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Abstract. We would like to build Abelian groups (or R-modules) which on

the one hand are quite free (say, ℵω+1-free) and on the other hand are com-

plicated in some suitable sense. We choose as our test problem having no
non-trivial homomorphism to Z (known classically for ℵ1-free, recently for ℵn-

free). We succeed to prove the existence of even ℵω1·n-free ones. This requires

building n-dimensional black boxes, which are quite free. This combinatorics
is of interest in its own right, and we believe it will be also useful for other pur-

poses. On the other hand, modulo suitable large cardinals, we prove that it is
consistent that every ℵω1·ω-free Abelian group has non-trivial homomorphisms

to Z.
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2 SAHARON SHELAH

§ 0. Introduction

§ 0(A). Answer to Daniel Kronberg. I hope you don’t go crazy. At least, not
as much as I do trying to decipher that file. Is there any chance you can help? I
have compiled quite a list in need of clarifying (first number is page in the proof,
number in parentheses is page in the pdf file you sent):

p.4(5), line 16–I cannot decypher.
— add after ”and each α”
kind of a

p.5(6), comment before ”, then”–I cannot decypher.
– add
are regular

p.8(10), lines 9,10—I believe there is some reply concerning my comment about
the braces, but I cannot get it.

– the and marked by yellow – no change needed
- the ”is I is a ∂-complete ideal, then” should be replaces by
} is

p.11(13)–Should we remove the comma and replace it with ”¡boldk,”? What is
the last symbol in the second comment?

– replace ” νη̄=Λx1
, n ∈ k”

by
νη̄ = Λx1,<k, n < ω

p.25(27)–I cannot decypher.
add after ” Hence as in earlier cases” add
(see 1.16(1)(C))

p.29(34), line -4–Which of the subscripts/superscripts are we to remove?
replace ”Jbd

∂

by
J

p.30(35), line -11–It seems as sentence should read ‘...is stronger covered by
”first” whereas...”. I have a hard time making sense.

–*– replace ”stronger ” by
covered by ”first””

line -10–I cannot decypher the citation in the replacement text.
– the citation is (in the notation you are using
[She13a,0.6(g),(g’)]

p.30A(36)–I cannot decypher.
–**- add
Let S• ∈ Îσ[λ] be stationary such that δ ∈ S• → µω|δ
and for δ ∈ S• we let ρδ ∈ σδ be increasing with limit δ .
Now let f ′δ ∈ σδ be such that i < ∂ ∧ j < σ → f ′δ(σi+ 1) = µfδ(i) + ρδ(j) .

p.32(38), last comment–Does it say ”and anyhow not used”? I do not see the
sense.

add ”is” after ”the proof” make sense to me- even if the reader doubt the proof
no harm done because we do not use it

p.43(52), last comment–I cannot decypher.
— add
so may write (∂, J,k, θ)

p.44(53), line -5–The word ”this” is underlined. Why?
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- ignore- do not underline

p.45(55), line -3–I cannot decypher the added text.
– add
but we elaborate

p.48(59), line 1–Should we replace ”...and...” by ”...be an...”?
– yes replace

p.49(60), line 6–With what should we replace the word ”hence”?
–replace by
better

p.54(66), line 11–I cannot decypher.
– add after ”R-ring”
closed under isomorphism

p.55(67), comment at top of page–I cannot decypher.
— replace the line starting with ”equivalently satisfies” by:
equivalently satisfies the condition inside 3.2(0)

p.57(69), line 15 (item (b))–With what should we replace the G?
by (twice in subscript)
A

p.59(71), line -8–I cannot decypher the two last words in the added text.
— the added text is
and ∂ is the critical cardinal

p.60(72), line 1–I cannot decypher the last word of the added text.
– it is
below
line 17–I cannot decypher the text added at the end of the line.
—add after ”sufficient condition for” add
the SCH, that is
line 18–What are the superscripts in the formula?
-*- the formula should be
∂ = cf(∂) = cf(µ) ∧ 2∂ < µ⇒ µ∂ = µ+

Hopefully that’s it.
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4 SAHARON SHELAH

§ 0(B). Abelian Groups.

We would like to determine the supremum of all λ for which we can prove TDCλ,
the trivial dual conjecture for λ, where:

(TDCλ) There is a λ-free Abelian group G such that Hom(G,Z) = 0.

Contrapositively, this is the minimal λ such that consistently we have NTDCλ, the
negation of TDCλ.

This seems the weakest algebraic statement of this kind; it is consistent that the
number is ∞, as if V = L then TDCλ holds for every λ (see e.g. [GT12]). On the
one hand, by Magidor-Shelah [MS94], NTDCλ is consistent for

λ = min{λ : λ = ℵλ}
(that is, the first fixed point cardinal), as that paper proves the consistency of
“λ-free ⇒ free”.

On the other hand, [TDCℵ1 has been known for a long time,] and recently
by [She07] we know that for λ = ℵn (for every n) there are examples using the
n-BB (n-dimensional black boxes) introduced there. Subsequently those were used
for more complicated algebraic relatives in Göbel-Shelah [GS09], Göbel-Shelah-
Strüngman [GSS13] and Göbel-Herden-Shelah [GHS14]. In [She13b] we have several
close approximations to proving in ZFC the existence for ℵω (that is, TDCℵω ) using
1-black boxes.

Here we finally fully prove that TDCℵω holds, and much more; λ = ℵω1·ω is the
first cardinal for which TDCλ cannot be proved in ZFC. The existence proof for
λ′ < λ is a major result here, relying on existence proof of quite free n-black boxes
(in §1) which use results on pcf (see [She13a]). For complementary consistency
results, we start with the universe forced in [MS94] and then we force with a ccc
forcing notion making “MA + 2ℵ0 large,” but we have to work to show the desired
result.

Of course, we can get better results (µ+-free) when µ ∈ Cθ (see Definition 0.2)
is so-called ‘1-solvable,’ or Υ < 2µ = 2<Υ < 2Υ.

Note a point which complicates our work relative to previous ones: the amount of
freeness (i.e. the κ such that we demand κ-free) and the cardinality of the structure
are markedly different. In [She13b] this point is manifested when we construct, say,
G of cardinality λ which is µ+-free where µ ∈ Cℵ0

or µ ∈ Cℵ1
and λ = 2µ or

min{λ : 2λ > 2µ}. The “distance” is even larger in [She07].
An interesting point here is that for many non-structure problems we naturally

end up with two incomparable proofs. One is when we have a µ+-free F ⊆ ∂µ of
cardinality λ, λ as above. In this case the amount of freeness is large. In the other,
we use the black box from Theorem 1.26. But we may like to use more sophisticated
black boxes: say, start with λ` and µ` (for ` ≤ k), a black box x as in Theorem
1.26, and combine it with [She05]. The quotients G/Gδ+1 for δ a limit ordinal are
close to being λ+

k -free, replacing ‘free’ by direct sums of small subgroups.
Recall from [She22, §3] : if we are given BB approximating models with universe,

e.g. κ2 by “guesses of cardinality κ1”, and usually models κ2 = κκ1
2 then we can

construct models of cardinality κ2 quite freely except the “corrections” toward
avoiding, e.g. undesirable endomorphisms, i.e. for each approximation of such
endomorphisms given by the BB is seen as a “task” how to avoid that in the end
there will be an endomorphism extending the one given by the approximation.
The “price” is that we make the construction not free, but between the various
approximations there is little interaction. This will hopefully help in [S+a], which
follows [She08] to use ∂ > ℵ0 and here to try to sort out the complicated cases like
End(G) ∼= R. Maybe we can get a neater proof.
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ABELIAN GROUPS, PCF AND BLACK BOXES 5

In [She75b], [She75c] we suggested that combinatorial proofs from [She78, Ch.VIII],
[She90, Ch.VIII], should be useful for proving the existence of many non-isomorphic
structures, as well as rigid and indecomposable ones. The most successful case
were black boxes applied to Abelian groups and modules first applied in [She84a],
[She84b]. That is:

(A) For separable Abelian p-groups G, proving the existence of ones of cardi-
nality λ = λℵ0 with only so-called small endomorphisms. ([She84a])

(B) Let R be a ring whose additive group R+ is cotorsion-free; i.e. R+ is
reduced and has no subgroups isomorphic to Z/pZ or to the p-adic integers.
For λ = λℵ0 > |R| there is an abelian group G of cardinality λ whose
endomorphism ring is isomorphic to R, and as an R-module it is ℵ1-free.
([She84b, Th.0.1, pg.40])

We can relax the demands on R+ and may require that G extends a suitable
group G0 such that R is realized as End(G) modulo a suitable ideal of “small”
endomorphisms.

(C) Let R be a ring whose additive group is the completion of a direct sum
of copies of the p-adic integers. If λℵ0 ≥ |R| then there exists a separable
Abelian p-group G with a so-called basic subgroup of cardinality λ and
R = End(G)/Ends(G). As usual we get End(G) = Ends(G) ⊕ R [She84b,
Th.0.2, pg.41].

On previous history of those algebraic problems see [EM02] and [GT12]. Quite a
few works using black boxes follow, starting with Corner-Göbel [CG85], see again
[EM02], [GT12]. On Black Boxes in set theory with weak versions of choice see
[She16, §3A], with no choice [She16, §3B], and for k-dimensional [S+b] will hopefully
be [useful / available].

On further applications of those black boxes continuing the present work, mainly
representation of a ring R and the endomorphism ring of a quite free Abelian group,
see [Sheb].

Discussion 0.1. 1) Note that usually, the known constructions were either for
λ-free R-module of cardinality λ using a non-reflecting S ⊆ Sλℵ0

with diamond or

ℵ1-free of some cardinality λ (mainly λ = (µℵ0)+ but also in some other cases)
many times using a black box (see [She22]) or “the elevator” (see [GT12]). In the
former we use induction on α < λ and each α has some kind of “one task”.

That is, using black boxes in the nice versions, we have for each δ ∈ S a perfect
set of pairwise isomorphic tasks.

To deal with getting an ℵn-free Abelian group G with Hom(G,Z) = 0, the n-
dimensional black boxes actually constructed and used in [She07] were products of
black boxes from [She22]; each black box separately is only ℵ1-free but the product
of k gives ℵk-freeness. Here things are more complicated.

2) Here cardinality and freeness differ.

3) Note that the versions of freeness of BB in [She13b] and here are not the same.

§ 0(C). Notation.

Recall the following: 1

1 On pp, see [She94] (but the reader can just use 0.3 below).
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6 SAHARON SHELAH

Definition 0.2. Let C = {µ : µ strong limit singular and pp(µ) =+ 2µ}
Cκ = {µ ∈ C : cf(µ) = κ}.

Claim 0.3.

(a) µ ∈ C if µ is strong limit singular of uncountable cofinality.

(b) If µ = iδ > cf(µ) and δ = ω1 (or just cf(δ) > ℵ0), then µ ∈ Ccf(µ) and for
a club (a closed unbounded subset) of α < δ we have iα ∈ C.

Proof. Clause (a) holds by [She94, Ch.II,§2] and clause (b) by [She94, Ch.IX,§5].
�0.3

Explanation 0.4. 1) A reader, particularly one with algebraic background, may
wonder how the ideals defined in Definition 0.5 below are used in the algebraic
construction. For an ideal J on a set S we may try to find an Abelian group G1

extending the free Abelian group G0 =
⊕
{Zxs : s ∈ S} such that the quotient

G1/
⊕
{Zs : s ∈ S1} is free for every S1 ∈ J . In particular, we would like to have

some h0 ∈ Hom(G0,Z) which cannot be extended to a homomorphism from G1 to
Z. Copies of such tuples (S, J,G1, G0, h0) are used as “the building block” in the
constructions, so finding such examples is crucial; see §2 and more in [Sheb].

2) Concerning Observation 0.6, note that the product J1 × J2 is not symmetric
(even up to isomorphism). E.g. if ∂ < κ are regular then

J∂ × Jκ =
{
A ⊆ ∂ × κ : for some i < ∂, j < κ we have A ⊆ (i× κ) ∪ (j × ∂)

}
,

but Jκ × J∂ has no such representation.
[Don’t i and j both have to be < ∂? Or should that second term be

(∂ × j)?]

Definition 0.5. 1) For a set S of ordinals with no last member, let Jbd
S be the

ideal consisting of the bounded subsets of S.

2) If J` is an ideal on S` for ` = 1, 2, then J1× J2 is the ideal on S1×S2 consisting
of the S ⊆ S1 × S2 such that{

s1 ∈ S1 : {s2 ∈ S2 : (s1, s2) ∈ S} /∈ J2

}
belongs to J1.

3) If δ1, δ2 are limit ordinals, J` is an ideal on δ`, and δ1 · δ2 = δ3 then

J1 ∗ J2
..=
{
{δ1 · i+ j : i < δ2, j < δ1, and (j, i) ∈ A} : A ∈ J1 × J2

}
.

4) If δ1, δ2 are limit ordinals, J` is an ideal on δ` for ` = 1, 2, and δ1 · δ2 = δ3, then

J1 � J2
..=
{
{δ1 · i+ j : i < δ2, j < δ1, and (i, j) ∈ A} : A ∈ J2 × J1

}
.

[Isn’t this LITERALLY identical to J1 ∗ J2?]

[Whichever one you keep, you’ll need to change the last clause to A ⊆
J1 × J2. Also, δ3 is not used anywhere in either definition.]

Observation 0.6. If ∂ ≥ κ are regular cardinals then Jbd
∂ × Jbd

κ is isomorphic to
Jbd
∂ ∗ Jbd

κ which include in Jbd
∂ � Jbd

κ which is isomorphic to Jbd
κ × Jbd

∂ .

Proof. Should be clear, but we elaborate on the first equivalence.
Why is J ′ = Jbd

∂ × Jbd
κ isomorphic to J ′′ = Jbd

∂ ∗ Jbd
κ ?

Note that J ′ is an ideal on ∂×κ and J ′′ is an ideal on ∂ ·κ. We define a function
π : ∂ × κ→ ∂ · κ as follows:

(∗) (i, j) 7→ ∂ · j + i.
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ABELIAN GROUPS, PCF AND BLACK BOXES 7

So π is a one-to-one function from ∂ × κ onto ∂ · κ by the rules of ordinal division.
It suffices to prove that A ∈ J ′ ⇔ π′′(A) ∈ J ′′ for any A ⊆ ∂ × κ.
Fix A ⊆ ∂ × κ, and consider the four statements below:

•1 A ∈ J ′

•2
{
s1 ∈ ∂ : {s2 ∈ κ : (s1, s2) ∈ A} /∈ Jbd

κ

}
∈ Jbd

∂

•3
{
i < ∂ : {j < κ : ∂j + i ∈ π′′(A)} /∈ Jbd

κ

}
∈ Jbd

∂

•4 π′′(A) ∈ J ′′.

•1 ⇔ •2 by the definition of J ′, •2 ⇔ •3 by the choice of π, and •3 ⇔ •4 by the
definition of J ′′. Hence •1 ⇔ •4, and we are done. �0.6

Definition 0.7. 1) We say F ⊆ SX is (θ, J)-free when2 J is an ideal on S and for
every F ′ ⊆ F of cardinality < θ there is a sequence 〈wη : η ∈ F ′〉 such that

η ∈ F ′ ⇒ wη ∈ J
and

η1 6= η2 ∈ F ′ ∧ s ∈ S \ (wη1
∪ wη2

)⇒ η1(s) 6= η2(s).

2) We say F ⊆ SX is [θ, J ]-free when J is an ideal on S and for every F ′ ⊆ F of
cardinality < θ there is a list 〈ηα : α < α∗〉 of F ′ such that if α < α∗ then the set

wα ..=
{
s ∈ S : ηα(s) ∈ {ηβ(s) : β < α}

}
belongs to J .

3) We omit J and write θ-free (or (θ)-free) when J = Jbd
S .

4) We say µ is 1-solvable when µ is singular strong limit and there is a µ+-free
family F ⊆ cf(µ)µ of cardinality 2µ.

5) We say µ is (θ, 1)-solvable when above we weaken “µ+-free” to “θ-free”.

6) We say F ⊆ SX is weakly ordinary when each η ∈ F is a one-to-one function.
We say F ⊆ γOrd is ordinary when each η ∈ F is an increasing function.

Claim 0.8. Assume θ > ∂ and ∂ is regular, J is an ideal on ∂ extending [∂]<∂ ,
F ⊆ ∂Ord, and3

• η 6= ν ∈ F ⇒
∣∣{i < ∂ : η(i) ∈ rang(ν)}

∣∣ < ∂.

1) The set F is (θ, J)-free iff F is [θ, J ]-free.

2) If every η ∈ F is one-to-one, then we can add

“ηα(s) /∈ {ηβ(t) : β < α, t ∈ S}”
in Definition 0.7(2).

Remark 0.9. 1) We may consider only the case i 6= j ⇒ η(i) 6= ν(j) in 0.7(1),
1.2(6), 1.11(1).

2) Compare with [She94], [She13b].

3) Thanks to 0.8, the difference between (θ, J)-free and [θ, J ]-free is not serious.
For k-c.p. x see Definition 1.5; there we use only the latter version so we do not
write [θ, J ].

2 E.g. in [She94], this version is used. Sometimes we even demand

α < α∗ ⇒
{
s ∈ S : ηα(s) ∈ {ηβ(t) : β < α, t ∈ I}

}
∈ J.

But in the main case “J is a θ-complete filter on θ,” the versions in 0.7(1),(2) are equivalent (see

1.16).
3 We can replace “< ∂” by “∈ J ′” when J ′ ⊆ J is a ∂-complete ideal.

Paper Sh:1028, version 2024-10-10. See https://shelah.logic.at/papers/1028/ for possible updates.



8 SAHARON SHELAH

Proof. 1) It is enough to prove for every F ⊆ ∂Ord of cardinality < θ, F is
(θ, J)-free iff F is [θ, J ]-free.

First, if F is [θ, J ]-free, then there is a sequence 〈ηα : α < α∗〉 enumerating F
as in Definition 0.7(2); i.e.

α < α∗ ⇒ w1
α

..=
{
i < ∂ : ηα(i) ∈ {ηβ(i) : β < α}

}
∈ J.

Define wη by η = ηα ⇒ wη ..= w1
α; easily 〈wη : η ∈ F 〉 is as required in Definition

0.7(1).
Second, if F is (θ, J)-free, then there is 〈wη : η ∈ F 〉 which is as required in

Definition 0.7(1).
Let 〈η1

α : α < α∗〉 list F , and for each α we define uα,n by induction on n as
follows:

(∗)1
α (a) uα,0 ..= {α}

(b) uα,n+1
..=

uα,n ∪
{
β < α∗ : for some i ∈ ∂ \ wβ we have ηβ(i) ∈ {ηγ(i) : γ ∈ uα,n}

}
.

Now

(∗)2
α |uα,n| ≤ ∂ and uα,n ⊆ α∗.

[Why? Trivially, uα,n ⊆ α∗. Also |uα,0| = 1 ≤ ∂, and if |uα,n| ≤ ∂ then

|uα,n+1| ≤ |uα,n|+
∑
i<∂

∑
γ∈uα,n

∣∣∣{β < α∗ : i /∈ wβ ∧ ηβ(i) = ηγ(i)
}∣∣∣

= |uα,n|+
∑
i<∂

∑
γ∈uα,n

1

≤ ∂ + ∂ · ∂ · 1 = ∂

and the inductive step holds.]

We define uα by induction on α < α∗ as follows:

uα ..=
⋃
n
uα,n \

⋃
β<α

uβ ,

so 〈uα : α < α∗〉 is a partition of α∗ to sets each of cardinality ≤ ∂, so we can let
〈β∂α+i : i < iα ≤ ∂〉 list uα. Let

U ..=
{
∂α+ i : α < α∗, i < iα, and β∂α+i /∈

⋃
γ<α

uγ
}
,

so {βγ : γ ∈ U } lists α∗ with no repetitions and easily 〈ηβζ : ζ ∈ U 〉 is a list as
required in Definition 0.7(2). That is, let β ..= β∂α+i = β(γα + i) for i < iα. So{

i < ∂ : ηβ(j) ∈ {ηγ(j) : γ ∈ U ∩ β}
}

= w2
β ∪

⋃
k<i

w2
β,k,

where
w2
β

..=
{
j < ∂ : ηβ(j) ∈ {ηγ(j) : γ ∈ U ∩ β∂,α}

}
and

w2
β,k

..=
{
j < ∂ : ηβ(j) = η∂α+k(j)

}
.

Now each of those sets belong to J .

[Why? w2
β by the choice of the uγ,n-s and the uγ-s; w2

β,k as it is included in

wηβ(∂α+i)
.]

So if J is a ∂-complete ideal we are done. If not, then by the bullet in the
assumption of the claim,

(∀k < i)
[
|w2
β,k| < ∂

]
.
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ABELIAN GROUPS, PCF AND BLACK BOXES 9

So recalling that ∂ is regular,
⋃
k<i

w2
β,k has cardinality < ∂ and hence belongs to J ,

so as J is an ideal we are done.
Pedantically, 〈η′γ : γ < otp(U )〉 is such a list when we define η′γ by η′otp(ζ∩U )

..=

ηβζ for γ < otp(U ).

2) Similarly to the ⇐ implication in the proof of 0.8(1), except that (∗)1
α(b) is

changed to:

(b)′ uα,n+1
..=

uα,n ∪
{
β < α∗ : for some i ∈ ∂ \ wβ , ηβ(i) = {ηγ(j) : γ ∈ uα,n, j < ∂}

}
.

�0.8

Question 0.10. 1) If µ is strong limit and ℵ0 = cf(µ) < µ (but not necessarily
µ ∈ C), can we get the freeness results of [She13a]?

2) In the cases we have can we strengthen the χ-BB by having F : Λx → χ and
demand ηm(i) ∈ F (η̄ � (m,< i))?

2A) Is this preserved by products?
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10 SAHARON SHELAH

§ 1. Black Boxes

We generalize the k-dimensional black box from [She07] (where we dealt with
the special case when ` < k ⇒ ∂` = ℵ0) because this seems natural for Abelian
groups. The black boxes before that paper were for k = 1.

But here, for Abelian groups, the most interesting cases are when

{∂` : ` < k} ⊆ {ℵ0,ℵ1}.

In the cases we prove existence, the k-dimensional black box is the product of black
boxes (i.e. the ones for k = 1).

The main result is Theorem 1.26 telling us that there are k-dimensional black
boxes which are quite free.

The central notion here is of the combinatorial parameters. Those objects (x)
consist of the relevant finitely many cardinals (〈∂` : ` < k〉), sets (〈S` : ` < k〉), and
a family (Λ) of sequences 〈η` : ` < k〉 with η` a sequence of length ∂` of members
of S`. Such objects are used in the construction of Abelian groups G. The point is
that on the one hand, the relevant (algebraic) freeness of the Abelian group G is
deduced from (set-theoretic) freeness of x (i.e. of Λ). And on the other hand, e.g.
Hom(G,Z) = 0 is deduced by using the x having a black box (which is used in the
construction). (See more in 1.4.)

Convention 1.1. 1) ∂̄ will denote a sequence 〈∂` : ` < k〉 of regular cardinals (or
just limit ordinals) of length k ≥ 1 and then ∂(`) = ∂` (but note that k = k − 1
was used in [She07]). A major case is where ∂̄ is constant; i.e.

∧̀
[∂` = ∂] for some

∂.

2) Let x,y, z denote combinatorial parameters; see Definition 1.5 below.

Notation 1.2. 0) Here S = 〈S` : ` < k〉 and ∂̄ = 〈∂` = ∂(`) : ` < k〉.

1) Let S
[∂̄] ..=

∏
`<k

∂`(S`) and S
[∂̄,u] ..=

∏
`∈u

∂`S` for u ⊆ {0, . . . ,k− 1}.

If each S` is a set of ordinals let S
〈∂̄〉 ..=

{
η̄ ∈ S[∂̄]

: each η` is increasing
}

, and

similarly for S
〈∂̄,u〉

.

2) If η̄ ∈ S[∂̄]
, m < k, and i < ∂m then4

η̄ � (m, i) = η̄ �x (m, i)

is the sequence 〈η′` : ` < k〉, where

η′`
..=

{
η` if ` < k ∧ ` 6= m

η` � {i} if ` = m.

This is close to, but not the same as in,5 [She07].
Also, for w ⊆ ∂m, η̄ � (m,=w) is defined as 〈η′` : ` < k〉, where

η′`
..=

{
η` if ` < k ∧ ` 6= m

η` � w if ` = m.

Let η̄ � (m) ..= 〈η` : ` 6= m, ` < k〉.
Note that η̄ � (m,= i) 6= η̄ � (m, i) for i ∈ (0, ∂m).

4 It is sometimes natural to replace “i < ∂`” by “i a subset of ∂` from some family P` and
η′` = η` � i when ` = m;” say, using Jbd

ℵ1
∗ Jbd
ℵ1

as in [She13b]. In [She07] this version was used.

5 But if we use a tree like Λ ⊆ S
[∂̄]

(see 1.2(6)) the difference is small; what we use there is
called here η̄ � (m,=i).
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3) If Λ ⊆ S[∂̄]
, m < k, and i < ∂m then

Λ �x (m, i) ..= {η̄ � (m, i) : η̄ ∈ Λ}.
Λ �x (η,=w) is defined similarly.

4) If Λ ⊆ S[∂̄]
, m < k, and i ≤ ∂m then

Λ �x (m,< i) ..=
⋃
i1<i

Λ � (m, i1).

5) For u ⊆ {0, . . . ,k− 1},

Λx,∈u ..=
⋃
m∈u

⋃
i<∂m

Λx � (m, i).

We may write “< m” instead of “∈ m” when u = {0, . . . ,m− 1}, and let
Λx,m

..= Λx,∈{m}.

6) We say Λ ⊆ S[∂̄]
is tree-like when

η̄, ν̄ ∈ Λ ∧ η̄ � (m, i) = ν̄ � (m, j) ⇒ ηm � i = νm � j

(so in particular, it implies i = j).

7) We say Λ ⊆ S〈∂̄〉 is normal when

η̄, ν̄ ∈ Λ ∧m < k ∧ i, j < ∂m ∧ ηm(i) = νm(j) ⇒ i = j

(hence each νm is one-to-one; this follows from being tree-like).

We now define the standard x in Definition 1.3 below, as it is more transparent
than the general case (in 1.5). However, we will not use it because the ZFC-
existence results are not standard (see the explanation after Definition 1.3). The
main difference is that in the general (i.e. not necessarily standard) version, we have
the extra parameter J`, an ideal on ∂`.

Definition 1.3. 1) We say x is a standard ∂̄-c.p. (combinatorial ∂̄-parameter)
when

x = (k, ∂̄, S,Λ) = (kx, ∂̄x, Sx,Λx)

satisfies:

(a) k ∈ {1, 2, . . .} and let k = kx ..= k − 1. (This is to fit the notation in
[She07].)

[Can I just say k < ω?]

(b) ∂̄ = 〈∂` : ` < k〉 is a sequence of regular cardinals, so ∂` = ∂x,`.

(c) S = 〈S` : ` < k〉, with S` a set of ordinals (so S` = Sx,`).

(d) Λ ⊆ S[∂̄]
=
∏
`<k

∂`(S`) (See 1.2(1).)

2) If ` < k ⇒ ∂` = ∂ we may write ∂ instead of ∂̄ in (k, ∂̄, S,Λ), and may say
‘combinatorial (∂,k)-parameter.’ If ` < k⇒ ∂` = ℵ0 we may omit ∂̄ and write “x
is a combinatorial k-parameter.” If ` < k ⇒ S` = S we may write S instead of S.
Also, we may write k(x) for kx.

3) We say x (or Λ) is ordinary when (each S` is a set of ordinals and)

η̄ ∈ Λ⇒ each η` is increasing.

We say x (or Λ) is weakly ordinary when

η̄ ∈ Λ ∧m < g̀(η̄)⇒ ηm is one-to-one.
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12 SAHARON SHELAH

We say x is disjoint when 〈Sx,m : m < k〉 is a sequence of pairwise disjoint sets.
We say x is ordinarily full when it is ordinary and

Λx = {〈η` : ` < k〉 : η` ∈ ∂`(S`) is increasing for ` < k}.
Similarly for weakly ordinary.

4) We say y is a permutation of x when for some permutation π of {0, . . . ,k− 1}
we have

m < k ⇒ ∂x,m = ∂y,π(m) ∧ Sx,m = Sy,π(m)

and
Λy =

{
〈ηπ(m) : m < k〉 : 〈ηm : m < k〉 ∈ Λx

}
.

5) We say π is an isomorphism from x onto y when:

(a) ky = kx (Call it k.)

(b) π = 〈πm : m ≤ k〉
(c) πk is a permutation of {0, . . . ,k− 1}.
(d) ∂x,m = ∂y,πk(m) for m < k.

(e) πm is a one-to-one function from Sx,m onto Sy,πk(m) for m < k.

(f) 〈νm : m < k〉 ∈ Λy iff for some 〈ηm : m < k〉 ∈ Λx we have νπk(m) =
〈πm(ηm(i)) : i < ∂x,m〉.

Discussion 1.4. It may be helpful to the reader to indicate how such x helps
to construct (e.g.) Abelian groups. For simplicity each ∂` is ℵ0 (this suffices for
constructing an ℵω·n-free G, which already is new).

First, let 〈xη̄ : η̄ ∈ Λx � (m, i) for some m and i〉 freely generate an Abelian
group G0 and for such η̄ ∈ Λx we add elements like

yη̄,n ..=
∑
i≥n

∑
m<kx

i!

n!

(
xη̄�(m,i) + aη̄,mxνη̄

)
[Do you really want i ≥ n?]

for some νη̄ ∈ Λx,<k, n < ω, and aη̄,m ∈ Z, getting G1 ⊇ G0. So we have

yη̄,n − (n+1)yη̄,n+1 =
∑
m<kx

xη̄�(m,i) + aη̄,nxνη̄ .

Now on the one hand we would like G1 to be θ-free, and on the other hand we
would like it to (e.g.) have no non-zero homomorphism into Z. For the second task
we need a BB (Black Box ) property: that is, for each possible νη̄ to have for each
η̄ ∈ Λ, a homomorphism

hη̄ :
⊕
m<k
i<ω

Zxη̄�(m,i) ⊕ Zxνη̄ → Z

such that {hη̄ : η̄ ∈ Λ} is dense6 and choose the aη̄,n-s to “defeat” hη̄ — i.e. to
ensure no h ∈ Hom(G1,Z) extends hη̄.

Concerning the first task, we like to ensure x is θ-free: meaning that for any
Λ ⊆ Λx of cardinality < θ, we can list its members as 〈η̄α : α < α∗〉 such that for
every α, for some m and i, we have

j ≥ i⇒ η̄α � (m, j) /∈ {η̄β � (m, j) : β < α}
(see Definition 1.7(3)).

In the existence proofs the novel main point is getting enough freeness relying
on the pcf theory. I.e. in §1 we prove the existence of a suitable c.p. x.

6 Or see Definition 1.7(1); it is called αη̄ there.
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Definition 1.5. 1) We say x is a ∂̄-c.p. (combinatorial ∂̄-parameter) when

x = (k, ∂̄, S,Λ, J̄) = (kx, ∂̄x, Sx,Λx, J̄x)

satisfies:

(a) ∂̄ = 〈∂m : m < k〉, a sequence of limit ordinals.

(b) J̄ = 〈Jm : m < k〉
(c) Jm is an ideal on ∂m.

(In the standard case Jm ..= {w ⊆ ∂` : w is bounded}.)
(d) S = 〈Sm : m < k〉

(Sm is a set of ordinals if not said otherwise.)

(e) Λ ⊆ S[∂̄]
.

2) We adopt the conventions and definitions in 1.3(2)-(5).

Convention 1.6. 1) If x is clear from the context we may write k for k(x), k for
k(x) and S,Λ, J̄ instead of kx, kx, Sx,Λx, J̄x, respectively.

2) If not said otherwise, x is weakly ordinary (see 1.3(3)).

Definition 1.7. Assume x is a ∂̄-c.p.

1) We say x has [the] (χ,k, 1)-Black Box [or χ-pre-Black Box] [property] when
some α is a (χ,k, 1)-Black Box for x [or (x, χ)-pre-Black Box]. This, in turn, means:

(a) χ = 〈χm : m < kx〉 is a sequence of cardinals,

(b) α = 〈αη̄ : η̄ ∈ Λx〉
(c) αη̄ = 〈αη̄,m,i : m < kx, i < ∂m〉, and αη̄,m,i < χm.

(d) If hm : Λx,m → χm for m < kx (recalling 1.2(5)) then for some η̄ ∈ Λx we
have

m < kx ∧ i < ∂m ⇒ hm(η̄ � 〈m, i〉) = αη̄,m,i.

2) For Λ ⊆ Λx, we define x � Λ naturally as (kx, ∂̄x, S̄x,Λ, J̄).

3) We may write α as b, a function with domain{
(η̄,m, i) : η̄ ∈ Λx, m < k, i < ∂m

}
such that bη̄(m, i) = b(η̄,m, i) = αη̄,m,i. We may replace χ by χ if the sequence is

constant, or by C = 〈Cm : m < k〉 when |Cm| = χm and rang(hm) ⊆ Cm. We may
replace x by Λ = Λx (so say α is a (Λ, χ)-pre-black box).

4) Omitting the “pre” in part (1) means that there is a partition Λ̄ = 〈Λα : α < |Λx|〉
of Λx such that each x � Λα has χ-pre-black box and some 〈ν̄α : α < |Λx|〉 witnesses
it. By this we mean:

(a) {ν̄α : α < |Λx|} = Λx

(b) Letting µ be maximal such that (∀m < k)[2<µ ≤ χm], we have

α < β < α+ µ⇒ ν̄α = ν̄β .

(c) If α ≤ β < |Λx|, (α, β) 6= (0, 0), and η̄ ∈ Λβ , then

να,k−1 < ηk−1 mod Jx,k−1.

5) We may write BB instead of Black Box.

6) We say x essentially has a χ-black box when some (Λ̄,n) witnesses it, which
means:7

7 See the proof of 2.10(2).
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14 SAHARON SHELAH

(a) Λ̄ = 〈Λα : α < |Λx|〉 is a sequence of pairwise disjoint subsets of Λx.

(b) x � Λα has a χ-pre-black-box.

(c) n = 〈ν̄α : α < |Λx|〉 [lists the members of Λx.]

(d) If µ ..= sup
{
µ : 2µ < min{|Sx,`| : ` < kx}

}
then

α < β < α+ µ⇒ ν̄α = ν̄β

and
α ≤ β < λ ∧ η̄ ∈ Λxα ⇒ να,k−1 <Jx,` ηk−1.

(We can use a variant of this, but this suffices presently.)

We shall use freely

Observation 1.8. If (A) then (B):

(A) x is a ∂̄-c.p. and (Λ̄,n) witnesses that x essentially has χ-black box.

(B) There is y = x � Λ for some Λ ⊆ Λx which has χ-black box.

Proof. We choose Ωn ⊆ Λx by induction on n as follows.

(∗) (a) If n = 0 then Ω0
..= Λ0 ∪ {ν̄0}.

(b) If n = m+ 1 then

Ωn = Ωm ∪
⋃{

Λα : α < λ = |Λx| and ν̄α ∈ Ωm
}
.

Now x �
⋃
n

Ωn is as required. �1.8

Observation 1.9. 1) In Definition 1.7(4) we may use Λx as the index set of Λ̄
instead of |Λx|.
2) If x is a ∂̄-c.p., χ = 〈χ` : ` < kx〉, and |Λx| = max{χ` : ` < kx} then x has a
χ-black box iff x has a χ-pre-black box.

Remark 1.10. Concerning the variants below, our aim is to have “x is (θ)-free” —
but to get it we use the other versions.

Definition 1.11. 1) For Λ∗ ⊆ S
[∂̄]

, we say “x is (θ, u)-free over Λ∗” when8 x is
weakly ordinary, u ⊆ {0, . . . ,kx − 1}, and for every Λ ⊆ Λx \ Λ∗ of cardinality
< θ there is a list 〈η̄α : α < α∗〉 of Λ such that for every α, for some m ∈ u and
w ∈ Jx,m, we9 have

ν̄ ∈ {η̄β : β < α} ∪ Λ∗ ∧ ν̄ � (m) = η̄α � (m)

∧ j < ∂x,m ∧ i ∈ ∂x,m \ w ⇒ νm(j) 6= ηα,m(i).

2) If θ > |Λx| we may (in part (1)) write (∞, u)-free or u-free; we may omit “over
Λ∗” when Λ∗ = ∅.

3) If u = {0, . . . ,k− 1} we may omit it.

4) Suppose we are given cardinals θ1 ≤ θ2, combinatorial ∂̄-parameter x and Λ∗
(usually ⊆ Λx) and u ⊆ {0, . . . ,kx − 1}.

We say x is (θ2, θ1, u, k)-free over Λ∗ when:

(A) θ2 ≥ θ1 ≥ 1

8 So if kx = 1 then “x is (θ, {0})-free” has closer meaing to “{η : 〈η〉 ∈ Λx} is [θ, Jx,0]-free”

than to (θ, Jx,0)-free (see Definition 0.8).
9 If Λx is normal, we can restrict ourselves to i = j and this is the usual case.
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(B) 1 ≤ k ≤ kx (If k = 1 we may omit it.)

(C) u ⊆ {0, . . . ,kx − 1} has ≥ k members.

(D) For every Λ ⊆ Λx \Λ∗ of cardinality < θ2 there is a witness (Λ̄, g, h̄), which
means
(a) Λ̄ = 〈Λγ : γ < γ∗〉 is a partition of Λ to sets each of cardinality < θ1

(so γ∗ is an ordinal < θ2).

(b) g : γ∗ → [u]k; when k = 1 we usually use g′ : γ∗ → u where

g(γ) = {g′(γ)}
for γ < γ∗, or even use g′′ : Λ→ [u]1 where

η̄ ∈ Λγ ⇒ g′′(η̄) ..= g′(γ).

Occasionally (when the meaning of η̄β is clear) we may write g(η̄β) or
g′(η̄β) instead of g(β) and g′(β) (so we consider Λx as the domain of
g and g′, instead of γ∗).

(c) η̄, ν̄ ∈ Λγ ∧m ∈ kx \ g(γ) ⇒ ηm = νm

(d) h̄ = 〈hm : m ∈ u〉
(e) hm : Λ→ Jm

(Really, all that matters is

hm �
{
η̄ ∈ Λ : γ < γ∗ ∧ η̄ ∈ Λγ ⇒ m ∈ g(γ)

}
.

Here again, we may write hm(β) instead of hm(η̄β).)

(f) If η̄ ∈ Λβ , m ∈ g(β),

ν̄ ∈ Λ∗ ∪
⋃
α<β

Λα,

and ν̄ � (m,=∅) = η̄ � (m,=∅) then

i ∈ ∂m \ hm(η̄)⇒ ηm(i) 6= νm(i).

5) In part (4), if θ2 > |Λx| we may write (∞, θ1, u, k)-free; we may omit Λ∗ if
Λ∗ = ∅ and if k = 1 we may omit k.

6) We say x is (θ, u)-free over Λ∗, respecting Λ̄, when:10

Λ̄ = 〈Λν̄ : ν̄ ∈ Λx〉, Λν̄ ⊆ Λx, and for every Λ ⊆ Λx \ Λ∗ of cardinality < θ there
is a listing 〈η̄α : α < α∗〉 of Λ such that:

•1 If η̄α ∈ Λν̄ (so ν̄ ∈ Λx) then ν̄ ∈ {η̄β : β < α} ∪ Λ∗.

•2 For every α < α∗, for some m ∈ u and w ∈ Jx,m, we have

ν̄ ∈ {η̄β : β < α} ∪ Λ∗ ∧ ν̄ � (m) = η̄α � m

∧ j ∈ ∂x,m \ w ∧ i < ∂x,m ⇒ νm(i) 6= ηm(j).

7) For x, θ1, θ2,Λ∗, u as in Definition 1.11(4) and a sequence Λ̄∗ = 〈Λ∗ρ̄ : ρ̄ ∈ Λx〉
of subsets of Λx, we say x is (θ2, θ1, u, k)-free over Λ∗ respecting Λ̄∗ when clauses
(A)-(D) of Definition 1.11(4) hold, and we add

(D) (g) If η̄ ∈ Λα and η̄ ∈ Λ∗ρ̄, then ρ̄ ∈ Λ∗ ∪
⋃
β<α

Λβ .

Claim 1.12. Assume x is a ∂̄-c.p. and u ⊆ {0, . . . ,kx − 1} is not empty.

1) x is (θ2, 2, u, 1)-free over Λ∗ iff x is (θ2, u)-free over Λ∗, [where / and] θ2 ≥ 2.

2) If ∂ > max{∂` : ` < kx}, x is (θ, ∂, u)-free over Λ∗, and x is (∂, 2, {`})-free for
each ` ∈ u, then x is (θ, 2, u)-free over Λ∗ (equivalently, (θ, u)-free over Λ∗).

10 So we may write k instead of u = {` : ` < k}, and θ-free instead of (θ, {` : ` < k})-[free].
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Proof. Should be clear, but we elaborate.

1) It is enough to deal with the case |Λx \ Λ∗| < θ2. First, assume θ2 ≥ 2 and x is
(θ2, u)-free over Λ∗. Let 〈η̄α : α < α∗〉 listing Λx \ Λ∗ be as in Definition 1.11(1).
Let Λα = {η̄α} for α < α∗, and define g′ : α∗ → u by setting g′(α) as the minimal
m ∈ u such that for some w ∈ Jm, the condition in Definition 1.11(1) holds.

[I don’t see how this depends at all on α.]

By the choice of 〈η̄α : α < α∗〉 witnessing that x is (θ2, u)-free over Λ∗, g
′ is

well defined. Let g : α∗ → [u]1 be defined by g(α) ..= {g′(α)}. Also, we define
hm : α∗ → Jm for m ∈ u such that if α < α∗ and m = g′(α) then hm(α) is any
w ∈ Jm such that the condition in Definition 1.11(1) holds.

[Same.]
Now clearly in Definition 1.11(4), clause (A) holds (letting θ1 = 2 as θ2 ≥ 2 = θ1),

clause (B) holds as k = 1 ∈ [1,kx], and clause (C) is obvious. We shall check clauses
(D)(a)-(f), hence finishing proving the “if” implication.

Let γ∗ = α∗ and Λ̄ = 〈Λα : α < α∗〉. This definition takes care of (D)(a) and
the above definition of g and g′ ensures (D)(b). Clause (D)(c) is immediate since
each Λα is a singleton. Clauses (D)(d),(e) follow from the definition of the hm-s.
Finally, clause (D)(f) follows from Definition 1.11(1).

Second, assume x is (θ2, 2, u, 1)-free and let (Λ̄, g, h̄) witness this (so θ1 = 2).
Note that θ2 ≥ 2, since θ1 = 2 and θ2 ≥ θ1 by Definition 1.11(4)(A). So

Λ̄ = 〈Λα : α < α∗〉, h̄ = 〈hm : m ∈ u〉, and g : α∗ → [u]1,

so for there is some function g′ : α∗ → u such that α < α∗ ⇒ g(α) = {g′(α)}. As
|Λα| < θ2 = 2 we have |Λα| ≤ 1. Without loss of generality

∧
α

[Λα 6= ∅], hence there

is a unique η̄α ∈ Λx \ Λ∗ such that Λα = {η̄α}. So 〈η̄α : α < α∗〉 lists Λx \ Λ∗, and
it suffices to check that the condition in Definition 1.11(1) holds for every α < α∗.
We choose m ..= g′(α), so m ∈ u, and we choose w = hm(α), so indeed w ∈ Jm.
The condition there holds for m and w by clause (D)(f) of Definition 1.11(4) as
Λα = {η̄α} and β < α⇒ Λβ = {η̄β}.
2) As x is (θ, ∂, u)-free over Λ∗, there is a triple (Λ̄∗, g∗, h̄∗) witnessing it as in
Definition 1.11(4), and let Λ̄∗ = 〈Λ∗α : α < α∗〉 and h̄∗ = 〈h∗m : m ∈ u〉. For each
` ∈ u and α < α∗ we know that x is (∂, 2, {`})-free and Λ∗α is a subset of Λx \ Λ∗
of cardinality < ∂ hence there is a triple (Λ̄α, gα, h̄α) witnessing it.

Let Λ̄α = 〈Λα,β : β < βα〉 (and so |Λα,β | < 2) and without loss of generality
Λα,β 6= ∅, so let Λα,β = {η̄α,β} and11 gα(β) = {g′α(β)} [for some] g′α : βα → u,
and let h̄α = 〈hα,m : m ∈ u〉.

Let γα ..=
∑
ι<α

βι for α < α∗, so clearly 〈γα : α ≤ α∗〉 is increasing continuous

and γ0 = 0. Let γ∗ ..= γα∗ ; we define η̄γ as follows for γ < γ∗. If γ = γα + β
with β < βα, then we let η̄γ ..= η̄α,β . Also let g′ : γ∗ → [u]1 be defined so that
g′ � [γα, γα+1) is constantly {g∗(α)}. Let Λ̄ = 〈Λγ : γ < γ∗〉 with Λγ ..= {η̄γ}, and
let h̄ = 〈hm : m ∈ u〉 with hm : γ∗ → Jm defined by

hm(γα + β) ..= hα,m(β)

if α < α∗ and β < βα. So it is enough to check that (Λ̄, g′, h̄) witnesses that Λx is
(θ, 2, u)-free over Λ∗. (E.g. why clause (f) of Definition 1.11(4)(D) holds.)

Let η̄ ∈ Λγ , m ∈ g′(γ), and ν̄ ∈ Λ∗ ∪
⋃
α<γ

Λα. So η̄ = η̄γ and one of the following

cases occur, letting γ = γα + β with β < βα.

Case 1: ν̄ ∈ Λ∗ ∪
⋃
ι<α

Λ∗ι .

11 As k = 1; see the end of 1.11(5).
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Use “(Λ̄∗, g∗, h̄∗) witnesses that Λx is (θ, ∂, u)-free over Λ∗.”

Case 2: ν̄ ∈ Λ∗α.
Use “(Λ̄α, gα, h̄α) witnesses that Λα is (∂, 2, {`})-free” for ` = g∗(α). �1.12

Definition 1.13. We say (x, Λ̄) witnesses BB3
k(λ,Θ, χ, ∂̄) when:

(a) x is a ∂̄-c.p. with |Λx| = λ and k = kx (i.e. k = g̀(∂̄)).

(b) Λ̄ = 〈Λν̄ : ν̄ ∈ Λx〉 is a sequence12 of pairwise disjoint subsets of Λx.

(c) x � Λν̄ has χ-pre-black box for every ν̄ ∈ Λx.

(d) Θ is a collection of cardinals and pairs of cardinals.

(e) If θ ∈ Θ then x is (θ,k)-free respecting Λ̄ (see 1.11(6)), which means that
in the list 〈η̄α : α < α∗〉 in Definition 1.11(1), we have

α > 0 ∧ η̄α ∈ Λν̄ ⇒ ν̄ ∈ {η̄β : β < α}.
(f) If (θ2, θ1) ∈ Θ then x is (θ2, θ1,k, 1)-free, respecting Λ̄( see 1.11(7)).

Remark 1.14. Note that in Definition 1.13, we necessarily have∑
`<k

χ` ≤ |Λx|.

Clearly,

Claim 1.15. Assume µ is strong limit > cf(µ) = ∂, F ⊆ ∂µ has cardinality
λ = 2µ, and F is θ-free (i.e. (θ, Jbd

∂ )-free); moreover, it is [θ, Jbd
∂ ]-free and weakly

ordinary (see 0.7(1),(2),(6)).
Then there is a 〈∂〉-c.p. x with Λx = F which is θ-free and has the λ-BB (i.e.

(〈λ〉, 1, 1)-BB).

Proof. The point is that the set of functions from ∂>µ to λ has cardinality λ = |F |;
see more in [She13b, 2.2=Ld.6]. �1.15

Claim 1.16. 1) Assume x is a k-c.p., θ2 ≥ θ1 = cf(θ1) > max{∂x,` : ` < kx}, and
u ⊆ {0, . . . ,kx − 1} with k ..= |u| ≥ 1.

Then (A)⇔ (B)⇔ (C), where:

(A) x is (θ2, θ1, u, k)-free over Λ∗.

(B) As in Definition 1.11(4), omitting clause (D)(c). In this case we call
(Λ̄, g, h̄) an almost witness.

(C) For every Λ ⊆ Λx \ Λ∗ of cardinality < θ2 there is a weak witness (g, h̄).
This means we have clauses (d),(e) of 1.11(4)(D) and
(b)′ g : Λ→ [u]k

(f)′ If η̄1 ∈ Λ and m ∈ u, then for all but < θ1 of the sequences η̄2 ∈ Λ, we
have
• If η̄1 6= η̄2, m ∈ g(η̄1) ∩ g(η̄2),

η̄1 � (m,=∅) = η̄2 � (m,=∅),

and i ∈ ∂m \
(
hm(η̄1) ∪ hm(η̄2)

)
then η1,m(i) 6= η2,m(i).

(g)′ If η̄1 ∈ Λ and η̄2 ∈ Λ∗ then • of (f)′ holds, demanding only m ∈ g(η̄1).

2) If in addition x is normal (see 1.2(7)), we can add:

(D) Like (C), but we replace the bullet inside (f)′ (and similarly in (g)′) by

12 In [She07] we use Λx,<k as and index set, which if k = 1 may have smaller cardinality. So

far this is not a significant difference.
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• If η̄1 6= η̄2 ∈ Λ, η̄1 � (m,=∅) = η̄2 � (m,∅), m ∈ g(η̄1) ∩ g(η̄2), and
i, j ∈ ∂m \

(
hm(η̄1) ∪ hm(η̄2)

)
then η1,m(i) 6= η2,m(j).

3) If in addition Λ∗ ⊆ Λx and each Jx,` is σ-complete, then{
Λ ⊆ Λx \ Λ∗ : Λ is (θ2, θ1, u, k)-free over Λ∗

}
is a σ-complete ideal on Λx \ Λ∗.

Proof. 1) (A)⇒ (B):

Obvious by the formulation of (B).

(B)⇒ (C):

Let Λ ⊆ Λx \Λ∗ have cardinality < θ2; by clause (B) we can choose (Λ̄, g, h̄), an
almost witness (for Λ). As |u| = k, necessarily g is constantly u, so let g′ : γ∗ → [u]k

be constantly u. Hence it is enough to prove that (g′, h̄) is a weak witness; clearly
clause (b)′ of (C) holds. So by the phrasing of (B) and (C) it is enough to prove
clauses (f)′,(g)′ of (C). But clause (g)′ follows from the assumptions of (B); i.e.
Definition 1.11(4)(D)(f). Now for clause (f)′, let Λ̄ = 〈Λγ : γ < γ∗〉 and assume
η̄ι ∈ Λβι for ι = 1, 2, β1 6= β2 < γ∗, and m ∈ u, and it suffices to prove • of (f)′.

[Why? As |Λβι | < θ1.]

Clearly m ∈ g′(β1) ∩ g′(β2). So assuming

η̄1 � (m,=∅) = η̄2 � (m,=∅)

and i ∈ ∂m \
(
hm(η̄1) ∪ hm(η̄2)

)
, we should prove that η1,m(i) 6= η2,n(i). By

symmetry, β1 < β2 without loss of generality, and we apply clause (f)′ of (B)
with η̄1, η̄2, β1, β2,m here standing for ν̄, η̄, β,m there, and get η1,m(i) 6= η2,m(i) as
promised.

(C)⇒ (A):

So assume that Λ ⊆ Λx \Λ∗ has cardinality < θ2 and let (g, h̄) be a weak witness
for it;13 again, necessarily g is constantly u. So for m ∈ u, i < ∂m, and every η̄ ∈ Λ,
let

Ω1
i,m,η̄

..=
{
ν̄ ∈ Λ : ν̄ � (m,=∅) = η̄ � (m,=∅), i ∈ ∂m \ hm(ν̄), ν̄m(i) = η̄m(i)

}
.

By the choice of (g, h̄) and the definition of Ω1
i,m,η̄ we have:

•1 If ν̄, ρ̄ ∈ Ω1
i,m,η̄ then ν̄ � (m,=∅) = ρ̄ � (m,=∅) and η̄m(i) = ν̄m(i) and

i ∈ ∂m \
(
hm(ν̄) ∪ hm(ρ̄)

)
.

Hence applying (C)(f)′ to any η̄1 ∈ Ωi,m,η̄, we have

•2 |Ω1
i,m,η̄| < θ1.

Let14

Ω1
η̄

..= {η̄} ∪
⋃
m∈u

⋃
i<∂m

Ω1
i,m,η̄,

so recalling the claim assumption θ1 = cf(θ1) >
∑
m
∂m, clearly

•3 If η̄ ∈ Λ then Ω1
η̄ has cardinality < θ1.

By transitivity of equality,

•4 If ν̄ ∈ Ω1
η̄ then m < k ∧m /∈ u ⇒ ν̄m = η̄m.

13 Actually, we have no further use of |Λ| < θ2.
14 Actually, the ‘{η̄}’ is redundant.
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For η̄ ∈ Λ let Ω2
η̄ be the minimal subset Ω ⊆ Λ such that η̄ ∈ Ω and

ν̄ ∈ Ω⇒ Ω1
ν̄ ⊆ Ω.

So recalling θ1 is regular, necessarily |Ω2
η̄| < θ1.

Let 〈η̄∗γ : γ < γ∗〉 list Λ. We now define

Λ1
γ

..=
⋃
β≤γ

Ω2
η̄∗β

for γ < γ∗, so {η̄∗γ} ⊆ Λ1
γ ⊆ Λ and clearly

⋃
γ<γ∗

Λ1
γ = Λ.

Lastly, let Λ2
γ

..= Λ1
γ \

⋃
β<γ

Λ1
β , so obviously Λ̄2 = 〈Λ2

γ : γ < γ∗〉 is a partition of

Λ. Let g∗ : γ∗ → [u]k be constantly u and h̄ = 〈hm : m ∈ u〉, and we shall show
that the triple (Λ̄2, g∗, h̄) is as required in 1.11(4)(D).

Now clauses (4)(D)(a)-(e) hold by our choices, noting that by •4 we have

η̄, ν̄ ∈ Λ2
γ ∧m < k ∧m /∈ u⇒ η̄m = ν̄m.

As for clause (D)(f), let η̄ ∈ Λβ , m ∈ g(β), α < β and ν̄ ∈ Λ2
α,

ν̄ � (m,=∅) = η̄ � (m,=∅),

and i ∈ ∂m \ hm(η̄); we should prove that ν̄m(i) 6= η̄m(i). But if not, then

η̄ ∈ Ω1
ν̄ ⊆ Ω2

η̄∗α
⊆
⋃
ι≤α

Λ2
ι ,

a contradiction.

2) Similarly.

3) By part (1), as we can use clause (C) as our definition. So assume

Λ =
⋃
i<i∗

Λi ⊆ Λx \ Λ∗,

i∗ < σ, hi,m : Λ → Jm, and (gi, h̄i) weakly witnesses Λi. As |u| = k, necessarily
g0

..=
⋃
i

gi is the constant function from Λ into {u}, and let hm : Λ → P(∂m) be

defined by

hm(η̄) ..=
⋃{

hi,m(η̄) : i < i∗ and η̄ ∈ Λi
}
.

Now hm is injective into Jm, as Jm is a σ-complete ideal and i∗ < σ. Lastly, clearly(
g0, 〈hm : m ∈ u〉

)
is a weak witness for Λ, so we are done. �1.16

Remark 1.17. Why the demand |u| = k in the claim?
Our problem is: in (A) we promise that the function g gives (for one fixed γ)

the same u for all η̄ ∈ Λγ , whereas in clause (C) this is not the case — in fact, it
is not even well-defined. It is natural then to divide Λγ into ≤ 2k cases according
to the value of g, but then it is not clear that clause (f) of (A) holds.

[This seems to be referring to 1.11(4)(D)(f), which is an assumption
of clause (B) (but not (A)).]

To avoid this we assume |u| = k. Maybe 1.16(3) helps but this is not crucial.

Definition 1.18. If g̀(∂̄ι) = kι and xι is a combinatorial ∂̄ι-parameter for ι =
1, 2, 3 then we say x3

..= x1 × x2 when:

(a) ∂̄3 = ∂̄1ˆ∂̄2 (Hence k3 = k1 + k2.)

(b) J̄x3 = J̄x1ˆJ̄x2
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(c) Sx3
is Sx1

ˆSx2
; that is,

Sx3,`
..=

{
Sx1,` if ` < k1

Sx2,`−k1 if ` ≥ k1.

(d) Λx3
is the set of η̄ ∈

∏
`<k3

∂3(`)(Sx3,`) such that for some ν̄ ∈ Λx1
and

ρ̄ ∈ Λx2 , we have:
• If ` < k1 then η` = ν`.

• If ` ≥ k1 then η` = ρ`−k1
.

Explanation 1.19. What is the role of the next claim? We shall prove, for (∂, J) =
(ℵ0, J

bd
ω ) and (ℵ1, J

bd
ℵ1
×Jbd
ℵ0

), that for many strong limit singular µ there is a 1-c.p.
x such that (∂x,0, Jx,0) = (∂, J), x has 2µ-BB, and x is quite free. But we do not
know how to get one which is even just ℵω+1-free, whereas such freeness is needed in
§2! However, using long enough finite products we can get enough freeness. More
fully, first by 1.20, the product gives a combinatorial parameter of the expected
length (the sum) and weak ordinariness, ordinariness and normality are preserved.

Second, by 1.21 the products have the appropriate (pre)-black-box if each prod-
uct has one.

Third, in 1.21-1.24 we get that [if ] each x` satisfies enough cases of (θ2, θ1, u)-
freeness conditions then their product satisfies more.

Fourth, in Theorem 1.26 we prove the existence of x` (for ` < k) as required,
relying on [She13a].

Lastly, in Conclusion 1.28 we get the desired conclusion used in §2.

Claim 1.20. 1) If xι is a combinatorial ∂̄ι-parameter for ι = 1, 2 then there is one
and only one combinatorial parameter x3 such that x1 × x2 = x3.

2) The product in Definition 1.18 is associative.

3) If x1 × x2 = x3 then x2 × x1 is a permutation of x3 (see Definition 1.3(4)).

4) If in Definition 1.18 x1,x2 are [weakly] ordinary and/or normal (see 1.3(3),
1.2(7)) then so is x1 × x2.

Proof. Straightforward. �1.20

Claim 1.21. 1) x3 has χ3-pre-black box when:

(a) xι is a combinatorial ∂̄ι-parameter for ι = 1, 2, 3.

(b) x1 × x2 = x3

(c) xι has χι-pre-black box for ι = 1, 2.

(d) χ3 = χ1ˆχ2

(e) If ` < g̀(∂̄2) then χ2,` = (χ2,`)
|Λx1

|.

2) Moreover, x3 has a χ3-black box when, in addition,

(c)+ x2 has a χ2-black box and χ2,n = (χ2,n)|Λx1
|.

Proof. 1) For each m < kx2
let F

m
= 〈Fmα : α < χ2,m〉 list the [injective] functions

Λx1 → χ2,m. By clause (e) of the assumption, such sequence exists. Let α
1

be a

χ1-pre-black box for x1 and let α
2

be a χ2-pre-black box for x2; they exist by clause
(c) of the assumption.

Lastly, we define

α =
〈
αη̄ = 〈αη̄,m,i : m < kx3

, i < ∂m〉 : η̄ ∈ Λx3

〉
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as follows: for η̄ ∈ Λx3
, m < kx3

, and i < ∂x3,m we let

• If m < kx1
then αη̄,m,i ..= α1

η̄�k(x1),m,i.

• If m = kx1
+ ` and ` < kx2

, then αη̄,m,i ..= Fm
α2
ν̄,`,i

(η̄ � kx1
), where

ν̄ ..= η̄ � [kx1 ,kx3)

(i.e. ν̄ = 〈ηk(x1)+n : n < kx2
〉).

Clearly α is of the right form, but is it really a χ3-pre-black box? So assume
hm : Λx3,m → χ3,m for m < kx3

, and we should find η̄ ∈ Λx3
as in Definition

1.7(1). Now, first we define h2
m : Λx2,m → χ2,m for m < kx2 as follows: h2

m(ν̄) is
the unique α < χ2,m such that

(∀ρ̄ ∈ Λx1)
[
hk(x1)+m(ρ̄ˆν̄) = Fmα (ρ̄)

]
;

this is possible by the choice of F
m

above. As α
2

is a χ2-pre-black box, clearly
there is ν̄ ∈ Λx2

such that

m < kx2
∧ i < ∂x2,m ⇒ h2

m(ν̄ � (m, i)) = α2
ν̄,m,i.

Fix a sequence ν̄ ∈ Λx2 as in the previous paragraph. Now for m < kx1 we define
h1
m : Λx1,m → χ1,m by h1

m(ρ̄) ..= hm(ρ̄ˆν̄). It is well defined as by our assumptions
on hm it has domain Λx1,m, and as ν̄ ∈ Λx2

clearly ρ̄ˆν̄ ∈ Λx3,m by the definition

of x3. As α
1

is a χ1-pre-black box for x1 there is ρ̄ ∈ Λx1
such that

m < kx1 ∧ i < ∂x1,m ⇒ h1
m(ρ̄) = α1

ρ̄,m,i.

We shall show that η̄ ..= ρ̄ˆν̄ is as required.
First, η̄ ∈ Λx3

because x3 = x1 × x2, ρ̄ ∈ Λx1
, and ν̄ ∈ Λx2

.
Second, if m < kx1

and i < ∂x3,m = ∂x1,m then

(∗)1 (a) hm(η̄ � (m, i)) = h1
m(ρ̄ � (m, i)) by the choices of η̄ and h1

m.

(b) h1
m(ρ̄ � (m, i)) = α1

ρ̄,m,i by the choice of ρ̄.

(c) α1
ρ̄,m,i = αη̄,m,i by the choice of αη̄,m,i.

So together, hm(η̄ � (m, i)) = αη̄,m,i.

Third, if m ∈ [kx1
,kx3

) ∧ i < ∂x3,n then m = kx1
+ ` for some ` < kx2

, and use
the choices of αη̄,m,i and of ν̄.

2) We have to deal with the black box case. So recalling Definition 1.7(4) we are
assuming:

(∗)2.1 (a) Λ̄2 =
〈
Λ2
γ : γ < |Λx2 |

〉
is a partition of Λx2 .

(b) If γ < |Λx2
| then x2 � Λ2

γ has a χ2-pre-black box.

Now repeating the proof above, note:

(c) 〈ν̄α : α < |Λx2
|〉 lists Λx as required in Definition 1.7(4).

We can choose α
2

such that not only it is a χ2-pre-black box but also

α
2
� Λ2

γ
..= 〈α2

ν̄ : ν̄ ∈ Λ2
γ〉

is a χ2-pre-black box for each γ < |Λx2
|.

Having defined α = 〈αη̄ : η̄ ∈ Λx〉, note that:

(∗)2.2 |Λx1
| ≤ χx2,0 (by clause (e) of the claim) and χx2,0 ≤ |Λx2

| (by 1.14) and
|Λx2
| is infinite (otherwise the χ2-black box fails), hence

|Λx3
| = |Λx2

| × |Λx2
| = |Λx2

|.
(∗)2.3 Letting Λγ ..= Λx1

×Λ2
γ , the sequence 〈Λγ : γ < |Λx3

|〉 is a partition of Λx3
.
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Mainly, we need to prove that if γ < |Λx3
| then α � Λγ is a χ-pre-black box.

This proof is exactly as in the proof of the first part.
Lastly, we choose 〈ν̄α : α < |Λx3 |〉 as required. Toward this, let

µι ..= max
{
µ : (∀` < kι)[2

<µ ≤ χι,`]
}
.

Note that necessarily |Λx2
| = |Λx3

| and µ1 ≤ |Λx1
| < µ2. Now choose

〈ν̄1
α : α < |Λx1 |〉

to be an enumeration of Λx1
such that β ∈ [α, α+ µ1)⇒ ν̄1

α = ν̄1
β .

To finish, define 〈ν̄α : α < |Λx3
|〉 by:

• If γ = |Λx1
| · α+ β and β < |Λx1

|, then ν̄γ = ν̄1
βˆν̄2

γ .

Recalling γ2 ∈ (γ1, γ1 + µ2)⇒ ν̄2
γ1

= ν̄2
γ2

, we are easily done. �1.21

The following definition is somewhat similar to [She07], but with different nota-
tion than before.

Definition 1.22. Let x = (k, ∂̄, S,Λ, J̄) be disjoint, for notational transparency
(see 1.3(3)).

0) For u ⊆ {0, . . . ,k− 1}, let u⊥ ..= {` < k : ` /∈ u}.
1) For U ⊆

⋃
`<k

∂`(Sx,`), let

ΛU = Λx,U = Λx(U ) = {η̄ ∈ Λx : η` ∈ U for every ` < k}.

2) For U ⊆
⋃
`<k

∂`(Sx,`) and u ⊆ {0, . . . ,k− 1}, let:

(a) addx(u) ..=
{
u ⊆

⋃
`∈u

∂`(Sx,`) : |u ∩ ∂`(Sx,`)| = 1 for ` ∈ u
}

.

(Note that u ∈ addx(u)⇒ |u| = |u|.)
(b) For u ∈ addx(u), let

ΛU ,u = Λx(U ,u) ..=
{
η̄ ∈ Λx : for some m ∈ u, for all ` < k, we have

` 6= m⇒ η` ∈ (U ∪ u) ∩ ∂`(Sx,`)

and ` = m⇒ η` ∈ U ∩ ∂`(Sx,`)
}
.

(c) Λ∗x(U ,u) ..= Λx(U ∪ u) \ Λx(U ,u).

This set is interesting (i.e. non-empty) only when U ∩ u = ∅, and then it
is equal to{

η̄ ∈ Λx : ` ∈ u⇒ η` ∈ u and ` ∈ k \ u⇒ η` ∈ U
}
.

3) For non-empty u ⊆ {0, . . . ,k − 1}, we say x is θ-(u, k)-free when: if U ⊆⋃
`<k

∂`(Sx,`) has cardinality < θ and u ∈ addx(u⊥) is disjoint to U , then Λx(U ∪u)

is (∞, 2, u, k)-free over Λx(U ,u), recalling 1.11(4),(5).

3A) If θ > |Λx|, we may write ∞ instead of θ in part (3).

4) For non-empty u ⊆ {0, . . . ,k − 1}, we say x is (θ2, θ1)-(u, k)-free when: if
U ⊆

⋃
`<k

∂`(Sx,`) and u ∈ addx(u⊥) is disjoint to U , then Λx(U ∪u) is (θ2, θ1, u, k)-

free over Λx(U ,u) (recalling 1.11(4)).
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Observation 1.23. 1) In Definition 1.22(3), the conclusion is equivalent to
“Λ∗x(U ,u) ..= Λx(U ∪ u) \ Λx(U ,u) is (∞, 2, u, k)-free”.

2) Similarly in 1.22(4); that is, assume u ⊆ {0, . . . ,k − 1}, U ⊆
⋃
`<k

∂`(Sx,`), and

u ∈ add(u⊥) is disjoint to U , then: Λx(U ∪ u) is (θ2, θ1, u, k)-free over Λx(U ,u)
iff Λ∗x(U ,u) ..= Λx(U ∪ u) \ Λx(U ,u) is (θ2, θ1, u, k)-free.

3) If x is θ-(u, k)-free then x is (θ, u, k)-free; see Definitions 1.22(3), 1.11(4),(5),
respectively.

4) If x is (θ2, θ1)-(u, k)-free then x is (θ2, θ1, u, k)-free; see Definitions 1.22(4) and
1.11(4), respectively.

Proof. 1) As η̄ ∈ Λx(U ∪ u) \ Λx(U ,u) and ν̄ ∈ Λx(U ,u), as u ∈ addx(u⊥), it
follows that (∃m ∈ u⊥)[ηm 6= νm].

2) Similarly.

3) Why? The assumption tells us that for every ρ ∈
∏
`∈u⊥

S`, the set

Λρ ..= {ν ∈ Λ : ν � u⊥ = ρ}

is (θ, u)-free. Clearly this will suffice.

4) Similarly. �1.23

The gain in the following theorem is that [when] taking products of combina-
torial parameters, we gain new cases of freeness.

Theorem 1.24 (The Freeness Theorem). If � below holds, then x is (θm, θ
+
0 )-

(u, 1)-free. If in addition every x` is θ+
0 -free, then x is (θm, u)-free.

� (a) x` is a combinatorial 〈∂`〉-parameter for ` < k.

(b) x = x0 × . . .× xk−1

(c) u ⊆ {0, . . . ,k− 1} and m = |u| > 0 (hence m ≤ k).

(d) θ0 < θ1 < . . . < θm are regular, except possibly θ0.

(e) ∂x` ≤ θ0 for ` < k.

(f) xk is (θm+1, θ
+
m)-free when k ∈ u ∧m < m.

Remark 1.25. Concerning the sequence of θ-s in 1.24�, we can use θ` ..= θ+`
0 ; in

this case clause (f) always holds.

Proof. Without loss of generality x is disjoint (i.e. the sets S` ..= Sx,` are pairwise
disjoint for ` < k). We prove the claim by induction on m (so fix k, but we vary
u and the θm-s). Let u ∈ addx(u⊥) and U ⊆

⋃
`<k

∂`(S`) has cardinality < θm and

we shall prove that Λ∗x(U ,u) is (∞, θ+
0 , u, 1)-free. Clearly this suffices for the first

phrase and the second follows recalling 1.12(2), 1.23(2).

Case 1: m = 1.
As |u| = 1, let u ..= {`}; hence η̄ 7→ η` is a one-to-one function from Λ∗x(U ,u)

onto U`
..= U ∩ Λx` . We know that x` is (θ1, θ

+
0 )-free and |U`| < θ1, hence

there is a partition 〈U`,α : α < α∗〉 of U` to sets each of cardinality ≤ θ0 (where
α∗ ≤ |U`| < θ1). h` : U` → Jx` is such that

α < β < α∗ ∧ η ∈ U`,α ∧ ν ∈ U`,β ∧ ∂` > i /∈ h`(ν)⇒ η(i) 6= ν(i).

For α < α∗, let Λα ..= {η̄ ∈ Λ∗x(U ,u) : η` ∈ U`,α}. Clearly 〈Λα : α < α∗〉 is a
partition of Λ∗x(U ,u) to sets each of cardinality ≤ θ0. Let the function g from α∗
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to [u]1 = {{`}} be defined by g(α) = {`}. Clearly the partition 〈Λα : α < α∗〉 and
the functions g, h` witness that Λ∗x(U ,u) is (θm, θ

+
0 )-free, as required.

Case 2: m > 1.
Let m ..= m − 1. As m > 1, clearly m is ≥ 1. So for k ∈ u, the c.p. xk is

(|U |+, θ+
m)-free, and let Uk

..= U ∩ ∂(k)(Sk) ⊆ Λxk . By the induction hypothesis,
without loss of generality |U | ≥ θm. Hence as in earlier cases (see 1.16(1)(C)) we
can find a function h∗k : Uk → Jxk such that in the directed graph (Uk, Rk), each
node has out-degree ≤ θm. That is, (∀η ∈ Uk)(∃≤θmν ∈ Uk)[η Rk ν], where

(∗)1 Rk = Rk,hk
..=
{

(η, ν) ∈ Uk ×Uk : (∃i < ∂k)
[
i /∈ h∗k(ν) ∧ η(i) = ν(i)

]}
(∗)2 Let Λ∗ be Λ∗x(U ,u) = Λx(U ∪ u) \ Λx(U ,u).

(∗)3 Let R∗ ..=
{

(η̄, ν̄) ∈ Λ∗ × Λ∗ : for some k ∈ u we have ηk Rk νk and

` < k ∧ ` 6= k ⇒ η` = ν`
}

.

Clearly,

(∗)4 (Λ∗, R∗) is a directed graph with each node having out-degree ≤ θm.

Let Λ̄ = 〈Λγ : γ < γ∗〉 be such that:

(∗)5 (a) Λ̄ is a partition of Λ∗.

(b) Each Λγ has cardinality ≤ θm.

(c) If η̄ ∈ Λβ , ν̄ ∈ Λγ , and β < γ < γ∗ then ¬[η̄ R∗ ν̄].
That is,
• If ` ∈ u and η̄ � (`,< 0) = ν̄ � (`,< 0) then ¬[η`R` ν`].

[Why? Let 〈η̄α : α < |Λ∗|〉 list Λ∗ with no repetition. For α < |Λ∗| we define

uα,n ∈
[
|Λ∗|

]≤θm
by induction on n, increasing with n by uα,0 ..= {α} and

uα,n+1
..= uα,n ∪

{
β : (∃γ ∈ uα,n)[η̄γ R∗ η̄β ]

}
.

So uα ..=
⋃
n
uα,n ∈

[
|Λ∗|

]≤θm
; [we know] α ∈ uα and

η̄β R∗ η̄γ ∧ β ∈ uα ⇒ γ ∈ uα.

Let Λα ..=
{
η̄γ : γ ∈ uα, but (∀β < α)[γ /∈ uβ ]

}
; now check that

Λ̄ = 〈Λα : α < |Λ∗|〉 is as required.]

(∗)6 It is enough to prove that Λγ is (∞, θ+
0 , u, 1)-free for each γ < γ∗.

[Why? It is enough to prove Λ∗ is (∞, θ+
0 , u, 1)-free.

By the assumption of (∗)6, for each γ < γ∗ let Λ̄γ , gγ , h̄γ witness that Λγ is
(∞, θ+

0 , u)-free. That is:15

• Λ̄γ = 〈Λγ,ε : ε < εγ〉 is a partition of Λγ .

• Λγ,ε has cardinality ≤ θ0.

• gγ : εγ → u

• If η̄, ν̄ ∈ Λγ,ε, k ∈ u ⊆ k, and k 6= gγ(ε) then ηk = νk.

• h̄γ = 〈hγ,k : k ∈ u〉
• hγ,m is a function from Λγ into Jm

• If η̄ ∈ Λγ,ε, ν̄ ∈
⋃
ξ<ε

Λγ,ξ, m = gγ(ε), ν̄ � (m) = η̄ � (m), and i ∈ ∂k \hγ,k(η̄)

then ηk(i) 6= νk(i).

15 Recall Definition 1.11(4); for k = 1, see 1.11(5).
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Let

• ζγ ..=
∑
β<γ

εβ for γ ≤ γ∗.

• Λ′ε
..= Λγ,ε−ζγ for ε ∈ [ζγ , ζγ+1].

• g is the function with domain ζγ∗ such that g(ε) ..= gγ(ε − ζγ) when ε ∈
[ζγ , ζγ+1) and γ < γ∗.

• hk is the function with domain Λ∗ defined as follows:
if η̄ ∈ Λζ , where ζ = ζγ + ε and ε < εγ , then hk(η̄) ..= hγ,k(η̄) ∪ h∗k(η̄).

Now check Definition 1.11(4).]

Now let us prove (∗)6. Fix γ < γ∗; if |Λγ | < θm the desired statement follows
from the induction hypothesis, so assume |Λγ | = θm. Let 〈ηγ,α : α < θm〉 list
{νk : ν̄ ∈ Λγ and k ∈ u}.

For β < θm, let Uγ,β
..= {ηγ,α : α < β} and let k(β) be the unique k ∈ u such

that ηγ,β ∈ ∂k(Sk). Clearly |Uγ,β | < θm. Also, 〈Uγ,β : β < θm〉 is ⊆-increasing
continuous with union

⋃
β<θm

Λ∗x(Uγ,β ,u) = Λγ .

We choose 〈Λ̄β , gβ , h̄β) by induction on β < θm such that

(∗)7 (a) Λ̄β = 〈Λγ,ε : ε < εβ〉 is a partition of Λ∗x(Uγ,β ,u)
(so α < β ⇒ Λ̄α C Λ̄β).

(b) Each Λγ,ε has cardinality ≤ θ0.

(c) gβ : εβ → u satisfies α < β ⇒ gα ⊆ gβ .

(d) h̄β = 〈hβk : k ∈ u〉
(e) hβ,k : Λx(Uγ,β ,u)→ Jk such that α < β ⇒ hαk ⊆ h

β
k .

(f) If ε < εβ , η̄ ∈ Λγ,ε, gβ(η̄) = k (so k ∈ u), ν̄ ∈
⋃
ζ<ε

Λγ,ζ , and

ν̄ � (k,< 0) = η̄ � (k,< 0)

then i ∈ ∂x,k \ hβ,k(η̄)⇒ νk(i) 6= ηk(i).

For β = 0 we have Λ∗x(Uγ,β ,u) = ∅, so this is obvious. For β limit take unions.
Lastly, for β = β∗ + 1, it is enough to show that Λ∗x(Uγ,β ,u) is (∞, θ+

0 , u)-free
over Λ∗x(Uγ,β∗ ,u). Now Uγ,β \ Uγ,β∗ = {ηγ,β∗} with ηγ,β∗ ∈ ∂k(β∗)(Sk(β∗)), hence
ηγ,β∗ ∈ U .

Let uγ,β ..= u \ {k(β∗)} and uγ,β ..= u ∪ {ηγ,β∗}, so uγ,β ∈ addx(u⊥γ,β) and

uγ,β ⊆ {0, . . . ,kx − 1} has m members, because |u| = m = m+ 1. Recall

Λ∗x(Uγ,β ,uγ,β) = Λ∗x(Uγ,β ,u) \ Λ∗x(Uγ,β∗ ,u),

and by the induction hypothesis on m we know Λ∗x(Uγ,β ,uγ,β) is (∞, θ+
0 , uγ,β)-free

so there is a witness (Λ̄∗γ,β , g
∗
γ,β , h̄

∗
γ,β) (i.e. it is as in 1.11(4)(D) for k = 1).

In particular:

(∗)8 Λ̄∗γ,β = 〈Λ∗γ,β,ζ : ζ < ζγ,β〉 is a partition of Λ∗x(Uγ,β ,uγ,β).

We define

(∗)9 • εβ ..= εβ∗ + ζγ,β

• Λεβ∗+ζ
..= Λ∗γ,β,ζ for ζ < ζγ,β .

• gβ(εβ∗ + ζ) = g∗γ,β(ζ) for ζ < ζγ,β ; i.e. gβ is the function with domain

εβ extending gβ∗ and defined on [εβ∗ , εβ) as above.

• hβ,k is a function with domain Λ∗x(Uγ,β,u) =
⋃
ε<εβ

Λε extending hγ,β∗,k.
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• hβ,k(η̄) = h∗γ,β,k(η̄) if η̄ ∈ Λ∗x(Uγ,β ,uγ,β).

Now check: notice that if ξ < εβ∗ ≤ ε < εβ , ν̄ ∈ Λγ,ξ, η̄ ∈ Λγ,ε = Λ∗γ,β,ε−εβ∗ , and

m = gβ(ε) = g∗β,γ(ε− εβ∗) then m 6= k(β∗) and ηk(β∗) 6= νk(β∗), so no problem will
arise and the rest should be clear. �1.24

In what follows we assume ` < k⇒ ∂` = ∂ to simplify things. Anyhow, we have
not sorted out what happens to (B)(d) when ∂̄ is not constant, and what we have
currently will suffice.

Theorem 1.26. ‘If (A) then (B),’ where:

(A) (a) ∂̄ = 〈∂` : ` < k〉 such that ` < k⇒ ∂` = ∂ = cf(∂).

(b) µ` ∈ C∂` for ` < k (see 0.2, 0.3).

(c) µ` < µ`+1 for ` < k.

(d) χ` = 2µ`

(e) Jbd
σ �Jbd

∂`
, an ideal on ∂` extending Jbd

∂`
isomorphic to for some regular

σ, ∧
`<k

[
σ < ∂` ∧ J` = Jbd

σ � Jbd
∂`

]
.

[I have zero idea how you want me to combine the new and
old parts of that sentence.]

(B) There is x such that:

(a) x is a combinatorial ∂̄-parameter of cardinality ≤ χk−1, with Jx,` = J`.

(b) x has a χ-black box.

(c) x is (θ∗, θ
+)-free when n∗ ≥ 1, θ = cf(θ) ≥ ∂, θ∗ = θ+∂·n∗ < µ0, and

3n∗ + 4 < k.

(d) x is θ∗∗-free when θ∗∗ = ∂+(∂·n∗+∂) < µ0, 3n∗ + 4 < k, and n∗ ≥ 1.

Remark 1.27. Note that the proof is somewhat easier when we assume θ+∂(n∗+1) <
µ0, and the loss is minor.

Proof. For each ` < k we can choose x` such that:

⊕ (a) x` is a combinatorial 〈∂`〉-parameter.

(b) x` is (θ+∂+1, θ+4, Jx,`)-free when ∂ ≤ θ < µ`.

(c) x` has a χ`-pre-black box; moreover,
(c)+ x` has χ`-black box.

(d) Λx` has cardinality χ`.

(e) x` is ∂+-free.

[Why? By [She13a, 0.4,0.5,0.6=Ly19,y22,y40], when we omit clause ⊕(c)+; anyhow we
elaborate (also, when ∂ = ℵ0 we have to say a little more). So let ` < k and µ ..= µ`,
λ ..= χ`.

First, assume that there is a (µ+, Jbd
∂ )-free subset F ⊆ ∂(µ) of cardinality

λ = 2µ. We define x` by Λx`
..= {〈η〉 : η ∈ F} and Jx`

..= Jbd
∂ .

Now x` has λ-black box.16 Note also that x` is tree-like; this is enough for
⊕(a)-(e). Without loss of generality there is a list 〈ηα : α < λ〉 of the elements
of F such that α < β ⇒ ηα <Jbd

∂
ηβ (see the proof of [She13b, 3.10=L1f.28]. Let

〈Uα : α < λ〉 be a sequence of pairwise disjoint subsets of λ each of cardinality

16 By [She13b, §3]; this is easy as the number of functions from ∂>(µ) to λ is λµ = λ.
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λ such that min(Uα) > µω · α and let Fα = {ηβ : β ∈ Uα} and να = ηβ when
α ∈ [µ · β, µ · β + µ) and F∗ =

⋃
α

Fα. Now we choose

Λx`
..=
{
〈η〉 : η ∈ F∗

}
and Λ∗α

..=
{
〈η〉 : η ∈ Fα

}
,

so 〈να : α < λ〉 witnesses that x` has χ-black box.
[What’s ν? Everything up to this point has been about ηs.]
Second, assume that there is no F as above. It follows that λ = 2µ is regular

(see [She13a, 0.4] or [She13b, §3], using the “no hole claim” combining). Note
that if there is a 〈∂〉-c.p. x which is (θ2, θ1)-free and Λx ⊆ ∂µ (pedantically,
Λx ⊆ {〈η〉 : η ∈ ∂µ}, |Λx| = 2µ, and J = Jx ..= Jbd

∂ an ideal on ∂) then there is
such y with Jy = Jbd

∂ and as above both have the λ-BB.
Now as λ = cf(λ) = 2µ and µ ∈ C∂ , there is a sequence 〈λi : i < ∂〉 of regular

cardinals < µ and17 a ∂-complete ideal J = Jbd
∂ such that χ = tcf(

∏
i<∂

λi, <J): so

let 〈ηα : α < χ〉 be <J -increasing cofinal in (
∏
i<∂

λi, <J). By [She13a, 0.1=L41] there

is S ∈ Ǐθ+ [λ] such that if δ < λ ∧ cf(δ) ≥ θ+4 then

{δ′ < δ : cf(δ′) = θ+3 and S ∩ δ′ is a stationary subset of δ′}

is stationary in δ. (Note that there cf(δ) = θ+4, but the general case of cf(δ) ≥ θ+4

follows.)
Assume λ = cf(λ), S ⊆ λ, and sup(S) = λ, and we recall some things from

[She13a].
If f̄ = 〈fα : α < λ〉 is <J -increasing, J is an ideal on ∂, fα : ∂ → Ord and

uα ⊆ α for α < λ, we say f̄ obeys the sequence of sets ū = 〈uα : α < λ〉 when for
every β ∈ uα we have ∧

γ<∂

[
fβ(γ) < fα(γ)

]
and if α ∈ S is a limit ordinal then fα(γ) = sup

β∈uα

(
fβ(γ) + 1

)
for every γ < ∂.

For θ = cf(θ) < λ, we say ū as above is a witness for S ∈ Ǐθ[λ] when:

• α ∈ S ⇒ cf(α) = θ

• α < λ⇒ |uα| < θ

• α ∈ uβ ⇒ uα = uβ ∩ α
• There is a club E of λ such that if δ ∈ S ∩ E then uα is an unbounded

subset of α of order type θ.

We say f̄ is good in a limit ordinal δ < λ when there are u ⊆ δ = sup(δ) and
w = 〈wα : α ∈ u〉 ∈ uJ such that

α, β ∈ u ∧ α < β ∧ i ∈ ∂ \ (wα ∪ wβ)⇒ fα(i) < fβ(i).

So without loss of generality f̄ obeys a witness for S ∈ Ǐ∂+ [λ], hence it is good in
δ when δ ∈ S or S ∩ δ is a stationary subset of δ and cf(δ) ∈ (θ, θ+∂).

Let S• ∈ Ǐσ[λ] be stationary such that

δ ∈ S• ⇒ µω
∣∣ δ

For δ ∈ S•, let ρδ ∈ σδ be increasing with limit δ. Now let f ′δ ∈ σδ be such that

i < ∂ ∧ j < σ ⇒ f ′δ(σi+ j) ..= µ · fδ(i) + ρδ(j).

17 See [She93a, 6.5].
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Hence {fα : α < λ} is (θ+∂+1, θ+4)-free for every θ ≥ ∂ (see [She13a, 0.4=Ly19]
18).

Together we are done except for ⊕(c),(c)+, which holds by [She13a, 0.6(g),(g)′].]

So we have finished proving ⊕.
Let x ..= yk, where for m ∈ {1, . . . ,k} we let ym = x0×x1× . . .×xm−1 and we

shall show it is as required.

Clause (B)(a): “x is a combinatorial ∂̄-parameter of cardinality χk−1.”

This holds by 1.20(1); i.e. we can prove “ym is a 〈∂` : ` < m〉-c.p. of cardinality
χm−1” by induction on m = 1, . . . ,k.

Clause (B)(b): “x has a χ-BB.”

This holds by 1.21, that is, again by induction on m = 1, . . . ,k, we can prove
that ym has the 〈χ` : ` < m〉-BB.

We now shall prove:

Clause (B)(c):

We deduce it from 1.24 +⊕(b). We are given θ and n∗ as there. Let
〈θm : m ≤ m∗〉 be defined as follows: m∗ ..= 3n∗ + 4, θι ..= θ+ι for ι = 0, 1, 2, 3, and

θ3+3m+ι
..= (θ3+3m)+(∂+ι) for ι = 1, 2, 3 when m < n∗ and θm∗

..= θ+∂+1
3n∗+4 < µ0;

[You just said m∗ ..= 3n∗ + 4, so θm∗ = θ3n∗+4 6= (θ3n∗+4)+(∂+1)]
the “≤ µ0” holds by the assumption of clause (B)(c). Note that if θm+1 = θ+

m

then “x` is (θm+1, θ
+
m)-free” is trivial.

To apply Theorem 1.24 with x` as in ⊕ above, x as above, m = m∗, u =
{0, . . . ,k− 1} has m members and θ` for ` ≤m as above; we have to verify clauses
(a)-(f) of 1.24�.

(a) ‘x` is a combinatorial 〈∂`〉-parameter;’ holds by ⊕(a).

(b) x = x0 × . . .xk−1; holds by the choice of x above.

(c) “u ⊆ {0, . . . ,k − 1} and m = |u| > 0;” holds by the choice of u and the
assumption on m∗.

(d) “θ0 < . . . < θm” holds by the choice of the θ`-s above. Notice that each θ`
(for ` > 0) is a successor and hence regular.

(e) “∂x` ≤ θ0 for ` < k;” this holds because θ0 = θ ≥ ∂ = ∂` for ` < k.

(f) “x` is (θm+1, θ
+
m)-free when ` ∈ u and m < m.” We check this by cases.

Case 1: [If ] θm+1 = θ+
m, (f) holds trivially.

Case 2: m = 3, (θm+1, θ
+
m) = (θ+(∂+1), θ+4) holds by clause (b) of ⊕.

Case 3: m = 3n+ 3 where n < n∗, so (θm+1, θ
+
m) = (θ∂·(n+1)+1, θ∂·n+4).

By clause (b) of ⊕ above applied to θ = ∂+∂·n.

So all clauses of � of Theorem 1.24 hold, hence its conclusion which says x in
(θm, θ

+
0 )-free but θm = θ∗ and θ0 = ∂, so we are done proving clause (c) of 1.26(B).

Clause (B)(d): “x is θ∗ free, assuming θ∗ = ∂+∂·(n∗+1) < µ0, 3m + 4 < k, and∧
`<k

[∂` = ∂].”

We will deduce it from clause (B)(c); choose θ′∗
..= θ+∂·n∗+4, θ ..= ∂, and m∗ ..= m.

The assumptions in clause (c) hold: θ = ∂+ so θ ≥ ∂, θ′∗ is as θ∗ there, and θ′∗ < µ0

by an assumption of clause (d) (which also says 3n∗ + 4 < k).

18 In more detail, in [She13a, 0.4=Ly19] we conclude (A) or (B): now (A) there is stronger
(covered by everything written three paragraphs ago, starting with “First, . . .”), whereas if (B)
there holds see [She13a, 0.6(e)=Ly40(e)].
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So the conclusion of clause (c) holds; i.e. x is (θ′∗, θ)-free. But θ∗ ≤ θ′∗ so x is
(θ∗, ∂

+)-free. Also each x` is ∂+-free by �(e) hence by 1.12 the last two statements
implies x is θ∗-free. �1.26

Conclusion 1.28. 1) If σ < ∂ are regular, χ ≥ ∂, and n ≥ 1 then for some
m there is an ℵ∂·n-free m-c.p. x which has the χ-BB, with |Λx| < i∂·ω(χ) and
Jx,m = Jbd

∂ � Jbd
σ .

2) If σ = ∂ is regular, χ ≥ ∂, and n ≥ 1 then for some m there is an ℵ∂·n-free
m-c.p. x of cardinality < i∂·ω(χ) + iω1

(χ) which has the χ-BB, is not free,19 Λx

is not the union of ≤ χ free subsets, and Jx,m = Jbd
∂ .

3) If m = 3n + 5, σ = cf(σ) < ∂ = cf(∂) < χ < µ0 < . . . < µm−1 with µ` ∈ C∂

for ` < m, λ` = cf(2µ`), S` ⊆ {δ < λ` : cf(δ) = σ} from Ǐσ[λ`] [is] stationary, and
J = Jbd

∂ × Jbd
σ , then we have (A) or (B), where:

(A) (a) For some `, there is an F ⊆ ∂(µ`) of cardinality 2µ` which is µ+
` -free

(i.e. is (µ+
` , J

bd
∂ )-free; see Definition 0.7(1)) and even (µ+

` , J)-free.

(b) Hence, letting x be the 1-c.p. such that Λx = {〈η〉 : η ∈ F} [and
Jx = J, F ] is a 2µ`-BB for x which is µ+

` -free.

(B) We can choose x = x0 × . . .× xm−1, where x` is a 1-c.p.,

Λx`
..= {η`,δ : δ ∈ S`},

and limJx`
(η`,δ) = δ. Moreover, η`,δ is increasing with limit δ, Jx` =

J∂ � Jσ, and x` has the χ-BB if χ < µ`.

4) Given n,m, σ < ∂ < χ as in part (3), we can find µ` (and λ`, S`) as there such
that:

(a) If ∂ > ℵ0 then µ` = i∂·(1+`)(χ). ([In order to] have “ x is θ∗-free” we
need χ ≥ θ.)

(b) If ∂ = ℵ0 [then] for some club E of ω1 [we have] µ` ∈
{
iδ(χ) : δ ∈ E

}
.

Proof. 1) Let k ..= 3n+ 5, and for ` < k we let ∂` ..= ∂,

µ` ..= i∂·(1+`)

(
∂+(∂·n+1) + χ

)
,

and χ` ..= 2µ` . So each µ` is strong limit of cofinality ∂ = cf(∂) > σ ≥ ℵ0; recalling
0.3, we have µ` ∈ C∂` (i.e. clause (A)(b) of Theorem 1.26 holds).

Clauses (A)(a),(c)-(e) of 1.26 are obvious, hence there is x as in clause (B) of
1.26. In particular, it is ∂+(∂·n+1)-free. Also, ∂+(∂·n+1) < i∂·ω(χ) hence also

µ` = i∂·(n+2)(∂
+(∂n+1) + χ) < i∂·ω(χ)

hence |Λx| ≤ 2µk−1 < i∂·ω(χ), so we are done.

2) If ∂ > ℵ0, the proof of part (1) holds and |Λx| < i∂·ω(χ). If ∂ = ℵ0, we know
(see [She94]) that there is a club E of ω1 consisting of limit ordinals such that
δ ∈ E ⇒ iδ(χ) ∈ C∂ . We define k, ∂` as above, and for ` < k we let δ` be the `-th
member of E and µ` ..= iδ`(χ), and we continue as in the proof of part (1).

in [S+c] and anyhow not used

3) This is straightforward by [She13b], but we elaborate to some extent.
First assume that for some ` < k clause (A)(a) of 1.28(3) holds, so x from (A)(b)

is a well defined 1-c.p. and is µ+
` -free. Letting χ ..= 2µ` , there is a χ-BB for x because

the number of functions h : ∂>(µ`) → χ is ≤ χµ` = χ, and by diagonalizing we

19Really, this follows.
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can choose a χ-pre-BB for x (see 1.15). To get a χ-BB we work as in the proof of
1.21(2).

So assume there is no such `. Then for each `, we know that λ` = 2µ` is regular
(see [She13b, 3.10(3)=L1f.28,pg.39]). By the proof of ⊕ in the beginning of the proof
of 1.26, there is x`,1 as there, so Λx`,1 ⊆ ∂(µ`). By [She13b, 3.6=L1f.21], we know

that α < λ` ⇒ |α|σ < λ`, hence obviously there is a stationary set20 S` ⊆ Ǐσ[λ`]
and without loss of generality δ ∈ S` ⇒ (µ`)

ω
∣∣ δ.

Hence we can find ν̄ = 〈νδ : δ ∈ S`〉 such that:

• νδ ∈ σδ is increasing with limit δ.

• νδ1(i1) = νδ2(i2)⇒ `1 = `2 ∧ νδ1 � i1 = νδ2 � i2.

• νδ(i) is divisible by µ`.

Let 〈ρδ : δ ∈ S`〉 list Λx`,1, and for δ ∈ S` let ηδ ∈ ∂δ be defined by

ηδ(σ · i+ j) = νδ(j) + ρδ(i)

for i < ∂ and j < σ. We define x` by Λx`
..= {ηδ : δ ∈ S`}, Jx` ..= J∂ � Jδσ, etc.

Now

(∗) x` is a 〈∂〉-pre-BB of cardinality χ`, with the freeness properties from 1.26.

What about χ-pre-BB? By [She13b, §3] this holds whenever χ < µ`, which is
enough for applying [the definition]. To get χ-BB let 〈δ(ζ) : ζ < λ〉 list S` in
increasing order and let 〈Sα : α < λ`〉 be a sequence of pairwise disjoint stationary
subsets of S` such that min(Sα) > δ(α). Let νξ ..= ηδ(ζ) when ξ ∈ [ζ · µ, ζ · µ+ µ).

We define Λα = Λ`α
..= {ηδ : δ ∈ Sα}, so for each α there is a χ`-pre-BB for Λα,

and we continue as in the proof of 1.26. We now continue as in part (1) by inside
the proof of 1.26.

3) By the proofs above this should be clear. �1.28

Discussion 1.29. 1) The following statement appears in [She13a, 0.4=Ly19]. If
σ = cf(σ) < κ = cf(κ) and µ ∈ Cκ, then at least one of the following holds:

(A) There exists a µ+-free F ⊆ κµ of cardinality λ = 2µ.

(B) λ = 2µ is regular, and there is a (λ, µ, σ, κ)-5-solution.

If (A) holds, then we get more than promised (i.e. µ+
` -freeness). Hence we may

assume, without loss of generality, that (B) holds. We shall return to this point
(and then recall the definition of ‘5-solution’).

2) We can vary the definition of the BB, using values in χ or using models.

3) We can use products of just two combinatorial parameters, but with any kx. At
present, this makes no real difference.

Discussion 1.30. Assume x is a combinatorial ∂̄-parameter, ∂̄ = ∂̄x, and
∂̄′ = 〈∂′` : ` < kx〉 is a sequence of limit ordinals such that ` < k⇒ cf(∂′`) = ∂`.

It follows that there is a y such that:

(∗) (a) y is a combinatorial ∂̄′-parameter.

(b) Sy,` = {∂′` · α+ i : α ∈ Sx,` and i < ∂′`}

20 In fact, {δ < λ` : cf(δ) = σ} belongs to Ǐσ [λ`]; see [She93a, Claim 2.14].
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(c) Λy = {g(η̄) : η̄ ∈ Λ}, where g : S
[∂̄]

x → S
[∂̄′]

y is defined as follows: for
each ` < k, for some increasing continuous sequence 〈ε`,i : i ≤ ∂`〉 of
ordinals with ε`,0 = 0 and ε`,∂` = ∂′`, we have g(η̄) = ν̄ iff

ε ∈ [ε`,i, ε`,i+1)⇒ ν`(ε) = ∂′` · η`(i) + ε.

(Of course, we could have “economical.”)

(d) If x has χ-BB and χ` = χ
∂′`
` for ` < k, then y has χ-BB.

Definition 1.31. We say a k-c.p. x is (θ, σ)-well-orderable (χ,k, 1)-BB when there
is a witness Λ̄, which means:

(A) Λ̄ = 〈Λα : α < δ〉
(B) Λ̄ is increasing continuous.

(C) cf(δ) ≥ σ and δ is divisible by θ.

(D) If α < δ then x � (Λα+1 \ Λα) has χ-pre-black box.

(E) If α < δ, η̄ ∈ Λα+1 \Λα, and m < k then the following set belongs to Jx,m:

•
{
i < ∂x,m : for some ν̄ ∈ Λα we have η̄ � (m, i) = ν̄ � (m, i)

}
.

Claim 1.32. 1) In Theorem 1.26, for any θ = cf(θ) ≤ χk−1, clause (B)(b) can be
strengthened to ‘ x has θ-well-orderable χ-black box.’

2) Analogously to Conclusion 1.28.
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§ 2. Building Abelian groups and modules with small dual

For transparency, we restrict ourselves to hereditary rings.

Convention 2.1. 1) All rings R are hereditary; i.e. if M is a free R-module then
any pure sub-module N of M is free.

2) An alternative is to interpret “G is a θ-free ring” by demanding cf(θ) > ℵ0,
and in the game of choosing An ∈ [G]<θ increasing with n, the even player can
guarantee that the sub-module

〈⋃
n
An
〉
G

of G is free.

We shall try to use a ∂̄-BB to construct Abelian groups and modules. In 2.2
we present a quite clear case: if

∧̀
[∂` = ℵ0], the ring is Z (and the equations are

simple). Note that the addition of z (in 2.2(1)(b), 2.4(1)(a)) is natural when we
are trying to prove h ∈ Hom(G,Z) ⇒ h(z) = 0 which is central in this section,
but is not natural for treating some other questions. When dealing with TDCλ we
may restrict ourselves to G simply derived from x (see 2.2(3)) so we can ignore
2.2(1A),(2).

Definition 2.2. Let x be a tree-like21 combinatorial ∂̄-parameter (see Definition
1.2(1)) and let k ..= kx.

1) If ` < kx ⇒ ∂` = ℵ0, then we say an Abelian group G is derived from x when

(A) G is generated by X ∪ Y , where:
(α) X = {xη̄�(m,n) : η̄ ∈ Λx,m < kx and n ∈ N} ∪ {z}
(β) Y = {yη̄,n : η̄ ∈ Λx and n ∈ N}

(B) Moreover, it is freely generated, except the following set of equations

Ξx
..=
{

(n+ 1) · yη̄,n+1 = yη̄,n −
∑
m<k

xη̄�(m,n) − aη̄,nzη̄ : η̄ ∈ Λx and n ∈ N
}
,

where

•1 zη̄ ∈
⊕
{Zxη̄�(m,n) : η̄ ∈ Λx,m < k, n ∈ N} ⊕ Zz

•2 aη̄,n ∈ Z.

1A) We say the Abelian group G is canonically derived from x when above we omit
the zη̄-s: equivalently, aη̄,n = 0. If we omit z we say strictly derived.

2) We say the derivation of G in part (1) is well-orderable (or “G or 〈zη̄ : η̄ ∈ Λx〉
universally respects x”) when we replace •1 above by:

•′1 There is a listing 〈η̄α : α < α∗〉 of Λx such that

zη̄α ∈
⊕{

Zxη̄β�(m,n) : β < α, m < k
}
⊕ Zz

for every α < α∗.
Such a sequence is called a witness.

3) We add ‘simply’ (derived from x) when zη̄ = z for every η̄.

Remark 2.3. 1) We can replace (n+ 1)yη̄,n+1 by kη̄,nyη̄,n+1 with kη̄,n ∈ {2, 3, . . .}.
2) By combining Abelian groups, the “simply derived” is enough for cases of the
TDCλ. Instead of “simply derived,” we may restrict 〈zη̄ : η̄ ∈ Λx〉 more than in
2.2(2).

A more general case than 2.2 is:

21 In [She07] this was not necessary, as the definition of η � (m,n) there is η � (m,< n + 1)
here.
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Definition 2.4. 1) We say an R-module G is derived from a combinatorial ∂̄-
parameter x when (R is a ring and):

(a) G∗ is an R-module freely generated by

X∗ ..= {xη̄�(m,i) : m < kx, i < ∂m and η̄ ∈ Λx} ∪ {z}.

(b) The R-module G is generated by
⋃

η̄∈Λx

Gη̄ ∪X∗; also, G∗ ⊆ G.

(c) G/G∗ is the direct sum of
〈
(Gη̄ +G∗)/G∗ : η̄ ∈ Λx

〉
.

(d) Zη̄ ⊆ X∗ ⊆ G∗ for η̄ ∈ Λx.
(If Zη̄ = {zη̄}, we may write zη̄ instead of Zη̄.)

(e) If η̄ ∈ Λx then the R-submodule Gη̄ ∩G∗ of G is generated by (that is, not
only included in the submodule generated by)

{xη̄�(m,i) : m < kx and i < ∂x,m} ∪ Zη̄ ⊆ X∗.

1A) We say x is an R-construction (or (R,x)-construction) when it consists of
x, R,G∗, G, 〈xη̄ : η̄ ∈ Λx,<k〉, 〈Gη̄, Zη̄ : η̄ ∈ Λx〉 as above.22 We may say x is for x
but we may write G rather than Gx, etc. when x is clear from the context.

1B) For anR-construction x we say “universally respecting x” or “x is well-orderable”
when we can find a Λ̄ obeyed by x. By this we mean:

(f) •1 Λ̄ = 〈Λα : α ≤ α∗〉 is increasing continuous.

•2 Λα∗ = Λx and Λ0 = ∅.

•3 If η̄ ∈ Λα+1 \ Λα and m < k, then{
i < ∂m : (∃ν̄ ∈ Λα)

[
η̄ � (m, i) = ν̄ � (m, i)

]}
∈ Jx,m.

•4 If η̄ ∈ Λα+1 \ Λα then Zη̄ ⊆
〈
{Gν̄ : ν̄ ∈ Λα} ∪ {z}

〉
G

.

1C) We may say “G is derived from x” and x is derived from x.

1D) We add “simple” or “simply derived” when zη̄ = z (hence Zη̄ = {z} for every
η̄ ∈ Λ).

1E) We say x is almost simple if
∣∣Zη̄ \ {z}∣∣ ≤ 1.

2) Above, we say x is a locally free derivation or locally free or G in part (1) is freely
derived when in addition:

(g) If η̄ ∈ Λx, m < k, and w ∈ Jx,m then (Gη̄/Gη̄,m,w) is a free R-module,
where Gη̄,m,w is the R-submodule of G generated by

{xη̄�(n,i) : n < k, i < ∂n, and n = m⇒ i ∈ w} ∪ Zη̄.

So Gη̄ = G⊥η̄,m,w ⊕ Gη̄,m,w for some R-submodule G⊥η̄,m,w, and let x deter-
mine it.

3) Above, we say x is (< θ)-locally free or x is a free (< θ)-derivation when23 in
addition to part (1):

(g)+ Like (g), but the quotient Gη̄/Gη̄,m,w is θ-free.

(h) x is θ-free.

22 And we shall write Λx = Λx, Gx
∗ = G∗, Gx = G, Gx,η̄ = Gη̄ , etc., so in 2.2(1) we have a

Z-construction with Gη̄/(Gη̄ ∩G∗) being isomorphic to (Q,+).
23 So “x is locally free” does not imply “x is θ-free” because of clause (h).
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4) We say x is a canonical R-construction (or canonical (R,x)-construction) when
η̄ ∈ Λx ⇒ Zη̄ = ∅. We say canonically∗ when we omit z and we write G−x .

5) We say x (or just (x, Z), where Z = 〈Zη̄ : η̄ ∈ Λx〉) is θ-well-orderable when for
every Λ ⊆ Λx of cardinality < θ there is 〈η̄α : α < α∗〉, Λ′ ⊇ Λ witnessing [it],
which means:

[Λ′ is not used anywhere.]

(a) 〈η̄α : α < α∗〉 ⊆ Λx with no repetitions.

(b) If η̄ ∈ Λ then
• η̄ = η̄α for some α.

• Zη̄ ⊆ {η̄β : β < α}
• For some m∗ < k and w ∈ Jx,m, we have

i ∈ ∂m∗ \ w ⇒ η � (m∗, i) /∈ {η̄β � (mi, j) : m < k, j < ∂m}.

Remark 2.5. In Definition 2.4, we might like Gη̄ to have more elements from G∗.
This can be accomplished by replacing xν̄ , ν̄ ∈ Λx,<k by xν̄,t for t ∈ Tm,i when
ν̄ = η̄ � (m, i) [for some] η̄ ∈ Λx.

However, we can just as well replace ∂` by ∂′`
..= γ · ∂` for some non-zero ordinal

γ (and J` by J ′`
..=
{
w ⊆ ∂′` : (∃u ∈ J`)

[
w ⊆ {γ · i+ β : β < γ, i ∈ u}

]}
).

Claim 2.6. Assume x is a simple R-construction (see 2.4(1A),(1D)) which is
(<θ)-locally-free (see 2.4(2)), G = Gx (so it is derived from x), and x is θ-free.

1) G is a θ-free R-module.

2) If in addition (R,+) (that is, R as an additive – and therefore Abelian – group)
is free then (G,+) is θ-free.

3) In part (2) it suffices that (R,+) is a θ-free Abelian group.

4) In (1)-(3), we can replace “derived” by “(< θ)-derived”.

5) Instead of assuming “x is simply derived,” we can demand “x is well-orderable
and almost simple” (see Definition 2.4(1B),(1E)).

Proof. 1) Let X ⊆ G have cardinality < θ. By Definition 2.4(1) there are Λ ⊆ Λx

and Λ∗ ⊆ Λx,<k, each of cardinality < θ, such that

X ⊆
〈
{xη̄ : η̄ ∈ Λ∗} ∪ {Gη̄ : η̄ ∈ Λ}

〉
G
,

recalling {z} = Zη̄ ⊆ Gη̄ for every η̄ ∈ Λx. So without loss of generality

X = {xη̄ : η̄ ∈ Λ∗} ∪ {Yη̄ : η̄ ∈ Λ},
where Yη̄ ∈ [Gη̄]<θ for η̄ ∈ Λ and

m < k ∧ i < ∂m ⇒ η̄ � (m, i) ∈ Λ∗.

As x is θ-free, we can find:

(a) 〈η̄α : α < α∗〉 listing Λ,

(b) mα < kx and wα ∈ Jx,mα for α < α∗,

[such that] if α < β and i ∈ ∂x,mβ \ wβ then ηβ,m(i) 6= ηα,m(i).

For α ≤ α∗, let Gα ..=
〈 ⋃
β<α

Gη̄β
〉
G

and let Gα∗+1
..=
〈
Gα∗ ∪ {xη̄ : η̄ ∈ Λ∗}

〉
G

.

So 〈Gα : α ≤ α∗ + 1〉 is an increasing continuous sequence of sub-modules,
G0 = 0, and Gα∗+1 includes X. Also, Gα∗+1/Gα∗ is free by the choices above.

Lastly, if α < α∗ then Gα+1/Gα is a θ-free R-module because it is isomorphic
to Gη̄α/Gα = Gη̄α/Gη̄α,mα,wα , which is θ-free by Definition 2.4(3)(g)+.
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So clearly we are done.

2,3) Follows.

4) Similarly.

5) Let X,Λ and Λ∗ be as in the proof of part (1), and let 〈η̄α : α < α∗〉 list Λ.
Let Λ̄ witness the well-orderability of x. Then (recalling Definition 2.4(1B)) there

is a function h : α∗ → g̀(Λ̄) such that:

(c) If α < α∗ then η̄α ∈ Λh(α)+1 \ Λh(α).

Let

(d) Zη̄α \ {z} ⊆ {να} ⊆ {η̄β � (m, i) : n < k, i < ∂m, and β < α} ⊆ Λ∗.

Also without loss of generality, as in §1

(e) h is non-decreasing.

Now, as Λ is θ-free as in §1, looking carefully at 2.4(1B), without loss of generality
|Λα+1 \ Λα| ≤ 1, so without loss of generality

(e)′ h is the identity.

The rest is as before. �2.6

Definition 2.7. 1) An Abelian group H is (θ2, θ1)-1-free when if X ∈ [H]<θ2 then
we can find a G such that:

• G = 〈Gα : α < α∗〉 is a sequence of subgroups of G.

• G ..=
∑
α<α∗

Gα ⊆ H; both G and H include X.

• Gα is generated by a set of < θ1 members.

• G =
⊕
α<α∗

Gα.

2) Similarly for R-modules.

Claim 2.8. 1) If x is a (θ2, θ1)-free k-c.p. (see 1.11), and x is a canonical (R,x)-
construction which is locally free and simply derived from x then G is (θ2, θ1)-1-free.

2) Similarly for modules, when each Gη̄ (for η̄ ∈ Λx) has cardinality < θ1.

Proof. 1) By (2), using R = Z.

2) Let G = Gx such that |Λ|, |Λ∗| < θ2 and let X ⊆ G be of cardinality < θ2.
Choose Λ,Λ∗ as in the proof of 2.6(1). As we are assuming “x is (θ2, θ1)-free”
and Λ ⊆ Λx has cardinality < θ2, there is a sequence 〈Λ̄, g, h̄〉 witnessing it, see
1.11(4)(D) such that Λ̄ = 〈Λγ : γ < γ∗〉 and Λ =

⋃
γ

Λγ . We define the sequence

〈Gγ : γ ≤ γ∗ + 1〉 as follows.
For γ < γ∗ let Gγ be the submodule of Gx generated by

⋃
η̄∈Λγ

G⊥η̄,g(γ),hγ(η̄). We

may assume that G0 = {0}. Let Gγ∗ be the submodule of Gx generated by{
xν̄ : ν̄ ∈ Λ∗, but for no γ < γ∗, η̄ ∈ Λγ , or

i ∈ ∂x,g(γ) \ hγ(η̄) do we have ν̄ = η̄ � (g(γ), i)
}
.

Finally, let Gγ∗+1
..=

∑
β≤γ∗

Gβ .
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For every γ ≤ γ∗ + 1, let G<γ be the submodule generated by
⋃
α<γ

Gα. Notice

that the sequence 〈G<γ : γ ≤ γ∗ + 1〉 is increasing and continuous. It suffices
to prove that Gγ ∩ G<γ = {0}. If not, then for some n and pairwise distinct
η̄0, . . . , η̄n−1 ∈ Λγ , we have( ∑

`<n

G⊥η̄`,g(γ),hγ(η̄`)

)
∩G<γ 6= {0}

(see 2.4(2)).
If 0 6= x ∈

( ∑
`≤n

G⊥η̄`,g(γ),hγ(η̄`)

)
∩G<γ , then x =

∑
`<n

x` for some x` ∈ G⊥η̄0,g(γ),hγ(η̄`)
.

Recalling

Gx/G∗ =
⊕
η̄∈Λx

Gη̄/(Gη̄ ∩G∗)

necessarily x ∈ G∗. Moreover, recalling 2.4(1)(c), for each ` < n we have x` ∈ G∗
so

x` ∈ G⊥η̄,g(γ),hγ(η̄γ) ∩G∗ ⊆
⊕{

xη`�(g(γ),i) : i ∈ ∂x,g(γ) \ hγ(η̄`)
}
⊕Rz

(see 2.4(2)).
Hence

x =
∑
`<n

x` ∈ H1
..=
⊕{

xη̄`�(g(γ),i) : ` < n, i ∈
⋃
`1<n

hγ(η`1)
}
.

By the choice of (Λ̄, g, h̄),

H2
..= G<γ ∩G∗ ⊆

⊕{
Rxν̄ : for some α < γ, η̄ ∈ Λα, and i ∈ ∂x,g(α) \ hα(η̄),

we have ν̄ = η̄ � (g(α), i)
}
.

Hence x ∈ H1 ∩H2 = {0}, a contradiction. �2.8

Claim 2.9. Assume x is an (ℵ0,k)-c.p. with (ℵ0,k)-BB.

1) There is canonical Z-construction x such that:

(a) G = Gx (so G is an Abelian group of cardinality |Λx|).

(b) G is not Whitehead.

(c) G is θ-free if x is θ-free.

(d) G is (θ2, θ1)-1-free if x is (θ2, θ1)-free (see 2.7(1)).

(e) G has a Z-adic dense subgroup of cardinality |Λx,<k|.

2) We can add:

(b)+ Hom(G,Z) = 0.

Remark 2.10. Recall that “b is a (χ,k)-BB” means b is a function with range ⊆ χ
(see Definition 1.7).

Proof. 1) Let G0 =
⊕
{Zxη̄ : η̄ ∈ Λx,<k} ⊕ Zz and G1 be the Z-adic closure of G0,

so G1 is a complete metric space under the Z-adic metric.
For η̄ ∈ Λx, ā ∈ ωZ, and n∗, in G1 we let

yā,η̄,n∗
..=
( ∑
n≥n∗

n!

n∗!

)( ∑
m<k

xη̄�(m,n) −
∑
m<k

b(η,m, n)z + anz
)
.

Let {bi : i < ω} list the elements of Z and let c̄ = 〈cη̄ : η̄ ∈ Λx〉 be an (ℵ0,k)-BB,
where cη̄ is a function from {η̄ � (m,n) : m < k, n < ω} to Z. Now for each η̄ ∈ Λx,
let

G0
η̄

..=
∑
m<k
n<ω

Zxη̄�(m,n) ⊕ Zz
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and hη̄ ∈ Hom(G0
η̄,Z, z) be such that hη̄(z) = z and hη̄(xη̄�(m,n)) = bcη̄(η̄�(m,n))z.

(∗)1 We can choose ā = ā[η̄] ∈ ωZ such that there is no extension of hη̄ in
Hom(G1

ā,η̄,Z), where G1
ā,η̄

..=
〈
G0
η̄ ∪ {yā,η̄,n : n < ω}

〉
G1

.

[Why? This is well known, but we elaborate. It suffices to prove that

A ..=
{
ā ∈ ω2 : hη̄ has an extension in Hom(G1

ā,η̄,Z) and a0 = a1 = 0
}

is a countable subset of ωZ. (We could have allowed ā ∈ ωZ, but this seems more
transparent to restrict ourselves.) For ā ∈ A, let hā,η̄ be an extension witnessing
it. Now

• For each b ∈ Z, the set Ab = {ā ∈ A ⊆ ω2 : hā,η̄(yη̄,0) = b} has at most one
member.

[Why? Toward contradiction, assume ā1 6= ā2 ∈ Ab and let n
be minimal such that a1,n 6= a2,n. Now n = 0, 1 is impossible as
ā1, ā2 ∈ Ab ⊆ A, so n ≥ 2.

Now prove by induction on ` < n that hā1,η̄(yη̄,`) = hā2,η(yη̄,`).
For ` = 0, 1 use ā1, ā2 ∈ Ab, and for ` = j + 1 recall

` · yη,` = yη,j −
( ∑
m<k

xη̄�(m,j) + aι,jz
)

for ι = 1, 2; apply hāι,η̄ and use the induction hypothesis. Now on
this equation, for ` = n and ι = 1, 2 apply hāι,η̄. Subtracting, we
get that a1,n − a2,n is divisible by ` and ` ≥ 2. But a1,n − a2,n ∈
{1,−1}, a contradiction.]

So clearly there is ā ∈ ω2 \
⋃
b∈Z
Ab such that a0 = a1 = 0; it is as required. So (∗)1

does indeed hold.]

Lastly,

(∗)2 Let G1
..=
〈
G0 ∪ {yā[η̄],η̄,n : n < ω} : η̄ ∈ Λx}

〉
G1

.

Now G1 witnesses that G2 = G1/Zz is not a Whitehead group.

[Why? Let G2 = G1/Zz, and let h∗ be the canonical homomorphism from G1 onto
G1/Zz (i.e. h∗(x) = x + Zz for x ∈ G1). Toward contradiction, assume G2 is a
Whitehead group: this means that there is a homomorphism g∗ from G2 into G1

inverting h∗. (That is, y ∈ G2 ⇒ h∗(g∗(y)) = y.)
As Ker(g∗) = Zz, clearly

x ∈ G1 ⇒ g∗(h∗(x))− x ∈ Zz,
so let h` be the unique function from Λx,<k into Z defined by

h0(ν̄) = b ⇔ ν̄ ∈ Λx,<k ∧ k ∈ Z ∧ g∗(h∗(xν̄))− xν̄ = bz.

By the choice of b, there is η̄ ∈ Λx such that

m < k ∧ n < ω ⇒ k(η̄,m, n) = h•(η̄ � (m,n)).

So x 7→ x − g∗(h∗(x)) defines a homomorphism from Gā(η̄),η̄ onto Zz mapping z
to itself and mapping xη̄�(m,n) to bcη(η̄�(m,n))z, contradicting the choice of ā(η). So
G2 = G1/Zz is [NOT?] Whitehead indeed.

Now clearly for some canonical∗ Z-construction x, Gx = G−x ⊕ Zz, and easily

G2
∼= G−x and G2 is a direct summand of Gx so (by well-known facts in group

theory) Gx is also not a Whitehead group. The cardinality and freeness demands
are obvious.

[I marked the most obvious typos, but this entire page needs to be
rechecked.]
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2) For transparency, we ignore the “Whitehead” condition. Recall we assume x has
the ℵ0-black box property, not just the ℵ0-pre-black box (see 1.7(1),(4)).

Let 〈Λα : α < |Λx|〉 and 〈ν̄α : α < α∗〉 be as in Definition 1.7(4). Let 〈hη̄ : η̄ ∈
Λα〉 be an ℵ0-BB. We define a (Z,x)-construction x by choosing (zη̄, āη̄) for η̄ ∈ Λα
by induction on α such that:

•1 zη̄ = z0 = z if α = 0 (alternatively, omit z).

•2 zη̄ = zα = xν̄α if η̄ ∈ Λ1+α

•3 For η̄ ∈ Λα, āη̄ is chosen such that there is no homomorphism h from Gη̄
into Z such that

(
h(xη̄�(m,i)), h(zα)

)
is coded by hη̄(η̄ � (m, i)).

So if h ∈ Hom(Gx,Z) then α < α∗ ⇒ h(zα) = 0. But
⊕
α
Zzα = G0 so h � G0 is

zero, but Gx/G0 is divisible hence h is zero.
Alternatively, omitting “G = Gx;” this follows easily by repeated amalgamation

of the G constructed in part (1) over pure subgroups isomorphic to Z. (See the
proof of 2.12(3) or e.g. [She16, §3].) �2.9

∗ ∗ ∗

Now Claim 2.9 (as stated) is enough, when we use §1 to get ℵω·n-free x with
χ-BB, (see 1.28(1),(2)). However, it is not enough for ℵω1·n-free, because there we
need for ∂ = ℵ1, J = Jbd

κ ×Jbd
σ , and σ < κ regular: in particular, (σ, κ) = (ℵ0,ℵ1).

So we better use the construction from Definition 2.4 rather than 2.2. Also we prefer
to have general R-modules and we formalize the relevant property of R, ∂̄, J̄ , θ. We
use RR to denote R as a left R-module.

Definition 2.11. 1) We say that (∂̄, J̄) ‘θ-fits R’ (or R is (∂̄, J̄ , θ)-fit)24 when:

(A) (a) R is a ring.

(b) k ≥ 1 is a natural number.

(c) ∂̄ = 〈∂` : ` < k〉
(d) ∂` is a regular cardinal.

(e) J̄ = 〈J` : ` < k〉
(f) J` is an ideal on ∂`.

(B) If G0 =
⊕
{Rxm,i : m < k, i < ∂m}⊕Rz, h ∈ Hom(G0,RR), and h(z) 6= 0

then there is G1 such that
(∗) (α) G1 is an R-module extending G0.

(β) G1 has cardinality < θ.

(γ) There is no homomorphism from G1 to RR (i.e. R as a left
R-module) extending h.

1A) We replace “fit” by “weakly fit” when in clause (B) we further demand that
h(xm,2i) = h(xm,2i+1).

2) We say (∂̄, J̄) freely θ-fits25 R (or R is (∂̄, J̄ , θ)-fit) when:

(A) (a)-(f) As above.

(B) As above, adding
(∗) (δ) If m∗ < k ∧ w ∈ Jm∗ then G1 is free over⊕

{Rxm,i : m < k, i < ∂m and m = m∗ ⇒ i ∈ w} ⊕Rz.

24 But if ∂̄ = ∂̄x and J̄ = J̄x, then we may write x instead of (∂̄, J̄).
25 But if ∂̄ = ∂̄x and J̄ = J̄x, then we may write x instead of (∂̄, J̄).

Paper Sh:1028, version 2024-10-10. See https://shelah.logic.at/papers/1028/ for possible updates.



ABELIAN GROUPS, PCF AND BLACK BOXES 39

3) In part (1) above (and also parts (4)-(6) below) we may write (∂, J,k) instead
of (∂̄, J̄) when ` < k ⇒ ∂` = ∂ ∧ J` = J . Also, we may omit J̄ (or J) when
` < k⇒ J` = Jbd

∂`
.

4) Above, we may replace “J` is an ideal on ∂`” by J` ⊆ P(∂`).

5) We may omit θ when θ = |R|+ + max{∂+
m : m < k}.

6) We replace fit by ‘I-fit’ when:

(A) I is a set of ideals of R, closed under finite intersections, including I0 ..=
{0R}.

(B) We may replace Rz by (R/I)z for I ∈ I. The default value of I is{
{a : ab = 0} : b ∈ R

}
.

(C) In (1)(B)(∗), if x ∈ G1 \ {0} then ann(x,G1) ..= {a ∈ R : ax = 0} ∈ I.

Claim 2.12. 1) Assume x is a k-c.p., R is a ring, x does θ-fit R, χ+ ≥ θ + |R|+,
and x has (χ,k, 1)-BB.

There is x such that:

(a) x is an (R,x)-construction.

(b) G = Gx is an R-module of cardinality |Λx|.
(c) There is no h ∈ Hom(G,RR) such that h(z) 6= 0.

(d) x is simple; that is, zη̄ = z for η̄ ∈ Λx.

2) If in addition x freely θ-fits R, then we can add:

(e) G is σ-free if x is σ-free. (This always holds for σ = min(∂̄x).)

(f) G is (θ2, θ1)-1-free if x is (θ2, θ1)-free.

3) In (2) we can add:

(g) Hom(G,RR) = 0.

4) Above, we can use “weakly fit.”

Proof. Let G∗ ..=
⊕
{Rxη̄ : η̄ ∈ Λx,<k} ⊕Rz. (See more in [S+c].)

1) Let {(a1
ε, a

2
ε) : ε < χ} list (possibly with repetitions) the members of

R× (R \ {0R}),
let b be a (χ,k, 1)-BB for x, and let b′,b′′ be defined such that

ε = bη̄(m, i)⇒ b′η̄(m, i) = a1
ε ∧ b′′η̄(m, i) ..= a2

ε.

For η̄ ∈ Λx, let

G0
η̄

..=
∑
i<∂m

∑
m<k

Rxη̄�(m,i) ⊕Rz ⊆ G∗,

let hη̄ be the unique homomorphism from G0
η̄ into RR satisfying

hη̄(xη̄�(m,i)) = b′η̄(m, i) and hη̄(z) = b′′η̄(0, 0),

and let G1
η̄ be an R-module extending G0

η̄ such that (G1
η̄, G

0
η̄, hη̄) here are like

(G1, G0, h) in Definition 2.11(1)(B)(∗), so in particular there is no homomorphism
from G1

η̄ into RR extending hη̄.

Without loss of generality, G1
η̄ ∩G0 = G0

η̄ and 〈G1
η̄ \G0

η̄ : η̄ ∈ Λx〉 is a sequence of

pairwise disjoint sets. Let G be the R-module generated by
⋃

η̄∈Λx

G1
η̄∪G0 extending

each G1
η̄ and G∗, freely except this.
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[Freely generated except what? Except the conditions that it be an
extension of the submodules?]

Clearly we have defined anR-construction x with xx = x, Gx = G, and zx,η̄ = {z},
and clauses (a),(b),(d) of the desired conclusion hold. To prove clause (c), assume
towards contradiction that h ∈ Hom(G,RR) satisfies h(z) 6= 0. Let g : Λx,<k → χ
be defined by

ν̄ 7→ min
{
ε < χ :

(
h(xν̄), h(z)

)
= (a1

ε, a
2
ε)
}
.

Clearly the function is well defined, hence as x has (χ,k, 1)-BB (that is, by the
choice of b) there is η̄ ∈ Λx such that

m < k ∧ i < ∂m ⇒ g(η̄ � (m, i)) = bη̄(m, i).

We get an easy contradiction.
What about the cardinality |G|? Note that |G1

η̄| < θ and θ ≤ χ+.

2) In the proof of part (1), choosing G1
η̄ we add the parallel of clause (∗)(δ) of

2.11(2)(B). Now clause 2.12(2)(e) holds by 2.6(1), and clause (f) by 2.8(2).

3) Let G be as constructed in part (1), and let

Y ..= {y ∈ G : G/Ry is ℵ1-free, or even min(∂̄)+-free}

(recall 2.6 plus the freeness of x).
So by part (2) the set Y generates G. Let 〈G%, hρ : % ∈ ω>Y 〉 be such that G% is

an R-module and h% is an isomorphism from G onto G%. Without loss of generality
0G% = 0 for every % and G%1

∩G%2
= {0} for %1 6= %2.

Let H1
..=

⊕
%∈ω>Y

G%, and let H0 be the R-submodule of H1 generated by

X ..= {h%ˆ〈y〉(z)− h%(y) : % ∈ ω>Y and y ∈ Y }.

Let H ..= H1/H0, and we shall prove that it is as required (on G). The main point
is proving Hom(H,RR) [is trivial? / empty?]

That is, toward contradiction f0 ∈ Hom(H,RR) is not zero and f1 ∈ Hom(H1,RR)
be defined by f1(x) = h(x+H0),

[Where is f0 used?]
so also f1 is not zero but x ∈ X ⇒ f1(x) = 0. By the choice of H1, there is

% ∈ ω>Y such that f1 � G% is not zero. But recall that G is generated by Y , hence
G% is generated by {f1, h%(y) : y ∈ Y }. Hence for some n ≥ 1, y0, . . . , yn−1 ∈ Y ,
and b0, . . . , bn−1 ∈ R \ {0R}, we have

f1

(
hρ
( ∑
`<n

b`, y`
))
∈ R \ {0},

hence

f1(h%(b`y`)) = f1(b`h%(y`)) 6= 0

for some ` < n. So letting y = h%(y`), we have y ∈ G% and

c?? = f1(b h%(y`)) = f2(b y))

for some ` ∈ R \ {0}.
[So these guys aren’t b`s? b hasn’t been defined yet.]
As said above, we have

f1(y) = f1(h%(y`)) = f1(h%ˆ〈y`〉(z)),

so f1(h%ˆ〈y`〉(z)) = b ∈ R\{0}. So h%ˆ〈y`〉 ◦ f1 ∈ Hom(G,RR) maps z to b ∈ R\{0},
a contradiction.

4) Similarly, but replacing xη̄ (for η̄ ∈ Λx,<k) by xη̄,ζ (for ζ < |R|+). Let us
elaborate.
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Let
〈
(α0,ε, α1,ε, aε) : ε < χ

〉
list the members of{

(α0, α1, a) : α0 < α1 < χ and a ∈ R \ {0R}
}
,

possibly with repetitions, let b be a (χ,k, 1)-BB for x, and let bι for ι = 0, 1, 2
be the functions with the same domain as b (writing bιη̄(m, i) or bη,ι(m, i) for
bι(η̄,m, i)) such that ε = bη̄(m, i) implies

〈αε,0, αε,1, αε,2〉 =
(
b0
η̄(m, i),b1

η̄(m, i),b2
η̄(m, i)

)
.

[αε,2 hasn’t been defined anywhere.]
Let G0

..=
⊕
{Rxη̄,ε : η̄ ∈ Λx,<k and ε < χ}.

(∗)1 For η̄ ∈ Λx, let
(a) G0

η̄
..=
∑
ε<χ

∑
m<k

∑
i<∂m

Rxη̄�(m,i),ε

(b) G0,0
η̄ =

∑
m<k

∑
i<∂m

(
Rxη̄�(m,i),bη̄,1(m,i) − xη̄�(m,i),bη̄,0(m,i)

)
⊕Rz

(c) G0,1
η̄ = G0,0 ⊕Rz

(d) hη̄ is the homomorphism from G0,0
η̄ into R such that:

• hη̄ � G0,0 is constantly zero.

• hη̄(z) ..= bη̄,2(0, 0) ∈ R \ {0}.
(e) Let hη̄ be the isomorphism from

G0 =
⊕
{Rxη̄�(m,i) : m < k, i < ∂m} ⊕Rz

[That’s not the same as how G0 was just defined above.]

onto G0,1
η̄ such that hη̄(z) = z and

hη̄(xm,i) = xη̄�(m,i),bη̄,1(m,i) − xη̄�(m,i),bη̄,0(m,i).

(f) Let G•η̄,1 be an R-module extending the R-module G•η̄ such that the
triple G•0, Gη̄,1, h

•
η̄ ◦ hη̄) is as in 2.11(1)(B)(∗).

[None of these guys have beend defined anywhere.]

(g) Let h+
η̄ , G

1
η̄ be such that G1

η̄ is an R-module extending G0
η̄ and h+

η̄ is

an isomorphism from G•η̄,1 onto G1
η̄ extending hη̄.

Lastly,

(∗)2 Without loss of generality G1
η̄ ∩ G0 = G0,0

η̄ , 〈G1
η̄ \ G

0,0
η̄ : η̄ ∈ Λx〉 are

pairwise disjoint, and G∗1 is an R-module extending G0 and G1
η̄ for η̄ ∈

Λx, and generated by their union freely (except the equations implicit in
“extending” above).

Note:

(∗)3 If h ∈ Hom(G,RR) satisfies h(z) 6= 0R then we define a function
c : Λx,<k → χ as follows. c(η̄?) is the minimal ε < χ such that:
• h(xη̄,αε,0) = h(xη̄,αε,1)

• h(z) = aε.

So indeed, H ..= H1/H0 is as required. �2.12

Remark 2.13. We can use a 2χ-BB b, and then let c(η̄) code(
h � {xη̄,ε : ε < χ}, h(z)

)
.
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Remark 2.14. 1) There is an alternative to the proof of 2.12(3): assume that x has
ℵ0-well-orderable (χ,k, 1)-BB α, as witnessed by Λ̄ (see Definition 1.31). We then
can find a (R,x)-construction obeying Λ̄ (see 2.4(1B)).

2) It may suffice for us to prove in 2.12 that x is simple and Rz is not a direct
summand of the R-module Gx. For this, we can weaken the demand in Definition
2.11(1)(B) demanding h(z) = 1R.

Claim 2.15. 1) If ∂ = ℵ0, J = Jbd
∂ , and k = 1, then (∂, J,k, θ) freely fits R when:

�1 (a) R is an infinite ring.

(b) If D ∈ R \ {0} and d̄ ∈ ωR, then we can find aιn ∈ R for ι = 1, 2, 3
and n < ω such that the following set Γ of equations cannot be solved
in R:

Γ = {anxn+2 = xn + dn + bnD : n < ω}.
[Why aren’t there any aιn-s? I just see an and bn.]

2) For ∂, J,k as above, (∂, J,k, θ) weakly freely fits R when:

�2 (a) As above.

(b) For every D ∈ R \ {0}, letting d̄ be constantly 0R, the demand in �1

above holds. I.e. there are an, bn ∈ R for n < ω such that the following
set Γ of equations is not solved in R:

Γ = {anxn+1 = xn + bnD : n < ω}.
[That’s not the same set of equations.]

3) If R is an infinite ring, then �1 holds when:

�3 (a) As above.

(b) (R,+) is ℵ1-free (or at least
⋂
n≥2

nR = {0}).

Proof. 1) We should check all the clauses in Definition 2.11(2). First, Clause (A) is
obvious: R is a ring by �1(a) and k = 1 > 0 by our assumption. Of course (letting
∂̄ = 〈∂〉 and J̄ = 〈Jbd

∂ 〉) ∂ = ℵ0 is regular and Jbd
∂ = Jbd

ℵ0
is an ideal on ∂.

Second, toward proving Clause (B), assume26

G0
..=
⊕
i<∂

Rx0,i ⊕ Zz,

h0 ∈ Hom(G0,RR), and D ..= h0(z) 6= 0R, and let D−n = h(x0,n). We should find
G1 satisfying (B)(∗) there. Let 〈(a•n, bn) : n < k〉 be as guaranteed by �1(b) of the
claim for D and 〈dn : n < ω〉 from above.

For each n < ∂, let G∗n
..= G0 ⊕ Ryn be an R-module; clearly there is an

embedding gn : G∗n → G∗n+1 such that gn � G0 = idG0 and

gn(yn) = a•nyn+1 + x0,n + bnz,

where the an, bn ∈ R are from �1(b) for our h.
By renaming, without loss of generality G∗n ⊆ G∗n+1 and gn is the identity on

G∗n. Lastly, let G1
..=
⋃
n
G∗n and it suffices to prove that (∗) of Definition 2.11(2)(B)

is satisfied. Clearly G1 is an R-module extending G0; i.e. (∗)(α) holds. Also,

|G1| ≤ ℵ0 + |G0| = ℵ0 + ℵ0 · |R| = |R| < |R|+ = θ

(recalling R is an infinite ring), so also (∗)(β) holds.

26 Note that m = 0 is fixed below, as m < k ..= 1.
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Lastly, to prove (∗)(γ), toward contradiction assume h2 ∈ Hom(G1,RR) extends
h. Let cn ..= h2(yn) ∈ R. Now:

(∗)1 (a) c̄ = 〈cn : n < ω〉 ∈ ωR

(b) ancn+1 = anh1(yn+1) = h2(a1
ηyn+1) = h2(yn + x0,n + bnz)

= h2(yn) + h1(x0,n) + bnh2(z) = cn + dn + bnD.

So c̄ solves (in R) the set of equations Γ = {anzn+1 = zn + dn + bnD : n < ω},
contradicting the choice of

〈
(an, hn) : n < ω

〉
.

We still have to justify the “freely;” i.e. clause (δ) of 2.11(2)(B)(∗). So let
m∗ < k (i.e. m∗ = 0) and w ∈ J0 = Jbd

∂ (so w is finite) and let G0
..=
⊕
i∈w

Rx0,i.

Let n∗ be such that sup(w) < n∗, and we easily finish by noting:

(∗)2 The sequence 〈yn : n > n∗〉ˆ〈x0,m : m ≤ n∗〉ˆ〈z〉 generates G1.

[Why? Freely, it generates G1 because x0,m = anym+2 − bmym for m > n∗; use
yn = anyn+1 − x0,n − bnz by downward induction on n ≤ n∗. Translating the
equations, they become trivial.]

2) Similarly, but we choose gn such that

gn(yn) = anyn+1 + (x0,2n − x0,2n+1) + bnzn.

3) Choose bn = 1R, an : n! · 1R.
[I don’t know what this means.] �2.15

Claim 2.16. 1) The quadruple (∂, J,k, θ) freely fits Z when:

(a) θ = ℵ2, ∂ = ℵ2 and k > 0.

(b) J = Jbd
ℵ1
× Jbd
ℵ0

(But pedantically, we use the isomorphic copy

Jℵ1∗ℵ0
= {A : for some nα < ω, for α < ω1 and i∗ < ω1, we have

A ⊆ {ω · i+ n : i < i∗ ∨ n < nα}
}

;

hence it is better to use J = Jbd
ℵ1
� Jbd
ℵ0

.)

[I don’t see what i∗ and nα are doing for this. If A just has to be contained
in some set of this form for some nα and i∗, why can’t we just say
‘P({ω · i+ n : i < ω1, n < ω})?’]

2) The quadruple (ℵ1, J,k, θ) freely fits R when:

(a), (b) As above.

(c) θ = ℵ2 [This is in (1)(a), so it’s already assumed.]

(d) Given bα,n ∈ R for α < ω1 and n < ω, and t ∈ R \{0R}, there are pairwise
distinct ρα ∈ ω2 for α < ω1 and aα,n, dα,n ∈ R such that the following set
of equations is not solvable in R:

• dα,n+1 · y1
α,n+1 = y1

α,n − y2
ρα�n − bα,n − aα,nt.

3) Similarly for “weakly fit.”

Remark 2.17. 1) Probably we can use ∂̄ = 〈∂` : ` < k〉 with ∂` ∈ {ℵ0,ℵ1}, but
there is no real need so far.

2) This is essentially [She80, §4] and [She13b, 4.10(C)=L5e.28].
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Proof. 1) Proving clause (A) of 2.11(1) and clause (∗)(δ) of 2.11(2)(B) is easy as in
2.15, so we concentrate on 2.11(1)(B).

So let G0, h be as in 2.11(1)(B). Choose pn by induction on n as follows: p0 = 2,
and pn+1 will be the first prime > pn + n such that

pn+1!

cn+1 − n
>
√
pn+1!,

where cn ..=
∏
m<n

pm!.

[Wouldn’t it be easier to say pn+1! > (cn+1 − n)2?]

Now observe that:

� For n ≥ 100, there is Cn ⊆ {0, 1, . . . , (pn!)− 1} such that if b ∈ Z and t ∈ Z
satisfies 0 < |t| < n, then for some a0, a1 ∈ Z we have

• b+ cna0t ∈
⋃
{i+ (pn+1!− 1)Z : i ∈ Cn}

• b+ cna1t /∈
⋃
{i+ (pn+1!)Z : i ∈ Cn}.

[Why? It suffices to consider b ∈ {0, . . . , pn! − 1} and t ∈ {`,−` : 0 < ` ≤ n}, and
let

Ab,t ..= {b+ cnat : a ∈ Z} ∩ {0 . . . , pn+1!− 1}.
Clearly

|Ab,t| =
pn!

cn · |t|
>
√
pn!.

The family {
Ab,t : b ∈ {0, . . . , pn+1!− 1}, t ∈ {`,−` : 0 < ` ≤ n}

}
has at most 2n(pn!) members. Easily, the number of C ⊆ {0, . . . , pn!−1} such that

(∃Ab,t)[C ⊇ Ab,t ∨ C ∩Ab,t) = ∅]

is27 < 2
√
pn+1!, hence there is Cn as required.]

Let Ω ⊆ ω2 be of cardinality ℵ1 and 〈ρα : α < ω1〉 list Ω without repetitions.
Let G be freely generated by

{xm,α : α < ℵ1, m < k} ∪ {y1
ρ,n : ρ ∈ Ω, n < ω} ∪ {y2

% : % ∈ ω>2} ∪ {z},

except for the equations:

(∗)1
α,n pn! · y1

α,n+1 = y1
α,n − y2

ρα�n −
∑
m<k

xm,ω·α+n − aα,nz

where aα,n ∈ Z are chosen below.
Let ā ..= 〈aα,n : α < ω1, n < ω〉 (so really G = Gā) and let

āα,<n ..= 〈aα,i : i < n〉.
Note that in G,

(∗)2
α,n y1

α,0 = cny
1
α,n +

∑
i<n

ci ·
(
y2
ρα�i +

∑
m<k

xm,ω·α+n + aα,iz
)
.

Define

(∗)3
α,n bα,n ..=

∑
i≤n

h
( ∑
m<k

ci · xm,ω·α+n

)
∈ Z.

27 In other words, for each b, t above a random C ⊆ {0, . . . , pn+1!− 1} has probability

≤ 21−|Ab,t| ≤ 21−
√
pn!

to include Ab,t or to be disjoint to it. So the probability that this occurs for some pair (b, t) in

≤ 2 · |{Ab,t : b, t is as above}| / 2
√
pn! ≤ 4n(pn!) / 2

√
pn!, which is � 1.
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Recall that G0, h are as in 2.11(1)(B). Let n∗ ..= |h(z)| (so n∗ > 0). We choose
aα,n ∈ Z by induction on n such that if n > |h(z)| then

(∗)5
α,n ρα(n) = 1 iff bα,n +

∑
i≤n

ciaα,ih(z) is equal to some a ∈ Cn modulo N , for

some N < pn!.

[Why is this possible? Arriving at n, the sum on the right side is

bα,n +
∑
i≤n

ciaα,ih(z) ∈ Z,

with the first two summands being already determined; i.e. they are computable
from āα,<n and |h(z)| ≤ n. Applying � with

(
n, h(z), bα,n +

∑
i<n

ciaα,ih(z)
)

here

standing for (n, t, b) there, we get there a0 and a1. Let

aα,n ..=

{
a0 if ρα(n) = 0

a1 if ρα(n) = 1.

So for every n, aα,n is as required and can be chosen.]

Having chosen ā = 〈aα,m : α < ω1,m < ω〉, the Abelian group G = Gā is chosen.
Hence we just have to prove that G is as required in clause (B) of 2.11(1),(2). First,
for 2.11(1)(B):

� Toward contradiction, assume that f ∈ Hom(G,Z) extends h and n∗ =
|f(z)| is > 0.

hence (for every α and n, applying fn to the equation in (∗)2
α,n):

(∗)6
α,n f(y1

α,0) = cn!f(y1
α,n)+

∑
i<n

cif(y2
ρα�i)+

∑
i<n

∑
m<k

cif(xm,ω·α+i)+
∑
i<n

ciaα,nf(z).

So recalling |h(z)| = n∗, for some ρ∗ ∈ n∗+1002 and a∗ ∈ Z, we have |S| = ℵ1, where

S ..= {α < ℵ1 : f(y1
α,0) ≡ a∗ and ρα � (n∗ + 1) = ρ∗}.

So choose α < β from S and let n ..= min{` : ρα(`) 6= ρβ(`)}; clearly we have
n > n∗ hence n ≥ n∗ + 1 ≥ 2. Subtracting the equations (∗)6

α,n+1, (∗)6
β,n+1, in the

left side we get a multiple of cn+1 (so a number divisible by pn!) and in the right
side we get the sum of the following four differences:

�1 f(y1
α,0)−f(y1

β,0), which is zero by the choice of S and the demand α, β ∈ S.

�2

∑
i≤n

ci f(y2
ρα�i)−

∑
i≤n

ci f(y2
ρβ�i), which is zero as i ≤ n⇒ ρα � i = ρβ � i.

�3

∑
i≤n

∑
m<k

ci f(xm,ω·α+n)−
∑
i≤n

∑
m<k

ci f(xm,ω·β+n), which (recalling (∗)3
α,n +

(∗)3
β,n) is equal to bα,n − bβ,n by the choice of bα,n, bβ,n, as f and h agree

on G0.

�4

∑
i≤n

ci aα,if(z)−
∑
i≤n

ci aβ,if(z).

Hence (recalling f(z) = h(z))

� bα,n +
∑
i≤n

ci aα,ifα(z)−
(
bβ,n +

∑
i≤n

ci aβ,nf(z)
)

is divisible by pn! in Z.
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But by the choice of aα,n (i.e. by (∗)5
α,n) we know that bα,n +

∑
i≤n

ci aα,nf(z) is

equal to some i ∈ Cn modulo pn! iff ρα(n) = 1. Similarly for β, but ρα(n) 6= ρβ(n),
in contradiction to �. So indeed, � leads to contradiction. This means that the
demand in 2.11(1)(B) is satisfied. Second, recall that we need to verify the “freely
fit.” This means that

~1 For ā as above and w ∈ J , the Abelian group Gā/
⊕
α∈w

Zxα is free.

~2 Gā is free.

[Why? Easy.]

Hence

~3 Without loss of generality w = {ωα + n : α < α∗ or α < ω1 � n < n∗α} for
some α∗ < ω1 and n∗α < ω for α < ω1.

[Not doing anything drastic to a paper that’s existed for a while, but
this is the exact reason why lowercase italic w needs to be banned as a
variable, without exceptions.]

Now,

~4 Letting

G∗ ..=
⊕
%∈ω>2

Zy2
% ⊕

⊕
α<ωα∗

ZXα

and Bω ..=
⊕
{ZXα : α ∈ ω, α ≥ ωα∗},

[How can α be both ∈ ω AND be bigger than a multiple of ω?]
we have

(a) Gω +G∗ = Gω ⊕G∗
[Why? Check.]

(b) It suffices to prove Gā/(Gω ⊕G∗) is free.

[Why? By (a).]

(c) Gā/(Gω ⊕G∗) is the direct sum of〈
H ′α

..= Hα + (Gω ⊕G∗)/Gω ⊕G∗ : α ∈ [ωα∗, ω1]
〉
,

where Hα is the subgroup of Gā generated by

{Xωα+n : n < ω} ∪ {y1
α,n : n < ω} ∪ {y2

ρα�n : n < ω}.

[Why? Check.]

(d) It suffices to prove each H ′α is a free Abelian group.

[Why? By (c).]

(e) H ′α is isomorphic to

Hα/
⊕( ⋃

n<ω
Zy2

ρα�n ∪
⋃

n<nα

ZXωα,n

)
.

[Why? Check.]

(f) H ′α is indeed free.

[Why? By the same proof as in 2.15.]

So (∂, J,k, θ) does indeed freely fit Z.

2) We can fix G0
..=
⊕
{RXm,i : m < k, i < ∂m} ⊕Rz and h ∈ Hom(G0,RR) such

that h(z) 6= 0. Let Ω, 〈ρα : α < ω1〉 be as in the proof of part (1).
We are given bα,n = h(xm,ωα+n) (for α < ℵ1, n ∈ N) and t = h(z) from R. We

shall choose 〈
(aα,n, dα,m) : α < ω1, n < ω

〉
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and will let G be the R-module generated by

{xm,α : α < ℵ1, m < k} ∪ {y1
α,n : α < ℵ1, n < ω} ∪ {y2

% : % ∈ ω>2} ∪ {z};
freely, except the equations

(∗)α,n dα,n y
1
α,n+1 = y1

α,n + y2
ρα�n +

∑
m<k

xm,ω·α+n − aα,nz.

Hence

(∗)′α,n y1
α,0 =

( ∏
`<n

dα,`
)
y1
α,n +

∑
i<n

( n−1∏̀
=i

dα,`
)
y2
ρα�` +

∑
i<n

∑
m<k

(
n−1∏̀

=i

dα,`)xm,ω·α+n +

∑
i<n

( n−1∏̀
=i

d`
)
aα,iz.

Now continue as in the proof of part (1). �2.16

We now can put things together.

Theorem 2.18. 1) For every k ≥ 1 there is an ℵω1·k-free Abelian group G which
is not Whitehead, and even Hom(G,Z) = 0.

2) If the ring R satisfies the demands in clause (2)(c) from 2.16
[Clause (2)(c) is ‘θ = ℵ2;’ it’s not a demand on R at all.]
then for every k there is an ℵω1·k-free R-module such that Hom(G,RR) = 0 and

Ext(G,RR) 6= 0.

Proof. 1) Given k, we use 1.28 to find a c.p. x which is ℵω1·k-free and has χ-BB,
where χ ..= |R|+ ℵ1 and J ..= Jbd

ℵ1
� Jbd
ℵ0

. Now apply 2.16(1) so (ℵ1, J, k,ℵ1) fits Z,
and by 2.12(1),(2) we get the desired conclusion.

2) Similarly, but now we use 2.16(2) rather than 2.16(1). �2.18
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§ 3. Forcing

The main result of the former section is the existence, in ZFC, of ℵω1·n-free
Abelian groups G (for every n ∈ ω) such that Hom(G,Z) = 0. The purpose of this
section is to show that this result is best possible in the sense of freeness amount.
Assuming the existence of ℵ0-many supercompact cardinals in the ground model,
we shall force the following statement. ‘For every non-trivial ℵω1·ω-free Abelian
group G, Hom(G,Z) 6= 0.’

This section is divided into two subsections. §3(A), like §1, is combinatorial; we
describe a general framework for dealing with freeness of R-modules (this continues
[She85], [She96] and [She19]; but have to work more).

In §3(B) we rely on forcing. We focus on R = Z (hence R-modules are simply
Abelian groups), and we prove the main consistency result in Theorem 3.9 which
relies on Magidor-Shelah [MS94]. The proof is based on the context of §3(A), with
double meaning.

§ 3(A). Freeness Classes.

Context 3.1. 1) R is a ring with no zero divisors and is hereditary (see 2.1(1A)).

2) K is the class of R-rings, closed under sums.
[R is a ring. Did you mean ‘R-module?’]

3) K∗ will denote a subclass of K.

Definition 3.2. 0) KW ⊆ K will denote the class of Whitehead modules.
That is, M is a Whitehead module if Ext(M,RR) = 0. Equivalently, if

N1 ⊆ N2 are R-modules, N2/N1
∼= M , and h1 ∈ Hom(N1,RR) then there is

h2 ∈ Hom(N2,RR) extending h1.

1) We say K∗ is a λ-freeness class inside K when:

(a) K∗ ⊆ K<λ, where for any cardinality θ we define

K<θ
..= {M ∈ K : ‖M‖ < θ}.

(b) K∗ is closed under isomorphisms.

For simplicity, λ > |R|.

1A) We say K∗ is hereditary when K∗ is closed under pure submodules; i.e.

M ⊆pr N ∈ K∗ ⇒M ∈ K∗.

In part (1), we may omit K when clear from context.
[K was defined in 3.1(2). It’s not going to change or vary.]

2) We say M ∈ K is K∗-free when there is M = 〈Mα : α ≤ α∗〉 which is [purely /
strictly] increasing continuous, M0 is the zero module,

α < α∗ ⇒Mα+1/Mα ∈ K∗,

and Mα∗ = M .

2A) M ∈ K is (λ,K∗)-free when every M ′ ⊆pr M of cardinality < λ is K∗-free.

3) K∗<θ
..= K∗ ∩K<θ, for any cardinal θ.

4) The class K∗ is called a (λ, κ)-freeness class when K∗ is a λ-freeness class, K∗
is hereditary, and if M ∈ K<λ \K∗ then there is N ⊆pr M from K<κ \K∗.

The main example here is:
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Claim 3.3. Assume R = Z, λ ≥ ℵ1, and K = the class of R-modules, and let
Kwhu = K∗ ..= KW∩K<λ (the class of Whitehead modules of cardinality < λ) and
Kfr

..= {M ∈ K<ℵ1 : M free}.

0) Kfr is a hereditary ℵ1-freeness class.

1) If λ > ℵ2 and MA<λ then K∗ is a hereditary (λ,ℵ2)-freeness class.

2) If M ∈ K is K∗-free then M is a Whitehead group.

3) If M1 ⊆pr M2, M2/M1 is K∗-free, and h1 ∈ Hom(M1,RR) then there is h2 ∈
Hom(M2,RR) extending h1.

4) K∗∗ ..={
M ∈ K<λ : for every ccc forcing P1, for some ccc forcing notion P2

satisfying P1 l P2, we have P2
“M is a Whitehead group”

}
is a (λ,ℵ2)-freeness class.

Proof. 0) Obvious, as Z is countable.

1) The first property in 3.2(4) holds trivially by the choice of K∗. As for the second
property, it is well known that K∗ is a hereditary class; see [Fuc73]. The third
property in 3.2(4) follows from the full characterization of being Whitehead for
Abelian group G of cardinality < λ when MA<λ holds, (not just proving “strongly
ℵ1-free is enough”). In particular, G is Whitehead if every subgroup of cardinality
≤ ℵ1 is Whitehead (see [EM02]).

2) Follows by (3).

3) Without loss of generality let M = M2/M1 and π ∈ Hom(M2,M) be surjective
with kernel M1. Let 〈M ′α : α ≤ α∗〉 be as in 3.2(4) for M and let Nα = π−1(M ′α):
so 〈Nα : α ≤ α∗〉 is purely increasing continuous, N∗0 = M1, Nα∗ = M2, and
Nα+1/Nα ∈ K∗.

Given h1 ∈ Hom(M1,RR), we choose fα ∈ Hom(Nα,RR) by induction on α,
increasing continuously with α. For α = 0 let fα = h1; for α limit let fα =

⋃
β<α

fβ ;

and for α = β + 1 use Nα/Nβ ∼= M ′α/M
′
β ∈ K∗ and the choice of K∗.

Lastly, h2 = fα∗ is as required.

4) Easy. �3.3

On these freeness contexts, see [She75a] (or even better, [She19] and history there).
Note that in §3(B) we shall use 3.7(B)(c), and for this we need witnesses s from
those references.

Recall (see [She19]):

Definition 3.4. 1) We say c is a pre-1-freeness context when c consists of:

(a) U is a fixed set (we shall deal with subsets of it) or U is an algebra with
universe U (maybe with the set of functions empty). Let c`c(A) be the
closure of the set A ⊆ U in the algebra U; but we may sometimes say U
instead of U.

(b) F a family of pairs of subsets of U ; we may write “A/B is free” or “A is
free over B” for (A,B) in F .

(c) χ, µ will be fixed cardinals such that |τ(U)| ≤ χ < µ ≤ ∞ and

(A,B) ∈ F ⇒ |A|+ |B| < µ.

But if µ =∞ (equivalently, µ > |U |) we may omit it.
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2) For a property P , we say “P (X) for the χ-majority of X ⊆ A” when there is
an algebra B with universe A and χ functions, such that any X ⊆ A closed under
those functions satisfies P . We can replace X ⊆ A by X ∈ P(A) or X ∈ P<λ(A);
alternatively, we may say {X ⊆ A : P (A)} is a χ-majority.

3) We say c is a freeness context when in addition to (a)-(c) of part (1), it satisfies
the following [axioms]:28

Ax.IIµ:

(a) A/B is free iff (A ∪B)/B is free.

(b)µ A/B is free when |B| < µ and A ⊆ B.

Ax.III: [2-transitivity.]
If A/B and B/C are free and C ⊆ B ⊆ A, then A/C is free.

Ax.IVλ,µ: [Continuous transitivity.]
If 〈Ai : i < λ〉 is increasing, Aγ/

⋃
j<i

(Aj ∪ B) is free for [some / all] i ≤ γ < λ,

λ < µ, and |
⋃
i<λ

Ai| < µ then
⋃
i<λ

Ai/B is free.

Let Ax.IV<λ,µ mean ‘θ < λ⇒ Ax.IVθ,µ.’ Ax.IVµ will mean Ax.IV<µ,µ, and
Ax.IV means Ax.IV∞.

Ax.VI: If A is free over B ∪ C, then for the χc-majority of X ⊆ A ∪ B ∪ C, the
pair A ∩X/

(
(B ∩X) ∪ C

)
is free.

Ax.VII: If A is free over B, then for the χc-majority of X ⊆ A ∪ B, the pair
A/
(
(A ∩X) ∪B

)
is free.

4) We say c is a freeness+ context when, in addition,

Ax.I∗∗: If A/B is free and A∗ ⊆ A, then A∗/B is free.

5) We say c is a (λ, κ)-freeness context when in addition, χc ≤ κ, Ax.I∗∗, and if
A/B is not c-free and |A| < λ then for some A′ ⊆ A of cardinality < κ, A′/B is
not c-free.

Definition 3.5. For a λ-freeness class K∗ and R-module G and χ ≥ |R| + ℵ0 (if
equal then χ may be omitted) we define what we call a pre-freeness context

c = cG = cK∗,G,χ

(this is proved in 3.6) as the tuple (U ,A,F , χ) = (Ux,Ac,Fc, χc), where:

(a) U = G as a set, and A is an expansion of G by 〈FA
a : a ∈ R〉 such that if

G |= ax = y and y′ = Fa(y), then G |= ay′ = y. Furthermore, if g ∈ aG
then Fa(g) = 0.

(b) F ..= {A/B : B,A ⊆ U and 〈A ∪B〉A/〈B〉A is K∗-free}.
We may say ‘A/B is c-free,’ so A/B stands for the formal quotient. So

pedantically, this is just the pair (A,B), where 〈B〉G is the minimal pure29

sub-module of G which includes B.

(c) χc = χ (so ≥ |R|+ ℵ0). (And µc =∞.)

28 Adding a superscript+ to an axiom means that whenever “A/B ∈ F” or its negation appear
in the assumption then we demand B to be free over ∅. Of course, Fc = F, χc = χ, etc.

29 Our modules are torsion free; i.e. a ∈ R ∧ x ∈ G ⇒ [ax = 0 ⇔ (a = 0R ∨ x = 0G)]. This

holds when R = Z, and we have no problem. Otherwise, recall we have expanded G to an algebra
A such that A = c`U (A)⇒ A ⊆pr G.
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Fact 3.6. Assume K∗ is a hereditary λ-freeness class and χ ..= |R|+ ℵ0.

1) Being K∗-free has compactness in singular cardinals > λ.

2) For any R-module G∗, c = cK∗,G∗,χ as defined in 3.5 above is a freeness context
and satisfies Ax.I∗∗.

3) Moreover, if K∗ is a (λ, κ)-freeness class (see 3.2(4)) then c is a (λ, κ)-freeness
context (see 3.4(5)).

Proof. 1) By part (2) and [She19], see history there.

2) Check.

3) Easy. �3.6

Claim 3.7. ‘If (A) then (B),’ where:

(A) (a) K∗ is a (λ, κ)-freeness class (see Definition 3.2(4)).

(b) G ∈ K is (K∗, λ)-free [but] not K∗-free (see Definition 3.2(2),(2A)).
Fix such G of minimal cardinality, [and call that cardinality] µ.

(c) c = cK∗,G,κ (see Definition 3.5(1)).

(B) There is a witness s for G in the context30 c such that:
(a) Bs

〈 〉 = ∅ and Bs
〈 〉+ ⊆ G, so λ(〈 〉, Ss) ≤ ‖M‖.

(b) If η /∈ fin(Ss) then λs,η ≥ λ.

(c) If ηˆ〈δ〉 ∈ Ss then cf(δ) /∈ [κ, λ).

(d) If η ∈ fin(Ss) then Bs,η+ \Bs,η has cardinality < κ.

Proof. By 3.6, we can apply 3.8 below. �3.7

Claim 3.8. ‘If (A) then (B),’ where:

(A) (a) c is a freeness context satisfying Ax.I∗∗.

(b) c is a (λ, κ)-freeness context.

(c) A/B is a λ-free (but not free) pair, with |A| minimal.

(B) There is a witness s such that
(a) Bs

〈 〉 = B and Bs
〈 〉+ ⊆ A (so λ ≤ λ(〈 〉, Ss) ≤ |A|).

(b) If η /∈ fin(Ss) then λs,η ≥ λ.

(c) If ηˆ〈δ〉 ∈ Ss then cf(δ) /∈ [κ, λ).

(d) if η ∈ fin(Ss) then Bs,η+ \Bs,η has cardinality < κ.

Proof. Now,31 there is a disjoint witness s for A/B being non-c-free. So without
loss of generality (n = n(s) is well-defined, and . . .) for some λ̄∗ = 〈λ∗` : ` < n〉,
κ̄∗ = 〈κ∗` : ` < n〉 we have:

(∗)1 (a) For each ` < n, one of the following holds.
(α) λ` is a regular cardinal and η ∈ Ss,` ⇒ λ(η, Ss) = λ∗` .

(β) ` = 0, λ` = ∗, and η ∈ Ss,` ⇒ λ(η, Ss) is inaccessible (possibly
weakly inaccessible).

(b) For each ` < n, either κ` is a regular cardinal and

η ∈ Ss,` ∧ δ ∈W (η, Ss)⇒ cf(δ) = κ`,

or κ` = ∗ and λ`+1 is ∗.

30 See [She85, §2] (and better, [She96, §3]).
31 See [She96, §3], or better yet, see [S+d, 4.5=Ld15].
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Naturally, without loss of generality

(∗)2 s is minimal, which means that: (fixing A and B)

(a) n = n(s) is minimal.

(b) Under condition (a), λ̄∗ is minimal under the lexicographical order.

(c) Under (a)+(b), κ̄∗ is minimal under the lexicographical order.

Now

(∗)3 If η ∈ ini(Ss) then λ(η, Ss) ≥ λ.

[Why? Otherwise, chose a counterexample η with λ(η, Ss) minimal. So by the
definition of a witness, as χc ≤ κ, we have that Bs

η+/Bs
≤η is not free (for (c)) and

Bs
η+ \Bs

η has cardinality λ(η, Ss) (so < λ).

Recalling “c is a (λ, κ)-freeness context”32 there is Cη ⊆ Bs
η+ of cardinality ≤ κ

such that Cη/B
s
≤η is not c-free. So (this follows by the minimality of s) we get a

contradiction, so λ(η, Ss) ≥ λ as promised in (∗)3.]

(∗)4 If ηˆ〈δ〉 ∈ Ss then cf(δ) /∈ [κ, λ).

[Why? As in the proofs in [She85], [She99], for each η ∈ Ss satisfying cf(δ) ≥ κ, by
the minimality [we have]

cf(δ) ∈ {λ(ν, Ss) : ν ∈ Ss, η C ν},
so (∗)4 follows by (∗)3.]

So we are done. �3.8

§ 3(B). The Main Independence Result.

Below, it is reasonable to assume that the ring R is Z, and we assume this
is the nice version. Note that we prove that a non-Whitehead group has a non-
free subgroup of small cardinality, not necessarily a non-Whitehead one. This is
connected to the black boxes here having cardinality (much) bigger than the amount
of freedom. For simplicity, presently we deal with freeness only in hereditary cases.

Recall that µ is supercompact iff for every ∂ there exists an elementary embedding
j : V→M such that M is a transitive class satisfying ∂M ⊆M and ∂ is the critical
cardinal.

[The definition says ‘for every ∂.’ Do you mean ‘. . . the critical
cardinal for j?]

Theorem 3.9. If in V there are ℵ0-many supercompact cardinals, then in some
forcing extension, for µ∗ ..= ℵω1·ω, we have:

⊕µ∗ (a) If G is a nontrivial µ∗-free Abelian group then Hom(G,Z) 6= 0.

(b) If G ⊆ H are Abelian groups, H/G is µ∗-free, and h ∈ Hom(G,Z),
then h can be extended to a homomorphism from H to Z.
(This is an equivalent definition of “H/G is Whitehead;” the reader
may use it here as a definition.)

This will be proved shortly. As usual in such proofs, we make the large cardinal[s
collapse] into quite small ones: so they cannot be really large, but some remnant
of their early largeness remains and is enough for our purpose. This is the rationale
of Definition 3.10 below.

32 See Definition 3.4(5) and 3.6(3).
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Definition 3.10. Let Prλ∗,µ∗,κ∗ mean33

(A) (a) λ∗ > µ∗ > κ∗

(b) λ∗, κ∗ are regular uncountable cardinals.

(c) µ∗ is a limit cardinal.

(B) ‘If (a) then (b),’ where
(a) (α) λ is a regular cardinal ≥ λ∗.

(β) χ > λ, µ < µ∗, and x ∈ H(χ).

(γ) S ⊆ {δ < λ : cf(δ) < κ∗} is a stationary subset of λ.

(δ) uα ∈ [α]≤µ for α ∈ S.

(b) There exist a regular λ′ ∈ (µ + κ∗, µ∗) and an increasing continuous
sequence 〈αε : ε < λ′〉 of ordinals < λ such that the set{

ε < λ′ : αε ∈ S and uαε ⊆ {αζ : ζ < ε}
}

is a stationary subset of λ′.

On the strong hypothesis above, see [She93b]; it is a sufficient condition for the
SCH — i.e.

∂ = cf(µ) ∧ 2∂ < µ⇒ µσ ≤ µ+ ∧ 2∂ = ∂+.

[I don’t know what σ is.]

Definition 3.11. We say the universe V satisfies the strong hypothesis above λ
when: if

χ > cf(χ) ∧ λ > λ+ µ1 ⇒ cf
(
[χ]<µ1 ,⊆

)
≤ χ+,

then λ1 = χ+ and cf(χ) < µ1.

Theorem 3.12. 1) Assume that in V0 there are infinitely many supercompact
cardinals > θ, where θ = cf(θ) ∈ [ℵ1,ℵω1

). Let λ∗ = cf(λ∗) ..= µ+
∗ , µ∗ ..= ℵθ·ω, and

κ∗ ..= θ+.
Then for some forcing notion Q which does not add new subsets to θ, V1

..= VQ
0

satisfies Prλ∗,µ∗,κ∗ .

1A) We can (by preliminary forcing) assume that the universe V1 above also sat-
isfies the GCH above θ (we just use “above µ∗”) and ♦∗λ holds for every regular
uncountable λ above µ∗.

2) If Prλ∗,µ∗,κ∗ holds in V and the ccc forcing P has cardinality λ∗, then Prλ∗,µ∗,κ∗
still holds in VP.

3) Part (1) holds for any freeness+ context (see Definition 3.4(3),(4)).

Proof. 1,1A) Similarly to [MS94, §4,Th.1,pg.807]. As there, let 〈κn : n < ω〉 be
an increasing sequence of supercompact cardinals. Without loss of generality GCH
holds above µ ..=

∑
n
κn (called κ there) and ♦∗χ holds for every χ = cf(χ) > µ. Also

for each n, the supercompactness of κn is preserved by forcing notions which are
κn-directed closed.

We proceed as there, but now in the interval (κn−1, κn), the set of cardinals we
do not collapse has order type h∗(n) + 1.

[You just deleted the definition of h∗.]

2,3) Easy. �3.12

33 We may allow λ∗ = µ∗ here and in 3.13, but then we have to say somewhat more.
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Proof. Proof of 3.9.
Let V1

..= VQ
0 be as in 3.12(1)(1A) with θ = ℵ1 (so κ∗ = ℵ2, µ∗ = ℵω1·ω,

λ∗ = µ+
∗ ) and in V1, let P be a ccc forcing notion of cardinality λ∗ such that

P “MA + (2ℵ0 = λ∗)”. The result follows from Theorem 3.13 below. Clause (d)
there holds because V = VP

1 ; see 3.12(2). �3.9

Recall that the strong hypothesis says that pp(λ) = λ+ for every singular cardi-
nal λ: we rely on §3(A).

Theorem 3.13. The statement ⊕µ∗ from 3.9 holds when V satisfies:

(a) The statement Prλ∗,µ∗,κ∗ from Definition 3.10.

(b) λ∗ = λ<λ∗∗ > µ∗

(c) κ∗ = ℵ2

(d) MA + ‘2ℵ0 = λ∗’, and V satisfies the strong hypothesis above λ∗ (see 3.11
or [She93b]).

Proof. We rely on 3.1-3.8. First, clause (b) of ⊕µ∗ implies clause (a).

[Why? Because if H is a µ∗-free Abelian group, let x ∈ H\{0H} and without loss of
generality x is not divisible by any n ∈ {2, 3, . . .} hence K ..= Zx is a pure subgroup
of H. Let h be an isomorphism from K onto Z. As H is µ∗-free, easily also H/K
is µ∗-free, hence by ⊕µ∗(b) there is a homomorphism h+ : H → Z extending h. So
h+(x) 6= 0Z hence h+ ∈ Hom(H,Z) is non-zero, as required.]

So it suffices to prove clause (b) of ⊕µ∗ . Let R = Z and let K,K∗ be as in Claim
3.3 for λ∗, so K∗ is a hereditary (µ∗,ℵ2)-freeness class34 by 3.3(1).

So toward contradiction, assume G ∈ K is a counterexample of minimal cardi-
nality (call that λ) so G is µ∗-free.

[Where is this cardinality referenced in this proof?]
To get a contradiction and finish the proof, it suffices to assume G1 ⊆pr G2,

G2/G1
∼= G, and h1 ∈ Hom(G1,Z), and prove that there is h2 ∈ Hom(G2,Z)

extending h1. If G is K∗-free (see Definition 3.2(2)) then by 3.3(3) a homomorphism
h2 exists as required.

Hence G is not K∗-free. Let c ..= cK∗,G,θ (see Definition 3.5) so by 3.6(3), c is a
(λ∗, κ∗)-freeness context and by 3.7(2),(3) (with λ∗, κ∗ here standing for λ, κ there)
there is a witness s as there. By 3.3(1) we have λ(〈 〉, Ss) ≥ λ∗.

Let c1
..= cKfr,G,θ; it is a (λ,ℵ1)-freeness context.

[Why? By 3.6, with Kfr (see 3.3) playing the role of K∗.]

Let S1
..= W (〈 〉, Ss), so Bs

〈δ+1〉/B
s
〈δ〉 is not free for c for any δ ∈ S1, so [it] cannot

be µ∗-free for c1 (as we have chosen a counter-example of minimal cardinality).
Hence there is Aδ ⊆ Bs

〈δ+1〉 of cardinality < µ∗ such that Aδ/B
s
〈δ〉 is not free for c1.

Let B′δ ⊆ Bs
〈δ〉 be of cardinality ≤ |Aδ|+ κ∗ such that

B′δ ⊆ B′ ⊆ Bs
〈δ〉 ⇒ Aδ/B

′ is not free for c1,

This exists by properties of Abelian groups, as Bs
〈δ〉 ⊆ B

s
〈δ+1〉 are free and Aδ/B

s
〈δ〉

is not (for c1).
So for some µ < µ∗, the set

S2
..=
{
δ ∈ S1 : |Aδ ∪B′δ|+ κ∗ = µ

}
is a stationary subset of λ(〈 〉, Ss). Let h : λ(〈 〉, Ss)→ Bs

〈λ〉 be one-to-one function

and onto, and let

C ..= {δ < λ(〈 〉, Ss) : h maps δ onto Bs
〈δ〉}.

34 See Definition 3.2(1),(1A),(4).
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It is a club of λ(〈 〉, Ss), hence S3
..= S2 ∩ C is a stationary subset of λ(〈 〉, Ss).

Also, for δ ∈ S3 let uδ ..= {α < δ : h(α) ∈ B′δ}.
By clause (B)(c) of 3.7 (i.e. the choice of s) without loss of generality one of the

following occurs:

(a) δ ∈ S3 ⇒ cf(δ) = κ1 for some regular κ1 < κ∗.

(b) Every δ ∈ S3 has cofinality ≥ λ∗.

Case 1: κ1 < κ∗ is as in clause (a).
Just use Prλ∗,µ∗,κ∗ for λ, S3, 〈uδ : δ ∈ S3〉 to prove G is not a µ∗-free, a contra-

diction.

Case 2: Clause (b) above holds.
For δ ∈ S3, clearly

|uδ| = |Aδ ∪B′δ|+ κ∗ = µ < µ∗ ≤ λ∗ ≤ cf(δ)

hence there is γδ < δ such that uδ ⊆ γδ, hence for some γ∗ < λ the set

S4
..= {δ ∈ S3 : uδ ⊆ γ∗}

is stationary.

Subcase 2A: cf([γ∗]
≤µ∗ ,⊆) < λ(〈 〉, Ss).

So for some u∗ ∈ [γ∗]
≤µ, the set S5 = {δ < λ : uδ ⊆ u∗} is a stationary subset of

λ. Let S6 ⊆ S5 be of cardinality µ+ and let

A∗ ..=
⋃
δ∈S6

Aδ ∪ {h(α) : α ∈ u∗}.

Clearly A∗ ⊆ G is of cardinality < µ and A∗/∅ is not free for c1.
So G has a non-free subgroup of cardinality < µ∗, in contradiction to the as-

sumption “G = G2/G1 is µ∗-free”.

Subcase 2B: cf([γ∗]
≤µ,⊆) ≥ λ(〈 〉, Ss).

Note that because V satisfies the strong hypothesis (see [She93b]), necessarily
for some cardinal ∂ of cofinality < κ∗ we have λ(〈 〉, Ss) = ∂+.

In any case, clearly for every α ∈ [γ∗, λ), letting βα ..= min(S4 \ α), the pair
Aβα/B〈α〉 is not c1-free. So by renaming, without loss of generality

α ≥ γ∗ ∧ cf(α) = ℵ0 ⇒ 〈α〉 ∈ S,
and we continue as in Case 1 (so this also works in Subcase 2A). �3.13
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[She13a] , Non-reflection of the bad set for Ǐθ[λ] and pcf, Acta Math. Hungar. 141 (2013),
no. 1-2, 11–35, arXiv: 1206.2048. MR 3102967

[She13b] , Pcf and abelian groups, Forum Math. 25 (2013), no. 5, 967–1038, arXiv:
0710.0157. MR 3100959

[She16] , ZF + DC + AX4, Arch. Math. Logic 55 (2016), no. 1-2, 239–294, arXiv:

1411.7164. MR 3453586
[She19] , Compactness in singular cardinals revisited, Sarajevo J. Math. 15(28) (2019),

no. 2, 201–208, arXiv: 1401.3175. MR 4069744

[She22] , Black boxes, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 65 (2022), 69–130,
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