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Introduction
We will clarify the situation for the successor of a strong
limit singular cardinal A. We find a special subset S*(A+), from
which we can find which stationary subsets of Zt can be stopped
from being stationary by u-complete forcing (Baumgartner has done
<A

this for successor A' of regular X = A ).

For X ®m Nm we succeed in continuing an induction construction done

+1
for a AT-free not ATT (abelian) group, and similar things for trans-
versals; on those problems see history and references in [Sh 2 ].

A solution of a related problem - which stationary subsets of At

can be "killed" by a forcing not adding bounded subsets of ATowill
appear in a paper by U. Avraham, J. Stavi and the author.

We also prove a result related to the title but not to the rest of
the paper, improving a result of Gregory [Gr ] : assuming G.C.H.,

for X # NO, OE holds, where S = {8 <A+; cfé # cfil}; bence Osl holds
g s.

for any stationary Sl
For a reader interested only with the GCH, he can simplify for
himself the part up to section 13, A reader inttrested in more
general cases than those discussed in the main part has to go to
the end. There we also show that the special set S*(Nw+l) can be

stationary (even with the GCH).

The main results were announced in the AMS Notices [ Sh 3 ].
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Notation:We shall denote infinite cardipéls by A,u,x,x, ordinals
by i,j, a,8,Y,€,% limit ordinals by §, natural numbers by m,n,r,p,q.

Let N denote a sequence < Ni: i <A> where for some u,x < M,
Ni<(H(u),€); icn,, HNill <A, i< j= Ni< Nj, and for limit
G,N6 = i:é Ni' We call this a A-approximating sequence (for u).

We denote by d a two-place function from one cardinal to ano-
ther; cfé is the cofinality of &; cf¥6 is cfé if cfé < § and is
® otherwise. D6 is the filter over § generated by the closed
unbounded subsets of § (so we assume cfé§ > No)- If D is a filter
over I, AC B mod Dmeans I -~ (A - B) € D; similarly A = B mod D
means I - (A - B) U (B - A) € D. If A# ¢ mod D, D + A is the
filter {B : B U (I - A) € D}.

Let CF(8,k)} = {1 < &8 : cfi = «}, similarly CF(8,<k) = U CF(3,u)

u<i
CF(8, < k) = U CF(8,u) Dg. = Dg * CF(8,k) etc.
sK $
sk
P . . <i R

l. Definition : 1) We say k is good for XA if A=) ",k= or there is
a family p° such that

=i,k

o -
a) IEA,KI = A
b) every member of E: < is a subset of X of cardinality «
3
c) every subset of X of cardinality k contains a member of Pi «
A
. . . <i . .
2) We call « a good cofinality for A if A = X ",x is % or if A
and k are regular and there is a family EX < such that
3

o
a) lzx’Kl A
b) every member of EA ; is a subset of X of cardinality < «

L]
c) every subset of X of cardinality x has a subset {ai 1 <k}
such that a, is increasing and for every j < k, {ai 1< j1e EA <
3

d) x» = A<K or 2" < A for every y <
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2. Definition : 1) @Gef(A) = {x : x 1is a good cofinality for i}
G(Ax) = {k :+ «x is good for A}
2) gef(x) = {i < x 1 cf®i € Gef(A)] (note that we use cf® not cf)

3) D% = D, + gcf(A)

3. Claim : 1) If A" = A then « is good for A
2) If « < = is good for A then k 1is good for 3t

3) If » = Z Ai, cfu # cfk, Ai(i < u) increasing and x < ® isg
i<uy
good for each A. then « is good for A

K

y) 18 (Wu < Ra)u < NQ,B < cfk, cf&a # cfx then k is good for R

atB

lin fact (Wu < Na)uK < suffice |

Nu+s

5) if A,k are regular, k good for X then « is a good cofinality
2<k <k
for A, provided that 2 < A

<

6) If A,k are regular A K 2 A then «k is a good cofinality for A
7) If ¢k < > is a good cofinality tor X then « is a good cofinality
for A"
8) If x = Z Xx,, cfu # cfk, «k € Gcf(Ai) for every 1 < u, X,

i<y L i
increasing, and «k < * then x € Gef(h)
9) 1f (Wu < Nm)u\K < Na, cha # ¥, « regular, B < k¢ then

<
kK € Gof(R ) [in fact, (¥u < X v “en

at8+1 suffice].

a+B+1

4. Definition : For d a two-place function from § into k(cfé§ > No)

we let Sl(d) = {g: <38, & a limit ordinal such that there is an

unbounded A C & on which d is constant}

So(d) = {g : £ <68, £ a limit ordinal such that there are
unbounded subsets A,B of £, such that
Vv e B)(@a < «)(Va€a)a< b~ dla,b)<al}
Remark : Note that d determines &8 (as Dom d) but not k{(as d is into

Kk, not necessarily onto k), so if the value of « is not clear we

shall write So(d,K). In the definition of Sl(d),K has no role.
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5. Claim : For d a two-place function from § to «k:

1) Sl(d) c So(d),

2) in the definition of SQ(d) (® = 0,1) we can assume A,B have
order type cff (and generally replace them by unbounded subsets),
3) CF(8, < x) & 5 _(d),

4) If % = 0,1, ¢ € Sg(d), cf’£>No, then there is C € D_ such that

£
c c Sg(d).

6. Definition : For a A-approximating sequence N (see notation) let
Sz(ﬁ) = {¢& : £ < X, £& a limit such that there is an unbounded A C ¢
of order type cfg such that (Vi < €) [A N i€ N.] cand N0 o= g)

7. Claim : 1) If A is regular, ﬁo, ﬁl are h-approximating sequences

for u_,u, respectively, and y > X, then Sz(ﬁl) = SQ(WQ) mod D%.

—L L .-
Proof : Let N m <Ni : 1 < x> , where Nﬁ <<(H(u2),€), and let

C=fa<r:NN (U 8¥HYB(U 8% nN*=x%n Ni and Ni N Az a)

s<n 9 F<a @ @
(we do not distinguish strictly between a model N and its universe).
It is easy to check that C is a closed unbounded subset of A.
By transitivity of equality we can assume N2<( Ni.
Now suppose & € C, and cf¥z € Gcf(a). We shall prove ¢ € Sg(ﬁo)
iff § € Sz(ﬁl), thus completing the proof. The "only if" part is
now trivial, so we concentrate on the "if'" part. Also the case
cf¥g = % is easy, so we assume cf¥f = cff < £,
Let « = cfg < £. We have just assumed « € Gcf(i), so the

appropriate P (as in Definition 1.2) exists, hence belongs to

ALK
H(ul), hence w.l.o.g it belongs to Ng, and hence, by assumption,
to Nl.
o
If £ € Sg(ﬁl), then (by definition) there is an unbounded

1
A C £ of order-type cff, such that for every zt < £, A N g € NE'
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<k .
If A =A , we can assume Py 7 {8 € a |8 |<k}= {Bi i< A}
*
. 1
P = X d P N N = N = . i
(since l—A,Kl ), and so L. BA’KH . {Bl i< g},
hence ¢ < £ = A N g € Ng , hence A witnesses that £ € SQ(NO).

Thus finishing.

<
So we are left with the case A < A <.

tion 1.2, Yy < et < oA So,

every subset of A of power < k is included in a set from N

dinality <k, hence it belongs to Né

subset of it which 1s unbounded in

of P (see Definition 2), we can

A,k
for j < «k,

. e
{a, i< 3} P

{ai i <3} e Né. But as |P

X,K‘:
V] N?, hence (as g € C)EA Kf\Ng =
i< >

j < i: So {Cti

. . )
(e, i <4t e NS

and this finishes the proof of the

2
N
as £

and,

Then, by d) of Defini-

N A=z g£&,and A has order-type «k,

L of car-

£

. So we can replace A by any

£. In particular, by the choice

assume A = &ﬁ i < k}, and

as mentioned above,

o
o’ clearly BA,K(;

P P n Né, hence for every

i < k} witnesses that § € SQ(WO),

theorem.

8. Definition 8¥(A) € 1 is defined as (X - SQ(E)) N gef(x) for
N any A-approximating sequence for A+, where X is regular. (so
s¥ is uniquely defined mod D, only).

9. Definition
to k = cfi

{8 <a

d(B,a) < i} has cardinality <A

: . +
For A singular, a two-place function d from A

s . . +
is called normal if for every i < k,a < & , the set

It is called subadditive

if for v < 8 < o < AY, d(y,a) < max {d(y,B),d(8,a)}.

10. Claim For every singular A, there is a normal subadditive
+
- ) . i = z
two-place function d from X to c¢fi; moreover, if A s<ess Ai
(Aj increasing), then |[{B < a d(B,e) il] < A
Proof Easy.
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<

11. Claim : 1) Suppose A is singular, x = cfr, (Vp < W)X < ),

and d is a normal two-place function from AT to k. Then for some
I = ++

A+—approx1mat1ng sequence N for A

+ —
C
CF(A", € x) N so(d) c SQ(N) mod DA.

2} Suppose A is singular, ¥« = cfX , X is regular and is a good

s . . s +
cofinality for X+,and d is a normal two-place function from A to K.

. - ++
Then for some A+—approximat1ng sequence N for A ',
+ —
CE(A ,x) N So(d) < SQ(N)-
+ . - ++
Proof : 1) Choose a A ~approximate sequence N for A such that
- + . = 3
4 € No’ Ni € Ni+1' Clearly = {§ < Nsﬁ A §}is closed
and unbounded. So for every o < A+, i < k, the set
A* = {g < a : d(B,a) < i} belongs to Ni+l and has cardinality < »X.
Hence Pg = {A : B C A¥%, [B] < x} belongs to Ni+l and has cardinali-

ty < A, hence P? c X So suppose § € So(d), and A,B € & are

i+’
witness to it (i.e. they are unbounded in § and have order-type cfd,
and for every b € B, for some i(b) < «, (Ya € AXa< b>d(a,b) € i(b))).

Suppose further 6 € C, c¢fé < x. Then A,B C N  (as § C Né) and for

8§
b
€ H N, ?
every b B, {a a € A, a < b} belongs to Bi(b)’ hence to i1
hence to Nd' So A witnesses that 8§ € 82(ﬁ). We have just proved

s € cr(a’, < x) Ns (d)= ¢ € 52(N), thus finishing the proof of
the claim.

2) A similar proof.

12. Claim : Suppose A is regular, « < x, «k < A, ¥ is a good cofi-

nality for A and (Vu < X)Qu < X or x = . Then for every two-place

function d from A to « and for some A-approximate sequence N for A+,
sQ(W) N CF(A,x) € 8,(d).

< . +
Proof : Choose N as A-approximate sequence for A such that 4 € No.

Suppose § € S2(ﬁ) N CF(A,x). We shall prove § € Sl(d). The case
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x B 2 is easy, so assume X < .

As 6 € Sz(ﬁ), there is a set {ai : i <x} C 6, unbounded in §,
such that for every j < ¥, {ai 1< 31 € Ng' Let h be the func-
tion with domain ¥, b(i) = a;. Clearly for j < x, hlj € Ne.

Now we define by induction on i1 < x an element x; and function
fi as follows

fi(j) = d(xj,ﬁ) for j < i (so Dom £, 2 D)

x; is the first ordinal which is bigger than a,; and xj(j < i)

and is such that (Y3 < i) [dlxy,%;) = £,(3) ).

This can be carrvied out in H(A'). But now as n< x = ¥ < X, and

u < x = cfd €6, clearly each fi is in NS'
Note also that x; depends only on f; and {uj : j € i} (as for
j < i, fj o filj). So x; €Ng for each i < x.

Now there is an unbounded S £ x and io < x such that
j € s = d(xj,é) = io. It is easy to check that {xj : j € s}

witnesses that § € S1(d).

From now on we concentrate on successors of strong limit

singular cardinals. We can conclude e.g.

13. Conclusion : Suppose A 1is a singular strong limit. Then for
every normal two place function d from At to k = cfi, the following
holds :

s, () = s () ucr,< ) =" - s*") mody,

(So in particular So(d) does not depend on 4 (when d is normal) up

to equivalence mod ).
3t

Proof : Trivial by 5.1, 5.3, 11 and 12.

<
14, Claim : If A is regular, « < X and Yy < 2) p < X), then

CF(A,< k) < A - S¥(A) mod D , .
A

Proof : We can find a A-approximating sequence < Ni : 1<A> to A" such that eve-

ry subset of Ni of cardinality <« belongs to N . So CF(A, <«) < Sz(ﬁ).

i+l
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15. Claim : If § € x - Sl(d)’ d a two-place function from X to
¢« < ¢fé, then ¢cfd is not weakly compact.

2
Proof : If cfé is weakly compact then cfé§ - (cfS)K.

16. Definition : 1) For a set S & A let
F(S) m {6 < x: SN § is a stationary subset of &}
2) Define F'(S) by induction omn n:

FO(s) = s, P (s) = F(FR(s)).

17. Claim : 1) FF(S) C F(S).

2) F(s* (1)) C 8*(1), hence F'(s¥(2)) C F™(s*(1)) if n > m > 0.

3) § € FP(s) implies cfé§ 2 Nn; mereover, if Na = min {cfé§ : 8§ € s},
n

€ i i > N .

then § F'(S) implies cf$ Bo+n

4) If o < min {cf§ : 6§ € U S.} , S. € X then
. i i=
i<a
F(U s.) = U F(S.) mod D,.
e T a7 *
Proof : 1) Easy
2) By 5.4 (and second part-by induction)

3), 4) Easy.

18. Lemma : Suppose X is a singular strong limit of cofinality «x.
Then for some C € DA+’ for every § € C, lefting < a; ¢ i & cfs >
be increasing, continuous and converging to §, the following holds

s # *
{i : oy € s¥(A)} D s¥*(cfd) mod Dcfd

Proof : Let d be as in 10. Then by 13, for some
c € DA+’ s*( )y n¢ = So(d) N C, so we need only deal with So(d)'
Now define a two-place function d¥ from cfé§ to « by
d®*(i,j) = d(ai,uj). It is easy to check that
. #* «
{ui 1€ So(d )P < So(d).

But by 10, So(d*) C cf6 - s¥(cfs8) (remember k < cf§), so we are

finished.
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19. Conclusion : 1) Suppose A is a singular strong limit, x,u
. + +
regular, xu < A and (Vul< " )u? < uy. Then F[S¥*(A") NCF(r ,x)] N
+ .
CF{X ,u) is not stationary,

k n
< *(R =
2) If n<wand 2 < Rk+n for every k < w,then F (8™( w+l)) ¢ mod DNm+1
3) If Rw is a strong limit and S*(Nw+l) is stationary, then for

some stationary S & X

RE F(s) = ¢

Proof : 1) By 14% and 18.
2) Suppose Fn(s*(ﬁw+l)) is stationary. Then by 17.4 for

< O g* (R N R i i
some k w, FIsS™( w+l) CF(Nm+l, k)] is stationary Hence for
R 01N CR(R

e < O g# N R R ) i i
some w , r[s (Nw+l) CF( © Q) is stationary

+1 wtl’

If £ €< k +n, this contradict
N
k

Vu < 8 u

19.3. But if ® > k +n, then

2w
=

. < i -
< R, (since 2 < Nk+n)’ hence we get a contradic

tion by 19.1. So in all cases we get a contradiction; hence

n # . .
F (S (Nm+l))1s not stationary.

3) Since S*(Nm+l) is stationary, for some k < w,
N
k

Nk) is stationary. Let 2 = Nk+n (ng< w since

K is a strong limit). So k+n <2 < w implies (Vu <xp)u K<y

S*(Nm ) N CPR(N

+1 wtl?

2

hence, by 19.1, F(S8) & CcF(R ® ), where

<
w+l?  Tk+n

n+l
)

g = s*(Nm+l) N CF(R N But by 17.1, F (S) € F(S), hence

wt+tl’ 'k
+ . 1 ;
s € PPT1(s) implies cfs < & , and by 17.2 8§ € F'T(S) implies
P k+n p

cf§ =2 Nk+n+1 (since § € S = cf§ = R

n+l . 1 . . .
no 8§ € F (s), i.e. Fn+ (S) = ¢. Since FO(S) = S is stationary,

for some €, FQ(S) is stationary but F(FQ(S)) o FQ+1(S) is not;

k), so we get that there is

FQ(S)iS as required.

Theorem 20 : Suppose S C A is stationary, and S € gcf(a) - S$¥(1),
S € CF{a,u). If P is a uY-complete forcing (i.e. if <pi : 1 <>
is an increasing sequence of elements of P then some p € P is > Py

for every i), then S is stationary even in the universe VP,
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Remark : Remember that A-complete forcing forces the stationariness

of any S S a.

Proof : Let N be a A'-approximate sequence for some A' > A, such
that a P-name C of a closed unbounded subset of A, ap € P, are in Ng.

So trivially there is 8§ € S, A £ § such that § = Nd NX and A has

order type cf8, and for every §t < &, AN [ € N Let f : cfd =» A

5"
enumerate A, hence ¢ < cf§ implies fl|g € NG'
We want to prove that not : pH-"C is disjoint from S". TFor this
it suffices to find q € P such that p € q and g "6 € C" (since
§ € S). We can assume that a well-ordering <* of P U P x X be-
longs to No. Now we define by induction on i < c¢f§, p; € NG'
We let p, = p, and for i a limit, p, is the <* -first p' which is
> Pj for every j(which exists since P is u+-complete).

We let p, .,B; be such that (pi+l’si) is the <* -first pair (p',8")
such that p' > p., B' > £(i) and p'H- B' € L. There is such
(p',B') since C was a P-name of an unbounded subset of A. It is
easy to check that P Bi €EPrn Nd’ s0 Bi < §. Hence § = sup{Bi

i < cfé}. Since P is u+-complete, there is g € P, Py < q for

every i < cfé. So q force { N § to be unbounded below §. But

was a P-name of a closed subset of §. Hence q H- "6 € c". So

we are finished.

21. Theorem : Suppoese u < X, p regular. Then there is a up-complete

forcing P, such that in VP $¥(A) is not stationary.

< .
A, so P = {BC x : [B] <al= {B; :i< A}

each B € P appearing in {Bi : i < A} A times, and let B = <Bi Di<A>
. . . N + . =
Clearly there is a A-approximating sequence N of A , with B € No;

and then P N NG = {Bi : 1 < 8} for a closed unbounded set of 8's.

So (w.l.o.g.) S¥(X) & {6 < : NN P = {B : i<s6}}.
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P ={n =<a, : 1 <>, an increasing, continuous sequence, where

iff n, is

B = {aj : 3 < i}} . The order on P is : n. < 7 1

%ie1 t 2
an initial segment of LS

It is obvious that P 1s u-complete; and if GC P is generic, let
cle ] = {uéz § limit, and <oy : i <E> € 6, ¢ > 8}. Clearly in
VIG], C[6]is a closed unbounded subset of A. Now we have to prove
only : ¢[G 1N s*= ¢, where $¥ = s*(n)V. Suppose, in V, for some

p € P, p|+-"6 € C[E I' where 6 € s*. Let p = <aj :j < >, so
clearly for some limit i < g , § 8 a;. Since & € g%,

N5 al {Bi i < A} :{Bi : 1 < 8}, and there is no unbounded A £ s

of order type cf§, such that £ < § = A N E EN But there is such

5"

an A namely {aj i3 < i}({% ] <3, < i} belongs to N since

<
it is Bj w1 " {jo}), contradiction. So we are finished when X =) %
o

<A
If < A, let Q be the collapsing of 2A to A, i.e.

A

P = {f : Dom £ = £ <A, Range £ & 2"}. Note that vF may have a

VQ v v Q
different gecf(A), but S*()) N gef(A)' = s¥(A)'. VNow in V* defi-

ne P as before, and Q # P (the composition)is as required.

22. Conclusion : Suppose A is regular, u< Aregular, S € gcf(}).
There is a p-complete forcing P such that in VP, S i1s not stationa-

ry iff (S - 8¥(A)) N CF(r,<u) is stationary.

23. Lemma : Suppose A is regular, S € X stationary, but F(S) = ¢
and for every o € S, Aa is an unbounded subset of a of order~-type
cfu .

Then for every S' C § with |[S'| < A, the family {Aa o€ S'}
has a transversal (=one-to-one choice function).! Moreover we can
find A' €A @ € s'), |A'] < cfa, such that the sets A - A’

a a a a a
(a € '8') are pairwise disjoint.

However {Aa : o € S} does not have a transversal.
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Proof : See [Sh 1]

24. Lemma : Suppose A is singular strong limit, «k = cfaA ,

s*(27) = ¢ mod DX+ , and let
s =(8<2" :cfs #x, ¥ , and iu divides 8}

Then we can define Aa Ca (o € 3), Au unbounded in o and with
order-type k(cfa) (ordinal multiplication), such that
A) {Aa : o € S} has no transversal
B) For every S' £ S with [s']| <, {Aa : o € §'} has a transver-
sal. Moreover
B') For every S' & S with |S'] < A+, there are A& Q_Au(a € 8")
such that
(i) they arepairwise disjoint,
(ii) A; is a big [and even very big ] subset of Aa’ which means
that there is a closed (in Aa) unbounded [ resp. cobounded] C & A:
so that

(Vsec) Te <) (Ve) (6 + g g <s+x=>g€nl.

Procof : Stage A
There is a normal d : AT - kK, A = I Apshy < i,
i<k
+
[{g < & : d(a,B) < i}| < A; > such that for every & < X, cfé # «,

there is A € §, sup A 8 §, d|A bounded, and each i € A is a suc-
cessor.

Pf : Let d be from 10, then Sl(d) = ¢ mod D ,, hence there is a

closed unbounded C € A", €N s (d) = ¢. Let C =fay : i <%}, ay
+
increasing and continuous, a, 3 0. For each 1 < A, we can find
i i i, :
AC € (o;50, ,)(g < x) such that : |AC| o AC, AC is closed (in

the interval), if § € Az is a limit then & = sup(8 N AZ), Oi41
sup Az, for some z.

Az increases with £ and (ui,a y =y A, Now we define 4d' by

i+1
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if a < B then d'(B,a) B d(B,a) if (Fi)(B = oy > a), and otherwise
d'(f,a) = min {d(B,a), min {g : a,B € AZ}}. It is easy to check
that d’ is as required. For showing that every i € A is a successor,

use subadditivity.

Stage B

For any a < 2T the family

B, = {AaSa : |aAl <, d|la is bounded, cf(sup A) # «k}

has cardinality < a.

Pf : Let o = U Bi’ lBil < A, Bi increasing, and let, for i < x,
i<g
r <k, EZ ; C {a € Ea AN Bi unbounded in A, d|A bounded by g}.
>

Since A € Pu: [cf(sup A) # « and d|A bounded ], and by the choice

of the B,'s, P = U P® . , it suffices to prove |PC L€
i ~a i< 9ot Za,i
L
(for given i,z < X). Let BE = Bi U {y : vy < B8, d(B,y) < r}.
REB.
Clearly [B%| <|B.| + A, < A , and A €'P° ., implies A C B-.
i i T 0,1 i

[ B+ 2

So |32 i| < 27 < 2, so we have proved stage B.
3

Stage C

If P is a family of subsets of A each of cardinality < A, but
|P| < |Al= A, then there is a set C & A such that

(i) jc}| = «,

(i) (Yaepr) |anc| <«

This is trivial.

Stage D

We define the A&s by induction on o for a € S. Suppose we arrive

at a. Let < Ygt i < cfa > be increasing with limit o, Y5 + A <Yi+1'
For a set A of ordinals, let acc(A) = {8: § a limit, &§ =

sup (A N &)} (= the set of accumulation points of A). By stage B,

|Ea| < X, so by stage C we can find ci < (yi,yi + A), of power «

such that
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(#) for every A € Pa V] {U{AY : vy <o, v € acc(A)} : A€ Pa}’
its intersection with Ci has power <k.

In fact we have to check that [V {AY: y < o, y € acc(A)}] < a
(for A € P ), but this is easy : X € acc(a) = cf) < [a] = |AY| <k +

cfY = « + |A|, hence the set has power < (x + A) [A]| <A. We let

A @ V] cl.
o i<cfa @
Stage E
{Aa : @ € S} has no transversal.

Because Au € a, by Fodor's theorem.

Stage E

We prove (A¥) from the lemma. We prove by induction on o that
there are big Aé c AB (B < a,B € S),pairwise disjoint. This will
clearly suffice.

Case 1 : For o a successor ordinal, it follows from the induction

hypothesis on a-1.

Case 2 : For a such that (38 < a) B + Aw > a : proof as in the

first case.

Case 3 : For a a limit, cfg @ No . Choose ordinals o < a,

a < a

n a+1’ ¢ 8 Yoags, a_ = 0. For each n, by the inducticn hypo-

o]
rs‘c_ hy (8 < a ), pairwise disjoint.
, for R < o, 8 € S (hence B8 % 0), by :

thesis there are big A

Define A'
B8

Aé = A2+1 - (an + X)), where o < B8 < g

It is easy to check that Aé C A

n+l

g is still big, and obviously the

Aé are pairwise disjoint. ©Note that ¢« € S, so we do not have to
define A'.
3

Case 4 : For a limit, not case 2, cfa > NO. There is E € a, unboun-

ded, of order type cfa (hence <i) and E :{Bi i < cfa} (the 8,

+1

increasing), such that dlEi is unbounded for 1 < cfo, where
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- D o< g . . .
El {Bj?l 3j i} , and each Bi+l is a successor ordinal (For
cfa < «, any unbounded A of order type cfoa is as required). (Remem-
ber d is from stage A).

We can define for limit 6§ < cfa, B, = sup {Bi+l ;1 < 8},

Since Bi + 2 < a , we can assume w.l.o.g. Bi + 2 < B.

i+l (by

making deletions if necessary). Let A; < AB

disjoint, for B < B (possible by the induction hypothesis).

be big, pairwise

We now define A', if B ¢ U [B., B, + x ) UV {a} , by
8 . i
5 i<cfa
! - < .
AS o AB (Bi + A), where Bi + A B8 <Bi+l
Clearly, the A' & A_ are big, pairwise disjoint and disjoint from

8 8
_ds

D V] [B., B. + A). For which B's have we still not defi-
. i i+l
i<cfo
ned Aé ? TFor B o By (i € cfd) i.e., B B Sj’ for which B € S, hence
cfj # NO, Kk, 1. Checking definitions we can see that for each such
[ AB N o< AB is 'big. So it suffices to find pairwise disjoint
big Aé C AB (j < cf8, j a limit). This we do by induction on j.
it i
Suppose we have defined these for every j' < j. For j a successor
among {i € c¢f§ : 1 a limit} or Sj € S, there is no problem. (Re-
member for j a successor, Bj is a successor, hence & 5). Otherwise,

note that cfj # x, hence cf(sup(Ej)) £ x, hence Ej € Pa (see stage
B). Now look at Stage D, for Bj. We chose there an increasing
continuous sequence of ordinals < Y ¢ i < cf Sj > converging to Bj.

Since cf Bj # NO, there is a closed unbounded C & cf %, such that

i

i€ C=y., € {B g < j}. We then defined A = V] c ,
1 £ B. . B.
j 1xcf8j J
where c; = (Yi,yi + A), has order type k, and in particular
3
[v {AQ t €8, ¢ € acc(Ej)} ] n c; has power < k.
]

But what is acC(Ej)? It is just {Bj(o) : jlo) < 3, jlo) a

i

limit} -, So cej N[ u {Aj(o) : jlo) < 3, j(o) a limit, Aj(o) defi-
ned}] has power'< «.
Let A} = U{c;' -uia szes, peE acc(Ej)} : 1€ cC}.

] J
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It is easy to check that it is a big subset of AB , and obviousuiy
3
it is disjoint from A , where j(o) < j is a limit. So we
jlo)
have finished the proof.

Stage E : Suppose X singular strong limit, cfl = «, S a stationary
subset of A+, and every member of S divisible by Aw. Suppose
further A Coa, |Aa| < kcfa for o € S,and for any a_ < PR
{Aa :a < ao} has a transversal. Then we can find A: C o for

a € S, so that A: = {y(a,i) : i < «(cfa)} , where y(a,i) increase
with i, (hence ]AZl < cfa + k (< 1)) and for every a_ < At

there are pairwise disjoint A& < Aa (for o < a s o € S), such that

for each a for some io < cfa

(Vi< cfa) Az < c)(Ve)(g € £ <k & i, <4 > yla,civg) € A1),

Proof : For every a, choose Bg < as BE increase with £, a = B Bi
and |B§| < A . We can define functions h _, hl,Dom hg =E;$,
so that for any So’ Bl < B <A+, £ <k, AC Bgo , there are

» B¥'s, 8 < g*< g4 , such that hl(B*) = B> hQ(B*) = A.

(We define h2| [ i, X(i+1)) for each i; the number of possible
tuples < Bl’ A, B, £, Bo > is € ), so there is no problem).

For each a¢ € S choose an increasing sequence B(a,i) (i < cfa)
converging to it.
First note that ( V(xo < a) ag t A <a(since @ € S) hence w.l.o.g.
B(a,i) + A< B(a,i+1), and B(a,i) is divisible by A.
Now we define by induction on j = ik + & (i < cfa, £ < k) an
ordinal y(a,j), increasing with j, such that
(i) B(a,i) < y{(a,j) < B(a,i) + A,
(ii) hl(y(a,j)) = cfa,
(i11) hy(y(a,3)) = A N BE( .y, and

(iv) y(a,j) & {A alo) € Bs}.

*
a(o)

The last condition excludes < A «y's, and the conditions (ii), (iii)
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are satisfied by » y's, B8(a,i) < y < B(a,i) + A.
So we can define A: = {y(a,i) : i < x(cfa)} , and vy{(a,i) increase
with i and converge to a.

Now we are given a(o) < AT and have to find Al < A: as requi-
red. By hypothesis, there is a transversal f of {Au : o < a(o)}.
Define Ai = {y(a,ki + &) : i < cfa, f(Aa) € A, al BE

BCa,i))”
Clearly it is a very big subset of Aa.

On S N o(o) we define a graph : (o,,a,) is an edge iff Al N A1 £ 6.
1°72 ay a,
Note
(a) If (ml,uz) is an edge then cful = cfu2 (because y € Aa implies
hl(Y) = cfa ).
2
(b) The valency of any @, (= I{G2 : (al,a2) is an edge }|) is
< |a*|.
a
As f is one-to-one, it suffices to prove that f(Aa ) € Aa
2 1
. . p
whenever Aa2 8l Aal ¢ . If ynm Y(al,Kll + 51) -] Y(uz,Kl2 + 52)
A n Al | then B B B(u,,i,) = B(a,,i,) (it is the biggest ordinal
oy a, 171 2°72 £
1 2
. PP n = = n
< v divisible by A), so Aa Bs(a i) h2(Y) Aa B 8o, ,i.)’
£, 1 1t 2 2012
but f(A_ ) € A N B . (since vy € A7 ) hence f(A_ ) € A N
£, ) 2 Blay,1y) ey 9 %
B : Ca_ , as required.
Blay,i,) oy

Now we deal with each component C of the graph separately.
By (a), alla € C have the same cofinality, sayu, and by b),

|c|<k + u. If u>« note that each Ai has order type H and is

unbounded below a, hence o, # a, = C = | atn oAl | < u
1 2 oy g
So let C = (agz t < u}, and we can define A: o Ai - v Ai
4 4 IAS S
which are as required. If u € «, we give a similar treatment to

each {y(a,xi + €) : £ < «x} for i <wu, o € C.

25. Conclusion
1) Suppose Rw is a strong limit.

a) There is a family of Nw countable subsets of Nw+ which does

+1 1
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not have a transversal, but every subfamily of cardinality <R +lhas
w

a4 transversal.
b) There is an abelian group [ group ] of power Nw+l’ which is not
free, but every subgroup of cardinality < Nw+l is.

2) Suppose ng is strong limit for £ < n. Then a), b) hold for

R .

wnt+l

Proof : 1 a), 2 a),It is easy to see this after reading Milner
and Shelah [ MS ].

1 b), 2 b) are easy to see.

26. Claim : Suppose A is strong limit, cfX = NO, v < «, u regular
and : P is u-complete or among any u members of P there are y which
are pairwise compatible.
If in VP A is still a strong limit cardinal, then

s*(xHY nera,m?, 05" n CF(A,u)VP

are equal (i.e., for some representation they are equal).

Proof : Let d : A7 > « be normal. Clearly it is still normal in VP.

By 13 it suffices to prove that the truth value of "a € Sl(d)"

is not changed, which is guite easy.

27. Claim : If x is supercompact, A > x, cfix < x, then S*(A+) is
stationary.
Proof : Let d : AT > cfi be normal and subadditive, and suppose
c .t .
C = » 1is closed and unbounded.
+
Suppose N<< (H(A +), €), cfrx + 1 & N, C,de€ N, INI <y and every
+ e s . .
subset of N M A Dbelongs to N (this is possible as yx is supercompact)
+
Let 6%= sup(N N A" ). Clearly cfé¥ is the successor of a singular

cardinal of cofinality cfi so cfé¥ > c¢cfA. Clearly C N N is unboun-

ded, hence 8% € C; so it suffices to prove 6% & So(d)'
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So suppose A & &% is unbounded, and d|A is bounded by z.
Let A = {Bi : i< 8%}, Bi increasing. We may assume, w.l.0.g.,

for each i there 1is Yio B < Yy < B. Y. € N. Let

i i+l i

4 Max {g ,d(8i+l,yi), d(yi,si)} < cfr < cf8*. So (w.l.c.g.)

i
#*

4 4 for every i. Now if i < j, then by the subadditivity

i

d(yi,yj) < max {d(Yj,B ), d(8

< *
1) ), a8, sv)) S ¢

j+l’si+l

So d|{yi : i < cfé*} is bounded, but the set necessarily belongs
++ . c ,t

to N, and, as N (H(A "), €), there is an unbounded BE A" on

which d is bounded, giving an easy contradiction to normality.

28. Remark : We in fact prove that if d is a subadditive function,
with domain a®, o € a®, and d is bounded on some unbounded A & o,
then every unbounded A’ S o has an unbounded subset A" C At S g

such that d|A" is bounded.

29. Conclusion : If ZFC + " J a supercompact" is consistent then
the following is consistent

V. no¥ (N s : "
ZFC + GCH + "s*( m+l) is stationary".

Proof : Suppose x is supercompact, and also (w.l.o.g.) GCH holds.
Let X be the first singular cardinal > x . By 27 we can choose
a regular u < x such that S*(X+) 8} CF(A+,u) is stationary. We use

Levy collapsing P to collapse every u' < u to NO (by finite
P
By 26, in v, s*(aN)Y 2

s . P .
conditions). So now, in V, p is Nl.

S*()\+)v n CF(A+,u)V, and the latter obviously remains stationary.

Now collapse x to Nl by a Q which is R, -complete. Again

1
wo LtV + .V . . . . .
S*¥(X') 0N Cr(x ,u) remains stationary and is still included in

s* (1P

OA is not a strong requirement

30. Definition : Let X be a regular cardinal and E £ A a stationary
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set in it.
(1) Oi(E). There is < Wt oo € E > such that for every a, W

a
is a family of subsets of a with |Wa| < |a| , and for every X S\
there is a closed and unbounded C & A such that X N a € wa for
all a € C N E.

(2) OA(E)' There is < Sa : o € E > such that Sa € a , and for

every XS i, {a : XN a = Sa} is stationary in 2.

31. Theorem : (Kunen) : (1) For statiomary E C A, Or(E) implies

¢ (E).

N )

c c ° . . oF : .

(2) For E,CE,C A, A(El) implies OX(EQ) and A(EQ) implies
#*
v .

A (Ep)

32. Theorem : Suppose X = oM = u+ and for some regular k < yu,
either

(i)UK:UQOr
(ii) uw is singular « # cfu and for every § < u,|¢$|K <n

Then Oi(E(K)) where E(x) is the stationary subset {a < A: cfa = x}
Remark : Case (i) is due to Gregory {Gr |

Proof : Let <Au : o < X > be a list of all bounded subsets of A

each appearing A times (there are A such subsets as A = 2¥ @y

)

Case (i) : For a € E(x) let Wa be the set of all unions of no more

than k subsets of a belonging to < AB : B L a>.

(Wy={vy: |[¥Y] <k, x€Y>xC q, x€ {AS:S<a}}).

Given X £ 1, let C be {ai | 1 < Alwhere o, is any successor less

u P s . .
than A,ad ] 8Zs as for limit &, and wiq 1s the least a > o,

such that for some y < a, AY = XN o .

Now C' = {§ + § = U (ai Poay < 8}} is closed unbounded, and for

§ € C N E(x) there are i(j) and Y5 < & (3 < k) such that
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U &,,..B8686 ,XNa,,,.=A .S0XN &= U A €W
5<k i(3) i(3) Yj <k Yj §
Case (ii) : For 8 such that c¢f8§ = «, let 6§ = U Vé, where
s FRASY
<Vj 3 < p > is increasing and for j < yu, [Vj| < u
§
: i < c v:
Let W, be {agQ L (33 ) Q V], Q] < «l.
Given X & X let £ : A =2 be such that X N o = Af(a) f(a) >sup f(R).

There exists a closed unbounded C & X such that for a € C, B8 < a
implies f(B) < «a.
Let § € C N E(x), and for increasing <6i : 1< kex 6 = Y 8. .
There exists j such that

¢ = |V§ﬁ{f(6i) :1< «}| hence X N6 =U{X N5, 1<k, £(5,) € vg}e W

s

33. Conclusion : (GCH) If 1 > NO, then 0*+(E(K)) holds, whenever

A
k # cfx. In particular OA holds.
Final comments
1) The restriction "A strong limit" in most cases can be weakened

at the expense of complicating the results : assuming Ve <)

<
" X <A, and restricting ourselves to CF(A+, <x) or CF(A+,< X).

2) A more serious question is whether we can, in 7, replace D% by

DA' This remains open.

Note that the natural notion is SQ(W), and that for regular i,
1T(a) = {a S 2 : for some A-approximating sequence N, A & S2(W)}
is always a normal ideal. Similarly

C

I(A) = {a 5% : A NAB= ¢ mod D, for every BE I (A)}

A
is a normal ideal. The meaning of claim 7 is that Yy is

{a : a & Ao mod DA} for some A_, when gcf(i) = A. Another formu-
lation of our question is whether this always holds.

Howéver, we can meanwhile just formulate the later theorems

in terms of I+(A) instead of S$*¥(A) (and the changes in the proofs
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are minor). By the way it may be more natural to use

SS(N) = {§: there is a function h, Dom h

ded subset of §, (Vi < cf8)

it does not matter).

3) Why were we interested mainly in Nw

h|i € N and N

§?

+1

= c¢fd, Range h an unboun-

8

and not in e.g.

wt?2

M A=z 8} (in gef(A)

?

The answer is that several inductive proofs work for successors of

regular cardinal, and it was not clear whether they fail at succes-

sors of singulars. (But see remarks 5 and 6 below).

4) It may be of interest to mention our original line of thought,

which is not so transparent from the present paper.

We want to prove that 52(W) is guite "big", where N is an

with d constant

. _ . . R . .
hw+l approximating sequence for wtl® assuming GCH So we let
d : X > ¥ be normal, and using the Erdds-Radoc theorem

R wtl o

n,+ 2 . .

N (Sl

(2N y =« n+l)NO’ prove that if C & bl LS closed of order type

n,+

. . R

(2 ) then it contains , of order type e’

on C,-. Ci (the set of accumulation points of Cl) is & SQ(ﬁ) and

is a closed subset of C of order type Nn

is in some sense big.

+1°

5) We can try to generallize 4) to other cardinals.

Let «k =cf N <R |
a, o

+
N . < .
closed subset of a+n of order type J}+1(K + u) , where p A

Definition : Call an (ntl)-place function d fron Na+n
if for every o < ... <a_ <N there is k < n such that
o n a+n
<N : o ‘e = .o
fo <8 4p Pdlegsas 2 o10%0 %10 2oq) dloys e
has cardinality < Ra
Claim : There is a normal function d : Nu+n - K
Proof : By induction on n.
Lemma : Let N be an Na+n—approximating sequence for Nu+n+l’

x?

C

This proves that SQ(ﬁ)

to k normal

...,an)}

a
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Then C has a closed subset of order type u+ which is included in

SQ(N).
Proof : Let d € No’ d : Rq+n * x, d normal. By the Erdds-Rado
+ +
theorem Lln+l(K + p) - (u+): 1) there is ¢, C ¢ of order type "
on which d is constant. If § € Ci, then Cl N § witnesses that
c —
§ SZ(N)‘

6) Suppose Na is strong limit, « B cf Nu , Y & successor ordinal,

k < u <K and .1Y(u) < Na' If N is a Na -approximating sequence

+y

for N and C & Nu

+
atyt1’ has order type lY(u) , then C has a

+y

closed subset C; of order type u+ which is included in SQ(N).

Proof : We prove a somewhat stronger statement

If C g-Nu+S,B <y a successor ordinal, and C has order type}ls(u)+,

then there is Cl ccn 82(ﬁ) of order type u+, such that for some
¢ < n, if o, < ... <un € Cl then
(H(Na+y+l),€) k w(ao,...,an) g | {x W(ao""’aﬂ—l’x’aﬂ"'”an)}K Nd
(This imples C} & sz(N)).
We prove this by induction on B. For finite B this was done

above, and the induction step is easy.
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