LOGIC COLLOQUIUM 78 M. Boffa, D. van Dalen, K. McAloon (eds.) © North-Holland Publishing Company, 1979

ON SUCCESSORS OF SINGULAR CARDINALS

Saharon Shelah
Institute of Mathematics,
The Hebrew University,
Jerusalem, Israel.

Introduction :

We will clarify the situation for the successor of a strong limit singular cardinal λ . We find a special subset $S^*(\lambda^+)$, from which we can find which stationary subsets of λ^+ can be stopped from being stationary by μ -complete forcing (Baumgartner has done this for successor λ^+ of regular $\lambda = \lambda^{<\lambda}$).

For $\lambda = \aleph_{\omega+1}$ we succeed in continuing an induction construction done for a λ^+ -free not λ^{++} (abelian) group, and similar things for transversals; on those problems see history and references in [Sh 2]. A solution of a related problem - which stationary subsets of λ^+ can be "killed" by a forcing not adding bounded subsets of λ^+ -will appear in a paper by U. Avraham, J. Stavi and the author. We also prove a result related to the title but not to the rest of the paper, improving a result of Gregory [Gr]: assuming G.C.H., for $\lambda \neq \aleph_0$, \lozenge^*_S holds, where $S = \{\delta < \lambda^+; cf\delta \neq cf\lambda\}$; hence \lozenge_S_1 holds for any stationary $S_1 \subseteq S$.

For a reader interested only with the GCH, he can simplify for himself the part up to section 13. A reader interested in more general cases than those discussed in the main part has to go to the end. There we also show that the special set $S^*(\aleph_{\omega+1})$ can be stationary (even with the GCH).

The main results were announced in the AMS Notices [Sh 3],

Notation: We shall denote infinite cardinals by $\lambda, \mu, \kappa, \chi$, ordinals by i,j, $\alpha, \beta, \gamma, \xi, \zeta$ limit ordinals by δ , natural numbers by m,n,r,p,q.

Let \overline{N} denote a sequence $< N_i : i < \lambda >$ where for some $\mu, \chi \leqslant \mu$, $N_i < (H(\mu), \in)$; $i \subseteq N_i$, $\|N_i\| < \lambda$, $i < j \Rightarrow N_i < N_j$, and for limit $\delta, N_\delta = \bigcup_{i < \delta} N_i$. We call this a λ -approximating sequence (for μ).

We denote by d a two-place function from one cardinal to another; cf δ is the cofinality of δ ; cf $^*\delta$ is cf δ if cf δ $< \delta$ and is $^{\infty}$ otherwise. D_{δ} is the filter over δ generated by the closed unbounded subsets of δ (so we assume cf δ $> N_{\odot}$). If D is a filter over I, $A \subseteq B$ mod D means $I - (A - B) \subseteq D$; similarly $A \equiv B$ mod D means $I - (A - B) \cup (B - A) \in D$. If $A \not\equiv \phi$ mod D, D + A is the filter $\{B : B \cup (I - A) \in D\}$.

Let $CF(\delta,\kappa) = \{i < \delta : cfi = \kappa\}$, similarly $CF(\delta,<\kappa) = \bigcup_{\mu < \kappa} CF(\delta,\mu)$ $CF(\delta, \leqslant \kappa) = \bigcup_{\mu \leqslant \kappa} CF(\delta,\mu) D_{\delta,\kappa} = D_{\delta} + CF(\delta,\kappa) \text{ etc.}$

- 1. Definition : 1) We say κ is good for λ if $\lambda = \lambda^{<\lambda}$, $\kappa = \infty$ or there is a family $\underline{P}_{\lambda . \kappa}^{\circ}$ such that
- a) $\left| \frac{p^{\circ}}{\lambda} \right| = \lambda$
- b) every member of $\underline{P}_{\lambda,\kappa}^{O}$ is a subset of λ of cardinality κ
- c) every subset of λ of cardinality κ contains a member of $\underline{P}_{\lambda,\kappa}^{O}$
- 2) We call κ a good cofinality for λ if $\lambda = \lambda^{<\lambda}$, κ is ∞ or if λ and κ are regular and there is a family $\frac{P}{\lambda}$, κ such that
- a) $|\underline{P}_{\lambda}| = \lambda$
- b) every member of $\underline{P}_{\lambda,\kappa}$ is a subset of λ of cardinality $< \kappa$
- c) every subset of λ of cardinality κ has a subset $\{\alpha_{\underline{i}} : \underline{i} < \kappa\}$ such that $\alpha_{\underline{i}}$ is increasing and for every $\underline{j} < \kappa$, $\{\alpha_{\underline{i}} : \underline{i} < \underline{j}\} \in \underline{\underline{P}}_{\lambda}, \kappa$
- d) $\lambda = \lambda^{\kappa} \quad \underline{\text{or}} \quad 2^{\mu} < \lambda \quad \text{for every } \mu < \kappa$

- 2. Definition : 1) Gcf(λ) = { κ : κ is a good cofinality for λ } $G(\lambda) = {\kappa : \kappa \text{ is good for } \lambda}$
- 2) $gcf(\lambda) = \{i < \lambda : cf^*i \in Gcf(\lambda)\}$ (note that we use cf^* not cf)
- 3) $D_{\lambda}^{g} = D_{\lambda} + gcf(\lambda)$
- 3. Claim : 1) If $\lambda^{\kappa} = \lambda$ then κ is good for λ
- 2) If $\kappa < \infty$ is good for λ then κ is good for λ^+
- 3) If λ = $\sum_{i < u} \lambda_i$, cf μ ≠ cf κ , λ_i ($i < \mu$) increasing and $\kappa < \infty$ is good for each λ_i then κ is good for λ
- 4) If $(\forall \mu < \aleph_{\alpha})\mu^{\kappa} < \aleph_{\alpha}$, $\beta < cf\kappa$, $cf\aleph_{\alpha} \neq cf\kappa$ then κ is good for $\aleph_{\alpha+\beta}$ [in fact $(\forall \mu < \aleph_{\alpha})\mu^{\kappa} < \aleph_{\alpha+\beta}$ suffice]
- 5) if λ , κ are regular, κ good for λ then κ is a good cofinality $2 < \kappa$ for λ , provided that $2 < \kappa \le \lambda$
- 6) If λ, κ are regular $\lambda^{\kappa} = \lambda$ then κ is a good cofinality for λ
- 7) If $\kappa < \infty$ is a good cofinality for λ then κ is a good cofinality for λ^+
- 8) If $\lambda = \sum_{i \le \mu} \lambda_i$, cf $\mu \ne cf\kappa$, $\kappa \in Gcf(\lambda_i)$ for every $i \le \mu$, λ_i increasing, and $\kappa \le \infty$ then $\kappa \in Gcf(\lambda)$
- 9) If $(\forall \mu < \aleph_{\alpha})\mu^{\leq \kappa} < \aleph_{\alpha}$, $cf\aleph_{\alpha} \neq \kappa$, κ regular, $\beta < \kappa$ then $\kappa \in Gcf(\aleph_{\alpha+\beta+1})$ [in fact, $(\forall \mu < \aleph_{\alpha})\mu^{\leq \kappa} \leq \aleph_{\alpha+\beta+1}$ suffice].
- 4. Definition : For d a two-place function from δ into $\kappa(cf\delta > \aleph_0)$ we let $S_1(d) = \{\xi \colon \xi < \delta, \xi \text{ a limit ordinal such that there is an unbounded } A \subseteq \xi \text{ on which d is constant} \}$
 - $S_O(d) = \{\xi : \xi < \delta, \xi \text{ a limit ordinal such that there are}$ unbounded subsets A,B of ξ , such that $(\bigvee_b \in B)(\exists \alpha < \kappa)(\bigvee_a \in A)[a < b \rightarrow d(a,b) \leq \alpha]\}$

Remark : Note that d determines δ (as Dom d) but not κ (as d is into κ , not necessarily onto κ), so if the value of κ is not clear we shall write $S_{\Omega}(d,\kappa)$. In the definition of $S_{1}(d)$, κ has no role.

- $\underline{\text{5. Claim}}$: For d a two-place function from δ to κ :
- 1) $S_1(d) \subseteq S_2(d)$,
- 2) in the definition of S_{ϱ} (d) (ℓ = 0,1) we can assume A,B have order type cf ξ (and generally replace them by unbounded subsets),
- 3) $CF(\delta, \leq \kappa) \subseteq S_0(d)$,
- 4) If $\ell=0,1,\ \xi\in S_{\ell}(d),\ cf\xi>\aleph_0,$ then there is $C\in D_{\xi}$ such that $C\subseteq S_{\ell}(d).$
- 6. Definition : For a λ -approximating sequence \overline{N} (see notation) let $S_2(\overline{N}) = \{\xi : \xi < \lambda, \xi \text{ a limit such that there is an unbounded } A \subseteq \xi$ of order type cf ξ such that $(\forall i < \xi)$ [A \cap i \in N $_{\xi}$] and N $_{\xi}$ \cap $\lambda = \xi$ }
- 7. Claim : 1) If λ is regular, \overline{N}° , \overline{N}^{1} are λ -approximating sequences for μ_{o} , μ_{1} respectively, and $\mu_{\ell} > \lambda$, then $S_{2}(\overline{N}^{1}) = S_{2}(\overline{N}^{\circ})$ mod D_{λ}^{g} . $\underline{Proof}: \text{Let } \overline{N}^{\ell} = \langle N_{1}^{\ell}: i < \lambda \rangle \text{, where } N_{1}^{\ell} < (H(\mu_{\ell}), \in), \text{ and let }$ $C = \{\alpha < \lambda: N_{\alpha}^{\circ} \cap (\bigcup N_{1}^{1}) = (\bigcup N_{1}^{\circ}) \cap N_{\alpha}^{1} = N_{\alpha}^{\circ} \cap N_{\alpha}^{1} \text{ and } N_{\alpha}^{\ell} \cap \lambda = \alpha\}$ (we do not distinguish strictly between a model N and its universe).
 It is easy to check that C is a closed unbounded subset of λ .
 By transitivity of equality we can assume $N_{\alpha}^{\circ} < N_{\alpha}^{1}$.
 Now suppose $\xi \in C$, and $cf^{*}\xi \in Gcf(\lambda)$. We shall prove $\xi \in S_{2}(\overline{N}^{\circ})$ iff $\xi \in S_{2}(\overline{N}^{1})$, thus completing the proof. The "only if" part is now trivial, so we concentrate on the "if" part. Also the case $cf^{*}\xi = \infty$ is easy, so we assume $cf^{*}\xi = cf\xi < \xi$.

Let $\kappa = \mathrm{cf}\,\xi < \xi$. We have just assumed $\kappa \in \mathrm{Gcf}(\lambda)$, so the appropriate $\underline{P}_{\lambda,\kappa}$ (as in Definition 1.2) exists, hence belongs to $\mathrm{H}(\mu_1)$, hence w.l.o.g it belongs to N_0^0 , and hence, by assumption, to N_0^1 .

If $\xi \in S_2(\overline{N}^1)$, then (by definition) there is an unbounded $A \subseteq \xi$ of order-type cf ξ , such that for every $\zeta < \xi$, $A \cap \zeta \in N_{\epsilon}^1$.

If $\lambda = \lambda^{<\kappa}$, we can assume $\underline{P}_{\lambda,\kappa} = \{B \subseteq \lambda : |B| < \kappa\} = \{B_{\underline{i}} : \underline{i} < \lambda\}$ (since $|\underline{P}_{\lambda,\kappa}| = \lambda$), and so $\underline{P}_{\lambda,\kappa} \cap N_{\xi}^{\circ} = \underline{P}_{\lambda,\kappa} \cap N_{\xi}^{\dagger} = \{B_{\underline{i}} : \underline{i} < \xi\}$, hence $\zeta < \xi \Rightarrow A \cap \zeta \in N_{\xi}^{\circ}$, hence A witnesses that $\xi \in S_2(N^{\circ})$. Thus finishing.

So we are left with the case $\lambda < \lambda^{<\kappa}$. Then, by d) of Definition 1.2, $(\mathbf{V}\mu < \kappa)2^{\mu} < \lambda$. So, as $N_{\xi}^{\varrho} \cap \lambda = \xi$, and A has order-type κ , every subset of A of power $< \kappa$ is included in a set from N_{ξ}^{1} of cardinality $<\kappa$, hence it belongs to N_{ξ}^{1} . So we can replace A by any subset of it which is unbounded in ξ . In particular, by the choice of $\underline{P}_{\lambda,\kappa}$ (see Definition 2), we can assume $A = \{\alpha_{\underline{i}} : i < \kappa\}$, and for $j < \kappa$, $\{\alpha_{\underline{i}} : i < j\} \in \underline{P}_{\lambda,\kappa}$ and, as mentioned above, $\{\alpha_{\underline{i}} : i < j\} \in N_{\xi}^{1}$. But as $|\underline{P}_{\lambda,\kappa}| = \lambda$, $|\underline{P}_{\lambda,\kappa}| \in N_{0}^{0}$, clearly $|\underline{P}_{\lambda,\kappa}| \in N_{0}^{0}$, hence (as $\xi \in C)\underline{P}_{\lambda,\kappa} \cap N_{\xi}^{0} = \underline{P}_{\lambda,\kappa} \cap N_{\xi}^{1}$, hence for every $|\underline{I}_{\lambda,\kappa}| = 1$, $|\underline{I}_{\lambda,\kappa}| \in N_{0}^{0}$, so $|\underline{I}_{\lambda,\kappa}| \in N_{0}^{0}$, and this finishes the proof of the theorem.

- $\frac{8. \text{ Definition}}{\overline{N}}: S^{*}(\lambda) \subseteq \lambda \quad \text{is defined as } (\lambda S_{2}(\overline{N})) \cap \gcd(\lambda) \text{ for } \overline{N} \text{ any } \lambda\text{-approximating sequence for } \lambda^{+}, \text{ where } \lambda \text{ is regular. (so } S^{*} \text{ is uniquely defined mod } D_{\lambda} \text{ only).}$
- 9. Definition: For λ singular, a two-place function d from λ^+ to $\kappa = cf\lambda$ is called <u>normal</u> if for every $i < \kappa, \alpha < \lambda^+$, the set $\{\beta < \alpha : d(\beta, \alpha) \le i\}$ has cardinality $< \lambda$. It is called subadditive if for $\gamma < \beta < \alpha < \lambda^+$, $d(\gamma, \alpha) \le \max\{d(\gamma, \beta), d(\beta, \alpha)\}$.
- $\begin{array}{l} \underline{\text{10. Claim}} \ : \ \text{For every singular} \ \lambda \ , \ \text{there is a normal subadditive} \\ \\ \text{two-place function d from } \lambda^+ \ \text{to cf}\lambda \ ; \ \text{moreover}, \ \text{if } \lambda = \sum_{i < \text{cf}\lambda}^{\Sigma} \lambda_i \\ \\ (\lambda_i \ \text{increasing}) \ , \ \text{then} \ \big| \{\beta < \alpha \ : \ d(\beta,\alpha) \leqslant i\} \big| \leqslant \lambda_i . \end{array}$

Proof : Easy.

 $\frac{11. \text{ Claim}}{\lambda^+-\text{approximating sequence } \overline{N}} \text{ for } \lambda^{++},$

$$CF(\lambda^+, \leq \chi) \cap S_0(d) \subseteq S_2(\overline{N}) \mod D_{\lambda}.$$

2) Suppose λ is singular, $\kappa=cf\lambda$, χ is regular and is a good cofinality for $\lambda^+,$ and d is a normal two-place function from λ^+ to $\kappa.$ Then for some $\lambda^+-approximating sequence <math display="inline">\overline{N}$ for $\lambda^{++},$ $CF(\lambda^+,\chi)\cap S_O(d)\subseteq S_O(\overline{N}).$

 $\begin{array}{l} \underline{\operatorname{Proof}} : 1) \text{ Choose a λ^+-approximate sequence \overline{N} for λ^{++} such that} \\ d \in \mathbb{N}_0, \ \mathbb{N}_i \in \mathbb{N}_{i+1}. \ \text{ Clearly} &= \{\delta < \lambda^+ : \mathbb{N}_\delta \cap \lambda = \delta\} \text{ is closed} \\ \text{and unbounded. So for every $\alpha < \lambda^+$, $i < \kappa$, the set} \\ A^* &= \{\beta < \alpha : \operatorname{d}(\beta,\alpha) \leqslant i\} \text{ belongs to N_{i+1} and has cardinality } < \lambda$. \\ \text{Hence $P_i^{\alpha} = \{A : B \subseteq A^*, |B| < \chi\}$ belongs to N_{i+1} and has cardinality } < \lambda$. \\ \text{Hence $P_i^{\alpha} \subseteq \mathbb{N}_{i+1}$. So suppose $\delta \in \mathbb{S}_0(d)$, and $A,B \subseteq \delta$ are} \\ \text{witness to it (i.e. they are unbounded in δ and have order-type cfδ, and for every $b \in B$, for some $i(b) < \kappa$, $(\forall a \in A \colon k) \leqslant i(b)$). \\ \text{Suppose further $\delta \in \mathbb{C}$, cf$\delta \leqslant \chi$. Then $A,B \subseteq \mathbb{N}_\delta$ (as $\delta \subseteq \mathbb{N}_\delta$) and for} \\ \text{every $b \in B$, $\{a : a \in A, a < b\}$ belongs to $P_{i(b)}^b$, hence to N_{i+1},} \\ \text{hence to N_δ. So A witnesses that $\delta \in \mathbb{S}_2(\overline{\mathbb{N}})$. We have just proved $\delta \in \mathbb{C}F(\lambda^+, \leqslant \chi) \cap \mathbb{S}_0(d) \Rightarrow \delta \in \mathbb{S}_2(\overline{\mathbb{N}})$, thus finishing the proof of the claim.} \\ \end{array}$

2) A similar proof.

12. Claim : Suppose λ is regular, $\kappa < \chi$, $\kappa < \lambda$, χ is a good cofinality for λ and $(\forall \mu < \chi)2^{\mu} < \lambda$ or $\chi = \infty$. Then for every two-place function d from λ to κ and for some λ -approximate sequence \overline{N} for λ^+ ,

$$s_2(\overline{N}) \cap cr(\lambda,\chi) \subseteq s_1(d)$$
.

<u>Proof</u>: Choose \overline{N} as λ -approximate sequence for λ^+ such that $d \in N_0$. Suppose $\delta \in S_2(\overline{N}) \cap CF(\lambda,\chi)$. We shall prove $\delta \in S_1(d)$. The case χ \square ∞ is easy, so assume χ < ∞ .

As $\delta \in S_2(\overline{N})$, there is a set $\{\alpha_i : i < \chi\} \subseteq \delta$, unbounded in δ , such that for every $j < \chi$, $\{\alpha_i : i < j\} \in N_{\delta}$. Let h be the function with domain χ , $h(i) = \alpha_i$. Clearly for $j < \chi$, $h|j \in N_{\delta}$.

Now we define by induction on i < χ an element $\textbf{x}_{\,\mathbf{i}}$ and function $f_{\,\mathbf{i}}$ as follows :

 $f_{i}(j) = d(x_{i}, \delta)$ for j < i (so Dom $f_{i} = i$)

 x_i is the first ordinal which is bigger than α_i and x_j (j < i) and is such that (\forall j < i)[d(x_i , x_j) = f;(j)].

This can be carried out in $H(\lambda^+)$. But now as $\mu < \chi \Rightarrow 2^\mu < \chi$, and $\mu < \chi = cf \delta \leqslant \delta$, clearly each f_1 is in N_{δ} .

Note also that x_i depends only on f_i and $\{\alpha_j:j\leqslant i\}$ (as for j< i, f_i \blacksquare $f_i|j$). So $x_i\in N_\delta$ for each $i<\chi$.

Now there is an unbounded S \subseteq χ and $i_o < \kappa$ such that $j \in S \Rightarrow d(x_j, \delta) = i_o$. It is easy to check that $\{x_j : j \in S\}$ witnesses that $\delta \in S_1(d)$.

From now on we concentrate on successors of strong limit singular cardinals. We can conclude e.g.

<u>13. Conclusion</u>: Suppose λ is a singular strong limit. Then for every normal two place function d from λ^+ to κ = cf λ , the following holds:

$$S_{o}(d) \equiv S_{1}(d) \cup CF(\lambda^{+}, \leq \kappa) \equiv \lambda^{+} - S^{*}(\lambda^{+}) \mod_{D_{\lambda}^{+}}$$

(So in particular S $_{\rm o}({\rm d})$ does not depend on d (when d is normal) up to equivalence ${\rm mod}_{\rm D.\,+}$).

Proof: Trivial by 5.1, 5.3, 11 and 12.

14. Claim : If λ is regular, $\kappa < \lambda$ and $(\forall \mu < \lambda) \mu^{<\kappa} < \lambda)$, then CF($\lambda, \leq \kappa$) $\leq \lambda$ - S*(λ) mod D_{λ}+.

 $\frac{\text{Proof}}{\text{ry subset of N}_{i}}: \text{We can find a λ-approximating sequence} < \text{N}_{i}: \text{i} < \lambda > \text{ to λ}^{+} \text{ such that every subset of N}_{i} \text{ of cardinality} < \kappa \text{ belongs to N}_{i+1}. \text{ So CF}(\lambda, \leqslant_{\kappa}) \subseteq \text{S}_{2}(\overline{\mathbb{N}}).$

Sn:108

 $\underline{15.~Claim}:$ If $\delta\in\lambda$ - $S_1(d),$ d a two-place function from λ to $\kappa<$ cf $\delta,$ then cf δ is not weakly compact.

 $\underline{\text{Proof}} \;:\; \text{If cf} \delta \quad \text{is weakly compact then cf} \delta \, \xrightarrow[]{}^2 \left(\text{cf} \delta\right)_{\kappa}^2.$

16. Definition : 1) For a set S $\subseteq \lambda$ let

 $F(S) = \{\delta < \lambda : S \cap \delta \text{ is a stationary subset of } \delta\}$

- 2) Define $F^{n}(S)$ by induction on n: $F^{o}(S) = S$, $F^{n+1}(S) = F(F^{n}(S))$.
- 17. Claim : 1) $FF(S) \subseteq F(S)$.
- 2) $F(S^*(\lambda)) \subseteq S^*(\lambda)$, hence $F^n(S^*(\lambda)) \subseteq F^m(S^*(\lambda))$ if $n > m \ge 0$.
- 3) $\delta \in F^n(S)$ implies $cf \delta \ge \aleph_n$; moreover, if $\aleph_\alpha = \min \{cf \delta : \delta \in S\}$, then $\delta \in F^n(S)$ implies $cf \delta \ge \aleph_{\alpha+n}$.
- 4) If $\alpha \leq \min \{ cf \delta : \delta \in \bigcup S_i \}$, $S_i \subseteq \lambda$ then $i < \alpha$ $F(\bigcup S_i) = \bigcup F(S_i) \mod D_{\lambda}.$ $i < \alpha \qquad i < \alpha$

Proof : 1) Easy

- 2) By 5.4 (and second part-by induction)
- 3), 4) Easy.
- 18. Lemma : Suppose λ is a singular strong limit of cofinality κ . Then for some $C \in D_{\lambda^+}$, for every $\delta \in C$, letting $< \alpha_i : i < cf\delta >$ be increasing, continuous and converging to δ , the following holds :

{i :
$$\alpha_i \in S^*(\lambda)$$
} $\supseteq S^*(cf\delta) \mod D_{cf\delta}$

Proof: Let d be as in 10. Then by 13, for some

 $C \in D_{\chi^+}$, $S^*(\chi^+) \cap C = S_0(d) \cap C$, so we need only deal with $S_0(d)$.

Now define a two-place function d^* from cf δ to κ by :

 $d^*(i,j) = d(\alpha_i,\alpha_j)$. It is easy to check that

$$\{\alpha_i : i \in S_o(d^*)\} \subseteq S_o(d).$$

But by 10, $S_0(d^*) \subseteq cf\delta - S^*(cf\delta)$ (remember $\kappa < cf\delta$), so we are finished.

- 19. Conclusion : 1) Suppose λ is a singular strong limit, χ, μ regular, $\chi \mu \leq \lambda$ and $(\forall \mu_1 \leq \mu) \mu_1^{\chi} \leq \mu$. Then $F[S^*(\lambda^+) \cap CF(\lambda^+, \chi)] \cap CF(\lambda^+, \mu)$ is not stationary.
- 2) If $n < \omega$ and $2^k \le \aleph_{k+n}$ for every $k < \omega$, then $F^n(S^*(\aleph_{\omega+1})) \equiv \phi \mod D_{\aleph_{\omega+1}}$.
- 3) If \aleph_{ω} is a strong limit and $S^*(\aleph_{\omega+1})$ is stationary, then for some stationary $S \subseteq \aleph_{\omega+1}$, $F(S) = \phi$

Proof: 1) By 14 and 18.

- 2) Suppose $F^n(S^*(\aleph_{\omega+1}))$ is stationary. Then by 17.4 for some $k < \omega$, $F^n(S^*(\aleph_{\omega+1})) \cap CF(\aleph_{\omega+1},\aleph_k)$ is stationary. Hence for some $\ell < \omega$, $F^n(S^*(\aleph_{\omega+1})) \cap CF(\aleph_{\omega+1},\aleph_k) \cap CF(\aleph_{\omega+1},\aleph_\ell)$ is stationary. If $\ell \le k+n$, this contradicts 19.3. But if $\ell > k+n$, then $(\forall_{\mu} < \aleph_{\ell})_{\mu}^{\aleph_{\ell}} < \aleph_{\ell}$ (since $2^{\aleph_{\ell}} \le \aleph_{\ell}^{\aleph_{\ell}}$), hence we get a contradiction by 19.1. So in all cases we get a contradiction; hence $F^n(S^*(\aleph_{\omega+1}))$ is not stationary.
- 3) Since $S^*(\aleph_{\omega+1})$ is stationary, for some $k < \omega$, $S^*(\aleph_{\omega+1}) \cap CF(\aleph_{\omega+1},\aleph_k)$ is stationary. Let $2^k = \aleph_{k+n}$ $(n < \omega \text{ since } \aleph_{\omega} \text{ is a strong limit})$. So $k+n < \ell < \omega \text{ implies } (\bigvee_{\mu} < \aleph_{\ell})_{\mu}^{\mu} k < \aleph_{\ell}^{\mu}$; hence, by 19.1, $F(S) \subseteq CF(\aleph_{\omega+1}, \le \aleph_{k+n})$, where $S = S^*(\aleph_{\omega+1}) \cap CF(\aleph_{\omega+1},\aleph_k)$. But by 17.1, $F^{n+1}(S) \subseteq F(S)$, hence $\delta \in F^{n+1}(S)$ implies $cf\delta \le \aleph_{k+n}$, and by 17.2 $\delta \in F^{n+1}(S)$ implies $cf\delta \ge \aleph_{k+n+1}$ (since $\delta \in S \Rightarrow cf\delta = \aleph_k$), so we get that there is no $\delta \in F^{n+1}(S)$, i.e. $F^{n+1}(S) = \phi$. Since $F^{O}(S) = S$ is stationary, for some ℓ , $F^{\ell}(S)$ is stationary but $F(F^{\ell}(S)) = F^{\ell+1}(S)$ is not; $F^{\ell}(S)$ is as required.
- Theorem 20 : Suppose $S \subseteq \lambda$ is stationary, and $S \subseteq gcf(\lambda)$ $S^*(\lambda)$, $S \subseteq CF(\lambda,\mu)$. If P is a μ^+ -complete forcing (i.e. if $< p_i$: i $< \mu >$ is an increasing sequence of elements of P then some $p \in P$ is $> p_i$ for every i), then S is stationary even in the universe V^P .

we are finished.

Remark : Remember that λ -complete forcing forces the stationariness of any $S\subseteq \lambda$.

Proof: Let \vec{N} be a λ' -approximate sequence for some $\lambda' > \lambda$, such that a P-name \mathcal{L} of a closed unbounded subset of λ , a $p \in P$, are in N_0 . So trivially there is δ \in S, A \subseteq δ such that δ = N $_{\!\! k}$ $\cap \lambda$ and A has order type cf\delta, and for every ζ < δ , A \cap ζ \in N $_{\!g}$. Let f : cf\delta \rightarrow A enumerate A, hence $\zeta < cf\delta$ implies $f | \zeta \in N_{\delta}$. We want to prove that not : $p \not\Vdash "C$ is disjoint from S". For this δ \in S). We can assume that a well-ordering <* of P \cup P × λ $\,$ belongs to N_{o} . Now we define by induction on $i < cf\delta$, $p_{i} \in N_{\delta}$. We let p_0 = p, and for i a limit, p_i is the <* -first p' which is \geq p_j for every j(which exists since P is μ^{\dagger} -complete). We let p_{i+1} , β_i be such that (p_{i+1}, β_i) is the <* -first pair (p', β') such that $p' \ge p_i$, $\beta' \ge f(i)$ and $p' \not\models \beta' \in C$. There is such (p', β ') since $\mathbb C$ was a P-name of an unbounded subset of λ . It is easy to check that p_i , $\beta_i \in P \cap N_{\delta}$, so $\beta_i < \delta$. Hence $\delta = \sup\{\beta_i : p_i = 1\}$ i < cf δ }. Since P is μ^+ -complete, there is q \in P, $p_i^- \le q$ for every $i < cf\delta$. So q force $\mathfrak{C} \cap \delta$ to be unbounded below δ . But \mathfrak{C} was a P-name of a closed subset of δ . Hence q $\not\models$ " δ \in C". So

21. Theorem : Suppose $\mu < \lambda$, μ regular. Then there is a μ -complete forcing P, such that in V^P S*(λ) is not stationary.

 $\begin{array}{l} \underline{Proof} : \text{ First assume } \lambda = \lambda^{<\lambda}, \text{ so } \underline{P} = \{ B \subseteq \lambda : |B| < \lambda \} = \{ B_{\underline{i}} : \underline{i} < \lambda \}, \\ \text{each } B \in \underline{P} \text{ appearing in } \{ B_{\underline{i}} : \underline{i} < \lambda \} \text{ λ times, and let } \overline{B} = < B_{\underline{i}} : \underline{i} < \lambda >. \\ \text{Clearly there is a λ-approximating sequence } \overline{N} \text{ of } \lambda^{+}, \text{ with } \overline{B} \in N_{\underline{o}}; \\ \text{and then } \underline{P} \cap N_{\delta} = \{ B_{\underline{i}} : \underline{i} < \delta \} \text{ for a closed unbounded set of δ's.} \end{array}$

So (w.1.o.g.) $S^*(\lambda) \subseteq \{\delta < \lambda : N_{\delta} \cap \underline{P} = \{B_i : i < \delta\}\}.$

P = $\{\eta = < \alpha_i : i \le \zeta >$, an increasing, continuous sequence, where B = $\{\alpha_j : j \le i\}\}$. The order on P is : $\eta_1 < \eta_2$ iff η_1 is an initial segment of η_2 .

It is obvious that P is μ -complete; and if $G \subseteq P$ is generic, let $C[G] = \{\alpha_{\delta} : \delta \text{ limit}, \text{ and } < \alpha_{j} : i \leq \xi > \in G, \zeta > \delta \}$. Clearly in V[G], C[G] is a closed unbounded subset of λ . Now we have to prove only : $C[G] \cap S^* = \emptyset$, where $S^* = S^*(\lambda)^V$. Suppose, in V, for some $P \in P$, $P \not\models "\delta \in C[G]"$ where $\delta \in S^*$. Let $P = <\alpha_{j} : j < \zeta >$, so clearly for some limit $i < \zeta$, $\delta = \alpha_{i}$. Since $\delta \in S^*$, $N_{\delta} \cap \{B_{i} : i < \lambda\} = \{B_{i} : i < \delta\}$, and there is no unbounded $A \subseteq \delta$ of order type C(G), such that $G \in G$ and there is no unbounded $G \in G$ and A namely $G \cap G \cap G$ is belongs to $G \cap G \cap G$ since it is $G \cap G \cap G$ is definition. So we are finished when $G \cap G \cap G$ is $G \cap G \cap G \cap G$ in $G \cap G$

- 22. Conclusion: Suppose λ is regular, $\mu \leq \lambda$ regular, $S \subseteq \gcd(\lambda)$.

 There is a μ -complete forcing P such that in V^P , S is not stationary iff $(S S^*(\lambda)) \cap CF(\lambda, \leq \mu)$ is stationary.
- <u>23. Lemma</u>: Suppose λ is regular, $S \subseteq \lambda$ stationary, but $F(S) = \phi$ and for every $\alpha \in S$, A_{α} is an unbounded subset of α of order-type cf α .

Then for every S' \subseteq S with $|S'| < \lambda$, the family $\{A_{\alpha} : \alpha \in S'\}$. has a transversal (=one-to-one choice function). Moreover we can find $A' \subseteq A_{\alpha}$ ($\alpha \in S'$), $|A'_{\alpha}| < cf\alpha$, such that the sets $A_{\alpha} - A'_{\alpha}$ ($\alpha \in S'$) are pairwise disjoint.

However $\{A_{\alpha}: \alpha \in S\}$ does not have a transversal.

Sn:108

368 S. SHELAH

Proof : See [Sh 1].

24. Lemma : Suppose λ is singular strong limit, κ = cf λ , $S^{*}(\lambda^{+})$ = ϕ mod $D_{\lambda^{+}}$, and let

$$S = \{\delta < \lambda^{+} : cf\delta \neq \kappa, \aleph_{0}, and \lambda\omega \text{ divides } \delta\}$$

Then we can define $A_{\alpha} \subseteq \alpha$ ($\alpha \in S$), A_{α} unbounded in α and with order-type $\kappa(cf\alpha)$ (ordinal multiplication), such that

- A) $\{A_{\alpha} : \alpha \in S\}$ has no transversal
- B) For every S' ${\cal L}$ S with $|S'|<\lambda^+$, $\{A_\alpha:\alpha\in S'\}$ has a transversal. Moreover
- B') For every S' \subseteq S with $\left|S'\right|<\lambda^+$, there are $A_\alpha^!\subseteq A_\alpha(\alpha\in S^!)$ such that :
- (i) they are pairwise disjoint,
- (ii) A_α' is a big [and even very big] subset of A_α , which means that there is a closed (in A_α) unbounded [resp. cobounded] $C\subseteq A_\alpha^*$ so that

$$(\forall \delta \in \mathtt{C}) \ (\exists \varsigma \ < \kappa) \ (\forall \xi) \ (\delta + \varsigma \leqslant \xi < \delta + \kappa \to \xi \in \mathtt{A}_{\alpha}^{\dagger}) \,.$$

Proof : Stage A :

There is a normal $d: \lambda^+ \to \kappa$, $\lambda = \sum_{i < \kappa} \lambda_i, \lambda_i < \lambda$, $|\{\beta < \alpha : d(\alpha, \beta) \le i\}| \le \lambda_i$, such that for every $\delta < \lambda^+$, cf $\delta \ne \kappa$, there is A $\subseteq \delta$, sup A $\blacksquare \delta$, d|A bounded, and each $i \in A$ is a successor.

 \underline{Pf} : Let d be from 10, then $S_1(d) \equiv \phi \mod D_{\lambda^+}$, hence there is a closed unbounded $C \subseteq \lambda^+$, $C \cap S_0(d) = \phi$. Let $C = \{\alpha_i : i < \lambda^+\}$, α_i increasing and continuous, $\alpha_0 = 0$. For each $i < \lambda^+$, we can find $A_\zeta^i \subseteq (\alpha_i, \alpha_{i+1})(\zeta < \kappa) \text{ such that } : |A_\zeta^i| = \lambda_\zeta, \ A_\zeta^i \text{ is closed (in the interval), if } \delta \in A_\zeta^i \text{ is a limit then } \delta = \sup(\delta \cap A_\zeta^i), \ \alpha_{i+1} = \sup A_\zeta^i, \text{ for some } \zeta.$

 A_{ζ}^{i} increases with ζ and $(\alpha_{i}, \alpha_{i+1}) = \bigcup_{\zeta < \kappa} A_{\zeta}^{i}$. Now we define d' by :

if $\alpha < \beta$ then $d'(\beta,\alpha)$ \square $d(\beta,\alpha)$ if $(\exists i)(\beta \geqslant \alpha_i > \alpha)$, and otherwise $d'(\beta,\alpha) = \min \{d(\beta,\alpha), \min \{\zeta : \alpha,\beta \in A_{\zeta}^i\}\}$. It is easy to check that d' is as required. For showing that every $i \in A$ is a successor, use subadditivity.

Stage B :

For any $\alpha < \lambda^+$ the family

 $\underline{P}_{\alpha} = \{A \subseteq \alpha : |A| < \lambda, d | A \text{ is bounded, cf(sup A)} \neq \kappa\}$ has cardinality $\leq \lambda$.

 $\begin{array}{l} \underline{Pf}: \text{ Let } \alpha = \bigcup_{i < \kappa} B_i, \ |B_i| < \lambda, \ B_i \text{ increasing, and let, for } i < \kappa, \\ \zeta < \kappa, \ \underline{P}_{\alpha,i}^{\zeta} = \{A \in \underline{P}_{\alpha} : A \cap B_i \text{ unbounded in A, d} | A \text{ bounded by } \zeta \}. \\ \text{Since } A \in P_{\alpha} \Rightarrow \text{ [cf(sup A) } \neq \kappa \text{ and d} | A \text{ bounded], and by the choice} \\ \text{of the } B_i's, \ \underline{P}_{\alpha} = \bigcup_{\zeta,i < \kappa} \underbrace{P_{\alpha,i}^{\zeta}}_{\zeta,i < \kappa}, \text{ it suffices to prove } |\underline{P}_{\alpha,i}^{\zeta}| \leq \lambda \\ \text{(for given } i,\zeta < \lambda). \text{ Let } B_i^{\zeta} = B_i \cup \bigcup_{\beta \in B} \{\gamma : \gamma < \beta, d(\beta,\gamma) \leq \zeta \}. \\ \text{Clearly } |B_i^{\zeta}| \leq |B_i| + \lambda_{\zeta} < \lambda \text{ , and } A \in \underline{P}_{\alpha,i}^{\zeta} \text{ implies } A \subseteq B_i^{\zeta}. \\ \text{So } |\underline{P}_{\alpha,i}^{\zeta}| \leq 2 \text{ if } < \lambda \text{ , so we have proved stage } B. \\ \end{array}$

Stage C:

If P is a family of subsets of A each of cardinality $< \lambda$, but $|\underline{P}| \le |A| = \lambda$, then there is a set C \subseteq A such that (i) $|C| = \kappa$,

(ii) $(\forall A \in P) |A \cap C| < \kappa$.

This is trivial.

Stage D :

We define the A's by induction on α for $\alpha \in S$. Suppose we arrive at α . Let $<\gamma_i: i < cf\alpha >$ be increasing with limit α , $\gamma_i + \lambda < \gamma_{i+1}$. For a set A of ordinals, let acc(A) = $\{\delta: \delta \text{ a limit, } \delta = \sup (A \cap \delta)\}$ (= the set of accumulation points of A). By stage B, $|\underline{P}_{\alpha}| < \lambda$, so by stage C we can find $c_{\alpha}^i \subseteq (\gamma_i, \gamma_i + \lambda)$, of power κ such that:

(*) for every $A \in P_{\alpha} \cup \{ \cup \{A_{\gamma} : \gamma < \alpha, \gamma \in acc(A) \} : A \in P_{\alpha} \}$, its intersection with c_{α}^{i} has power $< \kappa$.

In fact we have to check that $\left| \cup \left\{ A_{\gamma} \colon \gamma < \alpha, \ \gamma \in acc(A) \right\} \right| < \lambda$ (for $A \in \underline{P}_{\alpha}$), but this is easy : $\lambda \in acc(A) \Rightarrow cf\lambda \leqslant \left| A \right| \Rightarrow \left| A_{\gamma} \right| \leqslant \kappa + cf\gamma = \kappa + \left| A \right|$, hence the set has power $\leqslant (\kappa + A) \left| A \right| < \lambda$. We let $A_{\alpha} = \bigcup_{i < cf\alpha} c_{\alpha}^{i}$.

Stage E:

 $\{A_{\alpha} : \alpha \in S\}$ has no transversal.

Because $A_{\alpha} \subseteq \alpha$, by Fodor's theorem.

Stage E:

We prove (A*) from the lemma. We prove by induction on α that there are big $A_{\dot{\beta}}^{\, \prime} \subseteq A_{\dot{\beta}}^{\, \prime}$ ($\beta \leq \alpha, \beta \in S$), pairwise disjoint. This will clearly suffice.

Case 1 : For α a successor ordinal, it follows from the induction hypothesis on $\alpha\text{--}1.$

Case 2 : For α such that $(\exists \beta < \alpha)$ $\beta + \lambda \omega > \alpha$: proof as in the first case.

Case 3: For α a limit, cf α $\square \aleph_0$. Choose ordinals $\alpha_n \leq \alpha$, $\alpha_n \leq \alpha_{n+1}, \ \alpha \square \cup \alpha_n, \ \alpha_0 = 0.$ For each n, by the induction hypothesis there are big $A_g^n \subseteq A_g$ ($\beta \leqslant \alpha_n$), pairwise disjoint.

Define A_{β}^{τ} , for β \leqslant α , β \in S (hence β \neq 0), by :

$$A'_{\beta} = A^{n+1}_{\beta} - (\alpha_n + \lambda), \text{ where } \alpha_n < \beta \le \alpha_{n+1}$$

It is easy to check that $A_{\beta}^{\bullet} \subseteq A_{\beta}$ is still big, and obviously the A_{β}^{\bullet} are pairwise disjoint. Note that $\alpha \in S$, so we do not have to define A_{α}^{\bullet} .

Case 4: For α limit, not case 2, $cf\alpha > \aleph_0$. There is $E \subseteq \alpha$, unbounded, of order type $cf\alpha$ (hence $<\lambda$) and $E = \{\beta_{i+1} : i < cf\alpha\}$ (the β_i increasing), such that $d \mid E$, is unbounded for $i < cf\alpha$, where

 $E_i = \{\beta_{j \uparrow 1} : j < i\}$, and each β_{i+1} is a successor ordinal. (For $cf\alpha \le \kappa$, any unbounded A of order type $cf\alpha$ is as required). (Remember d is from stage A).

We can define for limit $\delta \leq cf\alpha$, $\beta_{\delta} = \sup \{\beta_{i+1} : i \leq \delta\}$.

Since β_i + λ < α , we can assume w.l.o.g. β_i + λ < β_{i+1} (by making deletions if necessary). Let $A_{\beta}^i \subseteq A_{\beta}$ be big, pairwise disjoint, for $\beta \le \beta$; (possible by the induction hypothesis).

We now define A', if $\beta \notin \bigcup_{\substack{i < cf\alpha \\ \beta}} (\beta_i, \beta_i + \lambda) \cup \{\alpha\}$, by : $A'_{\beta} = A^i_{\beta} - (\beta_i + \lambda), \text{ where } \beta_i + \lambda < \beta \leqslant \beta_{i+1}.$

Clearly, the $A_{\beta} \subseteq A_{\beta}$ are big, pairwise disjoint and disjoint from $D = {}^{df} \cup \{\beta_i, \beta_{i+1} + \lambda\}$. For which β 's have we still not deficated A_{β}' ? For $\beta = \beta_i$ ($i \le cf\delta$) i.e., $\beta = \beta_j$, for which $\beta \in S$, hence $cfj \ne \aleph_0$, κ , 1. Checking definitions we can see that for each such β , $A_{\beta} \cap D \subseteq A_{\beta}$ is big. So it suffices to find pairwise disjoint big $A_{\beta}' \subseteq A_{\beta}'$ ($j \le cf\delta$, j a limit). This we do by induction on j. Suppose we have defined these for every $j' \le j$. For j a successor among $\{i \le cf\delta: i \text{ a limit}\}$ or $\beta_j \notin S$, there is no problem. (Remember for j a successor, β_j is a successor, hence $\notin S$). Otherwise, note that $cfj \ne \kappa$, hence $cf(\sup(E_j)) \ne \kappa$, hence $E_j \in P_{\alpha}$ (see stage B). Now look at Stage D, for β_j . We chose there an increasing continuous sequence of ordinals $\leq \gamma_i: i \leq cf\beta_j > converging$ to β_j . Since $cf \beta_j \ne \aleph_0$, there is a closed unbounded $C \subseteq cf \beta_j$, such that $i \in C \Rightarrow \gamma_i \in \{\beta_\xi: \xi \le j\}$. We then defined $A_{\beta_j} = \bigcup_{i \leq cf\beta_j} c_{\beta_j}$, where $c_{\beta_j}^i \subseteq (\gamma_i, \gamma_i + \lambda)$, has order type κ , and in particular

 $[\,\cup\,\{A_{\zeta}\,:\,\zeta\in\delta,\,\zeta\in acc(E_{\dot{J}})\}\,]\,\,\cap\,c^{\dot{I}}_{\dot{\beta}_{\dot{J}}}\quad\text{has power}\,\,<\kappa.$

But what is $acc(E_j)$? It is just $\{\beta_{j(o)}: j(o) < j, j(o) = 1\}$ limit $\{\beta_{j(o)}: j(o) < j, j(o) = 1\}$ and $\{\beta_{j(o)}: j(o) < j, j(o) = 1\}$ has power $\{\beta_{j(o)}: j(o) < j, j(o) = 1\}$.

Let $A_{\beta_{j}}^{i} = \bigcup \{c_{\beta_{j}}^{i} - \bigcup \{A_{\zeta} : \zeta \in S, \zeta \in acc(E_{j})\} : i \in C\}.$

It is easy to check that it is a big subset of A_{β_j} , and obviously it is disjoint from A_{β_j} , where j(o) < j is a limit. So we have finished the proof.

Stage E: Suppose λ singular strong limit, $cf\lambda = \kappa$, S a stationary subset of λ^+ , and every member of S divisible by $\lambda\omega$. Suppose further $A_{\alpha} \subseteq \alpha$, $|A_{\alpha}| \leq \kappa cf\alpha$ for $\alpha \in S$, and for any $\alpha_{o} < \lambda^+$, $\{A_{\alpha} : \alpha < \alpha_{o}\}$ has a transversal. Then we can find $A_{\alpha}^* \subseteq \alpha$ for $\alpha \in S$, so that $A_{\alpha}^* = \{\gamma(\alpha,i) : i < \kappa(cf\alpha)\}$, where $\gamma(\alpha,i)$ increase with i, (hence $|A_{\alpha}^*| \leq cf\alpha + \kappa$ ($<\lambda$)) and for every $\alpha_{o} < \lambda^+$ there are pairwise disjoint $A_{\alpha}^* \subseteq A_{\alpha}$ (for $\alpha < \alpha_{o}$, $\alpha \in S$), such that for each α for some $i_{o} < cf\alpha$

 $(\forall i < cfa) (\exists \zeta < \kappa)(\forall \xi)(\zeta \leqslant \xi < \kappa \ i \ i_0 < i \rightarrow \gamma(\alpha, \kappa i + \xi) \in A'_{\alpha}).$

 $\begin{array}{l} \underline{\mathrm{Proof}} \,:\, \mathrm{For} \,\, \mathrm{every} \,\, \alpha, \,\, \mathrm{choose} \,\, B_{\alpha}^{\xi} \subseteq \alpha, \,\, B_{\alpha}^{\xi} \,\,\, \mathrm{increase} \,\, \mathrm{with} \,\, \xi, \,\, \alpha = \bigcup \,\,\, B_{\alpha}^{\xi} \,\, \\ \mathrm{and} \,\, \left| \,\, B_{\alpha}^{\xi} \,\right| \,\, \leq \, \lambda \,\,\, . \qquad \quad \mathrm{We} \,\,\, \mathrm{can} \,\,\, \mathrm{define} \,\, \mathrm{functions} \,\, h_0, \,\, h_1, \mathrm{Dom} \,\, h_{\ell} \,\, = \, \lambda^{\pm}, \\ \mathrm{so} \,\,\, \mathrm{that} \,\,\, \mathrm{for} \,\,\, \mathrm{any} \,\,\, \beta_0, \,\, \beta_1 \,\, \leq \,\, \beta \,\, < \, \lambda^{+}, \,\, \xi \,\, < \, \kappa, \,\, A \,\subseteq \,\, B_{\beta_0}^{\xi} \,\,\,, \,\,\, \mathrm{there} \,\,\, \mathrm{are} \,\, \\ \lambda \,\,\, \beta^{*}\,\, \, \mathrm{is}, \,\, \beta \,\, \leq \,\, \beta^{*} \,\, < \,\, \beta \,\, + \,\, \lambda \,\,\, , \,\,\, \mathrm{such} \,\,\, \mathrm{that} \,\, h_1(\beta^{*}) \,\, = \,\, \beta_1, \,\, h_2(\beta^{*}) \,\, = \,\, A. \\ \mathrm{(We \,\, define} \,\, h_{\ell} \,\, \, \, \, \big[\,\, \lambda \mathrm{i}, \,\, \lambda \,\, (\mathrm{i+1}) \,\, \big) \,\,\, \mathrm{for} \,\,\, \mathrm{each} \,\,\, \mathrm{i} \,\, ; \,\, \mathrm{then} \,\,\, \mathrm{number} \,\,\, \mathrm{of} \,\,\, \mathrm{possible} \,\, \\ \mathrm{tuples} \,\, < \,\, \beta_1, \,\, A, \,\, \beta, \,\, \xi, \,\, \beta_0 \,\, > \,\, \mathrm{is} \,\, \leq \,\, \lambda, \,\,\, \mathrm{so} \,\,\, \mathrm{there} \,\,\, \mathrm{is} \,\,\, \mathrm{no} \,\,\, \mathrm{problem} \,\, \big). \end{array}$

For each $\alpha \in S$ choose an increasing sequence $\beta(\alpha,i)$ (i < cfa) converging to it.

First note that ($\forall \alpha_0 < \alpha$) $\alpha_0 + \lambda < \alpha$ (since $\alpha \in S$) hence w.l.o.g. $\beta(\alpha,i) + \lambda < \beta(\alpha,i+1)$, and $\beta(\alpha,i)$ is divisible by λ .

Now we define by induction on j = i κ + ξ (i < cf α , ξ < κ) an ordinal $\gamma(\alpha,j)$, increasing with j, such that

- (i) $\beta(\alpha,i) < \gamma(\alpha,j) < \beta(\alpha,i) + \lambda$,
- (ii) $h_1(\gamma(\alpha,j)) = cf\alpha$,
- (iii) $h_2(\gamma(\alpha,j)) = A_{\alpha} \cap B_{\beta(\alpha,i)}^{\xi}$, and
- (iv) $\gamma(\alpha,j) \notin \{A^*_{\alpha(\alpha)} : \alpha(\alpha) \in B^{\xi}_{\alpha}\}.$

The last condition excludes $<\lambda$ γ 's, and the conditions (ii), (iii)

are satisfied by λ γ 's, $\beta(\alpha,i) < \gamma < \beta(\alpha,i) + \lambda$. So we can define $A_{\alpha}^* = \{\gamma(\alpha,i) : i < \kappa(cf\alpha)\}$, and $\gamma(\alpha,i)$ increase with i and converge to α .

Now we are given $\alpha(o) \le \lambda^+$ and have to find $A_\alpha^! \subseteq A_\alpha^*$ as required. By hypothesis, there is a transversal f of $\{A_\alpha : \alpha \le \alpha(o)\}$. Define $A_\alpha^1 = \{\gamma(\alpha, \kappa i + \xi) : i \le cf\alpha, f(A_\alpha) \in A_\alpha \cap B_{\beta(\alpha, i)}^{\xi}\}$.

Clearly it is a very big subset of A_{α} .

On S \cap α (o) we define a graph : (α_1, α_2) is an edge iff $A_{\alpha_1}^1 \cap A_{\alpha_2}^1 \neq \phi$. Note :

- (a) If (α_1,α_2) is an edge then $cf\alpha_1=cf\alpha_2$ (because $\gamma\in A_{\alpha_\ell}$ implies $h_1(\gamma)=cf\alpha$).
- (b) The valency of any α_1 (= $|\{\alpha_2:(\alpha_1,\alpha_2) \text{ is an edge }\}|$) is $\leqslant |A_\alpha^*|.$

As f is one-to-one, it suffices to prove that $f(A_{\alpha_2}) \in A_{\alpha_1}$ whenever $A_{\alpha_2} \cap A_{\alpha_1} \neq \emptyset$. If $\gamma = \gamma(\alpha_1, \kappa i_1 + \xi_1) = \gamma(\alpha_2, \kappa i_2 + \xi_2) \in A_{\alpha_1}^1 \cap A_{\alpha_2}^1$, then $\beta = \beta(\alpha_1, i_1) = \beta(\alpha_2, i_2)$ (it is the biggest ordinal $\xi_1 \in \gamma$ divisible by λ), so $A_{\alpha_1} \cap B_{\beta(\alpha_1, i_1)} = h_2(\gamma) = A_{\alpha_2} \cap B_{\beta(\alpha_2, i_2)}^{\xi_2}$ but $f(A_{\alpha_2}) \in A_{\alpha_2} \cap B_{\beta(\alpha_2, i_2)}$ (since $\gamma \in A_{\alpha_2}^1$) hence $f(A_{\alpha_2}) \in A_{\alpha_1} \cap B_{\beta(\alpha_1, i_1)} \subseteq A_{\alpha_1}$, as required.

Now we deal with each component C of the graph separately. By (a), all $\alpha \in C$ have the same cofinality, say μ , and by b), $|C| \leq \kappa + \mu. \quad \text{If } \mu > \kappa \quad \text{note that each } A_{\alpha}^{1} \text{ has order type } \mu \text{ and is unbounded below } \alpha, \text{ hence } \alpha_{1} \neq \alpha_{2} = C \Rightarrow |A_{\alpha}^{1} \cap A_{\alpha_{2}}^{1}| \leq \mu.$ So let $C = \{\alpha_{\zeta} : \zeta \leq \mu\}$, and we can define $A_{\alpha_{\zeta}}^{*} = A_{\alpha_{\zeta}}^{1} - \bigcup_{\xi < \zeta} A_{\zeta}^{1}$, which are as required. If $\mu \leq \kappa$, we give a similar treatment to each $\{\gamma(\alpha, \kappa i + \xi) : \xi \leq \kappa\}$ for $i \leq \mu$, $\alpha \in C$.

25. Conclusion:

- 1) Suppose \aleph_{ij} is a strong limit.
- a) There is a family of $\aleph_{\omega+1}$ countable subsets of $\aleph_{\omega+1}$ which does

Sn:10

374 S. SHELAH

not have a transversal, but every subfamily of cardinality $< \aleph_{\omega+1}$ has a transversal.

- b) There is an abelian group [group] of power $\aleph_{\omega+1}$, which is not free, but every subgroup of cardinality $<\aleph_{\omega+1}$ is.
- 2) Suppose $\aleph_{\omega^{\hat{k}}}$ is strong limit for $\ell \leq n$. Then a), b) hold for $\aleph_{\omega n+1}$.

 \underline{Proof} : 1 a), 2 a). It is easy to see this after reading Milner and Shelah [MS].

1 b), 2 b) are easy to see.

26. Claim : Suppose λ is strong limit, cf λ = \aleph_0 , $\mu < \kappa$, μ regular and : P is μ -complete or among any μ members of P there are μ which are pairwise compatible.

If in V^P λ is still a strong limit cardinal, then $S^{*}(\lambda^+)^V \cap CF(\lambda,\mu)^V, \ S^{*}(\lambda^+)^{V^P} \cap CF(\lambda,\mu)^{V^P}$

are equal (i.e., for some representation they are equal).

<u>Proof</u>: Let $d:\lambda^{\dagger}\to\kappa$ be normal. Clearly it is still normal in V^P . By 13 it suffices to prove that the truth value of " $\alpha\in S_1(d)$ " is not changed, which is quite easy.

 $\underline{27.~Claim}$: If χ is supercompact, $\lambda>\chi,~cf\lambda<\chi,$ then $S^{\bigstar}(\lambda^{\dagger})$ is stationary.

Proof : Let d : λ^{\dagger} \rightarrow cf λ be normal and subadditive, and suppose $C \subseteq \lambda^{\dagger}$ is closed and unbounded.

Suppose $N \prec (H(\lambda^{++}), \in)$, $cf\lambda + 1 \subseteq N$, $C,d \in N$, $\|N\| < \chi$ and every subset of $N \cap \lambda^{+}$ belongs to N (this is possible as χ is supercompact). Let $\delta^* = \sup(N \cap \lambda^{+})$. Clearly $cf\delta^*$ is the successor of a singular cardinal of cofinality $cf\lambda$ so $cf\delta^* > cf\lambda$. Clearly $C \cap N$ is unbounded, hence $\delta^* \in C$; so it suffices to prove $\delta^* \notin S_{\Omega}(d)$.

So suppose A \subseteq δ^* is unbounded, and d A is bounded by ζ . Let A = $\{\beta_i: i < \delta^*\}$, β_i increasing. We may assume, w.l.o.g., for each i there is γ_i , $\beta_i < \gamma_i < \beta_{i+1}$, $\gamma_i \in N$. Let $\zeta_i = \max{\{\zeta_i, d(\beta_{i+1}, \gamma_i), d(\gamma_i, \beta_i)\}} < \mathrm{cf}\lambda < \mathrm{cf}\delta^*$. So (w.l.o.g.) $\zeta_i = \zeta^*$ for every i. Now if i < j, then by the subadditivity: $d(\gamma_i, \gamma_j) \leq \max{\{d(\gamma_j, \beta_{j+1}), d(\beta_{j+1}, \beta_{i+1}), d(\beta_{i+1}, \gamma_i)\}} \leq \zeta^*$ So $d|\{\gamma_i: i < \mathrm{cf}\delta^*\}$ is bounded, but the set necessarily belongs to N, and, as N \prec (H(λ^{++}), \in), there is an unbounded B $\subseteq \lambda^+$ on which d is bounded, giving an easy contradiction to normality.

28. Remark: We in fact prove that if d is a subadditive function, with domain α^* , $\alpha \leq \alpha^*$, and d is bounded on some unbounded A $\subseteq \alpha$, then every unbounded A' $\subseteq \alpha$ has an unbounded subset A'' $\subseteq A$ ' $\subseteq \alpha$ such that $d \mid A''$ is bounded.

 $\underline{\text{29.Conclusion}}$: If ZFC + " $\overline{\textbf{\textit{\textbf{J}}}}$ a supercompact" is consistent then the following is consistent :

ZFC + GCH + "S*(\aleph_{m+1}) is stationary".

Proof: Suppose χ is supercompact, and also (w.l.o.g.) GCH holds. Let λ be the first singular cardinal $> \chi$. By 27 we can choose a regular $\mu < \chi$ such that $S^*(\lambda^+) \cap CF(\lambda^+, \mu)$ is stationary. We use Levy collapsing P to collapse every $\mu' < \mu$ to \aleph_0 (by finite conditions). So now, in $V^P_{, \mu}$ is \aleph_1 . By 26, in $V^P_{, \nu}$ $S^*(\lambda^+)^{V^P_{, \nu}} \supseteq S^*(\lambda^+)^{V} \cap CF(\lambda^+, \mu)^{V}$, and the latter obviously remains stationary. Now collapse χ to \aleph_1 by a Q which is \aleph_1 -complete. Again $S^*(\lambda^+)^{V} \cap CF(\lambda^+, \mu)^{V}$ remains stationary and is still included in $S^*(\lambda^+)^{P^*Q}$.

$^{\lozenge}{}_{\lambda}$ is not a strong requirement

30. Definition : Let λ be a regular cardinal and E $\subseteq \lambda$ a stationary

set in it.

- (1) $\lozenge^*_{\lambda}(E)$. There is $< W_{\alpha} : \alpha \in E >$ such that for every α , W_{α} is a family of subsets of α with $|W_{\alpha}| < |\alpha|$, and for every $X \subseteq \lambda$ there is a closed and unbounded $C \subseteq \lambda$ such that $X \cap \alpha \in W_{\alpha}$ for all $\alpha \in C \cap E$.
- (2) $\Diamond_{\lambda}(E)$. There is $\langle S_{\alpha} : \alpha \in E \rangle$ such that $S_{\alpha} \subseteq \alpha$, and for every $X \subseteq \lambda$, $\{\alpha : X \cap \alpha = S_{\alpha}\}$ is stationary in λ .
- 31. Theorem : (Kunen) : (1) For stationary E $\subseteq \lambda$, $\Diamond_{\lambda}^{*}(E)$ implies $\Diamond_{\lambda}(E)$.
- (2) For $E_1\subseteq E_2\subseteq \lambda$, $\Diamond_\lambda(E_1)$ implies $\Diamond_\lambda(E_2)$ and $\Diamond_\lambda^*(E_2)$ implies $\Diamond_\lambda^*(E_1)$.
- $\underline{32.~Theorem}$: Suppose λ = $2^{\,\mu}$ = μ^{+} and for some regular κ < μ , either
- (i) $\mu^{K} = \mu$, or
- (ii) μ is singular κ # cf μ and for every $\delta < \mu, \left| \delta \right|^K < \mu$ $\underline{\text{Then}} \quad \diamondsuit^*_{\lambda}(E(\kappa)) \text{ where } E(\kappa) \text{ is the stationary subset } \{\alpha < \lambda : \text{ cf}\alpha = \kappa\}.$

Remark : Case (i) is due to Gregory [Gr].

<u>Case (i)</u>: For $\alpha \in E(\kappa)$ let W_{α} be the set of all unions of no more than κ subsets of α belonging to $A_{\beta}: \beta < \alpha > 0$.

 $(W_{\alpha} = \{ \cup Y : |Y| \le \kappa, x \in Y \rightarrow x \subseteq \alpha, x \in \{A_{\beta} : \beta < \alpha \} \}).$

Given $X \subseteq \lambda$, let C be $\{\alpha_i \mid i < \lambda\}$ where α_o is any successor less than $\lambda, \alpha_\delta = \beta \subset \delta$ α_β for limit δ , and α_{i+1} is the least $\alpha > \alpha_i$ such that for some $\gamma < \alpha$, $A_\gamma = X \cap \alpha_i$.

Now C' = { δ : δ = \cup { α_i : α_i < δ }} is closed unbounded, and for δ \in C \cap E(κ) there are i(j) and γ_j < δ (j < κ) such that

 $\kappa \, = \, | \, V_{\, \mathbf{j}}^{\, \delta} \, \cap \, \{ \, \mathbf{f}(\, \delta_{\, \mathbf{i}} \,) \, : \, \mathbf{i} \, \leq \, \kappa \, \} \, \big| \, \, \, \, \text{hence} \, \, \mathbf{X} \, \cap \, \, \delta \, = \, \cup \, \, \{ \, \mathbf{X} \, \cap \, \, \delta_{\, \mathbf{i}} \, : \, \mathbf{i} \, < \, \kappa \, , \, \, \mathbf{f}(\, \delta_{\, \mathbf{i}} \,) \, \in \, V_{\, \mathbf{j}}^{\, \delta} \, \} \, \in \, \, W_{\, \delta}^{\, \delta} \, .$

 $\frac{33. \text{ Conclusion}}{\lambda}: \text{ (GCH) If } \lambda > \aleph_{_{\textbf{O}}}, \text{ then } \lozenge^*_{_{\textstyle{\lambda}}} + \text{(E(K)) holds, whenever}$ $\kappa \neq \text{cf} \lambda. \text{ In particular } \lozenge_{_{\textstyle{\lambda}}} \text{ holds.}$

Final comments

- 1) The restriction " λ strong limit" in most cases can be weakened at the expense of complicating the results : assuming ($\forall \mu < \lambda$) $\mu^{<\chi} < \lambda$, and restricting ourselves to $CF(\lambda^+, <\chi)$ or $CF(\lambda^+, \leqslant \chi)$.
- 2) A more serious question is whether we can, in 7, replace D_{λ}^{g} by $D_{\lambda}.$ This remains open.

Note that the natural notion is $S_2(\overline{N})$, and that for regular λ , $I^+(\lambda) = \{A \subseteq \lambda : \text{for some } \lambda\text{-approximating sequence } \overline{N}, A \subseteq S_2(\overline{N})\}$ is always a normal ideal. Similarly

$$\begin{split} &\mathbf{I}^-(\lambda) = \{\mathbf{A} \subseteq \lambda \ : \ \mathbf{A} \ \mathbf{\cap} \ \mathbf{B} \equiv \ \phi \ \text{mod} \ \mathbf{D}_{\lambda} \ \text{for every} \ \mathbf{B} \in \ \mathbf{I}^+(\lambda) \} \\ &\text{is a normal ideal}. \quad \text{The meaning of claim 7 is that } \mathbf{I}^+(\lambda) \ \text{is} \\ &\{\mathbf{A} : \ \mathbf{A} \subseteq \mathbf{A}_0 \ \text{mod} \ \mathbf{D}_{\lambda} \} \quad \text{for some } \mathbf{A}_0, \ \text{when } \gcd(\lambda) = \lambda. \quad \text{Another formulation of our question is whether this always holds.} \end{split}$$

However, we can meanwhile just formulate the later theorems in terms of $I^+(\lambda)$ instead of $S^*(\lambda)$ (and the changes in the proofs

are minor). By the way it may be more natural to use $S_3(\overline{N}) = \{\delta: \text{ there is a function h, Dom h} = \text{cf}\delta, \text{ Range h an unbounded subset of } \delta, (\forall i < \text{cf}\delta) \quad h \big| i \in N_\delta, \text{ and } N_\delta \cap \lambda = \delta \} \text{ (in gcf}(\lambda) \\ \text{it does not matter)}.$

- 3) Why were we interested mainly in $\aleph_{\omega+1}$ and not in e.g. $\aleph_{\omega+2}$? The answer is that several inductive proofs work for successors of regular cardinal, and it was not clear whether they fail at successors of singulars. (But see remarks 5 and 6 below).
- 4) It may be of interest to mention our original line of thought, which is not so transparent from the present paper.

We want to prove that $S_2(\overline{N})$ is quite "big", where \overline{N} is an $N_{\omega+1}$ -approximating sequence for $N_{\omega+1}$, assuming GCH. So we let $N_{\omega+1} \to N_{\omega}$ be normal, and using the Erdös-Rado theorem $(2^n)^+ \to (N_{n+1})^2_{N_0}$, prove that if $C \subseteq N_{\omega+1}$ is closed of order type $(2^n)^+$ then it contains C_1 of order type N_{n+1} , with d constant on C_1 . C_1' (the set of accumulation points of C_1) is $N_2(\overline{N})$ and is a closed subset of C of order type N_{n+1} . This proves that $N_2(\overline{N})$ is in some sense big.

5) We can try to generalize 4) to other cardinals.

Let $\kappa = \operatorname{cf} \aleph_{\alpha} < \aleph_{\alpha}$.

 $\begin{array}{l} \underline{\text{Definition}} \ : \ \text{Call an (n+1)-place function d from } \aleph_{\alpha+n} \ \text{to } \kappa \ \underline{\text{normal}} \\ \\ \text{if for every} \ \alpha_0 < \ldots < \alpha_n < \aleph_{\alpha+n} \ \text{there is k} \leq n \text{ such that} \\ \end{array}$

 $\{\alpha < \aleph_{\alpha+n} : d(\alpha_0, \alpha_1, \dots, \alpha_{k-1}, \alpha, \alpha_{k+1}, \dots, \alpha_n) = d(\alpha_0, \dots, \alpha_k, \dots, \alpha_n) \}$ has cardinality $< \aleph_{\alpha}$.

Claim : There is a normal function d : $\aleph_{\alpha+n} \to \kappa$.

Proof: By induction on n.

ON SUCCESSORS OF SINGULAR CARDINALS

Then C has a closed subset of order type $\mu^{\mbox{\dag}}$ which is included in $S_{\,2}(\,\overline{N}\,)\,.$

 $\begin{array}{l} \underline{\text{Proof}} \,:\, \text{Let d} \in \mathbb{N}_0, \,\, \text{d} \,:\, \overset{\aleph}{\aleph}_{\alpha+n} \to \kappa, \,\, \text{d normal.} \quad \text{By the Erdős-Rado} \\ \text{theorem } \,(\underline{\mathbf{1}}_{n+1}(\kappa+\mu)^+ \to (\mu^+)^{n+1}_{\kappa}) \,\, \text{there is } C_1 \subseteq C \,\, \text{of order type} \,\, \mu^+ \\ \text{on which d is constant.} \quad \text{If } \delta \in C_1^+, \,\, \text{then } C_1 \cap \delta \,\, \text{witnesses that} \\ \delta \in S_2(\overline{\mathbb{N}}) \,. \end{array}$

6) Suppose \aleph_{α} is strong limit, κ \blacksquare cf \aleph_{α} , γ a successor ordinal, $\kappa \leqslant \mu < \aleph_{\alpha} \text{ and } \mathbf{1}_{\gamma}(\mu) < \aleph_{\alpha}. \text{ If } \overline{\mathbb{N}} \text{ is a } \aleph_{\alpha+\gamma}\text{-approximating sequence}$ for $\aleph_{\alpha+\gamma+1}$, and $\mathbb{C} \subseteq \aleph_{\alpha+\gamma}$ has order type $\mathbf{1}_{\gamma}(\mu)^{+}$, then \mathbb{C} has a closed subset \mathbb{C}_{1} of order type μ^{+} which is included in $\mathbb{S}_{2}(\overline{\mathbb{N}})$.

Proof : We prove a somewhat stronger statement :

If $C \subseteq \aleph_{\alpha+\beta}$, $\beta \le \gamma$ a successor ordinal, and C has order type $\geqslant \mathbf{1}_{\beta}(\mu)^{\dagger}$, then there is $C_1 \subseteq C \cap S_2(\overline{\mathbb{N}})$ of order type μ^{\dagger} , such that for some $\ell < n$, if $\alpha_0 < \ldots < \alpha_n \in C_1$ then

 $(\text{H}(\aleph_{\alpha+\gamma+1}),\in) \models \varphi(\alpha_0,\ldots,\alpha_n) \& | \{x: \varphi(\alpha_0,\ldots,\alpha_{\ell-1},x,\alpha_{\ell},\ldots,\alpha_n)\} | < \aleph_{\alpha}$ (This imples $C_1'\subseteq S_2(\overline{N})$).

We prove this by induction on β . For finite β this was done above, and the induction step is easy.

REFERENCES

- [E] Eklof.
- [F] L. Fuchs. Infinite abelian groups, Academic Press, N.Y. & London, Vol. I 1970, Vol. II 1973.
- [Gr] Gregory, J. Symb. Logic, Sept. 1976.
- [MS] E. Milner and S. Shelah, Two theorems on transversals, Proc. Symp. in Honour of Erdös 60th Birthday, Hungary 1973.

Sn:108

[Sh 1] S. Shelah, Notes in partition calculus, Proc. of Symp. in Honour of Erdös 60th Birthday, Hungary 1973.

[Sh 2] _____, A compactness theorem for singular cardinals.

Free Algebras, Whitehead problem and transversals,

Israel J. Math. 21 (1975), 319-349.