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The Ramsey Choice principle for families of 𝑛-element sets, denoted RC𝑛, states
that every infinite set 𝑋 has an infinite subset 𝑌 ⊆ 𝑋 with a choice function on
[𝑌]𝑛 ∶= {𝑧 ⊆ 𝑌 ∶ |𝑧| = 𝑛}. We investigate for which positive integers 𝑚 and 𝑛

the implication RC𝑚 ⟹ RC𝑛 is provable in 𝖹𝖥. It will turn out that beside
the trivial implications RC𝑚 ⟹ RC𝑚, under the assumption that every odd
integer 𝑛 > 5 is the sumof three primes (known as ternaryGoldbach conjecture),
the only non-trivial implication which is provable in 𝖹𝖥 is RC2 ⟹ RC4.

1 INTRODUCTION

For positive integers 𝑛, the Ramsey Choice principle for families of 𝑛-element sets, denoted RC𝑛, is defined as follows:
For every infinite set𝑋 there is an infinite subset𝑌 ⊆ 𝑋 such that the set [𝑌]𝑛 ∶= {𝑧 ⊆ 𝑌 ∶ |𝑧| = 𝑛} has a choice function.
The Ramsey Choice principle was introduced by Montenegro [5] who showed that for 𝑛 = 2, 3, 4, RC𝑛 ⟹ C−

𝑛 . where
C−

𝑛 is the statement that every infinite family of 𝑛-element has an infinite subfamily with a choice function. However, the
question of whether or not RC𝑛 → 𝖢−

𝑛 for 𝑛 ≥ 5 is still open (for partial answers to this question see [2, 3]).
In this paper, we investigate the relation between RC𝑛 and RC𝑚 for positive integers 𝑛 and 𝑚. First, for each positive

integer 𝑚 we construct a permutation modelsMOD𝑚 in which RC𝑚 holds, and then we show that RC𝑛 fails inMOD𝑚

for certain integers 𝑛. In particular, assuming the ternary Goldbach conjecture, which states that every odd integer 𝑛 > 5

is the sum of three primes, and by the transfer principles of Pincus [6], we we obtain that for 𝑚, 𝑛 ≥ 2, the implication
RC𝑚 ⟹ RC𝑛 is not provable in 𝖹𝖥 except in the case when 𝑚 = 𝑛, or when 𝑚 = 2 and 𝑛 = 4.

Fact 1.1. The implications RC𝑚 ⟹ RC𝑚 (for 𝑚 ≥ 1) and RC2 ⟹ RC4 are provable in 𝖹𝖥.

Proof. The implication RC𝑚 ⟹ RC𝑚 is trivial. To see that RC2 ⟹ RC4 is provable in 𝖹𝖥, we assume RC2. If 𝑋 is an
infinite set, then by RC2 there is an infinite subset 𝑌 ⊆ 𝑋 such that [𝑌]2 has a choice function 𝑓2. Now, for any 𝑧 ∈ [𝑌]4,
[𝑧]2 is a 6-element subset of [𝑌]2, and by the choice function 𝑓2 we can select an element from each 2-element subset of 𝑧.
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For any 𝑧 ∈ [𝑌]4 and each 𝑎 ∈ 𝑧, let 𝜈𝑧(𝑎) ∶= |{𝑥 ∈ [𝑧]2 ∶ 𝑓2(𝑥) = 𝑎}|,𝑚𝑧 ∶= min
{

𝜈𝑧(𝑎) ∶ 𝑎 ∈ 𝑧
}
, and𝑀𝑧 ∶=

{
𝑎 ∈ 𝑧 ∶

𝜈𝑧(𝑎) = 𝑚𝑧

}
. Since 𝑓2 is a choice function, we have

∑
𝑎∈𝑧

𝜈𝑧(𝑎) = 6, and since 4 ∤ 6, the function 𝑓 ∶ [𝑌]4 → 𝑌 defined
by stipulating

𝑓(𝑧) ∶=

⎧⎪⎨⎪⎩

𝑎 if 𝑀𝑧 = {𝑎},

𝑏 if 𝑧 ⧵ 𝑀𝑧 = {𝑏},

𝑐 if |𝑀𝑧| = 2 and 𝑓2(𝑀𝑧) = 𝑐,

is a choice function on [𝑌]4, which shows that RC4 holds. □

2 AMODEL INWHICH RC𝑚 HOLDS

In this section we construct a permutation model MOD𝑚 in which RC𝑚 holds. According to [1, p. 211 ff.], the model
MOD𝑚 is a Shelah Model of the Second Type.
Fix an integer 𝑚 ≥ 2 and let 𝑚 be the signature containing the relation symbol 𝖲𝖾𝗅𝑚. Let 𝖳𝑚 be the 𝑚-theory

containing the following axiom-schema:

For all pairwise different𝑥1, … , 𝑥𝑚, there exists a unique index 𝑖 ∈ {1, … , 𝑚} such that, whenever {𝑏1, … , 𝑏𝑚} =

{1, … , 𝑚},

𝖲𝖾𝗅𝑚(𝑥𝑏1
, … , 𝑥𝑏𝑚

, 𝑥𝑏) ⟺ 𝑏 = 𝑖.

In other words, 𝖲𝖾𝗅𝑚 is a selecting function which selects an element from each𝑚-element set {𝑥1, … , 𝑥𝑚}. In anymodel
of the theory 𝖳𝑚, the relation 𝖲𝖾𝗅𝑚 is equivalent to a function 𝖲𝖾𝗅 which selects a unique element from any 𝑚-element set.
For a model 𝑴 of 𝖳𝑚 with domain 𝑀, we will simply write 𝑀 ⊧ 𝖳𝑚. Let

𝐶 = {𝑀 ∶ 𝑀 ∈ f in(𝜔) ∧ 𝑀 ⊧ 𝖳𝑚}.

Evidently 𝐶 ≠ ∅. Partition 𝐶 into maximal isomorphism classes and let 𝐶 be a set of representatives. We proceed with
the construction of the set of atoms for our permutation model. With the next result, taken from [1], we give an explicit
construction of the Fraïssé limit of the finite models of 𝖳𝑚.

Proposition 2.1. Let 𝑚 ∈ 𝜔 ⧵ {0}. There exists a model 𝐅 ⊧ 𝖳𝑚 with domain 𝜔 such that:

1. Given a non empty 𝑀 ∈ 𝐶, 𝐅 admits infinitely many submodels isomorphic to 𝑀.
2. Any isomorphism between two finite submodels of 𝐅 can be extended to an automorphism of 𝐅.

Proof. The construction of 𝐅 is made by induction. Let 𝐹0 = ∅. 𝐹0 is trivially a model of 𝖳𝑚 and, for every element 𝑀 of
𝐶 with |𝑀| ≤ 0, 𝐹0 contains a submodel isomorphic to 𝑀. Let 𝐹𝑛 be a model of 𝖳𝑚 with a finite initial segment of 𝜔 as
domain and such that for every 𝑀 ∈ 𝐶 with |𝑀| ≤ 𝑛, 𝐹𝑛 contains a submodel isomorphic to 𝑀. Let

1. {𝐴𝑖 ∶ 𝑖 ≤ 𝑝} be an enumeration of [𝐹𝑛]≤𝑛,
2. {𝑅𝑘 ∶ 𝑘 ≤ 𝑞} be an enumeration of all the 𝑀 ∈ 𝐶 such that 1 ≤ |𝑀| ≤ 𝑛 + 1,
3. {𝑗𝑙 ∶ 𝑙 ≤ 𝑢} be an enumeration of all the embeddings 𝑗𝑙 ∶ 𝐹𝑛|𝐴𝑖

↪ 𝑅𝑘, where 𝑖 ≤ 𝑝, 𝑘 ≤ 𝑞 and |𝑅𝑘| = |𝐴𝑖| + 1.

For each 𝑙 ≤ 𝑢, let𝑎𝑙 ∈ 𝜔 be the least natural number such that𝑎𝑙 ∉ 𝐹𝑛 ∪ {𝑎𝑙′ ∶ 𝑙′ < 𝑙}. The idea is to add𝑎𝑙 to𝐹𝑛, extending
𝐹𝑛|𝐴𝑖

to a model 𝐹𝑛|𝐴𝑖
∪ {𝑎𝑙} isomorphic to 𝑅𝑘, where 𝑗𝑙 ∶ 𝐹𝑛|𝐴𝑖

↪ 𝑅𝑘. Define 𝐹𝑛+1 ∶= 𝐹𝑛 ∪ {𝑎𝑙 ∶ 𝑙 ≤ 𝑢} and make 𝐹𝑛+1

into a model of 𝖳𝑚 by choosing a way of defining the function 𝖲𝖾𝗅 on the missing subsets. The desired model is finally
given by 𝐅 =

⋃
𝑛∈𝜔

𝐹𝑛.
We conclude by showing that every isomorphism between finite submodels can be extended to an automorphism of 𝐅

with a back-and-forth argument. Let 𝑖0 ∶ 𝑀1 → 𝑀2 be an isomorphism of 𝖳𝑚-models. Let 𝑎1 be the least natural number
in 𝜔 ⧵ 𝑀1. Then𝑀1 ∪ {𝑎1} is contained in some 𝐹𝑛 and by construction we can find some 𝑎′

1
∈ 𝜔 ⧵ 𝑀2 such that 𝐅|𝑀1∪{𝑎1}
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is isomorphic to 𝐅|𝑀2∪{𝑎′
1
}. Extend 𝑖0 to 𝑙1 ∶ 𝑀1 ∪ {𝑎1} → 𝑀2 ∪ {𝑎′

1
} by imposing 𝑙1(𝑎1) = 𝑎′

1
. Let 𝑏′

1
be the least integer

in 𝜔 ⧵ (𝑀2 ∪ {𝑎′
1
}) and similarly find some 𝑏1 ∈ 𝜔 ⧵ (𝑀1 ∪ {𝑎1}) such that we can extend 𝑙1 to an isomorphism 𝑖1 ∶ 𝑀1 ∪

{𝑎1, 𝑏1} → 𝑀2 ∪ {𝑎′
1
, 𝑏′

1
} which maps 𝑏1 to 𝑏′

1
. Repeating the process countably many times, the desired automorphism of

𝐅 is given by 𝑖 =
⋃

𝑛∈𝜔
𝑖𝑛. □

Remark 2.2. Let us fix some notations and terminology. The elements of themodel 𝐅 above constructed will be the atoms
of our permutationmodel. Each element 𝑎 corresponds to a unique embedding 𝑗. We shall call the domain of 𝑗 the ground
of 𝑎. Moreover, given two atoms 𝑎 and 𝑏, we say that 𝑎 < 𝑏 in case 𝑎 <𝜔 𝑏 according to the natural ordering. Notice that
this well ordering of the atoms will not exist in the permutation model.

Let 𝐴 be the domain of the model 𝐅 of the theory 𝖳𝑚. To build the permutation modelMOD𝑚, consider the normal
ideal given by all the finite subsets of 𝐴 and the group of permutations 𝐺 defined by

𝜋 ∈ 𝐺 ⟺ ∀ 𝑋 ∈ [𝜔]𝑚, 𝜋(𝖲𝖾𝗅(𝑋)) = 𝖲𝖾𝗅(𝜋𝑋).

Theorem 2.3. For every positive integer 𝑚,MOD𝑚 is a model for RC𝑚.

Proof. Let 𝑋 be an infinite set with support 𝑆′. If 𝑋 is well ordered, the conclusion is trivial, so let 𝑥 ∈ 𝑋 be an element
not supported by 𝑆′ and let 𝑆 be a support of 𝑥, with 𝑆′ ⊆ 𝑆. Let 𝑎 ∈ 𝑆 ⧵ 𝑆′. If f ix𝐺(𝑆 ⧵ {𝑎}) ⊆ sym𝐺(𝑥) then 𝑆 ⧵ {𝑎} is a
support of𝑥, so by iterating the process finitelymany timeswe can assume that there exists a permutation 𝜏 ∈ f ix𝐺(𝑆 ⧵ {𝑎})

such that 𝜏(𝑥) ≠ 𝑥. Our conclusion will follow by showing that there is a bijection between an infinite set of atoms and
a subset of 𝑋, namely between 𝐼 = {𝜋(𝑎) ∶ 𝜋 ∈ f ix𝐺(𝑆 ⧵ {𝑎})} and {𝜋(𝑥) ∶ 𝜋 ∈ f ix𝐺(𝑆 ⧵ {𝑎})}. First, notice that for 𝜋 ∈

f ix𝐺(𝑆 ⧵ {𝑎}) the function 𝑓 ∶ 𝜋(𝑎) ↦ 𝜋(𝑥) is well defined on 𝐼. Indeed, if for some 𝜎, 𝜋 ∈ f ix𝐺(𝑆 ⧵ {𝑎}) we have 𝜎(𝑥) ≠

𝜋(𝑥), then 𝜋−1𝜎(𝑥) ≠ 𝑥, which implies 𝜋−1𝜎(𝑎) ≠ 𝑎 since 𝑆 is a support of 𝑥. To show that 𝑓 is also injective, suppose
towards a contradiction that there are two permutations 𝜎, 𝜎′ ∈ f ix𝐺(𝑆 ⧵ {𝑎}) such that 𝜎(𝑥) = 𝜎′(𝑥) and 𝜎(𝑎) ≠ 𝜎′(𝑎).
Then, by direct computation, the permutation 𝜎−1𝜎′ is such that 𝜎−1𝜎′(𝑎) ≠ 𝑎 and 𝜎−1𝜎′(𝑥) = 𝑥. Let 𝑏 = 𝜎−1𝜎′(𝑎). Now,
by assumption there is a permutation 𝜏 ∈ f ix𝐺(𝑆 ⧵ {𝑎}) such that 𝜏(𝑥) ≠ 𝑥. Let 𝑦 ∶= 𝜏(𝑥), with 𝑐 = 𝜏(𝑎) and 𝑑 = 𝜎−1𝜎′(𝑐).
Notice that from 𝑓(𝑎) = 𝑓(𝑏) we get 𝑓(𝑐) = 𝑓(𝑑). Let now 𝑒 ∈ 𝐴 be an atom with ground 𝑆 ∪ {𝑐} such that 𝑒 behaves like
𝑏 with respect to 𝑆 and like 𝑑 with respect to (𝑆 ⧵ {𝑎}) ∪ {𝑐}. This is possible by construction of the set of atoms since
𝑏 and 𝑑 behave in the same way with respect to 𝑆 ⧵ {𝑎}. It follows that there are permutations 𝜋𝑏 ∈ f ix𝐺(𝑆) and 𝜋𝑑 ∈

f ix𝐺((𝑆 ⧵ {𝑎}) ∪ {𝑐}) with 𝜋𝑏(𝑏) = 𝑒 and 𝜋𝑑(𝑑) = 𝑒. Let us now consider 𝑓(𝑒). On the one hand, since (𝑆 ⧵ {𝑎}) ∪ {𝑐} is a
support of 𝑦 = 𝑓(𝑑), we have 𝑦 = 𝜋𝑑(𝑓(𝑑)) = 𝑓(𝜋𝑑(𝑑)) = 𝑓(𝑒). On the other hand, since 𝑆 is a support of 𝑥 = 𝑓(𝑏), we
have 𝑥 = 𝜋𝑏(𝑓(𝑏)) = 𝑓(𝜋𝑏(𝑏)) = 𝑓(𝑒), contradicting the fact that 𝑥 ≠ 𝑦. □

3 FORWHICH 𝑛 IS 𝐌𝐎𝐃𝑚 AMODEL FOR RC𝑛?

The following result shows that for positive integers𝑚, 𝑛which satisfy a certain condition, the implicationRC𝑚 ⟹ RC𝑛

is not provable in 𝖹𝖥. Assuming the ternary Goldbach conjecture, it will turn out that all positive integers𝑚, 𝑛 satisfy this
condition, except when 𝑚 = 𝑛, or when 𝑚 = 2 and 𝑛 = 4.

Definition 3.1. Given 𝑛 ∈ 𝜔, a decomposition of 𝑛 is a finite sequence (𝑛𝑖)𝑖∈𝑘 with each 𝑛𝑖 ∈ 𝜔 ⧵ {1} so that 𝑛 =
∑

𝑖∈𝑘
𝑛𝑖 .

Definition 3.2. Given two natural numbers 𝑛 and𝑚, a decomposition (𝑛𝑖)𝑖∈𝑘 of 𝑛 is said to be beautiful for the pair (𝑚, 𝑛)

if, given any decomposition (𝑚𝑖)𝑖∈𝑘 of𝑚 of length 𝑘 such that for all 𝑖 ∈ 𝑘 we have𝑚𝑖 ≤ 𝑛𝑖 , then there is some 𝑗 ∈ 𝑘 with
gcd(𝑚𝑗, 𝑛𝑗) = 1.

In what follows, when we refer to a decomposition of some 𝑛 being beautiful, we mean that the decomposition is
beautiful for (𝑚, 𝑛). It will always be clear from the context to which pair (𝑚, 𝑛) we refer.

Proposition 3.3. Let 𝑚, 𝑛 ∈ 𝜔. If there is a decomposition of 𝑛 which is beautiful, then the implication RC𝑚 ⟹ RC𝑛

is not provable in 𝖹𝖥.
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Remark 3.4. The condition on 𝑚 and 𝑛 is somewhat similar to the condition given in Theorem 2.10 of Halbeisen and
Schumacher [2]. Let WOC−

𝑛 be the statement that every infinite, well-orderable family  of sets of size 𝑛 has an infinite
subset  ⊆  with a choice function. Then for every𝑚, 𝑛 ∈ 𝜔 ⧵ {0, 1}, the implication RC𝑚 ⟹ WOC−

𝑛 is provable in 𝖹𝖥

if an only if the following condition holds: Whenever we can write 𝑛 in the form

𝑛 =
∑
𝑖<𝑘

𝑎𝑖𝑝𝑖,

where 𝑝0, … , 𝑝𝑘−1 are prime numbers and 𝑎0, … , 𝑎𝑘−1 ∈ 𝜔 ⧵ {0}, then we find integers 𝑏0, … , 𝑏𝑘−1 ∈ 𝜔 with

𝑚 =
∑
𝑖<𝑘

𝑏𝑖𝑝𝑖.

Proof of Propostion 3.3. We show that inMOD𝑚, RC𝑛 fails. Assume towards a contradiction that RC𝑛 holds inMOD𝑚

and let 𝑆 be a support of a selection function 𝑓 on the 𝑛-element subsets of an infinite subset 𝑋 of the set of atoms 𝐴.
Given any finite model𝑁 of 𝖳𝑚 extending 𝑆, we can find a submodel of𝑋 ∪ 𝑆 isomoprhic to𝑁. Indeed, start by noticing

that, since 𝑆 is a support of 𝑓 and 𝑋 is the domain of 𝑓, we have that 𝑋 is symmetric. Then the claim follows directly from
the construction in Proposition 2.1, as atoms whose ground includes the support of 𝑋 ∪ 𝑆 can belong to 𝑋 ∪ 𝑆 and can
behave in arbitrarily chosen ways with respect to each other.
Our conclusion can hence follow from finding a model 𝑀 of 𝖳𝑚 which extends 𝑆 with |𝑀 ⧵ 𝑆| = 𝑛 and such that 𝑀

admits an auotmorphism 𝜎 which fixes pointwise 𝑆 and which does not have any other fixed point, since then 𝜎(𝑓(𝑀 ⧵

𝑆)) ≠ 𝑓(𝑀 ⧵ 𝑆) but 𝜎(𝑀 ⧵ 𝑆) = 𝑀 ⧵ 𝑆. We start with the following claim:

Claim 3.5. Given a cyclic permutation 𝜋 on some set 𝑃 of cardinality |𝑃| = 𝑞, if a non-trivial power 𝜋𝑟 of 𝜋 fixes a proper
subset 𝑃′ of 𝑃, then gcd(|𝑃′|, |𝑃|) > 1.

To prove the claim, notice that 𝜋𝑟 is a disjoint union of cycles of the same length 𝑙 =
𝑞

gcd(𝑞,𝑟)
. Consider the subgroup

of ⟨𝜋⟩ given by ⟨𝜋𝑟⟩. Then 𝑃′ is a disjoint union of orbits of the form Orb<𝜋𝑟>(𝑒) with 𝑒 ∈ 𝑃′, all of them with the same
cardinality 𝑠, with 𝑠 being a divisor of 𝑙 =

𝑞

gcd(𝑞,𝑟)
and hence of 𝑞, from which we deduce the claim.

Now, given a beautiful decomposition (𝑛𝑖)𝑖∈𝑘 of 𝑛, we want to show that we can find a model𝑀 of 𝖳𝑚, which extends 𝑆

with |𝑀 ⧵ 𝑆| = 𝑛 and such that it admits an automorphism 𝜎which fixes pointwise 𝑆 and acts on𝑀 ⧵ 𝑆 as a disjoint union
of𝑘 cycles, each of length𝑛𝑖 for 𝑖 ∈ 𝑘. This can be done as follows. Pick an𝑚-element subset𝑃 of𝑀 forwhich 𝖲𝖾𝗅(𝑃)has not
been defined yet. If 𝑃 ∩ 𝑆 ≠ ∅ then let 𝖲𝖾𝗅(𝑃) be any element in 𝑃 ∩ 𝑆. Otherwise, by our the assumptions, there is a cycle
𝐶𝑗 of length 𝑛𝑗 for some 𝑗 ∈ 𝑘 such that gcd(|𝑃 ∩ 𝐶𝑗|, |𝐶𝑗|) = 1. Define 𝖲𝖾𝗅(𝑃) as an arbitrarily fixed element of 𝑃 ∩ 𝐶𝑗 and,
for all permutations 𝜋 in the group generated by 𝜎, define 𝖲𝖾𝗅(𝜋(𝑃)) = 𝜋(𝖲𝖾𝗅(𝑃)). We need to argue that this is indeed well
defined, i.e. that for two permutations 𝜋, 𝜋′ ∈ ⟨𝜎⟩ we have that 𝜋(𝑃) = 𝜋′(𝑃) implies 𝜋(𝖲𝖾𝗅(𝑃)) = 𝜋′(𝖲𝖾𝗅(𝑃)). Problems
can arise only when 𝑃 ∩ 𝑆 = ∅, in which case we notice that 𝜋(𝑃) = 𝜋′(𝑃) implies 𝜋(𝑃 ∩ 𝐶𝑗) = 𝜋′(𝑃 ∩ 𝐶𝑗), which in turn
by the claim implies that 𝜋−1◦𝜋′ fixes 𝑃 ∩ 𝐶𝑗 pointwise, from which we deduce 𝜋(𝖲𝖾𝗅(𝑃)) = 𝜋′(𝖲𝖾𝗅(𝑃)). □

Proposition 3.3 allows us to immediately deduce the following results.

Corollary 3.6. If 𝑚 > 𝑛, then RC𝑚 does not imply RC𝑛.

Proof. The decomposition 𝑛 =
∑

𝑖∈1
𝑛𝑖 with 𝑛0 = 𝑛 is clearly beautiful, so we can directly apply Proposition 3.3. □

Corollary 3.7. If there is a prime 𝑝 for which 𝑝 ∣ 𝑛 but 𝑝 ∤ 𝑚, then RC𝑚 does not imply RC𝑛.

Proof. Given the assumption, the decomposition of 𝑛 given by 𝑛 =
∑

𝑖∈
𝑛

𝑝

𝑛𝑖 , where each 𝑛𝑖 = 𝑝, is beautiful, so we can

apply Proposition 3.3. □

Moreover, we can show the following:
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Theorem 3.8. For any positive integers𝑚 and 𝑛, the implication RC𝑚 ⟹ RC𝑛 is provable in 𝖹𝖥 only in the case when
𝑚 = 𝑛 or when 𝑚 = 2 and 𝑛 = 4.

The proof of Theorem 3.8 is given in the following results, where in the proofs we use two well-known number-
theoretical results: The first one is Bertrand’s postulate, which asserts that for every positive integer 𝑚 ≥ 2 there is a
prime 𝑝 with 𝑚 < 𝑝 < 2𝑚, and the second one is ternary Goldbach conjecture (assumed to be proven by Helfgott [4]),
which asserts that every odd integer 𝑛 > 5 is the sum of three primes.

Proposition 3.9. If 𝑚 is prime and 𝑛 ≠ 𝑚 with (𝑚, 𝑛) ≠ (2, 4), then the implication RC𝑚 ⟹ RC𝑛 is not provable in
𝖹𝖥.

Proof. Given Corollary 3.7, we can assume that 𝑛 = 𝑚𝑘 for some natural number 𝑘 > 1. Let 𝑝 be a prime such that 𝑚 <

𝑝 < 2𝑚, whose existence is guaranteed by Bertrand’s postulate. Then clearly 𝑚 ∤ 𝑛 − 𝑝, from which, considering that
because of parity reasons 𝑛 − 𝑝 ≠ 1, we get that the decomposition 𝑛 = 𝑝 + (𝑛 − 𝑝) is beautiful. □

Proposition 3.10. If 𝑛 is odd and 𝑚 ≠ 𝑛, then the implication RC𝑚 ⟹ RC𝑛 is not provable in 𝖹𝖥.

Proof. By the ternary Goldbach conjecture, let us write 𝑛 as sum of three primes 𝑛 = 𝑝0 + 𝑝1 + 𝑝2. Given Proposition 3.9,
we can assume that 𝑚 = 𝑝0 + 𝑝1, since otherwise the decomposition 𝑛 = 𝑝0 + 𝑝1 + 𝑝2 would be beautiful.
We first deal with the case in which 𝑝0 = 𝑝1 = 𝑝2 holds, for which we rename 𝑝 = 𝑝0. By hand we can exclude the case

𝑝 = 2, and now we want to show that the decomposition 𝑛 = 𝑛0 + 𝑛1 = (3𝑝 − 2) + 2 is beautiful. Notice that gcd(3𝑝 −

2, 2𝑝 − 2) ∈ {1, 𝑝}, from which we deduce that necessarily if𝑚 = 𝑚0 + 𝑚1 is a decomposition of𝑚 with𝑚0 ≤ 3𝑝 − 2 and
𝑚1 ≤ 2, then 𝑚1 = 0. To conclude this first case, it suffices to notice that, since 𝑝 is a prime grater than 2, gcd(3𝑝 − 2, 2𝑝)

necessarily equals 1.
We can now assume that it is not true that 𝑝0 = 𝑝1 = 𝑝2. Since 𝑛 is odd, 𝑝0 + 𝑝1 ∤ 𝑝2. If 𝑝2 ∤ 𝑝0 + 𝑝1, then the decom-

position 𝑛 = 𝑛 is actually beautiful. So, given 𝑝2 ∣ 𝑝0 + 𝑝1, without loss of generality let us assume that 𝑝2 < 𝑝0. By
𝑝2 ∣ 𝑝0 + 𝑝1 we deduce that 𝑝1 ≠ 𝑝2, and we now consider the decomposition 𝑛 = 𝑛0 + 𝑛1 = (𝑝1 + 𝑝2) + 𝑝0. We can’t
have 𝑚1 = 𝑝0 since gcd(𝑝1, 𝑝1 + 𝑝2) = 1. On the other hand, we can’t even have 𝑚1 = 0 since 𝑝0 + 𝑝1 > 𝑝1 + 𝑝2, which
proves that the assumptions of Proposition 3.3 are satisfied. □

Proposition 3.11. Let 𝑚 > 2 be an even natural number and 𝑘 ∈ 𝜔 such that 2𝑘 + 1 is prime. If 𝑛 = 𝑚 + 2𝑘, then the
implication RC𝑚 ⟹ RC𝑛 is not provable in 𝖹𝖥.

Proof. We consider the decomposition 𝑛 = 𝑛0 + 𝑛1 = (𝑚 − 1) + (2𝑘 + 1). It directly follows from the assumptions of the
proposition that in order to have a decomposition 𝑚 = 𝑚0 + 𝑚1 which disproves the fact that the above decomposi-
tion of 𝑛 is beautiful, since 𝑛0 < 𝑚, necessarily 𝑚1 = 2𝑘 + 1, from which we deduce 𝑚0 = 𝑚 − 2𝑘 − 1. This immediately
gives a contradiction in the case 2𝑘 + 1 > 𝑚, so let us assume 2𝑘 + 1 < 𝑚. We get again a contradiction by the fact that
gcd(𝑚0, 𝑛0) = gcd(𝑚 − 2𝑘 − 1, 𝑚 − 1) = gcd(2𝑘, 𝑚 − 1) = 1, where we used that 𝑚 is even. We can hence conclude that
the decomposition 𝑛 = (𝑚 − 1) + (2𝑘 + 1) is indeed beautiful. □

Proposition 3.12. Let𝑚 and 𝑛 be even natural numbers such that there is an odd prime 𝑝with𝑚 < 𝑝 < 𝑛 and 𝑛 > 𝑝 + 1.
Then the implication RC𝑚 ⟹ RC𝑛 is not provable in 𝖹𝖥.

Proof. If 𝑛 = 𝑝 + 3 or 𝑛 = 𝑝 + 5 the decomposition 𝑛 = 𝑝 + (𝑛 − 𝑝) is already beautiful. Otherwise, by the ternary
Goldbach conjecture, write 𝑛 − 𝑝 as sum of three primes 𝑛 − 𝑝 = 𝑝0 + 𝑝1 + 𝑝2. Consider now the decomposition 𝑛 =∑

𝑖∈4
𝑛𝑖 = 𝑝 + 𝑝0 + 𝑝1 + 𝑝2. In order towrite𝑚 =

∑
𝑖∈4

𝑚𝑖 , necessarily𝑚0 = 0. If 𝑛 − 𝑝 < 𝑚we can already conclude that
𝑛 = 𝑝 + 𝑝0 + 𝑝1 + 𝑝2 is a beautiful decomposition. Otherwise, we find ourselves in the assumptions of Proposition 3.10,
which again allows us to conclude that RC𝑚 does not imply RC𝑛. □

The following result deals with all the remaining cases and completes the proof of Theorem 3.8.
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Proposition 3.13. Let 𝑚 and 𝑛 be even natural numbers with 3 ≤
𝑛

2
≤ 𝑚 < 𝑛 such that if there is a prime 𝑝 with 𝑚 <

𝑝 < 𝑛, then 𝑝 = 𝑛 − 1. Then the implication RC𝑚 ⟹ RC𝑛 is not provable in 𝖹𝖥.

Proof. By Bertrand’s postulate, let 𝑝 be a prime with 𝑛

2
< 𝑝 < 𝑛. This implies by the assumption 𝑛

2
< 𝑝 < 𝑚 or 𝑝 = 𝑛 − 1.

If we are in the latter case, apply again Bertrand’s postulate to find a further prime 𝑛

2
− 1 < 𝑝′ < 𝑛 − 2 (notice that by

our assumption we have 2 ≤
𝑛

2
− 1). Since 𝑚 is not prime we necessarily have 𝑝′ ≠ 𝑚, which together with the present

assumptions makes us able to assume without loss of generality that 𝑛

2
< 𝑝 < 𝑚. Given that 𝑛 − 𝑚 is even, by Proposi-

tion 3.11 we can assume 𝑛 − 𝑚 > 4, which in turn implies 𝑛 − 𝑝 > 5. Since by the ternary Goldbach conjecture we can
write 𝑛 = 𝑝 + 𝑝0 + 𝑝1 + 𝑝2 with 𝑚 > 𝑝0 + 𝑝1 + 𝑝2, notice that by the fact that 𝑛 and 𝑚 are even, we can assume that
𝑚 − 𝑝 equals some odd prime 𝑝′, since otherwise the decomposition 𝑛 = 𝑝 + 𝑝0 + 𝑝1 + 𝑝2 would already be beautiful.
Now, either 𝑛 = 𝑝 + (𝑛 − 𝑝) is beautiful, or 𝑛 − 𝑝 is a multiple of 𝑝′. We distinguish two cases, namely when 𝑛 − 𝑝 is a
power of 𝑝′ and when it is not. In the second case, let 𝑝′′ be a prime distinct from 𝑝′ such that 𝑝′′ ∣ 𝑛 − 𝑝. The decom-
position of 𝑛 given by 𝑛 = 𝑛0 +

∑
𝑖∈

𝑛−𝑝

𝑝′′
𝑛𝑖 = 𝑝 +

∑
𝑖∈

𝑛−𝑚

𝑝′′
𝑝′′ is beautiful, as 𝑛 − 𝑝 < 𝑚 and hence if𝑚 = 𝑚0 +

∑
𝑖∈

𝑛−𝑚

𝑝′
𝑚𝑖

then 𝑚0 = 𝑝. For the last case, without loss of generality assume that 𝑝0 + 𝑝1 + 𝑝2 = 𝑝𝑘
0
for some natural number 𝑘 > 1.

If 𝑝0 = 𝑝1 = 𝑝2 = 3, we decompose 9 = 𝑛 − 𝑝 as 5 + 2 + 2, so we can assume 𝑝𝑘−1
0

− 2 ≠ 1. Now we get 𝑝2 ≠ 𝑝0, since
otherwise we would have 𝑝1 = 𝑝𝑘

0
− 2𝑝0 = 𝑝0(𝑝𝑘−1

0
− 2), which is a contradiction, and similarly we obtain 𝑝1 ≠ 𝑝0. We

finally assume wlog that 𝑝1 > 𝑝0, which allows us to conclude that the decomposition 𝑛 = 𝑝 + 𝑝1 + (𝑝0 + 𝑝2) is in this
case beautiful, concluding the proof. □

For the sake of completeness, we summarise the proof of our main theorem:

Proof of Theorem 3.8. Let 𝑚 and 𝑛 be two distinct positive integers.

𝖹𝖥 ⊢ RC𝑚 ⟹ RC𝑛

Cor. 3.4
⟹ 𝑚 ≤ 𝑛

Prp. 3.8
⟹ 𝑛 is even

Cor. 3.5
⟹ 𝑚 is even

Now, if 𝑚 and 𝑛 are both even, we have the following two cases:

𝑚 <
𝑛

2

Prp. 3.10
⟹ 𝖹𝖥 ⊬ RC𝑚 ⟹ RC𝑛

𝑚 ≥
𝑛

2
≥ 3

Prp. 3.11
⟹

Prp. 3.10
𝖹𝖥 ⊬ RC𝑚 ⟹ RC𝑛

Thus, by Fact 1.1, the implication RC𝑚 ⟹ RC𝑛 is provable in 𝖹𝖥 if and only if 𝑚 = 𝑛 or 𝑚 = 2 and 𝑛 = 4. □

Remark 3.14. The proof of the implicationRC2 ⟹ RC4 (Fact 1.1) is very similar to the proof of the implicationC2 ⟹

C4, where C𝑛 states that every family 𝑛-element sets has a choice function. Moreover, similar to the proof of C2 ∧ C3 ⟹

C6 one can proof the implication RC2 ∧ RC3 ⟹ RC6. So, it might be interesting to investigate which implications of the
form

RC𝑚1
∧ ⋯ ∧ RC𝑚𝑘

⟹ RC𝑛

are provable in 𝖹𝖥 and compare them with the corresponding implications for C𝑛’s. Since C4 ⟹ C2 but RC4 ⇏ RC2,
the conditions for the RC𝑛’s are clearly different from the conditions for the C𝑛’s (cf. Halbeisen and Tachtsis [3] for some
results in this direction).
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