(κ)/[κ]<κ → P(κ)/[κ]<κ will be said to be somewhere trivial if there is some
B ∈ [κ]κ and a one-to-one function φ : B → κ such that Φ([A]κ) = [φ(A)]κ for each A ⊆ B. The isomorphism Φ will be
said to be trivial if |κ \B| < κ and Φ will be said to be nowhere trivial if it is not somewhere trivial.

The question of whether the Continuum Hypothesis, or some other hypothesis, is needed in order to find a non-trivial
isomorphism of P(N)/[N]<ℵ0 to itself was settled in the affirmative by S. Shelah in [10]. The argument of [10] relies
on an iterated oracle chain condition forcing to obtain a model where 2ℵ0 = ℵ2 and every isomorphism of P(N)/[N]<ℵ0

to itself is induced by a one-to-one function from N to N. The oracle chain condition requires the addition of cofinally
many Cohen reals and so d = ℵ2 in this model. Subsequent work has shown that it is also possible to obtain that every
isomorphism of P(N)/[N]<ℵ0 is trivial by other approaches [16, 11, 2] but these have always required d > ℵ1 as well.
However, it was shown in Theorem 3.1 of [13] that this cardinal inequality is not entailed by the non existence of nowhere
trivial isomorphisms from P(N)/[N]<ℵ0 to itself — in the model obtained by iterating ω2 times Sacks reals there are no
nowhere trivial isomorphisms yet d = ℵ1; but there are non-trivial automorphisms in this model. The fact that it is
possible to have a non-trivial automorphism of P(N)/[N]<ℵ0 while also having that every automorphism of P(N)/[N]<ℵ0

is somewhere trivial is Theorem 2.2 of [12].
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2 S. SHELAH AND J. STEPRĀNS

On the other hand, while we now know that the Continuum Hypothesis cannot be completely eliminated from Rudin’s
result, perhaps it can be weakened to some other cardinal equality such as d = ℵ1. It will be shown in this article
that non-trivial isomorphisms of P(N)/[N]<ℵ0 to itself can indeed be constructed from hypotheses on cardinal arithmetic
weaker than 2ℵ0 = ℵ1 and reminiscent of d = ℵ1. However, it is shown in [3] that it is consistent with set theory that
d = ℵ1 yet all isomorphisms of P(N)/[N]<ℵ0 are trivial so some modification of the equality d = ℵ1 will be required.

It will also be shown that natural generalizations of the arguments can be applied to the same question for P(κ)/[κ]<κ

where κ is inaccessible and □κ holds . The chief interest here is that, unlike P(N)/[N]<ℵ0 , the algebra P(κ)/[κ]<κ is not
countably saturated if κ > ω— to see this, simply consider a family {An}n∈ω ⊆ [κ]κ such that

⋂
n∈ω An = ∅. In other

words, Parovičenko’s transfinite induction argument to construct non-trivial isomorphisms from P(κ)/[κ]<κ to itself is
not available and some other technique is needed.

The statement and proof of Lemma 2.1 is provided for all κ and will apply both to the case that κ = ω and to the
case that κ is inaccessible. However, the key pigeonhole argument in the case that κ is inaccessible requires a different,
somewhat simpler, hypothesis than the case κ = ω, which relies on some technical details not needed in the inaccessible
case.

2. A sufficient condition for a non-trivial isomorphism

The following lemma provides sufficient conditions for the existence of a nontrivial isomorphism of P(κ)/[κ]<κ to itself.
The set theoretic requirements for the satisfaction of these conditions will be examined later. The basic idea of the
lemma is that an isomorphism of P(κ)/[κ]<κ can be approximated by partitioning κ into small sets Iν and constructing
isomorphisms from subalgebras of P(Iν) and taking the union of these. Unless the subalgebras of P(Iν) are all of P(Iν),
this union will only be a partial isomorphism. Hence a κ+ length sequence of ever larger families of subalgebras of P(Iν)
is needed to obtain a full isomorphism. In order to guarantee that this isomorphism is not trivial, the prediction principles
described in Hypothesis (4) and Hypothesis (5) of Lemma 2.1 are needed.

Lemma 2.1. There is a non-trivial automorphism of P(κ)/[κ]<κ provided that κ is regular and there are {Iν}ν∈κ,
{Bξ,ν}ξ∈κ+,ν∈κ and {Φξ,ν}ξ∈κ+,ν∈κ such that:

(1) {Iν}ν∈κ is a partition of κ such that |Iν | < κ for each ν ∈ κ.
(2) Bξ,ν is a Boolean subalgebra of P(Iν) and Φξ,ν is an automorphism of Bξ,ν for each ξ ∈ κ+ and ν ∈ κ.
(3) If ξ ∈ η ∈ κ+ then there is β ∈ κ such that Bξ,ν ⊆ Bη,ν and Φξ,ν ⊆ Φη,ν for all ν ∈ κ \ β.
(4) For any one-to-one F : κ → κ such that F (Iν) ⊆ Iν for all but an initial segment of ν there are ξ ∈ κ+ and

cofinally many ν ∈ κ for which there is an A ∈ Bξ,ν and w ∈ A such that F (w) /∈ Φξ,ν(A).
(5) For any A ⊆ κ there are ξ ∈ κ+ and β in κ such that A ∩ Iν ∈ Bξ,ν for all ν ∈ κ \ β.

Proof. Define

Φ([A]κ) = lim
ξ→κ+

[⋃
ν∈κ

Φξ,ν(A ∩ Iν)

]
κ

and begin by observing that this is well defined. To see this, it must first be observed that given A and B such that
A ≡κ B there is α ∈ κ+ such that for all ν in a final segment of κ the equation

Φα,ν(A ∩ Iν) = Φα,ν(B ∩ Iν)
is defined and valid by Hypothesis (5). From Hypothesis (3) it then follows that if ξ ≥ α then⋃

ν∈κ
Φξ,ν(A ∩ Iν) ≡κ

⋃
ν∈κ

Φα,ν(B ∩ Iν)

and, hence, Φ([A]κ) is well defined. Since each Φξ,ν is an automorphism it follows that Φ is an automorphism of
P(κ)/[κ]<κ.

To see that Φ is non-trivial, suppose that there is a one-to-one function F : κ→ κ such that [F (A)]κ = Φ([A]κ) for all
A ⊆ κ. Consider first the case that there are cofinally many ν ∈ κ such that F (Iν) ̸⊆ Iν . Since κ is regular, it is then
possible to find a cofinal set W ⊆ κ and wν ∈ Iν for each ν ∈ W such that F (wν) /∈

⋃
θ∈W Iθ. Let W ∗ = {wν}ν∈W and

note that

Φ([W ∗]κ) = lim
ξ→κ+

[ ⋃
ν∈W

Φξ,ν({wν})

]
κ

⊆

[ ⋃
ν∈W

Iν

]
κ

and (
⋃
ν∈W Iν) ∩ F (W ∗) ≡κ ∅. Since W ∗ ̸≡κ ∅ this contradicts that Φ([W ∗]κ) =κ [F (W ∗)]κ.

So now assume that F (Iν) ⊆ Iν for all but an initial segment of ν. Using Hypothesis (4) choose ξ ∈ κ+ for which there
is Z ∈ [κ]κ and Aν ∈ Bξ,ν and zν ∈ Aν such that F (zν) /∈ Φξ,ν(Aν) for each ν ∈ Z. Let A =

⋃
ν∈Z Aν . It follows from

Hypothesis (3) that for any η ≥ ξ

{F (zν) | ν ∈ Z } ∩
⋃
ν∈Z

Φη,ν(Aν) ≡κ ∅
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NONTRIVIAL AUTOMORPHISMS 3

and, hence, [F (A)]κ ̸= Φ[A]κ. □

3. When are the hypotheses of Lemma 2.1 satisfied?

In answering a question of A. Blass concerning the classification of cardinal invariants of the continuum based on the
Borel hierarchy M. Goldstern and S. Shelah introduced a family of cardinal invariants called c(f, g) defined to be the least
number of uniform trees with g-splitting needed to cover a uniform tree with f -splitting [4] and showed that uncountably
many of these can be distinct simultaneously. The following definition is very closely related to this as well as to the
notion of a slalom found in [1].

Definition 3.1. Given functions f and g on κ such that g(ξ) is a cardinal for each ξ ∈ κ define df,g to be the least

cardinal of a family D ⊆
∏
ν∈κ[f(ν)]

g(ν) such that for every F ∈
∏
ν∈κ f(ν) there is G ∈ D such that F (ν) ∈ G(ν) for all

but an initial segment of ν ∈ κ.

Hypothesis 3.1. Let κ be either inaccessible or ω. The case of κ = ω will require only slightly different arguments from
the case that κ is inaccessible. Let f and g be functions from κ to the regular cardinals below κ and let ψ be a function
from κ to the cardinals below κ such that for all ν ∈ κ:

(1) 2g(ν) < f(ν)
(2) if ν ∈ ν∗ then |ν| ≤ g(ν) ≤ g(ν∗)
(3) {Gξ}ξ∈κ+ witnesses that dψ,g = κ+

and suppose further that

(4) {Iν}ν∈κ is a partition of κ such that |Iν | = f(ν)
(5) {πθ,ν}θ∈ψ(ν) enumerates all one-to-one functions from Iν to Iν
(6) {Eθ,ν}θ∈ψ(ν) enumerates P(Iν).

In the case that κ is inaccessible it will be assumed that for each ν ∈ κ

(7) g(ν) is infinite
(8) ψ(ν) = 2f(ν)

and in the case that κ = ω it will be assumed that for each k ∈ ω

(9) f(k) > 3g(k)2(g(k)+1)g(k)

(10) ψ(ν) = f(ν)! .

For the purposes of this paper there is no harm in assuming that:

• in the inaccessible case
– g(ν) = ℵν+1

– f(ν) =
(
2ℵν+1

)+
– ψ(ν) = 2(2

ℵν+1)
+

• if κ = ω
– g(k) = k

– f(k) = 3k2k
2+k + 1

– ψ(k) = (3k2k
2+k + 1)!.

However, if only for notational convenience, the arguments to be presented will deal with the general case.

It will be necessary to recall the definition of Jensen’s square sequence about which more can be found in [6] as well
as various other sources.

Definition 3.2. For a set of ordinals X let otp(X) denote the order type of X. Let Λ(ξ) denote the limit ordinals in ξ
and let Λ<κ(ξ) denote the ordinals in Λ(ξ) of cofinality less than κ. An indexed family {Cµ}µ∈Λ(κ+) is known as a □κ
sequence

• each set Cµ is a closed subset of µ that is cofinal in µ
• otp(Cµ) ≤ κ
• if ξ ∈ Cµ is a limit of Cµ then Cξ = Cµ ∩ ξ.

The statement that □κ holds at κ means there is a □κ sequence.

Lemma 3.1. Let g be as in Hypothesis 3.1. If κ is inaccessible and □κ holds then there are {Zη,ζ}η∈κ+,ζ∈κ satisfying
the following:

(1) |Zη,ζ | ≤ g(ζ)
(2) if ζ < ζ∗ then Zη,ζ ⊆ Zη,ζ∗

(3)
⋃
ζ∈κ Zη,ζ = η

(4) if η ∈ Zη∗,ζ then Zη∗,ζ ∩ η = Zη,ζ .
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4 S. SHELAH AND J. STEPRĀNS

Proof. Let {Cµ}µ∈κ+ be a □κ sequence. Proceed by induction on η to define Zη,ζ for all ζ ∈ κ as well as a function
B : [κ+]2 → κ such that:

(3.1) (∀η∗ ∈ η ∈ κ+)(∀ζ ≥ B({η∗, η}) Zη,ζ ∩ η∗ = Zη∗,ζ

(3.2) (∀η ∈ Λ<κ(κ
+))(∀ν ∈ Cη) B({ν, η}) = sup

a∈[Cη ]2
B(a).

Let b : Λ<κ(κ
+) → κ be defined by supa∈[Cη ]2 B(a) = b(η) so that Equation 3.2 can be rephrased as to say that

B({ν, η}) = b(η) for all η ∈ Λ<κ(κ
+) and ν ∈ Cη. Begin by letting Z0,ζ = ∅ for all ζ ∈ κ and letting B ↾ 0 = ∅. If

B ↾ [ξ]2 and Zη,ζ have been defined for η ∈ ξ and ζ ∈ κ then consider three cases.

Case One. ξ = ξ∗ + 1

In this case simply define Zξ,ζ = Zξ∗,ζ ∪ {ξ∗} and for ν ∈ ξ define

B({ν, ξ}) =

{
B({ν, ξ∗}) if ν ∈ ξ∗

0 if ν = ξ∗

so that the induction hypotheses are all easily verified, as are Equations (3.1) and (3.2).

Case Two. ξ ∈ Λ<κ(κ
+)

In this case let

B({ν, ξ}) =

{
b(ξ) if ν ∈ Cξ

max(b(ξ), supθ∈Cξ\ν B(ν, θ)) if ν ∈ ξ \ Cξ

so that Equation (3.2) holds by construction. Note that from Equation (3.1) it follows that

(3.3) (∀ζ ≥ b(ξ))(∀{ν∗, ν} ∈ [Cξ]
2) if ν < ν∗ then Zν,ζ = Zν∗,ζ ∩ ν.

Then define

Zξ,ζ =

{
∅ if ζ ≤ max(b(ξ), |Cξ|)⋃
ν∈Cξ

Zν,ζ if ζ > max(b(ξ), |Cξ|)

and note that

|Zξ,ζ | ≤ |Cξ|g(ζ) ≤ |ζ|g(ζ) ≤ g(ζ)

by (2) of Hypothesis 3.1. Hence Induction Hypothesis (1) holds. To see that Induction Hypothesis (2) holds let ζ < ζ∗.
Then Zν,ζ ⊆ Zν,ζ∗ for each ν ∈ Cξ by Induction Hypothesis (2) and it follows that Zξ,ζ ⊆ Zξ,ζ∗ . Induction Hypothesis (3)
follows from the fact that

⋃
ζ∈κ Zν,ζ = ν for each ν ∈ Cξ and Cξ is cofinal in ξ. To see that Induction Hypothesis (4)

holds let ξ∗ ∈ Zξ,ζ . Note that since Zξ,ζ ̸= ∅ it follows that Zξ,ζ =
⋃
θ∈Cξ

Zθ,ζ and hence ξ∗ ∈ Zν,ζ for some ν ∈ Cξ.

Then Zξ∗,ζ = Zν,ζ ∩ ξ∗ by Induction Hypothesis (4). By (3.2) and the fact that ζ > b(ξ) it follows that if θ ∈ Cξ \ ν then
Zν,ζ = Zθ,ζ ∩ ν. On other hand, if θ ∈ Cξ ∩ ν then Zν,ζ ∩ θ = Zθ,ζ . Keeping in mind that ξ∗ < ν it follows that

(3.4)

Zξ,ζ ∩ ξ∗ =
⋃
θ∈Cξ

Zθ,ζ ∩ ξ∗ =

 ⋃
θ∈Cξ∩ν

Zθ,ζ ∩ ξ∗
∪ (Zν,ζ ∩ ξ∗)∪

 ⋃
θ∈Cξ\ν

Zθ,ζ ∩ ξ∗
 = (Zν,ζ ∩ ξ∗)∪

 ⋃
θ∈Cξ\ν

Zθ,ζ ∩ ξ∗


= (Zν,ζ ∩ ξ∗) ∪

 ⋃
θ∈Cξ\ν

(Zθ,ζ ∩ ν) ∩ ξ∗
 = (Zν,ζ ∩ ξ∗) ∪

 ⋃
θ∈Cξ\ν

Zν,ζ ∩ ξ∗
 = Zν,ζ ∩ ξ∗ = Zξ∗,ζ

as required.
To see that Equation (3.1) still holds it will first be shown that

(∀ν ∈ Cξ)(∀ζ ≥ b(ξ)) Zξ,ζ ∩ ν = Zν,ζ .
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Fix ν ∈ Cξ and ζ ≥ β(ξ) and note that Zξ,ζ =
⋃
θ∈Cξ

Zθ,ζ in this case. As in the argument establishing that Induction

Hypothesis (4) holds it follows that if θ ∈ Cξ \ ν then Zν,ζ = Zθ,ζ ∩ ν and if θ ∈ Cξ ∩ ν then Zν,ζ ∩ θ = Zθ,ζ . Therefore

(3.5) Zξ,ζ ∩ ν =
⋃
θ∈Cξ

Zθ,ζ ∩ ν =

 ⋃
θ∈Cξ∩ν

Zθ,ζ ∩ ν

 ∪ (Zν,ζ ∩ ν) ∪

 ⋃
θ∈Cξ\ν

Zθ,ζ ∩ ν


=

 ⋃
θ∈Cξ∩ν

Zν,ζ ∩ θ ∩ ν

 ∪ Zν,ζ ∪

 ⋃
θ∈Cξ\ν

Zν,ζ

 =

 ⋃
θ∈Cξ∩ν

Zν,ζ ∩ θ

 ∪ Zν,ζ = Zν,ζ

as required.
Now suppose that ν ∈ ξ \Cξ and ζ ≥ B(ν, ξ). Let η ∈ Cξ \ν. It has already been established that Zξ,ζ ∩η = Zη,ζ since

ζ ≥ B(ν, ξ) ≥ b(ξ). Moreover, since ζ ≥ B(ν, η) it follows that Zη,ζ ∩ν = Zν,ζ . Since ν < η it follows that Zξ,ζ ∩ν = Zν,ζ .

Case Three. ξ ∈ Λ(κ+) \ Λ<κ(κ+) and {b(θ) | θ ∈ Cξ ∩ Λ<κ(ξ)} is unbounded in κ.

Using that otp(Cξ) = κ, let {γθ}θ∈κ ⊆ Λ(ξ) ∩ Cξ be a continuous, increasing enumeration of a set on which b is strictly
increasing. Using Equation (3.1) and Equation (3.2) it follows that

(3.6) (∀θ ∈ κ)(∀ν ∈ Cγθ )(∀ζ ≥ b(γθ)) Zγθ,ζ ∩ ν = Zν,ζ .

For ν ∈ ξ define

B({ν, ξ}) =

{
b(γθ) if ν = γθ for some θ ∈ κ

max(b(γθ), B(ν, γθ)) where θ ∈ κ is minimal such that ν < γθ otherwise.

Let Zξ,ζ = ∅ if ζ < b(γ0) and let Zξ,ζ = Zγθ,ζ for all ζ such that b(γθ) ≤ ζ < b(γθ+1) and note that the continuity of b
ensures that Zξ,ζ is defined for all ζ.

To see that Induction Hypothesis (1) holds note that for each Zξ,ζ there is some θ such that |Zξ,ζ | = |Zγθ,ζ | ≤ g(ζ). To
see that Induction Hypothesis (2) holds let ζ < ζ∗ < κ. Then there are θ ≤ θ∗ such that Zξ,ζ = Zγθ,ζ and Zξ,ζ∗ = Zγθ∗ ,ζ∗ .
By Induction Hypothesis (2) it follows that Zγθ,ζ ⊆ Zγθ,ζ∗ ⊆ Zγθ∗ ,ζ∗ with the last inclusion following from (3.6) for b(γ∗θ ),
and from the fact that b(θ∗) ≤ ζ∗. Induction Hypothesis (3) follows from the fact that

⋃
ζ∈κ Zγθ,ζ = γθ for each θ ∈ κ

and the γθ are cofinal in ξ. Since each Zξ,ζ is equal to Zγθ,ζ for some θ it is immediate that Induction Hypothesis (4)
holds at ξ.

To see that Equation (3.1) holds let η ∈ ξ and ζ ≥ B({η, ξ}). The first case to consider is that there exists some θ ∈ κ
such that η = γθ. To see that Zξ,ζ ∩ η = Zη,ζ let θ∗ ∈ κ be such that Zξ,ζ = Zγθ∗ ,ζ and b(γθ∗) ≤ ζ < b(γθ∗+1). Notice
that θ ≤ θ∗ because otherwise ζ < b(γθ∗+1) ≤ b(γθ) = B({η, ξ}). Then η ≤ γθ∗ and so Zξ,ζ ∩ η = Zγθ∗ ,ζ ∩ η = Zη,ζ
because ζ ≥ b(γθ∗) and (3.2) holds at γθ∗ . On the other hand, if ν ∈ ξ \ {γβ}β∈κ and θ ∈ κ is minimal such that ν < γθ
then by the preceding argument it follows that Zξ,ζ ∩ γθ = Zγθ,ζ . Since ζ ≥ B(η, γθ) it follows that Zγθ,ζ ∩ η = Zη,ζ and
the result follows from the fact that η < γθ.

Finally, note that Equation (3.2) is irrelevant in this case.

Case Four. ξ ∈ Λ(κ+) \ Λ<κ(κ+) and {b(θ) | θ ∈ Cξ ∩ Λ<κ(ξ)} is bounded in κ.

In this case, let δ ∈ κ be such that B(a) < δ for all a ∈ [Cξ]
2. For ν ∈ ξ define Θ(ν) = min(Cξ \ ν) and let

B({ν, ξ}) =

{
δ if ν ∈ Cξ

max(δ,B({ν,Θ(ν)}), otp(Cξ ∩Θ(ν))) otherwise .

Then for ζ ∈ κ let Ωζ ∈ Cξ be the unique ordinal such that the order type of Cξ ∩ Ω(ζ) is ζ. Then define

Zξ,ζ =

{
∅ if Ωζ ≤ δ⋃
ν∈Cξ∩Ωζ

Zν,ζ otherwise

and note that |Zξ,ζ | ≤ |ζ|g(ζ) ≤ g(ζ) by induction and (2) of Hypothesis 3.1. It is then easy to see that Induction
Hypotheses (1) to (3) hold. To see that Hypothesis (4) holds note that from Equation (3.1) it follows that

(3.7) (∀ζ ≥ δ)(∀{ν, ν∗} ∈ [Cξ]
2) Zν,ζ = Zν∗,ζ ∩ ν.

If ν ∈ Zξ,ζ then Zξ,ζ ̸= ∅ and so Zξ,ζ =
⋃
ρ∈Cξ∩Ωζ

Zρ,ζ and hence there is some ρ ∈ Cξ ∩ Ωζ such that ν ∈ Zρ,ζ . Note

that by Equation (3.7) and the fact that ν ∈ ρ it follows that Zξ,ζ ∩ ν = Zρ,ζ ∩ ν. Then Induction Hypotheses (4) at ρ
yields that Zξ,ζ ∩ ν = Zρ,ζ ∩ ν = Zν,ζ .
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6 S. SHELAH AND J. STEPRĀNS

Equation (3.2) is again irrelevant and to establish that Equation (3.1) holds let η ∈ ξ where ζ ≥ B({η, ξ}). Note that
ζ > otp(Cξ ∩Θ(η)) implies that Ωζ > Θ(η). Since Zν,ζ ∩Θ(η) = ZΘ(η),ζ for each ν ∈ Cξ ∩ Ωζ \Θ(η) by Equation (3.7),
it follows that

Zξ,ζ ∩Θ(η) =
⋃

ν∈Cξ∩Ωζ\Θ(η)

Zν,ζ ∩Θ(η) = ZΘ(η),ζ .

Since ζ > B(η,Θ(η)) it follows that ZΘ(η),ζ ∩ η = Zη,ζ and the result now follows from the fact that η ≤ Θ(η).
□

The following lemma is the companion to Lemma 3.1 in the case that κ = ω

Lemma 3.2. Let g be as in Hypothesis 3.1. There are {Zη,k}η∈ω1,k∈ω satisfying the following:

(1) Zη,k ⊆ η and ∅ ̸= Zη,k if η > 0.
(2) |Zη,k| ≤ g(k)
(3) if k < k∗ then Zη,k ⊆ Zη,k∗

(4)
⋃
k∈ω Zη,k = η

(5) if η ∈ Zη∗,k then Zη∗,k ∩ η = Zη,k
(6) limk→∞ |Zη,k|/g(k) = 0.

Proof. As in the proof of Lemma 3.1, start by letting Z0,k = ∅. If Zη,k have been defined for η ∈ ξ and k ∈ ω consider
two cases.

Case One. ξ = ξ∗ + 1

In this case let m be so large that |Zξ∗,k|+ 1 ≤ g(k) for k > m and define

Zξ,k =

{
Zξ∗,k ∪ {ξ∗} if k > m

{ξ∗} if k ≤ m.

Case Two. ξ is a limit ordinal

In this case let {γn}n∈ω be an increasing sequence cofinal in ξ and let {b(t)}t∈ω be an increasing sequence of integers such
that

(3.8) 0 ∈ Zγ0,b(0)

(3.9) (∀t ≥ 1)(∀k ≥ b(t))(∀n ≤ t) |Zγn,k|/g(k) ≤ 1/t

(3.10) (∀t)(∀n < t)(∀k ≥ b(t)) Zγt,k ∩ γn = Zγn,k

Let

Zξ,k =

{
{0} if k < b(0)

Zγt,k if b(t) ≤ k < b(t+ 1).

It is clear that Hypothesis (1) holds. To see that Hypothesis (2) holds note that for each Zξ,k there is some t such that
|Zξ,k| = |Zγt,k| ≤ g(k). The fact that Hypothesis (6) holds follows from Inequality (3.9). To see that Hypothesis (3) holds
let k < k∗. Then there are t ≤ t∗ such that Zξ,k = Zγt,k and Zξ,k∗ = Zγt∗ ,k∗ . By Induction Hypothesis (3) it follows
that Zγt,k ⊆ Zγt,k∗ ⊆ Zγt∗ ,k∗ with the last inclusion following from the choice of b(t∗), Condition (3.10) and the fact that
b(t∗) ≤ k∗. Hypothesis (4) follows from the fact that

⋃
k∈ω Zγt,k = γt for each t ∈ ω and Condition (3.10). Since each

Zξ,k is equal to Zγt,k for some t ∈ ω it is immediate that Hypothesis (5) holds at ξ. □

Lemma 3.3. Suppose that {Zη,ζ}η∈κ+,ζ∈κ is the family whose existence is established in Lemma 3.1 or, when κ = ω, in
Lemma 3.2. Using the notation of Hypothesis 3.1 define

(3.11) Eη,ν = {Eξ,ν | η̄ ∈ Zη,ν ∪ {η} & ξ ∈ Gη̄(ν)} .

and suppose further that there are Dη,ν , D
∗
η,ν , φη,ν , φ

∗
η,ν and bη,ν for η ∈ κ+ and ν ∈ κ such that

(1) φη,ν : Dη,ν → Dη,ν and φ∗
η,ν : D∗

η,ν → D∗
η,ν are bijections

(2)
⋃
ξ∈Zη,ν

φξ,ν = φ∗
η,ν ⊆ φη,ν

(3) Dη,ν = D∗
η,ν ∪ {bη,ν , φη,ν(bη,ν)} and D∗

η,ν ∩ {bη,ν , φη,ν(bη,ν)} = ∅
(4) if θ ∈ Gη(ν) then φη,ν(bη,ν) ̸= πθ,ν(bη,ν)
(5) φη,ν({bη,ν , φη,ν(bη,ν)}) = {bη,ν , φη,ν(bη,ν)}
(6) φη,ν(bη,ν) ∈ E if and only if bη,ν ∈ E for every E ∈ Eη,ν .

Then the hypotheses of Lemma 2.1 hold at κ.
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Proof. For each η ∈ κ+ and ν ∈ κ let Bη,ν be the Boolean subalgebra of P(Iν) generated by Eη,ν ∪P(D∗
η,ν)∪{Dη,ν} and

let Φη,ν : Bη,ν → Bη,ν be the automorphism induced by φ+
η,ν where

(3.12) φ+
η,ν(ξ) =

{
φη,ν(ξ) if ξ ∈ Dη,ν

ξ otherwise.

Note that Φη,ν is also induced by φ+∗
η,ν defined by

(3.13) φ+∗
η,ν(ξ) =

{
φ∗
η,ν(ξ) if ξ ∈ D∗

η,ν

ξ otherwise

because of Hypotheses (3), (5) and (6).
It will now be shown that Bη,ν and Φη,ν satisfy the hypotheses of Lemma 2.1. To see that Hypothesis (1) of Lemma 2.1

is satisfied recall that {Iν}ν∈κ is a partition of κ by construction and |Iν | = f(ν) < κ for each ν ∈ κ by Hypothesis 3.1.
That Hypothesis (2) of Lemma 2.1 is satisfied is immediate.

To see that Hypothesis (3) of Lemma 2.1 is satisfied let ξ ∈ η ∈ κ+. Use Conclusions (2), (3) and (3.1) of Lemma 3.1
or Lemma 3.2 to find β ∈ κ such that

(3.14) (∀ν > β) ξ ∈ Zη,ν

(3.15) (∀ν > β) Zη,ν ∩ ξ = Zξ,ν .

Then use Equations (3.14), (3.15) and (3.11) to see that if ν > β then

Eξ,ν = {Eγ,ν | θ ∈ Zξ,ν ∪ {ξ} & γ ∈ Gθ(ν)} = {Eγ,ν | θ ∈ Zη,ν ∩ ξ + 1 & γ ∈ Gθ(ν)} ⊆ Eη,ν
and so Eξ,ν ⊆ Eη,ν . Furthermore, it follows from Hypothesis (2) and Equation (3.14) that

(3.16) φ∗
η,ν =

⋃
θ∈Zη,ν

φθ,ν ⊇ φξ,ν

and so D∗
η,ν ⊇ Dξ,ν ⊇ D∗

ξ,ν . Since Bη,ν is generated by

Eη,ν ∪ P(D∗
η,ν) ∪ {Dη,ν}

and Bξ,ν is generated by Eξ,ν ∪ P(D∗
ξ,ν) ∪ {Dξ,ν}, which is contained in Eη,ν ∪ P(D∗

η,ν), it follows that Bη,ν ⊇ Bξ,ν .

In order to see that if ξ ∈ η then Φη,ν ⊇ Φξ,ν for all but an initial segment of ν, using (3.14) and (3.15), it suffices to
show that

(3.17) (∀η ∈ κ+)(∀ν ∈ κ)(∀ξ ∈ Zη,ν) Φη,ν ⊇ Φξ,ν .

This will be shown by induction on η, so suppose that Condition (3.17) holds for all η̄ ∈ η and that ξ ∈ Zη,ν . Let
Y ∈ Bξ,ν . Then, since Dξ,ν ∈ Bξ,ν it follows that

Φξ,ν(Y ) = Φξ,ν(Y ∩Dξ,ν) ∪ Φξ,ν(Y \Dξ,ν)

and

Φξ,ν(Y ∩Dξ,ν) = φξ,ν(Y ∩Dξ,ν) = φ∗
η,ν(Y ∩Dξ,ν) = Φη,ν(Y ∩Dξ,ν)

using Equation (3.12) for the first equality, Hypothesis (2) for the second and Equation (3.13) for the third. Hence,
it suffices to show that Φη,ν(Y ) = Φξ,ν(Y ) when Y ∈ Bξ,ν and Y ∩ Dξ,ν = ∅. From Equation (3.12) it then suffices
to show that Φη,ν(Y ) = Y when Y ∈ Bξ,ν and Y ∩ Dξ,ν = ∅. From Equation (3.13) it then suffices to show that
Φη,ν(Y ∩D∗

η,ν) = Y ∩D∗
η,ν provided that Y ∈ Bξ,ν and Y ∩Dξ,ν = ∅.

To this end, let Y ∈ Bξ,ν be such that Y ∩Dξ,ν = ∅. Then
(3.18)

Φη,ν(Y ∩D∗
η,ν) = φ+∗

η,ν(Y ∩D∗
η,ν) = φ∗

η,ν(Y ∩D∗
η,ν) =

⋃
η̄∈Zη,ν

φη̄,ν(Y ∩Dη̄,ν)) =
⋃

η̄∈Zη,ν

φ+
η̄,ν(Y ∩Dη̄,ν) =

⋃
η̄∈Zη,ν\ξ

φ+
η̄,ν(Y ∩Dη̄,ν)

by Hypothesis (2). Note that η̄ ∈ Zη,ν implies that Zη̄,ν = Zη,ν ∩ η̄ by Conclusion (4) of Lemma 3.1. Hence if ξ ∈ η̄
then ξ ∈ Zη,ν ∩ η̄ = Zη̄,ν and, hence, Y ∈ Bξ,ν ⊆ Bη̄,ν by Induction Hypothesis (3.17). Therefore, if ξ ∈ η̄ ∈ Zη,ν then
Y ∩Dη̄,ν ∈ Bη̄,ν and so

φ+
η̄,ν(Y ∩Dη̄,ν) = Φη̄,ν(Y ∩Dη̄,ν)

and so Equation (3.18) yields

(3.19) Φη,ν(Y ∩D∗
η,ν) =

⋃
η̄∈Zη,ν\ξ

Φη̄,ν(Y ∩Dη̄,ν) =
⋃

η̄∈Zη,ν\ξ

Φη̄,ν(Y ) ∩ Φη̄,ν(Dη̄,ν) =
⋃

η̄∈Zη,ν\ξ

Φη̄,ν(Y ) ∩Dη̄,ν .
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Once again using that ξ ∈ Zη̄,ν if ξ ∈ η̄ ∈ Zη,ν and Induction Hypothesis (3.17), it follows that Φξ,ν(Y ) = Φη̄,ν(Y ) if
ξ ∈ η̄ ∈ Zη,ν . Hence the Equation (3.19) yields that Φη,ν(Y ∩D∗

η,ν) is equal to⋃
η̄∈Zη,ν\ξ

Φη̄,ν(Y ) ∩Dη̄,ν =
⋃

η̄∈Zη,ν\ξ

Φξ,ν(Y ) ∩Dη̄,ν = Φξ,ν(Y ) ∩
⋃

η̄∈Zη,ν\ξ

Dη̄,ν = Φξ,ν(Y ) ∩D∗
η,ν = Y ∩D∗

η,ν

since Y ∩Dξ,ν = ∅. This is what is required.
To see that Hypothesis (4) of Lemma 2.1 holds let F : κ→ κ be one-to-one such that F (Iν) ⊆ Iν for all but an initial

segment of ν. Then F ↾ Iν = πJ(ν),ν for some J(ν) ∈ ψ(ν) for a tail of ν ∈ κ. By (3) of Hypothesis 3.1 there is then

some ξ ∈ κ+ such that J(ν) ∈ Gξ(ν) for a final segment of ν ∈ κ. Let ξ̄ > ξ. Then it follows from Conclusion (3) to
Conclusion (4) of Lemma 3.1 that Zξ,ν ⊆ Zξ̄,ν for all but an initial segment of ν. Hence, using Hypotheses (2) and (3) it
follows that bξ,ν ∈ Dξ,ν ⊆ D∗

ξ̄,ν
and φξ,ν ⊆ φ∗

ξ̄,ν
⊆ φξ̄,ν for any such ν. Since P(D∗

ξ̄,ν
) ⊆ Bξ̄,ν it must be that {bξ,ν} ∈ Bξ̄,ν

and so, by Hypotheses (4),

F (bξ,ν) = πJ(ν),ν(bξ,ν) /∈ {φξ,ν(bξ,ν)} = {φξ̄,ν(bξ,ν)} = {φ+
ξ̄,ν

(bξ,ν)} = Ψξ̄,ν({bξ,ν})

for a final segment of ν ∈ κ.
Finally, to see that Hypothesis (5) of Lemma 2.1 holds let A ⊆ κ. Then A ∩ Iν = EJ(ν),ν for some J(ν) ∈ ψ(ν) for all

ν ∈ κ. By (3) of Hypothesis 3.1 there is η ∈ κ+ such that J(ν) ∈ Gη(ν) for a final segment of ν ∈ κ. It follows that for a
final segment of ν ∈ κ

EJ(ν),ν ∈ {Eξ,ν | η̄ ∈ {η} & ξ ∈ Gη̄(ν)} ⊆ {Eξ,ν | η̄ ∈ Zη,ν ∪ {η} & ξ ∈ Gη̄(ν)} = Eη,ν
by Equation (3.11). It follows that EJ(ν),ν ∈ Eη,ν for all but an initial segment of ν and so, since Bη,ν ⊇ Eη,ν , it follows
that A ∩ Iν = EJ(ν),ν ∈ Bη,ν for all but an initial segment of ν ∈ κ. □

Lemma 3.4. The hypotheses of Lemma 2.1 hold at κ when κ is inaccessible and □κ holds.

Proof. It will be shown that the hypotheses of Lemma 3.3 hold. Construct Dη,ν , D
∗
η,ν , φη,ν , φ

∗
η,ν and bη,ν for each ν ∈ κ

satisfying Hypotheses (1) to (6) of Lemma 3.3 by induction on η ∈ κ+. Begin by letting {Zη,ζ}η∈κ+,ζ∈κ be the family
whose existence is established in Lemma 3.1 and defining D0,ν = ∅ = φ0,ν for each ν in κ. Now assume that Dη,ν , D

∗
η,ν ,

φη,ν , φ
∗
η,ν and bη,ν have been defined for all ξ ∈ η and ν ∈ κ and that the following induction hypothesis is also satisfied:

(3.20) (∀ξ ∈ η)(∀ν ∈ κ) |Dξ,ν | ≤ g(ν).

Observe that by Condition (4) of Lemma 3.1 it follows that if ξ ∈ ξ∗ and {ξ, ξ∗} ⊆ Zη,ν then Zη,ν ∩ ξ∗ = Zξ∗,ν and so
ξ ∈ Zξ∗,ν . Now applying the induction hypothesis that Condition (2) of Lemma 3.3 holds it follows that

(3.21) (∀ξ ∈ ξ∗) if {ξ, ξ∗} ⊆ Zη,ν then φξ,ν ⊆ φξ∗,ν .

Since |Zη,ν | ≤ g(ν) by Condition (1) of Lemma 3.1, it follows from Induction Hypothesis (3.20) and the fact g(ν) is
infinite that

(3.22)

∣∣∣∣∣∣
⋃

ξ∈Zη,ν

φξ,ν

∣∣∣∣∣∣ ≤ g(ν)g(ν) = g(ν).

By (3.21), letting φ∗
η,ν =

⋃
ξ∈Zη,ν

φξ,ν and letting D∗
η,ν be the domain of φ∗

η,ν , it follows that φ
∗
η,ν is a bijection of D∗

η,ν .

From Inequality (3.22), it follows that |D∗
η,ν | ≤ g(ν).

Now let Aη,ν be the partition of Iν generated by Eη,ν as defined by (3.11) of Lemma 3.3. Since

|Aη,ν | ≤ 2|Eη,ν | ≤ 2(|Zη,ν |+1)g(ν) ≤ 2g(ν)g(ν) = 2g(ν)

by Condition (1) of Lemma 3.1 it follows that |Aη,ν | ≤ 2g(ν) < f(ν) = |Iν | by Hypothesis 3.1. Using that |D∗
η,ν | ≤ g(ν)

and f(ν) is regular it is possible to find for each ν ∈ κ some Aη,ν ∈ Aη,ν such that |Aη,ν \ D∗
η,ν | = f(ν). Then let

bη,ν ∈ Aη,ν \D∗
η,ν and let Bν = {πθ,ν(bη,ν) | θ ∈ Gη(ν)}. Then, since

|Bν | ≤ |Gη(ν)| ≤ g(ν) < f(ν) = |Aη,ν \D∗
η,ν |

it is again possible to choose b′η,ν ∈ Aη,ν \ (D∗
η,ν ∪ Bν). Now let φ : {bη,ν , b′η,ν} → {bη,ν , b′η,ν} be the involution sending

bη,ν to b′η,ν .
In order to satisfy (1) and (3) of Lemma 3.3 define

(3.23) Dη,ν = D∗
η,ν ∪ {bη,ν , b′η,ν}

and

(3.24) φη,ν = φ∗
η,ν ∪ φ
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observing that (5) of Lemma 3.3 is now satisfied. Moreover

(3.25) (∀ν ∈ κ)(∀θ ∈ Gη(ν)) φη,ν(bη,ν) ̸= πθ,ν(bη,ν)

and hence (4) of Lemma 3.3 is also satisfied. To see that (6) of Lemma 3.3 is satisfied note that {bη,ν , b′η,ν} ⊆ Aη,ν and
that Aη,ν is an element of the partition generated by Eη,ν . The fact that (2) of Lemma 3.3 holds follows immediately
from the construction of φ∗

η,ν . □

Corollary 3.1. If κ is inaccessible and □κ holds and 2κ = κ+ there is a non-trivial automorphism of P(κ)/[κ]<κ.

Proof. Let f and g be functions on κ satisfying Conditions (1) and (2) of Hypothesis 3.1. Let {Hξ}ξ∈κ+ enumerate∏
ν∈κ 2

f(ν). Let eξ : κ→ ξ be a bijection for ξ ∈ κ+ \ κ. Then let Gξ ∈
∏
ν∈κ[2

f(ν)]g(ν) be defined by

Gξ(ν) =
{
Heξ(η)(ν) | η ∈ g(ν)

}
.

In order to apply Lemma 3.3 it will be shown that {Gξ}ξ∈κ+ witnesses that dψ,g = κ+. To see this, let H ∈
∏
ν∈κ 2

f(ν).
Then H = Hξ for some ξ ∈ κ+ and if ξ ∈ θ ∈ κ+ it follows that there is some ρ ∈ κ such that eθ(ρ) = ξ. Then for all but
an initial segment of ν it must be that ρ ∈ g(ν) and, hence, that H = Hξ ∈ Gθ(ν).

□

Corollary 3.2. If κ is inaccessible then it is consistent that 2κ > κ+ and there is a non-trivial automorphism of
P(κ)/[κ]<κ.

Proof. Fix functions f and g on κ satisfying Conditions (1) and (2) of Hypothesis 3.1. Let P be the partial order consisting
of pairs (d,H) such that:

• there is some α ∈ κ such that d ∈
∏
ν∈α[f(ν)]

g(ν)

• H ⊆
∏
ν∈κ f(ν)

• |H| ≤ g(α)

and define (d,H) ≤ (d∗,H∗) if

• H ⊇ H∗

• d ⊇ d∗

• h(η) ∈ d(η) for all h ∈ H \ H∗ and η in the domain of d \ d∗.
It is routine to see that if G ⊆ P is generic over V and dG ∈

∏
ν∈α[f(ν)]

g(ν) is defined by dG(α) = d(α) for some (d,H) ∈ G
then for any h ∈

∏
ν∈κ f(ν) ∩ V there is some β ∈ κ such that h(α) ∈ dG(α) for all α > β. It is then standard to obtain

Condition (3) and 2κ > κ+ by iterating this forcing κ+ times over a model where 2κ > κ+ and □κ holds.
To get a model where 2κ > κ+ and □κ holds use §4 of [6] to force over the model where κ is inaccessible to first get

□κ to hold while preserving all cardinals. Then add more than κ+ subsets of κ with κ closed forcing, noting that this
preserves □κ and the inaccessibility of κ. □

Lemma 3.5. The hypotheses of Lemma 2.1 hold at ω.

Proof. Let {Zη,k}η∈ω1,k∈ω be the family whose existence is established in Lemma 3.2. A key difference between the
general case and the specific case when κ = ω is that each Zη,k is finite and it is possible to let ζη,k be the maximal
element of Zη,k, provided that η > 0. In order to show that the hypotheses of Lemma 3.3 hold construct Dη,k, D

∗
η,k, φη,k,

φ∗
η,k and bη,k for each k ∈ ω satisfying Hypotheses (1) to (6) of Lemma 3.3 by induction on η ∈ ω1.
Now assume that Dξ,k, D

∗
ξ,k, φξ,k, φ

∗
ξ,k and bξ,k have been defined all ξ ∈ η and k ∈ ω and that the following induction

hypothesis is also satisfied:

(3.26) (∀ξ ∈ η)(∀k ∈ ω) |Dξ,k| ≤ 2|Zξ,k|.

Let φ∗
η,k = φζη,k,k and let D∗

η,k be the domain of φ∗
η,k. It follows from Inequality (3.26) that |D∗

η,k| ≤ 2|Zζη,k| ≤ 2g(k).

Now let Aη,k be the partition of Ik generated by Eη,k as defined by (3.11) of Lemma 3.3. Since

|Aη,k| ≤ 2|Eη,k| ≤ 2(|Zη,k|+1)g(k) ≤ 2(g(k)+1)g(k)

it is possible to find for each k ∈ ω some Aη,k ∈ Aη,k such that

|Aη,k| >
|Ik|

2(g(k)+1)g(k)
=

f(k)

2(g(k)+1)g(k)
> 3g(k)

with the last inequality following from Hypothesis 3.1 in the case κ = ω. Then |Aη,k \D∗
η,k| > g(k) and it is possible to

find bη,ν ∈ Aη,k \D∗
η,k. Moreover,

| {πθ,k(bη,k) | θ ∈ Gη(k)} | ≤ g(k)
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and hence it is possible to extend φ∗
η,k to a bijection φη,k with domain D∗

η,k ∪ {bη,k, φη,k(bη,k)} such that

φ(bη,k) ∈ Aη,k \D∗
η,k

and such that

(3.27) (∀k ∈ ω)(∀θ ∈ Gη(k)) φη,k(bη,k) ̸= πθ,k(bη,k).

Now note that Condition (3.26) is satisfied because of |Zη,k| > |Zζη,k|. The verification that the other induction hypotheses
hold is the same as in the proof Lemma! 3.4.

□

Corollary 3.3. If Hypothesis 3.1 holds at κ = ω for some functions f , g and ψ then then there is a nontrivial isomorphism
of P(N)/[N]<ℵ0 .

Definition 3.3. Given functions f and g from ω to ω define and a filter F on ω define df,g(F) to be the least cardinal of

a family D ⊆
∏
k∈ω[f(k)]

g(k) such that for every F ∈
∏
k∈ω f(k) there is G ∈ D such that {k ∈ ω | F (k) ∈ G(k)} ∈ F+ .

Remark 1. It can be verified that if F is generated by a ⊆∗ descending tower of length ω1 and then in order to obtain
the conclusion of Lemma 3.5 it suffices to have the equality dψ,g(F) = ℵ1. This yields the following corollary.

Corollary 3.4. If there is an ℵ1-generated filter F such that dψ,g(F) = ℵ1 ̸= d then there is a nontrivial isomorphism of
P(N)/[N]<ℵ0 .

Proof. Let F be generated by {Xξ}ξ∈ω1
. Use Rothberger’s argument and ℵ1 ̸= d to construct a ⊆∗-descending sequence

{Yξ}ξ∈ω1
all of whose terms are F positive and such that Yξ ⊆ Xξ. Let F ′ be generated by {Yξ}ξ∈ω1

and note that
dψ,g(F ′) = ℵ1. □

4. Remarks and questions

For the illustrative purposes of this last section, fix functions g(k) = k and ψ(k) = (3k2k
2+k + 1)! as in Hypothesis 3.1.

The first thing to note is that there are models where dψ,g = ℵ1 < 2ℵ0 for f and g satisfying the Hypothesis 3.1 — for
example, this is true in the model obtained by either iteratively adding ω2 Sacks reals1 or adding more than ℵ1 Sacks
reals side-by-side. Of course d = ℵ1 also in these models. It is therefore of interest to note that the Laver property implies
that dψ,g = ℵ1 in the Laver model as well, yet d = ℵ2 in this model. It should also be observed that it is possible for dψ,g
to be larger that d. For example, iteratively forcing ω2 times with perfect trees T that are cofinally f branching will yield
such a model.

To be a bit more precise, given f : ω → ω define S(f) to consist of all trees T ⊆
⋃
n∈ω

∏
j∈n f(j) such that or each t ∈ T

there is s ⊇ t such that s⌢j ∈ T for all j ∈ f(|s|). So Sacks forcing is just S(2) where 2 is the constant 2 function. The
same proof as for Sacks forcing shows that S(f) is proper and adds no reals unbounded by the ground model. Iterating
S(f) with countable support ω2 times then yields model in which d = ℵ1. However, if g : ω → ω and H ⊆

∏
n∈ω[f(n)]

g(n)

has cardinality ℵ1 then there is some model containing g and H and there is Γ ∈
∏
n∈ω f(n) which is generic over this

model. This genericity ensures that for all h ∈ H there are infinitely many j such that Γ(j) /∈ h(j).
It has already been shown in Corollary 3.2 that the hypotheses of Lemma 3.3 can be satisfied for uncountable cardinals,

but it is worth noting that the generalization of Sacks reals to uncountable cardinals in [5] provides an alternate argument.
It also has to be noted that the hypothesis of Corollary 3.4 is not vacuous in the sense that there are models of set theory
in which it holds. For example, in the model obtained by iterating Miller reals ω2 times the following hold:

• d = ℵ2 because the Miller reals themselves are unbounded by the ground model
• df,g = ℵ1 for appropriate f and g because the Miller partial order satisfies the Laver property
• u = ℵ1 because P-points from the ground model generate ultrafilters in the extension.

However there does not seem to be any model demonstrating that the assumption that ℵ1 ̸= d in Corollary 3.4 is
essential. It is shown in [3] that it is consistent with set theory that d = ℵ1 yet all automorphisms of P(N)/[N]<ℵ0 are
trivial. However, u = ℵ2 in that model because random reals are added cofinally often. This motivates the following
question.

Question 4.1. Does the existence of a nontrivial isomorphism of P(N)/[N]<ℵ0 follow from the assumption that there is
an ℵ1-generated filter F such that dψ,g(F) = ℵ1?

It is worth observing that the isomorphism of Lemma 2.1 is trivial on some infinite sets — indeed, if ξ ∈ κ+ and X ⊆ N
are such that {x} belongs to some Bξ,ν for each x ∈ X then Φ is trivial on P(X). However, if T (Φ) is defined to be
the ideal {X ⊆ N | Φ ↾ P(X) is trivial} then T (Φ) is a small ideal in the sense that the quotient algebra P(N)/T (Φ) has
large antichains, even modulo the ideal of finite sets — in the terminology of [2], the ideal T (Φ) is not ccc by fin. To see

1See [1] for definitions of terms not defined in this section as well as for details of proofs.
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this, simply observe that the proof of Lemma 2.1 actually shows that Hypothesis 4 of Lemma 2.1 can be strengthened to:
For any one-to-one F : N → N there is ξ ∈ ω1 such that for all but finitely many k ∈ ω there is an atom a ∈ Bξ,k and
ι ∈ a such that F (ι) /∈ Φξ,k(a). It follows that if Z ⊆ N is infinite then Z∗ =

⋃
k∈Z Ik /∈ T (Φ). Hence, if A is an almost

disjoint family of subsets of N then {A∗ | A ∈ A} is an antichain modulo the ideal of finite sets.
One should not, therefore, expect to get a nowhere trivial isomorphism by these methods. It is nevertheless, conceivable

that there are some other cardinal invariants similar to df,g that would, when small, imply the existence of nowhere trivial
isomorhisms of P(N)/[N]<ℵ0 . In this context it is interesting to note that it is at least consistent with small d that there
are nowhere trivial isomorphisms.

Proposition 4.1. It is consistent that ℵ1 = d ̸= 2ℵ0 and there is a nowhere trivial isomorphism of P(N)/[N]<ℵ0 .

Sketch of proof. The partial order defined in Definition 2.1 of §2 of [13] will be used2. Begin with a model V satisfying
2ℵ0 > ℵ1 and construct a tower of permutations {(Aξ, Fξ,Bξ)}ξ∈Lim(ω1) such that, letting Sη = {(Aξ, Fξ,Bξ)}ξ∈Lim(η)

and Pη be the finite support iteration of partial orders that are Q(Sξ) for ξ ∈ Lim(η) and Hechler forcing if ξ is a
successor, the following holds for each η and G that is Pω1

generic over V :

• Aη = ASη [G ∩Q(Sη)]
• Fη = FSη

[G ∩Q(Sη)]
• Bη = P(N) ∩ V [G ∩ Pη]

The proof of Theorem 2.1 in [13] shows that there is a nowhere trivial isomorphism of P(N)/[N]<ℵ0 in this model and,
since Pω1

is ccc, it is also true that 2ℵ0 remains larger than ℵ1 in the generic extension. The Hechler reals guarantee that
d = ℵ1. □

It should also be noted that Lemma 2.1 actually yields 2(κ
+) isomorphisms. It is shown in [15] that it is possible to have

non-trivial isomorphisms of P(N)/[N]<ℵ0 without having 2c such isomorphisms. This motivates the following, somewhat
vague, question.

Question 4.2. Can there be some variant of df,g which, when small, yields a non-trivial isomorphism of P(N)/[N]<ℵ0

without yielding the maximal possible number of such?

Given the remarks following Corollary 3.4 it is natural to ask the following.

Question 4.3. Is it consistent that dψ,g = d for f and g satisfying the Hypothesis 3.1 and to have u = ℵ1 and to have
that all isomorphisms of P(N)/[N]<ℵ0 are trivial?

A positive answer to his question would require a model in which there is an ultrafilter of character ℵ1 yet there are
no P-points of character ℵ1 since, as has already been mentioned in the introduction, it was shown by W. Rudin in [8, 9]
that if there are P-points of character ℵ1 then there are non-trivial isomorphisms of P(N)/[N]<ℵ0 . It is an interesting,
and well known, problem on its own whether or not the existence of an ultrafilter of character ℵ1 implies the existence of
a P-point of character ℵ1.

As a final remark it will be noted that Corollary 3.3 shows that Theorem 3.1 of [13] cannot be improved to show that
in models obtained by iterating Sacks or Silver reals all isomorphisms of P(N)/[N]<ℵ0 are trivial because the equality
dψ,g = ℵ1 holds in these models for the necessary f and g.
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[16] Boban Veličković. OCA and automorphisms of P(ω)/fin. Topology Appl., 49(1):1–13, 1993.

Institute of Mathematics, Hebrew University, Jerusalem, Givat Ram, Israel and Department of Mathematics, Rutgers Uni-

versity, New Brunswick, New Jersey, USA
Email address: shelah@math.huji.ac.il

Department of Mathematics, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

Email address: steprans@yorku.ca

Paper Sh:990a, version 2024-09-06. See https://shelah.logic.at/papers/990a/ for possible updates.


